hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
849a20daae6edb04cc92fd6d513ec61b99f56fc8
1,928
py
Python
src/websitewatcher.py
OzTamir/WebsiteWatcher
54e949b72a2c66aed7c6282f17db00735b9966ed
[ "MIT" ]
1
2021-06-03T19:13:05.000Z
2021-06-03T19:13:05.000Z
src/websitewatcher.py
OzTamir/WebsiteWatcher
54e949b72a2c66aed7c6282f17db00735b9966ed
[ "MIT" ]
null
null
null
src/websitewatcher.py
OzTamir/WebsiteWatcher
54e949b72a2c66aed7c6282f17db00735b9966ed
[ "MIT" ]
null
null
null
""" WebsiteWatcher.py - Watch websites for changes and alert the human about it! Author: OzTamir URL: https://github.com/OzTamir/WebsiteWatcher """ import json import logging from configuration import Configuration from watcher.watcher_manager import WatcherManager from twilio_mode import TwilioWatcher from telegram_bot import Bot logging.basicConfig( level=logging.INFO, format='[WebsiteWatcher][%(levelname)s][%(filename)s:%(funcName)s]: %(message)s') CONFIG_FILE = 'config.json' def telegram_mode(watcher: WatcherManager, config: Configuration): """Run the telegram bot Args: watcher (WatcherManager): A WatcherManager object, used to manage the watching of urls config (Configuration): A python representation of the config file on the disk """ bot = Bot(watcher, config.token, config.password, config.tick_frequency) bot.run_bot() def twilio_mode(watcher: WatcherManager, config: Configuration): """Run the Twilio loop Args: watcher (WatcherManager): A WatcherManager object, used to manage the watching of urls config (Configuration): A python representation of the config file on the disk """ twilio_watcher = TwilioWatcher(watcher, config) twilio_watcher.run_watcher() def main(): logging.info('Starting...') # Setup the configuration and the WatcherManager, both of which are the same in both modes config = Configuration(CONFIG_FILE) watcher_manager = WatcherManager(config.watchers_list) # Run in the configured mode if config.mode == Configuration.TELEGRAM: return telegram_mode(watcher_manager, config) elif config.mode == Configuration.TWILIO: return twilio_mode(watcher_manager, config) else: # This should never happen, as it is checked when the configuration is parsed that one mode is enabled raise NotImplementedError if __name__ == '__main__': main()
35.703704
110
0.734959
b2702d560629bae70433d188efa99d4111d7ce00
2,144
py
Python
rastervision2/pytorch_backend/pytorch_learner_backend.py
csaybar/raster-vision
617ca15f64e3b8a391432306a743f7d0dfff352f
[ "Apache-2.0" ]
1
2020-10-10T12:32:43.000Z
2020-10-10T12:32:43.000Z
rastervision2/pytorch_backend/pytorch_learner_backend.py
alvintuitoek/raster-vision
ec6c8309f89c404513862369bb93dd9e6a70b455
[ "Apache-2.0" ]
null
null
null
rastervision2/pytorch_backend/pytorch_learner_backend.py
alvintuitoek/raster-vision
ec6c8309f89c404513862369bb93dd9e6a70b455
[ "Apache-2.0" ]
1
2021-12-02T08:07:21.000Z
2021-12-02T08:07:21.000Z
from os.path import join import tempfile from rastervision2.pipeline.filesystem import (make_dir, upload_or_copy, zipdir) from rastervision2.core.backend import Backend, SampleWriter from rastervision2.core.data_sample import DataSample class PyTorchLearnerSampleWriter(SampleWriter): def __init__(self, output_uri, class_config, tmp_dir_root): self.output_uri = output_uri self.class_config = class_config self.tmp_dir_root = tmp_dir_root def __enter__(self): self.tmp_dir_obj = tempfile.TemporaryDirectory(dir=self.tmp_dir_root) self.sample_dir = join(self.tmp_dir_obj.name, 'samples') make_dir(self.sample_dir) self.sample_ind = 0 return self def __exit__(self, type, value, traceback): """ This writes a zip file for a group of scenes at {chip_uri}/{uuid}.zip. This method is called once per instance of the chip command. A number of instances of the chip command can run simultaneously to process chips in parallel. The uuid in the zip path above is what allows separate instances to avoid overwriting each others' output. """ output_path = join(self.tmp_dir_obj.name, 'output.zip') zipdir(self.sample_dir, output_path) upload_or_copy(output_path, self.output_uri) self.tmp_dir_obj.cleanup() def write_sample(self, sample: DataSample): raise NotImplementedError() class PyTorchLearnerBackend(Backend): def __init__(self, pipeline_cfg, learner_cfg, tmp_dir): self.pipeline_cfg = pipeline_cfg self.learner_cfg = learner_cfg self.tmp_dir = tmp_dir self.learner = None def train(self): learner = self.learner_cfg.build(self.tmp_dir) learner.main() def load_model(self): self.learner = self.learner_cfg.build_from_model_bundle( self.learner_cfg.get_model_bundle_uri(), self.tmp_dir) def get_sample_writer(self): raise NotImplementedError() def predict(self, chips, windows): raise NotImplementedError()
34.580645
80
0.686567
e8ca2029602983315c4ea183dc09ed227b9980e4
1,020
py
Python
qa327_test/conftest.py
KennethWest/ChairNerd
574d41fef1b784021926527f969ebc2b4c470908
[ "MIT" ]
null
null
null
qa327_test/conftest.py
KennethWest/ChairNerd
574d41fef1b784021926527f969ebc2b4c470908
[ "MIT" ]
null
null
null
qa327_test/conftest.py
KennethWest/ChairNerd
574d41fef1b784021926527f969ebc2b4c470908
[ "MIT" ]
null
null
null
import pytest import subprocess import os import signal import time import tempfile from qa327.__main__ import FLASK_PORT from qa327.__main__ import app import threading from werkzeug.serving import make_server base_url = 'http://localhost:{}'.format(FLASK_PORT) class ServerThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.srv = make_server('127.0.0.1', FLASK_PORT, app) self.ctx = app.app_context() self.ctx.push() def run(self): self.srv.serve_forever() def shutdown(self): self.srv.shutdown() @pytest.fixture(scope="module", autouse=True) def server(): on_win = os.name == 'nt' with tempfile.TemporaryDirectory() as tmp_folder: # create a live server for testing # with a temporary file as database db = os.path.join(tmp_folder, 'db.sqlite') server = ServerThread() server.start() time.sleep(5) yield server.shutdown() time.sleep(2)
23.181818
60
0.661765
3f3838cab49b96a289a7d659e6e7883efb02cef3
6,533
py
Python
src/users/views.py
DoubleTakoMeat/pycon.tw
6a49d890ced9027ddfdc965e8753c35d12da79b1
[ "MIT" ]
null
null
null
src/users/views.py
DoubleTakoMeat/pycon.tw
6a49d890ced9027ddfdc965e8753c35d12da79b1
[ "MIT" ]
null
null
null
src/users/views.py
DoubleTakoMeat/pycon.tw
6a49d890ced9027ddfdc965e8753c35d12da79b1
[ "MIT" ]
null
null
null
from django.conf import settings from django.contrib import messages from django.contrib import auth from django.contrib.auth import views as auth_views from django.contrib.auth.decorators import login_required from django.urls import reverse from django.http import Http404 from django.shortcuts import redirect, render from django.utils.translation import gettext, get_language from django.views.decorators.cache import never_cache from django.views.decorators.debug import sensitive_post_parameters from django.views.decorators.http import require_POST from django.template.loader import render_to_string from .decorators import login_forbidden from .forms import ( AuthenticationForm, PublicUserCreationForm, UserProfileUpdateForm, PasswordResetForm, SetPasswordForm, CocAgreementForm, ) from .models import CocRecord from reviews.context import proposals_state, reviews_state from lxml import etree import lxml.html User = auth.get_user_model() @sensitive_post_parameters() @never_cache @login_forbidden def user_signup(request): if request.method == 'POST': form = PublicUserCreationForm(data=request.POST) if form.is_valid(): user = form.save() user.send_verification_email(request) auth.login(request, user) messages.success(request, gettext( 'Sign up successful. You are now logged in.' )) return redirect('user_dashboard') else: form = PublicUserCreationForm() return render(request, 'registration/signup.html', {'form': form}) @sensitive_post_parameters() @never_cache def user_verify(request, verification_key): try: user = User.objects.get_with_verification_key(verification_key) except User.DoesNotExist: raise Http404 user.verified = True user.save() messages.success(request, gettext('Email verification successful.')) return redirect('user_dashboard') @never_cache @login_required @require_POST def request_verification(request): user = request.user user.send_verification_email(request) messages.success( request, gettext('A verification email has been sent to {email}').format( email=user.email, ), ) return redirect('user_dashboard') @login_required def user_dashboard(request): if not request.user.is_valid_speaker(): return redirect('user_profile_update') logout_next = reverse('login') return render(request, 'users/user_dashboard.html', { 'logout_next': logout_next, **proposals_state()._asdict(), **reviews_state()._asdict(), }) @login_required def user_profile_update(request): logout_next = reverse('index') if request.method == 'POST': form = UserProfileUpdateForm( data=request.POST, files=request.FILES, instance=request.user, ) if form.is_valid(): form.save() messages.success(request, gettext( 'Your profile has been updated successfully.', )) return redirect('user_dashboard') else: form = UserProfileUpdateForm(instance=request.user) return render(request, 'users/user_profile_update.html', { 'form': form, 'logout_next': logout_next, **reviews_state()._asdict(), }) def password_change_done(request): messages.success(request, gettext( 'Your new password has been applied successfully.' )) return redirect('user_dashboard') def password_reset_done(request): messages.success(request, gettext( 'An email is sent to your email account. Please check your inbox for ' 'furthur instructions to reset your password.' )) return redirect('login') def password_reset_complete(request): messages.success(request, gettext( 'Password reset successful. You can now login.' )) return redirect('login') @login_required def coc_agree(request): if request.method == 'POST': form = CocAgreementForm(data=request.POST) if form.is_valid(): try: agreement = CocRecord.objects.get(user=request.user, coc_version=settings.COC_VERSION) except CocRecord.DoesNotExist: agreement = CocRecord(user=request.user, coc_version=settings.COC_VERSION) agreement.save() # The query param indicating redirect target (setup by CocAgreementMixin) can be removed after set_language. # Redirect to dashboard intead if this situation happened. redirect_to = request.GET.get('next', reverse('user_dashboard')) return redirect(redirect_to) else: form = CocAgreementForm() # Get code of conduct lang = get_language() content = render_to_string('contents/%s/about/code-of-conduct.html' % lang[:2], {}, request) tree = lxml.html.document_fromstring(content) main = tree.xpath('//main')[0] # Remove the title # Since the HTML structure has changed # need to find the direct child from main which contains h1 as its descendant # and remove it for h1 in main.xpath('//h1'): target = h1 parent = h1.getparent() while parent != main and parent != None: target = parent parent = parent.getparent() if parent == main: main.remove(target) coc = etree.tostring(main, encoding='utf-8').decode('utf-8') return render(request, 'users/coc_agreement.html', { 'form': form, 'coc': coc, **reviews_state()._asdict(), }) class PasswordChangeView(auth_views.PasswordChangeView): # cannot merely pass extra_context=reviews_state()._asdict() to # auth_views.PasswordChangeView because # we need to resolve reviews_state()._asdict() everytime when # reaching this view def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context.update(**reviews_state()._asdict()) return context login = auth_views.LoginView.as_view(authentication_form=AuthenticationForm) logout = auth_views.LogoutView.as_view() password_change = PasswordChangeView.as_view() password_reset = auth_views.PasswordResetView.as_view(form_class=PasswordResetForm, template_name='registration/password_reset.html', email_template_name='registration/password_reset_email.txt') password_reset_confirm = auth_views.PasswordResetConfirmView.as_view( form_class=SetPasswordForm )
32.02451
120
0.691566
ebc81295aa1ce251290d89b1f711fdbe9b802b4b
23,544
py
Python
tests/pulses/sequence_pulse_template_tests.py
qutech-lab/qc-toolkit
f00e0d0000bdc7a6604ceae2c15b60f4d10c4000
[ "MIT" ]
30
2018-09-13T02:59:55.000Z
2022-03-21T04:25:22.000Z
tests/pulses/sequence_pulse_template_tests.py
qutech-lab/qc-toolkit
f00e0d0000bdc7a6604ceae2c15b60f4d10c4000
[ "MIT" ]
319
2015-03-10T09:37:20.000Z
2018-09-06T10:11:32.000Z
tests/pulses/sequence_pulse_template_tests.py
qutech-lab/qc-toolkit
f00e0d0000bdc7a6604ceae2c15b60f4d10c4000
[ "MIT" ]
14
2019-01-08T14:42:36.000Z
2021-05-21T08:53:06.000Z
import unittest from unittest import mock from qupulse.parameter_scope import DictScope from qupulse.expressions import Expression, ExpressionScalar from qupulse.pulses.table_pulse_template import TablePulseTemplate from qupulse.pulses.sequence_pulse_template import SequencePulseTemplate, SequenceWaveform from qupulse.pulses.mapping_pulse_template import MappingPulseTemplate from qupulse.pulses.parameters import ParameterConstraint, ParameterConstraintViolation, ParameterNotProvidedException from qupulse._program._loop import Loop from tests.pulses.sequencing_dummies import DummyPulseTemplate,\ DummyNoValueParameter, DummyWaveform, MeasurementWindowTestCase from tests.serialization_dummies import DummySerializer from tests.serialization_tests import SerializableTests from tests._program.transformation_tests import TransformationStub from tests.pulses.pulse_template_tests import get_appending_internal_create_program, PulseTemplateStub class SequencePulseTemplateTest(unittest.TestCase): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) # Setup test data self.square = TablePulseTemplate({'default': [(0, 0), ('up', 'v', 'hold'), ('down', 0, 'hold'), ('length', 0)]}, measurements=[('mw1', 'up', 'length-up')]) self.mapping1 = { 'up': 'uptime', 'down': 'uptime + length', 'v': 'voltage', 'length': '0.5 * pulse_length' } self.window_name_mapping = {'mw1' : 'test_window'} self.outer_parameters = {'uptime', 'length', 'pulse_length', 'voltage'} self.parameters = dict() self.parameters['uptime'] = 5 self.parameters['length'] = 10 self.parameters['pulse_length'] = 100 self.parameters['voltage'] = 10 self.sequence = SequencePulseTemplate(MappingPulseTemplate(self.square, parameter_mapping=self.mapping1, measurement_mapping=self.window_name_mapping)) def test_duration(self): pt = SequencePulseTemplate(DummyPulseTemplate(duration='a'), DummyPulseTemplate(duration='a'), DummyPulseTemplate(duration='b')) self.assertEqual(pt.duration, Expression('a+a+b')) def test_parameter_names(self) -> None: pt = SequencePulseTemplate(DummyPulseTemplate(parameter_names={'a'}), DummyPulseTemplate(parameter_names={'b'}), parameter_constraints=['a==b', 'a<c'], measurements=[('meas', 'd', 1)]) self.assertEqual({'a', 'b', 'c', 'd'}, pt.parameter_names, ) def test_build_waveform(self): wfs = [DummyWaveform(), DummyWaveform()] pts = [DummyPulseTemplate(waveform=wf) for wf in wfs] spt = SequencePulseTemplate(*pts, parameter_constraints=['a < 3']) with self.assertRaises(ParameterConstraintViolation): spt.build_waveform(dict(a=4), dict()) parameters = dict(a=2) channel_mapping = dict() wf = spt.build_waveform(parameters, channel_mapping=channel_mapping) for wfi, pt in zip(wfs, pts): self.assertEqual(pt.build_waveform_calls, [(parameters, dict())]) self.assertIs(pt.build_waveform_calls[0][0], parameters) self.assertIsInstance(wf, SequenceWaveform) for wfa, wfb in zip(wf.compare_key, wfs): self.assertIs(wfa, wfb) def test_identifier(self) -> None: identifier = 'some name' pulse = SequencePulseTemplate(DummyPulseTemplate(), identifier=identifier) self.assertEqual(identifier, pulse.identifier) def test_multiple_channels(self) -> None: dummy = DummyPulseTemplate(parameter_names={'hugo'}, defined_channels={'A', 'B'}) subtemplates = [(dummy, {'hugo': 'foo'}, {}), (dummy, {'hugo': '3'}, {})] sequence = SequencePulseTemplate(*subtemplates) self.assertEqual({'A', 'B'}, sequence.defined_channels) self.assertEqual({'foo'}, sequence.parameter_names) def test_multiple_channels_mismatch(self) -> None: with self.assertRaises(ValueError): SequencePulseTemplate(DummyPulseTemplate(defined_channels={'A'}), DummyPulseTemplate(defined_channels={'B'})) with self.assertRaises(ValueError): SequencePulseTemplate( DummyPulseTemplate(defined_channels={'A'}), DummyPulseTemplate(defined_channels={'A', 'B'}) ) def test_integral(self) -> None: dummy1 = DummyPulseTemplate(defined_channels={'A', 'B'}, integrals={'A': ExpressionScalar('k+2*b'), 'B': ExpressionScalar('3')}) dummy2 = DummyPulseTemplate(defined_channels={'A', 'B'}, integrals={'A': ExpressionScalar('7*(b-f)'), 'B': ExpressionScalar('0.24*f-3.0')}) pulse = SequencePulseTemplate(dummy1, dummy2) self.assertEqual({'A': ExpressionScalar('k+2*b+7*(b-f)'), 'B': ExpressionScalar('0.24*f')}, pulse.integral) def test_concatenate(self): a = DummyPulseTemplate(parameter_names={'foo'}, defined_channels={'A'}) b = DummyPulseTemplate(parameter_names={'bar'}, defined_channels={'A'}) spt_anon = SequencePulseTemplate(a, b) spt_id = SequencePulseTemplate(a, b, identifier='id') spt_meas = SequencePulseTemplate(a, b, measurements=[('m', 0, 'd')]) spt_constr = SequencePulseTemplate(a, b, parameter_constraints=['a < b']) merged = SequencePulseTemplate.concatenate(a, spt_anon, b) self.assertEqual(merged.subtemplates, [a, a, b, b]) result = SequencePulseTemplate.concatenate(a, spt_id, b) self.assertEqual(result.subtemplates, [a, spt_id, b]) result = SequencePulseTemplate.concatenate(a, spt_meas, b) self.assertEqual(result.subtemplates, [a, spt_meas, b]) result = SequencePulseTemplate.concatenate(a, spt_constr, b) self.assertEqual(result.subtemplates, [a, spt_constr, b]) class SequencePulseTemplateSerializationTests(SerializableTests, unittest.TestCase): @property def class_to_test(self): return SequencePulseTemplate def make_kwargs(self): return { 'subtemplates': [DummyPulseTemplate(), DummyPulseTemplate()], 'parameter_constraints': [str(ParameterConstraint('a<b'))], 'measurements': [('m', 0, 1)] } def make_instance(self, identifier=None, registry=None): kwargs = self.make_kwargs() subtemplates = kwargs['subtemplates'] del kwargs['subtemplates'] return self.class_to_test(identifier=identifier, *subtemplates, **kwargs, registry=registry) def assert_equal_instance_except_id(self, lhs: SequencePulseTemplate, rhs: SequencePulseTemplate): self.assertIsInstance(lhs, SequencePulseTemplate) self.assertIsInstance(rhs, SequencePulseTemplate) self.assertEqual(lhs.subtemplates, rhs.subtemplates) self.assertEqual(lhs.parameter_constraints, rhs.parameter_constraints) self.assertEqual(lhs.measurement_declarations, rhs.measurement_declarations) class SequencePulseTemplateOldSerializationTests(unittest.TestCase): def setUp(self) -> None: self.table_foo = TablePulseTemplate({'default': [('hugo', 2), ('albert', 'voltage')]}, parameter_constraints=['albert<9.1'], measurements=[('mw_foo','hugo','albert')], identifier='foo', registry=dict()) self.foo_param_mappings = dict(hugo='ilse', albert='albert', voltage='voltage') self.foo_meas_mappings = dict(mw_foo='mw_bar') def test_get_serialization_data_old(self) -> None: # test for deprecated version during transition period, remove after final switch with self.assertWarnsRegex(DeprecationWarning, "deprecated", msg="SequencePT does not issue warning for old serialization routines."): dummy1 = DummyPulseTemplate() dummy2 = DummyPulseTemplate() sequence = SequencePulseTemplate(dummy1, dummy2, parameter_constraints=['a<b'], measurements=[('m', 0, 1)], registry=dict()) serializer = DummySerializer(serialize_callback=lambda x: str(x)) expected_data = dict( subtemplates=[str(dummy1), str(dummy2)], parameter_constraints=['a < b'], measurements=[('m', 0, 1)] ) data = sequence.get_serialization_data(serializer) self.assertEqual(expected_data, data) def test_deserialize_old(self) -> None: # test for deprecated version during transition period, remove after final switch with self.assertWarnsRegex(DeprecationWarning, "deprecated", msg="SequencePT does not issue warning for old serialization routines."): dummy1 = DummyPulseTemplate() dummy2 = DummyPulseTemplate() serializer = DummySerializer(serialize_callback=lambda x: str(id(x))) data = dict( subtemplates=[serializer.dictify(dummy1), serializer.dictify(dummy2)], identifier='foo', parameter_constraints=['a < b'], measurements=[('m', 0, 1)] ) template = SequencePulseTemplate.deserialize(serializer, **data) self.assertEqual(template.subtemplates, [dummy1, dummy2]) self.assertEqual(template.parameter_constraints, [ParameterConstraint('a<b')]) self.assertEqual(template.measurement_declarations, [('m', 0, 1)]) class SequencePulseTemplateSequencingTests(MeasurementWindowTestCase): def test_internal_create_program(self): sub_templates = PulseTemplateStub(defined_channels={'a'}, duration=ExpressionScalar('t1')),\ PulseTemplateStub(defined_channels={'a'}, duration=ExpressionScalar('t2')) wfs = DummyWaveform(duration=1), DummyWaveform(duration=2) spt = SequencePulseTemplate(*sub_templates, measurements=[('m', 'a', 'b')]) kwargs = dict(scope=DictScope.from_kwargs(t1=.4, t2=.5, a=.1, b=.2, irrelevant=42), measurement_mapping={'m': 'l'}, channel_mapping={'g': 'h'}, global_transformation=TransformationStub(), to_single_waveform={'to', 'single', 'waveform'}) program = Loop() expected_program = Loop(children=[Loop(waveform=wfs[0]), Loop(waveform=wfs[1])], measurements=[('l', .1, .2)]) with mock.patch.object(spt, 'validate_scope') as validate_scope: with mock.patch.object(spt, 'get_measurement_windows', return_value=[('l', .1, .2)]) as get_measurement_windows: with mock.patch.object(sub_templates[0], '_create_program', wraps=get_appending_internal_create_program(wfs[0], True)) as create_0,\ mock.patch.object(sub_templates[1], '_create_program', wraps=get_appending_internal_create_program(wfs[1], True)) as create_1: spt._internal_create_program(**kwargs, parent_loop=program) self.assertEqual(expected_program, program) validate_scope.assert_called_once_with(kwargs['scope']) get_measurement_windows.assert_called_once_with(kwargs['scope'], kwargs['measurement_mapping']) create_0.assert_called_once_with(**kwargs, parent_loop=program) create_1.assert_called_once_with(**kwargs, parent_loop=program) def test_create_program_internal(self) -> None: sub1 = DummyPulseTemplate(duration=3, waveform=DummyWaveform(duration=3), measurements=[('b', 1, 2)], defined_channels={'A'}) sub2 = DummyPulseTemplate(duration=2, waveform=DummyWaveform(duration=2), parameter_names={'foo'}, defined_channels={'A'}) scope = DictScope.from_kwargs() measurement_mapping = {'a': 'a', 'b': 'b'} channel_mapping = dict() seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 0, 1)]) loop = Loop() seq._internal_create_program(scope=scope, measurement_mapping=measurement_mapping, channel_mapping=channel_mapping, global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assertEqual([Loop(repetition_count=1, waveform=sub1.waveform), Loop(repetition_count=1, waveform=sub2.waveform)], list(loop.children)) self.assert_measurement_windows_equal({'a': ([0], [1]), 'b': ([1], [2])}, loop.get_measurement_windows()) ### test again with inverted sequence seq = SequencePulseTemplate(sub2, sub1, measurements=[('a', 0, 1)]) loop = Loop() seq._internal_create_program(scope=scope, measurement_mapping=measurement_mapping, channel_mapping=channel_mapping, global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assertEqual([Loop(repetition_count=1, waveform=sub2.waveform), Loop(repetition_count=1, waveform=sub1.waveform)], list(loop.children)) self.assert_measurement_windows_equal({'a': ([0], [1]), 'b': ([3], [2])}, loop.get_measurement_windows()) def test_internal_create_program_no_measurement_mapping(self) -> None: sub1 = DummyPulseTemplate(duration=3, waveform=DummyWaveform(duration=3), measurements=[('b', 1, 2)]) sub2 = DummyPulseTemplate(duration=2, waveform=DummyWaveform(duration=2), parameter_names={'foo'}) scope = DictScope.from_kwargs() seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 0, 1)]) children = [Loop(waveform=DummyWaveform())] loop = Loop(measurements=[], children=children) with self.assertRaises(KeyError): seq._internal_create_program(scope=scope, measurement_mapping=dict(), channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertFalse(sub1.create_program_calls) self.assertFalse(sub2.create_program_calls) self.assertEqual(children, list(loop.children)) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assert_measurement_windows_equal({}, loop.get_measurement_windows()) # test for child level measurements (does not guarantee to leave parent_loop unchanged in this case) with self.assertRaises(KeyError): seq._internal_create_program(scope=scope, measurement_mapping=dict(a='a'), channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) def test_internal_create_program_one_child_no_duration(self) -> None: sub1 = DummyPulseTemplate(duration=0, waveform=None, measurements=[('b', 1, 2)], defined_channels={'A'}) sub2 = DummyPulseTemplate(duration=2, waveform=DummyWaveform(duration=2), parameter_names={'foo'}, defined_channels={'A'}) scope = DictScope.from_kwargs() measurement_mapping = {'a': 'a', 'b': 'b'} channel_mapping = dict() seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 0, 1)]) loop = Loop() seq._internal_create_program(scope=scope, measurement_mapping=measurement_mapping, channel_mapping=channel_mapping, global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assertEqual([Loop(repetition_count=1, waveform=sub2.waveform)], list(loop.children)) self.assert_measurement_windows_equal({'a': ([0], [1])}, loop.get_measurement_windows()) # MultiChannelProgram calls cleanup loop.cleanup() self.assert_measurement_windows_equal({'a': ([0], [1])}, loop.get_measurement_windows()) ### test again with inverted sequence seq = SequencePulseTemplate(sub2, sub1, measurements=[('a', 0, 1)]) loop = Loop() seq._internal_create_program(scope=scope, measurement_mapping=measurement_mapping, channel_mapping=channel_mapping, global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assertEqual([Loop(repetition_count=1, waveform=sub2.waveform)], list(loop.children)) self.assert_measurement_windows_equal({'a': ([0], [1])}, loop.get_measurement_windows()) # MultiChannelProgram calls cleanup loop.cleanup() self.assert_measurement_windows_equal({'a': ([0], [1])}, loop.get_measurement_windows()) def test_internal_create_program_both_children_no_duration(self) -> None: sub1 = DummyPulseTemplate(duration=0, waveform=None, measurements=[('b', 1, 2)], defined_channels={'A'}) sub2 = DummyPulseTemplate(duration=0, waveform=None, parameter_names={'foo'}, defined_channels={'A'}) scope = DictScope.from_kwargs() measurement_mapping = {'a': 'a', 'b': 'b'} channel_mapping = dict() seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 0, 1)]) loop = Loop(measurements=None) seq._internal_create_program(scope=scope, measurement_mapping=measurement_mapping, channel_mapping=channel_mapping, global_transformation=None, to_single_waveform=set(), parent_loop=loop) self.assertEqual(1, loop.repetition_count) self.assertIsNone(loop.waveform) self.assertEqual([], list(loop.children)) self.assertIsNone(loop._measurements) def test_internal_create_program_parameter_constraint_violations(self) -> None: sub1 = DummyPulseTemplate(duration=3, waveform=DummyWaveform(duration=3), measurements=[('b', 1, 2)]) sub2 = DummyPulseTemplate(duration=2, waveform=DummyWaveform(duration=2), parameter_names={'foo'}) scope = DictScope.from_kwargs(foo=7) seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 0, 1)], parameter_constraints={'foo < 2'}) loop = Loop() with self.assertRaises(ParameterConstraintViolation): seq._internal_create_program(scope=scope, measurement_mapping={'a': 'a', 'b': 'b'}, channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) def test_internal_create_program_parameter_missing(self) -> None: sub1 = DummyPulseTemplate(duration=3, waveform=DummyWaveform(duration=3), measurements=[('b', 1, 2)]) sub2 = DummyPulseTemplate(duration='d', waveform=DummyWaveform(duration=2), parameter_names={'foo'}) seq = SequencePulseTemplate(sub1, sub2, measurements=[('a', 'bar', 1)], parameter_constraints={'foo < 2'}) loop = Loop() # test parameter from constraints scope = DictScope.from_kwargs() with self.assertRaises(ParameterNotProvidedException): seq._internal_create_program(scope=scope, measurement_mapping={'a': 'a', 'b': 'b'}, channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) # test parameter from measurements scope = DictScope.from_mapping({'foo': 1}) with self.assertRaises(ParameterNotProvidedException): seq._internal_create_program(scope=scope, measurement_mapping={'a': 'a', 'b': 'b'}, channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) # test parameter from duration scope = DictScope.from_mapping({'foo': 1, 'bar': 0}) with self.assertRaises(ParameterNotProvidedException): seq._internal_create_program(scope=scope, measurement_mapping={'a': 'a', 'b': 'b'}, channel_mapping=dict(), global_transformation=None, to_single_waveform=set(), parent_loop=loop) class SequencePulseTemplateTestProperties(SequencePulseTemplateTest): def test_measurement_names(self): d1 = DummyPulseTemplate(measurement_names={'a'}) d2 = DummyPulseTemplate(measurement_names={'b'}) spt = SequencePulseTemplate(d1, d2, measurements=[('c', 0, 1)]) self.assertEqual(spt.measurement_names, {'a', 'b', 'c'}) if __name__ == "__main__": unittest.main(verbosity=2)
51.745055
133
0.584947
61c933fed98fb9ca55e5f511c582a408f469a38d
4,484
py
Python
models/utils/args.py
mingxuts/multi-center-fed-learning
9262ddaefb79b14ea44b61ffce200b82d31b0af1
[ "BSD-2-Clause" ]
4
2021-09-03T02:44:14.000Z
2022-03-04T03:28:09.000Z
models/utils/args.py
mingxuts/multi-center-fed-learning
9262ddaefb79b14ea44b61ffce200b82d31b0af1
[ "BSD-2-Clause" ]
null
null
null
models/utils/args.py
mingxuts/multi-center-fed-learning
9262ddaefb79b14ea44b61ffce200b82d31b0af1
[ "BSD-2-Clause" ]
2
2021-10-10T11:57:53.000Z
2022-02-15T20:27:10.000Z
import argparse from .constants import DATASETS, SIM_TIMES def parse_job_args(): parser = argparse.ArgumentParser() parser.add_argument('-dataset', help='name of dataset;', type=str, choices=DATASETS, required=True) parser.add_argument('-experiment', help='name of experiment to perform;', type=str, required=True) parser.add_argument('-configuration', help='file that maintains job settings', type=str, default='job.yaml', required=False) return parser.parse_args() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-dataset', help='name of dataset;', type=str, choices=DATASETS, required=True) parser.add_argument('-model', help='name of model;', type=str, required=True) parser.add_argument('--num-rounds', help='number of rounds to simulate;', type=int, default=-1) parser.add_argument('--eval-every', help='evaluate every ____ rounds;', type=int, default=-1) parser.add_argument('--clients-per-round', help='number of clients trained per round;', type=int, default=2) parser.add_argument('--batch-size', help='batch size when clients train on data;', type=int, default=10) parser.add_argument('--seed', help='seed for random client sampling and batch splitting', type=int, default=0) parser.add_argument('--metrics-name', help='name for metrics file;', type=str, default='metrics', required=False) parser.add_argument('--metrics-dir', help='dir for metrics file;', type=str, default='metrics', required=False) parser.add_argument('--weight_mode', help='using sample size or not', type=str, default='no_size', required=False) parser.add_argument('--metric-file', help='which file to print metric', type=str, default='metric_score.tsv', required=False) # Minibatch doesn't support num_epochs, so make them mutually exclusive epoch_capability_group = parser.add_mutually_exclusive_group() epoch_capability_group.add_argument('--minibatch', help='None for FedAvg, else fraction;', type=float, default=None) epoch_capability_group.add_argument('--num-epochs', help='number of epochs when clients train on data;', type=int, default=1) parser.add_argument('-t', help='simulation time: small, medium, or large;', type=str, choices=SIM_TIMES, default='large') parser.add_argument('-lr', help='learning rate for local optimizers;', type=float, default=-1, required=False) parser.add_argument('--num_clusters', help='divide selected clients into ___ groups, value from 2 - 11', type=int, default=3) parser.add_argument('--mu', help='the proximal term for minimizing distance of center and device', type=float, default=0.01, required=False) parser.add_argument('--update-head-every', help='we choose update our head models center every _ rounds', type=int, default=1) parser.add_argument('--regul-term', type=float, default=10., required=False) return parser.parse_args()
35.307087
90
0.476137
601e02e48722d92eaa796d98eaaa18e5fe007afa
469
py
Python
tests/test_news.py
zecollokaris/News-Highlights
cedd0087f45e7a8e634401d726216efecda2764b
[ "Unlicense" ]
null
null
null
tests/test_news.py
zecollokaris/News-Highlights
cedd0087f45e7a8e634401d726216efecda2764b
[ "Unlicense" ]
null
null
null
tests/test_news.py
zecollokaris/News-Highlights
cedd0087f45e7a8e634401d726216efecda2764b
[ "Unlicense" ]
null
null
null
import unittest from app.models import News class NewsTest(unittest.TestCase): '''Test Class to test the behaviour of the News class''' def setUp (self): '''Set up method that will run before every Test''' self.new_news = News(1234,'Python Must Be Crazy','A thrilling new Python Series','sdsdsfsdf',8.5,129993) def test_instance(self): self.assertTrue(isinstance(self.new_news,News)) if __name__ == '__main__': unittest.main()
33.5
112
0.692964
6cd9e848d4226a3ce345dff5a06c2d8dd0734b99
1,568
py
Python
operators/functions/unsorted_segment_sum.py
YuhangSong/RBP
68a230053198de1b689e262974947c4186ee1c49
[ "MIT" ]
316
2019-01-03T19:54:44.000Z
2022-03-11T21:25:08.000Z
operators/functions/unsorted_segment_sum.py
YuhangSong/RBP
68a230053198de1b689e262974947c4186ee1c49
[ "MIT" ]
10
2019-01-17T20:43:27.000Z
2020-05-30T23:07:50.000Z
operators/functions/unsorted_segment_sum.py
YuhangSong/RBP
68a230053198de1b689e262974947c4186ee1c49
[ "MIT" ]
63
2019-01-03T20:18:38.000Z
2022-03-11T21:58:17.000Z
import math import numpy as np import torch from torch.autograd import Function, Variable from operators._ext import segment_reduction class UnsortedSegmentSumFunction(Function): @staticmethod def forward(ctx, data, segment_index, num_segments): # data's shape should be (batch, dim1, dim2), and segment reduction will be performed over dim1 ctx.save_for_backward(data, segment_index) # data = data.contiguous() # segment_index = segment_index.contiguous() if not data.is_cuda: output = torch.FloatTensor(data.size(0), num_segments, data.size(2)).zero_() segment_reduction.unsorted_segment_sum_forward(data, segment_index, data.size(), output) else: output = torch.cuda.FloatTensor(data.size(0), num_segments, data.size(2)).zero_() segment_reduction.unsorted_segment_sum_forward_gpu(data, segment_index, data.size(), output) return output @staticmethod def backward(ctx, grad_output): data, segment_index = ctx.saved_tensors grad_data = data.new().resize_as_(data).zero_() if not data.is_cuda: segment_reduction.unsorted_segment_sum_backward( grad_output.data, segment_index, grad_data.size(), grad_data) else: segment_reduction.unsorted_segment_sum_backward_gpu( grad_output.data, segment_index, grad_data.size(), grad_data) return Variable(grad_data), None, None
34.844444
99
0.656888
5a112a1028f5cdac6dd2bdd994d5a20d112682de
1,361
py
Python
lang/py/pylib/code/zipimport/zipimport_load_module.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
13
2020-01-04T07:37:38.000Z
2021-08-31T05:19:58.000Z
lang/py/pylib/code/zipimport/zipimport_load_module.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
3
2020-06-05T22:42:53.000Z
2020-08-24T07:18:54.000Z
lang/py/pylib/code/zipimport/zipimport_load_module.py
ch1huizong/learning
632267634a9fd84a5f5116de09ff1e2681a6cc85
[ "MIT" ]
9
2020-10-19T04:53:06.000Z
2021-08-31T05:20:01.000Z
#!/usr/bin/env python # # Copyright 2007 Doug Hellmann. # # # All Rights Reserved # # Permission to use, copy, modify, and distribute this software and # its documentation for any purpose and without fee is hereby # granted, provided that the above copyright notice appear in all # copies and that both that copyright notice and this permission # notice appear in supporting documentation, and that the name of Doug # Hellmann not be used in advertising or publicity pertaining to # distribution of the software without specific, written prior # permission. # # DOUG HELLMANN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN # NO EVENT SHALL DOUG HELLMANN BE LIABLE FOR ANY SPECIAL, INDIRECT OR # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # """Retrieving the code for a module within a zip archive. """ #end_pymotw_header import zipimport importer = zipimport.zipimporter('zipimport_example.zip') module = importer.load_module('zipimport_get_code') print 'Name :', module.__name__ print 'Loader :', module.__loader__ print 'Code :', module.code
34.025
70
0.766348
cf30488d1e2a2d20ed23fd56f9b73c6df5102e83
1,789
py
Python
Megatron-LM-v1.1.5-ZeRO3/seelog.py
zhuzilin/DeepSpeedExamples
c86ec361d16f940b93f2fbb17c49733b2a71297c
[ "MIT" ]
null
null
null
Megatron-LM-v1.1.5-ZeRO3/seelog.py
zhuzilin/DeepSpeedExamples
c86ec361d16f940b93f2fbb17c49733b2a71297c
[ "MIT" ]
null
null
null
Megatron-LM-v1.1.5-ZeRO3/seelog.py
zhuzilin/DeepSpeedExamples
c86ec361d16f940b93f2fbb17c49733b2a71297c
[ "MIT" ]
null
null
null
import os import sys class MyResDict(object): def __init__(self): self._data = [] print("here") def insert(self, model_name, gpu, mp, bs, perf): self._data.append(((model_name, gpu, mp, bs), perf)) def showme(self): self._data = sorted(self._data, key=lambda elem: elem[0]) print(("model_name", "gpu", "mp", "bs", "perf")) for elem in self._data: print(elem) def extract_info_from_file(path, file, res_dict): model_name = "" gpu_num = 0 bs = 0 # if the file is not exist. # do not execute training if not os.path.isfile(path + "/" + file): return f = open(path + "/" + file) if not os.path.isdir(file): fn_list = file.split(".")[1].split("_") # log.model_6B_bs_16_gpu_8_mp_1 for i in range(len(fn_list)): if "model" in fn_list[i]: model_name = fn_list[i + 1] elif "bs" == fn_list[i]: bs = fn_list[i + 1] elif "gpu" == fn_list[i]: gpu = fn_list[i + 1] elif "mp" == fn_list[i]: mp = fn_list[i + 1] iter_f = iter(f) best_perf = 0 for line in iter_f: if "GPU:" in line: sline = line.split() get_index = sline.index('GPU:') perf = float(sline[get_index + 1]) best_perf = perf if best_perf != 0: res_dict.insert(model_name, gpu, mp, bs, best_perf) if __name__ == "__main__": if len(sys.argv) > 1: PATH = str(sys.argv[1]) else: PATH = "./logs" files = os.listdir(PATH) res_dict = MyResDict() for f in files: extract_info_from_file(PATH, f, res_dict) res_dict.showme()
28.396825
67
0.515931
15ed054ef881ac10d238c2a13c57232f61ae4e50
3,372
py
Python
melodic/src/rqt_bag/rqt_bag/src/rqt_bag/plugins/message_view.py
disorn-inc/ROS-melodic-python3-Opencv-4.1.1-CUDA
3d265bb64712e3cd7dfa0ad56d78fcdebafdb4b0
[ "BSD-3-Clause" ]
2
2021-07-14T12:33:55.000Z
2021-11-21T07:14:13.000Z
melodic/src/rqt_bag/rqt_bag/src/rqt_bag/plugins/message_view.py
disorn-inc/ROS-melodic-python3-Opencv-4.1.1-CUDA
3d265bb64712e3cd7dfa0ad56d78fcdebafdb4b0
[ "BSD-3-Clause" ]
null
null
null
melodic/src/rqt_bag/rqt_bag/src/rqt_bag/plugins/message_view.py
disorn-inc/ROS-melodic-python3-Opencv-4.1.1-CUDA
3d265bb64712e3cd7dfa0ad56d78fcdebafdb4b0
[ "BSD-3-Clause" ]
null
null
null
# Software License Agreement (BSD License) # # Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from python_qt_binding.QtCore import QObject class MessageView(QObject): """ A message details renderer. When registered with rqt_bag, a MessageView is called whenever the timeline playhead moves. """ name = 'Untitled' def __init__(self, timeline, topic): super(MessageView, self).__init__() self.timeline = timeline self.topic = topic def message_viewed(self, bag, msg_details): """ View the message. @param bag: the bag file the message is contained in @type bag: rosbag.Bag @param msg_details: the details of the message to be viewed @type msg_details: tuple (topic, msg, time) @param topic: the message topic @type topic: str @param msg: the message @param t: the message timestamp @type t: rospy.Time """ pass def message_cleared(self): """ Clear the currently viewed message (if any). """ pass def timeline_changed(self): """ Called when the messages in a timeline change, e.g. if a new message is recorded, or a bag file is added """ pass def close(self): """ Close the message view, releasing any resources. """ pass # NOTE: event function should not be changed in subclasses def event(self, event): """ This function will be called to process events posted by post_event it will call message_cleared or message_viewed with the relevant data """ bag, msg_data = event.data if msg_data: self.message_viewed(bag, msg_data) else: self.message_cleared() return True
35.125
92
0.678826
132a743de740fffe73cde54d80e503a7cc9dbdbe
15,692
py
Python
Scripts/plot_MSFigure_3_squeeze.py
zmlabe/predictGMSTrate
2bde4a106de1988d772f15a52d283d23bb7128f4
[ "MIT" ]
2
2022-01-20T20:20:04.000Z
2022-02-21T12:33:37.000Z
Scripts/plot_MSFigure_3_squeeze.py
zmlabe/predictGMSTrate
2bde4a106de1988d772f15a52d283d23bb7128f4
[ "MIT" ]
null
null
null
Scripts/plot_MSFigure_3_squeeze.py
zmlabe/predictGMSTrate
2bde4a106de1988d772f15a52d283d23bb7128f4
[ "MIT" ]
3
2022-01-19T16:25:37.000Z
2022-03-22T13:25:00.000Z
""" Make figure of LRP maps for manuscript Author : Zachary M. Labe Date : 7 October 2021 Version : 2 """ ### Import packages import sys import matplotlib.pyplot as plt import numpy as np from netCDF4 import Dataset import scipy.stats as stats from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import palettable.cubehelix as cm import cmocean as cmocean import cmasher as cmr import calc_Utilities as UT import calc_dataFunctions as df import calc_Stats as dSS from sklearn.metrics import accuracy_score ### Plotting defaults plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) ### Hyperparamters for files of the ANN model rm_ensemble_mean = True if rm_ensemble_mean == False: vari_predict = ['OHC100'] fac = 0.7 random_segment_seed = int(np.genfromtxt('/Users/zlabe/Documents/Research/GmstTrendPrediction/Data/SelectedSegmentSeed.txt',unpack=True)) random_network_seed = 87750 hidden = [20,20] n_epochs = 500 batch_size = 128 lr_here = 0.001 ridgePenalty = 0.05 actFun = 'relu' fractWeight = 0.5 yearsall = np.arange(1990,2090+1,1) elif rm_ensemble_mean == True: vari_predict = ['OHC100'] fac = 0.7 random_segment_seed = int(np.genfromtxt('/Users/zlabe/Documents/Research/GmstTrendPrediction/Data/SelectedSegmentSeed.txt',unpack=True)) random_network_seed = 87750 hidden = [30,30] n_epochs = 500 batch_size = 128 lr_here = 0.001 ridgePenalty = 0.5 actFun = 'relu' fractWeight = 0.5 yearsall = np.arange(1990,2090+1,1) else: print(ValueError('SOMETHING IS WRONG WITH DATA PROCESSING!')) sys.exit() ### Naming conventions for files directorymodel = '/Users/zlabe/Documents/Research/GmstTrendPrediction/SavedModels/' savename = 'ANNv2_'+vari_predict[0]+'_hiatus_' + actFun + '_L2_'+ str(ridgePenalty)+ '_LR_' + str(lr_here)+ '_Batch'+ str(batch_size)+ '_Iters' + str(n_epochs) + '_' + str(len(hidden)) + 'x' + str(hidden[0]) + '_SegSeed' + str(random_segment_seed) + '_NetSeed'+ str(random_network_seed) if(rm_ensemble_mean==True): savename = savename + '_EnsembleMeanRemoved' ### Directories to save files directorydata = '/Users/zlabe/Documents/Research/GmstTrendPrediction/Data/' directoryfigure = '/Users/zlabe/Desktop/GmstTrendPrediction/MS-Figures_v1/' ############################################################################### ############################################################################### ############################################################################### ### Read in LRP data for testing and obs nametypetest = 'Testing' filenametest = directorydata + 'LRPMap' + nametypetest + '_' + savename + '.nc' datatest = Dataset(filenametest,'r') lat = datatest.variables['lat'][:] lon = datatest.variables['lon'][:] lrp_test = datatest.variables['LRP'][:] datatest.close() ############################################################################### ############################################################################### ############################################################################### ### Read in data for testing predictions and actual hiatuses testindices = np.genfromtxt(directorydata + 'testingEnsIndices_' + savename + '.txt') actual_test = np.genfromtxt(directorydata + 'testingTrueLabels_' + savename + '.txt') predict_test = np.genfromtxt(directorydata + 'testingPredictedLabels_' + savename+ '.txt') ############################################################################### ############################################################################### ############################################################################### ### Read in OHC data = Dataset(directorydata + 'OHC_comp/OHCcomp_' + 'hiatus_True' + '.nc') ohc_hiatus = data.variables['OHC100'][:] data.close() data = Dataset(directorydata + 'OHC_comp/OHCcomp_' + 'climatechange_True' + '.nc') ohc_cc = data.variables['OHC100'][:] data.close() ############################################################################## ############################################################################## ############################################################################## ### Composite hiatues based on accuracy or not def LRPcomp(accurateH,accurateR): lrp_hiatus = [] for i in range(lrp_test.shape[0]): if accurateH == False: if predict_test[i] == 1: lrp_hiatus.append(lrp_test[i]) elif accurateH == True: if (predict_test[i]) == 1 and (actual_test[i] == 1): lrp_hiatus.append(lrp_test[i]) elif accurateH == 'WRONG': if (predict_test[i]) == 1 and (actual_test[i] == 0): lrp_hiatus.append(lrp_test[i]) else: print(ValueError('WRONG COMPOSITE METRIC!!')) sys.exit() lrp_hiatus = np.asarray(lrp_hiatus) ############################################################################## ############################################################################## ############################################################################## ### Composite regular period based on accuracy or not lrp_regular = [] for i in range(lrp_test.shape[0]): if accurateR == False: if predict_test[i] == 0: lrp_regular.append(lrp_test[i]) elif accurateR == True: if (predict_test[i]) == 0 and (actual_test[i] == 0): lrp_regular.append(lrp_test[i]) elif accurateR == 'WRONG': if (predict_test[i]) == 0 and (actual_test[i] == 1): lrp_regular.append(lrp_test[i]) else: print(ValueError('WRONG COMPOSITE METRIC!!')) sys.exit() lrp_regular = np.asarray(lrp_regular) return lrp_hiatus,lrp_regular correct_hia,correct_reg = LRPcomp(True,True) wrong_hia,wrong_reg = LRPcomp('WRONG','WRONG') ############################################################################## ############################################################################## ############################################################################## ### Average across hiatus and regular period hiatus_correct = np.nanmean(correct_hia,axis=0) hiatus_wrong = np.nanmean(wrong_hia,axis=0) regular_correct = np.nanmean(correct_reg,axis=0) regular_wrong = np.nanmean(wrong_reg,axis=0) ############################################################################### ############################################################################### ############################################################################### ### Plot subplot of observations letters = ["b","c","d","e","f","g","h","i","j","k","l","m","n"] limit = np.arange(0,0.81,0.005) barlim = np.round(np.arange(0,0.81,0.1),2) cmap = cm.cubehelix2_16.mpl_colormap label = r'\textbf{LRP [Relevance]}' limitd = np.arange(-1.5,1.6,0.02) barlimd = np.round(np.arange(-1.5,1.6,0.5),2) cmapd = cmocean.cm.balance labeld = r'\textbf{OHC100 [Normalized]}' fig = plt.figure(figsize=(10,8)) ############################################################################### ax1 = plt.subplot(221) m = Basemap(projection='robin',lon_0=-180,resolution='l',area_thresh=10000) m.drawcoastlines(color='darkgrey',linewidth=0.27) ### Variable hiatus_correctz = hiatus_correct/np.max(hiatus_correct) lon = np.where(lon >180,lon-360,lon) x, y = np.meshgrid(lon,lat) circle = m.drawmapboundary(fill_color='dimgrey',color='dimgray', linewidth=0.7) circle.set_clip_on(False) cs1 = m.contourf(x,y,hiatus_correctz ,limit,extend='max',latlon=True) cs1.set_cmap(cmap) ### Box 1 la1 = 25 la2 = 45 lo1 = 140 lo2 = 180+(180-145) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) ### Box 2 la1 = -10 la2 = 10 lo1 = 170 lo2 = 180+(180-90) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) ### Box 3 la1 = -50 la2 = -15 lo1 = 150 lo2 = 180+(180-160) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) m.fillcontinents(color='dimgrey',lake_color='dimgrey') plt.title(r'\textbf{CORRECT SLOWDOWN PREDICTIONS}',fontsize=13,color='dimgrey') ax1.annotate(r'\textbf{[%s]}' % letters[0],xy=(0,0),xytext=(0.98,0.84), textcoords='axes fraction',color='k',fontsize=9, rotation=0,ha='center',va='center') ############################################################################### ############################################################################### ############################################################################### ax2 = plt.subplot(223) m = Basemap(projection='robin',lon_0=-180,resolution='l',area_thresh=10000) m.drawcoastlines(color='darkgrey',linewidth=0.27) ### Variable regular_correctz = regular_correct/np.max(regular_correct) circle = m.drawmapboundary(fill_color='dimgrey',color='dimgray', linewidth=0.7) circle.set_clip_on(False) cs2 = m.contourf(x,y,regular_correctz,limit,extend='max',latlon=True) cs2.set_cmap(cmap) ### Box 1 la1 = 25 la2 = 45 lo1 = 140 lo2 = 180+(180-145) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) ### Box 2 la1 = -10 la2 = 10 lo1 = 170 lo2 = 180+(180-90) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) ### Box 3 la1 = -50 la2 = -15 lo1 = 150 lo2 = 180+(180-160) lonsslice = np.linspace(lo1,lo2,lo2-lo1+1) latsslice = np.ones(len(lonsslice))*la2 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) latsslice = np.ones(len(lonsslice))*la1 m.plot(lonsslice, latsslice, color='aqua', linewidth=1.5, latlon=True,zorder=4) m.drawgreatcircle(lo1, la1, lo1, la2,linewidth=1.5,color='aqua',zorder=4) m.drawgreatcircle(lo2, la2, lo2, la1,linewidth=1.5,color='aqua',zorder=4) m.fillcontinents(color='dimgrey',lake_color='dimgrey') plt.title(r'\textbf{CORRECT \textit{NO} SLOWDOWN PREDICTIONS}',fontsize=13,color='dimgrey') ax2.annotate(r'\textbf{[%s]}' % letters[2],xy=(0,0),xytext=(0.98,0.84), textcoords='axes fraction',color='k',fontsize=9, rotation=0,ha='center',va='center') ############################################################################### ############################################################################### ############################################################################### ax2 = plt.subplot(222) m = Basemap(projection='robin',lon_0=-180,resolution='l',area_thresh=10000) m.drawcoastlines(color='darkgrey',linewidth=0.27) ### Variable circle = m.drawmapboundary(fill_color='dimgrey',color='dimgray', linewidth=0.7) circle.set_clip_on(False) cs2 = m.contourf(x,y,ohc_hiatus,limitd,extend='max',latlon=True) cs2.set_cmap(cmapd) csc = m.contour(x,y,hiatus_correctz,np.arange(0.2,1.1,0.2),linestyles='-',latlon=True, colors='gold',linewidths=0.7) m.fillcontinents(color='dimgrey',lake_color='dimgrey') plt.title(r'\textbf{SLOWDOWN COMPOSITE}',fontsize=13,color='dimgrey') ax2.annotate(r'\textbf{[%s]}' % letters[1],xy=(0,0),xytext=(0.98,0.84), textcoords='axes fraction',color='k',fontsize=9, rotation=0,ha='center',va='center') ############################################################################### cbar_ax1 = fig.add_axes([0.155,0.1,0.2,0.025]) cbar1 = fig.colorbar(cs1,cax=cbar_ax1,orientation='horizontal', extend='max',extendfrac=0.07,drawedges=False) cbar1.set_label(label,fontsize=6,color='dimgrey',labelpad=1.4) cbar1.set_ticks(barlim) cbar1.set_ticklabels(list(map(str,barlim))) cbar1.ax.tick_params(axis='x', size=.01,labelsize=4) cbar1.outline.set_edgecolor('dimgrey') ############################################################################### ############################################################################### ############################################################################### ax2 = plt.subplot(224) m = Basemap(projection='robin',lon_0=-180,resolution='l',area_thresh=10000) m.drawcoastlines(color='darkgrey',linewidth=0.27) ### Variable circle = m.drawmapboundary(fill_color='dimgrey',color='dimgray', linewidth=0.7) circle.set_clip_on(False) cs4 = m.contourf(x,y,ohc_cc,limitd,extend='both',latlon=True) cs4.set_cmap(cmapd) m.fillcontinents(color='dimgrey',lake_color='dimgrey') plt.title(r'\textbf{\textit{NO} SLOWDOWN COMPOSITE}',fontsize=13,color='dimgrey') ax2.annotate(r'\textbf{[%s]}' % letters[3],xy=(0,0),xytext=(0.98,0.84), textcoords='axes fraction',color='k',fontsize=9, rotation=0,ha='center',va='center') ############################################################################### cbar_ax1 = fig.add_axes([0.155,0.1,0.2,0.025]) cbar1 = fig.colorbar(cs1,cax=cbar_ax1,orientation='horizontal', extend='max',extendfrac=0.07,drawedges=False) cbar1.set_label(label,fontsize=10,color='dimgrey',labelpad=1.4) cbar1.set_ticks(barlim) cbar1.set_ticklabels(list(map(str,barlim))) cbar1.ax.tick_params(axis='x', size=.01,labelsize=7) cbar1.outline.set_edgecolor('dimgrey') ############################################################################### cbar_axd1 = fig.add_axes([0.65,0.1,0.2,0.025]) cbard1 = fig.colorbar(cs4,cax=cbar_axd1,orientation='horizontal', extend='both',extendfrac=0.07,drawedges=False) cbard1.set_label(labeld,fontsize=10,color='dimgrey',labelpad=1.4) cbard1.set_ticks(barlimd) cbard1.set_ticklabels(list(map(str,barlimd))) cbard1.ax.tick_params(axis='x', size=.01,labelsize=7) cbard1.outline.set_edgecolor('dimgrey') plt.tight_layout() plt.subplots_adjust(hspace=-0.4) plt.text(2.6,50.5,r'\textbf{-- LRP: Relevance}',fontsize=8,color='gold') plt.savefig(directoryfigure + 'Figure_3_squeeze.png',dpi=600)
41.734043
287
0.571947
4edfc145fe3ee3774cbf04016c2524d2ed4cf7dd
14,886
py
Python
reid/models/resnet_fusion.py
johnzhang1999/Spatial-Attention
9e8e90ba624e52dcccba47c7289bb305765f5da6
[ "MIT" ]
228
2018-12-04T10:32:46.000Z
2020-07-19T07:32:19.000Z
reid/models/resnet_fusion.py
YUE-FAN/Spatial-Attention
71cf324f0fb0829355e5ca322058ebbb9d8be610
[ "MIT" ]
13
2018-12-23T02:06:54.000Z
2020-05-27T06:47:42.000Z
reid/models/resnet_fusion.py
YUE-FAN/Spatial-Attention
71cf324f0fb0829355e5ca322058ebbb9d8be610
[ "MIT" ]
32
2018-12-05T13:46:48.000Z
2020-07-01T04:35:49.000Z
from __future__ import absolute_import from torch import nn from torch.nn import functional as F from torch.nn import init import torchvision import torch import torch.utils.model_zoo as model_zoo __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): __factory = { 18: torchvision.models.resnet18, 34: torchvision.models.resnet34, 50: torchvision.models.resnet50, 101: torchvision.models.resnet101, 152: torchvision.models.resnet152, } def __init__(self,block,layers, depth, pretrained=True, cut_at_pooling=False, num_features=0, norm=False, dropout=0, num_classes=0, FCN=False, radius=1., thresh=0.5): super(ResNet, self).__init__() self.depth = depth self.pretrained = pretrained self.cut_at_pooling = cut_at_pooling self.FCN = FCN self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) # ==========================add dilation=============================# if self.FCN: self.num_features = num_features self.num_classes = 751 # num_classes self.dropout = dropout # out_planes = self.base.fc.in_features self.local_conv1 = nn.Conv2d(256, self.num_features, kernel_size=1, padding=0, bias=False) self.local_conv2 = nn.Conv2d(512, self.num_features, kernel_size=1, padding=0, bias=False) self.local_conv3 = nn.Conv2d(1024, self.num_features, kernel_size=1, padding=0, bias=False) self.local_conv4 = nn.Conv2d(2048, self.num_features, kernel_size=1, padding=0, bias=False) init.kaiming_normal(self.local_conv1.weight, mode='fan_out') init.kaiming_normal(self.local_conv2.weight, mode='fan_out') init.kaiming_normal(self.local_conv3.weight, mode='fan_out') init.kaiming_normal(self.local_conv4.weight, mode='fan_out') # init.constant(self.local_conv.bias,0) self.feat_bn2d = nn.BatchNorm2d(self.num_features) # may not be used, not working on caffe init.constant(self.feat_bn2d.weight, 1) # initialize BN, may not be used init.constant(self.feat_bn2d.bias, 0) # iniitialize BN, may not be used # self.offset = ConvOffset2D(256) ##---------------------------stripe1----------------------------------------------# self.instance0 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance0.weight, std=0.001) init.constant(self.instance0.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance1 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance1.weight, std=0.001) init.constant(self.instance1.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance2 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance2.weight, std=0.001) init.constant(self.instance2.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance3 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance3.weight, std=0.001) init.constant(self.instance3.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance4 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance4.weight, std=0.001) init.constant(self.instance4.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance5 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance5.weight, std=0.001) init.constant(self.instance5.bias, 0) ##---------------------------stripe1----------------------------------------------# ##---------------------------stripe1----------------------------------------------# self.instance6 = nn.Linear(self.num_features, self.num_classes) init.normal(self.instance5.weight, std=0.001) init.constant(self.instance5.bias, 0) self.drop = nn.Dropout(self.dropout) if not self.pretrained: self.reset_params() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): # for name, module in self.base._modules.items(): # if name == 'avgpool': # break # x = module(x) # # if self.cut_at_pooling: # return x # =======================FCN===============================# if self.FCN: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) stage1 = self.layer1(x) stage2 = self.layer2(stage1) stage3 = self.layer3(stage2) stage4 = self.layer4(stage3) print stage1.size() print stage2.size() print stage3.size() print stage4.size() # z = stage4[:, :, 5:17, :] # z = self.drop(z) # z = self.local_conv(z) # z = self.feat_bn2d(z) # z = F.relu(z) # relu for local_conv feature # x6 = F.avg_pool2d(z, kernel_size=(12, 8), stride=(1, 1)) # x6 = x6.contiguous().view(x6.size(0), -1) # # print x6.size() # c6 = self.instance6(x6) z = stage4 sx = z.size(2) / 6 kx = z.size(2) - sx * 5 z = F.avg_pool2d(z, kernel_size=(kx, z.size(3)), stride=(sx, z.size(3))) # H4 W8 out0 = z/z.norm(2,1).unsqueeze(1).expand_as(z) stages = [stage1,stage2,stage3,stage4] losses = [] num = 0 for stage in stages: x = stage sx = x.size(2) / 6 kx = x.size(2) - sx * 5 x = F.avg_pool2d(x, kernel_size=(kx, x.size(3)), stride=(sx, x.size(3))) # H4 W8 #torch.Size([64, 2048, 6, 1]) # print sx, kx, x.size() # ========================================================================# x = self.drop(x) # x = self.local_conv(x) # x = self.local_convs[num](x) num+=1 if num == 1: x = self.local_conv1(x) elif num == 2: x = self.local_conv2(x) elif num == 3: x = self.local_conv3(x) elif num == 4: x = self.local_conv4(x) x = self.feat_bn2d(x) x = F.relu(x) # relu for local_conv feature x = x.chunk(6, 2) # print x[0].size() x0 = x[0].contiguous().view(x[0].size(0), -1) x1 = x[1].contiguous().view(x[1].size(0), -1) x2 = x[2].contiguous().view(x[2].size(0), -1) x3 = x[3].contiguous().view(x[3].size(0), -1) x4 = x[4].contiguous().view(x[4].size(0), -1) x5 = x[5].contiguous().view(x[5].size(0), -1) # print x0.size() c0 = self.instance0(x0) # print c0.size() c1 = self.instance1(x1) c2 = self.instance2(x2) c3 = self.instance3(x3) c4 = self.instance4(x4) c5 = self.instance5(x5) # print c6.size() losses.append(c0) losses.append(c1) losses.append(c2) losses.append(c3) losses.append(c4) losses.append(c5) # losses.append(out0) return out0,losses # ==========================================================# # =======================DCN===============================# # if self.FCN: # y = x.unsqueeze(1) # y = F.avg_pool3d(x, (16, 1, 1)).squeeze(1) # sx = x.size(2) / 6 # kx = x.size(2) - sx * 5 # x = F.avg_pool2d(x, kernel_size=(kx, x.size(3)), stride=(sx, x.size(3))) # H4 W8 # # print sx,kx,x.size() # # ========================================================================# # # out0 = x.view(x.size(0), -1) # out0 = x / x.norm(2, 1).unsqueeze(1).expand_as(x) # x = self.drop(x) # x = self.local_conv(x) # x = self.offset(x) # out1 = x / x.norm(2, 1).unsqueeze(1).expand_as(x) # x = self.feat_bn2d(x) # x = F.relu(x) # relu for local_conv feature # # x = x.chunk(6, 2) # x0 = x[0].contiguous().view(x[0].size(0), -1) # x1 = x[1].contiguous().view(x[1].size(0), -1) # x2 = x[2].contiguous().view(x[2].size(0), -1) # x3 = x[3].contiguous().view(x[3].size(0), -1) # x4 = x[4].contiguous().view(x[4].size(0), -1) # x5 = x[5].contiguous().view(x[5].size(0), -1) # c0 = self.instance0(x0) # c1 = self.instance1(x1) # c2 = self.instance2(x2) # c3 = self.instance3(x3) # c4 = self.instance4(x4) # c5 = self.instance5(x5) # return out0, (c0, c1, c2, c3, c4, c5) # ==========================================================# x = F.avg_pool2d(x, x.size()[2:]) x = x.view(x.size(0), -1) out1 = x.view(x.size(0), -1) center = out1.mean(0).unsqueeze(0).expand_as(out1) out2 = x / x.norm(2, 1).unsqueeze(1).expand_as(x) if self.has_embedding: x = self.feat(x) out3 = x / x.norm(2, 1).unsqueeze(1).expand_as(x) x = self.feat_bn(x) if self.norm: x = x / x.norm(2, 1).unsqueeze(1).expand_as(x) elif self.has_embedding: # adding relu after fc, not used in softmax but in tripletloss x = F.relu(x) out4 = x / x.norm(2, 1).unsqueeze(1).expand_as(x) if self.dropout > 0: x = self.drop(x) if self.num_classes > 0: x = self.classifier(x) return out2, x, out2, out2 def reset_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=0.001) if m.bias is not None: init.constant(m.bias, 0) def resnet18(**kwargs): return ResNet(18, **kwargs) def resnet34(**kwargs): return ResNet(34, **kwargs) model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', } def resnet50(**kwargs): # return ResNet(Bottleneck, [3, 4, 6, 3],50, **kwargs) model = ResNet(Bottleneck, [3, 4, 6, 3],50, **kwargs) print('load resnet50 ok') model_dict = model.state_dict() params = model_zoo.load_url(model_urls['resnet50']) params = {k: v for k, v in params.items() if k in model_dict} model_dict.update(params) model.load_state_dict(model_dict) return model def resnet101(**kwargs): return ResNet(101, **kwargs) def resnet152(**kwargs): return ResNet(152, **kwargs)
42.169972
105
0.469636
f25c302798289c29557bfd42fbf827f186adf320
254
py
Python
21-07/Starters7/1.py
allenalvin333/Codechef_Competitions
44c3626de33cd9e17d1acfc74abe0aab809efbad
[ "MIT" ]
null
null
null
21-07/Starters7/1.py
allenalvin333/Codechef_Competitions
44c3626de33cd9e17d1acfc74abe0aab809efbad
[ "MIT" ]
null
null
null
21-07/Starters7/1.py
allenalvin333/Codechef_Competitions
44c3626de33cd9e17d1acfc74abe0aab809efbad
[ "MIT" ]
null
null
null
# https://www.codechef.com/START7C/problems/CHSFORMT for T in range(int(input())): a,b=map(int,input().split()) if((a+b)<3): print(1) elif((a+b) in range(3,11)): print(2) elif((a+b) in range(11,61)): print(3) elif((a+b)>60): print(4)
31.75
52
0.586614
6185ca727a546bc14cd1cb818ff3024b71b15ef2
12,086
py
Python
neutron/tests/unit/db/metering/test_db_metering.py
hughsaunders/neutron
8e600ec5b1f0f4ed99b9bf8c72226ca3dab3efad
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/db/metering/test_db_metering.py
hughsaunders/neutron
8e600ec5b1f0f4ed99b9bf8c72226ca3dab3efad
[ "Apache-2.0" ]
null
null
null
neutron/tests/unit/db/metering/test_db_metering.py
hughsaunders/neutron
8e600ec5b1f0f4ed99b9bf8c72226ca3dab3efad
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2013 eNovance SAS <licensing@enovance.com> # # Author: Sylvain Afchain <sylvain.afchain@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import logging import webob.exc from neutron.api import extensions from neutron.common import config from neutron import context import neutron.extensions from neutron.extensions import metering from neutron.plugins.common import constants from neutron.services.metering import metering_plugin from neutron.tests.unit import test_db_plugin LOG = logging.getLogger(__name__) DB_METERING_PLUGIN_KLASS = ( "neutron.services.metering." "metering_plugin.MeteringPlugin" ) extensions_path = ':'.join(neutron.extensions.__path__) class MeteringPluginDbTestCaseMixin(object): def _create_metering_label(self, fmt, name, description, **kwargs): data = {'metering_label': {'name': name, 'tenant_id': kwargs.get('tenant_id', 'test-tenant'), 'description': description}} req = self.new_create_request('metering-labels', data, fmt) if kwargs.get('set_context') and 'tenant_id' in kwargs: # create a specific auth context for this request req.environ['neutron.context'] = ( context.Context('', kwargs['tenant_id'], is_admin=kwargs.get('is_admin', True))) return req.get_response(self.ext_api) def _make_metering_label(self, fmt, name, description, **kwargs): res = self._create_metering_label(fmt, name, description, **kwargs) if res.status_int >= 400: raise webob.exc.HTTPClientError(code=res.status_int) return self.deserialize(fmt, res) def _create_metering_label_rule(self, fmt, metering_label_id, direction, remote_ip_prefix, excluded, **kwargs): data = {'metering_label_rule': {'metering_label_id': metering_label_id, 'tenant_id': kwargs.get('tenant_id', 'test-tenant'), 'direction': direction, 'excluded': excluded, 'remote_ip_prefix': remote_ip_prefix}} req = self.new_create_request('metering-label-rules', data, fmt) if kwargs.get('set_context') and 'tenant_id' in kwargs: # create a specific auth context for this request req.environ['neutron.context'] = ( context.Context('', kwargs['tenant_id'])) return req.get_response(self.ext_api) def _make_metering_label_rule(self, fmt, metering_label_id, direction, remote_ip_prefix, excluded, **kwargs): res = self._create_metering_label_rule(fmt, metering_label_id, direction, remote_ip_prefix, excluded, **kwargs) if res.status_int >= 400: raise webob.exc.HTTPClientError(code=res.status_int) return self.deserialize(fmt, res) @contextlib.contextmanager def metering_label(self, name='label', description='desc', fmt=None, no_delete=False, **kwargs): if not fmt: fmt = self.fmt metering_label = self._make_metering_label(fmt, name, description, **kwargs) yield metering_label if not no_delete: self._delete('metering-labels', metering_label['metering_label']['id']) @contextlib.contextmanager def metering_label_rule(self, metering_label_id=None, direction='ingress', remote_ip_prefix='10.0.0.0/24', excluded='false', fmt=None, no_delete=False): if not fmt: fmt = self.fmt metering_label_rule = self._make_metering_label_rule(fmt, metering_label_id, direction, remote_ip_prefix, excluded) yield metering_label_rule if not no_delete: self._delete('metering-label-rules', metering_label_rule['metering_label_rule']['id']) class MeteringPluginDbTestCase(test_db_plugin.NeutronDbPluginV2TestCase, MeteringPluginDbTestCaseMixin): fmt = 'json' resource_prefix_map = dict( (k.replace('_', '-'), constants.COMMON_PREFIXES[constants.METERING]) for k in metering.RESOURCE_ATTRIBUTE_MAP.keys() ) def setUp(self, plugin=None): service_plugins = {'metering_plugin_name': DB_METERING_PLUGIN_KLASS} super(MeteringPluginDbTestCase, self).setUp( plugin=plugin, service_plugins=service_plugins ) self.plugin = metering_plugin.MeteringPlugin() ext_mgr = extensions.PluginAwareExtensionManager( extensions_path, {constants.METERING: self.plugin} ) app = config.load_paste_app('extensions_test_app') self.ext_api = extensions.ExtensionMiddleware(app, ext_mgr=ext_mgr) def test_create_metering_label(self): name = 'my label' description = 'my metering label' keys = [('name', name,), ('description', description)] with self.metering_label(name, description) as metering_label: for k, v, in keys: self.assertEqual(metering_label['metering_label'][k], v) def test_delete_metering_label(self): name = 'my label' description = 'my metering label' with self.metering_label(name, description, no_delete=True) as metering_label: metering_label_id = metering_label['metering_label']['id'] self._delete('metering-labels', metering_label_id, 204) def test_list_metering_label(self): name = 'my label' description = 'my metering label' with contextlib.nested( self.metering_label(name, description), self.metering_label(name, description)) as metering_label: self._test_list_resources('metering-label', metering_label) def test_create_metering_label_rule(self): name = 'my label' description = 'my metering label' with self.metering_label(name, description) as metering_label: metering_label_id = metering_label['metering_label']['id'] direction = 'egress' remote_ip_prefix = '192.168.0.0/24' excluded = True keys = [('metering_label_id', metering_label_id), ('direction', direction), ('excluded', excluded), ('remote_ip_prefix', remote_ip_prefix)] with self.metering_label_rule(metering_label_id, direction, remote_ip_prefix, excluded) as label_rule: for k, v, in keys: self.assertEqual(label_rule['metering_label_rule'][k], v) def test_delete_metering_label_rule(self): name = 'my label' description = 'my metering label' with self.metering_label(name, description) as metering_label: metering_label_id = metering_label['metering_label']['id'] direction = 'egress' remote_ip_prefix = '192.168.0.0/24' excluded = True with self.metering_label_rule(metering_label_id, direction, remote_ip_prefix, excluded, no_delete=True) as label_rule: rule_id = label_rule['metering_label_rule']['id'] self._delete('metering-label-rules', rule_id, 204) def test_list_metering_label_rule(self): name = 'my label' description = 'my metering label' with self.metering_label(name, description) as metering_label: metering_label_id = metering_label['metering_label']['id'] direction = 'egress' remote_ip_prefix = '192.168.0.0/24' excluded = True with contextlib.nested( self.metering_label_rule(metering_label_id, direction, remote_ip_prefix, excluded), self.metering_label_rule(metering_label_id, 'ingress', remote_ip_prefix, excluded)) as metering_label_rule: self._test_list_resources('metering-label-rule', metering_label_rule) def test_create_metering_label_rules(self): name = 'my label' description = 'my metering label' with self.metering_label(name, description) as metering_label: metering_label_id = metering_label['metering_label']['id'] direction = 'egress' remote_ip_prefix = '192.168.0.0/24' excluded = True with contextlib.nested( self.metering_label_rule(metering_label_id, direction, remote_ip_prefix, excluded), self.metering_label_rule(metering_label_id, direction, '0.0.0.0/0', False)) as metering_label_rule: self._test_list_resources('metering-label-rule', metering_label_rule) def test_create_metering_label_rule_two_labels(self): name1 = 'my label 1' name2 = 'my label 2' description = 'my metering label' with self.metering_label(name1, description) as metering_label1: metering_label_id1 = metering_label1['metering_label']['id'] with self.metering_label(name2, description) as metering_label2: metering_label_id2 = metering_label2['metering_label']['id'] direction = 'egress' remote_ip_prefix = '192.168.0.0/24' excluded = True with contextlib.nested( self.metering_label_rule(metering_label_id1, direction, remote_ip_prefix, excluded), self.metering_label_rule(metering_label_id2, direction, remote_ip_prefix, excluded)) as metering_label_rule: self._test_list_resources('metering-label-rule', metering_label_rule) class TestMeteringDbXML(MeteringPluginDbTestCase): fmt = 'xml'
41.390411
79
0.554443
f4ec40fcb150319966c787a85389671714c5dd14
21,934
py
Python
tests/components/zha/test_channels.py
GuyKh/core
859bcb6eb4dbb9a8b87b6e4e888e074502db5df1
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
tests/components/zha/test_channels.py
GuyKh/core
859bcb6eb4dbb9a8b87b6e4e888e074502db5df1
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
tests/components/zha/test_channels.py
marecabo/home-assistant
e33774a61e7fcc88aff752dfa4618dd26a746872
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""Test ZHA Core channels.""" import asyncio import math from unittest import mock from unittest.mock import AsyncMock, patch import pytest import zigpy.profiles.zha import zigpy.types as t import zigpy.zcl.clusters import homeassistant.components.zha.core.channels as zha_channels import homeassistant.components.zha.core.channels.base as base_channels import homeassistant.components.zha.core.const as zha_const import homeassistant.components.zha.core.registries as registries from .common import get_zha_gateway, make_zcl_header from .conftest import SIG_EP_INPUT, SIG_EP_OUTPUT, SIG_EP_TYPE from tests.common import async_capture_events @pytest.fixture def ieee(): """IEEE fixture.""" return t.EUI64.deserialize(b"ieeeaddr")[0] @pytest.fixture def nwk(): """NWK fixture.""" return t.NWK(0xBEEF) @pytest.fixture async def zha_gateway(hass, setup_zha): """Return ZhaGateway fixture.""" await setup_zha() return get_zha_gateway(hass) @pytest.fixture def zigpy_coordinator_device(zigpy_device_mock): """Coordinator device fixture.""" coordinator = zigpy_device_mock( {1: {SIG_EP_INPUT: [0x1000], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) with patch.object(coordinator, "add_to_group", AsyncMock(return_value=[0])): yield coordinator @pytest.fixture def channel_pool(zigpy_coordinator_device): """Endpoint Channels fixture.""" ch_pool_mock = mock.MagicMock(spec_set=zha_channels.ChannelPool) ch_pool_mock.endpoint.device.application.get_device.return_value = ( zigpy_coordinator_device ) type(ch_pool_mock).skip_configuration = mock.PropertyMock(return_value=False) ch_pool_mock.id = 1 return ch_pool_mock @pytest.fixture def poll_control_ch(channel_pool, zigpy_device_mock): """Poll control channel fixture.""" cluster_id = zigpy.zcl.clusters.general.PollControl.cluster_id zigpy_dev = zigpy_device_mock( {1: {SIG_EP_INPUT: [cluster_id], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) cluster = zigpy_dev.endpoints[1].in_clusters[cluster_id] channel_class = registries.ZIGBEE_CHANNEL_REGISTRY.get(cluster_id) return channel_class(cluster, channel_pool) @pytest.fixture async def poll_control_device(zha_device_restored, zigpy_device_mock): """Poll control device fixture.""" cluster_id = zigpy.zcl.clusters.general.PollControl.cluster_id zigpy_dev = zigpy_device_mock( {1: {SIG_EP_INPUT: [cluster_id], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) zha_device = await zha_device_restored(zigpy_dev) return zha_device @pytest.mark.parametrize( "cluster_id, bind_count, attrs", [ (0x0000, 0, {}), (0x0001, 1, {"battery_voltage", "battery_percentage_remaining"}), (0x0003, 0, {}), (0x0004, 0, {}), (0x0005, 1, {}), (0x0006, 1, {"on_off"}), (0x0007, 1, {}), (0x0008, 1, {"current_level"}), (0x0009, 1, {}), (0x000C, 1, {"present_value"}), (0x000D, 1, {"present_value"}), (0x000E, 1, {"present_value"}), (0x000D, 1, {"present_value"}), (0x0010, 1, {"present_value"}), (0x0011, 1, {"present_value"}), (0x0012, 1, {"present_value"}), (0x0013, 1, {"present_value"}), (0x0014, 1, {"present_value"}), (0x0015, 1, {}), (0x0016, 1, {}), (0x0019, 0, {}), (0x001A, 1, {}), (0x001B, 1, {}), (0x0020, 1, {}), (0x0021, 0, {}), (0x0101, 1, {"lock_state"}), ( 0x0201, 1, { "local_temp", "occupied_cooling_setpoint", "occupied_heating_setpoint", "unoccupied_cooling_setpoint", "unoccupied_heating_setpoint", "running_mode", "running_state", "system_mode", "occupancy", "pi_cooling_demand", "pi_heating_demand", }, ), (0x0202, 1, {"fan_mode"}), (0x0300, 1, {"current_x", "current_y", "color_temperature"}), (0x0400, 1, {"measured_value"}), (0x0401, 1, {"level_status"}), (0x0402, 1, {"measured_value"}), (0x0403, 1, {"measured_value"}), (0x0404, 1, {"measured_value"}), (0x0405, 1, {"measured_value"}), (0x0406, 1, {"occupancy"}), (0x0702, 1, {"instantaneous_demand"}), ( 0x0B04, 1, { "active_power", "active_power_max", "apparent_power", "rms_current", "rms_current_max", "rms_voltage", "rms_voltage_max", }, ), ], ) async def test_in_channel_config( cluster_id, bind_count, attrs, channel_pool, zigpy_device_mock, zha_gateway ): """Test ZHA core channel configuration for input clusters.""" zigpy_dev = zigpy_device_mock( {1: {SIG_EP_INPUT: [cluster_id], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) cluster = zigpy_dev.endpoints[1].in_clusters[cluster_id] channel_class = registries.ZIGBEE_CHANNEL_REGISTRY.get( cluster_id, base_channels.ZigbeeChannel ) channel = channel_class(cluster, channel_pool) await channel.async_configure() assert cluster.bind.call_count == bind_count assert cluster.configure_reporting.call_count == 0 assert cluster.configure_reporting_multiple.call_count == math.ceil(len(attrs) / 3) reported_attrs = { a for a in attrs for attr in cluster.configure_reporting_multiple.call_args_list for attrs in attr[0][0] } assert set(attrs) == reported_attrs @pytest.mark.parametrize( "cluster_id, bind_count", [ (0x0000, 0), (0x0001, 1), (0x0003, 0), (0x0004, 0), (0x0005, 1), (0x0006, 1), (0x0007, 1), (0x0008, 1), (0x0009, 1), (0x0015, 1), (0x0016, 1), (0x0019, 0), (0x001A, 1), (0x001B, 1), (0x0020, 1), (0x0021, 0), (0x0101, 1), (0x0202, 1), (0x0300, 1), (0x0400, 1), (0x0402, 1), (0x0403, 1), (0x0405, 1), (0x0406, 1), (0x0702, 1), (0x0B04, 1), ], ) async def test_out_channel_config( cluster_id, bind_count, channel_pool, zigpy_device_mock, zha_gateway ): """Test ZHA core channel configuration for output clusters.""" zigpy_dev = zigpy_device_mock( {1: {SIG_EP_OUTPUT: [cluster_id], SIG_EP_INPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) cluster = zigpy_dev.endpoints[1].out_clusters[cluster_id] cluster.bind_only = True channel_class = registries.ZIGBEE_CHANNEL_REGISTRY.get( cluster_id, base_channels.ZigbeeChannel ) channel = channel_class(cluster, channel_pool) await channel.async_configure() assert cluster.bind.call_count == bind_count assert cluster.configure_reporting.call_count == 0 def test_channel_registry(): """Test ZIGBEE Channel Registry.""" for (cluster_id, channel) in registries.ZIGBEE_CHANNEL_REGISTRY.items(): assert isinstance(cluster_id, int) assert 0 <= cluster_id <= 0xFFFF assert issubclass(channel, base_channels.ZigbeeChannel) def test_epch_unclaimed_channels(channel): """Test unclaimed channels.""" ch_1 = channel(zha_const.CHANNEL_ON_OFF, 6) ch_2 = channel(zha_const.CHANNEL_LEVEL, 8) ch_3 = channel(zha_const.CHANNEL_COLOR, 768) ep_channels = zha_channels.ChannelPool( mock.MagicMock(spec_set=zha_channels.Channels), mock.sentinel.ep ) all_channels = {ch_1.id: ch_1, ch_2.id: ch_2, ch_3.id: ch_3} with mock.patch.dict(ep_channels.all_channels, all_channels, clear=True): available = ep_channels.unclaimed_channels() assert ch_1 in available assert ch_2 in available assert ch_3 in available ep_channels.claimed_channels[ch_2.id] = ch_2 available = ep_channels.unclaimed_channels() assert ch_1 in available assert ch_2 not in available assert ch_3 in available ep_channels.claimed_channels[ch_1.id] = ch_1 available = ep_channels.unclaimed_channels() assert ch_1 not in available assert ch_2 not in available assert ch_3 in available ep_channels.claimed_channels[ch_3.id] = ch_3 available = ep_channels.unclaimed_channels() assert ch_1 not in available assert ch_2 not in available assert ch_3 not in available def test_epch_claim_channels(channel): """Test channel claiming.""" ch_1 = channel(zha_const.CHANNEL_ON_OFF, 6) ch_2 = channel(zha_const.CHANNEL_LEVEL, 8) ch_3 = channel(zha_const.CHANNEL_COLOR, 768) ep_channels = zha_channels.ChannelPool( mock.MagicMock(spec_set=zha_channels.Channels), mock.sentinel.ep ) all_channels = {ch_1.id: ch_1, ch_2.id: ch_2, ch_3.id: ch_3} with mock.patch.dict(ep_channels.all_channels, all_channels, clear=True): assert ch_1.id not in ep_channels.claimed_channels assert ch_2.id not in ep_channels.claimed_channels assert ch_3.id not in ep_channels.claimed_channels ep_channels.claim_channels([ch_2]) assert ch_1.id not in ep_channels.claimed_channels assert ch_2.id in ep_channels.claimed_channels assert ep_channels.claimed_channels[ch_2.id] is ch_2 assert ch_3.id not in ep_channels.claimed_channels ep_channels.claim_channels([ch_3, ch_1]) assert ch_1.id in ep_channels.claimed_channels assert ep_channels.claimed_channels[ch_1.id] is ch_1 assert ch_2.id in ep_channels.claimed_channels assert ep_channels.claimed_channels[ch_2.id] is ch_2 assert ch_3.id in ep_channels.claimed_channels assert ep_channels.claimed_channels[ch_3.id] is ch_3 assert "1:0x0300" in ep_channels.claimed_channels @mock.patch( "homeassistant.components.zha.core.channels.ChannelPool.add_client_channels" ) @mock.patch( "homeassistant.components.zha.core.discovery.PROBE.discover_entities", mock.MagicMock(), ) def test_ep_channels_all_channels(m1, zha_device_mock): """Test EndpointChannels adding all channels.""" zha_device = zha_device_mock( { 1: { SIG_EP_INPUT: [0, 1, 6, 8], SIG_EP_OUTPUT: [], SIG_EP_TYPE: zigpy.profiles.zha.DeviceType.ON_OFF_SWITCH, }, 2: { SIG_EP_INPUT: [0, 1, 6, 8, 768], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000, }, } ) channels = zha_channels.Channels(zha_device) ep_channels = zha_channels.ChannelPool.new(channels, 1) assert "1:0x0000" in ep_channels.all_channels assert "1:0x0001" in ep_channels.all_channels assert "1:0x0006" in ep_channels.all_channels assert "1:0x0008" in ep_channels.all_channels assert "1:0x0300" not in ep_channels.all_channels assert "2:0x0000" not in ep_channels.all_channels assert "2:0x0001" not in ep_channels.all_channels assert "2:0x0006" not in ep_channels.all_channels assert "2:0x0008" not in ep_channels.all_channels assert "2:0x0300" not in ep_channels.all_channels channels = zha_channels.Channels(zha_device) ep_channels = zha_channels.ChannelPool.new(channels, 2) assert "1:0x0000" not in ep_channels.all_channels assert "1:0x0001" not in ep_channels.all_channels assert "1:0x0006" not in ep_channels.all_channels assert "1:0x0008" not in ep_channels.all_channels assert "1:0x0300" not in ep_channels.all_channels assert "2:0x0000" in ep_channels.all_channels assert "2:0x0001" in ep_channels.all_channels assert "2:0x0006" in ep_channels.all_channels assert "2:0x0008" in ep_channels.all_channels assert "2:0x0300" in ep_channels.all_channels @mock.patch( "homeassistant.components.zha.core.channels.ChannelPool.add_client_channels" ) @mock.patch( "homeassistant.components.zha.core.discovery.PROBE.discover_entities", mock.MagicMock(), ) def test_channel_power_config(m1, zha_device_mock): """Test that channels only get a single power channel.""" in_clusters = [0, 1, 6, 8] zha_device = zha_device_mock( { 1: {SIG_EP_INPUT: in_clusters, SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000}, 2: { SIG_EP_INPUT: [*in_clusters, 768], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000, }, } ) channels = zha_channels.Channels.new(zha_device) pools = {pool.id: pool for pool in channels.pools} assert "1:0x0000" in pools[1].all_channels assert "1:0x0001" in pools[1].all_channels assert "1:0x0006" in pools[1].all_channels assert "1:0x0008" in pools[1].all_channels assert "1:0x0300" not in pools[1].all_channels assert "2:0x0000" in pools[2].all_channels assert "2:0x0001" not in pools[2].all_channels assert "2:0x0006" in pools[2].all_channels assert "2:0x0008" in pools[2].all_channels assert "2:0x0300" in pools[2].all_channels zha_device = zha_device_mock( { 1: {SIG_EP_INPUT: [], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000}, 2: {SIG_EP_INPUT: in_clusters, SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000}, } ) channels = zha_channels.Channels.new(zha_device) pools = {pool.id: pool for pool in channels.pools} assert "1:0x0001" not in pools[1].all_channels assert "2:0x0001" in pools[2].all_channels zha_device = zha_device_mock( {2: {SIG_EP_INPUT: in_clusters, SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x0000}} ) channels = zha_channels.Channels.new(zha_device) pools = {pool.id: pool for pool in channels.pools} assert "2:0x0001" in pools[2].all_channels async def test_ep_channels_configure(channel): """Test unclaimed channels.""" ch_1 = channel(zha_const.CHANNEL_ON_OFF, 6) ch_2 = channel(zha_const.CHANNEL_LEVEL, 8) ch_3 = channel(zha_const.CHANNEL_COLOR, 768) ch_3.async_configure = AsyncMock(side_effect=asyncio.TimeoutError) ch_3.async_initialize = AsyncMock(side_effect=asyncio.TimeoutError) ch_4 = channel(zha_const.CHANNEL_ON_OFF, 6) ch_5 = channel(zha_const.CHANNEL_LEVEL, 8) ch_5.async_configure = AsyncMock(side_effect=asyncio.TimeoutError) ch_5.async_initialize = AsyncMock(side_effect=asyncio.TimeoutError) channels = mock.MagicMock(spec_set=zha_channels.Channels) type(channels).semaphore = mock.PropertyMock(return_value=asyncio.Semaphore(3)) ep_channels = zha_channels.ChannelPool(channels, mock.sentinel.ep) claimed = {ch_1.id: ch_1, ch_2.id: ch_2, ch_3.id: ch_3} client_chans = {ch_4.id: ch_4, ch_5.id: ch_5} with mock.patch.dict( ep_channels.claimed_channels, claimed, clear=True ), mock.patch.dict(ep_channels.client_channels, client_chans, clear=True): await ep_channels.async_configure() await ep_channels.async_initialize(mock.sentinel.from_cache) for ch in [*claimed.values(), *client_chans.values()]: assert ch.async_initialize.call_count == 1 assert ch.async_initialize.await_count == 1 assert ch.async_initialize.call_args[0][0] is mock.sentinel.from_cache assert ch.async_configure.call_count == 1 assert ch.async_configure.await_count == 1 assert ch_3.warning.call_count == 2 assert ch_5.warning.call_count == 2 async def test_poll_control_configure(poll_control_ch): """Test poll control channel configuration.""" await poll_control_ch.async_configure() assert poll_control_ch.cluster.write_attributes.call_count == 1 assert poll_control_ch.cluster.write_attributes.call_args[0][0] == { "checkin_interval": poll_control_ch.CHECKIN_INTERVAL } async def test_poll_control_checkin_response(poll_control_ch): """Test poll control channel checkin response.""" rsp_mock = AsyncMock() set_interval_mock = AsyncMock() fast_poll_mock = AsyncMock() cluster = poll_control_ch.cluster patch_1 = mock.patch.object(cluster, "checkin_response", rsp_mock) patch_2 = mock.patch.object(cluster, "set_long_poll_interval", set_interval_mock) patch_3 = mock.patch.object(cluster, "fast_poll_stop", fast_poll_mock) with patch_1, patch_2, patch_3: await poll_control_ch.check_in_response(33) assert rsp_mock.call_count == 1 assert set_interval_mock.call_count == 1 assert fast_poll_mock.call_count == 1 await poll_control_ch.check_in_response(33) assert cluster.endpoint.request.call_count == 3 assert cluster.endpoint.request.await_count == 3 assert cluster.endpoint.request.call_args_list[0][0][1] == 33 assert cluster.endpoint.request.call_args_list[0][0][0] == 0x0020 assert cluster.endpoint.request.call_args_list[1][0][0] == 0x0020 async def test_poll_control_cluster_command(hass, poll_control_device): """Test poll control channel response to cluster command.""" checkin_mock = AsyncMock() poll_control_ch = poll_control_device.channels.pools[0].all_channels["1:0x0020"] cluster = poll_control_ch.cluster events = async_capture_events(hass, "zha_event") with mock.patch.object(poll_control_ch, "check_in_response", checkin_mock): tsn = 22 hdr = make_zcl_header(0, global_command=False, tsn=tsn) assert not events cluster.handle_message( hdr, [mock.sentinel.args, mock.sentinel.args2, mock.sentinel.args3] ) await hass.async_block_till_done() assert checkin_mock.call_count == 1 assert checkin_mock.await_count == 1 assert checkin_mock.await_args[0][0] == tsn assert len(events) == 1 data = events[0].data assert data["command"] == "checkin" assert data["args"][0] is mock.sentinel.args assert data["args"][1] is mock.sentinel.args2 assert data["args"][2] is mock.sentinel.args3 assert data["unique_id"] == "00:11:22:33:44:55:66:77:1:0x0020" assert data["device_id"] == poll_control_device.device_id async def test_poll_control_ignore_list(hass, poll_control_device): """Test poll control channel ignore list.""" set_long_poll_mock = AsyncMock() poll_control_ch = poll_control_device.channels.pools[0].all_channels["1:0x0020"] cluster = poll_control_ch.cluster with mock.patch.object(cluster, "set_long_poll_interval", set_long_poll_mock): await poll_control_ch.check_in_response(33) assert set_long_poll_mock.call_count == 1 set_long_poll_mock.reset_mock() poll_control_ch.skip_manufacturer_id(4151) with mock.patch.object(cluster, "set_long_poll_interval", set_long_poll_mock): await poll_control_ch.check_in_response(33) assert set_long_poll_mock.call_count == 0 async def test_poll_control_ikea(hass, poll_control_device): """Test poll control channel ignore list for ikea.""" set_long_poll_mock = AsyncMock() poll_control_ch = poll_control_device.channels.pools[0].all_channels["1:0x0020"] cluster = poll_control_ch.cluster poll_control_device.device.node_desc.manufacturer_code = 4476 with mock.patch.object(cluster, "set_long_poll_interval", set_long_poll_mock): await poll_control_ch.check_in_response(33) assert set_long_poll_mock.call_count == 0 @pytest.fixture def zigpy_zll_device(zigpy_device_mock): """ZLL device fixture.""" return zigpy_device_mock( {1: {SIG_EP_INPUT: [0x1000], SIG_EP_OUTPUT: [], SIG_EP_TYPE: 0x1234}}, "00:11:22:33:44:55:66:77", "test manufacturer", "test model", ) async def test_zll_device_groups( zigpy_zll_device, channel_pool, zigpy_coordinator_device ): """Test adding coordinator to ZLL groups.""" cluster = zigpy_zll_device.endpoints[1].lightlink channel = zha_channels.lightlink.LightLink(cluster, channel_pool) with patch.object( cluster, "command", AsyncMock(return_value=[1, 0, []]) ) as cmd_mock: await channel.async_configure() assert cmd_mock.await_count == 1 assert ( cluster.server_commands[cmd_mock.await_args[0][0]][0] == "get_group_identifiers" ) assert cluster.bind.call_count == 0 assert zigpy_coordinator_device.add_to_group.await_count == 1 assert zigpy_coordinator_device.add_to_group.await_args[0][0] == 0x0000 zigpy_coordinator_device.add_to_group.reset_mock() group_1 = zigpy.zcl.clusters.lightlink.GroupInfoRecord(0xABCD, 0x00) group_2 = zigpy.zcl.clusters.lightlink.GroupInfoRecord(0xAABB, 0x00) with patch.object( cluster, "command", AsyncMock(return_value=[1, 0, [group_1, group_2]]) ) as cmd_mock: await channel.async_configure() assert cmd_mock.await_count == 1 assert ( cluster.server_commands[cmd_mock.await_args[0][0]][0] == "get_group_identifiers" ) assert cluster.bind.call_count == 0 assert zigpy_coordinator_device.add_to_group.await_count == 2 assert ( zigpy_coordinator_device.add_to_group.await_args_list[0][0][0] == group_1.group_id ) assert ( zigpy_coordinator_device.add_to_group.await_args_list[1][0][0] == group_2.group_id )
35.263666
87
0.669463
d00a6a78d554d3b551d847fba8c32d0052666e61
47,645
py
Python
geowombat/core/io.py
jgrss/geowombat
e691102a3dcce13b272810b43bc9586681ae6934
[ "MIT" ]
38
2020-01-13T22:45:18.000Z
2022-03-31T05:44:35.000Z
geowombat/core/io.py
jgrss/geowombat
e691102a3dcce13b272810b43bc9586681ae6934
[ "MIT" ]
41
2020-01-27T00:57:58.000Z
2022-03-10T19:52:20.000Z
geowombat/core/io.py
jgrss/geowombat
e691102a3dcce13b272810b43bc9586681ae6934
[ "MIT" ]
4
2020-01-14T19:27:38.000Z
2021-08-23T03:08:37.000Z
import os from pathlib import Path import shutil import itertools import ctypes import concurrent.futures import multiprocessing as multi import threading import random import string import logging from ..handler import add_handler from ..backends.rasterio_ import to_gtiff, WriteDaskArray from .windows import get_window_offsets from .base import _client_dummy, _cluster_dummy try: from ..backends.zarr_ import to_zarr import zarr ZARR_INSTALLED = True except: ZARR_INSTALLED = False import numpy as np from osgeo import gdal import xarray as xr import dask.array as da from dask import is_dask_collection from dask.diagnostics import ProgressBar from dask.distributed import Client, LocalCluster import rasterio as rio from rasterio.windows import Window from rasterio.vrt import WarpedVRT from rasterio.enums import Resampling from rasterio import shutil as rio_shutil from affine import Affine from tqdm import tqdm try: MKL_LIB = ctypes.CDLL('libmkl_rt.so') except: MKL_LIB = None logger = logging.getLogger(__name__) logger = add_handler(logger) def get_norm_indices(n_bands, window_slice, indexes_multi): # Prepend the band position index to the window slice if n_bands == 1: window_slice = tuple([slice(0, 1)] + list(window_slice)) indexes = 1 else: window_slice = tuple([slice(0, n_bands)] + list(window_slice)) indexes = indexes_multi return window_slice, indexes def _window_worker(w): """ Helper to return window slice """ return slice(w.row_off, w.row_off + w.height), slice(w.col_off, w.col_off + w.width) def _window_worker_time(w, n_bands, tidx, n_time): """ Helper to return window slice """ window_slice = (slice(w.row_off, w.row_off + w.height), slice(w.col_off, w.col_off + w.width)) # Prepend the band position index to the window slice if n_bands == 1: window_slice = tuple([slice(tidx, n_time)] + [slice(0, 1)] + list(window_slice)) else: window_slice = tuple([slice(tidx, n_time)] + [slice(0, n_bands)] + list(window_slice)) return window_slice # def _compressor(*args): # # w_, b_, f_, o_ = list(itertools.chain(*args)) # # with rio.open(f_, mode='r+', sharing=False) as dst_: # # dst_.write(np.squeeze(b_), # window=w_, # indexes=o_) # def _block_write_func(*args): # # ofn_, fn_, g_, t_ = list(itertools.chain(*args)) # # if t_ == 'zarr': # # group_node = zarr.open(fn_, mode='r')[g_] # # w_ = Window(row_off=group_node.attrs['row_off'], # col_off=group_node.attrs['col_off'], # height=group_node.attrs['height'], # width=group_node.attrs['width']) # # out_data_ = np.squeeze(group_node['data'][:]) # # else: # # w_ = Window(row_off=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-4][1:]), # col_off=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-3][1:]), # height=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-2][1:]), # width=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-1][1:])) # # with rio.open(fn_) as src_: # out_data_ = np.squeeze(src_.read(window=w_)) # # out_indexes_ = 1 if len(out_data_.shape) == 2 else list(range(1, out_data_.shape[0]+1)) # # with rio.open(ofn_, mode='r+', sharing=False) as dst_: # # dst_.write(out_data_, # window=w_, # indexes=out_indexes_) def _block_read_func(fn_, g_, t_): """ Function for block writing with ``concurrent.futures`` """ # fn_, g_, t_ = list(itertools.chain(*args)) if t_ == 'zarr': group_node = zarr.open(fn_, mode='r')[g_] w_ = Window(row_off=group_node.attrs['row_off'], col_off=group_node.attrs['col_off'], height=group_node.attrs['height'], width=group_node.attrs['width']) out_data_ = np.squeeze(group_node['data'][:]) else: w_ = Window(row_off=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-4][1:]), col_off=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-3][1:]), height=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-2][1:]), width=int(os.path.splitext(os.path.basename(fn_))[0].split('_')[-1][1:])) out_data_ = np.squeeze(rio.open(fn_).read(window=w_)) out_indexes_ = 1 if len(out_data_.shape) == 2 else list(range(1, out_data_.shape[0]+1)) return w_, out_indexes_, out_data_ def _check_offsets(block, out_data_, window_, oleft, otop, ocols, orows, left_, top_): # Check if the data were read at larger # extents than the write bounds. obottom = otop - (orows * abs(block.gw.celly)) oright = oleft + (ocols * abs(block.gw.cellx)) bottom_ = top_ - (window_.height * abs(block.gw.celly)) right_ = left_ - (window_.width * abs(block.gw.cellx)) left_diff = 0 right_diff = 0 top_diff = 0 bottom_diff = 0 if left_ < oleft: left_diff = int(abs(oleft - left_) / abs(block.gw.cellx)) right_diff = out_data_.shape[-1] elif right_ > oright: left_diff = 0 right_diff = int(abs(oright - right_) / abs(block.gw.cellx)) if bottom_ < obottom: bottom_diff = int(abs(obottom - bottom_) / abs(block.gw.celly)) top_diff = 0 elif top_ > otop: bottom_diff = out_data_.shape[-2] top_diff = int(abs(otop - top_) / abs(block.gw.celly)) if (left_diff != 0) or (top_diff != 0) or (bottom_diff != 0) or (right_diff != 0): dshape = out_data_.shape if len(dshape) == 2: out_data_ = out_data_[top_diff:bottom_diff, left_diff:right_diff] elif len(dshape) == 3: out_data_ = out_data_[:, top_diff:bottom_diff, left_diff:right_diff] elif len(dshape) == 4: out_data_ = out_data_[:, :, top_diff:bottom_diff, left_diff:right_diff] window_ = Window(col_off=window_.col_off, row_off=window_.row_off, width=out_data_.shape[-1], height=out_data_.shape[-2]) return out_data_, window_ def _compute_block(block, wid, window_, padded_window_, n_workers, num_workers, oleft, otop, ocols, orows): """ Computes a DataArray window block of data Args: block (DataArray): The ``xarray.DataArray`` to compute. wid (int): The window id. window_ (namedtuple): The window ``rasterio.windows.Window`` object. padded_window_ (namedtuple): A padded window ``rasterio.windows.Window`` object. n_workers (int): The number of parallel workers for chunks. num_workers (int): The number of parallel workers for ``dask.compute``. oleft (float): The output image left coordinate. otop (float): The output image top coordinate. ocols (int): The output image columns. orows (int): The output image rows. Returns: ``numpy.ndarray``, ``rasterio.windows.Window``, ``int`` | ``list`` """ # The geo-transform is needed on the block # left_, top_ = Affine(*block.transform) * (window_.col_off, window_.row_off) out_data_ = None if 'apply' in block.attrs: attrs = block.attrs.copy() # Update the block transform attrs['transform'] = Affine(*block.gw.transform) attrs['window_id'] = wid block = block.assign_attrs(**attrs) if ('apply' in block.attrs) and hasattr(block.attrs['apply'], 'wombat_func_'): if padded_window_: logger.warning(' Padding is not supported with lazy functions.') if block.attrs['apply'].wombat_func_: # Add the data to the keyword arguments block.attrs['apply_kwargs']['data'] = block out_data_ = block.attrs['apply'](**block.attrs['apply_kwargs']) if n_workers == 1: out_data_ = out_data_.data.compute(scheduler='threads', num_workers=num_workers) else: with threading.Lock(): out_data_ = out_data_.data.compute(scheduler='threads', num_workers=num_workers) else: logger.exception(' The lazy wombat function is turned off.') else: ############################### # Get the data as a NumPy array ############################### if n_workers == 1: out_data_ = block.data.compute(scheduler='threads', num_workers=num_workers) else: with threading.Lock(): out_data_ = block.data.compute(scheduler='threads', num_workers=num_workers) if ('apply' in block.attrs) and not hasattr(block.attrs['apply'], 'wombat_func_'): if padded_window_: # Add extra padding on the image borders rspad = padded_window_.height - window_.height if window_.row_off == 0 else 0 cspad = padded_window_.width - window_.width if window_.col_off == 0 else 0 repad = padded_window_.height - window_.height if (window_.row_off != 0) and (window_.height < block.gw.row_chunks) else 0 cepad = padded_window_.width - window_.width if (window_.col_off != 0) and (window_.width < block.gw.col_chunks) else 0 dshape = out_data_.shape if (rspad > 0) or (cspad > 0) or (repad > 0) or (cepad > 0): if len(dshape) == 2: out_data_ = np.pad(out_data_, ((rspad, repad), (cspad, cepad)), mode='reflect') elif len(dshape) == 3: out_data_ = np.pad(out_data_, ((0, 0), (rspad, repad), (cspad, cepad)), mode='reflect') elif len(dshape) == 4: out_data_ = np.pad(out_data_, ((0, 0), (0, 0), (rspad, repad), (cspad, cepad)), mode='reflect') # Apply the user function if ('apply_args' in block.attrs) and ('apply_kwargs' in block.attrs): out_data_ = block.attrs['apply'](out_data_, *block.attrs['apply_args'], **block.attrs['apply_kwargs']) elif ('apply_args' in block.attrs) and ('apply_kwargs' not in block.attrs): out_data_ = block.attrs['apply'](out_data_, *block.attrs['apply_args']) elif ('apply_args' not in block.attrs) and ('apply_kwargs' in block.attrs): out_data_ = block.attrs['apply'](out_data_, **block.attrs['apply_kwargs']) else: out_data_ = block.attrs['apply'](out_data_) if padded_window_: ########################## # Remove the extra padding ########################## dshape = out_data_.shape if len(dshape) == 2: out_data_ = out_data_[rspad:rspad+padded_window_.height, cspad:cspad+padded_window_.width] elif len(dshape) == 3: out_data_ = out_data_[:, rspad:rspad+padded_window_.height, cspad:cspad+padded_window_.width] elif len(dshape) == 4: out_data_ = out_data_[:, :, rspad:rspad+padded_window_.height, cspad:cspad+padded_window_.width] dshape = out_data_.shape #################### # Remove the padding #################### # Get the non-padded array slice row_diff = abs(window_.row_off - padded_window_.row_off) col_diff = abs(window_.col_off - padded_window_.col_off) if len(dshape) == 2: out_data_ = out_data_[row_diff:row_diff+window_.height, col_diff:col_diff+window_.width] elif len(dshape) == 3: out_data_ = out_data_[:, row_diff:row_diff+window_.height, col_diff:col_diff+window_.width] elif len(dshape) == 4: out_data_ = out_data_[:, :, row_diff:row_diff+window_.height, col_diff:col_diff+window_.width] else: if padded_window_: logger.warning(' Padding is only supported with user functions.') if not isinstance(out_data_, np.ndarray): logger.exception(' The data were not computed properly for block {:,d}'.format(wid)) dshape = out_data_.shape if len(dshape) > 2: out_data_ = out_data_.squeeze() if len(dshape) == 2: indexes_ = 1 else: indexes_ = 1 if dshape[0] == 1 else list(range(1, dshape[0]+1)) return out_data_, indexes_, window_ def _write_xarray(*args): """ Writes a DataArray to file Args: args (iterable): A tuple from the window generator. Reference: https://github.com/dask/dask/issues/3600 Returns: ``str`` | None """ zarr_file = None block, filename, wid, block_window, padded_window, n_workers, n_threads, separate, chunks, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs = list(itertools.chain(*args)) output, out_indexes, block_window = _compute_block(block, wid, block_window, padded_window, n_workers, n_threads, oleft, otop, ocols, orows) if separate and (out_block_type.lower() == 'zarr'): zarr_file = to_zarr(filename, output, block_window, chunks, root=root) else: to_gtiff(filename, output, block_window, out_indexes, block.gw.transform, n_workers, separate, tags, kwargs) return zarr_file def to_vrt(data, filename, overwrite=False, resampling=None, nodata=None, init_dest_nodata=True, warp_mem_limit=128): """ Writes a file to a VRT file Args: data (DataArray): The ``xarray.DataArray`` to write. filename (str): The output file name to write to. overwrite (Optional[bool]): Whether to overwrite an existing VRT file. resampling (Optional[object]): The resampling algorithm for ``rasterio.vrt.WarpedVRT``. Default is 'nearest'. nodata (Optional[float or int]): The 'no data' value for ``rasterio.vrt.WarpedVRT``. init_dest_nodata (Optional[bool]): Whether or not to initialize output to ``nodata`` for ``rasterio.vrt.WarpedVRT``. warp_mem_limit (Optional[int]): The GDAL memory limit for ``rasterio.vrt.WarpedVRT``. Example: >>> import geowombat as gw >>> from rasterio.enums import Resampling >>> >>> # Transform a CRS and save to VRT >>> with gw.config.update(ref_crs=102033): >>> with gw.open('image.tif') as src: >>> gw.to_vrt(src, >>> 'output.vrt', >>> resampling=Resampling.cubic, >>> warp_mem_limit=256) >>> >>> # Load multiple files set to a common geographic extent >>> bounds = (left, bottom, right, top) >>> with gw.config.update(ref_bounds=bounds): >>> with gw.open(['image1.tif', 'image2.tif'], mosaic=True) as src: >>> gw.to_vrt(src, 'output.vrt') """ if Path(filename).is_file(): if overwrite: Path(filename).unlink() else: logger.warning(f' The VRT file {filename} already exists.') return if not resampling: resampling = Resampling.nearest if isinstance(data.attrs['filename'], str) or isinstance(data.attrs['filename'], Path): # Open the input file on disk with rio.open(data.attrs['filename']) as src: with WarpedVRT(src, src_crs=src.crs, # the original CRS crs=data.crs, # the transformed CRS src_transform=src.gw.transform, # the original transform transform=data.gw.transform, # the new transform dtype=data.dtype, resampling=resampling, nodata=nodata, init_dest_nodata=init_dest_nodata, warp_mem_limit=warp_mem_limit) as vrt: rio_shutil.copy(vrt, filename, driver='VRT') else: if not data.gw.filenames: logger.exception(' The data filenames attribute is empty. Use gw.open(..., persist_filenames=True).') raise KeyError separate = True if data.gw.data_are_separate and data.gw.data_are_stacked else False vrt_options = gdal.BuildVRTOptions(outputBounds=data.gw.bounds, xRes=data.gw.cellx, yRes=data.gw.celly, separate=separate, outputSRS=data.crs) ds = gdal.BuildVRT(filename, data.gw.filenames, options=vrt_options) ds = None def to_netcdf(data, filename, *args, **kwargs): """ Writes an Xarray DataArray to a NetCDF file Args: data (DataArray): The ``xarray.DataArray`` to write. filename (str): The output file name to write to. args (DataArray): Additional ``DataArrays`` to stack. kwargs (dict): Encoding arguments. Example: >>> import geowombat as gw >>> import xarray as xr >>> >>> # Write a single DataArray to a .nc file >>> with gw.config.update(sensor='l7'): >>> with gw.open('LC08_L1TP_225078_20200219_20200225_01_T1.tif') as src: >>> gw.to_netcdf(src, 'filename.nc', zlib=True, complevel=5) >>> >>> # Add extra layers >>> with gw.config.update(sensor='l7'): >>> with gw.open('LC08_L1TP_225078_20200219_20200225_01_T1.tif') as src, \ >>> gw.open('LC08_L1TP_225078_20200219_20200225_01_T1_angles.tif', band_names=['zenith', 'azimuth']) as ang: >>> >>> src = xr.where(src == 0, -32768, src)\ >>> .astype('int16')\ >>> .assign_attrs(**src.attrs) >>> >>> gw.to_netcdf(src, 'filename.nc', ang.astype('int16'), zlib=True, complevel=5) >>> >>> # Open the data and convert to a DataArray >>> with xr.open_dataset('filename.nc', engine='h5netcdf', chunks=256) as ds: >>> src = ds.to_array(dim='band') """ encodings = {} for band_name in data.band.values.tolist(): encode_dict = {'chunksizes': (data.gw.row_chunks, data.gw.col_chunks), 'dtype': data.dtype} encode_dict.update(**kwargs) encodings[band_name] = encode_dict res = data for other_data in args: for band_name in other_data.band.values.tolist(): encode_dict = {'chunksizes': (other_data.gw.row_chunks, other_data.gw.col_chunks), 'dtype': other_data.dtype} encode_dict.update(**kwargs) encodings[band_name] = encode_dict res = xr.concat((res, other_data), dim='band') res.to_dataset(dim='band')\ .assign_attrs(**data.attrs)\ .to_netcdf(path=filename, mode='w', format='NETCDF4', engine='h5netcdf', encoding=encodings, compute=True) def to_raster(data, filename, readxsize=None, readysize=None, use_dask_store=False, separate=False, out_block_type='gtiff', keep_blocks=False, verbose=0, overwrite=False, gdal_cache=512, scheduler='mpool', n_jobs=1, n_workers=None, n_threads=None, n_chunks=None, use_client=False, address=None, total_memory=24, processes=False, padding=None, tags=None, **kwargs): """ Writes a ``dask`` array to a raster file Args: data (DataArray): The ``xarray.DataArray`` to write. filename (str): The output file name to write to. readxsize (Optional[int]): The size of column chunks to read. If not given, ``readxsize`` defaults to Dask chunk size. readysize (Optional[int]): The size of row chunks to read. If not given, ``readysize`` defaults to Dask chunk size. separate (Optional[bool]): Whether to write blocks as separate files. Otherwise, write to a single file. use_dask_store (Optional[bool]): Whether to use ``dask.array.store`` to save with Dask task graphs. out_block_type (Optional[str]): The output block type. Choices are ['gtiff', 'zarr']. Only used if ``separate`` = ``True``. keep_blocks (Optional[bool]): Whether to keep the blocks stored on disk. Only used if ``separate`` = ``True``. verbose (Optional[int]): The verbosity level. overwrite (Optional[bool]): Whether to overwrite an existing file. gdal_cache (Optional[int]): The ``GDAL`` cache size (in MB). scheduler (Optional[str]): The parallel task scheduler to use. Choices are ['processes', 'threads', 'mpool']. mpool: process pool of workers using ``multiprocessing.Pool`` processes: process pool of workers using ``concurrent.futures`` threads: thread pool of workers using ``concurrent.futures`` n_jobs (Optional[int]): The total number of parallel jobs. n_workers (Optional[int]): The number of process workers. n_threads (Optional[int]): The number of thread workers. n_chunks (Optional[int]): The chunk size of windows. If not given, equal to ``n_workers`` x 50. overviews (Optional[bool or list]): Whether to build overview layers. resampling (Optional[str]): The resampling method for overviews when ``overviews`` is ``True`` or a ``list``. Choices are ['average', 'bilinear', 'cubic', 'cubic_spline', 'gauss', 'lanczos', 'max', 'med', 'min', 'mode', 'nearest']. use_client (Optional[bool]): Whether to use a ``dask`` client. address (Optional[str]): A cluster address to pass to client. Only used when ``use_client`` = ``True``. total_memory (Optional[int]): The total memory (in GB) required when ``use_client`` = ``True``. processes (Optional[bool]): Whether to use process workers with the ``dask.distributed`` client. Only applies when ``use_client`` = ``True``. padding (Optional[tuple]): Padding for each window. ``padding`` should be given as a tuple of (left pad, bottom pad, right pad, top pad). If ``padding`` is given, the returned list will contain a tuple of ``rasterio.windows.Window`` objects as (w1, w2), where w1 contains the normal window offsets and w2 contains the padded window offsets. tags (Optional[dict]): Image tags to write to file. kwargs (Optional[dict]): Additional keyword arguments to pass to ``rasterio.write``. Returns: ``dask.delayed`` object Examples: >>> import geowombat as gw >>> >>> # Use 8 parallel workers >>> with gw.open('input.tif') as ds: >>> gw.to_raster(ds, 'output.tif', n_jobs=8) >>> >>> # Use 4 process workers and 2 thread workers >>> with gw.open('input.tif') as ds: >>> gw.to_raster(ds, 'output.tif', n_workers=4, n_threads=2) >>> >>> # Control the window chunks passed to concurrent.futures >>> with gw.open('input.tif') as ds: >>> gw.to_raster(ds, 'output.tif', n_workers=4, n_threads=2, n_chunks=16) >>> >>> # Compress the output and build overviews >>> with gw.open('input.tif') as ds: >>> gw.to_raster(ds, 'output.tif', n_jobs=8, overviews=True, compress='lzw') """ if MKL_LIB: __ = MKL_LIB.MKL_Set_Num_Threads(n_threads) if separate and not ZARR_INSTALLED and (out_block_type.lower() == 'zarr'): logger.exception(' zarr must be installed to write separate blocks.') raise ImportError pfile = Path(filename) if scheduler.lower() == 'mpool': pool_executor = multi.Pool else: pool_executor = concurrent.futures.ProcessPoolExecutor if scheduler.lower() == 'processes' else concurrent.futures.ThreadPoolExecutor if overwrite: if pfile.is_file(): pfile.unlink() if pfile.is_file(): logger.warning(' The output file already exists.') return if not is_dask_collection(data.data): logger.exception(' The data should be a dask array.') if use_client: if address: cluster_object = _cluster_dummy else: cluster_object = LocalCluster client_object = Client else: cluster_object = _cluster_dummy client_object = _client_dummy if isinstance(n_workers, int) and isinstance(n_threads, int): n_jobs = n_workers * n_threads else: n_workers = n_jobs n_threads = 1 mem_per_core = int(total_memory / n_workers) if not isinstance(n_chunks, int): n_chunks = n_workers * 50 if not isinstance(readxsize, int): readxsize = data.gw.col_chunks if not isinstance(readysize, int): readysize = data.gw.row_chunks chunksize = (data.gw.row_chunks, data.gw.col_chunks) # Force tiled outputs with no file sharing kwargs['sharing'] = False if data.gw.tiled: kwargs['tiled'] = True if 'compress' in kwargs: # boolean True or '<>' if kwargs['compress']: if isinstance(kwargs['compress'], str) and kwargs['compress'].lower() == 'none': compress = False else: if 'num_threads' in kwargs: if use_dask_store: compress = True else: compress = False else: compress = True if compress: # Store the compression type because # it is removed in concurrent writing compress_type = kwargs['compress'] del kwargs['compress'] else: compress = False elif isinstance(data.gw.compress, str) and (data.gw.compress.lower() in ['lzw', 'deflate']): compress = True compress_type = data.gw.compress else: compress = False if 'nodata' not in kwargs: if isinstance(data.gw.nodata, int) or isinstance(data.gw.nodata, float): kwargs['nodata'] = data.gw.nodata if 'blockxsize' not in kwargs: kwargs['blockxsize'] = data.gw.col_chunks if 'blockysize' not in kwargs: kwargs['blockysize'] = data.gw.row_chunks if 'bigtiff' not in kwargs: kwargs['bigtiff'] = data.gw.bigtiff if 'driver' not in kwargs: kwargs['driver'] = data.gw.driver if 'count' not in kwargs: kwargs['count'] = data.gw.nbands if 'width' not in kwargs: kwargs['width'] = data.gw.ncols if 'height' not in kwargs: kwargs['height'] = data.gw.nrows if 'crs' not in kwargs: kwargs['crs'] = data.crs if 'transform' not in kwargs: kwargs['transform'] = data.gw.transform if 'num_threads' in kwargs: if isinstance(kwargs['num_threads'], str): kwargs['num_threads'] = 'all_cpus' root = None if separate and (out_block_type.lower() == 'zarr'): d_name = pfile.parent sub_dir = d_name.joinpath('sub_tmp_') sub_dir.mkdir(parents=True, exist_ok=True) zarr_file = str(sub_dir.joinpath('data.zarr')) root = zarr.open(zarr_file, mode='w') else: if not separate: if verbose > 0: logger.info(' Creating the file ...\n') with rio.open(filename, mode='w', **kwargs) as rio_dst: if tags: rio_dst.update_tags(**tags) if verbose > 0: logger.info(' Writing data to file ...\n') with rio.Env(GDAL_CACHEMAX=gdal_cache): if not use_dask_store: windows = get_window_offsets(data.gw.nrows, data.gw.ncols, readysize, readxsize, return_as='list', padding=padding) n_windows = len(windows) oleft, otop = kwargs['transform'][2], kwargs['transform'][5] ocols, orows = kwargs['width'], kwargs['height'] # Iterate over the windows in chunks for wchunk in range(0, n_windows, n_chunks): window_slice = windows[wchunk:wchunk+n_chunks] n_windows_slice = len(window_slice) if verbose > 0: logger.info(' Windows {:,d}--{:,d} of {:,d} ...'.format(wchunk+1, wchunk+n_windows_slice, n_windows)) if padding: # Read the padded window if len(data.shape) == 2: data_gen = ((data[w[1].row_off:w[1].row_off + w[1].height, w[1].col_off:w[1].col_off + w[1].width], filename, widx+wchunk, w[0], w[1], n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) elif len(data.shape) == 3: data_gen = ((data[:, w[1].row_off:w[1].row_off + w[1].height, w[1].col_off:w[1].col_off + w[1].width], filename, widx+wchunk, w[0], w[1], n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) else: data_gen = ((data[:, :, w[1].row_off:w[1].row_off + w[1].height, w[1].col_off:w[1].col_off + w[1].width], filename, widx+wchunk, w[0], w[1], n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) else: if len(data.shape) == 2: data_gen = ((data[w.row_off:w.row_off + w.height, w.col_off:w.col_off + w.width], filename, widx+wchunk, w, None, n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) elif len(data.shape) == 3: data_gen = ((data[:, w.row_off:w.row_off + w.height, w.col_off:w.col_off + w.width], filename, widx+wchunk, w, None, n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) else: data_gen = ((data[:, :, w.row_off:w.row_off + w.height, w.col_off:w.col_off + w.width], filename, widx+wchunk, w, None, n_workers, n_threads, separate, chunksize, root, out_block_type, tags, oleft, otop, ocols, orows, kwargs) for widx, w in enumerate(window_slice)) if n_workers == 1: for __ in tqdm(map(_write_xarray, data_gen), total=n_windows_slice): pass else: with pool_executor(n_workers) as executor: if scheduler == 'mpool': for __ in tqdm(executor.imap_unordered(_write_xarray, data_gen), total=n_windows_slice): pass else: for __ in tqdm(executor.map(_write_xarray, data_gen), total=n_windows_slice): pass # if overviews: # # if not isinstance(overviews, list): # overviews = [2, 4, 8, 16] # # if resampling not in ['average', 'bilinear', 'cubic', 'cubic_spline', # 'gauss', 'lanczos', 'max', 'med', 'min', 'mode', 'nearest']: # # logger.warning(" The resampling method is not supported by rasterio. Setting to 'nearest'") # # resampling = 'nearest' # # if verbose > 0: # logger.info(' Building pyramid overviews ...') # # rio_dst.build_overviews(overviews, getattr(Resampling, resampling)) # rio_dst.update_tags(ns='overviews', resampling=resampling) else: with cluster_object(n_workers=n_workers, threads_per_worker=n_threads, scheduler_port=0, processes=processes, memory_limit=f'{mem_per_core}GB') as cluster: cluster_address = address if address else cluster with client_object(address=cluster_address) as client: with WriteDaskArray(filename, overwrite=overwrite, separate=separate, out_block_type=out_block_type, keep_blocks=keep_blocks, gdal_cache=gdal_cache, **kwargs) as dst: # Store the data and return a lazy evaluator res = da.store(da.squeeze(data.data), dst, lock=False, compute=False) if verbose > 0: logger.info(' Writing data to file ...') # Send the data to file # # *Note that the progress bar will # not work with a client. if use_client: res.compute(num_workers=n_jobs) else: with ProgressBar(): res.compute(num_workers=n_jobs) if verbose > 0: logger.info(' Finished writing data to file.') out_block_type = dst.out_block_type keep_blocks = dst.keep_blocks zarr_file = dst.zarr_file sub_dir = dst.sub_dir if compress: if separate: if out_block_type.lower() == 'zarr': group_keys = list(root.group_keys()) n_groups = len(group_keys) if out_block_type.lower() == 'zarr': open_file = zarr_file kwargs['compress'] = compress_type n_windows = len(group_keys) # Compress into one file with rio.open(filename, mode='w', **kwargs) as dst_: if tags: dst_.update_tags(**tags) # Iterate over the windows in chunks for wchunk in range(0, n_groups, n_chunks): group_keys_slice = group_keys[wchunk:wchunk + n_chunks] n_windows_slice = len(group_keys_slice) if verbose > 0: logger.info(' Windows {:,d}--{:,d} of {:,d} ...'.format(wchunk + 1, wchunk + n_windows_slice, n_windows)) ################################################ data_gen = ((open_file, group, 'zarr') for group in group_keys_slice) # for f in tqdm(executor.map(_compressor, data_gen), total=n_windows_slice): # pass # # futures = [executor.submit(_compress_dummy, iter_[0], iter_[1], None) for iter_ in data_gen] # # for f in tqdm(concurrent.futures.as_completed(futures), total=n_windows_slice): # # out_window, out_block = f.result() # # dst_.write(np.squeeze(out_block), # window=out_window, # indexes=out_indexes_) ################################################ # data_gen = ((root, group, 'zarr') for group in group_keys_slice) # for f, g, t in tqdm(data_gen, total=n_windows_slice): # # out_window, out_indexes, out_block = _block_read_func(f, g, t) # executor.map(_block_write_func, data_gen) with concurrent.futures.ProcessPoolExecutor(max_workers=n_workers) as executor: # Submit all of the tasks as futures futures = [executor.submit(_block_read_func, f, g, t) for f, g, t in data_gen] for f in tqdm(concurrent.futures.as_completed(futures), total=n_windows_slice): out_window, out_indexes, out_block = f.result() dst_.write(out_block, window=out_window, indexes=out_indexes) futures = None if not keep_blocks: shutil.rmtree(sub_dir) else: if verbose > 0: logger.info(' Compressing output file ...') p = Path(filename) d_name = p.parent f_base, f_ext = os.path.splitext(p.name) ld = string.ascii_letters + string.digits rstr = ''.join(random.choice(ld) for i in range(0, 9)) temp_file = d_name.joinpath('{f_base}_temp_{rstr}{f_ext}'.format(f_base=f_base, rstr=rstr, f_ext=f_ext)) compress_raster(filename, str(temp_file), n_jobs=n_jobs, gdal_cache=gdal_cache, compress=compress_type, tags=tags) temp_file.rename(filename) if verbose > 0: logger.info(' Finished compressing') if verbose > 0: logger.info('\nFinished writing the data.') def _arg_gen(arg_, iter_): for i_ in iter_: yield arg_ def apply(infile, outfile, block_func, args=None, count=1, scheduler='processes', gdal_cache=512, n_jobs=4, overwrite=False, tags=None, **kwargs): """ Applies a function and writes results to file Args: infile (str): The input file to process. outfile (str): The output file. block_func (func): The user function to apply to each block. The function should always return the window, the data, and at least one argument. The block data inside the function will be a 2d array if the input image has 1 band, otherwise a 3d array. args (Optional[tuple]): Additional arguments to pass to ``block_func``. count (Optional[int]): The band count for the output file. scheduler (Optional[str]): The ``concurrent.futures`` scheduler to use. Choices are ['threads', 'processes']. gdal_cache (Optional[int]): The ``GDAL`` cache size (in MB). n_jobs (Optional[int]): The number of blocks to process in parallel. overwrite (Optional[bool]): Whether to overwrite an existing output file. tags (Optional[dict]): Image tags to write to file. kwargs (Optional[dict]): Additional keyword arguments to pass to ``rasterio.open``. Returns: None Examples: >>> import geowombat as gw >>> >>> # Here is a function with no arguments >>> def my_func0(w, block, arg): >>> return w, block >>> >>> gw.apply('input.tif', >>> 'output.tif', >>> my_func0, >>> n_jobs=8) >>> >>> # Here is a function with 1 argument >>> def my_func1(w, block, arg): >>> return w, block * arg >>> >>> gw.apply('input.tif', >>> 'output.tif', >>> my_func1, >>> args=(10.0,), >>> n_jobs=8) """ if not args: args = (None,) if overwrite: if os.path.isfile(outfile): os.remove(outfile) kwargs['sharing'] = False kwargs['tiled'] = True io_mode = 'r+' if os.path.isfile(outfile) else 'w' out_indexes = 1 if count == 1 else list(range(1, count+1)) futures_executor = concurrent.futures.ThreadPoolExecutor if scheduler == 'threads' else concurrent.futures.ProcessPoolExecutor with rio.Env(GDAL_CACHEMAX=gdal_cache): with rio.open(infile) as src: profile = src.profile.copy() if 'dtype' not in kwargs: kwargs['dtype'] = profile['dtype'] if 'nodata' not in kwargs: kwargs['nodata'] = profile['nodata'] if 'blockxsize' not in kwargs: kwargs['blockxsize'] = profile['blockxsize'] if 'blockxsize' not in kwargs: kwargs['blockysize'] = profile['blockysize'] # Create a destination dataset based on source params. The # destination will be tiled, and we'll process the tiles # concurrently. profile.update(count=count, **kwargs) with rio.open(outfile, io_mode, **profile) as dst: if tags: dst.update_tags(**tags) # Materialize a list of destination block windowsmode == 'w' # that we will use in several statements below. # windows = get_window_offsets(src.height, # src.width, # blockysize, # blockxsize, return_as='list') # This generator comprehension gives us raster data # arrays for each window. Later we will zip a mapping # of it with the windows list to get (window, result) # pairs. # if nbands == 1: data_gen = (src.read(window=w, out_dtype=profile['dtype']) for ij, w in src.block_windows(1)) # else: # # data_gen = (np.array([rio.open(fn).read(window=w, # out_dtype=dtype) for fn in infile], dtype=dtype) # for ij, w in src.block_windows(1)) if args: args = [_arg_gen(arg, src.block_windows(1)) for arg in args] with futures_executor(max_workers=n_jobs) as executor: # Submit all of the tasks as futures futures = [executor.submit(block_func, iter_[0][1], # window object *iter_[1:]) # other arguments for iter_ in zip(list(src.block_windows(1)), data_gen, *args)] for f in tqdm(concurrent.futures.as_completed(futures), total=len(futures)): out_window, out_block = f.result() dst.write(np.squeeze(out_block), window=out_window, indexes=out_indexes) # We map the block_func() function over the raster # data generator, zip the resulting iterator with # the windows list, and as pairs come back we # write data to the destination dataset. # for window_tuple, result in tqdm(zip(list(src.block_windows(1)), # executor.map(block_func, # data_gen, # *args)), # total=n_windows): # # dst.write(result, # window=window_tuple[1], # indexes=out_indexes) def _compress_dummy(w, block, dummy): """ Dummy function to pass to concurrent writing """ return w, block def compress_raster(infile, outfile, n_jobs=1, gdal_cache=512, compress='lzw', tags=None): """ Compresses a raster file Args: infile (str): The file to compress. outfile (str): The output file. n_jobs (Optional[int]): The number of concurrent blocks to write. gdal_cache (Optional[int]): The ``GDAL`` cache size (in MB). compress (Optional[str]): The compression method. tags (Optional[dict]): Image tags to write to file. Returns: None """ with rio.open(infile) as src: profile = src.profile.copy() profile.update(compress=compress) apply(infile, outfile, _compress_dummy, scheduler='processes', args=(None,), gdal_cache=gdal_cache, n_jobs=n_jobs, tags=tags, count=src.count, dtype=src.profile['dtype'], nodata=src.profile['nodata'], tiled=src.profile['tiled'], blockxsize=src.profile['blockxsize'], blockysize=src.profile['blockysize'], compress=compress)
37.048989
217
0.530129
ee01a7e4fc91e3027e3504f16ddf27372a05f9c9
8,164
py
Python
sitepackages/django/db/backends/mysql/operations.py
bitcpf/djangoage
f116860cbfa799eb6c47306a72d742b63c970dce
[ "Apache-2.0" ]
2
2017-06-21T09:46:55.000Z
2018-05-30T10:07:32.000Z
sitepackages/django/db/backends/mysql/operations.py
bitcpf/djangoage
f116860cbfa799eb6c47306a72d742b63c970dce
[ "Apache-2.0" ]
4
2020-02-12T02:53:08.000Z
2021-06-10T21:37:06.000Z
sitepackages/django/db/backends/mysql/operations.py
bitcpf/djangoage
f116860cbfa799eb6c47306a72d742b63c970dce
[ "Apache-2.0" ]
2
2021-03-24T12:11:48.000Z
2021-06-10T19:56:03.000Z
from __future__ import unicode_literals import uuid from django.conf import settings from django.db.backends.base.operations import BaseDatabaseOperations from django.utils import six, timezone from django.utils.encoding import force_text class DatabaseOperations(BaseDatabaseOperations): compiler_module = "django.db.backends.mysql.compiler" # MySQL stores positive fields as UNSIGNED ints. integer_field_ranges = dict(BaseDatabaseOperations.integer_field_ranges, PositiveSmallIntegerField=(0, 65535), PositiveIntegerField=(0, 4294967295), ) def date_extract_sql(self, lookup_type, field_name): # http://dev.mysql.com/doc/mysql/en/date-and-time-functions.html if lookup_type == 'week_day': # DAYOFWEEK() returns an integer, 1-7, Sunday=1. # Note: WEEKDAY() returns 0-6, Monday=0. return "DAYOFWEEK(%s)" % field_name else: return "EXTRACT(%s FROM %s)" % (lookup_type.upper(), field_name) def date_trunc_sql(self, lookup_type, field_name): fields = ['year', 'month', 'day', 'hour', 'minute', 'second'] format = ('%%Y-', '%%m', '-%%d', ' %%H:', '%%i', ':%%s') # Use double percents to escape. format_def = ('0000-', '01', '-01', ' 00:', '00', ':00') try: i = fields.index(lookup_type) + 1 except ValueError: sql = field_name else: format_str = ''.join([f for f in format[:i]] + [f for f in format_def[i:]]) sql = "CAST(DATE_FORMAT(%s, '%s') AS DATETIME)" % (field_name, format_str) return sql def datetime_extract_sql(self, lookup_type, field_name, tzname): if settings.USE_TZ: field_name = "CONVERT_TZ(%s, 'UTC', %%s)" % field_name params = [tzname] else: params = [] # http://dev.mysql.com/doc/mysql/en/date-and-time-functions.html if lookup_type == 'week_day': # DAYOFWEEK() returns an integer, 1-7, Sunday=1. # Note: WEEKDAY() returns 0-6, Monday=0. sql = "DAYOFWEEK(%s)" % field_name else: sql = "EXTRACT(%s FROM %s)" % (lookup_type.upper(), field_name) return sql, params def datetime_trunc_sql(self, lookup_type, field_name, tzname): if settings.USE_TZ: field_name = "CONVERT_TZ(%s, 'UTC', %%s)" % field_name params = [tzname] else: params = [] fields = ['year', 'month', 'day', 'hour', 'minute', 'second'] format = ('%%Y-', '%%m', '-%%d', ' %%H:', '%%i', ':%%s') # Use double percents to escape. format_def = ('0000-', '01', '-01', ' 00:', '00', ':00') try: i = fields.index(lookup_type) + 1 except ValueError: sql = field_name else: format_str = ''.join([f for f in format[:i]] + [f for f in format_def[i:]]) sql = "CAST(DATE_FORMAT(%s, '%s') AS DATETIME)" % (field_name, format_str) return sql, params def date_interval_sql(self, timedelta): return "INTERVAL '%d 0:0:%d:%d' DAY_MICROSECOND" % ( timedelta.days, timedelta.seconds, timedelta.microseconds), [] def format_for_duration_arithmetic(self, sql): if self.connection.features.supports_microsecond_precision: return 'INTERVAL %s MICROSECOND' % sql else: return 'INTERVAL FLOOR(%s / 1000000) SECOND' % sql def drop_foreignkey_sql(self): return "DROP FOREIGN KEY" def force_no_ordering(self): """ "ORDER BY NULL" prevents MySQL from implicitly ordering by grouped columns. If no ordering would otherwise be applied, we don't want any implicit sorting going on. """ return [(None, ("NULL", [], False))] def fulltext_search_sql(self, field_name): return 'MATCH (%s) AGAINST (%%s IN BOOLEAN MODE)' % field_name def last_executed_query(self, cursor, sql, params): # With MySQLdb, cursor objects have an (undocumented) "_last_executed" # attribute where the exact query sent to the database is saved. # See MySQLdb/cursors.py in the source distribution. return force_text(getattr(cursor, '_last_executed', None), errors='replace') def no_limit_value(self): # 2**64 - 1, as recommended by the MySQL documentation return 18446744073709551615 def quote_name(self, name): if name.startswith("`") and name.endswith("`"): return name # Quoting once is enough. return "`%s`" % name def random_function_sql(self): return 'RAND()' def sql_flush(self, style, tables, sequences, allow_cascade=False): # NB: The generated SQL below is specific to MySQL # 'TRUNCATE x;', 'TRUNCATE y;', 'TRUNCATE z;'... style SQL statements # to clear all tables of all data if tables: sql = ['SET FOREIGN_KEY_CHECKS = 0;'] for table in tables: sql.append('%s %s;' % ( style.SQL_KEYWORD('TRUNCATE'), style.SQL_FIELD(self.quote_name(table)), )) sql.append('SET FOREIGN_KEY_CHECKS = 1;') sql.extend(self.sequence_reset_by_name_sql(style, sequences)) return sql else: return [] def validate_autopk_value(self, value): # MySQLism: zero in AUTO_INCREMENT field does not work. Refs #17653. if value == 0: raise ValueError('The database backend does not accept 0 as a ' 'value for AutoField.') return value def value_to_db_datetime(self, value): if value is None: return None # MySQL doesn't support tz-aware datetimes if timezone.is_aware(value): if settings.USE_TZ: value = value.astimezone(timezone.utc).replace(tzinfo=None) else: raise ValueError("MySQL backend does not support timezone-aware datetimes when USE_TZ is False.") if not self.connection.features.supports_microsecond_precision: value = value.replace(microsecond=0) return six.text_type(value) def value_to_db_time(self, value): if value is None: return None # MySQL doesn't support tz-aware times if timezone.is_aware(value): raise ValueError("MySQL backend does not support timezone-aware times.") return six.text_type(value) def max_name_length(self): return 64 def bulk_insert_sql(self, fields, num_values): items_sql = "(%s)" % ", ".join(["%s"] * len(fields)) return "VALUES " + ", ".join([items_sql] * num_values) def combine_expression(self, connector, sub_expressions): """ MySQL requires special cases for ^ operators in query expressions """ if connector == '^': return 'POW(%s)' % ','.join(sub_expressions) return super(DatabaseOperations, self).combine_expression(connector, sub_expressions) def get_db_converters(self, expression): converters = super(DatabaseOperations, self).get_db_converters(expression) internal_type = expression.output_field.get_internal_type() if internal_type in ['BooleanField', 'NullBooleanField']: converters.append(self.convert_booleanfield_value) if internal_type == 'UUIDField': converters.append(self.convert_uuidfield_value) if internal_type == 'TextField': converters.append(self.convert_textfield_value) return converters def convert_booleanfield_value(self, value, expression, connection, context): if value in (0, 1): value = bool(value) return value def convert_uuidfield_value(self, value, expression, connection, context): if value is not None: value = uuid.UUID(value) return value def convert_textfield_value(self, value, expression, connection, context): if value is not None: value = force_text(value) return value
39.439614
113
0.607178
604f7e300947d8a668b1a5a12ff4d02f5e3e5b2c
2,447
py
Python
twitoff/app.py
cicbeast/TwitOff
1b040036a4f0698f32ee559ea5f172e5e65893fc
[ "MIT" ]
null
null
null
twitoff/app.py
cicbeast/TwitOff
1b040036a4f0698f32ee559ea5f172e5e65893fc
[ "MIT" ]
2
2021-06-02T00:59:42.000Z
2021-06-08T20:34:25.000Z
twitoff/app.py
cicbeast/TwitOff
1b040036a4f0698f32ee559ea5f172e5e65893fc
[ "MIT" ]
null
null
null
from decouple import config from dotenv import load_dotenv from flask import Flask, render_template, request from .model import DB, User from .predict import predict_user from .twitter import add_or_update_user, update_all_users, add_default_users load_dotenv() def create_app(): '''Create and configure an instance of the Flask application.''' app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = config('DATABASE_URL') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False DB.init_app(app) @app.route('/') def root(): return render_template('base.html', title='TwitOff', users=User.query.all()) @app.route('/user', methods=['POST']) @app.route('/user/<name>', methods=['GET']) def user(name=None, message=''): name = name or request.values['user_name'] try: if request.method == 'POST': add_or_update_user(name) message = "User {} successfully added!".format(name) tweets = User.query.filter(User.username == name).one().tweets except Exception as e: message = 'Error adding {}: {}'.format(name, e) tweets = [] return render_template('user.html', title=name, tweets=tweets, message=message) @app.route('/compare', methods=['POST']) def compare(message=''): user1 = request.values['user1'] user2 = request.values['user2'] tweet_text = request.values['tweet_text'] if user1 == user2: message = 'Cannot compare a user to themselves!' else: prediction = predict_user(user1, user2, tweet_text) message = "'{}' is more likely to be said by {} than {}".format( request.values['tweet_text'], user1 if prediction else user2, user2 if prediction else user1) return render_template('prediction.html', title='Prediction', message=message) @app.route('/reset') def reset(): DB.drop_all() DB.create_all() return render_template('base.html', title='Reset database!') @app.route('/update') def update(): update_all_users() return render_template('base.html', users=User.query.all(), title='All Tweets updated!') @app.route('/add_default') def add_default(): add_default_users() return render_template('base_html', users=User.query.all(), title='Reset database!') return app
35.985294
96
0.630568
8b426cdd92be0771821dc9b14d2e9b557cbd9e13
286
py
Python
examples/example_pydantic.py
katunilya/mona
8f44a9e06910466afbc9b2bcfb42144dcd25ed5a
[ "MIT" ]
2
2022-03-26T15:27:31.000Z
2022-03-28T22:00:32.000Z
examples/example_pydantic.py
katunilya/mona
8f44a9e06910466afbc9b2bcfb42144dcd25ed5a
[ "MIT" ]
null
null
null
examples/example_pydantic.py
katunilya/mona
8f44a9e06910466afbc9b2bcfb42144dcd25ed5a
[ "MIT" ]
null
null
null
from pydantic import BaseModel from moona import asgi, http class User(BaseModel): username: str name: str email: str age: int user = User(username="jdoe", name="John Doe", email="john_doe@example.org", age=33) app = asgi.create(http_handler=http.negotiate(user))
17.875
83
0.702797
816087262936cfca997be614b4f7179d14ec71ec
7,733
py
Python
tools/symsrc/source_index.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2015-10-12T09:14:22.000Z
2015-10-12T09:14:22.000Z
tools/symsrc/source_index.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
null
null
null
tools/symsrc/source_index.py
meego-tablet-ux/meego-app-browser
0f4ef17bd4b399c9c990a2f6ca939099495c2b9c
[ "BSD-3-Clause" ]
1
2020-11-04T07:22:28.000Z
2020-11-04T07:22:28.000Z
#!/usr/bin/env python # Copyright (c) 2008 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Usage: <win-path-to-pdb.pdb> This tool will take a PDB on the command line, extract the source files that were used in building the PDB, query SVN for which repository and revision these files are at, and then finally write this information back into the PDB in a format that the debugging tools understand. This allows for automatic source debugging, as all of the information is contained in the PDB, and the debugger can go out and fetch the source files via SVN. You most likely want to run these immediately after a build, since the source input files need to match the generated PDB, and we want the correct SVN revision information for the exact files that were used for the build. The following files from a windbg + source server installation are expected to reside in the same directory as this python script: dbghelp.dll pdbstr.exe srctool.exe NOTE: Expected to run under a native win32 python, NOT cygwin. All paths are dealt with as win32 paths, since we have to interact with the Microsoft tools. """ import sys import os import time import subprocess import tempfile # This serves two purposes. First, it acts as a whitelist, and only files # from repositories listed here will be source indexed. Second, it allows us # to map from one SVN URL to another, so we can map to external SVN servers. REPO_MAP = { "svn://chrome-svn/chrome": "http://src.chromium.org/svn", "svn://chrome-svn.corp.google.com/chrome": "http://src.chromium.org/svn", "http://v8.googlecode.com/svn": None, "http://google-breakpad.googlecode.com/svn": None, "http://googletest.googlecode.com/svn": None, "http://open-vcdiff.googlecode.com/svn": None, "http://google-url.googlecode.com/svn": None, } def FindFile(filename): """Return the full windows path to a file in the same dir as this code.""" thisdir = os.path.dirname(os.path.join(os.path.curdir, __file__)) return os.path.abspath(os.path.join(thisdir, filename)) def ExtractSourceFiles(pdb_filename): """Extract a list of local paths of the source files from a PDB.""" srctool = subprocess.Popen([FindFile('srctool.exe'), '-r', pdb_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) filelist = srctool.stdout.read() res = srctool.wait() if res != 0 or filelist.startswith("srctool: "): raise "srctool failed: " + filelist return [x for x in filelist.split('\r\n') if len(x) != 0] def ReadSourceStream(pdb_filename): """Read the contents of the source information stream from a PDB.""" srctool = subprocess.Popen([FindFile('pdbstr.exe'), '-r', '-s:srcsrv', '-p:%s' % pdb_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) data = srctool.stdout.read() res = srctool.wait() if (res != 0 and res != -1) or data.startswith("pdbstr: "): raise "pdbstr failed: " + data return data def WriteSourceStream(pdb_filename, data): """Write the contents of the source information stream to a PDB.""" # Write out the data to a temporary filename that we can pass to pdbstr. (f, fname) = tempfile.mkstemp() f = os.fdopen(f, "wb") f.write(data) f.close() srctool = subprocess.Popen([FindFile('pdbstr.exe'), '-w', '-s:srcsrv', '-i:%s' % fname, '-p:%s' % pdb_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) data = srctool.stdout.read() res = srctool.wait() if (res != 0 and res != -1) or data.startswith("pdbstr: "): raise "pdbstr failed: " + data os.unlink(fname) # TODO for performance, we should probably work in directories instead of # files. I'm scared of DEPS and generated files, so for now we query each # individual file, and don't make assumptions that all files in the same # directory are part of the same repository or at the same revision number. def ExtractSvnInfo(local_filename): """Calls svn info to extract the repository, path, and revision.""" # We call svn.bat to make sure and get the depot tools SVN and not cygwin. srctool = subprocess.Popen(['svn.bat', 'info', local_filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE) info = srctool.stdout.read() res = srctool.wait() if res != 0: return None # Hack up into a dictionary of the fields printed by svn info. vals = dict((y.split(': ', 2) for y in info.split('\r\n') if y)) root = vals['Repository Root'] if not vals['URL'].startswith(root): raise "URL is not inside of the repository root?!?" path = vals['URL'][len(root):] rev = int(vals['Revision']) return [root, path, rev] def UpdatePDB(pdb_filename, verbose=False): """Update a pdb file with source information.""" dir_blacklist = { } # TODO(deanm) look into "compressing" our output, by making use of vars # and other things, so we don't need to duplicate the repo path and revs. lines = [ 'SRCSRV: ini ------------------------------------------------', 'VERSION=1', 'INDEXVERSION=2', 'VERCTRL=Subversion', 'DATETIME=%s' % time.asctime(), 'SRCSRV: variables ------------------------------------------', 'SVN_EXTRACT_TARGET=%targ%\%fnbksl%(%var3%)\%var4%\%fnfile%(%var1%)', 'SVN_EXTRACT_CMD=cmd /c svn cat "%var2%%var3%@%var4%" --non-interactive > "%svn_extract_target%"', 'SRCSRVTRG=%SVN_extract_target%', 'SRCSRVCMD=%SVN_extract_cmd%', 'SRCSRV: source files ---------------------------------------', ] if ReadSourceStream(pdb_filename): raise "PDB already has source indexing information!" filelist = ExtractSourceFiles(pdb_filename) for filename in filelist: filedir = os.path.dirname(filename) if verbose: print "Processing: %s" % filename # This directory is blacklisted, either because it's not part of the SVN # repository, or from one we're not interested in indexing. if dir_blacklist.get(filedir, False): if verbose: print " skipping, directory is blacklisted." continue info = ExtractSvnInfo(filename) # Skip the file if it's not under an svn repository. To avoid constantly # querying SVN for files outside of SVN control (for example, the CRT # sources), check if the directory is outside of SVN and blacklist it. if not info: if not ExtractSvnInfo(filedir): dir_blacklist[filedir] = True if verbose: print " skipping, file is not in an SVN repository" continue root = info[0] path = info[1] rev = info[2] # Check if file was from a svn repository we don't know about, or don't # want to index. Blacklist the entire directory. if not REPO_MAP.has_key(info[0]): if verbose: print " skipping, file is from an unknown SVN repository %s" % root dir_blacklist[filedir] = True continue # We might want to map an internal repository URL to an external repository. if REPO_MAP[root]: root = REPO_MAP[root] lines.append('%s*%s*%s*%s' % (filename, root, path, rev)) if verbose: print " indexed file." lines.append('SRCSRV: end ------------------------------------------------') WriteSourceStream(pdb_filename, '\r\n'.join(lines)) if __name__ == '__main__': if len(sys.argv) < 2 or len(sys.argv) > 3: print "usage: file.pdb [-v]" sys.exit(1) verbose = False if len(sys.argv) == 3: verbose = (sys.argv[2] == '-v') UpdatePDB(sys.argv[1], verbose=verbose)
38.093596
102
0.654856
8b5f92e2831788e4e5d354bd9414187479487f39
215
py
Python
src/clock.py
ohjelmistotekniikka-hy/pygame-sokoban
4b9937166bbcd3adc7dc6522fcf898b90400926a
[ "MIT" ]
null
null
null
src/clock.py
ohjelmistotekniikka-hy/pygame-sokoban
4b9937166bbcd3adc7dc6522fcf898b90400926a
[ "MIT" ]
null
null
null
src/clock.py
ohjelmistotekniikka-hy/pygame-sokoban
4b9937166bbcd3adc7dc6522fcf898b90400926a
[ "MIT" ]
2
2021-05-16T20:32:04.000Z
2021-12-07T17:26:30.000Z
import pygame class Clock: def __init__(self): self._clock = pygame.time.Clock() def tick(self, fps): self._clock.tick(fps) def get_ticks(self): return pygame.time.get_ticks()
17.916667
41
0.623256
de58366f4a46d853cc93958128aded4de3b4ee8e
803
py
Python
OCRTTS.py
dys0763/ocr-tts
0dc8642ab0d2f030823210b5d829e0ace44ded09
[ "MIT" ]
null
null
null
OCRTTS.py
dys0763/ocr-tts
0dc8642ab0d2f030823210b5d829e0ace44ded09
[ "MIT" ]
null
null
null
OCRTTS.py
dys0763/ocr-tts
0dc8642ab0d2f030823210b5d829e0ace44ded09
[ "MIT" ]
null
null
null
import pyttsx3 from pytesseract import * def ocr(img, lang='kor'): #recognizes a given letter image #returns the recognized letters print('Letter Recognizing Started.') text = image_to_string(img, lang=lang) return text def tts(text, lang='kor+kor100', ADD_VOLUME=0, RATE=150): #transform a given text into speech #outputs the voice signal through a connected audio device print('Speech Synthesis Started.') engine = pyttsx3.init() volume = engine.getProperty('volume') engine.setProperty('volume', volume + ADD_VOLUME) #set volume engine.setProperty('rate', RATE) #set voice rate(speed) if lang == 'eng': engine.setProperty('voice', 'f1') else: engine.setProperty('voice', 'fk') engine.say(text) engine.runAndWait()
27.689655
65
0.678705
ef01b69296a50a6896325d3e990b868de2adf91a
3,977
py
Python
examples/adwords/v201509/basic_operations/add_campaigns.py
fosterwei/adwords-keyword-planner-API-googleads-python-lib
b80b8b3741a55f1d00c5974bc58f92540663c6f6
[ "Apache-2.0" ]
1
2020-05-23T11:32:32.000Z
2020-05-23T11:32:32.000Z
examples/adwords/v201509/basic_operations/add_campaigns.py
fosterwei/adwords-keyword-planner-API-googleads-python-lib
b80b8b3741a55f1d00c5974bc58f92540663c6f6
[ "Apache-2.0" ]
null
null
null
examples/adwords/v201509/basic_operations/add_campaigns.py
fosterwei/adwords-keyword-planner-API-googleads-python-lib
b80b8b3741a55f1d00c5974bc58f92540663c6f6
[ "Apache-2.0" ]
2
2018-04-20T02:16:33.000Z
2020-11-12T20:58:54.000Z
#!/usr/bin/python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds campaigns. To get campaigns, run get_campaigns.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ import datetime import uuid from googleads import adwords def main(client): # Initialize appropriate services. campaign_service = client.GetService('CampaignService', version='v201509') budget_service = client.GetService('BudgetService', version='v201509') # Create a budget, which can be shared by multiple campaigns. budget = { 'name': 'Interplanetary budget #%s' % uuid.uuid4(), 'amount': { 'microAmount': '50000000' }, 'deliveryMethod': 'STANDARD', 'period': 'DAILY' } budget_operations = [{ 'operator': 'ADD', 'operand': budget }] # Add the budget. budget_id = budget_service.mutate(budget_operations)['value'][0][ 'budgetId'] # Construct operations and add campaigns. operations = [{ 'operator': 'ADD', 'operand': { 'name': 'Interplanetary Cruise #%s' % uuid.uuid4(), 'status': 'PAUSED', 'advertisingChannelType': 'SEARCH', 'biddingStrategyConfiguration': { 'biddingStrategyType': 'MANUAL_CPC', }, 'endDate': (datetime.datetime.now() + datetime.timedelta(365)).strftime('%Y%m%d'), # Note that only the budgetId is required 'budget': { 'budgetId': budget_id }, 'networkSetting': { 'targetGoogleSearch': 'true', 'targetSearchNetwork': 'true', 'targetContentNetwork': 'false', 'targetPartnerSearchNetwork': 'false' }, # Optional fields 'startDate': (datetime.datetime.now() + datetime.timedelta(1)).strftime('%Y%m%d'), 'adServingOptimizationStatus': 'ROTATE', 'frequencyCap': { 'impressions': '5', 'timeUnit': 'DAY', 'level': 'ADGROUP' }, 'settings': [ { 'xsi_type': 'GeoTargetTypeSetting', 'positiveGeoTargetType': 'DONT_CARE', 'negativeGeoTargetType': 'DONT_CARE' } ] } }, { 'operator': 'ADD', 'operand': { 'name': 'Interplanetary Cruise banner #%s' % uuid.uuid4(), 'status': 'PAUSED', 'biddingStrategyConfiguration': { 'biddingStrategyType': 'MANUAL_CPC' }, 'endDate': (datetime.datetime.now() + datetime.timedelta(365)).strftime('%Y%m%d'), # Note that only the budgetId is required 'budget': { 'budgetId': budget_id }, 'advertisingChannelType': 'DISPLAY' } }] campaigns = campaign_service.mutate(operations) # Display results. for campaign in campaigns['value']: print ('Campaign with name \'%s\' and id \'%s\' was added.' % (campaign['name'], campaign['id'])) if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client)
31.314961
77
0.597184
f47eb63e8b30f8fa46c943d06a4f70c203c1ad5c
646
py
Python
CLV-dataset-weekly-training-and-prediction/config.py
mbrummerstedt/CLV_Production_Google_Cloud
7e34567503b070b273a1baebae1c0892bd16d5af
[ "Apache-2.0" ]
1
2021-09-07T18:45:48.000Z
2021-09-07T18:45:48.000Z
CLV-dataset-weekly-training-and-prediction/config.py
mbrummerstedt/CLV_Production_Google_Cloud
7e34567503b070b273a1baebae1c0892bd16d5af
[ "Apache-2.0" ]
null
null
null
CLV-dataset-weekly-training-and-prediction/config.py
mbrummerstedt/CLV_Production_Google_Cloud
7e34567503b070b273a1baebae1c0892bd16d5af
[ "Apache-2.0" ]
1
2021-02-25T03:30:25.000Z
2021-02-25T03:30:25.000Z
config_vars = { # Set Variables that will be used in script 'PENALIZER_COEF': 0.03, 'DISCOUNT_RATE': 0.01, 'PREDICTION_LENGTH_IN_MONTHS': 6, 'MODEL_TYPE':'BGNBD', 'FREQUENZY':'M', 'GCS_BUCKET_MODELS': 'your_company_trained_ml_models_production', 'GCS_BUCKET_PREDICTIONS': 'your_company_ml_models_predictions', 'LOCAL_STORAGE_FOLDER': '/tmp/', 'TRAINING_DATA_QUERY': 'CLV-dataset-weekly-training-and-prediction.sql', 'ACTUAL_CUSTOMER_VALUE_QUERY': 'CLV-dataset-weekly-training-and-prediction-customer-summary.sql', 'UPDATE_BIGQUERY_RESULT_TABLE': 'CLV-weekly-update-result-bigquery-table.sql' }
43.066667
101
0.733746
899df1e1496ff34b2e49013400691a267f60a3e2
3,675
py
Python
batch-norm/bn/bn/train_vgg.py
vbursztyn/deep-learning-for-practitioners
7b88473f32e6114053068ff90de00398eaefa128
[ "MIT" ]
6
2020-04-12T20:05:36.000Z
2022-02-23T03:03:20.000Z
batch-norm/bn/bn/train_vgg.py
vbursztyn/deep-learning-for-practitioners
7b88473f32e6114053068ff90de00398eaefa128
[ "MIT" ]
2
2020-05-03T23:59:22.000Z
2020-05-08T18:05:24.000Z
batch-norm/bn/bn/train_vgg.py
vbursztyn/deep-learning-for-practitioners
7b88473f32e6114053068ff90de00398eaefa128
[ "MIT" ]
20
2020-04-20T21:05:50.000Z
2021-03-31T09:53:47.000Z
from enum import Enum from datetime import datetime import importlib import torch import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter from bn import VGGToy, VGG11 class ModelType(str, Enum): VGG11 = 'VGG11' VGG_Toy = 'VGGToy' def test_loop(model, testloader, writer, device, loss_fn, n_iter): model.eval() correct = 0 total = 0 running_loss = 0 with torch.no_grad(): for data, labels in testloader: data = data.to(device) labels = labels.to(device) outputs = model(data) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() running_loss += loss_fn(outputs, labels) accuracy = (correct / total) * 100. loss = (running_loss / total) writer.add_scalar('testing/loss', loss, n_iter) writer.add_scalar('testing/accuracy', accuracy, n_iter) print('Accurarcy: %f' % accuracy) def train_vgg(model_type=ModelType.VGG_Toy, batch_size=4, batch_norm=False, noise=False, learning_rate=0.01, num_epochs=2): transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') print('training on %s' % device) module = importlib.import_module("bn") class_ = getattr(module, model_type.value) model = class_(device=device, num_classes=10, init_weights=True, batch_norm=batch_norm, noise_injection=noise) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) model.to(device) model_id = '' if batch_norm: model_id += 'batch_norm' if noise: model_id += 'noise' writer = SummaryWriter(log_dir='runs/%s_%s_%s' % (model_type.value, model_id, datetime.now().strftime("%H:%M:%S"))) for epoch in range(num_epochs): model.train() running_loss = 0.0 print(trainloader) for i, data in enumerate(trainloader, 0): inputs, labels = data inputs = inputs.to(device) labels = labels.to(device) n_iter = (epoch * len(trainloader)) + i optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() writer.add_scalar('training/loss', loss.item(), n_iter) for inps_idx, inps in enumerate(model.layer_inputs): inps = inps.cpu().numpy() writer.add_scalar('inputs/layer%i/mean' % (inps_idx + 1), inps.mean(), n_iter) writer.add_histogram('inputs/layer%i/dist' % (inps_idx + 1), inps, n_iter) running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 test_loop(model, testloader, writer, device, criterion, n_iter)
33.108108
123
0.623129
f2507060f24225590a88d3c1930b94c043e18d72
1,121
py
Python
reactdjango/users/tests/test_forms.py
nimacgit/reactdjango
b76f1d4ed5f504ee9f27d9cfae11942160a65140
[ "Apache-2.0" ]
null
null
null
reactdjango/users/tests/test_forms.py
nimacgit/reactdjango
b76f1d4ed5f504ee9f27d9cfae11942160a65140
[ "Apache-2.0" ]
null
null
null
reactdjango/users/tests/test_forms.py
nimacgit/reactdjango
b76f1d4ed5f504ee9f27d9cfae11942160a65140
[ "Apache-2.0" ]
null
null
null
import pytest from reactdjango.users.forms import UserCreationForm from reactdjango.users.tests.factories import UserFactory pytestmark = pytest.mark.django_db class TestUserCreationForm: def test_clean_username(self): # A user with proto_user params does not exist yet. proto_user = UserFactory.build() form = UserCreationForm( { "username": proto_user.username, "password1": proto_user._password, "password2": proto_user._password, } ) assert form.is_valid() assert form.clean_username() == proto_user.username # Creating a user. form.save() # The user with proto_user params already exists, # hence cannot be created. form = UserCreationForm( { "username": proto_user.username, "password1": proto_user._password, "password2": proto_user._password, } ) assert not form.is_valid() assert len(form.errors) == 1 assert "username" in form.errors
27.341463
59
0.595897
0b285e4b2792fbfaaaf0b342b457f06d1ced78fa
6,182
py
Python
App/src/smtp_engine.py
JiJiU33C43I/UCI-Schedule-Assistant
ed7d8cd92da816a3909f34d0eb5e2ef3ee507a7d
[ "MIT" ]
null
null
null
App/src/smtp_engine.py
JiJiU33C43I/UCI-Schedule-Assistant
ed7d8cd92da816a3909f34d0eb5e2ef3ee507a7d
[ "MIT" ]
13
2018-12-15T11:43:54.000Z
2022-03-11T23:42:57.000Z
App/src/smtp_engine.py
JiJiU33C43I/UCI-Schedule-Assistant
ed7d8cd92da816a3909f34d0eb5e2ef3ee507a7d
[ "MIT" ]
null
null
null
''' MIT License Copyright (c) 2019 JiJiU33C43I Contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ##### smtp_engine.py ##### # This is a python module that is able to use the SMTP protocol to send message to a specified email account #======================================= #== IMPORTS MODULE == #======================================= import smtplib, ssl; import getpass; #======================================= #== GLOBAL CONSTANTS == #======================================= DEFAULT_SERVER_DOMAIN = "smtp.gmail.com"; SSL_PORT = 465; TLS_PORT = 587; #======================================= #== Source Code == #======================================= class SETUP_SMTP_CONNECTION_ERROR(Exception): pass; class FAILED_TO_SENDMAIL(Exception): pass; class LOGIN_FAILURE(Exception): pass; class Email_Engine: default_server_domain = DEFAULT_SERVER_DOMAIN; ssl_port = SSL_PORT; tls_port = TLS_PORT; def __init__(self): self.ssl_context = ssl.create_default_context(); # This may not be needed!!! self.connection = None; def __del__(self): try: if self.connection != None: self.connection.quit(); self.connection = None; except Exception: print('WARNINGS: Failure Detected during SMTP connection Closure!!'); print('SMTP Connection Object is DELETED!!'); print('Please RE-SETUP your SMTP Connection!!'); @staticmethod def console_login(): return (input("Please Enter Your Email Accout: "),input("Please Enter Your Password: ")); def login(self, account_info: tuple): if self.connection != None: try: self.connection.login(account_info[0], account_info[1]); except: print() print("-------------------------- IMPORTANT!!!! --------------------------"); print("If you are atttempting to send mails to a gmail-likewise account, ") print(" YOU MUST TURN ON THE FOLLOWING PERMISSION INSIDE YOUR EMAIL ACCOUNT:") print(" <Let less secure apps access your account> ") print("-------------------------------------------------------------------") print("------------------------ FAILED TO LOGIN --------------------------") print(" !!!! PLEASE RECHECK YOUR ACCOUNT NAME AND PASSWORD !!!! ") print("-------------------------------------------------------------------") self.__del__(); raise LOGIN_FAILURE(); else: raise LOGIN_FAILURE("Connection is not established"); def sendmail(self, sender_email:str, recv_email:str, msg:str): if self.connection != None: try: self.connection.sendmail(sender_email, recv_email, msg); except: print() print("-------------------------- IMPORTANT!!!! --------------------------"); print("If you are atttempting to send mails to a gmail-likewise account, ") print(" YOU MUST TURN ON THE FOLLOWING PERMISSION INSIDE YOUR EMAIL ACCOUNT:") print(" <Let less secure apps access your account> ") print("-------------------------------------------------------------------") print() self.__del__(); raise FAILED_TO_SENDMAIL(); else: raise FAILED_TO_SENDMAIL("Connection is not established"); def setup_tls_connection(self, server_domain = default_server_domain, port = tls_port): if self.connection == None: try: self.connection = smtplib.SMTP(server_domain, port); self.connection.ehlo(); self.connection.starttls(); except: raise SETUP_SMTP_CONNECTION_ERROR("Failed to establish TLS connection: Connection to server failed") else: raise SETUP_SMTP_CONNECTION_ERROR("Failed to establish TLS connection: Detected already established connection"); def setup_ssl_connection(self, server_domain = default_server_domain, port = ssl_port): if self.connection == None: try: self.connection = smtplib.SMTP_SSL(server_domain, port, context= self.ssl_context); except: raise SETUP_SMTP_CONNECTION_ERROR("Failed to establish TLS connection: Connection to server failed") else: raise SETUP_SMTP_CONNECTION_ERROR("Failed to establish TLS connection: Detected already established connection "); #======================================= #== DEBUGGING AND TESTING == #======================================= if __name__ == "__main__": EE = Email_Engine(); EE.setup_tls_connection(); EE.login(Email_Engine.console_login()); EE.sendmail("tezktenr@gmail.com", "tezktenr@gmail.com", "Hi, This is an Educational Practice to use SMTP protocol to send emails"); EE.__del__();
40.671053
135
0.560984
bc8c4d7974cb7c9a4c3197ca6701e37add8e7e12
1,642
py
Python
datalad/tests/test__main__.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
1
2021-06-11T19:54:19.000Z
2021-06-11T19:54:19.000Z
datalad/tests/test__main__.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
21
2015-03-12T11:48:18.000Z
2020-08-31T09:28:05.000Z
datalad/tests/test__main__.py
christinerogers/datalad
8b91f3767b45371e213aa7ade146a290a13c00f2
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## import sys from unittest.mock import patch from io import StringIO from tempfile import NamedTemporaryFile from datalad.tests.utils import ( assert_equal, assert_raises, ) from .. import __main__, __version__ from ..auto import AutomagicIO from datalad.tests.utils import known_failure_githubci_win @patch('sys.stdout', new_callable=StringIO) def test_main_help(stdout): assert_raises(SystemExit, __main__.main, ['__main__.py', '--help']) assert( stdout.getvalue().startswith( "Usage: %s -m datalad [OPTIONS] <file> [ARGS]\n" % sys.executable )) @patch('sys.stdout', new_callable=StringIO) def test_main_version(stdout): assert_raises(SystemExit, __main__.main, ['__main__.py', '--version']) assert_equal(stdout.getvalue().rstrip(), "datalad %s" % __version__) @known_failure_githubci_win @patch.object(AutomagicIO, 'activate') @patch('sys.stdout', new_callable=StringIO) def test_main_run_a_script(stdout, mock_activate): f = NamedTemporaryFile() f.write('print("Running the script")\n'.encode()); f.flush() __main__.main(['__main__.py', f.name]) assert_equal(stdout.getvalue().rstrip(), "Running the script") # And we have "activated" mock_activate.assert_called_once_with()
33.510204
87
0.652253
437b6cc7af0503ba8d9c2e7c4d616ce2bed6ca91
9,478
py
Python
dopamine/continuous_domains/run_experiment.py
crawlingcub/dopamine
0d155c12f96606188a97a001e02189bdd3723d4d
[ "Apache-2.0" ]
null
null
null
dopamine/continuous_domains/run_experiment.py
crawlingcub/dopamine
0d155c12f96606188a97a001e02189bdd3723d4d
[ "Apache-2.0" ]
null
null
null
dopamine/continuous_domains/run_experiment.py
crawlingcub/dopamine
0d155c12f96606188a97a001e02189bdd3723d4d
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Dopamine Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module defining classes and helper methods for general agents.""" from typing import Optional from absl import logging from dopamine.discrete_domains import gym_lib from dopamine.discrete_domains import iteration_statistics from dopamine.discrete_domains import run_experiment as base_run_experiment from dopamine.jax.agents.dqn import dqn_agent from dopamine.jax.agents.sac import sac_agent from flax.metrics import tensorboard import gin from gym import spaces load_gin_configs = base_run_experiment.load_gin_configs @gin.configurable def create_continuous_agent( environment: gym_lib.GymPreprocessing, agent_name: str, summary_writer: Optional[tensorboard.SummaryWriter] = None ) -> dqn_agent.JaxDQNAgent: """Creates an agent. Args: environment: A gym environment. agent_name: str, name of the agent to create. summary_writer: A Tensorflow summary writer to pass to the agent for in-agent training statistics in Tensorboard. Returns: An RL agent. Raises: ValueError: If `agent_name` is not in supported list. """ assert agent_name is not None if agent_name == 'sac': assert isinstance(environment.action_space, spaces.Box) assert isinstance(environment.observation_space, spaces.Box) return sac_agent.SACAgent( action_shape=environment.action_space.shape, action_limits=(environment.action_space.low, environment.action_space.high), observation_shape=environment.observation_space.shape, action_dtype=environment.action_space.dtype, observation_dtype=environment.observation_space.dtype, summary_writer=summary_writer) else: raise ValueError(f'Unknown agent: {agent_name}') @gin.configurable def create_continuous_runner(base_dir, schedule='continuous_train_and_eval'): """Creates an experiment Runner. Args: base_dir: str, base directory for hosting all subdirectories. schedule: string, which type of Runner to use. Returns: runner: A `Runner` like object. Raises: ValueError: When an unknown schedule is encountered. """ assert base_dir is not None # Continuously runs training and evaluation until max num_iterations is hit. if schedule == 'continuous_train_and_eval': return ContinuousRunner(base_dir, create_continuous_agent) # Continuously runs training until max num_iterations is hit. elif schedule == 'continuous_train': return ContinuousTrainRunner(base_dir, create_continuous_agent) else: raise ValueError('Unknown schedule: {}'.format(schedule)) @gin.configurable class ContinuousRunner(base_run_experiment.Runner): """Object that handles running Dopamine experiments. This is mostly the same as discrete_domains.Runner, but is written solely for JAX/Flax agents. """ def __init__(self, base_dir, create_agent_fn, create_environment_fn=gym_lib.create_gym_environment, checkpoint_file_prefix='ckpt', logging_file_prefix='log', log_every_n=1, num_iterations=200, training_steps=250000, evaluation_steps=125000, max_steps_per_episode=1000, clip_rewards=False): """Initialize the Runner object in charge of running a full experiment. Args: base_dir: str, the base directory to host all required sub-directories. create_agent_fn: A function that takes as argument an environment, and returns an agent. create_environment_fn: A function which receives a problem name and creates a Gym environment for that problem (e.g. an Atari 2600 game). checkpoint_file_prefix: str, the prefix to use for checkpoint files. logging_file_prefix: str, prefix to use for the log files. log_every_n: int, the frequency for writing logs. num_iterations: int, the iteration number threshold (must be greater than start_iteration). training_steps: int, the number of training steps to perform. evaluation_steps: int, the number of evaluation steps to perform. max_steps_per_episode: int, maximum number of steps after which an episode terminates. clip_rewards: bool, whether to clip rewards in [-1, 1]. This constructor will take the following actions: - Initialize an environment. - Initialize a logger. - Initialize an agent. - Reload from the latest checkpoint, if available, and initialize the Checkpointer object. """ assert base_dir is not None self._logging_file_prefix = logging_file_prefix self._log_every_n = log_every_n self._num_iterations = num_iterations self._training_steps = training_steps self._evaluation_steps = evaluation_steps self._max_steps_per_episode = max_steps_per_episode self._base_dir = base_dir self._clip_rewards = clip_rewards self._create_directories() self._summary_writer = tensorboard.SummaryWriter(base_dir) self._environment = create_environment_fn() self._agent = create_agent_fn(self._environment, summary_writer=self._summary_writer) self._initialize_checkpointer_and_maybe_resume(checkpoint_file_prefix) def _save_tensorboard_summaries(self, iteration, num_episodes_train, average_reward_train, num_episodes_eval, average_reward_eval, average_steps_per_second): """Save statistics as tensorboard summaries. Args: iteration: int, The current iteration number. num_episodes_train: int, number of training episodes run. average_reward_train: float, The average training reward. num_episodes_eval: int, number of evaluation episodes run. average_reward_eval: float, The average evaluation reward. average_steps_per_second: float, The average number of steps per second. """ metrics = [('Train/NumEpisodes', num_episodes_train), ('Train/AverageReturns', average_reward_train), ('Train/AverageStepsPerSecond', average_steps_per_second), ('Eval/NumEpisodes', num_episodes_eval), ('Eval/AverageReturns', average_reward_eval)] for name, value in metrics: self._summary_writer.scalar(name, value, iteration) self._summary_writer.flush() @gin.configurable class ContinuousTrainRunner(ContinuousRunner): """Object that handles running experiments. This is mostly the same as discrete_domains.TrainRunner, but is written solely for JAX/Flax agents. """ def __init__(self, base_dir, create_agent_fn, create_environment_fn=gym_lib.create_gym_environment): """Initialize the TrainRunner object in charge of running a full experiment. Args: base_dir: str, the base directory to host all required sub-directories. create_agent_fn: A function that takes as args a Tensorflow session and an environment, and returns an agent. create_environment_fn: A function which receives a problem name and creates a Gym environment for that problem (e.g. an Atari 2600 game). """ logging.info('Creating ContinuousTrainRunner ...') super().__init__(base_dir, create_agent_fn, create_environment_fn) self._agent.eval_mode = False def _run_one_iteration(self, iteration): """Runs one iteration of agent/environment interaction. An iteration involves running several episodes until a certain number of steps are obtained. This method differs from the `_run_one_iteration` method in the base `Runner` class in that it only runs the train phase. Args: iteration: int, current iteration number, used as a global_step for saving Tensorboard summaries. Returns: A dict containing summary statistics for this iteration. """ statistics = iteration_statistics.IterationStatistics() num_episodes_train, average_reward_train, average_steps_per_second = ( self._run_train_phase(statistics)) self._save_tensorboard_summaries(iteration, num_episodes_train, average_reward_train, average_steps_per_second) return statistics.data_lists def _save_tensorboard_summaries(self, iteration, num_episodes, average_reward, average_steps_per_second): """Save statistics as tensorboard summaries.""" metrics = [('Train/NumEpisodes', num_episodes), ('Train/AverageReturns', average_reward), ('Train/AverageStepsPerSecond', average_steps_per_second)] for name, value in metrics: self._summary_writer.scalar(name, value, iteration) self._summary_writer.flush()
39.823529
80
0.715235
16a0941f4e6f5ba700521cfd30e33eebd0c4fcef
1,544
py
Python
projects/flow.sklearn.init-ParameterGrid/init.py
phmalek/signac-examples
d48def3106afcde70e58f07940ab0de3779bad4b
[ "BSD-3-Clause" ]
1
2020-03-12T19:27:46.000Z
2020-03-12T19:27:46.000Z
projects/flow.sklearn.init-ParameterGrid/init.py
phmalek/signac-examples
d48def3106afcde70e58f07940ab0de3779bad4b
[ "BSD-3-Clause" ]
null
null
null
projects/flow.sklearn.init-ParameterGrid/init.py
phmalek/signac-examples
d48def3106afcde70e58f07940ab0de3779bad4b
[ "BSD-3-Clause" ]
null
null
null
"""This example performs grid search, saving the results of each evaluated parameter set into a signac data space. See also: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html """ import joblib import signac from sklearn import datasets, svm from sklearn.model_selection import ParameterGrid, train_test_split if __name__ == '__main__': # Load sample data dataset = datasets.load_digits() X = dataset.data y = dataset.target class_names = dataset.target_names.tolist() # Split the data into a training set and a test set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Initialize the signac project and save the training/testing data into the # project's HDF5 data store project = signac.init_project('gridsearch') with project.data: project.data.X_train = X_train project.data.X_test = X_test project.data.y_train = y_train project.data.y_test = y_test # Class names are non-numeric so they go into the project document. project.doc.class_names = class_names param_grid = { 'kernel': ('linear', 'rbf'), 'C': (0.1, 1, 10, 100), 'gamma': ('scale',) } # Create the jobs for each estimator for params in ParameterGrid(param_grid): print('Creating job for', params) job = project.open_job(params).init() estimator = svm.SVC(**params) joblib.dump(estimator, job.fn('estimator.joblib'))
32.166667
97
0.685233
bae55349cea202d3ccfe436423aa243a6c3ead33
3,228
py
Python
region_count_prediction/data_setup.py
fegb-dataset22/dataset22
6642a01ca7ab9948c9b5ffc3aae1201cd8c72f0b
[ "MIT" ]
null
null
null
region_count_prediction/data_setup.py
fegb-dataset22/dataset22
6642a01ca7ab9948c9b5ffc3aae1201cd8c72f0b
[ "MIT" ]
null
null
null
region_count_prediction/data_setup.py
fegb-dataset22/dataset22
6642a01ca7ab9948c9b5ffc3aae1201cd8c72f0b
[ "MIT" ]
null
null
null
from typing import Tuple import pandas as pd from sklearn.model_selection import train_test_split from data.data_helpers import get_original_data from root import ROOT_DIR from weighted_mean_prediction.data_setup import one_hot_encode_df, split_data global REGIONS REGIONS = [f"R{_}" for _ in range(1, 9)] def get_normalised_region_counts(df: pd.DataFrame = None) -> pd.DataFrame: df = get_original_data() if df is None else df df = df.copy() df[REGIONS] = df[REGIONS].div(df[REGIONS].sum(axis=1), axis=0) return df def save_encoded_data(X_train, X_val, X_test, y_train, y_val, y_test) -> None: X_train.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_train.csv", index=False) X_val.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_val.csv", index=False) X_test.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_test.csv", index=False) y_train.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_train.csv", index=False) y_val.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_val.csv", index=False) y_test.to_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_test.csv", index=False) def get_encoded_split_data(): try: X_train = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_train.csv", ) X_val = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_val.csv", ) X_test = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/X_test.csv", ) y_train = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_train.csv", ) y_val = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_val.csv", ) y_test = pd.read_csv(f"{ROOT_DIR}/region_count_prediction/model_data/y_test.csv", ) return X_train, X_val, X_test, y_train, y_val, y_test except FileNotFoundError: data = split_data() save_encoded_data(*data) return data def split_data(df: pd.DataFrame = None, train_size=0.8, val_size=0.1, random_state=0) \ -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: df = get_original_data() if df is None else df X = df.drop(REGIONS, axis=1) y = df[REGIONS] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 - train_size, shuffle=True, random_state=random_state) test_ratio = 1 - train_size - val_size X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=test_ratio / (test_ratio + val_size), random_state=random_state) return X_train, X_val, X_test, y_train, y_val, y_test if __name__ == "__main__": df = get_normalised_region_counts() df = one_hot_encode_df(df) X_train, X_val, X_test, y_train, y_val, y_test = split_data(df) print(f"{len(X_train)} Training Sequences ({len(X_train) / 260510})") print(f"{len(X_val)} Validation Sequences ({len(X_val) / 260510})") print(f"{len(X_test)} Testing Sequences ({len(X_test) / 260510})") save_encoded_data(X_train, X_val, X_test, y_train, y_val, y_test)
43.04
101
0.694238
66ad2872aed877a8b3bba2a3776bd95125587f83
562
py
Python
tests/DistributedAverager/Sensor.py
timkrentz/riaps-pycom
5b4d9b3c80f9191ec9f680264e6d0ccb14f171ba
[ "ECL-2.0", "Apache-2.0" ]
6
2019-02-24T10:14:46.000Z
2020-07-08T16:22:17.000Z
tests/DistributedAverager/Sensor.py
timkrentz/riaps-pycom
5b4d9b3c80f9191ec9f680264e6d0ccb14f171ba
[ "ECL-2.0", "Apache-2.0" ]
36
2018-10-16T04:39:54.000Z
2022-02-09T17:38:05.000Z
tests/DistributedAverager/Sensor.py
timkrentz/riaps-pycom
5b4d9b3c80f9191ec9f680264e6d0ccb14f171ba
[ "ECL-2.0", "Apache-2.0" ]
8
2018-10-23T22:09:18.000Z
2021-04-23T02:53:24.000Z
# import riaps from riaps.run.comp import Component import logging import random class Sensor(Component): def __init__(self,value): super(Sensor, self).__init__() if value == 0.0: self.myValue = (10.0 * random.random()) - 5.0 else: self.myValue = value def on_clock(self): now = self.clock.recv_pyobj() # Receive time (as float) # self.logger.info('on_clock():%s',msg) msg = (now,self.myValue) # Send (timestamp,value) self.sensorReady.send_pyobj(msg)
28.1
65
0.588968
c866ff62f7349b4bd29b73f13532c693fd143ca1
48,902
py
Python
python/ccxt/probit.py
TheTexasFarmer/ccxt
38a9d3a8ec14bf8aaa0a7d1dfb60f1b57c8df402
[ "MIT" ]
2
2021-07-19T06:59:47.000Z
2021-12-17T21:01:08.000Z
python/ccxt/probit.py
TheTexasFarmer/ccxt
38a9d3a8ec14bf8aaa0a7d1dfb60f1b57c8df402
[ "MIT" ]
null
null
null
python/ccxt/probit.py
TheTexasFarmer/ccxt
38a9d3a8ec14bf8aaa0a7d1dfb60f1b57c8df402
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange import math from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import BadSymbol from ccxt.base.errors import BadResponse from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidAddress from ccxt.base.errors import InvalidOrder from ccxt.base.errors import DDoSProtection from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import ExchangeNotAvailable from ccxt.base.decimal_to_precision import TRUNCATE from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class probit(Exchange): def describe(self): return self.deep_extend(super(probit, self).describe(), { 'id': 'probit', 'name': 'ProBit', 'countries': ['SC', 'KR'], # Seychelles, South Korea 'rateLimit': 250, # ms 'has': { 'CORS': True, 'fetchTime': True, 'fetchMarkets': True, 'fetchCurrencies': True, 'fetchTickers': True, 'fetchTicker': True, 'fetchOHLCV': True, 'fetchOrderBook': True, 'fetchTrades': True, 'fetchBalance': True, 'createOrder': True, 'createMarketOrder': True, 'cancelOrder': True, 'fetchOrder': True, 'fetchOpenOrders': True, 'fetchClosedOrders': True, 'fetchMyTrades': True, 'fetchDepositAddress': True, 'withdraw': True, 'signIn': True, }, 'timeframes': { '1m': '1m', '3m': '3m', '5m': '5m', '10m': '10m', '15m': '15m', '30m': '30m', '1h': '1h', '4h': '4h', '6h': '6h', '12h': '12h', '1d': '1D', '1w': '1W', '1M': '1M', }, 'version': 'v1', 'urls': { 'logo': 'https://user-images.githubusercontent.com/51840849/79268032-c4379480-7ea2-11ea-80b3-dd96bb29fd0d.jpg', 'api': { 'accounts': 'https://accounts.probit.com', 'public': 'https://api.probit.com/api/exchange', 'private': 'https://api.probit.com/api/exchange', }, 'www': 'https://www.probit.com', 'doc': [ 'https://docs-en.probit.com', 'https://docs-ko.probit.com', ], 'fees': 'https://support.probit.com/hc/en-us/articles/360020968611-Trading-Fees', 'referral': 'https://www.probit.com/r/34608773', }, 'api': { 'public': { 'get': [ 'market', 'currency', 'currency_with_platform', 'time', 'ticker', 'order_book', 'trade', 'candle', ], }, 'private': { 'post': [ 'new_order', 'cancel_order', 'withdrawal', ], 'get': [ 'balance', 'order', 'open_order', 'order_history', 'trade_history', 'deposit_address', ], }, 'accounts': { 'post': [ 'token', ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, }, 'exceptions': { 'exact': { 'UNAUTHORIZED': AuthenticationError, 'INVALID_ARGUMENT': BadRequest, # Parameters are not a valid format, parameters are empty, or out of range, or a parameter was sent when not required. 'TRADING_UNAVAILABLE': ExchangeNotAvailable, 'NOT_ENOUGH_BALANCE': InsufficientFunds, 'NOT_ALLOWED_COMBINATION': BadRequest, 'INVALID_ORDER': InvalidOrder, # Requested order does not exist, or it is not your order 'RATE_LIMIT_EXCEEDED': RateLimitExceeded, # You are sending requests too frequently. Please try it later. 'MARKET_UNAVAILABLE': ExchangeNotAvailable, # Market is closed today 'INVALID_MARKET': BadSymbol, # Requested market is not exist 'MARKET_CLOSED': BadSymbol, # {"errorCode":"MARKET_CLOSED"} 'MARKET_NOT_FOUND': BadSymbol, # {"errorCode":"MARKET_NOT_FOUND","message":"8e2b8496-0a1e-5beb-b990-a205b902eabe","details":{}} 'INVALID_CURRENCY': BadRequest, # Requested currency is not exist on ProBit system 'TOO_MANY_OPEN_ORDERS': DDoSProtection, # Too many open orders 'DUPLICATE_ADDRESS': InvalidAddress, # Address already exists in withdrawal address list }, }, 'requiredCredentials': { 'apiKey': True, 'secret': True, }, 'precisionMode': TICK_SIZE, 'options': { 'createMarketBuyOrderRequiresPrice': True, 'timeInForce': { 'limit': 'gtc', 'market': 'ioc', }, }, 'commonCurrencies': { 'AUTO': 'Cube', 'BCC': 'BCC', 'BTCBEAR': 'BEAR', 'BTCBULL': 'BULL', 'CBC': 'CryptoBharatCoin', 'EPS': 'Epanus', # conflict with EPS Ellipsis https://github.com/ccxt/ccxt/issues/8909 'HBC': 'Hybrid Bank Cash', 'ORC': 'Oracle System', 'SOC': 'Soda Coin', 'UNI': 'UNICORN Token', 'UNISWAP': 'UNI', }, }) def fetch_markets(self, params={}): response = self.publicGetMarket(params) # # { # "data":[ # { # "id":"MONA-USDT", # "base_currency_id":"MONA", # "quote_currency_id":"USDT", # "min_price":"0.001", # "max_price":"9999999999999999", # "price_increment":"0.001", # "min_quantity":"0.0001", # "max_quantity":"9999999999999999", # "quantity_precision":4, # "min_cost":"1", # "max_cost":"9999999999999999", # "cost_precision":8, # "taker_fee_rate":"0.2", # "maker_fee_rate":"0.2", # "show_in_ui":true, # "closed":false # }, # ] # } # markets = self.safe_value(response, 'data', []) result = [] for i in range(0, len(markets)): market = markets[i] id = self.safe_string(market, 'id') baseId = self.safe_string(market, 'base_currency_id') quoteId = self.safe_string(market, 'quote_currency_id') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote closed = self.safe_value(market, 'closed', False) active = not closed amountPrecision = self.safe_string(market, 'quantity_precision') costPrecision = self.safe_string(market, 'cost_precision') amountTickSize = self.parse_precision(amountPrecision) costTickSize = self.parse_precision(costPrecision) precision = { 'amount': self.parse_number(amountTickSize), 'price': self.safe_number(market, 'price_increment'), 'cost': self.parse_number(costTickSize), } takerFeeRate = self.safe_string(market, 'taker_fee_rate') taker = Precise.string_div(takerFeeRate, '100') makerFeeRate = self.safe_string(market, 'maker_fee_rate') maker = Precise.string_div(makerFeeRate, '100') result.append({ 'id': id, 'info': market, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'active': active, 'precision': precision, 'taker': self.parse_number(taker), 'maker': self.parse_number(maker), 'limits': { 'amount': { 'min': self.safe_number(market, 'min_quantity'), 'max': self.safe_number(market, 'max_quantity'), }, 'price': { 'min': self.safe_number(market, 'min_price'), 'max': self.safe_number(market, 'max_price'), }, 'cost': { 'min': self.safe_number(market, 'min_cost'), 'max': self.safe_number(market, 'max_cost'), }, }, }) return result def fetch_currencies(self, params={}): response = self.publicGetCurrencyWithPlatform(params) # # { # "data":[ # { # "id":"USDT", # "display_name":{"ko-kr":"테더","en-us":"Tether"}, # "show_in_ui":true, # "platform":[ # { # "id":"ETH", # "priority":1, # "deposit":true, # "withdrawal":true, # "currency_id":"USDT", # "precision":6, # "min_confirmation_count":15, # "require_destination_tag":false, # "display_name":{"name":{"ko-kr":"ERC-20","en-us":"ERC-20"}}, # "min_deposit_amount":"0", # "min_withdrawal_amount":"1", # "withdrawal_fee":[ # {"amount":"0.01","priority":2,"currency_id":"ETH"}, # {"amount":"1.5","priority":1,"currency_id":"USDT"}, # ], # "deposit_fee":{}, # "suspended_reason":"", # "deposit_suspended":false, # "withdrawal_suspended":false # }, # { # "id":"OMNI", # "priority":2, # "deposit":true, # "withdrawal":true, # "currency_id":"USDT", # "precision":6, # "min_confirmation_count":3, # "require_destination_tag":false, # "display_name":{"name":{"ko-kr":"OMNI","en-us":"OMNI"}}, # "min_deposit_amount":"0", # "min_withdrawal_amount":"5", # "withdrawal_fee":[{"amount":"5","priority":1,"currency_id":"USDT"}], # "deposit_fee":{}, # "suspended_reason":"wallet_maintenance", # "deposit_suspended":false, # "withdrawal_suspended":false # } # ], # "stakeable":false, # "unstakeable":false, # "auto_stake":false, # "auto_stake_amount":"0" # } # ] # } # currencies = self.safe_value(response, 'data') result = {} for i in range(0, len(currencies)): currency = currencies[i] id = self.safe_string(currency, 'id') code = self.safe_currency_code(id) displayName = self.safe_value(currency, 'display_name') name = self.safe_string(displayName, 'en-us') platforms = self.safe_value(currency, 'platform', []) platformsByPriority = self.sort_by(platforms, 'priority') platform = self.safe_value(platformsByPriority, 0, {}) precision = self.safe_integer(platform, 'precision') depositSuspended = self.safe_value(platform, 'deposit_suspended') withdrawalSuspended = self.safe_value(platform, 'withdrawal_suspended') active = not (depositSuspended and withdrawalSuspended) withdrawalFees = self.safe_value(platform, 'withdrawal_fee', {}) fees = [] # sometimes the withdrawal fee is an empty object # [{'amount': '0.015', 'priority': 1, 'currency_id': 'ETH'}, {}] for j in range(0, len(withdrawalFees)): withdrawalFee = withdrawalFees[j] amount = self.safe_number(withdrawalFee, 'amount') priority = self.safe_integer(withdrawalFee, 'priority') if (amount is not None) and (priority is not None): fees.append(withdrawalFee) withdrawalFeesByPriority = self.sort_by(fees, 'priority') withdrawalFee = self.safe_value(withdrawalFeesByPriority, 0, {}) fee = self.safe_number(withdrawalFee, 'amount') result[code] = { 'id': id, 'code': code, 'info': currency, 'name': name, 'active': active, 'fee': fee, 'precision': precision, 'limits': { 'amount': { 'min': math.pow(10, -precision), 'max': math.pow(10, precision), }, 'deposit': { 'min': self.safe_number(platform, 'min_deposit_amount'), 'max': None, }, 'withdraw': { 'min': self.safe_number(platform, 'min_withdrawal_amount'), 'max': None, }, }, } return result def fetch_balance(self, params={}): self.load_markets() response = self.privateGetBalance(params) # # { # data: [ # { # "currency_id":"XRP", # "total":"100", # "available":"0", # } # ] # } # result = { 'info': response, 'timestamp': None, 'datetime': None, } data = self.safe_value(response, 'data') for i in range(0, len(data)): balance = data[i] currencyId = self.safe_string(balance, 'currency_id') code = self.safe_currency_code(currencyId) account = self.account() account['total'] = self.safe_string(balance, 'total') account['free'] = self.safe_string(balance, 'available') result[code] = account return self.parse_balance(result, False) def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], } response = self.publicGetOrderBook(self.extend(request, params)) # # { # data: [ # {side: 'buy', price: '0.000031', quantity: '10'}, # {side: 'buy', price: '0.00356007', quantity: '4.92156877'}, # {side: 'sell', price: '0.1857', quantity: '0.17'}, # ] # } # data = self.safe_value(response, 'data', []) dataBySide = self.group_by(data, 'side') return self.parse_order_book(dataBySide, symbol, None, 'buy', 'sell', 'price', 'quantity') def fetch_tickers(self, symbols=None, params={}): self.load_markets() request = {} if symbols is not None: marketIds = self.market_ids(symbols) request['market_ids'] = ','.join(marketIds) response = self.publicGetTicker(self.extend(request, params)) # # { # "data":[ # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_tickers(data, symbols) def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'market_ids': market['id'], } response = self.publicGetTicker(self.extend(request, params)) # # { # "data":[ # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # ] # } # data = self.safe_value(response, 'data', []) ticker = self.safe_value(data, 0) if ticker is None: raise BadResponse(self.id + ' fetchTicker() returned an empty response') return self.parse_ticker(ticker, market) def parse_ticker(self, ticker, market=None): # # { # "last":"0.022902", # "low":"0.021693", # "high":"0.024093", # "change":"-0.000047", # "base_volume":"15681.986", # "quote_volume":"360.514403624", # "market_id":"ETH-BTC", # "time":"2020-04-12T18:43:38.000Z" # } # timestamp = self.parse8601(self.safe_string(ticker, 'time')) marketId = self.safe_string(ticker, 'market_id') symbol = self.safe_symbol(marketId, market, '-') close = self.safe_number(ticker, 'last') change = self.safe_number(ticker, 'change') percentage = None open = None if change is not None: if close is not None: open = close - change percentage = (change / open) * 100 baseVolume = self.safe_number(ticker, 'base_volume') quoteVolume = self.safe_number(ticker, 'quote_volume') vwap = self.vwap(baseVolume, quoteVolume) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'high'), 'low': self.safe_number(ticker, 'low'), 'bid': None, 'bidVolume': None, 'ask': None, 'askVolume': None, 'vwap': vwap, 'open': open, 'close': close, 'last': close, 'previousClose': None, # previous day close 'change': change, 'percentage': percentage, 'average': None, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() market = None request = { 'limit': 100, 'start_time': self.iso8601(0), 'end_time': self.iso8601(self.milliseconds()), } if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] if since is not None: request['start_time'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.privateGetTradeHistory(self.extend(request, params)) # # { # data: [ # { # "id":"BTC-USDT:183566", # "order_id":"17209376", # "side":"sell", # "fee_amount":"0.657396569175", # "fee_currency_id":"USDT", # "status":"settled", # "price":"6573.96569175", # "quantity":"0.1", # "cost":"657.396569175", # "time":"2018-08-10T06:06:46.000Z", # "market_id":"BTC-USDT" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_trades(data, market, since, limit) def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], 'limit': 100, 'start_time': '1970-01-01T00:00:00.000Z', 'end_time': self.iso8601(self.milliseconds()), } if since is not None: request['start_time'] = self.iso8601(since) if limit is not None: request['limit'] = limit response = self.publicGetTrade(self.extend(request, params)) # # { # "data":[ # { # "id":"ETH-BTC:3331886", # "price":"0.022981", # "quantity":"12.337", # "time":"2020-04-12T20:55:42.371Z", # "side":"sell", # "tick_direction":"down" # }, # { # "id":"ETH-BTC:3331885", # "price":"0.022982", # "quantity":"6.472", # "time":"2020-04-12T20:55:39.652Z", # "side":"sell", # "tick_direction":"down" # } # ] # } # data = self.safe_value(response, 'data', []) return self.parse_trades(data, market, since, limit) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # "id":"ETH-BTC:3331886", # "price":"0.022981", # "quantity":"12.337", # "time":"2020-04-12T20:55:42.371Z", # "side":"sell", # "tick_direction":"down" # } # # fetchMyTrades(private) # # { # "id":"BTC-USDT:183566", # "order_id":"17209376", # "side":"sell", # "fee_amount":"0.657396569175", # "fee_currency_id":"USDT", # "status":"settled", # "price":"6573.96569175", # "quantity":"0.1", # "cost":"657.396569175", # "time":"2018-08-10T06:06:46.000Z", # "market_id":"BTC-USDT" # } # timestamp = self.parse8601(self.safe_string(trade, 'time')) id = self.safe_string(trade, 'id') marketId = None if id is not None: parts = id.split(':') marketId = self.safe_string(parts, 0) marketId = self.safe_string(trade, 'market_id', marketId) symbol = self.safe_symbol(marketId, market, '-') side = self.safe_string(trade, 'side') priceString = self.safe_string(trade, 'price') amountString = self.safe_string(trade, 'quantity') price = self.parse_number(priceString) amount = self.parse_number(amountString) cost = self.parse_number(Precise.string_mul(priceString, amountString)) orderId = self.safe_string(trade, 'order_id') feeCost = self.safe_number(trade, 'fee_amount') fee = None if feeCost is not None: feeCurrencyId = self.safe_string(trade, 'fee_currency_id') feeCurrencyCode = self.safe_currency_code(feeCurrencyId) fee = { 'cost': feeCost, 'currency': feeCurrencyCode, } return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': orderId, 'type': None, 'side': side, 'takerOrMaker': None, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_time(self, params={}): response = self.publicGetTime(params) # # {"data":"2020-04-12T18:54:25.390Z"} # timestamp = self.parse8601(self.safe_string(response, 'data')) return timestamp def normalize_ohlcv_timestamp(self, timestamp, timeframe, after=False): duration = self.parse_timeframe(timeframe) if timeframe == '1M': iso8601 = self.iso8601(timestamp) parts = iso8601.split('-') year = self.safe_string(parts, 0) month = self.safe_integer(parts, 1) if after: month = self.sum(month, 1) if month < 10: month = '0' + str(month) else: month = str(month) return year + '-' + month + '-01T00:00:00.000Z' elif timeframe == '1w': timestamp = int(timestamp / 1000) firstSunday = 259200 # 1970-01-04T00:00:00.000Z difference = timestamp - firstSunday numWeeks = int(math.floor(difference / duration)) previousSunday = self.sum(firstSunday, numWeeks * duration) if after: previousSunday = self.sum(previousSunday, duration) return self.iso8601(previousSunday * 1000) else: timestamp = int(timestamp / 1000) timestamp = duration * int(timestamp / duration) if after: timestamp = self.sum(timestamp, duration) return self.iso8601(timestamp * 1000) def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) interval = self.timeframes[timeframe] limit = 100 if (limit is None) else limit requestLimit = self.sum(limit, 1) requestLimit = min(1000, requestLimit) # max 1000 request = { 'market_ids': market['id'], 'interval': interval, 'sort': 'asc', # 'asc' will always include the start_time, 'desc' will always include end_time 'limit': requestLimit, # max 1000 } now = self.milliseconds() duration = self.parse_timeframe(timeframe) startTime = since endTime = now if since is None: if limit is None: raise ArgumentsRequired(self.id + ' fetchOHLCV() requires either a since argument or a limit argument') else: startTime = now - limit * duration * 1000 else: if limit is None: endTime = now else: endTime = self.sum(since, self.sum(limit, 1) * duration * 1000) startTimeNormalized = self.normalize_ohlcv_timestamp(startTime, timeframe) endTimeNormalized = self.normalize_ohlcv_timestamp(endTime, timeframe, True) request['start_time'] = startTimeNormalized request['end_time'] = endTimeNormalized response = self.publicGetCandle(self.extend(request, params)) # # { # "data":[ # { # "market_id":"ETH-BTC", # "open":"0.02811", # "close":"0.02811", # "low":"0.02811", # "high":"0.02811", # "base_volume":"0.0005", # "quote_volume":"0.000014055", # "start_time":"2018-11-30T18:19:00.000Z", # "end_time":"2018-11-30T18:20:00.000Z" # }, # ] # } # data = self.safe_value(response, 'data', []) return self.parse_ohlcvs(data, market, timeframe, since, limit) def parse_ohlcv(self, ohlcv, market=None): # # { # "market_id":"ETH-BTC", # "open":"0.02811", # "close":"0.02811", # "low":"0.02811", # "high":"0.02811", # "base_volume":"0.0005", # "quote_volume":"0.000014055", # "start_time":"2018-11-30T18:19:00.000Z", # "end_time":"2018-11-30T18:20:00.000Z" # } # return [ self.parse8601(self.safe_string(ohlcv, 'start_time')), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number(ohlcv, 'base_volume'), ] def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() since = self.parse8601(since) request = {} market = None if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] response = self.privateGetOpenOrder(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_orders(data, market, since, limit) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { 'start_time': self.iso8601(0), 'end_time': self.iso8601(self.milliseconds()), 'limit': 100, } market = None if symbol is not None: market = self.market(symbol) request['market_id'] = market['id'] if since: request['start_time'] = self.iso8601(since) if limit: request['limit'] = limit response = self.privateGetOrderHistory(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_orders(data, market, since, limit) def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], } clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') if clientOrderId is not None: request['client_order_id'] = clientOrderId else: request['order_id'] = id query = self.omit(params, ['clientOrderId', 'client_order_id']) response = self.privateGetOrder(self.extend(request, query)) data = self.safe_value(response, 'data', []) order = self.safe_value(data, 0) return self.parse_order(order, market) def parse_order_status(self, status): statuses = { 'open': 'open', 'cancelled': 'canceled', 'filled': 'closed', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): # # { # id: string, # user_id: string, # market_id: string, # type: 'orderType', # side: 'side', # quantity: string, # limit_price: string, # time_in_force: 'timeInForce', # filled_cost: string, # filled_quantity: string, # open_quantity: string, # cancelled_quantity: string, # status: 'orderStatus', # time: 'date', # client_order_id: string, # } # status = self.parse_order_status(self.safe_string(order, 'status')) id = self.safe_string(order, 'id') type = self.safe_string(order, 'type') side = self.safe_string(order, 'side') marketId = self.safe_string(order, 'market_id') symbol = self.safe_symbol(marketId, market, '-') timestamp = self.parse8601(self.safe_string(order, 'time')) price = self.safe_number(order, 'limit_price') filled = self.safe_number(order, 'filled_quantity') remaining = self.safe_number(order, 'open_quantity') canceledAmount = self.safe_number(order, 'cancelled_quantity') if canceledAmount is not None: remaining = self.sum(remaining, canceledAmount) amount = self.safe_number(order, 'quantity', self.sum(filled, remaining)) cost = self.safe_number_2(order, 'filled_cost', 'cost') if type == 'market': price = None clientOrderId = self.safe_string(order, 'client_order_id') if clientOrderId == '': clientOrderId = None timeInForce = self.safe_string_upper(order, 'time_in_force') return self.safe_order({ 'id': id, 'info': order, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'symbol': symbol, 'type': type, 'timeInForce': timeInForce, 'side': side, 'status': status, 'price': price, 'stopPrice': None, 'amount': amount, 'filled': filled, 'remaining': remaining, 'average': None, 'cost': cost, 'fee': None, 'trades': None, }) def cost_to_precision(self, symbol, cost): return self.decimal_to_precision(cost, TRUNCATE, self.markets[symbol]['precision']['cost'], self.precisionMode) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) options = self.safe_value(self.options, 'timeInForce') defaultTimeInForce = self.safe_value(options, type) timeInForce = self.safe_string_2(params, 'timeInForce', 'time_in_force', defaultTimeInForce) request = { 'market_id': market['id'], 'type': type, 'side': side, 'time_in_force': timeInForce, } clientOrderId = self.safe_string_2(params, 'clientOrderId', 'client_order_id') if clientOrderId is not None: request['client_order_id'] = clientOrderId costToPrecision = None if type == 'limit': request['limit_price'] = self.price_to_precision(symbol, price) request['quantity'] = self.amount_to_precision(symbol, amount) elif type == 'market': # for market buy it requires the amount of quote currency to spend if side == 'buy': cost = self.safe_number(params, 'cost') createMarketBuyOrderRequiresPrice = self.safe_value(self.options, 'createMarketBuyOrderRequiresPrice', True) if createMarketBuyOrderRequiresPrice: if price is not None: if cost is None: cost = amount * price elif cost is None: raise InvalidOrder(self.id + " createOrder() requires the price argument for market buy orders to calculate total order cost(amount to spend), where cost = amount * price. Supply a price argument to createOrder() call if you want the cost to be calculated for you from price and amount, or, alternatively, add .options['createMarketBuyOrderRequiresPrice'] = False and supply the total cost value in the 'amount' argument or in the 'cost' extra parameter(the exchange-specific behaviour)") else: cost = amount if (cost is None) else cost costToPrecision = self.cost_to_precision(symbol, cost) request['cost'] = costToPrecision else: request['quantity'] = self.amount_to_precision(symbol, amount) query = self.omit(params, ['timeInForce', 'time_in_force', 'clientOrderId', 'client_order_id']) response = self.privatePostNewOrder(self.extend(request, query)) # # { # data: { # id: string, # user_id: string, # market_id: string, # type: 'orderType', # side: 'side', # quantity: string, # limit_price: string, # time_in_force: 'timeInForce', # filled_cost: string, # filled_quantity: string, # open_quantity: string, # cancelled_quantity: string, # status: 'orderStatus', # time: 'date', # client_order_id: string, # } # } # data = self.safe_value(response, 'data') order = self.parse_order(data, market) # a workaround for incorrect huge amounts # returned by the exchange on market buys if (type == 'market') and (side == 'buy'): order['amount'] = None order['cost'] = float(costToPrecision) order['remaining'] = None return order def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'market_id': market['id'], 'order_id': id, } response = self.privatePostCancelOrder(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_order(data) def parse_deposit_address(self, depositAddress, currency=None): address = self.safe_string(depositAddress, 'address') tag = self.safe_string(depositAddress, 'destination_tag') currencyId = self.safe_string(depositAddress, 'currency_id') code = self.safe_currency_code(currencyId) self.check_address(address) return { 'currency': code, 'address': address, 'tag': tag, 'info': depositAddress, } def fetch_deposit_address(self, code, params={}): self.load_markets() currency = self.currency(code) request = { 'currency_id': currency['id'], } response = self.privateGetDepositAddress(self.extend(request, params)) # # { # "data":[ # { # "currency_id":"ETH", # "address":"0x12e2caf3c4051ba1146e612f532901a423a9898a", # "destination_tag":null # } # ] # } # data = self.safe_value(response, 'data', []) firstAddress = self.safe_value(data, 0) if firstAddress is None: raise InvalidAddress(self.id + ' fetchDepositAddress returned an empty response') return self.parse_deposit_address(firstAddress, currency) def fetch_deposit_addresses(self, codes=None, params={}): self.load_markets() request = {} if codes: currencyIds = [] for i in range(0, len(codes)): currency = self.currency(codes[i]) currencyIds.append(currency['id']) request['currency_id'] = ','.join(codes) response = self.privateGetDepositAddress(self.extend(request, params)) data = self.safe_value(response, 'data', []) return self.parse_deposit_addresses(data) def withdraw(self, code, amount, address, tag=None, params={}): # In order to use self method # you need to allow API withdrawal from the API Settings Page, and # and register the list of withdrawal addresses and destination tags on the API Settings page # you can only withdraw to the registered addresses using the API self.check_address(address) self.load_markets() currency = self.currency(code) if tag is None: tag = '' request = { 'currency_id': currency['id'], # 'platform_id': 'ETH', # if omitted it will use the default platform for the currency 'address': address, 'destination_tag': tag, 'amount': self.number_to_string(amount), # which currency to pay the withdrawal fees # only applicable for currencies that accepts multiple withdrawal fee options # 'fee_currency_id': 'ETH', # if omitted it will use the default fee policy for each currency # whether the amount field includes fees # 'include_fee': False, # makes sense only when fee_currency_id is equal to currency_id } response = self.privatePostWithdrawal(self.extend(request, params)) data = self.safe_value(response, 'data') return self.parse_transaction(data, currency) def parse_transaction(self, transaction, currency=None): id = self.safe_string(transaction, 'id') amount = self.safe_number(transaction, 'amount') address = self.safe_string(transaction, 'address') tag = self.safe_string(transaction, 'destination_tag') txid = self.safe_string(transaction, 'hash') timestamp = self.parse8601(self.safe_string(transaction, 'time')) type = self.safe_string(transaction, 'type') currencyId = self.safe_string(transaction, 'currency_id') code = self.safe_currency_code(currencyId) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) feeCost = self.safe_number(transaction, 'fee') fee = None if feeCost is not None and feeCost != 0: fee = { 'currency': code, 'cost': feeCost, } return { 'id': id, 'currency': code, 'amount': amount, 'addressFrom': None, 'address': address, 'addressTo': address, 'tagFrom': None, 'tag': tag, 'tagTo': tag, 'status': status, 'type': type, 'txid': txid, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': fee, 'info': transaction, } def parse_transaction_status(self, status): statuses = { 'requested': 'pending', 'pending': 'pending', 'confirming': 'pending', 'confirmed': 'pending', 'applying': 'pending', 'done': 'ok', 'cancelled': 'canceled', 'cancelling': 'canceled', } return self.safe_string(statuses, status, status) def nonce(self): return self.milliseconds() def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.urls['api'][api] + '/' query = self.omit(params, self.extract_params(path)) if api == 'accounts': self.check_required_credentials() url += self.implode_params(path, params) auth = self.apiKey + ':' + self.secret auth64 = self.string_to_base64(auth) headers = { 'Authorization': 'Basic ' + self.decode(auth64), 'Content-Type': 'application/json', } if query: body = self.json(query) else: url += self.version + '/' if api == 'public': url += self.implode_params(path, params) if query: url += '?' + self.urlencode(query) elif api == 'private': now = self.milliseconds() self.check_required_credentials() expires = self.safe_integer(self.options, 'expires') if (expires is None) or (expires < now): raise AuthenticationError(self.id + ' access token expired, call signIn() method') accessToken = self.safe_string(self.options, 'accessToken') headers = { 'Authorization': 'Bearer ' + accessToken, } url += self.implode_params(path, params) if method == 'GET': if query: url += '?' + self.urlencode(query) elif query: body = self.json(query) headers['Content-Type'] = 'application/json' return {'url': url, 'method': method, 'body': body, 'headers': headers} def sign_in(self, params={}): self.check_required_credentials() request = { 'grant_type': 'client_credentials', # the only supported value } response = self.accountsPostToken(self.extend(request, params)) # # { # access_token: '0ttDv/2hTTn3bLi8GP1gKaneiEQ6+0hOBenPrxNQt2s=', # token_type: 'bearer', # expires_in: 900 # } # expiresIn = self.safe_integer(response, 'expires_in') accessToken = self.safe_string(response, 'access_token') self.options['accessToken'] = accessToken self.options['expires'] = self.sum(self.milliseconds(), expiresIn * 1000) return response def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'errorCode' in response: errorCode = self.safe_string(response, 'errorCode') message = self.safe_string(response, 'message') if errorCode is not None: feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], message, feedback) self.throw_broadly_matched_exception(self.exceptions['exact'], errorCode, feedback) raise ExchangeError(feedback)
41.337278
512
0.486176
ddbc34cca175cb340353d9c9c36085f929c84419
23,936
py
Python
azure-mgmt-network/azure/mgmt/network/v2018_10_01/operations/virtual_wans_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-network/azure/mgmt/network/v2018_10_01/operations/virtual_wans_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-network/azure/mgmt/network/v2018_10_01/operations/virtual_wans_operations.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class VirtualWansOperations(object): """VirtualWansOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2018-10-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-10-01" self.config = config def get( self, resource_group_name, virtual_wan_name, custom_headers=None, raw=False, **operation_config): """Retrieves the details of a VirtualWAN. :param resource_group_name: The resource group name of the VirtualWan. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN being retrieved. :type virtual_wan_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: VirtualWAN or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2018_10_01.models.VirtualWAN or ~msrest.pipeline.ClientRawResponse :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'VirtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualWAN', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{VirtualWANName}'} def _create_or_update_initial( self, resource_group_name, virtual_wan_name, wan_parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'VirtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(wan_parameters, 'VirtualWAN') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualWAN', response) if response.status_code == 201: deserialized = self._deserialize('VirtualWAN', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, virtual_wan_name, wan_parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Creates a VirtualWAN resource if it doesn't exist else updates the existing VirtualWAN. :param resource_group_name: The resource group name of the VirtualWan. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN being created or updated. :type virtual_wan_name: str :param wan_parameters: Parameters supplied to create or update VirtualWAN. :type wan_parameters: ~azure.mgmt.network.v2018_10_01.models.VirtualWAN :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VirtualWAN or ClientRawResponse<VirtualWAN> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_10_01.models.VirtualWAN] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_10_01.models.VirtualWAN]] :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, wan_parameters=wan_parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VirtualWAN', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{VirtualWANName}'} def _update_tags_initial( self, resource_group_name, virtual_wan_name, tags=None, custom_headers=None, raw=False, **operation_config): wan_parameters = models.TagsObject(tags=tags) # Construct URL url = self.update_tags.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'VirtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(wan_parameters, 'TagsObject') # Construct and send request request = self._client.patch(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('VirtualWAN', response) if response.status_code == 201: deserialized = self._deserialize('VirtualWAN', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def update_tags( self, resource_group_name, virtual_wan_name, tags=None, custom_headers=None, raw=False, polling=True, **operation_config): """Updates a VirtualWAN tags. :param resource_group_name: The resource group name of the VirtualWan. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN being updated. :type virtual_wan_name: str :param tags: Resource tags. :type tags: dict[str, str] :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns VirtualWAN or ClientRawResponse<VirtualWAN> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_10_01.models.VirtualWAN] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_10_01.models.VirtualWAN]] :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ raw_result = self._update_tags_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, tags=tags, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('VirtualWAN', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{VirtualWANName}'} def _delete_initial( self, resource_group_name, virtual_wan_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'VirtualWANName': self._serialize.url("virtual_wan_name", virtual_wan_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, virtual_wan_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes a VirtualWAN. :param resource_group_name: The resource group name of the VirtualWan. :type resource_group_name: str :param virtual_wan_name: The name of the VirtualWAN being deleted. :type virtual_wan_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, virtual_wan_name=virtual_wan_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans/{VirtualWANName}'} def list_by_resource_group( self, resource_group_name, custom_headers=None, raw=False, **operation_config): """Lists all the VirtualWANs in a resource group. :param resource_group_name: The resource group name of the VirtualWan. :type resource_group_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualWAN :rtype: ~azure.mgmt.network.v2018_10_01.models.VirtualWANPaged[~azure.mgmt.network.v2018_10_01.models.VirtualWAN] :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) return response # Deserialize response deserialized = models.VirtualWANPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VirtualWANPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/virtualWans'} def list( self, custom_headers=None, raw=False, **operation_config): """Lists all the VirtualWANs in a subscription. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of VirtualWAN :rtype: ~azure.mgmt.network.v2018_10_01.models.VirtualWANPaged[~azure.mgmt.network.v2018_10_01.models.VirtualWAN] :raises: :class:`ErrorException<azure.mgmt.network.v2018_10_01.models.ErrorException>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) return response # Deserialize response deserialized = models.VirtualWANPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.VirtualWANPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/virtualWans'}
46.387597
166
0.672543
78a1ba7d74557f0cd64ea97a5e4ecd39de551725
458
py
Python
plotly/validators/histogram2dcontour/_hoverinfosrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
2
2020-03-24T11:41:14.000Z
2021-01-14T07:59:43.000Z
plotly/validators/histogram2dcontour/_hoverinfosrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
null
null
null
plotly/validators/histogram2dcontour/_hoverinfosrc.py
faezs/plotly.py
6009b5b9c746e5d2a2849ad255a4eb234b551ed7
[ "MIT" ]
4
2019-06-03T14:49:12.000Z
2022-01-06T01:05:12.000Z
import _plotly_utils.basevalidators class HoverinfosrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name='hoverinfosrc', parent_name='histogram2dcontour', **kwargs ): super(HoverinfosrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type='none', role='info', **kwargs )
24.105263
71
0.611354
dd09657b269332f7febe917db709a47bbc98d9f1
12,698
py
Python
localstack/services/dynamodb/dynamodb_listener.py
jrideout/localstack
5ad9414b9aa0446efaccc4a537ef8c0f0cc822a0
[ "Apache-2.0" ]
null
null
null
localstack/services/dynamodb/dynamodb_listener.py
jrideout/localstack
5ad9414b9aa0446efaccc4a537ef8c0f0cc822a0
[ "Apache-2.0" ]
null
null
null
localstack/services/dynamodb/dynamodb_listener.py
jrideout/localstack
5ad9414b9aa0446efaccc4a537ef8c0f0cc822a0
[ "Apache-2.0" ]
1
2020-03-07T18:21:17.000Z
2020-03-07T18:21:17.000Z
import re import json import random import logging import threading from binascii import crc32 from requests.models import Response from localstack import config from localstack.utils.aws import aws_stack from localstack.utils.common import to_bytes, to_str, clone from localstack.utils.analytics import event_publisher from localstack.constants import DEFAULT_REGION from localstack.services.awslambda import lambda_api from localstack.services.dynamodbstreams import dynamodbstreams_api from localstack.services.generic_proxy import ProxyListener # cache table definitions - used for testing TABLE_DEFINITIONS = {} # action header prefix ACTION_PREFIX = 'DynamoDB_20120810' # set up logger LOGGER = logging.getLogger(__name__) class ProxyListenerDynamoDB(ProxyListener): thread_local = threading.local() def __init__(self): self._table_ttl_map = {} def forward_request(self, method, path, data, headers): data = json.loads(to_str(data)) if random.random() < config.DYNAMODB_ERROR_PROBABILITY: return error_response_throughput() action = headers.get('X-Amz-Target') if action in ('%s.PutItem' % ACTION_PREFIX, '%s.UpdateItem' % ACTION_PREFIX, '%s.DeleteItem' % ACTION_PREFIX): # find an existing item and store it in a thread-local, so we can access it in return_response, # in order to determine whether an item already existed (MODIFY) or not (INSERT) ProxyListenerDynamoDB.thread_local.existing_item = find_existing_item(data) elif action == '%s.UpdateTimeToLive' % ACTION_PREFIX: # TODO: TTL status is maintained/mocked but no real expiry is happening for items response = Response() response.status_code = 200 self._table_ttl_map[data['TableName']] = { 'AttributeName': data['TimeToLiveSpecification']['AttributeName'], 'Status': data['TimeToLiveSpecification']['Enabled'] } response._content = json.dumps({'TimeToLiveSpecification': data['TimeToLiveSpecification']}) fix_headers_for_updated_response(response) return response elif action == '%s.DescribeTimeToLive' % ACTION_PREFIX: response = Response() response.status_code = 200 if data['TableName'] in self._table_ttl_map: if self._table_ttl_map[data['TableName']]['Status']: ttl_status = 'ENABLED' else: ttl_status = 'DISABLED' response._content = json.dumps({ 'TimeToLiveDescription': { 'AttributeName': self._table_ttl_map[data['TableName']]['AttributeName'], 'TimeToLiveStatus': ttl_status } }) else: # TTL for dynamodb table not set response._content = json.dumps({'TimeToLiveDescription': {'TimeToLiveStatus': 'DISABLED'}}) fix_headers_for_updated_response(response) return response elif action == '%s.TagResource' % ACTION_PREFIX or action == '%s.UntagResource' % ACTION_PREFIX: response = Response() response.status_code = 200 response._content = '' # returns an empty body on success. fix_headers_for_updated_response(response) return response elif action == '%s.ListTagsOfResource' % ACTION_PREFIX: response = Response() response.status_code = 200 response._content = json.dumps({'Tags': []}) # TODO: mocked and returns an empty list of tags for now. fix_headers_for_updated_response(response) return response return True def return_response(self, method, path, data, headers, response): data = json.loads(to_str(data)) # update table definitions if data and 'TableName' in data and 'KeySchema' in data: TABLE_DEFINITIONS[data['TableName']] = data if response._content: # fix the table ARN (DynamoDBLocal hardcodes "ddblocal" as the region) content_replaced = re.sub(r'"TableArn"\s*:\s*"arn:aws:dynamodb:ddblocal:([^"]+)"', r'"TableArn": "arn:aws:dynamodb:%s:\1"' % aws_stack.get_local_region(), to_str(response._content)) if content_replaced != response._content: response._content = content_replaced fix_headers_for_updated_response(response) action = headers.get('X-Amz-Target') if not action: return record = { 'eventID': '1', 'eventVersion': '1.0', 'dynamodb': { 'StreamViewType': 'NEW_AND_OLD_IMAGES', 'SizeBytes': -1 }, 'awsRegion': DEFAULT_REGION, 'eventSource': 'aws:dynamodb' } records = [record] if action == '%s.UpdateItem' % ACTION_PREFIX: updated_item = find_existing_item(data) if not updated_item: return record['eventName'] = 'MODIFY' record['dynamodb']['Keys'] = data['Key'] record['dynamodb']['OldImage'] = ProxyListenerDynamoDB.thread_local.existing_item record['dynamodb']['NewImage'] = updated_item record['dynamodb']['SizeBytes'] = len(json.dumps(updated_item)) elif action == '%s.BatchWriteItem' % ACTION_PREFIX: records = [] for table_name, requests in data['RequestItems'].items(): for request in requests: put_request = request.get('PutRequest') if put_request: keys = dynamodb_extract_keys(item=put_request['Item'], table_name=table_name) if isinstance(keys, Response): return keys new_record = clone(record) new_record['eventName'] = 'INSERT' new_record['dynamodb']['Keys'] = keys new_record['dynamodb']['NewImage'] = put_request['Item'] new_record['eventSourceARN'] = aws_stack.dynamodb_table_arn(table_name) records.append(new_record) elif action == '%s.PutItem' % ACTION_PREFIX: existing_item = ProxyListenerDynamoDB.thread_local.existing_item ProxyListenerDynamoDB.thread_local.existing_item = None record['eventName'] = 'INSERT' if not existing_item else 'MODIFY' keys = dynamodb_extract_keys(item=data['Item'], table_name=data['TableName']) if isinstance(keys, Response): return keys record['dynamodb']['Keys'] = keys record['dynamodb']['NewImage'] = data['Item'] record['dynamodb']['SizeBytes'] = len(json.dumps(data['Item'])) elif action == '%s.GetItem' % ACTION_PREFIX: if response.status_code == 200: content = json.loads(to_str(response.content)) # make sure we append 'ConsumedCapacity', which is properly # returned by dynalite, but not by AWS's DynamoDBLocal if 'ConsumedCapacity' not in content and data.get('ReturnConsumedCapacity') in ('TOTAL', 'INDEXES'): content['ConsumedCapacity'] = { 'CapacityUnits': 0.5, # TODO hardcoded 'TableName': data['TableName'] } response._content = json.dumps(content) fix_headers_for_updated_response(response) elif action == '%s.DeleteItem' % ACTION_PREFIX: old_item = ProxyListenerDynamoDB.thread_local.existing_item record['eventName'] = 'REMOVE' record['dynamodb']['Keys'] = data['Key'] record['dynamodb']['OldImage'] = old_item elif action == '%s.CreateTable' % ACTION_PREFIX: if 'StreamSpecification' in data: create_dynamodb_stream(data) event_publisher.fire_event(event_publisher.EVENT_DYNAMODB_CREATE_TABLE, payload={'n': event_publisher.get_hash(data['TableName'])}) return elif action == '%s.DeleteTable' % ACTION_PREFIX: event_publisher.fire_event(event_publisher.EVENT_DYNAMODB_DELETE_TABLE, payload={'n': event_publisher.get_hash(data['TableName'])}) return elif action == '%s.UpdateTable' % ACTION_PREFIX: if 'StreamSpecification' in data: create_dynamodb_stream(data) return else: # nothing to do return if len(records) > 0 and 'eventName' in records[0]: if 'TableName' in data: records[0]['eventSourceARN'] = aws_stack.dynamodb_table_arn(data['TableName']) forward_to_lambda(records) forward_to_ddb_stream(records) # instantiate listener UPDATE_DYNAMODB = ProxyListenerDynamoDB() def find_existing_item(put_item): table_name = put_item['TableName'] ddb_client = aws_stack.connect_to_service('dynamodb') search_key = {} if 'Key' in put_item: search_key = put_item['Key'] else: schema = ddb_client.describe_table(TableName=table_name) schemas = [schema['Table']['KeySchema']] for index in schema['Table'].get('GlobalSecondaryIndexes', []): # schemas.append(index['KeySchema']) pass for schema in schemas: for key in schema: key_name = key['AttributeName'] search_key[key_name] = put_item['Item'][key_name] if not search_key: return req = {'TableName': table_name, 'Key': search_key} existing_item = aws_stack.dynamodb_get_item_raw(req) if 'Item' not in existing_item: if 'message' in existing_item: table_names = ddb_client.list_tables()['TableNames'] msg = ('Unable to get item from DynamoDB (existing tables: %s): %s' % (table_names, existing_item['message'])) LOGGER.warning(msg) return return existing_item.get('Item') def fix_headers_for_updated_response(response): response.headers['content-length'] = len(to_bytes(response.content)) response.headers['x-amz-crc32'] = calculate_crc32(response) def calculate_crc32(response): return crc32(to_bytes(response.content)) & 0xffffffff def create_dynamodb_stream(data): stream = data['StreamSpecification'] enabled = stream.get('StreamEnabled') if enabled not in [False, 'False']: table_name = data['TableName'] view_type = stream['StreamViewType'] dynamodbstreams_api.add_dynamodb_stream(table_name=table_name, view_type=view_type, enabled=enabled) def forward_to_lambda(records): for record in records: sources = lambda_api.get_event_sources(source_arn=record['eventSourceARN']) event = { 'Records': [record] } for src in sources: lambda_api.run_lambda(event=event, context={}, func_arn=src['FunctionArn']) def forward_to_ddb_stream(records): dynamodbstreams_api.forward_events(records) def dynamodb_extract_keys(item, table_name): result = {} if table_name not in TABLE_DEFINITIONS: LOGGER.warning('Unknown table: %s not found in %s' % (table_name, TABLE_DEFINITIONS)) return None for key in TABLE_DEFINITIONS[table_name]['KeySchema']: attr_name = key['AttributeName'] if attr_name not in item: return error_response(error_type='ValidationException', message='One of the required keys was not given a value') result[attr_name] = item[attr_name] return result def error_response(message=None, error_type=None, code=400): if not message: message = 'Unknown error' if not error_type: error_type = 'UnknownError' if 'com.amazonaws.dynamodb' not in error_type: error_type = 'com.amazonaws.dynamodb.v20120810#%s' % error_type response = Response() response.status_code = code content = { 'message': message, '__type': error_type } response._content = json.dumps(content) return response def error_response_throughput(): message = ('The level of configured provisioned throughput for the table was exceeded. ' + 'Consider increasing your provisioning level with the UpdateTable API') error_type = 'ProvisionedThroughputExceededException' return error_response(message, error_type)
42.186047
118
0.621121
786c064bbef4bff3805e114ab466bfa525e874ac
9,078
py
Python
code/showcases/recursive-voronoi.py
geo7/scientific-visualization-book
71f6bac4db7ee2f26e88052fe7faa800303d8b00
[ "BSD-2-Clause" ]
2
2021-11-17T15:10:09.000Z
2021-12-24T13:31:10.000Z
code/showcases/recursive-voronoi.py
WuShichao/scientific-visualization-book
389766215aa6b234ed1cf560a3768437d41d1d37
[ "BSD-2-Clause" ]
1
2021-12-12T11:37:48.000Z
2021-12-12T11:39:00.000Z
code/showcases/recursive-voronoi.py
WuShichao/scientific-visualization-book
389766215aa6b234ed1cf560a3768437d41d1d37
[ "BSD-2-Clause" ]
2
2021-12-30T12:20:07.000Z
2022-02-24T06:36:41.000Z
# ---------------------------------------------------------------------------- # Title: Scientific Visualisation - Python & Matplotlib # Author: Nicolas P. Rougier # License: BSD # ---------------------------------------------------------------------------- import numpy as np import scipy.spatial import matplotlib.pyplot as plt import matplotlib.path as mpath from shapely.geometry import Polygon from matplotlib.collections import PolyCollection from math import sqrt, ceil, floor, pi, cos, sin def blue_noise(shape, radius, k=30, seed=None): """ Generate blue noise over a two-dimensional rectangle of size (width,height) Parameters ---------- shape : tuple Two-dimensional domain (width x height) radius : float Minimum distance between samples k : int, optional Limit of samples to choose before rejection (typically k = 30) seed : int, optional If provided, this will set the random seed before generating noise, for valid pseudo-random comparisons. References ---------- .. [1] Fast Poisson Disk Sampling in Arbitrary Dimensions, Robert Bridson, Siggraph, 2007. :DOI:`10.1145/1278780.1278807` """ def sqdist(a, b): """ Squared Euclidean distance """ dx, dy = a[0] - b[0], a[1] - b[1] return dx * dx + dy * dy def grid_coords(p): """ Return index of cell grid corresponding to p """ return int(floor(p[0] / cellsize)), int(floor(p[1] / cellsize)) def fits(p, radius): """ Check whether p can be added to the queue """ radius2 = radius * radius gx, gy = grid_coords(p) for x in range(max(gx - 2, 0), min(gx + 3, grid_width)): for y in range(max(gy - 2, 0), min(gy + 3, grid_height)): g = grid[x + y * grid_width] if g is None: continue if sqdist(p, g) <= radius2: return False return True # When given a seed, we use a private random generator in order to not # disturb the default global random generator if seed is not None: from numpy.random.mtrand import RandomState rng = RandomState(seed=seed) else: rng = np.random width, height = shape cellsize = radius / sqrt(2) grid_width = int(ceil(width / cellsize)) grid_height = int(ceil(height / cellsize)) grid = [None] * (grid_width * grid_height) p = rng.uniform(0, shape, 2) queue = [p] grid_x, grid_y = grid_coords(p) grid[grid_x + grid_y * grid_width] = p while queue: qi = rng.randint(len(queue)) qx, qy = queue[qi] queue[qi] = queue[-1] queue.pop() for _ in range(k): theta = rng.uniform(0, 2 * pi) r = radius * np.sqrt(rng.uniform(1, 4)) p = qx + r * cos(theta), qy + r * sin(theta) if not (0 <= p[0] < width and 0 <= p[1] < height) or not fits(p, radius): continue queue.append(p) gx, gy = grid_coords(p) grid[gx + gy * grid_width] = p return np.array([p for p in grid if p is not None]) def bounded_voronoi(points): """ Reconstruct infinite voronoi regions in a 2D diagram to finite regions. Parameters ---------- vor : Voronoi Input diagram Returns ------- regions : list of tuples Indices of vertices in each revised Voronoi regions. vertices : list of tuples Coordinates for revised Voronoi vertices. Same as coordinates of input vertices, with 'points at infinity' appended to the end. """ vor = scipy.spatial.Voronoi(points) new_regions = [] new_vertices = vor.vertices.tolist() center = vor.points.mean(axis=0) radius = vor.points.ptp().max() * 2 # Construct a map containing all ridges for a given point all_ridges = {} for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices): all_ridges.setdefault(p1, []).append((p2, v1, v2)) all_ridges.setdefault(p2, []).append((p1, v1, v2)) # Reconstruct infinite regions for p1, region in enumerate(vor.point_region): vertices = vor.regions[region] if all(v >= 0 for v in vertices): # finite region new_regions.append(vertices) continue # reconstruct a non-finite region ridges = all_ridges[p1] new_region = [v for v in vertices if v >= 0] for p2, v1, v2 in ridges: if v2 < 0: v1, v2 = v2, v1 if v1 >= 0: # finite ridge: already in the region continue # Compute the missing endpoint of an infinite ridge t = vor.points[p2] - vor.points[p1] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[[p1, p2]].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[v2] + direction * radius new_region.append(len(new_vertices)) new_vertices.append(far_point.tolist()) # sort region counterclockwise vs = np.asarray([new_vertices[v] for v in new_region]) c = vs.mean(axis=0) angles = np.arctan2(vs[:, 1] - c[1], vs[:, 0] - c[0]) new_region = np.array(new_region)[np.argsort(angles)] # finish new_regions.append(new_region.tolist()) return new_regions, np.asarray(new_vertices) def poly_random_points_safe(V, n=10): def random_point_inside_triangle(A, B, C): r1 = np.sqrt(np.random.uniform(0, 1)) r2 = np.random.uniform(0, 1) return (1 - r1) * A + r1 * (1 - r2) * B + r1 * r2 * C def triangle_area(A, B, C): return 0.5 * np.abs( (B[0] - A[0]) * (C[1] - A[1]) - (C[0] - A[0]) * (B[1] - A[1]) ) C = V.mean(axis=0) T = [(C, V[i], V[i + 1]) for i in range(len(V) - 1)] A = np.array([triangle_area(*t) for t in T]) A /= A.sum() points = [C] for i in np.random.choice(len(A), size=n - 1, p=A): points.append(random_point_inside_triangle(*T[i])) return points def poly_random_points(V, n=10): path = mpath.Path(V) xmin, xmax = V[:, 0].min(), V[:, 0].max() ymin, ymax = V[:, 1].min(), V[:, 1].max() xscale, yscale = xmax - xmin, ymax - ymin if xscale > yscale: xscale, yscale = 1, yscale / xscale else: xscale, yscale = xscale / yscale, 1 radius = 0.85 * np.sqrt(2 * xscale * yscale / (n * np.pi)) points = blue_noise((xscale, yscale), radius) points = [xmin, ymin] + points * [xmax - xmin, ymax - ymin] inside = path.contains_points(points) P = points[inside] if len(P) < 5: return poly_random_points_safe(V, n) np.random.shuffle(P) return P[:n] def voronoi(V, npoints, level, maxlevel, color=None): if level == maxlevel: return [] linewidths = [1.50, 1.00, 0.75, 0.50, 0.25, 0.10] edgecolors = [ (0, 0, 0, 1.00), (0, 0, 0, 0.50), (0, 0, 0, 0.25), (0, 0, 0, 0.10), (0, 0, 0, 0.10), (0, 0, 0, 0.10), ] if level == 1: color = np.random.uniform(0, 1, 4) color[3] = 0.5 points = poly_random_points(V, npoints - level) regions, vertices = bounded_voronoi(points) clip = Polygon(V) cells = [] for region in regions: polygon = Polygon(vertices[region]).intersection(clip) polygon = np.array([point for point in polygon.exterior.coords]) linewidth = linewidths[level] edgecolor = edgecolors[level] facecolor = "none" if level > 1: alpha = color[3] + (1 / (level + 1)) * 0.25 * np.random.uniform(-1, 0.5) color = color[0], color[1], color[2], min(max(alpha, 0.1), 1) if level == maxlevel - 1: facecolor = color zorder = -level cells.append((polygon, linewidth, edgecolor, facecolor, zorder)) cells.extend(voronoi(polygon, npoints, level + 1, maxlevel, color)) return cells np.random.seed(12345) T = np.linspace(0, 2 * np.pi, 100, endpoint=False) R = 100 X, Y = R * np.cos(T), R * np.sin(T) V = np.c_[X, Y] V = 100 * np.array([[-1, -1], [-1, 1], [1, 1], [1, -1]]) fig = plt.figure(figsize=(8, 8)) d = R - 1 ax = fig.add_axes([0, 0, 1, 1], aspect=1, xlim=[-d, d], ylim=[-d, d]) ax.axis("off") cells = voronoi(V, 11, level=0, maxlevel=5) zorder = [cell[-1] for cell in cells] cells = [cells[i] for i in np.argsort(zorder)] polygons = [cell[0] for cell in cells] linewidths = [cell[1] for cell in cells] edgecolors = [cell[2] for cell in cells] facecolors = [cell[3] for cell in cells] collection = PolyCollection( polygons, linewidth=linewidths, edgecolor=edgecolors, facecolor=facecolors ) ax.add_collection(collection) plt.savefig("../../figures/showcases/recursive-voronoi.pdf") plt.savefig("../../figures/showcases/recursive-voronoi.png", dpi=600) plt.show()
31.852632
85
0.564772
10bcdfc38a07a0250d6f7c82b6914700baaaa5cf
3,708
py
Python
app/lex_interface.py
rwdavis513/bible-verse-lookup
643146fdf77d701c050f4f36526b974136094c9a
[ "MIT" ]
null
null
null
app/lex_interface.py
rwdavis513/bible-verse-lookup
643146fdf77d701c050f4f36526b974136094c9a
[ "MIT" ]
1
2021-06-01T22:12:06.000Z
2021-06-01T22:12:06.000Z
app/lex_interface.py
rwdavis513/bible-verse-lookup
643146fdf77d701c050f4f36526b974136094c9a
[ "MIT" ]
null
null
null
import datetime import dateutil.parser # --- Helpers that build all of the responses --- def elicit_slot(session_attributes, intent_name, slots, slot_to_elicit, message, response_card=None): if type(message) != dict: message = {'contentType': 'PlainText', 'content': message } if not response_card: return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'ElicitSlot', 'intentName': intent_name, 'slots': slots, 'slotToElicit': slot_to_elicit, 'message': message } } else: return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'ElicitSlot', 'intentName': intent_name, 'slots': slots, 'slotToElicit': slot_to_elicit, 'message': message, 'responseCard': response_card } } def confirm_intent(session_attributes, intent_name, slots, message): if type(message) != dict: message = {'contentType': 'PlainText', 'content': message } return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'ConfirmIntent', 'intentName': intent_name, 'slots': slots, 'message': message } } def elicit_intent(session_attributes, intent_name, message): return { 'sessionAttributes': session_attributes, "dialogAction": { "type": "ElicitIntent", "message": message } } def close(session_attributes, fulfillment_state, message): if type(message) != dict: message = {'contentType': 'PlainText', 'content': message } response = { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'Close', 'fulfillmentState': fulfillment_state, 'message': message } } return response def delegate(session_attributes, slots): return { 'sessionAttributes': session_attributes, 'dialogAction': { 'type': 'Delegate', 'slots': slots } } # --- Helper Functions --- def safe_int(n): """ Safely convert n value to int. """ if n is not None: return int(n) return n def try_ex(func): """ Call passed in function in try block. If KeyError is encountered return None. This function is intended to be used to safely access dictionary. Note that this function would have negative impact on performance. """ try: return func() except KeyError: return None def isvalid_date(date): try: dateutil.parser.parse(date) return True except ValueError: return False def get_day_difference(later_date, earlier_date): later_datetime = dateutil.parser.parse(later_date).date() earlier_datetime = dateutil.parser.parse(earlier_date).date() return abs(later_datetime - earlier_datetime).days def add_days(date, number_of_days): new_date = dateutil.parser.parse(date).date() new_date += datetime.timedelta(days=number_of_days) return new_date.strftime('%Y-%m-%d') def build_validation_result(isvalid, violated_slot, message_content): return { 'isValid': isvalid, 'violatedSlot': violated_slot, 'message': {'contentType': 'PlainText', 'content': message_content} }
25.93007
81
0.565804
ddaf6317f8f8438f882f9f96ef8a57588d45ce1f
908
py
Python
tensorflow1/dataset_benchmark.py
Alwaysproblem/explore-ipu
7f039768d40e1f3163e0941e2f8246f11ab953c2
[ "Apache-2.0" ]
null
null
null
tensorflow1/dataset_benchmark.py
Alwaysproblem/explore-ipu
7f039768d40e1f3163e0941e2f8246f11ab953c2
[ "Apache-2.0" ]
null
null
null
tensorflow1/dataset_benchmark.py
Alwaysproblem/explore-ipu
7f039768d40e1f3163e0941e2f8246f11ab953c2
[ "Apache-2.0" ]
null
null
null
import tensorflow import json # from tensorflow.python.ipu import (ipu_compiler, ipu_infeed_queue, ipu_outfeed_queue, loops, scopes, utils) # import tensorflow.compat.v1 as tf import tensorflow_core._api.v1.compat.v1 as tf from tensorflow_core.python import ipu from tensorflow_core.python.ipu import (ipu_compiler, ipu_infeed_queue, ipu_outfeed_queue, loops, scopes, utils) from tensorflow_core.python.ipu.scopes import ipu_scope from tensorflow_core.python.ipu.utils import (create_ipu_config, set_ipu_model_options, auto_select_ipus, configure_ipu_system) from tensorflow_core.python import keras tf.disable_v2_behavior() ds = tf.data.Dataset.from_tensors(tf.random.normal(shape=[2, 20])) ds = ds.repeat() ds = ds.prefetch(1000) benchmark_op = ipu.dataset_benchmark.dataset_benchmark(ds, 10, 512) with tf.Session() as sess: json_string = sess.run(benchmark_op) print(json_string[0].decode())
37.833333
127
0.80837
5f3de83522daddd7f3b016f3f44b305b60b25a8f
4,125
py
Python
train_with_your_data/scripts/cpmg/automated_metabolite_quantification/model_utils.py
ciceklab/targeted_brain_tumor_margin_assessment
2cf729019dfc1785992208a69c353a659c9b6448
[ "MIT" ]
1
2021-12-11T20:06:39.000Z
2021-12-11T20:06:39.000Z
train_with_your_data/scripts/eretic_cpmg/automated_metabolite_quantification/model_utils.py
ciceklab/targeted_brain_tumor_margin_assessment
2cf729019dfc1785992208a69c353a659c9b6448
[ "MIT" ]
null
null
null
train_with_your_data/scripts/eretic_cpmg/automated_metabolite_quantification/model_utils.py
ciceklab/targeted_brain_tumor_margin_assessment
2cf729019dfc1785992208a69c353a659c9b6448
[ "MIT" ]
2
2021-12-15T18:17:17.000Z
2021-12-16T12:08:30.000Z
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.nn.modules.module import _addindent from torch.utils.data import Dataset import numpy as np from collections import Counter import pdb import matplotlib.pyplot as plt import os # summarize Pytorch model def summary(model, show_weights=True, show_parameters=True): """Summarizes torch model by showing trainable parameters and weights.""" tmpstr = model.__class__.__name__ + ' (\n' for key, module in model._modules.items(): # if it contains layers let call it recursively to get params and weights if type(module) in [ torch.nn.modules.container.Container, torch.nn.modules.container.Sequential ]: modstr = torch_summarize(module) else: modstr = module.__repr__() modstr = _addindent(modstr, 2) params = sum([np.prod(p.size()) for p in module.parameters()]) weights = tuple([tuple(p.size()) for p in module.parameters()]) tmpstr += ' (' + key + '): ' + modstr if show_weights: tmpstr += ', weights={}'.format(weights) if show_parameters: tmpstr += ', parameters={}'.format(params) tmpstr += '\n' tmpstr = tmpstr + ')' return tmpstr # multi indexing of values in a dictionary combined in a result dictionary. def create_data_variables(dct, idx): result_dct = {} for x in dct.keys(): result_dct[x] = dct[x][idx] return result_dct # Quantification dataset for all data class HRMASDataset_Type_A(Dataset): def __init__(self, dct): super(HRMASDataset_Type_A, self).__init__() self.data_dct = dct def __len__(self): return self.data_dct["spectra"].shape[0] def __getitem__(self, idx): return (self.data_dct["spectra"][idx], self.data_dct["ppm_spectra"][idx], self.data_dct["quant"][idx], self.data_dct["quant_availability"][idx], self.data_dct["class_labels"][idx]) # Quantification dataset for all data class HRMASDataset_Type_B(Dataset): def __init__(self, dct): super(HRMASDataset_Type_B, self).__init__() self.data_dct = dct def __len__(self): return self.data_dct["spectra"].shape[0] def __getitem__(self, idx): return (self.data_dct["spectra"][idx], self.data_dct["ppm_spectra"][idx], self.data_dct["quant"][idx], self.data_dct["class_labels"][idx]) # changed and used from a MIT licensed repo on github # reference: https://github.com/Bjarten/early-stopping-pytorch/blob/master/pytorchtools.py class EarlyStopping: """Early stops the training if validation loss doesn't improve after a given patience.""" def __init__(self, patience=7, verbose=False, delta=0): """ Args: patience (int): How long to wait after last time validation loss improved. Default: 7 verbose (bool): If True, prints a message for each validation loss improvement. Default: False delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: 0 """ self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta def __call__(self, val_loss): score = -val_loss if self.best_score is None: self.best_score = score elif score < self.best_score + self.delta: self.counter += 1 if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.counter = 0 # absolute percentage error per prediction and ground truth level (no aggregation applied). def absolute_percentage_error(y_true, y_pred): return np.abs(y_true - y_pred) / np.abs(y_true)
38.915094
189
0.624727
5551cbb05754e4131257cbcc8d205fde41f44f1c
125
py
Python
ozone/message/__init__.py
wenbo1188/ozone
962f9bfbbe4ea29eb7cb50eff8058806efee7143
[ "MIT" ]
null
null
null
ozone/message/__init__.py
wenbo1188/ozone
962f9bfbbe4ea29eb7cb50eff8058806efee7143
[ "MIT" ]
8
2018-03-24T01:44:42.000Z
2018-08-25T06:43:49.000Z
ozone/message/__init__.py
wenbo1188/ozone
962f9bfbbe4ea29eb7cb50eff8058806efee7143
[ "MIT" ]
null
null
null
from flask import Blueprint message_page = Blueprint("message", __name__, template_folder="templates") from . import views
20.833333
74
0.792
1fae64af4a40b962011e2c09986ef492bf48bc13
16,300
py
Python
finrl/env/env_stocktrading_cashpenalty.py
kura52/FinRL-Library
238f8fd85e936ab3cf77144f9a4588a84cb41c9c
[ "MIT" ]
null
null
null
finrl/env/env_stocktrading_cashpenalty.py
kura52/FinRL-Library
238f8fd85e936ab3cf77144f9a4588a84cb41c9c
[ "MIT" ]
null
null
null
finrl/env/env_stocktrading_cashpenalty.py
kura52/FinRL-Library
238f8fd85e936ab3cf77144f9a4588a84cb41c9c
[ "MIT" ]
null
null
null
import logging import numpy as np import pandas as pd import random from copy import deepcopy import gym import time from gym.utils import seeding from gym import spaces import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines3.common import logger class StockTradingEnvCashpenalty(gym.Env): """ A stock trading environment for OpenAI gym This environment penalizes the model for not maintaining a reserve of cash. This enables the model to manage cash reserves in addition to performing trading procedures. Reward at any step is given as follows r_i = (sum(cash, asset_value) - initial_cash - max(0, sum(cash, asset_value)*cash_penalty_proportion-cash))/(days_elapsed) This reward function takes into account a liquidity requirement, as well as long-term accrued rewards. Parameters: df (pandas.DataFrame): Dataframe containing data buy_cost_pct (float): cost for buying shares sell_cost_pct (float): cost for selling shares hmax (int, array): maximum cash to be traded in each trade per asset. If an array is provided, then each index correspond to each asset discrete_actions (bool): option to choose whether perform dicretization on actions space or not shares_increment (int): multiples number of shares can be bought in each trade. Only applicable if discrete_actions=True turbulence_threshold (float): Maximum turbulence allowed in market for purchases to occur. If exceeded, positions are liquidated print_verbosity(int): When iterating (step), how often to print stats about state of env initial_amount: (int, float): Amount of cash initially available daily_information_columns (list(str)): Columns to use when building state space from the dataframe. It could be OHLC columns or any other variables such as technical indicators and turbulence index cash_penalty_proportion (int, float): Penalty to apply if the algorithm runs out of cash patient (bool): option to choose whether end the cycle when we're running out of cash or just don't buy anything until we got additional cash RL Inputs and Outputs action space: [<n_assets>,] in range {-1, 1} state space: {start_cash, [shares_i for in in assets], [[indicator_j for j in indicators] for i in assets]]} TODO: Organize functions Write README Document tests """ metadata = {"render.modes": ["human"]} def __init__( self, df, buy_cost_pct=3e-3, sell_cost_pct=3e-3, date_col_name="date", hmax=10, discrete_actions=False, shares_increment=1, turbulence_threshold=None, print_verbosity=10, initial_amount=1e6, daily_information_cols=["open", "close", "high", "low", "volume"], cache_indicator_data=True, cash_penalty_proportion=0.1, random_start=True, patient=False, currency="$", ): self.df = df self.stock_col = "tic" self.assets = df[self.stock_col].unique() self.dates = df[date_col_name].sort_values().unique() self.random_start = random_start self.discrete_actions = discrete_actions self.patient = patient self.currency = currency self.df = self.df.set_index(date_col_name) self.shares_increment = shares_increment self.hmax = hmax self.initial_amount = initial_amount self.print_verbosity = print_verbosity self.buy_cost_pct = buy_cost_pct self.sell_cost_pct = sell_cost_pct self.turbulence_threshold = turbulence_threshold self.daily_information_cols = daily_information_cols self.state_space = ( 1 + len(self.assets) + len(self.assets) * len(self.daily_information_cols) ) self.action_space = spaces.Box(low=-1, high=1, shape=(len(self.assets),)) self.observation_space = spaces.Box( low=-np.inf, high=np.inf, shape=(self.state_space,) ) self.turbulence = 0 self.episode = -1 # initialize so we can call reset self.episode_history = [] self.printed_header = False self.cache_indicator_data = cache_indicator_data self.cached_data = None self.cash_penalty_proportion = cash_penalty_proportion if self.cache_indicator_data: logging.info("caching data") self.cached_data = [ self.get_date_vector(i) for i, _ in enumerate(self.dates) ] logging.info("data cached!") def seed(self, seed=None): if seed is None: seed = int(round(time.time() * 1000)) random.seed(seed) @property def current_step(self): return self.date_index - self.starting_point @property def cash_on_hand(self): # amount of cash held at current timestep return self.state_memory[-1][0] @property def holdings(self): # Quantity of shares held at current timestep return self.state_memory[-1][1 : len(self.assets) + 1] @property def closings(self): return np.array(self.get_date_vector(self.date_index, cols=["close"])) def reset(self): self.seed() self.sum_trades = 0 if self.random_start: starting_point = random.choice(range(int(len(self.dates) * 0.5))) self.starting_point = starting_point else: self.starting_point = 0 self.date_index = self.starting_point self.turbulence = 0 self.episode += 1 self.actions_memory = [] self.transaction_memory = [] self.state_memory = [] self.account_information = { "cash": [], "asset_value": [], "total_assets": [], "reward": [], } init_state = np.array( [self.initial_amount] + [0] * len(self.assets) + self.get_date_vector(self.date_index) ) self.state_memory.append(init_state) return init_state def get_date_vector(self, date, cols=None): if (cols is None) and (self.cached_data is not None): return self.cached_data[date] else: date = self.dates[date] if cols is None: cols = self.daily_information_cols trunc_df = self.df.loc[date] v = [] for a in self.assets: subset = trunc_df[trunc_df[self.stock_col] == a] v += subset.loc[date, cols].tolist() assert len(v) == len(self.assets) * len(cols) return v def return_terminal(self, reason="Last Date", reward=0): state = self.state_memory[-1] self.log_step(reason=reason, terminal_reward=reward) # Add outputs to logger interface gl_pct = self.account_information["total_assets"][-1] / self.initial_amount logger.record("environment/GainLoss_pct", (gl_pct - 1) * 100) logger.record( "environment/total_assets", int(self.account_information["total_assets"][-1]), ) reward_pct = self.account_information["total_assets"][-1] / self.initial_amount logger.record("environment/total_reward_pct", (reward_pct - 1) * 100) logger.record("environment/total_trades", self.sum_trades) logger.record( "environment/avg_daily_trades", self.sum_trades / (self.current_step), ) logger.record( "environment/avg_daily_trades_per_asset", self.sum_trades / (self.current_step) / len(self.assets), ) logger.record("environment/completed_steps", self.current_step) logger.record( "environment/sum_rewards", np.sum(self.account_information["reward"]) ) logger.record( "environment/cash_proportion", self.account_information["cash"][-1] / self.account_information["total_assets"][-1], ) return state, reward, True, {} def log_step(self, reason, terminal_reward=None): if terminal_reward is None: terminal_reward = self.account_information["reward"][-1] cash_pct = ( self.account_information["cash"][-1] / self.account_information["total_assets"][-1] ) gl_pct = self.account_information["total_assets"][-1] / self.initial_amount rec = [ self.episode, self.date_index - self.starting_point, reason, f"{self.currency}{'{:0,.0f}'.format(float(self.account_information['cash'][-1]))}", f"{self.currency}{'{:0,.0f}'.format(float(self.account_information['total_assets'][-1]))}", f"{terminal_reward*100:0.5f}%", f"{(gl_pct - 1)*100:0.5f}%", f"{cash_pct*100:0.2f}%", ] self.episode_history.append(rec) logging.info(self.template.format(*rec)) def log_header(self): if self.printed_header is False: self.template = "{0:4}|{1:4}|{2:15}|{3:15}|{4:15}|{5:10}|{6:10}|{7:10}" # column widths: 8, 10, 15, 7, 10 logging.info( self.template.format( "EPISODE", "STEPS", "TERMINAL_REASON", "CASH", "TOT_ASSETS", "TERMINAL_REWARD_unsc", "GAINLOSS_PCT", "CASH_PROPORTION", ) ) self.printed_header = True def get_reward(self): if self.current_step == 0: return 0 else: assets = self.account_information["total_assets"][-1] cash = self.account_information["cash"][-1] cash_penalty = max(0, (assets * self.cash_penalty_proportion - cash)) assets -= cash_penalty reward = (assets / self.initial_amount) - 1 reward /= self.current_step return reward def get_transactions(self, actions): """ This function takes in a raw 'action' from the model and makes it into realistic transactions This function includes logic for discretizing It also includes turbulence logic. """ # record actions of the model self.actions_memory.append(actions) # multiply actions by the hmax value actions = actions * self.hmax # Do nothing for shares with zero value actions = np.where(self.closings > 0, actions, 0) # discretize optionally if self.discrete_actions: # convert into integer because we can't buy fraction of shares actions = actions // self.closings actions = actions.astype(int) # round down actions to the nearest multiplies of shares_increment actions = np.where( actions >= 0, (actions // self.shares_increment) * self.shares_increment, ((actions + self.shares_increment) // self.shares_increment) * self.shares_increment, ) else: actions = actions / self.closings # can't sell more than we have actions = np.maximum(actions, -np.array(self.holdings)) # deal with turbulence if self.turbulence_threshold is not None: # if turbulence goes over threshold, just clear out all positions if self.turbulence >= self.turbulence_threshold: actions = -(np.array(self.holdings)) self.log_step(reason="TURBULENCE") return actions def step(self, actions): # let's just log what we're doing in terms of max actions at each step. self.sum_trades += np.sum(np.abs(actions)) self.log_header() # print if it's time. if (self.current_step + 1) % self.print_verbosity == 0: self.log_step(reason="update") # if we're at the end if self.date_index == len(self.dates) - 1: # if we hit the end, set reward to total gains (or losses) return self.return_terminal(reward=self.get_reward()) else: """ First, we need to compute values of holdings, save these, and log everything. Then we can reward our model for its earnings. """ # compute value of cash + assets begin_cash = self.cash_on_hand assert min(self.holdings) >= 0 asset_value = np.dot(self.holdings, self.closings) # log the values of cash, assets, and total assets self.account_information["cash"].append(begin_cash) self.account_information["asset_value"].append(asset_value) self.account_information["total_assets"].append(begin_cash + asset_value) # compute reward once we've computed the value of things! reward = self.get_reward() self.account_information["reward"].append(reward) """ Now, let's get down to business at hand. """ transactions = self.get_transactions(actions) # compute our proceeds from sells, and add to cash sells = -np.clip(transactions, -np.inf, 0) proceeds = np.dot(sells, self.closings) costs = proceeds * self.sell_cost_pct coh = begin_cash + proceeds # compute the cost of our buys buys = np.clip(transactions, 0, np.inf) spend = np.dot(buys, self.closings) costs += spend * self.buy_cost_pct # if we run out of cash... if (spend + costs) > coh: if self.patient: # ... just don't buy anything until we got additional cash self.log_step(reason="CASH SHORTAGE") transactions = np.where(transactions > 0, 0, transactions) spend = 0 costs = 0 else: # ... end the cycle and penalize return self.return_terminal( reason="CASH SHORTAGE", reward=self.get_reward() ) self.transaction_memory.append( transactions ) # capture what the model's could do # verify we didn't do anything impossible here assert (spend + costs) <= coh # update our holdings coh = coh - spend - costs holdings_updated = self.holdings + transactions self.date_index += 1 if self.turbulence_threshold is not None: self.turbulence = self.get_date_vector( self.date_index, cols=["turbulence"] )[0] # Update State state = ( [coh] + list(holdings_updated) + self.get_date_vector(self.date_index) ) self.state_memory.append(state) return state, reward, False, {} def get_sb_env(self): def get_self(): return deepcopy(self) e = DummyVecEnv([get_self]) obs = e.reset() return e, obs def get_multiproc_env(self, n=10): def get_self(): return deepcopy(self) e = SubprocVecEnv([get_self for _ in range(n)], start_method="fork") obs = e.reset() return e, obs def save_asset_memory(self): if self.current_step == 0: return None else: self.account_information["date"] = self.dates[ -len(self.account_information["cash"]) : ] return pd.DataFrame(self.account_information) def save_action_memory(self): if self.current_step == 0: return None else: return pd.DataFrame( { "date": self.dates[-len(self.account_information["cash"]) :], "actions": self.actions_memory, "transactions": self.transaction_memory, } )
39.659367
205
0.592883
af530cfa7e8fadb091dca66d7947a5723157f366
276
py
Python
UnityEngine/ParticleSystemSubEmitterType/__init__.py
Grim-es/udon-pie-auto-completion
c2cd86554ed615cdbbb01e19fa40665eafdfaedc
[ "MIT" ]
null
null
null
UnityEngine/ParticleSystemSubEmitterType/__init__.py
Grim-es/udon-pie-auto-completion
c2cd86554ed615cdbbb01e19fa40665eafdfaedc
[ "MIT" ]
null
null
null
UnityEngine/ParticleSystemSubEmitterType/__init__.py
Grim-es/udon-pie-auto-completion
c2cd86554ed615cdbbb01e19fa40665eafdfaedc
[ "MIT" ]
null
null
null
from UdonPie import UnityEngine from UdonPie.Undefined import * class ParticleSystemSubEmitterType: def __new__(cls, arg1=None): ''' :returns: ParticleSystemSubEmitterType :rtype: UnityEngine.ParticleSystemSubEmitterType ''' pass
23
56
0.692029
77cbedd875b2297903582a0286d744fa40b64bb6
39,625
py
Python
syncplay/messages_de.py
muaz742/syncplay
36239ce01c2ce9ebc8e83b163ae38916ea7a5226
[ "Apache-2.0" ]
null
null
null
syncplay/messages_de.py
muaz742/syncplay
36239ce01c2ce9ebc8e83b163ae38916ea7a5226
[ "Apache-2.0" ]
null
null
null
syncplay/messages_de.py
muaz742/syncplay
36239ce01c2ce9ebc8e83b163ae38916ea7a5226
[ "Apache-2.0" ]
null
null
null
# coding:utf8 """Deutsch dictionary""" de = { "LANGUAGE": "Deutsch", # (German) # Client notifications "config-cleared-notification": "Einstellungen gelöscht. Änderungen werden gespeichert, wenn du eine gültige Konfiguration speicherst.", "relative-config-notification": "Relative Konfigurationsdatei(en) geladen: {}", "connection-attempt-notification": "Verbinde mit {}:{}", # Port, IP "reconnection-attempt-notification": "Verbindung zum Server verloren, versuche erneut", "disconnection-notification": "Verbindung zum Server beendet", "connection-failed-notification": "Verbindung zum Server fehlgeschlagen", "connected-successful-notification": "Erfolgreich mit Server verbunden", "retrying-notification": "%s, versuche erneut in %d Sekunden...", # Seconds "reachout-successful-notification": "{} ({}) erfolgreich erreicht", "rewind-notification": "Zurückgespult wegen Zeitdifferenz mit {}", # User "fastforward-notification": "Vorgespult wegen Zeitdifferenz mit {}", # User "slowdown-notification": "Verlangsamt wegen Zeitdifferenz mit {}", # User "revert-notification": "Normalgeschwindigkeit", "pause-notification": "{} pausierte", # User "unpause-notification": "{} startete", # User "seek-notification": "{} sprang von {} nach {}", # User, from time, to time "current-offset-notification": "Aktueller Offset: {} Sekunden", # Offset "media-directory-list-updated-notification": "Syncplay-Medienverzeichnisse wurden aktualisiert.", "room-join-notification": "{} hat den Raum „{}“ betreten", # User "left-notification": "{} ist gegangen", # User "left-paused-notification": "{} ist gegangen, {} pausierte", # User who left, User who paused "playing-notification": "{} spielt „{}“ ({})", # User, file, duration "playing-notification/room-addendum": " in Raum: „{}“", # Room "not-all-ready": "Noch nicht bereit: {}", # Usernames "all-users-ready": "Alle sind bereit ({} Nutzer)", # Number of ready users "ready-to-unpause-notification": "Du bist bereit - noch einmal fortsetzen klicken zum abspielen", "set-as-ready-notification": "Du bist bereit", "set-as-not-ready-notification": "Du bist nicht bereit", "autoplaying-notification": "Starte in {}...", # Number of seconds until playback will start "identifying-as-controller-notification": "Identifiziere als Raumleiter mit Passwort „{}“...", # TODO: find a better translation to "room operator" "failed-to-identify-as-controller-notification": "{} konnte sich nicht als Raumleiter identifizieren.", "authenticated-as-controller-notification": "{} authentifizierte sich als Raumleiter", "created-controlled-room-notification": "Gesteuerten Raum „{}“ mit Passwort „{}“ erstellt. Bitte diese Informationen für die Zukunft aufheben! \n\nIn managed rooms everyone is kept in sync with the room operator(s) who are the only ones who can pause, unpause, seek, and change the playlist.\n\nYou should ask regular viewers to join the room '{}' but the room operators can join the room '{}' to automatically authenticate themselves.", # RoomName, operatorPassword, roomName, roomName:operatorPassword # TODO: Translate "file-different-notification": "Deine Datei scheint sich von {}s zu unterscheiden", # User "file-differences-notification": "Deine Datei unterscheidet sich auf folgende Art: {}", "room-file-differences": "Unterschiedlich in: {}", # File differences (filename, size, and/or duration) "file-difference-filename": "Name", "file-difference-filesize": "Größe", "file-difference-duration": "Dauer", "alone-in-the-room": "Du bist alleine im Raum", "different-filesize-notification": " (ihre Dateigröße ist anders als deine!)", "userlist-playing-notification": "{} spielt:", # Username "file-played-by-notification": "Datei: {} wird gespielt von:", # File "no-file-played-notification": "{} spielt keine Datei ab", # Username "notplaying-notification": "Personen im Raum, die keine Dateien spielen:", "userlist-room-notification": "In Raum „{}“:", # Room "userlist-file-notification": "Datei", "controller-userlist-userflag": "Raumleiter", "ready-userlist-userflag": "Bereit", "update-check-failed-notification": "Konnte nicht automatisch prüfen, ob Syncplay {} aktuell ist. Soll https://syncplay.pl/ geöffnet werden, um manuell nach Updates zu suchen?", # Syncplay version "syncplay-uptodate-notification": "Syncplay ist aktuell", "syncplay-updateavailable-notification": "Eine neuere Version von Syncplay ist verfügbar. Soll die Download-Seite geöffnet werden?", "mplayer-file-required-notification": "Syncplay für mplayer benötigt eine Dateiangabe beim Start", "mplayer-file-required-notification/example": "Anwendungsbeispiel: syncplay [optionen] [url|pfad/]Dateiname", "mplayer2-required": "Syncplay ist inkompatibel zu MPlayer 1.x, bitte nutze MPlayer2 oder mpv", "unrecognized-command-notification": "Unbekannter Befehl", "commandlist-notification": "Verfügbare Befehle:", "commandlist-notification/room": "\tr [Name] - Raum ändern", "commandlist-notification/list": "\tl - Nutzerliste anzeigen", "commandlist-notification/undo": "\tu - Letzter Zeitsprung rückgängig", "commandlist-notification/pause": "\tp - Pausieren / weiter", "commandlist-notification/seek": "\t[s][+-]Zeit - zu einer bestimmten Zeit spulen, ohne + oder - wird als absolute Zeit gewertet; Angabe in Sekunden oder Minuten:Sekunden", "commandlist-notification/help": "\th - Diese Hilfe", "commandlist-notification/toggle": "\tt - Bereitschaftsanzeige umschalten", "commandlist-notification/create": "\tc [name] - erstelle zentral gesteuerten Raum mit dem aktuellen Raumnamen", "commandlist-notification/auth": "\ta [password] - authentifiziere als Raumleiter mit Passwort", "commandlist-notification/chat": "\tch [message] - Chatnachricht an einem Raum senden", "commandList-notification/queue": "\tqa [file/url] - add file or url to bottom of playlist", # TO DO: Translate "commandList-notification/playlist": "\tql - show the current playlist", # TO DO: Translate "commandList-notification/select": "\tqs [index] - select given entry in the playlist", # TO DO: Translate "commandList-notification/delete": "\tqd [index] - delete the given entry from the playlist", # TO DO: Translate "syncplay-version-notification": "Syncplay Version: {}", # syncplay.version "more-info-notification": "Weitere Informationen auf: {}", # projectURL "gui-data-cleared-notification": "Syncplay hat die Pfad und Fensterdaten der Syncplay-GUI zurückgesetzt.", "language-changed-msgbox-label": "Die Sprache wird geändert, wenn du Syncplay neu startest.", "promptforupdate-label": "Soll Syncplay regelmäßig nach Updates suchen?", "media-player-latency-warning": "Warnung: Der Mediaplayer brauchte {} Sekunden zum Antworten. Wenn Probleme bei der Synchronisation auftreten, schließe bitte andere Anwendungen, um Ressourcen freizugeben. Sollte das nicht funktionieren, versuche es mit einem anderen Media-Player.", # Seconds to respond "mpv-unresponsive-error": "MPV hat für {} Sekunden nicht geantwortet und scheint abgestürzt zu sein. Bitte starte Syncplay neu.", # Seconds to respond # Client prompts "enter-to-exit-prompt": "Enter drücken zum Beenden\n", # Client errors "missing-arguments-error": "Notwendige Argumente fehlen, siehe --help", "server-timeout-error": "Timeout: Verbindung zum Server fehlgeschlagen", "mpc-slave-error": "Kann MPC nicht im Slave-Modus starten!", "mpc-version-insufficient-error": "MPC-Version nicht ausreichend, bitte nutze `mpc-hc` >= `{}`", "mpc-be-version-insufficient-error": "MPC-Version nicht ausreichend, bitte nutze `mpc-be` >= `{}`", "mpv-version-error": "Syncplay ist nicht kompatibel mit dieser Version von mpv. Bitte benutze eine andere Version (z.B. Git HEAD).", "mpv-failed-advice": "The reason mpv cannot start may be due to the use of unsupported command line arguments or an unsupported version of mpv.", # TODO: Translate "player-file-open-error": "Fehler beim Öffnen der Datei durch den Player", "player-path-error": "Ungültiger Player-Pfad. Unterstützte Player sind: mpv, mpv.net, VLC, MPC-HC, MPC-BE und mplayer2", "hostname-empty-error": "Hostname darf nicht leer sein", "empty-error": "{} darf nicht leer sein", # Configuration "media-player-error": "Player-Fehler: \"{}\"", # Error line "unable-import-gui-error": "Konnte die GUI-Bibliotheken nicht importieren. PySide muss installiert sein, damit die grafische Oberfläche funktioniert.", "unable-import-twisted-error": "Twisted konnte nicht importiert werden. Bitte installiere Twisted v16.4.0 oder höher", "arguments-missing-error": "Notwendige Argumente fehlen, siehe --help", "unable-to-start-client-error": "Client kann nicht gestartet werden", "player-path-config-error": "Player-Pfad ist nicht ordnungsgemäß gesetzt. Unterstützte Player sind: mpv, mpv.net, VLC, MPC-HC, MPC-BE und mplayer2", "no-file-path-config-error": "Es muss eine Datei ausgewählt werden, bevor der Player gestartet wird.", "no-hostname-config-error": "Hostname darf nicht leer sein", "invalid-port-config-error": "Port muss gültig sein", "empty-value-config-error": "{} darf nicht leer sein", # Config option "not-json-error": "Kein JSON-String\n", "hello-arguments-error": "Zu wenige Hello-Argumente\n", "version-mismatch-error": "Verschiedene Versionen auf Client und Server\n", "vlc-failed-connection": "Kann nicht zu VLC verbinden. Wenn du syncplay.lua nicht installiert hast, findest du auf https://syncplay.pl/LUA/ [Englisch] eine Anleitung. Syncplay and VLC 4 are not currently compatible, so either use VLC 3 or an alternative such as mpv.", # TO DO: TRANSLATE "vlc-failed-noscript": "Laut VLC ist das syncplay.lua Interface-Skript nicht installiert. Auf https://syncplay.pl/LUA/ [Englisch] findest du eine Anleitung.", "vlc-failed-versioncheck": "Diese VLC-Version wird von Syncplay nicht unterstützt. Bitte nutze VLC 2.0", "vlc-initial-warning": 'VLC does not always provide accurate position information to Syncplay, especially for .mp4 and .avi files. If you experience problems with erroneous seeking then please try an alternative media player such as <a href="https://mpv.io/">mpv</a> (or <a href="https://github.com/stax76/mpv.net/">mpv.net</a> for Windows users).', # TODO: Translate "feature-sharedPlaylists": "Geteilte Playlists", # used for not-supported-by-server-error "feature-chat": "Chat", # used for not-supported-by-server-error "feature-readiness": "Bereitschaftsstatus", # used for not-supported-by-server-error "feature-managedRooms": "Zentral gesteuerte Räume", # used for not-supported-by-server-error "not-supported-by-server-error": "Diese Funktion wird vom Server nicht unterstützt. Es wird ein Server mit Syncplay Version {}+ benötigt, aktuell verwendet wird jedoch Version {}.", # minVersion, serverVersion "shared-playlists-not-supported-by-server-error": "Die Geteilte-Playlists-Funktion wird von diesem Server eventuell nicht unterstützt. Um ein korrektes Funktionieren sicherzustellen wird ein Server mit Syncplay Version {}+ benötigt, aktuell verwendet wird jedoch Version {}.", # minVersion, serverVersion "shared-playlists-disabled-by-server-error": "Die Geteilte-Playlists-Funktion wurde in der Serverkonfiguration deaktiviert. Um diese Funktion zu verwenden, musst du dich mit einem anderen Server verbinden.", "invalid-seek-value": "Ungültige Zeitangabe", "invalid-offset-value": "Ungültiger Offset-Wert", "switch-file-not-found-error": "Konnte nicht zur Datei „{0}“ wechseln. Syncplay sucht im Verzeichnis der aktuellen Datei und angegebenen Medienverzeichnissen.", # File not found, folder it was not found in "folder-search-timeout-error": "Die Suche nach Medien in den Medienverzeichnissen wurde abgebrochen, weil es zu lange gedauert hat, „{}“ zu durchsuchen. Das kann passieren, wenn du in deiner Liste der Medienverzeichnisse ein Verzeichnis mit zu vielen Unterverzeichnissen auswhälst. Damit der automatische Dateiwechsel wieder funktioniert, wähle Datei->Medienverzeichnisse auswählen in der Menüleiste und entferne dieses Verzeichnis oder ersetze es mit einem geeigneten Unterverzeichnis. Wenn das Verzeichnis in Ordnung ist, kannst du es reaktivieren, indem du Datei->Medienverzeichnisse auswählen wählst und „OK“ drückst.", # Folder "folder-search-first-file-timeout-error": "Die Suche nach Medien in den Medienverzeichnissen wurde abgebrochen, weil es zu lange gedauert hat, auf „{}“ zuzugreifen. Das kann passieren, wenn es sich dabei um ein Netzwerkgerät handelt und du eingestellt hast, dass es sich nach Inaktivität ausschaltet. Damit der automatische Dateiwechsel wieder funktioniert, wähle Datei->Medienverzeichnisse auswählen in der Menüleiste und entferne dieses Verzeichnis oder löse das Problem (z.B. indem du die Energiespareinstellungen anpasst).", # Folder "added-file-not-in-media-directory-error": "Du hast eine Datei in im Verzeichnis „{}“ geladeden, welches kein bekanntes Medienverzeichnis ist. Du kannst es als Medienverzeichnis hinzufügen, indem du Datei->Medienverzeichnisse auswählen in der Menüleiste wählst.", # Folder "no-media-directories-error": "Es wurden keine Medienverzeichnisse ausgewählt. Damit geteilte Playlists und Dateiwechsel korrekt funktionieren, wähle Datei->Medienverzeichnisse auswählen in der Menüleiste und gib an, wo Syncplay nach Mediendateien suchen soll.", "cannot-find-directory-error": "Das Medienverzeichnis „{}“ konnte nicht gefunden werden. Um deine Liste an Medienverzeichnissen anzupassen, wähle Datei->Medienverzeichnisse auswählen in der Menüleiste und gib an, wo Syncplay nach Mediendateien suchen soll.", "failed-to-load-server-list-error": "Konnte die Liste der öffentlichen Server nicht laden. Bitte besuche https://www.syncplay.pl/ [Englisch] mit deinem Browser.", # Client arguments "argument-description": 'Syncplay ist eine Anwendung um mehrere MPlayer, MPC-HC, MPC-BE und VLC-Instanzen über das Internet zu synchronisieren.', "argument-epilog": 'Wenn keine Optionen angegeben sind, werden die _config-Werte verwendet', "nogui-argument": 'Keine GUI anzeigen', "host-argument": 'Server-Adresse', "name-argument": 'Gewünschter Nutzername', "debug-argument": 'Debug-Modus', "force-gui-prompt-argument": 'Einstellungsfenster anzeigen', "no-store-argument": 'keine Werte in .syncplay speichern', "room-argument": 'Standard-Raum', "password-argument": 'Server-Passwort', "player-path-argument": 'Pfad zum Player', "file-argument": 'Abzuspielende Datei', "args-argument": 'Player-Einstellungen; Wenn du Einstellungen, die mit - beginnen, nutzen willst, stelle ein einzelnes \'--\'-Argument davor', "clear-gui-data-argument": 'Setzt die Pfad- und GUI-Fenster-Daten die in den QSettings gespeichert sind zurück', "language-argument": 'Sprache für Syncplay-Nachrichten (de/en/ru/it/es/pt_BR/pt_PT/tr)', "version-argument": 'gibt die aktuelle Version aus', "version-message": "Du verwendest Syncplay v. {} ({})", "load-playlist-from-file-argument": "lädt eine Playlist aus einer Textdatei (ein Eintrag pro Zeile)", # Client labels "config-window-title": "Syncplay-Konfiguration", "connection-group-title": "Verbindungseinstellungen", "host-label": "Server-Adresse:", "name-label": "Benutzername (optional):", "password-label": "Server-Passwort (falls nötig):", "room-label": "Standard-Raum:", "roomlist-msgbox-label": "Edit room list (one per line)", # TODO: Translate "media-setting-title": "Media-Player Einstellungen", "executable-path-label": "Pfad zum Media-Player:", "media-path-label": "Pfad zum Video (optional):", "player-arguments-label": "Playerparameter:", "browse-label": "Durchsuchen", "update-server-list-label": "Liste aktualisieren", "more-title": "Mehr Einstellungen zeigen", "never-rewind-value": "Niemals", "seconds-suffix": " sek", "privacy-sendraw-option": "Klartext senden", "privacy-sendhashed-option": "Hash senden", "privacy-dontsend-option": "Nicht senden", "filename-privacy-label": "Dateiname:", "filesize-privacy-label": "Dateigröße:", "checkforupdatesautomatically-label": "Automatisch nach Updates suchen", "slowondesync-label": "Verlangsamen wenn nicht synchron (nicht unterstützt mit MPC-HC/BE)", "dontslowdownwithme-label": "Nie verlangsamen oder andere zurückspulen (Experimentell)", "pausing-title": "Pausiere", "pauseonleave-label": "Pausieren wenn ein Benutzer austritt", "readiness-title": "Anfänglicher Bereitschaftsstatus", "readyatstart-label": "Standardmäßig auf „Bereit“ stellen", "forceguiprompt-label": "Diesen Dialog nicht mehr anzeigen", "showosd-label": "OSD-Nachrichten anzeigen", "showosdwarnings-label": "Zeige Warnungen (z.B. wenn Dateien verschieden)", "showsameroomosd-label": "Zeige Ereignisse in deinem Raum", "shownoncontrollerosd-label": "Zeige Ereignisse von nicht geführten Räumen in geführten Räumen.", "showdifferentroomosd-label": "Zeige Ereignisse in anderen Räumen", "showslowdownosd-label": "Zeige Verlangsamungs/Zurücksetzungs-Benachrichtigung", "language-label": "Sprache:", "automatic-language": "Automatisch ({})", # Default language "showdurationnotification-label": "Zeige Warnung wegen unterschiedlicher Dauer", "basics-label": "Grundlagen", "readiness-label": "Play/Pause", "misc-label": "Diverse", "core-behaviour-title": "Verhalten des Raumes", "syncplay-internals-title": "Syncplay intern", "syncplay-mediasearchdirectories-title": "In diesen Verzeichnissen nach Medien suchen", # needs to be checked "syncplay-mediasearchdirectories-label": "In diesen Verzeichnissen nach Medien suchen (ein Pfad pro Zeile)", "sync-label": "Synchronisation", "sync-otherslagging-title": "Wenn andere laggen...", "sync-youlaggging-title": "Wenn du laggst...", "messages-label": "Nachrichten", "messages-osd-title": "OSD-(OnScreenDisplay)-Einstellungen", "messages-other-title": "Weitere Display-Einstellungen", "chat-label": "Chat", "privacy-label": "Privatsphäre", "privacy-title": "Privatsphäreneinstellungen", "unpause-title": "Wenn du Play drückst, auf Bereit setzen und:", "unpause-ifalreadyready-option": "Wiedergeben wenn bereits als Bereit gesetzt", "unpause-ifothersready-option": "Wiedergeben wenn bereits als Bereit gesetzt oder alle anderen bereit sind (Standard)", "unpause-ifminusersready-option": "Wiedergeben wenn bereits als Bereit gesetzt oder die minimale Anzahl anderer Nutzer bereit ist", "unpause-always": "Immer wiedergeben", "syncplay-trusteddomains-title": "Vertrauenswürdige Domains (für Streamingdienste und gehostete Inhalte)", "chat-title": "Chatnachrichten-Eingabe", "chatinputenabled-label": "Chateingabe via mpv erlauben (mit der Entertaste)", "chatdirectinput-label": "Sofotige Chateingabe erlauben (ohne die Entertaste zu drücken)", "chatinputfont-label": "Chateingabe-Schriftart", "chatfont-label": "Schriftart wählen", "chatcolour-label": "Farbe wählen", "chatinputposition-label": "Position des Nachrichteneingabe-Felds in mpv", "chat-top-option": "Oben", "chat-middle-option": "Mitte", "chat-bottom-option": "Unten", "chatoutputheader-label": "Chatnachrichten-Eingabe", "chatoutputfont-label": "Chateingabe-Schriftart", "chatoutputenabled-label": "Chatausgabe im Medienplayer aktivieren (bisher nur mpv)", "chatoutputposition-label": "Ausgabemodus", "chat-chatroom-option": "Chatroom-Stil", "chat-scrolling-option": "Scrolling-Stil", "mpv-key-tab-hint": "[TAB] um Zugriff auf die Buchstabentastenkürzel ein-/auszuschalten.", "mpv-key-hint": "[ENTER] um eine Nachricht zu senden. [ESC] um den Chatmodus zu verlassen.", "alphakey-mode-warning-first-line": "Du kannst vorübergehend die alten mpv-Tastaturkürzel mit den a–z-Tasten verwenden.", "alphakey-mode-warning-second-line": "Drücke [TAB], um in den Syncplay-Chatmodus zurückzukehren.", "help-label": "Hilfe", "reset-label": "Auf Standardwerte zurücksetzen", "run-label": "Syncplay starten", "storeandrun-label": "Konfiguration speichern und Syncplay starten", "contact-label": "Du hast eine Idee, einen Bug gefunden oder möchtest Feedback geben? Sende eine E-Mail an <a href=\"mailto:dev@syncplay.pl\">dev@syncplay.pl</a>, chatte auf dem <a href=\"https://webchat.freenode.net/?channels=#syncplay\">#Syncplay IRC-Kanal</a> auf irc.freenode.net oder <a href=\"https://github.com/Uriziel/syncplay/issues\">öffne eine Fehlermeldung auf GitHub</a>. Außerdem findest du auf <a href=\"https://syncplay.pl/\">https://syncplay.pl/</a> weitere Informationen, Hilfestellungen und Updates. Chatnachrichten sind nicht verschlüsselt, also verwende Syncplay nicht, um sensible Daten zu verschicken.", "joinroom-label": "Raum beitreten", "joinroom-menu-label": "Raum beitreten {}", # TODO: Might want to fix this "seektime-menu-label": "Spule zu Zeit", "undoseek-menu-label": "Rückgängig", "play-menu-label": "Wiedergabe", "pause-menu-label": "Pause", "playbackbuttons-menu-label": "Wiedergabesteuerung anzeigen", "autoplay-menu-label": "Auto-Play-Knopf anzeigen", "autoplay-guipushbuttonlabel": "Automatisch abspielen wenn alle bereit sind", "autoplay-minimum-label": "Minimum an Nutzern:", "sendmessage-label": "Senden", "ready-guipushbuttonlabel": "Ich bin bereit zum Gucken!", "roomuser-heading-label": "Raum / Benutzer", "size-heading-label": "Größe", "duration-heading-label": "Länge", "filename-heading-label": "Dateiname", "notifications-heading-label": "Benachrichtigungen", "userlist-heading-label": "Liste der gespielten Dateien", "browseformedia-label": "Nach Mediendateien durchsuchen", "file-menu-label": "&Datei", # & precedes shortcut key "openmedia-menu-label": "&Mediendatei öffnen...", "openstreamurl-menu-label": "&Stream URL öffnen", "setmediadirectories-menu-label": "Medienverzeichnisse &auswählen", "loadplaylistfromfile-menu-label": "&Lade Playlist aus Datei", "saveplaylisttofile-menu-label": "&Speichere Playlist in Datei", "exit-menu-label": "&Beenden", "advanced-menu-label": "&Erweitert", "window-menu-label": "&Fenster", "setoffset-menu-label": "&Offset einstellen", "createcontrolledroom-menu-label": "&Zentral gesteuerten Raum erstellen", "identifyascontroller-menu-label": "Als Raumleiter &identifizieren", "settrusteddomains-menu-label": "&Vertrauenswürdige Domains auswählen", "addtrusteddomain-menu-label": "{} als vertrauenswürdige Domain hinzufügen", # Domain "edit-menu-label": "&Bearbeiten", "cut-menu-label": "Aus&schneiden", "copy-menu-label": "&Kopieren", "paste-menu-label": "&Einsetzen", "selectall-menu-label": "&Alles auswälhen", "playback-menu-label": "&Wiedergabe", "help-menu-label": "&Hilfe", "userguide-menu-label": "&Benutzerhandbuch öffnen", "update-menu-label": "auf &Aktualisierung prüfen", # startTLS messages "startTLS-initiated": "Sichere Verbindung wird versucht", "startTLS-secure-connection-ok": "Sichere Verbindung hergestellt ({})", "startTLS-server-certificate-invalid": 'Sichere Verbindung fehlgeschlagen. Der Server benutzt ein ungültiges Sicherheitszertifikat. Der Kanal könnte von Dritten abgehört werden. Für weitere Details und Problemlösung siehe <a href="https://syncplay.pl/trouble">hier</a> [Englisch].', "startTLS-server-certificate-invalid-DNS-ID": "Syncplay does not trust this server because it uses a certificate that is not valid for its hostname.", # TODO: Translate "startTLS-not-supported-client": "Dieser Server unterstützt kein TLS", "startTLS-not-supported-server": "Dieser Server unterstützt kein TLS", # TLS certificate dialog "tls-information-title": "Zertifikatdetails", "tls-dialog-status-label": "<strong>Syncplay nutzt eine verschlüsselte Verbindung zu {}.</strong>", "tls-dialog-desc-label": "Verschlüsselung mit einem digitalen Zertifikat hält Informationen geheim, die vom Server {} gesendet oder empfangen werden.", "tls-dialog-connection-label": "Daten werden verschlüsselt mit Transport Layer Security (TLS) Version {} und <br/>folgender Chiffre: {}.", "tls-dialog-certificate-label": "Zertifikat ausgestellt durch {} gültig bis {}.", # About dialog "about-menu-label": "&Über Syncplay", "about-dialog-title": "Über Syncplay", "about-dialog-release": "Version {} Release {}", "about-dialog-license-text": "Lizensiert unter der Apache-Lizenz&nbsp;Version 2.0", "about-dialog-license-button": "Lizenz", "about-dialog-dependencies": "Abhängigkeiten", "setoffset-msgbox-label": "Offset einstellen", "offsetinfo-msgbox-label": "Offset (siehe https://syncplay.pl/guide/ für eine Anleitung [Englisch]):", "promptforstreamurl-msgbox-label": "Stream-URL öffnen", "promptforstreamurlinfo-msgbox-label": "Stream-URL", "addfolder-label": "Verzeichnis hinzufügen", "adduris-msgbox-label": "URLs zur Playlist hinzufügen (ein Eintrag pro Zeile)", "editplaylist-msgbox-label": "Playlist auswählen (ein Eintrag pro Zeile)", "trusteddomains-msgbox-label": "Domains, zu denen automatisch gewechselt werden darf (ein Eintrag pro Zeile)", "createcontrolledroom-msgbox-label": "Zentral gesteuerten Raum erstellen", "controlledroominfo-msgbox-label": "Namen des zentral gesteuerten Raums eingeben\r\n(siehe https://syncplay.pl/guide/ für eine Anleitung [Englisch]):", "identifyascontroller-msgbox-label": "Als Raumleiter identifizieren", "identifyinfo-msgbox-label": "Passwort des zentral gesteuerten Raums eingeben\r\n(siehe https://syncplay.pl/guide/ für eine Anleitung [Englisch]):", "public-server-msgbox-label": "Einen öffentlichen Server für diese Sitzung auswählen", "megabyte-suffix": " MB", # Tooltips "host-tooltip": "Hostname oder IP zu der verbunden werden soll. Optional mit Port (z.B.. syncplay.pl:8999). Synchronisation findet nur mit Personen auf dem selben Server und Port statt.", "name-tooltip": "Dein Benutzername. Keine Registrierung, kann einfach geändert werden. Bei fehlender Angabe wird ein zufälliger Name generiert.", "password-tooltip": "Passwörter sind nur bei Verbindung zu privaten Servern nötig.", "room-tooltip": "Der Raum, der betreten werden soll, kann ein x-beliebiger sein. Allerdings werden nur Clients im selben Raum synchronisiert.", "edit-rooms-tooltip": "Edit room list.", # TO DO: Translate "executable-path-tooltip": "Pfad zum ausgewählten, unterstützten Mediaplayer (mpv, mpv.net, VLC, MPC-HC/BE or mplayer2).", "media-path-tooltip": "Pfad zum wiederzugebenden Video oder Stream. Notwendig für mplayer2.", "player-arguments-tooltip": "Zusätzliche Kommandozeilenparameter/-schalter für diesen Mediaplayer.", "mediasearcdirectories-arguments-tooltip": "Verzeichnisse, in denen Syncplay nach Mediendateien suchen soll, z.B. wenn du die Click-to-switch-Funktion verwendest. Syncplay wird Unterverzeichnisse rekursiv durchsuchen.", # TODO: Translate Click-to-switch? (or use as name for feature) "more-tooltip": "Weitere Einstellungen anzeigen.", "filename-privacy-tooltip": "Privatheitsmodus beim Senden des Namens der aktuellen Datei zum Server.", "filesize-privacy-tooltip": "Privatheitsmodus beim Senden der Größe der aktuellen Datei zum Server.", "privacy-sendraw-tooltip": "Die Information im Klartext übertragen. Dies ist die Standard-Einstellung mit der besten Funktionalität.", "privacy-sendhashed-tooltip": "Die Informationen gehasht übertragen, um sie für andere Clients schwerer lesbar zu machen.", "privacy-dontsend-tooltip": "Diese Information nicht übertragen. Dies garantiert den größtmöglichen Datanschutz.", "checkforupdatesautomatically-tooltip": "Regelmäßig auf der Syncplay-Website nach Updates suchen.", "autosavejoinstolist-tooltip": "When you join a room in a server, automatically remember the room name in the list of rooms to join.", # TO DO: Translate "autosavejoinstolist-label": "Add rooms you join to the room list e", # TO DO: Translate "slowondesync-tooltip": "Reduziert die Abspielgeschwindigkeit zeitweise, um die Synchronität zu den anderen Clients wiederherzustellen.", "rewindondesync-label": "Zurückspulen bei großer Zeitdifferenz (empfohlen)", "fastforwardondesync-label": "Vorspulen wenn das Video laggt (empfohlen)", "dontslowdownwithme-tooltip": "Lässt andere nicht langsamer werden oder zurückspringen, wenn deine Wiedergabe hängt.", "pauseonleave-tooltip": "Wiedergabe anhalten, wenn deine Verbindung verloren geht oder jemand den Raum verlässt.", "readyatstart-tooltip": "Zu Beginn auf „Bereit“ setzen (sonst bist du als „Nicht Bereit“ gesetzt, bis du den Status änderst)", "forceguiprompt-tooltip": "Der Konfigurationsdialog wird nicht angezeigt, wenn eine Datei mit Syncplay geöffnet wird.", "nostore-tooltip": "Syncplay mit den angegebenen Einstellungen starten, diese aber nicht dauerhaft speichern.", "rewindondesync-tooltip": "Zum Wiederherstellen der Synchronität in der Zeit zurückspringen (empfohlen)", "fastforwardondesync-tooltip": "Nach vorne springen, wenn asynchron zum Raumleiter (oder deine vorgetäuschte Position, falls „Niemals verlangsamen oder andere zurückspulen“ aktiviert ist).", "showosd-tooltip": "Syncplay-Nachrichten auf dem OSD (= OnScreenDisplay, ein eingeblendetes Textfeld) des Players anzeigen.", "showosdwarnings-tooltip": "Warnungen bei Unterschiedlichen Dateien oder Alleinsein im Raum anzeigen.", "showsameroomosd-tooltip": "OSD-Meldungen über Ereignisse im selben Raum anzeigen.", "shownoncontrollerosd-tooltip": "OSD-Meldungen bei Ereignissen verursacht durch nicht-Raumleiter in zentral gesteuerten Räumen anzeigen.", "showdifferentroomosd-tooltip": "OSD-Meldungen zu anderen Räumen als dem aktuell betretenen anzeigen.", "showslowdownosd-tooltip": "Meldungen bei Geschwindigkeitsänderung anzeigen.", "showdurationnotification-tooltip": "Nützlich, wenn z.B. ein Teil eines mehrteiligen Videos fehlt, kann jedoch auch fehlerhaft anschlagen.", "language-tooltip": "Die verwendete Sprache von Syncplay", "unpause-always-tooltip": "Wiedergabe startet immer (anstatt nur den Bereitschaftsstatus zu ändern)", "unpause-ifalreadyready-tooltip": "Wenn du nicht bereit bist und Play drückst wirst du als bereit gesetzt - zum Starten der Wiedergabe nochmal drücken.", "unpause-ifothersready-tooltip": "Wenn du Play drückst und nicht bereit bist, wird nur gestartet, wenn alle anderen bereit sind.", "unpause-ifminusersready-tooltip": "Wenn du Play drückst und nicht bereit bist, wird nur gestartet, wenn die minimale Anzahl anderer Benutzer bereit ist.", "trusteddomains-arguments-tooltip": "Domains, zu denen Syncplay automatisch wechself darf, wenn geteilte Playlists aktiviert sind.", "chatinputenabled-tooltip": "Chateingabe in mpv aktivieren (Drücke Enter zum Chatten, Enter zum Senden, Esc um abzubrechen)", "chatdirectinput-tooltip": "Überspringe, Enter drücken zu müssen, um in mpv in den Chatmodus zu gelangen. Drücke TAB, um diese Funktion vorübergehend zu deaktivieren.", "font-label-tooltip": "Schriftart für die Darstellung der Chateingabe in mpv. Nur clientseitig, beeinflusst also nicht, was andere sehen.", "set-input-font-tooltip": "Schriftfamilie für die Darstellung der Chateingabe in mpv. Nur clientseitig, beeinflusst also nicht, was andere sehen.", "set-input-colour-tooltip": "Schriftfarbe für die Darstellung der Chateingabe in mpv. Nur clientseitig, beeinflusst also nicht, was andere sehen.", "chatinputposition-tooltip": "Position in mpv, an der Text der Chateingabe erscheint, wenn du Enter drückst und tippst.", "chatinputposition-top-tooltip": "Chateingabe oben im mpv-Fenster platzieren.", "chatinputposition-middle-tooltip": "Chateingabe mittig im mpv-Fenster platzieren.", "chatinputposition-bottom-tooltip": "Chateingabe unten im mpv-Fenster platzieren.", "chatoutputenabled-tooltip": "Chatnachrichten im OSD anzeigen (sofern vom Medienplayer unterstützt).", "font-output-label-tooltip": "Chatausgabe-Schriftart.", "set-output-font-tooltip": "Schriftart für die Darstellung von Chatnachrichten.", "chatoutputmode-tooltip": "Wie Chatnachrichten dargestellt werden.", "chatoutputmode-chatroom-tooltip": "Neue Chatzeilen unmittelbar unterder vorangehenden Zeile anzeigen.", "chatoutputmode-scrolling-tooltip": "Chat-Text von rechts nach links scrollen lassen", "help-tooltip": "Öffnet Hilfe auf syncplay.pl [Englisch]", "reset-tooltip": "Alle Einstellungen auf Standardwerte zurücksetzen.", "update-server-list-tooltip": "Mit syncplay.pl verbinden um die Liste öffentlicher Server zu aktualisieren.", "sslconnection-tooltip": "Sicher mit Server verbunden. Klicken, um Zertifikatdetails anzuzeigen.", "joinroom-tooltip": "Den aktuellen Raum verlassen und stattdessen den angegebenen betreten.", "seektime-msgbox-label": "Springe zur angegebenen Zeit (in Sekunden oder min:sek). Verwende +/- zum relativen Springen.", "ready-tooltip": "Zeigt an, ob du bereit zum anschauen bist", "autoplay-tooltip": "Automatisch abspielen, wenn alle Nutzer bereit sind oder die minimale Nutzerzahl erreicht ist.", "switch-to-file-tooltip": "Doppelklicken um zu {} zu wechseln", # Filename "sendmessage-tooltip": "Nachricht an Raum senden", # In-userlist notes (GUI) "differentsize-note": "Verschiedene Größe!", "differentsizeandduration-note": "Verschiedene Größe und Dauer!", "differentduration-note": "Verschiedene Dauer!", "nofile-note": "(keine Datei wird abgespielt)", # Server messages to client "new-syncplay-available-motd-message": "Du nutzt Syncplay Version {}, aber es gibt eine neuere Version auf https://syncplay.pl", # ClientVersion # Server notifications "welcome-server-notification": "Willkommen zum Syncplay-Server, v. {0}", # version "client-connected-room-server-notification": "{0}({2}) hat den Raum „{1}“ betreten", # username, host, room "client-left-server-notification": "{0} hat den Server verlassen", # name "no-salt-notification": "WICHTIGER HINWEIS: Damit von dem Server generierte Passwörter für geführte Räume auch nach einem Serverneustart funktionieren, starte den Server mit dem folgenden Parameter: --salt {}", # Salt # Server arguments "server-argument-description": 'Anwendung, um mehrere MPlayer, MPC-HC/BE und VLC-Instanzen über das Internet zu synchronisieren. Server', "server-argument-epilog": 'Wenn keine Optionen angegeben sind, werden die _config-Werte verwendet', "server-port-argument": 'Server TCP-Port', "server-password-argument": 'Server-Passwort', "server-isolate-room-argument": 'Sollen die Räume isoliert sein?', "server-salt-argument": "zufällige Zeichenkette, die zur Erstellung von Passwörtern verwendet wird", "server-disable-ready-argument": "Bereitschaftsfeature deaktivieren", "server-motd-argument": "Pfad zur Datei, von der die Nachricht des Tages geladen wird", "server-chat-argument": "Soll Chat deaktiviert werden?", "server-chat-maxchars-argument": "Maximale Zeichenzahl in einer Chatnachricht (Standard ist {})", "server-maxusernamelength-argument": "Maximale Zeichenzahl in einem Benutzernamen (Standard ist {})", "server-stats-db-file-argument": "Aktiviere Server-Statistiken mithilfe der bereitgestellten SQLite-db-Datei", "server-startTLS-argument": "Erlaube TLS-Verbindungen mit den Zertifikatdateien im Angegebenen Pfad", "server-messed-up-motd-unescaped-placeholders": "Die Nachricht des Tages hat unmaskierte Platzhalter. Alle $-Zeichen sollten verdoppelt werden ($$).", "server-messed-up-motd-too-long": "Die Nachricht des Tages ist zu lang - Maximal {} Zeichen, aktuell {}.", # Server errors "unknown-command-server-error": "Unbekannter Befehl {}", # message "not-json-server-error": "Kein JSON-String {}", # message "line-decode-server-error": "Keine utf-8-Zeichenkette", "not-known-server-error": "Der Server muss dich kennen, bevor du diesen Befehl nutzen kannst", "client-drop-server-error": "Client verloren: {} -- {}", # host, error "password-required-server-error": "Passwort nötig", "wrong-password-server-error": "Ungültiges Passwort", "hello-server-error": "Zu wenige Hello-Argumente", # Playlists "playlist-selection-changed-notification": "{} hat die Playlist-Auswahl geändert", # Username "playlist-contents-changed-notification": "{} hat die Playlist aktualisiert", # Username "cannot-find-file-for-playlist-switch-error": "Die Datei {} konnte zum Dateiwechsel nicht in den Medienverzeichnissen gefunden werden!", # Filename "cannot-add-duplicate-error": "Konnte zweiten Eintrag für „{}“ nicht zur Playlist hinzufügen, weil Dubletten nicht erlaubt sind.", # Filename "cannot-add-unsafe-path-error": "{} konnte nicht automatisch geladen werden, weil es sich nicht um eine vertrauenswürdige Domain handelt. Du kannst manuell zu der URL wechseln, indem du sie in der Playlist doppelklickst oder vertrauenswürdige Domains unter Datei->Erweitert->Vertrauenswürdige Domains auswählen hinzufügst. Wenn du einen Rechtsklick auf eine URL ausführst, kannst du ihre Domain im Kontextmenü als vertrauenswürdig hinzufügen.", # Filename "sharedplaylistenabled-label": "Geteilte Playlists aktivieren", "removefromplaylist-menu-label": "Von Playlist entfernen", "shuffleremainingplaylist-menu-label": "Verbleibende Playlist shuffeln", "shuffleentireplaylist-menu-label": "Gesamte Playlist shuffeln", "undoplaylist-menu-label": "Letze Playlist-Änderung rückgängig machen", "addfilestoplaylist-menu-label": "Datei(en) zum Ende der Playlist hinzufügen", "addurlstoplaylist-menu-label": "URL(s) zum Ende der Playlist hinzufügen", "editplaylist-menu-label": "Playlist bearbeiten", "open-containing-folder": "Übergeordnetes Verzeichnis der Datei öffnen", "addyourfiletoplaylist-menu-label": "Deine Datei zur Playlist hinzufügen", "addotherusersfiletoplaylist-menu-label": "{}s Datei zur Playlist hinzufügen", # [Username] "addyourstreamstoplaylist-menu-label": "Deinen Stream zur Playlist hinzufügen", "addotherusersstreamstoplaylist-menu-label": "{}s Stream zur Playlist hinzufügen", # [Username] "openusersstream-menu-label": "{}s Stream öffnen", # [username]'s "openusersfile-menu-label": "{}s Datei öffnen", # [username]'s "playlist-instruction-item-message": "Zieh eine Datei hierher, um sie zur geteilten Playlist hinzuzufügen.", "sharedplaylistenabled-tooltip": "Raumleiter können Dateien zu einer geteilten Playlist hinzufügen und es so erleichtern, gemeinsam das Gleiche zu gucken. Konfiguriere Medienverzeichnisse unter „Diverse“", "playlist-empty-error": "Playlist is currently empty.", # TO DO: Translate "playlist-invalid-index-error": "Invalid playlist index", # TO DO: Translate }
75.909962
637
0.737615
0278dfff32933c7fae2d78b99f1ce026decbe046
28,525
py
Python
keystone/tests/unit/backend/domain_config/core.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/backend/domain_config/core.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
null
null
null
keystone/tests/unit/backend/domain_config/core.py
whitepages/keystone
7a0874f6f69852584061fa384f75dfb0d5f1c229
[ "Apache-2.0" ]
1
2021-03-21T11:38:30.000Z
2021-03-21T11:38:30.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import uuid import mock from testtools import matchers from keystone import exception from keystone.tests import unit class DomainConfigTests(object): def setUp(self): self.domain = unit.new_domain_ref() self.resource_api.create_domain(self.domain['id'], self.domain) self.addCleanup(self.clean_up_domain) def clean_up_domain(self): # NOTE(henry-nash): Deleting the domain will also delete any domain # configs for this domain. self.domain['enabled'] = False self.resource_api.update_domain(self.domain['id'], self.domain) self.resource_api.delete_domain(self.domain['id']) del self.domain def _domain_config_crud(self, sensitive): group = uuid.uuid4().hex option = uuid.uuid4().hex value = uuid.uuid4().hex self.domain_config_api.create_config_option( self.domain['id'], group, option, value, sensitive) res = self.domain_config_api.get_config_option( self.domain['id'], group, option, sensitive) config = {'group': group, 'option': option, 'value': value} self.assertEqual(config, res) value = uuid.uuid4().hex self.domain_config_api.update_config_option( self.domain['id'], group, option, value, sensitive) res = self.domain_config_api.get_config_option( self.domain['id'], group, option, sensitive) config = {'group': group, 'option': option, 'value': value} self.assertEqual(config, res) self.domain_config_api.delete_config_options( self.domain['id'], group, option, sensitive) self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.get_config_option, self.domain['id'], group, option, sensitive) # ...and silent if we try to delete it again self.domain_config_api.delete_config_options( self.domain['id'], group, option, sensitive) def test_whitelisted_domain_config_crud(self): self._domain_config_crud(sensitive=False) def test_sensitive_domain_config_crud(self): self._domain_config_crud(sensitive=True) def _list_domain_config(self, sensitive): """Test listing by combination of domain, group & option.""" config1 = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} # Put config2 in the same group as config1 config2 = {'group': config1['group'], 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} config3 = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': 100} for config in [config1, config2, config3]: self.domain_config_api.create_config_option( self.domain['id'], config['group'], config['option'], config['value'], sensitive) # Try listing all items from a domain res = self.domain_config_api.list_config_options( self.domain['id'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(3)) for res_entry in res: self.assertIn(res_entry, [config1, config2, config3]) # Try listing by domain and group res = self.domain_config_api.list_config_options( self.domain['id'], group=config1['group'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(2)) for res_entry in res: self.assertIn(res_entry, [config1, config2]) # Try listing by domain, group and option res = self.domain_config_api.list_config_options( self.domain['id'], group=config2['group'], option=config2['option'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(1)) self.assertEqual(config2, res[0]) def test_list_whitelisted_domain_config_crud(self): self._list_domain_config(False) def test_list_sensitive_domain_config_crud(self): self._list_domain_config(True) def _delete_domain_configs(self, sensitive): """Test deleting by combination of domain, group & option.""" config1 = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} # Put config2 and config3 in the same group as config1 config2 = {'group': config1['group'], 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} config3 = {'group': config1['group'], 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} config4 = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} for config in [config1, config2, config3, config4]: self.domain_config_api.create_config_option( self.domain['id'], config['group'], config['option'], config['value'], sensitive) # Try deleting by domain, group and option res = self.domain_config_api.delete_config_options( self.domain['id'], group=config2['group'], option=config2['option'], sensitive=sensitive) res = self.domain_config_api.list_config_options( self.domain['id'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(3)) for res_entry in res: self.assertIn(res_entry, [config1, config3, config4]) # Try deleting by domain and group res = self.domain_config_api.delete_config_options( self.domain['id'], group=config4['group'], sensitive=sensitive) res = self.domain_config_api.list_config_options( self.domain['id'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(2)) for res_entry in res: self.assertIn(res_entry, [config1, config3]) # Try deleting all items from a domain res = self.domain_config_api.delete_config_options( self.domain['id'], sensitive=sensitive) res = self.domain_config_api.list_config_options( self.domain['id'], sensitive=sensitive) self.assertThat(res, matchers.HasLength(0)) def test_delete_whitelisted_domain_configs(self): self._delete_domain_configs(False) def test_delete_sensitive_domain_configs(self): self._delete_domain_configs(True) def _create_domain_config_twice(self, sensitive): """Test conflict error thrown if create the same option twice.""" config = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} self.domain_config_api.create_config_option( self.domain['id'], config['group'], config['option'], config['value'], sensitive=sensitive) self.assertRaises(exception.Conflict, self.domain_config_api.create_config_option, self.domain['id'], config['group'], config['option'], config['value'], sensitive=sensitive) def test_create_whitelisted_domain_config_twice(self): self._create_domain_config_twice(False) def test_create_sensitive_domain_config_twice(self): self._create_domain_config_twice(True) def test_delete_domain_deletes_configs(self): """Test domain deletion clears the domain configs.""" domain = unit.new_domain_ref() self.resource_api.create_domain(domain['id'], domain) config1 = {'group': uuid.uuid4().hex, 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} # Put config2 in the same group as config1 config2 = {'group': config1['group'], 'option': uuid.uuid4().hex, 'value': uuid.uuid4().hex} self.domain_config_api.create_config_option( domain['id'], config1['group'], config1['option'], config1['value']) self.domain_config_api.create_config_option( domain['id'], config2['group'], config2['option'], config2['value'], sensitive=True) res = self.domain_config_api.list_config_options( domain['id']) self.assertThat(res, matchers.HasLength(1)) res = self.domain_config_api.list_config_options( domain['id'], sensitive=True) self.assertThat(res, matchers.HasLength(1)) # Now delete the domain domain['enabled'] = False self.resource_api.update_domain(domain['id'], domain) self.resource_api.delete_domain(domain['id']) # Check domain configs have also been deleted res = self.domain_config_api.list_config_options( domain['id']) self.assertThat(res, matchers.HasLength(0)) res = self.domain_config_api.list_config_options( domain['id'], sensitive=True) self.assertThat(res, matchers.HasLength(0)) def test_create_domain_config_including_sensitive_option(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) # password is sensitive, so check that the whitelisted portion and # the sensitive piece have been stored in the appropriate locations. res = self.domain_config_api.get_config(self.domain['id']) config_whitelisted = copy.deepcopy(config) config_whitelisted['ldap'].pop('password') self.assertEqual(config_whitelisted, res) res = self.domain_config_api.get_config_option( self.domain['id'], 'ldap', 'password', sensitive=True) self.assertEqual(config['ldap']['password'], res['value']) # Finally, use the non-public API to get back the whole config res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual(config, res) def test_get_partial_domain_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) res = self.domain_config_api.get_config(self.domain['id'], group='identity') config_partial = copy.deepcopy(config) config_partial.pop('ldap') self.assertEqual(config_partial, res) res = self.domain_config_api.get_config( self.domain['id'], group='ldap', option='user_tree_dn') self.assertEqual({'user_tree_dn': config['ldap']['user_tree_dn']}, res) # ...but we should fail to get a sensitive option self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.get_config, self.domain['id'], group='ldap', option='password') def test_delete_partial_domain_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) self.domain_config_api.delete_config( self.domain['id'], group='identity') config_partial = copy.deepcopy(config) config_partial.pop('identity') config_partial['ldap'].pop('password') res = self.domain_config_api.get_config(self.domain['id']) self.assertEqual(config_partial, res) self.domain_config_api.delete_config( self.domain['id'], group='ldap', option='url') config_partial = copy.deepcopy(config_partial) config_partial['ldap'].pop('url') res = self.domain_config_api.get_config(self.domain['id']) self.assertEqual(config_partial, res) def test_get_options_not_in_domain_config(self): self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.get_config, self.domain['id']) config = {'ldap': {'url': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.get_config, self.domain['id'], group='identity') self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.get_config, self.domain['id'], group='ldap', option='user_tree_dn') def test_get_sensitive_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual({}, res) self.domain_config_api.create_config(self.domain['id'], config) res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual(config, res) def test_update_partial_domain_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) # Try updating a group new_config = {'ldap': {'url': uuid.uuid4().hex, 'user_filter': uuid.uuid4().hex}} res = self.domain_config_api.update_config( self.domain['id'], new_config, group='ldap') expected_config = copy.deepcopy(config) expected_config['ldap']['url'] = new_config['ldap']['url'] expected_config['ldap']['user_filter'] = ( new_config['ldap']['user_filter']) expected_full_config = copy.deepcopy(expected_config) expected_config['ldap'].pop('password') res = self.domain_config_api.get_config(self.domain['id']) self.assertEqual(expected_config, res) # The sensitive option should still exist res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual(expected_full_config, res) # Try updating a single whitelisted option self.domain_config_api.delete_config(self.domain['id']) self.domain_config_api.create_config(self.domain['id'], config) new_config = {'url': uuid.uuid4().hex} res = self.domain_config_api.update_config( self.domain['id'], new_config, group='ldap', option='url') # Make sure whitelisted and full config is updated expected_whitelisted_config = copy.deepcopy(config) expected_whitelisted_config['ldap']['url'] = new_config['url'] expected_full_config = copy.deepcopy(expected_whitelisted_config) expected_whitelisted_config['ldap'].pop('password') self.assertEqual(expected_whitelisted_config, res) res = self.domain_config_api.get_config(self.domain['id']) self.assertEqual(expected_whitelisted_config, res) res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual(expected_full_config, res) # Try updating a single sensitive option self.domain_config_api.delete_config(self.domain['id']) self.domain_config_api.create_config(self.domain['id'], config) new_config = {'password': uuid.uuid4().hex} res = self.domain_config_api.update_config( self.domain['id'], new_config, group='ldap', option='password') # The whitelisted config should not have changed... expected_whitelisted_config = copy.deepcopy(config) expected_full_config = copy.deepcopy(config) expected_whitelisted_config['ldap'].pop('password') self.assertEqual(expected_whitelisted_config, res) res = self.domain_config_api.get_config(self.domain['id']) self.assertEqual(expected_whitelisted_config, res) expected_full_config['ldap']['password'] = new_config['password'] res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) # ...but the sensitive piece should have. self.assertEqual(expected_full_config, res) def test_update_invalid_partial_domain_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} # An extra group, when specifying one group should fail self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config, group='ldap') # An extra option, when specifying one option should fail self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config['ldap'], group='ldap', option='url') # Now try the right number of groups/options, but just not # ones that are in the config provided config = {'ldap': {'user_tree_dn': uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config, group='identity') self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config['ldap'], group='ldap', option='url') # Now some valid groups/options, but just not ones that are in the # existing config config = {'ldap': {'user_tree_dn': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) config_wrong_group = {'identity': {'driver': uuid.uuid4().hex}} self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.update_config, self.domain['id'], config_wrong_group, group='identity') config_wrong_option = {'url': uuid.uuid4().hex} self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.update_config, self.domain['id'], config_wrong_option, group='ldap', option='url') # And finally just some bad groups/options bad_group = uuid.uuid4().hex config = {bad_group: {'user': uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config, group=bad_group, option='user') bad_option = uuid.uuid4().hex config = {'ldap': {bad_option: uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.update_config, self.domain['id'], config, group='ldap', option=bad_option) def test_create_invalid_domain_config(self): self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.create_config, self.domain['id'], {}) config = {uuid.uuid4().hex: uuid.uuid4().hex} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.create_config, self.domain['id'], config) config = {uuid.uuid4().hex: {uuid.uuid4().hex: uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.create_config, self.domain['id'], config) config = {'ldap': {uuid.uuid4().hex: uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.create_config, self.domain['id'], config) # Try an option that IS in the standard conf, but neither whitelisted # or marked as sensitive config = {'identity': {'user_tree_dn': uuid.uuid4().hex}} self.assertRaises(exception.InvalidDomainConfig, self.domain_config_api.create_config, self.domain['id'], config) def test_delete_invalid_partial_domain_config(self): config = {'ldap': {'url': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) # Try deleting a group not in the config self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.delete_config, self.domain['id'], group='identity') # Try deleting an option not in the config self.assertRaises(exception.DomainConfigNotFound, self.domain_config_api.delete_config, self.domain['id'], group='ldap', option='user_tree_dn') def test_sensitive_substitution_in_domain_config(self): # Create a config that contains a whitelisted option that requires # substitution of a sensitive option. config = {'ldap': {'url': 'my_url/%(password)s', 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) # Read back the config with the internal method and ensure that the # substitution has taken place. res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) expected_url = ( config['ldap']['url'] % {'password': config['ldap']['password']}) self.assertEqual(expected_url, res['ldap']['url']) def test_invalid_sensitive_substitution_in_domain_config(self): """Check that invalid substitutions raise warnings.""" mock_log = mock.Mock() invalid_option_config = { 'ldap': {'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} for invalid_option in ['my_url/%(passssword)s', 'my_url/%(password', 'my_url/%(password)', 'my_url/%(password)d']: invalid_option_config['ldap']['url'] = invalid_option self.domain_config_api.create_config( self.domain['id'], invalid_option_config) with mock.patch('keystone.resource.core.LOG', mock_log): res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) mock_log.warning.assert_any_call(mock.ANY) self.assertEqual( invalid_option_config['ldap']['url'], res['ldap']['url']) def test_escaped_sequence_in_domain_config(self): """Check that escaped '%(' doesn't get interpreted.""" mock_log = mock.Mock() escaped_option_config = { 'ldap': {'url': 'my_url/%%(password)s', 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config( self.domain['id'], escaped_option_config) with mock.patch('keystone.resource.core.LOG', mock_log): res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertFalse(mock_log.warn.called) # The escaping '%' should have been removed self.assertEqual('my_url/%(password)s', res['ldap']['url']) @unit.skip_if_cache_disabled('domain_config') def test_cache_layer_get_sensitive_config(self): config = {'ldap': {'url': uuid.uuid4().hex, 'user_tree_dn': uuid.uuid4().hex, 'password': uuid.uuid4().hex}, 'identity': {'driver': uuid.uuid4().hex}} self.domain_config_api.create_config(self.domain['id'], config) # cache the result res = self.domain_config_api.get_config_with_sensitive_info( self.domain['id']) self.assertEqual(config, res) # delete, bypassing domain config manager api self.domain_config_api.delete_config_options(self.domain['id']) self.domain_config_api.delete_config_options(self.domain['id'], sensitive=True) self.assertDictEqual( res, self.domain_config_api.get_config_with_sensitive_info( self.domain['id'])) self.domain_config_api.get_config_with_sensitive_info.invalidate( self.domain_config_api, self.domain['id']) self.assertDictEqual( {}, self.domain_config_api.get_config_with_sensitive_info( self.domain['id'])) def test_config_registration(self): type = uuid.uuid4().hex self.domain_config_api.obtain_registration( self.domain['id'], type) self.domain_config_api.release_registration( self.domain['id'], type=type) # Make sure that once someone has it, nobody else can get it. # This includes the domain who already has it. self.domain_config_api.obtain_registration( self.domain['id'], type) self.assertFalse( self.domain_config_api.obtain_registration( self.domain['id'], type)) # Make sure we can read who does have it self.assertEqual( self.domain['id'], self.domain_config_api.read_registration(type)) # Make sure releasing it is silent if the domain specified doesn't # have the registration domain2 = {'id': uuid.uuid4().hex, 'name': uuid.uuid4().hex} self.resource_api.create_domain(domain2['id'], domain2) self.domain_config_api.release_registration( domain2['id'], type=type) # If nobody has the type registered, then trying to read it should # raise ConfigRegistrationNotFound self.domain_config_api.release_registration( self.domain['id'], type=type) self.assertRaises(exception.ConfigRegistrationNotFound, self.domain_config_api.read_registration, type) # Finally check multiple registrations are cleared if you free the # registration without specifying the type type2 = uuid.uuid4().hex self.domain_config_api.obtain_registration( self.domain['id'], type) self.domain_config_api.obtain_registration( self.domain['id'], type2) self.domain_config_api.release_registration(self.domain['id']) self.assertRaises(exception.ConfigRegistrationNotFound, self.domain_config_api.read_registration, type) self.assertRaises(exception.ConfigRegistrationNotFound, self.domain_config_api.read_registration, type2)
47.860738
79
0.61234
377110a72bd812519724bbec0d55b3984c5d9c86
728
py
Python
decorators.py
pavel-yas1405/teamwork
52a984576046a4d9ad2a6e48e52ec1a17688cd99
[ "MIT" ]
null
null
null
decorators.py
pavel-yas1405/teamwork
52a984576046a4d9ad2a6e48e52ec1a17688cd99
[ "MIT" ]
null
null
null
decorators.py
pavel-yas1405/teamwork
52a984576046a4d9ad2a6e48e52ec1a17688cd99
[ "MIT" ]
null
null
null
from functools import wraps from flask import current_app, flash, request, redirect, url_for from flask_login import config, current_user def admin_required(func): @wraps(func) def decorated_view(*args, **kwargs): if request.method in config.EXEMPT_METHODS: return func(*args, **kwargs) elif current_app.config.get('LOGIN_DISABLED'): return func(*args, **kwargs) elif not current_user.is_authenticated: return current_app.login_manager.unauthorized() elif not current_user.is_admin: flash('Эта страница доступна только админам') return redirect(url_for('index')) return func(*args, **kwargs) return decorated_view
36.4
64
0.679945
497b16aeeccd0896664a6533fc5cccdf4ed770be
1,558
py
Python
tests/test_mod.py
smnorris/terraincache
02de5ee7fd697cb0dd47d79bbc750c7f49a9199c
[ "MIT" ]
3
2020-10-05T22:19:26.000Z
2021-12-23T02:50:27.000Z
tests/test_mod.py
smnorris/terraincache
02de5ee7fd697cb0dd47d79bbc750c7f49a9199c
[ "MIT" ]
4
2019-10-12T00:08:45.000Z
2019-11-12T21:40:44.000Z
tests/test_mod.py
smnorris/terraincache
02de5ee7fd697cb0dd47d79bbc750c7f49a9199c
[ "MIT" ]
null
null
null
import os from pathlib import Path import mercantile from mercantile import Tile from terraincache import TerrainTiles TEST_TILE = Tile(x=622, y=1364, z=12) TEST_BOUNDS = (-125.271412, 51.370639, -125.254793, 51.376881) TEST_ZOOM_1 = 12 TEST_ZOOM_2 = 14 def tile_path(tile): return "/".join([str(tile.z), str(tile.x), str(tile.y) + ".tif"]) def test_download_single_tile(tmpdir): tt = TerrainTiles(TEST_BOUNDS, TEST_ZOOM_1, cache_dir=str(tmpdir)) tt.download_tile(TEST_TILE) assert Path(str(tmpdir)).joinpath(tile_path(TEST_TILE)).exists() def test_download_bounds(tmpdir): tt = TerrainTiles(TEST_BOUNDS, TEST_ZOOM_2, cache_dir=str(tmpdir)) for tile in mercantile.tiles(*TEST_BOUNDS, TEST_ZOOM_2): assert Path(str(tmpdir)).joinpath(tile_path(tile)).exists() def test_merge(tmpdir): tt = TerrainTiles(TEST_BOUNDS, TEST_ZOOM_2, cache_dir=str(tmpdir)) tt.merge(out_file=os.path.join(str(tmpdir), "merged.tif")) assert (Path(str(tmpdir)) / "merged.tif").exists def test_warp(tmpdir): tt = TerrainTiles( TEST_BOUNDS, TEST_ZOOM_2, cache_dir=str(tmpdir), dst_crs="EPSG:3005", resolution=50, ) tt.merge() tt.warp(out_file=os.path.join(str(tmpdir), "warped.tif")) assert (Path(str(tmpdir)) / "warped.tif").exists def test_load(tmpdir): tt = TerrainTiles( TEST_BOUNDS, TEST_ZOOM_2, cache_dir=str(tmpdir), dst_crs="EPSG:3005", resolution=50, ) array = tt.load() assert array.shape == (14, 23)
25.540984
70
0.675225
bd4281a17a4fa547ca70434925bf77f99fe013bb
25,779
py
Python
LSIMasks/losses/latent_mask_loss.py
charlesity/LSIMasks
f3ff1984c6cd83baf3aee9a336d5b515898eec29
[ "MIT" ]
null
null
null
LSIMasks/losses/latent_mask_loss.py
charlesity/LSIMasks
f3ff1984c6cd83baf3aee9a336d5b515898eec29
[ "MIT" ]
null
null
null
LSIMasks/losses/latent_mask_loss.py
charlesity/LSIMasks
f3ff1984c6cd83baf3aee9a336d5b515898eec29
[ "MIT" ]
null
null
null
import warnings import gc import numpy as np from copy import deepcopy import torch import torch.utils.data import torch.nn as nn from torch.nn.parallel.data_parallel import data_parallel from inferno.extensions.criteria.set_similarity_measures import SorensenDiceLoss from inferno.extensions.containers.graph import Identity from speedrun.log_anywhere import log_image, log_embedding, log_scalar from segmfriends.utils.various import parse_data_slice from segmfriends.transform.volume import DownSampleAndCropTensorsInBatch from segmfriends.utils.various import parse_data_slice from ..utils.various import auto_crop_tensor_to_shape from .sparse_affinitiees_loss import MultiLevelSparseAffinityLoss class LatentMaskLoss(nn.Module): def __init__(self, model, apply_checkerboard=False, loss_type="Dice", ignore_label=0, train_glia_mask=False, boundary_label=None, glia_label=None, train_patches_on_glia=False, fix_bug_multiscale_patches=False, defected_label=None, IoU_loss_kwargs=None, sparse_affs_loss_kwargs=None, indx_trained_patchNets=None, model_kwargs=None, devices=(0, 1)): super(LatentMaskLoss, self).__init__() if loss_type == "Dice": self.loss = SorensenDiceLoss() elif loss_type == "MSE": self.loss = nn.MSELoss() elif loss_type == "BCE": self.loss = nn.BCELoss() else: raise ValueError self.apply_checkerboard = apply_checkerboard self.fix_bug_multiscale_patches = fix_bug_multiscale_patches self.ignore_label = ignore_label self.boundary_label = boundary_label self.glia_label = glia_label self.defected_label = defected_label self.train_glia_mask = train_glia_mask self.train_patches_on_glia = train_patches_on_glia self.indx_trained_patchNets = indx_trained_patchNets self.add_IoU_loss = False if IoU_loss_kwargs is not None: raise NotImplementedError() # self.add_IoU_loss = True # from .compute_IoU import IoULoss # self.IoU_loss = IoULoss(model, model_kwargs=model_kwargs, devices=devices, **IoU_loss_kwargs) self.devices = devices # TODO: get rid of kwargs self.model_kwargs = model_kwargs self.MSE_loss = nn.MSELoss() self.smoothL1_loss = nn.SmoothL1Loss() # TODO: use nn.BCEWithLogitsLoss() self.BCE = nn.BCELoss() self.soresen_loss = SorensenDiceLoss() self.model = model self.train_sparse_loss = False self.sparse_multilevelDiceLoss = None if sparse_affs_loss_kwargs is not None: self.train_sparse_loss = True self.sparse_multilevelDiceLoss = MultiLevelSparseAffinityLoss(model, model_kwargs=model_kwargs, devices=devices, **sparse_affs_loss_kwargs) def forward(self, all_predictions, target): mdl = self.model nb_inputs = mdl.number_multiscale_inputs # Plot some patches with the raw: if self.model.return_input: raw_inputs = all_predictions[-nb_inputs:] all_predictions = all_predictions[:-nb_inputs] loss = 0 if self.train_sparse_loss: raise NotImplementedError loss = loss + self.sparse_multilevelDiceLoss(all_predictions, target) # Delete affinities from targets: target = [tar[:, :2].int() for tar in target] # ---------------------------- # Loss on patches: # ---------------------------- for mask_dec_indx in range(len(all_predictions)): # ---------------------------- # Initializations: # ---------------------------- mask_dec = self.model.mask_decoders[mask_dec_indx] pred = all_predictions[mask_dec_indx] gt_segm = target[mask_dec.target_index] # Collect options from config: mask_shape = mask_dec.mask_shape mask_dws_fact = mask_dec.mask_dws_fact sample_strides = mask_dec.sample_strides pred_dws_fact = mask_dec.pred_dws_fact crop_slice_prediction = mask_dec.crop_slice_prediction limit_nb_decoded_masks_to = mask_dec.limit_nb_decoded_masks_to if crop_slice_prediction is not None: precrop_pred_slice = (slice(None), slice(None)) + parse_data_slice(crop_slice_prediction) pred = pred[precrop_pred_slice] max_random_crop = mask_dec.max_random_crop real_shape_mask = tuple(pt * fc for pt, fc in zip(mask_shape, mask_dws_fact)) full_target_shape = gt_segm.shape[-3:] assert all([i <= j for i, j in zip(real_shape_mask, full_target_shape)]), "Real-sized patch is too large!" # ---------------------------- # Deduce crop size of the prediction and select target patches accordingly: # ---------------------------- # TODO: explain better what is going on here crop_slice_targets, crop_slice_prediction = get_slicing_crops(pred.shape[2:], full_target_shape, pred_dws_fact, real_shape_mask) gt_segm = gt_segm[crop_slice_targets] pred = pred[crop_slice_prediction] full_target_shape = gt_segm.shape[-3:] # # # ---------------------------- # # # Plot some random patches with associated raw patch: # # # ---------------------------- # if self.model.return_input and mask_dec_indx<5: # # raw = raw_inputs[kwargs["nb_target"]][crop_slice_targets] # # FIXME: raw is not correct for deeper ones # raw = raw_inputs[0][crop_slice_targets] # raw_to_plot, gt_labels_to_plot, gt_masks_to_plot, pred_emb_to_plot = [], [], [], [] # for n in range(40): # # Select a random pixel and define sliding-window crop slices: # selected_coord = [np.random.randint(shp) for shp in pred.shape[2:]] # # selected_coord[0] = 4 # For plots, get always 4 # full_patch_slice = (slice(None), slice(0,1)) + tuple( # slice(selected_coord[i], selected_coord[i] + real_shape_mask[i]) for i in range(len(selected_coord))) # emb_slice = (slice(None), slice(0,1)) + tuple(slice(selected_coord[i] + int(real_shape_mask[i] / 2), # selected_coord[i] + int( # real_shape_mask[i] / 2) + 1) for i in # range(len(selected_coord))) # pred_center_coord = [int(selected_coord[i] / pred_dws_fact[i]) for i in range(len(selected_coord))] # emb_slice_pred = (slice(None), slice(None)) + tuple( # slice(pred_center_coord[i], pred_center_coord[i] + 1) # for i in range(len(selected_coord))) # # # Collect data for current sliding window: # center_label = gt_segm[emb_slice] # center_label_repeated = center_label.repeat(1, 1, *real_shape_mask) # gt_patch_labels = gt_segm[full_patch_slice] # gt_masks_to_plot.append(gt_patch_labels != center_label_repeated) # gt_labels_to_plot.append(gt_patch_labels) # # ignore_mask_patch = (gt_patch_labels == 0) # pred_emb_to_plot.append(pred[emb_slice_pred]) # # raw_to_plot.append(raw[full_patch_slice]) # # # Highlight center pixel: # raw_to_plot = torch.cat(raw_to_plot, dim=0) # center_pixel_coord = (slice(None), 0) + tuple(int(shp / 2) for shp in real_shape_mask) # raw_to_plot[center_pixel_coord] = raw_to_plot.min() - 1. # # gt_labels_to_plot = torch.cat(gt_labels_to_plot, dim=0) # gt_masks_to_plot = torch.cat(gt_masks_to_plot, dim=0) # pred_emb_to_plot = torch.cat(pred_emb_to_plot, dim=0) # # # Decode embeddings: # ptch_num = kwargs["patchNet_number"] # pred_patch_to_plot = data_parallel(self.model.patch_models[ptch_num], pred_emb_to_plot[:, :, 0, 0, 0], self.devices) # # # Downscale and rescale targets: # down_sc_slice = (slice(None), slice(None)) + tuple( # slice(int(dws_fact / 2), None, dws_fact) for dws_fact in mask_dws_fact) # gt_masks_to_plot = torch.nn.functional.interpolate(gt_masks_to_plot[down_sc_slice].float(), scale_factor=tuple(mask_dws_fact)) # pred_patch_to_plot = torch.nn.functional.interpolate(pred_patch_to_plot, # scale_factor=tuple(mask_dws_fact)) # # gt_masks_to_plot = 1. - gt_masks_to_plot # if mask_dws_fact[1] <= 6: # pred_patch_to_plot = 1. - pred_patch_to_plot # # log_image("raw_patch_l{}".format(mask_dec_indx), raw_to_plot) # log_image("gt_label_patch_l{}".format(mask_dec_indx), gt_labels_to_plot) # log_image("gt_mask_patch_l{}".format(mask_dec_indx), gt_masks_to_plot) # log_image("pred_patch_l{}".format(mask_dec_indx), pred_patch_to_plot) # # ---------------------------- # # Patch-Loss: # # ---------------------------- # If multiple strides were given, process all of them: sample_strides = sample_strides if isinstance(sample_strides[0], list) else [sample_strides] if limit_nb_decoded_masks_to is not None: limit_nb_decoded_masks_to = limit_nb_decoded_masks_to if isinstance(limit_nb_decoded_masks_to[0], list) else [ limit_nb_decoded_masks_to] else: limit_nb_decoded_masks_to = [None for _ in sample_strides] for nb_stride, smpl_stride, max_nb_masks in zip(range(len(sample_strides)), sample_strides, limit_nb_decoded_masks_to): # ---------------------------- # Get some random prediction embeddings: # ---------------------------- prediction_strides = get_prediction_strides(pred_dws_fact, smpl_stride) selected_embeddings, crop_slice_pred, nb_selected_masks = extract_patches_torch(pred, (1, 1, 1), stride=prediction_strides, max_random_crop=max_random_crop) # ---------------------------- # Collect gt_segm patches and corresponding center labels: # ---------------------------- crop_slice_targets = tuple(slice(sl.start, None) for sl in crop_slice_pred) gt_patches, _, _ = extract_patches_torch(gt_segm, real_shape_mask, stride=smpl_stride, apply_specific_crop_slice=crop_slice_targets, limit_patches_nb_to=nb_selected_masks) gt_patches = gt_patches[:, [0]] # Make sure to crop some additional border and get the centers correctly: # TODO: this can be now easily done by cropping the gt_patches... crop_slice_center_labels = (slice(None), slice(None)) + tuple( slice(slc.start + int(sh / 2), slc.stop) for slc, sh in zip(crop_slice_targets[2:], real_shape_mask)) target_at_patch_center, _, _ = extract_patches_torch(gt_segm, (1, 1, 1), stride=smpl_stride, apply_specific_crop_slice=crop_slice_center_labels, limit_patches_nb_to=nb_selected_masks) # Get GT and other masks separately: label_at_patch_center = target_at_patch_center[:, [0]] mask_at_patch_center = target_at_patch_center[:, [1]] # ---------------------------- # Ignore patches on the boundary or involving ignore-label: # ---------------------------- # Ignore pixels involving ignore-labels: ignore_masks = (gt_patches == self.ignore_label) valid_patches = (label_at_patch_center != self.ignore_label) patch_is_on_boundary = None if self.boundary_label is not None: patch_is_on_boundary = (mask_at_patch_center == self.boundary_label).repeat(1, 1, *real_shape_mask) # Delete non-valid patches from batch: valid_batch_indices = np.argwhere(valid_patches[:, 0, 0, 0, 0].cpu().detach().numpy())[:, 0] if max_nb_masks is not None: limit = max_nb_masks[0] if max_nb_masks[1] == 'number': if valid_batch_indices.shape[0] > limit: valid_batch_indices = np.random.choice(valid_batch_indices, limit, replace=False) elif max_nb_masks[1] == 'factor': assert limit <= 1. and limit >= 0. valid_batch_indices = np.random.choice(valid_batch_indices, int(limit * valid_batch_indices.shape[0]), replace=False) if valid_batch_indices.shape[0] == 0: # Avoid problems if all patches are invalid and # torch complaining that autograd cannot be performed: loss += selected_embeddings.sum() * 0. print("ZERO valid patches at level {}".format(mask_dec_indx)) continue # ---------------------------- # Compute the actual (inverted) MeMasks targets: (0 is me, 1 are the others) # best targets for Dice loss (usually more me than others) # ---------------------------- center_labels_repeated = label_at_patch_center.repeat(1, 1, *real_shape_mask) target_me_masks = gt_patches != center_labels_repeated if patch_is_on_boundary is not None: # If on boundary, we make (inverted) me_masks completely 1 (split from everything) target_me_masks = target_me_masks | patch_is_on_boundary # Downscaling patches: down_sc_slice = (slice(None), slice(None)) + tuple( slice(int(dws_fact / 2), None, dws_fact) for dws_fact in mask_dws_fact) # Final targets: target_me_masks = target_me_masks[valid_batch_indices].float()[down_sc_slice] ignore_masks = ignore_masks[valid_batch_indices][down_sc_slice].byte() # Invert MeMasks: # best targets for Dice loss are: meMask == 0; others == 1 # TODO: generalize if mask_dws_fact[1] > 6: target_me_masks = 1. - target_me_masks assert valid_batch_indices.max() < selected_embeddings.shape[ 0], "Something went wrong, more target patches were collected than those predicted: {} targets vs {} pred...".format( valid_batch_indices.max(), selected_embeddings.shape[0]) selected_embeddings = selected_embeddings[valid_batch_indices] selected_embeddings = selected_embeddings[:, :, 0, 0, 0] # ---------------------------- # Decode the actual predicted using the decoder models: # ---------------------------- decoded_masks = data_parallel(mask_dec, selected_embeddings, self.devices) # print(expanded_patches.shape) assert decoded_masks.shape[1] == 1, "MaskDecoder should output only single-channel masks!" # Some logs: if nb_stride == 0: log_image("ptc_trg_l{}".format(mask_dec_indx), target_me_masks) log_image("ptc_pred_l{}".format(mask_dec_indx), decoded_masks) # log_image("ptc_ign_l{}".format(nb_patch_net), patch_ignore_masks) log_scalar("avg_targets_l{}".format(mask_dec_indx), target_me_masks.float().mean()) # ---------------------------- # Apply ignore mask and compute loss: # ---------------------------- valid_masks = 1. - ignore_masks.float() decoded_masks = decoded_masks * valid_masks target_me_masks = target_me_masks * valid_masks with warnings.catch_warnings(record=True) as w: reconstruction_loss = data_parallel(self.loss, (decoded_masks, target_me_masks.float()), self.devices).mean() loss = loss + reconstruction_loss if nb_stride == 0: log_scalar("loss_l{}".format(mask_dec_indx), reconstruction_loss) log_scalar("nb_patches_l{}".format(mask_dec_indx), decoded_masks.shape[0]) gc.collect() return loss def get_slicing_crops(pred_shape, target_shape, pred_ds_factor, real_patch_shape): """ In few words, this function tries to deduce how the target and predicted tensors should be cropped, so that if we extract patches from both of them, these patches are consistent. Let's see some examples: 1) If the target and prediction tensors have the same shape: then the prediction tensor should be partially cropped, because the embedding in the top left corner will need some extra context from the target tensor in order to be trained properly. 2) However, in some cases the prediction tensor will be much smaller than the target (for example because some crops were performed inside the UNet model), so we will further crop the target so that they match. :return: Two tuples containing the crop slices to be applied to the target and prediction tensors, respectively. """ # Compute new left crops: # (we do not care about the right crops, because anyway the extra patches are # ignored with the option `limit_patches_to`) upscaled_pred_shape = [sh * fctr for sh, fctr in zip(pred_shape, pred_ds_factor)] shape_diff = [orig - trg for orig, trg in zip(target_shape, upscaled_pred_shape)] assert all([diff >= 0 for diff in shape_diff]), "Prediction should be smaller or equal to the targets!" assert all([diff % 2 == 0 for diff in shape_diff]) padding = [int(diff / 2) for diff in shape_diff] crop_slice_targets = [slice(None), slice(None)] crop_slice_prediction = [slice(None), slice(None)] import math for dim, pad in enumerate(padding): # Consider the patch-padding: real_pad = pad - int(real_patch_shape[dim] / 2) if real_pad > 0: # We should crop targets crop_slice_targets.append(slice(real_pad, -real_pad)) crop_slice_prediction.append(slice(None)) elif real_pad < 0: # We should crop prediction: # (use floor to round up, since pad is negative) crop_slice_prediction.append( slice(-math.floor(real_pad / pred_ds_factor[dim]), math.floor(real_pad / pred_ds_factor[dim]))) crop_slice_targets.append(slice(None)) else: # No need to crop: crop_slice_targets.append(slice(None)) crop_slice_prediction.append(slice(None)) return tuple(crop_slice_targets), tuple(crop_slice_prediction) def get_prediction_strides(pred_ds_factor, strides): # Compute updated strides: assert all(strd % pred_fctr == 0 for strd, pred_fctr in zip(strides, pred_ds_factor)), "Stride {} should be divisible by downscaling factor {}".format(strides, pred_ds_factor) pred_strides = tuple(int(strd / pred_fctr) for strd, pred_fctr in zip(strides, pred_ds_factor)) return pred_strides def extract_patches_torch(tensor, shape, stride, precrop_tensor=None, max_random_crop=None, apply_specific_crop_slice=None, limit_patches_nb_to=None, reshape_to_batch_dim=True): """ :param tensor: PyTorch tensor from which to extract patches :param shape: Shape of the extracted patches :param stride: Stride of the extracted patches :param precrop_tensor: How much to precrop the tensor (list of length tensor.dim()-2) Example: [(0,0), (2,4), (1,4)] :param max_random_crop: How much to randomly crop the tensor (to create some variability in the strided sampling). Same format as `precrop_tensor` :param apply_specific_crop_slice: This is the second argument that is returned by the function: it represents the actual crop that was performed (including a possible random crop that was applied). If you apply this function to multiple tensors and you want to get consistent results, then the second time call the function passing the output_crop from the first call using this argument. If this is passed, then `precrop_tensor` and `max_random_crop` should be None. :param limit_patches_nb_to: This is the third argument that is returned by the function and it represents how many patches were extracted along each dimension of the original tensor. Use this argument to make sure that if you apply the function to multiple tensors, you get the same number of patches for all of them. :param reshape_to_batch_dim: :return: See description of `apply_specific_crop_slice` and `limit_patches_nb_to` """ assert tensor.dim() == 4 or tensor.dim() == 5 dim = tensor.dim() - 2 assert len(shape) == dim and len(stride) == dim if apply_specific_crop_slice is not None: assert max_random_crop is None and precrop_tensor is None if precrop_tensor is not None: assert len(precrop_tensor) == dim assert all([isinstance(sl, (tuple, list)) for sl in precrop_tensor]) and all( [len(sl) == 2 for sl in precrop_tensor]) else: precrop_tensor = [(0, 0) for _ in range(dim)] max_random_crop = [0 for _ in range(dim)] if max_random_crop is None else deepcopy(max_random_crop) assert len(max_random_crop) == dim if isinstance(max_random_crop, tuple): max_random_crop = list(max_random_crop) for d in range(dim): max = tensor.shape[2 + d] - precrop_tensor[d][0] - precrop_tensor[d][1] - shape[d] if max_random_crop[d] > max: max_random_crop[d] = max if limit_patches_nb_to is not None: assert len(limit_patches_nb_to) == dim # Pick a random crop: if apply_specific_crop_slice is None: rnd_crop = [np.random.randint(max_offs + 1) for max_offs in max_random_crop] apply_specific_crop_slice = (slice(None), slice(None)) + tuple( slice(precrop[0] + off, full_shp - precrop[1]) for off, precrop, full_shp in zip(rnd_crop, precrop_tensor, tensor.shape[2:])) # Unfold it: tensor = tensor[apply_specific_crop_slice] N, C = tensor.shape[:2] for d in range(dim): tensor = tensor.unfold(d + 2, size=shape[d], step=stride[d]) # Reshape: nb_patches = tensor.shape[2:2 + len(shape)] # Along each dimension, we make sure to keep only a specific number of patches (not more): # This assures compatibility with other patches already extracted from other tensors. if limit_patches_nb_to is not None: actual_limits = tuple(lim if lim < nb else nb for nb, lim in zip(nb_patches, limit_patches_nb_to)) valid_patch_slice = (slice(None), slice(None)) + tuple(slice(None, lim) for lim in actual_limits) tensor = tensor[valid_patch_slice] nb_patches = actual_limits # Reshape if reshape_to_batch_dim: tensor = tensor.contiguous().view(N, C, -1, *shape) tensor = tensor.permute(0, 2, 1, *range(3, 3 + dim)).contiguous().view(-1, C, *shape) return tensor, apply_specific_crop_slice, nb_patches
52.503055
144
0.574848
a045e1858abc454a2c43aa739b0ff2bba3c45b31
4,351
py
Python
sel_dedicated_codegen/models/price_model.py
xRocketPowerx/python-sel-dedicated
3b9b41fbd7abc05d427e8abf688b007b6dcf9e96
[ "MIT" ]
2
2019-10-12T08:56:31.000Z
2019-10-12T17:34:51.000Z
sel_dedicated_codegen/models/price_model.py
xRocketPowerx/python-sel-dedicated
3b9b41fbd7abc05d427e8abf688b007b6dcf9e96
[ "MIT" ]
null
null
null
sel_dedicated_codegen/models/price_model.py
xRocketPowerx/python-sel-dedicated
3b9b41fbd7abc05d427e8abf688b007b6dcf9e96
[ "MIT" ]
null
null
null
# coding: utf-8 """ Seido User REST API No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: 2.4.8 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class PriceModel(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'rub': 'PricePeriodModel', 'eur': 'PricePeriodModel', 'usd': 'PricePeriodModel' } attribute_map = { 'rub': 'RUB', 'eur': 'EUR', 'usd': 'USD' } def __init__(self, rub=None, eur=None, usd=None): # noqa: E501 """PriceModel - a model defined in OpenAPI""" # noqa: E501 self._rub = None self._eur = None self._usd = None self.discriminator = None self.rub = rub self.eur = eur self.usd = usd @property def rub(self): """Gets the rub of this PriceModel. # noqa: E501 :return: The rub of this PriceModel. # noqa: E501 :rtype: PricePeriodModel """ return self._rub @rub.setter def rub(self, rub): """Sets the rub of this PriceModel. :param rub: The rub of this PriceModel. # noqa: E501 :type: PricePeriodModel """ if rub is None: raise ValueError("Invalid value for `rub`, must not be `None`") # noqa: E501 self._rub = rub @property def eur(self): """Gets the eur of this PriceModel. # noqa: E501 :return: The eur of this PriceModel. # noqa: E501 :rtype: PricePeriodModel """ return self._eur @eur.setter def eur(self, eur): """Sets the eur of this PriceModel. :param eur: The eur of this PriceModel. # noqa: E501 :type: PricePeriodModel """ if eur is None: raise ValueError("Invalid value for `eur`, must not be `None`") # noqa: E501 self._eur = eur @property def usd(self): """Gets the usd of this PriceModel. # noqa: E501 :return: The usd of this PriceModel. # noqa: E501 :rtype: PricePeriodModel """ return self._usd @usd.setter def usd(self, usd): """Sets the usd of this PriceModel. :param usd: The usd of this PriceModel. # noqa: E501 :type: PricePeriodModel """ if usd is None: raise ValueError("Invalid value for `usd`, must not be `None`") # noqa: E501 self._usd = usd def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, PriceModel): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.89881
124
0.546541
69914c5ccbb400d14eb5c094cce1360dc676e927
2,600
py
Python
com/LimePencil/Q12844/XOR.py
LimePencil/baekjoonProblems
61eeeeb875585d165d9e39ecdb3d905b4ba6aa87
[ "MIT" ]
null
null
null
com/LimePencil/Q12844/XOR.py
LimePencil/baekjoonProblems
61eeeeb875585d165d9e39ecdb3d905b4ba6aa87
[ "MIT" ]
null
null
null
com/LimePencil/Q12844/XOR.py
LimePencil/baekjoonProblems
61eeeeb875585d165d9e39ecdb3d905b4ba6aa87
[ "MIT" ]
null
null
null
# import sys # import math # def init(node, start, end): # if start == end: # tree[node] = arr[start] # else: # init(node*2, start, (start+end)//2) # init(node*2+1, (start+end)//2+1, end) # tree[node] = tree[node*2] ^ tree[node*2+1] # def lazy_update(node,start,end): # if lazy[node] !=0: # tree[node] ^= (end-start+1)%2*lazy[node] # if start!=end: # lazy[node*2] ^= lazy[node] # lazy[node*2+1] ^= lazy[node] # lazy[node] = 0 # def lazy_range(node, start,end,left,right,value): # lazy_update(node,start,end) # if left > end or right < start: # return # if left <= start and end <= right: # tree[node] ^= (end-start+1)%2*value # if start != end: # lazy[node*2] ^= value # lazy[node*2+1] ^= value # return # lazy_range(node*2,start,(start+end)//2,left,right,value) # lazy_range(node*2+1,(start+end)//2+1,end,left,right,value) # tree[node] = tree[node*2] ^ tree[node*2+1] # def find_xor(node,start,end,left,right): # lazy_update(node,start,end) # if left > end or right < start: # return 0 # if left <= start and end <= right: # return tree[node] # return find_xor(node*2,start,(start+end)//2,left,right) ^ find_xor(node*2+1,(start+end)//2+1,end,left,right) # input = sys.stdin.readline # n = int(input()) # arr = list(map(int,input().split(" "))) # tree_depth = 2**(math.ceil(math.log2(n))+1) # tree = [0]*tree_depth # lazy = [0]*tree_depth # init(1,0,n-1) # m = int(input()) # for _ in range(m): # l = list(map(int,input().split(" "))) # if l[0] == 1: # lazy_range(1,0,n-1,l[1],l[2],l[3]) # else: # print(find_xor(1,0,n-1,l[1],l[2])) # fenwick import sys def update(idx, val1,val2): while idx <= n: tree_one[idx]^= val1 tree_two[idx]^= val2 idx+= (idx&-idx) def range_update(left,right,val): update(left,val,((-left+1)%2)*val) update(right+1,val,((right)%2)*val) def query(idx): val1=0 val2=0 f=idx while idx>0: val1^= tree_one[idx] val2^= tree_two[idx] idx-=(idx&-idx) return (val1*(f%2))^val2 input = sys.stdin.readline n=int(input()) tree_one = [0]*(n+1) tree_two = [0]*(n+1) weight=list(map(int,input().split())) for i in range(n): range_update(i+1,i+1,weight[i]) m=int(input()) for _ in range(m): l = list(map(int,input().split())) if l[0] ==1: range_update(l[1]+1,l[2]+1,l[3]) else: a=query(l[1]) b=query(l[2]+1) print(a^b)
26.804124
114
0.543462
321f39d2a75d0c5398ab530e26d009e5951cb69a
2,314
py
Python
plugins/radio.py
MizoTelegram/tgvc-RadioBot
c4d18c0aadc85c1a56ee6841620e97408244180a
[ "MIT" ]
null
null
null
plugins/radio.py
MizoTelegram/tgvc-RadioBot
c4d18c0aadc85c1a56ee6841620e97408244180a
[ "MIT" ]
null
null
null
plugins/radio.py
MizoTelegram/tgvc-RadioBot
c4d18c0aadc85c1a56ee6841620e97408244180a
[ "MIT" ]
null
null
null
#MIT License #Copyright (c) 2021 Zaute Km #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. from pyrogram import Client, filters from pyrogram.types import Message from utils import mp, RADIO, USERNAME from config import Config from config import STREAM CHAT=Config.CHAT ADMINS=Config.ADMINS @Client.on_message(filters.command(["radio", f"radio@{USERNAME}"]) & filters.user(ADMINS) & (filters.chat(CHAT) | filters.private)) async def radio(client, message: Message): if 1 in RADIO: k=await message.reply_text("Radio Stream i tih tawp leh duh chuan /stopradio tih lo thawn rawh!") await mp.delete(k) await mp.delete(message) return await mp.start_radio() k=await message.reply_text(f"Started Radio: <code>{STREAM}</code>") await mp.delete(k) await mp.delete(message) @Client.on_message(filters.command(['stopradio', f"stopradio@{USERNAME}"]) & filters.user(ADMINS) & (filters.chat(CHAT) | filters.private)) async def stop(_, message: Message): if 0 in RADIO: k=await message.reply_text("Radio i Stream leh duh chuan /radio tih lo thawn rawh!") await mp.delete(k) await mp.delete(message) return await mp.stop_radio() k=await message.reply_text("Radio Stream tih tawp a ni.") await mp.delete(k) await mp.delete(message)
43.660377
139
0.743302
b71f655a33582d30740edf4a44926d35ff4064b8
1,480
py
Python
dags/dag_factory/components/utils.py
newspipe/Newspipe
752becd1b0c6e0358f087d6e5ced01175841a09f
[ "Apache-2.0" ]
3
2021-11-24T19:30:51.000Z
2022-01-21T05:38:59.000Z
dags/dag_factory/components/utils.py
newspipe/Newspipe
752becd1b0c6e0358f087d6e5ced01175841a09f
[ "Apache-2.0" ]
1
2020-09-19T21:00:20.000Z
2020-09-23T18:16:48.000Z
dags/dag_factory/components/utils.py
newspipe/Newspipe
752becd1b0c6e0358f087d6e5ced01175841a09f
[ "Apache-2.0" ]
1
2021-12-26T07:16:33.000Z
2021-12-26T07:16:33.000Z
import os import yaml import time from datetime import datetime def get_all_csv_paths(path): csv_paths = [] for root, dirs, files in os.walk(path): for file in files: if file.endswith(".csv"): csv_paths.append(os.path.join(root, file)) return csv_paths def date_str_to_unixtime(date_str): if str(date_str).isnumeric(): return int(date_str) else: d = None try: d = datetime.strptime(date_str) except: pass try: d = datetime.strptime(date_str, '%a, %d %b %Y %H:%M:%S %Z') except: pass try: d = datetime.strptime(date_str, '%a, %d %b %Y %H:%M:%S %z') except: pass try: d = datetime.strptime(date_str.split( '+')[0].replace("T", " "), '%Y-%m-%d %H:%M:%S') except: pass try: d = datetime.strptime(date_str, '%a, %d %b %Y %H:%M:%S %z') except: pass try: d = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S') except: pass return int(time.mktime(d.timetuple())) if d else None def tag_dict_to_dict(tag_dict): if not tag_dict: return None tags = [] tag_list = yaml.load(tag_dict) if isinstance(tag_list, list): for tag in tag_list: tags.append(tag["term"]) return ','.join(tags) return None
24.666667
71
0.506757
7f3ddea355743fa25b1859937a10fa00dd6544ef
236
py
Python
Mundo1/des16.1.py
julimoraislima/Python-CursoEmVideo
d21b0485d2f5767039d819cf743255dfd0f27b18
[ "MIT" ]
2
2021-01-05T12:31:00.000Z
2021-03-20T00:31:18.000Z
Mundo1/des16.1.py
julimoraislima/Python-CursoEmVideo
d21b0485d2f5767039d819cf743255dfd0f27b18
[ "MIT" ]
null
null
null
Mundo1/des16.1.py
julimoraislima/Python-CursoEmVideo
d21b0485d2f5767039d819cf743255dfd0f27b18
[ "MIT" ]
1
2020-12-28T22:56:10.000Z
2020-12-28T22:56:10.000Z
#desafio 16: usando o trunc, o trunc quebra o número real deixando ele inteiro. from math import trunc num = float(input('Digite um número real: ')) print('='*40) print(f'O número {num} tem a parte inteira {trunc(num)}') print('='*40)
29.5
79
0.70339
7f6c43922571e7929d354c75aad5be84af390dd5
704
py
Python
movingpandas/__init__.py
menegon/movingpandas
d1dbf633ee44a9caeabf1a16bf25bc855e0b00ce
[ "BSD-3-Clause" ]
null
null
null
movingpandas/__init__.py
menegon/movingpandas
d1dbf633ee44a9caeabf1a16bf25bc855e0b00ce
[ "BSD-3-Clause" ]
null
null
null
movingpandas/__init__.py
menegon/movingpandas
d1dbf633ee44a9caeabf1a16bf25bc855e0b00ce
[ "BSD-3-Clause" ]
null
null
null
""" `movingpandas`: Implementation of Trajectory classes and functions built on top of GeoPandas """ from .trajectory import Trajectory from .trajectory_generalizer import TrajectoryGeneralizer, MaxDistanceGeneralizer, MinDistanceGeneralizer, \ MinTimeDeltaGeneralizer, DouglasPeuckerGeneralizer from .trajectory_collection import TrajectoryCollection from .trajectory_aggregator import TrajectoryCollectionAggregator from .trajectory_splitter import TrajectorySplitter, TemporalSplitter, ObservationGapSplitter, SpeedSplitter, \ StopSplitter from .trajectory_stop_detector import TrajectoryStopDetector from .point_clusterer import PointClusterer name = 'movingpandas' __version__ = '0.6.rc1'
41.411765
111
0.855114
84ee92c53bdccb84d2fad511c493ad5a42dca7ab
8,643
py
Python
main/help_window.py
Gloryness/YoutubeDL-GUI
c7052969af1e31ff5d6ff1f1ff027c0d29b0e8ba
[ "MIT" ]
3
2020-06-18T10:57:16.000Z
2020-06-23T09:10:43.000Z
main/help_window.py
Gloryness/Download-Videos
c7052969af1e31ff5d6ff1f1ff027c0d29b0e8ba
[ "MIT" ]
null
null
null
main/help_window.py
Gloryness/Download-Videos
c7052969af1e31ff5d6ff1f1ff027c0d29b0e8ba
[ "MIT" ]
null
null
null
import threading import webbrowser from tkinter import * from tkinter import ttk from tkinter.font import * count = 1 def reset(win): global count count = 1 win.destroy() class Help: def __init__(self, version): self.version = version global count if count == 1: self.help_win = Toplevel() self.help_win.title('Help | YoutubeDL GUI | v{}'.format(self.version)) self.help_win.iconbitmap('images/#app.ico') self.help_win.resizable(False, False) self.help_win.configure(bg='#cbdbfc', bd=5) self.help_win.geometry("500x300") self.help_win.protocol('WM_DELETE_WINDOW', lambda: reset(self.help_win)) self.f = Font(family='TkDefaultFont', size=13, weight=BOLD) exit_btn = ttk.Button(self.help_win, text="Exit", style="some.TButton", command=lambda: reset(self.help_win)) exit_btn.place(x=410, y=2) count = 2 # threading def ffmpeg_thread(self): thread = threading.Thread(target=self.ffmpeg_help) thread.start() def detect_urls_thread(self): thread = threading.Thread(target=self.detect_urls_help) thread.start() def downloading_videos_thread(self): thread = threading.Thread(target=self.downloading_videos_help) thread.start() def other_issues_thread(self): thread = threading.Thread(target=self.other_issues) thread.start() def about_gui_thread(self): thread = threading.Thread(target=self.about_gui) thread.start() def add_label(self, win, text, bg="#ffffff", fg="black", x=1, y=1, font=None, bind=(False, None, None), bind1=(False, None), bind2=(False, None)): label_adder = Label(win, text=text, fg=fg, bg=bg, font=font if font is not None else "TkDefaultFont") label_adder.place(x=x, y=y) if bind[0]: label_adder.bind(bind[1], bind[2]) if bind1[0]: label_adder.bind(bind1[1], lambda event: label_adder.config(bg="#859fd4")) if bind2[0]: label_adder.bind(bind2[1], lambda event: label_adder.config(bg="#cbdbfc")) def ffmpeg_help(self): self.add_label(self.help_win, "FFmpeg - Help", '#cbdbfc', x=190, y=3, font=self.f) self.add_label(self.help_win, "If you have not already read the How-To on github, then it's all explained here:", '#cbdbfc', x=5, y=40) self.add_label(self.help_win, "If you've tried downloading a video, and got an error based on files that couldnt merge" "\nor too high quality then that means you have not installed FFmpeg.", '#cbdbfc', x=5, y=80) self.add_label(self.help_win, "To install FFmpeg, simply go to the 'Tools' tab of this GUI and click 'Install FFmpeg'.", '#cbdbfc', x=5, y=127) self.add_label(self.help_win, "After that, I recommend choosing the latest version and your architecture" "\n and then choose 'Static' for linking which should be automatic.", '#cbdbfc', x=5, y=160) self.add_label(self.help_win, "Once installed, find the folder that contains 'ffmpeg.exe', 'ffplay.exe' or 'ffprobe.exe'" "\nand then set that folder as your System Environmental Variable.", '#cbdbfc', x=5, y=210) f = Font(family="TkDefaultFont", size=8, weight=BOLD) self.add_label(self.help_win, "(Control Panel>System>Advanced System Settings>Environmental Variables>Path>Edit)", '#cbdbfc', x=-3, y=245, font=f) self.add_label(self.help_win, "Then you should be done! If you have any issues, Google may have a better answer.", '#cbdbfc', x=5, y=270) def detect_urls_help(self): self.add_label(self.help_win, "Selenium - Help", '#cbdbfc', x=190, y=3, font=self.f) self.add_label(self.help_win, "The option that is next to the download button looks very intimidating, doesn't it?", '#cbdbfc', x=5, y=27) self.add_label(self.help_win, "It uses the well-known python module 'Selenium' for webbrowser automation.", '#cbdbfc', x=5, y=47) self.add_label(self.help_win, "You can use it as a normal browser, and clicking 'Execute' to catch all downloadable URLs.", '#cbdbfc', x=5, y=67) self.add_label(self.help_win, "But how do you use it?", '#cbdbfc', x=5, y=90) f = Font(family="TkDefaultFont", size=8, weight=BOLD) self.add_label(self.help_win, "- Install a WebDriver for the browser you want to use.", '#cbdbfc', x=5, y=110, font=f) self.add_label(self.help_win, "- You can do this by going to the 'Tools' tab and choosing 'Install WebDriver'.", '#cbdbfc', x=5, y=140, font=f) self.add_label(self.help_win, "- Next, find that .exe file that you installed and place it anywhere on your machine.", '#cbdbfc', x=5, y=170, font=f) self.add_label(self.help_win, "- Then go to 'Settings' in the 'File' tab and in Selenium Settings set the PATH to the .exe!", '#cbdbfc', x=5, y=200, font=f) self.add_label(self.help_win, "- If your using the Firefox browser you can choose to link your Firefox profile (optional).", '#cbdbfc', x=5, y=230, font=f) self.add_label(self.help_win, "- When you open selenium, a command-line for the .exe will come up. Do not close it!", '#cbdbfc', x=5, y=260, font=f) def downloading_videos_help(self): self.add_label(self.help_win, "Downloading Videos - Help", '#cbdbfc', x=140, y=3, font=self.f) self.add_label(self.help_win, "Looks like you need help with Downloading Videos. I got you covered!", '#cbdbfc', x=5, y=30) self.add_label(self.help_win, "Here are some common issues:", '#cbdbfc', x=5, y=50) f = Font(family="TkDefaultFont", size=8, weight=BOLD) self.add_label(self.help_win, "- Blocked Websites", '#cbdbfc', x=5, y=70, font=f) self.add_label(self.help_win, "- Bad Network", '#cbdbfc', x=5, y=90, font=f) self.add_label(self.help_win, "- Checked downloading.log or not?", '#cbdbfc', x=5, y=110, font=f) self.add_label(self.help_win, "- Has FFmpeg or something simallur been installed?", '#cbdbfc', x=5, y=130, font=f) self.add_label(self.help_win, "- Is FFmpeg a System Environmental Variable?", '#cbdbfc', x=5, y=150, font=f) self.add_label(self.help_win, "- Is the video available in your country?", '#cbdbfc', x=5, y=170, font=f) self.add_label(self.help_win, "If none of them options help, consider searching up the problem.", '#cbdbfc', x=5, y=200) self.add_label(self.help_win, "If still nothing, go to Other Options and check 'Print various debugging info' and then", '#cbdbfc', x=5, y=240) self.add_label(self.help_win, "download the video again and screenshot it and make an issue on ", '#cbdbfc', x=5, y=260) self.add_label(self.help_win, "GitHub.", '#cbdbfc', "blue", x=356, y=260, bind=(True, "<Button-1>", lambda event: webbrowser.open('https://github.com/Gloryness/YoutubeDL-GUI/issues')), bind1=(True, "<Enter>"), bind2=(True, "<Leave>")) def other_issues(self): f = Font(family="TkDefaultFont", size=10, weight=BOLD) self.add_label(self.help_win, "Other Issues - Help", '#cbdbfc', x=180, y=3, font=self.f) self.add_label(self.help_win, "If you need any other help, then feel free to create an Issue on github.", '#cbdbfc', x=25, y=120, font=f) self.add_label(self.help_win, "A response usually comes within the day.", '#cbdbfc', x=100, y=140, font=f) self.add_label(self.help_win, ">> Github Link <<", '#cbdbfc', "blue", x=170, y=200, font=f, bind=(True, "<Button-1>", lambda event: webbrowser.open('https://github.com/Gloryness/YoutubeDL-GUI/issues')), bind1=(True, "<Enter>"), bind2=(True, "<Leave>")) def about_gui(self): self.add_label(self.help_win, "About this GUI", "#cbdbfc", x=185, y=5, font=self.f) self.add_label(self.help_win, "This GUI was made to make Downloading Videos easier, but in a bit of a stylish way too :)", "#cbdbfc", x=5, y=40) self.add_label(self.help_win, "It took 2 months to make, on & off and it was all made by one person! (see credits)", "#cbdbfc", x=5, y=60) self.add_label(self.help_win, "If you would like to look at the source code, it's all on Github.", "#cbdbfc", x=5, y=100) self.add_label(self.help_win, "If you would like to request a feature, make an Issue on Github.", "#cbdbfc", x=5, y=120) self.add_label(self.help_win, "If you encounter any bugs, be sure to report them on Github.", "#cbdbfc", x=5, y=140)
66.484615
183
0.648386
2f745828a07e10b2da5357c0e5622fdbf3b430b1
1,703
py
Python
dockermap/map/runner/signal_stop.py
merll/docker-map
54e325595fc0b6b9d154dacc790a222f957895da
[ "MIT" ]
85
2015-01-02T01:05:14.000Z
2022-03-23T22:23:12.000Z
dockermap/map/runner/signal_stop.py
merll/docker-map
54e325595fc0b6b9d154dacc790a222f957895da
[ "MIT" ]
21
2015-02-10T18:25:03.000Z
2020-10-28T08:38:39.000Z
dockermap/map/runner/signal_stop.py
merll/docker-map
54e325595fc0b6b9d154dacc790a222f957895da
[ "MIT" ]
15
2015-02-27T12:19:35.000Z
2021-09-29T06:20:14.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging import signal from requests.exceptions import Timeout from ..action import ContainerUtilAction from ..input import ItemType log = logging.getLogger(__name__) class SignalMixin(object): action_method_names = [ (ItemType.CONTAINER, ContainerUtilAction.SIGNAL_STOP, 'signal_stop'), ] def signal_stop(self, action, c_name, **kwargs): """ Stops a container, either using the default client stop method, or sending a custom signal and waiting for the container to stop. :param action: Action configuration. :type action: dockermap.map.runner.ActionConfig :param c_name: Container name. :type c_name: unicode | str :param kwargs: Additional keyword arguments to complement or override the configuration-based values. :type kwargs: dict """ client = action.client sig = action.config.stop_signal stop_kwargs = self.get_container_stop_kwargs(action, c_name, kwargs=kwargs) if not sig or sig == 'SIGTERM' or sig == signal.SIGTERM: try: client.stop(**stop_kwargs) except Timeout: log.warning("Container %s did not stop in time - sent SIGKILL.", c_name) try: client.wait(c_name, timeout=stop_kwargs.get('timeout', 10)) except Timeout: pass else: log.debug("Sending signal %s to the container %s and waiting for stop.", sig, c_name) client.kill(c_name, signal=sig) client.wait(c_name, timeout=stop_kwargs.get('timeout', 10))
35.479167
110
0.637111
3178e77a83eb9d8c57cc70e9fd09e67e6cfc9116
2,948
py
Python
Python-Standard-Library/DataCompression/zlib_server.py
gaufung/CodeBase
0292b06cfe002b3ad0299e43bb51192816a02c74
[ "MIT" ]
1
2018-10-06T23:50:53.000Z
2018-10-06T23:50:53.000Z
Python-Standard-Library/DataCompression/zlib_server.py
wsgan001/CodeBase
0292b06cfe002b3ad0299e43bb51192816a02c74
[ "MIT" ]
null
null
null
Python-Standard-Library/DataCompression/zlib_server.py
wsgan001/CodeBase
0292b06cfe002b3ad0299e43bb51192816a02c74
[ "MIT" ]
1
2018-10-06T23:50:50.000Z
2018-10-06T23:50:50.000Z
import zlib import logging import socketserver import binascii BLOCK_SIZE = 64 class ZlibRequestHandler(socketserver.BaseRequestHandler): logger = logging.getLogger('Server') def handle(self): compressor = zlib.compressobj(1) filename = self.request.recv(1024).decode('utf-8') self.logger.debug('Client asked for: %s', filename) with open(filename, 'rb') as input: while True: block = input.read(BLOCK_SIZE) if not block: break self.logger.debug('RAW %r', block) compressed = compressor.compress(block) if compressed: self.logger.debug('Sending %r', binascii.hexlify(block)) self.request.send(compressed) else: self.logger.debug('buffered') remaining = compressor.flush() while remaining: to_send = remaining[:BLOCK_SIZE] remaining = remaining[BLOCK_SIZE:] self.logger.debug('FLUSHING %r', binascii.hexlify(to_send)) self.request.send(to_send) return if __name__ == '__main__': import socket import threading from io import BytesIO logging.basicConfig( level=logging.DEBUG, format='%(name)s: %(message)s' ) logger = logging.getLogger('Client') address = ('localhost', 0) server = socketserver.TCPServer(address, ZlibRequestHandler) ip, port = server.server_address t = threading.Thread(target=server.serve_forever) t.setDaemon(True) t.start() logger.info('Contacting server on %s:%s',ip, port) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((ip, port)) requested_file ='zlib_server.py' logger.debug('sending filename: %r', requested_file) len_sent = s.send(requested_file.encode('utf-8')) buffer = BytesIO() decompressor = zlib.decompressobj() while True: response = s.recv(BLOCK_SIZE) if not response: break logger.debug('READ %r', binascii.hexlify(response)) to_decompress = decompressor.unconsumed_tail + response while to_decompress: decompressed = decompressor.decompress(to_decompress) if decompressed: logger.debug('DECOMPRESSED %r', decompressed) buffer.write(decompressed) to_decompress = decompressor.unconsumed_tail else: logger.debug('BUFFERING') to_decompress = None remainder = decompressor.flush() if remainder: logger.debug('FLUSHED %r', remainder) buffer.write(remainder) full_response=buffer.getvalue() lorem = open('zlib_server.py', 'rb').read() logger.debug('response mathes file content: %s', full_response == lorem) s.close() server.socket.close()
33.885057
76
0.604138
6171632c035ea3af6bf1253c01d1d4ee6f96c3d7
955
py
Python
p7e11.py
yannickbf-prog/python
da4bd2c8668966359b829a8ac2a896afeca2b150
[ "MIT" ]
null
null
null
p7e11.py
yannickbf-prog/python
da4bd2c8668966359b829a8ac2a896afeca2b150
[ "MIT" ]
null
null
null
p7e11.py
yannickbf-prog/python
da4bd2c8668966359b829a8ac2a896afeca2b150
[ "MIT" ]
null
null
null
#Yannick p7e11 Escribe un programa que te pida una frase, y pase la frase como parámetro a una función. Ésta debe devolver si es palíndroma o no , y el programa principal escribirá el resultado por pantalla: def comprobarPalindromo(fraseONumero): fraseONumero = fraseONumero.replace (" ", "") contarFraseONumero = int(len(fraseONumero) / 2) #print(fraseONumero) y = 1 esPalindromo = True for i in range(0, (contarFraseONumero)): #print(fraseONumero[i]) #print(fraseONumero[-y]) if (fraseONumero[i]) != (fraseONumero[-y]): esPalindromo = False #guardarPalabraInversa = guardarPalabraInversa +(fraseONumero[i]) y = y+1 return esPalindromo fraseONumero1=input("Escribe una frase o numero") if (comprobarPalindromo(fraseONumero1)): print(f"{fraseONumero1} Es palindromo") else: print(f"{fraseONumero1} No es palindromo")
31.833333
208
0.66178
37b2f198905fcd4f56760b4d3e65f326d4b8aeb0
1,028
py
Python
examples/ssl_echo_client.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
examples/ssl_echo_client.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
examples/ssl_echo_client.py
Flared/proxy.py
7199459c69a717bb55f932230ae9a39707430149
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ proxy.py ~~~~~~~~ ⚡⚡⚡ Fast, Lightweight, Pluggable, TLS interception capable proxy server focused on Network monitoring, controls & Application development, testing, debugging. :copyright: (c) 2013-present by Abhinav Singh and contributors. :license: BSD, see LICENSE for more details. """ import logging from proxy.core.connection import TcpServerConnection from proxy.common.constants import DEFAULT_BUFFER_SIZE logger = logging.getLogger(__name__) if __name__ == '__main__': client = TcpServerConnection('::', 12345) client.connect() client.wrap('example.com', ca_file='ca-cert.pem') # wrap() will by default set connection to nonblocking # flip it back to blocking client.connection.setblocking(True) try: while True: client.send(b'hello') data = client.recv(DEFAULT_BUFFER_SIZE) if data is None: break logger.info(data.tobytes()) finally: client.close()
29.371429
86
0.659533
911298bf3109f6aa8d3ab54cb169fe3041c1faf6
459
py
Python
0001-0100/0041-First Missing Positive/0041-First Missing Positive.py
jiadaizhao/LeetCode
4ddea0a532fe7c5d053ffbd6870174ec99fc2d60
[ "MIT" ]
49
2018-05-05T02:53:10.000Z
2022-03-30T12:08:09.000Z
0001-0100/0041-First Missing Positive/0041-First Missing Positive.py
jolly-fellow/LeetCode
ab20b3ec137ed05fad1edda1c30db04ab355486f
[ "MIT" ]
11
2017-12-15T22:31:44.000Z
2020-10-02T12:42:49.000Z
0001-0100/0041-First Missing Positive/0041-First Missing Positive.py
jolly-fellow/LeetCode
ab20b3ec137ed05fad1edda1c30db04ab355486f
[ "MIT" ]
28
2017-12-05T10:56:51.000Z
2022-01-26T18:18:27.000Z
class Solution: def firstMissingPositive(self, nums: List[int]) -> int: for i in range(len(nums)): while nums[i] != i + 1 and 1 <= nums[i] <= len(nums) and nums[i] != nums[nums[i] - 1]: temp = nums[i] nums[i] = nums[nums[i] - 1] nums[temp - 1] = temp for i, num in enumerate(nums): if num != i + 1: return i + 1 return len(nums) + 1
35.307692
98
0.448802
d2cefc6573275ee90ff12079f82e95080844dc61
563
py
Python
django_contactme/admin.py
petekalo/django-contactme
8a7d1e0213f0e02e9fa8043fdb74edbf8be921c0
[ "MIT" ]
null
null
null
django_contactme/admin.py
petekalo/django-contactme
8a7d1e0213f0e02e9fa8043fdb74edbf8be921c0
[ "MIT" ]
null
null
null
django_contactme/admin.py
petekalo/django-contactme
8a7d1e0213f0e02e9fa8043fdb74edbf8be921c0
[ "MIT" ]
null
null
null
from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from django_contactme.models import ContactMsg class ContactMsgAdmin(admin.ModelAdmin): list_display = ('name', 'ip_address', 'submit_date') fieldsets = ( (None, {'fields': ('site',)}), (_('Content'), {'fields': ('name', 'email', 'message',)}), (_('Metadata'), {'fields': ('submit_date', 'ip_address')}), ) date_hierarchy = 'submit_date' ordering = ('-submit_date',) admin.site.register(ContactMsg, ContactMsgAdmin)
31.277778
67
0.648313
8c8cf11af61fe072f5f42646b91c1ee83b90afca
1,229
py
Python
app/auth/forms.py
crandquist/PrinterApp
fda5ba2b7494c83ebec9eef6bb03eb8cc176b5d4
[ "MIT" ]
null
null
null
app/auth/forms.py
crandquist/PrinterApp
fda5ba2b7494c83ebec9eef6bb03eb8cc176b5d4
[ "MIT" ]
12
2020-07-23T03:04:46.000Z
2020-08-10T19:37:40.000Z
app/auth/forms.py
crandquist/PrinterApp
fda5ba2b7494c83ebec9eef6bb03eb8cc176b5d4
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import DataRequired, Email, EqualTo, ValidationError from app.models import User class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) submit = SubmitField('Sign In') class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Repeat Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Register') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username.') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('Please use a different email address.')
39.645161
79
0.703824
da1af07ea719efb6bd0de260ea8765075f164d15
7,704
py
Python
dgi_repo/fcrepo3/datastream_resource.py
discoverygarden/dgi_repo
1bb30d51a4cefc2ae510f5aeac4b36ed7a78f6a6
[ "Apache-2.0" ]
null
null
null
dgi_repo/fcrepo3/datastream_resource.py
discoverygarden/dgi_repo
1bb30d51a4cefc2ae510f5aeac4b36ed7a78f6a6
[ "Apache-2.0" ]
null
null
null
dgi_repo/fcrepo3/datastream_resource.py
discoverygarden/dgi_repo
1bb30d51a4cefc2ae510f5aeac4b36ed7a78f6a6
[ "Apache-2.0" ]
null
null
null
""" Class file for the implementation of the datastream resource. """ from psycopg2.extensions import ISOLATION_LEVEL_READ_COMMITTED import dgi_repo.database.read.repo_objects as object_reader import dgi_repo.database.read.datastreams as ds_reader import dgi_repo.database.write.datastreams as ds_writer import dgi_repo.database.delete.datastreams as ds_purger import dgi_repo.utilities as utils import dgi_repo.fcrepo3.utilities as fedora_utils from dgi_repo.exceptions import (ObjectDoesNotExistError, DatastreamDoesNotExistError, DatastreamExistsError, DatastreamConflictsError, ExternalDatastreamsNotSupported) from dgi_repo.fcrepo3 import api, foxml from dgi_repo.database.utilities import get_connection class DatastreamResource(api.DatastreamResource): """ Provide the datastream CRUD endpoints. """ def _create_datastream(self, req, pid, dsid): """ Persist the new datastream. Raises: DatastreamExistsError: The object doesn't exist. """ conn = get_connection(ISOLATION_LEVEL_READ_COMMITTED) with conn, conn.cursor() as cursor: ds_info = ds_reader.datastream_from_raw(pid, dsid, cursor=cursor).fetchone() if ds_info: raise DatastreamExistsError(pid, dsid) self._upsert_ds(req, pid, dsid, cursor) def _update_datastream(self, req, pid, dsid): """ Commit the modification to the datastream. """ conn = get_connection(ISOLATION_LEVEL_READ_COMMITTED) with conn, conn.cursor() as cursor: ds_reader.datastream_from_raw(pid, dsid, cursor=cursor) ds_info = cursor.fetchone() if ds_info is None: raise DatastreamDoesNotExistError(pid, dsid) ds = dict(ds_info) ds['committed'] = ds['modified'] ds['datastream'] = ds['id'] del ds['id'] # Check modified date param, exiting if needed. modified_date = req.get_param('lastModifiedDate') if modified_date is not None: modified_date = utils.iso8601_to_datetime(modified_date) if ds['committed'] > modified_date: raise DatastreamConflictsError(pid, dsid, ds['committed'], modified_date) if ds_info['versioned']: ds_writer.upsert_old_datastream(ds, cursor=cursor) if ds['resource'] is not None: ds['mimetype'] = ds_reader.mime_from_resource( ds['resource'], cursor=cursor ).fetchone()['mime'] self._upsert_ds(req, pid, dsid, cursor, ds=ds) return def _delete_datastream(self, req, pid, dsid): """ Purge the datastream (or range of versions). @TODO: handle logMessage when audit is dealt with. """ start = utils.iso8601_to_datetime(req.get_param('startDT')) end = utils.iso8601_to_datetime(req.get_param('endDT')) with get_connection() as conn, conn.cursor() as cursor: ds_purger.delete_datastream_versions( pid, dsid, start=start, end=end, cursor=cursor ) if not cursor.rowcount: object_info = object_reader.object_id_from_raw( pid, cursor=cursor ).fetchone() if object_info is None: # Only raise if the object is missing because Fedora. raise ObjectDoesNotExistError(pid) foxml.internalize_rels(pid, dsid, req.env['wsgi.identity'].source_id, cursor=cursor) return (start, end) def _upsert_ds(self, req, pid, dsid, cursor, ds=None): """ Upsert a datastream. Raises: ObjectDoesNotExistError: The object doesn't exist. """ if ds is not None: ds = dict(ds) del ds['modified'] else: ds = {} object_info = object_reader.object_id_from_raw( pid, cursor=cursor).fetchone() if object_info is None: raise ObjectDoesNotExistError(pid) control_group = req.get_param('controlGroup', default='M') if control_group == 'E': raise ExternalDatastreamsNotSupported ds_location = req.get_param('dsLocation') data_ref = None data = None if ds_location is not None: if control_group == 'R': data_ref = { 'TYPE': 'URL', 'REF': ds_location, } else: data_ref = { 'TYPE': 'INTERNAL_ID', 'REF': ds_location, } else: try: data = req.get_param('file').file except AttributeError: # Data can come as the request body. if req.content_length: data = req.stream checksums = [] checksum = req.get_param('checksum') checksum_type = req.get_param('checksumType') if checksum is not None or checksum_type is not None: checksums.append({ 'checksum': checksum, 'type': checksum_type, }), ds.update({ 'dsid': dsid, 'object': object_info['id'], 'log': fedora_utils.resolve_log(req, cursor), 'checksums': checksums, 'data_ref': data_ref, 'data': data, }) label_in = req.get_param('dsLabel') if label_in is not None: ds['label'] = label_in ds.setdefault('label', '') ds.setdefault('control_group', control_group) version_in = req.get_param('versionable') if version_in: ds['versioned'] = version_in != 'false' ds.setdefault('versioned', True) mime_in = req.get_param('mimeType') if mime_in: ds['mimetype'] = mime_in ds.setdefault('mimetype', 'application/octet-stream') state_in = req.get_param('dsState') if state_in: ds['state'] = state_in ds.setdefault('state', 'A') fedora_utils.write_ds(ds, cursor=cursor) foxml.internalize_rels(pid, dsid, req.env['wsgi.identity'].source_id, cursor=cursor) def _get_datastream_info(self, pid, dsid, asOfDateTime=None, **kwargs): """ Get the ds* values in a dict, to build the datastream profile. """ with get_connection() as conn, conn.cursor() as cursor: ds_reader.datastream_from_raw(pid, dsid, cursor=cursor) ds_info = cursor.fetchone() if ds_info is None: raise DatastreamDoesNotExistError(pid, dsid) if asOfDateTime is not None: time = utils.iso8601_to_datetime(asOfDateTime) ds_info = ds_reader.datastream_as_of_time( ds_info['id'], time, cursor=cursor ) if ds_info is None: raise DatastreamDoesNotExistError(pid, dsid, time) return fedora_utils.datastream_to_profile(ds_info, cursor)
36.339623
78
0.548157
18e56b70f69726222243ae0f89028e97b4405958
195
py
Python
SPOJ/LASTDIG2.py
cquark7/competitive_programming
c90754d91628b273703c74e373356394732f0cd3
[ "MIT" ]
1
2019-06-16T08:21:56.000Z
2019-06-16T08:21:56.000Z
SPOJ/LASTDIG2.py
cquark7/competitive_programming
c90754d91628b273703c74e373356394732f0cd3
[ "MIT" ]
null
null
null
SPOJ/LASTDIG2.py
cquark7/competitive_programming
c90754d91628b273703c74e373356394732f0cd3
[ "MIT" ]
null
null
null
d2 = {n: {p % 4: str(n ** p)[-1] for p in range(4, 8)} for n in range(10)} for tc in range(int(input())): a, b = input().split() b = int(b) print(d2[int(a[-1])][b % 4] if b else '1')
32.5
74
0.492308
d68302e0aa5fba61998c63dd126fce2d702acbf7
2,433
py
Python
open_spiel/python/examples/playthrough.py
ReedyHarbour/MultiplayerPoker
70f3872a046d954d6ec2fca3d829ec36ac70e259
[ "Apache-2.0" ]
null
null
null
open_spiel/python/examples/playthrough.py
ReedyHarbour/MultiplayerPoker
70f3872a046d954d6ec2fca3d829ec36ac70e259
[ "Apache-2.0" ]
null
null
null
open_spiel/python/examples/playthrough.py
ReedyHarbour/MultiplayerPoker
70f3872a046d954d6ec2fca3d829ec36ac70e259
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 DeepMind Technologies Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as python3 """Play a game, selecting random moves, and save what we see. This can be used to check by hand the behaviour of a game, and also as the basis for test cases. Example usage: ``` playthrough --game kuhn_poker --params players=3 ``` """ from absl import app from absl import flags from absl import logging from open_spiel.python.algorithms import generate_playthrough FLAGS = flags.FLAGS flags.DEFINE_string( "game", "kuhn_poker(players=3)", "Name of the game, with optional parameters, e.g. " "'kuhn_poker' or 'go(komi=4.5,board_size=19)'.") flags.DEFINE_string("output_file", "output.txt", "Where to write the data to.") flags.DEFINE_list("actions", None, "A (possibly partial) list of action choices to make.") flags.DEFINE_string("update_path", None, "If set, regenerates all playthroughs in the path.") flags.DEFINE_bool( "alsologtostdout", False, "If True, the trace will be written to std-out while it " "is being constructed (in addition to the usual behavior).") flags.DEFINE_integer("shard", 0, "The shard to update.") flags.DEFINE_integer("num_shards", 1, "How many shards to use for updates.") def main(unused_argv): if FLAGS.update_path: generate_playthrough.update_path(FLAGS.update_path, FLAGS.shard, FLAGS.num_shards) else: if not FLAGS.game: raise ValueError("Must specify game") actions = FLAGS.actions if actions is not None: actions = [int(x) for x in actions] text = generate_playthrough.playthrough( FLAGS.game, actions, alsologtostdout=FLAGS.alsologtostdout) if FLAGS.output_file: with open(FLAGS.output_file, "w") as f: f.write(text) else: logging.info(text) if __name__ == "__main__": app.run(main)
33.328767
88
0.706124
982703282a52fe3b6af5a568dcde080ce74e987c
26,752
py
Python
tensorboard/plugins/graph/keras_util_test.py
tjgq/tensorboard
751c961b90183115e4ab0ae3975d50146c0705b9
[ "Apache-2.0" ]
7
2020-04-04T16:25:42.000Z
2021-10-02T18:26:56.000Z
tensorboard/plugins/graph/keras_util_test.py
tjgq/tensorboard
751c961b90183115e4ab0ae3975d50146c0705b9
[ "Apache-2.0" ]
1
2021-09-02T14:57:13.000Z
2021-09-02T14:57:13.000Z
tensorboard/plugins/graph/keras_util_test.py
tjgq/tensorboard
751c961b90183115e4ab0ae3975d50146c0705b9
[ "Apache-2.0" ]
4
2020-08-08T18:08:44.000Z
2021-05-13T05:22:40.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras Utility.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow as tf from tensorflow.python.platform import test from tensorboard.plugins.graph import keras_util from tensorboard.util import test_util class KerasUtilTest(tf.test.TestCase): def assertGraphDefToModel(self, expected_proto, model): model_config = json.loads(model.to_json()) self.assertProtoEquals( expected_proto, keras_util.keras_model_to_graph_def(model_config) ) def DISABLED_test_keras_model_to_graph_def_sequential_model(self): expected_proto = """ node { name: "sequential/dense_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential/dense" input: "sequential/dense_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential/my_relu" input: "sequential/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } node { name: "sequential/dense_1" input: "sequential/my_relu" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential/activation" input: "sequential/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } """ model = tf.keras.models.Sequential( [ tf.keras.layers.Dense(32, input_shape=(784,)), tf.keras.layers.Activation("relu", name="my_relu"), tf.keras.layers.Dense(10), tf.keras.layers.Activation("softmax"), ] ) self.assertGraphDefToModel(expected_proto, model) def test_keras_model_to_graph_def_functional_model(self): expected_proto = """ node { name: "model/functional_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/dense" input: "model/functional_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/dense_1" input: "model/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/dense_2" input: "model/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } """ inputs = tf.keras.layers.Input(shape=(784,), name="functional_input") d0 = tf.keras.layers.Dense(64, activation="relu") d1 = tf.keras.layers.Dense(64, activation="relu") d2 = tf.keras.layers.Dense(64, activation="relu") model = tf.keras.models.Model(inputs=inputs, outputs=d2(d1(d0(inputs)))) self.assertGraphDefToModel(expected_proto, model) def test_keras_model_to_graph_def_functional_model_with_cycle(self): expected_proto = """ node { name: "model/cycle_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/dense" input: "model/cycle_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/dense_1" input: "model/dense" input: "model/dense_2" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/dense_2" input: "model/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } """ inputs = tf.keras.layers.Input(shape=(784,), name="cycle_input") d0 = tf.keras.layers.Dense(64, activation="relu") d1 = tf.keras.layers.Dense(64, activation="relu") d2 = tf.keras.layers.Dense(64, activation="relu") model = tf.keras.models.Model( inputs=inputs, outputs=d1(d2(d1(d0(inputs)))) ) self.assertGraphDefToModel(expected_proto, model) def test_keras_model_to_graph_def_lstm_model(self): expected_proto = """ node { name: "model/lstm_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/simple_rnn" input: "model/lstm_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "SimpleRNN" } } } """ inputs = tf.keras.layers.Input(shape=(None, 5), name="lstm_input") encoder = tf.keras.layers.SimpleRNN(256) model = tf.keras.models.Model(inputs=inputs, outputs=encoder(inputs)) self.assertGraphDefToModel(expected_proto, model) def DISABLED_test_keras_model_to_graph_def_nested_sequential_model(self): expected_proto = """ node { name: "sequential_2/sequential_1_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential_2/sequential_1/sequential_input" input: "sequential_2/sequential_1_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential_2/sequential_1/sequential/dense_input" input: "sequential_2/sequential_1/sequential_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential_2/sequential_1/sequential/dense" input: "sequential_2/sequential_1/sequential/dense_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential_2/sequential_1/sequential/activation" input: "sequential_2/sequential_1/sequential/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } node { name: "sequential_2/sequential_1/my_relu" input: "sequential_2/sequential_1/sequential/activation" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } node { name: "sequential_2/dense_1" input: "sequential_2/sequential_1/my_relu" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential_2/activation_1" input: "sequential_2/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } """ sub_sub_model = tf.keras.models.Sequential( [ tf.keras.layers.Dense(32, input_shape=(784,)), tf.keras.layers.Activation("relu"), ] ) sub_model = tf.keras.models.Sequential( [sub_sub_model, tf.keras.layers.Activation("relu", name="my_relu"),] ) model = tf.keras.models.Sequential( [ sub_model, tf.keras.layers.Dense(10), tf.keras.layers.Activation("softmax"), ] ) self.assertGraphDefToModel(expected_proto, model) def test_keras_model_to_graph_def_functional_multi_inputs(self): expected_proto = """ node { name: "model/main_input" attr { key: "dtype" value { type: DT_INT32 } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/embedding" input: "model/main_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Embedding" } } } node { name: "model/simple_rnn" input: "model/embedding" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "SimpleRNN" } } } node { name: "model/aux_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/concatenate" input: "model/simple_rnn" input: "model/aux_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Concatenate" } } } node { name: "model/dense" input: "model/concatenate" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/main_output" input: "model/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/aux_output" input: "model/simple_rnn" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } """ main_input = tf.keras.layers.Input( shape=(100,), dtype="int32", name="main_input" ) x = tf.keras.layers.Embedding( output_dim=512, input_dim=10000, input_length=100 )(main_input) rnn_out = tf.keras.layers.SimpleRNN(32)(x) auxiliary_output = tf.keras.layers.Dense( 1, activation="sigmoid", name="aux_output" )(rnn_out) auxiliary_input = tf.keras.layers.Input(shape=(5,), name="aux_input") x = tf.keras.layers.concatenate([rnn_out, auxiliary_input]) x = tf.keras.layers.Dense(64, activation="relu")(x) main_output = tf.keras.layers.Dense( 1, activation="sigmoid", name="main_output" )(x) model = tf.keras.models.Model( inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output], ) self.assertGraphDefToModel(expected_proto, model) def test_keras_model_to_graph_def_functional_model_as_layer(self): expected_proto = """ node { name: "model_1/sub_func_input_2" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model_1/sub_func_input_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model_1/model/sub_func_input_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model_1/model/sub_func_input_2" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model_1/model/dense" input: "model_1/model/sub_func_input_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model_1/model/dense_1" input: "model_1/model/sub_func_input_2" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model_1/concatenate" input: "model_1/model/dense" input: "model_1/model/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Concatenate" } } } node { name: "model_1/dense_2" input: "model_1/concatenate" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } """ inputs1 = tf.keras.layers.Input(shape=(784,), name="sub_func_input_1") inputs2 = tf.keras.layers.Input(shape=(784,), name="sub_func_input_2") d0 = tf.keras.layers.Dense(64, activation="relu") d1 = tf.keras.layers.Dense(64, activation="relu") d2 = tf.keras.layers.Dense(64, activation="relu") sub_model = tf.keras.models.Model( inputs=[inputs2, inputs1], outputs=[d0(inputs1), d1(inputs2)] ) main_outputs = d2( tf.keras.layers.concatenate(sub_model([inputs2, inputs1])) ) model = tf.keras.models.Model( inputs=[inputs2, inputs1], outputs=main_outputs ) self.assertGraphDefToModel(expected_proto, model) def DISABLED_test_keras_model_to_graph_def_functional_sequential_model( self, ): expected_proto = """ node { name: "model/func_seq_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/sequential/dense_input" input: "model/func_seq_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "model/sequential/dense" input: "model/sequential/dense_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "model/sequential/my_relu" input: "model/sequential/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } node { name: "model/dense_1" input: "model/sequential/my_relu" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } """ inputs = tf.keras.layers.Input(shape=(784,), name="func_seq_input") sub_model = tf.keras.models.Sequential( [ tf.keras.layers.Dense(32, input_shape=(784,)), tf.keras.layers.Activation("relu", name="my_relu"), ] ) dense = tf.keras.layers.Dense(64, activation="relu") model = tf.keras.models.Model( inputs=inputs, outputs=dense(sub_model(inputs)) ) self.assertGraphDefToModel(expected_proto, model) def DISABLED_test_keras_model_to_graph_def_sequential_functional_model( self, ): expected_proto = """ node { name: "sequential/model_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential/model/func_seq_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "InputLayer" } } } node { name: "sequential/model/dense" input: "sequential/model/func_seq_input" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential/dense_1" input: "sequential/model/dense" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Dense" } } } node { name: "sequential/my_relu" input: "sequential/dense_1" attr { key: "dtype" value { type: DT_FLOAT } } attr { key: "keras_class" value { s: "Activation" } } } """ inputs = tf.keras.layers.Input(shape=(784,), name="func_seq_input") dense = tf.keras.layers.Dense(64, activation="relu") sub_model = tf.keras.models.Model(inputs=inputs, outputs=dense(inputs)) model = tf.keras.models.Sequential( [ sub_model, tf.keras.layers.Dense(32, input_shape=(784,)), tf.keras.layers.Activation("relu", name="my_relu"), ] ) self.assertGraphDefToModel(expected_proto, model) if __name__ == "__main__": tf.test.main()
27.437949
80
0.366216
82499e1efb50b0439d17ad9a5c921641ee95c56a
1,308
py
Python
tests/settings.py
systemallica/django-snitch
557ae2a0e01184ffc552536507782fff39785457
[ "MIT" ]
null
null
null
tests/settings.py
systemallica/django-snitch
557ae2a0e01184ffc552536507782fff39785457
[ "MIT" ]
null
null
null
tests/settings.py
systemallica/django-snitch
557ae2a0e01184ffc552536507782fff39785457
[ "MIT" ]
null
null
null
DEBUG = True USE_TZ = True SECRET_KEY = "dummy" DATABASES = {"default": {"ENGINE": "django.db.backends.sqlite3", "NAME": ":memory:"}} INSTALLED_APPS = [ "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sites", "snitch", "tests.app", ] # Schedules INSTALLED_APPS += ["django_celery_beat", "snitch.schedules"] SITE_ID = 1 LANGUAGE_CODE = "en" LANGUAGES = [("en", "English")] MIDDLEWARE = () TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "OPTIONS": { "debug": DEBUG, "loaders": [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ], }, } ] # DJANGO PUSH NOTIFICATIONS # ------------------------------------------------------------------------------ # See: https://github.com/jazzband/django-push-notifications INSTALLED_APPS += ("push_notifications",) PUSH_NOTIFICATIONS_SETTINGS = { "CONFIG": "push_notifications.conf.AppConfig", "APPLICATIONS": {"snitch": {"PLATFORM": "FCM", "API_KEY": ""}}, } # SNITCH SETTINGS # ------------------------------------------------------------------------------ SNITCH_NOTIFICATION_MODEL = "app.Notification" SNITCH_ENABLED_SEND_EMAILS = False
26.693878
85
0.561162
7092d44a81a731393a94d95dc59a7a424526ad3e
2,994
py
Python
config.py
simpen/flaskz
49efe908cd8a325b51453d960155f5ad20fa1e16
[ "MIT" ]
null
null
null
config.py
simpen/flaskz
49efe908cd8a325b51453d960155f5ad20fa1e16
[ "MIT" ]
null
null
null
config.py
simpen/flaskz
49efe908cd8a325b51453d960155f5ad20fa1e16
[ "MIT" ]
null
null
null
#-*- coding: utf-8 -*- import os basedir = os.path.abspath(os.path.dirname(__file__)) class Config: SECRET_KEY = os.environ.get('SECRET_KEY') or 'hard to guess string' SSL_DISVBLE = True SQLALCHEMY_COMMIT_ON_TEARDOWN = True SQLALCHEMY_TRACK_MODIFICATIONS = True SQLALCHEMY_RECORD_QUERIES = True MAIL_SERVER = 'smtp.qq.com' MAIL_PORT = 25 MAIL_USE_TLS = True MAIL_USE_SSL = False MAIL_USERNAME = os.environ.get('MAIL_USERNAME') MAIL_PASSWORD = os.environ.get('MAIL_PASSWORD') FLASKY_MAIL_SUBJECT_PREFIX = '[Flasky]' FLASKY_MAIL_SENDER = 'Flasky Admin <471120122@qq.com>' FLASKY_ADMIN = os.environ.get('FLASKY_ADMIN') FLASKY_POSTS_PER_PAGE = 20 FLASKY_FOLLOWERS_PER_PAGE = 25 FLASKY_COMMENTS_PER_PAGE = 25 FLASKY_SLOW_DB_QUERY_TIME = 0.5 @staticmethod def init_app(app): pass class DevelopmentConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = os.environ.get('DEV_DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data-dev.sqlite') class TestingConfig(Config): TESTING = True SQLALCHEMY_DATABASE_URI = os.environ.get('TEST_DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data-test.sqlite') WTF_CSRF_ENABLED = False class ProductionConfig(Config): SQLALCHEMY_DATABASE_URI = os.environ.get('DATABASE_URL') or \ 'sqlite:///' + os.path.join(basedir, 'data.sqlite') @classmethod def init_app(cls, app): Config.init_app(app) # email errors to the administrators import logging from logging.handlers import SMTPHandler credentials = None secure = None if getattr(cls, 'MAIL_USERNAME', None) is not None: credentials = (cls.MAIL_USERNAME, cls.MAIL_PASSWORD) if getattr(cls, 'MAIL_USE_TLS', None): secure = () mail_handler = SMTPHandler( mailhost=(cls.MAIL_SERVER, cls.MAIL_PORT), fromaddr=cls.FLASKY_MAIL_SENDER, toaddrs=[cls.FLASKY_ADMIN], subject=cls.FLASKY_MAIL_SUBJECT_PREFIX + ' Application Error', credentials=credentials, secure=secure) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) class HerokuConfig(ProductionConfig): SSL_DISABLE = bool(os.environ.get('SSL_DISABLE')) @classmethod def init_app(cls, app): ProductionConfig.init_app(app) # handle proxy server headers from werkzeug.contrib.fixers import ProxyFix app.wsgi_app = ProxyFix(app.wsgi_app) # log to stderr import logging from logging import StreamHandler file_handler = StreamHandler() file_handler.setLevel(logging.WARNING) app.logger.addHandler(file_handler) config = { 'development': DevelopmentConfig, 'testing': TestingConfig, 'production': ProductionConfig, 'heroku': HerokuConfig, 'default': DevelopmentConfig }
30.242424
74
0.669339
2ebbaf7ffbcc42f2f7fe49ef985b7a9549a40b18
24,681
py
Python
test/functional/feature_csv_activation.py
cho2559/readercoin
aad2d84976b4fc5c8577f5460a303ec7492a3f25
[ "MIT" ]
null
null
null
test/functional/feature_csv_activation.py
cho2559/readercoin
aad2d84976b4fc5c8577f5460a303ec7492a3f25
[ "MIT" ]
null
null
null
test/functional/feature_csv_activation.py
cho2559/readercoin
aad2d84976b4fc5c8577f5460a303ec7492a3f25
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Readercoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test activation of the first version bits soft fork. This soft fork will activate the following BIPS: BIP 68 - nSequence relative lock times BIP 112 - CHECKSEQUENCEVERIFY BIP 113 - MedianTimePast semantics for nLockTime regtest lock-in with 108/144 block signalling activation after a further 144 blocks mine 82 blocks whose coinbases will be used to generate inputs for our tests mine 61 blocks to transition from DEFINED to STARTED mine 144 blocks only 100 of which are signaling readiness in order to fail to change state this period mine 144 blocks with 108 signaling and verify STARTED->LOCKED_IN mine 140 blocks and seed block chain with the 82 inputs will use for our tests at height 572 mine 3 blocks and verify still at LOCKED_IN and test that enforcement has not triggered mine 1 block and test that enforcement has triggered (which triggers ACTIVE) Test BIP 113 is enforced Mine 4 blocks so next height is 580 and test BIP 68 is enforced for time and height Mine 1 block so next height is 581 and test BIP 68 now passes time but not height Mine 1 block so next height is 582 and test BIP 68 now passes time and height Test that BIP 112 is enforced Various transactions will be used to test that the BIPs rules are not enforced before the soft fork activates And that after the soft fork activates transactions pass and fail as they should according to the rules. For each BIP, transactions of versions 1 and 2 will be tested. ---------------- BIP 113: bip113tx - modify the nLocktime variable BIP 68: bip68txs - 16 txs with nSequence relative locktime of 10 with various bits set as per the relative_locktimes below BIP 112: bip112txs_vary_nSequence - 16 txs with nSequence relative_locktimes of 10 evaluated against 10 OP_CSV OP_DROP bip112txs_vary_nSequence_9 - 16 txs with nSequence relative_locktimes of 9 evaluated against 10 OP_CSV OP_DROP bip112txs_vary_OP_CSV - 16 txs with nSequence = 10 evaluated against varying {relative_locktimes of 10} OP_CSV OP_DROP bip112txs_vary_OP_CSV_9 - 16 txs with nSequence = 9 evaluated against varying {relative_locktimes of 10} OP_CSV OP_DROP bip112tx_special - test negative argument to OP_CSV """ from decimal import Decimal from itertools import product from io import BytesIO import time from test_framework.blocktools import create_coinbase, create_block, create_transaction from test_framework.messages import ToHex, CTransaction from test_framework.mininode import P2PDataStore from test_framework.script import ( CScript, OP_CHECKSEQUENCEVERIFY, OP_DROP, ) from test_framework.test_framework import ReadercoinTestFramework from test_framework.util import ( assert_equal, get_bip9_status, hex_str_to_bytes, ) BASE_RELATIVE_LOCKTIME = 10 SEQ_DISABLE_FLAG = 1 << 31 SEQ_RANDOM_HIGH_BIT = 1 << 25 SEQ_TYPE_FLAG = 1 << 22 SEQ_RANDOM_LOW_BIT = 1 << 18 def relative_locktime(sdf, srhb, stf, srlb): """Returns a locktime with certain bits set.""" locktime = BASE_RELATIVE_LOCKTIME if sdf: locktime |= SEQ_DISABLE_FLAG if srhb: locktime |= SEQ_RANDOM_HIGH_BIT if stf: locktime |= SEQ_TYPE_FLAG if srlb: locktime |= SEQ_RANDOM_LOW_BIT return locktime def all_rlt_txs(txs): return [tx['tx'] for tx in txs] def sign_transaction(node, unsignedtx): rawtx = ToHex(unsignedtx) signresult = node.signrawtransactionwithwallet(rawtx) tx = CTransaction() f = BytesIO(hex_str_to_bytes(signresult['hex'])) tx.deserialize(f) return tx def create_bip112special(node, input, txversion, address): tx = create_transaction(node, input, address, amount=Decimal("49.98")) tx.nVersion = txversion signtx = sign_transaction(node, tx) signtx.vin[0].scriptSig = CScript([-1, OP_CHECKSEQUENCEVERIFY, OP_DROP] + list(CScript(signtx.vin[0].scriptSig))) return signtx def send_generic_input_tx(node, coinbases, address): return node.sendrawtransaction(ToHex(sign_transaction(node, create_transaction(node, node.getblock(coinbases.pop())['tx'][0], address, amount=Decimal("49.99"))))) def create_bip68txs(node, bip68inputs, txversion, address, locktime_delta=0): """Returns a list of bip68 transactions with different bits set.""" txs = [] assert(len(bip68inputs) >= 16) for i, (sdf, srhb, stf, srlb) in enumerate(product(*[[True, False]] * 4)): locktime = relative_locktime(sdf, srhb, stf, srlb) tx = create_transaction(node, bip68inputs[i], address, amount=Decimal("49.98")) tx.nVersion = txversion tx.vin[0].nSequence = locktime + locktime_delta tx = sign_transaction(node, tx) tx.rehash() txs.append({'tx': tx, 'sdf': sdf, 'stf': stf}) return txs def create_bip112txs(node, bip112inputs, varyOP_CSV, txversion, address, locktime_delta=0): """Returns a list of bip68 transactions with different bits set.""" txs = [] assert(len(bip112inputs) >= 16) for i, (sdf, srhb, stf, srlb) in enumerate(product(*[[True, False]] * 4)): locktime = relative_locktime(sdf, srhb, stf, srlb) tx = create_transaction(node, bip112inputs[i], address, amount=Decimal("49.98")) if (varyOP_CSV): # if varying OP_CSV, nSequence is fixed tx.vin[0].nSequence = BASE_RELATIVE_LOCKTIME + locktime_delta else: # vary nSequence instead, OP_CSV is fixed tx.vin[0].nSequence = locktime + locktime_delta tx.nVersion = txversion signtx = sign_transaction(node, tx) if (varyOP_CSV): signtx.vin[0].scriptSig = CScript([locktime, OP_CHECKSEQUENCEVERIFY, OP_DROP] + list(CScript(signtx.vin[0].scriptSig))) else: signtx.vin[0].scriptSig = CScript([BASE_RELATIVE_LOCKTIME, OP_CHECKSEQUENCEVERIFY, OP_DROP] + list(CScript(signtx.vin[0].scriptSig))) tx.rehash() txs.append({'tx': signtx, 'sdf': sdf, 'stf': stf}) return txs class BIP68_112_113Test(ReadercoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.extra_args = [['-whitelist=127.0.0.1', '-blockversion=4', '-addresstype=legacy']] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def generate_blocks(self, number, version, test_blocks=None): if test_blocks is None: test_blocks = [] for i in range(number): block = self.create_test_block([], version) test_blocks.append(block) self.last_block_time += 600 self.tip = block.sha256 self.tipheight += 1 return test_blocks def create_test_block(self, txs, version=536870912): block = create_block(self.tip, create_coinbase(self.tipheight + 1), self.last_block_time + 600) block.nVersion = version block.vtx.extend(txs) block.hashMerkleRoot = block.calc_merkle_root() block.rehash() block.solve() return block def sync_blocks(self, blocks, success=True): """Sends blocks to test node. Syncs and verifies that tip has advanced to most recent block. Call with success = False if the tip shouldn't advance to the most recent block.""" self.nodes[0].p2p.send_blocks_and_test(blocks, self.nodes[0], success=success) def run_test(self): self.nodes[0].add_p2p_connection(P2PDataStore()) self.log.info("Generate blocks in the past for coinbase outputs.") long_past_time = int(time.time()) - 600 * 1000 # enough to build up to 1000 blocks 10 minutes apart without worrying about getting into the future self.nodes[0].setmocktime(long_past_time - 100) # enough so that the generated blocks will still all be before long_past_time self.coinbase_blocks = self.nodes[0].generate(1 + 16 + 2 * 32 + 1) # 82 blocks generated for inputs self.nodes[0].setmocktime(0) # set time back to present so yielded blocks aren't in the future as we advance last_block_time self.tipheight = 82 # height of the next block to build self.last_block_time = long_past_time self.tip = int(self.nodes[0].getbestblockhash(), 16) self.nodeaddress = self.nodes[0].getnewaddress() self.log.info("Test that the csv softfork is DEFINED") assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'defined') test_blocks = self.generate_blocks(61, 4) self.sync_blocks(test_blocks) self.log.info("Advance from DEFINED to STARTED, height = 143") assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'started') self.log.info("Fail to achieve LOCKED_IN") # 100 out of 144 signal bit 0. Use a variety of bits to simulate multiple parallel softforks test_blocks = self.generate_blocks(50, 536870913) # 0x20000001 (signalling ready) test_blocks = self.generate_blocks(20, 4, test_blocks) # 0x00000004 (signalling not) test_blocks = self.generate_blocks(50, 536871169, test_blocks) # 0x20000101 (signalling ready) test_blocks = self.generate_blocks(24, 536936448, test_blocks) # 0x20010000 (signalling not) self.sync_blocks(test_blocks) self.log.info("Failed to advance past STARTED, height = 287") assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'started') self.log.info("Generate blocks to achieve LOCK-IN") # 108 out of 144 signal bit 0 to achieve lock-in # using a variety of bits to simulate multiple parallel softforks test_blocks = self.generate_blocks(58, 536870913) # 0x20000001 (signalling ready) test_blocks = self.generate_blocks(26, 4, test_blocks) # 0x00000004 (signalling not) test_blocks = self.generate_blocks(50, 536871169, test_blocks) # 0x20000101 (signalling ready) test_blocks = self.generate_blocks(10, 536936448, test_blocks) # 0x20010000 (signalling not) self.sync_blocks(test_blocks) self.log.info("Advanced from STARTED to LOCKED_IN, height = 431") assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'locked_in') # Generate 140 more version 4 blocks test_blocks = self.generate_blocks(140, 4) self.sync_blocks(test_blocks) # Inputs at height = 572 # # Put inputs for all tests in the chain at height 572 (tip now = 571) (time increases by 600s per block) # Note we reuse inputs for v1 and v2 txs so must test these separately # 16 normal inputs bip68inputs = [] for i in range(16): bip68inputs.append(send_generic_input_tx(self.nodes[0], self.coinbase_blocks, self.nodeaddress)) # 2 sets of 16 inputs with 10 OP_CSV OP_DROP (actually will be prepended to spending scriptSig) bip112basicinputs = [] for j in range(2): inputs = [] for i in range(16): inputs.append(send_generic_input_tx(self.nodes[0], self.coinbase_blocks, self.nodeaddress)) bip112basicinputs.append(inputs) # 2 sets of 16 varied inputs with (relative_lock_time) OP_CSV OP_DROP (actually will be prepended to spending scriptSig) bip112diverseinputs = [] for j in range(2): inputs = [] for i in range(16): inputs.append(send_generic_input_tx(self.nodes[0], self.coinbase_blocks, self.nodeaddress)) bip112diverseinputs.append(inputs) # 1 special input with -1 OP_CSV OP_DROP (actually will be prepended to spending scriptSig) bip112specialinput = send_generic_input_tx(self.nodes[0], self.coinbase_blocks, self.nodeaddress) # 1 normal input bip113input = send_generic_input_tx(self.nodes[0], self.coinbase_blocks, self.nodeaddress) self.nodes[0].setmocktime(self.last_block_time + 600) inputblockhash = self.nodes[0].generate(1)[0] # 1 block generated for inputs to be in chain at height 572 self.nodes[0].setmocktime(0) self.tip = int(inputblockhash, 16) self.tipheight += 1 self.last_block_time += 600 assert_equal(len(self.nodes[0].getblock(inputblockhash, True)["tx"]), 82 + 1) # 2 more version 4 blocks test_blocks = self.generate_blocks(2, 4) self.sync_blocks(test_blocks) self.log.info("Not yet advanced to ACTIVE, height = 574 (will activate for block 576, not 575)") assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'locked_in') # Test both version 1 and version 2 transactions for all tests # BIP113 test transaction will be modified before each use to put in appropriate block time bip113tx_v1 = create_transaction(self.nodes[0], bip113input, self.nodeaddress, amount=Decimal("49.98")) bip113tx_v1.vin[0].nSequence = 0xFFFFFFFE bip113tx_v1.nVersion = 1 bip113tx_v2 = create_transaction(self.nodes[0], bip113input, self.nodeaddress, amount=Decimal("49.98")) bip113tx_v2.vin[0].nSequence = 0xFFFFFFFE bip113tx_v2.nVersion = 2 # For BIP68 test all 16 relative sequence locktimes bip68txs_v1 = create_bip68txs(self.nodes[0], bip68inputs, 1, self.nodeaddress) bip68txs_v2 = create_bip68txs(self.nodes[0], bip68inputs, 2, self.nodeaddress) # For BIP112 test: # 16 relative sequence locktimes of 10 against 10 OP_CSV OP_DROP inputs bip112txs_vary_nSequence_v1 = create_bip112txs(self.nodes[0], bip112basicinputs[0], False, 1, self.nodeaddress) bip112txs_vary_nSequence_v2 = create_bip112txs(self.nodes[0], bip112basicinputs[0], False, 2, self.nodeaddress) # 16 relative sequence locktimes of 9 against 10 OP_CSV OP_DROP inputs bip112txs_vary_nSequence_9_v1 = create_bip112txs(self.nodes[0], bip112basicinputs[1], False, 1, self.nodeaddress, -1) bip112txs_vary_nSequence_9_v2 = create_bip112txs(self.nodes[0], bip112basicinputs[1], False, 2, self.nodeaddress, -1) # sequence lock time of 10 against 16 (relative_lock_time) OP_CSV OP_DROP inputs bip112txs_vary_OP_CSV_v1 = create_bip112txs(self.nodes[0], bip112diverseinputs[0], True, 1, self.nodeaddress) bip112txs_vary_OP_CSV_v2 = create_bip112txs(self.nodes[0], bip112diverseinputs[0], True, 2, self.nodeaddress) # sequence lock time of 9 against 16 (relative_lock_time) OP_CSV OP_DROP inputs bip112txs_vary_OP_CSV_9_v1 = create_bip112txs(self.nodes[0], bip112diverseinputs[1], True, 1, self.nodeaddress, -1) bip112txs_vary_OP_CSV_9_v2 = create_bip112txs(self.nodes[0], bip112diverseinputs[1], True, 2, self.nodeaddress, -1) # -1 OP_CSV OP_DROP input bip112tx_special_v1 = create_bip112special(self.nodes[0], bip112specialinput, 1, self.nodeaddress) bip112tx_special_v2 = create_bip112special(self.nodes[0], bip112specialinput, 2, self.nodeaddress) self.log.info("TESTING") self.log.info("Pre-Soft Fork Tests. All txs should pass.") self.log.info("Test version 1 txs") success_txs = [] # add BIP113 tx and -1 CSV tx bip113tx_v1.nLockTime = self.last_block_time - 600 * 5 # = MTP of prior block (not <) but < time put on current block bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1) success_txs.append(bip113signed1) success_txs.append(bip112tx_special_v1) # add BIP 68 txs success_txs.extend(all_rlt_txs(bip68txs_v1)) # add BIP 112 with seq=10 txs success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_v1)) success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_v1)) # try BIP 112 with seq=9 txs success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_9_v1)) success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_9_v1)) self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) self.log.info("Test version 2 txs") success_txs = [] # add BIP113 tx and -1 CSV tx bip113tx_v2.nLockTime = self.last_block_time - 600 * 5 # = MTP of prior block (not <) but < time put on current block bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2) success_txs.append(bip113signed2) success_txs.append(bip112tx_special_v2) # add BIP 68 txs success_txs.extend(all_rlt_txs(bip68txs_v2)) # add BIP 112 with seq=10 txs success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_v2)) success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_v2)) # try BIP 112 with seq=9 txs success_txs.extend(all_rlt_txs(bip112txs_vary_nSequence_9_v2)) success_txs.extend(all_rlt_txs(bip112txs_vary_OP_CSV_9_v2)) self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # 1 more version 4 block to get us to height 575 so the fork should now be active for the next block test_blocks = self.generate_blocks(1, 4) self.sync_blocks(test_blocks) assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], 'active') self.log.info("Post-Soft Fork Tests.") self.log.info("BIP 113 tests") # BIP 113 tests should now fail regardless of version number if nLockTime isn't satisfied by new rules bip113tx_v1.nLockTime = self.last_block_time - 600 * 5 # = MTP of prior block (not <) but < time put on current block bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1) bip113tx_v2.nLockTime = self.last_block_time - 600 * 5 # = MTP of prior block (not <) but < time put on current block bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2) for bip113tx in [bip113signed1, bip113signed2]: self.sync_blocks([self.create_test_block([bip113tx])], success=False) # BIP 113 tests should now pass if the locktime is < MTP bip113tx_v1.nLockTime = self.last_block_time - 600 * 5 - 1 # < MTP of prior block bip113signed1 = sign_transaction(self.nodes[0], bip113tx_v1) bip113tx_v2.nLockTime = self.last_block_time - 600 * 5 - 1 # < MTP of prior block bip113signed2 = sign_transaction(self.nodes[0], bip113tx_v2) for bip113tx in [bip113signed1, bip113signed2]: self.sync_blocks([self.create_test_block([bip113tx])]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # Next block height = 580 after 4 blocks of random version test_blocks = self.generate_blocks(4, 1234) self.sync_blocks(test_blocks) self.log.info("BIP 68 tests") self.log.info("Test version 1 txs - all should still pass") success_txs = [] success_txs.extend(all_rlt_txs(bip68txs_v1)) self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) self.log.info("Test version 2 txs") # All txs with SEQUENCE_LOCKTIME_DISABLE_FLAG set pass bip68success_txs = [tx['tx'] for tx in bip68txs_v2 if tx['sdf']] self.sync_blocks([self.create_test_block(bip68success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # All txs without flag fail as we are at delta height = 8 < 10 and delta time = 8 * 600 < 10 * 512 bip68timetxs = [tx['tx'] for tx in bip68txs_v2 if not tx['sdf'] and tx['stf']] for tx in bip68timetxs: self.sync_blocks([self.create_test_block([tx])], success=False) bip68heighttxs = [tx['tx'] for tx in bip68txs_v2 if not tx['sdf'] and not tx['stf']] for tx in bip68heighttxs: self.sync_blocks([self.create_test_block([tx])], success=False) # Advance one block to 581 test_blocks = self.generate_blocks(1, 1234) self.sync_blocks(test_blocks) # Height txs should fail and time txs should now pass 9 * 600 > 10 * 512 bip68success_txs.extend(bip68timetxs) self.sync_blocks([self.create_test_block(bip68success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) for tx in bip68heighttxs: self.sync_blocks([self.create_test_block([tx])], success=False) # Advance one block to 582 test_blocks = self.generate_blocks(1, 1234) self.sync_blocks(test_blocks) # All BIP 68 txs should pass bip68success_txs.extend(bip68heighttxs) self.sync_blocks([self.create_test_block(bip68success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) self.log.info("BIP 112 tests") self.log.info("Test version 1 txs") # -1 OP_CSV tx should fail self.sync_blocks([self.create_test_block([bip112tx_special_v1])], success=False) # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in argument to OP_CSV, version 1 txs should still pass success_txs = [tx['tx'] for tx in bip112txs_vary_OP_CSV_v1 if tx['sdf']] success_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if tx['sdf']] self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # If SEQUENCE_LOCKTIME_DISABLE_FLAG is unset in argument to OP_CSV, version 1 txs should now fail fail_txs = all_rlt_txs(bip112txs_vary_nSequence_v1) fail_txs += all_rlt_txs(bip112txs_vary_nSequence_9_v1) fail_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if not tx['sdf']] fail_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v1 if not tx['sdf']] for tx in fail_txs: self.sync_blocks([self.create_test_block([tx])], success=False) self.log.info("Test version 2 txs") # -1 OP_CSV tx should fail self.sync_blocks([self.create_test_block([bip112tx_special_v2])], success=False) # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in argument to OP_CSV, version 2 txs should pass (all sequence locks are met) success_txs = [tx['tx'] for tx in bip112txs_vary_OP_CSV_v2 if tx['sdf']] success_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v2 if tx['sdf']] self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # SEQUENCE_LOCKTIME_DISABLE_FLAG is unset in argument to OP_CSV for all remaining txs ## # All txs with nSequence 9 should fail either due to earlier mismatch or failing the CSV check fail_txs = all_rlt_txs(bip112txs_vary_nSequence_9_v2) fail_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_9_v2 if not tx['sdf']] for tx in fail_txs: self.sync_blocks([self.create_test_block([tx])], success=False) # If SEQUENCE_LOCKTIME_DISABLE_FLAG is set in nSequence, tx should fail fail_txs = [tx['tx'] for tx in bip112txs_vary_nSequence_v2 if tx['sdf']] for tx in fail_txs: self.sync_blocks([self.create_test_block([tx])], success=False) # If sequencelock types mismatch, tx should fail fail_txs = [tx['tx'] for tx in bip112txs_vary_nSequence_v2 if not tx['sdf'] and tx['stf']] fail_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_v2 if not tx['sdf'] and tx['stf']] for tx in fail_txs: self.sync_blocks([self.create_test_block([tx])], success=False) # Remaining txs should pass, just test masking works properly success_txs = [tx['tx'] for tx in bip112txs_vary_nSequence_v2 if not tx['sdf'] and not tx['stf']] success_txs += [tx['tx'] for tx in bip112txs_vary_OP_CSV_v2 if not tx['sdf'] and not tx['stf']] self.sync_blocks([self.create_test_block(success_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # Additional test, of checking that comparison of two time types works properly time_txs = [] for tx in [tx['tx'] for tx in bip112txs_vary_OP_CSV_v2 if not tx['sdf'] and tx['stf']]: tx.vin[0].nSequence = BASE_RELATIVE_LOCKTIME | SEQ_TYPE_FLAG signtx = sign_transaction(self.nodes[0], tx) time_txs.append(signtx) self.sync_blocks([self.create_test_block(time_txs)]) self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash()) # TODO: Test empty stack fails if __name__ == '__main__': BIP68_112_113Test().main()
50.783951
166
0.695636
1d886c4765d7d85e7da97aa2fc71a047f7ee9135
4,816
py
Python
group/migrations/0001_initial.py
mingyuchoo/myartworks
9404dad4b9ee0047049a1a0196cb9ac32ce520d7
[ "MIT" ]
1
2016-08-16T06:34:36.000Z
2016-08-16T06:34:36.000Z
group/migrations/0001_initial.py
mingyuchoo/myartworks
9404dad4b9ee0047049a1a0196cb9ac32ce520d7
[ "MIT" ]
null
null
null
group/migrations/0001_initial.py
mingyuchoo/myartworks
9404dad4b9ee0047049a1a0196cb9ac32ce520d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-15 01:42 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ ('classification', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('taggit', '0002_auto_20150616_2121'), ] operations = [ migrations.CreateModel( name='Apply', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_time', models.DateTimeField(default=django.utils.timezone.now)), ], options={ 'permissions': [['view_apply', 'Can view apply']], }, ), migrations.CreateModel( name='Bookmark', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_time', models.DateTimeField(default=django.utils.timezone.now)), ], options={ 'permissions': [['view_bookmark', 'Can view bookmark']], }, ), migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content', models.CharField(max_length=200)), ('created_time', models.DateTimeField(default=django.utils.timezone.now)), ], options={ 'permissions': [['view_comment', 'Can view comment']], }, ), migrations.CreateModel( name='Membership', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(choices=[('R', 'Request'), ('D', 'Denied'), ('A', 'Approved')], default='R', max_length=1)), ('updated_time', models.DateTimeField(default=django.utils.timezone.now)), ('requested_date', models.DateTimeField(default=django.utils.timezone.now)), ('joined_date', models.DateTimeField(null=True)), ], options={ 'permissions': [['view_membership', 'Can view membership']], }, ), migrations.CreateModel( name='Project', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('description', models.CharField(max_length=5120)), ('status', models.CharField(choices=[('O', 'Open'), ('C', 'Closed')], default='O', max_length=1)), ('created_time', models.DateTimeField(default=django.utils.timezone.now)), ('updated_time', models.DateTimeField(default=django.utils.timezone.now)), ('comment_count', models.IntegerField(default=0)), ('bookmark_count', models.IntegerField(default=0)), ('apply_count', models.IntegerField(default=0)), ('share_count', models.IntegerField(default=0)), ('category', models.ManyToManyField(to='classification.Category')), ('manager', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='group_project_leaders', to=settings.AUTH_USER_MODEL)), ('member', models.ManyToManyField(through='group.Membership', to=settings.AUTH_USER_MODEL)), ('tags', taggit.managers.TaggableManager(help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags')), ], options={ 'permissions': [['view_project', 'Can view project']], }, ), migrations.CreateModel( name='Share', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_time', models.DateTimeField(default=django.utils.timezone.now)), ('project', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='group.Project')), ('writer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='project_shares', to=settings.AUTH_USER_MODEL)), ], options={ 'permissions': [['view_share', 'Can view share']], }, ), ]
47.215686
170
0.580357
75e50b92d760f4ceae1d6a425cc18253285d6755
5,289
py
Python
saleor/graphql/order/tests/benchmark/test_order.py
siyoola/saleor
4e52b8655a5570a8ce0a3b1484b4d8b46fbd0ad0
[ "CC-BY-4.0" ]
null
null
null
saleor/graphql/order/tests/benchmark/test_order.py
siyoola/saleor
4e52b8655a5570a8ce0a3b1484b4d8b46fbd0ad0
[ "CC-BY-4.0" ]
86
2021-11-01T04:51:55.000Z
2022-03-30T16:30:16.000Z
saleor/graphql/order/tests/benchmark/test_order.py
siyoola/saleor
4e52b8655a5570a8ce0a3b1484b4d8b46fbd0ad0
[ "CC-BY-4.0" ]
null
null
null
import graphene import pytest from ....checkout.tests.benchmark.test_checkout_mutations import ( FRAGMENT_ADDRESS, FRAGMENT_PRODUCT_VARIANT, ) from ....tests.utils import get_graphql_content FRAGMENT_DISCOUNTS = """ fragment OrderDiscounts on OrderDiscount { id type valueType value name translatedName } """ FRAGMENT_SHIPPING_METHODS = """ fragment AvailableShippingMethods on ShippingMethod { id price { amount } minimumOrderPrice { amount currency } } """ FRAGMENT_ORDER_DETAILS = ( FRAGMENT_ADDRESS + FRAGMENT_PRODUCT_VARIANT + FRAGMENT_DISCOUNTS + FRAGMENT_SHIPPING_METHODS + """ fragment OrderDetail on Order { userEmail paymentStatus paymentStatusDisplay status statusDisplay canFinalize isShippingRequired id number shippingAddress { ...Address } billingAddress { ...Address } discounts { ...OrderDiscounts } actions fulfillments { id } lines { productName quantity variant { ...ProductVariant } unitPrice { currency ...Price } thumbnail { url } } availableShippingMethods { ...AvailableShippingMethods } subtotal { ...Price } total { ...Price } totalCaptured { amount } totalAuthorized { amount } shippingPrice { ...Price } } """ ) @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_user_order_details( user_api_client, order_with_lines_and_events, count_queries ): query = ( FRAGMENT_ORDER_DETAILS + """ query OrderByToken($token: UUID!) { orderByToken(token: $token) { ...OrderDetail } } """ ) variables = { "token": order_with_lines_and_events.id, } get_graphql_content(user_api_client.post_graphql(query, variables)) FRAGMENT_STAFF_ORDER_DETAILS = ( FRAGMENT_ORDER_DETAILS + """ fragment OrderStaffDetail on Order { ...OrderDetail events { id date type user { email } message email emailType amount paymentId paymentGateway quantity composedId orderNumber invoiceNumber oversoldItems lines { itemName } fulfilledItems { orderLine { id } } warehouse { id } transactionReference shippingCostsIncluded relatedOrder { id } } } """ ) @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_staff_order_details( staff_api_client, permission_manage_orders, order_with_lines_and_events, count_queries, ): query = ( FRAGMENT_STAFF_ORDER_DETAILS + """ query Order($id: ID!) { order(id: $id) { ...OrderStaffDetail } } """ ) variables = { "id": graphene.Node.to_global_id("Order", order_with_lines_and_events.id), } staff_api_client.user.user_permissions.add(permission_manage_orders) get_graphql_content(staff_api_client.post_graphql(query, variables)) MULTIPLE_ORDER_DETAILS_QUERY = ( FRAGMENT_STAFF_ORDER_DETAILS + """ query orders { orders(first: 10) { edges { node { ...OrderStaffDetail } } } } """ ) @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_staff_multiple_orders( staff_api_client, permission_manage_orders, permission_manage_users, orders_for_benchmarks, count_queries, ): staff_api_client.user.user_permissions.set( [permission_manage_orders, permission_manage_users] ) content = get_graphql_content( staff_api_client.post_graphql(MULTIPLE_ORDER_DETAILS_QUERY) ) assert content["data"]["orders"] is not None MULTIPLE_DRAFT_ORDER_DETAILS_QUERY = ( FRAGMENT_STAFF_ORDER_DETAILS + """ query draftOrders { draftOrders(first: 10) { edges { node { ...OrderStaffDetail } } } } """ ) @pytest.mark.django_db @pytest.mark.count_queries(autouse=False) def test_staff_multiple_draft_orders( staff_api_client, permission_manage_orders, permission_manage_users, draft_orders_for_benchmarks, count_queries, ): staff_api_client.user.user_permissions.set( [permission_manage_orders, permission_manage_users] ) content = get_graphql_content( staff_api_client.post_graphql(MULTIPLE_DRAFT_ORDER_DETAILS_QUERY) ) assert content["data"]["draftOrders"] is not None
20.579767
82
0.563244
64254b620c8c573d1f4f5a5ec866a1ba992810d2
4,811
py
Python
src/gluonnlp/data/candidate_sampler.py
davisliang/gluon-nlp
18a736dbb55c80c2de82d73b923c3cd3d9d53591
[ "Apache-2.0" ]
7
2019-12-05T02:49:07.000Z
2020-08-17T01:11:59.000Z
src/gluonnlp/data/candidate_sampler.py
davisliang/gluon-nlp
18a736dbb55c80c2de82d73b923c3cd3d9d53591
[ "Apache-2.0" ]
null
null
null
src/gluonnlp/data/candidate_sampler.py
davisliang/gluon-nlp
18a736dbb55c80c2de82d73b923c3cd3d9d53591
[ "Apache-2.0" ]
3
2021-03-12T04:41:00.000Z
2021-03-12T04:41:24.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Candidate samplers""" __all__ = ['UnigramCandidateSampler'] import functools import operator import mxnet as mx import numpy as np class UnigramCandidateSampler(mx.gluon.HybridBlock): """Unigram Candidate Sampler Draw random samples from a unigram distribution with specified weights using the alias method. Parameters ---------- weights : mx.nd.NDArray Unnormalized class probabilities. Samples are drawn and returned on the same context as weights.context. shape : int or tuple of int Shape of data to be sampled. TODO: Specifying the shape is only a workaround until random_like operators are available in mxnet dtype : str or np.dtype, default 'float32' Data type of the candidates. Make sure that the dtype precision is large enough to represent the size of your weights array precisely. For example, float32 can not distinguish 2**24 from 2**24 + 1. """ def __init__(self, weights, shape, dtype='float32'): super(UnigramCandidateSampler, self).__init__() self._shape = shape self._dtype = dtype self.N = weights.size if (np.dtype(dtype) == np.float32 and weights.size > 2**24) or \ (np.dtype(dtype) == np.float16 and weights.size > 2**11): s = 'dtype={dtype} can not represent all weights' raise ValueError(s.format(dtype=dtype)) total_weights = weights.sum() prob = (weights * self.N / total_weights).asnumpy().tolist() alias = [0] * self.N # sort the data into the outcomes with probabilities # that are high and low than 1/N. low = [] high = [] for i in range(self.N): if prob[i] < 1.0: low.append(i) else: high.append(i) # pair low with high while len(low) > 0 and len(high) > 0: l = low.pop() h = high.pop() alias[l] = h prob[h] = prob[h] - (1.0 - prob[l]) if prob[h] < 1.0: low.append(h) else: high.append(h) for i in low + high: prob[i] = 1 alias[i] = i # store prob = mx.nd.array(prob, dtype='float64') alias = mx.nd.array(alias, dtype='float64') self.prob = self.params.get_constant('prob', prob) self.alias = self.params.get_constant('alias', alias) def __repr__(self): s = '{block_name}({len_weights}, {dtype})' return s.format(block_name=self.__class__.__name__, len_weights=self.N, dtype=self._dtype) # pylint: disable=arguments-differ, unused-argument def hybrid_forward(self, F, candidates_like, prob, alias): """Draw samples from uniform distribution and return sampled candidates. Parameters ---------- candidates_like: mxnet.nd.NDArray or mxnet.sym.Symbol This input specifies the shape of the to be sampled candidates. # TODO shape selection is not yet supported. Shape must be specified in the constructor. Returns ------- samples: mxnet.nd.NDArray or mxnet.sym.Symbol The sampled candidates of shape candidates_like.shape. Candidates are sampled based on the weights specified on creation of the UnigramCandidateSampler. """ flat_shape = functools.reduce(operator.mul, self._shape) idx = F.random.uniform(low=0, high=self.N, shape=flat_shape, dtype='float64').floor() prob = F.gather_nd(prob, idx.reshape((1, -1))) alias = F.gather_nd(alias, idx.reshape((1, -1))) where = F.random.uniform(shape=flat_shape, dtype='float64') < prob hit = idx * where alt = alias * (1 - where) candidates = (hit + alt).reshape(self._shape) return candidates.astype(self._dtype)
36.172932
80
0.617335
08cd75650a2b7ff3310a54d75c49613baada1365
26,191
py
Python
dosagelib/plugins/webtoons.py
toonn/dosage
890f116179b34dfa5349495b9792a643ee4c2d74
[ "MIT" ]
null
null
null
dosagelib/plugins/webtoons.py
toonn/dosage
890f116179b34dfa5349495b9792a643ee4c2d74
[ "MIT" ]
null
null
null
dosagelib/plugins/webtoons.py
toonn/dosage
890f116179b34dfa5349495b9792a643ee4c2d74
[ "MIT" ]
null
null
null
# SPDX-License-Identifier: MIT # Copyright (C) 2019-2021 Tobias Gruetzmacher # Copyright (C) 2019-2020 Daniel Ring from ..scraper import _ParserScraper class WebToons(_ParserScraper): imageSearch = '//img[contains(@class, "_images")]/@data-url' prevSearch = '//a[contains(@class, "_prevEpisode")]' multipleImagesPerStrip = True def __init__(self, name, url, titlenum): super(WebToons, self).__init__('WebToons/' + name) baseUrl = 'https://www.webtoons.com/en/' self.url = baseUrl + url + '/episode/viewer?title_no=' + str(titlenum) self.listUrl = baseUrl + url + '/list?title_no=' + str(titlenum) self.stripUrl = self.url + '&episode_no=%s' self.firstStripUrl = self.stripUrl % '1' def starter(self): # Avoid age/GDPR gate for cookie in ('needGDPR', 'needCCPA', 'needCOPPA'): self.session.cookies.set(cookie, 'false', domain='webtoons.com') # Find current episode number listPage = self.getPage(self.listUrl) currentEpisode = listPage.xpath('//div[@class="detail_lst"]/ul/li')[0].attrib['data-episode-no'] # Check for completed tag self.endOfLife = (listPage.xpath('//div[@id="_asideDetail"]//span[@class="txt_ico_completed2"]') != []) return self.stripUrl % currentEpisode def fetchUrls(self, url, data, urlSearch): # Save link order for position-based filenames self.imageUrls = super(WebToons, self).fetchUrls(url, data, urlSearch) # Update firstStripUrl with the correct episode title if url.rsplit('=', 1)[-1] == '1': self.firstStripUrl = url return self.imageUrls def namer(self, imageUrl, pageUrl): # Construct filename from episode number and image position on page episodeNum = pageUrl.rsplit('=', 1)[-1] imageNum = self.imageUrls.index(imageUrl) imageExt = pageUrl.rsplit('.', 1)[-1].split('?', 1)[0] return "%s-%03d.%s" % (episodeNum, imageNum, imageExt) @classmethod def getmodules(cls): # noqa: Allowed to be long return ( # START AUTOUPDATE cls('1000', 'action/one-thousand', 1217), cls('10thDimensionBoys', 'comedy/10th-dimension-boys', 71), cls('1111Animals', 'comedy/1111-animals', 437), cls('2015SpaceSeries', 'sf/2015-space-series', 391), cls('3SecondStrip', 'comedy/3-second-strip', 380), cls('ABittersweetLife', 'slice-of-life/a-bittersweet-life', 294), cls('AboutDeath', 'drama/about-death', 82), cls('ABudgiesLife', 'slice-of-life/its-a-budgies-life', 985), cls('Acception', 'drama/acception', 1513), cls('Acursian', 'supernatural/acursian', 1452), cls('Adamsville', 'horror/adamsville', 502), cls('AdventuresOfGod', 'comedy/adventures-of-god', 853), cls('AerialMagic', 'fantasy/aerial-magic', 1358), cls('AgeMatters', 'romance/age-matters', 1364), cls('AGoodDayToBeADog', 'romance/a-good-day-tobe-a-dog', 1390), cls('Aisopos', 'drama/aisopos', 76), cls('AliceElise', 'fantasy/alice-elise', 1481), cls('AllThatWeHopeToBe', 'slice-of-life/all-that-we-hope-to-be', 470), cls('AllThatYouAre', 'drama/all-that-you-are', 403), cls('AlwaysHuman', 'romance/always-human', 557), cls('Annarasumanara', 'drama/annarasumanara', 77), cls('Anthronauts', 'challenge/anthronauts', 358917), cls('AphroditeIX', 'sf/aphroditeix', 1451), cls('ApocalypticHorseplay', 'supernatural/apocalyptic-horseplay', 635), cls('AprilFlowers', 'fantasy/april-flowers', 1363), cls('Arma', 'super-hero/arma', 1640), cls('AsPerUsual', 'slice-of-life/as-per-usual', 599), cls('AssassinRoommate', 'romance/assassin-roommate', 1050), cls('AthenaComplex', 'fantasy/athena-complex', 867), cls('AuraFromAnotherPlanet', 'comedy/aura-from-another-planet', 369), cls('AverageAdventuresOfAnAverageGirl', 'slice-of-life/average-adventures-of-an-average-girl', 401), cls('AXED', 'comedy/axed', 1558), cls('Backchannel', 'super-hero/backchannel', 1456), cls('BadSigns', 'comedy/bad-signs', 1623), cls('Bastard', 'thriller/bastard', 485), cls('BeforeWeKnewIt', 'romance/before-we-knew-it', 1972), cls('BehindTheGIFs', 'comedy/behind-the-gifs', 658), cls('BigJo', 'romance/big-jo', 854), cls('BiteMe', 'thriller/bite-me', 1019), cls('Blessed', 'drama/blessed', 1193), cls('BloodInk', 'action/blood-ink', 1490), cls('BloodlessWars', 'sf/bloodless-wars', 1622), cls('BloopBloopRelationshipComic', 'challenge/bloop-bloop-relationship-comic', 239970), cls('Bluechair', 'slice-of-life/bluechair', 199), cls('BOOItsSex', 'slice-of-life/boo-its-sex', 1413), cls('BoyfriendOfTheDead', 'comedy/boyfriend-of-the-dead', 1102), cls('BrassAndSass', 'romance/brass-and-sass', 1652), cls('BrimstoneAndRoses', 'romance/brimstone-and-roses', 1758), cls('BrothersBond', 'action/brothersbond', 1458), cls('BrutallyHonest', 'comedy/brutally-honest', 799), cls('BuzzFeedComics', 'comedy/buzzfeed-comics', 585), cls('CapeOfSpirits', 'action/cape-of-spirits', 1559), cls('CARL', 'slice-of-life/carl', 1216), cls('Caster', 'action/caster', 1461), cls('CastleSwimmer', 'fantasy/castle-swimmer', 1499), cls('Catharsis', 'fantasy/catharsis', 396), cls('CatLoafAdventures', 'slice-of-life/cat-loaf-adventures', 1381), cls('CheeseInTheTrap', 'drama/cheese-in-the-trap', 99), cls('CherryBlossoms', 'romance/cherry-blossoms', 1005), cls('Chiller', 'thriller/chiller', 536), cls('ChocoLatte', 'romance/choco-latte', 1691), cls('CityOfBlank', 'sf/city-of-blank', 1895), cls('CityOfWalls', 'drama/city-of-wall', 505), cls('ClusterFudge', 'slice-of-life/cluster-fudge', 355), cls('CodeAdam', 'action/code-adam', 1657), cls('CookingComically', 'tiptoon/cooking-comically', 622), cls('CrapIDrewOnMyLunchBreak', 'challenge/crap-i-drew-on-my-lunch-break', 124756), cls('Crumbs', 'romance/crumbs', 1648), cls('CupidsArrows', 'romance/cupids-arrows', 1538), cls('CursedPrincessClub', 'comedy/cursed-princess-club', 1537), cls('Cyberbunk', 'sf/cyberbunk', 466), cls('Cyberforce', 'super-hero/cyberforce', 531), cls('CykoKO', 'super-hero/cyko-ko', 560), cls('Darbi', 'action/darbi', 1098), cls('Davinchibi', 'fantasy/davinchibi', 1190), cls('DaYomanvilleGang', 'drama/da-yomanville-gang', 1578), cls('DaysOfHana', 'drama/days-of-hana', 1246), cls('DEADDAYS', 'horror/dead-days', 293), cls('Debunkers', 'challenge/debunkers', 148475), cls('DEEP', 'thriller/deep', 364), cls('Defects', 'challenge/defects', 221106), cls('Denma', 'sf/denma', 921), cls('Dents', 'sf/dents', 671), cls('Deor', 'fantasy/deor', 1663), cls('DevilNumber4', 'supernatural/devil-no-4', 1695), cls('DICE', 'fantasy/dice', 64), cls('DistantSky', 'horror/distant-sky', 75), cls('DONTHATE', 'comedy/dont-hate', 1574), cls('DoodleForFood', 'slice-of-life/doodle-for-food', 487), cls('DownToEarth', 'romance/down-to-earth', 1817), cls('Dragnarok', 'fantasy/dragnarok', 1018), cls('DragnarokDescendants', 'fantasy/dragnarok-descendants', 1433), cls('DrFrost', 'drama/dr-frost', 371), cls('Dustinteractive', 'comedy/dustinteractive', 907), cls('DutyAfterSchool', 'sf/duty-after-school', 370), cls('EatFighter', 'sports/eat-fighter', 1460), cls('EcstasyHearts', 'sports/ecstasy-hearts', 604), cls('Edith', 'romance/edith', 1536), cls('Eggnoid', 'sf/eggnoid', 1229), cls('Eleceed', 'action/eleceed', 1571), cls('Elena', 'horror/elena', 484), cls('ElfAndWarrior', 'fantasy/elf-and-warrior', 908), cls('EMPYREA', 'fantasy/empyrea', 1407), cls('EpicV', 'comedy/epic-v', 353), cls('EscapeRoom', 'thriller/escape-room', 1815), cls('EverywhereAndNowhere', 'comedy/everywhere-and-nowhere', 1598), cls('FAMILYMAN', 'drama/family-man', 85), cls('FantasySketchTheGame', 'sf/fantasy-sketch', 1020), cls('Faust', 'supernatural/faust', 522), cls('FINALITY', 'mystery/finality', 1457), cls('Firebrand', 'supernatural/firebrand', 877), cls('FisheyePlacebo', 'challenge/fisheye-placebo', 101841), cls('Flow', 'fantasy/flow', 101), cls('FluffyBoyfriend', 'supernatural/fluffy-boyfriend', 1164), cls('ForTheSakeOfSita', 'romance/for-the-sake-of-sita', 349), cls('FourLeaf', 'fantasy/four-leaf', 1454), cls('FreakingRomance', 'romance/freaking-romance', 1467), cls('FridayForbiddenTales', 'thriller/friday', 388), cls('GenshinImpact', 'challenge/genshin-impact', 242646), cls('Gepetto', 'sf/gepetto', 81), cls('GhostsAmongTheWildFlowers', 'fantasy/ghosts-over-wild-flowers', 718), cls('GhostTeller', 'horror/ghost-teller', 1307), cls('GhostTheater', 'drama/ghost-theater', 1911), cls('GhostWife', 'romance/ghost-wife', 1471), cls('GirlsHaveABlog', 'slice-of-life/girls-have-a-blog', 1052), cls('GirlsOfTheWilds', 'action/girls-of-the-wilds', 93), cls('GodOfBath', 'comedy/god-of-bath', 91), cls('GOSU', 'action/gosu', 1099), cls('GourmetHound', 'drama/gourmet-hound', 1245), cls('GremoryLand', 'horror/gremoryland', 1893), cls('GuardiansOfTheVideoGame', 'sf/guardians-of-the-video-game', 368), cls('HAPIBUNI', 'comedy/hapi-buni', 362), cls('HardcoreLevelingWarrior', 'action/hardcore-leveling-warrior', 1221), cls('HaveYouAnyFear', 'horror/have-you-any-fear', 1197), cls('Haxor', 'sf/haxor', 1325), cls('Heartwired', 'sf/heartwired', 1539), cls('HeirsGame', 'drama/heirs-game', 1445), cls('HeliosFemina', 'fantasy/helios-femina', 638), cls('HelloWorld', 'slice-of-life/hello-world', 827), cls('Hellper', 'fantasy/hellper', 185), cls('HeroineChic', 'super-hero/heroine-chic', 561), cls('HIVE', 'thriller/hive', 65), cls('Hooky', 'fantasy/hooky', 425), cls('HoovesOfDeath', 'fantasy/hooves-of-death', 1535), cls('HouseOfStars', 'fantasy/house-of-stars', 1620), cls('HowToBecomeADragon', 'fantasy/how-to-become-a-dragon', 1973), cls('HowToLove', 'slice-of-life/how-to-love', 472), cls('IDontWantThisKindOfHero', 'super-hero/i-dont-want-this-kind-of-hero', 98), cls('IF', 'action/if', 1925), cls('IllusionsOfAdulting', 'slice-of-life/illusions-of-adulting', 922), cls('IllustratedInternet', 'comedy/illustrated-internet', 750), cls('ILoveYoo', 'drama/i-love-yoo', 986), cls('ImmortalNerd', 'slice-of-life/immortal-nerd', 579), cls('ImTheGrimReaper', 'supernatural/im-the-grim-reaper', 1697), cls('Inarime', 'super-hero/inarime', 675), cls('InternetExplorer', 'challenge/internet-explorer', 219164), cls('InTheBleakMidwinter', 'sf/in-the-bleak-midwinter', 1946), cls('ItsMine', 'drama/its-mine', 2010), cls('JackieRose', 'supernatural/jackie-rose', 613), cls('JingleJungle', 'slice-of-life/jingle-jungle', 282), cls('JustAskYuli', 'slice-of-life/just-ask-yuli', 402), cls('JustForKicks', 'slice-of-life/just-for-kicks', 1152), cls('JustPancakes', 'comedy/just-pancakes', 1651), cls('KidsAreAllRight', 'drama/kids-are-all-right', 283), cls('Killstagram', 'thriller/killstagram', 1971), cls('KindOfConfidential', 'romance/kind-of-confidential', 663), cls('KindOfLove', 'slice-of-life/kind-of-love', 1850), cls('KnightRun', 'sf/knight-run', 67), cls('Kubera', 'fantasy/kubera', 83), cls('LalinsCurse', 'supernatural/lalins-curse', 1601), cls('Lars', 'slice-of-life/lars', 358), cls('LateBloomer', 'romance/late-bloomer', 988), cls('LavenderJack', 'super-hero/lavender-jack', 1410), cls('LESSA', 'action/lessa', 89), cls('LESSA2TheCrimsonKnight', 'action/lessa-2', 507), cls('LetsPlay', 'romance/letsplay', 1218), cls('LibraryGhost', 'comedy/library-ghost', 220), cls('LifeOutsideTheCircle', 'drama/life-outside-the-circle', 1260), cls('LittleMatchaGirl', 'fantasy/little-matcha-girl', 1665), cls('LiveForever', 'thriller/live-forever', 1312), cls('LiveWithYourself', 'comedy/live-with-yourself', 919), cls('Lone', 'fantasy/lone', 1929), cls('Lookism', 'drama/lookism', 1049), cls('LoreOlympus', 'romance/lore-olympus', 1320), cls('Lorna', 'slice-of-life/lorna', 1284), cls('LostInTranslation', 'drama/lost-in-translation', 1882), cls('LoveAdviceFromTheGreatDukeOfHell', 'comedy/love-advice', 1498), cls('Lozolz', 'tiptoon/lozolz', 1268), cls('LUFF', 'romance/luff', 1489), cls('Luggage', 'fantasy/luggage', 1642), cls('LUMINE', 'fantasy/lumine', 1022), cls('Lunarbaboon', 'slice-of-life/lunarbaboon', 523), cls('MageAndDemonQueen', 'comedy/mage-and-demon-queen', 1438), cls('Magical12thGraders', 'super-hero/magical-12th-graders', 90), cls('Magician', 'fantasy/magician', 70), cls('MagicSodaPop', 'fantasy/magic-soda-pop', 1947), cls('MarryMe', 'romance/marry-me', 1951), cls('MatchmakerHero', 'sf/matchmaker-hero', 1569), cls('MelvinasTherapy', 'horror/melvinas-therapy', 1021), cls('MeowMan', 'comedy/meow-man', 1677), cls('MercWorks', 'slice-of-life/mercworks', 426), cls('Messenger', 'fantasy/messenger', 1382), cls('MetaphoricalHER', 'drama/metaphorical-her', 1475), cls('MidnightPoppyLand', 'romance/midnight-poppy-land', 1798), cls('MidnightRain', 'drama/midnight-rain', 1797), cls('MidnightRhapsody', 'slice-of-life/midnight-rhapsody', 116), cls('MidnightRhapsodySeason2', 'slice-of-life/midnight-rhapsody-season2', 365), cls('MissAbbottAndTheDoctor', 'romance/miss-abbott-and-the-doctor', 707), cls('MOONBEARD', 'comedy/moon-beard', 471), cls('MoonYou', 'supernatural/moonyou', 1340), cls('Murrz', 'slice-of-life/murrz', 1281), cls('Muted', 'supernatural/muted', 1566), cls('MyBoo', 'supernatural/my-boo', 1185), cls('MyDearColdBloodedKing', 'romance/my-dear-cold-blooded-king', 961), cls('MyDeepestSecret', 'thriller/my-deepest-secret', 1580), cls('MyDictatorBoyfriend', 'comedy/my-dictator-boyfriend', 1391), cls('MyGiantNerdBoyfriend', 'slice-of-life/my-giant-nerd-boyfriend', 958), cls('MyKittyAndOldDog', 'slice-of-life/my-kitty-and-old-dog', 184), cls('MyNameIsBenny', 'slice-of-life/my-name-is-benny', 1279), cls('MyWallflowerKiss', 'challenge/my-wallflower-kiss', 151869), cls('NanoList', 'sf/nano-list', 700), cls('NationalDogDay2016', 'slice-of-life/national-dog-day', 747), cls('NewLifeProject', 'comedy/new-life-project', 279), cls('Newman', 'fantasy/newman', 405), cls('NewNormalClass8', 'drama/new-normal-class-8', 100), cls('Nicholalala', 'slice-of-life/nicholalala', 418), cls('NightmareFactory', 'thriller/nightmare-factory', 616), cls('Noblesse', 'action/noblesse', 87), cls('NoblesseRaisAdventure', 'action/noblesse-spin-off', 608), cls('NoScope', 'sports/no-scope', 1572), cls('NotEvenBones', 'thriller/not-even-bones', 1756), cls('NothingSpecial', 'fantasy/nothing-special', 1188), cls('OddGirlOut', 'drama/odd-girl-out', 1420), cls('OhHoly', 'romance/oh-holy', 809), cls('ORANGEMARMALADE', 'romance/orange-marmalade', 97), cls('Outrage', 'super-hero/outrage', 1450), cls('OVERPOWERED', 'challenge/overpowered', 85292), cls('PacificRimAmara', 'sf/pacific-rim-amara', 1327), cls('PenguinLovesMev', 'slice-of-life/penguin-loves-mev', 86), cls('PhantomParadise', 'fantasy/phantom-paradise', 1250), cls('Pigminted', 'slice-of-life/pigminted', 482), cls('PinchPoint', 'challenge/pinch-point-reborn', 334640), cls('Plum', 'sports/plum', 1605), cls('Polidiocy', 'comedy/polidiocy', 676), cls('Pound', 'action/pound', 1496), cls('PowerBallad', 'super-hero/power-ballad', 987), cls('PurpleHyacinth', 'mystery/purple-hyacinth', 1621), cls('Punderworld', 'challenge/punderworld', 312584), cls('RandomChat', 'drama/random-chat', 1669), cls('RANDOMPHILIA', 'comedy/randomphilia', 386), cls('Rebirth', 'sf/rebirth', 1412), cls('RefundHighSchool', 'fantasy/refundhighschool', 1360), cls('RiseFromAshes', 'supernatural/rise-from-ashes', 959), cls('RoarStreetJournal', 'slice-of-life/roar-street-journal', 397), cls('RoomOfSwords', 'sf/room-of-swords', 1261), cls('RotAndRuin', 'horror/rot-and-ruin', 1878), cls('SafelyEndangered', 'comedy/safely-endangered', 352), cls('SaltyStudio', 'romance/salty-studio', 74), cls('SaphieTheOneEyedCat', 'slice-of-life/saphie-one-eyed-cat', 670), cls('SAVEME', 'drama/bts-save-me', 1514), cls('ScoobandShag', 'challenge/scoob-and-shag', 210827), cls('ScorchingRomance', 'romance/scorching-romance', 1662), cls('Seed', 'sf/seed', 1480), cls('SHADOW', 'super-hero/shadow', 281), cls('ShadowPirates', 'action/shadow-pirates', 1455), cls('Shard', 'supernatural/shard', 960), cls('Shiloh', 'thriller/shiloh', 1649), cls('ShootAround', 'drama/shoot-around', 399), cls('Shriek', 'thriller/shriek', 772), cls('SID', 'supernatural/sid', 497), cls('SIDEKICKS', 'super-hero/sidekicks', 92), cls('SimonSues', 'supernatural/simon-sues', 1619), cls('SirensLament', 'romance/sirens-lament', 632), cls('Sithrah', 'fantasy/sithrah', 524), cls('SkateFire100', 'sports/skate-fire-100', 1674), cls('SmallWorld', 'slice-of-life/small-world', 1159), cls('SmileBrush', 'slice-of-life/smile-brush', 94), cls('SmileBrushMyOldPictures', 'slice-of-life/smile-brush-my-old-pictures', 302), cls('Snailogy', 'slice-of-life/snailogy', 387), cls('SOLEIL', 'fantasy/soleil', 1823), cls('SOULCARTEL', 'fantasy/soul-cartel', 72), cls('SoulOnHold', 'supernatural/soul-on-hold', 1701), cls('SpaceBoy', 'sf/space-boy', 400), cls('SpaceVixen', 'challenge/space-vixen-deep-space-k9', 207049), cls('SpiritFingers', 'drama/spirit-fingers', 1577), cls('Spirits', 'fantasy/spirits-re', 1348), cls('StalkerXStalker', 'challenge/stalker-x-stalker', 245662), cls('STARCROSS', 'super-hero/star-cross', 1599), cls('StayingHealthyTogether', 'tiptoon/staying-healthy-together', 1963), cls('StrawberrySeafoam', 'fantasy/strawberry-seafoam', 1248), cls('SubtleDisaster', 'drama/subtle-disaster', 350), cls('SubZero', 'romance/subzero', 1468), cls('SuperSecret', 'romance/super-secret', 666), cls('SupersonicGirl', 'super-hero/supersonic-girl', 633), cls('SweetHome', 'thriller/sweethome', 1285), cls('SwimmingLessonsForAMermaid', 'romance/swimming-lessons-for-a-mermaid', 1912), cls('SwordInterval', 'supernatural/sword-interval', 486), cls('TalesOfTheUnusual', 'horror/tales-of-the-unusual', 68), cls('TheBadguys', 'super-hero/the-bad-guys', 701), cls('TheBrooklynite', 'super-hero/the-brooklynite', 813), cls('TheCliff', 'thriller/the-cliff', 80), cls('TheCroaking', 'fantasy/the-croaking', 1494), cls('TheDaneMen', 'comedy/the-danemen', 395), cls('TheDevilIsAHandsomeMan', 'drama/the-devil-is-a-handsome-man', 1311), cls('TheDoctorsAreOut', 'romance/the-doctors-are-out', 1910), cls('TheFeverKing', 'super-hero/the-fever-king', 1659), cls('TheFourOfThem', 'drama/the-four-of-them', 1524), cls('TheGamer', 'action/the-gamer', 88), cls('TheGentlemansArmchair', 'comedy/the-gentlemans-armchair', 469), cls('TheGirlDownstairs', 'romance/the-girl-downstairs', 1809), cls('THEGIRLFROMCLASS', 'drama/the-girl-from-class', 73), cls('TheGodOfHighSchool', 'action/the-god-of-high-school', 66), cls('TheKissBet', 'romance/the-kiss-bet', 1617), cls('TheLifeOfTheThreeBears', 'slice-of-life/the-life-of-the-three-bears', 390), cls('ThePurpleHeart', 'super-hero/the-purple-heart', 723), cls('TheRedBook', 'horror/the-red-book', 467), cls('TheRedHook', 'super-hero/the-red-hook', 643), cls('TheRedKing', 'supernatural/the-red-king', 1687), cls('TheShadowProphet', 'drama/the-shadow-prophet', 1881), cls('TheSoundOfYourHeart', 'comedy/the-sound-of-your-heart', 269), cls('TheSteamDragonExpress', 'fantasy/steam-dragon-express', 1270), cls('TheStoriesOfThoseAroundMe', 'romance/the-stories-of-those-around-me', 96), cls('TheStrangeTalesOfOscarZahn', 'fantasy/the-strange-tales-of-oscar-zahn', 685), cls('TheVaultOfHorrorACollectionOfNightmares', 'horror/the-vault-of-horror-a-collection-of-nightmares', 295), cls('TheWeightOfOurSky', 'historical/the-weight-of-our-sky', 1739), cls('TheWitchAndTheBull', 'fantasy/the-witch-and-the-bull', 1892), cls('TheWolfmanOfWulvershire', 'mystery/the-wolfman-of-wulvershire', 1784), cls('TheWorldWhereIBelong', 'supernatural/the-world-where-i-belong', 1318), cls('TheWrathAndTheDawn', 'fantasy/the-wrath-and-the-dawn', 1772), cls('ThirdShiftSociety', 'supernatural/third-shift-society', 1703), cls('Thornstone', 'fantasy/thornstone', 1612), cls('TickleTown', 'comedy/tickle-town', 428), cls('ToasterDude', 'comedy/toaster-dude', 1983), cls('TokyoThreatDocumentationProject', 'challenge/tokyo-threat-documentation-project', 417973), cls('TowerOfGod', 'fantasy/tower-of-god', 95), cls('TrailerParkWarlock', 'comedy/trailer-park-warlock', 1512), cls('TrashBird', 'comedy/trash-bird', 473), cls('TrueBeauty', 'romance/truebeauty', 1436), cls('Trump', 'fantasy/trump', 84), cls('UndeadEd', 'supernatural/undeaded', 468), cls('UnderPrin', 'supernatural/underprin', 78), cls('UnderTheAegis', 'fantasy/under-the-aegis', 436), cls('UnknownCaller', 'thriller/ar-toon', 775), cls('UnlovableReplacement', 'romance/unlovable-replacement', 1762), cls('UnluckyIsAsLuckyDoes', 'comedy/unlucky-is-as-lucky-does', 1554), cls('UnOrdinary', 'super-hero/unordinary', 679), cls('UnTouchable', 'romance/untouchable', 79), cls('UpAndOut', 'slice-of-life/up-and-out', 488), cls('UrbanAnimal', 'super-hero/urban-animal', 1483), cls('Uriah', 'horror/uriah', 1607), cls('VarsityNoir', 'mystery/varsity-noir', 1613), cls('VersionDayAndNight', 'drama/version-day-and-night', 1796), cls('WafflesAndPancakes', 'slice-of-life/waffles-and-pancakes', 1310), cls('WarCry', 'super-hero/war-cry', 1247), cls('WarningLabel', 'romance/warning-label', 1051), cls('Watermelon', 'fantasy/watermelon', 1435), cls('WeakHero', 'action/weakhero', 1726), cls('WEBTOONGREENLiGHT', 'action/webtoon-greenlight', 1988), cls('WestwoodVibrato', 'drama/westwood-vibrato', 537), cls('WhereTangentsMeet', 'romance/where-tangents-meet', 421), cls('WindBreaker', 'sports/wind-breaker', 372), cls('WinterMoon', 'fantasy/winter-moon', 1093), cls('WinterWoods', 'drama/winter-woods', 344), cls('WitchCreekRoad', 'horror/witch-creek-road', 1453), cls('WitchHunt', 'supernatural/witch-hunt', 363), cls('Wolfsbane', 'horror/wolfsbane', 1826), cls('XINK3R', 'super-hero/xinker', 541), cls('YourAdventure', 'comedy/your-adventure', 506), cls('YourLetter', 'drama/your-letter', 1540), cls('YumisCells', 'slice-of-life/yumi-cell', 478), cls('YunaAndKawachan', 'drama/yuna-and-kawachan', 1840), cls('ZeroGame', 'fantasy/zero-game', 1704), cls('ZomCom', 'challenge/zomcom', 70195), # END AUTOUPDATE )
61.481221
121
0.590126
b8ce2077e41cac03f7d2fba692f127dc2da2b639
1,156
py
Python
cogs/dbl.py
IceeMC/dat-banana-bot
14a81dc254e38dd6a4d65a9f7c6fd41da1e2369e
[ "MIT" ]
null
null
null
cogs/dbl.py
IceeMC/dat-banana-bot
14a81dc254e38dd6a4d65a9f7c6fd41da1e2369e
[ "MIT" ]
null
null
null
cogs/dbl.py
IceeMC/dat-banana-bot
14a81dc254e38dd6a4d65a9f7c6fd41da1e2369e
[ "MIT" ]
null
null
null
import discord import json import aiohttp import asyncio import os from discord.ext import commands uri = 'https://discordbots.org/api' class dbl: def __init__(self, bot): self.bot = bot self.session = self.bot.session with open("data/apikeys.json") as f: x = json.loads(f.read()) self.token = x['dblapi'] def __unload(self): self.bot.loop.create_task(self.session.close()) async def send(self): dump = json.dumps({ 'server_count': len(self.bot.guilds) }) head = { 'authorization': self.token, 'content-type' : 'application/json' } url = '{0}/bots/388476336777461770/stats'.format(uri) async with self.session.post(url, data=dump, headers=head) as resp: print('returned {0.status} for {1} on dbl'.format(resp, dump)) async def on_guild_join(self, server): await self.send() async def on_guild_remove(self, server): await self.send() async def on_ready(self): await self.send() def setup(bot): bot.add_cog(dbl(bot))
23.591837
75
0.58391
3a3f17af0dcf98f0c42df3855a6872ee8b29018d
207
py
Python
cwe/categories.py
Julian-Nash/cwe
af43faeccc8b9489d1ceb6403fac53814a2c5f9c
[ "MIT" ]
11
2020-04-01T14:56:47.000Z
2022-02-22T06:00:50.000Z
cwe/categories.py
Julian-Nash/cwe
af43faeccc8b9489d1ceb6403fac53814a2c5f9c
[ "MIT" ]
3
2020-05-21T02:45:23.000Z
2021-11-18T11:09:44.000Z
cwe/categories.py
Julian-Nash/cwe
af43faeccc8b9489d1ceb6403fac53814a2c5f9c
[ "MIT" ]
2
2020-05-21T05:47:28.000Z
2021-08-06T04:59:19.000Z
import enum @enum.unique class CWECategory(enum.Enum): HARDWARE_DESIGN: str = "hardware_design" RESEARCH_CONCEPTS: str = "research_concepts" SOFTWARE_DEVELOPMENT: str = "software_development"
20.7
54
0.758454
875142c6e23e705c6fa866e566dcce397449bea1
1,977
py
Python
pca/interfaces/repository.py
daniel-butler/python-clean-architecture
a95da91fffb1120e1e748c9ee7717a622647288e
[ "MIT" ]
null
null
null
pca/interfaces/repository.py
daniel-butler/python-clean-architecture
a95da91fffb1120e1e748c9ee7717a622647288e
[ "MIT" ]
null
null
null
pca/interfaces/repository.py
daniel-butler/python-clean-architecture
a95da91fffb1120e1e748c9ee7717a622647288e
[ "MIT" ]
1
2019-12-11T01:32:08.000Z
2019-12-11T01:32:08.000Z
import typing as t from .dao import IDao from .entity import Entity, Id class IRepository(t.Generic[Id, Entity]): """ Repository serves as a collection of entites (with methods such as get, add, update, remove) with underlying persistence layer. Should know how to construct an instance, serialize it and get its id. Developers of repos for concrete entites are encouraged to subclass and put a meaningful query and command methods along the basic ones. """ dao: t.ClassVar[IDao] """ Data Access Object which gives repo a persistence API. Its value is created by requiring the DAO instance related to its entity from DI container. """ entity: t.ClassVar[t.Type[Entity]] """Entity type collected by this repo.""" def create(self, **kwargs) -> Entity: """ Creates an object compatible with this repo. Uses repo's factory or the klass iff factory not present. NB: Does not inserts the object to the repo. Use `create_and_add` method for that. """ raise NotImplementedError def add(self, entity: Entity): """Adds the object to the repo to the underlying persistence layer via its DAO.""" raise NotImplementedError def create_and_add(self, **kwargs) -> Entity: """Creates an object compatible with this repo and adds it to the collection.""" raise NotImplementedError def find(self, id_: Id) -> t.Optional[Entity]: """Returns object of given id or None""" raise NotImplementedError def contains(self, id_: Id): """Checks whether an entity of given id is in the repo.""" raise NotImplementedError def update(self, entity: Entity) -> None: """Updates the object in the repo.""" raise NotImplementedError def remove(self, entity: Entity) -> None: """Removes the object from the underlying persistence layer via DAO.""" raise NotImplementedError
35.303571
96
0.671725
409197ee9fee03511d1dcc396972f94baa718aad
6,677
py
Python
sdk/python/pulumi_azure_native/eventhub/latest/namespace_authorization_rule.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/eventhub/latest/namespace_authorization_rule.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/eventhub/latest/namespace_authorization_rule.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from ._enums import * __all__ = ['NamespaceAuthorizationRule'] warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:eventhub:NamespaceAuthorizationRule'.""", DeprecationWarning) class NamespaceAuthorizationRule(pulumi.CustomResource): warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:eventhub:NamespaceAuthorizationRule'.""", DeprecationWarning) def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, authorization_rule_name: Optional[pulumi.Input[str]] = None, namespace_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, rights: Optional[pulumi.Input[Sequence[pulumi.Input[Union[str, 'AccessRights']]]]] = None, __props__=None, __name__=None, __opts__=None): """ Single item in a List or Get AuthorizationRule operation Latest API Version: 2017-04-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] authorization_rule_name: The authorization rule name. :param pulumi.Input[str] namespace_name: The Namespace name :param pulumi.Input[str] resource_group_name: Name of the resource group within the azure subscription. :param pulumi.Input[Sequence[pulumi.Input[Union[str, 'AccessRights']]]] rights: The rights associated with the rule. """ pulumi.log.warn("""NamespaceAuthorizationRule is deprecated: The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:eventhub:NamespaceAuthorizationRule'.""") if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['authorization_rule_name'] = authorization_rule_name if namespace_name is None and not opts.urn: raise TypeError("Missing required property 'namespace_name'") __props__['namespace_name'] = namespace_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if rights is None and not opts.urn: raise TypeError("Missing required property 'rights'") __props__['rights'] = rights __props__['name'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:eventhub/latest:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-native:eventhub:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-nextgen:eventhub:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-native:eventhub/v20140901:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-nextgen:eventhub/v20140901:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-native:eventhub/v20150801:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-nextgen:eventhub/v20150801:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-native:eventhub/v20170401:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-nextgen:eventhub/v20170401:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-native:eventhub/v20180101preview:NamespaceAuthorizationRule"), pulumi.Alias(type_="azure-nextgen:eventhub/v20180101preview:NamespaceAuthorizationRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(NamespaceAuthorizationRule, __self__).__init__( 'azure-native:eventhub/latest:NamespaceAuthorizationRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'NamespaceAuthorizationRule': """ Get an existing NamespaceAuthorizationRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["name"] = None __props__["rights"] = None __props__["type"] = None return NamespaceAuthorizationRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter def rights(self) -> pulumi.Output[Sequence[str]]: """ The rights associated with the rule. """ return pulumi.get(self, "rights") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
51.361538
952
0.685338
5d7712b001f5f308c13b2eeb3890c392db9b0fed
3,532
py
Python
tests/test_content.py
brianwisti/rgb-zola
60504a4ea91e72b14c120dc47b43264f2691d5cd
[ "CC-BY-4.0" ]
null
null
null
tests/test_content.py
brianwisti/rgb-zola
60504a4ea91e72b14c120dc47b43264f2691d5cd
[ "CC-BY-4.0" ]
null
null
null
tests/test_content.py
brianwisti/rgb-zola
60504a4ea91e72b14c120dc47b43264f2691d5cd
[ "CC-BY-4.0" ]
null
null
null
"""Check that content sources are in good, quality shape.""" from pathlib import Path from subprocess import run import frontmatter import pytest import yamale CONTENT_PATH = Path("content") ALL_MARKDOWN = list(CONTENT_PATH.glob("**/*.md")) BLOG_ARTICLES = [ article for article in ALL_MARKDOWN if article.parts[1] == "blog" and article.name == "index.md" ] CONFIG_ARTICLES = [article for article in ALL_MARKDOWN if article.parts[1] == "config"] PAGE_ARTICLES = [ article for article in ALL_MARKDOWN if article not in BLOG_ARTICLES and article not in CONFIG_ARTICLES and article.name == "index.md" ] SECTION_PAGES = [ article for article in ALL_MARKDOWN if article.name == "_index.md" and article not in CONFIG_ARTICLES ] ARTIFACT_PASS = [ "using-markdown-it-in-python", ] ARTIFACT_PAGES = [ page for page in ALL_MARKDOWN if page.parent.name not in ARTIFACT_PASS ] @pytest.fixture(scope="session") def blog_schema(): return yamale.make_schema("./schemas/blog.yml", parser="ruamel") @pytest.fixture(scope="session") def config_schema(): return yamale.make_schema("./schemas/config.yml", parser="ruamel") @pytest.fixture(scope="session") def page_schema(): return yamale.make_schema("./schemas/page.yml", parser="ruamel") @pytest.fixture(scope="session") def section_schema(): return yamale.make_schema("./schemas/section.yml", parser="ruamel") class TestFrontmatter: @pytest.mark.parametrize("content_path", BLOG_ARTICLES) def test_valid_frontmatter_for_blog(self, blog_schema, content_path: Path): print(f"Validing frontmatter for '{content_path}'") components = content_path.read_text(encoding="utf-8").split("---\n") frontmatter = components[1] data = yamale.make_data(content=frontmatter) assert yamale.validate(blog_schema, data) @pytest.mark.parametrize("content_path", CONFIG_ARTICLES) def test_valid_frontmatter_for_config(self, content_path, config_schema): print(f"Validing frontmatter for '{content_path}'") components = content_path.read_text(encoding="utf-8").split("---\n") frontmatter = components[1] data = yamale.make_data(content=frontmatter) assert yamale.validate(config_schema, data) @pytest.mark.parametrize("page", PAGE_ARTICLES) def test_valid_frontmatter_for_pages(self, page, page_schema): print(f"Validing frontmatter for '{page}'") components = page.read_text(encoding="utf-8").split("---\n") frontmatter = components[1] data = yamale.make_data(content=frontmatter) assert yamale.validate(page_schema, data) @pytest.mark.parametrize("section", SECTION_PAGES) def test_valid_frontmatter_for_sections(self, section, section_schema): print(f"Validing frontmatter for '{section}'") components = section.read_text(encoding="utf-8").split("---\n") frontmatter = components[1] data = yamale.make_data(content=frontmatter) assert yamale.validate(section_schema, data) class TestMarkdown: def test_markdownlint(self): res = run(["markdownlint", "-j", "content/**/index.md"], capture_output=True) print(res.stderr.decode()) assert res.returncode == 0 @pytest.mark.parametrize("content_path", ARTIFACT_PAGES, ids=str) def test_admonition_artifact(self, content_path: Path): post = frontmatter.loads(content_path.read_text(encoding="utf-8")) assert ":::" not in post.content
31.256637
87
0.703001
e3062059aaf3642ef120a7d85726a8e5d2d2df9b
1,079
py
Python
examples/animations/warping.py
goodhertz/coldtype
2460b66abb28e9532f9e2b55167ae565f95366e7
[ "Apache-2.0" ]
142
2020-06-12T17:01:58.000Z
2022-03-16T23:21:37.000Z
examples/animations/warping.py
goodhertz/coldtype
2460b66abb28e9532f9e2b55167ae565f95366e7
[ "Apache-2.0" ]
35
2020-04-15T15:34:54.000Z
2022-03-19T20:26:47.000Z
examples/animations/warping.py
goodhertz/coldtype
2460b66abb28e9532f9e2b55167ae565f95366e7
[ "Apache-2.0" ]
14
2020-06-23T18:56:46.000Z
2022-03-31T15:54:56.000Z
from coldtype import * from coldtype.warping import warp_fn from coldtype.fx.skia import phototype Style.RegisterShorthandPrefix("≈", "~/Type/fonts/fonts") peshka = Font.Find("CoFoPeshkaV") loop = Loop(150, 15, [ # some keyframes dict(wdth=0, wght=0, rotate=-15, leading=200, font_size=700, warp=0, blur=15), dict(wdth=1, wght=1, rotate=0, leading=10, font_size=50, warp=200, blur=5), dict(wdth=0, wght=1, rotate=15, leading=100, font_size=500, warp=50, blur=3), dict(wdth=0.5, wght=0.5, rotate=0, leading=-470, font_size=330, warp=0, blur=1) ]) @animation(timeline=loop, bg=0) def warp(f): state = f.a.t.current_state(f.i, e="eeio") return ((ß:=StSt("WARP\nBLUR", peshka, ro=1, **state)) .align(f.a.r).pen() # a single, centered vector .f(Gradient.V(ß.ambit(), hsl(0.7), hsl(0.9))) #.flatten(5) # slower but preserves curves across warp .nlt(warp_fn(f.i*30, f.i, mult=int(state["warp"]))) .f(1) #.ch(phototype(f.a.r, state["blur"], cutw=50, fill=hsl(0.75))) )
37.206897
70
0.612604
17c89b102d5fc0d5e6b4220c5cf78a24c1d13a66
4,722
py
Python
purity_fb/purity_fb_1dot12/models/array_connection_path_response.py
tlewis-ps/purity_fb_python_client
652835cbd485c95a86da27f8b661679727ec6ea0
[ "Apache-2.0" ]
5
2017-09-08T20:47:22.000Z
2021-06-29T02:11:05.000Z
purity_fb/purity_fb_1dot12/models/array_connection_path_response.py
tlewis-ps/purity_fb_python_client
652835cbd485c95a86da27f8b661679727ec6ea0
[ "Apache-2.0" ]
16
2017-11-27T20:57:48.000Z
2021-11-23T18:46:43.000Z
purity_fb/purity_fb_1dot12/models/array_connection_path_response.py
tlewis-ps/purity_fb_python_client
652835cbd485c95a86da27f8b661679727ec6ea0
[ "Apache-2.0" ]
22
2017-10-13T15:33:05.000Z
2021-11-08T19:56:21.000Z
# coding: utf-8 """ Pure Storage FlashBlade REST 1.12 Python SDK Pure Storage FlashBlade REST 1.12 Python SDK. Compatible with REST API versions 1.0 - 1.12. Developed by [Pure Storage, Inc](http://www.purestorage.com/). Documentations can be found at [purity-fb.readthedocs.io](http://purity-fb.readthedocs.io/). OpenAPI spec version: 1.12 Contact: info@purestorage.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class ArrayConnectionPathResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ #BEGIN_CUSTOM # IR-51527: Prevent Pytest from attempting to collect this class based on name. __test__ = False #END_CUSTOM """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'pagination_info': 'PaginationInfo', 'items': 'list[ArrayConnectionPath]' } attribute_map = { 'pagination_info': 'pagination_info', 'items': 'items' } def __init__(self, pagination_info=None, items=None): # noqa: E501 """ArrayConnectionPathResponse - a model defined in Swagger""" # noqa: E501 self._pagination_info = None self._items = None self.discriminator = None if pagination_info is not None: self.pagination_info = pagination_info if items is not None: self.items = items @property def pagination_info(self): """Gets the pagination_info of this ArrayConnectionPathResponse. # noqa: E501 pagination information, only available in GET requests # noqa: E501 :return: The pagination_info of this ArrayConnectionPathResponse. # noqa: E501 :rtype: PaginationInfo """ return self._pagination_info @pagination_info.setter def pagination_info(self, pagination_info): """Sets the pagination_info of this ArrayConnectionPathResponse. pagination information, only available in GET requests # noqa: E501 :param pagination_info: The pagination_info of this ArrayConnectionPathResponse. # noqa: E501 :type: PaginationInfo """ self._pagination_info = pagination_info @property def items(self): """Gets the items of this ArrayConnectionPathResponse. # noqa: E501 A list of array connection path objects. # noqa: E501 :return: The items of this ArrayConnectionPathResponse. # noqa: E501 :rtype: list[ArrayConnectionPath] """ return self._items @items.setter def items(self, items): """Sets the items of this ArrayConnectionPathResponse. A list of array connection path objects. # noqa: E501 :param items: The items of this ArrayConnectionPathResponse. # noqa: E501 :type: list[ArrayConnectionPath] """ self._items = items def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ArrayConnectionPathResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ArrayConnectionPathResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.271523
251
0.613088
489301969a2f7e437c398ebfb022471543a594d3
358
py
Python
src/metarl/torch/optimizers/__init__.py
neurips2020submission11699/metarl
ae4825d21478fa1fd0aa6b116941ea40caa152a5
[ "MIT" ]
2
2021-02-07T12:14:52.000Z
2021-07-29T08:07:22.000Z
src/metarl/torch/optimizers/__init__.py
neurips2020submission11699/metarl
ae4825d21478fa1fd0aa6b116941ea40caa152a5
[ "MIT" ]
null
null
null
src/metarl/torch/optimizers/__init__.py
neurips2020submission11699/metarl
ae4825d21478fa1fd0aa6b116941ea40caa152a5
[ "MIT" ]
null
null
null
"""PyTorch optimizers.""" from metarl.torch.optimizers.conjugate_gradient_optimizer import ( ConjugateGradientOptimizer) from metarl.torch.optimizers.differentiable_sgd import DifferentiableSGD from metarl.torch.optimizers.optimizer_wrapper import OptimizerWrapper __all__ = [ 'OptimizerWrapper', 'ConjugateGradientOptimizer', 'DifferentiableSGD' ]
35.8
73
0.832402
bc275a9c665ad37e4b267c896a0a491345f2dc94
1,367
py
Python
sasx/magic.py
python-sasx/sasx
b8c812bf204701d5a175ad0f0c2286e6494f79c2
[ "MIT" ]
3
2016-04-24T15:21:00.000Z
2018-07-08T04:28:35.000Z
sasx/magic.py
python-sasx/sasx
b8c812bf204701d5a175ad0f0c2286e6494f79c2
[ "MIT" ]
null
null
null
sasx/magic.py
python-sasx/sasx
b8c812bf204701d5a175ad0f0c2286e6494f79c2
[ "MIT" ]
null
null
null
from __future__ import division import pandas from IPython.core.magic import (Magics, magics_class, cell_magic) from sasx.parse import sasx_parse from sasx.code import sasx_preloop from sasx.code import sasx_loop from sasx.code import sasx_postloop @magics_class class SasxMagics(Magics): """Define Magic to run code in Simple dAta SyntaX (SASX). %%sasx - Transform SASX code into Python code and execute it. Special keywords recognised by SASX : - data - set - drop - keep - output - where ? - _n_ ? - groupby ? """ def __init__(self, shell): super(SasxMagics, self).__init__(shell) @cell_magic def sasx(self, line_param, cell): cell_parsed = sasx_parse(cell, self) if cell_parsed['status']==0: print(cell_parsed['message']) return #Generate python code str_code = "" str_code = str_code + sasx_preloop(cell_parsed) str_code = str_code + sasx_loop(cell_parsed) str_code = str_code + sasx_postloop(cell_parsed) #Execute the code ns = {} print("-----") print(str_code) print("-----") exec str_code in self.shell.user_ns, ns # Register ip = get_ipython() ip.register_magics(SasxMagics)
23.982456
68
0.603511
21396df2d73ba0f2b3a0b50a224c0edc28e70bcb
6,408
py
Python
Examples/FanFicFare-master/fanficfare/adapters/adapter_noveltrovecom.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
Examples/FanFicFare-master/fanficfare/adapters/adapter_noveltrovecom.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
Examples/FanFicFare-master/fanficfare/adapters/adapter_noveltrovecom.py
TomNorrie/ePubify
89c89bd22cafdea787f3131ca9cdc8336209ed6c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2014 Fanficdownloader team, 2017 FanFicFare team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #################################################################################################### ## Adapted by GComyn on April 22, 2017 #################################################################################################### import logging import json import re import sys # ## used for debug purposes import time import urllib2 import datetime from base_adapter import BaseSiteAdapter, makeDate from .. import exceptions as exceptions from ..htmlcleanup import stripHTML logger = logging.getLogger(__name__) #################################################################################################### def getClass(): return NovelTroveComSiteAdapter #################################################################################################### class NovelTroveComSiteAdapter(BaseSiteAdapter): ''' This is a site with 1 story per page, so no multiple chapter stories The date is listed (on the newer stories) as a month and a year, so I'll be adding that to the summary, instead of trying to transform it to a date. ''' def __init__(self, config, url): BaseSiteAdapter.__init__(self, config, url) self.username = "NoneGiven" # if left empty, site doesn't return any message at all. self.password = "" self.is_adult = False # get storyId from url # https://noveltrove.com/story/983/put-that-big-cock-in-me self.story.setMetadata('storyId', self.parsedUrl.path.split('/')[2] + '_' + self.parsedUrl.path.split('/')[3]) # Each adapter needs to have a unique site abbreviation. self.story.setMetadata('siteabbrev','ntcom') # This is a 1 story/page site, so we will initialize the variable to keep the soup self.html = '' self.endindex = [] # The date format will vary from site to site. # http://docs.python.org/library/datetime.html#strftime-strptime-behavior self.dateformat = "%d %b. '%y" #################################################################################################### @staticmethod # must be @staticmethod, don't remove it. def getSiteDomain(): # The site domain. Does have www here, if it uses it. return 'noveltrove.com' #################################################################################################### @classmethod def getSiteExampleURLs(cls): return "https://"+cls.getSiteDomain()+"/story/12345/astoryname" #################################################################################################### def getSiteURLPattern(self): return r"https://"+re.escape(self.getSiteDomain())+r"/story/([0-9])+/*(?P<id>[^/]+)" #################################################################################################### ## Getting the chapter list and the meta data, plus 'is adult' checking. def doExtractChapterUrlsAndMetadata(self, get_cover=True): url = self.url try: data = self._fetchUrl(url) except urllib2.HTTPError, e: if e.code == 404: raise exceptions.StoryDoesNotExist('Error 404: {0}'.format(self.url)) else: raise e # use BeautifulSoup HTML parser to make everything easier to find. soup = self.make_soup(data) # Now go hunting for all the meta data we can get metablock = soup.find('div', {'class', 'title-infos'}) ## Getting Title title = stripHTML(metablock.find('h1')) self.story.setMetadata('title', title) ## Getting author author = metablock.find('a', {'class':'author'}) self.story.setMetadata('authorId',author['href'].split('/')[1]) self.story.setMetadata('authorUrl','https://'+self.host+author['href']) self.story.setMetadata('author',author.string) ## Get the categories for tag in metablock.find_all('a', {'class':'story-category'}): self.story.addToList('category',stripHTML(tag)) ## There is no summary for these stories, so I'm going to take the first ## 250 characters. synopsis = '' pcount = 0 for para in soup.find('div', {'class':'body'}).find_all('p'): synopsis += para.get_text() + ' ' pcount += 1 if pcount > 10: break synopsis = synopsis.strip()[:250] + '...' self.setDescription(url, synopsis) ## Since this is a 1 story/page site, the published and updated dates are the same. dateposted = stripHTML(metablock.find('div', {'class':'date'})) self.story.setMetadata('datePublished', makeDate(dateposted, self.dateformat)) self.story.setMetadata('dateUpdated', makeDate(dateposted, self.dateformat)) ## This is a 1 story/page site, so we'll keep the soup for the getChapterText function ## the chapterUrl and numChapters need to be set as well self.html = soup self.chapterUrls.append((self.story.getMetadata('title'), url)) self.story.setMetadata('numChapters', len(self.chapterUrls)) self.story.setMetadata('status', 'Completed') ## Getting the non-standard title page entries copyrt = soup.find('div', {'class':'copyright'}).get_text() self.story.setMetadata('copyright', copyrt) # grab the text for an individual chapter. def getChapterText(self, url): logger.debug('Using data that we got from: %s' % url) soup = self.html story = soup.find('div', {'class':'body'}) if story == None: raise exceptions.FailedToDownload("Error downloading Chapter: %s! Missing required element!" % url) return self.utf8FromSoup(url,story)
40.301887
118
0.564607
a6e1e665cdb4972593b64de7d6c9eb40a4c4f205
7,327
py
Python
sdk/python/pulumi_azure/containerservice/get_kubernetes_cluster.py
Frassle/pulumi-azure
593dd1020b09b83422928913d06bf91538926155
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/containerservice/get_kubernetes_cluster.py
Frassle/pulumi-azure
593dd1020b09b83422928913d06bf91538926155
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure/containerservice/get_kubernetes_cluster.py
Frassle/pulumi-azure
593dd1020b09b83422928913d06bf91538926155
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import pulumi import pulumi.runtime from .. import utilities, tables class GetKubernetesClusterResult(object): """ A collection of values returned by getKubernetesCluster. """ def __init__(__self__, addon_profiles=None, agent_pool_profiles=None, dns_prefix=None, fqdn=None, kube_admin_configs=None, kube_admin_config_raw=None, kube_configs=None, kube_config_raw=None, kubernetes_version=None, linux_profiles=None, location=None, network_profiles=None, node_resource_group=None, role_based_access_controls=None, service_principals=None, tags=None, id=None): if addon_profiles and not isinstance(addon_profiles, list): raise TypeError('Expected argument addon_profiles to be a list') __self__.addon_profiles = addon_profiles """ A `addon_profile` block as documented below. """ if agent_pool_profiles and not isinstance(agent_pool_profiles, list): raise TypeError('Expected argument agent_pool_profiles to be a list') __self__.agent_pool_profiles = agent_pool_profiles """ One or more `agent_profile_pool` blocks as documented below. """ if dns_prefix and not isinstance(dns_prefix, str): raise TypeError('Expected argument dns_prefix to be a str') __self__.dns_prefix = dns_prefix """ The DNS Prefix of the managed Kubernetes cluster. """ if fqdn and not isinstance(fqdn, str): raise TypeError('Expected argument fqdn to be a str') __self__.fqdn = fqdn """ The FQDN of the Azure Kubernetes Managed Cluster. """ if kube_admin_configs and not isinstance(kube_admin_configs, list): raise TypeError('Expected argument kube_admin_configs to be a list') __self__.kube_admin_configs = kube_admin_configs """ A `kube_admin_config` block as defined below. This is only available when Role Based Access Control with Azure Active Directory is enabled. """ if kube_admin_config_raw and not isinstance(kube_admin_config_raw, str): raise TypeError('Expected argument kube_admin_config_raw to be a str') __self__.kube_admin_config_raw = kube_admin_config_raw """ Raw Kubernetes config for the admin account to be used by [kubectl](https://kubernetes.io/docs/reference/kubectl/overview/) and other compatible tools. This is only available when Role Based Access Control with Azure Active Directory is enabled. """ if kube_configs and not isinstance(kube_configs, list): raise TypeError('Expected argument kube_configs to be a list') __self__.kube_configs = kube_configs """ A `kube_config` block as defined below. """ if kube_config_raw and not isinstance(kube_config_raw, str): raise TypeError('Expected argument kube_config_raw to be a str') __self__.kube_config_raw = kube_config_raw """ Base64 encoded Kubernetes configuration. """ if kubernetes_version and not isinstance(kubernetes_version, str): raise TypeError('Expected argument kubernetes_version to be a str') __self__.kubernetes_version = kubernetes_version """ The version of Kubernetes used on the managed Kubernetes Cluster. """ if linux_profiles and not isinstance(linux_profiles, list): raise TypeError('Expected argument linux_profiles to be a list') __self__.linux_profiles = linux_profiles """ A `linux_profile` block as documented below. """ if location and not isinstance(location, str): raise TypeError('Expected argument location to be a str') __self__.location = location """ The Azure Region in which the managed Kubernetes Cluster exists. """ if network_profiles and not isinstance(network_profiles, list): raise TypeError('Expected argument network_profiles to be a list') __self__.network_profiles = network_profiles """ A `network_profile` block as documented below. """ if node_resource_group and not isinstance(node_resource_group, str): raise TypeError('Expected argument node_resource_group to be a str') __self__.node_resource_group = node_resource_group """ Auto-generated Resource Group containing AKS Cluster resources. """ if role_based_access_controls and not isinstance(role_based_access_controls, list): raise TypeError('Expected argument role_based_access_controls to be a list') __self__.role_based_access_controls = role_based_access_controls """ A `role_based_access_control` block as documented below. """ if service_principals and not isinstance(service_principals, list): raise TypeError('Expected argument service_principals to be a list') __self__.service_principals = service_principals """ A `service_principal` block as documented below. """ if tags and not isinstance(tags, dict): raise TypeError('Expected argument tags to be a dict') __self__.tags = tags """ A mapping of tags assigned to this resource. """ if id and not isinstance(id, str): raise TypeError('Expected argument id to be a str') __self__.id = id """ id is the provider-assigned unique ID for this managed resource. """ async def get_kubernetes_cluster(name=None, resource_group_name=None): """ Use this data source to access information about an existing Managed Kubernetes Cluster (AKS). ~> **Note:** All arguments including the client secret will be stored in the raw state as plain-text. [Read more about sensitive data in state](https://www.terraform.io/docs/state/sensitive-data.html). """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name __ret__ = await pulumi.runtime.invoke('azure:containerservice/getKubernetesCluster:getKubernetesCluster', __args__) return GetKubernetesClusterResult( addon_profiles=__ret__.get('addonProfiles'), agent_pool_profiles=__ret__.get('agentPoolProfiles'), dns_prefix=__ret__.get('dnsPrefix'), fqdn=__ret__.get('fqdn'), kube_admin_configs=__ret__.get('kubeAdminConfigs'), kube_admin_config_raw=__ret__.get('kubeAdminConfigRaw'), kube_configs=__ret__.get('kubeConfigs'), kube_config_raw=__ret__.get('kubeConfigRaw'), kubernetes_version=__ret__.get('kubernetesVersion'), linux_profiles=__ret__.get('linuxProfiles'), location=__ret__.get('location'), network_profiles=__ret__.get('networkProfiles'), node_resource_group=__ret__.get('nodeResourceGroup'), role_based_access_controls=__ret__.get('roleBasedAccessControls'), service_principals=__ret__.get('servicePrincipals'), tags=__ret__.get('tags'), id=__ret__.get('id'))
49.506757
384
0.686229
d99ca9dd059c744d68ba1802d9a1ede730341d8c
893
py
Python
tracker/site/management/commands/reset_counters.py
ashwoods/potato
0335ae8ee4a28832bc1ca8337c03c029b44c0665
[ "Apache-2.0" ]
null
null
null
tracker/site/management/commands/reset_counters.py
ashwoods/potato
0335ae8ee4a28832bc1ca8337c03c029b44c0665
[ "Apache-2.0" ]
16
2016-02-16T20:12:14.000Z
2016-02-22T06:47:44.000Z
tracker/site/management/commands/reset_counters.py
ashwoods/potatoist
0335ae8ee4a28832bc1ca8337c03c029b44c0665
[ "Apache-2.0" ]
null
null
null
from django.core.management.base import BaseCommand, CommandError from tracker.site.models import Project class Command(BaseCommand): help = 'Closes the specified poll for voting' def handle(self, *args, **options): counter = 0 STATES = {'deleted': 0, 'new': 1, 'open': 2, 'closed': 3} for project in Project.objects.all(): project_counter = 0 project.counter.reset() for key, value in STATES.iteritems(): getattr(project, '%s_counter' % key).reset() state_counter = project.tickets.filter(state=value).count() getattr(project, '%s_counter' % key).increment(state_counter) counter += state_counter project_counter += state_counter project.counter.increment(project_counter) self.stdout.write('Reset %s tickets' % counter)
40.590909
77
0.617021
1757b98c42a0e25221799b457250a1dd6614bb53
1,699
py
Python
pwm/compute-ic.py
CostaLab/snp-selex
33421c4d1eff8ee60594af983b9f95a53502ef9e
[ "MIT" ]
13
2021-01-28T06:30:31.000Z
2022-02-14T16:40:11.000Z
pwm/compute-ic.py
CostaLab/snp-selex
33421c4d1eff8ee60594af983b9f95a53502ef9e
[ "MIT" ]
2
2021-05-27T07:54:08.000Z
2022-01-17T17:50:21.000Z
pwm/compute-ic.py
CostaLab/snp-selex
33421c4d1eff8ee60594af983b9f95a53502ef9e
[ "MIT" ]
6
2021-02-01T02:14:08.000Z
2022-01-13T17:14:56.000Z
import click import csv import numpy as np from math import log from Bio import motifs from Bio.Seq import Seq from Bio.Alphabet import generic_dna from Bio.Alphabet.IUPAC import unambiguous_dna def homer_parse(fstream): def build(name, freq): m = motifs.Motif(counts=freq) m.name = name return m nct = "ACGT" name = "" mtx = {a: [] for a in nct} for line in fstream: if line.startswith('>'): if name != '': yield build(name, mtx) name = line.rstrip().split()[1] mtx = {a: [] for a in nct} else: score = [float(x) for x in line.rstrip().split()] for i, a in enumerate(nct): mtx[a].append(score[i]) if name != '': yield build(name, mtx) @click.command() @click.option('--motif', '-m', type=click.File('r'), required=True) @click.option('--out', '-o', type=click.File('w'), default='-') def main(motif, out): writer = csv.DictWriter(out, delimiter='\t', fieldnames=['name', 'ic', 'mean_ic']) writer.writeheader() for m in homer_parse(motif): ic = _ic(m) writer.writerow(dict(name = _name(m), ic = ic, mean_ic = ic/m.length)) def _ic(motif): acc = 0 pwm = motif.pwm # background = motif.background for i in range(pwm.length): for letter in "ACGT": p = pwm[letter, i] # b = 0.25 # Naive background # b = background[letter] acc += p * log(p, 2) acc += 2 return acc def _name(motif): name = motif.name.split('/')[0] return name.upper().replace('-', '_') if __name__ == '__main__': main()
24.623188
86
0.547381
b4c7c26a148e569f736d7dc7f9ea394cb617a7a0
1,370
py
Python
UniSim/tools/analyzer.py
RDC4Smart-Mobility/UniSim
872a22ccdac859b9a12f11a9f5d20467e9db18ee
[ "MIT" ]
null
null
null
UniSim/tools/analyzer.py
RDC4Smart-Mobility/UniSim
872a22ccdac859b9a12f11a9f5d20467e9db18ee
[ "MIT" ]
null
null
null
UniSim/tools/analyzer.py
RDC4Smart-Mobility/UniSim
872a22ccdac859b9a12f11a9f5d20467e9db18ee
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import, unicode_literals import sqlite3 import matplotlib.pyplot as plt import numpy as np class Analyzer(object): def __init__(self, dbpath): self.dbpath = dbpath def connect(self): if self.dbpath: self.conn = sqlite3.connect(self.dbpath) self.cursor = self.conn.cursor() def disconnect(self): if self.conn: self.conn.close() def in_rect(self, x, y, dx, dy): ret = [] # Number of object in rect angle (x, y), (x + dx, y + dy) sql = u""" SELECT * FROM master; """ self.cursor.execute(sql) for tick, status_id in self.cursor.fetchall(): #res_tick, res_status_id = self.cursor.fetchone() sql = u""" select count(*) from "status_%s" where %s < lat and lat < %s and %s < lng and lng < %s; """ % (status_id, x, x + dx, y , y + dy) self.cursor.execute(sql) n = self.cursor.fetchone()[0] ret.append((tick, n)) return ret if __name__ == "__main__": ana = Analyzer("./sample.db") ana.connect() data = ana.in_rect(100, 0, 4000, 2000) x, y = zip(*data[:-1]) plt.plot(x,y) plt.show() ana.disconnect()
25.849057
82
0.537226
20a848b7967e2de70cc68a8a9b85b8f4c9992191
478
py
Python
tests/test_paths.py
seanholmes77/yfs
7f422848aec5f47e8a76c43647e034740abadbde
[ "MIT" ]
3
2021-01-24T03:52:28.000Z
2022-01-10T19:21:09.000Z
tests/test_paths.py
seanholmes77/yfs
7f422848aec5f47e8a76c43647e034740abadbde
[ "MIT" ]
null
null
null
tests/test_paths.py
seanholmes77/yfs
7f422848aec5f47e8a76c43647e034740abadbde
[ "MIT" ]
1
2021-01-19T02:01:23.000Z
2021-01-19T02:01:23.000Z
from yfs import __version__ from yfs.paths import PROJECT_ROOT, SOURCE_ROOT import toml def test_sanity(): pyproject_path = PROJECT_ROOT / "pyproject.toml" assert pyproject_path.exists() with open(pyproject_path, mode="r") as file: content = toml.loads(file.read()) assert content["tool"]["poetry"].get("version") is not None assert content["tool"]["poetry"].get("version") == __version__ def test_sanity_two(): assert SOURCE_ROOT.exists()
25.157895
66
0.707113
a5b5e7b7c9310b809d126aed9e9a7629c11730ce
5,569
py
Python
src/patcher.py
luisvalesilva/multisurv
9f7c12b51260a3ea853df786014b5e68284c2b95
[ "MIT" ]
11
2021-08-02T09:18:59.000Z
2022-02-04T15:51:25.000Z
src/patcher.py
luisvalesilva/multisurv
9f7c12b51260a3ea853df786014b5e68284c2b95
[ "MIT" ]
null
null
null
src/patcher.py
luisvalesilva/multisurv
9f7c12b51260a3ea853df786014b5e68284c2b95
[ "MIT" ]
8
2021-07-02T08:06:47.000Z
2022-03-08T16:07:34.000Z
"""Run offline patching from GDC slides. Generate WSI patches and save to disk as PNG files. """ import os import threading import uuid from PIL import Image from wsipre import slide class PatchGenerator(object): """Generator of GDC WSI patches.""" def __init__(self, slide_files, slide_level=0, random_tissue_patch=False, patch_size=(299, 299), return_annotation=False): """ Parameters ---------- slide_files: list of 2-tuples WSI and .XML annotation file path pairs. slide_level: int Slide level to get patch from. random_tissue_patch: bool Whether to get random patch from tissue regions, ignoring annotations. patch_size: 2-tuple Patch size. return_annotation: bool Whether to output patch annotation. """ self.slide_files = slide_files self.slide_level = slide_level self.random_tissue_patch = random_tissue_patch self.patch_size = patch_size self.return_annotation = return_annotation self.lock = threading.Lock() self.reset() self.n = len(slide_files) def _get_random_patch(self, selected_slide): wsi_file, xml_file = selected_slide wsi = slide.Slide(wsi_file, xml_file, 'asap') # Some slides have no detected tumor regions (label list is empty) # Just skip them if not wsi.labels: return 'No tumor annotations found.' patch, annotation = wsi.read_random_patch( level=self.slide_level, size=self.patch_size, target_class=1, min_class_area_ratio=0, polygon_type='area') if self.return_annotation: return patch, annotation, os.path.basename(wsi_file) else: return patch, os.path.basename(wsi_file) def _get_random_tissue_patch(self, selected_slide): if isinstance(selected_slide, (list, tuple)): wsi_file, _ = selected_slide else: wsi_file = selected_slide wsi = slide.Slide(wsi_file) patch = wsi.read_random_tissue_patch( level=self.slide_level, size=self.patch_size) return patch, os.path.basename(wsi_file) def reset(self): """Reset generator.""" self.i = 0 def __next__(self): with self.lock: if self.i >= self.n: self.reset() if self.random_tissue_patch: result = self._get_random_tissue_patch( self.slide_files[self.i]) else: result = self._get_random_patch(self.slide_files[self.i]) self.i += 1 return result class OfflinePatcher(object): """Run offline patching.""" def __init__(self, slide_files, target_dir, patch_size, slide_level=0, get_random_tissue_patch=False): self.slide_files = slide_files self.target_dir = target_dir self.patch_size = patch_size self.slide_level = slide_level self.file_format = 'png' # to preserve pixel values (unlike JPG...) self.filename = None self.patch_gen = PatchGenerator( slide_files=self.slide_files, slide_level=self.slide_level, random_tissue_patch=get_random_tissue_patch, patch_size=self.patch_size) # Make sure target directory exists if not os.path.isdir(self.target_dir): os.makedirs(self.target_dir) def _compose_path(self): # Make sure filename is unique unique_id = str(uuid.uuid4().hex)[:5] slide_file_name = os.path.splitext(self.filename)[0] # Remove 2nd part of name slide_file_name = os.path.splitext(slide_file_name)[0] unique_name = slide_file_name + '_' + unique_id unique_name += '.' + self.file_format.lower() # Add file extension path = os.path.join(self.target_dir, unique_name) return path def _save(self, path): """Save WSI patch to disk. Save image to PNG format, in order to preserve the numpy array pixel values. There are many options to do this: - matplotlib.image.imsave - cv2.imwrite - skimage.io.imsave - PIL.Image.fromarray(patch).save Decided to use PIL. """ self.patch.save(path) def _make_patch(self): self.patch, self.filename = next(self.patch_gen) file_path = self._compose_path() self._save(file_path) def run(self, n): """Generate and save indicated number of image patches per slide. Parameters ---------- n: int Number of patches to generate (slides are selected in sequence). """ # Upon keyboard interrupt save last patch to make sure it is not # corrupted print('Generating WSI patches') print('----------------------') try: for patch in range(n): print('\r' + f'{str(patch + 1)}/{str(n)}', end='') # Skip slides with no detected tumor regions result = next(self.patch_gen) if result == 'No tumor annotations found.': continue self.patch, self.filename = result file_path = self._compose_path() self._save(file_path) except KeyboardInterrupt: file_path = self._compose_path() self._save(file_path) print()
32.190751
77
0.598133
8c9d652bebd2fe21abfef15741e608c055827e86
6,321
py
Python
test/functional/feature_cltv.py
developertask/pivx-4
012420f23ae79c8f2e42223cc4bdb2b315e4445c
[ "MIT" ]
null
null
null
test/functional/feature_cltv.py
developertask/pivx-4
012420f23ae79c8f2e42223cc4bdb2b315e4445c
[ "MIT" ]
null
null
null
test/functional/feature_cltv.py
developertask/pivx-4
012420f23ae79c8f2e42223cc4bdb2b315e4445c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test BIP65 (CHECKLOCKTIMEVERIFY). Test that the CHECKLOCKTIMEVERIFY soft-fork activates at (regtest) block height 1351. """ from test_framework.test_framework import OhonetworkTestFramework from test_framework.util import * from test_framework.mininode import * from test_framework.blocktools import create_coinbase, create_block from test_framework.script import CScript, OP_1NEGATE, OP_CHECKLOCKTIMEVERIFY, OP_DROP, CScriptNum from io import BytesIO CLTV_HEIGHT = 750 # Reject codes that we might receive in this test REJECT_INVALID = 16 REJECT_OBSOLETE = 17 REJECT_NONSTANDARD = 64 def cltv_invalidate(tx): '''Modify the signature in vin 0 of the tx to fail CLTV Prepends -1 CLTV DROP in the scriptSig itself. TODO: test more ways that transactions using CLTV could be invalid (eg locktime requirements fail, sequence time requirements fail, etc). ''' tx.vin[0].scriptSig = CScript([OP_1NEGATE, OP_CHECKLOCKTIMEVERIFY, OP_DROP] + list(CScript(tx.vin[0].scriptSig))) def cltv_validate(node, tx, height): '''Modify the signature in vin 0 of the tx to pass CLTV Prepends <height> CLTV DROP in the scriptSig, and sets the locktime to height''' tx.vin[0].nSequence = 0 tx.nLockTime = height # Need to re-sign, since nSequence and nLockTime changed signed_result = node.signrawtransaction(ToHex(tx)) new_tx = CTransaction() new_tx.deserialize(BytesIO(hex_str_to_bytes(signed_result['hex']))) new_tx.vin[0].scriptSig = CScript([CScriptNum(height), OP_CHECKLOCKTIMEVERIFY, OP_DROP] + list(CScript(new_tx.vin[0].scriptSig))) return new_tx def create_transaction(node, coinbase, to_address, amount): from_txid = node.getblock(coinbase)['tx'][0] inputs = [{ "txid" : from_txid, "vout" : 0}] outputs = { to_address : amount } rawtx = node.createrawtransaction(inputs, outputs) signresult = node.signrawtransaction(rawtx) tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(signresult['hex']))) return tx class BIP65Test(OhonetworkTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [['-promiscuousmempoolflags=1', '-whitelist=127.0.0.1']] self.setup_clean_chain = True def run_test(self): self.nodes[0].add_p2p_connection(P2PInterface()) network_thread_start() # wait_for_verack ensures that the P2P connection is fully up. self.nodes[0].p2p.wait_for_verack() self.log.info("Mining %d blocks", CLTV_HEIGHT - 2) self.coinbase_blocks = self.nodes[0].generate(CLTV_HEIGHT - 2) self.nodeaddress = self.nodes[0].getnewaddress() self.log.info("Test that an invalid-according-to-CLTV transaction can still appear in a block") spendtx = create_transaction(self.nodes[0], self.coinbase_blocks[0], self.nodeaddress, 1.0) cltv_invalidate(spendtx) spendtx.rehash() tip = self.nodes[0].getbestblockhash() block_time = self.nodes[0].getblockheader(tip)['mediantime'] + 1 block = create_block(int(tip, 16), create_coinbase(CLTV_HEIGHT - 1), block_time) block.nVersion = 4 block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(self.nodes[0].getbestblockhash(), block.hash) self.nodes[0].generate(205) self.log.info("Test that blocks must now be at least version 5") tip = self.nodes[0].getbestblockhash() block_time = self.nodes[0].getblockheader(tip)['mediantime'] + 1 block = create_block(int(tip, 16), create_coinbase(CLTV_HEIGHT + 205), block_time) block.nVersion = 4 block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) wait_until(lambda: "reject" in self.nodes[0].p2p.last_message.keys(), lock=mininode_lock) with mininode_lock: assert_equal(self.nodes[0].p2p.last_message["reject"].code, REJECT_OBSOLETE) assert_equal(self.nodes[0].p2p.last_message["reject"].reason, b'bad-version') assert_equal(self.nodes[0].p2p.last_message["reject"].data, block.sha256) del self.nodes[0].p2p.last_message["reject"] self.log.info("Test that invalid-according-to-cltv transactions cannot appear in a block") block.nVersion = 5 spendtx = create_transaction(self.nodes[0], self.coinbase_blocks[1], self.nodeaddress, 1.0) cltv_invalidate(spendtx) spendtx.rehash() # Verify that a block with this transaction is invalid. block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) wait_until(lambda: "reject" in self.nodes[0].p2p.last_message.keys(), lock=mininode_lock) with mininode_lock: assert self.nodes[0].p2p.last_message["reject"].code in [REJECT_INVALID, REJECT_NONSTANDARD] assert_equal(self.nodes[0].p2p.last_message["reject"].data, block.sha256) if self.nodes[0].p2p.last_message["reject"].code == REJECT_INVALID: # Generic rejection when a block is invalid assert_equal(self.nodes[0].p2p.last_message["reject"].reason, b'block-validation-failed') else: assert b'Negative locktime' in self.nodes[0].p2p.last_message["reject"].reason self.log.info("Test that a version 5 block with a valid-according-to-CLTV transaction is accepted") spendtx = cltv_validate(self.nodes[0], spendtx, CLTV_HEIGHT - 1) spendtx.rehash() block.vtx.pop(1) block.vtx.append(spendtx) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.nodes[0].p2p.send_and_ping(msg_block(block)) assert_equal(int(self.nodes[0].getbestblockhash(), 16), block.sha256) if __name__ == '__main__': BIP65Test().main()
40.780645
107
0.682012
6b96dc68283c30619b9e51c1cf05bac17194ed9c
514
py
Python
protex/__init__.py
wiederm/protex
7fb945dcee138705e28465f4657678185ed97cb8
[ "MIT" ]
5
2021-06-01T13:36:29.000Z
2022-03-04T13:10:57.000Z
protex/__init__.py
wiederm/protex
7fb945dcee138705e28465f4657678185ed97cb8
[ "MIT" ]
5
2021-05-12T07:34:24.000Z
2022-03-21T14:49:59.000Z
protex/__init__.py
wiederm/protex
7fb945dcee138705e28465f4657678185ed97cb8
[ "MIT" ]
1
2021-12-09T16:18:13.000Z
2021-12-09T16:18:13.000Z
""" protex Proton exchange using SAMS and openMM for ionic liquids """ # Add imports here from .protex import * # Handle versioneer from ._version import get_versions versions = get_versions() __version__ = versions["version"] __git_revision__ = versions["full-revisionid"] del get_versions, versions import logging # format logging message FORMAT = "[%(filename)s:%(lineno)s - %(funcName)1s()] %(message)s" # set logging level logging.basicConfig(format=FORMAT, datefmt="%d-%m-%Y:%H:%M", level=logging.INFO)
22.347826
80
0.743191
9a5a16a0441913718fc674d42f3bbebcf055eb82
6,270
py
Python
nas_bench_x11/models/svd_xgb.py
automl/nas-bench-x11
56aee15f125339c4d2af1cbfad9f66fd4643c9d7
[ "Apache-2.0" ]
14
2021-12-08T17:56:01.000Z
2022-01-15T05:06:59.000Z
nas_bench_x11/models/svd_xgb.py
shenyann/nas-bench-x11
ebf64ce3c30cc2ad0909508b5e25652011179956
[ "Apache-2.0" ]
4
2022-01-10T09:04:38.000Z
2022-01-23T03:35:09.000Z
nas_bench_x11/models/svd_xgb.py
shenyann/nas-bench-x11
ebf64ce3c30cc2ad0909508b5e25652011179956
[ "Apache-2.0" ]
1
2021-12-08T17:56:06.000Z
2021-12-08T17:56:06.000Z
import logging import os import joblib import numpy as np import xgboost as xgb from sklearn.multioutput import RegressorChain from sklearn.preprocessing import StandardScaler from nas_bench_x11.utils import utils from nas_bench_x11.surrogate_model import SurrogateModel class SVDXGBModel(SurrogateModel): def __init__(self, data_root, log_dir, seed, model_config, data_config, search_space, nb101_api): super().__init__(data_root, log_dir, seed, model_config, data_config, search_space, nb101_api) self.model = None self.model_config["param:objective"] = "reg:squarederror" self.model_config["param:eval_metric"] = "rmse" def parse_param_config(self): identifier = "param:" param_config = dict() for key, val in self.model_config.items(): if key.startswith(identifier): param_config[key.replace(identifier, "")] = val return param_config def train(self): X_train, y_train, _ = self.load_dataset(dataset_type='train', use_full_lc=True) X_val, y_val, _ = self.load_dataset(dataset_type='val', use_full_lc=True) param_config = self.parse_param_config() param_config["seed"] = self.seed # new code self.num_components = param_config["num_components"] self.ss = StandardScaler() u, s, vh = np.linalg.svd(y_train, full_matrices=False) self.svd_s = s self.svd_vh = vh self.model = RegressorChain(xgb.XGBRegressor( num_rounds=param_config["num_rounds"], boosting_type=param_config["boosting_type"], max_depth=param_config["max_depth"], learning_rate=param_config["learning_rate"], num_leaves=param_config["num_leaves"], min_child_weight=param_config["min_child_weight"], reg_alpha=param_config["lambda_l1"], reg_lambda=param_config["lambda_l2"], )) # the labels are the first n components of the SVD on the training data labels = u[:, :self.num_components].copy() fitted_labels = self.ss.fit_transform(labels) self.model.fit(X_train, fitted_labels, verbose=True) train_pred = self.ss.inverse_transform(self.model.predict(X_train))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] val_pred = self.ss.inverse_transform(self.model.predict(X_val))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] residuals = u[:, :self.num_components]@np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] - np.stack(y_train) # self.kernel = gaussian_kde(residuals.T+np.random.randn(*residuals.T.shape)*1e-8) # metrics for final prediction train_pred_final = np.array(train_pred) val_pred_final = np.array(val_pred) y_train_final = y_train y_val_final = y_val train_metrics = utils.evaluate_learning_curve_metrics(y_train_final, train_pred_final, prediction_is_first_arg=False) valid_metrics = utils.evaluate_learning_curve_metrics(y_val_final, val_pred_final, prediction_is_first_arg=False) logging.info('train metrics: %s', train_metrics) logging.info('valid metrics: %s', valid_metrics) return valid_metrics def test(self): X_test, y_test, _ = self.load_dataset(dataset_type='test', use_full_lc=True) test_pred = self.ss.inverse_transform(self.model.predict(X_test))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] y_test_final = y_test test_pred_final = np.array(test_pred) test_metrics = utils.evaluate_learning_curve_metrics(y_test_final, test_pred_final, prediction_is_first_arg=False) logging.info('test metrics %s', test_metrics) return test_metrics def validate(self): X_val, y_val, _ = self.load_dataset(dataset_type='val', use_full_lc=True) val_pred = self.ss.inverse_transform(self.model.predict(X_val))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] y_val_final = y_val val_pred_final = np.array(val_pred) valid_metrics = utils.evaluate_learning_curve_metrics(y_val_final, val_pred_final, prediction_is_first_arg=False) logging.info('test metrics %s', valid_metrics) return valid_metrics def save(self): save_list = [self.model, self.ss, self.svd_s, self.svd_vh, self.num_components] # save_list = [self.model, self.kernel, self.ss, self.svd_s, self.svd_vh, self.num_components] joblib.dump(save_list, os.path.join(self.log_dir, 'surrogate_model.model')) def load(self, model_path): model, ss, svd_s, svd_vh, num_components = joblib.load(model_path) self.model = model self.ss = ss self.svd_s = svd_s self.svd_vh = svd_vh self.num_components = num_components def evaluate(self, result_paths): X_test, y_test, _ = self.load_dataset(dataset_type='test', use_full_lc=True) test_pred = self.ss.inverse_transform(self.model.predict(X_test))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] y_test_final = y_test test_pred_final = np.array(test_pred) test_metrics = utils.evaluate_learning_curve_metrics(y_test_final, test_pred_final, prediction_is_first_arg=False) return test_metrics, test_pred, y_test def query(self, config_dict, search_space='darts', use_noise=False): if search_space == 'darts': config_space_instance = self.config_loader.query_config_dict(config_dict) X = config_space_instance.get_array().reshape(1, -1) idx = np.isnan(X) X[idx] = -1 X = X.reshape(1, -1) else: X = np.array([config_dict]) ypred = self.ss.inverse_transform(self.model.predict(X))\ @ np.diag(self.svd_s[:self.num_components])@self.svd_vh[:self.num_components, :] if use_noise: noise = self.kernel.resample(ypred.shape[0]) return ypred[0] + noise[0] return ypred[0]
40.980392
145
0.676236
e6229fc27c8a06d4d92bd7c6f797a3663bbc1115
3,085
py
Python
preprocess/init_rw.py
WWW2022PAGG/PAGG
f3eddec9157d1b34c100883193221d64c26be7ee
[ "MIT" ]
null
null
null
preprocess/init_rw.py
WWW2022PAGG/PAGG
f3eddec9157d1b34c100883193221d64c26be7ee
[ "MIT" ]
null
null
null
preprocess/init_rw.py
WWW2022PAGG/PAGG
f3eddec9157d1b34c100883193221d64c26be7ee
[ "MIT" ]
null
null
null
import numpy as np import json import time from pathlib import Path from dataset import PlanetoidData from torch_geometric.utils import from_scipy_sparse_matrix import torch import compute_merw as rw import scipy import argparse from scipy.sparse import csr_matrix import warnings warnings.filterwarnings('ignore') parser = argparse.ArgumentParser() parser.add_argument('-data', '--data_name', # action='append', nargs='*', type=str, default='cora') # , 'citeseer'] args = parser.parse_args() data_name = args.data_name def load_data_ranked(name): datasets = json.load( open("/home/syf/workspace/jupyters/configs/dataset.json")) dataset_run = datasets[name]["dataset"] dataset_path = datasets[name]["dataset_path"][0] # dataset_path = "/home/syf/workspace/jupyters" / Path(dataset_path) val_size = datasets[name]["val_size"] dataset = PlanetoidData( dataset_str=dataset_run, dataset_path=dataset_path, val_size=val_size ) # features = dataset._sparse_data["features"] adj = dataset._sparse_data["sparse_adj"] n = adj.shape[0] labels = dataset._dense_data["y_all"] # adj = adj + scipy.sparse.eye(n) edge_index = from_scipy_sparse_matrix(adj)[0] # indices + edge_weight # x = np.array( features.todense() ) edge_index = np.array(edge_index) y = torch.tensor(np.argmax(labels, 1), dtype=torch.long) return edge_index, adj, y if __name__ == '__main__': old_datasets = ["cora", "pubmed", "citeseer", "cornell"] for data_name in [ "cornell", "cora", # 'Nba', "citeseer", "pubmed", # 'Electronics', # 'bgp', ]: if data_name in old_datasets: edge_index, adj, y = load_data_ranked(data_name) else: y = np.load(f"/data/syf/{data_name}/y.npy") edge_index = np.load(f"/data/syf/{data_name}/edge_index.npy") row = edge_index[0] col = edge_index[1] data = np.ones(edge_index.shape[-1]) adj = csr_matrix((data, (row, col)), shape=(y.shape[0], y.shape[0])) n = y.shape[0] # adj = adj + scipy.sparse.eye(n) # with self-loop or not start = time.time() start_time = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(start)) print("calculating", start_time) # print(type(adj)) P_merw, _, _, _ = rw.compute_merw(adj) M = edge_index.shape[1] cal_end = time.time() print("saving", (cal_end-start)/60, (cal_end-start)/3600) file = open(f"edge_input/{data_name}_nsl.in", "w") print(y.shape[0], edge_index.shape[1]*2, file=file) for i in range(M): u, v = edge_index[0, i], edge_index[1, i] print(u, v, P_merw[u, v], file=file) print(v, u, P_merw[v, u], file=file) end = time.time() end_time = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(end)) print("over", (end-start)/60, (end-start)/3600, end_time)
34.277778
77
0.603566
fa1497e8baa8bcc5bb270a9c6e78876648c1cea3
10,893
py
Python
burst/lcloud.py
eye0inc/burst
c51290a8c52323714735f7f38a7822011d2db7cd
[ "Apache-2.0" ]
null
null
null
burst/lcloud.py
eye0inc/burst
c51290a8c52323714735f7f38a7822011d2db7cd
[ "Apache-2.0" ]
null
null
null
burst/lcloud.py
eye0inc/burst
c51290a8c52323714735f7f38a7822011d2db7cd
[ "Apache-2.0" ]
null
null
null
import os, sys, time, argparse, json import yaml from pprint import pprint from libcloud.compute.types import Provider from libcloud.compute.providers import get_driver from libcloud.compute.base import NodeAuthSSHKey from libcloud.common.google import ResourceNotFoundError from easydict import EasyDict as dictobj from burst.verbos import vprint config = dictobj() # # for now providers are EC2 or GCE # def init(conf = None): #init is a one-time thang if 'driver' in config: return if conf == None: conf = {} yam = conf.get('configfile', os.environ['HOME'] + "/.burst/config.yml") if os.path.exists(yam): #FIXME: check for local overriding .burst f = open(yam) yconf = yaml.load(f, Loader=yaml.FullLoader) f.close() if 'compute_config' in conf: compute_config = conf['compute_config'] else: compute_config = yconf['compute']['settings']['default_compute'] #this got a bit strained. sorry storage_config = None if 'storage_config' in conf: #if storage_config passed in, use storage_config = conf['storage_config'] else: if 'storage' in yconf: #otherwise check in config.yml storage_config = yconf['storage']['settings']['default_storage'] if storage_config: #if it exists, storage = yconf['storage']['configurations'][storage_config] #use it storage['config'] = storage_config #and store the config name too yconf = yconf['compute']['configurations'][compute_config] yconf.update(yconf['settings']) #easier to deal with all attributes at top level yconf['compute_config']=compute_config if storage_config: #if specified, yconf['storage'] = storage #pull storage to top level for ease else: vprint ("config.yml not found") yconf = {} #dummy yconf if 'provider' in conf: config.provider = conf['provider'] else: if 'provider' in yconf: config.provider = yconf['provider'] else: raise Exception("Configuration file %s not available. Try running:\nburst --configure" % yam) for param in ['access', 'secret', 'region', 'project', 'default_image', 'default_size', 'default_gpu_image', 'default_gpu_size', 'default_gpu', 'storage', 'compute_config']: if param in conf: config[param] = conf[param] else: config[param] = yconf.get(param, None) cls = get_driver(Provider[config.provider]) if config.provider == 'EC2': config.driver = cls(config.access, config.secret, region=config.region) elif config.provider == 'GCE': if hasattr(config.secret, 'lower'): #string points to key file privkeypath = config.secret config.raw_secret = config.secret else: #if dict, create key file config.raw_secret = "%s.json" % config.secret['private_key_id'] privkeypath = "%s/.burst/%s.json" % (os.path.expanduser("~"), config.secret['private_key_id']) if not os.path.exists(privkeypath): fp = open(privkeypath, 'w') json.dump(config.secret, fp) fp.close() config.driver = cls(config.access, privkeypath, datacenter=config.region, project=config.project) else: vprint ("ERROR: unknown cloud provider", config.provider) def get_config(): return config def get_server(url=None, uuid=None, name=None, conf = None): init(conf) nodes = config.driver.list_nodes() if url: node = [x for x in nodes if url in x.public_ips and x.state != 'terminated'] elif uuid: node = [x for x in nodes if x.uuid.find(uuid)==0 and x.state != 'terminated'] elif name: node = [x for x in nodes if x.name==name and x.state != 'terminated'] else: return "error: specify url, uuid, or name" return node[0] if node else None def get_server_state(srv): nodes = config.driver.list_nodes() #need to refresh node to get state node = [x for x in nodes if x.uuid.find(srv.uuid)==0] if node: return node[0].state vprint ("Cannot find server to determine state; assuming terminated") return 'terminated' def get_server_size(srv): if config.provider=='EC2': return srv.extra['instance_type'] elif config.provider=='GCE': typ = srv.extra['machineType'] i = typ.rfind('/') return typ[i+1:] # not working now that EC2 image == AMI full name # def get_server_image(srv): # if config.provider=='EC2': # pprint(srv.extra) # return srv.extra['name'] # elif config.provider=='GCE': # return srv.extra['image'] def start_server(srv): result = srv.start() if not result: return "error starting server" state = None while state != 'running': state = get_server_state(srv) time.sleep(2) vprint ("server state:", state) vprint ("Waiting for public IP address to be assigned") config.driver.wait_until_running([srv]) vprint("Public IP's:", srv.public_ips) while len(srv.public_ips)==0 or srv.public_ips.count(None) == len(srv.public_ips): #Really? Google? [None]???? # srv = config.driver.list_nodes(ex_node_ids=[srv.id])[0] srv = get_server(uuid=srv.uuid) #seems necessary to refresh to update state vprint("Public IP's:", srv.public_ips) time.sleep(5) return srv # # fill in default values for size & image # def fix_size_and_image(size, image): if image=="DEFAULT_IMAGE": image = config.default_image if size=="DEFAULT_SIZE": size = config.default_size if image=="DEFAULT_GPU_IMAGE": image = config.default_gpu_image if size=="DEFAULT_GPU_SIZE": size = config.default_gpu_size return size, image def launch_server(name, size=None, image=None, pubkey=None, conf = None, user=None, gpus=None): init(conf) size, image = fix_size_and_image(size, image) image_full_path = image if config.provider=='EC2': images = config.driver.list_images(ex_filters={'name': image}) elif config.provider=='GCE': #note: GCE libcloud driver list_images is hella borke, list is incomplete so... images = [] for proj in ["deeplearning-platform-release", "ubuntu-os-cloud"]: try: im = config.driver.ex_get_image(image, ex_project_list=proj) images = [im] break except ResourceNotFoundError: pass else: ims = config.driver.list_images() images = [x for x in ims if x.name == image] if not images: raise Exception("Image %s not found" % image) image = images[0] sizes = [x for x in config.driver.list_sizes() if x.name == size] if not sizes: raise Exception("Instance size %s not found" % size) size = sizes[0] vprint ("Launching instance image=%s, id=%s, session=%s, type=%s ram=%s disk=%s" % (image_full_path, image.id, name, size.id, size.ram, size.disk)) if pubkey: if config.provider == 'EC2': #Everybody makes it up auth = NodeAuthSSHKey(pubkey) node = config.driver.create_node(name, size, image, auth=auth) elif config.provider == 'GCE': meta = { 'items': [ { 'key': 'sshKeys', 'value': '%s: %s' % (user, pubkey) } ] } if gpus: vprint ("Launching with GPU") node = config.driver.create_node(name, size, image, ex_metadata=meta, ex_accelerator_type=config.default_gpu, ex_accelerator_count=1, ex_on_host_maintenance="TERMINATE") else: vprint ("Launching without GPU") node = config.driver.create_node(name, size, image, ex_metadata=meta) else: raise Exception("Unsupported clown provider: %s" % config.provider) else: node = config.driver.create_node(name, size, image) vprint ("Waiting for public IP address to be active") config.driver.wait_until_running([node]) while len(node.public_ips)==0: # node = config.driver.list_nodes(ex_node_ids=[node.id])[0] #refresh node -- is this really necessary node = get_server(uuid=node.uuid) #seems necessary to refresh to update state vprint("Public IP's:", node.public_ips) time.sleep(5) return node def stop_server(srv): result = srv.stop_node() if not result: return "error stopping server" state = None while state != 'stopped': state = get_server_state(srv) time.sleep(2) vprint ("server state:", state) return "success" def terminate_server(srv): result = config.driver.destroy_node(srv) if not result: return "error terminating server" state = None while state != 'terminated': state = get_server_state(srv) time.sleep(2) vprint ("server state:", state) return "success" def list_servers(name, conf = None, terminated=True): init(conf) ret = [] nodes = config.driver.list_nodes() for x in nodes: x = get_server(uuid=x.uuid) #seems necessary to refresh to update state if not x: continue # print ("DBG", terminated, x.state) if (not terminated) and (x.state=='terminated'): #don't include terminated continue if x.name==name: ret.append([x]) img = x.extra['image_id'] if config.provider == 'EC2' else x.image if img == config.default_image: img += " (default_image, no gpu)" elif img == config.default_gpu_image: img += " (default_gpu_image)" s = "IMAGE: %s STATE: %s IP's: %s ID: %s/%s" %(img, x.state, x.public_ips, config.provider, x.id) ret[-1].append(s) return ret if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--url") parser.add_argument("--uuid") parser.add_argument("--name") args, unknown = parser.parse_known_args() n = get_server(args.url, args.uuid, args.name) pprint (n)
38.62766
151
0.584228
565961e1b8c5391a5674c944eff3349f69447085
34,797
py
Python
homeassistant/components/cast/media_player.py
wstewart15/core
854d7d49367d560406d6099a5ba56a0be6c0b9c7
[ "Apache-2.0" ]
null
null
null
homeassistant/components/cast/media_player.py
wstewart15/core
854d7d49367d560406d6099a5ba56a0be6c0b9c7
[ "Apache-2.0" ]
7
2020-08-05T07:22:37.000Z
2020-10-12T10:43:30.000Z
homeassistant/components/cast/media_player.py
wstewart15/core
854d7d49367d560406d6099a5ba56a0be6c0b9c7
[ "Apache-2.0" ]
1
2022-01-03T06:44:44.000Z
2022-01-03T06:44:44.000Z
"""Provide functionality to interact with Cast devices on the network.""" from __future__ import annotations import asyncio from contextlib import suppress from datetime import datetime import json import logging import pychromecast from pychromecast.controllers.homeassistant import HomeAssistantController from pychromecast.controllers.multizone import MultizoneManager from pychromecast.controllers.receiver import VOLUME_CONTROL_TYPE_FIXED from pychromecast.quick_play import quick_play from pychromecast.socket_client import ( CONNECTION_STATUS_CONNECTED, CONNECTION_STATUS_DISCONNECTED, ) import voluptuous as vol import yarl from homeassistant.components import media_source, zeroconf from homeassistant.components.media_player import ( BrowseError, BrowseMedia, MediaPlayerEntity, async_process_play_media_url, ) from homeassistant.components.media_player.const import ( ATTR_MEDIA_EXTRA, MEDIA_CLASS_DIRECTORY, MEDIA_TYPE_MOVIE, MEDIA_TYPE_MUSIC, MEDIA_TYPE_TVSHOW, SUPPORT_BROWSE_MEDIA, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_SEEK, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CAST_APP_ID_HOMEASSISTANT_LOVELACE, EVENT_HOMEASSISTANT_STOP, STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING, ) from homeassistant.core import HomeAssistant, callback from homeassistant.helpers import config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.entity_platform import AddEntitiesCallback from homeassistant.helpers.network import NoURLAvailableError, get_url, is_hass_url import homeassistant.util.dt as dt_util from homeassistant.util.logging import async_create_catching_coro from .const import ( ADDED_CAST_DEVICES_KEY, CAST_MULTIZONE_MANAGER_KEY, CONF_IGNORE_CEC, CONF_UUID, DOMAIN as CAST_DOMAIN, SIGNAL_CAST_DISCOVERED, SIGNAL_CAST_REMOVED, SIGNAL_HASS_CAST_SHOW_VIEW, ) from .discovery import setup_internal_discovery from .helpers import CastStatusListener, ChromecastInfo, ChromeCastZeroconf _LOGGER = logging.getLogger(__name__) APP_IDS_UNRELIABLE_MEDIA_INFO = ("Netflix",) CAST_SPLASH = "https://www.home-assistant.io/images/cast/splash.png" SUPPORT_CAST = SUPPORT_PLAY_MEDIA | SUPPORT_TURN_OFF ENTITY_SCHEMA = vol.All( vol.Schema( { vol.Optional(CONF_UUID): cv.string, vol.Optional(CONF_IGNORE_CEC): vol.All(cv.ensure_list, [cv.string]), } ), ) @callback def _async_create_cast_device(hass: HomeAssistant, info: ChromecastInfo): """Create a CastDevice Entity from the chromecast object. Returns None if the cast device has already been added. """ _LOGGER.debug("_async_create_cast_device: %s", info) if info.uuid is None: _LOGGER.error("_async_create_cast_device uuid none: %s", info) return None # Found a cast with UUID added_casts = hass.data[ADDED_CAST_DEVICES_KEY] if info.uuid in added_casts: # Already added this one, the entity will take care of moved hosts # itself return None # -> New cast device added_casts.add(info.uuid) if info.is_dynamic_group: # This is a dynamic group, do not add it but connect to the service. group = DynamicCastGroup(hass, info) group.async_setup() return None return CastDevice(info) async def async_setup_entry( hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up Cast from a config entry.""" hass.data.setdefault(ADDED_CAST_DEVICES_KEY, set()) # Import CEC IGNORE attributes pychromecast.IGNORE_CEC += config_entry.data.get(CONF_IGNORE_CEC) or [] wanted_uuids = config_entry.data.get(CONF_UUID) or None @callback def async_cast_discovered(discover: ChromecastInfo) -> None: """Handle discovery of a new chromecast.""" # If wanted_uuids is set, we're only accepting specific cast devices identified # by UUID if wanted_uuids is not None and str(discover.uuid) not in wanted_uuids: # UUID not matching, ignore. return cast_device = _async_create_cast_device(hass, discover) if cast_device is not None: async_add_entities([cast_device]) async_dispatcher_connect(hass, SIGNAL_CAST_DISCOVERED, async_cast_discovered) ChromeCastZeroconf.set_zeroconf(await zeroconf.async_get_instance(hass)) hass.async_add_executor_job(setup_internal_discovery, hass, config_entry) class CastDevice(MediaPlayerEntity): """Representation of a Cast device on the network. This class is the holder of the pychromecast.Chromecast object and its socket client. It therefore handles all reconnects and audio group changing "elected leader" itself. """ _attr_should_poll = False _attr_media_image_remotely_accessible = True def __init__(self, cast_info: ChromecastInfo) -> None: """Initialize the cast device.""" self._cast_info = cast_info self._chromecast: pychromecast.Chromecast | None = None self.cast_status = None self.media_status = None self.media_status_received = None self.mz_media_status: dict[str, pychromecast.controllers.media.MediaStatus] = {} self.mz_media_status_received: dict[str, datetime] = {} self.mz_mgr = None self._attr_available = False self._status_listener: CastStatusListener | None = None self._hass_cast_controller: HomeAssistantController | None = None self._add_remove_handler = None self._cast_view_remove_handler = None self._attr_unique_id = str(cast_info.uuid) self._attr_name = cast_info.friendly_name if cast_info.cast_info.model_name != "Google Cast Group": self._attr_device_info = DeviceInfo( identifiers={(CAST_DOMAIN, str(cast_info.uuid).replace("-", ""))}, manufacturer=str(cast_info.cast_info.manufacturer), model=cast_info.cast_info.model_name, name=str(cast_info.friendly_name), ) async def async_added_to_hass(self): """Create chromecast object when added to hass.""" self._add_remove_handler = async_dispatcher_connect( self.hass, SIGNAL_CAST_DISCOVERED, self._async_cast_discovered ) self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, self._async_stop) self.async_set_cast_info(self._cast_info) # asyncio.create_task is used to avoid delaying startup wrapup if the device # is discovered already during startup but then fails to respond asyncio.create_task( async_create_catching_coro(self.async_connect_to_chromecast()) ) self._cast_view_remove_handler = async_dispatcher_connect( self.hass, SIGNAL_HASS_CAST_SHOW_VIEW, self._handle_signal_show_view ) async def async_will_remove_from_hass(self) -> None: """Disconnect Chromecast object when removed.""" await self._async_disconnect() if self._add_remove_handler: self._add_remove_handler() self._add_remove_handler = None if self._cast_view_remove_handler: self._cast_view_remove_handler() self._cast_view_remove_handler = None def async_set_cast_info(self, cast_info): """Set the cast information.""" self._cast_info = cast_info async def async_connect_to_chromecast(self): """Set up the chromecast object.""" _LOGGER.debug( "[%s %s] Connecting to cast device by service %s", self.entity_id, self._cast_info.friendly_name, self._cast_info.cast_info.services, ) chromecast = await self.hass.async_add_executor_job( pychromecast.get_chromecast_from_cast_info, self._cast_info.cast_info, ChromeCastZeroconf.get_zeroconf(), ) self._chromecast = chromecast if CAST_MULTIZONE_MANAGER_KEY not in self.hass.data: self.hass.data[CAST_MULTIZONE_MANAGER_KEY] = MultizoneManager() self.mz_mgr = self.hass.data[CAST_MULTIZONE_MANAGER_KEY] self._status_listener = CastStatusListener(self, chromecast, self.mz_mgr) self._attr_available = False self.cast_status = chromecast.status self.media_status = chromecast.media_controller.status self._chromecast.start() self.async_write_ha_state() async def _async_disconnect(self): """Disconnect Chromecast object if it is set.""" if self._chromecast is None: # Can't disconnect if not connected. return _LOGGER.debug( "[%s %s] Disconnecting from chromecast socket", self.entity_id, self._cast_info.friendly_name, ) self._attr_available = False self.async_write_ha_state() await self.hass.async_add_executor_job(self._chromecast.disconnect) self._invalidate() self.async_write_ha_state() def _invalidate(self): """Invalidate some attributes.""" self._chromecast = None self.cast_status = None self.media_status = None self.media_status_received = None self.mz_media_status = {} self.mz_media_status_received = {} self.mz_mgr = None self._hass_cast_controller = None if self._status_listener is not None: self._status_listener.invalidate() self._status_listener = None # ========== Callbacks ========== def new_cast_status(self, cast_status): """Handle updates of the cast status.""" self.cast_status = cast_status self._attr_volume_level = cast_status.volume_level if cast_status else None self._attr_is_volume_muted = ( cast_status.volume_muted if self.cast_status else None ) self.schedule_update_ha_state() def new_media_status(self, media_status): """Handle updates of the media status.""" if ( media_status and media_status.player_is_idle and media_status.idle_reason == "ERROR" ): external_url = None internal_url = None tts_base_url = None url_description = "" if "tts" in self.hass.config.components: # pylint: disable=[import-outside-toplevel] from homeassistant.components import tts with suppress(KeyError): # base_url not configured tts_base_url = tts.get_base_url(self.hass) with suppress(NoURLAvailableError): # external_url not configured external_url = get_url(self.hass, allow_internal=False) with suppress(NoURLAvailableError): # internal_url not configured internal_url = get_url(self.hass, allow_external=False) if media_status.content_id: if tts_base_url and media_status.content_id.startswith(tts_base_url): url_description = f" from tts.base_url ({tts_base_url})" if external_url and media_status.content_id.startswith(external_url): url_description = f" from external_url ({external_url})" if internal_url and media_status.content_id.startswith(internal_url): url_description = f" from internal_url ({internal_url})" _LOGGER.error( "Failed to cast media %s%s. Please make sure the URL is: " "Reachable from the cast device and either a publicly resolvable " "hostname or an IP address", media_status.content_id, url_description, ) self.media_status = media_status self.media_status_received = dt_util.utcnow() self.schedule_update_ha_state() def new_connection_status(self, connection_status): """Handle updates of connection status.""" _LOGGER.debug( "[%s %s] Received cast device connection status: %s", self.entity_id, self._cast_info.friendly_name, connection_status.status, ) if connection_status.status == CONNECTION_STATUS_DISCONNECTED: self._attr_available = False self._invalidate() self.schedule_update_ha_state() return new_available = connection_status.status == CONNECTION_STATUS_CONNECTED if new_available != self.available: # Connection status callbacks happen often when disconnected. # Only update state when availability changed to put less pressure # on state machine. _LOGGER.debug( "[%s %s] Cast device availability changed: %s", self.entity_id, self._cast_info.friendly_name, connection_status.status, ) self._attr_available = new_available self.schedule_update_ha_state() def multizone_new_media_status(self, group_uuid, media_status): """Handle updates of audio group media status.""" _LOGGER.debug( "[%s %s] Multizone %s media status: %s", self.entity_id, self._cast_info.friendly_name, group_uuid, media_status, ) self.mz_media_status[group_uuid] = media_status self.mz_media_status_received[group_uuid] = dt_util.utcnow() self.schedule_update_ha_state() # ========== Service Calls ========== def _media_controller(self): """ Return media controller. First try from our own cast, then groups which our cast is a member in. """ media_status = self.media_status media_controller = self._chromecast.media_controller if media_status is None or media_status.player_state == "UNKNOWN": groups = self.mz_media_status for k, val in groups.items(): if val and val.player_state != "UNKNOWN": media_controller = self.mz_mgr.get_multizone_mediacontroller(k) break return media_controller def turn_on(self): """Turn on the cast device.""" if not self._chromecast.is_idle: # Already turned on return if self._chromecast.app_id is not None: # Quit the previous app before starting splash screen or media player self._chromecast.quit_app() # The only way we can turn the Chromecast is on is by launching an app if self._chromecast.cast_type == pychromecast.const.CAST_TYPE_CHROMECAST: self._chromecast.play_media(CAST_SPLASH, pychromecast.STREAM_TYPE_BUFFERED) else: self._chromecast.start_app(pychromecast.config.APP_MEDIA_RECEIVER) def turn_off(self): """Turn off the cast device.""" self._chromecast.quit_app() def mute_volume(self, mute): """Mute the volume.""" self._chromecast.set_volume_muted(mute) def set_volume_level(self, volume): """Set volume level, range 0..1.""" self._chromecast.set_volume(volume) def media_play(self): """Send play command.""" media_controller = self._media_controller() media_controller.play() def media_pause(self): """Send pause command.""" media_controller = self._media_controller() media_controller.pause() def media_stop(self): """Send stop command.""" media_controller = self._media_controller() media_controller.stop() def media_previous_track(self): """Send previous track command.""" media_controller = self._media_controller() media_controller.queue_prev() def media_next_track(self): """Send next track command.""" media_controller = self._media_controller() media_controller.queue_next() def media_seek(self, position): """Seek the media to a specific location.""" media_controller = self._media_controller() media_controller.seek(position) async def _async_root_payload(self, content_filter): """Generate root node.""" children = [] # Add media browsers for platform in self.hass.data[CAST_DOMAIN].values(): children.extend( await platform.async_get_media_browser_root_object( self.hass, self._chromecast.cast_type ) ) # Add media sources try: result = await media_source.async_browse_media( self.hass, None, content_filter=content_filter ) children.extend(result.children) except BrowseError: if not children: raise # If there's only one media source, resolve it if len(children) == 1 and children[0].can_expand: return await self.async_browse_media( children[0].media_content_type, children[0].media_content_id, ) return BrowseMedia( title="Cast", media_class=MEDIA_CLASS_DIRECTORY, media_content_id="", media_content_type="", can_play=False, can_expand=True, children=sorted(children, key=lambda c: c.title), ) async def async_browse_media(self, media_content_type=None, media_content_id=None): """Implement the websocket media browsing helper.""" content_filter = None if self._chromecast.cast_type in ( pychromecast.const.CAST_TYPE_AUDIO, pychromecast.const.CAST_TYPE_GROUP, ): def audio_content_filter(item): """Filter non audio content.""" return item.media_content_type.startswith("audio/") content_filter = audio_content_filter if media_content_id is None: return await self._async_root_payload(content_filter) for platform in self.hass.data[CAST_DOMAIN].values(): browse_media = await platform.async_browse_media( self.hass, media_content_type, media_content_id, self._chromecast.cast_type, ) if browse_media: return browse_media return await media_source.async_browse_media( self.hass, media_content_id, content_filter=content_filter ) async def async_play_media(self, media_type, media_id, **kwargs): """Play a piece of media.""" # Handle media_source if media_source.is_media_source_id(media_id): sourced_media = await media_source.async_resolve_media(self.hass, media_id) media_type = sourced_media.mime_type media_id = sourced_media.url extra = kwargs.get(ATTR_MEDIA_EXTRA, {}) metadata = extra.get("metadata") # Handle media supported by a known cast app if media_type == CAST_DOMAIN: try: app_data = json.loads(media_id) if metadata is not None: app_data["metadata"] = extra.get("metadata") except json.JSONDecodeError: _LOGGER.error("Invalid JSON in media_content_id") raise # Special handling for passed `app_id` parameter. This will only launch # an arbitrary cast app, generally for UX. if "app_id" in app_data: app_id = app_data.pop("app_id") _LOGGER.info("Starting Cast app by ID %s", app_id) await self.hass.async_add_executor_job( self._chromecast.start_app, app_id ) if app_data: _LOGGER.warning( "Extra keys %s were ignored. Please use app_name to cast media", app_data.keys(), ) return app_name = app_data.pop("app_name") try: await self.hass.async_add_executor_job( quick_play, self._chromecast, app_name, app_data ) except NotImplementedError: _LOGGER.error("App %s not supported", app_name) return # Try the cast platforms for platform in self.hass.data[CAST_DOMAIN].values(): result = await platform.async_play_media( self.hass, self.entity_id, self._chromecast, media_type, media_id ) if result: return # If media ID is a relative URL, we serve it from HA. media_id = async_process_play_media_url(self.hass, media_id) # Configure play command for when playing a HLS stream if is_hass_url(self.hass, media_id): parsed = yarl.URL(media_id) if parsed.path.startswith("/api/hls/"): extra = { **extra, "stream_type": "LIVE", "media_info": { "hlsVideoSegmentFormat": "fmp4", }, } # Default to play with the default media receiver app_data = {"media_id": media_id, "media_type": media_type, **extra} await self.hass.async_add_executor_job( quick_play, self._chromecast, "default_media_receiver", app_data ) def _media_status(self): """ Return media status. First try from our own cast, then groups which our cast is a member in. """ media_status = self.media_status media_status_received = self.media_status_received if media_status is None or media_status.player_state == "UNKNOWN": groups = self.mz_media_status for k, val in groups.items(): if val and val.player_state != "UNKNOWN": media_status = val media_status_received = self.mz_media_status_received[k] break return (media_status, media_status_received) @property def state(self): """Return the state of the player.""" # The lovelace app loops media to prevent timing out, don't show that if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return STATE_PLAYING if (media_status := self._media_status()[0]) is not None: if media_status.player_is_playing: return STATE_PLAYING if media_status.player_is_paused: return STATE_PAUSED if media_status.player_is_idle: return STATE_IDLE if self.app_id is not None and self.app_id != pychromecast.IDLE_APP_ID: if self.app_id in APP_IDS_UNRELIABLE_MEDIA_INFO: # Some apps don't report media status, show the player as playing return STATE_PLAYING return STATE_IDLE if self._chromecast is not None and self._chromecast.is_idle: return STATE_OFF return None @property def media_content_id(self): """Content ID of current playing media.""" # The lovelace app loops media to prevent timing out, don't show that if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return None media_status = self._media_status()[0] return media_status.content_id if media_status else None @property def media_content_type(self): """Content type of current playing media.""" # The lovelace app loops media to prevent timing out, don't show that if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return None if (media_status := self._media_status()[0]) is None: return None if media_status.media_is_tvshow: return MEDIA_TYPE_TVSHOW if media_status.media_is_movie: return MEDIA_TYPE_MOVIE if media_status.media_is_musictrack: return MEDIA_TYPE_MUSIC return None @property def media_duration(self): """Duration of current playing media in seconds.""" # The lovelace app loops media to prevent timing out, don't show that if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return None media_status = self._media_status()[0] return media_status.duration if media_status else None @property def media_image_url(self): """Image url of current playing media.""" if (media_status := self._media_status()[0]) is None: return None images = media_status.images return images[0].url if images and images[0].url else None @property def media_title(self): """Title of current playing media.""" media_status = self._media_status()[0] return media_status.title if media_status else None @property def media_artist(self): """Artist of current playing media (Music track only).""" media_status = self._media_status()[0] return media_status.artist if media_status else None @property def media_album_name(self): """Album of current playing media (Music track only).""" media_status = self._media_status()[0] return media_status.album_name if media_status else None @property def media_album_artist(self): """Album artist of current playing media (Music track only).""" media_status = self._media_status()[0] return media_status.album_artist if media_status else None @property def media_track(self): """Track number of current playing media (Music track only).""" media_status = self._media_status()[0] return media_status.track if media_status else None @property def media_series_title(self): """Return the title of the series of current playing media.""" media_status = self._media_status()[0] return media_status.series_title if media_status else None @property def media_season(self): """Season of current playing media (TV Show only).""" media_status = self._media_status()[0] return media_status.season if media_status else None @property def media_episode(self): """Episode of current playing media (TV Show only).""" media_status = self._media_status()[0] return media_status.episode if media_status else None @property def app_id(self): """Return the ID of the current running app.""" return self._chromecast.app_id if self._chromecast else None @property def app_name(self): """Name of the current running app.""" return self._chromecast.app_display_name if self._chromecast else None @property def supported_features(self): """Flag media player features that are supported.""" support = SUPPORT_CAST media_status = self._media_status()[0] if self._chromecast and self._chromecast.cast_type in ( pychromecast.const.CAST_TYPE_CHROMECAST, pychromecast.const.CAST_TYPE_AUDIO, ): support |= SUPPORT_TURN_ON if ( self.cast_status and self.cast_status.volume_control_type != VOLUME_CONTROL_TYPE_FIXED ): support |= SUPPORT_VOLUME_MUTE | SUPPORT_VOLUME_SET if media_status and self.app_id != CAST_APP_ID_HOMEASSISTANT_LOVELACE: support |= SUPPORT_PAUSE | SUPPORT_PLAY | SUPPORT_STOP if media_status.supports_queue_next: support |= SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK if media_status.supports_seek: support |= SUPPORT_SEEK if "media_source" in self.hass.config.components: support |= SUPPORT_BROWSE_MEDIA return support @property def media_position(self): """Position of current playing media in seconds.""" # The lovelace app loops media to prevent timing out, don't show that if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return None media_status = self._media_status()[0] if media_status is None or not ( media_status.player_is_playing or media_status.player_is_paused or media_status.player_is_idle ): return None return media_status.current_time @property def media_position_updated_at(self): """When was the position of the current playing media valid. Returns value from homeassistant.util.dt.utcnow(). """ if self.app_id == CAST_APP_ID_HOMEASSISTANT_LOVELACE: return None return self._media_status()[1] async def _async_cast_discovered(self, discover: ChromecastInfo): """Handle discovery of new Chromecast.""" if self._cast_info.uuid != discover.uuid: # Discovered is not our device. return _LOGGER.debug("Discovered chromecast with same UUID: %s", discover) self.async_set_cast_info(discover) async def _async_stop(self, event): """Disconnect socket on Home Assistant stop.""" await self._async_disconnect() def _handle_signal_show_view( self, controller: HomeAssistantController, entity_id: str, view_path: str, url_path: str | None, ): """Handle a show view signal.""" if entity_id != self.entity_id or self._chromecast is None: return if self._hass_cast_controller is None: self._hass_cast_controller = controller self._chromecast.register_handler(controller) self._hass_cast_controller.show_lovelace_view(view_path, url_path) class DynamicCastGroup: """Representation of a Cast device on the network - for dynamic cast groups.""" def __init__(self, hass, cast_info: ChromecastInfo): """Initialize the cast device.""" self.hass = hass self._cast_info = cast_info self._chromecast: pychromecast.Chromecast | None = None self.mz_mgr = None self._status_listener: CastStatusListener | None = None self._add_remove_handler = None self._del_remove_handler = None def async_setup(self): """Create chromecast object.""" self._add_remove_handler = async_dispatcher_connect( self.hass, SIGNAL_CAST_DISCOVERED, self._async_cast_discovered ) self._del_remove_handler = async_dispatcher_connect( self.hass, SIGNAL_CAST_REMOVED, self._async_cast_removed ) self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, self._async_stop) self.async_set_cast_info(self._cast_info) self.hass.async_create_task( async_create_catching_coro(self.async_connect_to_chromecast()) ) async def async_tear_down(self) -> None: """Disconnect Chromecast object.""" await self._async_disconnect() if self._cast_info.uuid is not None: # Remove the entity from the added casts so that it can dynamically # be re-added again. self.hass.data[ADDED_CAST_DEVICES_KEY].remove(self._cast_info.uuid) if self._add_remove_handler: self._add_remove_handler() self._add_remove_handler = None if self._del_remove_handler: self._del_remove_handler() self._del_remove_handler = None def async_set_cast_info(self, cast_info): """Set the cast information and set up the chromecast object.""" self._cast_info = cast_info async def async_connect_to_chromecast(self): """Set the cast information and set up the chromecast object.""" _LOGGER.debug( "[%s %s] Connecting to cast device by service %s", "Dynamic group", self._cast_info.friendly_name, self._cast_info.cast_info.services, ) chromecast = await self.hass.async_add_executor_job( pychromecast.get_chromecast_from_cast_info, self._cast_info.cast_info, ChromeCastZeroconf.get_zeroconf(), ) self._chromecast = chromecast if CAST_MULTIZONE_MANAGER_KEY not in self.hass.data: self.hass.data[CAST_MULTIZONE_MANAGER_KEY] = MultizoneManager() self.mz_mgr = self.hass.data[CAST_MULTIZONE_MANAGER_KEY] self._status_listener = CastStatusListener(self, chromecast, self.mz_mgr, True) self._chromecast.start() async def _async_disconnect(self): """Disconnect Chromecast object if it is set.""" if self._chromecast is None: # Can't disconnect if not connected. return _LOGGER.debug( "[%s %s] Disconnecting from chromecast socket", "Dynamic group", self._cast_info.friendly_name, ) await self.hass.async_add_executor_job(self._chromecast.disconnect) self._invalidate() def _invalidate(self): """Invalidate some attributes.""" self._chromecast = None self.mz_mgr = None if self._status_listener is not None: self._status_listener.invalidate() self._status_listener = None async def _async_cast_discovered(self, discover: ChromecastInfo): """Handle discovery of new Chromecast.""" if self._cast_info.uuid != discover.uuid: # Discovered is not our device. return _LOGGER.debug("Discovered dynamic group with same UUID: %s", discover) self.async_set_cast_info(discover) async def _async_cast_removed(self, discover: ChromecastInfo): """Handle removal of Chromecast.""" if self._cast_info.uuid != discover.uuid: # Removed is not our device. return if not discover.cast_info.services: # Clean up the dynamic group _LOGGER.debug("Clean up dynamic group: %s", discover) await self.async_tear_down() async def _async_stop(self, event): """Disconnect socket on Home Assistant stop.""" await self._async_disconnect()
36.589905
88
0.645515
c40794397cf49fcc83153df678b749f00bf27755
1,037
py
Python
FreeInductionDecay/analysis/hilbert_transform.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
null
null
null
FreeInductionDecay/analysis/hilbert_transform.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
null
null
null
FreeInductionDecay/analysis/hilbert_transform.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
1
2020-04-11T04:18:31.000Z
2020-04-11T04:18:31.000Z
# -*- coding: utf-8 -*- import numpy as np from scipy.signal import hilbert from ..units import uV, ms class HilbertTransform(object): def __init__(self, times, flux): if len(times) != len(flux): raise AttributeError("times and flux must have the same dimension") self.N = len(flux) self.time = times / ms self.flux = flux / uV self.h = hilbert(self.flux) def real(self): return np.real(self.h) def imag(self): return np.imag(self.h) def PhaseFunction(self): phi = np.arctan(self.imag()/self.real()) jump = np.pi*np.logical_and(phi[:-1] > 0, phi[1:] < 0) phi += np.concatenate([[0], np.cumsum(jump)]) return self.time*ms, phi def EnvelopeFunction(self): return self.time*ms, np.sqrt(self.imag()**2 + self.real()**2)*uV def plot_phase_function(self, fig=None): if fig is None: fig, ax = plt.subplots() t, phi = self.PhaseFunction() ax.scatter(t, np.degrees(phi))
28.805556
79
0.584378
69d9b8dcb1063804a274138acfd44b66ee48ab5f
1,616
py
Python
geotrek/appconfig.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
geotrek/appconfig.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
geotrek/appconfig.py
fossabot/Geotrek-admin
ea2c873511ad724c742c64d81cbf31f37dbe3093
[ "BSD-2-Clause" ]
null
null
null
from django.apps import AppConfig from django.contrib.admin.apps import AdminConfig from django.contrib.auth.apps import AuthConfig from django.contrib.contenttypes.apps import ContentTypesConfig from django.contrib.sessions.apps import SessionsConfig from django.db.models.signals import post_migrate, pre_migrate from django_celery_results.apps import CeleryResultConfig from geotrek.common.utils.signals import pm_callback, check_srid_has_meter_unit class GeotrekConfig(AppConfig): """ Base class to handle table move on right schemas, and load SQL files !! WARNING !! need to create subclass in geotrek.myapp.apps for project apps, and create subclasses here for external subclasses """ def __init__(self, *args, **kwargs): pre_migrate.connect(check_srid_has_meter_unit, sender=self, dispatch_uid='geotrek.core.checksrid') super(GeotrekConfig, self).__init__(*args, **kwargs) def ready(self): post_migrate.connect(pm_callback, sender=self, dispatch_uid='geotrek.core.movetoschemas') class AuthGeotrekConfig(AuthConfig, GeotrekConfig): """ bind for django.contrib.auth """ pass class ContenttypeGeotrekConfig(ContentTypesConfig, GeotrekConfig): """ bind for django.contrib.contenttype """ pass class SessionsGeotrekConfig(SessionsConfig, GeotrekConfig): pass class AdminGeotrekConfig(AdminConfig, GeotrekConfig): pass class CeleryGeotrekConfig(GeotrekConfig, CeleryResultConfig): pass class EasyThumbnailsGeotrekConfig(GeotrekConfig): name = 'easy_thumbnails' verbose_name = 'Easy thumbnails'
29.381818
106
0.770421
11302a14b1d829799a07ae503a05f54d8c58f734
5,767
py
Python
python/tvm/tir/sparse.py
yzh119/tvm
19400c9967020ca822399f57de0253c3dc98845b
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
python/tvm/tir/sparse.py
yzh119/tvm
19400c9967020ca822399f57de0253c3dc98845b
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
9
2021-10-20T13:48:52.000Z
2021-12-09T07:14:24.000Z
python/tvm/tir/sparse.py
yzh119/tvm
19400c9967020ca822399f57de0253c3dc98845b
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """SparseTIR axes and SparseBuffer """ from typing import List, Dict, Optional import tvm._ffi from tvm.ir import PrimExpr from tvm.runtime import Object, const from tvm.tir import Var from . import _ffi_api from .buffer import Buffer class Axis(Object): """Base class of all the sparse axes.""" @property def name(self): return _ffi_api.GetAxisName(self) @property def length(self): return _ffi_api.GetAxisLength(self) @property def idtype(self): return _ffi_api.GetAxisIndexType(self) class DenseAxis(Axis): pass class SparseAxis(Axis): pass @tvm._ffi.register_object("tir.sparse.DenseFixedAxis") class DenseFixedAxis(DenseAxis): """DenseFixedAxis node Parameters ---------- name : str The name of the axis length : PrimExpr The length of the axis """ name: str length: PrimExpr def __init__(self, name, length): self.__init_handle_by_constructor__( _ffi_api.DenseFixedAxis, name, length # type: ignore ) @tvm._ffi.register_object("tir.sparse.DenseVariableAxis") class DenseVariableAxis(DenseAxis): """DenseVariableAxis node Parameters ---------- name : str The name of the axis length : PrimExpr The length of the axis indptr : Buffer The indptr buffer of the axis """ name: str length: PrimExpr indptr: Buffer def __init__(self, name, length, indptr): self.__init_handle_by_constructor__( _ffi_api.DenseVariableAxis, name, length, indptr # type: ignore ) @tvm._ffi.register_object("tir.sparse.SparseFixedAxis") class SparseFixedAxis(DenseAxis): """SparseFixedAxis node Parameters ---------- name : str The name of the axis length : PrimExpr The length of the axis indices : Buffer The indices buffer of the axis num_cols : PrimExpr The number of non-zero elements along the axis """ name: str length: PrimExpr indices: Buffer num_cols: PrimExpr def __init__(self, name, length, indices, num_cols): self.__init_handle_by_constructor__( _ffi_api.SparseFixedAxis, name, length, indices, num_cols # type: ignore ) @tvm._ffi.register_object("tir.sparse.SparseVariableAxis") class SparseVariableAxis(DenseAxis): """SparseVariableAxis node Parameters ---------- name : str The name of the axis length : PrimExpr The length of the axis indptr : Buffer The indptr buffer of the axis indices : Buffer The indices buffer of the axis """ name: str length: PrimExpr indptr: Buffer indices: Buffer def __init__(self, name, length, indptr, indices): self.__init_handle_by_constructor__( _ffi_api.SparseVariableAxis, name, length, indptr, indices # type: ignore ) @tvm._ffi.register_object("tir.sparse.AxisTree") class AxisTree(Object): """AxisTree node Parameters ---------- axis_parent_map: Dict A dictionary that maps axis name to parent axis name, value is None if there is not parent axis. """ axis_parent_map: Dict[str, Optional[str]] def __init__(self, axis_parent_map) -> None: keys = list(axis_parent_map.keys()) values = list(axis_parent_map.values()) self.__init_handle_by_constructor__( _ffi_api.AxisTree, keys, values # type:ignore ) @tvm._ffi.register_object("tir.sparse.SparseBuffer") class SparseBuffer(Object): """SparseBuffer node Parameters ---------- axes : List[Axis] The axes of the sparse buffer data : Buffer The data of the sparse buffer name : str The name of the sparse buffer """ axes: List[Axis] data: Buffer name: str def __init__(self, axes, data, name): self.__init_handle_by_constructor__( _ffi_api.SparseBuffer, axes, data, name # type: ignore ) @tvm._ffi.register_object("tir.sparse.SpIterVar") class SpIterVar(Object): """IterVar in SparseTIR Parameters ---------- var : Var The var of the SpIterVar max_extent : PrimExpr The maximum extent of the SpIterVar kind : int The kind of the SpIterVar is_reduction : bool Whether the SpIterVar is a reduction iterator axis : Optional[Axis] The axis over which the SpIterVar iterates. Required to be defined when `kind` is not `DenseFixed` """ var: Var max_extent: PrimExpr kind: int is_reduction: bool axis: Optional[Axis] DenseFixed = 0 DenseVariable = 1 SparseFixed = 2 SparseVariable = 3 def __init__(self, var, max_extent, kind, axis=None): self.__init_handle_by_constructor__( _ffi_api.SpIterVar, var, max_extent, kind, is_reduction, axis # type: ignore )
23.73251
104
0.658575
82b9ca856b434b9abd044923c0088faa91e76968
1,169
py
Python
octavia/api/v2/controllers/__init__.py
BeaconFramework/Distributor
c9f8737063263ca69365679c8b76331766d63191
[ "Apache-2.0" ]
1
2019-01-11T06:20:25.000Z
2019-01-11T06:20:25.000Z
octavia/api/v2/controllers/__init__.py
BeaconFramework/Distributor
c9f8737063263ca69365679c8b76331766d63191
[ "Apache-2.0" ]
null
null
null
octavia/api/v2/controllers/__init__.py
BeaconFramework/Distributor
c9f8737063263ca69365679c8b76331766d63191
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Intel # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pecan from octavia.api.v1.controllers import load_balancer from octavia.api.v2.controllers import base class BaseV2Controller(base.BaseController): loadbalancers = load_balancer.LoadBalancersController() @pecan.expose() def get(self): return "v2.0" class LBaaSController(BaseV2Controller): """Expose /lbaas/ endpoint for the v2.0 controller. Provides backwards compatibility with LBaaSV2 To be removed once LBaasV2 has been removed. """ pass class V2Controller(BaseV2Controller): lbaas = LBaaSController()
27.833333
78
0.730539