hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
b674bd637a73cb01f4ac5b970788f18a3d517d5a
1,937
py
Python
internal/notes/builtin-SAVE/packages/cups/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
1
2019-01-17T20:07:19.000Z
2019-01-17T20:07:19.000Z
internal/notes/builtin-SAVE/packages/cups/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
null
null
null
internal/notes/builtin-SAVE/packages/cups/package.py
HPCToolkit/hpctest
5ff4455582bf39e75530a31badcf6142081b386b
[ "BSD-3-Clause" ]
2
2019-08-06T18:13:57.000Z
2021-11-05T18:19:49.000Z
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Cups(AutotoolsPackage): """CUPS is the standards-based, open source printing system developed by Apple Inc. for macOS and other UNIX-like operating systems. CUPS uses the Internet Printing Protocol (IPP) to support printing to local and network printers. This provides the core CUPS libraries, not a complete CUPS install.""" homepage = "https://www.cups.org/" url = "https://github.com/apple/cups/releases/download/v2.2.3/cups-2.2.3-source.tar.gz" version('2.2.3', '006a8156680a516e43c59034e31df8bf') depends_on('gnutls') def configure_args(self): args = ['--enable-gnutls', '--with-components=core'] return args
43.044444
91
0.681982
5b5be4a587d8b148bfbe0932a95778ad1731336c
10,037
py
Python
tests/components/sensor/test_dyson.py
robin13/home-assistant
4976569e304c23975d34ec88e2dfb94e84ab1f1c
[ "Apache-2.0" ]
2
2020-08-29T07:24:56.000Z
2020-10-27T21:47:35.000Z
tests/components/sensor/test_dyson.py
robin13/home-assistant
4976569e304c23975d34ec88e2dfb94e84ab1f1c
[ "Apache-2.0" ]
6
2021-02-08T20:25:50.000Z
2022-03-11T23:27:53.000Z
tests/components/sensor/test_dyson.py
robin13/home-assistant
4976569e304c23975d34ec88e2dfb94e84ab1f1c
[ "Apache-2.0" ]
3
2018-09-14T07:34:09.000Z
2018-09-29T12:57:10.000Z
"""Test the Dyson sensor(s) component.""" import unittest from unittest import mock from homeassistant.const import TEMP_CELSIUS, TEMP_FAHRENHEIT, \ STATE_OFF from homeassistant.components.sensor import dyson from tests.common import get_test_home_assistant from libpurecoollink.dyson_pure_cool_link import DysonPureCoolLink def _get_device_without_state(): """Return a valid device provide by Dyson web services.""" device = mock.Mock(spec=DysonPureCoolLink) device.name = "Device_name" device.state = None device.environmental_state = None return device def _get_with_state(): """Return a valid device with state values.""" device = mock.Mock() device.name = "Device_name" device.state = mock.Mock() device.state.filter_life = 100 device.environmental_state = mock.Mock() device.environmental_state.dust = 5 device.environmental_state.humidity = 45 device.environmental_state.temperature = 295 device.environmental_state.volatil_organic_compounds = 2 return device def _get_with_standby_monitoring(): """Return a valid device with state but with standby monitoring disable.""" device = mock.Mock() device.name = "Device_name" device.state = mock.Mock() device.state.filter_life = 100 device.environmental_state = mock.Mock() device.environmental_state.dust = 5 device.environmental_state.humidity = 0 device.environmental_state.temperature = 0 device.environmental_state.volatil_organic_compounds = 2 return device class DysonTest(unittest.TestCase): """Dyson Sensor component test class.""" def setUp(self): # pylint: disable=invalid-name """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() def tearDown(self): # pylint: disable=invalid-name """Stop everything that was started.""" self.hass.stop() def test_setup_component_with_no_devices(self): """Test setup component with no devices.""" self.hass.data[dyson.DYSON_DEVICES] = [] add_entities = mock.MagicMock() dyson.setup_platform(self.hass, None, add_entities) add_entities.assert_called_with([]) def test_setup_component(self): """Test setup component with devices.""" def _add_device(devices): assert len(devices) == 5 assert devices[0].name == "Device_name filter life" assert devices[1].name == "Device_name dust" assert devices[2].name == "Device_name humidity" assert devices[3].name == "Device_name temperature" assert devices[4].name == "Device_name air quality" device_fan = _get_device_without_state() device_non_fan = _get_with_state() self.hass.data[dyson.DYSON_DEVICES] = [device_fan, device_non_fan] dyson.setup_platform(self.hass, None, _add_device) def test_dyson_filter_life_sensor(self): """Test filter life sensor with no value.""" sensor = dyson.DysonFilterLifeSensor(self.hass, _get_device_without_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertIsNone(sensor.state) self.assertEqual(sensor.unit_of_measurement, "hours") self.assertEqual(sensor.name, "Device_name filter life") self.assertEqual(sensor.entity_id, "sensor.dyson_1") sensor.on_message('message') def test_dyson_filter_life_sensor_with_values(self): """Test filter sensor with values.""" sensor = dyson.DysonFilterLifeSensor(self.hass, _get_with_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 100) self.assertEqual(sensor.unit_of_measurement, "hours") self.assertEqual(sensor.name, "Device_name filter life") self.assertEqual(sensor.entity_id, "sensor.dyson_1") sensor.on_message('message') def test_dyson_dust_sensor(self): """Test dust sensor with no value.""" sensor = dyson.DysonDustSensor(self.hass, _get_device_without_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertIsNone(sensor.state) self.assertEqual(sensor.unit_of_measurement, 'level') self.assertEqual(sensor.name, "Device_name dust") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_dust_sensor_with_values(self): """Test dust sensor with values.""" sensor = dyson.DysonDustSensor(self.hass, _get_with_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 5) self.assertEqual(sensor.unit_of_measurement, 'level') self.assertEqual(sensor.name, "Device_name dust") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_humidity_sensor(self): """Test humidity sensor with no value.""" sensor = dyson.DysonHumiditySensor(self.hass, _get_device_without_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertIsNone(sensor.state) self.assertEqual(sensor.unit_of_measurement, '%') self.assertEqual(sensor.name, "Device_name humidity") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_humidity_sensor_with_values(self): """Test humidity sensor with values.""" sensor = dyson.DysonHumiditySensor(self.hass, _get_with_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 45) self.assertEqual(sensor.unit_of_measurement, '%') self.assertEqual(sensor.name, "Device_name humidity") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_humidity_standby_monitoring(self): """Test humidity sensor while device is in standby monitoring.""" sensor = dyson.DysonHumiditySensor(self.hass, _get_with_standby_monitoring()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, STATE_OFF) self.assertEqual(sensor.unit_of_measurement, '%') self.assertEqual(sensor.name, "Device_name humidity") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_temperature_sensor(self): """Test temperature sensor with no value.""" sensor = dyson.DysonTemperatureSensor(self.hass, _get_device_without_state(), TEMP_CELSIUS) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertIsNone(sensor.state) self.assertEqual(sensor.unit_of_measurement, '°C') self.assertEqual(sensor.name, "Device_name temperature") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_temperature_sensor_with_values(self): """Test temperature sensor with values.""" sensor = dyson.DysonTemperatureSensor(self.hass, _get_with_state(), TEMP_CELSIUS) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 21.9) self.assertEqual(sensor.unit_of_measurement, '°C') self.assertEqual(sensor.name, "Device_name temperature") self.assertEqual(sensor.entity_id, "sensor.dyson_1") sensor = dyson.DysonTemperatureSensor(self.hass, _get_with_state(), TEMP_FAHRENHEIT) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 71.3) self.assertEqual(sensor.unit_of_measurement, '°F') self.assertEqual(sensor.name, "Device_name temperature") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_temperature_standby_monitoring(self): """Test temperature sensor while device is in standby monitoring.""" sensor = dyson.DysonTemperatureSensor(self.hass, _get_with_standby_monitoring(), TEMP_CELSIUS) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, STATE_OFF) self.assertEqual(sensor.unit_of_measurement, '°C') self.assertEqual(sensor.name, "Device_name temperature") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_air_quality_sensor(self): """Test air quality sensor with no value.""" sensor = dyson.DysonAirQualitySensor(self.hass, _get_device_without_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertIsNone(sensor.state) self.assertEqual(sensor.unit_of_measurement, 'level') self.assertEqual(sensor.name, "Device_name air quality") self.assertEqual(sensor.entity_id, "sensor.dyson_1") def test_dyson_air_quality_sensor_with_values(self): """Test air quality sensor with values.""" sensor = dyson.DysonAirQualitySensor(self.hass, _get_with_state()) sensor.entity_id = "sensor.dyson_1" self.assertFalse(sensor.should_poll) self.assertEqual(sensor.state, 2) self.assertEqual(sensor.unit_of_measurement, 'level') self.assertEqual(sensor.name, "Device_name air quality") self.assertEqual(sensor.entity_id, "sensor.dyson_1")
44.411504
79
0.662549
f5f66f45028ef509d9fdb192292fca7655c555ea
1,074
py
Python
src/main/tools/dbpy/FotechUtils/dbHelper.py
inqwell/inq
31ce4cd6b9b123b1ec4462905ccbcf7c00d6efc3
[ "BSD-3-Clause" ]
1
2016-09-25T16:41:57.000Z
2016-09-25T16:41:57.000Z
src/main/tools/dbpy/FotechUtils/dbHelper.py
inqwell/inq
31ce4cd6b9b123b1ec4462905ccbcf7c00d6efc3
[ "BSD-3-Clause" ]
null
null
null
src/main/tools/dbpy/FotechUtils/dbHelper.py
inqwell/inq
31ce4cd6b9b123b1ec4462905ccbcf7c00d6efc3
[ "BSD-3-Clause" ]
2
2016-09-25T16:48:49.000Z
2020-05-26T20:00:33.000Z
# # $Header: /home/inqwell/cvsroot/dev/scripts/python/FotechUtils/dbHelper.py,v 1.1 2009/05/22 22:16:31 sanderst Exp $ # import os import KBC.fotech from Util import db from FotechUtils import LogHelper from FotechUtils import dbUtils from FotechUtils.FotechRoot import FOTechRoot from FotechUtils.pwHelper import get_password_file log = LogHelper.getLogger( __name__ ) """ The main 'database.xml' file used by Front Office """ def get_database_xml(): return FOTechRoot.make_relative_path( "etc", "database.xml" ) """ The system names defined in the database.xml files for Front Office """ FDESystem = 'fdenterprise' def get_fde_connection( level, access = 'read' ): return get_any_connection( get_database_xml(), get_password_file(), level, access, FDESystem ) def get_any_connection( db_file, pw_file, level, access, system ): """ Util method to get a connection """ log.info("FOTech DBHelper.getConnection: %s, %s" % (db_file, pw_file)) return dbUtils.getConnection( db_file, system, level, access, pwdfile = pw_file )
27.538462
116
0.735568
e9866122e9d000e996b74af5f485f1b23689321e
769
py
Python
tools/win32build/doall.py
ivanov/numpy
6d2665626e40f346bb5af8d780579f5a429ff9ba
[ "BSD-3-Clause" ]
null
null
null
tools/win32build/doall.py
ivanov/numpy
6d2665626e40f346bb5af8d780579f5a429ff9ba
[ "BSD-3-Clause" ]
null
null
null
tools/win32build/doall.py
ivanov/numpy
6d2665626e40f346bb5af8d780579f5a429ff9ba
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division import subprocess import os if __name__ == '__main__': from optparse import OptionParser parser = OptionParser() parser.add_option("-p", "--pyver", dest="pyver", help = "Python version (2.4, 2.5, etc...)") opts, args = parser.parse_args() pyver = opts.pyver if not pyver: pyver = "2.5" # Bootstrap subprocess.check_call(['python', 'prepare_bootstrap.py', '-p', pyver]) # Build binaries subprocess.check_call(['python', 'build.py', '-p', pyver], cwd = 'bootstrap-%s' % pyver) # Build installer using nsis subprocess.check_call(['makensis', 'numpy-superinstaller.nsi'], cwd = 'bootstrap-%s' % pyver)
27.464286
74
0.583875
71f6803ba986621dd3026d83437940305673349b
6,473
py
Python
devel/.private/hector_uav_msgs/lib/python2.7/dist-packages/hector_uav_msgs/msg/_VelocityXYCommand.py
arijitnoobstar/UAVProjectileCatcher
3c1bed80df167192cb4b971b58c891187628142e
[ "Apache-2.0" ]
10
2021-03-15T03:58:06.000Z
2021-12-30T15:33:38.000Z
Chapter_7_code/devel/.private/hector_uav_msgs/lib/python2.7/dist-packages/hector_uav_msgs/msg/_VelocityXYCommand.py
crepuscularlight/ROSbyExample
fa7b1a60cacca9b1034e318a2ac16ce4c8530d7c
[ "MIT" ]
1
2021-09-09T15:29:31.000Z
2021-09-09T15:29:31.000Z
Chapter_7_code/devel/.private/hector_uav_msgs/lib/python2.7/dist-packages/hector_uav_msgs/msg/_VelocityXYCommand.py
crepuscularlight/ROSbyExample
fa7b1a60cacca9b1034e318a2ac16ce4c8530d7c
[ "MIT" ]
4
2021-03-06T09:35:58.000Z
2021-05-24T14:34:11.000Z
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from hector_uav_msgs/VelocityXYCommand.msg. Do not edit.""" import codecs import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import std_msgs.msg class VelocityXYCommand(genpy.Message): _md5sum = "7b4d52af2aa98221d9bb260976d6a201" _type = "hector_uav_msgs/VelocityXYCommand" _has_header = True # flag to mark the presence of a Header object _full_text = """Header header float32 x float32 y ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with string frame_id """ __slots__ = ['header','x','y'] _slot_types = ['std_msgs/Header','float32','float32'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: header,x,y :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(VelocityXYCommand, self).__init__(*args, **kwds) # message fields cannot be None, assign default values for those that are if self.header is None: self.header = std_msgs.msg.Header() if self.x is None: self.x = 0. if self.y is None: self.y = 0. else: self.header = std_msgs.msg.Header() self.x = 0. self.y = 0. def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_2f().pack(_x.x, _x.y)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ codecs.lookup_error("rosmsg").msg_type = self._type try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8', 'rosmsg') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.x, _x.y,) = _get_struct_2f().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs)) _x = self.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.Struct('<I%ss'%length).pack(length, _x)) _x = self buff.write(_get_struct_2f().pack(_x.x, _x.y)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ codecs.lookup_error("rosmsg").msg_type = self._type try: if self.header is None: self.header = std_msgs.msg.Header() end = 0 _x = self start = end end += 12 (_x.header.seq, _x.header.stamp.secs, _x.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.header.frame_id = str[start:end].decode('utf-8', 'rosmsg') else: self.header.frame_id = str[start:end] _x = self start = end end += 8 (_x.x, _x.y,) = _get_struct_2f().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) # most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_2f = None def _get_struct_2f(): global _struct_2f if _struct_2f is None: _struct_2f = struct.Struct("<2f") return _struct_2f _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I
33.890052
145
0.641588
46e28ab8405eab40b70bec6310aa483a1d96e3ba
9,065
py
Python
utils.py
ZRunner/ZBot-test
6b1b906807405ab73c721aa92cd7230a8636e61c
[ "MIT" ]
null
null
null
utils.py
ZRunner/ZBot-test
6b1b906807405ab73c721aa92cd7230a8636e61c
[ "MIT" ]
null
null
null
utils.py
ZRunner/ZBot-test
6b1b906807405ab73c721aa92cd7230a8636e61c
[ "MIT" ]
null
null
null
import argparse import glob import logging import os import sys from logging.handlers import RotatingFileHandler from typing import TYPE_CHECKING import discord import mysql from discord.ext import commands from fcts import cryptage, tokens # pylint: disable=no-name-in-module if TYPE_CHECKING: from libs.classes import Zbot OUTAGE_REASON = { 'fr': "Un des datacenters de notre hébergeur OVH a pris feu, rendant ,inaccessible le serveur et toutes ses données. Une vieille sauvegarde de la base de donnée sera peut-être utilisée ultérieurement. Plus d'informations sur https://zbot.statuspage.io/", 'en': "One of the datacenters of our host OVH caught fire, making the server and all its data inaccessible. An old backup of the database may be used later. More information on https://zbot.statuspage.io/" } async def get_prefix(bot:"Zbot", msg: discord.Message) -> list: """Get the correct bot prefix from a message Prefix can change based on guild, but the bot mention will always be an option""" prefixes = [await bot.prefix_manager.get_prefix(msg.guild)] if msg.guild is None: prefixes.append("") return commands.when_mentioned_or(*prefixes)(bot, msg) def flatten_list(first_list: list) -> list: return [item for sublist in first_list for item in sublist] def setup_bot_logger(): """Create the logger module for the bot, used for logs""" # on chope le premier logger log = logging.getLogger("runner") # on définis un formatteur log_format = logging.Formatter("%(asctime)s %(levelname)s: %(message)s", datefmt="[%d/%m/%Y %H:%M]") # ex du format : [08/11/2018 14:46] WARNING: Rss fetch_rss_flux l.288 : Cannot get the RSS flux because of the following error: (suivi du traceback) # log vers un fichier file_handler = RotatingFileHandler("logs/debug.log", maxBytes=1e6, backupCount=2, delay=True) # tous les logs de niveau DEBUG et supérieur sont evoyés dans le fichier file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(log_format) # log vers la console stream_handler = logging.StreamHandler(sys.stdout) # tous les logs de niveau INFO et supérieur sont evoyés dans le fichier stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(log_format) # supposons que tu veuille collecter les erreurs sur ton site d'analyse d'erreurs comme sentry #sentry_handler = x #sentry_handler.setLevel(logging.ERROR) # on veut voir que les erreurs et au delà, pas en dessous #sentry_handler.setFormatter(format) log.addHandler(file_handler) log.addHandler(stream_handler) #log.addHandler(sentry_handler) log.setLevel(logging.DEBUG) return log def setup_database_logger(): "Create the logger module for database access" log = logging.getLogger("database") log_format = logging.Formatter("%(asctime)s %(levelname)s: [SQL] %(message)s", datefmt="[%d/%m/%Y %H:%M]") file_handler = RotatingFileHandler("logs/sql-debug.log", maxBytes=2e6, backupCount=2, delay=True) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(log_format) stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(log_format) log.addHandler(file_handler) log.addHandler(stream_handler) log.setLevel(logging.DEBUG) return log def setup_start_parser(): "Create a parser for the command-line interface" parser = argparse.ArgumentParser() parser.add_argument('--token', '-t', help="The bot token to use", required=True) parser.add_argument('--no-main-loop', help="Deactivate the bot main loop", action="store_false", dest="event_loop") parser.add_argument('--no-rss', help="Disable any RSS feature (loop and commands)", action="store_false", dest="rss_features") return parser def parse_crypted_file(bot: "Zbot"): "Parse the secret file containing all types of tokens and private things" with open('fcts/requirements', 'r') as file: lines = file.read().split('\n') # remove comments, empty lines and all for line in lines: if line.startswith("//") or line == '': lines.remove(line) while '' in lines: lines.remove('') # database for i, line in enumerate(['user', 'password', 'host', 'database1', 'database2']): bot.database_keys[line] = cryptage.uncrypte(lines[i]) # misc APIs bot.others['botsondiscord'] = cryptage.uncrypte(lines[6]) bot.others['discordbotsgroup'] = cryptage.uncrypte(lines[7]) bot.others['bitly'] = cryptage.uncrypte(lines[8]) bot.others['twitter'] = {'consumer_key': cryptage.uncrypte(lines[9]), 'consumer_secret': cryptage.uncrypte(lines[10]), 'access_token_key': cryptage.uncrypte(lines[11]), 'access_token_secret': cryptage.uncrypte(lines[12])} bot.others['discordlist.space'] = cryptage.uncrypte(lines[13]) bot.others['discordboats'] = cryptage.uncrypte(lines[14]) bot.others['discordextremelist'] = cryptage.uncrypte(lines[15]) bot.others['statuspage'] = cryptage.uncrypte(lines[16]) bot.others['nasa'] = cryptage.uncrypte(lines[17]) bot.others['random_api_token'] = cryptage.uncrypte(lines[18]) bot.others['google_api'] = cryptage.uncrypte(lines[19]) bot.dbl_token = tokens.get_dbl_token() def load_sql_connection(bot: "Zbot"): "Load the connection to the database, preferably in local mode" try: try: cnx = mysql.connector.connect(user=bot.database_keys['user'], password=bot.database_keys['password'], host="127.0.0.1", database=bot.database_keys['database1']) except (mysql.connector.InterfaceError, mysql.connector.ProgrammingError): bot.log.warning("Unable to access local dabatase - attempt via IP") cnx = mysql.connector.connect(user=bot.database_keys['user'], password=bot.database_keys['password'], host=bot.database_keys['host'], database=bot.database_keys['database1']) else: bot.log.info("Database connected locally") bot.database_keys['host'] = '127.0.0.1' cnx.close() except Exception as err: bot.log.error("---- UNABLE TO REACH THE DATABASE ----") bot.log.error(err) bot.database_online = False async def load_cogs(bot: "Zbot"): "Load the bot modules" initial_extensions = ['fcts.languages', 'fcts.admin', 'fcts.aide', 'fcts.antiscam', 'fcts.bot_events', 'fcts.bot_stats', 'fcts.cases', 'fcts.embeds', 'fcts.emojis', 'fcts.errors', 'fcts.events', 'fcts.fun', 'fcts.info', 'fcts.library', 'fcts.minecraft', 'fcts.moderation', 'fcts.morpions', 'fcts.partners', 'fcts.perms', 'fcts.reloads', 'fcts.roles_react', 'fcts.rss', 'fcts.s_backups', 'fcts.serverlogs', 'fcts.servers', 'fcts.tickets', 'fcts.timers', # 'fcts.translations', 'fcts.users', 'fcts.utilities', 'fcts.voices', 'fcts.welcomer', 'fcts.xp' ] # Here we load our extensions(cogs) listed above in [initial_extensions] count = 0 for extension in initial_extensions: try: await bot.load_extension(extension) except discord.DiscordException: bot.log.critical('Failed to load extension %s', extension, exc_info=True) count += 1 if count > 0: bot.log.critical("%s modules not loaded\nEnd of program", count) sys.exit() async def count_code_lines(): """Count lines of Python code in the current folder Comments and empty lines are ignored.""" count = 0 path = os.path.dirname(__file__)+'/**/*.py' for filename in glob.iglob(path, recursive=True): if '/env/' in filename or not filename.endswith('.py'): continue with open(filename, 'r', encoding='utf-8') as file: for line in file.read().split("\n"): cleaned_line = line.strip() if len(cleaned_line) > 2 and not cleaned_line.startswith('#'): count += 1 return count
42.359813
258
0.609156
988c8aaf033c0c5e15f6254e5acc10faf07e566b
199
py
Python
application/__init__.py
Naoto-Ida/PiStats-Server
67bc7224ccf77a3e46bc07a9781bf989d4631849
[ "MIT" ]
null
null
null
application/__init__.py
Naoto-Ida/PiStats-Server
67bc7224ccf77a3e46bc07a9781bf989d4631849
[ "MIT" ]
null
null
null
application/__init__.py
Naoto-Ida/PiStats-Server
67bc7224ccf77a3e46bc07a9781bf989d4631849
[ "MIT" ]
null
null
null
from flask import Flask from flask_bootstrap import Bootstrap app = Flask(__name__) Bootstrap(app) import application.index import application.cpu import application.disk import application.memory
18.090909
37
0.844221
64325f603e48b2e1f18f8addfaaf255e3fde410f
4,067
py
Python
Solid/StochasticHillClimb.py
Yamp/Solid
96e7f5de2e7a481aadef93add9cfa3a8270705b3
[ "MIT" ]
null
null
null
Solid/StochasticHillClimb.py
Yamp/Solid
96e7f5de2e7a481aadef93add9cfa3a8270705b3
[ "MIT" ]
null
null
null
Solid/StochasticHillClimb.py
Yamp/Solid
96e7f5de2e7a481aadef93add9cfa3a8270705b3
[ "MIT" ]
null
null
null
from abc import ABCMeta, abstractmethod from copy import deepcopy from math import exp from random import random class StochasticHillClimb(metaclass=ABCMeta): """ Conducts stochastic hill climb """ initial_state = None current_state = None best_state = None cur_steps = 0 max_steps = None best_objective = None max_objective = None temp = None def __init__(self, initial_state, temp, max_steps, max_objective=None): """ :param initial_state: initial state of hill climbing :param max_steps: maximum steps to run hill climbing for :param temp: temperature in probabilistic acceptance of transition :param max_objective: objective function to stop algorithm once reached """ self.initial_state = initial_state if isinstance(max_steps, int) and max_steps > 0: self.max_steps = max_steps else: raise ValueError('Max steps must be a positive integer') if max_objective is not None: if isinstance(max_objective, (float, int)): self.max_objective = float(max_objective) else: raise ValueError('Maximum objective must be a numeric type') if isinstance(temp, (float, int)): self.temp = float(temp) else: raise ValueError('Temperature must be a numeric type') def __str__(self): return ('STOCHASTIC HILL CLIMB: \n' + 'CURRENT STEPS: %d \n' + 'BEST OBJECTIVE: %f \n' + 'BEST STATE: %s \n\n') % \ (self.cur_steps, self.best_objective, str(self.best_state)) def __repr__(self): return self.__str__() def _clear(self): """ Resets the variables that are altered on a per-run basis of the algorithm :return: None """ self.cur_steps = 0 self.current_state = None self.best_state = None self.best_objective = None @abstractmethod def _neighbor(self): """ Returns a random member of the neighbor of the current state :return: a random neighbor, given access to self.current_state """ pass @abstractmethod def _objective(self, state): """ Evaluates a given state :param state: a state :return: objective function value of state """ pass def _accept_neighbor(self, neighbor): """ Probabilistically determines whether or not to accept a transition to a neighbor :param neighbor: a state :return: boolean indicating whether or not transition was accepted """ try: p = 1. / (1 + (exp((self._objective(self.current_state) - self._objective(neighbor)) / self.temp))) except OverflowError: return True return True if p >= 1 else p >= random() def run(self, verbose=True): """ Conducts hill climb :param verbose: indicates whether or not to print progress regularly :return: best state and best objective function value """ self._clear() self.current_state = self.initial_state for i in range(self.max_steps): self.cur_steps += 1 if ((i + 1) % 100 == 0) and verbose: print(self) neighbor = self._neighbor() if self._accept_neighbor(neighbor): self.current_state = neighbor if self._objective(self.current_state) > (self.best_objective or 0): self.best_objective = self._objective(self.current_state) self.best_state = deepcopy(self.current_state) if self.max_objective is not None and (self.best_objective or 0) > self.max_objective: print("TERMINATING - REACHED MAXIMUM OBJECTIVE") return self.best_state, self.best_objective print("TERMINATING - REACHED MAXIMUM STEPS") return self.best_state, self.best_objective
30.810606
111
0.605606
e98f7f518eb25c1a0e126b0bb4c5d0c8ff489f2d
212
py
Python
admin_list_controls/tests/utils.py
murray3k/wagtail-admin-list-controls
ad162fe70b9795937777b2dd6a01261deb394fdb
[ "MIT" ]
30
2020-03-11T06:45:31.000Z
2022-01-24T13:54:17.000Z
admin_list_controls/tests/utils.py
murray3k/wagtail-admin-list-controls
ad162fe70b9795937777b2dd6a01261deb394fdb
[ "MIT" ]
14
2020-03-09T20:54:27.000Z
2021-09-03T00:42:05.000Z
admin_list_controls/tests/utils.py
murray3k/wagtail-admin-list-controls
ad162fe70b9795937777b2dd6a01261deb394fdb
[ "MIT" ]
3
2020-03-09T14:17:38.000Z
2021-05-18T09:16:50.000Z
from django.test import TestCase class BaseTestCase(TestCase): def assertObjectSerializesTo(self, obj, subset): serialized = obj.serialize() self.assertDictContainsSubset(subset, serialized)
30.285714
57
0.75
d870f62103cdbfee9479b651ca7889f215baeabc
105,050
py
Python
core/domain/user_services_test.py
EishaMazhar/oppia
ab4f3cf20764b27f567798e4b1184471aaf7f73b
[ "Apache-2.0" ]
null
null
null
core/domain/user_services_test.py
EishaMazhar/oppia
ab4f3cf20764b27f567798e4b1184471aaf7f73b
[ "Apache-2.0" ]
1
2020-05-27T06:08:17.000Z
2020-05-27T06:08:17.000Z
core/domain/user_services_test.py
EishaMazhar/oppia
ab4f3cf20764b27f567798e4b1184471aaf7f73b
[ "Apache-2.0" ]
1
2018-03-20T14:12:31.000Z
2018-03-20T14:12:31.000Z
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for core.domain.user_services.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime import logging import os from constants import constants from core.domain import collection_services from core.domain import event_services from core.domain import exp_domain from core.domain import exp_services from core.domain import rights_manager from core.domain import user_domain from core.domain import user_jobs_continuous from core.domain import user_services from core.platform import models from core.tests import test_utils import feconf import python_utils import requests_mock import utils (user_models,) = models.Registry.import_models([models.NAMES.user]) class MockUserStatsAggregator( user_jobs_continuous.UserStatsAggregator): """A modified UserStatsAggregator that does not start a new batch job when the previous one has finished. """ @classmethod def _get_batch_job_manager_class(cls): return MockUserStatsMRJobManager @classmethod def _kickoff_batch_job_after_previous_one_ends(cls): pass class MockUserStatsMRJobManager( user_jobs_continuous.UserStatsMRJobManager): @classmethod def _get_continuous_computation_class(cls): return MockUserStatsAggregator class UserServicesUnitTests(test_utils.GenericTestBase): """Test the user services methods.""" def setUp(self): super(UserServicesUnitTests, self).setUp() schema_version = 1 self.modifiable_user_data = user_domain.ModifiableUserData( 'display_alias', '12345', [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version, 'user_id' ) self.modifiable_new_user_data = user_domain.ModifiableUserData( 'display_alias3', '12345', [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version ) def test_is_user_id_valid(self): self.assertTrue( user_services.is_user_id_valid(feconf.SYSTEM_COMMITTER_ID)) self.assertTrue( user_services.is_user_id_valid(feconf.MIGRATION_BOT_USER_ID)) self.assertTrue( user_services.is_user_id_valid(feconf.SUGGESTION_BOT_USER_ID)) self.assertTrue(user_services.is_user_id_valid('uid_%s' % ('a' * 32))) self.assertFalse( user_services.is_user_id_valid('uid_%s%s' % ('a' * 31, 'A'))) self.assertFalse(user_services.is_user_id_valid('uid_%s' % ('a' * 31))) self.assertFalse(user_services.is_user_id_valid('a' * 36)) def test_set_and_get_username(self): gae_id = 'someUser' username = 'username' with self.assertRaisesRegexp(Exception, 'User not found.'): user_services.set_username(gae_id, username) user_settings = user_services.create_new_user( gae_id, 'user@example.com') user_services.set_username(user_settings.user_id, username) self.assertEqual( username, user_services.get_username(user_settings.user_id)) def test_get_username_for_system_user(self): self.assertEqual( feconf.SYSTEM_COMMITTER_ID, user_services.get_username(feconf.SYSTEM_COMMITTER_ID)) self.assertEqual( feconf.MIGRATION_BOT_USERNAME, user_services.get_username(feconf.MIGRATION_BOT_USER_ID)) def test_get_username_for_pseudonymous_id(self): self.assertEqual( 'UserAaaaaaaa', user_services.get_username('pid_' + 'a' * 32)) self.assertEqual( 'UserBbbbbbbb', user_services.get_username('pid_' + 'b' * 32)) def test_get_usernames_for_pseudonymous_ids(self): # Handle usernames that exists. self.assertEqual( ['UserAaaaaaaa', 'UserBbbbbbbb'], user_services.get_usernames(['pid_' + 'a' * 32, 'pid_' + 'b' * 32])) def test_get_usernames_empty_list(self): # Return empty list when no user id passed. self.assertEqual([], user_services.get_usernames([])) def test_get_usernames_system_admin(self): # Check that system admin has correct username. self.assertEqual( [feconf.SYSTEM_COMMITTER_ID], user_services.get_usernames([feconf.SYSTEM_COMMITTER_ID])) def test_get_username_for_nonexistent_user(self): with self.assertRaisesRegexp( Exception, 'User with ID \'fakeUser\' not found.' ): user_services.get_username('fakeUser') def test_get_username_none(self): user_id = user_services.create_new_user( 'fakeUser', 'user@example.com').user_id self.assertEqual(None, user_services.get_username(user_id)) def test_is_username_taken_false(self): self.assertFalse(user_services.is_username_taken('fakeUsername')) def test_is_username_taken_true(self): gae_id = 'someUser' username = 'newUsername' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id user_services.set_username(user_id, username) self.assertTrue(user_services.is_username_taken(username)) def test_is_username_taken_different_case(self): gae_id = 'someUser' username = 'camelCase' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id user_services.set_username(user_id, username) self.assertTrue(user_services.is_username_taken('CaMeLcAsE')) def test_set_invalid_usernames(self): gae_id = 'someUser' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id bad_usernames_with_expected_error_message = [ (' bob ', 'Usernames can only have alphanumeric characters.'), ('@', 'Usernames can only have alphanumeric characters.'), ('', 'Empty username supplied.'), ('a' * 100, 'A username can have at most 30 characters.'), ('ADMIN', 'This username is not available.'), ('admin', 'This username is not available.'), ('AdMiN2020', 'This username is not available.'), ('AbcOppiaMigrationBotXyz', 'This username is not available.'), ('OppiaMigrATIONBOTXyz', 'This username is not available.'), ('AbcOppiaSuggestionBotXyz', 'This username is not available.'), ('AAAOPPIASuggestionBotBBB', 'This username is not available.'), ('xyzOppia', 'This username is not available.'), ('oppiaXyz', 'This username is not available.'), ('abcOppiaXyz', 'This username is not available.')] for username, error_msg in bad_usernames_with_expected_error_message: with self.assertRaisesRegexp(utils.ValidationError, error_msg): user_services.set_username(user_id, username) def test_update_user_settings_for_invalid_display_alias_raises_error(self): gae_id = 'someUser' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id bad_display_aliases_with_expected_error = [ ('', 'Expected display_alias to be a string, received .'), (0, 'Expected display_alias to be a string, received 0.'), (None, 'Expected display_alias to be a string, received None.') ] self.modifiable_new_user_data.user_id = user_id self.modifiable_new_user_data.pin = None for display_alias, error_msg in bad_display_aliases_with_expected_error: with self.assertRaisesRegexp(utils.ValidationError, error_msg): self.modifiable_new_user_data.display_alias = display_alias user_services.update_multiple_users_data( [self.modifiable_new_user_data]) def test_update_user_settings_valid_display_alias_set_successfully(self): gae_id = 'someUser' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id display_alias = 'Name' user_settings = user_services.get_user_settings(user_id) self.assertIsNone(user_settings.display_alias) self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = None self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) user_settings = user_services.get_user_settings(user_id) self.assertEqual(user_settings.display_alias, display_alias) def test_create_new_user_with_invalid_emails_raises_exception(self): bad_email_addresses_with_expected_error_message = [ ('@', 'Invalid email address: @'), ('@@', 'Invalid email address: @@'), ('abc', 'Invalid email address: abc'), ('', 'No user email specified.'), (None, 'Expected email to be a string, received None'), ( ['a', '@', 'b.com'], r'Expected email to be a string, received ' r'\[u\'a\', u\'@\', u\'b.com\'\]')] for email, error_msg in bad_email_addresses_with_expected_error_message: with self.assertRaisesRegexp(utils.ValidationError, error_msg): user_services.create_new_user('gae_id', email) def test_create_new_user_with_invalid_email_creates_no_user_models(self): bad_email = '@' error_msg = 'Invalid email address: @' with self.assertRaisesRegexp(utils.ValidationError, error_msg): user_services.create_new_user('gae_id', bad_email) tmp_admin_user_id = self.get_user_id_from_email(self.SUPER_ADMIN_EMAIL) user_ids_in_user_settings = [ model.id for model in user_models.UserSettingsModel.get_all()] user_ids_in_user_auth_details = [ model.id for model in user_models.UserAuthDetailsModel.get_all()] user_ids_in_user_contributions = [ model.id for model in user_models.UserContributionsModel.get_all()] self.assertEqual(user_ids_in_user_settings, [tmp_admin_user_id]) self.assertEqual(user_ids_in_user_auth_details, [tmp_admin_user_id]) self.assertEqual(user_ids_in_user_contributions, [tmp_admin_user_id]) def test_email_truncation(self): email_addresses = [ ('a@b.c', '..@b.c'), ('ab@c.d', 'a..@c.d'), ('abc@def.gh', 'a..@def.gh'), ('abcd@efg.h', 'a..@efg.h'), ('abcdefgh@efg.h', 'abcde..@efg.h'), ] for ind, (actual_email, expected_email) in enumerate(email_addresses): user_settings = user_services.create_new_user( python_utils.convert_to_bytes(ind), actual_email) self.assertEqual(user_settings.truncated_email, expected_email) def test_get_email_from_username(self): gae_id = 'someUser' username = 'username' user_email = 'user@example.com' user_settings = user_services.create_new_user(gae_id, user_email) user_services.set_username(user_settings.user_id, username) self.assertEqual( user_services.get_username(user_settings.user_id), username) # Handle usernames that exist. self.assertEqual( user_services.get_email_from_username(username), user_email) # Handle usernames in the same equivalence class correctly. self.assertEqual( user_services.get_email_from_username('USERNAME'), user_email) # Return None for usernames which don't exist. self.assertIsNone( user_services.get_email_from_username('fakeUsername')) def test_get_user_id_from_username(self): gae_id = 'someUser' username = 'username' user_email = 'user@example.com' user_settings = user_services.create_new_user(gae_id, user_email) user_services.set_username(user_settings.user_id, username) self.assertEqual( user_services.get_username(user_settings.user_id), username) # Handle usernames that exist. self.assertEqual( user_services.get_user_id_from_username(username), user_settings.user_id) # Handle usernames in the same equivalence class correctly. self.assertEqual( user_services.get_user_id_from_username('USERNAME'), user_settings.user_id) # Return None for usernames which don't exist. self.assertIsNone( user_services.get_user_id_from_username('fakeUsername')) def test_get_user_settings_by_gae_id_for_existing_user_is_correct(self): gae_id = 'gae_id' email = 'user@example.com' user_id = 'user_id' username = 'username' user_models.UserSettingsModel( id=user_id, gae_id=gae_id, email=email, username=username, ).put() user_models.UserAuthDetailsModel( id=user_id, gae_id=gae_id ).put() user_settings_model = user_models.UserSettingsModel.get_by_id(user_id) user_settings = user_services.get_user_settings_by_gae_id(gae_id) self.assertEqual(user_settings_model.id, user_settings.user_id) self.assertEqual(user_settings_model.gae_id, user_settings.gae_id) self.assertEqual(user_settings_model.email, user_settings.email) self.assertEqual(user_settings_model.username, user_settings.username) def test_get_user_settings_by_gae_id_for_nonexistent_gae_id_is_none(self): self.assertIsNone(user_services.get_user_settings_by_gae_id('gae_id_x')) def test_get_auth_details_by_gae_id_for_nonexistent_gae_id_is_none(self): self.assertIsNone(user_services.get_user_settings_by_gae_id('gae_id_x')) def test_get_user_settings_by_gae_id_strict_existing_user_is_correct(self): non_existent_user_id = 'id_x' gae_id = 'gae_id' email = 'user@example.com' user_id = 'user_id' username = 'username' user_models.UserSettingsModel( id=user_id, gae_id=gae_id, email=email, username=username, ).put() user_models.UserAuthDetailsModel( id=user_id, gae_id=gae_id ).put() user_settings_model = user_models.UserSettingsModel.get_by_id(user_id) user_settings = user_services.get_user_settings_by_gae_id(gae_id) self.assertEqual(user_settings_model.id, user_settings.user_id) self.assertEqual(user_settings_model.gae_id, user_settings.gae_id) self.assertEqual(user_settings_model.email, user_settings.email) self.assertEqual(user_settings_model.username, user_settings.username) with self.assertRaisesRegexp(Exception, 'User not found.'): user_services.get_user_settings_by_gae_id( non_existent_user_id, strict=True) def test_fetch_gravatar_success(self): user_email = 'user@example.com' gravatar_url = user_services.get_gravatar_url(user_email) expected_gravatar_filepath = os.path.join( self.get_static_asset_filepath(), 'assets', 'images', 'avatar', 'gravatar_example.png') with python_utils.open_file( expected_gravatar_filepath, 'rb', encoding=None) as f: expected_gravatar = f.read() with requests_mock.Mocker() as requests_mocker: requests_mocker.get(gravatar_url, content=expected_gravatar) gravatar = user_services.fetch_gravatar(user_email) self.assertEqual( gravatar, utils.convert_png_to_data_url(expected_gravatar_filepath)) def test_fetch_gravatar_failure_404(self): user_email = 'user@example.com' gravatar_url = user_services.get_gravatar_url(user_email) error_messages = [] logging_mocker = self.swap(logging, 'error', error_messages.append) with logging_mocker, requests_mock.Mocker() as requests_mocker: requests_mocker.get(gravatar_url, status_code=404) gravatar = user_services.fetch_gravatar(user_email) self.assertEqual( error_messages, ['[Status 404] Failed to fetch Gravatar from %s' % gravatar_url]) self.assertEqual(gravatar, user_services.DEFAULT_IDENTICON_DATA_URL) def test_fetch_gravatar_failure_exception(self): user_email = 'user@example.com' gravatar_url = user_services.get_gravatar_url(user_email) error_messages = [] logging_mocker = self.swap(logging, 'exception', error_messages.append) with logging_mocker, requests_mock.Mocker() as requests_mocker: requests_mocker.get(gravatar_url, exc=Exception) gravatar = user_services.fetch_gravatar(user_email) self.assertEqual( error_messages, ['Failed to fetch Gravatar from %s' % gravatar_url]) self.assertEqual(gravatar, user_services.DEFAULT_IDENTICON_DATA_URL) def test_default_identicon_data_url(self): identicon_filepath = os.path.join( self.get_static_asset_filepath(), 'assets', 'images', 'avatar', 'user_blue_72px.png') identicon_data_url = utils.convert_png_to_data_url(identicon_filepath) self.assertEqual( identicon_data_url, user_services.DEFAULT_IDENTICON_DATA_URL) def test_set_and_get_user_email_preferences(self): gae_id = 'someUser' username = 'username' user_email = 'user@example.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) # When UserEmailPreferencesModel is yet to be created, # the value returned by get_email_preferences() should be True. email_preferences = user_services.get_email_preferences(user_id) self.assertEqual( email_preferences.can_receive_editor_role_email, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE) email_preferences = user_services.get_email_preferences(user_id) self.assertEqual( email_preferences.can_receive_feedback_message_email, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE) # The user retrieves their email preferences. This initializes # a UserEmailPreferencesModel instance with the default values. user_services.update_email_preferences( user_id, feconf.DEFAULT_EMAIL_UPDATES_PREFERENCE, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) email_preferences = user_services.get_email_preferences(user_id) self.assertEqual( email_preferences.can_receive_editor_role_email, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE) self.assertEqual( email_preferences.can_receive_feedback_message_email, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE) # The user sets their membership email preference to False. user_services.update_email_preferences( user_id, feconf.DEFAULT_EMAIL_UPDATES_PREFERENCE, False, False, False) email_preferences = user_services.get_email_preferences(user_id) self.assertFalse(email_preferences.can_receive_editor_role_email) self.assertFalse(email_preferences.can_receive_feedback_message_email) self.assertFalse(email_preferences.can_receive_subscription_email) def test_set_and_get_user_email_preferences_for_exploration(self): gae_id = 'someUser' exploration_id = 'someExploration' username = 'username' user_email = 'user@example.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) # When ExplorationUserDataModel is yet to be created, the value # of mute_feedback_notifications and mute_suggestion_notifications # should match the default values. exploration_user_model = ( user_services.user_models.ExplorationUserDataModel.get( user_id, exploration_id)) self.assertIsNone(exploration_user_model) email_preferences = user_services.get_email_preferences_for_exploration( user_id, exploration_id) self.assertEqual( email_preferences.mute_feedback_notifications, feconf.DEFAULT_FEEDBACK_NOTIFICATIONS_MUTED_PREFERENCE) self.assertEqual( email_preferences.mute_suggestion_notifications, feconf.DEFAULT_SUGGESTION_NOTIFICATIONS_MUTED_PREFERENCE) # This initializes a ExplorationUserDataModel instance with # the default mute values. user_services.set_email_preferences_for_exploration( user_id, exploration_id, mute_feedback_notifications=( feconf.DEFAULT_FEEDBACK_NOTIFICATIONS_MUTED_PREFERENCE), mute_suggestion_notifications=( feconf.DEFAULT_SUGGESTION_NOTIFICATIONS_MUTED_PREFERENCE)) email_preferences = user_services.get_email_preferences_for_exploration( user_id, exploration_id) self.assertEqual( email_preferences.mute_feedback_notifications, feconf.DEFAULT_FEEDBACK_NOTIFICATIONS_MUTED_PREFERENCE) self.assertEqual( email_preferences.mute_suggestion_notifications, feconf.DEFAULT_SUGGESTION_NOTIFICATIONS_MUTED_PREFERENCE) # This sets only mute_suggestion_notifications property to True. # mute_feedback_notifications should remain same as before. user_services.set_email_preferences_for_exploration( user_id, exploration_id, mute_suggestion_notifications=True) email_preferences = user_services.get_email_preferences_for_exploration( user_id, exploration_id) self.assertEqual( email_preferences.mute_feedback_notifications, feconf.DEFAULT_FEEDBACK_NOTIFICATIONS_MUTED_PREFERENCE) self.assertTrue(email_preferences.mute_suggestion_notifications) # This sets only mute_feedback_notifications property to True. # mute_suggestion_notifications should remain same as before. user_services.set_email_preferences_for_exploration( user_id, exploration_id, mute_feedback_notifications=True) email_preferences = user_services.get_email_preferences_for_exploration( user_id, exploration_id) self.assertTrue(email_preferences.mute_feedback_notifications) self.assertTrue(email_preferences.mute_suggestion_notifications) def test_get_usernames_by_role(self): gae_ids = ['test1', 'test2', 'test3', 'test4'] usernames = ['name1', 'name2', 'name3', 'name4'] user_emails = [ 'test1@email.com', 'test2@email.com', 'test3@email.com', 'test4@email.com'] user_ids = [] for gae_id, email, name in python_utils.ZIP( gae_ids, user_emails, usernames): user_id = user_services.create_new_user(gae_id, email).user_id user_ids.append(user_id) user_services.set_username(user_id, name) user_services.update_user_role(user_ids[0], feconf.ROLE_ID_MODERATOR) user_services.update_user_role(user_ids[1], feconf.ROLE_ID_MODERATOR) user_services.update_user_role(user_ids[2], feconf.ROLE_ID_BANNED_USER) user_services.update_user_role(user_ids[3], feconf.ROLE_ID_BANNED_USER) self.assertEqual( set(user_services.get_usernames_by_role(feconf.ROLE_ID_MODERATOR)), set(['name1', 'name2'])) self.assertEqual( set(user_services.get_usernames_by_role( feconf.ROLE_ID_BANNED_USER)), set(['name3', 'name4'])) def test_get_user_ids_by_role(self): gae_ids = ['test1', 'test2', 'test3', 'test4'] usernames = ['name1', 'name2', 'name3', 'name4'] user_emails = [ 'test1@email.com', 'test2@email.com', 'test3@email.com', 'test4@email.com'] user_ids = [] for uid, email, name in python_utils.ZIP( gae_ids, user_emails, usernames): user_id = user_services.create_new_user(uid, email).user_id user_ids.append(user_id) user_services.set_username(user_id, name) user_services.update_user_role(user_ids[0], feconf.ROLE_ID_MODERATOR) user_services.update_user_role(user_ids[1], feconf.ROLE_ID_MODERATOR) user_services.update_user_role(user_ids[2], feconf.ROLE_ID_BANNED_USER) user_services.update_user_role(user_ids[3], feconf.ROLE_ID_BANNED_USER) self.assertEqual( set(user_services.get_user_ids_by_role(feconf.ROLE_ID_MODERATOR)), set([user_ids[0], user_ids[1]])) self.assertEqual( set(user_services.get_user_ids_by_role( feconf.ROLE_ID_BANNED_USER)), set([user_ids[2], user_ids[3]])) def test_update_user_creator_dashboard_display(self): gae_id = 'test_id' username = 'testname' user_email = 'test@email.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) user_setting = user_services.get_user_settings(user_id) self.assertEqual( user_setting.creator_dashboard_display_pref, constants.ALLOWED_CREATOR_DASHBOARD_DISPLAY_PREFS['CARD']) user_services.update_user_creator_dashboard_display( user_id, constants.ALLOWED_CREATOR_DASHBOARD_DISPLAY_PREFS['LIST']) user_setting = user_services.get_user_settings(user_id) self.assertEqual( user_setting.creator_dashboard_display_pref, constants.ALLOWED_CREATOR_DASHBOARD_DISPLAY_PREFS['LIST']) def test_update_user_role(self): gae_id = 'test_id' username = 'testname' user_email = 'test@email.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) self.assertEqual( user_services.get_user_role_from_id(user_id), feconf.ROLE_ID_EXPLORATION_EDITOR) user_services.update_user_role( user_id, feconf.ROLE_ID_COLLECTION_EDITOR) self.assertEqual( user_services.get_user_role_from_id(user_id), feconf.ROLE_ID_COLLECTION_EDITOR) def test_get_all_profiles_auth_details_non_existent_id_raises_error(self): non_existent_user_id = 'id_x' error_msg = 'Parent user not found.' with self.assertRaisesRegexp(Exception, error_msg): user_services.get_all_profiles_auth_details_by_parent_user_id( non_existent_user_id) def test_update_user_role_from_learner_to_other_role_raises_exception(self): gae_id = 'test_id' user_email = 'test@email.com' user_pin = '12345' profile_pin = '123' display_alias = 'display_alias' display_alias_2 = 'display_alias_2' user_id = user_services.create_new_user(gae_id, user_email).user_id self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) self.modifiable_new_user_data.display_alias = display_alias_2 self.modifiable_new_user_data.pin = profile_pin user_services.create_new_profiles( gae_id, user_email, [self.modifiable_new_user_data]) profile_user_id = ( user_services.get_all_profiles_auth_details_by_parent_user_id( user_id)[0].user_id ) self.assertEqual( user_services.get_user_role_from_id(profile_user_id), feconf.ROLE_ID_LEARNER) error_msg = 'The role of a Learner cannot be changed.' with self.assertRaisesRegexp(Exception, error_msg): user_services.update_user_role( profile_user_id, feconf.ROLE_ID_EXPLORATION_EDITOR) def test_update_user_role_from_other_role_to_learner_raises_exception(self): gae_id = 'test_id' user_email = 'test@email.com' user_id = user_services.create_new_user(gae_id, user_email).user_id self.assertEqual( user_services.get_user_role_from_id(user_id), feconf.ROLE_ID_EXPLORATION_EDITOR) error_msg = 'Updating to a Learner role is not allowed.' with self.assertRaisesRegexp(Exception, error_msg): user_services.update_user_role( user_id, feconf.ROLE_ID_LEARNER) def test_create_new_user_also_creates_a_new_user_auth_details_entry(self): new_gae_id = 'new_gae_id' new_email = 'new@example.com' self.assertIsNone( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, new_gae_id) ) user_services.create_new_user(new_gae_id, new_email) user_settings = user_services.get_user_settings_by_gae_id( new_gae_id) user_auth_details = user_models.UserAuthDetailsModel.get_by_id( user_settings.user_id) self.assertEqual(user_auth_details.gae_id, user_settings.gae_id) def test_get_auth_details_by_user_id_for_existing_user_works_fine(self): gae_id = 'new_gae_id' email = 'new@example.com' user_services.create_new_user(gae_id, email) user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, gae_id) ) user_auth_details = user_services.get_auth_details_by_user_id( user_auth_details_model.id) self.assertEqual( user_auth_details.user_id, user_auth_details_model.id) self.assertEqual( user_auth_details.gae_id, user_auth_details_model.gae_id) self.assertEqual( user_auth_details.parent_user_id, user_auth_details_model.parent_user_id ) def test_get_auth_details_by_user_id_non_existing_user_returns_none(self): non_existent_user_id = 'id_x' self.assertIsNone( user_services.get_auth_details_by_user_id(non_existent_user_id)) def test_get_auth_details_by_user_id_strict_non_existing_user_error(self): non_existent_user_id = 'id_x' error_msg = 'User not found' with self.assertRaisesRegexp(Exception, error_msg): user_services.get_auth_details_by_user_id( non_existent_user_id, strict=True) def test_get_auth_details_by_gae_id_non_existing_user_returns_none(self): non_existent_user_id = 'id_x' self.assertIsNone( user_services.get_auth_details_by_user_id(non_existent_user_id)) def test_create_new_profile_with_parent_user_pin_set_is_success(self): gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias' display_alias_2 = 'display_alias2' user_pin = '12345' profile_pin = '123' user_services.create_new_user(gae_id, email) user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, gae_id) ) user_id = user_auth_details_model.id self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) self.modifiable_new_user_data.display_alias = display_alias_2 self.modifiable_new_user_data.pin = profile_pin user_services.create_new_profiles( gae_id, email, [self.modifiable_new_user_data] ) user_auth_details_models = ( user_services.get_all_profiles_auth_details_by_parent_user_id( user_id) ) self.assertEqual(len(user_auth_details_models), 1) self.assertEqual(user_auth_details_models[0].parent_user_id, user_id) self.assertIsNone(user_auth_details_models[0].gae_id) def test_create_new_profile_with_parent_user_pin_not_set_raises_error(self): gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias' profile_pin = '123' user_services.create_new_user(gae_id, email) error_msg = 'Pin must be set for a full user before creating a profile.' with self.assertRaisesRegexp(Exception, error_msg): self.modifiable_new_user_data.display_alias = display_alias self.modifiable_new_user_data.pin = profile_pin user_services.create_new_profiles( gae_id, email, [self.modifiable_new_user_data]) def test_create_multiple_new_profiles_for_same_user_works_correctly(self): schema_version = 1 gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias' display_alias_2 = 'display_alias2' display_alias_3 = 'display_alias3' user_pin = '12345' profile_pin = '123' user_services.create_new_user(gae_id, email) user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, gae_id) ) user_id = user_auth_details_model.id self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) self.modifiable_new_user_data.display_alias = display_alias_2 self.modifiable_new_user_data.pin = profile_pin modifiable_new_user_data_2 = user_domain.ModifiableUserData( display_alias_3, None, [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version ) user_settings_list = user_services.create_new_profiles( gae_id, email, [ self.modifiable_new_user_data, modifiable_new_user_data_2 ] ) profile_1_id = user_settings_list[0].user_id profile_2_id = user_settings_list[1].user_id user_auth_details_models = [ { 'id': model.id, 'gae_id': model.gae_id, 'parent_user_id': model.parent_user_id } for model in user_models.UserAuthDetailsModel.get_all_profiles_by_parent_user_id( user_id) ] expected_user_auth_output = [ { 'id': profile_1_id, 'gae_id': None, 'parent_user_id': user_id }, { 'id': profile_2_id, 'gae_id': None, 'parent_user_id': user_id } ] self.assertItemsEqual( user_auth_details_models, expected_user_auth_output) user_settings_models = [ { 'id': model.id, 'display_alias': model.display_alias, 'pin': model.pin, 'role': model.role } for model in user_models.UserSettingsModel.get_multi( [profile_1_id, profile_2_id]) ] expected_user_settings_output = [ { 'id': profile_1_id, 'display_alias': display_alias_2, 'pin': profile_pin, 'role': feconf.ROLE_ID_LEARNER }, { 'id': profile_2_id, 'display_alias': display_alias_3, 'pin': None, 'role': feconf.ROLE_ID_LEARNER } ] self.assertItemsEqual( user_settings_models, expected_user_settings_output) def test_create_new_profile_with_nonexistent_user_raises_error(self): non_existent_gae_id = 'gae_id_x' non_existent_email = 'x@example.com' profile_pin = '123' display_alias = 'display_alias' error_msg = 'User not found.' with self.assertRaisesRegexp(Exception, error_msg): self.modifiable_new_user_data.display_alias = display_alias self.modifiable_new_user_data.pin = profile_pin user_services.create_new_profiles( non_existent_gae_id, non_existent_email, [self.modifiable_new_user_data] ) def test_create_new_profile_modifiable_user_with_user_id_raises_error(self): gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias' display_alias_2 = 'display_alias2' user_pin = '12345' profile_pin = '123' user_services.create_new_user(gae_id, email) user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, gae_id) ) user_id = user_auth_details_model.id self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) error_msg = 'User id cannot already exist for a new user.' with self.assertRaisesRegexp(Exception, error_msg): self.modifiable_new_user_data.display_alias = display_alias_2 self.modifiable_new_user_data.pin = profile_pin self.modifiable_new_user_data.user_id = 'user_id' user_services.create_new_profiles( gae_id, email, [self.modifiable_new_user_data] ) def test_update_users_modifiable_object_user_id_not_set_raises_error(self): gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias2' user_pin = '12345' user_services.create_new_user(gae_id, email) self.modifiable_user_data.user_id = None self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias error_msg = 'Missing user ID.' with self.assertRaisesRegexp(Exception, error_msg): user_services.update_multiple_users_data( [self.modifiable_user_data]) def test_update_users_for_user_with_non_existent_id_raises_error(self): gae_id = 'gae_id' non_existent_user_id = 'id_x' email = 'new@example.com' display_alias = 'display_alias2' user_pin = '12345' user_services.create_new_user(gae_id, email) self.modifiable_user_data.user_id = non_existent_user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias error_msg = 'User not found.' with self.assertRaisesRegexp(Exception, error_msg): user_services.update_multiple_users_data( [self.modifiable_user_data]) def test_update_users_data_for_multiple_users_works_correctly(self): # Preparing for the test. schema_version = 1 gae_id = 'gae_id' email = 'new@example.com' display_alias = 'display_alias' display_alias_2 = 'display_alias2' display_alias_3 = 'display_alias3' user_pin = '12345' profile_pin = '123' user_services.create_new_user(gae_id, email) user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_auth_id( feconf.AUTH_METHOD_GAE, gae_id) ) user_id = user_auth_details_model.id self.modifiable_user_data.user_id = user_id self.modifiable_user_data.pin = user_pin self.modifiable_user_data.display_alias = display_alias user_services.update_multiple_users_data([self.modifiable_user_data]) self.modifiable_new_user_data.display_alias = display_alias_2 self.modifiable_new_user_data.pin = profile_pin modifiable_new_user_data_2 = user_domain.ModifiableUserData( display_alias_3, None, [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version ) user_settings_list = user_services.create_new_profiles( gae_id, email, [ self.modifiable_new_user_data, modifiable_new_user_data_2 ] ) profile_user_ids = [ user_settings_list[0].user_id, user_settings_list[1].user_id] self.modifiable_new_user_data.user_id = profile_user_ids[0] modifiable_new_user_data_2.user_id = profile_user_ids[1] # Performing the actual action. modifiable_new_user_data_2.pin = '345' self.modifiable_new_user_data.display_alias = 'xyz' user_services.update_multiple_users_data( [self.modifiable_new_user_data, modifiable_new_user_data_2]) # Post-checking. user_auth_details_models = [ { 'id': model.id, 'gae_id': model.gae_id, 'parent_user_id': model.parent_user_id } for model in user_models.UserAuthDetailsModel.get_multi(profile_user_ids) ] expected_auth_details_output = [ { 'id': profile_user_ids[0], 'gae_id': None, 'parent_user_id': user_id }, { 'id': profile_user_ids[1], 'gae_id': None, 'parent_user_id': user_id } ] self.assertItemsEqual( expected_auth_details_output, user_auth_details_models) user_settings_models = [ { 'id': model.id, 'display_alias': model.display_alias, 'pin': model.pin } for model in user_models.UserSettingsModel.get_multi(profile_user_ids) ] expected_user_settings_output = [ { 'id': profile_user_ids[0], 'display_alias': 'xyz', 'pin': profile_pin }, { 'id': profile_user_ids[1], 'display_alias': display_alias_3, 'pin': '345' } ] self.assertItemsEqual( expected_user_settings_output, user_settings_models) def test_mark_user_for_deletion_deletes_user_settings(self): gae_id = 'test_id' username = 'testname' user_email = 'test@email.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) user_settings = user_services.get_user_settings_by_gae_id(gae_id) self.assertFalse(user_settings.deleted) user_services.mark_user_for_deletion(user_id) user_settings = user_services.get_user_settings_by_gae_id(gae_id) self.assertTrue(user_settings.deleted) def test_mark_user_for_deletion_deletes_user_auth_details_entry(self): gae_id = 'test_id' username = 'testname' user_email = 'test@email.com' user_id = user_services.create_new_user(gae_id, user_email).user_id user_services.set_username(user_id, username) user_auth_details = user_models.UserAuthDetailsModel.get_by_id(user_id) self.assertFalse(user_auth_details.deleted) user_services.mark_user_for_deletion(user_id) user_auth_details = user_models.UserAuthDetailsModel.get_by_id(user_id) self.assertTrue(user_auth_details.deleted) def test_get_current_date_as_string(self): custom_datetimes = [ datetime.date(2011, 1, 1), datetime.date(2012, 2, 28) ] datetime_strings = [custom_datetime.strftime( feconf.DASHBOARD_STATS_DATETIME_STRING_FORMAT) for custom_datetime in custom_datetimes] self.assertEqual(len(datetime_strings[0].split('-')[0]), 4) self.assertEqual(len(datetime_strings[0].split('-')[1]), 2) self.assertEqual(len(datetime_strings[0].split('-')[2]), 2) self.assertEqual(len(datetime_strings[1].split('-')[0]), 4) self.assertEqual(len(datetime_strings[1].split('-')[1]), 2) self.assertEqual(len(datetime_strings[1].split('-')[2]), 2) self.assertEqual(datetime_strings[0], '2011-01-01') self.assertEqual(datetime_strings[1], '2012-02-28') def test_parse_date_from_string(self): test_datetime_strings = [ '2016-06-30', '2016-07-05', '2016-13-01', '2016-03-32' ] self.assertEqual( user_services.parse_date_from_string(test_datetime_strings[0]), { 'year': 2016, 'month': 6, 'day': 30 }) self.assertEqual( user_services.parse_date_from_string(test_datetime_strings[1]), { 'year': 2016, 'month': 7, 'day': 5 }) with self.assertRaisesRegexp( ValueError, 'time data \'2016-13-01\' does not match format \'%Y-%m-%d\''): user_services.parse_date_from_string(test_datetime_strings[2]) with self.assertRaisesRegexp(ValueError, 'unconverted data remains: 2'): user_services.parse_date_from_string(test_datetime_strings[3]) def test_record_user_started_state_translation_tutorial(self): # Testing of the user translation tutorial firsttime state storage. gae_id = 'someUser' username = 'username' user_id = user_services.create_new_user( gae_id, 'user@example.com').user_id user_services.set_username(user_id, username) user_services.record_user_started_state_translation_tutorial(user_id) user_settings = user_services.get_user_settings(user_id) self.assertIsInstance( user_settings.last_started_state_translation_tutorial, datetime.datetime) self.assertTrue( user_settings.last_started_state_translation_tutorial is not None) class UpdateContributionMsecTests(test_utils.GenericTestBase): """Test whether contribution date changes with publication of exploration/collection and update of already published exploration/collection. """ EXP_ID = 'test_exp' COL_ID = 'test_col' COLLECTION_TITLE = 'title' COLLECTION_CATEGORY = 'category' COLLECTION_OBJECTIVE = 'objective' def setUp(self): super(UpdateContributionMsecTests, self).setUp() self.signup(self.ADMIN_EMAIL, self.ADMIN_USERNAME) self.admin_id = self.get_user_id_from_email(self.ADMIN_EMAIL) self.set_admins([self.ADMIN_USERNAME]) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.admin = user_services.UserActionsInfo(self.admin_id) self.owner = user_services.UserActionsInfo(self.owner_id) def test_contribution_msec_updates_on_published_explorations(self): exploration = self.save_new_valid_exploration( self.EXP_ID, self.admin_id, end_state_name='End') init_state_name = exploration.init_state_name exp_services.publish_exploration_and_update_user_profiles( self.admin, self.EXP_ID) # Test all owners and editors of exploration after publication have # updated first contribution times in msecs. self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test editor of published exploration has updated contribution time. rights_manager.release_ownership_of_exploration( self.admin, self.EXP_ID) exp_services.update_exploration( self.editor_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'edit_state_property', 'state_name': init_state_name, 'property_name': 'widget_id', 'new_value': 'MultipleChoiceInput' }), exp_domain.ExplorationChange({ 'cmd': 'edit_state_property', 'state_name': init_state_name, 'property_name': 'widget_customization_args', 'new_value': { 'choices': { 'value': [{ 'content_id': 'ca_choices_0', 'html': '<p>Choice 1</p>' }] }, 'showChoicesInShuffledOrder': {'value': True} } })], 'commit') self.assertIsNotNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_update_until_exp_is_published(self): exploration = self.save_new_valid_exploration( self.EXP_ID, self.admin_id, end_state_name='End') init_state_name = exploration.init_state_name # Test that saving an exploration does not update first contribution # time. self.assertIsNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test that commit to unpublished exploration does not update # contribution time. exp_services.update_exploration( self.admin_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'edit_state_property', 'state_name': init_state_name, 'property_name': 'widget_id', 'new_value': 'MultipleChoiceInput' }), exp_domain.ExplorationChange({ 'cmd': 'edit_state_property', 'state_name': init_state_name, 'property_name': 'widget_customization_args', 'new_value': { 'choices': { 'value': [{ 'content_id': 'ca_choices_0', 'html': '<p>Choice 1</p>' }] }, 'showChoicesInShuffledOrder': {'value': True} } })], '') self.assertIsNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test that another user who commits to unpublished exploration does not # have updated first contribution time. rights_manager.assign_role_for_exploration( self.admin, self.EXP_ID, self.editor_id, 'editor') exp_services.update_exploration( self.editor_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'rename_state', 'old_state_name': feconf.DEFAULT_INIT_STATE_NAME, 'new_state_name': u'¡Hola! αβγ', })], '') self.assertIsNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) # Test that after an exploration is published, all contributors have # updated first contribution time. exp_services.publish_exploration_and_update_user_profiles( self.admin, self.EXP_ID) self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) self.assertIsNotNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_change_if_no_contribution_to_exp(self): self.save_new_valid_exploration( self.EXP_ID, self.admin_id, end_state_name='End') rights_manager.assign_role_for_exploration( self.admin, self.EXP_ID, self.editor_id, 'editor') exp_services.publish_exploration_and_update_user_profiles( self.admin, self.EXP_ID) # Test that contribution time is not given to an editor that has not # contributed. self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) self.assertIsNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_change_if_exp_unpublished(self): self.save_new_valid_exploration( self.EXP_ID, self.owner_id, end_state_name='End') exp_services.publish_exploration_and_update_user_profiles( self.owner, self.EXP_ID) rights_manager.unpublish_exploration(self.admin, self.EXP_ID) # Test that contribution time is not eliminated if exploration is # unpublished. self.assertIsNotNone(user_services.get_user_settings( self.owner_id).first_contribution_msec) def test_contribution_msec_updates_on_published_collections(self): self.save_new_valid_collection( self.COL_ID, self.admin_id, title=self.COLLECTION_TITLE, category=self.COLLECTION_CATEGORY, objective=self.COLLECTION_OBJECTIVE, exploration_id=self.EXP_ID) collection_services.publish_collection_and_update_user_profiles( self.admin, self.COL_ID) exp_services.publish_exploration_and_update_user_profiles( self.admin, self.EXP_ID) # Test all owners and editors of collection after publication have # updated first contribution times. self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test editor of published collection has updated # first contribution time. rights_manager.release_ownership_of_collection( self.admin, self.COL_ID) collection_services.update_collection( self.editor_id, self.COL_ID, [{ 'cmd': 'edit_collection_property', 'property_name': 'title', 'new_value': 'Some new title' }], 'Changed the title') self.assertIsNotNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_update_until_collection_is_published( self): self.save_new_valid_collection( self.COL_ID, self.admin_id, title=self.COLLECTION_TITLE, category=self.COLLECTION_CATEGORY, objective=self.COLLECTION_OBJECTIVE, exploration_id=self.EXP_ID) # Test that saving a collection does not update first contribution # time. self.assertIsNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test that commit to unpublished collection does not update # contribution time. collection_services.update_collection( self.admin_id, self.COL_ID, [{ 'cmd': 'edit_collection_property', 'property_name': 'title', 'new_value': 'Some new title' }], '') self.assertIsNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) # Test that another user who commits to unpublished collection does not # have updated first contribution time. rights_manager.assign_role_for_collection( self.admin, self.COL_ID, self.editor_id, 'editor') collection_services.update_collection( self.editor_id, self.COL_ID, [{ 'cmd': 'edit_collection_property', 'property_name': 'category', 'new_value': 'Some new category' }], '') self.assertIsNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) # Test that after an collection is published, all contributors have # updated first contribution times. collection_services.publish_collection_and_update_user_profiles( self.admin, self.COL_ID) self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) self.assertIsNotNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_change_if_no_contribution_to_collection( self): self.save_new_valid_collection( self.COL_ID, self.admin_id, title=self.COLLECTION_TITLE, category=self.COLLECTION_CATEGORY, objective=self.COLLECTION_OBJECTIVE, exploration_id=self.EXP_ID) rights_manager.assign_role_for_collection( self.admin, self.COL_ID, self.editor_id, 'editor') collection_services.publish_collection_and_update_user_profiles( self.admin, self.COL_ID) # Test that contribution time is not given to an editor that has not # contributed. self.assertIsNotNone(user_services.get_user_settings( self.admin_id).first_contribution_msec) self.assertIsNone(user_services.get_user_settings( self.editor_id).first_contribution_msec) def test_contribution_msec_does_not_change_if_collection_unpublished(self): self.save_new_valid_collection( self.COL_ID, self.owner_id, title=self.COLLECTION_TITLE, category=self.COLLECTION_CATEGORY, objective=self.COLLECTION_OBJECTIVE, exploration_id=self.EXP_ID) collection_services.publish_collection_and_update_user_profiles( self.owner, self.COL_ID) rights_manager.unpublish_collection(self.admin, self.COL_ID) # Test that first contribution msec is not eliminated if collection is # unpublished. self.assertIsNotNone(user_services.get_user_settings( self.owner_id).first_contribution_msec) class UserDashboardStatsTests(test_utils.GenericTestBase): """Test whether exploration-related statistics of a user change as events are registered. """ OWNER_EMAIL = 'owner@example.com' OWNER_USERNAME = 'owner' EXP_ID = 'exp1' USER_SESSION_ID = 'session1' CURRENT_DATE_AS_STRING = user_services.get_current_date_as_string() def setUp(self): super(UserDashboardStatsTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) def mock_get_current_date_as_string(self): return self.CURRENT_DATE_AS_STRING def test_get_user_dashboard_stats(self): exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id, end_state_name='End') init_state_name = exploration.init_state_name event_services.StartExplorationEventHandler.record( self.EXP_ID, 1, init_state_name, self.USER_SESSION_ID, {}, feconf.PLAY_TYPE_NORMAL) event_services.StatsEventsHandler.record( self.EXP_ID, 1, { 'num_starts': 1, 'num_actual_starts': 0, 'num_completions': 0, 'state_stats_mapping': {} }) self.assertEqual( user_jobs_continuous.UserStatsAggregator.get_dashboard_stats( self.owner_id), { 'total_plays': 0, 'num_ratings': 0, 'average_ratings': None }) MockUserStatsAggregator.start_computation() self.process_and_flush_pending_tasks() self.assertEqual( user_jobs_continuous.UserStatsAggregator.get_dashboard_stats( self.owner_id), { 'total_plays': 1, 'num_ratings': 0, 'average_ratings': None }) def test_get_weekly_dashboard_stats_when_stats_model_is_none(self): exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id, end_state_name='End') init_state_name = exploration.init_state_name event_services.StartExplorationEventHandler.record( self.EXP_ID, 1, init_state_name, self.USER_SESSION_ID, {}, feconf.PLAY_TYPE_NORMAL) self.assertEqual( user_services.get_weekly_dashboard_stats(self.owner_id), None) self.assertEqual( user_services.get_last_week_dashboard_stats(self.owner_id), None) with self.swap( user_services, 'get_current_date_as_string', self.mock_get_current_date_as_string): user_services.update_dashboard_stats_log(self.owner_id) self.assertEqual( user_services.get_weekly_dashboard_stats(self.owner_id), [{ self.CURRENT_DATE_AS_STRING: { 'total_plays': 0, 'num_ratings': 0, 'average_ratings': None } }]) def test_get_weekly_dashboard_stats(self): exploration = self.save_new_valid_exploration( self.EXP_ID, self.owner_id, end_state_name='End') init_state_name = exploration.init_state_name event_services.StartExplorationEventHandler.record( self.EXP_ID, 1, init_state_name, self.USER_SESSION_ID, {}, feconf.PLAY_TYPE_NORMAL) event_services.StatsEventsHandler.record( self.EXP_ID, 1, { 'num_starts': 1, 'num_actual_starts': 0, 'num_completions': 0, 'state_stats_mapping': {} }) self.assertEqual( user_services.get_weekly_dashboard_stats(self.owner_id), None) self.assertEqual( user_services.get_last_week_dashboard_stats(self.owner_id), None) self.process_and_flush_pending_tasks() MockUserStatsAggregator.start_computation() self.process_and_flush_pending_mapreduce_tasks() self.assertEqual( user_services.get_weekly_dashboard_stats(self.owner_id), None) self.assertEqual( user_services.get_last_week_dashboard_stats(self.owner_id), None) with self.swap( user_services, 'get_current_date_as_string', self.mock_get_current_date_as_string): user_services.update_dashboard_stats_log(self.owner_id) self.assertEqual( user_services.get_weekly_dashboard_stats(self.owner_id), [{ self.CURRENT_DATE_AS_STRING: { 'total_plays': 1, 'num_ratings': 0, 'average_ratings': None } }]) class SubjectInterestsUnitTests(test_utils.GenericTestBase): """Test the update_subject_interests method.""" def setUp(self): super(SubjectInterestsUnitTests, self).setUp() self.gae_id = 'someUser' self.username = 'username' self.user_email = 'user@example.com' self.user_id = user_services.create_new_user( self.gae_id, self.user_email).user_id user_services.set_username(self.user_id, self.username) def test_invalid_subject_interests_are_not_accepted(self): with self.assertRaisesRegexp(utils.ValidationError, 'to be a list'): user_services.update_subject_interests(self.user_id, 'not a list') with self.assertRaisesRegexp(utils.ValidationError, 'to be a string'): user_services.update_subject_interests(self.user_id, [1, 2, 3]) with self.assertRaisesRegexp(utils.ValidationError, 'to be non-empty'): user_services.update_subject_interests(self.user_id, ['', 'ab']) with self.assertRaisesRegexp( utils.ValidationError, 'to consist only of lowercase alphabetic characters and spaces' ): user_services.update_subject_interests(self.user_id, ['!']) with self.assertRaisesRegexp( utils.ValidationError, 'to consist only of lowercase alphabetic characters and spaces' ): user_services.update_subject_interests( self.user_id, ['has-hyphens']) with self.assertRaisesRegexp( utils.ValidationError, 'to consist only of lowercase alphabetic characters and spaces' ): user_services.update_subject_interests( self.user_id, ['HasCapitalLetters']) with self.assertRaisesRegexp(utils.ValidationError, 'to be distinct'): user_services.update_subject_interests(self.user_id, ['a', 'a']) # The following cases are all valid. user_services.update_subject_interests(self.user_id, []) user_services.update_subject_interests( self.user_id, ['singleword', 'has spaces']) class LastLoginIntegrationTests(test_utils.GenericTestBase): """Integration tests for testing that the last login time for a user updates correctly. """ def setUp(self): """Create exploration with two versions.""" super(LastLoginIntegrationTests, self).setUp() self.signup(self.VIEWER_EMAIL, self.VIEWER_USERNAME) self.viewer_id = self.get_user_id_from_email(self.VIEWER_EMAIL) def test_legacy_user(self): """Test the case of a user who existed in the system before the last-login check was introduced. """ previous_last_logged_in_datetime = ( user_services.get_user_settings(self.viewer_id).last_logged_in) self.assertIsNotNone(previous_last_logged_in_datetime) current_datetime = datetime.datetime.utcnow() mocked_datetime_utcnow = current_datetime - datetime.timedelta(days=1) with self.mock_datetime_utcnow(mocked_datetime_utcnow): user_services.record_user_logged_in(self.viewer_id) user_settings = user_services.get_user_settings(self.viewer_id) last_logged_in = user_settings.last_logged_in # After logging in and requesting a URL, the last_logged_in property is # changed. self.login(self.VIEWER_EMAIL) self.get_html_response(feconf.LIBRARY_INDEX_URL) self.assertLess( last_logged_in, user_services.get_user_settings(self.viewer_id).last_logged_in) self.logout() def test_last_logged_in_only_updated_if_enough_time_has_elapsed(self): # The last logged-in time has already been set when the user # registered. previous_last_logged_in_datetime = ( user_services.get_user_settings(self.viewer_id).last_logged_in) self.assertIsNotNone(previous_last_logged_in_datetime) current_datetime = datetime.datetime.utcnow() mocked_datetime_utcnow = current_datetime + datetime.timedelta(hours=11) with self.mock_datetime_utcnow(mocked_datetime_utcnow): self.login(self.VIEWER_EMAIL) self.get_html_response(feconf.LIBRARY_INDEX_URL) self.assertEqual( user_services.get_user_settings(self.viewer_id).last_logged_in, previous_last_logged_in_datetime) self.logout() mocked_datetime_utcnow = current_datetime + datetime.timedelta(hours=13) with self.mock_datetime_utcnow(mocked_datetime_utcnow): self.login(self.VIEWER_EMAIL) self.get_html_response(feconf.LIBRARY_INDEX_URL) self.assertGreater( user_services.get_user_settings(self.viewer_id).last_logged_in, previous_last_logged_in_datetime) self.logout() class LastExplorationEditedIntegrationTests(test_utils.GenericTestBase): """Integration tests for testing the time the user last edited an exploration updates correctly. """ EXP_ID = 'exp' def setUp(self): """Create users for creating and editing exploration.""" super(LastExplorationEditedIntegrationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.signup(self.EDITOR_EMAIL, self.EDITOR_USERNAME) self.editor_id = self.get_user_id_from_email(self.EDITOR_EMAIL) self.save_new_valid_exploration( self.EXP_ID, self.owner_id, end_state_name='End') def test_legacy_user(self): """Test the case of a user who are editing exploration for first time after the last edited time check was introduced. """ editor_settings = user_services.get_user_settings(self.editor_id) self.assertIsNone(editor_settings.last_edited_an_exploration) exp_services.update_exploration( self.editor_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'edit_exploration_property', 'property_name': 'objective', 'new_value': 'the objective' })], 'Test edit') editor_settings = user_services.get_user_settings(self.editor_id) self.assertIsNotNone(editor_settings.last_edited_an_exploration) def test_last_exp_edit_time_gets_updated(self): exp_services.update_exploration( self.editor_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'edit_exploration_property', 'property_name': 'objective', 'new_value': 'the objective' })], 'Test edit') # Decrease last exploration edited time by 13 hours. user_settings = user_services.get_user_settings(self.editor_id) mocked_datetime_utcnow = ( user_settings.last_edited_an_exploration - datetime.timedelta(hours=13)) with self.mock_datetime_utcnow(mocked_datetime_utcnow): user_services.record_user_edited_an_exploration(self.editor_id) editor_settings = user_services.get_user_settings(self.editor_id) previous_last_edited_an_exploration = ( editor_settings.last_edited_an_exploration) self.assertIsNotNone(previous_last_edited_an_exploration) # The editor edits the exploration 13 hours after it was created. exp_services.update_exploration( self.editor_id, self.EXP_ID, [exp_domain.ExplorationChange({ 'cmd': 'edit_exploration_property', 'property_name': 'objective', 'new_value': 'new objective' })], 'Test edit 2') # Make sure last exploration edited time gets updated. editor_settings = user_services.get_user_settings(self.editor_id) self.assertGreater( (editor_settings.last_edited_an_exploration), previous_last_edited_an_exploration) class LastExplorationCreatedIntegrationTests(test_utils.GenericTestBase): """Integration tests for the time the user last created an exploration updates correctly. """ EXP_ID_A = 'exp_a' EXP_ID_B = 'exp_b' def setUp(self): """Create user for creating exploration.""" super(LastExplorationCreatedIntegrationTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) def test_legacy_user(self): """Test the case of a user who are creating exploration for first time after the last edited time check was introduced. """ owner_settings = user_services.get_user_settings(self.owner_id) self.assertIsNone(owner_settings.last_created_an_exploration) self.save_new_valid_exploration( self.EXP_ID_A, self.owner_id, end_state_name='End') owner_settings = user_services.get_user_settings(self.owner_id) self.assertIsNotNone(owner_settings.last_created_an_exploration) def test_last_exp_edit_time_gets_updated(self): self.save_new_valid_exploration( self.EXP_ID_A, self.owner_id, end_state_name='End') # Decrease last exploration created time by 13 hours. user_settings = user_services.get_user_settings(self.owner_id) with self.mock_datetime_utcnow( user_settings.last_created_an_exploration - datetime.timedelta(hours=13)): user_services.record_user_created_an_exploration(self.owner_id) owner_settings = user_services.get_user_settings(self.owner_id) previous_last_created_an_exploration = ( owner_settings.last_created_an_exploration) self.assertIsNotNone(previous_last_created_an_exploration) # The creator creates another exploration 13 hours later. self.save_new_valid_exploration( self.EXP_ID_B, self.owner_id, end_state_name='End') # Make sure that last exploration created time gets updated. owner_settings = user_services.get_user_settings(self.owner_id) self.assertGreater( (owner_settings.last_created_an_exploration), previous_last_created_an_exploration) class UserSettingsTests(test_utils.GenericTestBase): def setUp(self): super(UserSettingsTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.owner = user_services.UserActionsInfo(self.owner_id) self.user_settings = user_services.get_user_settings(self.owner_id) self.user_settings.validate() self.assertEqual(self.owner.role, feconf.ROLE_ID_EXPLORATION_EDITOR) schema_version = 1 self.modifiable_user_data = user_domain.ModifiableUserData( 'display_alias', '12345', [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version, 'user_id' ) self.modifiable_new_user_data = user_domain.ModifiableUserData( 'display_alias3', '12345', [constants.DEFAULT_LANGUAGE_CODE], None, None, schema_version ) def test_validate_non_str_user_id_raises_exception(self): self.user_settings.user_id = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected user_id to be a string' ): self.user_settings.validate() def test_validate_wrong_format_user_id_raises_exception(self): self.user_settings.user_id = 'uid_%sA' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_settings.validate() self.user_settings.user_id = 'uid_%s' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_settings.validate() self.user_settings.user_id = 'a' * 36 with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_settings.validate() def test_validate_non_str_gae_id_raises_exception(self): self.user_settings.gae_id = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected gae_id to be a string' ): self.user_settings.validate() def test_validate_non_str_pin_id(self): self.user_settings.pin = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected PIN to be a string' ): self.user_settings.validate() def test_validate_invalid_length_pin_raises_error(self): invalid_pin_values_list = ['1', '12', '1234', '123@#6', 'ABCa', '1!#a'] error_msg = ( 'User PIN can only be of length %s or %s' % (feconf.FULL_USER_PIN_LENGTH, feconf.PROFILE_USER_PIN_LENGTH) ) for pin in invalid_pin_values_list: with self.assertRaisesRegexp( utils.ValidationError, error_msg ): self.user_settings.pin = pin self.user_settings.validate() def test_validate_valid_length_with_numeric_char_pin_works_fine(self): valid_pin_values_list = ['123', '12345', '764', '42343'] for pin in valid_pin_values_list: self.user_settings.pin = pin self.user_settings.validate() def test_validate_valid_length_pin_with_non_numeric_char_raises_error(self): valid_pin_values_list = ['AbC', '123A}', '1!2', 'AB!', '[123]'] error_msg = 'Only numeric characters are allowed in PIN' for pin in valid_pin_values_list: with self.assertRaisesRegexp( utils.ValidationError, error_msg ): self.user_settings.pin = pin self.user_settings.validate() def test_validate_empty_user_id_raises_exception(self): self.user_settings.user_id = '' with self.assertRaisesRegexp( utils.ValidationError, 'No user id specified.' ): self.user_settings.validate() def test_validate_non_str_role_raises_exception(self): self.user_settings.role = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected role to be a string' ): self.user_settings.validate() def test_validate_invalid_role_name_raises_exception(self): self.user_settings.role = 'invalid_role' with self.assertRaisesRegexp( utils.ValidationError, 'Role invalid_role does not exist.'): self.user_settings.validate() def test_validate_non_str_display_alias_raises_error(self): self.user_settings.display_alias = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected display_alias to be a string,' ' received %s' % self.user_settings.display_alias): self.user_settings.validate() def test_validate_non_str_creator_dashboard_display_pref_raises_error(self): self.user_settings.creator_dashboard_display_pref = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected dashboard display preference to be a string' ): self.user_settings.validate() def test_validate_invalid_creator_dashboard_display_pref_raises_error(self): self.user_settings.creator_dashboard_display_pref = ( 'invalid_creator_dashboard_display_pref') with self.assertRaisesRegexp( utils.ValidationError, 'invalid_creator_dashboard_display_pref is not a valid ' 'value for the dashboard display preferences.' ): self.user_settings.validate() def test_validate_empty_display_alias_for_profiles_raises_error(self): self.modifiable_user_data.user_id = self.owner_id self.modifiable_user_data.pin = '12345' self.modifiable_user_data.display_alias = 'temp_name' user_services.update_multiple_users_data([self.modifiable_user_data]) gae_id = self.get_gae_id_from_email(self.OWNER_EMAIL) profile_pin = '123' error_msg = 'Expected display_alias to be a string, received' with self.assertRaisesRegexp(utils.ValidationError, error_msg): self.modifiable_new_user_data.display_alias = '' self.modifiable_new_user_data.pin = profile_pin user_services.create_new_profiles( gae_id, self.OWNER_EMAIL, [self.modifiable_new_user_data] ) def test_has_not_fully_registered_for_guest_user_is_false(self): self.assertFalse(user_services.has_fully_registered_account(None)) def test_create_new_user_with_existing_gae_id_raises_error(self): user_id = self.user_settings.user_id user_gae_id = self.user_settings.gae_id with self.assertRaisesRegexp( Exception, 'User %s already exists for gae_id %s.' % (user_id, user_gae_id) ): user_services.create_new_user( user_gae_id, self.OWNER_EMAIL) def test_cannot_set_existing_username(self): with self.assertRaisesRegexp( utils.ValidationError, 'Sorry, the username \"%s\" is already taken! Please pick ' 'a different one.' % self.OWNER_USERNAME ): user_services.set_username(self.owner_id, self.OWNER_USERNAME) def test_cannot_update_user_role_with_invalid_role(self): with self.assertRaisesRegexp( Exception, 'Role invalid_role does not exist.' ): user_services.update_user_role(self.owner_id, 'invalid_role') def test_cannot_get_human_readable_user_ids_with_invalid_user_ids(self): observed_log_messages = [] def _mock_logging_function(msg, *args): """Mocks logging.error().""" observed_log_messages.append(msg % args) logging_swap = self.swap(logging, 'error', _mock_logging_function) assert_raises_user_not_found = self.assertRaisesRegexp( Exception, 'User not found.') with logging_swap, assert_raises_user_not_found: user_services.get_human_readable_user_ids(['invalid_user_id']) self.assertEqual( observed_log_messages, [ 'User id invalid_user_id not known in list of user_ids ' '[u\'invalid_user_id\']' ]) def test_get_human_readable_user_ids(self): # Create an unregistered user who has no username. user_models.UserSettingsModel( id='unregistered_user_id', gae_id='gae_unregistered_user_id', email='user@example.com', username='').put() user_ids = user_services.get_human_readable_user_ids( [self.owner_id, feconf.SYSTEM_COMMITTER_ID, 'unregistered_user_id']) expected_user_ids = [ 'owner', 'admin', '[Awaiting user registration: u..@example.com]'] self.assertEqual(user_ids, expected_user_ids) def test_created_on_gets_updated_correctly(self): # created_on should not be updated upon updating other attributes of # the user settings model. user_settings = user_services.create_new_user( 'gae_id', 'user@example.com') user_settings_model = user_models.UserSettingsModel.get_by_id( user_settings.user_id) time_of_creation = user_settings_model.created_on user_services.update_user_bio(user_settings.user_id, 'New bio.') user_settings_model = user_models.UserSettingsModel.get_by_id( user_settings.user_id) self.assertEqual(user_settings_model.created_on, time_of_creation) class UserAuthDetailsTests(test_utils.GenericTestBase): def setUp(self): super(UserAuthDetailsTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.user_auth_details_model = ( user_models.UserAuthDetailsModel.get_by_id(self.owner_id)) self.user_auth_details = user_services.UserAuthDetails( self.user_auth_details_model.id, self.user_auth_details_model.gae_id ) self.user_auth_details.validate() def test_validate_non_str_user_id(self): self.user_auth_details.user_id = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected user_id to be a string' ): self.user_auth_details.validate() def test_validate_user_id(self): self.user_auth_details.user_id = 'uid_%sA' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_auth_details.validate() self.user_auth_details.user_id = 'uid_%s' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_auth_details.validate() self.user_auth_details.user_id = 'a' * 36 with self.assertRaisesRegexp( utils.ValidationError, 'The user ID is in a wrong format.' ): self.user_auth_details.validate() def test_validate_empty_user_id(self): self.user_auth_details.user_id = '' with self.assertRaisesRegexp( utils.ValidationError, 'No user id specified.' ): self.user_auth_details.validate() def test_validate_parent_user_id(self): self.user_auth_details.parent_user_id = 'uid_%sA' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The parent user ID is in a wrong format.' ): self.user_auth_details.validate() self.user_auth_details.parent_user_id = 'uid_%s' % ('a' * 31) with self.assertRaisesRegexp( utils.ValidationError, 'The parent user ID is in a wrong format.' ): self.user_auth_details.validate() self.user_auth_details.parent_user_id = 'a' * 36 with self.assertRaisesRegexp( utils.ValidationError, 'The parent user ID is in a wrong format.' ): self.user_auth_details.validate() def test_validate_non_str_gae_id(self): self.user_auth_details.gae_id = 0 with self.assertRaisesRegexp( utils.ValidationError, 'Expected gae_id to be a string' ): self.user_auth_details.validate() def test_parent_user_id_gae_id_together_raises_error(self): self.user_auth_details.parent_user_id = ( user_models.UserSettingsModel.get_new_id('')) with self.assertRaisesRegexp( utils.ValidationError, 'The parent user ID and gae_id cannot be ' 'present together for a user.' ): self.user_auth_details.validate() def test_both_parent_user_id_and_gae_id_none_raises_error(self): self.user_auth_details.parent_user_id = None self.user_auth_details.gae_id = None with self.assertRaisesRegexp( utils.ValidationError, 'The parent user ID and gae_id cannot be ' 'None together for a user.' ): self.user_auth_details.validate() class UserContributionsTests(test_utils.GenericTestBase): def setUp(self): super(UserContributionsTests, self).setUp() self.signup(self.OWNER_EMAIL, self.OWNER_USERNAME) self.owner_id = self.get_user_id_from_email(self.OWNER_EMAIL) self.user_contributions = user_services.get_user_contributions( self.owner_id) self.user_contributions.validate() def test_validate_non_str_user_id(self): self.user_contributions.user_id = 0 with self.assertRaisesRegexp( Exception, 'Expected user_id to be a string'): self.user_contributions.validate() def test_validate_user_id(self): self.user_contributions.user_id = '' with self.assertRaisesRegexp(Exception, 'No user id specified.'): self.user_contributions.validate() def test_validate_non_list_created_exploration_ids(self): self.user_contributions.created_exploration_ids = 0 with self.assertRaisesRegexp( Exception, 'Expected created_exploration_ids to be a list'): self.user_contributions.validate() def test_validate_created_exploration_ids(self): self.user_contributions.created_exploration_ids = [0] with self.assertRaisesRegexp( Exception, 'Expected exploration_id in created_exploration_ids ' 'to be a string'): self.user_contributions.validate() def test_validate_non_list_edited_exploration_ids(self): self.user_contributions.edited_exploration_ids = 0 with self.assertRaisesRegexp( Exception, 'Expected edited_exploration_ids to be a list'): self.user_contributions.validate() def test_validate_edited_exploration_ids(self): self.user_contributions.edited_exploration_ids = [0] with self.assertRaisesRegexp( Exception, 'Expected exploration_id in edited_exploration_ids ' 'to be a string'): self.user_contributions.validate() def test_cannot_create_user_contributions_with_existing_user_id(self): with self.assertRaisesRegexp( Exception, 'User contributions model for user %s already exists.' % self.owner_id): user_services.create_user_contributions(self.owner_id, [], []) def test_cannot_update_user_contributions_with_invalid_user_id(self): with self.assertRaisesRegexp( Exception, 'User contributions model for user invalid_user_id does not exist'): user_services.update_user_contributions('invalid_user_id', [], []) def test_cannot_update_dashboard_stats_log_with_invalid_schema_version( self): model = user_models.UserStatsModel.get_or_create(self.owner_id) model.schema_version = 0 model.put() self.assertIsNone(user_services.get_user_impact_score(self.owner_id)) with self.assertRaisesRegexp( Exception, 'Sorry, we can only process v1-v%d dashboard stats schemas at ' 'present.' % feconf.CURRENT_DASHBOARD_STATS_SCHEMA_VERSION): user_services.update_dashboard_stats_log(self.owner_id) def test_flush_migration_bot_contributions_model(self): created_exploration_ids = ['exp_1', 'exp_2'] edited_exploration_ids = ['exp_3', 'exp_4'] user_services.create_user_contributions( feconf.MIGRATION_BOT_USER_ID, created_exploration_ids, edited_exploration_ids) migration_bot_contributions_model = ( user_services.get_user_contributions(feconf.MIGRATION_BOT_USER_ID)) self.assertEqual( migration_bot_contributions_model.created_exploration_ids, created_exploration_ids) self.assertEqual( migration_bot_contributions_model.edited_exploration_ids, edited_exploration_ids) user_services.flush_migration_bot_contributions_model() migration_bot_contributions_model = ( user_services.get_user_contributions(feconf.MIGRATION_BOT_USER_ID)) self.assertEqual( migration_bot_contributions_model.created_exploration_ids, []) self.assertEqual( migration_bot_contributions_model.edited_exploration_ids, []) class UserContributionReviewRightsTests(test_utils.GenericTestBase): TRANSLATOR_EMAIL = 'translator@community.org' TRANSLATOR_USERNAME = 'translator' VOICE_ARTIST_EMAIL = 'voiceartist@community.org' VOICE_ARTIST_USERNAME = 'voiceartist' QUESTION_REVIEWER_EMAIL = 'question@community.org' QUESTION_REVIEWER_USERNAME = 'questionreviewer' def setUp(self): super(UserContributionReviewRightsTests, self).setUp() self.signup(self.TRANSLATOR_EMAIL, self.TRANSLATOR_USERNAME) self.translator_id = self.get_user_id_from_email(self.TRANSLATOR_EMAIL) self.signup(self.VOICE_ARTIST_EMAIL, self.VOICE_ARTIST_USERNAME) self.voice_artist_id = self.get_user_id_from_email( self.VOICE_ARTIST_EMAIL) self.signup( self.QUESTION_REVIEWER_EMAIL, self.QUESTION_REVIEWER_USERNAME) self.question_reviewer_id = ( self.get_user_id_from_email(self.QUESTION_REVIEWER_EMAIL)) def test_assign_user_review_translation_suggestion_in_language(self): self.assertFalse( user_services.can_review_translation_suggestions( self.translator_id)) user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') self.assertTrue( user_services.can_review_translation_suggestions( self.translator_id, language_code='hi')) def test_translation_review_assignement_adds_language_in_sorted_order(self): user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') user_contribution_rights = user_services.get_user_contribution_rights( self.translator_id) self.assertEqual( user_contribution_rights.can_review_translation_for_language_codes, ['hi']) user_services.allow_user_to_review_translation_in_language( self.translator_id, 'en') user_contribution_rights = user_services.get_user_contribution_rights( self.translator_id) self.assertEqual( user_contribution_rights.can_review_translation_for_language_codes, ['en', 'hi']) def test_assign_user_review_voiceover_application_in_language(self): self.assertFalse( user_services.can_review_voiceover_applications( self.voice_artist_id)) user_services.allow_user_to_review_voiceover_in_language( self.voice_artist_id, 'hi') self.assertTrue( user_services.can_review_voiceover_applications( self.voice_artist_id, language_code='hi')) def test_voiceover_review_assignement_adds_language_in_sorted_order(self): user_services.allow_user_to_review_voiceover_in_language( self.voice_artist_id, 'hi') user_contribution_rights = user_services.get_user_contribution_rights( self.voice_artist_id) self.assertEqual( user_contribution_rights.can_review_voiceover_for_language_codes, ['hi']) user_services.allow_user_to_review_voiceover_in_language( self.voice_artist_id, 'en') user_contribution_rights = user_services.get_user_contribution_rights( self.voice_artist_id) self.assertEqual( user_contribution_rights.can_review_voiceover_for_language_codes, ['en', 'hi']) def test_assign_user_review_question_suggestion(self): self.assertFalse( user_services.can_review_question_suggestions(self.voice_artist_id)) user_services.allow_user_to_review_question(self.voice_artist_id) self.assertTrue( user_services.can_review_question_suggestions(self.voice_artist_id)) def test_get_users_contribution_rights_with_multiple_reviewer_user_ids( self): user_services.allow_user_to_review_question(self.question_reviewer_id) user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') user_services.allow_user_to_review_translation_in_language( self.translator_id, 'en') expected_reviewer_ids = [self.question_reviewer_id, self.translator_id] users_contribution_rights = ( user_services.get_users_contribution_rights(expected_reviewer_ids) ) reviewer_ids = [ user_contribution_rights.id for user_contribution_rights in users_contribution_rights ] self.assertEqual(len(users_contribution_rights), 2) self.assertItemsEqual(reviewer_ids, expected_reviewer_ids) def test_get_users_contribution_rights_with_one_reviewer_user_id( self): user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') user_services.allow_user_to_review_translation_in_language( self.translator_id, 'en') users_contribution_rights = ( user_services.get_users_contribution_rights([self.translator_id]) ) self.assertEqual(len(users_contribution_rights), 1) self.assertEqual(users_contribution_rights[0].id, self.translator_id) self.assertEqual( ( users_contribution_rights[0] .can_review_translation_for_language_codes ), ['en', 'hi'] ) def test_get_users_contribution_rights_returns_empty_for_no_reviewers_ids( self): users_contribution_rights = ( user_services.get_users_contribution_rights([]) ) self.assertEqual(len(users_contribution_rights), 0) def test_get_all_reviewers_contribution_rights(self): self.assertEqual( user_services.get_all_reviewers_contribution_rights(), []) user_services.allow_user_to_review_voiceover_in_language( self.voice_artist_id, 'hi') user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') all_reviewers = user_services.get_all_reviewers_contribution_rights() self.assertItemsEqual( [reviewer.id for reviewer in all_reviewers], [self.voice_artist_id, self.translator_id]) def test_get_reviewer_user_ids_to_notify_when_reviewers_want_notifications( self): # Assert that there are no reviewers at the start. self.assertEqual( user_services.get_all_reviewers_contribution_rights(), []) # Add a question reviewer and a translation reviewer. user_services.allow_user_to_review_question(self.question_reviewer_id) user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') # Ensure that these reviewers want email updates. user_services.update_email_preferences( self.question_reviewer_id, True, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) user_services.update_email_preferences( self.translator_id, True, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) reviewer_ids_to_notify = ( user_services.get_reviewer_user_ids_to_notify()) self.assertEqual(len(reviewer_ids_to_notify), 2) self.assertIn(self.question_reviewer_id, reviewer_ids_to_notify) self.assertIn(self.translator_id, reviewer_ids_to_notify) def test_get_reviewer_user_ids_to_notify_when_reviewers_do_not_want_emails( self): # Assert that there are no reviewers at the start. self.assertEqual( user_services.get_all_reviewers_contribution_rights(), []) # Add a question reviewer and a translation reviewer. user_services.allow_user_to_review_question(self.question_reviewer_id) user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') # Ensure that these reviewers do not want email updates. user_services.update_email_preferences( self.question_reviewer_id, False, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) user_services.update_email_preferences( self.translator_id, False, feconf.DEFAULT_EDITOR_ROLE_EMAIL_PREFERENCE, feconf.DEFAULT_FEEDBACK_MESSAGE_EMAIL_PREFERENCE, feconf.DEFAULT_SUBSCRIPTION_EMAIL_PREFERENCE) reviewer_ids_to_notify = ( user_services.get_reviewer_user_ids_to_notify()) self.assertEqual(len(reviewer_ids_to_notify), 0) def test_get_reviewer_user_ids_to_notify_returns_empty_for_no_reviewers( self): # Assert that there are no reviewers. self.assertEqual( user_services.get_all_reviewers_contribution_rights(), []) reviewer_ids_to_notify = ( user_services.get_reviewer_user_ids_to_notify()) self.assertEqual(len(reviewer_ids_to_notify), 0) def test_remove_translation_review_rights_in_language(self): user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') self.assertTrue( user_services.can_review_translation_suggestions( self.translator_id, language_code='hi')) user_services.remove_translation_review_rights_in_language( self.translator_id, 'hi') self.assertFalse( user_services.can_review_translation_suggestions( self.translator_id, language_code='hi')) def test_remove_voiceover_review_rights_in_language(self): user_services.allow_user_to_review_voiceover_in_language( self.voice_artist_id, 'hi') self.assertTrue( user_services.can_review_voiceover_applications( self.voice_artist_id, language_code='hi')) user_services.remove_voiceover_review_rights_in_language( self.voice_artist_id, 'hi') self.assertFalse( user_services.can_review_voiceover_applications( self.voice_artist_id, language_code='hi')) def test_remove_question_review_rights(self): user_services.allow_user_to_review_question(self.question_reviewer_id) self.assertTrue( user_services.can_review_question_suggestions( self.question_reviewer_id)) user_services.remove_question_review_rights(self.question_reviewer_id) self.assertFalse( user_services.can_review_question_suggestions( self.question_reviewer_id)) def test_remove_contribution_reviewer(self): user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') user_services.allow_user_to_review_voiceover_in_language( self.translator_id, 'hi') user_services.allow_user_to_review_question(self.translator_id) self.assertTrue( user_services.can_review_translation_suggestions( self.translator_id, language_code='hi')) self.assertTrue( user_services.can_review_voiceover_applications( self.translator_id, language_code='hi')) self.assertTrue( user_services.can_review_question_suggestions( self.translator_id)) user_services.remove_contribution_reviewer(self.translator_id) self.assertFalse( user_services.can_review_translation_suggestions( self.translator_id, language_code='hi')) self.assertFalse( user_services.can_review_voiceover_applications( self.translator_id, language_code='hi')) self.assertFalse( user_services.can_review_question_suggestions( self.translator_id)) def test_removal_of_all_review_rights_delets_model(self): user_services.allow_user_to_review_translation_in_language( self.translator_id, 'hi') user_services.allow_user_to_review_question(self.translator_id) user_services.remove_question_review_rights(self.translator_id) right_model = user_models.UserContributionRightsModel.get_by_id( self.translator_id) self.assertFalse(right_model is None) user_services.remove_translation_review_rights_in_language( self.translator_id, 'hi') right_model = user_models.UserContributionRightsModel.get_by_id( self.translator_id) self.assertTrue(right_model is None) def test_get_question_reviewer_usernames_with_lanaguge_code_raise_error( self): with self.assertRaisesRegexp( Exception, 'Expected language_code to be None'): user_services.get_contribution_reviewer_usernames( constants.REVIEW_CATEGORY_QUESTION, language_code='hi') def test_get_contribution_reviewer_usernames_in_invalid_category_raise_error( # pylint: disable=line-too-long self): with self.assertRaisesRegexp( Exception, 'Invalid review category: invalid_category'): user_services.get_contribution_reviewer_usernames( 'invalid_category', language_code='hi')
42.08734
113
0.676259
7c9bd027e5a58bbe95f56291ecb0bab88985b99e
146,605
py
Python
dask/dataframe/tests/test_dataframe.py
celsiustx/dask
b1e2948a553d60f901a1e475a55dd1566d8eb7e7
[ "BSD-3-Clause" ]
null
null
null
dask/dataframe/tests/test_dataframe.py
celsiustx/dask
b1e2948a553d60f901a1e475a55dd1566d8eb7e7
[ "BSD-3-Clause" ]
3
2020-05-15T23:06:48.000Z
2020-07-30T09:37:05.000Z
dask/dataframe/tests/test_dataframe.py
celsiustx/dask
b1e2948a553d60f901a1e475a55dd1566d8eb7e7
[ "BSD-3-Clause" ]
null
null
null
import warnings from itertools import product from operator import add from unittest import TestCase import pytest import numpy as np import pandas as pd from pandas.io.formats import format as pandas_format from pandas.testing import assert_frame_equal, assert_series_equal import dask import dask.array as da from dask.array.numpy_compat import _numpy_118, _numpy_120 import dask.dataframe as dd from dask.blockwise import fuse_roots from dask.dataframe import _compat from dask.dataframe._compat import tm, PANDAS_GT_100, PANDAS_GT_110 from dask.base import compute, compute_as_if_collection from dask.utils import put_lines, M from dask.dataframe.core import ( repartition_divisions, aca, _concat, Scalar, has_parallel_type, total_mem_usage, is_broadcastable, ) from dask.dataframe import methods from dask.dataframe.utils import assert_eq, make_meta, assert_max_deps, PANDAS_VERSION dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=[0, 1, 3]), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [3, 2, 1]}, index=[5, 6, 8]), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [0, 0, 0]}, index=[9, 9, 9]), } meta = make_meta({"a": "i8", "b": "i8"}, index=pd.Index([], "i8")) d = dd.DataFrame(dsk, "x", meta, [0, 5, 9, 9]) full = d.compute() CHECK_FREQ = {} if dd._compat.PANDAS_GT_110: CHECK_FREQ["check_freq"] = False def test_dataframe_doc(): doc = d.add.__doc__ disclaimer = "Some inconsistencies with the Dask version may exist." assert disclaimer in doc def test_dataframe_doc_from_non_pandas(): class Foo: def foo(self): """This is a new docstring that I just made up Parameters: ---------- None """ d._bind_operator_method("foo", Foo.foo, original=Foo) try: doc = d.foo.__doc__ disclaimer = "Some inconsistencies with the Dask version may exist." assert disclaimer in doc assert "new docstring that I just made up" in doc finally: # make sure to clean up this alteration of the dd.DataFrame class del dd.DataFrame.foo def test_Dataframe(): expected = pd.Series( [2, 3, 4, 5, 6, 7, 8, 9, 10], index=[0, 1, 3, 5, 6, 8, 9, 9, 9], name="a" ) assert_eq(d["a"] + 1, expected) tm.assert_index_equal(d.columns, pd.Index(["a", "b"])) assert_eq(d[d["b"] > 2], full[full["b"] > 2]) assert_eq(d[["a", "b"]], full[["a", "b"]]) assert_eq(d.a, full.a) assert d.b.mean().compute() == full.b.mean() assert np.allclose(d.b.var().compute(), full.b.var()) assert np.allclose(d.b.std().compute(), full.b.std()) assert d.index._name == d.index._name # this is deterministic assert repr(d) def test_head_tail(): assert_eq(d.head(2), full.head(2)) assert_eq(d.head(3), full.head(3)) assert_eq(d.head(2), dsk[("x", 0)].head(2)) assert_eq(d["a"].head(2), full["a"].head(2)) assert_eq(d["a"].head(3), full["a"].head(3)) assert_eq(d["a"].head(2), dsk[("x", 0)]["a"].head(2)) assert sorted(d.head(2, compute=False).dask) == sorted( d.head(2, compute=False).dask ) assert sorted(d.head(2, compute=False).dask) != sorted( d.head(3, compute=False).dask ) assert_eq(d.tail(2), full.tail(2)) assert_eq(d.tail(3), full.tail(3)) assert_eq(d.tail(2), dsk[("x", 2)].tail(2)) assert_eq(d["a"].tail(2), full["a"].tail(2)) assert_eq(d["a"].tail(3), full["a"].tail(3)) assert_eq(d["a"].tail(2), dsk[("x", 2)]["a"].tail(2)) assert sorted(d.tail(2, compute=False).dask) == sorted( d.tail(2, compute=False).dask ) assert sorted(d.tail(2, compute=False).dask) != sorted( d.tail(3, compute=False).dask ) @pytest.mark.filterwarnings("ignore:Insufficient:UserWarning") def test_head_npartitions(): assert_eq(d.head(5, npartitions=2), full.head(5)) assert_eq(d.head(5, npartitions=2, compute=False), full.head(5)) assert_eq(d.head(5, npartitions=-1), full.head(5)) assert_eq(d.head(7, npartitions=-1), full.head(7)) assert_eq(d.head(2, npartitions=-1), full.head(2)) with pytest.raises(ValueError): d.head(2, npartitions=5) def test_head_npartitions_warn(): match = "5 elements requested, only 3 elements" with pytest.warns(UserWarning, match=match): d.head(5) with pytest.warns(None): d.head(100) with pytest.warns(None): d.head(7) with pytest.warns(None): d.head(7, npartitions=2) def test_index_head(): assert_eq(d.index.head(2), full.index[:2]) assert_eq(d.index.head(3), full.index[:3]) def test_Series(): assert isinstance(d.a, dd.Series) assert isinstance(d.a + 1, dd.Series) assert_eq((d + 1), full + 1) def test_Index(): for case in [ pd.DataFrame(np.random.randn(10, 5), index=list("abcdefghij")), pd.DataFrame( np.random.randn(10, 5), index=pd.date_range("2011-01-01", freq="D", periods=10), ), ]: ddf = dd.from_pandas(case, 3) assert_eq(ddf.index, case.index) pytest.raises(AttributeError, lambda: ddf.index.index) def test_Scalar(): val = np.int64(1) s = Scalar({("a", 0): val}, "a", "i8") assert hasattr(s, "dtype") assert "dtype" in dir(s) assert_eq(s, val) assert repr(s) == "dd.Scalar<a, dtype=int64>" val = pd.Timestamp("2001-01-01") s = Scalar({("a", 0): val}, "a", val) assert not hasattr(s, "dtype") assert "dtype" not in dir(s) assert_eq(s, val) assert repr(s) == "dd.Scalar<a, type=Timestamp>" def test_scalar_raises(): val = np.int64(1) s = Scalar({("a", 0): val}, "a", "i8") msg = "cannot be converted to a boolean value" with pytest.raises(TypeError, match=msg): bool(s) def test_attributes(): assert "a" in dir(d) assert "foo" not in dir(d) pytest.raises(AttributeError, lambda: d.foo) df = dd.from_pandas(pd.DataFrame({"a b c": [1, 2, 3]}), npartitions=2) assert "a b c" not in dir(df) df = dd.from_pandas(pd.DataFrame({"a": [1, 2], 5: [1, 2]}), npartitions=2) assert "a" in dir(df) assert 5 not in dir(df) df = dd.from_pandas(_compat.makeTimeDataFrame(), npartitions=3) pytest.raises(AttributeError, lambda: df.foo) def test_partition_sizes(): df = dd.from_pandas( pd.DataFrame([{"i": f"{i}{i}"} for i in range(100)]), npartitions=3 ) assert df.partition_sizes == (34, 34, 32) df["len"] = df.i.map(len) assert df.partition_sizes == (34, 34, 32) assert df["len"].partition_sizes == (34, 34, 32) assert df["i"].partition_sizes == (34, 34, 32) assert len(df.compute()) == 100 assert tuple(len(partition.compute()) for partition in df.partitions) == ( 34, 34, 32, ) for series in [ df.len + 2, df.len - 2, df.len * 2, df.len / 2, df.len % 2, df.len % 2 == 0, ]: assert series.partition_sizes == (34, 34, 32) evens = df.len % 2 == 0 assert df[evens].partition_sizes is None assert evens[evens].partition_sizes is None # def test_array_series_slice(): from dask.array import from_array from numpy import array a = array(range(1100)).reshape((100, 11)) d = from_array(a, chunks=(23, 4)) assert d.chunks == ((23, 23, 23, 23, 8), (4, 4, 3)) from numpy.testing import assert_array_equal dask_sliced = d[evens] np_sliced = a[evens.compute()] assert_array_equal(dask_sliced.compute(), np_sliced) def check_partition_sizes(df, *args, **kwargs): if args or kwargs: if args: assert len(args) == 1 assert not kwargs partition_sizes = args[0] else: assert not args assert "partition_sizes" in kwargs partition_sizes = kwargs.pop("partition_sizes") assert not kwargs assert df.partition_sizes == partition_sizes if partition_sizes is not None: computed = compute(*[partition for partition in df.partitions]) actual_sizes = tuple(len(partition) for partition in computed) assert actual_sizes == partition_sizes else: computed = compute(*[partition for partition in df.partitions]) partition_sizes = tuple(len(partition) for partition in computed) assert partition_sizes == df.partition_sizes def test_repartition_sizes(): df = dd.from_pandas( pd.DataFrame([{"i": f"{i}{i}"} for i in range(100)]), npartitions=3 ) check_partition_sizes(df, (34, 34, 32)) df["len"] = df.i.map(len) assert df.partition_sizes == (34, 34, 32) assert df["len"].partition_sizes == (34, 34, 32) assert df["i"].partition_sizes == (34, 34, 32) assert len(df.compute()) == 100 evens = df.len % 2 == 0 assert df[evens].partition_sizes is None assert evens[evens].partition_sizes is None df2 = df.repartition(partition_sizes=(40, 40, 20)) from pandas.testing import assert_frame_equal assert_frame_equal(df.compute(), df2.compute()) check_partition_sizes(df2, (40, 40, 20)) df3 = df.repartition(partition_sizes=[10] * 10) from pandas.testing import assert_frame_equal assert_frame_equal(df.compute(), df3.compute()) check_partition_sizes(df3, (10,) * 10) class Checks: df = pd.DataFrame([{"i": f"{i}{i}"} for i in range(100)]) ddf = dd.from_pandas(df, npartitions=3) # def __init__(self, dask, pandas, cmp, seed=123): def __init__(self, seed=123): # self.dask = dask # self.pandas = pandas # self.cmp = cmp np.random.seed(seed) def check(self, fn, pandas_fn=None): l_exc = None try: l = fn(self.dask).compute() except Exception as exc: l_exc = exc pandas_fn = pandas_fn or fn r_exc = None try: r = pandas_fn(self.pandas) except Exception as exc: r_exc = exc if l_exc or r_exc: # TODO: match error msgs assert type(l_exc) == type(r_exc) else: self.cmp(l, r) bools = np.random.choice(a=[False, True], size=(100,), p=[0.5, 0.5]) def check_arr_slice(self, elems, chunks=None): pnds_key = np.array(elems) if chunks: dask_key = da.from_array(elems, chunks) else: dask_key = pnds_key self.check(lambda df: df.iloc[dask_key], lambda df: df.iloc[pnds_key]) def test_ranges(self): idxs = (None, 0, 1, 10, 33, 34, 35, 68, 69, 70, 99, 100) steps = [None] + [ sgn * i for i in [1, 2, 5, 30, 70, 99, 100] for sgn in [1, -1] ] def check(idx, args): self.check(lambda df: df.iloc[range(*args)]) idx = 0 for start in idxs: for end in idxs: if end is None: continue for step in steps: if step is not None: if step < 0: end -= 1 if start is None: args = (end,) else: args = (start, end) if step is not None: args = (*args, step) try: check(idx, args) idx += 1 except AssertionError: self.assertTrue(False) def test_slices(self): class Check: def __getitem__(slf, slc): self.check(lambda df: df.iloc[slc]) check = Check() check[:100] # (lambda df: df[:100]) check[:] check[0:100] check[:34] check[0:34] check[10:34] check[10:24] check[:10] check[0:10] # 2nd partition check[34:68] check[35:68] check[34:67] check[35:67] check[40:50] # 3rd/last partition: check[68:100] check[69:100] check[68:] check[69:] check[68:99] check[69:99] check[68:-1] check[69:-1] # empty slices check[0:0] check[1:1] check[10:10] check[33:33] check[34:34] check[35:35] check[99:99] check[100:100] check[-1:-1] check[-100:-100] check[101:101] check[200:200] check[-101:-101] check[-200:-200] # across partitions: check[10:90] check[10:-10] check[-90:-10] check[1:-1] check[-99:99] check[:50] check[1:50] check[33:50] check[:68] check[1:68] check[33:68] check[:69] check[1:69] check[33:69] check[34:69] check[35:69] check[:200] check[0:200] check[10:200] check[50:200] check[90:200] check[::2] check[99:-1:-1] def test_arrays(self): def check_arr_slice(chunks=None): self.check_arr_slice(self.bools, chunks) check_arr_slice() check_arr_slice( ( 34, 34, 32, ) ) check_arr_slice((100,)) check_arr_slice( ( 50, 50, ) ) check_arr_slice((10,) * 10) check_arr_slice((1,) * 100) # def test_ranges(self): # def check(range): # self.check(lambda df: df.iloc[range]) # # check(range(10)) def test_ints(self): # assert_frame_equal(self.df.iloc[range(10)], self.df.iloc[:10]) self.check(lambda df: df.iloc[range(1)]) self.check(lambda df: df.iloc[range(10)]) self.check(lambda df: df.iloc[range(99)]) self.check(lambda df: df.iloc[range(100)]) self.check(lambda df: df.iloc[range(99, -1, -1)]) # Pandas squeezes these to Series, but Dask generally doesn't have enough info to make that # decision at graph-construction time. In principle, DDF.iloc does know whether the row-indexer # will return exactly one row, so it could mimic Pandas. That would be a departure from other # parts of Dask, which don't squeeze in situations like this. TODO: it's probably worth adding # the squeeze, for consistency with Pandas. # check(lambda df: df.iloc[0]) # check(lambda df: df.iloc[10]) # check(lambda df: df.iloc[34]) # check(lambda df: df.iloc[-1]) class DataFrameIloc(TestCase, Checks): dask = Checks.ddf pandas = Checks.df def cmp(self, l, r): assert_frame_equal(l, r) class SeriesIloc(TestCase, Checks): dask = Checks.ddf.i pandas = Checks.df.i def cmp(self, l, r): assert_series_equal(l, r) def test_column_names(): tm.assert_index_equal(d.columns, pd.Index(["a", "b"])) tm.assert_index_equal(d[["b", "a"]].columns, pd.Index(["b", "a"])) assert d["a"].name == "a" assert (d["a"] + 1).name == "a" assert (d["a"] + d["b"]).name is None def test_index_names(): assert d.index.name is None idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name="x") df = pd.DataFrame(np.random.randn(10, 5), idx) ddf = dd.from_pandas(df, 3) assert ddf.index.name == "x" assert ddf.index.compute().name == "x" @pytest.mark.parametrize( "npartitions", [ 1, pytest.param( 2, marks=pytest.mark.xfail( not dd._compat.PANDAS_GT_110, reason="Fixed upstream." ), ), ], ) def test_timezone_freq(npartitions): s_naive = pd.Series(pd.date_range("20130101", periods=10)) s_aware = pd.Series(pd.date_range("20130101", periods=10, tz="US/Eastern")) pdf = pd.DataFrame({"tz": s_aware, "notz": s_naive}) ddf = dd.from_pandas(pdf, npartitions=npartitions) assert pdf.tz[0].freq == ddf.compute().tz[0].freq == ddf.tz.compute()[0].freq def test_rename_columns(): # GH 819 df = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7], "b": [7, 6, 5, 4, 3, 2, 1]}) ddf = dd.from_pandas(df, 2) ddf.columns = ["x", "y"] df.columns = ["x", "y"] tm.assert_index_equal(ddf.columns, pd.Index(["x", "y"])) tm.assert_index_equal(ddf._meta.columns, pd.Index(["x", "y"])) assert_eq(ddf, df) msg = r"Length mismatch: Expected axis has 2 elements, new values have 4 elements" with pytest.raises(ValueError) as err: ddf.columns = [1, 2, 3, 4] assert msg in str(err.value) # Multi-index columns df = pd.DataFrame({("A", "0"): [1, 2, 2, 3], ("B", 1): [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) df.columns = ["x", "y"] ddf.columns = ["x", "y"] tm.assert_index_equal(ddf.columns, pd.Index(["x", "y"])) tm.assert_index_equal(ddf._meta.columns, pd.Index(["x", "y"])) assert_eq(ddf, df) def test_rename_series(): # GH 819 s = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") ds = dd.from_pandas(s, 2) s.name = "renamed" ds.name = "renamed" assert s.name == "renamed" assert_eq(ds, s) ind = s.index dind = ds.index ind.name = "renamed" dind.name = "renamed" assert ind.name == "renamed" with warnings.catch_warnings(): if _numpy_118: # Catch DeprecationWarning from numpy from rewrite_blockwise # where we attempt to do `'str' in ndarray`. warnings.simplefilter("ignore", DeprecationWarning) assert_eq(dind, ind) def test_rename_series_method(): # Series name s = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") ds = dd.from_pandas(s, 2) assert_eq(ds.rename("y"), s.rename("y")) assert ds.name == "x" # no mutation assert_eq(ds.rename(), s.rename()) ds.rename("z", inplace=True) s.rename("z", inplace=True) assert ds.name == "z" assert_eq(ds, s) def test_rename_series_method_2(): # Series index s = pd.Series(["a", "b", "c", "d", "e", "f", "g"], name="x") ds = dd.from_pandas(s, 2) for is_sorted in [True, False]: res = ds.rename(lambda x: x ** 2, sorted_index=is_sorted) assert_eq(res, s.rename(lambda x: x ** 2)) assert res.known_divisions == is_sorted res = ds.rename(s, sorted_index=is_sorted) assert_eq(res, s.rename(s)) assert res.known_divisions == is_sorted with pytest.raises(ValueError): ds.rename(lambda x: -x, sorted_index=True) assert_eq(ds.rename(lambda x: -x), s.rename(lambda x: -x)) res = ds.rename(ds) assert_eq(res, s.rename(s)) assert not res.known_divisions ds2 = ds.clear_divisions() res = ds2.rename(lambda x: x ** 2, sorted_index=True) assert_eq(res, s.rename(lambda x: x ** 2)) assert not res.known_divisions res = ds.rename(lambda x: x ** 2, inplace=True, sorted_index=True) assert res is ds s.rename(lambda x: x ** 2, inplace=True) assert_eq(ds, s) @pytest.mark.parametrize( "method,test_values", [("tdigest", (6, 10)), ("dask", (4, 20))] ) def test_describe_numeric(method, test_values): if method == "tdigest": pytest.importorskip("crick") # prepare test case which approx quantiles will be the same as actuals s = pd.Series(list(range(test_values[1])) * test_values[0]) df = pd.DataFrame( { "a": list(range(test_values[1])) * test_values[0], "b": list(range(test_values[0])) * test_values[1], } ) ds = dd.from_pandas(s, test_values[0]) ddf = dd.from_pandas(df, test_values[0]) test_quantiles = [0.25, 0.75] assert_eq(df.describe(), ddf.describe(percentiles_method=method)) assert_eq(s.describe(), ds.describe(percentiles_method=method)) assert_eq( df.describe(percentiles=test_quantiles), ddf.describe(percentiles=test_quantiles, percentiles_method=method), ) assert_eq(s.describe(), ds.describe(split_every=2, percentiles_method=method)) assert_eq(df.describe(), ddf.describe(split_every=2, percentiles_method=method)) # remove string columns df = pd.DataFrame( { "a": list(range(test_values[1])) * test_values[0], "b": list(range(test_values[0])) * test_values[1], "c": list("abcdef"[: test_values[0]]) * test_values[1], } ) ddf = dd.from_pandas(df, test_values[0]) assert_eq(df.describe(), ddf.describe(percentiles_method=method)) assert_eq(df.describe(), ddf.describe(split_every=2, percentiles_method=method)) @pytest.mark.xfail( PANDAS_VERSION == "0.24.2", reason="Known bug in Pandas. See https://github.com/pandas-dev/pandas/issues/24011.", ) @pytest.mark.parametrize( "include,exclude,percentiles,subset", [ (None, None, None, ["c", "d"]), # numeric (None, None, None, ["c", "d", "f"]), # numeric + timedelta (None, None, None, ["c", "d", "g"]), # numeric + bool (None, None, None, ["c", "d", "f", "g"]), # numeric + bool + timedelta (None, None, None, ["f", "g"]), # bool + timedelta pytest.param( "all", None, None, None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), pytest.param( ["number"], None, [0.25, 0.5], None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), pytest.param( [np.timedelta64], None, None, None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), pytest.param( ["number", "object"], None, [0.25, 0.75], None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), pytest.param( None, ["number", "object"], None, None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), pytest.param( ["object", "datetime", "bool"], None, None, None, marks=pytest.mark.xfail(PANDAS_GT_110, reason="upstream changes"), ), ], ) def test_describe(include, exclude, percentiles, subset): data = { "a": ["aaa", "bbb", "bbb", None, None, "zzz"] * 2, "c": [None, 0, 1, 2, 3, 4] * 2, "d": [None, 0, 1] * 4, "e": [ pd.Timestamp("2017-05-09 00:00:00.006000"), pd.Timestamp("2017-05-09 00:00:00.006000"), pd.Timestamp("2017-05-09 07:56:23.858694"), pd.Timestamp("2017-05-09 05:59:58.938999"), None, None, ] * 2, "f": [ np.timedelta64(3, "D"), np.timedelta64(1, "D"), None, None, np.timedelta64(3, "D"), np.timedelta64(1, "D"), ] * 2, "g": [True, False, True] * 4, } # Arrange df = pd.DataFrame(data) if subset is not None: df = df.loc[:, subset] ddf = dd.from_pandas(df, 2) # Act desc_ddf = ddf.describe(include=include, exclude=exclude, percentiles=percentiles) desc_df = df.describe(include=include, exclude=exclude, percentiles=percentiles) # Assert assert_eq(desc_ddf, desc_df) # Check series if subset is None: for col in ["a", "c", "e", "g"]: assert_eq( df[col].describe(include=include, exclude=exclude), ddf[col].describe(include=include, exclude=exclude), ) def test_describe_empty(): df_none = pd.DataFrame({"A": [None, None]}) ddf_none = dd.from_pandas(df_none, 2) df_len0 = pd.DataFrame({"A": [], "B": []}) ddf_len0 = dd.from_pandas(df_len0, 2) ddf_nocols = dd.from_pandas(pd.DataFrame({}), 2) # Pandas have different dtypes for resulting describe dataframe if there are only # None-values, pre-compute dask df to bypass _meta check assert_eq( df_none.describe(), ddf_none.describe(percentiles_method="dask").compute() ) with pytest.raises(ValueError): ddf_len0.describe(percentiles_method="dask").compute() with pytest.raises(ValueError): ddf_len0.describe(percentiles_method="dask").compute() with pytest.raises(ValueError): ddf_nocols.describe(percentiles_method="dask").compute() def test_describe_empty_tdigest(): pytest.importorskip("crick") df_none = pd.DataFrame({"A": [None, None]}) ddf_none = dd.from_pandas(df_none, 2) df_len0 = pd.DataFrame({"A": []}) ddf_len0 = dd.from_pandas(df_len0, 2) ddf_nocols = dd.from_pandas(pd.DataFrame({}), 2) # Pandas have different dtypes for resulting describe dataframe if there are only # None-values, pre-compute dask df to bypass _meta check assert_eq( df_none.describe(), ddf_none.describe(percentiles_method="tdigest").compute() ) with warnings.catch_warnings(): # dask.dataframe should probably filter this, to match pandas, but # it seems quite difficult. warnings.simplefilter("ignore", RuntimeWarning) assert_eq(df_len0.describe(), ddf_len0.describe(percentiles_method="tdigest")) assert_eq(df_len0.describe(), ddf_len0.describe(percentiles_method="tdigest")) with pytest.raises(ValueError): ddf_nocols.describe(percentiles_method="tdigest").compute() def test_describe_for_possibly_unsorted_q(): """make sure describe is sorting percentiles parameter, q, properly and can handle lists, tuples and ndarrays. See https://github.com/dask/dask/issues/4642. """ # prepare test case where quantiles should equal values A = da.arange(0, 101) ds = dd.from_dask_array(A) for q in [None, [0.25, 0.50, 0.75], [0.25, 0.50, 0.75, 0.99], [0.75, 0.5, 0.25]]: for f_convert in [list, tuple, np.array]: if q is None: r = ds.describe(percentiles=q).compute() else: r = ds.describe(percentiles=f_convert(q)).compute() assert_eq(r["25%"], 25.0) assert_eq(r["50%"], 50.0) assert_eq(r["75%"], 75.0) def test_cumulative(): index = ["row{:03d}".format(i) for i in range(100)] df = pd.DataFrame(np.random.randn(100, 5), columns=list("abcde"), index=index) df_out = pd.DataFrame(np.random.randn(100, 5), columns=list("abcde"), index=index) ddf = dd.from_pandas(df, 5) ddf_out = dd.from_pandas(df_out, 5) assert_eq(ddf.cumsum(), df.cumsum()) assert_eq(ddf.cumprod(), df.cumprod()) assert_eq(ddf.cummin(), df.cummin()) assert_eq(ddf.cummax(), df.cummax()) assert_eq(ddf.cumsum(axis=1), df.cumsum(axis=1)) assert_eq(ddf.cumprod(axis=1), df.cumprod(axis=1)) assert_eq(ddf.cummin(axis=1), df.cummin(axis=1)) assert_eq(ddf.cummax(axis=1), df.cummax(axis=1)) np.cumsum(ddf, out=ddf_out) assert_eq(ddf_out, df.cumsum()) np.cumprod(ddf, out=ddf_out) assert_eq(ddf_out, df.cumprod()) ddf.cummin(out=ddf_out) assert_eq(ddf_out, df.cummin()) ddf.cummax(out=ddf_out) assert_eq(ddf_out, df.cummax()) np.cumsum(ddf, out=ddf_out, axis=1) assert_eq(ddf_out, df.cumsum(axis=1)) np.cumprod(ddf, out=ddf_out, axis=1) assert_eq(ddf_out, df.cumprod(axis=1)) ddf.cummin(out=ddf_out, axis=1) assert_eq(ddf_out, df.cummin(axis=1)) ddf.cummax(out=ddf_out, axis=1) assert_eq(ddf_out, df.cummax(axis=1)) assert_eq(ddf.a.cumsum(), df.a.cumsum()) assert_eq(ddf.a.cumprod(), df.a.cumprod()) assert_eq(ddf.a.cummin(), df.a.cummin()) assert_eq(ddf.a.cummax(), df.a.cummax()) # With NaNs df = pd.DataFrame( { "a": [1, 2, np.nan, 4, 5, 6, 7, 8], "b": [1, 2, np.nan, np.nan, np.nan, 5, np.nan, np.nan], "c": [np.nan] * 8, } ) ddf = dd.from_pandas(df, 3) assert_eq(df.cumsum(), ddf.cumsum()) assert_eq(df.cummin(), ddf.cummin()) assert_eq(df.cummax(), ddf.cummax()) assert_eq(df.cumprod(), ddf.cumprod()) assert_eq(df.cumsum(skipna=False), ddf.cumsum(skipna=False)) assert_eq(df.cummin(skipna=False), ddf.cummin(skipna=False)) assert_eq(df.cummax(skipna=False), ddf.cummax(skipna=False)) assert_eq(df.cumprod(skipna=False), ddf.cumprod(skipna=False)) assert_eq(df.cumsum(axis=1), ddf.cumsum(axis=1)) assert_eq(df.cummin(axis=1), ddf.cummin(axis=1)) assert_eq(df.cummax(axis=1), ddf.cummax(axis=1)) assert_eq(df.cumprod(axis=1), ddf.cumprod(axis=1)) assert_eq(df.cumsum(axis=1, skipna=False), ddf.cumsum(axis=1, skipna=False)) assert_eq(df.cummin(axis=1, skipna=False), ddf.cummin(axis=1, skipna=False)) assert_eq(df.cummax(axis=1, skipna=False), ddf.cummax(axis=1, skipna=False)) assert_eq(df.cumprod(axis=1, skipna=False), ddf.cumprod(axis=1, skipna=False)) @pytest.mark.parametrize( "func", [ M.cumsum, M.cumprod, pytest.param( M.cummin, marks=[ pytest.mark.xfail( reason="ValueError: Can only compare identically-labeled Series objects" ) ], ), pytest.param( M.cummax, marks=[ pytest.mark.xfail( reason="ValueError: Can only compare identically-labeled Series objects" ) ], ), ], ) def test_cumulative_empty_partitions(func): df = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6, 7, 8]}) ddf = dd.from_pandas(df, npartitions=4) assert_eq(func(df[df.x < 5]), func(ddf[ddf.x < 5])) df = pd.DataFrame({"x": [1, 2, 3, 4, None, 5, 6, None, 7, 8]}) ddf = dd.from_pandas(df, npartitions=5) assert_eq(func(df[df.x < 5]), func(ddf[ddf.x < 5])) def test_dropna(): df = pd.DataFrame( { "x": [np.nan, 2, 3, 4, np.nan, 6], "y": [1, 2, np.nan, 4, np.nan, np.nan], "z": [1, 2, 3, 4, np.nan, 6], }, index=[10, 20, 30, 40, 50, 60], ) ddf = dd.from_pandas(df, 3) assert_eq(ddf.x.dropna(), df.x.dropna()) assert_eq(ddf.y.dropna(), df.y.dropna()) assert_eq(ddf.z.dropna(), df.z.dropna()) assert_eq(ddf.dropna(), df.dropna()) assert_eq(ddf.dropna(how="all"), df.dropna(how="all")) assert_eq(ddf.dropna(subset=["x"]), df.dropna(subset=["x"])) assert_eq(ddf.dropna(subset=["y", "z"]), df.dropna(subset=["y", "z"])) assert_eq( ddf.dropna(subset=["y", "z"], how="all"), df.dropna(subset=["y", "z"], how="all"), ) # threshold assert_eq(df.dropna(thresh=None), df.loc[[20, 40]]) assert_eq(ddf.dropna(thresh=None), df.dropna(thresh=None)) assert_eq(df.dropna(thresh=0), df.loc[:]) assert_eq(ddf.dropna(thresh=0), df.dropna(thresh=0)) assert_eq(df.dropna(thresh=1), df.loc[[10, 20, 30, 40, 60]]) assert_eq(ddf.dropna(thresh=1), df.dropna(thresh=1)) assert_eq(df.dropna(thresh=2), df.loc[[10, 20, 30, 40, 60]]) assert_eq(ddf.dropna(thresh=2), df.dropna(thresh=2)) assert_eq(df.dropna(thresh=3), df.loc[[20, 40]]) assert_eq(ddf.dropna(thresh=3), df.dropna(thresh=3)) @pytest.mark.parametrize("lower, upper", [(2, 5), (2.5, 3.5)]) def test_clip(lower, upper): df = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [3, 5, 2, 5, 7, 2, 4, 2, 4]} ) ddf = dd.from_pandas(df, 3) s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9]) ds = dd.from_pandas(s, 3) assert_eq(ddf.clip(lower=lower, upper=upper), df.clip(lower=lower, upper=upper)) assert_eq(ddf.clip(lower=lower), df.clip(lower=lower)) assert_eq(ddf.clip(upper=upper), df.clip(upper=upper)) assert_eq(ds.clip(lower=lower, upper=upper), s.clip(lower=lower, upper=upper)) assert_eq(ds.clip(lower=lower), s.clip(lower=lower)) assert_eq(ds.clip(upper=upper), s.clip(upper=upper)) def test_squeeze(): df = pd.DataFrame({"x": [1, 3, 6]}) df2 = pd.DataFrame({"x": [0]}) s = pd.Series({"test": 0, "b": 100}) ddf = dd.from_pandas(df, 3) ddf2 = dd.from_pandas(df2, 3) ds = dd.from_pandas(s, 2) assert_eq(df.squeeze(), ddf.squeeze()) assert_eq(pd.Series([0], name="x"), ddf2.squeeze()) assert_eq(ds.squeeze(), s.squeeze()) with pytest.raises(NotImplementedError) as info: ddf.squeeze(axis=0) msg = "{0} does not support squeeze along axis 0".format(type(ddf)) assert msg in str(info.value) with pytest.raises(ValueError) as info: ddf.squeeze(axis=2) msg = "No axis {0} for object type {1}".format(2, type(ddf)) assert msg in str(info.value) with pytest.raises(ValueError) as info: ddf.squeeze(axis="test") msg = "No axis test for object type {0}".format(type(ddf)) assert msg in str(info.value) def test_where_mask(): pdf1 = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [3, 5, 2, 5, 7, 2, 4, 2, 4]} ) ddf1 = dd.from_pandas(pdf1, 2) pdf2 = pd.DataFrame({"a": [True, False, True] * 3, "b": [False, False, True] * 3}) ddf2 = dd.from_pandas(pdf2, 2) # different index pdf3 = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [3, 5, 2, 5, 7, 2, 4, 2, 4]}, index=[0, 1, 2, 3, 4, 5, 6, 7, 8], ) ddf3 = dd.from_pandas(pdf3, 2) pdf4 = pd.DataFrame( {"a": [True, False, True] * 3, "b": [False, False, True] * 3}, index=[5, 6, 7, 8, 9, 10, 11, 12, 13], ) ddf4 = dd.from_pandas(pdf4, 2) # different columns pdf5 = pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [9, 4, 2, 6, 2, 3, 1, 6, 2], "c": [5, 6, 7, 8, 9, 10, 11, 12, 13], }, index=[0, 1, 2, 3, 4, 5, 6, 7, 8], ) ddf5 = dd.from_pandas(pdf5, 2) pdf6 = pd.DataFrame( { "a": [True, False, True] * 3, "b": [False, False, True] * 3, "c": [False] * 9, "d": [True] * 9, }, index=[5, 6, 7, 8, 9, 10, 11, 12, 13], ) ddf6 = dd.from_pandas(pdf6, 2) cases = [ (ddf1, ddf2, pdf1, pdf2), (ddf1.repartition([0, 3, 6, 8]), ddf2, pdf1, pdf2), (ddf1, ddf4, pdf3, pdf4), (ddf3.repartition([0, 4, 6, 8]), ddf4.repartition([5, 9, 10, 13]), pdf3, pdf4), (ddf5, ddf6, pdf5, pdf6), (ddf5.repartition([0, 4, 7, 8]), ddf6, pdf5, pdf6), # use pd.DataFrame as cond (ddf1, pdf2, pdf1, pdf2), (ddf1, pdf4, pdf3, pdf4), (ddf5, pdf6, pdf5, pdf6), ] for idx, (ddf, ddcond, pdf, pdcond) in enumerate(cases): assert isinstance(ddf, dd.DataFrame) assert isinstance(ddcond, (dd.DataFrame, pd.DataFrame)) assert isinstance(pdf, pd.DataFrame) assert isinstance(pdcond, pd.DataFrame) assert_eq(ddf.where(ddcond), pdf.where(pdcond)) assert_eq(ddf.mask(ddcond), pdf.mask(pdcond)) assert_eq(ddf.where(ddcond, -ddf), pdf.where(pdcond, -pdf)) assert_eq(ddf.mask(ddcond, -ddf), pdf.mask(pdcond, -pdf)) assert_eq(ddf.where(ddcond.a, -ddf), pdf.where(pdcond.a, -pdf)) assert_eq(ddf.mask(ddcond.a, -ddf), pdf.mask(pdcond.a, -pdf)) assert_eq(ddf.a.where(ddcond.a), pdf.a.where(pdcond.a)) assert_eq(ddf.a.mask(ddcond.a), pdf.a.mask(pdcond.a)) assert_eq(ddf.a.where(ddcond.a, -ddf.a), pdf.a.where(pdcond.a, -pdf.a)) assert_eq(ddf.a.mask(ddcond.a, -ddf.a), pdf.a.mask(pdcond.a, -pdf.a)) def test_map_partitions_multi_argument(): assert_eq(dd.map_partitions(lambda a, b: a + b, d.a, d.b), full.a + full.b) assert_eq( dd.map_partitions(lambda a, b, c: a + b + c, d.a, d.b, 1), full.a + full.b + 1 ) def test_map_partitions(): assert_eq(d.map_partitions(lambda df: df, meta=d), full) assert_eq(d.map_partitions(lambda df: df), full) result = d.map_partitions(lambda df: df.sum(axis=1)) assert_eq(result, full.sum(axis=1)) assert_eq( d.map_partitions(lambda df: 1), pd.Series([1, 1, 1], dtype=np.int64), check_divisions=False, ) x = Scalar({("x", 0): 1}, "x", int) result = dd.map_partitions(lambda x: 2, x) assert result.dtype in (np.int32, np.int64) and result.compute() == 2 result = dd.map_partitions(lambda x: 4.0, x) assert result.dtype == np.float64 and result.compute() == 4.0 def test_map_partitions_type(): result = d.map_partitions(type).compute(scheduler="single-threaded") assert isinstance(result, pd.Series) assert all(x == pd.DataFrame for x in result) def test_map_partitions_names(): func = lambda x: x assert sorted(dd.map_partitions(func, d, meta=d).dask) == sorted( dd.map_partitions(func, d, meta=d).dask ) assert sorted(dd.map_partitions(lambda x: x, d, meta=d, token=1).dask) == sorted( dd.map_partitions(lambda x: x, d, meta=d, token=1).dask ) func = lambda x, y: x assert sorted(dd.map_partitions(func, d, d, meta=d).dask) == sorted( dd.map_partitions(func, d, d, meta=d).dask ) def test_map_partitions_column_info(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) b = dd.map_partitions(lambda x: x, a, meta=a) tm.assert_index_equal(b.columns, a.columns) assert_eq(df, b) b = dd.map_partitions(lambda x: x, a.x, meta=a.x) assert b.name == a.x.name assert_eq(df.x, b) b = dd.map_partitions(lambda x: x, a.x, meta=a.x) assert b.name == a.x.name assert_eq(df.x, b) b = dd.map_partitions(lambda df: df.x + df.y, a) assert isinstance(b, dd.Series) assert b.dtype == "i8" b = dd.map_partitions(lambda df: df.x + 1, a, meta=("x", "i8")) assert isinstance(b, dd.Series) assert b.name == "x" assert b.dtype == "i8" def test_map_partitions_method_names(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) b = a.map_partitions(lambda x: x) assert isinstance(b, dd.DataFrame) tm.assert_index_equal(b.columns, a.columns) b = a.map_partitions(lambda df: df.x + 1) assert isinstance(b, dd.Series) assert b.dtype == "i8" b = a.map_partitions(lambda df: df.x + 1, meta=("x", "i8")) assert isinstance(b, dd.Series) assert b.name == "x" assert b.dtype == "i8" def test_map_partitions_propagates_index_metadata(): index = pd.Series(list("abcde"), name="myindex") df = pd.DataFrame( {"A": np.arange(5, dtype=np.int32), "B": np.arange(10, 15, dtype=np.int32)}, index=index, ) ddf = dd.from_pandas(df, npartitions=2) res = ddf.map_partitions( lambda df: df.assign(C=df.A + df.B), meta=[("A", "i4"), ("B", "i4"), ("C", "i4")], ) sol = df.assign(C=df.A + df.B) assert_eq(res, sol) res = ddf.map_partitions(lambda df: df.rename_axis("newindex")) sol = df.rename_axis("newindex") assert_eq(res, sol) @pytest.mark.xfail(reason="now we use SubgraphCallables") def test_map_partitions_keeps_kwargs_readable(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) def f(s, x=1): return s + x b = a.x.map_partitions(f, x=5) # NOTE: we'd like to ensure that we keep the keyword arguments readable # in the dask graph assert "['x', 5]" in str(dict(b.dask)) or "{'x': 5}" in str(dict(b.dask)) assert_eq(df.x + 5, b) assert a.x.map_partitions(f, x=5)._name != a.x.map_partitions(f, x=6)._name def test_map_partitions_with_delayed_collection(): # https://github.com/dask/dask/issues/5854 df = pd.DataFrame(columns=list("abcdefghijk")) ddf = dd.from_pandas(df, 2) ddf.dropna(subset=list("abcdefghijk")).compute() # no error! def test_metadata_inference_single_partition_aligned_args(): # https://github.com/dask/dask/issues/3034 # Previously broadcastable series functionality broke this df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=1) def check(df, df_x): assert len(df) == len(df_x) assert len(df) > 0 return df res = dd.map_partitions(check, ddf, ddf.x, preserve_partition_sizes=True) assert_eq(res, ddf) def test_drop_duplicates(): res = d.drop_duplicates() res2 = d.drop_duplicates(split_every=2) sol = full.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = d.a.drop_duplicates() res2 = d.a.drop_duplicates(split_every=2) sol = full.a.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = d.index.drop_duplicates() res2 = d.index.drop_duplicates(split_every=2) sol = full.index.drop_duplicates() assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name with pytest.raises(NotImplementedError): d.drop_duplicates(keep=False) def test_drop_duplicates_subset(): df = pd.DataFrame({"x": [1, 2, 3, 1, 2, 3], "y": ["a", "a", "b", "b", "c", "c"]}) ddf = dd.from_pandas(df, npartitions=2) for kwarg in [{"keep": "first"}, {"keep": "last"}]: assert_eq(df.x.drop_duplicates(**kwarg), ddf.x.drop_duplicates(**kwarg)) for ss in [["x"], "y", ["x", "y"]]: assert_eq( df.drop_duplicates(subset=ss, **kwarg), ddf.drop_duplicates(subset=ss, **kwarg), ) assert_eq(df.drop_duplicates(ss, **kwarg), ddf.drop_duplicates(ss, **kwarg)) def test_get_partition(): pdf = pd.DataFrame(np.random.randn(10, 5), columns=list("abcde")) ddf = dd.from_pandas(pdf, 3) assert ddf.divisions == (0, 4, 8, 9) # DataFrame div1 = ddf.get_partition(0) assert isinstance(div1, dd.DataFrame) assert_eq(div1, pdf.loc[0:3]) div2 = ddf.get_partition(1) assert_eq(div2, pdf.loc[4:7]) div3 = ddf.get_partition(2) assert_eq(div3, pdf.loc[8:9]) assert len(div1) + len(div2) + len(div3) == len(pdf) # Series div1 = ddf.a.get_partition(0) assert isinstance(div1, dd.Series) assert_eq(div1, pdf.a.loc[0:3]) div2 = ddf.a.get_partition(1) assert_eq(div2, pdf.a.loc[4:7]) div3 = ddf.a.get_partition(2) assert_eq(div3, pdf.a.loc[8:9]) assert len(div1) + len(div2) + len(div3) == len(pdf.a) with pytest.raises(ValueError): ddf.get_partition(-1) with pytest.raises(ValueError): ddf.get_partition(3) def test_ndim(): assert d.ndim == 2 assert d.a.ndim == 1 assert d.index.ndim == 1 def test_dtype(): assert (d.dtypes == full.dtypes).all() def test_value_counts(): df = pd.DataFrame({"x": [1, 2, 1, 3, 3, 1, 4]}) ddf = dd.from_pandas(df, npartitions=3) result = ddf.x.value_counts() expected = df.x.value_counts() assert_eq(result, expected) result2 = ddf.x.value_counts(split_every=2) assert_eq(result2, expected) assert result._name != result2._name def test_value_counts_not_sorted(): df = pd.DataFrame({"x": [1, 2, 1, 3, 3, 1, 4]}) ddf = dd.from_pandas(df, npartitions=3) result = ddf.x.value_counts(sort=False) expected = df.x.value_counts(sort=False) assert_eq(result, expected) result2 = ddf.x.value_counts(split_every=2) assert_eq(result2, expected) assert result._name != result2._name def test_value_counts_with_dropna(): df = pd.DataFrame({"x": [1, 2, 1, 3, np.nan, 1, 4]}) ddf = dd.from_pandas(df, npartitions=3) if not PANDAS_GT_110: with pytest.raises(NotImplementedError, match="dropna is not a valid argument"): ddf.x.value_counts(dropna=False) return result = ddf.x.value_counts(dropna=False) expected = df.x.value_counts(dropna=False) assert_eq(result, expected) result2 = ddf.x.value_counts(split_every=2, dropna=False) assert_eq(result2, expected) assert result._name != result2._name def test_unique(): pdf = pd.DataFrame( { "x": [1, 2, 1, 3, 3, 1, 4, 2, 3, 1], "y": ["a", "c", "b", np.nan, "c", "b", "a", "d", np.nan, "a"], } ) ddf = dd.from_pandas(pdf, npartitions=3) assert_eq(ddf.x.unique(), pd.Series(pdf.x.unique(), name="x")) assert_eq(ddf.y.unique(), pd.Series(pdf.y.unique(), name="y")) assert_eq(ddf.x.unique(split_every=2), pd.Series(pdf.x.unique(), name="x")) assert_eq(ddf.y.unique(split_every=2), pd.Series(pdf.y.unique(), name="y")) assert_eq(ddf.index.unique(), pdf.index.unique()) assert ddf.x.unique(split_every=2)._name != ddf.x.unique()._name def test_isin(): f_list = [1, 2, 3] f_series = pd.Series(f_list) f_dict = {"a": [0, 3], "b": [1, 2]} # Series assert_eq(d.a.isin(f_list), full.a.isin(f_list)) assert_eq(d.a.isin(f_series), full.a.isin(f_series)) with pytest.raises(NotImplementedError): d.a.isin(d.a) # Index da.utils.assert_eq(d.index.isin(f_list), full.index.isin(f_list)) da.utils.assert_eq(d.index.isin(f_series), full.index.isin(f_series)) with pytest.raises(NotImplementedError): d.a.isin(d.a) # DataFrame test assert_eq(d.isin(f_list), full.isin(f_list)) assert_eq(d.isin(f_dict), full.isin(f_dict)) for obj in [d, f_series, full]: with pytest.raises(NotImplementedError): d.isin(obj) def test_contains_frame(): df = dd.from_pandas(pd.DataFrame({"A": [1, 2], 0: [3, 4]}), 1) assert "A" in df assert 0 in df assert "B" not in df assert 1 not in df def test_len(): assert len(d) == len(full) assert len(d.a) == len(full.a) assert len(dd.from_pandas(pd.DataFrame(), npartitions=1)) == 0 assert len(dd.from_pandas(pd.DataFrame(columns=[1, 2]), npartitions=1)) == 0 # Regression test for https://github.com/dask/dask/issues/6110 assert len(dd.from_pandas(pd.DataFrame(columns=["foo", "foo"]), npartitions=1)) == 0 def test_size(): assert_eq(d.size, full.size) assert_eq(d.a.size, full.a.size) assert_eq(d.index.size, full.index.size) def test_shape(): result = d.shape assert_eq((result[0].compute(), result[1]), (len(full), len(full.columns))) assert_eq(dd.compute(result)[0], (len(full), len(full.columns))) result = d.a.shape assert_eq(result[0].compute(), len(full.a)) assert_eq(dd.compute(result)[0], (len(full.a),)) sh = dd.from_pandas(pd.DataFrame(index=[1, 2, 3]), npartitions=2).shape assert sh == (3, 0) ddf = dd.from_pandas(pd.DataFrame({"a": [], "b": []}, index=[]), npartitions=1) sh = ddf.shape assert sh == (0, 2) def test_nbytes(): assert_eq(d.a.nbytes, full.a.nbytes) assert_eq(d.index.nbytes, full.index.nbytes) @pytest.mark.parametrize( "method,expected", [("tdigest", (0.35, 3.80, 2.5, 6.5, 2.0)), ("dask", (0.0, 4.0, 1.2, 6.2, 2.0))], ) def test_quantile(method, expected): if method == "tdigest": pytest.importorskip("crick") # series / multiple result = d.b.quantile([0.3, 0.7], method=method) exp = full.b.quantile([0.3, 0.7]) # result may different assert len(result) == 2 assert result.divisions == (0.3, 0.7) assert_eq(result.index, exp.index) assert isinstance(result, dd.Series) result = result.compute() assert isinstance(result, pd.Series) assert result.iloc[0] == pytest.approx(expected[0]) assert result.iloc[1] == pytest.approx(expected[1]) # index s = pd.Series(np.arange(10), index=np.arange(10)) ds = dd.from_pandas(s, 2) result = ds.index.quantile([0.3, 0.7], method=method) exp = s.quantile([0.3, 0.7]) assert len(result) == 2 assert result.divisions == (0.3, 0.7) assert_eq(result.index, exp.index) assert isinstance(result, dd.Series) result = result.compute() assert isinstance(result, pd.Series) assert result.iloc[0] == pytest.approx(expected[2]) assert result.iloc[1] == pytest.approx(expected[3]) # series / single result = d.b.quantile(0.5, method=method) assert isinstance(result, dd.core.Scalar) result = result.compute() assert result == expected[4] @pytest.mark.parametrize("method", ["tdigest", "dask"]) def test_quantile_missing(method): if method == "tdigest": pytest.importorskip("crick") df = pd.DataFrame({"A": [0, np.nan, 2]}) ddf = dd.from_pandas(df, 2) expected = df.quantile() result = ddf.quantile(method=method) assert_eq(result, expected) expected = df.A.quantile() result = ddf.A.quantile(method=method) assert_eq(result, expected) @pytest.mark.parametrize("method", ["tdigest", "dask"]) def test_empty_quantile(method): if method == "tdigest": pytest.importorskip("crick") result = d.b.quantile([], method=method) exp = full.b.quantile([]) assert result.divisions == (None, None) assert result.name == "b" assert result.compute().name == "b" assert_eq(result, exp) @pytest.mark.parametrize( "method,expected", [ ( "tdigest", ( pd.Series([9.5, 29.5, 19.5], index=["A", "X", "B"]), pd.DataFrame( [[4.5, 24.5, 14.5], [14.5, 34.5, 24.5]], index=[0.25, 0.75], columns=["A", "X", "B"], ), ), ), ( "dask", ( pd.Series([7.0, 27.0, 17.0], index=["A", "X", "B"]), pd.DataFrame( [[1.50, 21.50, 11.50], [14.0, 34.0, 24.0]], index=[0.25, 0.75], columns=["A", "X", "B"], ), ), ), ], ) def test_dataframe_quantile(method, expected): if method == "tdigest": pytest.importorskip("crick") # column X is for test column order and result division df = pd.DataFrame( { "A": np.arange(20), "X": np.arange(20, 40), "B": np.arange(10, 30), "C": ["a", "b", "c", "d"] * 5, }, columns=["A", "X", "B", "C"], ) ddf = dd.from_pandas(df, 3) result = ddf.quantile(method=method) assert result.npartitions == 1 assert result.divisions == ("A", "X") result = result.compute() assert isinstance(result, pd.Series) assert result.name == 0.5 tm.assert_index_equal(result.index, pd.Index(["A", "X", "B"])) assert (result == expected[0]).all() result = ddf.quantile([0.25, 0.75], method=method) assert result.npartitions == 1 assert result.divisions == (0.25, 0.75) result = result.compute() assert isinstance(result, pd.DataFrame) tm.assert_index_equal(result.index, pd.Index([0.25, 0.75])) tm.assert_index_equal(result.columns, pd.Index(["A", "X", "B"])) assert (result == expected[1]).all().all() assert_eq(ddf.quantile(axis=1, method=method), df.quantile(axis=1)) pytest.raises(ValueError, lambda: ddf.quantile([0.25, 0.75], axis=1, method=method)) def test_quantile_for_possibly_unsorted_q(): """check that quantile is giving correct answers even when quantile parameter, q, may be unsorted. See https://github.com/dask/dask/issues/4642. """ # prepare test case where percentiles should equal values A = da.arange(0, 101) ds = dd.from_dask_array(A) for q in [ [0.25, 0.50, 0.75], [0.25, 0.50, 0.75, 0.99], [0.75, 0.5, 0.25], [0.25, 0.99, 0.75, 0.50], ]: r = ds.quantile(q).compute() assert_eq(r.loc[0.25], 25.0) assert_eq(r.loc[0.50], 50.0) assert_eq(r.loc[0.75], 75.0) r = ds.quantile([0.25]).compute() assert_eq(r.loc[0.25], 25.0) r = ds.quantile(0.25).compute() assert_eq(r, 25.0) def test_quantile_tiny_partitions(): """ See https://github.com/dask/dask/issues/6551 """ df = pd.DataFrame({"a": [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=3) r = ddf["a"].quantile(0.5).compute() assert r == 2 def test_index(): assert_eq(d.index, full.index) def test_assign(): df = pd.DataFrame( {"a": range(8), "b": [float(i) for i in range(10, 18)]}, index=pd.Index(list("abcdefgh")), ) ddf = dd.from_pandas(df, npartitions=3) assert ddf.known_divisions ddf_unknown = dd.from_pandas(df, npartitions=3, sort=False) assert not ddf_unknown.known_divisions h = np.array(range(len(df))) i = da.from_array(h) res = ddf.assign( c=1, d="string", e=ddf.a.sum(), f=ddf.a + ddf.b, g=lambda x: x.a + x.b, h=h, i=i, dt=pd.Timestamp(2018, 2, 13), ) res_unknown = ddf_unknown.assign( c=1, d="string", e=ddf_unknown.a.sum(), f=ddf_unknown.a + ddf_unknown.b, g=lambda x: x.a + x.b, h=h, i=i, dt=pd.Timestamp(2018, 2, 13), ) sol = df.assign( c=1, d="string", e=df.a.sum(), f=df.a + df.b, g=lambda x: x.a + x.b, h=h, i=i.compute(), dt=pd.Timestamp(2018, 2, 13), ) assert_eq(res, sol) assert_eq(res_unknown, sol) res = ddf.assign(c=df.a + 1) assert_eq(res, df.assign(c=df.a + 1)) res = ddf.assign(c=ddf.index) assert_eq(res, df.assign(c=df.index)) # divisions unknown won't work with pandas with pytest.raises(ValueError): ddf_unknown.assign(c=df.a + 1) # unsupported type with pytest.raises(TypeError): ddf.assign(c=list(range(9))) # Fails when assigning known divisions to unknown divisions with pytest.raises(ValueError): ddf_unknown.assign(foo=ddf.a) # Fails when assigning unknown divisions to known divisions with pytest.raises(ValueError): ddf.assign(foo=ddf_unknown.a) def test_assign_callable(): df = dd.from_pandas(pd.DataFrame({"A": range(10)}), npartitions=2) a = df.assign(B=df.A.shift()) b = df.assign(B=lambda x: x.A.shift()) assert_eq(a, b) def test_assign_dtypes(): ddf = dd.from_pandas( pd.DataFrame( data={"col1": ["a", "b"], "col2": [1, 2]}, columns=["col1", "col2"] ), npartitions=2, ) new_col = {"col3": pd.Series(["0", "1"])} res = ddf.assign(**new_col) assert_eq( res.dtypes, pd.Series(data=["object", "int64", "object"], index=["col1", "col2", "col3"]), ) def test_map(): df = pd.DataFrame( {"a": range(9), "b": [4, 5, 6, 1, 2, 3, 0, 0, 0]}, index=pd.Index([0, 1, 3, 5, 6, 8, 9, 9, 9], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=3) assert_eq(ddf.a.map(lambda x: x + 1), df.a.map(lambda x: x + 1)) lk = dict((v, v + 1) for v in df.a.values) assert_eq(ddf.a.map(lk), df.a.map(lk)) assert_eq(ddf.b.map(lk), df.b.map(lk)) lk = pd.Series(lk) assert_eq(ddf.a.map(lk), df.a.map(lk)) assert_eq(ddf.b.map(lk), df.b.map(lk)) assert_eq(ddf.b.map(lk, meta=ddf.b), df.b.map(lk)) assert_eq(ddf.b.map(lk, meta=("b", "i8")), df.b.map(lk)) def test_concat(): x = _concat([pd.DataFrame(columns=["a", "b"]), pd.DataFrame(columns=["a", "b"])]) assert list(x.columns) == ["a", "b"] assert len(x) == 0 def test_args(): e = d.assign(c=d.a + 1) f = type(e)(*e._args) assert_eq(e, f) assert_eq(d.a, type(d.a)(*d.a._args)) assert_eq(d.a.sum(), type(d.a.sum())(*d.a.sum()._args)) def test_known_divisions(): assert d.known_divisions df = dd.DataFrame(dsk, "x", meta, divisions=[None, None, None]) assert not df.known_divisions def test_unknown_divisions(): dsk = { ("x", 0): pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}), ("x", 1): pd.DataFrame({"a": [4, 5, 6], "b": [3, 2, 1]}), ("x", 2): pd.DataFrame({"a": [7, 8, 9], "b": [0, 0, 0]}), } meta = make_meta({"a": "i8", "b": "i8"}) d = dd.DataFrame(dsk, "x", meta, [None, None, None, None]) full = d.compute(scheduler="sync") assert_eq(d.a.sum(), full.a.sum()) assert_eq(d.a + d.b + 1, full.a + full.b + 1) @pytest.mark.skipif( PANDAS_VERSION < "0.22.0", reason="Parameter min_count not implemented in " "DataFrame.sum() and DataFrame.prod()", ) def test_with_min_count(): dfs = [ pd.DataFrame([[None, 2, 3], [None, 5, 6], [5, 4, 9]]), pd.DataFrame([[2, None, None], [None, 5, 6], [5, 4, 9]]), ] ddfs = [dd.from_pandas(df, npartitions=4) for df in dfs] axes = [0, 1] for df, ddf in zip(dfs, ddfs): for axis in axes: for min_count in [0, 1, 2, 3]: assert_eq( df.sum(min_count=min_count, axis=axis), ddf.sum(min_count=min_count, axis=axis), ) assert_eq( df.prod(min_count=min_count, axis=axis), ddf.prod(min_count=min_count, axis=axis), ) @pytest.mark.parametrize("join", ["inner", "outer", "left", "right"]) def test_align(join): df1a = pd.DataFrame( {"A": np.random.randn(10), "B": np.random.randn(10)}, index=[1, 12, 5, 6, 3, 9, 10, 4, 13, 11], ) df1b = pd.DataFrame( {"A": np.random.randn(10), "B": np.random.randn(10)}, index=[0, 3, 2, 10, 5, 6, 7, 8, 12, 13], ) ddf1a = dd.from_pandas(df1a, 3) ddf1b = dd.from_pandas(df1b, 3) # DataFrame res1, res2 = ddf1a.align(ddf1b, join=join) exp1, exp2 = df1a.align(df1b, join=join) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # Series res1, res2 = ddf1a["A"].align(ddf1b["B"], join=join) exp1, exp2 = df1a["A"].align(df1b["B"], join=join) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # DataFrame with fill_value res1, res2 = ddf1a.align(ddf1b, join=join, fill_value=1) exp1, exp2 = df1a.align(df1b, join=join, fill_value=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # Series res1, res2 = ddf1a["A"].align(ddf1b["B"], join=join, fill_value=1) exp1, exp2 = df1a["A"].align(df1b["B"], join=join, fill_value=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) @pytest.mark.parametrize("join", ["inner", "outer", "left", "right"]) def test_align_axis(join): df1a = pd.DataFrame( {"A": np.random.randn(10), "B": np.random.randn(10), "C": np.random.randn(10)}, index=[1, 12, 5, 6, 3, 9, 10, 4, 13, 11], ) df1b = pd.DataFrame( {"B": np.random.randn(10), "C": np.random.randn(10), "D": np.random.randn(10)}, index=[0, 3, 2, 10, 5, 6, 7, 8, 12, 13], ) ddf1a = dd.from_pandas(df1a, 3) ddf1b = dd.from_pandas(df1b, 3) res1, res2 = ddf1a.align(ddf1b, join=join, axis=0) exp1, exp2 = df1a.align(df1b, join=join, axis=0) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis=1) exp1, exp2 = df1a.align(df1b, join=join, axis=1) assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis="index") exp1, exp2 = df1a.align(df1b, join=join, axis="index") assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) res1, res2 = ddf1a.align(ddf1b, join=join, axis="columns") exp1, exp2 = df1a.align(df1b, join=join, axis="columns") assert assert_eq(res1, exp1) assert assert_eq(res2, exp2) # invalid with pytest.raises(ValueError): ddf1a.align(ddf1b, join=join, axis="XXX") with pytest.raises(ValueError): ddf1a["A"].align(ddf1b["B"], join=join, axis=1) def test_combine(): df1 = pd.DataFrame( { "A": np.random.choice([1, 2, np.nan], 100), "B": np.random.choice(["a", "b", np.nan], 100), } ) df2 = pd.DataFrame( { "A": np.random.choice([1, 2, 3], 100), "B": np.random.choice(["a", "b", "c"], 100), } ) ddf1 = dd.from_pandas(df1, 4) ddf2 = dd.from_pandas(df2, 5) first = lambda a, b: a # DataFrame for dda, ddb, a, b in [ (ddf1, ddf2, df1, df2), (ddf1.A, ddf2.A, df1.A, df2.A), (ddf1.B, ddf2.B, df1.B, df2.B), ]: for func, fill_value in [(add, None), (add, 100), (first, None)]: sol = a.combine(b, func, fill_value=fill_value) assert_eq(dda.combine(ddb, func, fill_value=fill_value), sol) assert_eq(dda.combine(b, func, fill_value=fill_value), sol) assert_eq( ddf1.combine(ddf2, add, overwrite=False), df1.combine(df2, add, overwrite=False) ) assert dda.combine(ddb, add)._name == dda.combine(ddb, add)._name def test_combine_first(): df1 = pd.DataFrame( { "A": np.random.choice([1, 2, np.nan], 100), "B": np.random.choice(["a", "b", np.nan], 100), } ) df2 = pd.DataFrame( { "A": np.random.choice([1, 2, 3], 100), "B": np.random.choice(["a", "b", "c"], 100), } ) ddf1 = dd.from_pandas(df1, 4) ddf2 = dd.from_pandas(df2, 5) # DataFrame assert_eq(ddf1.combine_first(ddf2), df1.combine_first(df2)) assert_eq(ddf1.combine_first(df2), df1.combine_first(df2)) # Series assert_eq(ddf1.A.combine_first(ddf2.A), df1.A.combine_first(df2.A)) assert_eq(ddf1.A.combine_first(df2.A), df1.A.combine_first(df2.A)) assert_eq(ddf1.B.combine_first(ddf2.B), df1.B.combine_first(df2.B)) assert_eq(ddf1.B.combine_first(df2.B), df1.B.combine_first(df2.B)) def test_dataframe_picklable(): from pickle import loads, dumps cloudpickle = pytest.importorskip("cloudpickle") cp_dumps = cloudpickle.dumps cp_loads = cloudpickle.loads d = _compat.makeTimeDataFrame() df = dd.from_pandas(d, npartitions=3) df = df + 2 # dataframe df2 = loads(dumps(df)) assert_eq(df, df2) df2 = cp_loads(cp_dumps(df)) assert_eq(df, df2) # series a2 = loads(dumps(df.A)) assert_eq(df.A, a2) a2 = cp_loads(cp_dumps(df.A)) assert_eq(df.A, a2) # index i2 = loads(dumps(df.index)) assert_eq(df.index, i2) i2 = cp_loads(cp_dumps(df.index)) assert_eq(df.index, i2) # scalar # lambdas are present, so only test cloudpickle s = df.A.sum() s2 = cp_loads(cp_dumps(s)) assert_eq(s, s2) def test_random_partitions(): a, b = d.random_split([0.5, 0.5], 42) assert isinstance(a, dd.DataFrame) assert isinstance(b, dd.DataFrame) assert a._name != b._name np.testing.assert_array_equal(a.index, sorted(a.index)) assert len(a.compute()) + len(b.compute()) == len(full) a2, b2 = d.random_split([0.5, 0.5], 42) assert a2._name == a._name assert b2._name == b._name a, b = d.random_split([0.5, 0.5], 42, True) a2, b2 = d.random_split([0.5, 0.5], 42, True) assert_eq(a, a2) assert_eq(b, b2) with pytest.raises(AssertionError): np.testing.assert_array_equal(a.index, sorted(a.index)) parts = d.random_split([0.4, 0.5, 0.1], 42) names = set([p._name for p in parts]) names.update([a._name, b._name]) assert len(names) == 5 with pytest.raises(ValueError): d.random_split([0.4, 0.5], 42) def test_series_round(): ps = pd.Series([1.123, 2.123, 3.123, 1.234, 2.234, 3.234], name="a") s = dd.from_pandas(ps, npartitions=3) assert_eq(s.round(), ps.round()) @pytest.mark.slow def test_repartition(): def _check_split_data(orig, d): """Check data is split properly""" keys = [k for k in d.dask if k[0].startswith("repartition-split")] keys = sorted(keys) sp = pd.concat( [compute_as_if_collection(dd.DataFrame, d.dask, k) for k in keys] ) assert_eq(orig, sp) assert_eq(orig, d, check_partition_sizes=False) df = pd.DataFrame( {"x": [1, 2, 3, 4, 5, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60] ) a = dd.from_pandas(df, 2) b = a.repartition(divisions=[10, 20, 50, 60]) assert b.divisions == (10, 20, 50, 60) assert_eq(a, b, check_partition_sizes=False) assert_eq(compute_as_if_collection(dd.DataFrame, b.dask, (b._name, 0)), df.iloc[:1]) for div in [ [20, 60], [10, 50], [1], # first / last element mismatch [0, 60], [10, 70], # do not allow to expand divisions by default [10, 50, 20, 60], # not sorted [10, 10, 20, 60], ]: # not unique (last element can be duplicated) pytest.raises(ValueError, lambda: a.repartition(divisions=div)) pdf = pd.DataFrame(np.random.randn(7, 5), columns=list("abxyz")) for p in range(1, 7): ddf = dd.from_pandas(pdf, p) assert_eq(ddf, pdf) for div in [ [0, 6], [0, 6, 6], [0, 5, 6], [0, 4, 6, 6], [0, 2, 6], [0, 2, 6, 6], [0, 2, 3, 6, 6], [0, 1, 2, 3, 4, 5, 6, 6], ]: rddf = ddf.repartition(divisions=div) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) # expand divisions for div in [[-5, 10], [-2, 3, 5, 6], [0, 4, 5, 9, 10]]: rddf = ddf.repartition(divisions=div, force=True) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div, force=True) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) pdf = pd.DataFrame( {"x": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], "y": [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]}, index=list("abcdefghij"), ) for p in range(1, 7): ddf = dd.from_pandas(pdf, p) assert_eq(ddf, pdf) for div in [ list("aj"), list("ajj"), list("adj"), list("abfj"), list("ahjj"), list("acdj"), list("adfij"), list("abdefgij"), list("abcdefghij"), ]: rddf = ddf.repartition(divisions=div) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) # expand divisions for div in [list("Yadijm"), list("acmrxz"), list("Yajz")]: rddf = ddf.repartition(divisions=div, force=True) _check_split_data(ddf, rddf) assert rddf.divisions == tuple(div) assert_eq(pdf, rddf) rds = ddf.x.repartition(divisions=div, force=True) _check_split_data(ddf.x, rds) assert rds.divisions == tuple(div) assert_eq(pdf.x, rds) def test_repartition_divisions(): result = repartition_divisions([0, 6], [0, 6, 6], "a", "b", "c") assert result == { ("b", 0): (methods.boundary_slice, ("a", 0), 0, 6, False), ("b", 1): (methods.boundary_slice, ("a", 0), 6, 6, True), ("c", 0): ("b", 0), ("c", 1): ("b", 1), } result = repartition_divisions([1, 3, 7], [1, 4, 6, 7], "a", "b", "c") assert result == { ("b", 0): (methods.boundary_slice, ("a", 0), 1, 3, False), ("b", 1): (methods.boundary_slice, ("a", 1), 3, 4, False), ("b", 2): (methods.boundary_slice, ("a", 1), 4, 6, False), ("b", 3): (methods.boundary_slice, ("a", 1), 6, 7, True), ("c", 0): (methods.concat, [("b", 0), ("b", 1)]), ("c", 1): ("b", 2), ("c", 2): ("b", 3), } def test_repartition_on_pandas_dataframe(): df = pd.DataFrame( {"x": [1, 2, 3, 4, 5, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60] ) ddf = dd.repartition(df, divisions=[10, 20, 50, 60]) assert isinstance(ddf, dd.DataFrame) assert ddf.divisions == (10, 20, 50, 60) assert_eq(ddf, df) ddf = dd.repartition(df.y, divisions=[10, 20, 50, 60]) assert isinstance(ddf, dd.Series) assert ddf.divisions == (10, 20, 50, 60) assert_eq(ddf, df.y) @pytest.mark.parametrize("use_index", [True, False]) @pytest.mark.parametrize("n", [1, 2, 4, 5]) @pytest.mark.parametrize("k", [1, 2, 4, 5]) @pytest.mark.parametrize("dtype", [float, "M8[ns]"]) @pytest.mark.parametrize("transform", [lambda df: df, lambda df: df.x]) def test_repartition_npartitions(use_index, n, k, dtype, transform): df = pd.DataFrame( {"x": [1, 2, 3, 4, 5, 6] * 10, "y": list("abdabd") * 10}, index=pd.Series([1, 2, 3, 4, 5, 6] * 10, dtype=dtype), ) df = transform(df) a = dd.from_pandas(df, npartitions=n, sort=use_index) check_partition_sizes(a) b = a.repartition(npartitions=k) if k > n: check_partition_sizes(b, None) else: check_partition_sizes(b) assert_eq(a, b, check_partition_sizes=False) assert b.npartitions == k parts = dask.get(b.dask, b.__dask_keys__()) assert all(map(len, parts)) @pytest.mark.parametrize("use_index", [True, False]) @pytest.mark.parametrize("n", [2, 5]) @pytest.mark.parametrize("partition_size", ["1kiB", 379]) @pytest.mark.parametrize("transform", [lambda df: df, lambda df: df.x]) def test_repartition_partition_size(use_index, n, partition_size, transform): df = pd.DataFrame( {"x": [1, 2, 3, 4, 5, 6] * 10, "y": list("abdabd") * 10}, index=pd.Series([10, 20, 30, 40, 50, 60] * 10), ) df = transform(df) a = dd.from_pandas(df, npartitions=n, sort=use_index) b = a.repartition(partition_size=partition_size) assert_eq(a, b, check_divisions=False, check_partition_sizes=False) assert np.alltrue(b.map_partitions(total_mem_usage, deep=True).compute() <= 1024) parts = dask.get(b.dask, b.__dask_keys__()) assert all(map(len, parts)) def test_repartition_partition_size_arg(): df = pd.DataFrame({"x": range(10)}) a = dd.from_pandas(df, npartitions=2) b = a.repartition("1 MiB") assert b.npartitions == 1 def test_repartition_npartitions_same_limits(): df = pd.DataFrame( {"x": [1, 2, 3]}, index=[ pd.Timestamp("2017-05-09 00:00:00.006000"), pd.Timestamp("2017-05-09 02:45:00.017999"), pd.Timestamp("2017-05-09 05:59:58.938999"), ], ) ddf = dd.from_pandas(df, npartitions=2) ddf.repartition(npartitions=10) def test_repartition_npartitions_numeric_edge_case(): """ Test that we cover numeric edge cases when int(ddf.npartitions / npartitions) * npartitions) != ddf.npartitions """ df = pd.DataFrame({"x": range(100)}) a = dd.from_pandas(df, npartitions=15) assert a.npartitions == 15 b = a.repartition(npartitions=11) assert_eq(a, b, check_partition_sizes=False) def test_repartition_object_index(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6] * 10}, index=list("abdabd") * 10) a = dd.from_pandas(df, npartitions=5) b = a.repartition(npartitions=2) assert b.npartitions == 2 assert_eq(b, df) b = a.repartition(npartitions=10) assert b.npartitions == 10 assert_eq(b, df) assert not b.known_divisions @pytest.mark.slow @pytest.mark.parametrize("npartitions", [1, 20, 243]) @pytest.mark.parametrize("freq", ["1D", "7D", "28h", "1h"]) @pytest.mark.parametrize( "end", ["2000-04-15", "2000-04-15 12:37:01", "2000-01-01 12:37:00"] ) @pytest.mark.parametrize( "start", ["2000-01-01", "2000-01-01 12:30:00", "2000-01-01 12:30:00"] ) def test_repartition_freq(npartitions, freq, start, end): start = pd.Timestamp(start) end = pd.Timestamp(end) ind = pd.date_range(start=start, end=end, freq="60s") df = pd.DataFrame({"x": np.arange(len(ind))}, index=ind) ddf = dd.from_pandas(df, npartitions=npartitions, name="x") ddf2 = ddf.repartition(freq=freq) assert_eq(ddf2, df) def test_repartition_freq_divisions(): df = pd.DataFrame( {"x": np.random.random(10)}, index=pd.DatetimeIndex(np.random.random(10) * 100e9), ) ddf = dd.from_pandas(df, npartitions=3) ddf2 = ddf.repartition(freq="15s") for div in ddf2.divisions[1:-1]: assert div == div.round("15s") assert ddf2.divisions[0] == df.index.min() assert ddf2.divisions[-1] == df.index.max() assert_eq(ddf2, ddf2) def test_repartition_freq_errors(): df = pd.DataFrame({"x": [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=1) with pytest.raises(TypeError) as info: ddf.repartition(freq="1s") assert "only" in str(info.value) assert "timeseries" in str(info.value) def test_repartition_freq_month(): ts = pd.date_range("2015-01-01 00:00", " 2015-05-01 23:50", freq="10min") df = pd.DataFrame( np.random.randint(0, 100, size=(len(ts), 4)), columns=list("ABCD"), index=ts ) ddf = dd.from_pandas(df, npartitions=1).repartition(freq="1M") assert_eq(df, ddf) assert 2 < ddf.npartitions <= 6 def test_repartition_input_errors(): df = pd.DataFrame({"x": [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=1) with pytest.raises(ValueError): ddf.repartition(npartitions=5, divisions=[None, None]) with pytest.raises(ValueError): ddf.repartition(npartitions=5, partition_size="5MiB") def test_embarrassingly_parallel_operations(): df = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60], ) a = dd.from_pandas(df, 2) assert_eq(a.x.astype("float32"), df.x.astype("float32")) assert a.x.astype("float32").compute().dtype == "float32" assert_eq(a.x.dropna(), df.x.dropna()) assert_eq(a.x.between(2, 4), df.x.between(2, 4)) assert_eq(a.x.clip(2, 4), df.x.clip(2, 4)) assert_eq(a.x.notnull(), df.x.notnull()) assert_eq(a.x.isnull(), df.x.isnull()) assert_eq(a.notnull(), df.notnull()) assert_eq(a.isnull(), df.isnull()) assert len(a.sample(frac=0.5).compute()) < len(df) def test_fillna(): df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.fillna(100), df.fillna(100)) assert_eq(ddf.A.fillna(100), df.A.fillna(100)) assert_eq(ddf.A.fillna(ddf["A"].mean()), df.A.fillna(df["A"].mean())) assert_eq(ddf.fillna(method="pad"), df.fillna(method="pad")) assert_eq(ddf.A.fillna(method="pad"), df.A.fillna(method="pad")) assert_eq(ddf.fillna(method="bfill"), df.fillna(method="bfill")) assert_eq(ddf.A.fillna(method="bfill"), df.A.fillna(method="bfill")) assert_eq(ddf.fillna(method="pad", limit=2), df.fillna(method="pad", limit=2)) assert_eq(ddf.A.fillna(method="pad", limit=2), df.A.fillna(method="pad", limit=2)) assert_eq(ddf.fillna(method="bfill", limit=2), df.fillna(method="bfill", limit=2)) assert_eq( ddf.A.fillna(method="bfill", limit=2), df.A.fillna(method="bfill", limit=2) ) assert_eq(ddf.fillna(100, axis=1), df.fillna(100, axis=1)) assert_eq(ddf.fillna(method="pad", axis=1), df.fillna(method="pad", axis=1)) assert_eq( ddf.fillna(method="pad", limit=2, axis=1), df.fillna(method="pad", limit=2, axis=1), ) pytest.raises(ValueError, lambda: ddf.A.fillna(0, axis=1)) pytest.raises(NotImplementedError, lambda: ddf.fillna(0, limit=10)) pytest.raises(NotImplementedError, lambda: ddf.fillna(0, limit=10, axis=1)) df = _compat.makeMissingDataframe() df.iloc[:15, 0] = np.nan # all NaN partition ddf = dd.from_pandas(df, npartitions=5, sort=False) pytest.raises(ValueError, lambda: ddf.fillna(method="pad").compute()) assert_eq(df.fillna(method="pad", limit=3), ddf.fillna(method="pad", limit=3)) def test_fillna_duplicate_index(): @dask.delayed def f(): return pd.DataFrame(dict(a=[1.0], b=[np.NaN])) ddf = dd.from_delayed([f(), f()], meta=dict(a=float, b=float)) ddf.b = ddf.b.fillna(ddf.a) ddf.compute() def test_fillna_multi_dataframe(): df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.A.fillna(ddf.B), df.A.fillna(df.B)) assert_eq(ddf.B.fillna(ddf.A), df.B.fillna(df.A)) def test_ffill_bfill(): df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=5, sort=False) assert_eq(ddf.ffill(), df.ffill()) assert_eq(ddf.bfill(), df.bfill()) assert_eq(ddf.ffill(axis=1), df.ffill(axis=1)) assert_eq(ddf.bfill(axis=1), df.bfill(axis=1)) def test_fillna_series_types(): # https://github.com/dask/dask/issues/2809 df = pd.DataFrame({"A": [1, np.nan, 3], "B": [1, np.nan, 3]}) ddf = dd.from_pandas(df, npartitions=2) fill_value = pd.Series([1, 10], index=["A", "C"]) assert_eq(ddf.fillna(fill_value), df.fillna(fill_value)) def test_sample(): df = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60], ) a = dd.from_pandas(df, 2) b = a.sample(frac=0.5) assert_eq(b, b) c = a.sample(frac=0.5, random_state=1234) d = a.sample(frac=0.5, random_state=1234) assert_eq(c, d) assert a.sample(frac=0.5)._name != a.sample(frac=0.5)._name def test_sample_without_replacement(): df = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60], ) a = dd.from_pandas(df, 2) b = a.sample(frac=0.7, replace=False) bb = b.index.compute() assert len(bb) == len(set(bb)) def test_sample_raises(): df = pd.DataFrame( {"x": [1, 2, 3, 4, None, 6], "y": list("abdabd")}, index=[10, 20, 30, 40, 50, 60], ) a = dd.from_pandas(df, 2) # Make sure frac is replaced with n when 0 <= n <= 1 # This is so existing code (i.e. ddf.sample(0.5)) won't break with pytest.warns(UserWarning): b = a.sample(0.5, random_state=1234) c = a.sample(frac=0.5, random_state=1234) assert_eq(b, c) with pytest.raises(ValueError): a.sample(n=10) # Make sure frac is provided with pytest.raises(ValueError): a.sample(frac=None) def test_empty_max(): meta = make_meta({"x": "i8"}) a = dd.DataFrame( {("x", 0): pd.DataFrame({"x": [1]}), ("x", 1): pd.DataFrame({"x": []})}, "x", meta, [None, None, None], ) assert_eq(a.x.max(), 1) def test_query(): pytest.importorskip("numexpr") df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.query("x**2 > y"), df.query("x**2 > y")) assert_eq( ddf.query("x**2 > @value", local_dict={"value": 4}), df.query("x**2 > @value", local_dict={"value": 4}), ) def test_eval(): pytest.importorskip("numexpr") p = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) d = dd.from_pandas(p, npartitions=2) assert_eq(p.eval("x + y"), d.eval("x + y")) assert_eq(p.eval("z = x + y", inplace=False), d.eval("z = x + y", inplace=False)) with pytest.raises(NotImplementedError): d.eval("z = x + y", inplace=True) @pytest.mark.parametrize( "include, exclude", [ ([int], None), (None, [int]), ([np.number, object], [float]), (["datetime"], None), ], ) def test_select_dtypes(include, exclude): n = 10 df = pd.DataFrame( { "cint": [1] * n, "cstr": ["a"] * n, "clfoat": [1.0] * n, "cdt": pd.date_range("2016-01-01", periods=n), } ) a = dd.from_pandas(df, npartitions=2) result = a.select_dtypes(include=include, exclude=exclude) expected = df.select_dtypes(include=include, exclude=exclude) assert_eq(result, expected) # count dtypes tm.assert_series_equal(a.dtypes.value_counts(), df.dtypes.value_counts()) tm.assert_series_equal(result.dtypes.value_counts(), expected.dtypes.value_counts()) if not PANDAS_GT_100: # removed in pandas 1.0 ctx = pytest.warns(FutureWarning) with ctx: tm.assert_series_equal(a.get_ftype_counts(), df.get_ftype_counts()) tm.assert_series_equal( result.get_ftype_counts(), expected.get_ftype_counts() ) def test_deterministic_apply_concat_apply_names(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) a = dd.from_pandas(df, npartitions=2) assert sorted(a.x.nlargest(2).dask) == sorted(a.x.nlargest(2).dask) assert sorted(a.x.nlargest(2).dask) != sorted(a.x.nlargest(3).dask) assert sorted(a.x.drop_duplicates().dask) == sorted(a.x.drop_duplicates().dask) assert sorted(a.groupby("x").y.mean().dask) == sorted(a.groupby("x").y.mean().dask) # Test aca without passing in token string f = lambda a: a.nlargest(5) f2 = lambda a: a.nlargest(3) assert sorted(aca(a.x, f, f, a.x._meta).dask) != sorted( aca(a.x, f2, f2, a.x._meta).dask ) assert sorted(aca(a.x, f, f, a.x._meta).dask) == sorted( aca(a.x, f, f, a.x._meta).dask ) # Test aca with keywords def chunk(x, c_key=0, both_key=0): return x.sum() + c_key + both_key def agg(x, a_key=0, both_key=0): return pd.Series(x).sum() + a_key + both_key c_key = 2 a_key = 3 both_key = 4 res = aca( a.x, chunk=chunk, aggregate=agg, chunk_kwargs={"c_key": c_key}, aggregate_kwargs={"a_key": a_key}, both_key=both_key, ) assert sorted(res.dask) == sorted( aca( a.x, chunk=chunk, aggregate=agg, chunk_kwargs={"c_key": c_key}, aggregate_kwargs={"a_key": a_key}, both_key=both_key, ).dask ) assert sorted(res.dask) != sorted( aca( a.x, chunk=chunk, aggregate=agg, chunk_kwargs={"c_key": c_key}, aggregate_kwargs={"a_key": a_key}, both_key=0, ).dask ) assert_eq(res, df.x.sum() + 2 * (c_key + both_key) + a_key + both_key) def test_aca_meta_infer(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8]}) ddf = dd.from_pandas(df, npartitions=2) def chunk(x, y, constant=1.0): return (x + y + constant).head() def agg(x): return x.head() res = aca([ddf, 2.0], chunk=chunk, aggregate=agg, chunk_kwargs=dict(constant=2.0)) sol = (df + 2.0 + 2.0).head() assert_eq(res, sol) # Should infer as a scalar res = aca( [ddf.x], chunk=lambda x: pd.Series([x.sum()]), aggregate=lambda x: x.sum() ) assert isinstance(res, Scalar) assert res.compute() == df.x.sum() def test_aca_split_every(): df = pd.DataFrame({"x": [1] * 60}) ddf = dd.from_pandas(df, npartitions=15) def chunk(x, y, constant=0): return x.sum() + y + constant def combine(x, constant=0): return x.sum() + constant + 1 def agg(x, constant=0): return x.sum() + constant + 2 f = lambda n: aca( [ddf, 2.0], chunk=chunk, aggregate=agg, combine=combine, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), split_every=n, ) assert_max_deps(f(3), 3) assert_max_deps(f(4), 4, False) assert_max_deps(f(5), 5) assert set(f(15).dask.keys()) == set(f(ddf.npartitions).dask.keys()) r3 = f(3) r4 = f(4) assert r3._name != r4._name # Only intersect on reading operations assert len(set(r3.dask.keys()) & set(r4.dask.keys())) == len(ddf.dask.keys()) # Keywords are different for each step assert f(3).compute() == 60 + 15 * (2 + 1) + 7 * (2 + 1) + (3 + 2) # Keywords are same for each step res = aca( [ddf, 2.0], chunk=chunk, aggregate=agg, combine=combine, constant=3.0, split_every=3, ) assert res.compute() == 60 + 15 * (2 + 3) + 7 * (3 + 1) + (3 + 2) # No combine provided, combine is agg res = aca([ddf, 2.0], chunk=chunk, aggregate=agg, constant=3, split_every=3) assert res.compute() == 60 + 15 * (2 + 3) + 8 * (3 + 2) # split_every must be >= 2 with pytest.raises(ValueError): f(1) # combine_kwargs with no combine provided with pytest.raises(ValueError): aca( [ddf, 2.0], chunk=chunk, aggregate=agg, split_every=3, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), ) def test_reduction_method(): df = pd.DataFrame({"x": range(50), "y": range(50, 100)}) ddf = dd.from_pandas(df, npartitions=4) chunk = lambda x, val=0: (x >= val).sum() agg = lambda x: x.sum() # Output of chunk is a scalar res = ddf.x.reduction(chunk, aggregate=agg) assert_eq(res, df.x.count()) # Output of chunk is a series res = ddf.reduction(chunk, aggregate=agg) assert res._name == ddf.reduction(chunk, aggregate=agg)._name assert_eq(res, df.count()) # Test with keywords res2 = ddf.reduction(chunk, aggregate=agg, chunk_kwargs={"val": 25}) res2._name == ddf.reduction(chunk, aggregate=agg, chunk_kwargs={"val": 25})._name assert res2._name != res._name assert_eq(res2, (df >= 25).sum()) # Output of chunk is a dataframe def sum_and_count(x): return pd.DataFrame({"sum": x.sum(), "count": x.count()}) res = ddf.reduction(sum_and_count, aggregate=lambda x: x.groupby(level=0).sum()) assert_eq(res, pd.DataFrame({"sum": df.sum(), "count": df.count()})) def test_reduction_method_split_every(): df = pd.Series([1] * 60) ddf = dd.from_pandas(df, npartitions=15) def chunk(x, constant=0): return x.sum() + constant def combine(x, constant=0): return x.sum() + constant + 1 def agg(x, constant=0): return x.sum() + constant + 2 f = lambda n: ddf.reduction( chunk, aggregate=agg, combine=combine, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), split_every=n, ) assert_max_deps(f(3), 3) assert_max_deps(f(4), 4, False) assert_max_deps(f(5), 5) assert set(f(15).dask.keys()) == set(f(ddf.npartitions).dask.keys()) r3 = f(3) r4 = f(4) assert r3._name != r4._name # Only intersect on reading operations assert len(set(r3.dask.keys()) & set(r4.dask.keys())) == len(ddf.dask.keys()) # Keywords are different for each step assert f(3).compute() == 60 + 15 + 7 * (2 + 1) + (3 + 2) # Keywords are same for each step res = ddf.reduction( chunk, aggregate=agg, combine=combine, constant=3.0, split_every=3 ) assert res.compute() == 60 + 15 * 3 + 7 * (3 + 1) + (3 + 2) # No combine provided, combine is agg res = ddf.reduction(chunk, aggregate=agg, constant=3.0, split_every=3) assert res.compute() == 60 + 15 * 3 + 8 * (3 + 2) # split_every must be >= 2 with pytest.raises(ValueError): f(1) # combine_kwargs with no combine provided with pytest.raises(ValueError): ddf.reduction( chunk, aggregate=agg, split_every=3, chunk_kwargs=dict(constant=1.0), combine_kwargs=dict(constant=2.0), aggregate_kwargs=dict(constant=3.0), ) def test_pipe(): df = pd.DataFrame({"x": range(50), "y": range(50, 100)}) ddf = dd.from_pandas(df, npartitions=4) def f(x, y, z=0): return x + y + z assert_eq(ddf.pipe(f, 1, z=2), f(ddf, 1, z=2)) assert_eq(ddf.x.pipe(f, 1, z=2), f(ddf.x, 1, z=2)) def test_gh_517(): arr = np.random.randn(100, 2) df = pd.DataFrame(arr, columns=["a", "b"]) ddf = dd.from_pandas(df, 2) assert ddf.index.nunique().compute() == 100 ddf2 = dd.from_pandas(pd.concat([df, df]), 5) assert ddf2.index.nunique().compute() == 100 def test_drop_axis_1(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [5, 6, 7, 8], "z": [9, 10, 11, 12]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.drop("y", axis=1), df.drop("y", axis=1)) assert_eq(ddf.drop(["y", "z"], axis=1), df.drop(["y", "z"], axis=1)) with pytest.raises(ValueError): ddf.drop(["a", "x"], axis=1) assert_eq( ddf.drop(["a", "x"], axis=1, errors="ignore"), df.drop(["a", "x"], axis=1, errors="ignore"), ) assert_eq(ddf.drop(columns=["y", "z"]), df.drop(columns=["y", "z"])) def test_gh580(): df = pd.DataFrame({"x": np.arange(10, dtype=float)}) ddf = dd.from_pandas(df, 2) assert_eq(np.cos(df["x"]), np.cos(ddf["x"])) assert_eq(np.cos(df["x"]), np.cos(ddf["x"])) def test_gh6305(): df = pd.DataFrame({"x": np.arange(3, dtype=float)}) ddf = dd.from_pandas(df, 1) ddf_index_only = ddf.set_index("x") ds = ddf["x"] is_broadcastable([ddf_index_only], ds) def test_rename_dict(): renamer = {"a": "A", "b": "B"} assert_eq(d.rename(columns=renamer), full.rename(columns=renamer)) def test_rename_function(): renamer = lambda x: x.upper() assert_eq(d.rename(columns=renamer), full.rename(columns=renamer)) def test_rename_index(): renamer = {0: 1} pytest.raises(ValueError, lambda: d.rename(index=renamer)) def test_to_timestamp(): index = pd.period_range(freq="A", start="1/1/2001", end="12/1/2004") df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}, index=index) ddf = dd.from_pandas(df, npartitions=3) assert_eq(ddf.to_timestamp(), df.to_timestamp(), **CHECK_FREQ) assert_eq( ddf.to_timestamp(freq="M", how="s").compute(), df.to_timestamp(freq="M", how="s"), **CHECK_FREQ, ) assert_eq(ddf.x.to_timestamp(), df.x.to_timestamp()) assert_eq( ddf.x.to_timestamp(freq="M", how="s").compute(), df.x.to_timestamp(freq="M", how="s"), **CHECK_FREQ, ) def test_to_frame(): s = pd.Series([1, 2, 3], name="foo") a = dd.from_pandas(s, npartitions=2) assert_eq(s.to_frame(), a.to_frame()) assert_eq(s.to_frame("bar"), a.to_frame("bar")) @pytest.mark.parametrize("as_frame", [False, False]) def test_to_dask_array_raises(as_frame): s = pd.Series([1, 2, 3, 4, 5, 6], name="foo") a = dd.from_pandas(s, npartitions=2) if as_frame: a = a.to_frame() with pytest.raises(ValueError, match="6 != 10"): a.to_dask_array((1, 2, 3, 4)) with pytest.raises(ValueError, match="Unexpected value"): a.to_dask_array(5) @pytest.mark.parametrize("as_frame", [False, True]) def test_to_dask_array_unknown(as_frame): s = pd.Series([1, 2, 3, 4, 5], name="foo") a = dd.from_pandas(s, chunksize=2) if as_frame: a = a.to_frame() result = a.to_dask_array() assert isinstance(result, da.Array) chunks = result.chunks if as_frame: assert chunks == ((2, 3), (1,)) else: assert chunks == ((2, 3),) @pytest.mark.parametrize( "lengths,as_frame,meta", [ ([2, 3], False, None), (True, False, None), (True, False, np.array([], dtype="f4")), ], ) def test_to_dask_array(meta, as_frame, lengths): s = pd.Series([1, 2, 3, 4, 5], name="foo", dtype="i4") a = dd.from_pandas(s, chunksize=2) if as_frame: a = a.to_frame() result = a.to_dask_array(lengths=lengths, meta=meta) assert isinstance(result, da.Array) expected_chunks = ((2, 3),) if as_frame: expected_chunks = expected_chunks + ((1,),) assert result.chunks == expected_chunks def test_apply(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) func = lambda row: row["x"] + row["y"] assert_eq( ddf.x.apply(lambda x: x + 1, meta=("x", int)), df.x.apply(lambda x: x + 1) ) # specify meta assert_eq( ddf.apply(lambda xy: xy[0] + xy[1], axis=1, meta=(None, int)), df.apply(lambda xy: xy[0] + xy[1], axis=1), ) assert_eq( ddf.apply(lambda xy: xy[0] + xy[1], axis="columns", meta=(None, int)), df.apply(lambda xy: xy[0] + xy[1], axis="columns"), ) # inference with pytest.warns(None): assert_eq( ddf.apply(lambda xy: xy[0] + xy[1], axis=1), df.apply(lambda xy: xy[0] + xy[1], axis=1), ) with pytest.warns(None): assert_eq(ddf.apply(lambda xy: xy, axis=1), df.apply(lambda xy: xy, axis=1)) # specify meta func = lambda x: pd.Series([x, x]) assert_eq(ddf.x.apply(func, meta=[(0, int), (1, int)]), df.x.apply(func)) # inference with pytest.warns(None): assert_eq(ddf.x.apply(func), df.x.apply(func)) # axis=0 with pytest.raises(NotImplementedError): ddf.apply(lambda xy: xy, axis=0) with pytest.raises(NotImplementedError): ddf.apply(lambda xy: xy, axis="index") def test_apply_warns(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) func = lambda row: row["x"] + row["y"] with pytest.warns(UserWarning) as w: ddf.apply(func, axis=1) assert len(w) == 1 with pytest.warns(None) as w: ddf.apply(func, axis=1, meta=(None, int)) assert len(w) == 0 with pytest.warns(UserWarning) as w: ddf.apply(lambda x: x, axis=1) assert len(w) == 1 assert "'x'" in str(w[0].message) assert "int64" in str(w[0].message) def test_applymap(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.applymap(lambda x: x + 1), df.applymap(lambda x: x + 1)) assert_eq(ddf.applymap(lambda x: (x, x)), df.applymap(lambda x: (x, x))) def test_abs(): df = pd.DataFrame( { "A": [1, -2, 3, -4, 5], "B": [-6.0, -7, -8, -9, 10], "C": ["a", "b", "c", "d", "e"], } ) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.A.abs(), df.A.abs()) assert_eq(ddf[["A", "B"]].abs(), df[["A", "B"]].abs()) pytest.raises(ValueError, lambda: ddf.C.abs()) pytest.raises(TypeError, lambda: ddf.abs()) def test_round(): df = pd.DataFrame({"col1": [1.123, 2.123, 3.123], "col2": [1.234, 2.234, 3.234]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.round(), df.round()) assert_eq(ddf.round(2), df.round(2)) def test_cov(): # DataFrame df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=6) res = ddf.cov() res2 = ddf.cov(split_every=2) res3 = ddf.cov(10) res4 = ddf.cov(10, split_every=2) sol = df.cov() sol2 = df.cov(10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == ddf.cov()._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name # Series a = df.A b = df.B da = dd.from_pandas(a, npartitions=6) db = dd.from_pandas(b, npartitions=7) res = da.cov(db) res2 = da.cov(db, split_every=2) res3 = da.cov(db, 10) res4 = da.cov(db, 10, split_every=2) sol = a.cov(b) sol2 = a.cov(b, 10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == da.cov(db)._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name def test_corr(): # DataFrame df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=6) res = ddf.corr() res2 = ddf.corr(split_every=2) res3 = ddf.corr(min_periods=10) res4 = ddf.corr(min_periods=10, split_every=2) sol = df.corr() sol2 = df.corr(min_periods=10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == ddf.corr()._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name pytest.raises(NotImplementedError, lambda: ddf.corr(method="spearman")) # Series a = df.A b = df.B da = dd.from_pandas(a, npartitions=6) db = dd.from_pandas(b, npartitions=7) res = da.corr(db) res2 = da.corr(db, split_every=2) res3 = da.corr(db, min_periods=10) res4 = da.corr(db, min_periods=10, split_every=2) sol = da.corr(db) sol2 = da.corr(db, min_periods=10) assert_eq(res, sol) assert_eq(res2, sol) assert_eq(res3, sol2) assert_eq(res4, sol2) assert res._name == da.corr(db)._name assert res._name != res2._name assert res3._name != res4._name assert res._name != res3._name pytest.raises(NotImplementedError, lambda: da.corr(db, method="spearman")) pytest.raises(TypeError, lambda: da.corr(ddf)) def test_corr_same_name(): # Series with same names (see https://github.com/dask/dask/issues/4906) df = _compat.makeMissingDataframe() ddf = dd.from_pandas(df, npartitions=6) result = ddf.A.corr(ddf.B.rename("A")) expected = ddf.A.corr(ddf.B) assert_eq(result, expected) # test with split_every result2 = ddf.A.corr(ddf.B.rename("A"), split_every=2) assert_eq(result2, expected) def test_cov_corr_meta(): df = pd.DataFrame( { "a": np.array([1, 2, 3]), "b": np.array([1.0, 2.0, 3.0], dtype="f4"), "c": np.array([1.0, 2.0, 3.0]), }, index=pd.Index([1, 2, 3], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.corr(), df.corr()) assert_eq(ddf.cov(), df.cov()) assert ddf.a.cov(ddf.b)._meta.dtype == "f8" assert ddf.a.corr(ddf.b)._meta.dtype == "f8" @pytest.mark.slow def test_cov_corr_stable(): df = pd.DataFrame(np.random.uniform(-1, 1, (20000000, 2)), columns=["a", "b"]) ddf = dd.from_pandas(df, npartitions=50) assert_eq(ddf.cov(split_every=8), df.cov()) assert_eq(ddf.corr(split_every=8), df.corr()) def test_cov_corr_mixed(): size = 1000 d = { "dates": pd.date_range("2015-01-01", periods=size, freq="1T"), "unique_id": np.arange(0, size), "ints": np.random.randint(0, size, size=size), "floats": np.random.randn(size), "bools": np.random.choice([0, 1], size=size), "int_nans": np.random.choice([0, 1, np.nan], size=size), "float_nans": np.random.choice([0.0, 1.0, np.nan], size=size), "constant": 1, "int_categorical": np.random.choice([10, 20, 30, 40, 50], size=size), "categorical_binary": np.random.choice(["a", "b"], size=size), "categorical_nans": np.random.choice(["a", "b", "c"], size=size), } df = pd.DataFrame(d) df["hardbools"] = df["bools"] == 1 df["categorical_nans"] = df["categorical_nans"].replace("c", np.nan) df["categorical_binary"] = df["categorical_binary"].astype("category") df["unique_id"] = df["unique_id"].astype(str) ddf = dd.from_pandas(df, npartitions=20) assert_eq(ddf.corr(split_every=4), df.corr(), check_divisions=False) assert_eq(ddf.cov(split_every=4), df.cov(), check_divisions=False) def test_autocorr(): x = pd.Series(np.random.random(100)) dx = dd.from_pandas(x, npartitions=10) assert_eq(dx.autocorr(2), x.autocorr(2)) assert_eq(dx.autocorr(0), x.autocorr(0)) assert_eq(dx.autocorr(-2), x.autocorr(-2)) assert_eq(dx.autocorr(2, split_every=3), x.autocorr(2)) pytest.raises(TypeError, lambda: dx.autocorr(1.5)) def test_apply_infer_columns(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) def return_df(x): # will create new DataFrame which columns is ['sum', 'mean'] return pd.Series([x.sum(), x.mean()], index=["sum", "mean"]) # DataFrame to completely different DataFrame with pytest.warns(None): result = ddf.apply(return_df, axis=1) assert isinstance(result, dd.DataFrame) tm.assert_index_equal(result.columns, pd.Index(["sum", "mean"])) assert_eq(result, df.apply(return_df, axis=1)) # DataFrame to Series with pytest.warns(None): result = ddf.apply(lambda x: 1, axis=1) assert isinstance(result, dd.Series) assert result.name is None assert_eq(result, df.apply(lambda x: 1, axis=1)) def return_df2(x): return pd.Series([x * 2, x * 3], index=["x2", "x3"]) # Series to completely different DataFrame with pytest.warns(None): result = ddf.x.apply(return_df2) assert isinstance(result, dd.DataFrame) tm.assert_index_equal(result.columns, pd.Index(["x2", "x3"])) assert_eq(result, df.x.apply(return_df2)) # Series to Series with pytest.warns(None): result = ddf.x.apply(lambda x: 1) assert isinstance(result, dd.Series) assert result.name == "x" assert_eq(result, df.x.apply(lambda x: 1)) def test_index_time_properties(): i = _compat.makeTimeSeries() a = dd.from_pandas(i, npartitions=3) assert "day" in dir(a.index) # returns a numpy array in pandas, but a Index in dask assert_eq(a.index.day, pd.Index(i.index.day)) assert_eq(a.index.month, pd.Index(i.index.month)) def test_nlargest_nsmallest(): from string import ascii_lowercase df = pd.DataFrame( { "a": np.random.permutation(20), "b": list(ascii_lowercase[:20]), "c": np.random.permutation(20).astype("float64"), } ) ddf = dd.from_pandas(df, npartitions=3) for m in ["nlargest", "nsmallest"]: f = lambda df, *args, **kwargs: getattr(df, m)(*args, **kwargs) res = f(ddf, 5, "a") res2 = f(ddf, 5, "a", split_every=2) sol = f(df, 5, "a") assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = f(ddf, 5, ["a", "c"]) res2 = f(ddf, 5, ["a", "c"], split_every=2) sol = f(df, 5, ["a", "c"]) assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name res = f(ddf.a, 5) res2 = f(ddf.a, 5, split_every=2) sol = f(df.a, 5) assert_eq(res, sol) assert_eq(res2, sol) assert res._name != res2._name def test_reset_index(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) sol = df.reset_index() res = ddf.reset_index() assert res.divisions == (0, 2, 3) assert_eq(res, sol) sol = df.reset_index(drop=True) res = ddf.reset_index(drop=True) assert res.divisions == (0, 2, 3) assert_eq(res, sol) sol = df.x.reset_index() res = ddf.x.reset_index() assert res.divisions == (0, 2, 3) assert_eq(res, sol) sol = df.x.reset_index(drop=True) res = ddf.x.reset_index(drop=True) assert res.divisions == (0, 2, 3) assert_eq(res, sol) def test_dataframe_compute_forward_kwargs(): x = dd.from_pandas(pd.DataFrame({"a": range(10)}), npartitions=2).a.sum() x.compute(bogus_keyword=10) def test_series_iteritems(): df = pd.DataFrame({"x": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df["x"].iteritems(), ddf["x"].iteritems()): assert a == b def test_series_iter(): s = pd.DataFrame({"x": [1, 2, 3, 4]}) ds = dd.from_pandas(s, npartitions=2) for (a, b) in zip(s["x"], ds["x"]): assert a == b def test_dataframe_iterrows(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.iterrows(), ddf.iterrows()): tm.assert_series_equal(a[1], b[1]) def test_dataframe_itertuples(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.itertuples(), ddf.itertuples()): assert a == b @pytest.mark.parametrize( "columns", [ ("x", "y"), ("x", "x"), pd.MultiIndex.from_tuples([("x", 1), ("x", 2)], names=("letter", "number")), ], ) def test_dataframe_items(columns): df = pd.DataFrame([[1, 10], [2, 20], [3, 30], [4, 40]], columns=columns) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.items(), ddf.items()): assert a[0] == b[0] # column name assert_eq(a[1], b[1].compute()) # column values def test_dataframe_itertuples_with_index_false(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.itertuples(index=False), ddf.itertuples(index=False)): assert a == b def test_dataframe_itertuples_with_name_none(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [10, 20, 30, 40]}) ddf = dd.from_pandas(df, npartitions=2) for (a, b) in zip(df.itertuples(name=None), ddf.itertuples(name=None)): assert a == b assert type(a) is type(b) def test_astype(): df = pd.DataFrame( {"x": [1, 2, 3, None], "y": [10, 20, 30, 40]}, index=[10, 20, 30, 40] ) a = dd.from_pandas(df, 2) assert_eq(a.astype(float), df.astype(float)) assert_eq(a.x.astype(float), df.x.astype(float)) def test_astype_categoricals(): df = pd.DataFrame( { "x": ["a", "b", "c", "b", "c"], "y": ["x", "y", "z", "x", "y"], "z": [1, 2, 3, 4, 5], } ) df = df.astype({"y": "category"}) ddf = dd.from_pandas(df, 2) assert ddf.y.cat.known ddf2 = ddf.astype({"x": "category"}) assert not ddf2.x.cat.known assert ddf2.y.cat.known assert ddf2.x.dtype == "category" assert ddf2.compute().x.dtype == "category" dx = ddf.x.astype("category") assert not dx.cat.known assert dx.dtype == "category" assert dx.compute().dtype == "category" def test_astype_categoricals_known(): df = pd.DataFrame( { "x": ["a", "b", "c", "b", "c"], "y": ["x", "y", "z", "y", "z"], "z": ["b", "b", "b", "c", "b"], "other": [1, 2, 3, 4, 5], } ) ddf = dd.from_pandas(df, 2) abc = pd.api.types.CategoricalDtype(["a", "b", "c"], ordered=False) category = pd.api.types.CategoricalDtype(ordered=False) # DataFrame ddf2 = ddf.astype({"x": abc, "y": category, "z": "category", "other": "f8"}) for col, known in [("x", True), ("y", False), ("z", False)]: x = getattr(ddf2, col) assert pd.api.types.is_categorical_dtype(x.dtype) assert x.cat.known == known # Series for dtype, known in [("category", False), (category, False), (abc, True)]: dx2 = ddf.x.astype(dtype) assert pd.api.types.is_categorical_dtype(dx2.dtype) assert dx2.cat.known == known def test_groupby_callable(): a = pd.DataFrame({"x": [1, 2, 3, None], "y": [10, 20, 30, 40]}, index=[1, 2, 3, 4]) b = dd.from_pandas(a, 2) def iseven(x): return x % 2 == 0 assert_eq(a.groupby(iseven).y.sum(), b.groupby(iseven).y.sum()) assert_eq(a.y.groupby(iseven).sum(), b.y.groupby(iseven).sum()) def test_methods_tokenize_differently(): df = pd.DataFrame({"x": [1, 2, 3, 4]}) df = dd.from_pandas(df, npartitions=1) assert ( df.x.map_partitions(lambda x: pd.Series(x.min()))._name != df.x.map_partitions(lambda x: pd.Series(x.max()))._name ) def _assert_info(df, ddf, memory_usage=True): from io import StringIO assert isinstance(df, pd.DataFrame) assert isinstance(ddf, dd.DataFrame) buf_pd, buf_da = StringIO(), StringIO() df.info(buf=buf_pd, memory_usage=memory_usage) ddf.info(buf=buf_da, verbose=True, memory_usage=memory_usage) stdout_pd = buf_pd.getvalue() stdout_da = buf_da.getvalue() stdout_da = stdout_da.replace(str(type(ddf)), str(type(df))) # TODO assert stdout_pd == stdout_da @pytest.mark.skipif(not dd._compat.PANDAS_GT_100, reason="Changed info repr") def test_info(): from io import StringIO pandas_format._put_lines = put_lines test_frames = [ pd.DataFrame( {"x": [1, 2, 3, 4], "y": [1, 0, 1, 0]}, index=pd.Int64Index(range(4)) ), # No RangeIndex in dask pd.DataFrame(), ] for df in test_frames: ddf = dd.from_pandas(df, npartitions=4) _assert_info(df, ddf) buf = StringIO() ddf = dd.from_pandas( pd.DataFrame({"x": [1, 2, 3, 4], "y": [1, 0, 1, 0]}, index=range(4)), npartitions=4, ) # Verbose=False ddf.info(buf=buf, verbose=False) assert buf.getvalue() == ( "<class 'dask.dataframe.core.DataFrame'>\n" "Columns: 2 entries, x to y\n" "dtypes: int64(2)" ) # buf=None assert ddf.info(buf=None) is None @pytest.mark.skipif(not dd._compat.PANDAS_GT_100, reason="Changed info repr") def test_groupby_multilevel_info(): # GH 1844 from io import StringIO pandas_format._put_lines = put_lines df = pd.DataFrame({"A": [1, 1, 2, 2], "B": [1, 2, 3, 4], "C": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) g = ddf.groupby(["A", "B"]).sum() # slight difference between memory repr (single additional space) _assert_info(g.compute(), g, memory_usage=False) buf = StringIO() g.info(buf, verbose=False) assert buf.getvalue() == ( "<class 'dask.dataframe.core.DataFrame'>\n" "Columns: 1 entries, C to C\n" "dtypes: int64(1)" ) # multilevel g = ddf.groupby(["A", "B"]).agg(["count", "sum"]) _assert_info(g.compute(), g, memory_usage=False) buf = StringIO() g.info(buf, verbose=False) expected = ( "<class 'dask.dataframe.core.DataFrame'>\n" "Columns: 2 entries, ('C', 'count') to ('C', 'sum')\n" "dtypes: int64(2)" ) assert buf.getvalue() == expected @pytest.mark.skipif(not dd._compat.PANDAS_GT_100, reason="Changed info repr") def test_categorize_info(): # assert that we can call info after categorize # workaround for: https://github.com/pydata/pandas/issues/14368 from io import StringIO pandas_format._put_lines = put_lines df = pd.DataFrame( {"x": [1, 2, 3, 4], "y": pd.Series(list("aabc")), "z": pd.Series(list("aabc"))}, index=pd.Int64Index(range(4)), ) # No RangeIndex in dask ddf = dd.from_pandas(df, npartitions=4).categorize(["y"]) # Verbose=False buf = StringIO() ddf.info(buf=buf, verbose=True) expected = ( "<class 'dask.dataframe.core.DataFrame'>\n" "Int64Index: 4 entries, 0 to 3\n" "Data columns (total 3 columns):\n" " # Column Non-Null Count Dtype\n" "--- ------ -------------- -----\n" " 0 x 4 non-null int64\n" " 1 y 4 non-null category\n" " 2 z 4 non-null object\n" "dtypes: category(1), object(1), int64(1)" ) assert buf.getvalue() == expected def test_gh_1301(): df = pd.DataFrame([["1", "2"], ["3", "4"]]) ddf = dd.from_pandas(df, npartitions=2) ddf2 = ddf.assign(y=ddf[1].astype(int)) assert_eq(ddf2, df.assign(y=df[1].astype(int))) assert ddf2.dtypes["y"] == np.dtype(int) def test_timeseries_sorted(): df = _compat.makeTimeDataFrame() ddf = dd.from_pandas(df.reset_index(), npartitions=2) df.index.name = "index" assert_eq(ddf.set_index("index", sorted=True, drop=True), df) def test_column_assignment(): df = pd.DataFrame({"x": [1, 2, 3, 4], "y": [1, 0, 1, 0]}) ddf = dd.from_pandas(df, npartitions=2) orig = ddf.copy() ddf["z"] = ddf.x + ddf.y df["z"] = df.x + df.y assert_eq(df, ddf) assert "z" not in orig.columns def test_array_assignment(): df = pd.DataFrame({"x": np.random.normal(size=50), "y": np.random.normal(size=50)}) ddf = dd.from_pandas(df, npartitions=2) orig = ddf.copy() arr = np.array(np.random.normal(size=50)) darr = da.from_array(arr, chunks=25) df["z"] = arr ddf["z"] = darr assert_eq(df, ddf) assert "z" not in orig.columns arr = np.array(np.random.normal(size=(50, 50))) darr = da.from_array(arr, chunks=25) msg = "Array assignment only supports 1-D arrays" with pytest.raises(ValueError, match=msg): ddf["z"] = darr arr = np.array(np.random.normal(size=50)) darr = da.from_array(arr, chunks=10) ddf["z"] = darr np.testing.assert_array_equal(ddf.z.values.compute(), darr.compute()) # If we don't know the partition_sizes, assigning an Array w/ a different number of partitions raises ddf.partition_sizes = None msg = "Number of partitions do not match" with pytest.raises(ValueError, match=msg): ddf["z"] = darr def test_columns_assignment(): df = pd.DataFrame({"x": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) df2 = df.assign(y=df.x + 1, z=df.x - 1) df[["a", "b"]] = df2[["y", "z"]] ddf2 = ddf.assign(y=ddf.x + 1, z=ddf.x - 1) ddf[["a", "b"]] = ddf2[["y", "z"]] assert_eq(df, ddf) def test_attribute_assignment(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": [1.0, 2.0, 3.0, 4.0, 5.0]}) ddf = dd.from_pandas(df, npartitions=2) ddf.y = ddf.x + ddf.y assert_eq(ddf, df.assign(y=df.x + df.y)) def test_setitem_triggering_realign(): a = dd.from_pandas(pd.DataFrame({"A": range(12)}), npartitions=3) b = dd.from_pandas(pd.Series(range(12), name="B"), npartitions=4) a["C"] = b assert len(a) == 12 def test_inplace_operators(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": [1.0, 2.0, 3.0, 4.0, 5.0]}) ddf = dd.from_pandas(df, npartitions=2) ddf.y **= 0.5 assert_eq(ddf.y, df.y ** 0.5) assert_eq(ddf, df.assign(y=df.y ** 0.5)) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "idx", [ np.arange(100), sorted(np.random.random(size=100)), pd.date_range("20150101", periods=100), ], ) def test_idxmaxmin(idx, skipna): df = pd.DataFrame(np.random.randn(100, 5), columns=list("abcde"), index=idx) df.b.iloc[31] = np.nan df.d.iloc[78] = np.nan ddf = dd.from_pandas(df, npartitions=3) with warnings.catch_warnings(record=True): assert_eq(df.idxmax(axis=1, skipna=skipna), ddf.idxmax(axis=1, skipna=skipna)) assert_eq(df.idxmin(axis=1, skipna=skipna), ddf.idxmin(axis=1, skipna=skipna)) assert_eq(df.idxmax(skipna=skipna), ddf.idxmax(skipna=skipna)) assert_eq(df.idxmax(skipna=skipna), ddf.idxmax(skipna=skipna, split_every=2)) assert ( ddf.idxmax(skipna=skipna)._name != ddf.idxmax(skipna=skipna, split_every=2)._name ) assert_eq(df.idxmin(skipna=skipna), ddf.idxmin(skipna=skipna)) assert_eq(df.idxmin(skipna=skipna), ddf.idxmin(skipna=skipna, split_every=2)) assert ( ddf.idxmin(skipna=skipna)._name != ddf.idxmin(skipna=skipna, split_every=2)._name ) assert_eq(df.a.idxmax(skipna=skipna), ddf.a.idxmax(skipna=skipna)) assert_eq( df.a.idxmax(skipna=skipna), ddf.a.idxmax(skipna=skipna, split_every=2) ) assert ( ddf.a.idxmax(skipna=skipna)._name != ddf.a.idxmax(skipna=skipna, split_every=2)._name ) assert_eq(df.a.idxmin(skipna=skipna), ddf.a.idxmin(skipna=skipna)) assert_eq( df.a.idxmin(skipna=skipna), ddf.a.idxmin(skipna=skipna, split_every=2) ) assert ( ddf.a.idxmin(skipna=skipna)._name != ddf.a.idxmin(skipna=skipna, split_every=2)._name ) def test_idxmaxmin_empty_partitions(): df = pd.DataFrame( {"a": [1, 2, 3], "b": [1.5, 2, 3], "c": [np.NaN] * 3, "d": [1, 2, np.NaN]} ) empty = df.iloc[:0] ddf = dd.concat( [dd.from_pandas(df, npartitions=1)] + [dd.from_pandas(empty, npartitions=1)] * 10 ) for skipna in [True, False]: assert_eq(ddf.idxmin(skipna=skipna, split_every=3), df.idxmin(skipna=skipna)) assert_eq( ddf[["a", "b", "d"]].idxmin(skipna=skipna, split_every=3), df[["a", "b", "d"]].idxmin(skipna=skipna), ) assert_eq(ddf.b.idxmax(split_every=3), df.b.idxmax()) # Completely empty raises ddf = dd.concat([dd.from_pandas(empty, npartitions=1)] * 10) with pytest.raises(ValueError): ddf.idxmax().compute() with pytest.raises(ValueError): ddf.b.idxmax().compute() def test_getitem_meta(): data = {"col1": ["a", "a", "b"], "col2": [0, 1, 0]} df = pd.DataFrame(data=data, columns=["col1", "col2"]) ddf = dd.from_pandas(df, npartitions=1) assert_eq(df.col2[df.col1 == "a"], ddf.col2[ddf.col1 == "a"]) def test_getitem_multilevel(): pdf = pd.DataFrame({("A", "0"): [1, 2, 2], ("B", "1"): [1, 2, 3]}) ddf = dd.from_pandas(pdf, npartitions=3) assert_eq(pdf["A", "0"], ddf["A", "0"]) assert_eq(pdf[[("A", "0"), ("B", "1")]], ddf[[("A", "0"), ("B", "1")]]) def test_getitem_string_subclass(): df = pd.DataFrame({"column_1": list(range(10))}) ddf = dd.from_pandas(df, npartitions=3) class string_subclass(str): pass column_1 = string_subclass("column_1") assert_eq(df[column_1], ddf[column_1]) @pytest.mark.parametrize("col_type", [list, np.array, pd.Series, pd.Index]) def test_getitem_column_types(col_type): df = pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}) ddf = dd.from_pandas(df, 2) cols = col_type(["C", "A", "B"]) assert_eq(df[cols], ddf[cols]) def test_ipython_completion(): df = pd.DataFrame({"a": [1], "b": [2]}) ddf = dd.from_pandas(df, npartitions=1) completions = ddf._ipython_key_completions_() assert "a" in completions assert "b" in completions assert "c" not in completions def test_diff(): df = pd.DataFrame(np.random.randn(100, 5), columns=list("abcde")) ddf = dd.from_pandas(df, 5) assert_eq(ddf.diff(), df.diff()) assert_eq(ddf.diff(0), df.diff(0)) assert_eq(ddf.diff(2), df.diff(2)) assert_eq(ddf.diff(-2), df.diff(-2)) assert_eq(ddf.diff(2, axis=1), df.diff(2, axis=1)) assert_eq(ddf.a.diff(), df.a.diff()) assert_eq(ddf.a.diff(0), df.a.diff(0)) assert_eq(ddf.a.diff(2), df.a.diff(2)) assert_eq(ddf.a.diff(-2), df.a.diff(-2)) assert ddf.diff(2)._name == ddf.diff(2)._name assert ddf.diff(2)._name != ddf.diff(3)._name pytest.raises(TypeError, lambda: ddf.diff(1.5)) def test_shift(): df = _compat.makeTimeDataFrame() ddf = dd.from_pandas(df, npartitions=4) # DataFrame assert_eq(ddf.shift(), df.shift()) assert_eq(ddf.shift(0), df.shift(0)) assert_eq(ddf.shift(2), df.shift(2)) assert_eq(ddf.shift(-2), df.shift(-2)) assert_eq(ddf.shift(2, axis=1), df.shift(2, axis=1)) # Series assert_eq(ddf.A.shift(), df.A.shift()) assert_eq(ddf.A.shift(0), df.A.shift(0)) assert_eq(ddf.A.shift(2), df.A.shift(2)) assert_eq(ddf.A.shift(-2), df.A.shift(-2)) with pytest.raises(TypeError): ddf.shift(1.5) @pytest.mark.parametrize("data_freq,divs1", [("B", False), ("D", True), ("H", True)]) def test_shift_with_freq_DatetimeIndex(data_freq, divs1): df = _compat.makeTimeDataFrame() df = df.set_index(_compat.makeDateIndex(30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for freq, divs2 in [("S", True), ("W", False), (pd.Timedelta(10, unit="h"), True)]: for d, p in [(ddf, df), (ddf.A, df.A), (ddf.index, df.index)]: res = d.shift(2, freq=freq) assert_eq(res, p.shift(2, freq=freq)) assert res.known_divisions == divs2 # Index shifts also work with freq=None res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions == divs1 @pytest.mark.parametrize("data_freq,divs", [("B", False), ("D", True), ("H", True)]) def test_shift_with_freq_PeriodIndex(data_freq, divs): df = _compat.makeTimeDataFrame() # PeriodIndex df = df.set_index(pd.period_range("2000-01-01", periods=30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for d, p in [(ddf, df), (ddf.A, df.A)]: res = d.shift(2, freq=data_freq) assert_eq(res, p.shift(2, freq=data_freq)) assert res.known_divisions == divs # PeriodIndex.shift doesn't have `freq` parameter res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions == divs df = _compat.makeTimeDataFrame() with pytest.raises(ValueError): ddf.index.shift(2, freq="D") # freq keyword not supported def test_shift_with_freq_TimedeltaIndex(): df = _compat.makeTimeDataFrame() # TimedeltaIndex for data_freq in ["T", "D", "H"]: df = df.set_index(_compat.makeTimedeltaIndex(30, freq=data_freq)) ddf = dd.from_pandas(df, npartitions=4) for freq in ["S", pd.Timedelta(10, unit="h")]: for d, p in [(ddf, df), (ddf.A, df.A), (ddf.index, df.index)]: res = d.shift(2, freq=freq) assert_eq(res, p.shift(2, freq=freq)) assert res.known_divisions # Index shifts also work with freq=None res = ddf.index.shift(2) assert_eq(res, df.index.shift(2)) assert res.known_divisions def test_shift_with_freq_errors(): # Other index types error df = _compat.makeDataFrame() ddf = dd.from_pandas(df, npartitions=4) pytest.raises(NotImplementedError, lambda: ddf.shift(2, freq="S")) pytest.raises(NotImplementedError, lambda: ddf.A.shift(2, freq="S")) pytest.raises(NotImplementedError, lambda: ddf.index.shift(2)) @pytest.mark.parametrize("method", ["first", "last"]) def test_first_and_last(method): f = lambda x, offset: getattr(x, method)(offset) freqs = ["12h", "D"] offsets = ["0d", "100h", "20d", "20B", "3W", "3M", "400d", "13M"] for freq in freqs: index = pd.date_range("1/1/2000", "1/1/2001", freq=freq)[::4] df = pd.DataFrame( np.random.random((len(index), 4)), index=index, columns=["A", "B", "C", "D"] ) ddf = dd.from_pandas(df, npartitions=10) for offset in offsets: assert_eq(f(ddf, offset), f(df, offset)) assert_eq(f(ddf.A, offset), f(df.A, offset)) @pytest.mark.parametrize("npartitions", [1, 4, 20]) @pytest.mark.parametrize("split_every", [2, 5]) @pytest.mark.parametrize("split_out", [None, 1, 5, 20]) def test_hash_split_unique(npartitions, split_every, split_out): from string import ascii_lowercase s = pd.Series(np.random.choice(list(ascii_lowercase), 1000, replace=True)) ds = dd.from_pandas(s, npartitions=npartitions) dropped = ds.unique(split_every=split_every, split_out=split_out) dsk = dropped.__dask_optimize__(dropped.dask, dropped.__dask_keys__()) from dask.core import get_deps dependencies, dependents = get_deps(dsk) assert len([k for k, v in dependencies.items() if not v]) == npartitions assert dropped.npartitions == (split_out or 1) assert sorted(dropped.compute(scheduler="sync")) == sorted(s.unique()) @pytest.mark.parametrize("split_every", [None, 2]) def test_split_out_drop_duplicates(split_every): x = np.concatenate([np.arange(10)] * 100)[:, None] y = x.copy() z = np.concatenate([np.arange(20)] * 50)[:, None] rs = np.random.RandomState(1) rs.shuffle(x) rs.shuffle(y) rs.shuffle(z) df = pd.DataFrame(np.concatenate([x, y, z], axis=1), columns=["x", "y", "z"]) ddf = dd.from_pandas(df, npartitions=20) for subset, keep in product([None, ["x", "z"]], ["first", "last"]): sol = df.drop_duplicates(subset=subset, keep=keep) res = ddf.drop_duplicates( subset=subset, keep=keep, split_every=split_every, split_out=10 ) assert res.npartitions == 10 assert_eq(sol, res) @pytest.mark.parametrize("split_every", [None, 2]) def test_split_out_value_counts(split_every): df = pd.DataFrame({"x": [1, 2, 3] * 100}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.x.value_counts(split_out=10, split_every=split_every).npartitions == 10 assert_eq( ddf.x.value_counts(split_out=10, split_every=split_every), df.x.value_counts() ) def test_values(): from dask.array.utils import assert_eq df = pd.DataFrame( {"x": ["a", "b", "c", "d"], "y": [2, 3, 4, 5]}, index=pd.Index([1.0, 2.0, 3.0, 4.0], name="ind"), ) ddf = dd.from_pandas(df, 2) assert_eq(df.values, ddf.values) assert_eq(df.x.values, ddf.x.values) assert_eq(df.y.values, ddf.y.values) assert_eq(df.index.values, ddf.index.values) def test_copy(): df = pd.DataFrame({"x": [1, 2, 3]}) a = dd.from_pandas(df, npartitions=2) b = a.copy() a["y"] = a.x * 2 assert_eq(b, df) df["y"] = df.x * 2 def test_del(): df = pd.DataFrame( {"x": ["a", "b", "c", "d"], "y": [2, 3, 4, 5]}, index=pd.Index([1.0, 2.0, 3.0, 4.0], name="ind"), ) a = dd.from_pandas(df, 2) b = a.copy() del a["x"] assert_eq(b, df) del df["x"] assert_eq(a, df) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(index, deep): df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq( df.memory_usage(index=index, deep=deep), ddf.memory_usage(index=index, deep=deep), ) assert ( df.x.memory_usage(index=index, deep=deep) == ddf.x.memory_usage(index=index, deep=deep).compute() ) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage_per_partition(index, deep): df = pd.DataFrame( { "x": [1, 2, 3, 4, 5], "y": [1.0, 2.0, 3.0, 4.0, 5.0], "z": ["a", "b", "c", "d", "e"], } ) ddf = dd.from_pandas(df, npartitions=2) # DataFrame.memory_usage_per_partition expected = pd.Series( part.compute().memory_usage(index=index, deep=deep).sum() for part in ddf.partitions ) result = ddf.memory_usage_per_partition(index=index, deep=deep) assert_eq(expected, result) # Series.memory_usage_per_partition expected = pd.Series( part.x.compute().memory_usage(index=index, deep=deep) for part in ddf.partitions ) result = ddf.x.memory_usage_per_partition(index=index, deep=deep) assert_eq(expected, result) @pytest.mark.parametrize( "reduction", [ "sum", "mean", "std", "var", "count", "min", "max", "idxmin", "idxmax", "prod", "all", "sem", ], ) def test_dataframe_reductions_arithmetic(reduction): df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": [1.1, 2.2, 3.3, 4.4, 5.5]}) ddf = dd.from_pandas(df, npartitions=3) assert_eq( ddf - (getattr(ddf, reduction)() + 1), df - (getattr(df, reduction)() + 1) ) def test_dataframe_mode(): data = [["Tom", 10, 7], ["Farahn", 14, 7], ["Julie", 14, 5], ["Nick", 10, 10]] df = pd.DataFrame(data, columns=["Name", "Num", "Num"]) ddf = dd.from_pandas(df, npartitions=3) assert_eq(ddf.mode(), df.mode()) assert_eq(ddf.Name.mode(), df.Name.mode()) # test empty df = pd.DataFrame(columns=["a", "b"]) ddf = dd.from_pandas(df, npartitions=1) # check_index=False should be removed once https://github.com/pandas-dev/pandas/issues/33321 is resolved. assert_eq(ddf.mode(), df.mode(), check_index=False) def test_datetime_loc_open_slicing(): dtRange = pd.date_range("01.01.2015", "05.05.2015") df = pd.DataFrame(np.random.random((len(dtRange), 2)), index=dtRange) ddf = dd.from_pandas(df, npartitions=5) assert_eq(df.loc[:"02.02.2015"], ddf.loc[:"02.02.2015"]) assert_eq(df.loc["02.02.2015":], ddf.loc["02.02.2015":]) assert_eq(df[0].loc[:"02.02.2015"], ddf[0].loc[:"02.02.2015"]) assert_eq(df[0].loc["02.02.2015":], ddf[0].loc["02.02.2015":]) def test_to_datetime(): df = pd.DataFrame({"year": [2015, 2016], "month": [2, 3], "day": [4, 5]}) df.index.name = "ix" ddf = dd.from_pandas(df, npartitions=2) assert_eq(pd.to_datetime(df), dd.to_datetime(ddf)) s = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 100) s.index = s.values ds = dd.from_pandas(s, npartitions=10, sort=False) assert_eq( pd.to_datetime(s, infer_datetime_format=True), dd.to_datetime(ds, infer_datetime_format=True), ) assert_eq( pd.to_datetime(s.index, infer_datetime_format=True), dd.to_datetime(ds.index, infer_datetime_format=True), check_divisions=False, ) def test_to_timedelta(): s = pd.Series(range(10)) ds = dd.from_pandas(s, npartitions=2) assert_eq(pd.to_timedelta(s), dd.to_timedelta(ds)) assert_eq(pd.to_timedelta(s, unit="h"), dd.to_timedelta(ds, unit="h")) s = pd.Series([1, 2, "this will error"]) ds = dd.from_pandas(s, npartitions=2) assert_eq(pd.to_timedelta(s, errors="coerce"), dd.to_timedelta(ds, errors="coerce")) @pytest.mark.skipif(PANDAS_VERSION < "0.22.0", reason="No isna method") @pytest.mark.parametrize("values", [[np.NaN, 0], [1, 1]]) def test_isna(values): s = pd.Series(values) ds = dd.from_pandas(s, npartitions=2) assert_eq(pd.isna(s), dd.isna(ds)) @pytest.mark.parametrize("drop", [0, 9]) def test_slice_on_filtered_boundary(drop): # https://github.com/dask/dask/issues/2211 x = np.arange(10) x[[5, 6]] -= 2 df = pd.DataFrame({"A": x, "B": np.arange(len(x))}) pdf = df.set_index("A").query("B != {}".format(drop)) ddf = dd.from_pandas(df, 1).set_index("A").query("B != {}".format(drop)) result = dd.concat([ddf, ddf.rename(columns={"B": "C"})], axis=1) expected = pd.concat([pdf, pdf.rename(columns={"B": "C"})], axis=1) assert_eq(result, expected) def test_boundary_slice_nonmonotonic(): x = np.array([-1, -2, 2, 4, 3]) df = pd.DataFrame({"B": range(len(x))}, index=x) result = methods.boundary_slice(df, 0, 4) expected = df.iloc[2:] tm.assert_frame_equal(result, expected) result = methods.boundary_slice(df, -1, 4) expected = df.drop(-2) tm.assert_frame_equal(result, expected) result = methods.boundary_slice(df, -2, 3) expected = df.drop(4) tm.assert_frame_equal(result, expected) result = methods.boundary_slice(df, -2, 3.5) expected = df.drop(4) tm.assert_frame_equal(result, expected) result = methods.boundary_slice(df, -2, 4) expected = df tm.assert_frame_equal(result, expected) def test_boundary_slice_empty(): df = pd.DataFrame() result = methods.boundary_slice(df, 1, 4) expected = pd.DataFrame() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "start, stop, right_boundary, left_boundary, drop", [ (-1, None, False, False, [-1, -2]), (-1, None, False, True, [-2]), (None, 3, False, False, [3, 4]), (None, 3, True, False, [4]), # Missing keys (-0.5, None, False, False, [-1, -2]), (-0.5, None, False, True, [-1, -2]), (-1.5, None, False, True, [-2]), (None, 3.5, False, False, [4]), (None, 3.5, True, False, [4]), (None, 2.5, False, False, [3, 4]), ], ) def test_with_boundary(start, stop, right_boundary, left_boundary, drop): x = np.array([-1, -2, 2, 4, 3]) df = pd.DataFrame({"B": range(len(x))}, index=x) result = methods.boundary_slice(df, start, stop, right_boundary, left_boundary) expected = df.drop(drop) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "index, left, right", [ (range(10), 0, 9), (range(10), -1, None), (range(10), None, 10), ([-1, 0, 2, 1], None, None), ([-1, 0, 2, 1], -1, None), ([-1, 0, 2, 1], None, 2), ([-1, 0, 2, 1], -2, 3), (pd.date_range("2017", periods=10), None, None), (pd.date_range("2017", periods=10), pd.Timestamp("2017"), None), (pd.date_range("2017", periods=10), None, pd.Timestamp("2017-01-10")), (pd.date_range("2017", periods=10), pd.Timestamp("2016"), None), (pd.date_range("2017", periods=10), None, pd.Timestamp("2018")), ], ) def test_boundary_slice_same(index, left, right): df = pd.DataFrame({"A": range(len(index))}, index=index) result = methods.boundary_slice(df, left, right) tm.assert_frame_equal(result, df) def test_better_errors_object_reductions(): # GH2452 s = pd.Series(["a", "b", "c", "d"]) ds = dd.from_pandas(s, npartitions=2) with pytest.raises(ValueError) as err: ds.mean() assert str(err.value) == "`mean` not supported with object series" def test_sample_empty_partitions(): @dask.delayed def make_df(n): return pd.DataFrame(np.zeros((n, 4)), columns=list("abcd")) ddf = dd.from_delayed([make_df(0), make_df(100), make_df(0)]) ddf2 = ddf.sample(frac=0.2) # smoke test sample on empty partitions res = ddf2.compute() assert res.dtypes.equals(ddf2.dtypes) def test_coerce(): df = pd.DataFrame(np.arange(100).reshape((10, 10))) ddf = dd.from_pandas(df, npartitions=2) funcs = (int, float, complex) for d, t in product(funcs, (ddf, ddf[0])): pytest.raises(TypeError, lambda: t(d)) def test_bool(): df = pd.DataFrame(np.arange(100).reshape((10, 10))) ddf = dd.from_pandas(df, npartitions=2) conditions = [ddf, ddf[0], ddf == ddf, ddf[0] == ddf[0]] for cond in conditions: with pytest.raises(ValueError): bool(cond) def test_cumulative_multiple_columns(): # GH 3037 df = pd.DataFrame(np.random.randn(100, 5), columns=list("abcde")) ddf = dd.from_pandas(df, 5) for d in [ddf, df]: for c in df.columns: d[c + "cs"] = d[c].cumsum() d[c + "cmin"] = d[c].cummin() d[c + "cmax"] = d[c].cummax() d[c + "cp"] = d[c].cumprod() assert_eq(ddf, df) @pytest.mark.parametrize("func", [np.asarray, M.to_records]) def test_map_partition_array(func): from dask.array.utils import assert_eq df = pd.DataFrame( {"x": [1, 2, 3, 4, 5], "y": [6.0, 7.0, 8.0, 9.0, 10.0]}, index=["a", "b", "c", "d", "e"], ) ddf = dd.from_pandas(df, npartitions=2) for pre in [lambda a: a, lambda a: a.x, lambda a: a.y, lambda a: a.index]: try: expected = func(pre(df)) except Exception: continue x = pre(ddf).map_partitions(func) assert_eq(x, expected) assert isinstance(x, da.Array) assert x.chunks[0] == (np.nan, np.nan) @pytest.mark.xfail(_numpy_120, reason="sparse-383") def test_map_partition_sparse(): sparse = pytest.importorskip("sparse") # Aviod searchsorted failure. pytest.importorskip("numba", minversion="0.40.0") df = pd.DataFrame( {"x": [1, 2, 3, 4, 5], "y": [6.0, 7.0, 8.0, 9.0, 10.0]}, index=["a", "b", "c", "d", "e"], ) ddf = dd.from_pandas(df, npartitions=2) def f(d): return sparse.COO(np.array(d)) for pre in [lambda a: a, lambda a: a.x]: expected = f(pre(df)) result = pre(ddf).map_partitions(f) assert isinstance(result, da.Array) computed = result.compute() assert (computed.data == expected.data).all() assert (computed.coords == expected.coords).all() def test_mixed_dask_array_operations(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4, 5, 6]) ddf = dd.from_pandas(df, npartitions=2) x = ddf.x v = x.values chunks = v.chunks assert chunks == ((3,),) l = df.x + df.x.values r = x + v assert_eq(l, r) l = df.x.values + df.x r = v + x assert_eq(l, r) assert_eq(df.x + df.index.values, ddf.x + ddf.index.values) l = df.index.values + df.x r = ddf.index.values + ddf.x assert_eq(l, r) assert_eq(df.x + df.x.values.sum(), ddf.x + ddf.x.values.sum()) def test_mixed_dask_array_operations_errors(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}, index=[4, 5, 6, 7, 8]) ddf = dd.from_pandas(df, npartitions=2) x = da.arange(5, chunks=((1, 4),)) x._chunks = ((np.nan, np.nan),) with pytest.raises(ValueError): (ddf.x + x).compute() x = da.arange(5, chunks=((2, 2, 1),)) with pytest.raises(ValueError) as info: ddf.x + x assert "add" in str(info.value) def test_mixed_dask_array_multi_dimensional(): df = pd.DataFrame( {"x": [1, 2, 3, 4, 5], "y": [5.0, 6.0, 7.0, 8.0, 9.0]}, columns=["x", "y"] ) ddf = dd.from_pandas(df, npartitions=2) x = (df.values + 1).astype(float) dx = (ddf.values + 1).astype(float) assert_eq(ddf + dx + 1, df + x + 1) assert_eq(ddf + dx.rechunk((None, 1)) + 1, df + x + 1) assert_eq(ddf[["y", "x"]] + dx + 1, df[["y", "x"]] + x + 1) def test_meta_raises(): # Raise when we use a user defined function s = pd.Series(["abcd", "abcd"]) ds = dd.from_pandas(s, npartitions=2) try: ds.map(lambda x: x[3]) except ValueError as e: assert "meta=" in str(e) # But not otherwise df = pd.DataFrame({"a": ["x", "y", "y"], "b": ["x", "y", "z"], "c": [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=1) with pytest.raises(Exception) as info: ddf.a + ddf.c assert "meta=" not in str(info.value) def test_dask_dataframe_holds_scipy_sparse_containers(): sparse = pytest.importorskip("scipy.sparse") da = pytest.importorskip("dask.array") x = da.random.random((1000, 10), chunks=(100, 10)) x[x < 0.9] = 0 df = dd.from_dask_array(x) y = df.map_partitions(sparse.csr_matrix) assert isinstance(y, da.Array) vs = y.to_delayed().flatten().tolist() values = dask.compute(*vs, scheduler="single-threaded") assert all(isinstance(v, sparse.csr_matrix) for v in values) def test_map_partitions_delays_large_inputs(): df = pd.DataFrame({"x": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) big = np.ones(1000000) b = ddf.map_partitions(lambda x, y: x, y=big) assert any(big is v for v in b.dask.values()) a = ddf.map_partitions(lambda x, y: x, big) assert any(big is v for v in a.dask.values()) def test_partitions_indexer(): df = pd.DataFrame({"x": range(10)}) ddf = dd.from_pandas(df, npartitions=5) assert_eq(ddf.partitions[0], ddf.get_partition(0)) assert_eq(ddf.partitions[3], ddf.get_partition(3)) assert_eq(ddf.partitions[-1], ddf.get_partition(4)) assert ddf.partitions[:3].npartitions == 3 assert ddf.x.partitions[:3].npartitions == 3 assert ddf.x.partitions[::2].compute().tolist() == [0, 1, 4, 5, 8, 9] def test_mod_eq(): df = pd.DataFrame({"a": [1, 2, 3]}) ddf = dd.from_pandas(df, npartitions=1) assert_eq(df, ddf) assert_eq(df.a, ddf.a) assert_eq(df.a + 2, ddf.a + 2) assert_eq(df.a + 2 == 0, ddf.a + 2 == 0) def test_setitem(): df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}) ddf = dd.from_pandas(df.copy(), 2) df[df.columns] = 1 ddf[ddf.columns] = 1 assert_eq(df, ddf) def test_broadcast(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf - (ddf.sum() + 1), df - (df.sum() + 1)) def test_scalar_with_array(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) da.utils.assert_eq(df.x.values + df.x.mean(), ddf.x.values + ddf.x.mean()) def test_has_parallel_type(): assert has_parallel_type(pd.DataFrame()) assert has_parallel_type(pd.Series(dtype=float)) assert not has_parallel_type(123) def test_meta_error_message(): with pytest.raises(TypeError) as info: dd.DataFrame({("x", 1): 123}, "x", pd.Series(dtype=float), [None, None]) assert "Series" in str(info.value) assert "DataFrame" in str(info.value) assert "pandas" in str(info.value) def test_map_index(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) assert ddf.known_divisions is True cleared = ddf.index.map(lambda x: x * 10) assert cleared.known_divisions is False applied = ddf.index.map(lambda x: x * 10, is_monotonic=True) assert applied.known_divisions is True assert applied.divisions == tuple(x * 10 for x in ddf.divisions) def test_assign_index(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) ddf_copy = ddf.copy() ddf.index = ddf.index * 10 expected = df.copy() expected.index = expected.index * 10 assert_eq(ddf, expected) assert_eq(ddf_copy, df) def test_index_divisions(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(ddf.index + 1, df.index + 1) assert_eq(10 * ddf.index, 10 * df.index) assert_eq(-ddf.index, -df.index) def test_replace(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) assert_eq(df.replace(1, 10), ddf.replace(1, 10)) assert_eq(df.replace({1: 10, 2: 20}), ddf.replace({1: 10, 2: 20})) assert_eq(df.x.replace(1, 10), ddf.x.replace(1, 10)) assert_eq(df.x.replace({1: 10, 2: 20}), ddf.x.replace({1: 10, 2: 20})) def test_map_partitions_delays_lists(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5]}) ddf = dd.from_pandas(df, npartitions=2) L = list(range(100)) out = ddf.map_partitions(lambda x, y: x + sum(y), y=L) assert any(str(L) == str(v) for v in out.__dask_graph__().values()) out = ddf.map_partitions(lambda x, y: x + sum(y), L) assert any(str(L) == str(v) for v in out.__dask_graph__().values()) def test_dtype_cast(): df = pd.DataFrame( { "A": np.arange(10, dtype=np.int32), "B": np.arange(10, dtype=np.int64), "C": np.arange(10, dtype=np.float32), } ) ddf = dd.from_pandas(df, npartitions=2) assert ddf.A.dtype == np.int32 assert ddf.B.dtype == np.int64 assert ddf.C.dtype == np.float32 col = pd.Series(np.arange(10, dtype=np.float32)) / 2 assert col.dtype == np.float32 ddf = ddf.assign(D=col) assert ddf.D.dtype == np.float32 assert ddf.C.dtype == np.float32 # fails assert ddf.B.dtype == np.int64 # fails assert ddf.A.dtype == np.int32 @pytest.mark.parametrize("base_npart", [1, 4]) @pytest.mark.parametrize("map_npart", [1, 3]) @pytest.mark.parametrize("sorted_index", [False, True]) @pytest.mark.parametrize("sorted_map_index", [False, True]) def test_series_map(base_npart, map_npart, sorted_index, sorted_map_index): base = pd.Series( ["".join(np.random.choice(["a", "b", "c"], size=3)) for x in range(100)] ) if not sorted_index: index = np.arange(100) np.random.shuffle(index) base.index = index map_index = ["".join(x) for x in product("abc", repeat=3)] mapper = pd.Series(np.random.randint(50, size=len(map_index)), index=map_index) if not sorted_map_index: map_index = np.array(map_index) np.random.shuffle(map_index) mapper.index = map_index expected = base.map(mapper) dask_base = dd.from_pandas(base, npartitions=base_npart, sort=False) dask_map = dd.from_pandas(mapper, npartitions=map_npart, sort=False) result = dask_base.map(dask_map) dd.utils.assert_eq(expected, result) @pytest.mark.skipif( PANDAS_VERSION < "0.25.0", reason="Explode not implemented in pandas < 0.25.0" ) def test_dataframe_explode(): df = pd.DataFrame({"A": [[1, 2, 3], "foo", [3, 4]], "B": 1}) exploded_df = df.explode("A") ddf = dd.from_pandas(df, npartitions=2) exploded_ddf = ddf.explode("A") assert ddf.divisions == exploded_ddf.divisions assert_eq(exploded_ddf.compute(), exploded_df) @pytest.mark.skipif( PANDAS_VERSION < "0.25.0", reason="Explode not implemented in pandas < 0.25.0" ) def test_series_explode(): s = pd.Series([[1, 2, 3], "foo", [3, 4]]) exploded_s = s.explode() ds = dd.from_pandas(s, npartitions=2) exploded_ds = ds.explode() assert_eq(exploded_ds, exploded_s) assert ds.divisions == exploded_ds.divisions def test_pop(): df = pd.DataFrame({"x": range(10), "y": range(10)}) ddf = dd.from_pandas(df, npartitions=2) s = ddf.pop("y") assert s.name == "y" assert ddf.columns == ["x"] assert_eq(ddf, df[["x"]]) def test_simple_map_partitions(): data = {"col_0": [9, -3, 0, -1, 5], "col_1": [-2, -7, 6, 8, -5]} df = pd.DataFrame(data) ddf = dd.from_pandas(df, npartitions=2) ddf = ddf.clip(-4, 6) task = ddf.__dask_graph__()[ddf.__dask_keys__()[0]] [v] = task[0].dsk.values() assert v[0] == M.clip or v[1] == M.clip def test_iter(): df = pd.DataFrame({"A": [1, 2, 3, 4], "B": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, 2) assert list(df) == list(ddf) for col, expected in zip(ddf, ["A", "B"]): assert col == expected def test_dataframe_groupby_agg_empty_partitions(): df = pd.DataFrame({"x": [1, 2, 3, 4, 5, 6, 7, 8]}) ddf = dd.from_pandas(df, npartitions=4) assert_eq(ddf[ddf.x < 5].x.cumsum(), df[df.x < 5].x.cumsum()) def test_fuse_roots(): pdf1 = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [3, 5, 2, 5, 7, 2, 4, 2, 4]} ) ddf1 = dd.from_pandas(pdf1, 2) pdf2 = pd.DataFrame({"a": [True, False, True] * 3, "b": [False, False, True] * 3}) ddf2 = dd.from_pandas(pdf2, 2) res = ddf1.where(ddf2) hlg = fuse_roots(res.__dask_graph__(), keys=res.__dask_keys__()) hlg.validate()
30.87071
109
0.586733
e93c7b86a135e517911b5fdc162ee4d382e9ebb0
377
py
Python
tools/Polygraphy/tests/tools/test_polygraphy.py
hwkyai/TensorRT
d04182cd0086c70db4a8ad30e0d7675c4eb33782
[ "Apache-2.0" ]
null
null
null
tools/Polygraphy/tests/tools/test_polygraphy.py
hwkyai/TensorRT
d04182cd0086c70db4a8ad30e0d7675c4eb33782
[ "Apache-2.0" ]
null
null
null
tools/Polygraphy/tests/tools/test_polygraphy.py
hwkyai/TensorRT
d04182cd0086c70db4a8ad30e0d7675c4eb33782
[ "Apache-2.0" ]
null
null
null
import os import polygraphy from tests.tools.common import run_polygraphy class TestPolygraphyBin(object): def test_version(self): status = run_polygraphy(["-v"]) assert status.stdout.strip().replace("\n", " ").replace(" ", " ") == "Polygraphy | Version: {:} | Path: {:}".format(polygraphy.__version__, list(map(os.path.realpath, polygraphy.__path__)))
34.272727
198
0.681698
25b20eb9aec333f80811658e262aa707a14b5d58
887
py
Python
userbot/plugins/alive.py
Azharjacx/NandiOXbot
c1ee9162123d4ecda1da79124ae1219d79e148a0
[ "MIT" ]
null
null
null
userbot/plugins/alive.py
Azharjacx/NandiOXbot
c1ee9162123d4ecda1da79124ae1219d79e148a0
[ "MIT" ]
null
null
null
userbot/plugins/alive.py
Azharjacx/NandiOXbot
c1ee9162123d4ecda1da79124ae1219d79e148a0
[ "MIT" ]
null
null
null
"""Check if userbot alive.""" import asyncio from telethon import events from telethon.tl.types import ChannelParticipantsAdmins from platform import uname from userbot import ALIVE_NAME from userbot.utils import admin_cmd DEFAULTUSER = str(ALIVE_NAME) if ALIVE_NAME else "No name set yet nibba, check pinned in @XtraTgBot" @command(outgoing=True, pattern="^.alive$") async def amireallyalive(alive): """ For .alive command, check if the bot is running. """ await alive.edit("`Apun marta nahi jinda hu bainchod` **ψ(`∇´)ψ**\n\n" "`Telethon version: 6.9.0\nPython: 3.7.3\n`" "`Bot created by:` [OPen Camera](tg://user?id=772507084), @opencamera\n" f"`My NOOB Son`: {DEFAULTUSER}\n\n" "https://github.com/rishabh-lohiya16/NandiOXbot" "\nAyushman-Bhav✋")
44.35
101
0.632469
01d646e8d30dabc9d7cbb9dff0286a25f2d2903e
901
py
Python
django/helpdesk_deploy_old/helpdesk/base/managers/user.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
django/helpdesk_deploy_old/helpdesk/base/managers/user.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
django/helpdesk_deploy_old/helpdesk/base/managers/user.py
Netromnik/python
630a9df63b1cade9af38de07bb9cd0c3b8694c93
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import reverse from base.models_i.file import CollectMedia from django.shortcuts import reverse from base.models_i.file import CollectMedia class UserModelCustomManeger(): def get_view_type_url(self,q,s): ## table return reverse("view:router:router_table",kwargs={"slug_query_pk":q,"slug_stream_pk":s}) def get_view_list(self,queue,stream): obj = {} obj['title'] = "Виды отображения" obj["dep"] = [ { "name":"Таблица", "url" :reverse("view:router:router_table", args=[queue['id'], stream['id']]) },{ "name":"Доска", "url" :reverse("view:router:router_kanban", args=[queue['id'], stream['id']]) }, ] return obj def get_collect(self,user): obj = CollectMedia.obj.get(name="wiki") return obj
29.064516
96
0.580466
621becfe68f4065655f72f0008f7e6bdd5340f3d
754
py
Python
var/spack/repos/builtin/packages/py-snowballstemmer/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2,360
2017-11-06T08:47:01.000Z
2022-03-31T14:45:33.000Z
var/spack/repos/builtin/packages/py-snowballstemmer/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
13,838
2017-11-04T07:49:45.000Z
2022-03-31T23:38:39.000Z
var/spack/repos/builtin/packages/py-snowballstemmer/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
1,793
2017-11-04T07:45:50.000Z
2022-03-30T14:31:53.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PySnowballstemmer(PythonPackage): """This package provides 16 stemmer algorithms (15 + Poerter English stemmer) generated from Snowball algorithms.""" homepage = "https://github.com/shibukawa/snowball_py" pypi = "snowballstemmer/snowballstemmer-2.0.0.tar.gz" version('2.0.0', sha256='df3bac3df4c2c01363f3dd2cfa78cce2840a79b9f1c2d2de9ce8d31683992f52') version('1.2.1', sha256='919f26a68b2c17a7634da993d91339e288964f93c274f1343e3bbbe2096e1128') depends_on('py-setuptools', when='@2:', type='build')
37.7
95
0.763926
f20e92770dc13448e8302823145eb6169bac2627
2,546
py
Python
pipe-cli/src/model/cluster_node_model.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
126
2019-03-22T19:40:38.000Z
2022-02-16T13:01:44.000Z
pipe-cli/src/model/cluster_node_model.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
1,189
2019-03-25T10:39:27.000Z
2022-03-31T12:50:33.000Z
pipe-cli/src/model/cluster_node_model.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
62
2019-03-22T22:09:49.000Z
2022-03-08T12:05:56.000Z
# Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime from .pipeline_run_model import PipelineRunModel from .pod_model import PodModel class ClusterNodeModel(object): def __init__(self): self.identifier = None self.name = None self.created = None self.run = None self.addresses = [] self.system_info = None self.labels = None self.allocatable = None self.capacity = None self.is_master = False self.pods = [] @classmethod def load(cls, json): instance = cls() instance.identifier = json['uid'] instance.name = json['name'] instance.created = datetime.datetime.strptime(json['creationTimestamp'], '%Y-%m-%dT%H:%M:%SZ') if 'addresses' in json: for address in json['addresses']: instance.addresses.append('{} ({})'.format(address['address'], address['type'])) if 'pipelineRun' in json: instance.run = PipelineRunModel.load(json['pipelineRun']) if 'systemInfo' in json: instance.system_info = json['systemInfo'].items() if 'labels' in json: instance.labels = json['labels'].items() for label in instance.labels: if label[0].lower() == 'node-role.kubernetes.io/master': instance.is_master = True elif label[0].lower() == 'kubeadm.alpha.kubernetes.io/role': instance.is_master = label[1].lower() == 'master' elif label[0].lower() == 'cloud-pipeline/role': instance.is_master = label[1].lower() == 'edge' if 'allocatable' in json: instance.allocatable = json['allocatable'] if 'capacity' in json: instance.capacity = json['capacity'] if 'pods' in json: for pod_json in json['pods']: instance.pods.append(PodModel.load(pod_json)) return instance
39.78125
102
0.615868
ba3280c74e142ee18b6ef041b3aff4f88df5c35b
5,081
py
Python
try_to_import_package_and_modules.py
eda-ricercatore/scienza_dei_dati
999972b2cbfb52e802143b13651438723898b53d
[ "MIT" ]
null
null
null
try_to_import_package_and_modules.py
eda-ricercatore/scienza_dei_dati
999972b2cbfb52e802143b13651438723898b53d
[ "MIT" ]
null
null
null
try_to_import_package_and_modules.py
eda-ricercatore/scienza_dei_dati
999972b2cbfb52e802143b13651438723898b53d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """try_to_import_package_and_modules.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Q4ig5YLEjnEWee61SazViyGvkqpPgaAZ """ #!/Library/Frameworks/Python.framework/Versions/3.6/bin/python3 ### /usr/bin/python ### /Library/Frameworks/Python.framework/Versions/3.6/bin/python3 ### #!/usr/bin/python -mtimeit """ This Python script is written by Zhiyang Ong to learn how to import a Python package and module in Google Colab, via a Jupyter notebook. References: https://colab.research.google.com/notebooks/snippets/importing_libraries.ipynb https://colab.research.google.com/notebooks/welcome.ipynb Revision History: November 1, 2019 Version 0.1, initial build. """ __author__ = 'Zhiyang Ong' __version__ = '1.0' __date__ = 'November 1, 2019' # The MIT License (MIT) # Copyright (c) <2019> <Zhiyang Ong> # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Email address: echo "cukj -wb- 23wU4X5M589 TROJANS cqkH wiuz2y 0f Mw Stanford" | awk '{ sub("23wU4X5M589","F.d_c_b. ") sub("Stanford","d0mA1n"); print $5, $2, $8; for (i=1; i<=1; i++) print "6\b"; print $9, $7, $6 }' | sed y/kqcbuHwM62z/gnotrzadqmC/ | tr 'q' ' ' | tr -d [:cntrl:] | tr -d 'ir' | tr y "\n" Che cosa significa? ############################################################### """ Import modules from The Python Standard Library. sys Get access to any command-line arguments. os Use any operating system dependent functionality. os.path For pathname manipulations. subprocess -> call To make system calls. time To measure elapsed time. warnings Raise warnings. re Use regular expressions. pathlib->Path For mapping a string to a path. """ """ import sys import os import os.path #from pathlib import Path from subprocess import call import time import warnings import re """ """ import importlib.util from google.colab import drive drive.mount('/content/drive') import sys sys.path.append('/content/drive/My\ Drive/Colab\ Notebooks/utilities') """ """ https://stackoverflow.com/questions/48905127/importing-py-files-in-google-colab/48919022#48919022 from google.colab import files src = list(files.upload().values())[0] #open('utilities/simple_module.py','wb').write(src) open('./utilities/simple_module.py','wb').write(src) import mylib """ """ using PyDrive https://stackoverflow.com/questions/37913458/manage-files-from-public-google-drive-url-using-pydrive """ """ Other resources: https://www.marktechpost.com/2019/06/07/how-to-connect-google-colab-with-google-drive/ """ from google.colab import drive drive.mount('/content/gdrive') import sys sys.path.append('/content/drive/My\ Drive/Colab\ Notebooks/utilities') ############################################################### # Import Custom Python Modules import utilities # Module to test if I can import a Python package and module. from utilities.simple_module import simple ############################################################### # Module with methods that clean BibTeX files. class Try_to_Import_Package: """ Number of times that the "Hello World" print function has been called. """ number_times_executed = 0 # ========================================================= # Accessor and Mutator method. # ========================================================= # Method to print the number of times that the # "Hello World" print function has been called, and # increment this number by one. # @return - Nothing. # O(1) method. @staticmethod def get_number_times_executed(): Try_to_Import_Package.number_times_executed = Try_to_Import_Package.number_times_executed + 1 print(" Try_to_Import_Package 'Hello World' function called:",Try_to_Import_Package.number_times_executed,"times.") ############################################################### # Main method for the program. # If this is executed as a Python script, if __name__ == "__main__": for x in range(10): simple.get_number_times_executed() Try_to_Import_Package.get_number_times_executed()
31.75625
462
0.696516
f8c25b89604291903dc921710140b14dee87c4f3
7,646
py
Python
scripts/opengl/src_util.py
karolherbst/VK-GL-CTS
bb088fddd8673dc4f37e5956c42890645ab31577
[ "Apache-2.0" ]
null
null
null
scripts/opengl/src_util.py
karolherbst/VK-GL-CTS
bb088fddd8673dc4f37e5956c42890645ab31577
[ "Apache-2.0" ]
null
null
null
scripts/opengl/src_util.py
karolherbst/VK-GL-CTS
bb088fddd8673dc4f37e5956c42890645ab31577
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- #------------------------------------------------------------------------- # drawElements Quality Program utilities # -------------------------------------- # # Copyright 2015-2017 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #------------------------------------------------------------------------- import os import re import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) import khr_util.format import khr_util.registry import khr_util.registry_cache SCRIPTS_DIR = os.path.dirname(__file__) OPENGL_DIR = os.path.normpath(os.path.join(SCRIPTS_DIR, "..", "..", "framework", "opengl")) EGL_DIR = os.path.normpath(os.path.join(SCRIPTS_DIR, "..", "..", "framework", "egl")) OPENGL_INC_DIR = os.path.join(OPENGL_DIR, "wrapper") GL_SOURCE = khr_util.registry_cache.RegistrySource( "https://raw.githubusercontent.com/KhronosGroup/OpenGL-Registry", "xml/gl.xml", "97ab881f0ab9e03a59388214f9c36dfe4c206c76", "2bd7209131ca5a5381dfe3fd346568abbb20eda5907f555212e365c141bbce6c") EXTENSIONS = [ 'GL_KHR_texture_compression_astc_ldr', 'GL_KHR_blend_equation_advanced', 'GL_KHR_blend_equation_advanced_coherent', 'GL_KHR_debug', 'GL_EXT_robustness', 'GL_KHR_robustness', 'GL_KHR_no_error', 'GL_KHR_parallel_shader_compile', 'GL_EXT_bgra', 'GL_EXT_geometry_point_size', 'GL_EXT_tessellation_shader', 'GL_EXT_geometry_shader', 'GL_EXT_texture_buffer', 'GL_EXT_texture_filter_anisotropic', 'GL_EXT_texture_cube_map_array', 'GL_EXT_texture_snorm', 'GL_EXT_primitive_bounding_box', 'GL_EXT_texture_compression_s3tc', 'GL_EXT_texture_type_2_10_10_10_REV', 'GL_EXT_copy_image', 'GL_EXT_depth_bounds_test', 'GL_EXT_direct_state_access', 'GL_EXT_draw_buffers_indexed', 'GL_EXT_draw_elements_base_vertex', 'GL_EXT_direct_state_access', 'GL_EXT_read_format_bgra', 'GL_EXT_texture_storage', 'GL_EXT_texture_sRGB_decode', 'GL_EXT_texture_border_clamp', 'GL_EXT_texture_sRGB_R8', 'GL_EXT_texture_sRGB_RG8', 'GL_EXT_debug_marker', 'GL_EXT_polygon_offset_clamp', 'GL_IMG_texture_compression_pvrtc', 'GL_OES_EGL_image', 'GL_OES_EGL_image_external', 'GL_OES_compressed_ETC1_RGB8_texture', 'GL_OES_compressed_paletted_texture', 'GL_OES_required_internalformat', 'GL_OES_packed_depth_stencil', 'GL_OES_texture_3D', 'GL_OES_texture_half_float', 'GL_OES_texture_storage_multisample_2d_array', 'GL_OES_sample_shading', 'GL_OES_standard_derivatives', 'GL_OES_stencil1', 'GL_OES_stencil4', 'GL_OES_surfaceless_context', 'GL_OES_mapbuffer', 'GL_OES_vertex_array_object', 'GL_OES_viewport_array', 'GL_ARB_clip_control', 'GL_ARB_buffer_storage', 'GL_ARB_compute_shader', 'GL_ARB_draw_indirect', 'GL_ARB_draw_instanced', 'GL_ARB_draw_elements_base_vertex', 'GL_ARB_direct_state_access', 'GL_ARB_get_program_binary', 'GL_ARB_gl_spirv', 'GL_ARB_indirect_parameters', 'GL_ARB_internalformat_query', 'GL_ARB_instanced_arrays', 'GL_ARB_multi_draw_indirect', 'GL_ARB_parallel_shader_compile', 'GL_ARB_program_interface_query', 'GL_ARB_separate_shader_objects', 'GL_ARB_shader_ballot', 'GL_ARB_shader_image_load_store', 'GL_ARB_shader_viewport_layer_array', 'GL_ARB_sparse_buffer', 'GL_ARB_sparse_texture', 'GL_ARB_spirv_extensions', 'GL_ARB_tessellation_shader', 'GL_ARB_texture_barrier', 'GL_ARB_texture_filter_minmax', 'GL_ARB_texture_gather', 'GL_ARB_texture_storage', 'GL_ARB_texture_storage_multisample', 'GL_ARB_texture_multisample', 'GL_ARB_texture_view', 'GL_ARB_transform_feedback2', 'GL_ARB_transform_feedback3', 'GL_ARB_transform_feedback_instanced', 'GL_ARB_transform_feedback_overflow_query', 'GL_ARB_vertex_array_bgra', 'GL_ARB_vertex_attrib_64bit', 'GL_ARB_vertex_attrib_binding', 'GL_NV_deep_texture3D', 'GL_NV_gpu_multicast', 'GL_NV_internalformat_sample_query', 'GL_NVX_cross_process_interop', 'GL_OES_draw_elements_base_vertex', 'GL_OVR_multiview', 'GL_OVR_multiview_multisampled_render_to_texture', ] def getGLRegistry (): return khr_util.registry_cache.getRegistry(GL_SOURCE) def getHybridInterface (stripAliasedExtCommands = True): # This is a bit awkward, since we have to create a strange hybrid # interface that includes both GL and ES features and extensions. registry = getGLRegistry() glFeatures = registry.getFeatures('gl') esFeatures = registry.getFeatures('gles2') spec = khr_util.registry.InterfaceSpec() for feature in registry.getFeatures('gl'): spec.addFeature(feature, 'gl', 'core') for feature in registry.getFeatures('gles2'): spec.addFeature(feature, 'gles2') for extName in EXTENSIONS: extension = registry.extensions[extName] # Add all extensions using the ES2 api, but force even non-ES2 # extensions to be included. spec.addExtension(extension, 'gles2', 'core', force=True) iface = khr_util.registry.createInterface(registry, spec, 'gles2') if stripAliasedExtCommands: # Remove redundant extension commands that are already provided by core. strippedCmds = [] for command in iface.commands: if command.alias == None: strippedCmds.append(command) iface.commands = strippedCmds return iface def getInterface (registry, api, version=None, profile=None, **kwargs): spec = khr_util.registry.spec(registry, api, version, profile, **kwargs) if api == 'gl' and profile == 'core' and version < "3.2": gl32 = registry.features['GL_VERSION_3_2'] for eRemove in gl32.xpath('remove'): spec.addComponent(eRemove) return khr_util.registry.createInterface(registry, spec, api) def getVersionToken (api, version): prefixes = { 'gles2': "ES", 'gl': "GL" } return prefixes[api] + version.replace(".", "") def genCommandList(iface, renderCommand, directory, filename, align=False): lines = map(renderCommand, iface.commands) lines = filter(lambda l: l != None, lines) if align: lines = indentLines(lines) writeInlFile(os.path.join(directory, filename), lines) def genCommandLists(registry, renderCommand, check, directory, filePattern, align=False): for eFeature in registry.features: api = eFeature.get('api') version = eFeature.get('number') profile = check(api, version) if profile is True: profile = None elif profile is False: continue iface = getInterface(registry, api, version=version, profile=profile) filename = filePattern % getVersionToken(api, version) genCommandList(iface, renderCommand, directory, filename, align) def getFunctionTypeName (funcName): return "%sFunc" % funcName def getFunctionMemberName (funcName): assert funcName[:2] == "gl" if funcName[:5] == "glEGL": # Otherwise we end up with gl.eGLImage... return "egl%s" % funcName[5:] else: return "%c%s" % (funcName[2].lower(), funcName[3:]) INL_HEADER = khr_util.format.genInlHeader("Khronos GL API description (gl.xml)", GL_SOURCE.getRevision()) def writeInlFile (filename, source): khr_util.format.writeInlFile(filename, INL_HEADER, source) # Aliases from khr_util.common indentLines = khr_util.format.indentLines normalizeConstant = khr_util.format.normalizeConstant commandParams = khr_util.format.commandParams commandArgs = khr_util.format.commandArgs
32.956897
105
0.760005
c926c99a999bb88388c77d859e54c8973417b9db
22,087
py
Python
youtube_dl/extractor/twitch.py
aalvarito68/https-github.com-rg3-youtube-dl
dfc80bdd2e4ef3d30f161a93f99f3050537944ab
[ "Unlicense" ]
null
null
null
youtube_dl/extractor/twitch.py
aalvarito68/https-github.com-rg3-youtube-dl
dfc80bdd2e4ef3d30f161a93f99f3050537944ab
[ "Unlicense" ]
null
null
null
youtube_dl/extractor/twitch.py
aalvarito68/https-github.com-rg3-youtube-dl
dfc80bdd2e4ef3d30f161a93f99f3050537944ab
[ "Unlicense" ]
null
null
null
# coding: utf-8 from __future__ import unicode_literals import itertools import re import random from .common import InfoExtractor from ..compat import ( compat_HTTPError, compat_parse_qs, compat_str, compat_urllib_parse_urlencode, compat_urllib_parse_urlparse, ) from ..utils import ( clean_html, ExtractorError, int_or_none, js_to_json, orderedSet, parse_duration, parse_iso8601, update_url_query, urlencode_postdata, urljoin, ) class TwitchBaseIE(InfoExtractor): _VALID_URL_BASE = r'https?://(?:(?:www|go)\.)?twitch\.tv' _API_BASE = 'https://api.twitch.tv' _USHER_BASE = 'https://usher.ttvnw.net' _LOGIN_URL = 'https://www.twitch.tv/login' _CLIENT_ID = 'jzkbprff40iqj646a697cyrvl0zt2m6' _NETRC_MACHINE = 'twitch' def _handle_error(self, response): if not isinstance(response, dict): return error = response.get('error') if error: raise ExtractorError( '%s returned error: %s - %s' % (self.IE_NAME, error, response.get('message')), expected=True) def _call_api(self, path, item_id, note): response = self._download_json( '%s/%s' % (self._API_BASE, path), item_id, note, headers={'Client-ID': self._CLIENT_ID}) self._handle_error(response) return response def _real_initialize(self): self._login() def _login(self): (username, password) = self._get_login_info() if username is None: return def fail(message): raise ExtractorError( 'Unable to login. Twitch said: %s' % message, expected=True) def login_step(page, urlh, note, data): form = self._hidden_inputs(page) form.update(data) page_url = urlh.geturl() post_url = self._search_regex( r'<form[^>]+action=(["\'])(?P<url>.+?)\1', page, 'post url', default=page_url, group='url') post_url = urljoin(page_url, post_url) headers = {'Referer': page_url} try: response = self._download_json( post_url, None, note, data=urlencode_postdata(form), headers=headers) except ExtractorError as e: if isinstance(e.cause, compat_HTTPError) and e.cause.code == 400: response = self._parse_json( e.cause.read().decode('utf-8'), None) fail(response['message']) raise redirect_url = urljoin(post_url, response['redirect']) return self._download_webpage_handle( redirect_url, None, 'Downloading login redirect page', headers=headers) login_page, handle = self._download_webpage_handle( self._LOGIN_URL, None, 'Downloading login page') # Some TOR nodes and public proxies are blocked completely if 'blacklist_message' in login_page: fail(clean_html(login_page)) redirect_page, handle = login_step( login_page, handle, 'Logging in as %s' % username, { 'username': username, 'password': password, }) if re.search(r'(?i)<form[^>]+id="two-factor-submit"', redirect_page) is not None: # TODO: Add mechanism to request an SMS or phone call tfa_token = self._get_tfa_info('two-factor authentication token') login_step(redirect_page, handle, 'Submitting TFA token', { 'authy_token': tfa_token, 'remember_2fa': 'true', }) def _prefer_source(self, formats): try: source = next(f for f in formats if f['format_id'] == 'Source') source['preference'] = 10 except StopIteration: pass # No Source stream present self._sort_formats(formats) class TwitchItemBaseIE(TwitchBaseIE): def _download_info(self, item, item_id): return self._extract_info(self._call_api( 'kraken/videos/%s%s' % (item, item_id), item_id, 'Downloading %s info JSON' % self._ITEM_TYPE)) def _extract_media(self, item_id): info = self._download_info(self._ITEM_SHORTCUT, item_id) response = self._call_api( 'api/videos/%s%s' % (self._ITEM_SHORTCUT, item_id), item_id, 'Downloading %s playlist JSON' % self._ITEM_TYPE) entries = [] chunks = response['chunks'] qualities = list(chunks.keys()) for num, fragment in enumerate(zip(*chunks.values()), start=1): formats = [] for fmt_num, fragment_fmt in enumerate(fragment): format_id = qualities[fmt_num] fmt = { 'url': fragment_fmt['url'], 'format_id': format_id, 'quality': 1 if format_id == 'live' else 0, } m = re.search(r'^(?P<height>\d+)[Pp]', format_id) if m: fmt['height'] = int(m.group('height')) formats.append(fmt) self._sort_formats(formats) entry = dict(info) entry['id'] = '%s_%d' % (entry['id'], num) entry['title'] = '%s part %d' % (entry['title'], num) entry['formats'] = formats entries.append(entry) return self.playlist_result(entries, info['id'], info['title']) def _extract_info(self, info): return { 'id': info['_id'], 'title': info.get('title') or 'Untitled Broadcast', 'description': info.get('description'), 'duration': int_or_none(info.get('length')), 'thumbnail': info.get('preview'), 'uploader': info.get('channel', {}).get('display_name'), 'uploader_id': info.get('channel', {}).get('name'), 'timestamp': parse_iso8601(info.get('recorded_at')), 'view_count': int_or_none(info.get('views')), } def _real_extract(self, url): return self._extract_media(self._match_id(url)) class TwitchVideoIE(TwitchItemBaseIE): IE_NAME = 'twitch:video' _VALID_URL = r'%s/[^/]+/b/(?P<id>\d+)' % TwitchBaseIE._VALID_URL_BASE _ITEM_TYPE = 'video' _ITEM_SHORTCUT = 'a' _TEST = { 'url': 'http://www.twitch.tv/riotgames/b/577357806', 'info_dict': { 'id': 'a577357806', 'title': 'Worlds Semifinals - Star Horn Royal Club vs. OMG', }, 'playlist_mincount': 12, 'skip': 'HTTP Error 404: Not Found', } class TwitchChapterIE(TwitchItemBaseIE): IE_NAME = 'twitch:chapter' _VALID_URL = r'%s/[^/]+/c/(?P<id>\d+)' % TwitchBaseIE._VALID_URL_BASE _ITEM_TYPE = 'chapter' _ITEM_SHORTCUT = 'c' _TESTS = [{ 'url': 'http://www.twitch.tv/acracingleague/c/5285812', 'info_dict': { 'id': 'c5285812', 'title': 'ACRL Off Season - Sports Cars @ Nordschleife', }, 'playlist_mincount': 3, 'skip': 'HTTP Error 404: Not Found', }, { 'url': 'http://www.twitch.tv/tsm_theoddone/c/2349361', 'only_matching': True, }] class TwitchVodIE(TwitchItemBaseIE): IE_NAME = 'twitch:vod' _VALID_URL = r'''(?x) https?:// (?: (?:(?:www|go)\.)?twitch\.tv/(?:[^/]+/v|videos)/| player\.twitch\.tv/\?.*?\bvideo=v ) (?P<id>\d+) ''' _ITEM_TYPE = 'vod' _ITEM_SHORTCUT = 'v' _TESTS = [{ 'url': 'http://www.twitch.tv/riotgames/v/6528877?t=5m10s', 'info_dict': { 'id': 'v6528877', 'ext': 'mp4', 'title': 'LCK Summer Split - Week 6 Day 1', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 17208, 'timestamp': 1435131709, 'upload_date': '20150624', 'uploader': 'Riot Games', 'uploader_id': 'riotgames', 'view_count': int, 'start_time': 310, }, 'params': { # m3u8 download 'skip_download': True, }, }, { # Untitled broadcast (title is None) 'url': 'http://www.twitch.tv/belkao_o/v/11230755', 'info_dict': { 'id': 'v11230755', 'ext': 'mp4', 'title': 'Untitled Broadcast', 'thumbnail': r're:^https?://.*\.jpg$', 'duration': 1638, 'timestamp': 1439746708, 'upload_date': '20150816', 'uploader': 'BelkAO_o', 'uploader_id': 'belkao_o', 'view_count': int, }, 'params': { # m3u8 download 'skip_download': True, }, 'skip': 'HTTP Error 404: Not Found', }, { 'url': 'http://player.twitch.tv/?t=5m10s&video=v6528877', 'only_matching': True, }, { 'url': 'https://www.twitch.tv/videos/6528877', 'only_matching': True, }] def _real_extract(self, url): item_id = self._match_id(url) info = self._download_info(self._ITEM_SHORTCUT, item_id) access_token = self._call_api( 'api/vods/%s/access_token' % item_id, item_id, 'Downloading %s access token' % self._ITEM_TYPE) formats = self._extract_m3u8_formats( '%s/vod/%s?%s' % ( self._USHER_BASE, item_id, compat_urllib_parse_urlencode({ 'allow_source': 'true', 'allow_audio_only': 'true', 'allow_spectre': 'true', 'player': 'twitchweb', 'nauth': access_token['token'], 'nauthsig': access_token['sig'], })), item_id, 'mp4', entry_protocol='m3u8_native') self._prefer_source(formats) info['formats'] = formats parsed_url = compat_urllib_parse_urlparse(url) query = compat_parse_qs(parsed_url.query) if 't' in query: info['start_time'] = parse_duration(query['t'][0]) if info.get('timestamp') is not None: info['subtitles'] = { 'rechat': [{ 'url': update_url_query( 'https://rechat.twitch.tv/rechat-messages', { 'video_id': 'v%s' % item_id, 'start': info['timestamp'], }), 'ext': 'json', }], } return info class TwitchPlaylistBaseIE(TwitchBaseIE): _PLAYLIST_PATH = 'kraken/channels/%s/videos/?offset=%d&limit=%d' _PAGE_LIMIT = 100 def _extract_playlist(self, channel_id): info = self._call_api( 'kraken/channels/%s' % channel_id, channel_id, 'Downloading channel info JSON') channel_name = info.get('display_name') or info.get('name') entries = [] offset = 0 limit = self._PAGE_LIMIT broken_paging_detected = False counter_override = None for counter in itertools.count(1): response = self._call_api( self._PLAYLIST_PATH % (channel_id, offset, limit), channel_id, 'Downloading %s JSON page %s' % (self._PLAYLIST_TYPE, counter_override or counter)) page_entries = self._extract_playlist_page(response) if not page_entries: break total = int_or_none(response.get('_total')) # Since the beginning of March 2016 twitch's paging mechanism # is completely broken on the twitch side. It simply ignores # a limit and returns the whole offset number of videos. # Working around by just requesting all videos at once. # Upd: pagination bug was fixed by twitch on 15.03.2016. if not broken_paging_detected and total and len(page_entries) > limit: self.report_warning( 'Twitch pagination is broken on twitch side, requesting all videos at once', channel_id) broken_paging_detected = True offset = total counter_override = '(all at once)' continue entries.extend(page_entries) if broken_paging_detected or total and len(page_entries) >= total: break offset += limit return self.playlist_result( [self.url_result(entry) for entry in orderedSet(entries)], channel_id, channel_name) def _extract_playlist_page(self, response): videos = response.get('videos') return [video['url'] for video in videos] if videos else [] def _real_extract(self, url): return self._extract_playlist(self._match_id(url)) class TwitchProfileIE(TwitchPlaylistBaseIE): IE_NAME = 'twitch:profile' _VALID_URL = r'%s/(?P<id>[^/]+)/profile/?(?:\#.*)?$' % TwitchBaseIE._VALID_URL_BASE _PLAYLIST_TYPE = 'profile' _TEST = { 'url': 'http://www.twitch.tv/vanillatv/profile', 'info_dict': { 'id': 'vanillatv', 'title': 'VanillaTV', }, 'playlist_mincount': 412, } class TwitchVideosBaseIE(TwitchPlaylistBaseIE): _VALID_URL_VIDEOS_BASE = r'%s/(?P<id>[^/]+)/videos' % TwitchBaseIE._VALID_URL_BASE _PLAYLIST_PATH = TwitchPlaylistBaseIE._PLAYLIST_PATH + '&broadcast_type=' class TwitchAllVideosIE(TwitchVideosBaseIE): IE_NAME = 'twitch:videos:all' _VALID_URL = r'%s/all' % TwitchVideosBaseIE._VALID_URL_VIDEOS_BASE _PLAYLIST_PATH = TwitchVideosBaseIE._PLAYLIST_PATH + 'archive,upload,highlight' _PLAYLIST_TYPE = 'all videos' _TEST = { 'url': 'https://www.twitch.tv/spamfish/videos/all', 'info_dict': { 'id': 'spamfish', 'title': 'Spamfish', }, 'playlist_mincount': 869, } class TwitchUploadsIE(TwitchVideosBaseIE): IE_NAME = 'twitch:videos:uploads' _VALID_URL = r'%s/uploads' % TwitchVideosBaseIE._VALID_URL_VIDEOS_BASE _PLAYLIST_PATH = TwitchVideosBaseIE._PLAYLIST_PATH + 'upload' _PLAYLIST_TYPE = 'uploads' _TEST = { 'url': 'https://www.twitch.tv/spamfish/videos/uploads', 'info_dict': { 'id': 'spamfish', 'title': 'Spamfish', }, 'playlist_mincount': 0, } class TwitchPastBroadcastsIE(TwitchVideosBaseIE): IE_NAME = 'twitch:videos:past-broadcasts' _VALID_URL = r'%s/past-broadcasts' % TwitchVideosBaseIE._VALID_URL_VIDEOS_BASE _PLAYLIST_PATH = TwitchVideosBaseIE._PLAYLIST_PATH + 'archive' _PLAYLIST_TYPE = 'past broadcasts' _TEST = { 'url': 'https://www.twitch.tv/spamfish/videos/past-broadcasts', 'info_dict': { 'id': 'spamfish', 'title': 'Spamfish', }, 'playlist_mincount': 0, } class TwitchHighlightsIE(TwitchVideosBaseIE): IE_NAME = 'twitch:videos:highlights' _VALID_URL = r'%s/highlights' % TwitchVideosBaseIE._VALID_URL_VIDEOS_BASE _PLAYLIST_PATH = TwitchVideosBaseIE._PLAYLIST_PATH + 'highlight' _PLAYLIST_TYPE = 'highlights' _TEST = { 'url': 'https://www.twitch.tv/spamfish/videos/highlights', 'info_dict': { 'id': 'spamfish', 'title': 'Spamfish', }, 'playlist_mincount': 805, } class TwitchStreamIE(TwitchBaseIE): IE_NAME = 'twitch:stream' _VALID_URL = r'''(?x) https?:// (?: (?:(?:www|go)\.)?twitch\.tv/| player\.twitch\.tv/\?.*?\bchannel= ) (?P<id>[^/#?]+) ''' _TESTS = [{ 'url': 'http://www.twitch.tv/shroomztv', 'info_dict': { 'id': '12772022048', 'display_id': 'shroomztv', 'ext': 'mp4', 'title': 're:^ShroomzTV [0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}$', 'description': 'H1Z1 - lonewolfing with ShroomzTV | A3 Battle Royale later - @ShroomzTV', 'is_live': True, 'timestamp': 1421928037, 'upload_date': '20150122', 'uploader': 'ShroomzTV', 'uploader_id': 'shroomztv', 'view_count': int, }, 'params': { # m3u8 download 'skip_download': True, }, }, { 'url': 'http://www.twitch.tv/miracle_doto#profile-0', 'only_matching': True, }, { 'url': 'https://player.twitch.tv/?channel=lotsofs', 'only_matching': True, }, { 'url': 'https://go.twitch.tv/food', 'only_matching': True, }] @classmethod def suitable(cls, url): return (False if any(ie.suitable(url) for ie in ( TwitchVideoIE, TwitchChapterIE, TwitchVodIE, TwitchProfileIE, TwitchAllVideosIE, TwitchUploadsIE, TwitchPastBroadcastsIE, TwitchHighlightsIE)) else super(TwitchStreamIE, cls).suitable(url)) def _real_extract(self, url): channel_id = self._match_id(url) stream = self._call_api( 'kraken/streams/%s?stream_type=all' % channel_id, channel_id, 'Downloading stream JSON').get('stream') if not stream: raise ExtractorError('%s is offline' % channel_id, expected=True) # Channel name may be typed if different case than the original channel name # (e.g. http://www.twitch.tv/TWITCHPLAYSPOKEMON) that will lead to constructing # an invalid m3u8 URL. Working around by use of original channel name from stream # JSON and fallback to lowercase if it's not available. channel_id = stream.get('channel', {}).get('name') or channel_id.lower() access_token = self._call_api( 'api/channels/%s/access_token' % channel_id, channel_id, 'Downloading channel access token') query = { 'allow_source': 'true', 'allow_audio_only': 'true', 'allow_spectre': 'true', 'p': random.randint(1000000, 10000000), 'player': 'twitchweb', 'segment_preference': '4', 'sig': access_token['sig'].encode('utf-8'), 'token': access_token['token'].encode('utf-8'), } formats = self._extract_m3u8_formats( '%s/api/channel/hls/%s.m3u8?%s' % (self._USHER_BASE, channel_id, compat_urllib_parse_urlencode(query)), channel_id, 'mp4') self._prefer_source(formats) view_count = stream.get('viewers') timestamp = parse_iso8601(stream.get('created_at')) channel = stream['channel'] title = self._live_title(channel.get('display_name') or channel.get('name')) description = channel.get('status') thumbnails = [] for thumbnail_key, thumbnail_url in stream['preview'].items(): m = re.search(r'(?P<width>\d+)x(?P<height>\d+)\.jpg$', thumbnail_key) if not m: continue thumbnails.append({ 'url': thumbnail_url, 'width': int(m.group('width')), 'height': int(m.group('height')), }) return { 'id': compat_str(stream['_id']), 'display_id': channel_id, 'title': title, 'description': description, 'thumbnails': thumbnails, 'uploader': channel.get('display_name'), 'uploader_id': channel.get('name'), 'timestamp': timestamp, 'view_count': view_count, 'formats': formats, 'is_live': True, } class TwitchClipsIE(InfoExtractor): IE_NAME = 'twitch:clips' _VALID_URL = r'https?://clips\.twitch\.tv/(?:[^/]+/)*(?P<id>[^/?#&]+)' _TESTS = [{ 'url': 'https://clips.twitch.tv/ea/AggressiveCobraPoooound', 'md5': '761769e1eafce0ffebfb4089cb3847cd', 'info_dict': { 'id': 'AggressiveCobraPoooound', 'ext': 'mp4', 'title': 'EA Play 2016 Live from the Novo Theatre', 'thumbnail': r're:^https?://.*\.jpg', 'creator': 'EA', 'uploader': 'stereotype_', 'uploader_id': 'stereotype_', }, }, { # multiple formats 'url': 'https://clips.twitch.tv/rflegendary/UninterestedBeeDAESuppy', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) clip = self._parse_json( self._search_regex( r'(?s)clipInfo\s*=\s*({.+?});', webpage, 'clip info'), video_id, transform_source=js_to_json) title = clip.get('channel_title') or self._og_search_title(webpage) formats = [{ 'url': option['source'], 'format_id': option.get('quality'), 'height': int_or_none(option.get('quality')), } for option in clip.get('quality_options', []) if option.get('source')] if not formats: formats = [{ 'url': clip['clip_video_url'], }] self._sort_formats(formats) return { 'id': video_id, 'title': title, 'thumbnail': self._og_search_thumbnail(webpage), 'creator': clip.get('broadcaster_display_name') or clip.get('broadcaster_login'), 'uploader': clip.get('curator_login'), 'uploader_id': clip.get('curator_display_name'), 'formats': formats, }
34.727987
101
0.543759
97e21dd1bccdee7f36bbd780487aa19ea7819d01
4,710
py
Python
AWS/check_reserved_instances_ec2.py
borkit/scriptdump
86c622e7a5ce48c75efa9eceeac58b8c69e24973
[ "MIT" ]
4
2019-02-01T22:50:24.000Z
2020-10-22T15:50:04.000Z
AWS/check_reserved_instances_ec2.py
borkit/scriptdump
86c622e7a5ce48c75efa9eceeac58b8c69e24973
[ "MIT" ]
null
null
null
AWS/check_reserved_instances_ec2.py
borkit/scriptdump
86c622e7a5ce48c75efa9eceeac58b8c69e24973
[ "MIT" ]
2
2019-01-27T09:30:56.000Z
2020-10-22T15:50:28.000Z
#!/usr/bin/python import boto3 import logging import argparse from pprint import pformat,pprint parser = argparse.ArgumentParser(description='Cross reference existing ec2 reservations to current instances.') parser.add_argument('--log', default="WARN", help='Change log level (default: WARN)') parser.add_argument('--region', default='us-east-1', help='AWS Region to connect to') args = parser.parse_args() logging.basicConfig(level=getattr(logging, args.log)) logger = logging.getLogger('ec2-check') # Dump some environment details logger.debug("boto version = %s", boto3.__version__) ec2_client = boto3.client('ec2', region_name=args.region) ec2_instances = ec2_client.describe_instances() running_ec2_instances = {} for reservation in ec2_instances['Reservations']: for instance in reservation['Instances']: if instance['State']['Name'] != "running": logger.debug("Disqualifying instance %s: not running\n" % ( instance['InstanceId'] ) ) elif "InstanceLifecycle" in instance: if instance['InstanceLifecycle'] == "spot": logger.debug("Disqualifying instance %s: spot\n" % ( instance['InstanceId'] ) ) else: az = instance['Placement']['AvailabilityZone'] instance_type = instance['InstanceType'] logger.debug("Running instance: %s"% (instance)) if "VpcId" in instance: location = 'vpc' else: location = 'ec2' if "Platform" in instance: platform = instance['Platform'] else: platform = 'linux' running_ec2_instances[ (instance_type, az, platform, location ) ] = running_ec2_instances.get( (instance_type, az, platform, location ) , 0 ) + 1 logger.debug("FOO -- Running instances: %s"% pformat(running_ec2_instances)) ec2_reservations = ec2_client.describe_reserved_instances() ec2_reserved_instances = {} ec2_reserved_instances_ids = {} for ri in ec2_reservations['ReservedInstances']: if ri['State'] != "active": logger.debug("Excluding reserved instances %s: no longer active\n" % (ri['ReservedInstancesId'])) else: if ri['Scope'] != "Region": az = ri['AvailabilityZone'] else: az = 'Region' instance_type = ri['InstanceType'] logger.debug("Reserved instance: %s" % (ri)) description = ri['ProductDescription'] if "Windows" in description: platform = 'windows' else: platform = 'linux' if "VPC" in description: location = 'vpc' else: location = 'ec2' instance_signature = (instance_type, az, platform, location) ec2_reserved_instances[instance_signature] = ec2_reserved_instances.get(instance_signature, 0) + ri['InstanceCount'] if instance_signature not in ec2_reserved_instances_ids: # print "Resetting instance_signature: (%s)" % (instance_signature) ec2_reserved_instances_ids[instance_signature] = [] logger.debug("inserting reserved_instance_id (%s) into list (%s)" % ( instance_signature, ec2_reserved_instances_ids[instance_signature])) ec2_reserved_instances_ids[instance_signature].append(ri['ReservedInstancesId']) logger.debug("Reserved instances: %s" % pformat(ec2_reserved_instances)) for running_instance in running_ec2_instances: for _ in range(running_ec2_instances[running_instance]): if running_instance in ec2_reserved_instances: if ec2_reserved_instances[running_instance] >= 2: ec2_reserved_instances[running_instance] -= 1 else: ec2_reserved_instances.pop(running_instance) logger.debug("Instance is not reserved") else: regional_running_reservation = list(running_instance) regional_running_reservation[1] = 'Region' regional_running_reservation_tuple = tuple(regional_running_reservation) if regional_running_reservation_tuple in ec2_reserved_instances: if ec2_reserved_instances[regional_running_reservation_tuple] >= 2: ec2_reserved_instances[regional_running_reservation_tuple] -= 1 else: ec2_reserved_instances.pop(regional_running_reservation_tuple) logger.debug("Instance is not reserved") print ("Unused reserved instances: %s" % pformat(ec2_reserved_instances))
45.728155
158
0.635881
406d75c1bbdd0a3a8947d69ef9f39f580ed500b2
2,666
py
Python
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
1
2021-03-22T18:38:43.000Z
2021-03-22T18:38:43.000Z
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
null
null
null
Pimoroni/sgp30_simpletest.py
ckuehnel/MicroPython
c57d0df744fe5301e755bd139b6cc56d69c442fd
[ "MIT" ]
1
2021-02-06T10:07:36.000Z
2021-02-06T10:07:36.000Z
# sgp30_simpletest.py # https://github.com/alexmrqt/micropython-sgp30 # adaption to the I2C bus of Raspberry Pi Pico by # 2021-03-11 Claus Kühnel info@ckuehnel.ch """ Example for using the SGP30 with MicroPython and the Adafruit library. Uses instructions from "SGP30 Driver Integration (for Software I²C)" to handle self-calibration of the sensor: - if no baseline found, wait 12h before storing baseline, - if baseline found, store baseline every hour. Baseline is writen in co2eq_baseline.txt and tvoc_baseline.txt. Note that if the sensor is shut down during more than one week, then baselines must be manually deleted. """ import time from machine import Pin, I2C import adafruit_sgp30 # Initialize I2C bus sda=Pin(0) scl=Pin(1) i2c=I2C(0,sda=sda, scl=scl, freq=100000) # Create library object on our I2C port sgp30 = adafruit_sgp30.Adafruit_SGP30(i2c) print("SGP30 serial #", [hex(i) for i in sgp30.serial]) # Initialize SGP-30 internal drift compensation algorithm. sgp30.iaq_init() # Wait 15 seconds for the SGP30 to properly initialize print("Waiting 15 seconds for SGP30 initialization.") time.sleep(15) # Retrieve previously stored baselines, if any (helps the compensation algorithm). has_baseline = False try: f_co2 = open('co2eq_baseline.txt', 'r') f_tvoc = open('tvoc_baseline.txt', 'r') co2_baseline = int(f_co2.read()) tvoc_baseline = int(f_tvoc.read()) #Use them to calibrate the sensor sgp30.set_iaq_baseline(co2_baseline, tvoc_baseline) f_co2.close() f_tvoc.close() has_baseline = True except: print('Impossible to read SGP30 baselines!') #Store the time at which last baseline has been saved baseline_time = time.time() while True: co2eq, tvoc = sgp30.iaq_measure() print('co2eq = ' + str(co2eq) + ' ppm \t tvoc = ' + str(tvoc) + ' ppb') # Baselines should be saved after 12 hour the first timen then every hour, # according to the doc. if (has_baseline and (time.time() - baseline_time >= 3600)) \ or ((not has_baseline) and (time.time() - baseline_time >= 43200)): print('Saving baseline!') baseline_time = time.time() try: f_co2 = open('co2eq_baseline.txt', 'w') f_tvoc = open('tvoc_baseline.txt', 'w') bl_co2, bl_tvoc = sgp30.get_iaq_baseline() f_co2.write(str(bl_co2)) f_tvoc.write(str(bl_tvoc)) f_co2.close() f_tvoc.close() has_baseline = True except: print('Impossible to write SGP30 baselines!') #A measurement should be done every 60 seconds, according to the doc. time.sleep(1)
28.666667
82
0.685296
3a3bc6214834229cbe6bae6f721f8789dbc17f85
6,866
py
Python
neutron/db/extraroute_db.py
iiscsahoo/Neutron
2bf91b2f1036e62a6d76bb0f7a82304f15dce1f3
[ "Apache-2.0" ]
null
null
null
neutron/db/extraroute_db.py
iiscsahoo/Neutron
2bf91b2f1036e62a6d76bb0f7a82304f15dce1f3
[ "Apache-2.0" ]
null
null
null
neutron/db/extraroute_db.py
iiscsahoo/Neutron
2bf91b2f1036e62a6d76bb0f7a82304f15dce1f3
[ "Apache-2.0" ]
null
null
null
# Copyright 2013, Nachi Ueno, NTT MCL, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from neutron_lib.utils import helpers from oslo_config import cfg from oslo_log import log as logging from neutron._i18n import _ from neutron.common import utils from neutron.db import db_base_plugin_v2 from neutron.db import l3_db from neutron.db import models_v2 from neutron.extensions import extraroute from neutron.extensions import l3 from neutron.objects import router as l3_obj LOG = logging.getLogger(__name__) extra_route_opts = [ #TODO(nati): use quota framework when it support quota for attributes cfg.IntOpt('max_routes', default=30, help=_("Maximum number of routes per router")), ] cfg.CONF.register_opts(extra_route_opts) class ExtraRoute_dbonly_mixin(l3_db.L3_NAT_dbonly_mixin): """Mixin class to support extra route configuration on router.""" def _extend_router_dict_extraroute(self, router_res, router_db): router_res['routes'] = (ExtraRoute_dbonly_mixin. _make_extra_route_list( router_db['route_list'] )) db_base_plugin_v2.NeutronDbPluginV2.register_dict_extend_funcs( l3.ROUTERS, ['_extend_router_dict_extraroute']) def update_router(self, context, id, router): r = router['router'] with context.session.begin(subtransactions=True): #check if route exists and have permission to access router_db = self._get_router(context, id) if 'routes' in r: self._update_extra_routes(context, router_db, r['routes']) routes = self._get_extra_routes_by_router_id(context, id) router_updated = super(ExtraRoute_dbonly_mixin, self).update_router( context, id, router) router_updated['routes'] = routes return router_updated def _get_subnets_by_cidr(self, context, cidr): query_subnets = context.session.query(models_v2.Subnet) return query_subnets.filter_by(cidr=cidr).all() def _validate_routes_nexthop(self, cidrs, ips, routes, nexthop): #Note(nati): Nexthop should be connected, # so we need to check # nexthop belongs to one of cidrs of the router ports if not netaddr.all_matching_cidrs(nexthop, cidrs): raise extraroute.InvalidRoutes( routes=routes, reason=_('the nexthop is not connected with router')) #Note(nati) nexthop should not be same as fixed_ips if nexthop in ips: raise extraroute.InvalidRoutes( routes=routes, reason=_('the nexthop is used by router')) def _validate_routes(self, context, router_id, routes): if len(routes) > cfg.CONF.max_routes: raise extraroute.RoutesExhausted( router_id=router_id, quota=cfg.CONF.max_routes) context = context.elevated() filters = {'device_id': [router_id]} ports = self._core_plugin.get_ports(context, filters) cidrs = [] ips = [] for port in ports: for ip in port['fixed_ips']: cidrs.append(self._core_plugin.get_subnet( context, ip['subnet_id'])['cidr']) ips.append(ip['ip_address']) for route in routes: self._validate_routes_nexthop( cidrs, ips, routes, route['nexthop']) def _update_extra_routes(self, context, router, routes): self._validate_routes(context, router['id'], routes) old_routes, routes_dict = self._get_extra_routes_dict_by_router_id( context, router['id']) added, removed = helpers.diff_list_of_dict(old_routes, routes) LOG.debug('Added routes are %s', added) for route in added: l3_obj.RouterRoute( context, router_id=router['id'], destination=utils.AuthenticIPNetwork(route['destination']), nexthop=netaddr.IPAddress(route['nexthop'])).create() LOG.debug('Removed routes are %s', removed) for route in removed: l3_obj.RouterRoute.get_object( context, router_id=router['id'], destination=route['destination'], nexthop=route['nexthop']).delete() @staticmethod def _make_extra_route_list(extra_routes): # NOTE(yamamoto): the extra_routes argument is either object or db row return [{'destination': str(route['destination']), 'nexthop': str(route['nexthop'])} for route in extra_routes] def _get_extra_routes_by_router_id(self, context, id): router_objs = l3_obj.RouterRoute.get_objects(context, router_id=id) return self._make_extra_route_list(router_objs) def _get_extra_routes_dict_by_router_id(self, context, id): router_objs = l3_obj.RouterRoute.get_objects(context, router_id=id) routes = [] routes_dict = {} for route in router_objs: routes.append({'destination': route.destination, 'nexthop': route.nexthop}) routes_dict[(route.destination, route.nexthop)] = route return routes, routes_dict def _confirm_router_interface_not_in_use(self, context, router_id, subnet_id): super(ExtraRoute_dbonly_mixin, self)._confirm_router_interface_not_in_use( context, router_id, subnet_id) subnet = self._core_plugin.get_subnet(context, subnet_id) subnet_cidr = netaddr.IPNetwork(subnet['cidr']) extra_routes = self._get_extra_routes_by_router_id(context, router_id) for route in extra_routes: if netaddr.all_matching_cidrs(route['nexthop'], [subnet_cidr]): raise extraroute.RouterInterfaceInUseByRoute( router_id=router_id, subnet_id=subnet_id) class ExtraRoute_db_mixin(ExtraRoute_dbonly_mixin, l3_db.L3_NAT_db_mixin): """Mixin class to support extra route configuration on router with rpc.""" pass
40.869048
78
0.641421
8091c0a59396a0e5bdc8ee46c4541e81f14adcf9
61
py
Python
speedtest_servers/extensions.py
Nearata/speedtest-servers
21f835be724afffc47b7f3eb1c5bda909063aa15
[ "MIT" ]
null
null
null
speedtest_servers/extensions.py
Nearata/speedtest-servers
21f835be724afffc47b7f3eb1c5bda909063aa15
[ "MIT" ]
null
null
null
speedtest_servers/extensions.py
Nearata/speedtest-servers
21f835be724afffc47b7f3eb1c5bda909063aa15
[ "MIT" ]
null
null
null
from flask_assets import Environment assets = Environment()
15.25
36
0.819672
70e99c893b0158fde73adf1d68be485ac035ac1a
25,407
gyp
Python
gpu/gpu.gyp
hefen1/chromium
52f0b6830e000ca7c5e9aa19488af85be792cc88
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
gpu/gpu.gyp
hefen1/chromium
52f0b6830e000ca7c5e9aa19488af85be792cc88
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
gpu/gpu.gyp
hefen1/chromium
52f0b6830e000ca7c5e9aa19488af85be792cc88
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2020-04-04T13:34:56.000Z
2020-11-04T07:17:52.000Z
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'nacl_win64_target': 0, }, 'includes': [ 'gpu_common.gypi', ], 'targets': [ { # Library emulates GLES2 using command_buffers. # GN version: //gpu/command_buffer/client:gles2_implementation 'target_name': 'gles2_implementation', 'type': '<(component)', 'dependencies': [ '../base/base.gyp:base', '../third_party/khronos/khronos.gyp:khronos_headers', '../ui/gfx/gfx.gyp:gfx_geometry', '../ui/gl/gl.gyp:gl', 'command_buffer/command_buffer.gyp:gles2_utils', 'gles2_cmd_helper', ], 'defines': [ 'GLES2_IMPL_IMPLEMENTATION', ], 'sources': [ '<@(gles2_implementation_source_files)', ], 'includes': [ # Disable LTO due to ELF section name out of range # crbug.com/422251 '../build/android/disable_lto.gypi', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/client:gl_in_process_context 'target_name': 'gl_in_process_context', 'type': '<(component)', 'dependencies': [ 'command_buffer/command_buffer.gyp:gles2_utils', 'gles2_implementation', 'gpu', '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../ui/gfx/gfx.gyp:gfx_geometry', '../ui/gl/gl.gyp:gl', ], 'defines': [ 'GL_IN_PROCESS_CONTEXT_IMPLEMENTATION', ], 'sources': [ 'command_buffer/client/gl_in_process_context.cc', 'command_buffer/client/gl_in_process_context.h', 'command_buffer/client/gl_in_process_context_export.h', ], }, { # Library emulates GLES2 using command_buffers. 'target_name': 'gles2_implementation_no_check', 'type': '<(component)', 'defines': [ 'GLES2_IMPL_IMPLEMENTATION', 'GLES2_CONFORMANCE_TESTS=1', ], 'dependencies': [ '../base/base.gyp:base', '../third_party/khronos/khronos.gyp:khronos_headers', '../ui/gfx/gfx.gyp:gfx', '../ui/gfx/gfx.gyp:gfx_geometry', 'command_buffer/command_buffer.gyp:gles2_utils', 'gles2_cmd_helper', ], 'sources': [ '<@(gles2_implementation_source_files)', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }, { # Stub to expose gles2_implemenation in C instead of C++. # so GLES2 C programs can work with no changes. # GN version: //gpu/command_buffer/client:gles2_c_lib 'target_name': 'gles2_c_lib', 'type': '<(component)', 'dependencies': [ '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', 'command_buffer/command_buffer.gyp:gles2_utils', 'command_buffer_client', ], 'defines': [ 'GLES2_C_LIB_IMPLEMENTATION', ], 'sources': [ '<@(gles2_c_lib_source_files)', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # Same as gles2_c_lib except with no parameter checking. Required for # OpenGL ES 2.0 conformance tests. 'target_name': 'gles2_c_lib_nocheck', 'type': '<(component)', 'defines': [ 'GLES2_C_LIB_IMPLEMENTATION', 'GLES2_CONFORMANCE_TESTS=1', ], 'dependencies': [ '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', 'command_buffer/command_buffer.gyp:gles2_utils', 'command_buffer_client', 'gles2_implementation_no_check', ], 'sources': [ '<@(gles2_c_lib_source_files)', ], }, { # GN version: //gpu:angle_unittests # TODO(kbr): port this refactoring to the GN build. 'target_name': 'angle_unittests', 'type': '<(gtest_target_type)', 'includes': [ '../third_party/angle/build/common_defines.gypi', '../third_party/angle/tests/angle_unittests.gypi', ], 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', ], 'include_dirs': [ '..', '../third_party/angle/include', ], 'sources': [ 'angle_unittest_main.cc', ], }, { # GN version: //gpu:gpu_unittests 'target_name': 'gpu_unittests', 'type': '<(gtest_target_type)', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../testing/gmock.gyp:gmock', '../testing/gtest.gyp:gtest', '<(angle_path)/src/angle.gyp:translator', '../ui/gl/gl.gyp:gl', '../ui/gfx/gfx.gyp:gfx', '../ui/gfx/gfx.gyp:gfx_geometry', '../ui/gfx/gfx.gyp:gfx_test_support', 'command_buffer/command_buffer.gyp:gles2_utils', 'command_buffer_client', 'command_buffer_common', 'command_buffer_service', 'gpu', 'gpu_unittest_utils', 'gles2_implementation', 'gles2_cmd_helper', 'gles2_c_lib', ], 'sources': [ # Note: sources list duplicated in GN build. 'command_buffer/client/buffer_tracker_unittest.cc', 'command_buffer/client/client_test_helper.cc', 'command_buffer/client/client_test_helper.h', 'command_buffer/client/cmd_buffer_helper_test.cc', 'command_buffer/client/fenced_allocator_test.cc', 'command_buffer/client/gles2_implementation_unittest.cc', 'command_buffer/client/mapped_memory_unittest.cc', 'command_buffer/client/program_info_manager_unittest.cc', 'command_buffer/client/query_tracker_unittest.cc', 'command_buffer/client/ring_buffer_test.cc', 'command_buffer/client/transfer_buffer_unittest.cc', 'command_buffer/client/vertex_array_object_manager_unittest.cc', 'command_buffer/common/bitfield_helpers_test.cc', 'command_buffer/common/command_buffer_mock.cc', 'command_buffer/common/command_buffer_mock.h', 'command_buffer/common/command_buffer_shared_test.cc', 'command_buffer/common/debug_marker_manager_unittest.cc', 'command_buffer/common/gles2_cmd_format_test.cc', 'command_buffer/common/gles2_cmd_format_test_autogen.h', 'command_buffer/common/gles2_cmd_utils_unittest.cc', 'command_buffer/common/id_allocator_test.cc', 'command_buffer/common/trace_event.h', 'command_buffer/common/unittest_main.cc', 'command_buffer/service/async_pixel_transfer_delegate_mock.cc', 'command_buffer/service/async_pixel_transfer_delegate_mock.h', 'command_buffer/service/async_pixel_transfer_manager_mock.cc', 'command_buffer/service/async_pixel_transfer_manager_mock.h', 'command_buffer/service/buffer_manager_unittest.cc', 'command_buffer/service/cmd_parser_test.cc', 'command_buffer/service/command_buffer_service_unittest.cc', 'command_buffer/service/common_decoder_unittest.cc', 'command_buffer/service/context_group_unittest.cc', 'command_buffer/service/feature_info_unittest.cc', 'command_buffer/service/framebuffer_manager_unittest.cc', 'command_buffer/service/gl_surface_mock.cc', 'command_buffer/service/gl_surface_mock.h', 'command_buffer/service/gles2_cmd_decoder_unittest.cc', 'command_buffer/service/gles2_cmd_decoder_unittest.h', 'command_buffer/service/gles2_cmd_decoder_unittest_0_autogen.h', 'command_buffer/service/gles2_cmd_decoder_unittest_1.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_1_autogen.h', 'command_buffer/service/gles2_cmd_decoder_unittest_2.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_2_autogen.h', 'command_buffer/service/gles2_cmd_decoder_unittest_3.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_3_autogen.h', 'command_buffer/service/gles2_cmd_decoder_unittest_async_pixel.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_attribs.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_base.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_base.h', 'command_buffer/service/gles2_cmd_decoder_unittest_context_state.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_drawing.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_extensions.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_extensions_autogen.h', 'command_buffer/service/gles2_cmd_decoder_unittest_framebuffers.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_programs.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_textures.cc', 'command_buffer/service/gles2_cmd_decoder_unittest_valuebuffer.cc', 'command_buffer/service/gpu_scheduler_unittest.cc', 'command_buffer/service/gpu_service_test.cc', 'command_buffer/service/gpu_service_test.h', 'command_buffer/service/gpu_tracer_unittest.cc', 'command_buffer/service/id_manager_unittest.cc', 'command_buffer/service/mailbox_manager_unittest.cc', 'command_buffer/service/memory_program_cache_unittest.cc', 'command_buffer/service/mocks.cc', 'command_buffer/service/mocks.h', 'command_buffer/service/program_cache_unittest.cc', 'command_buffer/service/program_manager_unittest.cc', 'command_buffer/service/query_manager_unittest.cc', 'command_buffer/service/renderbuffer_manager_unittest.cc', 'command_buffer/service/shader_manager_unittest.cc', 'command_buffer/service/shader_translator_cache_unittest.cc', 'command_buffer/service/shader_translator_unittest.cc', 'command_buffer/service/test_helper.cc', 'command_buffer/service/test_helper.h', 'command_buffer/service/texture_manager_unittest.cc', 'command_buffer/service/transfer_buffer_manager_unittest.cc', 'command_buffer/service/valuebuffer_manager_unittest.cc', 'command_buffer/service/vertex_array_manager_unittest.cc', 'command_buffer/service/vertex_attrib_manager_unittest.cc', 'config/gpu_blacklist_unittest.cc', 'config/gpu_control_list_entry_unittest.cc', 'config/gpu_control_list_number_info_unittest.cc', 'config/gpu_control_list_os_info_unittest.cc', 'config/gpu_control_list_unittest.cc', 'config/gpu_control_list_version_info_unittest.cc', 'config/gpu_driver_bug_list_unittest.cc', 'config/gpu_info_collector_unittest.cc', 'config/gpu_info_unittest.cc', 'config/gpu_test_config_unittest.cc', 'config/gpu_test_expectations_parser_unittest.cc', 'config/gpu_util_unittest.cc', ], 'conditions': [ ['OS == "android"', { 'dependencies': [ '../testing/android/native_test.gyp:native_test_native_code', ], }], # See http://crbug.com/162998#c4 for why this is needed. ['OS=="linux" and use_allocator!="none"', { 'dependencies': [ '../base/allocator/allocator.gyp:allocator', ], }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }, { # GN version: //gpu/gpu_perftests 'target_name': 'gpu_perftests', 'type': '<(gtest_target_type)', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', '../testing/gtest.gyp:gtest', '../testing/perf/perf_test.gyp:perf_test', '../ui/gfx/gfx.gyp:gfx_geometry', '../ui/gl/gl.gyp:gl', 'command_buffer_service', ], 'sources': [ 'perftests/measurements.cc', 'perftests/run_all_tests.cc', 'perftests/texture_upload_perftest.cc', ], }, { # GN version: //gpu:gl_tests 'target_name': 'gl_tests', 'type': '<(gtest_target_type)', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../testing/gmock.gyp:gmock', '../testing/gtest.gyp:gtest', '<(angle_path)/src/angle.gyp:translator', '../ui/gfx/gfx.gyp:gfx', '../ui/gfx/gfx.gyp:gfx_test_support', '../ui/gfx/gfx.gyp:gfx_geometry', '../ui/gl/gl.gyp:gl', 'command_buffer/command_buffer.gyp:gles2_utils', 'command_buffer_client', 'command_buffer_common', 'command_buffer_service', 'gpu', 'gpu_unittest_utils', 'gles2_implementation', 'gles2_cmd_helper', 'gles2_c_lib', #'gl_unittests', ], 'defines': [ 'GL_GLEXT_PROTOTYPES', ], 'sources': [ # Note: sources list duplicated in GN build. 'command_buffer/tests/compressed_texture_test.cc', 'command_buffer/tests/gl_bind_uniform_location_unittest.cc', 'command_buffer/tests/gl_chromium_framebuffer_multisample_unittest.cc', 'command_buffer/tests/gl_chromium_path_rendering_unittest.cc', 'command_buffer/tests/gl_clear_framebuffer_unittest.cc', 'command_buffer/tests/gl_copy_texture_CHROMIUM_unittest.cc', 'command_buffer/tests/gl_depth_texture_unittest.cc', 'command_buffer/tests/gl_gpu_memory_buffer_unittest.cc', 'command_buffer/tests/gl_lose_context_chromium_unittest.cc', 'command_buffer/tests/gl_manager.cc', 'command_buffer/tests/gl_manager.h', 'command_buffer/tests/gl_pointcoord_unittest.cc', 'command_buffer/tests/gl_program_unittest.cc', 'command_buffer/tests/gl_query_unittest.cc', 'command_buffer/tests/gl_readback_unittest.cc', 'command_buffer/tests/gl_shared_resources_unittest.cc', 'command_buffer/tests/gl_stream_draw_unittest.cc', 'command_buffer/tests/gl_test_utils.cc', 'command_buffer/tests/gl_test_utils.h', 'command_buffer/tests/gl_tests_main.cc', 'command_buffer/tests/gl_texture_mailbox_unittest.cc', 'command_buffer/tests/gl_texture_storage_unittest.cc', 'command_buffer/tests/gl_unittest.cc', 'command_buffer/tests/gl_unittests_android.cc', 'command_buffer/tests/gl_virtual_contexts_unittest.cc', 'command_buffer/tests/occlusion_query_unittest.cc', ], 'conditions': [ ['OS == "android"', { 'dependencies': [ '../testing/android/native_test.gyp:native_test_native_code', ], }], ['OS == "win"', { 'dependencies': [ '../third_party/angle/src/angle.gyp:libEGL', '../third_party/angle/src/angle.gyp:libGLESv2', ], }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [ 4267, ], }, { # GN version: //gpu:test_support 'target_name': 'gpu_unittest_utils', 'type': 'static_library', 'dependencies': [ '../testing/gmock.gyp:gmock', '../testing/gtest.gyp:gtest', '../third_party/khronos/khronos.gyp:khronos_headers', '../ui/gl/gl.gyp:gl_unittest_utils', 'gpu', ], 'include_dirs': [ '..', ], 'sources': [ 'command_buffer/client/gles2_interface_stub.cc', 'command_buffer/client/gles2_interface_stub.h', 'command_buffer/service/error_state_mock.cc', 'command_buffer/service/gles2_cmd_decoder_mock.cc', ], }, ], 'conditions': [ ['component=="static_library"', { 'targets': [ { # GN version: //gpu/command_buffer/service:disk_cache_proto 'target_name': 'disk_cache_proto', 'type': 'static_library', 'sources': [ 'command_buffer/service/disk_cache_proto.proto' ], 'variables': { 'proto_in_dir': 'command_buffer/service', 'proto_out_dir': 'gpu/command_buffer/service', }, 'includes': [ '../build/protoc.gypi' ], }, { # GN version: //gpu 'target_name': 'gpu', 'type': 'none', 'dependencies': [ 'command_buffer_client', 'command_buffer_common', 'command_buffer_service', 'gles2_cmd_helper', 'gpu_config', 'gpu_ipc', ], 'sources': [ 'gpu_export.h', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/common 'target_name': 'command_buffer_common', 'type': 'static_library', 'includes': [ 'command_buffer_common.gypi', ], 'dependencies': [ '../base/base.gyp:base', 'command_buffer/command_buffer.gyp:gles2_utils', ], 'export_dependent_settings': [ '../base/base.gyp:base', ], }, { # Library helps make GLES2 command buffers. # GN version: //gpu/command_buffer/client:gles2_cmd_helper 'target_name': 'gles2_cmd_helper', 'type': 'static_library', 'includes': [ 'gles2_cmd_helper.gypi', ], 'dependencies': [ 'command_buffer_client', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/client 'target_name': 'command_buffer_client', 'type': 'static_library', 'includes': [ 'command_buffer_client.gypi', ], 'dependencies': [ 'command_buffer_common', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/service 'target_name': 'command_buffer_service', 'type': 'static_library', 'includes': [ 'command_buffer_service.gypi', '../build/android/increase_size_for_speed.gypi', # Disable LTO due to ELF section name out of range # crbug.com/422251 '../build/android/disable_lto.gypi', ], 'dependencies': [ 'command_buffer_common', 'disk_cache_proto', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/ipc 'target_name': 'gpu_ipc', 'type': 'static_library', 'includes': [ 'gpu_ipc.gypi', ], 'dependencies': [ 'command_buffer_common', ], }, { 'target_name': 'gpu_config', 'type': 'static_library', 'includes': [ 'gpu_config.gypi', ], }, ], }, { # component != static_library 'targets': [ { # GN version: //gpu/command_buffer/service:disk_cache_proto 'target_name': 'disk_cache_proto', 'type': 'static_library', 'sources': [ 'command_buffer/service/disk_cache_proto.proto' ], 'variables': { 'proto_in_dir': 'command_buffer/service', 'proto_out_dir': 'gpu/command_buffer/service', }, 'includes': [ '../build/protoc.gypi' ], }, { # GN version: //gpu 'target_name': 'gpu', 'type': 'shared_library', 'includes': [ 'command_buffer_client.gypi', 'command_buffer_common.gypi', 'command_buffer_service.gypi', 'gles2_cmd_helper.gypi', 'gpu_config.gypi', 'gpu_ipc.gypi', '../build/android/increase_size_for_speed.gypi', ], 'defines': [ 'GPU_IMPLEMENTATION', ], 'sources': [ 'gpu_export.h', ], 'dependencies': [ '../base/base.gyp:base', 'command_buffer/command_buffer.gyp:gles2_utils', 'disk_cache_proto', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/common 'target_name': 'command_buffer_common', 'type': 'none', 'dependencies': [ 'gpu', ], }, { # Library helps make GLES2 command buffers. # GN version: //gpu/command_buffer/client:gles2_cmd_helper 'target_name': 'gles2_cmd_helper', 'type': 'none', 'dependencies': [ 'gpu', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //gpu/command_buffer/client 'target_name': 'command_buffer_client', 'type': 'none', 'dependencies': [ 'gpu', ], }, { # GN version: //gpu/command_buffer/service 'target_name': 'command_buffer_service', 'type': 'none', 'dependencies': [ 'gpu', ], }, { # GN version: //gpu/ipc 'target_name': 'gpu_ipc', 'type': 'none', 'dependencies': [ 'gpu', ], }, ], }], ['disable_nacl!=1 and OS=="win" and target_arch=="ia32"', { 'targets': [ { 'target_name': 'command_buffer_common_win64', 'type': 'static_library', 'variables': { 'nacl_win64_target': 1, }, 'includes': [ 'command_buffer_common.gypi', ], 'dependencies': [ '../base/base.gyp:base_win64', ], 'defines': [ '<@(nacl_win64_defines)', 'GPU_IMPLEMENTATION', ], 'configurations': { 'Common_Base': { 'msvs_target_platform': 'x64', }, }, }, { 'target_name': 'gpu_ipc_win64', 'type': 'static_library', 'variables': { 'nacl_win64_target': 1, }, 'includes': [ 'gpu_ipc.gypi', ], 'dependencies': [ '../base/base.gyp:base_win64', '../ipc/ipc.gyp:ipc_win64', 'command_buffer_common_win64', ], 'defines': [ '<@(nacl_win64_defines)', 'GPU_IMPLEMENTATION', ], 'configurations': { 'Common_Base': { 'msvs_target_platform': 'x64', }, }, }, ], }], ['OS == "android"', { 'targets': [ { 'target_name': 'gl_tests_apk', 'type': 'none', 'dependencies': [ 'gl_tests', ], 'variables': { 'test_suite_name': 'gl_tests', }, 'includes': [ '../build/apk_test.gypi', ], }, { 'target_name': 'gpu_unittests_apk', 'type': 'none', 'dependencies': [ 'gpu_unittests', ], 'variables': { 'test_suite_name': 'gpu_unittests', }, 'includes': [ '../build/apk_test.gypi' ], }, ], }], ['OS == "win"', { 'targets': [ { # TODO(kbr): port this target to the GN build. 'target_name': 'angle_end2end_tests', 'type': '<(gtest_target_type)', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', ], 'includes': [ '../third_party/angle/build/common_defines.gypi', '../third_party/angle/tests/angle_end2end_tests.gypi', ], 'sources': [ 'angle_end2end_tests_main.cc', ], }, ], }], ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'gpu_unittests_run', 'type': 'none', 'dependencies': [ 'gpu_unittests', ], 'includes': [ '../build/isolate.gypi', ], 'sources': [ 'gpu_unittests.isolate', ], }, ], }], ], }
35.584034
94
0.582399
535a378abb76d7d35bfbce9262745ab62b54ac5c
3,637
py
Python
openpeerpower/components/speedtestdotnet/config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
1
2021-07-08T20:09:55.000Z
2021-07-08T20:09:55.000Z
openpeerpower/components/speedtestdotnet/config_flow.py
pcaston/core
e74d946cef7a9d4e232ae9e0ba150d18018cfe33
[ "Apache-2.0" ]
47
2021-02-21T23:43:07.000Z
2022-03-31T06:07:10.000Z
openpeerpower/components/speedtestdotnet/config_flow.py
OpenPeerPower/core
f673dfac9f2d0c48fa30af37b0a99df9dd6640ee
[ "Apache-2.0" ]
null
null
null
"""Config flow for Speedtest.net.""" import voluptuous as vol from openpeerpower import config_entries from openpeerpower.const import CONF_MONITORED_CONDITIONS, CONF_SCAN_INTERVAL from openpeerpower.core import callback from . import server_id_valid from .const import ( CONF_MANUAL, CONF_SERVER_ID, CONF_SERVER_NAME, DEFAULT_NAME, DEFAULT_SCAN_INTERVAL, DEFAULT_SERVER, DOMAIN, ) class SpeedTestFlowHandler(config_entries.ConfigFlow, domain=DOMAIN): """Handle Speedtest.net config flow.""" VERSION = 1 @staticmethod @callback def async_get_options_flow(config_entry): """Get the options flow for this handler.""" return SpeedTestOptionsFlowHandler(config_entry) async def async_step_user(self, user_input=None): """Handle a flow initialized by the user.""" if self._async_current_entries(): return self.async_abort(reason="single_instance_allowed") if user_input is None: return self.async_show_form(step_id="user") return self.async_create_entry(title=DEFAULT_NAME, data=user_input) async def async_step_import(self, import_config): """Import from config.""" if ( CONF_SERVER_ID in import_config and not await self.opp.async_add_executor_job( server_id_valid, import_config[CONF_SERVER_ID] ) ): return self.async_abort(reason="wrong_server_id") import_config[CONF_SCAN_INTERVAL] = int( import_config[CONF_SCAN_INTERVAL].total_seconds() / 60 ) import_config.pop(CONF_MONITORED_CONDITIONS) return await self.async_step_user(user_input=import_config) class SpeedTestOptionsFlowHandler(config_entries.OptionsFlow): """Handle SpeedTest options.""" def __init__(self, config_entry): """Initialize options flow.""" self.config_entry = config_entry self._servers = {} async def async_step_init(self, user_input=None): """Manage the options.""" errors = {} if user_input is not None: server_name = user_input[CONF_SERVER_NAME] if server_name != "*Auto Detect": server_id = self._servers[server_name]["id"] user_input[CONF_SERVER_ID] = server_id else: user_input[CONF_SERVER_ID] = None return self.async_create_entry(title="", data=user_input) self._servers = self.opp.data[DOMAIN].servers server = [] if self.config_entry.options.get( CONF_SERVER_ID ) and not self.config_entry.options.get(CONF_SERVER_NAME): server = [ key for (key, value) in self._servers.items() if value.get("id") == self.config_entry.options[CONF_SERVER_ID] ] server_name = server[0] if server else DEFAULT_SERVER options = { vol.Optional( CONF_SERVER_NAME, default=self.config_entry.options.get(CONF_SERVER_NAME, server_name), ): vol.In(self._servers.keys()), vol.Optional( CONF_SCAN_INTERVAL, default=self.config_entry.options.get( CONF_SCAN_INTERVAL, DEFAULT_SCAN_INTERVAL ), ): int, vol.Optional( CONF_MANUAL, default=self.config_entry.options.get(CONF_MANUAL, False) ): bool, } return self.async_show_form( step_id="init", data_schema=vol.Schema(options), errors=errors )
32.185841
86
0.630465
78f1c3ca6a0e1b43b42bb7df860cb0277a492f62
1,334
py
Python
src/pykeen/datasets/db100k.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
750
2020-06-23T08:36:34.000Z
2022-03-30T22:53:18.000Z
src/pykeen/datasets/db100k.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
691
2020-06-22T11:56:28.000Z
2022-03-31T16:07:32.000Z
src/pykeen/datasets/db100k.py
nhutnamhcmus/pykeen
62d4f075fbd39135d6a5c8677d95e1ac46f8318f
[ "MIT" ]
122
2020-06-26T14:37:56.000Z
2022-03-23T08:25:22.000Z
# -*- coding: utf-8 -*- """The DB100K dataset.""" from docdata import parse_docdata from .base import UnpackedRemoteDataset BASE_URL = "https://raw.githubusercontent.com/iieir-km/ComplEx-NNE_AER/master/datasets/DB100K" __all__ = [ "DB100K", ] @parse_docdata class DB100K(UnpackedRemoteDataset): """The DB100K dataset from [ding2018]_. --- name: DB100K citation: author: Ding year: 2018 link: https://arxiv.org/abs/1805.02408 github: iieir-km/ComplEx-NNE_AER statistics: entities: 99604 relations: 470 training: 597482 testing: 50000 validation: 49997 triples: 697479 """ def __init__(self, create_inverse_triples: bool = False, **kwargs): """Initialize the DB100K small dataset. :param create_inverse_triples: Should inverse triples be created? Defaults to false. :param kwargs: keyword arguments passed to :class:`pykeen.datasets.base.UnpackedRemoteDataset`. """ super().__init__( training_url=f"{BASE_URL}/_train.txt", testing_url=f"{BASE_URL}/_test.txt", validation_url=f"{BASE_URL}/_valid.txt", create_inverse_triples=create_inverse_triples, **kwargs, ) if __name__ == "__main__": DB100K.cli()
25.169811
103
0.636432
d751fb661305e11553f163240ea881d3254a5beb
4,422
py
Python
test/test_container_authenticator.py
IBM/python-sdk-core
8bbeca9480a022c9f2f752a2a3ca4e22779aebe9
[ "Apache-2.0" ]
14
2019-03-13T19:13:48.000Z
2021-11-16T11:05:30.000Z
test/test_container_authenticator.py
IBM/python-sdk-core
8bbeca9480a022c9f2f752a2a3ca4e22779aebe9
[ "Apache-2.0" ]
140
2019-03-14T19:49:40.000Z
2022-03-21T11:14:03.000Z
test/test_container_authenticator.py
IBM/python-sdk-core
8bbeca9480a022c9f2f752a2a3ca4e22779aebe9
[ "Apache-2.0" ]
22
2019-05-08T14:50:08.000Z
2022-01-13T10:32:06.000Z
# pylint: disable=missing-docstring import pytest from ibm_cloud_sdk_core.authenticators import ContainerAuthenticator, Authenticator def test_container_authenticator(): authenticator = ContainerAuthenticator(iam_profile_name='iam-user-123') assert authenticator is not None assert authenticator.authentication_type() == Authenticator.AUTHTYPE_CONTAINER assert authenticator.token_manager.cr_token_filename is None assert authenticator.token_manager.iam_profile_name == 'iam-user-123' assert authenticator.token_manager.iam_profile_id is None assert authenticator.token_manager.client_id is None assert authenticator.token_manager.client_secret is None assert authenticator.token_manager.disable_ssl_verification is False assert authenticator.token_manager.headers is None assert authenticator.token_manager.proxies is None assert authenticator.token_manager.scope is None authenticator.set_cr_token_filename('path/to/token') assert authenticator.token_manager.cr_token_filename == 'path/to/token' # Set the IAM profile to None to trigger a validation which will fail, # because both of the profile and ID are None. with pytest.raises(ValueError) as err: authenticator.set_iam_profile_name(None) assert str( err.value) == 'At least one of iam_profile_name or iam_profile_id must be specified.' authenticator.set_iam_profile_id('iam-id-123') assert authenticator.token_manager.iam_profile_id == 'iam-id-123' authenticator.set_iam_profile_name('iam-user-123') assert authenticator.token_manager.iam_profile_name == 'iam-user-123' authenticator.set_client_id_and_secret('tom', 'jerry') assert authenticator.token_manager.client_id == 'tom' assert authenticator.token_manager.client_secret == 'jerry' authenticator.set_scope('scope1 scope2 scope3') assert authenticator.token_manager.scope == 'scope1 scope2 scope3' with pytest.raises(TypeError) as err: authenticator.set_headers('dummy') assert str(err.value) == 'headers must be a dictionary' authenticator.set_headers({'dummy': 'headers'}) assert authenticator.token_manager.headers == {'dummy': 'headers'} with pytest.raises(TypeError) as err: authenticator.set_proxies('dummy') assert str(err.value) == 'proxies must be a dictionary' authenticator.set_proxies({'dummy': 'proxies'}) assert authenticator.token_manager.proxies == {'dummy': 'proxies'} def test_disable_ssl_verification(): authenticator = ContainerAuthenticator( iam_profile_name='iam-user-123', disable_ssl_verification=True) assert authenticator.token_manager.disable_ssl_verification is True authenticator.set_disable_ssl_verification(False) assert authenticator.token_manager.disable_ssl_verification is False def test_invalid_disable_ssl_verification_type(): with pytest.raises(TypeError) as err: authenticator = ContainerAuthenticator( iam_profile_name='iam-user-123', disable_ssl_verification='True') assert str(err.value) == 'disable_ssl_verification must be a bool' authenticator = ContainerAuthenticator(iam_profile_name='iam-user-123') assert authenticator.token_manager.disable_ssl_verification is False with pytest.raises(TypeError) as err: authenticator.set_disable_ssl_verification('True') assert str(err.value) == 'status must be a bool' def test_container_authenticator_with_scope(): authenticator = ContainerAuthenticator( iam_profile_name='iam-user-123', scope='scope1 scope2') assert authenticator is not None assert authenticator.token_manager.scope == 'scope1 scope2' def test_authenticator_validate_failed(): with pytest.raises(ValueError) as err: ContainerAuthenticator(None) assert str( err.value) == 'At least one of iam_profile_name or iam_profile_id must be specified.' with pytest.raises(ValueError) as err: ContainerAuthenticator( iam_profile_name='iam-user-123', client_id='my_client_id') assert str( err.value) == 'Both client_id and client_secret should be initialized.' with pytest.raises(ValueError) as err: ContainerAuthenticator( iam_profile_name='iam-user-123', client_secret='my_client_secret') assert str( err.value) == 'Both client_id and client_secret should be initialized.'
41.716981
93
0.758254
e823bd50d6fc17b28e60615fc95c33360669b6a8
16,805
py
Python
corehq/apps/reports/filters/users.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/reports/filters/users.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
null
null
null
corehq/apps/reports/filters/users.py
rochakchauhan/commcare-hq
aa7ab3c2d0c51fe10f2b51b08101bb4b5a376236
[ "BSD-3-Clause" ]
null
null
null
from django.core.exceptions import PermissionDenied from django.urls import reverse from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_lazy, ugettext_noop from memoized import memoized from corehq.apps.commtrack.models import SQLLocation from corehq.apps.domain.models import Domain from corehq.apps.es import filters from corehq.apps.es import users as user_es from corehq.apps.groups.models import Group from corehq.apps.locations.permissions import user_can_access_other_user from corehq.apps.users.cases import get_wrapped_owner from corehq.apps.users.models import CommCareUser, WebUser from corehq.toggles import FILTER_ON_GROUPS_AND_LOCATIONS from .. import util from ..analytics.esaccessors import get_group_stubs, get_user_stubs from ..models import HQUserType from .base import ( BaseMultipleOptionFilter, BaseReportFilter, BaseSingleOptionFilter, ) class UserOrGroupFilter(BaseSingleOptionFilter): slug = "view_by" label = ugettext_lazy("View by Users or Groups") default_text = ugettext_lazy("Users") options = [('groups', ugettext_lazy('Groups'))] class UserTypeFilter(BaseReportFilter): # note, don't use this as a guideline for anything. slug = "ufilter" label = ugettext_lazy("User Type") template = "reports/filters/filter_users.html" @property def filter_context(self): toggle, show_filter = self.get_user_filter(self.request) return { 'show_user_filter': show_filter, 'toggle_users': toggle, } @classmethod def get_user_filter(cls, request): return get_user_toggle(request) class SelectMobileWorkerFilter(BaseSingleOptionFilter): slug = 'individual' label = ugettext_lazy("Select Mobile Worker") default_text = ugettext_lazy("All Mobile Workers") @property def filter_context(self): user_filter, _ = UserTypeFilter.get_user_filter(self.request) context = super(SelectMobileWorkerFilter, self).filter_context context['select'].update({ 'default_text': self.get_default_text(user_filter), }) return context @property def options(self): users = util.user_list(self.domain) return [(user.user_id, "%s%s" % (user.username_in_report, "" if user.is_active else " (Inactive)")) for user in users] @classmethod def get_default_text(cls, user_filter): default = cls.default_text if user_filter[HQUserType.ADMIN].show or \ user_filter[HQUserType.DEMO_USER].show or user_filter[HQUserType.UNKNOWN].show: default = _('%s & Others') % _(default) return default class SelectCaseOwnerFilter(SelectMobileWorkerFilter): label = ugettext_noop("Select Case Owner") default_text = ugettext_noop("All Case Owners") @property def options(self): options = [(group._id, "%s (Group)" % group.name) for group in Group.get_case_sharing_groups(self.domain)] user_options = super(SelectCaseOwnerFilter, self).options options.extend(user_options) return options class BaseGroupedMobileWorkerFilter(BaseSingleOptionFilter): """ This is a little field for use when a client really wants to filter by individuals from a specific group. Since by default we still want to show all the data, no filtering is done unless the special group filter is selected. """ group_names = [] @property def options(self): options = [] for group_name in self.group_names: group = Group.by_name(self.domain, group_name) if group: users = group.get_users(is_active=True, only_commcare=True) options.extend([(u.user_id, u.username_in_report) for u in users]) return options class EmwfUtils(object): def __init__(self, domain): self.domain = domain def user_tuple(self, u): user = util._report_user_dict(u) uid = "u__%s" % user['user_id'] is_active = False if u['doc_type'] == 'WebUser': name = "%s [Web User]" % user['username_in_report'] elif user['is_active']: is_active = True name = "%s [Active Mobile Worker]" % user['username_in_report'] else: name = "%s [Deactivated Mobile Worker]" % user['username_in_report'] return uid, name, is_active def reporting_group_tuple(self, g): return "g__%s" % g['_id'], '%s [group]' % g['name'] def user_type_tuple(self, t): return ( "t__%s" % t, "[%s]" % HQUserType.human_readable[t] ) def location_tuple(self, location): return ("l__%s" % location.location_id, '%s [location]' % location.get_path_display()) @property @memoized def static_options(self): static_options = [("t__0", _("[Active Mobile Workers]"))] types = ['DEACTIVATED', 'DEMO_USER', 'ADMIN', 'WEB', 'UNKNOWN'] if Domain.get_by_name(self.domain).commtrack_enabled: types.append('COMMTRACK') for t in types: user_type = getattr(HQUserType, t) static_options.append(self.user_type_tuple(user_type)) return static_options def _group_to_choice_tuple(self, group): return self.reporting_group_tuple(group) def id_to_choice_tuple(self, id_): for static_id, text in self.static_options: if (id_ == static_id[3:] and static_id[:3] == "t__") or id_ == static_id: return (static_id, text) owner = get_wrapped_owner(id_, support_deleted=True) if isinstance(owner, Group): ret = self._group_to_choice_tuple(owner) elif isinstance(owner, SQLLocation): ret = self.location_tuple(owner) elif isinstance(owner, (CommCareUser, WebUser)): ret = self.user_tuple(owner) elif owner is None: return None else: raise Exception("Unexpcted id: {}".format(id_)) if hasattr(owner, 'is_deleted'): if (callable(owner.is_deleted) and owner.is_deleted()) or owner.is_deleted == True: # is_deleted may be an attr or callable depending on owner type ret = (ret[0], 'Deleted - ' + ret[1]) return ret class UsersUtils(EmwfUtils): def user_tuple(self, u): user = util._report_user_dict(u) uid = "%s" % user['user_id'] name = "%s" % user['username_in_report'] return (uid, name) class ExpandedMobileWorkerFilter(BaseMultipleOptionFilter): """ To get raw filter results: mobile_user_and_group_slugs = request.GET.getlist(ExpandedMobileWorkerFilter.slug) user_ids = emwf.selected_user_ids(mobile_user_and_group_slugs) user_types = emwf.selected_user_types(mobile_user_and_group_slugs) group_ids = emwf.selected_group_ids(mobile_user_and_group_slugs) """ slug = "emw" label = ugettext_lazy("User(s)") default_options = None placeholder = ugettext_lazy("Add users and groups to filter this report.") is_cacheable = False options_url = 'emwf_options_all_users' filter_help_inline = ugettext_lazy(mark_safe( 'See <a href="https://confluence.dimagi.com/display/commcarepublic/Report+and+Export+Filters"' ' target="_blank"> Filter Definitions</a>.' )) search_help_inline = ugettext_lazy(mark_safe( 'To quick search for a ' '<a href="https://confluence.dimagi.com/display/commcarepublic/Exact+Search+for+Locations" ' 'target="_blank">location</a>, write your query as "parent"/descendant.' )) @property @memoized def utils(self): return EmwfUtils(self.domain) @staticmethod def selected_user_ids(mobile_user_and_group_slugs): return [u[3:] for u in mobile_user_and_group_slugs if u.startswith("u__")] @staticmethod def selected_user_types(mobile_user_and_group_slugs): """ usage: ``HQUserType.DEMO_USER in selected_user_types`` """ return [int(t[3:]) for t in mobile_user_and_group_slugs if t.startswith("t__") and t[3:].isdigit()] @classmethod def selected_group_ids(cls, mobile_user_and_group_slugs): return cls.selected_reporting_group_ids(mobile_user_and_group_slugs) @staticmethod def selected_reporting_group_ids(mobile_user_and_group_slugs): return [g[3:] for g in mobile_user_and_group_slugs if g.startswith("g__")] @staticmethod def selected_location_ids(mobile_user_and_group_slugs): return [l[3:] for l in mobile_user_and_group_slugs if l.startswith("l__")] @staticmethod def show_all_mobile_workers(mobile_user_and_group_slugs): return 't__0' in mobile_user_and_group_slugs @staticmethod def no_filters_selected(mobile_user_and_group_slugs): return not any(mobile_user_and_group_slugs) def _get_assigned_locations_default(self): user_locations = self.request.couch_user.get_sql_locations(self.domain) return list(map(self.utils.location_tuple, user_locations)) def get_default_selections(self): if not self.request.can_access_all_locations: return self._get_assigned_locations_default() defaults = [('t__0', _("[Active Mobile Workers]")), ('t__5', _("[Deactivated Mobile Workers]"))] if self.request.project.commtrack_enabled: defaults.append(self.utils.user_type_tuple(HQUserType.COMMTRACK)) return defaults @property @memoized def selected(self): selected_ids = self.request.GET.getlist(self.slug) if not selected_ids: return [{'id': url_id, 'text': text} for url_id, text in self.get_default_selections()] selected = (self.selected_static_options(selected_ids) + self._selected_user_entries(selected_ids) + self._selected_group_entries(selected_ids) + self._selected_location_entries(selected_ids)) return [ {'id': entry[0], 'text': entry[1]} if len(entry) == 2 else {'id': entry[0], 'text': entry[1], 'is_active': entry[2]} for entry in selected ] def selected_static_options(self, mobile_user_and_group_slugs): return [option for option in self.utils.static_options if option[0] in mobile_user_and_group_slugs] def _selected_user_entries(self, mobile_user_and_group_slugs): user_ids = self.selected_user_ids(mobile_user_and_group_slugs) if not user_ids: return [] results = get_user_stubs(user_ids) return [self.utils.user_tuple(hit) for hit in results] def _selected_groups_query(self, mobile_user_and_group_slugs): group_ids = self.selected_group_ids(mobile_user_and_group_slugs) if not group_ids: return [] return get_group_stubs(group_ids) def _selected_group_entries(self, mobile_user_and_group_slugs): groups = self._selected_groups_query(mobile_user_and_group_slugs) return [self.utils.reporting_group_tuple(group) for group in groups if group.get("reporting", False)] def _selected_location_entries(self, mobile_user_and_group_slugs): location_ids = self.selected_location_ids(mobile_user_and_group_slugs) if not location_ids: return [] return list(map(self.utils.location_tuple, SQLLocation.objects.filter(location_id__in=location_ids))) @property def filter_context(self): context = super(ExpandedMobileWorkerFilter, self).filter_context url = reverse(self.options_url, args=[self.domain]) context.update({'endpoint': url}) context.update({'filter_help_inline': self.filter_help_inline}) if self.request.project.uses_locations: context.update({'search_help_inline': self.search_help_inline}) return context @classmethod def user_es_query(cls, domain, mobile_user_and_group_slugs, request_user): # The queryset returned by this method is location-safe q = user_es.UserES().domain(domain) if ExpandedMobileWorkerFilter.no_filters_selected(mobile_user_and_group_slugs): return q.show_inactive() user_ids = cls.selected_user_ids(mobile_user_and_group_slugs) user_types = cls.selected_user_types(mobile_user_and_group_slugs) group_ids = cls.selected_group_ids(mobile_user_and_group_slugs) location_ids = cls.selected_location_ids(mobile_user_and_group_slugs) user_type_filters = [] if HQUserType.ADMIN in user_types: user_type_filters.append(user_es.admin_users()) if HQUserType.UNKNOWN in user_types: user_type_filters.append(user_es.unknown_users()) if HQUserType.WEB in user_types: user_type_filters.append(user_es.web_users()) if HQUserType.DEMO_USER in user_types: user_type_filters.append(user_es.demo_users()) if HQUserType.ACTIVE in user_types and HQUserType.DEACTIVATED in user_types: q = q.show_inactive() elif HQUserType.DEACTIVATED in user_types: q = q.show_only_inactive() if not request_user.has_permission(domain, 'access_all_locations'): cls._verify_users_are_accessible(domain, request_user, user_ids) return q.OR( filters.term("_id", user_ids), user_es.location(list(SQLLocation.active_objects .get_locations_and_children(location_ids) .accessible_to_user(domain, request_user) .location_ids())), ) if HQUserType.ACTIVE in user_types or HQUserType.DEACTIVATED in user_types: # return all users with selected user_types user_type_filters.append(user_es.mobile_users()) return q.OR(*user_type_filters) # return matching user types and exact matches location_ids = list(SQLLocation.active_objects .get_locations_and_children(location_ids) .location_ids()) group_id_filter = filters.term("__group_ids", group_ids) if FILTER_ON_GROUPS_AND_LOCATIONS.enabled(domain) and group_ids and location_ids: group_and_location_filter = filters.AND( group_id_filter, user_es.location(location_ids), ) else: group_and_location_filter = filters.OR( group_id_filter, user_es.location(location_ids), ) id_filter = filters.OR( filters.term("_id", user_ids), group_and_location_filter, ) if user_type_filters: return q.OR( id_filter, group_and_location_filter, filters.OR(*user_type_filters), ) return q.filter(id_filter) @staticmethod def _verify_users_are_accessible(domain, request_user, user_ids): # This function would be very slow if called with many user ids for user_id in user_ids: other_user = CommCareUser.get(user_id) if not user_can_access_other_user(domain, request_user, other_user): raise PermissionDenied("One or more users are not accessible") @property def options(self): return [('t__0', _("[Active Mobile Workers]"))] @classmethod def for_user(cls, user_id): return { cls.slug: 'u__%s' % user_id } @classmethod def for_reporting_group(cls, group_id): return { cls.slug: 'g__%s' % group_id } def get_user_toggle(request): ufilter = group = individual = show_commtrack = None try: request_obj = request.POST if request.method == 'POST' else request.GET if request_obj.get('ufilter', ''): ufilter = request_obj.getlist('ufilter') group = request_obj.get('group', '') individual = request_obj.get('individual', '') show_commtrack = request.project.commtrack_enabled except (KeyError, AttributeError): pass show_filter = True toggle = HQUserType.commtrack_defaults() if show_commtrack else HQUserType.use_defaults() if ufilter and not (group or individual): toggle = HQUserType.use_filter(ufilter) elif group or individual: show_filter = False return toggle, show_filter
37.595078
114
0.660458
4d68a97367bfa24b2b32f42773eb76752ac2bc68
2,700
py
Python
tests/storage/sqlite/merge_reader.py
SamuelePilleri/plaso
f5687f12a89c7309797ccc285da78e855c120579
[ "Apache-2.0" ]
null
null
null
tests/storage/sqlite/merge_reader.py
SamuelePilleri/plaso
f5687f12a89c7309797ccc285da78e855c120579
[ "Apache-2.0" ]
null
null
null
tests/storage/sqlite/merge_reader.py
SamuelePilleri/plaso
f5687f12a89c7309797ccc285da78e855c120579
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the merge reader for SQLite storage files.""" from __future__ import unicode_literals import os import unittest from plaso.containers import sessions from plaso.containers import tasks from plaso.lib import definitions from plaso.storage.sqlite import merge_reader from plaso.storage.sqlite import writer from tests import test_lib as shared_test_lib from tests.storage import test_lib class SQLiteStorageMergeReaderTest(test_lib.StorageTestCase): """Tests for the SQLite-based storage file reader for merging.""" # pylint: disable=protected-access def _CreateTaskStorageFile(self, session, path): """Creates a task storage file for testing. Args: session (Session): session the task storage is part of. path (str): path to the task storage file that should be merged. """ task = tasks.Task(session_identifier=session.identifier) test_events = self._CreateTestEvents() storage_file = writer.SQLiteStorageFileWriter( session, path, storage_type=definitions.STORAGE_TYPE_TASK, task=task) storage_file.Open() for event in test_events: storage_file.AddEvent(event) storage_file.Close() def testReadStorageMetadata(self): """Tests the _ReadStorageMetadata function.""" session = sessions.Session() with shared_test_lib.TempDirectory() as temp_directory: task_storage_path = os.path.join(temp_directory, 'task.sqlite') self._CreateTaskStorageFile(session, task_storage_path) session_storage_path = os.path.join(temp_directory, 'plaso.sqlite') storage_writer = writer.SQLiteStorageFileWriter( session, session_storage_path) test_reader = merge_reader.SQLiteStorageMergeReader( storage_writer, task_storage_path) test_reader._Open() test_reader._ReadStorageMetadata() test_reader._Close() def testMergeAttributeContainers(self): """Tests the MergeAttributeContainers function.""" session = sessions.Session() with shared_test_lib.TempDirectory() as temp_directory: task_storage_path = os.path.join(temp_directory, 'task.sqlite') self._CreateTaskStorageFile(session, task_storage_path) session_storage_path = os.path.join(temp_directory, 'plaso.sqlite') storage_writer = writer.SQLiteStorageFileWriter( session, session_storage_path) test_reader = merge_reader.SQLiteStorageMergeReader( storage_writer, task_storage_path) storage_writer.Open() result = test_reader.MergeAttributeContainers() self.assertTrue(result) storage_writer.Close() if __name__ == '__main__': unittest.main()
30
77
0.742222
b003ed4bdca432ceee1b619212cc3d99b62bf468
3,707
py
Python
software/multifluids_icferst/tests/prescribed_normal_flow_landslide/slide_movement.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
2
2020-05-11T02:39:46.000Z
2020-05-11T03:08:38.000Z
software/multifluids_icferst/tests/prescribed_normal_flow_landslide/slide_movement.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
null
null
null
software/multifluids_icferst/tests/prescribed_normal_flow_landslide/slide_movement.py
msc-acse/acse-9-independent-research-project-Wade003
cfcba990d52ccf535171cf54c0a91b184db6f276
[ "MIT" ]
2
2020-05-21T22:50:19.000Z
2020-10-28T17:16:31.000Z
#!/usr/bin/nv python import numpy as np import math import argparse import pylab import fileinput slide_start_x = 112500 R = 150000 # slide total runout U_max = 35.0 T = (math.pi / 2.0) * ( R / U_max) max_h = 144.0 L = 223000 S = 1000 Ra = 75000 Rc = 0 Rd = 75000 Ta = math.pi*Ra / (2.0 * U_max) Tc = Rc / U_max Td = math.pi*Rd / (2.0 * U_max) cd = 0.0019 def main(): parser = argparse.ArgumentParser( prog="test slide function", description="""Test the prescribed slide function""" ) parser.add_argument( '-v', '--verbose', action='store_true', help="Verbose output: mainly progress reports.", default=False ) parser.add_argument( '-t', '--time', type=float, default=0.1, help="Which time to use" ) parser.add_argument( '-a', '--animation', type=float, default=0, help="Do animation of slide dynamics from 0 to time specified" ) parser.add_argument( 'node_file', metavar='node_file', help='The node file which provides a list of coords on which to check the funciton' ) args = parser.parse_args() verbose = args.verbose node_file = args.node_file time = args.time anim = args.animation dt = 100 x_coords = [] slide_height = [] vel = [] i = 0 # parse node file and get list of vertex coordinates for line in fileinput.input([node_file]): if (line[0] == '#'): break data = line.split() if (i > 0): X = [float(data[1])] x_coords.append(X[0]) i=+1 params = { 'legend.fontsize': 18, 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'font.size' : 18, 'axes.labelsize' : 18, 'text.fontsize' : 18, 'figure.subplot.hspace' : 0.5 } pylab.rcParams.update(params) fig = pylab.figure(figsize=(15,8),dpi=90) ax = fig.add_subplot(111) if (anim == 0): anim = time+1 pylab.ioff() else: time = 0 pylab.ion() for t in np.arange(time,anim,dt): i = 0 vel = [] h = [] shear = [] slide_front = set_slide_front(t) old_slide_front = set_slide_front(t-dt) for c in x_coords: h.append(set_slide_height([x_coords[i]],t,slide_front)) vel.append((h[-1] - set_slide_height([x_coords[i]],t-dt,old_slide_front)) / dt) shear.append(set_slide_shear([x_coords[i]],t,((slide_front - old_slide_front) / dt),0.0,slide_front)) i = i+1 pylab.plot(x_coords,shear) pylab.draw() if (anim == time + 1): pylab.show() def set_slide_shear(X,t,u_s,u_w,x_loc): form = slide_form(X,x_loc) tau = 0.5 * 1000 * cd * (u_s - u_w)*form return tau def set_slide_front(t): import math if t > T: t = T if t < 0: t = 0 if t < Ta: s = Ra*(1-math.cos(U_max/Ra*t)) elif Ta < t < Tc+Ta: s = Ra + U_max*(t - Ta) elif Ta+Tc < t < Ta+Tc+Td: s = Ra+Rc + Rd*math.sin(U_max/Rd * (t - Ta - Tc)) else: s = R x_loc = slide_start_x + s return x_loc def set_slide_height(X,t,x_loc): import math form = slide_form(X,x_loc) return max_h * form def slide_form(X,x_loc): x_dash = (X[0] - x_loc) if (-(L+2*S)<x_dash<-(L+S)): h = math.exp(-(2*(x_dash+S+L)/S)**4) elif ( -(L+S)<=x_dash<-S): h = 1.0 elif (-S<=x_dash<0): h = math.exp(-(2*(x_dash+S)/S)**4) else: h = 0 return h if __name__ == "__main__": main()
21.427746
113
0.530078
4b3a790c44b092ec973ac73c9831061f6994d14a
55
py
Python
adapters/__init__.py
JVGC/MyFinancesPython
5e4ac02ea00c4ddab688dd0093eed3f3fb2ad826
[ "MIT" ]
null
null
null
adapters/__init__.py
JVGC/MyFinancesPython
5e4ac02ea00c4ddab688dd0093eed3f3fb2ad826
[ "MIT" ]
null
null
null
adapters/__init__.py
JVGC/MyFinancesPython
5e4ac02ea00c4ddab688dd0093eed3f3fb2ad826
[ "MIT" ]
null
null
null
from .DebtAdapter import * from .FlaskAdapter import *
18.333333
27
0.781818
ec144731dd4bd53b05a17764dcbe7bbde11a77d7
376
py
Python
profiles/mono-mac-release/mono-mac-release.py
mhutch/bockbuild
0d989e2d0259d17d41a195f8d28b3844a4652e7b
[ "MIT" ]
null
null
null
profiles/mono-mac-release/mono-mac-release.py
mhutch/bockbuild
0d989e2d0259d17d41a195f8d28b3844a4652e7b
[ "MIT" ]
null
null
null
profiles/mono-mac-release/mono-mac-release.py
mhutch/bockbuild
0d989e2d0259d17d41a195f8d28b3844a4652e7b
[ "MIT" ]
null
null
null
#!/usr/bin/python -B -u import sys import traceback sys.path.append('../..') from MonoReleaseProfile import MonoReleaseProfile from bockbuild.util.util import * try: MonoReleaseProfile().build() except Exception as e: exc_type, exc_value, exc_traceback = sys.exc_info() error ('%s\n%s' % (str(e), "\n".join (repr(t) for t in traceback.extract_tb(exc_traceback)[-5:])))
25.066667
99
0.718085
03e84e5f15b4a1324c2f55c0fa68d22fb569e076
5,202
py
Python
onsets_frames_transcription_create_dataset_maps.py
treeson-li/onsets_frames_transcription
2cebfe738ea23258b3223094ab25d4e130ac2caf
[ "Apache-2.0" ]
null
null
null
onsets_frames_transcription_create_dataset_maps.py
treeson-li/onsets_frames_transcription
2cebfe738ea23258b3223094ab25d4e130ac2caf
[ "Apache-2.0" ]
null
null
null
onsets_frames_transcription_create_dataset_maps.py
treeson-li/onsets_frames_transcription
2cebfe738ea23258b3223094ab25d4e130ac2caf
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Create the tfrecord files necessary for training onsets and frames. The training files are split in ~20 second chunks by default, the test files are not split. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import re import split_audio_and_label_data from magenta.music import audio_io from magenta.music import midi_io import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('input_dir', None, 'Directory where the un-zipped MAPS files are.') tf.app.flags.DEFINE_string('output_dir', './', 'Directory where the two output TFRecord files ' '(train and test) will be placed.') tf.app.flags.DEFINE_integer('min_length', 5, 'minimum segment length') tf.app.flags.DEFINE_integer('max_length', 20, 'maximum segment length') tf.app.flags.DEFINE_integer('sample_rate', 16000, 'desired sample rate') test_dirs = ['ENSTDkCl/MUS', 'ENSTDkAm/MUS'] train_dirs = [ 'AkPnBcht/MUS', 'AkPnBsdf/MUS', 'AkPnCGdD/MUS', 'AkPnStgb/MUS', 'SptkBGAm/MUS', 'SptkBGCl/MUS', 'StbgTGd2/MUS' ] def filename_to_id(filename): """Translate a .wav or .mid path to a MAPS sequence id.""" return re.match(r'.*MUS-(.*)_[^_]+\.\w{3}', os.path.basename(filename)).group(1) def generate_train_set(exclude_ids): """Generate the train TFRecord.""" train_file_pairs = [] for directory in train_dirs: path = os.path.join(FLAGS.input_dir, directory) path = os.path.join(path, '*.wav') wav_files = glob.glob(path) # find matching mid files for wav_file in wav_files: base_name_root, _ = os.path.splitext(wav_file) mid_file = base_name_root + '.mid' if filename_to_id(wav_file) not in exclude_ids: train_file_pairs.append((wav_file, mid_file)) train_output_name = os.path.join(FLAGS.output_dir, 'maps_config2_train.tfrecord') with tf.python_io.TFRecordWriter(train_output_name) as writer: for idx, pair in enumerate(train_file_pairs): print('{} of {}: {}'.format(idx, len(train_file_pairs), pair[0])) # load the wav data wav_data = tf.gfile.Open(pair[0], 'rb').read() # load the midi data and convert to a notesequence ns = midi_io.midi_file_to_note_sequence(pair[1]) for example in split_audio_and_label_data.process_record( wav_data, ns, pair[0], FLAGS.min_length, FLAGS.max_length, FLAGS.sample_rate): writer.write(example.SerializeToString()) def generate_test_set(): """Generate the test TFRecord.""" test_file_pairs = [] for directory in test_dirs: path = os.path.join(FLAGS.input_dir, directory) path = os.path.join(path, '*.wav') wav_files = glob.glob(path) # find matching mid files for wav_file in wav_files: base_name_root, _ = os.path.splitext(wav_file) mid_file = base_name_root + '.mid' test_file_pairs.append((wav_file, mid_file)) test_output_name = os.path.join(FLAGS.output_dir, 'maps_config2_test.tfrecord') with tf.python_io.TFRecordWriter(test_output_name) as writer: for idx, pair in enumerate(test_file_pairs): print('{} of {}: {}'.format(idx, len(test_file_pairs), pair[0])) # load the wav data and resample it. samples = audio_io.load_audio(pair[0], FLAGS.sample_rate) wav_data = audio_io.samples_to_wav_data(samples, FLAGS.sample_rate) # load the midi data and convert to a notesequence ns = midi_io.midi_file_to_note_sequence(pair[1]) example = split_audio_and_label_data.create_example(pair[0], ns, wav_data) writer.write(example.SerializeToString()) return [filename_to_id(wav) for wav, _ in test_file_pairs] def main(unused_argv): test_ids = generate_test_set() generate_train_set(test_ids) def console_entry_point(): tf.app.run(main) if __name__ == '__main__': console_entry_point()
35.630137
80
0.705498
0a3a7e94805d530b5c984c150106a393926e112f
841
py
Python
test/functional/rpc_uptime.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
test/functional/rpc_uptime.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
test/functional/rpc_uptime.py
bitcoinlimitededition/bitcoinlimitededition
befc25e21abf8e02f260474210bd074a4f0b07b2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoinlimitededition Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC call related to the uptime command. Test corresponds to code in rpc/server.cpp. """ import time from test_framework.test_framework import BitcoinlimitededitionTestFramework class UptimeTest(BitcoinlimitededitionTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self._test_uptime() def _test_uptime(self): wait_time = 10 self.nodes[0].setmocktime(int(time.time() + wait_time)) assert(self.nodes[0].uptime() >= wait_time) if __name__ == '__main__': UptimeTest().main()
27.129032
76
0.722949
d1b00503efb287ca5464c6ea31ada1b429e7d66f
4,628
py
Python
nets/classifier.py
LuckyXie0427/myFasterRCNN
0603a6dfdde32be7cec44cf314c3d5b2c5f97add
[ "MIT" ]
null
null
null
nets/classifier.py
LuckyXie0427/myFasterRCNN
0603a6dfdde32be7cec44cf314c3d5b2c5f97add
[ "MIT" ]
null
null
null
nets/classifier.py
LuckyXie0427/myFasterRCNN
0603a6dfdde32be7cec44cf314c3d5b2c5f97add
[ "MIT" ]
1
2022-03-14T05:29:42.000Z
2022-03-14T05:29:42.000Z
import warnings import torch from torch import nn from torchvision.ops import RoIPool warnings.filterwarnings("ignore") class VGG16RoIHead(nn.Module): def __init__(self, n_class, roi_size, spatial_scale, classifier): super(VGG16RoIHead, self).__init__() self.classifier = classifier #--------------------------------------# # 对ROIPooling后的的结果进行回归预测 #--------------------------------------# self.cls_loc = nn.Linear(4096, n_class * 4) #-----------------------------------# # 对ROIPooling后的的结果进行分类 #-----------------------------------# self.score = nn.Linear(4096, n_class) #-----------------------------------# # 权值初始化 #-----------------------------------# normal_init(self.cls_loc, 0, 0.001) normal_init(self.score, 0, 0.01) self.roi = RoIPool((roi_size, roi_size), spatial_scale) def forward(self, x, rois, roi_indices, img_size): n, _, _, _ = x.shape if x.is_cuda: roi_indices = roi_indices.cuda() rois = rois.cuda() rois_feature_map = torch.zeros_like(rois) rois_feature_map[:, [0,2]] = rois[:, [0,2]] / img_size[1] * x.size()[3] rois_feature_map[:, [1,3]] = rois[:, [1,3]] / img_size[0] * x.size()[2] indices_and_rois = torch.cat([roi_indices[:, None], rois_feature_map], dim=1) #-----------------------------------# # 利用建议框对公用特征层进行截取 #-----------------------------------# pool = self.roi(x, indices_and_rois) #-----------------------------------# # 利用classifier网络进行特征提取 #-----------------------------------# pool = pool.view(pool.size(0), -1) #--------------------------------------------------------------# # 当输入为一张图片的时候,这里获得的f7的shape为[300, 4096] #--------------------------------------------------------------# fc7 = self.classifier(pool) roi_cls_locs = self.cls_loc(fc7) roi_scores = self.score(fc7) roi_cls_locs = roi_cls_locs.view(n, -1, roi_cls_locs.size(1)) roi_scores = roi_scores.view(n, -1, roi_scores.size(1)) return roi_cls_locs, roi_scores class Resnet50RoIHead(nn.Module): def __init__(self, n_class, roi_size, spatial_scale, classifier): super(Resnet50RoIHead, self).__init__() self.classifier = classifier #--------------------------------------# # 对ROIPooling后的的结果进行回归预测 #--------------------------------------# self.cls_loc = nn.Linear(2048, n_class * 4) #-----------------------------------# # 对ROIPooling后的的结果进行分类 #-----------------------------------# self.score = nn.Linear(2048, n_class) #-----------------------------------# # 权值初始化 #-----------------------------------# normal_init(self.cls_loc, 0, 0.001) normal_init(self.score, 0, 0.01) self.roi = RoIPool((roi_size, roi_size), spatial_scale) def forward(self, x, rois, roi_indices, img_size): n, _, _, _ = x.shape if x.is_cuda: roi_indices = roi_indices.cuda() rois = rois.cuda() rois_feature_map = torch.zeros_like(rois) rois_feature_map[:, [0,2]] = rois[:, [0,2]] / img_size[1] * x.size()[3] rois_feature_map[:, [1,3]] = rois[:, [1,3]] / img_size[0] * x.size()[2] indices_and_rois = torch.cat([roi_indices[:, None], rois_feature_map], dim=1) #-----------------------------------# # 利用建议框对公用特征层进行截取 #-----------------------------------# pool = self.roi(x, indices_and_rois) #-----------------------------------# # 利用classifier网络进行特征提取 #-----------------------------------# fc7 = self.classifier(pool) #--------------------------------------------------------------# # 当输入为一张图片的时候,这里获得的f7的shape为[300, 2048] #--------------------------------------------------------------# fc7 = fc7.view(fc7.size(0), -1) roi_cls_locs = self.cls_loc(fc7) roi_scores = self.score(fc7) roi_cls_locs = roi_cls_locs.view(n, -1, roi_cls_locs.size(1)) roi_scores = roi_scores.view(n, -1, roi_scores.size(1)) return roi_cls_locs, roi_scores def normal_init(m, mean, stddev, truncated=False): if truncated: m.weight.data.normal_().fmod_(2).mul_(stddev).add_(mean) # not a perfect approximation else: m.weight.data.normal_(mean, stddev) m.bias.data.zero_()
39.896552
95
0.446845
e8f87aecc5c5b1b3aa0ee070ecf039e0478dc25e
2,694
py
Python
scitbx/math/tests/tst_uniform_rotation_matrix.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
scitbx/math/tests/tst_uniform_rotation_matrix.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
scitbx/math/tests/tst_uniform_rotation_matrix.py
rimmartin/cctbx_project
644090f9432d9afc22cfb542fc3ab78ca8e15e5d
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import division import math, random from scitbx import matrix from scitbx.array_family import flex # ----------------------------------------------------------------------------- # simplified form of surface integral for spherical harmonic (l = m) # http://en.wikipedia.org/wiki/Table_of_spherical_harmonics def ylm(lm,c,t,p): y = c * math.pow(math.sin(t),lm) * complex(math.cos(lm*p),math.sin(lm*p)) return y * y.conjugate() * math.sin(t) # ----------------------------------------------------------------------------- def add_point(lm,c,R): x = matrix.col( [0,0,1] ) new_x = R * x theta = math.acos(new_x[2]) # theta = [0, pi] phi = math.atan2(new_x[1],new_x[0]) + math.pi # phi = [0, 2pi) return ylm(lm,c,theta,phi) # ----------------------------------------------------------------------------- def test_uniform_rotation_matrix(N=10000,choice=2,verbose=False): """ The surface integral of a spherical harmonic function with its conjugate should be 1. (http://mathworld.wolfram.com/SphericalHarmonic.html, Eq 7) From Mathematica, l = 10; m = 10; y = SphericalHarmonicY[l, m, \[Theta], \[Phi]]; Integrate[y*Conjugate[y]*Sin[\[Theta]], {\[Theta], 0, Pi}, {\[Phi], 0, 2*Pi}] should yield 1. By picking uniformly random points on a sphere, the surface integral can be numerically approximated. The results in the comments below are for N = 1 000 000. """ if (choice == 0): # l=1, m=1 # result = (0.883199394206+0j) (0.883824001444+0j) lm = 1 c = -0.5 * math.sqrt(1.5/math.pi) elif (choice == 1): # l = 5, m = 5 # result = (0.959557841214+0j) (0.959331535539+0j) lm = 5 c = -(3/32) * math.sqrt(77/math.pi) else: # l = 10, m = 10 # result = (0.977753926603+0j) (0.97686871766+0j) lm = 10 c = (1/1024) * math.sqrt(969969/math.pi) result = [ 0.0, 0.0 ] for i in range(N): R = [ matrix.sqr(flex.random_double_r3_rotation_matrix()), matrix.sqr(flex.random_double_r3_rotation_matrix_arvo_1992()) ] for j in xrange(len(result)): result[j] += add_point(lm,c,R[j]) # multipy by area at the end, each point has an area of 4pi/N point_area = 4.0*math.pi/N # surface area of unit sphere / number of points for i in xrange(len(result)): result[i] = point_area * result[i] if (verbose): print result[i], if (verbose): print assert(result[0].real > 0.85) assert(result[0].real < 1.15) assert(result[1].real > 0.85) assert(result[1].real < 1.15) if (__name__ == '__main__'): flex.set_random_seed(0) for i in xrange(3): test_uniform_rotation_matrix(N=1000, choice=i, verbose=False) print 'OK'
31.325581
79
0.580921
c23269dd2045c4aba08f46fd0e27d20bb62e97f7
3,517
py
Python
visual/assets/racko.py
lhr-solar/DataAcquisition
ff257396e92eb76d1b4050d41c3c0dc8e7afbf7b
[ "MIT" ]
1
2021-09-04T15:26:43.000Z
2021-09-04T15:26:43.000Z
visual/assets/racko.py
lhr-solar/DataAcquisition
ff257396e92eb76d1b4050d41c3c0dc8e7afbf7b
[ "MIT" ]
5
2020-07-24T21:19:59.000Z
2021-05-31T17:16:48.000Z
visual/assets/racko.py
lhr-solar/DataAcquisition
ff257396e92eb76d1b4050d41c3c0dc8e7afbf7b
[ "MIT" ]
1
2020-07-16T19:46:56.000Z
2020-07-16T19:46:56.000Z
# File: racko.py # Description: A program that simulates the card and number game # Rack-O. Players use the keyboard and take turns. # Assignment Number: 10 # # Name: <YOUR NAME> # EID: <YOUR EID> # Email: <YOUR EMAIL> # Grader: <YOUR GRADER'S NAME Irena OR Noah OR Skyler OR Tyler> # # On my honor, <YOUR NAME>, this programming assignment is my own work # and I have not provided this code to any other student. import random # Play one game of Rack-O. def main(): # Get the rack size, create the deck, and deal the initial racks. rack_size = prep_game() deck = list(range(1, 61)) random.shuffle(deck) player = 1 player_1_rack = get_rack(deck, rack_size) player_2_rack = get_rack(deck, rack_size) discard = [deck.pop(0)] # CS303e students. Complete the main method to play # one complete game of Rack-O using the specified functions. # Get ready to play 1 game. # Show the instructions if the user wants to see them. # Set the seed for the random number generator. # Return the size of the rack to use. def prep_game(): print('----- Welcome to Rack - O! -----') if input('Enter y to display instructions: ') == 'y': instructions() print() random.seed(eval(input('Enter number for initial seed: '))) rack_size = eval(input('Enter the size of the rack to use. ' + 'Must be between 5 and 10: ')) while not 5 <= rack_size <= 10: print(rack_size, 'is not a valid rack size.') rack_size = eval(input('Enter the size of the rack to use. ' + 'Must be between 5 and 10: ')) print() return rack_size # Print the instructions of the game. def instructions(): print() print('The goal of the game is to get the cards in your rack of cards') print('into ascending order. Your rack has ten slots numbered 1 to 10.') print('During your turn you can draw the top card of the deck or take') print('the top card of the discard pile.') print('If you draw the top card of the deck, you can use that card to') print('replace a card in one slot of your rack. The replaced card goes to') print('the discard pile.') print('Alternatively you can simply choose to discard the drawn card.') print('If you take the top card of the discard pile you must use it to') print('replace a card in one slot of your rack. The replaced card goes') print('to the top of the discard pile.') # Take the player's turn. Give them the choice of drawing or taking # the top card of the discard pile. If they draw they can replace # a card or discard the draw. If they take the top card of the discard # pile they must replace a card in their rack. def take_turn(deck, discard, player_rack): # Ask the player which card to replace in their rack. # Replace it with the given new card. Place the card removed # from the player's rack at the top of the discard pile. # Error checks until player enters a card that is currently # in their rack. def place_card(player_rack, new_card, discard): # Return True if this rack is sorted in ascending order, False otherwise. # Do not create any new lists in this function. def is_sorted(rack): # Deal the top 10 cards of the deck into a new rack. The first # card goes in the first slot, the second card goes in the second # slot, and so forth. We assume len(deck) >= rack_size. Return the # list of ints representing the rack. def get_rack(deck, rack_size): main()
35.525253
79
0.680409
c1ebf0ce0e354c1328f3d8804daa4155b0856218
3,799
py
Python
docugen/changelog.py
adsfgg/LazarusMod
47525094eaf175fe1f11c624c1536581ded8cfa8
[ "MIT" ]
3
2019-10-27T14:10:30.000Z
2021-01-13T18:29:51.000Z
docugen/changelog.py
adsfgg/LazarusMod
47525094eaf175fe1f11c624c1536581ded8cfa8
[ "MIT" ]
2
2019-10-07T22:11:47.000Z
2019-10-10T00:14:33.000Z
docugen/changelog.py
adsfgg/LazarusMod
47525094eaf175fe1f11c624c1536581ded8cfa8
[ "MIT" ]
9
2019-10-03T17:44:59.000Z
2021-12-20T18:01:38.000Z
class ChangeLogTree: def __init__(self, raw_changelog): self.root_node = ChangeLogNode("root") for key,value in raw_changelog: self.injestkey(self.root_node, key, value) def injestkey(self, root, key, value): if "." in key: subkeys = key.split(".") root_subkey = subkeys[0] node = None if root.haschild(root_subkey): node = root.getchild(root_subkey) else: node = root.addchild(root_subkey, root) if not node: raise "Failed to injest key" self.injestkey(node, ".".join(subkeys[1:]), value) else: if root.haschild(key): node = root.getchild(key) else: node = root.addchild(key, root) node.addvalue(value) class ChangeLogNode: def __init__(self, key, parent=None): self.key = key self.parent = parent self.children = [] self.values = [] def getchild(self, key): for child in self.children: if child.key == key: return child return None def haschild(self, key): return self.getchild(key) != None def addchild(self, key, value): child = ChangeLogNode(key, value) self.children.append(child) return child def addvalue(self, value): self.values.append(value) def diff(curr, old): diff = [] last_neutral_indent_key = "" last_neutral_indent_value = "" # Iterate through all key/value pairs in current_changelog for key,value in curr: found_key = False found_value = False if not value.startswith(">"): last_neutral_indent_key = key last_neutral_indent_value = value # With a single key/value pair in curr, look for a matching one # in the old changelog for key2,value2 in old: if key == key2: found_key = True if value2 == value: found_value = True elif found_key: break # If we didn't find a match for the key it means that the key/value was added # If we did find a key but didn't find a value, it means that a key/value pair was modified if not found_key or not found_value: # Append the last neutral key/value pair if our value is manually indented. # This is to preserve semantic information that would be lost without the header if value.startswith(">") and last_neutral_indent_key != "" and last_neutral_indent_value != "": diff.append((last_neutral_indent_key, last_neutral_indent_value)) last_neutral_indent_key = "" last_neutral_indent_value = "" diff.append((key, value)) if key == last_neutral_indent_key and value == last_neutral_indent_value: last_neutral_indent_key = "" last_neutral_indent_value = "" # Check for any deletions for key,value in old: found_key = False found_value = False # Find matching key in curr for key2,value2 in curr: if key == key2: found_key = True if value2 == value: found_value = True elif found_key: break # If a key exists in the old changelog but not in the current one, it's been removed # If we did find a key in the old changelog but didn't find the value in the new changelog # it's been removed if not found_key or not found_value: diff.append((key, "== REMOVED == " + value)) return diff
33.619469
107
0.564622
dfe1334669248a003a4ef2d23f0f2effa5b9313a
3,247
py
Python
seniorProjectApp/views.py
mpreyes/SeniorProject
cbcfb132dc24c63c0bb4c43cc2817309c9ea0d2b
[ "MIT" ]
1
2019-02-08T21:15:15.000Z
2019-02-08T21:15:15.000Z
seniorProjectApp/views.py
mpreyes/SeniorProject
cbcfb132dc24c63c0bb4c43cc2817309c9ea0d2b
[ "MIT" ]
null
null
null
seniorProjectApp/views.py
mpreyes/SeniorProject
cbcfb132dc24c63c0bb4c43cc2817309c9ea0d2b
[ "MIT" ]
null
null
null
from django.shortcuts import render, redirect from django.http import HttpResponse,HttpResponseRedirect from django.core.cache import caches from django.shortcuts import render, get_object_or_404 from django.urls import reverse_lazy from django.views import generic from .forms import CustomUserCreationForm, ProgressForm from seniorProjectApp.models import * def index(request): return render(request, 'seniorProjectApp/index.html') # def signup(request): # return render(request,'seniorProjectApp/signup.html') # #Signup MUST request a degree: Computer Science = 1 class SignUp(generic.CreateView): form_class = CustomUserCreationForm success_url = reverse_lazy('login') template_name = 'seniorProjectApp/signup.html' def redirectme(request): degreeID = 1 #defaults userID = 1 if request.user.is_authenticated: degreeID = request.user.degreeID userID = request.user.id return redirect("/seniorProjectApp/" + str(userID) + "/" + str(degreeID)+ "/") def dashboard(request,userID_id,degreeID): #if changing degree, change degreeID for both degree = Degree.objects.get(degreeID = degreeID) courses = Courses.objects.filter(degreeID = degreeID) context = { "degree_list": degree, "courses_list": courses} return render(request,'seniorProjectApp/dashboard.html',context) def links(request,userID_id,degreeID_id,courseID): #testUser = 1 courses = Courses.objects.get(courseID = courseID) topics = Topics.objects.filter(courseID = courseID) links = Links.objects.all() progress = Progress.objects.filter(userID = userID_id) link_progress = list(zip(links,progress)) # for i in links: # print(i.linksID) # for j in progress: # print(j.notes) # for i,j in link_progress: # print(i.linksID,j.progressID, j.isCompleted) context = {"degreeID": degreeID_id, "course": courses, "topics": topics, "links": links, "link_progress": link_progress} print(progress) return render(request,'seniorProjectApp/links.html',context) def progress(request,userID_id,degreeID_id,courseID,linksID, progressID): #testUser = 1 courses = Courses.objects.get(courseID = courseID) topics = Topics.objects.filter(courseID = courseID) user = CustomUser.objects.get(id = userID_id) progress = Progress.objects.get(userID_id = userID_id,linkID_id = linksID,progressID = progressID) link = Links.objects.get( linksID = linksID) context = {"user" : user, "degreeID": degreeID_id,"course": courses, "topics": topics, "link": link, "progress": progress} if request.method == 'POST': print("got a post request") form = ProgressForm(request.POST,instance = progress) print(form.is_valid()) if form.is_valid(): form.save() print("form got saved") context["form"] = form return HttpResponseRedirect(request.META.get('HTTP_REFERER'),'seniorProjectApp/progress.html',context) else: print("Form did not get saved") form = ProgressForm(instance = progress) context["form"] = form return render(request,'seniorProjectApp/progress.html',context)
32.148515
127
0.695103
896d29075ce3ce1505523f55764103afa8355b2c
15,637
py
Python
REMARKs/GanongNoelUI/code/estimate_models.py
ngkratts/REMARK
92c057a93a7d10a890696db55f874d5fde394b91
[ "Apache-2.0" ]
18
2019-01-28T13:17:39.000Z
2021-09-10T16:29:55.000Z
REMARKs/GanongNoelUI/code/estimate_models.py
ngkratts/REMARK
92c057a93a7d10a890696db55f874d5fde394b91
[ "Apache-2.0" ]
89
2019-01-06T19:32:34.000Z
2021-08-30T13:30:48.000Z
REMARKs/GanongNoelUI/code/estimate_models.py
ngkratts/REMARK
92c057a93a7d10a890696db55f874d5fde394b91
[ "Apache-2.0" ]
50
2018-08-01T16:33:06.000Z
2021-10-05T20:20:26.000Z
# -*- coding: utf-8 -*- """ Created on Thu Aug 16 08:48:22 2018 @author: Xian_Work """ import scipy from scipy.optimize import fmin, brute from model_plotting import norm , compute_dist,gen_evolve_share_series, mk_mix_agent #Import parameters and other UI modules param_path="../Parameters/params_ui.json" execfile("prelim.py") #################### ###### Setup ###### #################### opt_process = "serial" #Runs only the minimum number of estimations required to replicate models in the paper. Other option is "parallel" in_path = './est_models_in/' out_path = './est_models_out/' ############################## ### Input arguments for optimization ### init_conditions_list = [] final_conditions_dict = {} if opt_process == "serial": #Creates a list of dicts; each dict corresponds to an optimization to perform #Later pipes all the optimization results to one json master_infile = 'initial_conditions_master.json' master_outfile = '../../Parameters/model_params_main.json' with open(in_path+master_infile, "r") as read_file: init_conditions_master = json.load(read_file) for i in init_conditions_master: init_conditions_list.append(i) elif opt_process == "parallel": #Creates a length-1 list from a json, containing an optimization dict #Then deletes the input json #Later pipes output of optimization to a json in the output directory #If running parallel, this python script must be run once for each optimization; #grid_sims_helper.py contains func to convery csvs of initial conditions #to json input for this script, and func to convert json outputs of this #script into csvs in_path = './est_models_in/' out_path = './est_models_out/' def get_files(start_str = "sim_"): """Return files that start with start_str""" n = len(start_str) file_list = [f for f in os.listdir(in_path) if f[0:n] == start_str] return file_list #Get input dict and delete from input directory filename = get_files()[0] with open(in_path + filename, 'r') as f: opt_input = json.load(f) init_conditions_list.append(opt_input) os.remove(in_path + filename) #################################### #Model Target and Base Plots #################################### #Data Series to plot against data_tminus5 = norm(param.JPMC_cons_moments, param.plt_norm_index) data_tminus5_search = param.JPMC_search_moments ###Use vcv weights### cons_se_vcv_tminus5 =param.JPMC_cons_SE search_se_vcv = param.JPMC_search_SE #Targets opt_target_cons = data_tminus5 cons_wmat = np.linalg.inv(np.asmatrix(np.diag(np.square(cons_se_vcv_tminus5)))) opt_target_search = data_tminus5_search[param.moments_len_diff: param.moments_len_diff + param.s_moments_len] search_wmat = np.linalg.inv(np.asmatrix(np.diag(np.square(search_se_vcv)))) ################################################ #Function to generate agent ################################################ def gen_agent(vals_dict): #Optimizing the model with two search types and hyperbolic discounting #Common parameters to be updated in all models agent_pd = copy.deepcopy(pd_base) if 'phi' in vals_dict.keys(): agent_pd.update({'phi':vals_dict['phi']}) #Representative Agent if vals_dict['opt_type'] == '1b1k': agent_pd.update({'beta_var':vals_dict['beta_var'], 'beta_hyp':vals_dict['beta_hyp'], 'L_':vals_dict['L_'], 'k':vals_dict['k']}) agent = [(1, agent_pd),] return(agent) #Heterogeneity in Search Costs if vals_dict['opt_type'] == '1b2k': agent_pd.update({'beta_var':vals_dict['beta_var'], 'beta_hyp':vals_dict['beta_hyp'], 'L_':vals_dict['L_']}) k0 = vals_dict['k0'] k1 = vals_dict['k1'] agent_weights = (vals_dict['w_lo_k'], 1- vals_dict['w_lo_k']) agent_params = ('k', ) agent_vals = ((k0, ), (k1, ),) #Heterogeneity in Consumption Preferences and in Search Costs if vals_dict['opt_type'] == '2b2k' or vals_dict['opt_type'] == '2b2k_fix_xi' or vals_dict['opt_type'] == '2b2k_fix_b1': agent_pd.update({'beta_var':vals_dict['beta_var'], 'L_':vals_dict['L_']}) #Heterogeneous k types k0 = vals_dict['k0'] k1 = vals_dict['k1'] #Heterogeneous beta types b0 = vals_dict['b0'] b1 = vals_dict['b1'] #Weights w_lo_k = vals_dict['w_lo_k'] w_hi_k = 1 - w_lo_k w_lo_beta = vals_dict['w_lo_beta'] w_hi_beta = 1 - w_lo_beta w_b0_k0 = w_lo_k * w_lo_beta w_b1_k0 = w_lo_k * w_hi_beta w_b0_k1 = w_hi_k * w_lo_beta w_b1_k1 = w_hi_k * w_hi_beta #Make agent agent_weights = (w_b0_k0, w_b1_k0, w_b0_k1, w_b1_k1) agent_params = ('beta_hyp', 'k' ) agent_vals = ((b0, k0), (b1, k0), (b0, k1), (b1, k1)) ### Additional models - robustness checks to different types of heterogeneity if vals_dict['opt_type'] == '2d2k': agent_pd.update({'L_':vals_dict['L_']}) agent_pd.update({'beta_hyp':1}) #Heterogeneous k types k0 = vals_dict['k0'] k1 = vals_dict['k1'] #Heterogeneous beta types d0 = vals_dict['d0'] d1 = vals_dict['d1'] #Weights w_lo_k = vals_dict['w_lo_k'] w_hi_k = 1 - w_lo_k w_lo_delta = vals_dict['w_lo_delta'] w_hi_delta = 1 - w_lo_delta w_d0_k0 = w_lo_k * w_lo_delta w_d1_k0 = w_lo_k * w_hi_delta w_d0_k1 = w_hi_k * w_lo_delta w_d1_k1 = w_hi_k * w_hi_delta #Make agent agent_weights = (w_d0_k0, w_d1_k0, w_d0_k1, w_d1_k1) agent_params = ('beta_var', 'k' ) agent_vals = ((d0, k0), (d1, k0), (d0, k1), (d1, k1)) agent = mk_mix_agent(agent_pd, agent_params, agent_vals, agent_weights) return agent ################################################ #Function to generate Consumption and Search behaviour ################################################ def gen_agent_bhvr(agent): c_start = param.c_plt_start_index s_start = param.s_plt_start_index series_dict = gen_evolve_share_series(pd_base['e'], c_start, s_start, len(opt_target_cons), param.plt_norm_index, *agent, verbose = True, normalize = True) cons_out = series_dict['w_cons_out'] search_out = series_dict['w_search_out'][s_start-c_start : s_start-c_start+len(opt_target_search)] return {'cons_out':cons_out, 'search_out':search_out} ######################################## #Main estimation execution starts here ####################################### for opt_input in init_conditions_list: #################################### #Baseline parameters #################################### pd_base = {"a0": param.a0_data, "T_series":T_series, "T_solve":param.TT, "e":param.e_extend, "beta_var":param.beta, "beta_hyp": param.beta_hyp, "a_size": param.a_size, "rho":param.rho, "verbose":False, "L_":param.L, "constrained":param.constrained, "Pi_":np.zeros((param.TT+1,param.a_size+1,9,9)), "z_vals" : param.z_vals, "R" : param.R, "Rbor" : param.R, "phi": param.phi, "k":param.k, "spline_k":param.spline_k, "solve_V": True, "solve_search": True} for t in range(param.TT+1): for a_index in range(param.a_size+1): pd_base['Pi_'][t][a_index] = param.Pi pd_base['T_series']=len(pd_base['e'])-1 if 'fix_gamma' in opt_input: pd_base.update({'rho':opt_input['fix_gamma']}) if opt_input['opt_type'] == '2b2k_fix_xi': pd_base.update({'phi':opt_input['phi']}) ####################################################### #### Indexing of arguments that will be optimized over ####################################################### #Representative Agent if opt_input['opt_type'] == '1b1k': args_index = {'beta_var':0, 'beta_hyp':1, 'k':2, 'L_':3, 'phi':4} args_bounds = [(0.9, 1.0), (0.2, 1.0), (1.0, 300.0), (0.0, 12.0), (0.5, 2.0)] #Heterogeneity in Search Costs elif opt_input['opt_type'] == '1b2k': args_index = {'beta_var':0, 'beta_hyp':1, 'k0':2, 'k1':3, 'L_':4, 'w_lo_k':5, 'phi':6} args_bounds = [(0.9, 1.0), (0.2, 1.0), (1.0, 300.0), (1.0, 300.0), (0.0, 12.0), (0.001, 0.999), (0.5, 2.0)] #Heterogeneity in Consumption Preferences and in Search Costs elif opt_input['opt_type'] == '2b2k': args_index = {'beta_var':0, 'L_':1, 'b0':2, 'b1':3, 'w_lo_beta':4, 'k0':5, 'k1':6, 'w_lo_k':7, 'phi':8} args_bounds = [(0.9, 1.0), (0.0, 12.0), (0.2, 1.0), (0.2, 1.0), (0.001, 0.999), (1.0, 300.0), (1.0, 300.0), (0.001, 0.999), (0.5, 2.0)] elif opt_input['opt_type'] == '2b2k_fix_xi': args_index = {'beta_var':0, 'L_':1, 'b0':2, 'b1':3, 'w_lo_beta':4, 'k0':5, 'k1':6, 'w_lo_k':7} args_bounds = [(0.8, 1.0), (0.0, 12.0), (0.1, 1.0), (0.1, 1.0), (0.001, 0.999), (1.0, 300.0), (1.0, 300.0), (0.001, 0.999)] elif opt_input['opt_type'] == '2b2k_fix_b1': args_index = {'beta_var':0, 'L_':1, 'b0':2, 'w_lo_beta':3, 'k0':4, 'k1':5, 'w_lo_k':6, 'phi':7} args_bounds = [(0.9, 1.0), (0.0, 12.0), (0.2, 1.0), (0.001, 0.999), (1.0, 300.0), (1.0, 300.0), (0.001, 0.999), (1.001, 2.0)] #Heterogeneity in Delta elif opt_input['opt_type'] == '2d2k': args_index = {'L_':0, 'd0':1, 'd1':2, 'w_lo_delta':3, 'k0':4, 'k1':5, 'w_lo_k':6, 'phi':7} args_bounds = [(0.0, 12.0), (0.2, 1.0), (0.2, 1.0), (0.001, 0.999), (1.0, 300.0), (1.0, 300.0), (0.001, 0.999), (0.5, 2.0)] args_index_rv = {v: k for k, v in args_index.iteritems()} #For processing opt_args_in #################################################### #Objective Function #################################################### def obj_func(opt_args_in = [], opt_type = None, verbose = False): ###Generate agent ### vals_dict = {'opt_type':opt_type} for key, value in args_index.iteritems(): vals_dict.update({key:opt_args_in[value]}) if opt_input['opt_type'] == '2b2k_fix_b1'.decode('utf8'): print('adding fixed b1 value') vals_dict.update({'b1':opt_input['b1']}) agent = gen_agent(vals_dict) #Generate consumption and search behaviour series_out = gen_agent_bhvr(agent) cons_out = series_out['cons_out'] search_out = series_out['search_out'] #Calculate distance from targets cons_dist = compute_dist(cons_out, opt_target_cons, cons_wmat) search_dist = compute_dist(search_out, opt_target_search, search_wmat) if verbose==True: return (cons_dist, search_dist, cons_dist + search_dist) return cons_dist + search_dist ########################### #Optimization ########################### opt_args_in = [] for i in range(len(args_index_rv)): opt_args_in.append(opt_input[args_index_rv[i]]) opt_out = scipy.optimize.minimize(obj_func, opt_args_in, args = (opt_input['opt_type'], False), bounds=args_bounds, options = {'maxiter':13, 'ftol':0.001}) distances = obj_func(opt_out['x'], opt_type = opt_input['opt_type'], verbose=True) ########################### #Write results ########################### opt_args_out = copy.deepcopy(opt_input) #Initial Params for key, val in opt_input.iteritems(): init_key = "init_" + key opt_args_out.update({init_key: val}) #Optimized Params for key, val in args_index.iteritems(): opt_args_out.update({key:opt_out['x'][val]}) ###For robustness checks where we estimate with different risk aversion if 'fix_gamma' in opt_input: opt_args_out.update({'rho':opt_input['fix_gamma']}) #Optimization Statistics opt_args_out.update({'GOF': distances[2], 'GOF_cons': distances[0], 'GOF_search': distances[1], 'term_stat': opt_out['message'], 'num_iters': opt_out['nit']}) ###Write output if opt_process == "parallel": with open(out_path+filename, 'w') as f: json.dump(opt_args_out, f) elif opt_process == "serial": key = "est_params_" + opt_args_out['opt_type'] if 'fix_gamma' in opt_input: key = key + '_fix_gamma_' + str(int(np.round(opt_input['fix_gamma'],0))) if opt_args_out['opt_type'] == ['2b2k_fix_xi']: key = key + '_' + str(opt_input['phi']) if opt_args_out['opt_type'] == ['2b2k_fix_b1']: key = key + '_' + str(opt_input['b1']) final_conditions_dict.update({key: opt_args_out}) ###Final dump when optimizing in serial mode if opt_process == "serial": with open(out_path + master_outfile, 'w') as f: json.dump(final_conditions_dict, f, indent=0)
37.498801
137
0.483724
278a311c09b050885b75e32e99d072cafb3b59a1
1,708
py
Python
python/tvm/relay/op/contrib/register.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
4,640
2017-08-17T19:22:15.000Z
2019-11-04T15:29:46.000Z
python/tvm/relay/op/contrib/register.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
3,022
2020-11-24T14:02:31.000Z
2022-03-31T23:55:31.000Z
python/tvm/relay/op/contrib/register.py
XiaoSong9905/tvm
48940f697e15d5b50fa1f032003e6c700ae1e423
[ "Apache-2.0" ]
1,352
2017-08-17T19:30:38.000Z
2019-11-04T16:09:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Register utilities for external codegen.""" _PATTERN_TABLES = {} def register_pattern_table(compiler, table=None): """Register a pattern table for an external compiler. Pattern tables are used to create composite functions. See the MergeComposite pass. Parameters ---------- compiler : str The name of compiler table : function, optional A function that returns the pattern table Returns ------- fregister : function Register function if value is not specified. """ def _register(t): """internal register function""" _PATTERN_TABLES[compiler] = t() return t return _register(table) if table is not None else _register def get_pattern_table(compiler): """Get the pattern table associated with a compiler (if it's registered).""" return _PATTERN_TABLES[compiler] if compiler in _PATTERN_TABLES else None
32.846154
80
0.720726
384d3180a9ec40eb66beba3c5322e55df3ca0d35
9,154
py
Python
workflows/pipe-templates/__SYSTEM/data_loader/src/sys-data-upload.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
126
2019-03-22T19:40:38.000Z
2022-02-16T13:01:44.000Z
workflows/pipe-templates/__SYSTEM/data_loader/src/sys-data-upload.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
1,189
2019-03-25T10:39:27.000Z
2022-03-31T12:50:33.000Z
workflows/pipe-templates/__SYSTEM/data_loader/src/sys-data-upload.py
msleprosy/cloud-pipeline
bccc2b196fad982380efc37a1c3785098bec6c85
[ "Apache-2.0" ]
62
2019-03-22T22:09:49.000Z
2022-03-08T12:05:56.000Z
# Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pipeline import Logger, TaskStatus from model.entities_api import EntitiesAPI import os import time import multiprocessing from multiprocessing.pool import ThreadPool import subprocess import shlex UPLOAD_TASK_NAME = 'Upload' INPUT_CHECK_TASK_NAME = 'InputParametersCheck' METADATA_TASK_NAME = 'MetadataValuesExtraction' # TODO: Move this settings to the GUI UPLOAD_RETRY_COUNT = 5 UPLOAD_RETRY_TIMEOUT_SEC = 5 def upload_data(src, dst, f_name_format, c_name, c_type, create_folders, entity_id, m_id, ent_api, upd_paths): if not dst.endswith('/'): dst = dst + '/' if f_name_format is not None and c_name is not None: if create_folders: dst = dst + c_name + '/' + f_name_format else: dst = dst + f_name_format.format(c_name) elif f_name_format is None and c_name is not None and create_folders: dst = dst + c_name + '/' + src.split('/')[-1:][0] else: dst = dst + src.split('/')[-1:][0] code = 1 for upload_try_num in range(1, UPLOAD_RETRY_COUNT+1): Logger.info("Attempt #{}. Uploading {} to {}...".format(upload_try_num, src, dst), task_name=UPLOAD_TASK_NAME) Logger.info('Executing command \'pipe storage cp "{}" "{}" -f > /dev/null\''.format(src, dst), task_name=UPLOAD_TASK_NAME) code = os.system('pipe storage cp "{}" "{}" -f > /dev/null'.format(src, dst)) if code != 0: Logger.fail("Attempt #{}. Error uploading {} to {}".format(upload_try_num, src, dst), task_name=UPLOAD_TASK_NAME) if upload_try_num < UPLOAD_RETRY_COUNT: time.sleep(UPLOAD_RETRY_TIMEOUT_SEC) else: Logger.fail("All {} attempts failed for {}. Source is not uploaded".format(UPLOAD_RETRY_COUNT, src), task_name=UPLOAD_TASK_NAME) else: Logger.info("Uploading {} to {} done".format(src, dst), task_name=UPLOAD_TASK_NAME) if upd_paths: ent_api.update_key(m_id, entity_id, c_name, c_type, dst) break return code if __name__ == '__main__': Logger.info("Checking input parameters", task_name=INPUT_CHECK_TASK_NAME) scripts_dir = os.environ['SCRIPTS_DIR'] if 'DESTINATION_DIRECTORY' not in os.environ: Logger.fail("DESTINATION_DIRECTORY parameter is missing", task_name=INPUT_CHECK_TASK_NAME) exit(1) if 'METADATA_ID' not in os.environ: Logger.fail("METADATA_ID parameter is missing", task_name=INPUT_CHECK_TASK_NAME) exit(1) if 'METADATA_CLASS' not in os.environ: Logger.fail("METADATA_CLASS parameter is missing", task_name=INPUT_CHECK_TASK_NAME) exit(1) if 'METADATA_COLUMNS' not in os.environ: Logger.fail("METADATA_COLUMNS parameter is missing or invalid", task_name=INPUT_CHECK_TASK_NAME) exit(1) destination = os.environ['DESTINATION_DIRECTORY'] api_path = os.environ['API'] api_token = os.environ['API_TOKEN'] metadata_id = os.environ['METADATA_ID'] metadata_class = os.environ['METADATA_CLASS'] metadata_columns_str = os.environ['METADATA_COLUMNS'] metadata_entities = [] file_name_format_column = None if 'METADATA_ENTITIES' in os.environ: metadata_entities = map(lambda e: e.strip(), os.environ['METADATA_ENTITIES'].split(',')) if metadata_columns_str is None: metadata_columns_str = '' if 'FILE_NAME_FORMAT_COLUMN' in os.environ: file_name_format_column = os.environ['FILE_NAME_FORMAT_COLUMN'] create_folders_for_columns = \ os.environ['CREATE_FOLDERS_FOR_COLUMNS'].lower() == 'true' if 'CREATE_FOLDERS_FOR_COLUMNS' in os.environ else False update_paths = os.environ['UPDATE_PATH_VALUES'].lower() == 'true' if 'UPDATE_PATH_VALUES' in os.environ else False metadata_column_names = metadata_columns_str.split(',') metadata_columns_values = {} metadata_columns = [] for column in metadata_column_names: column_name = column.strip() if len(column_name) > 0: metadata_columns.append(column_name) metadata_columns_values[column_name] = [] Logger.info('Input parameters checked', task_name=INPUT_CHECK_TASK_NAME) Logger.info('Destination: {}'.format(destination), task_name=INPUT_CHECK_TASK_NAME) Logger.info('Metadata ID: {}'.format(metadata_id), task_name=INPUT_CHECK_TASK_NAME) Logger.info('Metadata Class: {}'.format(metadata_class), task_name=INPUT_CHECK_TASK_NAME) Logger.info('Metadata columns: {}'.format(', '.join(metadata_columns)), task_name=INPUT_CHECK_TASK_NAME) Logger.success("Done", task_name=INPUT_CHECK_TASK_NAME) Logger.info('Extracting metadata values (#{}, {}) for columns {}...'.format( metadata_id, metadata_class, ', '.join(metadata_columns) ), task_name=METADATA_TASK_NAME) api = EntitiesAPI(api_path, api_token) for el in api.load_all(metadata_id, metadata_class): if len(metadata_entities) > 0 and str(el.id) not in metadata_entities: continue if el.data is not None: for column in metadata_columns: if column in el.data and 'value' in el.data[column]: value = el.data[column]['value'].encode("utf-8") if not value.lower().startswith('http://') and not value.lower().startswith('https://') and not value.lower().startswith('ftp://'): Logger.info('Skipping {} ({}, #{}) - not http, https or ftp source'.format( el.data[column]['value'].encode("utf-8"),column,el.external_id), task_name=METADATA_TASK_NAME) continue column_type = el.data[column]['type'] file_name_format = None if file_name_format_column is not None and file_name_format_column in el.data and 'value' in el.data[file_name_format_column]: file_name_format = el.data[file_name_format_column]['value'].encode("utf-8") + '_{}' if not create_folders_for_columns else el.data[file_name_format_column]['value'].encode("utf-8") metadata_columns_values[column].append((el.external_id, el.id, value, column_type, file_name_format)) Logger.info('{} ({}, #{})'.format( el.data[column]['value'].encode("utf-8"), column, el.external_id ), task_name=METADATA_TASK_NAME) Logger.success("Done", task_name=METADATA_TASK_NAME) Logger.info("Starting uploading task", task_name=UPLOAD_TASK_NAME) cpu_count = multiprocessing.cpu_count() if 'MAX_THREADS_COUNT' in os.environ: max_threads_count = int(os.environ['MAX_THREADS_COUNT']) cpu_count = max_threads_count if max_threads_count < cpu_count else cpu_count pool = ThreadPool(cpu_count) pool_results = [] for column in metadata_columns: for (external_id, internal_id, url, column_type, file_name_format) in metadata_columns_values[column]: upload_result = pool.apply_async( upload_data, ( url, destination, file_name_format, column, column_type, create_folders_for_columns, internal_id, metadata_id, api, update_paths ) ) pool_results.append(upload_result) pool.close() pool.join() successes_count = sum([1 for x in pool_results if x.get() == 0]) if successes_count == len(pool_results): Logger.success("Upload done. All transfers completed successfully", task_name=UPLOAD_TASK_NAME) exit(0) elif successes_count == 0: Logger.fail("Upload completed with errors. ALL transfers FAILED\nPlease review errors above", task_name=UPLOAD_TASK_NAME) exit(1) else: Logger.warn("Upload completed with errors. SOME of the transfers failed to complete\nPlease review errors above", task_name=UPLOAD_TASK_NAME) exit(0)
48.951872
205
0.629342
5793e9e40749d896a72fc834c79370f6c8a5390d
5,076
py
Python
pychron/hardware/gauges/mks/base_mks_gauge.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
31
2016-03-07T02:38:17.000Z
2022-02-14T18:23:43.000Z
pychron/hardware/gauges/mks/base_mks_gauge.py
ASUPychron/pychron
dfe551bdeb4ff8b8ba5cdea0edab336025e8cc76
[ "Apache-2.0" ]
1,626
2015-01-07T04:52:35.000Z
2022-03-25T19:15:59.000Z
pychron/hardware/gauges/mks/base_mks_gauge.py
UIllinoisHALPychron/pychron
f21b79f4592a9fb9dc9a4cb2e4e943a3885ededc
[ "Apache-2.0" ]
26
2015-05-23T00:10:06.000Z
2022-03-07T16:51:57.000Z
# =============================================================================== # Copyright 2011 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= # ============= standard library imports ======================== # ============= local library imports ========================== # ============= views =================================== from __future__ import absolute_import from pychron.hardware.gauges.base_gauge import BaseGauge class BaseMKSGauge(BaseGauge): def set_transducer_identify(self, value): """ sends command to transducer to toggle LED pulse @type value: C{str} @param value: ON or OFF @see: L{MKSComs} """ m = "Setting %s, %s identify to %s" % (self.name, self.address, value) q = self._build_command(self.address, "pulse", value) self.info(m) self.ask(q) def _build_query(self, addr, typetag, setpointindex=1): """ build a query @type addr: C{s} @param addr: RS-485 address @type typetag: C{s} @param typetag: query type @rtype: C{s} @return: a valid HPS serial command """ if typetag == "pressure": s = "PR1" elif typetag == "filament": s = "FS" elif typetag == "setpoint_value": s = "SP%i" % setpointindex elif typetag == "setpoint_state": s = "SS%i" % setpointindex elif typetag == "setpoint_enable": s = "EN%i" % setpointindex rs = "@%s%s?;FF" % (addr, s) return rs def _build_command(self, addr, typetag, value, setpointindex=1): """ build a command @type addr: C{str} @param addr: RS-485 address @type typetag: C{str} @param typetag: query type @type value: C{str} @param value: command value @rtype: C{str} @return: a valid HPS serial command """ base = "@%s%s!%s;FF" if typetag == "power": tag = "wfile" s = base % (addr, tag, ("ON" if value else "OFF")) # s='@%s%s!%s;FF' % (addr, tag, value) elif typetag == "address": tag = "AD" s = base % (addr, tag, value) elif typetag == "pulse": tag = "TST" s = base % (addr, tag, value) # s='@%s%s!%s;FF' % (addr, tag, value) elif typetag == "setpoint_enable": tag = "EN%i" % setpointindex s = base % (addr, tag, ("ON" if value else "OFF")) elif typetag == "setpoint": tag = "SP%i" % setpointindex # for some reason mks gauges 925 do not like x.xxe-xx as sci notation # likes x.xxe-x # convert value scivalue = "%0.2e" % value a, b = scivalue.split("e") sign = b[:1] ex = b[-1:] v = "%sE%s%s" % (a, sign, ex) s = "@%s%s!%s;FF" % (addr, tag, v) # s='@%s%s!%0.1e;FF' % (addr, tag, value) elif typetag == "hysteresis": tag = "SH%i" % setpointindex s = "@%s%s!%s;FF" % (addr, tag, value) elif typetag == "degas": tag = "DG" s = "@%s%s!%s;FF" % (addr, tag, ("ON" if value else "OFF")) return s def _parse_response(self, type_, raw): """ parse a serial response @type_ type_: C{str} @param type_: the response type_ @type_ raw: C{str} @param raw: the raw response C{str} @rtype: C{str or boolean} @return: a float for pressure, boolean otherwise """ if self.simulation: return float(self.get_random_value(0, 10)) if raw == None: return data = raw.split(";") i = 0 if len(data) <= 2 else len(data) - 2 value = data[i] si = value.find("ACK") if si == -1: self.warning("%s" % raw) return else: si += 3 if type_ in ["pressure", "setpoint_value"]: v = value[si:] try: return float(v) except ValueError as e: self.warning(e) return elif type_ in ["filament", "setpoint_enable"]: return True if value[si:] == "ON" else False # ============= EOF ====================================
30.214286
81
0.48227
36585b8e103ed8c7adbe70e9f48f8dc616fbaead
22,344
py
Python
homeassistant/components/sensor/buienradar.py
dauden1184/home-assistant
f4c6d389b77d0efa86644e76604eaea5d21abdb5
[ "Apache-2.0" ]
4
2019-01-10T14:47:54.000Z
2021-04-22T02:06:27.000Z
homeassistant/components/sensor/buienradar.py
dauden1184/home-assistant
f4c6d389b77d0efa86644e76604eaea5d21abdb5
[ "Apache-2.0" ]
6
2021-02-08T21:02:40.000Z
2022-03-12T00:52:16.000Z
homeassistant/components/sensor/buienradar.py
dauden1184/home-assistant
f4c6d389b77d0efa86644e76604eaea5d21abdb5
[ "Apache-2.0" ]
3
2018-08-29T19:26:20.000Z
2020-01-19T11:58:22.000Z
""" Support for Buienradar.nl weather service. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.buienradar/ """ import asyncio from datetime import datetime, timedelta import logging import async_timeout import aiohttp import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( ATTR_ATTRIBUTION, CONF_LATITUDE, CONF_LONGITUDE, CONF_MONITORED_CONDITIONS, CONF_NAME, TEMP_CELSIUS) from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import ( async_track_point_in_utc_time) from homeassistant.util import dt as dt_util REQUIREMENTS = ['buienradar==0.91'] _LOGGER = logging.getLogger(__name__) MEASURED_LABEL = 'Measured' TIMEFRAME_LABEL = 'Timeframe' SYMBOL = 'symbol' # Schedule next call after (minutes): SCHEDULE_OK = 10 # When an error occurred, new call after (minutes): SCHEDULE_NOK = 2 # Supported sensor types: # Key: ['label', unit, icon] SENSOR_TYPES = { 'stationname': ['Stationname', None, None], 'condition': ['Condition', None, None], 'conditioncode': ['Condition code', None, None], 'conditiondetailed': ['Detailed condition', None, None], 'conditionexact': ['Full condition', None, None], 'symbol': ['Symbol', None, None], 'humidity': ['Humidity', '%', 'mdi:water-percent'], 'temperature': ['Temperature', TEMP_CELSIUS, 'mdi:thermometer'], 'groundtemperature': ['Ground temperature', TEMP_CELSIUS, 'mdi:thermometer'], 'windspeed': ['Wind speed', 'm/s', 'mdi:weather-windy'], 'windforce': ['Wind force', 'Bft', 'mdi:weather-windy'], 'winddirection': ['Wind direction', None, 'mdi:compass-outline'], 'windazimuth': ['Wind direction azimuth', '°', 'mdi:compass-outline'], 'pressure': ['Pressure', 'hPa', 'mdi:gauge'], 'visibility': ['Visibility', 'm', None], 'windgust': ['Wind gust', 'm/s', 'mdi:weather-windy'], 'precipitation': ['Precipitation', 'mm/h', 'mdi:weather-pouring'], 'irradiance': ['Irradiance', 'W/m2', 'mdi:sunglasses'], 'precipitation_forecast_average': ['Precipitation forecast average', 'mm/h', 'mdi:weather-pouring'], 'precipitation_forecast_total': ['Precipitation forecast total', 'mm', 'mdi:weather-pouring'], 'temperature_1d': ['Temperature 1d', TEMP_CELSIUS, 'mdi:thermometer'], 'temperature_2d': ['Temperature 2d', TEMP_CELSIUS, 'mdi:thermometer'], 'temperature_3d': ['Temperature 3d', TEMP_CELSIUS, 'mdi:thermometer'], 'temperature_4d': ['Temperature 4d', TEMP_CELSIUS, 'mdi:thermometer'], 'temperature_5d': ['Temperature 5d', TEMP_CELSIUS, 'mdi:thermometer'], 'mintemp_1d': ['Minimum temperature 1d', TEMP_CELSIUS, 'mdi:thermometer'], 'mintemp_2d': ['Minimum temperature 2d', TEMP_CELSIUS, 'mdi:thermometer'], 'mintemp_3d': ['Minimum temperature 3d', TEMP_CELSIUS, 'mdi:thermometer'], 'mintemp_4d': ['Minimum temperature 4d', TEMP_CELSIUS, 'mdi:thermometer'], 'mintemp_5d': ['Minimum temperature 5d', TEMP_CELSIUS, 'mdi:thermometer'], 'rain_1d': ['Rain 1d', 'mm', 'mdi:weather-pouring'], 'rain_2d': ['Rain 2d', 'mm', 'mdi:weather-pouring'], 'rain_3d': ['Rain 3d', 'mm', 'mdi:weather-pouring'], 'rain_4d': ['Rain 4d', 'mm', 'mdi:weather-pouring'], 'rain_5d': ['Rain 5d', 'mm', 'mdi:weather-pouring'], 'snow_1d': ['Snow 1d', 'cm', 'mdi:snowflake'], 'snow_2d': ['Snow 2d', 'cm', 'mdi:snowflake'], 'snow_3d': ['Snow 3d', 'cm', 'mdi:snowflake'], 'snow_4d': ['Snow 4d', 'cm', 'mdi:snowflake'], 'snow_5d': ['Snow 5d', 'cm', 'mdi:snowflake'], 'rainchance_1d': ['Rainchance 1d', '%', 'mdi:weather-pouring'], 'rainchance_2d': ['Rainchance 2d', '%', 'mdi:weather-pouring'], 'rainchance_3d': ['Rainchance 3d', '%', 'mdi:weather-pouring'], 'rainchance_4d': ['Rainchance 4d', '%', 'mdi:weather-pouring'], 'rainchance_5d': ['Rainchance 5d', '%', 'mdi:weather-pouring'], 'sunchance_1d': ['Sunchance 1d', '%', 'mdi:weather-partlycloudy'], 'sunchance_2d': ['Sunchance 2d', '%', 'mdi:weather-partlycloudy'], 'sunchance_3d': ['Sunchance 3d', '%', 'mdi:weather-partlycloudy'], 'sunchance_4d': ['Sunchance 4d', '%', 'mdi:weather-partlycloudy'], 'sunchance_5d': ['Sunchance 5d', '%', 'mdi:weather-partlycloudy'], 'windforce_1d': ['Wind force 1d', 'Bft', 'mdi:weather-windy'], 'windforce_2d': ['Wind force 2d', 'Bft', 'mdi:weather-windy'], 'windforce_3d': ['Wind force 3d', 'Bft', 'mdi:weather-windy'], 'windforce_4d': ['Wind force 4d', 'Bft', 'mdi:weather-windy'], 'windforce_5d': ['Wind force 5d', 'Bft', 'mdi:weather-windy'], 'condition_1d': ['Condition 1d', None, None], 'condition_2d': ['Condition 2d', None, None], 'condition_3d': ['Condition 3d', None, None], 'condition_4d': ['Condition 4d', None, None], 'condition_5d': ['Condition 5d', None, None], 'conditioncode_1d': ['Condition code 1d', None, None], 'conditioncode_2d': ['Condition code 2d', None, None], 'conditioncode_3d': ['Condition code 3d', None, None], 'conditioncode_4d': ['Condition code 4d', None, None], 'conditioncode_5d': ['Condition code 5d', None, None], 'conditiondetailed_1d': ['Detailed condition 1d', None, None], 'conditiondetailed_2d': ['Detailed condition 2d', None, None], 'conditiondetailed_3d': ['Detailed condition 3d', None, None], 'conditiondetailed_4d': ['Detailed condition 4d', None, None], 'conditiondetailed_5d': ['Detailed condition 5d', None, None], 'conditionexact_1d': ['Full condition 1d', None, None], 'conditionexact_2d': ['Full condition 2d', None, None], 'conditionexact_3d': ['Full condition 3d', None, None], 'conditionexact_4d': ['Full condition 4d', None, None], 'conditionexact_5d': ['Full condition 5d', None, None], 'symbol_1d': ['Symbol 1d', None, None], 'symbol_2d': ['Symbol 2d', None, None], 'symbol_3d': ['Symbol 3d', None, None], 'symbol_4d': ['Symbol 4d', None, None], 'symbol_5d': ['Symbol 5d', None, None], } CONF_TIMEFRAME = 'timeframe' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_MONITORED_CONDITIONS, default=['symbol', 'temperature']): vol.All( cv.ensure_list, vol.Length(min=1), [vol.In(SENSOR_TYPES.keys())]), vol.Inclusive(CONF_LATITUDE, 'coordinates', 'Latitude and longitude must exist together'): cv.latitude, vol.Inclusive(CONF_LONGITUDE, 'coordinates', 'Latitude and longitude must exist together'): cv.longitude, vol.Optional(CONF_TIMEFRAME, default=60): vol.All(vol.Coerce(int), vol.Range(min=5, max=120)), }) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Create the buienradar sensor.""" from homeassistant.components.weather.buienradar import DEFAULT_TIMEFRAME latitude = config.get(CONF_LATITUDE, hass.config.latitude) longitude = config.get(CONF_LONGITUDE, hass.config.longitude) timeframe = config.get(CONF_TIMEFRAME, DEFAULT_TIMEFRAME) if None in (latitude, longitude): _LOGGER.error("Latitude or longitude not set in HomeAssistant config") return False coordinates = {CONF_LATITUDE: float(latitude), CONF_LONGITUDE: float(longitude)} _LOGGER.debug("Initializing buienradar sensor coordinate %s, timeframe %s", coordinates, timeframe) dev = [] for sensor_type in config[CONF_MONITORED_CONDITIONS]: dev.append(BrSensor(sensor_type, config.get(CONF_NAME, 'br'), coordinates)) async_add_entities(dev) data = BrData(hass, coordinates, timeframe, dev) # schedule the first update in 1 minute from now: await data.schedule_update(1) class BrSensor(Entity): """Representation of an Buienradar sensor.""" def __init__(self, sensor_type, client_name, coordinates): """Initialize the sensor.""" from buienradar.buienradar import (PRECIPITATION_FORECAST, CONDITION) self.client_name = client_name self._name = SENSOR_TYPES[sensor_type][0] self.type = sensor_type self._state = None self._unit_of_measurement = SENSOR_TYPES[self.type][1] self._entity_picture = None self._attribution = None self._measured = None self._stationname = None self._unique_id = self.uid(coordinates) # All continuous sensors should be forced to be updated self._force_update = self.type != SYMBOL and \ not self.type.startswith(CONDITION) if self.type.startswith(PRECIPITATION_FORECAST): self._timeframe = None def uid(self, coordinates): """Generate a unique id using coordinates and sensor type.""" # The combination of the location, name and sensor type is unique return "%2.6f%2.6f%s" % (coordinates[CONF_LATITUDE], coordinates[CONF_LONGITUDE], self.type) def load_data(self, data): """Load the sensor with relevant data.""" # Find sensor from buienradar.buienradar import (ATTRIBUTION, CONDITION, CONDCODE, DETAILED, EXACT, EXACTNL, FORECAST, IMAGE, MEASURED, PRECIPITATION_FORECAST, STATIONNAME, TIMEFRAME) # Check if we have a new measurement, # otherwise we do not have to update the sensor if self._measured == data.get(MEASURED): return False self._attribution = data.get(ATTRIBUTION) self._stationname = data.get(STATIONNAME) self._measured = data.get(MEASURED) if self.type.endswith('_1d') or \ self.type.endswith('_2d') or \ self.type.endswith('_3d') or \ self.type.endswith('_4d') or \ self.type.endswith('_5d'): fcday = 0 if self.type.endswith('_2d'): fcday = 1 if self.type.endswith('_3d'): fcday = 2 if self.type.endswith('_4d'): fcday = 3 if self.type.endswith('_5d'): fcday = 4 # update all other sensors if self.type.startswith(SYMBOL) or self.type.startswith(CONDITION): try: condition = data.get(FORECAST)[fcday].get(CONDITION) except IndexError: _LOGGER.warning("No forecast for fcday=%s...", fcday) return False if condition: new_state = condition.get(CONDITION, None) if self.type.startswith(SYMBOL): new_state = condition.get(EXACTNL, None) if self.type.startswith('conditioncode'): new_state = condition.get(CONDCODE, None) if self.type.startswith('conditiondetailed'): new_state = condition.get(DETAILED, None) if self.type.startswith('conditionexact'): new_state = condition.get(EXACT, None) img = condition.get(IMAGE, None) if new_state != self._state or img != self._entity_picture: self._state = new_state self._entity_picture = img return True return False try: self._state = data.get(FORECAST)[fcday].get(self.type[:-3]) return True except IndexError: _LOGGER.warning("No forecast for fcday=%s...", fcday) return False if self.type == SYMBOL or self.type.startswith(CONDITION): # update weather symbol & status text condition = data.get(CONDITION, None) if condition: if self.type == SYMBOL: new_state = condition.get(EXACTNL, None) if self.type == CONDITION: new_state = condition.get(CONDITION, None) if self.type == 'conditioncode': new_state = condition.get(CONDCODE, None) if self.type == 'conditiondetailed': new_state = condition.get(DETAILED, None) if self.type == 'conditionexact': new_state = condition.get(EXACT, None) img = condition.get(IMAGE, None) if new_state != self._state or img != self._entity_picture: self._state = new_state self._entity_picture = img return True return False if self.type.startswith(PRECIPITATION_FORECAST): # update nested precipitation forecast sensors nested = data.get(PRECIPITATION_FORECAST) self._timeframe = nested.get(TIMEFRAME) self._state = nested.get(self.type[len(PRECIPITATION_FORECAST)+1:]) return True # update all other sensors self._state = data.get(self.type) return True @property def attribution(self): """Return the attribution.""" return self._attribution @property def unique_id(self): """Return the unique id.""" return self._unique_id @property def name(self): """Return the name of the sensor.""" return '{} {}'.format(self.client_name, self._name) @property def state(self): """Return the state of the device.""" return self._state @property def should_poll(self): """No polling needed.""" return False @property def entity_picture(self): """Weather symbol if type is symbol.""" return self._entity_picture @property def device_state_attributes(self): """Return the state attributes.""" from buienradar.buienradar import (PRECIPITATION_FORECAST) if self.type.startswith(PRECIPITATION_FORECAST): result = {ATTR_ATTRIBUTION: self._attribution} if self._timeframe is not None: result[TIMEFRAME_LABEL] = "%d min" % (self._timeframe) return result result = { ATTR_ATTRIBUTION: self._attribution, SENSOR_TYPES['stationname'][0]: self._stationname, } if self._measured is not None: # convert datetime (Europe/Amsterdam) into local datetime local_dt = dt_util.as_local(self._measured) result[MEASURED_LABEL] = local_dt.strftime("%c") return result @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement @property def icon(self): """Return possible sensor specific icon.""" return SENSOR_TYPES[self.type][2] @property def force_update(self): """Return true for continuous sensors, false for discrete sensors.""" return self._force_update class BrData: """Get the latest data and updates the states.""" def __init__(self, hass, coordinates, timeframe, devices): """Initialize the data object.""" self.devices = devices self.data = {} self.hass = hass self.coordinates = coordinates self.timeframe = timeframe async def update_devices(self): """Update all devices/sensors.""" if self.devices: tasks = [] # Update all devices for dev in self.devices: if dev.load_data(self.data): tasks.append(dev.async_update_ha_state()) if tasks: await asyncio.wait(tasks, loop=self.hass.loop) async def schedule_update(self, minute=1): """Schedule an update after minute minutes.""" _LOGGER.debug("Scheduling next update in %s minutes.", minute) nxt = dt_util.utcnow() + timedelta(minutes=minute) async_track_point_in_utc_time(self.hass, self.async_update, nxt) async def get_data(self, url): """Load data from specified url.""" from buienradar.buienradar import (CONTENT, MESSAGE, STATUS_CODE, SUCCESS) _LOGGER.debug("Calling url: %s...", url) result = {SUCCESS: False, MESSAGE: None} resp = None try: websession = async_get_clientsession(self.hass) with async_timeout.timeout(10, loop=self.hass.loop): resp = await websession.get(url) result[STATUS_CODE] = resp.status result[CONTENT] = await resp.text() if resp.status == 200: result[SUCCESS] = True else: result[MESSAGE] = "Got http statuscode: %d" % (resp.status) return result except (asyncio.TimeoutError, aiohttp.ClientError) as err: result[MESSAGE] = "%s" % err return result finally: if resp is not None: await resp.release() async def async_update(self, *_): """Update the data from buienradar.""" from buienradar.buienradar import (parse_data, CONTENT, DATA, MESSAGE, STATUS_CODE, SUCCESS) content = await self.get_data('http://xml.buienradar.nl') if not content.get(SUCCESS, False): content = await self.get_data('http://api.buienradar.nl') if content.get(SUCCESS) is not True: # unable to get the data _LOGGER.warning("Unable to retrieve xml data from Buienradar." "(Msg: %s, status: %s,)", content.get(MESSAGE), content.get(STATUS_CODE),) # schedule new call await self.schedule_update(SCHEDULE_NOK) return # rounding coordinates prevents unnecessary redirects/calls rainurl = 'http://gadgets.buienradar.nl/data/raintext/?lat={}&lon={}' rainurl = rainurl.format( round(self.coordinates[CONF_LATITUDE], 2), round(self.coordinates[CONF_LONGITUDE], 2) ) raincontent = await self.get_data(rainurl) if raincontent.get(SUCCESS) is not True: # unable to get the data _LOGGER.warning("Unable to retrieve raindata from Buienradar." "(Msg: %s, status: %s,)", raincontent.get(MESSAGE), raincontent.get(STATUS_CODE),) # schedule new call await self.schedule_update(SCHEDULE_NOK) return result = parse_data(content.get(CONTENT), raincontent.get(CONTENT), self.coordinates[CONF_LATITUDE], self.coordinates[CONF_LONGITUDE], self.timeframe) _LOGGER.debug("Buienradar parsed data: %s", result) if result.get(SUCCESS) is not True: if int(datetime.now().strftime('%H')) > 0: _LOGGER.warning("Unable to parse data from Buienradar." "(Msg: %s)", result.get(MESSAGE),) await self.schedule_update(SCHEDULE_NOK) return self.data = result.get(DATA) await self.update_devices() await self.schedule_update(SCHEDULE_OK) @property def attribution(self): """Return the attribution.""" from buienradar.buienradar import ATTRIBUTION return self.data.get(ATTRIBUTION) @property def stationname(self): """Return the name of the selected weatherstation.""" from buienradar.buienradar import STATIONNAME return self.data.get(STATIONNAME) @property def condition(self): """Return the condition.""" from buienradar.buienradar import CONDITION return self.data.get(CONDITION) @property def temperature(self): """Return the temperature, or None.""" from buienradar.buienradar import TEMPERATURE try: return float(self.data.get(TEMPERATURE)) except (ValueError, TypeError): return None @property def pressure(self): """Return the pressure, or None.""" from buienradar.buienradar import PRESSURE try: return float(self.data.get(PRESSURE)) except (ValueError, TypeError): return None @property def humidity(self): """Return the humidity, or None.""" from buienradar.buienradar import HUMIDITY try: return int(self.data.get(HUMIDITY)) except (ValueError, TypeError): return None @property def visibility(self): """Return the visibility, or None.""" from buienradar.buienradar import VISIBILITY try: return int(self.data.get(VISIBILITY)) except (ValueError, TypeError): return None @property def wind_speed(self): """Return the windspeed, or None.""" from buienradar.buienradar import WINDSPEED try: return float(self.data.get(WINDSPEED)) except (ValueError, TypeError): return None @property def wind_bearing(self): """Return the wind bearing, or None.""" from buienradar.buienradar import WINDAZIMUTH try: return int(self.data.get(WINDAZIMUTH)) except (ValueError, TypeError): return None @property def forecast(self): """Return the forecast data.""" from buienradar.buienradar import FORECAST return self.data.get(FORECAST)
39.338028
79
0.595641
e5800524522c3c4476faf2637092e0bc17a3cc04
81
py
Python
quad_ws/src/quad_simulation/quad_simulation/urdf/__init__.py
reubenstr/zuko
0d6733c1dce6ec16236323b0a2fdbd2a3b488b29
[ "MIT" ]
1
2022-03-09T00:37:09.000Z
2022-03-09T00:37:09.000Z
quad_ws/src/quad_simulation/quad_simulation/urdf/__init__.py
reubenstr/zuko
0d6733c1dce6ec16236323b0a2fdbd2a3b488b29
[ "MIT" ]
null
null
null
quad_ws/src/quad_simulation/quad_simulation/urdf/__init__.py
reubenstr/zuko
0d6733c1dce6ec16236323b0a2fdbd2a3b488b29
[ "MIT" ]
null
null
null
import os def getDataPath(): return os.path.join(os.path.dirname(__file__))
16.2
50
0.728395
d016d8895445bc84489daa6747daa419c2b1b433
2,501
py
Python
tests/api-rate-limit-test.py
caltechlibrary/pindu
61a8407a706cfed425d797b9533ec703c5040c09
[ "BSD-3-Clause" ]
16
2019-03-15T15:45:00.000Z
2022-01-17T18:40:02.000Z
tests/api-rate-limit-test.py
caltechlibrary/pindu
61a8407a706cfed425d797b9533ec703c5040c09
[ "BSD-3-Clause" ]
5
2019-03-16T20:39:15.000Z
2019-03-17T03:17:27.000Z
tests/api-rate-limit-test.py
caltechlibrary/pindu
61a8407a706cfed425d797b9533ec703c5040c09
[ "BSD-3-Clause" ]
1
2019-04-08T15:56:15.000Z
2019-04-08T15:56:15.000Z
#!/usr/bin/env python3 # ============================================================================= # @file test-api-rate-limit.py # @brief Test the raw rate limit, without Sidewall # @author Michael Hucka <mhucka@caltech.edu> # @license Please see the file named LICENSE in the project directory # @website https://github.com/caltechlibrary/sidewall # ============================================================================= import getpass import os import requests import sys from time import sleep # Global variables. # ............................................................................. # Counter. count = 0 # Utility functions # ............................................................................. def post_request(url, data = None, headers = None, json = None): '''Call requests.post(...) with arguments, and update count.''' global count count += 1 print('About to make post #{}'.format(count)) if json: return requests.post(url, json = json) else: return requests.post(url, data = data, headers = headers) def test(): '''Loop until we get a code 429, pause for 90 seconds, and do it again.''' global count while True: resp = post_request('https://app.dimensions.ai/api/dsl.json', data = 'search publications for "SBML" return publications limit 1', headers = headers) if resp.status_code != 200: print('Status code {} -- pausing for 90 sec ...'.format(resp.status_code)) sleep(90) print('Done sleeping -- resetting counter and resuming loop') count = 0 # Main code # ............................................................................. # Get the login info from the command line. try: user = input('Login name: ') # If it's a tty, use the version that doesn't echo the password. if sys.stdin.isatty(): password = getpass.getpass('Password: ') else: sys.stdout.write('Password: ') sys.stdout.flush() password = sys.stdin.readline().rstrip() except: print('Quitting') sys.exit(1) login = { 'username': user, 'password': password, } # Send credentials to Dimensions and get the session token. resp = post_request('https://app.dimensions.ai/api/auth.json', json = login) resp.raise_for_status() headers = {'Authorization': "JWT " + resp.json()['token']} # Loop repeatedly until the user hits ^C. test()
31.2625
96
0.534986
f8e3c880e21c01baa2276781b6728c345478e137
4,843
py
Python
brewerslab-orig-master/fakeheat.py
allena29/brewerslabng
f47e671971436b7af806b54f6019c5b185d7d194
[ "Apache-2.0" ]
1
2020-04-12T10:08:10.000Z
2020-04-12T10:08:10.000Z
brewerslab-orig-master/fakeheat.py
allena29/brewerslabng
f47e671971436b7af806b54f6019c5b185d7d194
[ "Apache-2.0" ]
2
2021-12-13T20:09:45.000Z
2022-03-08T21:09:57.000Z
brewerslab-orig-master/fakeheat.py
allena29/brewerslabng
f47e671971436b7af806b54f6019c5b185d7d194
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python import os import sys import time print "starting fake heater" tempc={'hltSetTemp': False,'mashSetTemp':False,'boilSetTemp':False,'fermSetTemp':False} tempx={'hltSetTemp': 0,'mashSetTemp':0,'boilSetTemp':0,'fermSetTemp':19.2} def handleTemp(probeId): global tempx if os.path.exists("ipc/fakeelement_%s" %(probeId)): o=open("ipc/fakeelement_%s" %(probeId)) settemp=float(o.read()) o.close() if not tempx[ probeId ] == settemp: tempc[probeId]=True tempx[probeId]=settemp try: a=1 os.unlink("ipc/fakeelement_%s" %(probeId)) except: pass print "setting %s to %s " %(probeId,settemp) def convertTemp(probe,probeid,settemp): global tempc settemp="%s" %(settemp) tmp="%s" %( settemp ) print probeid,tmp if tmp.count(".") < 1: tmp2 = "000" else: tmp2 = "%s0000 " %(tmp.split(".")[1]) tmp="000%s" %( settemp.split(".")[0]) if settemp < 100: temp="%s%s" %(tmp[-1:],tmp2[0:3]) else: temp="%s%s" %(tmp[-2:],tmp2[0:3]) print tempc[probe] if tempc[probe]: try: os.mkdir("ipc/fake1wire/%s/" %(probeid)) except: pass o=open("ipc/fake1wire/%s/w1_slave" %(probeid),"w") o.write("ff ff ff ff ff ff ff ff ff : crc=25 YES\n") print " writing probe id %s --> %s\n" %(probeid,temp) o.write("ff ff ff ff ff ff ff ff ff t=%s\n" %(temp)) o.close() return temp while 1: # handle temp reads in ipc files to see if we have been given an override from the gui handleTemp("hltSetTemp") handleTemp("hltSetTemp") handleTemp("mashSetTemp") handleTemp("fermSetTemp") handleTemp("boilSetTemp") # if our elements are on then we increase temps if not os.path.exists("ipc/relayZoneUseA") and os.path.exists("ipc/relayZoneA") and os.path.exists("ipc/gpioSsrA"): if tempx['hltSetTemp'] < 95: if tempx['hltSetTemp'] > 80: tempx['hltSetTemp']=tempx['hltSetTemp']+0.381 else: tempx['hltSetTemp']=tempx['hltSetTemp']+3.81 tempc['hltSetTemp']=True elif not os.path.exists("ipc/relayZoneUseA") and os.path.exists("ipc/relayZoneA") and not os.path.exists("ipc/gpioSsrA"): if tempx['hltSetTemp'] > 10: tempx['hltSetTemp']=tempx['hltSetTemp']- 0.2 tempc['hltSetTemp']=True if not os.path.exists("ipc/relayZoneUseB") and os.path.exists("ipc/relayZoneB") and os.path.exists("ipc/gpioSsrB"): if tempx['hltSetTemp'] < 95: if tempx['hltSetTemp'] > 80: tempx['hltSetTemp']=tempx['hltSetTemp']+0.381 else: tempx['hltSetTemp']=tempx['hltSetTemp']+3.81 tempc['hltSetTemp']=True elif not os.path.exists("ipc/relayZoneUseB") and os.path.exists("ipc/relayZoneB") and not os.path.exists("ipc/gpioSsrB"): if tempx['hltSetTemp'] > 10: tempx['hltSetTemp']=tempx['hltSetTemp']- 0.2 tempc['hltSetTemp']=True # Boil Element A on if os.path.exists("ipc/relayZoneUseA") and os.path.exists("ipc/relayZoneA") and os.path.exists("ipc/gpioSsrA"): if tempx['boilSetTemp'] < 97: if tempx['boilSetTemp'] > 80: tempx['boilSetTemp']=tempx['boilSetTemp']+0.181 else: tempx['boilSetTemp']=tempx['boilSetTemp']+1.91 tempc['boilSetTemp']=True if os.path.exists("ipc/relayZoneUseA") and os.path.exists("ipc/relayZoneA") and not os.path.exists("ipc/gpioSsrA"): if tempx['boilSetTemp'] > 10: tempx['boilSetTemp']=tempx['boilSetTemp']-0.2 tempc['boilSetTemp']=True if os.path.exists("ipc/relayZoneUseB") and os.path.exists("ipc/relayZoneB") and os.path.exists("ipc/gpioSsrB"): if tempx['boilSetTemp'] < 97: if tempx['boilSetTemp'] > 80: tempx['boilSetTemp']=tempx['boilSetTemp']+0.181 else: tempx['boilSetTemp']=tempx['boilSetTemp']+1.91 tempc['boilSetTemp']=True if os.path.exists("ipc/relayZoneUseB") and os.path.exists("ipc/relayZoneB") and not os.path.exists("ipc/gpioSsrB"): if tempx['boilSetTemp'] > 10: tempx['boilSetTemp']=tempx['boilSetTemp']-0.2 tempc['boilSetTemp']=True if os.path.exists("ipc/swFerm"): if os.path.exists('ipc/pinfermCool'): tempx['fermSetTemp']=tempx['fermSetTemp']-0.1 tempc['fermSetTemp']=True elif os.path.exists('ipc/pinfermHeat'): tempx['fermSetTemp']=tempx['fermSetTemp']+0.3 tempc['fermSetTemp']=True elif os.path.exists("ipc/fermdone"): tempx['fermSetTemp']=tempx['fermSetTemp']-0.02 tempc['fermSetTemp']=True else: tempx['fermSetTemp']=tempx['fermSetTemp']+0.02 tempc['fermSetTemp']=True # now writes out the files from pitmCfg import * cfg=pitmCfg() probeid=cfg.hltProbe temp=convertTemp( 'hltSetTemp',probeid,tempx['hltSetTemp'] ) probeid=cfg.mashAProbe temp=convertTemp( 'mashSetTemp',probeid,tempx['mashSetTemp'] ) probeid=cfg.mashBProbe temp=convertTemp( 'mashSetTemp',probeid, tempx['mashSetTemp'] ) probeid=cfg.boilProbe temp=convertTemp( 'boilSetTemp',probeid, tempx['boilSetTemp'] ) probeid=cfg.fermProbe temp=convertTemp( 'fermSetTemp',probeid, tempx['fermSetTemp'] ) time.sleep(2)
31.044872
122
0.683874
70d0e39ee30bfbcf2a75c9146ab02618069b136b
1,914
py
Python
pyNastran/dev/h5/h5_nastran_io.py
luzpaz/pyNastran
939e9eefdc87a3bf67939a23dc09f155b93969a0
[ "BSD-3-Clause" ]
293
2015-03-22T20:22:01.000Z
2022-03-14T20:28:24.000Z
pyNastran/dev/h5/h5_nastran_io.py
luzpaz/pyNastran
939e9eefdc87a3bf67939a23dc09f155b93969a0
[ "BSD-3-Clause" ]
512
2015-03-14T18:39:27.000Z
2022-03-31T16:15:43.000Z
pyNastran/dev/h5/h5_nastran_io.py
luzpaz/pyNastran
939e9eefdc87a3bf67939a23dc09f155b93969a0
[ "BSD-3-Clause" ]
136
2015-03-19T03:26:06.000Z
2022-03-25T22:14:54.000Z
from collections import OrderedDict from pyNastran.dev.h5.h5_nastran2 import get_gui_nastran_ugrid from pyNastran.gui.gui_objects.gui_result import GuiResult from pyNastran.gui.qt_files.colors import ( RED_FLOAT, BLUE_FLOAT, GREEN_FLOAT, LIGHT_GREEN_FLOAT, PINK_FLOAT, PURPLE_FLOAT, YELLOW_FLOAT, ORANGE_FLOAT) class H5NastranIO(): def __init__(self, gui): self.gui = gui def get_h5nastran_wildcard_geometry_results_functions(self): data = ('VSPAero', 'H5Nastran (*.h5)', self.load_h5nastran_geometry, None, None ) return data def load_h5nastran_geometry(self, hdf5_filename, name='main', plot=True, **kwargs): out = get_gui_nastran_ugrid( hdf5_filename, self.gui.grid, add_property_info=True, add_material_info=True, subcases=None, # default=None -> all modes=None, # default=None -> all results=None, # default=None -> all, ) model, ugrid, root, alt_grids, node_ids, element_ids, form, cases = out self.node_ids = node_ids ugrid = alt_grids['main'] del alt_grids['main'] for name, ugrid in alt_grids.items(): self.gui.create_alternate_vtk_grid( name, color=ORANGE_FLOAT, line_width=5, opacity=1., point_size=4, representation='point', follower_function=None) if self.gui.alt_grids: self.gui._add_alt_actors(self.gui.alt_grids) model_name = name self.gui.isubcase_name_map = {1: ['OpenVSP', '']} ID = 1 self.gui.node_ids = node_ids self.gui.element_ids = element_ids #form, cases = self._fill_cases(cases, ID, model) self.gui._finish_results_io2(model_name, form, cases) #self.gui.grid = ugrid def _fill_cases(cases, ID, model): pass
36.113208
87
0.631139
a05b0f7b06f2b6826d9ee1964f5fd42da3edd2e4
11,917
py
Python
main.py
FightingFranky/PKUAutoSubmit
012712f299efeac8d65f60ec51e288da0d2cce99
[ "Apache-2.0" ]
null
null
null
main.py
FightingFranky/PKUAutoSubmit
012712f299efeac8d65f60ec51e288da0d2cce99
[ "Apache-2.0" ]
null
null
null
main.py
FightingFranky/PKUAutoSubmit
012712f299efeac8d65f60ec51e288da0d2cce99
[ "Apache-2.0" ]
null
null
null
from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support.ui import Select from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver import Firefox, Chrome from selenium import webdriver from argparse import ArgumentParser from urllib.parse import quote import time import copy import sys import os import smtplib from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.header import Header TIMEOUT = 20 TIMESLP = 3 my_sender = '1692484707@qq.com' # 发件人邮箱账号 my_pass = 'fujkixpkjiyhcaji' # 发件人邮箱密码 my_user = '1071273936@qq.com' # 收件人邮箱账号 def mail(): ret = True try: cur_time = time.strftime("%d/%m/%Y") msgRoot = MIMEMultipart('related') msgRoot['From'] = Header('PKU-AutoSubmit', 'utf-8') msgRoot['To'] = Header('student', 'utf-8') subject = cur_time + ' 报备成功!' msgRoot['Subject'] = Header(subject, 'utf-8') msgAlternative = MIMEMultipart('alternative') msgRoot.attach(msgAlternative) mail_msg = """ <p>自动报备成功!</p> <p>截图:</p> <p><img src="cid:image1"></p> """ msgAlternative.attach(MIMEText(mail_msg, 'html', 'utf-8')) # 指定图片为当前目录 fp = open('result.png', 'rb') msgImage = MIMEImage(fp.read()) fp.close() # 定义图片 ID,在 HTML 文本中引用 msgImage.add_header('Content-ID', '<image1>') msgRoot.attach(msgImage) server = smtplib.SMTP_SSL("smtp.qq.com", 465) # 发件人邮箱中的SMTP服务器,端口是25 server.login(my_sender, my_pass) # 括号中对应的是发件人邮箱账号、邮箱密码 server.sendmail(my_sender, [my_user, ], msgRoot.as_string()) # 括号中对应的是发件人邮箱账号、收件人邮箱账号、发送邮件 server.quit() # 关闭连接 except Exception: # 如果 try 中的语句没有执行,则会执行下面的 ret=False ret = False return ret def login(driver, username, password, failed=0): if failed == 3: raise Exception('门户登录失败') iaaaUrl = 'https://iaaa.pku.edu.cn/iaaa/oauth.jsp' appName = quote('北京大学校内信息门户新版') redirectUrl = 'https://portal.pku.edu.cn/portal2017/ssoLogin.do' driver.get('https://portal.pku.edu.cn/portal2017/') driver.get( f'{iaaaUrl}?appID=portal2017&appName={appName}&redirectUrl={redirectUrl}' ) print('门户登陆中...') driver.find_element_by_id('user_name').send_keys(username) time.sleep(TIMESLP) driver.find_element_by_id('password').send_keys(password) time.sleep(TIMESLP) driver.find_element_by_id('logon_button').click() try: WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.LINK_TEXT, '我知道了'))) except: pass else: driver.find_element_by_link_text('我知道了').click() try: WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.ID, 'all'))) except: login(driver, username, password, failed + 1) else: print('门户登录成功!') def go_to_application_out(driver): driver.find_element_by_id('all').click() WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.ID, 'tag_s_stuCampusExEnReq'))) driver.find_element_by_id('tag_s_stuCampusExEnReq').click() time.sleep(TIMESLP) driver.switch_to.window(driver.window_handles[-1]) WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.CLASS_NAME, 'el-card__body'))) time.sleep(TIMESLP) driver.find_element_by_class_name('el-card__body').click() time.sleep(TIMESLP) WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.CLASS_NAME, 'el-input__inner'))) def go_to_application_in(driver): driver.get('https://portal.pku.edu.cn/portal2017/#/bizCenter') WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.ID, 'all'))) driver.find_element_by_id('all').click() WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.ID, 'tag_s_stuCampusExEnReq'))) driver.find_element_by_id('tag_s_stuCampusExEnReq').click() time.sleep(TIMESLP) driver.switch_to.window(driver.window_handles[-1]) WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.CLASS_NAME, 'el-card__body'))) time.sleep(TIMESLP) driver.find_element_by_class_name('el-card__body').click() time.sleep(TIMESLP) WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located((By.CLASS_NAME, 'el-select'))) def select_past_out(driver): driver.find_element_by_xpath( '//button/span[contains(text(),"出校")]').click() time.sleep(TIMESLP) def select_past_in(driver): driver.find_element_by_xpath( '//button/span[contains(text(),"入校")]').click() time.sleep(TIMESLP) def select_in_out(driver, way): driver.find_element_by_class_name('el-select').click() time.sleep(TIMESLP) driver.find_element_by_xpath(f'//li/span[text()="{way}"]').click() def select_reason(driver, choice): driver.find_element_by_class_name('el-select').click() time.sleep(TIMESLP) driver.find_element_by_xpath(f'//li/span[text()="{choice}"]').click() def select_campus(driver, campus): driver.find_elements_by_class_name('el-select')[1].click() time.sleep(TIMESLP) driver.find_element_by_xpath(f'//li/span[text()="{campus}"]').click() def select_destination(driver, destination): driver.find_elements_by_class_name('el-select')[2].click() time.sleep(TIMESLP) driver.find_element_by_xpath(f'//li/span[text()="{destination}"]').click() def select_district(driver, district): driver.find_elements_by_class_name('el-select')[3].click() time.sleep(TIMESLP) driver.find_element_by_xpath(f'//li/span[text()="{district}"]').click() def write_reason(driver, reason): driver.find_element_by_class_name('el-textarea__inner').send_keys( f'{reason}') time.sleep(TIMESLP) def write_track(driver, track): driver.find_elements_by_class_name('el-textarea__inner')[1].send_keys( f'{track}') time.sleep(TIMESLP) def write_street(driver, street): driver.find_elements_by_class_name('el-textarea__inner')[1].send_keys( f'{street}') time.sleep(TIMESLP) def click_check(driver): driver.find_element_by_class_name('el-checkbox__label').click() time.sleep(TIMESLP) def click_inPeking(driver): driver.find_element_by_class_name('el-radio__inner').click() time.sleep(TIMESLP) def submit(driver): driver.find_element_by_xpath( '//button/span[contains(text(),"保存")]').click() WebDriverWait(driver, TIMEOUT).until( EC.visibility_of_element_located( (By.XPATH, '(//button/span[contains(text(),"提交")])[3]'))) driver.find_element_by_xpath( '(//button/span[contains(text(),"提交")])[3]').click() time.sleep(TIMESLP) def screen_capture(driver): driver.back() driver.back() WebDriverWait(driver, 5).until( EC.visibility_of_element_located((By.CLASS_NAME, 'el-card__body'))) driver.find_elements_by_class_name('el-card__body')[1].click() WebDriverWait(driver, 5).until( EC.visibility_of_element_located( (By.XPATH, '//button/span[contains(text(),"加载更多")]'))) driver.maximize_window() time.sleep(0.1) driver.save_screenshot('result.png') print('备案历史截图已保存') def fill_out(driver, campus, reason, destination, track): print('开始填报出校备案') print('选择出校/入校 ', end='') select_in_out(driver, '出校') print('Done') print('选择校区 ', end='') select_campus(driver, campus) print('Done') print('选择出入校理由 ', end='') select_reason(driver, '学业') print('Done') print('填写出入校事由 ', end='') write_reason(driver, reason) print('Done') print('选择出校目的地 ', end='') select_destination(driver, destination) print('Done') print('填写出校行动轨迹 ', end='') write_track(driver, track) print('Done') click_check(driver) submit(driver) print('出校备案填报完毕!') def fill_in(driver, campus, reason, habitation, district, street): print('开始填报入校备案') print('选择出校/入校 ', end='') select_in_out(driver, '入校') print('Done') print('选择出入校事由 ', end='') select_reason(driver, '学业') print('Done') print('填写出入校事由 ', end='') write_reason(driver, reason) print('Done') if habitation != '北京': raise Exception('暂不支持京外入校备案,请手动填写') print('选择居住地所在区 ', end='') select_district(driver, district) print('Done') print('填写居住地所在街道 ', end='') write_street(driver, street) print('Done') click_inPeking(driver) click_check(driver) submit(driver) print('入校备案填报完毕!') def new_run(driver, username, password): login(driver, username, password) print('=================================') go_to_application_out(driver) select_past_out(driver) click_check(driver) submit(driver) print('出校备案完成') print('=================================') go_to_application_in(driver) select_past_in(driver) click_inPeking(driver) click_check(driver) submit(driver) print('入校备案完成') print('=================================') screen_capture(driver) print('=================================') ret = mail() if ret: print("邮件发送成功") else: print("邮件发送失败") print('可以愉快的玩耍啦!') def run(driver, username, password, campus, reason, destination, track, habitation, district, street): login(driver, username, password) print('=================================') go_to_application_out(driver) fill_out(driver, campus, reason, destination, track) print('=================================') go_to_application_in(driver) fill_in(driver, campus, reason, habitation, district, street) print('=================================') screen_capture(driver) print('=================================') ret = mail() if ret: print("邮件发送成功") else: print("邮件发送失败") print('可以愉快的玩耍啦!') if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--username', '-u', type=str, help='用户名') parser.add_argument('--password', '-p', type=str, help='密码') parser.add_argument('--campus', type=str, help='所在校区, 燕园、万柳、畅春园、圆明园、中关新园', default='燕园') parser.add_argument('--reason', type=str, help='出校原因, eg. 吃饭', default='回宿舍') parser.add_argument('--destination', type=str, help='出校目的地, eg. 北京', default='北京') parser.add_argument('--track', type=str, help='出校轨迹, eg. 畅春园食堂', default='东南门-理教-家园-东门') parser.add_argument('--habitation', type=str, help='入校前居住地, eg. 北京', default='北京') parser.add_argument('--district', type=str, help='入校前居住所在区, eg. 海淀区', default='海淀区') parser.add_argument('--street', type=str, help='入校前居住所在街道, eg. 燕园街道', default='燕园街道') args = parser.parse_args() args_public = copy.deepcopy(args) args_public.password = 'xxxxxxxx' print('Arguments: {}'.format(args_public)) print('Driver Launching...') # driver = Firefox() # driver = Chrome() if sys.platform == 'darwin': # macOS phantomjs_path = os.path.join('phantomjs', 'phantomjs-darwin') elif sys.platform == 'linux': # linux phantomjs_path = os.path.join('phantomjs', 'phantomjs-linux-x86_64') else: # windows phantomjs_path = os.path.join('phantomjs', 'phantomjs-windows.exe') driver = webdriver.PhantomJS(executable_path=phantomjs_path) # run(driver, args.username, args.password, args.campus, args.reason, # args.destination, args.track, args.habitation, args.district, # args.street) # new_run(driver, args.username, args.password) driver.close()
30.634961
99
0.652178
88180399d81cc7a74c19afedd76112c4a9f87cfb
17,456
py
Python
venv/lib/python3.6/site-packages/alembic/testing/plugin/plugin_base.py
aitoehigie/britecore_flask
eef1873dbe6b2cc21f770bc6dec783007ae4493b
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/alembic/testing/plugin/plugin_base.py
aitoehigie/britecore_flask
eef1873dbe6b2cc21f770bc6dec783007ae4493b
[ "MIT" ]
1
2021-06-01T23:32:38.000Z
2021-06-01T23:32:38.000Z
venv/lib/python3.6/site-packages/alembic/testing/plugin/plugin_base.py
aitoehigie/britecore_flask
eef1873dbe6b2cc21f770bc6dec783007ae4493b
[ "MIT" ]
null
null
null
# plugin/plugin_base.py # Copyright (C) 2005-2017 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Testing extensions. this module is designed to work as a testing-framework-agnostic library, so that we can continue to support nose and also begin adding new functionality via py.test. NOTE: copied/adapted from SQLAlchemy master for backwards compatibility; this should be removable when Alembic targets SQLAlchemy 1.0.0 """ from __future__ import absolute_import try: # unitttest has a SkipTest also but pytest doesn't # honor it unless nose is imported too... from nose import SkipTest except ImportError: from pytest import skip SkipTest = skip.Exception import sys import re py3k = sys.version_info.major >= 3 if py3k: import configparser else: import ConfigParser as configparser # late imports fixtures = None engines = None provision = None exclusions = None warnings = None assertions = None requirements = None config = None util = None file_config = None logging = None include_tags = set() exclude_tags = set() options = None def setup_options(make_option): make_option( "--log-info", action="callback", type="string", callback=_log, help="turn on info logging for <LOG> (multiple OK)", ) make_option( "--log-debug", action="callback", type="string", callback=_log, help="turn on debug logging for <LOG> (multiple OK)", ) make_option( "--db", action="append", type="string", dest="db", help="Use prefab database uri. Multiple OK, " "first one is run by default.", ) make_option( "--dbs", action="callback", zeroarg_callback=_list_dbs, help="List available prefab dbs", ) make_option( "--dburi", action="append", type="string", dest="dburi", help="Database uri. Multiple OK, " "first one is run by default.", ) make_option( "--dropfirst", action="store_true", dest="dropfirst", help="Drop all tables in the target database first", ) make_option( "--backend-only", action="store_true", dest="backend_only", help="Run only tests marked with __backend__", ) make_option( "--postgresql-templatedb", type="string", help="name of template database to use for Postgresql " "CREATE DATABASE (defaults to current database)", ) make_option( "--low-connections", action="store_true", dest="low_connections", help="Use a low number of distinct connections - " "i.e. for Oracle TNS", ) make_option( "--write-idents", type="string", dest="write_idents", help="write out generated follower idents to <file>, " "when -n<num> is used", ) make_option( "--reversetop", action="store_true", dest="reversetop", default=False, help="Use a random-ordering set implementation in the ORM " "(helps reveal dependency issues)", ) make_option( "--requirements", action="callback", type="string", callback=_requirements_opt, help="requirements class for testing, overrides setup.cfg", ) make_option( "--with-cdecimal", action="store_true", dest="cdecimal", default=False, help="Monkeypatch the cdecimal library into Python 'decimal' " "for all tests", ) make_option( "--include-tag", action="callback", callback=_include_tag, type="string", help="Include tests with tag <tag>", ) make_option( "--exclude-tag", action="callback", callback=_exclude_tag, type="string", help="Exclude tests with tag <tag>", ) make_option( "--mysql-engine", action="store", dest="mysql_engine", default=None, help="Use the specified MySQL storage engine for all tables, " "default is a db-default/InnoDB combo.", ) def configure_follower(follower_ident): """Configure required state for a follower. This invokes in the parent process and typically includes database creation. """ from alembic.testing import provision provision.FOLLOWER_IDENT = follower_ident def memoize_important_follower_config(dict_): """Store important configuration we will need to send to a follower. This invokes in the parent process after normal config is set up. This is necessary as py.test seems to not be using forking, so we start with nothing in memory, *but* it isn't running our argparse callables, so we have to just copy all of that over. """ dict_["memoized_config"] = { "include_tags": include_tags, "exclude_tags": exclude_tags, } def restore_important_follower_config(dict_): """Restore important configuration needed by a follower. This invokes in the follower process. """ include_tags.update(dict_["memoized_config"]["include_tags"]) exclude_tags.update(dict_["memoized_config"]["exclude_tags"]) def read_config(): global file_config file_config = configparser.ConfigParser() file_config.read(["setup.cfg", "test.cfg"]) def pre_begin(opt): """things to set up early, before coverage might be setup.""" global options options = opt for fn in pre_configure: fn(options, file_config) def set_coverage_flag(value): options.has_coverage = value def post_begin(): """things to set up later, once we know coverage is running.""" # Lazy setup of other options (post coverage) for fn in post_configure: fn(options, file_config) # late imports, has to happen after config as well # as nose plugins like coverage global util, fixtures, engines, exclusions, assertions, warnings, profiling, config, testing from alembic.testing import config, warnings, exclusions # noqa from alembic.testing import engines, fixtures # noqa from sqlalchemy import util # noqa warnings.setup_filters() def _log(opt_str, value, parser): global logging if not logging: import logging logging.basicConfig() if opt_str.endswith("-info"): logging.getLogger(value).setLevel(logging.INFO) elif opt_str.endswith("-debug"): logging.getLogger(value).setLevel(logging.DEBUG) def _list_dbs(*args): print("Available --db options (use --dburi to override)") for macro in sorted(file_config.options("db")): print("%20s\t%s" % (macro, file_config.get("db", macro))) sys.exit(0) def _requirements_opt(opt_str, value, parser): _setup_requirements(value) def _exclude_tag(opt_str, value, parser): exclude_tags.add(value.replace("-", "_")) def _include_tag(opt_str, value, parser): include_tags.add(value.replace("-", "_")) pre_configure = [] post_configure = [] def pre(fn): pre_configure.append(fn) return fn def post(fn): post_configure.append(fn) return fn @pre def _setup_options(opt, file_config): global options options = opt @pre def _monkeypatch_cdecimal(options, file_config): if options.cdecimal: import cdecimal sys.modules["decimal"] = cdecimal @post def _engine_uri(options, file_config): from alembic.testing import config from alembic.testing import provision if options.dburi: db_urls = list(options.dburi) else: db_urls = [] if options.db: for db_token in options.db: for db in re.split(r"[,\s]+", db_token): if db not in file_config.options("db"): raise RuntimeError( "Unknown URI specifier '%s'. " "Specify --dbs for known uris." % db ) else: db_urls.append(file_config.get("db", db)) if not db_urls: db_urls.append(file_config.get("db", "default")) for db_url in db_urls: if options.write_idents and provision.FOLLOWER_IDENT: # != 'master': with open(options.write_idents, "a") as file_: file_.write(provision.FOLLOWER_IDENT + " " + db_url + "\n") cfg = provision.setup_config( db_url, options, file_config, provision.FOLLOWER_IDENT ) if not config._current: cfg.set_as_current(cfg) @post def _requirements(options, file_config): requirement_cls = file_config.get("sqla_testing", "requirement_cls") _setup_requirements(requirement_cls) def _setup_requirements(argument): from alembic.testing import config if config.requirements is not None: return modname, clsname = argument.split(":") # importlib.import_module() only introduced in 2.7, a little # late mod = __import__(modname) for component in modname.split(".")[1:]: mod = getattr(mod, component) req_cls = getattr(mod, clsname) config.requirements = req_cls() @post def _prep_testing_database(options, file_config): from alembic.testing import config from alembic.testing.exclusions import against from sqlalchemy import schema from alembic import util from sqlalchemy import inspect if options.dropfirst: for cfg in config.Config.all_configs(): e = cfg.db inspector = inspect(e) try: view_names = inspector.get_view_names() except NotImplementedError: pass else: for vname in view_names: e.execute(schema._DropView(schema.Table(vname, schema.MetaData()))) if config.requirements.schemas.enabled_for_config(cfg): try: view_names = inspector.get_view_names(schema="test_schema") except NotImplementedError: pass else: for vname in view_names: e.execute( schema._DropView( schema.Table( vname, schema.MetaData(), schema="test_schema" ) ) ) for tname in reversed(inspector.get_table_names(order_by="foreign_key")): e.execute(schema.DropTable(schema.Table(tname, schema.MetaData()))) if config.requirements.schemas.enabled_for_config(cfg): for tname in reversed( inspector.get_table_names( order_by="foreign_key", schema="test_schema" ) ): e.execute( schema.DropTable( schema.Table(tname, schema.MetaData(), schema="test_schema") ) ) if against(cfg, "postgresql") and util.sqla_100: from sqlalchemy.dialects import postgresql for enum in inspector.get_enums("*"): e.execute( postgresql.DropEnumType( postgresql.ENUM(name=enum["name"], schema=enum["schema"]) ) ) @post def _reverse_topological(options, file_config): if options.reversetop: from sqlalchemy.orm.util import randomize_unitofwork randomize_unitofwork() @post def _post_setup_options(opt, file_config): from alembic.testing import config config.options = options config.file_config = file_config def want_class(cls): if not issubclass(cls, fixtures.TestBase): return False elif cls.__name__.startswith("_"): return False elif config.options.backend_only and not getattr(cls, "__backend__", False): return False else: return True def want_method(cls, fn): if not fn.__name__.startswith("test_"): return False elif fn.__module__ is None: return False elif include_tags: return ( hasattr(cls, "__tags__") and exclusions.tags(cls.__tags__).include_test(include_tags, exclude_tags) ) or ( hasattr(fn, "_sa_exclusion_extend") and fn._sa_exclusion_extend.include_test(include_tags, exclude_tags) ) elif exclude_tags and hasattr(cls, "__tags__"): return exclusions.tags(cls.__tags__).include_test(include_tags, exclude_tags) elif exclude_tags and hasattr(fn, "_sa_exclusion_extend"): return fn._sa_exclusion_extend.include_test(include_tags, exclude_tags) else: return True def generate_sub_tests(cls, module): if getattr(cls, "__backend__", False): for cfg in _possible_configs_for_cls(cls): orig_name = cls.__name__ # we can have special chars in these names except for the # pytest junit plugin, which is tripped up by the brackets # and periods, so sanitize alpha_name = re.sub(r"[_\[\]\.]+", "_", cfg.name) alpha_name = re.sub("_+$", "", alpha_name) name = "%s_%s" % (cls.__name__, alpha_name) subcls = type( name, (cls,), {"_sa_orig_cls_name": orig_name, "__only_on_config__": cfg}, ) setattr(module, name, subcls) yield subcls else: yield cls def start_test_class(cls): _do_skips(cls) _setup_engine(cls) def stop_test_class(cls): # from sqlalchemy import inspect # assert not inspect(testing.db).get_table_names() _restore_engine() def _restore_engine(): config._current.reset() def _setup_engine(cls): if getattr(cls, "__engine_options__", None): eng = engines.testing_engine(options=cls.__engine_options__) config._current.push_engine(eng) def before_test(test, test_module_name, test_class, test_name): pass def after_test(test): pass def _possible_configs_for_cls(cls, reasons=None): all_configs = set(config.Config.all_configs()) if cls.__unsupported_on__: spec = exclusions.db_spec(*cls.__unsupported_on__) for config_obj in list(all_configs): if spec(config_obj): all_configs.remove(config_obj) if getattr(cls, "__only_on__", None): spec = exclusions.db_spec(*util.to_list(cls.__only_on__)) for config_obj in list(all_configs): if not spec(config_obj): all_configs.remove(config_obj) if getattr(cls, "__only_on_config__", None): all_configs.intersection_update([cls.__only_on_config__]) if hasattr(cls, "__requires__"): requirements = config.requirements for config_obj in list(all_configs): for requirement in cls.__requires__: check = getattr(requirements, requirement) skip_reasons = check.matching_config_reasons(config_obj) if skip_reasons: all_configs.remove(config_obj) if reasons is not None: reasons.extend(skip_reasons) break if hasattr(cls, "__prefer_requires__"): non_preferred = set() requirements = config.requirements for config_obj in list(all_configs): for requirement in cls.__prefer_requires__: check = getattr(requirements, requirement) if not check.enabled_for_config(config_obj): non_preferred.add(config_obj) if all_configs.difference(non_preferred): all_configs.difference_update(non_preferred) return all_configs def _do_skips(cls): reasons = [] all_configs = _possible_configs_for_cls(cls, reasons) if getattr(cls, "__skip_if__", False): for c in getattr(cls, "__skip_if__"): if c(): raise SkipTest("'%s' skipped by %s" % (cls.__name__, c.__name__)) if not all_configs: msg = "'%s' unsupported on any DB implementation %s%s" % ( cls.__name__, ", ".join( "'%s(%s)+%s'" % ( config_obj.db.name, ".".join( str(dig) for dig in config_obj.db.dialect.server_version_info ), config_obj.db.driver, ) for config_obj in config.Config.all_configs() ), ", ".join(reasons), ) raise SkipTest(msg) elif hasattr(cls, "__prefer_backends__"): non_preferred = set() spec = exclusions.db_spec(*util.to_list(cls.__prefer_backends__)) for config_obj in all_configs: if not spec(config_obj): non_preferred.add(config_obj) if all_configs.difference(non_preferred): all_configs.difference_update(non_preferred) if config._current not in all_configs: _setup_config(all_configs.pop(), cls) def _setup_config(config_obj, ctx): config._current.push(config_obj)
28.337662
96
0.610907
e6813863dc09412eb63ac6859e7b165769171c28
142
py
Python
Code/odooerp/odoo-8.0/openerp/addons/test_impex/tests/__init__.py
zhupangithub/WEBERP
714512082ec5c6db07cbf6af0238ceefe2d2c1a5
[ "MIT" ]
1
2019-12-29T11:53:56.000Z
2019-12-29T11:53:56.000Z
odoo/openerp/addons/test_impex/tests/__init__.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
null
null
null
odoo/openerp/addons/test_impex/tests/__init__.py
tuanquanghpvn/odoo8-tutorial
52d25f1ca5f233c431cb9d3b24b79c3b4fb5127e
[ "MIT" ]
3
2020-10-08T14:42:10.000Z
2022-01-28T14:12:29.000Z
# -*- coding: utf-8 -*- from . import test_export, test_import, test_load # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
23.666667
65
0.739437
dcf99296809e0cfce7fd722a47d82fa664197090
1,440
py
Python
pythonbox.py
slacke/red-text
2e9a492b67392e7379550b336ae9559c4f63c824
[ "MIT" ]
3
2021-01-16T15:07:41.000Z
2022-03-09T09:24:17.000Z
pythonbox.py
slacke/pythonbox
64bb30a6efa8a28c7eacc919395d8be9ea26942d
[ "MIT" ]
null
null
null
pythonbox.py
slacke/pythonbox
64bb30a6efa8a28c7eacc919395d8be9ea26942d
[ "MIT" ]
null
null
null
import sys,os # get current path pythonbox_path = os.path.dirname(__file__) customs_path = pythonbox_path + r"\customs" packages_path = pythonbox_path + r"\packages" # add path to python sys path sys.path.append(customs_path) sys.path.append(packages_path) print("Modify PYTHONPATH...") # read pythonbox.ini and add to environment path if(os.path.exists("pythonbox.ini")): f = open("pythonbox.ini", "r") raw_lines = f.read() f.close() raw_lines = raw_lines.replace("\r", "") raw_lines = raw_lines.rstrip("\n ") raw_lines = raw_lines.split("\n") os_path_splitted = os.environ["PATH"].split(";") reading_path = False for line in raw_lines: if (len(line) == 0 or line[0] == "*"): continue if (len(line) == 0 or line[0] == "["): if reading_path: break if line == "[System environment path]": reading_path = True continue if reading_path: path_splitted = line.split("\\") if path_splitted[0] == ".": path_splitted[0] = pythonbox_path line = "\\".join(path_splitted) os_path_splitted.append(line) os.environ["PATH"] = ";".join(os_path_splitted) print("Modify system environment PATH") else: print("File: pythonbox.ini not found, system environment PATH will not be modified.")
34.285714
90
0.5875
9b9d2e70d145a7dd8c06d8dcc58b5f5b66068cfa
3,958
py
Python
src/tests/fidl/source_compatibility/gen/scaffolding.py
liexusong/fuchsia
81897680af92a1848a063e3c20ff3a4892ccff07
[ "BSD-2-Clause" ]
3
2021-09-02T07:21:06.000Z
2022-03-12T03:20:10.000Z
src/tests/fidl/source_compatibility/gen/scaffolding.py
liexusong/fuchsia
81897680af92a1848a063e3c20ff3a4892ccff07
[ "BSD-2-Clause" ]
56
2021-06-03T03:16:25.000Z
2022-03-20T01:07:44.000Z
src/tests/fidl/source_compatibility/gen/scaffolding.py
liexusong/fuchsia
81897680af92a1848a063e3c20ff3a4892ccff07
[ "BSD-2-Clause" ]
2
2022-02-25T12:22:49.000Z
2022-03-12T03:20:10.000Z
# Copyright 2020 The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Functions responsible for actually writing out source files, driven by the generate_test.py code. """ import datetime import os from pathlib import Path from types_ import (HLCPP, LLCPP, RUST, DART, GO) year = datetime.datetime.now().year fuchsia_copyright = ''' // Copyright {year} The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. '''.format(year=year).strip() fidl_file = ''' {lib_decl}; // [START contents] // INSERT FIDL HERE // [END contents] ''' hlcpp_init = ''' #include <fidl/test/{library_name}/cpp/fidl.h> // nogncheck namespace fidl_test = fidl::test::{library_name}; // [START contents] // INSERT TEST CODE HERE // [END contents] int main(int argc, const char** argv) {{ return 0; }} ''' llcpp_init = ''' #include <fidl/test/{library_name}/llcpp/fidl.h> // nogncheck namespace fidl_test = fidl_test::{library_name}; // [START contents] // INSERT TEST CODE HERE // [END contents] int main(int argc, const char** argv) {{ return 0; }} ''' rust_init = ''' #![allow(dead_code)] use fidl_fidl_test_{library_name} as fidl_lib; // [START contents] // INSERT TEST CODE HERE // [END contents] fn main() {{}} ''' go_init = ''' // +build !build_with_native_toolchain package main import ( lib "fidl/fidl/test/{library_name}" "syscall/zx/fidl" ) // [START contents] // INSERT TEST CODE HERE // [END contents] func main() {{}} ''' dart_init = ''' import 'package:fidl_fidl_test_{library_name}/fidl_async.dart' as fidllib; // [START contents] // INSERT TEST CODE HERE // [END contents] ''' init_by_binding = { HLCPP: hlcpp_init, LLCPP: llcpp_init, RUST: rust_init, GO: go_init, DART: dart_init, } gn_template = f'# Copyright {year}' + ''' The Fuchsia Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import("//src/tests/fidl/source_compatibility/fidl_source_compatibility.gni") source_compatibility_test("{library_name}") {{ json = "test.json" sidecar = "test_gn_sidecar.json" }} group("tests") {{ deps = [ ":{library_name}" ] }} ''' def initialize_fidl(path: Path, library_name: str): os.makedirs(path.parent, exist_ok=True) initialize_file(path, get_fidl(library_name)) def initialize_src(path: Path, binding: str, fidl_library_name: str): os.makedirs(path.parent, exist_ok=True) initialize_file(path, get_src(binding, fidl_library_name)) def initialize_file(path: Path, contents: str): if path.exists(): return with open(path, 'w') as f: f.write(contents) block_on_prompt( f'Add starter code to {path.name} as desired, then press enter to continue ' ) def add_file(src_dir, prev: str, curr: str): if (src_dir / curr).exists(): return with open(src_dir / prev, 'r') as previous_f: with open(src_dir / curr, 'w+') as current_f: contents = previous_f.read() current_f.write(contents) block_on_prompt(f'Modify {curr} as desired, then press enter to continue ') def get_fidl(library_name: str) -> str: return fuchsia_copyright + fidl_file.format( lib_decl=fidl_lib_decl(library_name)) def fidl_lib_decl(library_name: str) -> str: return f'library fidl.test.{library_name}' def get_src(binding: str, library_name: str) -> str: return fuchsia_copyright + init_by_binding[binding].format( library_name=library_name) def block_on_prompt(prompt: str): """ Prints the prompt, and blocks on user input, then clears the prompt. """ input(prompt) # clear the prompt move_cursor_up_n(2) print('\r' + ' ' * len(prompt), end='\r') def move_cursor_up_n(n: int): print(f'\033[{n}A')
22.617143
84
0.683931
efe826f9128f5e9ba85859ea625e6cd154f25d7e
224
py
Python
submissions/arc024/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
1
2021-05-10T01:16:28.000Z
2021-05-10T01:16:28.000Z
submissions/arc024/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
3
2021-05-11T06:14:15.000Z
2021-06-19T08:18:36.000Z
submissions/arc024/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
null
null
null
import sys input = sys.stdin.readline L, R= map(int, input().split()) l = list(map(int, input().split())) r = list(map(int, input().split())) ans = 0 for i in l: if i in r: r.remove(i) ans += 1 print(ans)
14.933333
35
0.566964
7f40af94eed4c69feac235dac0359f4933bd827e
630
py
Python
huobi/service/wallet/get_account_withdraw_address.py
xujunhuii/huobi_Python
958df8b22ce774329c7e15a1ecf2f52eea5f6af8
[ "Apache-2.0" ]
null
null
null
huobi/service/wallet/get_account_withdraw_address.py
xujunhuii/huobi_Python
958df8b22ce774329c7e15a1ecf2f52eea5f6af8
[ "Apache-2.0" ]
null
null
null
huobi/service/wallet/get_account_withdraw_address.py
xujunhuii/huobi_Python
958df8b22ce774329c7e15a1ecf2f52eea5f6af8
[ "Apache-2.0" ]
null
null
null
from huobi.connection.restapi_sync_client import RestApiSyncClient from huobi.constant import * from huobi.model.wallet import * from huobi.utils import * class GetAccountWithdrawAddressService: def __init__(self, params): self.params = params def request(self, **kwargs): channel = "/v2/account/withdraw/address" def parse(dict_data): data_list = dict_data.get("data", []) return default_parse_list_dict(data_list, ChainWithdrawAddress) return RestApiSyncClient(**kwargs).request_process( HttpMethod.GET_SIGN, channel, self.params, parse )
30
75
0.696825
0f5f568e55cfa4aa27360728d9e6b15a02e059d2
39,098
py
Python
vtgs/v1.1/vtgs_trx_file.py
vt-rocksat-2017/waveforms
a44638ad79744007cf58aaf54f5d9517742004cc
[ "MIT" ]
null
null
null
vtgs/v1.1/vtgs_trx_file.py
vt-rocksat-2017/waveforms
a44638ad79744007cf58aaf54f5d9517742004cc
[ "MIT" ]
null
null
null
vtgs/v1.1/vtgs_trx_file.py
vt-rocksat-2017/waveforms
a44638ad79744007cf58aaf54f5d9517742004cc
[ "MIT" ]
1
2020-04-30T05:03:34.000Z
2020-04-30T05:03:34.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ################################################## # GNU Radio Python Flow Graph # Title: VTGS Rocksat-X 2017 Transceiver v2.0 # Generated: Sat Aug 12 12:10:38 2017 ################################################## if __name__ == '__main__': import ctypes import sys if sys.platform.startswith('linux'): try: x11 = ctypes.cdll.LoadLibrary('libX11.so') x11.XInitThreads() except: print "Warning: failed to XInitThreads()" from PyQt4 import Qt from gnuradio import analog from gnuradio import blocks from gnuradio import digital from gnuradio import eng_notation from gnuradio import filter from gnuradio import gr from gnuradio import qtgui from gnuradio.eng_option import eng_option from gnuradio.filter import firdes from gnuradio.qtgui import Range, RangeWidget from grc_gnuradio import blks2 as grc_blks2 from optparse import OptionParser import kiss import mapper import pmt,struct,numpy,math ; from datetime import datetime as dt; import string import pyqt import sip import sys import vtgs from gnuradio import qtgui class vtgs_trx_file(gr.top_block, Qt.QWidget): def __init__(self, gs_name='VTGS', ip='0.0.0.0', meta_rate=.1, port='52003', record_iq=0, record_rfo=0, record_snr=0, tx_freq=1265e6, tx_offset=250e3): gr.top_block.__init__(self, "VTGS Rocksat-X 2017 Transceiver v2.0") Qt.QWidget.__init__(self) self.setWindowTitle("VTGS Rocksat-X 2017 Transceiver v2.0") qtgui.util.check_set_qss() try: self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) except: pass self.top_scroll_layout = Qt.QVBoxLayout() self.setLayout(self.top_scroll_layout) self.top_scroll = Qt.QScrollArea() self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) self.top_scroll_layout.addWidget(self.top_scroll) self.top_scroll.setWidgetResizable(True) self.top_widget = Qt.QWidget() self.top_scroll.setWidget(self.top_widget) self.top_layout = Qt.QVBoxLayout(self.top_widget) self.top_grid_layout = Qt.QGridLayout() self.top_layout.addLayout(self.top_grid_layout) self.settings = Qt.QSettings("GNU Radio", "vtgs_trx_file") self.restoreGeometry(self.settings.value("geometry").toByteArray()) ################################################## # Parameters ################################################## self.gs_name = gs_name self.ip = ip self.meta_rate = meta_rate self.port = port self.record_iq = record_iq self.record_rfo = record_rfo self.record_snr = record_snr self.tx_freq = tx_freq self.tx_offset = tx_offset ################################################## # Variables ################################################## self.ts_str = ts_str = dt.strftime(dt.utcnow(), "%Y%m%d_%H%M%S.%f" )+'_UTC' self.samp_rate = samp_rate = 500e3 self.baud = baud = 125e3 self.snr_fn = snr_fn = "{:s}_{:s}.snr".format(gs_name, ts_str) self.samps_per_symb = samps_per_symb = int(samp_rate/baud) self.rx_freq = rx_freq = 2395e6 self.rfo_fn = rfo_fn = "{:s}_{:s}.rfo".format(gs_name, ts_str) self.iq_fn = iq_fn = "{:s}_{:s}_{:s}k.fc32".format(gs_name, ts_str, str(int(samp_rate)/1000)) self.alpha = alpha = 0.5 self.uplink_label = uplink_label = '' self.tx_gain = tx_gain = 25 self.tx_correct = tx_correct = 2000 self.snr_fp = snr_fp = "/captures/rocksat/{:s}".format(snr_fn) self.rx_offset = rx_offset = 250e3 self.rx_gain = rx_gain = 1 self.rx_freq_lbl = rx_freq_lbl = "{:4.3f}".format(rx_freq/1e6) self.rrc_filter_taps = rrc_filter_taps = firdes.root_raised_cosine(32, 1.0, 1.0/(samps_per_symb*32), alpha, samps_per_symb*32) self.rfo_fp = rfo_fp = "/captures/rocksat/{:s}".format(rfo_fn) self.mult = mult = (samp_rate)/2/3.141593 self.lpf_taps = lpf_taps = firdes.low_pass(1.0, samp_rate, samp_rate/2, 1000, firdes.WIN_HAMMING, 6.76) self.lo = lo = 1833e6 self.khz_offset = khz_offset = 0 self.iq_fp = iq_fp = "/captures/rocksat/{:s}".format(iq_fn) self.bb_gain = bb_gain = .75 ################################################## # Blocks ################################################## self._khz_offset_range = Range(-150, 150, 1, 0, 200) self._khz_offset_win = RangeWidget(self._khz_offset_range, self.set_khz_offset, 'Offset [kHz]', "counter_slider", float) self.top_grid_layout.addWidget(self._khz_offset_win, 4,8,1,4) self._bb_gain_range = Range(0, 1, .01, .75, 200) self._bb_gain_win = RangeWidget(self._bb_gain_range, self.set_bb_gain, 'bb_gain', "counter_slider", float) self.top_grid_layout.addWidget(self._bb_gain_win, 11,8,1,4) self.vtgs_mult_descrambler_0 = vtgs.mult_descrambler(17, 0x3FFFF) self.vtgs_ao40_decoder_0_0 = vtgs.ao40_decoder() self._uplink_label_tool_bar = Qt.QToolBar(self) if None: self._uplink_label_formatter = None else: self._uplink_label_formatter = lambda x: str(x) self._uplink_label_tool_bar.addWidget(Qt.QLabel('TX MSG'+": ")) self._uplink_label_label = Qt.QLabel(str(self._uplink_label_formatter(self.uplink_label))) self._uplink_label_tool_bar.addWidget(self._uplink_label_label) self.top_grid_layout.addWidget(self._uplink_label_tool_bar, 9,8,1,1) self._tx_gain_range = Range(0, 86, 1, 25, 200) self._tx_gain_win = RangeWidget(self._tx_gain_range, self.set_tx_gain, 'TX Gain', "counter_slider", float) self.top_grid_layout.addWidget(self._tx_gain_win, 10,8,1,4) self._tx_correct_range = Range(-10000, 10000, 1, 2000, 200) self._tx_correct_win = RangeWidget(self._tx_correct_range, self.set_tx_correct, "tx_correct", "counter_slider", float) self.top_grid_layout.addWidget(self._tx_correct_win, 12,8,1,4) self._rx_gain_range = Range(0, 86, 1, 1, 200) self._rx_gain_win = RangeWidget(self._rx_gain_range, self.set_rx_gain, 'RX Gain', "counter_slider", float) self.top_grid_layout.addWidget(self._rx_gain_win, 3,8,1,4) self._rx_freq_lbl_tool_bar = Qt.QToolBar(self) if None: self._rx_freq_lbl_formatter = None else: self._rx_freq_lbl_formatter = lambda x: str(x) self._rx_freq_lbl_tool_bar.addWidget(Qt.QLabel('RX Freq [MHz]'+": ")) self._rx_freq_lbl_label = Qt.QLabel(str(self._rx_freq_lbl_formatter(self.rx_freq_lbl))) self._rx_freq_lbl_tool_bar.addWidget(self._rx_freq_lbl_label) self.top_grid_layout.addWidget(self._rx_freq_lbl_tool_bar, 0,10,1,2) self.rational_resampler_xxx_2 = filter.rational_resampler_ccc( interpolation=1, decimation=10, taps=None, fractional_bw=None, ) self.rational_resampler_xxx_1 = filter.rational_resampler_ccc( interpolation=1, decimation=8, taps=None, fractional_bw=None, ) self.rational_resampler_xxx_0 = filter.rational_resampler_ccc( interpolation=1, decimation=8, taps=None, fractional_bw=None, ) self.qtgui_waterfall_sink_x_0 = qtgui.waterfall_sink_c( 4096, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate, #bw '', #name 1 #number of inputs ) self.qtgui_waterfall_sink_x_0.set_update_time(0.010) self.qtgui_waterfall_sink_x_0.enable_grid(True) self.qtgui_waterfall_sink_x_0.enable_axis_labels(True) if not False: self.qtgui_waterfall_sink_x_0.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_waterfall_sink_x_0.set_plot_pos_half(not True) labels = ['pre-d', 'post', '', '', '', '', '', '', '', ''] colors = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_waterfall_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_waterfall_sink_x_0.set_line_label(i, labels[i]) self.qtgui_waterfall_sink_x_0.set_color_map(i, colors[i]) self.qtgui_waterfall_sink_x_0.set_line_alpha(i, alphas[i]) self.qtgui_waterfall_sink_x_0.set_intensity_range(-130, -20) self._qtgui_waterfall_sink_x_0_win = sip.wrapinstance(self.qtgui_waterfall_sink_x_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_waterfall_sink_x_0_win, 5,0,4,8) self.qtgui_number_sink_2 = qtgui.number_sink( gr.sizeof_float, 0, qtgui.NUM_GRAPH_HORIZ, 1 ) self.qtgui_number_sink_2.set_update_time(0.10) self.qtgui_number_sink_2.set_title("") labels = ['EVM', '', '', '', '', '', '', '', '', ''] units = ['', '', '', '', '', '', '', '', '', ''] colors = [("blue", "red"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black")] factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for i in xrange(1): self.qtgui_number_sink_2.set_min(i, -1) self.qtgui_number_sink_2.set_max(i, 1) self.qtgui_number_sink_2.set_color(i, colors[i][0], colors[i][1]) if len(labels[i]) == 0: self.qtgui_number_sink_2.set_label(i, "Data {0}".format(i)) else: self.qtgui_number_sink_2.set_label(i, labels[i]) self.qtgui_number_sink_2.set_unit(i, units[i]) self.qtgui_number_sink_2.set_factor(i, factor[i]) self.qtgui_number_sink_2.enable_autoscale(False) self._qtgui_number_sink_2_win = sip.wrapinstance(self.qtgui_number_sink_2.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_number_sink_2_win, 2,8,1,4) self.qtgui_number_sink_0_0_0_0 = qtgui.number_sink( gr.sizeof_float, 0, qtgui.NUM_GRAPH_HORIZ, 1 ) self.qtgui_number_sink_0_0_0_0.set_update_time(0.10) self.qtgui_number_sink_0_0_0_0.set_title("") labels = ['SNR', '', '', '', '', '', '', '', '', ''] units = ['dB', '', '', '', '', '', '', '', '', ''] colors = [("blue", "red"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black")] factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for i in xrange(1): self.qtgui_number_sink_0_0_0_0.set_min(i, 0) self.qtgui_number_sink_0_0_0_0.set_max(i, 30) self.qtgui_number_sink_0_0_0_0.set_color(i, colors[i][0], colors[i][1]) if len(labels[i]) == 0: self.qtgui_number_sink_0_0_0_0.set_label(i, "Data {0}".format(i)) else: self.qtgui_number_sink_0_0_0_0.set_label(i, labels[i]) self.qtgui_number_sink_0_0_0_0.set_unit(i, units[i]) self.qtgui_number_sink_0_0_0_0.set_factor(i, factor[i]) self.qtgui_number_sink_0_0_0_0.enable_autoscale(False) self._qtgui_number_sink_0_0_0_0_win = sip.wrapinstance(self.qtgui_number_sink_0_0_0_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_number_sink_0_0_0_0_win, 1,8,1,4) self.qtgui_number_sink_0 = qtgui.number_sink( gr.sizeof_float, 0, qtgui.NUM_GRAPH_NONE, 1 ) self.qtgui_number_sink_0.set_update_time(0.10) self.qtgui_number_sink_0.set_title("") labels = ['RX Freq Offset', 'SNR', '', '', '', '', '', '', '', ''] units = ['Hz', 'dB', '', '', '', '', '', '', '', ''] colors = [("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black"), ("black", "black")] factor = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] for i in xrange(1): self.qtgui_number_sink_0.set_min(i, -1) self.qtgui_number_sink_0.set_max(i, 1) self.qtgui_number_sink_0.set_color(i, colors[i][0], colors[i][1]) if len(labels[i]) == 0: self.qtgui_number_sink_0.set_label(i, "Data {0}".format(i)) else: self.qtgui_number_sink_0.set_label(i, labels[i]) self.qtgui_number_sink_0.set_unit(i, units[i]) self.qtgui_number_sink_0.set_factor(i, factor[i]) self.qtgui_number_sink_0.enable_autoscale(False) self._qtgui_number_sink_0_win = sip.wrapinstance(self.qtgui_number_sink_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_number_sink_0_win, 0,8,1,2) self.qtgui_freq_sink_x_1 = qtgui.freq_sink_c( 1024, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate/10, #bw "TX Spectrum", #name 1 #number of inputs ) self.qtgui_freq_sink_x_1.set_update_time(0.10) self.qtgui_freq_sink_x_1.set_y_axis(-140, 10) self.qtgui_freq_sink_x_1.set_y_label('Relative Gain', 'dB') self.qtgui_freq_sink_x_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "") self.qtgui_freq_sink_x_1.enable_autoscale(True) self.qtgui_freq_sink_x_1.enable_grid(False) self.qtgui_freq_sink_x_1.set_fft_average(1.0) self.qtgui_freq_sink_x_1.enable_axis_labels(True) self.qtgui_freq_sink_x_1.enable_control_panel(False) if not False: self.qtgui_freq_sink_x_1.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_freq_sink_x_1.set_plot_pos_half(not True) labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "dark blue"] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_freq_sink_x_1.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_freq_sink_x_1.set_line_label(i, labels[i]) self.qtgui_freq_sink_x_1.set_line_width(i, widths[i]) self.qtgui_freq_sink_x_1.set_line_color(i, colors[i]) self.qtgui_freq_sink_x_1.set_line_alpha(i, alphas[i]) self._qtgui_freq_sink_x_1_win = sip.wrapinstance(self.qtgui_freq_sink_x_1.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_1_win, 9,0,4,8) self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c( 1024*4, #size firdes.WIN_BLACKMAN_hARRIS, #wintype 0, #fc samp_rate , #bw "", #name 2 #number of inputs ) self.qtgui_freq_sink_x_0.set_update_time(0.0010) self.qtgui_freq_sink_x_0.set_y_axis(-140, -20) self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB') self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 0.0, 0, "") self.qtgui_freq_sink_x_0.enable_autoscale(False) self.qtgui_freq_sink_x_0.enable_grid(True) self.qtgui_freq_sink_x_0.set_fft_average(0.2) self.qtgui_freq_sink_x_0.enable_axis_labels(True) self.qtgui_freq_sink_x_0.enable_control_panel(False) if not False: self.qtgui_freq_sink_x_0.disable_legend() if "complex" == "float" or "complex" == "msg_float": self.qtgui_freq_sink_x_0.set_plot_pos_half(not True) labels = ['pre-d', 'post', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "dark blue"] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(2): if len(labels[i]) == 0: self.qtgui_freq_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_freq_sink_x_0.set_line_label(i, labels[i]) self.qtgui_freq_sink_x_0.set_line_width(i, widths[i]) self.qtgui_freq_sink_x_0.set_line_color(i, colors[i]) self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i]) self._qtgui_freq_sink_x_0_win = sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win, 0,0,5,8) self.qtgui_const_sink_x_0 = qtgui.const_sink_c( 1024, #size "", #name 1 #number of inputs ) self.qtgui_const_sink_x_0.set_update_time(0.10) self.qtgui_const_sink_x_0.set_y_axis(-1, 1) self.qtgui_const_sink_x_0.set_x_axis(-2, 2) self.qtgui_const_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, "") self.qtgui_const_sink_x_0.enable_autoscale(False) self.qtgui_const_sink_x_0.enable_grid(True) self.qtgui_const_sink_x_0.enable_axis_labels(True) if not True: self.qtgui_const_sink_x_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "red", "red", "red", "red", "red", "red", "red", "red"] styles = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] markers = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_const_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_const_sink_x_0.set_line_label(i, labels[i]) self.qtgui_const_sink_x_0.set_line_width(i, widths[i]) self.qtgui_const_sink_x_0.set_line_color(i, colors[i]) self.qtgui_const_sink_x_0.set_line_style(i, styles[i]) self.qtgui_const_sink_x_0.set_line_marker(i, markers[i]) self.qtgui_const_sink_x_0.set_line_alpha(i, alphas[i]) self._qtgui_const_sink_x_0_win = sip.wrapinstance(self.qtgui_const_sink_x_0.pyqwidget(), Qt.QWidget) self.top_grid_layout.addWidget(self._qtgui_const_sink_x_0_win, 5,8,4,4) self.pyqt_text_input_0 = pyqt.text_input() self._pyqt_text_input_0_win = self.pyqt_text_input_0; self.top_grid_layout.addWidget(self._pyqt_text_input_0_win, 9,9,1,3) self.mapper_demapper_soft_0 = mapper.demapper_soft(mapper.BPSK, ([0,1])) self.low_pass_filter_0_0 = filter.fir_filter_ccf(1, firdes.low_pass( 1, samp_rate, (baud *(1+alpha) )/2, 1000, firdes.WIN_HAMMING, 6.76)) self.kiss_hdlc_framer_0 = kiss.hdlc_framer(preamble_bytes=64, postamble_bytes=16) self.freq_xlating_fir_filter_xxx_0 = filter.freq_xlating_fir_filter_ccc(1, (lpf_taps), khz_offset*1000, samp_rate) self.digital_scrambler_bb_0 = digital.scrambler_bb(0x21, 0x0, 16) self.digital_pfb_clock_sync_xxx_0_0 = digital.pfb_clock_sync_ccf(samps_per_symb, math.pi*2/100, (rrc_filter_taps), 32, 16, 1.5, 1) self.digital_gmsk_mod_0 = digital.gmsk_mod( samples_per_symbol=50, bt=alpha, verbose=False, log=False, ) self.digital_diff_decoder_bb_0 = digital.diff_decoder_bb(2) self.digital_costas_loop_cc_0_0 = digital.costas_loop_cc(math.pi*2/100, 2, False) self.digital_costas_loop_cc_0 = digital.costas_loop_cc(math.pi*2/100, 2, False) self.digital_binary_slicer_fb_0 = digital.binary_slicer_fb() self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True) self.blocks_socket_pdu_0_2 = blocks.socket_pdu("UDP_SERVER", ip, '52002', 1024, False) self.blocks_socket_pdu_0_1 = blocks.socket_pdu("TCP_SERVER", ip, port, 1024, False) self.blocks_pdu_to_tagged_stream_0_0 = blocks.pdu_to_tagged_stream(blocks.byte_t, 'packet_len') self.blocks_pack_k_bits_bb_0 = blocks.pack_k_bits_bb(8) self.blocks_null_sink_0_0_0 = blocks.null_sink(gr.sizeof_float*1) self.blocks_null_sink_0_0 = blocks.null_sink(gr.sizeof_float*1) self.blocks_null_sink_0 = blocks.null_sink(gr.sizeof_gr_complex*1) self.blocks_nlog10_ff_0_1 = blocks.nlog10_ff(10, 1, 0) self.blocks_multiply_xx_0 = blocks.multiply_vcc(1) self.blocks_multiply_const_vxx_0_0 = blocks.multiply_const_vcc((bb_gain, )) self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vff((mult, )) self.blocks_moving_average_xx_0_0_1 = blocks.moving_average_ff(100000, 0.00001, 4000) self.blocks_moving_average_xx_0_0 = blocks.moving_average_ff(1000, 0.001, 4000) self.blocks_moving_average_xx_0 = blocks.moving_average_ff(100000, 0.00001, 4000) self.blocks_keep_one_in_n_0_0 = blocks.keep_one_in_n(gr.sizeof_float*1, int(samp_rate*meta_rate)) self.blocks_keep_one_in_n_0 = blocks.keep_one_in_n(gr.sizeof_float*1, int(samp_rate/8*meta_rate)) self.blocks_file_source_0 = blocks.file_source(gr.sizeof_gr_complex*1, '/captures/rocksat/testing/trimmed_500k.fc32', True) self.blocks_file_sink_1_0 = blocks.file_sink(gr.sizeof_float*1, rfo_fp, False) self.blocks_file_sink_1_0.set_unbuffered(False) self.blocks_file_sink_1 = blocks.file_sink(gr.sizeof_float*1, snr_fp, False) self.blocks_file_sink_1.set_unbuffered(False) self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_gr_complex*1, iq_fp, False) self.blocks_file_sink_0.set_unbuffered(False) self.blocks_divide_xx_0 = blocks.divide_ff(1) self.blocks_complex_to_mag_squared_0_0 = blocks.complex_to_mag_squared(1) self.blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(1) self.blocks_complex_to_mag_0 = blocks.complex_to_mag(1) self.blocks_add_const_vxx_0 = blocks.add_const_vff((-1, )) self.blks2_selector_0_0_0 = grc_blks2.selector( item_size=gr.sizeof_float*1, num_inputs=1, num_outputs=2, input_index=0, output_index=int(record_snr), ) self.blks2_selector_0_0 = grc_blks2.selector( item_size=gr.sizeof_float*1, num_inputs=1, num_outputs=2, input_index=0, output_index=int(record_rfo), ) self.blks2_selector_0 = grc_blks2.selector( item_size=gr.sizeof_gr_complex*1, num_inputs=1, num_outputs=2, input_index=0, output_index=int(record_iq), ) self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE, 125e3, 1, 0) self.analog_agc2_xx_0_0 = analog.agc2_cc(1e-3, 1e-2, 1.0, 1.0) self.analog_agc2_xx_0_0.set_max_gain(65536) ################################################## # Connections ################################################## self.msg_connect((self.blocks_socket_pdu_0_1, 'pdus'), (self.kiss_hdlc_framer_0, 'in')) self.msg_connect((self.blocks_socket_pdu_0_2, 'pdus'), (self.kiss_hdlc_framer_0, 'in')) self.msg_connect((self.kiss_hdlc_framer_0, 'out'), (self.blocks_pdu_to_tagged_stream_0_0, 'pdus')) self.msg_connect((self.pyqt_text_input_0, 'pdus'), (self.kiss_hdlc_framer_0, 'in')) self.msg_connect((self.vtgs_ao40_decoder_0_0, 'valid_frames'), (self.blocks_socket_pdu_0_1, 'pdus')) self.connect((self.analog_agc2_xx_0_0, 0), (self.digital_costas_loop_cc_0_0, 0)) self.connect((self.analog_sig_source_x_0, 0), (self.blocks_multiply_xx_0, 1)) self.connect((self.blks2_selector_0, 1), (self.blocks_file_sink_0, 0)) self.connect((self.blks2_selector_0, 0), (self.blocks_null_sink_0, 0)) self.connect((self.blks2_selector_0_0, 1), (self.blocks_file_sink_1_0, 0)) self.connect((self.blks2_selector_0_0, 0), (self.blocks_null_sink_0_0, 0)) self.connect((self.blks2_selector_0_0_0, 1), (self.blocks_file_sink_1, 0)) self.connect((self.blks2_selector_0_0_0, 0), (self.blocks_null_sink_0_0_0, 0)) self.connect((self.blocks_add_const_vxx_0, 0), (self.qtgui_number_sink_2, 0)) self.connect((self.blocks_complex_to_mag_0, 0), (self.blocks_moving_average_xx_0_0, 0)) self.connect((self.blocks_complex_to_mag_squared_0, 0), (self.blocks_divide_xx_0, 0)) self.connect((self.blocks_complex_to_mag_squared_0_0, 0), (self.blocks_divide_xx_0, 1)) self.connect((self.blocks_divide_xx_0, 0), (self.blocks_nlog10_ff_0_1, 0)) self.connect((self.blocks_file_source_0, 0), (self.blocks_throttle_0, 0)) self.connect((self.blocks_keep_one_in_n_0, 0), (self.blks2_selector_0_0_0, 0)) self.connect((self.blocks_keep_one_in_n_0_0, 0), (self.blks2_selector_0_0, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.blocks_keep_one_in_n_0_0, 0)) self.connect((self.blocks_moving_average_xx_0, 0), (self.qtgui_number_sink_0, 0)) self.connect((self.blocks_moving_average_xx_0_0, 0), (self.blocks_add_const_vxx_0, 0)) self.connect((self.blocks_moving_average_xx_0_0_1, 0), (self.blocks_keep_one_in_n_0, 0)) self.connect((self.blocks_moving_average_xx_0_0_1, 0), (self.qtgui_number_sink_0_0_0_0, 0)) self.connect((self.blocks_multiply_const_vxx_0, 0), (self.blocks_moving_average_xx_0, 0)) self.connect((self.blocks_multiply_const_vxx_0_0, 0), (self.rational_resampler_xxx_2, 0)) self.connect((self.blocks_multiply_xx_0, 0), (self.rational_resampler_xxx_1, 0)) self.connect((self.blocks_nlog10_ff_0_1, 0), (self.blocks_moving_average_xx_0_0_1, 0)) self.connect((self.blocks_pack_k_bits_bb_0, 0), (self.digital_gmsk_mod_0, 0)) self.connect((self.blocks_pdu_to_tagged_stream_0_0, 0), (self.digital_scrambler_bb_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.blks2_selector_0, 0)) self.connect((self.blocks_throttle_0, 0), (self.freq_xlating_fir_filter_xxx_0, 0)) self.connect((self.digital_binary_slicer_fb_0, 0), (self.digital_diff_decoder_bb_0, 0)) self.connect((self.digital_costas_loop_cc_0, 0), (self.blocks_complex_to_mag_0, 0)) self.connect((self.digital_costas_loop_cc_0, 0), (self.mapper_demapper_soft_0, 0)) self.connect((self.digital_costas_loop_cc_0, 0), (self.qtgui_const_sink_x_0, 0)) self.connect((self.digital_costas_loop_cc_0_0, 1), (self.blocks_multiply_const_vxx_0, 0)) self.connect((self.digital_costas_loop_cc_0_0, 0), (self.blocks_multiply_xx_0, 0)) self.connect((self.digital_costas_loop_cc_0_0, 0), (self.low_pass_filter_0_0, 0)) self.connect((self.digital_costas_loop_cc_0_0, 0), (self.rational_resampler_xxx_0, 0)) self.connect((self.digital_diff_decoder_bb_0, 0), (self.vtgs_mult_descrambler_0, 0)) self.connect((self.digital_gmsk_mod_0, 0), (self.blocks_multiply_const_vxx_0_0, 0)) self.connect((self.digital_pfb_clock_sync_xxx_0_0, 0), (self.digital_costas_loop_cc_0, 0)) self.connect((self.digital_scrambler_bb_0, 0), (self.blocks_pack_k_bits_bb_0, 0)) self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.analog_agc2_xx_0_0, 0)) self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.qtgui_freq_sink_x_0, 0)) self.connect((self.freq_xlating_fir_filter_xxx_0, 0), (self.qtgui_waterfall_sink_x_0, 0)) self.connect((self.low_pass_filter_0_0, 0), (self.digital_pfb_clock_sync_xxx_0_0, 0)) self.connect((self.low_pass_filter_0_0, 0), (self.qtgui_freq_sink_x_0, 1)) self.connect((self.mapper_demapper_soft_0, 0), (self.digital_binary_slicer_fb_0, 0)) self.connect((self.rational_resampler_xxx_0, 0), (self.blocks_complex_to_mag_squared_0, 0)) self.connect((self.rational_resampler_xxx_1, 0), (self.blocks_complex_to_mag_squared_0_0, 0)) self.connect((self.rational_resampler_xxx_2, 0), (self.qtgui_freq_sink_x_1, 0)) self.connect((self.vtgs_mult_descrambler_0, 0), (self.vtgs_ao40_decoder_0_0, 0)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "vtgs_trx_file") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_gs_name(self): return self.gs_name def set_gs_name(self, gs_name): self.gs_name = gs_name self.set_snr_fn("{:s}_{:s}.snr".format(self.gs_name, self.ts_str)) self.set_rfo_fn("{:s}_{:s}.rfo".format(self.gs_name, self.ts_str)) self.set_iq_fn("{:s}_{:s}_{:s}k.fc32".format(self.gs_name, self.ts_str, str(int(self.samp_rate)/1000))) def get_ip(self): return self.ip def set_ip(self, ip): self.ip = ip def get_meta_rate(self): return self.meta_rate def set_meta_rate(self, meta_rate): self.meta_rate = meta_rate self.blocks_keep_one_in_n_0_0.set_n(int(self.samp_rate*self.meta_rate)) self.blocks_keep_one_in_n_0.set_n(int(self.samp_rate/8*self.meta_rate)) def get_port(self): return self.port def set_port(self, port): self.port = port def get_record_iq(self): return self.record_iq def set_record_iq(self, record_iq): self.record_iq = record_iq self.blks2_selector_0.set_output_index(int(int(self.record_iq))) def get_record_rfo(self): return self.record_rfo def set_record_rfo(self, record_rfo): self.record_rfo = record_rfo self.blks2_selector_0_0.set_output_index(int(int(self.record_rfo))) def get_record_snr(self): return self.record_snr def set_record_snr(self, record_snr): self.record_snr = record_snr self.blks2_selector_0_0_0.set_output_index(int(int(self.record_snr))) def get_tx_freq(self): return self.tx_freq def set_tx_freq(self, tx_freq): self.tx_freq = tx_freq def get_tx_offset(self): return self.tx_offset def set_tx_offset(self, tx_offset): self.tx_offset = tx_offset def get_ts_str(self): return self.ts_str def set_ts_str(self, ts_str): self.ts_str = ts_str self.set_snr_fn("{:s}_{:s}.snr".format(self.gs_name, self.ts_str)) self.set_rfo_fn("{:s}_{:s}.rfo".format(self.gs_name, self.ts_str)) self.set_iq_fn("{:s}_{:s}_{:s}k.fc32".format(self.gs_name, self.ts_str, str(int(self.samp_rate)/1000))) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.set_samps_per_symb(int(self.samp_rate/self.baud)) self.set_mult((self.samp_rate)/2/3.141593) self.qtgui_waterfall_sink_x_0.set_frequency_range(0, self.samp_rate) self.qtgui_freq_sink_x_1.set_frequency_range(0, self.samp_rate/10) self.qtgui_freq_sink_x_0.set_frequency_range(0, self.samp_rate ) self.low_pass_filter_0_0.set_taps(firdes.low_pass(1, self.samp_rate, (self.baud *(1+self.alpha) )/2, 1000, firdes.WIN_HAMMING, 6.76)) self.set_iq_fn("{:s}_{:s}_{:s}k.fc32".format(self.gs_name, self.ts_str, str(int(self.samp_rate)/1000))) self.blocks_throttle_0.set_sample_rate(self.samp_rate) self.blocks_keep_one_in_n_0_0.set_n(int(self.samp_rate*self.meta_rate)) self.blocks_keep_one_in_n_0.set_n(int(self.samp_rate/8*self.meta_rate)) self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate) def get_baud(self): return self.baud def set_baud(self, baud): self.baud = baud self.set_samps_per_symb(int(self.samp_rate/self.baud)) self.low_pass_filter_0_0.set_taps(firdes.low_pass(1, self.samp_rate, (self.baud *(1+self.alpha) )/2, 1000, firdes.WIN_HAMMING, 6.76)) def get_snr_fn(self): return self.snr_fn def set_snr_fn(self, snr_fn): self.snr_fn = snr_fn self.set_snr_fp("/captures/rocksat/{:s}".format(self.snr_fn)) def get_samps_per_symb(self): return self.samps_per_symb def set_samps_per_symb(self, samps_per_symb): self.samps_per_symb = samps_per_symb def get_rx_freq(self): return self.rx_freq def set_rx_freq(self, rx_freq): self.rx_freq = rx_freq self.set_rx_freq_lbl(self._rx_freq_lbl_formatter("{:4.3f}".format(self.rx_freq/1e6))) def get_rfo_fn(self): return self.rfo_fn def set_rfo_fn(self, rfo_fn): self.rfo_fn = rfo_fn self.set_rfo_fp("/captures/rocksat/{:s}".format(self.rfo_fn)) def get_iq_fn(self): return self.iq_fn def set_iq_fn(self, iq_fn): self.iq_fn = iq_fn self.set_iq_fp("/captures/rocksat/{:s}".format(self.iq_fn)) def get_alpha(self): return self.alpha def set_alpha(self, alpha): self.alpha = alpha self.low_pass_filter_0_0.set_taps(firdes.low_pass(1, self.samp_rate, (self.baud *(1+self.alpha) )/2, 1000, firdes.WIN_HAMMING, 6.76)) def get_uplink_label(self): return self.uplink_label def set_uplink_label(self, uplink_label): self.uplink_label = uplink_label Qt.QMetaObject.invokeMethod(self._uplink_label_label, "setText", Qt.Q_ARG("QString", self.uplink_label)) def get_tx_gain(self): return self.tx_gain def set_tx_gain(self, tx_gain): self.tx_gain = tx_gain def get_tx_correct(self): return self.tx_correct def set_tx_correct(self, tx_correct): self.tx_correct = tx_correct def get_snr_fp(self): return self.snr_fp def set_snr_fp(self, snr_fp): self.snr_fp = snr_fp self.blocks_file_sink_1.open(self.snr_fp) def get_rx_offset(self): return self.rx_offset def set_rx_offset(self, rx_offset): self.rx_offset = rx_offset def get_rx_gain(self): return self.rx_gain def set_rx_gain(self, rx_gain): self.rx_gain = rx_gain def get_rx_freq_lbl(self): return self.rx_freq_lbl def set_rx_freq_lbl(self, rx_freq_lbl): self.rx_freq_lbl = rx_freq_lbl Qt.QMetaObject.invokeMethod(self._rx_freq_lbl_label, "setText", Qt.Q_ARG("QString", self.rx_freq_lbl)) def get_rrc_filter_taps(self): return self.rrc_filter_taps def set_rrc_filter_taps(self, rrc_filter_taps): self.rrc_filter_taps = rrc_filter_taps self.digital_pfb_clock_sync_xxx_0_0.update_taps((self.rrc_filter_taps)) def get_rfo_fp(self): return self.rfo_fp def set_rfo_fp(self, rfo_fp): self.rfo_fp = rfo_fp self.blocks_file_sink_1_0.open(self.rfo_fp) def get_mult(self): return self.mult def set_mult(self, mult): self.mult = mult self.blocks_multiply_const_vxx_0.set_k((self.mult, )) def get_lpf_taps(self): return self.lpf_taps def set_lpf_taps(self, lpf_taps): self.lpf_taps = lpf_taps self.freq_xlating_fir_filter_xxx_0.set_taps((self.lpf_taps)) def get_lo(self): return self.lo def set_lo(self, lo): self.lo = lo def get_khz_offset(self): return self.khz_offset def set_khz_offset(self, khz_offset): self.khz_offset = khz_offset self.freq_xlating_fir_filter_xxx_0.set_center_freq(self.khz_offset*1000) def get_iq_fp(self): return self.iq_fp def set_iq_fp(self, iq_fp): self.iq_fp = iq_fp self.blocks_file_sink_0.open(self.iq_fp) def get_bb_gain(self): return self.bb_gain def set_bb_gain(self, bb_gain): self.bb_gain = bb_gain self.blocks_multiply_const_vxx_0_0.set_k((self.bb_gain, )) def argument_parser(): parser = OptionParser(usage="%prog: [options]", option_class=eng_option) parser.add_option( "", "--gs-name", dest="gs_name", type="string", default='VTGS', help="Set gs_name [default=%default]") parser.add_option( "-a", "--ip", dest="ip", type="string", default='0.0.0.0', help="Set 0.0.0.0 [default=%default]") parser.add_option( "", "--meta-rate", dest="meta_rate", type="eng_float", default=eng_notation.num_to_str(.1), help="Set meta_rate [default=%default]") parser.add_option( "-p", "--port", dest="port", type="string", default='52003', help="Set 52003 [default=%default]") parser.add_option( "", "--record-iq", dest="record_iq", type="intx", default=0, help="Set record_iq [default=%default]") parser.add_option( "", "--record-rfo", dest="record_rfo", type="intx", default=0, help="Set record_rfo [default=%default]") parser.add_option( "", "--record-snr", dest="record_snr", type="intx", default=0, help="Set record_snr [default=%default]") parser.add_option( "", "--tx-freq", dest="tx_freq", type="eng_float", default=eng_notation.num_to_str(1265e6), help="Set tx_freq [default=%default]") parser.add_option( "", "--tx-offset", dest="tx_offset", type="eng_float", default=eng_notation.num_to_str(250e3), help="Set tx_offset [default=%default]") return parser def main(top_block_cls=vtgs_trx_file, options=None): if options is None: options, _ = argument_parser().parse_args() from distutils.version import StrictVersion if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"): style = gr.prefs().get_string('qtgui', 'style', 'raster') Qt.QApplication.setGraphicsSystem(style) qapp = Qt.QApplication(sys.argv) tb = top_block_cls(gs_name=options.gs_name, ip=options.ip, meta_rate=options.meta_rate, port=options.port, record_iq=options.record_iq, record_rfo=options.record_rfo, record_snr=options.record_snr, tx_freq=options.tx_freq, tx_offset=options.tx_offset) tb.start() tb.show() def quitting(): tb.stop() tb.wait() qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting) qapp.exec_() if __name__ == '__main__': main()
45.304751
255
0.640877
c790b97615e2a41170f1dfe1d138d73030454665
2,367
py
Python
tests/test_visitors/test_ast/test_exceptions/test_duplicate_exceptions.py
cdhiraj40/wemake-python-styleguide
7cef9be081d594c30045b7a98cae77a9be46e1aa
[ "MIT" ]
1,931
2018-03-17T13:52:45.000Z
2022-03-27T09:39:17.000Z
tests/test_visitors/test_ast/test_exceptions/test_duplicate_exceptions.py
amansr02/wemake-python-styleguide
681035ed21fbe28ebfb32b8807b98e8de76b64aa
[ "MIT" ]
2,231
2018-03-09T21:19:05.000Z
2022-03-31T08:35:37.000Z
tests/test_visitors/test_ast/test_exceptions/test_duplicate_exceptions.py
amansr02/wemake-python-styleguide
681035ed21fbe28ebfb32b8807b98e8de76b64aa
[ "MIT" ]
492
2018-05-18T21:20:28.000Z
2022-03-20T14:11:50.000Z
import pytest from wemake_python_styleguide.violations.best_practices import ( DuplicateExceptionViolation, ) from wemake_python_styleguide.visitors.ast.exceptions import ( WrongTryExceptVisitor, ) # Correct: correct_bare_except = """ try: ... except: ... """ correct_simple_except = """ try: ... except Exception: ... """ correct_simple_except_with_name = """ try: ... except Exception as ex: ... """ correct_two_exceptions = """ try: ... except (IndexError, ValueError): ... """ correct_two_exceptions_with_names = """ try: ... except (IndexError, ValueError) as ex: ... """ correct_two_excepts = """ try: ... except ValueError: ... except IndexError: ... """ correct_two_excepts_with_names = """ try: ... except ValueError as ex: ... except IndexError as ex: ... """ correct_two_complex_excepts = """ try: ... except ValueError as ex: ... except (IndexError, model.DoesNotExist) as ex: ... """ # Wrong: wrong_simple = """ try: ... except ValueError as ex: ... except ValueError: ... """ wrong_single_tuple = """ try: ... except (some.ValueError, some.ValueError) as ex: ... """ wrong_different_tuples = """ try: ... except (exc['type'], ValueError) as ex: ... except (exc['type'], IndexError): ... """ @pytest.mark.parametrize('code', [ correct_bare_except, correct_simple_except, correct_simple_except_with_name, correct_two_exceptions, correct_two_exceptions_with_names, correct_two_excepts, correct_two_excepts_with_names, correct_two_complex_excepts, ]) def test_correct_exceptions( assert_errors, parse_ast_tree, code, default_options, ): """Violations without duplicates.""" tree = parse_ast_tree(code) visitor = WrongTryExceptVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, []) @pytest.mark.parametrize('code', [ wrong_simple, wrong_single_tuple, wrong_different_tuples, ]) def test_duplicate_exceptions( assert_errors, parse_ast_tree, code, default_options, ): """Duplicate exception classes should raise a violation.""" tree = parse_ast_tree(code) visitor = WrongTryExceptVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [DuplicateExceptionViolation])
16.324138
64
0.666244
0dac5ba15c7a842fc7b191ecf676879c24c43fbd
1,478
py
Python
Code/tcga_normalizedDataToPickle.py
HalforcNull/Research_PatternRecognition
e9cbe8df75ae775e0ed813ac4956973b4e857979
[ "MIT" ]
null
null
null
Code/tcga_normalizedDataToPickle.py
HalforcNull/Research_PatternRecognition
e9cbe8df75ae775e0ed813ac4956973b4e857979
[ "MIT" ]
null
null
null
Code/tcga_normalizedDataToPickle.py
HalforcNull/Research_PatternRecognition
e9cbe8df75ae775e0ed813ac4956973b4e857979
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Dec 06 15:36:31 2017 @author: runan.yao """ import csv import pickle import numpy as np def __loadData(dataFile, isNumericData = False): data = [] with open(dataFile, 'rt') as csvfile: datas = csv.reader(csvfile, delimiter = ',') for row in datas: if row is None or len(row) == 0: continue if isNumericData: data.append(map(float,row)) else: data.append(row) return data def fileLoad(): DataSet = {} DataList = __loadData('tcga_data.csv', isNumericData = True) LabelList = __loadData('tcga_label.csv') #LabelList = __loadData('label.csv') for i in range(0, 9662): lb = LabelList[i][0] #if lb in ['small', 'minor', 'whole']: # meaning less label are removed from the tests # continue if lb in DataSet.keys(): DataSet[lb].append(DataList[i]) else: DataSet[lb] = [DataList[i]] return DataSet def normalization(sample): """one sample pass in""" sample = sample + 100 # 2^20 = 1048576 return np.log2(sample * 1048576/np.sum(sample)) DataSet = fileLoad() for label in DataSet.keys(): with open('./data/tcga/pickledNormalizedData/'+label+'.pkl', 'wb') as tr: t = np.array(DataSet[label]).astype(np.float) pickle.dump(normalization(t), tr, pickle.HIGHEST_PROTOCOL)
25.929825
77
0.577131
1e2ff05b6031910294b63cb8e0e4e15add184a2f
9,845
py
Python
airflow/providers/opsgenie/operators/opsgenie.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
3
2017-08-06T23:19:48.000Z
2018-05-11T05:50:25.000Z
airflow/providers/opsgenie/operators/opsgenie.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
20
2016-11-21T22:54:28.000Z
2018-10-28T20:03:13.000Z
airflow/providers/opsgenie/operators/opsgenie.py
holly-evans/airflow
865406cbab4defd35c95afbf0a8d5987ff7788b1
[ "Apache-2.0" ]
3
2016-10-13T09:59:18.000Z
2017-02-22T11:29:09.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence from airflow.models import BaseOperator from airflow.providers.opsgenie.hooks.opsgenie import OpsgenieAlertHook if TYPE_CHECKING: from airflow.utils.context import Context class OpsgenieCreateAlertOperator(BaseOperator): """ This operator allows you to post alerts to Opsgenie. Accepts a connection that has an Opsgenie API key as the connection's password. This operator sets the domain to conn_id.host, and if not set will default to ``https://api.opsgenie.com``. Each Opsgenie API key can be pre-configured to a team integration. You can override these defaults in this operator. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpsgenieCreateAlertOperator` :param opsgenie_conn_id: The name of the Opsgenie connection to use :param message: The Message of the Opsgenie alert (templated) :param alias: Client-defined identifier of the alert (templated) :param description: Description field of the alert (templated) :param responders: Teams, users, escalations and schedules that the alert will be routed to send notifications. :param visible_to: Teams and users that the alert will become visible to without sending any notification. :param actions: Custom actions that will be available for the alert. :param tags: Tags of the alert. :param details: Map of key-value pairs to use as custom properties of the alert. :param entity: Entity field of the alert that is generally used to specify which domain alert is related to. (templated) :param source: Source field of the alert. Default value is IP address of the incoming request. :param priority: Priority level of the alert. Default value is P3. (templated) :param user: Display name of the request owner. :param note: Additional note that will be added while creating the alert. (templated) """ template_fields: Sequence[str] = ('message', 'alias', 'description', 'entity', 'priority', 'note') def __init__( self, *, message: str, opsgenie_conn_id: str = 'opsgenie_default', alias: Optional[str] = None, description: Optional[str] = None, responders: Optional[List[dict]] = None, visible_to: Optional[List[dict]] = None, actions: Optional[List[str]] = None, tags: Optional[List[str]] = None, details: Optional[dict] = None, entity: Optional[str] = None, source: Optional[str] = None, priority: Optional[str] = None, user: Optional[str] = None, note: Optional[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.message = message self.opsgenie_conn_id = opsgenie_conn_id self.alias = alias self.description = description self.responders = responders self.visible_to = visible_to self.actions = actions self.tags = tags self.details = details self.entity = entity self.source = source self.priority = priority self.user = user self.note = note self.hook: Optional[OpsgenieAlertHook] = None def _build_opsgenie_payload(self) -> Dict[str, Any]: """ Construct the Opsgenie JSON payload. All relevant parameters are combined here to a valid Opsgenie JSON payload. :return: Opsgenie payload (dict) to send """ payload = {} for key in [ "message", "alias", "description", "responders", "visible_to", "actions", "tags", "details", "entity", "source", "priority", "user", "note", ]: val = getattr(self, key) if val: payload[key] = val return payload def execute(self, context: 'Context') -> None: """Call the OpsgenieAlertHook to post message""" self.hook = OpsgenieAlertHook(self.opsgenie_conn_id) self.hook.create_alert(self._build_opsgenie_payload()) class OpsgenieCloseAlertOperator(BaseOperator): """ This operator allows you to close alerts to Opsgenie. Accepts a connection that has an Opsgenie API key as the connection's password. This operator sets the domain to conn_id.host, and if not set will default to ``https://api.opsgenie.com``. Each Opsgenie API key can be pre-configured to a team integration. You can override these defaults in this operator. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpsgenieCloseAlertOperator` :param opsgenie_conn_id: The name of the Opsgenie connection to use :param identifier: Identifier of alert which could be alert id, tiny id or alert alias :param identifier_type: Type of the identifier that is provided as an in-line parameter. Possible values are 'id', 'alias' or 'tiny' :param user: display name of the request owner :param note: additional note that will be added while creating the alert :param source: source field of the alert. Default value is IP address of the incoming request :param close_alert_kwargs: additional params to pass """ def __init__( self, *, identifier: str, opsgenie_conn_id: str = 'opsgenie_default', identifier_type: Optional[str] = None, user: Optional[str] = None, note: Optional[str] = None, source: Optional[str] = None, close_alert_kwargs: Optional[dict] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.opsgenie_conn_id = opsgenie_conn_id self.identifier = identifier self.identifier_type = identifier_type self.user = user self.note = note self.source = source self.close_alert_kwargs = close_alert_kwargs self.hook: Optional[OpsgenieAlertHook] = None def _build_opsgenie_close_alert_payload(self) -> Dict[str, Any]: """ Construct the Opsgenie JSON payload. All relevant parameters are combined here to a valid Opsgenie JSON payload. :return: Opsgenie close alert payload (dict) to send """ payload = {} for key in [ "user", "note", "source", ]: val = getattr(self, key) if val: payload[key] = val return payload def execute(self, context: 'Context') -> None: """Call the OpsgenieAlertHook to close alert""" self.hook = OpsgenieAlertHook(self.opsgenie_conn_id) self.hook.close_alert( identifier=self.identifier, identifier_type=self.identifier_type, payload=self._build_opsgenie_close_alert_payload(), **(self.close_alert_kwargs or {}), ) class OpsgenieDeleteAlertOperator(BaseOperator): """ This operator allows you to delete alerts in Opsgenie. Accepts a connection that has an Opsgenie API key as the connection's password. This operator sets the domain to conn_id.host, and if not set will default to ``https://api.opsgenie.com``. Each Opsgenie API key can be pre-configured to a team integration. You can override these defaults in this operator. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:OpsgenieDeleteAlertOperator` :param opsgenie_conn_id: The name of the Opsgenie connection to use :param identifier: Identifier of alert which could be alert id, tiny id or alert alias :param identifier_type: Type of the identifier that is provided as an in-line parameter. Possible values are 'id', 'alias' or 'tiny' :param user: Display name of the request owner :param source: Display name of the request source """ template_fields: Sequence[str] = ('identifier',) def __init__( self, *, identifier: str, opsgenie_conn_id: str = 'opsgenie_default', identifier_type: Optional[str] = None, user: Optional[str] = None, source: Optional[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.opsgenie_conn_id = opsgenie_conn_id self.identifier = identifier self.identifier_type = identifier_type self.user = user self.source = source def execute(self, context: 'Context') -> None: """Call the OpsgenieAlertHook to delete alert""" hook = OpsgenieAlertHook(self.opsgenie_conn_id) hook.delete_alert( identifier=self.identifier, identifier_type=self.identifier_type, user=self.user, source=self.source, )
37.291667
102
0.653834
d2cca1eac96d2fdcbea1a96bf2232aca7392fc91
4,437
py
Python
aws-functions/HttpTriggerApiUsersUseridTasks/lambda_function.py
jaguiniga/ad440-winter2021-thursday-repo
d099b06488e7a866af5f4bf4f776b32807233994
[ "Apache-2.0" ]
4
2021-01-08T02:01:53.000Z
2021-01-09T23:06:55.000Z
aws-functions/HttpTriggerApiUsersUseridTasks/lambda_function.py
jaguiniga/ad440-winter2021-thursday-repo
d099b06488e7a866af5f4bf4f776b32807233994
[ "Apache-2.0" ]
242
2021-01-08T02:41:43.000Z
2021-03-28T20:18:43.000Z
aws-functions/HttpTriggerApiUsersUseridTasks/lambda_function.py
jaguiniga/ad440-winter2021-thursday-repo
d099b06488e7a866af5f4bf4f776b32807233994
[ "Apache-2.0" ]
45
2021-01-08T02:44:21.000Z
2021-03-26T01:36:53.000Z
import os import json import logging import pymysql import datetime logger = logging.getLogger() logger.setLevel(logging.INFO) def default(dateHandle): if isinstance(dateHandle, (datetime.datetime, datetime.date)): return dateHandle.isoformat() def lambda_handler(event, context): logger.info('Beginning function execution...') method = event['requestContext']['http']['method'] userId = event['pathParameters']['userId'] # Connect to the db db_name = os.environ['rds_db_name'] logger.info(f'Attempting to connect to DB: {db_name}') try: conn = pymysql.connect( host = os.environ['rds_hostname'], user = os.environ['rds_username'], password = os.environ['rds_password'], database = os.environ['rds_db_name'], connect_timeout = 5 ) except pymysql.MySQLError as e: logger.error('ERROR: Unexpected error: Could not connect to MySQL instance.') logger.error(e) return {'statusCode': 500} logger.info('Connected to DB successfully!') # Respond to the method try: if method == 'GET': logger.info('Attempting to retrieve tasks...') all_tasks_http_response = get_tasks(conn, userId) logging.info(all_tasks_http_response) logger.info('tasks retrieved successfully!') return all_tasks_http_response elif method == 'POST': logging.info('Attempting to add task...') task_req_body = json.loads(event['body']) new_task_id_http_response = add_task(conn, task_req_body, userId) logging.info('task added successfully!') return new_task_id_http_response else: logging.warn(f'Request with method {method} has been recieved, but that is not allowed for this endpoint') return {'statusCode': 405} except Exception as e: return { 'error': f'Error: {str(e)}', 'statusCode': 500 } finally: conn.close() logging.debug('Connection to DB closed') logger.info('Function execution completed successfully!') def get_tasks(conn, userId): with conn.cursor() as cursor: cursor.execute("SELECT * FROM tasks WHERE userId = %s", (userId)) tasks_table = list(cursor.fetchall()) tasks = [] tasks_columns = [column[0] for column in cursor.description] for task in tasks_table: tasks.append(dict(zip(tasks_columns, task))) return json.dumps(tasks, default=default) def add_task(conn, task_req_body, userId): logging.info('Testing the add new task request body for necessary fields...') try: assert "title" in task_req_body, "New task request body did not contain field: 'title'" assert "description" in task_req_body, "New task request body did not contain field: 'description'" except AssertionError as task_req_body_content_error: logging.critical('New task request body did not contain the necessary fields!') return { 'error': task_req_body_content_error.args[0], 'statusCode': 400 } logging.info('New task request body contains all the necessary fields!') with conn.cursor() as cursor: # Unpack task data title = task_req_body['title'] description = task_req_body['description'] task_params = [userId, title, description] # Create the query add_task_query = """ INSERT INTO tasks (userId, title, description) VALUES(%s, %s, %s); """ logging.info('Using connection cursor to execute query (add a new task and get id)') cursor.execute(add_task_query, task_params) conn.commit() # Get the task id from cursor task_id = cursor.lastrowid logging.info( f'task added and new task id ({task_id}) retrieved, returning information from add_task function' ) return {'taskId': task_id}
32.152174
119
0.577868
a23fafe4fdff351e2562841a3066cbefb75ed74d
106
py
Python
tests/integration/client/__init__.py
jaebradley/draftkings_client
8db4484f293df3c65c48d62d972b71df95f5ea3d
[ "MIT" ]
111
2017-01-07T13:32:00.000Z
2022-03-07T22:58:11.000Z
tests/integration/client/__init__.py
jaebradley/draftkings_client
8db4484f293df3c65c48d62d972b71df95f5ea3d
[ "MIT" ]
56
2016-11-14T05:50:44.000Z
2022-01-18T23:27:44.000Z
tests/integration/client/__init__.py
jaebradley/draftkings_client
8db4484f293df3c65c48d62d972b71df95f5ea3d
[ "MIT" ]
39
2017-01-25T01:57:09.000Z
2021-12-29T06:57:31.000Z
""" Represents "end-to-end" tests that test the public API definition of the draft_kings.client file. """
26.5
97
0.745283
0fbcdf471d64d6d8bbccb514788b32e8dd14f8f7
45,068
py
Python
tencent-fusai/src/utils.py
tangaqi/tencent2019-rank88
9b2295e6405fc0958527c509bf1623ea5b67e6b7
[ "Apache-2.0" ]
null
null
null
tencent-fusai/src/utils.py
tangaqi/tencent2019-rank88
9b2295e6405fc0958527c509bf1623ea5b67e6b7
[ "Apache-2.0" ]
null
null
null
tencent-fusai/src/utils.py
tangaqi/tencent2019-rank88
9b2295e6405fc0958527c509bf1623ea5b67e6b7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ @file:utils.py @time:2019/6/1 21:57 @author:Tangj @software:Pycharm @Desc """ import os import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import roc_auc_score from time import time import random import pandas as pd def frame_to_dict(train): train_dict = {} for col in train.columns: train_dict[col] = train[col].columns return trian_dict def del_adSize(ad_Size): ad_size_mean = [] ad_size_max = [] ad_size_min = [] for adSize in ad_Size: if not isinstance(adSize, str): # print(adSize) ad_size_mean.append(adSize) ad_size_max.append(adSize) ad_size_min.append(adSize) continue size = adSize.split(',') s = [] for i in size: s.append(int(i)) ad_size_mean.append(np.mean(s)) ad_size_max.append(np.max(s)) ad_size_min.append(np.min(s)) return ad_size_mean, ad_size_max, ad_size_max def write_data_into_parts(data, root_path, nums=5100000): l = data.shape[0] // nums for i in range(l + 1): begin = i * nums end = min(nums * (i + 1), data.shape[0]) t_data = data[begin:end] t_data.tofile(root_path + '.bin') def write_dict(path, data): fw = open(path, 'w') for key in data: fw.write(str(key) + ',' + str(data[key]) + '\n') fw.close() def read_allfea(path): f = open(path, 'r') fea = '0' for i in f: fea = i fea_val = fea.split(',') index_dict = {} for i, fea in enumerate(fea_val): index_dict[fea] = i + 1 if '-1' not in index_dict: index_dict['-1'] = len(fea_val) return fea, index_dict def one_hot_feature_concat(train, test, fea1, fea2, filter_num=100): train1 = train[fea1].values train2 = train[fea2].values test1 = test[fea1].values test2 = test[fea2].values train_data = [] test_data = [] train_res = [] test_res = [] for i, values in enumerate(train1): new = str(values) + '|' + str(train2[i]) train_data.append(new) for i, values in enumerate(test1): new = str(values) + '|' + str(test2[i]) # print(new) test_data.append(new) count_dict = {} for d in train_data: if d not in count_dict: count_dict[d] = 0 count_dict[d] += 1 filter_set = [] for i in count_dict: if count_dict[i] < 1: filter_set.append(i) index_dict = {} begin_index = 1 for d in train_data: # 给出现的value赋予一个index指引 if d in filter_set: d = '-1' if d not in index_dict: index_dict[d] = begin_index begin_index += 1 train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index for d in test_data: if d not in index_dict or d in filter_set: d = '-1' test_res.append(index_dict[d]) print(test_res) return np.array(train_res), np.array(test_res) def one_hot_feature_process(train_data, val_data, test2_data, begin_num, filter_num=0): index_dict = {} begin_index = begin_num train_res = [] for d in train_data: # print(d) # 给出现的value赋予一个index指引 if d not in index_dict: index_dict[d] = begin_index begin_index += 1 # print(index_dict[d]) train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index val_res = [] for d in val_data: if d not in index_dict: index_dict[d] = begin_index begin_index += 1 val_res.append(index_dict[d]) test2_res = [] for d in test2_data: if d not in index_dict: d = '-1' test2_res.append(index_dict[d]) # print(np.array(train_res)) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict def vector_feature_process(train_data, val_data, test2_data, begin_num, max_len, index_dict): train_res = [] train_res2 = [] val_res2 = [] test2_res2 = [] train_rate = [] val_rate = [] test2_rate = [] for d in train_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 train_res.append(row) row2 = [1] * max_len train_res2.append(row2) train_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 train_res.append(row) train_res2.append(row2) train_rate.append(len(lx) / max_len) val_res = [] for d in val_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 val_res.append(row) row2 = [1] * max_len val_res2.append(row2) val_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 val_res.append(row) val_res2.append(row2) val_rate.append(len(lx) / max_len) test2_res = [] for d in test2_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 test2_res.append(row) row2 = [1] * max_len test2_res2.append(row2) test2_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 test2_res.append(row) test2_res2.append(row2) test2_rate.append(len(lx) / max_len) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict, np.array(train_res2), np.array( val_res2), np.array(test2_res2), np.array(train_rate), np.array(val_rate), np.array(test2_rate), def count_one_feature_times(train, test, fea): count_dict = {} test_res = [] train_res = [] for val in train[fea].values: if val not in count_dict: count_dict[val] = 0 count_dict[val] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for i in train[fea].values: train_res.append(count_dict[i]) for i in test: if i not in count_dict: i = '-1' test_res.append(count_dict[i]) return np.array(train_res), np.array(test_res) def count_vector_feature_times(train, val_data, test, fea): count_dict = {} val_res = [] test_res = [] train_res = [] Train = pd.concat([train, val_data]) for val in Train[fea].values: vals = val.split(',') for i in vals: if i not in count_dict: count_dict[i] = 0 count_dict[i] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for val in train[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) train_res.append([max_l, mean_l, min_l, median_l]) for val in val_data[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) val_res.append([max_l, mean_l, min_l, median_l]) for val in test: vals = val.split(',') l = [] for i in vals: if i not in count_dict: i = '-1' l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) test_res.append([max_l, mean_l, min_l, median_l]) return np.array(train_res), np.array(val_res), np.array(test_res) # 对曝光、pctr和ecpm和bid的特征 def one_feature_exposure2(Train, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train num1 = train[train['day'] == 20190410].shape[0] id_res.extend(train[train['day'] == 20190410]['ad_id'].values) reqday_res.extend(train[train['day'] == 20190410]['day'].values) for i in range(num1): train_res.append([0, 0, 0, 0]) for i in range(len(date) - 1): day = int(date[i + 1]) train_compute = Train[Train['day'] == day] train_count = Train[Train['day'] < day] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = Train[Train['day'] > 20190414] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) return np.array(train_res), np.array(test_res), np.array(id_res), np.array(reqday_res) def one_feature_exposure4(Train, test, fea, date): test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190410] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190411] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) for i in range(len(date) - 2): day1 = int(date[i + 2]) day2 = int(date[i + 1]) day3 = int(date[i]) train1 = Train[Train['day'] == day3] train2 = Train[Train['day'] == day2] train_compute = Train[Train['day'] == day1] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train1 = train[train['day'] == 20190421] train2 = train[train['day'] == 20190422] train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: # print(train_count[train_count[fea] == value].shape[0]) train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] num_dis = 0 for value in test: # print(value) if value not in exposure_dict: num_dis += 1 value = '-1' test_res.append(exposure_dict[value]) print(num_dis) return np.array(train_res), np.array(test_res), \ np.array(id_res), np.array(reqday_res) def one_feature_exposure3(Train, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190410] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190411] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # for i in range(len(date) - 2): # day1 = int(date[i + 2]) # day2 = int(date[i + 1]) # day3 = int(date[i]) # # train1 = Train[Train['day'] == day3] # train2 = Train[Train['day'] == day2] # train_compute = Train[Train['day'] == day1] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # train_count = pd.concat([train1, train2]) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # exposure_dict[value] = [] # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # train1 = train[train['day'] == 20190421] train_count = train[train['day'] == 20190422] # train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] num_dis = 0 for value in test: # print(value) if value not in exposure_dict: num_dis += 1 value = '-1' test_res.append(exposure_dict[value]) print(num_dis) return np.array(train_res), np.array(test_res), \ np.array(id_res), np.array(reqday_res) def one_feature_exposure(train, val, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, val_res = [] test_res = [] train_res = [] val_res2 = [] test_res2 = [] train_res2 = [] train_res3 = [] id_res = [] reqday_res = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] id_res.extend(train[train['Reqday'] == '02_16']['ad_id'].values) reqday_res.extend(train[train['Reqday'] == '02_16']['Reqday'].values) for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) train_count = train[train['Reqday'] == '02_16'] train_compute = train[train['Reqday'] == '02_17'] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['Reqday'].values) exposure_dict = {} bid_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['exposure'].values exposure_dict[value] = [] bid_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) train2 = train_count[train_count[fea] == value]['adBid'].values bid_dict[value].append(np.max(train2)) bid_dict[value].append(np.min(train2)) bid_dict[value].append(np.mean(train2)) bid_dict[value].append(np.median(train2)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] bid_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_res2.append(bid_dict[value]) for i in range(len(date) - 2): day1 = date[i + 2] day2 = date[i + 1] day3 = date[i] train1 = Train[Train['Reqday'] == day3] train2 = Train[Train['Reqday'] == day2] train_compute = Train[Train['Reqday'] == day1] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['Reqday'].values) train_count = pd.concat([train1, train2]) exposure_dict = {} bid_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] bid_dict[value] = [] train1 = train_count[train_count[fea] == value]['exposure'].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) train2 = train_count[train_count[fea] == value]['adBid'].values bid_dict[value].append(np.max(train2)) bid_dict[value].append(np.min(train2)) bid_dict[value].append(np.mean(train2)) bid_dict[value].append(np.median(train2)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] bid_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_res2.append(bid_dict[value]) train_res1 = train_res[:(Train.shape[0] - val.shape[0])] val_res = train_res[-val.shape[0]:] train_res3 = train_res2[:(Train.shape[0] - val.shape[0])] val_res2 = train_res2[-val.shape[0]:] train1 = train[train['Reqday'] == '03_19'] train2 = train[train['Reqday'] == '03_18'] train_count = pd.concat([train1, train2]) exposure_dict = {} bid_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['exposure'].values exposure_dict[value] = [] bid_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) train2 = train_count[train_count[fea] == value]['adBid'].values bid_dict[value].append(np.max(train2)) bid_dict[value].append(np.min(train2)) bid_dict[value].append(np.mean(train2)) bid_dict[value].append(np.median(train2)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] bid_dict['-1'] = [8, 8, 8, 8] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) test_res2.append(bid_dict[value]) return np.array(train_res1), np.array(val_res), np.array(test_res), np.array(train_res3), np.array(val_res2), \ np.array(test_res2), np.array(id_res), np.array(reqday_res) def one_feature_pctr2(train, val, test, fea, date, count_fea): # 返回pctr的最大值,最小值,均值,中位数四个值 val_res = [] test_res = [] train_res = [] train_res2 = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) for i in range(len(date) - 1): day = date[i + 1] train_compute = Train[Train['Reqday'] == day] train_count = Train[Train['Reqday'] < day] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value][count_fea].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_res1 = train_res[:(Train.shape[0] - val.shape[0])] val_res = train_res[-val.shape[0]:] # train1 = train[train['Reqday'] == '03_19'] # train2 = train[train['Reqday'] == '03_18'] train_count = Train exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value][count_fea].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) return np.array(train_res1), np.array(val_res), np.array(test_res) def one_feature_pctr(train, val, test, fea, date, count_fea): # 返回pctr的最大值,最小值,均值,中位数四个值 val_res = [] test_res = [] train_res = [] train_res2 = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) train_count = train[train['Reqday'] == '02_16'] train_compute = train[train['Reqday'] == '02_17'] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value][count_fea].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) for i in range(len(date) - 2): day1 = date[i + 2] day2 = date[i + 1] day3 = date[i] train1 = Train[Train['Reqday'] == day3] train2 = Train[Train['Reqday'] == day2] train_compute = Train[Train['Reqday'] == day1] train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value][count_fea].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_res1 = train_res[:(Train.shape[0] - val.shape[0])] val_res = train_res[-val.shape[0]:] train1 = train[train['Reqday'] == '03_19'] train2 = train[train['Reqday'] == '03_18'] train_count = pd.concat([train1, train2]) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value][count_fea].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [8, 8, 8, 8] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) return np.array(train_res1), np.array(val_res), np.array(test_res) def create_mask(value, train): mask = [] # 这里的train是某个多值特征的值数组 for i in train: vals = i.split(',') flag = 0 for j in vals: if j == value: flag = 1 mask.append(True) break if flag == 0: mask.append(False) return mask def vector_feature_exposure(train, val, test, fea, date): # 返回曝光均值,最大值,最小值,中位数四个值, # 返回bid的均值,最大值,最小值,中位数四个值, val_res = [] test_res = [] train_res = [] val_res2 = [] test_res2 = [] train_res2 = [] train_res3 = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) for i in range(len(date) - 1): day = date[i + 1] train_compute = Train[Train['Reqday'] == day] train_count = Train[Train['Reqday'] < day] exposure_max = {} exposure_min = {} exposure_mean = {} exposure_median = {} bid_max = {} bid_min = {} bid_mean = {} bid_median = {} mask_dict = {} for vals in train_count[fea].values: valss = vals.split(',') for value in valss: if value not in exposure_max: if value not in mask_dict: mask_dict[value] = create_mask(value, train_count[fea].values) train1 = train_count[mask_dict[value]]['exposure'].values exposure_max[value] = np.max(train1) exposure_min[value] = np.min(train1) exposure_mean[value] = np.mean(train1) exposure_median[value] = np.median(train1) train2 = train_count[mask_dict[value]]['adBid'].values bid_max[value] = np.max(train2) bid_min[value] = np.min(train2) bid_mean[value] = np.mean(train2) bid_median[value] = np.median(train2) if '-1' not in exposure_max: exposure_max['-1'] = 8 bid_max['-1'] = 8 if '-1' not in exposure_min: exposure_min['-1'] = 8 bid_min['-1'] = 8 if '-1' not in exposure_mean: exposure_mean['-1'] = 8 bid_mean['-1'] = 8 if '-1' not in exposure_median: exposure_median['-1'] = 8 bid_median['-1'] = 8 for vals in train_compute[fea].values: max_list = [] min_list = [] mean_list = [] median_list = [] max_list2 = [] min_list2 = [] mean_list2 = [] median_list2 = [] valuess = vals.split(',') for value in valuess: if value not in exposure_max: value = '-1' max_list.append(exposure_max[value]) min_list.append(exposure_min[value]) mean_list.append(exposure_mean[value]) median_list.append(exposure_median[value]) max_list2.append(bid_max[value]) min_list2.append(bid_min[value]) mean_list2.append(bid_mean[value]) median_list2.append(bid_median[value]) max1 = np.max(max_list) min1 = np.min(min_list) mean1 = np.mean(mean_list) median1 = np.median(median_list) train_res.append([max1, min1, mean1, median1]) max1 = np.max(max_list2) min1 = np.min(min_list2) mean1 = np.mean(mean_list2) median1 = np.median(median_list2) train_res2.append([max1, min1, mean1, median1]) train_res1 = train_res[:(Train.shape[0] - val.shape[0])] val_res = train_res[-val.shape[0]:] train_res3 = train_res2[:(Train.shape[0] - val.shape[0])] val_res2 = train_res2[-val.shape[0]:] train_count = Train exposure_max = {} exposure_min = {} exposure_mean = {} exposure_median = {} bid_max = {} bid_min = {} bid_mean = {} bid_median = {} mask_dict = {} for vals in train_count[fea].values: valss = vals.split(',') for value in valss: if value not in exposure_max: if value not in mask_dict: mask_dict[value] = create_mask(value, train_count[fea].values) train1 = train_count[mask_dict[value]]['exposure'].values exposure_max[value] = np.max(train1) exposure_min[value] = np.min(train1) exposure_mean[value] = np.mean(train1) exposure_median[value] = np.median(train1) train2 = train_count[mask_dict[value]]['adBid'].values bid_max[value] = np.max(train2) bid_min[value] = np.min(train2) bid_mean[value] = np.mean(train2) bid_median[value] = np.median(train2) if '-1' not in exposure_max: exposure_max['-1'] = 8 bid_max['-1'] = 8 if '-1' not in exposure_min: exposure_min['-1'] = 8 bid_min['-1'] = 8 if '-1' not in exposure_mean: exposure_mean['-1'] = 8 bid_mean['-1'] = 8 if '-1' not in exposure_median: exposure_median['-1'] = 8 bid_median['-1'] = 8 for vals in test: max_list = [] min_list = [] mean_list = [] median_list = [] max_list2 = [] min_list2 = [] mean_list2 = [] median_list2 = [] valuess = vals.split(',') for value in valuess: if value not in exposure_max: value = '-1' max_list.append(exposure_max[value]) min_list.append(exposure_min[value]) mean_list.append(exposure_mean[value]) median_list.append(exposure_median[value]) max_list2.append(bid_max[value]) min_list2.append(bid_min[value]) mean_list2.append(bid_mean[value]) median_list2.append(bid_median[value]) max1 = np.max(max_list) min1 = np.min(min_list) mean1 = np.mean(mean_list) median1 = np.median(median_list) test_res.append([max1, min1, mean1, median1]) max1 = np.max(max_list2) min1 = np.min(min_list2) mean1 = np.mean(mean_list2) median1 = np.median(median_list2) test_res2.append([max1, min1, mean1, median1]) return np.array(train_res1), np.array(val_res), np.array(test_res), np.array(train_res3), \ np.array(val_res2), np.array(test_res2) def vector_feature_pctr(train, val, test, fea, date, count_fea): # 返回曝光均值,最大值,最小值,中位数四个值, val_res = [] test_res = [] train_res = [] train_res2 = [] Train = pd.concat([train, val]) num1 = train[train['Reqday'] == '02_16'].shape[0] for i in range(num1): train_res.append([8, 8, 8, 8]) train_res2.append([8, 8, 8, 8]) for i in range(len(date) - 1): day = date[i + 1] train_compute = Train[Train['Reqday'] == day] train_count = Train[Train['Reqday'] < day] exposure_max = {} exposure_min = {} exposure_mean = {} exposure_median = {} bid_max = {} bid_min = {} bid_mean = {} bid_median = {} mask_dict = {} for vals in train_count[fea].values: valss = vals.split(',') for value in valss: if value not in exposure_max: if value not in mask_dict: mask_dict[value] = create_mask(value, train_count[fea].values) train1 = train_count[mask_dict[value]][count_fea].values exposure_max[value] = np.max(train1) exposure_min[value] = np.min(train1) exposure_mean[value] = np.mean(train1) exposure_median[value] = np.median(train1) if '-1' not in exposure_max: exposure_max['-1'] = 8 bid_max['-1'] = 8 if '-1' not in exposure_min: exposure_min['-1'] = 8 bid_min['-1'] = 8 if '-1' not in exposure_mean: exposure_mean['-1'] = 8 bid_mean['-1'] = 8 if '-1' not in exposure_median: exposure_median['-1'] = 8 bid_median['-1'] = 8 for vals in train_compute[fea].values: max_list = [] min_list = [] mean_list = [] median_list = [] valuess = vals.split(',') for value in valuess: if value not in exposure_max: value = '-1' max_list.append(exposure_max[value]) min_list.append(exposure_min[value]) mean_list.append(exposure_mean[value]) median_list.append(exposure_median[value]) max1 = np.max(max_list) min1 = np.min(min_list) mean1 = np.mean(mean_list) median1 = np.median(median_list) train_res.append([max1, min1, mean1, median1]) train_res1 = train_res[:(Train.shape[0] - val.shape[0])] val_res = train_res[-val.shape[0]:] train_count = Train exposure_max = {} exposure_min = {} exposure_mean = {} exposure_median = {} mask_dict = {} for vals in train_count[fea].values: valss = vals.split(',') for value in valss: if value not in exposure_max: if value not in mask_dict: mask_dict[value] = create_mask(value, train_count[fea].values) train1 = train_count[mask_dict[value]][count_fea].values exposure_max[value] = np.max(train1) exposure_min[value] = np.min(train1) exposure_mean[value] = np.mean(train1) exposure_median[value] = np.median(train1) if '-1' not in exposure_max: exposure_max['-1'] = 8 bid_max['-1'] = 8 if '-1' not in exposure_min: exposure_min['-1'] = 8 bid_min['-1'] = 8 if '-1' not in exposure_mean: exposure_mean['-1'] = 8 bid_mean['-1'] = 8 if '-1' not in exposure_median: exposure_median['-1'] = 8 bid_median['-1'] = 8 for vals in test: max_list = [] min_list = [] mean_list = [] median_list = [] valuess = vals.split(',') for value in valuess: if value not in exposure_max: value = '-1' max_list.append(exposure_max[value]) min_list.append(exposure_min[value]) mean_list.append(exposure_mean[value]) median_list.append(exposure_median[value]) max1 = np.max(max_list) min1 = np.min(min_list) mean1 = np.mean(mean_list) median1 = np.median(median_list) test_res.append([max1, min1, mean1, median1]) return np.array(train_res1), np.array(val_res), np.array(test_res) def one_feature_exposure5(Train, test, fea, date, new_day): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190410] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # train_count = train[train['day'] == 20190410] # train_compute = train[train['day'] == 20190411] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value] = [] # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # # for i in range(len(date) - 2): # day1 = int(date[i + 2]) # day2 = int(date[i + 1]) # day3 = int(date[i]) # # train1 = Train[Train['day'] == day3] # train2 = Train[Train['day'] == day2] # train_compute = Train[Train['day'] == day1] # id_res.extend(train_compute['ad_id'].values) # reqday_res.extend(train_compute['day'].values) # train_count = pd.concat([train1, train2]) # exposure_dict = {} # for value in train_count[fea].values: # if value not in exposure_dict: # exposure_dict[value] = [] # train1 = train_count[train_count[fea] == value]['sucess_rate'].values # exposure_dict[value].append(np.max(train1)) # exposure_dict[value].append(np.min(train1)) # exposure_dict[value].append(np.mean(train1)) # exposure_dict[value].append(np.median(train1)) # # if '-1' not in exposure_dict: # exposure_dict['-1'] = [0, 0, 0, 0] # for value in train_compute[fea].values: # if value not in exposure_dict: # value = '-1' # train_res.append(exposure_dict[value]) # train_count = pd.concat([train1, train2]) train_count = train[train['day'] >= new_day] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] num_dis = 0 for value in test: if value not in exposure_dict: num_dis += 1 value = '-1' test_res.append(exposure_dict[value]) print(num_dis) return np.array(train_res), np.array(test_res), \ np.array(id_res), np.array(reqday_res)
36.5515
115
0.558844
76b4ff3525a608bb25570d13663084bd0939dc93
3,165
py
Python
data_preprocess.py
William-Zhanng/Protein_affinity
8abd12073b182274bf464ff23fd3be406c4e39ac
[ "MIT" ]
1
2022-01-09T12:23:16.000Z
2022-01-09T12:23:16.000Z
data_preprocess.py
William-Zhanng/Protein_affinity
8abd12073b182274bf464ff23fd3be406c4e39ac
[ "MIT" ]
null
null
null
data_preprocess.py
William-Zhanng/Protein_affinity
8abd12073b182274bf464ff23fd3be406c4e39ac
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import tqdm import argparse import random import os def create_data(protein_idx,all_data,pseq_dict,out_path,sample_ratio=100): # Postive sample items = all_data[all_data['item_id_a'] == protein_idx] df_out = pd.DataFrame(columns = ['item_id_a','item_id_b','sequence_a','sequence_b','label']) target_proteins = pd.Series(items['item_id_b'].values) df_out['item_id_b'] = target_proteins df_out['item_id_a'] = protein_idx df_out['label'] = 1 df_out['sequence_a'] = pseq_dict[protein_idx] seq_list = [] for i in range(df_out.shape[0]): target = target_proteins[i] target_seq = pseq_dict[target] seq_list.append(target_seq) seq_list = pd.Series(seq_list) df_out['sequence_b'] = seq_list # Negative sample # Neg sample compute all_idx = set(all_data['item_id_a']) target_idx = set(df_out['item_id_b']) neg_idx = all_idx - target_idx sample_ratio = 100 sample_num = sample_ratio * len(target_idx) neg_prot = random.sample(neg_idx,min(len(neg_idx),sample_num)) # Create neg sample dataframe df_neg = pd.DataFrame(columns = ['item_id_a','item_id_b','sequence_a','sequence_b','label']) df_neg['item_id_b'] = pd.Series(neg_prot) df_neg['item_id_a'] = protein_idx df_neg['label'] = 0 df_neg['sequence_a'] = pseq_dict[protein_idx] seq_list = [] for i in range(df_neg.shape[0]): target = neg_prot[i] target_seq = pseq_dict[target] seq_list.append(target_seq) seq_list = pd.Series(seq_list) df_neg['sequence_b'] = seq_list df_out = pd.concat([df_out,df_neg],axis=0) df_out.to_csv(out_path) return df_out if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--actions_data_path', type=str, default='./data/9606.protein.actions.all_connected.txt') parser.add_argument('--pseq_path', type=str, default='./data/protein.STRING_all_connected.sequences.dictionary.tsv', help='The protein sequence data file path') parser.add_argument('--protein_idx', type=str, default='9606.ENSP00000217109', help='The name of protein in STRING dataset') parser.add_argument('--out_dir', type=str, default='./data', help='The protein sequence data file path') args = parser.parse_args() os.makedirs(args.out_dir,exist_ok=True) all_data = pd.read_csv(args.actions_data_path,sep='\t') # Create protein sequence dict pseq_dict = {} for line in open(args.pseq_path): line = line.strip().split('\t') pseq_dict[line[0]] = line[1] all_data.drop(columns=['mode','action','is_directional','a_is_acting','score'],axis=1,inplace=True) all_data.drop_duplicates(inplace = True) df_each_cnt = all_data.groupby('item_id_a').count()['item_id_b'].sort_values() protein_idxs = list(df_each_cnt[(df_each_cnt >= 150) & (df_each_cnt < 300)].index) df_out = create_data(args.protein_idx,all_data,pseq_dict,os.path.join(args.out_dir,'{}_data.csv'.format(args.protein_idx)))
40.063291
127
0.671722
0aabc1e47715692927742952898209806e93ecb1
115,487
py
Python
snmp/tests/test_profiles.py
flowcommerce/integrations-core
c562b0d423ec1a5dd4073b703d6a8d3a9ab23c72
[ "BSD-3-Clause" ]
null
null
null
snmp/tests/test_profiles.py
flowcommerce/integrations-core
c562b0d423ec1a5dd4073b703d6a8d3a9ab23c72
[ "BSD-3-Clause" ]
null
null
null
snmp/tests/test_profiles.py
flowcommerce/integrations-core
c562b0d423ec1a5dd4073b703d6a8d3a9ab23c72
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2020-present # All rights reserved # Licensed under Simplified BSD License (see LICENSE) import logging import pytest from datadog_checks.base import ConfigurationError from datadog_checks.dev.utils import get_metadata_metrics from datadog_checks.snmp import SnmpCheck from datadog_checks.snmp.utils import ( _get_profile_name, _is_abstract_profile, _iter_default_profile_file_paths, get_profile_definition, recursively_expand_base_profiles, ) from . import common, metrics from .metrics import ( ADAPTER_IF_COUNTS, CCCA_ROUTER_GAUGES, CIE_METRICS, COS_COUNTS, COS_RATES, CPU_METRICS, DCU_COUNTS, DISK_GAUGES, DRS_GAUGES, FIREWALL_COUNTS, FRU_METRICS, IDRAC_SYSTEM_STATUS_GAUGES, IF_BANDWIDTH_USAGE, IF_COUNTS, IF_GAUGES, IF_RATES, IF_SCALAR_GAUGE, IP_COUNTS, IP_IF_COUNTS, IPX_COUNTS, LTM_GAUGES, LTM_NODES_COUNTS, LTM_NODES_GAUGES, LTM_NODES_RATES, LTM_POOL_COUNTS, LTM_POOL_GAUGES, LTM_POOL_MEMBER_COUNTS, LTM_POOL_MEMBER_GAUGES, LTM_POOL_MEMBER_RATES, LTM_POOL_RATES, LTM_VIRTUAL_SERVER_COUNTS, LTM_VIRTUAL_SERVER_GAUGES, LTM_VIRTUAL_SERVER_RATES, MEMORY_METRICS, PEER_GAUGES, PEER_RATES, POWEREDGE_SYSTEM_STATUS_GAUGES, PROBE_GAUGES, SCU_COUNTS, TCP_COUNTS, TCP_GAUGES, UDP_COUNTS, USER_FIREWALL, VIRTUAL_CHASSIS_COUNTS, VIRTUAL_CHASSIS_RATES, VOLTAGE_GAUGES, ) pytestmark = common.snmp_integration_only def test_load_profiles(caplog): instance = common.generate_instance_config([]) check = SnmpCheck('snmp', {}, [instance]) caplog.at_level(logging.WARNING) for name, profile in check.profiles.items(): try: check._config.refresh_with_profile(profile) except ConfigurationError as e: pytest.fail("Profile `{}` is not configured correctly: {}".format(name, e)) assert "table doesn't have a 'metric_tags' section" not in caplog.text caplog.clear() def test_profile_hierarchy(): """ * Only concrete profiles MUST inherit from '_base.yaml'. * Only concrete profiles MUST define a `sysobjectid` field. """ errors = [] compat_base_profiles = ['_base_cisco', '_base_cisco_voice'] for path in _iter_default_profile_file_paths(): name = _get_profile_name(path) definition = get_profile_definition({'definition_file': path}) extends = definition.get('extends', []) sysobjectid = definition.get('sysobjectid') if _is_abstract_profile(name): if '_base.yaml' in extends and name not in compat_base_profiles: errors.append("'{}': mixin wrongly extends '_base.yaml'".format(name)) if sysobjectid is not None: errors.append("'{}': mixin wrongly defines a `sysobjectid`".format(name)) else: if '_base.yaml' not in extends: errors.append("'{}': concrete profile must directly extend '_base.yaml'".format(name)) if sysobjectid is None: errors.append("'{}': concrete profile must define a `sysobjectid`".format(name)) if errors: pytest.fail('\n'.join(sorted(errors))) def run_profile_check(recording_name, profile_name=None): """ Run a single check with the provided `recording_name` used as `community_string` by the docker SNMP endpoint. """ instance = common.generate_instance_config([]) instance['community_string'] = recording_name instance['enforce_mib_constraints'] = False check = SnmpCheck('snmp', {}, [instance]) # First, see if recording name is a profile, then use profile as definition. if profile_name is not None: profile = check.profiles.get(profile_name) else: profile = check.profiles.get(recording_name) if profile: try: test_check = SnmpCheck('snmp', {}, [common.generate_instance_config([])]) test_check._config.refresh_with_profile(profile) except ConfigurationError as e: pytest.fail("Profile `{}` is not configured correctly: {}".format(recording_name, e)) check.check(instance) @pytest.mark.unit @pytest.mark.parametrize( 'definition_file, equivalent_definition', [ pytest.param('_base_cisco.yaml', {'extends': ['_base.yaml', '_cisco-generic.yaml']}, id='generic'), pytest.param( '_base_cisco_voice.yaml', {'extends': ['_base.yaml', '_cisco-generic.yaml', '_cisco-voice.yaml']}, id='voice', ), ], ) def test_compat_cisco_base_profiles(definition_file, equivalent_definition): # type: (str, dict) -> None """ Cisco and Cisco Voice base profiles were replaced by mixins (see Pull #6792). But their definition files should still be present and contain equivalent metrics to ensure backward compatibility. """ definition = get_profile_definition({'definition_file': definition_file}) recursively_expand_base_profiles(definition) recursively_expand_base_profiles(equivalent_definition) assert definition == equivalent_definition @pytest.mark.usefixtures("dd_environment") def test_cisco_voice(aggregator): run_profile_check('cisco_icm') tags = [ 'snmp_profile:cisco_icm', 'snmp_host:test', 'device_vendor:cisco', ] + common.CHECK_TAGS resources = ["hrSWRunPerfMem", "hrSWRunPerfCPU"] common.assert_common_metrics(aggregator, tags) for resource in resources: aggregator.assert_metric('snmp.{}'.format(resource), metric_type=aggregator.GAUGE, tags=tags) run_indices = [4, 7, 8, 9, 10, 18, 24, 29, 30] for index in run_indices: status_tags = tags + ['run_index:{}'.format(index)] aggregator.assert_metric('snmp.hrSWRunStatus', metric_type=aggregator.GAUGE, tags=status_tags) cvp_gauges = [ "ccvpSipIntAvgLatency1", "ccvpSipIntAvgLatency2", "ccvpSipIntConnectsRcv", "ccvpSipIntNewCalls", "ccvpSipRtActiveCalls", "ccvpSipRtTotalCallLegs", "ccvpLicRtPortsInUse", "ccvpLicAggMaxPortsInUse", ] for cvp in cvp_gauges: aggregator.assert_metric('snmp.{}'.format(cvp), metric_type=aggregator.GAUGE, tags=tags) ccms_counts = ["ccmRejectedPhones", "ccmUnregisteredPhones"] ccms_gauges = ["ccmRegisteredGateways", "ccmRegisteredPhones"] for ccm in ccms_counts: aggregator.assert_metric('snmp.{}'.format(ccm), metric_type=aggregator.RATE, tags=tags) for ccm in ccms_gauges: aggregator.assert_metric('snmp.{}'.format(ccm), metric_type=aggregator.GAUGE, tags=tags) calls = [ "cvCallVolPeerIncomingCalls", "cvCallVolPeerOutgoingCalls", ] peers = [4, 13, 14, 17, 18, 22, 25, 30, 31] for call in calls: for peer in peers: peer_tags = tags + ["peer_index:{}".format(peer)] aggregator.assert_metric('snmp.{}'.format(call), metric_type=aggregator.GAUGE, tags=peer_tags) calls = [ "cvCallVolMediaIncomingCalls", "cvCallVolMediaOutgoingCalls", ] for call in calls: aggregator.assert_metric('snmp.{}'.format(call), metric_type=aggregator.GAUGE, tags=tags) dial_controls = [ "dialCtlPeerStatsAcceptCalls", "dialCtlPeerStatsFailCalls", "dialCtlPeerStatsRefuseCalls", "dialCtlPeerStatsSuccessCalls", ] for ctl in dial_controls: aggregator.assert_metric( 'snmp.{}'.format(ctl), metric_type=aggregator.MONOTONIC_COUNT, tags=["peer_index:7"] + tags ) pim_tags = tags + ['pim_host:test', 'pim_name:name', 'pim_num:2'] aggregator.assert_metric('snmp.{}'.format("cccaPimStatus"), metric_type=aggregator.GAUGE, tags=pim_tags) aggregator.assert_metric('snmp.{}'.format("sysUpTimeInstance"), metric_type=aggregator.GAUGE, tags=tags, count=1) instance_numbers = ['4446', '5179', '12093', '19363', '25033', '37738', '42562', '51845', '62906', '63361'] for metric in CCCA_ROUTER_GAUGES: for instance_number in instance_numbers: instance_tags = tags + ['instance_number:{}'.format(instance_number)] aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=instance_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_f5(aggregator): profile = 'f5-big-ip' run_profile_check(profile) gauges = [ 'sysStatMemoryTotal', 'sysStatMemoryUsed', 'sysGlobalTmmStatMemoryTotal', 'sysGlobalTmmStatMemoryUsed', 'sysGlobalHostOtherMemoryTotal', 'sysGlobalHostOtherMemoryUsed', 'sysGlobalHostSwapTotal', 'sysGlobalHostSwapUsed', 'sysTcpStatOpen', 'sysTcpStatCloseWait', 'sysTcpStatFinWait', 'sysTcpStatTimeWait', 'sysUdpStatOpen', 'sysClientsslStatCurConns', ] counts = [ 'sysTcpStatAccepts', 'sysTcpStatAcceptfails', 'sysTcpStatConnects', 'sysTcpStatConnfails', 'sysUdpStatAccepts', 'sysUdpStatAcceptfails', 'sysUdpStatConnects', 'sysUdpStatConnfails', 'sysClientsslStatEncryptedBytesIn', 'sysClientsslStatEncryptedBytesOut', 'sysClientsslStatDecryptedBytesIn', 'sysClientsslStatDecryptedBytesOut', 'sysClientsslStatHandshakeFailures', ] cpu_rates = [ 'sysMultiHostCpuUser', 'sysMultiHostCpuNice', 'sysMultiHostCpuSystem', 'sysMultiHostCpuIdle', 'sysMultiHostCpuIrq', 'sysMultiHostCpuSoftirq', 'sysMultiHostCpuIowait', ] cpu_gauges = [ 'sysMultiHostCpuUsageRatio', ] interfaces = [ ('1.0', 'desc2'), ('mgmt', 'desc1'), ('/Common/internal', 'desc5'), ('/Common/http-tunnel', 'desc3'), ('/Common/socks-tunnel', 'desc4'), ] interfaces_with_bandwidth_usage = { '1.0', 'mgmt', '/Common/internal', } tags = [ 'snmp_profile:' + profile, 'snmp_host:f5-big-ip-adc-good-byol-1-vm.c.datadog-integrations-lab.internal', 'device_vendor:f5', ] tags += common.CHECK_TAGS common.assert_common_metrics(aggregator, tags) for metric in gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in counts: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for metric in cpu_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=['cpu:0'] + tags, count=1) aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=['cpu:1'] + tags, count=1) for metric in cpu_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=['cpu:0'] + tags, count=1) aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=['cpu:1'] + tags, count=1) for metric in IF_SCALAR_GAUGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for interface, desc in interfaces: interface_tags = ['interface:{}'.format(interface), 'interface_alias:{}'.format(desc)] + tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=interface_tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=interface_tags, count=1 ) if interface in interfaces_with_bandwidth_usage: for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=interface_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=interface_tags, count=1, ) for version in ['ipv4', 'ipv6']: ip_tags = ['ipversion:{}'.format(version)] + tags for metric in IP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=ip_tags, count=1 ) for metric in LTM_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) servers = ['server1', 'server2', 'server3'] for server in servers: server_tags = tags + ['server:{}'.format(server)] for metric in LTM_VIRTUAL_SERVER_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=server_tags, count=1) for metric in LTM_VIRTUAL_SERVER_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=server_tags, count=1 ) for metric in LTM_VIRTUAL_SERVER_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=server_tags, count=1) nodes = ['node1', 'node2', 'node3'] for node in nodes: node_tags = tags + ['node:{}'.format(node)] for metric in LTM_NODES_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=node_tags, count=1) for metric in LTM_NODES_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=node_tags, count=1 ) for metric in LTM_NODES_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=node_tags, count=1) pools = ['pool1', 'pool2'] for pool in pools: pool_tags = tags + ['pool:{}'.format(pool)] for metric in LTM_POOL_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=pool_tags, count=1) for metric in LTM_POOL_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=pool_tags, count=1 ) for metric in LTM_POOL_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=pool_tags, count=1) pool_members = [('pool1', 'node1'), ('pool1', 'node2'), ('pool2', 'node3')] for pool, node in pool_members: pool_member_tags = tags + ['pool:{}'.format(pool), 'node:{}'.format(node)] for metric in LTM_POOL_MEMBER_GAUGES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=pool_member_tags, count=1 ) for metric in LTM_POOL_MEMBER_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=pool_member_tags, count=1 ) for metric in LTM_POOL_MEMBER_RATES: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=pool_member_tags, count=1 ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_router(aggregator): profile = "generic-router" run_profile_check(profile) common_tags = common.CHECK_TAGS + ['snmp_profile:' + profile] common.assert_common_metrics(aggregator, common_tags) for metric in IF_SCALAR_GAUGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) interfaces = [ ('eth0', 'kept'), ('eth1', 'their forward oxen'), ] for interface, if_desc in interfaces: tags = ['interface:{}'.format(interface), 'interface_alias:{}'.format(if_desc)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for version in ['ipv4', 'ipv6']: tags = ['ipversion:{}'.format(version)] + common_tags for metric in IP_COUNTS + IPX_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IP_IF_COUNTS: for interface in ['17', '21']: tags = ['ipversion:{}'.format(version), 'interface:{}'.format(interface)] + common_tags aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_f5_router(aggregator): # Use the generic profile against the f5 device instance = common.generate_instance_config([]) instance['community_string'] = 'f5-big-ip' instance['enforce_mib_constraints'] = False init_config = {'profiles': {'router': {'definition_file': 'generic-router.yaml'}}} check = SnmpCheck('snmp', init_config, [instance]) check.check(instance) interfaces = [ ('1.0', 'desc2'), ('mgmt', 'desc1'), ('/Common/internal', 'desc5'), ('/Common/http-tunnel', 'desc3'), ('/Common/socks-tunnel', 'desc4'), ] interfaces_with_bandwidth_usage = { '1.0', 'mgmt', '/Common/internal', } common_tags = [ 'snmp_profile:router', 'snmp_host:f5-big-ip-adc-good-byol-1-vm.c.datadog-integrations-lab.internal', ] common_tags.extend(common.CHECK_TAGS) common.assert_common_metrics(aggregator, common_tags) for metric in IF_SCALAR_GAUGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for interface, desc in interfaces: tags = ['interface:{}'.format(interface), 'interface_alias:{}'.format(desc)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) if interface in interfaces_with_bandwidth_usage: for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for version in ['ipv4', 'ipv6']: tags = ['ipversion:{}'.format(version)] + common_tags for metric in IP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_3850(aggregator): profile = "cisco-3850" run_profile_check(profile) # We're not covering all interfaces interfaces = ["Gi1/0/{}".format(i) for i in range(1, 48)] common_tags = common.CHECK_TAGS + [ 'snmp_host:Cat-3850-4th-Floor.companyname.local', 'snmp_profile:' + profile, 'device_vendor:cisco', ] common.assert_common_metrics(aggregator, common_tags) aliases = { 'Gi1/0/24': 'LWAP-example', 'Gi1/0/33': 'switchboard console', 'Gi1/0/38': 'Mitel Console', 'Gi1/1/3': 'Link to Switch', 'Gi2/0/13': 'AP01', 'Gi2/0/14': 'AP02', 'Gi2/0/15': 'AP03', 'Gi2/0/16': 'AP04', 'Gi2/0/17': 'AP05', 'Gi2/0/18': 'AP06', 'Gi2/1/4': 'Link to Switch', } for metric in IF_SCALAR_GAUGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for interface in interfaces: alias = aliases.get(interface, '') tags = ['interface:{}'.format(interface), 'interface_alias:{}'.format(alias)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IP_COUNTS + IPX_COUNTS: tags = common_tags + ['ipversion:ipv6'] aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) sensors = [1006, 1007, 1008, 2006, 2007, 2008] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:8'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [1001, 1010, 2001, 2010] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [1000, 2000] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in CIE_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) power_supplies = [ (1, 'Switch 1 - Power Supply B, NotExist'), (1, 'Switch 2 - Power Supply B, NotExist'), (2, 'Switch 1 - Power Supply A, Normal'), (2, 'Switch 2 - Power Supply A, Normal'), ] for source, descr in power_supplies: env_tags = ['power_source:{}'.format(source), 'power_status_descr:{}'.format(descr)] aggregator.assert_metric( 'snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=env_tags + common_tags ) aggregator.assert_metric('snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE) for switch, mac_addr in [(1, '0x046c9d42b080'), (2, '0xdccec1430680')]: tags = ['entity_name:Switch {}'.format(switch), 'mac_addr:{}'.format(mac_addr)] + common_tags aggregator.assert_metric('snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=tags) frus = [1011, 1012, 1013, 2011, 2012, 2013] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) for mem_metrics in MEMORY_METRICS: for pool in ['Processor', 'IOS Process stack']: tags = ['mem_pool_name:{}'.format(pool)] + common_tags aggregator.assert_metric('snmp.{}'.format(mem_metrics), metric_type=aggregator.GAUGE, tags=tags) neighbor_metrics = [ ('ospfNbrEvents', aggregator.RATE), ('ospfNbrState', aggregator.GAUGE), ('ospfNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in neighbor_metrics: tags = ['neighbor_ip:192.29.116.26', 'neighbor_id:192.29.66.79'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) lls_metrics = ['ospfIfRetransInterval', 'ospfIfState'] for metric in lls_metrics: tags = ['ospf_ip_addr:192.29.116.25'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for temp_index in [1006, 1007, 1008, 2006, 2007, 2008]: env_tag = ['temp_index:{}'.format(temp_index), 'temp_state:1'] aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=env_tag + common_tags ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_meraki_cloud_controller(aggregator): run_profile_check('meraki-cloud-controller') common_tags = common.CHECK_TAGS + [ 'snmp_profile:meraki-cloud-controller', 'snmp_host:dashboard.meraki.com', 'device_vendor:meraki', ] common.assert_common_metrics(aggregator, common_tags) dev_metrics = ['devStatus', 'devClientCount'] dev_tags = ['device:Gymnasium', 'product:MR16-HW', 'network:L_NETWORK', 'mac_address:0x02020066f57f'] + common_tags for metric in dev_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=dev_tags, count=1) if_tags = ['interface:wifi0', 'index:4', 'mac_address:0x02020066f500'] + common_tags if_metrics = ['devInterfaceSentPkts', 'devInterfaceRecvPkts', 'devInterfaceSentBytes', 'devInterfaceRecvBytes'] for metric in if_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) # IF-MIB if_tags = ['interface:eth0'] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_idrac(aggregator): run_profile_check('idrac') interfaces = ['eth0', 'en1'] common_tags = common.CHECK_TAGS + ['snmp_profile:idrac', 'device_vendor:dell'] common.assert_common_metrics(aggregator, common_tags) for interface in interfaces: tags = ['adapter:{}'.format(interface)] + common_tags for count in ADAPTER_IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(count), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) indexes = ['26', '29'] for index in indexes: tags = ['chassis_index:{}'.format(index)] + common_tags for gauge in IDRAC_SYSTEM_STATUS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('supply1', '13', 'forward their oxen acted acted'), ('supply2', '16', 'quaintly but acted'), ] for name, number, fqdd in tag_mappings: tags = [ 'supply_name:{}'.format(name), 'enclosure_power_supply_number:{}'.format(number), 'enclosure_power_supply_fqdd:{}'.format(fqdd), ] + common_tags aggregator.assert_metric('snmp.enclosurePowerSupplyState', metric_type=aggregator.GAUGE, tags=tags, count=1) disks = ['disk1', 'disk2'] for disk in disks: tags = ['disk_name:{}'.format(disk)] + common_tags for gauge in DISK_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('battery1', 'but but acted driving driving'), ('battery2', 'oxen acted Jaded quaintly kept forward quaintly forward Jaded'), ] for name, fqdd in tag_mappings: tags = [ 'battery_name:{}'.format(name), 'battery_fqdd:{}'.format(fqdd), ] + common_tags aggregator.assert_metric('snmp.batteryState', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ( 'controller1', '4', 'quaintly kept acted acted but acted zombies quaintly forward', 'quaintly zombies acted driving oxen', ), ('controller2', '21', 'acted', 'driving quaintly'), ] for name, number, pci_slot, fqdd in tag_mappings: tags = [ 'controller_name:{}'.format(name), 'controller_number:{}'.format(number), 'controller_pci_slot:{}'.format(pci_slot), 'controller_fqdd:{}'.format(fqdd), ] + common_tags aggregator.assert_metric('snmp.controllerRollUpStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) devices = ['device1', 'device2'] indexes = ['10', '20'] for device, index in zip(devices, indexes): tags = ['device_descr_name:{}'.format(device), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.{}'.format("pCIDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1) slots = ['slot1', 'slot2'] indexes = ['19', '21'] for slot, index in zip(slots, indexes): tags = ['slot_name:{}'.format(slot), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.{}'.format("systemSlotStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('29', 'device2', '0x9e00e0291401'), ('3', 'device1', '0x9e00e0291401')] for index, device, mac in tag_mappings: tags = [ 'chassis_index:{}'.format(index), 'device_fqdd:{}'.format(device), 'mac_addr:{}'.format(mac), ] + common_tags aggregator.assert_metric( 'snmp.{}'.format("networkDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1 ) tag_mappings = [('3', '26'), ('31', '19')] for chassis_index, bios_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'system_bios_index:{}'.format(bios_index), ] + common_tags aggregator.assert_metric('snmp.systemBIOSStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('9', '26', '28'), ('18', '26', '4')] for chassis_index, probe_type, probe_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'probe_type:{}'.format(probe_type), 'amperage_probe_index:{}'.format(probe_index), ] + common_tags for gauge in PROBE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('12', '6', '15'), ('22', '3', '19')] for chassis_index, probe_type, probe_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'probe_type:{}'.format(probe_type), 'voltage_probe_index:{}'.format(probe_index), ] + common_tags for gauge in VOLTAGE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('18', '23', 'Jaded oxen driving zombies acted oxen'), ('29', '21', 'kept zombies oxen kept driving forward oxen'), ] for chassis_index, intrusion_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'intrusion_index:{}'.format(intrusion_index), 'intrusion_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.intrusionStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.intrusionReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('12', '14', 'zombies quaintly forward acted quaintly acted Jaded zombies'), ('22', '22', 'acted quaintly their Jaded oxen forward forward'), ] for chassis_index, power_usage_index, power_usage_entity_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'power_usage_index:{}'.format(power_usage_index), 'power_usage_entity_name:{}'.format(power_usage_entity_name), ] + common_tags aggregator.assert_metric('snmp.powerUsageStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('20', '31', 'quaintly but oxen Jaded driving'), ('21', '13', 'kept kept their but quaintly kept quaintly driving'), ] for chassis_index, battery_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'system_battery_index:{}'.format(battery_index), 'system_battery_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.systemBatteryStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.systemBatteryReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('1', '19', 'driving oxen forward'), ('6', '31', 'their Jaded quaintly but but their quaintly kept acted'), ] for chassis_index, cooling_unit_index, cooling_unit_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'cooling_unit_index:{}'.format(cooling_unit_index), 'cooling_unit_name:{}'.format(cooling_unit_name), ] + common_tags aggregator.assert_metric('snmp.coolingUnitRedundancyStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingUnitStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('8', '11', '9', 'acted', 'acted'), ('19', '3', '10', 'acted oxen but zombies driving acted Jaded', 'quaintly kept'), ] for chassis_index, device_name, device_type, location_name, cooling_device_fqdd in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'cooling_device_name:{}'.format(device_name), 'cooling_device_type:{}'.format(device_type), 'cooling_device_location_name:{}'.format(location_name), 'cooling_device_fqdd:{}'.format(cooling_device_fqdd), ] + common_tags aggregator.assert_metric('snmp.coolingDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingDeviceReading', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingDeviceDiscreteReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('7', '28', '2', 'quaintly their but forward acted acted kept Jaded forward'), ('15', '28', '2', 'but driving quaintly kept Jaded'), ] for chassis_index, probe_index, probe_type, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'temperature_probe_index:{}'.format(probe_index), 'temperature_probe_type:{}'.format(probe_type), 'temperature_probe_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.temperatureProbeStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.temperatureProbeReading', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric( 'snmp.temperatureProbeDiscreteReading', metric_type=aggregator.GAUGE, tags=tags, count=1 ) tag_mappings = [ ('4', '24', 'but oxen forward', 'their forward oxen'), ( '19', '1', 'but driving oxen but driving oxen oxen oxen forward', 'zombies quaintly Jaded but Jaded driving acted forward', ), ] for chassis_index, device_index, brand_name, device_fqdd in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'processor_device_index:{}'.format(device_index), 'processor_device_brand_name:{}'.format(brand_name), 'processor_device_fqdd:{}'.format(device_fqdd), ] + common_tags aggregator.assert_metric('snmp.processorDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.processorDeviceMaximumSpeed', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.processorDeviceCurrentSpeed', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.processorDeviceVoltage', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('3', '11', 'driving zombies oxen driving kept Jaded driving'), ( '18', '21', 'kept kept', ), ] for chassis_index, status_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'processor_device_status_index:{}'.format(status_index), 'processor_device_status_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.processorDeviceStatusStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.processorDeviceStatusReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('2', '11', 'but kept Jaded'), ( '8', '3', 'quaintly quaintly oxen oxen kept kept their acted forward', ), ] for chassis_index, fru_index, fru_fqdd in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'fru_index:{}'.format(fru_index), 'fru_fqdd:{}'.format(fru_fqdd), ] + common_tags aggregator.assert_metric('snmp.fruInformationStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('2', 'driving quaintly kept Jaded forward but forward kept', 'Jaded but Jaded their'), ( '8', 'zombies quaintly kept kept but quaintly forward quaintly oxen', 'oxen acted their their forward but Jaded zombies oxen', ), ] for disk_number, disk_name, disk_fqdd in tag_mappings: tags = [ 'virtual_disk_number:{}'.format(disk_number), 'virtual_disk_name:{}'.format(disk_name), 'virtual_disk_fqdd:{}'.format(disk_fqdd), ] + common_tags aggregator.assert_metric('snmp.virtualDiskState', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.virtualDiskSizeInMB', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.virtualDiskComponentStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.virtualDiskT10PIStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('2', '27'), ( '83', '86', ), ] for chassis_index, psu_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'drs_psu_index:{}'.format(psu_index), ] + common_tags aggregator.assert_metric('snmp.drsWattsReading', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.drsAmpsReading', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.drsKWhCumulative', metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) indexes = ['29', '22'] device_types = ['26', '4'] device_indexes = ['4', '21'] for index, device_type, device_index in zip(indexes, device_types, device_indexes): tags = [ 'chassis_index:{}'.format(index), 'device_type:{}'.format(device_type), 'device_index:{}'.format(device_index), ] + common_tags aggregator.assert_metric( 'snmp.{}'.format("memoryDeviceStatus"), metric_type=aggregator.GAUGE, tags=tags, count=1 ) for gauge in DRS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_cisco_nexus(aggregator): profile = "cisco-nexus" run_profile_check(profile) interfaces = ["GigabitEthernet1/0/{}".format(i) for i in range(1, 9)] common_tags = common.CHECK_TAGS + [ 'snmp_host:Nexus-eu1.companyname.managed', 'snmp_profile:' + profile, 'device_vendor:cisco', ] common.assert_common_metrics(aggregator, common_tags) for metric in IF_SCALAR_GAUGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1) for interface in interfaces: tags = ['interface:{}'.format(interface), 'interface_alias:'] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) sensors = [1, 9, 11, 12, 12, 14, 17, 26, 29, 31] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:8'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [6, 7, 15, 16, 19, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [3173, 6692, 11571, 19529, 30674, 38253, 52063, 54474, 55946, 63960] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for (index, state) in [(3, 3), (6, 6), (8, 6), (11, 6), (13, 3), (14, 6), (20, 6), (21, 4), (31, 5)]: aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=['temp_state:{}'.format(state), 'temp_index:{}'.format(index)] + common_tags, ) power_supply_tags = ['power_source:1', 'power_status_descr:Jaded driving their their their'] + common_tags aggregator.assert_metric('snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=power_supply_tags) fan_indices = [4, 6, 7, 16, 21, 22, 25, 27] for index in fan_indices: tags = ['fan_status_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_metric( 'snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE, tags=common_tags + ['interface:GigabitEthernet1/0/1'], ) aggregator.assert_metric( 'snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=['mac_addr:0xffffffffffff'] + common_tags ) frus = [2, 7, 8, 21, 26, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_dell_poweredge(aggregator): run_profile_check('dell-poweredge') # Poweredge sys_mem_gauges = [ 'operatingSystemMemoryAvailablePhysicalSize', 'operatingSystemMemoryTotalPageFileSize', 'operatingSystemMemoryAvailablePageFileSize', 'operatingSystemMemoryTotalVirtualSize', 'operatingSystemMemoryAvailableVirtualSize', ] power_supply_gauges = [ 'powerSupplyStatus', 'powerSupplyOutputWatts', 'powerSupplyMaximumInputVoltage', 'powerSupplyCurrentInputVoltage', ] temperature_probe_gauges = ['temperatureProbeStatus', 'temperatureProbeReading'] processor_device_gauges = ['processorDeviceStatus', 'processorDeviceThreadCount'] cache_device_gauges = ['cacheDeviceStatus', 'cacheDeviceMaximumSize', 'cacheDeviceCurrentSize'] memory_device_gauges = ['memoryDeviceStatus', 'memoryDeviceFailureModes'] common_tags = common.CHECK_TAGS + [ 'snmp_profile:dell-poweredge', 'device_vendor:dell', ] common.assert_common_metrics(aggregator, common_tags) chassis_indexes = [29, 31] for chassis_index in chassis_indexes: tags = ['chassis_index:{}'.format(chassis_index)] + common_tags for metric in sys_mem_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [5, 17] for index in indexes: tags = ['chassis_index:4', 'index:{}'.format(index)] + common_tags for metric in power_supply_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) tag_mappings = [ ('14', '8', '2', 'but their forward oxen oxen'), ('18', '13', '16', 'acted Jaded kept kept but quaintly quaintly zombies'), ('21', '13', '1', 'kept oxen oxen forward'), ('22', '4', '3', 'but but oxen zombies quaintly quaintly but Jaded'), ('23', '23', '3', 'kept driving driving Jaded zombies forward quaintly zombies but'), ('24', '10', '3', 'acted their kept forward forward'), ('25', '17', '1', 'oxen their their oxen'), ] for chassis_index, probe_index, probe_type, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'index:{}'.format(probe_index), 'temperature_probe_type:{}'.format(probe_type), 'temperature_probe_location_name:{}'.format(location_name), ] + common_tags for metric in temperature_probe_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [17, 28] for index in indexes: tags = ['chassis_index:5', 'index:{}'.format(index)] + common_tags for metric in processor_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) indexes = [15, 27] for index in indexes: tags = ['chassis_index:11', 'index:{}'.format(index)] + common_tags for metric in cache_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) serial_numbers = ['forward zombies acted Jaded', 'kept oxen their their oxen oxen'] for serial_number in serial_numbers: tags = ['serial_number_name:{}'.format(serial_number), 'chassis_index:1'] + common_tags for metric in memory_device_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, at_least=1) ip_addresses = ['66.97.1.103', '62.148.76.32', '45.3.243.155'] for ip_address in ip_addresses: tags = ['ip_address:{}'.format(ip_address)] + common_tags aggregator.assert_metric('snmp.networkDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, at_least=1) # Intel Adapter interfaces = ['eth0', 'en1'] for interface in interfaces: tags = ['adapter:{}'.format(interface)] + common_tags for count in ADAPTER_IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(count), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) indexes = ['26', '29'] for index in indexes: tags = ['chassis_index:{}'.format(index)] + common_tags for gauge in POWEREDGE_SYSTEM_STATUS_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('3', '17', 'zombies kept their quaintly but'), ('6', '19', 'zombies'), ] for chassis_index, battery_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'battery_index:{}'.format(battery_index), 'battery_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.batteryStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.batteryReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('3', '26'), ('31', '19')] for chassis_index, bios_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'system_bios_index:{}'.format(bios_index), ] + common_tags aggregator.assert_metric('snmp.systemBIOSStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('9', '26', '28'), ('18', '26', '4')] for chassis_index, probe_type, probe_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'probe_type:{}'.format(probe_type), 'amperage_probe_index:{}'.format(probe_index), ] + common_tags for gauge in PROBE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('12', '6', '15'), ('22', '3', '19')] for chassis_index, probe_type, probe_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'probe_type:{}'.format(probe_type), 'voltage_probe_index:{}'.format(probe_index), ] + common_tags for gauge in VOLTAGE_GAUGES: aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('18', '23', 'Jaded oxen driving zombies acted oxen'), ('29', '21', 'kept zombies oxen kept driving forward oxen'), ] for chassis_index, intrusion_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'intrusion_index:{}'.format(intrusion_index), 'intrusion_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.intrusionStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.intrusionReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('12', '14', 'zombies quaintly forward acted quaintly acted Jaded zombies'), ('22', '22', 'acted quaintly their Jaded oxen forward forward'), ] for chassis_index, power_usage_index, power_usage_entity_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'power_usage_index:{}'.format(power_usage_index), 'power_usage_entity_name:{}'.format(power_usage_entity_name), ] + common_tags aggregator.assert_metric('snmp.powerUsageStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('1', '19', 'driving oxen forward'), ('6', '31', 'their Jaded quaintly but but their quaintly kept acted'), ] for chassis_index, cooling_unit_index, cooling_unit_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'cooling_unit_index:{}'.format(cooling_unit_index), 'cooling_unit_name:{}'.format(cooling_unit_name), ] + common_tags aggregator.assert_metric('snmp.coolingUnitRedundancyStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingUnitStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('8', '11', '9', 'acted'), ('19', '3', '10', 'acted oxen but zombies driving acted Jaded'), ] for chassis_index, device_name, device_type, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'cooling_device_name:{}'.format(device_name), 'cooling_device_type:{}'.format(device_type), 'cooling_device_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.coolingDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingDeviceReading', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.coolingDeviceDiscreteReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('3', '11', 'driving zombies oxen driving kept Jaded driving'), ( '18', '21', 'kept kept', ), ] for chassis_index, status_index, location_name in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'processor_device_status_index:{}'.format(status_index), 'processor_device_status_location_name:{}'.format(location_name), ] + common_tags aggregator.assert_metric('snmp.processorDeviceStatusStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.processorDeviceStatusReading', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('2', '11'), ( '8', '3', ), ] for chassis_index, fru_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'fru_index:{}'.format(fru_index), ] + common_tags aggregator.assert_metric('snmp.fruInformationStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [ ('2', '11'), ( '8', '3', ), ] for chassis_index, fru_index in tag_mappings: tags = [ 'chassis_index:{}'.format(chassis_index), 'fru_index:{}'.format(fru_index), ] + common_tags aggregator.assert_metric('snmp.fruInformationStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('19', 'their kept kept zombies kept zombies their'), ('21', 'zombies their')] for index, slot in tag_mappings: tags = ['slot_name:{}'.format(slot), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.systemSlotStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) tag_mappings = [('2', 'driving oxen oxen but'), ('7', 'kept but Jaded oxen quaintly Jaded zombies')] for index, descr_name in tag_mappings: tags = ['device_descr_name:{}'.format(descr_name), 'chassis_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.pCIDeviceStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_hp_ilo4(aggregator): profile = "hp-ilo4" run_profile_check(profile) status_gauges = [ 'cpqHeCritLogCondition', 'cpqHeCorrMemLogStatus', 'cpqHeCorrMemLogCondition', 'cpqHeAsrStatus', 'cpqHeAsrPost', 'cpqHeAsrCondition', 'cpqHeAsrNetworkAccessStatus', 'cpqHeThermalCondition', 'cpqHeThermalTempStatus', 'cpqHeThermalSystemFanStatus', 'cpqHeThermalCpuFanStatus', 'cpqNicVtVirusActivity', 'cpqSm2CntlrServerPowerState', 'cpqSm2CntlrBatteryStatus', 'cpqSm2CntlrRemoteSessionStatus', 'cpqSm2CntlrInterfaceStatus', ] cpqhlth_counts = ['cpqHeAsrRebootCount', 'cpqHeCorrMemTotalErrs'] cpqhlth_gauges = ['cpqHeSysUtilEisaBusMin', 'cpqHePowerMeterCurrReading', 'cpqHeSysUtilLifeTime'] cpqsm2_gauges = [ 'cpqSm2CntlrBatteryPercentCharged', 'cpqSm2CntlrSelfTestErrors', 'cpqSm2EventTotalEntries', ] EMBEDDED = 2 PCMCIA = 3 card_locations = [EMBEDDED, PCMCIA] network_card_counts = [ 'cpqSm2NicXmitBytes', 'cpqSm2NicXmitTotalPackets', 'cpqSm2NicXmitDiscardPackets', 'cpqSm2NicXmitErrorPackets', 'cpqSm2NicXmitQueueLength', 'cpqSm2NicRecvBytes', 'cpqSm2NicRecvTotalPackets', 'cpqSm2NicRecvDiscardPackets', 'cpqSm2NicRecvErrorPackets', 'cpqSm2NicRecvUnknownPackets', ] interfaces = ['eth0', 'en1'] phys_adapter_counts = [ 'cpqNicIfPhysAdapterGoodTransmits', 'cpqNicIfPhysAdapterGoodReceives', 'cpqNicIfPhysAdapterBadTransmits', 'cpqNicIfPhysAdapterBadReceives', 'cpqNicIfPhysAdapterInOctets', 'cpqNicIfPhysAdapterOutOctets', ] phys_adapter_gauges = ['cpqNicIfPhysAdapterSpeed', 'cpqNicIfPhysAdapterSpeedMbps'] temperature_sensors = [1, 13, 28] batteries = [1, 3, 4, 5] common_tags = common.CHECK_TAGS + ['snmp_profile:' + profile, 'device_vendor:hp', 'snmp_host:hp-ilo4.example'] common.assert_common_metrics(aggregator, common_tags) for metric in status_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cpqhlth_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in cpqhlth_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cpqsm2_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for index in temperature_sensors: tags = ['temperature_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.cpqHeTemperatureCelsius', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cpqHeTemperatureCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) for index in batteries: tags = ['battery_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.cpqHeSysBatteryCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.cpqHeSysBatteryStatus', metric_type=aggregator.GAUGE, tags=tags, count=1) for location in card_locations: tags = ['nic_stats_location:{}'.format(location)] + common_tags for metric in network_card_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in phys_adapter_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in phys_adapter_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) drive_counts = [ "cpqDaPhyDrvUsedReallocs", "cpqDaPhyDrvRefHours", "cpqDaPhyDrvHardReadErrs", "cpqDaPhyDrvRecvReadErrs", "cpqDaPhyDrvHardWriteErrs", "cpqDaPhyDrvRecvWriteErrs", "cpqDaPhyDrvHSeekErrs", "cpqDaPhyDrvSeekErrs", ] drive_gauges = [ "cpqDaPhyDrvStatus", "cpqDaPhyDrvFactReallocs", "cpqDaPhyDrvSpinupTime", "cpqDaPhyDrvSize", "cpqDaPhyDrvSmartStatus", "cpqDaPhyDrvCurrentTemperature", ] drive_idx = [(0, 2), (0, 28), (8, 31), (9, 24), (9, 28), (10, 17), (11, 4), (12, 20), (18, 22), (23, 2)] for drive_cntrl_idx, drive_index in drive_idx: tags = ['drive_cntrl_idx:{}'.format(drive_cntrl_idx), "drive_index:{}".format(drive_index)] + common_tags for metric in drive_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in drive_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_proliant(aggregator): run_profile_check('hpe-proliant') common_tags = common.CHECK_TAGS + [ 'snmp_profile:hpe-proliant', 'device_vendor:hp', 'snmp_host:hpe-proliant.example', ] common.assert_common_metrics(aggregator, common_tags) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) cpu_gauges = [ "cpqSeCpuSlot", "cpqSeCpuSpeed", "cpqSeCpuStatus", "cpqSeCpuExtSpeed", "cpqSeCpuCore", "cpqSeCPUCoreMaxThreads", "cpqSeCpuPrimary", ] cpu_indexes = [0, 4, 6, 8, 13, 15, 26, 27] for idx in cpu_indexes: tags = ['cpu_index:{}'.format(idx)] + common_tags for metric in cpu_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpu_util_gauges = ["cpqHoCpuUtilMin", "cpqHoCpuUtilFiveMin", "cpqHoCpuUtilThirtyMin", "cpqHoCpuUtilHour"] cpu_unit_idx = [4, 7, 13, 20, 22, 23, 29] for idx in cpu_unit_idx: tags = ['cpu_unit_index:{}'.format(idx)] + common_tags for metric in cpu_util_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) file_sys_gauges = [ "cpqHoFileSysSpaceTotal", "cpqHoFileSysSpaceUsed", "cpqHoFileSysPercentSpaceUsed", "cpqHoFileSysAllocUnitsTotal", "cpqHoFileSysAllocUnitsUsed", "cpqHoFileSysStatus", ] file_sys_idx = [5, 8, 11, 15, 19, 21, 28, 30] for idx in file_sys_idx: tags = ['file_sys_index:{}'.format(idx)] + common_tags for metric in file_sys_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) memory_gauges = [ "cpqSiMemModuleSize", "cpqSiMemModuleType", "cpqSiMemModuleSpeed", "cpqSiMemModuleTechnology", "cpqSiMemModuleECCStatus", "cpqSiMemModuleFrequency", "cpqSiMemModuleCellStatus", ] memory_idx = [(6, 16), (7, 17), (7, 30), (8, 20), (10, 4), (15, 27), (20, 14), (21, 14), (23, 0), (28, 20)] for board_idx, mem_module_index in memory_idx: tags = ['mem_board_index:{}'.format(board_idx), "mem_module_index:{}".format(mem_module_index)] + common_tags for metric in memory_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) drive_counts = [ "cpqDaPhyDrvUsedReallocs", "cpqDaPhyDrvRefHours", "cpqDaPhyDrvHardReadErrs", "cpqDaPhyDrvRecvReadErrs", "cpqDaPhyDrvHardWriteErrs", "cpqDaPhyDrvRecvWriteErrs", "cpqDaPhyDrvHSeekErrs", "cpqDaPhyDrvSeekErrs", ] drive_gauges = [ "cpqDaPhyDrvStatus", "cpqDaPhyDrvFactReallocs", "cpqDaPhyDrvSpinupTime", "cpqDaPhyDrvSize", "cpqDaPhyDrvSmartStatus", "cpqDaPhyDrvCurrentTemperature", ] drive_idx = [(0, 2), (0, 28), (8, 31), (9, 24), (9, 28), (10, 17), (11, 4), (12, 20), (18, 22), (23, 2)] for drive_cntrl_idx, drive_index in drive_idx: tags = ['drive_cntrl_idx:{}'.format(drive_cntrl_idx), "drive_index:{}".format(drive_index)] + common_tags for metric in drive_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in drive_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) interfaces = [ ('eth0', 'quaintly zombies quaintly forward'), ('eth1', 'quaintly but quaintly quaintly'), ] for interface, desc in interfaces: if_tags = ['interface:{}'.format(interface), 'interface_alias:{}'.format(desc)] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) mem_boards = ['11', '12'] for board in mem_boards: tags = ['mem_board_index:{}'.format(board)] + common_tags aggregator.assert_metric('snmp.cpqHeResMem2ModuleCondition', metric_type=aggregator.GAUGE, tags=tags, count=1) adapter_gauges = ['cpqNicIfPhysAdapterStatus', 'cpqNicIfPhysAdapterState'] for gauge in adapter_gauges: tags = ['adapter_name:adapter', 'adapter_mac_addr:mac'] + common_tags aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) power_metrics = [ 'cpqHeFltTolPowerSupplyStatus', 'cpqHeFltTolPowerSupplyCapacityUsed', 'cpqHeFltTolPowerSupplyCapacityMaximum', ] for gauge in power_metrics: tags = ['chassis_num:30'] + common_tags aggregator.assert_metric('snmp.{}'.format(gauge), metric_type=aggregator.GAUGE, tags=tags, count=1) controller_index = ['controller_index:3'] + common_tags aggregator.assert_metric( 'snmp.{}'.format("cpqDaCntlrCondition"), metric_type=aggregator.GAUGE, tags=controller_index, count=1 ) thermal_metrics = ['cpqHeThermalCondition', 'cpqHeSysUtilLifeTime', 'cpqHeFltTolPwrSupplyStatus'] for metric in thermal_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_generic_host_resources(aggregator): instance = common.generate_instance_config([]) instance['community_string'] = 'generic_host' instance['enforce_mib_constraints'] = False instance['profile'] = 'generic' init_config = {'profiles': {'generic': {'definition_file': '_generic-host-resources.yaml'}}} check = SnmpCheck('snmp', init_config, [instance]) check.check(instance) common_tags = common.CHECK_TAGS + ['snmp_profile:generic'] common.assert_common_metrics(aggregator, common_tags) sys_metrics = [ 'snmp.hrSystemUptime', 'snmp.hrSystemNumUsers', 'snmp.hrSystemProcesses', 'snmp.hrSystemMaxProcesses', ] for metric in sys_metrics: aggregator.assert_metric(metric, metric_type=aggregator.GAUGE, tags=common_tags, count=1) storages = [ ('1.3.6.1.2.1.25.2.1.3', 'oxen their driving forward quaintly'), ('1.3.6.1.2.1.25.2.1.4', 'quaintly driving Jaded forward their quaintly zombies'), ] for storage_type, storage_desc in storages: tags = common_tags + ['storagetype:{}'.format(storage_type), 'storagedesc:{}'.format(storage_desc)] aggregator.assert_metric('snmp.hrStorageAllocationUnits', count=1, tags=tags) aggregator.assert_metric('snmp.hrStorageSize', count=1, tags=tags) aggregator.assert_metric('snmp.hrStorageUsed', count=1, tags=tags) aggregator.assert_metric('snmp.hrStorageAllocationFailures', count=1, tags=tags) processors = [ '1.3.6.1.3.81.16', '1.3.6.1.3.95.73.140.186.121.144.199', ] for proc in processors: tags = common_tags + ['processorid:{}'.format(proc)] aggregator.assert_metric('snmp.hrProcessorLoad', count=1, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_palo_alto(aggregator): profile = "palo-alto" run_profile_check(profile) common_tags = common.CHECK_TAGS + [ 'snmp_profile:' + profile, 'device_vendor:paloaltonetworks', ] common.assert_common_metrics(aggregator, common_tags) session = [ 'panSessionUtilization', 'panSessionMax', 'panSessionActive', 'panSessionActiveTcp', 'panSessionActiveUdp', 'panSessionActiveICMP', 'panSessionActiveSslProxy', 'panSessionSslProxyUtilization', ] global_protect = [ 'panGPGWUtilizationPct', 'panGPGWUtilizationMaxTunnels', 'panGPGWUtilizationActiveTunnels', ] entity = [ 'panEntityTotalPowerAvail', 'panEntityTotalPowerUsed', ] entry = ['panEntryFRUModulePowerUsed', 'panEntryFRUModuleNumPorts'] for metric in session: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in global_protect: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in entity: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in entry: # Needs cross table entPhysicalIsFRU tag aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) # Needs cross table entLogicalDescr tag aggregator.assert_metric('snmp.panEntryFanTrayPowerUsed', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_asa_all(aggregator): profile = "cisco-asa" assert_cisco_asa(aggregator, profile) @pytest.mark.usefixtures("dd_environment") def test_cisco_asa_5525(aggregator): profile = "cisco-asa-5525" assert_cisco_asa(aggregator, profile) def assert_cisco_asa(aggregator, profile): run_profile_check(profile) common_tags = common.CHECK_TAGS + [ 'snmp_profile:' + profile, 'snmp_host:kept', 'device_vendor:cisco', ] common.assert_common_metrics(aggregator, common_tags) for metric in TCP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) for metric in TCP_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in UDP_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) if_tags = ['interface:eth0'] + common_tags for metric in IF_COUNTS: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=if_tags, count=1 ) for metric in IF_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=if_tags, count=1) for metric in IF_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) for metric in IF_BANDWIDTH_USAGE: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=if_tags, count=1) aggregator.assert_metric('snmp.cieIfResetCount', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1) frus = [3, 4, 5, 7, 16, 17, 24, 25] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) cpus = [7746] for cpu in cpus: tags = ['cpu:{}'.format(cpu)] + common_tags for metric in CPU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) sensor_tags = ['sensor_id:31', 'sensor_type:9'] + common_tags aggregator.assert_metric('snmp.entPhySensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) stat_tags = [(20, 2), (5, 5)] for (svc, stat) in stat_tags: aggregator.assert_metric( 'snmp.cfwConnectionStatValue', metric_type=aggregator.GAUGE, tags=['stat_type:{}'.format(stat), 'service_type:{}'.format(svc)] + common_tags, ) aggregator.assert_metric('snmp.crasNumDeclinedSessions', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.crasNumSessions', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.crasNumUsers', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric( 'snmp.crasNumSetupFailInsufResources', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags ) aggregator.assert_metric('snmp.cipSecGlobalActiveTunnels', metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_metric('snmp.cipSecGlobalHcInOctets', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) aggregator.assert_metric('snmp.cipSecGlobalHcOutOctets', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) for (index, state) in [(3, 3), (6, 6), (8, 6), (11, 6), (13, 3), (14, 6), (20, 6), (21, 4), (31, 5)]: aggregator.assert_metric( 'snmp.ciscoEnvMonTemperatureStatusValue', metric_type=aggregator.GAUGE, tags=['temp_state:{}'.format(state), 'temp_index:{}'.format(index)] + common_tags, ) power_supply_tags = ['power_source:1', 'power_status_descr:Jaded driving their their their'] + common_tags aggregator.assert_metric('snmp.ciscoEnvMonSupplyState', metric_type=aggregator.GAUGE, tags=power_supply_tags) fan_indices = [4, 6, 7, 16, 21, 22, 25, 27] for index in fan_indices: tags = ['fan_status_index:{}'.format(index)] + common_tags aggregator.assert_metric('snmp.ciscoEnvMonFanState', metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_metric('snmp.cswStackPortOperStatus', metric_type=aggregator.GAUGE) aggregator.assert_metric( 'snmp.cswSwitchState', metric_type=aggregator.GAUGE, tags=['mac_addr:0xffffffffffff'] + common_tags ) frus = [2, 7, 8, 21, 26, 27, 30, 31] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags aggregator.assert_metric( 'snmp.cefcFanTrayOperStatus', metric_type=aggregator.GAUGE, tags=['fru:{}'.format(fru)] + common_tags ) for mem_metrics in MEMORY_METRICS: tags = ['mem_pool_name:test_pool'] + common_tags aggregator.assert_metric('snmp.{}'.format(mem_metrics), metric_type=aggregator.GAUGE, tags=tags) for conn in [1, 2, 5]: conn_tags = ['connection_type:{}'.format(conn)] + common_tags aggregator.assert_metric('snmp.cfwConnectionStatCount', metric_type=aggregator.RATE, tags=conn_tags) hardware_tags = [(3, 'Secondary unit'), (5, 'Primary unit'), (6, 'Failover LAN Interface')] for (htype, hdesc) in hardware_tags: aggregator.assert_metric( 'snmp.cfwHardwareStatusValue', metric_type=aggregator.GAUGE, tags=['hardware_type:{}'.format(htype), 'hardware_desc:{}'.format(hdesc)] + common_tags, ) for switch in [4684, 4850, 8851, 9997, 15228, 16580, 24389, 30813, 36264]: aggregator.assert_metric( 'snmp.cvsChassisUpTime', metric_type=aggregator.GAUGE, tags=['chassis_switch_id:{}'.format(switch)] + common_tags, ) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) # RTT rtt_indexes = [1, 7, 10, 13, 15, 18, 20] rtt_types = [22, 21, 17, 6, 20, 8, 16] rtt_states = [3, 1, 6, 4, 6, 1, 6] rtt_gauges = ['rttMonLatestRttOperCompletionTime', 'rttMonLatestRttOperSense', 'rttMonCtrlOperTimeoutOccurred'] for i in range(len(rtt_indexes)): tags = [ "rtt_index:{}".format(rtt_indexes[i]), "rtt_type:{}".format(rtt_types[i]), "rtt_state:{}".format(rtt_states[i]), ] + common_tags for rtt in rtt_gauges: aggregator.assert_metric('snmp.{}'.format(rtt), metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_csr(aggregator): run_profile_check('cisco-csr1000v') common_tags = common.CHECK_TAGS + [ 'snmp_profile:cisco-csr1000v', 'device_vendor:cisco', ] common.assert_common_metrics(aggregator, common_tags) _check_bgp4(aggregator, common_tags) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_checkpoint_firewall(aggregator): run_profile_check('checkpoint-firewall') common_tags = common.CHECK_TAGS + [ 'snmp_profile:checkpoint-firewall', 'device_vendor:checkpoint', ] common.assert_common_metrics(aggregator, common_tags) cpu_metrics = [ 'multiProcUserTime', 'multiProcSystemTime', 'multiProcIdleTime', 'multiProcUsage', ] cpu_cores = [7097, 13039, 13761, 28994, 29751, 33826, 40053, 48847, 61593, 65044] for core in cpu_cores: tags = ['cpu_core:{}'.format(core)] + common_tags for metric in cpu_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) aggregator.assert_metric('snmp.procNum', metric_type=aggregator.GAUGE, tags=common_tags) mem_metrics = ['memTotalReal64', 'memActiveReal64', 'memFreeReal64', 'memTotalVirtual64', 'memActiveVirtual64'] for metric in mem_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) disk_metrics = [ 'multiDiskSize', 'multiDiskUsed', 'multiDiskFreeTotalBytes', 'multiDiskFreeAvailableBytes', 'multiDiskFreeTotalPercent', 'multiDiskFreeAvailablePercent', ] appliance_metrics = [ 'fanSpeedSensorValue', 'fanSpeedSensorStatus', 'tempertureSensorValue', 'tempertureSensorStatus', ] common_indices = range(10) common_names = ['first', 'second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'eighth', 'ninth', 'tenth'] for idx in common_indices: name = common_names[idx] tags = ['disk_index:{}'.format(idx), 'disk_name:{}'.format(name)] + common_tags for metric in disk_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) tags = ['sensor_index:{}'.format(idx), 'sensor_name:{}'.format(name)] + common_tags for metric in appliance_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) fw_count_metrics = ['fwAccepted', 'fwDropped', 'fwRejected'] for metric in fw_count_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags) fw_gauge_metrics = ['fwNumConn', 'fwPeakNumConn'] for metric in fw_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_arista(aggregator): run_profile_check('arista') common_tags = common.CHECK_TAGS + ['snmp_profile:arista', 'device_vendor:arista', 'snmp_host:DCS-7504-name'] common.assert_common_metrics(aggregator, common_tags) aggregator.assert_metric( 'snmp.aristaEgressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:13', 'queue_index:10'], count=1, ) aggregator.assert_metric( 'snmp.aristaEgressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:28', 'queue_index:22'], count=1, ) aggregator.assert_metric( 'snmp.aristaIngressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:7', 'queue_index:25'], count=1, ) aggregator.assert_metric( 'snmp.aristaIngressQueuePktsDropped', metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + ['interface_index:8', 'queue_index:24'], count=1, ) for (sensor_id, sensor_type) in [(1, 11), (7, 8)]: sensor_tags = ['sensor_id:{}'.format(sensor_id), 'sensor_type:{}'.format(sensor_type)] + common_tags aggregator.assert_metric('snmp.entPhySensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) aggregator.assert_metric('snmp.entPhySensorOperStatus', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_aruba(aggregator): run_profile_check('aruba') common_tags = common.CHECK_TAGS + ['snmp_profile:aruba-switch', 'device_vendor:aruba'] common.assert_common_metrics(aggregator, common_tags) for fan in [18, 28]: fan_tags = common_tags + ['fan_index:{}'.format(fan)] aggregator.assert_metric('snmp.sysExtFanStatus', metric_type=aggregator.GAUGE, tags=fan_tags, count=1) for psu in [1, 17]: psu_tags = common_tags + ['powersupply_index:{}'.format(psu)] aggregator.assert_metric('snmp.sysExtPowerSupplyStatus', metric_type=aggregator.GAUGE, tags=psu_tags, count=1) for proc in [11, 26]: proc_tags = common_tags + ['processor_index:{}'.format(proc)] aggregator.assert_metric('snmp.sysExtProcessorLoad', metric_type=aggregator.GAUGE, tags=proc_tags, count=1) for mem in [3, 20]: mem_tags = common_tags + ['memory_index:{}'.format(mem)] aggregator.assert_metric('snmp.sysExtMemorySize', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric('snmp.sysExtMemoryUsed', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric('snmp.sysExtMemoryFree', metric_type=aggregator.GAUGE, tags=mem_tags, count=1) aggregator.assert_metric( 'snmp.wlsxSysExtPacketLossPercent', metric_type=aggregator.GAUGE, tags=common_tags, count=1 ) # OSPF metrics neighbor_metrics = [ ('ospfNbrEvents', aggregator.RATE), ('ospfNbrState', aggregator.GAUGE), ('ospfNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in neighbor_metrics: tags = ['neighbor_ip:192.29.116.26', 'neighbor_id:192.29.66.79'] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) virtual_neighbor_metrics = [ ('ospfVirtNbrState', aggregator.GAUGE), ('ospfVirtNbrEvents', aggregator.RATE), ('ospfVirtNbrLsRetransQLen', aggregator.GAUGE), ] for metric, metric_type in virtual_neighbor_metrics: for ip, nbr in [('74.210.82.1', '194.154.66.112'), ('122.226.86.1', '184.201.101.140')]: tags = ['neighbor_ip:{}'.format(ip), 'neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=metric_type, tags=tags, count=1) lls_metrics = ['ospfIfRetransInterval', 'ospfIfState', 'ospfIfLsaCount'] for metric in lls_metrics: for ip, nbr in [('58.115.169.188', '192.29.66.79'), ('18.2.8.29', '118.246.193.247')]: tags = ['ospf_ip_addr:{}'.format(ip), 'neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) virtual_lls_metrics = ['ospfVirtIfRetransInterval', 'ospfVirtIfState', 'ospfVirtIfLsaCount'] for metric in virtual_lls_metrics: for nbr in ['194.154.66.112', '184.201.101.140']: tags = ['neighbor_id:{}'.format(nbr)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_chatsworth(aggregator): profile = "chatsworth_pdu" run_profile_check(profile) # Legacy global tags are applied to all metrics legacy_global_tags = [ 'legacy_pdu_macaddress:00:0E:D3:AA:CC:EE', 'legacy_pdu_model:P10-1234-ABC', 'legacy_pdu_name:legacy-name1', 'legacy_pdu_version:1.2.3', ] common_tags = common.CHECK_TAGS + legacy_global_tags + ['snmp_profile:' + profile, 'device_vendor:chatsworth'] common.assert_common_metrics(aggregator, common_tags) # Legacy metrics legacy_pdu_tags = common_tags legacy_pdu_gauge_metrics = [ 'snmp.pduRole', 'snmp.outOfService', ] legacy_pdu_monotonic_count_metrics = [] for line in range(1, 4): legacy_pdu_gauge_metrics.append('snmp.line{}curr'.format(line)) for branch in range(1, 3): legacy_pdu_gauge_metrics.append('snmp.temperatureProbe{}'.format(branch)) legacy_pdu_gauge_metrics.append('snmp.humidityProbe{}'.format(branch)) for xyz in ['xy', 'yz', 'zx']: legacy_pdu_monotonic_count_metrics.append('snmp.energy{}{}s'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.voltage{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.power{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.powerFact{}{}'.format(xyz, branch)) legacy_pdu_gauge_metrics.append('snmp.current{}{}'.format(xyz, branch)) for branch in range(1, 25): legacy_pdu_monotonic_count_metrics.append('snmp.receptacleEnergyoutlet{}s'.format(branch)) legacy_pdu_gauge_metrics.append('snmp.outlet{}Current'.format(branch)) for metric in legacy_pdu_gauge_metrics: aggregator.assert_metric(metric, metric_type=aggregator.GAUGE, tags=legacy_pdu_tags, count=1) for metric in legacy_pdu_monotonic_count_metrics: aggregator.assert_metric(metric, metric_type=aggregator.MONOTONIC_COUNT, tags=legacy_pdu_tags, count=1) # New metrics pdu_tags = common_tags + [ 'pdu_cabinetid:cab1', 'pdu_ipaddress:42.2.210.224', 'pdu_macaddress:0x00249b3503f6', 'pdu_model:model1', 'pdu_name:name1', 'pdu_version:v1.1', ] aggregator.assert_metric('snmp.cpiPduNumberBranches', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduNumberOutlets', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutOfService', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduUpgrade', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduChainRole', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) aggregator.assert_metric('snmp.cpiPduTotalPower', metric_type=aggregator.GAUGE, tags=pdu_tags, count=1) for lock in [1, 2]: lock_tags = common_tags + ['lock_id:{}'.format(lock)] aggregator.assert_metric('snmp.cpiPduEasStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) aggregator.assert_metric('snmp.cpiPduDoorStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) aggregator.assert_metric('snmp.cpiPduLockStatus', metric_type=aggregator.GAUGE, tags=lock_tags, count=1) for (sensor_name, sensor_index) in [('sensor1', 4), ('sensor2', 6)]: sensor_tags = common_tags + [ 'sensor_index:{}'.format(sensor_index), 'sensor_name:{}'.format(sensor_name), 'sensor_type:1', ] aggregator.assert_metric('snmp.cpiPduSensorValue', metric_type=aggregator.GAUGE, tags=sensor_tags, count=1) for line in [6, 18]: line_tags = common_tags + ['line_id:{}'.format(line)] aggregator.assert_metric('snmp.cpiPduLineCurrent', metric_type=aggregator.GAUGE, tags=line_tags, count=1) for branch in [1, 17]: branch_tags = common_tags + ['branch_id:{}'.format(branch), 'pdu_name:name1'] aggregator.assert_metric('snmp.cpiPduBranchCurrent', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchMaxCurrent', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchVoltage', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric('snmp.cpiPduBranchPower', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduBranchPowerFactor', metric_type=aggregator.GAUGE, tags=branch_tags, count=1 ) aggregator.assert_metric('snmp.cpiPduBranchStatus', metric_type=aggregator.GAUGE, tags=branch_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduBranchEnergy', metric_type=aggregator.MONOTONIC_COUNT, tags=branch_tags, count=1 ) for branch in [1]: branch_tags = common_tags + ['branch_id:{}'.format(branch), 'pdu_name:name2'] aggregator.assert_metric( 'snmp.cpiPduBranchPowerFactor', metric_type=aggregator.GAUGE, tags=branch_tags, count=1 ) aggregator.assert_metric( 'snmp.cpiPduBranchEnergy', metric_type=aggregator.MONOTONIC_COUNT, tags=branch_tags, count=1 ) for (outlet_id, outlet_branch, outlet_name) in [(7, 29, 'outlet1'), (16, 23, 'outlet2')]: outlet_tags = common_tags + [ 'outlet_id:{}'.format(outlet_id), 'outlet_branchid:{}'.format(outlet_branch), 'outlet_name:{}'.format(outlet_name), ] aggregator.assert_metric('snmp.cpiPduOutletCurrent', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletVoltage', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletPower', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric('snmp.cpiPduOutletStatus', metric_type=aggregator.GAUGE, tags=outlet_tags, count=1) aggregator.assert_metric( 'snmp.cpiPduOutletEnergy', metric_type=aggregator.MONOTONIC_COUNT, tags=outlet_tags, count=1 ) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_isilon(aggregator): run_profile_check('isilon') common_tags = common.CHECK_TAGS + [ 'snmp_profile:isilon', 'cluster_name:testcluster1', 'node_name:node1', 'node_type:1', 'device_vendor:dell', ] cluster_rates = [ 'clusterIfsInBytes', 'clusterIfsOutBytes', ] node_rates = [ 'nodeIfsOutBytes', 'nodeIfsInBytes', ] protocol_metrics = [ 'protocolOpsPerSecond', 'latencyMin', 'latencyMax', 'latencyAverage', ] quota_metrics = ['quotaHardThreshold', 'quotaSoftThreshold', 'quotaUsage', 'quotaAdvisoryThreshold'] quota_ids_types = [ (422978632, 1), (153533730, 5), (3299369987, 4), (2149993012, 3), (1424325378, 1), (4245321451, 0), (2328145711, 1), (1198032230, 4), (1232918362, 1), (1383990869, 1), ] common.assert_common_metrics(aggregator, common_tags) for metric in quota_metrics: for qid, qtype in quota_ids_types: tags = ['quota_id:{}'.format(qid), 'quota_type:{}'.format(qtype)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) for metric in protocol_metrics: for num in range(1, 3): tags = ['protocol_name:testprotocol{}'.format(num)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.clusterHealth', metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in cluster_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=common_tags, count=1) aggregator.assert_metric('snmp.nodeHealth', metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in node_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=common_tags, count=1) for fan in [4, 6, 10, 11, 14, 21, 22, 23, 25, 30]: tags = ['fan_name:testfan', 'fan_number:{}'.format(fan)] + common_tags aggregator.assert_metric('snmp.fanSpeed', metric_type=aggregator.GAUGE, tags=tags, count=1) for status, bay in [('SMARTFAIL', 1), ('HEALTHY', 2), ('DEAD', 3)]: tags = common_tags + ['disk_status:{}'.format(status), 'disk_bay:{}'.format((bay))] aggregator.assert_metric('snmp.diskSizeBytes', metric_type=aggregator.RATE, tags=tags) aggregator.assert_metric('snmp.ifsUsedBytes', metric_type=aggregator.RATE, tags=common_tags, count=1) aggregator.assert_metric('snmp.ifsTotalBytes', metric_type=aggregator.RATE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_apc_ups(aggregator): run_profile_check('apc_ups') profile_tags = [ 'snmp_profile:apc_ups', 'model:APC Smart-UPS 600', 'firmware_version:2.0.3-test', 'serial_num:test_serial', 'ups_name:testIdentName', 'device_vendor:apc', ] tags = common.CHECK_TAGS + profile_tags common.assert_common_metrics(aggregator, tags) for metric in metrics.APC_UPS_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric( 'snmp.upsOutletGroupStatusGroupState', metric_type=aggregator.GAUGE, tags=['outlet_group_name:test_outlet'] + tags, ) for metric, value in metrics.APC_UPS_UPS_BASIC_STATE_OUTPUT_STATE_METRICS: aggregator.assert_metric(metric, value=value, metric_type=aggregator.GAUGE, count=1, tags=tags) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_fortinet_fortigate(aggregator): run_profile_check('fortinet-fortigate') common_tags = common.CHECK_TAGS + [ 'snmp_profile:fortinet-fortigate', 'device_vendor:fortinet', ] common_gauge_metrics = [ 'fgSysCpuUsage', 'fgSysMemUsage', 'fgSysMemCapacity', 'fgSysLowMemUsage', 'fgSysLowMemCapacity', 'fgSysDiskUsage', 'fgSysDiskCapacity', 'fgSysSesCount', 'fgSysSesRate1', 'fgSysSes6Count', 'fgSysSes6Rate1', 'fgApHTTPConnections', 'fgApHTTPMaxConnections', 'fgVdNumber', 'fgVdMaxVdoms', ] processor_gauge_metrics = [ 'fgProcessorUsage', 'fgProcessorSysUsage', ] processor_count_metrics = [ 'fgProcessorPktRxCount', 'fgProcessorPktTxCount', 'fgProcessorPktDroppedCount', ] processor_tags = common_tags + ['processor_index:12'] vd_metrics = [ 'fgVdEntOpMode', 'fgVdEntHaState', 'fgVdEntCpuUsage', 'fgVdEntMemUsage', 'fgVdEntSesCount', 'fgVdEntSesRate', ] vd_tags = common_tags + ['virtualdomain_index:4', 'virtualdomain_name:their oxen quaintly'] common.assert_common_metrics(aggregator, common_tags) for metric in common_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in processor_gauge_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=processor_tags, count=1) for metric in processor_count_metrics: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=processor_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=processor_tags, count=1 ) for metric in vd_metrics: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=vd_tags, count=1) # Interface aggregator.assert_metric('snmp.fgIntfEntVdom', metric_type=aggregator.GAUGE, count=1) # Firewall firewall_tags = common_tags + ['policy_index:22'] for metric in ['fgFwPolPktCount', 'fgFwPolByteCount']: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=firewall_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=firewall_tags, count=1 ) # Firewall 6 firewall6_tags = common_tags + ['policy6_index:29'] for metric in ['fgFwPol6PktCount', 'fgFwPol6ByteCount']: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=firewall6_tags, count=1 ) aggregator.assert_metric( 'snmp.{}.rate'.format(metric), metric_type=aggregator.RATE, tags=firewall6_tags, count=1 ) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.usefixtures("dd_environment") def test_netapp(aggregator): run_profile_check('netapp') profile_tags = [ 'snmp_profile:netapp', 'snmp_host:example-datacenter.company', 'device_vendor:netapp', ] common_tags = common.CHECK_TAGS + profile_tags common.assert_common_metrics(aggregator, common_tags) gauges = [ 'cfInterconnectStatus', 'miscCacheAge', 'ncHttpActiveCliConns', ] counts = [ 'extcache64Hits', ] for metric in gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=common_tags, count=1) for metric in counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags, count=1 ) snapvault_counts = [ 'svTotalFailures', ] snapvaults = [('5', '/vol/dir1', '5'), ('6', '/vol/dir3', '2'), ('18', '/vol/dir9', '4')] for metric in snapvault_counts: for index, destination, state in snapvaults: tags = [ 'index:{}'.format(index), 'destination:{}'.format(destination), 'state:{}'.format(state), ] + common_tags aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) snapmirrors = [('6', '1'), ('9', '5'), ('29', '1')] snapmirror_gauges = [ 'snapmirrorLag', ] snapmirror_counts = [ 'snapmirrorTotalFailures', ] for index, state in snapmirrors: tags = ['index:{}'.format(index), 'state:{}'.format(state)] + common_tags for metric in snapmirror_gauges: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) for metric in snapmirror_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) filesystem_gauges = [ 'dfHighTotalKBytes', 'dfHighAvailKBytes', 'dfInodesUsed', 'dfInodesFree', ] filesystem_indexes = [ '1022', '1023', '1024', '1025', '1026', '1027', '1028', '1029', '1032', '1033', ] filesystems = ['/vol/dir{}'.format(n) for n in range(1, len(filesystem_indexes) + 1)] for metric in filesystem_gauges: for index, filesystem in zip(filesystem_indexes, filesystems): tags = ['index:{}'.format(index), 'filesystem:{}'.format(filesystem)] + common_tags aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) if_counts = [ 'ifHighInOctets', ] if_rates = [ 'ifHighInOctets.rate', ] interfaces = [ # Interface descriptions will be normalized in the backend, but we receive the raw DisplayString values here. ('6', 'netgear ifX300 v1'), ('7', 'junyper proto12 12.3'), ('23', 'malabar yz42 10.2020'), ] for index, descr in interfaces: tags = ['index:{}'.format(index), 'interface:{}'.format(descr)] + common_tags for metric in if_counts: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=tags, count=1 ) for metric in if_rates: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', metric_type=aggregator.GAUGE, tags=common_tags, count=1) aggregator.assert_all_metrics_covered() @pytest.mark.usefixtures("dd_environment") def test_cisco_catalyst(aggregator): run_profile_check('cisco-catalyst') common_tags = common.CHECK_TAGS + [ 'snmp_host:catalyst-6000.example', 'snmp_profile:cisco-catalyst', 'device_vendor:cisco', ] sensors = [5, 9] for sensor in sensors: tags = ['sensor_id:{}'.format(sensor), 'sensor_type:10'] + common_tags aggregator.assert_metric('snmp.entSensorValue', metric_type=aggregator.GAUGE, tags=tags, count=1) interfaces = ["Gi1/0/{}".format(i) for i in [6, 10, 12, 18, 22, 25, 27]] for interface in interfaces: tags = ['interface:{}'.format(interface)] + common_tags for metric in CIE_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) frus = [1001, 1010, 2001, 2010] for fru in frus: tags = ['fru:{}'.format(fru)] + common_tags for metric in FRU_METRICS: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags, count=1) aggregator.assert_metric('snmp.sysUpTimeInstance', count=1) common.assert_common_metrics(aggregator, common_tags) aggregator.assert_all_metrics_covered() @pytest.mark.parametrize("file", ["juniper-ex", "juniper-ex-variation"]) @pytest.mark.usefixtures("dd_environment") def test_juniper_ex(aggregator, file): run_profile_check(file, 'juniper-ex') common_tags = common.CHECK_TAGS + [ 'snmp_profile:juniper-ex', 'device_vendor:juniper-networks', ] _check_juniper_virtual_chassis(aggregator, common_tags) _check_juniper_dcu(aggregator, common_tags) _check_juniper_cos(aggregator, common_tags) _check_juniper_firewall(aggregator, common_tags) _check_bgp4(aggregator, common_tags) common.assert_common_metrics(aggregator, common_tags) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.parametrize("file", ["juniper-mx", "juniper-mx-variation"]) @pytest.mark.usefixtures("dd_environment") def test_juniper_mx(aggregator, file): run_profile_check(file, 'juniper-mx') common_tags = common.CHECK_TAGS + [ 'snmp_profile:juniper-mx', 'device_vendor:juniper-networks', ] _check_juniper_virtual_chassis(aggregator, common_tags) _check_juniper_firewall(aggregator, common_tags) _check_bgp4(aggregator, common_tags) common.assert_common_metrics(aggregator, common_tags) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) @pytest.mark.parametrize("file", ["juniper-srx", "juniper-srx-variation"]) @pytest.mark.usefixtures("dd_environment") def test_juniper_srx(aggregator, file): run_profile_check(file, 'juniper-srx') common_tags = common.CHECK_TAGS + [ 'snmp_profile:juniper-srx', 'device_vendor:juniper-networks', ] _check_juniper_userfirewall(aggregator, common_tags) _check_juniper_dcu(aggregator, common_tags) _check_juniper_scu(aggregator, common_tags) _check_bgp4(aggregator, common_tags) common.assert_common_metrics(aggregator, common_tags) aggregator.assert_all_metrics_covered() aggregator.assert_metrics_using_metadata(get_metadata_metrics(), check_submission_type=True) def _check_juniper_scu(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting scu """ scu_tags = [ ['address_family:1', 'interface:kept but'], ['address_family:1', 'interface:quaintly driving oxen their zombies oxen acted acted'], ['address_family:1', 'interface:but forward kept but their driving oxen quaintly acted'], ] for metric in SCU_COUNTS: for tags in scu_tags: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1 ) def _check_juniper_userfirewall(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting userfirewall (user auth) """ userfirewall_tags = [ ['ldap_domain_name:Mycroft Holmes', 'ldap_host:brother'], ['ldap_domain_name:Jim Moriarty', 'ldap_host:enemy'], ] for metric in USER_FIREWALL: for tags in userfirewall_tags: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1 ) def _check_juniper_dcu(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting DCU """ dcu_tags = [ [ 'address_family:1', 'destination_class_name:their', 'interface:quaintly driving oxen their zombies oxen acted acted', ], [ 'address_family:1', 'destination_class_name:acted but forward acted zombies forward', 'interface:but forward kept but their driving oxen quaintly acted', ], [ 'address_family:2', 'destination_class_name:oxen Jaded oxen Jaded forward kept quaintly', 'interface:kept but', ], ] for decu_metric in DCU_COUNTS: for tags in dcu_tags: aggregator.assert_metric( 'snmp.{}'.format(decu_metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1 ) def _check_juniper_firewall(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting firewall metrics """ firewall_tags = [ [ 'counter_name:Jaded oxen kept their driving but kept', 'counter_type:4', 'firewall_filter_name:their driving quaintly but Jaded oxen', ], [ 'counter_name:but but but their their their kept kept forward', 'counter_type:4', 'firewall_filter_name:driving kept acted Jaded zombies kept acted', ], ] for metric in FIREWALL_COUNTS: for tags in firewall_tags: aggregator.assert_metric( 'snmp.{}'.format(metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1, ) def _check_juniper_virtual_chassis(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting virtual chassis metrics """ virtual_chassis_tags = [ ['port_name:but driving but'], ['port_name:Jaded forward but oxen quaintly their their'], ['port_name:forward forward driving driving Jaded Jaded'], ] for count_and_rate_metric in VIRTUAL_CHASSIS_COUNTS: for tags in virtual_chassis_tags: aggregator.assert_metric( 'snmp.{}'.format(count_and_rate_metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1, ) for rate_metric in VIRTUAL_CHASSIS_RATES: for tags in virtual_chassis_tags: aggregator.assert_metric( 'snmp.{}'.format(rate_metric), metric_type=aggregator.GAUGE, tags=common_tags + tags, count=1 ) def _check_juniper_cos(aggregator, common_tags): """ Shared testing function for Juniper profiles supporting COS metrics """ cos_tags = [ ['interface:acted oxen oxen forward quaintly kept zombies but oxen', 'queue_number:25'], ['interface:acted kept quaintly acted oxen kept', 'queue_number:50'], ['interface:their', 'queue_number:15'], ] for cos_metric in COS_COUNTS: for tags in cos_tags: aggregator.assert_metric( 'snmp.{}'.format(cos_metric), metric_type=aggregator.MONOTONIC_COUNT, tags=common_tags + tags, count=1 ) for cos_metric in COS_RATES: for tags in cos_tags: aggregator.assert_metric( 'snmp.{}'.format(cos_metric), metric_type=aggregator.GAUGE, tags=common_tags + tags, count=1 ) def _check_bgp4(aggregator, common_tags): """ Shared testing function for profiles supporting BGP4 metrics. """ tags = ['neighbor:244.12.239.177'] + common_tags for metric in PEER_GAUGES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.GAUGE, tags=tags) for metric in PEER_RATES: aggregator.assert_metric('snmp.{}'.format(metric), metric_type=aggregator.RATE, tags=tags)
41.631939
120
0.66372
220ad28a66f95935015a64890be020a67d2f058a
96
py
Python
github/methods/auth/__init__.py
appheap/PyGithub
2442a2512a708c6463f81d8398fd91090e134df1
[ "MIT" ]
1
2022-03-16T21:33:37.000Z
2022-03-16T21:33:37.000Z
github/methods/auth/__init__.py
appheap/PyGithub
2442a2512a708c6463f81d8398fd91090e134df1
[ "MIT" ]
null
null
null
github/methods/auth/__init__.py
appheap/PyGithub
2442a2512a708c6463f81d8398fd91090e134df1
[ "MIT" ]
1
2022-03-16T21:28:06.000Z
2022-03-16T21:28:06.000Z
from .authenticate_user import AuthenticateUser class Auth( AuthenticateUser, ): pass
12
47
0.75
5131e1ed4eb223cf86d82dd18d494cecd799c7df
796
py
Python
gallary/urls.py
israelwangila/gallery
9bd799a498e556274bd3518ad047183180463bb7
[ "MIT" ]
null
null
null
gallary/urls.py
israelwangila/gallery
9bd799a498e556274bd3518ad047183180463bb7
[ "MIT" ]
null
null
null
gallary/urls.py
israelwangila/gallery
9bd799a498e556274bd3518ad047183180463bb7
[ "MIT" ]
null
null
null
"""gallary URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf.urls import url,include from django.contrib import admin urlpatterns = [ url(r'^admin/', admin.site.urls), url('',include('photos.urls')) ]
36.181818
77
0.704774
149e1b969b2a6358de3052612b2af8decb56ae0a
7,496
py
Python
saleor/csv/tests/export/products_data/test_prepare_headers.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
null
null
null
saleor/csv/tests/export/products_data/test_prepare_headers.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
4
2021-09-06T03:55:32.000Z
2021-10-15T08:47:58.000Z
saleor/csv/tests/export/products_data/test_prepare_headers.py
hoangtuananh97/saleor
94ad493ef61302fb458822868fc2b4a884ec2065
[ "CC-BY-4.0" ]
null
null
null
from .....attribute.models import Attribute from .....channel.models import Channel from .....graphql.csv.enums import ProductFieldEnum from ....utils.export import product_max_min_filter_to_export_headers from ....utils.product_headers import ( get_attributes_headers, get_channels_headers, get_export_fields_and_headers_info, get_product_export_fields_and_headers, get_warehouses_headers, ) def test_get_export_fields_and_headers_fields_without_price(): # given export_info = { "fields": [ ProductFieldEnum.COLLECTIONS.value, ProductFieldEnum.DESCRIPTION.value, ProductFieldEnum.VARIANT_SKU.value, ], "warehoses": [], } # when export_fields, file_headers = get_product_export_fields_and_headers(export_info) # then expected_headers = ["id", "collections", "description", "variant sku"] assert set(export_fields) == { "collections__slug", "id", "variants__sku", "description_as_str", } assert file_headers == expected_headers def test_get_export_fields_and_headers_no_fields(): export_fields, file_headers = get_product_export_fields_and_headers({}) assert export_fields == ["id"] assert file_headers == ["id"] def test_get_attributes_headers( product_with_multiple_values_attributes, product_type_without_variant ): # given attribute_ids = Attribute.objects.values_list("id", flat=True) export_info = {"attributes": attribute_ids} product_type = product_with_multiple_values_attributes.product_type product_attribute = product_type.product_attributes.first() product_type_without_variant.product_attributes.add(product_attribute) # when attributes_headers = get_attributes_headers(export_info) # then product_headers = [] variant_headers = [] for attr in Attribute.objects.all(): if attr.product_types.exists(): product_headers.append(f"{attr.slug} (product attribute)") if attr.product_variant_types.exists(): variant_headers.append(f"{attr.slug} (variant attribute)") expected_headers = product_headers + variant_headers assert attributes_headers == expected_headers def test_get_attributes_headers_lack_of_attributes_ids(): # given export_info = {} # when attributes_headers = get_attributes_headers(export_info) # then assert attributes_headers == [] def test_get_warehouses_headers(warehouses): # given warehouse_ids = [warehouses[0].pk] export_info = {"warehouses": warehouse_ids} # when warehouse_headers = get_warehouses_headers(export_info) # then assert warehouse_headers == [f"{warehouses[0].slug} (warehouse quantity)"] def test_get_warehouses_headers_lack_of_warehouse_ids(): # given export_info = {} # when warehouse_headers = get_warehouses_headers(export_info) # then assert warehouse_headers == [] def test_get_channels_headers(channel_USD, channel_PLN): # given channel_usd_slug = channel_USD.slug channel_pln_slug = channel_PLN.slug channel_ids = [channel_USD.pk, channel_PLN.pk] export_info = {"channels": channel_ids} # when channel_headers = get_channels_headers(export_info) # then expected_headers = [] for channel_slug in [channel_pln_slug, channel_usd_slug]: for field in [ "product currency code", "published", "publication date", "searchable", "available for purchase", "price amount", "variant currency code", "variant cost price", ]: expected_headers.append(f"{channel_slug} (channel {field})") assert channel_headers == expected_headers def test_get_channels_headers_lack_of_channel_ids(): # given export_info = {} # when channel_headers = get_channels_headers(export_info) # then assert channel_headers == [] def test_get_export_fields_and_headers_info( warehouses, product_with_multiple_values_attributes, channel_PLN, channel_USD ): # given warehouse_ids = [w.pk for w in warehouses] attribute_ids = [attr.pk for attr in Attribute.objects.all()] channel_ids = [channel_PLN.pk, channel_USD.pk] export_info = { "fields": [ ProductFieldEnum.COLLECTIONS.value, ProductFieldEnum.DESCRIPTION.value, ], "warehouses": warehouse_ids, "attributes": attribute_ids, "channels": channel_ids, } expected_file_headers = [ "id", "collections", "description", ] # when export_fields, file_headers, data_headers = get_export_fields_and_headers_info( export_info ) # then expected_fields = [ "id", "collections__slug", "description_as_str", ] product_headers = [] variant_headers = [] for attr in Attribute.objects.all().order_by("slug"): if attr.product_types.exists(): product_headers.append(f"{attr.slug} (product attribute)") if attr.product_variant_types.exists(): variant_headers.append(f"{attr.slug} (variant attribute)") warehouse_headers = [f"{w.slug} (warehouse quantity)" for w in warehouses] channel_headers = [] for channel in Channel.objects.all().order_by("slug"): slug = channel.slug for field in [ "product currency code", "published", "publication date", "searchable", "available for purchase", "price amount", "variant currency code", "variant cost price", ]: channel_headers.append(f"{slug} (channel {field})") excepted_headers = ( expected_fields + product_headers + variant_headers + warehouse_headers + channel_headers ) expected_file_headers += ( product_headers + variant_headers + warehouse_headers + channel_headers ) assert expected_file_headers == file_headers assert set(export_fields) == set(expected_fields) assert data_headers == excepted_headers def test_product_max_min_get_export_fields_and_headers_no_fields(): export_fields, file_headers = product_max_min_filter_to_export_headers({}) assert export_fields == [] assert file_headers == [] def test_product_max_min_get_export_fields_and_headers_info(): # given export_info = { "fields": [ "channel_slug", "channel_name", "variant_sku", "product_name", "selling_unit", "item_type", "current_product_class", "previous_product_class", "previous_min_level", "previous_max_level", "current_min_level", "current_max_level", ], } expected_file_headers = [ "Channel Slug", "Channel Name", "Variant SKU", "Product Name", "Selling Unit", "Item Type", "Current Product Class Recommendation", "Previous Product Class Recommendation", "Previous Min Level", "Previous Max Level", "Current Min Level", "Current Max Level", ] # when export_fields, file_headers = product_max_min_filter_to_export_headers(export_info) # then assert expected_file_headers == file_headers
27.970149
87
0.657551
d7807010f7959f3cd3dd3b4e65f3e4c0b837e7ab
3,467
py
Python
aaron_crackingV1.py
awharkrider/CPSC3320_Lab_Password_Cracking
593ee5efda5dca92360c892b6bb694362ff7e499
[ "MIT" ]
1
2018-12-05T15:30:52.000Z
2018-12-05T15:30:52.000Z
aaron_crackingV1.py
awharkrider/CPSC3320_Lab_Password_Cracking
593ee5efda5dca92360c892b6bb694362ff7e499
[ "MIT" ]
null
null
null
aaron_crackingV1.py
awharkrider/CPSC3320_Lab_Password_Cracking
593ee5efda5dca92360c892b6bb694362ff7e499
[ "MIT" ]
null
null
null
""" Version one of my cracking.py """ from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.backends import default_backend import argparse import time def main(): parser = argparse.ArgumentParser() parser.add_argument("dictionary_file", default="words", help="dictionary file, (defaults to words) ") parser.add_argument("passwords_file", default=".awharkrider_digests.csv", help="password file of .csv (defaults to .awharkrider_digests.csv)") parser.add_argument("cracked_digests", default="cracked_digests.csv", help="stores the digests found with matched password (defaults to cracked_digests.csv)") args = parser.parse_args() # read in dictionary file dictionary = [] with open(args.dictionary_file) as dict_file: for line in dict_file: # if the line == length 8 if len(line.strip()) == 8: dictionary.append(line.strip()) # Read in passwords description file salty_digests = [] with open(args.passwords_file) as passwords: for line in passwords: salty_digests.append(line) with open(args.cracked_digests, 'r') as found_file: for line in found_file: # remove found digest from the digest array found_salt, found_digest, found_password = line.strip().split(',') found_salty_digest = found_salt + ',' + found_digest + '\n' if found_salty_digest in salty_digests: print('Digest already cracked removing it. found_salty_digest = {}'.format(found_salty_digest)) salty_digests.remove(found_salty_digest) found_file.close() then = time.time() # Time before the operations start new_found = crack_password(dictionary, salty_digests) now = time.time() # Time after it finished print("It took: ", now - then, " seconds to iterate through the entire dictionary and digests.\n") with open(args.digests_found, 'a') as found_file: for password in new_found: found_file.write(password) def crack_password(dictonary, digests): new_found = [] for word in dictonary: for line in digests: then = time.time() # Time before the operations start salt, digest = line.strip().split(',') backend = default_backend() # Salts should be randomly generated salt_bytes = bytes.fromhex(salt) # derive kdf = PBKDF2HMAC(algorithm=hashes.SHA256(), length=32, salt=salt_bytes, iterations=100000, backend=backend) key = kdf.derive(word.encode('utf-8')) digest_bytes = bytes.fromhex(digest) if key == digest_bytes: elapsed_time = time.time() - then print('FOUND! It took "{}" seconds to crack this password.\n'.format(elapsed_time)) found = salt + ',' + digest digests.remove(line) new_found.append(found + ',' + word + '\n') print('digest: {},\n digest_bytes: {},\n word: {}\n'.format(digest, digest_bytes, word)) return new_found # Standard boilerplate to call the main function, if executed if __name__ == '__main__': main()
34.67
112
0.614076
65997a764e7fd48ee588009f688e2d152a8c422f
123
py
Python
src/core/models/__init__.py
ablil/meistertask-cli
6c90802ac5dc7e5ac016e5c61c0e68db043e5784
[ "MIT" ]
3
2020-11-03T22:27:18.000Z
2021-12-11T23:13:55.000Z
src/core/models/__init__.py
ablil/meistertask-cli
6c90802ac5dc7e5ac016e5c61c0e68db043e5784
[ "MIT" ]
1
2021-09-12T13:28:13.000Z
2021-09-12T13:28:13.000Z
src/core/models/__init__.py
ablil/meistertask-cli
6c90802ac5dc7e5ac016e5c61c0e68db043e5784
[ "MIT" ]
null
null
null
from .project import Project from .task import Task from .section import Section __all__ = ["Project", "Section", "Task"]
20.5
40
0.739837
066f0856199f4b238e6c3a17ba7014f9d3f8e27a
2,372
py
Python
source/applications/advanced/hand_eye_calibration/ur_hand_eye_calibration/3rdParty/rtde-2.3.6/rtde/rtde_config.py
ebruun/python-samples
746e5090f45659c60f01bf831a0308966d713b21
[ "BSD-3-Clause" ]
19
2018-07-24T22:44:22.000Z
2022-03-26T09:37:08.000Z
source/applications/advanced/hand_eye_calibration/ur_hand_eye_calibration/3rdParty/rtde-2.3.6/rtde/rtde_config.py
ebruun/python-samples
746e5090f45659c60f01bf831a0308966d713b21
[ "BSD-3-Clause" ]
4
2018-05-02T12:52:35.000Z
2021-02-15T22:59:54.000Z
source/applications/advanced/hand_eye_calibration/ur_hand_eye_calibration/3rdParty/rtde-2.3.6/rtde/rtde_config.py
ebruun/python-samples
746e5090f45659c60f01bf831a0308966d713b21
[ "BSD-3-Clause" ]
4
2018-01-22T11:06:28.000Z
2020-03-17T08:37:24.000Z
# Copyright (c) 2016, Universal Robots A/S, # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Universal Robots A/S nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL UNIVERSAL ROBOTS A/S BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import xml.etree.ElementTree as ET class Recipe(object): __slots__=['key', 'names', 'types'] @staticmethod def parse(recipe_node): rmd = Recipe() rmd.key = recipe_node.get('key') rmd.names = [f.get('name') for f in recipe_node.findall('field')] rmd.types = [f.get('type') for f in recipe_node.findall('field')] return rmd class ConfigFile(object): def __init__(self, filename): self.__filename = filename tree = ET.parse(self.__filename) root = tree.getroot() recipes = [Recipe.parse(r) for r in root.findall('recipe')] self.__dictionary = dict() for r in recipes: self.__dictionary[r.key] = r def get_recipe(self, key): r = self.__dictionary[key] return r.names, r.types
46.509804
81
0.713322
b5aaccafa497a39f70914bc860ceb940951c5b37
3,776
py
Python
venv/lib/python3.7/site-packages/rinoh/frontend/rst/__init__.py
rodrez/jobpy
02da7ed62a5f057ce66f7b3c0a5f13223363af9a
[ "MIT" ]
3
2020-05-16T01:54:47.000Z
2021-04-27T01:37:08.000Z
venv/lib/python3.7/site-packages/rinoh/frontend/rst/__init__.py
rodrez/jobpy
02da7ed62a5f057ce66f7b3c0a5f13223363af9a
[ "MIT" ]
7
2020-05-11T01:45:45.000Z
2022-03-02T14:58:30.000Z
venv/lib/python3.7/site-packages/rinoh/frontend/rst/__init__.py
rodrez/jobpy
02da7ed62a5f057ce66f7b3c0a5f13223363af9a
[ "MIT" ]
1
2020-07-19T04:31:01.000Z
2020-07-19T04:31:01.000Z
# This file is part of rinohtype, the Python document preparation system. # # Copyright (c) Brecht Machiels. # # Use of this source code is subject to the terms of the GNU Affero General # Public License v3. See the LICENSE file or http://www.gnu.org/licenses/. from pathlib import Path from docutils.core import publish_doctree from docutils.io import FileInput from docutils.parsers.rst import Parser as ReStructuredTextParser from ...document import DocumentTree from ...text import MixedStyledText from .. import (TreeNode, TreeNodeMeta, InlineNode, BodyNode, BodySubNode, GroupingNode, DummyNode, Reader) __all__ = ['DocutilsNode', 'DocutilsInlineNode', 'DocutilsBodyNode', 'DocutilsBodySubNode', 'DocutilsGroupingNode', 'DocutilsDummyNode', 'ReStructuredTextReader'] class DocutilsNode(TreeNode, metaclass=TreeNodeMeta): @staticmethod def node_tag_name(node): return node.tagname @staticmethod def node_parent(node): return node.parent @staticmethod def node_children(node): return node.children @staticmethod def node_location(node): return node.source, node.line, node.tagname @property def _ids(self): return self.get('ids') @property def text(self): return self.node.astext() @property def attributes(self): return self.node.attributes def get(self, key, default=None): return self.node.get(key, default) def __getitem__(self, name): return self.node[name] def process_content(self, style=None): children_text = (child.styled_text() for child in self.getchildren()) return MixedStyledText([text for text in children_text if text], style=style) class DocutilsInlineNode(DocutilsNode, InlineNode): @property def text(self): return super().text.replace('\n', ' ') def styled_text(self): styled_text = super().styled_text() try: styled_text.classes.extend(self.get('classes')) except AttributeError: pass return styled_text class DocutilsBodyNode(DocutilsNode, BodyNode): def flowables(self): classes = self.get('classes') for flowable in super().flowables(): flowable.classes.extend(classes) yield flowable class DocutilsBodySubNode(DocutilsNode, BodySubNode): pass class DocutilsGroupingNode(DocutilsBodyNode, GroupingNode): pass class DocutilsDummyNode(DocutilsNode, DummyNode): pass from . import nodes class DocutilsReader(Reader): parser_class = None def parse(self, filename_or_file): try: filename = Path(filename_or_file) settings_overrides = dict(input_encoding='utf-8') doctree = publish_doctree(None, source_path=str(filename), source_class=FileInput, settings_overrides=settings_overrides, parser=self.parser_class()) except TypeError: filename = getattr(filename_or_file, 'name', None) doctree = publish_doctree(filename_or_file, source_class=FileInput, parser=self.parser_class()) return self.from_doctree(filename, doctree) def from_doctree(self, filename, doctree): mapped_tree = DocutilsNode.map_node(doctree.document) flowables = mapped_tree.children_flowables() return DocumentTree(flowables, source_file=Path(filename)) class ReStructuredTextReader(DocutilsReader): extensions = ('rst', ) parser_class = ReStructuredTextParser
28.606061
77
0.652278
6d36fda52180852e80eeb7ec15ab1bb6c10c765d
17,579
py
Python
test/core/test_operator.py
snyxan/Mephisto
a48ab19edf25b359379f4d31a990dfe2a3791f37
[ "MIT" ]
null
null
null
test/core/test_operator.py
snyxan/Mephisto
a48ab19edf25b359379f4d31a990dfe2a3791f37
[ "MIT" ]
null
null
null
test/core/test_operator.py
snyxan/Mephisto
a48ab19edf25b359379f4d31a990dfe2a3791f37
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import shutil import shlex import os import tempfile import time import threading from mephisto.abstractions.test.utils import get_test_requester from mephisto.data_model.constants.assignment_state import AssignmentState from mephisto.abstractions.databases.local_database import LocalMephistoDB from mephisto.operations.operator import Operator from mephisto.abstractions.architects.mock_architect import ( MockArchitect, MockArchitectArgs, ) from mephisto.operations.hydra_config import MephistoConfig from mephisto.abstractions.providers.mock.mock_provider import MockProviderArgs from mephisto.abstractions.blueprints.mock.mock_blueprint import MockBlueprintArgs from mephisto.data_model.task_config import TaskConfigArgs from omegaconf import OmegaConf TIMEOUT_TIME = 10 MOCK_TASK_ARGS = TaskConfigArgs( task_title="title", task_description="This is a description", task_reward="0.3", task_tags="1,2,3", ) class TestOperator(unittest.TestCase): """ Unit testing for the Mephisto Operator """ def setUp(self): self.data_dir = tempfile.mkdtemp() database_path = os.path.join(self.data_dir, "mephisto.db") self.db = LocalMephistoDB(database_path) self.requester_name, _req_id = get_test_requester(self.db) self.operator = None def tearDown(self): if self.operator is not None: self.operator.shutdown() self.db.shutdown() shutil.rmtree(self.data_dir, ignore_errors=True) self.assertTrue( len(threading.enumerate()) == 1, f"Expected only main thread at teardown, found {threading.enumerate()}", ) def wait_for_complete_assignment(self, assignment, timeout: int): start_time = time.time() while time.time() - start_time < timeout: if assignment.get_status() == AssignmentState.COMPLETED: break time.sleep(0.1) self.assertLess( time.time() - start_time, timeout, "Assignment not completed in time" ) def await_server_start(self, architect: "MockArchitect"): start_time = time.time() assert architect.server is not None, "Cannot wait on empty server" while time.time() - start_time < 5: if len(architect.server.subs) > 0: break time.sleep(0.1) self.assertLess(time.time() - start_time, 5, "Mock server not up in time") def test_initialize_supervisor(self): """Quick test to ensure that the operator can be initialized""" self.operator = Operator(self.db) def test_run_job_concurrent(self): """Ensure that the supervisor object can even be created""" self.operator = Operator(self.db) config = MephistoConfig( blueprint=MockBlueprintArgs(num_assignments=1, is_concurrent=True), provider=MockProviderArgs(requester_name=self.requester_name), architect=MockArchitectArgs(should_run_server=True), task=MOCK_TASK_ARGS, ) self.operator.validate_and_run_config(OmegaConf.structured(config)) tracked_runs = self.operator.get_running_task_runs() self.assertEqual(len(tracked_runs), 1, "Run not launched") task_run_id, tracked_run = list(tracked_runs.items())[0] self.assertIsNotNone(tracked_run) self.assertIsNotNone(tracked_run.task_launcher) self.assertIsNotNone(tracked_run.task_runner) self.assertIsNotNone(tracked_run.architect) self.assertIsNotNone(tracked_run.task_run) self.assertEqual(tracked_run.task_run.db_id, task_run_id) # Create two agents to step through the task architect = tracked_run.architect self.assertIsInstance(architect, MockArchitect, "Must use mock in testing") # Register a worker mock_worker_name = "MOCK_WORKER" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id = workers[0].db_id self.assertEqual(len(tracked_run.task_runner.running_assignments), 0) # Register an agent mock_agent_details = "FAKE_ASSIGNMENT" architect.server.register_mock_agent(worker_id, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 1, "Agent was not created properly") agent = agents[0] self.assertIsNotNone(agent) # Register another worker mock_worker_name = "MOCK_WORKER_2" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id = workers[0].db_id # Register an agent mock_agent_details = "FAKE_ASSIGNMENT_2" architect.server.register_mock_agent(worker_id, mock_agent_details) # Give up to 5 seconds for whole mock task to complete start_time = time.time() while time.time() - start_time < TIMEOUT_TIME: if len(self.operator.get_running_task_runs()) == 0: break time.sleep(0.1) self.assertLess( time.time() - start_time, TIMEOUT_TIME, "Task not completed in time" ) # Ensure the assignment is completed task_run = tracked_run.task_run assignment = task_run.get_assignments()[0] self.assertEqual(assignment.get_status(), AssignmentState.COMPLETED) def test_run_job_not_concurrent(self): """Ensure that the supervisor object can even be created""" self.operator = Operator(self.db) config = MephistoConfig( blueprint=MockBlueprintArgs(num_assignments=1, is_concurrent=False), provider=MockProviderArgs(requester_name=self.requester_name), architect=MockArchitectArgs(should_run_server=True), task=MOCK_TASK_ARGS, ) self.operator.validate_and_run_config(OmegaConf.structured(config)) tracked_runs = self.operator.get_running_task_runs() self.assertEqual(len(tracked_runs), 1, "Run not launched") task_run_id, tracked_run = list(tracked_runs.items())[0] self.assertIsNotNone(tracked_run) self.assertIsNotNone(tracked_run.task_launcher) self.assertIsNotNone(tracked_run.task_runner) self.assertIsNotNone(tracked_run.architect) self.assertIsNotNone(tracked_run.task_run) self.assertEqual(tracked_run.task_run.db_id, task_run_id) # Create two agents to step through the task architect = tracked_run.architect self.assertIsInstance(architect, MockArchitect, "Must use mock in testing") # Register a worker mock_worker_name = "MOCK_WORKER" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id = workers[0].db_id self.assertEqual(len(tracked_run.task_runner.running_assignments), 0) # Register an agent mock_agent_details = "FAKE_ASSIGNMENT" architect.server.register_mock_agent(worker_id, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 1, "Agent was not created properly") agent = agents[0] self.assertIsNotNone(agent) # Register another worker mock_worker_name = "MOCK_WORKER_2" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id = workers[0].db_id # Register an agent mock_agent_details = "FAKE_ASSIGNMENT_2" architect.server.register_mock_agent(worker_id, mock_agent_details) # Give up to 5 seconds for both tasks to complete start_time = time.time() while time.time() - start_time < TIMEOUT_TIME: if len(self.operator.get_running_task_runs()) == 0: break time.sleep(0.1) self.assertLess( time.time() - start_time, TIMEOUT_TIME, "Task not completed in time" ) # Ensure the assignment is completed task_run = tracked_run.task_run assignment = task_run.get_assignments()[0] self.assertEqual(assignment.get_status(), AssignmentState.COMPLETED) def test_run_jobs_with_restrictions(self): """Ensure allowed_concurrent and maximum_units_per_worker work""" self.operator = Operator(self.db) provider_args = MockProviderArgs(requester_name=self.requester_name) architect_args = MockArchitectArgs(should_run_server=True) config = MephistoConfig( blueprint=MockBlueprintArgs(num_assignments=3, is_concurrent=True), provider=provider_args, architect=architect_args, task=TaskConfigArgs( task_title="title", task_description="This is a description", task_reward="0.3", task_tags="1,2,3", maximum_units_per_worker=2, allowed_concurrent=1, task_name="max-unit-test", ), ) self.operator.validate_and_run_config(OmegaConf.structured(config)) tracked_runs = self.operator.get_running_task_runs() self.assertEqual(len(tracked_runs), 1, "Run not launched") task_run_id, tracked_run = list(tracked_runs.items())[0] self.assertIsNotNone(tracked_run) self.assertIsNotNone(tracked_run.task_launcher) self.assertIsNotNone(tracked_run.task_runner) self.assertIsNotNone(tracked_run.architect) self.assertIsNotNone(tracked_run.task_run) self.assertEqual(tracked_run.task_run.db_id, task_run_id) self.await_server_start(tracked_run.architect) # Create two agents to step through the task architect = tracked_run.architect self.assertIsInstance(architect, MockArchitect, "Must use mock in testing") # Register a worker mock_worker_name = "MOCK_WORKER" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id_1 = workers[0].db_id self.assertEqual(len(tracked_run.task_runner.running_assignments), 0) # Register an agent mock_agent_details = "FAKE_ASSIGNMENT" architect.server.register_mock_agent(worker_id_1, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 1, "Agent was not created properly") agent = agents[0] self.assertIsNotNone(agent) # Try to register a second agent, which should fail due to concurrency mock_agent_details = "FAKE_ASSIGNMENT_2" architect.server.register_mock_agent(worker_id_1, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 1, "Second agent was created") # Register another worker mock_worker_name = "MOCK_WORKER_2" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id_2 = workers[0].db_id # Register an agent mock_agent_details = "FAKE_ASSIGNMENT_2" architect.server.register_mock_agent(worker_id_2, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 2, "Second agent was not created") # wait for task to pass self.wait_for_complete_assignment(agents[1].get_unit().get_assignment(), 3) # Pass a second task as well mock_agent_details = "FAKE_ASSIGNMENT_3" architect.server.register_mock_agent(worker_id_1, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 3, "Agent was not created properly") mock_agent_details = "FAKE_ASSIGNMENT_4" architect.server.register_mock_agent(worker_id_2, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 4, "Fourth agent was not created") # wait for task to pass self.wait_for_complete_assignment(agents[3].get_unit().get_assignment(), 3) # Both workers should have saturated their tasks, and not be granted agents mock_agent_details = "FAKE_ASSIGNMENT_5" architect.server.register_mock_agent(worker_id_1, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 4, "Additional agent was created") architect.server.register_mock_agent(worker_id_2, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 4, "Additional agent was created") # new workers should be able to work on these just fine though mock_worker_name = "MOCK_WORKER_3" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id_3 = workers[0].db_id mock_worker_name = "MOCK_WORKER_4" architect.server.register_mock_worker(mock_worker_name) workers = self.db.find_workers(worker_name=mock_worker_name) worker_id_4 = workers[0].db_id # Register agents from new workers mock_agent_details = "FAKE_ASSIGNMENT_5" architect.server.register_mock_agent(worker_id_3, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 5, "Additional agent was not created") mock_agent_details = "FAKE_ASSIGNMENT_6" architect.server.register_mock_agent(worker_id_4, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 6, "Additional agent was not created") # wait for task to pass self.wait_for_complete_assignment(agents[5].get_unit().get_assignment(), 3) # Give up to 5 seconds for whole mock task to complete start_time = time.time() while time.time() - start_time < TIMEOUT_TIME: if len(self.operator.get_running_task_runs()) == 0: break time.sleep(0.1) self.assertLess( time.time() - start_time, TIMEOUT_TIME, "Task not completed in time" ) # Ensure all assignments are completed task_run = tracked_run.task_run assignments = task_run.get_assignments() for assignment in assignments: self.assertEqual(assignment.get_status(), AssignmentState.COMPLETED) # Create a new task config = MephistoConfig( blueprint=MockBlueprintArgs(num_assignments=1, is_concurrent=True), provider=MockProviderArgs(requester_name=self.requester_name), architect=MockArchitectArgs(should_run_server=True), task=TaskConfigArgs( task_title="title", task_description="This is a description", task_reward="0.3", task_tags="1,2,3", maximum_units_per_worker=2, allowed_concurrent=1, task_name="max-unit-test", ), ) self.operator.validate_and_run_config(OmegaConf.structured(config)) tracked_runs = self.operator.get_running_task_runs() self.assertEqual(len(tracked_runs), 1, "Run not launched") task_run_id, tracked_run = list(tracked_runs.items())[0] self.await_server_start(tracked_run.architect) architect = tracked_run.architect # Workers one and two still shouldn't be able to make agents mock_agent_details = "FAKE_ASSIGNMENT_7" architect.server.register_mock_agent(worker_id_1, mock_agent_details) agents = self.db.find_agents() self.assertEqual( len(agents), 6, "Additional agent was created for worker exceeding max units", ) mock_agent_details = "FAKE_ASSIGNMENT_7" architect.server.register_mock_agent(worker_id_2, mock_agent_details) agents = self.db.find_agents() self.assertEqual( len(agents), 6, "Additional agent was created for worker exceeding max units", ) # Three and four should though mock_agent_details = "FAKE_ASSIGNMENT_7" architect.server.register_mock_agent(worker_id_3, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 7, "Additional agent was not created") mock_agent_details = "FAKE_ASSIGNMENT_8" architect.server.register_mock_agent(worker_id_4, mock_agent_details) agents = self.db.find_agents() self.assertEqual(len(agents), 8, "Additional agent was not created") # Ensure the task run completed and that all assignments are done start_time = time.time() while time.time() - start_time < TIMEOUT_TIME: if len(self.operator.get_running_task_runs()) == 0: break time.sleep(0.1) self.assertLess( time.time() - start_time, TIMEOUT_TIME, "Task not completed in time" ) task_run = tracked_run.task_run assignments = task_run.get_assignments() for assignment in assignments: self.assertEqual(assignment.get_status(), AssignmentState.COMPLETED)
42.564165
84
0.680073
eeb2319cc3449e13e65880ac53113114937ff6e5
1,328
py
Python
picmodels/migrations/0004_auto_20170117_1047.py
bbcawodu/careadvisors-backend
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
[ "MIT" ]
null
null
null
picmodels/migrations/0004_auto_20170117_1047.py
bbcawodu/careadvisors-backend
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
[ "MIT" ]
null
null
null
picmodels/migrations/0004_auto_20170117_1047.py
bbcawodu/careadvisors-backend
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-01-17 10:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('picmodels', '0003_auto_20170117_0843'), ] operations = [ migrations.AddField( model_name='consumercpsinfoentry', name='apt_date', field=models.DateField(blank=True, null=True), ), migrations.AddField( model_name='consumercpsinfoentry', name='case_mgmt_status', field=models.CharField(blank=True, choices=[('Open', 'Open'), ('Closed', 'Silver'), ('Not Available', 'Not Available')], default='Not Available', max_length=1000, null=True), ), migrations.AddField( model_name='consumercpsinfoentry', name='case_mgmt_type', field=models.CharField(blank=True, max_length=1000, null=True), ), migrations.AddField( model_name='consumercpsinfoentry', name='phone_apt', field=models.BooleanField(default=False), ), migrations.AddField( model_name='consumercpsinfoentry', name='target_list', field=models.BooleanField(default=False), ), ]
32.390244
186
0.601657
6347ff10ab5e4a2b24c7a484b4913e466a351dcc
2,318
py
Python
jython-protolib/src/test/resources/com/streamsets/pipeline/stage/origin/jython/MultiGeneratorOriginScript.py
klaxman/datacollector
6ebf079dcf7cadc55ded87fe0c9bc2e6b527a319
[ "Apache-2.0" ]
null
null
null
jython-protolib/src/test/resources/com/streamsets/pipeline/stage/origin/jython/MultiGeneratorOriginScript.py
klaxman/datacollector
6ebf079dcf7cadc55ded87fe0c9bc2e6b527a319
[ "Apache-2.0" ]
null
null
null
jython-protolib/src/test/resources/com/streamsets/pipeline/stage/origin/jython/MultiGeneratorOriginScript.py
klaxman/datacollector
6ebf079dcf7cadc55ded87fe0c9bc2e6b527a319
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 StreamSets Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Sample Jython code - Multithreaded Data Generator sdc.importLock() from threading import Thread sdc.importUnlock() prefix = sdc.userParams.get('recordPrefix', '') verbose = sdc.userParams.get('verbose', False) def produce(entityName, entityOffset): if verbose: print ('starting jython script ' + entityName + ' with offset ' + entityOffset) offset = int(entityOffset) cur_batch = sdc.createBatch() record = sdc.createRecord('generated data') hasNext = True while hasNext: try: offset = offset + 1 record = sdc.createRecord('generated data') value = prefix + entityName + ':' + str(offset) record.value = value cur_batch.add(record) # if the batch is full, process it and start a new one if cur_batch.size() >= sdc.batchSize: # blocks until all records are written to all destinations # (or failure) and updates offset # in accordance with delivery guarantee cur_batch.process(entityName, str(offset)) cur_batch = sdc.createBatch() if sdc.isStopped(): hasNext = False except Exception as e: sdc.error.write(record, str(e)) hasNext = False threads = [] for t in range(sdc.numThreads): if str(t) in sdc.lastOffsets: offset = sdc.lastOffsets[str(t)] else: offset = '0' thread = Thread( target=produce, args=( str(t), str(offset) )) threads.append(thread) thread.start() # wait for every thread to finish for thread in threads: thread.join()
30.5
74
0.622519
87bebce15b5181922e5dfbcf2df04ea5c835a797
7,845
py
Python
openpype/hosts/nuke/plugins/load/load_gizmo_ip.py
jonclothcat/OpenPype
d1208cbebc0a7f378de0062ccd653295c6399195
[ "MIT" ]
null
null
null
openpype/hosts/nuke/plugins/load/load_gizmo_ip.py
jonclothcat/OpenPype
d1208cbebc0a7f378de0062ccd653295c6399195
[ "MIT" ]
null
null
null
openpype/hosts/nuke/plugins/load/load_gizmo_ip.py
jonclothcat/OpenPype
d1208cbebc0a7f378de0062ccd653295c6399195
[ "MIT" ]
null
null
null
import nuke from avalon import io from openpype.pipeline import ( load, get_representation_path, ) from openpype.hosts.nuke.api.lib import ( maintained_selection, create_backdrop, get_avalon_knob_data, set_avalon_knob_data ) from openpype.hosts.nuke.api import ( containerise, update_container, viewer_update_and_undo_stop ) class LoadGizmoInputProcess(load.LoaderPlugin): """Loading colorspace soft effect exported from nukestudio""" representations = ["gizmo"] families = ["gizmo"] label = "Load Gizmo - Input Process" order = 0 icon = "eye" color = "#cc0000" node_color = "0x7533c1ff" def load(self, context, name, namespace, data): """ Loading function to get Gizmo as Input Process on viewer Arguments: context (dict): context of version name (str): name of the version namespace (str): asset name data (dict): compulsory attribute > not used Returns: nuke node: containerised nuke node object """ # get main variables version = context['version'] version_data = version.get("data", {}) vname = version.get("name", None) first = version_data.get("frameStart", None) last = version_data.get("frameEnd", None) namespace = namespace or context['asset']['name'] colorspace = version_data.get("colorspace", None) object_name = "{}_{}".format(name, namespace) # prepare data for imprinting # add additional metadata from the version to imprint to Avalon knob add_keys = ["frameStart", "frameEnd", "handleStart", "handleEnd", "source", "author", "fps"] data_imprint = {"frameStart": first, "frameEnd": last, "version": vname, "colorspaceInput": colorspace, "objectName": object_name} for k in add_keys: data_imprint.update({k: version_data[k]}) # getting file path file = self.fname.replace("\\", "/") # adding nodes to node graph # just in case we are in group lets jump out of it nuke.endGroup() with maintained_selection(): # add group from nk nuke.nodePaste(file) GN = nuke.selectedNode() GN["name"].setValue(object_name) # try to place it under Viewer1 if not self.connect_active_viewer(GN): nuke.delete(GN) return return containerise( node=GN, name=name, namespace=namespace, context=context, loader=self.__class__.__name__, data=data_imprint) def update(self, container, representation): """Update the Loader's path Nuke automatically tries to reset some variables when changing the loader's path to a new file. These automatic changes are to its inputs: """ # get main variables # Get version from io version = io.find_one({ "type": "version", "_id": representation["parent"] }) # get corresponding node GN = nuke.toNode(container['objectName']) file = get_representation_path(representation).replace("\\", "/") name = container['name'] version_data = version.get("data", {}) vname = version.get("name", None) first = version_data.get("frameStart", None) last = version_data.get("frameEnd", None) namespace = container['namespace'] colorspace = version_data.get("colorspace", None) object_name = "{}_{}".format(name, namespace) add_keys = ["frameStart", "frameEnd", "handleStart", "handleEnd", "source", "author", "fps"] data_imprint = {"representation": str(representation["_id"]), "frameStart": first, "frameEnd": last, "version": vname, "colorspaceInput": colorspace, "objectName": object_name} for k in add_keys: data_imprint.update({k: version_data[k]}) # adding nodes to node graph # just in case we are in group lets jump out of it nuke.endGroup() with maintained_selection(): xpos = GN.xpos() ypos = GN.ypos() avalon_data = get_avalon_knob_data(GN) nuke.delete(GN) # add group from nk nuke.nodePaste(file) GN = nuke.selectedNode() set_avalon_knob_data(GN, avalon_data) GN.setXYpos(xpos, ypos) GN["name"].setValue(object_name) # get all versions in list versions = io.find({ "type": "version", "parent": version["parent"] }).distinct('name') max_version = max(versions) # change color of node if version.get("name") not in [max_version]: GN["tile_color"].setValue(int("0xd88467ff", 16)) else: GN["tile_color"].setValue(int(self.node_color, 16)) self.log.info("updated to version: {}".format(version.get("name"))) return update_container(GN, data_imprint) def connect_active_viewer(self, group_node): """ Finds Active viewer and place the node under it, also adds name of group into Input Process of the viewer Arguments: group_node (nuke node): nuke group node object """ group_node_name = group_node["name"].value() viewer = [n for n in nuke.allNodes() if "Viewer1" in n["name"].value()] if len(viewer) > 0: viewer = viewer[0] else: msg = str("Please create Viewer node before you " "run this action again") self.log.error(msg) nuke.message(msg) return None # get coordinates of Viewer1 xpos = viewer["xpos"].value() ypos = viewer["ypos"].value() ypos += 150 viewer["ypos"].setValue(ypos) # set coordinates to group node group_node["xpos"].setValue(xpos) group_node["ypos"].setValue(ypos + 50) # add group node name to Viewer Input Process viewer["input_process_node"].setValue(group_node_name) # put backdrop under create_backdrop( label="Input Process", layer=2, nodes=[viewer, group_node], color="0x7c7faaff" ) return True def get_item(self, data, trackIndex, subTrackIndex): return {key: val for key, val in data.items() if subTrackIndex == val["subTrackIndex"] if trackIndex == val["trackIndex"]} def byteify(self, input): """ Converts unicode strings to strings It goes through all dictionary Arguments: input (dict/str): input Returns: dict: with fixed values and keys """ if isinstance(input, dict): return {self.byteify(key): self.byteify(value) for key, value in input.iteritems()} elif isinstance(input, list): return [self.byteify(element) for element in input] elif isinstance(input, unicode): return input.encode('utf-8') else: return input def switch(self, container, representation): self.update(container, representation) def remove(self, container): node = nuke.toNode(container['objectName']) with viewer_update_and_undo_stop(): nuke.delete(node)
30.406977
79
0.562141
d41aaa2c6144636a4e08b6fd88d0f754ca26ef74
30,633
py
Python
emscripten.py
jslhs/emscripten
8408257cd66435af849f493c10c7f0e8d1d5fa3b
[ "MIT" ]
1
2015-11-08T06:57:01.000Z
2015-11-08T06:57:01.000Z
emscripten.py
jslhs/emscripten
8408257cd66435af849f493c10c7f0e8d1d5fa3b
[ "MIT" ]
null
null
null
emscripten.py
jslhs/emscripten
8408257cd66435af849f493c10c7f0e8d1d5fa3b
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 ''' You should normally never use this! Use emcc instead. This is a small wrapper script around the core JS compiler. This calls that compiler with the settings given to it. It can also read data from C/C++ header files (so that the JS compiler can see the constants in those headers, for the libc implementation in JS). ''' import os, sys, json, optparse, subprocess, re, time, multiprocessing, functools from tools import jsrun, cache as cache_module, tempfiles __rootpath__ = os.path.abspath(os.path.dirname(__file__)) def path_from_root(*pathelems): """Returns the absolute path for which the given path elements are relative to the emscripten root. """ return os.path.join(__rootpath__, *pathelems) def scan(ll, settings): # blockaddress(@main, %23) blockaddrs = [] for blockaddr in re.findall('blockaddress\([^)]*\)', ll): b = blockaddr.split('(')[1][:-1].split(', ') blockaddrs.append(b) if len(blockaddrs) > 0: settings['NECESSARY_BLOCKADDRS'] = blockaddrs NUM_CHUNKS_PER_CORE = 1.25 MIN_CHUNK_SIZE = 1024*1024 MAX_CHUNK_SIZE = float(os.environ.get('EMSCRIPT_MAX_CHUNK_SIZE') or 'inf') # configuring this is just for debugging purposes def process_funcs((i, funcs, meta, settings_file, compiler, forwarded_file, libraries, compiler_engine, temp_files, DEBUG)): funcs_file = temp_files.get('.func_%d.ll' % i).name f = open(funcs_file, 'w') f.write(funcs) funcs = None f.write('\n') f.write(meta) f.close() out = jsrun.run_js( compiler, engine=compiler_engine, args=[settings_file, funcs_file, 'funcs', forwarded_file] + libraries, stdout=subprocess.PIPE, cwd=path_from_root('src')) tempfiles.try_delete(funcs_file) if DEBUG: print >> sys.stderr, '.' return out def emscript(infile, settings, outfile, libraries=[], compiler_engine=None, jcache=None, temp_files=None, DEBUG=None, DEBUG_CACHE=None): """Runs the emscripten LLVM-to-JS compiler. We parallelize as much as possible Args: infile: The path to the input LLVM assembly file. settings: JSON-formatted settings that override the values defined in src/settings.js. outfile: The file where the output is written. """ compiler = path_from_root('src', 'compiler.js') # Parallelization: We run 3 phases: # 1 aka 'pre' : Process types and metadata and so forth, and generate the preamble. # 2 aka 'funcs': Process functions. We can parallelize this, working on each function independently. # 3 aka 'post' : Process globals, generate postamble and finishing touches. if DEBUG: print >> sys.stderr, 'emscript: ll=>js' if jcache: jcache.ensure() # Pre-scan ll and alter settings as necessary if DEBUG: t = time.time() ll = open(infile).read() scan(ll, settings) total_ll_size = len(ll) ll = None # allow collection if DEBUG: print >> sys.stderr, ' emscript: scan took %s seconds' % (time.time() - t) # Split input into the relevant parts for each phase pre = [] funcs = [] # split up functions here, for parallelism later func_idents = [] meta = [] # needed by each function XXX if DEBUG: t = time.time() in_func = False ll_lines = open(infile).readlines() for line in ll_lines: if in_func: funcs[-1][1].append(line) if line.startswith('}'): in_func = False funcs[-1] = (funcs[-1][0], ''.join(funcs[-1][1])) pre.append(line) # pre needs it to, so we know about all implemented functions else: if line.startswith(';'): continue if line.startswith('define '): in_func = True funcs.append((line, [line])) # use the entire line as the identifier pre.append(line) # pre needs it to, so we know about all implemented functions elif line.find(' = type { ') > 0: pre.append(line) # type elif line.startswith('!'): if line.startswith('!llvm.module'): continue # we can ignore that meta.append(line) # metadata else: pre.append(line) # pre needs it so we know about globals in pre and funcs. So emit globals there ll_lines = None meta = ''.join(meta) if DEBUG and len(meta) > 1024*1024: print >> sys.stderr, 'emscript warning: large amounts of metadata, will slow things down' if DEBUG: print >> sys.stderr, ' emscript: split took %s seconds' % (time.time() - t) #if DEBUG: # print >> sys.stderr, '========= pre ================\n' # print >> sys.stderr, ''.join(pre) # print >> sys.stderr, '========== funcs ===============\n' # for func in funcs: # print >> sys.stderr, '\n// ===\n\n', ''.join(func) # print >> sys.stderr, '=========================\n' # Save settings to a file to work around v8 issue 1579 settings_file = temp_files.get('.txt').name def save_settings(): global settings_text settings_text = json.dumps(settings, sort_keys=True) s = open(settings_file, 'w') s.write(settings_text) s.close() save_settings() # Phase 1 - pre if DEBUG: t = time.time() pre_file = temp_files.get('.pre.ll').name pre_input = ''.join(pre) + '\n' + meta out = None if jcache: keys = [pre_input, settings_text, ','.join(libraries)] shortkey = jcache.get_shortkey(keys) if DEBUG_CACHE: print >>sys.stderr, 'shortkey', shortkey out = jcache.get(shortkey, keys) if DEBUG_CACHE and not out: dfpath = os.path.join(get_configuration().TEMP_DIR, "ems_" + shortkey) dfp = open(dfpath, 'w') dfp.write(pre_input); dfp.write("\n\n========================== settings_text\n\n"); dfp.write(settings_text); dfp.write("\n\n========================== libraries\n\n"); dfp.write("\n".join(libraries)) dfp.close() print >>sys.stderr, ' cache miss, key data dumped to %s' % dfpath if out and DEBUG: print >> sys.stderr, ' loading pre from jcache' if not out: open(pre_file, 'w').write(pre_input) out = jsrun.run_js(compiler, compiler_engine, [settings_file, pre_file, 'pre'] + libraries, stdout=subprocess.PIPE, cwd=path_from_root('src')) assert '//FORWARDED_DATA:' in out, 'Did not receive forwarded data in pre output - process failed?' if jcache: if DEBUG: print >> sys.stderr, ' saving pre to jcache' jcache.set(shortkey, keys, out) pre, forwarded_data = out.split('//FORWARDED_DATA:') forwarded_file = temp_files.get('.json').name open(forwarded_file, 'w').write(forwarded_data) if DEBUG: print >> sys.stderr, ' emscript: phase 1 took %s seconds' % (time.time() - t) # Phase 2 - func cores = int(os.environ.get('EMCC_CORES') or multiprocessing.cpu_count()) assert cores >= 1 if cores > 1: intended_num_chunks = int(round(cores * NUM_CHUNKS_PER_CORE)) chunk_size = max(MIN_CHUNK_SIZE, total_ll_size / intended_num_chunks) chunk_size += 3*len(meta) + len(forwarded_data)/3 # keep ratio of lots of function code to meta (expensive to process, and done in each parallel task) and forwarded data (less expensive but potentially significant) chunk_size = min(MAX_CHUNK_SIZE, chunk_size) else: chunk_size = MAX_CHUNK_SIZE # if 1 core, just use the max chunk size if DEBUG: t = time.time() forwarded_json = json.loads(forwarded_data) indexed_functions = set() if settings.get('ASM_JS'): settings['EXPORTED_FUNCTIONS'] = forwarded_json['EXPORTED_FUNCTIONS'] save_settings() chunks = cache_module.chunkify( funcs, chunk_size, jcache.get_cachename('emscript_files') if jcache else None) funcs = None if jcache: # load chunks from cache where we can # TODO: ignore small chunks cached_outputs = [] def load_from_cache(chunk): keys = [settings_text, forwarded_data, chunk] shortkey = jcache.get_shortkey(keys) # TODO: share shortkeys with later code out = jcache.get(shortkey, keys) # this is relatively expensive (pickling?) if out: cached_outputs.append(out) return False return True chunks = filter(load_from_cache, chunks) if len(cached_outputs) > 0: if out and DEBUG: print >> sys.stderr, ' loading %d funcchunks from jcache' % len(cached_outputs) else: cached_outputs = [] # TODO: minimize size of forwarded data from funcs to what we actually need if cores == 1 and total_ll_size < MAX_CHUNK_SIZE: assert len(chunks) == 1, 'no point in splitting up without multiple cores' if len(chunks) > 0: if DEBUG: print >> sys.stderr, ' emscript: phase 2 working on %d chunks %s (intended chunk size: %.2f MB, meta: %.2f MB, forwarded: %.2f MB, total: %.2f MB)' % (len(chunks), ('using %d cores' % cores) if len(chunks) > 1 else '', chunk_size/(1024*1024.), len(meta)/(1024*1024.), len(forwarded_data)/(1024*1024.), total_ll_size/(1024*1024.)) commands = [ (i, chunk, meta, settings_file, compiler, forwarded_file, libraries, compiler_engine, temp_files, DEBUG) for i, chunk in enumerate(chunks) ] if len(chunks) > 1: pool = multiprocessing.Pool(processes=cores) outputs = pool.map(process_funcs, commands, chunksize=1) elif len(chunks) == 1: outputs = [process_funcs(commands[0])] commands = None else: outputs = [] if jcache: # save chunks to cache for i in range(len(chunks)): chunk = chunks[i] keys = [settings_text, forwarded_data, chunk] shortkey = jcache.get_shortkey(keys) jcache.set(shortkey, keys, outputs[i]) if out and DEBUG and len(chunks) > 0: print >> sys.stderr, ' saving %d funcchunks to jcache' % len(chunks) chunks = None if jcache: outputs += cached_outputs # TODO: preserve order outputs = [output.split('//FORWARDED_DATA:') for output in outputs] for output in outputs: assert len(output) == 2, 'Did not receive forwarded data in an output - process failed? We only got: ' + output[0][-3000:] if DEBUG: print >> sys.stderr, ' emscript: phase 2 took %s seconds' % (time.time() - t) if DEBUG: t = time.time() # merge forwarded data if settings.get('ASM_JS'): all_exported_functions = set(settings['EXPORTED_FUNCTIONS']) # both asm.js and otherwise for additional_export in settings['DEFAULT_LIBRARY_FUNCS_TO_INCLUDE']: # additional functions to export from asm, if they are implemented all_exported_functions.add('_' + additional_export) exported_implemented_functions = set() for func_js, curr_forwarded_data in outputs: curr_forwarded_json = json.loads(curr_forwarded_data) forwarded_json['Types']['preciseI64MathUsed'] = forwarded_json['Types']['preciseI64MathUsed'] or curr_forwarded_json['Types']['preciseI64MathUsed'] for key, value in curr_forwarded_json['Functions']['blockAddresses'].iteritems(): forwarded_json['Functions']['blockAddresses'][key] = value for key in curr_forwarded_json['Functions']['indexedFunctions'].iterkeys(): indexed_functions.add(key) if settings.get('ASM_JS'): export_bindings = settings['EXPORT_BINDINGS'] for key in curr_forwarded_json['Functions']['implementedFunctions'].iterkeys(): if key in all_exported_functions or (export_bindings and key.startswith('_emscripten_bind')): exported_implemented_functions.add(key) for key, value in curr_forwarded_json['Functions']['unimplementedFunctions'].iteritems(): forwarded_json['Functions']['unimplementedFunctions'][key] = value if settings.get('ASM_JS'): parts = pre.split('// ASM_LIBRARY FUNCTIONS\n') if len(parts) > 1: pre = parts[0] outputs.append([parts[1]]) funcs_js = [output[0] for output in outputs] outputs = None if DEBUG: print >> sys.stderr, ' emscript: phase 2b took %s seconds' % (time.time() - t) if DEBUG: t = time.time() # calculations on merged forwarded data forwarded_json['Functions']['indexedFunctions'] = {} i = 2 for indexed in indexed_functions: #print >> sys.stderr, 'indaxx', indexed, i forwarded_json['Functions']['indexedFunctions'][indexed] = i # make sure not to modify this python object later - we use it in indexize i += 2 forwarded_json['Functions']['nextIndex'] = i indexing = forwarded_json['Functions']['indexedFunctions'] def indexize(js): return re.sub(r"'{{ FI_([\w\d_$]+) }}'", lambda m: str(indexing.get(m.groups(0)[0]) or 0), js) blockaddrs = forwarded_json['Functions']['blockAddresses'] def blockaddrsize(js): return re.sub(r'{{{ BA_([\w\d_$]+)\|([\w\d_$]+) }}}', lambda m: str(blockaddrs[m.groups(0)[0]][m.groups(0)[1]]), js) #if DEBUG: outfile.write('// pre\n') outfile.write(blockaddrsize(indexize(pre))) pre = None #if DEBUG: outfile.write('// funcs\n') # forward forwarded_data = json.dumps(forwarded_json) forwarded_file = temp_files.get('.2.json').name open(forwarded_file, 'w').write(indexize(forwarded_data)) if DEBUG: print >> sys.stderr, ' emscript: phase 2c took %s seconds' % (time.time() - t) # Phase 3 - post if DEBUG: t = time.time() post_file = temp_files.get('.post.ll').name open(post_file, 'w').write('\n') # no input, just processing of forwarded data out = jsrun.run_js(compiler, compiler_engine, [settings_file, post_file, 'post', forwarded_file] + libraries, stdout=subprocess.PIPE, cwd=path_from_root('src')) post, last_forwarded_data = out.split('//FORWARDED_DATA:') # if this fails, perhaps the process failed prior to printing forwarded data? last_forwarded_json = json.loads(last_forwarded_data) if settings.get('ASM_JS'): post_funcs, post_rest = post.split('// EMSCRIPTEN_END_FUNCS\n') post = post_rest funcs_js += ['\n' + post_funcs + '// EMSCRIPTEN_END_FUNCS\n'] simple = os.environ.get('EMCC_SIMPLE_ASM') class Counter: i = 0 pre_tables = last_forwarded_json['Functions']['tables']['pre'] del last_forwarded_json['Functions']['tables']['pre'] # Find function table calls without function tables generated for them for funcs_js_item in funcs_js: for use in set(re.findall(r'{{{ FTM_[\w\d_$]+ }}}', funcs_js_item)): sig = use[8:len(use)-4] if sig not in last_forwarded_json['Functions']['tables']: if DEBUG: print >> sys.stderr, 'add empty function table', sig last_forwarded_json['Functions']['tables'][sig] = 'var FUNCTION_TABLE_' + sig + ' = [0,0];\n' def make_table(sig, raw): i = Counter.i Counter.i += 1 bad = 'b' + str(i) params = ','.join(['p%d' % p for p in range(len(sig)-1)]) coercions = ';'.join(['p%d = %sp%d%s' % (p, '+' if sig[p+1] != 'i' else '', p, '' if sig[p+1] != 'i' else '|0') for p in range(len(sig)-1)]) + ';' ret = '' if sig[0] == 'v' else ('return %s0' % ('+' if sig[0] != 'i' else '')) return ('function %s(%s) { %s abort(%d); %s }' % (bad, params, coercions, i, ret), raw.replace('[0,', '[' + bad + ',').replace(',0,', ',' + bad + ',').replace(',0,', ',' + bad + ',').replace(',0]', ',' + bad + ']').replace(',0]', ',' + bad + ']').replace(',0\n', ',' + bad + '\n')) infos = [make_table(sig, raw) for sig, raw in last_forwarded_json['Functions']['tables'].iteritems()] function_tables_defs = '\n'.join([info[0] for info in infos]) + '\n// EMSCRIPTEN_END_FUNCS\n' + '\n'.join([info[1] for info in infos]) asm_setup = '' maths = ['Math.' + func for func in ['floor', 'abs', 'sqrt', 'pow', 'cos', 'sin', 'tan', 'acos', 'asin', 'atan', 'atan2', 'exp', 'log', 'ceil', 'imul']] fundamentals = ['Math', 'Int8Array', 'Int16Array', 'Int32Array', 'Uint8Array', 'Uint16Array', 'Uint32Array', 'Float32Array', 'Float64Array'] math_envs = ['Math.min'] # TODO: move min to maths asm_setup += '\n'.join(['var %s = %s;' % (f.replace('.', '_'), f) for f in math_envs]) basic_funcs = ['abort', 'assert', 'asmPrintInt', 'asmPrintFloat', 'copyTempDouble', 'copyTempFloat'] + [m.replace('.', '_') for m in math_envs] if settings['SAFE_HEAP']: basic_funcs += ['SAFE_HEAP_LOAD', 'SAFE_HEAP_STORE', 'SAFE_HEAP_CLEAR'] if settings['CHECK_HEAP_ALIGN']: basic_funcs += ['CHECK_ALIGN_2', 'CHECK_ALIGN_4', 'CHECK_ALIGN_8'] basic_vars = ['STACKTOP', 'STACK_MAX', 'tempDoublePtr', 'ABORT'] basic_float_vars = ['NaN', 'Infinity'] if forwarded_json['Types']['preciseI64MathUsed']: basic_funcs += ['i64Math_' + op for op in ['add', 'subtract', 'multiply', 'divide', 'modulo']] asm_setup += ''' var i64Math_add = function(a, b, c, d) { i64Math.add(a, b, c, d) }; var i64Math_subtract = function(a, b, c, d) { i64Math.subtract(a, b, c, d) }; var i64Math_multiply = function(a, b, c, d) { i64Math.multiply(a, b, c, d) }; var i64Math_divide = function(a, b, c, d, e) { i64Math.divide(a, b, c, d, e) }; var i64Math_modulo = function(a, b, c, d, e) { i64Math.modulo(a, b, c, d, e) }; ''' asm_runtime_funcs = ['stackAlloc', 'stackSave', 'stackRestore', 'setThrew'] + ['setTempRet%d' % i for i in range(10)] # function tables def asm_coerce(value, sig): if sig == 'v': return value return ('+' if sig != 'i' else '') + value + ('|0' if sig == 'i' else '') function_tables = ['dynCall_' + table for table in last_forwarded_json['Functions']['tables']] function_tables_impls = [] for sig in last_forwarded_json['Functions']['tables'].iterkeys(): args = ','.join(['a' + str(i) for i in range(1, len(sig))]) arg_coercions = ' '.join(['a' + str(i) + '=' + asm_coerce('a' + str(i), sig[i]) + ';' for i in range(1, len(sig))]) coerced_args = ','.join([asm_coerce('a' + str(i), sig[i]) for i in range(1, len(sig))]) ret = ('return ' if sig[0] != 'v' else '') + asm_coerce('FUNCTION_TABLE_%s[index&{{{ FTM_%s }}}](%s)' % (sig, sig, coerced_args), sig[0]) function_tables_impls.append(''' function dynCall_%s(index%s%s) { index = index|0; %s %s; } ''' % (sig, ',' if len(sig) > 1 else '', args, arg_coercions, ret)) # calculate exports exported_implemented_functions = list(exported_implemented_functions) exports = [] if not simple: for export in exported_implemented_functions + asm_runtime_funcs + function_tables: exports.append("%s: %s" % (export, export)) exports = '{ ' + ', '.join(exports) + ' }' else: exports = '_main' # calculate globals try: del forwarded_json['Variables']['globals']['_llvm_global_ctors'] # not a true variable except: pass # If no named globals, only need externals global_vars = map(lambda g: g['name'], filter(lambda g: settings['NAMED_GLOBALS'] or g.get('external') or g.get('unIndexable'), forwarded_json['Variables']['globals'].values())) global_funcs = ['_' + x for x in forwarded_json['Functions']['libraryFunctions'].keys()] def math_fix(g): return g if not g.startswith('Math_') else g.split('_')[1]; asm_global_funcs = ''.join([' var ' + g.replace('.', '_') + '=global.' + g + ';\n' for g in maths]) + \ ''.join([' var ' + g + '=env.' + math_fix(g) + ';\n' for g in basic_funcs + global_funcs]) asm_global_vars = ''.join([' var ' + g + '=env.' + g + '|0;\n' for g in basic_vars + global_vars]) + \ ''.join([' var ' + g + '=+env.' + g + ';\n' for g in basic_float_vars]) # sent data the_global = '{ ' + ', '.join([math_fix(s) + ': ' + s for s in fundamentals]) + ' }' sending = '{ ' + ', '.join([math_fix(s) + ': ' + s for s in basic_funcs + global_funcs + basic_vars + basic_float_vars + global_vars]) + ' }' # received if not simple: receiving = ';\n'.join(['var ' + s + ' = Module["' + s + '"] = asm.' + s for s in exported_implemented_functions + function_tables]) else: receiving = 'var _main = Module["_main"] = asm;' # finalize if DEBUG: print >> sys.stderr, 'asm text sizes', map(len, funcs_js), len(asm_setup), len(asm_global_vars), len(asm_global_funcs), len(pre_tables), len('\n'.join(function_tables_impls)), len(function_tables_defs.replace('\n', '\n ')), len(exports), len(the_global), len(sending), len(receiving) funcs_js = [''' %s function asmPrintInt(x, y) { Module.print('int ' + x + ',' + y);// + ' ' + new Error().stack); } function asmPrintFloat(x, y) { Module.print('float ' + x + ',' + y);// + ' ' + new Error().stack); } // EMSCRIPTEN_START_ASM var asm = (function(global, env, buffer) { 'use asm'; var HEAP8 = new global.Int8Array(buffer); var HEAP16 = new global.Int16Array(buffer); var HEAP32 = new global.Int32Array(buffer); var HEAPU8 = new global.Uint8Array(buffer); var HEAPU16 = new global.Uint16Array(buffer); var HEAPU32 = new global.Uint32Array(buffer); var HEAPF32 = new global.Float32Array(buffer); var HEAPF64 = new global.Float64Array(buffer); ''' % (asm_setup,) + '\n' + asm_global_vars + ''' var __THREW__ = 0; var undef = 0; var tempInt = 0, tempBigInt = 0, tempBigIntP = 0, tempBigIntS = 0, tempBigIntR = 0.0, tempBigIntI = 0, tempBigIntD = 0, tempValue = 0, tempDouble = 0.0; ''' + ''.join([''' var tempRet%d = 0;''' % i for i in range(10)]) + '\n' + asm_global_funcs + ''' // EMSCRIPTEN_START_FUNCS function stackAlloc(size) { size = size|0; var ret = 0; ret = STACKTOP; STACKTOP = (STACKTOP + size)|0; STACKTOP = ((STACKTOP + 3)>>2)<<2; return ret|0; } function stackSave() { return STACKTOP|0; } function stackRestore(top) { top = top|0; STACKTOP = top; } function setThrew(threw) { threw = threw|0; __THREW__ = threw; } ''' + ''.join([''' function setTempRet%d(value) { value = value|0; tempRet%d = value; } ''' % (i, i) for i in range(10)])] + funcs_js + [''' %s return %s; }) // EMSCRIPTEN_END_ASM (%s, %s, buffer); %s; Runtime.stackAlloc = function(size) { return asm.stackAlloc(size) }; Runtime.stackSave = function() { return asm.stackSave() }; Runtime.stackRestore = function(top) { asm.stackRestore(top) }; ''' % (pre_tables + '\n'.join(function_tables_impls) + '\n' + function_tables_defs.replace('\n', '\n '), exports, the_global, sending, receiving)] # Set function table masks def function_table_maskize(js): masks = {} default = None for sig, table in last_forwarded_json['Functions']['tables'].iteritems(): masks[sig] = str(table.count(',')) default = sig def fix(m): sig = m.groups(0)[0] return masks[sig] return re.sub(r'{{{ FTM_([\w\d_$]+) }}}', lambda m: fix(m), js) # masks[m.groups(0)[0]] funcs_js = map(function_table_maskize, funcs_js) else: function_tables_defs = '\n'.join([table for table in last_forwarded_json['Functions']['tables'].itervalues()]) outfile.write(function_tables_defs) funcs_js = [''' // EMSCRIPTEN_START_FUNCS '''] + funcs_js + [''' // EMSCRIPTEN_END_FUNCS '''] for funcs_js_item in funcs_js: # do this loop carefully to save memory funcs_js_item = indexize(funcs_js_item) funcs_js_item = blockaddrsize(funcs_js_item) outfile.write(funcs_js_item) funcs_js = None outfile.write(indexize(post)) if DEBUG: print >> sys.stderr, ' emscript: phase 3 took %s seconds' % (time.time() - t) outfile.close() def main(args, compiler_engine, cache, jcache, relooper, temp_files, DEBUG, DEBUG_CACHE): # Prepare settings for serialization to JSON. settings = {} for setting in args.settings: name, value = setting.strip().split('=', 1) settings[name] = json.loads(value) # Add header defines to settings defines = {} include_root = path_from_root('system', 'include') headers = args.headers[0].split(',') if len(args.headers) > 0 else [] seen_headers = set() while len(headers) > 0: header = headers.pop(0) if not os.path.isabs(header): header = os.path.join(include_root, header) seen_headers.add(header) for line in open(header, 'r'): line = line.replace('\t', ' ') m = re.match('^ *# *define +(?P<name>[-\w_.]+) +\(?(?P<value>[-\w_.|]+)\)?.*', line) if not m: # Catch enum defines of a very limited sort m = re.match('^ +(?P<name>[A-Z_\d]+) += +(?P<value>\d+).*', line) if m: if m.group('name') != m.group('value'): defines[m.group('name')] = m.group('value') #else: # print 'Warning: %s #defined to itself' % m.group('name') # XXX this can happen if we are set to be equal to an enum (with the same name) m = re.match('^ *# *include *["<](?P<name>[\w_.-/]+)[">].*', line) if m: # Find this file found = False for w in [w for w in os.walk(include_root)]: for f in w[2]: curr = os.path.join(w[0], f) if curr.endswith(m.group('name')) and curr not in seen_headers: headers.append(curr) found = True break if found: break #assert found, 'Could not find header: ' + m.group('name') if len(defines) > 0: def lookup(value): try: while not unicode(value).isnumeric(): value = defines[value] return value except: pass try: # 0x300 etc. value = eval(value) return value except: pass try: # CONST1|CONST2 parts = map(lookup, value.split('|')) value = reduce(lambda a, b: a|b, map(eval, parts)) return value except: pass return None for key, value in defines.items(): value = lookup(value) if value is not None: defines[key] = str(value) else: del defines[key] #print >> sys.stderr, 'new defs:', str(defines).replace(',', ',\n '), '\n\n' settings.setdefault('C_DEFINES', {}).update(defines) # libraries libraries = args.libraries[0].split(',') if len(args.libraries) > 0 else [] # Compile the assembly to Javascript. if settings.get('RELOOP'): if not relooper: relooper = cache.get_path('relooper.js') settings.setdefault('RELOOPER', relooper) if not os.path.exists(relooper): from tools import shared shared.Building.ensure_relooper(relooper) emscript(args.infile, settings, args.outfile, libraries, compiler_engine=compiler_engine, jcache=jcache, temp_files=temp_files, DEBUG=DEBUG, DEBUG_CACHE=DEBUG_CACHE) def _main(environ): parser = optparse.OptionParser( usage='usage: %prog [-h] [-H HEADERS] [-o OUTFILE] [-c COMPILER_ENGINE] [-s FOO=BAR]* infile', description=('You should normally never use this! Use emcc instead. ' 'This is a wrapper around the JS compiler, converting .ll to .js.'), epilog='') parser.add_option('-H', '--headers', default=[], action='append', help='System headers (comma separated) whose #defines should be exposed to the compiled code.') parser.add_option('-L', '--libraries', default=[], action='append', help='Library files (comma separated) to use in addition to those in emscripten src/library_*.') parser.add_option('-o', '--outfile', default=sys.stdout, help='Where to write the output; defaults to stdout.') parser.add_option('-c', '--compiler', default=None, help='Which JS engine to use to run the compiler; defaults to the one in ~/.emscripten.') parser.add_option('--relooper', default=None, help='Which relooper file to use if RELOOP is enabled.') parser.add_option('-s', '--setting', dest='settings', default=[], action='append', metavar='FOO=BAR', help=('Overrides for settings defined in settings.js. ' 'May occur multiple times.')) parser.add_option('-j', '--jcache', action='store_true', default=False, help=('Enable jcache (ccache-like caching of compilation results, for faster incremental builds).')) parser.add_option('-T', '--temp-dir', default=None, help=('Where to create temporary files.')) parser.add_option('-v', '--verbose', action='store_true', dest='verbose', help='Displays debug output') parser.add_option('-q', '--quiet', action='store_false', dest='verbose', help='Hides debug output') parser.add_option('--suppressUsageWarning', action='store_true', default=environ.get('EMSCRIPTEN_SUPPRESS_USAGE_WARNING'), help=('Suppress usage warning')) # Convert to the same format that argparse would have produced. keywords, positional = parser.parse_args() if not keywords.suppressUsageWarning: print >> sys.stderr, ''' ============================================================== WARNING: You should normally never use this! Use emcc instead. ============================================================== ''' if len(positional) != 1: raise RuntimeError('Must provide exactly one positional argument.') keywords.infile = os.path.abspath(positional[0]) if isinstance(keywords.outfile, basestring): keywords.outfile = open(keywords.outfile, 'w') if keywords.relooper: relooper = os.path.abspath(keywords.relooper) else: relooper = None # use the cache def get_configuration(): if hasattr(get_configuration, 'configuration'): return get_configuration.configuration from tools import shared configuration = shared.Configuration(environ=os.environ) get_configuration.configuration = configuration return configuration if keywords.temp_dir is None: temp_files = get_configuration().get_temp_files() else: temp_dir = os.path.abspath(keywords.temp_dir) if not os.path.exists(temp_dir): os.makedirs(temp_dir) temp_files = tempfiles.TempFiles(temp_dir) if keywords.compiler is None: from tools import shared keywords.compiler = shared.COMPILER_ENGINE if keywords.verbose is None: DEBUG = get_configuration().DEBUG DEBUG_CACHE = get_configuration().DEBUG_CACHE else: DEBUG = keywords.verbose DEBUG_CACHE = keywords.verbose cache = cache_module.Cache() temp_files.run_and_clean(lambda: main( keywords, compiler_engine=keywords.compiler, cache=cache, jcache=cache_module.JCache(cache) if keywords.jcache else None, relooper=relooper, temp_files=temp_files, DEBUG=DEBUG, DEBUG_CACHE=DEBUG_CACHE, )) if __name__ == '__main__': _main(environ=os.environ)
42.078297
344
0.629746
814ff6688754eec0216e342ebfb43af3b2e1bd8d
730
py
Python
app/main/form.py
Ryan-GM/Pitchy
ca90741c251b98434ccdaf21593beb964d83e937
[ "MIT" ]
null
null
null
app/main/form.py
Ryan-GM/Pitchy
ca90741c251b98434ccdaf21593beb964d83e937
[ "MIT" ]
null
null
null
app/main/form.py
Ryan-GM/Pitchy
ca90741c251b98434ccdaf21593beb964d83e937
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField,SelectField from wtforms.validators import Required class PitchyForm(FlaskForm): title = StringField('Title',validators=[Required()]) post = TextAreaField('Pitch it', validators=[Required()]) category = SelectField('Category',choices=[('Cheesy','Cheesy'),('Life','Life','Funny','Funny')],validators=[Required()]) submit = SubmitField('Pitchy') class CommentForm(FlaskForm): comment = TextAreaField('Do leave a comment',validators=[Required()]) submit = SubmitField('Comment') class UpdateProfile(FlaskForm): bio = TextAreaField('A brief one about you',validators=[Required()]) submit = SubmitField('Save')
42.941176
124
0.735616
61efd941e81bae4c638b7f184ab519b978403736
1,797
py
Python
streaming_server.py
BenevolentPista/NP-Assignment
2217986e71332912b6b64f138f7e5c7234877389
[ "MIT" ]
null
null
null
streaming_server.py
BenevolentPista/NP-Assignment
2217986e71332912b6b64f138f7e5c7234877389
[ "MIT" ]
null
null
null
streaming_server.py
BenevolentPista/NP-Assignment
2217986e71332912b6b64f138f7e5c7234877389
[ "MIT" ]
null
null
null
import socket import tqdm import os import ffmpeg # device's IP address SERVER_HOST = "192.169.1.104" SERVER_PORT = 5001 width = 10 height = 10 # receive 4096 bytes each time BUFFER_SIZE = 4096 SEPARATOR = "<SEPARATOR>" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((SERVER_HOST, SERVER_PORT)) sock.listen(1) print('Listening at', sock.getsockname()) while True: sc, sockname = sock.accept() print('We have accepted a connection from', sockname) print(' Socket name:', sc.getsockname()) print(' Socket peer:', sc.getpeername()) # receive the file infos # receive using client socket, not server socket received = sc.recv(BUFFER_SIZE).decode() filename, filesize = received.split(SEPARATOR) # remove absolute path if there is filename = os.path.basename(filename) # convert to integer filesize = int(filesize) progress = tqdm.tqdm(range(filesize), f"Receiving {filename}", unit="B", unit_scale=True, unit_divisor=1024) with open(filename, "wb") as f: for _ in progress: bytes = sc.recv(BUFFER_SIZE) if not bytes: break f.write(bytes) ''' process = ffmpeg.input('pipe:', format='rawvideo', pix_fmt='rgb24', s='{}x{}'.format(width, height)) process = ffmpeg.output('output.mp4', pix_fmt='yuv420p') process = ffmpeg.overwrite_output() process = ffmpeg.run_async(pipe_stdin=True) process.communicate(input=bytes) ''' # update the progress bar progress.update(len(bytes)) print("File successfully delivered") print(os.path.dirname(os.path.realpath(__file__))) sc.close()
28.078125
112
0.648303
2623bd30c65c418836c75689ca29c625a8ef19a6
6,271
py
Python
straxen/bokeh_utils.py
FaroutYLq/straxen
4741b8e61895da85b593903ea55dacdaeae65b2f
[ "BSD-3-Clause" ]
null
null
null
straxen/bokeh_utils.py
FaroutYLq/straxen
4741b8e61895da85b593903ea55dacdaeae65b2f
[ "BSD-3-Clause" ]
2
2021-12-20T08:10:59.000Z
2022-03-14T08:08:00.000Z
straxen/bokeh_utils.py
ershockley/straxen
881c52571dba28aa2130587f39a6ced45059fde9
[ "BSD-3-Clause" ]
null
null
null
import bokeh.plotting as bklt import bokeh import numpy as np import strax export, __all__ = strax.exporter() @export def bokeh_to_wiki(fig, outputfile=None): """ Function which converts bokeh HTML code to a wiki readable code. :param fig: Figure to be conerted :param outputfile: String of absolute file path. If specified output is writen to the file. Else output is print to the notebook and can be simply copied into the wiki. """ # convert plot to wiki format: html = bokeh.embed.file_html(fig, bokeh.resources.CDN) html = '\n'.join((['<html>'] + html.split('\n')[6:])) if outputfile: with open(outputfile, mode='w') as file: file.write(html) else: print(html) def get_peaks_source(peaks, relative_start=0, time_scaler=1, keep_amplitude_per_sample=True): """ Computes bokeh.plotting.ColumnDataSource for given peaks. :param peaks: Peaks to be plotted. :param relative_start: t0 from which on the peaks should be plotted. :param time_scaler: Factor to rescale the time from ns to other scale. E.g. =1000 scales to µs. :param keep_amplitude_per_sample: Boolean if true amplitude of the plotted peaks is in pe/sample. False pe/ns. :return: bokeh.plotting.ColumnDataSource instance which can be used to plot peaks. """ if not (np.all(peaks['type'] == peaks[0]['type'])): raise ValueError('All peaks must be of the same type (S1, S2 or Unknown)!') x_p = [] y_p = [] for ind, p in enumerate(peaks): x, y = _patches_x_y(p, keep_amplitude_per_sample=keep_amplitude_per_sample) x -= relative_start # relative to first peak x = x / time_scaler x_p.append(x) y_p.append(y) if peaks[0]['type'] == 2: scaler = 10**-3 else: scaler = 1 source = bklt.ColumnDataSource(data={'xs': x_p, # Coordinates for peak patches 'ys': y_p, 'x': peaks['x'], # XY-Pos in PMZ Hitpattern 'y': peaks['y'], 'dt': peaks['dt'], 'time': peaks['time'], 'center_time': peaks['center_time'], 'endtime': strax.endtime(peaks), 'width_50': peaks['range_50p_area'] * scaler, 'width_90': peaks['range_90p_area'] * scaler, 'rise': peaks['rise_time'] * scaler, 'rel_center_time': (peaks['center_time'] - peaks['time']) * scaler, 'area': peaks['area'], 'aft': peaks['area_fraction_top'], 'nhits': peaks['n_hits'], } ) return source def _patches_x_y(peak, keep_amplitude_per_sample=False): """ Creates x,y coordinates needed to draw peaks via bokeh.models.patches. :param peak: Peak for which we need the x/y samples :param keep_amplitude_per_sample: If y-data should be in units of "per sample" or "per ns". :returns: Tuple of x, y """ if keep_amplitude_per_sample: dt_a = 1 else: dt_a = peak['dt'] x = np.arange(peak["length"]) xx = np.zeros(2 * len(x), dtype=x.dtype) mx = 0.5 * (x[1::] + x[:-1]) xx[1:-1:2] = mx xx[2::2] = mx xx[0] = 1.5 * x[0] - 0.5 * x[1] xx[-1] = 1.5 * x[-1] - 0.5 * x[-2] xx = np.array(xx) * peak['dt'] + peak['time'] y = peak['data'][:peak['length']] yy = np.zeros(2 * len(x)) yy[0::2] = y yy[1::2] = y yy = np.array(yy) / dt_a # baseline since we'll fill underneath xx = np.concatenate([[xx[0]], xx, [xx[-1]]]) yy = np.concatenate([[0], yy, [0]]) return xx, yy def peak_tool_tip(peak_type): """ Default mouseover tooltip for peaks. :param peak_type: If 2, all time variables are in µs else in ns. :return: dictionary of tooltips. Can be converted to a list for bokeh.models.HoverTool. """ # Add static time parameters: tool_tip = {"time_static": ("time [ns]", "@time"), "center_time": ("center_time [ns]", "@center_time"), "endtime": ("endtime [ns]", "@endtime"), } # Now ns/µs parameters for S1 and S2 tool_tip['dt'] = ("dt [ns/sample]", "@dt") tool_tip['time_dynamic'] = ("time [ns]", "$x") tool_tip['rel_center_time'] = ('center time [ns]', '@rel_center_time') tool_tip['range_50p_width'] = ('50% width [ns]', '@width_50') tool_tip['range_90p_width'] = ('90% width [ns]', '@width_90') tool_tip['rise_time'] = ('rise time [ns]', '@rise') # Add non-time parameters (results in an ordered tooltip) tool_tip['amplitude'] = ("Amplitude [pe/ns]", "$y") tool_tip["area"] = ('area [pe]', '@area') tool_tip["aft"] = ('AFT', '@aft') tool_tip["nhits"] = ('nhits', '@nhits') if peak_type == 2: for k, i in tool_tip.items(): if k not in ["time_static", "center_time", "endtime"]: tool_tip[k] = (i[0].replace('[ns]', '[µs]'), i[1]) return tool_tip def default_fig(width=400, height=400, title='', **kwargs): """ Helper function which returns a bokeh.plotting.figure instance with sizing_mode set to 'scale_both' and an aspect ratio set according to the specified width and height. :param width: Plot width in pixels :param height: PLot height in pixels. :param title: Title of the plot. Also allows for additional kwargs accepted by bokeh.plotting. :returns: bokeh.plotting.figure instance. """ fig = bklt.figure(plot_width=width, plot_height=height, sizing_mode='scale_both', aspect_ratio=width / height, title=title, tools="pan,box_zoom,reset,save", **kwargs ) return fig
35.630682
108
0.538032
0a3c64cfec651e85acd25be509f609a94ef5b23a
10,183
py
Python
tests/test_thermostat.py
swingerman/ha-dual-climate
3e863eb1ad57021ba4d93decc3720d9cae91f607
[ "Apache-2.0", "MIT" ]
1
2020-09-15T15:32:12.000Z
2020-09-15T15:32:12.000Z
tests/test_thermostat.py
swingerman/ha-dual-climate
3e863eb1ad57021ba4d93decc3720d9cae91f607
[ "Apache-2.0", "MIT" ]
null
null
null
tests/test_thermostat.py
swingerman/ha-dual-climate
3e863eb1ad57021ba4d93decc3720d9cae91f607
[ "Apache-2.0", "MIT" ]
null
null
null
"""The tests for the dual_smart_thermostat.""" from datetime import datetime, timezone, date import logging import pytest from typing import Final from homeassistant.core import HomeAssistant from homeassistant.components import input_boolean, input_number from homeassistant.util import dt from homeassistant.components.climate.const import ( DOMAIN as CLIMATE, HVAC_MODE_HEAT, HVAC_MODE_COOL, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_TEMPERATURE, STATE_OFF, STATE_ON, ) import homeassistant.core as ha from homeassistant.core import DOMAIN as HASS_DOMAIN, CoreState, State, callback from homeassistant.setup import async_setup_component from homeassistant.util.unit_system import METRIC_SYSTEM from pytest_homeassistant_custom_component.common import ( AsyncMock, Mock, MockConfigEntry, ) from homeassistant.components.sensor import ( SensorDeviceClass, SensorEntity, SensorEntityDescription, ) from custom_components.dual_smart_thermostat.const import * from homeassistant.setup import async_setup_component from custom_components.dual_smart_thermostat import ( DOMAIN as DUAL_SMART_THERMOSTAT, ) ENT_SWITCH = "switch.test" HEAT_ENTITY = "climate.test_heat" COOL_ENTITY = "climate.test_cool" ATTR_AWAY_MODE = "away_mode" MIN_TEMP = 3.0 MAX_TEMP = 65.0 TARGET_TEMP = 42.0 COLD_TOLERANCE = 0.5 HOT_TOLERANCE = 0.5 TARGET_TEMP_STEP = 0.5 SERVICE_SET_TEMPERATURE = "set_temperature" SERVICE_SET_HVAC_MODE = "set_hvac_mode" INPUT_SET_VALUE = "set_value" ENTITY_MATCH_ALL: Final = "all" ATTR_AUX_HEAT = "aux_heat" ATTR_CURRENT_HUMIDITY = "current_humidity" ATTR_CURRENT_TEMPERATURE = "current_temperature" ATTR_FAN_MODES = "fan_modes" ATTR_FAN_MODE = "fan_mode" ATTR_PRESET_MODE = "preset_mode" ATTR_PRESET_MODES = "preset_modes" ATTR_HUMIDITY = "humidity" ATTR_MAX_HUMIDITY = "max_humidity" ATTR_MIN_HUMIDITY = "min_humidity" ATTR_MAX_TEMP = "max_temp" ATTR_MIN_TEMP = "min_temp" ATTR_HVAC_ACTION = "hvac_action" ATTR_HVAC_MODES = "hvac_modes" ATTR_HVAC_MODE = "hvac_mode" ATTR_SWING_MODES = "swing_modes" ATTR_SWING_MODE = "swing_mode" ATTR_TARGET_TEMP_HIGH = "target_temp_high" ATTR_TARGET_TEMP_LOW = "target_temp_low" ATTR_TARGET_TEMP_STEP = "target_temp_step" _LOGGER = logging.getLogger(__name__) async def test_valid_conf(hass): """Test set up dual_smart_thermostat with valid config values.""" assert await async_setup_component( hass, CLIMATE, { "climate": { "platform": DUAL_SMART_THERMOSTAT, "name": "test", "heater": CONF_HEATER, "target_sensor": CONF_SENSOR, } }, ) @pytest.fixture async def setup_comp_1(hass): """Initialize components.""" hass.config.units = METRIC_SYSTEM assert await async_setup_component(hass, HASS_DOMAIN, {}) await hass.async_block_till_done() async def test_heater_mode(hass, setup_comp_1): """Test thermostat heater switch in heating mode.""" heater_switch = "input_boolean.test" assert await async_setup_component( hass, input_boolean.DOMAIN, {"input_boolean": {"test": None}} ) temp_input = "input_number.temp" assert await async_setup_component( hass, input_number.DOMAIN, { "input_number": { "temp": {"name": "test", "initial": 10, "min": 0, "max": 40, "step": 1} } }, ) assert await async_setup_component( hass, CLIMATE, { "climate": { "platform": DUAL_SMART_THERMOSTAT, "name": "test", "heater": heater_switch, "target_sensor": temp_input, "initial_hvac_mode": HVACMode.HEAT, } }, ) await hass.async_block_till_done() assert hass.states.get(heater_switch).state == STATE_OFF _setup_sensor(hass, temp_input, 18) await hass.async_block_till_done() await async_set_temperature(hass, 23) assert hass.states.get(heater_switch).state == STATE_ON async def test_cooler_mode(hass, setup_comp_1): """Test thermostat cooler switch in cooling mode.""" cooler_switch = "input_boolean.test" assert await async_setup_component( hass, input_boolean.DOMAIN, {"input_boolean": {"test": None}} ) temp_input = "input_number.temp" assert await async_setup_component( hass, input_number.DOMAIN, { "input_number": { "temp": {"name": "test", "initial": 10, "min": 0, "max": 40, "step": 1} } }, ) assert await async_setup_component( hass, CLIMATE, { "climate": { "platform": DUAL_SMART_THERMOSTAT, "name": "test", "heater": cooler_switch, "ac_mode": "true", "target_sensor": temp_input, "initial_hvac_mode": HVACMode.COOL, } }, ) await hass.async_block_till_done() assert hass.states.get(cooler_switch).state == STATE_OFF _setup_sensor(hass, temp_input, 23) await hass.async_block_till_done() await async_set_temperature(hass, 18) assert hass.states.get(cooler_switch).state == STATE_ON async def test_heater_cooler_mode(hass, setup_comp_1): """Test thermostat heater and cooler switch in heat/cool mode.""" heater_switch = "input_boolean.heater" cooler_switch = "input_boolean.cooler" assert await async_setup_component( hass, input_boolean.DOMAIN, {"input_boolean": {"heater": None, "cooler": None}}, ) temp_input = "input_number.temp" assert await async_setup_component( hass, input_number.DOMAIN, { "input_number": { "temp": {"name": "test", "initial": 10, "min": 0, "max": 40, "step": 1} } }, ) assert await async_setup_component( hass, CLIMATE, { "climate": { "platform": DUAL_SMART_THERMOSTAT, "name": "test", "cooler": cooler_switch, "heater": heater_switch, "target_sensor": temp_input, "initial_hvac_mode": HVACMode.HEAT_COOL, } }, ) await hass.async_block_till_done() assert hass.states.get(heater_switch).state == STATE_OFF assert hass.states.get(cooler_switch).state == STATE_OFF _setup_sensor(hass, temp_input, 26) await hass.async_block_till_done() await async_set_temperature(hass, 18, "all", 25, 22) assert hass.states.get(heater_switch).state == STATE_OFF assert hass.states.get(cooler_switch).state == STATE_ON _setup_sensor(hass, temp_input, 24) await hass.async_block_till_done() await async_set_temperature(hass, 18, "all", 25, 22) assert hass.states.get(heater_switch).state == STATE_OFF assert hass.states.get(cooler_switch).state == STATE_OFF _setup_sensor(hass, temp_input, 18) await hass.async_block_till_done() await async_set_temperature(hass, 18, "all", 25, 22) assert hass.states.get(heater_switch).state == STATE_ON assert hass.states.get(cooler_switch).state == STATE_OFF async def test_heater_cooler_switch_hvac_modes(hass, setup_comp_1): """Test thermostat heater and cooler switch to heater only mode.""" heater_switch = "input_boolean.heater" cooler_switch = "input_boolean.cooler" assert await async_setup_component( hass, input_boolean.DOMAIN, {"input_boolean": {"heater": None, "cooler": None}}, ) temp_input = "input_number.temp" assert await async_setup_component( hass, input_number.DOMAIN, { "input_number": { "temp": {"name": "test", "initial": 10, "min": 0, "max": 40, "step": 1} } }, ) assert await async_setup_component( hass, CLIMATE, { "climate": { "platform": DUAL_SMART_THERMOSTAT, "name": "test", "cooler": cooler_switch, "heater": heater_switch, "target_sensor": temp_input, "initial_hvac_mode": HVACMode.HEAT_COOL, } }, ) await hass.async_block_till_done() assert hass.states.get(heater_switch).state == STATE_OFF assert hass.states.get(cooler_switch).state == STATE_OFF _setup_sensor(hass, temp_input, 26) await hass.async_block_till_done() await async_set_hvac_mode(hass, "all", HVACMode.HEAT) assert hass.states.get("climate.test").state == HVAC_MODE_HEAT await async_set_hvac_mode(hass, "all", HVACMode.COOL) assert hass.states.get("climate.test").state == HVAC_MODE_COOL def _setup_sensor(hass, sensor, temp): """Set up the test sensor.""" hass.states.async_set(sensor, temp) async def async_set_temperature( hass, temperature=None, entity_id="all", target_temp_high=None, target_temp_low=None, hvac_mode=None, ): """Set new target temperature.""" kwargs = { key: value for key, value in [ (ATTR_TEMPERATURE, temperature), (ATTR_TARGET_TEMP_HIGH, target_temp_high), (ATTR_TARGET_TEMP_LOW, target_temp_low), (ATTR_ENTITY_ID, entity_id), (ATTR_HVAC_MODE, hvac_mode), ] if value is not None } _LOGGER.debug("set_temperature start data=%s", kwargs) await hass.services.async_call( CLIMATE, SERVICE_SET_TEMPERATURE, kwargs, blocking=True ) async def async_set_hvac_mode( hass, entity_id="all", hvac_mode=HVACMode.OFF, ): """Set new HVAC mode.""" kwargs = { key: value for key, value in [ (ATTR_ENTITY_ID, entity_id), (ATTR_HVAC_MODE, hvac_mode), ] if value is not None } _LOGGER.debug("%s start data=%s", SERVICE_SET_HVAC_MODE, kwargs) await hass.services.async_call( CLIMATE, SERVICE_SET_HVAC_MODE, kwargs, blocking=True )
28.207756
87
0.646077
08d6bcea50bd0845304c14dcceacc0c8d341627c
3,225
py
Python
gpytorch/kernels/product_structure_kernel.py
pierocor/gpytorch
c58dc3a77c7be7ee4434484e359a0bbc1c2d27f6
[ "MIT" ]
null
null
null
gpytorch/kernels/product_structure_kernel.py
pierocor/gpytorch
c58dc3a77c7be7ee4434484e359a0bbc1c2d27f6
[ "MIT" ]
null
null
null
gpytorch/kernels/product_structure_kernel.py
pierocor/gpytorch
c58dc3a77c7be7ee4434484e359a0bbc1c2d27f6
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from typing import Optional, Tuple from ..lazy import lazify from .kernel import Kernel class ProductStructureKernel(Kernel): r""" A Kernel decorator for kernels with product structure. If a kernel decomposes multiplicatively, then this module will be much more computationally efficient. A kernel function `k` has product structure if it can be written as .. math:: \begin{equation*} k(\mathbf{x_1}, \mathbf{x_2}) = k'(x_1^{(1)}, x_2^{(1)}) * \ldots * k'(x_1^{(d)}, x_2^{(d)}) \end{equation*} for some kernel :math:`k'` that operates on each dimension. Given a `b x n x d` input, `ProductStructureKernel` computes `d` one-dimensional kernels (using the supplied base_kernel), and then multiplies the component kernels together. Unlike :class:`~gpytorch.kernels.ProductKernel`, `ProductStructureKernel` computes each of the product terms in batch, making it very fast. See `Product Kernel Interpolation for Scalable Gaussian Processes`_ for more detail. Args: - :attr:`base_kernel` (Kernel): The kernel to approximate with KISS-GP - :attr:`num_dims` (int): The dimension of the input data. - :attr:`active_dims` (tuple of ints, optional): Passed down to the `base_kernel`. .. _Product Kernel Interpolation for Scalable Gaussian Processes: https://arxiv.org/pdf/1802.08903 """ @property def is_stationary(self) -> bool: """ Kernel is stationary if the base kernel is stationary. """ return self.base_kernel.is_stationary def __init__( self, base_kernel: Kernel, num_dims: int, active_dims: Optional[Tuple[int, ...]] = None, ): super(ProductStructureKernel, self).__init__(active_dims=active_dims) self.base_kernel = base_kernel self.num_dims = num_dims def forward(self, x1, x2, diag=False, last_dim_is_batch=False, **params): if last_dim_is_batch: raise RuntimeError("ProductStructureKernel does not accept the last_dim_is_batch argument.") res = self.base_kernel(x1, x2, diag=diag, last_dim_is_batch=True, **params) res = res.prod(-2 if diag else -3) return res def num_outputs_per_input(self, x1, x2): return self.base_kernel.num_outputs_per_input(x1, x2) def __call__(self, x1_, x2_=None, diag=False, last_dim_is_batch=False, **params): """ We cannot lazily evaluate actual kernel calls when using SKIP, because we cannot root decompose rectangular matrices. Because we slice in to the kernel during prediction to get the test x train covar before calling evaluate_kernel, the order of operations would mean we would get a MulLazyTensor representing a rectangular matrix, which we cannot matmul with because we cannot root decompose it. Thus, SKIP actually *requires* that we work with the full (train + test) x (train + test) kernel matrix. """ res = super().__call__(x1_, x2_, diag=diag, last_dim_is_batch=last_dim_is_batch, **params) res = lazify(res).evaluate_kernel() return res
38.855422
104
0.672248
aebf2ebd8fe9408e72ffa8037a467570120bf4e8
6,330
py
Python
securetea/lib/log_monitor/system_log/failed_login.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
257
2018-03-28T12:43:20.000Z
2022-03-29T07:07:23.000Z
securetea/lib/log_monitor/system_log/failed_login.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
155
2018-03-31T14:57:46.000Z
2022-03-17T18:12:41.000Z
securetea/lib/log_monitor/system_log/failed_login.py
neerajv18/SecureTea-Project
e999cbe7c8e497c69b76b4c886de0d063169ea03
[ "MIT" ]
132
2018-03-27T06:25:20.000Z
2022-03-28T11:32:45.000Z
# -*- coding: utf-8 -*- u"""Failed login module for SecureTea. Project: ╔═╗┌─┐┌─┐┬ ┬┬─┐┌─┐╔╦╗┌─┐┌─┐ ╚═╗├┤ │ │ │├┬┘├┤ ║ ├┤ ├─┤ ╚═╝└─┘└─┘└─┘┴└─└─┘ ╩ └─┘┴ ┴ Author: Abhishek Sharma <abhishek_official@hotmail.com> , Jun 1 2019 Version: 1.3 Module: SecureTea """ import re import time from securetea.lib.log_monitor.system_log import utils from securetea import logger class FailedLogin(object): """FailedLogin Class.""" def __init__(self, debug=False): """ Initialize FailedLogin. Args: debug (bool): Log on terminal or not Raises: None Returns: None Working: - Detect login attempts - Detect password brute-force """ # Initialize logger self.logger = logger.SecureTeaLogger( __name__, debug=debug ) # OS name to auth-log path map self.system_log_map = { "debian": "/var/log/auth.log" } os_name = utils.categorize_os() self.log_file = None if os_name: try: self.log_file = self.system_log_map[os_name] except KeyError: self.logger.log( "Could not find path for the auth-log file", logtype="error" ) return else: return # Salt to generate hashed username self.SALT = "<!@?>" # Regex to extract details self.AUTH_FAILURE = r'^[a-zA-Z]+.*authentication failure.*\s' self.USERNAME = r'(user=)([a-zA-Z0-9]+)' self.MESSAGE_REPEAT = r'message repeated\s([0-9]+)' # Initialize user to login attempt count dict self.user_to_count = dict() # Set threshold to 5 attempts per second to detect brute-force self.THRESHOLD = 5 # inter = 0.2 def parse_log_file(self): """ Parse the log file to extract authentication failure / login attempts. Args: None Raises: None Returns: None """ # Open the log file log_data = utils.open_file(self.log_file) for line in log_data: found = re.findall(self.AUTH_FAILURE, line) if (found is not None and found != []): username = re.findall(self.USERNAME, found[0])[0][1] data_in_list = found[0].split(" ") if data_in_list[1] != "": # if double digit day month = data_in_list[0] day = data_in_list[1] last_time = data_in_list[2] date = month + " " + day else: # if single digit day month = data_in_list[0] day = data_in_list[2] last_time = data_in_list[3] date = month + " " + day # convert date, time to epoch time epoch_time = utils.get_epoch_time(month, day, last_time) count = 1 # number of attempts (by default is 1) message_repeated = re.findall(self.MESSAGE_REPEAT, found[0]) if message_repeated != []: count = int(message_repeated[0]) # update user_to_count dict self.update_user_dict(username, date, epoch_time, count) def update_user_dict(self, username, date, epoch_time, count): """ Update username to attempts dict with the new number of failure attempts. Args: username (str): Name of the user date (str): Date (eg. Jun 1) epoch_time (int): Time during the attempt in epoch format count (int): Number of attempts made Raises: None Returns: None """ # Generate a hashed username using salt hashed_username = username + self.SALT + date if self.user_to_count.get(hashed_username) is None: # if user not in dict, add to dict self.user_to_count[hashed_username] = { "date": date, "last_time": epoch_time, "count": count } else: # if user in dict, update user attempt previous_count = self.user_to_count[hashed_username]["count"] new_count = previous_count + count self.user_to_count[hashed_username]["count"] = new_count self.user_to_count[hashed_username]["last_time"] = epoch_time def check_brute_force(self): """ Detect login attempts & password brute-force by comparing ratio with the set threshold. Args: None Raises: None Returns: None """ for username in self.user_to_count.keys(): last_time = self.user_to_count[username]["last_time"] count = self.user_to_count[username]["count"] current_time = int(time.time()) delta_time = int(current_time - last_time) try: calc_threshold = count / delta_time except ZeroDivisionError: calc_threshold = count if calc_threshold > self.THRESHOLD: # Brute-force detected user = username.split(self.SALT)[0] day = username.split(self.SALT)[1] msg = "Too much failed login attempts: " + user + " on: " + \ day + " failed attempts: " + str(count) self.logger.log( msg, logtype="warning" ) def run(self): """ Start monitoring the authentication-log file for login attempts & possible password brute-force. Args: None Raises: None Returns: None """ if self.log_file: # if path of auth-log file is valid # Rotate & parse the log file self.parse_log_file() # Analyze the log for brute-force self.check_brute_force() # Empty the dict to rotate the log-file self.user_to_count.clear()
29.44186
77
0.514534
952c6c77ce81e631b2c50cd2e43405411512a0c3
99,778
py
Python
keras/layers/recurrent.py
bklebel/keras
af804d0a5db9a8f20fbb083b48655b2687ce89d9
[ "MIT" ]
95
2018-04-13T03:34:51.000Z
2022-03-30T10:10:28.000Z
_bak/v0.5/StudyTensroFlow/keras/keras/layers/recurrent.py
Dlaiven/DeepLearning_Wavelet-LSTM
1606c16005a5338333b4943f782f57311c6b5e49
[ "MIT" ]
3
2019-07-18T11:19:53.000Z
2020-12-28T05:45:19.000Z
_bak/v0.5/StudyTensroFlow/keras/keras/layers/recurrent.py
Dlaiven/DeepLearning_Wavelet-LSTM
1606c16005a5338333b4943f782f57311c6b5e49
[ "MIT" ]
35
2018-07-27T09:21:18.000Z
2021-11-30T02:13:01.000Z
# -*- coding: utf-8 -*- """Recurrent layers and their base classes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import warnings from .. import backend as K from .. import activations from .. import initializers from .. import regularizers from .. import constraints from ..engine import Layer from ..engine import InputSpec from ..utils.generic_utils import has_arg # Legacy support. from ..legacy.layers import Recurrent from ..legacy import interfaces class StackedRNNCells(Layer): """Wrapper allowing a stack of RNN cells to behave as a single cell. Used to implement efficient stacked RNNs. # Arguments cells: List of RNN cell instances. # Examples ```python cells = [ keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), keras.layers.LSTMCell(output_dim), ] inputs = keras.Input((timesteps, input_dim)) x = keras.layers.RNN(cells)(inputs) ``` """ def __init__(self, cells, **kwargs): for cell in cells: if not hasattr(cell, 'call'): raise ValueError('All cells must have a `call` method. ' 'received cells:', cells) if not hasattr(cell, 'state_size'): raise ValueError('All cells must have a ' '`state_size` attribute. ' 'received cells:', cells) self.cells = cells super(StackedRNNCells, self).__init__(**kwargs) @property def state_size(self): # States are a flat list # in reverse order of the cell stack. # This allows to preserve the requirement # `stack.state_size[0] == output_dim`. # e.g. states of a 2-layer LSTM would be # `[h2, c2, h1, c1]` # (assuming one LSTM has states [h, c]) state_size = [] for cell in self.cells[::-1]: if hasattr(cell.state_size, '__len__'): state_size += list(cell.state_size) else: state_size.append(cell.state_size) return tuple(state_size) def call(self, inputs, states, constants=None, **kwargs): # Recover per-cell states. nested_states = [] for cell in self.cells[::-1]: if hasattr(cell.state_size, '__len__'): nested_states.append(states[:len(cell.state_size)]) states = states[len(cell.state_size):] else: nested_states.append([states[0]]) states = states[1:] nested_states = nested_states[::-1] # Call the cells in order and store the returned states. new_nested_states = [] for cell, states in zip(self.cells, nested_states): if has_arg(cell.call, 'constants'): inputs, states = cell.call(inputs, states, constants=constants, **kwargs) else: inputs, states = cell.call(inputs, states, **kwargs) new_nested_states.append(states) # Format the new states as a flat list # in reverse cell order. states = [] for cell_states in new_nested_states[::-1]: states += cell_states return inputs, states def build(self, input_shape): if isinstance(input_shape, list): constants_shape = input_shape[1:] input_shape = input_shape[0] for cell in self.cells: if isinstance(cell, Layer): if has_arg(cell.call, 'constants'): cell.build([input_shape] + constants_shape) else: cell.build(input_shape) if hasattr(cell.state_size, '__len__'): output_dim = cell.state_size[0] else: output_dim = cell.state_size input_shape = (input_shape[0], output_dim) self.built = True def get_config(self): cells = [] for cell in self.cells: cells.append({'class_name': cell.__class__.__name__, 'config': cell.get_config()}) config = {'cells': cells} base_config = super(StackedRNNCells, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from . import deserialize as deserialize_layer cells = [] for cell_config in config.pop('cells'): cells.append(deserialize_layer(cell_config, custom_objects=custom_objects)) return cls(cells, **config) @property def trainable_weights(self): if not self.trainable: return [] weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.trainable_weights return weights @property def non_trainable_weights(self): weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.non_trainable_weights if not self.trainable: trainable_weights = [] for cell in self.cells: if isinstance(cell, Layer): trainable_weights += cell.trainable_weights return trainable_weights + weights return weights def get_weights(self): """Retrieves the weights of the model. # Returns A flat list of Numpy arrays. """ weights = [] for cell in self.cells: if isinstance(cell, Layer): weights += cell.weights return K.batch_get_value(weights) def set_weights(self, weights): """Sets the weights of the model. # Arguments weights: A list of Numpy arrays with shapes and types matching the output of `model.get_weights()`. """ tuples = [] for cell in self.cells: if isinstance(cell, Layer): num_param = len(cell.weights) weights = weights[:num_param] for sw, w in zip(cell.weights, weights): tuples.append((sw, w)) weights = weights[num_param:] K.batch_set_value(tuples) @property def losses(self): losses = [] for cell in self.cells: if isinstance(cell, Layer): cell_losses = cell.losses losses += cell_losses return losses def get_losses_for(self, inputs=None): losses = [] for cell in self.cells: if isinstance(cell, Layer): cell_losses = cell.get_losses_for(inputs) losses += cell_losses return losses class RNN(Layer): """Base class for recurrent layers. # Arguments cell: A RNN cell instance. A RNN cell is a class that has: - a `call(input_at_t, states_at_t)` method, returning `(output_at_t, states_at_t_plus_1)`. The call method of the cell can also take the optional argument `constants`, see section "Note on passing external constants" below. - a `state_size` attribute. This can be a single integer (single state) in which case it is the size of the recurrent state (which should be the same as the size of the cell output). This can also be a list/tuple of integers (one size per state). In this case, the first entry (`state_size[0]`) should be the same as the size of the cell output. It is also possible for `cell` to be a list of RNN cell instances, in which cases the cells get stacked on after the other in the RNN, implementing an efficient stacked RNN. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. input_dim: dimensionality of the input (integer). This argument (or alternatively, the keyword argument `input_shape`) is required when using this layer as the first layer in a model. input_length: Length of input sequences, to be specified when it is constant. This argument is required if you are going to connect `Flatten` then `Dense` layers upstream (without it, the shape of the dense outputs cannot be computed). Note that if the recurrent layer is not the first layer in your model, you would need to specify the input length at the level of the first layer (e.g. via the `input_shape` argument) # Input shape 3D tensor with shape `(batch_size, timesteps, input_dim)`. # Output shape - if `return_state`: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each with shape `(batch_size, units)`. - if `return_sequences`: 3D tensor with shape `(batch_size, timesteps, units)`. - else, 2D tensor with shape `(batch_size, units)`. # Masking This layer supports masking for input data with a variable number of timesteps. To introduce masks to your data, use an [Embedding](embeddings.md) layer with the `mask_zero` parameter set to `True`. # Note on using statefulness in RNNs You can set RNN layers to be 'stateful', which means that the states computed for the samples in one batch will be reused as initial states for the samples in the next batch. This assumes a one-to-one mapping between samples in different successive batches. To enable statefulness: - specify `stateful=True` in the layer constructor. - specify a fixed batch size for your model, by passing if sequential model: `batch_input_shape=(...)` to the first layer in your model. else for functional model with 1 or more Input layers: `batch_shape=(...)` to all the first layers in your model. This is the expected shape of your inputs *including the batch size*. It should be a tuple of integers, e.g. `(32, 10, 100)`. - specify `shuffle=False` when calling fit(). To reset the states of your model, call `.reset_states()` on either a specific layer, or on your entire model. # Note on specifying the initial state of RNNs You can specify the initial state of RNN layers symbolically by calling them with the keyword argument `initial_state`. The value of `initial_state` should be a tensor or list of tensors representing the initial state of the RNN layer. You can specify the initial state of RNN layers numerically by calling `reset_states` with the keyword argument `states`. The value of `states` should be a numpy array or list of numpy arrays representing the initial state of the RNN layer. # Note on passing external constants to RNNs You can pass "external" constants to the cell using the `constants` keyword argument of `RNN.__call__` (as well as `RNN.call`) method. This requires that the `cell.call` method accepts the same keyword argument `constants`. Such constants can be used to condition the cell transformation on additional static inputs (not changing over time), a.k.a. an attention mechanism. # Examples ```python # First, let's define a RNN Cell, as a layer subclass. class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super(MinimalRNNCell, self).__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = K.dot(inputs, self.kernel) output = h + K.dot(prev_output, self.recurrent_kernel) return output, [output] # Let's use this cell in a RNN layer: cell = MinimalRNNCell(32) x = keras.Input((None, 5)) layer = RNN(cell) y = layer(x) # Here's how to use the cell to build a stacked RNN: cells = [MinimalRNNCell(32), MinimalRNNCell(64)] x = keras.Input((None, 5)) layer = RNN(cells) y = layer(x) ``` """ def __init__(self, cell, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if isinstance(cell, (list, tuple)): cell = StackedRNNCells(cell) if not hasattr(cell, 'call'): raise ValueError('`cell` should have a `call` method. ' 'The RNN was passed:', cell) if not hasattr(cell, 'state_size'): raise ValueError('The RNN cell should have ' 'an attribute `state_size` ' '(tuple of integers, ' 'one integer per RNN state).') super(RNN, self).__init__(**kwargs) self.cell = cell self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful self.unroll = unroll self.supports_masking = True self.input_spec = [InputSpec(ndim=3)] self.state_spec = None self._states = None self.constants_spec = None self._num_constants = None @property def states(self): if self._states is None: if isinstance(self.cell.state_size, int): num_states = 1 else: num_states = len(self.cell.state_size) return [None for _ in range(num_states)] return self._states @states.setter def states(self, states): self._states = states def compute_output_shape(self, input_shape): if isinstance(input_shape, list): input_shape = input_shape[0] if hasattr(self.cell.state_size, '__len__'): state_size = self.cell.state_size else: state_size = [self.cell.state_size] output_dim = state_size[0] if self.return_sequences: output_shape = (input_shape[0], input_shape[1], output_dim) else: output_shape = (input_shape[0], output_dim) if self.return_state: state_shape = [(input_shape[0], dim) for dim in state_size] return [output_shape] + state_shape else: return output_shape def compute_mask(self, inputs, mask): if isinstance(mask, list): mask = mask[0] output_mask = mask if self.return_sequences else None if self.return_state: state_mask = [None for _ in self.states] return [output_mask] + state_mask else: return output_mask def build(self, input_shape): # Note input_shape will be list of shapes of initial states and # constants if these are passed in __call__. if self._num_constants is not None: constants_shape = input_shape[-self._num_constants:] else: constants_shape = None if isinstance(input_shape, list): input_shape = input_shape[0] batch_size = input_shape[0] if self.stateful else None input_dim = input_shape[-1] self.input_spec[0] = InputSpec(shape=(batch_size, None, input_dim)) # allow cell (if layer) to build before we set or validate state_spec if isinstance(self.cell, Layer): step_input_shape = (input_shape[0],) + input_shape[2:] if constants_shape is not None: self.cell.build([step_input_shape] + constants_shape) else: self.cell.build(step_input_shape) # set or validate state_spec if hasattr(self.cell.state_size, '__len__'): state_size = list(self.cell.state_size) else: state_size = [self.cell.state_size] if self.state_spec is not None: # initial_state was passed in call, check compatibility if [spec.shape[-1] for spec in self.state_spec] != state_size: raise ValueError( 'An `initial_state` was passed that is not compatible with ' '`cell.state_size`. Received `state_spec`={}; ' 'however `cell.state_size` is ' '{}'.format(self.state_spec, self.cell.state_size)) else: self.state_spec = [InputSpec(shape=(None, dim)) for dim in state_size] if self.stateful: self.reset_states() self.built = True def get_initial_state(self, inputs): # build an all-zero tensor of shape (samples, output_dim) initial_state = K.zeros_like(inputs) # (samples, timesteps, input_dim) initial_state = K.sum(initial_state, axis=(1, 2)) # (samples,) initial_state = K.expand_dims(initial_state) # (samples, 1) if hasattr(self.cell.state_size, '__len__'): return [K.tile(initial_state, [1, dim]) for dim in self.cell.state_size] else: return [K.tile(initial_state, [1, self.cell.state_size])] def __call__(self, inputs, initial_state=None, constants=None, **kwargs): inputs, initial_state, constants = self._standardize_args( inputs, initial_state, constants) if initial_state is None and constants is None: return super(RNN, self).__call__(inputs, **kwargs) # If any of `initial_state` or `constants` are specified and are Keras # tensors, then add them to the inputs and temporarily modify the # input_spec to include them. additional_inputs = [] additional_specs = [] if initial_state is not None: kwargs['initial_state'] = initial_state additional_inputs += initial_state self.state_spec = [InputSpec(shape=K.int_shape(state)) for state in initial_state] additional_specs += self.state_spec if constants is not None: kwargs['constants'] = constants additional_inputs += constants self.constants_spec = [InputSpec(shape=K.int_shape(constant)) for constant in constants] self._num_constants = len(constants) additional_specs += self.constants_spec # at this point additional_inputs cannot be empty is_keras_tensor = K.is_keras_tensor(additional_inputs[0]) for tensor in additional_inputs: if K.is_keras_tensor(tensor) != is_keras_tensor: raise ValueError('The initial state or constants of an RNN' ' layer cannot be specified with a mix of' ' Keras tensors and non-Keras tensors' ' (a "Keras tensor" is a tensor that was' ' returned by a Keras layer, or by `Input`)') if is_keras_tensor: # Compute the full input spec, including state and constants full_input = [inputs] + additional_inputs full_input_spec = self.input_spec + additional_specs # Perform the call with temporarily replaced input_spec original_input_spec = self.input_spec self.input_spec = full_input_spec output = super(RNN, self).__call__(full_input, **kwargs) self.input_spec = original_input_spec return output else: return super(RNN, self).__call__(inputs, **kwargs) def call(self, inputs, mask=None, training=None, initial_state=None, constants=None): # input shape: `(samples, time (padded with zeros), input_dim)` # note that the .build() method of subclasses MUST define # self.input_spec and self.state_spec with complete input shapes. if isinstance(inputs, list): inputs = inputs[0] if initial_state is not None: pass elif self.stateful: initial_state = self.states else: initial_state = self.get_initial_state(inputs) if isinstance(mask, list): mask = mask[0] if len(initial_state) != len(self.states): raise ValueError('Layer has ' + str(len(self.states)) + ' states but was passed ' + str(len(initial_state)) + ' initial states.') input_shape = K.int_shape(inputs) timesteps = input_shape[1] if self.unroll and timesteps in [None, 1]: raise ValueError('Cannot unroll a RNN if the ' 'time dimension is undefined or equal to 1. \n' '- If using a Sequential model, ' 'specify the time dimension by passing ' 'an `input_shape` or `batch_input_shape` ' 'argument to your first layer. If your ' 'first layer is an Embedding, you can ' 'also use the `input_length` argument.\n' '- If using the functional API, specify ' 'the time dimension by passing a `shape` ' 'or `batch_shape` argument to your Input layer.') kwargs = {} if has_arg(self.cell.call, 'training'): kwargs['training'] = training if constants: if not has_arg(self.cell.call, 'constants'): raise ValueError('RNN cell does not support constants') def step(inputs, states): constants = states[-self._num_constants:] states = states[:-self._num_constants] return self.cell.call(inputs, states, constants=constants, **kwargs) else: def step(inputs, states): return self.cell.call(inputs, states, **kwargs) last_output, outputs, states = K.rnn(step, inputs, initial_state, constants=constants, go_backwards=self.go_backwards, mask=mask, unroll=self.unroll, input_length=timesteps) if self.stateful: updates = [] for i in range(len(states)): updates.append((self.states[i], states[i])) self.add_update(updates, inputs) if self.return_sequences: output = outputs else: output = last_output # Properly set learning phase if getattr(last_output, '_uses_learning_phase', False): output._uses_learning_phase = True for state in states: state._uses_learning_phase = True if self.return_state: if not isinstance(states, (list, tuple)): states = [states] else: states = list(states) return [output] + states else: return output def _standardize_args(self, inputs, initial_state, constants): """Standardize `__call__` to a single list of tensor inputs. When running a model loaded from file, the input tensors `initial_state` and `constants` can be passed to `RNN.__call__` as part of `inputs` instead of by the dedicated keyword arguments. This method makes sure the arguments are separated and that `initial_state` and `constants` are lists of tensors (or None). # Arguments inputs: tensor or list/tuple of tensors initial_state: tensor or list of tensors or None constants: tensor or list of tensors or None # Returns inputs: tensor initial_state: list of tensors or None constants: list of tensors or None """ if isinstance(inputs, list): assert initial_state is None and constants is None if self._num_constants is not None: constants = inputs[-self._num_constants:] inputs = inputs[:-self._num_constants] if len(inputs) > 1: initial_state = inputs[1:] inputs = inputs[0] def to_list_or_none(x): if x is None or isinstance(x, list): return x if isinstance(x, tuple): return list(x) return [x] initial_state = to_list_or_none(initial_state) constants = to_list_or_none(constants) return inputs, initial_state, constants def reset_states(self, states=None): if not self.stateful: raise AttributeError('Layer must be stateful.') batch_size = self.input_spec[0].shape[0] if not batch_size: raise ValueError('If a RNN is stateful, it needs to know ' 'its batch size. Specify the batch size ' 'of your input tensors: \n' '- If using a Sequential model, ' 'specify the batch size by passing ' 'a `batch_input_shape` ' 'argument to your first layer.\n' '- If using the functional API, specify ' 'the batch size by passing a ' '`batch_shape` argument to your Input layer.') # initialize state if None if self.states[0] is None: if hasattr(self.cell.state_size, '__len__'): self.states = [K.zeros((batch_size, dim)) for dim in self.cell.state_size] else: self.states = [K.zeros((batch_size, self.cell.state_size))] elif states is None: if hasattr(self.cell.state_size, '__len__'): for state, dim in zip(self.states, self.cell.state_size): K.set_value(state, np.zeros((batch_size, dim))) else: K.set_value(self.states[0], np.zeros((batch_size, self.cell.state_size))) else: if not isinstance(states, (list, tuple)): states = [states] if len(states) != len(self.states): raise ValueError('Layer ' + self.name + ' expects ' + str(len(self.states)) + ' states, ' 'but it received ' + str(len(states)) + ' state values. Input received: ' + str(states)) for index, (value, state) in enumerate(zip(states, self.states)): if hasattr(self.cell.state_size, '__len__'): dim = self.cell.state_size[index] else: dim = self.cell.state_size if value.shape != (batch_size, dim): raise ValueError('State ' + str(index) + ' is incompatible with layer ' + self.name + ': expected shape=' + str((batch_size, dim)) + ', found shape=' + str(value.shape)) # TODO: consider batch calls to `set_value`. K.set_value(state, value) def get_config(self): config = {'return_sequences': self.return_sequences, 'return_state': self.return_state, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll} if self._num_constants is not None: config['num_constants'] = self._num_constants cell_config = self.cell.get_config() config['cell'] = {'class_name': self.cell.__class__.__name__, 'config': cell_config} base_config = super(RNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): from . import deserialize as deserialize_layer cell = deserialize_layer(config.pop('cell'), custom_objects=custom_objects) num_constants = config.pop('num_constants', None) layer = cls(cell, **config) layer._num_constants = num_constants return layer @property def trainable_weights(self): if not self.trainable: return [] if isinstance(self.cell, Layer): return self.cell.trainable_weights return [] @property def non_trainable_weights(self): if isinstance(self.cell, Layer): if not self.trainable: return self.cell.weights return self.cell.non_trainable_weights return [] @property def losses(self): layer_losses = super(RNN, self).losses if isinstance(self.cell, Layer): return self.cell.losses + layer_losses return layer_losses def get_losses_for(self, inputs=None): if isinstance(self.cell, Layer): cell_losses = self.cell.get_losses_for(inputs) return cell_losses + super(RNN, self).get_losses_for(inputs) return super(RNN, self).get_losses_for(inputs) class SimpleRNNCell(Layer): """Cell class for SimpleRNN. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. """ def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., **kwargs): super(SimpleRNNCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.state_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: self.bias = self.add_weight(shape=(self.units,), name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.built = True def call(self, inputs, states, training=None): prev_output = states[0] if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, K.shape(inputs)[-1]), self.dropout, training=training) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, self.units), self.recurrent_dropout, training=training) dp_mask = self._dropout_mask rec_dp_mask = self._recurrent_dropout_mask if dp_mask is not None: h = K.dot(inputs * dp_mask, self.kernel) else: h = K.dot(inputs, self.kernel) if self.bias is not None: h = K.bias_add(h, self.bias) if rec_dp_mask is not None: prev_output *= rec_dp_mask output = h + K.dot(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) # Properly set learning phase on output tensor. if 0 < self.dropout + self.recurrent_dropout: if training is None: output._uses_learning_phase = True return output, [output] def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(SimpleRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) class SimpleRNN(RNN): """Fully-connected RNN where the output is to be fed back to input. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. """ @interfaces.legacy_recurrent_support def __init__(self, units, activation='tanh', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if 'implementation' in kwargs: kwargs.pop('implementation') warnings.warn('The `implementation` argument ' 'in `SimpleRNN` has been deprecated. ' 'Please remove it from your layer call.') if K.backend() == 'theano' and (dropout or recurrent_dropout): warnings.warn( 'RNN dropout is no longer supported with the Theano backend ' 'due to technical limitations. ' 'You can either set `dropout` and `recurrent_dropout` to 0, ' 'or use the TensorFlow backend.') dropout = 0. recurrent_dropout = 0. cell = SimpleRNNCell(units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout) super(SimpleRNN, self).__init__(cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(SimpleRNN, self).call(inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(SimpleRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config: config.pop('implementation') return cls(**config) class GRUCell(Layer): """Cell class for the GRU layer. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, reset_after=False, **kwargs): super(GRUCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.reset_after = reset_after self.state_size = self.units self._dropout_mask = None self._recurrent_dropout_mask = None def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight(shape=(input_dim, self.units * 3), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 3), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if not self.reset_after: bias_shape = (3 * self.units,) else: # separate biases for input and recurrent kernels # Note: the shape is intentionally different from CuDNNGRU biases # `(2 * 3 * self.units,)`, so that we can distinguish the classes # when loading and converting saved weights. bias_shape = (2, 3 * self.units) self.bias = self.add_weight(shape=bias_shape, name='bias', initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) if not self.reset_after: self.input_bias, self.recurrent_bias = self.bias, None else: # NOTE: need to flatten, since slicing in CNTK gives 2D array self.input_bias = K.flatten(self.bias[0]) self.recurrent_bias = K.flatten(self.bias[1]) else: self.bias = None # update gate self.kernel_z = self.kernel[:, :self.units] self.recurrent_kernel_z = self.recurrent_kernel[:, :self.units] # reset gate self.kernel_r = self.kernel[:, self.units: self.units * 2] self.recurrent_kernel_r = self.recurrent_kernel[:, self.units: self.units * 2] # new gate self.kernel_h = self.kernel[:, self.units * 2:] self.recurrent_kernel_h = self.recurrent_kernel[:, self.units * 2:] if self.use_bias: # bias for inputs self.input_bias_z = self.input_bias[:self.units] self.input_bias_r = self.input_bias[self.units: self.units * 2] self.input_bias_h = self.input_bias[self.units * 2:] # bias for hidden state - just for compatibility with CuDNN if self.reset_after: self.recurrent_bias_z = self.recurrent_bias[:self.units] self.recurrent_bias_r = self.recurrent_bias[self.units: self.units * 2] self.recurrent_bias_h = self.recurrent_bias[self.units * 2:] else: self.input_bias_z = None self.input_bias_r = None self.input_bias_h = None if self.reset_after: self.recurrent_bias_z = None self.recurrent_bias_r = None self.recurrent_bias_h = None self.built = True def call(self, inputs, states, training=None): h_tm1 = states[0] # previous memory if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, K.shape(inputs)[-1]), self.dropout, training=training, count=3) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, self.units), self.recurrent_dropout, training=training, count=3) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask if self.implementation == 1: if 0. < self.dropout < 1.: inputs_z = inputs * dp_mask[0] inputs_r = inputs * dp_mask[1] inputs_h = inputs * dp_mask[2] else: inputs_z = inputs inputs_r = inputs inputs_h = inputs x_z = K.dot(inputs_z, self.kernel_z) x_r = K.dot(inputs_r, self.kernel_r) x_h = K.dot(inputs_h, self.kernel_h) if self.use_bias: x_z = K.bias_add(x_z, self.input_bias_z) x_r = K.bias_add(x_r, self.input_bias_r) x_h = K.bias_add(x_h, self.input_bias_h) if 0. < self.recurrent_dropout < 1.: h_tm1_z = h_tm1 * rec_dp_mask[0] h_tm1_r = h_tm1 * rec_dp_mask[1] h_tm1_h = h_tm1 * rec_dp_mask[2] else: h_tm1_z = h_tm1 h_tm1_r = h_tm1 h_tm1_h = h_tm1 recurrent_z = K.dot(h_tm1_z, self.recurrent_kernel_z) recurrent_r = K.dot(h_tm1_r, self.recurrent_kernel_r) if self.reset_after and self.use_bias: recurrent_z = K.bias_add(recurrent_z, self.recurrent_bias_z) recurrent_r = K.bias_add(recurrent_r, self.recurrent_bias_r) z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) # reset gate applied after/before matrix multiplication if self.reset_after: recurrent_h = K.dot(h_tm1_h, self.recurrent_kernel_h) if self.use_bias: recurrent_h = K.bias_add(recurrent_h, self.recurrent_bias_h) recurrent_h = r * recurrent_h else: recurrent_h = K.dot(r * h_tm1_h, self.recurrent_kernel_h) hh = self.activation(x_h + recurrent_h) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] # inputs projected by all gate matrices at once matrix_x = K.dot(inputs, self.kernel) if self.use_bias: # biases: bias_z_i, bias_r_i, bias_h_i matrix_x = K.bias_add(matrix_x, self.input_bias) x_z = matrix_x[:, :self.units] x_r = matrix_x[:, self.units: 2 * self.units] x_h = matrix_x[:, 2 * self.units:] if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] if self.reset_after: # hidden state projected by all gate matrices at once matrix_inner = K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: matrix_inner = K.bias_add(matrix_inner, self.recurrent_bias) else: # hidden state projected separately for update/reset and new matrix_inner = K.dot(h_tm1, self.recurrent_kernel[:, :2 * self.units]) recurrent_z = matrix_inner[:, :self.units] recurrent_r = matrix_inner[:, self.units: 2 * self.units] z = self.recurrent_activation(x_z + recurrent_z) r = self.recurrent_activation(x_r + recurrent_r) if self.reset_after: recurrent_h = r * matrix_inner[:, 2 * self.units:] else: recurrent_h = K.dot(r * h_tm1, self.recurrent_kernel[:, 2 * self.units:]) hh = self.activation(x_h + recurrent_h) # previous and candidate state mixed by update gate h = z * h_tm1 + (1 - z) * hh if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return h, [h] def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after} base_config = super(GRUCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) class GRU(RNN): """Gated Recurrent Unit - Cho et al. 2014. There are two variants. The default one is based on 1406.1078v3 and has reset gate applied to hidden state before matrix multiplication. The other one is based on original 1406.1078v1 and has the order reversed. The second variant is compatible with CuDNNGRU (GPU-only) and allows inference on CPU. Thus it has separate biases for `kernel` and `recurrent_kernel`. Use `'reset_after'=True` and `recurrent_activation='sigmoid'`. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. reset_after: GRU convention (whether to apply reset gate after or before matrix multiplication). False = "before" (default), True = "after" (CuDNN compatible). # References - [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation](https://arxiv.org/abs/1406.1078) - [On the Properties of Neural Machine Translation: Encoder-Decoder Approaches](https://arxiv.org/abs/1409.1259) - [Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling](http://arxiv.org/abs/1412.3555v1) - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287) """ @interfaces.legacy_recurrent_support def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, reset_after=False, **kwargs): if implementation == 0: warnings.warn('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') if K.backend() == 'theano' and (dropout or recurrent_dropout): warnings.warn( 'RNN dropout is no longer supported with the Theano backend ' 'due to technical limitations. ' 'You can either set `dropout` and `recurrent_dropout` to 0, ' 'or use the TensorFlow backend.') dropout = 0. recurrent_dropout = 0. cell = GRUCell(units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation, reset_after=reset_after) super(GRU, self).__init__(cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(GRU, self).call(inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation @property def reset_after(self): return self.cell.reset_after def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation, 'reset_after': self.reset_after} base_config = super(GRU, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) class LSTMCell(Layer): """Cell class for the LSTM layer. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`).x use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. """ def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, **kwargs): super(LSTMCell, self).__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1., max(0., dropout)) self.recurrent_dropout = min(1., max(0., recurrent_dropout)) self.implementation = implementation self.state_size = (self.units, self.units) self._dropout_mask = None self._recurrent_dropout_mask = None def build(self, input_shape): input_dim = input_shape[-1] self.kernel = self.add_weight(shape=(input_dim, self.units * 4), name='kernel', initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name='recurrent_kernel', initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return K.concatenate([ self.bias_initializer((self.units,), *args, **kwargs), initializers.Ones()((self.units,), *args, **kwargs), self.bias_initializer((self.units * 2,), *args, **kwargs), ]) else: bias_initializer = self.bias_initializer self.bias = self.add_weight(shape=(self.units * 4,), name='bias', initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint) else: self.bias = None self.kernel_i = self.kernel[:, :self.units] self.kernel_f = self.kernel[:, self.units: self.units * 2] self.kernel_c = self.kernel[:, self.units * 2: self.units * 3] self.kernel_o = self.kernel[:, self.units * 3:] self.recurrent_kernel_i = self.recurrent_kernel[:, :self.units] self.recurrent_kernel_f = self.recurrent_kernel[:, self.units: self.units * 2] self.recurrent_kernel_c = self.recurrent_kernel[:, self.units * 2: self.units * 3] self.recurrent_kernel_o = self.recurrent_kernel[:, self.units * 3:] if self.use_bias: self.bias_i = self.bias[:self.units] self.bias_f = self.bias[self.units: self.units * 2] self.bias_c = self.bias[self.units * 2: self.units * 3] self.bias_o = self.bias[self.units * 3:] else: self.bias_i = None self.bias_f = None self.bias_c = None self.bias_o = None self.built = True def call(self, inputs, states, training=None): if 0 < self.dropout < 1 and self._dropout_mask is None: self._dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, K.shape(inputs)[-1]), self.dropout, training=training, count=4) if (0 < self.recurrent_dropout < 1 and self._recurrent_dropout_mask is None): self._recurrent_dropout_mask = _generate_dropout_mask( _generate_dropout_ones(inputs, self.units), self.recurrent_dropout, training=training, count=4) # dropout matrices for input units dp_mask = self._dropout_mask # dropout matrices for recurrent units rec_dp_mask = self._recurrent_dropout_mask h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state if self.implementation == 1: if 0 < self.dropout < 1.: inputs_i = inputs * dp_mask[0] inputs_f = inputs * dp_mask[1] inputs_c = inputs * dp_mask[2] inputs_o = inputs * dp_mask[3] else: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs x_i = K.dot(inputs_i, self.kernel_i) x_f = K.dot(inputs_f, self.kernel_f) x_c = K.dot(inputs_c, self.kernel_c) x_o = K.dot(inputs_o, self.kernel_o) if self.use_bias: x_i = K.bias_add(x_i, self.bias_i) x_f = K.bias_add(x_f, self.bias_f) x_c = K.bias_add(x_c, self.bias_c) x_o = K.bias_add(x_o, self.bias_o) if 0 < self.recurrent_dropout < 1.: h_tm1_i = h_tm1 * rec_dp_mask[0] h_tm1_f = h_tm1 * rec_dp_mask[1] h_tm1_c = h_tm1 * rec_dp_mask[2] h_tm1_o = h_tm1 * rec_dp_mask[3] else: h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 i = self.recurrent_activation(x_i + K.dot(h_tm1_i, self.recurrent_kernel_i)) f = self.recurrent_activation(x_f + K.dot(h_tm1_f, self.recurrent_kernel_f)) c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1_c, self.recurrent_kernel_c)) o = self.recurrent_activation(x_o + K.dot(h_tm1_o, self.recurrent_kernel_o)) else: if 0. < self.dropout < 1.: inputs *= dp_mask[0] z = K.dot(inputs, self.kernel) if 0. < self.recurrent_dropout < 1.: h_tm1 *= rec_dp_mask[0] z += K.dot(h_tm1, self.recurrent_kernel) if self.use_bias: z = K.bias_add(z, self.bias) z0 = z[:, :self.units] z1 = z[:, self.units: 2 * self.units] z2 = z[:, 2 * self.units: 3 * self.units] z3 = z[:, 3 * self.units:] i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) h = o * self.activation(c) if 0 < self.dropout + self.recurrent_dropout: if training is None: h._uses_learning_phase = True return h, [h, c] def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(LSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items())) class LSTM(RNN): """Long Short-Term Memory layer - Hochreiter 1997. # Arguments units: Positive integer, dimensionality of the output space. activation: Activation function to use (see [activations](../activations.md)). Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step (see [activations](../activations.md)). Default: hard sigmoid (`hard_sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. (see [initializers](../initializers.md)). recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. (see [initializers](../initializers.md)). bias_initializer: Initializer for the bias vector (see [initializers](../initializers.md)). unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it to true will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see [regularizer](../regularizers.md)). recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix (see [regularizer](../regularizers.md)). bias_regularizer: Regularizer function applied to the bias vector (see [regularizer](../regularizers.md)). activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see [regularizer](../regularizers.md)). kernel_constraint: Constraint function applied to the `kernel` weights matrix (see [constraints](../constraints.md)). recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix (see [constraints](../constraints.md)). bias_constraint: Constraint function applied to the bias vector (see [constraints](../constraints.md)). dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. implementation: Implementation mode, either 1 or 2. Mode 1 will structure its operations as a larger number of smaller dot products and additions, whereas mode 2 will batch them into fewer, larger operations. These modes will have different performance profiles on different hardware and for different applications. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If True, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. # References - [Long short-term memory](http://www.bioinf.jku.at/publications/older/2604.pdf) (original 1997 paper) - [Learning to forget: Continual prediction with LSTM](http://www.mitpressjournals.org/doi/pdf/10.1162/089976600300015015) - [Supervised sequence labeling with recurrent neural networks](http://www.cs.toronto.edu/~graves/preprint.pdf) - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287) """ @interfaces.legacy_recurrent_support def __init__(self, units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0., recurrent_dropout=0., implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs): if implementation == 0: warnings.warn('`implementation=0` has been deprecated, ' 'and now defaults to `implementation=1`.' 'Please update your layer call.') if K.backend() == 'theano' and (dropout or recurrent_dropout): warnings.warn( 'RNN dropout is no longer supported with the Theano backend ' 'due to technical limitations. ' 'You can either set `dropout` and `recurrent_dropout` to 0, ' 'or use the TensorFlow backend.') dropout = 0. recurrent_dropout = 0. cell = LSTMCell(units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, unit_forget_bias=unit_forget_bias, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, implementation=implementation) super(LSTM, self).__init__(cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs) self.activity_regularizer = regularizers.get(activity_regularizer) def call(self, inputs, mask=None, training=None, initial_state=None): self.cell._dropout_mask = None self.cell._recurrent_dropout_mask = None return super(LSTM, self).call(inputs, mask=mask, training=training, initial_state=initial_state) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def unit_forget_bias(self): return self.cell.unit_forget_bias @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout @property def implementation(self): return self.cell.implementation def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(LSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): if 'implementation' in config and config['implementation'] == 0: config['implementation'] = 1 return cls(**config) def _generate_dropout_ones(inputs, dims): # Currently, CNTK can't instantiate `ones` with symbolic shapes. # Will update workaround once CNTK supports it. if K.backend() == 'cntk': ones = K.ones_like(K.reshape(inputs[:, 0], (-1, 1))) return K.tile(ones, (1, dims)) else: return K.ones((K.shape(inputs)[0], dims)) def _generate_dropout_mask(ones, rate, training=None, count=1): def dropped_inputs(): return K.dropout(ones, rate) if count > 1: return [K.in_train_phase( dropped_inputs, ones, training=training) for _ in range(count)] return K.in_train_phase( dropped_inputs, ones, training=training)
43.858462
138
0.584888
600351c607f78535763f781810fa2fc29740ea79
5,532
py
Python
docs/conf.py
edaniszewski/sanic-healthcheck
25acc8c7fe71a9802ad83f95c5ed01354fc868fb
[ "MIT" ]
3
2020-07-17T05:19:17.000Z
2022-02-20T04:16:48.000Z
docs/conf.py
edaniszewski/sanic-healthcheck
25acc8c7fe71a9802ad83f95c5ed01354fc868fb
[ "MIT" ]
null
null
null
docs/conf.py
edaniszewski/sanic-healthcheck
25acc8c7fe71a9802ad83f95c5ed01354fc868fb
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) from sanic_healthcheck import __version__ import datetime # -- Project information ----------------------------------------------------- project = 'sanic-healthcheck' year = datetime.datetime.now().year copyright = '{}, Erick Daniszewski'.format(year) author = 'Erick Daniszewski' # The short X.Y version version = __version__ # The full version, including alpha/beta/rc tags release = __version__ # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'friendly' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'sanic-healthcheckdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'sanic-healthcheck.tex', 'sanic-healthcheck Documentation', 'Erick Daniszewski', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'sanic-healthcheck', 'sanic-healthcheck Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'sanic-healthcheck', 'sanic-healthcheck Documentation', author, 'sanic-healthcheck', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration -------------------------------------------------
30.065217
79
0.656182
34fb8851360b5329fca319a7e14fa92489db13e8
3,458
py
Python
Algorithm.Framework/Alphas/InterestReleaseAlphaModel.py
QilongChan/Lean
9950634cff67c415045219db4d2f7db5e1ca1e1e
[ "Apache-2.0" ]
null
null
null
Algorithm.Framework/Alphas/InterestReleaseAlphaModel.py
QilongChan/Lean
9950634cff67c415045219db4d2f7db5e1ca1e1e
[ "Apache-2.0" ]
null
null
null
Algorithm.Framework/Alphas/InterestReleaseAlphaModel.py
QilongChan/Lean
9950634cff67c415045219db4d2f7db5e1ca1e1e
[ "Apache-2.0" ]
null
null
null
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Algorithm.Framework") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Data.Custom.TradingEconomics import * class InterestReleaseAlphaModel(AlphaModel): '''Alpha model that uses the Interest rate released by Fed to create insights''' def __init__(self, algorithm, period = 30, resolution = Resolution.Daily): ''' Initializes a new instance of the InterestReleaseAlphaModel class Args: period: The prediction period resolution: The data resolution ''' self.predictionInterval = Time.Multiply(Extensions.ToTimeSpan(resolution), period) self.pairs = [] # forex universe self.calendar = algorithm.AddData(TradingEconomicsCalendar, TradingEconomics.Calendar.UnitedStates.InterestRate).Symbol resolutionString = Extensions.GetEnumString(resolution, Resolution) self.Name = f'{self.__class__.__name__}({period},{resolutionString})' def Update(self, algorithm, data): ''' Updates this alpha model with the latest data from the algorithm. This is called each time the algorithm receives data for subscribed securities Args: algorithm: The algorithm instance data: The new data available Returns: The new insights generated ''' if not data.ContainsKey(self.calendar): return [] insights = [] fore_IR = data[self.calendar].Forecast # Forecast Interest Rate prev_IR = data[self.calendar].Previous # Previous released actual Interest Rate usdValueUp = fore_IR >= prev_IR for pair in self.pairs: direction = InsightDirection.Down if (pair.Value.startswith("USD") and usdValueUp) or (pair.Value.endswith("USD") and not usdValueUp): direction = InsightDirection.Up insights.append(Insight.Price(pair, self.predictionInterval, direction)) return insights def OnSecuritiesChanged(self, algorithm, changes): ''' Event fired each time the we add securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm ''' self.pairs = [ x.Symbol for x in changes.AddedSecurities ]
42.170732
127
0.686813
f9e033c8ded1c547a6e004156845774f11740277
7,427
py
Python
test/test_places.py
lamantin/google-maps-services-python
396e03ce3ffc7d1d98634c9932408272cfc20c18
[ "Apache-2.0" ]
1
2021-08-18T18:01:14.000Z
2021-08-18T18:01:14.000Z
test/test_places.py
lamantin/google-maps-services-python
396e03ce3ffc7d1d98634c9932408272cfc20c18
[ "Apache-2.0" ]
null
null
null
test/test_places.py
lamantin/google-maps-services-python
396e03ce3ffc7d1d98634c9932408272cfc20c18
[ "Apache-2.0" ]
null
null
null
# This Python file uses the following encoding: utf-8 # # Copyright 2016 Google Inc. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # """Tests for the places module.""" from types import GeneratorType import responses import test as _test import googlemaps class PlacesTest(_test.TestCase): def setUp(self): self.key = 'AIzaasdf' self.client = googlemaps.Client(self.key) self.location = (-33.86746, 151.207090) self.type = 'liquor_store' self.language = 'en-AU' self.region = 'AU' self.radius = 100 @responses.activate def test_places_text_search(self): url = 'https://maps.googleapis.com/maps/api/place/textsearch/json' responses.add(responses.GET, url, body='{"status": "OK", "results": [], "html_attributions": []}', status=200, content_type='application/json') self.client.places('restaurant', location=self.location, radius=self.radius, region=self.region, language=self.language, min_price=1, max_price=4, open_now=True, type=self.type) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?language=en-AU&location=-33.86746%%2C151.20709&' 'maxprice=4&minprice=1&opennow=true&query=restaurant&' 'radius=100&region=AU&type=liquor_store&key=%s' % (url, self.key), responses.calls[0].request.url) @responses.activate def test_places_nearby_search(self): url = 'https://maps.googleapis.com/maps/api/place/nearbysearch/json' responses.add(responses.GET, url, body='{"status": "OK", "results": [], "html_attributions": []}', status=200, content_type='application/json') self.client.places_nearby(self.location, keyword='foo', language=self.language, min_price=1, max_price=4, name='bar', open_now=True, rank_by='distance', type=self.type) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?keyword=foo&language=en-AU&location=-33.86746%%2C151.20709&' 'maxprice=4&minprice=1&name=bar&opennow=true&rankby=distance&' 'type=liquor_store&key=%s' % (url, self.key), responses.calls[0].request.url) with self.assertRaises(ValueError): self.client.places_nearby(self.location, rank_by="distance") with self.assertRaises(ValueError): self.client.places_nearby(self.location, rank_by="distance", keyword='foo', radius=self.radius) @responses.activate def test_places_radar_search(self): url = 'https://maps.googleapis.com/maps/api/place/radarsearch/json' responses.add(responses.GET, url, body='{"status": "OK", "results": [], "html_attributions": []}', status=200, content_type='application/json') self.client.places_radar(self.location, self.radius, keyword='foo', min_price=1, max_price=4, name='bar', open_now=True, type=self.type) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?keyword=foo&location=-33.86746%%2C151.20709&' 'maxprice=4&minprice=1&name=bar&opennow=true&radius=100&' 'type=liquor_store&key=%s' % (url, self.key), responses.calls[0].request.url) with self.assertRaises(ValueError): self.client.places_radar(self.location, self.radius) @responses.activate def test_place_detail(self): url = 'https://maps.googleapis.com/maps/api/place/details/json' responses.add(responses.GET, url, body='{"status": "OK", "result": {}, "html_attributions": []}', status=200, content_type='application/json') self.client.place('ChIJN1t_tDeuEmsRUsoyG83frY4', language=self.language) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?language=en-AU&placeid=ChIJN1t_tDeuEmsRUsoyG83frY4&key=%s' % (url, self.key), responses.calls[0].request.url) @responses.activate def test_photo(self): url = 'https://maps.googleapis.com/maps/api/place/photo' responses.add(responses.GET, url, status=200) ref = 'CnRvAAAAwMpdHeWlXl-lH0vp7lez4znKPIWSWvgvZFISdKx45AwJVP1Qp37YOrH7sqHMJ8C-vBDC546decipPHchJhHZL94RcTUfPa1jWzo-rSHaTlbNtjh-N68RkcToUCuY9v2HNpo5mziqkir37WU8FJEqVBIQ4k938TI3e7bf8xq-uwDZcxoUbO_ZJzPxremiQurAYzCTwRhE_V0' response = self.client.places_photo(ref, max_width=100) self.assertTrue(isinstance(response, GeneratorType)) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?maxwidth=100&photoreference=%s&key=%s' % (url, ref, self.key), responses.calls[0].request.url) @responses.activate def test_autocomplete(self): url = 'https://maps.googleapis.com/maps/api/place/autocomplete/json' responses.add(responses.GET, url, body='{"status": "OK", "predictions": []}', status=200, content_type='application/json') self.client.places_autocomplete('Google', offset=3, location=self.location, radius=self.radius, language=self.language, types='geocode', components={'country': 'au'}, strict_bounds=True) self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?components=country%%3Aau&input=Google&language=en-AU&' 'location=-33.86746%%2C151.20709&offset=3&radius=100&' 'strictbounds=true&types=geocode&key=%s' % (url, self.key), responses.calls[0].request.url) @responses.activate def test_autocomplete_query(self): url = 'https://maps.googleapis.com/maps/api/place/queryautocomplete/json' responses.add(responses.GET, url, body='{"status": "OK", "predictions": []}', status=200, content_type='application/json') self.client.places_autocomplete_query('pizza near New York') self.assertEqual(1, len(responses.calls)) self.assertURLEqual('%s?input=pizza+near+New+York&key=%s' % (url, self.key), responses.calls[0].request.url)
45.845679
227
0.593106
b846261f696abb46328f6acabd0392792442d62a
57,373
py
Python
vyper/functions/functions.py
erdnaag/vyper
22bef3a4b4161db18c7831041e20b917984cff83
[ "Apache-2.0" ]
1
2020-07-04T01:47:26.000Z
2020-07-04T01:47:26.000Z
vyper/functions/functions.py
erdnaag/vyper
22bef3a4b4161db18c7831041e20b917984cff83
[ "Apache-2.0" ]
null
null
null
vyper/functions/functions.py
erdnaag/vyper
22bef3a4b4161db18c7831041e20b917984cff83
[ "Apache-2.0" ]
null
null
null
import hashlib import math import operator from decimal import Decimal from vyper import ast as vy_ast from vyper.ast.validation import validate_call_args from vyper.context.types.abstract import ( ArrayValueAbstractType, BytesAbstractType, IntegerAbstractType, NumericAbstractType, ) from vyper.context.types.bases import DataLocation, ValueTypeDefinition from vyper.context.types.indexable.sequence import ArrayDefinition from vyper.context.types.utils import get_type_from_annotation from vyper.context.types.value.address import AddressDefinition from vyper.context.types.value.array_value import ( BytesArrayDefinition, BytesArrayPrimitive, StringDefinition, StringPrimitive, ) from vyper.context.types.value.bytes_fixed import Bytes32Definition from vyper.context.types.value.numeric import ( DecimalDefinition, Int128Definition, Uint256Definition, ) from vyper.context.validation.utils import ( get_common_types, get_possible_types_from_node, validate_expected_type, ) from vyper.exceptions import ( ArgumentException, CompilerPanic, InvalidLiteral, InvalidType, StateAccessViolation, StructureException, TypeMismatch, UnfoldableNode, VyperException, ZeroDivisionException, ) from vyper.functions.convert import convert from vyper.opcodes import version_check from vyper.parser.expr import Expr from vyper.parser.keccak256_helper import keccak256_helper from vyper.parser.parser_utils import ( LLLnode, add_variable_offset, get_length, get_number_as_fraction, getpos, make_byte_array_copier, make_byte_slice_copier, unwrap_location, ) from vyper.signatures.function_signature import VariableRecord from vyper.types import BaseType, ByteArrayLike, ByteArrayType, ListType from vyper.types import StringType as OldStringType from vyper.types import is_base_type from vyper.utils import ( DECIMAL_DIVISOR, MemoryPositions, SizeLimits, bytes_to_int, fourbytes_to_int, keccak256, ) from .signatures import Optional, validate_inputs SHA256_ADDRESS = 2 SHA256_BASE_GAS = 60 SHA256_PER_WORD_GAS = 12 class _SimpleBuiltinFunction: def fetch_call_return(self, node): validate_call_args(node, len(self._inputs), getattr(self, "_kwargs", [])) for arg, (_, expected) in zip(node.args, self._inputs): validate_expected_type(arg, expected) if self._return_type: return self._return_type class Floor(_SimpleBuiltinFunction): _id = "floor" _inputs = [("value", DecimalDefinition())] _return_type = Int128Definition() def evaluate(self, node): validate_call_args(node, 1) if not isinstance(node.args[0], vy_ast.Decimal): raise UnfoldableNode value = math.floor(node.args[0].value) return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( [ "if", ["slt", args[0], 0], ["sdiv", ["sub", args[0], DECIMAL_DIVISOR - 1], DECIMAL_DIVISOR], ["sdiv", args[0], DECIMAL_DIVISOR], ], typ=BaseType("int128"), pos=getpos(expr), ) class Ceil(_SimpleBuiltinFunction): _id = "ceil" _inputs = [("value", DecimalDefinition())] _return_type = Int128Definition() def evaluate(self, node): validate_call_args(node, 1) if not isinstance(node.args[0], vy_ast.Decimal): raise UnfoldableNode value = math.ceil(node.args[0].value) return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( [ "if", ["slt", args[0], 0], ["sdiv", args[0], DECIMAL_DIVISOR], ["sdiv", ["add", args[0], DECIMAL_DIVISOR - 1], DECIMAL_DIVISOR], ], typ=BaseType("int128"), pos=getpos(expr), ) class Convert: # TODO this is just a wireframe, expand it with complete functionality # https://github.com/vyperlang/vyper/issues/1093 _id = "convert" def fetch_call_return(self, node): validate_call_args(node, 2) target_type = get_type_from_annotation(node.args[1], DataLocation.MEMORY) validate_expected_type(node.args[0], ValueTypeDefinition()) try: validate_expected_type(node.args[0], target_type) except VyperException: pass else: # TODO remove this once it's possible in parser if not isinstance(target_type, Uint256Definition): raise InvalidType(f"Value and target type are both '{target_type}'", node) # TODO! # try: # validation_fn = getattr(self, f"validate_to_{target_type._id}") # except AttributeError: # raise InvalidType( # f"Unsupported destination type '{target_type}'", node.args[1] # ) from None # validation_fn(initial_type) return target_type def validate_to_bool(self, initial_type): pass def validate_to_decimal(self, initial_type): pass def validate_to_int128(self, initial_type): pass def validate_to_uint256(self, initial_type): pass def validate_to_bytes32(self, initial_type): pass def validate_to_string(self, initial_type): pass def validate_to_bytes(self, initial_type): pass def validate_to_address(self, initial_type): pass def build_LLL(self, expr, context): return convert(expr, context) class Slice: _id = "slice" _inputs = [("b", ("bytes", "bytes32", "string")), ("start", "uint256"), ("length", "uint256")] _return_type = None def fetch_call_return(self, node): validate_call_args(node, 3) for arg in node.args[1:]: validate_expected_type(arg, Uint256Definition()) if isinstance(node.args[2], vy_ast.Int) and node.args[2].value < 1: raise ArgumentException("Length cannot be less than 1", node.args[2]) validate_expected_type(node.args[0], (BytesAbstractType(), StringPrimitive())) type_list = get_possible_types_from_node(node.args[0]) try: validate_expected_type(node.args[0], StringPrimitive()) return_type = StringDefinition() except VyperException: return_type = BytesArrayDefinition() if isinstance(node.args[2], vy_ast.Int): return_type.set_length(node.args[2].value) else: return_type.set_min_length(type_list[0].length) return return_type @validate_inputs def build_LLL(self, expr, args, kwargs, context): sub, start, length = args if is_base_type(sub.typ, "bytes32"): if (start.typ.is_literal and length.typ.is_literal) and not ( 0 <= start.value + length.value <= 32 ): raise InvalidLiteral( "Invalid start / length values needs to be between 0 and 32.", expr, ) sub_typ_maxlen = 32 else: sub_typ_maxlen = sub.typ.maxlen # Get returntype string or bytes if isinstance(args[0].typ, ByteArrayType) or is_base_type(sub.typ, "bytes32"): ReturnType = ByteArrayType else: ReturnType = OldStringType # Node representing the position of the output in memory np = context.new_placeholder(ReturnType(maxlen=sub_typ_maxlen + 32)) placeholder_node = LLLnode.from_list(np, typ=sub.typ, location="memory") placeholder_plus_32_node = LLLnode.from_list(np + 32, typ=sub.typ, location="memory") # Copies over bytearray data if sub.location == "storage": adj_sub = LLLnode.from_list( ["add", ["sha3_32", sub], ["add", ["div", "_start", 32], 1]], typ=sub.typ, location=sub.location, ) else: adj_sub = LLLnode.from_list( ["add", sub, ["add", ["sub", "_start", ["mod", "_start", 32]], 32]], typ=sub.typ, location=sub.location, ) if is_base_type(sub.typ, "bytes32"): adj_sub = LLLnode.from_list(sub.args[0], typ=sub.typ, location="memory") copier = make_byte_slice_copier( placeholder_plus_32_node, adj_sub, ["add", "_length", 32], sub_typ_maxlen, pos=getpos(expr), ) # New maximum length in the type of the result newmaxlen = length.value if not len(length.args) else sub_typ_maxlen if is_base_type(sub.typ, "bytes32"): maxlen = 32 else: maxlen = ["mload", Expr(sub, context=context).lll_node] # Retrieve length of the bytes. out = [ "with", "_start", start, [ "with", "_length", length, [ "with", "_opos", ["add", placeholder_node, ["mod", "_start", 32]], [ "seq", ["assert", ["le", ["add", "_start", "_length"], maxlen]], copier, ["mstore", "_opos", "_length"], "_opos", ], ], ], ] return LLLnode.from_list( out, typ=ReturnType(newmaxlen), location="memory", pos=getpos(expr) ) class Len(_SimpleBuiltinFunction): _id = "len" _inputs = [("b", ArrayValueAbstractType())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 1) arg = node.args[0] if isinstance(arg, (vy_ast.Str, vy_ast.Bytes)): length = len(arg.value) elif isinstance(arg, vy_ast.Hex): # 2 characters represent 1 byte and we subtract 1 to ignore the leading `0x` length = len(arg.value) // 2 - 1 else: raise UnfoldableNode return vy_ast.Int.from_node(node, value=length) def build_LLL(self, node, context): arg = Expr(node.args[0], context).lll_node return get_length(arg) class Concat: _id = "concat" def fetch_call_return(self, node): if len(node.args) < 2: raise ArgumentException("Invalid argument count: expected at least 2", node) if node.keywords: raise ArgumentException("Keyword arguments are not accepted here", node.keywords[0]) type_ = None for expected in (BytesAbstractType(), StringPrimitive()): try: validate_expected_type(node.args[0], expected) type_ = expected except (InvalidType, TypeMismatch): pass if type_ is None: raise TypeMismatch("Concat values must be bytes or string", node.args[0]) length = 0 for arg in node.args[1:]: validate_expected_type(arg, type_) length = 0 for arg in node.args: length += get_possible_types_from_node(arg).pop().length if isinstance(type_, BytesAbstractType): return_type = BytesArrayDefinition() else: return_type = StringDefinition() return_type.set_length(length) return return_type def build_LLL(self, expr, context): args = [Expr(arg, context).lll_node for arg in expr.args] if len(args) < 2: raise StructureException("Concat expects at least two arguments", expr) prev_type = "" for _, (expr_arg, arg) in enumerate(zip(expr.args, args)): if not isinstance(arg.typ, ByteArrayLike) and not is_base_type(arg.typ, "bytes32"): raise TypeMismatch("Concat expects string, bytes or bytes32 objects", expr_arg) current_type = ( "bytes" if isinstance(arg.typ, ByteArrayType) or is_base_type(arg.typ, "bytes32") else "string" ) if prev_type and current_type != prev_type: raise TypeMismatch( ( "Concat expects consistant use of string or byte types, " "user either bytes or string." ), expr_arg, ) prev_type = current_type if current_type == "string": ReturnType = OldStringType else: ReturnType = ByteArrayType # Maximum length of the output total_maxlen = sum( [arg.typ.maxlen if isinstance(arg.typ, ByteArrayLike) else 32 for arg in args] ) # Node representing the position of the output in memory placeholder = context.new_placeholder(ReturnType(total_maxlen)) # Object representing the output seq = [] # For each argument we are concatenating... for arg in args: # Start pasting into a position the starts at zero, and keeps # incrementing as we concatenate arguments placeholder_node = LLLnode.from_list( ["add", placeholder, "_poz"], typ=ReturnType(total_maxlen), location="memory", ) placeholder_node_plus_32 = LLLnode.from_list( ["add", ["add", placeholder, "_poz"], 32], typ=ReturnType(total_maxlen), location="memory", ) if isinstance(arg.typ, ReturnType): # Ignore empty strings if arg.typ.maxlen == 0: continue # Get the length of the current argument if arg.location == "memory": length = LLLnode.from_list(["mload", "_arg"], typ=BaseType("int128")) argstart = LLLnode.from_list( ["add", "_arg", 32], typ=arg.typ, location=arg.location, ) elif arg.location == "storage": length = LLLnode.from_list( ["sload", ["sha3_32", "_arg"]], typ=BaseType("int128") ) argstart = LLLnode.from_list( ["add", ["sha3_32", "_arg"], 1], typ=arg.typ, location=arg.location, ) # Make a copier to copy over data from that argument seq.append( [ "with", "_arg", arg, [ "seq", make_byte_slice_copier( placeholder_node_plus_32, argstart, length, arg.typ.maxlen, pos=getpos(expr), ), # Change the position to start at the correct # place to paste the next value ["set", "_poz", ["add", "_poz", length]], ], ] ) else: seq.append( [ "seq", ["mstore", ["add", placeholder_node, 32], unwrap_location(arg)], ["set", "_poz", ["add", "_poz", 32]], ] ) # The position, after all arguments are processing, equals the total # length. Paste this in to make the output a proper bytearray seq.append(["mstore", placeholder, "_poz"]) # Memory location of the output seq.append(placeholder) return LLLnode.from_list( ["with", "_poz", 0, ["seq"] + seq], typ=ReturnType(total_maxlen), location="memory", pos=getpos(expr), annotation="concat", ) class Keccak256(_SimpleBuiltinFunction): _id = "keccak256" _inputs = [("value", (Bytes32Definition(), BytesArrayPrimitive(), StringPrimitive()))] _return_type = Bytes32Definition() def evaluate(self, node): validate_call_args(node, 1) if isinstance(node.args[0], vy_ast.Bytes): value = node.args[0].value elif isinstance(node.args[0], vy_ast.Str): value = node.args[0].value.encode() elif isinstance(node.args[0], vy_ast.Hex): length = len(node.args[0].value) // 2 - 1 value = int(node.args[0].value, 16).to_bytes(length, "big") else: raise UnfoldableNode hash_ = f"0x{keccak256(value).hex()}" return vy_ast.Hex.from_node(node, value=hash_) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return keccak256_helper(expr, args, kwargs, context) def _make_sha256_call(inp_start, inp_len, out_start, out_len): return [ "assert", [ "staticcall", ["gas"], # gas SHA256_ADDRESS, # address inp_start, inp_len, out_start, out_len, ], ] class Sha256(_SimpleBuiltinFunction): _id = "sha256" _inputs = [("value", (Bytes32Definition(), BytesArrayPrimitive(), StringPrimitive()))] _return_type = Bytes32Definition() def evaluate(self, node): validate_call_args(node, 1) if isinstance(node.args[0], vy_ast.Bytes): value = node.args[0].value elif isinstance(node.args[0], vy_ast.Str): value = node.args[0].value.encode() elif isinstance(node.args[0], vy_ast.Hex): length = len(node.args[0].value) // 2 - 1 value = int(node.args[0].value, 16).to_bytes(length, "big") else: raise UnfoldableNode hash_ = f"0x{hashlib.sha256(value).hexdigest()}" return vy_ast.Hex.from_node(node, value=hash_) @validate_inputs def build_LLL(self, expr, args, kwargs, context): sub = args[0] # bytes32 input if is_base_type(sub.typ, "bytes32"): return LLLnode.from_list( [ "seq", ["mstore", MemoryPositions.FREE_VAR_SPACE, sub], _make_sha256_call( inp_start=MemoryPositions.FREE_VAR_SPACE, inp_len=32, out_start=MemoryPositions.FREE_VAR_SPACE, out_len=32, ), ["mload", MemoryPositions.FREE_VAR_SPACE], # push value onto stack ], typ=BaseType("bytes32"), pos=getpos(expr), add_gas_estimate=SHA256_BASE_GAS + 1 * SHA256_PER_WORD_GAS, ) # bytearay-like input if sub.location == "storage": # Copy storage to memory placeholder = context.new_placeholder(sub.typ) placeholder_node = LLLnode.from_list(placeholder, typ=sub.typ, location="memory") copier = make_byte_array_copier( placeholder_node, LLLnode.from_list("_sub", typ=sub.typ, location=sub.location), ) return LLLnode.from_list( [ "with", "_sub", sub, [ "seq", copier, _make_sha256_call( inp_start=["add", placeholder, 32], inp_len=["mload", placeholder], out_start=MemoryPositions.FREE_VAR_SPACE, out_len=32, ), ["mload", MemoryPositions.FREE_VAR_SPACE], ], ], typ=BaseType("bytes32"), pos=getpos(expr), add_gas_estimate=SHA256_BASE_GAS + sub.typ.maxlen * SHA256_PER_WORD_GAS, ) elif sub.location == "memory": return LLLnode.from_list( [ "with", "_sub", sub, [ "seq", _make_sha256_call( inp_start=["add", "_sub", 32], inp_len=["mload", "_sub"], out_start=MemoryPositions.FREE_VAR_SPACE, out_len=32, ), ["mload", MemoryPositions.FREE_VAR_SPACE], ], ], typ=BaseType("bytes32"), pos=getpos(expr), add_gas_estimate=SHA256_BASE_GAS + sub.typ.maxlen * SHA256_PER_WORD_GAS, ) else: # This should never happen, but just left here for future compiler-writers. raise Exception(f"Unsupported location: {sub.location}") # pragma: no test class MethodID: _id = "method_id" def evaluate(self, node): validate_call_args(node, 1, ["output_type"]) args = node.args if not isinstance(args[0], vy_ast.Str): raise InvalidType("method id must be given as a literal string", args[0]) if " " in args[0].value: raise InvalidLiteral("Invalid function signature - no spaces allowed.") if node.keywords: return_type = get_type_from_annotation(node.keywords[0].value, DataLocation.UNSET) if isinstance(return_type, Bytes32Definition): length = 32 elif isinstance(return_type, BytesArrayDefinition) and return_type.length == 4: length = 4 else: raise ArgumentException("output_type must be bytes[4] or bytes32", node.keywords[0]) else: # if `output_type` is not given, default to `bytes[4]` length = 4 method_id = fourbytes_to_int(keccak256(args[0].value.encode())[:4]) value = method_id.to_bytes(length, "big") if length == 32: return vy_ast.Hex.from_node(node, value=f"0x{value.hex()}") elif length == 4: return vy_ast.Bytes.from_node(node, value=value) else: raise CompilerPanic def fetch_call_return(self, node): raise CompilerPanic("method_id should always be folded") def build_LLL(self, *args, **kwargs): raise CompilerPanic("method_id should always be folded") class ECRecover(_SimpleBuiltinFunction): _id = "ecrecover" _inputs = [ ("hash", Bytes32Definition()), ("v", Uint256Definition()), ("r", Uint256Definition()), ("s", Uint256Definition()), ] _return_type = AddressDefinition() @validate_inputs def build_LLL(self, expr, args, kwargs, context): placeholder_node = LLLnode.from_list( context.new_placeholder(ByteArrayType(128)), typ=ByteArrayType(128), location="memory" ) return LLLnode.from_list( [ "seq", ["mstore", placeholder_node, args[0]], ["mstore", ["add", placeholder_node, 32], args[1]], ["mstore", ["add", placeholder_node, 64], args[2]], ["mstore", ["add", placeholder_node, 96], args[3]], [ "pop", [ "staticcall", ["gas"], 1, placeholder_node, 128, MemoryPositions.FREE_VAR_SPACE, 32, ], ], ["mload", MemoryPositions.FREE_VAR_SPACE], ], typ=BaseType("address"), pos=getpos(expr), ) def avo(arg, ind, pos): return unwrap_location(add_variable_offset(arg, LLLnode.from_list(ind, "int128"), pos=pos)) class ECAdd(_SimpleBuiltinFunction): _id = "ecadd" _inputs = [ ("a", ArrayDefinition(Uint256Definition(), 2)), ("b", ArrayDefinition(Uint256Definition(), 2)), ] _return_type = ArrayDefinition(Uint256Definition(), 2) @validate_inputs def build_LLL(self, expr, args, kwargs, context): placeholder_node = LLLnode.from_list( context.new_placeholder(ByteArrayType(128)), typ=ByteArrayType(128), location="memory" ) pos = getpos(expr) o = LLLnode.from_list( [ "seq", ["mstore", placeholder_node, avo(args[0], 0, pos)], ["mstore", ["add", placeholder_node, 32], avo(args[0], 1, pos)], ["mstore", ["add", placeholder_node, 64], avo(args[1], 0, pos)], ["mstore", ["add", placeholder_node, 96], avo(args[1], 1, pos)], ["assert", ["staticcall", ["gas"], 6, placeholder_node, 128, placeholder_node, 64]], placeholder_node, ], typ=ListType(BaseType("uint256"), 2), pos=getpos(expr), location="memory", ) return o class ECMul(_SimpleBuiltinFunction): _id = "ecmul" _inputs = [("point", ArrayDefinition(Uint256Definition(), 2)), ("scalar", Uint256Definition())] _return_type = ArrayDefinition(Uint256Definition(), 2) @validate_inputs def build_LLL(self, expr, args, kwargs, context): placeholder_node = LLLnode.from_list( context.new_placeholder(ByteArrayType(128)), typ=ByteArrayType(128), location="memory" ) pos = getpos(expr) o = LLLnode.from_list( [ "seq", ["mstore", placeholder_node, avo(args[0], 0, pos)], ["mstore", ["add", placeholder_node, 32], avo(args[0], 1, pos)], ["mstore", ["add", placeholder_node, 64], args[1]], ["assert", ["staticcall", ["gas"], 7, placeholder_node, 96, placeholder_node, 64]], placeholder_node, ], typ=ListType(BaseType("uint256"), 2), pos=pos, location="memory", ) return o def _memory_element_getter(index): return LLLnode.from_list( ["mload", ["add", "_sub", ["add", 32, ["mul", 32, index]]]], typ=BaseType("int128"), ) def _storage_element_getter(index): return LLLnode.from_list( ["sload", ["add", ["sha3_32", "_sub"], ["add", 1, index]]], typ=BaseType("int128"), ) class Extract32(_SimpleBuiltinFunction): _id = "extract32" _inputs = [("b", BytesArrayPrimitive()), ("start", Int128Definition())] _kwargs = {"output_type": Optional("name_literal", "bytes32")} _return_type = None def fetch_call_return(self, node): super().fetch_call_return(node) if node.keywords: return_type = get_type_from_annotation(node.keywords[0].value, DataLocation.MEMORY) if not isinstance( return_type, (AddressDefinition, Bytes32Definition, IntegerAbstractType) ): raise else: return_type = Bytes32Definition() return return_type @validate_inputs def build_LLL(self, expr, args, kwargs, context): sub, index = args ret_type = kwargs["output_type"] # Get length and specific element if sub.location == "memory": lengetter = LLLnode.from_list(["mload", "_sub"], typ=BaseType("int128")) elementgetter = _memory_element_getter elif sub.location == "storage": lengetter = LLLnode.from_list(["sload", ["sha3_32", "_sub"]], typ=BaseType("int128")) elementgetter = _storage_element_getter # TODO: unclosed if/elif clause. Undefined behavior if `sub.location` # isn't one of `memory`/`storage` # Special case: index known to be a multiple of 32 if isinstance(index.value, int) and not index.value % 32: o = LLLnode.from_list( [ "with", "_sub", sub, elementgetter(["div", ["clamp", 0, index, ["sub", lengetter, 32]], 32]), ], typ=BaseType(ret_type), annotation="extracting 32 bytes", ) # General case else: o = LLLnode.from_list( [ "with", "_sub", sub, [ "with", "_len", lengetter, [ "with", "_index", ["clamp", 0, index, ["sub", "_len", 32]], [ "with", "_mi32", ["mod", "_index", 32], [ "with", "_di32", ["div", "_index", 32], [ "if", "_mi32", [ "add", ["mul", elementgetter("_di32"), ["exp", 256, "_mi32"]], [ "div", elementgetter(["add", "_di32", 1]), ["exp", 256, ["sub", 32, "_mi32"]], ], ], elementgetter("_di32"), ], ], ], ], ], ], typ=BaseType(ret_type), pos=getpos(expr), annotation="extracting 32 bytes", ) if ret_type == "int128": return LLLnode.from_list( ["clamp", ["mload", MemoryPositions.MINNUM], o, ["mload", MemoryPositions.MAXNUM]], typ=BaseType("int128"), pos=getpos(expr), ) elif ret_type == "address": return LLLnode.from_list( ["uclamplt", o, ["mload", MemoryPositions.ADDRSIZE]], typ=BaseType(ret_type), pos=getpos(expr), ) else: return o class AsWeiValue: _id = "as_wei_value" _inputs = [("value", ("int128", "uint256", "decimal")), ("unit", "str_literal")] _return_type = Uint256Definition() wei_denoms = { ("wei",): 1, ("femtoether", "kwei", "babbage"): 10 ** 3, ("picoether", "mwei", "lovelace"): 10 ** 6, ("nanoether", "gwei", "shannon"): 10 ** 9, ("microether", "szabo",): 10 ** 12, ("milliether", "finney",): 10 ** 15, ("ether",): 10 ** 18, ("kether", "grand"): 10 ** 21, } def evaluate(self, node): validate_call_args(node, 2) if not isinstance(node.args[1], vy_ast.Str): raise ArgumentException( "Wei denomination must be given as a literal string", node.args[1] ) try: denom = next(v for k, v in self.wei_denoms.items() if node.args[1].value in k) except StopIteration: raise ArgumentException( f"Unknown denomination: {node.args[1].value}", node.args[1] ) from None if not isinstance(node.args[0], (vy_ast.Decimal, vy_ast.Int)): raise UnfoldableNode value = node.args[0].value if value < 0: raise InvalidLiteral("Negative wei value not allowed", node.args[0]) if isinstance(value, int) and value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", node.args[0]) if isinstance(value, Decimal) and value >= 2 ** 127: raise InvalidLiteral("Value out of range for decimal", node.args[0]) return vy_ast.Int.from_node(node, value=int(value * denom)) def fetch_call_return(self, node): validate_expected_type(node.args[0], NumericAbstractType()) return self._return_type @validate_inputs def build_LLL(self, expr, args, kwargs, context): value, denom_name = args[0], args[1].decode() denom_divisor = next((v for k, v in self.wei_denoms.items() if denom_name in k), False) if not denom_divisor: raise InvalidLiteral( f"Invalid denomination: {denom_name}, valid denominations are: " f"{','.join(x[0] for x in self.wei_denoms)}", expr.args[1], ) # Compute the amount of wei and return that value if isinstance(value, (int, Decimal)): expr_args_0 = expr.args[0] # On constant reference fetch value node of constant assignment. if context.constants.ast_is_constant(expr.args[0]): expr_args_0 = context.constants._constants_ast[expr.args[0].id] numstring, num, den = get_number_as_fraction(expr_args_0, context) if denom_divisor % den: max_len = len(str(denom_divisor)) - 1 raise InvalidLiteral( f"Wei value of denomination '{denom_name}' has max {max_len} decimal places", expr.args[0], ) sub = num * denom_divisor // den elif value.typ.is_literal: if value.value <= 0: raise InvalidLiteral("Negative wei value not allowed", expr) sub = ["mul", value.value, denom_divisor] elif value.typ.typ == "uint256": sub = ["mul", value, denom_divisor] else: sub = ["div", ["mul", value, denom_divisor], DECIMAL_DIVISOR] return LLLnode.from_list(sub, typ=BaseType("uint256"), location=None, pos=getpos(expr),) zero_value = LLLnode.from_list(0, typ=BaseType("uint256")) false_value = LLLnode.from_list(0, typ=BaseType("bool", is_literal=True)) class RawCall(_SimpleBuiltinFunction): _id = "raw_call" _inputs = [("to", AddressDefinition()), ("data", BytesArrayPrimitive())] _kwargs = { "max_outsize": Optional("num_literal", 0), "gas": Optional("uint256", "gas"), "value": Optional("uint256", zero_value), "is_delegate_call": Optional("bool", false_value), "is_static_call": Optional("bool", false_value), } _return_type = None def fetch_call_return(self, node): super().fetch_call_return(node) outsize = next((i.value for i in node.keywords if i.arg == "max_outsize"), None) if outsize is None: return None if not isinstance(outsize, vy_ast.Int) or outsize.value < 0: raise if outsize.value: return_type = BytesArrayDefinition() return_type.set_min_length(outsize.value) return return_type @validate_inputs def build_LLL(self, expr, args, kwargs, context): to, data = args gas, value, outsize, delegate_call, static_call = ( kwargs["gas"], kwargs["value"], kwargs["max_outsize"], kwargs["is_delegate_call"], kwargs["is_static_call"], ) for key in ("is_delegate_call", "is_static_call"): if kwargs[key].typ.is_literal is False: raise TypeMismatch( f"The `{key}` parameter must be a static/literal boolean value", expr ) if delegate_call.value and static_call.value: raise ArgumentException( "Call may use one of `is_delegate_call` or `is_static_call`, not both", expr ) if not static_call.value and context.is_constant(): raise StateAccessViolation( f"Cannot make modifying calls from {context.pp_constancy()}," " use `is_static_call=True` to perform this action", expr, ) placeholder = context.new_placeholder(data.typ) placeholder_node = LLLnode.from_list(placeholder, typ=data.typ, location="memory") copier = make_byte_array_copier(placeholder_node, data, pos=getpos(expr)) output_placeholder = context.new_placeholder(ByteArrayType(outsize)) output_node = LLLnode.from_list( output_placeholder, typ=ByteArrayType(outsize), location="memory", ) # build LLL for call or delegatecall common_call_lll = [ ["add", placeholder_node, 32], ["mload", placeholder_node], # if there is no return value, the return offset can be 0 ["add", output_node, 32] if outsize else 0, outsize, ] if delegate_call.value == 1: call_lll = ["delegatecall", gas, to] + common_call_lll elif static_call.value == 1: call_lll = ["staticcall", gas, to] + common_call_lll else: call_lll = ["call", gas, to, value] + common_call_lll # build sequence LLL if outsize: # return minimum of outsize and returndatasize size = [ "with", "_l", outsize, ["with", "_r", "returndatasize", ["if", ["gt", "_l", "_r"], "_r", "_l"]], ] seq = ["seq", copier, ["assert", call_lll], ["mstore", output_node, size], output_node] typ = ByteArrayType(outsize) else: seq = ["seq", copier, ["assert", call_lll]] typ = None return LLLnode.from_list(seq, typ=typ, location="memory", pos=getpos(expr)) class Send(_SimpleBuiltinFunction): _id = "send" _inputs = [("to", AddressDefinition()), ("value", Uint256Definition())] _return_type = None @validate_inputs def build_LLL(self, expr, args, kwargs, context): to, value = args if context.is_constant(): raise StateAccessViolation( f"Cannot send ether inside {context.pp_constancy()}!", expr, ) return LLLnode.from_list( ["assert", ["call", 0, to, value, 0, 0, 0, 0]], typ=None, pos=getpos(expr), ) class SelfDestruct(_SimpleBuiltinFunction): _id = "selfdestruct" _inputs = [("to", AddressDefinition())] _return_type = None _is_terminus = True @validate_inputs def build_LLL(self, expr, args, kwargs, context): if context.is_constant(): raise StateAccessViolation( f"Cannot {expr.func.id} inside {context.pp_constancy()}!", expr.func, ) return LLLnode.from_list(["selfdestruct", args[0]], typ=None, pos=getpos(expr)) class BlockHash(_SimpleBuiltinFunction): _id = "blockhash" _inputs = [("block_num", Uint256Definition())] _return_type = Bytes32Definition() @validate_inputs def build_LLL(self, expr, args, kwargs, contact): return LLLnode.from_list( ["blockhash", ["uclamplt", ["clampge", args[0], ["sub", ["number"], 256]], "number"]], typ=BaseType("bytes32"), pos=getpos(expr), ) class RawLog: _id = "raw_log" _inputs = [("topics", "*"), ("data", ("bytes32", "bytes"))] def fetch_call_return(self, node): validate_call_args(node, 2) if not isinstance(node.args[0], vy_ast.List) or len(node.args[0].elements) > 4: raise InvalidType("Expecting a list of 0-4 topics as first argument", node.args[0]) if node.args[0].elements: validate_expected_type( node.args[0], ArrayDefinition(Bytes32Definition(), len(node.args[0].elements)) ) validate_expected_type(node.args[1], BytesAbstractType()) @validate_inputs def build_LLL(self, expr, args, kwargs, context): if not isinstance(args[0], vy_ast.List) or len(args[0].elements) > 4: raise StructureException("Expecting a list of 0-4 topics as first argument", args[0]) topics = [] for elt in args[0].elements: arg = Expr.parse_value_expr(elt, context) if not is_base_type(arg.typ, "bytes32"): raise TypeMismatch("Expecting a bytes32 argument as topic", elt) topics.append(arg) if args[1].typ == BaseType("bytes32"): placeholder = context.new_placeholder(BaseType("bytes32")) return LLLnode.from_list( [ "seq", ["mstore", placeholder, unwrap_location(args[1])], ["log" + str(len(topics)), placeholder, 32] + topics, ], typ=None, pos=getpos(expr), ) if args[1].location == "memory": return LLLnode.from_list( [ "with", "_arr", args[1], ["log" + str(len(topics)), ["add", "_arr", 32], ["mload", "_arr"]] + topics, ], typ=None, pos=getpos(expr), ) placeholder = context.new_placeholder(args[1].typ) placeholder_node = LLLnode.from_list(placeholder, typ=args[1].typ, location="memory") copier = make_byte_array_copier( placeholder_node, LLLnode.from_list("_sub", typ=args[1].typ, location=args[1].location), pos=getpos(expr), ) return LLLnode.from_list( [ "with", "_sub", args[1], [ "seq", copier, [ "log" + str(len(topics)), ["add", placeholder_node, 32], ["mload", placeholder_node], ] + topics, ], ], typ=None, pos=getpos(expr), ) class BitwiseAnd(_SimpleBuiltinFunction): _id = "bitwise_and" _inputs = [("x", Uint256Definition()), ("y", Uint256Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 2) for arg in node.args: if not isinstance(arg, vy_ast.Num): raise UnfoldableNode if arg.value < 0 or arg.value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", arg) value = node.args[0].value & node.args[1].value return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( ["and", args[0], args[1]], typ=BaseType("uint256"), pos=getpos(expr) ) class BitwiseOr(_SimpleBuiltinFunction): _id = "bitwise_or" _inputs = [("x", Uint256Definition()), ("y", Uint256Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 2) for arg in node.args: if not isinstance(arg, vy_ast.Num): raise UnfoldableNode if arg.value < 0 or arg.value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", arg) value = node.args[0].value | node.args[1].value return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( ["or", args[0], args[1]], typ=BaseType("uint256"), pos=getpos(expr) ) class BitwiseXor(_SimpleBuiltinFunction): _id = "bitwise_xor" _inputs = [("x", Uint256Definition()), ("y", Uint256Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 2) for arg in node.args: if not isinstance(arg, vy_ast.Num): raise UnfoldableNode if arg.value < 0 or arg.value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", arg) value = node.args[0].value ^ node.args[1].value return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( ["xor", args[0], args[1]], typ=BaseType("uint256"), pos=getpos(expr) ) class BitwiseNot(_SimpleBuiltinFunction): _id = "bitwise_not" _inputs = [("x", Uint256Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 1) if not isinstance(node.args[0], vy_ast.Num): raise UnfoldableNode value = node.args[0].value if value < 0 or value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", node.args[0]) value = (2 ** 256 - 1) - value return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list(["not", args[0]], typ=BaseType("uint256"), pos=getpos(expr)) class Shift(_SimpleBuiltinFunction): _id = "shift" _inputs = [("x", Uint256Definition()), ("_shift", Int128Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 2) if [i for i in node.args if not isinstance(i, vy_ast.Num)]: raise UnfoldableNode value, shift = [i.value for i in node.args] if value < 0 or value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", node.args[0]) if shift < -(2 ** 127) or shift >= 2 ** 127: raise InvalidLiteral("Value out of range for int128", node.args[1]) if shift < 0: value = value >> -shift else: value = (value << shift) % (2 ** 256) return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): if args[1].typ.is_literal: shift_abs = abs(args[1].value) else: shift_abs = ["sub", 0, "_s"] if version_check(begin="constantinople"): left_shift = ["shl", "_s", "_v"] right_shift = ["shr", shift_abs, "_v"] else: # If second argument is positive, left-shift so multiply by a power of two # If it is negative, divide by a power of two # node that if the abs of the second argument >= 256, then in the EVM # 2**(second arg) = 0, and multiplying OR dividing by 0 gives 0 left_shift = ["mul", "_v", ["exp", 2, "_s"]] right_shift = ["div", "_v", ["exp", 2, shift_abs]] if not args[1].typ.is_literal: node_list = ["if", ["slt", "_s", 0], right_shift, left_shift] elif args[1].value >= 0: node_list = left_shift else: node_list = right_shift return LLLnode.from_list( ["with", "_v", args[0], ["with", "_s", args[1], node_list]], typ=BaseType("uint256"), pos=getpos(expr), ) class _AddMulMod(_SimpleBuiltinFunction): _inputs = [("a", Uint256Definition()), ("b", Uint256Definition()), ("c", Uint256Definition())] _return_type = Uint256Definition() def evaluate(self, node): validate_call_args(node, 3) if isinstance(node.args[2], vy_ast.Num) and node.args[2].value == 0: raise ZeroDivisionException("Modulo by 0", node.args[2]) for arg in node.args: if not isinstance(arg, vy_ast.Num): raise UnfoldableNode if arg.value < 0 or arg.value >= 2 ** 256: raise InvalidLiteral("Value out of range for uint256", arg) value = self._eval_fn(node.args[0].value, node.args[1].value) % node.args[2].value return vy_ast.Int.from_node(node, value=value) @validate_inputs def build_LLL(self, expr, args, kwargs, context): return LLLnode.from_list( ["seq", ["assert", args[2]], [self._opcode, args[0], args[1], args[2]]], typ=BaseType("uint256"), pos=getpos(expr), ) class AddMod(_AddMulMod): _id = "uint256_addmod" _eval_fn = operator.add _opcode = "addmod" class MulMod(_AddMulMod): _id = "uint256_mulmod" _eval_fn = operator.mul _opcode = "mulmod" def get_create_forwarder_to_bytecode(): from vyper.compile_lll import assembly_to_evm, num_to_bytearray code_a = [ "PUSH1", 0x33, "PUSH1", 0x0C, "PUSH1", 0x00, "CODECOPY", "PUSH1", 0x33, "PUSH1", 0x00, "RETURN", "CALLDATASIZE", "PUSH1", 0x00, "PUSH1", 0x00, "CALLDATACOPY", "PUSH2", num_to_bytearray(0x1000), "PUSH1", 0x00, "CALLDATASIZE", "PUSH1", 0x00, "PUSH20", # [address to delegate to] ] code_b = [ "GAS", "DELEGATECALL", "PUSH1", 0x2C, # jumpdest of whole program. "JUMPI", "PUSH1", 0x0, "DUP1", "REVERT", "JUMPDEST", "PUSH2", num_to_bytearray(0x1000), "PUSH1", 0x00, "RETURN", ] return assembly_to_evm(code_a)[0] + (b"\x00" * 20) + assembly_to_evm(code_b)[0] class CreateForwarderTo(_SimpleBuiltinFunction): _id = "create_forwarder_to" _inputs = [("target", AddressDefinition())] _kwargs = {"value": Optional("uint256", zero_value)} _return_type = AddressDefinition() @validate_inputs def build_LLL(self, expr, args, kwargs, context): value = kwargs["value"] if context.is_constant(): raise StateAccessViolation( f"Cannot make calls from {context.pp_constancy()}", expr, ) placeholder = context.new_placeholder(ByteArrayType(96)) kode = get_create_forwarder_to_bytecode() high = bytes_to_int(kode[:32]) low = bytes_to_int((kode + b"\x00" * 32)[47:79]) return LLLnode.from_list( [ "seq", ["mstore", placeholder, high], ["mstore", ["add", placeholder, 27], ["mul", args[0], 2 ** 96]], ["mstore", ["add", placeholder, 47], low], ["clamp_nonzero", ["create", value, placeholder, 96]], ], typ=BaseType("address"), pos=getpos(expr), add_gas_estimate=11000, ) class _MinMax: _inputs = [("a", ("int128", "decimal", "uint256")), ("b", ("int128", "decimal", "uint256"))] def evaluate(self, node): validate_call_args(node, 2) if not isinstance(node.args[0], type(node.args[1])): raise UnfoldableNode if not isinstance(node.args[0], (vy_ast.Decimal, vy_ast.Int)): raise UnfoldableNode left, right = (i.value for i in node.args) if isinstance(left, Decimal) and ( min(left, right) < -(2 ** 127) or max(left, right) >= 2 ** 127 ): raise InvalidType("Decimal value is outside of allowable range", node) if isinstance(left, int) and (min(left, right) < 0 and max(left, right) >= 2 ** 127): raise TypeMismatch("Cannot perform action between dislike numeric types", node) value = self._eval_fn(left, right) return type(node.args[0]).from_node(node, value=value) def fetch_call_return(self, node): validate_call_args(node, 2) types_list = get_common_types( *node.args, filter_fn=lambda x: isinstance(x, NumericAbstractType) ) if not types_list: raise TypeMismatch return types_list.pop() @validate_inputs def build_LLL(self, expr, args, kwargs, context): def _can_compare_with_uint256(operand): if operand.typ.typ == "uint256": return True elif ( operand.typ.typ == "int128" and operand.typ.is_literal and SizeLimits.in_bounds("uint256", operand.value) ): # noqa: E501 return True return False comparator = self._opcode left, right = args[0], args[1] if left.typ.typ == right.typ.typ: if left.typ.typ != "uint256": # if comparing like types that are not uint256, use SLT or SGT comparator = f"s{comparator}" o = ["if", [comparator, "_l", "_r"], "_r", "_l"] otyp = left.typ otyp.is_literal = False elif _can_compare_with_uint256(left) and _can_compare_with_uint256(right): o = ["if", [comparator, "_l", "_r"], "_r", "_l"] if right.typ.typ == "uint256": otyp = right.typ else: otyp = left.typ otyp.is_literal = False else: raise TypeMismatch(f"Minmax types incompatible: {left.typ.typ} {right.typ.typ}") return LLLnode.from_list( ["with", "_l", left, ["with", "_r", right, o]], typ=otyp, pos=getpos(expr), ) class Min(_MinMax): _id = "min" _eval_fn = min _opcode = "gt" class Max(_MinMax): _id = "max" _eval_fn = max _opcode = "lt" class Sqrt(_SimpleBuiltinFunction): _id = "sqrt" _inputs = [("d", DecimalDefinition())] _return_type = DecimalDefinition() @validate_inputs def build_LLL(self, expr, args, kwargs, context): from vyper.functions.utils import generate_inline_function arg = args[0] sqrt_code = """ assert x >= 0.0 z: decimal = 0.0 if x == 0.0: z = 0.0 else: z = x / 2.0 + 0.5 y: decimal = x for i in range(256): if z == y: break y = z z = (x / z + z) / 2.0 """ x_type = BaseType("decimal") placeholder_copy = ["pass"] # Steal current position if variable is already allocated. if arg.value == "mload": new_var_pos = arg.args[0] # Other locations need to be copied. else: new_var_pos = context.new_placeholder(x_type) placeholder_copy = ["mstore", new_var_pos, arg] # Create input variables. variables = {"x": VariableRecord(name="x", pos=new_var_pos, typ=x_type, mutable=False)} # Generate inline LLL. new_ctx, sqrt_lll = generate_inline_function( code=sqrt_code, variables=variables, memory_allocator=context.memory_allocator ) return LLLnode.from_list( [ "seq_unchecked", placeholder_copy, # load x variable sqrt_lll, ["mload", new_ctx.vars["z"].pos], # unload z variable into the stack, ], typ=BaseType("decimal"), pos=getpos(expr), ) class Empty: _id = "empty" _inputs = [("typename", "*")] def fetch_call_return(self, node): validate_call_args(node, 1) type_ = get_type_from_annotation(node.args[0], DataLocation.MEMORY) return type_ @validate_inputs def build_LLL(self, expr, args, kwargs, context): output_type = context.parse_type(expr.args[0], expr.args[0]) return LLLnode(None, typ=output_type, pos=getpos(expr)) DISPATCH_TABLE = { "floor": Floor(), "ceil": Ceil(), "convert": Convert(), "slice": Slice(), "len": Len(), "concat": Concat(), "sha256": Sha256(), "method_id": MethodID(), "keccak256": Keccak256(), "ecrecover": ECRecover(), "ecadd": ECAdd(), "ecmul": ECMul(), "extract32": Extract32(), "as_wei_value": AsWeiValue(), "raw_call": RawCall(), "blockhash": BlockHash(), "bitwise_and": BitwiseAnd(), "bitwise_or": BitwiseOr(), "bitwise_xor": BitwiseXor(), "bitwise_not": BitwiseNot(), "uint256_addmod": AddMod(), "uint256_mulmod": MulMod(), "sqrt": Sqrt(), "shift": Shift(), "create_forwarder_to": CreateForwarderTo(), "min": Min(), "max": Max(), "empty": Empty(), } STMT_DISPATCH_TABLE = { "send": Send(), "selfdestruct": SelfDestruct(), "raw_call": RawCall(), "raw_log": RawLog(), "create_forwarder_to": CreateForwarderTo(), } BUILTIN_FUNCTIONS = {**STMT_DISPATCH_TABLE, **DISPATCH_TABLE}.keys() def get_builtin_functions(): return {**STMT_DISPATCH_TABLE, **DISPATCH_TABLE}
34.252537
100
0.541771
cf4f63b23ffc80a6b4338ddef351edf4708ef429
6,272
py
Python
deepxde/geometry/geometry_nd.py
Anilith/deepxde
d3a411a8023dba176b1489567ebab549ac6e7ea2
[ "Apache-2.0" ]
null
null
null
deepxde/geometry/geometry_nd.py
Anilith/deepxde
d3a411a8023dba176b1489567ebab549ac6e7ea2
[ "Apache-2.0" ]
null
null
null
deepxde/geometry/geometry_nd.py
Anilith/deepxde
d3a411a8023dba176b1489567ebab549ac6e7ea2
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from scipy import stats from sklearn import preprocessing from .geometry import Geometry from .sampler import sample from .. import config class Hypercube(Geometry): def __init__(self, xmin, xmax): if len(xmin) != len(xmax): raise ValueError("Dimensions of xmin and xmax do not match.") if np.any(np.array(xmin) >= np.array(xmax)): raise ValueError("xmin >= xmax") self.xmin = np.array(xmin, dtype=config.real(np)) self.xmax = np.array(xmax, dtype=config.real(np)) self.side_length = self.xmax - self.xmin super(Hypercube, self).__init__( len(xmin), (self.xmin, self.xmax), np.linalg.norm(self.side_length) ) self.volume = np.prod(self.side_length) def inside(self, x): return np.logical_and( np.all(x >= self.xmin, axis=-1), np.all(x <= self.xmax, axis=-1) ) def on_boundary(self, x): _on_boundary = np.logical_or( np.any(np.isclose(x, self.xmin), axis=-1), np.any(np.isclose(x, self.xmax), axis=-1), ) return np.logical_and(self.inside(x), _on_boundary) def boundary_normal(self, x): _n = -np.isclose(x, self.xmin).astype(config.real(np)) + np.isclose( x, self.xmax ) # For vertices, the normal is averaged for all directions idx = np.count_nonzero(_n, axis=-1) > 1 if np.any(idx): print( f"Warning: {self.__class__.__name__} boundary_normal called on vertices. " "You may use PDE(..., exclusions=...) to exclude the vertices." ) l = np.linalg.norm(_n[idx], axis=-1, keepdims=True) _n[idx] /= l return _n def uniform_points(self, n, boundary=True): dx = (self.volume / n) ** (1 / self.dim) xi = [] for i in range(self.dim): ni = int(np.ceil(self.side_length[i] / dx)) if boundary: xi.append( np.linspace( self.xmin[i], self.xmax[i], num=ni, dtype=config.real(np) ) ) else: xi.append( np.linspace( self.xmin[i], self.xmax[i], num=ni + 1, endpoint=False, dtype=config.real(np), )[1:] ) x = np.array(list(itertools.product(*xi))) if n != len(x): print( "Warning: {} points required, but {} points sampled.".format(n, len(x)) ) return x def random_points(self, n, random="pseudo"): x = sample(n, self.dim, random) return (self.xmax - self.xmin) * x + self.xmin def random_boundary_points(self, n, random="pseudo"): x = sample(n, self.dim, random) # Randomly pick a dimension rng = np.random.default_rng() rand_dim = rng.integers(self.dim, size=n) # Replace value of the randomly picked dimension with the nearest boundary value (0 or 1) x[np.arange(n), rand_dim] = np.round(x[np.arange(n), rand_dim]) return (self.xmax - self.xmin) * x + self.xmin def periodic_point(self, x, component): y = np.copy(x) _on_xmin = np.isclose(y[:, component], self.xmin[component]) _on_xmax = np.isclose(y[:, component], self.xmax[component]) y[:, component][_on_xmin] = self.xmax[component] y[:, component][_on_xmax] = self.xmin[component] return y class Hypersphere(Geometry): def __init__(self, center, radius): self.center = np.array(center, dtype=config.real(np)) self.radius = radius super(Hypersphere, self).__init__( len(center), (self.center - radius, self.center + radius), 2 * radius ) self._r2 = radius ** 2 def inside(self, x): return np.linalg.norm(x - self.center, axis=-1) <= self.radius def on_boundary(self, x): return np.isclose(np.linalg.norm(x - self.center, axis=-1), self.radius) def distance2boundary_unitdirn(self, x, dirn): """https://en.wikipedia.org/wiki/Line%E2%80%93sphere_intersection""" xc = x - self.center ad = np.dot(xc, dirn) return -ad + (ad ** 2 - np.sum(xc * xc, axis=-1) + self._r2) ** 0.5 def distance2boundary(self, x, dirn): return self.distance2boundary_unitdirn(x, dirn / np.linalg.norm(dirn)) def mindist2boundary(self, x): return np.amin(self.radius - np.linalg.norm(x - self.center, axis=-1)) def boundary_normal(self, x): _n = x - self.center l = np.linalg.norm(_n, axis=-1, keepdims=True) _n = _n / l * np.isclose(l, self.radius) return _n def random_points(self, n, random="pseudo"): """https://math.stackexchange.com/questions/87230/picking-random-points-in-the-volume-of-sphere-with-uniform-probability""" if random == "pseudo": U = np.random.rand(n, 1) X = np.random.normal(size=(n, self.dim)) else: rng = sample(n, self.dim + 1, random) U, X = rng[:, 0:1], rng[:, 1:] X = stats.norm.ppf(X) X = preprocessing.normalize(X) X = U ** (1 / self.dim) * X return self.radius * X + self.center def random_boundary_points(self, n, random="pseudo"): """http://mathworld.wolfram.com/HyperspherePointPicking.html""" if random == "pseudo": X = np.random.normal(size=(n, self.dim)).astype(config.real(np)) else: U = sample(n, self.dim, random) X = stats.norm.ppf(U) X = preprocessing.normalize(X) return self.radius * X + self.center def background_points(self, x, dirn, dist2npt, shift): dirn = dirn / np.linalg.norm(dirn) dx = self.distance2boundary_unitdirn(x, -dirn) n = max(dist2npt(dx), 1) h = dx / n pts = x - np.arange(-shift, n - shift + 1)[:, None] * h * dirn return pts
36.465116
131
0.558992
e45558d613fb6b83c513fbc22974928656422990
1,748
py
Python
backend/home/models.py
crowdbotics-apps/jonathan-kim-teenge-33637
be6c1dabd7534d41d7f0b776fff0b12d66924955
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/models.py
crowdbotics-apps/jonathan-kim-teenge-33637
be6c1dabd7534d41d7f0b776fff0b12d66924955
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/home/models.py
crowdbotics-apps/jonathan-kim-teenge-33637
be6c1dabd7534d41d7f0b776fff0b12d66924955
[ "FTL", "AML", "RSA-MD" ]
null
null
null
from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from users.models import User class BaseModel(models.Model): created = models.DateTimeField(auto_now_add=True, help_text='Date Created') class Meta: abstract = True ordering = ('-created',) class Wish(BaseModel): user = models.ForeignKey(User, on_delete=models.CASCADE, default=None) location = models.CharField(_("Location"), null=True, max_length=255) golfers = models.IntegerField(_("Number of Golfers"), default=0) from_date = models.DateTimeField(_('From Date'), default=timezone.now) to_date = models.DateTimeField(_('To Date'), default=False) is_before_selected = models.BooleanField(default=False) # def __str__(self): # return self.title class Course(BaseModel): location = models.CharField(_("Golf course Location"), blank=True, null=True, max_length=255) tee_datetime = models.DateTimeField(_('Date and time'), default=timezone.now) no_of_selected_players = models.IntegerField(_("Number of selected players"), default=0) no_of_slots_available = models.IntegerField(_("All slots available for selected parameters"), default=0) no_of_max_players = models.IntegerField(_("Number of maximum players for opened slot"), default=0) website_link = models.CharField(_("Website Link"), blank=True, null=True, max_length=255) class Alert(BaseModel): wish = models.ForeignKey('Wish', on_delete=models.CASCADE, default=None) course = models.ForeignKey('Course', on_delete=models.CASCADE, default=None) user = models.ForeignKey(User, on_delete=models.CASCADE, default=None) is_read = models.BooleanField(default=False)
40.651163
108
0.739703
cef4c833ffa86075777c45e23730d2ec13ae240f
1,886
py
Python
ormar/exceptions.py
naterenegar/ormar
ef3edd4594867569a2fd72971fde9666cff42395
[ "MIT" ]
null
null
null
ormar/exceptions.py
naterenegar/ormar
ef3edd4594867569a2fd72971fde9666cff42395
[ "MIT" ]
null
null
null
ormar/exceptions.py
naterenegar/ormar
ef3edd4594867569a2fd72971fde9666cff42395
[ "MIT" ]
null
null
null
""" Gathers all exceptions thrown by ormar. """ class AsyncOrmException(Exception): """ Base ormar Exception """ pass class ModelDefinitionError(AsyncOrmException): """ Raised for errors related to the model definition itself: * setting @property_field on method with arguments other than func(self) * defining a Field without required parameters * defining a model with more than one primary_key * defining a model without primary_key * setting primary_key column as pydantic_only """ pass class ModelError(AsyncOrmException): """ Raised for initialization of model with non-existing field keyword. """ pass class NoMatch(AsyncOrmException): """ Raised for database queries that has no matching result (empty result). """ pass class MultipleMatches(AsyncOrmException): """ Raised for database queries that should return one row (i.e. get, first etc.) but has multiple matching results in response. """ pass class QueryDefinitionError(AsyncOrmException): """ Raised for errors in query definition: * using contains or icontains filter with instance of the Model * using Queryset.update() without filter and setting each flag to True * using Queryset.delete() without filter and setting each flag to True """ pass class RelationshipInstanceError(AsyncOrmException): pass class ModelPersistenceError(AsyncOrmException): """ Raised for update of models without primary_key set (cannot retrieve from db) or for saving a model with relation to unsaved model (cannot extract fk value). """ pass class SignalDefinitionError(AsyncOrmException): """ Raised when non callable receiver is passed as signal callback. """ pass
22.452381
87
0.678155
f4ee59fe1d8c16455def9c810e17ea17559a11d2
383
py
Python
polls/migrations/0002_question_author.py
codermahiuddin/Azure
6f2c7d695807e9f9ee51cd297a744350148b0987
[ "MIT" ]
null
null
null
polls/migrations/0002_question_author.py
codermahiuddin/Azure
6f2c7d695807e9f9ee51cd297a744350148b0987
[ "MIT" ]
null
null
null
polls/migrations/0002_question_author.py
codermahiuddin/Azure
6f2c7d695807e9f9ee51cd297a744350148b0987
[ "MIT" ]
null
null
null
# Generated by Django 3.2 on 2021-06-19 02:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('polls', '0001_initial'), ] operations = [ migrations.AddField( model_name='question', name='author', field=models.CharField(default='', max_length=50), ), ]
20.157895
62
0.584856
2888107e369e410e4ac04c657ce44a44991aae62
870
py
Python
sdks/python/apache_beam/version.py
h4rr21/beam
e5bb291f95bd8cbb7942ed2a3b007df70eaf71be
[ "Apache-2.0" ]
1
2018-08-11T14:06:57.000Z
2018-08-11T14:06:57.000Z
sdks/python/apache_beam/version.py
h4rr21/beam
e5bb291f95bd8cbb7942ed2a3b007df70eaf71be
[ "Apache-2.0" ]
null
null
null
sdks/python/apache_beam/version.py
h4rr21/beam
e5bb291f95bd8cbb7942ed2a3b007df70eaf71be
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Apache Beam SDK version information and utilities.""" __version__ = '2.7.0.dev'
39.545455
74
0.766667
687b8c32e10697c1c06bc9c1d20a0f64723c6890
485
py
Python
Exercise/ExerciseTools.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
Exercise/ExerciseTools.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
Exercise/ExerciseTools.py
Mihai925/EduCoding-Legacy
7c6de105deb186c3442f8d7f9f1b9f99708f8fb6
[ "MIT" ]
null
null
null
from models import Exercise class ExerciseTools(): def __init__(self): pass def submit_exercise(self, title, description, content): exercise = Exercise(title=title, description=description, content=content) exercise.save() return True def get_exercise_by_id(self, ex_id): exercise = None try: exercise = Exercise.objects.get(ex_id=ex_id) except Exception as e: pass return exercise
25.526316
82
0.63299
171587089721140d33c4364e96d05171bd9cdac5
388
py
Python
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/farm/FarmFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
1
2020-10-05T08:53:57.000Z
2020-10-05T08:53:57.000Z
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/farm/FarmFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
17
2019-11-14T08:41:37.000Z
2020-05-27T09:23:51.000Z
sandbox/lib/jumpscale/JumpscaleLibsExtra/sal_zos/farm/FarmFactory.py
threefoldtech/threebot_prebuilt
1f0e1c65c14cef079cd80f73927d7c8318755c48
[ "Apache-2.0" ]
null
null
null
from Jumpscale import j JSBASE = j.baseclasses.object from .Farm import Farm class FarmFactory(JSBASE): __jslocation__ = "j.sal_zos.farm" def get(self, farmer_iyo_org): """ Get sal for farm Arguments: farmer_iyo_org: the farmer iyo organisation Returns: the sal layer """ return Farm(farmer_iyo_org)
16.869565
55
0.608247
d1004ac49b05b1a76c802adad90b763487fc89b0
2,884
py
Python
is_core/forms/generic.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
is_core/forms/generic.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
is_core/forms/generic.py
zzuzzy/django-is-core
3f87ec56a814738683c732dce5f07e0328c2300d
[ "BSD-3-Clause" ]
null
null
null
from django.db import models from django.contrib.contenttypes.models import ContentType from django.forms.models import ModelForm from django.contrib.contenttypes.forms import BaseGenericInlineFormSet as OriginBaseGenericInlineFormSet from is_core.forms.models import smartmodelformset_factory from is_core.forms.formsets import BaseFormSetMixin class BaseGenericInlineFormSet(BaseFormSetMixin, OriginBaseGenericInlineFormSet): pass def smart_generic_inlineformset_factory(model, request, form=ModelForm, formset=BaseGenericInlineFormSet, ct_field='content_type', fk_field='object_id', fields=None, exclude=None, extra=3, can_order=False, can_delete=True, min_num=None, max_num=None, formfield_callback=None, widgets=None, validate_min=False, validate_max=False, localized_fields=None, labels=None, help_texts=None, error_messages=None, formreadonlyfield_callback=None, readonly_fields=None, for_concrete_model=True, readonly=False): """ Returns a ``GenericInlineFormSet`` for the given kwargs. You must provide ``ct_field`` and ``fk_field`` if they are different from the defaults ``content_type`` and ``object_id`` respectively. """ opts = model._meta # if there is no field called `ct_field` let the exception propagate ct_field = opts.get_field(ct_field) if not isinstance(ct_field, models.ForeignKey) or ct_field.related_model != ContentType: raise Exception("fk_name '%s' is not a ForeignKey to ContentType" % ct_field) fk_field = opts.get_field(fk_field) # let the exception propagate if exclude is not None: exclude = list(exclude) exclude.extend([ct_field.name, fk_field.name]) else: exclude = [ct_field.name, fk_field.name] kwargs = { 'form': form, 'formfield_callback': formfield_callback, 'formset': formset, 'extra': extra, 'can_delete': can_delete, 'can_order': can_order, 'fields': fields, 'exclude': exclude, 'max_num': max_num, 'min_num': min_num, 'widgets': widgets, 'validate_min': validate_min, 'validate_max': validate_max, 'localized_fields': localized_fields, 'formreadonlyfield_callback': formreadonlyfield_callback, 'readonly_fields': readonly_fields, 'readonly': readonly, 'labels': labels, 'help_texts': help_texts, 'error_messages': error_messages, } FormSet = smartmodelformset_factory(model, request, **kwargs) FormSet.ct_field = ct_field FormSet.ct_fk_field = fk_field FormSet.for_concrete_model = for_concrete_model return FormSet
43.044776
119
0.664702
263a0c363f242ed08103117d68a53920b69d6be1
1,878
py
Python
electrum/plot.py
padenmoss/electrum-ftc
dfa3f33350225590db8afb391cd9005bf70253e4
[ "MIT" ]
11
2018-03-27T06:35:30.000Z
2021-05-14T19:32:36.000Z
electrum/plot.py
padenmoss/electrum-ftc
dfa3f33350225590db8afb391cd9005bf70253e4
[ "MIT" ]
108
2018-03-13T10:43:26.000Z
2021-05-14T21:26:06.000Z
electrum/plot.py
padenmoss/electrum-ftc
dfa3f33350225590db8afb391cd9005bf70253e4
[ "MIT" ]
15
2018-02-24T18:37:17.000Z
2021-08-23T18:17:23.000Z
import datetime from collections import defaultdict import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import matplotlib.dates as md from .i18n import _ from .bitcoin import COIN class NothingToPlotException(Exception): def __str__(self): return _("Nothing to plot.") def plot_history(history): if len(history) == 0: raise NothingToPlotException() hist_in = defaultdict(int) hist_out = defaultdict(int) for item in history: if not item['confirmations']: continue if item['timestamp'] is None: continue value = item['value'].value/COIN date = item['date'] datenum = int(md.date2num(datetime.date(date.year, date.month, 1))) if value > 0: hist_in[datenum] += value else: hist_out[datenum] -= value f, axarr = plt.subplots(2, sharex=True) plt.subplots_adjust(bottom=0.2) plt.xticks( rotation=25 ) ax = plt.gca() plt.ylabel('FTC') plt.xlabel('Month') xfmt = md.DateFormatter('%Y-%m-%d') ax.xaxis.set_major_formatter(xfmt) axarr[0].set_title('Monthly Volume') xfmt = md.DateFormatter('%Y-%m') ax.xaxis.set_major_formatter(xfmt) width = 20 r1 = None r2 = None dates_values = list(zip(*sorted(hist_in.items()))) if dates_values and len(dates_values) == 2: dates, values = dates_values r1 = axarr[0].bar(dates, values, width, label='incoming') axarr[0].legend(loc='upper left') dates_values = list(zip(*sorted(hist_out.items()))) if dates_values and len(dates_values) == 2: dates, values = dates_values r2 = axarr[1].bar(dates, values, width, color='r', label='outgoing') axarr[1].legend(loc='upper left') if r1 is None and r2 is None: raise NothingToPlotException() return plt
29.34375
76
0.633653
d4b3e525c750bc489eddc2ac60f9cb79b13e8ffc
332
py
Python
tests/test_docs.py
LaggAt/hovercraft
617bd6102ef5e6fc8ed2942bbd4d514e15715fdf
[ "MIT" ]
1
2017-12-20T07:20:11.000Z
2017-12-20T07:20:11.000Z
tests/test_docs.py
LaggAt/hovercraft
617bd6102ef5e6fc8ed2942bbd4d514e15715fdf
[ "MIT" ]
1
2020-07-11T01:05:08.000Z
2020-07-11T01:05:08.000Z
tests/test_docs.py
wearypossum4770/hovercraft
d9f63bfdfe1519c4d7a81697ee066e49dc26a30b
[ "MIT" ]
null
null
null
import manuel.doctest import manuel.codeblock import manuel.testing import unittest def additional_tests(): m = manuel.doctest.Manuel() m += manuel.codeblock.Manuel() return manuel.testing.TestSuite(m, r'../docs/examples/tutorial.rst') if __name__ == '__main__': unittest.TextTestRunner().run(additional_tests())
23.714286
72
0.740964
c9ca0e175b53adb9d441b53580e90c0f2f11e2b6
100,313
py
Python
pyNastran/bdf/cards/test/test_aero.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
1
2021-08-02T09:49:24.000Z
2021-08-02T09:49:24.000Z
pyNastran/bdf/cards/test/test_aero.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
null
null
null
pyNastran/bdf/cards/test/test_aero.py
ACea15/pyNastran
5ffc37d784b52c882ea207f832bceb6b5eb0e6d4
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # pylint: disable=R0914 """tests aero cards""" import os from collections import defaultdict import unittest from io import StringIO from typing import Tuple, Optional, Any import numpy as np from cpylog import SimpleLogger import pyNastran from pyNastran.bdf.bdf import BDF, CORD2R, BDFCard, SET1, read_bdf from pyNastran.bdf.test.test_bdf import run_bdf from pyNastran.bdf.cards.aero.aero import ( AEFACT, AELIST, AEPARM, CAERO1, CAERO2, CAERO3, CAERO4, #CAERO5, PAERO1, PAERO2, PAERO4, #PAERO3, PAERO5, AESURF, AESURFS, AELINK, AECOMP, SPLINE1, SPLINE2, #, SPLINE3, SPLINE4, SPLINE5 build_caero_paneling ) from pyNastran.bdf.cards.aero.dynamic_loads import AERO, FLFACT, FLUTTER, GUST, MKAERO1, MKAERO2 from pyNastran.bdf.cards.aero.static_loads import AESTAT, AEROS, CSSCHD, TRIM, TRIM2, DIVERG from pyNastran.bdf.cards.test.utils import save_load_deck IS_MATPLOTLIB = False if IS_MATPLOTLIB: import matplotlib.pyplot as plt ROOTPATH = pyNastran.__path__[0] MODEL_PATH = os.path.join(ROOTPATH, '..', 'models') #test_path = os.path.join(ROOTPATH, 'bdf', 'cards', 'test') COMMENT_BAD = 'this is a bad comment' COMMENT_GOOD = 'this is a good comment\n' class TestAero(unittest.TestCase): """ The Aero cards are: * AEFACT * AELINK * AELIST * AEPARM * AESTAT * AESURF / AESURFS * AERO / AEROS * CSSCHD * CAERO1 / CAERO2 / CAERO3 / CAERO4 / CAERO5 * FLFACT * FLUTTER * GUST * MKAERO1 / MKAERO2 * PAERO1 / PAERO2 / PAERO3 * SPLINE1 / SPLINE2 / SPLINE4 / SPLINE5 """ def test_aestat_1(self): log = SimpleLogger(level='warning') model = BDF(log=log) lines = ['AESTAT 502 PITCH'] card = model._process_card(lines) card = BDFCard(card) size = 8 card = AESTAT.add_card(card) card.write_card(size, 'dummy') card.raw_fields() def test_aecomp_1(self): """checks the AECOMP card""" #sid = 10 #aesid = 0 #lalpha = None #lmach = None #lschd = None #sid = 5 #aesid = 50 #lalpha = 12 #lmach = 15 name = 'WING' list_type = 'AELIST' # or SET1, CAEROx aelist_ids = [75, 76] card = ['AECOMP', name, list_type] + aelist_ids bdf_card = BDFCard(card, has_none=True) aecomp1 = AECOMP.add_card(bdf_card, comment='aecomp card') aecomp1.validate() aecomp1.write_card() #label = 'ELEV' #cid1 = 0 #alid1 = 37 #aesurf = AESURF(aesid, label, cid1, alid1) #aefact_sid = alid1 #Di = [0., 0.5, 1.] #aefact_elev = AEFACT(aefact_sid, Di) #aefact_sid = lalpha #Di = [0., 5., 10.] #aefact_alpha = AEFACT(aefact_sid, Di) #aefact_sid = lmach #Di = [0., 0.7, 0.8] #aefact_mach = AEFACT(aefact_sid, Di) #aefact_sid = lschd #Di = [0., 15., 30., 45.] #aefact_delta = AEFACT(aefact_sid, Di) log = SimpleLogger(level='warning') model = BDF(log=log) data = ['AELIST', 75, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1201, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AELIST', 76, 2000, 'THRU', 2010] model.add_card(data, data[0], COMMENT_BAD, is_list=True) #model.add_aesurf(aesurf) #model.add_aefact(aefact_elev) #model.add_aefact(aefact_alpha) #model.add_aefact(aefact_mach) #model.add_aefact(aefact_delta) aecomp1.safe_cross_reference(model) aecomp1.uncross_reference() aecomp1.cross_reference(model) aecomp1.write_card() aecomp1.uncross_reference() aecomp1.write_card() model.validate() save_load_deck(model) #----------- aecomp2 = AECOMP(name, list_type, aelist_ids, comment='cssch card') aecomp2.validate() aecomp2.write_card() list_type = 'INVALID' aecomp3 = AECOMP(name, list_type, aelist_ids, comment='cssch card') with self.assertRaises(RuntimeError): aecomp3.validate() name = 'MYCOMP' list_type = 'AELIST' lists = 10 model.add_aecomp(name, list_type, lists) lists = 42.0 with self.assertRaises(TypeError): AECOMP(name, list_type, lists) def test_aefact_1(self): """checks the AEFACT card""" data = ['AEFACT', 97, .3, 0.7, 1.0] log = SimpleLogger(level='warning') model = BDF(log=log) model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AEFACT', 97, .3, 0.7, 1.0] model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AEFACT', '98', '.3', '0.7', '1.0'] model.add_card(data, data[0], COMMENT_GOOD, is_list=True) msg = '$this is a bad comment\nAEFACT 97 .3 .7 1.\n' aefact97 = model.aefacts[97] aefact98 = model.aefacts[98] self.assertTrue(all(aefact97.fractions == [.3, .7, 1.0])) self.assertTrue(all(aefact98.fractions == [.3, .7, 1.0])) out = aefact97.write_card(8, None) self.assertEqual(msg, out) msg = '$this is a good comment\nAEFACT 98 .3 .7 1.\n' out = aefact98.write_card(8, None) self.assertEqual(msg, out) #data = ['AEFACT', 99, .3, 0.7, 1.0, None, 'cat'] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) #data = ['AEFACT', 100, .3, 0.7, 1.0, 'cat'] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) #data = ['AEFACT', 101, .3, 0.7, 1.0, 2] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) fractions = [1., 2., 3.] aefact = AEFACT(200, fractions, comment='') aefact.validate() aefact.write_card() #model = BDF() #aefact.cross_reference(model) #aefact.write_card() #aefact.uncross_reference() #aefact.write_card() def test_aelink_1(self): log = SimpleLogger(level='warning') model = BDF(log=log) idi = 10 label = 'CS' independent_labels = ['A', 'B', 'C'] linking_coefficients = [1.0, 2.0] aelink = AELINK(idi, label, independent_labels, linking_coefficients, comment='') assert aelink.aelink_id == idi with self.assertRaises(RuntimeError): aelink.validate() str(aelink) aelink.write_card() card = ['AELINK', idi, label, independent_labels[0], linking_coefficients[0], independent_labels[1], linking_coefficients[1], independent_labels[2]] with self.assertRaises(AssertionError): model.add_card(card, 'AELINK') card = ['AELINK', idi, label, independent_labels[0], linking_coefficients[0], independent_labels[1], linking_coefficients[1]] model.add_card(card, 'AELINK', comment='cat') #print(model.aelinks[idi]) assert model.aelinks[idi][0].comment == '$cat\n', 'comment=%r' % str(model.aelinks[idi][0].comment) #------------------------------- idi = 11 label = 'LABEL' independent_labels = ['pig', 'frog', 'dog'] linking_coefficients = [] aelink2 = model.add_aelink(idi, label, independent_labels, linking_coefficients) with self.assertRaises(RuntimeError): model.validate() aelink2.linking_coefficients = [1.0, 2.0, 3.0] assert aelink2.linking_coefficients == [1., 2., 3.] #------------------------------- idi = 'ALWAYS' label = 'LABEL' independent_labels = ['pig', 'frog', 'dog'] linking_coefficients = [1.0, 2.0, 3.0] model.add_aelink(idi, label, independent_labels, linking_coefficients) model.validate() model.cross_reference() def test_aelist_1(self): """checks the AELIST card""" log = SimpleLogger(level='warning') model = BDF(log=log) data = ['AELIST', 75, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1201, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) elements = list(range(1001, 1076)) + list(range(1101, 1110)) + [1201, 1202] aelist = AELIST(74, elements) aelist.validate() aelist.write_card() aelist75 = model.aelists[75] #print(aelist.elements) #print(elements) self.assertTrue(elements == aelist75.elements) elements = list(range(1001, 1076)) + list(range(1101, 1110)) + [1108, 1202] data = ['AELIST', 76, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1108, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) aelist76 = model.aelists[76] #print(aelist76 .elements) #print(elements) self.assertFalse(elements == aelist76.elements) elements = list(set(elements)) elements.sort() self.assertTrue(elements == aelist76.elements) elements = [1000, 1000, 1000, 2000, 1000, 2000] aelist = AELIST(75, elements) aelist.clean_ids() str(aelist.write_card()) elements = 42 AELIST(76, elements) elements = 42.0 with self.assertRaises(TypeError): AELIST(77, elements) def test_aeparm_1(self): """checks the AEPARM card""" aeparm_id = 100 aeparm = AEPARM.add_card(BDFCard(['AEPARM', aeparm_id, 'THRUST', 'lb']), comment='aeparm_comment') model = BDF(debug=False) aeparm = model.add_aeparm(aeparm_id, 'THRUST', 'lb', comment='aeparm_comment') assert aeparm.aeparm_id == aeparm_id aeparm.validate() aeparm.cross_reference(None) aeparm.uncross_reference() aeparm.safe_cross_reference(None) aeparm.write_card() save_load_deck(model) # def test_aestat_1(self): # def test_aesurf_1(self): def test_aesurfs_1(self): """checks the AESURFS cards""" aesid = 6001 label = 'ELEV' list1 = 6002 list2 = 6003 card = ['AESURFS', aesid, label, None, list1, None, list2] bdf_card = BDFCard(card, has_none=True) log = SimpleLogger(level='warning') model = BDF(log=log) model.add_card(bdf_card, 'AESURFS', comment='aesurfs', is_list=True, has_none=True) aesurfs = AESURFS(aesid, label, list1, list2, comment='aesurfs') str(aesurfs) aesurfs.write_card() model.add_set1(6002, [1, 2, 3]) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) model.validate() save_load_deck(model) def test_aero_1(self): """checks the AERO card""" acsid = 0. velocity = None cref = 1.0 rho_ref = 1.0 aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0, comment='aero card') with self.assertRaises(TypeError): aero.validate() assert aero.is_symmetric_xy is False assert aero.is_symmetric_xz is False assert aero.is_anti_symmetric_xy is False assert aero.is_anti_symmetric_xz is False #aero.set_ground_effect(True) #assert aero.is_symmetric_xy is False #assert aero.is_symmetric_xz is False #assert aero.is_anti_symmetric_xy is True #assert aero.is_anti_symmetric_xz is False #aero.set_ground_effect(False) #assert aero.is_symmetric_xy is False #assert aero.is_symmetric_xz is False #assert aero.is_anti_symmetric_xy is False #assert aero.is_anti_symmetric_xz is False aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=1, sym_xy=1, comment='aero card') assert aero.is_symmetric_xy is True assert aero.is_symmetric_xz is True assert aero.is_anti_symmetric_xy is False assert aero.is_anti_symmetric_xz is False aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=-1, sym_xy=-1, comment='aero card') assert aero.is_symmetric_xy is False assert aero.is_symmetric_xz is False assert aero.is_anti_symmetric_xy is True assert aero.is_anti_symmetric_xz is True aero.set_ground_effect(True) def test_aero_2(self): """checks the AERO card""" acsid = 0 velocity = None cref = 1.0 rho_ref = 1.0 aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0., sym_xy=0, comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0., comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0., comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=None, sym_xz=0, sym_xy=0, comment='aero card') aero.validate() aero.write_card() aero.raw_fields() model = BDF() aero.cross_reference(model) aero.write_card() aero.raw_fields() aero.uncross_reference() aero.write_card() aero.raw_fields() def test_aeros_1(self): """checks the AEROS card""" #acsid = 0. #velocity = None cref = 1.0 bref = 2.0 sref = 100. acsid = 0 rcsid = 0 aeros = AEROS.add_card(BDFCard(['AERO', acsid, rcsid, cref, bref, sref])) aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=0, sym_xy=0, comment='aeros card') aeros.validate() aeros.write_card() aeros.raw_fields() acsid = None rcsid = None sym_xz = None sym_xy = None aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=sym_xz, sym_xy=sym_xy, comment='aeros card') aeros.validate() aeros.write_card() aeros.raw_fields() cref = 1 bref = 2 sref = 3 acsid = 42. rcsid = 43. sym_xz = 44. sym_xy = 45. aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=sym_xz, sym_xy=sym_xy) with self.assertRaises(TypeError): aeros.validate() def test_caero1_paneling_nspan_nchord_1(self): """checks the CAERO1/PAERO1/AEFACT card""" log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. model.add_paero1(pid, caero_body_ids=None, comment='') eid = 10000000 caero = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=2, lchord=0, comment='') npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 12 # 4*3 nelements_expected = 6 # 2*3 x, y = caero.xy chord_expected = np.array([0., 0.5, 1.]) span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) assert npoints_expected == npoints assert nelements_expected == nelements def test_caero1_paneling_nspan_lchord(self): """checks the CAERO1/PAERO1/AEFACT card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. model.add_paero1(pid, caero_body_ids=None, comment='') eid = 10000000 chord_aefact_id = 10000 model.add_aefact(chord_aefact_id, [0., 0.5, 1.0]) caero = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=0, lchord=chord_aefact_id, comment='') model.cross_reference() npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 12 # 4*3 nelements_expected = 6 # 2*3 assert npoints_expected == npoints assert nelements_expected == nelements del model.caeros[eid] del model.aefacts[chord_aefact_id] points, elements = caero.panel_points_elements() x, y = caero.xy chord_expected = np.array([0., 0.5, 1.]) span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) if IS_MATPLOTLIB: caero.plot(ax) fig.show() def test_caero1_paneling_transpose(self): fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') #['CAERO1', '2000', '2000', '0', '15', '10', '1', '0', None, '7.314386', '0.', '-0.18288', '1.463854', '8.222755', '1.573341', '-0.18288', '0.365963'] #card_lines = [ #'CAERO1,2000,2000,0,15,10,1,0,1', #'+,7.314386,0.,-0.18288,1.463854,8.222755,1.573341,-0.18288,0.365963', #] #model.add_card(card_lines, 'CAERO1', comment='', ifile=None, is_list=False, has_none=True) eid = 2000 #caero = model.caeros[eid] #print(caero.get_stats()) pid = 1 igroup = 1 p1 = [7.3, 0., 0.] p4 = [8.2, 1.6, 0.] x12 = 1.4 x43 = 0.3 model.add_paero1(pid, caero_body_ids=None, comment='') caero = model.add_caero1( eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, nchord=2, lchord=0, comment='') caero.validate() x, y = caero.xy x_expected = np.array([0., 0.5, 1.]) y_expected = np.array([0., 0.2, 0.4, 0.6, 0.8, 1.]) assert np.allclose(x, x_expected) assert np.allclose(y, y_expected) #print(caero.get_stats()) caero.cross_reference(model) all_control_surface_name, caero_control_surfaces, out = build_caero_paneling(model) box_id_to_caero_element_map_expected = { 2000: np.array([0, 3, 4, 1]), 2001: np.array([1, 4, 5, 2]), 2002: np.array([3, 6, 7, 4]), 2003: np.array([4, 7, 8, 5]), 2004: np.array([ 6, 9, 10, 7]), 2005: np.array([ 7, 10, 11, 8]), 2006: np.array([ 9, 12, 13, 10]), 2007: np.array([10, 13, 14, 11]), 2008: np.array([12, 15, 16, 13]), 2009: np.array([13, 16, 17, 14]), } for key, data in out.box_id_to_caero_element_map.items(): assert np.array_equal(data, box_id_to_caero_element_map_expected[key]) all_control_surface_name, caero_control_surfaces, out = build_caero_paneling(model) if IS_MATPLOTLIB: caero.plot(ax) fig.show() #x = 1 def test_caero1_paneling_multi(self): """checks the CAERO1/PAERO1/AEFACT card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. model.add_paero1(pid, caero_body_ids=None, comment='') eid = 1000 chord_aefact_id = 10000 model.add_aefact(chord_aefact_id, [0., 0.5, 1.0]) caero1a = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=0, lchord=chord_aefact_id, comment='') eid = 2000 p1 = [1., 16., 0.] p4 = [1., 30., 0.] x12 = 1. x43 = 1. caero1b = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=2, lchord=0, comment='') model.cross_reference() npoints, nelements = caero1a.get_npanel_points_elements() npoints_expected = 12 # 4*3 nelements_expected = 6 # 2*3 assert npoints_expected == npoints assert nelements_expected == nelements del model.caeros[eid] del model.aefacts[chord_aefact_id] #points, elements = caero.panel_points_elements() #x, y = caero.xy #chord_expected = np.array([0., 0.5, 1.]) #span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) #assert np.allclose(x, chord_expected) #assert np.allclose(y, span_expected) if IS_MATPLOTLIB: caero1a.plot(ax) caero1b.plot(ax) fig.show() x = 1 def test_caero1_paneling_nspan_nchord_2(self): """checks the CAERO1/PAERO1/AEFACT card""" log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') # basic pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. fig, ax = _setup_aero_plot(fig_id=None) unused_paero = model.add_paero1(pid, caero_body_ids=None, comment='') eid = 1000 aelist_id = 10 aesurf_id = 10 caero = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=1, lchord=0, comment='') x, y = caero.xy chord_expected = np.array([0., 1.]) span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) elements = [1001, 1003, 1005] unused_aelist = model.add_aelist(aelist_id, elements) label = 'FLAP' cid1 = 0 alid1 = aelist_id unused_aesurf = model.add_aesurf( aesurf_id, label, cid1, alid1, cid2=None, alid2=None, eff=1.0, ldw='LDW', crefc=1.0, crefs=1.0, pllim=-np.pi/2., pulim=np.pi/2., hmllim=None, hmulim=None, tqllim=None, tqulim=None, comment='') model.cross_reference() points, elements = caero.panel_points_elements() if IS_MATPLOTLIB: caero.plot(ax) fig.show() def test_caero3_paneling(self): """checks the CAERO3/PAERO1/AEFACT card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. #model.add_paero1(pid, caero_body_ids=None, comment='') ncontrol_surfaces = 0 nbox = 7 x = [] y = [] model.add_paero3(pid, nbox, ncontrol_surfaces, x, y, comment='') eid = 1000 list_w = None caero = model.add_caero3(eid, pid, list_w, p1, x12, p4, x43, cp=0, list_c1=None, list_c2=None, comment='') caero.validate() caero.cross_reference(model) npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 24 # (2+1)*(7+1) nelements_expected = 14 # 2*7 # hardcoded nchord_elements = 2 nchord_points = nchord_elements + 1 x2, y2 = caero.xy #chord_expected = np.array([0., 0.5, 1.]) #span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) #assert np.allclose(x, chord_expected) #assert np.allclose(y, span_expected) assert npoints_expected == npoints assert nelements_expected == nelements points, elements = caero.panel_points_elements() if IS_MATPLOTLIB: caero.plot(ax) fig.show() x = 1 def test_caero4_paneling(self): """checks the CAERO4/PAERO4 card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. #model.add_paero1(pid, caero_body_ids=None, comment='') eid = 100 caero = model.add_caero4(eid, pid, p1, x12, p4, x43, cp=0, nspan=2, lspan=0, comment='') docs = [] caocs = [] gapocs = [] paero = model.add_paero4(pid, docs, caocs, gapocs, cla=0, lcla=0, circ=0, lcirc=0, comment='') paero.validate() caero.validate() caero.cross_reference(model) npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 6 # 4*3 nelements_expected = 2 # 2*3 x, y = caero.xy #chord_expected = np.array([0., 0.5, 1.]) #span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) #assert np.allclose(x, chord_expected) #assert np.allclose(y, span_expected) assert npoints_expected == npoints assert nelements_expected == nelements if IS_MATPLOTLIB: caero.plot(ax) fig.show() x = 1 def test_caero5_paneling(self): """checks the CAERO4/PAERO4 card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. #model.add_paero1(pid, caero_body_ids=None, comment='') eid = 100 nspan = 10 caero = model.add_caero5(eid, pid, p1, x12, p4, x43, cp=0, nspan=nspan, lspan=0, ntheory=0, nthick=0, comment='') caoci = [] paero = model.add_paero5(pid, caoci, nalpha=0, lalpha=0, nxis=0, lxis=0, ntaus=0, ltaus=0, comment='') paero.validate() caero.validate() caero.cross_reference(model) npoints, nelements = caero.get_npanel_points_elements() npoints_expected = (nspan + 1) * 2 nelements_expected = nspan # 2*1 assert npoints_expected == npoints assert nelements_expected == nelements #x, y = caero.xy #chord_expected = np.array([0., 0.5, 1.]) #span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) #assert np.allclose(x, chord_expected) #assert np.allclose(y, span_expected) all_control_surface_name, caero_control_surfaces, out = build_caero_paneling(model) box_id_to_caero_element_map_expected = { 100: np.array([0, 2, 3, 1]), 101: np.array([2, 4, 5, 3]), 102: np.array([4, 6, 7, 5]), 103: np.array([6, 8, 9, 7]), 104: np.array([ 8, 10, 11, 9]), 105: np.array([10, 12, 13, 11]), 106: np.array([12, 14, 15, 13]), 107: np.array([14, 16, 17, 15]), 108: np.array([16, 18, 19, 17]), 109: np.array([18, 20, 21, 19]), } assert len(box_id_to_caero_element_map_expected) == len(out.box_id_to_caero_element_map) for key, data in out.box_id_to_caero_element_map.items(): expected_data = box_id_to_caero_element_map_expected[key] assert np.array_equal(data, expected_data) points, elements = caero.panel_points_elements() if IS_MATPLOTLIB: caero.plot(ax) fig.show() x = 1 def test_caero7_paneling(self): """checks the CAERO7/PAERO7T card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. #model.add_paero7 eid = 100 chord_aefact_id = 10000 model.add_aefact(chord_aefact_id, [0., 0.5, 1.0]) label = 'panel' nspan = 2 nchord = 4 caero = model.add_caero7(eid, label, p1, x12, p4, x43, cp=0, nspan=nspan, nchord=nchord, lspan=0, p_airfoil=None, ztaic=None, comment='') model.cross_reference() npoints, nelements = caero.get_npanel_points_elements() npoints_expected = (nspan + 1) * (nchord + 1) nelements_expected = nspan * nchord #npoints_expected = 15 # 4*3 #nelements_expected = 8 # 2*3 assert npoints_expected == npoints assert nelements_expected == nelements points, elements = caero.panel_points_elements() x, y = caero.xy chord_expected = np.array([0., 0.25, 0.5, 0.75, 1.]) span_expected = np.array([0., 0.5, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) if IS_MATPLOTLIB: caero.plot(ax) fig.show() all_control_surface_name, caero_control_surfaces, out = build_caero_paneling(model) box_id_to_caero_element_map_expected = { 100: np.array([0, 5, 6, 1]), 101: np.array([1, 6, 7, 2]), 102: np.array([2, 7, 8, 3]), 103: np.array([3, 8, 9, 4]), 104: np.array([5, 10, 11, 6]), 105: np.array([6, 11, 12, 7]), 106: np.array([7, 12, 13, 8]), 107: np.array([8, 13, 14, 9]), } assert len(box_id_to_caero_element_map_expected) == len(out.box_id_to_caero_element_map) for box_id, data in out.box_id_to_caero_element_map.items(): expected_data = box_id_to_caero_element_map_expected[box_id] assert np.array_equal(data, expected_data) x = 1 def test_caero1_1(self): """checks the CAERO1/PAERO1/AEROS/AEFACT card""" log = SimpleLogger(level='warning') model = BDF(log=log) model.set_error_storage(nparse_errors=0, stop_on_parsing_error=True, nxref_errors=0, stop_on_xref_error=True) eid = 1 pid = 10 cp = 4 nspan = None lspan = 3 nchord = None lchord = 4 igid = 0 p1 = [0., 0., 0.] x12 = 5. p4 = [2., 3., 4.] x43 = 1. caero1a = CAERO1.add_card(BDFCard(['CAERO1', eid, pid, cp, nspan, nchord, lspan, lchord, igid, ] + p1 + [x12] + p4 + [x43])) caero1a.validate() eid = 2 caero1b = CAERO1.add_card(BDFCard(['CAERO1', eid, pid, None, nspan, nchord, lspan, lchord, igid, ] + p1 + [x12] + p4 + [x43])) caero1b.validate() eid = 1 caero1c = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') caero1c.raw_fields() caero1c.validate() caero1c.write_card() model.caeros[eid] = caero1c eid = 4 p1 = [0., 0., 0.] p2 = [1., 0., 0.] p3 = [0.2, 1., 0.] p4 = [0.1, 1., 0.] nspan = 5 nchord = 10 igid = -1 caero1d = CAERO1.add_quad(eid, pid, nspan, nchord, igid, p1, p2, p3, p4, cp=cp, spanwise='y', comment='') caero1d.validate() eid = 5 span = 0.1 chord = 0.05 igid = -1 caero1e = CAERO1.add_quad(eid, pid, span, chord, igid, p1, p2, p3, p4, cp=cp, spanwise='y', comment='') caero1e.validate() eid = 6 p1 = [0., 0., 0.] p2 = [1., 0., 0.] p3 = [0.2, 0., 1.] p4 = [0.1, 0., 1.] span = 0.1 chord = 0.05 igid = -1 caero1f = CAERO1.add_quad(eid, pid, span, chord, igid, p1, p2, p3, p4, cp=cp, spanwise='z', comment='') caero1f.validate() caero1f.flip_normal() coord = CORD2R(cp, rid=0, origin=None, zaxis=None, xzplane=None, comment='') coord.validate() model.coords[cp] = coord eid = 7 p1 = [0., 0., 0.] p2 = [1., 0., 0.] p3 = [0.2, 0., 1.] p4 = [0.1, 0., 1.] span = 0.1 chord = 0.05 igid = -1 cp = None caero1_no_coord = CAERO1.add_quad(eid, pid, span, chord, igid, p1, p2, p3, p4, cp=cp, spanwise='z', comment='') caero1_no_coord.get_points() # caero1c is set as eid=1 model.validate() # ------------------------------------------------ eid = 1000 igroup = 1 lspan_lchord = 1 fractions = np.linspace(0., 1., num=11) model.add_aefact(lspan_lchord, fractions, comment='') model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=0, lspan=lspan_lchord, nchord=0, lchord=lspan_lchord, comment='') paero = PAERO1(pid, caero_body_ids=None, comment='') paero.validate() paero.write_card() model.paeros[pid] = paero #acsid = 0. #velocity = None cref = 1.0 bref = 2.0 sref = 100. aeros = model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='aeros') aeros.validate() aeros.write_card() model.aeros = aeros aefact = AEFACT(lspan, [0., 1., 2., 3., 4., 5.]) aefact.validate() model.aefacts[lspan] = aefact aefact = AEFACT(lchord, [2., 3., 4., 5., 6., 7.]) aefact.validate() model.aefacts[lchord] = aefact paero.cross_reference(model) caero1c.cross_reference(model) caero1c.get_npanel_points_elements() caero1c.get_points() caero1c.panel_points_elements() caero1c.write_card() model.uncross_reference() model.cross_reference() model.uncross_reference() #model.safe_cross_reference() xref_errors = defaultdict(list) caero1c.safe_cross_reference(model, xref_errors) caero1c.panel_points_elements() caero1c.raw_fields() min_max_eid = caero1c.min_max_eid self.assertEqual(min_max_eid, [1, 26]) #print('min_eid, max_eid', min_eid, max_eid) points = [ [0., 0., 0.], # p1 [10., 0., 0.], [10., 20., 0.], [5., 20., 0.], ] caero1c.set_points(points) caero1c.get_points() str(caero1c.write_card()) nspan = None lspan = None caero1h = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=None, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(ValueError): caero1h.validate() nspan = 5 lspan = 5 caero1i = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(ValueError): caero1i.validate() nspan = 5 nchord = None lchord = None caero1j = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(ValueError): caero1j.validate() nchord = 10 lchord = 10 caero1k = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(ValueError): caero1k.validate() lspan = None lchord = None nspan = 10 nchord = 10 p1 = [0., 0., 0., 0.] caero1l = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(AssertionError): caero1l.validate() p1 = [0., 0., 0.] p4 = [1., 2., 3., 4.] caero1m = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') with self.assertRaises(AssertionError): caero1m.validate() p4 = [1., 2., 3.] eid = 8 nspan = 1 nchord = 1 lchord = None lspan = None caero1_1by1 = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') caero1_1by1.validate() assert caero1_1by1.shape == (1, 1) caero1_1by1.get_points() p1 = [0., 0., 0.] p4 = [0., 10., 0.] x12 = 1. x43 = 1. eid = 1 nspan = 3 nchord = 2 lchord = None lspan = None caero1_2x3 = CAERO1(eid, pid, igid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, nchord=nchord, lchord=lchord, comment='caero1') caero1_2x3.validate() assert caero1_2x3.shape == (2, 3), caero1_2x3.shape caero1_2x3._init_ids() points = caero1_2x3.get_points() assert len(points) == 4 save_load_deck(model) def test_spline1(self): """checks the SPLINE1 card""" eid = 1 caero_id = 100 box1 = 1 box2 = 10 setg = 42 spline = SPLINE1(eid, caero_id, box1, box2, setg, dz=0., method='IPS', usage='BOTH', nelements=10, melements=10, comment='$ spline1') spline.validate() spline.write_card(size=8, is_double=False) spline.raw_fields() log = SimpleLogger(level='warning') model = BDF(log=log) model.splines[eid] = spline pid = 10 igid = 1 p1 = [0., 0., 0.] p4 = [0., 10., 0.] x12 = 4. x43 = 3. cid = 1 caero1 = model.add_caero1(caero_id, pid, igid, p1, x12, p4, x43, cp=cid, nspan=5, lspan=0, nchord=6, lchord=0, comment='') caero_body_ids = [3] unused_paero = model.add_paero1(pid, caero_body_ids=caero_body_ids, comment='') origin = None zaxis = None xzplane = None model.add_cord2r(cid, origin, zaxis, xzplane, rid=0, comment='') velocity = 0.0 cref = 1.0 rho_ref = 1.225 model.add_aero(velocity, cref, rho_ref, acsid=0, sym_xz=0, sym_xy=0, comment='') setg = 42 ids = [100, 101, 102] model.add_set1(setg, ids, is_skin=False, comment='') model.add_grid(100, [0., 0., 0.]) model.add_grid(101, [0., 0., 0.]) model.add_grid(102, [0., 0., 0.]) #------------------ # CAERO2 eid = 3 caero = 3 id1 = 21 id2 = 35 setg = 43 spline2 = model.add_spline2(eid, caero, id1, id2, setg, dz=0.0, dtor=1.0, cid=1, dthx=None, dthy=None, usage='BOTH', comment='') spline2.validate() pid = 3 caero2 = model.add_caero2(caero, pid, igid, p1, x12, cp=1, nsb=4, nint=4, lsb=0, lint=0, comment='') caero2.validate() orient = 'ZY' width = 1.0 AR = 2.0 thi = [] thn = [] paero2 = model.add_paero2(pid, orient, width, AR, thi, thn, lrsb=10, lrib=None, lth=None, comment='') paero2.validate() sid = 10 Di = [0., 1.0, 2.0, 3.0, 0.] aefact = model.add_aefact(sid, Di, comment='') aefact.validate() model.add_set1(setg, ids, is_skin=False, comment='') model.cross_reference(model) caero1.panel_points_elements() caero2.get_points_elements_3d() save_load_deck(model) def test_spline2(self): """checks the SPLINE2 card""" #+---------+------+-------+-------+-------+------+----+------+-----+ #| SPLINE2 | EID | CAERO | ID1 | ID2 | SETG | DZ | DTOR | CID | #| | DTHX | DTHY | None | USAGE | | | | | #+---------+------+-------+-------+-------+------+----+------+-----+ #| SPLINE2 | 5 | 8 | 12 | 24 | 60 | 0. | 1.0 | 3 | #| | 1. | | | | | | | | #+---------+------+-------+-------+-------+------+----+------+-----+ cid = 3 origin = [0., 0., 0.] xaxis = [1., 0., 0.] xyplane = [0., 1., 0.] coord = CORD2R.add_axes(cid, rid=0, origin=origin, xaxis=xaxis, yaxis=None, zaxis=None, xyplane=xyplane, yzplane=None, xzplane=None, comment='comment') eid = 8 pid = 10 cp = 0 nsb = 4 nint = 2 lsb = None lint = None p1 = [0., 0., 0.] x12 = 42. igid = None caero2 = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=nsb, nint=nint, lsb=lsb, lint=lint, comment='this is a caero') #caero = CAERO2(eid, pid, cp, nsb, nint, lsb, lint, igid, p1, x12) sid = 60 ids = [7, 13] set_obj = SET1(sid, ids, is_skin=False, comment='set card') log = SimpleLogger(level='warning') model = BDF(log=log) model._add_coord_object(coord) model._add_caero_object(caero2) model._add_set_object(set_obj) model.add_grid(7, [7., 0., 0.], cp=0, cd=0, ps='', seid=0, comment='') model.add_grid(13, [13., 0., 0.], cp=0, cd=0, ps='', seid=0, comment='') #model._add_node_object(grid7) #model._add_node_object(grid13) eid = 5 caero = 8 id1 = 12 id2 = 24 setg = 60 dz = 0. dtor = 1.0 cid = 3 dthx = 1. dthy = None usage = None card = ['SPLINE2', eid, caero, id1, id2, setg, dz, dtor, cid, dthx, dthy, None, usage] bdf_card = BDFCard(card, has_none=True) spline_a = SPLINE2.add_card(bdf_card, comment='spline2_a') spline_a.write_card() spline_a.raw_fields() spline_b = SPLINE2(eid, caero, id1, id2, setg, dz, dtor, cid, dthx, dthy, usage, comment='spline2_b') spline_b.validate() spline_b.write_card() spline_b.cross_reference(model) spline_b.write_card() #model.cross_reference() #model.uncross_reference() #model.safe_cross_reference() def test_caero2_1(self): """checks the CAERO2/PAERO2/AERO/AEFACT card""" log = SimpleLogger(level='warning') model = BDF(log=log) eid = 1 pid = 10 cp = 4 nsb = 0 nint = 0 lsb = 3 lint = 6 igid = 0 p1 = [0., 1., 2.] x12 = 10. CAERO2.add_card(BDFCard(['CAERO2', eid, pid, cp, nsb, nint, lsb, lint, igid, ] + p1 + [x12])) #--------------- # nsb=lsb=None=0 caero2b = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=None, nint=None, lsb=None, lint=6, comment='this is a caero') with self.assertRaises(ValueError): caero2b.validate() # nint=lint=None=0 caero2c = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=3, nint=None, lsb=3, lint=None, comment='this is a caero') with self.assertRaises(ValueError): caero2c.validate() # they're all bad? caero2e = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=0, nint=0, lsb=0, lint=0, comment='this is a caero') with self.assertRaises(ValueError): caero2e.validate() #--------------- caero2f = model.add_caero2(eid, pid, igid, p1, x12, cp=4, nsb=0, nint=0, lsb=3, lint=6, comment='this is a caero') eid = 200 caero2g = model.add_caero2(eid, pid, igid, p1, x12, cp=4, nsb=10, nint=7, lsb=0, lint=0, comment='this is a caero') caero2f.validate() caero2g.validate() #str(caero2f.write_card()) aefact = AEFACT.add_card(BDFCard(['AEFACT', lint, 0., 1., 2., 3., 4., 5.])) aefact = AEFACT(lint, [0., 1., 2., 3., 4., 5.]) aefact.validate() aefact.write_card() model.aefacts[lint] = aefact orient = 'Z' width = 10. AR = 2. lrsb = 0 lrib = 3 lth1 = 0 lth2 = 0 lth = [lth1, lth2] thi = [0] thn = [0] paero2a = PAERO2.add_card(BDFCard(['PAERO2', pid, orient, width, AR, lrsb, lrib] + lth + thi + thn), comment='paero2') paero2a.validate() paero2b = model.add_paero2(pid, orient, width, AR, thi, thn, lrsb=0, lrib=3, lth=lth, comment='paero2') pid = 42 paero2c = model.add_paero2(pid, orient, width, AR, thi, thn, lrsb=None, lrib=None, lth=None, comment='') paero2b.validate() paero2c.validate() paero2b.write_card() #model.paeros[pid] = paero coord = CORD2R.add_card(BDFCard(['CORD2R', cp, 0, 0., 0., 0., 0., 0., 1., 1., 0., 0.])) coord = CORD2R(cp, rid=0, origin=None, zaxis=None, xzplane=None, comment='') coord.validate() model.coords[cp] = coord aefact = AEFACT(lrib, [0., 1., 2., 3., 4., 5.]) aefact.validate() model.aefacts[lrib] = aefact acsid = 0 velocity = None cref = 1.0 rho_ref = 1.0 aero = AERO.add_card(BDFCard(['AERO', acsid, velocity, cref, rho_ref])) aero = AERO(velocity, cref, rho_ref, acsid=acsid, comment='aero') aero.validate() aero.write_card() model.aero = aero model.cross_reference() model.write_bdf('aero.temp1') paero2b.raw_fields() caero2f.raw_fields() model.uncross_reference() model.write_bdf('aero.temp2') model.cross_reference() model.write_bdf('aero.temp3') caero2f.raw_fields() caero2f.get_points_elements_3d() caero2f.get_points() unused_xyz, unused_elems = caero2f.get_points_elements_3d() caero2g.get_points() caero2g.get_points_elements_3d() unused_xyz, unused_elems = caero2g.get_points_elements_3d() model.uncross_reference() model.safe_cross_reference() model.uncross_reference() model.write_bdf('aero.temp4') model.cross_reference() model.write_bdf('aero.temp5') os.remove('aero.temp1') os.remove('aero.temp2') os.remove('aero.temp3') os.remove('aero.temp4') os.remove('aero.temp5') nsb = 4 nint = 2 lsb = None lint = None caero2 = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=nsb, nint=nint, lsb=lsb, lint=lint, comment='this is a caero') caero2.validate() caero2.cross_reference(model) caero2.write_card() #model.cross_reference() model.uncross_reference() model.safe_cross_reference() caero2_set_points = CAERO2(eid, pid, igid, p1, x12, cp=cp, nsb=nsb, nint=nint, lsb=lsb, lint=lint) p1 = [0., 0., 0.] p2 = [1., 2., 3.] caero2_set_points.set_points([p1, p2]) assert np.allclose(caero2_set_points.x12, 1.), caero2_set_points.x12 save_load_deck(model) def test_caero3_1(self): """checks the CAERO3/PAERO3""" eid = 100 pid = 200 cp = 4 list_w = 5 list_c1 = 6 list_c2 = 7 p1 = [0., 0., 0.] x12 = 10. p4 = [5., 10., 0.] x43 = 3. nbox = 10 ncontrol_surfaces = 0 x = [] y = [] log = SimpleLogger(level='warning') model = BDF(log=log) coord = CORD2R.add_card(BDFCard(['CORD2R', cp, 0, 0., 0., 0., 0., 0., 1., 1., 0., 0.])) origin = None zaxis = None xzplane = None model.add_cord2r(cp, origin, zaxis, xzplane, rid=0, comment='cord2r') coord.validate() model.coords[cp] = coord paero3 = model.add_paero3(pid, nbox, ncontrol_surfaces, x, y, comment='paero3') paero3.validate() paero3.raw_fields() card = ['CAERO3', 2000, 20001, 0, 22, 33, None, None, None, 1.0, 0.0, 0., 100., 17., 130., 0., 100.] bdf_card = BDFCard(card, has_none=True) caero3a = CAERO3.add_card(bdf_card, comment='msg') caero3a.validate() caero3a.write_card() caero3a.raw_fields() caero3b = model.add_caero3(eid, pid, list_w, p1, x12, p4, x43, cp=cp, list_c1=list_c1, list_c2=list_c2, comment='caero3') caero3b.validate() aefact_sid = list_w Di = [0., 0.5, 1.] model.add_aefact(aefact_sid, Di, comment='aefact') aefact_sid = list_c1 model.add_aefact(aefact_sid, Di, comment='aefact2') aefact_sid = list_c2 model.add_aefact(aefact_sid, Di, comment='aefact2') velocity = 100. cref = 1.0 rho_ref = 1.0 model.add_aero(velocity, cref, rho_ref) model.validate() caero3b.write_card() caero3b.cross_reference(model) caero3b.write_card() caero3a.raw_fields() caero3b.uncross_reference() caero3b.write_card() caero3a.raw_fields() xref_errors = defaultdict(list) caero3b.safe_cross_reference(model, xref_errors) npoints_expected = 33 nelements_expected = 20 npoints, nelements = caero3b.get_npanel_points_elements() assert npoints == npoints_expected assert nelements == nelements_expected caero3b.get_points() caero3b.panel_points_elements() if IS_MATPLOTLIB: fig, ax = _setup_aero_plot() caero3b.plot(ax) fig.show() model.get_bdf_stats() save_load_deck(model, run_convert=True, run_mirror=False) def test_paero3(self): """checks the PAERO3""" # +--------+------+------+-------+------+-----+------+------+------+ # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | # +========+======+======+=======+======+=====+======+======+======+ # | PAERO3 | PID | NBOX | NCTRL | | X5 | Y5 | X6 | Y6 | # +--------+------+------+-------+------+-----+------+------+------+ # | | X7 | Y7 | X8 | Y8 | X9 | Y9 | X10 | Y10 | # +--------+------+------+-------+------+-----+------+------+------+ # | | X11 | Y11 | X12 | Y12 | | | | | # +--------+------+------+-------+------+-----+------+------+------+ # | PAERO3 | 2001 | 15 | 1 | | 0. | 65. | | | # +--------+------+------+-------+------+-----+------+------+------+ # | | 78. | 65. | 108. | 65. | 82. | 97.5 | 112. | 97.5 | # +--------+------+------+-------+------+-----+------+------+------+ # | | 86. | 130. | 116. | 130. | | | | | # +--------+------+------+-------+------+-----+------+------+------+ fields = ['PAERO3', 2001, 15, 1, None, 0., 65., None, None, 78., 65., 108., 65., 82., 97.5, 112., 97.5, 86., 130., 116., 130.] log = SimpleLogger(level='warning') model = BDF(log=log) model.add_card(fields, fields[0]) paero = model.paeros[2001] assert paero.npoints == 8, paero.npoints paero.raw_fields() def test_paero4(self): """checks the PAERO4""" # +--------+------+-------+--------+-------+-------+--------+--------+--------+ # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | # +========+======+=======+========+=======+=======+========+========+========+ # | PAERO4 | PID | CLA | LCLA | CIRC | LCIRC | DOC1 | CAOC1 | GAPOC1 | # +--------+------+-------+--------+-------+-------+--------+--------+--------+ # | | DOC2 | CAOC2 | GAPOC2 | DOC3 | CAOC3 | GAPOC3 | etc. | | # +--------+------+-------+--------+-------+-------+--------+--------+--------+ # | PAERO4 | 6001 | 1 | 501 | 0 | 0 | 0.0 | 0.0 | 0.0 | # +--------+------+-------+--------+-------+-------+--------+--------+--------+ # | | 0.50 | 0.25 | 0.02 | 0.53 | 0.24 | 0.0 | | | # +--------+------+-------+--------+-------+-------+--------+--------+--------+ pid = 6001 cla = 1 lcla = 501 circ = 0 lcirc = 0 dcg1 = [0., 0., 0.] dcg2 = [0.5, 0.25, 0.02] dcg3 = [0.53, 0.24, 0.] card = ['PAERO4', pid, cla, lcla, circ, lcirc] + dcg1 + dcg2 + dcg3 bdf_card = BDFCard(card, has_none=True) paero4 = PAERO4.add_card(bdf_card, comment='msg') str(paero4) paero4.cross_reference(None) def test_caero4_1(self): """checks the CAERO4/PAERO4""" log = SimpleLogger(level='warning') model = BDF(log=log) pid = 1001 docs = [] caocs = [] gapocs = [] paero4 = model.add_paero4(pid, docs, caocs, gapocs, cla=0, lcla=0, circ=0, lcirc=0, comment='paero4') paero4.validate() paero4.raw_fields() x1 = 0. y1 = 0. z1 = 0. x12 = 100. x4 = 50. y4 = 0. z4 = 0. x43 = 10. eid = 1000 nspan = 4 # number of stations lspan = 0 # AEFACT cp = 0 card = ['CAERO4', eid, pid, cp, nspan, lspan, None, None, None, x1, y1, z1, x12, x4, y4, z4, x43] bdf_card = BDFCard(card, has_none=True) caero4a = CAERO4.add_card(bdf_card, comment='msg') caero4a.validate() npoints, nelements = caero4a.get_npanel_points_elements() assert npoints == 10, npoints assert nelements == 4, nelements caero4a.write_card() caero4a.raw_fields() #caero4a.cross_reference(model) #points, elements = caero4a.panel_points_elements() #del points, elements p1 = [x1, y1, z1] p4 = [x4, y4, z4] caero4b = model.add_caero4(eid, pid, p1, x12, p4, x43, cp=cp, nspan=nspan, lspan=lspan, comment='caero4b') caero4b.validate() caero4b.write_card() caero4b.raw_fields() caero4b.cross_reference(model) caero4b.write_card() caero4b.raw_fields() points, elements = caero4b.panel_points_elements() del points, elements p1, unused_p2, unused_p3, p4 = caero4b.get_points() caero4c = CAERO4(eid, pid, p1, x12, p4, x43, cp=0, nspan=0, lspan=0, comment='caero4c') with self.assertRaises(RuntimeError): # nspan=lspan=0 caero4c.validate() #model.cross_reference() model.uncross_reference() #model.safe_cross_reference() bdf_filename = StringIO() model.write_bdf(bdf_filename, close=False) bdf_filename.seek(0) model2 = read_bdf(bdf_filename, xref=False, punch=True, debug=False) model.safe_cross_reference() model2.safe_cross_reference() def test_caero5_1(self): """checks the CAERO5/PAERO5""" log = SimpleLogger(level='warning') model = BDF(log=log) pid = 6001 caoci = [0., 0.5, 1.0] paero5 = model.add_paero5(pid, caoci, nalpha=0, lalpha=0, nxis=0, lxis=0, ntaus=0, ltaus=0, comment='paero5') paero5.validate() #| PAERO5 | PID | NALPHA | LALPHA | NXIS | LXIS | NTAUS | LTAUS | #+--------+-------+--------+--------+---------+-------+-------+-------+ #| | CAOC1 | CAOC2 | CAOC3 | CAOC4 | CAOC5 | | | nalpha = 0 lalpha = 0 nxis = 0 lxis = 0 ntaus = 0 ltaus = 0 card = ['PAERO5', pid, nalpha, lalpha, nxis, lxis, ntaus, ltaus, ] + caoci model = BDF(debug=False) model.add_card(card, card[0], comment='', is_list=True, has_none=True) paero5 = model.paeros[pid] paero5.raw_fields() model = BDF(debug=None) paero5 = model.add_paero5(pid, caoci, nalpha=0, lalpha=0, nxis=0, lxis=0, ntaus=0, ltaus=0, comment='paero5') paero5.validate() eid = 6000 x1 = 0. y1 = 0. z1 = 0. x12 = 1. x4 = 0.2 y4 = 1. z4 = 0. x43 = 0.8 p1 = [x1, y1, z1] p4 = [x4, y4, z4] caero5 = model.add_caero5(eid, pid, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, ntheory=0, nthick=0, comment='msg') model.validate() lxis = 43 paero5.lxis = lxis aefact_sid = lxis Di = [0., 0.5, 1.] model.add_aefact(aefact_sid, Di, comment='aefact') ltaus = 44 paero5.ltaus = ltaus aefact_sid = ltaus Di = [0., 0.5, 1.] unused_aefact = model.add_aefact(aefact_sid, Di, comment='aefact2') #caero5.cross_reference(model) model.cross_reference() unused_npoints, unused_nelements = caero5.get_npanel_points_elements() unused_points, unused_elements = caero5.panel_points_elements() caero5.write_card() #caero5.raw_fields() model.uncross_reference() caero5.write_card() model.cross_reference() model.uncross_reference() #model.safe_cross_reference() bdf_filename = StringIO() model.write_bdf(bdf_filename, close=False) bdf_filename.seek(0) read_bdf(bdf_filename, xref=False, punch=True, debug=False) model.safe_cross_reference() save_load_deck(model, run_renumber=False, run_test_bdf=False) #caero5.raw_fields() # def test_paero1_1(self): # def test_paero2_1(self): # def test_paero3_1(self): # def test_paero4_1(self): # def test_paero5_1(self): # def test_spline1_1(self): # def test_spline2_1(self): def test_spline3(self): """checks the SPLINE3 card""" log = SimpleLogger(level='warning') model = BDF(log=log) eid = 100 pid = 10 igid = 1 p1 = [0., 0., 0.] x12 = x43 = 3. p4 = [1., 11., 1.] caero = eid box_id = 42 components = 3 nids = 5 displacement_components = 3 coeffs = 1.0 model.add_caero1(eid, pid, igid, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, nchord=5, lchord=0, comment='') model.add_paero1(pid, caero_body_ids=None, comment='') model.add_grid(5, [0., 0., 0.]) spline_id = 101 spline3 = model.add_spline3( spline_id, caero, box_id, components, nids, displacement_components, coeffs, usage='BOTH', comment='spline3') spline3.validate() spline3.write_card() spline3.raw_fields() spline_id = 102 nids = [5, 6, 7] displacement_components = [3, 6] coeffs = [1.0, 2.0] spline3b = model.add_spline3( spline_id, caero, box_id, components, nids, displacement_components, coeffs, usage='failed', comment='spline3') cref = bref = sref = 1.0 model.add_aeros(cref, bref, sref) with self.assertRaises(RuntimeError): spline3b.validate() spline3b.usage = 'BOTH' spline3b.displacement_components.append(1) spline3b.coeffs.append(0.1) spline3b.validate() del model.splines[spline_id] model.validate() #spline3.cross_reference(model) model.cross_reference() spline3.write_card() spline3.raw_fields() save_load_deck(model, run_renumber=False) spline3b.eid = 1000 spline3b.nodes.append(42) spline3b.displacement_components.append(4) spline3b.coeffs.append(0.5) spline3b.validate() spline3b.comment = '' lines = spline3b.rstrip().split('\n') model.add_card(lines, 'SPLINE3', is_list=False) spline = model.splines[1000] assert spline.node_ids == [5, 6, 7, 42], spline.node_ids #spline3.raw_fields() def test_spline4(self): """checks the SPLINE4 card""" log = SimpleLogger(level='warning') model = BDF(log=log) eid = 1 caero = 10 aelist = 11 setg = 12 dz = 0. method = 'TPS' usage = 'FORCE' nelements = 4 melements = 5 spline = model.add_spline4(eid, caero, aelist, setg, dz, method, usage, nelements, melements, comment='spline4') spline.raw_fields() elements = [1, 2, 3, 4, 5, 6, 7, 8, 9] model.add_aelist(aelist, elements) paero = 20 igid = 42 p1 = [0., 0., 0.] x12 = 10. p4 = [0., 10., 0.] x43 = 3. model.add_caero1(caero, paero, igid, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, nchord=10, lchord=0, comment='') model.add_paero1(paero) velocity = None cref = 1.0 rho_ref = 1.0 model.add_aero(velocity, cref, rho_ref, comment='') model.add_set1(setg, [1, 2, 3]) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) eid = 2 setg = 13 ids = [1, 2, 3] model.add_set1(setg, ids) model.add_spline4(eid, caero, aelist, setg, dz, method, usage, nelements, melements, comment='spline4') spline = model.splines[eid] del model.splines[eid] spline.cross_reference(model) model.pop_parse_errors() model.pop_xref_errors() model.validate() save_load_deck(model) def test_spline5(self): """checks the SPLINE5 card""" log = SimpleLogger(level='warning') model = BDF(log=log) eid = 1 caero = 10 aelist = 11 setg = 12 thx = 7. thy = 8. #dz = 0. #method = 'cat' #usage = 'dog' #nelements = 4 #melements = 5 #dtor = 47 spline = model.add_spline5(eid, caero, aelist, setg, thx, thy, dz=0., dtor=1.0, cid=0, usage='BOTH', method='BEAM', ftype='WF2', rcore=None, comment='spline5') spline.raw_fields() elements = [1, 2, 3, 4, 5, 6, 7, 8, 9] model.add_aelist(aelist, elements) paero = 20 igid = 42 p1 = [0., 0., 0.] x12 = 10. p4 = [0., 10., 0.] x43 = 3. model.add_caero1(caero, paero, igid, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, nchord=10, lchord=0, comment='') model.add_paero1(paero) velocity = None cref = 1.0 rho_ref = 1.0 model.add_aero(velocity, cref, rho_ref, comment='') model.add_set1(setg, [1, 2, 3]) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) model.pop_parse_errors() model.pop_xref_errors() model.validate() model.cross_reference() model.uncross_reference() model.safe_cross_reference() save_load_deck(model) def test_aesurf_1(self): """checks the AESURF/AELIST cards""" aesid = 10 label = 'FLAP' cid1 = 0 aelist_id1 = 10 cid2 = None alid2 = None aesurf1 = AESURF(aesid, label, cid1, aelist_id1, cid2, alid2, #eff, ldw, #crefc, crefs, pllim, pulim, #hmllim, hmulim, tqllim, tqulim, comment='aesurf comment') aesurf2 = AESURF.add_card(BDFCard( [ 'AESURF', aesid, label, cid1, aelist_id1, cid2, alid2, #eff, ldw, #crefc, crefs, pllim, pulim, #hmllim, hmulim, tqllim, tqulim, ]), comment='aesurf comment') #assert aesurf1 == aesurf2 cid2 = 1 coord = CORD2R(cid2, rid=0, origin=[0., 0., 0.], zaxis=[1., 0., 0.], xzplane=[0., 0., 1.], comment='') aelist_id1 = 10 aelist_id2 = 20 aesurf2 = AESURF.add_card(BDFCard( [ 'AESURF', aesid, label, cid1, aelist_id1, cid2, aelist_id2, #eff, ldw, #crefc, crefs, pllim, pulim, #hmllim, hmulim, tqllim, tqulim, ]), comment='aesurf comment') aesurf1.validate() aesurf2.validate() log = SimpleLogger(level='warning') model = BDF(log=log) model._add_coord_object(coord) model._add_aesurf_object(aesurf1) elements = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] unused_aelist = model.add_aelist(aelist_id1, elements, comment='') elements = [11, 22, 33, 44, 55, 66, 77, 88, 99] unused_aelist = model.add_aelist(aelist_id2, elements, comment='') aesid += 1 model.add_aesurf( aesid, label, cid1, aelist_id2, cid2=None, alid2=None, eff=1.0, ldw='LDW', crefc=1.0, crefs=1.2, pllim=-np.pi/2, pulim=np.pi/2., hmllim=-42., hmulim=42., # hinge moment limits in force/disp tqllim=10, tqulim=11, # TABLEDi deflection limits vs. dynamic pressure ) # lower table_id = 10 x = np.linspace(0.1, 1.) y = np.log(np.linspace(1.1, 2.))[::-1] model.add_tabled1(table_id, x, y, xaxis='LINEAR', yaxis='LINEAR', extrap=0, comment='') # upper table_id = 11 y2 = -y model.add_tabled1(table_id, x, y2, xaxis='LINEAR', yaxis='LINEAR', extrap=0, comment='') aesurf1.cross_reference(model) aesurf1.write_card() aesurf1.raw_fields() aesurf1.uncross_reference() aesurf1.write_card() aesurf1.cross_reference(model) aesurf1.raw_fields() aesurf2.cross_reference(model) aesurf2.write_card() aesurf2.raw_fields() aesurf2.uncross_reference() aesurf2.write_card() aesurf2.cross_reference(model) aesurf2.raw_fields() model.cross_reference() model.uncross_reference() model.safe_cross_reference() save_load_deck(model) def test_flfact(self): """checks the FLFACT card""" #List[f1, THRU, fnf, nf, fmid] #f1 : float #first value #THRU : str #the word THRU #nf : float #second value #fmid : float; default=(f1 + fnf) / 2. #the mid point to bias the array sid = 42 factors = [0.200, 'THRU', 0.100, 11, 0.1333] flfact = FLFACT(sid, factors) assert len(flfact.factors) == 11 #print(flfact) factors = [0.200, 'THRU', 0.100, 11] flfact = FLFACT(sid, factors) assert len(flfact.factors) == 11 def test_flutter(self): """checks the FLUTTER/FLFACT cards""" log = SimpleLogger(level='warning') model = BDF(log=log) sid = 75 method = 'PKNL' idensity = 76 imach = 77 ivelocity = 78 # density, mach, velocity flutter1 = model.add_flutter(sid, method, idensity, imach, ivelocity, imethod='L', nvalue=None, omax=None, epsilon=1.0e-3) flutter2 = FLUTTER.add_card(BDFCard(['FLUTTER', sid, method, idensity, imach, ivelocity]), comment='flutter card') assert flutter2.headers == ['density', 'mach', 'velocity'], flutter2.headers assert flutter1.get_field(1) == sid, flutter1.get_field(1) assert flutter1.get_field(2) == 'PKNL', flutter1.get_field(2) assert flutter1.get_field(3) == idensity, flutter1.get_field(3) assert flutter1.get_field(4) == imach, flutter1.get_field(4) assert flutter1.get_field(5) == ivelocity, flutter1.get_field(5) assert flutter1.get_field(6) == 'L', flutter1.get_field(6) assert flutter1.get_field(7) is None, flutter1.get_field(7) assert flutter1.get_field(8) == 1.0e-3, flutter1.get_field(8) with self.assertRaises(KeyError): assert flutter1.get_field(9) == 1.0e-3, flutter1.get_field(9) flutter1.validate() flutter1.write_card() flutter2.validate() flutter2.write_card() densities = np.linspace(0., 1.) unused_density = model.add_flfact(idensity, densities) machs = np.linspace(0.7, 0.8) mach = FLFACT(imach, machs) mach = FLFACT.add_card(BDFCard(['FLFACT', imach] + list(machs)), comment='flfact card') mach2 = model.add_flfact(imach, machs, comment='flfact') mach.write_card(size=16) mach2.write_card(size=8) velocities = np.linspace(3., 4.) velocity = model.add_flfact(ivelocity, velocities) velocity.validate() velocity.write_card() assert velocity.min() == 3., velocities assert velocity.max() == 4., velocities model.flfacts[ivelocity] = velocity ikfreq = 79 kfreqs = np.linspace(0.1, 0.2) card = ['FLFACT', ikfreq] + list(kfreqs) model.add_card(card, card[0]) kfreq = model.FLFACT(ikfreq) kfreq.validate() kfreq.write_card() assert kfreq.min() == 0.1, kfreqs assert kfreq.max() == 0.2, kfreqs model.flfacts[ikfreq] = kfreq ikfreq2 = 80 card = ['FLFACT', ikfreq2, 10., 'THRU', 20., 11] model.add_card(card, card[0]) kfreq = model.FLFACT(ikfreq2) kfreq.validate() kfreq.write_card() assert kfreq.min() == 10., 'min=%s; card=%s factors=%s' % (kfreq.min(), card, kfreq.factors) assert kfreq.max() == 20., 'max=%s; card=%s factors=%s' % (kfreq.max(), card, kfreq.factors) model.flfacts[ikfreq] = kfreq ikfreq3 = 81 factors = [10., 'THRU', 20., 10] kfreq = FLFACT(ikfreq3, factors) kfreq.validate() kfreq.write_card() assert kfreq.min() == 10., 'min=%s; factors=%s' % (kfreq.min(), factors) assert kfreq.max() == 20., 'max=%s; factors=%s' % (kfreq.max(), factors) model.flfacts[ikfreq] = kfreq kfreq.validate() ikfreq4 = 82 kfreq2 = model.add_flfact(ikfreq4, []) with self.assertRaises(ValueError): kfreq2.validate() kfreq2.factors = [1.] kfreq2.validate() kfreq2.write_card() # density, mach, rfreq card = ['FLUTTER', 85, 'KE', idensity, imach, ikfreq] model.add_card(card, card[0]) #model.pop_parse_errors() model.cross_reference() model.pop_xref_errors() flutter = model.Flutter(85) assert flutter.headers == ['density', 'mach', 'reduced_frequency'], flutter.headers flutter.write_card() flutter.raw_fields() model.uncross_reference() model.safe_cross_reference() save_load_deck(model) def test_flutter_2(self): """validates the FLUTTER card""" method = 'TEST' imethod = 'TEST2' sid = 1 idensity = 10 imach = 20 ivelocity = 30 flutter = FLUTTER(sid, method, idensity, imach, ivelocity, imethod=imethod, nvalue=None, omax=None, epsilon=1.0e-3) with self.assertRaises(ValueError): flutter.validate() def test_flutter_3(self): """tests the flutter sweeps""" alts = np.linspace(-10000., 50000.)[::-1] log = SimpleLogger(level='warning') model = BDF(log=log) sid = 70 method = 'PKNL' density = 71 mach = 72 reduced_freq_velocity = 73 flutter = model.add_flutter(sid, method, density, mach, reduced_freq_velocity) flutter.make_flfacts_alt_sweep(model, 0.7, alts, eas_limit=1000.0, alt_units=u'ft', velocity_units=u'in/s', density_units=u'slinch/in^3', eas_units=u'ft/s') sid = 80 density = 81 mach = 82 reduced_freq_velocity = 83 flutter = model.add_flutter(sid, method, density, mach, reduced_freq_velocity) alt = 10000. machs = np.arange(0.1, 0.8) flutter.make_flfacts_mach_sweep(model, alt, machs, eas_limit=1000., alt_units='m', velocity_units='m/s', density_units='kg/m^3', eas_units='m/s') def test_mkaero1(self): """checks the MKAERO1 card""" machs = [0.5, 0.75] reduced_freqs = [0.1, 0.2, 0.3, 0.4] mkaero = MKAERO1(machs, reduced_freqs, comment='mkaero') mkaero.validate() mkaero.write_card() mkaero = MKAERO1.add_card(BDFCard( ['MKAERO', 0.5, 0.75, None, None, None, None, None, None, 0.1, 0.2, 0.3, 0.4], )) machs = [0.5, 0.75] reduced_freqs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1] mkaero = MKAERO1(machs, reduced_freqs, comment='mkaero') mkaero.validate() msg = mkaero.write_card() lines = msg.strip().split('\n') expected = [ '$mkaero', 'MKAERO1 .5 .75', ' .1 .2 .3 .4 .5 .6 .7 .8', 'MKAERO1 .5 .75', ' .9 1. 1.1', ] for line1, line2 in zip(lines, expected): assert line1 == line2, '\nline=%r\nexpected=%r'% (line1, line2) expected2 = [ '$mkaero1', 'MKAERO1 .1 .2 .3 .4 .5 .6 .7 .8', ' .01 .02 .03', 'MKAERO1 .9', ' .01 .02 .03', ] # ---------------------------------------------------------------------- model = BDF(debug=False) machs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] reduced_freqs = [0.01, 0.02, 0.03] mkaero = model.add_mkaero1(machs, reduced_freqs, comment='mkaero1') mkaero.raw_fields() msg = mkaero.write_card() lines = msg.strip().split('\n') for line1, line2 in zip(lines, expected2): msg = '\nline =%r\n' % str(line1) msg += 'expected=%r\n%s' % (str(line2), msg) assert line1 == line2, msg mkaerob = MKAERO1([], reduced_freqs) with self.assertRaises(ValueError): mkaerob.validate() with self.assertRaises(ValueError): mkaerob.write_card() mkaeroc = MKAERO1([0.1, 0.2], []) with self.assertRaises(ValueError): mkaeroc.validate() with self.assertRaises(ValueError): mkaeroc.write_card() machs = [0.01, 0.02, 0.03] reduced_freqs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] mkaero = model.add_mkaero1(machs, reduced_freqs, comment='mkaero1') machs = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09] reduced_freqs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] mkaero = model.add_mkaero1(machs, reduced_freqs, comment='mkaero1') machs_spike = [0.01] reduced_freqs_spike = [0.1, 0.2] mkaero = model.add_mkaero1(machs_spike, reduced_freqs_spike, comment='mkaero1') # TODO: this fails...because it's linked to the first card somehow #mkaerod = model.add_mkaero1(machs, []) #with self.assertRaises(ValueError): #mkaerod.write_card() save_load_deck(model) def test_mkaero2(self): """checks the MKAERO2 card""" log = SimpleLogger(level='warning') model = BDF(log=log) machs = [0.5, 0.75, 0.8] reduced_freqs = [0.1, 0.2, 0.3] mkaero = model.add_mkaero2(machs, reduced_freqs, comment='mkaero2') mkaero.validate() mkaero.write_card() machs = [0.5, 0.75] reduced_freqs = [0.1, 0.2] mkaero = model.add_mkaero2(machs, reduced_freqs, comment='mkaero2') mkaero.validate() mkaero.write_card() mkaero.raw_fields() mkaero = MKAERO2.add_card(BDFCard(['MKAERO2'] + machs + reduced_freqs), comment='mkaero2') mkaero.validate() mkaero.write_card() # at least one mach machs = [] reduced_freqs = [42.] mkaero = MKAERO2(machs, reduced_freqs) with self.assertRaises(ValueError): mkaero.validate() # at least one rfreq machs = [0.8] reduced_freqs = [] mkaero = MKAERO2(machs, reduced_freqs) with self.assertRaises(ValueError): mkaero.validate() # should be the same length machs = [0.8] reduced_freqs = [42., 43.] mkaero = MKAERO2(machs, reduced_freqs) with self.assertRaises(ValueError): mkaero.validate() # split the write card method machs = [0.1, 0.2, 0.3, 0.4, 0.5] reduced_freqs = [1., 2., 3., 4., 5.] mkaero = MKAERO2(machs, reduced_freqs) mkaero.validate() mkaero.write_card() mkaerob = model.add_mkaero2([], reduced_freqs) with self.assertRaises(ValueError): mkaerob.validate() with self.assertRaises(ValueError): mkaerob.write_card() mkaeroc = model.add_mkaero2([0.1, 0.2], []) with self.assertRaises(ValueError): mkaeroc.validate() with self.assertRaises(ValueError): mkaeroc.write_card() mkaeroc = model.add_mkaero2([], []) with self.assertRaises(ValueError): mkaeroc.validate() with self.assertRaises(ValueError): mkaeroc.write_card() def test_diverg(self): """checks the DIVERG card""" log = SimpleLogger(level='warning') model = BDF(log=log) sid = 100 nroots = 21 machs = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] diverg = DIVERG(sid, nroots, machs, comment='divergence') diverg.validate() diverg.write_card() diverg = model.add_card(['DIVERG', sid, nroots] + machs, 'DIVERG', comment='divergence') model.validate() save_load_deck(model) #diverg.validate() #diverg.write_card() def test_trim_01(self): """checks the TRIM card""" log = SimpleLogger(level='warning') model = BDF(log=log) #model.add_aecompl sid = 100 mach = 0.75 q = 100. labels = ['ALPHA', 'ALPHA'] uxs = [10., 20.] trim1 = TRIM(sid, mach, q, labels, uxs) trim2 = TRIM2(sid+1, mach, q, labels, uxs) with self.assertRaises(RuntimeError): trim1.validate() with self.assertRaises(RuntimeError): trim2.validate() labels = ['ALPHA'] uxs = [10., 20.] trim1 = TRIM(sid, mach, q, labels, uxs) trim2 = TRIM2(sid, mach, q, labels, uxs) with self.assertRaises(RuntimeError): trim1.validate() with self.assertRaises(RuntimeError): trim2.validate() labels = ['ALPHA', 'BETA'] uxs = [10., 20.] trim1 = TRIM(sid, mach, q, labels, uxs) trim1.validate() trim1.write_card() trim2 = TRIM2(sid, mach, q, labels, uxs) trim2.validate() trim2.write_card() labels = ['ALPHA'] uxs = [10.] trim1 = TRIM(sid, mach, q, labels, uxs, aeqr=3.0, comment='') trim1.validate() trim1.write_card() trim2 = TRIM2(sid, mach, q, labels, uxs, aeqr=3.0, comment='') trim2.validate() trim2.write_card() labels = ['ALPHA', 'BETA'] uxs = [10., 20.] trim1 = TRIM(sid, mach, q, labels, uxs, aeqr=3.0, comment='') trim1.validate() trim1.write_card() trim2 = TRIM(sid, mach, q, labels, uxs, aeqr=3.0, comment='') trim2.validate() trim2.write_card() model.add_card(['TRIM', sid, mach, q, labels[0], uxs[0]], 'TRIM', comment='$ trim') model.validate() model._verify_bdf(xref=False) save_load_deck(model) def test_trim_02(self): """checks the TRIM card with a 2.5g pullup""" model = BDF() sid = 75 mach = 0.75 q = 100. labels = ['NZ'] uxs = [2.5] trim1 = model.add_trim(sid, mach, q, labels, uxs, aeqr=0.0, comment='') trim1.validate() trim2 = model.add_trim(sid+1, mach, q, labels, uxs, aeqr=0.0, trim_type=2, comment='') trim2.validate() def test_trim_03(self): """checks the TRIM card with a 2.5g pullup""" model = BDF(debug=None) sid = 75 mach = 0.75 q = 100. labels = ['URDD3', 'PITCH'] uxs = [2.5, 0.0] trim1a = model.add_trim(sid, mach, q, labels, uxs, aeqr=0.0, trim_type=1, comment='') # 75 trim2a = model.add_trim(sid+1, mach, q, labels, uxs, aeqr=0.0, trim_type=2, comment='') # 76 labels = ['URDD3', 'URDD5', 'PITCH'] uxs = [2.5, 0.0, 0.0] # good trim1b = model.add_trim(sid+2, mach, q, labels, uxs, aeqr=0.0, trim_type=1, comment='trim') # 77 trim2b = model.add_trim(sid+3, mach, q, labels, uxs, aeqr=0.0, trim_type=2, comment='trim') # 78 model.add_aestat(1, 'URDD3', comment='aestat') model.add_aestat(2, 'URDD5', comment='aestat') model.add_aestat(3, 'PITCH', comment='aestat') model.add_aestat(4, 'ANGLEA', comment='aestat') #+--------+---------+-----------------------------+ #| ANGLEA | ur (R2) | Angle of Attack | #| YAW | ur (R3) | Yaw Rate | #| SIDES | ur (R3) | Angle of Sideslip | #+--------+---------+-----------------------------+ #| ROLL | ůr (R1) | Roll Rate | #| PITCH | ůr (R2) | Pitch Rate | #+--------+---------+-----------------------------+ #| URDD1 | ür (T1) | Longitudinal (See Remark 3) | #| URDD2 | ür (T2) | Lateral | #| URDD3 | ür (T3) | Vertical | #| URDD4 | ür (R1) | Roll | #| URDD5 | ür (R2) | Pitch | #| URDD6 | ür (R3) | Yaw | #+--------+---------+-----------------------------+ cid1 = 0 label = 'DELTA' aesid = 5 alid1 = 6 model.add_aesurf(aesid, label, cid1, alid1) suport = model.add_suport([55, 66], ['3', '3']) str(suport) model.add_aelist(alid1, [100, 101, 102], comment='') model.add_grid(55, [0., 0., 0.]) model.add_grid(66, [0., 0., 0.]) #model.add_cord2r(cid, origin, zaxis, xzplane, rid=0, comment='') model.validate() # why doesn't this work? with self.assertRaises(RuntimeError): trim1a.verify_trim(model.suport, model.suport1, model.aestats, model.aeparams, model.aelinks, model.aesurf, xref=True) with self.assertRaises(RuntimeError): trim2a.verify_trim(model.suport, model.suport1, model.aestats, model.aeparams, model.aelinks, model.aesurf, xref=True) trim1b.verify_trim(model.suport, model.suport1, model.aestats, model.aeparams, model.aelinks, model.aesurf, xref=True) trim2b.verify_trim(model.suport, model.suport1, model.aestats, model.aeparams, model.aelinks, model.aesurf, xref=True) model.write_bdf('trim.bdf') model2 = read_bdf('trim.bdf', debug=None) model2._verify_bdf(xref=True) model2.uncross_reference() model2._verify_bdf(xref=False) model2.cross_reference() model2._verify_bdf(xref=True) os.remove('trim.bdf') model2.uncross_reference() model2.safe_cross_reference() save_load_deck(model) def test_gust(self): """checks the GUST card""" sid = 100 dload = 200 wg = 50. x0 = 3. V = 42. log = SimpleLogger(level='warning') model = BDF(log=log) gust = model.add_gust(sid, dload, wg, x0, V=V, comment='gust load') gust.validate() gust.write_card() gust2 = GUST.add_card(BDFCard(['GUST', sid, dload, wg, x0, V]), comment='gust load') gust2.validate() gust2.write_card() save_load_deck(model) def test_csschd(self): """checks the CSSCHD card""" log = SimpleLogger(level='warning') model = BDF(log=log) sid = 5 aesid = 50 lalpha = 12 lmach = 15 lschd = 25 card = ['CSSCHD', sid, aesid, lalpha, lmach, lschd] bdf_card = BDFCard(card, has_none=True) csshcd_bad = CSSCHD(sid, aesid, lschd, lalpha='lalpha', lmach=4, comment='') with self.assertRaises(TypeError): csshcd_bad.validate() csshcd_bad.lalpha = 4 csshcd_bad.lmach = 5.0 with self.assertRaises(TypeError): csshcd_bad.validate() csshcd_bad.lmach = 5 csshcd_bad.validate() card = ['CSSCHD', sid, aesid, lalpha, lmach, lschd] bdf_card = BDFCard(card, has_none=True) csshcd1 = CSSCHD.add_card(bdf_card, comment='csschd card') csshcd1.validate() csshcd1.write_card() sid = 6 csshcd2 = model.add_csschd(sid, aesid, lschd, lalpha=lalpha, lmach=lmach, comment='csschd card') label = 'ELEV' cid1 = 0 alid1 = 37 unused_aesurf = model.add_aesurf( aesid, label, cid1, alid1, cid2=None, alid2=None, eff=1.0, ldw='LDW', crefc=1.0, crefs=1.0, pllim=-np.pi/2., pulim=np.pi/2., hmllim=None, hmulim=None, tqllim=None, tqulim=None, comment='aesurf') unused_aelist = model.add_aelist(alid1, [1, 2, 3], comment='') aefact_sid = alid1 fractions = [0., 0.5, 1.] unused_aefact_elev = model.add_aefact(aefact_sid, fractions, comment='aefact') aefact_sid = lalpha fractions = [0., 5., 10.] unused_aefact_alpha = model.add_aefact(aefact_sid, fractions, comment='aefact') aefact_sid = lmach fractions = [0., 0.7, 0.8] unused_aefact_mach = model.add_aefact(aefact_sid, fractions, comment='aefact') aefact_sid = lschd fractions = [0., 15., 30., 45.] unused_aefact_delta = model.add_aefact(aefact_sid, fractions, comment='aefact') model.cross_reference() csshcd2.write_card() #csshcd1.write_card() model.uncross_reference() bdf_filename = StringIO() model.write_bdf(bdf_filename, close=False) model.safe_cross_reference() model.validate() save_load_deck(model) bdf_filename.seek(0) model2 = read_bdf(bdf_filename, punch=True, debug=False) bdf_filename2 = StringIO() model.write_bdf(bdf_filename2, size=16, close=False) model2.write_bdf(bdf_filename2, size=16, close=False) #----------- csshcd3 = CSSCHD(sid, aesid, lschd, lalpha=None, lmach=None, comment='cssch card') csshcd3.write_card() with self.assertRaises(RuntimeError): csshcd3.validate() def test_monpnt(self): log = SimpleLogger(level='warning') model = BDF(log=log) name = 'test' label = 'test2' axes = '123' comp = 'WING' xyz = [0., 0., 0.] monpnt1 = model.add_monpnt1(name, label, axes, comp, xyz, cp=0, cd=None, comment='monpnt1') monpnt1.raw_fields() monpnt1.validate() Type = 'CQUAD4' table = 'STRESS' nddl_item = 42 eid = 17 monpnt2 = model.add_monpnt2(name, label, table, Type, nddl_item, eid, comment='monpnt2') monpnt2.raw_fields() monpnt2.validate() grid_set = 43 elem_set = 44 monpnt3 = model.add_monpnt3(name, label, axes, grid_set, elem_set, xyz, cp=0, cd=None, xflag=None, comment='monpnt3') monpnt3.raw_fields() monpnt3.validate() model._verify_bdf(xref=False) model.cross_reference() model._verify_bdf(xref=True) model.uncross_reference() save_load_deck(model) def test_bah_plane_bdf(self): """tests the bah_plane""" bdf_filename = os.path.join(MODEL_PATH, 'aero', 'bah_plane', 'bah_plane.bdf') folder = '' run_bdf(folder, bdf_filename, debug=False, xref=True, check=True, punch=False, mesh_form='combined', is_folder=False, print_stats=False, encoding=None, sum_load=True, size=8, is_double=False, stop=False, nastran='', post=-1, dynamic_vars=None, quiet=True, dumplines=False, dictsort=False, run_extract_bodies=True, nerrors=0, dev=True, crash_cards=None, pickle_obj=True) def test_rotord(self): """tests the ROTORD""" log = SimpleLogger(level='warning') model = BDF(log=log) sid = 42 rstart = 3.14 rstep = .314 numstep = 10 rids = [None] rsets = [-31] rcords = [10] w3s = [13.] w4s = [3.] rforces = [14] brgsets = [17, False] rspeeds = [42.1] rotord = model.add_rotord( sid, rstart, rstep, numstep, rids, rsets, rspeeds, rcords, w3s, w4s, rforces, brgsets, refsys='ROT', cmout=0.0, runit='RPM', funit='RPM', zstein='NO', orbeps=1.e-6, roprt=0, sync=1, etype=1, eorder=1.0, threshold=0.02, maxiter=10, comment='rotord') rotord.validate() sid = 43 nids = [100, 101, 102] rotorg = model.add_rotorg( sid, nids, comment='rotorg' ) rotorg.validate() save_load_deck(model) def test_zona_1(self): """zona explicit test""" log = SimpleLogger(level='error', encoding='utf-8', log_func=None) # lots of zona errors bdf_filename = os.path.join(MODEL_PATH, 'aero', 'f16_ma41.bdf') model = read_bdf(bdf_filename, xref=False, debug=None, log=log) model.safe_cross_reference() save_load_deck(model, xref='safe', run_renumber=False, run_convert=False, run_remove_unused=False, run_save_load=False, run_save_load_hdf5=False, run_mass_properties=False, run_test_bdf=False, run_op2_writer=False) with self.assertRaises(NotImplementedError): model.zona.convert_to_nastran() def test_zona_2(self): """zona explicit test""" log = SimpleLogger(level='error', encoding='utf-8', log_func=None) # lots of zona errors bdf_filename = os.path.join(MODEL_PATH, 'aero', 'ztran.bdf') model = read_bdf(bdf_filename, xref=False, debug=None, log=log) model.safe_cross_reference() save_load_deck(model, xref='safe', run_renumber=False, run_convert=False, run_remove_unused=False, run_save_load=False, run_save_load_hdf5=False, run_mass_properties=False, run_test_bdf=False) model.zona.convert_to_nastran() def test_zona_3(self): """totally fake zona model""" bdf_file = get_zona_model() model = read_bdf(bdf_filename=bdf_file, validate=True, xref=True, punch=False, skip_cards=None, read_cards=None, encoding=None, log=None, debug=None, mode='zona') #with self.assertRaises(AttributeError): model.uncross_reference() model.write_bdf('zona.bdf') model.safe_cross_reference() model.write_bdf('zona.bdf') bdf_file.seek(0) model.clear_attributes() model2 = read_bdf('zona.bdf', debug=None) os.remove('zona.bdf') model2.zona.convert_to_nastran() def get_zona_model(): bdf_file = StringIO() bdf_file.write( '$ pyNastran: version=zona\n' 'CEND\n' 'BEGIN BULK\n' #'$ acsid, rcsid, cref, bref, sref, symxz, symxy\n' #'AEROZ, 10, 0, 1., 10., 100., YES\n' '$AEROZ ACSID XZSYM FLIP FMMUNIT FMLUNIT REFC REFB REFS\n' '$ REFX REFY REFZ\n' 'AEROZ, 0, YES, NO, SLIN, IN, 22.73,59.394,1175.8\n' ', 59.53,0.0, 0.0\n' '$ label, type, cid, PANLST, setg, actid\n' 'AESURFZ,FLAP, ASYM, 1, 10, 20, 0\n' #'AESURFZ,FLAP, SYM, 1, 10, 20, 0\n' 'CORD2R, 1,0, 0.,0.,0., 0.,0.,1.,\n' ',1.,0.,0.\n' '$BODY7,ID,LABEL,IPBODY7, ACOORD, NSEG, IDMESH1\n' 'BODY7, 1, FUSE, , 2, , 1\n' 'PANLST3,10, FUSE, \n' '$ id,naxial,nradial, \n' 'SEGMESH,1, 4, 3, \n' # ITYPEi = 1 (Body of Revolution): # Xi, CAMi, YRi # ITYPEi = 2 (Elliptical Body): # Xi, YRi, ZRi # ITYPEi = 3 (Arbitrary Body): # Xi, IDYi, IDZi '$ itype, x1, cam, yr1, zr1, idy1, idz1 \n' ', 1, , 1., 1., ,\n' ', 2, 1., , 1., 2.,\n' ', 3, 2., , , , 13, 14 \n' ', 3, 3., , , , 13, 14 \n' # y 'AEFACT,13, 1., 0., 0.,-1.\n' 'AEFACT,14, 0., 1., -1., 0.\n' '$ MKAEROZ, ID, MACH, METHOD, IDFLT\n' 'MKAEROZ, 101, 0.8, -1, -1, \n' '$ TRIM, ID, MKAEROZ, Q, LABEL1, UX1, CGX, CGY,\n' 'TRIM, 100, 101, 42., ALPHA, 5., 0., 0., 0.,\n' '$CGZ, WEIGHT, Ixx, Ixy, Iyy, Ixz, Iyz, Izz\n' ',0., 1e4, 1e3, 1e3, 1e5, 1e3, 1e3, 1e4\n' '$TRUE/G, NX, NY, NZ, P, Q, R, \n' ', TRUE, FREE, NONE, 32., FREE, NONE, 42., \n' '$var, value\n' ',17, 1.0,\n' '$\n' 'TRIMVAR,17,VAR\n' '$\n' '$trimlnk,id,sym, ?, ?\n' 'TRIMLNK,10,SYM, -1, 17\n' 'ACOORD, 2, 0.,0.,0., 1.0,0.\n' '$ ID, MODEL, CP, PANLST, SETG, DZ, EPS\n' 'SPLINE1,100, , , 422, 423,\n' '$, NELEM, MELEM\n' '$, 10, 10\n' 'PANLST3,422, FUSE, \n' '$ id,naxial,nradial, \n' #'$ ID, MODEL, PANLST, SETG,\n' #'SPLINE2,1000, , 422, 423,\n' '$ ID, MODEL, CP, PANLST, SETG,\n' 'SPLINE3,1200, , , 422, 423,\n' 'SET1,423,10\n' 'GRID,10,,0.,0.,0.\n' 'GRID,11,,1.,0.,0.\n' 'CONROD,100, 10,11, 101,1.0\n' 'MAT1,101,3.0e7,,0.3\n' ) bdf_file.seek(0) return bdf_file def _setup_aero_plot(fig_id: Optional[int]=None) -> Tuple[Any, Any]: """helper for plotting aero panels""" fig = None ax = None if IS_MATPLOTLIB: fig = plt.figure(fig_id) ax = fig.gca() ax.set_ylabel('Y') ax.set_xlabel('X') ax.grid() return fig, ax if __name__ == '__main__': # pragma: no cover unittest.main()
34.638467
158
0.511828
b2f10df34ec3b9e4e1fba234802b5bde5cc44087
3,523
py
Python
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/aio/_upload_helper.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
3
2019-02-21T20:46:26.000Z
2021-06-22T15:35:52.000Z
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/aio/_upload_helper.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/storage/azure-storage-file-datalake/azure/storage/filedatalake/aio/_upload_helper.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
15
2017-10-02T18:48:20.000Z
2022-03-03T14:03:49.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=no-self-use from .._deserialize import ( process_storage_error) from .._generated.models import ( StorageErrorException, ) from .._shared.response_handlers import return_response_headers from .._shared.uploads_async import ( upload_data_chunks, DataLakeFileChunkUploader) def _any_conditions(modified_access_conditions=None, **kwargs): # pylint: disable=unused-argument return any([ modified_access_conditions.if_modified_since, modified_access_conditions.if_unmodified_since, modified_access_conditions.if_none_match, modified_access_conditions.if_match ]) async def upload_datalake_file( # pylint: disable=unused-argument client=None, stream=None, length=None, overwrite=None, validate_content=None, max_concurrency=None, **kwargs): try: if length == 0: return {} properties = kwargs.pop('properties', None) umask = kwargs.pop('umask', None) permissions = kwargs.pop('permissions', None) path_http_headers = kwargs.pop('path_http_headers', None) modified_access_conditions = kwargs.pop('modified_access_conditions', None) if not overwrite: # if customers didn't specify access conditions, they cannot flush data to existing file if not _any_conditions(modified_access_conditions): modified_access_conditions.if_none_match = '*' if properties or umask or permissions: raise ValueError("metadata, umask and permissions can be set only when overwrite is enabled") if overwrite: response = await client.create( resource='file', path_http_headers=path_http_headers, properties=properties, modified_access_conditions=modified_access_conditions, umask=umask, permissions=permissions, cls=return_response_headers, **kwargs) # this modified_access_conditions will be applied to flush_data to make sure # no other flush between create and the current flush modified_access_conditions.if_match = response['etag'] modified_access_conditions.if_none_match = None modified_access_conditions.if_modified_since = None modified_access_conditions.if_unmodified_since = None await upload_data_chunks( service=client, uploader_class=DataLakeFileChunkUploader, total_size=length, chunk_size=100 * 1024 * 1024, stream=stream, max_concurrency=max_concurrency, validate_content=validate_content, **kwargs) return await client.flush_data(position=length, path_http_headers=path_http_headers, modified_access_conditions=modified_access_conditions, cls=return_response_headers, **kwargs) except StorageErrorException as error: process_storage_error(error)
40.494253
109
0.619075
38a340975f42f7845b9377275929364265bfb0f1
2,642
py
Python
oqtans_tools/GFFtools/0.2/gtf_to_gff.py
vipints/oqtans
af8119a73f6023deca57aedb9b090f7378a1a6c6
[ "BSD-3-Clause" ]
3
2015-11-20T19:40:29.000Z
2019-07-25T15:34:24.000Z
oqtans_tools/GFFtools/0.2/gtf_to_gff.py
vipints/oqtans
af8119a73f6023deca57aedb9b090f7378a1a6c6
[ "BSD-3-Clause" ]
null
null
null
oqtans_tools/GFFtools/0.2/gtf_to_gff.py
vipints/oqtans
af8119a73f6023deca57aedb9b090f7378a1a6c6
[ "BSD-3-Clause" ]
2
2018-09-20T08:28:36.000Z
2019-03-06T06:26:52.000Z
#!/usr/bin/env python """ Convert Gene Transfer Format [GTF] to Generic Feature Format Version 3 [GFF3]. Usage: python gtf_to_gff.py in.gtf > out.gff3 Requirement: GFFParser.py: https://github.com/vipints/GFFtools-GX/blob/master/GFFParser.py helper.py : https://github.com/vipints/GFFtools-GX/blob/master/helper.py Copyright (C) 2009-2012 Friedrich Miescher Laboratory of the Max Planck Society, Tubingen, Germany. 2012-2014 Memorial Sloan Kettering Cancer Center New York City, USA. """ import re import sys import GFFParser import helper def GFFWriter(gtf_content): """ write the feature information to GFF format @args gtf_content: Parsed object from gtf file @type gtf_content: numpy array """ print '##gff-version 3' for ent1 in gtf_content: chr_name = ent1['chr'] strand = ent1['strand'] start = ent1['start'] stop = ent1['stop'] source = ent1['source'] ID = ent1['name'] Name = ent1['gene_info']['Name'] print '%s\t%s\tgene\t%d\t%d\t.\t%s\t.\tID=%s;Name=%s' % (chr_name, source, start, stop, strand, ID, Name) for idx, tid in enumerate(ent1['transcripts']): t_start = ent1['exons'][idx][0][0] t_stop = ent1['exons'][idx][-1][-1] t_type = ent1['transcript_type'][idx] if ent1['exons'][idx].any() and ent1['cds_exons'][idx].any(): utr5_exons, utr3_exons = helper.buildUTR(ent1['cds_exons'][idx], ent1['exons'][idx], strand) print '%s\t%s\t%s\t%d\t%d\t.\t%s\t.\tID=%s;Parent=%s' % (chr_name, source, t_type, t_start, t_stop, strand, tid[0], ID) for ex_cod in utr5_exons: print '%s\t%s\tfive_prime_UTR\t%d\t%d\t.\t%s\t.\tParent=%s' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]) for ex_cod in ent1['cds_exons'][idx]: print '%s\t%s\tCDS\t%d\t%d\t.\t%s\t%d\tParent=%s' % (chr_name, source, ex_cod[0], ex_cod[1], strand, ex_cod[2], tid[0]) for ex_cod in utr3_exons: print '%s\t%s\tthree_prime_UTR\t%d\t%d\t.\t%s\t.\tParent=%s' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]) for ex_cod in ent1['exons'][idx]: print '%s\t%s\texon\t%d\t%d\t.\t%s\t.\tParent=%s' % (chr_name, source, ex_cod[0], ex_cod[1], strand, tid[0]) def __main__(): try: gtf_fname = sys.argv[1] except: print __doc__ sys.exit(-1) gtf_file_content = GFFParser.Parse(gtf_fname) GFFWriter(gtf_file_content) if __name__ == "__main__": __main__()
32.617284
136
0.595004