hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
de9034004ba5236fceead2c3312b67e085347c69
3,618
py
Python
endgame.py
Kunalmighty/BlueJaysGame
76936cea8a57542bf7ea3d546f851f9f9771931f
[ "MIT" ]
null
null
null
endgame.py
Kunalmighty/BlueJaysGame
76936cea8a57542bf7ea3d546f851f9f9771931f
[ "MIT" ]
null
null
null
endgame.py
Kunalmighty/BlueJaysGame
76936cea8a57542bf7ea3d546f851f9f9771931f
[ "MIT" ]
null
null
null
""" Add-a-new-high-score state modularization. """ import pygame import globes import state import score as S class EndGame(state.State): """ #EmbraceTheS's interface for adding a new high score. """ BACKGROUND = None LETTERS = None UNDERSCORE = None def __init__(self, score): state.State.__init__(self) self.font = pygame.font.Font(None, 50) globes.Globals.SCREEN.fill(globes.Globals.WHITE) globes.play_music("highscore.ogg") # Font variables self.blink = 0 self.y_lvl = 200 surf = self.font.render("WWWWWWWWWW", True, globes.Globals.BLACK) self.x_start = globes.hcenter(surf) - 5 self.letter_width = int(surf.get_width() / 10) if EndGame.UNDERSCORE is None: EndGame.UNDERSCORE = self.font.render("_", True, globes.Globals.BLACK) if EndGame.BACKGROUND is None: EndGame.BACKGROUND = pygame.image.load("bg/scroll.png").convert() highscore = pygame.image.load("imgs/highscore.png").convert_alpha() EndGame.BACKGROUND.blit(highscore, (0, 0)) if EndGame.LETTERS is None: EndGame.LETTERS = [' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', ' I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] self.score = int(score) # indices used to reference indices of LETTERS self.name_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # index (0-9) of letter in name being edited self.name_index = 0 def render(self): """ Override State object's render method. """ globes.Globals.SCREEN.blit(self.BACKGROUND, (0, 0)) x_lvl = self.x_start for index in self.name_list: letter = self.font.render(EndGame.LETTERS[index], True, globes.Globals.BLACK) globes.Globals.SCREEN.blit(letter, (x_lvl, self.y_lvl)) x_lvl += self.letter_width x_lvl = self.x_start + (self.name_index * self.letter_width) if (self.blink < 8): globes.Globals.SCREEN.blit(self.UNDERSCORE, (x_lvl, self.y_lvl)) def update(self, time): """ Override State object's update method. """ self.blink = (self.blink + 1) % 10 def event(self, event): """ Override State object's event handler. """ if event.type == pygame.KEYDOWN: if (event.key == pygame.K_ESCAPE or event.key == pygame.K_RETURN or event.key == pygame.K_SPACE): # save entry & change state name = '' for index in self.name_list: if index == 9: name += 'I' else: name += EndGame.LETTERS[index] globes.Globals.HIGHSCORES.add_score((name, self.score)) globes.Globals.STATE = S.Score(True) self.update_name(event.key) def update_name(self, key): """ Change the name characters based on the key pressed. """ if key == pygame.K_RIGHT: self.name_index = (self.name_index + 1) % 10 elif key == pygame.K_LEFT: self.name_index = (self.name_index - 1) % 10 elif key == pygame.K_UP: self.name_list[self.name_index] -= 1 self.name_list[self.name_index] %= 27 elif key == pygame.K_DOWN: self.name_list[self.name_index] += 1 self.name_list[self.name_index] %= 27
38.489362
79
0.543947
e6443b3eb68fbce816ca05ca608d83ced761f01a
5,640
py
Python
scripts/driver.py
ChongMingWei/lab0-c
d1f570e2d064a05fcb1cc0e27ef6c5eb77994f7c
[ "BSD-2-Clause" ]
null
null
null
scripts/driver.py
ChongMingWei/lab0-c
d1f570e2d064a05fcb1cc0e27ef6c5eb77994f7c
[ "BSD-2-Clause" ]
null
null
null
scripts/driver.py
ChongMingWei/lab0-c
d1f570e2d064a05fcb1cc0e27ef6c5eb77994f7c
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 from __future__ import print_function import subprocess import sys import getopt # Driver program for C programming exercise class Tracer: traceDirectory = "./traces" qtest = "./qtest" command = qtest verbLevel = 0 autograde = False useValgrind = False colored = False traceDict = { 1: "trace-01-ops", 2: "trace-02-ops", 3: "trace-03-ops", 4: "trace-04-ops", 5: "trace-05-ops", 6: "trace-06-string", 7: "trace-07-robust", 8: "trace-08-robust", 9: "trace-09-robust", 10: "trace-10-malloc", 11: "trace-11-malloc", 12: "trace-12-malloc", 13: "trace-13-perf", 14: "trace-14-perf", 15: "trace-15-perf", 16: "trace-16-perf", 17: "trace-17-complexity" } traceProbs = { 1: "Trace-01", 2: "Trace-02", 3: "Trace-03", 4: "Trace-04", 5: "Trace-05", 6: "Trace-06", 7: "Trace-07", 8: "Trace-08", 9: "Trace-09", 10: "Trace-10", 11: "Trace-11", 12: "Trace-12", 13: "Trace-13", 14: "Trace-14", 15: "Trace-15", 16: "Trace-16", 17: "Trace-17" } maxScores = [0, 6, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5] RED = '\033[91m' GREEN = '\033[92m' WHITE = '\033[0m' def __init__(self, qtest="", verbLevel=0, autograde=False, useValgrind=False, colored=False): if qtest != "": self.qtest = qtest self.verbLevel = verbLevel self.autograde = autograde self.useValgrind = useValgrind self.colored = colored def printInColor(self, text, color): if self.colored == False: color = self.WHITE print(color, text, self.WHITE, sep = '') def runTrace(self, tid): if not tid in self.traceDict: self.printInColor("ERROR: No trace with id %d" % tid, self.RED) return False fname = "%s/%s.cmd" % (self.traceDirectory, self.traceDict[tid]) vname = "%d" % self.verbLevel clist = self.command + ["-v", vname, "-f", fname] try: retcode = subprocess.call(clist) except Exception as e: self.printInColor("Call of '%s' failed: %s" % (" ".join(clist), e), self.RED) return False return retcode == 0 def run(self, tid=0): scoreDict = {k: 0 for k in self.traceDict.keys()} print("---\tTrace\t\tPoints") if tid == 0: tidList = self.traceDict.keys() else: if not tid in self.traceDict: self.printInColor("ERROR: Invalid trace ID %d" % tid, self.RED) return tidList = [tid] score = 0 maxscore = 0 if self.useValgrind: self.command = ['valgrind', self.qtest] else: self.command = [self.qtest] for t in tidList: tname = self.traceDict[t] if self.verbLevel > 0: print("+++ TESTING trace %s:" % tname) ok = self.runTrace(t) maxval = self.maxScores[t] tval = maxval if ok else 0 if tval < maxval: self.printInColor("---\t%s\t%d/%d" % (tname, tval, maxval), self.RED) else: self.printInColor("---\t%s\t%d/%d" % (tname, tval, maxval), self.GREEN) score += tval maxscore += maxval scoreDict[t] = tval if score < maxscore: self.printInColor("---\tTOTAL\t\t%d/%d" % (score, maxscore), self.RED) else: self.printInColor("---\tTOTAL\t\t%d/%d" % (score, maxscore), self.GREEN) if self.autograde: # Generate JSON string jstring = '{"scores": {' first = True for k in scoreDict.keys(): if not first: jstring += ', ' first = False jstring += '"%s" : %d' % (self.traceProbs[k], scoreDict[k]) jstring += '}}' print(jstring) def usage(name): print("Usage: %s [-h] [-p PROG] [-t TID] [-v VLEVEL] [--valgrind] [-c]" % name) print(" -h Print this message") print(" -p PROG Program to test") print(" -t TID Trace ID to test") print(" -v VLEVEL Set verbosity level (0-3)") print(" -c Enable colored text") sys.exit(0) def run(name, args): prog = "" tid = 0 vlevel = 1 levelFixed = False autograde = False useValgrind = False colored = False optlist, args = getopt.getopt(args, 'hp:t:v:A:c', ['valgrind']) for (opt, val) in optlist: if opt == '-h': usage(name) elif opt == '-p': prog = val elif opt == '-t': tid = int(val) elif opt == '-v': vlevel = int(val) levelFixed = True elif opt == '-A': autograde = True elif opt == '--valgrind': useValgrind = True elif opt == '-c': colored = True else: print("Unrecognized option '%s'" % opt) usage(name) if not levelFixed and autograde: vlevel = 0 t = Tracer(qtest=prog, verbLevel=vlevel, autograde=autograde, useValgrind=useValgrind, colored=colored) t.run(tid) if __name__ == "__main__": run(sys.argv[0], sys.argv[1:])
28.77551
89
0.484574
dd8ac6e2c97482748246c3f629fc02d81ca4269e
8,306
py
Python
tests/test_ts_states.py
gityoav/pyg-timeseries
27859b912d6e9e9a74c172711907d5456ec3076b
[ "Apache-2.0" ]
null
null
null
tests/test_ts_states.py
gityoav/pyg-timeseries
27859b912d6e9e9a74c172711907d5456ec3076b
[ "Apache-2.0" ]
null
null
null
tests/test_ts_states.py
gityoav/pyg-timeseries
27859b912d6e9e9a74c172711907d5456ec3076b
[ "Apache-2.0" ]
null
null
null
import pandas as pd; import numpy as np from pyg_base import drange, eq from pyg_timeseries import cumprod, cumprod_, cumsum, cumsum_, diff, diff_, ewma, ewma_, ewmcor, ewmcor_,\ ewmvar, ewmvar_, ewmrms, ewmrms_, ewmskew, ewmskew_, ewmstd, ewmstd_, \ expanding_max, expanding_max_, expanding_mean, expanding_mean_, expanding_min, expanding_min_, expanding_rms, expanding_rms_, expanding_skew, expanding_skew_, expanding_std, expanding_std_, expanding_sum, expanding_sum_, \ ratio, ratio_, rolling_max, rolling_max_, rolling_mean, rolling_mean_, rolling_median, rolling_median_, rolling_min, rolling_min_, \ rolling_rank, rolling_rank_, rolling_rms, rolling_rms_, rolling_skew, rolling_skew_, rolling_std, rolling_std_, rolling_sum, rolling_sum_, \ shift, shift_, rolling_quantile, rolling_quantile_, \ ts_count, ts_count_, ts_max, ts_max_, ts_mean, ts_mean_, ts_min, ts_min_, ts_rms, ts_rms_, ts_skew, ts_skew_, ts_std, ts_std_, ts_sum, ts_sum_ _data = 'data' def _nona_data(): s = pd.Series(np.random.normal(0,1,1000), drange(-999)) df = pd.DataFrame(np.random.normal(0,1,(1000, 20)), drange(-999)) return [s,df] s, df = _nona_data() s1 = s.iloc[:500]; s2 = s.iloc[500:] df1 = df.iloc[:500]; df2 = df.iloc[500:] t, ef = _nona_data() t1 = t.iloc[:500]; t2 = t.iloc[500:] ef1 = ef.iloc[:500]; ef2 = ef.iloc[500:] #### here we test two things (1) that f_().data == f() and that (2) We can run additional data using the state we got from f_ run over history. n2f = dict(cumprod = cumprod, cumsum = cumsum, diff = diff, ewma = ewma, ewmrms = ewmrms, ewmskew = ewmskew, ewmstd = ewmstd, expanding_max = expanding_max, expanding_mean = expanding_mean, expanding_min = expanding_min, expanding_rms = expanding_rms, expanding_skew = expanding_skew, expanding_std = expanding_std, expanding_sum = expanding_sum, ratio = ratio, rolling_max = rolling_max, rolling_mean = rolling_mean, rolling_median = rolling_median, rolling_min = rolling_min, rolling_rank = rolling_rank, rolling_rms = rolling_rms, rolling_skew = rolling_skew, rolling_std = rolling_std, rolling_sum = rolling_sum, shift = shift, ts_count = ts_count, ts_max = ts_max, ts_mean = ts_mean, ts_min = ts_min, ts_rms = ts_rms, ts_skew = ts_skew, ts_std = ts_std, ts_sum = ts_sum) n2f_ = dict(cumprod = cumprod_, cumsum = cumsum_, diff = diff_, ewma = ewma_, ewmrms = ewmrms_, ewmskew = ewmskew_, ewmstd = ewmstd_, expanding_max = expanding_max_, expanding_mean = expanding_mean_, expanding_min = expanding_min_, expanding_rms = expanding_rms_, expanding_skew = expanding_skew_, expanding_std = expanding_std_, expanding_sum = expanding_sum_, ratio = ratio_, rolling_max = rolling_max_, rolling_mean = rolling_mean_, rolling_median = rolling_median_, rolling_min = rolling_min_, rolling_rank = rolling_rank_, rolling_rms = rolling_rms_, rolling_skew = rolling_skew_, rolling_std = rolling_std_, rolling_sum = rolling_sum_, shift = shift_, ts_count = ts_count_, ts_max = ts_max_, ts_mean = ts_mean_, ts_min = ts_min_, ts_rms = ts_rms_, ts_skew = ts_skew_, ts_std = ts_std_, ts_sum = ts_sum_) def test_ts_states(): n2f = dict(ts_count = ts_count, ts_max = ts_max, ts_mean = ts_mean, ts_min = ts_min, ts_rms = ts_rms, ts_skew = ts_skew, ts_std = ts_std, ts_sum = ts_sum) n2f_ = dict(ts_count = ts_count_, ts_max = ts_max_, ts_mean = ts_mean_, ts_min = ts_min_, ts_rms = ts_rms_, ts_skew = ts_skew_, ts_std = ts_std_, ts_sum = ts_sum_) for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(s) res_ = f_(s) assert eq(res, res_.data) res1 = f_(s1) res2 = f_(s2, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res) for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(df) res_ = f_(df) assert eq(res, res_.data) res1 = f_(df1) res2 = f_(df2, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res) def test_window_double_states(): n2f = dict(ewmcor = ewmcor) n2f_ = dict(ewmcor = ewmcor_) for i in (5,10): for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(s, t, i) res_ = f_(s , t, i) assert eq(res, res_.data) res1 = f_(s1, t1, i) res2 = f_(s2, t2, i, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) for i in (5, 10): for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(df, ef, i) res_ = f_(a = df , b = ef, n = i) assert eq(res, res_.data) res1 = f_(df1, ef1, i) res2 = f_(df2, ef2, i, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) def test_window_states(): n2f = dict(ewma = ewma, ewmrms = ewmrms, ewmskew = ewmskew, ewmvar = ewmvar, ewmstd = ewmstd, diff = diff, shift = shift, ratio = ratio, rolling_max = rolling_max, rolling_mean = rolling_mean, rolling_median = rolling_median, rolling_min = rolling_min, rolling_quantile = rolling_quantile, rolling_rank = rolling_rank, rolling_rms = rolling_rms, rolling_skew = rolling_skew, rolling_std = rolling_std, rolling_sum = rolling_sum) n2f_ = dict(ewma = ewma_, ewmrms = ewmrms_, ewmvar = ewmvar_, ewmskew = ewmskew_, ewmstd = ewmstd_, diff = diff_, shift = shift_, ratio = ratio_, rolling_max = rolling_max_, rolling_mean = rolling_mean_, rolling_median = rolling_median_, rolling_min = rolling_min_, rolling_quantile = rolling_quantile_, rolling_rank = rolling_rank_, rolling_rms = rolling_rms_, rolling_skew = rolling_skew_, rolling_std = rolling_std_, rolling_sum = rolling_sum_) for i in (5, 10): for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(s, i) res_ = f_(s , i) assert eq(res, res_.data) res1 = f_(s1, i) res2 = f_(s2, i, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) for i in (5, 10): for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(df, i) res_ = f_(df , i) assert eq(res, res_.data) res1 = f_(df1, i) res2 = f_(df2, i, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) def test_expanding_states(): n2f = dict(expanding_max = expanding_max, expanding_mean = expanding_mean, expanding_min = expanding_min, expanding_rms = expanding_rms, expanding_skew = expanding_skew, expanding_std = expanding_std, expanding_sum = expanding_sum, cumprod = cumprod, cumsum = cumsum) n2f_ = dict(expanding_max = expanding_max_, expanding_mean = expanding_mean_, expanding_min = expanding_min_, expanding_rms = expanding_rms_, expanding_skew = expanding_skew_, expanding_std = expanding_std_, expanding_sum = expanding_sum_, cumprod = cumprod_, cumsum = cumsum_) for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(s) res_ = f_(s) assert eq(res, res_.data) res1 = f_(s1) res2 = f_(s2, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) for n in n2f: f = n2f[n] f_ = n2f_[n] res = f(df) res_ = f_(df) assert eq(res, res_.data) res1 = f_(df1) res2 = f_(df2, instate = res1.state) assert eq(res2 - _data, res_ - _data) assert eq(res2.data, res.iloc[500:]) def test_min_max_no_data(): a1 = np.array([np.nan, np.nan]) a2 = np.array([np.nan, 1., 2.]) m1 = ts_max_(a1) assert np.isnan(m1.data) m2 = ts_max(a2, **m1) assert m2 == 2 m1 = ts_min_(a1) assert np.isnan(m1.data) m2 = ts_min(a2, **m1) assert m2 == 1
49.736527
281
0.62196
b902205b419ed25158e00b113cebab58afbd8ff1
2,211
py
Python
BasicOperations/01_01_PyQt4/QTreeWithTable.py
UpSea/midProjects
ed6086e74f68b1b89f725abe0b270e67cf8993a8
[ "MIT" ]
1
2018-07-02T13:54:49.000Z
2018-07-02T13:54:49.000Z
BasicOperations/01_01_PyQt4/QTreeWithTable.py
UpSea/midProjects
ed6086e74f68b1b89f725abe0b270e67cf8993a8
[ "MIT" ]
null
null
null
BasicOperations/01_01_PyQt4/QTreeWithTable.py
UpSea/midProjects
ed6086e74f68b1b89f725abe0b270e67cf8993a8
[ "MIT" ]
3
2016-05-28T15:13:02.000Z
2021-04-10T06:04:25.000Z
from PyQt4 import QtGui import sys class mainWindow(QtGui.QDialog): """""" def __init__(self): """Constructor""" super(mainWindow,self).__init__() self.treeWidget = QtGui.QTreeWidget() self.treeWidget.setColumnCount(3) self.treeWidget.setHeaderLabels(['Items','Name','Detail']) treeItem01 = QtGui.QTreeWidgetItem() treeItem02 = QtGui.QTreeWidgetItem() treeItem01.setText(0,'aaa') treeItem01.setText(1,'bbb') treeItem02.setText(0,'aaa') treeItem02.setText(1,'bbb') self.treeWidget.addTopLevelItem(treeItem01) self.treeWidget.addTopLevelItem(treeItem02) treeSubItem01 = QtGui.QTreeWidgetItem() treeSubItem02 = QtGui.QTreeWidgetItem() treeItem01.addChild(treeSubItem01) treeItem02.addChild(treeSubItem02) self.treeWidget.setFirstItemColumnSpanned(treeSubItem01,True) self.treeWidget.setFirstItemColumnSpanned(treeSubItem02,True) table = self.getTable() self.treeWidget.setItemWidget(treeSubItem01,0,table) table = self.getTable() self.treeWidget.setItemWidget(treeSubItem02,0,table) layout = QtGui.QVBoxLayout() self.setLayout(layout) layout.addWidget(self.treeWidget) #---------------------------------------------------------------------- def getTable(self): """""" tableWidget = QtGui.QTableWidget() tableWidget.setColumnCount(5) tableWidget.setRowCount(3) for row in range(3): tableWidget.setItem(row,0,QtGui.QTableWidgetItem('datetime')) tableWidget.setCellWidget(row,1,QtGui.QLabel(self.tr('openPrice'))) tableWidget.setItem(row,2,QtGui.QTableWidgetItem('highPrice')) tableWidget.setItem(row,3,QtGui.QTableWidgetItem('lowPrice')) tableWidget.setItem(row,4,QtGui.QTableWidgetItem('closePrice')) return tableWidget if __name__ == "__main__": qApp=QtGui.QApplication(sys.argv) window = mainWindow() window.show() sys.exit(qApp.exec_())
37.474576
85
0.606965
980ed7326607e3f9914a0d7a42048908bcbd74f3
81
py
Python
google-cloud-sdk/platform/bq/third_party/pyasn1/type/__init__.py
bopopescu/searchparty
afdc2805cb1b77bd5ac9fdd1a76217f4841f0ea6
[ "Apache-2.0" ]
2
2019-11-10T09:17:07.000Z
2019-12-18T13:44:08.000Z
google-cloud-sdk/platform/bq/third_party/pyasn1/type/__init__.py
bopopescu/searchparty
afdc2805cb1b77bd5ac9fdd1a76217f4841f0ea6
[ "Apache-2.0" ]
11
2020-02-29T02:51:12.000Z
2022-03-30T23:20:08.000Z
google-cloud-sdk/platform/bq/third_party/pyasn1/type/__init__.py
bopopescu/searchparty
afdc2805cb1b77bd5ac9fdd1a76217f4841f0ea6
[ "Apache-2.0" ]
3
2017-07-27T18:44:13.000Z
2020-07-25T17:48:53.000Z
#!/usr/bin/env python # This file is necessary to make this directory a package.
27
58
0.753086
692d85a063447b579d13914d39974efb1729e22f
251
py
Python
Scripts/Bibliotecas/Mod 2.py
Vinicius-de-Souza-Reis-Lima/Python
2009e9f5be10a1cf4e506a7f9f17c6b90a30c7c7
[ "MIT" ]
null
null
null
Scripts/Bibliotecas/Mod 2.py
Vinicius-de-Souza-Reis-Lima/Python
2009e9f5be10a1cf4e506a7f9f17c6b90a30c7c7
[ "MIT" ]
null
null
null
Scripts/Bibliotecas/Mod 2.py
Vinicius-de-Souza-Reis-Lima/Python
2009e9f5be10a1cf4e506a7f9f17c6b90a30c7c7
[ "MIT" ]
null
null
null
from math import hypot co = float(input('Qual o valor do cateto oposto? ')) ca = float(input('Qual o valor do cateto adjacente? ')) hy = hypot(co, ca) print('O triângulo com cateto oposto {} e adjacente {}, tem hipotenusa {:.2f}.'.format(co, ca, hy))
41.833333
99
0.685259
8d6130729a851af4251ebf1ea8a71e21a4adce5a
193
py
Python
ic_crawler/gsgj_phone/gsgj_phone/util/md5_handle.py
AisinoPythonTeam/PythonAiniso
983a29962752679d8cc26a2c3cdb0ba8fcfa3f02
[ "Apache-2.0" ]
null
null
null
ic_crawler/gsgj_phone/gsgj_phone/util/md5_handle.py
AisinoPythonTeam/PythonAiniso
983a29962752679d8cc26a2c3cdb0ba8fcfa3f02
[ "Apache-2.0" ]
null
null
null
ic_crawler/gsgj_phone/gsgj_phone/util/md5_handle.py
AisinoPythonTeam/PythonAiniso
983a29962752679d8cc26a2c3cdb0ba8fcfa3f02
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import hashlib def get_md5_value(key): value = None try: value = hashlib.md5(key).hexdigest() except Exception, e: print e return value
16.083333
44
0.590674
7c5b6e9703e7cd8da72515a82ad17bca2546ed45
9,425
py
Python
gpv2/image_featurizer/image_featurizer.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
13
2022-02-03T00:25:35.000Z
2022-03-20T02:36:05.000Z
gpv2/image_featurizer/image_featurizer.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
null
null
null
gpv2/image_featurizer/image_featurizer.py
michalsr/gpv2
00a22b311dbaeefb04e1df676eb6ae3373d8d4b5
[ "Apache-2.0" ]
3
2022-01-14T19:15:38.000Z
2022-02-11T14:12:52.000Z
import logging from contextlib import ExitStack from os.path import join, exists from typing import List, Dict, Any, Tuple, Optional, NewType, Union import logging from typing import List, Dict, Any, Tuple, Optional import h5py import numpy as np import torch import torchvision from allennlp.common import Registrable, Params, FromParams from dataclasses import dataclass, replace from torch import nn from torchvision.models.detection.transform import GeneralizedRCNNTransform from torchvision.transforms import ColorJitter, RandomGrayscale, Normalize from torchvision.transforms.functional import hflip, to_tensor from torch.nn import functional as F from gpv2 import file_paths from gpv2.model.gpv_example import GPVExample from gpv2.model.layers import Layer from gpv2.utils import pytorch_utils, image_utils @dataclass class ImageRegionFeatures: """Object boxes, features, and objectness scores for objects in an image""" @staticmethod def build_from_lists(boxes, features, objectness): n_boxes = [len(x) for x in boxes] max_len = max(n_boxes) n_boxes = torch.as_tensor(n_boxes, dtype=torch.long, device=boxes[0].device) return ImageRegionFeatures( pytorch_utils.stack_and_pad(boxes, max_len), None if features is None else pytorch_utils.stack_and_pad(features, max_len), # -10000 so the padding is a valid log-probability None if objectness is None else pytorch_utils.stack_and_pad(objectness, max_len, -10000), n_boxes, ) """[batch, n_regions, 4] boxes in [cx, cy, w, y] format normalized between 0 and 1""" boxes: torch.Tensor """[batch, n_regions, n_features] region features""" features: Optional[torch.Tensor] """[batch, n_regions] or [batch, n_regions, n_classes] objectness log-probability""" objectness: Optional[torch.Tensor] """[batch] number of boxes for each batch if batches can have differing numbers of boxes""" n_boxes: Optional[torch.Tensor] = None def numpy(self): return ImageRegionFeatures( self.boxes.cpu().numpy(), None if self.features is None else self.features.cpu().numpy(), None if self.objectness is None else self.objectness.cpu().numpy(), None if self.n_boxes is None else self.n_boxes.cpu().numpy() ) def get_boxes(self, i: int): if self.boxes is not None: return self.boxes[i, :self.n_boxes[i]] else: return self.boxes[i] def to(self, device): return ImageRegionFeatures( self.boxes.to(device), None if self.features is None else self.features.to(device), None if self.objectness is None else self.objectness.to(device), None if self.n_boxes is None else self.n_boxes.to(device) ) def get_n_boxes(self): if self.n_boxes is None: batch, n = self.boxes.size()[:2] return torch.full((batch,), n, device=self.boxes.device, dtype=torch.long) else: return self.n_boxes BoxTargets = NewType('BoxTargets', List[Optional[torch.Tensor]]) """Batch of target boxes in cxcywh format, normalized between 0 and 1""" class ImageFeatureExtractor(nn.Module, Registrable): """Extracts regions and region feature vectors for an image This class does the visual feature extraction for our models. In order to support this, this class provides a custom collate function to use on the images and then a forward method that builds the features from the output of that collate function. """ def get_collate(self, is_train=False) -> 'ImageCollater': raise NotImplementedError() def forward(self, **kwargs) -> ImageRegionFeatures: raise NotImplementedError() class ImageCollater: def collate(self, batch: List[GPVExample]) -> Dict[str, Any]: """ return: image_inputs: Inputs to pass to `ImageFeatureExtractor.forward` """ raise NotImplementedError() class ROIFeatureExtractor(Layer): """Extract image features for a given set of regions""" def forward(self, x: torch.Tensor, boxes: torch.Tensor): """ x: Tensor of images boxes: [batch, n, 4] boxes that NOT normalized and in xyxy format """ raise NotImplementedError() @ROIFeatureExtractor.register("box-embed-feature-extractor") class BoBoxEmbedFeatureExtractor(ROIFeatureExtractor): """Does ROI pooling to get features for image regions""" def __init__( self, box_coordinate_embed: Optional[Layer] = None, pre_rio: Layer = None, post_rio: Layer = None, return_objectness = True, rio_processor: str = "mean", box_coordinate_join: str = "concat", rio_size=7, ): super().__init__() self.box_coordinate_embed = box_coordinate_embed self.pre_rio = pre_rio self.post_rio = post_rio self.return_objectness = return_objectness self.rio_processor = rio_processor self.box_coordinate_join = box_coordinate_join self.rio_size = rio_size def extract_roi(self, features, boxes: torch.Tensor): B, C, W, H = features.size() N = boxes.size(1) div = torch.as_tensor([W, H, W, H], device=boxes.device, dtype=boxes.dtype) scaled_boxes = boxes * div scaled_boxes = torchvision.ops.box_convert(scaled_boxes, "cxcywh", "xyxy") scaled_boxes = torch.unbind(scaled_boxes) roi_features = torchvision.ops.roi_align( features, scaled_boxes, output_size=self.rio_size, aligned=True) if self.rio_processor == "mean": roi_features = roi_features.view(B, N, C, -1).mean(-1) elif self.rio_processor == "max": roi_features = roi_features.view(B, N, C, -1).max(-1) else: raise NotImplementedError(self.rio_processor) return roi_features def forward(self, images, boxes) -> ImageRegionFeatures: if self.pre_rio is not None: images = self.pre_rio(images) roi_features = self.extract_roi(images, boxes) if self.post_rio is not None: roi_features = self.post_rio(roi_features) if self.box_coordinate_embed: box_embed = self.box_coordinate_embed(boxes) if self.box_coordinate_join == "concat": roi_features = torch.cat([roi_features, box_embed], -1) else: raise NotImplementedError(self.box_coordinate_join) return roi_features def build_scaled_boxes(features, boxes): B, C, H, W = features.size() div = torch.as_tensor([W, H, W, H], device=boxes.device, dtype=boxes.dtype) boxes = boxes * div return torchvision.ops.box_convert(boxes, "cxcywh", "xyxy") def gather_qboxes_and_targets(batch, hflipped=None, qbox_format="cxcywh", normalize_targets=True, target_format="cxcywh"): """Utility method that gather the query_boxes and targets of a batch""" targets = [] query_boxes = [] if hflipped is None: hflipped = [None for _ in batch] for ex, is_flipped in zip(batch, hflipped): if ex.target_boxes is None: targets.append(None) else: if ex.crop: raise ValueError("Box target on cropped images no supoorted") # Normalize the target boxes to be between 0 and 1 and to be # cxcywh format # TODO it would be nice to do this in the pre-preprocesing step boxes = torch.tensor(ex.target_boxes, dtype=torch.float) boxes = torchvision.ops.box_convert(boxes, "xywh", target_format) if normalize_targets: boxes = image_utils.normalize_boxes(boxes, ex.image_id) if is_flipped: boxes[:, 0] = 1.0 - boxes[:, 0] targets.append(boxes) if ex.query_boxes is None: query_boxes.append(None) else: if isinstance(ex.query_boxes, dict): qboxes = ex.query_boxes["qboxes"] qboxes = torch.tensor(qboxes, dtype=torch.float) if torch.any(qboxes > 1.0): qboxes = image_utils.normalize_boxes(qboxes, ex.image_id) qboxes = torchvision.ops.box_convert(qboxes, "xywh", qbox_format) if is_flipped: qboxes[:, 0] = 1.0 - qboxes[:, 0] q = dict(ex.query_boxes) q["qboxes"] = qboxes query_boxes.append(q) elif isinstance(ex.query_boxes, int) or ex.query_boxes.shape == (): # Query box reference to a stored bounding box query_boxes.append(ex.query_boxes) else: # Convert query boxes qboxes = torch.tensor(ex.query_boxes, dtype=torch.float) if torch.any(qboxes > 1.0): qboxes = image_utils.normalize_boxes(qboxes, ex.image_id) qboxes = torchvision.ops.box_convert(qboxes, "xywh", qbox_format) if is_flipped: qboxes[:, 0] = 1.0 - qboxes[:, 0] query_boxes.append(qboxes) return query_boxes, targets @ImageFeatureExtractor.register("debug") class DebugFeaturizer(ImageFeatureExtractor, ImageCollater): def __init__(self, n_boxes=4, dim=32): super().__init__() self.n_boxes = n_boxes self.dim = dim def get_collate(self, is_train=False) -> 'ImageCollater': return self def collate(self, batch): _, targets = gather_qboxes_and_targets(batch) return dict(batch_size=torch.as_tensor(len(batch))), targets def forward(self, batch_size) -> ImageRegionFeatures: device = batch_size.device return ImageRegionFeatures( torch.empty(batch_size, self.n_boxes, 4, device=device).uniform_(0.00001, 0.5), torch.empty(batch_size, self.n_boxes, self.dim, device=device).uniform_(0.00001, 0.5), torch.log(torch.empty(batch_size, self.n_boxes, self.dim, device=device).uniform_(1e-6, 1.0 - 1e-6)) )
34.778598
106
0.697825
a0bc937f75b0275a7b3b9499fad08de4ad38745b
24,466
py
Python
test/functional/interface_zmq.py
beloiual/bitcoin
53b5d7d91925a54b17f444bb1c52310fe9e4e797
[ "MIT" ]
1
2020-10-09T12:14:36.000Z
2020-10-09T12:14:36.000Z
test/functional/interface_zmq.py
beloiual/bitcoin
53b5d7d91925a54b17f444bb1c52310fe9e4e797
[ "MIT" ]
18
2020-10-31T01:04:18.000Z
2020-11-03T19:25:27.000Z
test/functional/interface_zmq.py
beloiual/bitcoin
53b5d7d91925a54b17f444bb1c52310fe9e4e797
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2015-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the ZMQ notification interface.""" import struct from test_framework.address import ADDRESS_BCRT1_UNSPENDABLE, ADDRESS_BCRT1_P2WSH_OP_TRUE from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment from test_framework.test_framework import BitcoinTestFramework from test_framework.messages import CTransaction, hash256, FromHex from test_framework.util import ( assert_equal, connect_nodes, assert_raises_rpc_error, ) from io import BytesIO from time import sleep # Test may be skipped and not have zmq installed try: import zmq except ImportError: pass def hash256_reversed(byte_str): return hash256(byte_str)[::-1] class ZMQSubscriber: def __init__(self, socket, topic): self.sequence = 0 self.socket = socket self.topic = topic self.socket.setsockopt(zmq.SUBSCRIBE, self.topic) def receive(self): topic, body, seq = self.socket.recv_multipart() # Topic should match the subscriber topic. assert_equal(topic, self.topic) # Sequence should be incremental. assert_equal(struct.unpack('<I', seq)[-1], self.sequence) self.sequence += 1 return body def receive_sequence(self): topic, body, seq = self.socket.recv_multipart() # Topic should match the subscriber topic. assert_equal(topic, self.topic) # Sequence should be incremental. assert_equal(struct.unpack('<I', seq)[-1], self.sequence) self.sequence += 1 hash = body[:32].hex() label = chr(body[32]) mempool_sequence = None if len(body) != 32+1+8 else struct.unpack("<Q", body[32+1:])[0] if mempool_sequence is not None: assert label == "A" or label == "R" else: assert label == "D" or label == "C" return (hash, label, mempool_sequence) class ZMQTest (BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 def skip_test_if_missing_module(self): self.skip_if_no_py3_zmq() self.skip_if_no_bitcoind_zmq() def run_test(self): self.ctx = zmq.Context() try: self.test_basic() self.test_sequence() self.test_mempool_sync() self.test_reorg() self.test_multiple_interfaces() finally: # Destroy the ZMQ context. self.log.debug("Destroying ZMQ context") self.ctx.destroy(linger=None) def test_basic(self): # Invalid zmq arguments don't take down the node, see #17185. self.restart_node(0, ["-zmqpubrawtx=foo", "-zmqpubhashtx=bar"]) address = 'tcp://127.0.0.1:28332' sockets = [] subs = [] services = [b"hashblock", b"hashtx", b"rawblock", b"rawtx"] for service in services: sockets.append(self.ctx.socket(zmq.SUB)) sockets[-1].set(zmq.RCVTIMEO, 60000) subs.append(ZMQSubscriber(sockets[-1], service)) # Subscribe to all available topics. hashblock = subs[0] hashtx = subs[1] rawblock = subs[2] rawtx = subs[3] self.restart_node(0, ["-zmqpub%s=%s" % (sub.topic.decode(), address) for sub in [hashblock, hashtx, rawblock, rawtx]]) connect_nodes(self.nodes[0], 1) for socket in sockets: socket.connect(address) # Relax so that the subscriber is ready before publishing zmq messages sleep(0.2) num_blocks = 5 self.log.info("Generate %(n)d blocks (and %(n)d coinbase txes)" % {"n": num_blocks}) genhashes = self.nodes[0].generatetoaddress(num_blocks, ADDRESS_BCRT1_UNSPENDABLE) self.sync_all() for x in range(num_blocks): # Should receive the coinbase txid. txid = hashtx.receive() # Should receive the coinbase raw transaction. hex = rawtx.receive() tx = CTransaction() tx.deserialize(BytesIO(hex)) tx.calc_sha256() assert_equal(tx.hash, txid.hex()) # Should receive the generated raw block. block = rawblock.receive() assert_equal(genhashes[x], hash256_reversed(block[:80]).hex()) # Should receive the generated block hash. hash = hashblock.receive().hex() assert_equal(genhashes[x], hash) # The block should only have the coinbase txid. assert_equal([txid.hex()], self.nodes[1].getblock(hash)["tx"]) if self.is_wallet_compiled(): self.log.info("Wait for tx from second node") payment_txid = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.0) self.sync_all() # Should receive the broadcasted txid. txid = hashtx.receive() assert_equal(payment_txid, txid.hex()) # Should receive the broadcasted raw transaction. hex = rawtx.receive() assert_equal(payment_txid, hash256_reversed(hex).hex()) # Mining the block with this tx should result in second notification # after coinbase tx notification self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) hashtx.receive() txid = hashtx.receive() assert_equal(payment_txid, txid.hex()) self.log.info("Test the getzmqnotifications RPC") assert_equal(self.nodes[0].getzmqnotifications(), [ {"type": "pubhashblock", "address": address, "hwm": 1000}, {"type": "pubhashtx", "address": address, "hwm": 1000}, {"type": "pubrawblock", "address": address, "hwm": 1000}, {"type": "pubrawtx", "address": address, "hwm": 1000}, ]) assert_equal(self.nodes[1].getzmqnotifications(), []) def test_reorg(self): if not self.is_wallet_compiled(): self.log.info("Skipping reorg test because wallet is disabled") return address = 'tcp://127.0.0.1:28333' services = [b"hashblock", b"hashtx"] sockets = [] subs = [] for service in services: sockets.append(self.ctx.socket(zmq.SUB)) # 2 second timeout to check end of notifications sockets[-1].set(zmq.RCVTIMEO, 2000) subs.append(ZMQSubscriber(sockets[-1], service)) # Subscribe to all available topics. hashblock = subs[0] hashtx = subs[1] # Should only notify the tip if a reorg occurs self.restart_node(0, ["-zmqpub%s=%s" % (sub.topic.decode(), address) for sub in [hashblock, hashtx]]) for socket in sockets: socket.connect(address) # Relax so that the subscriber is ready before publishing zmq messages sleep(0.2) # Generate 1 block in nodes[0] with 1 mempool tx and receive all notifications payment_txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1.0) disconnect_block = self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE)[0] disconnect_cb = self.nodes[0].getblock(disconnect_block)["tx"][0] assert_equal(self.nodes[0].getbestblockhash(), hashblock.receive().hex()) assert_equal(hashtx.receive().hex(), payment_txid) assert_equal(hashtx.receive().hex(), disconnect_cb) # Generate 2 blocks in nodes[1] to a different address to ensure split connect_blocks = self.nodes[1].generatetoaddress(2, ADDRESS_BCRT1_P2WSH_OP_TRUE) # nodes[0] will reorg chain after connecting back nodes[1] connect_nodes(self.nodes[0], 1) self.sync_blocks() # tx in mempool valid but not advertised # Should receive nodes[1] tip assert_equal(self.nodes[1].getbestblockhash(), hashblock.receive().hex()) # During reorg: # Get old payment transaction notification from disconnect and disconnected cb assert_equal(hashtx.receive().hex(), payment_txid) assert_equal(hashtx.receive().hex(), disconnect_cb) # And the payment transaction again due to mempool entry assert_equal(hashtx.receive().hex(), payment_txid) assert_equal(hashtx.receive().hex(), payment_txid) # And the new connected coinbases for i in [0, 1]: assert_equal(hashtx.receive().hex(), self.nodes[1].getblock(connect_blocks[i])["tx"][0]) # If we do a simple invalidate we announce the disconnected coinbase self.nodes[0].invalidateblock(connect_blocks[1]) assert_equal(hashtx.receive().hex(), self.nodes[1].getblock(connect_blocks[1])["tx"][0]) # And the current tip assert_equal(hashtx.receive().hex(), self.nodes[1].getblock(connect_blocks[0])["tx"][0]) def test_sequence(self): """ Sequence zmq notifications give every blockhash and txhash in order of processing, regardless of IBD, re-orgs, etc. Format of messages: <32-byte hash>C : Blockhash connected <32-byte hash>D : Blockhash disconnected <32-byte hash>R<8-byte LE uint> : Transactionhash removed from mempool for non-block inclusion reason <32-byte hash>A<8-byte LE uint> : Transactionhash added mempool """ self.log.info("Testing 'sequence' publisher") address = 'tcp://127.0.0.1:28333' socket = self.ctx.socket(zmq.SUB) socket.set(zmq.RCVTIMEO, 60000) seq = ZMQSubscriber(socket, b'sequence') self.restart_node(0, ['-zmqpub%s=%s' % (seq.topic.decode(), address)]) socket.connect(address) # Relax so that the subscriber is ready before publishing zmq messages sleep(0.2) # Mempool sequence number starts at 1 seq_num = 1 # Generate 1 block in nodes[0] and receive all notifications dc_block = self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE)[0] # Note: We are not notified of any block transactions, coinbase or mined assert_equal((self.nodes[0].getbestblockhash(), "C", None), seq.receive_sequence()) # Generate 2 blocks in nodes[1] to a different address to ensure a chain split self.nodes[1].generatetoaddress(2, ADDRESS_BCRT1_P2WSH_OP_TRUE) # nodes[0] will reorg chain after connecting back nodes[1] connect_nodes(self.nodes[0], 1) # Then we receive all block (dis)connect notifications for the 2 block reorg assert_equal((dc_block, "D", None), seq.receive_sequence()) block_count = self.nodes[1].getblockcount() assert_equal((self.nodes[1].getblockhash(block_count-1), "C", None), seq.receive_sequence()) assert_equal((self.nodes[1].getblockhash(block_count), "C", None), seq.receive_sequence()) # Rest of test requires wallet functionality if self.is_wallet_compiled(): self.log.info("Wait for tx from second node") payment_txid = self.nodes[1].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=5.0, replaceable=True) self.sync_all() self.log.info("Testing sequence notifications with mempool sequence values") # Should receive the broadcasted txid. assert_equal((payment_txid, "A", seq_num), seq.receive_sequence()) seq_num += 1 self.log.info("Testing RBF notification") # Replace it to test eviction/addition notification rbf_info = self.nodes[1].bumpfee(payment_txid) self.sync_all() assert_equal((payment_txid, "R", seq_num), seq.receive_sequence()) seq_num += 1 assert_equal((rbf_info["txid"], "A", seq_num), seq.receive_sequence()) seq_num += 1 # Doesn't get published when mined, make a block and tx to "flush" the possibility # though the mempool sequence number does go up by the number of transactions # removed from the mempool by the block mining it. mempool_size = len(self.nodes[0].getrawmempool()) c_block = self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE)[0] self.sync_all() # Make sure the number of mined transactions matches the number of txs out of mempool mempool_size_delta = mempool_size - len(self.nodes[0].getrawmempool()) assert_equal(len(self.nodes[0].getblock(c_block)["tx"])-1, mempool_size_delta) seq_num += mempool_size_delta payment_txid_2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.0) self.sync_all() assert_equal((c_block, "C", None), seq.receive_sequence()) assert_equal((payment_txid_2, "A", seq_num), seq.receive_sequence()) seq_num += 1 # Spot check getrawmempool results that they only show up when asked for assert type(self.nodes[0].getrawmempool()) is list assert type(self.nodes[0].getrawmempool(mempool_sequence=False)) is list assert "mempool_sequence" not in self.nodes[0].getrawmempool(verbose=True) assert_raises_rpc_error(-8, "Verbose results cannot contain mempool sequence values.", self.nodes[0].getrawmempool, True, True) assert_equal(self.nodes[0].getrawmempool(mempool_sequence=True)["mempool_sequence"], seq_num) self.log.info("Testing reorg notifications") # Manually invalidate the last block to test mempool re-entry # N.B. This part could be made more lenient in exact ordering # since it greatly depends on inner-workings of blocks/mempool # during "deep" re-orgs. Probably should "re-construct" # blockchain/mempool state from notifications instead. block_count = self.nodes[0].getblockcount() best_hash = self.nodes[0].getbestblockhash() self.nodes[0].invalidateblock(best_hash) sleep(2) # Bit of room to make sure transaction things happened # Make sure getrawmempool mempool_sequence results aren't "queued" but immediately reflective # of the time they were gathered. assert self.nodes[0].getrawmempool(mempool_sequence=True)["mempool_sequence"] > seq_num assert_equal((best_hash, "D", None), seq.receive_sequence()) assert_equal((rbf_info["txid"], "A", seq_num), seq.receive_sequence()) seq_num += 1 # Other things may happen but aren't wallet-deterministic so we don't test for them currently self.nodes[0].reconsiderblock(best_hash) self.nodes[1].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) self.sync_all() self.log.info("Evict mempool transaction by block conflict") orig_txid = self.nodes[0].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=1.0, replaceable=True) # More to be simply mined more_tx = [] for _ in range(5): more_tx.append(self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 0.1)) raw_tx = self.nodes[0].getrawtransaction(orig_txid) bump_info = self.nodes[0].bumpfee(orig_txid) # Mine the pre-bump tx block = create_block(int(self.nodes[0].getbestblockhash(), 16), create_coinbase(self.nodes[0].getblockcount()+1)) tx = FromHex(CTransaction(), raw_tx) block.vtx.append(tx) for txid in more_tx: tx = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid)) block.vtx.append(tx) add_witness_commitment(block) block.solve() assert_equal(self.nodes[0].submitblock(block.serialize().hex()), None) tip = self.nodes[0].getbestblockhash() assert_equal(int(tip, 16), block.sha256) orig_txid_2 = self.nodes[0].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=1.0, replaceable=True) # Flush old notifications until evicted tx original entry (hash_str, label, mempool_seq) = seq.receive_sequence() while hash_str != orig_txid: (hash_str, label, mempool_seq) = seq.receive_sequence() mempool_seq += 1 # Added original tx assert_equal(label, "A") # More transactions to be simply mined for i in range(len(more_tx)): assert_equal((more_tx[i], "A", mempool_seq), seq.receive_sequence()) mempool_seq += 1 # Bumped by rbf assert_equal((orig_txid, "R", mempool_seq), seq.receive_sequence()) mempool_seq += 1 assert_equal((bump_info["txid"], "A", mempool_seq), seq.receive_sequence()) mempool_seq += 1 # Conflict announced first, then block assert_equal((bump_info["txid"], "R", mempool_seq), seq.receive_sequence()) mempool_seq += 1 assert_equal((tip, "C", None), seq.receive_sequence()) mempool_seq += len(more_tx) # Last tx assert_equal((orig_txid_2, "A", mempool_seq), seq.receive_sequence()) mempool_seq += 1 self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) self.sync_all() # want to make sure we didn't break "consensus" for other tests def test_mempool_sync(self): """ Use sequence notification plus getrawmempool sequence results to "sync mempool" """ if not self.is_wallet_compiled(): self.log.info("Skipping mempool sync test") return self.log.info("Testing 'mempool sync' usage of sequence notifier") address = 'tcp://127.0.0.1:28333' socket = self.ctx.socket(zmq.SUB) socket.set(zmq.RCVTIMEO, 60000) seq = ZMQSubscriber(socket, b'sequence') self.restart_node(0, ['-zmqpub%s=%s' % (seq.topic.decode(), address)]) connect_nodes(self.nodes[0], 1) socket.connect(address) # Relax so that the subscriber is ready before publishing zmq messages sleep(0.2) # In-memory counter, should always start at 1 next_mempool_seq = self.nodes[0].getrawmempool(mempool_sequence=True)["mempool_sequence"] assert_equal(next_mempool_seq, 1) # Some transactions have been happening but we aren't consuming zmq notifications yet # or we lost a ZMQ message somehow and want to start over txids = [] num_txs = 5 for _ in range(num_txs): txids.append(self.nodes[1].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=1.0, replaceable=True)) self.sync_all() # 1) Consume backlog until we get a mempool sequence number (hash_str, label, zmq_mem_seq) = seq.receive_sequence() while zmq_mem_seq is None: (hash_str, label, zmq_mem_seq) = seq.receive_sequence() assert label == "A" or label == "R" assert hash_str is not None # 2) We need to "seed" our view of the mempool mempool_snapshot = self.nodes[0].getrawmempool(mempool_sequence=True) mempool_view = set(mempool_snapshot["txids"]) get_raw_seq = mempool_snapshot["mempool_sequence"] assert_equal(get_raw_seq, 6) # Snapshot may be too old compared to zmq message we read off latest while zmq_mem_seq >= get_raw_seq: sleep(2) mempool_snapshot = self.nodes[0].getrawmempool(mempool_sequence=True) mempool_view = set(mempool_snapshot["txids"]) get_raw_seq = mempool_snapshot["mempool_sequence"] # Things continue to happen in the "interim" while waiting for snapshot results # We have node 0 do all these to avoid p2p races with RBF announcements for _ in range(num_txs): txids.append(self.nodes[0].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=0.1, replaceable=True)) self.nodes[0].bumpfee(txids[-1]) self.sync_all() self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) final_txid = self.nodes[0].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=0.1, replaceable=True) # 3) Consume ZMQ backlog until we get to "now" for the mempool snapshot while True: if zmq_mem_seq == get_raw_seq - 1: break (hash_str, label, mempool_sequence) = seq.receive_sequence() if mempool_sequence is not None: zmq_mem_seq = mempool_sequence if zmq_mem_seq > get_raw_seq: raise Exception("We somehow jumped mempool sequence numbers! zmq_mem_seq: {} > get_raw_seq: {}".format(zmq_mem_seq, get_raw_seq)) # 4) Moving forward, we apply the delta to our local view # remaining txs(5) + 1 rbf(A+R) + 1 block connect + 1 final tx expected_sequence = get_raw_seq r_gap = 0 for _ in range(num_txs + 2 + 1 + 1): (hash_str, label, mempool_sequence) = seq.receive_sequence() if mempool_sequence is not None: if mempool_sequence != expected_sequence: # Detected "R" gap, means this a conflict eviction, and mempool tx are being evicted before its # position in the incoming block message "C" if label == "R": assert mempool_sequence > expected_sequence r_gap += mempool_sequence - expected_sequence else: raise Exception("WARNING: txhash has unexpected mempool sequence value: {} vs expected {}".format(mempool_sequence, expected_sequence)) if label == "A": assert hash_str not in mempool_view mempool_view.add(hash_str) expected_sequence = mempool_sequence + 1 elif label == "R": assert hash_str in mempool_view mempool_view.remove(hash_str) expected_sequence = mempool_sequence + 1 elif label == "C": # (Attempt to) remove all txids from known block connects block_txids = self.nodes[0].getblock(hash_str)["tx"][1:] for txid in block_txids: if txid in mempool_view: expected_sequence += 1 mempool_view.remove(txid) expected_sequence -= r_gap r_gap = 0 elif label == "D": # Not useful for mempool tracking per se continue else: raise Exception("Unexpected ZMQ sequence label!") assert_equal(self.nodes[0].getrawmempool(), [final_txid]) assert_equal(self.nodes[0].getrawmempool(mempool_sequence=True)["mempool_sequence"], expected_sequence) # 5) If you miss a zmq/mempool sequence number, go back to step (2) self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) def test_multiple_interfaces(self): # Set up two subscribers with different addresses subscribers = [] for i in range(2): address = 'tcp://127.0.0.1:%d' % (28334 + i) socket = self.ctx.socket(zmq.SUB) socket.set(zmq.RCVTIMEO, 60000) hashblock = ZMQSubscriber(socket, b"hashblock") socket.connect(address) subscribers.append({'address': address, 'hashblock': hashblock}) self.restart_node(0, ['-zmqpub%s=%s' % (subscriber['hashblock'].topic.decode(), subscriber['address']) for subscriber in subscribers]) # Relax so that the subscriber is ready before publishing zmq messages sleep(0.2) # Generate 1 block in nodes[0] and receive all notifications self.nodes[0].generatetoaddress(1, ADDRESS_BCRT1_UNSPENDABLE) # Should receive the same block hash on both subscribers assert_equal(self.nodes[0].getbestblockhash(), subscribers[0]['hashblock'].receive().hex()) assert_equal(self.nodes[0].getbestblockhash(), subscribers[1]['hashblock'].receive().hex()) if __name__ == '__main__': ZMQTest().main()
45.730841
159
0.626093
2b944b679a7a2ab8e14f86256b4a13a0495104f6
3,736
py
Python
espresso/tools/asr_prep_json.py
ifnspaml/espresso
5911b69b20a6aa3cff4f0e1ba3db94ee759b52c5
[ "MIT" ]
null
null
null
espresso/tools/asr_prep_json.py
ifnspaml/espresso
5911b69b20a6aa3cff4f0e1ba3db94ee759b52c5
[ "MIT" ]
null
null
null
espresso/tools/asr_prep_json.py
ifnspaml/espresso
5911b69b20a6aa3cff4f0e1ba3db94ee759b52c5
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Yiming Wang # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import sys from collections import OrderedDict logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, stream=sys.stdout, ) logger = logging.getLogger("espresso.tools.asr_prep_json") def read_file(ordered_dict, key, dtype, *paths): for path in paths: with open(path, "r", encoding="utf-8") as f: for line in f: utt_id, val = line.strip().split(None, 1) if utt_id in ordered_dict: assert key not in ordered_dict[utt_id], ( "Duplicate utterance id " + utt_id + " in " + key ) ordered_dict[utt_id].update({key: dtype(val)}) else: ordered_dict[utt_id] = {key: val} return ordered_dict def main(): parser = argparse.ArgumentParser( description="Wrap all related files of a dataset into a single json file" ) # fmt: off audio_group = parser.add_mutually_exclusive_group(required=True) audio_group.add_argument("--feat-files", nargs="+", default=None, help="path(s) to feats.scp feature file(s) from Kaldi") audio_group.add_argument("--wave-files", nargs="+", default=None, help="path(s) to raw waveform file(s), where each entry has the format '<utt-id> <file-path>'") audio_group.add_argument("--command-files", nargs="+", default=None, help="path(s) to wav.scp file(s) from Kaldi") parser.add_argument("--token-text-files", nargs="+", default=None, help="path(s) to token_text file(s)") parser.add_argument("--text-files", nargs="+", default=None, help="path(s) to text file(s)") parser.add_argument("--numerator-fst-files", nargs="+", default=None, help="path(s) to numerator fst file(s)") parser.add_argument("--alignment-files", nargs="+", default=None, help="path(s) to alignment file(s)") parser.add_argument("--utt2num-frames-files", nargs="+", default=None, help="path(s) to utt2num_frames file(s)") parser.add_argument("--output", required=True, type=argparse.FileType("w"), help="path to save json output") args = parser.parse_args() # fmt: on obj = OrderedDict() if args.feat_files is not None: obj = read_file(obj, "feat", str, *(args.feat_files)) elif args.wave_files is not None: obj = read_file(obj, "wave", str, *(args.wave_files)) else: assert args.command_files is not None obj = read_file(obj, "command", str, *(args.command_files)) if args.token_text_files is not None: obj = read_file(obj, "token_text", str, *(args.token_text_files)) if args.text_files is not None: obj = read_file(obj, "text", str, *(args.text_files)) if args.numerator_fst_files is not None: obj = read_file(obj, "numerator_fst", str, *(args.numerator_fst_files)) if args.alignment_files is not None: obj = read_file(obj, "alignment", str, *(args.alignment_files)) if args.utt2num_frames_files is not None: obj = read_file(obj, "utt2num_frames", int, *(args.utt2num_frames_files)) json.dump(obj, args.output, indent=4) logger.info("Dumped {} examples in {}".format(len(obj), args.output.name)) if __name__ == "__main__": main()
41.977528
124
0.608137
c94f92407f5b3afa3787bdd72e3ccc70a13ce1cd
518
py
Python
equipment/framework/tests/Helpers/PrintIfHelperTest.py
didacelgueta/equipment
12cd86bfe4b70bce3e2578e3ec79fc4c0f76c322
[ "MIT" ]
1
2022-03-02T11:32:10.000Z
2022-03-02T11:32:10.000Z
equipment/framework/tests/Helpers/PrintIfHelperTest.py
didacelgueta/equipment
12cd86bfe4b70bce3e2578e3ec79fc4c0f76c322
[ "MIT" ]
35
2022-03-02T14:33:49.000Z
2022-03-30T08:14:26.000Z
equipment/framework/tests/Helpers/PrintIfHelperTest.py
didacelgueta/equipment
12cd86bfe4b70bce3e2578e3ec79fc4c0f76c322
[ "MIT" ]
1
2022-03-24T11:52:01.000Z
2022-03-24T11:52:01.000Z
import unittest from unittest.mock import patch from equipment.framework.tests.TestCase import TestCase from equipment.framework.helpers import print_if class PrintIfHelperTest(TestCase): @patch('builtins.print') def test_true(self, mock_print): print_if(True, 'foo') mock_print.assert_called_with('foo') @patch('builtins.print') def test_false(self, mock_print): print_if(False, 'foo') mock_print.assert_not_called() if __name__ == '__main__': unittest.main()
24.666667
55
0.716216
a4a4f2264ce244f745d20fc59ffae5c44272ac6b
5,423
py
Python
tests/test_replication.py
jorge-sanchez-2020/cognite-replicator
eb79ac00063c37996218bd8a8ca1a691fdceab7f
[ "Apache-2.0" ]
null
null
null
tests/test_replication.py
jorge-sanchez-2020/cognite-replicator
eb79ac00063c37996218bd8a8ca1a691fdceab7f
[ "Apache-2.0" ]
null
null
null
tests/test_replication.py
jorge-sanchez-2020/cognite-replicator
eb79ac00063c37996218bd8a8ca1a691fdceab7f
[ "Apache-2.0" ]
null
null
null
from cognite.client.data_classes import Asset, Event, TimeSeries from cognite.replicator.replication import ( existing_mapping, filter_objects, find_objects_to_delete_if_not_in_src, find_objects_to_delete_not_replicated_in_dst, make_id_object_map, make_objects_batch, remove_replication_metadata, ) def test_make_id_object_map(): assets = [Asset(id=3, metadata={"_replicatedInternalId": 55}), Asset(id=2)] mapping = make_id_object_map(assets) assert 1 == len(mapping) assert 3 == mapping[55].id def test_existing_mapping(): assets = [ Asset(id=3, name="holy grenade", metadata={"_replicatedInternalId": 33}), Asset(id=7, name="not holy grenade", parent_id=3, metadata={"_replicatedInternalId": 77}), Asset(id=5, name="in-holy grenade", parent_id=7, metadata={"_replicatedInternalId": 55}), ] ids = existing_mapping(*assets) assert ids[assets[0].metadata["_replicatedInternalId"]] == assets[0].id assert ids[assets[1].metadata["_replicatedInternalId"]] == assets[1].id assert ids[assets[2].metadata["_replicatedInternalId"]] == assets[2].id def test_find_objects_to_delete_not_replicated_in_dst(): assets = [ Asset(id=3, name="holy grenade", metadata={"_replicatedSource": "source_tenant", "_replicatedInternalId": 123}), Asset(id=7, name="not holy grenade", metadata={}), Asset(id=5, name="in-holy grenade", metadata={"source": "None"}), ] to_delete = find_objects_to_delete_not_replicated_in_dst(assets) assert len(to_delete) == 2 assert set(to_delete) == {5, 7} assert find_objects_to_delete_not_replicated_in_dst([]) == [] def test_find_objects_to_delete_if_not_in_src(): assets_dst = [ Asset(id=3, name="holy grenade", metadata={"_replicatedSource": "source_tenant", "_replicatedInternalId": 3}), Asset(id=13, name="unlucky holy grenade", metadata={"_replicatedInternalId": 123}), Asset(id=7, name="not holy grenade", metadata={}), Asset(id=5, name="in-holy grenade", metadata={"_replicatedInternalId": 5}), ] assets_src = [Asset(id=3, name="holy grenade", metadata={}), Asset(id=5, name="in-holy grenade", metadata={})] to_delete = find_objects_to_delete_if_not_in_src(assets_src, assets_dst) assert len(to_delete) == 1 assert to_delete[0] == 13 assert find_objects_to_delete_if_not_in_src([], []) == [] def test_filter_objects(): time_series = [TimeSeries(id=1, asset_id=100), TimeSeries(id=2), TimeSeries(id=3, asset_id=101)] events = [Event(id=10, asset_ids=[100, 101]), Event(id=11), Event(id=12, asset_ids=[101])] src_dst_asset_id_map = {100: 1000} dummy_filtered_events = filter_objects(events, src_dst_asset_id_map) dummy_filtered_ts = filter_objects(time_series, src_dst_asset_id_map) assert dummy_filtered_events == events assert dummy_filtered_ts == time_series asset_events = filter_objects(events, src_dst_asset_id_map, skip_nonasset=True) asset_ts = filter_objects(time_series, src_dst_asset_id_map, skip_nonasset=True) assert len(asset_events) == 2 assert len(asset_ts) == 2 for i in range(len(asset_ts)): assert asset_ts[i].asset_id is not None assert asset_events[i].asset_ids is not None linkable_events = filter_objects(events, src_dst_asset_id_map, skip_nonasset=True, skip_unlinkable=True) linkable_ts = filter_objects(time_series, src_dst_asset_id_map, skip_nonasset=True, skip_unlinkable=True) assert len(linkable_events) == 1 assert len(linkable_ts) == 1 assert linkable_events[0] == events[0] assert linkable_ts[0] == time_series[0] odd_id_events = filter_objects(events, src_dst_asset_id_map, filter_fn=lambda x: x.id % 2 == 1) assert len(odd_id_events) == 1 for event in odd_id_events: assert event.id % 2 == 1 def test_make_objects_batch(): src_objects = [ Event(id=1, last_updated_time=1000), Event(id=2, last_updated_time=1000), Event(id=3, last_updated_time=1000), ] src_id_to_dst = { 1: Event(id=11, metadata={"_replicatedTime": 100}), 2: Event(id=12, metadata={"_replicatedTime": 10000}), } def dummy_update(src_obj, dst_obj, src_dst_ids_assets, project_src, replicated_runtime): return dst_obj def dummy_create(src_obj, src_dst_ids_assets, project_src, replicated_runtime): return src_obj created, updated, unchanged = make_objects_batch( src_objects, src_id_to_dst, {}, create=dummy_create, update=dummy_update, project_src="test project", replicated_runtime=10000, ) assert len(created) == len(updated) == len(unchanged) == 1 assert updated[0].id == 11 assert unchanged[0].id == 12 assert created[0].id == 3 def test_remove_replication_metadata(): events = [ Event(metadata={"_replicatedInternalId": 10, "_replicatedSource": "src_project", "_replicatedTime": 10000000}), Event(metadata={}), Event(id=3, metadata={"_replicatedInternalId": 10, "misc1": 16, "misc2": "text"}), ] remove_replication_metadata(events) for event in events: assert "_replicatedInternalId" not in event.metadata assert "_replicatedSource" not in event.metadata assert "_replicatedTime" not in event.metadata assert len(events[2].metadata.keys()) == 2
40.470149
120
0.696109
f638ea91d4f51c395c31c4ff58e6cfe965800a17
892
py
Python
var/spack/repos/builtin/packages/spherepack/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2020-10-15T01:08:42.000Z
2021-10-18T01:28:18.000Z
var/spack/repos/builtin/packages/spherepack/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2019-07-30T10:12:28.000Z
2019-12-17T09:02:27.000Z
var/spack/repos/builtin/packages/spherepack/package.py
adrianjhpc/spack
0a9e4fcee57911f2db586aa50c8873d9cca8de92
[ "ECL-2.0", "Apache-2.0", "MIT" ]
5
2019-07-30T09:42:14.000Z
2021-01-25T05:39:20.000Z
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Spherepack(Package): """SPHEREPACK - A Package for Modeling Geophysical Processes""" homepage = "https://www2.cisl.ucar.edu/resources/legacy/spherepack" url = "https://www2.cisl.ucar.edu/sites/default/files/spherepack3.2.tar" version('3.2', sha256='d58ef8cbc45cf2ad24f73a9f73f5f9d4fbe03cd9e2e7722e526fffb68be581ba') def install(self, spec, prefix): if self.compiler.fc is None: raise InstallError("SPHEREPACK requires a Fortran 90 compiler") make("MAKE=make", "F90=f90 -O2", "AR=ar", "libspherepack") make("MAKE=make", "F90=f90 -O2", "AR=ar", "testspherepack") install_tree("lib", prefix.lib)
37.166667
93
0.700673
7b80010c8136519be29e883fe6cbb0afe1a352db
4,885
py
Python
cirq-core/cirq/work/collector_test.py
LLcat1217/Cirq
b88069f7b01457e592ad69d6b413642ef11a56b8
[ "Apache-2.0" ]
3,326
2018-07-18T23:17:21.000Z
2022-03-29T22:28:24.000Z
cirq-core/cirq/work/collector_test.py
bradyb/Cirq
610b0d4ea3a7862169610797266734c844ddcc1f
[ "Apache-2.0" ]
3,443
2018-07-18T21:07:28.000Z
2022-03-31T20:23:21.000Z
cirq-core/cirq/work/collector_test.py
bradyb/Cirq
610b0d4ea3a7862169610797266734c844ddcc1f
[ "Apache-2.0" ]
865
2018-07-18T23:30:24.000Z
2022-03-30T11:43:23.000Z
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import duet import pytest import cirq def test_circuit_sample_job_equality(): eq = cirq.testing.EqualsTester() c1 = cirq.Circuit() c2 = cirq.Circuit(cirq.measure(cirq.LineQubit(0))) eq.add_equality_group( cirq.CircuitSampleJob(c1, repetitions=10), cirq.CircuitSampleJob(c1, repetitions=10, tag=None), ) eq.add_equality_group(cirq.CircuitSampleJob(c2, repetitions=10)) eq.add_equality_group(cirq.CircuitSampleJob(c1, repetitions=100)) eq.add_equality_group(cirq.CircuitSampleJob(c1, repetitions=10, tag='test')) def test_circuit_sample_job_repr(): cirq.testing.assert_equivalent_repr( cirq.CircuitSampleJob(cirq.Circuit(cirq.H(cirq.LineQubit(0))), repetitions=10, tag='guess') ) @duet.sync async def test_async_collect(): received = [] class TestCollector(cirq.Collector): def next_job(self): q = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q)) return cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test') def on_job_result(self, job, result): received.append(job.tag) result = await TestCollector().collect_async( sampler=cirq.Simulator(), max_total_samples=100, concurrency=5 ) assert result is None assert received == ['test'] * 10 def test_collect(): received = [] class TestCollector(cirq.Collector): def next_job(self): q = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q)) return cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test') def on_job_result(self, job, result): received.append(job.tag) TestCollector().collect(sampler=cirq.Simulator(), max_total_samples=100, concurrency=5) assert received == ['test'] * 10 def test_failed_job(): class FailingSampler: async def run_async(self, circuit, repetitions): await duet.completed_future(None) raise Exception('job failed!') class TestCollector(cirq.Collector): def next_job(self): q = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q)) return cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test') def on_job_result(self, job, result): pass with pytest.raises(Exception, match='job failed!'): TestCollector().collect(sampler=FailingSampler(), max_total_samples=100, concurrency=5) def test_collect_with_reaction(): events = [0] sent = 0 received = 0 class TestCollector(cirq.Collector): def next_job(self): nonlocal sent if sent >= received + 3: return None sent += 1 events.append(sent) q = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q)) return cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag=sent) def on_job_result(self, job, result): nonlocal received received += 1 events.append(-job.tag) TestCollector().collect(sampler=cirq.Simulator(), max_total_samples=100, concurrency=5) # Expected sends and receives are present. assert sorted(events) == list(range(-10, 1 + 10)) # Sends are in order. assert [e for e in events if e > 0] == list(range(1, 11)) # Every receive comes after the corresponding send. assert all(events.index(-k) > events.index(k) for k in range(1, 11)) def test_flatten_jobs_terminate_from_collector(): sent = False received = [] class TestCollector(cirq.Collector): def next_job(self): nonlocal sent if sent: return sent = True q = cirq.LineQubit(0) circuit = cirq.Circuit(cirq.H(q), cirq.measure(q)) a = cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test') b = cirq.CircuitSampleJob(circuit=circuit, repetitions=10, tag='test') return [[a, None], [[[None]]], [[[]]], b] def on_job_result(self, job, result): received.append(job.tag) TestCollector().collect(sampler=cirq.Simulator(), concurrency=5) assert received == ['test'] * 2
33.231293
99
0.649335
acbb9ec0706ee41019730827df9f4c4d4d48cc56
8,656
py
Python
python/gstgva/util.py
morkovka1337/gst-video-analytics
b06a6c58ecd1f0b63019d7d757ec471d224a8090
[ "MIT" ]
1
2020-12-01T10:49:35.000Z
2020-12-01T10:49:35.000Z
python/gstgva/util.py
morkovka1337/gst-video-analytics
b06a6c58ecd1f0b63019d7d757ec471d224a8090
[ "MIT" ]
null
null
null
python/gstgva/util.py
morkovka1337/gst-video-analytics
b06a6c58ecd1f0b63019d7d757ec471d224a8090
[ "MIT" ]
1
2019-11-14T16:40:54.000Z
2019-11-14T16:40:54.000Z
# ============================================================================== # Copyright (C) 2018-2020 Intel Corporation # # SPDX-License-Identifier: MIT # ============================================================================== import ctypes from contextlib import contextmanager # libgstreamer libgst = ctypes.CDLL("libgstreamer-1.0.so.0") GST_PADDING = 4 class GstMapInfo(ctypes.Structure): _fields_ = [("memory", ctypes.c_void_p), # GstMemory *memory ("flags", ctypes.c_int), # GstMapFlags flags ("data", ctypes.POINTER(ctypes.c_byte)), # guint8 *data ("size", ctypes.c_size_t), # gsize size ("maxsize", ctypes.c_size_t), # gsize maxsize ("user_data", ctypes.c_void_p * 4), # gpointer user_data[4] ("_gst_reserved", ctypes.c_void_p * GST_PADDING)] GST_MAP_INFO_POINTER = ctypes.POINTER(GstMapInfo) class GUnion(ctypes.Union): _fields_ = [('v_int', ctypes.c_int), ('v_uint', ctypes.c_uint), ('v_long', ctypes.c_long), ('v_ulong', ctypes.c_ulong), ('v_int64', ctypes.c_int64), ('v_uint64', ctypes.c_uint64), ('v_float', ctypes.c_float), ('v_double', ctypes.c_double), ('v_pointer', ctypes.c_void_p)] class GValue(ctypes.Structure): _fields_ = [('g_type', ctypes.c_size_t), ('data', GUnion)] G_VALUE_POINTER = ctypes.POINTER(GValue) class GValueArray(ctypes.Structure): _fields_ = [("n_values", ctypes.c_uint32), ("values", ctypes.c_void_p), ("n_preallocated", ctypes.c_uint32)] G_VALUE_ARRAY_POINTER = ctypes.POINTER(GValueArray) # gst buffer libgst.gst_buffer_map.argtypes = [ ctypes.c_void_p, GST_MAP_INFO_POINTER, ctypes.c_int] libgst.gst_buffer_map.restype = ctypes.c_int libgst.gst_buffer_unmap.argtypes = [ctypes.c_void_p, GST_MAP_INFO_POINTER] libgst.gst_buffer_unmap.restype = None libgst.gst_buffer_iterate_meta_filtered.argtypes = [ ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_void_p] libgst.gst_buffer_iterate_meta_filtered.restype = ctypes.c_void_p libgst.gst_buffer_remove_meta.argtypes = [ctypes.c_void_p, ctypes.c_void_p] libgst.gst_buffer_remove_meta.restype = ctypes.c_bool libgst.gst_buffer_add_meta.argtypes = [ ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] libgst.gst_buffer_add_meta.restype = ctypes.c_void_p # gst miniobject libgst.gst_mini_object_make_writable.argtypes = [ctypes.c_void_p] libgst.gst_mini_object_make_writable.restype = ctypes.c_void_p libgst.gst_mini_object_is_writable.argtypes = [ctypes.c_void_p] libgst.gst_mini_object_is_writable.restype = ctypes.c_int libgst.gst_mini_object_ref.argtypes = [ctypes.c_void_p] libgst.gst_mini_object_ref.restype = ctypes.c_void_p libgst.gst_mini_object_unref.argtypes = [ctypes.c_void_p] libgst.gst_mini_object_unref.restype = ctypes.c_void_p # gst structure libgst.gst_structure_get_name.argtypes = [ctypes.c_void_p] libgst.gst_structure_get_name.restype = ctypes.c_char_p libgst.gst_structure_has_name.argtypes = [ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_has_name.restype = ctypes.c_bool libgst.gst_structure_set_name.argtypes = [ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_set_name.restypes = None libgst.gst_structure_set_value.argtypes = [ ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p] libgst.gst_structure_set_value.restypes = None libgst.gst_structure_set_array.argtypes = [ ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p] libgst.gst_structure_set_array.restypes = None libgst.gst_structure_remove_field.argtypes = [ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_remove_field.restypes = None libgst.gst_structure_get_field_type.argtypes = [ ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_get_field_type.restypes = ctypes.c_size_t libgst.gst_structure_get_string.argtypes = [ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_get_string.restype = ctypes.c_char_p libgst.gst_structure_get_value.argtypes = [ctypes.c_void_p, ctypes.c_char_p] libgst.gst_structure_get_value.restype = ctypes.c_void_p libgst.gst_structure_get_int.argtypes = [ ctypes.c_void_p, ctypes.c_char_p, ctypes.POINTER(ctypes.c_int)] libgst.gst_structure_get_int.restype = ctypes.c_int libgst.gst_structure_get_double.argtypes = [ ctypes.c_void_p, ctypes.c_char_p, ctypes.POINTER(ctypes.c_double)] libgst.gst_structure_get_double.restype = ctypes.c_int libgst.gst_structure_get_array.argtypes = [ctypes.c_void_p, ctypes.c_char_p, ctypes.POINTER(G_VALUE_ARRAY_POINTER)] libgst.gst_structure_get_array.restype = ctypes.c_bool libgst.gst_structure_n_fields.argtypes = [ctypes.c_void_p] libgst.gst_structure_n_fields.restype = ctypes.c_int libgst.gst_structure_nth_field_name.argtypes = [ctypes.c_void_p, ctypes.c_uint] libgst.gst_structure_nth_field_name.restype = ctypes.c_char_p libgst.gst_structure_new_empty.argtypes = [ctypes.c_char_p] libgst.gst_structure_new_empty.restype = ctypes.c_void_p libgst.gst_structure_copy.argtypes = [ctypes.c_void_p] libgst.gst_structure_copy.restype = ctypes.c_void_p # gst caps libgst.gst_caps_get_structure.argtypes = [ctypes.c_void_p, ctypes.c_uint] libgst.gst_caps_get_structure.restype = ctypes.c_void_p libgst.gst_value_array_get_type.argtypes = None libgst.gst_value_array_get_type.restype = ctypes.c_void_p libgst.gst_value_array_append_value.argtypes = [ctypes.c_void_p, ctypes.c_void_p] libgst.gst_value_array_append_value.restype = None @contextmanager def GST_PAD_PROBE_INFO_BUFFER(info): _buffer = info.get_buffer() _buffer.mini_object.refcount -= 1 try: yield _buffer finally: _buffer.mini_object.refcount += 1 @contextmanager def TRANSFORM_IP_BUFFER(_buffer): _buffer.mini_object.refcount -= 1 try: yield _buffer finally: _buffer.mini_object.refcount += 1 @contextmanager def gst_buffer_data(_buffer, flags): if _buffer is None: raise TypeError("Cannot pass NULL to gst_buffer_map") ptr = hash(_buffer) mapping = GstMapInfo() success = libgst.gst_buffer_map(ptr, mapping, flags) if not success: raise RuntimeError("Couldn't map buffer") try: yield ctypes.cast(mapping.data, ctypes.POINTER(ctypes.c_byte * mapping.size)).contents finally: libgst.gst_buffer_unmap(ptr, mapping) # libgobject libgobject = ctypes.CDLL('libgobject-2.0.so') class GList(ctypes.Structure): pass GLIST_POINTER = ctypes.POINTER(GList) GList._fields_ = [ ('data', ctypes.c_void_p), ('next', GLIST_POINTER), ('prev', GLIST_POINTER) ] libgobject.g_type_from_name.argtypes = [ctypes.c_char_p] libgobject.g_type_from_name.restype = ctypes.c_ulong libgobject.g_value_get_variant.argtypes = [ctypes.c_void_p] libgobject.g_value_get_variant.restype = ctypes.c_void_p libgobject.g_value_get_int.argtypes = [ctypes.c_void_p] libgobject.g_value_get_int.restype = ctypes.c_void_p libgobject.g_value_set_variant.argtypes = [ctypes.c_void_p, ctypes.c_void_p] libgobject.g_value_set_variant.restype = None libgobject.g_variant_get_fixed_array.argtypes = [ ctypes.c_void_p, ctypes.POINTER(ctypes.c_size_t), ctypes.c_size_t] libgobject.g_variant_get_fixed_array.restype = ctypes.c_void_p libgobject.g_list_remove.argtypes = [GLIST_POINTER, ctypes.c_void_p] libgobject.g_list_remove.restypes = GLIST_POINTER libgobject.g_variant_new_fixed_array.argtypes = [ ctypes.c_void_p, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_size_t] libgobject.g_variant_new_fixed_array.restype = ctypes.c_void_p libgobject.g_value_array_new.argtypes = [ctypes.c_size_t] libgobject.g_value_array_new.restype = G_VALUE_ARRAY_POINTER libgobject.g_value_init.argtypes = [ctypes.c_void_p, ctypes.c_size_t] libgobject.g_value_init.restype = ctypes.c_void_p libgobject.g_value_set_uint.argtypes = [ctypes.c_void_p, ctypes.c_size_t] libgobject.g_value_set_uint.restype = ctypes.c_void_p libgobject.g_value_set_int.argtypes = [ctypes.c_void_p, ctypes.c_size_t] libgobject.g_value_set_int.restype = ctypes.c_void_p libgobject.g_value_array_append.argtypes = [G_VALUE_ARRAY_POINTER, ctypes.c_void_p] libgobject.g_value_array_append.restype = G_VALUE_ARRAY_POINTER libgobject.g_value_array_get_nth.argtypes = [G_VALUE_ARRAY_POINTER, ctypes.c_uint] libgobject.g_value_array_get_nth.restype = G_VALUE_POINTER libgobject.g_value_get_uint.argtypes = [G_VALUE_POINTER] libgobject.g_value_get_uint.restype = ctypes.c_uint # libgstvideo libgstvideo = ctypes.CDLL("libgstvideo-1.0.so") ### libgstva = ctypes.CDLL("libgstvideoanalyticsmeta.so")
39.167421
115
0.762823
ce9a6163b78d06893ae80f652ce9c09d864ff91e
659
py
Python
sympy/tensor/array/tests/test_ndim_array_conversions.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/array/tests/test_ndim_array_conversions.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
sympy/tensor/array/tests/test_ndim_array_conversions.py
msgoff/sympy
1e7daef7514902f5e89718fa957b7b36c6669a10
[ "BSD-3-Clause" ]
null
null
null
from sympy.tensor.array import ( ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, ) from sympy.abc import x, y, z def test_NDim_array_conv(): MD = MutableDenseNDimArray([x, y, z]) MS = MutableSparseNDimArray([x, y, z]) ID = ImmutableDenseNDimArray([x, y, z]) IS = ImmutableSparseNDimArray([x, y, z]) assert MD.as_immutable() == ID assert MD.as_mutable() == MD assert MS.as_immutable() == IS assert MS.as_mutable() == MS assert ID.as_immutable() == ID assert ID.as_mutable() == MD assert IS.as_immutable() == IS assert IS.as_mutable() == MS
24.407407
44
0.664643
09fab14de248d2051e636ef821dfc399ad4d7fa7
548
py
Python
app/request.py
derrokip34/Blog
ec6d6acb0c69ea42a8ea99c6836d943ad7417984
[ "MIT" ]
null
null
null
app/request.py
derrokip34/Blog
ec6d6acb0c69ea42a8ea99c6836d943ad7417984
[ "MIT" ]
null
null
null
app/request.py
derrokip34/Blog
ec6d6acb0c69ea42a8ea99c6836d943ad7417984
[ "MIT" ]
null
null
null
import urllib.request,json from .models import Quote quotes_url = 'http://quotes.stormconsultancy.co.uk/random.json' def get_quotes(): with urllib.request.urlopen(quotes_url) as url: quotes_data = url.read() quotes_response = json.loads(quotes_data) quote_object = None if quotes_response: id = quotes_response.get('id') author = quotes_response.get('author') quote = quotes_response.get('quote') quote_object = Quote(id,author,quote) return quote_object
27.4
63
0.656934
813bd2241eaa039ddb26fa5855499d9de303e62a
2,321
py
Python
tbxforms/widgets.py
jams2/tbxforms
d88aabb428a5e74d67fe877eb1e74bf9d9550c9f
[ "BSD-2-Clause" ]
1
2022-02-03T13:59:43.000Z
2022-02-03T13:59:43.000Z
tbxforms/widgets.py
jams2/tbxforms
d88aabb428a5e74d67fe877eb1e74bf9d9550c9f
[ "BSD-2-Clause" ]
1
2021-09-07T14:41:03.000Z
2021-09-07T14:41:03.000Z
tbxforms/widgets.py
jams2/tbxforms
d88aabb428a5e74d67fe877eb1e74bf9d9550c9f
[ "BSD-2-Clause" ]
1
2021-09-07T14:07:40.000Z
2021-09-07T14:07:40.000Z
from django import forms from django.utils.translation import ugettext_lazy as _ class DateInputWidget(forms.MultiWidget): """ A DateInputWidget defines the styling of the set of fields for displaying the value for a DateInputField. A custom widget was needed for two reasons. First the CSS classes needed to style the fields and set their width reduces the code need to add a Date input component to a form. Second, the Design System requires labels for the individual fields. That's not supported out of the box by a MultiValueField so the labels are added as a custom attribute and rendered with the correct markup in the template. The template also pops the label from the widget so it does not also get added as an attribute. """ template_name = "tbx/widgets/date.html" def __init__(self, *args, **kwargs): widgets = [ forms.TextInput( attrs={ "class": "tbxforms-input tbxforms-date-input__input tbxforms-input--width-2", "label": _("Day"), "pattern": "[0-9]*", "inputmode": "numeric", } ), forms.TextInput( attrs={ "class": "tbxforms-input tbxforms-date-input__input tbxforms-input--width-2", "label": _("Month"), "pattern": "[0-9]*", "inputmode": "numeric", } ), forms.TextInput( attrs={ "class": "tbxforms-input tbxforms-date-input__input tbxforms-input--width-4", "label": _("Year"), "pattern": "[0-9]*", "inputmode": "numeric", } ), ] super().__init__(widgets, **kwargs) def decompress(self, value): """ Convert a ``date`` into values for the day, month and year so it can be displayed in the widget's fields. Args: value (date): the date to be displayed Returns: a 3-tuple containing the day, month and year components of the date. """ if value: return value.day, value.month, value.year return None, None, None
35.166667
97
0.551486
51da09e509654100516be8549e6da40c74072e39
1,310
py
Python
util/n64/find_code_length.py
paulsapps/splat
e312b86f36982dfddc4b00f082d7066f0b259938
[ "MIT" ]
31
2021-01-23T01:21:40.000Z
2022-03-19T03:56:42.000Z
util/n64/find_code_length.py
paulsapps/splat
e312b86f36982dfddc4b00f082d7066f0b259938
[ "MIT" ]
44
2021-02-03T15:10:37.000Z
2022-03-03T08:29:47.000Z
util/n64/find_code_length.py
paulsapps/splat
e312b86f36982dfddc4b00f082d7066f0b259938
[ "MIT" ]
10
2021-03-16T19:37:24.000Z
2022-03-03T15:09:48.000Z
#! /usr/bin/python3 from capstone import * from capstone import Cs, CS_ARCH_MIPS, CS_MODE_MIPS64, CS_MODE_BIG_ENDIAN from capstone.mips import * import argparse md = Cs(CS_ARCH_MIPS, CS_MODE_MIPS64 + CS_MODE_BIG_ENDIAN) parser = argparse.ArgumentParser(description="Given a rom and start offset, find where the code ends") parser.add_argument("rom", help="path to a .z64 rom") parser.add_argument("start", help="start offset") parser.add_argument("--end", help="end offset", default=None) parser.add_argument("--vram", help="vram address to start disassembly at", default="0x80000000") def run(rom_bytes, start_offset, vram, end_offset=None): rom_addr = start_offset last_return = rom_addr for insn in md.disasm(rom_bytes[start_offset:], vram): if insn.mnemonic == "jr" and insn.op_str == "$ra": last_return = rom_addr rom_addr += 4 if end_offset and rom_addr >= end_offset: break return last_return + (0x10 - (last_return % 0x10)) def main(): args = parser.parse_args() rom_bytes = open(args.rom, "rb").read() start = int(args.start, 0) end = None vram = int(args.vram, 0) if args.end: end = int(args.end, 0) print(f"{run(rom_bytes, start, vram, end):X}") if __name__ == "__main__": main()
27.291667
102
0.675573
f72ac2161ec154a6fbc2d4c0db4116346291b457
9,690
py
Python
homeassistant/components/zha/core/discovery.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
2
2021-09-13T21:44:02.000Z
2021-12-17T21:20:51.000Z
homeassistant/components/zha/core/discovery.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
5
2021-02-08T20:55:25.000Z
2022-03-12T00:51:18.000Z
homeassistant/components/zha/core/discovery.py
twrecked/core
d3ae8a938cdea9b6e0d443c91c37ac3dbbd459ab
[ "Apache-2.0" ]
2
2020-11-04T07:40:01.000Z
2021-09-13T21:44:03.000Z
"""Device discovery functions for Zigbee Home Automation.""" from collections import Counter import logging from typing import Callable, List, Tuple from homeassistant import const as ha_const from homeassistant.core import callback from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity_registry import async_entries_for_device from homeassistant.helpers.typing import HomeAssistantType from . import const as zha_const, registries as zha_regs, typing as zha_typing from .. import ( # noqa: F401 pylint: disable=unused-import, binary_sensor, cover, device_tracker, fan, light, lock, sensor, switch, ) from .channels import base _LOGGER = logging.getLogger(__name__) @callback async def async_add_entities( _async_add_entities: Callable, entities: List[ Tuple[ zha_typing.ZhaEntityType, Tuple[str, zha_typing.ZhaDeviceType, List[zha_typing.ChannelType]], ] ], ) -> None: """Add entities helper.""" if not entities: return to_add = [ent_cls(*args) for ent_cls, args in entities] _async_add_entities(to_add, update_before_add=True) entities.clear() class ProbeEndpoint: """All discovered channels and entities of an endpoint.""" def __init__(self): """Initialize instance.""" self._device_configs = {} @callback def discover_entities(self, channel_pool: zha_typing.ChannelPoolType) -> None: """Process an endpoint on a zigpy device.""" self.discover_by_device_type(channel_pool) self.discover_by_cluster_id(channel_pool) @callback def discover_by_device_type(self, channel_pool: zha_typing.ChannelPoolType) -> None: """Process an endpoint on a zigpy device.""" unique_id = channel_pool.unique_id component = self._device_configs.get(unique_id, {}).get(ha_const.CONF_TYPE) if component is None: ep_profile_id = channel_pool.endpoint.profile_id ep_device_type = channel_pool.endpoint.device_type component = zha_regs.DEVICE_CLASS[ep_profile_id].get(ep_device_type) if component and component in zha_const.COMPONENTS: channels = channel_pool.unclaimed_channels() entity_class, claimed = zha_regs.ZHA_ENTITIES.get_entity( component, channel_pool.manufacturer, channel_pool.model, channels ) if entity_class is None: return channel_pool.claim_channels(claimed) channel_pool.async_new_entity(component, entity_class, unique_id, claimed) @callback def discover_by_cluster_id(self, channel_pool: zha_typing.ChannelPoolType) -> None: """Process an endpoint on a zigpy device.""" items = zha_regs.SINGLE_INPUT_CLUSTER_DEVICE_CLASS.items() single_input_clusters = { cluster_class: match for cluster_class, match in items if not isinstance(cluster_class, int) } remaining_channels = channel_pool.unclaimed_channels() for channel in remaining_channels: if channel.cluster.cluster_id in zha_regs.CHANNEL_ONLY_CLUSTERS: channel_pool.claim_channels([channel]) continue component = zha_regs.SINGLE_INPUT_CLUSTER_DEVICE_CLASS.get( channel.cluster.cluster_id ) if component is None: for cluster_class, match in single_input_clusters.items(): if isinstance(channel.cluster, cluster_class): component = match break self.probe_single_cluster(component, channel, channel_pool) # until we can get rid off registries self.handle_on_off_output_cluster_exception(channel_pool) @staticmethod def probe_single_cluster( component: str, channel: zha_typing.ChannelType, ep_channels: zha_typing.ChannelPoolType, ) -> None: """Probe specified cluster for specific component.""" if component is None or component not in zha_const.COMPONENTS: return channel_list = [channel] unique_id = f"{ep_channels.unique_id}-{channel.cluster.cluster_id}" entity_class, claimed = zha_regs.ZHA_ENTITIES.get_entity( component, ep_channels.manufacturer, ep_channels.model, channel_list ) if entity_class is None: return ep_channels.claim_channels(claimed) ep_channels.async_new_entity(component, entity_class, unique_id, claimed) def handle_on_off_output_cluster_exception( self, ep_channels: zha_typing.ChannelPoolType ) -> None: """Process output clusters of the endpoint.""" profile_id = ep_channels.endpoint.profile_id device_type = ep_channels.endpoint.device_type if device_type in zha_regs.REMOTE_DEVICE_TYPES.get(profile_id, []): return for cluster_id, cluster in ep_channels.endpoint.out_clusters.items(): component = zha_regs.SINGLE_OUTPUT_CLUSTER_DEVICE_CLASS.get( cluster.cluster_id ) if component is None: continue channel_class = zha_regs.ZIGBEE_CHANNEL_REGISTRY.get( cluster_id, base.ZigbeeChannel ) channel = channel_class(cluster, ep_channels) self.probe_single_cluster(component, channel, ep_channels) def initialize(self, hass: HomeAssistantType) -> None: """Update device overrides config.""" zha_config = hass.data[zha_const.DATA_ZHA].get(zha_const.DATA_ZHA_CONFIG, {}) overrides = zha_config.get(zha_const.CONF_DEVICE_CONFIG) if overrides: self._device_configs.update(overrides) class GroupProbe: """Determine the appropriate component for a group.""" def __init__(self): """Initialize instance.""" self._hass = None self._unsubs = [] def initialize(self, hass: HomeAssistantType) -> None: """Initialize the group probe.""" self._hass = hass self._unsubs.append( async_dispatcher_connect( hass, zha_const.SIGNAL_GROUP_ENTITY_REMOVED, self._reprobe_group ) ) def cleanup(self): """Clean up on when zha shuts down.""" for unsub in self._unsubs[:]: unsub() self._unsubs.remove(unsub) def _reprobe_group(self, group_id: int) -> None: """Reprobe a group for entities after its members change.""" zha_gateway = self._hass.data[zha_const.DATA_ZHA][zha_const.DATA_ZHA_GATEWAY] zha_group = zha_gateway.groups.get(group_id) if zha_group is None: return self.discover_group_entities(zha_group) @callback def discover_group_entities(self, group: zha_typing.ZhaGroupType) -> None: """Process a group and create any entities that are needed.""" # only create a group entity if there are 2 or more members in a group if len(group.members) < 2: _LOGGER.debug( "Group: %s:0x%04x has less than 2 members - skipping entity discovery", group.name, group.group_id, ) return entity_domains = GroupProbe.determine_entity_domains(self._hass, group) if not entity_domains: return zha_gateway = self._hass.data[zha_const.DATA_ZHA][zha_const.DATA_ZHA_GATEWAY] for domain in entity_domains: entity_class = zha_regs.ZHA_ENTITIES.get_group_entity(domain) if entity_class is None: continue self._hass.data[zha_const.DATA_ZHA][domain].append( ( entity_class, ( group.get_domain_entity_ids(domain), f"{domain}_zha_group_0x{group.group_id:04x}", group.group_id, zha_gateway.coordinator_zha_device, ), ) ) async_dispatcher_send(self._hass, zha_const.SIGNAL_ADD_ENTITIES) @staticmethod def determine_entity_domains( hass: HomeAssistantType, group: zha_typing.ZhaGroupType ) -> List[str]: """Determine the entity domains for this group.""" entity_domains: List[str] = [] zha_gateway = hass.data[zha_const.DATA_ZHA][zha_const.DATA_ZHA_GATEWAY] all_domain_occurrences = [] for member in group.members: if member.device.is_coordinator: continue entities = async_entries_for_device( zha_gateway.ha_entity_registry, member.device.device_id ) all_domain_occurrences.extend( [ entity.domain for entity in entities if entity.domain in zha_regs.GROUP_ENTITY_DOMAINS ] ) if not all_domain_occurrences: return entity_domains # get all domains we care about if there are more than 2 entities of this domain counts = Counter(all_domain_occurrences) entity_domains = [domain[0] for domain in counts.items() if domain[1] >= 2] _LOGGER.debug( "The entity domains are: %s for group: %s:0x%04x", entity_domains, group.name, group.group_id, ) return entity_domains PROBE = ProbeEndpoint() GROUP_PROBE = GroupProbe()
36.022305
88
0.637771
41c8b06a8d34d35e1d652a0da73c2c5ded3b9bd7
170
py
Python
katas/beta/flatten_me.py
the-zebulan/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
40
2016-03-09T12:26:20.000Z
2022-03-23T08:44:51.000Z
katas/beta/flatten_me.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
null
null
null
katas/beta/flatten_me.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
36
2016-11-07T19:59:58.000Z
2022-03-31T11:18:27.000Z
def flatten_me(lst): result = [] for a in lst: try: result.extend(a) except TypeError: result.append(a) return result
18.888889
28
0.511765
cdbc8b30b33df138e6fda49806c5028526a0e11b
1,114
py
Python
src/lstm_models/sine_curve_fitting.py
mfkiwl/ConvLSTM-Computer-Vision-for-Structural-Health-Monitoring-SHM-and-NonDestructive-Testing-NDT
551f6afd2f4207a4a6a717cabc13fe51f31eb410
[ "MIT" ]
17
2020-02-25T05:41:41.000Z
2022-03-25T06:48:30.000Z
src/lstm_models/sine_curve_fitting.py
SubChange/ConvLSTM-Computer-Vision-for-Structural-Health-Monitoring-SHM-and-NonDestructive-Testing-NDT
0f00291fd7d20d3472709f2941adba722b35f8d5
[ "MIT" ]
1
2021-01-13T06:07:02.000Z
2021-01-13T06:07:02.000Z
src/lstm_models/sine_curve_fitting.py
SubChange/ConvLSTM-Computer-Vision-for-Structural-Health-Monitoring-SHM-and-NonDestructive-Testing-NDT
0f00291fd7d20d3472709f2941adba722b35f8d5
[ "MIT" ]
5
2020-11-22T12:58:23.000Z
2021-06-16T14:20:10.000Z
import numpy as np import matplotlib.pyplot as plt def sine_func(x_i): y = np.sin(2*np.pi*x_i) return y def gen_toy_sine_curve_dataset(N, std, periods=1): """ :param N: Number of data points/samples :param std: Standard deviation for (white/Gaussian) noise input :return: 2-tuple (x_vector, y_train) """ y_vector = [] x_vector = [] for period_i in range(periods): for x_i in np.linspace(0, 1, N): x_i = x_i + period_i noise = np.random.normal(0, std) y_i = sine_func(x_i) + noise x_vector.append(x_i) y_vector.append(y_i) return x_vector, y_vector N = 50 periods = 3 std_noise = 0 x_train, y_train = gen_toy_sine_curve_dataset(N, std_noise, periods) # x_vector_test, y_hat_vector = gen_toy_sine_curve_dataset(10, 0.25) fig_dims = (12, 12) fig, ax = plt.subplots(figsize=fig_dims) # fig, axes = plt.subplots(1, 3, figsize = fig_dims) ax.plot(x_train, y_train, "g", label="Sine curve plot (x_train vs y_train) - num data points = {0} std = {1}".format(N, std_noise)) ax.grid(True) ax.legend() # plt.plot(x_train, y_train, "g") # plt.plot(x_vector_test, y_hat_vector, "r") plt.show()
27.170732
131
0.70377
8df25bf53add782f90ae03d3bcb25ce0f2ae10f3
1,700
py
Python
pyscf/dft/uks_symm.py
tmash/pyscf
89c101c1c963e8247808635c61cd165bffab42d6
[ "Apache-2.0" ]
1
2020-01-05T13:50:50.000Z
2020-01-05T13:50:50.000Z
pyscf/dft/uks_symm.py
tmash/pyscf
89c101c1c963e8247808635c61cd165bffab42d6
[ "Apache-2.0" ]
null
null
null
pyscf/dft/uks_symm.py
tmash/pyscf
89c101c1c963e8247808635c61cd165bffab42d6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <osirpt.sun@gmail.com> # ''' Non-relativistic Unrestricted Kohn-Sham ''' from pyscf.lib import logger from pyscf.scf import uhf_symm from pyscf.dft import uks from pyscf.dft import rks class SymAdaptedUKS(uhf_symm.UHF, rks.KohnShamDFT): ''' Restricted Kohn-Sham ''' def __init__(self, mol): uhf_symm.UHF.__init__(self, mol) rks.KohnShamDFT.__init__(self) def dump_flags(self, verbose=None): uhf_symm.UHF.dump_flags(self, verbose) rks.KohnShamDFT.dump_flags(self, verbose) return self get_veff = uks.get_veff energy_elec = uks.energy_elec def nuc_grad_method(self): from pyscf.grad import uks return uks.Gradients(self) UKS = SymAdaptedUKS if __name__ == '__main__': from pyscf import gto mol = gto.Mole() mol.verbose = 7 mol.output = '/dev/null' mol.atom.extend([['He', (0.,0.,0.)], ]) mol.basis = { 'He': 'cc-pvdz'} mol.symmetry = 1 mol.build() m = UKS(mol) m.xc = 'b3lyp' print(m.scf()) # -2.89992555753
26.153846
74
0.686471
d0b2460f436befcd9684c1a5d46413d97fe5880c
1,734
py
Python
google-cloud-gke_hub-v1beta1/synth.py
trambui09/google-cloud-ruby
9c5f5fc27cbfbb4c4fc55d1171f450d1af3226aa
[ "Apache-2.0" ]
null
null
null
google-cloud-gke_hub-v1beta1/synth.py
trambui09/google-cloud-ruby
9c5f5fc27cbfbb4c4fc55d1171f450d1af3226aa
[ "Apache-2.0" ]
null
null
null
google-cloud-gke_hub-v1beta1/synth.py
trambui09/google-cloud-ruby
9c5f5fc27cbfbb4c4fc55d1171f450d1af3226aa
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import synthtool as s import synthtool.gcp as gcp import synthtool.languages.ruby as ruby import logging logging.basicConfig(level=logging.DEBUG) gapic = gcp.GAPICMicrogenerator() library = gapic.ruby_library( "gkehub", "v1beta1", extra_proto_files=[ "google/cloud/common_resources.proto", ], generator_args={ "ruby-cloud-gem-name": "google-cloud-gke_hub-v1beta1", "ruby-cloud-title": "GKE Hub V1beta1", "ruby-cloud-description": "The GKE Hub API centrally manages features and services on all your Kubernetes clusters running in a variety of environments, including Google cloud, on premises in customer datacenters, or other third party clouds.", "ruby-cloud-env-prefix": "GKE_HUB", "ruby-cloud-grpc-service-config": "google/cloud/gkehub/v1beta1/membership_grpc_service_config.json", "ruby-cloud-product-url": "https://cloud.google.com/anthos/clusters/docs", "ruby-cloud-api-id": "gkehub.googleapis.com", "ruby-cloud-api-shortname": "gkehub", } ) s.copy(library, merge=ruby.global_merge)
40.325581
252
0.731257
c4336db71ed6b5e453b20b0f5c7d3b20992dd3df
9,284
py
Python
tests/unit/test_static.py
matt-land/warehouse
0acb5d94528099ed5356253457cf8dc0b4e50aad
[ "Apache-2.0" ]
1
2018-06-11T23:29:13.000Z
2018-06-11T23:29:13.000Z
tests/unit/test_static.py
matt-land/warehouse
0acb5d94528099ed5356253457cf8dc0b4e50aad
[ "Apache-2.0" ]
8
2019-12-26T16:45:00.000Z
2022-03-21T22:17:13.000Z
tests/unit/test_static.py
matt-land/warehouse
0acb5d94528099ed5356253457cf8dc0b4e50aad
[ "Apache-2.0" ]
1
2019-08-26T06:52:55.000Z
2019-08-26T06:52:55.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from unittest import mock import pretend import pytest from pyramid.tweens import EXCVIEW, INGRESS from warehouse import static class TestWhiteNose: def test_resolves_manifest_path(self, monkeypatch): resolver = pretend.stub( resolve=pretend.call_recorder( lambda p: pretend.stub( abspath=lambda: "/path/to/manifest.json", ), ), ) monkeypatch.setattr(static, "resolver", resolver) whitenoise = static.WhiteNoise( None, manifest="warehouse:manifest.json", ) assert whitenoise.manifest_path == "/path/to/manifest.json" assert resolver.resolve.calls == [ pretend.call("warehouse:manifest.json"), ] def test_empty_manifest_when_no_manifest_provided(self): whitenoise = static.WhiteNoise(None) assert whitenoise.manifest == set() def test_loads_manifest(self, tmpdir): manifest_path = str(tmpdir.join("manifest.json")) with open(manifest_path, "w", encoding="utf8") as fp: json.dump({"file.txt": "file.hash.txt"}, fp) whitenoise = static.WhiteNoise(None, manifest=manifest_path) assert whitenoise.manifest_path == manifest_path assert whitenoise.manifest == {"file.hash.txt"} @pytest.mark.parametrize("autorefresh", [True, False]) def test_caches_manifest(self, tmpdir, autorefresh): manifest_path = str(tmpdir.join("manifest.json")) with open(manifest_path, "w", encoding="utf8") as fp: json.dump({"file.txt": "file.hash.txt"}, fp) whitenoise = static.WhiteNoise( None, manifest=manifest_path, autorefresh=autorefresh, ) assert whitenoise.manifest_path == manifest_path assert whitenoise.manifest == {"file.hash.txt"} with open(manifest_path, "w", encoding="utf8") as fp: json.dump({"file.txt": "file.newhash.txt"}, fp) assert whitenoise.manifest == \ ({"file.newhash.txt"} if autorefresh else {"file.hash.txt"}) def test_is_immutable_file_no_manifest(self): whitenoise = static.WhiteNoise(None) assert not whitenoise.is_immutable_file(None, None) def test_is_immutable_file_wrong_path(self): whitenoise = static.WhiteNoise(None, manifest="/path/to/manifest.json") assert not whitenoise.is_immutable_file( "/path/in/another/dir", "/static/another/dir", ) def test_is_immutable_file_not_in_manifest(self): whitenoise = static.WhiteNoise(None, manifest="/path/to/manifest.json") whitenoise._manifest = {"another/file.txt"} assert not whitenoise.is_immutable_file( "/path/to/the/file.txt", "static/the/file.txt", ) def test_is_immutable_file_in_manifest(self): whitenoise = static.WhiteNoise(None, manifest="/path/to/manifest.json") whitenoise._manifest = {"the/file.txt"} assert whitenoise.is_immutable_file( "/path/to/the/file.txt", "static/the/file.txt", ) class TestWhitenoiseTween: @pytest.mark.parametrize("autorefresh", [True, False]) def test_bypasses(self, autorefresh): whitenoise = static.WhiteNoise(None, autorefresh=autorefresh) whitenoise.add_files( static.resolver.resolve("warehouse:/static/dist/").abspath(), prefix="/static/", ) response = pretend.stub() handler = pretend.call_recorder(lambda request: response) registry = pretend.stub(whitenoise=whitenoise) request = pretend.stub(path_info="/other/", registry=registry) tween = static.whitenoise_tween_factory(handler, registry) resp = tween(request) assert resp is response @pytest.mark.parametrize("autorefresh", [True, False]) def test_method_not_allowed(self, autorefresh): whitenoise = static.WhiteNoise(None, autorefresh=autorefresh) whitenoise.add_files( static.resolver.resolve("warehouse:/static/dist/").abspath(), prefix="/static/", ) response = pretend.stub() handler = pretend.call_recorder(lambda request: response) registry = pretend.stub(whitenoise=whitenoise) request = pretend.stub( method="POST", environ={"HTTP_ACCEPT_ENCODING": "gzip"}, path_info="/static/manifest.json", registry=registry, ) tween = static.whitenoise_tween_factory(handler, registry) resp = tween(request) assert resp.status_code == 405 def test_serves(self): whitenoise = static.WhiteNoise(None, autorefresh=True) whitenoise.add_files( static.resolver.resolve("warehouse:/static/dist/").abspath(), prefix="/static/", ) path, headers = (whitenoise.find_file("/static/manifest.json") .get_path_and_headers({})) headers = dict(headers) response = pretend.stub() handler = pretend.call_recorder(lambda request: response) registry = pretend.stub(whitenoise=whitenoise) request = pretend.stub( method="GET", environ={}, path_info="/static/manifest.json", registry=registry, ) tween = static.whitenoise_tween_factory(handler, registry) resp = tween(request) assert resp.status_code == 200 assert resp.headers["Content-Type"] == "application/json" assert ( set(i.strip() for i in resp.headers["Cache-Control"].split(",")) == {"public", "max-age=60"} ) assert resp.headers["Vary"] == "Accept-Encoding" with open(path, "rb") as fp: assert resp.body == fp.read() class TestDirectives: def test_whitenoise_serve_static_unsupported_kwarg(self): with pytest.raises(TypeError): static.whitenoise_serve_static(pretend.stub(), lol_fake=True) def test_whitenoise_serve_static(self, monkeypatch): whitenoise_obj = pretend.stub() whitenoise_cls = pretend.call_recorder(lambda *a, **kw: whitenoise_obj) whitenoise_cls.config_attrs = ["autorefresh"] monkeypatch.setattr(static, "WhiteNoise", whitenoise_cls) config = pretend.stub( action=pretend.call_recorder(lambda d, f: None), registry=pretend.stub(), ) static.whitenoise_serve_static(config, autorefresh=True) assert config.action.calls == [ pretend.call(("whitenoise", "create instance"), mock.ANY), ] config.action.calls[0].args[1]() assert whitenoise_cls.calls == [pretend.call(None, autorefresh=True)] assert config.registry.whitenoise is whitenoise_obj def test_whitenoise_add_files(self): config = pretend.stub( action=pretend.call_recorder(lambda d, f: None), registry=pretend.stub( whitenoise=pretend.stub( add_files=pretend.call_recorder(lambda path, prefix: None), ), ), ) static.whitenoise_add_files(config, "/static/foo/", "/lol/") assert config.action.calls == [ pretend.call( ("whitenoise", "add files", "/static/foo/", "/lol/"), mock.ANY, ), ] config.action.calls[0].args[1]() assert config.registry.whitenoise.add_files.calls == [ pretend.call("/static/foo", prefix="/lol/"), ] def test_includeme(): config = pretend.stub( add_directive=pretend.call_recorder(lambda name, callable: None), add_tween=pretend.call_recorder(lambda tween, over, under: None), ) static.includeme(config) assert config.add_directive.calls == [ pretend.call( "whitenoise_serve_static", static.whitenoise_serve_static, ), pretend.call( "whitenoise_add_files", static.whitenoise_add_files, ), ] assert config.add_tween.calls == [ pretend.call( "warehouse.static.whitenoise_tween_factory", over=[ "warehouse.utils.compression.compression_tween_factory", EXCVIEW, ], under=[ "warehouse.csp.content_security_policy_tween_factory", "warehouse.referrer_policy.referrer_policy_tween_factory", "warehouse.config.require_https_tween_factory", INGRESS, ], ), ]
33.039146
79
0.61816
5c8884d745934429b58fd771f9a3c6b214e44f31
1,791
py
Python
src/random_forest.py
jackred/CW2_GERMAN_SIGN
988a99d6012ae95bec778a91785c76a2ca40ba87
[ "MIT" ]
null
null
null
src/random_forest.py
jackred/CW2_GERMAN_SIGN
988a99d6012ae95bec778a91785c76a2ca40ba87
[ "MIT" ]
null
null
null
src/random_forest.py
jackred/CW2_GERMAN_SIGN
988a99d6012ae95bec778a91785c76a2ca40ba87
[ "MIT" ]
null
null
null
from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from helper import pre_processed_data_all, pre_processed_label_all, \ print_result, tree_to_png, run_function, extract_measures, \ plot_experiment from arg import rForest_args import numpy as np import random def random_forest(data_train, label_train, data_test, max_depth): clf = RandomForestClassifier( max_depth=max_depth, max_features=10 ) clf.fit(data_train, label_train) return clf.predict(data_test) # , clf.predict_proba(data_test) def server(): args = rForest_args() rand = np.random.randint(10000000) data_train, data_test = pre_processed_data_all(args, rand) label_train, label_test = pre_processed_label_all(args, rand) res = [] for i in range(2, 6): print('===\,n=====Epochs: %d=====\n===' % i) res.append(run_function(random_forest, args.cross_validate, data_train, label_train, data_test, label_test, max_depth=i+1)) print(res) res = extract_measures(res) print(res) plot_experiment('random_forest_test_9000', 'n estimator', res) if __name__ == "__main__": server() # print('start random tree classification') # args = rForest_args() # rand = np.random.randint(100000) # data_train, data_test = pre_processed_data_all(args, rand) # label_train, label_test = pre_processed_label_all(args, rand) # print('data loaded') # found, confidence = random_forest(data_train, label_train, data_test) # print('random tree done') # compare_class_true_positive(found, label_test) # compare_class(found, label_test) # measure(found, label_test, confidence, True)
34.442308
75
0.677275
ef8b5f35df60d0c3752d886bc6c755cb0ec51d4b
873
py
Python
Chapter_05/chap05_prog_02_Sympy_SolEquation.py
rojassergio/Prealgebra-via-Python-Programming
8d1cdf103af2a39f6ae7bba76e9a6a0182eb39d3
[ "MIT" ]
1
2018-06-19T11:54:15.000Z
2018-06-19T11:54:15.000Z
Chapter_05/chap05_prog_02_Sympy_SolEquation.py
rojassergio/Prealgebra-via-Python-Programming
8d1cdf103af2a39f6ae7bba76e9a6a0182eb39d3
[ "MIT" ]
null
null
null
Chapter_05/chap05_prog_02_Sympy_SolEquation.py
rojassergio/Prealgebra-via-Python-Programming
8d1cdf103af2a39f6ae7bba76e9a6a0182eb39d3
[ "MIT" ]
3
2020-03-02T22:31:18.000Z
2021-04-05T05:06:39.000Z
""" Content under Creative Commons Attribution license CC-BY 4.0, code under MIT license (c)2018 Sergio Rojas (srojas@usb.ve) http://en.wikipedia.org/wiki/MIT_License http://creativecommons.org/licenses/by/4.0/ Created on april, 2018 Last Modified on: may 15, 2018 This program finds the solution of the equation 7/5 = 5x + 9 The trick to find rational solution to equations is to write the numerical fractions using the SymPy S function """ from sympy import symbols, Eq, solveset, S, sympify x = symbols('x') LHS = S('7')/5 RHS = S('5')*x + S('9') thesol = list( solveset( Eq(LHS, RHS), x) ) print('thesol =', thesol) newLHS = LHS - RHS #rearrange the equation to read: LHS - RHS = 0 print('newLHS =', newLHS) newLHS = newLHS.subs(x, thesol[0]) if newLHS.simplify() == 0: print('The solution of {0} = {1}, is x = {2}'.format(LHS,RHS,thesol[0]))
26.454545
76
0.682703
c8aaf5d4cb0d5d45d3c88aaa84cae48d7485987b
5,103
py
Python
00-lesson-1/fakelib/nr_cube.py
tonybutzer/hauge
7cee4c8edda9a2a5a11e69425516c7c47bb21cbf
[ "MIT" ]
null
null
null
00-lesson-1/fakelib/nr_cube.py
tonybutzer/hauge
7cee4c8edda9a2a5a11e69425516c7c47bb21cbf
[ "MIT" ]
null
null
null
00-lesson-1/fakelib/nr_cube.py
tonybutzer/hauge
7cee4c8edda9a2a5a11e69425516c7c47bb21cbf
[ "MIT" ]
null
null
null
import requests import pandas as pd import geopandas import xarray as xr from ks_cool_stac import ks_filter_stacquery, ks_filter_ascending, ks_convert_llurl from fm_map import Fmap from xra_func import load_all_bands_from_df_as_array_of_dataarrays def get_bbox_from_geojson(geojson_file): url = geojson_file gdf = geopandas.read_file(url) bbox = (gdf['geometry'].bounds['minx'][0], gdf['geometry'].bounds['miny'][0], gdf['geometry'].bounds['maxx'][0], gdf['geometry'].bounds['maxy'][0]) return(bbox) def get_my_alber_scenes(dates, bbox,min_clouds=0, max_clouds=90): clouds = max_clouds filtered = ks_filter_stacquery({ 'bbox': bbox, 'limit': 500, 'time': dates, # this did not work'collection': 'landsat-c2l2-sr', 'query': {'eo:cloud_cover': {'lt': clouds}, 'collection': {'eq': 'landsat-c2l2alb-bt'}}}, #'query': {'eo:cloud_cover': {'lt': clouds}, #'eo:instrument': {'eq': 'OLI_TIRS'}, #'collection': {'eq': 'landsat-c2l2alb-bt'}}}, filters=ks_filter_ascending) return(filtered) import json def get_href_url_for_asset(assets, asset_band): try: jstr = assets[asset_band] href = jstr['href'] except: jstr='NotAvail' href = None return ks_convert_llurl(href) def get_measurement_band_assets(assets): asset_dict = {} for key in assets.keys(): if 'SR_' in key: # print('ASSET', key) asset_dict[key] = get_href_url_for_asset(assets, key) # print(asset_dict) return asset_dict def create_simple_df_instead(meas_dict, my_scenes): dict_list=[] print(len(my_scenes), 'LENGTH') print(my_scenes[0].keys()) for scene in my_scenes: prop_df = pd.DataFrame(scene['properties']) prune_list = ['datetime', 'eo:cloud_cover', 'eo:platform', 'eo:instrument', 'landsat:wrs_path', 'landsat:wrs_row', 'landsat:scene_id'] prune_prop_df = prop_df[prune_list] print(prune_prop_df) prune_prop_df.reset_index(drop=True, inplace=True) my_dict = prune_prop_df.to_dict('records') s_dict = my_dict[0] asset_dict = get_measurement_band_assets(scene['assets']) for akey in meas_dict: try: print(meas_dict[akey]) s_dict[akey] = asset_dict[meas_dict[akey]] except: print('key error', scene['assets']) dict_list.append(s_dict) my_df = pd.DataFrame(dict_list) #print(my_df) return(my_df) class NR(): def __init__(self): self.sat_api_url = "https://landsatlook.usgs.gov/sat-api" print("creating Nathan Roberts Class") self.verify_api() self.set_measurements() def verify_api(self): satAPI = requests.post(self.sat_api_url) if satAPI.status_code == 200: print('Sat-API is Available') else: print('Sat-API is not Available') sys.exit() def set_measurements(self): # this could be done from a yml self.measures = { 'coastal':'SR_B1.TIF', 'red':'SR_B2.TIF', 'green':'SR_B3.TIF', 'blue':'SR_B4.TIF', 'nir':'SR_B5.TIF', 'swir1':'SR_B6.TIF', 'swir2':'SR_B7.TIF', 'pixqa':'SR_QA_AEROSOL.TIF', } def measurements(self): display_measures = pd.DataFrame(self.measures, index=[0]) return(display_measures) def collections(self): satAPICollections = requests.post('https://landsatlook.usgs.gov/sat-api/collections') sat_collections = satAPICollections.json() my_df = pd.DataFrame(sat_collections['collections']) s_df = my_df[['id','title','description']] pd.set_option('display.max_colwidth', None) ### Keeps pandas from truncating text return(s_df) def search(self, geoj_file, date_min, date_max, min_cloud, max_cloud, requested_measures): print(geoj_file, date_min, date_max, min_cloud, max_cloud, requested_measures) bbox = get_bbox_from_geojson(geoj_file) dates = f'{date_min}/{date_max}' my_scenes = get_my_alber_scenes(dates, bbox, min_cloud, max_cloud) print(my_scenes) simple_df = create_simple_df_instead(self.measures, my_scenes) #print(simple_df) return(my_scenes, simple_df) def load(self, aoi_geojson_file, work_df, my_measures='ALL'): if 'ALL' in my_measures: my_measures = self.measures.keys() ldatasets = load_all_bands_from_df_as_array_of_dataarrays(aoi_geojson_file, work_df, my_measures) from datetime import datetime my_text_list=[] my_list = work_df.datetime.tolist() for dt in my_list: str_dt = dt.strftime('%Y-%m-%d') my_text_list.append(str_dt) DS = xr.concat(ldatasets, dim= pd.DatetimeIndex(my_text_list, name='time')) return DS def map(self, geoj): fm=Fmap() return(fm.map_geojson(geoj)) def sat(self, geoj): fm=Fmap() return(fm.sat_geojson(geoj))
32.711538
142
0.630805
fd15ff916ae18f9aa8f92a32111ea4889beb19e3
11,730
py
Python
python/tvm/target/target.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
5
2020-06-19T03:22:24.000Z
2021-03-17T22:16:48.000Z
python/tvm/target/target.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
2
2020-07-08T12:34:59.000Z
2020-07-11T15:54:47.000Z
python/tvm/target/target.py
retamia/tvm
5d25dc54d874bf2ddf0e8cf34c4748e9e2656fd8
[ "Apache-2.0" ]
2
2019-08-24T00:06:36.000Z
2022-03-03T02:07:27.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Target data structure.""" import warnings import tvm._ffi from tvm.runtime import Object from . import _ffi_api @tvm._ffi.register_object class Target(Object): """Target device information, use through TVM API. Note ---- Do not use class constructor, you can create target using the following functions - :py:func:`tvm.target.create` create target from string - :py:func:`tvm.target.arm_cpu` create arm_cpu target - :py:func:`tvm.target.cuda` create CUDA target - :py:func:`tvm.target.rocm` create ROCM target - :py:func:`tvm.target.mali` create Mali target - :py:func:`tvm.target.intel_graphics` create Intel Graphics target """ def __new__(cls): # Always override new to enable class obj = Object.__new__(cls) obj._keys = None obj._options = None obj._libs = None return obj @property def keys(self): if not self._keys: self._keys = [str(k) for k in self.keys_array] return self._keys @property def options(self): if not self._options: self._options = [str(o) for o in self.options_array] return self._options @property def libs(self): if not self._libs: self._libs = [str(l) for l in self.libs_array] return self._libs @property def model(self): for opt in self.options_array: if opt.startswith('-model='): return opt[7:] return 'unknown' @property def mcpu(self): """Returns the mcpu from the target if it exists.""" mcpu = '' if self.options is not None: for opt in self.options: if 'mcpu' in opt: mcpu = opt.split('=')[1] return mcpu def __enter__(self): _ffi_api.EnterTargetScope(self) return self def __exit__(self, ptype, value, trace): _ffi_api.ExitTargetScope(self) @staticmethod def current(allow_none=True): """Returns the current target. Parameters ---------- allow_none : bool Whether allow the current target to be none Raises ------ ValueError if current target is not set. """ return _ffi_api.GetCurrentTarget(allow_none) def _merge_opts(opts, new_opts): """Helper function to merge options""" if isinstance(new_opts, str): new_opts = new_opts.split() if new_opts: opt_set = set(opts) new_opts = [opt for opt in new_opts if opt not in opt_set] return opts + new_opts return opts def cuda(model='unknown', options=None): """Returns a cuda target. Parameters ---------- model: str The model of cuda device (e.g. 1080ti) options : str or list of str Additional options """ opts = _merge_opts(['-model=%s' % model], options) return _ffi_api.TargetCreate("cuda", *opts) def rocm(model='unknown', options=None): """Returns a ROCM target. Parameters ---------- model: str The model of this device options : str or list of str Additional options """ opts = _merge_opts(["-model=%s" % model], options) return _ffi_api.TargetCreate("rocm", *opts) def mali(model='unknown', options=None): """Returns a ARM Mali GPU target. Parameters ---------- model: str The model of this device options : str or list of str Additional options """ opts = ["-device=mali", '-model=%s' % model] opts = _merge_opts(opts, options) return _ffi_api.TargetCreate("opencl", *opts) def intel_graphics(model='unknown', options=None): """Returns an Intel Graphics target. Parameters ---------- model: str The model of this device options : str or list of str Additional options """ opts = ["-device=intel_graphics", '-model=%s' % model] opts = _merge_opts(opts, options) return _ffi_api.TargetCreate("opencl", *opts) def opengl(model='unknown', options=None): """Returns a OpenGL target. Parameters ---------- options : str or list of str Additional options """ opts = _merge_opts(["-model=%s" % model], options) return _ffi_api.TargetCreate("opengl", *opts) def arm_cpu(model='unknown', options=None): """Returns a ARM CPU target. This function will also download pre-tuned op parameters when there is none. Parameters ---------- model: str SoC name or phone name of the arm board. options : str or list of str Additional options """ trans_table = { "pixel2": ["-model=snapdragon835", "-target=arm64-linux-android -mattr=+neon"], "mate10": ["-model=kirin970", "-target=arm64-linux-android -mattr=+neon"], "mate10pro": ["-model=kirin970", "-target=arm64-linux-android -mattr=+neon"], "p20": ["-model=kirin970", "-target=arm64-linux-android -mattr=+neon"], "p20pro": ["-model=kirin970", "-target=arm64-linux-android -mattr=+neon"], "rasp3b": ["-model=bcm2837", "-target=armv7l-linux-gnueabihf -mattr=+neon"], "rasp4b": ["-model=bcm2711", "-target=arm-linux-gnueabihf -mattr=+neon"], "rk3399": ["-model=rk3399", "-target=aarch64-linux-gnu -mattr=+neon"], "pynq": ["-model=pynq", "-target=armv7a-linux-eabi -mattr=+neon"], "ultra96": ["-model=ultra96", "-target=aarch64-linux-gnu -mattr=+neon"], } pre_defined_opt = trans_table.get(model, ["-model=%s" % model]) opts = ["-device=arm_cpu"] + pre_defined_opt opts = _merge_opts(opts, options) return _ffi_api.TargetCreate("llvm", *opts) def rasp(options=None): """Return a Raspberry 3b target. Parameters ---------- options : str or list of str Additional options """ warnings.warn('tvm.target.rasp() is going to be deprecated. ' 'Please use tvm.target.arm_cpu("rasp3b")') return arm_cpu('rasp3b', options) def vta(model='unknown', options=None): opts = ["-device=vta", '-keys=cpu', '-model=%s' % model] opts = _merge_opts(opts, options) ret = _ffi_api.TargetCreate("ext_dev", *opts) return ret def bifrost(model='unknown', options=None): """Return an ARM Mali GPU target (Bifrost architecture). Parameters ---------- options : str or list of str Additional options """ opts = ["-device=bifrost", '-model=%s' % model] opts = _merge_opts(opts, options) return _ffi_api.TargetCreate("opencl", *opts) def hexagon(cpu_ver='v66', sim_args=None, hvx=128): """Returns a Hexagon target. Parameters ---------- cpu_ver : str CPU version used for code generation. Not all allowed cpu str will be valid, LLVM will throw an error. sim_args : str or list of str User defined sim arguments. CPU version defaults to cpu_ver. Otherwise, separate versions are used for codegen and sim. Not all allowed cpu strings will be valid, simulator will throw an error if invalid. Does not affect codegen. hvx : int Size of hvx register. Value of 0 indicates disabled hvx. """ # Example compiler arguments # llvm -target=hexagon -mcpu=hexagonv66 -mattr=+hvxv66,+hvx-length128b # Check for valid codegen cpu valid_hex = ['v60', 'v62', 'v65', 'v66', 'v67', 'v67t'] try: cpu_ver = cpu_ver[cpu_ver.index('v'):].lower() assert 3 <= len(cpu_ver) <= 4 except: msg = '{} is not a valid Hexagon version\nvalid versions include {}' raise ValueError(msg.format(cpu_ver, valid_hex)) from None assert hvx in [0, 64, 128] # Target string def create_target(cpu_ver): target = ' -target=hexagon' mcpu = ' -mcpu=hexagon' + cpu_ver mattr = '' # HVX enable if hvx: mattr = ' -mattr=+hvx' + cpu_ver + ',+hvx-length' + str(hvx) + 'b' return 'llvm' + target + mcpu + mattr # Simulator string def create_sim(cpu_ver, sim_args): def validate_hvx_length(codegen_hvx, sim_args): if sim_args and '--hvx_length' in sim_args: # If --hvx_length was specified, check HVX length of sim # vs codegen i = sim_args.index('hvx_length') + len('hvx_length') + 1 sim_hvx = sim_args[i:i+3] if sim_hvx != str(codegen_hvx): print('WARNING: sim hvx {} and codegen hvx {} mismatch!' \ .format(sim_hvx, codegen_hvx)) elif codegen_hvx != 0: # If --hvx_length was not given, add it if HVX is enabled sim_args = sim_args + ' ' if isinstance(sim_args, str) else '' sim_args += '--hvx_length ' + str(codegen_hvx) return sim_args or '' if not sim_args: return cpu_ver + ' ' + validate_hvx_length(hvx, sim_args) sim_cpu = cpu_ver + ' ' # Add user defined args if isinstance(sim_args, list): sim_args = ' '.join(sim_args) # Check for supplied sim cpu version if 'v6' in sim_args: sim_cpu = '' # Regex match for allowed cpus valid_cpu_str_regex = r'(?P<pre>--.*\s)?(--m)?' + \ r'(?P<base_version>v6[25678])(?P<sub_version>[a-z])?' + \ r'(?P<l2_size>_[0-9]+)?(?P<rev>_rev[0-9])?\s?(?P<post>--.*)?' m = re.match(valid_cpu_str_regex, sim_args.lower()) if not m: raise ValueError( 'Invalid simulator argument string "{}"'.format(sim_args)) # Parse options into correct order cpu_attr = {x: str(m.groupdict()[x] or '') for x in m.groupdict()} sim_args = cpu_attr['base_version'] + \ cpu_attr['sub_version'] + \ cpu_attr['l2_size'] + \ cpu_attr['rev'] + ' ' + \ cpu_attr['pre'] + cpu_attr['post'] return sim_cpu + ' ' + validate_hvx_length(hvx, sim_args) # Sim args os.environ['HEXAGON_SIM_ARGS'] = create_sim(cpu_ver, sim_args) target_str = create_target(cpu_ver) args_list = target_str.split() return _ffi_api.TargetCreate("hexagon", *args_list) def create(target_str): """Get a target given target string. Parameters ---------- target_str : str The target string. Returns ------- target : Target The target object Note ---- See the note on :py:mod:`tvm.target` on target string format. """ if isinstance(target_str, Target): return target_str if not isinstance(target_str, str): raise ValueError("target_str has to be string type") return _ffi_api.TargetFromString(target_str)
31.702703
90
0.597698
da533b686d2f9670220338fb2699e5fb4e88711c
1,911
py
Python
create-rss.py
barentsen/wwcpsx-rss
f872cc4d054c1441941cb194c1828e8ca724a021
[ "MIT" ]
null
null
null
create-rss.py
barentsen/wwcpsx-rss
f872cc4d054c1441941cb194c1828e8ca724a021
[ "MIT" ]
null
null
null
create-rss.py
barentsen/wwcpsx-rss
f872cc4d054c1441941cb194c1828e8ca724a021
[ "MIT" ]
null
null
null
"""Creates an RSS feed for the CPSX Western Worlds podcast. Crafted with ♥ for Jon Kissi and Raymond Francis. """ try: from urllib import request # Python 3 except ImportError: import urllib2 as request # Legacy Python import re from feedgen import feed PODCAST_URL = "http://cpsx.uwo.ca/outreach/western_worlds/western_worlds_episodes.html" if __name__ == "__main__": fg = feed.FeedGenerator() fg.id(PODCAST_URL) fg.title("CPSX Western Worlds") fg.description("""Western Worlds offers bi-weekly podcast programming that features an interview with space-relevant researchers, engineers, scientists, or advocates representing the local, national and global planetary science and exploration communities. Interview content is designed to be accessible and interesting for a wide range of listeners and will be followed by a round-table discussion involving several Western Worlds co-hosts, who have a wide-variety of educational and professional backgrounds.""") fg.link(href=PODCAST_URL, rel='alternate') fg.load_extension('podcast') fg.podcast.itunes_category('Science & Medicine', 'Natural Sciences') html = request.urlopen(PODCAST_URL).readlines() for line in html: groups = re.search("<p>.*\.\./img(.*mp3).*\">(.*)</a><br/>(.*)</p>", str(line)) if groups is not None: url = "http://cpsx.uwo.ca/img" + groups.group(1) title = groups.group(2) desc = groups.group(3) # Add to the feed fe = fg.add_entry() fe.id(url) fe.title(title) fe.description(desc) fe.enclosure(url, 0, 'audio/mpeg') fg.rss_file('wwcpsx-rss.xml', pretty=True)
39
87
0.610675
4757118cf4fa15f2912d20431e30d6ac139689aa
251
bzl
Python
scala/private/phases/phase_unused_deps_checker.bzl
psilospore/rules_scala-rebloopy
69327c55e8095882e59e5c0fe948cb31693b4e6f
[ "Apache-2.0" ]
null
null
null
scala/private/phases/phase_unused_deps_checker.bzl
psilospore/rules_scala-rebloopy
69327c55e8095882e59e5c0fe948cb31693b4e6f
[ "Apache-2.0" ]
null
null
null
scala/private/phases/phase_unused_deps_checker.bzl
psilospore/rules_scala-rebloopy
69327c55e8095882e59e5c0fe948cb31693b4e6f
[ "Apache-2.0" ]
null
null
null
# # PHASE: unused deps checker # # DOCUMENT THIS # load( "@io_bazel_rules_scala//scala/private:rule_impls.bzl", "get_unused_dependency_checker_mode", ) def phase_unused_deps_checker(ctx, p): return get_unused_dependency_checker_mode(ctx)
19.307692
58
0.76494
eb15c36608d7202ded4e94cc6d8dc46888d90f87
2,219
py
Python
utils/inferenceutils.py
n-fallahinia/finger-detection
ebc3a5165b34156fa8f2abb44fde5d48b5405f95
[ "Apache-2.0" ]
1
2021-02-22T00:22:05.000Z
2021-02-22T00:22:05.000Z
utils/inferenceutils.py
n-fallahinia/finger-detection
ebc3a5165b34156fa8f2abb44fde5d48b5405f95
[ "Apache-2.0" ]
null
null
null
utils/inferenceutils.py
n-fallahinia/finger-detection
ebc3a5165b34156fa8f2abb44fde5d48b5405f95
[ "Apache-2.0" ]
null
null
null
import io import os import scipy.misc import numpy as np import six import time import glob from IPython.display import display from six import BytesIO import matplotlib import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont import tensorflow as tf from object_detection.utils import ops as utils_ops from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util def load_image_into_numpy_array(path): img_data = tf.io.gfile.GFile(path, 'rb').read() image = Image.open(BytesIO(img_data)) (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) def run_inference_for_single_image(model, image): image = np.asarray(image) # The input needs to be a tensor, convert it using `tf.convert_to_tensor`. input_tensor = tf.convert_to_tensor(image) # The model expects a batch of images, so add an axis with `tf.newaxis`. input_tensor = input_tensor[tf.newaxis,...] # Run inference model_fn = model.signatures['serving_default'] output_dict = model_fn(input_tensor) # All outputs are batches tensors. # Convert to numpy arrays, and take index [0] to remove the batch dimension. # We're only interested in the first num_detections. num_detections = int(output_dict.pop('num_detections')) output_dict = {key:value[0, :num_detections].numpy() for key,value in output_dict.items()} output_dict['num_detections'] = num_detections # detection_classes should be ints. output_dict['detection_classes'] = \ output_dict['detection_classes'].astype(np.int64) # Handle models with masks: if 'detection_masks' in output_dict: # Reframe the the bbox mask to the image size. detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( output_dict['detection_masks'], output_dict['detection_boxes'], image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast(detection_masks_reframed > 0.5, tf.uint8) output_dict['detection_masks_reframed'] = detection_masks_reframed.numpy() return output_dict
35.222222
78
0.733213
98e53f83bbb14a8417eeffbcddd1b5e63cf64c2d
11,032
py
Python
anchorecli/cli/system.py
ayanes/anchore-cli
b052f447cdb46193dca43683f47ecf0c768867fa
[ "Apache-2.0" ]
1
2019-07-19T22:14:18.000Z
2019-07-19T22:14:18.000Z
anchorecli/cli/system.py
kumarchatla/anchore-cli
0cab3cc203c7295663b20981559e68b7283bc84a
[ "Apache-2.0" ]
null
null
null
anchorecli/cli/system.py
kumarchatla/anchore-cli
0cab3cc203c7295663b20981559e68b7283bc84a
[ "Apache-2.0" ]
null
null
null
import sys import os import re import json import time import click import logging import anchorecli.clients.apiexternal import anchorecli.cli.utils config = {} _logger = logging.getLogger(__name__) @click.group(name='system', short_help='System operations') @click.pass_context @click.pass_obj def system(ctx_config, ctx): global config config = ctx_config if ctx.invoked_subcommand not in ['wait']: try: anchorecli.cli.utils.check_access(config) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system', {}, err)) sys.exit(2) @system.command(name='status', short_help="Check current anchore-engine system status") def status(): ecode = 0 try: ret = anchorecli.clients.apiexternal.system_status(config) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: print(anchorecli.cli.utils.format_output(config, 'system_status', {}, ret['payload'])) else: raise Exception(json.dumps(ret['error'], indent=4)) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system_status', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode) @system.command(name='errorcodes', short_help="Describe available anchore system error code names and descriptions") def describe_errorcodes(): ecode = 0 try: ret = anchorecli.clients.apiexternal.describe_error_codes(config) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: print(anchorecli.cli.utils.format_output(config, 'system_describe_error_codes', {}, ret['payload'])) else: raise Exception(json.dumps(ret['error'], indent=4)) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system_describe_error_codes', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode) @system.command(name='wait', short_help="Blocking operation that will return when anchore-engine is available and ready") @click.option('--timeout', type=float, default=-1.0, help="Time to wait, in seconds. If < 0, wait forever (default=-1)") @click.option('--interval', type=float, default=5.0, help="Interval between checks, in seconds (default=5)") @click.option("--feedsready", default='vulnerabilities', help='In addition to API and set of core services being available, wait until at least one full feed sync has been completed for the CSV list of feeds (default="vulnerabilities").') @click.option("--servicesready", default='catalog,apiext,policy_engine,simplequeue,analyzer', help='Wait for the specified CSV list of anchore-engine services to have at least one service reporting as available (default="catalog,apiext,policy_engine,simplequeue,analyzer")') def wait(timeout, interval, feedsready, servicesready): """ Wait for an image to go to analyzed or analysis_failed status with a specific timeout :param timeout: :param interval: :param feedsready: :return: """ global config ecode = 0 try: sys.stderr.write("Starting checks to wait for anchore-engine to be available timeout={} interval={}\n".format(timeout, interval)) ts = time.time() while timeout < 0 or time.time() - ts < timeout: sys.stderr.write("API availability: Checking anchore-engine URL ({})...\n".format(config['url'])) _logger.debug("Checking API availability for anchore-engine URL ({})".format(config['url'])) try: anchorecli.cli.utils.check_access(config) _logger.debug("check access success") break; except Exception as err: _logger.debug("check access failed, trying again") time.sleep(interval) else: raise Exception("timed out after {} seconds.".format(timeout)) sys.stderr.write("API availability: Success.\n") while timeout < 0 or time.time() - ts < timeout: all_up = {} try: services_to_check = [x for x in servicesready.split(',') if x] for f in services_to_check: all_up[f] = False except: all_up = {} sys.stderr.write("Service availability: Checking for service set ({})...\n".format(','.join(all_up.keys()))) _logger.debug("Checking service set availability for anchore-engine URL ({})".format(config['url'])) try: ret = anchorecli.clients.apiexternal.system_status(config) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: for service_record in ret.get('payload', {}).get('service_states', []): s = service_record.get('servicename', None) if s: if s not in all_up: all_up[s] = False try: s_up = service_record.get('service_detail', {}).get('up', False) except: s_up = False if s_up: all_up[s] = s_up if False not in all_up.values(): _logger.debug("full set of available engine services detected") break; else: _logger.debug("service set not yet available {}".format(all_up)) elif ret.get('httpcode', 500) in [401]: raise Exception("service responded with 401 Unauthorized - please check anchore-engine credentials and try again") except Exception as err: print ("service status failed {}".format(err)) time.sleep(interval) else: raise Exception("timed out after {} seconds.".format(timeout)) sys.stderr.write("Service availability: Success.\n") if feedsready: all_up = {} try: feeds_to_check = feedsready.split(',') for f in feeds_to_check: all_up[f] = False except: all_up = {} while timeout < 0 or time.time() - ts < timeout: sys.stderr.write("Feed sync: Checking sync completion for feed set ({})...\n".format(','.join(all_up.keys()))) _logger.debug("Checking feed sync status for anchore-engine URL ({})".format(config['url'])) try: ret = anchorecli.clients.apiexternal.system_feeds_list(config) if ret['success']: for feed_record in ret.get('payload', []): _logger.debug("response show feed name={} was last_full_sync={}".format(feed_record.get('name'), feed_record.get('last_full_sync'))) if feed_record.get('name', None) in all_up: if feed_record.get('last_full_sync', None): all_up[feed_record.get('name')] = True if False not in all_up.values(): _logger.debug("all requests feeds have been synced") break else: _logger.debug("some feeds not yet synced {}".format(all_up)) except Exception as err: print ("service feeds list failed {}".format(err)) time.sleep(interval) else: raise Exception("timed out after {} seconds.".format(timeout)) sys.stderr.write("Feed sync: Success.\n") except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system_wait', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode) @system.command(name='del', short_help="Delete a non-active service from anchore-engine") @click.argument('host_id', nargs=1) @click.argument('servicename', nargs=1) def delete(host_id, servicename): ecode = 0 try: ret = anchorecli.clients.apiexternal.delete_system_service(config, host_id, servicename) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: print(anchorecli.cli.utils.format_output(config, 'delete_system_service', {}, ret['payload'])) else: raise Exception(json.dumps(ret['error'], indent=4)) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'delete_system_service', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode) @system.group(name="feeds", short_help="Feed data operations") def feeds(): pass @feeds.command(name="list", short_help="Get a list of loaded data feeds.") def list(): ecode = 0 try: ret = anchorecli.clients.apiexternal.system_feeds_list(config) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: print(anchorecli.cli.utils.format_output(config, 'system_feeds_list', {}, ret['payload'])) else: raise Exception(json.dumps(ret['error'], indent=4)) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system_feeds_list', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode) @feeds.command(name="sync", short_help="Fetch latest updates from the feed service") @click.option("--flush", is_flag=True, help="Flush all previous data, including CVE matches, and resync from scratch") def feedsync(flush): global input ecode = 0 try: answer = "n" try: print("\nWARNING: This operation should not normally need to be performed except when the anchore-engine operator is certain that it is required - the operation will take a long time (hours) to complete, and there may be an impact on anchore-engine performance during the re-sync/flush.\n") try: input = raw_input except NameError: pass answer = input("Really perform a manual feed data sync/flush? (y/N)") except Exception as err: answer = "n" if 'y' == answer.lower(): ret = anchorecli.clients.apiexternal.system_feeds_sync(config, flush) ecode = anchorecli.cli.utils.get_ecode(ret) if ret['success']: print(anchorecli.cli.utils.format_output(config, 'system_feeds_flush', {}, ret['payload'])) else: raise Exception(json.dumps(ret['error'], indent=4)) except Exception as err: print(anchorecli.cli.utils.format_error_output(config, 'system_feeds_flush', {}, err)) if not ecode: ecode = 2 anchorecli.cli.utils.doexit(ecode)
42.75969
302
0.599257
3d9f384e7faebac7214c387ca7b50522bb90d573
379
py
Python
exercises/ex083.py
mouraa0/python-exercises
78ecf1cb0d1dfd7dfbdd05574cce5cd6a5cba0f1
[ "MIT" ]
null
null
null
exercises/ex083.py
mouraa0/python-exercises
78ecf1cb0d1dfd7dfbdd05574cce5cd6a5cba0f1
[ "MIT" ]
null
null
null
exercises/ex083.py
mouraa0/python-exercises
78ecf1cb0d1dfd7dfbdd05574cce5cd6a5cba0f1
[ "MIT" ]
null
null
null
def ex083(): expressao = input('Digite a expressão:\n') paren_a = 0 paren_f = 0 for i in expressao: if i == '(': paren_a += 1 elif i == ')': paren_f += 1 if paren_a == paren_f: resultado = 'VÁLIDA' else: resultado = 'INVÁLIDA' print(f'A equação digitada é {resultado}') ex083()
18.047619
46
0.48285
94f527b5cfd92465aaafba3507c26bc165b4b400
920
py
Python
saleor/api/table/serializers.py
glosoftgroup/restaurant
5b10a8f5199103e5bee01b45952c9638e63f28af
[ "BSD-3-Clause" ]
1
2018-05-03T06:17:02.000Z
2018-05-03T06:17:02.000Z
saleor/api/table/serializers.py
glosoftgroup/restaurant
5b10a8f5199103e5bee01b45952c9638e63f28af
[ "BSD-3-Clause" ]
8
2018-05-07T16:42:35.000Z
2022-02-26T03:31:56.000Z
saleor/api/table/serializers.py
glosoftgroup/tenants
a6b229ad1f6d567b7078f83425a532830b71e1bb
[ "BSD-3-Clause" ]
null
null
null
# table rest api serializers from rest_framework import serializers from django.contrib.auth import get_user_model from ...table.models import Table from ...orders.models import Orders User = get_user_model() class TableListSerializer(serializers.ModelSerializer): orders_url = serializers.HyperlinkedIdentityField(view_name='order-api:api-table-orders') new_orders = serializers.SerializerMethodField() fully_paid_orders = serializers.SerializerMethodField() class Meta: model = Table fields = ('id', 'name', 'sale_point', 'orders_url', 'new_orders', 'fully_paid_orders' ) def get_new_orders(self, obj): return len(Orders.objects.get_table_new_orders(obj.pk)) def get_fully_paid_orders(self, obj): return len(Orders.objects.get_table_orders(obj.pk))
30.666667
93
0.66413
3689b04ca987e1b2607af3fdf7572b633f2b232d
1,836
py
Python
Manteia/ActiveLearning.py
ym001/Manteia
e6ed466617933047aecf3071dec1d8bef9b0eeaa
[ "MIT" ]
4
2020-04-19T15:57:56.000Z
2021-07-03T09:13:32.000Z
Manteia/ActiveLearning.py
ym001/Manteia
e6ed466617933047aecf3071dec1d8bef9b0eeaa
[ "MIT" ]
null
null
null
Manteia/ActiveLearning.py
ym001/Manteia
e6ed466617933047aecf3071dec1d8bef9b0eeaa
[ "MIT" ]
null
null
null
""" .. module:: ActiveLearning :platform: Unix, Windows :synopsis: A useful module indeed. .. moduleauthor:: Yves Mercadier <manteia.ym001@gmail.com> """ import numpy as np import math from operator import itemgetter import random class RandomSampling(): """ A random sampling query strategy baseline. """ def __init__(self,verbose=False): self.verbose=verbose if self.verbose: print('Randomsampling') def query(self, unlabeled_idx,nb_question): random.shuffle(unlabeled_idx) selected_indices= unlabeled_idx[:nb_question] return selected_indices class UncertaintyEntropySampling(): """ The basic uncertainty sampling query strategy, querying the examples with the top entropy. """ def __init__(self,verbose=False): self.verbose=verbose if self.verbose: print('UncertaintyEntropySampling') def query(self,predictions,unlabeled_idx,nb_question): entropie=[] for prediction,idx in zip(predictions,unlabeled_idx): summ=0 for proba in prediction: if proba>0: summ=summ-proba*math.log(proba) entropie.append((summ,idx)) entropie_trie=sorted(entropie, key=itemgetter(0),reverse=True) idx_entropie=[tup[1] for tup in entropie_trie[:nb_question]] if self.verbose: print(entropie_trie[:nb_question]) return idx_entropie class DAL(): """ The basic discriminative strategy. """ def __init__(self,verbose=False): self.verbose=verbose if self.verbose: print('DAL') def query(self,predictions,unlabeled_idx,nb_question): #dal est une liste de tuple idx non labélisé et probabilité de ne pas etre labellisé dal=[(idx,p[1])for idx,p in zip(unlabeled_idx,predictions)] dal=sorted(dal, key=itemgetter(1),reverse=True) print(dal[:3]) idx_dal=[tup[0] for tup in dal[:nb_question]] if self.verbose: print(dal[:nb_question]) return idx_dal
23.844156
91
0.737473
48807de5934006f3864512d03b687c30b4c45081
24,064
py
Python
appqos/tests/test_power.py
zzhou612/intel-cmt-cat
c351ffa565df56f5057c40ace46436bf3e776101
[ "BSD-3-Clause" ]
397
2017-11-30T17:11:14.000Z
2022-03-31T22:55:32.000Z
appqos/tests/test_power.py
zzhou612/intel-cmt-cat
c351ffa565df56f5057c40ace46436bf3e776101
[ "BSD-3-Clause" ]
150
2017-10-30T10:49:33.000Z
2022-03-30T21:34:41.000Z
appqos/tests/test_power.py
zzhou612/intel-cmt-cat
c351ffa565df56f5057c40ace46436bf3e776101
[ "BSD-3-Clause" ]
132
2017-11-03T11:29:49.000Z
2022-03-21T10:55:10.000Z
################################################################################ # BSD LICENSE # # Copyright(c) 2019-2021 Intel Corporation. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of Intel Corporation nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ################################################################################ import mock import pytest import power import power_common import sstbf class TestRestPowerProfiles: def test_is_sstcp_enabled(self): class SYS: def __init__(self, enabled): self.epp_enabled = enabled self.sst_bf_enabled = enabled with mock.patch("pwr.get_system", return_value=SYS(True)) as mock_get_system: assert power.is_sstcp_enabled() mock_get_system.assert_called_once() with mock.patch("pwr.get_system", return_value=SYS(False)) as mock_get_system: assert not power.is_sstcp_enabled() mock_get_system.assert_called_once() with mock.patch("pwr.get_system", return_value=None) as mock_get_system: assert not power.is_sstcp_enabled() mock_get_system.assert_called_once() with mock.patch("pwr.get_system", side_effect = IOError('Test')) as mock_get_system: assert not power.is_sstcp_enabled() mock_get_system.assert_called_once() def test__get_pwr_cpus(self): class CPU: def __init__(self, core_list): self.core_list=core_list CPUS_LIST = [CPU([]), CPU([])] with mock.patch("pwr.get_cpus", return_value=CPUS_LIST) as mock_get_cpus: assert power_common.get_pwr_cpus() == CPUS_LIST mock_get_cpus.assert_called_once() with mock.patch("pwr.get_cpus", return_value=[]) as mock_get_cpus: assert not power_common.get_pwr_cpus() mock_get_cpus.assert_called_once() with mock.patch("pwr.get_cpus", return_value=None) as mock_get_cpus: assert not power_common.get_pwr_cpus() mock_get_cpus.assert_called_once() with mock.patch("pwr.get_cpus", side_effect = IOError('Test')) as mock_get_cpus: assert not power_common.get_pwr_cpus() mock_get_cpus.assert_called_once() with mock.patch("pwr.get_cpus", side_effect = ValueError('Test')) as mock_get_cpus: assert not power_common.get_pwr_cpus() mock_get_cpus.assert_called_once() def test__get_pwr_cores(self): class CORE: def __init__(self, id): self.core_id=id CORES_LIST = [CORE(0), CORE(1)] with mock.patch("pwr.get_cores", return_value=CORES_LIST) as mock_get_cores: assert power_common.get_pwr_cores() == CORES_LIST mock_get_cores.assert_called_once() with mock.patch("pwr.get_cores", return_value=[]) as mock_get_cores: assert not power_common.get_pwr_cores() mock_get_cores.assert_called_once() with mock.patch("pwr.get_cores", return_value=None) as mock_get_cores: assert not power_common.get_pwr_cores() mock_get_cores.assert_called_once() with mock.patch("pwr.get_cores", side_effect = IOError('Test')) as mock_get_cores: assert not power_common.get_pwr_cores() mock_get_cores.assert_called_once() with mock.patch("pwr.get_cores", side_effect = ValueError('Test')) as mock_get_cores: assert not power_common.get_pwr_cores() mock_get_cores.assert_called_once() def test__set_freqs_epp(self): class CORE: def __init__(self, id): self.core_id=id self.commit = mock.MagicMock() CORES_LIST = [CORE(0), CORE(1), CORE(2), CORE(3), CORE(4)] assert -1 == power._set_freqs_epp(cores=None, min_freq=1000) assert -1 == power._set_freqs_epp(cores=[], min_freq=1000) assert -1 == power._set_freqs_epp(cores=[1,2,3], min_freq=None, max_freq=None, epp=None) for ret_val in [[], None]: with mock.patch("power_common.get_pwr_cores", return_value=ret_val) as mock_get_cores: assert -1 == power._set_freqs_epp(cores=[1,2,3], min_freq=1000, max_freq=2300, epp="performance") mock_get_cores.assert_called_once() with mock.patch("power_common.get_pwr_cores", return_value=CORES_LIST) as mock_get_cores: assert 0 == power._set_freqs_epp(cores=[1,2,3], min_freq=1000, max_freq=2300, epp="performance") mock_get_cores.assert_called_once() for core in CORES_LIST: if core.core_id in [1, 2, 3]: assert core.min_freq == 1000 assert core.max_freq == 2300 assert core.epp == "performance" core.commit.assert_called_once() else: assert not hasattr(core, 'min_freq') assert not hasattr(core, 'max_freq') assert not hasattr(core, 'epp') core.commit.assert_not_called() def test_reset(self): class CORE: def __init__(self, id): self.core_id=id self.commit = mock.MagicMock() CORES_LIST = [CORE(0), CORE(1), CORE(2), CORE(3), CORE(4)] for val in [[], None]: assert -1 == power.reset(val) with mock.patch("power_common.get_pwr_cores", return_value=CORES_LIST) as mock_get_cores: assert 0 == power.reset([0, 1, 2]) mock_get_cores.assert_called_once() for core in CORES_LIST: if core.core_id in [0, 1, 2]: core.commit.assert_called_once_with("default") else: core.commit.assert_not_called() def test__get_lowest_freq(self): class CPU: def __init__(self, freq): self.lowest_freq = freq for ret_val in [[], None]: with mock.patch("power_common.get_pwr_cpus", return_value = ret_val) as mock_get_cpus: assert None == power_common.get_pwr_lowest_freq() mock_get_cpus.assert_called_once() for freq in [1000, 1500, 2000]: with mock.patch("power_common.get_pwr_cpus", return_value=[CPU(freq)]) as mock_get_cpus: assert freq == power_common.get_pwr_lowest_freq() mock_get_cpus.assert_called_once() def test__get_base_freq(self): class CPU: def __init__(self, freq): self.base_freq = freq for ret_val in [[], None]: with mock.patch("power_common.get_pwr_cpus", return_value = ret_val) as mock_get_cpus: assert None == power_common.get_pwr_base_freq() mock_get_cpus.assert_called_once() for freq in [2000, 2500, 3000]: with mock.patch("power_common.get_pwr_cpus", return_value=[CPU(freq)]) as mock_get_cpus: assert freq == power_common.get_pwr_base_freq() mock_get_cpus.assert_called_once() def test__get_highest_freq(self): class CPU: def __init__(self, freq): self.highest_freq = freq for ret_val in [[], None]: with mock.patch("power_common.get_pwr_cpus", return_value = ret_val) as mock_get_cpus: assert None == power_common.get_pwr_highest_freq() mock_get_cpus.assert_called_once() for freq in [3000, 3500, 4000]: with mock.patch("power_common.get_pwr_cpus", return_value=[CPU(freq)]) as mock_get_cpus: assert freq == power_common.get_pwr_highest_freq() mock_get_cpus.assert_called_once() def test__is_min_freq_valid(self): for ret_val in [[], None]: with mock.patch("power_common.get_pwr_lowest_freq", return_value = ret_val) as mock_get: assert None == power._is_min_freq_valid(1000) mock_get.assert_called_once() for freq in [500, 1000, 1499]: with mock.patch("power_common.get_pwr_lowest_freq", return_value = 1500) as mock_get: assert False == power._is_min_freq_valid(freq) mock_get.assert_called_once() for freq in [1000, 1500, 2000]: with mock.patch("power_common.get_pwr_lowest_freq", return_value = 1000) as mock_get: assert True == power._is_min_freq_valid(freq) mock_get.assert_called_once() def test__is_max_freq_valid(self): for ret_val in [[], None]: with mock.patch("power_common.get_pwr_highest_freq", return_value = ret_val) as mock_get: assert None == power._is_max_freq_valid(1000) mock_get.assert_called_once() for freq in [3501, 3750, 4000]: with mock.patch("power_common.get_pwr_highest_freq", return_value = 3500) as mock_get: assert False == power._is_max_freq_valid(freq) mock_get.assert_called_once() for freq in [2000, 3000, 3500]: with mock.patch("power_common.get_pwr_highest_freq", return_value = 3500) as mock_get: assert True == power._is_max_freq_valid(freq) mock_get.assert_called_once() def test__is_epp_valid(self): for epp in [None, "", 1000, "TEST", "inValid_EPP", []]: assert False == power._is_epp_valid(epp) for epp in power.VALID_EPP + [power.DEFAULT_EPP]: assert True == power._is_epp_valid(epp) def test__do_admission_control_check(self): for sstbf in [True, False]: result = not sstbf with mock.patch('sstbf.is_sstbf_configured', return_value = sstbf): assert result == power._do_admission_control_check() def test_validate_power_profiles(self): data = { "power_profiles": [ { "id": 0, "min_freq": 1500, "max_freq": 2500, "epp": "performance", "name": "default" }, { "id": 0, "min_freq": 1000, "max_freq": 1000, "epp": "power", "name": "low_priority" } ] } with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock_admission_control_check: with pytest.raises(ValueError, match="Power Profile 0, multiple profiles with same id."): power.validate_power_profiles(data, True) mock_admission_control_check.assert_not_called() # fix profile ID issue data['power_profiles'][-1]['id'] = 1 with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock__admission_control_check: power.validate_power_profiles(data, True) mock_is_max.assert_any_call(2500) mock_is_max.assert_any_call(1000) mock_is_min.assert_any_call(1500) mock_is_min.assert_any_call(1000) mock_is_epp.assert_any_call("performance") mock_is_epp.assert_any_call("power") mock__admission_control_check.assert_called_once() with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = False),\ mock.patch('power._admission_control_check') as mock__admission_control_check: power.validate_power_profiles(data, True) mock__admission_control_check.assert_not_called() with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check') as mock__admission_control_check: power.validate_power_profiles(data, False) mock__admission_control_check.assert_not_called() sys = mock.MagicMock() sys.request_config = mock.MagicMock(return_value=True) sys.refresh_all = mock.MagicMock() cores = [] for id in range(0,3): core = mock.MagicMock() core.core_id = id cores.append(core) data.update({ "pools": [ { "id": 0, "cores": [0,1,2,3], "power_profile": 0 }, { "id": 1, "cores": [4,5,6,7] }] }) with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power_common.get_pwr_cores', return_value=cores) as mock_get_cores,\ mock.patch('power_common.get_pwr_sys', return_value=sys) as mock_get_sys: power.validate_power_profiles(data, True) sys.request_config.assert_called_once() sys.refresh_all.assert_called_once() for core in cores: assert hasattr(core, "min_freq") assert hasattr(core, "max_freq") assert hasattr(core, "epp") sys.request_config = mock.MagicMock(return_value=False) sys.refresh_all.reset_mock() with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power_common.get_pwr_cores', return_value=cores) as mock_get_cores,\ mock.patch('power_common.get_pwr_sys', return_value=sys) as mock_get_sys: with pytest.raises(power.AdmissionControlError, match="Power Profiles configuration would cause CPU to be oversubscribed."): power.validate_power_profiles(data, True) sys.request_config.assert_called_once() sys.refresh_all.assert_called_once() with mock.patch('power._is_max_freq_valid', return_value = False ) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock__admission_control_check: with pytest.raises(ValueError, match="Power Profile 0, Invalid max. freq 2500."): power.validate_power_profiles(data, True) mock__admission_control_check.assert_not_called() with mock.patch('power._is_max_freq_valid', return_value = True ) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = False) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock__admission_control_check: with pytest.raises(ValueError, match="Power Profile 0, Invalid min. freq 1500."): power.validate_power_profiles(data, True) mock__admission_control_check.assert_not_called() with mock.patch('power._is_max_freq_valid', return_value = True ) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = False) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock__admission_control_check: with pytest.raises(ValueError, match="Power Profile 0, Invalid EPP value performance."): power.validate_power_profiles(data, True) mock__admission_control_check.assert_not_called() # set invalid min. freq, higher than max. freq data['power_profiles'][-1]['min_freq'] = data['power_profiles'][-1]['max_freq'] + 1 with mock.patch('power._is_max_freq_valid', return_value = True) as mock_is_max,\ mock.patch('power._is_min_freq_valid', return_value = True) as mock_is_min,\ mock.patch('power._is_epp_valid', return_value = True) as mock_is_epp,\ mock.patch('power._do_admission_control_check', return_value = True),\ mock.patch('power._admission_control_check', return_value = True) as mock__admission_control_check: with pytest.raises(ValueError, match="Power Profile 1, Invalid freqs! min. freq is higher than max. freq."): power.validate_power_profiles(data, True) mock__admission_control_check.assert_not_called() def test_configure_power(self): pool_ids = [0, 1] profile_ids = [5, 6] pool_to_cores = {0: [2,3], 1: [4, 5]} pool_to_profiles = {0: 5, 1: 6} profiles = {5: {"min_freq": 1500, "max_freq": 2500, "epp": "performance", "id": 5}, 6 : {"min_freq": 1000, "max_freq": 1200, "epp": "power", "id": 6}} def get_pool_attr(attr, pool_id): if attr == 'id': if pool_id is None: return pool_ids else: return None elif attr == 'cores': return pool_to_cores[pool_id] elif attr == 'power_profile': if pool_id is None: return profile_ids else: return pool_to_profiles[pool_id] return None def get_power_profile(id): return profiles[id] # ERROR POWER: No Pools configured... power.PREV_PROFILES.clear() with mock.patch('common.CONFIG_STORE.get_pool_attr', return_value=None) as mock_get_pool_attr,\ mock.patch('common.CONFIG_STORE.get_power_profile') as mock_get_power_profile,\ mock.patch('power.reset') as mock_reset,\ mock.patch('power._set_freqs_epp') as mock_set_freqs_epp: assert -1 == power.configure_power() mock_get_pool_attr.assert_called_once_with('id', None) mock_get_power_profile.assert_not_called() mock_reset.assert_not_called() mock_set_freqs_epp.assert_not_called() # ERROR POWER: Profile 5 does not exist! power.PREV_PROFILES.clear() with mock.patch('common.CONFIG_STORE.get_pool_attr', new=get_pool_attr),\ mock.patch('common.CONFIG_STORE.get_power_profile', return_value=None) as mock_get_power_profile,\ mock.patch('power.reset') as mock_reset,\ mock.patch('power._set_freqs_epp') as mock_set_freqs_epp: assert -1 == power.configure_power() mock_get_power_profile.assert_called_once_with(5) mock_reset.assert_not_called() mock_set_freqs_epp.assert_not_called() # All OK! power.PREV_PROFILES.clear() with mock.patch('common.CONFIG_STORE.get_pool_attr', new=get_pool_attr),\ mock.patch('common.CONFIG_STORE.get_power_profile', new=get_power_profile),\ mock.patch('power.reset') as mock_reset,\ mock.patch('power._set_freqs_epp') as mock_set_freqs_epp: assert 0 == power.configure_power() mock_reset.assert_not_called() mock_set_freqs_epp.assert_any_call(pool_to_cores[0], profiles[5]["min_freq"], profiles[5]["max_freq"], profiles[5]["epp"]) mock_set_freqs_epp.assert_any_call(pool_to_cores[1], profiles[6]["min_freq"], profiles[6]["max_freq"], profiles[6]["epp"]) # POWER: Skipping Pool 0, no cores assigned power.PREV_PROFILES.clear() pool_to_cores[0] = [] with mock.patch('common.CONFIG_STORE.get_pool_attr', new=get_pool_attr),\ mock.patch('common.CONFIG_STORE.get_power_profile', new=get_power_profile),\ mock.patch('power.reset') as mock_reset,\ mock.patch('power._set_freqs_epp') as mock_set_freqs_epp: assert 0 == power.configure_power() mock_reset.assert_not_called() mock_set_freqs_epp.assert_called_once_with(pool_to_cores[1], profiles[6]["min_freq"], profiles[6]["max_freq"], profiles[6]["epp"]) # POWER: Pool 1, no power profile assigned. Resetting to defaults. power.PREV_PROFILES.clear() pool_to_profiles[1] = None with mock.patch('common.CONFIG_STORE.get_pool_attr', new=get_pool_attr),\ mock.patch('common.CONFIG_STORE.get_power_profile', new=get_power_profile),\ mock.patch('power.reset') as mock_reset,\ mock.patch('power._set_freqs_epp') as mock_set_freqs_epp: assert 0 == power.configure_power() mock_reset.assert_called_once_with(pool_to_cores[1]) mock_set_freqs_epp.assert_not_called()
44.316759
142
0.630111
5ae419168f1d56a51d1a97e5a29d05ce165fce67
5,786
py
Python
megengine_release/layers/det/rcnn.py
megvii-research/ICD
a97e0ecd9b69dbc0e3c2b8168c1d72ea79c6641b
[ "Apache-2.0" ]
32
2021-11-09T11:19:21.000Z
2022-03-21T17:37:32.000Z
layers/det/rcnn.py
Senwang98/ICD
fdda393088fa31ac6dc9ddbd7ec3e7008ea32ff4
[ "Apache-2.0" ]
3
2022-02-28T08:51:13.000Z
2022-03-30T09:16:41.000Z
layers/det/rcnn.py
Senwang98/ICD
fdda393088fa31ac6dc9ddbd7ec3e7008ea32ff4
[ "Apache-2.0" ]
4
2021-11-11T11:59:05.000Z
2022-03-30T03:26:41.000Z
# -*- coding:utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.module as M import layers class RCNN(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.box_coder = layers.BoxCoder(cfg.rcnn_reg_mean, cfg.rcnn_reg_std) # roi head self.in_features = cfg.rcnn_in_features self.stride = cfg.rcnn_stride self.pooling_method = cfg.pooling_method self.pooling_size = cfg.pooling_size self.fc1 = M.Linear(256 * self.pooling_size[0] * self.pooling_size[1], 1024) self.fc2 = M.Linear(1024, 1024) for l in [self.fc1, self.fc2]: M.init.normal_(l.weight, std=0.01) M.init.fill_(l.bias, 0) # box predictor self.pred_cls = M.Linear(1024, cfg.num_classes + 1) self.pred_delta = M.Linear(1024, cfg.num_classes * 4) M.init.normal_(self.pred_cls.weight, std=0.01) M.init.normal_(self.pred_delta.weight, std=0.001) for l in [self.pred_cls, self.pred_delta]: M.init.fill_(l.bias, 0) def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None): rcnn_rois, labels, bbox_targets = self.get_ground_truth( rcnn_rois, im_info, gt_boxes ) fpn_fms = [fpn_fms[x] for x in self.in_features] pool_features = layers.roi_pool( fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.pooling_method, ) flatten_feature = F.flatten(pool_features, start_axis=1) roi_feature = F.relu(self.fc1(flatten_feature)) roi_feature = F.relu(self.fc2(roi_feature)) pred_logits = self.pred_cls(roi_feature) pred_offsets = self.pred_delta(roi_feature) if self.training: # loss for rcnn classification loss_rcnn_cls = F.loss.cross_entropy(pred_logits, labels, axis=1) # loss for rcnn regression pred_offsets = pred_offsets.reshape(-1, self.cfg.num_classes, 4) num_samples = labels.shape[0] fg_mask = labels > 0 loss_rcnn_bbox = layers.smooth_l1_loss( pred_offsets[fg_mask, labels[fg_mask] - 1], bbox_targets[fg_mask], self.cfg.rcnn_smooth_l1_beta, ).sum() / F.maximum(num_samples, mge.tensor(1)) loss_dict = { "loss_rcnn_cls": loss_rcnn_cls, "loss_rcnn_bbox": loss_rcnn_bbox, } return loss_dict else: # slice 1 for removing background pred_scores = F.softmax(pred_logits, axis=1)[:, 1:] pred_offsets = pred_offsets.reshape(-1, 4) target_shape = (rcnn_rois.shape[0], self.cfg.num_classes, 4) # rois (N, 4) -> (N, 1, 4) -> (N, 80, 4) -> (N * 80, 4) base_rois = F.broadcast_to( F.expand_dims(rcnn_rois[:, 1:5], axis=1), target_shape).reshape(-1, 4) pred_bbox = self.box_coder.decode(base_rois, pred_offsets) return pred_bbox, pred_scores def get_ground_truth(self, rpn_rois, im_info, gt_boxes): if not self.training: return rpn_rois, None, None return_rois = [] return_labels = [] return_bbox_targets = [] # get per image proposals and gt_boxes for bid in range(gt_boxes.shape[0]): num_valid_boxes = im_info[bid, 4].astype("int32") gt_boxes_per_img = gt_boxes[bid, :num_valid_boxes, :] batch_inds = F.full((gt_boxes_per_img.shape[0], 1), bid) gt_rois = F.concat([batch_inds, gt_boxes_per_img[:, :4]], axis=1) batch_roi_mask = rpn_rois[:, 0] == bid # all_rois : [batch_id, x1, y1, x2, y2] all_rois = F.concat([rpn_rois[batch_roi_mask], gt_rois]) overlaps = layers.get_iou(all_rois[:, 1:], gt_boxes_per_img) max_overlaps = overlaps.max(axis=1) gt_assignment = F.argmax(overlaps, axis=1).astype("int32") labels = gt_boxes_per_img[gt_assignment, 4] # ---------------- get the fg/bg labels for each roi ---------------# fg_mask = (max_overlaps >= self.cfg.fg_threshold) & (labels >= 0) bg_mask = ( (max_overlaps >= self.cfg.bg_threshold_low) & (max_overlaps < self.cfg.bg_threshold_high) ) num_fg_rois = int(self.cfg.num_rois * self.cfg.fg_ratio) fg_inds_mask = layers.sample_labels(fg_mask, num_fg_rois, True, False) num_bg_rois = int(self.cfg.num_rois - fg_inds_mask.sum()) bg_inds_mask = layers.sample_labels(bg_mask, num_bg_rois, True, False) labels[bg_inds_mask] = 0 keep_mask = fg_inds_mask | bg_inds_mask labels = labels[keep_mask].astype("int32") rois = all_rois[keep_mask] target_boxes = gt_boxes_per_img[gt_assignment[keep_mask], :4] bbox_targets = self.box_coder.encode(rois[:, 1:], target_boxes) bbox_targets = bbox_targets.reshape(-1, 4) return_rois.append(rois) return_labels.append(labels) return_bbox_targets.append(bbox_targets) return ( F.concat(return_rois, axis=0).detach(), F.concat(return_labels, axis=0).detach(), F.concat(return_bbox_targets, axis=0).detach(), )
41.035461
88
0.605773
fb0b423673a0aa120104de8c8bc50c513a85886d
13,185
py
Python
src/m1.py
hickshj/05a-Debugging
d37ce18683b716ca7031df50f230a63118354bc6
[ "MIT" ]
null
null
null
src/m1.py
hickshj/05a-Debugging
d37ce18683b716ca7031df50f230a63118354bc6
[ "MIT" ]
null
null
null
src/m1.py
hickshj/05a-Debugging
d37ce18683b716ca7031df50f230a63118354bc6
[ "MIT" ]
null
null
null
""" This module lets you practice DEBUGGING when RUN-TIME EXCEPTIONS occur. Authors: David Mutchler, Dave Fisher, Valerie Galluzzi, Amanda Stouder, their colleagues and Hunter Hicks. """ # Done: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg ######################################################################## # # Done: 2. READ these instructions, ASKING QUESTIONS as needed. # # This module contains 7 "broken" functions. # # For each broken function, running it will generate what's called # an EXCEPTION -- an error that occurs when the program runs and # (left to itself) causes the program to end its execution. # # We have written tests for each broken function. # *** DO NOT MODIFY THE TESTS. *** # In fact, you do not even need to read the tests. # Instead, look at the file m1_pictures.pdf to see what output # the tests should generate. # # To do this exercise, do the following: # # Step 1: # -- Read the doc-string (but NOT the code) of the broken_1 function. # -- Look at the m1_pictures.pdf file # to see what output the tests should produce. # -- ASK QUESTIONS AS NEEDED until you understand the specification # of the broken_1 function. # # Step 2: Run this module. # You will see that the code "breaks" and prints on the Console: # -- a STACK TRACEBACK of the code that led to the exception # -- an error message that attempts to explain the exception # Right-click in the Console and select "Word Wrap" to make # the stack traceback and error message more readable. # # Step 3: READ the error message. Try to make sense of it. # ASK QUESTIONS AS NEEDED! # # Step 4: Click on the BOTTOM blue link in the Console. # It will take you to the line at which the code broke. # (BUT if the line refers to a line in rosegraphics.py, # work your way UP the blue links until you reach # the lowermost one that refers to a line in THIS module.) # # Step 5: Looking at the line at which the code broke, # figure out what the error message is telling you. # ASK QUESTIONS AS NEEDED! # # Step 6: Thinking about the green specification of the broken_1 # function, and thinking about what the error message tells you, # correct the mistake(s). # # Sometimes the mistake will be on the line at which the code broke, # sometimes at a line that executed before that line executed. # # After correcting the mistake(s), run the program again. # Continue until you believe that the broken_1 function produces # the correct output (per the m1_pictures.pdf file) # AND you believe that the code for the function is correct. # # ** IMPORTANT: ** # Resist the urge to "fiddle" with the code until you stumble # upon something that works. This exercise will be helpful # to you ONLY if you use it as an opportunity to learn # what the error messages mean and how to react to them. # # *** ASK QUESTIONS AS NEEDED! *** # # Once you have corrected the broken_1 function, continue to # the next function, again proceeding according to the above steps. # # When you believe you understand these instructions, # change the above TO DO to DONE. # ######################################################################## def main(): """ Calls the TEST functions in this module. """ run_test_all() ######################################################################## # Students: Do NOT change the following tests. # There are NO errors in the TESTS. ######################################################################## def run_test_all(): """ Tests ALL the functions in this module. """ # Test broken_1: window = rg.RoseWindow(title='Testing BROKEN_1') circle1 = rg.Circle(rg.Point(50, 50), 15) circle1.fill_color = 'blue' broken_1(circle1, window) # Test 1 of broken_1 circle2 = rg.Circle(rg.Point(70, 150), 30) circle2.fill_color = 'red' broken_1(circle2, window) # Test 2 of broken_1 window.close_on_mouse_click() # Test broken_2: window = rg.RoseWindow(title='Testing BROKEN_2') broken_2(50, 75, window) # Test 1 of broken_2 broken_2(100, 150, window) # Test 2 of broken_2 window.close_on_mouse_click() # Test broken_3: window = rg.RoseWindow(title='Testing BROKEN_3') broken_3(5, rg.Point(100, 50), 80, 20, window) # Test 1 of broken_3 broken_3(3, rg.Point(50, 150), 40, 50, window) # Test 2 of broken_3 window.close_on_mouse_click() # Test broken_4: window = rg.RoseWindow(title='Testing BROKEN_4') broken_4(50, 75, 40, window) # Test 1 of broken_4 broken_4(100, 150, 75, window) # Test 2 of broken_4 window.close_on_mouse_click() # Test broken_5: window = rg.RoseWindow(title='Testing BROKEN_5') circle = rg.Circle(rg.Point(100, 50), 30) circle.fill_color = 'pink' broken_5(circle, window) # Test 1 of broken_5 circle = rg.Circle(rg.Point(250, 100), 80) circle.fill_color = 'red' broken_5(circle, window) # Test 2 of broken_5 window.close_on_mouse_click() # Test broken_6: expected = 1.8333333 actual = broken_6(3) # Test 1 of broken_6 print("Testing BROKEN_6:\n") print('Expected for BROKEN_6, Test 1:', expected, '(approximately)') print(' Actual for BROKEN_6, Test 1:', actual) expected = 5.1873775 actual = broken_6(100) # Test 2 of broken_6 print() print('Expected for BROKEN_6, Test 2:', expected, '(approximately)') print(' Actual for BROKEN_6, Test 2:', actual) print() # Test broken_7: window = rg.RoseWindow(title='Testing BROKEN_7') broken_7(5, rg.Point(100, 50), 80, 20, window) # Test 1 of broken_7 broken_7(3, rg.Point(50, 150), 40, 50, window) # Test 2 of broken_7 window.close_on_mouse_click() # ---------------------------------------------------------------------- # Done: 3. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_1(circle, window): """ What comes in: an rg.Circle and an rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws the given rg.Circle on the given rg.RoseWindow, then draws another rg.Circle whose RADIUS is TWICE that of the given rg.Circle and whose center is the same as that of the given rg.Circle. Must ** render ** but ** NOT close ** the window. Type hints: :type circle: rg.Circle :type window: rg.RoseWindow """ circle.attach_to(window) circle2 = rg.Circle(circle.center, circle.radius * 2) circle2.attach_to(window) window.render() # ---------------------------------------------------------------------- # Done: 4. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_2(x, y, window): """ What comes in: Positive integers x and y, and an rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws a rg.Circle with radius 33, centered at (x, y), on the given rg.RoseWindow. Must ** render ** but ** NOT close ** the window. Type hints: :type x: int :type y: int :type window: rg.RoseWindow """ circle = rg.Circle(rg.Point(x, y), 33) circle.attach_to(window) window.render() # ---------------------------------------------------------------------- # Done: 5. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_3(n, point, length, distance_between_lines, window): """ What comes in: The four arguments are: -- A positive integer n. -- An rg.Point. -- A positive integer length. -- An rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws n vertical rg.Lines on the given rg.RoseWindow, where the leftmost rg.Line has the given point as its topmost point and all the rg.Lines have the given length and they are the given distance apart. Each line is drawn with a 0.5 second pause after drawing it. Must ** render ** but ** NOT close ** the window. Type hints: :type n: int :type point: rg.Point :type length: int :type distance_between_lines: int :type window: rg.RoseWindow """ a = rg.Point(point.x, point.y) b = rg.Point(point.x, point.y + length) for _ in range(n): line = rg.Line(a, b) line.attach_to(window) window.render(0.5) a.x = a.x + distance_between_lines b.x = b.x + distance_between_lines # ---------------------------------------------------------------------- # Done: 6. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_4(x, y, radius, window): """ What comes in: Positive integers x and y, and an rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws a green-filled rg.Circle with the given radius, centered at (x, y), on the given rg.RoseWindow Must ** render ** but ** NOT close ** the window. Type hints: :type x: int :type y: int :type radius: int :type window: rg.RoseWindow """ circle = rg.Circle(rg.Point(x, y), radius) circle.fill_color = 'green' circle.attach_to(window) window.render() # ---------------------------------------------------------------------- # Done: 7. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_5(circle, window): """ What comes in: an rg.Circle and an rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws the given rg.Circle and an rg.Square that circumscribes it, both on the given rg.RoseWindow. Must ** render ** but ** NOT close ** the window. Type hints: :type circle: rg.Circle :type window: rg.RoseWindow """ circle.attach_to(window) square = rg.Square(circle.center, (2 * circle.radius)) square.outline_color = circle.fill_color square.attach_to(window) window.render() # ---------------------------------------------------------------------- # Done: 8. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_6(n): """ What comes in: A positive integer n. What goes out: Returns the sum: 1 + 1/2 + 1/3 + ... + 1/n. Side effects: None. """ total = 0 for k in range(n): total = total + (1 / (k + 1)) return total # ---------------------------------------------------------------------- # Done: 9. Follow the INSTRUCTIONS AT THE TOP OF THIS MODULE # to correct the mistake(s) in the following function. # ---------------------------------------------------------------------- def broken_7(n, point, length, distance_between_lines, window): """ What comes in: The four arguments are: -- A positive integer n. -- An rg.Point. -- A positive integer length. -- An rg.RoseWindow. What goes out: Nothing (i.e., None). Side effects: Draws n horizontal rg.Lines on the given rg.RoseWindow, where the topmost rg.Line has the given point as its leftmost point and all the rg.Lines have the given length and they are the given distance apart. Each line is drawn with a 0.5 second pause after drawing it. Must ** render ** but ** NOT close ** the window. Type hints: :type n: int :type point: rg.Point :type length: int :type distance_between_lines: int :type window: rg.RoseWindow """ left = rg.Point(point.x, point.y) right = rg.Point(point.x + length, point.y) for _ in range(n): line = rg.Line(left, right) line.attach_to(window) window.render(0.5) left = rg.Point(left.x, left.y + distance_between_lines) right = rg.Point(right.x, right.y + distance_between_lines) window.render() # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
36.932773
75
0.564581
e9898ff70e1e0b55fc4a5abed8f8020ff117de4f
2,394
py
Python
pydantic/__init__.py
MihanixA/pydantic
91278419f913a596d4bf567d8d16126112f24236
[ "MIT" ]
null
null
null
pydantic/__init__.py
MihanixA/pydantic
91278419f913a596d4bf567d8d16126112f24236
[ "MIT" ]
null
null
null
pydantic/__init__.py
MihanixA/pydantic
91278419f913a596d4bf567d8d16126112f24236
[ "MIT" ]
null
null
null
# flake8: noqa from . import dataclasses from .annotated_types import create_model_from_namedtuple, create_model_from_typeddict from .class_validators import root_validator, validator from .decorator import validate_arguments from .env_settings import BaseSettings from .error_wrappers import ValidationError from .errors import * from .fields import Field, PrivateAttr, Required from .main import * from .networks import * from .parse import Protocol from .tools import * from .types import * from .version import VERSION # WARNING __all__ from .errors is not included here, it will be removed as an export here in v2 # please use "from pydantic.errors import ..." instead __all__ = [ # annotated types utils 'create_model_from_namedtuple', 'create_model_from_typeddict', # dataclasses 'dataclasses', # class_validators 'root_validator', 'validator', # decorator 'validate_arguments', # env_settings 'BaseSettings', # error_wrappers 'ValidationError', # fields 'Field', 'Required', # main 'BaseConfig', 'BaseModel', 'Extra', 'compiled', 'create_model', 'validate_model', # network 'AnyUrl', 'AnyHttpUrl', 'HttpUrl', 'stricturl', 'EmailStr', 'NameEmail', 'IPvAnyAddress', 'IPvAnyInterface', 'IPvAnyNetwork', 'PostgresDsn', 'RedisDsn', 'KafkaDsn', 'validate_email', # parse 'Protocol', # tools 'parse_file_as', 'parse_obj_as', 'parse_raw_as', # types 'NoneStr', 'NoneBytes', 'StrBytes', 'NoneStrBytes', 'StrictStr', 'ConstrainedBytes', 'conbytes', 'ConstrainedList', 'conlist', 'ConstrainedSet', 'conset', 'ConstrainedStr', 'constr', 'PyObject', 'ConstrainedInt', 'conint', 'PositiveInt', 'NegativeInt', 'NonNegativeInt', 'NonPositiveInt', 'ConstrainedFloat', 'confloat', 'PositiveFloat', 'NegativeFloat', 'NonNegativeFloat', 'NonPositiveFloat', 'ConstrainedDecimal', 'condecimal', 'UUID1', 'UUID3', 'UUID4', 'UUID5', 'FilePath', 'DirectoryPath', 'Json', 'JsonWrapper', 'SecretStr', 'SecretBytes', 'StrictBool', 'StrictBytes', 'StrictInt', 'StrictFloat', 'PaymentCardNumber', 'PrivateAttr', 'ByteSize', # version 'VERSION', ]
21.185841
95
0.641604
37b20d9d82fd1bc715d92148c21099399ce06378
1,951
py
Python
glance/api/versions.py
rcbops/glance-buildpackage
13e52178fb25d6062db6c7fad9df122d279320ab
[ "Apache-2.0" ]
2
2015-09-30T09:43:37.000Z
2017-06-26T14:36:21.000Z
glance/api/versions.py
rcbops/glance-buildpackage
13e52178fb25d6062db6c7fad9df122d279320ab
[ "Apache-2.0" ]
null
null
null
glance/api/versions.py
rcbops/glance-buildpackage
13e52178fb25d6062db6c7fad9df122d279320ab
[ "Apache-2.0" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Controller that returns information on the Glance API versions """ import httplib import json import webob.dec from glance.common import wsgi class Controller(object): """ A controller that produces information on the Glance API versions. """ def __init__(self, conf): self.conf = conf @webob.dec.wsgify def __call__(self, req): """Respond to a request for all OpenStack API versions.""" version_objs = [ { "id": "v1.1", "status": "CURRENT", "links": [ { "rel": "self", "href": self.get_href(req)}]}, { "id": "v1.0", "status": "SUPPORTED", "links": [ { "rel": "self", "href": self.get_href(req)}]}] body = json.dumps(dict(versions=version_objs)) response = webob.Response(request=req, status=httplib.MULTIPLE_CHOICES, content_type='application/json') response.body = body return response def get_href(self, req): return "%s/v1/" % req.host_url
28.275362
78
0.561763
20716025f37ee6382edb7694747e38be848056a9
5,932
py
Python
gans1dset.py
AgamChopra/WGAN-GP
cbe15f4d2ef2ebaef477524103cbda0741098186
[ "MIT" ]
null
null
null
gans1dset.py
AgamChopra/WGAN-GP
cbe15f4d2ef2ebaef477524103cbda0741098186
[ "MIT" ]
null
null
null
gans1dset.py
AgamChopra/WGAN-GP
cbe15f4d2ef2ebaef477524103cbda0741098186
[ "MIT" ]
null
null
null
import cv2 import numpy as np import torch from matplotlib import pyplot as plt import random import sys sys.path.append(r"E:\ML\Dog-Cat-GANs\Dataset") def load_human_bw(): human_list = [] for i in range(1,5233): img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\human\humans (%d).jpg'%(i+1))[:,:,0:1] human_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.human data loaded') return human_list def load_celeb(): human_list = [] for i in range(1,202598): idx = str(i).zfill(6) img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\img_align_celeba\%s.jpg'%(idx)) human_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.celeb data loaded') return human_list def load_celeb_sample(N=10): human_list = [] sample = np.random.randint(low=0, high=202598, size=N, dtype=int) for i in sample: idx = str(i).zfill(6) img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\img_align_celeba\%s.jpg'%(idx)) human_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.celeb data loaded') return human_list def load_cats(): cat_list = [] for i in range(5650): img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\cat_hq\cat (%d).jpg'%(i+1)) cat_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.cat data loaded') return cat_list def load_not_cats(): not_cat_list = [] for i in range(5000): img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\cats\catnt (%d).jpg'%(i+1)) not_cat_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('..not cat data loaded') return not_cat_list def load_photos(): cat_list = [] for i in range(7036): img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\photo_jpg\photo (%d).jpg'%(i+1)) cat_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.photo data loaded') return cat_list def load_art(): cat_list = [] for i in range(300): img = cv2.imread('E:\ML\Dog-Cat-GANs\Dataset\monet_jpg\photo (%d).jpg'%(i+1)) cat_list.append(cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC)) print('.art data loaded') return cat_list def dataset(): cat = load_cats() catnt = load_not_cats() return np.swapaxes(np.asanyarray(catnt), 1, -1), np.swapaxes(np.asanyarray(cat), 1, -1) def cat_dataset(): cat = load_cats() return np.swapaxes(np.asanyarray(cat), 1, -1) def dog_dataset(): dog = load_not_cats() return np.swapaxes(np.asanyarray(dog), 1, -1) def human_dataset_bw(): human = load_human_bw() human = np.expand_dims(np.asanyarray(human), axis=1) return np.swapaxes(human, 2, -1) def photo_dataset(): cat = load_photos() return np.swapaxes(np.asanyarray(cat), 1, -1) def art_dataset(): cat = load_art() return np.swapaxes(np.asanyarray(cat), 1, -1) def celeb_dataset(): cat = load_celeb() return np.swapaxes(np.asanyarray(cat), 1, -1) def celeb_dataset_sample(N=10): cat = load_celeb_sample(N) return np.swapaxes(np.asanyarray(cat), 1, -1) def load_dataset(): random.seed(15) cat = load_cats() catnt = load_not_cats() rand_seed = random.sample(range(10000), 10000) x = [] y = [] for i in range(10000): if rand_seed[i] < 5000: x.append(cat[rand_seed[i]].T) y.append(1) else: x.append(catnt[rand_seed[i]-5000].T) y.append(0) print('...data stitching and randomization finished') return x,y def dataset_(): x,y = load_dataset() print('....train test data loaded') return np.stack(x[:9900]),np.stack(y[:9900]),np.stack(x[9900:]),np.stack(y[9900:]) def visualize(x,dark=True,title=None): if dark: plt.style.use('dark_background') else: plt.style.use('default') plt.imshow(cv2.cvtColor(x.T, cv2.COLOR_BGR2RGB)) plt.axis('off') if title != None: plt.title(title) plt.show() def visualize_25(x,dark=True): if dark: plt.style.use('dark_background') else: plt.style.use('default') r = 5 c = 5 fig = plt.figure(figsize=(20,20)) for i in range(x.shape[0]): fig.add_subplot(r,c,i+1) plt.imshow(cv2.cvtColor(x[i].T, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() def visualize_16(x,dark=True): if dark: plt.style.use('dark_background') else: plt.style.use('default') r = 4 c = 4 fig = plt.figure(figsize=(10,10)) for i in range(x.shape[0]): fig.add_subplot(r,c,i+1) plt.imshow(cv2.cvtColor(x[i].T, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() def img_load(path, show = True): img = cv2.imread(path) x = cv2.resize(img, dsize=(128, 128), interpolation=cv2.INTER_CUBIC) if show: plt.imshow(cv2.cvtColor(x, cv2.COLOR_BGR2RGB)) plt.show() print('image loaded!') return x def torch_celeb_dataset(): data = celeb_dataset() data = torch.from_numpy(data).to(dtype = torch.float) return data def torch_celeb_dataset_sample(N=10): data = celeb_dataset_sample(N) data = torch.from_numpy(data).to(dtype = torch.float) return data def torch_cat_dataset(): data = cat_dataset() data = torch.from_numpy(data).to(dtype = torch.float) return data def torch_photo_dataset(): data = photo_dataset() data = torch.from_numpy(data).to(dtype = torch.float) return data def main(): data = celeb_dataset() print(data.shape) visualize_25(data[0:25]) visualize(data[0]) #data = torch_celeb_dataset() #print(data[0], data.max(),data.min()) if __name__ == '__main__': main()
25.90393
93
0.623399
0a0b686edb06d4d7689c9c4e1aba04e3e934a913
2,622
py
Python
arxiv/taxonomy/__init__.py
cul-it/arxiv-base
a5beadf44c24f72e21313299bfafc1ffb9d28ac7
[ "MIT" ]
23
2019-01-10T22:01:18.000Z
2022-02-02T10:28:25.000Z
arxiv/taxonomy/__init__.py
arXiv/arxiv-base
b59490abc1656c240025e19af86d6a246926914a
[ "MIT" ]
57
2018-12-17T16:45:38.000Z
2021-12-14T14:20:58.000Z
arxiv/taxonomy/__init__.py
cul-it/arxiv-base-ui
a5beadf44c24f72e21313299bfafc1ffb9d28ac7
[ "MIT" ]
5
2019-01-10T22:01:28.000Z
2021-11-05T12:25:31.000Z
""" arXiv group, archive and category definitions. arXiv categories are arranged in a hierarchy where there are archives (astro-ph, cs, math, etc.) that contain subject classes (astro-ph has subject classes CO, GA, etc.). We now use the term category to refer to any archive or archive.subject_class that one can submit to (so hep-th and math.IT are both categories). No subject class can be in more than one archive. However, our scientific advisors identify some categories that should appear in more than one archive because they bridge major subject areas. Examples include math.MP == math-ph and stat.TH = math.ST. These are called category aliases and the idea is that any article classified in one of the aliases categories also appears in the other (canonical), but that most of the arXiv code for display, search, etc. does not need to understand the break with hierarchy. """ from .definitions import CATEGORIES, CATEGORIES_ACTIVE, ARCHIVES, \ ARCHIVES_ACTIVE, ARCHIVES_SUBSUMED, CATEGORY_ALIASES from .category import Category, Archive, Group def get_category_display(category: str, canonical: bool = True) -> str: """ Get the display name of an arXiv category. Parameters ---------- category : str Category identifier, e.g. ``nlin.AO``. canonical : bool If True (default) and the category is subsumed, the display name for the canonical category will be returned instead. Returns ------- str Display name for the category, e.g. ``Adaptation and Self-Organizing Systems (nlin.AO)``. """ if canonical: return Category(category).canonical.display return Category(category).display def get_archive_display(archive: str, canonical: bool = True) -> str: """ Get the display name of an arXiv archive. Parameters ---------- archive : str Archive identifier, e.g. ``astro-ph``. canonical : bool If True (default) and the archive is subsumed, the display name for the canonical archive will be returned instead. Returns ------- str Display name for the category, e.g. ``Astrophysics (astro-ph)``. """ if canonical: return Archive(archive).canonical.display return Archive(archive).display def get_group_display(group: str) -> str: """ Get the display name of an arXiv group. Parameters ---------- group : str Group identifier, e.g. ``grp_math``. Returns ------- str Display name for the group, e.g. ``Mathematics (grp_math)``. """ return Group(group).display
30.847059
78
0.680397
b185c73c34565575bf0482e43bc5ea66833b9c38
5,165
py
Python
libs/cocos/camera.py
HieuLsw/blobjob.editor
c33473ffb7836a70ba3a1b2a9dd9452a9d3a1b81
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
libs/cocos/camera.py
HieuLsw/blobjob.editor
c33473ffb7836a70ba3a1b2a9dd9452a9d3a1b81
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
libs/cocos/camera.py
HieuLsw/blobjob.editor
c33473ffb7836a70ba3a1b2a9dd9452a9d3a1b81
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
# ---------------------------------------------------------------------------- # cocos2d # Copyright (c) 2008 Daniel Moisset, Ricardo Quesada, Rayentray Tappa, Lucio Torre # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of cocos2d nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- '''Camera object''' __docformat__ = 'restructuredtext' from director import director from euclid import Point3 from pyglet.gl import * __all__ = ['Camera'] class Camera(object): """ Camera used in every `CocosNode`. Useful to look at the object from different views. The OpenGL gluLookAt() function is used to locate the camera. If the object is transformed by any of the scale, rotation or position attributes, then they will override the camera. """ def __init__(self): self.restore() @classmethod def get_z_eye( cls ): '''Returns the best distance for the camera for the current window size cocos2d uses a Filed Of View (fov) of 60 ''' width, height = director.get_window_size() eye_z = height / 1.1566 return eye_z def restore( self ): '''Restore the camera to the initial position and sets it's ``dirty`` attribute in False and ``once`` in true. If you use the camera, for a while and you want to stop using it call this method. ''' width, height = director.get_window_size() # tuple (x,y,z) that says where is the eye of the camera. # used by ``gluLookAt()`` self._eye = Point3( width /2.0, height /2.0, self.get_z_eye() ) # tuple (x,y,z) that says where is pointing to the camera. # used by ``gluLookAt()`` self._center = Point3( width /2.0, height /2.0, 0.0 ) # tuple (x,y,z) that says the up vector for the camera. # used by ``gluLookAt()`` self._up_vector = Point3( 0.0, 1.0, 0.0) #: whether or not the camera is 'dirty' #: It is dirty if it is not in the original position self.dirty = False #: optimization. Only renders the camera once self.once = False def locate( self, force=False ): '''Sets the camera using gluLookAt using its eye, center and up_vector :Parameters: `force` : bool whether or not the camera will be located even if it is not dirty ''' if force or self.dirty or self.once: glLoadIdentity() gluLookAt( self._eye.x, self._eye.y, self._eye.z, # camera eye self._center.x, self._center.y, self._center.z, # camera center self._up_vector.x, self._up_vector.y, self._up_vector.z # camera up vector ) self.once = False def _get_eye( self ): return self._eye def _set_eye( self, eye ): self._eye = eye self.dirty = True eye = property(_get_eye, _set_eye, doc='''Eye of the camera in x,y,z coordinates :type: flaat,float,float ''') def _get_center( self ): return self._center def _set_center( self, center ): self._center = center self.dirty = True center = property(_get_center, _set_center, doc='''Center of the camera in x,y,z coordinates :type: flaat,float,float ''') def _get_up_vector( self ): return self._up_vector def _set_up_vector( self, up_vector ): self._up_vector = up_vector self.dirty = True up_vector = property(_get_up_vector, _set_up_vector, doc='''Up vector of the camera in x,y,z coordinates :type: flaat,float,float ''')
35.376712
108
0.634656
1a029e645bdfde79841cafd73fd76849b96ca744
1,330
py
Python
tests/anat/script/kancolle/expedition.py
coppelia517/orlov
d7ed6c061432b99ab2b75e0262db293e444fe6be
[ "MIT" ]
null
null
null
tests/anat/script/kancolle/expedition.py
coppelia517/orlov
d7ed6c061432b99ab2b75e0262db293e444fe6be
[ "MIT" ]
null
null
null
tests/anat/script/kancolle/expedition.py
coppelia517/orlov
d7ed6c061432b99ab2b75e0262db293e444fe6be
[ "MIT" ]
null
null
null
""" Script base for orlov anat package. """ import logging import pytest # pylint: disable=E0401 from anat.script.kancolle.testcase_kancolle import KancolleNormal logger = logging.getLogger(__name__) @pytest.mark.usefixtures('conftests_fixture', 'orlov_fixture', 'anat_fixture') # pylint: disable=E1101, C0302, R0914 class TestExpedition(KancolleNormal): """ Test Case Expedition in `anat` package. """ def test_000_expedition(self): """ Test Expedition. """ logger.info(' *** Start TestCase : %s *** ', __file__) self.start() logger.info(' *** Test SetUp. *** ') assert self.initialize() logger.info(' *** Supply Fleet. *** ') while self.expedition_result(): self.sleep() result, fleets = self.supply_all() assert result logger.info(' *** Quest Check *** ') while self.expedition_result(): self.sleep() assert self.quest_receipts(['DP01', 'DP02', 'WP01', 'WP02', 'WP03']) logger.info(' *** Expedition Start. *** ') while self.expedition_result(): self.sleep() assert self.expedition_all(fleets) logger.info(' *** Test TearDown. *** ') while self.expedition_result(): self.sleep()
30.227273
79
0.583459
151b09250a4e4f1b076b36f5ed79fbf81db6bc18
18,473
py
Python
src/asyncio_helpers/_version.py
sci-bots/asyncio-helpers
3eab1250275e1a0f35369e6a7775f81d4ce3640f
[ "BSD-3-Clause" ]
null
null
null
src/asyncio_helpers/_version.py
sci-bots/asyncio-helpers
3eab1250275e1a0f35369e6a7775f81d4ce3640f
[ "BSD-3-Clause" ]
3
2018-09-12T17:51:54.000Z
2019-04-25T17:28:00.000Z
src/asyncio_helpers/_version.py
sci-bots/asyncio-helpers
3eab1250275e1a0f35369e6a7775f81d4ce3640f
[ "BSD-3-Clause" ]
1
2021-06-03T22:26:41.000Z
2021-06-03T22:26:41.000Z
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "v" cfg.parentdir_prefix = "asyncio-helpers-" cfg.versionfile_source = "src/asyncio_helpers/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}
35.456814
79
0.584908
824ea88d2339e16be8b4e188c393e8359e5c8bd2
1,131
py
Python
GATHER_PYv2.py
rgupta9/RANT
d49882e71a6f04e71e9796320007dc78a346e5bd
[ "MIT" ]
3
2021-02-24T21:01:40.000Z
2021-09-14T00:35:48.000Z
GATHER_PYv2.py
rgupta9/RANT
d49882e71a6f04e71e9796320007dc78a346e5bd
[ "MIT" ]
null
null
null
GATHER_PYv2.py
rgupta9/RANT
d49882e71a6f04e71e9796320007dc78a346e5bd
[ "MIT" ]
2
2021-04-19T00:33:34.000Z
2021-08-29T15:24:35.000Z
#! /usr/bin/python # OLD PYTHON VERSION 2.7 - NO LONGER MAINTAINED import os, sys, getpass from netmiko import ConnectHandler from netmiko.ssh_exception import NetMikoTimeoutException from paramiko.ssh_exception import SSHException platform = 'arista_eos' username = raw_input('Username? ') passy = getpass.getpass() def openfile(file): f = open(file,'r') x = f.read() x = x.strip() x = x.split('\n') return x commandfile = raw_input('command file? ') targetfile = raw_input('target file? ') show_commands = openfile(commandfile) hostlist = openfile(targetfile) outfile = raw_input('output filename? ') for host in hostlist: try: device = ConnectHandler(device_type=platform, ip=host, username=username, password=passy) except Exception: continue try: device.find_prompt() except Exception: continue sys.stdout=open(outfile,"a") for item in show_commands: try: output = device.send_command(item) except: continue output = output.split('\n') for line in output: print host + " " + "|" + item + "|" + " " + line device.disconnect() sys.stdout.close()
22.62
91
0.693192
e9bc9337d31a7766061c591c2af09510b4c7a9b0
7,861
py
Python
poincarefm_rank.py
heygrain/HFM
0bc5c0a44bdbad72febc53c6839df116b8fe433f
[ "MIT" ]
2
2020-06-19T01:58:12.000Z
2020-07-29T11:50:11.000Z
poincarefm_rank.py
heygrain/HFM
0bc5c0a44bdbad72febc53c6839df116b8fe433f
[ "MIT" ]
1
2021-10-03T22:13:00.000Z
2021-10-03T22:13:00.000Z
poincarefm_rank.py
heygrain/HFM
0bc5c0a44bdbad72febc53c6839df116b8fe433f
[ "MIT" ]
2
2020-12-03T00:19:02.000Z
2021-10-03T22:13:02.000Z
import torch from torch import optim import argparse import os import time from datetime import datetime from model import PoincareFM from model.loss import bpr_loss from model.metric import AUC from utils.utils import load_data, batcher, construct_features, set_random_seed, save_results, hit_eval def train(model, data, output_path, args, loss_func, score_func): # optimizer all_parameters = model.parameters() poincare_parameters = [] for pname, p in model.named_parameters(): if 'feature_embedding' in pname: poincare_parameters.append(p) poincare_parameters_id = list(map(id, poincare_parameters)) other_parameters = list(filter(lambda p: id(p) not in poincare_parameters_id, all_parameters)) params = [{'params': poincare_parameters, 'lr': args.lr_poincare}, {'params': other_parameters, 'lr': args.lr}] if args.optimizer == 'SGD': optimizer = optim.SGD(params, lr=args.lr) elif args.optimizer == 'Adam': optimizer = optim.Adam(params, lr=args.lr) elif args.optimizer == 'Momentum': optimizer = optim.SGD(params, lr=args.lr, momentum=0.8) elif args.optimizer == 'Adagrad': optimizer = optim.Adagrad(params, lr=args.lr) # train print('before train:') best_dev_score = evaluate(model, data, score_func, on='dev') best_epoch = -1 print() for epoch in range(args.n_epochs): print("Epoch {:} out of {:}".format(epoch + 1, args.n_epochs)) train_for_epoch(model, data, loss_func, optimizer, args.batch_size, args.reg_l2) # evaluate on dev_set cond1 = not(epoch % args.eval_every) and args.eval_every > 0 cond2 = epoch == args.n_epochs and not args.eval_every if cond1 or cond2: dev_score = evaluate(model, data, score_func, on='dev') if best_dev_score < dev_score: print("New best dev score! Saving model.") torch.save(model.state_dict(), output_path) best_dev_score = dev_score best_epoch = epoch if epoch >= best_epoch + 5: print("Early stopping at epoch {:}.".format(epoch + 1)) print() break print() print("- Best epoch: {:}, best dev score: {:.5f}.".format(best_epoch + 1, best_dev_score)) return best_dev_score def train_for_epoch(model, data, loss_func, optimizer, batch_size, reg_l2): train_user, train_item = data['train_user'], data['train_item'] pos_features = construct_features(train_user, train_item, data['item_idx_min'], user_demo=data['user_demo'], item_demo=data['item_demo']) neg_item = torch.randint(low=data['item_idx_min'], high=data['item_idx_max'] + 1, size=train_user.shape, device=train_user.device) neg_features = construct_features(train_user, neg_item, data['item_idx_min'], user_demo=data['user_demo'], item_demo=data['item_demo']) model.train() epoch_loss = 0 for i, (pos_x, neg_x) in enumerate(batcher(pos_features, neg_features, batch_size=batch_size, shuffle=True)): optimizer.zero_grad() pos_pred = model.forward(pos_x) neg_pred = model.forward(neg_x) loss = loss_func(pos_pred, neg_pred) loss += 0.5 * reg_l2 * model.l2_sqnorm() epoch_loss += loss * batch_size loss.backward() model.riemannian_grads() optimizer.step() model.project_embedding() print("Average Train Loss: {}".format(epoch_loss / pos_features.shape[0])) def evaluate(model, data, score_func, on='dev'): print('Evaluate on', on, 'set',) key_user = on + '_user' key_item = on + '_item' user, item = data[key_user], data[key_item] pos_features = construct_features(user, item, data['item_idx_min'], user_demo=data['user_demo'], item_demo=data['item_demo']) neg_item = torch.randint(low=data['item_idx_min'], high=data['item_idx_max'] + 1, size=user.shape, device=user.device) neg_features = construct_features(user, neg_item, data['item_idx_min'], user_demo=data['user_demo'], item_demo=data['item_demo']) model.eval() with torch.no_grad(): pos_pred = model(pos_features) neg_pred = model(neg_features) score = score_func(pos_pred, neg_pred) print("-", on, "score: {:.5f}".format(score)) return score def parse_args(): parser = argparse.ArgumentParser(description="Run the model.") parser.add_argument('--seed', type=int, default=205, help='Seed for random, numpy, torch and cuda.') parser.add_argument('--use_cuda', type=bool, default=True, help='Whether use cuda.') parser.add_argument('--embedding_dim', type=int, default=10, help='Set embedding dimension for the model.') parser.add_argument('--batch_size', type=int, default=4096, help='Batch size.') parser.add_argument('--n_epochs', type=int, default=10, help='Number of epochs.') parser.add_argument('--optimizer', default='Adam', choices=['Adam', 'SGD', 'Momentum', 'Adagrad'], help='Specify an optimizer type (Adam, Adagrad, SGD, Momentum).') parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate.') parser.add_argument('--lr_poincare', type=float, default=1e-3, help='Learning rate for hyperbolic embeddings') parser.add_argument('--reg_l2', type=float, default=0, help='L2 regularization parameter.') parser.add_argument('--dataset', default='TX', help='Specify a dataset (ml100k, lastfm, amazon_cloths, ...)') parser.add_argument('--use_content', type=int, default=0, help='Whether using content features') parser.add_argument('--eval_every', type=int, default=1, help='Frequency of evaluating the performance on dev data \ (-1: never, 0: at the end, n: every n epochs)') parser.add_argument('--plot', type=bool, default=False, help='Whether to plot the hyperbolic embeddings') parser.add_argument('--process', default='train', choices=['train', 'eval'], help='Process type: train, evaluate.') return parser.parse_args() if __name__ == "__main__": args = parse_args() # fix random seed set_random_seed(args.seed) # use cuda or not if args.use_cuda: device = torch.device('cuda') else: device = torch.device('cpu') # load data data, n_fields, n_features = load_data(args.dataset, device=device, use_content=args.use_content, use_rating=False, print_info=True) # create model model = PoincareFM(n_features=n_features, n_fields=n_fields, embedding_dim=args.embedding_dim) model.to(device=device) # output dir output_dir = "./results/{:%Y%m%d_%H%M%S}/".format(datetime.now()) output_path = output_dir + "model.weights" if not os.path.exists(output_dir): os.makedirs(output_dir) # train print("Training start ...") start = time.time() best_dev_score = train(model, data, output_path=output_path, args=args, loss_func=bpr_loss, score_func=AUC) print("Training process took {:.2f} seconds\n".format(time.time() - start)) # load best model and analysis on test set model.load_state_dict(torch.load(output_path)) test_score = evaluate(model, data, AUC, on='test') dev_hit5, dev_hit10 = hit_eval(model, data, on='dev') test_hit5, test_hit10 = hit_eval(model, data, on='test') # write results save_results('./' + args.dataset + '_pfm.txt', args, best_dev_score, test_score, dev_hit5, dev_hit10, test_hit5, test_hit10)
43.916201
141
0.641013
9d23cb542a375f41b8e202cbcdc5a791703636ab
22,476
py
Python
Distances_Study/Comparison_Between_Networks.py
Serdobe/Probabilistic_Graphlets
ce4aca495751970089490b745069dbf6113e9f56
[ "Apache-2.0" ]
1
2021-01-04T08:41:59.000Z
2021-01-04T08:41:59.000Z
Distances_Study/Comparison_Between_Networks.py
Serdobe/Probabilistic_Graphlets
ce4aca495751970089490b745069dbf6113e9f56
[ "Apache-2.0" ]
null
null
null
Distances_Study/Comparison_Between_Networks.py
Serdobe/Probabilistic_Graphlets
ce4aca495751970089490b745069dbf6113e9f56
[ "Apache-2.0" ]
null
null
null
''' This Script is for the last part of the protocol. Here we get the final correlation Matrices and calculate the distances. With this distances we can perform a lot of different analyses ''' from itertools import product from scipy.spatial.distance import pdist, squareform from sklearn.metrics import precision_recall_curve, auc, roc_curve, roc_auc_score import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import os from scipy.stats import mannwhitneyu from statsmodels.distributions.empirical_distribution import ECDF # Function To compare Distributions (Uniform Vs PPI): ''' Finish this comparisons with all the distributions ''' def Compare_Distributions(save_path): PPI = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Empirical_PPI/Work_Network_Prob_Low_PPI.txt", sep = " ", header = None) CoEx = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Empirical_CoEx/Work_Network_Prob_Coex_Net_Original_Medium_Rank_5%.txt", sep = " ", header = None) GI = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Empirical_GI/Work_Network_Prob_Network_Medium_Confidence_Named.txt", sep = " ", header = None) Uniform = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Work_Network_Prob_UniformEta_0.0350076103500761_Mu_0.27_5000_Repetition_0_0.003_ER_.txt", sep = " ", header = None) Beta_1 = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Work_Network_Prob_BetaEta_0.001_Mu_0.9_5000_Repetition_0_0.003_ER_.txt", sep = " ", header = None) Beta_2 = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Beta_Mean_0.27_Var_0.0069/Work_Network_Prob_BetaEta_0.0350076103500761_Mu_0.27_5000_Repetition_0_0.003_ER_.txt", sep = " ", header = None) Beta_3 = pd.read_csv("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Beta_Mean_0.78_Var_0.0028/Work_Network_Prob_BetaEta_0.01631701631701632_Mu_0.78_5000_Repetition_0_0.003_ER_.txt", sep = " ", header = None) ### Table to get Means and Variances: ### # Probabilities Distributions: PPI = PPI.iloc[:, 2] CoEx = CoEx.iloc[:, 2] GI = GI.iloc[:, 2] Uniform = Uniform.iloc[:, 2] Beta_1 = Beta_1.iloc[:, 2] Beta_2 = Beta_2.iloc[:, 2] Beta_3 = Beta_3.iloc[:, 2] # Means: means_final = [] means_final += [np.mean(PPI)] means_final += [np.mean(CoEx)] means_final += [np.mean(GI)] means_final += [np.mean(Uniform)] means_final += [np.mean(Beta_1)] means_final += [np.mean(Beta_2)] means_final += [np.mean(Beta_3)] # Variance: variance_final = [] variance_final += [np.var(PPI)] variance_final += [np.var(CoEx)] variance_final += [np.var(GI)] variance_final += [np.var(Uniform)] variance_final += [np.var(Beta_1)] variance_final += [np.var(Beta_2)] variance_final += [np.var(Beta_3)] # Networks: Distributions = ["PPI", "CoEx", "GI", "Uniform", "Beta_1", "Beta_2", "Beta_3"] # Final dataframe and save it: Final_Mean_Variance_db = pd.DataFrame({"Dist" : Distributions, "Mean" : means_final , "Variance" : variance_final}) Final_Mean_Variance_db.to_csv(save_path + "Table_Mean_Variance.txt", index = None, sep = " ") ### Table to compare Distributions with Mann Whitney test: #### Options1 = [0,1,2,3,4,5,6] Options2 = [0,1,2,3,4,5,6] Result_P_values = pd.DataFrame(index=np.arange(7), columns=np.arange(7)) for option1, option2 in product(Options1, Options2): # For First Comparison: if option1 == 0: test1 = PPI name = "PPI" if option1 == 1: test1 = CoEx name = "CoEx" if option1 == 2: test1 = GI name = "GI" if option1 == 3: test1 = Uniform name = "Uniform" if option1 == 4: test1 = Beta_1 name = "Beta_1" if option1 == 5: test1 = Beta_2 name = "Beta_2" if option1 == 6: test1 = Beta_3 name = "Beta_3" # For second Comparison: if option2 == 0: test2 = PPI name2 = "PPI" if option2 == 1: test2 = CoEx name2 = "CoEx" if option2 == 2: test2 = GI name2 = "GI" if option2 == 3: test2 = Uniform name2 = "Uniform" if option2 == 4: test2 = Beta_1 name2 = "Beta_1" if option2 == 5: test2 = Beta_2 name2 = "Beta_2" if option2 == 6: test2 = Beta_3 name2 = "Beta_2" _, p_value= mannwhitneyu(test1, test2, use_continuity=True, alternative='two-sided') Result_P_values.iloc[option1,option2] = p_value # Plot comparisons: cdf1 = ECDF(test1) cdf2 = ECDF(test2) x = np.linspace(0,1,2**10) y1 = cdf1(x) y2 = cdf2(x) plt.plot(x,y1) plt.plot(x,y2) plt.savefig(save_path + "Distribution_Cumulative_Comparisons_" + str(name) + "_" + str(name2) + ".png") Result_P_values.columns = ["PPI", "CoEx", "GI", "Uniform", "Beta_1", "Beta_2", "Beta_3"] Result_P_values.index = ["PPI", "CoEx", "GI", "Uniform", "Beta_1", "Beta_2", "Beta_3"] Result_P_values.to_csv(save_path + "Table_ManWhitsen.txt", sep = " ") # Function to prepare the Matrices: def Prepare_The_Matrices(Option1, Option2, Option3, empirical = False): # Read File: file_Bin1 = pd.read_csv(Option1 + "Final_Correlation_Bin.txt") file_Prob1 = pd.read_csv(Option1 + "Final_Correlation_Prob.txt") file_Bin2 = pd.read_csv(Option2 + "Final_Correlation_Bin.txt") file_Prob2 = pd.read_csv(Option2 + "Final_Correlation_Prob.txt") file_Bin3 = pd.read_csv(Option3 + "Final_Correlation_Bin.txt") file_Prob3 = pd.read_csv(Option3 + "Final_Correlation_Prob.txt") # Categories Distribution: if empirical == False: Group_Bin = file_Bin["Variance"].map(str) + file_Bin["Mean"].map(str) Group_Prob = file_Prob["Variance"].map(str) + file_Prob["Mean"].map(str) Final_Cat_Bin_Dist = Group_Bin.reset_index() Final_Cat_Prob_Dist = Group_Prob.reset_index() else: # Model 1: file_Bin1 = file_Bin1.drop_duplicates() file_Prob1 = file_Prob1.drop_duplicates() Group_Bin1 = file_Bin1.Real.fillna("Uniform") Group_Prob1 = file_Prob1.Real.fillna("Uniform") Group_Bin1 = Group_Bin1.reset_index(drop = True) Group_Prob1 = Group_Prob1.reset_index(drop = True) file_Bin1 = file_Bin1.reset_index(drop = True) file_Prob1 = file_Prob1.reset_index(drop = True) # Model 2: file_Bin2 = file_Bin2.drop_duplicates() file_Prob2 = file_Prob2.drop_duplicates() Group_Bin2 = file_Bin2.Real.fillna("Uniform") Group_Prob2 = file_Prob2.Real.fillna("Uniform") Group_Bin2 = Group_Bin2.reset_index(drop = True) Group_Prob2 = Group_Prob2.reset_index(drop = True) file_Bin2 = file_Bin2.reset_index(drop = True) file_Prob2 = file_Prob2.reset_index(drop = True) # Model 3: file_Bin3 = file_Bin3.drop_duplicates() file_Prob3 = file_Prob3.drop_duplicates() Group_Bin3 = file_Bin3.Real.fillna("Uniform") Group_Prob3 = file_Prob3.Real.fillna("Uniform") Group_Bin3 = Group_Bin3.reset_index(drop = True) Group_Prob3 = Group_Prob3.reset_index(drop = True) file_Bin3 = file_Bin3.reset_index(drop = True) file_Prob3 = file_Prob3.reset_index(drop = True) # Put together: file_Bin = file_Bin1.append(file_Bin2) file_Bin = file_Bin.append(file_Bin3) file_Prob = file_Prob1.append(file_Prob2) file_Prob = file_Prob.append(file_Prob3) Group_Bin = Group_Bin1.append(Group_Bin2) Group_Bin = Group_Bin.append(Group_Bin3) Group_Prob = Group_Prob1.append(Group_Prob2) Group_Prob = Group_Prob.append(Group_Prob3) # Add New Category Distribution: if empirical == False: Final_Cat_Bin_Dist.columns = ["T", "G"] Final_Cat_Prob_Dist.columns = ["T", "G"] file_Bin["Density"] = Final_Cat_Bin_Dist["G"] file_Prob["Density"] = Final_Cat_Prob_Dist["G"] # Delete non used Variables: file_Bin = file_Bin.drop(['Nodes', 'Densities', 'Distribution','Repetitions', 'Variance', 'Mean'], axis=1) file_Prob = file_Prob.drop(['Nodes', 'Densities', 'Distribution','Repetitions', 'Variance', 'Mean'], axis=1) # Relabel Distributions: Number2Labels = { "0.00.0" : "Unif", "0.99900000000000010.5": "Var : 0.999 Mean : 0.5", "0.99900000000000010.1": "Var : 0.999 Mean : 0.1", "0.99900000000000010.9": "Var : 0.999 Mean : 0.9", "0.50.5" : "Var : 0.5 Mean : 0.5", "0.50.1" : "Var : 0.5 Mean : 0.1", "0.50.9" : "Var : 0.5 Mean : 0.9", "0.0010.5" : "Var : 0.001 Mean : 0.5", "0.0010.1" : "Var : 0.001 Mean : 0.1", "0.0010.9" : "Var : 0.001 Mean : 0.9", } file_Bin.Density = file_Bin.Density.apply(Number2Labels.get) file_Prob.Density = file_Prob.Density.apply(Number2Labels.get) else: file_Bin = file_Bin.drop(['Nodes', 'Densities', 'Distribution','Repetitions', 'Variance', 'Mean', 'Real'], axis=1) file_Prob = file_Prob.drop(['Nodes', 'Densities', 'Distribution','Repetitions', 'Variance', 'Mean', 'Real'], axis=1) file_Bin["Density"] = Group_Bin file_Prob["Density"] = Group_Prob # Return Prepared Information: return(file_Bin, file_Prob) # Funtion To Calculate the Distances: def Similarity_Infor_for_One_Model(file, Option, Network, empirical = False, group = "ALL"): # Save the information in a different Variable Before Distance: Info_Categories_Dens= file["Network"] + file["Density"] # Drop The Variables: file_Distance = file.drop(["Network", "Density"], axis=1) # Calculate the distance: distances = pdist(file_Distance.values, metric='euclidean') dist_matrix = squareform(distances) Data_Frame_Distance = pd.DataFrame(dist_matrix) # Go to similarity Matrix (Normalize): Data_Frame_Similarity = 1 - Data_Frame_Distance Data_Frame_Similarity = Data_Frame_Similarity / Data_Frame_Similarity.max()[0] Data_Frame_Similarity_np = np.array(Data_Frame_Similarity) # Save Similarity Matrix: Data_Frame_Similarity.to_csv( Option + "Correlation_Distance"+ Network + ".txt", header = True, index = False) # Y_Score (without diagonal): y_score = Data_Frame_Similarity_np[np.triu_indices_from(Data_Frame_Similarity_np, k = 1)] # Group Labels (Y_True): if empirical == False: Number2Numbers= { "Unif": 1, "Var : 0.999 Mean : 0.5" : 2, "Var : 0.999 Mean : 0.1" : 3, "Var : 0.999 Mean : 0.9" : 4, "Var : 0.5 Mean : 0.5" : 5, "Var : 0.5 Mean : 0.1" : 6, "Var : 0.5 Mean : 0.9" : 7, "Var : 0.001 Mean : 0.5" : 8, "Var : 0.001 Mean : 0.1" : 9, "Var : 0.001 Mean : 0.9" : 10, } y_true = Info_Categories_Dens y_true = Info_Categories_Dens.apply(Number2Numbers.get) my_y_true = ~pdist(np.array(y_true).reshape(-1,1), 'cityblock').astype(bool) else: if group == "ALL": Number2Numbers= { "_ER_Uniform" : 2, "_ER_PPI" : 2, "_ER_GI" : 3, "_ER_CoEx" : 4, "_BA_Uniform" : 5, "_BA_PPI" : 5, "_BA_GI" : 6, "_BA_CoEx" : 7, "_RG_Uniform" : 8, "_RG_PPI" : 8, "_RG_GI" : 10, "_RG_CoEx" : 11 } y_true = Info_Categories_Dens y_true = Info_Categories_Dens.apply(Number2Numbers.get) my_y_true = ~pdist(np.array(y_true).reshape(-1,1), 'cityblock').astype(bool) if group == "Density": Number2Numbers= { "Uniform" : 1, "GI" : 2, "CoEx" : 3, "PPI" : 1 } y_true = file["Density"] y_true = file["Density"].apply(Number2Numbers.get) my_y_true = ~pdist(np.array(y_true).reshape(-1,1), 'cityblock').astype(bool) if group == "Topology": Number2Numbers= { "_ER_" : 1, "_BA_" : 2, "_RG_" : 3, } y_true = file["Network"] y_true = file["Network"].apply(Number2Numbers.get) my_y_true = ~pdist(np.array(y_true).reshape(-1,1), 'cityblock').astype(bool) # Return the information: return(y_score, my_y_true) # Function to Make the Plots: def Precision_Recall_plot(x_bin, x_prob, y_bin, y_prob, Option, save_directory): # Groups: Bin_group = pd.Series(['Bin']).repeat(len(x_bin)) Prob_group = pd.Series(['Prob']).repeat(len(x_prob)) Final_Groups = Bin_group.append(Prob_group) # Data frame: precision_Bin = pd.Series(y_bin) precision_Prob = pd.Series(y_prob) precision_Bin = precision_Bin.append(precision_Prob) recall_Bin = pd.Series(x_bin) recall_Prob = pd.Series(x_prob) recall_Bin = recall_Bin.append(recall_Prob) Final_Groups = Final_Groups.reset_index(drop = True) recall_Bin = recall_Bin.reset_index(drop = True) precision_Bin = precision_Bin.reset_index(drop = True) Plot_df = pd.DataFrame() Plot_df["Recall"] = recall_Bin Plot_df["Precision"] = precision_Bin Plot_df["Group"] = Final_Groups Plot_df = Plot_df.reset_index(drop=True) # Plot: fig, ax = plt.subplots(figsize=(12,8)) plt.grid(0) paper_rc = {'lines.linewidth': 1, 'lines.markersize': 10} sns.set_context("paper", rc = paper_rc) sns.lineplot(x = "Recall", y = "Precision", hue = "Group", data = Plot_df ) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_linewidth(2.5) ax.spines['bottom'].set_linewidth(2.5) ax.xaxis.set_tick_params(width=2.5) ax.yaxis.set_tick_params(width=2.5) plt.figtext(.5,.9,'Precision-Recall', fontsize=30, ha='center') ax.set_xlabel('# Recall',fontsize = 20) ax.set_ylabel('# Precision', fontsize = 20) fig.savefig(save_directory + "_Correlation_Plot_Prob_" + Option + ".png") # ROC Curve Plot: def Plot_ROC(fpr_bin, tpr_bin, fpr_prob, tpr_prob, save_path, Model): # Groups: Bin_group = pd.Series(['Bin']).repeat(len(fpr_bin)) Prob_group = pd.Series(['Prob']).repeat(len(fpr_prob)) Final_Groups = Bin_group.append(Prob_group) Final_Groups = Final_Groups.reset_index(drop = True) # DataFrame: fpr_prob = pd.Series(fpr_prob) fpr_bin = pd.Series(fpr_bin) tpr_prob = pd.Series(tpr_prob) tpr_bin = pd.Series(tpr_bin) Final_Data = pd.DataFrame() Final_Data["fpr"] = fpr_bin.append(fpr_prob) Final_Data["tpr"] = tpr_bin.append(tpr_prob) Final_Data = Final_Data.reset_index(drop = True) Final_Data["Network"] = Final_Groups Final_Data_Bin = Final_Data[Final_Data.Network == "Bin"] Final_Data_Prob = Final_Data[Final_Data.Network == "Prob"] fig, ax = plt.subplots(figsize=(12,8)) lw = 2 plt.plot(Final_Data_Bin["fpr"], Final_Data_Bin["tpr"], c = "orange", lw=lw) plt.plot(Final_Data_Prob["fpr"], Final_Data_Prob["tpr"], c = "green", lw=lw) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([-0.05, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate', fontsize=20) plt.ylabel('True Positive Rate', fontsize=20) plt.title('ROC', fontsize=20) plt.legend(["Bin", "Prob", "Random"], loc="lower right", prop={'size': 15}) plt.savefig(save_path + "ROC_Curve_From_" + Model + ".png") plt.show() # Main: # Work Directory: os.chdir("/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Considering_Random/") save_directory = "/home/sergio/workspace_Eclipse/Lucky_GOGO_Extra/Results/Testeos_Varios/Network_Distances/Tests/Real_Distributions/Considering_Random/" # Preparing the Data: Bin_Corr, Prob_Corr = Prepare_The_Matrices(Option1 = "ER_1/", Option2 = "BA_1/", Option3 = "RG_1/", empirical = True) # Getting the rest of information: ## GROUP = ALL ## # Getting the variables for the ROC Curve: y_score_Bin, y_true_Bin = Similarity_Infor_for_One_Model(Bin_Corr, Option = "ALL", Network = "Bin", empirical = True) y_score_Prob, y_true_Prob = Similarity_Infor_for_One_Model(Prob_Corr, Option = "ALL", Network = "Prob", empirical = True) # Precision-Recall: precision_Bin, recall_Bin, thresholds_Bin = precision_recall_curve(y_true_Bin, y_score_Bin) precision_Prob, recall_Prob, thresholds_Prob = precision_recall_curve(y_true_Prob, y_score_Prob) Precision_Recall_plot( recall_Bin, recall_Prob, precision_Bin, precision_Prob, Option = "ALL", save_directory = save_directory) auc(recall_Bin, precision_Bin) # 0.3673 Precision-Recall auc(recall_Prob, precision_Prob) # 0.8711 Precision-Recall # ROC Curve: fpr_Bin, tpr_ER_Bin, thresholds_ER_Bin = roc_curve(y_true_Bin, y_score_Bin) fpr_Prob, tpr_ER_Prob, thresholds_ER_Prob = roc_curve(y_true_Prob, y_score_Prob) roc_auc_score(y_true_Bin, y_score_Bin) # 0.8807 Area under ROC roc_auc_score(y_true_Prob, y_score_Prob) # 0.9803 Area Under ROC Plot_ROC(fpr_Bin, tpr_ER_Bin, fpr_Prob, tpr_ER_Prob, save_directory, Model= "ALL") ## GROUP = Density ## # Getting the variables for the ROC Curve: y_score_Bin, y_true_Bin = Similarity_Infor_for_One_Model(Bin_Corr, Option = "ALL", Network = "Bin", empirical = True, group = "Density") y_score_Prob, y_true_Prob = Similarity_Infor_for_One_Model(Prob_Corr, Option = "ALL", Network = "Prob", empirical = True, group = "Density") # Precision-Recall: precision_Bin, recall_Bin, thresholds_Bin = precision_recall_curve(y_true_Bin, y_score_Bin) precision_Prob, recall_Prob, thresholds_Prob = precision_recall_curve(y_true_Prob, y_score_Prob) Precision_Recall_plot( recall_Bin, recall_Prob, precision_Bin, precision_Prob, Option = "ALL_Group_Density", save_directory = save_directory) auc(recall_Bin, precision_Bin) # 0.3711 Precision-Recall auc(recall_Prob, precision_Prob) # 0.5363 Precision-Recall # ROC Curve: fpr_Bin, tpr_ER_Bin, thresholds_ER_Bin = roc_curve(y_true_Bin, y_score_Bin) fpr_Prob, tpr_ER_Prob, thresholds_ER_Prob = roc_curve(y_true_Prob, y_score_Prob) roc_auc_score(y_true_Bin, y_score_Bin) # 0.4981 Area under ROC roc_auc_score(y_true_Prob, y_score_Prob) # 0.5424 Area Under ROC Plot_ROC(fpr_Bin, tpr_ER_Bin, fpr_Prob, tpr_ER_Prob, save_directory, Model= "ALL_Group_Density") ## GROUP = Topology ## # Getting the variables for the ROC Curve: y_score_Bin, y_true_Bin = Similarity_Infor_for_One_Model(Bin_Corr, Option = "ALL", Network = "Bin", empirical = True, group = "Topology") y_score_Prob, y_true_Prob = Similarity_Infor_for_One_Model(Prob_Corr, Option = "ALL", Network = "Prob", empirical = True, group = "Topology") # Precision-Recall: precision_Bin, recall_Bin, thresholds_Bin = precision_recall_curve(y_true_Bin, y_score_Bin) precision_Prob, recall_Prob, thresholds_Prob = precision_recall_curve(y_true_Prob, y_score_Prob) Precision_Recall_plot( recall_Bin, recall_Prob, precision_Bin, precision_Prob, Option = "ALL_Group_Topology", save_directory = save_directory) auc(recall_Bin, precision_Bin) # 1 Precision-Recall auc(recall_Prob, precision_Prob) # 0.999 Precision-Recall # ROC Curve: fpr_Bin, tpr_ER_Bin, thresholds_ER_Bin = roc_curve(y_true_Bin, y_score_Bin) fpr_Prob, tpr_ER_Prob, thresholds_ER_Prob = roc_curve(y_true_Prob, y_score_Prob) roc_auc_score(y_true_Bin, y_score_Bin) # 1 Area under ROC roc_auc_score(y_true_Prob, y_score_Prob) # 1 Area Under ROC Plot_ROC(fpr_Bin, tpr_ER_Bin, fpr_Prob, tpr_ER_Prob, save_directory, Model= "ALL_Group_Topology")
36.487013
253
0.605846
c8c0d1d80efe59d08a0c155e2586094ee7c5118a
2,904
py
Python
pyloxi/loxi/of13/util.py
floodlight/loxigen-artifacts
1822ec984cb6da342bbaa381677071cbbe53cee6
[ "Apache-2.0" ]
1
2017-06-01T09:41:07.000Z
2017-06-01T09:41:07.000Z
pyloxi/loxi/of13/util.py
floodlight/loxigen-artifacts
1822ec984cb6da342bbaa381677071cbbe53cee6
[ "Apache-2.0" ]
2
2017-07-03T08:50:56.000Z
2018-03-12T16:16:19.000Z
pyloxi/loxi/of14/util.py
floodlight/loxigen-artifacts
1822ec984cb6da342bbaa381677071cbbe53cee6
[ "Apache-2.0" ]
20
2015-02-16T15:23:04.000Z
2022-03-15T20:06:10.000Z
# Copyright (c) 2008 The Board of Trustees of The Leland Stanford Junior University # Copyright (c) 2011, 2012 Open Networking Foundation # Copyright (c) 2012, 2013 Big Switch Networks, Inc. # See the file LICENSE.pyloxi which should have been included in the source distribution # Automatically generated by LOXI from template util.py # Do not modify import struct from . import const def pretty_mac(mac): return ':'.join(["%02x" % x for x in mac]) def pretty_ipv4(v): return "%d.%d.%d.%d" % ((v >> 24) & 0xFF, (v >> 16) & 0xFF, (v >> 8) & 0xFF, v & 0xFF) def pretty_ipv6(v): return ":".join(["%0.2x%0.2x" % (ord(v[i]), ord(v[i+1])) for i in range(0, len(v), 2)]) def pretty_flags(v, flag_names): set_flags = [] for flag_name in flag_names: flag_value = getattr(const, flag_name) if v & flag_value == flag_value: set_flags.append(flag_name) elif v & flag_value: set_flags.append('%s&%#x' % (flag_name, v & flag_value)) v &= ~flag_value if v: set_flags.append("%#x" % v) return '|'.join(set_flags) or '0' def pretty_port(v): named_ports = [(k,v2) for (k,v2) in const.__dict__.items() if k.startswith('OFPP_')] for (k, v2) in named_ports: if v == v2: return k return v def pack_port_no(value): return struct.pack("!L", value) def unpack_port_no(reader): return reader.read("!L")[0] def pack_fm_cmd(value): return struct.pack("!B", value) def unpack_fm_cmd(reader): return reader.read("!B")[0] def init_wc_bmap(): return 0 def pack_wc_bmap(value): return struct.pack("!Q", value) def unpack_wc_bmap(reader): return reader.read("!Q")[0] def init_match_bmap(): return 0 def pack_match_bmap(value): return struct.pack("!Q", value) def unpack_match_bmap(reader): return reader.read("!Q")[0] MASK64 = (1 << 64) - 1 def pack_bitmap_128(value): x = 0l for y in value: x |= 1 << y return struct.pack("!QQ", (x >> 64) & MASK64, x & MASK64) def unpack_bitmap_128(reader): hi, lo = reader.read("!QQ") x = (hi << 64) | lo i = 0 value = set() while x != 0: if x & 1 == 1: value.add(i) i += 1 x >>= 1 return value def pack_bitmap_512(value): words = [0] * 8 for v in value: assert v < 512 words[7-int(v/64)] |= 1 << (v % 64) return struct.pack("!8Q", *words) def unpack_bitmap_512(reader): words = reader.read("!8Q") x = 0l for word in words: x <<= 64 x |= word i = 0 value = set() while x != 0: if x & 1 == 1: value.add(i) i += 1 x >>= 1 return value def pack_checksum_128(value): return struct.pack("!QQ", (value >> 64) & MASK64, value & MASK64) def unpack_checksum_128(reader): hi, lo = reader.read("!QQ") return (hi << 64) | lo
24.403361
91
0.583333
376f0c416e67a80bc8909f11fa5a3d1c2a41d63c
27,516
py
Python
tests/cupy_tests/creation_tests/test_from_data.py
prkhrsrvstv1/cupy
ea86c8225b575af9d2855fb77a306cf86fd098ea
[ "MIT" ]
null
null
null
tests/cupy_tests/creation_tests/test_from_data.py
prkhrsrvstv1/cupy
ea86c8225b575af9d2855fb77a306cf86fd098ea
[ "MIT" ]
null
null
null
tests/cupy_tests/creation_tests/test_from_data.py
prkhrsrvstv1/cupy
ea86c8225b575af9d2855fb77a306cf86fd098ea
[ "MIT" ]
null
null
null
import tempfile import unittest import pytest import cupy from cupy import cuda from cupy import testing import numpy class TestFromData(unittest.TestCase): @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array(self, xp, dtype, order): return xp.array([[1, 2, 3], [2, 3, 4]], dtype=dtype, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_empty_list(self, xp, dtype, order): return xp.array([], dtype=dtype, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_nested_empty_list(self, xp, dtype, order): return xp.array([[], []], dtype=dtype, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_numpy(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), numpy, dtype) return xp.array(a, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_numpy_scalar(self, xp, dtype, order): a = numpy.array(2, dtype=dtype) return xp.array(a, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_numpy_broad_cast(self, xp, dtype, order): a = testing.shaped_arange((2, 1, 4), numpy, dtype) a = numpy.broadcast_to(a, (2, 3, 4)) return xp.array(a, order=order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_numpy(self, xp, dtype, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) a = [ testing.shaped_arange((3, 4), numpy, dtype, src_order) + (12 * i) for i in range(2)] return xp.array(a, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_numpy_view(self, xp, dtype, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) # create a list of view of ndarrays a = [ (testing.shaped_arange((3, 8), numpy, dtype, src_order) + (24 * i))[:, ::2] for i in range(2)] return xp.array(a, order=dst_order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_numpy_scalar(self, xp, dtype, order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) a = [numpy.array(i, dtype=dtype) for i in range(2)] return xp.array(a, order=order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_nested_list_of_numpy(self, xp, dtype, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) a = [ [testing.shaped_arange( (3, 4), numpy, dtype, src_order) + (12 * i)] for i in range(2)] return xp.array(a, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes_combination(names=('dtype1', 'dtype2')) @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_cupy( self, xp, dtype1, dtype2, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [ testing.shaped_arange((3, 4), xp, dtype1, src_order), testing.shaped_arange((3, 4), xp, dtype2, src_order), ] return xp.array(a, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_cupy_view(self, xp, dtype, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) # create a list of view of ndarrays a = [ (testing.shaped_arange((3, 8), xp, dtype, src_order) + (24 * i))[:, ::2] for i in range(2)] return xp.array(a, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_nested_list_of_cupy(self, xp, dtype, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [ [testing.shaped_arange((3, 4), xp, dtype, src_order) + (12 * i)] for i in range(2)] return xp.array(a, order=dst_order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal(strides_check=True) def test_array_from_list_of_cupy_scalar(self, xp, dtype, order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [xp.array(i, dtype=dtype) for i in range(2)] return xp.array(a, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_nested_list_of_cupy_scalar(self, xp, dtype, order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [[xp.array(i, dtype=dtype)] for i in range(2)] return xp.array(a, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_copy(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.array(a, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_copy_is_copied(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.array(a, order=order) a.fill(0) return b @testing.for_orders('CFAK') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal() def test_array_copy_with_dtype(self, xp, dtype1, dtype2, order): # complex to real makes no sense a = testing.shaped_arange((2, 3, 4), xp, dtype1) return xp.array(a, dtype=dtype2, order=order) @testing.for_orders('CFAK') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal() def test_array_copy_with_dtype_char(self, xp, dtype1, dtype2, order): # complex to real makes no sense a = testing.shaped_arange((2, 3, 4), xp, dtype1) return xp.array(a, dtype=numpy.dtype(dtype2).char, order=order) @testing.for_orders('CFAK') @testing.numpy_cupy_array_equal() def test_array_copy_with_dtype_being_none(self, xp, order): a = testing.shaped_arange((2, 3, 4), xp) return xp.array(a, dtype=None, order=order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal(strides_check=True) def test_array_copy_list_of_numpy_with_dtype(self, xp, dtype1, dtype2, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) a = [ testing.shaped_arange((3, 4), numpy, dtype1, src_order) + (12 * i) for i in range(2)] return xp.array(a, dtype=dtype2, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal(strides_check=True) def test_array_copy_list_of_numpy_with_dtype_char(self, xp, dtype1, dtype2, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of numpy.ndarray>) a = [ testing.shaped_arange((3, 4), numpy, dtype1, src_order) + (12 * i) for i in range(2)] return xp.array(a, dtype=numpy.dtype(dtype2).char, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal(strides_check=True) def test_array_copy_list_of_cupy_with_dtype(self, xp, dtype1, dtype2, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [ testing.shaped_arange((3, 4), xp, dtype1, src_order) + (12 * i) for i in range(2)] return xp.array(a, dtype=dtype2, order=dst_order) @testing.for_orders('CFAK', name='src_order') @testing.for_orders('CFAK', name='dst_order') @testing.for_all_dtypes(name='dtype1', no_complex=True) @testing.for_all_dtypes(name='dtype2') @testing.numpy_cupy_array_equal(strides_check=True) def test_array_copy_list_of_cupy_with_dtype_char(self, xp, dtype1, dtype2, src_order, dst_order): # compares numpy.array(<list of numpy.ndarray>) with # cupy.array(<list of cupy.ndarray>) a = [ testing.shaped_arange((3, 4), xp, dtype1, src_order) + (12 * i) for i in range(2)] return xp.array(a, dtype=numpy.dtype(dtype2).char, order=dst_order) @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_no_copy(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.array(a, copy=False, order=order) a.fill(0) return b @testing.for_orders('CFAK') @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_f_contiguous_input(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype, order='F') b = xp.array(a, copy=False, order=order) return b @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_f_contiguous_output(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.array(a, copy=False, order='F') assert b.flags.f_contiguous return b @testing.multi_gpu(2) def test_array_multi_device(self): with cuda.Device(0): x = testing.shaped_arange((2, 3, 4), cupy, dtype='f') with cuda.Device(1): y = cupy.array(x) assert isinstance(y, cupy.ndarray) assert x is not y # Do copy assert int(x.device) == 0 assert int(y.device) == 1 testing.assert_array_equal(x, y) @testing.multi_gpu(2) def test_array_multi_device_zero_size(self): with cuda.Device(0): x = testing.shaped_arange((0,), cupy, dtype='f') with cuda.Device(1): y = cupy.array(x) assert isinstance(y, cupy.ndarray) assert x is not y # Do copy assert x.device.id == 0 assert y.device.id == 1 testing.assert_array_equal(x, y) @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_no_copy_ndmin(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.array(a, copy=False, ndmin=5) assert a.shape == (2, 3, 4) a.fill(0) return b @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_big_endian(self, xp, dtype): dtype = numpy.dtype(dtype).newbyteorder('>') a = testing.shaped_arange((2, 3, 4), numpy, dtype) b = xp.array(a) # Make a computation here as just moving big-endian data back and forth # happens to work before the change in #5828 return b + b @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_array_from_list_of_numpy_big_endian(self, xp, dtype): dtype = numpy.dtype(dtype).newbyteorder('>') a = [testing.shaped_arange((3, 4), numpy, dtype) for i in range(2)] b = xp.array(a) # Make a computation here as just moving big-endian data back and forth # happens to work before the change in #5828 return b + b @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) return xp.asarray(a) @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_is_not_copied(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.asarray(a) a.fill(0) return b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_with_order(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.asarray(a, order=order) if order in ['F', 'f']: assert b.flags.f_contiguous else: assert b.flags.c_contiguous return b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_preserves_numpy_array_order(self, xp, dtype, order): a_numpy = testing.shaped_arange((2, 3, 4), numpy, dtype, order) b = xp.asarray(a_numpy) assert b.flags.f_contiguous == a_numpy.flags.f_contiguous assert b.flags.c_contiguous == a_numpy.flags.c_contiguous return b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asanyarray_with_order(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.asanyarray(a, order=order) if order in ['F', 'f']: assert b.flags.f_contiguous else: assert b.flags.c_contiguous return b @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asanyarray_from_big_endian(self, xp, dtype): dtype = numpy.dtype(dtype).newbyteorder('>') a = testing.shaped_arange((2, 3, 4), numpy, dtype) b = xp.asanyarray(a) # Make a computation here as just moving big-endian data back and forth # happens to work before the change in #5828 return b + b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_from_numpy(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), numpy, dtype) b = xp.asarray(a, order=order) if order in ['F', 'f']: assert b.flags.f_contiguous else: assert b.flags.c_contiguous return b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_with_order_copy_behavior(self, xp, dtype, order): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = xp.asarray(a, order=order) a.fill(0) return b def test_ascontiguousarray_on_noncontiguous_array(self): a = testing.shaped_arange((2, 3, 4)) b = a.transpose(2, 0, 1) c = cupy.ascontiguousarray(b) assert c.flags.c_contiguous testing.assert_array_equal(b, c) def test_ascontiguousarray_on_contiguous_array(self): a = testing.shaped_arange((2, 3, 4)) b = cupy.ascontiguousarray(a) assert a is b @testing.numpy_cupy_array_equal() def test_asarray_cuda_array_zero_dim(self, xp): a = xp.ones(()) return xp.ascontiguousarray(a) @testing.numpy_cupy_array_equal() def test_asarray_cuda_array_zero_dim_dtype(self, xp): a = xp.ones((), dtype=numpy.float64) return xp.ascontiguousarray(a, dtype=numpy.int64) @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_asarray_from_big_endian(self, xp, dtype): dtype = numpy.dtype(dtype).newbyteorder('>') a = testing.shaped_arange((2, 3, 4), numpy, dtype) b = xp.asarray(a) # Make a computation here as just moving big-endian data back and forth # happens to work before the change in #5828 return b + b @testing.for_CF_orders() @testing.for_all_dtypes() @testing.numpy_cupy_array_equal() def test_copy(self, xp, dtype, order): a = xp.zeros((2, 3, 4), dtype=dtype) b = xp.copy(a, order=order) a[1] = 1 return b @testing.multi_gpu(2) @testing.for_CF_orders() @testing.for_all_dtypes() def test_copy_multigpu(self, dtype, order): with cuda.Device(0): src = cupy.random.uniform(-1, 1, (2, 3)).astype(dtype) with cuda.Device(1): dst = cupy.copy(src, order) testing.assert_allclose(src, dst, rtol=0, atol=0) @testing.for_CF_orders() @testing.numpy_cupy_equal() def test_copy_order(self, xp, order): a = xp.zeros((2, 3, 4), order=order) b = xp.copy(a) return (b.flags.c_contiguous, b.flags.f_contiguous) @testing.numpy_cupy_array_equal() def test_asfortranarray_cuda_array_zero_dim(self, xp): a = xp.ones(()) return xp.asfortranarray(a) @testing.for_all_dtypes_combination(['dtype_a', 'dtype_b'], no_complex=True) @testing.numpy_cupy_array_equal() def test_asfortranarray_cuda_array_zero_dim_dtype( self, xp, dtype_a, dtype_b): a = xp.ones((), dtype=dtype_a) return xp.asfortranarray(a, dtype=dtype_b) @testing.numpy_cupy_array_equal() def test_fromfile(self, xp): with tempfile.TemporaryFile() as fh: fh.write(b"\x00\x01\x02\x03\x04") fh.flush() fh.seek(0) return xp.fromfile(fh, dtype="u1") @testing.numpy_cupy_array_equal() def test_fromfile_big_endian(self, xp): with tempfile.TemporaryFile() as fh: fh.write(b"\x00\x00\x00\x01") fh.flush() fh.seek(0) a = xp.fromfile(fh, dtype='>u4') # Make a computation here as just moving big-endian data back and # forth happens to work before the change in #5828 return a + a max_cuda_array_interface_version = 3 @testing.parameterize(*testing.product({ 'ver': tuple(range(max_cuda_array_interface_version+1)), 'strides': (False, None, True), })) @pytest.mark.skipif( cupy.cuda.runtime.is_hip, reason='HIP does not support this') class TestCudaArrayInterface(unittest.TestCase): @testing.for_all_dtypes() def test_base(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype) b = cupy.asarray( DummyObjectWithCudaArrayInterface(a, self.ver, self.strides)) testing.assert_array_equal(a, b) @testing.for_all_dtypes() def test_not_copied(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype) b = cupy.asarray( DummyObjectWithCudaArrayInterface(a, self.ver, self.strides)) a.fill(0) testing.assert_array_equal(a, b) @testing.for_all_dtypes() def test_order(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype) b = cupy.asarray( DummyObjectWithCudaArrayInterface(a, self.ver, self.strides), order='F') assert b.flags.f_contiguous testing.assert_array_equal(a, b) @testing.for_all_dtypes() def test_with_strides(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype).T b = cupy.asarray( DummyObjectWithCudaArrayInterface(a, self.ver, self.strides)) assert a.strides == b.strides assert a.nbytes == b.data.mem.size @testing.for_all_dtypes() def test_with_zero_size_array(self, dtype): a = testing.shaped_arange((0,), cupy, dtype) b = cupy.asarray( DummyObjectWithCudaArrayInterface(a, self.ver, self.strides)) assert a.strides == b.strides assert a.nbytes == b.data.mem.size assert a.data.ptr == 0 assert a.size == 0 @testing.for_all_dtypes() def test_asnumpy(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype) b = DummyObjectWithCudaArrayInterface(a, self.ver, self.strides) a_cpu = cupy.asnumpy(a) b_cpu = cupy.asnumpy(b) testing.assert_array_equal(a_cpu, b_cpu) def test_big_endian(self): a = cupy.array([0x1, 0x0, 0x0, 0x0], dtype=numpy.int8) dtype = numpy.dtype('>i4') shape = 1, strides = 4, data = a.data.ptr b = DummyObjectWithCudaArrayInterface( (shape, strides, dtype.str, dtype.descr, data), self.ver, self.strides) with pytest.raises(ValueError): cupy.asarray(b) @testing.parameterize(*testing.product({ 'ver': tuple(range(1, max_cuda_array_interface_version+1)), 'strides': (False, None, True), })) @pytest.mark.skipif( cupy.cuda.runtime.is_hip, reason='HIP does not support this') class TestCudaArrayInterfaceMaskedArray(unittest.TestCase): # TODO(leofang): update this test when masked array is supported @testing.for_all_dtypes() def test_masked_array(self, dtype): a = testing.shaped_arange((2, 3, 4), cupy, dtype) mask = testing.shaped_arange((2, 3, 4), cupy, dtype) a = DummyObjectWithCudaArrayInterface(a, self.ver, self.strides, mask) with pytest.raises(ValueError) as ex: b = cupy.asarray(a) # noqa assert 'does not support' in str(ex.value) # marked slow as either numpy or cupy could go OOM in this test @testing.slow @pytest.mark.skipif( cupy.cuda.runtime.is_hip, reason='HIP does not support this') class TestCudaArrayInterfaceBigArray(unittest.TestCase): def test_with_over_size_array(self): # real example from #3009 size = 5 * 10**8 a = testing.shaped_random((size,), cupy, cupy.float64) b = cupy.asarray(DummyObjectWithCudaArrayInterface(a, 2, None)) testing.assert_array_equal(a, b) @pytest.mark.skipif( cupy.cuda.runtime.is_hip, reason='HIP does not support this') class DummyObjectWithCudaArrayInterface(object): def __init__(self, a, ver, include_strides=False, mask=None, stream=None): assert ver in tuple(range(max_cuda_array_interface_version+1)) self.a = None if isinstance(a, cupy.ndarray): self.a = a else: self.shape, self.strides, self.typestr, self.descr, self.data = a self.ver = ver self.include_strides = include_strides self.mask = mask self.stream = stream @property def __cuda_array_interface__(self): if self.a is not None: desc = { 'shape': self.a.shape, 'typestr': self.a.dtype.str, 'descr': self.a.dtype.descr, 'data': (self.a.data.ptr, False), 'version': self.ver, } if self.a.flags.c_contiguous: if self.include_strides is True: desc['strides'] = self.a.strides elif self.include_strides is None: desc['strides'] = None else: # self.include_strides is False pass else: # F contiguous or neither desc['strides'] = self.a.strides else: desc = { 'shape': self.shape, 'typestr': self.typestr, 'descr': self.descr, 'data': (self.data, False), 'version': self.ver, } if self.include_strides is True: desc['strides'] = self.strides elif self.include_strides is None: desc['strides'] = None else: # self.include_strides is False pass if self.mask is not None: desc['mask'] = self.mask # The stream field is kept here for compliance. However, since the # synchronization is done via calling a cpdef function, which cannot # be mock-tested. if self.stream is not None: if self.stream is cuda.Stream.null: desc['stream'] = cuda.runtime.streamLegacy elif (not cuda.runtime.is_hip) and self.stream is cuda.Stream.ptds: desc['stream'] = cuda.runtime.streamPerThread else: desc['stream'] = self.stream.ptr return desc @testing.parameterize( *testing.product({ 'ndmin': [0, 1, 2, 3], 'copy': [True, False], 'xp': [numpy, cupy] }) ) class TestArrayPreservationOfShape(unittest.TestCase): @testing.for_all_dtypes() def test_cupy_array(self, dtype): shape = 2, 3 a = testing.shaped_arange(shape, self.xp, dtype) cupy.array(a, copy=self.copy, ndmin=self.ndmin) # Check if cupy.ndarray does not alter # the shape of the original array. assert a.shape == shape @testing.parameterize( *testing.product({ 'ndmin': [0, 1, 2, 3], 'copy': [True, False], 'xp': [numpy, cupy] }) ) class TestArrayCopy(unittest.TestCase): @testing.for_all_dtypes() def test_cupy_array(self, dtype): a = testing.shaped_arange((2, 3), self.xp, dtype) actual = cupy.array(a, copy=self.copy, ndmin=self.ndmin) should_copy = (self.xp is numpy) or self.copy # TODO(Kenta Oono): Better determination of copy. is_copied = not ((actual is a) or (actual.base is a) or (actual.base is a.base and a.base is not None)) assert should_copy == is_copied class TestArrayInvalidObject(unittest.TestCase): def test_invalid_type(self): a = numpy.array([1, 2, 3], dtype=object) with self.assertRaises(ValueError): cupy.array(a)
37.953103
79
0.619603
c23a5bcb3ebed2dcfabb49a4f25e69837a6efeaa
17,771
py
Python
libraries/gui/tab_quiver.py
loslab/hware
85771404a9a75982e3196bfe2acc26ecb30350e8
[ "BSD-3-Clause" ]
3
2019-01-23T13:11:51.000Z
2022-03-16T22:44:52.000Z
libraries/gui/tab_quiver.py
loslab/hware
85771404a9a75982e3196bfe2acc26ecb30350e8
[ "BSD-3-Clause" ]
1
2022-03-06T15:16:40.000Z
2022-03-11T20:27:10.000Z
libraries/gui/tab_quiver.py
loslab/hware
85771404a9a75982e3196bfe2acc26ecb30350e8
[ "BSD-3-Clause" ]
6
2019-01-23T13:12:00.000Z
2022-03-19T13:15:45.000Z
import sys from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import matplotlib.pyplot as plt from PyQt5.QtWidgets import (QWidget, QGridLayout,QPushButton, QApplication) from PyQt5 import QtCore from PyQt5.QtWidgets import (QLabel, QLineEdit, QGridLayout, QComboBox, QTextEdit,QSizePolicy, QPushButton, QProgressBar,QSlider, QWidget, QSpinBox, QCheckBox) from PyQt5.QtCore import Qt from PyQt5.QtGui import QFont from libraries import helpfunctions class TabQuiver(QWidget): """ display + save motion as heatmap and quiver plot """ def __init__(self, parent): super(TabQuiver, self).__init__(parent) self.initUI() self.parent=parent def initUI(self): # define + place gui elements self.info = QTextEdit() self.info.setText('In this tab, motion is vizualized by heatmaps and quiverplots. Use the slider to look at different frames. You can save individual frames or the whole video.') self.info.setReadOnly(True) self.info.setMaximumHeight(50) self.info.setFixedWidth(700) self.info.setStyleSheet("background-color: LightSkyBlue") """ #create a label for choosing the ROI label_advanced_choose_ROI = QLabel('Choose the ROI to be displayed: ') label_advanced_choose_ROI.setFont(QFont("Times",weight=QFont.Bold)) #create a drop-down menu for choosing the ROI to be displayed self.advanced_combobox = QComboBox() self.advanced_combobox.addItem('Full image') #self.advanced_combobox.activated[str].connect(self.on_chooseROI) self.advanced_combobox.currentIndexChanged[int].connect(self.on_chooseROI) """ self.label_heatmaps = QLabel('Heatmaps') self.label_heatmaps.setFont(QFont("Times",weight=QFont.Bold)) self.label_quivers = QLabel('Quivers') self.label_quivers.setFont(QFont("Times",weight=QFont.Bold)) self.btn_heatmap_vid = QPushButton('Export Heatmap Video') self.btn_heatmap_vid.clicked.connect(self.on_saveHeatmapvideo) #slider to switch between heatmaps self.slider_heatmaps = QSlider(Qt.Horizontal) self.slider_heatmaps.setMinimum(0) self.slider_heatmaps.setMaximum(100) self.slider_heatmaps.setValue(0) #self.slider_heatmaps.setTickPosition(QSlider.TicksBelow) #self.slider_heatmaps.setTickInterval(5) self.slider_heatmaps.setFixedWidth(500) self.slider_heatmaps.valueChanged.connect(self.slider_heatmaps_valueChanged) self.btn_heatmap_save = QPushButton('Save this frame') self.btn_heatmap_save.clicked.connect(self.on_saveHeatmap) self.btn_quiver_save = QPushButton('Save this frame') self.btn_quiver_save.clicked.connect(self.on_saveQuiver) self.slider_quiver = QSlider(Qt.Horizontal) self.slider_quiver.setMinimum(0) self.slider_quiver.setMaximum(100) self.slider_quiver.setValue(0) self.slider_quiver.setFixedWidth(500) #self.slider_quiver.setTickPosition(QSlider.TicksBelow) self.slider_quiver.valueChanged.connect(self.slider_quiver_valueChanged) #self.slider_quiver.setTickPosition(QSlider.TicksBelow) self.slider_quiver.setTickInterval(5) #display the chosen heatmap self.label_heatmap_result = QLabel('Heatmap result:') self.fig_heatmaps, self.ax_heatmaps = plt.subplots(1,1, figsize = (16,12)) self.fig_heatmaps.subplots_adjust(bottom=0, top=1, left=0, right=1) self.canvas_heatmaps = FigureCanvas(self.fig_heatmaps) #button for changing the quiver export settings self.btn_quiver_settings = QPushButton('Change quiver export settings') #self.btn_quiver_settings.clicked.connect(self.on_change_quiverSettings) #Button for starting the creation of quiver plots and quiver video self.btn_quivers_video = QPushButton('Export quiver video') self.btn_quivers_video.clicked.connect(self.on_saveQuivervideo) #display the chosen quiver plot self.label_quiver_result = QLabel('Quiver result: ') # display figures for quivers in Canvas self.fig_quivers, self.ax_quivers = plt.subplots(1,1, figsize = (16,12)) self.fig_quivers.subplots_adjust(bottom=0, top=1, left=0, right=1) self.canvas_quivers = FigureCanvas(self.fig_quivers) self.canvas_heatmaps.setFixedSize(500,500) self.canvas_quivers.setFixedSize(500,500) """ #succed-button self.button_succeed_heatmaps = QPushButton('Heatmap-video creation was successful') self.button_succeed_heatmaps.setStyleSheet("background-color: IndianRed") self.button_succeed_quivers = QPushButton('Quiver-video creation was successful') self.button_succeed_quivers.setStyleSheet("background-color: IndianRed") """ #progressbar for heatmaps self.progressbar_heatmaps = QProgressBar(self) self.progressbar_heatmaps.setValue(0) self.progressbar_heatmaps.setFixedWidth(300) #progressbar for quivers self.progressbar_quivers = QProgressBar(self) self.progressbar_quivers.setValue(0) self.progressbar_quivers.setFixedWidth(300) #define layout colHeatmap = 0 colQuiver = 2 self.grid_overall = QGridLayout() self.grid_overall.addWidget(self.info, 0,0,1,4) self.grid_overall.addWidget(self.label_heatmaps, 1, colHeatmap,1,2) self.grid_overall.addWidget(self.label_quivers, 1, colQuiver,1,2) self.grid_overall.addWidget(self.canvas_heatmaps, 2, colHeatmap,1,2) self.grid_overall.addWidget(self.canvas_quivers, 2, colQuiver,1,2) self.grid_overall.addWidget(self.label_heatmap_result, 3, colHeatmap,1,2) self.grid_overall.addWidget(self.label_quiver_result, 3, colQuiver,1,2) self.grid_overall.addWidget(self.slider_heatmaps, 4, colHeatmap,1,2) self.grid_overall.addWidget(self.slider_quiver, 4, colQuiver,1,2) self.grid_overall.addWidget(self.btn_heatmap_vid, 5, colHeatmap) self.grid_overall.addWidget(self.btn_quivers_video, 5, colQuiver) self.grid_overall.addWidget(self.progressbar_heatmaps, 5, colHeatmap+1) self.grid_overall.addWidget(self.progressbar_quivers, 5, colQuiver+1) #self.grid_overall.addWidget(self.btn_quiver_settings, 2, colQuiver) self.grid_overall.addWidget(self.btn_heatmap_save, 6, colHeatmap) self.grid_overall.addWidget(self.btn_quiver_save, 6, colQuiver) self.grid_overall.setSpacing(15) self.grid_overall.setAlignment(Qt.AlignTop|Qt.AlignLeft) self.setLayout(self.grid_overall) for label in self.findChildren(QLabel): label.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) for LineEdit in self.findChildren(QLineEdit): LineEdit.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) for Slider in self.findChildren(QSlider): Slider.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) for SpinBox in self.findChildren(QSpinBox): SpinBox.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) for CheckBox in self.findChildren(QCheckBox): CheckBox.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) for progbar in self.findChildren(QProgressBar): progbar.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) #for btn in self.findChildren(QPushButton): # btn.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) def init_ohw(self): """ set values from current_ohw enable sliders/ plot if corresponding data is present """ self.current_ohw = self.parent.current_ohw #check if this works... looks good self.clear_heatmaps() self.clear_quivers() # init heatmap part if self.parent.current_ohw.analysis_meta["motion_calculated"]: self.btn_heatmap_vid.setEnabled(True) self.btn_heatmap_save.setEnabled(True) self.slider_heatmaps.setMaximum(self.current_ohw.absMotions.shape[0]-1) self.slider_heatmaps.setValue(0) self.slider_heatmaps.setEnabled(True) self.init_heatmaps() else: self.btn_heatmap_vid.setEnabled(False) self.btn_heatmap_save.setEnabled(False) self.slider_heatmaps.setEnabled(False) self.placeholder_heatmaps() # init quiver part if self.parent.current_ohw.analysis_meta["has_MVs"] and self.parent.current_ohw.video_loaded: self.btn_quiver_save.setEnabled(True) self.btn_quivers_video.setEnabled(True) self.slider_quiver.setMaximum(self.current_ohw.mean_absMotions.shape[0]-1)# or introduce new variable which counts the amount of motion timepoints self.slider_quiver.setValue(0) self.slider_quiver.setEnabled(True) self.init_quivers() else: self.btn_quiver_save.setEnabled(False) self.btn_quivers_video.setEnabled(False) self.slider_quiver.setEnabled(False) self.placeholder_quivers() def init_heatmaps(self): scale_max = helpfunctions.get_scale_maxMotion2(self.current_ohw.absMotions) #decide on which scale to use self.imshow_heatmaps = self.ax_heatmaps.imshow(self.current_ohw.absMotions[0], vmin = 0, vmax = scale_max, cmap = 'jet', interpolation = 'bilinear') self.canvas_heatmaps.draw() """ # don't add title in gui yet/ adjust size... cbar_heatmaps = self.fig_heatmaps.colorbar(self.imshow_heatmaps) cbar_heatmaps.ax.tick_params(labelsize=20) for l in cbar_heatmaps.ax.yaxis.get_ticklabels(): l.set_weight("bold") self.ax_heatmaps.set_title('Motion [µm/s]', fontsize = 16, fontweight = 'bold') """ def clear_heatmaps(self): self.ax_heatmaps.clear() self.ax_heatmaps.axis('off') self.canvas_heatmaps.draw() def placeholder_heatmaps(self): self.ax_heatmaps.text(0.5, 0.5,'no motion calculated/ loaded', size=16, ha='center', va='center', backgroundcolor='indianred', color='w') self.canvas_heatmaps.draw() def init_quivers(self): blockwidth = self.current_ohw.analysis_meta["MV_parameters"]["blockwidth"] microns_per_px = self.current_ohw.videometa["microns_per_px"] scalingfactor = self.current_ohw.analysis_meta["scalingfactor"] scale_max = helpfunctions.get_scale_maxMotion2(self.current_ohw.absMotions) skipquivers = int(self.parent.config["DEFAULT QUIVER SETTINGS"]['quiver_density']) # store in ohw object! distance_between_arrows = blockwidth * skipquivers arrowscale = 1 / (distance_between_arrows / scale_max) #self.MotionCoordinatesX, self.MotionCoordinatesY = np.meshgrid(np.arange(blockwidth/2, self.current_ohw.scaledImageStack.shape[2]-blockwidth/2, blockwidth)+1, np.arange(blockwidth/2, self.current_ohw.scaledImageStack.shape[1]-blockwidth/2+1, blockwidth)) #changed arange range, double check! self.qslice=(slice(None,None,skipquivers),slice(None,None,skipquivers)) qslice = self.qslice self.imshow_quivers = self.ax_quivers.imshow( self.current_ohw.analysisImageStack[0], cmap = "gray", vmin = self.current_ohw.videometa["Blackval"], vmax = self.current_ohw.videometa["Whiteval"]) self.quiver_quivers = self.ax_quivers.quiver( self.current_ohw.MotionCoordinatesX[qslice], self.current_ohw.MotionCoordinatesY[qslice], self.current_ohw.QuiverMotionX[0][qslice], self.current_ohw.QuiverMotionY[0][qslice], pivot='mid', color='r', units ="xy", scale_units = "xy", angles = "xy", scale = arrowscale, width = 3, headwidth = 2, headlength = 3) #adjust scale to max. movement #width = blockwidth / 4? self.canvas_quivers.draw() def clear_quivers(self): self.ax_quivers.clear() self.ax_quivers.axis('off') self.canvas_quivers.draw() def placeholder_quivers(self): self.ax_quivers.text(0.5, 0.5,'no motion + video calculated/ loaded', size=16, ha='center', va='center', backgroundcolor='indianred', color='w') self.canvas_quivers.draw() def slider_quiver_valueChanged(self): frame = self.slider_quiver.value() time = round(frame / self.current_ohw.videometa["fps"], 3) self.updateQuiver(frame) self.label_quiver_result.setText('Quiverplot of frame ' + str(frame) + ' at t = ' + str(time) + ' s') def slider_heatmaps_valueChanged(self): frame = self.slider_heatmaps.value() time = round(frame / self.current_ohw.videometa["fps"], 3) self.updateHeatMap(frame) self.label_heatmap_result.setText('Heatmap of frame ' + str(frame) + ' at t = ' + str(time) + ' s') def updateQuiver(self, frame): #callback when slider is moved self.imshow_quivers.set_data(self.current_ohw.analysisImageStack[frame]) #introduce a displayImageStack here? self.quiver_quivers.set_UVC(self.current_ohw.QuiverMotionX[frame][self.qslice], self.current_ohw.QuiverMotionY[frame][self.qslice]) self.canvas_quivers.draw() def updateHeatMap(self, frame): #callback when slider is moved self.imshow_heatmaps.set_data(self.current_ohw.absMotions[frame]) self.canvas_heatmaps.draw() def updateQuiverBrightness(self,vmin,vmax): self.imshow_quivers.set_clim(vmin=vmin, vmax=vmax) self.canvas_quivers.draw() def on_saveQuivervideo(self): """ saves the quivervideo """ #reset the color of success-button #self.button_succeed_quivers.setStyleSheet("background-color: IndianRed") #self.progressbar_quivers.setValue(0) """ if self.quiver_settings['one_view']: #export one view quivers save_quiver1_thread = self.current_ohw.save_quiver_thread(singleframe = False, skipquivers = int(self.quiver_settings['quiver_density']), t_cut=float(self.quiver_settings['video_length'])) save_quiver1_thread.start() self.progressbar_quivers.setRange(0,0) save_quiver1_thread.finished.connect(self.finish_saveQuivervideo) if self.quiver_settings['three_views']: #export three views quivers save_quiver3_thread = self.current_ohw.save_quivervid3_thread(skipquivers = int(self.quiver_settings['quiver_density']), t_cut=float(self.quiver_settings['video_length'])) save_quiver3_thread.start() self.progressbar_quivers.setRange(0,0) save_quiver3_thread.finished.connect(self.finish_saveQuivervideo) """ save_quiver_thread = self.current_ohw.save_quiver3_thread(singleframe = False, skipquivers = 4) save_quiver_thread.start() self.progressbar_quivers.setRange(0,0) save_quiver_thread.finished.connect(self.finish_saveQuivervideo) def finish_saveQuivervideo(self): self.progressbar_quivers.setRange(0,1) self.progressbar_quivers.setValue(1) helpfunctions.msgbox(self, 'Quiver was saved successfully') #self.button_succeed_quivers.setStyleSheet("background-color: YellowGreen") def on_saveQuiver(self): singleframe = int(self.slider_quiver.value()) """ #save the different views if chosen by the user if self.quiver_settings['one_view']: self.current_ohw.save_quiver(singleframe = singleframe, skipquivers = int(self.quiver_settings['quiver_density'])) if self.quiver_settings['three_views']: self.current_ohw.save_quivervid3(singleframe = singleframe, skipquivers = int(self.quiver_settings['quiver_density'])) """ self.current_ohw.save_quiver3(singleframe = singleframe) helpfunctions.msgbox(self, 'Quiver of frame ' + str(singleframe) + ' was saved successfully') def on_saveHeatmapvideo(self): """ saves the heatmpavideo """ self.progressbar_heatmaps.setValue(0) save_heatmap_thread = self.current_ohw.save_heatmap_thread(singleframe = False) save_heatmap_thread.start() self.progressbar_heatmaps.setRange(0,0) save_heatmap_thread.finished.connect(self.finish_saveHeatmapvideo) def finish_saveHeatmapvideo(self): self.progressbar_heatmaps.setRange(0,1) self.progressbar_heatmaps.setValue(1) helpfunctions.msgbox(self, 'Heatmap video was saved successfully') def on_saveHeatmap(self): """ saves the selected frame (singleframe = framenumber) """ singleframe=self.slider_heatmaps.value() self.current_ohw.save_heatmap(singleframe = singleframe) helpfunctions.msgbox(self, 'Heatmap of frame ' + str(singleframe) + ' was saved successfully')
48.02973
301
0.670643
fddae63d2f96384c2c2c0d53a64ecd4ad8c9a4c8
2,025
py
Python
ludwig/data/dataframe/modin.py
dantreiman/ludwig
daeffd21f9eef524afb2037763abd07a93228c2a
[ "Apache-2.0" ]
7,739
2019-02-11T14:06:31.000Z
2020-12-16T18:30:29.000Z
ludwig/data/dataframe/modin.py
dantreiman/ludwig
daeffd21f9eef524afb2037763abd07a93228c2a
[ "Apache-2.0" ]
769
2019-02-11T16:13:20.000Z
2020-12-16T17:26:11.000Z
ludwig/data/dataframe/modin.py
dantreiman/ludwig
daeffd21f9eef524afb2037763abd07a93228c2a
[ "Apache-2.0" ]
975
2019-02-11T15:55:54.000Z
2020-12-14T21:45:39.000Z
#! /usr/bin/env python # Copyright (c) 2022 Predibase, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import modin.pandas as pd import numpy as np from ludwig.data.dataframe.base import DataFrameEngine class ModinEngine(DataFrameEngine): def __init__(self, **kwargs): super().__init__() def df_like(self, df, proc_cols): # df argument unused for pandas, which can instantiate df directly return pd.DataFrame(proc_cols) def parallelize(self, data): return data def persist(self, data): return data def compute(self, data): return data def from_pandas(self, df): return df def map_objects(self, series, map_fn, meta=None): return series.map(map_fn) def map_partitions(self, series, map_fn, meta=None): return map_fn(series) def apply_objects(self, df, apply_fn, meta=None): return df.apply(apply_fn, axis=1) def reduce_objects(self, series, reduce_fn): return reduce_fn(series) def to_parquet(self, df, path): df.to_parquet(path, engine="pyarrow") def to_ray_dataset(self, df): from ray.data import from_modin return from_modin(df) @property def array_lib(self): return np @property def df_lib(self): return pd @property def partitioned(self): return False def set_parallelism(self, parallelism): pass
26.298701
80
0.652346
f08ca06a07e69c6e68f6891baa43317a399765d3
465
py
Python
subscription/migrations/0012_auto_20200603_1405.py
BuildForSDG/dijiElimu
514a90d6f0480516aa209891224cf9dfe6be1607
[ "MIT" ]
null
null
null
subscription/migrations/0012_auto_20200603_1405.py
BuildForSDG/dijiElimu
514a90d6f0480516aa209891224cf9dfe6be1607
[ "MIT" ]
20
2020-05-12T12:11:01.000Z
2022-03-12T00:33:12.000Z
subscription/migrations/0012_auto_20200603_1405.py
BuildForSDG/dijiElimu
514a90d6f0480516aa209891224cf9dfe6be1607
[ "MIT" ]
4
2020-05-06T03:57:04.000Z
2020-05-20T06:30:28.000Z
# Generated by Django 3.0.6 on 2020-06-03 14:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('subscription', '0011_auto_20200603_1304'), ] operations = [ migrations.RemoveField( model_name='subscription', name='subscribed_courses', ), migrations.RemoveField( model_name='subscription', name='subscribers', ), ]
21.136364
52
0.591398
5c07d1c66d8bb22472b2bc26c85d0702f272fcd1
3,377
py
Python
app/main/views.py
candycrushpro/Pitches
9224e9ecc11ab673d8478b5bcd7cec3ed6116013
[ "MIT" ]
null
null
null
app/main/views.py
candycrushpro/Pitches
9224e9ecc11ab673d8478b5bcd7cec3ed6116013
[ "MIT" ]
null
null
null
app/main/views.py
candycrushpro/Pitches
9224e9ecc11ab673d8478b5bcd7cec3ed6116013
[ "MIT" ]
2
2019-07-02T10:36:41.000Z
2019-09-21T13:53:49.000Z
from flask import render_template,request,redirect,url_for, abort from . import main from ..models import User, Pitch, Category, Vote, Comment from flask_login import login_required, current_user from .forms import UpdateProfile, PitchForm, CommentForm, CategoryForm from .. import db, photos #Views @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' category = Category.get_categories() return render_template('index.html', category = category) @main.route('/add/category', methods=['GET','POST']) @login_required def new_category(): ''' View new group route function that returns a page with a form to create a category ''' form = CategoryForm() if form.validate_on_submit(): name = form.name.data new_category = Category(name=name) new_category.save_category() return redirect(url_for('.index')) title = 'New category' return render_template('new_category.html', category_form = form,title=title) @main.route('/categories/<int:id>') def category(id): category_ = Category.query.get(id) pitches = Pitch.query.filter_by(category=category_.id).all() # pitches=Pitch.get_pitches(id) # title = f'{category.name} page' return render_template('category.html', pitches=pitches, category=category_) #Route for adding a new pitch @main.route('/categories/view_pitch/add/<int:id>', methods=['GET', 'POST']) @login_required def new_pitch(id): ''' Function to check Pitches form and fetch data from the fields ''' form = PitchForm() category = Category.query.filter_by(id=id).first() if category is None: abort(404) if form.validate_on_submit(): content = form.content.data new_pitch= Pitch(content=content,category= category.id,user_id=current_user.id) new_pitch.save_pitch() return redirect(url_for('.category', id=category.id)) title = 'New Pitch' return render_template('new_pitch.html', title = title, pitch_form = form, category = category) #viewing a Pitch with its comments @main.route('/categories/view_pitch/<int:id>', methods=['GET', 'POST']) @login_required def view_pitch(id): ''' Function the returns a single pitch for comment to be added ''' print(id) pitches = Pitch.query.get(id) # pitches = P 2itch.query.filter_by(id=id).all() if pitches is None: abort(404) # comment = Comments.get_comments(id) return render_template('pitch.html', pitches=pitches, comment=comment, category_id=id) @main.route('/user/<uname>/update/pic', methods = ['POST']) @login_required def profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile', uname = user.username)) if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname)) return render_template("profile/profile.html", user = user)
29.112069
99
0.66716
1259f27d2880e8183704da490a9cf5f53f82d1bf
1,521
py
Python
bifrost/registry.py
snek-shipyard/wagtai-bifrost
2a32467c922110aff5b79edaf84f38ee9f684369
[ "Unlicense", "MIT" ]
null
null
null
bifrost/registry.py
snek-shipyard/wagtai-bifrost
2a32467c922110aff5b79edaf84f38ee9f684369
[ "Unlicense", "MIT" ]
3
2021-01-17T17:58:01.000Z
2021-02-19T09:15:15.000Z
bifrost/registry.py
snek-shipyard/wagtail-bifrost
2a32467c922110aff5b79edaf84f38ee9f684369
[ "MIT", "Unlicense" ]
1
2021-04-27T12:46:09.000Z
2021-04-27T12:46:09.000Z
class RegistryItem(dict): @property def types(self) -> tuple: return tuple(self.values()) class Registry: apps = [] queries = [] mutations = [] subscriptions = [] pages = RegistryItem() documents = RegistryItem() images = RegistryItem() snippets = RegistryItem() streamfield_blocks = RegistryItem() django_models = RegistryItem() settings = RegistryItem() forms = RegistryItem() # The items in the registry that should be lazy loaded. lazy_types = ( "pages", "documents", "images", "snippets", "django_models", "settings", ) # Internal use only, do not add to .models method schema = [] @property def class_models(self) -> dict: models: dict = {} models.update(self.pages) models.update(self.documents) models.update(self.images) models.update(self.snippets) models.update(self.django_models) models.update(self.settings) models.update(self.forms) return models @property def models(self) -> dict: models: dict = {} models.update(self.pages) models.update(self.documents) models.update(self.images) models.update(self.snippets) models.update(self.streamfield_blocks) models.update(self.django_models) models.update(self.settings) models.update(self.forms) return models # Singleton Registry registry = Registry()
24.532258
59
0.608153
cdf329a03e5f44f791a544ec582d1c2894188c79
21,924
py
Python
tests/__init__.py
DarioLodeiros/doodba
5f2d5a0c475f6877b6bfffd850a3470ee9955e30
[ "Apache-2.0" ]
null
null
null
tests/__init__.py
DarioLodeiros/doodba
5f2d5a0c475f6877b6bfffd850a3470ee9955e30
[ "Apache-2.0" ]
null
null
null
tests/__init__.py
DarioLodeiros/doodba
5f2d5a0c475f6877b6bfffd850a3470ee9955e30
[ "Apache-2.0" ]
1
2022-01-02T00:46:47.000Z
2022-01-02T00:46:47.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Run tests for this base image. Each test must be a valid docker-compose.yaml file with a ``odoo`` service. """ import logging import unittest from itertools import product from os import environ from os.path import dirname, join from subprocess import Popen logging.basicConfig(level=logging.DEBUG) DIR = dirname(__file__) ODOO_PREFIX = ("odoo", "--stop-after-init", "--workers=0") ODOO_VERSIONS = frozenset( environ.get("DOCKER_TAG", "7.0 8.0 9.0 10.0 11.0 12.0 13.0").split() ) PG_VERSIONS = frozenset(environ.get("PG_VERSIONS", "12").split()) SCAFFOLDINGS_DIR = join(DIR, "scaffoldings") GEIOP_CREDENTIALS_PROVIDED = environ.get("GEOIP_LICENSE_KEY", False) and environ.get( "GEOIP_ACCOUNT_ID", False ) # This decorator skips tests that will fail until some branches and/or addons # are migrated to the next release. It is used in situations where Doodba is # preparing the pre-release for the next version of Odoo, which hasn't been # released yet. prerelease_skip = unittest.skipIf( ODOO_VERSIONS == {"13.0"}, "Tests not supported in pre-release" ) def matrix( odoo=ODOO_VERSIONS, pg=PG_VERSIONS, odoo_skip=frozenset(), pg_skip=frozenset() ): """All possible combinations. We compute the variable matrix here instead of in ``.travis.yml`` because this generates faster builds, given the scripts found in ``hooks`` directory are already multi-version-build aware. """ return map( dict, product( product(("ODOO_MINOR",), ODOO_VERSIONS & odoo - odoo_skip), product(("DB_VERSION",), PG_VERSIONS & pg - pg_skip), ), ) class ScaffoldingCase(unittest.TestCase): def setUp(self): super().setUp() self.compose_run = ("docker-compose", "run", "--rm", "odoo") def popen(self, *args, **kwargs): """Shortcut to open a subprocess and ensure it works.""" logging.info("Subtest execution: %s", self._subtest) self.assertFalse(Popen(*args, **kwargs).wait()) def compose_test(self, workdir, sub_env, *commands): """Execute commands in a docker-compose environment. :param workdir: Path where the docker compose commands will be executed. It should contain a valid ``docker-compose.yaml`` file. :param dict sub_env: Specific environment variables that will be appended to current ones to execute the ``docker-compose`` tests. You can set in this dict a ``COMPOSE_FILE`` key to choose different docker-compose files in the same directory. :param tuple()... commands: List of commands to be tested in the odoo container. """ full_env = dict(environ, **sub_env) with self.subTest(PWD=workdir, **sub_env): try: self.popen(("docker-compose", "build"), cwd=workdir, env=full_env) for command in commands: with self.subTest(command=command): self.popen( self.compose_run + command, cwd=workdir, env=full_env ) finally: self.popen(("docker-compose", "down", "-v"), cwd=workdir, env=full_env) def test_addons_filtered(self): """Test addons filtering with ``ONLY`` keyword in ``addons.yaml``.""" project_dir = join(SCAFFOLDINGS_DIR, "dotd") for sub_env in matrix(): self.compose_test( project_dir, dict(sub_env, DBNAME="prod"), ("test", "-e", "auto/addons/web"), ("test", "-e", "auto/addons/private_addon"), ( "bash", "-xc", 'test "$(addons list -p)" == disabled_addon,private_addon', ), ("bash", "-xc", 'test "$(addons list -ip)" == private_addon'), ("bash", "-xc", "addons list -c | grep ,crm,"), # absent_addon is missing and should fail ("bash", "-xc", "! addons list -px"), # Test addon inclusion, exclusion, dependencies... ( "bash", "-xc", 'test "$(addons list -dw private_addon)" == base,dummy_addon,website', ), ( "bash", "-xc", 'test "$(addons list -dwprivate_addon -Wwebsite)" == base,dummy_addon', ), ( "bash", "-xc", 'test "$(addons list -dw private_addon -W dummy_addon)" == base,website', ), ("bash", "-xc", 'test "$(addons list -nd)" == base,iap',), ( "bash", "-xc", 'test "$(addons list --enterprise)" == make_odoo_rich', ), ) self.compose_test( project_dir, dict(sub_env, DBNAME="limited_private"), ("test", "-e", "auto/addons/web"), ("test", "!", "-e", "auto/addons/private_addon"), ("bash", "-xc", 'test -z "$(addons list -p)"'), ( "bash", "-xc", '[ "$(addons list -s. -pwfake1 -wfake2)" == fake1.fake2 ]', ), ("bash", "-xc", "! addons list -wrepeat -Wrepeat"), ("bash", "-xc", "addons list -c | grep ,crm,"), ) self.compose_test( project_dir, dict(sub_env, DBNAME="limited_core"), ("test", "!", "-e", "auto/addons/web"), ("test", "!", "-e", "auto/addons/private_addon"), ("bash", "-xc", 'test -z "$(addons list -p)"'), ("bash", "-xc", 'test "$(addons list -c)" == crm,sale'), ) # Skip Odoo versions that don't support __manifest__.py files for sub_env in matrix(odoo_skip={"7.0", "8.0", "9.0"}): self.compose_test( project_dir, dict(sub_env, DBNAME="prod"), ("bash", "-xc", 'test "$(addons list -ped)" == base,web,website'), # ``dummy_addon`` and ``private_addon`` exist ("test", "-d", "auto/addons/dummy_addon"), ("test", "-h", "auto/addons/dummy_addon"), ("test", "-f", "auto/addons/dummy_addon/__init__.py"), ("test", "-e", "auto/addons/dummy_addon"), # Addon from extra repo takes higher priority than core version ("realpath", "auto/addons/product"), ( "bash", "-xc", 'test "$(realpath auto/addons/product)" == ' "/opt/odoo/custom/src/other-doodba/odoo/src/private/product", ), ("bash", "-xc", 'test "$(addons list -e)" == dummy_addon,product'), ) self.compose_test( project_dir, dict(sub_env, DBNAME="limited_private"), ("test", "-e", "auto/addons/dummy_addon"), ("bash", "-xc", 'test "$(addons list -e)" == dummy_addon,product'), ) self.compose_test( project_dir, dict(sub_env, DBNAME="limited_core"), ("test", "-e", "auto/addons/dummy_addon"), ( "bash", "-xc", '[ "$(addons list -s. -pwfake1 -wfake2)" == fake1.fake2 ]', ), ("bash", "-xc", 'test "$(addons list -e)" == dummy_addon,product'), ("bash", "-xc", 'test "$(addons list -c)" == crm,sale'), ("bash", "-xc", 'test "$(addons list -cWsale)" == crm'), ) @prerelease_skip def test_qa(self): """Test that QA tools are in place and work as expected.""" folder = join(SCAFFOLDINGS_DIR, "settings") commands = ( ("./custom/scripts/qa-insider-test",), ("/qa/node_modules/.bin/eslint", "--version"), ("/qa/venv/bin/flake8", "--version"), ("/qa/venv/bin/pylint", "--version"), ("/qa/venv/bin/python", "--version"), ("/qa/venv/bin/python", "-c", "import pylint_odoo"), ("test", "-d", "/qa/mqt"), ) for sub_env in matrix(): self.compose_test(folder, sub_env, *commands) @prerelease_skip def test_settings(self): """Test settings are filled OK""" folder = join(SCAFFOLDINGS_DIR, "settings") commands = ( # Odoo should install ("--stop-after-init",), # Odoo settings work ("./custom/scripts/test_settings.py",), ) # Odoo 8.0 has no shell, and --load-language doesn't work fine in 9.0 for sub_env in matrix(odoo={"9.0"}): self.compose_test(folder, sub_env, *commands) # Extra tests for versions >= 10.0, that support --load-language fine commands += ( # DB was created with the correct language ( "bash", "-xc", """test "$(psql -Atqc "SELECT code FROM res_lang WHERE active = TRUE")" == es_ES""", ), ) for sub_env in matrix(odoo_skip={"7.0", "8.0", "9.0"}): self.compose_test(folder, sub_env, *commands) def test_smallest(self): """Tests for the smallest possible environment.""" liberation = 'Liberation{0}-Regular.ttf: "Liberation {0}" "Regular"' commands = ( # Must generate a configuration file ("test", "-f", "/opt/odoo/auto/odoo.conf"), ("test", "-d", "/opt/odoo/custom/src/private"), ("test", "-d", "/opt/odoo/custom/ssh"), ("addons", "list", "-cpix"), ("pg_activity", "--version"), # Default fonts must be liberation ( "bash", "-xc", """test "$(fc-match monospace)" == '{}'""".format( liberation.format("Mono") ), ), ( "bash", "-xc", """test "$(fc-match sans-serif)" == '{}'""".format( liberation.format("Sans") ), ), ( "bash", "-xc", """test "$(fc-match serif)" == '{}'""".format( liberation.format("Serif") ), ), # Must be able to install base addon ODOO_PREFIX + ("--init", "base"), # Auto updater must work ("click-odoo-update",), # Needed tools exist ("curl", "--version"), ("git", "--version"), ("pg_activity", "--version"), ("psql", "--version"), ("ssh", "-V"), ("python", "-c", "import plumbum"), # We are able to dump ("pg_dump", "-f/var/lib/odoo/prod.sql", "prod"), # Geoip should not be activated ("bash", "-xc", 'test "$(which geoipupdate)" != ""'), ("test", "!", "-e", "/usr/share/GeoIP/GeoLite2-City.mmdb"), ("bash", "-xc", "! geoipupdate"), ) smallest_dir = join(SCAFFOLDINGS_DIR, "smallest") for sub_env in matrix(odoo_skip={"7.0", "8.0"}): self.compose_test( smallest_dir, sub_env, *commands, ("python", "-c", "import watchdog") ) for sub_env in matrix(odoo={"8.0"}): self.compose_test( smallest_dir, sub_env, # Odoo <= 8.0 does not autocreate the database ("createdb",), *commands, ) def test_addons_env(self): """Test environment variables in addons.yaml""" # 7.0 is skiped because the module is absent in that branch for sub_env in matrix(odoo_skip={"7.0"}): self.compose_test( join(SCAFFOLDINGS_DIR, "addons_env"), sub_env, # check module from custom repo pattern ("test", "-d", "custom/src/misc-addons"), ("test", "-d", "custom/src/misc-addons/web_debranding"), ("test", "-e", "auto/addons/web_debranding"), # Migrations folder is only in OpenUpgrade ("test", "-e", "auto/addons/crm"), ("test", "-d", "auto/addons/crm/migrations"), ) def test_dotd(self): """Test environment with common ``*.d`` directories.""" for sub_env in matrix(): self.compose_test( join(SCAFFOLDINGS_DIR, "dotd"), sub_env, # ``custom/build.d`` was properly executed ("test", "-f", "/home/odoo/created-at-build"), # ``custom/entrypoint.d`` was properly executed ("test", "-f", "/home/odoo/created-at-entrypoint"), # ``custom/conf.d`` was properly concatenated ("grep", "test-conf", "auto/odoo.conf"), # ``custom/dependencies`` were installed ("test", "!", "-e", "/usr/sbin/sshd"), ("test", "!", "-e", "/var/lib/apt/lists/lock"), ("busybox", "whoami"), ("bash", "-xc", "echo $NODE_PATH"), ("node", "-e", "require('test-npm-install')"), ("aloha_world",), ("python", "-xc", "import Crypto; print(Crypto.__version__)"), ("sh", "-xc", "rst2html.py --version | grep 'Docutils 0.14'"), # ``requirements.txt`` from addon repos were processed ("python", "-c", "import cfssl"), # Local executable binaries found in $PATH ("sh", "-xc", "pip install --user -q flake8 && which flake8"), # Addon cleanup works correctly ("test", "!", "-e", "custom/src/private/dummy_addon"), ("test", "!", "-e", "custom/src/dummy_repo/dummy_link"), ("test", "-d", "custom/src/private/private_addon"), ("test", "-f", "custom/src/private/private_addon/__init__.py"), ("test", "-e", "auto/addons/private_addon"), # ``odoo`` command works ("odoo", "--version"), # Implicit ``odoo`` command also works ("--version",), ) # TODO Remove decorator when OCB 13.0 is released and server-tools 13.0 # has a valid module to test @prerelease_skip def test_dependencies(self): """Test dependencies installation.""" dependencies_dir = join(SCAFFOLDINGS_DIR, "dependencies") for sub_env in matrix(odoo_skip={"7.0"}): self.compose_test( dependencies_dir, sub_env, ("test", "!", "-f", "custom/dependencies/apt.txt"), ("test", "!", "-f", "custom/dependencies/gem.txt"), ("test", "!", "-f", "custom/dependencies/npm.txt"), ("test", "!", "-f", "custom/dependencies/pip.txt"), # It should have module_auto_update available ("test", "-d", "custom/src/server-tools/module_auto_update"), # Patched Werkzeug version ( "bash", "-xc", ( 'test "$(python -c "import werkzeug; ' 'print(werkzeug.__version__)")" == 0.14.1' ), ), # apt_build.txt ("test", "-f", "custom/dependencies/apt_build.txt"), ("test", "!", "-e", "/usr/sbin/sshd"), # apt-without-sequence.txt ("test", "-f", "custom/dependencies/apt-without-sequence.txt"), ("test", "!", "-e", "/bin/busybox"), # 070-apt-bc.txt ("test", "-f", "custom/dependencies/070-apt-bc.txt"), ("test", "-e", "/usr/bin/bc"), # 150-npm-aloha_world-install.txt ( "test", "-f", ("custom/dependencies/" "150-npm-aloha_world-install.txt"), ), ("node", "-e", "require('test-npm-install')"), # 200-pip-without-ext ("test", "-f", "custom/dependencies/200-pip-without-ext"), ("python", "-c", "import Crypto; print(Crypto.__version__)"), ("sh", "-xc", "rst2html.py --version | grep 'Docutils 0.14'"), # 270-gem.txt ("test", "-f", "custom/dependencies/270-gem.txt"), ("aloha_world",), ) def test_modified_uids(self): """tests if we can build an image with a custom uid and gid of odoo""" uids_dir = join(SCAFFOLDINGS_DIR, "uids_1001") for sub_env in matrix(): self.compose_test( uids_dir, sub_env, # verify that odoo user has the given ids ("bash", "-xc", 'test "$(id -u)" == "1001"'), ("bash", "-xc", 'test "$(id -g)" == "1002"'), ("bash", "-xc", 'test "$(id -u -n)" == "odoo"'), # all those directories need to belong to odoo (user or group odoo) ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /var/lib/odoo)" == "odoo:odoo"', ), ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /opt/odoo/auto/addons)" == "root:odoo"', ), ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /opt/odoo/custom/src)" == "root:odoo"', ), ) def test_uids_mac_os(self): """tests if we can build an image with a custom uid and gid of odoo""" uids_dir = join(SCAFFOLDINGS_DIR, "uids_mac_os") for sub_env in matrix(): self.compose_test( uids_dir, sub_env, # verify that odoo user has the given ids ("bash", "-c", 'test "$(id -u)" == "501"'), ("bash", "-c", 'test "$(id -g)" == "20"'), ("bash", "-c", 'test "$(id -u -n)" == "odoo"'), # all those directories need to belong to odoo (user or group odoo/dialout) ( "bash", "-c", 'test "$(stat -c \'%U:%g\' /var/lib/odoo)" == "odoo:20"', ), ( "bash", "-c", 'test "$(stat -c \'%U:%g\' /opt/odoo/auto/addons)" == "root:20"', ), ( "bash", "-c", 'test "$(stat -c \'%U:%g\' /opt/odoo/custom/src)" == "root:20"', ), ) def test_default_uids(self): uids_dir = join(SCAFFOLDINGS_DIR, "uids_default") for sub_env in matrix(): self.compose_test( uids_dir, sub_env, # verify that odoo user has the given ids ("bash", "-xc", 'test "$(id -u)" == "1000"'), ("bash", "-xc", 'test "$(id -g)" == "1000"'), ("bash", "-xc", 'test "$(id -u -n)" == "odoo"'), # all those directories need to belong to odoo (user or group odoo) ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /var/lib/odoo)" == "odoo:odoo"', ), ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /opt/odoo/auto/addons)" == "root:odoo"', ), ( "bash", "-xc", 'test "$(stat -c \'%U:%G\' /opt/odoo/custom/src)" == "root:odoo"', ), ) @unittest.skipIf( not GEIOP_CREDENTIALS_PROVIDED, "GeoIP credentials missing in environment" ) def test_geoip(self): geoip_dir = join(SCAFFOLDINGS_DIR, "geoip") for sub_env in matrix(): self.compose_test( geoip_dir, sub_env, # verify that geoipupdate works after waiting for entrypoint to finish its update ( "bash", "-c", "timeout 60s bash -c 'while (ls -l /proc/*/exe 2>&1 | grep geoipupdate); do sleep 1; done' &&" " geoipupdate", ), # verify that geoip database exists after entrypoint finished its update # using ls and /proc because ps is missing in image for 13.0 ( "bash", "-c", "timeout 60s bash -c 'while (ls -l /proc/*/exe 2>&1 | grep geoipupdate); do sleep 1; done' &&" " test -e /opt/odoo/auto/geoip/GeoLite2-City.mmdb", ), # verify that geoip database is configured ( "grep", "-R", "geoip_database = /opt/odoo/auto/geoip/GeoLite2-City.mmdb", "/opt/odoo/auto/odoo.conf", ), ) if __name__ == "__main__": unittest.main()
41.522727
114
0.456623
45c9abb029acf9285f5483fb5099b72633903410
730
py
Python
test/aio/test_shutdown_event.py
jayvdb/i3ipc-python
dc2144418499eebbc1aa08f224fbcdfd76670d62
[ "BSD-3-Clause" ]
null
null
null
test/aio/test_shutdown_event.py
jayvdb/i3ipc-python
dc2144418499eebbc1aa08f224fbcdfd76670d62
[ "BSD-3-Clause" ]
null
null
null
test/aio/test_shutdown_event.py
jayvdb/i3ipc-python
dc2144418499eebbc1aa08f224fbcdfd76670d62
[ "BSD-3-Clause" ]
null
null
null
from .ipctest import IpcTest import pytest import asyncio class TestShutdownEvent(IpcTest): events = [] def restart_func(self, i3): asyncio.ensure_future(i3.command('restart')) def on_shutdown(self, i3, e): self.events.append(e) if len(self.events) == 1: i3._loop.call_later(0.1, self.restart_func, i3) elif len(self.events) == 2: i3.main_quit() @pytest.mark.asyncio async def test_shutdown_event_reconnect(self, i3): i3._auto_reconnect = True self.events = [] i3.on('shutdown::restart', self.on_shutdown) i3._loop.call_later(0.1, self.restart_func, i3) await i3.main() assert len(self.events) == 2
25.172414
59
0.621918
77a0e594663bf536c69ff41ab5b192020d45bf9d
9,480
py
Python
tornado/test/log_test.py
bgerrity/tornado
208672f3bf6cbb7e37f54c356e02a71ca29f1e02
[ "Apache-2.0" ]
15,056
2015-01-01T03:08:16.000Z
2022-03-31T14:44:56.000Z
tornado/test/log_test.py
bgerrity/tornado
208672f3bf6cbb7e37f54c356e02a71ca29f1e02
[ "Apache-2.0" ]
1,645
2015-01-05T08:15:32.000Z
2022-03-24T20:30:10.000Z
tornado/test/log_test.py
bgerrity/tornado
208672f3bf6cbb7e37f54c356e02a71ca29f1e02
[ "Apache-2.0" ]
5,098
2015-01-02T15:43:36.000Z
2022-03-30T06:04:43.000Z
# # Copyright 2012 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import glob import logging import os import re import subprocess import sys import tempfile import unittest import warnings from tornado.escape import utf8 from tornado.log import LogFormatter, define_logging_options, enable_pretty_logging from tornado.options import OptionParser from tornado.util import basestring_type @contextlib.contextmanager def ignore_bytes_warning(): with warnings.catch_warnings(): warnings.simplefilter("ignore", category=BytesWarning) yield class LogFormatterTest(unittest.TestCase): # Matches the output of a single logging call (which may be multiple lines # if a traceback was included, so we use the DOTALL option) LINE_RE = re.compile( b"(?s)\x01\\[E [0-9]{6} [0-9]{2}:[0-9]{2}:[0-9]{2} log_test:[0-9]+\\]\x02 (.*)" ) def setUp(self): self.formatter = LogFormatter(color=False) # Fake color support. We can't guarantee anything about the $TERM # variable when the tests are run, so just patch in some values # for testing. (testing with color off fails to expose some potential # encoding issues from the control characters) self.formatter._colors = {logging.ERROR: u"\u0001"} self.formatter._normal = u"\u0002" # construct a Logger directly to bypass getLogger's caching self.logger = logging.Logger("LogFormatterTest") self.logger.propagate = False self.tempdir = tempfile.mkdtemp() self.filename = os.path.join(self.tempdir, "log.out") self.handler = self.make_handler(self.filename) self.handler.setFormatter(self.formatter) self.logger.addHandler(self.handler) def tearDown(self): self.handler.close() os.unlink(self.filename) os.rmdir(self.tempdir) def make_handler(self, filename): # Base case: default setup without explicit encoding. # In python 2, supports arbitrary byte strings and unicode objects # that contain only ascii. In python 3, supports ascii-only unicode # strings (but byte strings will be repr'd automatically). return logging.FileHandler(filename) def get_output(self): with open(self.filename, "rb") as f: line = f.read().strip() m = LogFormatterTest.LINE_RE.match(line) if m: return m.group(1) else: raise Exception("output didn't match regex: %r" % line) def test_basic_logging(self): self.logger.error("foo") self.assertEqual(self.get_output(), b"foo") def test_bytes_logging(self): with ignore_bytes_warning(): # This will be "\xe9" on python 2 or "b'\xe9'" on python 3 self.logger.error(b"\xe9") self.assertEqual(self.get_output(), utf8(repr(b"\xe9"))) def test_utf8_logging(self): with ignore_bytes_warning(): self.logger.error(u"\u00e9".encode("utf8")) if issubclass(bytes, basestring_type): # on python 2, utf8 byte strings (and by extension ascii byte # strings) are passed through as-is. self.assertEqual(self.get_output(), utf8(u"\u00e9")) else: # on python 3, byte strings always get repr'd even if # they're ascii-only, so this degenerates into another # copy of test_bytes_logging. self.assertEqual(self.get_output(), utf8(repr(utf8(u"\u00e9")))) def test_bytes_exception_logging(self): try: raise Exception(b"\xe9") except Exception: self.logger.exception("caught exception") # This will be "Exception: \xe9" on python 2 or # "Exception: b'\xe9'" on python 3. output = self.get_output() self.assertRegex(output, br"Exception.*\\xe9") # The traceback contains newlines, which should not have been escaped. self.assertNotIn(br"\n", output) class UnicodeLogFormatterTest(LogFormatterTest): def make_handler(self, filename): # Adding an explicit encoding configuration allows non-ascii unicode # strings in both python 2 and 3, without changing the behavior # for byte strings. return logging.FileHandler(filename, encoding="utf8") def test_unicode_logging(self): self.logger.error(u"\u00e9") self.assertEqual(self.get_output(), utf8(u"\u00e9")) class EnablePrettyLoggingTest(unittest.TestCase): def setUp(self): super().setUp() self.options = OptionParser() define_logging_options(self.options) self.logger = logging.Logger("tornado.test.log_test.EnablePrettyLoggingTest") self.logger.propagate = False def test_log_file(self): tmpdir = tempfile.mkdtemp() try: self.options.log_file_prefix = tmpdir + "/test_log" enable_pretty_logging(options=self.options, logger=self.logger) self.assertEqual(1, len(self.logger.handlers)) self.logger.error("hello") self.logger.handlers[0].flush() filenames = glob.glob(tmpdir + "/test_log*") self.assertEqual(1, len(filenames)) with open(filenames[0]) as f: self.assertRegex(f.read(), r"^\[E [^]]*\] hello$") finally: for handler in self.logger.handlers: handler.flush() handler.close() for filename in glob.glob(tmpdir + "/test_log*"): os.unlink(filename) os.rmdir(tmpdir) def test_log_file_with_timed_rotating(self): tmpdir = tempfile.mkdtemp() try: self.options.log_file_prefix = tmpdir + "/test_log" self.options.log_rotate_mode = "time" enable_pretty_logging(options=self.options, logger=self.logger) self.logger.error("hello") self.logger.handlers[0].flush() filenames = glob.glob(tmpdir + "/test_log*") self.assertEqual(1, len(filenames)) with open(filenames[0]) as f: self.assertRegex(f.read(), r"^\[E [^]]*\] hello$") finally: for handler in self.logger.handlers: handler.flush() handler.close() for filename in glob.glob(tmpdir + "/test_log*"): os.unlink(filename) os.rmdir(tmpdir) def test_wrong_rotate_mode_value(self): try: self.options.log_file_prefix = "some_path" self.options.log_rotate_mode = "wrong_mode" self.assertRaises( ValueError, enable_pretty_logging, options=self.options, logger=self.logger, ) finally: for handler in self.logger.handlers: handler.flush() handler.close() class LoggingOptionTest(unittest.TestCase): """Test the ability to enable and disable Tornado's logging hooks.""" def logs_present(self, statement, args=None): # Each test may manipulate and/or parse the options and then logs # a line at the 'info' level. This level is ignored in the # logging module by default, but Tornado turns it on by default # so it is the easiest way to tell whether tornado's logging hooks # ran. IMPORT = "from tornado.options import options, parse_command_line" LOG_INFO = 'import logging; logging.info("hello")' program = ";".join([IMPORT, statement, LOG_INFO]) proc = subprocess.Popen( [sys.executable, "-c", program] + (args or []), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdout, stderr = proc.communicate() self.assertEqual(proc.returncode, 0, "process failed: %r" % stdout) return b"hello" in stdout def test_default(self): self.assertFalse(self.logs_present("pass")) def test_tornado_default(self): self.assertTrue(self.logs_present("parse_command_line()")) def test_disable_command_line(self): self.assertFalse(self.logs_present("parse_command_line()", ["--logging=none"])) def test_disable_command_line_case_insensitive(self): self.assertFalse(self.logs_present("parse_command_line()", ["--logging=None"])) def test_disable_code_string(self): self.assertFalse( self.logs_present('options.logging = "none"; parse_command_line()') ) def test_disable_code_none(self): self.assertFalse( self.logs_present("options.logging = None; parse_command_line()") ) def test_disable_override(self): # command line trumps code defaults self.assertTrue( self.logs_present( "options.logging = None; parse_command_line()", ["--logging=info"] ) )
38.536585
87
0.633017
56e6569552ee7c0481a269938dd7e39f713278e7
6,278
py
Python
src/deepymod/training/sparsity_scheduler.py
remykusters/DeePyMoD
c53ce939c5e6a5f0207b042d8d42bc0197d66073
[ "MIT" ]
null
null
null
src/deepymod/training/sparsity_scheduler.py
remykusters/DeePyMoD
c53ce939c5e6a5f0207b042d8d42bc0197d66073
[ "MIT" ]
null
null
null
src/deepymod/training/sparsity_scheduler.py
remykusters/DeePyMoD
c53ce939c5e6a5f0207b042d8d42bc0197d66073
[ "MIT" ]
null
null
null
""" Contains classes that schedule when the sparsity mask should be applied """ import torch import numpy as np class Periodic: """Periodically applies sparsity every periodicity iterations after initial_epoch. """ def __init__(self, periodicity=50, initial_iteration=1000): """Periodically applies sparsity every periodicity iterations after initial_epoch. Args: periodicity (int): after initial_iterations, apply sparsity mask per periodicity epochs initial_iteration (int): wait initial_iterations before applying sparsity """ self.periodicity = periodicity self.initial_iteration = initial_iteration def __call__(self, iteration, loss, model, optimizer): # Update periodically apply_sparsity = False # we overwrite it if we need to update if (iteration - self.initial_iteration) % self.periodicity == 0: apply_sparsity = True return apply_sparsity class TrainTest: """Early stops the training if validation loss doesn't improve after a given patience. Note that periodicity should be multitude of write_iterations.""" def __init__(self, patience=200, delta=1e-5, path='checkpoint.pt'): """Early stops the training if validation loss doesn't improve after a given patience. Note that periodicity should be multitude of write_iterations. Args: patience (int): wait patience epochs before checking TrainTest delta (float): desired accuracy path (str): pathname where to store the savepoints, must have ".pt" extension """ self.path = path self.patience = patience self.delta = delta self.best_iteration = None self.best_loss = None def __call__(self, iteration, loss, model, optimizer): apply_sparsity = False # we overwrite it if we need to update # Initialize if doesnt exist yet if self.best_loss is None: self.best_loss = loss self.best_iteration = iteration self.save_checkpoint(model, optimizer) # If it didnt improve, check if we're past patience elif (self.best_loss - loss) < self.delta: if (iteration - self.best_iteration) >= self.patience: # We reload the model to the best point and reset the scheduler self.load_checkpoint(model, optimizer) # reload model to best point self.best_loss = None self.best_iteration = None apply_sparsity = True # If not, keep going else: self.best_loss = loss self.best_iteration = iteration self.save_checkpoint(model, optimizer) return apply_sparsity def save_checkpoint(self, model, optimizer): '''Saves model when validation loss decrease.''' checkpoint_path = self.path + 'checkpoint.pt' torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),}, checkpoint_path) def load_checkpoint(self, model, optimizer): '''Loads model from disk''' checkpoint_path = self.path + 'checkpoint.pt' checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) class TrainTestPeriodic: """Early stops the training if validation loss doesn't improve after a given patience. Note that periodicity should be multitude of write_iterations.""" def __init__(self, periodicity=50, patience=200, delta=1e-5, path='checkpoint.pt'): """Early stops the training if validation loss doesn't improve after a given patience. Note that periodicity should be multitude of write_iterations. Args: periodicity (int): apply sparsity mask per periodicity epochs patience (int): wait patience epochs before checking TrainTest delta (float): desired accuracy path (str): pathname where to store the savepoints, must have ".pt" extension""" self.path = path self.patience = patience self.delta = delta self.periodicity = periodicity self.best_iteration = None self.best_loss = None self.periodic = False def __call__(self, iteration, loss, model, optimizer): # Update periodically if we have updated once apply_sparsity = False # we overwrite it if we need to update if self.periodic is True: if (iteration - self.best_iteration) % self.periodicity == 0: apply_sparsity = True # Check for improvements if we havent updated yet. # Initialize if doesnt exist yet elif self.best_loss is None: self.best_loss = loss self.best_iteration = iteration self.save_checkpoint(model, optimizer) # If it didnt improve, check if we're past patience elif (self.best_loss - loss) < self.delta: if (iteration - self.best_iteration) >= self.patience: self.load_checkpoint(model, optimizer) # reload model to best point self.periodic = True # switch to periodic regime self.best_iteration = iteration # because the iterator doesnt reset apply_sparsity = True # If not, keep going else: self.best_loss = loss self.best_iteration = iteration self.save_checkpoint(model, optimizer) return apply_sparsity def save_checkpoint(self, model, optimizer): '''Saves model when validation loss decrease.''' checkpoint_path = self.path + 'checkpoint.pt' torch.save({'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(),}, checkpoint_path) def load_checkpoint(self, model, optimizer): '''Loads model from disk''' checkpoint_path = self.path + 'checkpoint.pt' checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
42.707483
126
0.651959
59269461d9f3658566fe51f42861ecdc66716467
8,586
py
Python
sympy/polys/orderings.py
MartinThoma/sympy
009d0031bec7222ffa472e52148a2b4e441cd3a5
[ "BSD-3-Clause" ]
2
2019-05-18T22:36:49.000Z
2019-05-24T05:56:16.000Z
sympy/polys/orderings.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
1
2020-04-22T12:45:26.000Z
2020-04-22T12:45:26.000Z
sympy/polys/orderings.py
mmelotti/sympy
bea29026d27cc50c2e6a5501b6a70a9629ed3e18
[ "BSD-3-Clause" ]
3
2021-02-16T16:40:49.000Z
2022-03-07T18:28:41.000Z
"""Definitions of monomial orderings. """ from __future__ import print_function, division from typing import Optional __all__ = ["lex", "grlex", "grevlex", "ilex", "igrlex", "igrevlex"] from sympy.core import Symbol from sympy.core.compatibility import iterable class MonomialOrder(object): """Base class for monomial orderings. """ alias = None # type: Optional[str] is_global = None # type: Optional[bool] is_default = False def __repr__(self): return self.__class__.__name__ + "()" def __str__(self): return self.alias def __call__(self, monomial): raise NotImplementedError def __eq__(self, other): return self.__class__ == other.__class__ def __hash__(self): return hash(self.__class__) def __ne__(self, other): return not (self == other) class LexOrder(MonomialOrder): """Lexicographic order of monomials. """ alias = 'lex' is_global = True is_default = True def __call__(self, monomial): return monomial class GradedLexOrder(MonomialOrder): """Graded lexicographic order of monomials. """ alias = 'grlex' is_global = True def __call__(self, monomial): return (sum(monomial), monomial) class ReversedGradedLexOrder(MonomialOrder): """Reversed graded lexicographic order of monomials. """ alias = 'grevlex' is_global = True def __call__(self, monomial): return (sum(monomial), tuple(reversed([-m for m in monomial]))) class ProductOrder(MonomialOrder): """ A product order built from other monomial orders. Given (not necessarily total) orders O1, O2, ..., On, their product order P is defined as M1 > M2 iff there exists i such that O1(M1) = O2(M2), ..., Oi(M1) = Oi(M2), O{i+1}(M1) > O{i+1}(M2). Product orders are typically built from monomial orders on different sets of variables. ProductOrder is constructed by passing a list of pairs [(O1, L1), (O2, L2), ...] where Oi are MonomialOrders and Li are callables. Upon comparison, the Li are passed the total monomial, and should filter out the part of the monomial to pass to Oi. Examples ======== We can use a lexicographic order on x_1, x_2 and also on y_1, y_2, y_3, and their product on {x_i, y_i} as follows: >>> from sympy.polys.orderings import lex, grlex, ProductOrder >>> P = ProductOrder( ... (lex, lambda m: m[:2]), # lex order on x_1 and x_2 of monomial ... (grlex, lambda m: m[2:]) # grlex on y_1, y_2, y_3 ... ) >>> P((2, 1, 1, 0, 0)) > P((1, 10, 0, 2, 0)) True Here the exponent `2` of `x_1` in the first monomial (`x_1^2 x_2 y_1`) is bigger than the exponent `1` of `x_1` in the second monomial (`x_1 x_2^10 y_2^2`), so the first monomial is greater in the product ordering. >>> P((2, 1, 1, 0, 0)) < P((2, 1, 0, 2, 0)) True Here the exponents of `x_1` and `x_2` agree, so the grlex order on `y_1, y_2, y_3` is used to decide the ordering. In this case the monomial `y_2^2` is ordered larger than `y_1`, since for the grlex order the degree of the monomial is most important. """ def __init__(self, *args): self.args = args def __call__(self, monomial): return tuple(O(lamda(monomial)) for (O, lamda) in self.args) def __repr__(self): contents = [repr(x[0]) for x in self.args] return self.__class__.__name__ + '(' + ", ".join(contents) + ')' def __str__(self): contents = [str(x[0]) for x in self.args] return self.__class__.__name__ + '(' + ", ".join(contents) + ')' def __eq__(self, other): if not isinstance(other, ProductOrder): return False return self.args == other.args def __hash__(self): return hash((self.__class__, self.args)) @property def is_global(self): if all(o.is_global is True for o, _ in self.args): return True if all(o.is_global is False for o, _ in self.args): return False return None class InverseOrder(MonomialOrder): """ The "inverse" of another monomial order. If O is any monomial order, we can construct another monomial order iO such that `A >_{iO} B` if and only if `B >_O A`. This is useful for constructing local orders. Note that many algorithms only work with *global* orders. For example, in the inverse lexicographic order on a single variable `x`, high powers of `x` count as small: >>> from sympy.polys.orderings import lex, InverseOrder >>> ilex = InverseOrder(lex) >>> ilex((5,)) < ilex((0,)) True """ def __init__(self, O): self.O = O def __str__(self): return "i" + str(self.O) def __call__(self, monomial): def inv(l): if iterable(l): return tuple(inv(x) for x in l) return -l return inv(self.O(monomial)) @property def is_global(self): if self.O.is_global is True: return False if self.O.is_global is False: return True return None def __eq__(self, other): return isinstance(other, InverseOrder) and other.O == self.O def __hash__(self): return hash((self.__class__, self.O)) lex = LexOrder() grlex = GradedLexOrder() grevlex = ReversedGradedLexOrder() ilex = InverseOrder(lex) igrlex = InverseOrder(grlex) igrevlex = InverseOrder(grevlex) _monomial_key = { 'lex': lex, 'grlex': grlex, 'grevlex': grevlex, 'ilex': ilex, 'igrlex': igrlex, 'igrevlex': igrevlex } def monomial_key(order=None, gens=None): """ Return a function defining admissible order on monomials. The result of a call to :func:`monomial_key` is a function which should be used as a key to :func:`sorted` built-in function, to provide order in a set of monomials of the same length. Currently supported monomial orderings are: 1. lex - lexicographic order (default) 2. grlex - graded lexicographic order 3. grevlex - reversed graded lexicographic order 4. ilex, igrlex, igrevlex - the corresponding inverse orders If the ``order`` input argument is not a string but has ``__call__`` attribute, then it will pass through with an assumption that the callable object defines an admissible order on monomials. If the ``gens`` input argument contains a list of generators, the resulting key function can be used to sort SymPy ``Expr`` objects. """ if order is None: order = lex if isinstance(order, Symbol): order = str(order) if isinstance(order, str): try: order = _monomial_key[order] except KeyError: raise ValueError("supported monomial orderings are 'lex', 'grlex' and 'grevlex', got %r" % order) if hasattr(order, '__call__'): if gens is not None: def _order(expr): return order(expr.as_poly(*gens).degree_list()) return _order return order else: raise ValueError("monomial ordering specification must be a string or a callable, got %s" % order) class _ItemGetter(object): """Helper class to return a subsequence of values.""" def __init__(self, seq): self.seq = tuple(seq) def __call__(self, m): return tuple(m[idx] for idx in self.seq) def __eq__(self, other): if not isinstance(other, _ItemGetter): return False return self.seq == other.seq def build_product_order(arg, gens): """ Build a monomial order on ``gens``. ``arg`` should be a tuple of iterables. The first element of each iterable should be a string or monomial order (will be passed to monomial_key), the others should be subsets of the generators. This function will build the corresponding product order. For example, build a product of two grlex orders: >>> from sympy.polys.orderings import grlex, build_product_order >>> from sympy.abc import x, y, z, t >>> O = build_product_order((("grlex", x, y), ("grlex", z, t)), [x, y, z, t]) >>> O((1, 2, 3, 4)) ((3, (1, 2)), (7, (3, 4))) """ gens2idx = {} for i, g in enumerate(gens): gens2idx[g] = i order = [] for expr in arg: name = expr[0] var = expr[1:] def makelambda(var): return _ItemGetter(gens2idx[g] for g in var) order.append((monomial_key(name), makelambda(var))) return ProductOrder(*order)
29.709343
109
0.62765
0453a5736615075a9d61b6d2228b0f13ff961d60
1,367
py
Python
debug/compare_map/run_fpsl_cvxpy.py
gfarnadi/FairPSL
1d262b070beb3d622676cd226c4dfd8f1a8ad7d9
[ "MIT" ]
null
null
null
debug/compare_map/run_fpsl_cvxpy.py
gfarnadi/FairPSL
1d262b070beb3d622676cd226c4dfd8f1a8ad7d9
[ "MIT" ]
null
null
null
debug/compare_map/run_fpsl_cvxpy.py
gfarnadi/FairPSL
1d262b070beb3d622676cd226c4dfd8f1a8ad7d9
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os, sys SCRIPTDIR = os.path.dirname(__file__) ENGINDIR = os.path.join(SCRIPTDIR, '..', '..', 'engines') sys.path.append(os.path.abspath(ENGINDIR)) from fpsl_cvxpy import map_inference PROBLEMDIR = os.path.join(SCRIPTDIR, '..', '..', 'problems', 'paper_review') sys.path.append(os.path.abspath(PROBLEMDIR)) from grounding import ground from os.path import join as ojoin def run_model(data_path, out_path): rules, hard_rules, _, atoms = ground(data_path) results = map_inference(rules, hard_rules) reviews = atoms['review'] with open(ojoin(out_path, 'POSITIVEREVIEW.txt'), 'w') as f: for (review, paper), (vid, _) in reviews.items(): print("'%s'\t'%s'\t%f"%(review, paper, results[vid]), file=f) acceptable = atoms['acceptable'] with open(ojoin(out_path, 'ACCEPTABLE.txt'), 'w') as f: for paper, (vid, _) in acceptable.items(): print("'%s'\t%f"%(paper, results[vid]), file=f) presents = atoms['presents'] with open(ojoin(out_path, 'PRESENTS.txt'), 'w') as f: for author, (vid, _) in presents.items(): print("'%s'\t%f"%(author, results[vid]), file=f) if __name__ == '__main__': data_path = ojoin(PROBLEMDIR, 'data', '1') out_path = ojoin('output', 'fpsl_cvxpy') run_model(data_path, out_path)
32.547619
76
0.627652
b7510eabf69066f2fa55df9786d8dcfd4b2f55d2
482
py
Python
data/scripts/templates/object/building/corellia/shared_skyscraper_corellia_style_04.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/building/corellia/shared_skyscraper_corellia_style_04.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/building/corellia/shared_skyscraper_corellia_style_04.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Building() result.template = "object/building/corellia/shared_skyscraper_corellia_style_04.iff" result.attribute_template_id = -1 result.stfName("building_name","skyscraper_corellia_style_4") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
28.352941
85
0.746888
0d48752e6d0551c8d7b4615e5780d619892af268
7,040
py
Python
tests/test_preprocessing.py
stas00/Megatron-DeepSpeed
48dcee4a4dc07da855c35d3c563f8c2eec14c737
[ "MIT" ]
null
null
null
tests/test_preprocessing.py
stas00/Megatron-DeepSpeed
48dcee4a4dc07da855c35d3c563f8c2eec14c737
[ "MIT" ]
1
2021-08-08T01:48:54.000Z
2021-08-08T16:43:31.000Z
tests/test_preprocessing.py
stas00/Megatron-DeepSpeed
48dcee4a4dc07da855c35d3c563f8c2eec14c737
[ "MIT" ]
null
null
null
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import filecmp import io import json import re import os import unittest import functools from pathlib import Path from megatron.testing_utils import ( TestCasePlus, execute_subprocess_async, set_seed ) from datasets import load_dataset set_seed(42) def write_jsonl(path, lines_num=1000, line_length=1024): def get_text_line(line_length): # XXX: fix to generate line_length return "It's a wonderful world. I'm just walking on air. Talk of heaven on earth. I've got more than my share. Haven't got a care. Happy all day through. It's a wonderful world. Loving wonderful you!" with io.open(path, "w", encoding="utf-8") as f: for i in range(lines_num): rec = dict(text=get_text_line(line_length)) x = json.dumps(rec, indent=0, ensure_ascii=False) x = re.sub(r'\n', ' ', x, 0, re.M) f.write(x + "\n") @functools.lru_cache() def download_hf_dataset(dsetname): return load_dataset(dsetname) class MegDSTestPreprocessing(TestCasePlus): """ """ def setUp(self): super().setUp() def test_preprocess_data(self): src_dir = self.src_dir data_dir = f"{self.data_dir}/gpt2" output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False) # autogenerate "input.jsonl" input_path = f"{output_dir}/input.jsonl" write_jsonl(input_path) output_prefix =f"{output_dir}/test-ds" cmd = f""" python {src_dir}/tools/preprocess_data.py --input {input_path} --output-prefix {output_prefix} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {data_dir}/gpt2-tiny-merges.txt --vocab {data_dir}/gpt2-tiny-vocab.json --append-eod --workers 2 """.split() # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) for ext in ["bin", "idx"]: tgt_path = f"{output_prefix}_text_document.{ext}" self.assertTrue(Path(tgt_path).exists(), ) def compare_meg_data_files(self, tgt, ref): for ext in ["bin", "idx"]: tgt_path = f"{tgt}.{ext}" ref_path = f"{ref}.{ext}" self.assertTrue(Path(tgt_path).exists(), ) self.assertTrue(filecmp.cmp(tgt_path, ref_path, shallow=False)) def test_process_data_microsoft(self): """We want to be stable to Microsoft version.""" src_dir = self.src_dir data_dir = f"{self.data_dir}/gpt2" output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False) input_path = f"{self.tests_dir}/data/gpt2/openwebtext-1000.jsonl" output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext" cmd = f""" python {src_dir}/tools/preprocess_data.py --input {input_path} --output-prefix {output_prefix} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {data_dir}/gpt2-tiny-merges.txt --vocab {data_dir}/gpt2-tiny-vocab.json --append-eod --workers 2 """.split() # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document") def test_process_data_dist_microsoft(self): """We want to be stable to Microsoft version.""" src_dir = self.src_dir data_dir = f"{self.data_dir}/gpt2" output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False) output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext_1k" # preprocess_data_dist requires one to have already downloaded the input HF dataset. # We do that by running this script before the test. dsetname = 'stas/openwebtext-10k' download_hf_dataset(dsetname) cmd = f""" python -m torch.distributed.launch --nproc_per_node 2 {src_dir}/tools/preprocess_data_dist.py --input {dsetname} --count 1000 --output-prefix {output_prefix} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {data_dir}/gpt2-tiny-merges.txt --vocab {data_dir}/gpt2-tiny-vocab.json --append-eod """.split() # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document") def test_process_data_dist_serial_microsoft(self): """We want to be stable to Microsoft version.""" src_dir = self.src_dir data_dir = f"{self.data_dir}/gpt2" output_dir = self.get_auto_remove_tmp_dir() # "./xxx", after=False) output_prefix = f"{output_dir}/test-ds-meg-gpt2-openwebtext_1k" # preproces_data_dist requires one to have already downloaded the input HF dataset. # We do that by running this script before the test. dsetname = 'stas/openwebtext-10k' download_hf_dataset(dsetname) cmd = f""" python -m torch.distributed.launch --nproc_per_node 2 {src_dir}/tools/preprocess_data_dist.py --input {dsetname} --count 1000 --merge serial --output-prefix {output_prefix} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {data_dir}/gpt2-tiny-merges.txt --vocab {data_dir}/gpt2-tiny-vocab.json --append-eod """.split() # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) self.compare_meg_data_files(f"{output_prefix}_text_document", f"{data_dir}/meg-gpt2-openwebtext_text_document")
37.446809
208
0.613778
04f897ef9f317ce64fd61c2face3de2711041567
11,513
py
Python
docs/source/conf.py
normarivano/aiida-wannier90
9c672178195bb40dafcd3eca3e4b5004b49526d7
[ "MIT" ]
null
null
null
docs/source/conf.py
normarivano/aiida-wannier90
9c672178195bb40dafcd3eca3e4b5004b49526d7
[ "MIT" ]
null
null
null
docs/source/conf.py
normarivano/aiida-wannier90
9c672178195bb40dafcd3eca3e4b5004b49526d7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # aiida-wannier90 documentation build configuration file, created by # sphinx-quickstart on Fri Oct 10 02:14:52 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import contextlib import os import sys import time import aiida_wannier90 # -- General configuration ------------------------------------------------ on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: with contextlib.suppress(ImportError): import sphinx_rtd_theme # pylint: disable=import-error html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] try: # For AiiDA v1.1+ from aiida.manage.configuration import load_documentation_profile load_documentation_profile() except ImportError: # AiiDA versions <1.1 # This can be removed when python2 support is dropped, because there # will be no need to build the documentation with AiiDA v1.0. sys.path.append( os.path.join(os.path.split(__file__)[0], os.pardir, os.pardir) ) sys.path.append(os.path.join(os.path.split(__file__)[0], os.pardir)) os.environ['DJANGO_SETTINGS_MODULE'] = 'rtd_settings' if not on_rtd: # only import and set the theme if we're building docs locally # Load the database environment by first loading the profile and then loading the backend through the manager from aiida.manage.configuration import get_config, load_profile from aiida.manage.manager import get_manager config = get_config() load_profile(config.default_profile_name) get_manager().get_backend() else: from aiida.manage import configuration from aiida.manage.configuration import load_profile, reset_config from aiida.manage.manager import get_manager # Set the global variable to trigger shortcut behavior in `aiida.manager.configuration.load_config` configuration.IN_RT_DOC_MODE = True # First need to reset the config, because an empty one will have been loaded when `aiida` module got imported reset_config() # Load the profile: this will first load the config, which will be the dummy one for RTD purposes load_profile() # Finally load the database backend but without checking the schema because there is no actual database get_manager()._load_backend(schema_check=False) # pylint: disable=protected-access # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode', ] intersphinx_mapping = { 'python': ('https://docs.python.org/2.7', None), 'aiida': ('http://aiida_core.readthedocs.io/en/latest/', None), } nitpick_ignore = [('py:obj', 'module')] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. #~ master_doc = 'index' master_doc = 'index' # General information about the project. project = u'aiida-wannier90' # pylint: disable=redefined-builtin copyright = u'2015-{}, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and ETH Zurich\ and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland. All rights reserved.'.format( time.localtime().tm_year # pylint: disable=redefined-builtin ) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '.'.join(aiida_wannier90.__version__.split('.')[:2]) # The full version, including alpha/beta/rc tags. release = aiida_wannier90.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['doc.rst'] #~ exclude_patterns = ['index.rst'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. show_authors = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #~ html_theme = 'basicstrap' ## SET BELOW # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #~ html_theme_options = { #~ 'inner_theme': True, #~ 'inner_theme_name': 'bootswatch-darkly', #~ 'nav_fixed_top': False #~ } # Add any paths that contain custom themes here, relative to this directory. #~ html_theme_path = ["."] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "images/.png" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = "images/favicon.ico" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = False # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #~ html_show_copyright = False # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. html_use_opensearch = 'http://aiida-wannier90.readthedocs.io' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'aiida-wannier90doc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). # latex_documents = [ # ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). # man_pages = [ # ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) # texinfo_documents = [ # ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
34.163205
140
0.715365
7039b77b8baafd0af311ef808f880c223ea3f4b2
2,982
py
Python
lang/zsh.py
codecat555/codecat555-fidgetingbits_knausj_talon
62f9be0459e6631c99d58eee97054ddd970cc5f3
[ "MIT" ]
1
2020-12-30T00:18:18.000Z
2020-12-30T00:18:18.000Z
lang/zsh.py
codecat555/codecat555-fidgetingbits_knausj_talon
62f9be0459e6631c99d58eee97054ddd970cc5f3
[ "MIT" ]
null
null
null
lang/zsh.py
codecat555/codecat555-fidgetingbits_knausj_talon
62f9be0459e6631c99d58eee97054ddd970cc5f3
[ "MIT" ]
null
null
null
from talon import Context, actions ctx = Context() ctx.matches = r""" # this is largely based on bash.talon. any problems you find that aren't # explicitly in zsh functionality you may want to see if they also exist there mode: user.zsh mode: command and code.language: zsh """ @ctx.action_class("user") class UserActions: def code_operator_assignment(): actions.auto_insert(" = ") def code_operator_subtraction(): actions.auto_insert(" - ") def code_operator_subtraction_assignment(): actions.auto_insert(" -= ") def code_operator_addition(): actions.auto_insert(" + ") def code_operator_addition_assignment(): actions.auto_insert(" += ") def code_operator_multiplication(): actions.auto_insert(" * ") def code_operator_multiplication_assignment(): actions.auto_insert(" *= ") # action(user.code_operator_exponent): " ** " def code_operator_division(): actions.auto_insert(" / ") def code_operator_division_assignment(): actions.auto_insert(" /= ") def code_operator_modulo(): actions.auto_insert(" % ") def code_operator_modulo_assignment(): actions.auto_insert(" %= ") def code_operator_equal(): actions.auto_insert(" == ") def code_operator_not_equal(): actions.auto_insert(" != ") def code_operator_greater_than(): actions.auto_insert(" > ") def code_operator_greater_than_or_equal_to(): actions.auto_insert(" >= ") def code_operator_less_than(): actions.auto_insert(" < ") def code_operator_less_than_or_equal_to(): actions.auto_insert(" <= ") def code_operator_and(): actions.auto_insert(" && ") def code_operator_or(): actions.auto_insert(" || ") def code_operator_bitwise_and(): actions.auto_insert(" & ") def code_operator_bitwise_and_assignment(): actions.auto_insert(" &= ") def code_operator_bitwise_or(): actions.auto_insert(" | ") def code_operator_bitwise_or_assignment(): actions.auto_insert(" |= ") def code_operator_bitwise_exclusive_or(): actions.auto_insert(" ^ ") def code_operator_bitwise_exclusive_or_assignment(): actions.auto_insert(" ^= ") def code_operator_bitwise_left_shift(): actions.auto_insert(" << ") def code_operator_bitwise_left_shift_assignment(): actions.auto_insert(" <<= ") def code_operator_bitwise_right_shift(): actions.auto_insert(" >> ") def code_operator_bitwise_right_shift_assignment(): actions.auto_insert(" >>= ") def code_include_local(): actions.insert("source ") def code_comment(): actions.auto_insert("#") # XXX - redundant with snippets def code_state_if(): actions.insert("if [];") actions.key("left") # XXX - redundant with snippet # XXX - should use the env line instead
25.706897
78
0.65057
a892012c3fcc015e665d249161c3e79bc4338ec3
45,763
py
Python
Lib/email/message.py
pelotoncycle/cpython-fork
1ab99a0e912aac9c3f16555f23284d7e381f2f69
[ "PSF-2.0" ]
486
2016-05-28T18:51:54.000Z
2022-03-20T17:30:31.000Z
Lib/email/message.py
sky-skynet/Python3
b816507f56ee14b730b7ab52a61eb17f9eb9d815
[ "PSF-2.0" ]
40
2016-05-29T00:24:56.000Z
2020-07-13T11:56:58.000Z
Lib/email/message.py
sky-skynet/Python3
b816507f56ee14b730b7ab52a61eb17f9eb9d815
[ "PSF-2.0" ]
74
2015-05-29T17:18:53.000Z
2022-01-15T14:06:44.000Z
# Copyright (C) 2001-2007 Python Software Foundation # Author: Barry Warsaw # Contact: email-sig@python.org """Basic message object for the email package object model.""" __all__ = ['Message'] import re import uu import quopri import warnings from io import BytesIO, StringIO # Intrapackage imports from email import utils from email import errors from email._policybase import compat32 from email import charset as _charset from email._encoded_words import decode_b Charset = _charset.Charset SEMISPACE = '; ' # Regular expression that matches `special' characters in parameters, the # existence of which force quoting of the parameter value. tspecials = re.compile(r'[ \(\)<>@,;:\\"/\[\]\?=]') def _splitparam(param): # Split header parameters. BAW: this may be too simple. It isn't # strictly RFC 2045 (section 5.1) compliant, but it catches most headers # found in the wild. We may eventually need a full fledged parser. # RDM: we might have a Header here; for now just stringify it. a, sep, b = str(param).partition(';') if not sep: return a.strip(), None return a.strip(), b.strip() def _formatparam(param, value=None, quote=True): """Convenience function to format and return a key=value pair. This will quote the value if needed or if quote is true. If value is a three tuple (charset, language, value), it will be encoded according to RFC2231 rules. If it contains non-ascii characters it will likewise be encoded according to RFC2231 rules, using the utf-8 charset and a null language. """ if value is not None and len(value) > 0: # A tuple is used for RFC 2231 encoded parameter values where items # are (charset, language, value). charset is a string, not a Charset # instance. RFC 2231 encoded values are never quoted, per RFC. if isinstance(value, tuple): # Encode as per RFC 2231 param += '*' value = utils.encode_rfc2231(value[2], value[0], value[1]) return '%s=%s' % (param, value) else: try: value.encode('ascii') except UnicodeEncodeError: param += '*' value = utils.encode_rfc2231(value, 'utf-8', '') return '%s=%s' % (param, value) # BAW: Please check this. I think that if quote is set it should # force quoting even if not necessary. if quote or tspecials.search(value): return '%s="%s"' % (param, utils.quote(value)) else: return '%s=%s' % (param, value) else: return param def _parseparam(s): # RDM This might be a Header, so for now stringify it. s = ';' + str(s) plist = [] while s[:1] == ';': s = s[1:] end = s.find(';') while end > 0 and (s.count('"', 0, end) - s.count('\\"', 0, end)) % 2: end = s.find(';', end + 1) if end < 0: end = len(s) f = s[:end] if '=' in f: i = f.index('=') f = f[:i].strip().lower() + '=' + f[i+1:].strip() plist.append(f.strip()) s = s[end:] return plist def _unquotevalue(value): # This is different than utils.collapse_rfc2231_value() because it doesn't # try to convert the value to a unicode. Message.get_param() and # Message.get_params() are both currently defined to return the tuple in # the face of RFC 2231 parameters. if isinstance(value, tuple): return value[0], value[1], utils.unquote(value[2]) else: return utils.unquote(value) class Message: """Basic message object. A message object is defined as something that has a bunch of RFC 2822 headers and a payload. It may optionally have an envelope header (a.k.a. Unix-From or From_ header). If the message is a container (i.e. a multipart or a message/rfc822), then the payload is a list of Message objects, otherwise it is a string. Message objects implement part of the `mapping' interface, which assumes there is exactly one occurrence of the header per message. Some headers do in fact appear multiple times (e.g. Received) and for those headers, you must use the explicit API to set or get all the headers. Not all of the mapping methods are implemented. """ def __init__(self, policy=compat32): self.policy = policy self._headers = [] self._unixfrom = None self._payload = None self._charset = None # Defaults for multipart messages self.preamble = self.epilogue = None self.defects = [] # Default content type self._default_type = 'text/plain' def __str__(self): """Return the entire formatted message as a string. """ return self.as_string() def as_string(self, unixfrom=False, maxheaderlen=0, policy=None): """Return the entire formatted message as a string. Optional 'unixfrom', when true, means include the Unix From_ envelope header. For backward compatibility reasons, if maxheaderlen is not specified it defaults to 0, so you must override it explicitly if you want a different maxheaderlen. 'policy' is passed to the Generator instance used to serialize the mesasge; if it is not specified the policy associated with the message instance is used. If the message object contains binary data that is not encoded according to RFC standards, the non-compliant data will be replaced by unicode "unknown character" code points. """ from email.generator import Generator policy = self.policy if policy is None else policy fp = StringIO() g = Generator(fp, mangle_from_=False, maxheaderlen=maxheaderlen, policy=policy) g.flatten(self, unixfrom=unixfrom) return fp.getvalue() def __bytes__(self): """Return the entire formatted message as a bytes object. """ return self.as_bytes() def as_bytes(self, unixfrom=False, policy=None): """Return the entire formatted message as a bytes object. Optional 'unixfrom', when true, means include the Unix From_ envelope header. 'policy' is passed to the BytesGenerator instance used to serialize the message; if not specified the policy associated with the message instance is used. """ from email.generator import BytesGenerator policy = self.policy if policy is None else policy fp = BytesIO() g = BytesGenerator(fp, mangle_from_=False, policy=policy) g.flatten(self, unixfrom=unixfrom) return fp.getvalue() def is_multipart(self): """Return True if the message consists of multiple parts.""" return isinstance(self._payload, list) # # Unix From_ line # def set_unixfrom(self, unixfrom): self._unixfrom = unixfrom def get_unixfrom(self): return self._unixfrom # # Payload manipulation. # def attach(self, payload): """Add the given payload to the current payload. The current payload will always be a list of objects after this method is called. If you want to set the payload to a scalar object, use set_payload() instead. """ if self._payload is None: self._payload = [payload] else: try: self._payload.append(payload) except AttributeError: raise TypeError("Attach is not valid on a message with a" " non-multipart payload") def get_payload(self, i=None, decode=False): """Return a reference to the payload. The payload will either be a list object or a string. If you mutate the list object, you modify the message's payload in place. Optional i returns that index into the payload. Optional decode is a flag indicating whether the payload should be decoded or not, according to the Content-Transfer-Encoding header (default is False). When True and the message is not a multipart, the payload will be decoded if this header's value is `quoted-printable' or `base64'. If some other encoding is used, or the header is missing, or if the payload has bogus data (i.e. bogus base64 or uuencoded data), the payload is returned as-is. If the message is a multipart and the decode flag is True, then None is returned. """ # Here is the logic table for this code, based on the email5.0.0 code: # i decode is_multipart result # ------ ------ ------------ ------------------------------ # None True True None # i True True None # None False True _payload (a list) # i False True _payload element i (a Message) # i False False error (not a list) # i True False error (not a list) # None False False _payload # None True False _payload decoded (bytes) # Note that Barry planned to factor out the 'decode' case, but that # isn't so easy now that we handle the 8 bit data, which needs to be # converted in both the decode and non-decode path. if self.is_multipart(): if decode: return None if i is None: return self._payload else: return self._payload[i] # For backward compatibility, Use isinstance and this error message # instead of the more logical is_multipart test. if i is not None and not isinstance(self._payload, list): raise TypeError('Expected list, got %s' % type(self._payload)) payload = self._payload # cte might be a Header, so for now stringify it. cte = str(self.get('content-transfer-encoding', '')).lower() # payload may be bytes here. if isinstance(payload, str): if utils._has_surrogates(payload): bpayload = payload.encode('ascii', 'surrogateescape') if not decode: try: payload = bpayload.decode(self.get_param('charset', 'ascii'), 'replace') except LookupError: payload = bpayload.decode('ascii', 'replace') elif decode: try: bpayload = payload.encode('ascii') except UnicodeError: # This won't happen for RFC compliant messages (messages # containing only ASCII code points in the unicode input). # If it does happen, turn the string into bytes in a way # guaranteed not to fail. bpayload = payload.encode('raw-unicode-escape') if not decode: return payload if cte == 'quoted-printable': return quopri.decodestring(bpayload) elif cte == 'base64': # XXX: this is a bit of a hack; decode_b should probably be factored # out somewhere, but I haven't figured out where yet. value, defects = decode_b(b''.join(bpayload.splitlines())) for defect in defects: self.policy.handle_defect(self, defect) return value elif cte in ('x-uuencode', 'uuencode', 'uue', 'x-uue'): in_file = BytesIO(bpayload) out_file = BytesIO() try: uu.decode(in_file, out_file, quiet=True) return out_file.getvalue() except uu.Error: # Some decoding problem return bpayload if isinstance(payload, str): return bpayload return payload def set_payload(self, payload, charset=None): """Set the payload to the given value. Optional charset sets the message's default character set. See set_charset() for details. """ if hasattr(payload, 'encode'): if charset is None: self._payload = payload return if not isinstance(charset, Charset): charset = Charset(charset) payload = payload.encode(charset.output_charset) if hasattr(payload, 'decode'): self._payload = payload.decode('ascii', 'surrogateescape') else: self._payload = payload if charset is not None: self.set_charset(charset) def set_charset(self, charset): """Set the charset of the payload to a given character set. charset can be a Charset instance, a string naming a character set, or None. If it is a string it will be converted to a Charset instance. If charset is None, the charset parameter will be removed from the Content-Type field. Anything else will generate a TypeError. The message will be assumed to be of type text/* encoded with charset.input_charset. It will be converted to charset.output_charset and encoded properly, if needed, when generating the plain text representation of the message. MIME headers (MIME-Version, Content-Type, Content-Transfer-Encoding) will be added as needed. """ if charset is None: self.del_param('charset') self._charset = None return if not isinstance(charset, Charset): charset = Charset(charset) self._charset = charset if 'MIME-Version' not in self: self.add_header('MIME-Version', '1.0') if 'Content-Type' not in self: self.add_header('Content-Type', 'text/plain', charset=charset.get_output_charset()) else: self.set_param('charset', charset.get_output_charset()) if charset != charset.get_output_charset(): self._payload = charset.body_encode(self._payload) if 'Content-Transfer-Encoding' not in self: cte = charset.get_body_encoding() try: cte(self) except TypeError: # This 'if' is for backward compatibility, it allows unicode # through even though that won't work correctly if the # message is serialized. payload = self._payload if payload: try: payload = payload.encode('ascii', 'surrogateescape') except UnicodeError: payload = payload.encode(charset.output_charset) self._payload = charset.body_encode(payload) self.add_header('Content-Transfer-Encoding', cte) def get_charset(self): """Return the Charset instance associated with the message's payload. """ return self._charset # # MAPPING INTERFACE (partial) # def __len__(self): """Return the total number of headers, including duplicates.""" return len(self._headers) def __getitem__(self, name): """Get a header value. Return None if the header is missing instead of raising an exception. Note that if the header appeared multiple times, exactly which occurrence gets returned is undefined. Use get_all() to get all the values matching a header field name. """ return self.get(name) def __setitem__(self, name, val): """Set the value of a header. Note: this does not overwrite an existing header with the same field name. Use __delitem__() first to delete any existing headers. """ max_count = self.policy.header_max_count(name) if max_count: lname = name.lower() found = 0 for k, v in self._headers: if k.lower() == lname: found += 1 if found >= max_count: raise ValueError("There may be at most {} {} headers " "in a message".format(max_count, name)) self._headers.append(self.policy.header_store_parse(name, val)) def __delitem__(self, name): """Delete all occurrences of a header, if present. Does not raise an exception if the header is missing. """ name = name.lower() newheaders = [] for k, v in self._headers: if k.lower() != name: newheaders.append((k, v)) self._headers = newheaders def __contains__(self, name): return name.lower() in [k.lower() for k, v in self._headers] def __iter__(self): for field, value in self._headers: yield field def keys(self): """Return a list of all the message's header field names. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [k for k, v in self._headers] def values(self): """Return a list of all the message's header values. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [self.policy.header_fetch_parse(k, v) for k, v in self._headers] def items(self): """Get all the message's header fields and values. These will be sorted in the order they appeared in the original message, or were added to the message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. """ return [(k, self.policy.header_fetch_parse(k, v)) for k, v in self._headers] def get(self, name, failobj=None): """Get a header value. Like __getitem__() but return failobj instead of None when the field is missing. """ name = name.lower() for k, v in self._headers: if k.lower() == name: return self.policy.header_fetch_parse(k, v) return failobj # # "Internal" methods (public API, but only intended for use by a parser # or generator, not normal application code. # def set_raw(self, name, value): """Store name and value in the model without modification. This is an "internal" API, intended only for use by a parser. """ self._headers.append((name, value)) def raw_items(self): """Return the (name, value) header pairs without modification. This is an "internal" API, intended only for use by a generator. """ return iter(self._headers.copy()) # # Additional useful stuff # def get_all(self, name, failobj=None): """Return a list of all the values for the named field. These will be sorted in the order they appeared in the original message, and may contain duplicates. Any fields deleted and re-inserted are always appended to the header list. If no such fields exist, failobj is returned (defaults to None). """ values = [] name = name.lower() for k, v in self._headers: if k.lower() == name: values.append(self.policy.header_fetch_parse(k, v)) if not values: return failobj return values def add_header(self, _name, _value, **_params): """Extended header setting. name is the header field to add. keyword arguments can be used to set additional parameters for the header field, with underscores converted to dashes. Normally the parameter will be added as key="value" unless value is None, in which case only the key will be added. If a parameter value contains non-ASCII characters it can be specified as a three-tuple of (charset, language, value), in which case it will be encoded according to RFC2231 rules. Otherwise it will be encoded using the utf-8 charset and a language of ''. Examples: msg.add_header('content-disposition', 'attachment', filename='bud.gif') msg.add_header('content-disposition', 'attachment', filename=('utf-8', '', Fußballer.ppt')) msg.add_header('content-disposition', 'attachment', filename='Fußballer.ppt')) """ parts = [] for k, v in _params.items(): if v is None: parts.append(k.replace('_', '-')) else: parts.append(_formatparam(k.replace('_', '-'), v)) if _value is not None: parts.insert(0, _value) self[_name] = SEMISPACE.join(parts) def replace_header(self, _name, _value): """Replace a header. Replace the first matching header found in the message, retaining header order and case. If no matching header was found, a KeyError is raised. """ _name = _name.lower() for i, (k, v) in zip(range(len(self._headers)), self._headers): if k.lower() == _name: self._headers[i] = self.policy.header_store_parse(k, _value) break else: raise KeyError(_name) # # Use these three methods instead of the three above. # def get_content_type(self): """Return the message's content type. The returned string is coerced to lower case of the form `maintype/subtype'. If there was no Content-Type header in the message, the default type as given by get_default_type() will be returned. Since according to RFC 2045, messages always have a default type this will always return a value. RFC 2045 defines a message's default type to be text/plain unless it appears inside a multipart/digest container, in which case it would be message/rfc822. """ missing = object() value = self.get('content-type', missing) if value is missing: # This should have no parameters return self.get_default_type() ctype = _splitparam(value)[0].lower() # RFC 2045, section 5.2 says if its invalid, use text/plain if ctype.count('/') != 1: return 'text/plain' return ctype def get_content_maintype(self): """Return the message's main content type. This is the `maintype' part of the string returned by get_content_type(). """ ctype = self.get_content_type() return ctype.split('/')[0] def get_content_subtype(self): """Returns the message's sub-content type. This is the `subtype' part of the string returned by get_content_type(). """ ctype = self.get_content_type() return ctype.split('/')[1] def get_default_type(self): """Return the `default' content type. Most messages have a default content type of text/plain, except for messages that are subparts of multipart/digest containers. Such subparts have a default content type of message/rfc822. """ return self._default_type def set_default_type(self, ctype): """Set the `default' content type. ctype should be either "text/plain" or "message/rfc822", although this is not enforced. The default content type is not stored in the Content-Type header. """ self._default_type = ctype def _get_params_preserve(self, failobj, header): # Like get_params() but preserves the quoting of values. BAW: # should this be part of the public interface? missing = object() value = self.get(header, missing) if value is missing: return failobj params = [] for p in _parseparam(value): try: name, val = p.split('=', 1) name = name.strip() val = val.strip() except ValueError: # Must have been a bare attribute name = p.strip() val = '' params.append((name, val)) params = utils.decode_params(params) return params def get_params(self, failobj=None, header='content-type', unquote=True): """Return the message's Content-Type parameters, as a list. The elements of the returned list are 2-tuples of key/value pairs, as split on the `=' sign. The left hand side of the `=' is the key, while the right hand side is the value. If there is no `=' sign in the parameter the value is the empty string. The value is as described in the get_param() method. Optional failobj is the object to return if there is no Content-Type header. Optional header is the header to search instead of Content-Type. If unquote is True, the value is unquoted. """ missing = object() params = self._get_params_preserve(missing, header) if params is missing: return failobj if unquote: return [(k, _unquotevalue(v)) for k, v in params] else: return params def get_param(self, param, failobj=None, header='content-type', unquote=True): """Return the parameter value if found in the Content-Type header. Optional failobj is the object to return if there is no Content-Type header, or the Content-Type header has no such parameter. Optional header is the header to search instead of Content-Type. Parameter keys are always compared case insensitively. The return value can either be a string, or a 3-tuple if the parameter was RFC 2231 encoded. When it's a 3-tuple, the elements of the value are of the form (CHARSET, LANGUAGE, VALUE). Note that both CHARSET and LANGUAGE can be None, in which case you should consider VALUE to be encoded in the us-ascii charset. You can usually ignore LANGUAGE. The parameter value (either the returned string, or the VALUE item in the 3-tuple) is always unquoted, unless unquote is set to False. If your application doesn't care whether the parameter was RFC 2231 encoded, it can turn the return value into a string as follows: rawparam = msg.get_param('foo') param = email.utils.collapse_rfc2231_value(rawparam) """ if header not in self: return failobj for k, v in self._get_params_preserve(failobj, header): if k.lower() == param.lower(): if unquote: return _unquotevalue(v) else: return v return failobj def set_param(self, param, value, header='Content-Type', requote=True, charset=None, language='', replace=False): """Set a parameter in the Content-Type header. If the parameter already exists in the header, its value will be replaced with the new value. If header is Content-Type and has not yet been defined for this message, it will be set to "text/plain" and the new parameter and value will be appended as per RFC 2045. An alternate header can specified in the header argument, and all parameters will be quoted as necessary unless requote is False. If charset is specified, the parameter will be encoded according to RFC 2231. Optional language specifies the RFC 2231 language, defaulting to the empty string. Both charset and language should be strings. """ if not isinstance(value, tuple) and charset: value = (charset, language, value) if header not in self and header.lower() == 'content-type': ctype = 'text/plain' else: ctype = self.get(header) if not self.get_param(param, header=header): if not ctype: ctype = _formatparam(param, value, requote) else: ctype = SEMISPACE.join( [ctype, _formatparam(param, value, requote)]) else: ctype = '' for old_param, old_value in self.get_params(header=header, unquote=requote): append_param = '' if old_param.lower() == param.lower(): append_param = _formatparam(param, value, requote) else: append_param = _formatparam(old_param, old_value, requote) if not ctype: ctype = append_param else: ctype = SEMISPACE.join([ctype, append_param]) if ctype != self.get(header): if replace: self.replace_header(header, ctype) else: del self[header] self[header] = ctype def del_param(self, param, header='content-type', requote=True): """Remove the given parameter completely from the Content-Type header. The header will be re-written in place without the parameter or its value. All values will be quoted as necessary unless requote is False. Optional header specifies an alternative to the Content-Type header. """ if header not in self: return new_ctype = '' for p, v in self.get_params(header=header, unquote=requote): if p.lower() != param.lower(): if not new_ctype: new_ctype = _formatparam(p, v, requote) else: new_ctype = SEMISPACE.join([new_ctype, _formatparam(p, v, requote)]) if new_ctype != self.get(header): del self[header] self[header] = new_ctype def set_type(self, type, header='Content-Type', requote=True): """Set the main type and subtype for the Content-Type header. type must be a string in the form "maintype/subtype", otherwise a ValueError is raised. This method replaces the Content-Type header, keeping all the parameters in place. If requote is False, this leaves the existing header's quoting as is. Otherwise, the parameters will be quoted (the default). An alternative header can be specified in the header argument. When the Content-Type header is set, we'll always also add a MIME-Version header. """ # BAW: should we be strict? if not type.count('/') == 1: raise ValueError # Set the Content-Type, you get a MIME-Version if header.lower() == 'content-type': del self['mime-version'] self['MIME-Version'] = '1.0' if header not in self: self[header] = type return params = self.get_params(header=header, unquote=requote) del self[header] self[header] = type # Skip the first param; it's the old type. for p, v in params[1:]: self.set_param(p, v, header, requote) def get_filename(self, failobj=None): """Return the filename associated with the payload if present. The filename is extracted from the Content-Disposition header's `filename' parameter, and it is unquoted. If that header is missing the `filename' parameter, this method falls back to looking for the `name' parameter. """ missing = object() filename = self.get_param('filename', missing, 'content-disposition') if filename is missing: filename = self.get_param('name', missing, 'content-type') if filename is missing: return failobj return utils.collapse_rfc2231_value(filename).strip() def get_boundary(self, failobj=None): """Return the boundary associated with the payload if present. The boundary is extracted from the Content-Type header's `boundary' parameter, and it is unquoted. """ missing = object() boundary = self.get_param('boundary', missing) if boundary is missing: return failobj # RFC 2046 says that boundaries may begin but not end in w/s return utils.collapse_rfc2231_value(boundary).rstrip() def set_boundary(self, boundary): """Set the boundary parameter in Content-Type to 'boundary'. This is subtly different than deleting the Content-Type header and adding a new one with a new boundary parameter via add_header(). The main difference is that using the set_boundary() method preserves the order of the Content-Type header in the original message. HeaderParseError is raised if the message has no Content-Type header. """ missing = object() params = self._get_params_preserve(missing, 'content-type') if params is missing: # There was no Content-Type header, and we don't know what type # to set it to, so raise an exception. raise errors.HeaderParseError('No Content-Type header found') newparams = [] foundp = False for pk, pv in params: if pk.lower() == 'boundary': newparams.append(('boundary', '"%s"' % boundary)) foundp = True else: newparams.append((pk, pv)) if not foundp: # The original Content-Type header had no boundary attribute. # Tack one on the end. BAW: should we raise an exception # instead??? newparams.append(('boundary', '"%s"' % boundary)) # Replace the existing Content-Type header with the new value newheaders = [] for h, v in self._headers: if h.lower() == 'content-type': parts = [] for k, v in newparams: if v == '': parts.append(k) else: parts.append('%s=%s' % (k, v)) val = SEMISPACE.join(parts) newheaders.append(self.policy.header_store_parse(h, val)) else: newheaders.append((h, v)) self._headers = newheaders def get_content_charset(self, failobj=None): """Return the charset parameter of the Content-Type header. The returned string is always coerced to lower case. If there is no Content-Type header, or if that header has no charset parameter, failobj is returned. """ missing = object() charset = self.get_param('charset', missing) if charset is missing: return failobj if isinstance(charset, tuple): # RFC 2231 encoded, so decode it, and it better end up as ascii. pcharset = charset[0] or 'us-ascii' try: # LookupError will be raised if the charset isn't known to # Python. UnicodeError will be raised if the encoded text # contains a character not in the charset. as_bytes = charset[2].encode('raw-unicode-escape') charset = str(as_bytes, pcharset) except (LookupError, UnicodeError): charset = charset[2] # charset characters must be in us-ascii range try: charset.encode('us-ascii') except UnicodeError: return failobj # RFC 2046, $4.1.2 says charsets are not case sensitive return charset.lower() def get_charsets(self, failobj=None): """Return a list containing the charset(s) used in this message. The returned list of items describes the Content-Type headers' charset parameter for this message and all the subparts in its payload. Each item will either be a string (the value of the charset parameter in the Content-Type header of that part) or the value of the 'failobj' parameter (defaults to None), if the part does not have a main MIME type of "text", or the charset is not defined. The list will contain one string for each part of the message, plus one for the container message (i.e. self), so that a non-multipart message will still return a list of length 1. """ return [part.get_content_charset(failobj) for part in self.walk()] def get_content_disposition(self): """Return the message's content-disposition if it exists, or None. The return values can be either 'inline', 'attachment' or None according to the rfc2183. """ value = self.get('content-disposition') if value is None: return None c_d = _splitparam(value)[0].lower() return c_d # I.e. def walk(self): ... from email.iterators import walk class MIMEPart(Message): def __init__(self, policy=None): if policy is None: from email.policy import default policy = default Message.__init__(self, policy) def is_attachment(self): c_d = self.get('content-disposition') return False if c_d is None else c_d.content_disposition == 'attachment' def _find_body(self, part, preferencelist): if part.is_attachment(): return maintype, subtype = part.get_content_type().split('/') if maintype == 'text': if subtype in preferencelist: yield (preferencelist.index(subtype), part) return if maintype != 'multipart': return if subtype != 'related': for subpart in part.iter_parts(): yield from self._find_body(subpart, preferencelist) return if 'related' in preferencelist: yield (preferencelist.index('related'), part) candidate = None start = part.get_param('start') if start: for subpart in part.iter_parts(): if subpart['content-id'] == start: candidate = subpart break if candidate is None: subparts = part.get_payload() candidate = subparts[0] if subparts else None if candidate is not None: yield from self._find_body(candidate, preferencelist) def get_body(self, preferencelist=('related', 'html', 'plain')): """Return best candidate mime part for display as 'body' of message. Do a depth first search, starting with self, looking for the first part matching each of the items in preferencelist, and return the part corresponding to the first item that has a match, or None if no items have a match. If 'related' is not included in preferencelist, consider the root part of any multipart/related encountered as a candidate match. Ignore parts with 'Content-Disposition: attachment'. """ best_prio = len(preferencelist) body = None for prio, part in self._find_body(self, preferencelist): if prio < best_prio: best_prio = prio body = part if prio == 0: break return body _body_types = {('text', 'plain'), ('text', 'html'), ('multipart', 'related'), ('multipart', 'alternative')} def iter_attachments(self): """Return an iterator over the non-main parts of a multipart. Skip the first of each occurrence of text/plain, text/html, multipart/related, or multipart/alternative in the multipart (unless they have a 'Content-Disposition: attachment' header) and include all remaining subparts in the returned iterator. When applied to a multipart/related, return all parts except the root part. Return an empty iterator when applied to a multipart/alternative or a non-multipart. """ maintype, subtype = self.get_content_type().split('/') if maintype != 'multipart' or subtype == 'alternative': return parts = self.get_payload() if maintype == 'multipart' and subtype == 'related': # For related, we treat everything but the root as an attachment. # The root may be indicated by 'start'; if there's no start or we # can't find the named start, treat the first subpart as the root. start = self.get_param('start') if start: found = False attachments = [] for part in parts: if part.get('content-id') == start: found = True else: attachments.append(part) if found: yield from attachments return parts.pop(0) yield from parts return # Otherwise we more or less invert the remaining logic in get_body. # This only really works in edge cases (ex: non-text relateds or # alternatives) if the sending agent sets content-disposition. seen = [] # Only skip the first example of each candidate type. for part in parts: maintype, subtype = part.get_content_type().split('/') if ((maintype, subtype) in self._body_types and not part.is_attachment() and subtype not in seen): seen.append(subtype) continue yield part def iter_parts(self): """Return an iterator over all immediate subparts of a multipart. Return an empty iterator for a non-multipart. """ if self.get_content_maintype() == 'multipart': yield from self.get_payload() def get_content(self, *args, content_manager=None, **kw): if content_manager is None: content_manager = self.policy.content_manager return content_manager.get_content(self, *args, **kw) def set_content(self, *args, content_manager=None, **kw): if content_manager is None: content_manager = self.policy.content_manager content_manager.set_content(self, *args, **kw) def _make_multipart(self, subtype, disallowed_subtypes, boundary): if self.get_content_maintype() == 'multipart': existing_subtype = self.get_content_subtype() disallowed_subtypes = disallowed_subtypes + (subtype,) if existing_subtype in disallowed_subtypes: raise ValueError("Cannot convert {} to {}".format( existing_subtype, subtype)) keep_headers = [] part_headers = [] for name, value in self._headers: if name.lower().startswith('content-'): part_headers.append((name, value)) else: keep_headers.append((name, value)) if part_headers: # There is existing content, move it to the first subpart. part = type(self)(policy=self.policy) part._headers = part_headers part._payload = self._payload self._payload = [part] else: self._payload = [] self._headers = keep_headers self['Content-Type'] = 'multipart/' + subtype if boundary is not None: self.set_param('boundary', boundary) def make_related(self, boundary=None): self._make_multipart('related', ('alternative', 'mixed'), boundary) def make_alternative(self, boundary=None): self._make_multipart('alternative', ('mixed',), boundary) def make_mixed(self, boundary=None): self._make_multipart('mixed', (), boundary) def _add_multipart(self, _subtype, *args, _disp=None, **kw): if (self.get_content_maintype() != 'multipart' or self.get_content_subtype() != _subtype): getattr(self, 'make_' + _subtype)() part = type(self)(policy=self.policy) part.set_content(*args, **kw) if _disp and 'content-disposition' not in part: part['Content-Disposition'] = _disp self.attach(part) def add_related(self, *args, **kw): self._add_multipart('related', *args, _disp='inline', **kw) def add_alternative(self, *args, **kw): self._add_multipart('alternative', *args, **kw) def add_attachment(self, *args, **kw): self._add_multipart('mixed', *args, _disp='attachment', **kw) def clear(self): self._headers = [] self._payload = None def clear_content(self): self._headers = [(n, v) for n, v in self._headers if not n.lower().startswith('content-')] self._payload = None class EmailMessage(MIMEPart): def set_content(self, *args, **kw): super().set_content(*args, **kw) if 'MIME-Version' not in self: self['MIME-Version'] = '1.0'
39.93281
96
0.595175
79f8bcaf051114c727cc12c20c5ac07e97607674
97,244
py
Python
scipy/interpolate/interpolate.py
isuruf/scipy
a767030252ba3f7c8e2924847dffa7024171657b
[ "BSD-3-Clause" ]
null
null
null
scipy/interpolate/interpolate.py
isuruf/scipy
a767030252ba3f7c8e2924847dffa7024171657b
[ "BSD-3-Clause" ]
null
null
null
scipy/interpolate/interpolate.py
isuruf/scipy
a767030252ba3f7c8e2924847dffa7024171657b
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly', 'RegularGridInterpolator', 'interpn'] import itertools import warnings import functools import operator import numpy as np from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d, ravel, poly1d, asarray, intp) import scipy.special as spec from scipy.special import comb from scipy._lib.six import xrange, integer_types, string_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays from ._bsplines import make_interp_spline, BSpline def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): r""" Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : `numpy.poly1d` instance The Lagrange interpolating polynomial. Examples -------- Interpolate :math:`f(x) = x^3` by 3 points. >>> from scipy.interpolate import lagrange >>> x = np.array([0, 1, 2]) >>> y = x**3 >>> poly = lagrange(x, y) Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, it is given by .. math:: \begin{aligned} L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\ &= x (-2 + 3x) \end{aligned} >>> from numpy.polynomial.polynomial import Polynomial >>> Polynomial(poly).coef array([ 3., -2., 0.]) """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Note that calling `interp2d` with NaNs present in input values results in undefined behaviour. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated via nearest-neighbor extrapolation. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) def _check_broadcast_up_to(arr_from, shape_to, name): """Helper to check that arr_from broadcasts up to shape_to""" shape_from = arr_from.shape if len(shape_to) >= len(shape_from): for t, f in zip(shape_to[::-1], shape_from[::-1]): if f != 1 and f != t: break else: # all checks pass, do the upcasting that we need later if arr_from.size != 1 and arr_from.shape != shape_to: arr_from = np.ones(shape_to, arr_from.dtype) * arr_from return arr_from.ravel() # at least one check failed raise ValueError('%s argument must be able to broadcast up ' 'to shape %s but had shape %s' % (name, shape_to, shape_from)) def _do_extrapolate(fill_value): """Helper to check if fill_value == "extrapolate" without warnings""" return (isinstance(fill_value, string_types) and fill_value == 'extrapolate') class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Note that calling `interp1d` with NaNs present in input values results in undefined behaviour. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'previous', 'next', where 'zero', 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of zeroth, first, second or third order; 'previous' and 'next' simply return the previous or next value of the point) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised unless ``fill_value="extrapolate"``. fill_value : array-like or (array-like, array_like) or "extrapolate", optional - if a ndarray (or float), this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. The array-like must broadcast properly to the dimensions of the non-interpolation axes. - If a two-element tuple, then the first element is used as a fill value for ``x_new < x[0]`` and the second element is used for ``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant to be used for both bounds as ``below, above = fill_value, fill_value``. .. versionadded:: 0.17.0 - If "extrapolate", then points outside the data range will be extrapolated. .. versionadded:: 0.17.0 assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Attributes ---------- fill_value Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.bounds_error = bounds_error # used by fill_value setter self.copy = copy if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'zero': 0, 'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest', 'previous', 'next'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y self._y = self._reshape_yi(self.y) self.x = x del y, x # clean up namespace to prevent misuse; use attributes self._kind = kind self.fill_value = fill_value # calls the setter, can modify bounds_err # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: https://docs.python.org/reference/datamodel.html if kind in ('linear', 'nearest', 'previous', 'next'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': # Do division before addition to prevent possible integer # overflow self.x_bds = self.x / 2.0 self.x_bds = self.x_bds[1:] + self.x_bds[:-1] self._call = self.__class__._call_nearest elif kind == 'previous': # Side for np.searchsorted and index for clipping self._side = 'left' self._ind = 0 # Move x by one floating point value to the left self._x_shift = np.nextafter(self.x, -np.inf) self._call = self.__class__._call_previousnext elif kind == 'next': self._side = 'right' self._ind = 1 # Move x by one floating point value to the right self._x_shift = np.nextafter(self.x, np.inf) self._call = self.__class__._call_previousnext else: # Check if we can delegate to numpy.interp (2x-10x faster). cond = self.x.dtype == np.float_ and self.y.dtype == np.float_ cond = cond and self.y.ndim == 1 cond = cond and not _do_extrapolate(fill_value) if cond: self._call = self.__class__._call_linear_np else: self._call = self.__class__._call_linear else: minval = order + 1 rewrite_nan = False xx, yy = self.x, self._y if order > 1: # Quadratic or cubic spline. If input contains even a single # nan, then the output is all nans. We cannot just feed data # with nans to make_interp_spline because it calls LAPACK. # So, we make up a bogus x and y with no nans and use it # to get the correct shape of the output, which we then fill # with nans. # For slinear or zero order spline, we just pass nans through. if np.isnan(self.x).any(): xx = np.linspace(min(self.x), max(self.x), len(self.x)) rewrite_nan = True if np.isnan(self._y).any(): yy = np.ones_like(self._y) rewrite_nan = True self._spline = make_interp_spline(xx, yy, k=order, check_finite=False) if rewrite_nan: self._call = self.__class__._call_nan_spline else: self._call = self.__class__._call_spline if len(self.x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) @property def fill_value(self): """The fill value.""" # backwards compat: mimic a public attribute return self._fill_value_orig @fill_value.setter def fill_value(self, fill_value): # extrapolation only works for nearest neighbor and linear methods if _do_extrapolate(fill_value): if self.bounds_error: raise ValueError("Cannot extrapolate and raise " "at the same time.") self.bounds_error = False self._extrapolate = True else: broadcast_shape = (self.y.shape[:self.axis] + self.y.shape[self.axis + 1:]) if len(broadcast_shape) == 0: broadcast_shape = (1,) # it's either a pair (_below_range, _above_range) or a single value # for both above and below range if isinstance(fill_value, tuple) and len(fill_value) == 2: below_above = [np.asarray(fill_value[0]), np.asarray(fill_value[1])] names = ('fill_value (below)', 'fill_value (above)') for ii in range(2): below_above[ii] = _check_broadcast_up_to( below_above[ii], broadcast_shape, names[ii]) else: fill_value = np.asarray(fill_value) below_above = [_check_broadcast_up_to( fill_value, broadcast_shape, 'fill_value')] * 2 self._fill_value_below, self._fill_value_above = below_above self._extrapolate = False if self.bounds_error is None: self.bounds_error = True # backwards compat: fill_value was a public attr; make it writeable self._fill_value_orig = fill_value def _call_linear_np(self, x_new): # Note that out-of-bounds values are taken care of in self._evaluate return np.interp(x_new, self.x, self.y) def _call_linear(self, x_new): # 2. Find where in the original data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_previousnext(self, x_new): """Use previous/next neighbour of x_new, y_new = f(x_new).""" # 1. Get index of left/right value x_new_indices = searchsorted(self._x_shift, x_new, side=self._side) # 2. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(1-self._ind, len(self.x)-self._ind).astype(intp) # 3. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices+self._ind-1] return y_new def _call_spline(self, x_new): return self._spline(x_new) def _call_nan_spline(self, x_new): out = self._spline(x_new) out[...] = np.nan return out def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) y_new = self._call(self, x_new) if not self._extrapolate: below_bounds, above_bounds = self._check_bounds(x_new) if len(y_new) > 0: # Note fill_value must be broadcast up to the proper size # and flattened to work here y_new[below_bounds] = self._fill_value_below y_new[above_bounds] = self._fill_value_above return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. return below_bounds, above_bounds class _PPolyBase(object): """Base class for piecewise polynomials.""" __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True elif extrapolate != 'periodic': extrapolate = bool(extrapolate) self.extrapolate = extrapolate if self.c.ndim < 2: raise ValueError("Coefficients array must be at least " "2-dimensional.") if not (0 <= axis < self.c.ndim - 1): raise ValueError("axis=%s must be between 0 and %s" % (axis, self.c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") dx = np.diff(self.x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` must be strictly increasing or decreasing.") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments ``c`` and ``x`` must be arrays of the correct shape and type. The ``c`` array can only be of dtypes float and complex, and ``x`` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=None): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals. Note that the first additional interval will be formed using one of the ``self.x`` end points. x : ndarray, size (m,) Additional breakpoints. Must be sorted in the same order as ``self.x`` and either to the right or to the left of the current breakpoints. right Deprecated argument. Has no effect. .. deprecated:: 0.19 """ if right is not None: warnings.warn("`right` is deprecated and will be removed.") c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if c.size == 0: return dx = np.diff(x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` is not sorted.") if self.x[-1] >= self.x[0]: if not x[-1] >= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] >= self.x[-1]: action = 'append' elif x[-1] <= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") else: if not x[-1] <= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] <= self.x[-1]: action = 'append' elif x[-1] >= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if action == 'append': c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] elif action == 'prepend': c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative. Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) # With periodic extrapolation we map x to the segment # [self.x[0], self.x[-1]]. if extrapolate == 'periodic': x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) extrapolate = False out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the local power basis:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate solve roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu, :].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate # construct a compatible polynomial return self.construct_fast(c, self.x, extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() # Compute the integral. if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) if n_periods > 0: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xe, False, out=range_int) range_int *= n_periods else: range_int.fill(0) # Map a to [xs, xe], b is always a + left. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. remainder_int = np.empty_like(range_int) if b <= xe: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, xe, False, out=remainder_int) range_int += remainder_int _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xs + left + a - xe, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def solve(self, y=0., discontinuity=True, extrapolate=None): """ Find real solutions of the the equation ``pp(x) == y``. Parameters ---------- y : float, optional Right-hand side. Default is zero. discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.solve() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") y = float(y) r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, y, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. See Also -------- PPoly.solve """ return self.solve(0, discontinuity, extrapolate) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` or a BSpline object. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ if isinstance(tck, BSpline): t, c, k = tck.tck if extrapolate is None: extrapolate = tck.extrapolate else: t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**a * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """Piecewise polynomial in terms of coefficients and breakpoints. The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), where ``k`` is the degree of the polynomial, and:: b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a), with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial coefficient. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature, see for example [1]_ [2]_ [3]_. References ---------- .. [1] https://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, :doi:`10.1155/2011/829543`. Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k + nu representing the antiderivative of this polynomial. Notes ----- If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the # breakpoint). Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1] if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate return self.construct_fast(c2, x, extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is None: extrapolate = self.extrapolate # ib.extrapolate shouldn't be 'periodic', it is converted to # False for 'periodic. in antiderivative() call. if extrapolate != 'periodic': ib.extrapolate = extrapolate if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. # For simplicity and clarity convert to a <= b case. if a <= b: sign = 1 else: a, b = b, a sign = -1 xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) res = n_periods * (ib(xe) - ib(xs)) # Map a and b to [xs, xe]. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. if b <= xe: res += ib(b) - ib(a) else: res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) return sign * res else: return ib(b) - ib(a) def extend(self, c, x, right=None): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at ``x = 1`` and ``x = 2``. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, (integer_types, np.integer)): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: mesg = ("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % ( xi[i], len(y1), xi[i+1], len(y2), orders[i])) raise ValueError(mesg) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): r"""Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on ``[xa, xb]`` and having the values and derivatives at the endpoints `xa` and `xb` as specified by `ya`` and `yb`. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of `ya` and `yb` are `na` and `nb`, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at `xa`. `ya[0]` is the value of the function, and `ya[i]` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at `xb`. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At ``x = xb`` it's the same with ``a = n - q``. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): r"""Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class NdPPoly(object): """ Piecewise tensor product polynomial The value at point ``xp = (x', y', z', ...)`` is evaluated by first computing the interval indices `i` such that:: x[0][i[0]] <= x' < x[0][i[0]+1] x[1][i[1]] <= y' < x[1][i[1]+1] ... and then computing:: S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] * (xp[0] - x[0][i[0]])**m0 * ... * (xp[n] - x[n][i[n]])**mn for m0 in range(k[0]+1) ... for mn in range(k[n]+1)) where ``k[j]`` is the degree of the polynomial in dimension j. This representation is the piecewise multivariate power basis. Parameters ---------- c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) Polynomial coefficients, with polynomial order `kj` and `mj+1` intervals for each dimension `j`. x : ndim-tuple of ndarrays, shapes (mj+1,) Polynomial breakpoints for each dimension. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : tuple of ndarrays Breakpoints. c : ndarray Coefficients of the polynomials. Methods ------- __call__ construct_fast See also -------- PPoly : piecewise polynomials in 1D Notes ----- High-order polynomials in the power basis can be numerically unstable. """ def __init__(self, c, x, extrapolate=None): self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) self.c = np.asarray(c) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) ndim = len(self.x) if any(v.ndim != 1 for v in self.x): raise ValueError("x arrays must all be 1-dimensional") if any(v.size < 2 for v in self.x): raise ValueError("x arrays must all contain at least 2 points") if c.ndim < 2*ndim: raise ValueError("c must have at least 2*len(x) dimensions") if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): raise ValueError("x-coordinates are not in increasing order") if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): raise ValueError("x and c do not agree on the number of intervals") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) @classmethod def construct_fast(cls, c, x, extrapolate=None): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments ``c`` and ``x`` must be arrays of the correct shape and type. The ``c`` array can only be of dtypes float and complex, and ``x`` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ def _ensure_c_contiguous(self): if not self.c.flags.c_contiguous: self.c = self.c.copy() if not isinstance(self.x, tuple): self.x = tuple(self.x) def __call__(self, x, nu=None, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array-like Points to evaluate the interpolant at. nu : tuple, optional Orders of derivatives to evaluate. Each must be non-negative. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array-like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) x = _ndim_coords_from_arrays(x) x_shape = x.shape x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float_) if nu is None: nu = np.zeros((ndim,), dtype=np.intc) else: nu = np.asarray(nu, dtype=np.intc) if nu.ndim != 1 or nu.shape[0] != ndim: raise ValueError("invalid number of derivative orders nu") dim1 = prod(self.c.shape[:ndim]) dim2 = prod(self.c.shape[ndim:2*ndim]) dim3 = prod(self.c.shape[2*ndim:]) ks = np.array(self.c.shape[:ndim], dtype=np.intc) out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), self.x, ks, x, nu, bool(extrapolate), out) return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) def _derivative_inplace(self, nu, axis): """ Compute 1D derivative along a selected dimension in-place May result to non-contiguous c array. """ if nu < 0: return self._antiderivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim # reduce order if nu == 0: # noop return else: sl = [slice(None)]*ndim sl[axis] = slice(None, -nu, None) c2 = self.c[tuple(sl)] if c2.shape[axis] == 0: # derivative of order 0 is zero shp = list(c2.shape) shp[axis] = 1 c2 = np.zeros(shp, dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) sl = [None]*c2.ndim sl[axis] = slice(None) c2 *= factor[tuple(sl)] self.c = c2 def _antiderivative_inplace(self, nu, axis): """ Compute 1D antiderivative along a selected dimension May result to non-contiguous c array. """ if nu <= 0: return self._derivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim perm = list(range(ndim)) perm[0], perm[axis] = perm[axis], perm[0] perm = perm + list(range(ndim, self.c.ndim)) c = self.c.transpose(perm) c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], dtype=c.dtype) c2[:-nu] = c # divide by the correct rising factorials factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom perm2 = list(range(c2.ndim)) perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] c2 = c2.transpose(perm2) c2 = c2.copy() _ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), self.x[axis], nu-1) c2 = c2.transpose(perm2) c2 = c2.transpose(perm) # Done self.c = c2 def derivative(self, nu): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the antiderivative is returned. Returns ------- pp : NdPPoly Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._derivative_inplace(n, axis) p._ensure_c_contiguous() return p def antiderivative(self, nu): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._antiderivative_inplace(n, axis) p._ensure_c_contiguous() return p def integrate_1d(self, a, b, axis, extrapolate=None): r""" Compute NdPPoly representation for one dimensional definite integral The result is a piecewise polynomial representing the integral: .. math:: p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) where the dimension integrated over is specified with the `axis` parameter. Parameters ---------- a, b : float Lower and upper bound for integration. axis : int Dimension over which to compute the 1D integrals extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : NdPPoly or array-like Definite integral of the piecewise polynomial over [a, b]. If the polynomial was 1-dimensional, an array is returned, otherwise, an NdPPoly object. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) axis = int(axis) % ndim # reuse 1D integration routines c = self.c swap = list(range(c.ndim)) swap.insert(0, swap[axis]) del swap[axis + 1] swap.insert(1, swap[ndim + axis]) del swap[ndim + axis + 1] c = c.transpose(swap) p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), self.x[axis], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) # Construct result if ndim == 1: return out.reshape(c.shape[2:]) else: c = out.reshape(c.shape[2:]) x = self.x[:axis] + self.x[axis+1:] return self.construct_fast(c, x, extrapolate=extrapolate) def integrate(self, ranges, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- ranges : ndim-tuple of 2-tuples float Sequence of lower and upper bounds for each dimension, ``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] """ ndim = len(self.x) if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) if not hasattr(ranges, '__len__') or len(ranges) != ndim: raise ValueError("Range not a sequence of correct length") self._ensure_c_contiguous() # Reuse 1D integration routine c = self.c for n, (a, b) in enumerate(ranges): swap = list(range(c.ndim)) swap.insert(1, swap[ndim - n]) del swap[ndim - n + 1] c = c.transpose(swap) p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) c = out.reshape(c.shape[2:]) return c class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. If any of `points` have a dimension of size 1, linear interpolation will return an array of `nan` values. Nearest-neighbor interpolation will work as usual in this case. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x, y, z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Wikipedia, "Trilinear interpolation", https://en.wikipedia.org/wiki/Trilinear_interpolation .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. https://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [np.where(yi <= .5, i, i + 1) for i, yi in zip(indices, norm_distances)] return self.values[tuple(idx_res)] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class _ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("_ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill)
35.790946
112
0.554841
29fd118ccaf1a1d136f9695e39f0e23b6427e873
624
py
Python
saleor/dashboard/group/forms.py
nobism/saleor
a199bee5ef8cb2ecd1d7fd4bcc708f3b4903aa2d
[ "BSD-3-Clause" ]
3
2018-06-14T22:52:38.000Z
2019-01-24T03:48:46.000Z
saleor/dashboard/group/forms.py
nobism/saleor
a199bee5ef8cb2ecd1d7fd4bcc708f3b4903aa2d
[ "BSD-3-Clause" ]
1
2022-02-13T22:52:38.000Z
2022-02-13T22:52:38.000Z
saleor/dashboard/group/forms.py
nobism/saleor
a199bee5ef8cb2ecd1d7fd4bcc708f3b4903aa2d
[ "BSD-3-Clause" ]
1
2021-12-02T18:49:31.000Z
2021-12-02T18:49:31.000Z
from django import forms from django.contrib.auth.models import Group from django.utils.translation import pgettext_lazy from ...core.permissions import get_permissions from ..forms import PermissionMultipleChoiceField class GroupPermissionsForm(forms.ModelForm): class Meta: model = Group fields = ['name', 'permissions'] labels = { 'name': pgettext_lazy('Item name', 'Name'), 'permissions': pgettext_lazy('Permissions', 'Permissions')} permissions = PermissionMultipleChoiceField( queryset=get_permissions(), widget=forms.CheckboxSelectMultiple)
31.2
71
0.711538
c7e570417af6b904b6c822405240c86b3f716e8e
873
py
Python
nlp/readabilityIndex.py
numankh/HypeBeastDashboard
8b30fe2cb972a603b6ce1d84004b418d52471a7e
[ "MIT" ]
null
null
null
nlp/readabilityIndex.py
numankh/HypeBeastDashboard
8b30fe2cb972a603b6ce1d84004b418d52471a7e
[ "MIT" ]
null
null
null
nlp/readabilityIndex.py
numankh/HypeBeastDashboard
8b30fe2cb972a603b6ce1d84004b418d52471a7e
[ "MIT" ]
null
null
null
# import spacy from textstat.textstat import textstatistics,legacy_round import textstat import en_core_web_sm # While the maximum score is 121.22, there is no limit on how low the score can be. A negative score is valid. def flesch_reading_ease_score(text): return textstat.flesch_reading_ease(text) # Average of all grade level readability indices def average_grade_score(text): total = textstat.flesch_kincaid_grade(text) + textstat.gunning_fog(text) + textstat.automated_readability_index(text) + textstat.coleman_liau_index(text) + textstat.linsear_write_formula(text) + textstat.dale_chall_readability_score(text) return round(total / 6, 2) if __name__ == "__main__": sample_text = "As the years pass by, we all know owners look more and more like their dogs" print(textstat.flesch_reading_ease(sample_text)) print(average_grade_score(sample_text))
48.5
239
0.802978
3b7e9c1083f6138386c2c8fbd2a6932567b8b0ff
3,832
py
Python
torchgeometry/losses/depth_smooth.py
tina300399/torchgeometry
48d8026f0a5f3d4ac5567b7b2738390892b3cc8d
[ "Apache-2.0" ]
null
null
null
torchgeometry/losses/depth_smooth.py
tina300399/torchgeometry
48d8026f0a5f3d4ac5567b7b2738390892b3cc8d
[ "Apache-2.0" ]
null
null
null
torchgeometry/losses/depth_smooth.py
tina300399/torchgeometry
48d8026f0a5f3d4ac5567b7b2738390892b3cc8d
[ "Apache-2.0" ]
1
2019-10-04T05:05:28.000Z
2019-10-04T05:05:28.000Z
import torch import torch.nn as nn import torch.nn.functional as F # Based on # https://github.com/tensorflow/models/blob/master/research/struct2depth/model.py#L625-L641 class InverseDepthSmoothnessLoss(nn.Module): r"""Criterion that computes image-aware inverse depth smoothness loss. .. math:: \text{loss} = \left | \partial_x d_{ij} \right | e^{-\left \| \partial_x I_{ij} \right \|} + \left | \partial_y d_{ij} \right | e^{-\left \| \partial_y I_{ij} \right \|} Shape: - Inverse Depth: :math:`(N, 1, H, W)` - Image: :math:`(N, 3, H, W)` - Output: scalar Examples:: >>> idepth = torch.rand(1, 1, 4, 5) >>> image = torch.rand(1, 3, 4, 5) >>> smooth = tgm.losses.DepthSmoothnessLoss() >>> loss = smooth(idepth, image) """ def __init__(self) -> None: super(InverseDepthSmoothnessLoss, self).__init__() @staticmethod def gradient_x(img: torch.Tensor) -> torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :, :-1] - img[:, :, :, 1:] @staticmethod def gradient_y(img: torch.Tensor) -> torch.Tensor: assert len(img.shape) == 4, img.shape return img[:, :, :-1, :] - img[:, :, 1:, :] def forward( # type: ignore self, idepth: torch.Tensor, image: torch.Tensor) -> torch.Tensor: if not torch.is_tensor(idepth): raise TypeError("Input idepth type is not a torch.Tensor. Got {}" .format(type(idepth))) if not torch.is_tensor(image): raise TypeError("Input image type is not a torch.Tensor. Got {}" .format(type(image))) if not len(idepth.shape) == 4: raise ValueError("Invalid idepth shape, we expect BxCxHxW. Got: {}" .format(idepth.shape)) if not len(image.shape) == 4: raise ValueError("Invalid image shape, we expect BxCxHxW. Got: {}" .format(image.shape)) if not idepth.shape[-2:] == image.shape[-2:]: raise ValueError("idepth and image shapes must be the same. Got: {}" .format(idepth.shape, image.shape)) if not idepth.device == image.device: raise ValueError( "idepth and image must be in the same device. Got: {}" .format( idepth.device, image.device)) if not idepth.dtype == image.dtype: raise ValueError( "idepth and image must be in the same dtype. Got: {}" .format( idepth.dtype, image.dtype)) # compute the gradients idepth_dx: torch.Tensor = self.gradient_x(idepth) idepth_dy: torch.Tensor = self.gradient_y(idepth) image_dx: torch.Tensor = self.gradient_x(image) image_dy: torch.Tensor = self.gradient_y(image) # compute image weights weights_x: torch.Tensor = torch.exp( -torch.mean(torch.abs(image_dx), dim=1, keepdim=True)) weights_y: torch.Tensor = torch.exp( -torch.mean(torch.abs(image_dy), dim=1, keepdim=True)) # apply image weights to depth smoothness_x: torch.Tensor = torch.abs(idepth_dx * weights_x) smoothness_y: torch.Tensor = torch.abs(idepth_dy * weights_y) return torch.mean(smoothness_x) + torch.mean(smoothness_y) ###################### # functional interface ###################### def inverse_depth_smoothness_loss( idepth: torch.Tensor, image: torch.Tensor) -> torch.Tensor: r"""Computes image-aware inverse depth smoothness loss. See :class:`~torchgeometry.losses.InvDepthSmoothnessLoss` for details. """ return InverseDepthSmoothnessLoss()(idepth, image)
37.203883
91
0.5762
8ab5b498065e1ffa4e16c5237e8d8d2e09e0744f
4,853
py
Python
mrdomino/__init__.py
knighton/mapreduce
3349fe2da0d01400b464aebb6ee239fb962d8def
[ "MIT" ]
1
2015-07-28T18:22:30.000Z
2015-07-28T18:22:30.000Z
mrdomino/__init__.py
knighton/mapreduce
3349fe2da0d01400b464aebb6ee239fb962d8def
[ "MIT" ]
null
null
null
mrdomino/__init__.py
knighton/mapreduce
3349fe2da0d01400b464aebb6ee239fb962d8def
[ "MIT" ]
null
null
null
import os import sys import imp import logging from pkg_resources import resource_filename from tempfile import mkdtemp from abc import abstractmethod from mrdomino import util from mrdomino.util import MRCounter class protocol(object): JSONProtocol = 0 JSONValueProtocol = 1 PickleProtocol = 2 # unsupported PickleValueProtocol = 3 # unsupported RawProtocol = 4 # unsupported RawValueProtocol = 5 # unsupported ReprProtocol = 6 # unsupported ReprValueProtocol = 7 # unsupported logger = logging.getLogger('mrdomino') logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stderr) formatter = logging.Formatter('%(asctime)s: %(levelname)s: %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) EXEC_SCRIPT = resource_filename(__name__, "exec.sh") def get_instance(args): job_module = imp.load_source('job_module', args.job_module) job_class = getattr(job_module, args.job_class) return job_class() def get_step(args): return get_instance(args).steps()[args.step_idx] class MRStep(object): def __init__(self, mapper, reducer, combiner=None, n_mappers=2, n_reducers=2): # do some basic type checking to verify that we pass callables. assert hasattr(mapper, '__call__') self.mapper = mapper assert hasattr(reducer, '__call__') self.reducer = reducer assert combiner is None or hasattr(combiner, '__call__') self.combiner = combiner assert isinstance(n_mappers, int) self.n_mappers = n_mappers assert isinstance(n_reducers, int) self.n_reducers = n_reducers class MRSettings(object): def __init__(self, input_files, output_dir, tmp_dir, use_domino=False, n_concurrent_machines=2, n_shards_per_machine=4): assert isinstance(input_files, list) self.input_files = input_files assert isinstance(output_dir, str) self.output_dir = output_dir assert isinstance(tmp_dir, str) self.tmp_dir = tmp_dir assert isinstance(use_domino, bool) self.use_domino = use_domino assert isinstance(n_concurrent_machines, int) self.n_concurrent_machines = n_concurrent_machines assert isinstance(n_shards_per_machine, int) self.n_shards_per_machine = n_shards_per_machine def mapreduce(job_class): job = job_class() step_count = len(job._steps) # if temporary directory root does not exist, create one tmp_root = job._settings.tmp_dir if not os.path.exists(tmp_root): os.makedirs(tmp_root) tmp_dirs = [mkdtemp(dir=tmp_root, prefix="step%d." % i) for i in range(step_count)] input_file_lists = [job._settings.input_files] for step, out_dir in zip(job._steps, tmp_dirs): n_reducers = step.n_reducers reduce_format = os.path.join(out_dir, 'reduce.out.%d') ff = [reduce_format % n for n in range(n_reducers)] input_file_lists.append(ff) logger.info("Input files: {}".format(input_file_lists)) # if output directory root does not exist, create one output_dir = job._settings.output_dir if not os.path.exists(output_dir): os.makedirs(output_dir) for i, step in enumerate(job._steps): cmd_opts = [ EXEC_SCRIPT, 'mrdomino.step', '--step_idx', i, '--total_steps', step_count, '--input_files', ' '.join(input_file_lists[i]), '--work_dir', tmp_dirs[i], '--output_dir', output_dir, '--job_module', sys.modules[job.__module__].__file__, '--job_class', job.__class__.__name__, '--use_domino', int(job._settings.use_domino), '--n_concurrent_machines', job._settings.n_concurrent_machines, '--n_shards_per_machine', job._settings.n_shards_per_machine ] cmd = util.create_cmd(cmd_opts) logger.info("Starting step %d with command: %s" % (i, cmd)) util.wait_cmd(cmd, logger, "Step %d" % i) logger.info('All done.') class MRJob(object): INPUT_PROTOCOL = protocol.JSONValueProtocol INTERNAL_PROTOCOL = protocol.JSONProtocol OUTPUT_PROTOCOL = protocol.JSONValueProtocol def __init__(self, counters=None): self._settings = self.settings() self._steps = self.steps() self._counters = MRCounter() @classmethod def run(cls): mapreduce(cls) @abstractmethod def steps(self): """define steps necessary to run the job""" @abstractmethod def settings(self): """define settings""" def increment_counter(self, group, counter, amount=1): self._counters.incr(group, counter, amount) def get_step(self, step_idx): return self.steps()[step_idx]
31.512987
75
0.667422
280df66de612622bafcfeec906a80b6745aacaa1
1,143
py
Python
.tox/scenario/lib/python2.7/site-packages/tempest_lib/tests/fake_auth_provider.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
null
null
null
.tox/scenario/lib/python2.7/site-packages/tempest_lib/tests/fake_auth_provider.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
null
null
null
.tox/scenario/lib/python2.7/site-packages/tempest_lib/tests/fake_auth_provider.py
bdrich/neutron-lbaas
b4711abfe0207c4fdd5d7fb7ecbf017e753abbfd
[ "Apache-2.0" ]
1
2020-07-21T02:18:23.000Z
2020-07-21T02:18:23.000Z
# Copyright 2014 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. class FakeAuthProvider(object): def __init__(self, creds_dict={}): self.credentials = FakeCredentials(creds_dict) def auth_request(self, method, url, headers=None, body=None, filters=None): return url, headers, body def base_url(self, filters, auth_data=None): return "https://example.com" class FakeCredentials(object): def __init__(self, creds_dict): for key in creds_dict.keys(): setattr(self, key, creds_dict[key])
33.617647
79
0.705162
0f939937a7aba24f5d25e7c0d16fcdb0eb6cbf97
81,825
py
Python
sdk/storage/azure-storage-file-share/azure/storage/fileshare/_generated/operations/_share_operations.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/storage/azure-storage-file-share/azure/storage/fileshare/_generated/operations/_share_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/storage/azure-storage-file-share/azure/storage/fileshare/_generated/operations/_share_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ShareOperations(object): """ShareOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.storage.fileshare.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def create( self, timeout=None, # type: Optional[int] metadata=None, # type: Optional[str] quota=None, # type: Optional[int] access_tier=None, # type: Optional[Union[str, "_models.ShareAccessTier"]] enabled_protocols=None, # type: Optional[str] root_squash=None, # type: Optional[Union[str, "_models.ShareRootSquash"]] **kwargs # type: Any ): # type: (...) -> None """Creates a new share under the specified account. If the share with the same name already exists, the operation fails. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param metadata: A name-value pair to associate with a file storage object. :type metadata: str :param quota: Specifies the maximum size of the share, in gigabytes. :type quota: int :param access_tier: Specifies the access tier of the share. :type access_tier: str or ~azure.storage.fileshare.models.ShareAccessTier :param enabled_protocols: Protocols to enable on the share. :type enabled_protocols: str :param root_squash: Root squash to set on the share. Only valid for NFS shares. :type root_squash: str or ~azure.storage.fileshare.models.ShareRootSquash :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "share" accept = "application/xml" # Construct URL url = self.create.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] if metadata is not None: header_parameters['x-ms-meta'] = self._serialize.header("metadata", metadata, 'str') if quota is not None: header_parameters['x-ms-share-quota'] = self._serialize.header("quota", quota, 'int', minimum=1) if access_tier is not None: header_parameters['x-ms-access-tier'] = self._serialize.header("access_tier", access_tier, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if enabled_protocols is not None: header_parameters['x-ms-enabled-protocols'] = self._serialize.header("enabled_protocols", enabled_protocols, 'str') if root_squash is not None: header_parameters['x-ms-root-squash'] = self._serialize.header("root_squash", root_squash, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) create.metadata = {'url': '/{shareName}'} # type: ignore def get_properties( self, sharesnapshot=None, # type: Optional[str] timeout=None, # type: Optional[int] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """Returns all user-defined metadata and system properties for the specified share or share snapshot. The data returned does not include the share's list of files. :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" accept = "application/xml" # Construct URL url = self.get_properties.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-meta']=self._deserialize('str', response.headers.get('x-ms-meta')) response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) response_headers['x-ms-share-quota']=self._deserialize('int', response.headers.get('x-ms-share-quota')) response_headers['x-ms-share-provisioned-iops']=self._deserialize('int', response.headers.get('x-ms-share-provisioned-iops')) response_headers['x-ms-share-provisioned-ingress-mbps']=self._deserialize('int', response.headers.get('x-ms-share-provisioned-ingress-mbps')) response_headers['x-ms-share-provisioned-egress-mbps']=self._deserialize('int', response.headers.get('x-ms-share-provisioned-egress-mbps')) response_headers['x-ms-share-next-allowed-quota-downgrade-time']=self._deserialize('rfc-1123', response.headers.get('x-ms-share-next-allowed-quota-downgrade-time')) response_headers['x-ms-share-provisioned-bandwidth-mibps']=self._deserialize('int', response.headers.get('x-ms-share-provisioned-bandwidth-mibps')) response_headers['x-ms-lease-duration']=self._deserialize('str', response.headers.get('x-ms-lease-duration')) response_headers['x-ms-lease-state']=self._deserialize('str', response.headers.get('x-ms-lease-state')) response_headers['x-ms-lease-status']=self._deserialize('str', response.headers.get('x-ms-lease-status')) response_headers['x-ms-access-tier']=self._deserialize('str', response.headers.get('x-ms-access-tier')) response_headers['x-ms-access-tier-change-time']=self._deserialize('rfc-1123', response.headers.get('x-ms-access-tier-change-time')) response_headers['x-ms-access-tier-transition-state']=self._deserialize('str', response.headers.get('x-ms-access-tier-transition-state')) response_headers['x-ms-enabled-protocols']=self._deserialize('str', response.headers.get('x-ms-enabled-protocols')) response_headers['x-ms-root-squash']=self._deserialize('str', response.headers.get('x-ms-root-squash')) if cls: return cls(pipeline_response, None, response_headers) get_properties.metadata = {'url': '/{shareName}'} # type: ignore def delete( self, sharesnapshot=None, # type: Optional[str] timeout=None, # type: Optional[int] delete_snapshots=None, # type: Optional[Union[str, "_models.DeleteSnapshotsOptionType"]] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """Operation marks the specified share or share snapshot for deletion. The share or share snapshot and any files contained within it are later deleted during garbage collection. :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param delete_snapshots: Specifies the option include to delete the base share and all of its snapshots. :type delete_snapshots: str or ~azure.storage.fileshare.models.DeleteSnapshotsOptionType :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" accept = "application/xml" # Construct URL url = self.delete.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if delete_snapshots is not None: header_parameters['x-ms-delete-snapshots'] = self._serialize.header("delete_snapshots", delete_snapshots, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) delete.metadata = {'url': '/{shareName}'} # type: ignore def acquire_lease( self, timeout=None, # type: Optional[int] duration=None, # type: Optional[int] proposed_lease_id=None, # type: Optional[str] sharesnapshot=None, # type: Optional[str] request_id_parameter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """The Lease Share operation establishes and manages a lock on a share, or the specified snapshot for set and delete share operations. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param duration: Specifies the duration of the lease, in seconds, or negative one (-1) for a lease that never expires. A non-infinite lease can be between 15 and 60 seconds. A lease duration cannot be changed using renew or change. :type duration: int :param proposed_lease_id: Proposed lease ID, in a GUID string format. The File service returns 400 (Invalid request) if the proposed lease ID is not in the correct format. See Guid Constructor (String) for a list of valid GUID string formats. :type proposed_lease_id: str :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) comp = "lease" action = "acquire" restype = "share" accept = "application/xml" # Construct URL url = self.acquire_lease.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['comp'] = self._serialize.query("comp", comp, 'str') query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-lease-action'] = self._serialize.header("action", action, 'str') if duration is not None: header_parameters['x-ms-lease-duration'] = self._serialize.header("duration", duration, 'int') if proposed_lease_id is not None: header_parameters['x-ms-proposed-lease-id'] = self._serialize.header("proposed_lease_id", proposed_lease_id, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-lease-id']=self._deserialize('str', response.headers.get('x-ms-lease-id')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) acquire_lease.metadata = {'url': '/{shareName}'} # type: ignore def release_lease( self, lease_id, # type: str timeout=None, # type: Optional[int] sharesnapshot=None, # type: Optional[str] request_id_parameter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """The Lease Share operation establishes and manages a lock on a share, or the specified snapshot for set and delete share operations. :param lease_id: Specifies the current lease ID on the resource. :type lease_id: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) comp = "lease" action = "release" restype = "share" accept = "application/xml" # Construct URL url = self.release_lease.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['comp'] = self._serialize.query("comp", comp, 'str') query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-lease-action'] = self._serialize.header("action", action, 'str') header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) release_lease.metadata = {'url': '/{shareName}'} # type: ignore def change_lease( self, lease_id, # type: str timeout=None, # type: Optional[int] proposed_lease_id=None, # type: Optional[str] sharesnapshot=None, # type: Optional[str] request_id_parameter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """The Lease Share operation establishes and manages a lock on a share, or the specified snapshot for set and delete share operations. :param lease_id: Specifies the current lease ID on the resource. :type lease_id: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param proposed_lease_id: Proposed lease ID, in a GUID string format. The File service returns 400 (Invalid request) if the proposed lease ID is not in the correct format. See Guid Constructor (String) for a list of valid GUID string formats. :type proposed_lease_id: str :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) comp = "lease" action = "change" restype = "share" accept = "application/xml" # Construct URL url = self.change_lease.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['comp'] = self._serialize.query("comp", comp, 'str') query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-lease-action'] = self._serialize.header("action", action, 'str') header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') if proposed_lease_id is not None: header_parameters['x-ms-proposed-lease-id'] = self._serialize.header("proposed_lease_id", proposed_lease_id, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-lease-id']=self._deserialize('str', response.headers.get('x-ms-lease-id')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) change_lease.metadata = {'url': '/{shareName}'} # type: ignore def renew_lease( self, lease_id, # type: str timeout=None, # type: Optional[int] sharesnapshot=None, # type: Optional[str] request_id_parameter=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """The Lease Share operation establishes and manages a lock on a share, or the specified snapshot for set and delete share operations. :param lease_id: Specifies the current lease ID on the resource. :type lease_id: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) comp = "lease" action = "renew" restype = "share" accept = "application/xml" # Construct URL url = self.renew_lease.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['comp'] = self._serialize.query("comp", comp, 'str') query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-lease-action'] = self._serialize.header("action", action, 'str') header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", lease_id, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-lease-id']=self._deserialize('str', response.headers.get('x-ms-lease-id')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) renew_lease.metadata = {'url': '/{shareName}'} # type: ignore def break_lease( self, timeout=None, # type: Optional[int] break_period=None, # type: Optional[int] request_id_parameter=None, # type: Optional[str] sharesnapshot=None, # type: Optional[str] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """The Lease Share operation establishes and manages a lock on a share, or the specified snapshot for set and delete share operations. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param break_period: For a break operation, proposed duration the lease should continue before it is broken, in seconds, between 0 and 60. This break period is only used if it is shorter than the time remaining on the lease. If longer, the time remaining on the lease is used. A new lease will not be available before the break period has expired, but the lease may be held for longer than the break period. If this header does not appear with a break operation, a fixed-duration lease breaks after the remaining lease period elapses, and an infinite lease breaks immediately. :type break_period: int :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :param sharesnapshot: The snapshot parameter is an opaque DateTime value that, when present, specifies the share snapshot to query. :type sharesnapshot: str :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id comp = "lease" action = "break" restype = "share" accept = "application/xml" # Construct URL url = self.break_lease.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['comp'] = self._serialize.query("comp", comp, 'str') query_parameters['restype'] = self._serialize.query("restype", restype, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) if sharesnapshot is not None: query_parameters['sharesnapshot'] = self._serialize.query("sharesnapshot", sharesnapshot, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-lease-action'] = self._serialize.header("action", action, 'str') if break_period is not None: header_parameters['x-ms-lease-break-period'] = self._serialize.header("break_period", break_period, 'int') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-lease-time']=self._deserialize('int', response.headers.get('x-ms-lease-time')) response_headers['x-ms-lease-id']=self._deserialize('str', response.headers.get('x-ms-lease-id')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) break_lease.metadata = {'url': '/{shareName}'} # type: ignore def create_snapshot( self, timeout=None, # type: Optional[int] metadata=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Creates a read-only snapshot of a share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param metadata: A name-value pair to associate with a file storage object. :type metadata: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "share" comp = "snapshot" accept = "application/xml" # Construct URL url = self.create_snapshot.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] if metadata is not None: header_parameters['x-ms-meta'] = self._serialize.header("metadata", metadata, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-snapshot']=self._deserialize('str', response.headers.get('x-ms-snapshot')) response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) create_snapshot.metadata = {'url': '/{shareName}'} # type: ignore def create_permission( self, share_permission, # type: "_models.SharePermission" timeout=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> None """Create a permission (a security descriptor). :param share_permission: A permission (a security descriptor) at the share level. :type share_permission: ~azure.storage.fileshare.models.SharePermission :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "share" comp = "filepermission" content_type = kwargs.pop("content_type", "application/json") accept = "application/xml" # Construct URL url = self.create_permission.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(share_permission, 'SharePermission') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) response_headers['x-ms-file-permission-key']=self._deserialize('str', response.headers.get('x-ms-file-permission-key')) if cls: return cls(pipeline_response, None, response_headers) create_permission.metadata = {'url': '/{shareName}'} # type: ignore def get_permission( self, file_permission_key, # type: str timeout=None, # type: Optional[int] **kwargs # type: Any ): # type: (...) -> "_models.SharePermission" """Returns the permission (security descriptor) for a given key. :param file_permission_key: Key of the permission to be set for the directory/file. :type file_permission_key: str :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :keyword callable cls: A custom type or function that will be passed the direct response :return: SharePermission, or the result of cls(response) :rtype: ~azure.storage.fileshare.models.SharePermission :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SharePermission"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "share" comp = "filepermission" accept = "application/json" # Construct URL url = self.get_permission.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-file-permission-key'] = self._serialize.header("file_permission_key", file_permission_key, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) deserialized = self._deserialize('SharePermission', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_permission.metadata = {'url': '/{shareName}'} # type: ignore def set_properties( self, timeout=None, # type: Optional[int] quota=None, # type: Optional[int] access_tier=None, # type: Optional[Union[str, "_models.ShareAccessTier"]] root_squash=None, # type: Optional[Union[str, "_models.ShareRootSquash"]] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """Sets properties for the specified share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param quota: Specifies the maximum size of the share, in gigabytes. :type quota: int :param access_tier: Specifies the access tier of the share. :type access_tier: str or ~azure.storage.fileshare.models.ShareAccessTier :param root_squash: Root squash to set on the share. Only valid for NFS shares. :type root_squash: str or ~azure.storage.fileshare.models.ShareRootSquash :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" comp = "properties" accept = "application/xml" # Construct URL url = self.set_properties.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if quota is not None: header_parameters['x-ms-share-quota'] = self._serialize.header("quota", quota, 'int', minimum=1) if access_tier is not None: header_parameters['x-ms-access-tier'] = self._serialize.header("access_tier", access_tier, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') if root_squash is not None: header_parameters['x-ms-root-squash'] = self._serialize.header("root_squash", root_squash, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) set_properties.metadata = {'url': '/{shareName}'} # type: ignore def set_metadata( self, timeout=None, # type: Optional[int] metadata=None, # type: Optional[str] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """Sets one or more user-defined name-value pairs for the specified share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param metadata: A name-value pair to associate with a file storage object. :type metadata: str :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" comp = "metadata" accept = "application/xml" # Construct URL url = self.set_metadata.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] if metadata is not None: header_parameters['x-ms-meta'] = self._serialize.header("metadata", metadata, 'str') header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) set_metadata.metadata = {'url': '/{shareName}'} # type: ignore def get_access_policy( self, timeout=None, # type: Optional[int] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> List["_models.SignedIdentifier"] """Returns information about stored access policies specified on the share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: list of SignedIdentifier, or the result of cls(response) :rtype: list[~azure.storage.fileshare.models.SignedIdentifier] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.SignedIdentifier"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" comp = "acl" accept = "application/xml" # Construct URL url = self.get_access_policy.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) deserialized = self._deserialize('[SignedIdentifier]', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_access_policy.metadata = {'url': '/{shareName}'} # type: ignore def set_access_policy( self, timeout=None, # type: Optional[int] share_acl=None, # type: Optional[List["_models.SignedIdentifier"]] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> None """Sets a stored access policy for use with shared access signatures. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param share_acl: The ACL for the share. :type share_acl: list[~azure.storage.fileshare.models.SignedIdentifier] :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" comp = "acl" content_type = kwargs.pop("content_type", "application/xml") accept = "application/xml" # Construct URL url = self.set_access_policy.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] serialization_ctxt = {'xml': {'name': 'SignedIdentifiers', 'wrapped': True}} if share_acl is not None: body_content = self._serialize.body(share_acl, '[SignedIdentifier]', is_xml=True, serialization_ctxt=serialization_ctxt) else: body_content = None body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) set_access_policy.metadata = {'url': '/{shareName}'} # type: ignore def get_statistics( self, timeout=None, # type: Optional[int] lease_access_conditions=None, # type: Optional["_models.LeaseAccessConditions"] **kwargs # type: Any ): # type: (...) -> "_models.ShareStats" """Retrieves statistics related to the share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param lease_access_conditions: Parameter group. :type lease_access_conditions: ~azure.storage.fileshare.models.LeaseAccessConditions :keyword callable cls: A custom type or function that will be passed the direct response :return: ShareStats, or the result of cls(response) :rtype: ~azure.storage.fileshare.models.ShareStats :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ShareStats"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _lease_id = None if lease_access_conditions is not None: _lease_id = lease_access_conditions.lease_id restype = "share" comp = "stats" accept = "application/xml" # Construct URL url = self.get_statistics.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if _lease_id is not None: header_parameters['x-ms-lease-id'] = self._serialize.header("lease_id", _lease_id, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) deserialized = self._deserialize('ShareStats', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_statistics.metadata = {'url': '/{shareName}'} # type: ignore def restore( self, timeout=None, # type: Optional[int] request_id_parameter=None, # type: Optional[str] deleted_share_name=None, # type: Optional[str] deleted_share_version=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None """Restores a previously deleted Share. :param timeout: The timeout parameter is expressed in seconds. For more information, see :code:`<a href="https://docs.microsoft.com/en-us/rest/api/storageservices/Setting-Timeouts-for-File-Service-Operations?redirectedfrom=MSDN">Setting Timeouts for File Service Operations.</a>`. :type timeout: int :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when storage analytics logging is enabled. :type request_id_parameter: str :param deleted_share_name: Specifies the name of the previously-deleted share. :type deleted_share_name: str :param deleted_share_version: Specifies the version of the previously-deleted share. :type deleted_share_version: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "share" comp = "undelete" accept = "application/xml" # Construct URL url = self.restore.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') if deleted_share_name is not None: header_parameters['x-ms-deleted-share-name'] = self._serialize.header("deleted_share_name", deleted_share_name, 'str') if deleted_share_version is not None: header_parameters['x-ms-deleted-share-version'] = self._serialize.header("deleted_share_version", deleted_share_version, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.put(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.StorageError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) response_headers['Last-Modified']=self._deserialize('rfc-1123', response.headers.get('Last-Modified')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) if cls: return cls(pipeline_response, None, response_headers) restore.metadata = {'url': '/{shareName}'} # type: ignore
54.26061
172
0.667705
2421ae44c8410ae22db7694240c9dabfe98997c4
3,452
py
Python
profiles_project/settings.py
JasonK1561/profiles-rest-api
5cdf148d55c5610c944e48abd203885e92d4b741
[ "MIT" ]
null
null
null
profiles_project/settings.py
JasonK1561/profiles-rest-api
5cdf148d55c5610c944e48abd203885e92d4b741
[ "MIT" ]
null
null
null
profiles_project/settings.py
JasonK1561/profiles-rest-api
5cdf148d55c5610c944e48abd203885e92d4b741
[ "MIT" ]
null
null
null
""" Django settings for profiles_project project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'sm4(&y%5j&)st03l125i)^b2wyw^^ib!n*1g2y)x7j0)0+#*se' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', ##The depedent app that was installed in the DjangoRestFramework 'rest_framework.authtoken', ##Another app thats lets us use the authentication that comes with DRF 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' #Configuring django to use this as the user model instead of the one provided AUTH_USER_MODEL = 'profiles_api.UserProfile'
27.181102
102
0.705678
4ebfbc4fee1e04634408737c452de9e17245d0c3
14,570
py
Python
net/views.py
dehu4ka/lna
f5ee176bdb5c7507b76fba5ae651ce333b71c3db
[ "MIT" ]
null
null
null
net/views.py
dehu4ka/lna
f5ee176bdb5c7507b76fba5ae651ce333b71c3db
[ "MIT" ]
null
null
null
net/views.py
dehu4ka/lna
f5ee176bdb5c7507b76fba5ae651ce333b71c3db
[ "MIT" ]
null
null
null
from django.http import HttpResponseRedirect from django.shortcuts import render from django.contrib.auth.mixins import LoginRequiredMixin from django.urls import reverse_lazy from django.views.generic import TemplateView, ListView, FormView, DetailView from django.core.exceptions import PermissionDenied from net.models import Scripts, Job, Equipment, Subnets, EquipmentConfig from net.forms import TaskForm, ArchiveTasksForm, SubnetForm, NEListForm, ConfigSearchForm, CMDRunnerForm from django.contrib import messages from net.equipment.generic import GenericEquipment from net.lib import celery_job_starter, scan_nets_with_fping, discover_vendor, cmd_to_celery from argus.models import Client, ASTU import re # Create your views here. class Demo(LoginRequiredMixin, TemplateView): template_name = 'net/demo.html' def get(self, request, *args, **kwargs): eq_device = Equipment.objects.get(ne_ip='10.205.18.247') # equipment object eq = GenericEquipment(eq_device) eq.set_io_timeout(1) eq.suggest_login(resuggest=False) eq.do_login() eq.discover_vendor() return render(request, self.template_name, *args, **kwargs) class PickNE(LoginRequiredMixin, TemplateView): template_name = 'net/pick_ne.html' def get_context_data(self, **kwargs): context = super(PickNE, self).get_context_data(**kwargs) possible_scripts = Scripts.objects.all().exclude(is_hidden=True) context['possible_scripts'] = possible_scripts return context class DoTask(LoginRequiredMixin, TemplateView): template_name = 'net/do_task.html' def get(self, *args, **kwargs): raise PermissionDenied def post(self, request): """ Нужно запустить стартер, который получит на вход список ID назначений, имя скрипта для выполнения, и возможно, какие-то дополнительные аргументы. :param request: :return: """ destinations_ids = request.POST.getlist('destinations') script_id = request.POST['script_select'] celery_job_starter(destinations_ids, script_id) args = dict() return render(request, self.template_name, args) class ActiveTasks(LoginRequiredMixin, ListView, FormView): model = Job template_name = 'net/active_tasks.html' form_class = TaskForm paginate_by = 9 success_url = '/net/active_tasks' def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_queryset(self): if self.request.method == 'POST': form = TaskForm(self.request.POST) if form.is_valid(): task_status = form.cleaned_data['task_status'] if task_status != '': return Job.objects.filter(status=task_status) return Job.objects.all().exclude(status='ARCHIVED').exclude(status='TERMINATED') if self.request.method == 'GET': if self.request.GET.get('task_status') and (self.request.GET.get('task_status') != 'None'): return Job.objects.filter(status=self.request.GET.get('task_status')) return Job.objects.all().exclude(status='ARCHIVED').exclude(status='TERMINATED') def get_context_data(self, **kwargs): context = super(ActiveTasks, self).get_context_data(**kwargs) task_status = None if self.request.method == 'POST': form = TaskForm(self.request.POST) if form.is_valid(): task_status = form.cleaned_data['task_status'] if self.request.method == 'GET': task_status = self.request.GET.get('task_status') context['task_status'] = task_status return context class ArchiveTasks(LoginRequiredMixin, FormView): template_name = 'net/archive_tasks.html' form_class = ArchiveTasksForm def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super(ArchiveTasks, self).get_context_data(**kwargs) if self.request.method == 'POST': Job.objects.filter(status='SUCCESS').update(status='ARCHIVED') messages.add_message(self.request, messages.INFO, 'Архивация выполена') return context class TaskDetail(LoginRequiredMixin, TemplateView): template_name = 'net/task_detail.html' class DiscoverSubnets(LoginRequiredMixin, FormView): template_name = 'net/discover_subnets.html' form_class = SubnetForm def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super(DiscoverSubnets, self).get_context_data(**kwargs) context['new'] = False context['found'] = False if self.request.method == 'POST': form = SubnetForm(self.request.POST) if form.is_valid(): subnets = form.cleaned_data['subnets'].split("\r\n") # lists with subnet cast_to_celery = form.cleaned_data['cast_to_celery'] # "Send discovery task to Celery" checkbox discover_task = form.cleaned_data['discover_task'] # Task type context['cast_to_celery'] = cast_to_celery if discover_task == 'fping': if not cast_to_celery: found, new = scan_nets_with_fping(subnets) context['found'] = found context['new'] = new else: celery_job_starter(subnets, '999') # 999 will be send task to celery for subnets scan if discover_task == 'vendor': if not cast_to_celery: discover_vendor(subnets) else: celery_job_starter(subnets, '1000') pass if discover_task == 'config': if not cast_to_celery: # discover_config(subnets) pass else: celery_job_starter(subnets, '1001') pass if discover_task == 'put_syslocation': if not cast_to_celery: # only in celery pass else: celery_job_starter(subnets, '1002') return context class ClientsCount(LoginRequiredMixin, TemplateView): template_name = 'net/clients_count.html' def get_context_data(self, **kwargs): result_dict = dict() clients = Client.objects.all() for client in clients: hostname = client.hostname hostname_parts = hostname.split('-') try: node_name = hostname_parts[0] + '-' + hostname_parts[1] + '-' + hostname_parts[2] if node_name in result_dict: result_dict[node_name] += 1 else: result_dict[node_name] = 1 except IndexError: # skip # print(hostname) pass result_str = '' for node in result_dict: try: astu_objects = ASTU.objects.filter(hostname__contains=node).filter(status='эксплуатация') astu_first_object = astu_objects[0] address = astu_first_object.address except IndexError: address = 'Unknown' # print(node + ';' + str(result_dict[node]) + ';"' + address + '"') result_str += node + ';' + str(result_dict[node]) + ';"' + address + '"' + "\n" context = super(ClientsCount, self).get_context_data(**kwargs) context['result_str'] = result_str return context class NEList(LoginRequiredMixin, ListView, FormView): template_name = 'net/ne_list.html' form_class = NEListForm model = Equipment success_url = 'net/ne_list' paginate_by = 20 context_object_name = 'ne_list' def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_queryset(self): ne_list = Equipment.objects.all() # defaults is_login_discovered = 'any' # any value is_vendor_discovered = 'any' ip_or_subnet = '' if self.request.method == 'POST': form = NEListForm(self.request.POST) if form.is_valid(): is_login_discovered = form.cleaned_data['is_login_discovered'] is_vendor_discovered = form.cleaned_data['is_vendor_discovered'] ip_or_subnet = form.cleaned_data['ip_or_subnet'] if self.request.method == 'GET': is_login_discovered = self.request.GET.get('is_login_discovered') is_vendor_discovered = self.request.GET.get('is_login_discovered') ip_or_subnet = self.request.GET.get('ip_or_subnet') # Filter login_discovered if is_login_discovered == 'yes': ne_list = ne_list.filter(credentials_id__isnull=False) elif is_login_discovered == 'no': ne_list = ne_list.filter(credentials_id__isnull=True) else: # 'any' pass # Filter vendor discovered if is_vendor_discovered == 'yes': ne_list = ne_list.filter(vendor__isnull=False) elif is_vendor_discovered == 'no': ne_list = ne_list.filter(vendor__isnull=True) else: # any pass ip_re = r'^([0-9]+\.){3}[0-9]+$' mask_re = r'^([0-9]+\.){3}[0-9]+\/\d{1,2}$' # IP / hostname / subnet filtering if ip_or_subnet and (ip_or_subnet is not None) and (ip_or_subnet != 'None'): if re.match(ip_re, ip_or_subnet): # IP-address only ne_list = ne_list.filter(ne_ip=ip_or_subnet) elif re.match(mask_re, ip_or_subnet): # Subnet try: ne_list = ne_list.filter(ne_ip__net_contained=ip_or_subnet) except ValueError as err: messages.add_message(self.request, messages.ERROR, 'Subnet search error. ' + str(err)) else: # filtering by hostname ne_list = ne_list.filter(hostname__icontains=ip_or_subnet) # return result return ne_list def get_context_data(self, **kwargs): context = super(NEList, self).get_context_data(**kwargs) context['row_count'] = self.get_queryset().count() if self.request.method == 'GET': context['is_login_discovered'] = self.request.GET.get('is_login_discovered') context['is_vendor_discovered'] = self.request.GET.get('is_vendor_discovered') context['ip_or_subnet'] = self.request.GET.get('ip_or_subnet') if self.request.method == 'POST': form = NEListForm(self.request.POST) if form.is_valid(): context['is_login_discovered'] = form.cleaned_data['is_login_discovered'] context['is_vendor_discovered'] = form.cleaned_data['is_vendor_discovered'] context['ip_or_subnet'] = form.cleaned_data['ip_or_subnet'] return context class NEDetail(LoginRequiredMixin, DetailView): template_name = 'net/ne_detail.html' model = Equipment def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) ip = str(context['object'].ne_ip).replace('/32', '') # removing /32 from IPv4 addr try: astu_object = ASTU.objects.get(ne_ip=ip) # check if NE with this IP exists in ASTU table address = astu_object.address # getting address except ASTU.DoesNotExist: address = 'Not found' context['address'] = address # return it to the context config_archives = EquipmentConfig.objects.filter(equipment_id=context['object'].id) context['config_archives'] = config_archives[:20] # Last 20 configurations return context class SubnetsList(LoginRequiredMixin, ListView): template_name = 'net/subnets_list.html' model = Subnets def get_queryset(self): subnets_list = Subnets.objects.all() return subnets_list def get_context_data(self, **kwargs): context = super(SubnetsList, self).get_context_data(**kwargs) context['row_count'] = self.get_queryset().count() return context class ConfigSearch(LoginRequiredMixin, ListView, FormView): template_name = 'net/config_search.html' form_class = ConfigSearchForm model = Equipment success_url = 'net/config_search' paginate_by = 20 context_object_name = 'ne_list' def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_search_term(self): """ Returns search term from form if method is post, otherwise returns None :return: search term or None """ if self.request.method == 'POST': form = ConfigSearchForm(self.request.POST) if form.is_valid(): search = form.cleaned_data['search'] or '' return search if self.request.method == 'GET': return self.request.GET.get('search') or '' def get_queryset(self): ne_list = Equipment.objects.all() # all NE's search = self.get_search_term() if search: ne_list = ne_list.filter(current_config__icontains=search) return ne_list return Equipment.objects.none() # otherwise return empty queryset / list def get_context_data(self, **kwargs): context = super(ConfigSearch, self).get_context_data(**kwargs) context['row_count'] = self.get_queryset().count() context['search'] = self.get_search_term() return context class CMDRunner(LoginRequiredMixin, FormView): template_name = 'net/cmd_runner.html' form_class = CMDRunnerForm def post(self, request, *args, **kwargs): return self.get(request, *args, **kwargs) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) if self.request.method == 'POST': form = CMDRunnerForm(self.request.POST) if form.is_valid(): ips = form.cleaned_data['ips_textfield'] cmds = form.cleaned_data['commands_list'] vendor = form.cleaned_data['vendor_choices'] cmd_to_celery(vendor, ips, cmds) return context
38.853333
118
0.617708
cd8cd449f9002a31a3a3cc9560cb46e6985bc0e0
16,366
py
Python
airflow/providers/microsoft/azure/operators/azure_container_instances.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
15,947
2019-01-05T13:51:02.000Z
2022-03-31T23:33:16.000Z
airflow/providers/microsoft/azure/operators/azure_container_instances.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
14,603
2019-01-05T09:43:19.000Z
2022-03-31T23:11:59.000Z
airflow/providers/microsoft/azure/operators/azure_container_instances.py
ChaseKnowlden/airflow
6b71eac1997a7c0db3b8e3aed6b4e65d01871440
[ "Apache-2.0" ]
8,429
2019-01-05T19:45:47.000Z
2022-03-31T22:13:01.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re from collections import namedtuple from time import sleep from typing import Any, Dict, List, Optional, Sequence, Union from azure.mgmt.containerinstance.models import ( Container, ContainerGroup, ContainerPort, EnvironmentVariable, IpAddress, ResourceRequests, ResourceRequirements, VolumeMount, ) from msrestazure.azure_exceptions import CloudError from airflow.exceptions import AirflowException, AirflowTaskTimeout from airflow.models import BaseOperator from airflow.providers.microsoft.azure.hooks.azure_container_instance import AzureContainerInstanceHook from airflow.providers.microsoft.azure.hooks.azure_container_registry import AzureContainerRegistryHook from airflow.providers.microsoft.azure.hooks.azure_container_volume import AzureContainerVolumeHook Volume = namedtuple( 'Volume', ['conn_id', 'account_name', 'share_name', 'mount_path', 'read_only'], ) DEFAULT_ENVIRONMENT_VARIABLES: Dict[str, str] = {} DEFAULT_SECURED_VARIABLES: Sequence[str] = [] DEFAULT_VOLUMES: Sequence[Volume] = [] DEFAULT_MEMORY_IN_GB = 2.0 DEFAULT_CPU = 1.0 class AzureContainerInstancesOperator(BaseOperator): """ Start a container on Azure Container Instances :param ci_conn_id: connection id of a service principal which will be used to start the container instance :type ci_conn_id: str :param registry_conn_id: connection id of a user which can login to a private docker registry. For Azure use :ref:`Azure connection id<howto/connection:azure>` :type azure_conn_id: str If None, we assume a public registry :type registry_conn_id: Optional[str] :param resource_group: name of the resource group wherein this container instance should be started :type resource_group: str :param name: name of this container instance. Please note this name has to be unique in order to run containers in parallel. :type name: str :param image: the docker image to be used :type image: str :param region: the region wherein this container instance should be started :type region: str :param environment_variables: key,value pairs containing environment variables which will be passed to the running container :type environment_variables: Optional[dict] :param secured_variables: names of environmental variables that should not be exposed outside the container (typically passwords). :type secured_variables: Optional[str] :param volumes: list of ``Volume`` tuples to be mounted to the container. Currently only Azure Fileshares are supported. :type volumes: list[<conn_id, account_name, share_name, mount_path, read_only>] :param memory_in_gb: the amount of memory to allocate to this container :type memory_in_gb: double :param cpu: the number of cpus to allocate to this container :type cpu: double :param gpu: GPU Resource for the container. :type gpu: azure.mgmt.containerinstance.models.GpuResource :param command: the command to run inside the container :type command: Optional[List[str]] :param container_timeout: max time allowed for the execution of the container instance. :type container_timeout: datetime.timedelta :param tags: azure tags as dict of str:str :type tags: Optional[dict[str, str]] :param os_type: The operating system type required by the containers in the container group. Possible values include: 'Windows', 'Linux' :type os_type: str :param restart_policy: Restart policy for all containers within the container group. Possible values include: 'Always', 'OnFailure', 'Never' :type restart_policy: str :param ip_address: The IP address type of the container group. :type ip_address: IpAddress **Example**:: AzureContainerInstancesOperator( ci_conn_id = "azure_service_principal", registry_conn_id = "azure_registry_user", resource_group = "my-resource-group", name = "my-container-name-{{ ds }}", image = "myprivateregistry.azurecr.io/my_container:latest", region = "westeurope", environment_variables = {"MODEL_PATH": "my_value", "POSTGRES_LOGIN": "{{ macros.connection('postgres_default').login }}", "POSTGRES_PASSWORD": "{{ macros.connection('postgres_default').password }}", "JOB_GUID": "{{ ti.xcom_pull(task_ids='task1', key='guid') }}" }, secured_variables = ['POSTGRES_PASSWORD'], volumes = [("azure_container_instance_conn_id", "my_storage_container", "my_fileshare", "/input-data", True),], memory_in_gb=14.0, cpu=4.0, gpu=GpuResource(count=1, sku='K80'), command=["/bin/echo", "world"], task_id="start_container" ) """ template_fields = ('name', 'image', 'command', 'environment_variables') template_fields_renderers = {"command": "bash", "environment_variables": "json"} def __init__( self, *, ci_conn_id: str, registry_conn_id: Optional[str], resource_group: str, name: str, image: str, region: str, environment_variables: Optional[dict] = None, secured_variables: Optional[str] = None, volumes: Optional[list] = None, memory_in_gb: Optional[Any] = None, cpu: Optional[Any] = None, gpu: Optional[Any] = None, command: Optional[List[str]] = None, remove_on_error: bool = True, fail_if_exists: bool = True, tags: Optional[Dict[str, str]] = None, os_type: str = 'Linux', restart_policy: str = 'Never', ip_address: Optional[IpAddress] = None, ports: Optional[List[ContainerPort]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.ci_conn_id = ci_conn_id self.resource_group = resource_group self.name = self._check_name(name) self.image = image self.region = region self.registry_conn_id = registry_conn_id self.environment_variables = environment_variables or DEFAULT_ENVIRONMENT_VARIABLES self.secured_variables = secured_variables or DEFAULT_SECURED_VARIABLES self.volumes = volumes or DEFAULT_VOLUMES self.memory_in_gb = memory_in_gb or DEFAULT_MEMORY_IN_GB self.cpu = cpu or DEFAULT_CPU self.gpu = gpu self.command = command self.remove_on_error = remove_on_error self.fail_if_exists = fail_if_exists self._ci_hook: Any = None self.tags = tags self.os_type = os_type if self.os_type not in ['Linux', 'Windows']: raise AirflowException( "Invalid value for the os_type argument. " "Please set 'Linux' or 'Windows' as the os_type. " f"Found `{self.os_type}`." ) self.restart_policy = restart_policy if self.restart_policy not in ['Always', 'OnFailure', 'Never']: raise AirflowException( "Invalid value for the restart_policy argument. " "Please set one of 'Always', 'OnFailure','Never' as the restart_policy. " f"Found `{self.restart_policy}`" ) self.ip_address = ip_address self.ports = ports def execute(self, context: dict) -> int: # Check name again in case it was templated. self._check_name(self.name) self._ci_hook = AzureContainerInstanceHook(self.ci_conn_id) if self.fail_if_exists: self.log.info("Testing if container group already exists") if self._ci_hook.exists(self.resource_group, self.name): raise AirflowException("Container group exists") if self.registry_conn_id: registry_hook = AzureContainerRegistryHook(self.registry_conn_id) image_registry_credentials: Optional[list] = [ registry_hook.connection, ] else: image_registry_credentials = None environment_variables = [] for key, value in self.environment_variables.items(): if key in self.secured_variables: e = EnvironmentVariable(name=key, secure_value=value) else: e = EnvironmentVariable(name=key, value=value) environment_variables.append(e) volumes: List[Union[Volume, Volume]] = [] volume_mounts: List[Union[VolumeMount, VolumeMount]] = [] for conn_id, account_name, share_name, mount_path, read_only in self.volumes: hook = AzureContainerVolumeHook(conn_id) mount_name = "mount-%d" % len(volumes) volumes.append(hook.get_file_volume(mount_name, share_name, account_name, read_only)) volume_mounts.append(VolumeMount(name=mount_name, mount_path=mount_path, read_only=read_only)) exit_code = 1 try: self.log.info("Starting container group with %.1f cpu %.1f mem", self.cpu, self.memory_in_gb) if self.gpu: self.log.info("GPU count: %.1f, GPU SKU: %s", self.gpu.count, self.gpu.sku) resources = ResourceRequirements( requests=ResourceRequests(memory_in_gb=self.memory_in_gb, cpu=self.cpu, gpu=self.gpu) ) if self.ip_address and not self.ports: self.ports = [ContainerPort(port=80)] self.log.info("Default port set. Container will listen on port 80") container = Container( name=self.name, image=self.image, resources=resources, command=self.command, environment_variables=environment_variables, volume_mounts=volume_mounts, ports=self.ports, ) container_group = ContainerGroup( location=self.region, containers=[ container, ], image_registry_credentials=image_registry_credentials, volumes=volumes, restart_policy=self.restart_policy, os_type=self.os_type, tags=self.tags, ip_address=self.ip_address, ) self._ci_hook.create_or_update(self.resource_group, self.name, container_group) self.log.info("Container group started %s/%s", self.resource_group, self.name) exit_code = self._monitor_logging(self.resource_group, self.name) self.log.info("Container had exit code: %s", exit_code) if exit_code != 0: raise AirflowException(f"Container had a non-zero exit code, {exit_code}") return exit_code except CloudError: self.log.exception("Could not start container group") raise AirflowException("Could not start container group") finally: if exit_code == 0 or self.remove_on_error: self.on_kill() def on_kill(self) -> None: if self.remove_on_error: self.log.info("Deleting container group") try: self._ci_hook.delete(self.resource_group, self.name) except Exception: self.log.exception("Could not delete container group") def _monitor_logging(self, resource_group: str, name: str) -> int: last_state = None last_message_logged = None last_line_logged = None while True: try: cg_state = self._ci_hook.get_state(resource_group, name) instance_view = cg_state.containers[0].instance_view # If there is no instance view, we show the provisioning state if instance_view is not None: c_state = instance_view.current_state state, exit_code, detail_status = ( c_state.state, c_state.exit_code, c_state.detail_status, ) else: state = cg_state.provisioning_state exit_code = 0 detail_status = "Provisioning" if instance_view is not None and instance_view.events is not None: messages = [event.message for event in instance_view.events] last_message_logged = self._log_last(messages, last_message_logged) if state != last_state: self.log.info("Container group state changed to %s", state) last_state = state if state in ["Running", "Terminated", "Succeeded"]: try: logs = self._ci_hook.get_logs(resource_group, name) last_line_logged = self._log_last(logs, last_line_logged) except CloudError: self.log.exception( "Exception while getting logs from container instance, retrying..." ) if state == "Terminated": self.log.info("Container exited with detail_status %s", detail_status) return exit_code if state == "Failed": self.log.error("Azure provision failure") return 1 except AirflowTaskTimeout: raise except CloudError as err: if 'ResourceNotFound' in str(err): self.log.warning( "ResourceNotFound, container is probably removed " "by another process " "(make sure that the name is unique)." ) return 1 else: self.log.exception("Exception while getting container groups") except Exception: self.log.exception("Exception while getting container groups") sleep(1) def _log_last(self, logs: Optional[list], last_line_logged: Any) -> Optional[Any]: if logs: # determine the last line which was logged before last_line_index = 0 for i in range(len(logs) - 1, -1, -1): if logs[i] == last_line_logged: # this line is the same, hence print from i+1 last_line_index = i + 1 break # log all new ones for line in logs[last_line_index:]: self.log.info(line.rstrip()) return logs[-1] return None @staticmethod def _check_name(name: str) -> str: if '{{' in name: # Let macros pass as they cannot be checked at construction time return name regex_check = re.match("[a-z0-9]([-a-z0-9]*[a-z0-9])?", name) if regex_check is None or regex_check.group() != name: raise AirflowException('ACI name must match regex [a-z0-9]([-a-z0-9]*[a-z0-9])? (like "my-name")') if len(name) > 63: raise AirflowException('ACI name cannot be longer than 63 characters') return name
41.856777
110
0.611878
17fa338fad14d58a178996bfaadf00950f6e5981
1,463
py
Python
pytorch/models/classifier.py
cmonserr/Why_Difficulty
7b34cc3556a1b99ac67cb155fba8d0837c9b7b10
[ "MIT" ]
1
2022-02-04T11:33:41.000Z
2022-02-04T11:33:41.000Z
pytorch/models/classifier.py
dcastf01/creating_adversarial_images
01564f7b4ff9f19021986e57f5bfad827213c8a6
[ "MIT" ]
null
null
null
pytorch/models/classifier.py
dcastf01/creating_adversarial_images
01564f7b4ff9f19021986e57f5bfad827213c8a6
[ "MIT" ]
null
null
null
import torch import torch.nn.functional as F from torch import nn import pytorch_pfn_extras as ppe class Classifier(nn.Module): """two class classfication""" def __init__(self, predictor, lossfun=cross_entropy_with_logits): super().__init__() self.predictor = predictor self.lossfun = lossfun self.prefix = "" def forward(self, image, targets): outputs = self.predictor(image) loss = self.lossfun(outputs, targets) metrics = { f"{self.prefix}loss": loss.item(), f"{self.prefix}acc": accuracy_with_logits(outputs, targets).item() } ppe.reporting.report(metrics, self) return loss, metrics def predict(self, data_loader): pred = self.predict_proba(data_loader) label = torch.argmax(pred, dim=1) return label def predict_proba(self, data_loader): device: torch.device = next(self.parameters()).device y_list = [] self.eval() with torch.no_grad(): for batch in data_loader: if isinstance(batch, (tuple, list)): # Assumes first argument is "image" batch = batch[0].to(device) else: batch = batch.to(device) y = self.predictor(batch) y = torch.softmax(y, dim=-1) y_list.append(y) pred = torch.cat(y_list) return pred
32.511111
78
0.574846
76782e70811ce5cd512d3c5a760a4bb0182a0071
1,568
py
Python
qcdb/driver/pe.py
nuwandesilva/qcdb
b47fb2ed550fc4176198ddb1dbea3724d6704d23
[ "BSD-3-Clause" ]
null
null
null
qcdb/driver/pe.py
nuwandesilva/qcdb
b47fb2ed550fc4176198ddb1dbea3724d6704d23
[ "BSD-3-Clause" ]
null
null
null
qcdb/driver/pe.py
nuwandesilva/qcdb
b47fb2ed550fc4176198ddb1dbea3724d6704d23
[ "BSD-3-Clause" ]
null
null
null
import collections from qcelemental.util import which, which_import from .. import data_dir from ..molecule import Molecule from ..moptions.read_options2 import RottenOptions, load_qcdb_defaults from ..intf_psi4.options import load_cfour_defaults_from_psi4, load_psi4_defaults from ..intf_nwchem.options import load_nwchem_defaults from ..intf_gamess.options import load_gamess_defaults def clean_nu_options(): global nu_options nu_options = RottenOptions() def load_nu_options(): global nu_options load_options(nu_options) #print('OPTIONS LOADED') #print(nu_options) def load_options(options): """Initialize program options defaults onto `options`.""" load_qcdb_defaults(options) if which('xcfour') and which_import('psi4'): load_cfour_defaults_from_psi4(options) if which('nwchem'): load_nwchem_defaults(options) if which('rungms'): load_gamess_defaults(options) if which('psi4') and which_import('psi4'): load_psi4_defaults(options) if which_import('resp'): resp.load_defaults(nu_options) nu_options = None clean_nu_options() def clean_options(): global active_options active_options = collections.defaultdict(lambda: collections.defaultdict(dict)) active_options['GLOBALS'] # here liveth the options _during_ function calls active_options = None clean_options() # here liveth the molecule between function calls active_molecule = Molecule("""H 0 0 0\nH 0.74 0 0""") # here liveth the QCVariables when not attached to jobrec active_qcvars = {}
26.133333
83
0.753189
f0c9f4eb3806365595409e4a7d10933f90de563f
2,105
py
Python
utility/testSiO-SiO2-quant-2.py
jrminter/dtsa2scripts
a7a4f3a63f47f0a8abe7ee13c72f5a27196c3a1b
[ "MIT" ]
2
2018-04-19T12:25:29.000Z
2018-11-24T12:55:46.000Z
utility/testSiO-SiO2-quant-2.py
jrminter/dtsa2Scripts
a7a4f3a63f47f0a8abe7ee13c72f5a27196c3a1b
[ "MIT" ]
null
null
null
utility/testSiO-SiO2-quant-2.py
jrminter/dtsa2Scripts
a7a4f3a63f47f0a8abe7ee13c72f5a27196c3a1b
[ "MIT" ]
null
null
null
# This Python file uses the following encoding: utf-8 # testSiO-SiO2-quant-2.py # This version reads from disk # 2018-10-16 import sys import os import time import shutil # import dtsa2 as dt2 import dtsa2.mcSimulate3 as mc3 import dtsa2.jmGen as jmg gitDir = os.environ['GIT_HOME'] relPrj = "/dtsa2Scripts/utility" prjDir = gitDir + relPrj rptDir = prjDir + '/testSiO-SiO2-quant-2 Results/' spcDir = gitDir + relPrj + "/sim-quant-sio-w-sio2" det = findDetector("Oxford p4 05eV 2K") e0 = 4.0 # kV nDigits = 5 DataManager.clearSpectrumList() start = time.time() sio2 = material("SiO2", density=2.196) # sio = material("SiO", density=2.13) # Read standard fi = spcDir + "/SiO2 std.msa" spc_sio2_std = readSpectrum(fi) spc_sio2_std.display() lDoseUnk = [50, 100, 200, 500, 1000, 2500, 5000] xrts = [] trs = mc3.suggestTransitions(sio2, e0) for tr in trs: xrts.append(tr) stds = { element("O"): spc_sio2_std, element("Si"): spc_sio2_std } qus = multiQuant(det, e0, stds, {}) for doseUnk in lDoseUnk: sName = "SiO Unk %g nA-sec.msa" % (doseUnk) fi = spcDir + "/" + sName spc_sio_unk = readSpectrum(fi) spc_sio_unk.display() res = qus.compute(spc_sio_unk) print(sName) print("Weight Fraction") print("Si") siWF = res.getComposition().weightFractionU(element("Si"), True) print(jmg.pretty_print_unc_val(siWF, nDigits)) print("O") oWF = res.getComposition().weightFractionU(element("O"), True) print(jmg.pretty_print_unc_val(oWF, nDigits)) print("") print("Atomic Percent") print("Si") siAP = res.getComposition().atomicPercentU(element("Si"), True) print(jmg.pretty_print_unc_val(siAP, nDigits)) print("O") oAP = res.getComposition().atomicPercentU(element("O"), True) print(jmg.pretty_print_unc_val(oAP, nDigits)) print("\n") # clean up cruft shutil.rmtree(rptDir) print "Done!" end = time.time() delta = (end-start)/60 msg = "This script required %.3f min" % delta print msg if(delta > 60): delta = delta/60 msg = "...or %.3f hr" % delta print msg
24.764706
68
0.664133
be4e026862513dc237b901b17602e6e32314c79b
964
py
Python
disturbance/migrations/0155_auto_20200911_0941.py
thakurpriya1990/disturbance
47f9ce5ae5f1b02d97ace11f1041e96daf7e4556
[ "Apache-2.0" ]
1
2020-06-30T04:47:42.000Z
2020-06-30T04:47:42.000Z
disturbance/migrations/0155_auto_20200911_0941.py
thakurpriya1990/disturbance
47f9ce5ae5f1b02d97ace11f1041e96daf7e4556
[ "Apache-2.0" ]
16
2020-03-11T08:25:46.000Z
2022-03-02T08:14:40.000Z
disturbance/migrations/0155_auto_20200911_0941.py
thakurpriya1990/disturbance
47f9ce5ae5f1b02d97ace11f1041e96daf7e4556
[ "Apache-2.0" ]
9
2020-01-30T17:37:38.000Z
2021-09-30T02:22:24.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2020-09-11 01:41 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('disturbance', '0154_apiarysiteonapproval_wkb_geometry'), ] operations = [ migrations.RenameField( model_name='approval', old_name='beehive_sites', new_name='apiary_sites', ), migrations.RenameField( model_name='proposalapiary', old_name='beehive_sites', new_name='apiary_sites', ), migrations.RemoveField( model_name='apiarysite', name='approval', ), migrations.RemoveField( model_name='apiarysite', name='proposal_apiaries', ), migrations.RemoveField( model_name='apiarysite', name='proposal_apiary', ), ]
25.368421
66
0.574689
bbc00859eedabe8a5a3bec12b998c0e13fd445c5
996
py
Python
app/recipe/serializers.py
aldhiramdans/recipe-app-api
2c9f0902372a5eb23c4a19c06611379e7540ed73
[ "MIT" ]
null
null
null
app/recipe/serializers.py
aldhiramdans/recipe-app-api
2c9f0902372a5eb23c4a19c06611379e7540ed73
[ "MIT" ]
null
null
null
app/recipe/serializers.py
aldhiramdans/recipe-app-api
2c9f0902372a5eb23c4a19c06611379e7540ed73
[ "MIT" ]
null
null
null
from rest_framework import serializers from core.models import Tag, Ingridient, Recipe class TagSerializer(serializers.ModelSerializer): """Serializer for tag objects""" class Meta: model = Tag fields = ('id', 'name') read_only_fields = ('id',) class IngridientSerializer(serializers.ModelSerializer): """Serializer for ingridient objects""" class Meta: model = Ingridient fields = ('id', 'name') read_only_fields = ('id',) class RecipeSerializer(serializers.ModelSerializer): """Serializer for recipe objects""" ingridient = serializers.PrimaryKeyRelatedField( many=True, queryset=Ingridient.objects.all() ) tag = serializers.PrimaryKeyRelatedField( many=True, queryset=Tag.objects.all() ) class Meta: model = Recipe fields = ('id', 'title', 'ingridient', 'tag', 'time_minutes', 'price', 'link') read_only_fields = ('id',)
24.9
69
0.62751
f9c5d6842160a4443aded597030343e05bf1470b
7,896
py
Python
submit_muti.py
Complicateddd/Complicateddd-ROITransformer
2adfbf98892d569c460d100c6e2169c5fa3a9b82
[ "Apache-2.0" ]
null
null
null
submit_muti.py
Complicateddd/Complicateddd-ROITransformer
2adfbf98892d569c460d100c6e2169c5fa3a9b82
[ "Apache-2.0" ]
null
null
null
submit_muti.py
Complicateddd/Complicateddd-ROITransformer
2adfbf98892d569c460d100c6e2169c5fa3a9b82
[ "Apache-2.0" ]
1
2021-12-17T12:49:06.000Z
2021-12-17T12:49:06.000Z
from mmdet.apis import init_detector, inference_detector, show_result, draw_poly_detections,inference_detector_2 from mmdet.apis import draw_poly_detections_2,init_detector_2 import mmcv from mmcv import Config from mmdet.datasets import get_dataset import cv2 import os import numpy as np from tqdm import tqdm import DOTA_devkit.polyiou as polyiou import math import pdb def py_cpu_nms_poly_fast_np(dets, thresh): obbs = dets[:, 0:-1] x1 = np.min(obbs[:, 0::2], axis=1) y1 = np.min(obbs[:, 1::2], axis=1) x2 = np.max(obbs[:, 0::2], axis=1) y2 = np.max(obbs[:, 1::2], axis=1) scores = dets[:, 8] areas = (x2 - x1 + 1) * (y2 - y1 + 1) polys = [] for i in range(len(dets)): tm_polygon = polyiou.VectorDouble([dets[i][0], dets[i][1], dets[i][2], dets[i][3], dets[i][4], dets[i][5], dets[i][6], dets[i][7]]) polys.append(tm_polygon) order = scores.argsort()[::-1] keep = [] while order.size > 0: ovr = [] i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1) h = np.maximum(0.0, yy2 - yy1) hbb_inter = w * h hbb_ovr = hbb_inter / (areas[i] + areas[order[1:]] - hbb_inter) h_inds = np.where(hbb_ovr > 0)[0] tmp_order = order[h_inds + 1] for j in range(tmp_order.size): iou = polyiou.iou_poly(polys[i], polys[tmp_order[j]]) hbb_ovr[h_inds[j]] = iou try: if math.isnan(ovr[0]): pdb.set_trace() except: pass inds = np.where(hbb_ovr <= thresh)[0] order = order[inds + 1] return keep class DetectorModel(): def __init__(self, config_file, checkpoint_file): # init RoITransformer self.config_file = config_file self.checkpoint_file = checkpoint_file self.cfg = Config.fromfile(self.config_file) self.cfg_2=Config.fromfile(self.config_file) self.data_test = self.cfg.data['test'] self.dataset = get_dataset(self.data_test) # self.classnames = self.dataset.CLASSES self.classnames = ('1', '2', '3', '4', '5') self.model = init_detector(config_file, checkpoint_file, device='cuda:0') self.cfg_2.data['test']['img_scale']=(1666,1666) self.cfg_2.test_cfg['rcnn']['score_thr']=0.25 self.model_2=init_detector_2(self.cfg_2, checkpoint_file, device='cuda:0') # config.test_cfg # print(self.cfg.data['test']['img_scale']) def inference_single(self, imagname): img = mmcv.imread(imagname) height, width, channel = img.shape # slide_h, slide_w = slide_size # hn, wn = chip_size # TODO: check the corner case # import pdb; pdb.set_trace() total_detections = np.zeros((0, 9)) # print(self.classnames) chip_detections = inference_detector(self.model, img) chip_detections_2=inference_detector(self.model_2, img) # for i in range(5): # print('result: ', chip_detections[i]) # for i in tqdm(range(int(width / slide_w + 1))): # for j in range(int(height / slide_h) + 1): # subimg = np.zeros((hn, wn, channel)) # # print('i: ', i, 'j: ', j) # chip = img[j*slide_h:j*slide_h + hn, i*slide_w:i*slide_w + wn, :3] # subimg[:chip.shape[0], :chip.shape[1], :] = chip # chip_detections = inference_detector(self.model, subimg) # print('result: ', chip_detections) # for cls_id, name in enumerate(self.classnames): # # chip_detections[cls_id][:, :8][:, ::2] = chip_detections[cls_id][:, :8][:, ::2] + i * slide_w # # chip_detections[cls_id][:, :8][:, 1::2] = chip_detections[cls_id][:, :8][:, 1::2] + j * slide_h # # import pdb;pdb.set_trace() # # try: # total_detections[cls_id] = chip_detections[cls_id] # except: # import pdb; pdb.set_trace() # nms # total_detections=chip_detections # print(chip_detections.shape) # for i in range(5): # # print(len(chip_detections[i])) # if len(chip_detections[i]): # # print(chip_detections[i].shape) # # print(total_detections) # total_detections=np.concatenate((total_detections,chip_detections[i])) # # print(total_detections[1:].shape) # total_detections_=total_detections[1:] # print(chip_detections) # totol_class=np.zeros((0,1)) # for i in range(5): # total_detections=np.concatenate((total_detections,chip_detections[i])) # total_detections=np.concatenate((total_detections,chip_detections_2[i])) # # print(chip_detections[i].shape[0]) # temp_class=np.ones((chip_detections[i].shape[0],1))*i # totol_class=np.concatenate((totol_class,temp_class)) # temp_class=np.ones((chip_detections_2[i].shape[0],1))*i # totol_class=np.concatenate((totol_class,temp_class)) # print(total_detections.shape) # keep = py_cpu_nms_poly_fast_np(total_detections, 0.1) # totol_class=totol_class[keep] # # print(totol_class.shape) # total_detections=total_detections[keep] # print(total_detections.shape) for i in range(5): # print(chip_detections[i].shape) chip_detections[i]=np.concatenate((chip_detections[i],chip_detections_2[i])) keep = py_cpu_nms_poly_fast_np(chip_detections[i], 0.1) chip_detections[i] = chip_detections[i][keep] return chip_detections # def inference_single_vis(self, srcpath, dstpath, slide_size, chip_size): detections= self.inference_single(srcpath, slide_size, chip_size) # print(detections) img = draw_poly_detections(srcpath, detections,self.classnames, scale=1, threshold=0.05) cv2.imwrite(dstpath, img) if __name__ == '__main__': import tqdm roitransformer = DetectorModel(r'work_dirs/faster_rcnn_RoITrans_r101_fpn_1x_all_aug/faster_rcnn_RoITrans_r101x_fpn_1x_anchors_augs_augfpn.py', r'work_dirs/faster_rcnn_RoITrans_r101_fpn_1x_all_aug/epoch_140.pth') threshold=0.05 class_names=('1', '2', '3', '4', '5') import os path="/media/ubuntu/data/huojianjun/科目四初赛第一阶段/test1" file_img_name=os.listdir(path) result_file=open("./科目四_莘莘学子.txt",'w') # print(file_img_name) count=0 for name in tqdm.tqdm(file_img_name): # count+=1 path_img=os.path.join(path,name) detection_result=roitransformer.inference_single(path_img) for j, name_cls in enumerate(class_names): dets = detection_result[j] for det in dets: bbox = det[:8] score = round(det[-1],2) if score < threshold: continue bbox = list(map(int, bbox)) # print(bbox) # print(score) # print(name_cls) result_file.writelines(name+" "+str(name_cls)+" "+str(score)+" " +str(bbox[0]) +" "+str(bbox[1])+" "+str(bbox[2])+" "+str(bbox[3]) +" "+str(bbox[4])+" "+str(bbox[5])+" "+str(bbox[6]) +" "+str(bbox[7])) result_file.writelines("\n") count+=1
38.144928
146
0.566489
2d9c15f50f03bd7aa918736bbdf996baf98a9275
88,401
py
Python
google/cloud/bigquery/table.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/table.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
google/cloud/bigquery/table.py
quentin-sommer/python-bigquery
1312093855b1b6bd81c5f6e9e358151cfbd366b8
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Define API Tables.""" from __future__ import absolute_import import copy import datetime import functools import operator import pytz import typing from typing import Any, Dict, Iterable, Iterator, Optional, Tuple import warnings try: import pandas except ImportError: # pragma: NO COVER pandas = None try: import pyarrow except ImportError: # pragma: NO COVER pyarrow = None import google.api_core.exceptions from google.api_core.page_iterator import HTTPIterator import google.cloud._helpers from google.cloud.bigquery import _helpers from google.cloud.bigquery import _pandas_helpers from google.cloud.bigquery.exceptions import LegacyBigQueryStorageError from google.cloud.bigquery.schema import _build_schema_resource from google.cloud.bigquery.schema import _parse_schema_resource from google.cloud.bigquery.schema import _to_schema_fields from google.cloud.bigquery._tqdm_helpers import get_progress_bar from google.cloud.bigquery.external_config import ExternalConfig from google.cloud.bigquery.encryption_configuration import EncryptionConfiguration if typing.TYPE_CHECKING: # pragma: NO COVER # Unconditionally import optional dependencies again to tell pytype that # they are not None, avoiding false "no attribute" errors. import pandas import pyarrow from google.cloud import bigquery_storage _NO_PANDAS_ERROR = ( "The pandas library is not installed, please install " "pandas to use the to_dataframe() function." ) _NO_PYARROW_ERROR = ( "The pyarrow library is not installed, please install " "pyarrow to use the to_arrow() function." ) _TABLE_HAS_NO_SCHEMA = 'Table has no schema: call "client.get_table()"' def _reference_getter(table): """A :class:`~google.cloud.bigquery.table.TableReference` pointing to this table. Returns: google.cloud.bigquery.table.TableReference: pointer to this table. """ from google.cloud.bigquery import dataset dataset_ref = dataset.DatasetReference(table.project, table.dataset_id) return TableReference(dataset_ref, table.table_id) def _view_use_legacy_sql_getter(table): """bool: Specifies whether to execute the view with Legacy or Standard SQL. This boolean specifies whether to execute the view with Legacy SQL (:data:`True`) or Standard SQL (:data:`False`). The client side default is :data:`False`. The server-side default is :data:`True`. If this table is not a view, :data:`None` is returned. Raises: ValueError: For invalid value types. """ view = table._properties.get("view") if view is not None: # The server-side default for useLegacySql is True. return view.get("useLegacySql", True) # In some cases, such as in a table list no view object is present, but the # resource still represents a view. Use the type as a fallback. if table.table_type == "VIEW": # The server-side default for useLegacySql is True. return True class TableReference(object): """TableReferences are pointers to tables. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#tablereference Args: dataset_ref (google.cloud.bigquery.dataset.DatasetReference): A pointer to the dataset table_id (str): The ID of the table """ def __init__(self, dataset_ref, table_id): self._project = dataset_ref.project self._dataset_id = dataset_ref.dataset_id self._table_id = table_id @property def project(self): """str: Project bound to the table""" return self._project @property def dataset_id(self): """str: ID of dataset containing the table.""" return self._dataset_id @property def table_id(self): """str: The table ID.""" return self._table_id @property def path(self): """str: URL path for the table's APIs.""" return "/projects/%s/datasets/%s/tables/%s" % ( self._project, self._dataset_id, self._table_id, ) @classmethod def from_string( cls, table_id: str, default_project: str = None ) -> "TableReference": """Construct a table reference from table ID string. Args: table_id (str): A table ID in standard SQL format. If ``default_project`` is not specified, this must included a project ID, dataset ID, and table ID, each separated by ``.``. default_project (Optional[str]): The project ID to use when ``table_id`` does not include a project ID. Returns: TableReference: Table reference parsed from ``table_id``. Examples: >>> TableReference.from_string('my-project.mydataset.mytable') TableRef...(DatasetRef...('my-project', 'mydataset'), 'mytable') Raises: ValueError: If ``table_id`` is not a fully-qualified table ID in standard SQL format. """ from google.cloud.bigquery.dataset import DatasetReference ( output_project_id, output_dataset_id, output_table_id, ) = _helpers._parse_3_part_id( table_id, default_project=default_project, property_name="table_id" ) return cls( DatasetReference(output_project_id, output_dataset_id), output_table_id ) @classmethod def from_api_repr(cls, resource: dict) -> "TableReference": """Factory: construct a table reference given its API representation Args: resource (Dict[str, object]): Table reference representation returned from the API Returns: google.cloud.bigquery.table.TableReference: Table reference parsed from ``resource``. """ from google.cloud.bigquery.dataset import DatasetReference project = resource["projectId"] dataset_id = resource["datasetId"] table_id = resource["tableId"] return cls(DatasetReference(project, dataset_id), table_id) def to_api_repr(self) -> dict: """Construct the API resource representation of this table reference. Returns: Dict[str, object]: Table reference represented as an API resource """ return { "projectId": self._project, "datasetId": self._dataset_id, "tableId": self._table_id, } def to_bqstorage(self) -> str: """Construct a BigQuery Storage API representation of this table. Install the ``google-cloud-bigquery-storage`` package to use this feature. If the ``table_id`` contains a partition identifier (e.g. ``my_table$201812``) or a snapshot identifier (e.g. ``mytable@1234567890``), it is ignored. Use :class:`google.cloud.bigquery_storage.types.ReadSession.TableReadOptions` to filter rows by partition. Use :class:`google.cloud.bigquery_storage.types.ReadSession.TableModifiers` to select a specific snapshot to read from. Returns: str: A reference to this table in the BigQuery Storage API. """ table_id, _, _ = self._table_id.partition("@") table_id, _, _ = table_id.partition("$") table_ref = "projects/{}/datasets/{}/tables/{}".format( self._project, self._dataset_id, table_id, ) return table_ref def _key(self): """A tuple key that uniquely describes this field. Used to compute this instance's hashcode and evaluate equality. Returns: Tuple[str]: The contents of this :class:`DatasetReference`. """ return (self._project, self._dataset_id, self._table_id) def __eq__(self, other): if not isinstance(other, TableReference): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __hash__(self): return hash(self._key()) def __str__(self): return f"{self.project}.{self.dataset_id}.{self.table_id}" def __repr__(self): from google.cloud.bigquery.dataset import DatasetReference dataset_ref = DatasetReference(self._project, self._dataset_id) return "TableReference({}, '{}')".format(repr(dataset_ref), self._table_id) class Table(object): """Tables represent a set of rows whose values correspond to a schema. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#resource-table Args: table_ref (Union[google.cloud.bigquery.table.TableReference, str]): A pointer to a table. If ``table_ref`` is a string, it must included a project ID, dataset ID, and table ID, each separated by ``.``. schema (Optional[Sequence[Union[ \ :class:`~google.cloud.bigquery.schema.SchemaField`, \ Mapping[str, Any] \ ]]]): The table's schema. If any item is a mapping, its content must be compatible with :meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`. """ _PROPERTY_TO_API_FIELD = { "clustering_fields": "clustering", "created": "creationTime", "dataset_id": ["tableReference", "datasetId"], "description": "description", "encryption_configuration": "encryptionConfiguration", "etag": "etag", "expires": "expirationTime", "external_data_configuration": "externalDataConfiguration", "friendly_name": "friendlyName", "full_table_id": "id", "labels": "labels", "location": "location", "modified": "lastModifiedTime", "mview_enable_refresh": "materializedView", "mview_last_refresh_time": ["materializedView", "lastRefreshTime"], "mview_query": "materializedView", "mview_refresh_interval": "materializedView", "num_bytes": "numBytes", "num_rows": "numRows", "partition_expiration": "timePartitioning", "partitioning_type": "timePartitioning", "project": ["tableReference", "projectId"], "range_partitioning": "rangePartitioning", "time_partitioning": "timePartitioning", "schema": "schema", "snapshot_definition": "snapshotDefinition", "streaming_buffer": "streamingBuffer", "self_link": "selfLink", "table_id": ["tableReference", "tableId"], "time_partitioning": "timePartitioning", "type": "type", "view_use_legacy_sql": "view", "view_query": "view", "require_partition_filter": "requirePartitionFilter", } def __init__(self, table_ref, schema=None): table_ref = _table_arg_to_table_ref(table_ref) self._properties = {"tableReference": table_ref.to_api_repr(), "labels": {}} # Let the @property do validation. if schema is not None: self.schema = schema @property def project(self): """str: Project bound to the table.""" return _helpers._get_sub_prop( self._properties, self._PROPERTY_TO_API_FIELD["project"] ) @property def dataset_id(self): """str: ID of dataset containing the table.""" return _helpers._get_sub_prop( self._properties, self._PROPERTY_TO_API_FIELD["dataset_id"] ) @property def table_id(self): """str: ID of the table.""" return _helpers._get_sub_prop( self._properties, self._PROPERTY_TO_API_FIELD["table_id"] ) reference = property(_reference_getter) @property def path(self): """str: URL path for the table's APIs.""" return "/projects/%s/datasets/%s/tables/%s" % ( self.project, self.dataset_id, self.table_id, ) @property def require_partition_filter(self): """bool: If set to true, queries over the partitioned table require a partition filter that can be used for partition elimination to be specified. """ return self._properties.get( self._PROPERTY_TO_API_FIELD["require_partition_filter"] ) @require_partition_filter.setter def require_partition_filter(self, value): self._properties[ self._PROPERTY_TO_API_FIELD["require_partition_filter"] ] = value @property def schema(self): """Sequence[Union[ \ :class:`~google.cloud.bigquery.schema.SchemaField`, \ Mapping[str, Any] \ ]]: Table's schema. Raises: Exception: If ``schema`` is not a sequence, or if any item in the sequence is not a :class:`~google.cloud.bigquery.schema.SchemaField` instance or a compatible mapping representation of the field. """ prop = self._properties.get(self._PROPERTY_TO_API_FIELD["schema"]) if not prop: return [] else: return _parse_schema_resource(prop) @schema.setter def schema(self, value): api_field = self._PROPERTY_TO_API_FIELD["schema"] if value is None: self._properties[api_field] = None else: value = _to_schema_fields(value) self._properties[api_field] = {"fields": _build_schema_resource(value)} @property def labels(self): """Dict[str, str]: Labels for the table. This method always returns a dict. To change a table's labels, modify the dict, then call ``Client.update_table``. To delete a label, set its value to :data:`None` before updating. Raises: ValueError: If ``value`` type is invalid. """ return self._properties.setdefault(self._PROPERTY_TO_API_FIELD["labels"], {}) @labels.setter def labels(self, value): if not isinstance(value, dict): raise ValueError("Pass a dict") self._properties[self._PROPERTY_TO_API_FIELD["labels"]] = value @property def encryption_configuration(self): """google.cloud.bigquery.encryption_configuration.EncryptionConfiguration: Custom encryption configuration for the table. Custom encryption configuration (e.g., Cloud KMS keys) or :data:`None` if using default encryption. See `protecting data with Cloud KMS keys <https://cloud.google.com/bigquery/docs/customer-managed-encryption>`_ in the BigQuery documentation. """ prop = self._properties.get( self._PROPERTY_TO_API_FIELD["encryption_configuration"] ) if prop is not None: prop = EncryptionConfiguration.from_api_repr(prop) return prop @encryption_configuration.setter def encryption_configuration(self, value): api_repr = value if value is not None: api_repr = value.to_api_repr() self._properties[ self._PROPERTY_TO_API_FIELD["encryption_configuration"] ] = api_repr @property def created(self): """Union[datetime.datetime, None]: Datetime at which the table was created (:data:`None` until set from the server). """ creation_time = self._properties.get(self._PROPERTY_TO_API_FIELD["created"]) if creation_time is not None: # creation_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(creation_time) ) @property def etag(self): """Union[str, None]: ETag for the table resource (:data:`None` until set from the server). """ return self._properties.get(self._PROPERTY_TO_API_FIELD["etag"]) @property def modified(self): """Union[datetime.datetime, None]: Datetime at which the table was last modified (:data:`None` until set from the server). """ modified_time = self._properties.get(self._PROPERTY_TO_API_FIELD["modified"]) if modified_time is not None: # modified_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(modified_time) ) @property def num_bytes(self): """Union[int, None]: The size of the table in bytes (:data:`None` until set from the server). """ return _helpers._int_or_none( self._properties.get(self._PROPERTY_TO_API_FIELD["num_bytes"]) ) @property def num_rows(self): """Union[int, None]: The number of rows in the table (:data:`None` until set from the server). """ return _helpers._int_or_none( self._properties.get(self._PROPERTY_TO_API_FIELD["num_rows"]) ) @property def self_link(self): """Union[str, None]: URL for the table resource (:data:`None` until set from the server). """ return self._properties.get(self._PROPERTY_TO_API_FIELD["self_link"]) @property def full_table_id(self): """Union[str, None]: ID for the table (:data:`None` until set from the server). In the format ``project-id:dataset_id.table_id``. """ return self._properties.get(self._PROPERTY_TO_API_FIELD["full_table_id"]) @property def table_type(self): """Union[str, None]: The type of the table (:data:`None` until set from the server). Possible values are ``'TABLE'``, ``'VIEW'``, ``'MATERIALIZED_VIEW'`` or ``'EXTERNAL'``. """ return self._properties.get(self._PROPERTY_TO_API_FIELD["type"]) @property def range_partitioning(self): """Optional[google.cloud.bigquery.table.RangePartitioning]: Configures range-based partitioning for a table. .. note:: **Beta**. The integer range partitioning feature is in a pre-release state and might change or have limited support. Only specify at most one of :attr:`~google.cloud.bigquery.table.Table.time_partitioning` or :attr:`~google.cloud.bigquery.table.Table.range_partitioning`. Raises: ValueError: If the value is not :class:`~google.cloud.bigquery.table.RangePartitioning` or :data:`None`. """ resource = self._properties.get( self._PROPERTY_TO_API_FIELD["range_partitioning"] ) if resource is not None: return RangePartitioning(_properties=resource) @range_partitioning.setter def range_partitioning(self, value): resource = value if isinstance(value, RangePartitioning): resource = value._properties elif value is not None: raise ValueError( "Expected value to be RangePartitioning or None, got {}.".format(value) ) self._properties[self._PROPERTY_TO_API_FIELD["range_partitioning"]] = resource @property def time_partitioning(self): """Optional[google.cloud.bigquery.table.TimePartitioning]: Configures time-based partitioning for a table. Only specify at most one of :attr:`~google.cloud.bigquery.table.Table.time_partitioning` or :attr:`~google.cloud.bigquery.table.Table.range_partitioning`. Raises: ValueError: If the value is not :class:`~google.cloud.bigquery.table.TimePartitioning` or :data:`None`. """ prop = self._properties.get(self._PROPERTY_TO_API_FIELD["time_partitioning"]) if prop is not None: return TimePartitioning.from_api_repr(prop) @time_partitioning.setter def time_partitioning(self, value): api_repr = value if isinstance(value, TimePartitioning): api_repr = value.to_api_repr() elif value is not None: raise ValueError( "value must be google.cloud.bigquery.table.TimePartitioning " "or None" ) self._properties[self._PROPERTY_TO_API_FIELD["time_partitioning"]] = api_repr @property def partitioning_type(self): """Union[str, None]: Time partitioning of the table if it is partitioned (Defaults to :data:`None`). """ warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.type_ @partitioning_type.setter def partitioning_type(self, value): warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) api_field = self._PROPERTY_TO_API_FIELD["partitioning_type"] if self.time_partitioning is None: self._properties[api_field] = {} self._properties[api_field]["type"] = value @property def partition_expiration(self): """Union[int, None]: Expiration time in milliseconds for a partition. If :attr:`partition_expiration` is set and :attr:`type_` is not set, :attr:`type_` will default to :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`. """ warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.expiration_ms @partition_expiration.setter def partition_expiration(self, value): warnings.warn( "This method will be deprecated in future versions. Please use " "Table.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) api_field = self._PROPERTY_TO_API_FIELD["partition_expiration"] if self.time_partitioning is None: self._properties[api_field] = {"type": TimePartitioningType.DAY} self._properties[api_field]["expirationMs"] = str(value) @property def clustering_fields(self): """Union[List[str], None]: Fields defining clustering for the table (Defaults to :data:`None`). Clustering fields are immutable after table creation. .. note:: BigQuery supports clustering for both partitioned and non-partitioned tables. """ prop = self._properties.get(self._PROPERTY_TO_API_FIELD["clustering_fields"]) if prop is not None: return list(prop.get("fields", ())) @clustering_fields.setter def clustering_fields(self, value): """Union[List[str], None]: Fields defining clustering for the table (Defaults to :data:`None`). """ api_field = self._PROPERTY_TO_API_FIELD["clustering_fields"] if value is not None: prop = self._properties.setdefault(api_field, {}) prop["fields"] = value else: # In order to allow unsetting clustering fields completely, we explicitly # set this property to None (as oposed to merely removing the key). self._properties[api_field] = None @property def description(self): """Union[str, None]: Description of the table (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ return self._properties.get(self._PROPERTY_TO_API_FIELD["description"]) @description.setter def description(self, value): if not isinstance(value, str) and value is not None: raise ValueError("Pass a string, or None") self._properties[self._PROPERTY_TO_API_FIELD["description"]] = value @property def expires(self): """Union[datetime.datetime, None]: Datetime at which the table will be deleted. Raises: ValueError: For invalid value types. """ expiration_time = self._properties.get(self._PROPERTY_TO_API_FIELD["expires"]) if expiration_time is not None: # expiration_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(expiration_time) ) @expires.setter def expires(self, value): if not isinstance(value, datetime.datetime) and value is not None: raise ValueError("Pass a datetime, or None") value_ms = google.cloud._helpers._millis_from_datetime(value) self._properties[ self._PROPERTY_TO_API_FIELD["expires"] ] = _helpers._str_or_none(value_ms) @property def friendly_name(self): """Union[str, None]: Title of the table (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ return self._properties.get(self._PROPERTY_TO_API_FIELD["friendly_name"]) @friendly_name.setter def friendly_name(self, value): if not isinstance(value, str) and value is not None: raise ValueError("Pass a string, or None") self._properties[self._PROPERTY_TO_API_FIELD["friendly_name"]] = value @property def location(self): """Union[str, None]: Location in which the table is hosted Defaults to :data:`None`. """ return self._properties.get(self._PROPERTY_TO_API_FIELD["location"]) @property def view_query(self): """Union[str, None]: SQL query defining the table as a view (defaults to :data:`None`). By default, the query is treated as Standard SQL. To use Legacy SQL, set :attr:`view_use_legacy_sql` to :data:`True`. Raises: ValueError: For invalid value types. """ api_field = self._PROPERTY_TO_API_FIELD["view_query"] return _helpers._get_sub_prop(self._properties, [api_field, "query"]) @view_query.setter def view_query(self, value): if not isinstance(value, str): raise ValueError("Pass a string") api_field = self._PROPERTY_TO_API_FIELD["view_query"] _helpers._set_sub_prop(self._properties, [api_field, "query"], value) view = self._properties[api_field] # The service defaults useLegacySql to True, but this # client uses Standard SQL by default. if view.get("useLegacySql") is None: view["useLegacySql"] = False @view_query.deleter def view_query(self): """Delete SQL query defining the table as a view.""" self._properties.pop(self._PROPERTY_TO_API_FIELD["view_query"], None) view_use_legacy_sql = property(_view_use_legacy_sql_getter) @view_use_legacy_sql.setter def view_use_legacy_sql(self, value): if not isinstance(value, bool): raise ValueError("Pass a boolean") api_field = self._PROPERTY_TO_API_FIELD["view_query"] if self._properties.get(api_field) is None: self._properties[api_field] = {} self._properties[api_field]["useLegacySql"] = value @property def mview_query(self): """Optional[str]: SQL query defining the table as a materialized view (defaults to :data:`None`). """ api_field = self._PROPERTY_TO_API_FIELD["mview_query"] return _helpers._get_sub_prop(self._properties, [api_field, "query"]) @mview_query.setter def mview_query(self, value): api_field = self._PROPERTY_TO_API_FIELD["mview_query"] _helpers._set_sub_prop(self._properties, [api_field, "query"], str(value)) @mview_query.deleter def mview_query(self): """Delete SQL query defining the table as a materialized view.""" self._properties.pop(self._PROPERTY_TO_API_FIELD["mview_query"], None) @property def mview_last_refresh_time(self): """Optional[datetime.datetime]: Datetime at which the materialized view was last refreshed (:data:`None` until set from the server). """ refresh_time = _helpers._get_sub_prop( self._properties, self._PROPERTY_TO_API_FIELD["mview_last_refresh_time"] ) if refresh_time is not None: # refresh_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000 * int(refresh_time) ) @property def mview_enable_refresh(self): """Optional[bool]: Enable automatic refresh of the materialized view when the base table is updated. The default value is :data:`True`. """ api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"] return _helpers._get_sub_prop(self._properties, [api_field, "enableRefresh"]) @mview_enable_refresh.setter def mview_enable_refresh(self, value): api_field = self._PROPERTY_TO_API_FIELD["mview_enable_refresh"] return _helpers._set_sub_prop( self._properties, [api_field, "enableRefresh"], value ) @property def mview_refresh_interval(self): """Optional[datetime.timedelta]: The maximum frequency at which this materialized view will be refreshed. The default value is 1800000 milliseconds (30 minutes). """ api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"] refresh_interval = _helpers._get_sub_prop( self._properties, [api_field, "refreshIntervalMs"] ) if refresh_interval is not None: return datetime.timedelta(milliseconds=int(refresh_interval)) @mview_refresh_interval.setter def mview_refresh_interval(self, value): if value is None: refresh_interval_ms = None else: refresh_interval_ms = str(value // datetime.timedelta(milliseconds=1)) api_field = self._PROPERTY_TO_API_FIELD["mview_refresh_interval"] _helpers._set_sub_prop( self._properties, [api_field, "refreshIntervalMs"], refresh_interval_ms, ) @property def streaming_buffer(self): """google.cloud.bigquery.StreamingBuffer: Information about a table's streaming buffer. """ sb = self._properties.get(self._PROPERTY_TO_API_FIELD["streaming_buffer"]) if sb is not None: return StreamingBuffer(sb) @property def external_data_configuration(self): """Union[google.cloud.bigquery.ExternalConfig, None]: Configuration for an external data source (defaults to :data:`None`). Raises: ValueError: For invalid value types. """ prop = self._properties.get( self._PROPERTY_TO_API_FIELD["external_data_configuration"] ) if prop is not None: prop = ExternalConfig.from_api_repr(prop) return prop @external_data_configuration.setter def external_data_configuration(self, value): if not (value is None or isinstance(value, ExternalConfig)): raise ValueError("Pass an ExternalConfig or None") api_repr = value if value is not None: api_repr = value.to_api_repr() self._properties[ self._PROPERTY_TO_API_FIELD["external_data_configuration"] ] = api_repr @property def snapshot_definition(self) -> Optional["SnapshotDefinition"]: """Information about the snapshot. This value is set via snapshot creation. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#Table.FIELDS.snapshot_definition """ snapshot_info = self._properties.get( self._PROPERTY_TO_API_FIELD["snapshot_definition"] ) if snapshot_info is not None: snapshot_info = SnapshotDefinition(snapshot_info) return snapshot_info @classmethod def from_string(cls, full_table_id: str) -> "Table": """Construct a table from fully-qualified table ID. Args: full_table_id (str): A fully-qualified table ID in standard SQL format. Must included a project ID, dataset ID, and table ID, each separated by ``.``. Returns: Table: Table parsed from ``full_table_id``. Examples: >>> Table.from_string('my-project.mydataset.mytable') Table(TableRef...(D...('my-project', 'mydataset'), 'mytable')) Raises: ValueError: If ``full_table_id`` is not a fully-qualified table ID in standard SQL format. """ return cls(TableReference.from_string(full_table_id)) @classmethod def from_api_repr(cls, resource: dict) -> "Table": """Factory: construct a table given its API representation Args: resource (Dict[str, object]): Table resource representation from the API Returns: google.cloud.bigquery.table.Table: Table parsed from ``resource``. Raises: KeyError: If the ``resource`` lacks the key ``'tableReference'``, or if the ``dict`` stored within the key ``'tableReference'`` lacks the keys ``'tableId'``, ``'projectId'``, or ``'datasetId'``. """ from google.cloud.bigquery import dataset if ( "tableReference" not in resource or "tableId" not in resource["tableReference"] ): raise KeyError( "Resource lacks required identity information:" '["tableReference"]["tableId"]' ) project_id = _helpers._get_sub_prop( resource, cls._PROPERTY_TO_API_FIELD["project"] ) table_id = _helpers._get_sub_prop( resource, cls._PROPERTY_TO_API_FIELD["table_id"] ) dataset_id = _helpers._get_sub_prop( resource, cls._PROPERTY_TO_API_FIELD["dataset_id"] ) dataset_ref = dataset.DatasetReference(project_id, dataset_id) table = cls(dataset_ref.table(table_id)) table._properties = resource return table def to_api_repr(self) -> dict: """Constructs the API resource of this table Returns: Dict[str, object]: Table represented as an API resource """ return copy.deepcopy(self._properties) def to_bqstorage(self) -> str: """Construct a BigQuery Storage API representation of this table. Returns: str: A reference to this table in the BigQuery Storage API. """ return self.reference.to_bqstorage() def _build_resource(self, filter_fields): """Generate a resource for ``update``.""" return _helpers._build_resource_from_properties(self, filter_fields) def __repr__(self): return "Table({})".format(repr(self.reference)) class TableListItem(object): """A read-only table resource from a list operation. For performance reasons, the BigQuery API only includes some of the table properties when listing tables. Notably, :attr:`~google.cloud.bigquery.table.Table.schema` and :attr:`~google.cloud.bigquery.table.Table.num_rows` are missing. For a full list of the properties that the BigQuery API returns, see the `REST documentation for tables.list <https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list>`_. Args: resource (Dict[str, object]): A table-like resource object from a table list response. A ``tableReference`` property is required. Raises: ValueError: If ``tableReference`` or one of its required members is missing from ``resource``. """ def __init__(self, resource): if "tableReference" not in resource: raise ValueError("resource must contain a tableReference value") if "projectId" not in resource["tableReference"]: raise ValueError( "resource['tableReference'] must contain a projectId value" ) if "datasetId" not in resource["tableReference"]: raise ValueError( "resource['tableReference'] must contain a datasetId value" ) if "tableId" not in resource["tableReference"]: raise ValueError("resource['tableReference'] must contain a tableId value") self._properties = resource @property def created(self): """Union[datetime.datetime, None]: Datetime at which the table was created (:data:`None` until set from the server). """ creation_time = self._properties.get("creationTime") if creation_time is not None: # creation_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(creation_time) ) @property def expires(self): """Union[datetime.datetime, None]: Datetime at which the table will be deleted. """ expiration_time = self._properties.get("expirationTime") if expiration_time is not None: # expiration_time will be in milliseconds. return google.cloud._helpers._datetime_from_microseconds( 1000.0 * float(expiration_time) ) @property def project(self): """str: Project bound to the table.""" return self._properties["tableReference"]["projectId"] @property def dataset_id(self): """str: ID of dataset containing the table.""" return self._properties["tableReference"]["datasetId"] @property def table_id(self): """str: ID of the table.""" return self._properties["tableReference"]["tableId"] reference = property(_reference_getter) @property def labels(self): """Dict[str, str]: Labels for the table. This method always returns a dict. To change a table's labels, modify the dict, then call ``Client.update_table``. To delete a label, set its value to :data:`None` before updating. """ return self._properties.setdefault("labels", {}) @property def full_table_id(self): """Union[str, None]: ID for the table (:data:`None` until set from the server). In the format ``project_id:dataset_id.table_id``. """ return self._properties.get("id") @property def table_type(self): """Union[str, None]: The type of the table (:data:`None` until set from the server). Possible values are ``'TABLE'``, ``'VIEW'``, or ``'EXTERNAL'``. """ return self._properties.get("type") @property def time_partitioning(self): """google.cloud.bigquery.table.TimePartitioning: Configures time-based partitioning for a table. """ prop = self._properties.get("timePartitioning") if prop is not None: return TimePartitioning.from_api_repr(prop) @property def partitioning_type(self): """Union[str, None]: Time partitioning of the table if it is partitioned (Defaults to :data:`None`). """ warnings.warn( "This method will be deprecated in future versions. Please use " "TableListItem.time_partitioning.type_ instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.type_ @property def partition_expiration(self): """Union[int, None]: Expiration time in milliseconds for a partition. If this property is set and :attr:`type_` is not set, :attr:`type_` will default to :attr:`TimePartitioningType.DAY`. """ warnings.warn( "This method will be deprecated in future versions. Please use " "TableListItem.time_partitioning.expiration_ms instead.", PendingDeprecationWarning, stacklevel=2, ) if self.time_partitioning is not None: return self.time_partitioning.expiration_ms @property def friendly_name(self): """Union[str, None]: Title of the table (defaults to :data:`None`).""" return self._properties.get("friendlyName") view_use_legacy_sql = property(_view_use_legacy_sql_getter) @property def clustering_fields(self): """Union[List[str], None]: Fields defining clustering for the table (Defaults to :data:`None`). Clustering fields are immutable after table creation. .. note:: BigQuery supports clustering for both partitioned and non-partitioned tables. """ prop = self._properties.get("clustering") if prop is not None: return list(prop.get("fields", ())) @classmethod def from_string(cls, full_table_id: str) -> "TableListItem": """Construct a table from fully-qualified table ID. Args: full_table_id (str): A fully-qualified table ID in standard SQL format. Must included a project ID, dataset ID, and table ID, each separated by ``.``. Returns: Table: Table parsed from ``full_table_id``. Examples: >>> Table.from_string('my-project.mydataset.mytable') Table(TableRef...(D...('my-project', 'mydataset'), 'mytable')) Raises: ValueError: If ``full_table_id`` is not a fully-qualified table ID in standard SQL format. """ return cls( {"tableReference": TableReference.from_string(full_table_id).to_api_repr()} ) def to_bqstorage(self) -> str: """Construct a BigQuery Storage API representation of this table. Returns: str: A reference to this table in the BigQuery Storage API. """ return self.reference.to_bqstorage() def to_api_repr(self) -> dict: """Constructs the API resource of this table Returns: Dict[str, object]: Table represented as an API resource """ return copy.deepcopy(self._properties) def _row_from_mapping(mapping, schema): """Convert a mapping to a row tuple using the schema. Args: mapping (Dict[str, object]) Mapping of row data: must contain keys for all required fields in the schema. Keys which do not correspond to a field in the schema are ignored. schema (List[google.cloud.bigquery.schema.SchemaField]): The schema of the table destination for the rows Returns: Tuple[object]: Tuple whose elements are ordered according to the schema. Raises: ValueError: If schema is empty. """ if len(schema) == 0: raise ValueError(_TABLE_HAS_NO_SCHEMA) row = [] for field in schema: if field.mode == "REQUIRED": row.append(mapping[field.name]) elif field.mode == "REPEATED": row.append(mapping.get(field.name, ())) elif field.mode == "NULLABLE": row.append(mapping.get(field.name)) else: raise ValueError("Unknown field mode: {}".format(field.mode)) return tuple(row) class StreamingBuffer(object): """Information about a table's streaming buffer. See https://cloud.google.com/bigquery/streaming-data-into-bigquery. Args: resource (Dict[str, object]): streaming buffer representation returned from the API """ def __init__(self, resource): self.estimated_bytes = None if "estimatedBytes" in resource: self.estimated_bytes = int(resource["estimatedBytes"]) self.estimated_rows = None if "estimatedRows" in resource: self.estimated_rows = int(resource["estimatedRows"]) self.oldest_entry_time = None if "oldestEntryTime" in resource: self.oldest_entry_time = google.cloud._helpers._datetime_from_microseconds( 1000.0 * int(resource["oldestEntryTime"]) ) class SnapshotDefinition: """Information about base table and snapshot time of the snapshot. See https://cloud.google.com/bigquery/docs/reference/rest/v2/tables#snapshotdefinition Args: resource: Snapshot definition representation returned from the API. """ def __init__(self, resource: Dict[str, Any]): self.base_table_reference = None if "baseTableReference" in resource: self.base_table_reference = TableReference.from_api_repr( resource["baseTableReference"] ) self.snapshot_time = None if "snapshotTime" in resource: self.snapshot_time = google.cloud._helpers._rfc3339_to_datetime( resource["snapshotTime"] ) class Row(object): """A BigQuery row. Values can be accessed by position (index), by key like a dict, or as properties. Args: values (Sequence[object]): The row values field_to_index (Dict[str, int]): A mapping from schema field names to indexes """ # Choose unusual field names to try to avoid conflict with schema fields. __slots__ = ("_xxx_values", "_xxx_field_to_index") def __init__(self, values, field_to_index): self._xxx_values = values self._xxx_field_to_index = field_to_index def values(self): """Return the values included in this row. Returns: Sequence[object]: A sequence of length ``len(row)``. """ return copy.deepcopy(self._xxx_values) def keys(self) -> Iterable[str]: """Return the keys for using a row as a dict. Returns: Iterable[str]: The keys corresponding to the columns of a row Examples: >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).keys()) ['x', 'y'] """ return self._xxx_field_to_index.keys() def items(self) -> Iterable[Tuple[str, Any]]: """Return items as ``(key, value)`` pairs. Returns: Iterable[Tuple[str, object]]: The ``(key, value)`` pairs representing this row. Examples: >>> list(Row(('a', 'b'), {'x': 0, 'y': 1}).items()) [('x', 'a'), ('y', 'b')] """ for key, index in self._xxx_field_to_index.items(): yield (key, copy.deepcopy(self._xxx_values[index])) def get(self, key: str, default: Any = None) -> Any: """Return a value for key, with a default value if it does not exist. Args: key (str): The key of the column to access default (object): The default value to use if the key does not exist. (Defaults to :data:`None`.) Returns: object: The value associated with the provided key, or a default value. Examples: When the key exists, the value associated with it is returned. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('x') 'a' The default value is :data:`None` when the key does not exist. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z') None The default value can be overrided with the ``default`` parameter. >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', '') '' >>> Row(('a', 'b'), {'x': 0, 'y': 1}).get('z', default = '') '' """ index = self._xxx_field_to_index.get(key) if index is None: return default return self._xxx_values[index] def __getattr__(self, name): value = self._xxx_field_to_index.get(name) if value is None: raise AttributeError("no row field {!r}".format(name)) return self._xxx_values[value] def __len__(self): return len(self._xxx_values) def __getitem__(self, key): if isinstance(key, str): value = self._xxx_field_to_index.get(key) if value is None: raise KeyError("no row field {!r}".format(key)) key = value return self._xxx_values[key] def __eq__(self, other): if not isinstance(other, Row): return NotImplemented return ( self._xxx_values == other._xxx_values and self._xxx_field_to_index == other._xxx_field_to_index ) def __ne__(self, other): return not self == other def __repr__(self): # sort field dict by value, for determinism items = sorted(self._xxx_field_to_index.items(), key=operator.itemgetter(1)) f2i = "{" + ", ".join("%r: %d" % item for item in items) + "}" return "Row({}, {})".format(self._xxx_values, f2i) class _NoopProgressBarQueue(object): """A fake Queue class that does nothing. This is used when there is no progress bar to send updates to. """ def put_nowait(self, item): """Don't actually do anything with the item.""" class RowIterator(HTTPIterator): """A class for iterating through HTTP/JSON API row list responses. Args: client (Optional[google.cloud.bigquery.Client]): The API client instance. This should always be non-`None`, except for subclasses that do not use it, namely the ``_EmptyRowIterator``. api_request (Callable[google.cloud._http.JSONConnection.api_request]): The function to use to make API requests. path (str): The method path to query for the list of items. schema (Sequence[Union[ \ :class:`~google.cloud.bigquery.schema.SchemaField`, \ Mapping[str, Any] \ ]]): The table's schema. If any item is a mapping, its content must be compatible with :meth:`~google.cloud.bigquery.schema.SchemaField.from_api_repr`. page_token (str): A token identifying a page in a result set to start fetching results from. max_results (Optional[int]): The maximum number of results to fetch. page_size (Optional[int]): The maximum number of rows in each page of results from this request. Non-positive values are ignored. Defaults to a sensible value set by the API. extra_params (Optional[Dict[str, object]]): Extra query string parameters for the API call. table (Optional[Union[ \ google.cloud.bigquery.table.Table, \ google.cloud.bigquery.table.TableReference, \ ]]): The table which these rows belong to, or a reference to it. Used to call the BigQuery Storage API to fetch rows. selected_fields (Optional[Sequence[google.cloud.bigquery.schema.SchemaField]]): A subset of columns to select from this table. total_rows (Optional[int]): Total number of rows in the table. first_page_response (Optional[dict]): API response for the first page of results. These are returned when the first page is requested. """ def __init__( self, client, api_request, path, schema, page_token=None, max_results=None, page_size=None, extra_params=None, table=None, selected_fields=None, total_rows=None, first_page_response=None, ): super(RowIterator, self).__init__( client, api_request, path, item_to_value=_item_to_row, items_key="rows", page_token=page_token, max_results=max_results, extra_params=extra_params, page_start=_rows_page_start, next_token="pageToken", ) schema = _to_schema_fields(schema) self._field_to_index = _helpers._field_to_index_mapping(schema) self._page_size = page_size self._preserve_order = False self._project = client.project if client is not None else None self._schema = schema self._selected_fields = selected_fields self._table = table self._total_rows = total_rows self._first_page_response = first_page_response def _is_completely_cached(self): """Check if all results are completely cached. This is useful to know, because we can avoid alternative download mechanisms. """ if self._first_page_response is None or self.next_page_token: return False return self._first_page_response.get(self._next_token) is None def _validate_bqstorage(self, bqstorage_client, create_bqstorage_client): """Returns if the BigQuery Storage API can be used. Returns: bool True if the BigQuery Storage client can be used or created. """ using_bqstorage_api = bqstorage_client or create_bqstorage_client if not using_bqstorage_api: return False if self._is_completely_cached(): return False if self.max_results is not None: warnings.warn( "Cannot use bqstorage_client if max_results is set, " "reverting to fetching data with the REST endpoint.", stacklevel=2, ) return False try: from google.cloud import bigquery_storage # noqa: F401 except ImportError: return False try: _helpers.BQ_STORAGE_VERSIONS.verify_version() except LegacyBigQueryStorageError as exc: warnings.warn(str(exc)) return False return True def _get_next_page_response(self): """Requests the next page from the path provided. Returns: Dict[str, object]: The parsed JSON response of the next page's contents. """ if self._first_page_response: response = self._first_page_response self._first_page_response = None return response params = self._get_query_params() if self._page_size is not None: if self.page_number and "startIndex" in params: del params["startIndex"] params["maxResults"] = self._page_size return self.api_request( method=self._HTTP_METHOD, path=self.path, query_params=params ) @property def schema(self): """List[google.cloud.bigquery.schema.SchemaField]: The subset of columns to be read from the table.""" return list(self._schema) @property def total_rows(self): """int: The total number of rows in the table.""" return self._total_rows def _to_page_iterable( self, bqstorage_download, tabledata_list_download, bqstorage_client=None ): if not self._validate_bqstorage(bqstorage_client, False): bqstorage_client = None result_pages = ( bqstorage_download() if bqstorage_client is not None else tabledata_list_download() ) yield from result_pages def _to_arrow_iterable(self, bqstorage_client=None): """Create an iterable of arrow RecordBatches, to process the table as a stream.""" bqstorage_download = functools.partial( _pandas_helpers.download_arrow_bqstorage, self._project, self._table, bqstorage_client, preserve_order=self._preserve_order, selected_fields=self._selected_fields, ) tabledata_list_download = functools.partial( _pandas_helpers.download_arrow_row_iterator, iter(self.pages), self.schema ) return self._to_page_iterable( bqstorage_download, tabledata_list_download, bqstorage_client=bqstorage_client, ) # If changing the signature of this method, make sure to apply the same # changes to job.QueryJob.to_arrow() def to_arrow( self, progress_bar_type: str = None, bqstorage_client: "bigquery_storage.BigQueryReadClient" = None, create_bqstorage_client: bool = True, ) -> "pyarrow.Table": """[Beta] Create a class:`pyarrow.Table` by loading all pages of a table or query. Args: progress_bar_type (Optional[str]): If set, use the `tqdm <https://tqdm.github.io/>`_ library to display a progress bar while the data downloads. Install the ``tqdm`` package to use this feature. Possible values of ``progress_bar_type`` include: ``None`` No progress bar. ``'tqdm'`` Use the :func:`tqdm.tqdm` function to print a progress bar to :data:`sys.stderr`. ``'tqdm_notebook'`` Use the :func:`tqdm.tqdm_notebook` function to display a progress bar as a Jupyter notebook widget. ``'tqdm_gui'`` Use the :func:`tqdm.tqdm_gui` function to display a progress bar as a graphical dialog box. bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]): A BigQuery Storage API client. If supplied, use the faster BigQuery Storage API to fetch rows from BigQuery. This API is a billable API. This method requires the ``pyarrow`` and ``google-cloud-bigquery-storage`` libraries. This method only exposes a subset of the capabilities of the BigQuery Storage API. For full access to all features (projections, filters, snapshots) use the Storage API directly. create_bqstorage_client (Optional[bool]): If ``True`` (default), create a BigQuery Storage API client using the default API settings. The BigQuery Storage API is a faster way to fetch rows from BigQuery. See the ``bqstorage_client`` parameter for more information. This argument does nothing if ``bqstorage_client`` is supplied. ..versionadded:: 1.24.0 Returns: pyarrow.Table A :class:`pyarrow.Table` populated with row data and column headers from the query results. The column headers are derived from the destination table's schema. Raises: ValueError: If the :mod:`pyarrow` library cannot be imported. ..versionadded:: 1.17.0 """ if pyarrow is None: raise ValueError(_NO_PYARROW_ERROR) if not self._validate_bqstorage(bqstorage_client, create_bqstorage_client): create_bqstorage_client = False bqstorage_client = None owns_bqstorage_client = False if not bqstorage_client and create_bqstorage_client: bqstorage_client = self.client._ensure_bqstorage_client() owns_bqstorage_client = bqstorage_client is not None try: progress_bar = get_progress_bar( progress_bar_type, "Downloading", self.total_rows, "rows" ) record_batches = [] for record_batch in self._to_arrow_iterable( bqstorage_client=bqstorage_client ): record_batches.append(record_batch) if progress_bar is not None: # In some cases, the number of total rows is not populated # until the first page of rows is fetched. Update the # progress bar's total to keep an accurate count. progress_bar.total = progress_bar.total or self.total_rows progress_bar.update(record_batch.num_rows) if progress_bar is not None: # Indicate that the download has finished. progress_bar.close() finally: if owns_bqstorage_client: bqstorage_client._transport.grpc_channel.close() if record_batches: return pyarrow.Table.from_batches(record_batches) else: # No records, use schema based on BigQuery schema. arrow_schema = _pandas_helpers.bq_to_arrow_schema(self._schema) return pyarrow.Table.from_batches(record_batches, schema=arrow_schema) def to_dataframe_iterable( self, bqstorage_client: "bigquery_storage.BigQueryReadClient" = None, dtypes: Dict[str, Any] = None, max_queue_size: int = _pandas_helpers._MAX_QUEUE_SIZE_DEFAULT, ) -> "pandas.DataFrame": """Create an iterable of pandas DataFrames, to process the table as a stream. Args: bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]): A BigQuery Storage API client. If supplied, use the faster BigQuery Storage API to fetch rows from BigQuery. This method requires the ``pyarrow`` and ``google-cloud-bigquery-storage`` libraries. This method only exposes a subset of the capabilities of the BigQuery Storage API. For full access to all features (projections, filters, snapshots) use the Storage API directly. dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]): A dictionary of column names pandas ``dtype``s. The provided ``dtype`` is used when constructing the series for the column specified. Otherwise, the default pandas behavior is used. max_queue_size (Optional[int]): The maximum number of result pages to hold in the internal queue when streaming query results over the BigQuery Storage API. Ignored if Storage API is not used. By default, the max queue size is set to the number of BQ Storage streams created by the server. If ``max_queue_size`` is :data:`None`, the queue size is infinite. ..versionadded:: 2.14.0 Returns: pandas.DataFrame: A generator of :class:`~pandas.DataFrame`. Raises: ValueError: If the :mod:`pandas` library cannot be imported. """ if pandas is None: raise ValueError(_NO_PANDAS_ERROR) if dtypes is None: dtypes = {} column_names = [field.name for field in self._schema] bqstorage_download = functools.partial( _pandas_helpers.download_dataframe_bqstorage, self._project, self._table, bqstorage_client, column_names, dtypes, preserve_order=self._preserve_order, selected_fields=self._selected_fields, max_queue_size=max_queue_size, ) tabledata_list_download = functools.partial( _pandas_helpers.download_dataframe_row_iterator, iter(self.pages), self.schema, dtypes, ) return self._to_page_iterable( bqstorage_download, tabledata_list_download, bqstorage_client=bqstorage_client, ) # If changing the signature of this method, make sure to apply the same # changes to job.QueryJob.to_dataframe() def to_dataframe( self, bqstorage_client: "bigquery_storage.BigQueryReadClient" = None, dtypes: Dict[str, Any] = None, progress_bar_type: str = None, create_bqstorage_client: bool = True, date_as_object: bool = True, ) -> "pandas.DataFrame": """Create a pandas DataFrame by loading all pages of a query. Args: bqstorage_client (Optional[google.cloud.bigquery_storage_v1.BigQueryReadClient]): A BigQuery Storage API client. If supplied, use the faster BigQuery Storage API to fetch rows from BigQuery. This method requires the ``pyarrow`` and ``google-cloud-bigquery-storage`` libraries. This method only exposes a subset of the capabilities of the BigQuery Storage API. For full access to all features (projections, filters, snapshots) use the Storage API directly. dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]): A dictionary of column names pandas ``dtype``s. The provided ``dtype`` is used when constructing the series for the column specified. Otherwise, the default pandas behavior is used. progress_bar_type (Optional[str]): If set, use the `tqdm <https://tqdm.github.io/>`_ library to display a progress bar while the data downloads. Install the ``tqdm`` package to use this feature. Possible values of ``progress_bar_type`` include: ``None`` No progress bar. ``'tqdm'`` Use the :func:`tqdm.tqdm` function to print a progress bar to :data:`sys.stderr`. ``'tqdm_notebook'`` Use the :func:`tqdm.tqdm_notebook` function to display a progress bar as a Jupyter notebook widget. ``'tqdm_gui'`` Use the :func:`tqdm.tqdm_gui` function to display a progress bar as a graphical dialog box. ..versionadded:: 1.11.0 create_bqstorage_client (Optional[bool]): If ``True`` (default), create a BigQuery Storage API client using the default API settings. The BigQuery Storage API is a faster way to fetch rows from BigQuery. See the ``bqstorage_client`` parameter for more information. This argument does nothing if ``bqstorage_client`` is supplied. ..versionadded:: 1.24.0 date_as_object (Optional[bool]): If ``True`` (default), cast dates to objects. If ``False``, convert to datetime64[ns] dtype. ..versionadded:: 1.26.0 Returns: pandas.DataFrame: A :class:`~pandas.DataFrame` populated with row data and column headers from the query results. The column headers are derived from the destination table's schema. Raises: ValueError: If the :mod:`pandas` library cannot be imported, or the :mod:`google.cloud.bigquery_storage_v1` module is required but cannot be imported. """ if pandas is None: raise ValueError(_NO_PANDAS_ERROR) if dtypes is None: dtypes = {} if not self._validate_bqstorage(bqstorage_client, create_bqstorage_client): create_bqstorage_client = False bqstorage_client = None record_batch = self.to_arrow( progress_bar_type=progress_bar_type, bqstorage_client=bqstorage_client, create_bqstorage_client=create_bqstorage_client, ) # When converting timestamp values to nanosecond precision, the result # can be out of pyarrow bounds. To avoid the error when converting to # Pandas, we set the timestamp_as_object parameter to True, if necessary. types_to_check = { pyarrow.timestamp("us"), pyarrow.timestamp("us", tz=pytz.UTC), } for column in record_batch: if column.type in types_to_check: try: column.cast("timestamp[ns]") except pyarrow.lib.ArrowInvalid: timestamp_as_object = True break else: timestamp_as_object = False extra_kwargs = {"timestamp_as_object": timestamp_as_object} df = record_batch.to_pandas(date_as_object=date_as_object, **extra_kwargs) for column in dtypes: df[column] = pandas.Series(df[column], dtype=dtypes[column]) return df class _EmptyRowIterator(RowIterator): """An empty row iterator. This class prevents API requests when there are no rows to fetch or rows are impossible to fetch, such as with query results for DDL CREATE VIEW statements. """ schema = () pages = () total_rows = 0 def __init__( self, client=None, api_request=None, path=None, schema=(), *args, **kwargs ): super().__init__( client=client, api_request=api_request, path=path, schema=schema, *args, **kwargs, ) def to_arrow( self, progress_bar_type=None, bqstorage_client=None, create_bqstorage_client=True, ) -> "pyarrow.Table": """[Beta] Create an empty class:`pyarrow.Table`. Args: progress_bar_type (str): Ignored. Added for compatibility with RowIterator. bqstorage_client (Any): Ignored. Added for compatibility with RowIterator. create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator. Returns: pyarrow.Table: An empty :class:`pyarrow.Table`. """ if pyarrow is None: raise ValueError(_NO_PYARROW_ERROR) return pyarrow.Table.from_arrays(()) def to_dataframe( self, bqstorage_client=None, dtypes=None, progress_bar_type=None, create_bqstorage_client=True, date_as_object=True, ) -> "pandas.DataFrame": """Create an empty dataframe. Args: bqstorage_client (Any): Ignored. Added for compatibility with RowIterator. dtypes (Any): Ignored. Added for compatibility with RowIterator. progress_bar_type (Any): Ignored. Added for compatibility with RowIterator. create_bqstorage_client (bool): Ignored. Added for compatibility with RowIterator. date_as_object (bool): Ignored. Added for compatibility with RowIterator. Returns: pandas.DataFrame: An empty :class:`~pandas.DataFrame`. """ if pandas is None: raise ValueError(_NO_PANDAS_ERROR) return pandas.DataFrame() def to_dataframe_iterable( self, bqstorage_client: Optional["bigquery_storage.BigQueryReadClient"] = None, dtypes: Optional[Dict[str, Any]] = None, max_queue_size: Optional[int] = None, ) -> Iterator["pandas.DataFrame"]: """Create an iterable of pandas DataFrames, to process the table as a stream. ..versionadded:: 2.21.0 Args: bqstorage_client: Ignored. Added for compatibility with RowIterator. dtypes (Optional[Map[str, Union[str, pandas.Series.dtype]]]): Ignored. Added for compatibility with RowIterator. max_queue_size: Ignored. Added for compatibility with RowIterator. Returns: An iterator yielding a single empty :class:`~pandas.DataFrame`. Raises: ValueError: If the :mod:`pandas` library cannot be imported. """ if pandas is None: raise ValueError(_NO_PANDAS_ERROR) return iter((pandas.DataFrame(),)) def __iter__(self): return iter(()) class PartitionRange(object): """Definition of the ranges for range partitioning. .. note:: **Beta**. The integer range partitioning feature is in a pre-release state and might change or have limited support. Args: start (Optional[int]): Sets the :attr:`~google.cloud.bigquery.table.PartitionRange.start` property. end (Optional[int]): Sets the :attr:`~google.cloud.bigquery.table.PartitionRange.end` property. interval (Optional[int]): Sets the :attr:`~google.cloud.bigquery.table.PartitionRange.interval` property. _properties (Optional[dict]): Private. Used to construct object from API resource. """ def __init__(self, start=None, end=None, interval=None, _properties=None): if _properties is None: _properties = {} self._properties = _properties if start is not None: self.start = start if end is not None: self.end = end if interval is not None: self.interval = interval @property def start(self): """int: The start of range partitioning, inclusive.""" return _helpers._int_or_none(self._properties.get("start")) @start.setter def start(self, value): self._properties["start"] = _helpers._str_or_none(value) @property def end(self): """int: The end of range partitioning, exclusive.""" return _helpers._int_or_none(self._properties.get("end")) @end.setter def end(self, value): self._properties["end"] = _helpers._str_or_none(value) @property def interval(self): """int: The width of each interval.""" return _helpers._int_or_none(self._properties.get("interval")) @interval.setter def interval(self, value): self._properties["interval"] = _helpers._str_or_none(value) def _key(self): return tuple(sorted(self._properties.items())) def __eq__(self, other): if not isinstance(other, PartitionRange): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __repr__(self): key_vals = ["{}={}".format(key, val) for key, val in self._key()] return "PartitionRange({})".format(", ".join(key_vals)) __hash__ = None class RangePartitioning(object): """Range-based partitioning configuration for a table. .. note:: **Beta**. The integer range partitioning feature is in a pre-release state and might change or have limited support. Args: range_ (Optional[google.cloud.bigquery.table.PartitionRange]): Sets the :attr:`google.cloud.bigquery.table.RangePartitioning.range_` property. field (Optional[str]): Sets the :attr:`google.cloud.bigquery.table.RangePartitioning.field` property. _properties (Optional[dict]): Private. Used to construct object from API resource. """ def __init__(self, range_=None, field=None, _properties=None): if _properties is None: _properties = {} self._properties = _properties if range_ is not None: self.range_ = range_ if field is not None: self.field = field # Trailing underscore to prevent conflict with built-in range() function. @property def range_(self): """google.cloud.bigquery.table.PartitionRange: Defines the ranges for range partitioning. Raises: ValueError: If the value is not a :class:`PartitionRange`. """ range_properties = self._properties.setdefault("range", {}) return PartitionRange(_properties=range_properties) @range_.setter def range_(self, value): if not isinstance(value, PartitionRange): raise ValueError("Expected a PartitionRange, but got {}.".format(value)) self._properties["range"] = value._properties @property def field(self): """str: The table is partitioned by this field. The field must be a top-level ``NULLABLE`` / ``REQUIRED`` field. The only supported type is ``INTEGER`` / ``INT64``. """ return self._properties.get("field") @field.setter def field(self, value): self._properties["field"] = value def _key(self): return (("field", self.field), ("range_", self.range_)) def __eq__(self, other): if not isinstance(other, RangePartitioning): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __repr__(self): key_vals = ["{}={}".format(key, repr(val)) for key, val in self._key()] return "RangePartitioning({})".format(", ".join(key_vals)) __hash__ = None class TimePartitioningType(object): """Specifies the type of time partitioning to perform.""" DAY = "DAY" """str: Generates one partition per day.""" HOUR = "HOUR" """str: Generates one partition per hour.""" MONTH = "MONTH" """str: Generates one partition per month.""" YEAR = "YEAR" """str: Generates one partition per year.""" class TimePartitioning(object): """Configures time-based partitioning for a table. Args: type_ (Optional[google.cloud.bigquery.table.TimePartitioningType]): Specifies the type of time partitioning to perform. Defaults to :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY`. Supported values are: * :attr:`~google.cloud.bigquery.table.TimePartitioningType.HOUR` * :attr:`~google.cloud.bigquery.table.TimePartitioningType.DAY` * :attr:`~google.cloud.bigquery.table.TimePartitioningType.MONTH` * :attr:`~google.cloud.bigquery.table.TimePartitioningType.YEAR` field (Optional[str]): If set, the table is partitioned by this field. If not set, the table is partitioned by pseudo column ``_PARTITIONTIME``. The field must be a top-level ``TIMESTAMP``, ``DATETIME``, or ``DATE`` field. Its mode must be ``NULLABLE`` or ``REQUIRED``. See the `time-unit column-partitioned tables guide <https://cloud.google.com/bigquery/docs/creating-column-partitions>`_ in the BigQuery documentation. expiration_ms(Optional[int]): Number of milliseconds for which to keep the storage for a partition. require_partition_filter (Optional[bool]): DEPRECATED: Use :attr:`~google.cloud.bigquery.table.Table.require_partition_filter`, instead. """ def __init__( self, type_=None, field=None, expiration_ms=None, require_partition_filter=None ): self._properties = {} if type_ is None: self.type_ = TimePartitioningType.DAY else: self.type_ = type_ if field is not None: self.field = field if expiration_ms is not None: self.expiration_ms = expiration_ms if require_partition_filter is not None: self.require_partition_filter = require_partition_filter @property def type_(self): """google.cloud.bigquery.table.TimePartitioningType: The type of time partitioning to use. """ return self._properties.get("type") @type_.setter def type_(self, value): self._properties["type"] = value @property def field(self): """str: Field in the table to use for partitioning""" return self._properties.get("field") @field.setter def field(self, value): self._properties["field"] = value @property def expiration_ms(self): """int: Number of milliseconds to keep the storage for a partition.""" return _helpers._int_or_none(self._properties.get("expirationMs")) @expiration_ms.setter def expiration_ms(self, value): if value is not None: # Allow explicitly setting the expiration to None. value = str(value) self._properties["expirationMs"] = value @property def require_partition_filter(self): """bool: Specifies whether partition filters are required for queries DEPRECATED: Use :attr:`~google.cloud.bigquery.table.Table.require_partition_filter`, instead. """ warnings.warn( ( "TimePartitioning.require_partition_filter will be removed in " "future versions. Please use Table.require_partition_filter " "instead." ), PendingDeprecationWarning, stacklevel=2, ) return self._properties.get("requirePartitionFilter") @require_partition_filter.setter def require_partition_filter(self, value): warnings.warn( ( "TimePartitioning.require_partition_filter will be removed in " "future versions. Please use Table.require_partition_filter " "instead." ), PendingDeprecationWarning, stacklevel=2, ) self._properties["requirePartitionFilter"] = value @classmethod def from_api_repr(cls, api_repr: dict) -> "TimePartitioning": """Return a :class:`TimePartitioning` object deserialized from a dict. This method creates a new ``TimePartitioning`` instance that points to the ``api_repr`` parameter as its internal properties dict. This means that when a ``TimePartitioning`` instance is stored as a property of another object, any changes made at the higher level will also appear here:: >>> time_partitioning = TimePartitioning() >>> table.time_partitioning = time_partitioning >>> table.time_partitioning.field = 'timecolumn' >>> time_partitioning.field 'timecolumn' Args: api_repr (Mapping[str, str]): The serialized representation of the TimePartitioning, such as what is output by :meth:`to_api_repr`. Returns: google.cloud.bigquery.table.TimePartitioning: The ``TimePartitioning`` object. """ instance = cls() instance._properties = api_repr return instance def to_api_repr(self) -> dict: """Return a dictionary representing this object. This method returns the properties dict of the ``TimePartitioning`` instance rather than making a copy. This means that when a ``TimePartitioning`` instance is stored as a property of another object, any changes made at the higher level will also appear here. Returns: dict: A dictionary representing the TimePartitioning object in serialized form. """ return self._properties def _key(self): # because we are only "renaming" top level keys shallow copy is sufficient here. properties = self._properties.copy() # calling repr for non built-in type objects. properties["type_"] = repr(properties.pop("type")) if "field" in properties: # calling repr for non built-in type objects. properties["field"] = repr(properties["field"]) if "requirePartitionFilter" in properties: properties["require_partition_filter"] = properties.pop( "requirePartitionFilter" ) if "expirationMs" in properties: properties["expiration_ms"] = properties.pop("expirationMs") return tuple(sorted(properties.items())) def __eq__(self, other): if not isinstance(other, TimePartitioning): return NotImplemented return self._key() == other._key() def __ne__(self, other): return not self == other def __hash__(self): return hash(self._key()) def __repr__(self): key_vals = ["{}={}".format(key, val) for key, val in self._key()] return "TimePartitioning({})".format(",".join(key_vals)) def _item_to_row(iterator, resource): """Convert a JSON row to the native object. .. note:: This assumes that the ``schema`` attribute has been added to the iterator after being created, which should be done by the caller. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. resource (Dict): An item to be converted to a row. Returns: google.cloud.bigquery.table.Row: The next row in the page. """ return Row( _helpers._row_tuple_from_json(resource, iterator.schema), iterator._field_to_index, ) def _row_iterator_page_columns(schema, response): """Make a generator of all the columns in a page from tabledata.list. This enables creating a :class:`pandas.DataFrame` and other column-oriented data structures such as :class:`pyarrow.RecordBatch` """ columns = [] rows = response.get("rows", []) def get_column_data(field_index, field): for row in rows: yield _helpers._field_from_json(row["f"][field_index]["v"], field) for field_index, field in enumerate(schema): columns.append(get_column_data(field_index, field)) return columns # pylint: disable=unused-argument def _rows_page_start(iterator, page, response): """Grab total rows when :class:`~google.cloud.iterator.Page` starts. Args: iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. page (google.api_core.page_iterator.Page): The page that was just created. response (Dict): The JSON API response for a page of rows in a table. """ # Make a (lazy) copy of the page in column-oriented format for use in data # science packages. page._columns = _row_iterator_page_columns(iterator._schema, response) total_rows = response.get("totalRows") if total_rows is not None: total_rows = int(total_rows) iterator._total_rows = total_rows # pylint: enable=unused-argument def _table_arg_to_table_ref(value, default_project=None): """Helper to convert a string or Table to TableReference. This function keeps TableReference and other kinds of objects unchanged. """ if isinstance(value, str): value = TableReference.from_string(value, default_project=default_project) if isinstance(value, (Table, TableListItem)): value = value.reference return value def _table_arg_to_table(value, default_project=None): """Helper to convert a string or TableReference to a Table. This function keeps Table and other kinds of objects unchanged. """ if isinstance(value, str): value = TableReference.from_string(value, default_project=default_project) if isinstance(value, TableReference): value = Table(value) if isinstance(value, TableListItem): newvalue = Table(value.reference) newvalue._properties = value._properties value = newvalue return value
35.431263
109
0.621181
a3e234ecd6e035d8e93540b9bbc4c39277986474
4,829
py
Python
doc/conf.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
doc/conf.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
doc/conf.py
thefab/mfcom-1
f6a209edb22a782dfb0cf63cc0f62433b1b6e961
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import os import sphinx_rtd_theme # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # #source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'mfcom' copyright = u'2017, MetWork' author = u'MetWork' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = ".".join(os.environ.get('MODULE_VERSION', 'unknown.unknown').split('.')[0:-1]) # The full version, including alpha/beta/rc tags. release = os.environ.get('MODULE_VERSION', 'unknown') # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output ------------------------------------------ # Output file base name for HTML help builder. htmlhelp_basename = 'mfcomdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'mfcom.tex', u'mfcom Documentation', u'MetWork', 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'mfcom', u'mfcom Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'mfcom', u'mfcom Documentation', author, 'mfcom', 'One line description of project.', 'Miscellaneous'), ] napoleon_google_docstring = True napoleon_numpy_docstring = False napoleon_include_private_with_doc = False napoleon_include_special_with_doc = False napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = True napoleon_use_param = False def skip(app, what, name, obj, skip, options): if name == "__init__": return False return skip
29.993789
78
0.674881
ff91304d7511f7521e26f81283629ce1d723360d
30,598
py
Python
test/test_frames.py
to-bee/hyperframe
554fcad68beffae57dc8335ed5e02c177bfd6000
[ "MIT" ]
30
2015-09-21T09:31:15.000Z
2022-01-23T18:31:34.000Z
test/test_frames.py
to-bee/hyperframe
554fcad68beffae57dc8335ed5e02c177bfd6000
[ "MIT" ]
50
2015-07-20T07:52:27.000Z
2021-06-06T14:55:16.000Z
test/test_frames.py
to-bee/hyperframe
554fcad68beffae57dc8335ed5e02c177bfd6000
[ "MIT" ]
25
2015-09-17T15:54:37.000Z
2022-03-18T21:24:13.000Z
# -*- coding: utf-8 -*- from hyperframe.frame import ( Frame, Flags, DataFrame, PriorityFrame, RstStreamFrame, SettingsFrame, PushPromiseFrame, PingFrame, GoAwayFrame, WindowUpdateFrame, HeadersFrame, ContinuationFrame, AltSvcFrame, ExtensionFrame ) from hyperframe.exceptions import ( UnknownFrameError, InvalidPaddingError, InvalidFrameError, InvalidDataError ) import pytest def decode_frame(frame_data): f, length = Frame.parse_frame_header(frame_data[:9]) f.parse_body(memoryview(frame_data[9:9 + length])) assert 9 + length == len(frame_data) return f class TestGeneralFrameBehaviour: def test_base_frame_ignores_flags(self): f = Frame(0) flags = f.parse_flags(0xFF) assert not flags assert isinstance(flags, Flags) def test_base_frame_cant_serialize(self): f = Frame(0) with pytest.raises(NotImplementedError): f.serialize() def test_base_frame_cant_parse_body(self): data = b'' f = Frame(0) with pytest.raises(NotImplementedError): f.parse_body(data) def test_parse_frame_header_unknown_type_strict(self): with pytest.raises(UnknownFrameError) as excinfo: Frame.parse_frame_header( b'\x00\x00\x59\xFF\x00\x00\x00\x00\x01', strict=True ) exception = excinfo.value assert exception.frame_type == 0xFF assert exception.length == 0x59 assert str(exception) == ( "UnknownFrameError: Unknown frame type 0xFF received, " "length 89 bytes" ) def test_parse_frame_header_ignore_first_bit_of_stream_id(self): s = b'\x00\x00\x00\x06\x01\x80\x00\x00\x00' f, _ = Frame.parse_frame_header(s) assert f.stream_id == 0 def test_parse_frame_header_unknown_type(self): frame, length = Frame.parse_frame_header( b'\x00\x00\x59\xFF\x00\x00\x00\x00\x01' ) assert frame.type == 0xFF assert length == 0x59 assert isinstance(frame, ExtensionFrame) assert frame.stream_id == 1 def test_flags_are_persisted(self): frame, length = Frame.parse_frame_header( b'\x00\x00\x59\xFF\x09\x00\x00\x00\x01' ) assert frame.type == 0xFF assert length == 0x59 assert frame.flag_byte == 0x09 def test_parse_body_unknown_type(self): frame = decode_frame( b'\x00\x00\x0C\xFF\x00\x00\x00\x00\x01hello world!' ) assert frame.body == b'hello world!' assert frame.body_len == 12 assert frame.stream_id == 1 def test_can_round_trip_unknown_frames(self): frame_data = b'\x00\x00\x0C\xFF\x00\x00\x00\x00\x01hello world!' f = decode_frame(frame_data) assert f.serialize() == frame_data def test_repr(self, monkeypatch): f = Frame(0) monkeypatch.setattr(Frame, "serialize_body", lambda _: b"body") assert repr(f) == ( "Frame(stream_id=0, flags=[]): <hex:626f6479>" ) f.stream_id = 42 f.flags = ["END_STREAM", "PADDED"] assert repr(f) == ( "Frame(stream_id=42, flags=['END_STREAM', 'PADDED']): <hex:626f6479>" ) monkeypatch.setattr(Frame, "serialize_body", lambda _: b"A"*25) assert repr(f) == ( "Frame(stream_id=42, flags=['END_STREAM', 'PADDED']): <hex:{}...>".format("41"*10) ) def test_frame_explain(self, capsys): d = b'\x00\x00\x08\x00\x01\x00\x00\x00\x01testdata' Frame.explain(memoryview(d)) captured = capsys.readouterr() assert captured.out.strip() == "DataFrame(stream_id=1, flags=['END_STREAM']): <hex:7465737464617461>" def test_cannot_parse_invalid_frame_header(self): with pytest.raises(InvalidFrameError): Frame.parse_frame_header(b'\x00\x00\x08\x00\x01\x00\x00\x00') class TestDataFrame: payload = b'\x00\x00\x08\x00\x01\x00\x00\x00\x01testdata' payload_with_padding = ( b'\x00\x00\x13\x00\x09\x00\x00\x00\x01\x0Atestdata' + b'\0' * 10 ) def test_repr(self): f = DataFrame(1, b"testdata") assert repr(f).endswith("<hex:7465737464617461>") def test_data_frame_has_correct_flags(self): f = DataFrame(1) flags = f.parse_flags(0xFF) assert flags == set([ 'END_STREAM', 'PADDED' ]) @pytest.mark.parametrize('data', [ b'testdata', memoryview(b'testdata') ]) def test_data_frame_serializes_properly(self, data): f = DataFrame(1) f.flags = set(['END_STREAM']) f.data = data s = f.serialize() assert s == self.payload def test_data_frame_with_padding_serializes_properly(self): f = DataFrame(1) f.flags = set(['END_STREAM', 'PADDED']) f.data = b'testdata' f.pad_length = 10 s = f.serialize() assert s == self.payload_with_padding def test_data_frame_parses_properly(self): f = decode_frame(self.payload) assert isinstance(f, DataFrame) assert f.flags == set(['END_STREAM']) assert f.pad_length == 0 assert f.data == b'testdata' assert f.body_len == 8 def test_data_frame_with_padding_parses_properly(self): f = decode_frame(self.payload_with_padding) assert isinstance(f, DataFrame) assert f.flags == set(['END_STREAM', 'PADDED']) assert f.pad_length == 10 assert f.data == b'testdata' assert f.body_len == 19 def test_data_frame_with_invalid_padding_errors(self): with pytest.raises(InvalidFrameError): decode_frame(self.payload_with_padding[:9]) def test_data_frame_with_padding_calculates_flow_control_len(self): f = DataFrame(1) f.flags = set(['PADDED']) f.data = b'testdata' f.pad_length = 10 assert f.flow_controlled_length == 19 def test_data_frame_zero_length_padding_calculates_flow_control_len(self): f = DataFrame(1) f.flags = set(['PADDED']) f.data = b'testdata' f.pad_length = 0 assert f.flow_controlled_length == len(b'testdata') + 1 def test_data_frame_without_padding_calculates_flow_control_len(self): f = DataFrame(1) f.data = b'testdata' assert f.flow_controlled_length == 8 def test_data_frame_comes_on_a_stream(self): with pytest.raises(InvalidDataError): DataFrame(0) def test_long_data_frame(self): f = DataFrame(1) # Use more than 256 bytes of data to force setting higher bits. f.data = b'\x01' * 300 data = f.serialize() # The top three bytes should be numerically equal to 300. That means # they should read 00 01 2C. # The weird double index trick is to ensure this test behaves equally # on Python 2 and Python 3. assert data[0] == b'\x00'[0] assert data[1] == b'\x01'[0] assert data[2] == b'\x2C'[0] def test_body_length_behaves_correctly(self): f = DataFrame(1) f.data = b'\x01' * 300 # Initially the body length is zero. For now this is incidental, but # I'm going to test it to ensure that the behaviour is codified. We # should change this test if we change that. assert f.body_len == 0 f.serialize() assert f.body_len == 300 def test_data_frame_with_invalid_padding_fails_to_parse(self): # This frame has a padding length of 6 bytes, but a total length of # only 5. data = b'\x00\x00\x05\x00\x0b\x00\x00\x00\x01\x06\x54\x65\x73\x74' with pytest.raises(InvalidPaddingError): decode_frame(data) def test_data_frame_with_no_length_parses(self): # Fixes issue with empty data frames raising InvalidPaddingError. f = DataFrame(1) f.data = b'' data = f.serialize() new_frame = decode_frame(data) assert new_frame.data == b'' class TestPriorityFrame: payload = b'\x00\x00\x05\x02\x00\x00\x00\x00\x01\x80\x00\x00\x04\x40' def test_repr(self): f = PriorityFrame(1) assert repr(f).endswith("exclusive=False, depends_on=0, stream_weight=0") f.exclusive = True f.depends_on = 0x04 f.stream_weight = 64 assert repr(f).endswith("exclusive=True, depends_on=4, stream_weight=64") def test_priority_frame_has_no_flags(self): f = PriorityFrame(1) flags = f.parse_flags(0xFF) assert flags == set() assert isinstance(flags, Flags) def test_priority_frame_default_serializes_properly(self): f = PriorityFrame(1) assert f.serialize() == ( b'\x00\x00\x05\x02\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00' ) def test_priority_frame_with_all_data_serializes_properly(self): f = PriorityFrame(1) f.depends_on = 0x04 f.stream_weight = 64 f.exclusive = True assert f.serialize() == self.payload def test_priority_frame_with_all_data_parses_properly(self): f = decode_frame(self.payload) assert isinstance(f, PriorityFrame) assert f.flags == set() assert f.depends_on == 4 assert f.stream_weight == 64 assert f.exclusive is True assert f.body_len == 5 def test_priority_frame_invalid(self): with pytest.raises(InvalidFrameError): decode_frame( b'\x00\x00\x06\x02\x00\x00\x00\x00\x01\x80\x00\x00\x04\x40\xFF' ) def test_priority_frame_comes_on_a_stream(self): with pytest.raises(InvalidDataError): PriorityFrame(0) def test_short_priority_frame_errors(self): with pytest.raises(InvalidFrameError): decode_frame(self.payload[:-2]) class TestRstStreamFrame: def test_repr(self): f = RstStreamFrame(1) assert repr(f).endswith("error_code=0") f.error_code = 420 assert repr(f).endswith("error_code=420") def test_rst_stream_frame_has_no_flags(self): f = RstStreamFrame(1) flags = f.parse_flags(0xFF) assert not flags assert isinstance(flags, Flags) def test_rst_stream_frame_serializes_properly(self): f = RstStreamFrame(1) f.error_code = 420 s = f.serialize() assert s == b'\x00\x00\x04\x03\x00\x00\x00\x00\x01\x00\x00\x01\xa4' def test_rst_stream_frame_parses_properly(self): s = b'\x00\x00\x04\x03\x00\x00\x00\x00\x01\x00\x00\x01\xa4' f = decode_frame(s) assert isinstance(f, RstStreamFrame) assert f.flags == set() assert f.error_code == 420 assert f.body_len == 4 def test_rst_stream_frame_comes_on_a_stream(self): with pytest.raises(InvalidDataError): RstStreamFrame(0) def test_rst_stream_frame_must_have_body_length_four(self): f = RstStreamFrame(1) with pytest.raises(InvalidFrameError): f.parse_body(b'\x01') class TestSettingsFrame: serialized = ( b'\x00\x00\x2A\x04\x01\x00\x00\x00\x00' + # Frame header b'\x00\x01\x00\x00\x10\x00' + # HEADER_TABLE_SIZE b'\x00\x02\x00\x00\x00\x00' + # ENABLE_PUSH b'\x00\x03\x00\x00\x00\x64' + # MAX_CONCURRENT_STREAMS b'\x00\x04\x00\x00\xFF\xFF' + # INITIAL_WINDOW_SIZE b'\x00\x05\x00\x00\x40\x00' + # MAX_FRAME_SIZE b'\x00\x06\x00\x00\xFF\xFF' + # MAX_HEADER_LIST_SIZE b'\x00\x08\x00\x00\x00\x01' # ENABLE_CONNECT_PROTOCOL ) settings = { SettingsFrame.HEADER_TABLE_SIZE: 4096, SettingsFrame.ENABLE_PUSH: 0, SettingsFrame.MAX_CONCURRENT_STREAMS: 100, SettingsFrame.INITIAL_WINDOW_SIZE: 65535, SettingsFrame.MAX_FRAME_SIZE: 16384, SettingsFrame.MAX_HEADER_LIST_SIZE: 65535, SettingsFrame.ENABLE_CONNECT_PROTOCOL: 1, } def test_repr(self): f = SettingsFrame() assert repr(f).endswith("settings={}") f.settings[SettingsFrame.MAX_FRAME_SIZE] = 16384 assert repr(f).endswith("settings={5: 16384}") def test_settings_frame_has_only_one_flag(self): f = SettingsFrame() flags = f.parse_flags(0xFF) assert flags == set(['ACK']) def test_settings_frame_serializes_properly(self): f = SettingsFrame() f.parse_flags(0xFF) f.settings = self.settings s = f.serialize() assert s == self.serialized def test_settings_frame_with_settings(self): f = SettingsFrame(settings=self.settings) assert f.settings == self.settings def test_settings_frame_without_settings(self): f = SettingsFrame() assert f.settings == {} def test_settings_frame_with_ack(self): f = SettingsFrame(flags=('ACK',)) assert 'ACK' in f.flags def test_settings_frame_ack_and_settings(self): with pytest.raises(InvalidDataError): SettingsFrame(settings=self.settings, flags=('ACK',)) with pytest.raises(InvalidDataError): decode_frame(self.serialized) def test_settings_frame_parses_properly(self): # unset the ACK flag to allow correct parsing data = self.serialized[:4] + b"\x00" + self.serialized[5:] f = decode_frame(data) assert isinstance(f, SettingsFrame) assert f.flags == set() assert f.settings == self.settings assert f.body_len == 42 def test_settings_frame_invalid_body_length(self): with pytest.raises(InvalidFrameError): decode_frame( b'\x00\x00\x2A\x04\x00\x00\x00\x00\x00\xFF\xFF\xFF\xFF' ) def test_settings_frames_never_have_streams(self): with pytest.raises(InvalidDataError): SettingsFrame(1) def test_short_settings_frame_errors(self): with pytest.raises(InvalidDataError): decode_frame(self.serialized[:-2]) class TestPushPromiseFrame: def test_repr(self): f = PushPromiseFrame(1) assert repr(f).endswith("promised_stream_id=0, data=None") f.promised_stream_id = 4 f.data = b"testdata" assert repr(f).endswith("promised_stream_id=4, data=<hex:7465737464617461>") def test_push_promise_frame_flags(self): f = PushPromiseFrame(1) flags = f.parse_flags(0xFF) assert flags == set(['END_HEADERS', 'PADDED']) def test_push_promise_frame_serializes_properly(self): f = PushPromiseFrame(1) f.flags = set(['END_HEADERS']) f.promised_stream_id = 4 f.data = b'hello world' s = f.serialize() assert s == ( b'\x00\x00\x0F\x05\x04\x00\x00\x00\x01' + b'\x00\x00\x00\x04' + b'hello world' ) def test_push_promise_frame_parses_properly(self): s = ( b'\x00\x00\x0F\x05\x04\x00\x00\x00\x01' + b'\x00\x00\x00\x04' + b'hello world' ) f = decode_frame(s) assert isinstance(f, PushPromiseFrame) assert f.flags == set(['END_HEADERS']) assert f.promised_stream_id == 4 assert f.data == b'hello world' assert f.body_len == 15 def test_push_promise_frame_with_padding(self): s = ( b'\x00\x00\x17\x05\x0C\x00\x00\x00\x01' + b'\x07\x00\x00\x00\x04' + b'hello world' + b'padding' ) f = decode_frame(s) assert isinstance(f, PushPromiseFrame) assert f.flags == set(['END_HEADERS', 'PADDED']) assert f.promised_stream_id == 4 assert f.data == b'hello world' assert f.body_len == 23 def test_push_promise_frame_with_invalid_padding_fails_to_parse(self): # This frame has a padding length of 6 bytes, but a total length of # only 5. data = b'\x00\x00\x05\x05\x08\x00\x00\x00\x01\x06\x54\x65\x73\x74' with pytest.raises(InvalidPaddingError): decode_frame(data) def test_push_promise_frame_with_no_length_parses(self): # Fixes issue with empty data frames raising InvalidPaddingError. f = PushPromiseFrame(1, 2) f.data = b'' data = f.serialize() new_frame = decode_frame(data) assert new_frame.data == b'' def test_push_promise_frame_invalid(self): data = PushPromiseFrame(1, 0).serialize() with pytest.raises(InvalidDataError): decode_frame(data) data = PushPromiseFrame(1, 3).serialize() with pytest.raises(InvalidDataError): decode_frame(data) def test_short_push_promise_errors(self): s = ( b'\x00\x00\x0F\x05\x04\x00\x00\x00\x01' + b'\x00\x00\x00' # One byte short ) with pytest.raises(InvalidFrameError): decode_frame(s) class TestPingFrame: def test_repr(self): f = PingFrame() assert repr(f).endswith("opaque_data=b''") f.opaque_data = b'hello' assert repr(f).endswith("opaque_data=b'hello'") def test_ping_frame_has_only_one_flag(self): f = PingFrame() flags = f.parse_flags(0xFF) assert flags == set(['ACK']) def test_ping_frame_serializes_properly(self): f = PingFrame() f.parse_flags(0xFF) f.opaque_data = b'\x01\x02' s = f.serialize() assert s == ( b'\x00\x00\x08\x06\x01\x00\x00\x00\x00\x01\x02\x00\x00\x00\x00\x00' b'\x00' ) def test_no_more_than_8_octets(self): f = PingFrame() f.opaque_data = b'\x01\x02\x03\x04\x05\x06\x07\x08\x09' with pytest.raises(InvalidFrameError): f.serialize() def test_ping_frame_parses_properly(self): s = ( b'\x00\x00\x08\x06\x01\x00\x00\x00\x00\x01\x02\x00\x00\x00\x00\x00' b'\x00' ) f = decode_frame(s) assert isinstance(f, PingFrame) assert f.flags == set(['ACK']) assert f.opaque_data == b'\x01\x02\x00\x00\x00\x00\x00\x00' assert f.body_len == 8 def test_ping_frame_never_has_a_stream(self): with pytest.raises(InvalidDataError): PingFrame(1) def test_ping_frame_has_no_more_than_body_length_8(self): f = PingFrame() with pytest.raises(InvalidFrameError): f.parse_body(b'\x01\x02\x03\x04\x05\x06\x07\x08\x09') def test_ping_frame_has_no_less_than_body_length_8(self): f = PingFrame() with pytest.raises(InvalidFrameError): f.parse_body(b'\x01\x02\x03\x04\x05\x06\x07') class TestGoAwayFrame: def test_repr(self): f = GoAwayFrame() assert repr(f).endswith("last_stream_id=0, error_code=0, additional_data=b''") f.last_stream_id = 64 f.error_code = 32 f.additional_data = b'hello' assert repr(f).endswith("last_stream_id=64, error_code=32, additional_data=b'hello'") def test_go_away_has_no_flags(self): f = GoAwayFrame() flags = f.parse_flags(0xFF) assert not flags assert isinstance(flags, Flags) def test_goaway_serializes_properly(self): f = GoAwayFrame() f.last_stream_id = 64 f.error_code = 32 f.additional_data = b'hello' s = f.serialize() assert s == ( b'\x00\x00\x0D\x07\x00\x00\x00\x00\x00' + # Frame header b'\x00\x00\x00\x40' + # Last Stream ID b'\x00\x00\x00\x20' + # Error Code b'hello' # Additional data ) def test_goaway_frame_parses_properly(self): s = ( b'\x00\x00\x0D\x07\x00\x00\x00\x00\x00' + # Frame header b'\x00\x00\x00\x40' + # Last Stream ID b'\x00\x00\x00\x20' + # Error Code b'hello' # Additional data ) f = decode_frame(s) assert isinstance(f, GoAwayFrame) assert f.flags == set() assert f.additional_data == b'hello' assert f.body_len == 13 s = ( b'\x00\x00\x08\x07\x00\x00\x00\x00\x00' + # Frame header b'\x00\x00\x00\x40' + # Last Stream ID b'\x00\x00\x00\x20' + # Error Code b'' # Additional data ) f = decode_frame(s) assert isinstance(f, GoAwayFrame) assert f.flags == set() assert f.additional_data == b'' assert f.body_len == 8 def test_goaway_frame_never_has_a_stream(self): with pytest.raises(InvalidDataError): GoAwayFrame(1) def test_short_goaway_frame_errors(self): s = ( b'\x00\x00\x0D\x07\x00\x00\x00\x00\x00' + # Frame header b'\x00\x00\x00\x40' + # Last Stream ID b'\x00\x00\x00' # short Error Code ) with pytest.raises(InvalidFrameError): decode_frame(s) class TestWindowUpdateFrame: def test_repr(self): f = WindowUpdateFrame(0) assert repr(f).endswith("window_increment=0") f.stream_id = 1 f.window_increment = 512 assert repr(f).endswith("window_increment=512") def test_window_update_has_no_flags(self): f = WindowUpdateFrame(0) flags = f.parse_flags(0xFF) assert not flags assert isinstance(flags, Flags) def test_window_update_serializes_properly(self): f = WindowUpdateFrame(0) f.window_increment = 512 s = f.serialize() assert s == b'\x00\x00\x04\x08\x00\x00\x00\x00\x00\x00\x00\x02\x00' def test_windowupdate_frame_parses_properly(self): s = b'\x00\x00\x04\x08\x00\x00\x00\x00\x00\x00\x00\x02\x00' f = decode_frame(s) assert isinstance(f, WindowUpdateFrame) assert f.flags == set() assert f.window_increment == 512 assert f.body_len == 4 def test_short_windowupdate_frame_errors(self): s = b'\x00\x00\x04\x08\x00\x00\x00\x00\x00\x00\x00\x02' # -1 byte with pytest.raises(InvalidFrameError): decode_frame(s) s = b'\x00\x00\x05\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02' with pytest.raises(InvalidFrameError): decode_frame(s) with pytest.raises(InvalidDataError): decode_frame(WindowUpdateFrame(0).serialize()) with pytest.raises(InvalidDataError): decode_frame(WindowUpdateFrame(2**31).serialize()) class TestHeadersFrame: def test_repr(self): f = HeadersFrame(1) assert repr(f).endswith("exclusive=False, depends_on=0, stream_weight=0, data=None") f.data = b'hello' f.exclusive = True f.depends_on = 42 f.stream_weight = 64 assert repr(f).endswith("exclusive=True, depends_on=42, stream_weight=64, data=<hex:68656c6c6f>") def test_headers_frame_flags(self): f = HeadersFrame(1) flags = f.parse_flags(0xFF) assert flags == set(['END_STREAM', 'END_HEADERS', 'PADDED', 'PRIORITY']) def test_headers_frame_serializes_properly(self): f = HeadersFrame(1) f.flags = set(['END_STREAM', 'END_HEADERS']) f.data = b'hello world' s = f.serialize() assert s == ( b'\x00\x00\x0B\x01\x05\x00\x00\x00\x01' + b'hello world' ) def test_headers_frame_parses_properly(self): s = ( b'\x00\x00\x0B\x01\x05\x00\x00\x00\x01' + b'hello world' ) f = decode_frame(s) assert isinstance(f, HeadersFrame) assert f.flags == set(['END_STREAM', 'END_HEADERS']) assert f.data == b'hello world' assert f.body_len == 11 def test_headers_frame_with_priority_parses_properly(self): # This test also tests that we can receive a HEADERS frame with no # actual headers on it. This is technically possible. s = ( b'\x00\x00\x05\x01\x20\x00\x00\x00\x01' + b'\x80\x00\x00\x04\x40' ) f = decode_frame(s) assert isinstance(f, HeadersFrame) assert f.flags == set(['PRIORITY']) assert f.data == b'' assert f.depends_on == 4 assert f.stream_weight == 64 assert f.exclusive is True assert f.body_len == 5 def test_headers_frame_with_priority_serializes_properly(self): # This test also tests that we can receive a HEADERS frame with no # actual headers on it. This is technically possible. s = ( b'\x00\x00\x05\x01\x20\x00\x00\x00\x01' + b'\x80\x00\x00\x04\x40' ) f = HeadersFrame(1) f.flags = set(['PRIORITY']) f.data = b'' f.depends_on = 4 f.stream_weight = 64 f.exclusive = True assert f.serialize() == s def test_headers_frame_with_invalid_padding_fails_to_parse(self): # This frame has a padding length of 6 bytes, but a total length of # only 5. data = b'\x00\x00\x05\x01\x08\x00\x00\x00\x01\x06\x54\x65\x73\x74' with pytest.raises(InvalidPaddingError): decode_frame(data) def test_headers_frame_with_no_length_parses(self): # Fixes issue with empty data frames raising InvalidPaddingError. f = HeadersFrame(1) f.data = b'' data = f.serialize() new_frame = decode_frame(data) assert new_frame.data == b'' class TestContinuationFrame: def test_repr(self): f = ContinuationFrame(1) assert repr(f).endswith("data=None") f.data = b'hello' assert repr(f).endswith("data=<hex:68656c6c6f>") def test_continuation_frame_flags(self): f = ContinuationFrame(1) flags = f.parse_flags(0xFF) assert flags == set(['END_HEADERS']) def test_continuation_frame_serializes(self): f = ContinuationFrame(1) f.parse_flags(0x04) f.data = b'hello world' s = f.serialize() assert s == ( b'\x00\x00\x0B\x09\x04\x00\x00\x00\x01' + b'hello world' ) def test_continuation_frame_parses_properly(self): s = b'\x00\x00\x0B\x09\x04\x00\x00\x00\x01hello world' f = decode_frame(s) assert isinstance(f, ContinuationFrame) assert f.flags == set(['END_HEADERS']) assert f.data == b'hello world' assert f.body_len == 11 class TestAltSvcFrame: payload_with_origin = ( b'\x00\x00\x31' # Length b'\x0A' # Type b'\x00' # Flags b'\x00\x00\x00\x00' # Stream ID b'\x00\x0B' # Origin len b'example.com' # Origin b'h2="alt.example.com:8000", h2=":443"' # Field Value ) payload_without_origin = ( b'\x00\x00\x13' # Length b'\x0A' # Type b'\x00' # Flags b'\x00\x00\x00\x01' # Stream ID b'\x00\x00' # Origin len b'' # Origin b'h2=":8000"; ma=60' # Field Value ) payload_with_origin_and_stream = ( b'\x00\x00\x36' # Length b'\x0A' # Type b'\x00' # Flags b'\x00\x00\x00\x01' # Stream ID b'\x00\x0B' # Origin len b'example.com' # Origin b'Alt-Svc: h2=":443"; ma=2592000; persist=1' # Field Value ) def test_repr(self): f = AltSvcFrame(0) assert repr(f).endswith("origin=b'', field=b''") f.field = b'h2="alt.example.com:8000", h2=":443"' assert repr(f).endswith("origin=b'', field=b'h2=\"alt.example.com:8000\", h2=\":443\"'") f.origin = b'example.com' assert repr(f).endswith("origin=b'example.com', field=b'h2=\"alt.example.com:8000\", h2=\":443\"'") def test_altsvc_frame_flags(self): f = AltSvcFrame(0) flags = f.parse_flags(0xFF) assert flags == set() def test_altsvc_frame_with_origin_serializes_properly(self): f = AltSvcFrame(0) f.origin = b'example.com' f.field = b'h2="alt.example.com:8000", h2=":443"' s = f.serialize() assert s == self.payload_with_origin def test_altsvc_frame_with_origin_parses_properly(self): f = decode_frame(self.payload_with_origin) assert isinstance(f, AltSvcFrame) assert f.origin == b'example.com' assert f.field == b'h2="alt.example.com:8000", h2=":443"' assert f.body_len == 49 assert f.stream_id == 0 def test_altsvc_frame_without_origin_serializes_properly(self): f = AltSvcFrame(1, origin=b'', field=b'h2=":8000"; ma=60') s = f.serialize() assert s == self.payload_without_origin def test_altsvc_frame_without_origin_parses_properly(self): f = decode_frame(self.payload_without_origin) assert isinstance(f, AltSvcFrame) assert f.origin == b'' assert f.field == b'h2=":8000"; ma=60' assert f.body_len == 19 assert f.stream_id == 1 def test_altsvc_frame_with_origin_and_stream_serializes_properly(self): # This frame is not valid, but we allow it to be serialized anyway. f = AltSvcFrame(1) f.origin = b'example.com' f.field = b'Alt-Svc: h2=":443"; ma=2592000; persist=1' assert f.serialize() == self.payload_with_origin_and_stream def test_short_altsvc_frame_errors(self): with pytest.raises(InvalidFrameError): decode_frame(self.payload_with_origin[:12]) with pytest.raises(InvalidFrameError): decode_frame(self.payload_with_origin[:10]) def test_altsvc_with_unicode_origin_fails(self): with pytest.raises(InvalidDataError): AltSvcFrame( stream_id=0, origin=u'hello', field=b'h2=":8000"; ma=60' ) def test_altsvc_with_unicode_field_fails(self): with pytest.raises(InvalidDataError): AltSvcFrame( stream_id=0, origin=b'hello', field=u'h2=":8000"; ma=60' ) class TestExtensionFrame: def test_repr(self): f = ExtensionFrame(0xFF, 1, 42, b'hello') assert repr(f).endswith("type=255, flag_byte=42, body=<hex:68656c6c6f>")
32.865736
109
0.605432
7607ab6b187fb9c402bb8a8d57b9520d45c84a4f
161
py
Python
ejercicioA/empresa.py
Germiprogramer/EJERCICIOS-DE-AGREGACI-N-Y-COMPOSICI-N-DE-POO
0bead93f86801614c3aa3c2ed29a5559da90990c
[ "Apache-2.0" ]
null
null
null
ejercicioA/empresa.py
Germiprogramer/EJERCICIOS-DE-AGREGACI-N-Y-COMPOSICI-N-DE-POO
0bead93f86801614c3aa3c2ed29a5559da90990c
[ "Apache-2.0" ]
null
null
null
ejercicioA/empresa.py
Germiprogramer/EJERCICIOS-DE-AGREGACI-N-Y-COMPOSICI-N-DE-POO
0bead93f86801614c3aa3c2ed29a5559da90990c
[ "Apache-2.0" ]
null
null
null
class Empresa: def __init__(self, nombre, edificio, empleado): self.nombre = nombre self.edificio = edificio self.empleado = empleado
32.2
51
0.652174
c7c6d5acf77500a56a683ebd5472777799bb3d6d
375
py
Python
citrination_client/views/descriptors/__init__.py
nequalszero/python-citrination-client
634796717692af35e6b406a7014fc82ad6baaa34
[ "Apache-2.0" ]
20
2016-06-15T18:40:50.000Z
2022-03-21T11:59:13.000Z
citrination_client/views/descriptors/__init__.py
nequalszero/python-citrination-client
634796717692af35e6b406a7014fc82ad6baaa34
[ "Apache-2.0" ]
91
2015-12-23T18:13:43.000Z
2020-07-21T21:33:13.000Z
citrination_client/views/descriptors/__init__.py
nequalszero/python-citrination-client
634796717692af35e6b406a7014fc82ad6baaa34
[ "Apache-2.0" ]
18
2016-07-19T15:33:18.000Z
2022-03-02T19:42:24.000Z
from .alloy_composition_descriptor import AlloyCompositionDescriptor from .categorical_descriptor import CategoricalDescriptor from .inorganic_descriptor import InorganicDescriptor from .int_descriptor import IntDescriptor from .organic_descriptor import OrganicDescriptor from .real_descriptor import RealDescriptor from .formulation_descriptor import FormulationDescriptor
46.875
68
0.906667
b01619e603894f790f3b16487e33e2d2ac3f6c8f
15,858
py
Python
bin/sam_stats.py
KyleLevi/BAM_Scripts
71805b57ee81cb3bd4e30f96a6236d8d8e148df7
[ "MIT" ]
null
null
null
bin/sam_stats.py
KyleLevi/BAM_Scripts
71805b57ee81cb3bd4e30f96a6236d8d8e148df7
[ "MIT" ]
2
2020-01-23T14:58:03.000Z
2020-01-23T15:02:14.000Z
bin/sam_stats.py
KyleLevi/BAM_Scripts
71805b57ee81cb3bd4e30f96a6236d8d8e148df7
[ "MIT" ]
1
2020-01-23T14:54:14.000Z
2020-01-23T14:54:14.000Z
import sys import os import argparse import subprocess import pysam class Sam_Reader: def __init__(self, file_or_folder, **kwargs): """ Initialize with the path to a file or a folder. If a file is :param file_or_folder: """ convert = kwargs.get('convert', True) check_files = kwargs.get('check_files', True) # Generate a list of files in dir, and convert sam to bam if not os.path.isdir(file_or_folder): if file_or_folder.endswith('.sam'): file_or_folder = self.sam_to_bam(file_or_folder) input_files = [file_or_folder] else: if not file_or_folder.endswith('/'): file_or_folder = file_or_folder + '/' # Get the names of every SAM and BAM file in the input dir input_files = [file_or_folder + file_name for file_name in os.listdir(file_or_folder) if file_name.endswith(".sam") or file_name.endswith('.bam')] # Trim sam files from the list that have a bam file of the same name in the list input_files = [file_name for file_name in input_files if not (file_name.endswith('.sam') and file_name.replace('.sam','.bam') in input_files)] # Convert any sam files to bam files, sort, index and add the new file names to the input_files input_files = [file_name if file_name.endswith('.bam') else self.sam_to_bam(file_name) for file_name in input_files] self.input_files = input_files # Check if every BAM files has an index #TODO # Check if every file can be opened and record genomes & lengths genome_lengths = {} removed_files = [] for f in self.input_files: try: bamfile = pysam.AlignmentFile(f, 'rb') except Exception as e: sys.stderr.write('File {} could not be opened by pysam because...:\n{}\n'.format(f, e)) sys.stderr.write('Removing {} from input list and continuing.\n'.format(f)) removed_files.append(f) continue for l, r in zip(bamfile.lengths, bamfile.references): genome_lengths[r] = l if not check_files: break self.input_files = list(set(self.input_files)-set(removed_files)) self.broken_files = removed_files self.genome_lengths = genome_lengths def __str__(self): return "{} BAM file(s): (use .input_files)\n{} Organism(s)/Genome_Length {}\n".format(len(self.input_files), len(self.genome_lengths.keys()), str(self.genome_lengths)) def remove_short_reads(self, new_dir = None, min_length = 50): """ Reads in each bamfile and removes an reads less than min length and writes them to a new file :param min_length: :return: """ @staticmethod def sam_to_bam(infile, outdir = None): """ Converts a SAM file to a BAM file, sorts it, and Indexes it. :param infile: path to SAM file :param outdir: (optional) path to write BAM file to :return: path to new BAM file """ if infile.endswith('.sam'): # Changing the output file name and location bamfile = infile.replace('.sam', '.bam') if outdir: infile = infile.split('/')[-1].replace('.sam', '') bamfile = outdir + infile + '.bam' # These are the commands to be run, edit them here! convert_to_bam = ["samtools", "view", "-bS", infile] sort_bamfile = ["samtools", "sort", bamfile, bamfile.replace('.bam', '')] index_bamfile = ["samtools", "index", bamfile, bamfile.replace('.bam', '')] sys.stdout.write('Converting {} to BAM file, sorting, and indexing...'.format(infile)) ret_code = subprocess.call(convert_to_bam, stdout=open(bamfile, 'w')) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(convert_to_bam))) return None ret_code = subprocess.call(sort_bamfile) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(sort_bamfile))) return None ret_code = subprocess.call(index_bamfile) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(index_bamfile))) return None return bamfile else: sys.stderr.write('File: "{}" does not end with .sam, cannot convert to .bam'.format(infile)) return None @staticmethod def read_counts(bam_file_name, n=50): bamfile = pysam.AlignmentFile(bam_file_name, 'rb', check_sq=False) stats_dict = {} # {genome_name: [total_reads_mapped, reads > n base pairs long]} for read in bamfile.fetch(): if not read.reference_name in stats_dict: stats_dict[read.reference_name] = [0, 0]# index 0 is count of all reads, index 1 is all reads > n length total_len = int(sum(read.get_cigar_stats()[0])) if total_len > n: stats_dict[read.reference_name][1] += 1 stats_dict[read.reference_name][0] += 1 if stats_dict == {}: return {'None': [0, 0]} return stats_dict def quick_percent_coverages(self, bam_file_name, organism=None, MIN_POSITIONAL_COVERAGE=1): bamfile = pysam.AlignmentFile(bam_file_name, 'rb', check_sq=False) # Loop over every read, and calculate coverage an organism if it's the first read found organism_coverage = {} for read in bamfile.fetch(): genome_name = read.reference_name if genome_name in organism_coverage: # print('exists') continue if organism != None and organism != genome_name: # print('specified and not{}{}'.format(genome_name,organism)) continue # Process one organism base_depth = [] for p in bamfile.pileup(contig=genome_name): for pilups in p.pileups: if pilups.query_position: # Expand array while insert pos is out of list bounds if p.reference_pos >= len(base_depth): base_depth += [0] * (p.reference_pos - len(base_depth) + 1) # while p.reference_pos >= len(base_depth): # base_depth.append(0) base_depth[p.reference_pos] += 1 if base_depth[p.reference_pos] > MIN_POSITIONAL_COVERAGE: continue bins_covered = len([x for x in base_depth if x > 0]) organism_coverage[genome_name] = (bins_covered / self.genome_lengths[genome_name]) * 100 if organism_coverage == {}: return {'None': 0} return organism_coverage def hits(self, **kwargs): """ File | Genome | Percent Coverage | Total Mapped Reads | Mapped Reads > 50 bp :param kwargs: :return: """ # Setting Kwargs and defaults organism = kwargs.get('organism', None) only_this_file = kwargs.get('file_name', None) min_read_len = kwargs.get('min_read_length', 50) min_cov_depth = kwargs.get('min_coverage_depth', 1) header = ['file', 'genome', 'percent_coverage', 'total reads mapped', 'reads mapped > {} bp'.format(min_read_len)] results = [] for f in self.input_files: # if a specific file is specified and this file isn't it, continue if only_this_file != None and f != only_this_file: continue f_coverages = self.quick_percent_coverages(f, organism, min_cov_depth) for genome, stats in Sam_Reader.read_counts(f, min_read_len).items(): line = [f, genome, round(f_coverages.get(genome,0), 1), stats[0], stats[1]] results.append(line) if kwargs.get('write_file', False): if len(results) < 1: print("no results?") return with open(kwargs['write_file'], 'w') as outfile: outfile.write('\t'.join(header) + '\n') for line in results: line = [str(x) for x in line] line = '\t'.join(line) outfile.write(line + '\n') return results def per_base_stats(self, **kwargs): """ :param kwargs: :return: """ # Setting Kwargs and defaults kwargs['write_file'] = kwargs.get('write_file', False) organism = kwargs.get('organism', None) file_name = kwargs.get('file_name', None) min_len = kwargs.get('min_len', 50) if organism == None and len(self.genome_lengths.keys()) > 1: sys.stderr.write("Organism name not specified for per_base_stats and more than one organism is present,\n" "Available organism names are: {}".format(', '.join(self.genome_lengths.keys()))) organism = input("\n\nOrganism name not specified for .per_base_stats(organism=...) and more than one organism is present,\n"+ "Enter the name of an organism to analyze. (available names listed above):\n") else: organism = list(self.genome_lengths.keys())[0] if organism == 'all': sys.stdout.write("All Organisms chosen, this could take a long time and a lot of memory. I hope you know what you are doing...\n") all_d = {} for organism in self.genome_lengths.keys(): all_d[organism] = self.per_base_stats(organism=organism, write_file=kwargs['write_file']) return all_d # Initialize a list for every position in the genome, with an empty dictionary base_positions = [{"A": 0, "C": 0, "G": 0, "T": 0, "N": 0, "Gap": 0} for i in range(self.genome_lengths[organism])] empty = True # Loop over each file and add each base to the correct position in base_positions for f in self.input_files: try: # if a specific file is specified and this file isn't it, continue if file_name != None and f != file_name: continue bamfile = pysam.AlignmentFile(f, 'rb') for p in bamfile.pileup(contig=organism): for pilups in p.pileups: if pilups.query_position: bp = pilups.alignment.query_sequence[pilups.query_position] else: bp = '-' base_positions[p.reference_pos][bp] = base_positions[p.reference_pos].get(bp, 0) + 1 empty = False except Exception as e: sys.stderr.write('{}\nReading file: {} failed for Organism: {} -- skipping.\n'.format(e, file_name, organism)) continue if kwargs['write_file']: if empty: print('\n\nempty') with open(kwargs['write_file'] + organism + '.csv', 'w') as outfile: header = "\t".join(['Position', 'Consensus', 'Percent', 'A', 'C', 'G', 'T', 'N', 'Gap\n']) outfile.write(header) for index, pos_dict in enumerate(base_positions): consensus = max(pos_dict, key=pos_dict.get) try: percent = float(pos_dict[consensus]) / sum(list(pos_dict.values())) except: percent = 0.0 line = [index, consensus, round(percent * 100, 2), pos_dict['A'], pos_dict['C'], pos_dict['G'], pos_dict['T'], pos_dict['N'], pos_dict['Gap']] line = [str(x) for x in line] line[-1] = line[-1] + '\n' outfile.write('\t'.join(line)) return base_positions def reads(self, **kwargs): """ For a full list of things to do with yielded reads: http://pysam.readthedocs.io/en/latest/api.html#pysam.AlignedSegment :param kwargs: organism, min_read_len, only_this_file :return: """ organism = kwargs.get('organism', None) only_this_file = kwargs.get('file_name', None) min_read_len = kwargs.get('min_len', None) verb = kwargs.get('verbose', False) for bam_file_name in self.input_files: if only_this_file != None and bam_file_name != only_this_file: continue bamfile = pysam.AlignmentFile(bam_file_name, 'rb', check_sq=False) if verb: print('Opening file: {}'.format(bam_file_name)) for read in bamfile.fetch(): if organism is not None and read.reference_name != organism: continue if min_read_len != None and read.infer_query_length() < min_read_len: continue yield read def write_reads(self, new_filename, **kwargs): organism = kwargs.get('organism', None) only_this_file = kwargs.get('file_name', None) min_read_len = kwargs.get('min_len', None) out = pysam.Samfile(new_filename, 'w', template=pysam.AlignmentFile(self.input_files[0])) for read in self.reads(min_len=30, organism=organism, only_this_file=only_this_file, verbose=True): out.write(read) if not new_filename.endswith('.sam'): new_filename = new_filename + '.sam' bamfile = new_filename.replace('.sam', '.bam') # These are the commands to be run, edit them here! convert_to_bam = ["samtools", "view", "-bS", new_filename] sort_bamfile = ["samtools", "sort", bamfile, bamfile.replace('.bam', '')] index_bamfile = ["samtools", "index", bamfile, bamfile.replace('.bam', '.bai')] sys.stdout.write('Converting {} to BAM file, sorting, and indexing...'.format(infile)) ret_code = subprocess.call(convert_to_bam, stdout=open(bamfile, 'w')) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(convert_to_bam))) return None ret_code = subprocess.call(sort_bamfile) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(sort_bamfile))) return None ret_code = subprocess.call(index_bamfile) if ret_code != 0: sys.stderr.write("Error running command \"{}\"\n".format(' '.join(index_bamfile))) return None if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('-i', '--input', help='Input File', required=True) parser.add_argument('-o', '--output', help='output directory') parser.add_argument('-n', help='Some Number', type=int) parser.add_argument('-v', help='Verbose', action='store_true') try: args = parser.parse_args() except: parser.print_help() sys.exit(1) data = Sam_Reader(args.input) if not args.output: args.outpt=None data.per_base_stats(write_file=args.output)
45.700288
176
0.557573
1e4dac23cccfffdbb98022a4ce00a319028c7687
567
py
Python
djangoui/user/signals.py
ceexon/django-frontend
1aa72b8cdc119acd50922c1978c7abaa47d9b1ed
[ "MIT" ]
null
null
null
djangoui/user/signals.py
ceexon/django-frontend
1aa72b8cdc119acd50922c1978c7abaa47d9b1ed
[ "MIT" ]
8
2021-04-08T19:21:53.000Z
2022-03-11T23:50:51.000Z
djangoui/user/signals.py
kburudi/django-frontend
1aa72b8cdc119acd50922c1978c7abaa47d9b1ed
[ "MIT" ]
null
null
null
"""Signals for user actions.""" from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver from .models import Profile @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): """Create user profile on saving the user.""" if created: # noqa Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_profile(sender, instance, **kwargs): """Create user profile on saving the user.""" instance.profile.save()
28.35
61
0.738977
e745e2d717cffe48514128f36b80c5317775087e
654
py
Python
bbtools/callvariants/wrapper.py
avilab/vs-wrappers
65524b3566969da7909e0d08c423b6eecadea039
[ "MIT" ]
1
2021-04-25T08:20:14.000Z
2021-04-25T08:20:14.000Z
bbtools/callvariants/wrapper.py
avilab/vs-wrappers
65524b3566969da7909e0d08c423b6eecadea039
[ "MIT" ]
2
2018-12-28T08:40:03.000Z
2019-02-22T13:28:34.000Z
bbtools/callvariants/wrapper.py
avilab/vs-wrappers
65524b3566969da7909e0d08c423b6eecadea039
[ "MIT" ]
null
null
null
__author__ = "Taavi Päll" __copyright__ = "Copyright 2021, Taavi Päll" __email__ = "tapa741@gmail.com" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts java_opts = get_java_opts(snakemake) def parseIO(d): return " ".join([("in" if k == "input" else k) + "=" + v for k, v in d.items()]) inputs = parseIO(snakemake.input) outputs = parseIO(snakemake.output) # Get extra arguments extra = snakemake.params.get("extra", "") # Setup log log = snakemake.log_fmt_shell(stdout=False, stderr=True) shell( """ (callvariants.sh {inputs} {outputs} {extra} {java_opts}) {log} """ )
21.8
84
0.697248
235e2a8ac6171d94793c40231b2df3f800d482b5
2,026
py
Python
compile.py
honzajavorek/blackbeard
1252de7f2a7cbf74b432002509087c09f54c84b4
[ "ISC" ]
null
null
null
compile.py
honzajavorek/blackbeard
1252de7f2a7cbf74b432002509087c09f54c84b4
[ "ISC" ]
null
null
null
compile.py
honzajavorek/blackbeard
1252de7f2a7cbf74b432002509087c09f54c84b4
[ "ISC" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- """Compile script.""" import datetime import urllib2 import re import os VERSION = datetime.datetime.now().strftime('ver%Y-%m-%d') DIR = os.path.dirname(os.path.realpath(__file__)) SRC_DIR = DIR + '/src' RELEASE_FILE = DIR + '/releases/blackbeard_%s.html' % VERSION HTML_FILE = SRC_DIR + '/blackbeard.html' LOGO_FILE = 'https://github.com/Littlemaple/blackbeard/raw/master/static/logo.jpg' CSS_FILES = ('https://github.com/Littlemaple/css/raw/master/base.css', SRC_DIR + '/style.css') JAVASCRIPT_FILES = ('http://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js', 'https://github.com/jamespadolsey/jQuery-Plugins/raw/master/cross-domain-ajax/jquery.xdomainajax.js', SRC_DIR + '/app.js') def get_file_contents(file): if re.match(r'https?://', file): f = urllib2.urlopen(file) contents = f.read() else: with open(file, 'r') as f: contents = f.read() if isinstance(contents, basestring): if not isinstance(contents, unicode): contents = unicode(contents, 'utf-8') return contents def compress_css(css_code): css_code = re.sub(r'/\*[^*]*\*+([^/][^*]*\*+)*/', '', css_code) css_code = re.sub(r'[\r\n\t]+', '', css_code) css_code = re.sub(r' +', ' ', css_code) return css_code.strip() template = get_file_contents(HTML_FILE) data = {'logo': LOGO_FILE, 'version': VERSION} css = '' for f in CSS_FILES: css += get_file_contents(f) + '\n\n' data['css'] = compress_css(css) javascript = '' for f in JAVASCRIPT_FILES: javascript += get_file_contents(f) + '\n\n' data['javascript'] = javascript.strip() def replace(match): global data match = match.group(1) return data[match] def file_put_contents(file, contents): with open(file, 'w') as f: f.write(contents.encode('utf-8')) template = re.sub(r'{(\w+)}', replace, template) file_put_contents(RELEASE_FILE, template)
25.325
121
0.628332
4fa844d981324956dfa9181a56aa2b99d8d1f781
2,738
py
Python
src/tools/generate-eclipse.py
cucosion/polyglot
66a491da6393411c7ee1b8ef1d4780136b139da2
[ "BSD-3-Clause" ]
489
2016-06-21T21:28:06.000Z
2022-03-17T20:26:27.000Z
src/tools/generate-eclipse.py
cucosion/polyglot
66a491da6393411c7ee1b8ef1d4780136b139da2
[ "BSD-3-Clause" ]
65
2016-06-25T11:22:13.000Z
2022-02-12T08:34:17.000Z
src/tools/generate-eclipse.py
cucosion/polyglot
66a491da6393411c7ee1b8ef1d4780136b139da2
[ "BSD-3-Clause" ]
66
2016-06-11T12:38:50.000Z
2022-02-24T12:35:11.000Z
#! /usr/bin/env python import os import subprocess from xml.etree.ElementTree import Element, SubElement, tostring LIBRARY_JAR_ROOT = os.path.join('bazel-genfiles', 'external') BUILD_EVERYTHING_COMMAND = ['bazel', 'build', 'src/...'] PROTO_JAR_ROOT = os.path.join('bazel-bin', 'src', 'main', 'proto') def main(): # Using relative paths for certain things makes our lives much easier, but # this requires being run from the root of the Bazel workspace. if not os.path.isfile(os.path.join(os.getcwd(), 'WORKSPACE')): print('This script must be invoked from the WORKSPACE root.') return # Build the project to make sure all jars are present. print('Building project...') subprocess.check_output(BUILD_EVERYTHING_COMMAND) print('Generating .classpath file ...') with open('.classpath', 'w') as file: file.write(generate_classpath_contents()) print('Generating .project file ...') with open('.project', 'w') as file: file.write(generate_project_contents()) print('Done') def generate_project_contents(): project_name = os.path.basename(os.getcwd()) print('Using project name: ' + project_name) return PROJECT_FILE_TEMPLATE % { 'project_name': project_name } def generate_classpath_contents(): jar_paths = discover_jars(LIBRARY_JAR_ROOT) jar_entries = '\n'.join([CLASSPATH_INDENT + jar_entry(p) for p in jar_paths]) return CLASSPATH_TEMPLATE % { 'jar_entries': jar_entries } def jar_entry(jar_path): return JAR_CLASSPATH_ENTRY_TEMPLATE % {'path': jar_path} def discover_jars(root): jar_paths = [] trees = [LIBRARY_JAR_ROOT, PROTO_JAR_ROOT] for tree in trees: for root, _, files in os.walk(tree): for file in files: if os.path.splitext(file)[1] == '.jar': jar_paths.append(os.path.abspath(os.path.join(root, file))) return jar_paths CLASSPATH_TEMPLATE = """<?xml version="1.0" encoding="UTF-8"?> <classpath> <classpathentry kind="src" path="src/main/java"/> <classpathentry kind="src" path="src/test/java"/> <classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/> %(jar_entries)s </classpath> """ CLASSPATH_INDENT = """ """ JAR_CLASSPATH_ENTRY_TEMPLATE = '<classpathentry kind="lib" path="%(path)s"/>' PROJECT_FILE_TEMPLATE = """<?xml version="1.0" encoding="UTF-8"?> <projectDescription> <name>%(project_name)s</name> <comment></comment> <projects> </projects> <buildSpec> </buildSpec> <natures> <nature>org.eclipse.jdt.core.javanature</nature> </natures> </projectDescription> """ if __name__ == '__main__': main()
32.211765
83
0.661432
b326366651cb460514022a4b83da46c0a9d4ac52
2,581
py
Python
homework_fall2019/hw1/cs285/infrastructure/tf_utils.py
grandintegrator/cs285-deeprlcourse-fa19-hw
4abd57eb9da8978b576300b69865e52862e4eaab
[ "MIT" ]
1
2021-04-05T11:40:10.000Z
2021-04-05T11:40:10.000Z
homework_fall2019/hw1/cs285/infrastructure/tf_utils.py
grandintegrator/cs285-deeprlcourse-fa19-hw
4abd57eb9da8978b576300b69865e52862e4eaab
[ "MIT" ]
null
null
null
homework_fall2019/hw1/cs285/infrastructure/tf_utils.py
grandintegrator/cs285-deeprlcourse-fa19-hw
4abd57eb9da8978b576300b69865e52862e4eaab
[ "MIT" ]
null
null
null
import tensorflow as tf import os ############################################ ############################################ def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None): """ Builds a feedforward neural network arguments: input_placeholder: placeholder variable for the state (batch_size, input_size) scope: variable scope of the network n_layers: number of hidden layers size: dimension of each hidden layer activation: activation of each hidden layer output_size: size of the output layer output_activation: activation of the output layer returns: output_placeholder: the result of a forward pass through the hidden layers + the output layer """ output_placeholder = input_placeholder with tf.variable_scope(scope): for _ in range(n_layers): output_placeholder = tf.layers.dense(inputs=output_placeholder, units=size, activation=activation) output_placeholder = tf.layers.dense(inputs=output_placeholder, units=output_size, activation=output_activation) # output_placeholderut_placeholder = TODO # HINT: use tf.layers.dense (specify <input>, <size>, activation=<?>) return output_placeholder ############################################ ############################################ def create_tf_session(use_gpu=False, gpu_frac=0.6, allow_gpu_growth=True, which_gpu=0): if use_gpu: # gpu options gpu_options = tf.GPUOptions( per_process_gpu_memory_fraction=gpu_frac, allow_growth=allow_gpu_growth) # TF config config = tf.ConfigProto( gpu_options=gpu_options, log_device_placement=False, allow_soft_placement=True, inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) # set env variable to specify which gpu to use os.environ["CUDA_VISIBLE_DEVICES"] = str(which_gpu) else: # TF config without gpu config = tf.ConfigProto(device_count={'GPU': 0}) # use config to create TF session sess = tf.Session(config=config) return sess def lrelu(x, leak=0.2): f1 = 0.5 * (1 + leak) f2 = 0.5 * (1 - leak) return f1 * x + f2 * abs(x)
35.847222
119
0.565285
8d07a8e9bb8de79ea6d75ec3ebf698d1eaf3a1ea
9,102
py
Python
model_zoo/official/cv/mobilenetv3/train.py
kungfu-team/mindspore-bert
71501cf52ae01db9d6a73fb64bcfe68a6509dc32
[ "Apache-2.0" ]
2
2021-07-08T13:10:42.000Z
2021-11-08T02:48:57.000Z
model_zoo/official/cv/mobilenetv3/train.py
peixinhou/mindspore
fcb2ec2779b753e95c762cf292b23bd81d1f561b
[ "Apache-2.0" ]
null
null
null
model_zoo/official/cv/mobilenetv3/train.py
peixinhou/mindspore
fcb2ec2779b753e95c762cf292b23bd81d1f561b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import time import argparse import ast import numpy as np from mindspore import context from mindspore import Tensor from mindspore import nn from mindspore.nn.optim.momentum import Momentum from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.loss.loss import _Loss from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.common import dtype as mstype from mindspore.train.model import Model from mindspore.context import ParallelMode from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import set_seed from mindspore.communication.management import init, get_group_size, get_rank from src.dataset import create_dataset from src.dataset import create_dataset_cifar from src.lr_generator import get_lr from src.config import config_gpu from src.config import config_cpu from src.mobilenetV3 import mobilenet_v3_large set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') parser.add_argument('--run_distribute', type=ast.literal_eval, default=True, help='Run distribute') args_opt = parser.parse_args() if args_opt.device_target == "GPU": context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False) if args_opt.run_distribute: init() context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) elif args_opt.device_target == "CPU": context.set_context(mode=context.GRAPH_MODE, device_target="CPU", save_graphs=False) else: raise ValueError("Unsupported device_target.") class CrossEntropyWithLabelSmooth(_Loss): """ CrossEntropyWith LabelSmooth. Args: smooth_factor (float): smooth factor for label smooth. Default is 0. num_classes (int): number of classes. Default is 1000. Returns: None. Examples: >>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000) """ def __init__(self, smooth_factor=0., num_classes=1000): super(CrossEntropyWithLabelSmooth, self).__init__() self.onehot = P.OneHot() self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) self.ce = nn.SoftmaxCrossEntropyWithLogits() self.mean = P.ReduceMean(False) self.cast = P.Cast() def construct(self, logit, label): one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value) out_loss = self.ce(logit, one_hot_label) out_loss = self.mean(out_loss, 0) return out_loss class Monitor(Callback): """ Monitor loss and time. Args: lr_init (numpy array): train lr Returns: None Examples: >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) """ def __init__(self, lr_init=None): super(Monitor, self).__init__() self.lr_init = lr_init self.lr_init_len = len(lr_init) def epoch_begin(self, run_context): self.losses = [] self.epoch_time = time.time() def epoch_end(self, run_context): cb_params = run_context.original_args() epoch_mseconds = (time.time() - self.epoch_time) * 1000 per_step_mseconds = epoch_mseconds / cb_params.batch_num print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, per_step_mseconds, np.mean(self.losses))) def step_begin(self, run_context): self.step_time = time.time() def step_end(self, run_context): cb_params = run_context.original_args() step_mseconds = (time.time() - self.step_time) * 1000 step_loss = cb_params.net_outputs if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor): step_loss = step_loss[0] if isinstance(step_loss, Tensor): step_loss = np.mean(step_loss.asnumpy()) self.losses.append(step_loss) cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1])) if __name__ == '__main__': config_ = None if args_opt.device_target == "GPU": config_ = config_gpu elif args_opt.device_target == "CPU": config_ = config_cpu else: raise ValueError("Unsupported device_target.") # train on device print("train args: ", args_opt) print("cfg: ", config_) # define net net = mobilenet_v3_large(num_classes=config_.num_classes) # define loss if config_.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config_.label_smooth, num_classes=config_.num_classes) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # define dataset epoch_size = config_.epoch_size if args_opt.device_target == "GPU": dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config_, device_target=args_opt.device_target, repeat_num=1, batch_size=config_.batch_size, run_distribute=args_opt.run_distribute) elif args_opt.device_target == "CPU": dataset = create_dataset_cifar(args_opt.dataset_path, do_train=True, batch_size=config_.batch_size) else: raise ValueError("Unsupported device_target.") step_size = dataset.get_dataset_size() # resume if args_opt.pre_trained: param_dict = load_checkpoint(args_opt.pre_trained) load_param_into_net(net, param_dict) # define optimizer loss_scale = FixedLossScaleManager( config_.loss_scale, drop_overflow_update=False) lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=config_.lr, warmup_epochs=config_.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config_.momentum, config_.weight_decay, config_.loss_scale) # define model model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) cb = [Monitor(lr_init=lr.asnumpy())] if args_opt.run_distribute and args_opt.device_target != "CPU": ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/" else: ckpt_save_dir = config_gpu.save_checkpoint_path + "ckpt_" + "/" if config_.save_checkpoint: config_ck = CheckpointConfig(save_checkpoint_steps=config_.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_.keep_checkpoint_max) ckpt_cb = ModelCheckpoint(prefix="mobilenetV3", directory=ckpt_save_dir, config=config_ck) cb += [ckpt_cb] # begine train model.train(epoch_size, dataset, callbacks=cb)
39.921053
118
0.642826
a104852d056ed351485d21e914439c76be9d8086
7,132
py
Python
seditor.py
vxsl/picotui
768eac16883bb682715dcd7b9fa490317d32df2d
[ "MIT" ]
null
null
null
seditor.py
vxsl/picotui
768eac16883bb682715dcd7b9fa490317d32df2d
[ "MIT" ]
null
null
null
seditor.py
vxsl/picotui
768eac16883bb682715dcd7b9fa490317d32df2d
[ "MIT" ]
null
null
null
# # Very simple VT100 terminal text editor widget # Copyright (c) 2015 Paul Sokolovsky # Distributed under MIT License # import sys import os from picotui.defs import VIM_KEYMAP KEY_UP = 1 KEY_DOWN = 2 KEY_LEFT = 3 KEY_RIGHT = 4 KEY_HOME = 5 KEY_END = 6 KEY_PGUP = 7 KEY_PGDN = 8 KEY_QUIT = 9 KEY_ENTER = 10 KEY_BACKSPACE = 11 KEY_DELETE = 12 KEYMAP = { b"\x1b[A": KEY_UP, b"\x1b[B": KEY_DOWN, b"\x1b[D": KEY_LEFT, b"\x1b[C": KEY_RIGHT, b"\x1bOH": KEY_HOME, b"\x1bOF": KEY_END, b"\x1b[1~": KEY_HOME, b"\x1b[4~": KEY_END, b"\x1b[5~": KEY_PGUP, b"\x1b[6~": KEY_PGDN, b"\x03": KEY_QUIT, b"\r": KEY_ENTER, b"\x7f": KEY_BACKSPACE, b"\x1b[3~": KEY_DELETE, } class Editor: def __init__(self): self.top_line = 0 self.cur_line = 0 self.row = 0 self.col = 0 self.height = 25 @staticmethod def wr(s): # TODO: When Python is 3.5, update this to use only bytes if isinstance(s, str): s = bytes(s, "utf-8") os.write(1, s) @staticmethod def cls(): Editor.wr(b"\x1b[2J") @staticmethod def goto(row, col): # TODO: When Python is 3.5, update this to use bytes Editor.wr("\x1b[%d;%dH" % (row + 1, col + 1)) @staticmethod def clear_to_eol(): Editor.wr(b"\x1b[0K") @staticmethod def cursor(onoff): if onoff: Editor.wr(b"\x1b[?25h") else: Editor.wr(b"\x1b[?25l") def set_cursor(self): self.goto(self.row, self.col) def adjust_cursor_eol(self): l = len(self.content[self.cur_line]) if self.col > l: self.col = l def set_lines(self, lines): self.content = lines self.total_lines = len(lines) def update_screen(self): self.cursor(False) self.goto(0, 0) self.cls() i = self.top_line for c in range(self.height): self.show_line(self.content[i]) self.wr(b"\r\n") i += 1 if i == self.total_lines: break self.set_cursor() self.cursor(True) def update_line(self): self.cursor(False) self.wr(b"\r") self.show_line(self.content[self.cur_line]) self.clear_to_eol() self.set_cursor() self.cursor(True) def show_line(self, l): self.wr(l) def next_line(self): if self.row + 1 == self.height: self.top_line += 1 return True else: self.row += 1 return False def handle_cursor_keys(self, key): if key == KEY_DOWN: if self.cur_line + 1 != self.total_lines: self.cur_line += 1 self.adjust_cursor_eol() if self.next_line(): self.update_screen() else: self.set_cursor() elif key == KEY_UP: if self.cur_line > 0: self.cur_line -= 1 self.adjust_cursor_eol() if self.row == 0: if self.top_line > 0: self.top_line -= 1 self.update_screen() else: self.row -= 1 self.set_cursor() elif key == KEY_LEFT: if self.col > 0: self.col -= 1 self.set_cursor() elif key == KEY_RIGHT: self.col += 1 self.adjust_cursor_eol() self.set_cursor() elif key == KEY_HOME: self.col = 0 self.set_cursor() elif key == KEY_END: self.col = len(self.content[self.cur_line]) self.set_cursor() elif key == KEY_PGUP: self.cur_line -= self.height self.top_line -= self.height if self.top_line < 0: self.top_line = 0 self.cur_line = 0 self.row = 0 elif self.cur_line < 0: self.cur_line = 0 self.row = 0 self.adjust_cursor_eol() self.update_screen() elif key == KEY_PGDN: self.cur_line += self.height self.top_line += self.height if self.cur_line >= self.total_lines: self.top_line = self.total_lines - self.height self.cur_line = self.total_lines - 1 if self.top_line >= 0: self.row = self.height - 1 else: self.top_line = 0 self.row = self.cur_line self.adjust_cursor_eol() self.update_screen() else: return False return True def loop(self): self.update_screen() while True: buf = os.read(0, 32) sz = len(buf) i = 0 while i < sz: if buf[0] == 0x1b: key = buf i = len(buf) else: key = buf[i:i + 1] i += 1 #self.show_status(repr(key)) if key in KEYMAP: key = KEYMAP[key] elif key in VIM_KEYMAP: key = VIM_KEYMAP if key == KEY_QUIT: return key if self.handle_cursor_keys(key): continue res = self.handle_key(key) if res is not None: return res def handle_key(self, key): l = self.content[self.cur_line] if key == KEY_ENTER: self.content[self.cur_line] = l[:self.col] self.cur_line += 1 self.content[self.cur_line:self.cur_line] = [l[self.col:]] self.total_lines += 1 self.col = 0 self.next_line() self.update_screen() elif key == KEY_BACKSPACE: if self.col: self.col -= 1 l = l[:self.col] + l[self.col + 1:] self.content[self.cur_line] = l self.update_line() elif key == KEY_DELETE: l = l[:self.col] + l[self.col + 1:] self.content[self.cur_line] = l self.update_line() else: l = l[:self.col] + str(key, "utf-8") + l[self.col:] self.content[self.cur_line] = l self.col += 1 self.update_line() def init_tty(self): import tty, termios self.org_termios = termios.tcgetattr(0) tty.setraw(0) def deinit_tty(self): # Don't leave cursor in the middle of screen self.goto(self.height, 0) import termios termios.tcsetattr(0, termios.TCSANOW, self.org_termios) if __name__ == "__main__": with open(sys.argv[1]) as f: content = f.read().splitlines() #content = f.readlines() e = Editor() e.init_tty() e.set_lines(content) e.loop() e.deinit_tty()
27.32567
74
0.482894
19d71bb43a705e60847a82435c92abb4e384e7f0
1,125
py
Python
beacon/beacon/migrations/0001_initial.py
gEndelf/beacon
53b0e47bf136f10fca2a2b3a399ac6e473fdb840
[ "MIT" ]
null
null
null
beacon/beacon/migrations/0001_initial.py
gEndelf/beacon
53b0e47bf136f10fca2a2b3a399ac6e473fdb840
[ "MIT" ]
null
null
null
beacon/beacon/migrations/0001_initial.py
gEndelf/beacon
53b0e47bf136f10fca2a2b3a399ac6e473fdb840
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Repo', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('repo_type', models.CharField(default=b'github', max_length=15, choices=[(b'github', b'github'), (b'bitbucket', b'bitbucket')])), ('organization', models.CharField(max_length=70)), ('repo', models.CharField(max_length=70)), ('title', models.CharField(max_length=70)), ('is_active', models.BooleanField(default=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ], options={ 'ordering': ('-created_at',), }, ), migrations.AlterUniqueTogether( name='repo', unique_together=set([('repo_type', 'organization', 'repo')]), ), ]
34.090909
146
0.557333
7f06d325a6051521c2dd45b4ccd738c6f6dff4c7
30,318
py
Python
miper/api/xmlutil.py
MountainWei/miper
4dd6df51cb0e7d041b8dc7decebbcfb47a79f210
[ "Apache-2.0" ]
1
2016-01-13T04:23:20.000Z
2016-01-13T04:23:20.000Z
miper/api/xmlutil.py
MountainWei/miper
4dd6df51cb0e7d041b8dc7decebbcfb47a79f210
[ "Apache-2.0" ]
1
2015-12-17T09:58:04.000Z
2016-08-01T15:23:27.000Z
miper/api/xmlutil.py
MountainWei/miper
4dd6df51cb0e7d041b8dc7decebbcfb47a79f210
[ "Apache-2.0" ]
null
null
null
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os.path import re from lxml import etree import six from miper.i18n import _ from miper import utils XMLNS_V10 = 'https://www.openstack.org/mediawiki/miper/api/v1.0' XMLNS_V11 = 'https://www.openstack.org/mediawiki/miper/api/v1.0' XMLNS_COMMON_V10 = 'https://www.openstack.org/mediawiki/miper/api/v1.0' XMLNS_ATOM = 'http://www.w3.org/2005/Atom' XMLNS_MIPER_V1 = ('https://www.openstack.org/mediawiki/miper/1.0/content') _split_pattern = re.compile(r'([^:{]*{[^}]*}[^:]*|[^:]+)') def validate_schema(xml, schema_name): if isinstance(xml, str): xml = etree.fromstring(xml) base_path = 'miper/api/schemas/v1.1/' if schema_name in ('atom', 'atom-link'): base_path = 'miper/api/schemas/' schema_path = os.path.join(utils.miperdir(), '%s%s.rng' % (base_path, schema_name)) schema_doc = etree.parse(schema_path) relaxng = etree.RelaxNG(schema_doc) relaxng.assertValid(xml) class Selector(object): """Selects datum to operate on from an object.""" def __init__(self, *chain): """Initialize the selector. Each argument is a subsequent index into the object. """ self.chain = chain def __repr__(self): """Return a representation of the selector.""" return "Selector" + repr(self.chain) def __call__(self, obj, do_raise=False): """Select a datum to operate on. Selects the relevant datum within the object. :param obj: The object from which to select the object. :param do_raise: If False (the default), return None if the indexed datum does not exist. Otherwise, raise a KeyError. """ # Walk the selector list for elem in self.chain: # If it's callable, call it if callable(elem): obj = elem(obj) else: # Use indexing try: obj = obj[elem] except (KeyError, IndexError): # No sense going any further if do_raise: # Convert to a KeyError, for consistency raise KeyError(elem) return None # Return the finally-selected object return obj def get_items(obj): """Get items in obj.""" return list(obj.items()) class EmptyStringSelector(Selector): """Returns the empty string if Selector would return None.""" def __call__(self, obj, do_raise=False): """Returns empty string if the selected value does not exist.""" try: return super(EmptyStringSelector, self).__call__(obj, True) except KeyError: return "" class ConstantSelector(object): """Returns a constant.""" def __init__(self, value): """Initialize the selector. :param value: The value to return. """ self.value = value def __repr__(self): """Return a representation of the selector.""" return repr(self.value) def __call__(self, _obj, _do_raise=False): """Select a datum to operate on. Returns a constant value. Compatible with Selector.__call__(). """ return self.value class TemplateElement(object): """Represent an element in the template.""" def __init__(self, tag, attrib=None, selector=None, subselector=None, **extra): """Initialize an element. Initializes an element in the template. Keyword arguments specify attributes to be set on the element; values must be callables. See TemplateElement.set() for more information. :param tag: The name of the tag to create. :param attrib: An optional dictionary of element attributes. :param selector: An optional callable taking an object and optional boolean do_raise indicator and returning the object bound to the element. :param subselector: An optional callable taking an object and optional boolean do_raise indicator and returning the object bound to the element. This is used to further refine the datum object returned by selector in the event that it is a list of objects. """ # Convert selector into a Selector if selector is None: selector = Selector() elif not callable(selector): selector = Selector(selector) # Convert subselector into a Selector if subselector is not None and not callable(subselector): subselector = Selector(subselector) self.tag = tag self.selector = selector self.subselector = subselector self.attrib = {} self._text = None self._children = [] self._childmap = {} # Run the incoming attributes through set() so that they # become selectorized if not attrib: attrib = {} attrib.update(extra) for k, v in attrib.items(): self.set(k, v) def __repr__(self): """Return a representation of the template element.""" return ('<%s.%s %r at %#x>' % (self.__class__.__module__, self.__class__.__name__, self.tag, id(self))) def __len__(self): """Return the number of child elements.""" return len(self._children) def __contains__(self, key): """Determine whether a child node named by key exists.""" return key in self._childmap def __getitem__(self, idx): """Retrieve a child node by index or name.""" if isinstance(idx, six.string_types): # Allow access by node name return self._childmap[idx] else: return self._children[idx] def append(self, elem): """Append a child to the element.""" # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap: raise KeyError(elem.tag) self._children.append(elem) self._childmap[elem.tag] = elem def extend(self, elems): """Append children to the element.""" # Pre-evaluate the elements elemmap = {} elemlist = [] for elem in elems: # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap or elem.tag in elemmap: raise KeyError(elem.tag) elemmap[elem.tag] = elem elemlist.append(elem) # Update the children self._children.extend(elemlist) self._childmap.update(elemmap) def insert(self, idx, elem): """Insert a child element at the given index.""" # Unwrap templates... elem = elem.unwrap() # Avoid duplications if elem.tag in self._childmap: raise KeyError(elem.tag) self._children.insert(idx, elem) self._childmap[elem.tag] = elem def remove(self, elem): """Remove a child element.""" # Unwrap templates... elem = elem.unwrap() # Check if element exists if elem.tag not in self._childmap or self._childmap[elem.tag] != elem: raise ValueError(_('element is not a child')) self._children.remove(elem) del self._childmap[elem.tag] def get(self, key): """Get an attribute. Returns a callable which performs datum selection. :param key: The name of the attribute to get. """ return self.attrib[key] def set(self, key, value=None): """Set an attribute. :param key: The name of the attribute to set. :param value: A callable taking an object and optional boolean do_raise indicator and returning the datum bound to the attribute. If None, a Selector() will be constructed from the key. If a string, a Selector() will be constructed from the string. """ # Convert value to a selector if value is None: value = Selector(key) elif not callable(value): value = Selector(value) self.attrib[key] = value def keys(self): """Return the attribute names.""" return self.attrib.keys() def items(self): """Return the attribute names and values.""" return self.attrib.items() def unwrap(self): """Unwraps a template to return a template element.""" # We are a template element return self def wrap(self): """Wraps a template element to return a template.""" # Wrap in a basic Template return Template(self) def apply(self, elem, obj): """Apply text and attributes to an etree.Element. Applies the text and attribute instructions in the template element to an etree.Element instance. :param elem: An etree.Element instance. :param obj: The base object associated with this template element. """ # Start with the text... if self.text is not None: elem.text = six.text_type(self.text(obj)) # Now set up all the attributes... for key, value in self.attrib.items(): try: elem.set(key, six.text_type(value(obj, True))) except KeyError: # Attribute has no value, so don't include it pass def getAttrib(self, obj): """Get attribute.""" tmpattrib = {} # Now set up all the attributes... for key, value in self.attrib.items(): try: tmpattrib[key] = value(obj) except KeyError: # Attribute has no value, so don't include it pass return tmpattrib @staticmethod def _splitTagName(name): return _split_pattern.findall(name) def _render(self, parent, datum, patches, nsmap): """Internal rendering. Renders the template node into an etree.Element object. Returns the etree.Element object. :param parent: The parent etree.Element instance. :param datum: The datum associated with this template element. :param patches: A list of other template elements that must also be applied. :param nsmap: An optional namespace dictionary to be associated with the etree.Element instance. """ # Allocate a node if callable(self.tag): tagname = self.tag(datum) else: tagname = self.tag # If the datum is None if datum is not None: tmpattrib = self.getAttrib(datum) else: tmpattrib = {} tagnameList = self._splitTagName(tagname) insertIndex = 0 # If parent is not none and has same tagname if parent is not None: for i in range(0, len(tagnameList)): tmpInsertPos = parent.find(tagnameList[i]) if tmpInsertPos is None: break elif not cmp(parent.attrib, tmpattrib) == 0: break parent = tmpInsertPos insertIndex = i + 1 if insertIndex >= len(tagnameList): insertIndex = insertIndex - 1 # Create root elem elem = etree.Element(tagnameList[insertIndex], nsmap=nsmap) rootelem = elem subelem = elem # Create subelem for i in range((insertIndex + 1), len(tagnameList)): subelem = etree.SubElement(elem, tagnameList[i]) elem = subelem # If we have a parent, append the node to the parent if parent is not None: # If we can merge this element, then insert if insertIndex > 0: parent.insert(len(list(parent)), rootelem) else: parent.append(rootelem) # If the datum is None, do nothing else if datum is None: return rootelem # Apply this template element to the element self.apply(subelem, datum) # Additionally, apply the patches for patch in patches: patch.apply(subelem, datum) # We have fully rendered the element; return it return rootelem def render(self, parent, obj, patches=None, nsmap=None): """Render an object. Renders an object against this template node. Returns a list of two-item tuples, where the first item is an etree.Element instance and the second item is the datum associated with that instance. :param parent: The parent for the etree.Element instances. :param obj: The object to render this template element against. :param patches: A list of other template elements to apply when rendering this template element. :param nsmap: An optional namespace dictionary to attach to the etree.Element instances. """ patches = patches or [] # First, get the datum we're rendering data = None if obj is None else self.selector(obj) # Check if we should render at all if not self.will_render(data): return [] elif data is None: return [(self._render(parent, None, patches, nsmap), None)] # Make the data into a list if it isn't already if not isinstance(data, list): data = [data] elif parent is None: raise ValueError(_('root element selecting a list')) # Render all the elements elems = [] for datum in data: if self.subselector is not None: datum = self.subselector(datum) elems.append((self._render(parent, datum, patches, nsmap), datum)) # Return all the elements rendered, as well as the # corresponding datum for the next step down the tree return elems def will_render(self, datum): """Hook method. An overridable hook method to determine whether this template element will be rendered at all. By default, returns False (inhibiting rendering) if the datum is None. :param datum: The datum associated with this template element. """ # Don't render if datum is None return datum is not None def _text_get(self): """Template element text. Either None or a callable taking an object and optional boolean do_raise indicator and returning the datum bound to the text of the template element. """ return self._text def _text_set(self, value): # Convert value to a selector if value is not None and not callable(value): value = Selector(value) self._text = value def _text_del(self): self._text = None text = property(_text_get, _text_set, _text_del) def tree(self): """Return string representation of the template tree. Returns a representation of the template rooted at this element as a string, suitable for inclusion in debug logs. """ # Build the inner contents of the tag... contents = [self.tag, '!selector=%r' % self.selector] # Add the text... if self.text is not None: contents.append('!text=%r' % self.text) # Add all the other attributes for key, value in self.attrib.items(): contents.append('%s=%r' % (key, value)) # If there are no children, return it as a closed tag if len(self) == 0: return '<%s/>' % ' '.join([str(i) for i in contents]) # OK, recurse to our children children = [c.tree() for c in self] # Return the result return ('<%s>%s</%s>' % (' '.join(contents), ''.join(children), self.tag)) def SubTemplateElement(parent, tag, attrib=None, selector=None, subselector=None, **extra): """Create a template element as a child of another. Corresponds to the etree.SubElement interface. Parameters are as for TemplateElement, with the addition of the parent. """ # Convert attributes attrib = attrib or {} attrib.update(extra) # Get a TemplateElement elem = TemplateElement(tag, attrib=attrib, selector=selector, subselector=subselector) # Append the parent safely if parent is not None: parent.append(elem) return elem class Template(object): """Represent a template.""" def __init__(self, root, nsmap=None): """Initialize a template. :param root: The root element of the template. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ self.root = root.unwrap() if root is not None else None self.nsmap = nsmap or {} self.serialize_options = dict(encoding='UTF-8', xml_declaration=True) def _serialize(self, parent, obj, siblings, nsmap=None): """Internal serialization. Recursive routine to build a tree of etree.Element instances from an object based on the template. Returns the first etree.Element instance rendered, or None. :param parent: The parent etree.Element instance. Can be None. :param obj: The object to render. :param siblings: The TemplateElement instances against which to render the object. :param nsmap: An optional namespace dictionary to be associated with the etree.Element instance rendered. """ # First step, render the element elems = siblings[0].render(parent, obj, siblings[1:], nsmap) # Now, traverse all child elements seen = set() for idx, sibling in enumerate(siblings): for child in sibling: # Have we handled this child already? if child.tag in seen: continue seen.add(child.tag) # Determine the child's siblings nieces = [child] for sib in siblings[idx + 1:]: if child.tag in sib: nieces.append(sib[child.tag]) # Now call this function for all data elements recursively for elem, datum in elems: self._serialize(elem, datum, nieces) # Return the first element; at the top level, this will be the # root element if elems: return elems[0][0] def serialize(self, obj, *args, **kwargs): """Serialize an object. Serializes an object against the template. Returns a string with the serialized XML. Positional and keyword arguments are passed to etree.tostring(). :param obj: The object to serialize. """ elem = self.make_tree(obj) if elem is None: return '' for k, v in self.serialize_options.items(): kwargs.setdefault(k, v) # Serialize it into XML return etree.tostring(elem, *args, **kwargs) def make_tree(self, obj): """Create a tree. Serializes an object against the template. Returns an Element node with appropriate children. :param obj: The object to serialize. """ # If the template is empty, return the empty string if self.root is None: return None # Get the siblings and nsmap of the root element siblings = self._siblings() nsmap = self._nsmap() # Form the element tree return self._serialize(None, obj, siblings, nsmap) def _siblings(self): """Hook method for computing root siblings. An overridable hook method to return the siblings of the root element. By default, this is the root element itself. """ return [self.root] def _nsmap(self): """Hook method for computing the namespace dictionary. An overridable hook method to return the namespace dictionary. """ return self.nsmap.copy() def unwrap(self): """Unwraps a template to return a template element.""" # Return the root element return self.root def wrap(self): """Wraps a template element to return a template.""" # We are a template return self def apply(self, master): """Hook method for determining slave applicability. An overridable hook method used to determine if this template is applicable as a slave to a given master template. :param master: The master template to test. """ return True def tree(self): """Return string representation of the template tree. Returns a representation of the template as a string, suitable for inclusion in debug logs. """ return "%r: %s" % (self, self.root.tree()) class MasterTemplate(Template): """Represent a master template. Master templates are versioned derivatives of templates that additionally allow slave templates to be attached. Slave templates allow modification of the serialized result without directly changing the master. """ def __init__(self, root, version, nsmap=None): """Initialize a master template. :param root: The root element of the template. :param version: The version number of the template. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ super(MasterTemplate, self).__init__(root, nsmap) self.version = version self.slaves = [] def __repr__(self): """Return string representation of the template.""" return ("<%s.%s object version %s at %#x>" % (self.__class__.__module__, self.__class__.__name__, self.version, id(self))) def _siblings(self): """Hook method for computing root siblings. An overridable hook method to return the siblings of the root element. This is the root element plus the root elements of all the slave templates. """ return [self.root] + [slave.root for slave in self.slaves] def _nsmap(self): """Hook method for computing the namespace dictionary. An overridable hook method to return the namespace dictionary. The namespace dictionary is computed by taking the master template's namespace dictionary and updating it from all the slave templates. """ nsmap = self.nsmap.copy() for slave in self.slaves: nsmap.update(slave._nsmap()) return nsmap def attach(self, *slaves): """Attach one or more slave templates. Attaches one or more slave templates to the master template. Slave templates must have a root element with the same tag as the master template. The slave template's apply() method will be called to determine if the slave should be applied to this master; if it returns False, that slave will be skipped. (This allows filtering of slaves based on the version of the master template.) """ slave_list = [] for slave in slaves: slave = slave.wrap() # Make sure we have a tree match if slave.root.tag != self.root.tag: msg = (_("Template tree mismatch; adding slave %(slavetag)s " "to master %(mastertag)s") % {'slavetag': slave.root.tag, 'mastertag': self.root.tag}) raise ValueError(msg) # Make sure slave applies to this template if not slave.apply(self): continue slave_list.append(slave) # Add the slaves self.slaves.extend(slave_list) def copy(self): """Return a copy of this master template.""" # Return a copy of the MasterTemplate tmp = self.__class__(self.root, self.version, self.nsmap) tmp.slaves = self.slaves[:] return tmp class SlaveTemplate(Template): """Represent a slave template. Slave templates are versioned derivatives of templates. Each slave has a minimum version and optional maximum version of the master template to which they can be attached. """ def __init__(self, root, min_vers, max_vers=None, nsmap=None): """Initialize a slave template. :param root: The root element of the template. :param min_vers: The minimum permissible version of the master template for this slave template to apply. :param max_vers: An optional upper bound for the master template version. :param nsmap: An optional namespace dictionary to be associated with the root element of the template. """ super(SlaveTemplate, self).__init__(root, nsmap) self.min_vers = min_vers self.max_vers = max_vers def __repr__(self): """Return string representation of the template.""" return ("<%s.%s object versions %s-%s at %#x>" % (self.__class__.__module__, self.__class__.__name__, self.min_vers, self.max_vers, id(self))) def apply(self, master): """Hook method for determining slave applicability. An overridable hook method used to determine if this template is applicable as a slave to a given master template. This version requires the master template to have a version number between min_vers and max_vers. :param master: The master template to test. """ # Does the master meet our minimum version requirement? if master.version < self.min_vers: return False # How about our maximum version requirement? if self.max_vers is not None and master.version > self.max_vers: return False return True class TemplateBuilder(object): """Template builder. This class exists to allow templates to be lazily built without having to build them each time they are needed. It must be subclassed, and the subclass must implement the construct() method, which must return a Template (or subclass) instance. The constructor will always return the template returned by construct(), or, if it has a copy() method, a copy of that template. """ _tmpl = None def __new__(cls, copy=True): """Construct and return a template. :param copy: If True (the default), a copy of the template will be constructed and returned, if possible. """ # Do we need to construct the template? if cls._tmpl is None: tmp = super(TemplateBuilder, cls).__new__(cls) # Construct the template cls._tmpl = tmp.construct() # If the template has a copy attribute, return the result of # calling it if copy and hasattr(cls._tmpl, 'copy'): return cls._tmpl.copy() # Return the template return cls._tmpl def construct(self): """Construct a template. Called to construct a template instance, which it must return. Only called once. """ raise NotImplementedError(_("subclasses must implement construct()!")) def make_links(parent, selector=None): """Attach an Atom <links> element to the parent.""" elem = SubTemplateElement(parent, '{%s}link' % XMLNS_ATOM, selector=selector) elem.set('rel') elem.set('type') elem.set('href') # Just for completeness... return elem def make_flat_dict(name, selector=None, subselector=None, ns=None): """Utility for simple XML templates. Simple templates are templates that traditionally used XMLDictSerializer with no metadata. Returns a template element where the top-level element has the given tag name, and where sub-elements have tag names derived from the object's keys and text derived from the object's values. This only works for flat dictionary objects, not dictionaries containing nested lists or dictionaries. """ # Set up the names we need... if ns is None: elemname = name tagname = Selector(0) else: elemname = '{%s}%s' % (ns, name) tagname = lambda obj, do_raise=False: '{%s}%s' % (ns, obj[0]) if selector is None: selector = name # Build the root element root = TemplateElement(elemname, selector=selector, subselector=subselector) # Build an element to represent all the keys and values elem = SubTemplateElement(root, tagname, selector=get_items) elem.text = 1 # Return the template return root
31.385093
78
0.594663
5a9246987c5fd1244b0fe91b4b2e14856bc33a4e
178
py
Python
allennlp/common/testing/__init__.py
annaproxy/udify-metalearning
55206a3aac0aba74a3615a36192d03b6467cfd6f
[ "MIT" ]
65
2020-11-13T05:36:29.000Z
2022-03-26T22:45:46.000Z
allennlp/common/testing/__init__.py
annaproxy/udify-metalearning
55206a3aac0aba74a3615a36192d03b6467cfd6f
[ "MIT" ]
11
2021-05-26T16:22:17.000Z
2022-03-02T04:03:18.000Z
allennlp/common/testing/__init__.py
annaproxy/udify-metalearning
55206a3aac0aba74a3615a36192d03b6467cfd6f
[ "MIT" ]
10
2019-12-06T11:32:37.000Z
2022-01-06T15:39:09.000Z
""" Utilities and helpers for writing tests. """ from allennlp.common.testing.test_case import AllenNlpTestCase from allennlp.common.testing.model_test_case import ModelTestCase
29.666667
65
0.837079
743d69e389a72fce9401caa823ba6554fa6e06af
4,724
py
Python
classify/model.py
gallupliu/QA
0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f
[ "Apache-2.0" ]
3
2017-09-06T07:10:05.000Z
2019-08-01T03:27:39.000Z
classify/model.py
gallupliu/QA
0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f
[ "Apache-2.0" ]
2
2018-01-25T14:46:40.000Z
2018-01-25T14:53:13.000Z
classify/model.py
gallupliu/QA
0e284dd17e27ea9384a1e4d7a4c206eb95e4bf7f
[ "Apache-2.0" ]
null
null
null
# encoding: utf-8 """ @author: gallupliu @contact: gallup-liu@hotmail.com @version: 1.0 @license: Apache Licence @file: model.py @time: 2018/3/5 22:26 """ import tensorflow as tf import numpy as np class TextCNN(object): """ A CNN for text classification. Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer. """ def __init__( self,inputs,labels,w2v_model, sequence_length, num_classes, filter_sizes, num_filters, l2_reg_lambda=0.0): # Placeholders for input, output and dropout self.embeddings = w2v_model self.input_x = inputs self.input_y = tf.cast(labels,tf.float32) # self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") # self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # Keeping track of l2 regularization loss (optional) l2_loss = tf.constant(0.0) # Embedding layer with tf.device('/cpu:0'), tf.name_scope("embedding"): self.W = tf.Variable(tf.to_float(self.embeddings), trainable=True, name="W") self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Create a convolution + maxpool layer for each filter size pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution Layer filter_shape = [filter_size, 50, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1),dtype=tf.float32, name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]),dtype=tf.float32, name="b") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) self.h_pool = tf.concat(pooled_outputs, 3) self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # Add dropout with tf.name_scope("dropout"): self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob) # Final (unnormalized) scores and predictions with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") l2_loss += tf.nn.l2_loss(b) self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # CalculateMean cross-entropy loss with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss # Accuracy with tf.name_scope("accuracy"): correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1)) self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") self.train_op = self.train_op(self.loss) def train_op(self,loss): """ :param loss: :return: """ self.global_step = tf.Variable(0, name="globle_step", trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars),5) # optimizer = tf.train.GradientDescentOptimizer(lstm.lr) self.lr = tf.train.exponential_decay(0.1,self.global_step,1000,0.95,staircase=True) optimizer = tf.train.GradientDescentOptimizer(self.lr) optimizer.apply_gradients(zip(grads, tvars)) train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=self.global_step) return train_op
41.078261
112
0.606689