hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
64b762b58172911616e280b85678c26dceabe66d
2,782
py
Python
mundiapi/models/update_pricing_scheme_request.py
hugocpolos/MundiAPI-PYTHON
164545cc58bf18c946d5456e9ba4d55a378a339a
[ "MIT" ]
10
2017-08-30T15:53:00.000Z
2021-02-11T18:06:56.000Z
mundiapi/models/update_pricing_scheme_request.py
hugocpolos/MundiAPI-PYTHON
164545cc58bf18c946d5456e9ba4d55a378a339a
[ "MIT" ]
3
2020-02-20T08:24:05.000Z
2021-07-22T14:18:33.000Z
mundiapi/models/update_pricing_scheme_request.py
hugocpolos/MundiAPI-PYTHON
164545cc58bf18c946d5456e9ba4d55a378a339a
[ "MIT" ]
7
2017-04-27T13:46:52.000Z
2021-04-14T13:44:23.000Z
# -*- coding: utf-8 -*- """ mundiapi This file was automatically generated by APIMATIC v2.0 ( https://apimatic.io ). """ import mundiapi.models.update_price_bracket_request class UpdatePricingSchemeRequest(object): """Implementation of the 'UpdatePricingSchemeRequest' model. Request for updating a pricing scheme Attributes: scheme_type (string): Scheme type price_brackets (list of UpdatePriceBracketRequest): Price brackets price (int): Price minimum_price (int): Minimum price percentage (float): percentual value used in pricing_scheme Percent """ # Create a mapping from Model property names to API property names _names = { "scheme_type":'scheme_type', "price_brackets":'price_brackets', "price":'price', "minimum_price":'minimum_price', "percentage":'percentage' } def __init__(self, scheme_type=None, price_brackets=None, price=None, minimum_price=None, percentage=None): """Constructor for the UpdatePricingSchemeRequest class""" # Initialize members of the class self.scheme_type = scheme_type self.price_brackets = price_brackets self.price = price self.minimum_price = minimum_price self.percentage = percentage @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary scheme_type = dictionary.get('scheme_type') price_brackets = None if dictionary.get('price_brackets') != None: price_brackets = list() for structure in dictionary.get('price_brackets'): price_brackets.append(mundiapi.models.update_price_bracket_request.UpdatePriceBracketRequest.from_dictionary(structure)) price = dictionary.get('price') minimum_price = dictionary.get('minimum_price') percentage = dictionary.get('percentage') # Return an object of this model return cls(scheme_type, price_brackets, price, minimum_price, percentage)
31.977011
137
0.604242
681a1d923545f802976d4bcf18a4febdb34ddf34
1,830
py
Python
lr_for_the_masses/rr_mlm/mlm.py
samuel-velez/-533_lab_4_KatheVelez
d4d9b7ea7cd3d0ae896d9aee9ca3b316bd4166b2
[ "MIT" ]
null
null
null
lr_for_the_masses/rr_mlm/mlm.py
samuel-velez/-533_lab_4_KatheVelez
d4d9b7ea7cd3d0ae896d9aee9ca3b316bd4166b2
[ "MIT" ]
null
null
null
lr_for_the_masses/rr_mlm/mlm.py
samuel-velez/-533_lab_4_KatheVelez
d4d9b7ea7cd3d0ae896d9aee9ca3b316bd4166b2
[ "MIT" ]
null
null
null
class linearmixedeffects(): import seaborn as sns; sns.set() import matplotlib.pyplot as plt import numpy as np import pandas as pd from statsmodels.regression import mixed_linear_model import sklearn as sk from math import sqrt import statsmodels.api as sm def __init__(self, response, fixed, random, predict = 0, mlmf = 0): self.response = response self.fixed = fixed self.random = random def fitmlm(self): import pandas as pd from statsmodels.regression import mixed_linear_model mlm = mixed_linear_model.MixedLM(endog = pd.DataFrame(self.response), exog = pd.DataFrame(self.fixed), groups = pd.DataFrame(self.random), formula = 'response ~ fixed') mlmf = mlm.fit() return mlmf def summarymlm(self): import pandas as pd from statsmodels.regression import mixed_linear_model mlm = mixed_linear_model.MixedLM(endog = pd.DataFrame(self.response), exog = pd.DataFrame(self.fixed), groups = pd.DataFrame(self.random), formula = 'response ~ fixed') mlmf = mlm.fit() print(" ") print("The summary of the linear mixed effects model is given below:") return mlmf.summary() def plotmlm(self): import seaborn as sns; sns.set() import pandas as pd from statsmodels.regression import mixed_linear_model mlm = mixed_linear_model.MixedLM(endog = pd.DataFrame(self.response), exog = pd.DataFrame(self.fixed), groups = pd.DataFrame(self.random), formula = 'response ~ fixed') mlmf = mlm.fit() db_plot = pd.DataFrame() db_plot["residuals"] = mlmf.resid.values db_plot["fixed"] = fixed db_plot["predicted"] = mlmf.fittedvalues sns.lmplot(x = "predicted", y = "residuals", data = dbplot)
43.571429
176
0.660109
3942962e7ee40b2bf1df43a03e223da1c1e5707e
1,037
py
Python
tests/helpers.py
TheMOOCAgency/figures
4f991ed32626c25b4d67300c9b8019a36c5db297
[ "MIT" ]
1
2020-07-27T19:50:53.000Z
2020-07-27T19:50:53.000Z
tests/helpers.py
TheMOOCAgency/figures
4f991ed32626c25b4d67300c9b8019a36c5db297
[ "MIT" ]
3
2020-06-05T21:19:02.000Z
2022-02-10T18:09:04.000Z
tests/helpers.py
TheMOOCAgency/figures
4f991ed32626c25b4d67300c9b8019a36c5db297
[ "MIT" ]
null
null
null
'''Helper methods for Figures testing ''' from dateutil.rrule import rrule, DAILY from packaging import version import organizations def make_course_key_str(org, number, run='test-run', **kwargs): ''' Helper method to create a string representation of a CourseKey ''' return 'course-v1:{}+{}+{}'.format(org, number, run) def create_metrics_model_timeseries(factory, first_day, last_day): return [factory(date_for=dt) for dt in rrule(DAILY, dtstart=first_day, until=last_day)] def organizations_support_sites(): """ This function returns True if organizations supports site-organization mapping, False otherwise. This is used to conditionally run tests """ orgs_has_site = hasattr(organizations.models.Organization, 'sites') return orgs_has_site def django_filters_pre_v1(): """Returns `True` if the installed Django Filters package is before '1.0.0' """ import django_filters return version.parse(django_filters.__version__) < version.parse('1.0.0')
27.289474
79
0.719383
7bce96eec91113f058c24e88820c97f2d2dc2fc2
2,607
py
Python
selectable/tests/test_forms.py
affan2/django-selectable
00a3c3b9eddb706e1b113d1b4cea706a7bf26a44
[ "BSD-2-Clause" ]
null
null
null
selectable/tests/test_forms.py
affan2/django-selectable
00a3c3b9eddb706e1b113d1b4cea706a7bf26a44
[ "BSD-2-Clause" ]
null
null
null
selectable/tests/test_forms.py
affan2/django-selectable
00a3c3b9eddb706e1b113d1b4cea706a7bf26a44
[ "BSD-2-Clause" ]
1
2020-01-08T09:08:21.000Z
2020-01-08T09:08:21.000Z
from django.conf import settings from ..forms import BaseLookupForm from .base import BaseSelectableTestCase, PatchSettingsMixin __all__ = ( 'BaseLookupFormTestCase', ) class BaseLookupFormTestCase(PatchSettingsMixin, BaseSelectableTestCase): def get_valid_data(self): data = { 'term': 'foo', 'limit': 10, } return data def test_valid_data(self): data = self.get_valid_data() form = BaseLookupForm(data) self.assertTrue(form.is_valid(), "%s" % form.errors) def test_invalid_limit(self): """ Test giving the form an invalid limit. """ data = self.get_valid_data() data['limit'] = 'bar' form = BaseLookupForm(data) self.assertFalse(form.is_valid()) def test_no_limit(self): """ If SELECTABLE_MAX_LIMIT is set and limit is not given then the form will return SELECTABLE_MAX_LIMIT. """ data = self.get_valid_data() if 'limit' in data: del data['limit'] form = BaseLookupForm(data) self.assertTrue(form.is_valid(), "%s" % form.errors) self.assertEqual(form.cleaned_data['limit'], settings.SELECTABLE_MAX_LIMIT) def test_no_max_set(self): """ If SELECTABLE_MAX_LIMIT is not set but given then the form will return the given limit. """ settings.SELECTABLE_MAX_LIMIT = None data = self.get_valid_data() form = BaseLookupForm(data) self.assertTrue(form.is_valid(), "%s" % form.errors) if 'limit' in data: self.assertTrue(form.cleaned_data['limit'], data['limit']) def test_no_max_set_not_given(self): """ If SELECTABLE_MAX_LIMIT is not set and not given then the form will return no limit. """ settings.SELECTABLE_MAX_LIMIT = None data = self.get_valid_data() if 'limit' in data: del data['limit'] form = BaseLookupForm(data) self.assertTrue(form.is_valid(), "%s" % form.errors) self.assertFalse(form.cleaned_data.get('limit')) def test_over_limit(self): """ If SELECTABLE_MAX_LIMIT is set and limit given is greater then the form will return SELECTABLE_MAX_LIMIT. """ data = self.get_valid_data() data['limit'] = settings.SELECTABLE_MAX_LIMIT + 100 form = BaseLookupForm(data) self.assertTrue(form.is_valid(), "%s" % form.errors) self.assertEqual(form.cleaned_data['limit'], settings.SELECTABLE_MAX_LIMIT)
29.965517
83
0.618719
ac41c6b6522930ef696a7a121609414f94dd2b4e
1,051
py
Python
src/pycropml/transpiler/generators/sticsGenerator.py
brichet/PyCrop2ML
7177996f72a8d95fdbabb772a16f1fd87b1d033e
[ "MIT" ]
null
null
null
src/pycropml/transpiler/generators/sticsGenerator.py
brichet/PyCrop2ML
7177996f72a8d95fdbabb772a16f1fd87b1d033e
[ "MIT" ]
null
null
null
src/pycropml/transpiler/generators/sticsGenerator.py
brichet/PyCrop2ML
7177996f72a8d95fdbabb772a16f1fd87b1d033e
[ "MIT" ]
null
null
null
from pycropml.transpiler.generators.fortranGenerator import FortranGenerator, FortranCompo import os from pycropml.transpiler import lib from path import Path class SticsGenerator(FortranGenerator): """ This class contains the specific properties of Apsim and use the NodeVisitor to generate a csharp code source from a well formed syntax tree. """ def __init__(self, tree=None, model=None, name=None): self.tree = tree self.model=model self.name = name self.indent_with=' '*4 dir_lib = Path(os.path.dirname(lib.__file__)) self.f_src=dir_lib/"f90"/"list_sub.f90" FortranGenerator.__init__(self, tree, model, name) self.f_dest = os.path.join(self.model.path,"src","dssat","list_sub.f90") class SticsCompo(FortranCompo): """ This class generates Dssat module """ def __init__(self, tree, model=None, name=None): self.tree = tree self.model = model self.name = name FortranCompo.__init__(self,tree, model, self.name)
33.903226
90
0.679353
7c5271cd2ccc591942d33a357a88f8af16fa2102
1,053
py
Python
soc_site/discussions/migrations/0001_initial.py
nathanielCherian/socSite
e13ea1be15fde3511b46070038906930250e7f76
[ "MIT" ]
null
null
null
soc_site/discussions/migrations/0001_initial.py
nathanielCherian/socSite
e13ea1be15fde3511b46070038906930250e7f76
[ "MIT" ]
8
2020-07-16T23:37:06.000Z
2022-03-12T00:35:18.000Z
soc_site/discussions/migrations/0001_initial.py
nathanielCherian/socSite
e13ea1be15fde3511b46070038906930250e7f76
[ "MIT" ]
null
null
null
# Generated by Django 3.0.7 on 2020-06-21 21:28 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=300, unique=True)), ('slug', models.SlugField(max_length=350)), ('content', models.TextField()), ('updated', models.DateTimeField(auto_now=True)), ('date_posted', models.DateTimeField(default=django.utils.timezone.now)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL)), ], ), ]
33.967742
123
0.631529
a33be66a133d7f31597a91f727670ef025e4fb53
4,846
py
Python
Connector/wsutils/broker.py
swapper-pegasus/NodeChain
e1f7c6b372b1e5032fbeb2767503c1d2e878aa9c
[ "MIT" ]
4
2021-05-05T18:34:03.000Z
2022-01-05T06:41:02.000Z
Connector/wsutils/broker.py
swapper-pegasus/NodeChain
e1f7c6b372b1e5032fbeb2767503c1d2e878aa9c
[ "MIT" ]
94
2021-05-05T18:38:10.000Z
2022-03-31T23:00:59.000Z
Connector/wsutils/broker.py
swapper-pegasus/NodeChain
e1f7c6b372b1e5032fbeb2767503c1d2e878aa9c
[ "MIT" ]
4
2021-05-03T14:44:43.000Z
2022-01-21T19:56:04.000Z
#!/usr/bin/python3 import threading from logger import logger from .singleton import Singleton from .subscribers import SubscriberInterface from .constants import * class Broker(object, metaclass=Singleton): def __init__(self): self.topicSubscriptions = {} # Topic -> {"Subs":[Sub1, Sub2], "ClosingFunc":func} def attach(self, subscriber, topic): logger.printInfo(f"Attaching subscriber {subscriber.subscriberID} to topic [{topic.name}]") if not issubclass(type(subscriber), SubscriberInterface): logger.printWarning("Trying to attach unknown subscriber class") return { SUBSCRIBED: False } if topic.name not in self.topicSubscriptions: self.topicSubscriptions[topic.name] = { SUBSCRIBERS: [], CLOSING_TOPIC_FUNC: topic.closingHandler } if subscriber not in self.topicSubscriptions[topic.name][SUBSCRIBERS]: logger.printInfo(f"Subscriber {subscriber.subscriberID} atached successfully to topic [{topic.name}]") self.topicSubscriptions[topic.name][SUBSCRIBERS].append(subscriber) return { SUBSCRIBED: True } else: logger.printInfo(f"Subscriber {subscriber.subscriberID} already atached to topic [{topic.name}]") return { SUBSCRIBED: False } def detach(self, subscriber, topicName=""): logger.printInfo(f"Detaching subscriber {subscriber.subscriberID} from topic [{topicName}]") if not issubclass(type(subscriber), SubscriberInterface): logger.printWarning("Trying to detach unknown subscriber class") return { UNSUBSCRIBED: False } if topicName not in self.topicSubscriptions: logger.printWarning(f"Trying to detach subscriber {subscriber.subscriberID} from unknown topic [{topicName}]") return { UNSUBSCRIBED: False } elif subscriber in self.topicSubscriptions[topicName][SUBSCRIBERS]: self.topicSubscriptions[topicName][SUBSCRIBERS].remove(subscriber) logger.printInfo(f"Subscriber {subscriber.subscriberID} detached from topic [{topicName}]") if len(self.topicSubscriptions[topicName][SUBSCRIBERS]) == 0: logger.printWarning(f"No more subscribers for topic [{topicName}]") del self.topicSubscriptions[topicName] return { UNSUBSCRIBED: True } else: logger.printWarning(f"Subscriber {subscriber.subscriberID} can not be detached because it is not subscribed to topic [{topicName}]") return { UNSUBSCRIBED: False } def route(self, topicName="", message=""): logger.printInfo(f"Routing message of topic [{topicName}]: {message}") if topicName in self.topicSubscriptions: for subscriber in self.topicSubscriptions[topicName][SUBSCRIBERS]: subscriberNotificationThread = threading.Thread(target=_notifySubscriber, args=(subscriber, topicName, message), daemon=True) subscriberNotificationThread.start() def removeSubscriber(self, subscriber): logger.printInfo(f"Removing subscriber {subscriber.subscriberID} from subsbribed topics") if not issubclass(type(subscriber), SubscriberInterface): logger.printWarning("Trying to remove unknown subscriber class") return False for topicName in subscriber.topicsSubscribed: topicClosingFunc = self.topicSubscriptions[topicName][CLOSING_TOPIC_FUNC] self.detach(subscriber, topicName) if not self.topicHasSubscribers(topicName): logger.printInfo(f"Calling closing func to topic [{topicName}]") if topicClosingFunc is not None: topicClosingFunc(topicName) def isTopic(self, topicName): return topicName in self.topicSubscriptions def getSubTopics(self, topicName): return [topicSubscription[len(topicName) + 1:] for topicSubscription in self.topicSubscriptions if topicName in topicSubscription] def topicHasSubscribers(self, topicName): if topicName in self.topicSubscriptions: return len(self.topicSubscriptions[topicName][SUBSCRIBERS]) != 0 return False def getTopicSubscribers(self, topicName): if topicName in self.topicSubscriptions: return self.topicSubscriptions[topicName][SUBSCRIBERS] return [] def getTopicNameSubscriptions(self): return list(self.topicSubscriptions.keys()) def _notifySubscriber(subscriber, topicName, message): subscriber.onMessage(topicName, message)
38.460317
144
0.656624
6370b10fc327bc88784fa563f63f9d561b2619a9
757
py
Python
examples/Python3/demo.py
NaohiroTamura/snowboy
1aca51b23bddf4b941cb400e8202eeba193bc00e
[ "Apache-2.0" ]
null
null
null
examples/Python3/demo.py
NaohiroTamura/snowboy
1aca51b23bddf4b941cb400e8202eeba193bc00e
[ "Apache-2.0" ]
null
null
null
examples/Python3/demo.py
NaohiroTamura/snowboy
1aca51b23bddf4b941cb400e8202eeba193bc00e
[ "Apache-2.0" ]
null
null
null
import snowboydecoder import sys import signal interrupted = False def signal_handler(signal, frame): global interrupted interrupted = True def interrupt_callback(): global interrupted return interrupted if len(sys.argv) == 1: print("Error: need to specify model name") print("Usage: python demo.py your.model") sys.exit(-1) model = sys.argv[1] # capture SIGINT signal, e.g., Ctrl+C signal.signal(signal.SIGINT, signal_handler) detector = snowboydecoder.HotwordDetector(model, sensitivity=0.9) print('Listening... Press Ctrl+C to exit') # main loop detector.start(detected_callback=snowboydecoder.play_audio_file, interrupt_check=interrupt_callback, sleep_time=0.03) detector.terminate()
21.027778
65
0.72391
4dff57e7f8b9bc4f0e043c5fadd5fcd0994128b4
2,694
py
Python
functest/run_all.py
Luvideria/lightmetrica-v3
3e83db59998e79648047bac29c37d8eb18d7600d
[ "MIT" ]
101
2019-05-31T21:27:58.000Z
2022-02-03T18:54:16.000Z
functest/run_all.py
Luvideria/lightmetrica-v3
3e83db59998e79648047bac29c37d8eb18d7600d
[ "MIT" ]
11
2019-09-19T16:03:09.000Z
2020-12-05T18:37:54.000Z
functest/run_all.py
Luvideria/lightmetrica-v3
3e83db59998e79648047bac29c37d8eb18d7600d
[ "MIT" ]
14
2019-06-05T03:06:09.000Z
2022-01-15T06:36:24.000Z
"""Run all functional tests""" import os import sys from colorama import Fore, Back, Style import nbformat from nbconvert.preprocessors import ExecutePreprocessor import argparse import jupytext import nbmerge from shutil import copyfile def run_functests(output_dir, lmenv_path): # Output directory of executed notebooks if not os.path.exists(output_dir): os.mkdir(output_dir) # Base directory of the functional tests. # That is, the directory where this script is located. base_path = os.path.dirname(os.path.realpath(__file__)) # Copy .lmenv file to the functest directory copyfile(lmenv_path, os.path.join(base_path, '.lmenv')) # Tests tests = [ 'example_blank', 'example_quad', 'example_raycast', 'example_pt', 'example_cpp', 'example_custom_renderer', 'example_serialization', 'func_render_all', 'func_render_instancing', 'func_accel_consistency', 'func_error_handling', 'func_obj_loader_consistency', 'func_serial_consistency', 'func_update_asset', 'func_scheduler', 'func_materials', 'func_lights', 'func_renderers', 'perf_accel', 'perf_obj_loader', 'perf_serial' ] # Execute tests for test in tests: print(Fore.GREEN + "Running test [name='{}']".format(test) + Style.RESET_ALL, flush=True) # Read the requested notebook nb = jupytext.read(os.path.join(base_path, test + '.py')) # Execute the notebook ep = ExecutePreprocessor(timeout=600) ep.preprocess(nb, {'metadata': {'path': base_path}}) # Write result with open(os.path.join(output_dir, test + '.ipynb'), mode='w', encoding='utf-8') as f: nbformat.write(nb, f) # Merge executed notebooks print(Fore.GREEN + "Merging notebooks" + Style.RESET_ALL) notebook_paths = [os.path.join(output_dir, test + '.ipynb') for test in tests] nb = nbmerge.merge_notebooks(os.getcwd(), notebook_paths) with open(os.path.join(output_dir, 'merged.ipynb'), mode='w', encoding='utf-8') as f: nbformat.write(nb, f) # Notify success print(Fore.GREEN + "All tests have been executed successfully" + Style.RESET_ALL) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Execute all functional tests') parser.add_argument('--lmenv', type=str, help='Path to .lmenv file') parser.add_argument('--output-dir', nargs='?', type=str, default='executed_functest', help='Output directory of executed notebooks') args = parser.parse_args() run_functests(output_dir, lmenv)
34.101266
136
0.659985
565f49629159ceaeba26dfa8da682f4bc4b7c10f
4,643
bzl
Python
tensorflow/core/platform/build_config.bzl
nicolas-harraudeau-sonarsource/tensorflow
f42f57b814b82a217943f621967036a08bb95e88
[ "Apache-2.0" ]
2
2020-10-28T20:24:19.000Z
2021-02-08T21:24:15.000Z
tensorflow/core/platform/build_config.bzl
nicolas-harraudeau-sonarsource/tensorflow
f42f57b814b82a217943f621967036a08bb95e88
[ "Apache-2.0" ]
2
2021-08-25T16:14:20.000Z
2022-02-10T02:27:45.000Z
tensorflow/core/platform/build_config.bzl
nicolas-harraudeau-sonarsource/tensorflow
f42f57b814b82a217943f621967036a08bb95e88
[ "Apache-2.0" ]
1
2020-12-03T21:23:29.000Z
2020-12-03T21:23:29.000Z
"""Provides a redirection point for platform specific implementations of starlark utilities.""" load( "//tensorflow/core/platform/default:build_config.bzl", _if_llvm_aarch64_available = "if_llvm_aarch64_available", _if_llvm_system_z_available = "if_llvm_system_z_available", _pyx_library = "pyx_library", _tf_additional_all_protos = "tf_additional_all_protos", _tf_additional_binary_deps = "tf_additional_binary_deps", _tf_additional_core_deps = "tf_additional_core_deps", _tf_additional_cupti_utils_cuda_deps = "tf_additional_cupti_utils_cuda_deps", _tf_additional_device_tracer_srcs = "tf_additional_device_tracer_srcs", _tf_additional_env_hdrs = "tf_additional_env_hdrs", _tf_additional_lib_deps = "tf_additional_lib_deps", _tf_additional_lib_hdrs = "tf_additional_lib_hdrs", _tf_additional_rpc_deps = "tf_additional_rpc_deps", _tf_additional_tensor_coding_deps = "tf_additional_tensor_coding_deps", _tf_additional_test_deps = "tf_additional_test_deps", _tf_additional_test_srcs = "tf_additional_test_srcs", _tf_fingerprint_deps = "tf_fingerprint_deps", _tf_google_mobile_srcs_no_runtime = "tf_google_mobile_srcs_no_runtime", _tf_google_mobile_srcs_only_runtime = "tf_google_mobile_srcs_only_runtime", _tf_jspb_proto_library = "tf_jspb_proto_library", _tf_kernel_tests_linkstatic = "tf_kernel_tests_linkstatic", _tf_lib_proto_parsing_deps = "tf_lib_proto_parsing_deps", _tf_logging_deps = "tf_logging_deps", _tf_platform_alias = "tf_platform_alias", _tf_platform_deps = "tf_platform_deps", _tf_portable_deps_no_runtime = "tf_portable_deps_no_runtime", _tf_portable_proto_lib = "tf_portable_proto_lib", _tf_profiler_client_deps = "tf_profiler_client_deps", _tf_proto_library = "tf_proto_library", _tf_proto_library_cc = "tf_proto_library_cc", _tf_protobuf_compiler_deps = "tf_protobuf_compiler_deps", _tf_protobuf_deps = "tf_protobuf_deps", _tf_protos_all = "tf_protos_all", _tf_protos_all_impl = "tf_protos_all_impl", _tf_protos_grappler = "tf_protos_grappler", _tf_protos_grappler_impl = "tf_protos_grappler_impl", _tf_protos_profiler_impl = "tf_protos_profiler_impl", _tf_protos_profiler_service = "tf_protos_profiler_service", _tf_py_clif_cc = "tf_py_clif_cc", _tf_pyclif_proto_library = "tf_pyclif_proto_library", _tf_resource_deps = "tf_resource_deps", _tf_tpu_dependencies = "tf_tpu_dependencies", _tf_windows_aware_platform_deps = "tf_windows_aware_platform_deps", ) if_llvm_aarch64_available = _if_llvm_aarch64_available if_llvm_system_z_available = _if_llvm_system_z_available pyx_library = _pyx_library tf_additional_all_protos = _tf_additional_all_protos tf_additional_binary_deps = _tf_additional_binary_deps tf_additional_core_deps = _tf_additional_core_deps tf_additional_cupti_utils_cuda_deps = _tf_additional_cupti_utils_cuda_deps tf_additional_device_tracer_srcs = _tf_additional_device_tracer_srcs tf_additional_env_hdrs = _tf_additional_env_hdrs tf_additional_lib_deps = _tf_additional_lib_deps tf_additional_lib_hdrs = _tf_additional_lib_hdrs tf_additional_rpc_deps = _tf_additional_rpc_deps tf_additional_tensor_coding_deps = _tf_additional_tensor_coding_deps tf_additional_test_deps = _tf_additional_test_deps tf_additional_test_srcs = _tf_additional_test_srcs tf_fingerprint_deps = _tf_fingerprint_deps tf_google_mobile_srcs_no_runtime = _tf_google_mobile_srcs_no_runtime tf_google_mobile_srcs_only_runtime = _tf_google_mobile_srcs_only_runtime tf_jspb_proto_library = _tf_jspb_proto_library tf_kernel_tests_linkstatic = _tf_kernel_tests_linkstatic tf_lib_proto_parsing_deps = _tf_lib_proto_parsing_deps tf_logging_deps = _tf_logging_deps tf_platform_alias = _tf_platform_alias tf_platform_deps = _tf_platform_deps tf_portable_proto_lib = _tf_portable_proto_lib tf_portable_deps_no_runtime = _tf_portable_deps_no_runtime tf_proto_library = _tf_proto_library tf_proto_library_cc = _tf_proto_library_cc tf_protobuf_compiler_deps = _tf_protobuf_compiler_deps tf_protobuf_deps = _tf_protobuf_deps tf_protos_all = _tf_protos_all tf_protos_all_impl = _tf_protos_all_impl tf_protos_grappler = _tf_protos_grappler tf_protos_grappler_impl = _tf_protos_grappler_impl tf_protos_profiler_impl = _tf_protos_profiler_impl tf_protos_profiler_service = _tf_protos_profiler_service tf_profiler_client_deps = _tf_profiler_client_deps tf_py_clif_cc = _tf_py_clif_cc tf_pyclif_proto_library = _tf_pyclif_proto_library tf_resource_deps = _tf_resource_deps tf_windows_aware_platform_deps = _tf_windows_aware_platform_deps tf_tpu_dependencies = _tf_tpu_dependencies
51.021978
95
0.855912
02fc36056d37603f7be9820f58470a9641af8aae
19,976
py
Python
pysnmp/DVMRP-STD-MIB-UNI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/DVMRP-STD-MIB-UNI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/DVMRP-STD-MIB-UNI.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module DVMRP-STD-MIB-UNI (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DVMRP-STD-MIB-UNI # Produced by pysmi-0.3.4 at Mon Apr 29 18:40:19 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, SingleValueConstraint, ConstraintsUnion, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueRangeConstraint") InterfaceIndex, InterfaceIndexOrZero = mibBuilder.importSymbols("IF-MIB", "InterfaceIndex", "InterfaceIndexOrZero") SnmpAdminString, = mibBuilder.importSymbols("SNMP-FRAMEWORK-MIB", "SnmpAdminString") NotificationGroup, ObjectGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ObjectGroup", "ModuleCompliance") Integer32, TimeTicks, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, MibIdentifier, Unsigned32, ModuleIdentity, iso, IpAddress, Bits, ObjectIdentity, Gauge32, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "Integer32", "TimeTicks", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "MibIdentifier", "Unsigned32", "ModuleIdentity", "iso", "IpAddress", "Bits", "ObjectIdentity", "Gauge32", "Counter32") TextualConvention, DisplayString, RowStatus = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString", "RowStatus") usdDvmrpExperiment, = mibBuilder.importSymbols("Unisphere-Data-Experiment", "usdDvmrpExperiment") dvmrpStdMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1)) dvmrpStdMIB.setRevisions(('1999-10-19 12:00',)) if mibBuilder.loadTexts: dvmrpStdMIB.setLastUpdated('9910191200Z') if mibBuilder.loadTexts: dvmrpStdMIB.setOrganization('IETF IDMR Working Group.') dvmrpMIBObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1)) dvmrp = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1)) dvmrpScalar = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 1)) dvmrpVersionString = MibScalar((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpVersionString.setStatus('current') dvmrpGenerationId = MibScalar((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpGenerationId.setStatus('current') dvmrpNumRoutes = MibScalar((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 1, 3), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNumRoutes.setStatus('current') dvmrpReachableRoutes = MibScalar((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpReachableRoutes.setStatus('current') dvmrpInterfaceTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2), ) if mibBuilder.loadTexts: dvmrpInterfaceTable.setStatus('current') dvmrpInterfaceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1), ).setIndexNames((0, "DVMRP-STD-MIB-UNI", "dvmrpInterfaceIfIndex")) if mibBuilder.loadTexts: dvmrpInterfaceEntry.setStatus('current') dvmrpInterfaceIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: dvmrpInterfaceIfIndex.setStatus('current') dvmrpInterfaceLocalAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 2), IpAddress()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dvmrpInterfaceLocalAddress.setStatus('current') dvmrpInterfaceMetric = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 31)).clone(1)).setMaxAccess("readcreate") if mibBuilder.loadTexts: dvmrpInterfaceMetric.setStatus('current') dvmrpInterfaceStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 4), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dvmrpInterfaceStatus.setStatus('current') dvmrpInterfaceRcvBadPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpInterfaceRcvBadPkts.setStatus('current') dvmrpInterfaceRcvBadRoutes = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpInterfaceRcvBadRoutes.setStatus('current') dvmrpInterfaceSentRoutes = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpInterfaceSentRoutes.setStatus('current') dvmrpInterfaceInterfaceKey = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 8), SnmpAdminString()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dvmrpInterfaceInterfaceKey.setStatus('current') dvmrpInterfaceInterfaceKeyVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 2, 1, 9), Integer32()).setMaxAccess("readcreate") if mibBuilder.loadTexts: dvmrpInterfaceInterfaceKeyVersion.setStatus('current') dvmrpNeighborTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3), ) if mibBuilder.loadTexts: dvmrpNeighborTable.setStatus('current') dvmrpNeighborEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1), ).setIndexNames((0, "DVMRP-STD-MIB-UNI", "dvmrpNeighborIfIndex"), (0, "DVMRP-STD-MIB-UNI", "dvmrpNeighborAddress")) if mibBuilder.loadTexts: dvmrpNeighborEntry.setStatus('current') dvmrpNeighborIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 1), InterfaceIndex()) if mibBuilder.loadTexts: dvmrpNeighborIfIndex.setStatus('current') dvmrpNeighborAddress = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 2), IpAddress()) if mibBuilder.loadTexts: dvmrpNeighborAddress.setStatus('current') dvmrpNeighborUpTime = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 3), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborUpTime.setStatus('current') dvmrpNeighborExpiryTime = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 4), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborExpiryTime.setStatus('current') dvmrpNeighborGenerationId = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 5), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborGenerationId.setStatus('current') dvmrpNeighborMajorVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborMajorVersion.setStatus('current') dvmrpNeighborMinorVersion = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 7), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborMinorVersion.setStatus('current') dvmrpNeighborCapabilities = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 8), Bits().clone(namedValues=NamedValues(("leaf", 0), ("prune", 1), ("generationID", 2), ("mtrace", 3)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborCapabilities.setStatus('current') dvmrpNeighborRcvRoutes = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 9), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborRcvRoutes.setStatus('current') dvmrpNeighborRcvBadPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 10), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborRcvBadPkts.setStatus('current') dvmrpNeighborRcvBadRoutes = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 11), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborRcvBadRoutes.setStatus('current') dvmrpNeighborState = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 3, 1, 12), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("oneway", 1), ("active", 2), ("ignoring", 3), ("down", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpNeighborState.setStatus('current') dvmrpRouteTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4), ) if mibBuilder.loadTexts: dvmrpRouteTable.setStatus('current') dvmrpRouteEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1), ).setIndexNames((0, "DVMRP-STD-MIB-UNI", "dvmrpRouteSource"), (0, "DVMRP-STD-MIB-UNI", "dvmrpRouteSourceMask")) if mibBuilder.loadTexts: dvmrpRouteEntry.setStatus('current') dvmrpRouteSource = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 1), IpAddress()) if mibBuilder.loadTexts: dvmrpRouteSource.setStatus('current') dvmrpRouteSourceMask = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 2), IpAddress()) if mibBuilder.loadTexts: dvmrpRouteSourceMask.setStatus('current') dvmrpRouteUpstreamNeighbor = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 3), IpAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteUpstreamNeighbor.setStatus('current') dvmrpRouteIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 4), InterfaceIndexOrZero()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteIfIndex.setStatus('current') dvmrpRouteMetric = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 32))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteMetric.setStatus('current') dvmrpRouteExpiryTime = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 6), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteExpiryTime.setStatus('current') dvmrpRouteUpTime = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 4, 1, 7), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteUpTime.setStatus('current') dvmrpRouteNextHopTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5), ) if mibBuilder.loadTexts: dvmrpRouteNextHopTable.setStatus('current') dvmrpRouteNextHopEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5, 1), ).setIndexNames((0, "DVMRP-STD-MIB-UNI", "dvmrpRouteNextHopSource"), (0, "DVMRP-STD-MIB-UNI", "dvmrpRouteNextHopSourceMask"), (0, "DVMRP-STD-MIB-UNI", "dvmrpRouteNextHopIfIndex")) if mibBuilder.loadTexts: dvmrpRouteNextHopEntry.setStatus('current') dvmrpRouteNextHopSource = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5, 1, 1), IpAddress()) if mibBuilder.loadTexts: dvmrpRouteNextHopSource.setStatus('current') dvmrpRouteNextHopSourceMask = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5, 1, 2), IpAddress()) if mibBuilder.loadTexts: dvmrpRouteNextHopSourceMask.setStatus('current') dvmrpRouteNextHopIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5, 1, 3), InterfaceIndex()) if mibBuilder.loadTexts: dvmrpRouteNextHopIfIndex.setStatus('current') dvmrpRouteNextHopType = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 5, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("leaf", 1), ("branch", 2)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpRouteNextHopType.setStatus('current') dvmrpPruneTable = MibTable((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6), ) if mibBuilder.loadTexts: dvmrpPruneTable.setStatus('current') dvmrpPruneEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6, 1), ).setIndexNames((0, "DVMRP-STD-MIB-UNI", "dvmrpPruneGroup"), (0, "DVMRP-STD-MIB-UNI", "dvmrpPruneSource"), (0, "DVMRP-STD-MIB-UNI", "dvmrpPruneSourceMask")) if mibBuilder.loadTexts: dvmrpPruneEntry.setStatus('current') dvmrpPruneGroup = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6, 1, 1), IpAddress()) if mibBuilder.loadTexts: dvmrpPruneGroup.setStatus('current') dvmrpPruneSource = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6, 1, 2), IpAddress()) if mibBuilder.loadTexts: dvmrpPruneSource.setStatus('current') dvmrpPruneSourceMask = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6, 1, 3), IpAddress()) if mibBuilder.loadTexts: dvmrpPruneSourceMask.setStatus('current') dvmrpPruneExpiryTime = MibTableColumn((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 6, 1, 4), TimeTicks()).setMaxAccess("readonly") if mibBuilder.loadTexts: dvmrpPruneExpiryTime.setStatus('current') dvmrpTraps = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 0)) dvmrpNeighborLoss = NotificationType((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 0, 1)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpInterfaceLocalAddress"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborState")) if mibBuilder.loadTexts: dvmrpNeighborLoss.setStatus('current') dvmrpNeighborNotPruning = NotificationType((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 1, 1, 0, 2)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpInterfaceLocalAddress"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborCapabilities")) if mibBuilder.loadTexts: dvmrpNeighborNotPruning.setStatus('current') dvmrpMIBConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2)) dvmrpMIBCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 1)) dvmrpMIBGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2)) dvmrpMIBCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 1, 1)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpGeneralGroup"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceGroup"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborGroup"), ("DVMRP-STD-MIB-UNI", "dvmrpRoutingGroup"), ("DVMRP-STD-MIB-UNI", "dvmrpTreeGroup"), ("DVMRP-STD-MIB-UNI", "dvmrpSecurityGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpMIBCompliance = dvmrpMIBCompliance.setStatus('current') dvmrpGeneralGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 2)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpVersionString"), ("DVMRP-STD-MIB-UNI", "dvmrpGenerationId"), ("DVMRP-STD-MIB-UNI", "dvmrpNumRoutes"), ("DVMRP-STD-MIB-UNI", "dvmrpReachableRoutes")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpGeneralGroup = dvmrpGeneralGroup.setStatus('current') dvmrpInterfaceGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 3)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpInterfaceLocalAddress"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceMetric"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceStatus"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceRcvBadPkts"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceRcvBadRoutes"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceSentRoutes")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpInterfaceGroup = dvmrpInterfaceGroup.setStatus('current') dvmrpNeighborGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 4)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpNeighborUpTime"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborExpiryTime"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborGenerationId"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborMajorVersion"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborMinorVersion"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborCapabilities"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborRcvRoutes"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborRcvBadPkts"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborRcvBadRoutes"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborState")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpNeighborGroup = dvmrpNeighborGroup.setStatus('current') dvmrpRoutingGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 5)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpRouteUpstreamNeighbor"), ("DVMRP-STD-MIB-UNI", "dvmrpRouteIfIndex"), ("DVMRP-STD-MIB-UNI", "dvmrpRouteMetric"), ("DVMRP-STD-MIB-UNI", "dvmrpRouteExpiryTime"), ("DVMRP-STD-MIB-UNI", "dvmrpRouteUpTime"), ("DVMRP-STD-MIB-UNI", "dvmrpRouteNextHopType")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpRoutingGroup = dvmrpRoutingGroup.setStatus('current') dvmrpSecurityGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 6)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpInterfaceInterfaceKey"), ("DVMRP-STD-MIB-UNI", "dvmrpInterfaceInterfaceKeyVersion")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpSecurityGroup = dvmrpSecurityGroup.setStatus('current') dvmrpTreeGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 7)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpPruneExpiryTime")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpTreeGroup = dvmrpTreeGroup.setStatus('current') dvmrpNotificationGroup = NotificationGroup((1, 3, 6, 1, 4, 1, 4874, 3, 2, 1, 1, 2, 2, 8)).setObjects(("DVMRP-STD-MIB-UNI", "dvmrpNeighborLoss"), ("DVMRP-STD-MIB-UNI", "dvmrpNeighborNotPruning")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): dvmrpNotificationGroup = dvmrpNotificationGroup.setStatus('current') mibBuilder.exportSymbols("DVMRP-STD-MIB-UNI", dvmrpInterfaceRcvBadRoutes=dvmrpInterfaceRcvBadRoutes, dvmrpNeighborMinorVersion=dvmrpNeighborMinorVersion, dvmrpNeighborUpTime=dvmrpNeighborUpTime, dvmrpNeighborEntry=dvmrpNeighborEntry, dvmrpReachableRoutes=dvmrpReachableRoutes, dvmrpInterfaceIfIndex=dvmrpInterfaceIfIndex, dvmrpNeighborAddress=dvmrpNeighborAddress, dvmrpPruneGroup=dvmrpPruneGroup, dvmrpPruneExpiryTime=dvmrpPruneExpiryTime, dvmrpMIBCompliances=dvmrpMIBCompliances, dvmrpRouteUpTime=dvmrpRouteUpTime, dvmrpInterfaceInterfaceKey=dvmrpInterfaceInterfaceKey, dvmrp=dvmrp, dvmrpNeighborExpiryTime=dvmrpNeighborExpiryTime, dvmrpNeighborRcvBadRoutes=dvmrpNeighborRcvBadRoutes, dvmrpInterfaceSentRoutes=dvmrpInterfaceSentRoutes, dvmrpRouteSource=dvmrpRouteSource, dvmrpRouteNextHopTable=dvmrpRouteNextHopTable, dvmrpRouteNextHopSourceMask=dvmrpRouteNextHopSourceMask, dvmrpRouteNextHopIfIndex=dvmrpRouteNextHopIfIndex, dvmrpTraps=dvmrpTraps, dvmrpNeighborNotPruning=dvmrpNeighborNotPruning, dvmrpNeighborState=dvmrpNeighborState, dvmrpRouteTable=dvmrpRouteTable, dvmrpNeighborRcvRoutes=dvmrpNeighborRcvRoutes, dvmrpScalar=dvmrpScalar, dvmrpMIBGroups=dvmrpMIBGroups, dvmrpRouteIfIndex=dvmrpRouteIfIndex, dvmrpInterfaceLocalAddress=dvmrpInterfaceLocalAddress, dvmrpNeighborCapabilities=dvmrpNeighborCapabilities, dvmrpRouteNextHopSource=dvmrpRouteNextHopSource, dvmrpRouteNextHopType=dvmrpRouteNextHopType, dvmrpInterfaceRcvBadPkts=dvmrpInterfaceRcvBadPkts, dvmrpRouteSourceMask=dvmrpRouteSourceMask, dvmrpNotificationGroup=dvmrpNotificationGroup, dvmrpInterfaceInterfaceKeyVersion=dvmrpInterfaceInterfaceKeyVersion, dvmrpSecurityGroup=dvmrpSecurityGroup, PYSNMP_MODULE_ID=dvmrpStdMIB, dvmrpRouteEntry=dvmrpRouteEntry, dvmrpNeighborTable=dvmrpNeighborTable, dvmrpRouteUpstreamNeighbor=dvmrpRouteUpstreamNeighbor, dvmrpPruneSource=dvmrpPruneSource, dvmrpGeneralGroup=dvmrpGeneralGroup, dvmrpNeighborRcvBadPkts=dvmrpNeighborRcvBadPkts, dvmrpNeighborLoss=dvmrpNeighborLoss, dvmrpStdMIB=dvmrpStdMIB, dvmrpPruneSourceMask=dvmrpPruneSourceMask, dvmrpRouteExpiryTime=dvmrpRouteExpiryTime, dvmrpNeighborMajorVersion=dvmrpNeighborMajorVersion, dvmrpRouteNextHopEntry=dvmrpRouteNextHopEntry, dvmrpInterfaceMetric=dvmrpInterfaceMetric, dvmrpNeighborGroup=dvmrpNeighborGroup, dvmrpInterfaceEntry=dvmrpInterfaceEntry, dvmrpPruneEntry=dvmrpPruneEntry, dvmrpNeighborIfIndex=dvmrpNeighborIfIndex, dvmrpInterfaceStatus=dvmrpInterfaceStatus, dvmrpPruneTable=dvmrpPruneTable, dvmrpGenerationId=dvmrpGenerationId, dvmrpMIBConformance=dvmrpMIBConformance, dvmrpInterfaceTable=dvmrpInterfaceTable, dvmrpInterfaceGroup=dvmrpInterfaceGroup, dvmrpRouteMetric=dvmrpRouteMetric, dvmrpRoutingGroup=dvmrpRoutingGroup, dvmrpVersionString=dvmrpVersionString, dvmrpMIBCompliance=dvmrpMIBCompliance, dvmrpNeighborGenerationId=dvmrpNeighborGenerationId, dvmrpNumRoutes=dvmrpNumRoutes, dvmrpTreeGroup=dvmrpTreeGroup, dvmrpMIBObjects=dvmrpMIBObjects)
126.43038
2,921
0.743793
a16d5b49250da7ede6b55b1d8540b546bc13b27d
1,056
py
Python
app/urls.py
hamzabell/Realtor
8787f1e2cf05fb165f4cb8e8ae95cdcba1aaf7a0
[ "MIT" ]
null
null
null
app/urls.py
hamzabell/Realtor
8787f1e2cf05fb165f4cb8e8ae95cdcba1aaf7a0
[ "MIT" ]
null
null
null
app/urls.py
hamzabell/Realtor
8787f1e2cf05fb165f4cb8e8ae95cdcba1aaf7a0
[ "MIT" ]
null
null
null
"""app URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls.conf import include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('', include('pages.urls')), path('listings/', include('listings.urls')), path('admin/', admin.site.urls), path('accounts/', include('accounts.urls')) ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
37.714286
77
0.717803
9330254eeace87c12a8d2a5f8e6d8b009be2a421
1,332
py
Python
pennylane/numpy/__init__.py
theRoughCode/pennylane
317f82ef00c752beeef7d2412b88119a753467b4
[ "Apache-2.0" ]
1
2020-10-28T11:08:37.000Z
2020-10-28T11:08:37.000Z
pennylane/numpy/__init__.py
markhop20/pennylane
8792f0f88178f70a04d6f7afbbb9dd90d2e758b3
[ "Apache-2.0" ]
1
2020-10-04T22:45:45.000Z
2020-10-04T22:45:45.000Z
pennylane/numpy/__init__.py
markhop20/pennylane
8792f0f88178f70a04d6f7afbbb9dd90d2e758b3
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This package provides a wrapped version of autograd.numpy, such that it works with the PennyLane :class:`~.tensor` class. """ # pylint: disable=wrong-import-position,wildcard-import,undefined-variable from autograd import numpy as _np from autograd.numpy import * from .wrapper import wrap_arrays, extract_tensors wrap_arrays(_np.__dict__, globals()) # Delete the unwrapped fft, linalg, random modules # so that we can re-import our wrapped versions. del fft del linalg del random from . import fft from . import linalg from . import random from .tensor import tensor, NonDifferentiableError __doc__ = "NumPy with automatic differentiation support, provided by Autograd and PennyLane."
34.153846
94
0.758258
34c2149af459ddcc1b2d51293b9d821028a813eb
26,862
py
Python
nova/tests/virt/libvirt/test_imagebackend.py
bopopescu/nova-35
c32c01e08dccad921b4af6fc03d971d6e74c990f
[ "Apache-2.0" ]
null
null
null
nova/tests/virt/libvirt/test_imagebackend.py
bopopescu/nova-35
c32c01e08dccad921b4af6fc03d971d6e74c990f
[ "Apache-2.0" ]
null
null
null
nova/tests/virt/libvirt/test_imagebackend.py
bopopescu/nova-35
c32c01e08dccad921b4af6fc03d971d6e74c990f
[ "Apache-2.0" ]
1
2020-07-24T09:13:22.000Z
2020-07-24T09:13:22.000Z
# Copyright 2012 Grid Dynamics # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import fixtures from oslo.config import cfg import inspect from nova import exception from nova.openstack.common import units from nova.openstack.common import uuidutils from nova import test from nova.tests import fake_processutils from nova.tests.virt.libvirt import fake_libvirt_utils from nova.virt.libvirt import imagebackend CONF = cfg.CONF class _ImageTestCase(object): INSTANCES_PATH = '/instances_path' def mock_create_image(self, image): def create_image(fn, base, size, *args, **kwargs): fn(target=base, *args, **kwargs) image.create_image = create_image def setUp(self): super(_ImageTestCase, self).setUp() self.flags(disable_process_locking=True, instances_path=self.INSTANCES_PATH) self.INSTANCE = {'name': 'instance', 'uuid': uuidutils.generate_uuid()} self.NAME = 'fake.vm' self.TEMPLATE = 'template' self.OLD_STYLE_INSTANCE_PATH = \ fake_libvirt_utils.get_instance_path(self.INSTANCE, forceold=True) self.PATH = os.path.join( fake_libvirt_utils.get_instance_path(self.INSTANCE), self.NAME) # TODO(mikal): rename template_dir to base_dir and template_path # to cached_image_path. This will be less confusing. self.TEMPLATE_DIR = os.path.join(CONF.instances_path, '_base') self.TEMPLATE_PATH = os.path.join(self.TEMPLATE_DIR, 'template') self.useFixture(fixtures.MonkeyPatch( 'nova.virt.libvirt.imagebackend.libvirt_utils', fake_libvirt_utils)) def test_cache(self): self.mox.StubOutWithMock(os.path, 'exists') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_DIR).AndReturn(False) os.path.exists(self.PATH).AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(imagebackend.fileutils, 'ensure_tree') imagebackend.fileutils.ensure_tree(self.TEMPLATE_DIR) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_cache_image_exists(self): self.mox.StubOutWithMock(os.path, 'exists') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_DIR).AndReturn(True) os.path.exists(self.PATH).AndReturn(True) os.path.exists(self.TEMPLATE_PATH).AndReturn(True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.cache(None, self.TEMPLATE) self.mox.VerifyAll() def test_cache_base_dir_exists(self): self.mox.StubOutWithMock(os.path, 'exists') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_DIR).AndReturn(True) os.path.exists(self.PATH).AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(imagebackend.fileutils, 'ensure_tree') self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_cache_template_exists(self): self.mox.StubOutWithMock(os.path, 'exists') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_DIR).AndReturn(True) os.path.exists(self.PATH).AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_prealloc_image(self): CONF.set_override('preallocate_images', 'space') fake_processutils.fake_execute_clear_log() fake_processutils.stub_out_processutils_execute(self.stubs) image = self.image_class(self.INSTANCE, self.NAME) def fake_fetch(target, *args, **kwargs): return self.stubs.Set(os.path, 'exists', lambda _: True) self.stubs.Set(os, 'access', lambda p, w: True) # Call twice to verify testing fallocate is only called once. image.cache(fake_fetch, self.TEMPLATE_PATH, self.SIZE) image.cache(fake_fetch, self.TEMPLATE_PATH, self.SIZE) self.assertEqual(fake_processutils.fake_execute_get_log(), ['fallocate -n -l 1 %s.fallocate_test' % self.PATH, 'fallocate -n -l %s %s' % (self.SIZE, self.PATH), 'fallocate -n -l %s %s' % (self.SIZE, self.PATH)]) def test_prealloc_image_without_write_access(self): CONF.set_override('preallocate_images', 'space') fake_processutils.fake_execute_clear_log() fake_processutils.stub_out_processutils_execute(self.stubs) image = self.image_class(self.INSTANCE, self.NAME) def fake_fetch(target, *args, **kwargs): return self.stubs.Set(image, 'check_image_exists', lambda: True) self.stubs.Set(image, '_can_fallocate', lambda: True) self.stubs.Set(os.path, 'exists', lambda _: True) self.stubs.Set(os, 'access', lambda p, w: False) # Testing fallocate is only called when user has write access. image.cache(fake_fetch, self.TEMPLATE_PATH, self.SIZE) self.assertEqual(fake_processutils.fake_execute_get_log(), []) class RawTestCase(_ImageTestCase, test.NoDBTestCase): SIZE = 1024 def setUp(self): self.image_class = imagebackend.Raw super(RawTestCase, self).setUp() self.stubs.Set(imagebackend.Raw, 'correct_format', lambda _: None) def prepare_mocks(self): fn = self.mox.CreateMockAnything() self.mox.StubOutWithMock(imagebackend.utils.synchronized, '__call__') self.mox.StubOutWithMock(imagebackend.libvirt_utils, 'copy_image') self.mox.StubOutWithMock(imagebackend.disk, 'extend') return fn def test_create_image(self): fn = self.prepare_mocks() fn(target=self.TEMPLATE_PATH, max_size=None, image_id=None) imagebackend.libvirt_utils.copy_image(self.TEMPLATE_PATH, self.PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, None, image_id=None) self.mox.VerifyAll() def test_create_image_generated(self): fn = self.prepare_mocks() fn(target=self.PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, None) self.mox.VerifyAll() def test_create_image_extend(self): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH, image_id=None) imagebackend.libvirt_utils.copy_image(self.TEMPLATE_PATH, self.PATH) imagebackend.disk.extend(self.PATH, self.SIZE, use_cow=False) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE, image_id=None) self.mox.VerifyAll() def test_correct_format(self): info = self.mox.CreateMockAnything() self.stubs.UnsetAll() self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(imagebackend.images, 'qemu_img_info') os.path.exists(self.PATH).AndReturn(True) info = self.mox.CreateMockAnything() info.file_format = 'foo' imagebackend.images.qemu_img_info(self.PATH).AndReturn(info) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME, path=self.PATH) self.assertEqual(image.driver_format, 'foo') self.mox.VerifyAll() class Qcow2TestCase(_ImageTestCase, test.NoDBTestCase): SIZE = units.Gi def setUp(self): self.image_class = imagebackend.Qcow2 super(Qcow2TestCase, self).setUp() self.QCOW2_BASE = (self.TEMPLATE_PATH + '_%d' % (self.SIZE / units.Gi)) def prepare_mocks(self): fn = self.mox.CreateMockAnything() self.mox.StubOutWithMock(imagebackend.utils.synchronized, '__call__') self.mox.StubOutWithMock(imagebackend.libvirt_utils, 'create_cow_image') self.mox.StubOutWithMock(imagebackend.libvirt_utils, 'copy_image') self.mox.StubOutWithMock(imagebackend.disk, 'extend') return fn def test_create_image(self): fn = self.prepare_mocks() fn(max_size=None, target=self.TEMPLATE_PATH) imagebackend.libvirt_utils.create_cow_image(self.TEMPLATE_PATH, self.PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, None) self.mox.VerifyAll() def test_create_image_with_size(self): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(os.path, 'exists') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_PATH).AndReturn(False) os.path.exists(self.PATH).AndReturn(False) os.path.exists(self.PATH).AndReturn(False) imagebackend.libvirt_utils.create_cow_image(self.TEMPLATE_PATH, self.PATH) imagebackend.disk.extend(self.PATH, self.SIZE, use_cow=True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE) self.mox.VerifyAll() def test_create_image_too_small(self): fn = self.prepare_mocks() self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(imagebackend.disk, 'get_disk_size') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_PATH).AndReturn(True) imagebackend.disk.get_disk_size(self.TEMPLATE_PATH ).AndReturn(self.SIZE) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.assertRaises(exception.FlavorDiskTooSmall, image.create_image, fn, self.TEMPLATE_PATH, 1) self.mox.VerifyAll() def test_generate_resized_backing_files(self): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(imagebackend.libvirt_utils, 'get_disk_backing_file') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_PATH).AndReturn(False) os.path.exists(self.PATH).AndReturn(True) imagebackend.libvirt_utils.get_disk_backing_file(self.PATH)\ .AndReturn(self.QCOW2_BASE) os.path.exists(self.QCOW2_BASE).AndReturn(False) imagebackend.libvirt_utils.copy_image(self.TEMPLATE_PATH, self.QCOW2_BASE) imagebackend.disk.extend(self.QCOW2_BASE, self.SIZE, use_cow=True) os.path.exists(self.PATH).AndReturn(True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE) self.mox.VerifyAll() def test_qcow2_exists_and_has_no_backing_file(self): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(imagebackend.libvirt_utils, 'get_disk_backing_file') if self.OLD_STYLE_INSTANCE_PATH: os.path.exists(self.OLD_STYLE_INSTANCE_PATH).AndReturn(False) os.path.exists(self.TEMPLATE_PATH).AndReturn(False) os.path.exists(self.PATH).AndReturn(True) imagebackend.libvirt_utils.get_disk_backing_file(self.PATH)\ .AndReturn(None) os.path.exists(self.PATH).AndReturn(True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE) self.mox.VerifyAll() class LvmTestCase(_ImageTestCase, test.NoDBTestCase): VG = 'FakeVG' TEMPLATE_SIZE = 512 SIZE = 1024 def setUp(self): self.image_class = imagebackend.Lvm super(LvmTestCase, self).setUp() self.flags(images_volume_group=self.VG, group='libvirt') self.LV = '%s_%s' % (self.INSTANCE['name'], self.NAME) self.OLD_STYLE_INSTANCE_PATH = None self.PATH = os.path.join('/dev', self.VG, self.LV) self.disk = imagebackend.disk self.utils = imagebackend.utils self.libvirt_utils = imagebackend.libvirt_utils def prepare_mocks(self): fn = self.mox.CreateMockAnything() self.mox.StubOutWithMock(self.disk, 'resize2fs') self.mox.StubOutWithMock(self.libvirt_utils, 'create_lvm_image') self.mox.StubOutWithMock(self.disk, 'get_disk_size') self.mox.StubOutWithMock(self.utils, 'execute') return fn def _create_image(self, sparse): fn = self.prepare_mocks() fn(max_size=None, target=self.TEMPLATE_PATH) self.libvirt_utils.create_lvm_image(self.VG, self.LV, self.TEMPLATE_SIZE, sparse=sparse) self.disk.get_disk_size(self.TEMPLATE_PATH ).AndReturn(self.TEMPLATE_SIZE) cmd = ('qemu-img', 'convert', '-O', 'raw', self.TEMPLATE_PATH, self.PATH) self.utils.execute(*cmd, run_as_root=True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, None) self.mox.VerifyAll() def _create_image_generated(self, sparse): fn = self.prepare_mocks() self.libvirt_utils.create_lvm_image(self.VG, self.LV, self.SIZE, sparse=sparse) fn(target=self.PATH, ephemeral_size=None) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE, ephemeral_size=None) self.mox.VerifyAll() def _create_image_resize(self, sparse): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH) self.libvirt_utils.create_lvm_image(self.VG, self.LV, self.SIZE, sparse=sparse) self.disk.get_disk_size(self.TEMPLATE_PATH ).AndReturn(self.TEMPLATE_SIZE) cmd = ('qemu-img', 'convert', '-O', 'raw', self.TEMPLATE_PATH, self.PATH) self.utils.execute(*cmd, run_as_root=True) self.disk.resize2fs(self.PATH, run_as_root=True) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, self.SIZE) self.mox.VerifyAll() def test_create_image(self): self._create_image(False) def test_create_image_sparsed(self): self.flags(sparse_logical_volumes=True, group='libvirt') self._create_image(True) def test_create_image_generated(self): self._create_image_generated(False) def test_create_image_generated_sparsed(self): self.flags(sparse_logical_volumes=True, group='libvirt') self._create_image_generated(True) def test_create_image_resize(self): self._create_image_resize(False) def test_create_image_resize_sparsed(self): self.flags(sparse_logical_volumes=True, group='libvirt') self._create_image_resize(True) def test_create_image_negative(self): fn = self.prepare_mocks() fn(max_size=self.SIZE, target=self.TEMPLATE_PATH) self.libvirt_utils.create_lvm_image(self.VG, self.LV, self.SIZE, sparse=False ).AndRaise(RuntimeError()) self.disk.get_disk_size(self.TEMPLATE_PATH ).AndReturn(self.TEMPLATE_SIZE) self.mox.StubOutWithMock(self.libvirt_utils, 'remove_logical_volumes') self.libvirt_utils.remove_logical_volumes(self.PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.assertRaises(RuntimeError, image.create_image, fn, self.TEMPLATE_PATH, self.SIZE) self.mox.VerifyAll() def test_create_image_generated_negative(self): fn = self.prepare_mocks() fn(target=self.PATH, ephemeral_size=None).AndRaise(RuntimeError()) self.libvirt_utils.create_lvm_image(self.VG, self.LV, self.SIZE, sparse=False) self.mox.StubOutWithMock(self.libvirt_utils, 'remove_logical_volumes') self.libvirt_utils.remove_logical_volumes(self.PATH) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) self.assertRaises(RuntimeError, image.create_image, fn, self.TEMPLATE_PATH, self.SIZE, ephemeral_size=None) self.mox.VerifyAll() def test_prealloc_image(self): CONF.set_override('preallocate_images', 'space') fake_processutils.fake_execute_clear_log() fake_processutils.stub_out_processutils_execute(self.stubs) image = self.image_class(self.INSTANCE, self.NAME) def fake_fetch(target, *args, **kwargs): return self.stubs.Set(os.path, 'exists', lambda _: True) self.stubs.Set(image, 'check_image_exists', lambda: True) image.cache(fake_fetch, self.TEMPLATE_PATH, self.SIZE) self.assertEqual(fake_processutils.fake_execute_get_log(), []) class RbdTestCase(_ImageTestCase, test.NoDBTestCase): POOL = "FakePool" USER = "FakeUser" CONF = "FakeConf" SIZE = 1024 def setUp(self): self.image_class = imagebackend.Rbd super(RbdTestCase, self).setUp() self.flags(images_rbd_pool=self.POOL, rbd_user=self.USER, images_rbd_ceph_conf=self.CONF, group='libvirt') self.libvirt_utils = imagebackend.libvirt_utils self.utils = imagebackend.utils self.rbd = self.mox.CreateMockAnything() self.rados = self.mox.CreateMockAnything() def prepare_mocks(self): fn = self.mox.CreateMockAnything() self.mox.StubOutWithMock(imagebackend, 'rbd') self.mox.StubOutWithMock(imagebackend, 'rados') return fn def test_cache(self): image = self.image_class(self.INSTANCE, self.NAME) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(image, 'check_image_exists') os.path.exists(self.TEMPLATE_DIR).AndReturn(False) image.check_image_exists().AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(imagebackend.fileutils, 'ensure_tree') imagebackend.fileutils.ensure_tree(self.TEMPLATE_DIR) self.mox.ReplayAll() self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_cache_base_dir_exists(self): image = self.image_class(self.INSTANCE, self.NAME) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(image, 'check_image_exists') os.path.exists(self.TEMPLATE_DIR).AndReturn(True) image.check_image_exists().AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.StubOutWithMock(imagebackend.fileutils, 'ensure_tree') self.mox.ReplayAll() self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_cache_image_exists(self): image = self.image_class(self.INSTANCE, self.NAME) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(image, 'check_image_exists') os.path.exists(self.TEMPLATE_DIR).AndReturn(True) image.check_image_exists().AndReturn(True) os.path.exists(self.TEMPLATE_PATH).AndReturn(True) self.mox.ReplayAll() image.cache(None, self.TEMPLATE) self.mox.VerifyAll() def test_cache_template_exists(self): image = self.image_class(self.INSTANCE, self.NAME) self.mox.StubOutWithMock(os.path, 'exists') self.mox.StubOutWithMock(image, 'check_image_exists') os.path.exists(self.TEMPLATE_DIR).AndReturn(True) image.check_image_exists().AndReturn(False) fn = self.mox.CreateMockAnything() fn(target=self.TEMPLATE_PATH) self.mox.ReplayAll() self.mock_create_image(image) image.cache(fn, self.TEMPLATE) self.mox.VerifyAll() def test_create_image(self): fn = self.prepare_mocks() fn(max_size=None, rbd=self.rbd, target=self.TEMPLATE_PATH) self.rbd.RBD_FEATURE_LAYERING = 1 self.mox.StubOutWithMock(imagebackend.disk, 'get_disk_size') imagebackend.disk.get_disk_size(self.TEMPLATE_PATH ).AndReturn(self.SIZE) rbd_name = "%s/%s" % (self.INSTANCE['name'], self.NAME) cmd = ('--pool', self.POOL, self.TEMPLATE_PATH, rbd_name, '--new-format', '--id', self.USER, '--conf', self.CONF) self.libvirt_utils.import_rbd_image(self.TEMPLATE_PATH, *cmd) self.mox.ReplayAll() image = self.image_class(self.INSTANCE, self.NAME) image.create_image(fn, self.TEMPLATE_PATH, None, rbd=self.rbd) self.mox.VerifyAll() def test_prealloc_image(self): CONF.set_override('preallocate_images', 'space') fake_processutils.fake_execute_clear_log() fake_processutils.stub_out_processutils_execute(self.stubs) self.mox.StubOutWithMock(imagebackend, 'rbd') self.mox.StubOutWithMock(imagebackend, 'rados') image = self.image_class(self.INSTANCE, self.NAME) def fake_fetch(target, *args, **kwargs): return def fake_resize(rbd_name, size): return self.stubs.Set(os.path, 'exists', lambda _: True) self.stubs.Set(image, 'check_image_exists', lambda: True) image.cache(fake_fetch, self.TEMPLATE_PATH, self.SIZE) self.assertEqual(fake_processutils.fake_execute_get_log(), []) def test_parent_compatible(self): self.assertEqual(inspect.getargspec(imagebackend.Image.libvirt_info), inspect.getargspec(self.image_class.libvirt_info)) def test_image_path(self): conf = "FakeConf" pool = "FakePool" user = "FakeUser" self.flags(images_rbd_pool=pool, group='libvirt') self.flags(images_rbd_ceph_conf=conf, group='libvirt') self.flags(rbd_user=user, group='libvirt') image = self.image_class(self.INSTANCE, self.NAME) rbd_path = "rbd:%s/%s:id=%s:conf=%s" % (pool, image.rbd_name, user, conf) self.assertEqual(image.path, rbd_path) class BackendTestCase(test.NoDBTestCase): INSTANCE = {'name': 'fake-instance', 'uuid': uuidutils.generate_uuid()} NAME = 'fake-name.suffix' def get_image(self, use_cow, image_type): return imagebackend.Backend(use_cow).image(self.INSTANCE, self.NAME, image_type) def _test_image(self, image_type, image_not_cow, image_cow): image1 = self.get_image(False, image_type) image2 = self.get_image(True, image_type) def assertIsInstance(instance, class_object): failure = ('Expected %s,' + ' but got %s.') % (class_object.__name__, instance.__class__.__name__) self.assertIsInstance(instance, class_object, msg=failure) assertIsInstance(image1, image_not_cow) assertIsInstance(image2, image_cow) def test_image_raw(self): self._test_image('raw', imagebackend.Raw, imagebackend.Raw) def test_image_qcow2(self): self._test_image('qcow2', imagebackend.Qcow2, imagebackend.Qcow2) def test_image_lvm(self): self.flags(images_volume_group='FakeVG', group='libvirt') self._test_image('lvm', imagebackend.Lvm, imagebackend.Lvm) def test_image_rbd(self): conf = "FakeConf" pool = "FakePool" self.flags(images_rbd_pool=pool, group='libvirt') self.flags(images_rbd_ceph_conf=conf, group='libvirt') self._test_image('rbd', imagebackend.Rbd, imagebackend.Rbd) def test_image_default(self): self._test_image('default', imagebackend.Raw, imagebackend.Qcow2)
38.210526
78
0.643772
ef22e69c104ba4b41e4dd4ccd58db94f69792a2b
1,310
py
Python
setup.py
Robbybp/pymumps
698339dc249f4014f0688d521f316a3da6165e10
[ "BSD-3-Clause" ]
null
null
null
setup.py
Robbybp/pymumps
698339dc249f4014f0688d521f316a3da6165e10
[ "BSD-3-Clause" ]
null
null
null
setup.py
Robbybp/pymumps
698339dc249f4014f0688d521f316a3da6165e10
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python from setuptools import setup, Extension try: import Cython except ImportError: raise ImportError(''' Cython is required for building this package. Please install using pip install cython or upgrade to a recent PIP release. ''') with open('README.md') as f: long_description = f.read() setup( name='PyMUMPS', version='0.3.2', description='Python bindings for MUMPS, a parallel sparse direct solver', long_description=long_description, long_description_content_type='text/markdown', author='Bradley M. Froehle', author_email='brad.froehle@gmail.com', maintainer='Stephan Rave', maintainer_email='stephan.rave@uni-muenster.de', license='BSD', url='http://github.com/pymumps/pymumps', packages=['mumps'], ext_modules=[ Extension( 'mumps._dmumps', sources=['mumps/_dmumps.pyx'], libraries=['dmumps'], ), ], install_requires=['mpi4py'], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Mathematics', ], )
25.686275
77
0.637405
ce88e8913f294ec0b92e1900509b315ec4d5af23
3,299
py
Python
client/verta/tests/test_versioning/test_configuration.py
fool-sec-review/modeldb
44e7f3c1af6768c4c23a2d134f9a322fcf0320b5
[ "Apache-2.0" ]
835
2017-02-08T20:14:24.000Z
2020-03-12T17:37:49.000Z
client/verta/tests/test_versioning/test_configuration.py
fool-sec-review/modeldb
44e7f3c1af6768c4c23a2d134f9a322fcf0320b5
[ "Apache-2.0" ]
651
2019-04-18T12:55:07.000Z
2022-03-31T23:45:09.000Z
client/verta/tests/test_versioning/test_configuration.py
fool-sec-review/modeldb
44e7f3c1af6768c4c23a2d134f9a322fcf0320b5
[ "Apache-2.0" ]
170
2017-02-13T14:49:22.000Z
2020-02-19T17:59:12.000Z
import pytest import verta.configuration class TestInternalFunctions: def test_value_to_msg(self): fn = verta.configuration.Hyperparameters._value_to_msg assert fn(0) assert fn(0.3) assert fn("coconut") def test_hyperparameter_to_msg(self): fn = verta.configuration.Hyperparameters._hyperparameter_to_msg assert fn("banana", 0) assert fn("banana", 0.3) assert fn("banana", "foo") def test_hyperparamater_range_to_msg(self): fn = verta.configuration.Hyperparameters._hyperparameter_range_to_msg assert fn("banana", (0, 12, 3)) with pytest.raises(TypeError): fn("banana", 0) with pytest.raises(ValueError): fn("banana", (0, 12)) def test_hyperparameter_set_to_msg(self): fn = verta.configuration.Hyperparameters._hyperparameter_set_to_msg assert fn("banana", list(range(0, 12, 3))) with pytest.raises(TypeError): fn("banana", 0) class TestHyperparameters: HYPERPARAMETERS = {'banana': "foo"} HYPERPARAMETER_RANGES = {'coconut': (0, 12, 3)} HYPERPARAMETER_SETS = {'durian': list(range(0, 12, 3))} def test_hyperparameters(self): config = verta.configuration.Hyperparameters( hyperparameters=self.HYPERPARAMETERS, ) name, value = list(self.HYPERPARAMETERS.items())[0] hyperparam_msg = config._msg.hyperparameters[0] assert hyperparam_msg.name == name value_msg = hyperparam_msg.value assert getattr(value_msg, value_msg.WhichOneof('value')) == value def test_hyperparamater_ranges(self): config = verta.configuration.Hyperparameters( hyperparameter_ranges=self.HYPERPARAMETER_RANGES, ) name, (begin, end, step) = list(self.HYPERPARAMETER_RANGES.items())[0] hyperparam_msg = config._msg.hyperparameter_set[0] assert hyperparam_msg.name == name begin_msg = hyperparam_msg.continuous.interval_begin assert getattr(begin_msg, begin_msg.WhichOneof('value')) == begin end_msg = hyperparam_msg.continuous.interval_end assert getattr(end_msg, end_msg.WhichOneof('value')) == end step_msg = hyperparam_msg.continuous.interval_step assert getattr(step_msg, step_msg.WhichOneof('value')) == step def test_hyperparameter_sets(self): config = verta.configuration.Hyperparameters( hyperparameter_sets=self.HYPERPARAMETER_SETS, ) name, sequence = list(self.HYPERPARAMETER_SETS.items())[0] hyperparam_msg = config._msg.hyperparameter_set[0] assert hyperparam_msg.name == name for value_msg, value in zip(hyperparam_msg.discrete.values, sequence): assert getattr(value_msg, value_msg.WhichOneof('value')) == value def test_repr(self): """Tests that __repr__() executes without error""" config = verta.configuration.Hyperparameters( hyperparameters={ 'a': 1, 'b': 1, }, hyperparameter_ranges={ 'c': (1, 5, 1), 'd': (1, 5, 1), }, hyperparameter_sets={ 'e': [1, 2], 'f': [1, 2], }, ) assert config.__repr__()
34.010309
78
0.636557
1898b714c19856abb8d724f8ea87b54f43567a81
339
py
Python
Algorithms/Easy/561. Array Partition I/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
Algorithms/Easy/561. Array Partition I/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
Algorithms/Easy/561. Array Partition I/answer.py
KenWoo/Algorithm
4012a2f0a099a502df1e5df2e39faa75fe6463e8
[ "Apache-2.0" ]
null
null
null
from typing import List class Solution: def arrayPairSum(self, nums: List[int]) -> int: nums.sort() n = len(nums) sum = 0 for i in range(0, n, 2): sum += nums[i] return sum if __name__ == "__main__": s = Solution() result = s.arrayPairSum([1, 4, 3, 2]) print(result)
18.833333
51
0.525074
f17b6580026608b3a72c2a42c1266585b81fd7d1
14,044
py
Python
main.py
abhijit-buet/Learning-to-Detect-Pedestrian-Flow-inTraffic-Intersections-from-Synthetic-Data
c30334f29749dde01f998c7b648c9a8b3aa38650
[ "MIT" ]
1
2020-11-26T17:01:24.000Z
2020-11-26T17:01:24.000Z
main.py
abhijit-buet/Learning-to-Detect-Pedestrian-Flow-inTraffic-Intersections-from-Synthetic-Data
c30334f29749dde01f998c7b648c9a8b3aa38650
[ "MIT" ]
null
null
null
main.py
abhijit-buet/Learning-to-Detect-Pedestrian-Flow-inTraffic-Intersections-from-Synthetic-Data
c30334f29749dde01f998c7b648c9a8b3aa38650
[ "MIT" ]
null
null
null
from __future__ import division import argparse import os import shutil import time import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn from torch.autograd import Variable import torch.distributed as dist import torch.optim import torch.utils.data import torch.utils.data.distributed import alexnet as modifiednet import vgg16 as modified_vgg16net # set the seed torch.manual_seed(1) torch.cuda.manual_seed(1) import sys import gc cwd = os.getcwd() sys.path.append(cwd + '/../') import datasets as datasets import datasets.transforms as transforms parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--arch', '-a', metavar='ARCH', default='vgg16', help='model architecture (default: alexnet)') parser.add_argument('--data', metavar='DATA_PATH', default='./home/yuxiang/FiberTrack/YX_data/generated_ellipse/Lan/image/', help='path to imagenet data (default: ./home/yuxiang/FiberTrack/YX_data/generated_ellipse/Lan/image/)') parser.add_argument('-j', '--workers', default=1, type=int, metavar='N', help='number of data loading workers (default: 1)') parser.add_argument('--epochs', default=50, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 10)') parser.add_argument('--lr', '--learning-rate', default=0.0001, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--momentum', default=0.90, type=float, metavar='M', help='momentum') parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float, metavar='W', help='weight decay (default: 5e-4)') parser.add_argument('--print-freq', '-p', default=100, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') # need to modify when it is not parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', default=True, help='use pre-trained model') parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend') use_gpu = torch.cuda.is_available() def main(): global args args = parser.parse_args() args.distributed = args.world_size > 1 # create model if args.arch == 'alexnet': model = modifiednet.main(args.arch) if args.arch == 'vgg16': model = modified_vgg16net.main(args.arch) if use_gpu: model.cuda() # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss() # loss for classification # smooth_l1 = nn.SmoothL1Loss() # loss for regression # mse = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # optionally resume from a pretrained model(checkpoint) if args.resume: # if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) # args.start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) cudnn.benchmark = True # load train data data_transforms = { 'train': transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # transforms.RandomSizedCrop(input_size), ]), 'val': transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # transforms.RandomSizedCrop(input_size), ]) } # need to define num_class = 3 train_dataset = datasets.customData(img_path='', txt_path='/home/hongkai/PyTorch_Tutorial/pytorch_MultiTask-two-branches/data/train.txt', data_transforms=data_transforms, dataset='train') val_dataset = datasets.customData(img_path='', txt_path='/home/hongkai/PyTorch_Tutorial/pytorch_MultiTask-two-branches/data/val.txt', data_transforms=data_transforms, dataset='val') # wrap your data and label into Tensor train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=True, num_workers=args.workers, pin_memory=True) # train for epoch in range(args.start_epoch, args.epochs): adjust_learning_rate(optimizer, epoch) # train for one epoch train(train_loader, model, criterion, optimizer, epoch) # evaluate on validation set prec1 = validate(val_loader, model, criterion) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, False, args.arch + '-epoch-' + str(args.epochs)+'-checkpoint.pth.tar') def main_testing(): global args args = parser.parse_args() # create model model = modifiednet.main(args.arch) if use_gpu: model.cuda() checkpoint = torch.load('./AlexNet-epoch50-checkpoint.pth.tar') model.load_state_dict(checkpoint['state_dict']) criterion = nn.CrossEntropyLoss() # loss for classification # load train data data_transforms = { 'train': transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # transforms.RandomSizedCrop(input_size), ]), 'val': transforms.Compose([ # transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # transforms.RandomSizedCrop(input_size), ]) } # need to define num_class = 3 val_dataset = datasets.customData(img_path='', txt_path='/home/hongkai/PyTorch_Tutorial/pytorch_MultiTask-two-branches/data/val.txt', data_transforms=data_transforms, dataset='val') val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=True, num_workers=args.workers, pin_memory=True) # evaluate on validation set prec1 = validate(val_loader, model, criterion) def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter() data_time = AverageMeter() # loss1_am = AverageMeter() # loss2_am = AverageMeter() loss_am = AverageMeter() # loss2_angle_am = AverageMeter() # loss2_point_am = AverageMeter() # switch to train mode model.train() end = time.time() accu_no_train = 0 for i, (input_left, input_right, target_cls) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if use_gpu: # transfer to GPU input_left_var = Variable(input_left.cuda()) input_right_var = Variable(input_right.cuda()) target_cls = Variable(target_cls.cuda()) else: input_left_var = Variable(input_left) input_right_var = Variable(input_right) target_cls = Variable(target_cls) # compute output output = model(input_left_var, input_right_var) loss = criterion(output, target_cls.data) # measure accuracy and record loss pred = output.max(1)[1] accu_no_train += pred.eq(target_cls.view_as(pred)).sum().item() # compute the accuracy of classification accu_no_train_per = '{:.2%}'.format(accu_no_train / (i + 1)) loss_am.update(loss.item(), input_left.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Accuracy: {3}\t' 'Loss: {loss.val:.4f}'.format(epoch, i, len(train_loader), accu_no_train_per, loss=loss_am)) gc.collect() def validate(val_loader, model, criterion): batch_time = AverageMeter() data_time = AverageMeter() loss_am = AverageMeter() class_num = 3 classes = ('A', 'B', 'C') class_correct = list(0. for i in range(class_num)) class_total = list(0. for i in range(class_num)) # switch to evaluate mode model.eval() end = time.time() accu_no_val = 0 # predict_v = torch.from_numpy([]) for i, (input_left, input_right, target_cls) in enumerate(val_loader): # measure data loading time data_time.update(time.time() - end) # target = target.cuda(async=True) if use_gpu: input_left_var = Variable(input_left.cuda()) input_right_var = Variable(input_right.cuda()) target_cls = Variable(target_cls.cuda()) else: input_left_var = Variable(input_left) input_right_var = Variable(input_right) target_cls = Variable(target_cls) output = model(input_left_var, input_right_var) loss = criterion(output, target_cls.data) # compute two losses # measure accuracy and record loss pred = output.max(1)[1] accu_no_val += pred.eq(target_cls.view_as(pred)).sum().item() accu_no_val_per = '{:.4%}'.format(accu_no_val / (i + 1)) loss_am.update(loss.item(), input_left.size(0)) c = (pred == target_cls).squeeze() for j in range(len(target_cls)): label = target_cls[j] class_correct[label] += c[j].item() class_total[label] += 1 # measure elapsed time batch_time.update(time.time() - end) end = time.time() if (i+1) % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Accuracy: {2}: \t' 'Loss: {loss.val:.4f} ({loss.avg:.4f})'.format(i+1, len(val_loader), accu_no_val_per, loss=loss_am)) mean_accuracy = 0 for i in range(class_num): print('Final Accuracy of %2s : %.4f %%' % (classes[i], 100 * class_correct[i] / float(class_total[i]))) mean_accuracy += 100 * class_correct[i] / float(class_total[i]) print('Final Overall Mean Accuracy: %.4f %%' % (mean_accuracy / float(class_num))) return loss.data def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, 'model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 40 epochs""" lr = args.lr * (0.1 ** (epoch // 15)) print 'Learning rate:', lr for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy_multiclass(output, target, topk=(1, 5)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': # for training and validation main() # for testing/validation # main_testing()
36.195876
128
0.590857
4e130adaa858cb8e66f593db4966ed0c0318c5d0
531
py
Python
vddb_async/src/task_manager/tests/clear_hbase.py
dlf412/thunderCopyright
c736c9eefc7c934cc830d9d6f27a00cf147e02aa
[ "MIT" ]
1
2021-06-10T02:56:43.000Z
2021-06-10T02:56:43.000Z
vddb_async/src/task_manager/tests/clear_hbase.py
dlf412/thunderCopyright
c736c9eefc7c934cc830d9d6f27a00cf147e02aa
[ "MIT" ]
null
null
null
vddb_async/src/task_manager/tests/clear_hbase.py
dlf412/thunderCopyright
c736c9eefc7c934cc830d9d6f27a00cf147e02aa
[ "MIT" ]
1
2020-03-25T23:55:58.000Z
2020-03-25T23:55:58.000Z
#!/usr/bin/python import happybase import uuid import sys hbpool = happybase.ConnectionPool(1,host="master",port=9090) if len(sys.argv) < 2: print "usage: python %s table" % sys.argv[0] sys.exit(1) table = sys.argv[1] print table with hbpool.connection() as conn: if table == 'all': for x in ['crr', 'finished', 'matches', 'unpush', 'task', 'sid_tids']: t = conn.table(x) for row in t.scan(): t.delete(row[0]) print row[0] + " deleted" print "success"
24.136364
78
0.581921
b4324d9fde7233a6a3311e6b24cd7b3d3098f6ec
9,235
py
Python
hazelcast/protocol/client_message.py
SaitTalhaNisanci/hazelcast-python-client
af382081da02a360e826163b1026aa0f68b6e9b8
[ "Apache-2.0" ]
null
null
null
hazelcast/protocol/client_message.py
SaitTalhaNisanci/hazelcast-python-client
af382081da02a360e826163b1026aa0f68b6e9b8
[ "Apache-2.0" ]
null
null
null
hazelcast/protocol/client_message.py
SaitTalhaNisanci/hazelcast-python-client
af382081da02a360e826163b1026aa0f68b6e9b8
[ "Apache-2.0" ]
null
null
null
""" Client Message is the carrier framed data as defined below. Any request parameter, response or event data will be carried in the payload. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R| Frame Length | +-------------+---------------+---------------------------------+ | Version |B|E| Flags | Type | +-------------+---------------+---------------------------------+ | | + CorrelationId + | | +---------------------------------------------------------------+ | PartitionId | +-----------------------------+---------------------------------+ | Data Offset | | +-----------------------------+ | | Message Payload Data ... | ... """ import binascii import logging import struct from hazelcast.serialization.data import * # constants VERSION = 0 BEGIN_FLAG = 0x80 END_FLAG = 0x40 BEGIN_END_FLAG = BEGIN_FLAG | END_FLAG LISTENER_FLAG = 0x01 PAYLOAD_OFFSET = 18 SIZE_OFFSET = 0 FRAME_LENGTH_FIELD_OFFSET = 0 VERSION_FIELD_OFFSET = FRAME_LENGTH_FIELD_OFFSET + INT_SIZE_IN_BYTES FLAGS_FIELD_OFFSET = VERSION_FIELD_OFFSET + BYTE_SIZE_IN_BYTES TYPE_FIELD_OFFSET = FLAGS_FIELD_OFFSET + BYTE_SIZE_IN_BYTES CORRELATION_ID_FIELD_OFFSET = TYPE_FIELD_OFFSET + SHORT_SIZE_IN_BYTES PARTITION_ID_FIELD_OFFSET = CORRELATION_ID_FIELD_OFFSET + LONG_SIZE_IN_BYTES DATA_OFFSET_FIELD_OFFSET = PARTITION_ID_FIELD_OFFSET + INT_SIZE_IN_BYTES HEADER_SIZE = DATA_OFFSET_FIELD_OFFSET + SHORT_SIZE_IN_BYTES class ClientMessage(object): def __init__(self, buff=None, payload_size=0): if buff: self.buffer = buff self._read_index = 0 else: self.buffer = bytearray(HEADER_SIZE + payload_size) self.set_data_offset(HEADER_SIZE) self._write_index = 0 self._retryable = False # HEADER ACCESSORS def get_correlation_id(self): return struct.unpack_from(FMT_LE_LONG, self.buffer, CORRELATION_ID_FIELD_OFFSET)[0] def set_correlation_id(self, val): struct.pack_into(FMT_LE_LONG, self.buffer, CORRELATION_ID_FIELD_OFFSET, val) return self def get_partition_id(self): return struct.unpack_from(FMT_LE_INT, self.buffer, PARTITION_ID_FIELD_OFFSET)[0] def set_partition_id(self, val): struct.pack_into(FMT_LE_INT, self.buffer, PARTITION_ID_FIELD_OFFSET, val) return self def get_message_type(self): return struct.unpack_from(FMT_LE_UINT16, self.buffer, TYPE_FIELD_OFFSET)[0] def set_message_type(self, val): struct.pack_into(FMT_LE_UINT16, self.buffer, TYPE_FIELD_OFFSET, val) return self def get_flags(self): return struct.unpack_from(FMT_LE_UINT8, self.buffer, FLAGS_FIELD_OFFSET)[0] def set_flags(self, val): struct.pack_into(FMT_LE_UINT8, self.buffer, FLAGS_FIELD_OFFSET, val) return self def has_flags(self, flags): return self.get_flags() & flags def get_frame_length(self): return struct.unpack_from(FMT_LE_INT, self.buffer, FRAME_LENGTH_FIELD_OFFSET)[0] def set_frame_length(self, val): struct.pack_into(FMT_LE_INT, self.buffer, FRAME_LENGTH_FIELD_OFFSET, val) return self def get_data_offset(self): return struct.unpack_from(FMT_LE_UINT16, self.buffer, DATA_OFFSET_FIELD_OFFSET)[0] def set_data_offset(self, val): struct.pack_into(FMT_LE_UINT16, self.buffer, DATA_OFFSET_FIELD_OFFSET, val) return self def _write_offset(self): return self.get_data_offset() + self._write_index def _read_offset(self): return self.get_data_offset() + self._read_index # PAYLOAD def append_byte(self, val): struct.pack_into(FMT_LE_UINT8, self.buffer, self._write_offset(), val) self._write_index += BYTE_SIZE_IN_BYTES return self def append_bool(self, val): return self.append_byte(1 if val else 0) def append_int(self, val): struct.pack_into(FMT_LE_INT, self.buffer, self._write_offset(), val) self._write_index += INT_SIZE_IN_BYTES return self def append_long(self, val): struct.pack_into(FMT_LE_LONG, self.buffer, self._write_offset(), val) self._write_index += LONG_SIZE_IN_BYTES return self def append_str(self, val): self.append_byte_array(val.encode("utf-8")) return self def append_data(self, val): self.append_byte_array(val.to_bytes()) return self def append_byte_array(self, arr): length = len(arr) # length self.append_int(length) # copy content self.buffer[self._write_offset(): self._write_offset() + length] = arr[:] self._write_index += length def append_tuple(self, entry_tuple): self.append_data(entry_tuple[0]).append_data(entry_tuple[1]) return self # PAYLOAD READ def _read_from_buff(self, fmt, size): val = struct.unpack_from(fmt, self.buffer, self._read_offset()) self._read_index += size return val[0] def read_byte(self): return self._read_from_buff(FMT_LE_UINT8, BYTE_SIZE_IN_BYTES) def read_bool(self): return True if self.read_byte() else False def read_int(self): return self._read_from_buff(FMT_LE_INT, INT_SIZE_IN_BYTES) def read_long(self): return self._read_from_buff(FMT_LE_LONG, LONG_SIZE_IN_BYTES) def read_str(self): return self.read_byte_array().decode("utf-8") def read_data(self): return Data(self.read_byte_array()) def read_byte_array(self): length = self.read_int() result = bytearray(self.buffer[self._read_offset(): self._read_offset() + length]) self._read_index += length return result # helpers def is_retryable(self): return self._retryable def set_retryable(self, val): self._retryable = val return self def is_complete(self): try: return (self._read_offset() >= HEADER_SIZE) and (self._read_offset() == self.get_frame_length()) except AttributeError: return False def is_flag_set(self, flag): i = self.get_flags() & flag return i == flag def add_flag(self, flags): self.set_flags(self.get_flags() | flags) return self def update_frame_length(self): self.set_frame_length(self._write_offset()) return self def accumulate(self, client_message): start = client_message.get_data_offset() end = client_message.get_frame_length() self.buffer += client_message.buffer[start:end] self.set_frame_length(len(self.buffer)) def __repr__(self): return binascii.hexlify(self.buffer) def __str__(self): return "ClientMessage:{{" \ "length={}, " \ "correlationId={}, " \ "messageType={}, " \ "partitionId={}, " \ "isComplete={}, " \ "isRetryable={}, " \ "isEvent={}, " \ "writeOffset={}}}".format(self.get_frame_length(), self.get_correlation_id(), self.get_message_type(), self.get_partition_id(), self.is_complete(), self.is_retryable(), self.is_flag_set(LISTENER_FLAG), self.get_data_offset()) class ClientMessageBuilder(object): def __init__(self, message_callback): self.logger = logging.getLogger("ClientMessageBuilder:") self._incomplete_messages = dict() self._message_callback = message_callback def on_message(self, client_message): if client_message.is_flag_set(BEGIN_END_FLAG): # handle message self._message_callback(client_message) elif client_message.is_flag_set(BEGIN_FLAG): self._incomplete_messages[client_message.get_correlation_id()] = client_message else: try: message = self._incomplete_messages[client_message.get_correlation_id()] except KeyError: self.logger.warning("A message without the begin part is received.") return message.accumulate(client_message) if client_message.is_flag_set(END_FLAG): message.add_flag(BEGIN_END_FLAG) self._message_callback(message) del self._incomplete_messages[client_message.get_correlation_id()]
35.383142
108
0.585815
f45dd4ecb9da591671a70c4b6210a4fce324773b
700
py
Python
bin/run_psql.py
jfeser/castor-opt
b377c589707fcba68f74d85eba6c4eb394ac2c05
[ "MIT" ]
null
null
null
bin/run_psql.py
jfeser/castor-opt
b377c589707fcba68f74d85eba6c4eb394ac2c05
[ "MIT" ]
null
null
null
bin/run_psql.py
jfeser/castor-opt
b377c589707fcba68f74d85eba6c4eb394ac2c05
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import json import os import re from subprocess import Popen, PIPE import sys def run_sql(db, sql_file, params): # Substitute parameters into sql query. with open(sql_file, "r") as f: sql_query = f.read() for i, param_value in enumerate(params): sql_query = re.sub(":%d(?![0-9]+)" % (i + 1), str(param_value), sql_query) # Run query and write results. p = Popen(["psql", "-t", "-A", "-F", "|", db], stdin=PIPE) p.communicate(input=(sql_query).encode()) p.wait() if __name__ == '__main__': if len(sys.argv) != 4: print('Usage: run_psql.py DB SQL PARAMS') run_sql(sys.argv[1], sys.argv[2], json.loads(sys.argv[3]))
28
82
0.617143
16487cf844b83c1ebc7dd7c01089e627fb8ecefd
331
py
Python
HackerEarth/Basic Programming/Basics of Implementation/the_great_kian.py
nsudhanva/Competetive
d9e93fdeefaa4e422a2101db41a7ab0a5676e9da
[ "Unlicense" ]
null
null
null
HackerEarth/Basic Programming/Basics of Implementation/the_great_kian.py
nsudhanva/Competetive
d9e93fdeefaa4e422a2101db41a7ab0a5676e9da
[ "Unlicense" ]
null
null
null
HackerEarth/Basic Programming/Basics of Implementation/the_great_kian.py
nsudhanva/Competetive
d9e93fdeefaa4e422a2101db41a7ab0a5676e9da
[ "Unlicense" ]
null
null
null
n = raw_input() x = raw_input().split() #print x sum1 = 0 sum2 = 0 sum3 = 0 for i in range(int(n)): if int(x[i]) % 3 == 1: sum1 = sum1 + int(x[i]) if int(x[i]) % 3 == 2: sum2 = sum2 + int(x[i]) if int(x[i]) % 3 == 0: sum3 = sum3 + int(x[i]) print str(sum1) + " " + str(sum2) + " " + str(sum3)
19.470588
51
0.462236
5b6519fab19592b5d708aab835834c2316f52e19
215
py
Python
applications/utopianIdentificationNumber.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
applications/utopianIdentificationNumber.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
applications/utopianIdentificationNumber.py
silvioedu/HackerRank-Regex-Practice
dc2f2719385626375eb719b38baf6315ff23cad4
[ "MIT" ]
null
null
null
import re if __name__ == '__main__': regex = r'^[a-z]{0,3}\d{2,8}[A-Z]{3,}$' dict = {True: "VALID", False: "INVALID"} for _ in range(int(input())): print(dict[bool(re.search(regex, input()))])
23.888889
52
0.544186
ca64e3d83ab8437d2c7ec27168bdd1c5b480d8a7
46,124
py
Python
tests/test_tf_converter.py
susemeee/tf-coreml
244a7705dc6653d22751b6583a9a89c5fb7c1e3b
[ "Apache-2.0" ]
null
null
null
tests/test_tf_converter.py
susemeee/tf-coreml
244a7705dc6653d22751b6583a9a89c5fb7c1e3b
[ "Apache-2.0" ]
null
null
null
tests/test_tf_converter.py
susemeee/tf-coreml
244a7705dc6653d22751b6583a9a89c5fb7c1e3b
[ "Apache-2.0" ]
null
null
null
import unittest import shutil import tempfile import os import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np from coremltools.proto import NeuralNetwork_pb2 from tensorflow.python.tools.freeze_graph import freeze_graph from tensorflow.tools.graph_transforms import TransformGraph import tfcoreml as tf_converter np.random.seed(34) """IMPORTANT NOTE TO ADD NEW TESTS: For each test function you should set up your own graph and session. Otherwise TF will carry all ops and tensors from previously run tests. """ def _tf_transpose(x, is_sequence=False): if not hasattr(x, "shape"): return x if len(x.shape) == 4: # [Batch, Height, Width, Channels] --> [Batch, Channels, Height, Width] x = np.transpose(x, [0,3,1,2]) return np.expand_dims(x, axis=0) elif len(x.shape) == 3: # We only deal with non-recurrent networks for now # [Batch, (Sequence) Length, Channels] --> [1,B, Channels, 1, Seq] # [0,1,2] [0,2,1] return np.transpose(x, [0,2,1])[None,:,:,None,:] elif len(x.shape) == 2: if is_sequence: # (N,S) --> (S,N,1,) return x.reshape(x.shape[::-1] + (1,)) else: # (N,C) --> (N,C,1,1) return x.reshape((1, ) + x.shape) # Dense elif len(x.shape) == 1: if is_sequence: # (S) --> (S,N,1,1,1) return x.reshape((x.shape[0], 1, 1)) else: return x else: return x def _convert_to_coreml(tf_model_path, mlmodel_path, input_name_shape_dict, output_names,add_custom_layers=False,custom_conversion_functions={}): """ Convert and return the coreml model from the Tensorflow """ model = tf_converter.convert(tf_model_path=tf_model_path, mlmodel_path=mlmodel_path, output_feature_names=output_names, input_name_shape_dict=input_name_shape_dict, add_custom_layers=add_custom_layers, custom_conversion_functions=custom_conversion_functions) return model def _generate_data(input_shape, mode = 'random'): """ Generate some random data according to a shape. """ if input_shape is None or len(input_shape) == 0: return 0.5 if mode == 'zeros': X = np.zeros(input_shape) elif mode == 'ones': X = np.ones(input_shape) elif mode == 'linear': X = np.array(range(np.product(input_shape))).reshape(input_shape)*1.0 elif mode == 'random': X = np.random.rand(*input_shape) elif mode == 'random_zero_mean': X = np.random.rand(*input_shape)-0.5 return X class TFNetworkTest(unittest.TestCase): @classmethod def setUpClass(self): """ Set up the unit test by loading common utilities. """ def _simple_freeze(self, input_graph, input_checkpoint, output_graph, output_node_names): # output_node_names is a string of names separated by comma freeze_graph(input_graph=input_graph, input_saver="", input_binary=False, input_checkpoint=input_checkpoint, output_node_names=output_node_names, restore_op_name="save/restore_all", filename_tensor_name="save/Const:0", output_graph=output_graph, clear_devices=True, initializer_nodes="") def _test_coreml_accuracy(self, coreml_model, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only): # evaluate coreml coreml_inputs = {} for idx, in_tensor_name in enumerate(input_tensor_shapes): in_shape = input_tensor_shapes[in_tensor_name] coreml_in_name = in_tensor_name.replace(':', '__').replace('/', '__') if one_dim_seq_flags is None: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name]).copy() else: coreml_inputs[coreml_in_name] = _tf_transpose( feed_dict[in_tensor_name], one_dim_seq_flags[idx]).copy() coreml_output = coreml_model.predict(coreml_inputs, useCPUOnly=use_cpu_only) for idx, out_name in enumerate(output_node_names): tp = _tf_transpose(tf_result[idx]).flatten() out_tensor_name = out_name.replace('/','__') + '__0' cp = coreml_output[out_tensor_name].flatten() self.assertEqual(len(tp), len(cp)) for i in range(len(tp)): max_den = max(1.0, tp[i], cp[i]) self.assertAlmostEqual(tp[i]/max_den, cp[i]/max_den, delta=delta) def _test_tf_model(self, graph, input_tensor_shapes, output_node_names, data_mode = 'random', delta = 1e-2, is_quantized = False, use_cpu_only = False, one_dim_seq_flags = None, check_numerical_accuracy=True, add_custom_layers = False, custom_conversion_functions={}): """ Common entry to testing routine. graph - defined TensorFlow graph. input_tensor_shapes - dict str:shape for each input (placeholder) output_node_names - output_node_names, a list of strings output_tensor_names - output tensor names, a list of strings, usually just output_node_names each appended with ':0' """ # Some file processing model_dir = tempfile.mkdtemp() graph_def_file = os.path.join(model_dir, 'tf_graph.pbtxt') checkpoint_file = os.path.join(model_dir, 'tf_model.ckpt') frozen_model_file = os.path.join(model_dir, 'tf_frozen.pb') coreml_model_file = os.path.join(model_dir, 'coreml_model.mlmodel') # add a saver tf.reset_default_graph() with graph.as_default() as g: saver = tf.train.Saver() with tf.Session(graph = graph) as sess: # initialize sess.run(tf.global_variables_initializer()) # prepare the tensorflow inputs feed_dict = {} for in_tensor_name in input_tensor_shapes: in_tensor_shape = input_tensor_shapes[in_tensor_name] feed_dict[in_tensor_name] = _generate_data(in_tensor_shape, data_mode) # run the result fetches = [graph.get_operation_by_name(name).outputs[0] for name in \ output_node_names] tf_result = sess.run(fetches, feed_dict=feed_dict) # save graph definition somewhere tf.train.write_graph(sess.graph, model_dir, graph_def_file) # save the weights saver.save(sess, checkpoint_file) # freeze the graph self._simple_freeze( input_graph=graph_def_file, input_checkpoint=checkpoint_file, output_graph=frozen_model_file, output_node_names=",".join(output_node_names)) if is_quantized: tf_model_path = frozen_model_file with open(tf_model_path, 'rb') as f: serialized = f.read() gdef = tf.GraphDef() gdef.ParseFromString(serialized) input_names = [] output_names = output_node_names tf.reset_default_graph() graph = tf.Graph() with graph.as_default() as g: transforms = ["add_default_attributes", "remove_nodes(op=Identity, op=CheckNumerics)", "fold_constants(ignore_errors=true)", "fold_batch_norms", "fold_old_batch_norms", "quantize_weights(minimum_size=1)", "quantize_nodes", "strip_unused_nodes", "sort_by_execution_order"] transformed_graph_def = TransformGraph(gdef, input_names, output_names, transforms) tf.import_graph_def(transformed_graph_def, name='') tf.train.write_graph(graph, model_dir, "./tf_quantized_frozen.pb", as_text=False) frozen_model_file = os.path.join(model_dir, 'tf_quantized_frozen.pb') # convert the tensorflow model output_tensor_names = [name + ':0' for name in output_node_names] coreml_model = _convert_to_coreml( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file, input_name_shape_dict=input_tensor_shapes, output_names=output_tensor_names, add_custom_layers=add_custom_layers, custom_conversion_functions=custom_conversion_functions) #test numerical accuracy with CoreML if check_numerical_accuracy: self._test_coreml_accuracy(coreml_model, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only) # Cleanup files - models on disk no longer useful if os.path.exists(model_dir): shutil.rmtree(model_dir) return coreml_model def _test_tf_model_constant(self, graph, input_tensor_shapes, output_node_names, data_mode='random', delta=1e-2, use_cpu_only=False, one_dim_seq_flags=None): """ Common entry to testing routine for graphs that have no variables. graph - defined TensorFlow graph. input_tensor_shapes - dict str:shape for each input (placeholder) output_node_names - output_node_names, a list of strings output_tensor_names - output tensor names, a list of strings, usually just output_node_names each appended with ':0' """ model_dir = tempfile.mkdtemp() frozen_model_file = os.path.join(model_dir, 'tf_frozen.pb') coreml_model_file = os.path.join(model_dir, 'coreml_model.mlmodel') with tf.Session(graph = graph) as sess: # initialize sess.run(tf.global_variables_initializer()) # prepare the tensorflow inputs feed_dict = {} for in_tensor_name in input_tensor_shapes: in_tensor_shape = input_tensor_shapes[in_tensor_name] feed_dict[in_tensor_name] = _generate_data(in_tensor_shape, data_mode) # run the result fetches = [graph.get_operation_by_name(name).outputs[0] for name in \ output_node_names] tf_result = sess.run(fetches, feed_dict=feed_dict) #save the frozen .pb output_graph_def = tf.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes output_node_names #The output node names are used to select the usefull nodes ) with tf.gfile.GFile(frozen_model_file, "wb") as f: f.write(output_graph_def.SerializeToString()) # convert the tensorflow model output_tensor_names = [name + ':0' for name in output_node_names] coreml_model = _convert_to_coreml( tf_model_path=frozen_model_file, mlmodel_path=coreml_model_file, input_name_shape_dict=input_tensor_shapes, output_names=output_tensor_names) #test numerical accuracy with CoreML self._test_coreml_accuracy(coreml_model, output_node_names, input_tensor_shapes, one_dim_seq_flags, feed_dict, tf_result, delta, use_cpu_only) # Cleanup files - models on disk no longer useful if os.path.exists(model_dir): shutil.rmtree(model_dir) class TFSimpleNetworkTest(TFNetworkTest): def test_toy(self): # Define your TF graph here graph = tf.Graph() with graph.as_default() as g: # matrix1 is input of shape (Batch=1,Channels=2) matrix1 = tf.placeholder(tf.float32, shape=[1,2], name="test_toy/input") matrix2 = tf.Variable(tf.truncated_normal([2,1])) product = tf.matmul(matrix1, matrix2, name = "test_toy/product") saver = tf.train.Saver() self._test_tf_model(graph, {"test_toy/input:0":[1,2]}, ["test_toy/product"], delta=1e-2) def test_linear(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_linear/input") # Make a redundant tensor. It should get trimmed gt = tf.placeholder(tf.float32, shape=[None,10]) W = tf.Variable(tf.ones([20,10])) b = tf.Variable(tf.ones([10])) y = tf.matmul(x,W) + b output_name = [y.op.name] # not batched self._test_tf_model(graph, {"test_linear/input:0":[1,20]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_linear/input:0":[8,20]}, output_name, delta=1e-2) def test_log(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_log/input") # Make a redundant tensor. It should get trimmed gt = tf.placeholder(tf.float32, shape=[None,10]) W = tf.Variable(tf.ones([20,10])) b = tf.Variable(tf.ones([10])) y = tf.log(tf.matmul(x,W) + b) output_name = [y.op.name] self._test_tf_model(graph, {"test_log/input:0":[1,20]}, output_name, delta=1e-2) def test_simple_convnet(self): def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') graph = tf.Graph() with graph.as_default() as g: W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.placeholder(tf.float32, shape=[None,28,28,1], name="test_simple_conv/input") h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) output_name = [h_pool2.op.name] self._test_tf_model(graph, {"test_simple_conv/input:0":[1,28,28,1]}, output_name, delta=1e-2) def test_convnet(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_convnet/input") W_conv1 = tf.Variable(tf.truncated_normal([3,3,3,2], stddev=0.3)) h_conv1 = tf.nn.conv2d(x_image,W_conv1, strides=[1,1,1,1], padding='SAME') h_conv1_flat = tf.reshape(h_conv1, [-1, 8*8*2]) W_fc1 = tf.Variable(tf.truncated_normal([8*8*2,4], stddev=0.3)) h_fc1 = tf.matmul(h_conv1_flat, W_fc1) output_name = [h_fc1.op.name] # not batched self._test_tf_model(graph, {"test_convnet/input:0":[1,8,8,3]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_convnet/input:0":[10,8,8,3]}, output_name, delta=1e-2) def test_convnet_quantized(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_convnet/input") W_conv1 = tf.Variable(tf.truncated_normal([3,3,3,2], stddev=0.3)) h_conv1 = tf.nn.conv2d(x_image,W_conv1, strides=[1,1,1,1], padding='SAME') h_conv1_flat = tf.reshape(h_conv1, [-1, 8*8*2]) W_fc1 = tf.Variable(tf.truncated_normal([8*8*2,4], stddev=0.3)) h_fc1 = tf.matmul(h_conv1_flat, W_fc1) output_name = [h_fc1.op.name] # quantized self._test_tf_model(graph, {"test_convnet/input:0":[1,8,8,3]}, output_name, delta=0.20,is_quantized=True) def test_reduce_max(self): graph = tf.Graph() with graph.as_default() as g: # placeholder constructor returns a tensor not an op x = tf.placeholder(tf.float32, shape=[None,20], name="test_reduce_max/input") W = tf.Variable(tf.ones([20,10])) y = tf.matmul(x,W) output = tf.reduce_max(y, axis=-1) output_name = [output.op.name] # not batched self._test_tf_model(graph, {"test_reduce_max/input:0":[1,20]}, output_name, delta=1e-2) def test_pad_conv_fuse(self): graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,32,18,3], name="test_pad_conv/input") W = tf.Variable(tf.truncated_normal([9,9,3,5], stddev=1)) paddings = tf.constant([[0, 0], [5,5], [1,1], [0, 0]]) x_pad = tf.pad(x, paddings, "CONSTANT") output = tf.nn.conv2d(x_pad,W,strides=[1,1,1,1], padding='VALID') output_name = [output.op.name] self._test_tf_model(graph, {"test_pad_conv/input:0":[1,32,18,3]}, output_name, delta=.05) def test_dilated_conv(self): #params: (Hin,Win,K,pad,dilation) Cin = 3 Cout = 5 params = [(32,18,3,3), (14,13,3,4), (14,19,1,3), (17,18,5,3), (14,20,3,3)] for param in params: Hin, Win, K, d = param graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,Hin,Win,Cin], name="test_pad_conv/input") W = tf.Variable(tf.truncated_normal([K,K,Cin,Cout], stddev=1)) output = tf.nn.convolution(x,W,strides=[1,1], padding='VALID', dilation_rate=[d,d]) output_name = [output.op.name] self._test_tf_model(graph, {"test_pad_conv/input:0":[1,Hin,Win,Cin]}, output_name, delta=.05) class TFSingleLayersTest(TFNetworkTest): """ Small models from tensorflow.layers """ def test_dense(self): # dense layer with some activation graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,10], name="test_dense/input") y = tf.layers.dense(inputs=x, units=16, activation=tf.sigmoid) output_name = [y.op.name] self._test_tf_model(graph, {"test_dense/input:0":[1,10]}, output_name, delta=1e-2,is_quantized=False) def test_dense_quantized(self): # dense layer with some activation graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None,10], name="test_dense/input") y = tf.layers.dense(inputs=x, units=16, activation=tf.sigmoid) output_name = [y.op.name] self._test_tf_model(graph, {"test_dense/input:0":[1,10]}, output_name, delta=0.05,is_quantized=True) def test_dense_concat(self): graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None, 10], name="test_dense/input") y = tf.layers.dense(inputs=x, units=16, activation=tf.nn.relu) z1 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z2 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z3 = tf.layers.dense(inputs=y, units=20, activation=tf.nn.relu) z = tf.concat([z1,z2,z3], axis=1) output_name = [z.op.name] self._test_tf_model(graph, {"test_dense/input:0": [1, 10]}, output_name, delta=1e-2) def test_conv2d(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[5,5], padding='same', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d/input:0":[1,8,8,3]}, output_name, delta=1e-2, is_quantized=False) def test_conv2d_quantized(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[5,5], padding='same', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d/input:0":[1,8,8,3]}, output_name, delta=0.05, is_quantized=True) def test_conv2d_valid(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d_valid/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_valid/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_stride2(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2d_stride2/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', strides=(2,2)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_stride2/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_dilated(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,32,32,3], name="test_conv2d_dilated/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', dilation_rate=(3,4)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2d_dilated/input:0":[1,32,32,3]}, output_name, delta=1e-2) def test_conv2dt(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2dt_valid(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt_valid/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', activation=tf.nn.relu) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt_valid/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2dt_stride2(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_conv2dt_stride2/input") conv1 = tf.layers.conv2d_transpose(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', strides=(2,2)) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv2dt_stride2/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv2d_avepool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_avepool/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) pool1 = tf.layers.average_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv2d_avepool/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_maxpool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_maxpool/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[3, 3], strides=1, padding='same') output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv2d_maxpool/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_bn(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_bn/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='same', activation=tf.nn.relu) bn1 = tf.layers.batch_normalization(inputs=conv1, axis=-1) output_name = [bn1.op.name] self._test_tf_model(graph, {"test_conv2d_bn/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_conv2d_spatial_bn(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_bn/input") bn1 = tf.layers.batch_normalization(inputs=x_image, axis=2) output_name = [bn1.op.name] self._test_tf_model(graph, {"test_conv2d_bn/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_separable_conv2d(self): # conv layer with "fused activation" graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,8,3], name="test_separable_conv2d/input") conv1 = tf.layers.separable_conv2d(inputs=x_image, filters=4, kernel_size=[3,3], padding='valid', depth_multiplier=2) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_separable_conv2d/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_conv1d(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='valid', use_bias=True) output_name = [conv1.op.name] self._test_tf_model(graph, {"test_conv1d/input:0":[1,8,3]}, output_name, data_mode='linear', delta=.05) def test_conv1d_dense(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_dense/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='same') conv1_flat = tf.reshape(conv1,[-1,8*2]) y = tf.layers.dense(inputs=conv1_flat, units=6, activation=tf.nn.relu) output_name = [y.op.name] # not batched self._test_tf_model(graph, {"test_conv1d_dense/input:0":[1,8,3]}, output_name, delta=1e-2) # batched self._test_tf_model(graph, {"test_conv1d_dense/input:0":[10,8,3]}, output_name, delta=1e-2) def test_conv1d_avepool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_avepool/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=5, padding='same') pool1 = tf.layers.average_pooling1d(inputs=conv1, pool_size=2, strides=2) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv1d_avepool/input:0":[1,8,3]}, output_name, delta=1e-2) def test_conv1d_maxpool(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,8,3], name="test_conv1d_maxpool/input") conv1 = tf.layers.conv1d(inputs=x_image, filters=2, kernel_size=3, padding='same') pool1 = tf.layers.max_pooling1d(inputs=conv1, pool_size=2, strides=1) output_name = [pool1.op.name] self._test_tf_model(graph, {"test_conv1d_maxpool/input:0":[1,8,3]}, output_name, delta=1e-2) def test_conv2d_resize_bilinear(self): graph = tf.Graph() with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None,16,16,3], name="test_conv2d_resize_bl/input") conv1 = tf.layers.conv2d(inputs=x_image, filters=3, kernel_size=[3,3], padding='same', activation=tf.nn.relu) bl1 = tf.image.resize_bilinear(images=conv1, size=[32,32]) output_name = [bl1.op.name] self._test_tf_model(graph, {"test_conv2d_resize_bl/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_concat_constants(self): graph = tf.Graph() x, y = np.meshgrid(np.linspace(0., 1., 256), np.linspace(0., 1., 256)) x = np.reshape(x, [1, 256, 256, 1]) y = np.reshape(y, [1, 256, 256, 1]) with graph.as_default() as g: x_image = tf.placeholder(tf.float32, shape=[None, 256, 256, 3], name="input_image") xx = tf.constant(x, dtype=tf.float32) yy = tf.constant(y, dtype=tf.float32) img_concatenated = tf.concat([x_image, xx, yy], -1, name='concat') output_name = [img_concatenated.op.name] self._test_tf_model_constant(graph, {"input_image:0": [1, 256, 256, 3]}, output_name, delta=1e-2) def test_split(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None,10,10,6], name="input") y1, y2 = tf.split(x_input, 2, axis=3) z = tf.add(y1, y2, name='output') output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,6]}, output_name, delta=1e-2) def test_sqrt(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None,10,10,6], name="input") z = tf.sqrt(x_input, name='output') output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,6]}, output_name, delta=1e-2) def test_pow(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None,5,5,6], name="input") z = tf.pow(x_input, 4, name='output') output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,5,5,6]}, output_name, delta=1e-2) def test_leaky_relu(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None,5,5,6], name="input") z = tf.nn.leaky_relu(x_input, 0.2, name='output') output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,5,5,6]}, output_name, delta=1e-2, data_mode="random_zero_mean") def test_resize_bilinear_non_fractional(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None, 10, 10, 3], name="input") z = tf.image.resize_bilinear(x_input, size=[20, 30], align_corners=True) output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,3]}, output_name, delta=1e-2) def test_resize_bilinear_non_fractional_upsample_mode(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None, 10, 10, 3], name="input") z = tf.image.resize_bilinear(x_input, size=[20, 30], align_corners=False) output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,3]}, output_name, delta=1e-2) def test_resize_bilinear_fractional(self): graph = tf.Graph() with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None, 10, 10, 3], name="input") z = tf.image.resize_bilinear(x_input, size=[25, 45], align_corners=False) output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,3]}, output_name, delta=1e-2) def test_crop_resize(self): graph = tf.Graph() roi = np.zeros((2, 4), dtype=np.float32) box_ind = np.zeros((2)) roi[0, :] = [0.24, 0.34, 0.8, 0.9] roi[0, :] = [0.05, 0.25, 0.5, 0.7] with graph.as_default() as g: x_input = tf.placeholder(tf.float32, shape=[None, 10, 10, 3], name="input") z = tf.image.crop_and_resize(x_input, roi, box_ind, crop_size=[6, 7]) output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0":[1,10,10,3]}, output_name, delta=1e-2) def _test_reorganize_data(self, op, shape): graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=shape, name="input") z = op(x, block_size=2, name='output') output_name = [z.op.name] self._test_tf_model_constant(graph, {"input:0": shape}, output_name) def test_depth_to_space(self): self._test_reorganize_data(tf.depth_to_space, [1, 1, 1, 4]) def test_space_to_depth(self): self._test_reorganize_data(tf.space_to_depth, [1, 2, 2, 1]) class TFSlimTest(TFNetworkTest): """Small models for tf.slim layers """ def test_slim_stacked_conv2d(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_stacked_conv2d/input') with slim.arg_scope([slim.conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.conv2d(inputs, 2, [5, 5], scope='conv1') net = slim.conv2d(net, 4, [3, 3], padding='VALID', scope='conv2') net = slim.conv2d(net, 8, [3, 3], scope='conv3') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_stacked_conv2d/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_repeat(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_repeat/input') with slim.arg_scope([slim.conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_repeat/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_fc(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,8], name='test_slim_vgg_fc/input') with slim.arg_scope([slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(0.0, 0.2), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.fully_connected(inputs, 10, scope='fc') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_vgg_fc/input:0":[1,8]}, output_name, delta=1e-2) def test_slim_convnet(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,8,8,3], name='test_slim_convnet/input') with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(0.0, 0.2), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.conv2d(inputs, 2, [3, 3], scope='conv1') net = slim.flatten(net, scope='flatten3') net = slim.fully_connected(net, 6, scope='fc6') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_convnet/input:0":[1,8,8,3]}, output_name, delta=1e-2) def test_slim_lenet(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,28,28,1], name='test_slim_lenet/input') net = slim.conv2d(inputs, 4, [5,5], scope='conv1') net = slim.avg_pool2d(net, [2,2], scope='pool1') net = slim.conv2d(net, 6, [5,5], scope='conv2') net = slim.max_pool2d(net, [2,2], scope='pool2') net = slim.flatten(net, scope='flatten3') net = slim.fully_connected(net, 10, scope='fc4') net = slim.fully_connected(net, 10, activation_fn=None, scope='fc5') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_lenet/input:0":[1,28,28,1]}, output_name, delta=1e-2) def test_slim_one_hot(self): graph = tf.Graph() with graph.as_default() as g: # input is usually a known / unknown batch size inputs = tf.placeholder(tf.int64, shape=[None], name='test_slim_one_hot/input') net = slim.one_hot_encoding(inputs, 10) net = slim.fully_connected(net, 6) output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_one_hot/input:0":[3]}, output_name, delta=1e-2, data_mode='linear', one_dim_seq_flags=[True]) def test_slim_conv_bn(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_conv2d_bn/input') with slim.arg_scope([slim.conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.conv2d(inputs, 2, [5, 5], scope='conv1') net = slim.batch_norm(net, center=True, scale=True, is_training=False) output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_conv2d_bn/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_conv_bn_no_beta(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_conv_bn_no_beta/input') with slim.arg_scope([slim.conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.conv2d(inputs, 2, [5, 5], scope='conv1') net = slim.batch_norm(net, center=False, scale=False, is_training=False) output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_conv_bn_no_beta/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_separable_conv(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_separable_conv2d/input') with slim.arg_scope([slim.separable_conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3)): net = slim.separable_conv2d(inputs, 2, [5, 5], 2, scope='conv1') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_separable_conv2d/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_dilated_depthwise_conv(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_separable_conv2d/input') with slim.arg_scope([slim.separable_conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3)): net = slim.separable_conv2d(inputs, num_outputs=None, stride=1, depth_multiplier=1, kernel_size=[3, 3], rate=2, scope='conv1') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_separable_conv2d/input:0":[1,16,16,3]}, output_name, delta=1e-2) def test_slim_deconv(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_decconv2d/input') with slim.arg_scope([slim.separable_conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3)): net = slim.conv2d_transpose(inputs, 2, [3, 3], scope='conv1') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_decconv2d/input:0":[1,16,16,3]}, output_name, delta=1e-2) # TODO - this fails due to unsupported op "Tile" @unittest.skip def test_slim_plane_conv(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,16,16,3], name='test_slim_plane_conv2d/input') with slim.arg_scope([slim.separable_conv2d], padding='SAME', weights_initializer=tf.truncated_normal_initializer(stddev=0.3)): net = slim.conv2d_in_plane(inputs, 2, [3, 3], scope='conv1') output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_plane_conv2d/input:0":[1,16,16,3]}, output_name, delta=1e-2) # TODO - this fails due to unsupported op "Tile" @unittest.skip def test_slim_unit_norm(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None,8], name='test_slim_unit_norm/input') with slim.arg_scope([slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(0.0, 0.2), weights_regularizer=slim.l2_regularizer(0.0005)): net = slim.fully_connected(inputs, 10, scope='fc') net = slim.unit_norm(net,1) output_name = [net.op.name] self._test_tf_model(graph, {"test_slim_unit_norm/input:0":[1,8]}, output_name, delta=1e-2) class TFCustomLayerTest(TFNetworkTest): """ Test the arguments "add_custom_layers" and "custom_conversion_functions", that are used to insert custom layers during conversion """ def test_custom_tile(self): graph = tf.Graph() with graph.as_default() as g: inputs = tf.placeholder(tf.float32, shape=[None, 8], name='input') with slim.arg_scope([slim.fully_connected], weights_initializer=tf.truncated_normal_initializer(0.0, 0.2), weights_regularizer=slim.l2_regularizer(0.0005)): y = slim.fully_connected(inputs, 10, scope='fc') y = slim.unit_norm(y, dim=1) output_name = [y.op.name] coreml_model = self._test_tf_model(graph, {"input:0": [1, 8]}, output_name, check_numerical_accuracy=False, add_custom_layers=True) spec = coreml_model.get_spec() layers = spec.neuralNetwork.layers self.assertIsNotNone(layers[9].custom) self.assertEqual('Tile', layers[9].custom.className) def test_custom_topk(self): def _convert_topk(**kwargs): tf_op = kwargs["op"] coreml_nn_builder = kwargs["nn_builder"] constant_inputs = kwargs["constant_inputs"] params = NeuralNetwork_pb2.CustomLayerParams() params.className = 'Top_K' params.description = "Custom layer that corresponds to the top_k TF op" params.parameters["sorted"].boolValue = tf_op.get_attr('sorted') # get the value of k k = constant_inputs.get(tf_op.inputs[1].name, 3) params.parameters["k"].intValue = k coreml_nn_builder.add_custom(name=tf_op.name, input_names=[tf_op.inputs[0].name], output_names=[tf_op.outputs[0].name], custom_proto_spec=params) graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None, 8], name="input") y = tf.layers.dense(inputs=x, units=12, activation=tf.nn.relu) y = tf.nn.softmax(y, axis=1) y = tf.nn.top_k(y, k=3, sorted=False, name='output') output_name = ['output'] coreml_model = self._test_tf_model(graph, {"input:0": [1, 8]}, output_name, check_numerical_accuracy=False, add_custom_layers=True, custom_conversion_functions = {'TopKV2': _convert_topk}) spec = coreml_model.get_spec() layers = spec.neuralNetwork.layers self.assertIsNotNone(layers[3].custom) self.assertEqual('Top_K', layers[3].custom.className) self.assertEqual(3, layers[3].custom.parameters['k'].intValue) self.assertEqual(False, layers[3].custom.parameters['sorted'].boolValue) def test_custom_slice(self): def _convert_slice(**kwargs): tf_op = kwargs["op"] coreml_nn_builder = kwargs["nn_builder"] constant_inputs = kwargs["constant_inputs"] params = NeuralNetwork_pb2.CustomLayerParams() params.className = 'Slice' params.description = "Custom layer that corresponds to the slice TF op" # get the value of begin begin = constant_inputs.get(tf_op.inputs[1].name, [0, 0, 0, 0]) size = constant_inputs.get(tf_op.inputs[2].name, [0, 0, 0, 0]) # add begin and size as two repeated weight fields begin_as_weights = params.weights.add() begin_as_weights.floatValue.extend(map(float, begin)) size_as_weights = params.weights.add() size_as_weights.floatValue.extend(map(float, size)) coreml_nn_builder.add_custom(name=tf_op.name, input_names=[tf_op.inputs[0].name], output_names=[tf_op.outputs[0].name], custom_proto_spec=params) tf.reset_default_graph() graph = tf.Graph() with graph.as_default() as g: x = tf.placeholder(tf.float32, shape=[None, 10, 10, 3], name="input") W = tf.Variable(tf.truncated_normal([1, 1, 3, 5], stddev=0.1)) y = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') y = tf.slice(y, begin=[0, 1, 1, 1], size=[1, 2, 2, 2], name='output') output_name = [y.op.name] for key in [y.op.name, y.op.type]: coreml_model = self._test_tf_model(graph, {"input:0": [1, 10,10, 3]}, output_name, check_numerical_accuracy=False, add_custom_layers=True, custom_conversion_functions={key: _convert_slice}) spec = coreml_model.get_spec() layers = spec.neuralNetwork.layers self.assertIsNotNone(layers[1].custom) self.assertEqual('Slice', layers[1].custom.className) self.assertEqual(2, len(layers[1].custom.weights)) if __name__ == '__main__': unittest.main() ## To run a specific test: # suite = unittest.TestSuite() # suite.addTest(TFSimpleNetworkTest("test_convnet")) # unittest.TextTestRunner().run(suite)
38.923207
93
0.643158
8e3a4bf28409d75b784cbfb3af8c89052b95fdd1
3,000
py
Python
test/azure/low-level/Expected/AcceptanceTests/HeadLowLevel/headlowlevel/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/azure/version-tolerant/Expected/AcceptanceTests/HeadVersionTolerant/headversiontolerant/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/azure/legacy/Expected/AcceptanceTests/Head/head/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential class AutoRestHeadTestServiceConfiguration(Configuration): """Configuration for AutoRestHeadTestService. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential """ def __init__( self, credential, # type: "TokenCredential" **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") super(AutoRestHeadTestServiceConfiguration, self).__init__(**kwargs) self.credential = credential self.credential_scopes = kwargs.pop("credential_scopes", ["https://management.azure.com/.default"]) kwargs.setdefault("sdk_moniker", "autorestheadtestservice/{}".format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get("user_agent_policy") or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get("headers_policy") or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get("proxy_policy") or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get("logging_policy") or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get("http_logging_policy") or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get("retry_policy") or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get("custom_hook_policy") or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get("redirect_policy") or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get("authentication_policy") if self.credential and not self.authentication_policy: self.authentication_policy = ARMChallengeAuthenticationPolicy( self.credential, *self.credential_scopes, **kwargs )
45.454545
107
0.686333
101c6558c815f29471902457f0569a399aed0a71
895
py
Python
test/test_ezsignfolder_reorder_v1_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
test/test_ezsignfolder_reorder_v1_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
test/test_ezsignfolder_reorder_v1_request.py
ezmaxinc/eZmax-SDK-python
6794b8001abfb7d9ae18a3b87aba164839b925a0
[ "MIT" ]
null
null
null
""" eZmax API Definition (Full) This API expose all the functionnalities for the eZmax and eZsign applications. # noqa: E501 The version of the OpenAPI document: 1.1.7 Contact: support-api@ezmax.ca Generated by: https://openapi-generator.tech """ import sys import unittest import eZmaxApi from eZmaxApi.model.ezsignfolder_reorder_v1_request import EzsignfolderReorderV1Request class TestEzsignfolderReorderV1Request(unittest.TestCase): """EzsignfolderReorderV1Request unit test stubs""" def setUp(self): pass def tearDown(self): pass def testEzsignfolderReorderV1Request(self): """Test EzsignfolderReorderV1Request""" # FIXME: construct object with mandatory attributes with example values # model = EzsignfolderReorderV1Request() # noqa: E501 pass if __name__ == '__main__': unittest.main()
24.189189
97
0.719553
fe6aaf572146bcf151542b348b03d777fc1cbebb
1,231
py
Python
pySDC/projects/parallelSDC/Van_der_Pol_implicit_Jac.py
brownbaerchen/pySDC
31293859d731646aa09cef4345669eac65501550
[ "BSD-2-Clause" ]
20
2015-03-21T09:02:55.000Z
2022-02-26T20:22:21.000Z
pySDC/projects/parallelSDC/Van_der_Pol_implicit_Jac.py
brownbaerchen/pySDC
31293859d731646aa09cef4345669eac65501550
[ "BSD-2-Clause" ]
61
2015-03-02T09:35:55.000Z
2022-03-17T12:42:48.000Z
pySDC/projects/parallelSDC/Van_der_Pol_implicit_Jac.py
brownbaerchen/pySDC
31293859d731646aa09cef4345669eac65501550
[ "BSD-2-Clause" ]
19
2015-02-20T11:52:33.000Z
2022-02-02T10:46:27.000Z
import numpy as np import scipy.sparse as sp from scipy.sparse.linalg import spsolve from pySDC.implementations.problem_classes.Van_der_Pol_implicit import vanderpol # noinspection PyUnusedLocal class vanderpol_jac(vanderpol): def eval_jacobian(self, u): """ Evaluation of the Jacobian of the right-hand side Args: u: space values Returns: Jacobian matrix """ x1 = u[0] x2 = u[1] dfdu = np.array([[0, 1], [-2 * self.params.mu * x1 * x2 - 1, self.params.mu * (1 - x1 ** 2)]]) return dfdu def solve_system_jacobian(self, dfdu, rhs, factor, u0, t): """ Simple linear solver for (I-dtA)u = rhs Args: dfdu: the Jacobian of the RHS of the ODE rhs: right-hand side for the linear system factor: abbrev. for the node-to-node stepsize (or any other factor required) u0: initial guess for the iterative solver (not used here so far) t: current time (e.g. for time-dependent BCs) Returns: solution as mesh """ me = self.dtype_u(2) me[:] = spsolve(sp.eye(2) - factor * dfdu, rhs) return me
26.191489
102
0.582453
153a7394598bad5db23d4c5d3798a4194bff3120
544
py
Python
os_detector.py
cswpy/Head_position_orientation
6b1a10393a4e73fa02ee14382d5e6c997a45574a
[ "MIT" ]
null
null
null
os_detector.py
cswpy/Head_position_orientation
6b1a10393a4e73fa02ee14382d5e6c997a45574a
[ "MIT" ]
null
null
null
os_detector.py
cswpy/Head_position_orientation
6b1a10393a4e73fa02ee14382d5e6c997a45574a
[ "MIT" ]
null
null
null
"""Detect OS""" from platform import system def detect_os(bypass=False): """Check OS, as multiprocessing may not work properly on Windows and macOS""" if bypass is True: return os_name = system() if os_name in ['Windows']: print("It seems that you are running this code from {}, on which the Python multiprocessing may not work properly. Consider running this code on Linux.".format(os_name)) print("Exiting..") #exit() else: print("Linux is fine! Python multiprocessing works.")
30.222222
177
0.661765
7ccbf87e037e64c4bd4725b64dc53eaeda818089
1,161
py
Python
spanner/google/cloud/spanner_admin_database_v1/gapic/enums.py
nielm/google-cloud-python
fd126fdea34206109eb00d675374ff7dc4dcc5ef
[ "Apache-2.0" ]
1
2019-01-23T21:54:51.000Z
2019-01-23T21:54:51.000Z
spanner/google/cloud/spanner_admin_database_v1/gapic/enums.py
nielm/google-cloud-python
fd126fdea34206109eb00d675374ff7dc4dcc5ef
[ "Apache-2.0" ]
1
2018-04-06T19:51:23.000Z
2018-04-06T19:51:23.000Z
spanner/google/cloud/spanner_admin_database_v1/gapic/enums.py
nielm/google-cloud-python
fd126fdea34206109eb00d675374ff7dc4dcc5ef
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrappers for protocol buffer enum types.""" import enum class Database(object): class State(enum.IntEnum): """ Indicates the current state of the database. Attributes: STATE_UNSPECIFIED (int): Not specified. CREATING (int): The database is still being created. Operations on the database may fail with ``FAILED_PRECONDITION`` in this state. READY (int): The database is fully created and ready for use. """ STATE_UNSPECIFIED = 0 CREATING = 1 READY = 2
32.25
98
0.686477
cce13f0852a62cfeffdde976838b907e2e22aae4
805
py
Python
reclib/nn/regularizers/regularizers.py
tingkai-zhang/reclib
3c56dd7f811ab4d4f9f692efd0ee5e171a5f818b
[ "Apache-2.0" ]
4
2019-09-16T08:33:19.000Z
2020-12-15T09:06:38.000Z
reclib/nn/regularizers/regularizers.py
tingkai-zhang/reclib
3c56dd7f811ab4d4f9f692efd0ee5e171a5f818b
[ "Apache-2.0" ]
null
null
null
reclib/nn/regularizers/regularizers.py
tingkai-zhang/reclib
3c56dd7f811ab4d4f9f692efd0ee5e171a5f818b
[ "Apache-2.0" ]
1
2020-03-04T21:33:44.000Z
2020-03-04T21:33:44.000Z
import torch from reclib.nn.regularizers.regularizer import Regularizer @Regularizer.register("l1") class L1Regularizer(Regularizer): """Represents a penalty proportional to the sum of the absolute values of the parameters""" def __init__(self, alpha: float = 0.01) -> None: self.alpha = alpha def __call__(self, parameter: torch.Tensor) -> torch.Tensor: return self.alpha * torch.sum(torch.abs(parameter)) @Regularizer.register("l2") class L2Regularizer(Regularizer): """Represents a penalty proportional to the sum of squared values of the parameters""" def __init__(self, alpha: float = 0.01) -> None: self.alpha = alpha def __call__(self, parameter: torch.Tensor) -> torch.Tensor: return self.alpha * torch.sum(torch.pow(parameter, 2))
30.961538
95
0.70559
cce3b9de994fc14f5b11219083bc77b54b81929f
15,771
py
Python
django/db/backends/mysql/base.py
christianbundy/django
f2ff1b2fabbe26d5e61d690c4c5a47f9582f9300
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/backends/mysql/base.py
christianbundy/django
f2ff1b2fabbe26d5e61d690c4c5a47f9582f9300
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/backends/mysql/base.py
christianbundy/django
f2ff1b2fabbe26d5e61d690c4c5a47f9582f9300
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
""" MySQL database backend for Django. Requires mysqlclient: https://pypi.python.org/pypi/mysqlclient/ MySQLdb is supported for Python 2 only: http://sourceforge.net/projects/mysql-python """ from __future__ import unicode_literals import datetime import re import sys import warnings from django.conf import settings from django.db import utils from django.db.backends import utils as backend_utils from django.db.backends.base.base import BaseDatabaseWrapper from django.utils import six, timezone from django.utils.deprecation import RemovedInDjango20Warning from django.utils.encoding import force_str from django.utils.functional import cached_property from django.utils.safestring import SafeBytes, SafeText try: import MySQLdb as Database except ImportError as e: from django.core.exceptions import ImproperlyConfigured raise ImproperlyConfigured( 'Error loading MySQLdb module: %s.\n' 'Did you install mysqlclient or MySQL-python?' % e ) from MySQLdb.constants import CLIENT, FIELD_TYPE # isort:skip from MySQLdb.converters import Thing2Literal, conversions # isort:skip # Some of these import MySQLdb, so import them after checking if it's installed. from .client import DatabaseClient # isort:skip from .creation import DatabaseCreation # isort:skip from .features import DatabaseFeatures # isort:skip from .introspection import DatabaseIntrospection # isort:skip from .operations import DatabaseOperations # isort:skip from .schema import DatabaseSchemaEditor # isort:skip from .validation import DatabaseValidation # isort:skip # We want version (1, 2, 1, 'final', 2) or later. We can't just use # lexicographic ordering in this check because then (1, 2, 1, 'gamma') # inadvertently passes the version test. version = Database.version_info if (version < (1, 2, 1) or ( version[:3] == (1, 2, 1) and (len(version) < 5 or version[3] != 'final' or version[4] < 2))): from django.core.exceptions import ImproperlyConfigured raise ImproperlyConfigured("MySQLdb-1.2.1p2 or newer is required; you have %s" % Database.__version__) def adapt_datetime_warn_on_aware_datetime(value, conv): # Remove this function and rely on the default adapter in Django 2.0. if settings.USE_TZ and timezone.is_aware(value): warnings.warn( "The MySQL database adapter received an aware datetime (%s), " "probably from cursor.execute(). Update your code to pass a " "naive datetime in the database connection's time zone (UTC by " "default).", RemovedInDjango20Warning) # This doesn't account for the database connection's timezone, # which isn't known. (That's why this adapter is deprecated.) value = value.astimezone(timezone.utc).replace(tzinfo=None) return Thing2Literal(value.strftime("%Y-%m-%d %H:%M:%S.%f"), conv) # MySQLdb-1.2.1 returns TIME columns as timedelta -- they are more like # timedelta in terms of actual behavior as they are signed and include days -- # and Django expects time, so we still need to override that. We also need to # add special handling for SafeText and SafeBytes as MySQLdb's type # checking is too tight to catch those (see Django ticket #6052). django_conversions = conversions.copy() django_conversions.update({ FIELD_TYPE.TIME: backend_utils.typecast_time, FIELD_TYPE.DECIMAL: backend_utils.typecast_decimal, FIELD_TYPE.NEWDECIMAL: backend_utils.typecast_decimal, datetime.datetime: adapt_datetime_warn_on_aware_datetime, }) # This should match the numerical portion of the version numbers (we can treat # versions like 5.0.24 and 5.0.24a as the same). Based on the list of version # at http://dev.mysql.com/doc/refman/4.1/en/news.html and # http://dev.mysql.com/doc/refman/5.0/en/news.html . server_version_re = re.compile(r'(\d{1,2})\.(\d{1,2})\.(\d{1,2})') # MySQLdb-1.2.1 and newer automatically makes use of SHOW WARNINGS on # MySQL-4.1 and newer, so the MysqlDebugWrapper is unnecessary. Since the # point is to raise Warnings as exceptions, this can be done with the Python # warning module, and this is setup when the connection is created, and the # standard backend_utils.CursorDebugWrapper can be used. Also, using sql_mode # TRADITIONAL will automatically cause most warnings to be treated as errors. class CursorWrapper(object): """ A thin wrapper around MySQLdb's normal cursor class so that we can catch particular exception instances and reraise them with the right types. Implemented as a wrapper, rather than a subclass, so that we aren't stuck to the particular underlying representation returned by Connection.cursor(). """ codes_for_integrityerror = (1048,) def __init__(self, cursor): self.cursor = cursor def execute(self, query, args=None): try: # args is None means no string interpolation return self.cursor.execute(query, args) except Database.OperationalError as e: # Map some error codes to IntegrityError, since they seem to be # misclassified and Django would prefer the more logical place. if e.args[0] in self.codes_for_integrityerror: six.reraise(utils.IntegrityError, utils.IntegrityError(*tuple(e.args)), sys.exc_info()[2]) raise def executemany(self, query, args): try: return self.cursor.executemany(query, args) except Database.OperationalError as e: # Map some error codes to IntegrityError, since they seem to be # misclassified and Django would prefer the more logical place. if e.args[0] in self.codes_for_integrityerror: six.reraise(utils.IntegrityError, utils.IntegrityError(*tuple(e.args)), sys.exc_info()[2]) raise def __getattr__(self, attr): if attr in self.__dict__: return self.__dict__[attr] else: return getattr(self.cursor, attr) def __iter__(self): return iter(self.cursor) def __enter__(self): return self def __exit__(self, type, value, traceback): # Ticket #17671 - Close instead of passing thru to avoid backend # specific behavior. self.close() class DatabaseWrapper(BaseDatabaseWrapper): vendor = 'mysql' # This dictionary maps Field objects to their associated MySQL column # types, as strings. Column-type strings can contain format strings; they'll # be interpolated against the values of Field.__dict__ before being output. # If a column type is set to None, it won't be included in the output. _data_types = { 'AutoField': 'integer AUTO_INCREMENT', 'BigAutoField': 'bigint AUTO_INCREMENT', 'BinaryField': 'longblob', 'BooleanField': 'bool', 'CharField': 'varchar(%(max_length)s)', 'CommaSeparatedIntegerField': 'varchar(%(max_length)s)', 'DateField': 'date', 'DateTimeField': 'datetime', 'DecimalField': 'numeric(%(max_digits)s, %(decimal_places)s)', 'DurationField': 'bigint', 'FileField': 'varchar(%(max_length)s)', 'FilePathField': 'varchar(%(max_length)s)', 'FloatField': 'double precision', 'IntegerField': 'integer', 'BigIntegerField': 'bigint', 'IPAddressField': 'char(15)', 'GenericIPAddressField': 'char(39)', 'NullBooleanField': 'bool', 'OneToOneField': 'integer', 'PositiveIntegerField': 'integer UNSIGNED', 'PositiveSmallIntegerField': 'smallint UNSIGNED', 'SlugField': 'varchar(%(max_length)s)', 'SmallIntegerField': 'smallint', 'TextField': 'longtext', 'TimeField': 'time', 'UUIDField': 'char(32)', } @cached_property def data_types(self): if self.features.supports_microsecond_precision: return dict(self._data_types, DateTimeField='datetime(6)', TimeField='time(6)') else: return self._data_types operators = { 'exact': '= %s', 'iexact': 'LIKE %s', 'contains': 'LIKE BINARY %s', 'icontains': 'LIKE %s', 'regex': 'REGEXP BINARY %s', 'iregex': 'REGEXP %s', 'gt': '> %s', 'gte': '>= %s', 'lt': '< %s', 'lte': '<= %s', 'startswith': 'LIKE BINARY %s', 'endswith': 'LIKE BINARY %s', 'istartswith': 'LIKE %s', 'iendswith': 'LIKE %s', } # The patterns below are used to generate SQL pattern lookup clauses when # the right-hand side of the lookup isn't a raw string (it might be an expression # or the result of a bilateral transformation). # In those cases, special characters for LIKE operators (e.g. \, *, _) should be # escaped on database side. # # Note: we use str.format() here for readability as '%' is used as a wildcard for # the LIKE operator. pattern_esc = r"REPLACE(REPLACE(REPLACE({}, '\\', '\\\\'), '%%', '\%%'), '_', '\_')" pattern_ops = { 'contains': "LIKE BINARY CONCAT('%%', {}, '%%')", 'icontains': "LIKE CONCAT('%%', {}, '%%')", 'startswith': "LIKE BINARY CONCAT({}, '%%')", 'istartswith': "LIKE CONCAT({}, '%%')", 'endswith': "LIKE BINARY CONCAT('%%', {})", 'iendswith': "LIKE CONCAT('%%', {})", } Database = Database SchemaEditorClass = DatabaseSchemaEditor # Classes instantiated in __init__(). client_class = DatabaseClient creation_class = DatabaseCreation features_class = DatabaseFeatures introspection_class = DatabaseIntrospection ops_class = DatabaseOperations validation_class = DatabaseValidation def get_connection_params(self): kwargs = { 'conv': django_conversions, 'charset': 'utf8', } if six.PY2: kwargs['use_unicode'] = True settings_dict = self.settings_dict if settings_dict['USER']: kwargs['user'] = settings_dict['USER'] if settings_dict['NAME']: kwargs['db'] = settings_dict['NAME'] if settings_dict['PASSWORD']: kwargs['passwd'] = force_str(settings_dict['PASSWORD']) if settings_dict['HOST'].startswith('/'): kwargs['unix_socket'] = settings_dict['HOST'] elif settings_dict['HOST']: kwargs['host'] = settings_dict['HOST'] if settings_dict['PORT']: kwargs['port'] = int(settings_dict['PORT']) # We need the number of potentially affected rows after an # "UPDATE", not the number of changed rows. kwargs['client_flag'] = CLIENT.FOUND_ROWS kwargs.update(settings_dict['OPTIONS']) return kwargs def get_new_connection(self, conn_params): conn = Database.connect(**conn_params) conn.encoders[SafeText] = conn.encoders[six.text_type] conn.encoders[SafeBytes] = conn.encoders[bytes] return conn def init_connection_state(self): if self.features.is_sql_auto_is_null_enabled: with self.cursor() as cursor: # SQL_AUTO_IS_NULL controls whether an AUTO_INCREMENT column on # a recently inserted row will return when the field is tested # for NULL. Disabling this brings this aspect of MySQL in line # with SQL standards. cursor.execute('SET SQL_AUTO_IS_NULL = 0') def create_cursor(self): cursor = self.connection.cursor() return CursorWrapper(cursor) def _rollback(self): try: BaseDatabaseWrapper._rollback(self) except Database.NotSupportedError: pass def _set_autocommit(self, autocommit): with self.wrap_database_errors: self.connection.autocommit(autocommit) def disable_constraint_checking(self): """ Disables foreign key checks, primarily for use in adding rows with forward references. Always returns True, to indicate constraint checks need to be re-enabled. """ self.cursor().execute('SET foreign_key_checks=0') return True def enable_constraint_checking(self): """ Re-enable foreign key checks after they have been disabled. """ # Override needs_rollback in case constraint_checks_disabled is # nested inside transaction.atomic. self.needs_rollback, needs_rollback = False, self.needs_rollback try: self.cursor().execute('SET foreign_key_checks=1') finally: self.needs_rollback = needs_rollback def check_constraints(self, table_names=None): """ Checks each table name in `table_names` for rows with invalid foreign key references. This method is intended to be used in conjunction with `disable_constraint_checking()` and `enable_constraint_checking()`, to determine if rows with invalid references were entered while constraint checks were off. Raises an IntegrityError on the first invalid foreign key reference encountered (if any) and provides detailed information about the invalid reference in the error message. Backends can override this method if they can more directly apply constraint checking (e.g. via "SET CONSTRAINTS ALL IMMEDIATE") """ cursor = self.cursor() if table_names is None: table_names = self.introspection.table_names(cursor) for table_name in table_names: primary_key_column_name = self.introspection.get_primary_key_column(cursor, table_name) if not primary_key_column_name: continue key_columns = self.introspection.get_key_columns(cursor, table_name) for column_name, referenced_table_name, referenced_column_name in key_columns: cursor.execute( """ SELECT REFERRING.`%s`, REFERRING.`%s` FROM `%s` as REFERRING LEFT JOIN `%s` as REFERRED ON (REFERRING.`%s` = REFERRED.`%s`) WHERE REFERRING.`%s` IS NOT NULL AND REFERRED.`%s` IS NULL """ % ( primary_key_column_name, column_name, table_name, referenced_table_name, column_name, referenced_column_name, column_name, referenced_column_name, ) ) for bad_row in cursor.fetchall(): raise utils.IntegrityError( "The row in table '%s' with primary key '%s' has an invalid " "foreign key: %s.%s contains a value '%s' that does not have a corresponding value in %s.%s." % ( table_name, bad_row[0], table_name, column_name, bad_row[1], referenced_table_name, referenced_column_name, ) ) def is_usable(self): try: self.connection.ping() except Database.Error: return False else: return True @cached_property def mysql_version(self): with self.temporary_connection() as cursor: cursor.execute('SELECT VERSION()') server_info = cursor.fetchone()[0] match = server_version_re.match(server_info) if not match: raise Exception('Unable to determine MySQL version from version string %r' % server_info) return tuple(int(x) for x in match.groups())
42.395161
117
0.641557
1fd2913dd99613b9dc8f2442c61ef034da1097a4
110
py
Python
python/timer_test.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
null
null
null
python/timer_test.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
null
null
null
python/timer_test.py
tbedford/code-snippets
9afe36c2726829f14fa5ec11acb8214bed704938
[ "MIT" ]
1
2018-10-09T02:03:12.000Z
2018-10-09T02:03:12.000Z
import threading def printit(): threading.Timer(1.0, printit).start() print ("Hello, World!") printit()
13.75
39
0.681818
08f7452f91737ccea888796c9f0016990ce6c4a5
41
py
Python
pylie/__init__.py
Ostoic/pylie
d568fda94ce4b0e249fcf9ffad83860aed5771a5
[ "MIT" ]
null
null
null
pylie/__init__.py
Ostoic/pylie
d568fda94ce4b0e249fcf9ffad83860aed5771a5
[ "MIT" ]
null
null
null
pylie/__init__.py
Ostoic/pylie
d568fda94ce4b0e249fcf9ffad83860aed5771a5
[ "MIT" ]
null
null
null
import sl2 from constant import constants
20.5
30
0.878049
8bcea9c095553d0f4fa5b7eb7ae79632735b10cc
6,308
py
Python
PSD/finetune.py
zychen-ustc/PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors
f200c202d08ecf8c8ef31d7821307b242e5767a0
[ "MIT" ]
52
2021-06-14T07:59:08.000Z
2022-03-30T03:13:27.000Z
PSD/finetune.py
zychen-ustc/PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors
f200c202d08ecf8c8ef31d7821307b242e5767a0
[ "MIT" ]
16
2021-07-17T07:20:12.000Z
2022-03-28T09:04:31.000Z
PSD/finetune.py
zychen-ustc/PSD-Principled-Synthetic-to-Real-Dehazing-Guided-by-Physical-Priors
f200c202d08ecf8c8ef31d7821307b242e5767a0
[ "MIT" ]
11
2021-06-22T08:09:27.000Z
2022-03-28T11:19:59.000Z
import os import argparse import time import copy import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision.models import vgg16 import torchvision.utils as vutils from datasets.pretrain_datasets import * from datasets.finetune_datasets import * from datasets.concat_dataset import ConcatDataset from utils import * from losses.energy_functions import * from losses.loss_functions import * parser = argparse.ArgumentParser() # Input Parameters parser.add_argument('--backbone', type=str, default='MSBDNNet', help='Backbone model(GCANet/FFANet/MSBDNNet)') parser.add_argument('--lr', type=float, default=0.0001) parser.add_argument('--num_epochs', type=int, default=4) parser.add_argument('--train_batch_size', type=int, default=6) parser.add_argument('--val_batch_size', type=int, default=1) parser.add_argument('--num_workers', type=int, default=16) parser.add_argument('--crop_size', type=int, default=256, help='size of random crop') parser.add_argument('--category', type=str, default='outdoor', help='dataset type: indoor/outdoor') parser.add_argument('--print_freq', type=int, default=20) parser.add_argument('--label_dir', type=str, default='/data/nnice1216/RESIDE/OTS/') parser.add_argument('--unlabel_dir', type=str, default='/data/nnice1216/Dehazing/') parser.add_argument('--pseudo_gt_dir', type=str, default='/data/nnice1216/Dehazing/') parser.add_argument('--val_dir', type=str, default='/data/nnice1216/RESIDE/SOTS/outdoor/') parser.add_argument('--pretrain_model_dir', type=str, default='/model/nnice1216/DAD/') parser.add_argument('--lambda_dc', type=float, default=2e-3) parser.add_argument('--lambda_bc', type=float, default=3e-2) parser.add_argument('--lambda_CLAHE', type=float, default=1) parser.add_argument('--lambda_rec', type=float, default=1) parser.add_argument('--lambda_lwf_label', type=float, default=1) parser.add_argument('--lambda_lwf_unlabel', type=float, default=1) parser.add_argument('--lambda_lwf_sky', type=float, default=1) parser.add_argument('--lambda_tv', type=float, default=1e-4) opt = parser.parse_known_args()[0] device_ids = [Id for Id in range(torch.cuda.device_count())] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") crop_size = [opt.crop_size, opt.crop_size] net = load_model(opt.backbone, opt.pretrain_model_dir, device, device_ids) net_o = copy.deepcopy(net) net_o.eval() optimizer = torch.optim.Adam(net.parameters(), lr=opt.lr) print('Begin DataLoader!') train_data_loader = DataLoader( ConcatDataset( TrainData(crop_size, opt.label_dir), # synthetic RealTrainData_CLAHE(crop_size, opt.unlabel_dir) # real #RealTrainData(crop_size, unlabel_data_dir) #RealTrainData_pseudo_gt(crop_size, unlabel_data_dir_pseudo_gt) ), batch_size=opt.train_batch_size, shuffle=False, num_workers=opt.num_workers, drop_last=True) val_data_loader = DataLoader( ValData(opt.val_dir), batch_size=opt.val_batch_size, shuffle=False, num_workers=opt.num_workers) print('Dataloader Done') train_psnr = 0 loss_f = energy_dc_loss() loss_f2 = energy_bc_loss() loss_f3 = energy_cap_loss() for epoch in range(opt.num_epochs): psnr_list = [] start_time = time.time() adjust_learning_rate(optimizer, epoch, category=opt.category) for batch_id, (label_train_data, unlabel_train_data) in enumerate(train_data_loader): # --- load data --- # label_haze, label_gt = label_train_data unlabel_haze, unlabel_gt, haze_name = unlabel_train_data unlabel_haze = unlabel_haze.to(device) unlabel_gt = unlabel_gt.to(device) label_haze = label_haze.to(device) label_gt = label_gt.to(device) # --- train --- # optimizer.zero_grad() net.train() out, J_label, T_label, _, _ = net(label_haze) out_o, J_label_o, T_label_o, _, _ = net_o(label_haze) out1, J, T, A, I = net(unlabel_haze) out1_o, J_1, T_o, _, _ = net_o(unlabel_haze) I2 = T * unlabel_gt + (1 - T) * A # --- losses --- # #dc_loss = DCLoss(J, 35) bc_loss = bright_channel(unlabel_haze, T) energy_dc_loss = loss_f(unlabel_haze, T) #tv_loss = tv_loss_f()(J) rec_loss = F.smooth_l1_loss(I, unlabel_haze) CLAHE_loss = F.smooth_l1_loss(I2, unlabel_haze) #CLAHE_loss = F.smooth_l1_loss(J, unlabel_gt) #rec3_loss = F.smooth_l1_loss(J, unlabel_gt) lwf_loss_label = F.smooth_l1_loss(out, out_o) lwf_loss_unlabel = F.smooth_l1_loss(out1, out1_o) lwf_loss_sky = lwf_sky(unlabel_haze, J, J_1) loss = opt.lambda_rec * rec_loss + opt.lambda_lwf_label * lwf_loss_label\ + opt.lambda_lwf_unlabel * lwf_loss_unlabel + opt.lambda_lwf_sky * lwf_loss_sky\ + opt.lambda_bc * bc_loss + opt.lambda_dc * energy_dc_loss\ + opt.lambda_CLAHE * CLAHE_loss #loss = opt.lambda_rec * rec_loss\ # + opt.lambda_bc * bc_loss + opt.lambda_dc * energy_dc_loss\ # + opt.lambda_CLAHE * CLAHE_loss loss.backward() optimizer.step() if not (batch_id % opt.print_freq): print('Epoch: {}, Iteration: {}, Loss: {}'.format(epoch, batch_id, loss)) # print('Epoch: {}, Iteration: {}, Loss: {}, energy_dc: {}, energy_bc: {}'.format(epoch, batch_id, loss, energy_cap_loss, energy_bc_loss)) # --- save model --- # torch.save(net.state_dict(), '/output/{}_epoch{}.pth'.format(opt.backbone, epoch)) #torch.save(net.state_dict(), '/code/{}_epoch{}.pth'.format(opt.backbone, epoch)) # --- Use the evaluation model in testing --- # net.eval() val_psnr, val_ssim = validation(net, opt.backbone, val_data_loader, device, opt.category) one_epoch_time = time.time() - start_time print_log(epoch+1, opt.num_epochs, one_epoch_time, train_psnr, val_psnr, val_ssim, opt.category) # --- output test images --- # generate_test_images(net, TestData, opt.num_epochs, (0, opt.num_epochs - 1))
37.772455
152
0.675491
466e800a421ac009f0d81562ca0ff4ac1685b0f8
834
py
Python
detector/settings.py
gleseur/room-status
f6804618b83a96d85dbc6bf92e4a8f4efa48003e
[ "MIT" ]
null
null
null
detector/settings.py
gleseur/room-status
f6804618b83a96d85dbc6bf92e4a8f4efa48003e
[ "MIT" ]
null
null
null
detector/settings.py
gleseur/room-status
f6804618b83a96d85dbc6bf92e4a8f4efa48003e
[ "MIT" ]
null
null
null
u""" Here we define the settings for the detection """ from __future__ import unicode_literals import local_settings DETECTION_PAIRS = { "male": { "room_id": 1, # To communicate with Meteor API "pir": 7, "light": 17, "free_time": 30, # time in seconds after which we deem the room freed "lock_time": 1, # time in seconds before which we deem there can be someone else in the room }, "female": { "room_id": 2, # To communicate with Meteor API "pir": 8, "light": 23, "free_time": 30, # time in seconds after which we deem the room freed "lock_time": 1, # time in seconds before which we deem there can be someone else in the room } } METEOR_API_URL = "http://wc-status.meteor.com" METEOR_PASSWORD = local_settings.METEOR_PASSWORD
29.785714
101
0.639089
f16b84cb4b2c268bcb742db09aa83e3e165a9c8c
4,610
py
Python
src/spn/algorithms/CnetStructureLearning.py
felixdivo/SPFlow
682f044751145915680c6c82f0aa347e464620de
[ "Apache-2.0" ]
null
null
null
src/spn/algorithms/CnetStructureLearning.py
felixdivo/SPFlow
682f044751145915680c6c82f0aa347e464620de
[ "Apache-2.0" ]
null
null
null
src/spn/algorithms/CnetStructureLearning.py
felixdivo/SPFlow
682f044751145915680c6c82f0aa347e464620de
[ "Apache-2.0" ]
null
null
null
""" Created on Ocotber 27, 2018 @author: Nicola Di Mauro """ import logging from collections import deque from spn.algorithms.StructureLearning import Operation, default_slicer import logging logger = logging.getLogger(__name__) try: from time import perf_counter except: from time import time perf_counter = time import numpy as np from spn.algorithms.TransformStructure import Prune from spn.algorithms.Validity import is_valid from spn.structure.Base import Product, Sum, assign_ids import multiprocessing import os cpus = max(1, os.cpu_count() - 2) # - int(os.getloadavg()[2]) # pool = multiprocessing.Pool(processes=cpus) def get_next_operation_cnet(min_instances_slice=100, min_features_slice=1): def next_operation_cnet(data, scope): minimalFeatures = len(scope) == min_features_slice minimalInstances = data.shape[0] <= min_instances_slice if minimalFeatures or minimalInstances: return Operation.CREATE_LEAF, None else: return Operation.CONDITIONING, None return next_operation_cnet def learn_structure_cnet( dataset, ds_context, conditioning, create_leaf, next_operation_cnet=get_next_operation_cnet(), initial_scope=None, data_slicer=default_slicer, ): assert dataset is not None assert ds_context is not None assert create_leaf is not None assert next_operation_cnet is not None root = Product() root.children.append(None) if initial_scope is None: initial_scope = list(range(dataset.shape[1])) tasks = deque() tasks.append((dataset, root, 0, initial_scope)) while tasks: local_data, parent, children_pos, scope = tasks.popleft() operation, op_params = next_operation_cnet(local_data, scope) logging.debug("OP: {} on slice {} (remaining tasks {})".format(operation, local_data.shape, len(tasks))) if operation == Operation.CONDITIONING: from spn.algorithms.splitting.Base import split_data_by_clusters conditioning_start_t = perf_counter() col_conditioning, found_conditioning = conditioning(local_data) if not found_conditioning: node = create_leaf(local_data, ds_context, scope) parent.children[children_pos] = node continue clusters = (local_data[:, col_conditioning] == 1).astype(int) data_slices = split_data_by_clusters(local_data, clusters, scope, rows=True) node = Sum() node.scope.extend(scope) parent.children[children_pos] = node for data_slice, scope_slice, proportion in data_slices: assert isinstance(scope_slice, list), "slice must be a list" node.weights.append(proportion) product_node = Product() node.children.append(product_node) node.children[-1].scope.extend(scope) right_data_slice = np.hstack( (data_slice[:, :col_conditioning], data_slice[:, (col_conditioning + 1) :]) ).reshape(data_slice.shape[0], data_slice.shape[1] - 1) product_node.children.append(None) tasks.append( ( right_data_slice, product_node, len(product_node.children) - 1, scope_slice[:col_conditioning] + scope_slice[col_conditioning + 1 :], ) ) left_data_slice = data_slice[:, col_conditioning].reshape(data_slice.shape[0], 1) product_node.children.append(None) tasks.append( (left_data_slice, product_node, len(product_node.children) - 1, [scope_slice[col_conditioning]]) ) conditioning_end_t = perf_counter() logging.debug("\t\tconditioning (in {:.5f} secs)".format(conditioning_end_t - conditioning_start_t)) continue elif operation == Operation.CREATE_LEAF: cltree_start_t = perf_counter() node = create_leaf(local_data, ds_context, scope) parent.children[children_pos] = node cltree_end_t = perf_counter() else: raise Exception("Invalid operation: " + operation) node = root.children[0] assign_ids(node) valid, err = is_valid(node) assert valid, "invalid spn: " + err node = Prune(node) valid, err = is_valid(node) assert valid, "invalid spn: " + err return node
31.360544
116
0.634707
e2a9da298a21566d7596e287cf46cfe9590b22a5
3,744
py
Python
examples/tensorflow2_keras_mnist.py
hcyang99/horovod
825cc197468548da47dcd38872d5b4ba6e6a125b
[ "Apache-2.0" ]
2
2020-08-31T18:52:20.000Z
2020-09-01T00:13:41.000Z
examples/tensorflow2_keras_mnist.py
kyocen/horovod
e9b1e228ff92eb7f65d9aea2d36f23b327df28bd
[ "Apache-2.0" ]
null
null
null
examples/tensorflow2_keras_mnist.py
kyocen/horovod
e9b1e228ff92eb7f65d9aea2d36f23b327df28bd
[ "Apache-2.0" ]
3
2021-05-29T06:12:49.000Z
2022-02-24T06:34:59.000Z
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import horovod.tensorflow.keras as hvd # Horovod: initialize Horovod. hvd.init() # Horovod: pin GPU to be used to process local rank (one GPU per process) gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') (mnist_images, mnist_labels), _ = \ tf.keras.datasets.mnist.load_data(path='mnist-%d.npz' % hvd.rank()) dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[..., tf.newaxis] / 255.0, tf.float32), tf.cast(mnist_labels, tf.int64)) ) dataset = dataset.repeat().shuffle(10000).batch(128) mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, [3, 3], activation='relu'), tf.keras.layers.Conv2D(64, [3, 3], activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) # Horovod: adjust learning rate based on number of GPUs. scaled_lr = 0.001 * hvd.size() opt = tf.optimizers.Adam(scaled_lr) # Horovod: add Horovod DistributedOptimizer. opt = hvd.DistributedOptimizer(opt) # Horovod: Specify `experimental_run_tf_function=False` to ensure TensorFlow # uses hvd.DistributedOptimizer() to compute gradients. mnist_model.compile(loss=tf.losses.SparseCategoricalCrossentropy(), optimizer=opt, metrics=['accuracy'], experimental_run_tf_function=False) callbacks = [ # Horovod: broadcast initial variable states from rank 0 to all other processes. # This is necessary to ensure consistent initialization of all workers when # training is started with random weights or restored from a checkpoint. hvd.callbacks.BroadcastGlobalVariablesCallback(0), # Horovod: average metrics among workers at the end of every epoch. # # Note: This callback must be in the list before the ReduceLROnPlateau, # TensorBoard or other metrics-based callbacks. hvd.callbacks.MetricAverageCallback(), # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during # the first three epochs. See https://arxiv.org/abs/1706.02677 for details. hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3, initial_lr=scaled_lr, verbose=1), ] # Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them. if hvd.rank() == 0: callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5')) # Horovod: write logs on worker 0. verbose = 1 if hvd.rank() == 0 else 0 # Train the model. # Horovod: adjust number of steps based on number of GPUs. mnist_model.fit(dataset, steps_per_epoch=500 // hvd.size(), callbacks=callbacks, epochs=24, verbose=verbose)
41.142857
108
0.710203
0555019766ae773c3ea9c6c4009bd9ff9f064d74
460
py
Python
project-master/proj01/proj01/proj01.py
dstingley22/project
6557409ae149d24791c8f2da4f8d7b9be62c8012
[ "MIT" ]
null
null
null
project-master/proj01/proj01/proj01.py
dstingley22/project
6557409ae149d24791c8f2da4f8d7b9be62c8012
[ "MIT" ]
null
null
null
project-master/proj01/proj01/proj01.py
dstingley22/project
6557409ae149d24791c8f2da4f8d7b9be62c8012
[ "MIT" ]
null
null
null
# Name:Damian Stingley # Date:6/19/17 # proj01: A Simple Program # This program asks the user for his/her name and age. # Then, it prints a sentence that says when the user will turn 100. # If you complete extensions, describe your extensions here! name=raw_input('Enter your name ') age = int(raw_input('How old are you ')) print(2017-age+100) if age == 10: print "you're 10" elif age == 20: print "you're 20" else: print "you're not 10 or 20."
25.555556
67
0.693478
d746bc226f2b6e97930b078db84a7d27ad3e8ba4
3,131
py
Python
cellular_automata.py
ferakon/elementary-cellular-automata-py
4dc14ef635c8ffd7faab741a65ea6a633c351f30
[ "MIT" ]
null
null
null
cellular_automata.py
ferakon/elementary-cellular-automata-py
4dc14ef635c8ffd7faab741a65ea6a633c351f30
[ "MIT" ]
null
null
null
cellular_automata.py
ferakon/elementary-cellular-automata-py
4dc14ef635c8ffd7faab741a65ea6a633c351f30
[ "MIT" ]
null
null
null
"""Simple code for a Wolfram elementary cellular automata in python""" import os import time import numpy as np from skimage.io import imsave def define_rule_sets(set_size): """Find every possible rule for given set size""" rule_sets = [] for n in range(1<<set_size): s = bin(n)[2:] s = '0'*(set_size-len(s))+s rule_sets.append((list(map(int, list(s))))) return rule_sets def apply_rules(l, m, r, rules): """Apply selected rule to cell Apply rule to cell given its current state m and neighbours states l and r. Args: l: left neighbour cell state. m: current cell state. r: right neighbour cell state. rules: array current rule. """ if l == 1 and m == 1 and r == 1: return rules[0] if l == 1 and m == 1 and r == 0: return rules[1] if l == 1 and m == 0 and r == 1: return rules[2] if l == 1 and m == 0 and r == 0: return rules[3] if l == 0 and m == 1 and r == 1: return rules[4] if l == 0 and m == 1 and r == 0: return rules[5] if l == 0 and m == 0 and r == 1: return rules[6] if l == 0 and m == 0 and r == 0: return rules[7] def update_ca(current, rules): """Get next ca state given current state Get the next generations state from the current cell map for a specified rule. Args: current: array of current cell states. rules: array current rule. """ next_generation = np.ndarray([current.size]) i = 0 while i < current.size: if i == 0: left = current[map_size-1] else: left = current[i-1] me = current[i] if i == map_size-1: right = current[0] else: right = current[i+1] next_generation[i] = apply_rules(left, me, right, rules) i+=1 return next_generation def run_ca(generations, map_size, rule_sets): """Run the CA Run CA for a number of generations for all possible rules, and save each rule image. Args: generations: int number of generations to iterate. map_size: int number of cells in each generation. rule_sets: list of rules to implement. """ final_img = np.ndarray((map_size, generations)).astype(np.uint8) rule_n = 0 for rs in rule_sets: cell_map = np.zeros([map_size]) cell_map[int(map_size/2)] = 1 for r in range(generations): final_img[:,r] = cell_map[:] final_img[final_img == 1] = 255 #print(cell_map) #time.sleep(0.1) next_generation = update_ca(cell_map, rs) cell_map[:] = next_generation[:] imsave(os.path.join('outputs','{0}{1}'.format(rule_n,'_ca.png')), final_img.T) rule_n+=1 if __name__ == '__main__': generations = 100 map_size = 100 rule_sets = define_rule_sets(8) run_ca(generations, map_size, rule_sets)
24.084615
86
0.547429
2aa3848cec961bd31440d2a74cc81278c17bdfd9
2,955
py
Python
paramak/parametric_components/port_cutters_rectangular.py
zmarkan/paramak
ecf9a46394adb4d6bb5744000ec6e2f74c30f2ba
[ "MIT" ]
9
2019-12-28T16:48:49.000Z
2020-05-20T13:38:49.000Z
paramak/parametric_components/port_cutters_rectangular.py
zmarkan/paramak
ecf9a46394adb4d6bb5744000ec6e2f74c30f2ba
[ "MIT" ]
8
2019-08-23T10:17:19.000Z
2020-05-21T18:47:22.000Z
paramak/parametric_components/port_cutters_rectangular.py
zmarkan/paramak
ecf9a46394adb4d6bb5744000ec6e2f74c30f2ba
[ "MIT" ]
1
2020-05-07T16:14:26.000Z
2020-05-07T16:14:26.000Z
from typing import Optional from paramak import ExtrudeStraightShape class PortCutterRectangular(ExtrudeStraightShape): """Creates an extruded shape with a rectangular section that is used to cut other components (eg. blanket, vessel,..) in order to create ports. Args: height: height (cm) of the port cutter. width: width (cm) of the port cutter. distance: extruded distance (cm) of the port cutter. center_point: Center point of the port cutter. Defaults to (0, 0). workplane: workplane in which the port cutters are created. Defaults to "ZY". rotation_axis: axis around which the port cutters are rotated and placed. Defaults to "Z". extrusion_start_offset (float, optional): the distance between 0 and the start of the extrusion. Defaults to 1.. fillet_radius (float, optional): If not None, radius (cm) of fillets added to edges orthogonal to the Z direction. Defaults to None. name (str, optional): defaults to "rectangular_port_cutter". """ def __init__( self, height: float, width: float, distance: float, center_point: Optional[tuple] = (0, 0), workplane: Optional[str] = "ZY", rotation_axis: Optional[str] = "Z", extrusion_start_offset: Optional[float] = 1., fillet_radius: Optional[float] = None, name: Optional[str] = "rectangular_port_cutter", **kwargs ): super().__init__( workplane=workplane, rotation_axis=rotation_axis, extrusion_start_offset=extrusion_start_offset, extrude_both=False, name=name, distance=distance, **kwargs ) self.height = height self.width = width self.center_point = center_point self.fillet_radius = fillet_radius def find_points(self): if self.workplane[0] < self.workplane[1]: parameter_1 = self.width parameter_2 = self.height else: parameter_1 = self.height parameter_2 = self.width points = [ (-parameter_1 / 2, parameter_2 / 2), (parameter_1 / 2, parameter_2 / 2), (parameter_1 / 2, -parameter_2 / 2), (-parameter_1 / 2, -parameter_2 / 2), ] points = [(e[0] + self.center_point[0], e[1] + self.center_point[1]) for e in points] self.points = points def add_fillet(self, solid): if "X" not in self.workplane: filleting_edge = "|X" if "Y" not in self.workplane: filleting_edge = "|Y" if "Z" not in self.workplane: filleting_edge = "|Z" if self.fillet_radius is not None and self.fillet_radius != 0: solid = solid.edges(filleting_edge).fillet(self.fillet_radius) return solid
33.965517
79
0.595939
19a58188c483d65481b9bd9e03b914c4366122c2
291
py
Python
contact_app/contact_app/doctype/booking/booking.py
victor-abz/app-mis-with-frappe
2b4a08606244368c16f980e88e5c6fdb4903d9dc
[ "MIT" ]
null
null
null
contact_app/contact_app/doctype/booking/booking.py
victor-abz/app-mis-with-frappe
2b4a08606244368c16f980e88e5c6fdb4903d9dc
[ "MIT" ]
null
null
null
contact_app/contact_app/doctype/booking/booking.py
victor-abz/app-mis-with-frappe
2b4a08606244368c16f980e88e5c6fdb4903d9dc
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2020, Abizeyimana Victor and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.website.website_generator import WebsiteGenerator class Booking(WebsiteGenerator): pass
26.454545
61
0.797251
87036694ccdac0fff5114da35b65ea9bc64dc633
1,283
py
Python
djangocms_teaser/models.py
sbahri81/djangocms-teaser
b3aa0e635244b7a0e3b19ce544c04f818cb24fd0
[ "BSD-3-Clause" ]
5
2015-08-23T05:09:10.000Z
2018-05-07T07:28:38.000Z
djangocms_teaser/models.py
sbahri81/djangocms-teaser
b3aa0e635244b7a0e3b19ce544c04f818cb24fd0
[ "BSD-3-Clause" ]
6
2015-07-08T10:02:55.000Z
2018-05-18T19:01:18.000Z
djangocms_teaser/models.py
sbahri81/djangocms-teaser
b3aa0e635244b7a0e3b19ce544c04f818cb24fd0
[ "BSD-3-Clause" ]
19
2015-02-26T12:34:22.000Z
2021-09-03T14:00:58.000Z
# -*- coding: utf-8 -*- from django.db import models from django.utils.translation import ugettext_lazy as _ from cms.models import CMSPlugin, Page try: from cms.models import get_plugin_media_path except ImportError: def get_plugin_media_path(instance, filename): """ See cms.models.pluginmodel.get_plugin_media_path on django CMS 3.0.4+ for information """ return instance.get_media_path(filename) from cms.utils.compat.dj import python_2_unicode_compatible @python_2_unicode_compatible class Teaser(CMSPlugin): """ A Teaser """ title = models.CharField(_("title"), max_length=255) image = models.ImageField( _("image"), upload_to=get_plugin_media_path, blank=True, null=True) page_link = models.ForeignKey( Page, verbose_name=_("page"), help_text=_("If present image will be clickable"), blank=True, null=True, limit_choices_to={'publisher_is_draft': True}) url = models.CharField( _("link"), max_length=255, blank=True, null=True, help_text=_("If present image will be clickable.")) description = models.TextField(_("description"), blank=True, null=True) def __str__(self): return self.title search_fields = ('description',)
29.159091
77
0.687451
99144518cfcd0350e9b8ea8454f9a074ca985cdd
7,505
py
Python
ex4_part1.py
arkushin/MIP5
38b5d660087d7b7762d6f311801495c20e85c0a3
[ "MIT" ]
null
null
null
ex4_part1.py
arkushin/MIP5
38b5d660087d7b7762d6f311801495c20e85c0a3
[ "MIT" ]
null
null
null
ex4_part1.py
arkushin/MIP5
38b5d660087d7b7762d6f311801495c20e85c0a3
[ "MIT" ]
null
null
null
from PIL import Image import matplotlib.pyplot as plt from utils import * from skimage import transform as tf import copy ######################################################################################################################## # USER GUIDE: # The given images should be in the same directory as the .py file, or full path should be provided # main function can be uncommented at the end of the file for running the different functions ######################################################################################################################## def display_matches(BL_im, FU_im, BL_points, FU_points, inliers=[]): """ A function that displays the two given images and plots the matching points in each of the corresponding images. """ fig = plt.figure() fig.add_subplot(1, 2, 1) plt.imshow(BL_im) plt.title('BL01') for point in range(len(BL_points)): if len(inliers) > 0: if point in inliers: plt.scatter(BL_points[point, 0], BL_points[point, 1], marker='o', c='r') else: plt.scatter(BL_points[point, 0], BL_points[point, 1], marker='o', c='b') plt.annotate(str(point + 1), (BL_points[point, 0], BL_points[point, 1])) continue plt.scatter(BL_points[point, 0], BL_points[point, 1], marker='o') plt.annotate(str(point + 1), (BL_points[point, 0], BL_points[point, 1])) fig.add_subplot(1, 2, 2) plt.imshow(FU_im) plt.title('FU01') for point in range(len(FU_points)): if len(inliers) > 0: if point in inliers: plt.scatter(FU_points[point, 0], FU_points[point, 1], marker='o', c='r') else: plt.scatter(FU_points[point, 0], FU_points[point, 1], marker='o', c='b') plt.annotate(str(point + 1), (FU_points[point, 0], FU_points[point, 1])) continue plt.scatter(FU_points[point, 0], FU_points[point, 1], marker='o') plt.annotate(str(point + 1), (FU_points[point, 0], FU_points[point, 1])) plt.show() def calcPointBasedReg(BLPoints, FUPoints): """ A funciton that calculates the rigid transformation between the given two sets of points using SVD calculation """ n = len(BLPoints) # compute the centroid of each points set: BL_centroid = [np.mean(BLPoints[:, 0]), np.mean(BLPoints[:, 1])] FU_centroid = [np.mean(FUPoints[:, 0]), np.mean(FUPoints[:, 1])] # compute the 2x2 covariance matrix: X = FUPoints - FU_centroid W = np.eye(n) / n # create a diagonal matrix with equal wights for all points Y = BLPoints - BL_centroid S = np.matmul(np.matmul(X.T, W), Y) # compute the SVD and find the rotation: u, sigma, vh = np.linalg.svd(S) s_mat = np.eye(2) s_mat[1, 1] = np.linalg.det(np.matmul(vh.T, u.T)) R = np.matmul(np.matmul(vh.T, s_mat), u.T) # find the optimal translation: t = BL_centroid - np.dot(R, FU_centroid) rigidReg = np.zeros((3, 3)) rigidReg[0:2, 0:2] = R rigidReg[0, 2] = t[0] rigidReg[1, 2] = t[1] rigidReg[2, 2] = 1 return rigidReg def apply_registration(points, rigidReg): """ A function that receives an array with points and transforms the points using the given rigid registration :param points: The points that should be transformed, as a [N,2] array :param rigidReg: The registration that should be used for transforming the points :return: An array of shape [N, 2] with the coordinates of 'points' after the transformation """ # transform the points into homogeneous points: n = len(points) homog_points = np.ones((3, n)) # create homogeneous representation to calculate the transformation homog_points[0:2, :] = points.T return np.matmul(rigidReg, homog_points)[0:n - 1, :].T # todo: check about return value of homogeneous coordinates def calcDist(BL_Points, FU_Points, rigidReg): """ A function that calculates the distance of every matching point between FUPoints and BLPoints, by first applying the registration of FUPoints """ est_BL = apply_registration(FU_Points, rigidReg) # todo: check about the shape! return np.power((BL_Points[:, 0] - est_BL[:, 0]) ** 2 + (BL_Points[:, 1] - est_BL[:, 1]) ** 2, .5) def display_registration(BL_im, FU_im, BLPoints, FUPoints): """ A function that receives two images and the matching points between them, calculates the registration between them and then, moves one towards the other and displays them together. """ BL_copy = copy.deepcopy(BL_im) rigidReg = calcPointBasedReg(BLPoints, FUPoints) warped_im = tf.warp(FU_im, np.linalg.inv(rigidReg)) kernel = np.ones((5, 5), np.float32) / 25 warped_im = cv2.filter2D(warped_im, -1, kernel) warped_im[warped_im < 0.3] = 0 warped_im[warped_im > 0] = 1 FU_im = cv2.filter2D(FU_im, -1, kernel) FU_im[FU_im < 0.25 * 255] = 0 FU_im[FU_im > 0] = 1 fig = plt.figure() fig.add_subplot(1, 3, 1) plt.imshow(BL_copy) plt.title('original BL image') fig.add_subplot(1, 3, 2) BL_copy[FU_im == 0] = (255, 56, 56) plt.imshow(BL_copy) plt.title('before registration') fig.add_subplot(1, 3, 3) BL_im[warped_im == 0] = (255, 56, 56) # mark the edges of the warped image in red plt.imshow(BL_im) plt.title('after registration') plt.show() def calcRobustPointBasedReg(FUPoints, BLPoints): return ransac(BLPoints, FUPoints, calcPointBasedReg, calcDist, minPtNum=3, iterNum=100, thDist=15, thInlrRatio=0.1) ######################################################################################################################## # UNCOMMENT main and the functions to execute the different steps in the exercise ######################################################################################################################## # if __name__ == '__main__': # FU_im_orig = Image.open('FU01.tif') # FU_im = np.array(FU_im_orig) # BL_im_orig = Image.open('BL01.tif') # BL_im = np.array(BL_im_orig) # BL_points, FU_points = getPoints('with_outliers') # change here between 'no/with _outliers' # rigidReg = calcPointBasedReg(BL_points, FU_points) # Question 1 # UNCOMMENT: to display the graph of the matches between the two images # display_matches(BL_im, FU_im, BL_points, FU_points) # Question 3 # UNCOMMENT: to calculate the mean distance in pixels # dist_vec = calcDist(BL_points, FU_points, rigidReg) # RMSE = np.mean(dist_vec) # print('RMSE: ', RMSE) # Question 4 # UNCOMMENT: to display the images before and after registration # display_registration(BL_im, FU_im[:, :, 0], BL_points, FU_points) # Question 7 # UNCOMMENT: to repeat steps 1-4 when using the robust function. Outliers status should be 'with_outliers'. # f, inliers = calcRobustPointBasedReg(BL_points, FU_points) # rigidReg = calcPointBasedReg(BL_points[inliers, :], FU_points[inliers, :]) # display_matches(BL_im, FU_im, BL_points, FU_points, inliers) # dist_vec = calcDist(BL_points[inliers, :], FU_points[inliers, :], rigidReg) # RMSE = np.mean(dist_vec) # print('RMSE: ', RMSE) # display_registration(BL_im, FU_im[:, :, 0], BL_points[inliers, :], FU_points[inliers, :])
42.40113
121
0.602265
24e85555790f65c2bfac1335348a0c18fb0f985b
20,551
py
Python
log_complete_bcl2/model_629.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete_bcl2/model_629.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete_bcl2/model_629.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 157250.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 328000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
95.143519
798
0.804146
91328bfd5e049e074b14c8949cfef8ac0eb4a1ad
15,170
py
Python
lib/exchange_rate.py
argentumproject/electrum
e76622bc95b7ace5be3a7e54ed2416001a41bc20
[ "MIT" ]
5
2017-06-17T16:50:49.000Z
2021-03-16T14:19:27.000Z
lib/exchange_rate.py
argentumproject/electrum
e76622bc95b7ace5be3a7e54ed2416001a41bc20
[ "MIT" ]
1
2017-02-19T23:10:56.000Z
2017-02-19T23:10:56.000Z
lib/exchange_rate.py
argentumproject/electrum
e76622bc95b7ace5be3a7e54ed2416001a41bc20
[ "MIT" ]
15
2017-04-02T17:25:55.000Z
2021-03-16T14:19:27.000Z
from datetime import datetime import inspect import requests import sys from threading import Thread import time import traceback import csv from decimal import Decimal from bitcoin import COIN from i18n import _ from util import PrintError, ThreadJob from util import format_satoshis # See https://en.wikipedia.org/wiki/ISO_4217 CCY_PRECISIONS = {'BHD': 3, 'BIF': 0, 'BYR': 0, 'CLF': 4, 'CLP': 0, 'CVE': 0, 'DJF': 0, 'GNF': 0, 'IQD': 3, 'ISK': 0, 'JOD': 3, 'JPY': 0, 'KMF': 0, 'KRW': 0, 'KWD': 3, 'LYD': 3, 'MGA': 1, 'MRO': 1, 'OMR': 3, 'PYG': 0, 'RWF': 0, 'TND': 3, 'UGX': 0, 'UYI': 0, 'VND': 0, 'VUV': 0, 'XAF': 0, 'XAU': 4, 'XOF': 0, 'XPF': 0} class ExchangeBase(PrintError): def __init__(self, on_quotes, on_history): self.history = {} self.quotes = {} self.on_quotes = on_quotes self.on_history = on_history def get_json(self, site, get_string): # APIs must have https url = ''.join(['https://', site, get_string]) response = requests.request('GET', url, headers={'User-Agent' : 'Electrum'}) return response.json() def get_csv(self, site, get_string): url = ''.join(['https://', site, get_string]) response = requests.request('GET', url, headers={'User-Agent' : 'Electrum'}) reader = csv.DictReader(response.content.split('\n')) return list(reader) def name(self): return self.__class__.__name__ def update_safe(self, ccy): try: self.print_error("getting fx quotes for", ccy) self.quotes = self.get_rates(ccy) self.print_error("received fx quotes") except BaseException as e: self.print_error("failed fx quotes:", e) self.on_quotes() def update(self, ccy): t = Thread(target=self.update_safe, args=(ccy,)) t.setDaemon(True) t.start() def get_historical_rates_safe(self, ccy): try: self.print_error("requesting fx history for", ccy) self.history[ccy] = self.historical_rates(ccy) self.print_error("received fx history for", ccy) self.on_history() except BaseException as e: self.print_error("failed fx history:", e) def get_historical_rates(self, ccy): result = self.history.get(ccy) if not result and ccy in self.history_ccys(): t = Thread(target=self.get_historical_rates_safe, args=(ccy,)) t.setDaemon(True) t.start() return result def history_ccys(self): return [] def historical_rate(self, ccy, d_t): return self.history.get(ccy, {}).get(d_t.strftime('%Y-%m-%d')) def get_currencies(self): rates = self.get_rates('') return [str(a) for (a, b) in rates.iteritems() if b is not None] class BitcoinAverage(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.bitcoinaverage.com', '/ticker/global/all') return dict([(r, Decimal(json[r]['last'])) for r in json if r != 'timestamp']) def history_ccys(self): return ['AUD', 'BRL', 'CAD', 'CHF', 'CNY', 'EUR', 'GBP', 'IDR', 'ILS', 'MXN', 'NOK', 'NZD', 'PLN', 'RON', 'RUB', 'SEK', 'SGD', 'USD', 'ZAR'] def historical_rates(self, ccy): history = self.get_csv('api.bitcoinaverage.com', "/history/%s/per_day_all_time_history.csv" % ccy) return dict([(h['DateTime'][:10], h['Average']) for h in history]) class BitcoinVenezuela(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.bitcoinvenezuela.com', '/') rates = [(r, json['BTC'][r]) for r in json['BTC'] if json['BTC'][r] is not None] # Giving NULL for LTC return dict(rates) def history_ccys(self): return ['ARS', 'EUR', 'USD', 'VEF'] def historical_rates(self, ccy): return self.get_json('api.bitcoinvenezuela.com', "/historical/index.php?coin=BTC")[ccy +'_BTC'] class BTCParalelo(ExchangeBase): def get_rates(self, ccy): json = self.get_json('btcparalelo.com', '/api/price') return {'VEF': Decimal(json['price'])} class Bitso(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.bitso.com', '/v2/ticker') return {'MXN': Decimal(json['last'])} class Bitmarket(ExchangeBase): def get_rates(self, ccy): json = self.get_json('www.bitmarket.pl', '/json/BTCPLN/ticker.json') return {'PLN': Decimal(json['last'])} class BitPay(ExchangeBase): def get_rates(self, ccy): json = self.get_json('bitpay.com', '/api/rates') return dict([(r['code'], Decimal(r['rate'])) for r in json]) class BitStamp(ExchangeBase): def get_rates(self, ccy): json = self.get_json('www.bitstamp.net', '/api/ticker/') return {'USD': Decimal(json['last'])} class BlockchainInfo(ExchangeBase): def get_rates(self, ccy): json = self.get_json('blockchain.info', '/ticker') return dict([(r, Decimal(json[r]['15m'])) for r in json]) class BTCChina(ExchangeBase): def get_rates(self, ccy): json = self.get_json('data.btcchina.com', '/data/ticker') return {'CNY': Decimal(json['ticker']['last'])} class Coinbase(ExchangeBase): def get_rates(self, ccy): json = self.get_json('coinbase.com', '/api/v1/currencies/exchange_rates') return dict([(r[7:].upper(), Decimal(json[r])) for r in json if r.startswith('btc_to_')]) class CoinDesk(ExchangeBase): def get_rates(self, ccy): dicts = self.get_json('api.coindesk.com', '/v1/bpi/supported-currencies.json') json = self.get_json('api.coindesk.com', '/v1/bpi/currentprice/%s.json' % ccy) ccys = [d['currency'] for d in dicts] result = dict.fromkeys(ccys) result[ccy] = Decimal(json['bpi'][ccy]['rate_float']) return result def history_starts(self): return { 'USD': '2012-11-30' } def history_ccys(self): return self.history_starts().keys() def historical_rates(self, ccy): start = self.history_starts()[ccy] end = datetime.today().strftime('%Y-%m-%d') # Note ?currency and ?index don't work as documented. Sigh. query = ('/v1/bpi/historical/close.json?start=%s&end=%s' % (start, end)) json = self.get_json('api.coindesk.com', query) return json['bpi'] class CoinMarketCap(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.coinmarketcap.com', '/v1/ticker/argentum/') return {'USD': Decimal(json['price_usd'])} class Coinsecure(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.coinsecure.in', '/v0/noauth/newticker') return {'INR': Decimal(json['lastprice'] / 100.0 )} class Unocoin(ExchangeBase): def get_rates(self, ccy): json = self.get_json('www.unocoin.com', 'trade?buy') return {'INR': Decimal(json)} class itBit(ExchangeBase): def get_rates(self, ccy): ccys = ['USD', 'EUR', 'SGD'] json = self.get_json('api.itbit.com', '/v1/markets/XBT%s/ticker' % ccy) result = dict.fromkeys(ccys) if ccy in ccys: result[ccy] = Decimal(json['lastPrice']) return result class Kraken(ExchangeBase): def get_rates(self, ccy): ccys = ['EUR', 'USD', 'CAD', 'GBP', 'JPY'] pairs = ['XBT%s' % c for c in ccys] json = self.get_json('api.kraken.com', '/0/public/Ticker?pair=%s' % ','.join(pairs)) return dict((k[-3:], Decimal(float(v['c'][0]))) for k, v in json['result'].items()) class LocalBitcoins(ExchangeBase): def get_rates(self, ccy): json = self.get_json('localbitcoins.com', '/bitcoinaverage/ticker-all-currencies/') return dict([(r, Decimal(json[r]['rates']['last'])) for r in json]) class Winkdex(ExchangeBase): def get_rates(self, ccy): json = self.get_json('winkdex.com', '/api/v0/price') return {'USD': Decimal(json['price'] / 100.0)} def history_ccys(self): return ['USD'] def historical_rates(self, ccy): json = self.get_json('winkdex.com', "/api/v0/series?start_time=1342915200") history = json['series'][0]['results'] return dict([(h['timestamp'][:10], h['price'] / 100.0) for h in history]) class MercadoBitcoin(ExchangeBase): def get_rates(self, ccy): json = self.get_json('api.bitvalor.com', '/v1/ticker.json') return {'BRL': Decimal(json['ticker_1h']['exchanges']['MBT']['last'])} class Bitcointoyou(ExchangeBase): def get_rates(self, ccy): json = self.get_json('bitcointoyou.com', "/API/ticker.aspx") return {'BRL': Decimal(json['ticker']['last'])} def history_ccys(self): return ['BRL'] class Bitvalor(ExchangeBase): def get_rates(self,ccy): json = self.get_json('api.bitvalor.com', '/v1/ticker.json') return {'BRL': Decimal(json['ticker_1h']['total']['last'])} class Foxbit(ExchangeBase): def get_rates(self,ccy): json = self.get_json('api.bitvalor.com', '/v1/ticker.json') return {'BRL': Decimal(json['ticker_1h']['exchanges']['FOX']['last'])} class NegocieCoins(ExchangeBase): def get_rates(self,ccy): json = self.get_json('api.bitvalor.com', '/v1/ticker.json') return {'BRL': Decimal(json['ticker_1h']['exchanges']['NEG']['last'])} def history_ccys(self): return ['BRL'] def dictinvert(d): inv = {} for k, vlist in d.iteritems(): for v in vlist: keys = inv.setdefault(v, []) keys.append(k) return inv def get_exchanges_and_currencies(): import os, json path = os.path.join(os.path.dirname(__file__), 'currencies.json') try: return json.loads(open(path, 'r').read()) except: pass d = {} is_exchange = lambda obj: (inspect.isclass(obj) and issubclass(obj, ExchangeBase) and obj != ExchangeBase) exchanges = dict(inspect.getmembers(sys.modules[__name__], is_exchange)) for name, klass in exchanges.items(): exchange = klass(None, None) try: d[name] = exchange.get_currencies() except: continue with open(path, 'w') as f: f.write(json.dumps(d, indent=4, sort_keys=True)) return d CURRENCIES = get_exchanges_and_currencies() def get_exchanges_by_ccy(history=True): if not history: return dictinvert(CURRENCIES) d = {} exchanges = CURRENCIES.keys() for name in exchanges: klass = globals()[name] exchange = klass(None, None) d[name] = exchange.history_ccys() return dictinvert(d) class FxThread(ThreadJob): def __init__(self, config, network): self.config = config self.network = network self.ccy = self.get_currency() self.history_used_spot = False self.ccy_combo = None self.hist_checkbox = None self.set_exchange(self.config_exchange()) def get_currencies(self, h): d = get_exchanges_by_ccy(h) return sorted(d.keys()) def get_exchanges_by_ccy(self, ccy, h): d = get_exchanges_by_ccy(h) return d.get(ccy, []) def ccy_amount_str(self, amount, commas): prec = CCY_PRECISIONS.get(self.ccy, 2) fmt_str = "{:%s.%df}" % ("," if commas else "", max(0, prec)) return fmt_str.format(round(amount, prec)) def run(self): # This runs from the plugins thread which catches exceptions if self.is_enabled(): if self.timeout ==0 and self.show_history(): self.exchange.get_historical_rates(self.ccy) if self.timeout <= time.time(): self.timeout = time.time() + 150 self.exchange.update(self.ccy) def is_enabled(self): return bool(self.config.get('use_exchange_rate')) def set_enabled(self, b): return self.config.set_key('use_exchange_rate', bool(b)) def get_history_config(self): return bool(self.config.get('history_rates')) def set_history_config(self, b): self.config.set_key('history_rates', bool(b)) def get_currency(self): '''Use when dynamic fetching is needed''' return self.config.get("currency", "EUR") def config_exchange(self): return self.config.get('use_exchange', 'BitcoinAverage') def show_history(self): return self.is_enabled() and self.get_history_config() and self.ccy in self.exchange.history_ccys() def set_currency(self, ccy): self.ccy = ccy self.config.set_key('currency', ccy, True) self.timeout = 0 # Because self.ccy changes self.on_quotes() def set_exchange(self, name): class_ = globals().get(name, BitcoinAverage) self.print_error("using exchange", name) if self.config_exchange() != name: self.config.set_key('use_exchange', name, True) self.exchange = class_(self.on_quotes, self.on_history) # A new exchange means new fx quotes, initially empty. Force # a quote refresh self.timeout = 0 def on_quotes(self): self.network.trigger_callback('on_quotes') def on_history(self): self.network.trigger_callback('on_history') def exchange_rate(self): '''Returns None, or the exchange rate as a Decimal''' rate = self.exchange.quotes.get(self.ccy) if rate: return Decimal(rate) def format_amount_and_units(self, btc_balance): rate = self.exchange_rate() return '' if rate is None else "%s %s" % (self.value_str(btc_balance, rate), self.ccy) def get_fiat_status_text(self, btc_balance): rate = self.exchange_rate() return _(" (No FX rate available)") if rate is None else " 1 ARG~%s %s" % (self.value_str(COIN, rate), self.ccy) def value_str(self, satoshis, rate): if satoshis is None: # Can happen with incomplete history return _("Unknown") if rate: value = Decimal(satoshis) / COIN * Decimal(rate) return "%s" % (self.ccy_amount_str(value, True)) return _("No data") def history_rate(self, d_t): rate = self.exchange.historical_rate(self.ccy, d_t) # Frequently there is no rate for today, until tomorrow :) # Use spot quotes in that case if rate is None and (datetime.today().date() - d_t.date()).days <= 2: rate = self.exchange.quotes.get(self.ccy) self.history_used_spot = True return rate def historical_value_str(self, satoshis, d_t): rate = self.history_rate(d_t) return self.value_str(satoshis, rate)
34.555809
121
0.594133
b450cc5e99cb9cbd0cbaf831b2d7fe7bc918c2ce
2,352
py
Python
components/expat/expat/expat/tests/udiffer.py
ebertn/esp-idf-nes
9dc7e9a258fd378d36408a1348253b373974b431
[ "Apache-2.0" ]
2
2020-06-23T08:05:58.000Z
2020-06-24T01:25:51.000Z
components/expat/expat/expat/tests/udiffer.py
ebertn/esp-idf-nes
9dc7e9a258fd378d36408a1348253b373974b431
[ "Apache-2.0" ]
2
2022-03-29T05:16:50.000Z
2022-03-29T05:16:50.000Z
vendors/espressif/esp-idf/components/expat/expat/expat/tests/udiffer.py
ictk-solution-dev/amazon-freertos
cc76512292ddfb70bba3030dbcb740ef3c6ead8b
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 # __ __ _ # ___\ \/ /_ __ __ _| |_ # / _ \\ /| '_ \ / _` | __| # | __// \| |_) | (_| | |_ # \___/_/\_\ .__/ \__,_|\__| # |_| XML parser # # Copyright (c) 2017 Expat development team # Licensed under the MIT license: # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. import argparse import difflib import sys def _read_lines(filename): try: with open(filename) as f: return f.readlines() except UnicodeDecodeError: with open(filename, encoding='utf_16') as f: return f.readlines() def main(): parser = argparse.ArgumentParser() parser.add_argument('first', metavar='FILE') parser.add_argument('second', metavar='FILE') config = parser.parse_args() first = _read_lines(config.first) second = _read_lines(config.second) diffs = list(difflib.unified_diff(first, second, fromfile=config.first, tofile=config.second)) if diffs: sys.stdout.writelines(diffs) sys.exit(1) if __name__ == '__main__': main()
37.333333
76
0.610969
62f31b609370a153a68a12d00d6e66391859a5a5
8,298
py
Python
labml_nn/diffusion/ddpm/vqvae.py
gqkc/annotated_deep_learning_paper_implementations
677a6e9dfa626ba825b5a123adb6c60d947b6a92
[ "MIT" ]
null
null
null
labml_nn/diffusion/ddpm/vqvae.py
gqkc/annotated_deep_learning_paper_implementations
677a6e9dfa626ba825b5a123adb6c60d947b6a92
[ "MIT" ]
null
null
null
labml_nn/diffusion/ddpm/vqvae.py
gqkc/annotated_deep_learning_paper_implementations
677a6e9dfa626ba825b5a123adb6c60d947b6a92
[ "MIT" ]
null
null
null
import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical, RelaxedOneHotCategorical import math class VQEmbeddingEMA(nn.Module): def __init__(self, latent_dim, num_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5): super(VQEmbeddingEMA, self).__init__() self.commitment_cost = commitment_cost self.decay = decay self.epsilon = epsilon embedding = torch.zeros(latent_dim, num_embeddings, embedding_dim) embedding.uniform_(-1/num_embeddings, 1/num_embeddings) self.register_buffer("embedding", embedding) self.register_buffer("ema_count", torch.zeros(latent_dim, num_embeddings)) self.register_buffer("ema_weight", self.embedding.clone()) def quantize(self, prior_logits: torch.Tensor) -> torch.Tensor: """ Parameters ---------- prior_logits: Logits computed by the trained prior, one hot encoded, with shape `(N, B, H, W, M)`. Returns ------- Quantized tensor with shape `(B, N*D, H, W)`. """ N, B, H, W, M = prior_logits.shape N, M_, D = self.embedding.size() C = N * D assert M == M_, f"Input and self embedding dimension mismtach, got {M} from input and {M_} from self." distances = prior_logits.view(N, B*H*W, M) indices = torch.argmin(distances, dim=-1) encodings = F.one_hot(indices, M).float() quantized = torch.gather(self.embedding, 1, indices.unsqueeze(-1).expand(-1, -1, D)) quantized = quantized.view(N, B, H, W, D) return quantized.permute(1, 0, 4, 2, 3).reshape(B, C, H, W) def forward(self, x, prior_logits=None): B, C, H, W = x.size() N, M, D = self.embedding.size() assert C == N * D x = x.view(B, N, D, H, W).permute(1, 0, 3, 4, 2) x_flat = x.detach().reshape(N, -1, D) distances = torch.baddbmm(torch.sum(self.embedding ** 2, dim=2).unsqueeze(1) + torch.sum(x_flat ** 2, dim=2, keepdim=True), x_flat, self.embedding.transpose(1, 2), alpha=-2.0, beta=1.0) # Save distances for export self.distances = distances.view(N, B, W, H, M) indices = torch.argmin(distances, dim=-1) encodings = F.one_hot(indices, M).float() quantized = torch.gather(self.embedding, 1, indices.unsqueeze(-1).expand(-1, -1, D)) quantized = quantized.view_as(x) if self.training: self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=1) n = torch.sum(self.ema_count, dim=-1, keepdim=True) self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n dw = torch.bmm(encodings.transpose(1, 2), x_flat) self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) e_latent_loss = F.mse_loss(x, quantized.detach()) loss = self.commitment_cost * e_latent_loss quantized = x + (quantized - x).detach() avg_probs = torch.mean(encodings, dim=1) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10), dim=-1)) return quantized.permute(1, 0, 4, 2, 3).reshape(B, C, H, W), loss, perplexity.sum() class VQEmbeddingGSSoft(nn.Module): def __init__(self, latent_dim, num_embeddings, embedding_dim): super(VQEmbeddingGSSoft, self).__init__() self.embedding = nn.Parameter(torch.Tensor(latent_dim, num_embeddings, embedding_dim)) nn.init.uniform_(self.embedding, -1/num_embeddings, 1/num_embeddings) def forward(self, x): B, C, H, W = x.size() N, M, D = self.embedding.size() assert C == N * D x = x.view(B, N, D, H, W).permute(1, 0, 3, 4, 2) x_flat = x.reshape(N, -1, D) distances = torch.baddbmm(torch.sum(self.embedding ** 2, dim=2).unsqueeze(1) + torch.sum(x_flat ** 2, dim=2, keepdim=True), x_flat, self.embedding.transpose(1, 2), alpha=-2.0, beta=1.0) distances = distances.view(N, B, H, W, M) dist = RelaxedOneHotCategorical(0.5, logits=-distances) if self.training: samples = dist.rsample().view(N, -1, M) else: samples = torch.argmax(dist.probs, dim=-1) samples = F.one_hot(samples, M).float() samples = samples.view(N, -1, M) quantized = torch.bmm(samples, self.embedding) quantized = quantized.view_as(x) KL = dist.probs * (dist.logits + math.log(M)) KL[(dist.probs == 0).expand_as(KL)] = 0 KL = KL.sum(dim=(0, 2, 3, 4)).mean() avg_probs = torch.mean(samples, dim=1) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10), dim=-1)) return quantized.permute(1, 0, 4, 2, 3).reshape(B, C, H, W), KL, perplexity.sum() class Residual(nn.Module): def __init__(self, channels): super(Residual, self).__init__() self.block = nn.Sequential( nn.ReLU(True), nn.Conv2d(channels, channels, 3, 1, 1, bias=False), nn.BatchNorm2d(channels), nn.ReLU(True), nn.Conv2d(channels, channels, 1, bias=False), nn.BatchNorm2d(channels) ) def forward(self, x): return x + self.block(x) class Encoder(nn.Module): def __init__(self, channels, latent_dim, embedding_dim): super(Encoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(3, channels, 4, 2, 1, bias=False), nn.BatchNorm2d(channels), nn.ReLU(True), nn.Conv2d(channels, channels, 4, 2, 1, bias=False), nn.BatchNorm2d(channels), Residual(channels), Residual(channels), nn.Conv2d(channels, latent_dim * embedding_dim, 1) ) def forward(self, x): return self.encoder(x) class Decoder(nn.Module): def __init__(self, channels, latent_dim, embedding_dim): super(Decoder, self).__init__() self.decoder = nn.Sequential( nn.Conv2d(latent_dim * embedding_dim, channels, 1, bias=False), nn.BatchNorm2d(channels), Residual(channels), Residual(channels), nn.ConvTranspose2d(channels, channels, 4, 2, 1, bias=False), nn.BatchNorm2d(channels), nn.ReLU(True), nn.ConvTranspose2d(channels, channels, 4, 2, 1, bias=False), nn.BatchNorm2d(channels), nn.ReLU(True), nn.Conv2d(channels, 3 * 256, 1) ) def forward(self, x): x = self.decoder(x) B, _, H, W = x.size() x = x.view(B, 3, 256, H, W).permute(0, 1, 3, 4, 2) dist = Categorical(logits=x) return dist class VQVAE(nn.Module): def __init__(self, channels, latent_dim, num_embeddings, embedding_dim): super(VQVAE, self).__init__() self.encoder = Encoder(channels, latent_dim, embedding_dim) self.codebook = VQEmbeddingEMA(latent_dim, num_embeddings, embedding_dim) self.decoder = Decoder(channels, latent_dim, embedding_dim) def forward(self, x): x = self.encoder(x) x, loss, perplexity = self.codebook(x) dist = self.decoder(x) return dist, loss, perplexity def decode(self, prior_logits): x = self.codebook.quantize(prior_logits=prior_logits) dist = self.decoder(x) return dist class GSSOFT(nn.Module): def __init__(self, channels, latent_dim, num_embeddings, embedding_dim): super(GSSOFT, self).__init__() self.encoder = Encoder(channels, latent_dim, embedding_dim) self.codebook = VQEmbeddingGSSoft(latent_dim, num_embeddings, embedding_dim) self.decoder = Decoder(channels, latent_dim, embedding_dim) def forward(self, x): x = self.encoder(x) x, KL, perplexity = self.codebook(x) dist = self.decoder(x) return dist, KL, perplexity
37.547511
115
0.591106
b6f01f36eeb3fc8152629687e30eb1f2de09ffe6
4,658
py
Python
llvm/tools/clang/tools/scan-build-py/tests/unit/test_intercept.py
vusec/typesan
831ca2af1a629e8ea93bb8c5b4215f12247b595c
[ "Apache-2.0" ]
30
2016-09-06T06:58:43.000Z
2021-12-23T11:59:38.000Z
llvm/tools/clang/tools/scan-build-py/tests/unit/test_intercept.py
vusec/typesan
831ca2af1a629e8ea93bb8c5b4215f12247b595c
[ "Apache-2.0" ]
1
2018-05-15T00:55:37.000Z
2018-05-15T00:55:37.000Z
llvm/tools/clang/tools/scan-build-py/tests/unit/test_intercept.py
vusec/typesan
831ca2af1a629e8ea93bb8c5b4215f12247b595c
[ "Apache-2.0" ]
17
2016-10-24T06:08:16.000Z
2022-02-18T17:27:14.000Z
# -*- coding: utf-8 -*- # The LLVM Compiler Infrastructure # # This file is distributed under the University of Illinois Open Source # License. See LICENSE.TXT for details. import libscanbuild.intercept as sut from . import fixtures import os.path class InterceptUtilTest(fixtures.TestCase): def test_is_compiler_call_filter(self): def test(command): return sut.is_compiler_call({'command': [command]}) self.assertTrue(test('clang')) self.assertTrue(test('clang-3.6')) self.assertTrue(test('clang++')) self.assertTrue(test('clang++-3.5.1')) self.assertTrue(test('cc')) self.assertTrue(test('c++')) self.assertTrue(test('gcc')) self.assertTrue(test('g++')) self.assertTrue(test('/usr/local/bin/gcc')) self.assertTrue(test('/usr/local/bin/g++')) self.assertTrue(test('/usr/local/bin/clang')) self.assertTrue(test('armv7_neno-linux-gnueabi-g++')) self.assertFalse(test('')) self.assertFalse(test('ld')) self.assertFalse(test('as')) self.assertFalse(test('/usr/local/bin/compiler')) def test_format_entry_filters_action(self): def test(command): return list(sut.format_entry( {'command': command, 'directory': '/opt/src/project'})) self.assertTrue(test(['cc', '-c', 'file.c', '-o', 'file.o'])) self.assertFalse(test(['cc', '-E', 'file.c'])) self.assertFalse(test(['cc', '-MM', 'file.c'])) self.assertFalse(test(['cc', 'this.o', 'that.o', '-o', 'a.out'])) self.assertFalse(test(['cc', '-print-prog-name'])) def test_format_entry_normalize_filename(self): directory = os.path.join(os.sep, 'home', 'me', 'project') def test(command): result = list(sut.format_entry( {'command': command, 'directory': directory})) return result[0]['file'] self.assertEqual(test(['cc', '-c', 'file.c']), os.path.join(directory, 'file.c')) self.assertEqual(test(['cc', '-c', './file.c']), os.path.join(directory, 'file.c')) self.assertEqual(test(['cc', '-c', '../file.c']), os.path.join(os.path.dirname(directory), 'file.c')) self.assertEqual(test(['cc', '-c', '/opt/file.c']), '/opt/file.c') def test_sip(self): def create_status_report(filename, message): content = """#!/usr/bin/env sh echo 'sa-la-la-la' echo 'la-la-la' echo '{0}' echo 'sa-la-la-la' echo 'la-la-la' """.format(message) lines = [line.strip() for line in content.split('\n')] with open(filename, 'w') as handle: handle.write('\n'.join(lines)) handle.close() os.chmod(filename, 0x1ff) def create_csrutil(dest_dir, status): filename = os.path.join(dest_dir, 'csrutil') message = 'System Integrity Protection status: {0}'.format(status) return create_status_report(filename, message) def create_sestatus(dest_dir, status): filename = os.path.join(dest_dir, 'sestatus') message = 'SELinux status:\t{0}'.format(status) return create_status_report(filename, message) ENABLED = 'enabled' DISABLED = 'disabled' OSX = 'darwin' LINUX = 'linux' with fixtures.TempDir() as tmpdir: try: saved = os.environ['PATH'] os.environ['PATH'] = tmpdir + ':' + saved create_csrutil(tmpdir, ENABLED) self.assertTrue(sut.is_preload_disabled(OSX)) create_csrutil(tmpdir, DISABLED) self.assertFalse(sut.is_preload_disabled(OSX)) create_sestatus(tmpdir, ENABLED) self.assertTrue(sut.is_preload_disabled(LINUX)) create_sestatus(tmpdir, DISABLED) self.assertFalse(sut.is_preload_disabled(LINUX)) finally: os.environ['PATH'] = saved try: saved = os.environ['PATH'] os.environ['PATH'] = '' # shall be false when it's not in the path self.assertFalse(sut.is_preload_disabled(OSX)) self.assertFalse(sut.is_preload_disabled(LINUX)) self.assertFalse(sut.is_preload_disabled('unix')) finally: os.environ['PATH'] = saved
37.564516
78
0.546801
d2f8aa917a6a90c0b7125e2ffccdc982061e0a97
10,232
py
Python
owtf/db/models.py
Lonewolf-Information-systems/owtf
65355ce8bf4a4ea0177e24ee106f77e2f87c17fa
[ "BSD-3-Clause" ]
1
2018-02-05T12:10:28.000Z
2018-02-05T12:10:28.000Z
owtf/db/models.py
Lonewolf-Information-systems/owtf
65355ce8bf4a4ea0177e24ee106f77e2f87c17fa
[ "BSD-3-Clause" ]
2
2021-03-11T03:35:23.000Z
2022-02-10T23:40:23.000Z
owtf/db/models.py
Lonewolf-Information-systems/owtf
65355ce8bf4a4ea0177e24ee106f77e2f87c17fa
[ "BSD-3-Clause" ]
null
null
null
""" owtf.db.models ~~~~~~~~~~~~~~ The SQLAlchemy models for every table in the OWTF DB. """ import datetime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.hybrid import hybrid_property from sqlalchemy import Table, Column, Integer, String, Boolean, Float, DateTime, ForeignKey, Text, Index from sqlalchemy import UniqueConstraint from sqlalchemy.orm import relationship Base = declarative_base() # This table actually allows us to make a many to many relationship # between transactions table and grep_outputs table target_association_table = Table( 'target_session_association', Base.metadata, Column('target_id', Integer, ForeignKey('targets.id')), Column('session_id', Integer, ForeignKey('sessions.id')) ) Index('target_id_idx', target_association_table.c.target_id, postgresql_using='btree') class Session(Base): __tablename__ = "sessions" id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String, unique=True) active = Column(Boolean, default=False) targets = relationship("Target", secondary=target_association_table, backref="sessions") class Target(Base): __tablename__ = "targets" id = Column(Integer, primary_key=True, autoincrement=True) target_url = Column(String, unique=True) host_ip = Column(String) port_number = Column(String) url_scheme = Column(String) alternative_ips = Column(String, nullable=True) # Comma seperated host_name = Column(String) host_path = Column(String) ip_url = Column(String) top_domain = Column(String) top_url = Column(String) scope = Column(Boolean, default=True) transactions = relationship("Transaction", cascade="delete") poutputs = relationship("PluginOutput", cascade="delete") urls = relationship("Url", cascade="delete") commands = relationship("Command", cascade="delete") # Also has a column session specified as backref in # session model works = relationship("Work", backref="target", cascade="delete") @hybrid_property def max_user_rank(self): user_ranks = [-1] user_ranks += [poutput.user_rank for poutput in self.poutputs] return(max(user_ranks)) @hybrid_property def max_owtf_rank(self): owtf_ranks = [-1] owtf_ranks += [poutput.owtf_rank for poutput in self.poutputs] return(max(owtf_ranks)) def __repr__(self): return "<Target (url='%s')>" % (self.target_url) # This table actually allows us to make a many to many relationship # between transactions table and grep_outputs table transaction_association_table = Table( 'transaction_grep_association', Base.metadata, Column('transaction_id', Integer, ForeignKey('transactions.id')), Column('grep_output_id', Integer, ForeignKey('grep_outputs.id')) ) Index('transaction_id_idx', transaction_association_table.c.transaction_id, postgresql_using='btree') class Transaction(Base): __tablename__ = "transactions" target_id = Column(Integer, ForeignKey("targets.id")) id = Column(Integer, primary_key=True) url = Column(String) scope = Column(Boolean, default=False) method = Column(String) data = Column(String, nullable=True) # Post DATA time = Column(Float(precision=10)) time_human = Column(String) local_timestamp = Column(DateTime) raw_request = Column(Text) response_status = Column(String) response_headers = Column(Text) response_size = Column(Integer, nullable=True) response_body = Column(Text, nullable=True) binary_response = Column(Boolean, nullable=True) session_tokens = Column(String, nullable=True) login = Column(Boolean, nullable=True) logout = Column(Boolean, nullable=True) grep_outputs = relationship( "GrepOutput", secondary=transaction_association_table, cascade="delete", backref="transactions" ) def __repr__(self): return "<HTTP Transaction (url='%s' method='%s' response_status='%s')>" % (self.url, self.method, self.response_status) class GrepOutput(Base): __tablename__ = "grep_outputs" target_id = Column(Integer, ForeignKey("targets.id")) id = Column(Integer, primary_key=True) name = Column(String) output = Column(Text) # Also has a column transactions, which is added by # using backref in transaction __table_args__ = (UniqueConstraint('name', 'output', target_id),) class Url(Base): __tablename__ = "urls" target_id = Column(Integer, ForeignKey("targets.id")) url = Column(String, primary_key=True) visited = Column(Boolean, default=False) scope = Column(Boolean, default=True) def __repr__(self): return "<URL (url='%s')>" % (self.url) class PluginOutput(Base): __tablename__ = "plugin_outputs" target_id = Column(Integer, ForeignKey("targets.id")) plugin_key = Column(String, ForeignKey("plugins.key")) # There is a column named plugin which is caused by backref from the plugin class id = Column(Integer, primary_key=True) plugin_code = Column(String) # OWTF Code plugin_group = Column(String) plugin_type = Column(String) date_time = Column(DateTime, default=datetime.datetime.now()) start_time = Column(DateTime) end_time = Column(DateTime) output = Column(String, nullable=True) error = Column(String, nullable=True) status = Column(String, nullable=True) user_notes = Column(String, nullable=True) user_rank = Column(Integer, nullable=True, default=-1) owtf_rank = Column(Integer, nullable=True, default=-1) output_path = Column(String, nullable=True) @hybrid_property def run_time(self): return self.end_time - self.start_time __table_args__ = (UniqueConstraint('plugin_key', 'target_id'),) class Command(Base): __tablename__ = "command_register" start_time = Column(DateTime) end_time = Column(DateTime) success = Column(Boolean, default=False) target_id = Column(Integer, ForeignKey("targets.id")) plugin_key = Column(String, ForeignKey("plugins.key")) modified_command = Column(String) original_command = Column(String, primary_key=True) @hybrid_property def run_time(self): return self.end_time - self.start_time class Error(Base): __tablename__ = "errors" id = Column(Integer, primary_key=True) owtf_message = Column(String) traceback = Column(String, nullable=True) user_message = Column(String, nullable=True) reported = Column(Boolean, default=False) github_issue_url = Column(String, nullable=True) def __repr__(self): return "<Error (traceback='%s')>" % (self.traceback) class Resource(Base): __tablename__ = "resources" id = Column(Integer, primary_key=True) dirty = Column(Boolean, default=False) # Dirty if user edited it. Useful while updating resource_name = Column(String) resource_type = Column(String) resource = Column(String) __table_args__ = (UniqueConstraint('resource', 'resource_type', 'resource_name'),) class ConfigSetting(Base): __tablename__ = "configuration" key = Column(String, primary_key=True) value = Column(String) section = Column(String) descrip = Column(String, nullable=True) dirty = Column(Boolean, default=False) def __repr__(self): return "<ConfigSetting (key='%s', value='%s', dirty='%r')>" % (self.key, self.value, self.dirty) class TestGroup(Base): __tablename__ = "test_groups" code = Column(String, primary_key=True) group = Column(String) # web, network descrip = Column(String) hint = Column(String, nullable=True) url = Column(String) priority = Column(Integer) plugins = relationship("Plugin") class Plugin(Base): __tablename__ = "plugins" key = Column(String, primary_key=True) # key = type@code title = Column(String) name = Column(String) code = Column(String, ForeignKey("test_groups.code")) group = Column(String) type = Column(String) descrip = Column(String, nullable=True) file = Column(String) attr = Column(String, nullable=True) works = relationship("Work", backref="plugin", cascade="delete") outputs = relationship("PluginOutput", backref="plugin") def __repr__(self): return "<Plugin (code='%s', group='%s', type='%s')>" % (self.code, self.group, self.type) @hybrid_property def min_time(self): """ Consider last 5 runs only, better performance and accuracy """ poutputs_num = len(self.outputs) if poutputs_num != 0: if poutputs_num < 5: run_times = [poutput.run_time for poutput in self.outputs] else: run_times = [poutput.run_time for poutput in self.outputs[-5:]] return min(run_times) else: return None @hybrid_property def max_time(self): """ Consider last 5 runs only, better performance and accuracy """ poutputs_num = len(self.outputs) if poutputs_num != 0: if poutputs_num < 5: run_times = [poutput.run_time for poutput in self.outputs] else: run_times = [poutput.run_time for poutput in self.outputs[-5:]] return max(run_times) else: return None __table_args__ = (UniqueConstraint('type', 'code'),) class Work(Base): __tablename__ = "worklist" id = Column(Integer, primary_key=True, autoincrement=True) target_id = Column(Integer, ForeignKey("targets.id")) plugin_key = Column(String, ForeignKey("plugins.key")) active = Column(Boolean, default=True) # Columns plugin and target are created using backrefs __table_args__ = (UniqueConstraint('target_id', 'plugin_key'),) def __repr__(self): return "<Work (target='%s', plugin='%s')>" % (self.target_id, self.plugin_key) class Mapping(Base): __tablename__ = 'mappings' owtf_code = Column(String, primary_key=True) mappings = Column(String) category = Column(String, nullable=True)
32.48254
105
0.678069
bc83afb8c23b476f4a8b00d0c7192bcd4dc9e7f9
946
py
Python
engine/src/hopeit/server/version.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
null
null
null
engine/src/hopeit/server/version.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
null
null
null
engine/src/hopeit/server/version.py
pcanto-hopeit/hopeit.engine
c17b0438e56940a4d1b2f071cca90ae8b6f70629
[ "Apache-2.0" ]
null
null
null
""" Engine version constants. Increment on release To ensure configuration files from example apps and plugins have same version as engine, environment variables `HOPEIT_ENGINE_VERSION` and `HOPEIT_APPS_API_VERSION` are set. """ import os import sys ENGINE_NAME = "hopeit.engine" ENGINE_VERSION = "0.12.1" # Major.Minor version to be used in App versions and Api endpoints for Apps/Plugins APPS_API_VERSION = '.'.join(ENGINE_VERSION.split('.')[0:2]) APPS_ROUTE_VERSION = APPS_API_VERSION.replace('.', 'x') os.environ['HOPEIT_ENGINE_VERSION'] = ENGINE_VERSION os.environ['HOPEIT_APPS_API_VERSION'] = APPS_API_VERSION os.environ['HOPEIT_APPS_ROUTE_VERSION'] = APPS_ROUTE_VERSION if __name__ == "__main__": if len(sys.argv) > 1 and sys.argv[1] == "APPS_API_VERSION": print(APPS_API_VERSION) elif len(sys.argv) > 1 and sys.argv[1] == "APPS_ROUTE_VERSION": print(APPS_ROUTE_VERSION) else: print(ENGINE_VERSION)
33.785714
88
0.748414
7990150def023dad3e39bf904e671169e9c81ce1
2,924
py
Python
day23/code/main.py
JoseTomasTocino/AdventOfCode2020
19b22c3f9ef2331f08c2ad78f49f200a5f4adfc9
[ "MIT" ]
null
null
null
day23/code/main.py
JoseTomasTocino/AdventOfCode2020
19b22c3f9ef2331f08c2ad78f49f200a5f4adfc9
[ "MIT" ]
null
null
null
day23/code/main.py
JoseTomasTocino/AdventOfCode2020
19b22c3f9ef2331f08c2ad78f49f200a5f4adfc9
[ "MIT" ]
null
null
null
import logging logger = logging.getLogger(__name__) def play_cups_game(inp, max_moves=100, use_extended_rules=False): labels = [int(x) for x in inp] # Map where the key is the label, and the value is the next element next_map = {} for i in range(len(labels)): # The next of the last element is the first element if i == len(labels) - 1: next_map[labels[i]] = labels[0] else: next_map[labels[i]] = labels[i + 1] current = labels[0] max_cup = max(labels) # With extended rules, add the rest of the numbers up until 1 million in consecutive order if use_extended_rules: for i in range(max_cup + 1, 1000000): next_map[i] = i + 1 next_map[1000000] = next_map[labels[-1]] next_map[labels[-1]] = max_cup + 1 max_cup = 1000000 for move in range(max_moves): # The crab picks up the three cups that are immediately clockwise of the current cup. next_1 = next_map[current] next_2 = next_map[next_1] next_3 = next_map[next_2] # They are removed from the circle next_map[current] = next_map[next_3] # The crab selects a destination cup: the cup with a label equal to the current cup's label minus one. destination = current - 1 while True: # If at any point in this process the value goes below the lowest value on any cup's label, # it wraps around to the highest value on any cup's label instead. if destination == 0: destination = max_cup # If this would select one of the cups that was just picked up, the crab will keep subtracting one until it # finds a cup that wasn't just picked up. if destination not in [next_1, next_2, next_3]: break destination -= 1 # The crab places the cups it just picked up so that they are immediately clockwise of the destination cup. next_map[next_3] = next_map[destination] next_map[destination] = next_1 # The crab selects a new current cup: the cup which is immediately clockwise of the current cup. current = next_map[current] if use_extended_rules: # The crab is going to hide your stars - one each - under the two cups that will end up immediately clockwise # of cup 1. What do you get if you multiply their labels together? retval = next_map[1] * next_map[next_map[1]] else: # Starting after the cup labeled 1, collect the other cups' labels clockwise into a single string with no extra # characters; each number except 1 should appear exactly once. labels_in_order = [] n = next_map[1] while n != 1: labels_in_order.append(n) n = next_map[n] retval = ''.join(str(x) for x in labels_in_order) return retval
35.658537
119
0.629617
d663520666817edfd4c03096c8b80b976ad2d182
50
py
Python
rpc/consts.py
ryanrain2016/rpc
6988ad6a26312e27270fc4439c0392751670c1cc
[ "MIT" ]
null
null
null
rpc/consts.py
ryanrain2016/rpc
6988ad6a26312e27270fc4439c0392751670c1cc
[ "MIT" ]
null
null
null
rpc/consts.py
ryanrain2016/rpc
6988ad6a26312e27270fc4439c0392751670c1cc
[ "MIT" ]
null
null
null
MAX_PAYLOAD_LENGTH = 1024 * 1024 * 5 TIMEOUT = 60
16.666667
36
0.72
749498c888733cdda4529c37f89cf2b99a5a5b58
2,562
py
Python
Dinos/BoaFrill/BoaFrill_Character_BP.BoaFrill_Character_BP.py
cutec-chris/sce-PrimalEarth
4e7a45acffc57a455a7668af1a954004668c3085
[ "MIT" ]
null
null
null
Dinos/BoaFrill/BoaFrill_Character_BP.BoaFrill_Character_BP.py
cutec-chris/sce-PrimalEarth
4e7a45acffc57a455a7668af1a954004668c3085
[ "MIT" ]
null
null
null
Dinos/BoaFrill/BoaFrill_Character_BP.BoaFrill_Character_BP.py
cutec-chris/sce-PrimalEarth
4e7a45acffc57a455a7668af1a954004668c3085
[ "MIT" ]
null
null
null
import sys,sce class BoaFrill_Character_BP(sce.Dinos): def __init__(self): super().__init__(self) name = 'Titanoboa' blueprintPath = '/Game/PrimalEarth/Dinos/BoaFrill/BoaFrill_Character_BP.BoaFrill_Character_BP' fullStatsRaw = [[170, 0.2, 0.27, 0.5, 0], [150, 0.1, 0.1, 0, 0], [175, 0.06, 0, 0.5, 0], [150, 0.1, 0.1, 0, 0], [1200, 0.1, 0.1, 0, 0], None, None, [150, 0.02, 0.04, 0, 0], [1, 0.05, 0.1, 0.5, 0.4], [1, 0, 0.01, 0.2, 0], None, None] altBaseStats = {'0': 300} immobilizedBy = [] noGender = True colors = [{'name': 'Body', 'colors': ['Black', 'Dark Grey', 'Dino Albino', 'Dino Dark Blue', 'Dino Dark Brown', 'Dino Dark Green', 'Dino Dark Orange', 'Dino Dark Purple', 'Dino Dark Red', 'Dino Dark Yellow', 'Dino Darker Grey', 'Dino Medium Brown', 'Dino Medium Green']}, {'name': 'Frill Middle Line 1', 'colors': ['Black', 'Dino Albino', 'Dino Light Blue', 'Dino Light Brown', 'Dino Light Green', 'Dino Light Orange', 'Dino Light Purple', 'Dino Light Red', 'Dino Light Yellow', 'Dino Medium Brown', 'Dino Medium Green', 'Light Grey']}, {'name': 'Frill Middle Line 2', 'colors': ['Black', 'Dino Albino', 'Dino Light Blue', 'Dino Light Brown', 'Dino Light Green', 'Dino Light Orange', 'Dino Light Purple', 'Dino Light Red', 'Dino Light Yellow', 'Dino Medium Brown', 'Dino Medium Green', 'Light Grey']}, {'name': 'Frill Middle Line 3', 'colors': ['Black', 'Dino Albino', 'Dino Light Blue', 'Dino Light Brown', 'Dino Light Green', 'Dino Light Orange', 'Dino Light Purple', 'Dino Light Red', 'Dino Light Yellow', 'Dino Medium Brown', 'Dino Medium Green', 'Light Grey']}, {'name': 'Body Accent and Inner Frill', 'colors': ['Black', 'Dino Albino', 'Dino Light Blue', 'Dino Light Brown', 'Dino Light Green', 'Dino Light Orange', 'Dino Light Purple', 'Dino Light Red', 'Dino Light Yellow', 'Dino Medium Brown', 'Dino Medium Green', 'Light Grey']}, {'name': 'Outer Frill', 'colors': ['Black', 'Dino Albino', 'Dino Light Blue', 'Dino Light Brown', 'Dino Light Green', 'Dino Light Orange', 'Dino Light Purple', 'Dino Light Red', 'Dino Light Yellow', 'Dino Medium Brown', 'Dino Medium Green', 'Light Grey']}] taming = {'nonViolent': True, 'violent': False, 'tamingIneffectiveness': 3, 'affinityNeeded0': 1950, 'affinityIncreasePL': 90, 'wakeAffinityMult': 1.6, 'wakeFoodDeplMult': 2, 'foodConsumptionBase': 0.001543, 'foodConsumptionMult': 648.0881} boneDamageAdjusters = {'c_head': 2.5, 'c_jaw': 2.5, 'l_jaw': 2.5, 'r_jaw': 2.5} TamedBaseHealthMultiplier = 1 displayedStats = 919
160.125
1,603
0.648322
2740520fa124a060bc32be056577159164b41067
3,351
py
Python
strategies/bank_put_kamas.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
8
2019-05-26T19:44:28.000Z
2021-01-31T14:53:17.000Z
strategies/bank_put_kamas.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
8
2019-07-17T21:19:47.000Z
2019-09-28T12:52:39.000Z
strategies/bank_put_kamas.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
null
null
null
import json import time from tools import logger as log import strategies def bank_put_kamas(**kwargs): """ A strategy to put kamas into the bank :param kwargs: strategy, listener, and orders_queue :return: the input strategy with a report """ strategy = kwargs['strategy'] listener = kwargs['listener'] orders_queue = kwargs['orders_queue'] assets = kwargs['assets'] logger = log.get_logger(__name__, strategy['bot']) global_start, start = time.time(), time.time() kamas_to_transfer = 'all' if 'parameters' in strategy.keys() and 'quantity' in strategy['parameters'].keys() and strategy['parameters']['quantity'] is not None: kamas_to_transfer = strategy['parameters']['quantity'] if not listener.game_state['storage_open']: logger.warning('Bank is not open') strategy['report'] = { 'success': False, 'details': {'Execution time': 0, 'Reason': 'Bank is not open'} } log.close_logger(logger) return strategy kamas_in_inventory = listener.game_state['kamas'] kamas_to_transfer = kamas_in_inventory if kamas_to_transfer == 'all' else kamas_to_transfer if kamas_to_transfer > kamas_in_inventory: logger.warning('Cannot put {} kamas in the bank, only {} are available'.format(kamas_to_transfer, kamas_in_inventory)) strategy['report'] = { 'success': False, 'details': {'Execution time': time.time() - global_start, 'Reason': 'Cannot put {} kamas in the bank, only {} are available'.format(kamas_to_transfer, kamas_in_inventory)} } log.close_logger(logger) return strategy if kamas_to_transfer == 0: logger.info('No kamas to transfer') strategy['report'] = { 'success': True, 'details': {'Execution time': time.time() - global_start} } log.close_logger(logger) return strategy kamas_before = listener.game_state['kamas'] order = { "command": "move_kamas", "parameters": { "quantity": kamas_to_transfer } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'kamas' in listener.game_state.keys(): if listener.game_state['kamas'] != kamas_before: waiting = False time.sleep(0.05) execution_time = time.time() - global_start if waiting: logger.warning('Failed to put {} kamas in the bank in {}s'.format(kamas_to_transfer, execution_time)) strategy['report'] = { 'success': False, 'details': { 'Execution time': execution_time, 'Reason': 'Failed to put {} kamas in the bank in {}s'.format(kamas_to_transfer, execution_time) } } log.close_logger(logger) return strategy logger.info('{} kamas transferred from inventory to storage'.format(kamas_to_transfer)) strategy['report'] = { 'success': True, 'details': {'Execution time': time.time() - global_start} } log.close_logger(logger) return strategy
34.546392
183
0.622202
d090e571a8b970e21c3efd18099e7361dbb4b3ef
11,503
py
Python
homeassistant/helpers/device_registry.py
thecrazymonkey/home-assistant
348b347ed165c88559b40ce04feb5720e91253bf
[ "Apache-2.0" ]
1
2019-12-06T23:19:51.000Z
2019-12-06T23:19:51.000Z
homeassistant/helpers/device_registry.py
ljmerza/home-assistant
7fd2e67d1121dfa026f37b30c84ce8ae2ce2e1ba
[ "Apache-2.0" ]
4
2021-03-19T01:22:18.000Z
2022-01-13T01:19:34.000Z
homeassistant/helpers/device_registry.py
ljmerza/home-assistant
7fd2e67d1121dfa026f37b30c84ce8ae2ce2e1ba
[ "Apache-2.0" ]
1
2020-11-15T17:46:09.000Z
2020-11-15T17:46:09.000Z
"""Provide a way to connect entities belonging to one device.""" import logging import uuid from asyncio import Event from collections import OrderedDict from typing import List, Optional, cast import attr from homeassistant.core import callback from homeassistant.loader import bind_hass from .typing import HomeAssistantType _LOGGER = logging.getLogger(__name__) _UNDEF = object() DATA_REGISTRY = 'device_registry' EVENT_DEVICE_REGISTRY_UPDATED = 'device_registry_updated' STORAGE_KEY = 'core.device_registry' STORAGE_VERSION = 1 SAVE_DELAY = 10 CONNECTION_NETWORK_MAC = 'mac' CONNECTION_UPNP = 'upnp' CONNECTION_ZIGBEE = 'zigbee' @attr.s(slots=True, frozen=True) class DeviceEntry: """Device Registry Entry.""" config_entries = attr.ib(type=set, converter=set, default=attr.Factory(set)) connections = attr.ib(type=set, converter=set, default=attr.Factory(set)) identifiers = attr.ib(type=set, converter=set, default=attr.Factory(set)) manufacturer = attr.ib(type=str, default=None) model = attr.ib(type=str, default=None) name = attr.ib(type=str, default=None) sw_version = attr.ib(type=str, default=None) hub_device_id = attr.ib(type=str, default=None) area_id = attr.ib(type=str, default=None) name_by_user = attr.ib(type=str, default=None) id = attr.ib(type=str, default=attr.Factory(lambda: uuid.uuid4().hex)) # This value is not stored, just used to keep track of events to fire. is_new = attr.ib(type=bool, default=False) def format_mac(mac): """Format the mac address string for entry into dev reg.""" to_test = mac if len(to_test) == 17 and to_test.count(':') == 5: return to_test.lower() if len(to_test) == 17 and to_test.count('-') == 5: to_test = to_test.replace('-', '') elif len(to_test) == 14 and to_test.count('.') == 2: to_test = to_test.replace('.', '') if len(to_test) == 12: # no : included return ':'.join(to_test.lower()[i:i + 2] for i in range(0, 12, 2)) # Not sure how formatted, return original return mac class DeviceRegistry: """Class to hold a registry of devices.""" def __init__(self, hass): """Initialize the device registry.""" self.hass = hass self.devices = None self._store = hass.helpers.storage.Store(STORAGE_VERSION, STORAGE_KEY) @callback def async_get(self, device_id: str) -> Optional[DeviceEntry]: """Get device.""" return self.devices.get(device_id) @callback def async_get_device(self, identifiers: set, connections: set): """Check if device is registered.""" for device in self.devices.values(): if any(iden in device.identifiers for iden in identifiers) or \ any(conn in device.connections for conn in connections): return device return None @callback def async_get_or_create(self, *, config_entry_id, connections=None, identifiers=None, manufacturer=_UNDEF, model=_UNDEF, name=_UNDEF, sw_version=_UNDEF, via_hub=None): """Get device. Create if it doesn't exist.""" if not identifiers and not connections: return None if identifiers is None: identifiers = set() if connections is None: connections = set() connections = { (key, format_mac(value)) if key == CONNECTION_NETWORK_MAC else (key, value) for key, value in connections } device = self.async_get_device(identifiers, connections) if device is None: device = DeviceEntry(is_new=True) self.devices[device.id] = device if via_hub is not None: hub_device = self.async_get_device({via_hub}, set()) hub_device_id = hub_device.id if hub_device else _UNDEF else: hub_device_id = _UNDEF return self._async_update_device( device.id, add_config_entry_id=config_entry_id, hub_device_id=hub_device_id, merge_connections=connections or _UNDEF, merge_identifiers=identifiers or _UNDEF, manufacturer=manufacturer, model=model, name=name, sw_version=sw_version ) @callback def async_update_device( self, device_id, *, area_id=_UNDEF, name_by_user=_UNDEF, new_identifiers=_UNDEF): """Update properties of a device.""" return self._async_update_device( device_id, area_id=area_id, name_by_user=name_by_user, new_identifiers=new_identifiers) @callback def _async_update_device(self, device_id, *, add_config_entry_id=_UNDEF, remove_config_entry_id=_UNDEF, merge_connections=_UNDEF, merge_identifiers=_UNDEF, new_identifiers=_UNDEF, manufacturer=_UNDEF, model=_UNDEF, name=_UNDEF, sw_version=_UNDEF, hub_device_id=_UNDEF, area_id=_UNDEF, name_by_user=_UNDEF): """Update device attributes.""" old = self.devices[device_id] changes = {} config_entries = old.config_entries if (add_config_entry_id is not _UNDEF and add_config_entry_id not in old.config_entries): config_entries = old.config_entries | {add_config_entry_id} if (remove_config_entry_id is not _UNDEF and remove_config_entry_id in config_entries): config_entries = config_entries - {remove_config_entry_id} if config_entries is not old.config_entries: changes['config_entries'] = config_entries for attr_name, value in ( ('connections', merge_connections), ('identifiers', merge_identifiers), ): old_value = getattr(old, attr_name) # If not undefined, check if `value` contains new items. if value is not _UNDEF and not value.issubset(old_value): changes[attr_name] = old_value | value if new_identifiers is not _UNDEF: changes['identifiers'] = new_identifiers for attr_name, value in ( ('manufacturer', manufacturer), ('model', model), ('name', name), ('sw_version', sw_version), ('hub_device_id', hub_device_id), ): if value is not _UNDEF and value != getattr(old, attr_name): changes[attr_name] = value if (area_id is not _UNDEF and area_id != old.area_id): changes['area_id'] = area_id if (name_by_user is not _UNDEF and name_by_user != old.name_by_user): changes['name_by_user'] = name_by_user if old.is_new: changes['is_new'] = False if not changes: return old new = self.devices[device_id] = attr.evolve(old, **changes) self.async_schedule_save() self.hass.bus.async_fire(EVENT_DEVICE_REGISTRY_UPDATED, { 'action': 'create' if 'is_new' in changes else 'update', 'device_id': new.id, }) return new def _async_remove_device(self, device_id): del self.devices[device_id] self.hass.bus.async_fire(EVENT_DEVICE_REGISTRY_UPDATED, { 'action': 'remove', 'device_id': device_id, }) self.async_schedule_save() async def async_load(self): """Load the device registry.""" data = await self._store.async_load() devices = OrderedDict() if data is not None: for device in data['devices']: devices[device['id']] = DeviceEntry( config_entries=set(device['config_entries']), connections={tuple(conn) for conn in device['connections']}, identifiers={tuple(iden) for iden in device['identifiers']}, manufacturer=device['manufacturer'], model=device['model'], name=device['name'], sw_version=device['sw_version'], id=device['id'], # Introduced in 0.79 hub_device_id=device.get('hub_device_id'), # Introduced in 0.87 area_id=device.get('area_id'), name_by_user=device.get('name_by_user') ) self.devices = devices @callback def async_schedule_save(self): """Schedule saving the device registry.""" self._store.async_delay_save(self._data_to_save, SAVE_DELAY) @callback def _data_to_save(self): """Return data of device registry to store in a file.""" data = {} data['devices'] = [ { 'config_entries': list(entry.config_entries), 'connections': list(entry.connections), 'identifiers': list(entry.identifiers), 'manufacturer': entry.manufacturer, 'model': entry.model, 'name': entry.name, 'sw_version': entry.sw_version, 'id': entry.id, 'hub_device_id': entry.hub_device_id, 'area_id': entry.area_id, 'name_by_user': entry.name_by_user } for entry in self.devices.values() ] return data @callback def async_clear_config_entry(self, config_entry_id): """Clear config entry from registry entries.""" remove = [] for dev_id, device in self.devices.items(): if device.config_entries == {config_entry_id}: remove.append(dev_id) else: self._async_update_device( dev_id, remove_config_entry_id=config_entry_id) for dev_id in remove: self._async_remove_device(dev_id) @callback def async_clear_area_id(self, area_id: str) -> None: """Clear area id from registry entries.""" for dev_id, device in self.devices.items(): if area_id == device.area_id: self._async_update_device(dev_id, area_id=None) @bind_hass async def async_get_registry(hass: HomeAssistantType) -> DeviceRegistry: """Return device registry instance.""" reg_or_evt = hass.data.get(DATA_REGISTRY) if not reg_or_evt: evt = hass.data[DATA_REGISTRY] = Event() reg = DeviceRegistry(hass) await reg.async_load() hass.data[DATA_REGISTRY] = reg evt.set() return reg if isinstance(reg_or_evt, Event): evt = reg_or_evt await evt.wait() return cast(DeviceRegistry, hass.data.get(DATA_REGISTRY)) return cast(DeviceRegistry, reg_or_evt) @callback def async_entries_for_area(registry: DeviceRegistry, area_id: str) \ -> List[DeviceEntry]: """Return entries that match an area.""" return [device for device in registry.devices.values() if device.area_id == area_id]
34.235119
78
0.587499
96626016f3fe2470827b49e356f8eb4569fd1ade
1,934
py
Python
src/config/helper.py
moraisaugusto/schedule_backup
00fb3117508ea0493cb5dab1122e1ceaba129245
[ "BSD-3-Clause" ]
1
2021-03-06T01:24:02.000Z
2021-03-06T01:24:02.000Z
src/config/helper.py
moraisaugusto/schedule_backup
00fb3117508ea0493cb5dab1122e1ceaba129245
[ "BSD-3-Clause" ]
null
null
null
src/config/helper.py
moraisaugusto/schedule_backup
00fb3117508ea0493cb5dab1122e1ceaba129245
[ "BSD-3-Clause" ]
null
null
null
import os import re import subprocess from loguru import logger def ask_question(question, default_answer=None): """Ask a question to the user @param question: question to be displayed @type question: string @param default_answer: default answer for the question @type default_answer: bool @return: answer @rtype : bool @raise e: None """ answers = {"y": True, "n": False} question = f"\033[1m{question}\033[0m" answer = input(question).lower() or default_answer while True: if answer in ["y", "n"]: return answers[answer] elif answer == default_answer: return default_answer else: answer = input(question).lower() or default_answer def replace_env_var(param): """Replace a string that contains a env variable @param param: raw string that may have the env variable @type param: string @return: string replaced @rtype : string @raise e: None """ search_env_var = re.match(r"\$[A-Z0-1]+", param) param_replaced = param if search_env_var: env_var = search_env_var.group() env_var_value = os.getenv(env_var[1:]) param_replaced = param.replace(env_var, env_var_value) return param_replaced def subprocess_cmd(cmd): """execute a subprocess @param cmd: command to be executed @type cmd: string @return: result of the command @rtype : string @raise e: None """ try: process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) proc_stdout = process.communicate()[0].strip() except subprocess.SubprocessError as e: logger.error(e) except OSError as e: logger.error(e) except ValueError as e: logger.error(e) except Exception as e: logger.error(e) finally: SystemExit("Aborting...") return proc_stdout
23.301205
75
0.630817
90f8284494b46b630a86e00bb63ce01db77dbe88
1,325
py
Python
test/test_issue363.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
4
2019-01-07T06:55:58.000Z
2021-07-16T13:34:58.000Z
test/test_issue363.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
null
null
null
test/test_issue363.py
gromgull/rdflib
7c90f646e3734ee6d3081b5d3f699f0f501f6a39
[ "BSD-3-Clause" ]
2
2018-05-01T13:18:13.000Z
2018-11-15T04:58:05.000Z
import rdflib from nose import SkipTest from nose.tools import assert_raises data = '''<?xml version="1.0" encoding="utf-8"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:http="http://www.w3.org/2011/http#"> <http:HeaderElement rdf:about="#he0"> <http:params> <http:Parameter rdf:about="#param0_0" /> <http:Parameter rdf:about="#param0_1" /> </http:params> </http:HeaderElement> </rdf:RDF> ''' data2 = '''<?xml version="1.0" encoding="utf-8"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://www.example.org/meeting_organization#"> <rdf:Description about="http://meetings.example.com/cal#m1"> <Location rdf:parseType="Resource"> <zip xmlns="http://www.another.example.org/geographical#">02139</zip> <lat xmlns="http://www.another.example.org/geographical#">14.124425</lat> </Location> </rdf:Description> </rdf:RDF> ''' def test_broken_rdfxml(): #import ipdb; ipdb.set_trace() def p(): rdflib.Graph().parse(data=data) assert_raises(Exception, p) def test_parsetype_resource(): g = rdflib.Graph().parse(data=data2) print(g.serialize(format='n3')) if __name__ == '__main__': test_broken_rdfxml() test_parsetype_resource()
28.804348
85
0.642264
259f23ec406b66330a85500e16d61e3721f5184e
833
py
Python
201-300/227.basic-calculator-ii.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
201-300/227.basic-calculator-ii.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
201-300/227.basic-calculator-ii.py
guangxu-li/leetcode-in-python
8a5a373b32351500342705c141591a1a8f5f1cb1
[ "MIT" ]
null
null
null
# # @lc app=leetcode id=227 lang=python3 # # [227] Basic Calculator II # # @lc code=start class Solution: def calculate(self, s: str) -> int: res, prev, cur, operator = 0, 0, 0, "+" for ch in s + "+": if ch == " ": continue if ch.isdigit(): cur = cur * 10 + int(ch) elif operator == '+': res += prev prev, cur, operator = cur, 0, ch elif operator == '-': res += prev prev, cur, operator = -cur, 0, ch elif operator == '*': prev, cur, operator = prev * cur, 0, ch elif operator == '/': prev, cur, operator = int(prev / cur), 0, ch # in python, -3//2 = -2 not -1 return res + prev # @lc code=end
27.766667
91
0.42617
e8a990994a3f31c160e6a38a24ecb298e15467b8
3,855
py
Python
scienz/sport/nfl_2020_pbp.py
Vibrant-Planet/aorist
067e119ef4d0d40802ce74a8e47d882e557ce195
[ "MIT" ]
16
2021-08-14T10:20:16.000Z
2022-03-31T04:19:26.000Z
hub/sport/nfl_2020_pbp.py
scie-nz/aorist
ac1e31251af7d851c4491a310b417de880b79d09
[ "MIT" ]
5
2021-08-15T23:19:10.000Z
2021-09-26T20:50:41.000Z
scienz/sport/nfl_2020_pbp.py
Vibrant-Planet/aorist
067e119ef4d0d40802ce74a8e47d882e557ce195
[ "MIT" ]
1
2022-01-06T01:26:24.000Z
2022-01-06T01:26:24.000Z
from aorist import ( Attribute, NaturalNumber, StringIdentifier, DateString, Year, POSIXTimestamp, PositiveFloat, default_tabular_schema, RowStruct, StaticDataTable, DataSchema, StorageSetup, RemoteStorageSetup, Storage, RemoteStorage, RemoteLocation, CSVEncoding, Encoding, DataSet, DatumTemplate, Asset, WebLocation, FileBasedStorageLayout, CSVHeader, FileHeader, APIOrFileLayout, SingleFileLayout, Empty, FreeText, IntegerNumber, ) attributes = [ Attribute(StringIdentifier("GameId")), Attribute(DateString("GameDate")), Attribute(NaturalNumber("Quarter")), Attribute(NaturalNumber("Minute")), Attribute(NaturalNumber("Second")), Attribute(StringIdentifier("OffenseTeam")), Attribute(StringIdentifier("DefenseTeam")), Attribute(NaturalNumber("Down")), Attribute(NaturalNumber("ToGo")), Attribute(NaturalNumber("YardLine")), Attribute(Empty("")), Attribute(NaturalNumber("SeriesFirstDown")), Attribute(Empty("")), Attribute(NaturalNumber("NextScore")), Attribute(FreeText("Description")), Attribute(NaturalNumber("TeamWin")), Attribute(Empty("")), Attribute(Empty("")), Attribute(Year("SeasonYear")), Attribute(IntegerNumber("Yards")), Attribute(StringIdentifier("Formation")), Attribute(StringIdentifier("PlayType")), Attribute(NaturalNumber("IsRush")), Attribute(NaturalNumber("IsPass")), Attribute(NaturalNumber("IsIncomplete")), Attribute(NaturalNumber("IsTouchdown")), Attribute(StringIdentifier("PassType")), Attribute(NaturalNumber("IsSack")), Attribute(NaturalNumber("IsChallenge")), Attribute(NaturalNumber("IsChallengeReversed")), Attribute(Empty("Challenger")), Attribute(NaturalNumber("IsMeasurement")), Attribute(NaturalNumber("IsInterception")), Attribute(NaturalNumber("IsFumble")), Attribute(NaturalNumber("IsPenalty")), Attribute(NaturalNumber("IsTwoPointConversion")), Attribute(NaturalNumber("IsTwoPointConversionSuccessful")), Attribute(StringIdentifier("RushDirection")), Attribute(NaturalNumber("YardLineFixed")), Attribute(StringIdentifier("YardLineDirection")), Attribute(NaturalNumber("IsPenaltyAccepted")), Attribute(StringIdentifier("PenaltyTeam")), Attribute(NaturalNumber("IsNoPlay")), Attribute(StringIdentifier("PenaltyType")), Attribute(NaturalNumber("PenaltyYards")), ] nfl_2020_pbp_datum = RowStruct( name="nfl_2020_pbp_datum", attributes=attributes, ) nfl_2020_pbp_schema = default_tabular_schema( DatumTemplate(nfl_2020_pbp_datum), attributes ) table = Asset(StaticDataTable( name="nfl_2020_pbp_table", schema=DataSchema(nfl_2020_pbp_schema), setup=StorageSetup(RemoteStorageSetup( remote=Storage(RemoteStorage( location=RemoteLocation( WebLocation( address=("http://nflsavant.com/pbp_data.php?year=2020"), ) ), layout=APIOrFileLayout( FileBasedStorageLayout( SingleFileLayout() ), ), encoding=Encoding(CSVEncoding(header=FileHeader( CSVHeader(num_lines=1) ))), )), )), tag="nfl_play_by_play", )) nfl_2020_pbp_dataset = DataSet( name="nfl_2020_pbp_dataset", description=""" 2020 NFL play-by-play data. """, source_path=__file__, datum_templates=[DatumTemplate(nfl_2020_pbp_datum)], assets={ "NFL_2020_play_by_play_data": table, }, access_policies=[] )
30.595238
84
0.64332
28246d9d7476ce91dcbbd13f7681030d3c1f825c
5,506
py
Python
corehq/tests/test_middleware.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
471
2015-01-10T02:55:01.000Z
2022-03-29T18:07:18.000Z
corehq/tests/test_middleware.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
14,354
2015-01-01T07:38:23.000Z
2022-03-31T20:55:14.000Z
corehq/tests/test_middleware.py
andyasne/commcare-hq
c59a24e57bdd4d2536493f9ecdcc9906f4ae1b88
[ "BSD-3-Clause" ]
175
2015-01-06T07:16:47.000Z
2022-03-29T13:27:01.000Z
import time import mock from django.http import HttpResponse from django.test import override_settings, SimpleTestCase, TestCase from django.urls import path, include from django.views import View from testil import Regex from corehq.apps.domain.models import Domain from corehq.apps.reports.dispatcher import ReportDispatcher from corehq.apps.reports.generic import GenericReportView from corehq.apps.users.models import WebUser from corehq.util.timer import set_request_duration_reporting_threshold, TimingContext @set_request_duration_reporting_threshold(0.1) class SlowClassView(View): def get(self, request): time.sleep(0.2) return HttpResponse() @set_request_duration_reporting_threshold(0.1) def slow_function_view(request): timer = TimingContext() with timer("sleep"): time.sleep(0.2) response = HttpResponse() response.request_timer = timer return response class TestReportDispatcher(ReportDispatcher): map_name = "REPORTS" prefix = "test" @classmethod def get_reports(cls, domain): return [('All Reports', [ SlowReport, FastReport, ])] class TestNoDomainReportDispatcher(ReportDispatcher): map_name = "REPORTS" prefix = "test_no_domain" @classmethod def get_reports(cls, domain): return [('All Reports', [ NoDomainReport, ])] class TestCustomReportDispatcher(TestNoDomainReportDispatcher): map_name = "REPORTS" prefix = "test_custom" def dispatch(self, request, *args, **kwargs): return CustomReport(request).view_response @classmethod def get_report_class_name(cls, domain, report_slug): raise Exception("Custom dispatcher's don't like this method") class BaseReport(GenericReportView): name = "Test report" section_name = "test" @property def view_response(self): return HttpResponse(200) @set_request_duration_reporting_threshold(0.1) class SlowReport(BaseReport): dispatcher = TestReportDispatcher slug = 'slow_report' @property def view_response(self): time.sleep(0.2) return HttpResponse(200) @set_request_duration_reporting_threshold(1) class FastReport(BaseReport): dispatcher = TestReportDispatcher slug = 'fast_report' class CustomReport(BaseReport): dispatcher = TestCustomReportDispatcher slug = 'custom_report' class NoDomainReport(BaseReport): dispatcher = TestNoDomainReportDispatcher slug = 'admin_report' urlpatterns = [ path('slow_class', SlowClassView.as_view()), path('slow_function', slow_function_view), TestNoDomainReportDispatcher.url_pattern(), path('<domain>/', include([TestReportDispatcher.url_pattern()])), path('<domain>/custom/', include([TestCustomReportDispatcher.url_pattern()])), ] @override_settings( ROOT_URLCONF='corehq.tests.test_middleware', MIDDLEWARE=('corehq.middleware.LogLongRequestMiddleware',) ) @mock.patch('corehq.middleware.add_breadcrumb') @mock.patch('corehq.middleware.notify_exception') class TestLogLongRequestMiddleware(SimpleTestCase): def test_middleware_reports_slow_class_view(self, notify_exception, add_breadcrumb): res = self.client.get('/slow_class') self.assertEqual(res.status_code, 200) notify_exception.assert_called_once() add_breadcrumb.assert_not_called() def test_middleware_reports_slow_function_view_with_timer(self, notify_exception, add_breadcrumb): res = self.client.get('/slow_function') self.assertEqual(res.status_code, 200) notify_exception.assert_called_once() add_breadcrumb.assert_has_calls([ mock.call(category="timing", message=Regex(r"^sleep: 0.\d+"), level="info") ]) @override_settings( ROOT_URLCONF='corehq.tests.test_middleware', DOMAIN_MODULE_MAP={"test_middleware": "corehq.tests.test_middleware"} ) @mock.patch('corehq.middleware.notify_exception') class TestLogLongRequestMiddlewareReports(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.domain = Domain(name="long_request", is_active=True) cls.domain.save() cls.username = 'fingile' cls.password = '*******' cls.user = WebUser.create(cls.domain.name, cls.username, cls.password, None, None) cls.user.set_role(cls.domain.name, 'admin') cls.user.save() def setUp(self): self.client.login(username=self.username, password=self.password) @classmethod def tearDownClass(cls): cls.user.delete(cls.domain.name, deleted_by=None) cls.domain.delete() super().tearDownClass() def test_slow_domain_report(self, notify_exception): res = self.client.get('/domain1/slow_report/') self.assertEqual(res.status_code, 200) notify_exception.assert_called_once() def test_fast_domain_report(self, notify_exception): res = self.client.get('/domain1/fast_report/') self.assertEqual(res.status_code, 200) notify_exception.assert_not_called() def test_no_domain_report(self, notify_exception): res = self.client.get('/admin_report/') self.assertEqual(res.status_code, 200) notify_exception.assert_not_called() def test_custom_report(self, notify_exception): res = self.client.get('/domain2/custom/custom_report/') self.assertEqual(res.status_code, 200) notify_exception.assert_not_called()
30.087432
102
0.715946
4b0db1fe8e58ec6b9ce2d189d6e2544aa1b2608a
2,702
py
Python
cfgov/ask_cfpb/migrations/0037_recreated.py
hkeeler/cfgov-refresh
33977186a8e9cb972e63cc22baa357d381316aec
[ "CC0-1.0" ]
null
null
null
cfgov/ask_cfpb/migrations/0037_recreated.py
hkeeler/cfgov-refresh
33977186a8e9cb972e63cc22baa357d381316aec
[ "CC0-1.0" ]
null
null
null
cfgov/ask_cfpb/migrations/0037_recreated.py
hkeeler/cfgov-refresh
33977186a8e9cb972e63cc22baa357d381316aec
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.25 on 2019-12-20 16:24 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): replaces = [ ('ask_cfpb', '0001_initial'), ('ask_cfpb', '0002_answeraudiencepage'), ('ask_cfpb', '0003_add_answercategorypage'), ('ask_cfpb', '0004_add_ask_category_images'), ('ask_cfpb', '0005_delete_answertagproxy'), ('ask_cfpb', '0006_update_help_text'), ('ask_cfpb', '0007_subcategory_prefixes'), ('ask_cfpb', '0008_fix_verbose_name_plural'), ('ask_cfpb', '0009_update_social_image_help_text'), ('ask_cfpb', '0010_answerpage_sidebar'), ('ask_cfpb', '0011_move_reusable_text_chooser_block'), ('ask_cfpb', '0012_add_rule_option_to_module'), ('ask_cfpb', '0013_recreated'), ('ask_cfpb', '0014_recreated_2'), ('ask_cfpb', '0015_update_email_signup_options'), ('ask_cfpb', '0016_modify_help_text_social_sharing_image'), ('ask_cfpb', '0017_adjust_fields_for_editing'), ('ask_cfpb', '0018_migrate_answer_field_help_text'), ('ask_cfpb', '0019_add_disclaimer_pagechooserblock_to_emailsignup'), ('ask_cfpb', '0020_rm_formfieldwithbutton'), ('ask_cfpb', '0021_rssfeed_improvements'), ('ask_cfpb', '0022_add_remaining_answer_fields_to_answer_page'), ('ask_cfpb', '0023_rename_snippet_to_short_answer'), ('ask_cfpb', '0024_add_portal_links_to_answerpage'), ('ask_cfpb', '0025_remove_answer_audience_page'), ('ask_cfpb', '0026_remove_redirect_to_and_answer_id_from_answer_page'), ('ask_cfpb', '0027_portalsearchpage'), ('ask_cfpb', '0028_answerpage_answer_content'), ('ask_cfpb', '0029_answer_schema_blocks'), ('ask_cfpb', '0030_remove_answer_category_page'), ('ask_cfpb', '0031_remove_deprecated_models_and_fields'), ('ask_cfpb', '0032_remove_html_editor'), ('ask_cfpb', '0033_add_article_page'), ('ask_cfpb', '0034_remove_answerresultspage_content'), ('ask_cfpb', '0035_move_glossaryterm'), ('ask_cfpb', '0036_auto_20191219_1445'), ] dependencies = [ ] operations = [ migrations.CreateModel( name='Answer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question', models.TextField(blank=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ], options={ 'ordering': ['-id'], }, ), ]
41.569231
114
0.642857
02b32ff1637fdba1dad275cca3755a4d8ba5e14c
41,085
py
Python
lib/doconce/sphinx.py
aless80/doconce_hplgit_fork
23fb3a7206fccafb7ef829a9a37bea2298b3ddb9
[ "BSD-3-Clause" ]
305
2015-01-07T06:57:14.000Z
2022-02-16T01:45:25.000Z
lib/doconce/sphinx.py
aless80/doconce-1
23fb3a7206fccafb7ef829a9a37bea2298b3ddb9
[ "BSD-3-Clause" ]
163
2015-01-08T11:03:26.000Z
2020-12-17T12:54:46.000Z
lib/doconce/sphinx.py
aless80/doconce-1
23fb3a7206fccafb7ef829a9a37bea2298b3ddb9
[ "BSD-3-Clause" ]
91
2015-03-19T17:17:34.000Z
2022-01-02T15:45:20.000Z
from __future__ import print_function from __future__ import absolute_import from builtins import range # http://sphinx.pocoo.org/ext/math.html# # can reuse most of rst module: from .rst import * from .common import align2equations, online_python_tutor, \ get_legal_pygments_lexers, has_custom_pygments_lexer from .misc import option, _abort from .doconce import errwarn # RunestoneInteractive book counters question_counter = 0 video_counter = 0 edit_markup_warning = False def sphinx_figure(m): result = '' # m is a MatchObject filename = m.group('filename') caption = m.group('caption').strip() # Stubstitute DocOnce label by rst label in caption # (also, remove final period in caption since caption is used as hyperlink # text to figures). m_label = re.search(r'label\{(.+?)\}', caption) if m_label: label = m_label.group(1) result += '\n.. _%s:\n' % label # remove . at the end of the caption text parts = caption.split('label') parts[0] = parts[0].rstrip() if parts[0] and parts[0][-1] == '.': parts[0] = parts[0][:-1] parts[0] = parts[0].strip() # insert emphasize marks if not latex $ at the # beginning or end (math subst does not work for *$I=1$*) # or if not boldface or emphasize already in the caption caption_font = option('sphinx_figure_captions=', 'emphasize') if parts[0] and \ caption_font == 'emphasize' and \ not parts[0].startswith('$') and \ not parts[0].endswith('$') and \ not '*' in parts[0] and \ not '_' in parts[0]: parts[0] = '*' + parts[0] + '*' #caption = ' label'.join(parts) caption = parts[0] # contrary to rst_figure, we do not write label into caption # since we just want to remove the whole label as part of # the caption (otherwise done when handling ref and label) else: if caption and caption[-1] == '.': caption = caption[:-1] # math is ignored in references to figures, test for math only if caption.startswith('$') and caption.endswith('$'): errwarn('*** warning: math only in sphinx figure caption (it will be ignored by sphinx, resulting in empty caption)\n %s\n FIGURE: [%s' % (caption, filename)) #stem = os.path.splitext(filename)[0] #result += '\n.. figure:: ' + stem + '.*\n' # utilize flexibility # does not work yet result += '\n.. figure:: ' + filename + '\n' opts = m.group('options') if opts: # opts: width=600 frac=0.5 align=center # opts: width=600, frac=0.5, align=center info = [s.split('=') for s in opts.split()] fig_info = [' :%s: %s' % (opt, value.replace(',', '')) for opt, value in info if opt not in ['frac', 'sidecap']] result += '\n'.join(fig_info) if caption: result += '\n\n ' + caption + '\n' else: result += '\n\n' #errwarn('sphinx figure: caption=\n', caption, '\nresult:\n', result) return result def sphinx_movie(m): filename = m.group('filename') special_movie = '*' in filename or '->' in filename or 'youtu.be' in filename or 'youtube.com' in filename or 'vimeo.com' in filename if option('runestone') and not special_movie: # Use RunestoneInteractive video environment global video_counter video_counter += 1 text = """ .. video:: video_%d :controls: %s """ % (video_counter, filename) return text else: # Use plain html code return rst_movie(m) def sphinx_quiz_runestone(quiz): quiz_feedback = option('quiz_explanations=', 'on') text = '' if 'new page' in quiz: text += '.. !split\n%s\n%s' % (quiz['new page'], '-'*len(quiz['new page'])) text += '.. begin quiz\n\n' global question_counter question_counter += 1 # Multiple correct answers? if sum([1 for choice in quiz['choices'] if choice[0] == 'right']) > 1: text += '.. mchoicema:: question_%d' % question_counter + '\n' else: text += '.. mchoicemf:: question_%d' % question_counter + '\n' def fix_text(s, tp='answer'): """ Answers and feedback in RunestoneInteractive book quizzes cannot contain math, figure and rst markup. Perform fixes. """ drop = False if 'math::' in s: errwarn('\n*** warning: quiz %s with math block not supported:' % tp) errwarn(s) drop = True if '.. code-block::' in s: errwarn('\n*** warning: quiz %s with code block not supported:' % tp) errwarn(s) drop = True if '.. figure::' in s: errwarn('\n*** warning: quiz %s with figure not supported:' % tp) errwarn(s) drop = True if drop: return '' # Make multi-line paragraph a one-liner s = ' '.join(s.splitlines()).rstrip() # Fixes pattern = r'`(.+?) (<https?.+?)>`__' # URL s = re.sub(pattern, '<a href="\g<2>"> \g<1> </a>', s) pattern = r'``(.+?)``' # verbatim s = re.sub(pattern, '<tt>\g<1></tt>', s) pattern = r':math:`(.+?)`' # inline math s = re.sub(pattern, '<em>\g<1></em>', s) # mimic italic.... pattern = r':\*(.+?)\*' # emphasize s = re.sub(pattern, '\g<1>', s, flags=re.DOTALL) return s import string correct = [] for i, choice in enumerate(quiz['choices']): if i > 4: # not supported errwarn('*** warning: quiz with %d choices gets truncated (first 5)' % len(quiz['choices'])) break letter = string.ascii_lowercase[i] text += ' :answer_%s: ' % letter answer = fix_text(choice[1], tp='answer') if not answer: answer = 'Too advanced typesetting prevents the text from being rendered' text += answer + '\n' if choice[0] == 'right': correct.append(letter) if correct: text += ' :correct: ' + ', '.join(correct) + '\n' else: errwarn('*** error: correct choice in quiz has index > 5 (max 5 allowed for RunestoneInteractive books)') errwarn(quiz['question']) _abort() for i, choice in enumerate(quiz['choices']): if i > 4: # not supported break letter = string.ascii_lowercase[i] text += ' :feedback_%s: ' % letter # must be present if len(choice) == 3 and quiz_feedback == 'on': feedback = fix_text(choice[2], tp='explanation') if not feedback: feedback = '(Too advanced typesetting prevents the text from being rendered)' text += feedback text += '\n' text += '\n' + indent_lines(quiz['question'], 'sphinx', ' '*3) + '\n\n\n' return text def sphinx_quiz(quiz): if option('runestone'): return sphinx_quiz_runestone(quiz) else: return rst_quiz(quiz) from .latex import fix_latex_command_regex as fix_latex def sphinx_code(filestr, code_blocks, code_block_types, tex_blocks, format): # In rst syntax, code blocks are typeset with :: (verbatim) # followed by intended blocks. This function indents everything # inside code (or TeX) blocks. # default mappings of !bc environments and pygments languages: envir2pygments = dict( cod='python', pro='python', pycod='python', cycod='cython', pypro='python', cypro='cython', fcod='fortran', fpro='fortran', ccod='c', cppcod='c++', cpro='c', cpppro='c++', mcod='matlab', mpro='matlab', plcod='perl', plpro='perl', shcod='bash', shpro='bash', rbcod='ruby', rbpro='ruby', #sys='console', sys='text', rst='rst', css='css', csspro='css', csscod='css', dat='text', csv='text', txt='text', cc='text', ccq='text', # not possible with extra indent for ccq ipy='ipy', xmlcod='xml', xmlpro='xml', xml='xml', htmlcod='html', htmlpro='html', html='html', texcod='latex', texpro='latex', tex='latex', latexcod='latex', latexpro='latex', latex='latex', do='doconce', pyshell='python', pyoptpro='python', pyscpro='python', ) # grab line with: # sphinx code-blocks: cod=python cpp=c++ etc # (do this before code is inserted in case verbatim blocks contain # such specifications for illustration) m = re.search(r'.. *[Ss]phinx +code-blocks?:(.+)', filestr) if m: defs_line = m.group(1) # turn specifications into a dictionary: for definition in defs_line.split(): key, value = definition.split('=') envir2pygments[key] = value # First indent all code blocks for i in range(len(code_blocks)): if code_block_types[i].startswith('pyoptpro') and not option('runestone'): code_blocks[i] = online_python_tutor(code_blocks[i], return_tp='iframe') if code_block_types[i].endswith('-h'): indentation = ' '*8 else: indentation = ' '*4 code_blocks[i] = indent_lines(code_blocks[i], format, indentation) # After transforming align environments to separate equations # the problem with math labels in multiple eqs has disappeared. # (doconce.py applies align2equations, which takes all align # envirs and translates them to separate equations, but align* # environments are allowed. # Any output of labels in align means an error in the # align -> equation transformation...) math_labels = [] multiple_math_labels = [] # sphinx has problems with multiple math labels for i in range(len(tex_blocks)): tex_blocks[i] = indent_lines(tex_blocks[i], format) # extract all \label{}s inside tex blocks and typeset them # with :label: tags label_regex = fix_latex( r'label\{(.+?)\}', application='match') labels = re.findall(label_regex, tex_blocks[i]) if len(labels) == 1: tex_blocks[i] = ' :label: %s\n' % labels[0] + tex_blocks[i] elif len(labels) > 1: multiple_math_labels.append(labels) if len(labels) > 0: math_labels.extend(labels) tex_blocks[i] = re.sub(label_regex, '', tex_blocks[i]) # fix latex constructions that do not work with sphinx math # (just remove them) commands = [r'\begin{equation}', r'\end{equation}', r'\begin{equation*}', r'\end{equation*}', #r'\begin{eqnarray}', #r'\end{eqnarray}', #r'\begin{eqnarray*}', #r'\end{eqnarray*}', #r'\begin{align}', #r'\end{align}', #r'\begin{align*}', #r'\end{align*}', r'\begin{multline}', r'\end{multline}', r'\begin{multline*}', r'\end{multline*}', #r'\begin{split}', #r'\end{split}', #r'\begin{gather}', #r'\end{gather}', #r'\begin{gather*}', #r'\end{gather*}', r'\[', r'\]', # some common abbreviations (newcommands): r'\beqan', r'\eeqan', r'\beqa', r'\eeqa', r'\balnn', r'\ealnn', r'\baln', r'\ealn', r'\beq', r'\eeq', # the simplest name, contained in others, must come last! ] for command in commands: tex_blocks[i] = tex_blocks[i].replace(command, '') # &=& -> &= tex_blocks[i] = re.sub('&\s*=\s*&', ' &= ', tex_blocks[i]) # provide warnings for problematic environments # Replace all references to equations that have labels in math environments: for label in math_labels: filestr = filestr.replace('(:ref:`%s`)' % label, ':eq:`%s`' % label) multiple_math_labels_with_refs = [] # collect the labels with references for labels in multiple_math_labels: for label in labels: ref = ':eq:`%s`' % label # ref{} is translated to eq:`` if ref in filestr: multiple_math_labels_with_refs.append(label) if multiple_math_labels_with_refs: errwarn(""" *** warning: detected non-align math environment with multiple labels (Sphinx cannot handle this equation system - labels will be removed and references to them will be empty):""") for label in multiple_math_labels_with_refs: errwarn(' label{%s}' % label) print() filestr = insert_code_and_tex(filestr, code_blocks, tex_blocks, 'sphinx') # Remove all !bc ipy and !bc pyshell since interactive sessions # are automatically handled by sphinx without indentation # (just a blank line before and after) filestr = re.sub(r'^!bc +d?ipy *\n(.*?)^!ec *\n', '\n\g<1>\n', filestr, re.DOTALL|re.MULTILINE) filestr = re.sub(r'^!bc +d?pyshell *\n(.*?)^!ec *\n', '\n\g<1>\n', filestr, re.DOTALL|re.MULTILINE) # Check if we have custom pygments lexers if 'ipy' in code_block_types: if not has_custom_pygments_lexer('ipy'): envir2pygments['ipy'] = 'python' if 'do' in code_block_types: if not has_custom_pygments_lexer('doconce'): envir2pygments['do'] = 'text' # Make correct code-block:: language constructions legal_pygments_languages = get_legal_pygments_lexers() for key in set(code_block_types): if key in envir2pygments: if not envir2pygments[key] in legal_pygments_languages: errwarn("""*** warning: %s is not a legal Pygments language (lexer) found in line: %s The 'text' lexer will be used instead. """ % (envir2pygments[key], defs_line)) envir2pygments[key] = 'text' #filestr = re.sub(r'^!bc\s+%s\s*\n' % key, # '\n.. code-block:: %s\n\n' % envir2pygments[key], filestr, # flags=re.MULTILINE) # Check that we have code installed to handle pyscpro if 'pyscpro' in filestr and key == 'pyscpro': try: import icsecontrib.sagecellserver except ImportError: errwarn(""" *** warning: pyscpro for computer code (sage cells) is requested, but' icsecontrib.sagecellserver from https://github.com/kriskda/sphinx-sagecell is not installed. Using plain Python typesetting instead.""") key = 'pypro' if key == 'pyoptpro': if option('runestone'): filestr = re.sub(r'^!bc\s+%s\s*\n' % key, '\n.. codelens:: codelens_\n :showoutput:\n\n', filestr, flags=re.MULTILINE) else: filestr = re.sub(r'^!bc\s+%s\s*\n' % key, '\n.. raw:: html\n\n', filestr, flags=re.MULTILINE) elif key == 'pyscpro': if option('runestone'): filestr = re.sub(r'^!bc\s+%s\s*\n' % key, """ .. activecode:: activecode_ :language: python """, filestr, flags=re.MULTILINE) else: filestr = re.sub(r'^!bc\s+%s\s*\n' % key, '\n.. sagecellserver::\n\n', filestr, flags=re.MULTILINE) elif key == 'pysccod': if option('runestone'): # Include (i.e., run) all previous code segments... # NOTE: this is most likely not what we want include = ', '.join([i for i in range(1, activecode_counter)]) filestr = re.sub(r'^!bc\s+%s\s*\n' % key, """ .. activecode:: activecode_ :language: python "include: %s """ % include, filestr, flags=re.MULTILINE) else: errwarn('*** error: pysccod for sphinx is not supported without the --runestone flag\n (but pyscpro is via Sage Cell Server)') _abort() elif key == '': # any !bc with/without argument becomes a text block: filestr = re.sub(r'^!bc$', '\n.. code-block:: text\n\n', filestr, flags=re.MULTILINE) elif key.endswith('hid'): if key in ('pyhid', 'jshid', 'htmlhid') and option('runestone'): # Allow runestone books to run hidden code blocks # (replace pyhid by pycod, then remove all !bc *hid) for i in range(len(code_block_types)): if code_block_types[i] == key: code_block_types[i] = key.replace('hid', 'cod') key2language = dict(py='python', js='javascript', html='html') language = key2language[key.replace('hid', '')] include = ', '.join([i for i in range(1, activecode_counter)]) filestr = re.sub(r'^!bc +%s\s*\n' % key, """ .. activecode:: activecode_ :language: %s :include: %s :hidecode: """ % (language, include), filestr, flags=re.MULTILINE) else: # Remove hidden code block pattern = r'^!bc +%s\n.+?^!ec' % key filestr = re.sub(pattern, '', filestr, flags=re.MULTILINE|re.DOTALL) else: show_hide = False if key.endswith('-h'): key_orig = key key = key[:-2] show_hide = True # Use the standard sphinx code-block directive if key in envir2pygments: pygments_language = envir2pygments[key] elif key in legal_pygments_languages: pygments_language = key else: errwarn('*** error: detected code environment "%s"' % key) errwarn(' which is not registered in sphinx.py (sphinx_code)') errwarn(' or not a language registered in pygments') _abort() if show_hide: filestr = re.sub(r'^!bc +%s\s*\n' % key_orig, '\n.. container:: toggle\n\n .. container:: header\n\n **Show/Hide Code**\n\n .. code-block:: %s\n\n' % \ pygments_language, filestr, flags=re.MULTILINE) # Must add 4 indent in corresponding code_blocks[i], done above else: filestr = re.sub(r'^!bc +%s\s*\n' % key, '\n.. code-block:: %s\n\n' % \ pygments_language, filestr, flags=re.MULTILINE) # any !bc with/without argument becomes a text block: filestr = re.sub(r'^!bc.*$', '\n.. code-block:: text\n\n', filestr, flags=re.MULTILINE) filestr = re.sub(r'^!ec *\n', '\n', filestr, flags=re.MULTILINE) #filestr = re.sub(r'^!ec\n', '\n', filestr, flags=re.MULTILINE) #filestr = re.sub(r'^!ec\n', '', filestr, flags=re.MULTILINE) filestr = re.sub(r'^!bt *\n', '\n.. math::\n', filestr, flags=re.MULTILINE) filestr = re.sub(r'^!et *\n', '\n', filestr, flags=re.MULTILINE) # Fix lacking blank line after :label: filestr = re.sub(r'^( :label: .+?)(\n *[^ ]+)', r'\g<1>\n\n\g<2>', filestr, flags=re.MULTILINE) # Insert counters for runestone blocks if option('runestone'): codelens_counter = 0 activecode_counter = 0 lines = filestr.splitlines() for i in range(len(lines)): if '.. codelens:: codelens_' in lines[i]: codelens_counter += 1 lines[i] = lines[i].replace('codelens_', 'codelens_%d' % codelens_counter) if '.. activecode:: activecode_' in lines[i]: activecode_counter += 1 lines[i] = lines[i].replace('activecode_', 'activecode_%d' % activecode_counter) filestr = '\n'.join(lines) # Final fixes filestr = fix_underlines_in_headings(filestr) # Ensure blank line before and after comments filestr = re.sub(r'([.:;?!])\n^\.\. ', r'\g<1>\n\n.. ', filestr, flags=re.MULTILINE) filestr = re.sub(r'(^\.\. .+)\n([^ \n]+)', r'\g<1>\n\n\g<2>', filestr, flags=re.MULTILINE) # Line breaks interfer with tables and needs a final blank line too lines = filestr.splitlines() inside_block = False for i in range(len(lines)): if lines[i].startswith('<linebreakpipe>') and not inside_block: inside_block = True lines[i] = lines[i].replace('<linebreakpipe> ', '') + '\n' continue if lines[i].startswith('<linebreakpipe>') and inside_block: lines[i] = '|' + lines[i].replace('<linebreakpipe>', '') continue if inside_block and not lines[i].startswith('<linebreakpipe>'): inside_block = False lines[i] = '| ' + lines[i] + '\n' filestr = '\n'.join(lines) # Remove double !split (TOC with a prefix !split gives two !splits) pattern = '^.. !split\s+.. !split' filestr = re.sub(pattern, '.. !split', filestr, flags=re.MULTILINE) if option('html_links_in_new_window'): # Insert a comment to be recognized by automake_sphinx.py such that it # can replace the default links by proper modified target= option. #filestr = '\n\n.. NOTE: Open external links in new windows.\n\n' + filestr # Use JavaScript instead filestr = """.. raw:: html <script type="text/javascript"> $(document).ready(function() { $("a[href^='http']").attr('target','_blank'); }); </script> """ + filestr # Remove too much vertical space filestr = re.sub(r'\n{3,}', '\n\n', filestr) return filestr def sphinx_ref_and_label(section_label2title, format, filestr): # Special fix early in the process: # Deal with !split - by default we place splits before # the all the topmost sections # (This must be done before labels are put above section # headings) if '!split' in filestr and not option('sphinx_keep_splits'): errwarn('*** warning: new !split inserted (override all existing !split)') # Note: the title is at this stage translated to a chapter heading! # This title/heading must be removed for the algorithm below to work # (remove it, then insert afterwards) pattern = r'^.. Document title:\n\n={3,9}.+?={3,9}' m = re.search(pattern, filestr, flags=re.MULTILINE) title_replacement = '<<<<<<<DOCUMENT TITLE>>>>>>>>>>>>' # "unlikely" str if m: title = m.group() filestr = filestr.replace(title, title_replacement) else: title = '' topmost_section = 0 for i in [9, 7, 5]: if re.search(r'^%s' % ('='*i), filestr, flags=re.MULTILINE): topmost_section = i errwarn(' before every %s heading %s' % \ ('='*topmost_section, '='*topmost_section)) errwarn(' because this strategy gives a well-functioning') errwarn(' table of contents in Sphinx') errwarn(' (use --sphinx_keep_splits to enforce your own !split commands)') break if topmost_section: # First remove all !split filestr = re.sub(r'^!split *\n', '', filestr, flags=re.MULTILINE) # Insert new splits before all topmost sections pattern = r'^%s (.+?) %s' % \ ('='*topmost_section, '='*topmost_section) lines = filestr.splitlines() for i in range(len(lines)): if re.search(pattern, lines[i]): lines[i] = '!split\n' + lines[i] filestr = '\n'.join(lines) filestr = filestr.replace(title_replacement, title) filestr = ref_and_label_commoncode(section_label2title, format, filestr) # replace all references to sections: for label in section_label2title: filestr = filestr.replace('ref{%s}' % label, ':ref:`%s`' % label) # Not of interest after sphinx got equation references: #from common import ref2equations #filestr = ref2equations(filestr) # Replace remaining ref{x} as :ref:`x` filestr = re.sub(r'ref\{(.+?)\}', ':ref:`\g<1>`', filestr) return filestr def sphinx_index_bib(filestr, index, citations, pubfile, pubdata): # allow user to force the use of original bibliography keys instead of numbered labels numbering = not option('sphinx_preserve_bib_keys', False) filestr = rst_bib(filestr, citations, pubfile, pubdata, numbering=numbering) from .common import INLINE_TAGS for word in index: # Drop verbatim, emphasize, bold, and math in index word2 = word.replace('`', '') word2 = word2.replace('$', '').replace('\\', '') word2 = re.sub(INLINE_TAGS['bold'], r'\g<begin>\g<subst>\g<end>', word2, flags=re.MULTILINE) word2 = re.sub(INLINE_TAGS['emphasize'], r'\g<begin>\g<subst>\g<end>', word2, flags=re.MULTILINE) # Typeset idx{word} as ..index:: if '!' not in word and ',' not in word: # .. index:: keyword filestr = filestr.replace( 'idx{%s}' % word, '\n.. index:: ' + word2 + '\n') elif '!' not in word: # .. index:: # single: keyword with comma filestr = filestr.replace( 'idx{%s}' % word, '\n.. index::\n single: ' + word2 + '\n') else: # .. index:: # single: keyword; subentry word3 = word2.replace('!', '; ') filestr = filestr.replace( 'idx{%s}' % word, '\n.. index::\n single: ' + word3 + '\n') # Symmetric keyword; subentry and subentry; keyword #filestr = filestr.replace( # 'idx{%s}' % word, # '\n.. index::\n pair: ' + word3 + '\n') return filestr def sphinx_inline_comment(m): # Explicit HTML typesetting does not work, we just use bold name = m.group('name').strip() comment = m.group('comment').strip() global edit_markup_warning if (not edit_markup_warning) and \ (name[:3] in ('add', 'del', 'edi') or '->' in comment): errwarn('*** warning: sphinx/rst is a suboptimal format for') errwarn(' typesetting edit markup such as') errwarn(' ' + m.group()) errwarn(' Use HTML or LaTeX output instead, implement the') errwarn(' edits (doconce apply_edit_comments) and then use sphinx.') edit_markup_warning = True chars = {',': 'comma', ';': 'semicolon', '.': 'period'} if name[:4] == 'del ': for char in chars: if comment == char: return r' (**edit %s**: delete %s)' % (name[4:], chars[char]) return r'(**edit %s**: **delete** %s)' % (name[4:], comment) elif name[:4] == 'add ': for char in chars: if comment == char: return r'%s (**edit %s: add %s**)' % (comment, name[4:], chars[char]) return r' (**edit %s: add**) %s (**end add**)' % (name[4:], comment) else: # Ordinary name comment = ' '.join(comment.splitlines()) # '\s->\s' -> ' -> ' if ' -> ' in comment: # Replacement if comment.count(' -> ') != 1: errwarn('*** wrong syntax in inline comment:') errwarn(comment) errwarn('(more than two ->)') _abort() orig, new = comment.split(' -> ') return r'(**%s: remove** %s) (**insert:**)%s (**end insert**)' % (name, orig, new) else: # Ordinary comment return r'[**%s**: %s]' % (name, comment) def define(FILENAME_EXTENSION, BLANKLINE, INLINE_TAGS_SUBST, CODE, LIST, ARGLIST, TABLE, EXERCISE, FIGURE_EXT, CROSS_REFS, INDEX_BIB, TOC, ENVIRS, QUIZ, INTRO, OUTRO, filestr): if not 'rst' in BLANKLINE: # rst.define is not yet ran on these dictionaries, do it: from . import rst rst.define(FILENAME_EXTENSION, BLANKLINE, INLINE_TAGS_SUBST, CODE, LIST, ARGLIST, TABLE, FIGURE_EXT, INTRO, OUTRO, filestr) FILENAME_EXTENSION['sphinx'] = FILENAME_EXTENSION['rst'] BLANKLINE['sphinx'] = BLANKLINE['rst'] CODE['sphinx'] = CODE['rst'] LIST['sphinx'] = LIST['rst'] FIGURE_EXT['sphinx'] = { 'search': ('.png', '.gif', '.jpg', '.jpeg'), 'convert': ('.png', '.gif', '.jpg')} CROSS_REFS['sphinx'] = sphinx_ref_and_label INDEX_BIB['sphinx'] = sphinx_index_bib TABLE['sphinx'] = TABLE['rst'] EXERCISE['sphinx'] = EXERCISE['rst'] ENVIRS['sphinx'] = ENVIRS['rst'] INTRO['sphinx'] = INTRO['rst'].replace( '.. Automatically generated reStructuredText', '.. Automatically generated Sphinx-extended reStructuredText') # make true copy of INLINE_TAGS_SUBST: INLINE_TAGS_SUBST['sphinx'] = {} for tag in INLINE_TAGS_SUBST['rst']: INLINE_TAGS_SUBST['sphinx'][tag] = INLINE_TAGS_SUBST['rst'][tag] # modify some tags: #INLINE_TAGS_SUBST['sphinx']['math'] = r'\g<begin>:math:`\g<subst>`\g<end>' # Important to strip the math expression INLINE_TAGS_SUBST['sphinx']['math'] = lambda m: r'%s:math:`%s`%s' % (m.group('begin'), m.group('subst').strip(), m.group('end')) #INLINE_TAGS_SUBST['sphinx']['math2'] = r'\g<begin>:math:`\g<latexmath>`\g<end>' INLINE_TAGS_SUBST['sphinx']['math2'] = lambda m: r'%s:math:`%s`%s' % (m.group('begin'), m.group('latexmath').strip(), m.group('end')) INLINE_TAGS_SUBST['sphinx']['figure'] = sphinx_figure INLINE_TAGS_SUBST['sphinx']['movie'] = sphinx_movie INLINE_TAGS_SUBST['sphinx']['inlinecomment'] = sphinx_inline_comment CODE['sphinx'] = sphinx_code # function for typesetting code ARGLIST['sphinx'] = { 'parameter': ':param', 'keyword': ':keyword', 'return': ':return', 'instance variable': ':ivar', 'class variable': ':cvar', 'module variable': ':var', } TOC['sphinx'] = lambda s, f: '' # Sphinx automatically generates a toc QUIZ['sphinx'] = sphinx_quiz #--------------------------------------------------------------------------- def sphinx_code_orig(filestr, format): # NOTE: THIS FUNCTION IS NOT USED!!!!!! # In rst syntax, code blocks are typeset with :: (verbatim) # followed by intended blocks. This function indents everything # inside code (or TeX) blocks. # grab #sphinx code-blocks: cod=python cpp=c++ etc line # (do this before code is inserted in case verbatim blocks contain # such specifications for illustration) m = re.search(r'#\s*[Ss]phinx\s+code-blocks?:(.+?)\n', filestr) if m: defs_line = m.group(1) # turn defs into a dictionary definition: defs = {} for definition in defs_line.split(): key, value = definition.split('=') defs[key] = value else: # default mappings: defs = dict(cod='python', pro='python', pycod='python', cycod='cython', pypro='python', cypro='cython', fcod='fortran', fpro='fortran', ccod='c', cppcod='c++', cpro='c', cpppro='c++', mcod='matlab', mpro='matlab', plcod='perl', plpro='perl', shcod='bash', shpro='bash', rbcod='ruby', rbpro='ruby', sys='console', dat='python', ipy='python', xmlcod='xml', xmlpro='xml', xml='xml', htmlcod='html', htmlpro='html', html='html', texcod='latex', texpro='latex', tex='latex', ) # (the "python" typesetting is neutral if the text # does not parse as python) # first indent all code/tex blocks by 1) extracting all blocks, # 2) intending each block, and 3) inserting the blocks: filestr, code_blocks, tex_blocks = remove_code_and_tex(filestr, format) for i in range(len(code_blocks)): code_blocks[i] = indent_lines(code_blocks[i], format) for i in range(len(tex_blocks)): tex_blocks[i] = indent_lines(tex_blocks[i], format) # remove all \label{}s inside tex blocks: tex_blocks[i] = re.sub(fix_latex(r'\label\{.+?\}', application='match'), '', tex_blocks[i]) # remove those without \ if there are any: tex_blocks[i] = re.sub(r'label\{.+?\}', '', tex_blocks[i]) # side effects: `label{eq1}` as verbatim, but this is mostly a # problem for doconce documentation and can be rephrased... # fix latex constructions that do not work with sphinx math commands = [r'\begin{equation}', r'\end{equation}', r'\begin{equation*}', r'\end{equation*}', r'\begin{eqnarray}', r'\end{eqnarray}', r'\begin{eqnarray*}', r'\end{eqnarray*}', r'\begin{align}', r'\end{align}', r'\begin{align*}', r'\end{align*}', r'\begin{multline}', r'\end{multline}', r'\begin{multline*}', r'\end{multline*}', r'\begin{split}', r'\end{split}', r'\begin{gather}', r'\end{gather}', r'\begin{gather*}', r'\end{gather*}', r'\[', r'\]', # some common abbreviations (newcommands): r'\beqan', r'\eeqan', r'\beqa', r'\eeqa', r'\balnn', r'\ealnn', r'\baln', r'\ealn', r'\beq', r'\eeq', # the simplest, contained in others, must come last! ] for command in commands: tex_blocks[i] = tex_blocks[i].replace(command, '') tex_blocks[i] = re.sub('&\s*=\s*&', ' &= ', tex_blocks[i]) # provide warnings for problematic environments #if '{alignat' in tex_blocks[i]: # errwarn('*** warning: the "alignat" environment will give errors in Sphinx:\n' + tex_blocks[i] + '\n') filestr = insert_code_and_tex(filestr, code_blocks, tex_blocks, 'rst') for key in defs: language = defs[key] if not language in legal_pygments_languages: raise TypeError('%s is not a legal Pygments language '\ '(lexer) in line with:\n %s' % \ (language, defs_line)) #filestr = re.sub(r'^!bc\s+%s\s*\n' % key, # '\n.. code-block:: %s\n\n' % defs[key], filestr, # flags=re.MULTILINE) cpattern = re.compile(r'^!bc\s+%s\s*\n' % key, flags=re.MULTILINE) filestr, n = cpattern.subn('\n.. code-block:: %s\n\n' % defs[key], filestr) errwarn(key + ' ' + n) if n > 0: errwarn('sphinx: %d subst %s by %s' % (n, key, defs[key])) # any !bc with/without argument becomes a py (python) block: #filestr = re.sub(r'^!bc.+\n', '\n.. code-block:: py\n\n', filestr, # flags=re.MULTILINE) cpattern = re.compile(r'^!bc.+$', flags=re.MULTILINE) filestr = cpattern.sub('\n.. code-block:: py\n\n', filestr) filestr = re.sub(r'^!ec *\n', '\n', filestr, flags=re.MULTILINE) #filestr = re.sub(r'^!ec\n', '\n', filestr, flags=re.MULTILINE) #filestr = re.sub(r'^!ec\n', '', filestr, flags=re.MULTILINE) filestr = re.sub(r'^!bt *\n', '\n.. math::\n\n', filestr, flags=re.MULTILINE) filestr = re.sub(r'^!et *\n', '\n\n', filestr, flags=re.MULTILINE) return filestr def sphinx_code_newmathlabels(filestr, format): # NOTE: THIS FUNCTION IS NOT USED!!!!!! # In rst syntax, code blocks are typeset with :: (verbatim) # followed by intended blocks. This function indents everything # inside code (or TeX) blocks. # grab #sphinx code-blocks: cod=python cpp=c++ etc line # (do this before code is inserted in case verbatim blocks contain # such specifications for illustration) m = re.search(r'#\s*[Ss]phinx\s+code-blocks?:(.+?)\n', filestr) if m: defs_line = m.group(1) # turn defs into a dictionary definition: defs = {} for definition in defs_line.split(): key, value = definition.split('=') defs[key] = value else: # default mappings: defs = dict(cod='python', pycod='python', cppcod='c++', fcod='fortran', ccod='c', pro='python', pypro='python', cpppro='c++', fpro='fortran', cpro='c', sys='console', dat='python') # (the "python" typesetting is neutral if the text # does not parse as python) # First indent all code/tex blocks by 1) extracting all blocks, # 2) intending each block, and 3) inserting the blocks. # In between, handle the math blocks. filestr, code_blocks, tex_blocks = remove_code_and_tex(filestr, format) for i in range(len(code_blocks)): code_blocks[i] = indent_lines(code_blocks[i], format) math_labels = [] for i in range(len(tex_blocks)): tex_blocks[i] = indent_lines(tex_blocks[i], format) # extract all \label{}s inside tex blocks and typeset them # with :label: tags label_regex1 = fix_latex(r'\label\{(.+?)\}', application='match') label_regex2 = fix_latex( r'label\{(.+?)\}', application='match') math_labels.extend(re.findall(label_regex1, tex_blocks[i])) tex_blocks[i] = re.sub(label_regex1, r' :label: \g<1> ', tex_blocks[i]) # handle also those without \ if there are any: math_labels.extend(re.findall(label_regex2, tex_blocks[i])) tex_blocks[i] = re.sub(label_regex2, r' :label: \g<1> ', tex_blocks[i]) # replace all references to equations: for label in math_labels: filestr = filestr.replace(':ref:`%s`' % label, ':eq:`%s`' % label) filestr = insert_code_and_tex(filestr, code_blocks, tex_blocks, 'rst') for key in defs: language = defs[key] if not language in legal_pygments_languages: raise TypeError('%s is not a legal Pygments language '\ '(lexer) in line with:\n %s' % \ (language, defs_line)) #filestr = re.sub(r'^!bc\s+%s\s*\n' % key, # '\n.. code-block:: %s\n\n' % defs[key], filestr, # flags=re.MULTILINE) cpattern = re.compile(r'^!bc\s+%s\s*\n' % key, flags=re.MULTILINE) filestr = cpattern.sub('\n.. code-block:: %s\n\n' % defs[key], filestr) # any !bc with/without argument becomes a py (python) block: #filestr = re.sub(r'^!bc.+\n', '\n.. code-block:: py\n\n', filestr, # flags=re.MULTILINE) cpattern = re.compile(r'^!bc.+$', flags=re.MULTILINE) filestr = cpattern.sub('\n.. code-block:: py\n\n', filestr) filestr = re.sub(r'!ec *\n', '\n', filestr) #filestr = re.sub(r'!ec\n', '\n', filestr) #filestr = re.sub(r'!ec\n', '', filestr) filestr = re.sub(r'!bt *\n', '\n.. math::\n :nowrap:\n\n', filestr) filestr = re.sub(r'!et *\n', '\n\n', filestr) return filestr
41.25
170
0.531605
aac4eabfd085825de699c46b43c72cbf1178a03e
7,545
py
Python
scannet/scannet_dataset_sw_rgb.py
MatteoPerotto/pointconv
204a0d534c4d75e80bde7722c075a78365a64929
[ "MIT" ]
471
2019-03-26T02:01:55.000Z
2022-03-10T03:09:10.000Z
scannet/scannet_dataset_sw_rgb.py
MatteoPerotto/pointconv
204a0d534c4d75e80bde7722c075a78365a64929
[ "MIT" ]
35
2019-03-28T05:28:17.000Z
2021-08-19T10:22:47.000Z
scannet/scannet_dataset_sw_rgb.py
MatteoPerotto/pointconv
204a0d534c4d75e80bde7722c075a78365a64929
[ "MIT" ]
115
2019-04-21T07:33:00.000Z
2022-03-04T07:21:12.000Z
""" ScanNet Class From Charles R. Qi, Hao Su. Modiyied to support point-wise evaluation in ScanNet v2. Author: Wenxuan Wu Date: July 2018 """ import pickle import os import sys import numpy as np class ScannetDatasetWholeScene_evaluation(): #prepare to give prediction on each points def __init__(self, root, split='test', num_class = 21, block_points = 8192, with_rgb = True): self.root = root self.split = split self.with_rgb = with_rgb self.block_points = block_points self.point_num = [] self.data_filename = os.path.join(self.root, 'scannet_%s_rgb21c_pointid.pickle'%(split)) with open(self.data_filename,'rb') as fp: self.scene_points_list = pickle.load(fp) self.semantic_labels_list = pickle.load(fp) self.scene_points_id = pickle.load(fp) self.scene_points_num = pickle.load(fp) if split=='train': labelweights = np.zeros(num_class) for seg in self.semantic_labels_list: self.point_num.append(seg.shape[0]) tmp,_ = np.histogram(seg,range(num_class+1)) labelweights += tmp labelweights = labelweights.astype(np.float32) labelweights = labelweights/np.sum(labelweights) #self.labelweights = 1/np.log(1.2+labelweights) self.labelweights = np.power(np.amax(labelweights) / labelweights, 1/3.0) else: self.labelweights = np.ones(num_class) for seg in self.semantic_labels_list: self.point_num.append(seg.shape[0]) def chunks(self, l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def split_data(self, data, idx): new_data = [] for i in range(len(idx)): new_data += [np.expand_dims(data[idx[i]], axis = 0)] return new_data def nearest_dist(self, block_center, block_center_list): num_blocks = len(block_center_list) dist = np.zeros(num_blocks) for i in range(num_blocks): dist[i] = np.linalg.norm(block_center_list[i] - block_center, ord = 2) #i->j return np.argsort(dist)[0] def __getitem__(self, index): delta = 0.5 if self.with_rgb: point_set_ini = self.scene_points_list[index] else: point_set_ini = self.scene_points_list[index][:, 0:3] semantic_seg_ini = self.semantic_labels_list[index].astype(np.int32) coordmax = np.max(point_set_ini[:, 0:3],axis=0) coordmin = np.min(point_set_ini[:, 0:3],axis=0) nsubvolume_x = np.ceil((coordmax[0]-coordmin[0])/delta).astype(np.int32) nsubvolume_y = np.ceil((coordmax[1]-coordmin[1])/delta).astype(np.int32) point_sets = [] semantic_segs = [] sample_weights = [] point_idxs = [] block_center = [] for i in range(nsubvolume_x): for j in range(nsubvolume_y): curmin = coordmin+[i*delta,j*delta,0] curmax = curmin+[1.5,1.5,coordmax[2]-coordmin[2]] curchoice = np.sum((point_set_ini[:,0:3]>=(curmin-0.2))*(point_set_ini[:,0:3]<=(curmax+0.2)),axis=1)==3 curchoice_idx = np.where(curchoice)[0] cur_point_set = point_set_ini[curchoice,:] cur_semantic_seg = semantic_seg_ini[curchoice] if len(cur_semantic_seg)==0: continue mask = np.sum((cur_point_set[:,0:3]>=(curmin-0.001))*(cur_point_set[:,0:3]<=(curmax+0.001)),axis=1)==3 sample_weight = self.labelweights[cur_semantic_seg] sample_weight *= mask # N point_sets.append(cur_point_set) # 1xNx3/6 semantic_segs.append(cur_semantic_seg) # 1xN sample_weights.append(sample_weight) # 1xN point_idxs.append(curchoice_idx) #1xN block_center.append((curmin[0:2] + curmax[0:2]) / 2.0) # merge small blocks num_blocks = len(point_sets) block_idx = 0 while block_idx < num_blocks: if point_sets[block_idx].shape[0] > 4096: block_idx += 1 continue small_block_data = point_sets[block_idx].copy() small_block_seg = semantic_segs[block_idx].copy() small_block_smpw = sample_weights[block_idx].copy() small_block_idxs = point_idxs[block_idx].copy() small_block_center = block_center[block_idx].copy() point_sets.pop(block_idx) semantic_segs.pop(block_idx) sample_weights.pop(block_idx) point_idxs.pop(block_idx) block_center.pop(block_idx) nearest_block_idx = self.nearest_dist(small_block_center, block_center) point_sets[nearest_block_idx] = np.concatenate((point_sets[nearest_block_idx], small_block_data), axis = 0) semantic_segs[nearest_block_idx] = np.concatenate((semantic_segs[nearest_block_idx], small_block_seg), axis = 0) sample_weights[nearest_block_idx] = np.concatenate((sample_weights[nearest_block_idx], small_block_smpw), axis = 0) point_idxs[nearest_block_idx] = np.concatenate((point_idxs[nearest_block_idx], small_block_idxs), axis = 0) num_blocks = len(point_sets) #divide large blocks num_blocks = len(point_sets) div_blocks = [] div_blocks_seg = [] div_blocks_smpw = [] div_blocks_idxs = [] div_blocks_center = [] for block_idx in range(num_blocks): cur_num_pts = point_sets[block_idx].shape[0] point_idx_block = np.array([x for x in range(cur_num_pts)]) if point_idx_block.shape[0]%self.block_points != 0: makeup_num = self.block_points - point_idx_block.shape[0]%self.block_points np.random.shuffle(point_idx_block) point_idx_block = np.concatenate((point_idx_block,point_idx_block[0:makeup_num].copy())) np.random.shuffle(point_idx_block) sub_blocks = list(self.chunks(point_idx_block, self.block_points)) div_blocks += self.split_data(point_sets[block_idx], sub_blocks) div_blocks_seg += self.split_data(semantic_segs[block_idx], sub_blocks) div_blocks_smpw += self.split_data(sample_weights[block_idx], sub_blocks) div_blocks_idxs += self.split_data(point_idxs[block_idx], sub_blocks) div_blocks_center += [block_center[block_idx].copy() for i in range(len(sub_blocks))] div_blocks = np.concatenate(tuple(div_blocks),axis=0) div_blocks_seg = np.concatenate(tuple(div_blocks_seg),axis=0) div_blocks_smpw = np.concatenate(tuple(div_blocks_smpw),axis=0) div_blocks_idxs = np.concatenate(tuple(div_blocks_idxs),axis=0) return div_blocks, div_blocks_seg, div_blocks_smpw, div_blocks_idxs def __len__(self): return len(self.scene_points_list) if __name__=='__main__': import pdb pdb.set_trace() #d = ScannetDataset(root = '../data/scannet/scannet_v2', split='test', npoints=8192) d = ScannetDatasetWholeScene_evaluation(root = './data_v2') labelweights_vox = np.zeros(21) for ii in range(len(d)): print(ii) ps,seg,smpw, idxs = d[ii] print(labelweights_vox[1:].astype(np.float32)/np.sum(labelweights_vox[1:].astype(np.float32))) exit()
45.727273
127
0.625845
6e2f4ebf65ca2f4cfc420698f04a1867c7461f1b
2,454
py
Python
setup.py
ColinDuquesnoy/pyqode.rst
b94078193e597633db6220e498d738f4abbb8f52
[ "MIT" ]
null
null
null
setup.py
ColinDuquesnoy/pyqode.rst
b94078193e597633db6220e498d738f4abbb8f52
[ "MIT" ]
null
null
null
setup.py
ColinDuquesnoy/pyqode.rst
b94078193e597633db6220e498d738f4abbb8f52
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Setup script for pyqode.rst """ import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand from pyqode.rst import __version__ class PyTest(TestCommand): user_options = [('pytest-args=', 'a', "Arguments to pass to py.test")] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest if self.pytest_args: self.pytest_args = self.pytest_args.replace('"', '').split(' ') else: self.pytest_args = [] print('running test command: py.test "%s"' % ' '.join( self.pytest_args)) errno = pytest.main(self.pytest_args) sys.exit(errno) cmdclass = {'test': PyTest} DESCRIPTION = 'Adds RestructuredText support to pyqode.core' def readme(): if 'bdist_deb' in sys.argv: return DESCRIPTION return str(open('README.rst').read()) setup( name='pyqode.rst', namespace_packages=['pyqode'], version=__version__, packages=[p for p in find_packages() if 'test' not in p], keywords=['RestructuredText', 'editor', 'pyqode'], url='https://github.com/pyQode/pyqode.rst', license='MIT', author='Colin Duquesnoy', author_email='colin.duquesnoy@gmail.com', description=DESCRIPTION, long_description=readme(), install_requires=['pyqode.core', 'restructuredtext_lint', 'docutils'], tests_require=['pytest-cov', 'pytest-pep8', 'pytest'], cmdclass=cmdclass, classifiers=[ 'Development Status :: 1 - Planning', 'Environment :: X11 Applications :: Qt', 'Environment :: Win32 (MS Windows)', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Software Development :: Widget Sets', 'Topic :: Text Editors :: Integrated Development Environments (IDE)'])
33.162162
79
0.632029
be46cca8d2c9bcb02807280deaf0c07ea11d7174
3,361
py
Python
tests/parsers/custom_destinations.py
roshanmaskey/plaso
637856f578eb4bc81f62b97d7f483f69314e7f47
[ "Apache-2.0" ]
1,253
2015-01-02T13:58:02.000Z
2022-03-31T08:43:39.000Z
tests/parsers/custom_destinations.py
roshanmaskey/plaso
637856f578eb4bc81f62b97d7f483f69314e7f47
[ "Apache-2.0" ]
3,388
2015-01-02T11:17:58.000Z
2022-03-30T10:21:45.000Z
tests/parsers/custom_destinations.py
roshanmaskey/plaso
637856f578eb4bc81f62b97d7f483f69314e7f47
[ "Apache-2.0" ]
376
2015-01-20T07:04:54.000Z
2022-03-04T23:53:00.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the .customDestinations-ms file parser.""" import unittest from plaso.lib import definitions from plaso.parsers import custom_destinations from tests.parsers import test_lib class CustomDestinationsParserTest(test_lib.ParserTestCase): """Tests for the .customDestinations-ms file parser.""" def testParse(self): """Tests the Parse function.""" parser = custom_destinations.CustomDestinationsParser() storage_writer = self._ParseFile( ['5afe4de1b92fc382.customDestinations-ms'], parser) self.assertEqual(storage_writer.number_of_events, 126) self.assertEqual(storage_writer.number_of_extraction_warnings, 0) self.assertEqual(storage_writer.number_of_recovery_warnings, 0) events = list(storage_writer.GetEvents()) # The shortcut last accessed event. expected_event_values = { 'data_type': 'windows:lnk:link', 'date_time': '2009-07-13 23:55:56.2481035', 'timestamp_desc': definitions.TIME_DESCRIPTION_LAST_ACCESS} self.CheckEventValues(storage_writer, events[121], expected_event_values) # The shortcut creation event. expected_event_values = { 'data_type': 'windows:lnk:link', 'date_time': '2009-07-13 23:55:56.2481035', 'timestamp_desc': definitions.TIME_DESCRIPTION_CREATION} self.CheckEventValues(storage_writer, events[122], expected_event_values) # The shortcut last modification event. expected_event_values = { 'command_line_arguments': ( '{DE3895CB-077B-4C38-B6E3-F3DE1E0D84FC} %systemroot%\\system32\\' 'control.exe /name Microsoft.Display'), 'data_type': 'windows:lnk:link', 'date_time': '2009-07-14 01:39:11.3880000', 'description': '@%systemroot%\\system32\\oobefldr.dll,-1262', 'drive_serial_number': 0x24ba718b, 'drive_type': 3, 'env_var_location': '%SystemRoot%\\system32\\GettingStarted.exe', 'file_attribute_flags': 0x00000020, 'file_size': 11776, 'icon_location': '%systemroot%\\system32\\display.dll', 'link_target': ( '<My Computer> C:\\Windows\\System32\\GettingStarted.exe'), 'local_path': 'C:\\Windows\\System32\\GettingStarted.exe', 'timestamp_desc': definitions.TIME_DESCRIPTION_MODIFICATION} self.CheckEventValues(storage_writer, events[123], expected_event_values) # A shell item event. expected_event_values = { 'data_type': 'windows:shell_item:file_entry', 'date_time': '2010-11-10 07:41:04', 'file_reference': '2331-1', 'long_name': 'System32', 'name': 'System32', 'origin': '5afe4de1b92fc382.customDestinations-ms', 'shell_item_path': '<My Computer> C:\\Windows\\System32'} self.CheckEventValues(storage_writer, events[18], expected_event_values) # A distributed link tracking event. expected_event_values = { 'data_type': 'windows:distributed_link_tracking:creation', 'date_time': '2010-11-10 19:08:32.6562596', 'mac_address': '00:0c:29:03:1e:1e', 'origin': '5afe4de1b92fc382.customDestinations-ms', 'uuid': 'e9215b24-ecfd-11df-a81c-000c29031e1e'} self.CheckEventValues(storage_writer, events[12], expected_event_values) if __name__ == '__main__': unittest.main()
37.344444
77
0.689081
f9a70f74983463938c5ec58e048cbbb9eaeca1e5
2,666
py
Python
pymunk-pymunk-4.0.0/build/lib/pymunk/_chipmunk_ffi.py
adrienchevrier/FollE_ML
56d39bcbafa33d336255d21379c4fa3b7268fe20
[ "MIT" ]
1
2017-04-05T13:00:51.000Z
2017-04-05T13:00:51.000Z
pymunk-pymunk-4.0.0/pymunk/_chipmunk_ffi.py
adrienchevrier/FollE_ML
56d39bcbafa33d336255d21379c4fa3b7268fe20
[ "MIT" ]
null
null
null
pymunk-pymunk-4.0.0/pymunk/_chipmunk_ffi.py
adrienchevrier/FollE_ML
56d39bcbafa33d336255d21379c4fa3b7268fe20
[ "MIT" ]
null
null
null
""" Contains low level wrapper around the chipmunk_ffi methods exported by chipmunk_ffi.h as those methods are not automatically generated by the wrapper generator. You usually dont need to use this module directly, instead use the high level binding in pymunk """ from ctypes import * from .vec2d import Vec2d from ._chipmunk import cpBool, cpFloat from ._chipmunk import cpBB, cpBody, cpVect, cpArbiter, cpShape, cpConstraint, cpGrooveJoint from ._chipmunk import chipmunk_lib from ._chipmunk import function_pointer cpBodyIsSleeping = (function_pointer(cpBool, POINTER(cpBody))).in_dll(chipmunk_lib, '_cpBodyIsSleeping') cpBodyIsRogue = (function_pointer(cpBool, POINTER(cpBody))).in_dll(chipmunk_lib, '_cpBodyIsRogue') cpBodyIsStatic = (function_pointer(cpBool, POINTER(cpBody))).in_dll(chipmunk_lib, '_cpBodyIsStatic') cpBodyLocal2World = (function_pointer(cpVect, POINTER(cpBody), cpVect)).in_dll(chipmunk_lib, '_cpBodyLocal2World') cpBodyWorld2Local = (function_pointer(cpVect, POINTER(cpBody), cpVect)).in_dll(chipmunk_lib, '_cpBodyWorld2Local') cpArbiterGetShapes = (function_pointer(None, POINTER(cpArbiter), POINTER(POINTER(cpShape)), POINTER(POINTER(cpShape)))).in_dll(chipmunk_lib, '_cpArbiterGetShapes') cpArbiterIsFirstContact = (function_pointer(cpBool, POINTER(cpArbiter))).in_dll(chipmunk_lib, '_cpArbiterIsFirstContact') cpConstraintGetImpulse = (function_pointer(cpFloat, POINTER(cpConstraint))).in_dll(chipmunk_lib, '_cpConstraintGetImpulse') cpBBNew = (function_pointer(cpBB, cpFloat, cpFloat, cpFloat, cpFloat)).in_dll(chipmunk_lib, '_cpBBNew') cpBBIntersects = (function_pointer(c_int, cpBB, cpBB)).in_dll(chipmunk_lib, '_cpBBIntersects') cpBBContainsBB = (function_pointer(c_int, cpBB, cpBB)).in_dll(chipmunk_lib, '_cpBBContainsBB') cpBBContainsVect = (function_pointer(c_int, cpBB, cpVect)).in_dll(chipmunk_lib, '_cpBBContainsVect') cpBBMerge = (function_pointer(cpBB, cpBB, cpBB)).in_dll(chipmunk_lib, '_cpBBMerge') cpBBExpand = (function_pointer(cpBB, cpBB, cpVect)).in_dll(chipmunk_lib, '_cpBBExpand') cpShapeGetBB = (function_pointer(cpBB, POINTER(cpShape))).in_dll(chipmunk_lib, '_cpShapeGetBB') #TODO: Use cpBBClampVect from Chipmunk when its available. cpfclamp = (function_pointer(cpFloat, cpFloat, cpFloat, cpFloat)).in_dll(chipmunk_lib, '_cpfclamp') def cpBBClampVect(bb, v): return Vec2d(cpfclamp(v.x, bb.l, bb.r), cpfclamp(v.y, bb.b, bb.t)) #unused for now.. #cpGrooveJointGetGrooveA = (function_pointer(cpVect, POINTER(cpGrooveJoint))).in_dll(chipmunk_lib, '_cpGrooveJointGetGrooveA') #cpGrooveJointGetGrooveB = (function_pointer(cpVect, POINTER(cpGrooveJoint))).in_dll(chipmunk_lib, '_cpGrooveJointGetGrooveA')
60.590909
163
0.803826
32065c60f833b07b4cc1f1a03b9708c6471069e3
7,544
py
Python
tests/components/deconz/test_services.py
pawelka/home-assistant
df6c7b97f5a6df962114ef1a07676ef11d8757cd
[ "Apache-2.0" ]
null
null
null
tests/components/deconz/test_services.py
pawelka/home-assistant
df6c7b97f5a6df962114ef1a07676ef11d8757cd
[ "Apache-2.0" ]
null
null
null
tests/components/deconz/test_services.py
pawelka/home-assistant
df6c7b97f5a6df962114ef1a07676ef11d8757cd
[ "Apache-2.0" ]
null
null
null
"""deCONZ service tests.""" from copy import deepcopy from asynctest import Mock, patch import pytest import voluptuous as vol from homeassistant.components import deconz from homeassistant.components.deconz.const import CONF_BRIDGEID from .test_gateway import ( BRIDGEID, DECONZ_WEB_REQUEST, ENTRY_CONFIG, setup_deconz_integration, ) GROUP = { "1": { "id": "Group 1 id", "name": "Group 1 name", "type": "LightGroup", "state": {}, "action": {}, "scenes": [{"id": "1", "name": "Scene 1"}], "lights": ["1"], } } LIGHT = { "1": { "id": "Light 1 id", "name": "Light 1 name", "state": {"reachable": True}, "type": "Light", "uniqueid": "00:00:00:00:00:00:00:01-00", } } SENSOR = { "1": { "id": "Sensor 1 id", "name": "Sensor 1 name", "type": "ZHALightLevel", "state": {"lightlevel": 30000, "dark": False}, "config": {"reachable": True}, "uniqueid": "00:00:00:00:00:00:00:02-00", } } async def test_service_setup(hass): """Verify service setup works.""" assert deconz.services.DECONZ_SERVICES not in hass.data with patch( "homeassistant.core.ServiceRegistry.async_register", return_value=Mock(True) ) as async_register: await deconz.services.async_setup_services(hass) assert hass.data[deconz.services.DECONZ_SERVICES] is True assert async_register.call_count == 2 async def test_service_setup_already_registered(hass): """Make sure that services are only registered once.""" hass.data[deconz.services.DECONZ_SERVICES] = True with patch( "homeassistant.core.ServiceRegistry.async_register", return_value=Mock(True) ) as async_register: await deconz.services.async_setup_services(hass) async_register.assert_not_called() async def test_service_unload(hass): """Verify service unload works.""" hass.data[deconz.services.DECONZ_SERVICES] = True with patch( "homeassistant.core.ServiceRegistry.async_remove", return_value=Mock(True) ) as async_remove: await deconz.services.async_unload_services(hass) assert hass.data[deconz.services.DECONZ_SERVICES] is False assert async_remove.call_count == 2 async def test_service_unload_not_registered(hass): """Make sure that services can only be unloaded once.""" with patch( "homeassistant.core.ServiceRegistry.async_remove", return_value=Mock(True) ) as async_remove: await deconz.services.async_unload_services(hass) assert deconz.services.DECONZ_SERVICES not in hass.data async_remove.assert_not_called() async def test_configure_service_with_field(hass): """Test that service invokes pydeconz with the correct path and data.""" data = deepcopy(DECONZ_WEB_REQUEST) await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) data = { deconz.services.SERVICE_FIELD: "/light/2", CONF_BRIDGEID: BRIDGEID, deconz.services.SERVICE_DATA: {"on": True, "attr1": 10, "attr2": 20}, } with patch("pydeconz.DeconzSession.request", return_value=Mock(True)) as put_state: await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_CONFIGURE_DEVICE, service_data=data ) await hass.async_block_till_done() put_state.assert_called_with( "put", "/light/2", json={"on": True, "attr1": 10, "attr2": 20} ) async def test_configure_service_with_entity(hass): """Test that service invokes pydeconz with the correct path and data.""" data = deepcopy(DECONZ_WEB_REQUEST) gateway = await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) gateway.deconz_ids["light.test"] = "/light/1" data = { deconz.services.SERVICE_ENTITY: "light.test", deconz.services.SERVICE_DATA: {"on": True, "attr1": 10, "attr2": 20}, } with patch("pydeconz.DeconzSession.request", return_value=Mock(True)) as put_state: await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_CONFIGURE_DEVICE, service_data=data ) await hass.async_block_till_done() put_state.assert_called_with( "put", "/light/1", json={"on": True, "attr1": 10, "attr2": 20} ) async def test_configure_service_with_entity_and_field(hass): """Test that service invokes pydeconz with the correct path and data.""" data = deepcopy(DECONZ_WEB_REQUEST) gateway = await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) gateway.deconz_ids["light.test"] = "/light/1" data = { deconz.services.SERVICE_ENTITY: "light.test", deconz.services.SERVICE_FIELD: "/state", deconz.services.SERVICE_DATA: {"on": True, "attr1": 10, "attr2": 20}, } with patch("pydeconz.DeconzSession.request", return_value=Mock(True)) as put_state: await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_CONFIGURE_DEVICE, service_data=data ) await hass.async_block_till_done() put_state.assert_called_with( "put", "/light/1/state", json={"on": True, "attr1": 10, "attr2": 20} ) async def test_configure_service_with_faulty_field(hass): """Test that service invokes pydeconz with the correct path and data.""" data = deepcopy(DECONZ_WEB_REQUEST) await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) data = {deconz.services.SERVICE_FIELD: "light/2", deconz.services.SERVICE_DATA: {}} with pytest.raises(vol.Invalid): await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_CONFIGURE_DEVICE, service_data=data ) await hass.async_block_till_done() async def test_configure_service_with_faulty_entity(hass): """Test that service invokes pydeconz with the correct path and data.""" data = deepcopy(DECONZ_WEB_REQUEST) await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) data = { deconz.services.SERVICE_ENTITY: "light.nonexisting", deconz.services.SERVICE_DATA: {}, } with patch("pydeconz.DeconzSession.request", return_value=Mock(True)) as put_state: await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_CONFIGURE_DEVICE, service_data=data ) await hass.async_block_till_done() put_state.assert_not_called() async def test_service_refresh_devices(hass): """Test that service can refresh devices.""" data = deepcopy(DECONZ_WEB_REQUEST) gateway = await setup_deconz_integration( hass, ENTRY_CONFIG, options={}, get_state_response=data ) data = {CONF_BRIDGEID: BRIDGEID} with patch( "pydeconz.DeconzSession.request", return_value={"groups": GROUP, "lights": LIGHT, "sensors": SENSOR}, ): await hass.services.async_call( deconz.DOMAIN, deconz.services.SERVICE_DEVICE_REFRESH, service_data=data ) await hass.async_block_till_done() assert gateway.deconz_ids == { "light.group_1_name": "/groups/1", "light.light_1_name": "/lights/1", "scene.group_1_name_scene_1": "/groups/1/scenes/1", "sensor.sensor_1_name": "/sensors/1", }
33.678571
87
0.666357
150ac11554b97f7b967f92ba46148391bdd2abfd
856
py
Python
thingsboard_gateway/connectors/opcua/opcua_converter.py
eric-erki/thingsboard-gateway
8522f6d63903475f4212b5af843c7ad98c5b855f
[ "Apache-2.0" ]
1
2020-04-30T01:37:44.000Z
2020-04-30T01:37:44.000Z
thingsboard_gateway/connectors/opcua/opcua_converter.py
xinge-ok/thingsboard-gateway
6dab6030a6becf0ce9d34bc95a3a1f1e0838cb14
[ "Apache-2.0" ]
null
null
null
thingsboard_gateway/connectors/opcua/opcua_converter.py
xinge-ok/thingsboard-gateway
6dab6030a6becf0ce9d34bc95a3a1f1e0838cb14
[ "Apache-2.0" ]
null
null
null
# Copyright 2019. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from abc import ABC, abstractmethod from thingsboard_gateway.connectors.converter import Converter, ABC, abstractmethod, log class OpcUaConverter(ABC): @abstractmethod def convert(self, config, data): pass
35.666667
88
0.728972
6207600e91571f4fe045ad84dae965f73274179c
12,018
py
Python
scantools/.history/scanbak/scanbackup_20210224144804.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
2
2019-05-19T11:54:26.000Z
2019-05-19T12:03:49.000Z
scantools/.history/scanbak/scanbackup_20210224144804.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
1
2020-11-27T07:55:15.000Z
2020-11-27T07:55:15.000Z
scantools/.history/scanbak/scanbackup_20210224144804.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
2
2021-09-06T18:06:12.000Z
2021-12-31T07:44:43.000Z
""" 1、文件到这里 一份给ES 一份给自己 新增ES旧索引入库 在继承原有功能的基础上 重构备份程序,按照数据内的 国家-当前时间(年-月-日) 如果按照数据内的时间的话也会面临和按国家端口备份的问题 不用再分端口了 create by judy 20201217 """ from pathlib import Path import threading import json from queue import Queue import traceback import datetime import time from shutil import copyfile import zipfile import shutil class ScanBackUP(object): def __init__(self) -> None: # super().__init__() # 所有数据先到这 self._input = None # 所有数据先复制一份到这, 这个是程序不用管的文件夹 self._esinput = None # 将要备份的数据放到这, 要处理的数据全部放在这里 self._dbu_input = None self._databack = None self._zipdata: Path = None self._zip_size = None # 备份线程默认为一个,可以在配置里面更改重启 self.backup_thread = 1 self.zip_thread = 1 # 增加一个是否拷贝到ES的功能 self.copy_esinput_enable = True self._tmp = Path('./tmp') self._tmp.mkdir(exist_ok=True) # 文件是否需要拷贝一份到旧索引 self._old_esinput = None self.config_path = Path(r'./config_path.json') try: self._init_cpinfo() except: raise Exception( f"初始化配置参数失败,请检查配置文件\nerror:{traceback.format_exc()}") # 需要用到的参数 # 文件锁,同一时间只允许一个线程操作文件 self.__file_locker = threading.Lock() self.__scan_file_locker = threading.Lock() self._zipfile_locker = threading.Lock() # 因为压缩可能处理的时间比较长,所以需要增加一个正在压缩的字典 self._zip_dealing = {} # 根据后缀分配的需要处理的队列,目前只有iscan self.iscan_task_queue = Queue() self._zip_queue = Queue() self.iscan_suffix = '.iscan_search' # try: # self._restore_existdata() # except: # raise Exception( # "There's something wrong with restoring the environment") def _init_cpinfo(self): """ 初始化配置文件中的路径和参数 :return: """ conf_str = self.config_path.read_text(encoding='utf-8') conf_dict = json.loads(conf_str) _input = conf_dict.get('data_input') if not isinstance(_input, str): raise Exception("Unknown data_input path") self._input = Path(_input) self._input.mkdir(exist_ok=True) print( f"Start scan data file, input_file_path:{self._input.as_posix()}") _esinput = conf_dict.get('es_input') if not isinstance(_esinput, str): raise Exception("Unknown es_input path") self._esinput = Path(_esinput) self._esinput.mkdir(exist_ok=True) print(f"Save data to ES, es_path:{self._esinput.as_posix()}") _dbuinput = conf_dict.get('backup_input') if not isinstance(_dbuinput, str): raise Exception("Unkown backup_input path") self._dbu_input = Path(_dbuinput) self._dbu_input.mkdir(exist_ok=True) print(f"Data backup process path:{self._dbu_input.as_posix()}") _databack = conf_dict.get('databackup') if not isinstance(_databack, str): raise Exception("Unknown databackup path") self._databack = Path(_databack) self._databack.mkdir(exist_ok=True) print(f"Data save backup path:{self._databack.as_posix()}") _zipdata = conf_dict.get('zipdata') if not isinstance(_zipdata, str): raise Exception("Unkown zipdata path") self._zipdata = Path(_zipdata) self._zipdata.mkdir(exist_ok=True) print(f"Zipdata save path:{self._zipdata.as_posix()}") _zip_size = conf_dict.get('zip_size') if not isinstance(_zip_size, int): raise Exception("Unknown zip_size type") # 将单位换算成B self._zip_size = _zip_size * 1024 * 1024 print(f"Zip data size:{_zip_size}MB") backupthread = conf_dict.get('backup_thread') if not isinstance(backupthread, int): raise Exception("Unknown backupthread type") self.backup_thread = backupthread zipthread = conf_dict.get('zipdata_thread') if not isinstance(zipthread, int): raise Exception("Unknown zipthread type") self.zip_thread = zipthread time_limit = conf_dict.get('time_limit') if not isinstance(time_limit, int): raise Exception("Unknown time_limit type") self._backup_interval_time = time_limit * 24 * 60 * 60 print(f"Zip data time expired after {time_limit} days") # 默认拷贝到ES的功能为开放 copy_esinput_enable = conf_dict.get('copy_to_esinput', True) self.copy_esinput_enable = copy_esinput_enable # 拷贝旧索引数据 _esinput = conf_dict.get('es_input') if not isinstance(_esinput, str): raise Exception("Unknown es_input path") self._esinput = Path(_esinput) self._esinput.mkdir(exist_ok=True) print(f"Save data to ES, es_path:{self._esinput.as_posix()}") def scan_file(self): """ 扫描输入的文件 根据文件后缀进行分类,将文件放入待处理队列 :return: """ while True: try: for file in self._input.iterdir(): name = file.name # 全部移动到tmp目录下去 tmpname = self._tmp / name # file.replace(tmpname) with self.__scan_file_locker: # 这个文件得尽快移动到tmp文件夹,不然下次扫描又会扫描到它就会出问题 shutil.move(file.as_posix(), tmpname.as_posix()) try: if tmpname.suffix == self.iscan_suffix: # 只进行复制操作 # source: Path = self._input / name target: Path = self._dbu_input / name copyfile(tmpname.as_posix(), target.as_posix()) self.iscan_task_queue.put(target) print( f"Backup iscan_search data, filename:{file.as_posix()}") except: print( f'Scan list file error, err:{traceback.format_exc()}') finally: # 最后无论如何都需要将文件输出到esinput if self.copy_esinput_enable: outname = self._esinput / name tmpname.replace(outname) # 一般来说是不会有文件存在的,但是意外不可避免嘛, 所以这里做一个判定,如果还存在文件就删了 if tmpname.exists(): tmpname.unlink() except: print(f'Scan task file error, err:{traceback.format_exc()}') continue finally: print("There is no scan data to back up") time.sleep(0.5) def _process_file(self, tmpfile: Path): """ 读取文件里面的数据打开一下,获取到信息后再关上 """ with tmpfile.open('r', encoding='utf-8') as fp: j_text = fp.read() d_text = json.loads(j_text) # scan_time = d_text.get('time') # if scan_time is None: # scan_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") try: country = d_text.get('geoinfo').get('country').get('code') except: country = 'UNKNOWN' return country def back_file(self): """ 开始备份数据,先保存到文件夹 当这个文件夹到达一定大小然后压缩保存 :return: """ got = False while True: got = False if self.iscan_task_queue.empty(): time.sleep(0.5) continue try: bfile: Path = self.iscan_task_queue.get() got = True name = bfile.name # 现在直接读文件里面的国家和日期 country = self._process_file(bfile) # 每次保存之前去判断下是否需要修改文件名字并进行压缩备份 date_now_str = datetime.datetime.now().strftime("%Y-%m-%d") # 新建文件夹的时候需要锁一下,其他时候直接移动即可 with self.__file_locker: # 先把文件移动过去 dirname: Path = self._databack / country / date_now_str dirname.mkdir(exist_ok=True, parents=True) # 移过去的文件名 filename = dirname / name # 移动到目标文件夹 bfile.replace(filename) print( f"Backup file, country:{country}, filename:{name}, date:{date_now_str}") except: print(f'Backup file error:\n{traceback.format_exc()}') finally: if got: self.iscan_task_queue.task_done() def scan_zip_file(self): """ 压缩文件的线程,每天去扫描一次 将昨天的文件夹压缩到压缩文件夹下 """ while True: try: date_now = datetime.datetime.now().date() for country in self._databack.iterdir(): if not country.exists(): continue country_name = country.name for d_file in country.iterdir(): if self._zip_dealing.__contains__(d_file): continue d_name = d_file.name d_date = datetime.datetime.strptime( d_name, "%Y-%m-%d").date() # 如果是今天以前的数据那么就进行压缩 if date_now > d_date: self._zip_queue.put((d_file, country_name)) with self._zipfile_locker: # 加入正在处理队列 self._zip_dealing[d_file] = 1 print( f"A file wait to zip, filename:{d_file.as_posix()}") except: print(f"Zip file error:\n{traceback.format_exc()}") finally: print("There is no scan data to zip") time.sleep(3600) def process_zip_file(self): """ 压缩今天以前的文件夹 """ got = False zipfile_path = None while True: got = False if self._zip_queue.empty(): time.sleep(1) continue try: zipfile_path, country = self._zip_queue.get() got = True zip_store_file = self._zipdata / country zip_store_file.mkdir(exist_ok=True) zipname = zip_store_file/f"{zipfile_path.name}.zip" print( f"Start zipfile, filename:{zipname.as_posix()}") # 增加一个写入限制 with zipfile.ZipFile(zipname.as_posix(), 'a', zipfile.ZIP_DEFLATED) as write: for file in zipfile_path.iterdir(): write.write(file.as_posix()) # 写入后删除 file.unlink() write.close() # 最后删除已经压缩好的文件夹 zipfile_path.rmdir() print( f"Store zipfile success, filename:{zipname.as_posix()}") except: print(f"Zip file error:\n{traceback.format_exc()}") finally: if got: self._zip_queue.task_done() with self._zipfile_locker: self._zip_dealing.pop(zipfile_path, None) def start(self): """ 项目启动 :return: """ thread1 = threading.Thread(target=self.scan_file, name="scanfile") thread1.start() for i in range(self.backup_thread): t = threading.Thread(target=self.back_file, name=f"backfile{i}") t.start() thread2 = threading.Thread( target=self.scan_zip_file, name=f"scan_zipfile") thread2.start() for j in range(self.zip_thread): tz = threading.Thread( target=self.process_zip_file, name=f"zipfile{j}") tz.start() if __name__ == "__main__": scup = ScanBackUP() scup.start()
36.865031
93
0.525628
1b045ae3f3bd1daaecd3461015ade90edea9354c
5,476
py
Python
obsolete files/linux_int/python_int.py
uwacits4419/DSR
208fcb37a4b5b2e10e7f96585d1eb10a932457a8
[ "Unlicense" ]
null
null
null
obsolete files/linux_int/python_int.py
uwacits4419/DSR
208fcb37a4b5b2e10e7f96585d1eb10a932457a8
[ "Unlicense" ]
null
null
null
obsolete files/linux_int/python_int.py
uwacits4419/DSR
208fcb37a4b5b2e10e7f96585d1eb10a932457a8
[ "Unlicense" ]
4
2020-02-20T08:54:10.000Z
2022-03-29T07:45:12.000Z
#!/usr/bin/env python import socket import threading import Packet import Route import PacketBuffer import time buffer = None defaultSocket = None rreqList= [] HOST = "localhost" DSR_PORT = 60000 ACT_PORT = 61000 PROM_PORT = 62000 PROTOCOL_VALUE = 60000 EXPIRE_REQ_TIMER = 30 #def testFunction() : # rawSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0003)) # rawSocket.bind(("lo", 0x0003)) # # i = 10 # # buffer = PacketBuffer() # # while i > 0 : # pkt = rawSocket.recvfrom(65565) # # print pkt # # packet = Packet(pkt) # # buffer.add(packet) # # print "Added Packet to buffer: " + str(packet.ip_dst) # # i = i - 1 # # print i # # #print buffer # #print buffer.qMap['74.125.237.130'] # list1 = buffer.qMap.keys() # print list1 # # route = Route("8.8.8.8", "10.211.55.1", "eth0") # route.add() # buffer.release('8.8.8.8', rawSocket) # # #testingThread = threading.Thread(target=testFunction) #testingThread.start() #-------------------------------------------------------------------------------------------------------------- def sendRouteRequestForDestination(destination, socket) : #check if destination is in the list for index, value in enumerate(rreqList) : if destination == rreqList[index][0] : #print "DEF: destination " + destination + " is in the list" return None #do some things print "ROUT_T: Sending RRQ for: " + str(destination) + " on UDP " + str(DSR_PORT) socket.sendto(destination, (HOST, DSR_PORT)) #add the destination to a list of sent requests curTime = time.time() rreqList.append( (destination, curTime) ) #find the expired request - ie older than EXPIRE_REQ_TIMER for index, value in enumerate(rreqList) : if curTime - rreqList[index][1] > EXPIRE_REQ_TIMER : print "ROUT_T: Expiring request to destination " + rreqList[index][0] del rreqList[index] def receiveRouteAction() : receiveSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) receiveSocket.bind((HOST, ACT_PORT)) while True : data = receiveSocket.recvfrom(65535) print "ROUT_T: Recieved Route Action on UDP " + str(ACT_PORT) + ": (" + str(data) + ")" #do something with the data #data = action-destination-gw #e.g. "add-192.168.1.0-10.211.55.1" #e.g. "del-192.168.1.0-10.211.55.1" print "Rec Route Act: data: " + str(data) destination = "192.168.1.0" gateway = "10.211.55.1" action = "add" if action == "add" : receiveRouteAdd(destination, gateway) elif action == "del" : receiveRouteDel(destination, gateway) def receiveRouteAdd(destination, gateway) : print "ROUT_T: Adding Route: dst: " + destination + " gw: " + gateway newRoute = Route.Route(destination, gateway, "eth0") newRoute.add() buffer.release(destination, defaultSocket) #remove the destination from the list def receiveRouteDel(destination, gateway) : print "ROUT_T: Deleting Route: dst: " + destination + " gw: " + gateway oldRoute = Route.Route(destination, gateway, "eth0") oldRoute.delete() #sets up the socket for default packets and listens for them. def defaultPacketInterception() : #open up a raw socket to the loopback interface. global defaultSocket defaultSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0003)) defaultSocket.bind(("lo:0", 0x0003)) #open a socket to the routing daemon routingSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #init out buffer global buffer buffer = PacketBuffer.PacketBuffer() #start receiving packets while True : #get a packet from the socket (blocks waiting) pkt = defaultSocket.recvfrom(65565) #parse the packet into it's nice fields packet = Packet.Packet(pkt) #get the destination of the packet destination = packet.ip_dst #send route request message to the routing daemon if packet.ip_dst != "10.211.55.4" and packet.ip_src != "127.0.0.1" and packet.ip_dst != "127.0.0.1": sendRouteRequestForDestination(destination, routingSocket) print "DEFAULT: Rec Pkt: src: " + packet.ip_src + " dst: " + packet.ip_dst #add the packet to our buffer buffer.add(packet) #end while def listenForPromisc() : promiscSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0003)) promiscSocket.bind(("eth0", 0x0003)) #open a socket to the daemon daemonSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) while True : #process each packet and look for a specific protocol value pkt = promiscSocket.recvfrom(65565) packet = Packet.Packet(pkt) #print "PROMISC: Rec Pkt: src: " + str(packet.ip_src) + " dst: " + str(packet.ip_dst) + " proto: " + str(packet.ip_protocol) if(packet.ip_protocol == 17) : #print "PROMISC: Rec Pkt: src: " + str(packet.ip_src) + " dst: " + str(packet.ip_dst) + " proto: " + str(packet.ip_protocol) print "PROMIS: UDP: dst_port: " + str(packet.udp_dst_port) + " UDP Data: " + str(packet.udp_data) if(packet.udp_dst_port == PROTOCOL_VALUE) : #this is interesting to us. print "PROMISC: Heard DSR packet: src: " + str(packet.ip_src) + " dst: " + str(packet.ip_dst) + " data: " + packet.udp_data promiscSocket.sendto(packet.packet, (HOST, PROM_PORT)) # Main Code defaultThread = threading.Thread(target=defaultPacketInterception) defaultThread.start() routeAddThread = threading.Thread(target=receiveRouteAction) routeAddThread.start() promiscThread = threading.Thread(target=listenForPromisc) promiscThread.start()
24.230088
127
0.68718
2c7e57f8f91a6d651a732a5ccf3736d4db5716e5
3,644
py
Python
task_manager/task_manager/settings.py
trenev/softuni-python-web-basics
0fcf6b7f3389d06685d40615c376dc4027e772f2
[ "MIT" ]
1
2022-03-03T10:16:14.000Z
2022-03-03T10:16:14.000Z
task_manager/task_manager/settings.py
trenev/softuni-python-web-basics
0fcf6b7f3389d06685d40615c376dc4027e772f2
[ "MIT" ]
null
null
null
task_manager/task_manager/settings.py
trenev/softuni-python-web-basics
0fcf6b7f3389d06685d40615c376dc4027e772f2
[ "MIT" ]
null
null
null
import os from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/4.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-b%$bj+j%4ify!a1cbaxy&_8czti1()@(@*e^)m!dmv49f-9-3s' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [ '127.0.0.1', ] # Application definition DJANGO_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) THIRD_PARTY_APPS = () PROJECT_APPS = ( 'task_manager.tasks', ) INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + PROJECT_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'task_manager.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / 'templates'] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'task_manager.wsgi.application' # Database # https://docs.djangoproject.com/en/4.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/4.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/4.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/4.0/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, 'static'), ] # Default primary key field type # https://docs.djangoproject.com/en/4.0/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LOGGING = { 'version': 1, 'filters': { 'require_debug_true': { '()': 'django.utils.log.RequireDebugTrue', } }, 'handlers': { 'console': { 'level': 'DEBUG', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', } }, 'loggers': { 'django.db.backends': { 'level': 'DEBUG', 'handlers': ['console'], } } }
24.13245
91
0.656696
25bde7ce2b0617c1e396504acf7db319db900202
3,040
py
Python
scenes/flip03_gen.py
BrianKmdy/mantaflow
273d6c148374316e4d04cae4f46fed56a630e183
[ "Apache-2.0" ]
null
null
null
scenes/flip03_gen.py
BrianKmdy/mantaflow
273d6c148374316e4d04cae4f46fed56a630e183
[ "Apache-2.0" ]
null
null
null
scenes/flip03_gen.py
BrianKmdy/mantaflow
273d6c148374316e4d04cae4f46fed56a630e183
[ "Apache-2.0" ]
null
null
null
# # Flip surface mesh creation scene, note - saves & loads (ie plays back) meshes in UI mode # from manta import * import os mantaMsg( "\nNote - this scene reads in particle data generated by, e.g., flip02_surface.py (set saveParts=True there). It does not perform any fluid simulation, only generate a nicer surface.\n" ) # surfacing method: 0=simple union, 1=averaged, 2=improved averaging method = 2 # === surface generation parameters === # input file partfile = 'flipParts_%04d.uni' startFrame = 1 endFrame = 1000 interval = 1 # how much larger? upres = 2.0 # output file name so that blender can directly read it... meshfile = 'fluidsurface_final_%04d.bobj.gz' # resolution for level set / output mesh refName = ("ref_" + (partfile % 0) ) gs = getUniFileSize(refName) if gs.x<=0: mantaMsg("Warning! File '%s' not found, cannot determine size...\n"%refName, 0) exit(1) gs.x = int(gs.x*upres) gs.y = int(gs.y*upres) gs.z = int(gs.z*upres) s = Solver(name='main', gridSize = gs , dim=3) # kernel radius for surface creation radiusFactor = 2.5 # triangle scale relative to cell size #scale = 0.5 # counters outCnt = 0 frame = startFrame # prepare grids and particles flags = s.create(FlagGrid) phi = s.create(LevelsetGrid) pp = s.create(BasicParticleSystem) mesh = s.create(Mesh) # acceleration data for particle nbs pindex = s.create(ParticleIndexSystem) gpi = s.create(IntGrid) # scene setup flags.initDomain(boundaryWidth=0) #if 1 and (GUI): # gui = Gui() # gui.show() # #gui.pause() # main loop while frame < endFrame: meshfileCurr = meshfile % outCnt mantaMsg( "Frame %d " % frame ) phi.setBound(value=0., boundaryWidth=1) # already exists? if (os.path.isfile( meshfileCurr )): mesh.load( meshfileCurr ) else: # generate mesh; first read input sim particles if (os.path.isfile( partfile % frame )): pp.load( partfile % frame ); # create surface gridParticleIndex( parts=pp , flags=flags, indexSys=pindex, index=gpi ) if method==0: unionParticleLevelset( pp, pindex, flags, gpi, phi , radiusFactor ) # faster, but not as smooth elif method==1: averagedParticleLevelset( pp, pindex, flags, gpi, phi , radiusFactor , 1, 1 ) elif method==2: improvedParticleLevelset( pp, pindex, flags, gpi, phi , radiusFactor , 1, 1 , 0.4, 3.5) else: print("Error - unknown method"); exit(1) phi.setBound(value=0., boundaryWidth=1) phi.createMesh(mesh) # beautify mesh, too slow right now! #subdivideMesh(mesh=mesh, minAngle=0.01, minLength=scale, maxLength=3*scale, cutTubes=False) # perform smoothing #for iters in range(10): #smoothMesh(mesh=mesh, strength=1e-3, steps=10) #subdivideMesh(mesh=mesh, minAngle=0.01, minLength=scale, maxLength=3*scale, cutTubes=True) # write output file: mesh.save( meshfileCurr ) else: # stop playback for UI, reset #if (GUI): # gui.pause() # outCnt = 0 #gui.screenshot( 'flip03_%04d.png' % outCnt ); outCnt += 1 frame += interval s.step()
25.546218
197
0.682566
425b910abdd035b89689130c2aa3847998c6e0bf
974
py
Python
entity/cards/LETL_030H/LETL_030P4.py
x014/lushi_script
edab2b88e3f0de8139de2541ab2daa331f777c0e
[ "MIT" ]
102
2021-10-20T09:06:39.000Z
2022-03-28T13:35:11.000Z
entity/cards/LETL_030H/LETL_030P4.py
x014/lushi_script
edab2b88e3f0de8139de2541ab2daa331f777c0e
[ "MIT" ]
98
2021-10-19T16:13:27.000Z
2022-03-27T13:27:49.000Z
entity/cards/LETL_030H/LETL_030P4.py
x014/lushi_script
edab2b88e3f0de8139de2541ab2daa331f777c0e
[ "MIT" ]
55
2021-10-19T03:56:50.000Z
2022-03-25T08:25:26.000Z
# -*- coding: utf-8 -*- from hearthstone.entities import Entity from hearthstone.enums import GameTag, SpellSchool from entity.spell_entity import SpellEntity class LETL_030P4(SpellEntity): """ 地狱火 对所有敌人造成8点伤害。火焰连击:再造成8点伤害。 """ def __init__(self, entity: Entity): super().__init__(entity) self.damage = 8 self.combo_damage = 8 self.range = 7 def play(self, game, hero, target): # aoe或者随机不需要指定target power = game.get_spell_power(self.spell_school, hero.own) action_list = game.get_action_list(hero.own) action_list.sort() combo = game.can_combo(self, SpellSchool.FIRE, hero.own) combo_damage = (self.combo_damage + power) * combo hero_list = game.get_hero_list(not hero.own()) for h in hero_list: h.got_damage(game, (self.damage + combo_damage + power) * self.damage_advantage[self.lettuce_role][ h.lettuce_role])
31.419355
111
0.645791
6c2952d486f4337d507c7473de91420df60b5e56
6,170
py
Python
tests/scripts/thread-cert/Cert_5_1_13_RouterReset.py
JeffreyHayes/openthread
0dde90edcb0aafef5f4b5fc3d30e19f756e27ee4
[ "BSD-3-Clause" ]
2
2018-08-24T05:14:27.000Z
2018-09-25T03:02:36.000Z
tests/scripts/thread-cert/Cert_5_1_13_RouterReset.py
JeffreyHayes/openthread
0dde90edcb0aafef5f4b5fc3d30e19f756e27ee4
[ "BSD-3-Clause" ]
4
2016-09-09T17:10:04.000Z
2016-09-29T05:18:09.000Z
tests/scripts/thread-cert/Cert_5_1_13_RouterReset.py
turon/openthread
20145cb42fca90d791c4918475db28b7b91290d6
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import config import mle import node LEADER = 1 ROUTER = 2 class Cert_5_1_13_RouterReset(unittest.TestCase): def setUp(self): self.simulator = config.create_default_simulator() self.nodes = {} for i in range(1, 3): self.nodes[i] = node.Node(i, simulator=self.simulator) self.nodes[LEADER].set_panid(0xface) self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[ROUTER].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[ROUTER].set_panid(0xface) self.nodes[ROUTER].set_mode('rsdn') self._setUpRouter() def _setUpRouter(self): self.nodes[ROUTER].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ROUTER].enable_whitelist() self.nodes[ROUTER].set_router_selection_jitter(1) def tearDown(self): for n in list(self.nodes.values()): n.stop() n.destroy() self.simulator.stop() def test(self): self.nodes[LEADER].start() self.simulator.go(5) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ROUTER].start() self.simulator.go(5) self.assertEqual(self.nodes[ROUTER].get_state(), 'router') rloc16 = self.nodes[ROUTER].get_addr16() self.nodes[ROUTER].reset() self._setUpRouter() self.simulator.go(5) self.nodes[ROUTER].start() self.simulator.go(5) self.assertEqual(self.nodes[ROUTER].get_state(), 'router') self.assertEqual(self.nodes[ROUTER].get_addr16(), rloc16) leader_messages = self.simulator.get_messages_sent_by(LEADER) router1_messages = self.simulator.get_messages_sent_by(ROUTER) # 1 - All leader_messages.next_mle_message(mle.CommandType.ADVERTISEMENT) router1_messages.next_mle_message(mle.CommandType.PARENT_REQUEST) leader_messages.next_mle_message(mle.CommandType.PARENT_RESPONSE) router1_messages.next_mle_message(mle.CommandType.CHILD_ID_REQUEST) leader_messages.next_mle_message(mle.CommandType.CHILD_ID_RESPONSE) msg = router1_messages.next_coap_message("0.02") msg.assertCoapMessageRequestUriPath("/a/as") msg = leader_messages.next_coap_message("2.04") router1_messages.next_mle_message(mle.CommandType.LINK_REQUEST) msg = leader_messages.next_mle_message_of_one_of_command_types( mle.CommandType.LINK_ACCEPT_AND_REQUEST, mle.CommandType.LINK_ACCEPT, ) self.assertIsNotNone(msg) # 2 - Router1 / Leader msg = router1_messages.next_mle_message(mle.CommandType.ADVERTISEMENT) msg.assertSentWithHopLimit(255) msg.assertSentToDestinationAddress("ff02::1") msg.assertMleMessageContainsTlv(mle.SourceAddress) msg.assertMleMessageContainsTlv(mle.LeaderData) msg.assertMleMessageContainsTlv(mle.Route64) msg = leader_messages.next_mle_message(mle.CommandType.ADVERTISEMENT) msg.assertSentWithHopLimit(255) msg.assertSentToDestinationAddress("ff02::1") msg.assertMleMessageContainsTlv(mle.SourceAddress) msg.assertMleMessageContainsTlv(mle.LeaderData) msg.assertMleMessageContainsTlv(mle.Route64) # 4 - Router1 msg = router1_messages.next_mle_message(mle.CommandType.LINK_REQUEST) msg.assertSentToDestinationAddress("ff02::2") msg.assertMleMessageContainsTlv(mle.Challenge) msg.assertMleMessageContainsTlv(mle.Version) msg.assertMleMessageContainsTlv(mle.TlvRequest) tlv_request = msg.get_mle_message_tlv(mle.TlvRequest) self.assertIn(mle.TlvType.ROUTE64, tlv_request.tlvs) self.assertIn(mle.TlvType.ADDRESS16, tlv_request.tlvs) # 5 - Leader msg = leader_messages.next_mle_message(mle.CommandType.LINK_ACCEPT) msg.assertSentToNode(self.nodes[ROUTER]) msg.assertMleMessageContainsTlv(mle.SourceAddress) msg.assertMleMessageContainsTlv(mle.LeaderData) msg.assertMleMessageContainsTlv(mle.Response) msg.assertMleMessageContainsTlv(mle.LinkLayerFrameCounter) msg.assertMleMessageContainsOptionalTlv(mle.MleFrameCounter) msg.assertMleMessageContainsTlv(mle.Address16) msg.assertMleMessageContainsTlv(mle.Version) msg.assertMleMessageContainsTlv(mle.Route64) msg.assertMleMessageContainsOptionalTlv(mle.Challenge) if __name__ == '__main__': unittest.main()
40.064935
78
0.718963
af3d578205b51bec84e5cea7a331648456ce0fa7
17,082
py
Python
snmp_cmds/commands.py
alextremblay/snmpcmd
77245e6a2dc761397f2cbed0d1b41b8c279a4c82
[ "MIT" ]
7
2019-06-12T08:43:54.000Z
2021-12-16T15:12:38.000Z
snmp_cmds/commands.py
alextremblay/snmpcmd
77245e6a2dc761397f2cbed0d1b41b8c279a4c82
[ "MIT" ]
3
2019-10-22T08:28:33.000Z
2021-10-04T21:15:42.000Z
snmp_cmds/commands.py
alextremblay/snmpcmd
77245e6a2dc761397f2cbed0d1b41b8c279a4c82
[ "MIT" ]
5
2019-08-13T13:44:09.000Z
2021-12-16T15:10:24.000Z
""" This module provides the individual SNMP commands for use in one-off situations, or situations where you would need to make a single SNMP request to many devices. If you plan on making multiple calls to the same device, you might want to check out api.py instead. """ # Standard Library imports import csv from subprocess import run, PIPE # imports for type-hinting purposes from typing import Optional, List, Tuple, Dict from typing import Union as OneOf # Internal module imports from .exceptions import SNMPTableError, SNMPWriteError from .helpers import validate_ip_address, check_for_timeout, \ handle_unknown_error def snmpget(ipaddress: str, oid: str, community: str = 'public', port: OneOf[int, str] = 161, timeout: OneOf[int, str] = 3 ) -> Optional[str]: """ Wrapper around Net-SNMP's ``snmpget`` command Runs the equivalent of '``snmpget -Oqv -Pe -t {timeout} -r 0 -v 2c -c {community} {host} {oid}``' and parses the result. if the response from the server is a ``No Such Object`` or a ``No Such Instance`` error, this function returns :obj:`None`. Otherwise, it returns the value retrieved from the server :param community: the snmpv2 community string :param ipaddress: the IP address of the target SNMP server :param oid: the Object IDentifier to request from the target SNMP server :param port: the port on which SNMP is running on the target server :param timeout: the number of seconds to wait for a response from the SNMP server :return: the value stored at that OID on the target SNMP server if successful, :obj:`None` otherwise :raises `~snmp_cmds.exceptions.SNMPTimeout`: if the target SNMP server fails to respond :raises `~snmp_cmds.exceptions.SNMPInvalidAddress`: if the hostname or IP address supplied is not valid or cannot be resolved :raises `~snmp_cmds.exceptions.SNMPError`: if the underlying Net-SNMP command produces an unknown or unhandled error """ ipaddress = validate_ip_address(ipaddress) host = '{}:{}'.format(ipaddress, port) cmdargs = [ 'snmpget', '-Oqv', '-Pe', '-t', str(timeout), '-r', '0', '-v', '2c', '-c', community, host, oid] cmd = run(cmdargs, stdout=PIPE, stderr=PIPE) # Handle any errors that came up if cmd.returncode is not 0: check_for_timeout(cmd.stderr, host) # if previous check didn't generate an Error, this handler will be # called as a sort of catch-all handle_unknown_error(' '.join(cmdargs), cmd.stderr) # Process results else: # subprocess returns stdout from completed command as a single bytes # string. We'll convert it into a regular python string for easier # handling cmdoutput = cmd.stdout.decode('utf-8') # Check for no such instance if 'No Such Instance' in cmdoutput: return None else: return cmdoutput def snmpgetsome(ipaddress: str, oids: List[str], community: str = 'public', port: OneOf[str, int] = 161, timeout: OneOf[int, str] = 3 ) -> List[Tuple[str, str]]: """ Warpper around Net-SNMP's Runs Net-SNMP's 'snmpget' command on a list of OIDs, and returns a list of tuples of the form (oid, result). :param community: the snmpv2 community string :param ipaddress: the IP address of the target SNMP server :param oids: a list of Object IDentifiers to request from the target SNMP server :param port: the port on which SNMP is running on the target server :param timeout: the number of seconds to wait for a response from the SNMP server :return: a list of tuples of the form (oid, result) :raises `~snmp_cmds.exceptions.SNMPTimeout`: if the target SNMP server fails to respond :raises `~snmp_cmds.exceptions.SNMPInvalidAddress`: if the hostname or IP address supplied is not valid or cannot be resolved :raises `~snmp_cmds.exceptions.SNMPError`: if the underlying Net-SNMP command produces an unknown or unhandled error """ ipaddress = validate_ip_address(ipaddress) host = '{}:{}'.format(ipaddress, port) if type(oids) is not list: oids = [oids] cmdargs = [ 'snmpget', '-OQfn', '-Pe', '-t', str(timeout), '-r', '0', '-v', '2c', '-c', community, host, *oids ] cmd = run(cmdargs, stdout=PIPE, stderr=PIPE) # Handle any errors that came up if cmd.returncode is not 0: check_for_timeout(cmd.stderr, host) # if previous check didn't generate an Error, this handler will be # called as a sort of catch-all handle_unknown_error(' '.join(cmdargs), cmd.stderr) # Process results else: cmdoutput = cmd.stdout.splitlines() result = [] for line in cmdoutput: # subprocess returns stdout from completed command as a bytes # string. We'll convert each line into a regular python string, # and separate the OID portion from the result portion item = line.decode('utf-8').split(' = ', 1) # there is an unfortunate bug / oversight in the net-snmp # commands where newline characters within SNMP variables # returned from a server are not escaped before printing. if you # do an snmpget for 3 oids you'll get 3 lines of output printed ( # which is what we want), but if one of those 3 variables # contains, say, 2 new-line chars in it, you'll get 5 lines of # output :( # our quick-n-dirty solution is to check each line to see if it # "looks" like an oid-value pair (meaning it has a " = " in it). if # it doesn't, we'll assume that this line is part of the last pair's # value and tack it on accordingly. When we run the .split() # function above, if the string did not have a " = " to split on, # the function returns a list with one item: the original string if len(item) > 1: # This is a normal oid-value pair # Check for no such instance if 'No Such Instance' in item[1]: item[1] = None # add it to the results result.append(tuple(item)) else: # This line is a continuation of the last oid-value pair # make a copy of the last oid-value pair for us to edit prev_item = list(result[-1]) # append the new line to it prev_item[1] += '\n' + item[0] # replace the original with the edited copy result[-1] = tuple(prev_item) return result def snmpwalk(ipaddress: str, oid: str, community: str = 'public', port: OneOf[str, int] = 161, timeout: int = 3 ) -> List[Tuple[str, str]]: """ Runs Net-SNMP's 'snmpget' command on a list of OIDs, and returns a list of tuples of the form (oid, result). :param community: the snmpv2 community string :param ipaddress: the IP address of the target SNMP server :param oid: the Object IDentifier to request from the target SNMP server :param port: the port on which SNMP is running on the target server :param timeout: the number of seconds to wait for a response from the SNMP server :return: a list of tuples of the form (oid, result) :raises `~snmp_cmds.exceptions.SNMPTimeout`: if the target SNMP server fails to respond :raises `~snmp_cmds.exceptions.SNMPInvalidAddress`: if the hostname or IP address supplied is not valid or cannot be resolved :raises `~snmp_cmds.exceptions.SNMPError`: if the underlying Net-SNMP command produces an unknown or unhandled error """ ipaddress = validate_ip_address(ipaddress) host = '{}:{}'.format(ipaddress, port) cmdargs = [ 'snmpwalk', '-OQfn', '-Pe', '-t', str(timeout), '-r', '0', '-v', '2c', '-c', community, host, oid ] cmd = run(cmdargs, stdout=PIPE, stderr=PIPE) # Handle any errors that came up if cmd.returncode is not 0: check_for_timeout(cmd.stderr, host) # if previous check didn't generate an Error, this handler will be # called as a sort of catch-all handle_unknown_error(' '.join(cmdargs), cmd.stderr) # Process results else: cmdoutput = cmd.stdout.splitlines() result = [] for line in cmdoutput: # subprocess returns stdout from completed command as a bytes # string. We'll convert each line into a regular python string, # and separate the OID portion from the result portion item = line.decode('utf-8').split(' = ', 1) # there is an unfortunate bug / oversight in the net-snmp # commands where newline characters within SNMP variables # returned from a server are not escaped before printing. if you # do an snmpget for 3 oids you'll get 3 lines of output printed ( # which is what we want), but if one of those 3 variables # contains, say, 2 new-line chars in it, you'll get 5 lines of # output :( # our quick-n-dirty solution is to check each line to see if it # "looks" like an oid-value pair (meaning it has a " = " in it). if # it doesn't, we'll assume that this line is part of the last pair's # value and tack it on accordingly. When we run the .split() # function above, if the string did not have a " = " to split on, # the function returns a list with one item: the original string if len(item) > 1: # This is a normal oid-value pair # Check for no such instance if 'No Such Instance' in item[1]: item[1] = None # add it to the results result.append(tuple(item)) else: # This line is a continuation of the last oid-value pair # make a copy of the last oid-value pair for us to edit prev_item = list(result[-1]) # append the new line to it prev_item[1] += '\n' + item[0] # replace the original with the edited copy result[-1] = tuple(prev_item) return result def snmptable(ipaddress: str, oid: str, community: str = 'public', port: OneOf[str, int] = 161, timeout: int = 3, sortkey: Optional[str] = None ) -> OneOf[List[Dict[str, str]], Dict[str, Dict[str, str]]]: """ Runs Net-SNMP's 'snmptable' command on a given OID, converts the results into a list of dictionaries, and optionally sorts the list by a given key. :param community: the snmpv2 community string :param ipaddress: the IP address of the target SNMP server :param oid: the Object IDentifier to request from the target SNMP server :param port: the port on which SNMP is running on the target server :param sortkey: the key within each dict upon which to sort the list of results :param timeout: the number of seconds to wait for a response from the SNMP server :return: a list of dicts, one for each row of the table. The keys of the dicts correspond to the column names of the table. :raises `~snmp_cmds.exceptions.SNMPTimeout`: if the target SNMP server fails to respond :raises `~snmp_cmds.exceptions.SNMPInvalidAddress`: if the hostname or IP address supplied is not valid or cannot be resolved :raises `~snmp_cmds.exceptions.SNMPError`: if the underlying Net-SNMP command produces an unknown or unhandled error :raises `~snmp_cmds.exceptions.SNMPTableError`: if the requested OID is not a valid table """ # We want our delimiter to be something that would never show up in the # wild, so we'll use the non-printable ascii character RS (Record Separator) delimiter = '\x1E' ipaddress = validate_ip_address(ipaddress) host = '{}:{}'.format(ipaddress, port) cmdargs = [ 'snmptable', '-m', 'ALL', '-Pe', '-t', str(timeout), '-r', '0', '-v', '2c', '-Cif', delimiter, '-c', community, host, oid ] cmd = run(cmdargs, stdout=PIPE, stderr=PIPE) # Handle any errors that came up if cmd.returncode is not 0: check_for_timeout(cmd.stderr, host) if b'Was that a table?' in cmd.stderr: raise SNMPTableError(oid) else: handle_unknown_error(' '.join(cmdargs), cmd.stderr) # Process results else: # subprocess returns stdout from completed command as a single bytes # string. we'll split it into a list of bytes strings, and convert # each into a standard python string which the csv reader can handle cmdoutput = cmd.stdout.splitlines() cmdoutput = [item.decode('utf-8') for item in cmdoutput] # Strip the table name and the blank line following it from the output, # so all that remains is the table itself cmdoutput = cmdoutput[2:] table_parser = csv.DictReader(cmdoutput, delimiter=delimiter) results = [element for element in table_parser] if sortkey: results.sort(key=lambda i: i[sortkey]) return results def snmpset(ipaddress: str, oid: str, value_type: str, value: str, community: str = 'private', port: OneOf[int, str] = 161, timeout: OneOf[int, str] = 3 ) -> str: """ Runs Net-SNMP's 'snmpset' command on a given OID, and returns the result if successful. :param community: the snmpv2 community string :param ipaddress: the IP address of the target SNMP server :param oid: the Object IDentifier to request from the target SNMP server :param value_type: the SNMP value type to set. can be one of (i/u/t/a/o/s/x/d/b) :param value: the value to set :param port: the port on which SNMP is running on the target server :param timeout: the number of seconds to wait for a response from the SNMP server :return: the value that was set on the SNMP target :raises `~snmp_cmds.exceptions.SNMPTimeout`: if the target SNMP server fails to respond :raises `~snmp_cmds.exceptions.SNMPInvalidAddress`: if the hostname or IP address supplied is not valid or cannot be resolved :raises `~snmp_cmds.exceptions.SNMPError`: if the underlying Net-SNMP command produces an unknown or unhandled error :raises `~snmp_cmds.exceptions.SNMPWriteError`: if the snmpset operation failed for a known reason. The message associated with this error should always contain information regarding the reason for the error. """ ipaddress = validate_ip_address(ipaddress) host = '{}:{}'.format(ipaddress, port) # snmpset type checking valid_types = ['i', 'u', 't', 'a', 'o', 's', 'x', 'd', 'b'] for type_code in valid_types: if value_type == type_code: # the type argument is one of snmpset's accepted type codes break else: # type didn't match any type code accepted by snmpset raise SNMPWriteError( "The type value you specified does not match one of the accepted " "type codes.\nValid type codes are one of ({})" .format("|".join(valid_types)) ) cmdargs = [ 'snmpset', '-OQfn', '-t', str(timeout), '-r', '0', '-v', '2c', '-c', community, host, oid, value_type, value] cmd = run(cmdargs, stdout=PIPE, stderr=PIPE) # Handle any errors that came up if cmd.returncode is not 0: check_for_timeout(cmd.stderr, host) # Check for write errors for errormsg in [b'Bad variable type', b'Value out of range']: if errormsg in cmd.stderr: raise SNMPWriteError(cmd.stderr) # if previous check didn't generate an Error, this handler will be # called as a sort of catch-all handle_unknown_error(' '.join(cmdargs), cmd.stderr) # Process results else: # subprocess returns stdout from completed command as a single bytes # string. We'll convert it into a regular python string for easier # handling cmdoutput = cmd.stdout.decode('utf-8') # Check for no such instance if 'No Such Instance' in cmdoutput: raise SNMPWriteError( "We've received a 'No Such Instance' error from the server. " "This can be caused by a number of things. Most likely, your " "SNMP write community is incorrect, the OID you specified " "doesn't exist on your target device, or your target device " "doesn't support writing to this writeable field") else: return cmdoutput
43.8
80
0.629552
3574d5ffd6b021573f43735e5a66e0680ecc0450
1,406
py
Python
active_campaign_api/resources/custom_field_value.py
selfdecode/active-campaign
1f085b304d9014ebba69d85164c9a5036b32f501
[ "MIT" ]
null
null
null
active_campaign_api/resources/custom_field_value.py
selfdecode/active-campaign
1f085b304d9014ebba69d85164c9a5036b32f501
[ "MIT" ]
null
null
null
active_campaign_api/resources/custom_field_value.py
selfdecode/active-campaign
1f085b304d9014ebba69d85164c9a5036b32f501
[ "MIT" ]
1
2021-06-03T12:00:25.000Z
2021-06-03T12:00:25.000Z
"""FieldValue resource for Active Campaign """ import typing from ..base_resource import Resource class CustomFieldValue(Resource): """An ActiveCampaign CustomFieldValue. Allows to: - Create a CustomFieldValue - Update a CustomFieldValue - Delete a CustomFieldValue """ def __init__( self, contact_id: str, custom_field_id: str, value, **kwargs: typing.Dict, ) -> None: """Initialize the CustomFieldValue. Args: contact_id: int ID of the contact whose field value you're updating custom_field_id: int ID of the custom field whose value you're updating for the contact value: str Value for the field that you're updating. For multi-select options this needs to be in the format of ||option1||option2|| """ super().__init__(**kwargs) self.contact_id = contact_id self.field_id = custom_field_id self.value = value @staticmethod def resource_name() -> str: """Get the resource name.""" return "fieldValues" @staticmethod def map_field_name_to_attribute() -> typing.Dict: """Serialize the CustomFieldValue.""" return { "contact": "contact_id", "field": "field_id", "value": "value", }
27.038462
82
0.586771
3bd64aaa47c817711c5080a5604ea0617bc90397
16,760
py
Python
test/functional/test_framework/mininode.py
altecoin-altc/altecoin
913678a298eb7eb9157cd2be184b927cfbb429a9
[ "MIT" ]
null
null
null
test/functional/test_framework/mininode.py
altecoin-altc/altecoin
913678a298eb7eb9157cd2be184b927cfbb429a9
[ "MIT" ]
null
null
null
test/functional/test_framework/mininode.py
altecoin-altc/altecoin
913678a298eb7eb9157cd2be184b927cfbb429a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin P2P network half-a-node. This python code was modified from ArtForz' public domain half-a-node, as found in the mini-node branch of http://github.com/jgarzik/pynode. P2PConnection: A low-level connection object to a node's P2P interface P2PInterface: A high-level interface object for communicating to a node over P2P""" import asyncore from collections import defaultdict from io import BytesIO import logging import socket import struct import sys import threading from test_framework.messages import * from test_framework.util import wait_until logger = logging.getLogger("TestFramework.mininode") MESSAGEMAP = { b"addr": msg_addr, b"block": msg_block, b"blocktxn": msg_blocktxn, b"cmpctblock": msg_cmpctblock, b"feefilter": msg_feefilter, b"getaddr": msg_getaddr, b"getblocks": msg_getblocks, b"getblocktxn": msg_getblocktxn, b"getdata": msg_getdata, b"getheaders": msg_getheaders, b"headers": msg_headers, b"inv": msg_inv, b"mempool": msg_mempool, b"ping": msg_ping, b"pong": msg_pong, b"reject": msg_reject, b"sendcmpct": msg_sendcmpct, b"sendheaders": msg_sendheaders, b"tx": msg_tx, b"verack": msg_verack, b"version": msg_version, #b"getsporks": msg_generic, } MAGIC_BYTES = { "mainnet": b"\x90\xc4\xfd\xe9", # mainnet "testnet3": b"\x45\x76\x65\xba", # testnet3 "regtest": b"\xa1\xcf\x7e\xac", # regtest } class P2PConnection(asyncore.dispatcher): """A low-level connection object to a node's P2P interface. This class is responsible for: - opening and closing the TCP connection to the node - reading bytes from and writing bytes to the socket - deserializing and serializing the P2P message header - logging messages as they are sent and received This class contains no logic for handing the P2P message payloads. It must be sub-classed and the on_message() callback overridden.""" def __init__(self): # All P2PConnections must be created before starting the NetworkThread. # assert that the network thread is not running. assert not network_thread_running() super().__init__(map=mininode_socket_map) def peer_connect(self, dstaddr, dstport, net="regtest"): self.dstaddr = dstaddr self.dstport = dstport self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) self.sendbuf = b"" self.recvbuf = b"" self.state = "connecting" self.network = net self.disconnect = False logger.info('Connecting to Altecoin Node: %s:%d' % (self.dstaddr, self.dstport)) try: self.connect((dstaddr, dstport)) except: self.handle_close() def peer_disconnect(self): # Connection could have already been closed by other end. if self.state == "connected": self.disconnect_node() # Connection and disconnection methods def handle_connect(self): """asyncore callback when a connection is opened.""" if self.state != "connected": logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport)) self.state = "connected" self.on_open() def handle_close(self): """asyncore callback when a connection is closed.""" logger.debug("Closing connection to: %s:%d" % (self.dstaddr, self.dstport)) self.state = "closed" self.recvbuf = b"" self.sendbuf = b"" try: self.close() except: pass self.on_close() def disconnect_node(self): """Disconnect the p2p connection. Called by the test logic thread. Causes the p2p connection to be disconnected on the next iteration of the asyncore loop.""" self.disconnect = True # Socket read methods def handle_read(self): """asyncore callback when data is read from the socket.""" t = self.recv(8192) if len(t) > 0: self.recvbuf += t self._on_data() def _on_data(self): """Try to read P2P messages from the recv buffer. This method reads data from the buffer in a loop. It deserializes, parses and verifies the P2P header, then passes the P2P payload to the on_message callback for processing.""" try: while True: if len(self.recvbuf) < 4: return if self.recvbuf[:4] != MAGIC_BYTES[self.network]: raise ValueError("got garbage %s" % repr(self.recvbuf)) if len(self.recvbuf) < 4 + 12 + 4 + 4: return command = self.recvbuf[4:4+12].split(b"\x00", 1)[0] msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0] checksum = self.recvbuf[4+12+4:4+12+4+4] if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen: return msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen] th = sha256(msg) h = sha256(th) if checksum != h[:4]: raise ValueError("got bad checksum " + repr(self.recvbuf)) self.recvbuf = self.recvbuf[4+12+4+4+msglen:] if command in MESSAGEMAP: #raise ValueError("Received unknown command from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, command, repr(msg))) logger.debug("Command: '" + str(command) + "'") f = BytesIO(msg) t = MESSAGEMAP[command]() t.deserialize(f) self._log_message("receive", t) self.on_message(t) except Exception as e: logger.exception('Error reading message:', repr(e)) raise def on_message(self, message): """Callback for processing a P2P payload. Must be overridden by derived class.""" raise NotImplementedError # Socket write methods def writable(self): """asyncore method to determine whether the handle_write() callback should be called on the next loop.""" with mininode_lock: pre_connection = self.state == "connecting" length = len(self.sendbuf) return (length > 0 or pre_connection) def handle_write(self): """asyncore callback when data should be written to the socket.""" with mininode_lock: # asyncore does not expose socket connection, only the first read/write # event, thus we must check connection manually here to know when we # actually connect if self.state == "connecting": self.handle_connect() if not self.writable(): return try: sent = self.send(self.sendbuf) except: self.handle_close() return self.sendbuf = self.sendbuf[sent:] def send_message(self, message, pushbuf=False): """Send a P2P message over the socket. This method takes a P2P payload, builds the P2P header and adds the message to the send buffer to be sent over the socket.""" if self.state != "connected" and not pushbuf: raise IOError('Not connected, no pushbuf') self._log_message("send", message) command = message.command data = message.serialize() tmsg = MAGIC_BYTES[self.network] tmsg += command tmsg += b"\x00" * (12 - len(command)) tmsg += struct.pack("<I", len(data)) th = sha256(data) h = sha256(th) tmsg += h[:4] tmsg += data with mininode_lock: if (len(self.sendbuf) == 0 and not pushbuf): try: sent = self.send(tmsg) self.sendbuf = tmsg[sent:] except BlockingIOError: self.sendbuf = tmsg else: self.sendbuf += tmsg # Class utility methods def _log_message(self, direction, msg): """Logs a message being sent or received over the connection.""" if direction == "send": log_message = "Send message to " elif direction == "receive": log_message = "Received message from " log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500]) if len(log_message) > 500: log_message += "... (msg truncated)" logger.debug(log_message) class P2PInterface(P2PConnection): """A high-level P2P interface class for communicating with a Bitcoin node. This class provides high-level callbacks for processing P2P message payloads, as well as convenience methods for interacting with the node over P2P. Individual testcases should subclass this and override the on_* methods if they want to alter message handling behaviour.""" def __init__(self): super().__init__() # Track number of messages of each type received and the most recent # message of each type self.message_count = defaultdict(int) self.last_message = {} # A count of the number of ping messages we've sent to the node self.ping_counter = 1 # The network services received from the peer self.nServices = 0 def peer_connect(self, *args, services=NODE_NETWORK, send_version=True, **kwargs): super().peer_connect(*args, **kwargs) if send_version: # Send a version msg vt = msg_version() vt.nServices = services vt.addrTo.ip = self.dstaddr vt.addrTo.port = self.dstport vt.addrFrom.ip = "0.0.0.0" vt.addrFrom.port = 0 self.send_message(vt, True) # Message receiving methods def on_message(self, message): """Receive message and dispatch message to appropriate callback. We keep a count of how many of each message type has been received and the most recent message of each type.""" with mininode_lock: try: command = message.command.decode('ascii') self.message_count[command] += 1 self.last_message[command] = message getattr(self, 'on_' + command)(message) except: print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0])) raise # Callback methods. Can be overridden by subclasses in individual test # cases to provide custom message handling behaviour. def on_open(self): pass def on_close(self): pass def on_addr(self, message): pass def on_block(self, message): pass def on_blocktxn(self, message): pass def on_cmpctblock(self, message): pass def on_feefilter(self, message): pass def on_getaddr(self, message): pass def on_getblocks(self, message): pass def on_getblocktxn(self, message): pass def on_getdata(self, message): pass def on_getheaders(self, message): pass def on_headers(self, message): pass def on_mempool(self, message): pass def on_pong(self, message): pass def on_reject(self, message): pass def on_sendcmpct(self, message): pass def on_sendheaders(self, message): pass def on_tx(self, message): pass def on_inv(self, message): want = msg_getdata() for i in message.inv: if i.type != 0: want.inv.append(i) if len(want.inv): self.send_message(want) def on_ping(self, message): self.send_message(msg_pong(message.nonce)) def on_verack(self, message): self.verack_received = True def on_version(self, message): assert message.nVersion >= MIN_VERSION_SUPPORTED, "Version {} received. Test framework only supports versions greater than {}".format(message.nVersion, MIN_VERSION_SUPPORTED) self.send_message(msg_verack()) self.nServices = message.nServices # Connection helper methods def wait_for_disconnect(self, timeout=60): test_function = lambda: self.state != "connected" wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message receiving helper methods def wait_for_block(self, blockhash, timeout=60): test_function = lambda: self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getdata(self, timeout=60): test_function = lambda: self.last_message.get("getdata") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_getheaders(self, timeout=60): test_function = lambda: self.last_message.get("getheaders") wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_inv(self, expected_inv, timeout=60): """Waits for an INV message and checks that the first inv object in the message was as expected.""" if len(expected_inv) > 1: raise NotImplementedError("wait_for_inv() will only verify the first inv object") test_function = lambda: self.last_message.get("inv") and \ self.last_message["inv"].inv[0].type == expected_inv[0].type and \ self.last_message["inv"].inv[0].hash == expected_inv[0].hash wait_until(test_function, timeout=timeout, lock=mininode_lock) def wait_for_verack(self, timeout=60): test_function = lambda: self.message_count["verack"] wait_until(test_function, timeout=timeout, lock=mininode_lock) # Message sending helper functions def send_and_ping(self, message): self.send_message(message) self.sync_with_ping() # Sync up with the node def sync_with_ping(self, timeout=60): self.send_message(msg_ping(nonce=self.ping_counter)) test_function = lambda: self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter wait_until(test_function, timeout=timeout, lock=mininode_lock) self.ping_counter += 1 # Keep our own socket map for asyncore, so that we can track disconnects # ourselves (to workaround an issue with closing an asyncore socket when # using select) mininode_socket_map = dict() # One lock for synchronizing all data access between the networking thread (see # NetworkThread below) and the thread running the test logic. For simplicity, # P2PConnection acquires this lock whenever delivering a message to a P2PInterface, # and whenever adding anything to the send buffer (in send_message()). This # lock should be acquired in the thread running the test logic to synchronize # access to any data shared with the P2PInterface or P2PConnection. mininode_lock = threading.RLock() class NetworkThread(threading.Thread): def __init__(self): super().__init__(name="NetworkThread") def run(self): while mininode_socket_map: # We check for whether to disconnect outside of the asyncore # loop to workaround the behavior of asyncore when using # select disconnected = [] for fd, obj in mininode_socket_map.items(): if obj.disconnect: disconnected.append(obj) [obj.handle_close() for obj in disconnected] asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1) logger.debug("Network thread closing") def network_thread_start(): """Start the network thread.""" # Only one network thread may run at a time assert not network_thread_running() NetworkThread().start() def network_thread_running(): """Return whether the network thread is running.""" return any([thread.name == "NetworkThread" for thread in threading.enumerate()]) def network_thread_join(timeout=10): """Wait timeout seconds for the network thread to terminate. Throw if the network thread doesn't terminate in timeout seconds.""" network_threads = [thread for thread in threading.enumerate() if thread.name == "NetworkThread"] assert len(network_threads) <= 1 for thread in network_threads: thread.join(timeout) assert not thread.is_alive()
37.662921
182
0.633532
d4a31b03db3a9f9ef49f6feda829dfbcfcd1e122
147
py
Python
controls/admin.py
rossm6/accounts
74633ce4038806222048d85ef9dfe97a957a6a71
[ "MIT" ]
11
2021-01-23T01:09:54.000Z
2021-01-25T07:16:30.000Z
controls/admin.py
rossm6/accounts
74633ce4038806222048d85ef9dfe97a957a6a71
[ "MIT" ]
7
2021-04-06T18:19:10.000Z
2021-09-22T19:45:03.000Z
controls/admin.py
rossm6/accounts
74633ce4038806222048d85ef9dfe97a957a6a71
[ "MIT" ]
3
2021-01-23T18:55:32.000Z
2021-02-16T17:47:59.000Z
from django.contrib import admin from controls.models import FinancialYear, Period admin.site.register(FinancialYear) admin.site.register(Period)
24.5
49
0.843537
66bfe87e28747d7fcd3b0fc483a7904bee57dd56
1,061
py
Python
pymagnitude/third_party/allennlp/tests/modules/attention/bilinear_attention_test.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
1,520
2018-03-01T13:37:49.000Z
2022-03-25T11:40:20.000Z
pymagnitude/third_party/allennlp/tests/modules/attention/bilinear_attention_test.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
87
2018-03-03T15:12:50.000Z
2022-02-21T15:24:12.000Z
pymagnitude/third_party/allennlp/tests/modules/attention/bilinear_attention_test.py
tpeng/magnitude
aec98628b5547773ca8c4114ec6d1ad51e21b230
[ "MIT" ]
121
2018-03-03T08:40:53.000Z
2022-03-16T05:19:38.000Z
# pylint: disable=no-self-use,invalid-name,protected-access from __future__ import absolute_import from numpy.testing import assert_almost_equal import torch from torch.nn.parameter import Parameter from allennlp.common import Params from allennlp.modules.attention import BilinearAttention from allennlp.common.testing import AllenNlpTestCase class TestBilinearAttention(AllenNlpTestCase): def test_forward_does_a_bilinear_product(self): params = Params({ u'vector_dim': 2, u'matrix_dim': 2, u'normalize': False, }) bilinear = BilinearAttention.from_params(params) bilinear._weight_matrix = Parameter(torch.FloatTensor([[-.3, .5], [2.0, -1.0]])) bilinear._bias = Parameter(torch.FloatTensor([.1])) a_vectors = torch.FloatTensor([[1, 1]]) b_vectors = torch.FloatTensor([[[1, 0], [0, 1]]]) result = bilinear(a_vectors, b_vectors).detach().numpy() assert result.shape == (1, 2) assert_almost_equal(result, [[1.8, -.4]])
39.296296
88
0.67295
6e3863db078bdb288990742523586afc47cd118f
6,725
py
Python
configs/_base_/models/cascade_mask_rcnn_r50_fpn_fashion_spinet.py
jireh-father/mmdetection
b797e4d5b81c5a3d7d868ee2dc9aa27dbab23e7d
[ "Apache-2.0" ]
null
null
null
configs/_base_/models/cascade_mask_rcnn_r50_fpn_fashion_spinet.py
jireh-father/mmdetection
b797e4d5b81c5a3d7d868ee2dc9aa27dbab23e7d
[ "Apache-2.0" ]
null
null
null
configs/_base_/models/cascade_mask_rcnn_r50_fpn_fashion_spinet.py
jireh-father/mmdetection
b797e4d5b81c5a3d7d868ee2dc9aa27dbab23e7d
[ "Apache-2.0" ]
null
null
null
# model settings model = dict( type='CascadeRCNN', neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=21, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=21, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))) # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_num=2000, nms_thr=0.7, min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]) test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_num=1000, nms_thr=0.7, min_bbox_size=0), # rcnn=dict( # # score_thr=0.6 # score_thr=0.6, # nms=dict(type='nms', iou_threshold=0.5), # max_per_img=100, # mask_thr_binary=0.5) rcnn=dict( # score_thr=0.6 score_thr=0.6, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5) # rcnn=dict( # # score_thr=0.05 # score_thr=0.5, # nms=dict(type='nms', iou_threshold=0.3), # max_per_img=100, # mask_thr_binary=0.45) )
32.645631
79
0.472862
2f1f79dd25fc9a0632afc18a1a954f100d2266b9
504
py
Python
angr/angr/procedures/definitions/glibc.py
Ruide/angr-dev
964dc80c758e25c698c2cbcc454ef5954c5fa0a0
[ "BSD-2-Clause" ]
null
null
null
angr/angr/procedures/definitions/glibc.py
Ruide/angr-dev
964dc80c758e25c698c2cbcc454ef5954c5fa0a0
[ "BSD-2-Clause" ]
null
null
null
angr/angr/procedures/definitions/glibc.py
Ruide/angr-dev
964dc80c758e25c698c2cbcc454ef5954c5fa0a0
[ "BSD-2-Clause" ]
null
null
null
from . import SimLibrary from .. import SIM_PROCEDURES as P libc = SimLibrary() libc.set_library_names('libc.so.6', 'libc.so.0', 'libc.so') libc.add_all_from_dict(P['libc']) libc.add_all_from_dict(P['posix']) libc.add_all_from_dict(P['glibc']) libc.add_alias('abort', '__assert_fail', '__stack_chk_fail') libc.add_alias('memcpy', 'memmove', 'bcopy') libc.set_non_returning('exit_group', 'exit', 'abort', 'pthread_exit', '__assert_fail', 'longjmp', 'siglongjmp', '__longjmp_chk', '__siglongjmp_chk')
38.769231
86
0.736111
f9e4b3a1e3737dee017683d53c9cd59ba1ecf4dd
6,696
py
Python
src/datasets/voc2012.py
paulwarkentin/tf-ssd-vgg
f48e3ccbb8eb092d3cb82a9d90164c7328880477
[ "MIT" ]
5
2021-09-26T07:19:42.000Z
2022-03-11T23:25:36.000Z
ssd/src/datasets/voc2012.py
bharatmahaur/ComparativeStudy
2e3b6de882acc2a465e1b7c8bcd23cc9c8181d3d
[ "Apache-2.0" ]
null
null
null
ssd/src/datasets/voc2012.py
bharatmahaur/ComparativeStudy
2e3b6de882acc2a465e1b7c8bcd23cc9c8181d3d
[ "Apache-2.0" ]
null
null
null
## ## /src/datasets/voc2012.py ## ## Created by Paul Warkentin <paul@warkentin.email> on 13/07/2018. ## Updated by Paul Warkentin <paul@warkentin.email> on 15/07/2018. ## import argparse import os import sys import tensorflow as tf import xml.etree.ElementTree from datetime import datetime from tqdm import tqdm __exec_dir = sys.path[0] while os.path.basename(__exec_dir) != "src": __exec_dir = os.path.dirname(__exec_dir) sys.path.insert(0, __exec_dir) from datasets.common import DatasetSource, DatasetWriter from utils.common.logging import logging_info # wget -c "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" class VOC2012(DatasetSource): """Handle the Pascal VOC 2012 dataset. """ def __init__(self): """Initialize the class. """ super().__init__("voc2012") @property def labels(self): return [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor" ] @property def selected_labels(self): # select all labels return self.labels def convert(self, split_name): if split_name not in ["train", "validation"]: raise NotImplementedError("The dataset split '{}' is currently not supported.".format(split_name)) # open the dataset writer destination_path = os.path.join(self.paths["processed"], split_name) writer = DatasetWriter(destination_path, compression_type=self.compression_type) writer.open() # convert the split self.__convert_split(split_name, writer) # close the dataset writer writer.close() def __convert_split(self, split_name, writer): """Convert a single dataset split. Arguments: split_name: Name of the dataset split. devkit_path: Path to the VOC devkit. writer: TFRecords file writer. """ devkit_path = os.path.join(self.paths["interim"], "VOCtrainval_11-May-2012", "VOCdevkit", "VOC2012") # load image ids if split_name == "train": imageset_filename = "train.txt" elif split_name == "validation": imageset_filename = "val.txt" path = os.path.join(devkit_path, "ImageSets", "Main", imageset_filename) with open(path, "r") as file: image_ids = file.readlines() image_ids = [image_id.strip() for image_id in image_ids] # process annotations logging_info("Processing and writing images ...") # iterate all images num_images = 0 annotations_path = os.path.join(devkit_path, "Annotations") images_path = os.path.join(devkit_path, "JPEGImages") for image_id in tqdm(image_ids, ascii=True): # meta information meta_url = "host.robots.ox.ac.uk" meta_time = datetime.utcnow().isoformat() meta_requester = "paul@warkentin.email" # read xml file xml_path = os.path.join(annotations_path, "{}.xml".format(image_id)) if not os.path.isfile(xml_path): continue xml_root = xml.etree.ElementTree.parse(xml_path).getroot() # check format of image filename = xml_root.findtext("filename") image_format = self.get_image_format_of_file(filename) if image_format is None: raise NotImplementedError("The format of the file '{}' is currently not supported.".format(filename)) # read image size image_height = int(xml_root.find("size").findtext("height")) image_width = int(xml_root.find("size").findtext("width")) image_channels = int(xml_root.find("size").findtext("depth")) # read image image_path = os.path.join(images_path, filename) with tf.gfile.FastGFile(image_path, "rb") as file: image_raw_data = file.read() # read bounding boxes labels = [] bboxes = [[], [], [], []] for sobject in xml_root.findall("object"): label_name = sobject.find("name").text if label_name not in self.selected_labels: continue labels.append(self.selected_labels.index(label_name) + 1) bndbox = sobject.find("bndbox") bboxes[0].append(int(bndbox.find("ymin").text) / image_height) bboxes[1].append(int(bndbox.find("xmin").text) / image_width) bboxes[2].append(int(bndbox.find("ymax").text) / image_height) bboxes[3].append(int(bndbox.find("xmax").text) / image_width) if len(labels) == 0: continue # write sample writer.write_single_example({ "meta/url": writer.bytes_feature(meta_url), "meta/requester": writer.bytes_feature(meta_requester), "meta/time": writer.bytes_feature(meta_time), "image/filename": writer.bytes_feature(filename), "image/format": writer.bytes_feature(image_format), "image/encoded": writer.bytes_feature(image_raw_data), "image/width": writer.int64_feature(image_width), "image/height": writer.int64_feature(image_height), "image/channels": writer.int64_feature(image_channels), "image/shape": writer.int64_feature((image_height, image_width, image_channels)), "image/object/bbox/label": writer.int64_feature(labels), "image/object/bbox/y_min": writer.float_feature(bboxes[0]), "image/object/bbox/x_min": writer.float_feature(bboxes[1]), "image/object/bbox/y_max": writer.float_feature(bboxes[2]), "image/object/bbox/x_max": writer.float_feature(bboxes[3]) }) num_images += 1 logging_info("Successfully written {} image(s) to the TFRecords file.".format(num_images)) if __name__ == "__main__": # initialize arguments parser = argparse.ArgumentParser( description = "PASCAL Visual Object Classes 2012" ) parser.add_argument( "--extract", action = "store_true", help = "Extract all archives." ) parser.add_argument( "--convert", type = str, choices = ["train", "validation"], help = "Convert a dataset split to TFRecords. The data must be extracted." ) parser.add_argument( "--rgb-mean", type = str, choices = ["train", "validation"], help = "Calculate the RGB mean of a dataset split. The split must be converted to TFRecords." ) arguments = parser.parse_args() if not arguments.extract and arguments.convert is None and arguments.rgb_mean is None: parser.print_help() exit() # initialize dataset dataset = VOC2012() # extract dataset if arguments.extract: logging_info("Extract all archives.") dataset.extract(overwrite=True) # convert dataset if arguments.convert is not None: logging_info("Convert dataset split '{}'.".format(arguments.convert)) dataset.convert(arguments.convert) # calculate rgb mean if arguments.rgb_mean is not None: logging_info("Calculate RGB mean of the dataset split '{}'.".format(arguments.rgb_mean)) rgb_mean = dataset.calculate_rgb_mean(arguments.rgb_mean) logging_info("RGB mean is R = {:.2f}, G = {:.2f}, B = {:.2f}.".format(*rgb_mean))
29.76
105
0.705645
422cb700c27ca9942124e02ee61a2c5cd2309c79
592
py
Python
intro/part07-02_special_characters/src/special_characters.py
Hannah-Abi/python-pro-21
2ce32c4bf118054329d19afdf83c50561be1ada8
[ "MIT" ]
null
null
null
intro/part07-02_special_characters/src/special_characters.py
Hannah-Abi/python-pro-21
2ce32c4bf118054329d19afdf83c50561be1ada8
[ "MIT" ]
null
null
null
intro/part07-02_special_characters/src/special_characters.py
Hannah-Abi/python-pro-21
2ce32c4bf118054329d19afdf83c50561be1ada8
[ "MIT" ]
null
null
null
# Write your solution here import string def separate_characters(my_string: str): ascii_ltr = "" punc_ltr = "" others = "" for i in my_string: if i in string.ascii_letters: ascii_ltr += i if i in string.punctuation: punc_ltr += i if i not in string.ascii_letters and i not in string.punctuation: others += i part = (ascii_ltr,punc_ltr,others) return part if __name__=="__main__": parts = separate_characters("Olé!!! Hey, are ümläüts wörking?") print(parts[0]) print(parts[1]) print(parts[2])
28.190476
73
0.616554
872d7df74a21fec2db7d53179d7c966524a81327
33,084
py
Python
preql/core/evaluate.py
manor/Preql
f1c294b7893843ef77f3c81410e315c573b5a5ef
[ "MIT" ]
null
null
null
preql/core/evaluate.py
manor/Preql
f1c294b7893843ef77f3c81410e315c573b5a5ef
[ "MIT" ]
null
null
null
preql/core/evaluate.py
manor/Preql
f1c294b7893843ef77f3c81410e315c573b5a5ef
[ "MIT" ]
null
null
null
from typing import List, Optional import logging from pathlib import Path from preql.utils import safezip, dataclass, SafeDict, listgen from preql import settings from .interp_common import assert_type, exclude_fields, call_builtin_func, is_global_scope, cast_to_python_string, cast_to_python_int from .exceptions import InsufficientAccessLevel, ReturnSignal, Signal from . import exceptions as exc from . import pql_objects as objects from . import pql_ast as ast from . import sql from .parser import Str from .interp_common import State, dsp, pyvalue_inst, cast_to_python from .compiler import compile_to_inst, cast_to_instance from .pql_types import T, Type, Object, Id from .types_impl import table_params, table_flat_for_insert, flatten_type, pql_repr, kernel_type MODULES_PATH = Path(__file__).parent.parent / 'modules' @dsp def resolve(state: State, struct_def: ast.StructDef): members = {str(k):resolve(state, v) for k, v in struct_def.members} struct = T.struct(members) state.set_var(struct_def.name, struct) return struct @dsp def resolve(state: State, table_def: ast.TableDef): name = table_def.name if is_global_scope(state): name = state.db.qualified_name(name) temporary = False else: name = '__local_' + state.unique_name(name) temporary = True t = T.table({}, name=Id(name), temporary=temporary) with state.use_scope({table_def.name: t}): # For self-reference elems = {c.name: resolve(state, c) for c in table_def.columns} t = t(elems) if table_def.methods: methods = evaluate(state, table_def.methods) t.methods.update({m.userfunc.name:m.userfunc for m in methods}) return t @dsp def resolve(state: State, col_def: ast.ColumnDef): coltype = resolve(state, col_def.type) query = col_def.query assert not query if isinstance(coltype, objects.SelectedColumnInstance): table = coltype.parent.type if 'name' not in table.options: # XXX better test for persistence raise Signal.make(T.TypeError, col_def.type, "Tables provided as relations must be persistent.") x = T.t_relation[coltype.type](rel={'table': table, 'column': coltype.name, 'key': False}) return x.replace(_nullable=coltype.type._nullable) # inherit is_nullable (TODO: use sumtypes?) elif coltype <= T.table: if 'name' not in coltype.options: # XXX better test for persistence raise Signal.make(T.TypeError, col_def.type, "Tables provided as relations must be persistent.") x = T.t_relation[T.t_id.as_nullable()](rel={'table': coltype, 'column': 'id', 'key': True}) return x.replace(_nullable=coltype._nullable) # inherit is_nullable (TODO: use sumtypes?) return coltype(default=col_def.default) @dsp def resolve(state: State, type_: ast.Type): t = evaluate(state, type_.type_obj) if isinstance(t, objects.TableInstance): t = t.type if not isinstance(t, (Type, objects.SelectedColumnInstance)): raise Signal.make(T.TypeError, type_, f"Expected type in column definition. Instead got '{t}'") if type_.nullable: t = t.as_nullable() return t @dsp def _execute(state: State, struct_def: ast.StructDef): resolve(state, struct_def) def db_query(state: State, sql_code, subqueries=None): try: return state.db.query(sql_code, subqueries) except exc.DatabaseQueryError as e: raise Signal.make(T.DbQueryError, None, e.args[0]) from e def drop_table(state, table_type): name ,= table_type.options['name'].parts code = sql.compile_drop_table(state, name) return state.db.query(code, {}) @dsp def _execute(state: State, table_def: ast.TableDefFromExpr): expr = cast_to_instance(state, table_def.expr) name = table_def.name if is_global_scope(state): temporary = False else: name = '__local_' + state.unique_name(name) temporary = True t = new_table_from_expr(state, name, expr, table_def.const, temporary) state.set_var(table_def.name, t) @dsp def _execute(state: State, table_def: ast.TableDef): if table_def.columns and isinstance(table_def.columns[-1], ast.Ellipsis): ellipsis = table_def.columns.pop() else: ellipsis = None if any(isinstance(c, ast.Ellipsis) for c in table_def.columns): # XXX why must it? just ensure it appears once raise Signal.make(T.SyntaxError, table_def, "Ellipsis must appear at the end") # Create type and a corresponding table in the database t = resolve(state, table_def) db_name = t.options['name'] exists = state.db.table_exists(db_name.repr_name) if exists: assert not t.options['temporary'] cur_type = state.db.import_table_type(db_name.repr_name, None if ellipsis else set(t.elems) | {'id'}) if ellipsis: elems_to_add = {Str(n, ellipsis.text_ref): v for n, v in cur_type.elems.items() if n not in t.elems} # TODO what is primary key isn't included? t = t({**t.elems, **elems_to_add}, **cur_type.options) # Auto-add id only if it exists already and not defined by user if 'id' in cur_type.elems: #and 'id' not in t.elems: # t = t(dict(id=T.t_id, **t.elems), pk=[['id']]) assert cur_type.elems['id'] <= T.primitive, cur_type.elems['id'] t.elems['id'] = T.t_id for e_name, e1_type in t.elems.items(): if e_name not in cur_type.elems: raise Signal.make(T.TypeError, table_def, f"Column '{e_name}' defined, but doesn't exist in database.") # e2_type = cur_type.elems[e_name] # XXX use can_cast() instead of hardcoding it # if not (e1_type <= e2_type or (e1_type <= T.t_id and e2_type <= T.int)): # raise Signal.make(T.TypeError, table_def, f"Cannot cast column '{e_name}' from type '{e2_type}' to '{e1_type}'") inst = objects.new_table(t, db_name, select_fields=True) else: # Auto-add id by default elems = dict(t.elems) if 'id' not in elems: elems = {'id': T.t_id, **elems} t = t(elems, pk=[['id']]) inst = objects.new_table(t, db_name) state.set_var(table_def.name, inst) if not exists: sql_code = sql.compile_type_def(state, db_name.repr_name, t) db_query(state, sql_code) @dsp def _set_value(state: State, name: ast.Name, value): state.set_var(name.name, value) @dsp def _set_value(state: State, attr: ast.Attr, value): raise Signal.make(T.NotImplementedError, attr, f"Cannot set attribute for {attr.expr.repr()}") @dsp def _execute(state: State, var_def: ast.SetValue): res = evaluate(state, var_def.value) # res = apply_database_rw(state, res) _set_value(state, var_def.name, res) return res def _copy_rows(state: State, target_name: ast.Name, source: objects.TableInstance): if source is objects.EmptyList: # Nothing to add return objects.null target = evaluate(state, target_name) params = dict(table_params(target.type)) for p in params: if p not in source.type.elems: raise Signal.make(T.TypeError, source, f"Missing column '{p}' in {source.type}") primary_keys, columns = table_flat_for_insert(target.type) source = exclude_fields(state, source, set(primary_keys) & set(source.type.elems)) code = sql.Insert(target.type.options['name'], columns, source.code) db_query(state, code, source.subqueries) return objects.null @dsp def _execute(state: State, insert_rows: ast.InsertRows): if not isinstance(insert_rows.name, ast.Name): # TODO support Attr raise Signal.make(T.SyntaxError, insert_rows, "L-value must be table name") rval = evaluate(state, insert_rows.value) assert_type(rval.type, T.table, insert_rows, '+=') return _copy_rows(state, insert_rows.name, rval) @dsp def _execute(state: State, func_def: ast.FuncDef): func = func_def.userfunc assert isinstance(func, objects.UserFunction) new_params = [] for p in func.params: if p.type: t = evaluate(state, p.type) p = p.replace(type=t) new_params.append(p) state.set_var(func.name, func.replace(params=new_params)) @dsp def _execute(state: State, p: ast.Print): # TODO Can be done better. Maybe cast to ReprText? insts = evaluate(state, p.value) assert isinstance(insts, list) for inst in insts: # inst = evaluate(state, p.value) if inst.type <= T.string: repr_ = cast_to_python_string(state, inst) else: repr_ = inst.repr() state.display.print(repr_, end=" ") state.display.print("") @dsp def _execute(state: State, p: ast.Assert): res = cast_to_python(state, p.cond) if not res: # TODO pretty print values if isinstance(p.cond, ast.Compare): s = (' %s '%p.cond.op).join(str(evaluate(state, a).repr()) for a in p.cond.args) else: s = p.cond.repr() raise Signal.make(T.AssertError, p.cond, f"Assertion failed: {s}") @dsp def _execute(state: State, cb: ast.CodeBlock): for stmt in cb.statements: execute(state, stmt) return objects.null @dsp def _execute(state: State, i: ast.If): cond = cast_to_python(state, i.cond) if cond: execute(state, i.then) elif i.else_: execute(state, i.else_) @dsp def _execute(state: State, w: ast.While): while cast_to_python(state, w.cond): execute(state, w.do) @dsp def _execute(state: State, f: ast.For): expr = cast_to_python(state, f.iterable) for i in expr: with state.use_scope({f.var: objects.from_python(i)}): execute(state, f.do) @dsp def _execute(state: State, t: ast.Try): try: execute(state, t.try_) except Signal as e: catch_type = localize(state, evaluate(state, t.catch_expr)) if not isinstance(catch_type, Type): raise Signal.make(T.TypeError, t.catch_expr, f"Catch expected type, got {t.catch_expr.type}") if e.type <= catch_type: scope = {t.catch_name: e} if t.catch_name else {} with state.use_scope(scope): execute(state, t.catch_block) else: raise def find_module(module_name): paths = [MODULES_PATH, Path.cwd()] for path in paths: module_path = (path / module_name).with_suffix(".pql") if module_path.exists(): return module_path raise Signal.make(T.ImportError, r, "Cannot find module") def import_module(state, r): module_path = find_module(r.module_path) assert state is state.interp.state i = state.interp.clone(use_core=r.use_core) state.stacktrace.append(r.text_ref) try: i.include(module_path) finally: assert state.stacktrace[-1] is r.text_ref state.stacktrace.pop() # Inherit module db (in case it called connect()) state.db = i.state.db ns = i.state.ns assert len(ns) == 1 return objects.Module(r.module_path, ns._ns[0]) @dsp def _execute(state: State, r: ast.Import): module = import_module(state, r) state.set_var(r.as_name or r.module_path, module) return module @dsp def _execute(state: State, r: ast.Return): value = evaluate(state, r.value) raise ReturnSignal(value) @dsp def _execute(state: State, t: ast.Throw): e = evaluate(state, t.value) if isinstance(e, ast.Ast): raise exc.InsufficientAccessLevel() assert isinstance(e, Exception), e raise e def execute(state, stmt): if isinstance(stmt, ast.Statement): return _execute(state, stmt) or objects.null return evaluate(state, stmt) # Simplify performs local operations before any db-specific compilation occurs # Technically not super useful at the moment, but makes conceptual sense. @dsp def simplify(state: State, cb: ast.CodeBlock): # if len(cb.statements) == 1: # s ,= cb.statements # return simplify(state, s) try: return _execute(state, cb) except ReturnSignal as r: # XXX is this correct? return r.value except Signal as e: # Failed to run it, so try to cast as instance # XXX order should be other way around! if e.type <= T.CastError: return compile_to_inst(state, cb) raise except InsufficientAccessLevel: return cb @dsp def simplify(state: State, n: ast.Name): # XXX what happens to caching if this is a global variable? return state.get_var(n.name) @dsp def simplify(state: State, x): return x # @dsp # def simplify(state: State, ls: list): # return [simplify(state, i) for i in ls] # @dsp # def simplify(state: State, d: objects.ParamDict): # return d.replace(params={name: evaluate(state, v) for name, v in d.params.items()}) # @dsp # def simplify(state: State, node: ast.Ast): # # return _simplify_ast(state, node) # return node # def _simplify_ast(state, node): # resolved = {k:simplify(state, v) for k, v in node # if isinstance(v, types.PqlObject) or isinstance(v, list) and all(isinstance(i, types.PqlObject) for i in v)} # return node.replace(**resolved) # TODO isn't this needed somewhere?? # @dsp # def simplify(state: State, if_: ast.If): # if_ = _simplify_ast(state, if_) # if isinstance(if_.cond, objects.ValueInstance): # XXX a more general test? # if if_.cond.local_value: # return if_.then # else: # return if_.else_ # return if_ # TODO Optimize these, right now failure to evaluate will lose all work @dsp def simplify(state: State, obj: ast.Or): a, b = evaluate(state, obj.args) ta = kernel_type(a.type) tb = kernel_type(b.type) if ta != tb: raise Signal.make(T.TypeError, obj, f"'or' operator requires both arguments to be of the same type, but got '{ta}' and '{tb}'.") try: if test_nonzero(state, a): return a except InsufficientAccessLevel: return obj return b @dsp def simplify(state: State, obj: ast.And): a, b = evaluate(state, obj.args) ta = kernel_type(a.type) tb = kernel_type(b.type) if ta != tb: raise Signal.make(T.TypeError, obj, f"'and' operator requires both arguments to be of the same type, but got '{ta}' and '{tb}'.") try: if not test_nonzero(state, a): return a except InsufficientAccessLevel: return obj return b @dsp def simplify(state: State, obj: ast.Not): inst = evaluate(state, obj.expr) try: nz = test_nonzero(state, inst) except InsufficientAccessLevel: return obj return objects.pyvalue_inst(not nz) @dsp def simplify(state: State, funccall: ast.FuncCall): func = evaluate(state, funccall.func) if isinstance(func, objects.UnknownInstance): # evaluate(state, [a.value for a in funccall.args]) raise Signal.make(T.TypeError, funccall.func, f"Error: Object of type '{func.type}' is not callable") args = funccall.args if isinstance(func, Type): # Cast to type args = args + [func] func = state.get_var('cast') if not isinstance(func, objects.Function): raise Signal.make(T.TypeError, funccall.func, f"Error: Object of type '{func.type}' is not callable") state.stacktrace.append(funccall.text_ref) try: res = eval_func_call(state, func, args) finally: assert state.stacktrace[-1] is funccall.text_ref state.stacktrace.pop() assert isinstance(res, Object), (type(res), res) return res def eval_func_call(state, func, args): assert isinstance(func, objects.Function) matched_args = func.match_params(state, args) if isinstance(func, objects.MethodInstance): args = {'this': func.parent} # args.update(func.parent.all_attrs()) else: args = {} # XXX simplify destroys text_ref, so it harms error messages. # TODO Can I get rid of it, or make it preserve the text_ref somehow? # Don't I need an instance to ensure I have type? for i, (p, a) in enumerate(matched_args): if not p.name.startswith('$'): # $param means don't evaluate expression, leave it to the function a = evaluate(state, a) # TODO cast? if p.type and not a.type <= p.type: raise Signal.make(T.TypeError, func, f"Argument #{i} of '{func.name}' is of type '{a.type}', expected '{p.type}'") args[p.name] = a if isinstance(func, objects.InternalFunction): # TODO ensure pure function? # TODO Ensure correct types args = list(args.values()) return func.func(state, *args) # TODO make tests to ensure caching was successful expr = func.expr if settings.cache: params = {name: ast.Parameter(name, value.type) for name, value in args.items()} sig = (func.name,) + tuple(a.type for a in args.values()) try: with state.use_scope(params): if sig in state._cache: compiled_expr = state._cache[sig] else: logging.info(f"Compiling.. {func}") compiled_expr = _call_expr(state.reduce_access(state.AccessLevels.COMPILE), func.expr) logging.info("Compiled successfully") if isinstance(compiled_expr, objects.Instance): # XXX a little ugly qb = sql.QueryBuilder(state.db.target, True) x = compiled_expr.code.compile(qb) x = x.optimize() compiled_expr = compiled_expr.replace(code=x) state._cache[sig] = compiled_expr expr = ast.ResolveParameters(compiled_expr, args) except exc.InsufficientAccessLevel: # Don't cache pass with state.use_scope(args): res = _call_expr(state, expr) if isinstance(res, ast.ResolveParameters): # XXX A bit of a hack raise exc.InsufficientAccessLevel() return res def _call_expr(state, expr): try: return evaluate(state, expr) except ReturnSignal as r: return r.value # TODO fix these once we have proper types @dsp def test_nonzero(state: State, table: objects.TableInstance): count = call_builtin_func(state, "count", [table]) return bool(cast_to_python_int(state, count)) @dsp def test_nonzero(state: State, inst: objects.Instance): return bool(cast_to_python(state, inst)) @dsp def test_nonzero(state: State, inst: Type): return True @dsp def apply_database_rw(state: State, o: ast.One): # TODO move these to the core/base module obj = evaluate(state, o.expr) if obj.type <= T.struct: if len(obj.attrs) != 1: raise Signal.make(T.ValueError, o, f"'one' expected a struct with a single attribute, got {len(obj.attrs)}") x ,= obj.attrs.values() return x slice_ast = ast.Slice(obj, ast.Range(None, ast.Const(T.int, 2))).set_text_ref(o.text_ref) table = evaluate(state, slice_ast) assert (table.type <= T.table), table rows = localize(state, table) # Must be 1 row if len(rows) == 0: if not o.nullable: raise Signal.make(T.ValueError, o, "'one' expected a single result, got an empty expression") return objects.null elif len(rows) > 1: raise Signal.make(T.ValueError, o, "'one' expected a single result, got more") row ,= rows rowtype = T.row[table.type] if table.type <= T.list: return pyvalue_inst(row) assert table.type <= T.table assert_type(table.type, T.table, o, 'one') d = {k: pyvalue_inst(v, table.type.elems[k], True) for k, v in row.items()} return objects.RowInstance(rowtype, d) @dsp def apply_database_rw(state: State, d: ast.Delete): state.catch_access(state.AccessLevels.WRITE_DB) # TODO Optimize: Delete on condition, not id, when possible cond_table = ast.Selection(d.table, d.conds).set_text_ref(d.text_ref) table = evaluate(state, cond_table) if not table.type <= T.table: raise Signal.make(T.TypeError, d.table, f"Expected a table. Got: {table.type}") if not 'name' in table.type.options: raise Signal.make(T.ValueError, d.table, "Cannot delete. Table is not persistent") rows = list(localize(state, table)) if rows: if 'id' not in rows[0]: raise Signal.make(T.TypeError, d, "Delete error: Table does not contain id") ids = [row['id'] for row in rows] for code in sql.deletes_by_ids(table, ids): db_query(state, code, table.subqueries) return evaluate(state, d.table) @dsp def apply_database_rw(state: State, u: ast.Update): state.catch_access(state.AccessLevels.WRITE_DB) # TODO Optimize: Update on condition, not id, when possible table = evaluate(state, u.table) if not table.type <= T.table: raise Signal.make(T.TypeError, u.table, f"Expected a table. Got: {table.type}") if not 'name' in table.type.options: raise Signal.make(T.ValueError, u.table, "Cannot update: Table is not persistent") for f in u.fields: if not f.name: raise Signal.make(T.SyntaxError, f, f"Update requires that all fields have a name") # TODO verify table is concrete (i.e. lvalue, not a transitory expression) update_scope = {n:c for n, c in table.all_attrs().items()} with state.use_scope(update_scope): proj = {f.name:evaluate(state, f.value) for f in u.fields} rows = list(localize(state, table)) if rows: if 'id' not in rows[0]: raise Signal.make(T.TypeError, u, "Update error: Table does not contain id") if not set(proj) < set(rows[0]): raise Signal.make(T.TypeError, u, "Update error: Not all keys exist in table") ids = [row['id'] for row in rows] for code in sql.updates_by_ids(table, proj, ids): db_query(state, code, table.subqueries) # TODO return by ids to maintain consistency, and skip a possibly long query return table @dsp def apply_database_rw(state: State, new: ast.NewRows): state.catch_access(state.AccessLevels.WRITE_DB) obj = state.get_var(new.type) if len(new.args) > 1: raise Signal.make(T.NotImplementedError, new, "Not yet implemented") #. Requires column-wise table concat (use join and enum)") if isinstance(obj, objects.UnknownInstance): arg ,= new.args table = evaluate(state, arg.value) fakerows = [objects.RowInstance(T.row[table], {'id': T.t_id})] return ast.List_(T.list[T.int], fakerows).set_text_ref(new.text_ref) if isinstance(obj, objects.TableInstance): # XXX Is it always TableInstance? Just sometimes? What's the transition here? obj = obj.type assert_type(obj, T.table, new, "'new' expected an object of type '%s', instead got '%s'") arg ,= new.args # TODO postgres can do it better! table = evaluate(state, arg.value) rows = localize(state, table) # TODO ensure rows are the right type cons = TableConstructor.make(obj) # TODO very inefficient, vectorize this ids = [] for row in rows: matched = cons.match_params(state, [objects.from_python(v) for v in row.values()]) ids += [_new_row(state, new, obj, matched).primary_key()] # XXX return everything, not just pk? # XXX find a nicer way - requires a better typesystem, where id(t) < int return ast.List_(T.list[T.int], ids).set_text_ref(new.text_ref) @listgen def _destructure_param_match(state, ast_node, param_match): # TODO use cast rather than a ad-hoc hardwired destructure for k, v in param_match: if isinstance(v, objects.RowInstance): v = v.primary_key() v = localize(state, v) if k.type <= T.struct: names = [name for name, t in flatten_type(k.orig, [k.name])] if not isinstance(v, list): msg = f"Parameter {k.name} received a bad value: {v} (expecting a struct or a list)" raise Signal.make(T.TypeError, ast_node, msg) if len(v) != len(names): msg = f"Parameter {k.name} received a bad value (size of {len(names)})" raise Signal.make(T.TypeError, ast_node, msg) yield from safezip(names, v) else: yield k.name, v def _new_value(state, v, type_): if isinstance(v, list): return evaluate(state, objects.PythonList(v)) return objects.pyvalue_inst(v, type_=type_) @dsp def freeze(state, i: objects.Instance): return _new_value(state, cast_to_python(state, i), type_=i.type ) @dsp def freeze(state, i: objects.RowInstance): return i.replace(attrs={k: freeze(state, v) for k, v in i.attrs.items()}) def _new_row(state, new_ast, table, matched): matched = [(k, freeze(state, evaluate(state, v))) for k, v in matched] destructured_pairs = _destructure_param_match(state, new_ast, matched) keys = [name for (name, _) in destructured_pairs] values = [sql.make_value(v) for (_,v) in destructured_pairs] assert keys and values # XXX use regular insert? if state.db.target == sql.bigquery: rowid = db_query(state, sql.FuncCall(T.string, 'GENERATE_UUID', [])) keys += ['id'] values += [sql.make_value(rowid)] q = sql.InsertConsts(table.options['name'].repr_name, keys, [values]) db_query(state, q) else: q = sql.InsertConsts(table.options['name'].repr_name, keys, [values]) # q = sql.InsertConsts(new_ast.type, keys, [values]) db_query(state, q) rowid = db_query(state, sql.LastRowId()) d = SafeDict({'id': objects.pyvalue_inst(rowid)}) d.update({p.name:v for p, v in matched}) return objects.RowInstance(T.row[table], d) @dsp def apply_database_rw(state: State, new: ast.New): state.catch_access(state.AccessLevels.WRITE_DB) obj = state.get_var(new.type) # XXX Assimilate this special case if isinstance(obj, Type) and obj <= T.Exception: def create_exception(state, msg): msg = cast_to_python(state, msg) assert new.text_ref is state.stacktrace[-1] return Signal(obj, list(state.stacktrace), msg) # TODO move this to `throw`? f = objects.InternalFunction(obj.typename, [objects.Param('message')], create_exception) res = evaluate(state, ast.FuncCall(f, new.args).set_text_ref(new.text_ref)) return res if not isinstance(obj, objects.TableInstance): raise Signal.make(T.TypeError, new, f"'new' expects a table or exception, instead got {obj.repr()}") table = obj # TODO assert tabletype is a real table and not a query (not transient), otherwise new is meaningless assert_type(table.type, T.table, new, "'new' expected an object of type '%s', instead got '%s'") cons = TableConstructor.make(table.type) matched = cons.match_params(state, new.args) return _new_row(state, new, table.type, matched) @dataclass class TableConstructor(objects.Function): "Serves as an ad-hoc constructor function for given table, to allow matching params" params: List[objects.Param] param_collector: Optional[objects.Param] = None name = 'new' @classmethod def make(cls, table): return cls([ objects.Param(name, p, p.options.get('default'), orig=p).set_text_ref(getattr(name, 'text_ref', None)) for name, p in table_params(table) ]) def add_as_subquery(state: State, inst: objects.Instance): code_cls = sql.TableName if (inst.type <= T.table) else sql.Name name = state.unique_name(inst) return inst.replace(code=code_cls(inst.code.type, name), subqueries=inst.subqueries.update({name: inst.code})) @dsp def resolve_parameters(state: State, x): return x @dsp def resolve_parameters(state: State, p: ast.Parameter): return state.get_var(p.name) @dsp def evaluate(state, obj: list): return [evaluate(state, item) for item in obj] @dsp def evaluate(state, obj_): assert context.state # - Generic, non-db related operations obj = simplify(state, obj_) assert obj, obj_ if state.access_level < state.AccessLevels.COMPILE: return obj # - Compile to instances with db-specific code (sql) # . Compilation may fail (e.g. due to lack of DB access) # . Resulting code generic within the same database, and can be cached # obj = compile_to_inst(state.reduce_access(state.AccessLevels.COMPILE), obj) obj = compile_to_inst(state, obj) if state.access_level < state.AccessLevels.EVALUATE: return obj # - Resolve parameters to "instantiate" the cached code # TODO necessary? obj = resolve_parameters(state, obj) if state.access_level < state.AccessLevels.READ_DB: return obj # - Apply operations that read or write the database (delete, insert, update, one, etc.) obj = apply_database_rw(state, obj) assert not isinstance(obj, (ast.ResolveParameters, ast.ParameterizedSqlCode)), obj return obj @dsp def apply_database_rw(state, x): return x # # localize() # ------------- # # Return the local value of the expression. Only requires computation if the value is an instance. # @dsp def localize(state, inst: objects.AbsInstance): raise NotImplementedError(inst) @dsp def localize(state, inst: objects.AbsStructInstance): return {k: localize(state, evaluate(state, v)) for k, v in inst.attrs.items()} @dsp def localize(state, inst: objects.Instance): # TODO This protection doesn't work for unoptimized code # Cancel unoptimized mode? Or leave this unprotected? # state.require_access(state.AccessLevels.WRITE_DB) if inst.code is sql.null: return None return db_query(state, inst.code, inst.subqueries) @dsp def localize(state, inst: objects.ValueInstance): return inst.local_value @dsp def localize(state, inst: objects.SelectedColumnInstance): # XXX is this right? p = evaluate(state, inst.parent) return p.get_attr(inst.name) @dsp def localize(state, x): return x def new_table_from_rows(state, name, columns, rows): # TODO check table doesn't exist tuples = [ [sql.make_value(i) for i in row] for row in rows ] # TODO refactor into function? elems = {c:v.type.as_nullable() for c,v in zip(columns, tuples[0])} elems['id'] = T.t_id table = T.table(elems, temporary=True, pk=[['id']], name=Id(name)) db_query(state, sql.compile_type_def(state, name, table)) code = sql.InsertConsts(name, columns, tuples) db_query(state, code) x = objects.new_table(table) state.set_var(name, x) return x def new_table_from_expr(state, name, expr, const, temporary): elems = expr.type.elems if any(t <= T.unknown for t in elems.values()): return objects.TableInstance.make(sql.null, expr.type, []) if 'id' in elems and not const: msg = "Field 'id' already exists. Rename it, or use 'const table' to copy it as-is." raise Signal.make(T.NameError, None, msg) table = T.table(dict(elems), name=Id(name), pk=[] if const else [['id']], temporary=temporary) if not const: table.elems['id'] = T.t_id db_query(state, sql.compile_type_def(state, name, table)) read_only, flat_columns = table_flat_for_insert(table) expr = exclude_fields(state, expr, set(read_only) & set(elems)) db_query(state, sql.Insert(Id(name), flat_columns, expr.code), expr.subqueries) return objects.new_table(table) # cast_to_python - make sure the value is a native python object, not a preql instance @dsp def cast_to_python(state, obj): raise Signal.make(T.TypeError, None, f"Unexpected value: {pql_repr(obj.type, obj)}") @dsp def cast_to_python(state, obj: ast.Ast): inst = cast_to_instance(state, obj) return cast_to_python(state, inst) @dsp def cast_to_python(state, obj: objects.AbsInstance): # if state.access_level <= state.AccessLevels.QUERY: if obj.type <= T.projected | T.aggregated: raise exc.InsufficientAccessLevel(state.access_level) # raise Signal.make(T.CastError, None, f"Internal error. Cannot cast projected obj: {obj}") res = localize(state, obj) if obj.type == T.float: res = float(res) elif obj.type == T.int: res = int(res) elif obj.type == T.bool: assert res in (0, 1), res res = bool(res) return res ### Added functions def function_localize_keys(self, state, struct): return cast_to_python(state, struct) objects.Function._localize_keys = function_localize_keys from preql.context import context def instance_repr(self): return pql_repr(self.type, localize(context.state, self)) objects.Instance.repr = instance_repr
32.05814
137
0.654002
aefc522314fb7a549eff6a18be9fe6cdaeaaef41
35
py
Python
mcproxy.py
felixbade/minecraft-proxy
3b040cda4f06a1c7711fd7aea1158b33ca8640f7
[ "Artistic-2.0" ]
1
2015-02-17T08:43:12.000Z
2015-02-17T08:43:12.000Z
mcproxy.py
felixbade/minecraft-proxy
3b040cda4f06a1c7711fd7aea1158b33ca8640f7
[ "Artistic-2.0" ]
null
null
null
mcproxy.py
felixbade/minecraft-proxy
3b040cda4f06a1c7711fd7aea1158b33ca8640f7
[ "Artistic-2.0" ]
null
null
null
from app import proxy proxy.run()
8.75
21
0.742857
43ff7fa597f1bc570bff198e6443b39de6ab886f
110,899
py
Python
python/ccxt/bybit.py
red-eagle-eye/ccxt
56260c9f00d8eadbb23c9505c224d7f82a0d4f35
[ "MIT" ]
2
2021-10-08T23:05:57.000Z
2022-01-22T15:03:40.000Z
python/ccxt/bybit.py
ReWard0101/ccxt
be730006aeef31ff5b533ad93a8f098645665d6d
[ "MIT" ]
null
null
null
python/ccxt/bybit.py
ReWard0101/ccxt
be730006aeef31ff5b533ad93a8f098645665d6d
[ "MIT" ]
3
2021-08-14T18:53:01.000Z
2021-12-21T22:36:42.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.base.exchange import Exchange # ----------------------------------------------------------------------------- try: basestring # Python 3 except NameError: basestring = str # Python 2 import json from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import ArgumentsRequired from ccxt.base.errors import BadRequest from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import InvalidNonce from ccxt.base.decimal_to_precision import TICK_SIZE from ccxt.base.precise import Precise class bybit(Exchange): def describe(self): return self.deep_extend(super(bybit, self).describe(), { 'id': 'bybit', 'name': 'Bybit', 'countries': ['VG'], # British Virgin Islands 'version': 'v2', 'userAgent': None, 'rateLimit': 100, 'hostname': 'bybit.com', # bybit.com, bytick.com 'has': { 'cancelAllOrders': True, 'cancelOrder': True, 'CORS': True, 'createOrder': True, 'editOrder': True, 'fetchBalance': True, 'fetchClosedOrders': True, 'fetchDeposits': True, 'fetchFundingRate': True, 'fetchFundingRateHistory': False, 'fetchIndexOHLCV': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMarkOHLCV': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrder': True, 'fetchOrderBook': True, 'fetchOrders': True, 'fetchOrderTrades': True, 'fetchPositions': True, 'fetchPremiumIndexOHLCV': True, 'fetchTicker': True, 'fetchTickers': True, 'fetchTime': True, 'fetchTrades': True, 'fetchTransactions': None, 'fetchWithdrawals': True, 'setMarginMode': True, 'setLeverage': True, }, 'timeframes': { '1m': '1', '3m': '3', '5m': '5', '15m': '15', '30m': '30', '1h': '60', '2h': '120', '4h': '240', '6h': '360', '12h': '720', '1d': 'D', '1w': 'W', '1M': 'M', '1y': 'Y', }, 'urls': { 'test': { 'spot': 'https://api-testnet.{hostname}', 'futures': 'https://api-testnet.{hostname}', 'v2': 'https://api-testnet.{hostname}', 'public': 'https://api-testnet.{hostname}', 'private': 'https://api-testnet.{hostname}', }, 'logo': 'https://user-images.githubusercontent.com/51840849/76547799-daff5b80-649e-11ea-87fb-3be9bac08954.jpg', 'api': { 'spot': 'https://api.{hostname}', 'futures': 'https://api.{hostname}', 'v2': 'https://api.{hostname}', 'public': 'https://api.{hostname}', 'private': 'https://api.{hostname}', }, 'www': 'https://www.bybit.com', 'doc': [ 'https://bybit-exchange.github.io/docs/inverse/', 'https://bybit-exchange.github.io/docs/linear/', 'https://github.com/bybit-exchange', ], 'fees': 'https://help.bybit.com/hc/en-us/articles/360039261154', 'referral': 'https://www.bybit.com/app/register?ref=X7Prm', }, 'api': { 'spot': { 'public': { 'get': [ 'symbols', ], }, 'quote': { 'get': [ 'depth', 'depth/merged', 'trades', 'kline', 'ticker/24hr', 'ticker/price', 'ticker/book_ticker', ], }, 'private': { 'get': [ 'order', 'open-orders', 'history-orders', 'myTrades', 'account', 'time', ], 'post': [ 'order', ], 'delete': [ 'order', 'order/fast', ], }, 'order': { 'delete': [ 'batch-cancel', 'batch-fast-cancel', 'batch-cancel-by-ids', ], }, }, 'futures': { 'private': { 'get': [ 'order/list', 'order', 'stop-order/list', 'stop-order', 'position/list', 'execution/list', 'trade/closed-pnl/list', ], 'post': [ 'order/create', 'order/cancel', 'order/cancelAll', 'order/replace', 'stop-order/create', 'stop-order/cancel', 'stop-order/cancelAll', 'stop-order/replace', 'position/change-position-margin', 'position/trading-stop', 'position/leverage/save', 'position/switch-mode', 'position/switch-isolated', 'position/risk-limit', ], }, }, 'v2': { 'public': { 'get': [ 'orderBook/L2', 'kline/list', 'tickers', 'trading-records', 'symbols', 'liq-records', 'mark-price-kline', 'index-price-kline', 'premium-index-kline', 'open-interest', 'big-deal', 'account-ratio', 'time', 'announcement', 'funding/prev-funding-rate', 'risk-limit/list', ], }, 'private': { 'get': [ 'order/list', 'order', 'stop-order/list', 'stop-order', 'position/list', 'execution/list', 'trade/closed-pnl/list', 'funding/prev-funding-rate', 'funding/prev-funding', 'funding/predicted-funding', 'account/api-key', 'account/lcp', 'wallet/balance', 'wallet/fund/records', 'wallet/withdraw/list', 'exchange-order/list', ], 'post': [ 'order/create', 'order/cancel', 'order/cancelAll', 'order/replace', 'stop-order/create', 'stop-order/cancel', 'stop-order/cancelAll', 'stop-order/replace', 'position/change-position-margin', 'position/trading-stop', 'position/leverage/save', 'position/switch-mode', 'position/switch-isolated', 'position/risk-limit', ], }, }, 'public': { 'linear': { 'get': [ 'kline', 'recent-trading-records', 'funding/prev-funding-rate', 'mark-price-kline', 'index-price-kline', 'premium-index-kline', 'risk-limit', ], }, }, 'private': { 'linear': { 'get': [ 'order/list', 'order/search', 'stop-order/list', 'stop-order/search', 'position/list', 'trade/execution/list', 'trade/closed-pnl/list', 'funding/predicted-funding', 'funding/prev-funding', ], 'post': [ 'order/create', 'order/cancel', 'order/cancel-all', 'order/replace', 'stop-order/create', 'stop-order/cancel', 'stop-order/cancel-all', 'stop-order/replace', 'position/set-auto-add-margin', 'position/switch-isolated', 'tpsl/switch-mode', 'position/add-margin', 'position/set-leverage', 'position/trading-stop', 'position/set-risk', ], }, }, }, 'httpExceptions': { '403': RateLimitExceeded, # Forbidden -- You request too many times }, 'exceptions': { 'exact': { '-2015': AuthenticationError, # Invalid API-key, IP, or permissions for action. '10001': BadRequest, # parameter error '10002': InvalidNonce, # request expired, check your timestamp and recv_window '10003': AuthenticationError, # Invalid apikey '10004': AuthenticationError, # invalid sign '10005': PermissionDenied, # permission denied for current apikey '10006': RateLimitExceeded, # too many requests '10007': AuthenticationError, # api_key not found in your request parameters '10010': PermissionDenied, # request ip mismatch '10017': BadRequest, # request path not found or request method is invalid '10018': RateLimitExceeded, # exceed ip rate limit '20001': OrderNotFound, # Order not exists '20003': InvalidOrder, # missing parameter side '20004': InvalidOrder, # invalid parameter side '20005': InvalidOrder, # missing parameter symbol '20006': InvalidOrder, # invalid parameter symbol '20007': InvalidOrder, # missing parameter order_type '20008': InvalidOrder, # invalid parameter order_type '20009': InvalidOrder, # missing parameter qty '20010': InvalidOrder, # qty must be greater than 0 '20011': InvalidOrder, # qty must be an integer '20012': InvalidOrder, # qty must be greater than zero and less than 1 million '20013': InvalidOrder, # missing parameter price '20014': InvalidOrder, # price must be greater than 0 '20015': InvalidOrder, # missing parameter time_in_force '20016': InvalidOrder, # invalid value for parameter time_in_force '20017': InvalidOrder, # missing parameter order_id '20018': InvalidOrder, # invalid date format '20019': InvalidOrder, # missing parameter stop_px '20020': InvalidOrder, # missing parameter base_price '20021': InvalidOrder, # missing parameter stop_order_id '20022': BadRequest, # missing parameter leverage '20023': BadRequest, # leverage must be a number '20031': BadRequest, # leverage must be greater than zero '20070': BadRequest, # missing parameter margin '20071': BadRequest, # margin must be greater than zero '20084': BadRequest, # order_id or order_link_id is required '30001': BadRequest, # order_link_id is repeated '30003': InvalidOrder, # qty must be more than the minimum allowed '30004': InvalidOrder, # qty must be less than the maximum allowed '30005': InvalidOrder, # price exceeds maximum allowed '30007': InvalidOrder, # price exceeds minimum allowed '30008': InvalidOrder, # invalid order_type '30009': ExchangeError, # no position found '30010': InsufficientFunds, # insufficient wallet balance '30011': PermissionDenied, # operation not allowed as position is undergoing liquidation '30012': PermissionDenied, # operation not allowed as position is undergoing ADL '30013': PermissionDenied, # position is in liq or adl status '30014': InvalidOrder, # invalid closing order, qty should not greater than size '30015': InvalidOrder, # invalid closing order, side should be opposite '30016': ExchangeError, # TS and SL must be cancelled first while closing position '30017': InvalidOrder, # estimated fill price cannot be lower than current Buy liq_price '30018': InvalidOrder, # estimated fill price cannot be higher than current Sell liq_price '30019': InvalidOrder, # cannot attach TP/SL params for non-zero position when placing non-opening position order '30020': InvalidOrder, # position already has TP/SL params '30021': InvalidOrder, # cannot afford estimated position_margin '30022': InvalidOrder, # estimated buy liq_price cannot be higher than current mark_price '30023': InvalidOrder, # estimated sell liq_price cannot be lower than current mark_price '30024': InvalidOrder, # cannot set TP/SL/TS for zero-position '30025': InvalidOrder, # trigger price should bigger than 10% of last price '30026': InvalidOrder, # price too high '30027': InvalidOrder, # price set for Take profit should be higher than Last Traded Price '30028': InvalidOrder, # price set for Stop loss should be between Liquidation price and Last Traded Price '30029': InvalidOrder, # price set for Stop loss should be between Last Traded Price and Liquidation price '30030': InvalidOrder, # price set for Take profit should be lower than Last Traded Price '30031': InsufficientFunds, # insufficient available balance for order cost '30032': InvalidOrder, # order has been filled or cancelled '30033': RateLimitExceeded, # The number of stop orders exceeds maximum limit allowed '30034': OrderNotFound, # no order found '30035': RateLimitExceeded, # too fast to cancel '30036': ExchangeError, # the expected position value after order execution exceeds the current risk limit '30037': InvalidOrder, # order already cancelled '30041': ExchangeError, # no position found '30042': InsufficientFunds, # insufficient wallet balance '30043': InvalidOrder, # operation not allowed as position is undergoing liquidation '30044': InvalidOrder, # operation not allowed as position is undergoing AD '30045': InvalidOrder, # operation not allowed as position is not normal status '30049': InsufficientFunds, # insufficient available balance '30050': ExchangeError, # any adjustments made will trigger immediate liquidation '30051': ExchangeError, # due to risk limit, cannot adjust leverage '30052': ExchangeError, # leverage can not less than 1 '30054': ExchangeError, # position margin is invalid '30057': ExchangeError, # requested quantity of contracts exceeds risk limit '30063': ExchangeError, # reduce-only rule not satisfied '30067': InsufficientFunds, # insufficient available balance '30068': ExchangeError, # exit value must be positive '30074': InvalidOrder, # can't create the stop order, because you expect the order will be triggered when the LastPrice(or IndexPrice、 MarkPrice, determined by trigger_by) is raising to stop_px, but the LastPrice(or IndexPrice、 MarkPrice) is already equal to or greater than stop_px, please adjust base_price or stop_px '30075': InvalidOrder, # can't create the stop order, because you expect the order will be triggered when the LastPrice(or IndexPrice、 MarkPrice, determined by trigger_by) is falling to stop_px, but the LastPrice(or IndexPrice、 MarkPrice) is already equal to or less than stop_px, please adjust base_price or stop_px '33004': AuthenticationError, # apikey already expired '34026': ExchangeError, # the limit is no change }, 'broad': { 'unknown orderInfo': OrderNotFound, # {"ret_code":-1,"ret_msg":"unknown orderInfo","ext_code":"","ext_info":"","result":null,"time_now":"1584030414.005545","rate_limit_status":99,"rate_limit_reset_ms":1584030414003,"rate_limit":100} 'invalid api_key': AuthenticationError, # {"ret_code":10003,"ret_msg":"invalid api_key","ext_code":"","ext_info":"","result":null,"time_now":"1599547085.415797"} }, }, 'precisionMode': TICK_SIZE, 'options': { 'marketTypes': { 'BTC/USDT': 'linear', 'ETH/USDT': 'linear', 'BNB/USDT': 'linear', 'ADA/USDT': 'linear', 'DOGE/USDT': 'linear', 'XRP/USDT': 'linear', 'DOT/USDT': 'linear', 'UNI/USDT': 'linear', 'BCH/USDT': 'linear', 'LTC/USDT': 'linear', 'SOL/USDT': 'linear', 'LINK/USDT': 'linear', 'MATIC/USDT': 'linear', 'ETC/USDT': 'linear', 'FIL/USDT': 'linear', 'EOS/USDT': 'linear', 'AAVE/USDT': 'linear', 'XTZ/USDT': 'linear', 'SUSHI/USDT': 'linear', 'XEM/USDT': 'linear', 'BTC/USD': 'inverse', 'ETH/USD': 'inverse', 'EOS/USD': 'inverse', 'XRP/USD': 'inverse', }, 'defaultType': 'linear', # linear, inverse, futures 'code': 'BTC', 'cancelAllOrders': { # 'method': 'v2PrivatePostOrderCancelAll', # v2PrivatePostStopOrderCancelAll }, 'recvWindow': 5 * 1000, # 5 sec default 'timeDifference': 0, # the difference between system clock and exchange server clock 'adjustForTimeDifference': False, # controls the adjustment logic upon instantiation }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'taker': 0.00075, 'maker': -0.00025, }, 'funding': { 'tierBased': False, 'percentage': False, 'withdraw': {}, 'deposit': {}, }, }, }) def nonce(self): return self.milliseconds() - self.options['timeDifference'] def load_time_difference(self, params={}): serverTime = self.fetch_time(params) after = self.milliseconds() self.options['timeDifference'] = after - serverTime return self.options['timeDifference'] def fetch_time(self, params={}): response = self.v2PublicGetTime(params) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: {}, # time_now: '1583933682.448826' # } # return self.safe_timestamp(response, 'time_now') def fetch_markets(self, params={}): if self.options['adjustForTimeDifference']: self.load_time_difference() response = self.v2PublicGetSymbols(params) # # { # "ret_code":0, # "ret_msg":"OK", # "ext_code":"", # "ext_info":"", # "result":[ # { # "name":"BTCUSD", # "alias":"BTCUSD", # "status":"Trading", # "base_currency":"BTC", # "quote_currency":"USD", # "price_scale":2, # "taker_fee":"0.00075", # "maker_fee":"-0.00025", # "leverage_filter":{"min_leverage":1,"max_leverage":100,"leverage_step":"0.01"}, # "price_filter":{"min_price":"0.5","max_price":"999999.5","tick_size":"0.5"}, # "lot_size_filter":{"max_trading_qty":1000000,"min_trading_qty":1,"qty_step":1} # }, # { # "name":"BTCUSDT", # "alias":"BTCUSDT", # "status":"Trading", # "base_currency":"BTC", # "quote_currency":"USDT", # "price_scale":2, # "taker_fee":"0.00075", # "maker_fee":"-0.00025", # "leverage_filter":{"min_leverage":1,"max_leverage":100,"leverage_step":"0.01"}, # "price_filter":{"min_price":"0.5","max_price":"999999.5","tick_size":"0.5"}, # "lot_size_filter":{"max_trading_qty":100,"min_trading_qty":0.001,"qty_step":0.001} # }, # ], # "time_now":"1610539664.818033" # } # markets = self.safe_value(response, 'result', []) options = self.safe_value(self.options, 'fetchMarkets', {}) linearQuoteCurrencies = self.safe_value(options, 'linear', {'USDT': True}) result = [] for i in range(0, len(markets)): market = markets[i] id = self.safe_string_2(market, 'name', 'symbol') baseId = self.safe_string(market, 'base_currency') quoteId = self.safe_string(market, 'quote_currency') base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) linear = (quote in linearQuoteCurrencies) inverse = not linear symbol = base + '/' + quote baseQuote = base + quote type = 'swap' if baseQuote != id: symbol = id type = 'futures' lotSizeFilter = self.safe_value(market, 'lot_size_filter', {}) priceFilter = self.safe_value(market, 'price_filter', {}) precision = { 'amount': self.safe_number(lotSizeFilter, 'qty_step'), 'price': self.safe_number(priceFilter, 'tick_size'), } leverage = self.safe_value(market, 'leverage_filter', {}) status = self.safe_string(market, 'status') active = None if status is not None: active = (status == 'Trading') spot = (type == 'spot') swap = (type == 'swap') futures = (type == 'futures') option = (type == 'option') result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'active': active, 'precision': precision, 'taker': self.safe_number(market, 'taker_fee'), 'maker': self.safe_number(market, 'maker_fee'), 'type': type, 'spot': spot, 'swap': swap, 'futures': futures, 'option': option, 'linear': linear, 'inverse': inverse, 'limits': { 'amount': { 'min': self.safe_number(lotSizeFilter, 'min_trading_qty'), 'max': self.safe_number(lotSizeFilter, 'max_trading_qty'), }, 'price': { 'min': self.safe_number(priceFilter, 'min_price'), 'max': self.safe_number(priceFilter, 'max_price'), }, 'cost': { 'min': None, 'max': None, }, 'leverage': { 'max': self.safe_number(leverage, 'max_leverage', 1), }, }, 'info': market, }) return result def parse_ticker(self, ticker, market=None): # # fetchTicker # # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # timestamp = None marketId = self.safe_string(ticker, 'symbol') symbol = self.safe_symbol(marketId, market) last = self.safe_number(ticker, 'last_price') open = self.safe_number(ticker, 'prev_price_24h') percentage = self.safe_number(ticker, 'price_24h_pcnt') if percentage is not None: percentage *= 100 change = None average = None if (last is not None) and (open is not None): change = last - open average = self.sum(open, last) / 2 baseVolume = self.safe_number(ticker, 'turnover_24h') quoteVolume = self.safe_number(ticker, 'volume_24h') vwap = self.vwap(baseVolume, quoteVolume) return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'high_price_24h'), 'low': self.safe_number(ticker, 'low_price_24h'), 'bid': self.safe_number(ticker, 'bid_price'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'ask_price'), 'askVolume': None, 'vwap': vwap, 'open': open, 'close': last, 'last': last, 'previousClose': None, 'change': change, 'percentage': percentage, 'average': average, 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } def fetch_ticker(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.v2PublicGetTickers(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # ], # time_now: '1583948195.818255' # } # result = self.safe_value(response, 'result', []) first = self.safe_value(result, 0) timestamp = self.safe_timestamp(response, 'time_now') ticker = self.parse_ticker(first, market) ticker['timestamp'] = timestamp ticker['datetime'] = self.iso8601(timestamp) return ticker def fetch_tickers(self, symbols=None, params={}): self.load_markets() response = self.v2PublicGetTickers(params) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # bid_price: '7680', # ask_price: '7680.5', # last_price: '7680.00', # last_tick_direction: 'MinusTick', # prev_price_24h: '7870.50', # price_24h_pcnt: '-0.024204', # high_price_24h: '8035.00', # low_price_24h: '7671.00', # prev_price_1h: '7780.00', # price_1h_pcnt: '-0.012853', # mark_price: '7683.27', # index_price: '7682.74', # open_interest: 188829147, # open_value: '23670.06', # total_turnover: '25744224.90', # turnover_24h: '102997.83', # total_volume: 225448878806, # volume_24h: 809919408, # funding_rate: '0.0001', # predicted_funding_rate: '0.0001', # next_funding_time: '2020-03-12T00:00:00Z', # countdown_hour: 7 # } # ], # time_now: '1583948195.818255' # } # result = self.safe_value(response, 'result', []) tickers = {} for i in range(0, len(result)): ticker = self.parse_ticker(result[i]) symbol = ticker['symbol'] tickers[symbol] = ticker return self.filter_by_array(tickers, 'symbol', symbols) def parse_ohlcv(self, ohlcv, market=None): # # inverse perpetual BTC/USD # # { # symbol: 'BTCUSD', # interval: '1', # open_time: 1583952540, # open: '7760.5', # high: '7764', # low: '7757', # close: '7763.5', # volume: '1259766', # turnover: '162.32773718999994' # } # # linear perpetual BTC/USDT # # { # "id":143536, # "symbol":"BTCUSDT", # "period":"15", # "start_at":1587883500, # "volume":1.035, # "open":7540.5, # "high":7541, # "low":7540.5, # "close":7541 # } # return [ self.safe_timestamp_2(ohlcv, 'open_time', 'start_at'), self.safe_number(ohlcv, 'open'), self.safe_number(ohlcv, 'high'), self.safe_number(ohlcv, 'low'), self.safe_number(ohlcv, 'close'), self.safe_number_2(ohlcv, 'turnover', 'volume'), ] def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) price = self.safe_string(params, 'price') params = self.omit(params, 'price') request = { 'symbol': market['id'], 'interval': self.timeframes[timeframe], } duration = self.parse_timeframe(timeframe) now = self.seconds() if since is None: if limit is None: raise ArgumentsRequired(self.id + ' fetchOHLCV() requires a since argument or a limit argument') else: request['from'] = now - limit * duration else: request['from'] = int(since / 1000) if limit is not None: request['limit'] = limit # max 200, default 200 method = 'v2PublicGetKlineList' if price == 'mark': method = 'v2PublicGetMarkPriceKline' elif price == 'index': method = 'v2PublicGetIndexPriceKline' elif price == 'premiumIndex': method = 'v2PublicGetPremiumIndexKline' elif market['linear']: method = 'publicLinearGetKline' response = getattr(self, method)(self.extend(request, params)) # # inverse perpetual BTC/USD # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # symbol: 'BTCUSD', # interval: '1', # open_time: 1583952540, # open: '7760.5', # high: '7764', # low: '7757', # close: '7763.5', # volume: '1259766', # turnover: '162.32773718999994' # }, # ], # time_now: '1583953082.397330' # } # # linear perpetual BTC/USDT # # { # "ret_code":0, # "ret_msg":"OK", # "ext_code":"", # "ext_info":"", # "result":[ # { # "id":143536, # "symbol":"BTCUSDT", # "period":"15", # "start_at":1587883500, # "volume":1.035, # "open":7540.5, # "high":7541, # "low":7540.5, # "close":7541 # } # ], # "time_now":"1587884120.168077" # } # result = self.safe_value(response, 'result', {}) return self.parse_ohlcvs(result, market, timeframe, since, limit) def fetch_funding_rate(self, symbol, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } method = 'v2PublicGetFundingPrevFundingRate' response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "symbol": "BTCUSD", # "funding_rate": "0.00010000", # "funding_rate_timestamp": 1577433600 # }, # "ext_info": null, # "time_now": "1577445586.446797", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577445586454, # "rate_limit": 120 # } # result = self.safe_value(response, 'result') nextFundingRate = self.safe_number(result, 'funding_rate') previousFundingTime = self.safe_integer(result, 'funding_rate_timestamp') * 1000 nextFundingTime = previousFundingTime + (8 * 3600000) currentTime = self.milliseconds() return { 'info': result, 'symbol': symbol, 'markPrice': None, 'indexPrice': None, 'interestRate': None, 'estimatedSettlePrice': None, 'timestamp': currentTime, 'datetime': self.iso8601(currentTime), 'previousFundingRate': None, 'nextFundingRate': nextFundingRate, 'previousFundingTimestamp': previousFundingTime, 'nextFundingTimestamp': nextFundingTime, 'previousFundingDatetime': self.iso8601(previousFundingTime), 'nextFundingDatetime': self.iso8601(nextFundingTime), } def fetch_index_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): if since is None and limit is None: raise ArgumentsRequired(self.id + ' fetchIndexOHLCV() requires a since argument or a limit argument') request = { 'price': 'index', } return self.fetch_ohlcv(symbol, timeframe, since, limit, self.extend(request, params)) def fetch_mark_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): if since is None and limit is None: raise ArgumentsRequired(self.id + ' fetchMarkOHLCV() requires a since argument or a limit argument') request = { 'price': 'mark', } return self.fetch_ohlcv(symbol, timeframe, since, limit, self.extend(request, params)) def fetch_premium_index_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): if since is None and limit is None: raise ArgumentsRequired(self.id + ' fetchPremiumIndexOHLCV() requires a since argument or a limit argument') request = { 'price': 'premiumIndex', } return self.fetch_ohlcv(symbol, timeframe, since, limit, self.extend(request, params)) def parse_trade(self, trade, market=None): # # fetchTrades(public) # # { # id: 43785688, # symbol: 'BTCUSD', # price: 7786, # qty: 67, # side: 'Sell', # time: '2020-03-11T19:18:30.123Z' # } # # fetchMyTrades, fetchOrderTrades(private) # # { # "closed_size": 0, # "cross_seq": 277136382, # "exec_fee": "0.0000001", # "exec_id": "256e5ef8-abfe-5772-971b-f944e15e0d68", # "exec_price": "8178.5", # "exec_qty": 1, # # the docs say the exec_time field is "abandoned" now # # the user should use "trade_time_ms" # "exec_time": "1571676941.70682", # "exec_type": "Trade", #Exec Type Enum # "exec_value": "0.00012227", # "fee_rate": "0.00075", # "last_liquidity_ind": "RemovedLiquidity", #Liquidity Enum # "leaves_qty": 0, # "nth_fill": 2, # "order_id": "7ad50cb1-9ad0-4f74-804b-d82a516e1029", # "order_link_id": "", # "order_price": "8178", # "order_qty": 1, # "order_type": "Market", #Order Type Enum # "side": "Buy", #Side Enum # "symbol": "BTCUSD", #Symbol Enum # "user_id": 1, # "trade_time_ms": 1577480599000 # } # id = self.safe_string_2(trade, 'id', 'exec_id') marketId = self.safe_string(trade, 'symbol') market = self.safe_market(marketId, market) symbol = market['symbol'] amountString = self.safe_string_2(trade, 'qty', 'exec_qty') priceString = self.safe_string_2(trade, 'exec_price', 'price') cost = self.safe_number(trade, 'exec_value') amount = self.parse_number(amountString) price = self.parse_number(priceString) if cost is None: cost = self.parse_number(Precise.string_mul(priceString, amountString)) timestamp = self.parse8601(self.safe_string(trade, 'time')) if timestamp is None: timestamp = self.safe_integer(trade, 'trade_time_ms') side = self.safe_string_lower(trade, 'side') lastLiquidityInd = self.safe_string(trade, 'last_liquidity_ind') takerOrMaker = 'maker' if (lastLiquidityInd == 'AddedLiquidity') else 'taker' feeCost = self.safe_number(trade, 'exec_fee') fee = None if feeCost is not None: feeCurrencyCode = market['base'] if market['inverse'] else market['quote'] fee = { 'cost': feeCost, 'currency': feeCurrencyCode, 'rate': self.safe_number(trade, 'fee_rate'), } return { 'id': id, 'info': trade, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'order': self.safe_string(trade, 'order_id'), 'type': self.safe_string_lower(trade, 'order_type'), 'side': side, 'takerOrMaker': takerOrMaker, 'price': price, 'amount': amount, 'cost': cost, 'fee': fee, } def fetch_trades(self, symbol, since=None, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'from': 123, # from id } if limit is not None: request['count'] = limit # default 500, max 1000 method = 'publicLinearGetRecentTradingRecords' if market['linear'] else 'v2PublicGetTradingRecords' response = getattr(self, method)(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # { # id: 43785688, # symbol: 'BTCUSD', # price: 7786, # qty: 67, # side: 'Sell', # time: '2020-03-11T19:18:30.123Z' # }, # ], # time_now: '1583954313.393362' # } # result = self.safe_value(response, 'result', {}) return self.parse_trades(result, market, since, limit) def parse_order_book(self, orderbook, symbol, timestamp=None, bidsKey='Buy', asksKey='Sell', priceKey='price', amountKey='size'): bids = [] asks = [] for i in range(0, len(orderbook)): bidask = orderbook[i] side = self.safe_string(bidask, 'side') if side == 'Buy': bids.append(self.parse_bid_ask(bidask, priceKey, amountKey)) elif side == 'Sell': asks.append(self.parse_bid_ask(bidask, priceKey, amountKey)) else: raise ExchangeError(self.id + ' parseOrderBook encountered an unrecognized bidask format: ' + self.json(bidask)) return { 'symbol': symbol, 'bids': self.sort_by(bids, 0, True), 'asks': self.sort_by(asks, 0), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'nonce': None, } def fetch_order_book(self, symbol, limit=None, params={}): self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } response = self.v2PublicGetOrderBookL2(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [ # {symbol: 'BTCUSD', price: '7767.5', size: 677956, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7767', size: 580690, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7766.5', size: 475252, side: 'Buy'}, # {symbol: 'BTCUSD', price: '7768', size: 330847, side: 'Sell'}, # {symbol: 'BTCUSD', price: '7768.5', size: 97159, side: 'Sell'}, # {symbol: 'BTCUSD', price: '7769', size: 6508, side: 'Sell'}, # ], # time_now: '1583954829.874823' # } # result = self.safe_value(response, 'result', []) timestamp = self.safe_timestamp(response, 'time_now') return self.parse_order_book(result, symbol, timestamp, 'Buy', 'Sell', 'price', 'size') def fetch_balance(self, params={}): self.load_markets() request = {} coin = self.safe_string(params, 'coin') code = self.safe_string(params, 'code') if coin is not None: request['coin'] = coin elif code is not None: currency = self.currency(code) request['coin'] = currency['id'] response = self.v2PrivateGetWalletBalance(self.extend(request, params)) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: { # BTC: { # equity: 0, # available_balance: 0, # used_margin: 0, # order_margin: 0, # position_margin: 0, # occ_closing_fee: 0, # occ_funding_fee: 0, # wallet_balance: 0, # realised_pnl: 0, # unrealised_pnl: 0, # cum_realised_pnl: 0, # given_cash: 0, # service_cash: 0 # } # }, # time_now: '1583937810.370020', # rate_limit_status: 119, # rate_limit_reset_ms: 1583937810367, # rate_limit: 120 # } # result = { 'info': response, } balances = self.safe_value(response, 'result', {}) currencyIds = list(balances.keys()) for i in range(0, len(currencyIds)): currencyId = currencyIds[i] balance = balances[currencyId] code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_string(balance, 'available_balance') account['used'] = self.safe_string(balance, 'used_margin') account['total'] = self.safe_string(balance, 'equity') result[code] = account return self.parse_balance(result) def parse_order_status(self, status): statuses = { # basic orders 'Created': 'open', 'Rejected': 'rejected', # order is triggered but failed upon being placed 'New': 'open', 'PartiallyFilled': 'open', 'Filled': 'closed', 'Cancelled': 'canceled', 'PendingCancel': 'canceling', # the engine has received the cancellation but there is no guarantee that it will be successful # conditional orders 'Active': 'open', # order is triggered and placed successfully 'Untriggered': 'open', # order waits to be triggered 'Triggered': 'closed', # order is triggered # 'Cancelled': 'canceled', # order is cancelled # 'Rejected': 'rejected', # order is triggered but fail to be placed 'Deactivated': 'canceled', # conditional order was cancelled before triggering } return self.safe_string(statuses, status, status) def parse_time_in_force(self, timeInForce): timeInForces = { 'GoodTillCancel': 'GTC', 'ImmediateOrCancel': 'IOC', 'FillOrKill': 'FOK', 'PostOnly': 'PO', } return self.safe_string(timeInForces, timeInForce, timeInForce) def parse_order(self, order, market=None): # # createOrder # # { # "user_id": 1, # "order_id": "335fd977-e5a5-4781-b6d0-c772d5bfb95b", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8800, # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Created", # "last_exec_time": 0, # "last_exec_price": 0, # "leaves_qty": 1, # "cum_exec_qty": 0, # in contracts, where 1 contract = 1 quote currency unit(USD for inverse contracts) # "cum_exec_value": 0, # in contract's underlying currency(BTC for inverse contracts) # "cum_exec_fee": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-11-30T11:03:43.452Z", # "updated_at": "2019-11-30T11:03:43.455Z" # } # # fetchOrder # # { # "user_id" : 599946, # "symbol" : "BTCUSD", # "side" : "Buy", # "order_type" : "Limit", # "price" : "7948", # "qty" : 10, # "time_in_force" : "GoodTillCancel", # "order_status" : "Filled", # "ext_fields" : { # "o_req_num" : -1600687220498, # "xreq_type" : "x_create" # }, # "last_exec_time" : "1588150113.968422", # "last_exec_price" : "7948", # "leaves_qty" : 0, # "leaves_value" : "0", # "cum_exec_qty" : 10, # "cum_exec_value" : "0.00125817", # "cum_exec_fee" : "-0.00000031", # "reject_reason" : "", # "cancel_type" : "", # "order_link_id" : "", # "created_at" : "2020-04-29T08:45:24.399146Z", # "updated_at" : "2020-04-29T08:48:33.968422Z", # "order_id" : "dd2504b9-0157-406a-99e1-efa522373944" # } # # conditional order # # { # "user_id":##, # "symbol":"BTCUSD", # "side":"Buy", # "order_type":"Market", # "price":0, # "qty":10, # "time_in_force":"GoodTillCancel", # "stop_order_type":"Stop", # "trigger_by":"LastPrice", # "base_price":11833, # "order_status":"Untriggered", # "ext_fields":{ # "stop_order_type":"Stop", # "trigger_by":"LastPrice", # "base_price":11833, # "expected_direction":"Rising", # "trigger_price":12400, # "close_on_trigger":true, # "op_from":"api", # "remark":"x.x.x.x", # "o_req_num":0 # }, # "leaves_qty":10, # "leaves_value":0.00080645, # "reject_reason":null, # "cross_seq":-1, # "created_at":"2020-08-21T09:18:48.000Z", # "updated_at":"2020-08-21T09:18:48.000Z", # "trigger_price":12400, # "stop_order_id":"3f3b54b1-3379-42c7-8510-44f4d9915be0" # } # marketId = self.safe_string(order, 'symbol') market = self.safe_market(marketId, market) symbol = market['symbol'] feeCurrency = None timestamp = self.parse8601(self.safe_string(order, 'created_at')) id = self.safe_string_2(order, 'order_id', 'stop_order_id') type = self.safe_string_lower(order, 'order_type') price = self.safe_string(order, 'price') average = self.safe_string(order, 'average_price') amount = self.safe_string(order, 'qty') cost = self.safe_string(order, 'cum_exec_value') filled = self.safe_string(order, 'cum_exec_qty') remaining = self.safe_string(order, 'leaves_qty') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol) if market is not None: if marketType == 'linear': feeCurrency = market['quote'] else: feeCurrency = market['base'] lastTradeTimestamp = self.safe_timestamp(order, 'last_exec_time') if lastTradeTimestamp == 0: lastTradeTimestamp = None status = self.parse_order_status(self.safe_string_2(order, 'order_status', 'stop_order_status')) side = self.safe_string_lower(order, 'side') feeCostString = self.safe_string(order, 'cum_exec_fee') feeCost = self.parse_number(Precise.string_abs(feeCostString)) fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': feeCurrency, } clientOrderId = self.safe_string(order, 'order_link_id') if (clientOrderId is not None) and (len(clientOrderId) < 1): clientOrderId = None timeInForce = self.parse_time_in_force(self.safe_string(order, 'time_in_force')) stopPrice = self.safe_number_2(order, 'trigger_price', 'stop_px') postOnly = (timeInForce == 'PO') return self.safe_order2({ 'info': order, 'id': id, 'clientOrderId': clientOrderId, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': lastTradeTimestamp, 'symbol': symbol, 'type': type, 'timeInForce': timeInForce, 'postOnly': postOnly, 'side': side, 'price': price, 'stopPrice': stopPrice, 'amount': amount, 'cost': cost, 'average': average, 'filled': filled, 'remaining': remaining, 'status': status, 'fee': fee, 'trades': None, }, market) def fetch_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' fetchOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'order_link_id': 'string', # one of order_id, stop_order_id or order_link_id is required # regular orders --------------------------------------------- # 'order_id': id, # one of order_id or order_link_id is required for regular orders # conditional orders --------------------------------------------- # 'stop_order_id': id, # one of stop_order_id or order_link_id is required for conditional orders } method = None if market['swap']: if market['linear']: method = 'privateLinearGetOrderSearch' elif market['inverse']: method = 'v2PrivateGetOrder' elif market['futures']: method = 'futuresPrivateGetOrder' stopOrderId = self.safe_string(params, 'stop_order_id') if stopOrderId is None: orderLinkId = self.safe_string(params, 'order_link_id') if orderLinkId is None: request['order_id'] = id else: if market['swap']: if market['linear']: method = 'privateLinearGetStopOrderSearch' elif market['inverse']: method = 'v2PrivateGetStopOrder' elif market['futures']: method = 'futuresPrivateGetStopOrder' response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Sell", # "order_type": "Limit", # "price": "8083", # "qty": 10, # "time_in_force": "GoodTillCancel", # "order_status": "New", # "ext_fields": {"o_req_num": -308787, "xreq_type": "x_create", "xreq_offset": 4154640}, # "leaves_qty": 10, # "leaves_value": "0.00123716", # "cum_exec_qty": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-10-21T07:28:19.396246Z", # "updated_at": "2019-10-21T07:28:19.396246Z", # "order_id": "efa44157-c355-4a98-b6d6-1d846a936b93" # }, # "time_now": "1571651135.291930", # "rate_limit_status": 99, # The remaining number of accesses in one minute # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": "8000", # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Untriggered", # "ext_fields": {}, # "leaves_qty": 1, # "leaves_value": "0.00013333", # "cum_exec_qty": 0, # "cum_exec_value": null, # "cum_exec_fee": null, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-12-27T19:56:24.052194Z", # "updated_at": "2019-12-27T19:56:24.052194Z", # "order_id": "378a1bbc-a93a-4e75-87f4-502ea754ba36" # }, # "time_now": "1577476584.386958", # "rate_limit_status": 99, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def create_order(self, symbol, type, side, amount, price=None, params={}): self.load_markets() market = self.market(symbol) qty = self.amount_to_precision(symbol, amount) if market['inverse']: qty = int(qty) else: qty = float(qty) request = { # orders --------------------------------------------------------- 'side': self.capitalize(side), 'symbol': market['id'], 'order_type': self.capitalize(type), 'qty': qty, # order quantity in USD, integer only # 'price': float(self.price_to_precision(symbol, price)), # required for limit orders 'time_in_force': 'GoodTillCancel', # ImmediateOrCancel, FillOrKill, PostOnly # 'take_profit': 123.45, # take profit price, only take effect upon opening the position # 'stop_loss': 123.45, # stop loss price, only take effect upon opening the position # 'reduce_only': False, # reduce only, required for linear orders # when creating a closing order, bybit recommends a True value for # close_on_trigger to avoid failing due to insufficient available margin # 'close_on_trigger': False, required for linear orders # 'order_link_id': 'string', # unique client order id, max 36 characters # conditional orders --------------------------------------------- # base_price is used to compare with the value of stop_px, to decide # whether your conditional order will be triggered by crossing trigger # price from upper side or lower side, mainly used to identify the # expected direction of the current conditional order # 'base_price': 123.45, # required for conditional orders # 'stop_px': 123.45, # trigger price, required for conditional orders # 'trigger_by': 'LastPrice', # IndexPrice, MarkPrice } priceIsRequired = False if type == 'limit': priceIsRequired = True if priceIsRequired: if price is not None: request['price'] = float(self.price_to_precision(symbol, price)) else: raise ArgumentsRequired(self.id + ' createOrder() requires a price argument for a ' + type + ' order') clientOrderId = self.safe_string_2(params, 'order_link_id', 'clientOrderId') if clientOrderId is not None: request['order_link_id'] = clientOrderId params = self.omit(params, ['order_link_id', 'clientOrderId']) stopPx = self.safe_value_2(params, 'stop_px', 'stopPrice') basePrice = self.safe_value(params, 'base_price') method = None if market['swap']: if market['linear']: method = 'privateLinearPostOrderCreate' request['reduce_only'] = False request['close_on_trigger'] = False elif market['inverse']: method = 'v2PrivatePostOrderCreate' elif market['futures']: method = 'futuresPrivatePostOrderCreate' if stopPx is not None: if basePrice is None: raise ArgumentsRequired(self.id + ' createOrder() requires both the stop_px and base_price params for a conditional ' + type + ' order') else: if market['swap']: if market['linear']: method = 'privateLinearPostStopOrderCreate' elif market['inverse']: method = 'v2PrivatePostStopOrderCreate' elif market['futures']: method = 'futuresPrivatePostStopOrderCreate' request['stop_px'] = float(self.price_to_precision(symbol, stopPx)) request['base_price'] = float(self.price_to_precision(symbol, basePrice)) params = self.omit(params, ['stop_px', 'stopPrice', 'base_price']) elif basePrice is not None: raise ArgumentsRequired(self.id + ' createOrder() requires both the stop_px and base_price params for a conditional ' + type + ' order') response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "user_id": 1, # "order_id": "335fd977-e5a5-4781-b6d0-c772d5bfb95b", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8800, # "qty": 1, # "time_in_force": "GoodTillCancel", # "order_status": "Created", # "last_exec_time": 0, # "last_exec_price": 0, # "leaves_qty": 1, # "cum_exec_qty": 0, # "cum_exec_value": 0, # "cum_exec_fee": 0, # "reject_reason": "", # "order_link_id": "", # "created_at": "2019-11-30T11:03:43.452Z", # "updated_at": "2019-11-30T11:03:43.455Z" # }, # "time_now": "1575111823.458705", # "rate_limit_status": 98, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8000, # "qty": 1, # "time_in_force": "GoodTillCancel", # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "order_status": "Untriggered", # "ext_fields": { # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "expected_direction": "Rising", # "trigger_price": 7500, # "op_from": "api", # "remark": "127.0.01", # "o_req_num": 0 # }, # "leaves_qty": 1, # "leaves_value": 0.00013333, # "reject_reason": null, # "cross_seq": -1, # "created_at": "2019-12-27T12:48:24.000Z", # "updated_at": "2019-12-27T12:48:24.000Z", # "stop_px": 7500, # "stop_order_id": "a85cd1c0-a9a4-49d3-a1bd-bab5ebe946d5" # }, # "ext_info": null, # "time_now": "1577450904.327654", # "rate_limit_status": 99, # "rate_limit_reset_ms": 1577450904335, # "rate_limit": "100" # } # result = self.safe_value(response, 'result') return self.parse_order(result, market) def edit_order(self, id, symbol, type, side, amount=None, price=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' editOrder() requires an symbol argument') self.load_markets() market = self.market(symbol) request = { # 'order_id': id, # only for non-conditional orders 'symbol': market['id'], # 'p_r_qty': self.amount_to_precision(symbol, amount), # new order quantity, optional # 'p_r_price' self.priceToprecision(symbol, price), # new order price, optional # ---------------------------------------------------------------- # conditional orders # 'stop_order_id': id, # only for conditional orders # 'p_r_trigger_price': 123.45, # new trigger price also known as stop_px } method = None if market['swap']: if market['linear']: method = 'privateLinearPostOrderReplace' elif market['inverse']: method = 'v2PrivatePostOrderReplace' elif market['futures']: method = 'futuresPrivatePostOrderReplace' stopOrderId = self.safe_string(params, 'stop_order_id') if stopOrderId is not None: if market['swap']: if market['linear']: method = 'privateLinearPostStopOrderReplace' elif market['inverse']: method = 'v2PrivatePostStopOrderReplace' elif market['futures']: method = 'futuresPrivatePostStopOrderReplace' request['stop_order_id'] = stopOrderId params = self.omit(params, ['stop_order_id']) else: request['order_id'] = id if amount is not None: qty = self.amount_to_precision(symbol, amount) if market['inverse']: qty = int(qty) else: qty = float(qty) request['p_r_qty'] = qty if price is not None: request['p_r_price'] = float(self.price_to_precision(symbol, price)) response = getattr(self, method)(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": {"order_id": "efa44157-c355-4a98-b6d6-1d846a936b93"}, # "time_now": "1539778407.210858", # "rate_limit_status": 99, # remaining number of accesses in one minute # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": {"stop_order_id": "378a1bbc-a93a-4e75-87f4-502ea754ba36"}, # "ext_info": null, # "time_now": "1577475760.604942", # "rate_limit_status": 96, # "rate_limit_reset_ms": 1577475760612, # "rate_limit": "100" # } # result = self.safe_value(response, 'result', {}) return { 'info': response, 'id': self.safe_string_2(result, 'order_id', 'stop_order_id'), 'order_id': self.safe_string(result, 'order_id'), 'stop_order_id': self.safe_string(result, 'stop_order_id'), } def cancel_order(self, id, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelOrder() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], # 'order_link_id': 'string', # one of order_id, stop_order_id or order_link_id is required # regular orders --------------------------------------------- # 'order_id': id, # one of order_id or order_link_id is required for regular orders # conditional orders --------------------------------------------- # 'stop_order_id': id, # one of stop_order_id or order_link_id is required for conditional orders } method = None if market['swap']: if market['linear']: method = 'privateLinearPostOrderCancel' elif market['inverse']: method = 'v2PrivatePostOrderCancel' elif market['futures']: method = 'futuresPrivatePostOrderCancel' stopOrderId = self.safe_string(params, 'stop_order_id') if stopOrderId is None: orderLinkId = self.safe_string(params, 'order_link_id') if orderLinkId is None: request['order_id'] = id else: if market['swap']: if market['linear']: method = 'privateLinearPostStopOrderCancel' elif market['inverse']: method = 'v2PrivatePostStopOrderCancel' elif market['futures']: method = 'futuresPrivatePostStopOrderCancel' response = getattr(self, method)(self.extend(request, params)) result = self.safe_value(response, 'result', {}) return self.parse_order(result, market) def cancel_all_orders(self, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' cancelAllOrders() requires a symbol argument') self.load_markets() market = self.market(symbol) request = { 'symbol': market['id'], } options = self.safe_value(self.options, 'cancelAllOrders', {}) defaultMethod = None if market['swap']: if market['linear']: defaultMethod = 'privateLinearPostOrderCancelAll' elif market['inverse']: defaultMethod = 'v2PrivatePostOrderCancelAll' elif market['futures']: defaultMethod = 'futuresPrivatePostOrderCancelAll' method = self.safe_string(options, 'method', defaultMethod) response = getattr(self, method)(self.extend(request, params)) result = self.safe_value(response, 'result', []) return self.parse_orders(result, market) def fetch_orders(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'order_id': 'string' # 'order_link_id': 'string', # unique client order id, max 36 characters # 'symbol': market['id'], # default BTCUSD # 'order': 'desc', # asc # 'page': 1, # 'limit': 20, # max 50 # 'order_status': 'Created,New' # conditional orders --------------------------------------------- # 'stop_order_id': 'string', # 'stop_order_status': 'Untriggered', } market = None if symbol is not None: market = self.market(symbol) request['symbol'] = market['id'] if limit is not None: request['limit'] = limit options = self.safe_value(self.options, 'fetchOrders', {}) defaultType = self.safe_string(self.options, 'defaultType', 'linear') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol, defaultType) defaultMethod = None marketDefined = (market is not None) linear = (marketDefined and market['linear']) or (marketType == 'linear') inverse = (marketDefined and market['swap'] and market['inverse']) or (marketType == 'inverse') futures = (marketDefined and market['futures']) or (marketType == 'futures') if linear: defaultMethod = 'privateLinearGetOrderList' elif inverse: defaultMethod = 'v2PrivateGetOrderList' elif futures: defaultMethod = 'futuresPrivateGetOrderList' query = params if ('stop_order_id' in params) or ('stop_order_status' in params): stopOrderStatus = self.safe_value(params, 'stop_order_status') if stopOrderStatus is not None: if isinstance(stopOrderStatus, list): stopOrderStatus = ','.join(stopOrderStatus) request['stop_order_status'] = stopOrderStatus query = self.omit(params, 'stop_order_status') if linear: defaultMethod = 'privateLinearGetStopOrderList' elif inverse: defaultMethod = 'v2PrivateGetStopOrderList' elif futures: defaultMethod = 'futuresPrivateGetStopOrderList' method = self.safe_string(options, 'method', defaultMethod) response = getattr(self, method)(self.extend(request, query)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "current_page": 1, # "last_page": 6, # "data": [ # { # "user_id": 1, # "symbol": "BTCUSD", # "side": "Sell", # "order_type": "Market", # "price": 7074, # "qty": 2, # "time_in_force": "ImmediateOrCancel", # "order_status": "Filled", # "ext_fields": { # "close_on_trigger": True, # "orig_order_type": "BLimit", # "prior_x_req_price": 5898.5, # "op_from": "pc", # "remark": "127.0.0.1", # "o_req_num": -34799032763, # "xreq_type": "x_create" # }, # "last_exec_time": "1577448481.696421", # "last_exec_price": 7070.5, # "leaves_qty": 0, # "leaves_value": 0, # "cum_exec_qty": 2, # "cum_exec_value": 0.00028283, # "cum_exec_fee": 0.00002, # "reject_reason": "NoError", # "order_link_id": "", # "created_at": "2019-12-27T12:08:01.000Z", # "updated_at": "2019-12-27T12:08:01.000Z", # "order_id": "f185806b-b801-40ff-adec-52289370ed62" # } # ] # }, # "ext_info": null, # "time_now": "1577448922.437871", # "rate_limit_status": 98, # "rate_limit_reset_ms": 1580885703683, # "rate_limit": 100 # } # # conditional orders # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "current_page": 1, # "last_page": 1, # "data": [ # { # "user_id": 1, # "stop_order_status": "Untriggered", # "symbol": "BTCUSD", # "side": "Buy", # "order_type": "Limit", # "price": 8000, # "qty": 1, # "time_in_force": "GoodTillCancel", # "stop_order_type": "Stop", # "trigger_by": "LastPrice", # "base_price": 7000, # "order_link_id": "", # "created_at": "2019-12-27T12:48:24.000Z", # "updated_at": "2019-12-27T12:48:24.000Z", # "stop_px": 7500, # "stop_order_id": "a85cd1c0-a9a4-49d3-a1bd-bab5ebe946d5" # }, # ] # }, # "ext_info": null, # "time_now": "1577451658.755468", # "rate_limit_status": 599, # "rate_limit_reset_ms": 1577451658762, # "rate_limit": 600 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_orders(data, market, since, limit) def fetch_closed_orders(self, symbol=None, since=None, limit=None, params={}): defaultStatuses = [ 'Rejected', 'Filled', 'Cancelled', # conditional orders # 'Active', # 'Triggered', # 'Cancelled', # 'Rejected', # 'Deactivated', ] options = self.safe_value(self.options, 'fetchClosedOrders', {}) status = self.safe_value(options, 'order_status', defaultStatuses) if isinstance(status, list): status = ','.join(status) request = {} stopOrderStatus = self.safe_value(params, 'stop_order_status') if stopOrderStatus is None: request['order_status'] = status else: request['stop_order_status'] = stopOrderStatus return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): defaultStatuses = [ 'Created', 'New', 'PartiallyFilled', 'PendingCancel', # conditional orders # 'Untriggered', ] options = self.safe_value(self.options, 'fetchOpenOrders', {}) status = self.safe_value(options, 'order_status', defaultStatuses) if isinstance(status, list): status = ','.join(status) request = {} stopOrderStatus = self.safe_value(params, 'stop_order_status') if stopOrderStatus is None: request['order_status'] = status else: request['stop_order_status'] = stopOrderStatus return self.fetch_orders(symbol, since, limit, self.extend(request, params)) def fetch_order_trades(self, id, symbol=None, since=None, limit=None, params={}): request = { 'order_id': id, } return self.fetch_my_trades(symbol, since, limit, self.extend(request, params)) def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): self.load_markets() request = { # 'order_id': 'f185806b-b801-40ff-adec-52289370ed62', # if not provided will return user's trading records # 'symbol': market['id'], # 'start_time': int(since / 1000), # 'page': 1, # 'limit' 20, # max 50 } market = None if symbol is None: orderId = self.safe_string(params, 'order_id') if orderId is None: raise ArgumentsRequired(self.id + ' fetchMyTrades() requires a symbol argument or an order_id param') else: request['order_id'] = orderId params = self.omit(params, 'order_id') else: market = self.market(symbol) request['symbol'] = market['id'] if since is not None: request['start_time'] = since if limit is not None: request['limit'] = limit # default 20, max 50 defaultType = self.safe_string(self.options, 'defaultType', 'linear') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol, defaultType) marketDefined = (market is not None) linear = (marketDefined and market['linear']) or (marketType == 'linear') inverse = (marketDefined and market['swap'] and market['inverse']) or (marketType == 'inverse') futures = (marketDefined and market['futures']) or (marketType == 'futures') method = None if linear: method = 'privateLinearGetTradeExecutionList' elif inverse: method = 'v2PrivateGetExecutionList' elif futures: method = 'futuresPrivateGetExecutionList' response = getattr(self, method)(self.extend(request, params)) # # inverse # # { # "ret_code": 0, # "ret_msg": "OK", # "ext_code": "", # "ext_info": "", # "result": { # "order_id": "Abandonednot !", # Abandonednot ! # "trade_list": [ # { # "closed_size": 0, # "cross_seq": 277136382, # "exec_fee": "0.0000001", # "exec_id": "256e5ef8-abfe-5772-971b-f944e15e0d68", # "exec_price": "8178.5", # "exec_qty": 1, # "exec_time": "1571676941.70682", # "exec_type": "Trade", #Exec Type Enum # "exec_value": "0.00012227", # "fee_rate": "0.00075", # "last_liquidity_ind": "RemovedLiquidity", #Liquidity Enum # "leaves_qty": 0, # "nth_fill": 2, # "order_id": "7ad50cb1-9ad0-4f74-804b-d82a516e1029", # "order_link_id": "", # "order_price": "8178", # "order_qty": 1, # "order_type": "Market", #Order Type Enum # "side": "Buy", #Side Enum # "symbol": "BTCUSD", #Symbol Enum # "user_id": 1 # } # ] # }, # "time_now": "1577483699.281488", # "rate_limit_status": 118, # "rate_limit_reset_ms": 1577483699244737, # "rate_limit": 120 # } # # linear # # { # "ret_code":0, # "ret_msg":"OK", # "ext_code":"", # "ext_info":"", # "result":{ # "current_page":1, # "data":[ # { # "order_id":"b59418ec-14d4-4ef9-b9f4-721d5d576974", # "order_link_id":"", # "side":"Sell", # "symbol":"BTCUSDT", # "exec_id":"0327284d-faec-5191-bd89-acc5b4fafda9", # "price":0.5, # "order_price":0.5, # "order_qty":0.01, # "order_type":"Market", # "fee_rate":0.00075, # "exec_price":9709.5, # "exec_type":"Trade", # "exec_qty":0.01, # "exec_fee":0.07282125, # "exec_value":97.095, # "leaves_qty":0, # "closed_size":0.01, # "last_liquidity_ind":"RemovedLiquidity", # "trade_time":1591648052, # "trade_time_ms":1591648052861 # } # ] # }, # "time_now":"1591736501.979264", # "rate_limit_status":119, # "rate_limit_reset_ms":1591736501974, # "rate_limit":120 # } # result = self.safe_value(response, 'result', {}) trades = self.safe_value_2(result, 'trade_list', 'data', []) return self.parse_trades(trades, market, since, limit) def fetch_deposits(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'coin': currency['id'], # 'currency': currency['id'], # alias # 'start_date': self.iso8601(since), # 'end_date': self.iso8601(till), 'wallet_fund_type': 'Deposit', # Deposit, Withdraw, RealisedPNL, Commission, Refund, Prize, ExchangeOrderWithdraw, ExchangeOrderDeposit # 'page': 1, # 'limit': 20, # max 50 } currency = None if code is not None: currency = self.currency(code) request['coin'] = currency['id'] if since is not None: request['start_date'] = self.ymd(since) if limit is not None: request['limit'] = limit response = self.v2PrivateGetWalletFundRecords(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "data": [ # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # ] # }, # "ext_info": null, # "time_now": "1577481867.115552", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577481867122, # "rate_limit": 120 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_transactions(data, currency, since, limit, {'type': 'deposit'}) def fetch_withdrawals(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'coin': currency['id'], # 'start_date': self.iso8601(since), # 'end_date': self.iso8601(till), # 'status': 'Pending', # ToBeConfirmed, UnderReview, Pending, Success, CancelByUser, Reject, Expire # 'page': 1, # 'limit': 20, # max 50 } currency = None if code is not None: currency = self.currency(code) request['coin'] = currency['id'] if since is not None: request['start_date'] = self.ymd(since) if limit is not None: request['limit'] = limit response = self.v2PrivateGetWalletWithdrawList(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "data": [ # { # "id": 137, # "user_id": 1, # "coin": "XRP", # Coin Enum # "status": "Pending", # Withdraw Status Enum # "amount": "20.00000000", # "fee": "0.25000000", # "address": "rH7H595XYEVTEHU2FySYsWnmfACBnZS9zM", # "tx_id": "", # "submited_at": "2019-06-11T02:20:24.000Z", # "updated_at": "2019-06-11T02:20:24.000Z" # }, # ], # "current_page": 1, # "last_page": 1 # }, # "ext_info": null, # "time_now": "1577482295.125488", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577482295132, # "rate_limit": 120 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_transactions(data, currency, since, limit, {'type': 'withdrawal'}) def parse_transaction_status(self, status): statuses = { 'ToBeConfirmed': 'pending', 'UnderReview': 'pending', 'Pending': 'pending', 'Success': 'ok', 'CancelByUser': 'canceled', 'Reject': 'rejected', 'Expire': 'expired', } return self.safe_string(statuses, status, status) def parse_transaction(self, transaction, currency=None): # # fetchWithdrawals # # { # "id": 137, # "user_id": 1, # "coin": "XRP", # Coin Enum # "status": "Pending", # Withdraw Status Enum # "amount": "20.00000000", # "fee": "0.25000000", # "address": "rH7H595XYEVTEHU2FySYsWnmfACBnZS9zM", # "tx_id": "", # "submited_at": "2019-06-11T02:20:24.000Z", # "updated_at": "2019-06-11T02:20:24.000Z" # } # # fetchDeposits ledger entries # # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # currencyId = self.safe_string(transaction, 'coin') code = self.safe_currency_code(currencyId, currency) timestamp = self.parse8601(self.safe_string_2(transaction, 'submited_at', 'exec_time')) updated = self.parse8601(self.safe_string(transaction, 'updated_at')) status = self.parse_transaction_status(self.safe_string(transaction, 'status')) address = self.safe_string(transaction, 'address') feeCost = self.safe_number(transaction, 'fee') type = self.safe_string_lower(transaction, 'type') fee = None if feeCost is not None: fee = { 'cost': feeCost, 'currency': code, } return { 'info': transaction, 'id': self.safe_string(transaction, 'id'), 'txid': self.safe_string(transaction, 'tx_id'), 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'address': address, 'addressTo': None, 'addressFrom': None, 'tag': None, 'tagTo': None, 'tagFrom': None, 'type': type, 'amount': self.safe_number(transaction, 'amount'), 'currency': code, 'status': status, 'updated': updated, 'fee': fee, } def fetch_ledger(self, code=None, since=None, limit=None, params={}): self.load_markets() request = { # 'coin': currency['id'], # 'currency': currency['id'], # alias # 'start_date': self.iso8601(since), # 'end_date': self.iso8601(till), # 'wallet_fund_type': 'Deposit', # Withdraw, RealisedPNL, Commission, Refund, Prize, ExchangeOrderWithdraw, ExchangeOrderDeposit # 'page': 1, # 'limit': 20, # max 50 } currency = None if code is not None: currency = self.currency(code) request['coin'] = currency['id'] if since is not None: request['start_date'] = self.ymd(since) if limit is not None: request['limit'] = limit response = self.v2PrivateGetWalletFundRecords(self.extend(request, params)) # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": { # "data": [ # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # ] # }, # "ext_info": null, # "time_now": "1577481867.115552", # "rate_limit_status": 119, # "rate_limit_reset_ms": 1577481867122, # "rate_limit": 120 # } # result = self.safe_value(response, 'result', {}) data = self.safe_value(result, 'data', []) return self.parse_ledger(data, currency, since, limit) def parse_ledger_entry(self, item, currency=None): # # { # "id": 234467, # "user_id": 1, # "coin": "BTC", # "wallet_id": 27913, # "type": "Realized P&L", # "amount": "-0.00000006", # "tx_id": "", # "address": "BTCUSD", # "wallet_balance": "0.03000330", # "exec_time": "2019-12-09T00:00:25.000Z", # "cross_seq": 0 # } # currencyId = self.safe_string(item, 'coin') code = self.safe_currency_code(currencyId, currency) amount = self.safe_number(item, 'amount') after = self.safe_number(item, 'wallet_balance') direction = 'out' if (amount < 0) else 'in' before = None if after is not None and amount is not None: difference = amount if (direction == 'out') else -amount before = self.sum(after, difference) timestamp = self.parse8601(self.safe_string(item, 'exec_time')) type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) id = self.safe_string(item, 'id') referenceId = self.safe_string(item, 'tx_id') return { 'id': id, 'currency': code, 'account': self.safe_string(item, 'wallet_id'), 'referenceAccount': None, 'referenceId': referenceId, 'status': None, 'amount': amount, 'before': before, 'after': after, 'fee': None, 'direction': direction, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'type': type, 'info': item, } def parse_ledger_entry_type(self, type): types = { 'Deposit': 'transaction', 'Withdraw': 'transaction', 'RealisedPNL': 'trade', 'Commission': 'fee', 'Refund': 'cashback', 'Prize': 'prize', # ? 'ExchangeOrderWithdraw': 'transaction', 'ExchangeOrderDeposit': 'transaction', } return self.safe_string(types, type, type) def fetch_positions(self, symbols=None, params={}): self.load_markets() request = {} if isinstance(symbols, list): length = len(symbols) if length != 1: raise ArgumentsRequired(self.id + ' fetchPositions takes an array with exactly one symbol') request['symbol'] = self.market_id(symbols[0]) defaultType = self.safe_string(self.options, 'defaultType', 'linear') type = self.safe_string(params, 'type', defaultType) params = self.omit(params, 'type') response = None if type == 'linear': response = self.privateLinearGetPositionList(self.extend(request, params)) elif type == 'inverse': response = self.v2PrivateGetPositionList(self.extend(request, params)) elif type == 'inverseFuture': response = self.futuresPrivateGetPositionList(self.extend(request, params)) if (isinstance(response, basestring)) and self.is_json_encoded_object(response): response = json.loads(response) # # { # ret_code: 0, # ret_msg: 'OK', # ext_code: '', # ext_info: '', # result: [] or {} depending on the request # } # return self.safe_value(response, 'result') def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): type = self.safe_string(api, 0) section = self.safe_string(api, 1) if type == 'spot': if section == 'public': section = 'v1' else: section += '/v1' url = self.implode_hostname(self.urls['api'][type]) request = '/' + type + '/' + section + '/' + path if (type == 'spot') or (type == 'quote'): if params: request += '?' + self.rawencode(params) elif section == 'public': if params: request += '?' + self.rawencode(params) elif type == 'public': if params: request += '?' + self.rawencode(params) else: self.check_required_credentials() timestamp = self.nonce() query = self.extend(params, { 'api_key': self.apiKey, 'recv_window': self.options['recvWindow'], 'timestamp': timestamp, }) sortedQuery = self.keysort(query) auth = self.rawencode(sortedQuery) signature = self.hmac(self.encode(auth), self.encode(self.secret)) if method == 'POST': body = self.json(self.extend(query, { 'sign': signature, })) headers = { 'Content-Type': 'application/json', } else: request += '?' + self.urlencode(sortedQuery) + '&sign=' + signature url += request return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if not response: return # fallback to default error handler # # { # ret_code: 10001, # ret_msg: 'ReadMapCB: expect {or n, but found \u0000, error ' + # 'found in #0 byte of ...||..., bigger context ' + # '...||...', # ext_code: '', # ext_info: '', # result: null, # time_now: '1583934106.590436' # } # errorCode = self.safe_string(response, 'ret_code') if errorCode != '0': feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions['exact'], errorCode, feedback) self.throw_broadly_matched_exception(self.exceptions['broad'], body, feedback) raise ExchangeError(feedback) # unknown message def set_margin_mode(self, marginType, symbol=None, params={}): # # { # "ret_code": 0, # "ret_msg": "ok", # "ext_code": "", # "result": null, # "ext_info": null, # "time_now": "1577477968.175013", # "rate_limit_status": 74, # "rate_limit_reset_ms": 1577477968183, # "rate_limit": 75 # } # leverage = self.safe_value(params, 'leverage') if leverage is None: raise ArgumentsRequired(self.id + '.setMarginMode requires a leverage parameter') marginType = marginType.upper() if (marginType != 'ISOLATED') and (marginType != 'CROSSED'): raise BadRequest(self.id + ' marginType must be either isolated or crossed') self.load_markets() market = self.market(symbol) method = None defaultType = self.safe_string(self.options, 'defaultType', 'linear') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol, defaultType) linear = market['linear'] or (marketType == 'linear') inverse = (market['swap'] and market['inverse']) or (marketType == 'inverse') futures = market['futures'] or (marketType == 'futures') if linear: method = 'privateLinearPostPositionSwitchIsolated' elif inverse: method = 'v2PrivatePostPositionSwitchIsolated' elif futures: method = 'privateFuturesPostPositionSwitchIsolated' isIsolated = (marginType == 'ISOLATED') request = { 'symbol': market['id'], 'is_isolated': isIsolated, 'buy_leverage': leverage, 'sell_leverage': leverage, } return getattr(self, method)(self.extend(request, params)) def set_leverage(self, leverage, symbol=None, params={}): if symbol is None: raise ArgumentsRequired(self.id + ' setLeverage() requires a symbol argument') self.load_markets() market = self.market(symbol) # WARNING: THIS WILL INCREASE LIQUIDATION PRICE FOR OPEN ISOLATED LONG POSITIONS # AND DECREASE LIQUIDATION PRICE FOR OPEN ISOLATED SHORT POSITIONS defaultType = self.safe_string(self.options, 'defaultType', 'linear') marketTypes = self.safe_value(self.options, 'marketTypes', {}) marketType = self.safe_string(marketTypes, symbol, defaultType) linear = market['linear'] or (marketType == 'linear') inverse = (market['swap'] and market['inverse']) or (marketType == 'inverse') futures = market['futures'] or (marketType == 'futures') method = None if linear: method = 'privateLinearPostPositionSetLeverage' elif inverse: method = 'v2PrivatePostPositionLeverageSave' elif futures: method = 'privateFuturesPostPositionLeverageSave' buy_leverage = leverage sell_leverage = leverage if params['buy_leverage'] and params['sell_leverage'] and linear: buy_leverage = params['buy_leverage'] sell_leverage = params['sell_leverage'] elif not leverage: if linear: raise ArgumentsRequired(self.id + ' setLeverage() requires either the parameter leverage or params["buy_leverage"] and params["sell_leverage"] for linear contracts') else: raise ArgumentsRequired(self.id + ' setLeverage() requires parameter leverage for inverse and futures contracts') if (buy_leverage < 1) or (buy_leverage > 100) or (sell_leverage < 1) or (sell_leverage > 100): raise BadRequest(self.id + ' leverage should be between 1 and 100') request = { 'symbol': market['id'], 'leverage_only': True, } if not linear: request['leverage'] = buy_leverage else: request['buy_leverage'] = buy_leverage request['sell_leverage'] = sell_leverage return getattr(self, method)(self.extend(request, params))
43.781682
340
0.464928
b32aa637a7ea6dcb432b655b25e16f4e94548efe
2,682
py
Python
org/geo/utils/Generator.py
haiming-97/Conflict1227
c40f8fef17b59cbdc372405a6559f18d4f91c32b
[ "MIT" ]
null
null
null
org/geo/utils/Generator.py
haiming-97/Conflict1227
c40f8fef17b59cbdc372405a6559f18d4f91c32b
[ "MIT" ]
null
null
null
org/geo/utils/Generator.py
haiming-97/Conflict1227
c40f8fef17b59cbdc372405a6559f18d4f91c32b
[ "MIT" ]
null
null
null
#!/usr/bin/python # coding=utf-8 import os import xlwt import numpy as np import random import xlrd def satisfied(prob): return random.random() < prob def rand(): return random.random() def select(a, b): return random.randint(a, b) def normal(mu, sigma): return random.normalvariate(mu=mu, sigma=sigma) def unique_list(max_num, size): origin_list = [i for i in range(max_num)] if max_num <= size: return origin_list indexes = [] new_list = origin_list count = 0 while count < size: value = np.random.choice(new_list) indexes.append(value) new_list.remove(value) count += 1 return indexes def unique_pick_list(origin_list, size): if len(origin_list) <= size: return origin_list indexes = [] new_list = origin_list count = 0 while count < size: value = np.random.choice(new_list) indexes.append(value) new_list.remove(value) count += 1 return indexes def check_filename_available(filename): n = [0] def check_meta(file_name): file_name_new = file_name if os.path.isfile(file_name): file_name_new = file_name[:file_name.rfind('.')] + '_' + str(n[0]) + file_name[file_name.rfind('.'):] n[0] += 1 if os.path.isfile(file_name_new): file_name_new = check_meta(file_name) return file_name_new return_name = check_meta(filename) return return_name def write_excel(name1, name2, list1, list2, filename): f = xlwt.Workbook() sheet1 = f.add_sheet(u'conflict', cell_overwrite_ok=True) name = [str(name1), str(name2)] path = 'C:/Users/石海明/Desktop/testexcel20191220/'+str(filename)+'.xls' for i in range(0, len(name)): sheet1.write(0, i, name[i]) for i in range(0, len(list1)): sheet1.write(i+1, 0, list1[i]) for i in range(0, len(list2)): sheet1.write(i+1, 1, list2[i]) return_path = check_filename_available(path) f.save(return_path) def write_list(list1, filename): f = xlwt.Workbook() sheet1 = f.add_sheet(u'conflict', cell_overwrite_ok=True) path = 'C:/Users/石海明/Desktop/testlist/'+str(filename)+'.xls' for i in range(0, len(list1)): sheet1.write(i, 0, str(list1[i])) return_path = check_filename_available(path) f.save(return_path) def read_excel(excel_path): data = xlrd.open_workbook(excel_path) list = [] table = data.sheets()[0] nrows = table.nrows #行数 ncols = table.ncols #列数 for i in range(0,nrows): rowValues = table.row_values(i) #某一行数据 for item in rowValues: list.append(int(item)) return list
25.065421
113
0.63572
0bc7c40da8940e30ddda98c1f2cfaf581b50454c
4,437
py
Python
pdfSplitter/pdf2htmlEX/test/test_remote_browser.py
mackymiro/primo-tpccr
a0db409bb7e72911cffc59e771fa0d98c978d3b3
[ "MIT" ]
null
null
null
pdfSplitter/pdf2htmlEX/test/test_remote_browser.py
mackymiro/primo-tpccr
a0db409bb7e72911cffc59e771fa0d98c978d3b3
[ "MIT" ]
null
null
null
pdfSplitter/pdf2htmlEX/test/test_remote_browser.py
mackymiro/primo-tpccr
a0db409bb7e72911cffc59e771fa0d98c978d3b3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Run browser tests through Sauce Labs import unittest import sys import os from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions from sauceclient import SauceClient from browser_tests import BrowserTests # Set your own environment variables USERNAME = os.environ.get('SAUCE_USERNAME') ACCESS_KEY = os.environ.get('SAUCE_ACCESS_KEY') # The base url that remote browser will access # Usually a HTTP server should be set up in the folder containing the test cases # Also Sauce Connect should be enabled BASEURL='http://localhost:8000/' SAUCE_OPTIONS = { 'record-video': 'false', } # we want to test the latest stable version # and 'beta' is usually the best estimation BROWSER_MATRIX = [ ('win_ie', { 'platform': 'Windows 8.1', 'browserName': 'internet explorer', 'version': '11', }), ('win_firefox', { 'platform': 'Windows 8.1', 'browserName': 'firefox', 'version': 'beta', }), ('win_chrome', { 'platform': 'Windows 8.1', 'browserName': 'chrome', 'version': 'beta', }), ('mac_firefox', { 'platform': 'OS X 10.9', 'browserName': 'firefox', 'version': 'beta', }), ('mac_chrome', { 'platform': 'OS X 10.9', 'browserName': 'chrome', 'version': '40.0', # beta is not supported }), ('linux_firefox', { 'platform': 'Linux', 'browserName': 'firefox', 'version': 'beta', }), ('linux_chrome', { 'platform': 'Linux', 'browserName': 'chrome', 'version': 'beta', }), ] @unittest.skipIf((not (USERNAME and ACCESS_KEY)), 'Sauce Labs is not available') class test_remote_browser_base(BrowserTests): @classmethod def setUpClass(cls): super(test_remote_browser_base, cls).setUpClass() if not cls.GENERATING_MODE: cls.sauce = SauceClient(USERNAME, ACCESS_KEY) cls.sauce_url = 'http://%s:%s@ondemand.saucelabs.com:80/wd/hub' % (USERNAME, ACCESS_KEY) cls.browser = webdriver.Remote( desired_capabilities=cls.desired_capabilities, command_executor=cls.sauce_url ) cls.browser.implicitly_wait(30) # remote screen may not be large enough for the whole page cls.browser.set_window_size(cls.BROWSER_WIDTH, cls.BROWSER_HEIGHT) @classmethod def tearDownClass(cls): if not cls.GENERATING_MODE: cls.browser.quit() super(test_remote_browser_base, cls).tearDownClass() def setUp(self): super(test_remote_browser_base, self).setUp() sys.exc_clear() def tearDown(self): try: passed = (sys.exc_info() == (None, None, None)) branch = os.environ.get('TRAVIS_BRANCH', 'manual') pull_request = os.environ.get('TRAVIS_PULL_REQUEST', 'false') self.sauce.jobs.update_job(self.browser.session_id, build_num=os.environ.get('TRAVIS_BUILD_NUMBER', '0'), name='pdf2htmlEX', passed=passed, public='public restricted', tags = [pull_request] if pull_request != 'false' else [branch] ) except: raise pass def generate_image(self, html_file, png_file, page_must_load=True): self.browser.get(BASEURL + html_file) try: WebDriverWait(self.browser, 5).until(expected_conditions.presence_of_element_located((By.ID, 'page-container'))) except: if page_must_load: raise self.browser.save_screenshot(png_file) test_classnames = [] def generate_classes(): module = globals() for browser_name, browser_caps in BROWSER_MATRIX: d = dict(test_remote_browser_base.__dict__) caps = SAUCE_OPTIONS.copy() caps.update(browser_caps) tunnel_identifier = os.environ.get('TRAVIS_JOB_NUMBER') if tunnel_identifier: caps['tunnel-identifier'] = tunnel_identifier d['desired_capabilities'] = caps name = "test_remote_%s" % (browser_name, ) module[name] = type(name, (test_remote_browser_base, unittest.TestCase), d) test_classnames.append(name) generate_classes()
31.920863
124
0.62407
7216fd3970c95b89547005638bec6539830063a2
947
py
Python
softhub/rest_api/serializers.py
davcri/softhub
5a932da36d1393c361b1940283d468692fe57d9d
[ "MIT" ]
1
2018-05-05T20:01:15.000Z
2018-05-05T20:01:15.000Z
softhub/rest_api/serializers.py
davcri/softhub
5a932da36d1393c361b1940283d468692fe57d9d
[ "MIT" ]
2
2021-03-18T20:16:53.000Z
2021-06-08T19:09:15.000Z
softhub/rest_api/serializers.py
davcri/softhub
5a932da36d1393c361b1940283d468692fe57d9d
[ "MIT" ]
2
2017-05-10T22:33:39.000Z
2018-01-30T14:05:06.000Z
from rest_framework.serializers import ModelSerializer from softhub.models.OperatingSystem import OperatingSystem from softhub.models.Application import Application from softhub.models.Executable import Executable from softhub.models.Developer import Developer from softhub.models.Version import Version class OperatingSystemSerializer(ModelSerializer): class Meta: model = OperatingSystem #fields = ('name', 'release_date', 'family') fields = '__all__' class ApplicationSerializer(ModelSerializer): class Meta: model = Application fields = '__all__' class VersionSerializer(ModelSerializer): class Meta: model = Version fields = '__all__' class ExecutableSerializer(ModelSerializer): class Meta: model = Executable fields = '__all__' class DeveloperSerializer(ModelSerializer): class Meta: model = Developer fields = '__all__'
24.282051
58
0.724393
5a2f783d69aca9839b2fb6dda89263f44666c37b
1,157
py
Python
TopQuarkAnalysis/TopJetCombination/python/TtSemiLepHypKinFit_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
TopQuarkAnalysis/TopJetCombination/python/TtSemiLepHypKinFit_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
TopQuarkAnalysis/TopJetCombination/python/TtSemiLepHypKinFit_cfi.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms # # module to make the kinematic fit hypothesis # ttSemiLepHypKinFit = cms.EDProducer("TtSemiLepHypKinFit", ## met input mets = cms.InputTag("patMETs"), ## jet input jets = cms.InputTag("selectedPatJets"), ## lepton input leps = cms.InputTag("selectedPatMuons"), ## kin fit results match = cms.InputTag("kinFitTtSemiLepEventHypothesis"), status = cms.InputTag("kinFitTtSemiLepEventHypothesis","Status"), leptons = cms.InputTag("kinFitTtSemiLepEventHypothesis","Leptons"), neutrinos = cms.InputTag("kinFitTtSemiLepEventHypothesis","Neutrinos"), partonsHadP = cms.InputTag("kinFitTtSemiLepEventHypothesis","PartonsHadP"), partonsHadQ = cms.InputTag("kinFitTtSemiLepEventHypothesis","PartonsHadQ"), partonsHadB = cms.InputTag("kinFitTtSemiLepEventHypothesis","PartonsHadB"), partonsLepB = cms.InputTag("kinFitTtSemiLepEventHypothesis","PartonsLepB"), ## number of considered jets nJetsConsidered = cms.InputTag("kinFitTtSemiLepEventHypothesis","NumberOfConsideredJets") )
42.851852
113
0.699222
2785ad9ea682590b60d84262d4e69687d346f52c
1,277
py
Python
app/streamflow/sherlock/sh_Q90_EcoB.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
null
null
null
app/streamflow/sherlock/sh_Q90_EcoB.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
null
null
null
app/streamflow/sherlock/sh_Q90_EcoB.py
fkwai/geolearn
30cb4353d22af5020a48100d07ab04f465a315b0
[ "MIT" ]
2
2021-04-04T02:45:59.000Z
2022-03-19T09:41:39.000Z
from hydroDL import kPath from hydroDL.data import usgs, gageII, gridMET, ntn from hydroDL.master import slurm from hydroDL.master import basinFull varX = gridMET.varLst varY = ['runoff'] varXC = gageII.lstWaterQuality varYC = None dataName = 'Q90' sd = '1979-01-01' ed = '2010-01-01' l3Lst = ['080304', '050301', '080401', '090203', '080305', '080203', '080503', '090402', '080301', '080107', '080204', '080402'] subsetLst = list() for l3 in l3Lst: subsetLst.append('EcoB'+l3[:2]) subsetLst.append('EcoB'+l3[:4]) subsetLst.append('EcoB'+l3[:6]) subsetLst = list(set(subsetLst)) globalName = '{}-B10'.format(dataName) caseLst = list() for subset in subsetLst: outName = '{}-{}-B10-gs'.format(dataName, subset) caseName = basinFull.wrapMaster(outName=outName, dataName=dataName, varX=varX, varY=varY, varXC=varXC, varYC=varYC, sd=sd, ed=ed, subset=subset, borrowStat=globalName) caseLst.append(caseName) cmdP = 'python /home/users/kuaifang/GitHUB/geolearn/hydroDL/master/cmd/basinFull.py -M {}' for caseName in caseLst: slurm.submitJobGPU(caseName, cmdP.format(caseName))
26.604167
90
0.614722
04a15c8517477127a002f98dd92591b9653a7a6b
13,552
py
Python
carp_fastapi/api/routers/services/carp_deployments_datapoints_consents.py
almaxdtu/carp.client-fastAPI
867394b0d43292abb42edfe38462a8ebe304ac57
[ "MIT" ]
1
2022-03-26T04:45:58.000Z
2022-03-26T04:45:58.000Z
carp_fastapi/api/routers/services/carp_deployments_datapoints_consents.py
cph-cachet/carp.client-fastAPI
867394b0d43292abb42edfe38462a8ebe304ac57
[ "MIT" ]
null
null
null
carp_fastapi/api/routers/services/carp_deployments_datapoints_consents.py
cph-cachet/carp.client-fastAPI
867394b0d43292abb42edfe38462a8ebe304ac57
[ "MIT" ]
null
null
null
""" Copyright 2018 Copenhagen Center for Health Technology (CACHET) at the Technical University of Denmark (DTU). Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ”Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from fastapi import APIRouter, Request from carp import datapoint_service as datapoint, consent_service as consent, deployment_service as deployment from carp_fastapi.resources import carp_environment as env from starlette.config import Config config = Config(".env") environment: str = config("ENVIRONMENT", default="local") router = APIRouter() """ DATA-POINTS :: CREATE :: GET :: DELETE """ @router.post("/{deployment_id}/data-points") async def create_data_point(request: Request, deployment_id: str): """ Endpoint: [create_data_point] :param request: The [request] body. :param deployment_id: The [deployment_id] assigned in the deployment. :return: The new create data point by its [deployment_id]. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await datapoint.create_data_point(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, data_points_body=request_body) return response @router.post("/{deployment_id}/data-points/batch") async def create_many_data_point(request: Request, deployment_id: str): """ Endpoint: [create_many_data_points] :param request: The [request] body. :param deployment_id: The [deployment_id] assigned in the deployment. :return: The new created data points. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await datapoint.create_many_data_points(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, data_points_body=request_body) return response @router.get('/{deployment_id}/data-points/{data_point_id}') async def get_one_data_point(request: Request, deployment_id: str, data_point_id: str): """ Endpoint: [get_one_data_point] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param data_point_id: The [data_point_id] assigned in the data point. :return: The data point by its [data_point_id] and [data_point_id]. """ response = await datapoint.get_data_point(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, data_point_id=data_point_id) return response @router.get('/{deployment_id}/data-points') async def get_all_data_points(request: Request, deployment_id: str): """ Endpoint: [get_all_data_points] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :return: The data points by their [deployment_id]. """ response = await datapoint.get_all_data_points(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id) return response @router.get('/{deployment_id}/data-points/page/{page_id}') async def get_all_data_points_pageable(request: Request, deployment_id: str, page_id: int = 0): """ Endpoint: [get_all_data_points_pageable] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param page_id: The [page_id] of the data point. :return: The data points by their [deployment_id] and [page_number]. """ response = await datapoint.get_all_data_points_pageable(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, page=page_id) return response @router.get('/{deployment_id}/data-points/sort/{sort_param}') async def get_all_data_points_sorted(request: Request, deployment_id: str, sort_param: str): """ Endpoint: [get_all_data_points_sorted] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param sort_param: The [sort_param] parameter to order the data points (asc, desc). :return: The data points sorted by their [deployment_id] and the [sort_param] parameter. """ response = await datapoint.get_all_data_points_sorted(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, sort=sort_param) return response @router.get('/{deployment_id}/data-points/query/{query_param}') async def get_all_data_points_with_query(request: Request, deployment_id: str, query_param: str): """ Endpoint: [get_all_data_points_with_query] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param query_param: The [query_param] parameters to retrieve the data point. :return: The data points by their [deployment_id] and the [query_param]. """ response = await datapoint.get_all_nested_query(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, query=query_param) return response @router.get('/{deployment_id}/data-points/count/query/{query_param}') async def get_count_of_data_points(request: Request, deployment_id: str, query_param: str): """ Endpoint: [get_all_data_points_with_query] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param query_param: The [query_param] parameters to retrieve the data point. :return: The data points by their [deployment_id] and the [query] parameter. """ response = await datapoint.get_count_data_points(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, query=query_param) return response @router.delete('/{deployment_id}/data-points/{data_point_id}') async def delete_data_point(request: Request, deployment_id: str, data_point_id: str): """ Endpoint: [delete_data_point] :param request: The [request] header. :param deployment_id: The [deployment_id] assigned in the deployment. :param data_point_id: The [data_point_id] assigned in the data point. :return: The [data_point_id] of the delete data point. """ response = await datapoint.delete_data_point(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, data_point_id=data_point_id) return response """ CONSENT DOCUMENT :: CREATE :: GET :: DELETE """ @router.post('/{deployment_id}/consent-documents') async def create_collection(request: Request, deployment_id: str): """ Endpoint: [create_consent] :param request: The [request] body. :param deployment_id: The [deployment_id] of the consent document. :return: The newly created consent document by its [deployment_id]. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await consent.create_consent(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, consent_body=request_body) return response @router.get('/{deployment_id}/consent-documents/{consent_id}') async def get_consent_document(request: Request, deployment_id: str, consent_id: str): """ Endpoint: [get_consent_document] :param request: The [request] header. :param deployment_id: The [deployment_id] of the consent document. :param consent_id: The [consent_id] of the consent document. :return: The consent document by its [deployment_id] and [consent_id]. """ response = await consent.get_consent_document(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, consent_id=consent_id) return response @router.get('/{deployment_id}/consent-documents') async def get_all_consent_documents(request: Request, deployment_id: str): """ Endpoint: [get_all_consent_documents] :param request: The [request] header. :param deployment_id: The [deployment_id] of the deployment. :return: The consent documents by its [deployment_id]. """ response = await consent.get_all_consent_documents(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id) return response @router.delete('/{deployment_id}/consent-documents/{consent_id}') async def delete_consent_document(request: Request, deployment_id: str, consent_id: str): """ Endpoint: [delete_consent_document] :param request: The [request] header. :param deployment_id: The [deployment_id] of the study deployment. :param consent_id: The [consent_id] of the consent document. :return: The deleted deployment. """ response = await consent.delete_consent(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_id=deployment_id, consent_id=consent_id) return response """ DEPLOYMENTS :: CREATE :: GET :: DELETE """ @router.post('/deployment-service') async def deployment_service(request: Request): """ Endpoint: [deployment_service] :param request: The [request] body. :return: The deployment response. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await deployment.deployment_service(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_body=request_body) return response @router.post('/participation-service') async def deployment_participation(request: Request): """ Endpoint: [deployment_participation] :param request: The [request] body. :return: The deployment response. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await deployment.deployment_participation(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_body=request_body) return response @router.post('/participation-service') async def deployment_statistics(request: Request): """ Endpoint: [deployment_statistics] :return: The deployment statistics response. """ body: bytes = await request.body() request_body: str = bytes.decode(body) response = await deployment.deployment_statistics(env.BASE_URL[environment], access_token=request.headers['authorization'], deployment_body=request_body) return response
47.384615
460
0.63142
91c7c605e2e900ad5999099c615b54bddd48045d
177
py
Python
backup_scripts/exceptions.py
markliederbach/backup-scripts
5c70b786d4c5303e4b78b02ed4649b5972f9ae5d
[ "MIT" ]
null
null
null
backup_scripts/exceptions.py
markliederbach/backup-scripts
5c70b786d4c5303e4b78b02ed4649b5972f9ae5d
[ "MIT" ]
null
null
null
backup_scripts/exceptions.py
markliederbach/backup-scripts
5c70b786d4c5303e4b78b02ed4649b5972f9ae5d
[ "MIT" ]
null
null
null
class BackupsException(Exception): pass class NextCloudBackupsException(BackupsException): pass class NextCloudClientException(NextCloudBackupsException): pass
14.75
58
0.80226
da5f835de5c155e7478cc5ea92b06b2d8e65870b
2,542
py
Python
src/isle/evolver/transform/constantShift.py
chelseajohn/isle
f610b55a1e8b6d2584896eb649092b0524cc1f8c
[ "MIT" ]
2
2021-01-14T17:47:01.000Z
2021-07-16T22:31:25.000Z
src/isle/evolver/transform/constantShift.py
chelseajohn/isle
f610b55a1e8b6d2584896eb649092b0524cc1f8c
[ "MIT" ]
21
2018-06-04T07:09:02.000Z
2020-12-11T09:37:08.000Z
src/isle/evolver/transform/constantShift.py
chelseajohn/isle
f610b55a1e8b6d2584896eb649092b0524cc1f8c
[ "MIT" ]
3
2021-01-18T19:18:29.000Z
2021-03-26T03:27:15.000Z
r"""!\file \ingroup evolvers Transform to shift configurations by a constant. """ import numpy as np from .transform import Transform from ... import CDVector class ConstantShift(Transform): r"""! \ingroup evolvers Transform that shifts configurations by a constant. """ def __init__(self, shift, action, lattSize=None): if isinstance(shift, (np.ndarray, CDVector)): self.shift = CDVector(shift) else: if lattSize is None: raise ValueError("Argument lattSize must not be None if shift is" " passed as a scalar") self.shift = CDVector(np.full(lattSize, shift, dtype=complex)) self.action = action def forward(self, phi, actVal): r"""! Shift by +shift. \param phi Configuration on proposal manifold. \param actVal Value of the action at phi. \returns In order: - Configuration on MC manifold. - Value of action at configuration on MC manifold. - \f$\log \det J\f$ where \f$J\f$ is the Jacobian of the transformation. """ return phi+self.shift, self.action.eval(phi), 0 def backward(self, phi, jacobian=False): r"""! Shift by -shift. \param phi Configuration on MC manifold. \returns - Configuration on proposal manifold - \f$\log \det J\f$ where \f$J\f$ is the Jacobian of the *forwards* transformation. `None` if `jacobian==False`. """ return phi-self.shift, 0 if jacobian else None def save(self, h5group, manager): r"""! Save the transform to HDF5. Has to be the inverse of Transform.fromH5(). \param h5group HDF5 group to save to. \param manager EvolverManager whose purview to save the transform in. """ h5group["shift"] = self.shift @classmethod def fromH5(cls, h5group, _manager, action, _lattice, _rng): r"""! Construct a transform from HDF5. Create and initialize a new instance from parameters stored via Identity.save(). \param h5group HDF5 group to load parameters from. \param _manager EvolverManager responsible for the HDF5 file. \param action Action to use. \param _lattice Lattice the simulation runs on. \param _rng Central random number generator for the run. \returns A newly constructed identity transform. """ return cls(h5group["shift"][()], action)
34.821918
88
0.614477
d0aa9899a6ca4f1a53def7ab2771989ffce2b0f6
539
py
Python
cython/profiling.py
Chiel92/evolutionary-computing
12a77a9d0504d55141ac8f8b02213d58a5a39d2b
[ "MIT" ]
null
null
null
cython/profiling.py
Chiel92/evolutionary-computing
12a77a9d0504d55141ac8f8b02213d58a5a39d2b
[ "MIT" ]
null
null
null
cython/profiling.py
Chiel92/evolutionary-computing
12a77a9d0504d55141ac8f8b02213d58a5a39d2b
[ "MIT" ]
null
null
null
# encoding: utf-8 # filename: profile.py """ Profiling utilities. """ # Import profile tools import pstats, cProfile def profile(function, filename='Profile.prof'): """Evaluate and profile given string.""" cProfile.runctx('print(function())', globals(), locals(), filename) report = pstats.Stats(filename) report.strip_dirs().sort_stats('time').print_stats() def compare(functions, filename='Profile.prof'): """Profile a sequence of functions.""" for function in functions: profile(function, filename)
24.5
71
0.695733
8b0efb1a924e24b9f13f5ae09f0ac3edd64a05a5
25,044
py
Python
delphin/ace.py
arademaker/pydelphin
3ebcce48c4edcb4e797fc8e447a80e38e8fef53a
[ "MIT" ]
null
null
null
delphin/ace.py
arademaker/pydelphin
3ebcce48c4edcb4e797fc8e447a80e38e8fef53a
[ "MIT" ]
null
null
null
delphin/ace.py
arademaker/pydelphin
3ebcce48c4edcb4e797fc8e447a80e38e8fef53a
[ "MIT" ]
null
null
null
""" An interface for the ACE processor. """ from typing import ( Any, Iterator, Iterable, Mapping, Dict, List, Tuple, Pattern, IO) import logging import os from pathlib import Path import argparse import re from subprocess import ( check_call, check_output, CalledProcessError, Popen, PIPE ) from platform import platform # portable system information from getpass import getuser # portable way to get username from socket import gethostname # portable way to get host name from datetime import datetime import locale from delphin import interface from delphin import util from delphin.exceptions import PyDelphinException # Default modules need to import the PyDelphin version from delphin.__about__ import __version__ # noqa: F401 logger = logging.getLogger(__name__) # do this right away to avoid some encoding issues locale.setlocale(locale.LC_ALL, '') encoding = locale.getpreferredencoding(False) class ACEProcessError(PyDelphinException): """Raised when the ACE process has crashed and cannot be recovered.""" class ACEProcess(interface.Processor): """ The base class for interfacing ACE. This manages most subprocess communication with ACE, but does not interpret the response returned via ACE's stdout. Subclasses override the :meth:`receive` method to interpret the task-specific response formats. Note that not all arguments to this class are used by every subclass; the documentation for each subclass specifies which are available. Args: grm (str): path to a compiled grammar image cmdargs (list, optional): a list of command-line arguments for ACE; note that arguments and their values should be separate entries, e.g. `['-n', '5']` executable (str, optional): the path to the ACE binary; if `None`, ACE is assumed to be callable via `ace` env (dict): environment variables to pass to the ACE subprocess tsdbinfo (bool): if `True` and ACE's version is compatible, all information ACE reports for [incr tsdb()] processing is gathered and returned in the response full_forest (bool): if `True` and *tsdbinfo* is `True`, output the full chart for each parse result stderr (file): stream used for ACE's stderr """ _cmdargs: List[str] = [] _termini: List[Pattern[str]] = [] def __init__(self, grm: util.PathLike, cmdargs: List[str] = None, executable: util.PathLike = None, env: Mapping[str, str] = None, tsdbinfo: bool = True, full_forest: bool = False, stderr: IO[Any] = None): self.grm = str(Path(grm).expanduser()) self.cmdargs = cmdargs or [] # validate the arguments _ace_argparser.parse_args(self.cmdargs) self.executable = 'ace' if executable: self.executable = str(Path(executable).expanduser()) ace_version = self.ace_version if ace_version >= (0, 9, 14): self.cmdargs.append('--tsdb-notes') if tsdbinfo and ace_version >= (0, 9, 24): self.cmdargs.extend(['--tsdb-stdout', '--report-labels']) setattr(self, 'receive', self._tsdb_receive) if full_forest: self._cmdargs.append('--itsdb-forest') else: setattr(self, 'receive', self._default_receive) self.env = env or os.environ self._run_id = -1 self.run_infos: List[Dict[str, Any]] = [] self._stderr = stderr self._open() @property def ace_version(self) -> Tuple[int, ...]: """The version of the specified ACE binary.""" return _ace_version(self.executable) @property def run_info(self) -> Dict[str, Any]: """Contextual information about the the running process.""" return self.run_infos[-1] def _open(self) -> None: self._p = Popen( [self.executable, '-g', self.grm] + self._cmdargs + self.cmdargs, stdin=PIPE, stdout=PIPE, stderr=self._stderr, env=self.env, universal_newlines=True ) self._run_id += 1 self.run_infos.append({ 'run-id': self._run_id, 'application': 'ACE {} via PyDelphin v{}'.format( '.'.join(map(str, self.ace_version)), __version__), 'environment': ' '.join(self.cmdargs), 'user': getuser(), 'host': gethostname(), 'os': platform(), 'start': datetime.now() }) if self._p.poll() is not None and self._p.returncode != 0: raise ACEProcessError("ACE process closed on startup") def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() return False # don't try to handle any exceptions def _result_lines(self, termini: List[Pattern[str]] = None) -> List[str]: poll = self._p.poll assert self._p.stdout is not None, 'cannot receive output from ACE' next_line = self._p.stdout.readline if termini is None: termini = self._termini i, end = 0, len(termini) cur_terminus = termini[i] lines = [] while i < end: s = next_line() if s == '' and poll() is not None: logger.info( 'Process closed unexpectedly; giving up.' ) self.close() break # The 'run' note should appear when the process is opened, but # handle it here to avoid potential deadlocks if it gets buffered elif s.startswith('NOTE: tsdb run:'): self._read_run_info(s.rstrip()) # the rest should be normal result lines else: lines.append(s.rstrip()) if cur_terminus.search(s): i += 1 return [line for line in lines if line != ''] def _read_run_info(self, line: str) -> None: assert line.startswith('NOTE: tsdb run:') for key, value in _sexpr_data(line[15:].lstrip()): if key == ':application': continue # PyDelphin sets 'application' self.run_info[key.lstrip(':')] = value def send(self, datum: str) -> None: """ Send *datum* (e.g. a sentence or MRS) to ACE. Warning: Sending data without reading (e.g., via :meth:`receive`) can fill the buffer and cause data to be lost. Use the :meth:`interact` method for most data-processing tasks with ACE. """ assert self._p.stdin is not None, 'cannot send inputs to ACE' try: self._p.stdin.write((datum.rstrip() + '\n')) self._p.stdin.flush() except (IOError, OSError): # ValueError if file was closed manually logger.info( 'Attempted to write to a closed process; attempting to reopen' ) self._open() self._p.stdin.write((datum.rstrip() + '\n')) self._p.stdin.flush() def receive(self) -> interface.Response: """ Return the stdout response from ACE. Warning: Reading beyond the last line of stdout from ACE can cause the process to hang while it waits for the next line. Use the :meth:`interact` method for most data-processing tasks with ACE. """ raise NotImplementedError() def _default_receive(self) -> interface.Response: raise NotImplementedError() def _tsdb_receive(self) -> interface.Response: lines = self._result_lines() response, lines = _make_response(lines, self.run_info) # now it should be safe to reopen a closed process (if necessary) if self._p.poll() is not None: logger.info('Attempting to restart ACE.') self._open() line = ' '.join(lines) # ACE 0.9.24 on Mac puts superfluous newlines response = _tsdb_response(response, line) return response def interact(self, datum: str) -> interface.Response: """ Send *datum* to ACE and return the response. This is the recommended method for sending and receiving data to/from an ACE process as it reduces the chances of over-filling or reading past the end of the buffer. It also performs a simple validation of the input to help ensure that one complete item is processed at a time. If input item identifiers need to be tracked throughout processing, see :meth:`process_item`. Args: datum (str): the input sentence or MRS Returns: :class:`~delphin.interface.Response` """ validated = self._validate_input(datum) if validated: self.send(validated) result = self.receive() else: result, lines = _make_response( [('NOTE: PyDelphin could not validate the input and ' 'refused to send it to ACE'), f'SKIP: {datum}'], self.run_info) result['input'] = datum return result def process_item(self, datum: str, keys: Dict[str, Any] = None) -> interface.Response: """ Send *datum* to ACE and return the response with context. The *keys* parameter can be used to track item identifiers through an ACE interaction. If the `task` member is set on the ACEProcess instance (or one of its subclasses), it is kept in the response as well. Args: datum (str): the input sentence or MRS keys (dict): a mapping of item identifier names and values Returns: :class:`~delphin.interface.Response` """ response = self.interact(datum) if keys is not None: response['keys'] = keys if 'task' not in response and self.task is not None: response['task'] = self.task return response def close(self) -> int: """ Close the ACE process and return the process's exit code. """ self.run_info['end'] = datetime.now() if self._p.stdin is not None: self._p.stdin.close() if self._p.stdout is not None: for line in self._p.stdout: if line.startswith('NOTE: tsdb run:'): self._read_run_info(line) else: logger.debug('ACE cleanup: %s', line.rstrip()) retval = self._p.wait() return retval def _validate_input(self, datum: str) -> str: raise NotImplementedError() class ACEParser(ACEProcess): """ A class for managing parse requests with ACE. See :class:`ACEProcess` for initialization parameters. """ task = 'parse' _termini = [re.compile(r'^$'), re.compile(r'^$')] def _validate_input(self, datum: str): # valid input for parsing is non-empty # (this relies on an empty string evaluating to False) return isinstance(datum, str) and datum.strip() def _default_receive(self): lines = self._result_lines() response, lines = _make_response(lines, self.run_info) response['results'] = [ dict(zip(('mrs', 'derivation'), map(str.strip, line.split(' ; ')))) for line in lines ] return response class ACETransferer(ACEProcess): """ A class for managing transfer requests with ACE. See :class:`ACEProcess` for initialization parameters. """ task = 'transfer' _termini = [re.compile(r'^$')] def __init__(self, grm: util.PathLike, cmdargs: List[str] = None, executable: util.PathLike = None, env: Mapping[str, str] = None, stderr: IO[Any] = None): super().__init__(grm, cmdargs=cmdargs, executable=executable, env=env, tsdbinfo=False, full_forest=False, stderr=stderr) def _validate_input(self, datum): return _possible_mrs(datum) def _default_receive(self): lines = self._result_lines() response, lines = _make_response(lines, self.run_info) response['results'] = [{'mrs': line.strip()} for line in lines] return response class ACEGenerator(ACEProcess): """ A class for managing realization requests with ACE. See :class:`ACEProcess` for initialization parameters. """ task = 'generate' _cmdargs = ['-e', '--tsdb-notes'] _termini = [re.compile(r'NOTE: tsdb parse: ')] def __init__(self, grm: util.PathLike, cmdargs: List[str] = None, executable: util.PathLike = None, env: Mapping[str, str] = None, tsdbinfo: bool = True, stderr: IO[Any] = None): super().__init__(grm, cmdargs=cmdargs, executable=executable, env=env, tsdbinfo=tsdbinfo, full_forest=False, stderr=stderr) def _validate_input(self, datum): return _possible_mrs(datum) def _default_receive(self): show_tree = '--show-realization-trees' in self.cmdargs show_mrs = '--show-realization-mrses' in self.cmdargs lines = self._result_lines() response, lines = _make_response(lines, self.run_info) i, numlines = 0, len(lines) results = [] while i < numlines: result = {'SENT': lines[i].strip()} i += 1 if show_tree and lines[i].startswith('DTREE = '): result['derivation'] = lines[i][8:].strip() i += 1 if show_mrs and lines[i].startswith('MRS = '): result['mrs'] = lines[i][6:].strip() i += 1 results.append(result) response['results'] = results return response def _tsdb_receive(self): # with --tsdb-stdout, the notes line is not printed lines = self._result_lines(termini=[re.compile(r'\(:results \.')]) response, lines = _make_response(lines, self.run_info) line = ' '.join(lines) # ACE 0.9.24 on Mac puts superfluous newlines response = _tsdb_response(response, line) return response def compile(cfg_path: util.PathLike, out_path: util.PathLike, executable: util.PathLike = None, env: Mapping[str, str] = None, stdout: IO[Any] = None, stderr: IO[Any] = None) -> None: """ Use ACE to compile a grammar. Args: cfg_path (str): the path to the ACE config file out_path (str): the path where the compiled grammar will be written executable (str, optional): the path to the ACE binary; if `None`, the `ace` command will be used env (dict, optional): environment variables to pass to the ACE subprocess stdout (file, optional): stream used for ACE's stdout stderr (file, optional): stream used for ACE's stderr """ cfg_path = str(Path(cfg_path).expanduser()) out_path = str(Path(out_path).expanduser()) try: check_call( [(executable or 'ace'), '-g', cfg_path, '-G', out_path], stdout=stdout, stderr=stderr, close_fds=True, env=(env or os.environ) ) except (CalledProcessError, OSError): logger.error( 'Failed to compile grammar with ACE. See %s', getattr(stderr, 'name', '<stderr>') ) raise def parse_from_iterable( grm: util.PathLike, data: Iterable[str], **kwargs: Any) -> Iterator[interface.Response]: """ Parse each sentence in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): the sentences to parse **kwargs: additional keyword arguments to pass to the ACEParser Yields: :class:`~delphin.interface.Response` Example: >>> sentences = ['Dogs bark.', 'It rained'] >>> responses = list(ace.parse_from_iterable('erg.dat', sentences)) NOTE: parsed 2 / 2 sentences, avg 723k, time 0.01026s """ with ACEParser(grm, **kwargs) as parser: for datum in data: yield parser.interact(datum) def parse(grm: util.PathLike, datum: str, **kwargs: Any) -> interface.Response: """ Parse sentence *datum* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image datum (str): the sentence to parse **kwargs: additional keyword arguments to pass to the ACEParser Returns: :class:`~delphin.interface.Response` Example: >>> response = ace.parse('erg.dat', 'Dogs bark.') NOTE: parsed 1 / 1 sentences, avg 797k, time 0.00707s """ return next(parse_from_iterable(grm, [datum], **kwargs)) def transfer_from_iterable( grm: util.PathLike, data: Iterable[str], **kwargs: Any) -> Iterator[interface.Response]: """ Transfer from each MRS in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): source MRSs as SimpleMRS strings **kwargs: additional keyword arguments to pass to the ACETransferer Yields: :class:`~delphin.interface.Response` """ with ACETransferer(grm, **kwargs) as transferer: for datum in data: yield transferer.interact(datum) def transfer(grm: util.PathLike, datum: str, **kwargs: Any) -> interface.Response: """ Transfer from the MRS *datum* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image datum: source MRS as a SimpleMRS string **kwargs: additional keyword arguments to pass to the ACETransferer Returns: :class:`~delphin.interface.Response` """ return next(transfer_from_iterable(grm, [datum], **kwargs)) def generate_from_iterable( grm: util.PathLike, data: Iterable[str], **kwargs: Any) -> Iterator[interface.Response]: """ Generate from each MRS in *data* with ACE using grammar *grm*. Args: grm (str): path to a compiled grammar image data (iterable): MRSs as SimpleMRS strings **kwargs: additional keyword arguments to pass to the ACEGenerator Yields: :class:`~delphin.interface.Response` """ with ACEGenerator(grm, **kwargs) as generator: for datum in data: yield generator.interact(datum) def generate(grm: util.PathLike, datum: str, **kwargs: Any) -> interface.Response: """ Generate from the MRS *datum* with ACE using *grm*. Args: grm (str): path to a compiled grammar image datum: the SimpleMRS string to generate from **kwargs: additional keyword arguments to pass to the ACEGenerator Returns: :class:`~delphin.interface.Response` """ return next(generate_from_iterable(grm, [datum], **kwargs)) # The following defines the command-line options available for users to # specify in ACEProcess tasks. For a description of these options, see: # http://moin.delph-in.net/AceOptions # thanks: https://stackoverflow.com/a/14728477/1441112 class _ACEArgumentParser(argparse.ArgumentParser): def error(self, message): raise ValueError(message) _ace_argparser = _ACEArgumentParser() _ace_argparser.add_argument('-n', type=int) _ace_argparser.add_argument('-1', action='store_const', const=1, dest='n') _ace_argparser.add_argument('-r') _ace_argparser.add_argument('-p', action='store_true') _ace_argparser.add_argument('-X', action='store_true') _ace_argparser.add_argument('-L', action='store_true') _ace_argparser.add_argument('-y', action='store_true') _ace_argparser.add_argument('--max-chart-megabytes', type=int) _ace_argparser.add_argument('--max-unpack-megabytes', type=int) _ace_argparser.add_argument('--timeout', type=int) _ace_argparser.add_argument('--disable-subsumption-test', action='store_true') _ace_argparser.add_argument('--show-realization-trees', action='store_true') _ace_argparser.add_argument('--show-realization-mrses', action='store_true') _ace_argparser.add_argument('--show-probability', action='store_true') _ace_argparser.add_argument('--disable-generalization', action='store_true') _ace_argparser.add_argument('--ubertagging', nargs='?', type=float) _ace_argparser.add_argument('--pcfg', type=argparse.FileType()) _ace_argparser.add_argument('--rooted-derivations', action='store_true') _ace_argparser.add_argument('--udx', nargs='?', choices=('all',)) _ace_argparser.add_argument('--yy-rules', action='store_true') _ace_argparser.add_argument('--max-words', type=int) def _ace_version(executable: str) -> Tuple[int, ...]: # 0.9.0 is the initial public release of ACE version: Tuple[int, ...] = (0, 9, 0) try: out = check_output([executable, '-V'], universal_newlines=True) except (CalledProcessError, OSError): logger.error('Failed to get ACE version number.') raise else: match = re.search(r'ACE version ([.0-9]+)', out) if match is not None: version = tuple(map(int, match.group(1).split('.'))) return version def _possible_mrs(s: str) -> str: start, end = -1, -1 depth = 0 for i, c in enumerate(s): if c == '[': if depth == 0: start = i depth += 1 elif c == ']': depth -= 1 if depth == 0: end = i + 1 break # only valid if neither start nor end is -1 # note: this ignores any secondary MRSs on the same line if start != -1 and end != -1: # only log if taking a substring if start != 0 and end != len(s): logger.debug('Possible MRS found at <%d:%d>: %s', start, end, s) s = s[start:end] return s else: return '' def _make_response(lines, run) -> Tuple[interface.Response, List[str]]: response = interface.Response({ 'NOTES': [], 'WARNINGS': [], 'ERRORS': [], 'run': run, 'input': None, 'surface': None, 'results': [] }) content_lines = [] for line in lines: if line.startswith('NOTE: '): response['NOTES'].append(line[6:]) elif line.startswith('WARNING: '): response['WARNINGS'].append(line[9:]) elif line.startswith('ERROR: '): response['ERRORS'].append(line[7:]) elif line.startswith('SENT: ') or line.startswith('SKIP: '): response['surface'] = line[6:] else: content_lines.append(line) return response, content_lines def _sexpr_data(line: str) -> Iterator[Dict[str, Any]]: while line: try: expr = util.SExpr.parse(line) except IndexError: expr = util.SExprResult( (':error', 'incomplete output from ACE'), '') if len(expr.data) != 2: logger.error('Malformed output from ACE: %s', line) break line = expr.remainder.lstrip() yield expr.data def _tsdb_response(response: interface.Response, line: str) -> interface.Response: for key, val in _sexpr_data(line): if key == ':p-input': response.setdefault('tokens', {})['initial'] = val.strip() elif key == ':p-tokens': response.setdefault('tokens', {})['internal'] = val.strip() elif key == ':results': for result in val: res = {} for reskey, resval in result: if reskey == ':derivation': res['derivation'] = resval.strip() elif reskey == ':mrs': res['mrs'] = resval.strip() elif reskey == ':surface': res['surface'] = resval.strip() elif isinstance(resval, str): res[reskey[1:]] = resval.strip() else: res[reskey[1:]] = resval response['results'].append(res) elif key == ':chart': response['chart'] = chart = [] for edge in val: chart.append({edgekey[1:]: edgeval for edgekey, edgeval in edge}) elif isinstance(val, str): response[key[1:]] = val.strip() else: response[key[1:]] = val return response
34.880223
79
0.586807
fed168295183d3301861825c3cea75da189a0516
441
py
Python
Python Fundamentals/Functions/More Exr/Task02.py
DonikaChervenkova/SoftUni
bff579c037ec48f39ed193b34bc3502a32e90732
[ "MIT" ]
null
null
null
Python Fundamentals/Functions/More Exr/Task02.py
DonikaChervenkova/SoftUni
bff579c037ec48f39ed193b34bc3502a32e90732
[ "MIT" ]
null
null
null
Python Fundamentals/Functions/More Exr/Task02.py
DonikaChervenkova/SoftUni
bff579c037ec48f39ed193b34bc3502a32e90732
[ "MIT" ]
1
2021-12-04T12:30:57.000Z
2021-12-04T12:30:57.000Z
import math x1 = float(input()) y1 = float(input()) x2 = float(input()) y2 = float(input()) def get_distance(num1, num2): x = math.pow(num1, 2) y = math.pow(num2, 2) return math.sqrt(x + y) double_distance_1 = get_distance(x1, y1) double_distance_2 = get_distance(x2, y2) if double_distance_1 <= double_distance_2: print(f"({math.floor(x1)}, {math.floor(y1)})") else: print(f"({math.floor(x2)}, {math.floor(y2)})")
20.045455
50
0.646259
230b9ea7323f2b255f57864bef93e4f5c1a8aef3
250
py
Python
pdtable/io/__init__.py
startable/pdtable
693af4f4d49a27f54c79887a42a0b1a1b68d77a9
[ "BSD-3-Clause" ]
5
2020-11-11T10:15:04.000Z
2021-08-19T07:45:12.000Z
pdtable/io/__init__.py
startable/pdtable
693af4f4d49a27f54c79887a42a0b1a1b68d77a9
[ "BSD-3-Clause" ]
63
2020-09-02T12:40:14.000Z
2021-07-14T19:52:33.000Z
pdtable/io/__init__.py
startable/pdtable
693af4f4d49a27f54c79887a42a0b1a1b68d77a9
[ "BSD-3-Clause" ]
4
2021-01-04T12:44:45.000Z
2022-03-02T00:38:01.000Z
# flake8: noqa from .csv import read_csv, write_csv from .excel import read_excel, write_excel from .json import table_to_json_data, json_data_to_table from .parsers.fixer import ParseFixer from .parsers.blocks import parse_blocks from . import load
31.25
56
0.828
86ec6b6c179ac48e0eed82400e5041a05ababd77
3,102
py
Python
lib/governance_class.py
lifetioncoin/sentinel
a895cf671424261a60174386939391ea07c3a6d6
[ "MIT" ]
null
null
null
lib/governance_class.py
lifetioncoin/sentinel
a895cf671424261a60174386939391ea07c3a6d6
[ "MIT" ]
null
null
null
lib/governance_class.py
lifetioncoin/sentinel
a895cf671424261a60174386939391ea07c3a6d6
[ "MIT" ]
null
null
null
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'lib')) import models from bitcoinrpc.authproxy import JSONRPCException import misc import re from misc import printdbg import time # mixin for GovObj composed classes like proposal and superblock, etc. class GovernanceClass(object): only_masternode_can_submit = False # lazy @property def go(self): return self.governance_object # pass thru to GovernanceObject#vote def vote(self, lifetioncoind, signal, outcome): return self.go.vote(lifetioncoind, signal, outcome) # pass thru to GovernanceObject#voted_on def voted_on(self, **kwargs): return self.go.voted_on(**kwargs) def vote_validity(self, lifetioncoind): if self.is_valid(): printdbg("Voting valid! %s: %d" % (self.__class__.__name__, self.id)) self.vote(lifetioncoind, models.VoteSignals.valid, models.VoteOutcomes.yes) else: printdbg("Voting INVALID! %s: %d" % (self.__class__.__name__, self.id)) self.vote(lifetioncoind, models.VoteSignals.valid, models.VoteOutcomes.no) def get_submit_command(self): obj_data = self.serialise() # new objects won't have parent_hash, revision, etc... cmd = ['gobject', 'submit', '0', '1', str(int(time.time())), obj_data] # some objects don't have a collateral tx to submit if not self.only_masternode_can_submit: cmd.append(go.object_fee_tx) return cmd def submit(self, lifetioncoind): # don't attempt to submit a superblock unless a masternode # note: will probably re-factor this, this has code smell if (self.only_masternode_can_submit and not lifetioncoind.is_masternode()): print("Not a masternode. Only masternodes may submit these objects") return try: object_hash = lifetioncoind.rpc_command(*self.get_submit_command()) printdbg("Submitted: [%s]" % object_hash) except JSONRPCException as e: print("Unable to submit: %s" % e.message) def serialise(self): import binascii import simplejson return binascii.hexlify(simplejson.dumps(self.get_dict(), sort_keys=True).encode('utf-8')).decode('utf-8') @classmethod def serialisable_fields(self): # Python is so not very elegant... pk_column = self._meta.primary_key.db_column fk_columns = [fk.db_column for fk in self._meta.rel.values()] do_not_use = [pk_column] do_not_use.extend(fk_columns) do_not_use.append('object_hash') fields_to_serialise = list(self._meta.columns.keys()) for field in do_not_use: if field in fields_to_serialise: fields_to_serialise.remove(field) return fields_to_serialise def get_dict(self): dikt = {} for field_name in self.serialisable_fields(): dikt[field_name] = getattr(self, field_name) dikt['type'] = getattr(self, 'govobj_type') return dikt
33.354839
114
0.657318
f9e43300cbe464e0fe339e2196a8f1de802f049d
12,633
py
Python
BaseTools/Source/Python/Common/EdkIIWorkspace.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
6
2020-01-10T05:16:15.000Z
2022-01-06T17:41:58.000Z
BaseTools/Source/Python/Common/EdkIIWorkspace.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
null
null
null
BaseTools/Source/Python/Common/EdkIIWorkspace.py
James992927108/uEFI_Edk2_Practice
2cac7618dfee10bfa5104a2e167c85425fde0100
[ "BSD-2-Clause" ]
3
2018-04-21T07:59:33.000Z
2018-04-23T02:06:01.000Z
## @file # This is the base class for applications that operate on an EDK II Workspace # # Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # ## # Import Modules # import Common.LongFilePathOs as os, sys, time from DataType import * from Common.LongFilePathSupport import OpenLongFilePath as open from Common.MultipleWorkspace import MultipleWorkspace as mws ## EdkIIWorkspace # # Collect WorkspaceDir from the environment, the Verbose command line flag, and detect an icon bitmap file. # # @var StartTime: Time of build system starting # @var PrintRunTime: Printable time of build system running # @var PrintRunStatus: Printable status of build system running # @var RunStatus: Status of build system running # class EdkIIWorkspace: def __init__(self): self.StartTime = time.time() self.PrintRunTime = False self.PrintRunStatus = False self.RunStatus = '' # # Check environment valiable 'WORKSPACE' # if os.environ.get('WORKSPACE') == None: print 'ERROR: WORKSPACE not defined. Please run EdkSetup from the EDK II install directory.' return False self.CurrentWorkingDir = os.getcwd() self.WorkspaceDir = os.path.realpath(os.environ.get('WORKSPACE')) (Drive, Path) = os.path.splitdrive(self.WorkspaceDir) if Drive == '': (Drive, CwdPath) = os.path.splitdrive(self.CurrentWorkingDir) if Drive != '': self.WorkspaceDir = Drive + Path else: self.WorkspaceDir = Drive.upper() + Path self.WorkspaceRelativeWorkingDir = self.WorkspaceRelativePath (self.CurrentWorkingDir) try: # # Load TianoCoreOrgLogo, used for GUI tool # self.Icon = wx.Icon(self.WorkspaceFile('tools/Python/TianoCoreOrgLogo.gif'), wx.BITMAP_TYPE_GIF) except: self.Icon = None self.Verbose = False for Arg in sys.argv: if Arg.lower() == '-v': self.Verbose = True ## Close build system # # Close build system and print running time and status # def Close(self): if self.PrintRunTime: Seconds = int(time.time() - self.StartTime) if Seconds < 60: print 'Run Time: %d seconds' % (Seconds) else: Minutes = Seconds / 60 Seconds = Seconds % 60 if Minutes < 60: print 'Run Time: %d minutes %d seconds' % (Minutes, Seconds) else: Hours = Minutes / 60 Minutes = Minutes % 60 print 'Run Time: %d hours %d minutes %d seconds' % (Hours, Minutes, Seconds) if self.RunStatus != '': print self.RunStatus ## Convert to a workspace relative filename # # Convert a full path filename to a workspace relative filename. # # @param FileName: The filename to be Converted # # @retval None Workspace dir is not found in the full path # @retval string The relative filename # def WorkspaceRelativePath(self, FileName): FileName = os.path.realpath(FileName) if FileName.find(self.WorkspaceDir) != 0: return None return FileName.replace (self.WorkspaceDir, '').strip('\\').strip('/') ## Convert to a full path filename # # Convert a workspace relative filename to a full path filename. # # @param FileName: The filename to be Converted # # @retval string The full path filename # def WorkspaceFile(self, FileName): return os.path.realpath(mws.join(self.WorkspaceDir,FileName)) ## Convert to a real path filename # # Convert ${WORKSPACE} to real path # # @param FileName: The filename to be Converted # # @retval string The full path filename # def WorkspacePathConvert(self, FileName): return os.path.realpath(FileName.replace(TAB_WORKSPACE, self.WorkspaceDir)) ## Convert XML into a DOM # # Parse an XML file into a DOM and return the DOM. # # @param FileName: The filename to be parsed # # @retval XmlParseFile (self.WorkspaceFile(FileName)) # def XmlParseFile (self, FileName): if self.Verbose: print FileName return XmlParseFile (self.WorkspaceFile(FileName)) ## Convert a XML section # # Parse a section of an XML file into a DOM(Document Object Model) and return the DOM. # # @param FileName: The filename to be parsed # @param SectionTag: The tag name of the section to be parsed # # @retval XmlParseFileSection (self.WorkspaceFile(FileName), SectionTag) # def XmlParseFileSection (self, FileName, SectionTag): if self.Verbose: print FileName return XmlParseFileSection (self.WorkspaceFile(FileName), SectionTag) ## Save a XML file # # Save a DOM(Document Object Model) into an XML file. # # @param Dom: The Dom to be saved # @param FileName: The filename # # @retval XmlSaveFile (Dom, self.WorkspaceFile(FileName)) # def XmlSaveFile (self, Dom, FileName): if self.Verbose: print FileName return XmlSaveFile (Dom, self.WorkspaceFile(FileName)) ## Convert Text File To Dictionary # # Convert a workspace relative text file to a dictionary of (name:value) pairs. # # @param FileName: Text filename # @param Dictionary: Dictionary to store data # @param CommentCharacter: Comment char, be used to ignore comment content # @param KeySplitCharacter: Key split char, between key name and key value. Key1 = Value1, '=' is the key split char # @param ValueSplitFlag: Value split flag, be used to decide if has multiple values # @param ValueSplitCharacter: Value split char, be used to split multiple values. Key1 = Value1|Value2, '|' is the value split char # # @retval ConvertTextFileToDictionary(self.WorkspaceFile(FileName), Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter) # def ConvertTextFileToDictionary(self, FileName, Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter): if self.Verbose: print FileName return ConvertTextFileToDictionary(self.WorkspaceFile(FileName), Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter) ## Convert Dictionary To Text File # # Convert a dictionary of (name:value) pairs to a workspace relative text file. # # @param FileName: Text filename # @param Dictionary: Dictionary to store data # @param CommentCharacter: Comment char, be used to ignore comment content # @param KeySplitCharacter: Key split char, between key name and key value. Key1 = Value1, '=' is the key split char # @param ValueSplitFlag: Value split flag, be used to decide if has multiple values # @param ValueSplitCharacter: Value split char, be used to split multiple values. Key1 = Value1|Value2, '|' is the value split char # # @retval ConvertDictionaryToTextFile(self.WorkspaceFile(FileName), Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter) # def ConvertDictionaryToTextFile(self, FileName, Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter): if self.Verbose: print FileName return ConvertDictionaryToTextFile(self.WorkspaceFile(FileName), Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter) ## Convert Text File To Dictionary # # Convert a text file to a dictionary of (name:value) pairs. # # @param FileName: Text filename # @param Dictionary: Dictionary to store data # @param CommentCharacter: Comment char, be used to ignore comment content # @param KeySplitCharacter: Key split char, between key name and key value. Key1 = Value1, '=' is the key split char # @param ValueSplitFlag: Value split flag, be used to decide if has multiple values # @param ValueSplitCharacter: Value split char, be used to split multiple values. Key1 = Value1|Value2, '|' is the value split char # # @retval True Convert successfully # @retval False Open file failed # def ConvertTextFileToDictionary(FileName, Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter): try: F = open(FileName, 'r') except: return False Keys = [] for Line in F: LineList = Line.split(KeySplitCharacter, 1) if len(LineList) >= 2: Key = LineList[0].split() if len(Key) == 1 and Key[0][0] != CommentCharacter and Key[0] not in Keys: if ValueSplitFlag: Dictionary[Key[0]] = LineList[1].replace('\\', '/').split(ValueSplitCharacter) else: Dictionary[Key[0]] = LineList[1].strip().replace('\\', '/') Keys += [Key[0]] F.close() return True ## Convert Dictionary To Text File # # Convert a dictionary of (name:value) pairs to a text file. # # @param FileName: Text filename # @param Dictionary: Dictionary to store data # @param CommentCharacter: Comment char, be used to ignore comment content # @param KeySplitCharacter: Key split char, between key name and key value. Key1 = Value1, '=' is the key split char # @param ValueSplitFlag: Value split flag, be used to decide if has multiple values # @param ValueSplitCharacter: Value split char, be used to split multiple values. Key1 = Value1|Value2, '|' is the value split char # # @retval True Convert successfully # @retval False Open file failed # def ConvertDictionaryToTextFile(FileName, Dictionary, CommentCharacter, KeySplitCharacter, ValueSplitFlag, ValueSplitCharacter): try: F = open(FileName, 'r') Lines = [] Lines = F.readlines() F.close() except: Lines = [] Keys = Dictionary.keys() MaxLength = 0 for Key in Keys: if len(Key) > MaxLength: MaxLength = len(Key) Index = 0 for Line in Lines: LineList = Line.split(KeySplitCharacter, 1) if len(LineList) >= 2: Key = LineList[0].split() if len(Key) == 1 and Key[0][0] != CommentCharacter and Key[0] in Dictionary: if ValueSplitFlag: Line = '%-*s %c %s\n' % (MaxLength, Key[0], KeySplitCharacter, ' '.join(Dictionary[Key[0]])) else: Line = '%-*s %c %s\n' % (MaxLength, Key[0], KeySplitCharacter, Dictionary[Key[0]]) Lines.pop(Index) if Key[0] in Keys: Lines.insert(Index, Line) Keys.remove(Key[0]) Index += 1 for RemainingKey in Keys: if ValueSplitFlag: Line = '%-*s %c %s\n' % (MaxLength, RemainingKey, KeySplitCharacter, ' '.join(Dictionary[RemainingKey])) else: Line = '%-*s %c %s\n' % (MaxLength, RemainingKey, KeySplitCharacter, Dictionary[RemainingKey]) Lines.append(Line) try: F = open(FileName, 'w') except: return False F.writelines(Lines) F.close() return True ## Create a new directory # # @param Directory: Directory to be created # def CreateDirectory(Directory): if not os.access(Directory, os.F_OK): os.makedirs (Directory) ## Create a new file # # @param Directory: Directory to be created # @param FileName: Filename to be created # @param Mode: The mode of open file, defautl is 'w' # def CreateFile(Directory, FileName, Mode='w'): CreateDirectory (Directory) return open(os.path.join(Directory, FileName), Mode) ## # # This acts like the main() function for the script, unless it is 'import'ed into another # script. # if __name__ == '__main__': # Nothing to do here. Could do some unit tests pass
39.478125
158
0.643394