hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
432c8a0798a550bc2be62356a720731fb992f36b
1,540
py
Python
third_party/models/fc.py
Buhua-Liu/understanding-curricula
fdeb3175140d4da92bee4c9a3a1c83539feb8b33
[ "Apache-2.0" ]
25
2021-03-18T02:30:15.000Z
2022-03-06T12:50:24.000Z
third_party/models/fc.py
Buhua-Liu/understanding-curricula
fdeb3175140d4da92bee4c9a3a1c83539feb8b33
[ "Apache-2.0" ]
2
2021-08-10T05:20:46.000Z
2021-08-10T05:50:43.000Z
third_party/models/fc.py
Buhua-Liu/understanding-curricula
fdeb3175140d4da92bee4c9a3a1c83539feb8b33
[ "Apache-2.0" ]
6
2021-06-16T19:04:39.000Z
2022-01-16T11:59:42.000Z
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch.nn as nn import torch.utils.model_zoo as model_zoo import math __all__ = [ 'fc1000', 'fc500', ] import torch.nn as nn import torch.nn.functional as F class FcNet(nn.Module): def __init__(self,hidden=1000): super(FcNet, self).__init__() self.hidden = hidden self.conv1 = nn.Conv2d(3, 20, 1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(20* 16 * 16, hidden) self.fc2 = nn.Linear(hidden, 10) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = x.view(-1, 20 * 16 * 16) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def fc500(): model = FcNet(hidden=500) return model def fc1000(): model = FcNet(hidden=1000) return model
29.056604
86
0.655844
c478d8282a0d39312de8e6bc2c6c4b5c89701757
8,080
py
Python
cinder/zonemanager/drivers/brocade/brcd_fc_san_lookup_service.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
571
2015-01-01T17:47:26.000Z
2022-03-23T07:46:36.000Z
cinder/zonemanager/drivers/brocade/brcd_fc_san_lookup_service.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
37
2015-01-22T23:27:04.000Z
2021-02-05T16:38:48.000Z
cinder/zonemanager/drivers/brocade/brcd_fc_san_lookup_service.py
lightsey/cinder
e03d68e42e57a63f8d0f3e177fb4287290612b24
[ "Apache-2.0" ]
841
2015-01-04T17:17:11.000Z
2022-03-31T12:06:51.000Z
# (c) Copyright 2019 Brocade, a Broadcom Company # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import importutils from cinder import exception from cinder.i18n import _ from cinder.zonemanager.drivers.brocade import brcd_fabric_opts as fabric_opts from cinder.zonemanager import fc_san_lookup_service as fc_service from cinder.zonemanager import utils as fczm_utils LOG = logging.getLogger(__name__) class BrcdFCSanLookupService(fc_service.FCSanLookupService): """The SAN lookup service that talks to Brocade switches. Version History: 1.0.0 - Initial version 1.1 - Add support to use config option for switch southbound protocol 1.2 - Fix open sessions issue """ VERSION = "1.2" def __init__(self, **kwargs): """Initializing the client.""" super(BrcdFCSanLookupService, self).__init__(**kwargs) self.configuration = kwargs.get('configuration', None) self.create_configuration() def create_configuration(self): """Configuration specific to SAN context values.""" config = self.configuration fabric_names = [x.strip() for x in config.fc_fabric_names.split(',')] LOG.debug('Fabric Names: %s', fabric_names) # There can be more than one SAN in the network and we need to # get credentials for each for SAN context lookup later. if len(fabric_names) > 0: self.fabric_configs = fabric_opts.load_fabric_configurations( fabric_names) def get_device_mapping_from_network(self, initiator_wwn_list, target_wwn_list): """Provides the initiator/target map for available SAN contexts. Looks up nameserver of each fc SAN configured to find logged in devices and returns a map of initiator and target port WWNs for each fabric. :param initiator_wwn_list: List of initiator port WWN :param target_wwn_list: List of target port WWN :returns: List -- device wwn map in following format .. code-block:: default { <San name>: { 'initiator_port_wwn_list': ('200000051e55a100', '200000051e55a121'..) 'target_port_wwn_list': ('100000051e55a100', '100000051e55a121'..) } } :raises Exception: when connection to fabric is failed """ device_map = {} formatted_target_list = [] formatted_initiator_list = [] fabric_map = {} fabric_names = self.configuration.fc_fabric_names fabrics = None if not fabric_names: raise exception.InvalidParameterValue( err=_("Missing Fibre Channel SAN configuration " "param - fc_fabric_names")) fabrics = [x.strip() for x in fabric_names.split(',')] LOG.debug("FC Fabric List: %s", fabrics) if fabrics: for t in target_wwn_list: formatted_target_list.append(fczm_utils.get_formatted_wwn(t)) for i in initiator_wwn_list: formatted_initiator_list.append(fczm_utils. get_formatted_wwn(i)) for fabric_name in fabrics: fabric_ip = self.fabric_configs[fabric_name].safe_get( 'fc_fabric_address') # Get name server data from fabric and find the targets # logged in nsinfo = '' conn = None try: LOG.debug("Getting name server data for " "fabric %s", fabric_ip) conn = self._get_southbound_client(fabric_name) nsinfo = conn.get_nameserver_info() except exception.FCSanLookupServiceException: with excutils.save_and_reraise_exception(): LOG.error("Failed collecting name server info from" " fabric %s", fabric_ip) except Exception as e: msg = _("Connection failed " "for %(fabric)s with error: %(err)s" ) % {'fabric': fabric_ip, 'err': e} LOG.error(msg) raise exception.FCSanLookupServiceException(message=msg) finally: if conn: conn.cleanup() LOG.debug("Lookup service:nsinfo-%s", nsinfo) LOG.debug("Lookup service:initiator list from " "caller-%s", formatted_initiator_list) LOG.debug("Lookup service:target list from " "caller-%s", formatted_target_list) visible_targets = [x for x in nsinfo if x in formatted_target_list] visible_initiators = [x for x in nsinfo if x in formatted_initiator_list] if visible_targets: LOG.debug("Filtered targets is: %s", visible_targets) # getting rid of the : before returning for idx, elem in enumerate(visible_targets): elem = str(elem).replace(':', '') visible_targets[idx] = elem else: LOG.debug("No targets are in the nameserver for SAN %s", fabric_name) if visible_initiators: # getting rid of the : before returning ~sk for idx, elem in enumerate(visible_initiators): elem = str(elem).replace(':', '') visible_initiators[idx] = elem else: LOG.debug("No initiators are in the nameserver " "for SAN %s", fabric_name) fabric_map = { 'initiator_port_wwn_list': visible_initiators, 'target_port_wwn_list': visible_targets } device_map[fabric_name] = fabric_map LOG.debug("Device map for SAN context: %s", device_map) return device_map def _get_southbound_client(self, fabric): """Implementation to get SouthBound Connector. South bound connector will be dynamically selected based on the configuration :param fabric: fabric information """ fabric_info = self.fabric_configs[fabric] fc_ip = fabric_info.safe_get('fc_fabric_address') sb_connector = fabric_info.safe_get('fc_southbound_protocol') if sb_connector is None: sb_connector = self.configuration.brcd_sb_connector try: conn_factory = importutils.import_object( "cinder.zonemanager.drivers.brocade." "brcd_fc_zone_connector_factory." "BrcdFCZoneFactory") client = conn_factory.get_connector(fabric_info, sb_connector.upper()) except Exception: msg = _("Failed to create south bound connector for %s.") % fc_ip LOG.exception(msg) raise exception.FCZoneDriverException(msg) return client
41.22449
79
0.573639
fcf67c03af69cb4822399184aba215e2ddc4c5d6
489
py
Python
src/tipsextension/azext_tipsextension/vendored_sdks/oscp/dataplane/aio/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
null
null
null
src/tipsextension/azext_tipsextension/vendored_sdks/oscp/dataplane/aio/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
null
null
null
src/tipsextension/azext_tipsextension/vendored_sdks/oscp/dataplane/aio/__init__.py
Mannan2812/azure-cli-extensions
e2b34efe23795f6db9c59100534a40f0813c3d95
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.2.1, generator: {generator}) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._open_supply_chain_platform_service_api import OpenSupplyChainPlatformServiceAPI __all__ = ['OpenSupplyChainPlatformServiceAPI']
54.333333
99
0.560327
0a59c7211d2952d9a6f2fdc0cf6e236c7e5e65f1
6,151
py
Python
test/unit/test_graph_selection.py
pieter-lazzaro/dbt
b6d1e15a9f677a7569eec47f19c8baebb6ed7818
[ "Apache-2.0" ]
null
null
null
test/unit/test_graph_selection.py
pieter-lazzaro/dbt
b6d1e15a9f677a7569eec47f19c8baebb6ed7818
[ "Apache-2.0" ]
1
2019-02-14T20:10:46.000Z
2019-02-19T13:06:38.000Z
test/unit/test_graph_selection.py
pieter-lazzaro/dbt
b6d1e15a9f677a7569eec47f19c8baebb6ed7818
[ "Apache-2.0" ]
null
null
null
import unittest import mock import os import string import dbt.graph.selector as graph_selector import networkx as nx class GraphSelectionTest(unittest.TestCase): def setUp(self): integer_graph = nx.balanced_tree(2, 2, nx.DiGraph()) package_mapping = { i: 'm.' + ('X' if i % 2 == 0 else 'Y') + '.' + letter for (i, letter) in enumerate(string.ascii_lowercase) } # Edges: [(X.a, Y.b), (X.a, X.c), (Y.b, Y.d), (Y.b, X.e), (X.c, Y.f), (X.c, X.g)] self.package_graph = nx.relabel_nodes(integer_graph, package_mapping) nodes = { node: mock.MagicMock(fqn=node.split('.')[1:], tags=[]) for node in self.package_graph } nodes['m.X.a'].tags = ['abc'] nodes['m.Y.b'].tags = ['abc'] nodes['m.X.c'].tags = ['abc'] nodes['m.Y.d'].tags = [] nodes['m.X.e'].tags = ['efg'] nodes['m.Y.f'].tags = ['efg'] nodes['m.X.g'].tags = ['efg'] self.manifest = mock.MagicMock(nodes=nodes) self.linker = mock.MagicMock(graph=self.package_graph) self.selector = graph_selector.NodeSelector(self.linker, self.manifest) def run_specs_and_assert(self, graph, include, exclude, expected): selected = self.selector.select_nodes( graph, include, exclude ) self.assertEquals(selected, expected) def test__single_node_selection_in_package(self): self.run_specs_and_assert( self.package_graph, ['X.a'], [], set(['m.X.a']) ) def test__select_by_tag(self): self.run_specs_and_assert( self.package_graph, ['tag:abc'], [], set(['m.X.a', 'm.Y.b', 'm.X.c']) ) def test__exclude_by_tag(self): self.run_specs_and_assert( self.package_graph, ['*'], ['tag:abc'], set(['m.Y.d', 'm.X.e', 'm.Y.f', 'm.X.g']) ) def test__select_by_tag_and_model_name(self): self.run_specs_and_assert( self.package_graph, ['tag:abc', 'a'], [], set(['m.X.a', 'm.Y.b', 'm.X.c']) ) self.run_specs_and_assert( self.package_graph, ['tag:abc', 'd'], [], set(['m.X.a', 'm.Y.b', 'm.X.c', 'm.Y.d']) ) def test__multiple_node_selection_in_package(self): self.run_specs_and_assert( self.package_graph, ['X.a', 'b'], [], set(['m.X.a', 'm.Y.b']) ) def test__select_children_except_in_package(self): self.run_specs_and_assert( self.package_graph, ['X.a+'], ['b'], set(['m.X.a','m.X.c', 'm.Y.d','m.X.e','m.Y.f','m.X.g'])) def test__select_children_except_tag(self): self.run_specs_and_assert( self.package_graph, ['X.a+'], ['tag:efg'], set(['m.X.a','m.Y.b','m.X.c', 'm.Y.d'])) def parse_spec_and_assert(self, spec, parents, children, filter_type, filter_value): parsed = graph_selector.parse_spec(spec) self.assertEquals( parsed, { "select_parents": parents, "select_children": children, "filter": { 'type': filter_type, 'value': filter_value }, "raw": spec } ) def test__spec_parsing(self): self.parse_spec_and_assert('a', False, False, 'fqn', 'a') self.parse_spec_and_assert('+a', True, False, 'fqn', 'a') self.parse_spec_and_assert('a+', False, True, 'fqn', 'a') self.parse_spec_and_assert('+a+', True, True, 'fqn', 'a') self.parse_spec_and_assert('a.b', False, False, 'fqn', 'a.b') self.parse_spec_and_assert('+a.b', True, False, 'fqn', 'a.b') self.parse_spec_and_assert('a.b+', False, True, 'fqn', 'a.b') self.parse_spec_and_assert('+a.b+', True, True, 'fqn', 'a.b') self.parse_spec_and_assert('a.b.*', False, False, 'fqn', 'a.b.*') self.parse_spec_and_assert('+a.b.*', True, False, 'fqn', 'a.b.*') self.parse_spec_and_assert('a.b.*+', False, True, 'fqn', 'a.b.*') self.parse_spec_and_assert('+a.b.*+', True, True, 'fqn', 'a.b.*') self.parse_spec_and_assert('tag:a', False, False, 'tag', 'a') self.parse_spec_and_assert('+tag:a', True, False, 'tag', 'a') self.parse_spec_and_assert('tag:a+', False, True, 'tag', 'a') self.parse_spec_and_assert('+tag:a+', True, True, 'tag', 'a') def test__package_name_getter(self): found = graph_selector.get_package_names(self.package_graph) expected = set(['X', 'Y']) self.assertEquals(found, expected) def assert_is_selected_node(self, node, spec, should_work): self.assertEqual( graph_selector.is_selected_node(node, spec), should_work ) def test__is_selected_node(self): self.assert_is_selected_node(('X', 'a'), ('a'), True) self.assert_is_selected_node(('X', 'a'), ('X', 'a'), True) self.assert_is_selected_node(('X', 'a'), ('*'), True) self.assert_is_selected_node(('X', 'a'), ('X', '*'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', '*'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', 'a', '*'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', 'a', 'b', '*'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', 'a', 'b', 'c'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', 'a'), True) self.assert_is_selected_node(('X', 'a', 'b', 'c'), ('X', 'a', 'b'), True) self.assert_is_selected_node(('X', 'a'), ('b'), False) self.assert_is_selected_node(('X', 'a'), ('X', 'b'), False) self.assert_is_selected_node(('X', 'a'), ('X', 'a', 'b'), False) self.assert_is_selected_node(('X', 'a'), ('Y', '*'), False)
34.751412
89
0.521866
70b3c17d6589ee73194694658836b1a579066375
684
py
Python
flask_mongoengine/wtf/models.py
Ijwu/flask-mongoengine
66ad6a2d670c881a146bd25b9114e5f6530f57a9
[ "BSD-3-Clause" ]
1
2020-07-29T08:42:21.000Z
2020-07-29T08:42:21.000Z
flask_mongoengine/wtf/models.py
Ijwu/flask-mongoengine
66ad6a2d670c881a146bd25b9114e5f6530f57a9
[ "BSD-3-Clause" ]
null
null
null
flask_mongoengine/wtf/models.py
Ijwu/flask-mongoengine
66ad6a2d670c881a146bd25b9114e5f6530f57a9
[ "BSD-3-Clause" ]
null
null
null
from flask_wtf import FlaskForm class ModelForm(FlaskForm): """A WTForms mongoengine model form""" def __init__(self, formdata=None, **kwargs): self.instance = kwargs.pop("instance", None) or kwargs.get("obj") if self.instance and not formdata: kwargs["obj"] = self.instance self.formdata = formdata super(ModelForm, self).__init__(formdata, **kwargs) def save(self, commit=True, **kwargs): if self.instance: self.populate_obj(self.instance) else: self.instance = self.model_class(**self.data) if commit: self.instance.save(**kwargs) return self.instance
29.73913
73
0.619883
cb80dc9d8e5b1173363dbe0c103fb499b12d2b4a
688
py
Python
clara/__init__.py
csettles/Clara
146f25dc4d435a27edea0f07fa4e8ebde9da30b6
[ "MIT" ]
null
null
null
clara/__init__.py
csettles/Clara
146f25dc4d435a27edea0f07fa4e8ebde9da30b6
[ "MIT" ]
null
null
null
clara/__init__.py
csettles/Clara
146f25dc4d435a27edea0f07fa4e8ebde9da30b6
[ "MIT" ]
null
null
null
from .bot import Clara from .utils import settings from .utils.logger import logger clara = Clara(command_prefix="!", description=settings.DESCRIPTION) @clara.event async def on_ready(): logger.info('Logged in as {} with id {}'.format(clara.user.name, clara.user.id)) @clara.event async def on_resume(): logger.info('Resuming the bot after failure to connect...') @clara.event async def on_message(message): if message.author.bot: return await clara.process_commands(message) # custom checker for the commands.ext module def is_owner(): def predicate(ctx): return ctx.message.author.id == "172187265433337857" return commands.check(predicate)
26.461538
84
0.726744
8b34557d33fc19f74717d67ff1960d363c21fc1b
27,148
py
Python
tests/test_for_support/test_for_consistency.py
matthiaskoenig/memote
7c14cd304523dda83eaf4835ee007243e8673f85
[ "Apache-2.0" ]
null
null
null
tests/test_for_support/test_for_consistency.py
matthiaskoenig/memote
7c14cd304523dda83eaf4835ee007243e8673f85
[ "Apache-2.0" ]
null
null
null
tests/test_for_support/test_for_consistency.py
matthiaskoenig/memote
7c14cd304523dda83eaf4835ee007243e8673f85
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2017 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Ensure the expected functioning of ``memote.support.consistency``.""" from __future__ import absolute_import import cobra import pytest from cobra.exceptions import Infeasible import memote.support.consistency as consistency from memote.utils import register_with import memote.support.consistency_helpers as con_helpers MODEL_REGISTRY = dict() @register_with(MODEL_REGISTRY) def figure_1(base): # Example in figure 1 of Gevorgyan et al. (2008) Bioinformatics # Metabolites met_a = cobra.Metabolite("A") met_a_prime = cobra.Metabolite("A'") met_b = cobra.Metabolite("B") met_b_prime = cobra.Metabolite("B'") met_c = cobra.Metabolite("C") met_c_prime = cobra.Metabolite("C'") # Reactions rxn_1 = cobra.Reaction("R1") rxn_1.add_metabolites({met_a: -1, met_a_prime: -1, met_b: 1}) rxn_2 = cobra.Reaction("R2") rxn_2.add_metabolites({met_b: -1, met_b_prime: -1, met_c: 1}) rxn_3 = cobra.Reaction("R3") rxn_3.add_metabolites({met_c: -1, met_c_prime: -2, met_a: 1}) base.add_reactions([rxn_1, rxn_2, rxn_3]) return base @register_with(MODEL_REGISTRY) def equation_8(base): # Example in equation 8 of Gevorgyan et al. (2008) Bioinformatics # Metabolites met_a = cobra.Metabolite("A") met_b = cobra.Metabolite("B") met_c = cobra.Metabolite("C") # Reactions rxn_1 = cobra.Reaction("R1") rxn_1.add_metabolites({met_a: -1, met_b: 1, met_c: 1}) rxn_2 = cobra.Reaction("R2") rxn_2.add_metabolites({met_a: -1, met_b: 1}) rxn_3 = cobra.Reaction("R3") rxn_3.add_metabolites({met_a: -1, met_c: 1}) base.add_reactions([rxn_1, rxn_2, rxn_3]) return base @register_with(MODEL_REGISTRY) def figure_2(base): # Example in figure 2 of Gevorgyan et al. (2008) Bioinformatics # Metabolites met_a = cobra.Metabolite("A") met_b = cobra.Metabolite("B") met_x = cobra.Metabolite("X") met_p = cobra.Metabolite("P") met_q = cobra.Metabolite("Q") # Reactions rxn_1 = cobra.Reaction("R1") rxn_1.add_metabolites({met_a: -1, met_b: 1}) rxn_2 = cobra.Reaction("R2") rxn_2.add_metabolites({met_a: -1, met_b: 1, met_x: 1}) rxn_3 = cobra.Reaction("R3") rxn_3.add_metabolites({met_p: -1, met_q: 1}) rxn_4 = cobra.Reaction("R4") rxn_4.add_metabolites({met_p: -1, met_q: 1, met_x: 1}) base.add_reactions([rxn_1, rxn_2, rxn_3, rxn_4]) return base @register_with(MODEL_REGISTRY) def blocked_reactions(base): met_a = cobra.Metabolite("C", compartment="e") met_b = cobra.Metabolite("A", compartment="e") met_c = cobra.Metabolite("B", compartment="e") met_d = cobra.Metabolite("D", compartment="e") rxn1 = cobra.Reaction("Gen") rxn1.add_metabolites({met_d: -1, met_b: -1, met_a: 1, met_c: 1}) rxn2 = cobra.Reaction("Recap", lower_bound=-1000, upper_bound=1000) rxn2.add_metabolites({met_c: -1, met_b: 1}) rxn3 = cobra.Reaction("EX_C_e", lower_bound=-1000, upper_bound=1000) rxn3.add_metabolites({met_a: -1}) rxn4 = cobra.Reaction("EX_A_e", lower_bound=-1000, upper_bound=1000) rxn4.add_metabolites({met_b: -1}) rxn5 = cobra.Reaction("EX_B_e", lower_bound=-1000, upper_bound=1000) rxn5.add_metabolites({met_c: -1}) base.add_reactions([rxn1, rxn2, rxn3, rxn4, rxn5]) return base @register_with(MODEL_REGISTRY) def produces_atp(base): """Returns a simple model with an EGC producing atp_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "atp_c + h2o_c + a <--> pi_c + adp_c + c + h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.adp_c, type="sink") base.add_boundary(base.metabolites.atp_c, type="sink") base.add_boundary(base.metabolites.pi_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def infeasible(base): """Returns an infeasible model with an EGC producing atp_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') rd = cobra.Reaction('MAINTENANCE') base.add_reactions([ra, rb, rc, rd]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "atp_c + h2o_c + a <--> pi_c + adp_c + c + h_c" rd.reaction = "h2o_c + b --> c + h_c + met_c" rd.bounds = 10, 1000 base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.adp_c, type="sink") base.add_boundary(base.metabolites.atp_c, type="sink") base.add_boundary(base.metabolites.pi_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def maintenance_present(base): """Returns a model with an ATPM reaction""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') rd = cobra.Reaction('ATPM') base.add_reactions([ra, rb, rc, rd]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "atp_c + h2o_c + a <--> pi_c + adp_c + c + h_c" rd.reaction = "atp_c + h2o_c + a --> pi_c + adp_c + c + h_c" rd.bounds = 7.9, 1000 base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.adp_c, type="sink") base.add_boundary(base.metabolites.atp_c, type="sink") base.add_boundary(base.metabolites.pi_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def missing_energy_partner(base): """Returns a broken model with a missing energy partner to atp""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "atp_c + a <--> c " return base @register_with(MODEL_REGISTRY) def produces_nadh(base): """Returns a simple model with an EGC producing nadh_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "nadh_c + a <--> nad_c + c + h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.nad_c, type="sink") base.add_boundary(base.metabolites.nadh_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def produces_fadh2(base): """Returns a simple model with an EGC producing fadh2_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "fadh2_c + a <--> fad_c + c + 2 h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.fad_c, type="sink") base.add_boundary(base.metabolites.fadh2_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def produces_accoa(base): """Returns a simple model with an EGC producing accoa_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "accoa_c + h2o_c + a <--> coa_c + c + ac_c + h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.ac_c, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.coa_c, type="sink") base.add_boundary(base.metabolites.accoa_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def produces_glu(base): """Returns a simple model with an EGC producing glu__L_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "glu__L_c + h2o_c + a <--> c + akg_c + nh3_c + 2 h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.nh3_c, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.akg_c, type="sink") base.add_boundary(base.metabolites.glu__L_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base # TODO: Removed until detection of organism type is implemented. # @register_with(MODEL_REGISTRY) # def produces_h(base): # """Returns a simple model with an EGC producing h_p""" # ra = cobra.Reaction('A') # rb = cobra.Reaction('B') # rc = cobra.Reaction('C') # base.add_reactions([ra, rb, rc]) # ra.reaction = "a <--> b" # rb.reaction = "b <--> c" # rc.reaction = "h_p + a <--> c + h_c" # base.add_boundary(base.metabolites.a, type="sink") # base.add_boundary(base.metabolites.h_p, type="sink") # base.add_boundary(base.metabolites.h_c, type="sink") # base.add_boundary(base.metabolites.c, type="demand") # for met in base.metabolites: # met.compartment = 'c' # return base @register_with(MODEL_REGISTRY) def no_atp(base): """Returns a simple model without an EGC producing atp_c""" ra = cobra.Reaction('A') rb = cobra.Reaction('B') rc = cobra.Reaction('C') base.add_reactions([ra, rb, rc]) ra.reaction = "a <--> b" rb.reaction = "b <--> c" rc.reaction = "atp_c + h2o_c + a --> pi_c + adp_c + c + h_c" base.add_boundary(base.metabolites.a, type="sink") base.add_boundary(base.metabolites.h2o_c, type="sink") base.add_boundary(base.metabolites.h_c, type="sink") base.add_boundary(base.metabolites.adp_c, type="sink") base.add_boundary(base.metabolites.atp_c, type="sink") base.add_boundary(base.metabolites.pi_c, type="sink") base.add_boundary(base.metabolites.c, type="demand") for met in base.metabolites: met.compartment = 'c' return base @register_with(MODEL_REGISTRY) def all_balanced(base): met_a = cobra.Metabolite("A", formula='CHOPNS', charge=1) met_b = cobra.Metabolite("B", formula='C2H2O2P2N2S2', charge=2) rxn1 = cobra.Reaction("RA1") rxn1.add_metabolites({met_a: -2, met_b: 1}) base.add_reactions([rxn1]) return base @register_with(MODEL_REGISTRY) def mass_unbalanced(base): met_a = cobra.Metabolite("A", formula='CHOPNS', charge=2) met_b = cobra.Metabolite("B", formula='C2H2O2P2N2S2', charge=2) rxn1 = cobra.Reaction("RA1") rxn1.add_metabolites({met_a: -1, met_b: 1}) base.add_reactions([rxn1]) return base @register_with(MODEL_REGISTRY) def charge_unbalanced(base): met_a = cobra.Metabolite("A", formula='CHOPNS', charge=1) met_b = cobra.Metabolite("B", formula='C2H2O2P2N2S2', charge=1) rxn1 = cobra.Reaction("RA1") rxn1.add_metabolites({met_a: -2, met_b: 1}) base.add_reactions([rxn1]) return base @register_with(MODEL_REGISTRY) def met_no_formula(base): met_a = cobra.Metabolite("A", formula=None, charge=1) met_b = cobra.Metabolite("B", formula='C2H2O2P2N2S2', charge=2) rxn1 = cobra.Reaction("RA1") rxn1.add_metabolites({met_a: -2, met_b: 1}) base.add_reactions([rxn1]) return base @register_with(MODEL_REGISTRY) def met_no_charge(base): met_a = cobra.Metabolite("A", formula='CHOPNS', charge=1) met_b = cobra.Metabolite("B", formula='C2H2O2P2N2S2') rxn1 = cobra.Reaction("RA1") rxn1.add_metabolites({met_a: -2, met_b: 1}) base.add_reactions([rxn1]) return base @register_with(MODEL_REGISTRY) def loopy_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABC"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "v1", "v2", "v3"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v3.add_metabolites({"A": -1, "C": 1}) base.reactions.v1.bounds = -1000, 1000 base.reactions.v2.bounds = -1000, 1000 base.reactions.v3.bounds = -1000, 1000 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def loopless_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABC"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "v1", "v2"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v1.bounds = -1000, 1000 base.reactions.v2.bounds = -1000, 1000 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def constrained_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABC"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "v1", "v2", "v3"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v3.add_metabolites({"A": -1, "C": 1}) base.reactions.v1.bounds = -1000, 1000 base.reactions.v2.bounds = -1000, 1000 base.reactions.v3.bounds = 1, 1 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def infeasible_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABC"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "v1", "v2", "v3"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v3.add_metabolites({"A": -1, "C": 1}) # Forcing a lower bound on a 'metabolic' reaction that is higher than the # uptake rate will make a model infeasible. base.reactions.v1.bounds = 2, 1000 base.reactions.v2.bounds = -1000, 1000 base.reactions.v3.bounds = 1, 1 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def producing_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABCD"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "VD", "v1", "v2", "v3", "v4"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.VD.add_metabolites({"D": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v3.add_metabolites({"A": -1, "C": 1}) base.reactions.v4.add_metabolites({"A": -1, "C": 1, "D": 1}) base.reactions.v1.bounds = -1000, 1000 base.reactions.v2.bounds = -1000, 1000 base.reactions.v3.bounds = -1000, 1000 base.reactions.v4.bounds = 0, 1 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def consuming_toy_model(base): base.add_metabolites([cobra.Metabolite(i) for i in "ABCD"]) base.add_reactions([cobra.Reaction(i) for i in ["VA", "VB", "VD", "v1", "v2", "v3", "v4"]] ) base.reactions.VA.add_metabolites({"A": 1}) base.reactions.VB.add_metabolites({"C": -1}) base.reactions.VD.add_metabolites({"D": -1}) base.reactions.v1.add_metabolites({"A": -1, "B": 1}) base.reactions.v2.add_metabolites({"B": -1, "C": 1}) base.reactions.v3.add_metabolites({"A": -1, "C": 1}) base.reactions.v4.add_metabolites({"A": -1, "C": 1, "D": -1}) base.reactions.v1.bounds = -1000, 1000 base.reactions.v2.bounds = -1000, 1000 base.reactions.v3.bounds = -1000, 1000 base.reactions.v4.bounds = -1, 0 base.objective = 'VB' base.reactions.VB.bounds = 0, 1 return base @register_with(MODEL_REGISTRY) def gap_model(base): a_c = cobra.Metabolite("a_c", compartment="c") a_e = cobra.Metabolite("a_e", compartment="e") b_c = cobra.Metabolite("b_c", compartment="c") c_c = cobra.Metabolite("c_c", compartment="c") base.add_metabolites([a_e]) rxn1 = cobra.Reaction("R1") rxn1.add_metabolites({a_c: -1, b_c: 1}) rxn2 = cobra.Reaction("R2") rxn2.add_metabolites({a_c: -1, c_c: 1}) base.add_reactions([rxn1, rxn2]) return base @register_with(MODEL_REGISTRY) def gap_model_2(base): a_c = cobra.Metabolite("a_c", compartment="c") b_c = cobra.Metabolite("b_c", compartment="c") c_c = cobra.Metabolite("c_c", compartment="c") d_c = cobra.Metabolite("d_c", compartment="c") base.add_reactions([cobra.Reaction(i) for i in ["EX_A", "A2B", "C2D", "EX_D"]]) base.reactions.EX_A.add_metabolites({a_c: -1}) base.reactions.EX_D.add_metabolites({d_c: -1}) base.reactions.A2B.add_metabolites({a_c: -1, b_c: 1}) base.reactions.C2D.add_metabolites({c_c: -1, d_c: 1}) base.reactions.EX_A.bounds = -1000, 1000 base.reactions.A2B.bounds = 0, 1000 base.reactions.C2D.bounds = 0, 1000 base.reactions.EX_D.bounds = -1000, 1000 return base @register_with(MODEL_REGISTRY) def gapfilled_model(base): a_c = cobra.Metabolite("a_c", compartment="c") a_e = cobra.Metabolite("a_e", compartment="e") b_c = cobra.Metabolite("b_c", compartment="c") c_c = cobra.Metabolite("c_c", compartment="c") rxn1 = cobra.Reaction("R1") rxn1.add_metabolites({a_c: -1, b_c: 1}) rxn2 = cobra.Reaction("R2") rxn2.add_metabolites({a_c: -1, c_c: 1}) rxn3 = cobra.Reaction("R3tec") rxn3.add_metabolites({a_e: -1, a_c: 1}) rxn4 = cobra.Reaction("DM_b_c") rxn4.add_metabolites({b_c: -1}) rxn5 = cobra.Reaction("DM_c_c") rxn5.add_metabolites({c_c: -1}) rxn6 = cobra.Reaction("EX_a_e") rxn6.add_metabolites({a_e: 1}) base.add_reactions([rxn1, rxn2, rxn3, rxn4, rxn5, rxn6]) return base @register_with(MODEL_REGISTRY) def reversible_gap(base): a_c = cobra.Metabolite("a_c", compartment="c") b_c = cobra.Metabolite("b_c", compartment="c") c_c = cobra.Metabolite("c_c", compartment="c") rxn1 = cobra.Reaction("R1", lower_bound=-1000) rxn1.add_metabolites({a_c: -1, b_c: 1}) rxn2 = cobra.Reaction("R2") rxn2.add_metabolites({a_c: -1, c_c: 1}) base.add_reactions([rxn1, rxn2]) return base @pytest.mark.parametrize("model, consistent", [ ("textbook", True), ("figure_1", False), ("equation_8", False), ("figure_2", False), ], indirect=["model"]) def test_check_stoichiometric_consistency(model, consistent): assert consistency.check_stoichiometric_consistency(model) is consistent @pytest.mark.parametrize("model, inconsistent", [ ("textbook", []), ("figure_1", ["A'", "B'", "C'"]), ("equation_8", ["A", "B", "C"]), ("figure_2", ["X"]), ], indirect=["model"]) def test_find_unconserved_metabolites(model, inconsistent): unconserved_mets = consistency.find_unconserved_metabolites(model) assert set([met.id for met in unconserved_mets]) == set(inconsistent) @pytest.mark.xfail(reason="Bug in current implementation.") @pytest.mark.parametrize("model, inconsistent", [ ("textbook", []), ("figure_1", [("A'",), ("B'",), ("C'",)]), ("equation_8", [("A",), ("B",), ("C",)]), ("figure_2", [("X",)]), ], indirect=["model"]) def test_find_inconsistent_min_stoichiometry(model, inconsistent): unconserved_sets = consistency.find_inconsistent_min_stoichiometry(model) for unconserved in unconserved_sets: assert tuple(met.id for met in unconserved) in set(inconsistent) @pytest.mark.parametrize("model, metabolite_id", [ # test control flow statements ("produces_atp", 'MNXM3'), ("produces_accoa", 'MNXM21'), ("produces_fadh2", "MNXM38"), ("produces_glu", "MNXM89557"), ("produces_nadh", "MNXM10"), ("maintenance_present", "MNXM3"), ], indirect=["model"]) def test_detect_energy_generating_cycles_control_flow(model, metabolite_id): """Expect that energy-generating cycles don't exist for metabolite ID.""" cycle = consistency.detect_energy_generating_cycles(model, metabolite_id) assert set(cycle) == {'A', 'B', 'C'} @pytest.mark.parametrize("model, metabolite_id, output", [ # test for possible exceptions ("no_atp", "MNXM3", []), ("infeasible", "MNXM3", {'A', 'B', 'C'}) ], indirect=["model"]) def test_detect_energy_generating_cycles_exceptions(model, metabolite_id, output): """Expect that energy-generating cycles don't exist for metabolite ID.""" result = consistency.detect_energy_generating_cycles(model, metabolite_id) assert set(result) == set(output) @pytest.mark.parametrize("model, num", [ ("all_balanced", 0), ("mass_unbalanced", 0), ("charge_unbalanced", 1), ("met_no_charge", 1), ("met_no_formula", 0) ], indirect=["model"]) def test_find_charge_unbalanced_reactions(model, num): """Expect all reactions to be charge balanced.""" internal_rxns = con_helpers.get_internals(model) reactions = consistency.find_charge_unbalanced_reactions(internal_rxns) assert len(reactions) == num @pytest.mark.parametrize("model, num", [ ("all_balanced", 0), ("mass_unbalanced", 1), ("charge_unbalanced", 0), ("met_no_charge", 0), ("met_no_formula", 1) ], indirect=["model"]) def test_find_mass_unbalanced_reactions(model, num): """Expect all reactions to be mass balanced.""" internal_rxns = con_helpers.get_internals(model) reactions = consistency.find_mass_unbalanced_reactions(internal_rxns) assert len(reactions) == num @pytest.mark.parametrize("model, num", [ ("loopy_toy_model", 3), ("loopless_toy_model", 0), ("infeasible_toy_model", 0), ], indirect=["model"]) def test_find_stoichiometrically_balanced_cycles(model, num): """Expect no stoichiometrically balanced loops to be present.""" rxns_in_loops = consistency.find_stoichiometrically_balanced_cycles( model ) assert len(rxns_in_loops) == num @pytest.mark.parametrize("model, num", [ ("gap_model", 1), ("gapfilled_model", 0), ("reversible_gap", 0) ], indirect=["model"]) def test_find_orphans(model, num): """Expect the appropriate amount of orphans to be found.""" orphans = consistency.find_orphans(model) assert len(orphans) == num @pytest.mark.parametrize("model, num", [ ("gap_model", 2), ("gapfilled_model", 0), ("reversible_gap", 1) ], indirect=["model"]) def test_find_deadends(model, num): """Expect the appropriate amount of deadends to be found.""" deadends = consistency.find_deadends(model) assert len(deadends) == num @pytest.mark.parametrize("model, num", [ ("gap_model", 1), ("gapfilled_model", 0), ], indirect=["model"]) def test_find_disconnected(model, num): """Expect the appropriate amount of disconnected to be found.""" disconnected = consistency.find_disconnected(model) assert len(disconnected) == num @pytest.mark.parametrize("model, num", [ ("gap_model", 4), ("gap_model_2", 1), ("gapfilled_model", 0), ], indirect=['model']) def test_find_metabolites_not_produced_with_open_bounds(model, num): """Expect the appropriate amount of nonproduced metabolites to be found.""" badmets = consistency.find_metabolites_not_produced_with_open_bounds(model) assert len(badmets) == num @pytest.mark.parametrize("model, num", [ ("gap_model", 4), ("gap_model_2", 1), ("gapfilled_model", 0), ], indirect=['model']) def test_find_metabolites_not_consumed_with_open_bounds(model, num): """Expect the appropriate amount of nonconsumed metabolites to be found.""" badmets = consistency.find_metabolites_not_consumed_with_open_bounds(model) assert len(badmets) == num @pytest.mark.parametrize("model, fraction", [ ("blocked_reactions", 1.0), ("constrained_toy_model", 0.0), ("loopy_toy_model", 0.6) ], indirect=["model"]) def test_find_reactions_with_unbounded_flux_default_condition(model, fraction): """Expect the number of unbounded and blocked metabolites to be correct.""" _, unb_fraction, _ = \ consistency.find_reactions_with_unbounded_flux_default_condition(model) assert unb_fraction == fraction @pytest.mark.parametrize("model", [ pytest.param("missing_energy_partner", marks=pytest.mark.raises(exception=ZeroDivisionError)), pytest.param("infeasible", marks=pytest.mark.raises(exception=Infeasible)) ], indirect=["model"]) def test_find_reactions_with_unbounded_flux_default_condition_errors(model): """Expect the number of unbounded and blocked metabolites to be correct.""" consistency.find_reactions_with_unbounded_flux_default_condition(model)
36.636977
79
0.662627
d5e21832afab34174f56382429792e5c24c1b229
11,246
py
Python
tensorflow/python/framework/python_api_info_test.py
ashutom/tensorflow-upstream
c16069c19de9e286dd664abb78d0ea421e9f32d4
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/framework/python_api_info_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/framework/python_api_info_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework.python_api_info.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python.eager import context from tensorflow.python.framework import _pywrap_python_api_info from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest # pylint: disable=g-long-lambda # Helper function to make expected output in examples more compact: def Const(x): return constant_op.constant(x) @test_util.run_all_in_graph_and_eager_modes class PythonAPIInfoTest(test_util.TensorFlowTestCase, parameterized.TestCase): def setUp(self): context.ensure_initialized() super(PythonAPIInfoTest, self).setUp() def makeConverterForGenOp(self, op_name): """Returns a PythonAPIInfo for the given gen_op.""" api_info = _pywrap_python_api_info.PythonAPIInfo(op_name) api_info.InitializeFromRegisteredOp(op_name) return api_info def makeConverterFromParamSpecs(self, api_name, param_names, input_specs, attr_specs, defaults=()): """Returns a PythonAPIInfo built from the given specs.""" api_info = _pywrap_python_api_info.PythonAPIInfo(api_name) api_info.InitializeFromParamSpecs(input_specs, attr_specs, param_names, defaults) return api_info # This test initializes a PythonAPIInfo from a registered # op, and then uses DebugInfo() to check that the internal state is # correct. @parameterized.named_parameters([ # An op whose inputs have fixed dtypes. ("RegexFullMatch", "RegexFullMatch", "DebugInfo for RegexFullMatch:\n" " param_names=[input, pattern, name]\n" " defaults_tuple=('RegexFullMatch',)\n" " inputs=[\n" " {index=0, name=input, is_list=0},\n" " {index=1, name=pattern, is_list=0},]\n" " inputs_with_fixed_dtype=[\n" " {index=0, dtype=DT_STRING, is_list=0},\n" " {index=1, dtype=DT_STRING, is_list=0},]\n"), # An op whose input has a variable dtype. ("Abs", "Abs", "DebugInfo for Abs:\n" " param_names=[x, name]\n" " defaults_tuple=('Abs',)\n" " attributes=[\n" " {inferred_index=0, name=T, type=type},]\n" " inputs=[\n" " {index=0, name=x, is_list=0},]\n" " inputs_with_type_attr=[\n" " {type_attr=T, tensor_params=[0], ok_dtypes=[DT_BFLOAT16, DT_HALF, " "DT_FLOAT, DT_DOUBLE, DT_INT8, DT_INT16, DT_INT32, DT_INT64]},]\n" " inferred_type_attrs=[T]\n"), # An op with two inputs that have the same (variable) dtype. ("AddV2", "AddV2", "DebugInfo for AddV2:\n" " param_names=[x, y, name]\n" " defaults_tuple=('AddV2',)\n" " attributes=[\n" " {inferred_index=0, name=T, type=type},]\n" " inputs=[\n" " {index=0, name=x, is_list=0},\n" " {index=1, name=y, is_list=0},]\n" " inputs_with_type_attr=[\n" " {type_attr=T, tensor_params=[0, 1], ok_dtypes=[DT_BFLOAT16, " "DT_HALF, DT_FLOAT, DT_DOUBLE, DT_UINT8, DT_UINT16, DT_UINT32, " "DT_UINT64, DT_INT8, DT_INT16, " "DT_INT32, DT_INT64, DT_COMPLEX64, DT_COMPLEX128]},]\n" " inferred_type_attrs=[T]\n"), # An op with an int attribute. ("GatherV2", "GatherV2", "DebugInfo for GatherV2:\n" " param_names=[params, indices, axis, batch_dims, name]\n" " defaults_tuple=(0, 'GatherV2')\n" " attributes=[\n" " {index=3, name=batch_dims, type=int},\n" " {inferred_index=0, name=Tparams, type=type},\n" " {inferred_index=1, name=Tindices, type=type},\n" " {inferred_index=2, name=Taxis, type=type},]\n" " inputs=[\n" " {index=0, name=params, is_list=0},\n" " {index=1, name=indices, is_list=0},\n" " {index=2, name=axis, is_list=0},]\n" " inputs_with_type_attr=[\n" " {type_attr=Tparams, tensor_params=[0]},\n" " {type_attr=Tindices, tensor_params=[1], " "ok_dtypes=[DT_INT32, DT_INT64]},\n" " {type_attr=Taxis, tensor_params=[2], " "ok_dtypes=[DT_INT32, DT_INT64]},]\n" " inferred_type_attrs=[Tparams, Tindices, Taxis]\n"), # An op with default attrib values. ("ReduceJoin", "ReduceJoin", "DebugInfo for ReduceJoin:\n" " param_names=[inputs, reduction_indices, keep_dims, separator, name]\n" " defaults_tuple=(False, '', 'ReduceJoin')\n" " attributes=[\n" " {index=2, name=keep_dims, type=bool},\n" " {index=3, name=separator, type=string},]\n" " inputs=[\n" " {index=0, name=inputs, is_list=0},\n" " {index=1, name=reduction_indices, is_list=0},]\n" " inputs_with_fixed_dtype=[\n" " {index=0, dtype=DT_STRING, is_list=0},\n" " {index=1, dtype=DT_INT32, is_list=0},]\n"), # An op with a variable-dtype list input, and an int attribute. ("ParseExampleV2", "ParseExampleV2", "DebugInfo for ParseExampleV2:\n" " param_names=[serialized, names, sparse_keys, dense_keys, " "ragged_keys, dense_defaults, num_sparse, sparse_types, " "ragged_value_types, ragged_split_types, dense_shapes, name]\n" " defaults_tuple=('ParseExampleV2',)\n" " attributes=[\n" " {inferred_index=0, name=Tdense, type=list(type)},\n" " {index=6, name=num_sparse, type=int},\n" " {index=7, name=sparse_types, type=list(type)},\n" " {index=8, name=ragged_value_types, type=list(type)},\n" " {index=9, name=ragged_split_types, type=list(type)},\n" " {index=10, name=dense_shapes, type=list(shape)},]\n" " inputs=[\n" " {index=0, name=serialized, is_list=0},\n" " {index=1, name=names, is_list=0},\n" " {index=2, name=sparse_keys, is_list=0},\n" " {index=3, name=dense_keys, is_list=0},\n" " {index=4, name=ragged_keys, is_list=0},\n" " {index=5, name=dense_defaults, is_list=1},]\n" " inputs_with_fixed_dtype=[\n" " {index=0, dtype=DT_STRING, is_list=0},\n" " {index=1, dtype=DT_STRING, is_list=0},\n" " {index=2, dtype=DT_STRING, is_list=0},\n" " {index=3, dtype=DT_STRING, is_list=0},\n" " {index=4, dtype=DT_STRING, is_list=0},]\n" " inputs_with_type_list_attrs=[\n" " {type_list_attr=Tdense, tensor_list_params=[5], " "ok_dtypes=[DT_FLOAT, DT_INT64, DT_STRING]},]\n" " inferred_type_list_attrs=[Tdense]\n"), # An op with a default dtype ("BroadcastArgs", "BroadcastArgs", "DebugInfo for BroadcastArgs:\n" " param_names=[s0, s1, name]\n" " defaults_tuple=('BroadcastArgs',)\n" " attributes=[\n" " {inferred_index=0, name=T, type=type},]\n" " inputs=[\n" " {index=0, name=s0, is_list=0},\n" " {index=1, name=s1, is_list=0},]\n" " inputs_with_type_attr=[\n" " {type_attr=T, default_dtype=DT_INT32, tensor_params=[0, 1], " "ok_dtypes=[DT_INT32, DT_INT64]},]\n" " inferred_type_attrs=[T]\n"), ]) def testInitializeFromRegisteredOp(self, op_name, debug_info): api_info = self.makeConverterForGenOp(op_name) self.assertEqual(api_info.DebugInfo().strip(), debug_info.strip()) # This test initializes a PythonAPIInfo from parameter specs, # and then uses DebugInfo() to check that the internal state is correct. @parameterized.named_parameters([ ("NoParams", "NoParams", [], {}, {}, "DebugInfo for NoParams:\n" " param_names=[]\n" " defaults_tuple=()\n"), ("OnlyNameParam", "OnlyNameParam", ["name"], {}, {}, "DebugInfo for OnlyNameParam:\n" " param_names=[name]\n" " defaults_tuple=()\n"), ("SomeBinaryOp", "SomeBinaryOp", ["x", "y"], dict(x="T", y="T"), dict(T="type"), "DebugInfo for SomeBinaryOp:\n" " param_names=[x, y]\n" " defaults_tuple=()\n" " attributes=[\n" " {inferred_index=0, name=T, type=type},]\n" " inputs=[\n" " {index=0, name=x, is_list=0},\n" " {index=1, name=y, is_list=0},]\n" " inputs_with_type_attr=[\n" " {type_attr=T, tensor_params=[0, 1]},]\n" " inferred_type_attrs=[T]\n"), ("AllAttributeTypes", "AllAttributeTypes", [ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p" ], {}, dict( a="any", b="float", c="int", d="string", e="bool", f="type", g="shape", h="tensor", i="list(any)", j="list(float)", k="list(int)", l="list(string)", m="list(bool)", n="list(type)", o="list(shape)", p="list(tensor)"), "DebugInfo for AllAttributeTypes:\n" " param_names=[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p]\n" " defaults_tuple=()\n" " attributes=[\n" " {index=0, name=a, type=any},\n" " {index=1, name=b, type=float},\n" " {index=2, name=c, type=int},\n" " {index=3, name=d, type=string},\n" " {index=4, name=e, type=bool},\n" " {index=5, name=f, type=type},\n" " {index=6, name=g, type=shape},\n" " {index=7, name=h, type=tensor},\n" " {index=8, name=i, type=list(any)},\n" " {index=9, name=j, type=list(float)},\n" " {index=10, name=k, type=list(int)},\n" " {index=11, name=l, type=list(string)},\n" " {index=12, name=m, type=list(bool)},\n" " {index=13, name=n, type=list(type)},\n" " {index=14, name=o, type=list(shape)},\n" " {index=15, name=p, type=list(tensor)},]\n"), ]) def testInitializeFromParamSpecs(self, api_name, param_names, input_specs, attr_specs, debug_info): api_info = self.makeConverterFromParamSpecs(api_name, param_names, input_specs, attr_specs) self.assertEqual(api_info.DebugInfo().strip(), debug_info.strip()) if __name__ == "__main__": googletest.main()
43.929688
80
0.580829
3553f408010c663cd9ab817665cab0da213d6bb2
12,261
py
Python
kernel/components/binning/vertfeaturebinning/base_feature_binning.py
rinceyuan/WeFe
8482cb737cb7ba37b2856d184cd42c1bd35a6318
[ "Apache-2.0" ]
39
2021-10-12T01:43:27.000Z
2022-03-28T04:46:35.000Z
kernel/components/binning/vertfeaturebinning/base_feature_binning.py
rinceyuan/WeFe
8482cb737cb7ba37b2856d184cd42c1bd35a6318
[ "Apache-2.0" ]
6
2021-10-14T02:11:47.000Z
2022-03-23T02:41:50.000Z
kernel/components/binning/vertfeaturebinning/base_feature_binning.py
rinceyuan/WeFe
8482cb737cb7ba37b2856d184cd42c1bd35a6318
[ "Apache-2.0" ]
10
2021-10-14T09:36:03.000Z
2022-02-10T11:05:12.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2021 Tianmian Tech. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Copyright 2019 The FATE Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import re from common.python.common.consts import DataSetSourceType from common.python.utils import log_utils from kernel.components.binning.core.base_binning import Binning from kernel.components.binning.core.bin_inner_param import BinInnerParam from kernel.components.binning.core.bucket_binning import BucketBinning from kernel.components.binning.core.quantile_binning import QuantileBinning from kernel.components.binning.vertfeaturebinning.param import FeatureBinningParam from kernel.model_base import ModelBase from kernel.protobuf.generated import feature_binning_meta_pb2, feature_binning_param_pb2 from kernel.transfer.variables.transfer_class.vert_feature_binning_transfer_variable import \ VertFeatureBinningTransferVariable from kernel.utils import consts from kernel.utils import data_util from kernel.utils.data_util import get_header from kernel.utils.io_check import assert_io_num_rows_equal LOGGER = log_utils.get_logger() MODEL_PARAM_NAME = 'FeatureBinningParam' MODEL_META_NAME = 'FeatureBinningMeta' class BaseVertFeatureBinning(ModelBase): """ Do binning method through promoter and provider """ def __init__(self): super(BaseVertFeatureBinning, self).__init__() self.transfer_variable = VertFeatureBinningTransferVariable() self.binning_obj: Binning = None self.binning_obj_list = [] self.header = None self.schema = None self.provider_results = [] self.provider_results_list = [] self.transform_type = None self.model_save_to_storage = True self.save_dataset = True self.model_param = FeatureBinningParam() self.bin_inner_param = BinInnerParam() self.set_show_name("(Binning)") self.source_type = DataSetSourceType.BINNING def _init_model(self, params: FeatureBinningParam): self.model_param = params # # self.transform_type = self.model_param.transform_param.transform_type # # if self.model_param.method == consts.QUANTILE: # self.binning_obj = QuantileBinning(self.model_param) # elif self.model_param.method == consts.BUCKET: # self.binning_obj = BucketBinning(self.model_param) # elif self.model_param.method == consts.OPTIMAL: # if self.role == consts.PROVIDER: # self.model_param.bin_num = self.model_param.optimal_binning_param.init_bin_nums # self.binning_obj = QuantileBinning(self.model_param) # else: # self.binning_obj = OptimalBinning(self.model_param) # else: # # self.binning_obj = QuantileBinning(self.bin_param) # raise ValueError("Binning method: {} is not supported yet".format(self.model_param.method)) # LOGGER.debug("in _init_model, role: {}, local_member_id: {}".format(self.role, self.component_properties)) # self.binning_obj.set_role_party(self.role, self.component_properties.local_member_id) def _setup_bin_inner_param(self, data_instances, params: FeatureBinningParam): # if self.schema is not None: # return self.bin_inner_param = BinInnerParam() self.header = get_header(data_instances) LOGGER.debug("_setup_bin_inner_param, get header: {}".format(self.header)) self.schema = data_instances.schema self.bin_inner_param.set_header(self.header) if params.bin_indexes == -1: self.bin_inner_param.set_bin_all() else: self.bin_inner_param.add_bin_indexes(params.bin_indexes) self.bin_inner_param.add_bin_names(params.bin_names) self.bin_inner_param.add_category_indexes(params.category_indexes) self.bin_inner_param.add_category_names(params.category_names) if params.transform_param.transform_cols == -1: self.bin_inner_param.set_transform_all() else: self.bin_inner_param.add_transform_bin_indexes(params.transform_param.transform_cols) self.bin_inner_param.add_transform_bin_names(params.transform_param.transform_names) # LOGGER.debug("After _setup_bin_inner_param: {}".format(self.bin_inner_param.__dict__)) self.binning_obj.set_bin_inner_param(self.bin_inner_param) LOGGER.debug("After _setup_bin_inner_param, header: {}".format(self.header)) @assert_io_num_rows_equal def transform(self, data_instances): self._setup_bin_inner_param(data_instances, self.model_param) data_instances = self.binning_obj.transform(data_instances, self.transform_type) self.set_schema(data_instances) self.data_output = self.binning_obj.convert_feature_to_woe(data_instances) return data_instances def _get_meta(self): # col_list = [str(x) for x in self.cols] transform_param = feature_binning_meta_pb2.TransformMeta( transform_cols=self.bin_inner_param.transform_bin_indexes, transform_type=self.model_param.transform_param.transform_type ) meta_protobuf_obj = feature_binning_meta_pb2.FeatureBinningMeta( method=self.model_param.method, compress_thres=self.model_param.compress_thres, head_size=self.model_param.head_size, error=self.model_param.error, bin_num=int(self.model_param.bin_num), cols=self.bin_inner_param.bin_names, adjustment_factor=self.model_param.adjustment_factor, local_only=self.model_param.local_only, need_run=self.need_run, transform_param=transform_param ) return meta_protobuf_obj def _get_param(self): binning_result_obj = self.binning_obj.bin_results.generated_pb() # binning_result_obj = self.bin_results.generated_pb() provider_results = [x.bin_results.generated_pb() for x in self.provider_results if x.bin_results.all_cols_results] result_obj = feature_binning_param_pb2.FeatureBinningParam(binning_result=binning_result_obj, provider_results=provider_results, header=self.header) LOGGER.debug("json_result: {}".format(result_obj)) return result_obj def load_model(self, model_dict): model_0 = list(model_dict.get('model'))[0] cols = model_0.get('Model_Meta').get('cols') Model_Param = model_0.get('Model_Param') binningResult = Model_Param.get('binningResult').get('binningResult') header = Model_Param.get('header') model_dict_str = json.dumps(model_dict) model_dict_str = self.hump2underline(model_dict_str) model_dict = json.loads(model_dict_str) LOGGER.debug("model_dict ===> {}".format(model_dict)) for name, value in binningResult.items(): binningResult[name] = json.loads(self.hump2underline(json.dumps(value))) model_meta = list(model_dict.get('model'))[0].get("model_meta") model_meta['cols'] = cols model_param = list(model_dict.get('model'))[0].get("model_param") binning_result = model_param.get('binning_result') binning_result['binning_result'] = binningResult model_param['binning_result'] = binning_result model_param['header'] = header LOGGER.debug(f"model_meta={model_meta}, model_param={model_param}") self.bin_inner_param = BinInnerParam() # assert isinstance(model_meta, feature_binning_meta_pb2.FeatureBinningMeta) # assert isinstance(model_param, feature_binning_param_pb2.FeatureBinningParam) self.header = list(model_param["header"]) self.bin_inner_param.set_header(self.header) self.bin_inner_param.add_transform_bin_indexes(list(model_meta["transform_param"]["transform_cols"])) self.bin_inner_param.add_bin_names(list(model_meta["cols"])) self.transform_type = model_meta["transform_param"]["transform_type"] bin_method = str(model_meta["method"]) if bin_method == consts.QUANTILE: self.binning_obj = QuantileBinning(params=model_meta) else: self.binning_obj = BucketBinning(params=model_meta) self.binning_obj.set_role_party(self.role, self.component_properties.local_member_id) self.binning_obj.set_bin_inner_param(self.bin_inner_param) self.binning_obj.bin_results.reconstruct2(model_param["binning_result"]) self.provider_results = [] LOGGER.debug(f"provider_results={model_param['provider_results']}") for host_pb in model_param["provider_results"]: LOGGER.debug("host_pb ===> {}".format(host_pb)) binning_result = host_pb["binning_result"] if not binning_result: continue host_bin_obj = Binning() host_bin_obj.bin_results.reconstruct2(host_pb) self.provider_results.append(host_bin_obj) def export_model(self): if self.model_output is not None: return self.model_output meta_obj = self._get_meta() param_obj = self._get_param() result = { MODEL_META_NAME: meta_obj, MODEL_PARAM_NAME: param_obj } self.model_output = result # self.model_save_to_storage = True return result def output_data(self): return self.data_output def set_schema(self, data_instance): self.schema['header'] = self.header data_instance.schema = self.schema LOGGER.debug("After Binning, data_instance is : {}".format(data_instance)) LOGGER.debug("After Binning, when setting schema, schema is : {}".format(data_instance.schema)) def _abnormal_detection(self, data_instances): """ Make sure input data_instances is valid. """ data_util.empty_table_detection(data_instances) data_util.empty_feature_detection(data_instances) def get_indexes(self, bin_feature_names: list, data_instances): bin_indexes = [] if len(bin_feature_names) == 0: return bin_indexes data_feature_names = data_instances.schema["header"] for bin_feature_name in bin_feature_names: index = data_feature_names.index(bin_feature_name) bin_indexes.append(index) return bin_indexes def hump2underline(self, hump_str): """ Camel case string convert underscore form :param hump_str: Camel case string :return: underscore form """ p = re.compile(r'([a-z]|\d)([A-Z])') sub = re.sub(p, r'\1_\2', hump_str).lower() return sub def _add_summary(self, split_points): summary = {} for k, v in split_points.items(): summary[k] = list(v) self.set_summary({"split_points": summary}) LOGGER.info(f'summary={summary}')
43.021053
116
0.69195
5018fecea46e40b631af5d9a8a9302c9737c99ff
1,187
py
Python
Lib/site-packages/qtutils/disconnect_contextmanager.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
Lib/site-packages/qtutils/disconnect_contextmanager.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
Lib/site-packages/qtutils/disconnect_contextmanager.py
fochoao/cpython
3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9
[ "bzip2-1.0.6", "0BSD" ]
null
null
null
##################################################################### # # # disconnect_contextmanager.py # # # # Copyright 2013, Christopher Billington, Philip Starkey # # # # This file is part of the qtutils project # # (see https://github.com/philipstarkey/qtutils ) # # and is licensed under the 2-clause, or 3-clause, BSD License. # # See the license.txt file in the root of the project # # for the full license. # # # ##################################################################### class DisconnectContextManager(object): def __init__(self, signal, slot): self.signal = signal self.slot = slot def __enter__(self): self.signal.disconnect(self.slot) def __exit__(self, *exc_info): self.signal.connect(self.slot)
45.653846
69
0.361415
80eabaf1a7bfb906d521d66b8c45a14298aa204a
1,486
py
Python
ros2bag/setup.py
albtam/rosbag2
e4ce24cdfa7e24c6d2c025ecc38ab1157a0eecc8
[ "Apache-2.0" ]
null
null
null
ros2bag/setup.py
albtam/rosbag2
e4ce24cdfa7e24c6d2c025ecc38ab1157a0eecc8
[ "Apache-2.0" ]
null
null
null
ros2bag/setup.py
albtam/rosbag2
e4ce24cdfa7e24c6d2c025ecc38ab1157a0eecc8
[ "Apache-2.0" ]
null
null
null
from setuptools import find_packages from setuptools import setup package_name = 'ros2bag' setup( name=package_name, version='0.6.0', packages=find_packages(exclude=['test']), data_files=[ ('share/' + package_name, ['package.xml']), ('share/ament_index/resource_index/packages', ['resource/' + package_name]), ], install_requires=['ros2cli'], zip_safe=True, author='Karsten Knese', author_email='karsten@osrfoundation.org', maintainer='Karsten Knese', maintainer_email='karsten@osrfoundation.org', keywords=[], classifiers=[ 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', ], description='Entry point for rosbag in ROS 2', long_description="""\ The package provides the rosbag command for the ROS 2 command line tools.""", license='Apache License, Version 2.0', tests_require=['pytest'], entry_points={ 'ros2cli.command': [ 'bag = ros2bag.command.bag:BagCommand', ], 'ros2cli.extension_point': [ 'ros2bag.verb = ros2bag.verb:VerbExtension', ], 'ros2bag.verb': [ 'info = ros2bag.verb.info:InfoVerb', 'list = ros2bag.verb.list:ListVerb', 'play = ros2bag.verb.play:PlayVerb', 'record = ros2bag.verb.record:RecordVerb', ], } )
30.958333
77
0.611709
ae394dd25e9ce1ff43e7a610b1e8e0a75cca2600
457
py
Python
src/source.py
CoolPiotr/CRITERIA
7ec94fbc95dc363227c50a923052115f28c12623
[ "MIT" ]
13
2020-08-17T22:04:50.000Z
2022-02-25T20:59:18.000Z
src/source.py
CoolPiotr/CRITERIA
7ec94fbc95dc363227c50a923052115f28c12623
[ "MIT" ]
12
2020-08-24T15:49:29.000Z
2022-03-17T17:49:46.000Z
src/source.py
CoolPiotr/CRITERIA
7ec94fbc95dc363227c50a923052115f28c12623
[ "MIT" ]
2
2021-04-22T16:40:33.000Z
2021-04-22T16:48:38.000Z
# Main CIDOC-CRM classes, serving as Mermaid classes for styling classes = [ "E2_Temporal_Entity", "E55_Type", "E52_Time-Span", "E41_Appellation", "E53_Place", "E77_Persistent_Item", "E28_Conceptual_Object", "E18_Physical_Thing", "E39_Actor", "E1_CRM_Entity"] # Ontologies files onto = { 'crm': 'cidoc_crm_v6.2.1-2018April.rdfs', 'pc': 'CRMpc_v1.1.1.rdfs', 'frbroo': 'FRBR2.4-draft.rdfs', 'crmdig': 'CRMdig_v3.2.2.rdfs' }
21.761905
64
0.673961
83e74dfc444edffa7c75e3e4c00a729f2f9977c6
19,746
py
Python
M3_T5_no_pretrain_subword/t5_no_pretraining_main.py
VulRepairTeam/VulRepair
9cf2abd7ca27d84445ddfc7ab323745a5b676cce
[ "MIT" ]
null
null
null
M3_T5_no_pretrain_subword/t5_no_pretraining_main.py
VulRepairTeam/VulRepair
9cf2abd7ca27d84445ddfc7ab323745a5b676cce
[ "MIT" ]
null
null
null
M3_T5_no_pretrain_subword/t5_no_pretraining_main.py
VulRepairTeam/VulRepair
9cf2abd7ca27d84445ddfc7ab323745a5b676cce
[ "MIT" ]
2
2022-03-21T04:32:39.000Z
2022-03-22T01:02:49.000Z
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function import argparse import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler from transformers import (AdamW, get_linear_schedule_with_warmup, T5ForConditionalGeneration, RobertaTokenizer, T5Config) from tqdm import tqdm import pandas as pd from torch.utils.tensorboard import SummaryWriter cpu_cont = 16 logger = logging.getLogger(__name__) class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, input_ids, label, decoder_input_ids): self.input_ids = input_ids self.label=label self.decoder_input_ids = decoder_input_ids class TextDataset(Dataset): def __init__(self, tokenizer, args, file_type="train"): if file_type == "train": file_path = args.train_data_file elif file_type == "eval": file_path = args.eval_data_file elif file_type == "test": file_path = args.test_data_file self.examples = [] df = pd.read_csv(file_path) sources = df["source"].tolist() labels = df["target"].tolist() for i in tqdm(range(len(sources))): self.examples.append(convert_examples_to_features(sources[i], labels[i], tokenizer, args)) if file_type == "train": for example in self.examples[:3]: logger.info("*** Example ***") logger.info("label: {}".format(example.label)) logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids)))) logger.info("decoder_input_ids: {}".format(' '.join(map(str, example.decoder_input_ids)))) def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i].input_ids, self.examples[i].input_ids.ne(0), self.examples[i].label, self.examples[i].decoder_input_ids def convert_examples_to_features(source, label, tokenizer, args): # encode source_ids = tokenizer.encode(source, truncation=True, max_length=args.encoder_block_size, padding='max_length', return_tensors='pt') decoder_input_ids = tokenizer.encode(label, truncation=True, max_length=args.decoder_block_size, padding='max_length', return_tensors='pt') label = tokenizer.encode(label, truncation=True, max_length=args.decoder_block_size, padding='max_length', return_tensors='pt') return InputFeatures(source_ids, label, decoder_input_ids) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, eval_dataset): """ Train the model """ # build dataloader train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=0) args.max_steps = args.epochs * len(train_dataloader) # evaluate model per epoch args.save_steps = len(train_dataloader) * 1 args.warmup_steps = args.max_steps // 5 model.to(args.device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps) # multi-gpu training if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.epochs) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size//max(args.n_gpu, 1)) logger.info(" Total train batch size = %d",args.train_batch_size*args.gradient_accumulation_steps) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", args.max_steps) global_step = 0 tr_loss, logging_loss, avg_loss, tr_nb, tr_num, train_loss = 0.0, 0.0, 0.0, 0, 0, 0 best_loss = 100 writer_path = "tb/codet5_training_loss" writer = SummaryWriter(writer_path) model.zero_grad() for idx in range(args.epochs): bar = tqdm(train_dataloader, total=len(train_dataloader)) tr_num = 0 train_loss = 0 for step, batch in enumerate(bar): (input_ids, attention_mask, labels, decoder_input_ids) = [x.squeeze(1).to(args.device) for x in batch] model.train() # the forward function automatically creates the correct decoder_input_ids loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss if args.n_gpu > 1: loss = loss.mean() if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() tr_num += 1 train_loss += loss.item() if avg_loss == 0: avg_loss = tr_loss avg_loss = round(train_loss/tr_num,5) bar.set_description("epoch {} loss {}".format(idx,avg_loss)) if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 output_flag = True avg_loss = round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4) if global_step % args.save_steps == 0: # placeholder of evaluation eval_loss = evaluate(args, model, tokenizer, eval_dataset, eval_when_training=True) # Save model checkpoint if eval_loss < best_loss: best_loss = eval_loss logger.info(" "+"*"*20) logger.info(" Best Loss:%s",round(best_loss,4)) logger.info(" "+"*"*20) checkpoint_prefix = 'checkpoint-best-loss' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model,'module') else model output_dir = os.path.join(output_dir, '{}'.format(args.model_name)) torch.save(model_to_save.state_dict(), output_dir) logger.info("Saving model checkpoint to %s", output_dir) def clean_tokens(tokens): tokens = tokens.replace("<pad>", "") tokens = tokens.replace("<s>", "") tokens = tokens.replace("</s>", "") tokens = tokens.strip("\n") tokens = tokens.strip() return tokens def evaluate(args, model, tokenizer, eval_dataset, eval_when_training=False): #build dataloader eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, num_workers=0) # multi-gpu evaluate if args.n_gpu > 1 and eval_when_training is False: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() eval_loss, num = 0, 0 bar = tqdm(eval_dataloader, total=len(eval_dataloader)) for batch in bar: (input_ids, attention_mask, labels, decoder_input_ids) = [x.squeeze(1).to(args.device) for x in batch] loss = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).loss if args.n_gpu > 1: loss = loss.mean() eval_loss += loss.item() num += 1 eval_loss = round(eval_loss/num,5) model.train() logger.info("***** Eval results *****") logger.info(f"Evaluation Loss: {str(eval_loss)}") return eval_loss def test(args, model, tokenizer, test_dataset, best_threshold=0.5): # build dataloader test_sampler = SequentialSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size, num_workers=0) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Test! logger.info("***** Running Test *****") logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) nb_eval_steps = 0 model.eval() accuracy = [] raw_predictions = [] correct_prediction = "" bar = tqdm(test_dataloader, total=len(test_dataloader)) for batch in bar: correct_pred = False (input_ids, attention_mask, labels, decoder_input_ids)=[x.squeeze(1).to(args.device) for x in batch] with torch.no_grad(): beam_outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, do_sample=False, # disable sampling to test if batching affects output num_beams=args.num_beams, num_return_sequences=args.num_beams, max_length=args.decoder_block_size) beam_outputs = beam_outputs.detach().cpu().tolist() decoder_input_ids = decoder_input_ids.detach().cpu().tolist() for single_output in beam_outputs: # pred prediction = tokenizer.decode(single_output, skip_special_tokens=False) prediction = clean_tokens(prediction) # truth ground_truth = tokenizer.decode(decoder_input_ids[0], skip_special_tokens=False) ground_truth = clean_tokens(ground_truth) if prediction == ground_truth: correct_prediction = prediction correct_pred = True break if correct_pred: raw_predictions.append(correct_prediction) accuracy.append(1) else: # if not correct, use the first output in the beam as the raw prediction raw_pred = tokenizer.decode(beam_outputs[0], skip_special_tokens=False) raw_pred = clean_tokens(raw_pred) raw_predictions.append(raw_pred) accuracy.append(0) nb_eval_steps += 1 # calculate accuracy test_result = round(sum(accuracy) / len(accuracy), 4) logger.info("***** Test results *****") logger.info(f"Test Accuracy: {str(test_result)}") # write prediction to file df = pd.read_csv(args.test_data_file) df["raw_predictions"] = raw_predictions df["correctly_predicted"] = accuracy f_name = args.test_data_file.split("/")[-1].split("_")[:2] f_name = "_".join(f_name) df.to_csv(f"../data/raw_predictions/T5-no-pretraining/{f_name}_raw_preds.csv") def main(): parser = argparse.ArgumentParser() # Params parser.add_argument("--train_data_file", default=None, type=str, required=False, help="The input training data file (a csv file).") parser.add_argument("--output_dir", default=None, type=str, required=False, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--model_type", default="t5", type=str, help="The model architecture to be fine-tuned.") parser.add_argument("--encoder_block_size", default=-1, type=int, help="Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens).") parser.add_argument("--decoder_block_size", default=-1, type=int, help="Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens).") parser.add_argument("--num_beams", default=50, type=int, help="Beam size to use when decoding.") parser.add_argument("--eval_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--test_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--model_name", default="model.bin", type=str, help="Saved model name.") parser.add_argument("--checkpoint_model_name", default="non_domain_model.bin", type=str, help="Checkpoint model name.") parser.add_argument("--model_name_or_path", default=None, type=str, help="The model checkpoint for weights initialization.") parser.add_argument("--config_name", default="", type=str, help="Optional pretrained config name or path if not the same as model_name_or_path") parser.add_argument("--tokenizer_name", default="", type=str, help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--load_model_from_checkpoint", default=False, action='store_true', help="Whether to load model from checkpoint.") parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--epochs', type=int, default=1, help="training epochs") args = parser.parse_args() # Setup CUDA, GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() args.device = device # to remove args.n_gpu = 1 args.device = "cuda:1" ### # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',datefmt='%m/%d/%Y %H:%M:%S',level=logging.INFO) logger.warning("device: %s, n_gpu: %s",device, args.n_gpu,) # Set seed set_seed(args) tokenizer = RobertaTokenizer.from_pretrained(args.tokenizer_name) config = T5Config.from_pretrained(args.config_name) model = T5ForConditionalGeneration(config=config) model.resize_token_embeddings(len(tokenizer)) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = TextDataset(tokenizer, args, file_type='train') eval_dataset = TextDataset(tokenizer, args, file_type='eval') if args.load_model_from_checkpoint: checkpoint_prefix = f'checkpoint-best-loss/{args.checkpoint_model_name}' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) train(args, train_dataset, model, tokenizer, eval_dataset) # Evaluation results = {} if args.do_eval: checkpoint_prefix = f'checkpoint-best-loss/{args.model_name}' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) eval_dataset = TextDataset(tokenizer, args, file_type='eval') result=evaluate(args, model, tokenizer, eval_dataset) if args.do_test: checkpoint_prefix = f'checkpoint-best-loss/{args.model_name}' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir, map_location=args.device)) model.to(args.device) test_dataset = TextDataset(tokenizer, args, file_type='test') test(args, model, tokenizer, test_dataset, best_threshold=0.5) return results if __name__ == "__main__": main()
48.997519
143
0.632837
37fe2f860a561a40f8a6a70dca11a87518fec383
2,084
py
Python
opensearchpy/client/features.py
CEHENKLE/opensearch-py
44965ad0c91ec59948eb28b652d1474fa1818d76
[ "Apache-2.0" ]
75
2021-08-20T03:43:38.000Z
2022-03-31T12:55:05.000Z
opensearchpy/client/features.py
CEHENKLE/opensearch-py
44965ad0c91ec59948eb28b652d1474fa1818d76
[ "Apache-2.0" ]
75
2021-08-19T19:06:51.000Z
2022-03-28T16:11:04.000Z
opensearchpy/client/features.py
CEHENKLE/opensearch-py
44965ad0c91ec59948eb28b652d1474fa1818d76
[ "Apache-2.0" ]
28
2021-08-19T16:49:34.000Z
2022-03-22T21:48:34.000Z
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. # # Modifications Copyright OpenSearch Contributors. See # GitHub history for details. # # Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from .utils import NamespacedClient, query_params class FeaturesClient(NamespacedClient): @query_params("master_timeout") def get_features(self, params=None, headers=None): """ Gets a list of features which can be included in snapshots using the feature_states field when creating a snapshot :arg master_timeout: Explicit operation timeout for connection to master node """ return self.transport.perform_request( "GET", "/_features", params=params, headers=headers ) @query_params() def reset_features(self, params=None, headers=None): """ Resets the internal state of features, usually by deleting system indices .. warning:: This API is **experimental** so may include breaking changes or be removed in a future version """ return self.transport.perform_request( "POST", "/_features/_reset", params=params, headers=headers )
35.322034
81
0.708733
5a45d617d7bc2dd8ccc82467df23a52b5c1f7d5d
2,195
py
Python
setup.py
friikjones/keepluggable
9a32a885ca617468a2a8ab932b9123e55d490677
[ "MIT" ]
null
null
null
setup.py
friikjones/keepluggable
9a32a885ca617468a2a8ab932b9123e55d490677
[ "MIT" ]
null
null
null
setup.py
friikjones/keepluggable
9a32a885ca617468a2a8ab932b9123e55d490677
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Installer for keepluggable.""" from codecs import open from sys import version_info from setuptools import setup, find_packages # http://peak.telecommunity.com/DevCenter/setuptools#developer-s-guide with open("README.rst", encoding="utf-8") as f: long_description = f.read() requires = [ # Each backend may have additional dependencies. "bag >= 3.0.0", "kerno", "pydantic > 1.4a, < 1.5a", ] if version_info[:2] < (3, 4): requires.append("pathlib") # 'enum34' setup( name="keepluggable", version="0.8.2.dev1", description="Manages storage of images and other files, with metadata." " Also offers an HTTP API done on Pyramid.", long_description=long_description, classifiers=[ # https://pypi.org/pypi?:action=list_classifiers "Development Status :: 4 - Beta", # "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", # 'Programming Language :: Python :: Implementation :: PyPy', "Framework :: Pyramid", "Topic :: Database", "Topic :: Internet :: WWW/HTTP", "Topic :: Internet :: WWW/HTTP :: WSGI", "Topic :: Multimedia :: Graphics :: Graphics Conversion", "Topic :: Software Development :: Libraries :: Python Modules", ], author="Nando Florestan", author_email="nandoflorestan@gmail.com", url="https://github.com/nandoflorestan/keepluggable", keywords="web pylons pyramid images store thumbnails", packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=requires, # tests_require=requires, # test_suite="keepluggable", # entry_points="""\ # [paste.app_factory] # main = keepluggable:main # """, license="MIT", )
33.769231
75
0.638269
0ac1a40a18839c3d15113dc0a2bc38dd5dbb1d9d
3,235
py
Python
profiles_project/settings.py
achrafel1/profiles-rest-api
8fba50caa513a3e6553805e030f65b8d3f3c39c1
[ "MIT" ]
null
null
null
profiles_project/settings.py
achrafel1/profiles-rest-api
8fba50caa513a3e6553805e030f65b8d3f3c39c1
[ "MIT" ]
4
2020-06-27T17:32:56.000Z
2022-02-10T09:41:41.000Z
profiles_project/settings.py
achrafel1/profiles-rest-api
8fba50caa513a3e6553805e030f65b8d3f3c39c1
[ "MIT" ]
null
null
null
""" Django settings for profiles_project project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'mk20l&intl(fxjncf-2#jc*$y5s$@p6_##hqkm()kp))%)dvc-' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'profiles_api.UserProfile'
25.88
91
0.698609
7f02c00b6adfbd6b86fa2199bd7541ad43006417
3,070
py
Python
test.py
adit98/Rainbow
928cd4afd0718c956d8cd5b47ea89990e6e2e26f
[ "MIT" ]
null
null
null
test.py
adit98/Rainbow
928cd4afd0718c956d8cd5b47ea89990e6e2e26f
[ "MIT" ]
null
null
null
test.py
adit98/Rainbow
928cd4afd0718c956d8cd5b47ea89990e6e2e26f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import division import os import plotly from plotly.graph_objs import Scatter from plotly.graph_objs.scatter import Line import torch from env import Env, MinigridEnv # Test DQN def test(args, T, dqn, val_mem, metrics, results_dir, evaluate=False): if args.minigrid: env = MinigridEnv(args) else: env = Env(args) env.eval() metrics['steps'].append(T) T_rewards, T_Qs = [], [] # Test performance over several episodes done = True for _ in range(args.evaluation_episodes): while True: if done: state, reward_sum, done = env.reset(), 0, False action = dqn.act_e_greedy(state) # Choose an action ε-greedily state, reward, done = env.step(action) # Step reward_sum += reward if args.render: env.render() if done: T_rewards.append(reward_sum) break env.close() # Test Q-values over validation memory for state in val_mem: # Iterate over valid states T_Qs.append(dqn.evaluate_q(state)) avg_reward, avg_Q = sum(T_rewards) / len(T_rewards), sum(T_Qs) / len(T_Qs) if not evaluate: # Save model parameters if improved if avg_reward > metrics['best_avg_reward']: metrics['best_avg_reward'] = avg_reward dqn.save(results_dir) # Append to results and save metrics metrics['rewards'].append(T_rewards) metrics['Qs'].append(T_Qs) torch.save(metrics, os.path.join(results_dir, 'metrics.pth')) # Plot _plot_line(metrics['steps'], metrics['rewards'], 'Reward', path=results_dir) _plot_line(metrics['steps'], metrics['Qs'], 'Q', path=results_dir) # Return average reward and Q-value return avg_reward, avg_Q # Plots min, max and mean + standard deviation bars of a population over time def _plot_line(xs, ys_population, title, path=''): max_colour, mean_colour, std_colour, transparent = 'rgb(0, 132, 180)', 'rgb(0, 172, 237)', 'rgba(29, 202, 255, 0.2)', 'rgba(0, 0, 0, 0)' ys = torch.tensor(ys_population, dtype=torch.float32) ys_min, ys_max, ys_mean, ys_std = ys.min(1)[0].squeeze(), ys.max(1)[0].squeeze(), ys.mean(1).squeeze(), ys.std(1).squeeze() ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max') trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color=transparent), name='+1 Std. Dev.', showlegend=False) trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour), name='Mean') trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=transparent), name='-1 Std. Dev.', showlegend=False) trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min') plotly.offline.plot({ 'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max], 'layout': dict(title=title, xaxis={'title': 'Step'}, yaxis={'title': title}) }, filename=os.path.join(path, title + '.html'), auto_open=False)
36.987952
156
0.683713
bd376b96db0cad9d84d181a55a0a136cf5d81935
2,993
py
Python
tests/test_changelog_file.py
KarstenSiemer/gordian
2724b32e7853912bae43536d150e1da8aaed69f1
[ "Apache-2.0" ]
55
2020-01-07T18:00:06.000Z
2022-03-23T08:59:13.000Z
tests/test_changelog_file.py
KarstenSiemer/gordian
2724b32e7853912bae43536d150e1da8aaed69f1
[ "Apache-2.0" ]
31
2020-01-07T18:21:59.000Z
2022-03-22T18:57:08.000Z
tests/test_changelog_file.py
KarstenSiemer/gordian
2724b32e7853912bae43536d150e1da8aaed69f1
[ "Apache-2.0" ]
14
2020-01-07T17:56:52.000Z
2022-01-25T18:43:53.000Z
import unittest from unittest.mock import MagicMock, patch from gordian.repo import Repo from gordian.files import ChangelogFile from .utils import Utils from datetime import datetime class TestBaseFile(unittest.TestCase): def setUp(self): self.github_file = Utils.create_github_content_file(file='changelog_no_footer.md') self.mock_git = MagicMock() self.repo = Repo('test', github=self.mock_git) self.repo.new_version = '1.2.0' self.changelog = ChangelogFile(self.github_file, self.repo) def test_iterable(self): assert(iter(self.changelog)) def test_assert_added(self): self.changelog.added('test') assert(len(self.changelog._added) == 1) assert(self.changelog._added[0] == ('test', None)) def test_assert_added_with_ticket(self): self.changelog.added('test', 'something-1234') assert(len(self.changelog._added) == 1) assert(self.changelog._added[0] == ('test', 'something-1234')) def test_assert_updated(self): self.changelog.updated('test') assert(len(self.changelog._updated) == 1) assert(self.changelog._updated[0] == ('test', None)) def test_assert_removed(self): self.changelog.removed('test') assert(len(self.changelog._removed) == 1) assert(self.changelog._removed[0] == ('test', None)) def test_save_changelog(self): self.changelog.added('test') self.changelog.save('save file', False) def test_changelog_format_no_footer(self): changelog = '''# Changelog ## [1.2.0] - 2020-06-02 ### Added - something ### Removed - something else [ticket-1234] ## [1.1.0] - 2020-02-15 ### Added - Something new JIRA-10000 - Something else SRE-11000 ## [1.0.0] - 2020-02-14 ### Changed - Foobar SRE-9999 ### Removed - SRE-8454 Removed a feature ''' self.changelog.added('something') self.changelog.removed('something else', 'ticket-1234') with patch('gordian.files.changelog_file.ChangelogFile._format_date', return_value=datetime(2020, 6, 2).strftime('%Y-%m-%d')): assert(self.changelog._dump() == changelog) def test_changelog_format_with_footer(self): self.github_file = Utils.create_github_content_file(file='changelog_with_footer.md') self.changelog = ChangelogFile(self.github_file, self.repo) changelog = '''# Changelog ## [1.2.0] - 2020-06-02 ### Added - something ### Removed - something else [ticket-1234] ## [1.1.0] - 2020-02-15 ### Added - Something new JIRA-10000 - Something else SRE-11000 ## [1.0.0] - 2020-02-14 ### Changed - Foobar SRE-9999 ### Removed - SRE-8454 Removed a feature this is a footer''' self.changelog.added('something') self.changelog.removed('something else', 'ticket-1234') with patch('gordian.files.changelog_file.ChangelogFile._format_date', return_value=datetime(2020, 6, 2).strftime('%Y-%m-%d')): assert(self.changelog._dump() == changelog)
30.85567
134
0.668226
756e7bb5df0646931e18630f9f84cc31eb1f472c
4,608
py
Python
fram/fram_spi.py
mcauser/micropython_eeprom
65ac90a559aa096ae91d24edaed87361aa833bb5
[ "MIT" ]
40
2019-12-12T20:35:09.000Z
2022-02-23T16:08:48.000Z
fram/fram_spi.py
mcauser/micropython_eeprom
65ac90a559aa096ae91d24edaed87361aa833bb5
[ "MIT" ]
10
2020-02-11T08:35:53.000Z
2022-02-19T10:01:09.000Z
fram/fram_spi.py
peterhinch/micropython_eeprom
65ac90a559aa096ae91d24edaed87361aa833bb5
[ "MIT" ]
18
2019-12-11T13:56:45.000Z
2022-03-24T20:12:25.000Z
# fram_spi.py Supports Fujitsu 256KiB and 512KiB FRAM devices # M85RS2MT Adafruit https://www.adafruit.com/product/4718 # M85RS4MT Adafruit https://www.adafruit.com/product/4719 # These chips are almost identical. Command sets are identical. # Product ID 1st byte, LS 4 bits is density 0x8 == 2MiB 0x9 == 4MiB # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2020 Peter Hinch from micropython import const from bdevice import BlockDevice # import time # for sleep command # Command set _WREN = const(6) _WRDI = const(4) _RDSR = const(5) # Read status reg _WRSR = const(1) _READ = const(3) _WRITE = const(2) _RDID = const(0x9f) # _FSTRD = const(0x0b) No obvious difference to _READ _SLEEP = const(0xb9) class FRAM(BlockDevice): def __init__(self, spi, cspins, size=512, verbose=True, block_size=9): if size not in (256, 512): raise ValueError('FRAM size must be 256 or 512') super().__init__(block_size, len(cspins), size * 1024) self._spi = spi self._cspins = cspins self._ccs = None # Chip select Pin object for current chip self._bufp = bytearray(5) # instruction + 3 byte address + 1 byte value mvp = memoryview(self._bufp) # cost-free slicing self._mvp = mvp # Check hardware density = 8 if size == 256 else 9 for n, cs in enumerate(cspins): mvp[:] = b'\0\0\0\0\0' mvp[0] = _RDID cs(0) self._spi.write_readinto(mvp, mvp) cs(1) # Ignore bits labelled "proprietary" if mvp[1] != 4 or mvp[2] != 0x7f: s = 'FRAM not found at cspins[{}].' raise RuntimeError(s.format(n)) if (mvp[3] & 0x1f) != density: s = 'FRAM at cspins[{}] is incorrect size.' raise RuntimeError(s.format(n)) if verbose: s = 'Total FRAM size {} bytes in {} devices.' print(s.format(self._a_bytes, n + 1)) # Set up status register on each chip for cs in cspins: self._wrctrl(cs, True) mvp[0] = _WRSR mvp[1] = 0 # No block protect or SR protect cs(0) self._spi.write(mvp[:2]) cs(1) self._wrctrl(cs, False) # Disable write to array for n, cs in enumerate(self._cspins): mvp[0] = _RDSR cs(0) self._spi.write_readinto(mvp[:2], mvp[:2]) cs(1) if mvp[1]: s = 'FRAM has bad status at cspins[{}].' raise RuntimeError(s.format(n)) def _wrctrl(self, cs, en): # Enable/Disable device write mvp = self._mvp mvp[0] = _WREN if en else _WRDI cs(0) self._spi.write(mvp[:1]) cs(1) #def sleep(self, on): #mvp = self._mvp #mvp[0] = _SLEEP #for cs in self._cspins: #cs(0) #if on: #self._spi.write(mvp[:1]) #else: #time.sleep_us(500) #cs(1) # Given an address, set current chip select and address buffer. # Return the number of bytes that can be processed in the current chip. def _getaddr(self, addr, nbytes): if addr >= self._a_bytes: raise RuntimeError("FRAM Address is out of range") ca, la = divmod(addr, self._c_bytes) # ca == chip no, la == offset into chip self._ccs = self._cspins[ca] # Current chip select mvp = self._mvp mvp[1] = la >> 16 mvp[2] = (la >> 8) & 0xff mvp[3] = la & 0xff pe = (addr & ~0xff) + 0x100 # byte 0 of next chip return min(nbytes, pe - la) # Interface to bdevice def readwrite(self, addr, buf, read): nbytes = len(buf) mvb = memoryview(buf) mvp = self._mvp start = 0 # Offset into buf. while nbytes > 0: npage = self._getaddr(addr, nbytes) # No of bytes that fit on current chip cs = self._ccs if read: mvp[0] = _READ cs(0) self._spi.write(mvp[:4]) self._spi.readinto(mvb[start : start + npage]) cs(1) else: self._wrctrl(cs, True) mvp[0] = _WRITE cs(0) self._spi.write(mvp[:4]) self._spi.write(mvb[start: start + npage]) cs(1) self._wrctrl(cs, False) nbytes -= npage start += npage addr += npage return buf
34.38806
87
0.534288
c22a652f82207317c9583d6fc273fbdfee9560b3
819
py
Python
2 - BitFriend's auth/authPwn.py
lfontesm/Reverse-Engineering-Challenges
a317977002cd51bea2434690ddefd38ce3cc73c4
[ "WTFPL" ]
1
2021-01-11T17:13:23.000Z
2021-01-11T17:13:23.000Z
2 - BitFriend's auth/authPwn.py
lfontesm/Reverse-Engineering-Challenges
a317977002cd51bea2434690ddefd38ce3cc73c4
[ "WTFPL" ]
null
null
null
2 - BitFriend's auth/authPwn.py
lfontesm/Reverse-Engineering-Challenges
a317977002cd51bea2434690ddefd38ce3cc73c4
[ "WTFPL" ]
null
null
null
#!/usr/bin/python from pwn import * import re offsetFromStack=0x555555556030-0x55555555519c print('Offset from stack string to authenticated(): '+hex(offsetFromStack)) proc=process('./auth') # Exploiting format string vuln to get 5 items on the stack proc.sendline(b"%p %p %p %p %p") procAnswer=proc.recvline() print(procAnswer) print() # Get the stack address from the program's response stackAddr=procAnswer.split(b' ')[7] print('Address of stack string: '+str(stackAddr)) print() # Calculate offset of authenticated from the address of string in stack stackAddr=int(stackAddr, 0) - offsetFromStack # Create payload payload=b'A'*0x68 payload+=p64(stackAddr) print('Payload to send: '+str(payload)) print() # Send payload and receive process response proc.sendline(payload) print(proc.recvall()) proc.close()
22.75
75
0.757021
eb7cfa2c8d56d1ddfb8644e838c7af95b936c97a
8,027
py
Python
official/cv/resnet/src/momentum.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
official/cv/resnet/src/momentum.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
official/cv/resnet/src/momentum.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """momentum""" import mindspore as ms import mindspore.ops as ops from mindspore.common.parameter import Parameter from mindspore.common.tensor import Tensor from mindspore._checkparam import Validator from mindspore.nn.optim.optimizer import Optimizer _momentum_opt = ops.MultitypeFuncGraph("momentum_opt") @_momentum_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor") def _tensor_run_opt_ext(opt, weight_decay, scale, momentum, learning_rate, gradient, weight, moment): """Apply momentum optimizer to the weight parameter using Tensor.""" success = ops.depend(True, opt(weight_decay, scale, weight, moment, learning_rate, gradient, momentum)) return success class Momentum(Optimizer): r""" Implements the Momentum algorithm. Refer to the paper on the importance of initialization and momentum in deep learning for more details. .. math:: v_{t+1} = v_{t} \ast u + gradients If use_nesterov is True: .. math:: p_{t+1} = p_{t} - (grad \ast lr + v_{t+1} \ast u \ast lr) If use_nesterov is False: .. math:: p_{t+1} = p_{t} - lr \ast v_{t+1} Here: where grad, lr, p, v and u denote the gradients, learning_rate, params, moments, and momentum respectively. Note: When separating parameter groups, the weight decay in each group will be applied on the parameters if the weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive. To improve parameter groups performance, the customized order of parameters can be supported. Args: params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated, the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed. - params: Required. The value must be a list of `Parameter`. - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used. If not, the `learning_rate` in the API will be used. - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay will be used. If not, the `weight_decay` in the API will be used. - order_params: Optional. If "order_params" in the keys, the value must be the order of parameters and the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which in the value of 'order_params' must be in one of group parameters. learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate. When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule, use dynamic learning rate, the i-th learning rate will be calculated during the process of training according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float. momentum (float): Hyperparameter of type float, means momentum for the moving average. It must be at least 0.0. weight_decay (int, float): Weight decay (L2 penalty). It must be equal to or greater than 0.0. Default: 0.0. loss_scale (int, float): A floating point value for the loss scale. It must be greater than 0.0. Default: 1.0. use_nesterov (bool): Enable Nesterov momentum. Default: False. Inputs: - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`. Outputs: tuple[bool], all elements are True. Raises: ValueError: If the momentum is less than 0.0. TypeError: If the momentum is not a float or use_nesterov is not a bool. Supported Platforms: ``GPU`` Examples: >>> net = Net() >>> #1) All parameters use the same learning rate and weight decay >>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9) >>> >>> #2) Use parameter groups and set different values >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params())) >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params())) >>> group_params = [{'params': conv_params, 'weight_decay': 0.01}, ... {'params': no_conv_params, 'lr': 0.01}, ... {'order_params': net.trainable_params()}] >>> optim = Momentum(group_params, learning_rate=0.1, momentum=0.9, weight_decay=0.0) >>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01. >>> # The no_conv_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0. >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'. >>> >>> loss = nn.SoftmaxCrossEntropyWithLogits() >>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) """ def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False): super(Momentum, self).__init__(learning_rate, params, weight_decay, loss_scale) Validator.check_value_type("momentum", momentum, [float], self.cls_name) if isinstance(momentum, float) and momentum < 0.0: raise ValueError("momentum should be at least 0.0, but got momentum {}".format(momentum)) self.momentum = Parameter(Tensor(momentum, ms.float32), name="momentum") self.params = self.parameters self.use_nesterov = Validator.check_bool(use_nesterov) self.moments = self.params.clone(prefix="moments", init='zeros') self.hyper_map = ops.HyperMap() # Use FusedWeightScaleApplyMomentum to avoid extra kernel launch. self.opt = ops.FusedWeightScaleApplyMomentum() def construct(self, gradients): params = self.params moments = self.moments weight_decay = Tensor(0.0, ms.float32) scale = Tensor(1.0, ms.float32) if self.exec_weight_decay: weight_decay = self.weight_decay_tensor if self.need_scale: scale = self.reciprocal_scale lr = self.get_lr() if self.is_group_lr: success = self.hyper_map(ops.partial(_momentum_opt, self.opt, weight_decay, scale, self.momentum), lr, gradients, params, moments) else: success = self.hyper_map(ops.partial(_momentum_opt, self.opt, weight_decay, scale, self.momentum, lr), gradients, params, moments) return success
52.464052
120
0.664881
26fef4bcd6d8c54f2027583d51d8929061f36b20
3,780
py
Python
src/scripts/inferencing/treelite_python/score.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
13
2021-08-20T01:03:51.000Z
2022-02-12T05:34:46.000Z
src/scripts/inferencing/treelite_python/score.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
199
2021-08-21T21:18:53.000Z
2022-03-27T23:08:44.000Z
src/scripts/inferencing/treelite_python/score.py
microsoft/lightgbm-benchmark
286668d698d9d166857f924ecb775d5de224d489
[ "MIT" ]
4
2021-08-20T06:53:26.000Z
2022-01-24T22:22:39.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ TreeLite/Python inferencing script """ import os import sys import argparse import logging import numpy from distutils.util import strtobool import pandas as pd import treelite, treelite_runtime # Add the right path to PYTHONPATH # so that you can import from common.* COMMON_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", "..")) if COMMON_ROOT not in sys.path: print(f"Adding {COMMON_ROOT} to PYTHONPATH") sys.path.append(str(COMMON_ROOT)) # useful imports from common from common.components import RunnableScript from common.io import input_file_path class TreeLightInferencingScript(RunnableScript): def __init__(self): super().__init__( task = 'score', framework = 'treelite_python', framework_version = treelite.__version__ ) @classmethod def get_arg_parser(cls, parser=None): """Adds component/module arguments to a given argument parser. Args: parser (argparse.ArgumentParser): an argument parser instance Returns: ArgumentParser: the argument parser instance Notes: if parser is None, creates a new parser instance """ # add generic arguments parser = RunnableScript.get_arg_parser(parser) group_i = parser.add_argument_group("Input Data") group_i.add_argument("--data", required=True, type=input_file_path, help="Inferencing data location (file path)") group_i.add_argument("--so_path", required=False, default = "./mymodel.so" , help="full path to model so") group_i.add_argument("--output", required=False, default=None, type=str, help="Inferencing output location (file path)") group_params = parser.add_argument_group("Scoring parameters") group_params.add_argument("--num_threads", required=False, default=1, type=int, help="number of threads") return parser def run(self, args, logger, metrics_logger, unknown_args): """Run script with arguments (the core of the component) Args: args (argparse.namespace): command line arguments provided to script logger (logging.getLogger() for this script) metrics_logger (common.metrics.MetricLogger) unknown_args (list[str]): list of arguments not recognized during argparse """ # record relevant parameters metrics_logger.log_parameters( num_threads=args.num_threads ) if args.output: # make sure the output argument exists os.makedirs(args.output, exist_ok=True) # and create your own file inside the output args.output = os.path.join(args.output, "predictions.txt") logger.info(f"Loading data for inferencing") with metrics_logger.log_time_block("time_data_loading"): my_data = pd.read_csv(args.data).to_numpy() predictor = treelite_runtime.Predictor( args.so_path, verbose=True, nthread=args.num_threads ) dmat = treelite_runtime.DMatrix(my_data) logger.info(f"Running .predict()") with metrics_logger.log_time_block("time_inferencing"): predictor.predict(dmat) def get_arg_parser(parser=None): """ To ensure compatibility with shrike unit tests """ return TreeLightInferencingScript.get_arg_parser(parser) def main(cli_args=None): """ To ensure compatibility with shrike unit tests """ TreeLightInferencingScript.main(cli_args) if __name__ == "__main__": main()
32.586207
99
0.654497
7f7878e1ce9a81c1a85438a8f5a7f5d4e079a782
2,644
py
Python
ucsmsdk/mometa/firmware/FirmwareServerChassisConstraint.py
Curlyfingers/ucsmsdk
982ff2d8faa12ffb88e1f8cba98cf5749f05c93d
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/firmware/FirmwareServerChassisConstraint.py
Curlyfingers/ucsmsdk
982ff2d8faa12ffb88e1f8cba98cf5749f05c93d
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/firmware/FirmwareServerChassisConstraint.py
Curlyfingers/ucsmsdk
982ff2d8faa12ffb88e1f8cba98cf5749f05c93d
[ "Apache-2.0" ]
null
null
null
"""This module contains the general information for FirmwareServerChassisConstraint ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class FirmwareServerChassisConstraintConsts: pass class FirmwareServerChassisConstraint(ManagedObject): """This is FirmwareServerChassisConstraint class.""" consts = FirmwareServerChassisConstraintConsts() naming_props = set([u'serverModel']) mo_meta = MoMeta("FirmwareServerChassisConstraint", "firmwareServerChassisConstraint", "server-chassis-constraint-[server_model]", VersionMeta.Version323a, "InputOutput", 0x3f, [], ["read-only"], [u'firmwareConstraints'], [], [None]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version323a, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version323a, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "min_cmc_version": MoPropertyMeta("min_cmc_version", "minCmcVersion", "string", VersionMeta.Version323a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version323a, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version323a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "server_model": MoPropertyMeta("server_model", "serverModel", "string", VersionMeta.Version323a, MoPropertyMeta.NAMING, 0x10, 1, 510, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version323a, MoPropertyMeta.READ_WRITE, 0x20, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), } prop_map = { "childAction": "child_action", "dn": "dn", "minCmcVersion": "min_cmc_version", "rn": "rn", "sacl": "sacl", "serverModel": "server_model", "status": "status", } def __init__(self, parent_mo_or_dn, server_model, **kwargs): self._dirty_mask = 0 self.server_model = server_model self.child_action = None self.min_cmc_version = None self.sacl = None self.status = None ManagedObject.__init__(self, "FirmwareServerChassisConstraint", parent_mo_or_dn, **kwargs)
53.959184
248
0.680408
a1e0b74846bf92de1979de1be368fe7e84b65b1f
652
py
Python
app/mail.py
fboaventura/flask-boilerplate
9f81f1c8d5baddc326a30f64f1d7726dd55c7d4e
[ "MIT" ]
null
null
null
app/mail.py
fboaventura/flask-boilerplate
9f81f1c8d5baddc326a30f64f1d7726dd55c7d4e
[ "MIT" ]
73
2021-03-22T14:24:20.000Z
2022-03-31T23:46:50.000Z
app/mail.py
fboaventura/flask-boilerplate
9f81f1c8d5baddc326a30f64f1d7726dd55c7d4e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # # Code taken from Miguel Grinberg's Mega Flask Tutorial # https://github.com/miguelgrinberg/microblog/blob/master/app/email.py from threading import Thread from flask import current_app from flask_mail import Message from app import mail def send_async_email(app, msg): with app.app_context(): mail.send(msg) def send_email(subject, sender, recipients, text_body, html_body): msg = Message(subject, sender=sender, recipients=recipients) msg.body = text_body msg.html = html_body Thread(target=send_async_email, args=(current_app._get_current_object(), msg)).start()
27.166667
72
0.73773
22e39a467b8f6134c405dd4364d918ed38ca8a79
1,316
py
Python
test/functional/rpc_uptime.py
tradecraftio/tradecraft
a014fea4d4656df67aef19e379f10322386cf6f8
[ "MIT" ]
10
2019-03-08T04:10:37.000Z
2021-08-20T11:55:14.000Z
test/functional/rpc_uptime.py
tradecraftio/tradecraft
a014fea4d4656df67aef19e379f10322386cf6f8
[ "MIT" ]
69
2018-11-09T20:29:29.000Z
2021-10-05T00:08:36.000Z
test/functional/rpc_uptime.py
tradecraftio/tradecraft
a014fea4d4656df67aef19e379f10322386cf6f8
[ "MIT" ]
7
2019-01-21T06:00:18.000Z
2021-12-19T16:18:00.000Z
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Copyright (c) 2010-2021 The Freicoin Developers # # This program is free software: you can redistribute it and/or modify it under # the terms of version 3 of the GNU Affero General Public License as published # by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. """Test the RPC call related to the uptime command. Test corresponds to code in rpc/server.cpp. """ import time from test_framework.test_framework import FreicoinTestFramework class UptimeTest(FreicoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self._test_uptime() def _test_uptime(self): wait_time = 10 self.nodes[0].setmocktime(int(time.time() + wait_time)) assert(self.nodes[0].uptime() >= wait_time) if __name__ == '__main__': UptimeTest().main()
31.333333
79
0.731003
3ea75c0f76c3c032111d20bd197207ac4288a611
244
py
Python
models/networks/traceable_network.py
Mirevi/face-synthesizer-JVRB
3c5774b1c5c981131df21b299389f568502b8ecf
[ "BSD-3-Clause" ]
null
null
null
models/networks/traceable_network.py
Mirevi/face-synthesizer-JVRB
3c5774b1c5c981131df21b299389f568502b8ecf
[ "BSD-3-Clause" ]
null
null
null
models/networks/traceable_network.py
Mirevi/face-synthesizer-JVRB
3c5774b1c5c981131df21b299389f568502b8ecf
[ "BSD-3-Clause" ]
null
null
null
from abc import ABC, abstractmethod from torch import nn class TraceableNetwork(nn.Module, ABC): def __init__(self): super(TraceableNetwork, self).__init__() @abstractmethod def input_noise(self, metadata): pass
18.769231
48
0.70082
e28829675cef1a68c8b6d6f9820c671d0f43f746
7,108
py
Python
maskrcnn/engine/demo_process.py
kSahatova/MULAN-XAI
7f2ede7cc8ad4e772a3cfe7d52f0a710d5c89d5a
[ "MIT" ]
null
null
null
maskrcnn/engine/demo_process.py
kSahatova/MULAN-XAI
7f2ede7cc8ad4e772a3cfe7d52f0a710d5c89d5a
[ "MIT" ]
null
null
null
maskrcnn/engine/demo_process.py
kSahatova/MULAN-XAI
7f2ede7cc8ad4e772a3cfe7d52f0a710d5c89d5a
[ "MIT" ]
null
null
null
# Ke Yan, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, # National Institutes of Health Clinical Center, July 2019 """Procedure in the demo mode""" import os import numpy as np from time import time import torch import nibabel as nib from tqdm import tqdm import cv2 from openpyxl import load_workbook from maskrcnn.config import cfg from maskrcnn.data.datasets.load_ct_img import load_prep_img from maskrcnn.structures.image_list import to_image_list from maskrcnn.data.datasets.evaluation.DeepLesion.post_process import post_process_results from maskrcnn.data.datasets.load_ct_img import windowing, windowing_rev from maskrcnn.utils.draw import draw_results def exec_model(model): """test model on user-provided data, instead of the preset DeepLesion dataset""" import_tag_data() model.eval() device = torch.device(cfg.MODEL.DEVICE) while True: info = "Please input the path of a nifti CT volume >> " while True: path = input(info) if not os.path.exists(path): print('file does not exist!') continue try: print('reading image ...') nifti_data = nib.load(path) break except: print('load nifti file error!') while True: win_sel = input('Window to show, 1:soft tissue, 2:lung, 3: bone >> ') if win_sel not in ['1', '2', '3']: continue win_show = [[-175, 275], [-1500, 500], [-500, 1300]] win_show = win_show[int(win_sel)-1] break vol, spacing, slice_intv = load_preprocess_nifti(nifti_data) slice_num_per_run = max(1, int(float(cfg.TEST.TEST_SLICE_INTV_MM)/slice_intv+.5)) num_total_slice = vol.shape[2] total_time = 0 output_dir = os.path.join(cfg.RESULTS_DIR,path.replace(os.sep, '_')) if not os.path.exists(output_dir): os.mkdir(output_dir) slices_to_process = range(int(slice_num_per_run/2), num_total_slice, slice_num_per_run) msgs_all = [] print('predicting ...') for slice_idx in tqdm(slices_to_process): ims, im_np, im_scale, crop = get_ims(slice_idx, vol, spacing, slice_intv) im_list = to_image_list(ims, cfg.DATALOADER.SIZE_DIVISIBILITY).to(device) start_time = time() with torch.no_grad(): result = model(im_list) result = [o.to("cpu") for o in result] info = {'spacing': spacing, 'im_scale': im_scale} post_process_results(result[0], info) total_time += time() - start_time output_fn = os.path.join(output_dir, '%d.png'%(slice_idx+1)) overlay, msgs = gen_output(im_np, result[0], info, win_show) cv2.imwrite(output_fn, overlay) msgs_all.append('slice %d\r\n' % (slice_idx+1)) for msg in msgs: msgs_all.append(msg+'\r\n') msgs_all.append('\r\n') with open(os.path.join(output_dir, 'results.txt'), 'w') as f: f.writelines(msgs_all) print('result images and text saved to', output_dir) print('processing time: %d ms per slice' % int(1000.*total_time/len(slices_to_process))) def import_tag_data(): cellname = lambda row, col: '%s%d' % (chr(ord('A') + col - 1), row) fn = os.path.join(cfg.PROGDAT_DIR, '%s_%s.xlsx' % ('test_handlabeled', cfg.EXP_NAME)) wb = load_workbook(fn) sheetnames = wb.sheetnames sheet = wb[sheetnames[0]] tags = [] thresolds = [] for p in range(2, sheet.max_row): tags.append(sheet[cellname(p, 1)].value) thresolds.append(float(sheet[cellname(p, 8)].value)) assert tags == cfg.runtime_info.tag_list cfg.runtime_info.tag_sel_val = torch.tensor(thresolds).to(torch.float) def load_preprocess_nifti(data): vol = (data.get_data().astype('int32') + 32768).astype('uint16') # to be consistent with png files # spacing = -data.get_affine()[0,1] # slice_intv = -data.get_affine()[2,2] aff = data.get_affine()[:3, :3] spacing = np.abs(aff[:2, :2]).max() slice_intv = np.abs(aff[2, 2]) # TODO: Ad-hoc code for normalizing the orientation of the volume. # The aim is to make vol[:,:,i] an supine right-left slice # It works for the authors' data, but maybe not suitable for some kinds of nifti files if np.abs(aff[0, 0]) > np.abs(aff[0, 1]): vol = np.transpose(vol, (1, 0, 2)) aff = aff[[1, 0, 2], :] if np.max(aff[0, :2]) > 0: vol = vol[::-1, :, :] if np.max(aff[1, :2]) > 0: vol = vol[:, ::-1, :] return vol, spacing, slice_intv def get_ims(slice_idx, vol, spacing, slice_intv): num_slice = cfg.INPUT.NUM_SLICES * cfg.INPUT.NUM_IMAGES_3DCE im_np, im_scale, crop = load_prep_img(vol, slice_idx, spacing, slice_intv, cfg.INPUT.IMG_DO_CLIP, num_slice=num_slice) im = im_np - cfg.INPUT.PIXEL_MEAN im = torch.from_numpy(im.transpose((2, 0, 1))).to(dtype=torch.float) ims = im.split(cfg.INPUT.NUM_IMAGES_3DCE) return ims, im_np[:, :, int(num_slice/2)+1], im_scale, crop def gen_output(im, result, info, win_show): im = windowing_rev(im, cfg.INPUT.WINDOWING) im = windowing(im, win_show).astype('uint8') im = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB) scale = cfg.TEST.VISUALIZE.SHOW_SCALE im = cv2.resize(im, None, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR) pred = result.bbox.cpu().numpy() labels = result.get_field('labels').cpu().numpy() scores = result.get_field('scores').cpu().numpy() tag_scores = result.get_field('tag_scores').cpu().numpy() tag_predictions = result.get_field('tag_predictions').cpu().numpy() mm2pix = info['im_scale'] / info['spacing'] * scale contours = result.get_field('contour_mm').cpu().numpy() * mm2pix contours = [c[c[:, 0] > 0, :] for c in contours] contours = [c+1*scale for c in contours] # there seems to be a small offset in the mask? recists = result.get_field('recist_mm').cpu().numpy() * mm2pix recists += 1*scale # there seems to be a small offset in the mask? diameters = result.get_field('diameter_mm').cpu().numpy() pred *= scale overlay, msgs = draw_results(im, pred, labels, scores, tag_predictions=tag_predictions, tag_scores=tag_scores, contours=contours, recists=recists, diameters=diameters) overlay = print_msg_on_img(overlay, msgs) return overlay, msgs def print_msg_on_img(overlay, msgs): txt_height = 20 msg_im = np.zeros((txt_height*cfg.TEST.VISUALIZE.DETECTIONS_PER_IMG+10, overlay.shape[1], 3), dtype=np.uint8) for p in range(len(msgs)): msg = msgs[p].split(' | ') msg = msg[0][7:10] + msg[1][:-2] + ': ' + msg[2] cv2.putText(msg_im, msg, (0, txt_height*(p+1)), cv2.FONT_HERSHEY_DUPLEX, fontScale=.5, color=(255,255,255), thickness=1) return np.vstack((overlay, msg_im))
40.617143
114
0.626055
4e11ed63bbfdd2dfd308c23289df476e23bca3bc
3,712
py
Python
src/weblayer/wsgi.py
thruflo/weblayer
24d74f71cedd3855911477ed4952a311c83b0b5f
[ "Unlicense" ]
3
2016-07-04T15:27:12.000Z
2021-04-30T22:46:13.000Z
src/weblayer/wsgi.py
thruflo/weblayer
24d74f71cedd3855911477ed4952a311c83b0b5f
[ "Unlicense" ]
null
null
null
src/weblayer/wsgi.py
thruflo/weblayer
24d74f71cedd3855911477ed4952a311c83b0b5f
[ "Unlicense" ]
3
2015-09-16T08:55:30.000Z
2018-09-23T11:06:01.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :py:mod:`weblayer.wsgi` provides :py:class:`WSGIApplication`, an implementation of :py:class:`~weblayer.interfaces.IWSGIApplication` that adapts :py:class:`~weblayer.interfaces.ISettings` and an :py:class:`~weblayer.interfaces.IPathRouter`:: >>> settings = {} >>> path_router = object() To provide a callable `WSGI`_ application:: >>> application = WSGIApplication(settings, path_router) .. _`WSGI`: http://www.python.org/dev/peps/pep-0333/ """ __all__ = [ 'WSGIApplication' ] from zope.component import adapts from zope.interface import implements from base import Request, Response from interfaces import IPathRouter, ISettings, IWSGIApplication class WSGIApplication(object): adapts(ISettings, IPathRouter) implements(IWSGIApplication) def __init__( self, settings, path_router, request_class=None, response_class=None, default_content_type='text/html; charset=UTF-8' ): """ """ self._settings = settings self._path_router = path_router if request_class is None: self._Request = Request else: self._Request = request_class if response_class is None: self._Response = Response else: self._Response = response_class self._content_type = default_content_type def __call__(self, environ, start_response): """ Checks ``self._path_router`` for a :py:meth:`~weblayer.interfaces.IPathRouter.match` against the incoming :py:attr:`~weblayer.interfaces.IRequest.path`:: handler_class, args, kwargs = self._path_router.match(request.path) If ``handler_class`` is not ``None``, instantiates the :py:class:`~weblayer.interfaces.IRequestHandler`:: handler = handler_class(request, response, self._settings) And calls it with ``environ['REQUEST_METHOD']`` and the ``args`` and ``kwargs`` from :py:meth:`~weblayer.interfaces.IPathRouter.match`:: response = handler(environ['REQUEST_METHOD'], *args, **kwargs) .. note:: If calling the handler errors (which is shouldn't normally do, as the handler *should* catch the error), returns a minimalist 500 response. .. note:: If no match is found, returns a minimalist 404 response. To handle 404 responses more elegantly, define a catch all URL handler. """ request = self._Request(environ) response = self._Response( request=request, status=200, content_type=self._content_type ) handler_class, args, kwargs = self._path_router.match(request.path) if handler_class is not None: handler = handler_class(request, response, self._settings) try: # handler *should* catch all exceptions response = handler(environ['REQUEST_METHOD'], *args, **kwargs) except Exception: # unless deliberately bubbling them up if environ.get('paste.throw_errors', False): raise else: response.status = 500 else: # to handle 404 nicely, define a catch all url handler response.status = 404 return response(environ, start_response)
32
81
0.579741
8855ef314d452894a0f7389beba59889d976e63d
5,781
py
Python
ProductDataCompiler/src/main/com/rowley/shavekeeper/productdatacompiler/utils/ModelDeDuper.py
alphonzo79/ShaveKeeper
e6dc98d45caa304db45e660c5d79902a62f2757c
[ "MIT" ]
null
null
null
ProductDataCompiler/src/main/com/rowley/shavekeeper/productdatacompiler/utils/ModelDeDuper.py
alphonzo79/ShaveKeeper
e6dc98d45caa304db45e660c5d79902a62f2757c
[ "MIT" ]
null
null
null
ProductDataCompiler/src/main/com/rowley/shavekeeper/productdatacompiler/utils/ModelDeDuper.py
alphonzo79/ShaveKeeper
e6dc98d45caa304db45e660c5d79902a62f2757c
[ "MIT" ]
null
null
null
from src.main.com.rowley.shavekeeper.productdatacompiler.models.ProductConsolidator import ProductConsolidator from src.main.com.rowley.shavekeeper.productdatacompiler.models.ProductModelByBrandMap import ProductModelByBrandMap from src.main.com.rowley.shavekeeper.productdatacompiler.web.FileHelper import load_consolidator, save_consolidator, \ save_reconciler, load_file, save_file reconciled_json = load_file("Reconciler2_Reconciled", "../compiled_files/") reconciled = ProductModelByBrandMap.from_json(reconciled_json) consolidated_json = load_file("ConsolidatedProducts2", "../compiled_files/") base_consolidated = ProductConsolidator.from_json(consolidated_json) deduped = ProductConsolidator() total_pre = 0 total_post = 0 for brand in base_consolidated.pre_shaves: for model in base_consolidated.pre_shaves[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_pre_shave = base_consolidated.pre_shaves[brand][model] reconciled_pre_shave = reconciled.brands[brand][model] consolidated_pre_shave["brand"] = reconciled_pre_shave["brand"] consolidated_pre_shave["model"] = reconciled_pre_shave["model"] deduped.add_pre_shave(consolidated_pre_shave) for brand in base_consolidated.soaps: for model in base_consolidated.soaps[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_soap = base_consolidated.soaps[brand][model] reconciled_soap = reconciled.brands[brand][model] consolidated_soap["brand"] = reconciled_soap["brand"] consolidated_soap["model"] = reconciled_soap["model"] deduped.add_soap(consolidated_soap) for brand in base_consolidated.brushes: for model in base_consolidated.brushes[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_brush = base_consolidated.brushes[brand][model] reconciled_brush = reconciled.brands[brand][model] consolidated_brush["brand"] = reconciled_brush["brand"] consolidated_brush["model"] = reconciled_brush["model"] deduped.add_brush(consolidated_brush) for brand in base_consolidated.razors: for model in base_consolidated.razors[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_razor = base_consolidated.razors[brand][model] reconciled_razor = reconciled.brands[brand][model] consolidated_razor["brand"] = reconciled_razor["brand"] consolidated_razor["model"] = reconciled_razor["model"] deduped.add_razor(consolidated_razor) for brand in base_consolidated.blades: for model in base_consolidated.blades[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_blade = base_consolidated.blades[brand][model] reconciled_blade = reconciled.brands[brand][model] consolidated_blade["brand"] = reconciled_blade["brand"] consolidated_blade["model"] = reconciled_blade["model"] deduped.add_blade(consolidated_blade) for brand in base_consolidated.post_shaves: for model in base_consolidated.post_shaves[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_post_shave = base_consolidated.post_shaves[brand][model] reconciled_post_shave = reconciled.brands[brand][model] consolidated_post_shave["brand"] = reconciled_post_shave["brand"] consolidated_post_shave["model"] = reconciled_post_shave["model"] deduped.add_post_shave(consolidated_post_shave) for brand in base_consolidated.after_shaves: for model in base_consolidated.after_shaves[brand]: total_pre += 1 if brand in reconciled.brands and model in reconciled.brands[brand]: # print "handling brand: " + brand + " model: " + model consolidated_after_shave = base_consolidated.after_shaves[brand][model] reconciled_after_shave = reconciled.brands[brand][model] consolidated_after_shave["brand"] = reconciled_after_shave["brand"] consolidated_after_shave["model"] = reconciled_after_shave["model"] deduped.add_after_shave(consolidated_after_shave) for brand in deduped.pre_shaves: for model in deduped.pre_shaves[brand]: total_post += 1 for brand in deduped.soaps: for model in deduped.soaps[brand]: total_post += 1 for brand in deduped.brushes: for model in deduped.brushes[brand]: total_post += 1 for brand in deduped.razors: for model in deduped.razors[brand]: total_post += 1 for brand in deduped.blades: for model in deduped.blades[brand]: total_post += 1 for brand in deduped.post_shaves: for model in deduped.post_shaves[brand]: total_post += 1 for brand in deduped.after_shaves: for model in deduped.after_shaves[brand]: total_post += 1 print "Total Pre: " + str(total_pre) print "Total Post: " + str(total_post) save_file(deduped, "ConsolidatedProducts3", "../compiled_files/")
45.880952
118
0.700052
7b2a6fbcc3f0437df0a5c25d4209a907aa89c15e
1,707
py
Python
src/python/pants/backend/native/tasks/cpp_compile.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/native/tasks/cpp_compile.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/native/tasks/cpp_compile.py
ghthor/pants
450de702414f87f563081ddefaefd8a554de07a3
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals from pants.backend.native.config.environment import CppCompiler from pants.backend.native.subsystems.native_compile_settings import CppCompileSettings from pants.backend.native.subsystems.native_toolchain import NativeToolchain from pants.backend.native.targets.native_library import CppLibrary from pants.backend.native.tasks.native_compile import NativeCompile from pants.util.memo import memoized_property from pants.util.objects import SubclassesOf class CppCompile(NativeCompile): # Compile only C++ library targets. source_target_constraint = SubclassesOf(CppLibrary) workunit_label = 'cpp-compile' @classmethod def implementation_version(cls): return super(CppCompile, cls).implementation_version() + [('CppCompile', 0)] @classmethod def subsystem_dependencies(cls): return super(CppCompile, cls).subsystem_dependencies() + ( CppCompileSettings.scoped(cls), NativeToolchain.scoped(cls), ) @memoized_property def _toolchain(self): return NativeToolchain.scoped_instance(self) def get_compile_settings(self): return CppCompileSettings.scoped_instance(self) def get_compiler(self): return self._request_single(CppCompiler, self._toolchain) # FIXME(#5951): don't have any command-line args in the task or in the subsystem -- rather, # subsystem options should be used to populate an `Executable` which produces its own arguments. def extra_compile_args(self): return ['-x', 'c++', '-std=c++11']
35.5625
98
0.783831
9ba02eea4fbdbad142e93d071e4a2f525e28b762
5,091
py
Python
cogdl/tasks/node_classification.py
kwyoke/cogdl
df919b4fc7db40f8b035665edbcc7ed59f9d448e
[ "MIT" ]
null
null
null
cogdl/tasks/node_classification.py
kwyoke/cogdl
df919b4fc7db40f8b035665edbcc7ed59f9d448e
[ "MIT" ]
null
null
null
cogdl/tasks/node_classification.py
kwyoke/cogdl
df919b4fc7db40f8b035665edbcc7ed59f9d448e
[ "MIT" ]
null
null
null
import copy import random from typing import Optional import numpy as np import torch import torch.nn.functional as F from tqdm import tqdm from cogdl import options from cogdl.datasets import build_dataset from cogdl.models import build_model from cogdl.models.supervised_model import SupervisedHomogeneousNodeClassificationModel from cogdl.trainers.supervised_trainer import ( SupervisedHomogeneousNodeClassificationTrainer, ) from cogdl.trainers.sampled_trainer import SampledTrainer from . import BaseTask, register_task @register_task("node_classification") class NodeClassification(BaseTask): """Node classification task.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" # fmt: off # parser.add_argument("--num-features", type=int) # fmt: on def __init__( self, args, dataset=None, model: Optional[SupervisedHomogeneousNodeClassificationModel] = None, ): super(NodeClassification, self).__init__(args) self.args = args self.model_name = args.model self.device = args.device_id[0] if not args.cpu else "cpu" dataset = build_dataset(args) if dataset is None else dataset self.dataset = dataset self.data = dataset[0] args.num_features = dataset.num_features args.num_classes = dataset.num_classes args.num_nodes = dataset.data.x.shape[0] self.model: SupervisedHomogeneousNodeClassificationModel = build_model(args) if model is None else model self.trainer: Optional[ SupervisedHomogeneousNodeClassificationTrainer ] = self.model.get_trainer(NodeClassification, self.args)( self.args ) if self.model.get_trainer( NodeClassification, self.args ) else None if not self.trainer: self.optimizer = torch.optim.Adam( self.model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) if not hasattr(self.model, "get_optimizer") else self.model.get_optimizer(args) self.data.apply(lambda x: x.to(self.device)) self.model: SupervisedHomogeneousNodeClassificationModel = self.model.to( self.device ) self.patience = args.patience self.max_epoch = args.max_epoch def train(self): if self.trainer: # if issubclass(type(self.trainer), SampledTrainer): # self.model = self.trainer.fit(self.model, self.dataset) # else: # return dict(Acc=self.trainer.fit(self.model, self.dataset.data)) result = self.trainer.fit(self.model, self.dataset) if isinstance(result, torch.nn.Module): self.model = result else: return result else: epoch_iter = tqdm(range(self.max_epoch)) patience = 0 best_score = 0 best_loss = np.inf max_score = 0 min_loss = np.inf best_model = copy.deepcopy(self.model) for epoch in epoch_iter: self._train_step() train_acc, _ = self._test_step(split="train") val_acc, val_loss = self._test_step(split="val") epoch_iter.set_description( f"Epoch: {epoch:03d}, Train: {train_acc:.4f}, Val: {val_acc:.4f}" ) if val_loss <= min_loss or val_acc >= max_score: if val_loss <= best_loss: # and val_acc >= best_score: best_loss = val_loss best_score = val_acc best_model = copy.deepcopy(self.model) min_loss = np.min((min_loss, val_loss)) max_score = np.max((max_score, val_acc)) patience = 0 else: patience += 1 if patience == self.patience: epoch_iter.close() break print(f"Valid accurracy = {best_score}") self.model = best_model test_acc, _ = self._test_step(split="test") val_acc, _ = self._test_step(split="val") print(f"Test accuracy = {test_acc}") return dict(Acc=test_acc, ValAcc=val_acc) def _train_step(self): self.model.train() self.optimizer.zero_grad() self.model.loss(self.data).backward() self.optimizer.step() def _test_step(self, split="val", logits=None): self.model.eval() logits = logits if logits else self.model.predict(self.data) if split == "train": mask = self.data.train_mask elif split == "val": mask = self.data.val_mask else: mask = self.data.test_mask loss = F.nll_loss(logits[mask], self.data.y[mask]).item() pred = logits[mask].max(1)[1] acc = pred.eq(self.data.y[mask]).sum().item() / mask.sum().item() return acc, loss
36.625899
112
0.593989
cbb80e41628cb773c1a6ead822e6dff65b354e12
3,466
py
Python
app/logic/bluesteel/migrations/0001_initial.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
10
2017-01-13T06:28:04.000Z
2020-11-18T13:00:26.000Z
app/logic/bluesteel/migrations/0001_initial.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
null
null
null
app/logic/bluesteel/migrations/0001_initial.py
imvu/bluesteel
ab52133249a693b3cd2d8593c5d47408a3b0fce6
[ "MIT" ]
2
2018-03-29T14:10:53.000Z
2019-11-20T08:21:57.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('gitrepo', '0001_initial'), ('commandrepo', '0001_initial'), ] operations = [ migrations.CreateModel( name='BluesteelCommandEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('order', models.IntegerField(default=0)), ('command', models.CharField(default=b'', max_length=255)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='BluesteelCommandSetEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('command_set_type', models.IntegerField(default=0, choices=[(0, b'CLONE'), (1, b'FETCH')])), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='BluesteelLayoutEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default=b'', max_length=50)), ('archive', models.CharField(default=b'', max_length=50)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='BluesteelProjectEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(default=b'', max_length=50)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('command_group', models.ForeignKey(related_name='bluesteel_command_group', to='commandrepo.CommandGroupEntry')), ('git_project', models.ForeignKey(related_name='bluesteel_git_project', to='gitrepo.GitProjectEntry')), ('layout', models.ForeignKey(related_name='bluesteel_layout', to='bluesteel.BluesteelLayoutEntry')), ], options={ }, bases=(models.Model,), ), migrations.AddField( model_name='bluesteelcommandsetentry', name='bluesteel_project', field=models.ForeignKey(related_name='bluesteel_project', to='bluesteel.BluesteelProjectEntry'), preserve_default=True, ), migrations.AddField( model_name='bluesteelcommandentry', name='bluesteel_command_set', field=models.ForeignKey(related_name='bluesteel_command_set', to='bluesteel.BluesteelCommandSetEntry'), preserve_default=True, ), ]
42.790123
129
0.577323
6dea04f37ca647e3e26ff189cf799bc4d1fea796
1,732
py
Python
_2020/toboggan/test_toboggan.py
dcsparkes/adventofcode
e8bf8cef1d8757ad8981dde8dc76f8f7ec396be5
[ "Unlicense" ]
null
null
null
_2020/toboggan/test_toboggan.py
dcsparkes/adventofcode
e8bf8cef1d8757ad8981dde8dc76f8f7ec396be5
[ "Unlicense" ]
null
null
null
_2020/toboggan/test_toboggan.py
dcsparkes/adventofcode
e8bf8cef1d8757ad8981dde8dc76f8f7ec396be5
[ "Unlicense" ]
null
null
null
import unittest import toboggan class TestToboggan(unittest.TestCase): def test_testInput_default(self): self.assertEqual(7, toboggan.traverse("test.txt")) def test_testInput_slope0(self): self.assertEqual(2, toboggan.traverse("test.txt", (1, 1))) def test_testInput_slope1(self): self.assertEqual(7, toboggan.traverse("test.txt", (1, 3))) def test_testInput_slope2(self): self.assertEqual(3, toboggan.traverse("test.txt", (1, 5))) def test_testInput_slope3(self): self.assertEqual(4, toboggan.traverse("test.txt", (1, 7))) def test_testInput_slope4(self): self.assertEqual(2, toboggan.traverse("test.txt", (2, 1))) def test_Input_default(self): self.assertEqual(254, toboggan.traverse("input.txt")) def test_Input_slope0(self): self.assertEqual(63, toboggan.traverse("input.txt", (1, 1))) def test_Input_slope1(self): self.assertEqual(254, toboggan.traverse("input.txt", (1, 3))) def test_Input_slope2(self): self.assertEqual(62, toboggan.traverse("input.txt", (1, 5))) def test_Input_slope3(self): self.assertEqual(56, toboggan.traverse("input.txt", (1, 7))) def test_Input_slope4(self): self.assertEqual(30, toboggan.traverse("input.txt", (2, 1))) def test_Input_multipleSlopes(self): multiple = toboggan.traverse("input.txt", (1, 1)) multiple *= toboggan.traverse("input.txt", (1, 3)) multiple *= toboggan.traverse("input.txt", (1, 5)) multiple *= toboggan.traverse("input.txt", (1, 7)) multiple *= toboggan.traverse("input.txt", (2, 1)) self.assertEqual(30, multiple) if __name__ == '__main__': unittest.main()
32.679245
69
0.654734
79b2be827e0b168f30d9cba7e0bd55ff89b9fe73
256
py
Python
comment/urls.py
HaibaraAi123/DjangoBlog-chenfeng123.cn
ca5a90a4ad91e383a5ff25131488527f5733e216
[ "MIT" ]
1
2020-08-06T05:50:26.000Z
2020-08-06T05:50:26.000Z
comment/urls.py
HaibaraAi123/DjangoBlog-chenfeng123.cn
ca5a90a4ad91e383a5ff25131488527f5733e216
[ "MIT" ]
null
null
null
comment/urls.py
HaibaraAi123/DjangoBlog-chenfeng123.cn
ca5a90a4ad91e383a5ff25131488527f5733e216
[ "MIT" ]
null
null
null
from django.urls import path from . import views app_name = 'comment' urlpatterns = [ path('<int:article_id>', views.post_comment, name='post_comment'), path('<int:article_id>/<int:parent_comment_id', views.post_comment, name='reply_comment'), ]
25.6
94
0.726563
7c5ea6b74421ee2a8ecb58488b889438d43c83b5
1,398
py
Python
aalh_iit_charlesmensingcollection/debug-find-duplicates.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_charlesmensingcollection/debug-find-duplicates.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
aalh_iit_charlesmensingcollection/debug-find-duplicates.py
johndewees/iitmigration
4dadfbecda719d6e7d60af076a231aedec3c862f
[ "Unlicense" ]
null
null
null
from openpyxl import load_workbook filename = 'aalh_iit_charlesmensingcollection.xlsx' wb = load_workbook(filename) ws = wb['Metadata Template'] minimumcol = 43 maximumcol = 43 minimumrow = 7 maximumrow = 703 iterationrow = 7 identifiercol = 25 filenamecol = 43 countfilename = dict() countidentifier = dict() for row in ws.iter_rows(min_row=minimumrow, min_col=minimumcol, max_row=maximumrow, max_col=maximumcol): for cell in row: testvar1 = ws.cell(row=iterationrow, column=filenamecol).value if testvar1 not in countfilename: countfilename[testvar1] = 1 else: countfilename[testvar1] = countfilename[testvar1] + 1 for cell in row: testvar2 = ws.cell(row=iterationrow, column=identifiercol).value print(testvar2) try: if testvar2 not in countfilename: countidentifier[testvar2] = 1 else: countidentifier[testvar2] = countidentifier[testvar2] + 1 except: continue iterationrow = iterationrow + 1 for file1 in countfilename: if countfilename[file1] > 1: print('Duplicate File Names:') print (file1, countfilename[file1]) for file2 in countidentifier: if countidentifier[file2] > 1: print('Duplicate Identifiers:') print(file2, countidentifier[file2])
31.772727
105
0.652361
93f57090596c309c842c33b3ba9eab6e5736dbef
569
py
Python
main/model/album.py
lipis/the-smallest-creature
3079046a574bb4bae528b3ab467d34f24b9bd5c7
[ "MIT" ]
1
2016-01-01T20:56:32.000Z
2016-01-01T20:56:32.000Z
main/model/album.py
lipis/the-smallest-creature
3079046a574bb4bae528b3ab467d34f24b9bd5c7
[ "MIT" ]
null
null
null
main/model/album.py
lipis/the-smallest-creature
3079046a574bb4bae528b3ab467d34f24b9bd5c7
[ "MIT" ]
null
null
null
# coding: utf-8 from __future__ import absolute_import from google.appengine.ext import ndb from api import fields import model class Album(model.Base): name = ndb.StringProperty(required=True) description = ndb.StringProperty(verbose_name='Description (Markdown)') release_date = ndb.DateProperty(required=True) tags = ndb.StringProperty(repeated=True) FIELDS = { 'name': fields.String, 'description': fields.String, 'release_date': fields.DateTime, 'tags': fields.List(fields.String), } FIELDS.update(model.Base.FIELDS)
22.76
73
0.725835
b6c188fef319bed9c79a8d9a0b8e322a3667707c
33,841
py
Python
uavcan/dsdl/parser.py
eckel-formlabs/pyuavcan
9c3a0d09dc685cdb494b7fc2080986344d6a13e0
[ "MIT" ]
null
null
null
uavcan/dsdl/parser.py
eckel-formlabs/pyuavcan
9c3a0d09dc685cdb494b7fc2080986344d6a13e0
[ "MIT" ]
1
2018-05-29T14:16:50.000Z
2018-05-29T14:16:50.000Z
uavcan/dsdl/parser.py
eckel-formlabs/pyuavcan
9c3a0d09dc685cdb494b7fc2080986344d6a13e0
[ "MIT" ]
2
2018-05-10T16:48:41.000Z
2018-12-03T16:18:59.000Z
# # Copyright (C) 2014-2015 UAVCAN Development Team <uavcan.org> # # This software is distributed under the terms of the MIT License. # # Author: Pavel Kirienko <pavel.kirienko@zubax.com> # Ben Dyer <ben_dyer@mac.com> # from __future__ import division, absolute_import, print_function, unicode_literals import os import re from functools import lru_cache from logging import getLogger from io import StringIO from .signature import Signature, compute_signature from .common import DsdlException, pretty_filename, bytes_from_crc64 from .type_limits import get_unsigned_integer_range, get_signed_integer_range, get_float_range # Python 2.7 compatibility try: # noinspection PyUnresolvedReferences,PyShadowingBuiltins str = unicode # @ReservedAssignment @UndefinedVariable except NameError: pass try: # noinspection PyUnresolvedReferences,PyUnboundLocalVariable long(1) # @UndefinedVariable except NameError: long = int # @ReservedAssignment MAX_FULL_TYPE_NAME_LEN = 80 SERVICE_DATA_TYPE_ID_MAX = 255 MESSAGE_DATA_TYPE_ID_MAX = 65535 logger = getLogger(__name__) class Type: """ Common type description. The specialized type description classes inherit from this one. Fields: full_name Full type name string, e.g. "uavcan.protocol.NodeStatus" category Any CATEGORY_* """ CATEGORY_PRIMITIVE = 0 CATEGORY_ARRAY = 1 CATEGORY_COMPOUND = 2 CATEGORY_VOID = 3 def __init__(self, full_name, category): self.full_name = str(full_name) self.category = category def __str__(self): return self.get_normalized_definition() def get_data_type_signature(self): return None def get_normalized_definition(self): raise NotImplementedError('Pure virtual method') def get_max_bitlen(self): raise NotImplementedError('Pure virtual method') def get_min_bitlen(self): raise NotImplementedError('Pure virtual method') __repr__ = __str__ class PrimitiveType(Type): """ Primitive type description, e.g. bool or float16. Fields: kind Any KIND_* bitlen Bit length, 1 to 64 cast_mode Any CAST_MODE_* value_range Tuple containing min and max values: (min, max) """ KIND_BOOLEAN = 0 KIND_UNSIGNED_INT = 1 KIND_SIGNED_INT = 2 KIND_FLOAT = 3 CAST_MODE_SATURATED = 0 CAST_MODE_TRUNCATED = 1 def __init__(self, kind, bitlen, cast_mode): self.kind = kind self.bitlen = bitlen self.cast_mode = cast_mode Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_PRIMITIVE) self.value_range = { PrimitiveType.KIND_BOOLEAN: get_unsigned_integer_range, PrimitiveType.KIND_UNSIGNED_INT: get_unsigned_integer_range, PrimitiveType.KIND_SIGNED_INT: get_signed_integer_range, PrimitiveType.KIND_FLOAT: get_float_range }[self.kind](bitlen) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" cast_mode = 'saturated' if self.cast_mode == PrimitiveType.CAST_MODE_SATURATED else 'truncated' primary_type = { PrimitiveType.KIND_BOOLEAN: 'bool', PrimitiveType.KIND_UNSIGNED_INT: 'uint' + str(self.bitlen), PrimitiveType.KIND_SIGNED_INT: 'int' + str(self.bitlen), PrimitiveType.KIND_FLOAT: 'float' + str(self.bitlen) }[self.kind] return cast_mode + ' ' + primary_type def validate_value_range(self, value): """ Args: value: Throws DsdlException if this value cannot be represented by this type. """ low, high = self.value_range if not low <= value <= high: error('Value [%s] is out of range %s', value, self.value_range) def get_max_bitlen(self): """Returns type bit length.""" return self.bitlen def get_min_bitlen(self): """Returns type bit length.""" return self.bitlen class ArrayType(Type): """ Array type description, e.g. float32[8], uint12[<34]. Fields: value_type Description of the array value type; the type of this field inherits Type, e.g. PrimitiveType mode Any MODE_* max_size Maximum number of elements in the array """ MODE_STATIC = 0 MODE_DYNAMIC = 1 def __init__(self, value_type, mode, max_size): self.value_type = value_type self.mode = mode self.max_size = max_size Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_ARRAY) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" typedef = self.value_type.get_normalized_definition() return ('%s[<=%d]' if self.mode == ArrayType.MODE_DYNAMIC else '%s[%d]') % (typedef, self.max_size) def get_max_bitlen(self): """Returns total maximum bit length of the array, including length field if applicable.""" payload_max_bitlen = self.max_size * self.value_type.get_max_bitlen() return { self.MODE_DYNAMIC: payload_max_bitlen + self.max_size.bit_length(), self.MODE_STATIC: payload_max_bitlen }[self.mode] def get_min_bitlen(self): if self.mode == self.MODE_STATIC: return self.value_type.get_min_bitlen() * self.max_size else: return 0 # Considering TAO @lru_cache() def get_data_type_signature(self): return self.value_type.get_data_type_signature() @property def is_string_like(self): return self.mode == self.MODE_DYNAMIC and \ self.value_type.category == Type.CATEGORY_PRIMITIVE and \ self.value_type.bitlen == 8 # noinspection PyAbstractClass class CompoundType(Type): """ Compound type description, e.g. uavcan.protocol.NodeStatus. Fields: source_file Path to the DSDL definition file for this type default_dtid Default Data Type ID, if specified, None otherwise kind Any KIND_* source_text Raw DSDL definition text (as is, with comments and the original formatting) Fields if kind == KIND_SERVICE: request_fields Request struct field list, the type of each element is Field response_fields Response struct field list request_constants Request struct constant list, the type of each element is Constant response_constants Response struct constant list request_union Boolean indicating whether the request struct is a union response_union Boolean indicating whether the response struct is a union Fields if kind == KIND_MESSAGE: fields Field list, the type of each element is Field constants Constant list, the type of each element is Constant union Boolean indicating whether the message struct is a union Extra methods if kind == KIND_SERVICE: get_max_bitlen_request() Returns maximum total bit length of the serialized request struct get_max_bitlen_response() Same for the response struct get_min_bitlen_request() Returns minimum total bit length of the serialized request struct get_min_bitlen_response() Same for the response struct Extra methods if kind == KIND_MESSAGE: get_max_bitlen() Returns maximum total bit length of the serialized struct get_min_bitlen() Returns minimum total bit length of the serialized struct """ KIND_SERVICE = 0 KIND_MESSAGE = 1 def __init__(self, full_name, kind, source_file, default_dtid, source_text): Type.__init__(self, full_name, Type.CATEGORY_COMPOUND) self.source_file = source_file self.default_dtid = default_dtid self.kind = kind self.source_text = source_text def compute_max_bitlen(flds, union): if len(flds) == 0: return 0 lens = [x.type.get_max_bitlen() for x in flds] if union: return max(lens) + max(len(flds) - 1, 1).bit_length() else: return sum(lens) def compute_min_bitlen(flds, union): if len(flds) == 0: return 0 lens = [x.type.get_min_bitlen() for x in flds] if union: return min(lens) + max(len(flds) - 1, 1).bit_length() else: return sum(lens) if kind == CompoundType.KIND_SERVICE: self.request_fields = [] self.response_fields = [] self.request_constants = [] self.response_constants = [] self.get_max_bitlen_request = lambda: compute_max_bitlen(self.request_fields, self.request_union) self.get_max_bitlen_response = lambda: compute_max_bitlen(self.response_fields, self.response_union) self.get_min_bitlen_request = lambda: compute_min_bitlen(self.request_fields, self.request_union) self.get_min_bitlen_response = lambda: compute_min_bitlen(self.response_fields, self.response_union) self.request_union = False self.response_union = False elif kind == CompoundType.KIND_MESSAGE: self.fields = [] self.constants = [] self.get_max_bitlen = lambda: compute_max_bitlen(self.fields, self.union) self.get_min_bitlen = lambda: compute_min_bitlen(self.fields, self.union) self.union = False else: error('Compound type of unknown kind [%s]', kind) def _instantiate(self, *args, **kwargs): # This is a stub pass def __call__(self, *args, **kwargs): return self._instantiate(*args, **kwargs) def get_dsdl_signature_source_definition(self): """ Returns normalized DSDL definition text. Please refer to the specification for details about normalized DSDL definitions. """ txt = StringIO() txt.write(self.full_name + '\n') def adjoin(attrs): return txt.write('\n'.join(x.get_normalized_definition() for x in attrs) + '\n') if self.kind == CompoundType.KIND_SERVICE: if self.request_union: txt.write('\n@union\n') adjoin(self.request_fields) txt.write('\n---\n') if self.response_union: txt.write('\n@union\n') adjoin(self.response_fields) elif self.kind == CompoundType.KIND_MESSAGE: if self.union: txt.write('\n@union\n') adjoin(self.fields) else: error('Compound type of unknown kind [%s]', self.kind) return txt.getvalue().strip().replace('\n\n\n', '\n').replace('\n\n', '\n') def get_dsdl_signature(self): """ Computes DSDL signature of this type. Please refer to the specification for details about signatures. """ return compute_signature(self.get_dsdl_signature_source_definition()) def get_normalized_definition(self): """Returns full type name string, e.g. 'uavcan.protocol.NodeStatus'""" return self.full_name @lru_cache() def get_data_type_signature(self): """ Computes data type signature of this type. The data type signature is guaranteed to match only if all nested data structures are compatible. Please refer to the specification for details about signatures. """ sig = Signature(self.get_dsdl_signature()) fields = self.request_fields + self.response_fields if self.kind == CompoundType.KIND_SERVICE else self.fields for field in fields: field_sig = field.type.get_data_type_signature() if field_sig is not None: sig_value = sig.get_value() sig.add(bytes_from_crc64(field_sig)) sig.add(bytes_from_crc64(sig_value)) return sig.get_value() class VoidType(Type): """ Void type description, e.g. void2. Fields: bitlen Bit length, 1 to 64 """ def __init__(self, bitlen): self.bitlen = bitlen Type.__init__(self, self.get_normalized_definition(), Type.CATEGORY_VOID) def get_normalized_definition(self): """Please refer to the specification for details about normalized definitions.""" return 'void' + str(self.bitlen) def get_max_bitlen(self): """Returns type bit length.""" return self.bitlen def get_min_bitlen(self): """Returns type bit length.""" return self.bitlen class Attribute: """ Base class of an attribute description. Fields: type Attribute type description, the type of this field inherits the class Type, e.g. PrimitiveType name Attribute name string """ # noinspection PyShadowingBuiltins def __init__(self, type, name): # @ReservedAssignment self.type = type self.name = name def __str__(self): return self.get_normalized_definition() def get_normalized_definition(self): raise NotImplementedError('Pure virtual method') __repr__ = __str__ class Field(Attribute): """ Field description. Does not add new fields to Attribute. If type is void, the name will be None. """ def get_normalized_definition(self): if self.type.category == self.type.CATEGORY_VOID: return self.type.get_normalized_definition() else: return '%s %s' % (self.type.get_normalized_definition(), self.name) class Constant(Attribute): """ Constant description. Fields: init_expression Constant initialization expression string, e.g. "2+2" or "'\x66'" value Computed result of the initialization expression in the final type (e.g. int, float) string_value Computed result of the initialization expression as string """ # noinspection PyShadowingBuiltins def __init__(self, type, name, init_expression, value): # @ReservedAssignment Attribute.__init__(self, type, name) self.init_expression = init_expression self.value = value self.string_value = repr(value) if isinstance(value, long): self.string_value = self.string_value.replace('L', '') def get_normalized_definition(self): return '%s %s = %s' % (self.type.get_normalized_definition(), self.name, self.init_expression) class Parser: """ DSDL parser logic. Do not use this class directly; use the helper function instead. """ def __init__(self, search_dirs): self.search_dirs = validate_search_directories(search_dirs) def _namespace_from_filename(self, filename): search_dirs = sorted(map(os.path.abspath, self.search_dirs)) # Nested last filename = os.path.abspath(filename) for dirname in search_dirs: root_ns = dirname.split(os.path.sep)[-1] if filename.startswith(dirname): dir_len = len(dirname) basename_len = len(os.path.basename(filename)) ns = filename[dir_len:-basename_len] ns = (root_ns + '.' + ns.replace(os.path.sep, '.').strip('.')).strip('.') validate_namespace_name(ns) return ns error('File [%s] was not found in search directories', filename) def _full_typename_and_dtid_from_filename(self, filename): basename = os.path.basename(filename) items = basename.split('.') if (len(items) != 2 and len(items) != 3) or items[-1] != 'uavcan': error('Invalid file name [%s]; expected pattern: [<default-dtid>.]<short-type-name>.uavcan', basename) if len(items) == 2: default_dtid, name = None, items[0] else: default_dtid, name = items[0], items[1] try: default_dtid = int(default_dtid) except ValueError: error('Invalid default data type ID [%s]', default_dtid) full_name = self._namespace_from_filename(filename) + '.' + name validate_compound_type_full_name(full_name) return full_name, default_dtid def _locate_compound_type_definition(self, referencing_filename, typename): def locate_namespace_directory(ns): namespace_components = ns.split('.') root_namespace, sub_namespace_components = namespace_components[0], namespace_components[1:] for d in self.search_dirs: if d.split(os.path.sep)[-1] == root_namespace: return os.path.join(d, *sub_namespace_components) error('Unknown namespace [%s]', ns) if '.' not in typename: current_namespace = self._namespace_from_filename(referencing_filename) full_typename = current_namespace + '.' + typename else: full_typename = typename namespace = '.'.join(full_typename.split('.')[:-1]) directory = locate_namespace_directory(namespace) logger.debug('Searching for [%s] in [%s]', full_typename, directory) for fn in os.listdir(directory): fn = os.path.join(directory, fn) if os.path.isfile(fn): try: fn_full_typename, _dtid = self._full_typename_and_dtid_from_filename(fn) if full_typename == fn_full_typename: return fn except Exception as ex: logger.debug('Unknown file [%s], skipping... [%s]', pretty_filename(fn), ex) error('Type definition not found [%s]', typename) # noinspection PyUnusedLocal @staticmethod def _parse_void_type(filename, bitlen): enforce(1 <= bitlen <= 64, 'Invalid void bit length [%d]', bitlen) return VoidType(bitlen) def _parse_array_type(self, filename, value_typedef, size_spec, cast_mode): logger.debug('Parsing the array value type [%s]...', value_typedef) value_type = self._parse_type(filename, value_typedef, cast_mode) enforce(value_type.category != value_type.CATEGORY_ARRAY, 'Multidimensional arrays are not allowed (protip: use nested types)') try: if size_spec.startswith('<='): max_size = int(size_spec[2:], 0) mode = ArrayType.MODE_DYNAMIC elif size_spec.startswith('<'): max_size = int(size_spec[1:], 0) - 1 mode = ArrayType.MODE_DYNAMIC else: max_size = int(size_spec, 0) mode = ArrayType.MODE_STATIC except ValueError: error('Invalid array size specifier [%s] (valid patterns: [<=X], [<X], [X])', size_spec) else: enforce(max_size > 0, 'Array size must be positive, not %d', max_size) return ArrayType(value_type, mode, max_size) # noinspection PyUnusedLocal @staticmethod def _parse_primitive_type(filename, base_name, bitlen, cast_mode): if cast_mode is None or cast_mode == 'saturated': cast_mode = PrimitiveType.CAST_MODE_SATURATED elif cast_mode == 'truncated': cast_mode = PrimitiveType.CAST_MODE_TRUNCATED else: error('Invalid cast mode [%s]', cast_mode) if base_name == 'bool': return PrimitiveType(PrimitiveType.KIND_BOOLEAN, 1, cast_mode) try: kind = { 'uint': PrimitiveType.KIND_UNSIGNED_INT, 'int': PrimitiveType.KIND_SIGNED_INT, 'float': PrimitiveType.KIND_FLOAT, }[base_name] except KeyError: error('Unknown primitive type (note: compound types should be in CamelCase)') # noinspection PyUnboundLocalVariable if kind == PrimitiveType.KIND_FLOAT: enforce(bitlen in (16, 32, 64), 'Invalid bit length for float type [%d]', bitlen) else: enforce(2 <= bitlen <= 64, 'Invalid bit length [%d] (note: use bool instead of uint1)', bitlen) return PrimitiveType(kind, bitlen, cast_mode) def _parse_compound_type(self, filename, typedef): definition_filename = self._locate_compound_type_definition(filename, typedef) logger.debug('Nested type [%s] is defined in [%s], parsing...', typedef, pretty_filename(definition_filename)) t = self.parse(definition_filename) if t.kind == t.KIND_SERVICE: error('A service type can not be nested into another compound type') return t def _parse_type(self, filename, typedef, cast_mode): typedef = typedef.strip() void_match = re.match(r'void(\d{1,2})$', typedef) array_match = re.match(r'(.+?)\[([^\]]*)\]$', typedef) primitive_match = re.match(r'([a-z]+)(\d{1,2})$|(bool)$', typedef) if void_match: size_spec = void_match.group(1).strip() return self._parse_void_type(filename, int(size_spec)) elif array_match: assert not primitive_match value_typedef = array_match.group(1).strip() size_spec = array_match.group(2).strip() return self._parse_array_type(filename, value_typedef, size_spec, cast_mode) elif primitive_match: if primitive_match.group(0) == 'bool': return self._parse_primitive_type(filename, 'bool', 1, cast_mode) else: base_name = primitive_match.group(1) bitlen = int(primitive_match.group(2)) return self._parse_primitive_type(filename, base_name, bitlen, cast_mode) else: enforce(cast_mode is None, 'Cast mode specifier is not applicable for compound types [%s]', cast_mode) return self._parse_compound_type(filename, typedef) @staticmethod def _make_constant(attrtype, name, init_expression): enforce(attrtype.category == attrtype.CATEGORY_PRIMITIVE, 'Invalid type for constant [%d]', attrtype.category) init_expression = ''.join(init_expression.split()) # Remove spaces value = evaluate_expression(init_expression) if isinstance(value, str) and len(value) == 1: # ASCII character value = ord(value) elif isinstance(value, (float, int, bool, long)): # Numeric literal value = { attrtype.KIND_UNSIGNED_INT: long, attrtype.KIND_SIGNED_INT: long, attrtype.KIND_BOOLEAN: int, # Not bool because we need to check range attrtype.KIND_FLOAT: float }[attrtype.kind](value) else: error('Invalid type of constant initialization expression [%s]', type(value).__name__) logger.debug('Constant initialization expression evaluated as: [%s] --> %s', init_expression, repr(value)) attrtype.validate_value_range(value) return Constant(attrtype, name, init_expression, value) def _parse_line(self, filename, tokens): cast_mode = None if tokens[0] == 'saturated' or tokens[0] == 'truncated': cast_mode, tokens = tokens[0], tokens[1:] if len(tokens) < 2 and not tokens[0].startswith('void'): error('Invalid attribute definition') if len(tokens) == 1: typename, attrname, tokens = tokens[0], None, [] else: typename, attrname, tokens = tokens[0], tokens[1], tokens[2:] validate_attribute_name(attrname) attrtype = self._parse_type(filename, typename, cast_mode) if len(tokens) > 0: if len(tokens) < 2 or tokens[0] != '=': error('Constant assignment expected') expression = ' '.join(tokens[1:]) return self._make_constant(attrtype, attrname, expression) else: return Field(attrtype, attrname) @staticmethod def _tokenize(text): for idx, line in enumerate(text.splitlines()): line = re.sub('#.*', '', line).strip() # Remove comments and leading/trailing whitespaces if line: tokens = [tk for tk in line.split() if tk] yield idx + 1, tokens def parse_source(self, filename, source_text): try: full_typename, default_dtid = self._full_typename_and_dtid_from_filename(filename) numbered_lines = list(self._tokenize(source_text)) all_attributes_names = set() fields, constants, resp_fields, resp_constants = [], [], [], [] union, resp_union = False, False response_part = False for num, tokens in numbered_lines: try: if tokens == ['---']: enforce(not response_part, 'Duplicate response mark') response_part = True all_attributes_names = set() continue if tokens == ['@union']: if response_part: enforce(not resp_union, 'Response data structure has already been declared as union') resp_union = True else: enforce(not union, 'Data structure has already been declared as union') union = True continue attr = self._parse_line(filename, tokens) if attr.name and attr.name in all_attributes_names: error('Duplicated attribute name [%s]', attr.name) all_attributes_names.add(attr.name) if isinstance(attr, Constant): (resp_constants if response_part else constants).append(attr) elif isinstance(attr, Field): (resp_fields if response_part else fields).append(attr) else: error('Unknown attribute type - internal error') except DsdlException as ex: if not ex.line: ex.line = num raise ex except Exception as ex: logger.error('Internal error', exc_info=True) raise DsdlException('Internal error: %s' % str(ex), line=num) if response_part: t = CompoundType(full_typename, CompoundType.KIND_SERVICE, filename, default_dtid, source_text) t.request_fields = fields t.request_constants = constants t.response_fields = resp_fields t.response_constants = resp_constants t.request_union = union t.response_union = resp_union max_bitlen = t.get_max_bitlen_request(), t.get_max_bitlen_response() max_bytelen = tuple(map(bitlen_to_bytelen, max_bitlen)) else: t = CompoundType(full_typename, CompoundType.KIND_MESSAGE, filename, default_dtid, source_text) t.fields = fields t.constants = constants t.union = union max_bitlen = t.get_max_bitlen() max_bytelen = bitlen_to_bytelen(max_bitlen) validate_union(t) validate_data_type_id(t) logger.debug('Type [%s], default DTID: %s, signature: %08x, maxbits: %s, maxbytes: %s, DSSD:', full_typename, default_dtid, t.get_dsdl_signature(), max_bitlen, max_bytelen) for ln in t.get_dsdl_signature_source_definition().splitlines(): logger.debug(' %s', ln) return t except DsdlException as ex: if not ex.file: ex.file = filename raise ex def parse(self, filename): try: filename = os.path.abspath(filename) with open(filename) as f: source_text = f.read() return self.parse_source(filename, source_text) except IOError as ex: raise DsdlException('IO error: %s' % str(ex), file=filename) except Exception as ex: logger.error('Internal error', exc_info=True) raise DsdlException('Internal error: %s' % str(ex), file=filename) def error(fmt, *args): raise DsdlException(fmt % args) def enforce(cond, fmt, *args): if not cond: error(fmt, *args) def bitlen_to_bytelen(x): return int((x + 7) / 8) def evaluate_expression(expression): try: env = { 'locals': None, 'globals': None, '__builtins__': None, 'true': 1, 'false': 0 } return eval(expression, env) except Exception as ex: error('Cannot evaluate expression: %s', str(ex)) def validate_search_directories(dirnames): dirnames = set(dirnames) dirnames = list(map(os.path.abspath, dirnames)) for d1 in dirnames: for d2 in dirnames: if d1 == d2: continue enforce(not d1.startswith(d2), 'Nested search directories are not allowed [%s] [%s]', d1, d2) enforce(d1.split(os.path.sep)[-1] != d2.split(os.path.sep)[-1], 'Namespace roots must be unique [%s] [%s]', d1, d2) return dirnames def validate_namespace_name(name): for component in name.split('.'): enforce(re.match(r'[a-z][a-z0-9_]*$', component), 'Invalid namespace name [%s]', name) enforce(len(name) <= MAX_FULL_TYPE_NAME_LEN, 'Namespace name is too long [%s]', name) def validate_compound_type_full_name(name): enforce('.' in name, 'Full type name must explicitly specify its namespace [%s]', name) short_name = name.split('.')[-1] namespace = '.'.join(name.split('.')[:-1]) validate_namespace_name(namespace) enforce(re.match(r'[A-Z][A-Za-z0-9_]*$', short_name), 'Invalid type name [%s]', name) enforce(len(name) <= MAX_FULL_TYPE_NAME_LEN, 'Type name is too long [%s]', name) def validate_attribute_name(name): enforce(re.match(r'[a-zA-Z][a-zA-Z0-9_]*$', name), 'Invalid attribute name [%s]', name) def validate_data_type_id(t): if t.default_dtid is None: return if t.kind == t.KIND_MESSAGE: enforce(0 <= t.default_dtid <= MESSAGE_DATA_TYPE_ID_MAX, 'Invalid data type ID for message [%s]', t.default_dtid) elif t.kind == t.KIND_SERVICE: enforce(0 <= t.default_dtid <= SERVICE_DATA_TYPE_ID_MAX, 'Invalid data type ID for service [%s]', t.default_dtid) else: error('Invalid kind: %s', t.kind) def validate_union(t): def check_fields(fields): enforce(len(fields) > 1, 'Union contains less than 2 fields') enforce(not any(_.type.category == _.type.CATEGORY_VOID for _ in fields), 'Union must not contain void fields') if t.kind == t.KIND_MESSAGE: if t.union: check_fields(t.fields) elif t.kind == t.KIND_SERVICE: if t.request_union: check_fields(t.request_fields) if t.response_union: check_fields(t.response_fields) else: error('Invalid kind: %s', t.kind) def parse_namespaces(source_dirs, search_dirs=None): """ Use only this function to parse DSDL definitions. This function takes a list of root namespace directories (containing DSDL definition files to parse) and an optional list of search directories (containing DSDL definition files that can be referenced from the types that are going to be parsed). Returns the list of parsed type definitions, where type of each element is CompoundType. Args: source_dirs: List of root namespace directories to parse. search_dirs: List of root namespace directories with referenced types (optional). This list is automatically extended with source_dirs. Example: >>> import uavcan >>> a = uavcan.dsdl.parse_namespaces(['../dsdl/uavcan']) >>> len(a) 77 >>> a[0] uavcan.Timestamp >>> a[0].fields [truncated uint48 husec] >>> a[0].constants [saturated uint48 UNKNOWN = 0, saturated uint48 USEC_PER_LSB = 100] """ # noinspection PyShadowingNames def walk(): import fnmatch from functools import partial def on_walk_error(directory, ex): raise DsdlException('OS error in [%s]: %s' % (directory, str(ex))) for source_dir in source_dirs: walker = os.walk(source_dir, onerror=partial(on_walk_error, source_dir), followlinks=True) for root, _dirnames, filenames in walker: for filename in fnmatch.filter(filenames, '*.uavcan'): filename = os.path.join(root, filename) yield filename all_default_dtid = {} # (kind, dtid) : filename # noinspection PyShadowingNames def ensure_unique_dtid(t, filename): if t.default_dtid is None: return key = t.kind, t.default_dtid if key in all_default_dtid: first = pretty_filename(all_default_dtid[key]) second = pretty_filename(filename) error('Default data type ID collision: [%s] [%s]', first, second) all_default_dtid[key] = filename parser = Parser(source_dirs + (search_dirs or [])) output_types = [] for filename in walk(): t = parser.parse(filename) ensure_unique_dtid(t, filename) output_types.append(t) return output_types
39.812941
119
0.619397
2aae20cd931f1401d9fb9870543e83f208e5657e
1,533
py
Python
src/ggrc/app.py
ankit-collective/ggrc-core
7c94ab6f6cd4f95a0bdfbbd9c81358f35dc1c963
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc/app.py
ankit-collective/ggrc-core
7c94ab6f6cd4f95a0bdfbbd9c81358f35dc1c963
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/ggrc/app.py
ankit-collective/ggrc-core
7c94ab6f6cd4f95a0bdfbbd9c81358f35dc1c963
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2013 Google Inc., authors, and contributors <see AUTHORS file> # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> # Created By: # Maintained By: from . import settings # Initialize Flask app from flask import Flask app = Flask('ggrc', instance_relative_config=True) app.config.from_object(settings) # Configure Flask-SQLAlchemy for app from . import db db.app = app db.init_app(app) # Initialize models import ggrc.models ggrc.models.init_app(app) # Configure Flask-Login import ggrc.login ggrc.login.init_app(app) # Configure webassets for app from . import assets app.jinja_env.add_extension('webassets.ext.jinja2.assets') app.jinja_env.assets_environment = assets.environment # Configure Jinja2 extensions for app app.jinja_env.add_extension('jinja2.ext.autoescape') app.jinja_env.autoescape = True app.jinja_env.add_extension('jinja2.ext.with_') app.jinja_env.add_extension('hamlpy.ext.HamlPyExtension') # Initialize services import ggrc.services ggrc.services.init_all_services(app) # Initialize views import ggrc.views ggrc.views.init_all_object_views(app) # Initialize configured and default extensions from ggrc.fulltext import get_indexer ggrc.indexer = get_indexer() if settings.ENABLE_JASMINE: # Configure Flask-Jasmine, for dev mode unit testing from flask.ext.jasmine import Jasmine, Asset jasmine = Jasmine(app) jasmine.sources( Asset("dashboard-js"), Asset("dashboard-js-spec-helpers")) jasmine.specs( Asset("dashboard-js-specs"))
24.725806
78
0.779517
64b614b2c181686ecc04eb43170d02502c8f72bc
788
py
Python
piecash/scripts/ledger.py
z-Wind/piecash
5ac01ac8ce2c98202bb168fdc2803eb9d741150c
[ "MIT" ]
null
null
null
piecash/scripts/ledger.py
z-Wind/piecash
5ac01ac8ce2c98202bb168fdc2803eb9d741150c
[ "MIT" ]
null
null
null
piecash/scripts/ledger.py
z-Wind/piecash
5ac01ac8ce2c98202bb168fdc2803eb9d741150c
[ "MIT" ]
null
null
null
#!/usr/local/bin/python """original script from https://github.com/MatzeB/pygnucash/blob/master/gnucash2ledger.py by Matthias Braun matze@braunis.de adapted for: - python 3 support - new string formatting """ import argparse import sys import codecs import piecash import click from piecash.scripts.cli import cli @cli.command() @click.argument("book", type=click.Path(exists=True)) @click.option( "--output", type=click.File("w", encoding="utf-8"), default="-", help="File to which to export the data (default=stdout)", ) def ledger(book, output): """Export to ledger-cli format. This scripts export a GnuCash BOOK to the ledget-cli format. """ with piecash.open_book(book, open_if_lock=True) as data: output.write(piecash.ledger(data))
23.176471
124
0.709391
8a55e88551f12827d952f8081003d0196d619e60
28,099
py
Python
closed/FuriosaAI/code/quantization/furiosa_sdk_quantizer/frontend/onnx/spec/export_spec.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
12
2021-09-23T08:05:57.000Z
2022-03-21T03:52:11.000Z
closed/FuriosaAI/code/quantization/furiosa_sdk_quantizer/frontend/onnx/spec/export_spec.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
11
2021-09-23T20:34:06.000Z
2022-01-22T07:58:02.000Z
closed/FuriosaAI/code/quantization/furiosa_sdk_quantizer/frontend/onnx/spec/export_spec.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
16
2021-09-23T20:26:38.000Z
2022-03-09T12:59:56.000Z
from typing import List, Dict, Set, Callable, Tuple, Optional import logging import onnx from onnx import numpy_helper from furiosa_sdk_quantizer.frontend.onnx.spec import spec_utils from furiosa_sdk_quantizer.ir import spec from furiosa_sdk_quantizer.ir.common.operator import HeightWidth, Padding from furiosa_sdk_quantizer.interfaces.export_spec import ExportSpec logger = logging.getLogger("Furiosa-Quantizer") logging.basicConfig(level=logging.INFO) class OnnxExportSpec(ExportSpec): def __init__(self, model: onnx.ModelProto): super(OnnxExportSpec).__init__() self.model = model self.tensor_shapes = self.get_tensor_shapes(self.model) self.initializer = {init.name: init for init in self.model.graph.initializer} self.attributes = self.get_attributes(self.model) # Build producer map self.producer_map: Dict[str, onnx.NodeProto] = dict() for node in self.model.graph.node: for node_output in node.output: if node_output in self.producer_map: raise Exception( "Invalid form of graph, a tensor {} has two or more producers.".format( node_output ) ) self.producer_map[node_output] = node # Followings will be lazily initialized. self._SKIP_NODE = None self._MULTI_NODE_SPEC = None self._SINGLE_NODE_SPEC = None def export(self) -> (List[spec.OperatorSpec], Set[str]): """ Traverse graph and export nodes as specs. Returns (a list of Spec, a set of unsupported ops) """ specs: List[spec.OperatorSpec] = list() unsupported_ops = set() outputs: List[str] = list(map(lambda output: output.name, self.model.graph.output)) # To prevent traversing cyclic connections visited: Set[str] = set() visited_node: List[onnx.NodeProto] = list() while len(outputs) > 0: output = outputs.pop(0) if output not in self.producer_map: continue node = self.producer_map[output] if node.op_type in self.skip_node: outputs.append(node.input[0]) visited.update([node.input[0]]) continue # prevent duplicate specs from being created from nodes that have multiple outputs like Split. if node in visited_node: continue result = self.traverse_multi_node_spec(node) if result is None: result = self.traverse_single_node_spec(node) # Failed to find how to process the node if result is None: unsupported_ops.add(node.op_type) continue s, inputs = result # Put spec specs.append(s) # Put predecessor of node to new outputs outputs += list(filter(lambda input: input not in visited, inputs)) visited.update(inputs) visited_node.append(node) return specs, unsupported_ops def traverse_single_node_spec( self, node: onnx.NodeProto ) -> Optional[Tuple[spec.Spec, List[str]]]: """ Returns (Spec, list of inputs of the node) """ if node.op_type not in self.single_node_spec: return None data_flow_input = list( filter(lambda input: input not in self.initializer.keys(), node.input) ) return self.single_node_spec[node.op_type](node), data_flow_input def traverse_multi_node_spec( self, node: onnx.NodeProto ) -> Optional[Tuple[spec.Spec, List[str]]]: """ Returns (Spec, list of inputs of the node) """ if node.op_type not in self.multi_node_spec: return None found = None for func in self.multi_node_spec[node.op_type]: result = func(node) if result is None: continue # Check the ambiguity if found is not None: logger.warning( "Find two or more ways of exporting as spec from multi-node for the the node {}, ".format( node.op_type ) ) return found found = result return found @property def skip_node(self) -> Set[str]: if self._SKIP_NODE is None: self._SKIP_NODE = {"Relu", "BatchNormalization"} return self._SKIP_NODE @property def multi_node_spec( self, ) -> Dict[str, List[Callable[[onnx.NodeProto], Optional[Tuple[spec.Spec, List[str]]]]]]: if self._MULTI_NODE_SPEC is None: self._MULTI_NODE_SPEC = {"Div": [self.multi_node_lp_norm]} return self._MULTI_NODE_SPEC @property def single_node_spec(self) -> Dict[str, Callable[[onnx.NodeProto], spec.Spec]]: if self._SINGLE_NODE_SPEC is not None: return self._SINGLE_NODE_SPEC self._SINGLE_NODE_SPEC = { "Conv": self.conv2d, "ConvTranspose": self.convtranspose2d, "MaxPool": self.maxpool2d, "AveragePool": self.avgpool2d, "GlobalAveragePool": self.avgpool2d, "Gemm": self.gemm, "MatMul": self.matmul, "DepthToSpace": self.depthtospace, "Resize": self.resize, "Add": self.add, "Sub": self.sub, "Mul": self.mul, "Div": self.div, "Exp": self.exp, "Sigmoid": self.sigmoid, "Softplus": self.softplus, "Gelu": self.gelu, "ReduceMean": self.reduce_mean, "ReduceSum": self.reduce_sum, "ReduceL2": self.reduce_l2, "Squeeze": self.squeeze, "Unsqueeze": self.unsqueeze, "Reshape": self.reshape, "Expand": self.expand, "Concat": self.concatenation, "Transpose": self.transpose, "Slice": self.slice, "Flatten": self.flatten, "Pad": self.pad, "Split": self.split, "Softmax": self.softmax, "Clip": self.clip, "LayerNormalization": self.layer_norm, "LpNormalization": self.lp_norm, } return self._SINGLE_NODE_SPEC @staticmethod def get_tensor_shapes(model: onnx.ModelProto) -> Dict[str, Tuple[int]]: input_shapes = dict() for vi in list(model.graph.input) + list(model.graph.output) + list(model.graph.value_info): shape = [int(dim.dim_value) for dim in vi.type.tensor_type.shape.dim] input_shapes[vi.name] = tuple(shape) # include initializer's shape for this is also a node's input for init in model.graph.initializer: input_shapes[init.name] = numpy_helper.to_array(init).shape return input_shapes @staticmethod def get_attributes(model: onnx.ModelProto) -> Dict[str, Dict[str, int or float]]: attributes = dict() for node in model.graph.node: attrs = dict() for attr in node.attribute: if attr.type == 1: attrs[attr.name] = attr.f elif attr.type == 2: attrs[attr.name] = attr.i elif attr.type == 3: attrs[attr.name] = attr.s.decode("utf-8") elif attr.type == 7: attrs[attr.name] = attr.ints else: raise Exception("Unknown data type: %s" % attr.type) attributes[node.name] = attrs return attributes def get_inputs_for_gen_spec( self, node: onnx.NodeProto ) -> Tuple[List[Tuple[int]], List[Tuple[int]], Dict]: input_shapes = [] for input in node.input: if input == "": input_shapes.append([]) continue input_shape = self.tensor_shapes[input] input_shapes.append(input_shape) if input in self.initializer.keys(): continue assert input_shape, "input_shape: %s. shape_inference might have failed at %s" % ( input_shape, node.name, ) output_shapes = [] for output in node.output: output_shape = self.tensor_shapes[output] output_shapes.append(output_shape) assert output_shape, "output_shape: %s. shape_inference might have failed at %s" % ( output_shape, node.name, ) attrs = self.attributes[node.name] return input_shapes, output_shapes, attrs def get_initializer_for_gen_spec(self, input_name: str) -> List[int] or List[float]: return numpy_helper.to_array(self.initializer[input_name]).tolist() def conv2d(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, attributes = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] output_shape = output_shapes[0] # TODO assert -> warning. refer to https://docs.python.org/3/tutorial/errors.html#user-defined-exceptions # ONNX Conv assumes n-d array as its kernel. assert len(attributes["kernel_shape"]) == 2 operator_spec_option = spec.Conv2d( input=HeightWidth(input_shape[2], input_shape[3]), kernel=HeightWidth(*attributes["kernel_shape"]), stride=HeightWidth(*attributes.get("strides", (1, 1))), dilation=HeightWidth(*attributes.get("dilations", (1, 1))), batch=input_shape[0], input_channel=input_shape[1], output_channel=output_shape[1], groups=attributes.get("group", 1), padding=Padding(*attributes.get("pads", (0, 0, 0, 0))), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def convtranspose2d(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, attributes = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] output_shape = output_shapes[0] # TODO assert -> warning. refer to https://docs.python.org/3/tutorial/errors.html#user-defined-exceptions # ONNX Conv assumes n-d array as its kernel. assert len(attributes["kernel_shape"]) == 2 operator_spec_option = spec.TrasnposeConv( input=HeightWidth(input_shape[2], input_shape[3]), kernel=HeightWidth(*attributes["kernel_shape"]), stride=HeightWidth(*attributes.get("strides", (1, 1))), dilation=HeightWidth(*attributes.get("dilations", (1, 1))), batch=input_shape[0], input_channel=input_shape[1], output_channel=output_shape[1], groups=attributes.get("group", 1), padding=Padding(*attributes.get("pads", (0, 0, 0, 0))), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def maxpool2d(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == len(output_shapes) == 1 input_shape = input_shapes[0] output_shape = output_shapes[0] # ONNX MaxPool assumes n-d array as its kernel. assert len(attributes["kernel_shape"]) == 2 operator_spec_option = spec.MaxPool2d( input=HeightWidth(input_shape[2], input_shape[3]), kernel=HeightWidth(*attributes["kernel_shape"]), stride=HeightWidth(*attributes.get("strides", (1, 1))), dilation=HeightWidth(*attributes.get("dilations", (1, 1))), batch=input_shape[0], channel=output_shape[1], padding=Padding(*attributes.get("pads", (0, 0, 0, 0))), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def avgpool2d(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == len(output_shapes) == 1 input_shape = input_shapes[0] output_shape = output_shapes[0] # ONNX AveragePool assumes n-d array as its kernel. if node.op_type == "AveragePool": assert len(attributes["kernel_shape"]) == 2 elif node.op_type == "GlobalAveragePool": attributes = {"kernel_shape": (input_shape[2:])} operator_spec_option = spec.AveragePool2d( input=HeightWidth(input_shape[2], input_shape[3]), kernel=HeightWidth(*attributes["kernel_shape"]), stride=HeightWidth(*attributes.get("strides", (1, 1))), dilation=HeightWidth(*attributes.get("dilations", (1, 1))), batch=input_shape[0], channel=output_shape[1], padding=Padding(*attributes.get("pads", (0, 0, 0, 0))), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def gemm(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) alpha = attributes.get("alpha", float(1.0)) beta = attributes.get("beta", float(1.0)) m, k, n = spec_utils.gemm_shapes( input_shapes, attributes.get("transA", int(0)), attributes.get("transB", int(0)) ) operator_spec_option = spec.Gemm(alpha=alpha, beta=beta, m=m, k=k, n=n) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def matmul(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 2 lhs_shape, rhs_shape = [*input_shapes[0]], [*input_shapes[1]] operator_spec_option = spec.MatMul(lhs_shape=lhs_shape, rhs_shape=rhs_shape) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def depthtospace(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] mode = attributes.get("mode", "DCR") if mode == "CRD": mode = "ColumnRowDepth" elif mode == "DCR": mode = "DepthColumnRow" else: raise Exception('Unknown mode: %s. Mode must be one of "DCR" or "CRD".' % mode) operator_spec_option = spec.DepthToSpace( batch=input_shape[0], height=input_shape[2], width=input_shape[3], channel=input_shape[1], block_size=attributes["blocksize"], mode=mode, ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def resize(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] roi = self.get_initializer_for_gen_spec(node.input[1]) scales = self.get_initializer_for_gen_spec(node.input[2]) try: sizes = self.get_initializer_for_gen_spec(node.input[3]) except IndexError: sizes = [] operator_spec_option = spec.Resize( shape=[*input_shape], roi=roi, scales=scales, sizes=sizes ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def add(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] operator_spec_option = spec.Add(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def sub(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] operator_spec_option = spec.Sub(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def mul(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] operator_spec_option = spec.Mul(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def div(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] operator_spec_option = spec.Div(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def exp(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Exp(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def sigmoid(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Sigmoid(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def softplus(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Softplus(input_shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def gelu(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Gelu(shape=[*input_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def reduce_mean(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.ReduceMean( shape=[*input_shape], axes=spec_utils.implicit_axis_to_explicit([*attributes["axes"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def reduce_sum(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.ReduceSum( shape=[*input_shape], axes=spec_utils.implicit_axis_to_explicit([*attributes["axes"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def reduce_l2(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.ReduceL2( shape=[*input_shape], axes=spec_utils.implicit_axis_to_explicit([*attributes["axes"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def squeeze(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Squeeze( shape=[*input_shape], axes=spec_utils.implicit_axis_to_explicit([*attributes["axes"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def unsqueeze(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Unsqueeze( shape=[*input_shape], axes=spec_utils.implicit_axis_to_explicit([*attributes["axes"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def reshape(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] output_shape = output_shapes[0] operator_spec_option = spec.Reshape( input_shape=[*input_shape], output_shape=[*output_shape] ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def expand(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, output_shapes, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] output_shape = output_shapes[0] operator_spec_option = spec.Expand(input_shape=[*input_shape], output_shape=[*output_shape]) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def concatenation(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) operator_spec_option = spec.Concatenation( tensors=list(map(list, input_shapes)), axis=spec_utils.implicit_axis_to_explicit(attributes["axis"], input_shapes[0]), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def transpose(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Transpose( shape=[*input_shape], permutation=spec_utils.implicit_axis_to_explicit([*attributes["perm"]], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def slice(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] starts = self.get_initializer_for_gen_spec(node.input[1]) axes = self.get_initializer_for_gen_spec(node.input[3]) operator_spec_option = spec.Slice( shape=[*input_shape], offset=spec_utils.slice_offset_dict(starts, axes, input_shape) ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def flatten(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Flatten( shape=[*input_shape], axis=spec_utils.implicit_axis_to_explicit(attributes["axis"], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def pad(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] assert len(input_shape) == 4 pads = self.get_initializer_for_gen_spec(node.input[1]) operator_spec_option = spec.Pad(shape=[*input_shape], pad=spec_utils.horizontal_pads(*pads)) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def layer_norm(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) operator_spec_option = spec.LayerNorm( input_shape=[*input_shapes[0]], eps=attributes["epsilon"] ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def split(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Split( shape=[*input_shape], split=[*attributes["split"]], axis=spec_utils.implicit_axis_to_explicit(attributes.get("axis", 0), input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def softmax(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, attributes = self.get_inputs_for_gen_spec(node) assert len(input_shapes) == 1 input_shape = input_shapes[0] operator_spec_option = spec.Softmax( input_shape=[*input_shape], beta=attributes.get("beta", float(1.0)), axis=spec_utils.implicit_axis_to_explicit(attributes["axis"], input_shape), ) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def clip(self, node: onnx.NodeProto) -> spec.Spec: input_shapes, _, _ = self.get_inputs_for_gen_spec(node) input_shape = input_shapes[0] kwargs = {} if node.attribute: for attr in node.attribute: if attr.name == "min": kwargs["min"] = float(attr.f) elif attr.name == "max": kwargs["max"] = float(attr.f) else: assert len(node.input) == 3 for idx, node_input in enumerate(node.input): if idx == 1: try: kwargs["min"] = float(numpy_helper.to_array(self.initializer[node_input])) except KeyError: kwargs["min"] = None elif idx == 2: try: kwargs["max"] = float(numpy_helper.to_array(self.initializer[node_input])) except KeyError: kwargs["max"] = None if not kwargs: raise Exception("Empty min and/or max.") operator_spec_option = spec.Clip(input_shape=[*input_shape], **kwargs) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def lp_norm(self, node: onnx.NodeProto) -> spec.Spec: input_shape, _, attrs = self.get_inputs_for_gen_spec(node) operator_spec_option = spec.LpNorm(input_shape=[*input_shape], **attrs) return spec.Spec(spec_utils.node_identifier(node), operator_spec_option) def multi_node_lp_norm(self, node: onnx.NodeProto) -> Optional[Tuple[spec.Spec, List[str]]]: """ Starts from 'Div', traverse up to find the form of l2norm. Returns all inputs of l2norm, consist of multi node LpNormalization is not defined in ONNX Operator spec, so that we should traverse the graph: Input --> ReduceL2 --> Clip --> Expand --> D -----------------------------------> iv --> Output """ inputs_of_lp_norm: List[str] = [] for input in node.input: # exclude input from initializer if input not in self.producer_map: continue prev_node = self.producer_map[input] if prev_node.op_type != "Expand": continue pprev_node = self.producer_map[prev_node.input[0]] if pprev_node.op_type != "Clip": continue ppprev_node = self.producer_map[pprev_node.input[0]] if ppprev_node.op_type != "ReduceL2": continue p = 2 inputs_of_lp_norm.append(ppprev_node.input[0]) input_shapes, _, attributes = self.get_inputs_for_gen_spec(ppprev_node) axis = attributes["axes"][0] operator_spec_option = spec.LpNorm(input_shape=[*input_shapes[0]], p=p, axis=axis) return ( spec.Spec(spec_utils.node_identifier(node), operator_spec_option), inputs_of_lp_norm, )
41.813988
113
0.621801
136f58749aa59a30ae701af8db839f3e744b2b7a
3,092
py
Python
rnpix/pkcli/dedup.py
robnagler/pix
8054420fa49645ea0d29404bc4e0567af9be0394
[ "Apache-2.0" ]
null
null
null
rnpix/pkcli/dedup.py
robnagler/pix
8054420fa49645ea0d29404bc4e0567af9be0394
[ "Apache-2.0" ]
4
2020-05-06T14:05:22.000Z
2021-07-20T20:49:06.000Z
rnpix/pkcli/dedup.py
robnagler/rnpix
93237c1bd949d806ee21f9eef4bdae0d8b261d4c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- u"""deduplicate :copyright: Copyright (c) 2021 Robert Nagler. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern.pkcollections import PKDict from pykern.pkdebug import pkdc, pkdlog, pkdp import dbm.ndbm import hashlib import os import pykern.pkio import re import rnpix.common import subprocess import time def find(path, nowrite=False, overwrite=False, skip=''): """deduplicate images using $RNPIX_ROOT/dedup.db """ r = rnpix.common.root() i = 0 if skip: skip = pykern.pkio.py_path(skip) with dbm.ndbm.open( str(pykern.pkio.py_path(r).join('dedup')), 'c', ) as m: for p in _walk(path): if skip: if p == skip: skip = None continue i += 1 if i % 10 == 0: print('#sleep 3') time.sleep(2) s, p = _signature(p) if s in m and not overwrite: o = pykern.pkio.py_path(m[s].decode()) if o == p: # same path continue if ( o.dirname == p.dirname and o.purebasename.startswith(p.purebasename) ): # remove original, because longer (e.g. x-1.jpg) m[s] = str(p).encode() p = o x = f'"{p}"' if "'" in str(p) else f"'{p}'" print(f'#OLD {m[s].decode()}\nrm {x}') else: print(f'#NEW {p}') if not nowrite: m[s] = str(p).encode() def not_in_db(path): """deduplicate images using $RNPIX_ROOT/dedup.db """ r = rnpix.common.root() with dbm.ndbm.open( str(pykern.pkio.py_path(r).join('dedup')), 'r', ) as m: v = set([m[k] for k in m.keys()]) for p in _walk(path, print_cd=False): if str(p).encode() not in v: print(p) def _signature(path): if path.ext.lower() in ('.jpg', '.jpeg'): try: return (subprocess.check_output(('identify', '-format', '%#', str(path))), path) except subprocess.CalledProcessError: # weird thing: bunch of JPG files that are quicktime movies if b'QuickTime movie' not in subprocess.check_output(('file', str(path))): raise n = path.new(ext='.mov') assert not n.exists() path.rename(n) path = n return (hashlib.md5(path.read_binary()).digest(), path) def _walk(path, print_cd=True): c = '' for p in pykern.pkio.walk_tree(path): if ( p.islink() or rnpix.common.THUMB_DIR.search(p.dirpath().basename) or not rnpix.common.IMAGE_SUFFIX.search(p.basename) ): continue if print_cd and c != p.dirname: print(f'#CD {p.dirname}') c = p.dirname yield p
30.019417
92
0.51229
33d3657d837cb2ce5fb6831019f02d971c34debb
14,066
py
Python
python/cuml/common/array.py
Nicholas-7/cuml
324d4490dc5254e1188d1678e704622eb69678cb
[ "Apache-2.0" ]
null
null
null
python/cuml/common/array.py
Nicholas-7/cuml
324d4490dc5254e1188d1678e704622eb69678cb
[ "Apache-2.0" ]
null
null
null
python/cuml/common/array.py
Nicholas-7/cuml
324d4490dc5254e1188d1678e704622eb69678cb
[ "Apache-2.0" ]
null
null
null
# # Copyright (c) 2020-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import cupy as cp import numpy as np import operator import nvtx from rmm import DeviceBuffer from cudf import DataFrame from cudf import Series from cudf.core.buffer import Buffer from cuml.common.memory_utils import with_cupy_rmm from cuml.common.memory_utils import _get_size_from_shape from cuml.common.memory_utils import _order_to_strides from cuml.common.memory_utils import _strides_to_order from cuml.common.memory_utils import class_with_cupy_rmm from numba import cuda @class_with_cupy_rmm(ignore_pattern=["serialize"]) class CumlArray(Buffer): """ Array represents an abstracted array allocation. It can be instantiated by itself, creating an rmm.DeviceBuffer underneath, or can be instantiated by ``__cuda_array_interface__`` or ``__array_interface__`` compliant arrays, in which case it'll keep a reference to that data underneath. Also can be created from a pointer, specifying the characteristics of the array, in that case the owner of the data referred to by the pointer should be specified explicitly. Parameters ---------- data : rmm.DeviceBuffer, cudf.Buffer, array_like, int, bytes, bytearray or\ memoryview An array-like object or integer representing a device or host pointer to pre-allocated memory. owner : object, optional Python object to which the lifetime of the memory allocation is tied. If provided, a reference to this object is kept in this Buffer. dtype : data-type, optional Any object that can be interpreted as a numpy or cupy data type. shape : int or tuple of ints, optional Shape of created array. order: string, optional Whether to create a F-major or C-major array. Attributes ---------- ptr : int Pointer to the data size : int Size of the array data in bytes _owner : Python Object Object that owns the data of the array shape : tuple of ints Shape of the array order : {'F', 'C'} 'F' or 'C' to indicate Fortran-major or C-major order of the array strides : tuple of ints Strides of the data __cuda_array_interface__ : dictionary ``__cuda_array_interface__`` to interop with other libraries. Notes ----- cuml Array is not meant as an end-user array library. It is meant for cuML/RAPIDS developer consumption. Therefore it contains the minimum functionality. Its functionality is hidden by base.pyx to provide automatic output format conversion so that the users see the important attributes in whatever format they prefer. Todo: support cuda streams in the constructor. See: https://github.com/rapidsai/cuml/issues/1712 https://github.com/rapidsai/cuml/pull/1396 """ @nvtx.annotate(message="common.CumlArray.__init__", category="utils", domain="cuml_python") def __init__(self, data=None, owner=None, dtype=None, shape=None, order=None): # Checks of parameters memview_construction = False if data is None: raise TypeError("To create an empty Array, use the class method" + " Array.empty().") elif isinstance(data, memoryview): data = np.asarray(data) memview_construction = True if dtype is not None: dtype = np.dtype(dtype) if _check_low_level_type(data): if dtype is None or shape is None or order is None: raise TypeError("Need to specify dtype, shape and order when" + " creating an Array from {}." .format(type(data))) detailed_construction = True elif dtype is not None and shape is not None and order is not None: detailed_construction = True else: # Catch a likely developer error if CumlArray is created # incorrectly assert dtype is None and shape is None and order is None, \ ("Creating array from array-like object. The arguments " "`dtype`, `shape` and `order` should be `None`.") detailed_construction = False ary_interface = False # Base class (Buffer) constructor call size, shape = _get_size_from_shape(shape, dtype) if not memview_construction and not detailed_construction: # Convert to cupy array and manually specify the ptr, size and # owner. This is to avoid the restriction on Buffer that requires # all data be u8 cupy_data = cp.asarray(data) flattened_data = cupy_data.data.ptr # Size for Buffer is not the same as for cupy. Use nbytes size = cupy_data.nbytes owner = cupy_data if cupy_data.flags.owndata else data else: flattened_data = data super().__init__(data=flattened_data, owner=owner, size=size) # Post processing of meta data if detailed_construction: self.shape = shape self.dtype = dtype self.order = order self.strides = _order_to_strides(order, shape, dtype) elif hasattr(data, "__array_interface__"): ary_interface = data.__array_interface__ elif hasattr(data, "__cuda_array_interface__"): ary_interface = data.__cuda_array_interface__ else: raise TypeError("Unrecognized data type: %s" % str(type(data))) if ary_interface: self.shape = ary_interface['shape'] self.dtype = np.dtype(ary_interface['typestr']) if ary_interface.get('strides', None) is None: self.order = 'C' self.strides = _order_to_strides(self.order, self.shape, self.dtype) else: self.strides = ary_interface['strides'] self.order = _strides_to_order(self.strides, self.dtype) @with_cupy_rmm def __getitem__(self, slice): return CumlArray(data=cp.asarray(self).__getitem__(slice)) def __setitem__(self, slice, value): cp.asarray(self).__setitem__(slice, value) def __len__(self): return self.shape[0] def _operator_overload(self, other, fn): return CumlArray(fn(self.to_output('cupy'), other)) def __add__(self, other): return self._operator_overload(other, operator.add) def __sub__(self, other): return self._operator_overload(other, operator.sub) @property def __cuda_array_interface__(self): output = { "shape": self.shape, "strides": self.strides, "typestr": self.dtype.str, "data": (self.ptr, False), "version": 2, } return output def item(self): return cp.asarray(self).item() @nvtx.annotate(message="common.CumlArray.to_output", category="utils", domain="cuml_python") def to_output(self, output_type='cupy', output_dtype=None): """ Convert array to output format Parameters ---------- output_type : string Format to convert the array to. Acceptable formats are: - 'cupy' - to cupy array - 'numpy' - to numpy (host) array - 'numba' - to numba device array - 'dataframe' - to cuDF DataFrame - 'series' - to cuDF Series - 'cudf' - to cuDF Series if array is single dimensional, to DataFrame otherwise output_dtype : string, optional Optionally cast the array to a specified dtype, creating a copy if necessary. """ if output_dtype is None: output_dtype = self.dtype # check to translate cudf to actual type converted if output_type == 'cudf': if len(self.shape) == 1: output_type = 'series' elif self.shape[1] == 1: output_type = 'series' else: output_type = 'dataframe' assert output_type != "mirror" if output_type == 'cupy': return cp.asarray(self, dtype=output_dtype) elif output_type == 'numba': return cuda.as_cuda_array(cp.asarray(self, dtype=output_dtype)) elif output_type == 'numpy': return cp.asnumpy( cp.asarray(self, dtype=output_dtype), order=self.order ) elif output_type == 'dataframe': if self.dtype not in [np.uint8, np.uint16, np.uint32, np.uint64, np.float16]: mat = cp.asarray(self, dtype=output_dtype) if len(mat.shape) == 1: mat = mat.reshape(mat.shape[0], 1) return DataFrame(mat) else: raise ValueError('cuDF unsupported Array dtype') elif output_type == 'series': # check needed in case output_type was passed as 'series' # directly instead of as 'cudf' if len(self.shape) == 1: if self.dtype not in [np.uint8, np.uint16, np.uint32, np.uint64, np.float16]: return Series(self, dtype=output_dtype) else: raise ValueError('cuDF unsupported Array dtype') elif self.shape[1] > 1: raise ValueError('Only single dimensional arrays can be ' 'transformed to cuDF Series. ') else: if self.dtype not in [np.uint8, np.uint16, np.uint32, np.uint64, np.float16]: return Series(self, dtype=output_dtype) else: raise ValueError('cuDF unsupported Array dtype') return self @nvtx.annotate(message="common.CumlArray.serialize", category="utils", domain="cuml_python") def serialize(self): header, frames = super().serialize() header["constructor-kwargs"] = { "dtype": self.dtype.str, "shape": self.shape, "order": self.order, } frames = [Buffer(f) for f in frames] return header, frames @classmethod @nvtx.annotate(message="common.CumlArray.empty", category="utils", domain="cuml_python") def empty(cls, shape, dtype, order='F'): """ Create an empty Array with an allocated but uninitialized DeviceBuffer Parameters ---------- dtype : data-type, optional Any object that can be interpreted as a numpy or cupy data type. shape : int or tuple of ints, optional Shape of created array. order: string, optional Whether to create a F-major or C-major array. """ return CumlArray(cp.empty(shape, dtype, order)) @classmethod @nvtx.annotate(message="common.CumlArray.full", category="utils", domain="cuml_python") def full(cls, shape, value, dtype, order='F'): """ Create an Array with an allocated DeviceBuffer initialized to value. Parameters ---------- dtype : data-type, optional Any object that can be interpreted as a numpy or cupy data type. shape : int or tuple of ints, optional Shape of created array. order: string, optional Whether to create a F-major or C-major array. """ return CumlArray(cp.full(shape, value, dtype, order)) @classmethod @nvtx.annotate(message="common.CumlArray.zeros", category="utils", domain="cuml_python") def zeros(cls, shape, dtype='float32', order='F'): """ Create an Array with an allocated DeviceBuffer initialized to zeros. Parameters ---------- dtype : data-type, optional Any object that can be interpreted as a numpy or cupy data type. shape : int or tuple of ints, optional Shape of created array. order: string, optional Whether to create a F-major or C-major array. """ return CumlArray.full(value=0, shape=shape, dtype=dtype, order=order) @classmethod @nvtx.annotate(message="common.CumlArray.ones", category="utils", domain="cuml_python") def ones(cls, shape, dtype='float32', order='F'): """ Create an Array with an allocated DeviceBuffer initialized to zeros. Parameters ---------- dtype : data-type, optional Any object that can be interpreted as a numpy or cupy data type. shape : int or tuple of ints, optional Shape of created array. order: string, optional Whether to create a F-major or C-major array. """ return CumlArray.full(value=1, shape=shape, dtype=dtype, order=order) def _check_low_level_type(data): if isinstance(data, CumlArray): return False elif not ( hasattr(data, "__array_interface__") or hasattr(data, "__cuda_array_interface__") ) or isinstance(data, (DeviceBuffer, Buffer)): return True else: return False
36.066667
79
0.601948
683659e9a812f3078a95435649e54e3e9d39f50a
36
py
Python
algoritmos/PythonM2/ex070.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
algoritmos/PythonM2/ex070.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
algoritmos/PythonM2/ex070.py
MiguelTeixeiraUFPB/PythonM2
1ee07879b141eae4c4edd5f4ac43002b11167b2f
[ "MIT" ]
null
null
null
n='a' if n[0]in'a': print('sim')
12
16
0.472222
8213a6035d2b9f1e6022c6e1df4e43ee24e01380
109
py
Python
CurrencyConverter/apps.py
route2kernel/omen
62521690ead4341a562d27da7bceb45eae8b778f
[ "MIT" ]
null
null
null
CurrencyConverter/apps.py
route2kernel/omen
62521690ead4341a562d27da7bceb45eae8b778f
[ "MIT" ]
null
null
null
CurrencyConverter/apps.py
route2kernel/omen
62521690ead4341a562d27da7bceb45eae8b778f
[ "MIT" ]
null
null
null
from django.apps import AppConfig class CurrencyconverterConfig(AppConfig): name = 'CurrencyConverter'
18.166667
41
0.798165
8e53663e5b4c0dd347d02d61d7bd30e0f41a8f48
1,134
py
Python
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/sites/migrations/0001_initial.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/sites/migrations/0001_initial.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
python3.4Smartforest/lib/python3.4/site-packages/django/contrib/sites/migrations/0001_initial.py
letouriste001/SmartForest_2.0
109b78bf1e8c8404800f377ab969395ccbb617be
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals import django.contrib.sites.models from django.contrib.sites.models import _simple_domain_name_validator from django.db import migrations, models class Migration(migrations.Migration): dependencies = [] operations = [ migrations.CreateModel( name='Site', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('domain', models.CharField( max_length=100, verbose_name='domain name', validators=[_simple_domain_name_validator] )), ('name', models.CharField(max_length=50, verbose_name='display name')), ], options={ 'ordering': ('domain',), 'db_table': 'django_site', 'verbose_name': 'site', 'verbose_name_plural': 'sites', }, bases=(models.Model,), managers=[ ('objects', django.contrib.sites.models.SiteManager()), ], ), ]
1,134
1,134
0.559083
62776184aa4be230446ffd4e518077270ffe1293
1,326
py
Python
app/app.py
ansnadeem/aic
76b7e264df2aad76b7c3e94171334f3da599b9b0
[ "MIT" ]
null
null
null
app/app.py
ansnadeem/aic
76b7e264df2aad76b7c3e94171334f3da599b9b0
[ "MIT" ]
2
2021-10-10T20:53:14.000Z
2021-10-14T07:15:03.000Z
app/app.py
ansnadeem/aic
76b7e264df2aad76b7c3e94171334f3da599b9b0
[ "MIT" ]
null
null
null
from flask import request from flask import Flask from flask import render_template from engine import AICEngine from dotenv import dotenv_values from dotenv import load_dotenv from utils import constants aicEngine = None def initalize(): global aicEngine global app load_dotenv() config = dotenv_values(constants.DOT_ENV_PATH) aicEngine = AICEngine(config) app = Flask(__name__, template_folder=constants.TEMPLATES_FOLDER) initalize() @app.route('/') def index(): return render_template('home.html') @app.route('/githublistener', methods = ['POST']) def listenAPI(): global aicEngine response = {} response[constants.RESPONSE_RESULT] = None response[constants.RESPONSE_STATUS] = constants.HTTP_OK data = request.get_json(True) if (data[constants.GITHUB_ACTION] == constants.OPEN_STATUS): issueText = data[constants.ISSUE][constants.TITLE] + " " + data[constants.ISSUE][constants.BODY] predicted_labels = aicEngine.predict(issueText) issue_url = data[constants.ISSUE][constants.URL] installation_id = data[constants.INSTALLATION][constants.ID] aicEngine.assign(predicted_labels, installation_id, issue_url) response[constants.RESPONSE_RESULT] = predicted_labels return response
30.837209
106
0.719457
13206c444b68f30d527aef0faeea26510285e7c6
1,619
py
Python
src/check_grades.py
troylar/eclass-for-alexa
999b04d48b77587818485ae9869f3d029a2c9ce3
[ "MIT" ]
null
null
null
src/check_grades.py
troylar/eclass-for-alexa
999b04d48b77587818485ae9869f3d029a2c9ce3
[ "MIT" ]
2
2021-03-31T18:39:53.000Z
2021-06-01T21:52:00.000Z
src/check_grades.py
troylar/eclass-for-alexa
999b04d48b77587818485ae9869f3d029a2c9ce3
[ "MIT" ]
null
null
null
import json from bs4 import BeautifulSoup from twill.commands import * import json import os import twill import boto3 def lambda_handler(event, context): if event['request']['type'] == "IntentRequest": return on_intent(event['request'], event['session']); return 'Hello from Lambda' def on_intent(intent_request, session): # print("on_intent requestId=" + intent_request['requestId'] + # ", sessionId=" + session['sessionId']) intent = intent_request['intent'] intent_name = intent_request['intent']['name'] if intent_name == "CheckGrades": return check_grades(intent, session) else: raise ValueError("Invalid intent") def check_grades(intent, session): session_attributes={} student = intent['slots']['student']['value'].lower() card_title="Check grades for %s" % (student) username="" password="" f = open(os.devnull,"w") twill.set_output(f) go('https://apps.gwinnett.k12.ga.us/dca/app/logout') go('https://publish.gwinnett.k12.ga.us/gcps/home/gcpslogin') fv("2", "portalUserID", username) fv("2", "portalPassword", password) submit() go('https://apps.gwinnett.k12.ga.us/dca/student/dashboard') soup = BeautifulSoup(show(),"lxml") subjects = soup.findAll('span', { "class": "subject" }) percentages = soup.findAll('span', { "class": ["percentage","lettergrade"] }) grades={} i = 0 for subject in subjects: if (percentages[i].contents): grades[subject.renderContents()] = percentages[i].renderContents() i = i + 1 go('https://apps.gwinnett.k12.ga.us/dca/app/logout')
33.040816
81
0.660902
51fcf7eb07bf798a1c79b1e4011aff1f43db8903
216
py
Python
shipment/serializers/batch_shipment_serializer.py
thegangtechnology/thairod-django
b073186a4b5bc42dfef99685b3da30abf8e42862
[ "MIT" ]
null
null
null
shipment/serializers/batch_shipment_serializer.py
thegangtechnology/thairod-django
b073186a4b5bc42dfef99685b3da30abf8e42862
[ "MIT" ]
3
2021-07-27T13:11:36.000Z
2021-08-10T22:54:55.000Z
shipment/serializers/batch_shipment_serializer.py
thegangtechnology/thairod-django
b073186a4b5bc42dfef99685b3da30abf8e42862
[ "MIT" ]
null
null
null
from rest_framework import serializers from shipment.models import BatchShipment class BatchShipmentSerializer(serializers.ModelSerializer): class Meta: model = BatchShipment fields = '__all__'
24
59
0.768519
17240c80d1c749e5c1243dd13ac48eb8e6d8c4d0
1,881
py
Python
research/delf/delf/python/analyze/get_pair.py
zijing-wu/models
dddcbaad9c9846f66febad8d88ea3af0d5d3acbf
[ "Apache-2.0" ]
2
2018-07-05T18:52:53.000Z
2018-07-05T18:54:14.000Z
research/delf/delf/python/analyze/get_pair.py
zijing-wu/models
dddcbaad9c9846f66febad8d88ea3af0d5d3acbf
[ "Apache-2.0" ]
null
null
null
research/delf/delf/python/analyze/get_pair.py
zijing-wu/models
dddcbaad9c9846f66febad8d88ea3af0d5d3acbf
[ "Apache-2.0" ]
null
null
null
import os,re,shutil,sys from subprocess import PIPE, Popen from multiprocessing import Pool, Queue, Process, Manager from itertools import product from time import sleep train_feature_path = os.path.join('..','examples','train_features_ds2') test_feature_path = os.path.join('..','examples','test_features_ds2') line_pattern = re.compile('Found (\d{1,10}) inliers') name_pattern = re.compile('(.*?)\.delf') train_file,test_file = os.listdir(train_feature_path),os.listdir(test_feature_path) if not os.path.exists("lines"): os.mkdir("lines") des_file = os.path.join("lines") def excute(test_file,train_file): os.chdir('../examples') try: train = name_pattern.findall(train_file)[0] test = name_pattern.findall(test_file)[0] except: print("There are some errors with %s and %s"%(train_file,test_file)) return train_feature = os.path.join(train_feature_path,train+'.delf') test_feature = os.path.join(test_feature_path,test+'.delf') p = Popen('''python3 match_images.py \ --features_1_path %s \ --features_2_path %s '''%(train_feature,test_feature),shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = p.communicate() print("%s and %s finish"%(train,test)) print(stdout) print(stderr) res = line_pattern.findall(str(stderr)) print(res) os.chdir('../analyze') if len(res) == 1 : return res[0] else: return 0 argv = sys.argv[1:] for i in range(int(argv[0]),int(argv[1])): if i >= len(test_file): break des_f = test_file[i][0:-5] if os.path.exists(os.path.join(des_file,des_f+'.txt')): continue with open(os.path.join(des_file,des_f+'.txt'),'w') as file: for t_file in train_file: res = excute(test_file[i],t_file) if int(res) >= 16: file.write(t_file[0:-5]+','+str(res)+'\n')
30.33871
93
0.650718
c583a862f6419471fbb3d570df0ecf12c7cb14af
220
py
Python
Strings/1832. Check if the Sentence Is Pangram.py
thewires2/Leetcode
a37ff81d60dd9195ba637b970b40aabbea5f4680
[ "Unlicense" ]
1
2021-06-30T17:51:56.000Z
2021-06-30T17:51:56.000Z
Strings/1832. Check if the Sentence Is Pangram.py
thewires2/Leetcode
a37ff81d60dd9195ba637b970b40aabbea5f4680
[ "Unlicense" ]
null
null
null
Strings/1832. Check if the Sentence Is Pangram.py
thewires2/Leetcode
a37ff81d60dd9195ba637b970b40aabbea5f4680
[ "Unlicense" ]
null
null
null
class Solution: def checkIfPangram(self, sentence: str) -> bool: x="abcdefghijklmnopqrstuvwxyz" for i in x: if i not in sentence: return False return True
24.444444
52
0.545455
0839ad0e5f420c772974aa0d4b37ac07094c5a78
3,245
py
Python
app/app/settings.py
sonali-uttekar01/receipe-app-api
d06f7cda9e2c516dde1835a5e68e74c3e33b2400
[ "MIT" ]
null
null
null
app/app/settings.py
sonali-uttekar01/receipe-app-api
d06f7cda9e2c516dde1835a5e68e74c3e33b2400
[ "MIT" ]
null
null
null
app/app/settings.py
sonali-uttekar01/receipe-app-api
d06f7cda9e2c516dde1835a5e68e74c3e33b2400
[ "MIT" ]
null
null
null
""" Django settings for app project. Generated by 'django-admin startproject' using Django 2.1.15. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '4lx^zh^nuc+p2wg*^ki!68_=+vu677w#3fo-7p+y&keqno0f@b' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'core', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'app.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'app.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'HOST': os.environ.get('DB_HOST'), 'NAME': os.environ.get('DB_NAME'), 'USER': os.environ.get('DB_USER'), 'PASSWORD': os.environ.get('DB_PASS'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL='core.user'
25.753968
91
0.688752
32d936fc21c284d747f6a37882f102cf2a32a1e5
567
py
Python
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
src/directory-starter/README_text.py
hannahweber244/directory-starter
0cb12b6e9dfe9c3a6eb5029d7d0b6cb5da52b44b
[ "MIT" ]
null
null
null
""" # [REPO NAME] ## Table of contents [Here you can use a table of contents to keep your README structured.] ## Overview [Here you give a short overview over the motivation behind your project and what problem it solves.] ## How to use it [Here you can explain how your tool/project is usable.] ### Requirements and dependencies [If there are any requirements or dependencies to use what you developed, you can put those here.] ## Additional information [Here you can include an overview over the structure of your code, additional information, tests etc.] """
31.5
102
0.75485
890919851a1e1ecfaffad314fcaa16b358d060de
3,979
py
Python
setup.py
chalbersma/manowar_agent
ea2615f52658da2acfcc8970eca77226ac2de215
[ "BSD-2-Clause" ]
1
2019-02-16T03:14:15.000Z
2019-02-16T03:14:15.000Z
setup.py
chalbersma/manowar_agent
ea2615f52658da2acfcc8970eca77226ac2de215
[ "BSD-2-Clause" ]
null
null
null
setup.py
chalbersma/manowar_agent
ea2615f52658da2acfcc8970eca77226ac2de215
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 ''' An attempt to make a ghetto packaging script. ''' # pylint: skip-file import setuptools import sys import os import git import subprocess # nosec import datetime current_repo = git.Repo() if current_repo.bare: print("Something went wrong Repo is Bare, Failing the Build.") sys.exit(1) else: env_keys = dict(os.environ).keys() travis_keys = [key for key in env_keys if key.startswith("TRAVIS")] for key in travis_keys: print("{} : {}".format(key, os.environ[key])) travis_repo = os.environ.get("TRAVIS_REPO_SLUG", "NOTRAVIS") travis_pull_req = os.environ.get("TRAVIS_PULL_REQUEST", "UNKNOWN") travis_branch = os.environ.get("TRAVIS_BRANCH", "UNKNOWN") travis_event_type = os.environ.get("TRAVIS_EVENT_TYPE", "UNKNOWN") travis_tag = os.environ.get("TRAVIS_TAG", "") travis_build_no = os.environ.get("TRAVIS_BUILD_NUMBER", 0) print(travis_build_no) # Set Default Version version_base = datetime.datetime.today().strftime("%Y.%m.%d") upload_to_pypi = False # My Known Good Repository if travis_repo == "chalbersma/manowar_agent" and len(travis_tag) > 0: # Make a Version Fix here that equls the tag print("Tagged Branch : {}".format(travis_tag)) version = travis_tag upload_to_pypi = "prod" elif travis_repo == "chalbersma/manowar_agent": # This is in my repo and version = "{}-dev{}".format(version_base, travis_build_no) print("VERSION : {}".format(version)) upload_to_pypi = "stag" else: upload_to_pypi = False version = "{}-dev0".format(version_base) # Only upload on 3.6.x Matrix if "3.6" != "{}.{}".format(sys.version_info[0], sys.version_info[1]): print("Version is : {} which doesn't equal 3.6.x not uploading".format(sys.version_info)) upload_to_pypi = False if upload_to_pypi is not False and upload_to_pypi == "stag": os.environ["TWINE_USERNAME"] = os.environ.get("PYPI_STAG_UNAME", "whoidit") os.environ["TWINE_PASSWORD"] = os.environ.get("PYPI_STAG_PASSWD", "whasit") twine_cmd = ["twine", "upload", "--repository-url", "https://test.pypi.org/legacy/", "dist/*"] elif upload_to_pypi is not False and upload_to_pypi == "prod": os.environ["TWINE_USERNAME"] = os.environ.get("PYPI_PROD_UNAME", "whoidit") os.environ["TWINE_PASSWORD"] = os.environ.get("PYPI_PROD_PASSWD", "whasit") twine_cmd = ["twine", "upload", "dist/*"] else: # Not Uploading pass print("VERSION : {}".format(version)) with open("README.md", "r") as fh: long_description = fh.read() # Get Version setuptools.setup( name="manowar_agent", version=version, author="Chris Halbersma", author_email="chris+manowar@halbersma.us", description="Package to Add as a Collector", license="BSD-2-Clause", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/chalbersma/manowar", packages=setuptools.find_packages(), classifiers=[ "Development Status :: 2 - Pre-Alpha", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Topic :: Security" ], install_requires=[ "Jinja2", "pyjq", "PyYAML", "requests", "salt", "ec2_metadata" ], scripts=["manowar_agent"], data_files=[("etc/manowar_agent", ["etc/manowar_agent/collector.yaml", "etc/manowar_agent/minion", "etc/manowar_agent/saltcell.yaml"]), ("etc/manowar_agent/state/_modules/", ["etc/manowar_agent/state/_modules/platpi.py"]) ] ) if upload_to_pypi is not False: print("Attempting to Upload to PyPi : {}".format(upload_to_pypi)) result = subprocess.check_call(twine_cmd) # nosec print("Result : {}".format(result)) else: print("Not attempting to Upload.")
31.330709
139
0.667002
84574874af2da6a3056ccfdfcf9b990023c20e5c
37,533
py
Python
core/dbt/adapters/base/impl.py
donaldrauscher/dbt
73d0308e3570b25a7a8c8d32fbcdaaf813c94179
[ "Apache-2.0" ]
null
null
null
core/dbt/adapters/base/impl.py
donaldrauscher/dbt
73d0308e3570b25a7a8c8d32fbcdaaf813c94179
[ "Apache-2.0" ]
null
null
null
core/dbt/adapters/base/impl.py
donaldrauscher/dbt
73d0308e3570b25a7a8c8d32fbcdaaf813c94179
[ "Apache-2.0" ]
null
null
null
import abc from contextlib import contextmanager from datetime import datetime from typing import ( Optional, Tuple, Callable, Container, FrozenSet, Type, Dict, Any, List, Mapping ) import agate import pytz import dbt.exceptions import dbt.flags from dbt.clients.agate_helper import empty_table from dbt.contracts.graph.manifest import Manifest from dbt.node_types import NodeType from dbt.logger import GLOBAL_LOGGER as logger from dbt.utils import filter_null_values from dbt.adapters.base.connections import BaseConnectionManager from dbt.adapters.base.meta import AdapterMeta, available from dbt.adapters.base.relation import ComponentName, BaseRelation from dbt.adapters.base import Column as BaseColumn from dbt.adapters.cache import RelationsCache GET_CATALOG_MACRO_NAME = 'get_catalog' FRESHNESS_MACRO_NAME = 'collect_freshness' def _expect_row_value(key: str, row: agate.Row): if key not in row.keys(): raise dbt.exceptions.InternalException( 'Got a row without "{}" column, columns: {}' .format(key, row.keys()) ) return row[key] def _relations_filter_schemas( schemas: Container[str] ) -> Callable[[agate.Row], bool]: def test(row): referenced_schema = _expect_row_value('referenced_schema', row) dependent_schema = _expect_row_value('dependent_schema', row) # handle the null schema if referenced_schema is not None: referenced_schema = referenced_schema.lower() if dependent_schema is not None: dependent_schema = dependent_schema.lower() return referenced_schema in schemas or dependent_schema in schemas return test def _catalog_filter_schemas(manifest: Manifest) -> Callable[[agate.Row], bool]: """Return a function that takes a row and decides if the row should be included in the catalog output. """ schemas = frozenset((d.lower(), s.lower()) for d, s in manifest.get_used_schemas()) def test(row: agate.Row) -> bool: table_database = _expect_row_value('table_database', row) table_schema = _expect_row_value('table_schema', row) # the schema may be present but None, which is not an error and should # be filtered out if table_schema is None: return False return (table_database.lower(), table_schema.lower()) in schemas return test def _utc( dt: Optional[datetime], source: BaseRelation, field_name: str ) -> datetime: """If dt has a timezone, return a new datetime that's in UTC. Otherwise, assume the datetime is already for UTC and add the timezone. """ if dt is None: raise dbt.exceptions.raise_database_error( "Expected a non-null value when querying field '{}' of table " " {} but received value 'null' instead".format( field_name, source)) elif not hasattr(dt, 'tzinfo'): raise dbt.exceptions.raise_database_error( "Expected a timestamp value when querying field '{}' of table " "{} but received value of type '{}' instead".format( field_name, source, type(dt).__name__)) elif dt.tzinfo: return dt.astimezone(pytz.UTC) else: return dt.replace(tzinfo=pytz.UTC) def _relation_name(rel: Optional[BaseRelation]) -> str: if rel is None: return 'null relation' else: return str(rel) class SchemaSearchMap(dict): """A utility class to keep track of what information_schema tables to search for what schemas """ def add(self, relation): key = relation.information_schema_only() if key not in self: self[key] = set() self[key].add(relation.schema.lower()) def search(self): for information_schema_name, schemas in self.items(): for schema in schemas: yield information_schema_name, schema def schemas_searched(self): result = set() for information_schema_name, schemas in self.items(): result.update( (information_schema_name.database, schema) for schema in schemas ) return result def flatten(self): new = self.__class__() database = None # iterate once to look for a database name seen = {r.database.lower() for r in self if r.database} if len(seen) > 1: dbt.exceptions.raise_compiler_error(str(seen)) elif len(seen) == 1: database = list(seen)[0] for information_schema_name, schema in self.search(): new.add(information_schema_name.incorporate( path={'database': database, 'schema': schema}, quote_policy={'database': False}, include_policy={'database': False}, )) return new class BaseAdapter(metaclass=AdapterMeta): """The BaseAdapter provides an abstract base class for adapters. Adapters must implement the following methods and macros. Some of the methods can be safely overridden as a noop, where it makes sense (transactions on databases that don't support them, for instance). Those methods are marked with a (passable) in their docstrings. Check docstrings for type information, etc. To implement a macro, implement "${adapter_type}__${macro_name}". in the adapter's internal project. Methods: - exception_handler - date_function - list_schemas - drop_relation - truncate_relation - rename_relation - get_columns_in_relation - expand_column_types - list_relations_without_caching - is_cancelable - create_schema - drop_schema - quote - convert_text_type - convert_number_type - convert_boolean_type - convert_datetime_type - convert_date_type - convert_time_type Macros: - get_catalog """ Relation: Type[BaseRelation] = BaseRelation Column: Type[BaseColumn] = BaseColumn ConnectionManager: Type[BaseConnectionManager] # A set of clobber config fields accepted by this adapter # for use in materializations AdapterSpecificConfigs: FrozenSet[str] = frozenset() def __init__(self, config): self.config = config self.cache = RelationsCache() self.connections = self.ConnectionManager(config) self._internal_manifest_lazy: Optional[Manifest] = None ### # Methods that pass through to the connection manager ### def acquire_connection(self, name=None): return self.connections.set_connection_name(name) def release_connection(self): return self.connections.release() def cleanup_connections(self): return self.connections.cleanup_all() def clear_transaction(self): self.connections.clear_transaction() def commit_if_has_connection(self): return self.connections.commit_if_has_connection() def nice_connection_name(self): conn = self.connections.get_thread_connection() if conn is None or conn.name is None: return '<None>' return conn.name @contextmanager def connection_named(self, name): try: yield self.acquire_connection(name) finally: self.release_connection() @available.parse(lambda *a, **k: ('', empty_table())) def execute( self, sql: str, auto_begin: bool = False, fetch: bool = False ) -> Tuple[str, agate.Table]: """Execute the given SQL. This is a thin wrapper around ConnectionManager.execute. :param str sql: The sql to execute. :param bool auto_begin: If set, and dbt is not currently inside a transaction, automatically begin one. :param bool fetch: If set, fetch results. :return: A tuple of the status and the results (empty if fetch=False). :rtype: Tuple[str, agate.Table] """ return self.connections.execute( sql=sql, auto_begin=auto_begin, fetch=fetch ) ### # Methods that should never be overridden ### @classmethod def type(cls) -> str: """Get the type of this adapter. Types must be class-unique and consistent. :return: The type name :rtype: str """ return cls.ConnectionManager.TYPE @property def _internal_manifest(self) -> Manifest: if self._internal_manifest_lazy is None: return self.load_internal_manifest() return self._internal_manifest_lazy def check_internal_manifest(self) -> Optional[Manifest]: """Return the internal manifest (used for executing macros) if it's been initialized, otherwise return None. """ return self._internal_manifest_lazy def load_internal_manifest(self) -> Manifest: if self._internal_manifest_lazy is None: # avoid a circular import from dbt.parser.manifest import load_internal_manifest manifest = load_internal_manifest(self.config) self._internal_manifest_lazy = manifest return self._internal_manifest_lazy ### # Caching methods ### def _schema_is_cached(self, database: str, schema: str): """Check if the schema is cached, and by default logs if it is not.""" if dbt.flags.USE_CACHE is False: return False elif (database, schema) not in self.cache: logger.debug( 'On "{}": cache miss for schema "{}.{}", this is inefficient' .format(self.nice_connection_name(), database, schema) ) return False else: return True def _get_cache_schemas( self, manifest: Manifest, exec_only: bool = False ) -> SchemaSearchMap: """Get a mapping of each node's "information_schema" relations to a set of all schemas expected in that information_schema. There may be keys that are technically duplicates on the database side, for example all of '"foo", 'foo', '"FOO"' and 'FOO' could coexist as databases, and values could overlap as appropriate. All values are lowercase strings. """ info_schema_name_map = SchemaSearchMap() for node in manifest.nodes.values(): if exec_only and node.resource_type not in NodeType.executable(): continue relation = self.Relation.create_from(self.config, node) info_schema_name_map.add(relation) # result is a map whose keys are information_schema Relations without # identifiers that have appropriate database prefixes, and whose values # are sets of lowercase schema names that are valid members of those # schemas return info_schema_name_map def _relations_cache_for_schemas(self, manifest: Manifest) -> None: """Populate the relations cache for the given schemas. Returns an iteratble of the schemas populated, as strings. """ if not dbt.flags.USE_CACHE: return info_schema_name_map = self._get_cache_schemas(manifest, exec_only=True) for db, schema in info_schema_name_map.search(): for relation in self.list_relations_without_caching(db, schema): self.cache.add(relation) # it's possible that there were no relations in some schemas. We want # to insert the schemas we query into the cache's `.schemas` attribute # so we can check it later self.cache.update_schemas(info_schema_name_map.schemas_searched()) def set_relations_cache( self, manifest: Manifest, clear: bool = False ) -> None: """Run a query that gets a populated cache of the relations in the database and set the cache on this adapter. """ if not dbt.flags.USE_CACHE: return with self.cache.lock: if clear: self.cache.clear() self._relations_cache_for_schemas(manifest) @available def cache_added(self, relation: Optional[BaseRelation]) -> str: """Cache a new relation in dbt. It will show up in `list relations`.""" if relation is None: name = self.nice_connection_name() dbt.exceptions.raise_compiler_error( 'Attempted to cache a null relation for {}'.format(name) ) if dbt.flags.USE_CACHE: self.cache.add(relation) # so jinja doesn't render things return '' @available def cache_dropped(self, relation: Optional[BaseRelation]) -> str: """Drop a relation in dbt. It will no longer show up in `list relations`, and any bound views will be dropped from the cache """ if relation is None: name = self.nice_connection_name() dbt.exceptions.raise_compiler_error( 'Attempted to drop a null relation for {}'.format(name) ) if dbt.flags.USE_CACHE: self.cache.drop(relation) return '' @available def cache_renamed( self, from_relation: Optional[BaseRelation], to_relation: Optional[BaseRelation], ) -> str: """Rename a relation in dbt. It will show up with a new name in `list_relations`, but bound views will remain bound. """ if from_relation is None or to_relation is None: name = self.nice_connection_name() src_name = _relation_name(from_relation) dst_name = _relation_name(to_relation) dbt.exceptions.raise_compiler_error( 'Attempted to rename {} to {} for {}' .format(src_name, dst_name, name) ) if dbt.flags.USE_CACHE: self.cache.rename(from_relation, to_relation) return '' ### # Abstract methods for database-specific values, attributes, and types ### @abc.abstractclassmethod def date_function(cls) -> str: """Get the date function used by this adapter's database.""" raise dbt.exceptions.NotImplementedException( '`date_function` is not implemented for this adapter!') @abc.abstractclassmethod def is_cancelable(cls) -> bool: raise dbt.exceptions.NotImplementedException( '`is_cancelable` is not implemented for this adapter!' ) ### # Abstract methods about schemas ### @abc.abstractmethod def list_schemas(self, database: str) -> List[str]: """Get a list of existing schemas in database""" raise dbt.exceptions.NotImplementedException( '`list_schemas` is not implemented for this adapter!' ) @available.parse(lambda *a, **k: False) def check_schema_exists(self, database: str, schema: str) -> bool: """Check if a schema exists. The default implementation of this is potentially unnecessarily slow, and adapters should implement it if there is an optimized path (and there probably is) """ search = ( s.lower() for s in self.list_schemas(database=database) ) return schema.lower() in search ### # Abstract methods about relations ### @abc.abstractmethod @available.parse_none def drop_relation(self, relation: BaseRelation) -> None: """Drop the given relation. *Implementors must call self.cache.drop() to preserve cache state!* """ raise dbt.exceptions.NotImplementedException( '`drop_relation` is not implemented for this adapter!' ) @abc.abstractmethod @available.parse_none def truncate_relation(self, relation: BaseRelation) -> None: """Truncate the given relation.""" raise dbt.exceptions.NotImplementedException( '`truncate_relation` is not implemented for this adapter!' ) @abc.abstractmethod @available.parse_none def rename_relation( self, from_relation: BaseRelation, to_relation: BaseRelation ) -> None: """Rename the relation from from_relation to to_relation. Implementors must call self.cache.rename() to preserve cache state. """ raise dbt.exceptions.NotImplementedException( '`rename_relation` is not implemented for this adapter!' ) @abc.abstractmethod @available.parse_list def get_columns_in_relation( self, relation: BaseRelation ) -> List[BaseColumn]: """Get a list of the columns in the given Relation.""" raise dbt.exceptions.NotImplementedException( '`get_columns_in_relation` is not implemented for this adapter!' ) @available.deprecated('get_columns_in_relation', lambda *a, **k: []) def get_columns_in_table( self, schema: str, identifier: str ) -> List[BaseColumn]: """DEPRECATED: Get a list of the columns in the given table.""" relation = self.Relation.create( database=self.config.credentials.database, schema=schema, identifier=identifier, quote_policy=self.config.quoting ) return self.get_columns_in_relation(relation) @abc.abstractmethod def expand_column_types( self, goal: BaseRelation, current: BaseRelation ) -> None: """Expand the current table's types to match the goal table. (passable) :param self.Relation goal: A relation that currently exists in the database with columns of the desired types. :param self.Relation current: A relation that currently exists in the database with columns of unspecified types. """ raise dbt.exceptions.NotImplementedException( '`expand_target_column_types` is not implemented for this adapter!' ) @abc.abstractmethod def list_relations_without_caching( self, information_schema: BaseRelation, schema: str ) -> List[BaseRelation]: """List relations in the given schema, bypassing the cache. This is used as the underlying behavior to fill the cache. :param Relation information_schema: The information schema to list relations from. :param str schema: The name of the schema to list relations from. :return: The relations in schema :rtype: List[self.Relation] """ raise dbt.exceptions.NotImplementedException( '`list_relations_without_caching` is not implemented for this ' 'adapter!' ) ### # Provided methods about relations ### @available.parse_list def get_missing_columns( self, from_relation: BaseRelation, to_relation: BaseRelation ) -> List[BaseColumn]: """Returns a list of Columns in from_relation that are missing from to_relation. """ if not isinstance(from_relation, self.Relation): dbt.exceptions.invalid_type_error( method_name='get_missing_columns', arg_name='from_relation', got_value=from_relation, expected_type=self.Relation) if not isinstance(to_relation, self.Relation): dbt.exceptions.invalid_type_error( method_name='get_missing_columns', arg_name='to_relation', got_value=to_relation, expected_type=self.Relation) from_columns = { col.name: col for col in self.get_columns_in_relation(from_relation) } to_columns = { col.name: col for col in self.get_columns_in_relation(to_relation) } missing_columns = set(from_columns.keys()) - set(to_columns.keys()) return [ col for (col_name, col) in from_columns.items() if col_name in missing_columns ] @available.parse_none def valid_snapshot_target(self, relation: BaseRelation) -> None: """Ensure that the target relation is valid, by making sure it has the expected columns. :param Relation relation: The relation to check :raises dbt.exceptions.CompilationException: If the columns are incorrect. """ if not isinstance(relation, self.Relation): dbt.exceptions.invalid_type_error( method_name='valid_snapshot_target', arg_name='relation', got_value=relation, expected_type=self.Relation) columns = self.get_columns_in_relation(relation) names = set(c.name.lower() for c in columns) expanded_keys = ('scd_id', 'valid_from', 'valid_to') extra = [] missing = [] for legacy in expanded_keys: desired = 'dbt_' + legacy if desired not in names: missing.append(desired) if legacy in names: extra.append(legacy) if missing: if extra: msg = ( 'Snapshot target has ("{}") but not ("{}") - is it an ' 'unmigrated previous version archive?' .format('", "'.join(extra), '", "'.join(missing)) ) else: msg = ( 'Snapshot target is not a snapshot table (missing "{}")' .format('", "'.join(missing)) ) dbt.exceptions.raise_compiler_error(msg) @available.parse_none def expand_target_column_types( self, from_relation: BaseRelation, to_relation: BaseRelation ) -> None: if not isinstance(from_relation, self.Relation): dbt.exceptions.invalid_type_error( method_name='expand_target_column_types', arg_name='from_relation', got_value=from_relation, expected_type=self.Relation) if not isinstance(to_relation, self.Relation): dbt.exceptions.invalid_type_error( method_name='expand_target_column_types', arg_name='to_relation', got_value=to_relation, expected_type=self.Relation) self.expand_column_types(from_relation, to_relation) def list_relations(self, database: str, schema: str) -> List[BaseRelation]: if self._schema_is_cached(database, schema): return self.cache.get_relations(database, schema) information_schema = self.Relation.create( database=database, schema=schema, identifier='', quote_policy=self.config.quoting ).information_schema() # we can't build the relations cache because we don't have a # manifest so we can't run any operations. relations = self.list_relations_without_caching( information_schema, schema ) logger.debug('with database={}, schema={}, relations={}' .format(database, schema, relations)) return relations def _make_match_kwargs( self, database: str, schema: str, identifier: str ) -> Dict[str, str]: quoting = self.config.quoting if identifier is not None and quoting['identifier'] is False: identifier = identifier.lower() if schema is not None and quoting['schema'] is False: schema = schema.lower() if database is not None and quoting['database'] is False: database = database.lower() return filter_null_values({ 'database': database, 'identifier': identifier, 'schema': schema, }) def _make_match( self, relations_list: List[BaseRelation], database: str, schema: str, identifier: str, ) -> List[BaseRelation]: matches = [] search = self._make_match_kwargs(database, schema, identifier) for relation in relations_list: if relation.matches(**search): matches.append(relation) return matches @available.parse_none def get_relation( self, database: str, schema: str, identifier: str ) -> Optional[BaseRelation]: relations_list = self.list_relations(database, schema) matches = self._make_match(relations_list, database, schema, identifier) if len(matches) > 1: kwargs = { 'identifier': identifier, 'schema': schema, 'database': database, } dbt.exceptions.get_relation_returned_multiple_results( kwargs, matches ) elif matches: return matches[0] return None @available.deprecated('get_relation', lambda *a, **k: False) def already_exists(self, schema: str, name: str) -> bool: """DEPRECATED: Return if a model already exists in the database""" database = self.config.credentials.database relation = self.get_relation(database, schema, name) return relation is not None ### # ODBC FUNCTIONS -- these should not need to change for every adapter, # although some adapters may override them ### @abc.abstractmethod @available.parse_none def create_schema(self, database: str, schema: str): """Create the given schema if it does not exist.""" raise dbt.exceptions.NotImplementedException( '`create_schema` is not implemented for this adapter!' ) @abc.abstractmethod def drop_schema(self, database: str, schema: str): """Drop the given schema (and everything in it) if it exists.""" raise dbt.exceptions.NotImplementedException( '`drop_schema` is not implemented for this adapter!' ) @available @abc.abstractclassmethod def quote(cls, identifier: str) -> str: """Quote the given identifier, as appropriate for the database.""" raise dbt.exceptions.NotImplementedException( '`quote` is not implemented for this adapter!' ) @available def quote_as_configured(self, identifier: str, quote_key: str) -> str: """Quote or do not quote the given identifer as configured in the project config for the quote key. The quote key should be one of 'database' (on bigquery, 'profile'), 'identifier', or 'schema', or it will be treated as if you set `True`. """ try: key = ComponentName(quote_key) except ValueError: return identifier default = self.Relation.get_default_quote_policy().get_part(key) if self.config.quoting.get(key, default): return self.quote(identifier) else: return identifier ### # Conversions: These must be implemented by concrete implementations, for # converting agate types into their sql equivalents. ### @abc.abstractclassmethod def convert_text_type( cls, agate_table: agate.Table, col_idx: int ) -> str: """Return the type in the database that best maps to the agate.Text type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_text_type` is not implemented for this adapter!') @abc.abstractclassmethod def convert_number_type( cls, agate_table: agate.Table, col_idx: int ) -> str: """Return the type in the database that best maps to the agate.Number type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_number_type` is not implemented for this adapter!') @abc.abstractclassmethod def convert_boolean_type( cls, agate_table: agate.Table, col_idx: int ) -> str: """Return the type in the database that best maps to the agate.Boolean type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_boolean_type` is not implemented for this adapter!') @abc.abstractclassmethod def convert_datetime_type( cls, agate_table: agate.Table, col_idx: int ) -> str: """Return the type in the database that best maps to the agate.DateTime type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_datetime_type` is not implemented for this adapter!') @abc.abstractclassmethod def convert_date_type(cls, agate_table: agate.Table, col_idx: int) -> str: """Return the type in the database that best maps to the agate.Date type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_date_type` is not implemented for this adapter!') @abc.abstractclassmethod def convert_time_type(cls, agate_table: agate.Table, col_idx: int) -> str: """Return the type in the database that best maps to the agate.TimeDelta type for the given agate table and column index. :param agate_table: The table :param col_idx: The index into the agate table for the column. :return: The name of the type in the database """ raise dbt.exceptions.NotImplementedException( '`convert_time_type` is not implemented for this adapter!') @available @classmethod def convert_type(cls, agate_table, col_idx): return cls.convert_agate_type(agate_table, col_idx) @classmethod def convert_agate_type(cls, agate_table, col_idx): agate_type = agate_table.column_types[col_idx] conversions = [ (agate.Text, cls.convert_text_type), (agate.Number, cls.convert_number_type), (agate.Boolean, cls.convert_boolean_type), (agate.DateTime, cls.convert_datetime_type), (agate.Date, cls.convert_date_type), (agate.TimeDelta, cls.convert_time_type), ] for agate_cls, func in conversions: if isinstance(agate_type, agate_cls): return func(agate_table, col_idx) ### # Operations involving the manifest ### def execute_macro( self, macro_name: str, manifest: Optional[Manifest] = None, project: Optional[str] = None, context_override: Optional[Dict[str, Any]] = None, kwargs: Dict[str, Any] = None, release: bool = False, ) -> agate.Table: """Look macro_name up in the manifest and execute its results. :param macro_name: The name of the macro to execute. :param manifest: The manifest to use for generating the base macro execution context. If none is provided, use the internal manifest. :param project: The name of the project to search in, or None for the first match. :param context_override: An optional dict to update() the macro execution context. :param kwargs: An optional dict of keyword args used to pass to the macro. :param release: If True, release the connection after executing. """ if kwargs is None: kwargs = {} if context_override is None: context_override = {} if manifest is None: manifest = self._internal_manifest macro = manifest.find_macro_by_name(macro_name, project) if macro is None: if project is None: package_name = 'any package' else: package_name = 'the "{}" package'.format(project) # The import of dbt.context.runtime below shadows 'dbt' import dbt.exceptions raise dbt.exceptions.RuntimeException( 'dbt could not find a macro with the name "{}" in {}' .format(macro_name, package_name) ) # This causes a reference cycle, as dbt.context.runtime.generate() # ends up calling get_adapter, so the import has to be here. import dbt.context.operation macro_context = dbt.context.operation.generate( macro, self.config, manifest ) macro_context.update(context_override) macro_function = macro.generator(macro_context) try: result = macro_function(**kwargs) finally: if release: self.release_connection() return result @classmethod def _catalog_filter_table( cls, table: agate.Table, manifest: Manifest ) -> agate.Table: """Filter the table as appropriate for catalog entries. Subclasses can override this to change filtering rules on a per-adapter basis. """ return table.where(_catalog_filter_schemas(manifest)) def get_catalog(self, manifest: Manifest) -> agate.Table: """Get the catalog for this manifest by running the get catalog macro. Returns an agate.Table of catalog information. """ information_schemas = list(self._get_cache_schemas(manifest).keys()) # make it a list so macros can index into it. kwargs = {'information_schemas': information_schemas} table = self.execute_macro(GET_CATALOG_MACRO_NAME, kwargs=kwargs, release=True) results = self._catalog_filter_table(table, manifest) return results def cancel_open_connections(self): """Cancel all open connections.""" return self.connections.cancel_open() def calculate_freshness( self, source: BaseRelation, loaded_at_field: str, filter: Optional[str], manifest: Optional[Manifest] = None ) -> Dict[str, Any]: """Calculate the freshness of sources in dbt, and return it""" kwargs: Dict[str, Any] = { 'source': source, 'loaded_at_field': loaded_at_field, 'filter': filter, } # run the macro table = self.execute_macro( FRESHNESS_MACRO_NAME, kwargs=kwargs, release=True, manifest=manifest ) # now we have a 1-row table of the maximum `loaded_at_field` value and # the current time according to the db. if len(table) != 1 or len(table[0]) != 2: dbt.exceptions.raise_compiler_error( 'Got an invalid result from "{}" macro: {}'.format( FRESHNESS_MACRO_NAME, [tuple(r) for r in table] ) ) if table[0][0] is None: # no records in the table, so really the max_loaded_at was # infinitely long ago. Just call it 0:00 January 1 year UTC max_loaded_at = datetime(1, 1, 1, 0, 0, 0, tzinfo=pytz.UTC) else: max_loaded_at = _utc(table[0][0], source, loaded_at_field) snapshotted_at = _utc(table[0][1], source, loaded_at_field) age = (snapshotted_at - max_loaded_at).total_seconds() return { 'max_loaded_at': max_loaded_at, 'snapshotted_at': snapshotted_at, 'age': age, } def pre_model_hook(self, config: Mapping[str, Any]) -> Any: """A hook for running some operation before the model materialization runs. The hook can assume it has a connection available. The only parameter is a configuration dictionary (the same one available in the materialization context). It should be considered read-only. The pre-model hook may return anything as a context, which will be passed to the post-model hook. """ pass def post_model_hook(self, config: Mapping[str, Any], context: Any) -> None: """A hook for running some operation after the model materialization runs. The hook can assume it has a connection available. The first parameter is a configuration dictionary (the same one available in the materialization context). It should be considered read-only. The second parameter is the value returned by pre_mdoel_hook. """ pass
36.054755
79
0.624251
8db96caafc2f8aeb4efab043cfeb8091c55dbbb1
1,630
py
Python
SimG4Core/PrintGeomInfo/test/python/g4OverlapCheckCalo_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
3
2018-08-24T19:10:26.000Z
2019-02-19T11:45:32.000Z
SimG4Core/PrintGeomInfo/test/python/g4OverlapCheckCalo_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
3
2018-08-23T13:40:24.000Z
2019-12-05T21:16:03.000Z
SimG4Core/PrintGeomInfo/test/python/g4OverlapCheckCalo_cfg.py
nistefan/cmssw
ea13af97f7f2117a4f590a5e654e06ecd9825a5b
[ "Apache-2.0" ]
5
2018-08-21T16:37:52.000Z
2020-01-09T13:33:17.000Z
import FWCore.ParameterSet.Config as cms process = cms.Process("G4PrintGeometry") #process.load('Configuration.Geometry.GeometryIdeal_cff') #process.load('Configuration.Geometry.GeometryExtended_cff') #process.load('Configuration.Geometry.GeometryExtended2015_cff') #process.load('Configuration.Geometry.GeometryExtended2017_cff') #process.load('Configuration.Geometry.GeometryExtended2019_cff') #process.load('Configuration.Geometry.GeometryExtended2023D17_cff') process.load('Configuration.Geometry.GeometryExtended2023D28_cff') from SimG4Core.PrintGeomInfo.g4TestGeometry_cfi import * process = checkOverlap(process) process.MessageLogger.destinations = cms.untracked.vstring("calo2023D28.overlaps") # enable Geant4 overlap check process.g4SimHits.CheckOverlap = True # Geant4 overlap check conditions process.g4SimHits.G4CheckOverlap.Tolerance = cms.untracked.double(0.0) process.g4SimHits.G4CheckOverlap.Resolution = cms.untracked.int32(10000) # tells if NodeName is G4Region or G4PhysicalVolume process.g4SimHits.G4CheckOverlap.RegionFlag = cms.untracked.bool(False) # list of names process.g4SimHits.G4CheckOverlap.NodeNames = cms.vstring('CALO') # enable dump gdml file process.g4SimHits.G4CheckOverlap.gdmlFlag = cms.untracked.bool(False) # if defined a G4PhysicsVolume info is printed process.g4SimHits.G4CheckOverlap.PVname = '' # if defined a list of daughter volumes is printed process.g4SimHits.G4CheckOverlap.LVname = '' # extra output files, created if a name is not empty process.g4SimHits.FileNameField = '' process.g4SimHits.FileNameGDML = '' process.g4SimHits.FileNameRegions = '' #
40.75
82
0.814724
c71072021729ed9e9e4ec5735f95fcdf64fae732
980
py
Python
prototype_2/src/mouse_controller.py
Bhartendu-Kumar/Computer-Pointer-Controller
f753446e10757a6d304cecee55ddfb7213952d9f
[ "MIT" ]
4
2020-06-07T10:26:56.000Z
2020-06-11T10:39:22.000Z
prototype_2/src/mouse_controller.py
Bhartendu-Kumar/Computer-Pointer-Controller
f753446e10757a6d304cecee55ddfb7213952d9f
[ "MIT" ]
null
null
null
prototype_2/src/mouse_controller.py
Bhartendu-Kumar/Computer-Pointer-Controller
f753446e10757a6d304cecee55ddfb7213952d9f
[ "MIT" ]
1
2020-06-11T10:39:27.000Z
2020-06-11T10:39:27.000Z
''' This is a sample class that you can use to control the mouse pointer. It uses the pyautogui library. You can set the precision for mouse movement (how much the mouse moves) and the speed (how fast it moves) by changing precision_dict and speed_dict. Calling the move function with the x and y output of the gaze estimation model will move the pointer. ''' import pyautogui class MouseController: def __init__(self, precision, speed): precision_dict={'high':100, 'low':1000, 'medium':500} speed_dict={'fast':1, 'slow':10, 'medium':5} pyautogui.FAILSAFE=False self.precision=precision_dict[precision] self.speed=speed_dict[speed] def get_screen_size(self): return pyautogui.size() def move_to_center(self): size=self.get_screen_size() pyautogui.moveTo(int(size[0]/2), int(size[1]/2)) def move(self, x, y): pyautogui.moveRel(x*self.precision, -1*y*self.precision, duration=self.speed)
33.793103
85
0.69898
557a1ae122c0048ab0a3385ea17a2c0e39661fb3
201
py
Python
plugin.video.mrknow/lib/entities/CRuleItem.py
mrknow/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
105
2015-11-28T00:03:11.000Z
2021-05-05T20:47:42.000Z
plugin.video.mrknow/lib/entities/CRuleItem.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
918
2015-11-28T14:12:40.000Z
2022-03-23T20:24:49.000Z
plugin.video.mrknow/lib/entities/CRuleItem.py
rrosajp/filmkodi
0162cde9ae25ddbf4a69330948714833ff2f78c9
[ "Apache-2.0" ]
111
2015-12-01T14:06:10.000Z
2020-08-01T10:44:39.000Z
class CRuleItem(object): def __init__(self): self.infos = '' self.order = '' self.skill = '' self.curr = '' self.info_list = [] self.url_build = ''
20.1
27
0.477612
c182671d3c1e6f65ba757fcb56b9d340f3cee0fc
17,851
py
Python
doc/examples/applications/plot_rank_filters.py
RKDSOne/scikit-image
baa67eafcace9cde1b94ad2d467e2f2e0468e759
[ "BSD-3-Clause" ]
1
2020-12-27T18:42:22.000Z
2020-12-27T18:42:22.000Z
doc/examples/applications/plot_rank_filters.py
RKDSOne/scikit-image
baa67eafcace9cde1b94ad2d467e2f2e0468e759
[ "BSD-3-Clause" ]
null
null
null
doc/examples/applications/plot_rank_filters.py
RKDSOne/scikit-image
baa67eafcace9cde1b94ad2d467e2f2e0468e759
[ "BSD-3-Clause" ]
2
2015-12-29T17:04:26.000Z
2020-10-17T15:47:30.000Z
""" ============ Rank filters ============ Rank filters are non-linear filters using the local greylevels ordering to compute the filtered value. This ensemble of filters share a common base: the local grey-level histogram extraction computed on the neighborhood of a pixel (defined by a 2D structuring element). If the filtered value is taken as the middle value of the histogram, we get the classical median filter. Rank filters can be used for several purposes such as: * image quality enhancement e.g. image smoothing, sharpening * image pre-processing e.g. noise reduction, contrast enhancement * feature extraction e.g. border detection, isolated point detection * post-processing e.g. small object removal, object grouping, contour smoothing Some well known filters are specific cases of rank filters [1]_ e.g. morphological dilation, morphological erosion, median filters. The different implementation availables in `skimage` are compared. In this example, we will see how to filter a greylevel image using some of the linear and non-linear filters availables in skimage. We use the `camera` image from `skimage.data`. .. [1] Pierre Soille, On morphological operators based on rank filters, Pattern Recognition 35 (2002) 527-535. """ import numpy as np import matplotlib.pyplot as plt from skimage import data ima = data.camera() hist = np.histogram(ima, bins=np.arange(0, 256)) plt.figure(figsize=(8, 3)) plt.subplot(1, 2, 1) plt.imshow(ima, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.subplot(1, 2, 2) plt.plot(hist[1][:-1], hist[0], lw=2) plt.title('histogram of grey values') """ .. image:: PLOT2RST.current_figure Noise removal ============= Some noise is added to the image, 1% of pixels are randomly set to 255, 1% are randomly set to 0. The **median** filter is applied to remove the noise. .. note:: there are different implementations of median filter : `skimage.filter.median_filter` and `skimage.filter.rank.median` """ noise = np.random.random(ima.shape) nima = data.camera() nima[noise > 0.99] = 255 nima[noise < 0.01] = 0 from skimage.filter.rank import median from skimage.morphology import disk fig = plt.figure(figsize=[10, 7]) lo = median(nima, disk(1)) hi = median(nima, disk(5)) ext = median(nima, disk(20)) plt.subplot(2, 2, 1) plt.imshow(nima, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('noised image') plt.subplot(2, 2, 2) plt.imshow(lo, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('median $r=1$') plt.subplot(2, 2, 3) plt.imshow(hi, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('median $r=5$') plt.subplot(2, 2, 4) plt.imshow(ext, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('median $r=20$') """ .. image:: PLOT2RST.current_figure The added noise is efficiently removed, as the image defaults are small (1 pixel wide), a small filter radius is sufficient. As the radius is increasing, objects with a bigger size are filtered as well, such as the camera tripod. The median filter is commonly used for noise removal because borders are preserved. Image smoothing ================ The example hereunder shows how a local **mean** smoothes the camera man image. """ from skimage.filter.rank import mean fig = plt.figure(figsize=[10, 7]) loc_mean = mean(nima, disk(10)) plt.subplot(1, 2, 1) plt.imshow(ima, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('original') plt.subplot(1, 2, 2) plt.imshow(loc_mean, cmap=plt.cm.gray, vmin=0, vmax=255) plt.xlabel('local mean $r=10$') """ .. image:: PLOT2RST.current_figure One may be interested in smoothing an image while preserving important borders (median filters already achieved this), here we use the **bilateral** filter that restricts the local neighborhood to pixel having a greylevel similar to the central one. .. note:: a different implementation is available for color images in `skimage.filter.denoise_bilateral`. """ from skimage.filter.rank import bilateral_mean ima = data.camera() selem = disk(10) bilat = bilateral_mean(ima.astype(np.uint16), disk(20), s0=10, s1=10) # display results fig = plt.figure(figsize=[10, 7]) plt.subplot(2, 2, 1) plt.imshow(ima, cmap=plt.cm.gray) plt.xlabel('original') plt.subplot(2, 2, 3) plt.imshow(bilat, cmap=plt.cm.gray) plt.xlabel('bilateral mean') plt.subplot(2, 2, 2) plt.imshow(ima[200:350, 350:450], cmap=plt.cm.gray) plt.subplot(2, 2, 4) plt.imshow(bilat[200:350, 350:450], cmap=plt.cm.gray) """ .. image:: PLOT2RST.current_figure One can see that the large continuous part of the image (e.g. sky) is smoothed whereas other details are preserved. Contrast enhancement ==================== We compare here how the global histogram equalization is applied locally. The equalized image [2]_ has a roughly linear cumulative distribution function for each pixel neighborhood. The local version [3]_ of the histogram equalization emphasizes every local greylevel variations. .. [2] http://en.wikipedia.org/wiki/Histogram_equalization .. [3] http://en.wikipedia.org/wiki/Adaptive_histogram_equalization """ from skimage import exposure from skimage.filter import rank ima = data.camera() # equalize globally and locally glob = exposure.equalize(ima) * 255 loc = rank.equalize(ima, disk(20)) # extract histogram for each image hist = np.histogram(ima, bins=np.arange(0, 256)) glob_hist = np.histogram(glob, bins=np.arange(0, 256)) loc_hist = np.histogram(loc, bins=np.arange(0, 256)) plt.figure(figsize=(10, 10)) plt.subplot(321) plt.imshow(ima, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.subplot(322) plt.plot(hist[1][:-1], hist[0], lw=2) plt.title('histogram of grey values') plt.subplot(323) plt.imshow(glob, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.subplot(324) plt.plot(glob_hist[1][:-1], glob_hist[0], lw=2) plt.title('histogram of grey values') plt.subplot(325) plt.imshow(loc, cmap=plt.cm.gray, interpolation='nearest') plt.axis('off') plt.subplot(326) plt.plot(loc_hist[1][:-1], loc_hist[0], lw=2) plt.title('histogram of grey values') """ .. image:: PLOT2RST.current_figure another way to maximize the number of greylevels used for an image is to apply a local autoleveling, i.e. here a pixel greylevel is proportionally remapped between local minimum and local maximum. The following example shows how local autolevel enhances the camara man picture. """ from skimage.filter.rank import autolevel ima = data.camera() selem = disk(10) auto = autolevel(ima.astype(np.uint16), disk(20)) # display results fig = plt.figure(figsize=[10, 7]) plt.subplot(1, 2, 1) plt.imshow(ima, cmap=plt.cm.gray) plt.xlabel('original') plt.subplot(1, 2, 2) plt.imshow(auto, cmap=plt.cm.gray) plt.xlabel('local autolevel') """ .. image:: PLOT2RST.current_figure This filter is very sensitive to local outlayers, see the little white spot in the sky left part. This is due to a local maximum which is very high comparing to the rest of the neighborhood. One can moderate this using the percentile version of the autolevel filter which uses given percentiles (one inferior, one superior) in place of local minimum and maximum. The example below illustrates how the percentile parameters influence the local autolevel result. """ from skimage.filter.rank import percentile_autolevel image = data.camera() selem = disk(20) loc_autolevel = autolevel(image, selem=selem) loc_perc_autolevel0 = percentile_autolevel(image, selem=selem, p0=.00, p1=1.0) loc_perc_autolevel1 = percentile_autolevel(image, selem=selem, p0=.01, p1=.99) loc_perc_autolevel2 = percentile_autolevel(image, selem=selem, p0=.05, p1=.95) loc_perc_autolevel3 = percentile_autolevel(image, selem=selem, p0=.1, p1=.9) fig, axes = plt.subplots(nrows=3, figsize=(7, 8)) ax0, ax1, ax2 = axes plt.gray() ax0.imshow(np.hstack((image, loc_autolevel))) ax0.set_title('original / autolevel') ax1.imshow( np.hstack((loc_perc_autolevel0, loc_perc_autolevel1)), vmin=0, vmax=255) ax1.set_title('percentile autolevel 0%,1%') ax2.imshow( np.hstack((loc_perc_autolevel2, loc_perc_autolevel3)), vmin=0, vmax=255) ax2.set_title('percentile autolevel 5% and 10%') for ax in axes: ax.axis('off') """ .. image:: PLOT2RST.current_figure The morphological contrast enhancement filter replaces the central pixel by the local maximum if the original pixel value is closest to local maximum, otherwise by the minimum local. """ from skimage.filter.rank import morph_contr_enh ima = data.camera() enh = morph_contr_enh(ima, disk(5)) # display results fig = plt.figure(figsize=[10, 7]) plt.subplot(2, 2, 1) plt.imshow(ima, cmap=plt.cm.gray) plt.xlabel('original') plt.subplot(2, 2, 3) plt.imshow(enh, cmap=plt.cm.gray) plt.xlabel('local morphlogical contrast enhancement') plt.subplot(2, 2, 2) plt.imshow(ima[200:350, 350:450], cmap=plt.cm.gray) plt.subplot(2, 2, 4) plt.imshow(enh[200:350, 350:450], cmap=plt.cm.gray) """ .. image:: PLOT2RST.current_figure The percentile version of the local morphological contrast enhancement uses percentile *p0* and *p1* instead of the local minimum and maximum. """ from skimage.filter.rank import percentile_morph_contr_enh ima = data.camera() penh = percentile_morph_contr_enh(ima, disk(5), p0=.1, p1=.9) # display results fig = plt.figure(figsize=[10, 7]) plt.subplot(2, 2, 1) plt.imshow(ima, cmap=plt.cm.gray) plt.xlabel('original') plt.subplot(2, 2, 3) plt.imshow(penh, cmap=plt.cm.gray) plt.xlabel('local percentile morphlogical\n contrast enhancement') plt.subplot(2, 2, 2) plt.imshow(ima[200:350, 350:450], cmap=plt.cm.gray) plt.subplot(2, 2, 4) plt.imshow(penh[200:350, 350:450], cmap=plt.cm.gray) """ .. image:: PLOT2RST.current_figure Image threshold =============== The Otsu's threshold [1]_ method can be applied locally using the local greylevel distribution. In the example below, for each pixel, an "optimal" threshold is determined by maximizing the variance between two classes of pixels of the local neighborhood defined by a structuring element. The example compares the local threshold with the global threshold `skimage.filter.threshold_otsu`. .. note:: Local thresholding is much slower than global one. There exists a function for global Otsu thresholding: `skimage.filter.threshold_otsu`. .. [1] http://en.wikipedia.org/wiki/Otsu's_method """ from skimage.filter.rank import otsu from skimage.filter import threshold_otsu p8 = data.page() radius = 10 selem = disk(radius) # t_loc_otsu is an image t_loc_otsu = otsu(p8, selem) loc_otsu = p8 >= t_loc_otsu # t_glob_otsu is a scalar t_glob_otsu = threshold_otsu(p8) glob_otsu = p8 >= t_glob_otsu plt.figure() plt.subplot(2, 2, 1) plt.imshow(p8, cmap=plt.cm.gray) plt.xlabel('original') plt.colorbar() plt.subplot(2, 2, 2) plt.imshow(t_loc_otsu, cmap=plt.cm.gray) plt.xlabel('local Otsu ($radius=%d$)' % radius) plt.colorbar() plt.subplot(2, 2, 3) plt.imshow(p8 >= t_loc_otsu, cmap=plt.cm.gray) plt.xlabel('original>=local Otsu' % t_glob_otsu) plt.subplot(2, 2, 4) plt.imshow(glob_otsu, cmap=plt.cm.gray) plt.xlabel('global Otsu ($t=%d$)' % t_glob_otsu) """ .. image:: PLOT2RST.current_figure The following example shows how local Otsu's threshold handles a global level shift applied to a synthetic image . """ n = 100 theta = np.linspace(0, 10 * np.pi, n) x = np.sin(theta) m = (np.tile(x, (n, 1)) * np.linspace(0.1, 1, n) * 128 + 128).astype(np.uint8) radius = 10 t = rank.otsu(m, disk(radius)) plt.figure() plt.subplot(1, 2, 1) plt.imshow(m) plt.xlabel('original') plt.subplot(1, 2, 2) plt.imshow(m >= t, interpolation='nearest') plt.xlabel('local Otsu ($radius=%d$)' % radius) """ .. image:: PLOT2RST.current_figure Image morphology ================ Local maximum and local minimum are the base operators for greylevel morphology. .. note:: `skimage.dilate` and `skimage.erode` are equivalent filters (see below for comparison). Here is an example of the classical morphological greylevel filters: opening, closing and morphological gradient. """ from skimage.filter.rank import maximum, minimum, gradient ima = data.camera() closing = maximum(minimum(ima, disk(5)), disk(5)) opening = minimum(maximum(ima, disk(5)), disk(5)) grad = gradient(ima, disk(5)) # display results fig = plt.figure(figsize=[10, 7]) plt.subplot(2, 2, 1) plt.imshow(ima, cmap=plt.cm.gray) plt.xlabel('original') plt.subplot(2, 2, 2) plt.imshow(closing, cmap=plt.cm.gray) plt.xlabel('greylevel closing') plt.subplot(2, 2, 3) plt.imshow(opening, cmap=plt.cm.gray) plt.xlabel('greylevel opening') plt.subplot(2, 2, 4) plt.imshow(grad, cmap=plt.cm.gray) plt.xlabel('morphological gradient') """ .. image:: PLOT2RST.current_figure Feature extraction =================== Local histogram can be exploited to compute local entropy, which is related to the local image complexity. Entropy is computed using base 2 logarithm i.e. the filter returns the minimum number of bits needed to encode local greylevel distribution. `skimage.rank.entropy` returns local entropy on a given structuring element. The following example shows this filter applied on 8- and 16- bit images. .. note:: to better use the available image bit, the function returns 10x entropy for 8-bit images and 1000x entropy for 16-bit images. """ from skimage import data from skimage.filter.rank import entropy from skimage.morphology import disk import numpy as np import matplotlib.pyplot as plt # defining a 8- and a 16-bit test images a8 = data.camera() a16 = data.camera().astype(np.uint16) * 4 ent8 = entropy(a8, disk(5)) # pixel value contain 10x the local entropy ent16 = entropy(a16, disk(5)) # pixel value contain 1000x the local entropy # display results plt.figure(figsize=(10, 10)) plt.subplot(2, 2, 1) plt.imshow(a8, cmap=plt.cm.gray) plt.xlabel('8-bit image') plt.colorbar() plt.subplot(2, 2, 2) plt.imshow(ent8, cmap=plt.cm.jet) plt.xlabel('entropy*10') plt.colorbar() plt.subplot(2, 2, 3) plt.imshow(a16, cmap=plt.cm.gray) plt.xlabel('16-bit image') plt.colorbar() plt.subplot(2, 2, 4) plt.imshow(ent16, cmap=plt.cm.jet) plt.xlabel('entropy*1000') plt.colorbar() """ .. image:: PLOT2RST.current_figure Implementation ================ The central part of the `skimage.rank` filters is build on a sliding window that update local greylevel histogram. This approach limits the algorithm complexity to O(n) where n is the number of image pixels. The complexity is also limited with respect to the structuring element size. """ from time import time from scipy.ndimage.filters import percentile_filter from skimage.morphology import dilation from skimage.filter import median_filter from skimage.filter.rank import median, maximum def exec_and_timeit(func): """Decorator that returns both function results and execution time.""" def wrapper(*arg): t1 = time() res = func(*arg) t2 = time() ms = (t2 - t1) * 1000.0 return (res, ms) return wrapper @exec_and_timeit def cr_med(image, selem): return median(image=image, selem=selem) @exec_and_timeit def cr_max(image, selem): return maximum(image=image, selem=selem) @exec_and_timeit def cm_dil(image, selem): return dilation(image=image, selem=selem) @exec_and_timeit def ctmf_med(image, radius): return median_filter(image=image, radius=radius) @exec_and_timeit def ndi_med(image, n): return percentile_filter(image, 50, size=n * 2 - 1) """ Comparison between * `rank.maximum` * `cmorph.dilate` on increasing structuring element size """ a = data.camera() rec = [] e_range = range(1, 20, 2) for r in e_range: elem = disk(r + 1) rc, ms_rc = cr_max(a, elem) rcm, ms_rcm = cm_dil(a, elem) rec.append((ms_rc, ms_rcm)) rec = np.asarray(rec) plt.figure() plt.title('increasing element size') plt.ylabel('time (ms)') plt.xlabel('element radius') plt.plot(e_range, rec) plt.legend(['crank.maximum', 'cmorph.dilate']) """ and increasing image size .. image:: PLOT2RST.current_figure """ r = 9 elem = disk(r + 1) rec = [] s_range = range(100, 1000, 100) for s in s_range: a = (np.random.random((s, s)) * 256).astype('uint8') (rc, ms_rc) = cr_max(a, elem) (rcm, ms_rcm) = cm_dil(a, elem) rec.append((ms_rc, ms_rcm)) rec = np.asarray(rec) plt.figure() plt.title('increasing image size') plt.ylabel('time (ms)') plt.xlabel('image size') plt.plot(s_range, rec) plt.legend(['crank.maximum', 'cmorph.dilate']) """ .. image:: PLOT2RST.current_figure Comparison between: * `rank.median` * `ctmf.median_filter` * `ndimage.percentile` on increasing structuring element size """ a = data.camera() rec = [] e_range = range(2, 30, 4) for r in e_range: elem = disk(r + 1) rc, ms_rc = cr_med(a, elem) rctmf, ms_rctmf = ctmf_med(a, r) rndi, ms_ndi = ndi_med(a, r) rec.append((ms_rc, ms_rctmf, ms_ndi)) rec = np.asarray(rec) plt.figure() plt.title('increasing element size') plt.plot(e_range, rec) plt.legend(['rank.median', 'ctmf.median_filter', 'ndimage.percentile']) plt.ylabel('time (ms)') plt.xlabel('element radius') """ .. image:: PLOT2RST.current_figure comparison of outcome of the three methods """ plt.figure() plt.imshow(np.hstack((rc, rctmf, rndi))) plt.xlabel('rank.median vs ctmf.median_filter vs ndimage.percentile') """ .. image:: PLOT2RST.current_figure and increasing image size """ r = 9 elem = disk(r + 1) rec = [] s_range = [100, 200, 500, 1000] for s in s_range: a = (np.random.random((s, s)) * 256).astype('uint8') (rc, ms_rc) = cr_med(a, elem) rctmf, ms_rctmf = ctmf_med(a, r) rndi, ms_ndi = ndi_med(a, r) rec.append((ms_rc, ms_rctmf, ms_ndi)) rec = np.asarray(rec) plt.figure() plt.title('increasing image size') plt.plot(s_range, rec) plt.legend(['rank.median', 'ctmf.median_filter', 'ndimage.percentile']) plt.ylabel('time (ms)') plt.xlabel('image size') """ .. image:: PLOT2RST.current_figure """ plt.show()
24.793056
80
0.721808
40b80849c9304ba37916ed8f099ee1706a4e6280
4,302
py
Python
splunk_eventgen/lib/plugins/generator/perdayvolumegenerator.py
mickotronic/eventgen
c0a8b15f50b2216582ac52756923f127630823b2
[ "Apache-2.0" ]
null
null
null
splunk_eventgen/lib/plugins/generator/perdayvolumegenerator.py
mickotronic/eventgen
c0a8b15f50b2216582ac52756923f127630823b2
[ "Apache-2.0" ]
null
null
null
splunk_eventgen/lib/plugins/generator/perdayvolumegenerator.py
mickotronic/eventgen
c0a8b15f50b2216582ac52756923f127630823b2
[ "Apache-2.0" ]
null
null
null
import datetime import random from splunk_eventgen.lib.generatorplugin import GeneratorPlugin from splunk_eventgen.lib.logging_config import logger class PerDayVolumeGenerator(GeneratorPlugin): def __init__(self, sample): GeneratorPlugin.__init__(self, sample) # TODO: Make this work with replay mode. def gen(self, count, earliest, latest, samplename=None): # count in this plugin is a measurement of byteself._sample. size = count logger.debug( "PerDayVolumeGenerator Called with a Size of: %s with Earliest: %s and Latest: %s" % (size, earliest, latest) ) # very similar to the default generator. only difference is we go by size instead of count. try: self._sample.loadSample() logger.debug("File sample loaded successfully.") except TypeError: logger.error( "Error loading sample file for sample '%s'" % self._sample.name ) return logger.debug( "Generating sample '%s' in app '%s' with count %d, et: '%s', lt '%s'" % (self._sample.name, self._sample.app, size, earliest, latest) ) startTime = datetime.datetime.now() # Create a counter for the current byte size of the read in samples currentSize = 0 # If we're random, fill random events from sampleDict into eventsDict eventsDict = [] if self._sample.randomizeEvents: sdlen = len(self._sample.sampleDict) logger.debug( "Random filling eventsDict for sample '%s' in app '%s' with %d bytes" % (self._sample.name, self._sample.app, size) ) while currentSize < size: currentevent = self._sample.sampleDict[random.randint(0, sdlen - 1)] eventsDict.append(currentevent) currentSize += len(currentevent["_raw"]) # If we're bundlelines, create count copies of the sampleDict elif self._sample.bundlelines: logger.debug( "Bundlelines, filling eventsDict for sample '%s' in app '%s' with %d copies of sampleDict" % (self._sample.name, self._sample.app, size) ) while currentSize <= size: sizeofsample = sum( len(sample["_raw"]) for sample in self._sample.sampleDict ) eventsDict.extend(self._sample.sampleDict) currentSize += sizeofsample # Otherwise fill count events into eventsDict or keep making copies of events out of sampleDict until # eventsDict is as big as count else: logger.debug("Simple replay in order, processing") # I need to check the sample and load events in order until the size is smaller than read events from file # or i've read the entire file. linecount = 0 currentreadsize = 0 linesinfile = len(self._sample.sampleDict) logger.debug("Lines in files: %s " % linesinfile) while currentreadsize <= size: targetline = linecount % linesinfile sizeremaining = size - currentreadsize targetlinesize = len(self._sample.sampleDict[targetline]["_raw"]) if size < targetlinesize: logger.error( "Size is too small for sample {}. We need {} bytes but size of one event is {} bytes.".format( self._sample.name, size, targetlinesize ) ) break if targetlinesize <= sizeremaining: currentreadsize += targetlinesize eventsDict.append(self._sample.sampleDict[targetline]) else: break linecount += 1 logger.debug( "Events fill complete for sample '%s' in app '%s' length %d" % (self._sample.name, self._sample.app, len(eventsDict)) ) # build the events and replace tokens self.build_events(eventsDict, startTime, earliest, latest) def load(): return PerDayVolumeGenerator
41.76699
118
0.576709
1f2cdcf08d4fa8925dbcfbe4747b34b3f54bb70b
7,859
py
Python
examples/gym/train_acer_gym.py
WhenTheyCry96/chainerrl
0f32aae2855dbb6288ae628be6271739ced6c42c
[ "MIT" ]
2
2020-05-20T06:15:20.000Z
2020-05-20T06:15:27.000Z
examples/gym/train_acer_gym.py
WhenTheyCry96/chainerrl
0f32aae2855dbb6288ae628be6271739ced6c42c
[ "MIT" ]
null
null
null
examples/gym/train_acer_gym.py
WhenTheyCry96/chainerrl
0f32aae2855dbb6288ae628be6271739ced6c42c
[ "MIT" ]
null
null
null
from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from builtins import * # NOQA from future import standard_library standard_library.install_aliases() # NOQA import argparse import os # This prevents numpy from using multiple threads os.environ['OMP_NUM_THREADS'] = '1' # NOQA import chainer from chainer import functions as F from chainer import links as L import gym from gym import spaces import gym.wrappers import numpy as np import chainerrl from chainerrl.action_value import DiscreteActionValue from chainerrl.agents import acer from chainerrl.distribution import SoftmaxDistribution from chainerrl import experiments from chainerrl.initializers import LeCunNormal from chainerrl import links from chainerrl import misc from chainerrl.optimizers import rmsprop_async from chainerrl import policies from chainerrl import q_functions from chainerrl.replay_buffer import EpisodicReplayBuffer from chainerrl import v_functions def main(): import logging parser = argparse.ArgumentParser() parser.add_argument('processes', type=int) parser.add_argument('--env', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--t-max', type=int, default=50) parser.add_argument('--n-times-replay', type=int, default=4) parser.add_argument('--n-hidden-channels', type=int, default=100) parser.add_argument('--n-hidden-layers', type=int, default=2) parser.add_argument('--replay-capacity', type=int, default=5000) parser.add_argument('--replay-start-size', type=int, default=10 ** 3) parser.add_argument('--disable-online-update', action='store_true') parser.add_argument('--beta', type=float, default=1e-2) parser.add_argument('--profile', action='store_true') parser.add_argument('--steps', type=int, default=8 * 10 ** 7) parser.add_argument('--eval-interval', type=int, default=10 ** 5) parser.add_argument('--eval-n-runs', type=int, default=10) parser.add_argument('--reward-scale-factor', type=float, default=1e-2) parser.add_argument('--rmsprop-epsilon', type=float, default=1e-2) parser.add_argument('--render', action='store_true', default=False) parser.add_argument('--lr', type=float, default=7e-4) parser.add_argument('--demo', action='store_true', default=False) parser.add_argument('--load', type=str, default='') parser.add_argument('--logger-level', type=int, default=logging.DEBUG) parser.add_argument('--monitor', action='store_true') parser.add_argument('--truncation-threshold', type=float, default=5) parser.add_argument('--trust-region-delta', type=float, default=0.1) args = parser.parse_args() logging.basicConfig(level=args.logger_level) # Set a random seed used in ChainerRL. # If you use more than one processes, the results will be no longer # deterministic even with the same random seed. misc.set_random_seed(args.seed) # Set different random seeds for different subprocesses. # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3]. # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7]. process_seeds = np.arange(args.processes) + args.seed * args.processes assert process_seeds.max() < 2 ** 32 args.outdir = experiments.prepare_output_dir(args, args.outdir) def make_env(process_idx, test): env = gym.make(args.env) # Use different random seeds for train and test envs process_seed = int(process_seeds[process_idx]) env_seed = 2 ** 32 - 1 - process_seed if test else process_seed env.seed(env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) if args.monitor and process_idx == 0: env = gym.wrappers.Monitor(env, args.outdir) if not test: # Scale rewards (and thus returns) to a reasonable range so that # training is easier env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor) if args.render and process_idx == 0 and not test: env = chainerrl.wrappers.Render(env) return env sample_env = gym.make(args.env) timestep_limit = sample_env.spec.tags.get( 'wrapper_config.TimeLimit.max_episode_steps') obs_space = sample_env.observation_space action_space = sample_env.action_space if isinstance(action_space, spaces.Box): model = acer.ACERSDNSeparateModel( pi=policies.FCGaussianPolicy( obs_space.low.size, action_space.low.size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers, bound_mean=True, min_action=action_space.low, max_action=action_space.high), v=v_functions.FCVFunction( obs_space.low.size, n_hidden_channels=args.n_hidden_channels, n_hidden_layers=args.n_hidden_layers), adv=q_functions.FCSAQFunction( obs_space.low.size, action_space.low.size, n_hidden_channels=args.n_hidden_channels // 4, n_hidden_layers=args.n_hidden_layers), ) else: model = acer.ACERSeparateModel( pi=links.Sequence( L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu, L.Linear(args.n_hidden_channels, action_space.n, initialW=LeCunNormal(1e-3)), SoftmaxDistribution), q=links.Sequence( L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu, L.Linear(args.n_hidden_channels, action_space.n, initialW=LeCunNormal(1e-3)), DiscreteActionValue), ) opt = rmsprop_async.RMSpropAsync( lr=args.lr, eps=args.rmsprop_epsilon, alpha=0.99) opt.setup(model) opt.add_hook(chainer.optimizer.GradientClipping(40)) replay_buffer = EpisodicReplayBuffer(args.replay_capacity) agent = acer.ACER(model, opt, t_max=args.t_max, gamma=0.99, replay_buffer=replay_buffer, n_times_replay=args.n_times_replay, replay_start_size=args.replay_start_size, disable_online_update=args.disable_online_update, use_trust_region=True, trust_region_delta=args.trust_region_delta, truncation_threshold=args.truncation_threshold, beta=args.beta) if args.load: agent.load(args.load) if args.demo: env = make_env(0, True) eval_stats = experiments.eval_performance( env=env, agent=agent, n_runs=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: experiments.train_agent_async( agent=agent, outdir=args.outdir, processes=args.processes, make_env=make_env, profile=args.profile, steps=args.steps, eval_n_runs=args.eval_n_runs, eval_interval=args.eval_interval, max_episode_len=timestep_limit) if __name__ == '__main__': main()
41.803191
79
0.659499
901a11fe27b3aff5acafa6b7e0068861f1af2907
32,860
py
Python
tasks/google/cloud/tasks_v2beta2/proto/queue_pb2.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
null
null
null
tasks/google/cloud/tasks_v2beta2/proto/queue_pb2.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
40
2019-07-16T10:04:48.000Z
2020-01-20T09:04:59.000Z
tasks/google/cloud/tasks_v2beta2/proto/queue_pb2.py
q-logic/google-cloud-python
a65065c89c059bc564bbdd79288a48970907c399
[ "Apache-2.0" ]
2
2019-07-18T00:05:31.000Z
2019-11-27T14:17:22.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/cloud/tasks_v2beta2/proto/queue.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1")) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.cloud.tasks_v2beta2.proto import ( target_pb2 as google_dot_cloud_dot_tasks__v2beta2_dot_proto_dot_target__pb2, ) from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name="google/cloud/tasks_v2beta2/proto/queue.proto", package="google.cloud.tasks.v2beta2", syntax="proto3", serialized_options=_b( "\n\036com.google.cloud.tasks.v2beta2B\nQueueProtoP\001Z?google.golang.org/genproto/googleapis/cloud/tasks/v2beta2;tasks" ), serialized_pb=_b( '\n,google/cloud/tasks_v2beta2/proto/queue.proto\x12\x1agoogle.cloud.tasks.v2beta2\x1a\x19google/api/resource.proto\x1a-google/cloud/tasks_v2beta2/proto/target.proto\x1a\x1egoogle/protobuf/duration.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a\x1cgoogle/api/annotations.proto"\xbf\x04\n\x05Queue\x12\x0c\n\x04name\x18\x01 \x01(\t\x12Q\n\x16\x61pp_engine_http_target\x18\x03 \x01(\x0b\x32/.google.cloud.tasks.v2beta2.AppEngineHttpTargetH\x00\x12=\n\x0bpull_target\x18\x04 \x01(\x0b\x32&.google.cloud.tasks.v2beta2.PullTargetH\x00\x12;\n\x0brate_limits\x18\x05 \x01(\x0b\x32&.google.cloud.tasks.v2beta2.RateLimits\x12=\n\x0cretry_config\x18\x06 \x01(\x0b\x32\'.google.cloud.tasks.v2beta2.RetryConfig\x12\x36\n\x05state\x18\x07 \x01(\x0e\x32\'.google.cloud.tasks.v2beta2.Queue.State\x12.\n\npurge_time\x18\x08 \x01(\x0b\x32\x1a.google.protobuf.Timestamp"E\n\x05State\x12\x15\n\x11STATE_UNSPECIFIED\x10\x00\x12\x0b\n\x07RUNNING\x10\x01\x12\n\n\x06PAUSED\x10\x02\x12\x0c\n\x08\x44ISABLED\x10\x03:\\\xea\x41Y\n\x1f\x63loudtasks.googleapis.com/Queue\x12\x36projects/{project}/locations/{location}/queues/{queue}B\r\n\x0btarget_type"k\n\nRateLimits\x12\'\n\x1fmax_tasks_dispatched_per_second\x18\x01 \x01(\x01\x12\x16\n\x0emax_burst_size\x18\x02 \x01(\x05\x12\x1c\n\x14max_concurrent_tasks\x18\x03 \x01(\x05"\x81\x02\n\x0bRetryConfig\x12\x16\n\x0cmax_attempts\x18\x01 \x01(\x05H\x00\x12\x1c\n\x12unlimited_attempts\x18\x02 \x01(\x08H\x00\x12\x35\n\x12max_retry_duration\x18\x03 \x01(\x0b\x32\x19.google.protobuf.Duration\x12.\n\x0bmin_backoff\x18\x04 \x01(\x0b\x32\x19.google.protobuf.Duration\x12.\n\x0bmax_backoff\x18\x05 \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x15\n\rmax_doublings\x18\x06 \x01(\x05\x42\x0e\n\x0cnum_attemptsBo\n\x1e\x63om.google.cloud.tasks.v2beta2B\nQueueProtoP\x01Z?google.golang.org/genproto/googleapis/cloud/tasks/v2beta2;tasksb\x06proto3' ), dependencies=[ google_dot_api_dot_resource__pb2.DESCRIPTOR, google_dot_cloud_dot_tasks__v2beta2_dot_proto_dot_target__pb2.DESCRIPTOR, google_dot_protobuf_dot_duration__pb2.DESCRIPTOR, google_dot_protobuf_dot_timestamp__pb2.DESCRIPTOR, google_dot_api_dot_annotations__pb2.DESCRIPTOR, ], ) _QUEUE_STATE = _descriptor.EnumDescriptor( name="State", full_name="google.cloud.tasks.v2beta2.Queue.State", filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name="STATE_UNSPECIFIED", index=0, number=0, serialized_options=None, type=None, ), _descriptor.EnumValueDescriptor( name="RUNNING", index=1, number=1, serialized_options=None, type=None ), _descriptor.EnumValueDescriptor( name="PAUSED", index=2, number=2, serialized_options=None, type=None ), _descriptor.EnumValueDescriptor( name="DISABLED", index=3, number=3, serialized_options=None, type=None ), ], containing_type=None, serialized_options=None, serialized_start=643, serialized_end=712, ) _sym_db.RegisterEnumDescriptor(_QUEUE_STATE) _QUEUE = _descriptor.Descriptor( name="Queue", full_name="google.cloud.tasks.v2beta2.Queue", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="name", full_name="google.cloud.tasks.v2beta2.Queue.name", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="app_engine_http_target", full_name="google.cloud.tasks.v2beta2.Queue.app_engine_http_target", index=1, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="pull_target", full_name="google.cloud.tasks.v2beta2.Queue.pull_target", index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="rate_limits", full_name="google.cloud.tasks.v2beta2.Queue.rate_limits", index=3, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="retry_config", full_name="google.cloud.tasks.v2beta2.Queue.retry_config", index=4, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="state", full_name="google.cloud.tasks.v2beta2.Queue.state", index=5, number=7, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="purge_time", full_name="google.cloud.tasks.v2beta2.Queue.purge_time", index=6, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[_QUEUE_STATE], serialized_options=_b( "\352AY\n\037cloudtasks.googleapis.com/Queue\0226projects/{project}/locations/{location}/queues/{queue}" ), is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="target_type", full_name="google.cloud.tasks.v2beta2.Queue.target_type", index=0, containing_type=None, fields=[], ) ], serialized_start=246, serialized_end=821, ) _RATELIMITS = _descriptor.Descriptor( name="RateLimits", full_name="google.cloud.tasks.v2beta2.RateLimits", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="max_tasks_dispatched_per_second", full_name="google.cloud.tasks.v2beta2.RateLimits.max_tasks_dispatched_per_second", index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="max_burst_size", full_name="google.cloud.tasks.v2beta2.RateLimits.max_burst_size", index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="max_concurrent_tasks", full_name="google.cloud.tasks.v2beta2.RateLimits.max_concurrent_tasks", index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=823, serialized_end=930, ) _RETRYCONFIG = _descriptor.Descriptor( name="RetryConfig", full_name="google.cloud.tasks.v2beta2.RetryConfig", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="max_attempts", full_name="google.cloud.tasks.v2beta2.RetryConfig.max_attempts", index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="unlimited_attempts", full_name="google.cloud.tasks.v2beta2.RetryConfig.unlimited_attempts", index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="max_retry_duration", full_name="google.cloud.tasks.v2beta2.RetryConfig.max_retry_duration", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="min_backoff", full_name="google.cloud.tasks.v2beta2.RetryConfig.min_backoff", index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="max_backoff", full_name="google.cloud.tasks.v2beta2.RetryConfig.max_backoff", index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), _descriptor.FieldDescriptor( name="max_doublings", full_name="google.cloud.tasks.v2beta2.RetryConfig.max_doublings", index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="num_attempts", full_name="google.cloud.tasks.v2beta2.RetryConfig.num_attempts", index=0, containing_type=None, fields=[], ) ], serialized_start=933, serialized_end=1190, ) _QUEUE.fields_by_name[ "app_engine_http_target" ].message_type = ( google_dot_cloud_dot_tasks__v2beta2_dot_proto_dot_target__pb2._APPENGINEHTTPTARGET ) _QUEUE.fields_by_name[ "pull_target" ].message_type = ( google_dot_cloud_dot_tasks__v2beta2_dot_proto_dot_target__pb2._PULLTARGET ) _QUEUE.fields_by_name["rate_limits"].message_type = _RATELIMITS _QUEUE.fields_by_name["retry_config"].message_type = _RETRYCONFIG _QUEUE.fields_by_name["state"].enum_type = _QUEUE_STATE _QUEUE.fields_by_name[ "purge_time" ].message_type = google_dot_protobuf_dot_timestamp__pb2._TIMESTAMP _QUEUE_STATE.containing_type = _QUEUE _QUEUE.oneofs_by_name["target_type"].fields.append( _QUEUE.fields_by_name["app_engine_http_target"] ) _QUEUE.fields_by_name[ "app_engine_http_target" ].containing_oneof = _QUEUE.oneofs_by_name["target_type"] _QUEUE.oneofs_by_name["target_type"].fields.append(_QUEUE.fields_by_name["pull_target"]) _QUEUE.fields_by_name["pull_target"].containing_oneof = _QUEUE.oneofs_by_name[ "target_type" ] _RETRYCONFIG.fields_by_name[ "max_retry_duration" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _RETRYCONFIG.fields_by_name[ "min_backoff" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _RETRYCONFIG.fields_by_name[ "max_backoff" ].message_type = google_dot_protobuf_dot_duration__pb2._DURATION _RETRYCONFIG.oneofs_by_name["num_attempts"].fields.append( _RETRYCONFIG.fields_by_name["max_attempts"] ) _RETRYCONFIG.fields_by_name[ "max_attempts" ].containing_oneof = _RETRYCONFIG.oneofs_by_name["num_attempts"] _RETRYCONFIG.oneofs_by_name["num_attempts"].fields.append( _RETRYCONFIG.fields_by_name["unlimited_attempts"] ) _RETRYCONFIG.fields_by_name[ "unlimited_attempts" ].containing_oneof = _RETRYCONFIG.oneofs_by_name["num_attempts"] DESCRIPTOR.message_types_by_name["Queue"] = _QUEUE DESCRIPTOR.message_types_by_name["RateLimits"] = _RATELIMITS DESCRIPTOR.message_types_by_name["RetryConfig"] = _RETRYCONFIG _sym_db.RegisterFileDescriptor(DESCRIPTOR) Queue = _reflection.GeneratedProtocolMessageType( "Queue", (_message.Message,), dict( DESCRIPTOR=_QUEUE, __module__="google.cloud.tasks_v2beta2.proto.queue_pb2", __doc__="""A queue is a container of related tasks. Queues are configured to manage how those tasks are dispatched. Configurable properties include rate limits, retry options, target types, and others. Attributes: name: Caller-specified and required in [CreateQueue][google.cloud.ta sks.v2beta2.CloudTasks.CreateQueue], after which it becomes output only. The queue name. The queue name must have the following format: ``projects/PROJECT_ID/locations/LOCATION_ID/queues/QUEUE_ID`` - ``PROJECT_ID`` can contain letters ([A-Za-z]), numbers ([0-9]), hyphens (-), colons (:), or periods (.). For more information, see `Identifying projects <https://cloud.google.com/resource-manager/docs/creating- managing-projects#identifying_projects>`_ - ``LOCATION_ID`` is the canonical ID for the queue's location. The list of available locations can be obtained by calling [ListLocatio ns][google.cloud.location.Locations.ListLocations]. For more information, see https://cloud.google.com/about/locations/. - ``QUEUE_ID`` can contain letters ([A-Za-z]), numbers ([0-9]), or hyphens (-). The maximum length is 100 characters. target_type: Caller-specified and required in [CreateQueue][google.cloud.ta sks.v2beta2.CloudTasks.CreateQueue][], after which the queue config type becomes output only, though fields within the config are mutable. The queue's target. The target applies to all tasks in the queue. app_engine_http_target: App Engine HTTP target. An App Engine queue is a queue that has an [AppEngineHttpTarget][google.cloud.tasks.v2beta2.AppEng ineHttpTarget]. pull_target: Pull target. A pull queue is a queue that has a [PullTarget][google.cloud.tasks.v2beta2.PullTarget]. rate_limits: Rate limits for task dispatches. [rate\_limits][google.cloud.tasks.v2beta2.Queue.rate\_limits] and [retry\_config][google.cloud.tasks.v2beta2.Queue.retry\_co nfig] are related because they both control task attempts however they control how tasks are attempted in different ways: - [rate\_limits][google.cloud.tasks.v2beta2.Queue.rate\_limits] controls the total rate of dispatches from a queue (i.e. all traffic dispatched from the queue, regardless of whether the dispatch is from a first attempt or a retry). - [retry \_config][google.cloud.tasks.v2beta2.Queue.retry\_config] controls what happens to particular a task after its first attempt fails. That is, [retry\_config][google.cloud.tas ks.v2beta2.Queue.retry\_config] controls task retries (the second attempt, third attempt, etc). retry_config: Settings that determine the retry behavior. - For tasks created using Cloud Tasks: the queue-level retry settings apply to all tasks in the queue that were created using Cloud Tasks. Retry settings cannot be set on individual tasks. - For tasks created using the App Engine SDK: the queue-level retry settings apply to all tasks in the queue which do not have retry settings explicitly set on the task and were created by the App Engine SDK. See `App Engine documentation <https://cloud.google.com/appengine/docs/standar d/python/taskqueue/push/retrying-tasks>`_. state: Output only. The state of the queue. ``state`` can only be changed by called [PauseQueue][google.cloud.tasks.v2beta2.Clou dTasks.PauseQueue], [ResumeQueue][google.cloud.tasks.v2beta2.C loudTasks.ResumeQueue], or uploading `queue.yaml/xml <https:// cloud.google.com/appengine/docs/python/config/queueref>`_. [U pdateQueue][google.cloud.tasks.v2beta2.CloudTasks.UpdateQueue] cannot be used to change ``state``. purge_time: Output only. The last time this queue was purged. All tasks that were [created][google.cloud.tasks.v2beta2.Task.create\_time] before this time were purged. A queue can be purged using [PurgeQueu e][google.cloud.tasks.v2beta2.CloudTasks.PurgeQueue], the `App Engine Task Queue SDK, or the Cloud Console <https://cloud.goo gle.com/appengine/docs/standard/python/taskqueue/push/deleting -tasks-and-queues#purging_all_tasks_from_a_queue>`_. Purge time will be truncated to the nearest microsecond. Purge time will be unset if the queue has never been purged. """, # @@protoc_insertion_point(class_scope:google.cloud.tasks.v2beta2.Queue) ), ) _sym_db.RegisterMessage(Queue) RateLimits = _reflection.GeneratedProtocolMessageType( "RateLimits", (_message.Message,), dict( DESCRIPTOR=_RATELIMITS, __module__="google.cloud.tasks_v2beta2.proto.queue_pb2", __doc__="""Rate limits. This message determines the maximum rate that tasks can be dispatched by a queue, regardless of whether the dispatch is a first task attempt or a retry. Note: The debugging command, [RunTask][google.cloud.tasks.v2beta2.CloudTasks.RunTask], will run a task even if the queue has reached its [RateLimits][google.cloud.tasks.v2beta2.RateLimits]. Attributes: max_tasks_dispatched_per_second: The maximum rate at which tasks are dispatched from this queue. If unspecified when the queue is created, Cloud Tasks will pick the default. - For [App Engine queues][google.cloud.tasks.v2beta2.AppEngineHttpTarget], the maximum allowed value is 500. - This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget]. In addition to the ``max_tasks_dispatched_per_second`` limit, a maximum of 10 QPS of [LeaseTasks][google.cloud.tasks.v2beta2.CloudTasks.LeaseTasks] requests are allowed per pull queue. This field has the same meaning as `rate in queue.yaml/xml <https://cloud.google.com/a ppengine/docs/standard/python/config/queueref#rate>`_. max_burst_size: Output only. The max burst size. Max burst size limits how fast tasks in queue are processed when many tasks are in the queue and the rate is high. This field allows the queue to have a high rate so processing starts shortly after a task is enqueued, but still limits resource usage when many tasks are enqueued in a short period of time. The `token bucket <https://wikipedia.org/wiki/Token_Bucket>`_ algorithm is used to control the rate of task dispatches. Each queue has a token bucket that holds tokens, up to the maximum specified by ``max_burst_size``. Each time a task is dispatched, a token is removed from the bucket. Tasks will be dispatched until the queue's bucket runs out of tokens. The bucket will be continuously refilled with new tokens based on [max\_tasks\_di spatched\_per\_second][google.cloud.tasks.v2beta2.RateLimits.m ax\_tasks\_dispatched\_per\_second]. Cloud Tasks will pick the value of ``max_burst_size`` based on the value of [max\_ta sks\_dispatched\_per\_second][google.cloud.tasks.v2beta2.RateL imits.max\_tasks\_dispatched\_per\_second]. For App Engine queues that were created or updated using ``queue.yaml/xml``, ``max_burst_size`` is equal to `bucket\_size <https://cloud.go ogle.com/appengine/docs/standard/python/config/queueref#bucket _size>`_. Since ``max_burst_size`` is output only, if [Update Queue][google.cloud.tasks.v2beta2.CloudTasks.UpdateQueue] is called on a queue created by ``queue.yaml/xml``, ``max_burst_size`` will be reset based on the value of [max\_t asks\_dispatched\_per\_second][google.cloud.tasks.v2beta2.Rate Limits.max\_tasks\_dispatched\_per\_second], regardless of whether [max\_tasks\_dispatched\_per\_second][google.cloud.tas ks.v2beta2.RateLimits.max\_tasks\_dispatched\_per\_second] is updated. max_concurrent_tasks: The maximum number of concurrent tasks that Cloud Tasks allows to be dispatched for this queue. After this threshold has been reached, Cloud Tasks stops dispatching tasks until the number of concurrent requests decreases. If unspecified when the queue is created, Cloud Tasks will pick the default. The maximum allowed value is 5,000. This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget] and always -1, which indicates no limit. No other queue types can have ``max_concurrent_tasks`` set to -1. This field has the same meaning as `max\_concurrent\_requests in queue.yaml/xml <https://cloud.google.com/appengine/docs/standard/python/config /queueref#max_concurrent_requests>`_. """, # @@protoc_insertion_point(class_scope:google.cloud.tasks.v2beta2.RateLimits) ), ) _sym_db.RegisterMessage(RateLimits) RetryConfig = _reflection.GeneratedProtocolMessageType( "RetryConfig", (_message.Message,), dict( DESCRIPTOR=_RETRYCONFIG, __module__="google.cloud.tasks_v2beta2.proto.queue_pb2", __doc__="""Retry config. These settings determine how a failed task attempt is retried. Attributes: num_attempts: Number of attempts per task. If unspecified when the queue is created, Cloud Tasks will pick the default. This field has the same meaning as `task\_retry\_limit in queue.yaml/xml <htt ps://cloud.google.com/appengine/docs/standard/python/config/qu eueref#retry_parameters>`_. max_attempts: The maximum number of attempts for a task. Cloud Tasks will attempt the task ``max_attempts`` times (that is, if the first attempt fails, then there will be ``max_attempts - 1`` retries). Must be > 0. unlimited_attempts: If true, then the number of attempts is unlimited. max_retry_duration: If positive, ``max_retry_duration`` specifies the time limit for retrying a failed task, measured from when the task was first attempted. Once ``max_retry_duration`` time has passed *and* the task has been attempted [max\_attempts][google.cloud .tasks.v2beta2.RetryConfig.max\_attempts] times, no further attempts will be made and the task will be deleted. If zero, then the task age is unlimited. If unspecified when the queue is created, Cloud Tasks will pick the default. This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget]. ``max_retry_duration`` will be truncated to the nearest second. This field has the same meaning as `task\_age\_limit in queue.yaml/xml <https://cloud.google.com/appengine/docs/sta ndard/python/config/queueref#retry_parameters>`_. min_backoff: A task will be [scheduled][google.cloud.tasks.v2beta2.Task.schedule\_time] for retry between [min\_backoff][google.cloud.tasks.v2beta2.Re tryConfig.min\_backoff] and [max\_backoff][google.cloud.tasks. v2beta2.RetryConfig.max\_backoff] duration after it fails, if the queue's [RetryConfig][google.cloud.tasks.v2beta2.RetryConfig] specifies that the task should be retried. If unspecified when the queue is created, Cloud Tasks will pick the default. This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget]. ``min_backoff`` will be truncated to the nearest second. This field has the same meaning as `min\_backoff\_seconds in queue.yaml/xml <https://cloud.google.com/appengine/docs/standa rd/python/config/queueref#retry_parameters>`_. max_backoff: A task will be [scheduled][google.cloud.tasks.v2beta2.Task.schedule\_time] for retry between [min\_backoff][google.cloud.tasks.v2beta2.Re tryConfig.min\_backoff] and [max\_backoff][google.cloud.tasks. v2beta2.RetryConfig.max\_backoff] duration after it fails, if the queue's [RetryConfig][google.cloud.tasks.v2beta2.RetryConfig] specifies that the task should be retried. If unspecified when the queue is created, Cloud Tasks will pick the default. This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget]. ``max_backoff`` will be truncated to the nearest second. This field has the same meaning as `max\_backoff\_seconds in queue.yaml/xml <https://cloud.google.com/appengine/docs/standa rd/python/config/queueref#retry_parameters>`_. max_doublings: The time between retries will double ``max_doublings`` times. A task's retry interval starts at [min\_backoff][google.cloud. tasks.v2beta2.RetryConfig.min\_backoff], then doubles ``max_doublings`` times, then increases linearly, and finally retries retries at intervals of [max\_backoff][google.cloud.ta sks.v2beta2.RetryConfig.max\_backoff] up to [max\_attempts][go ogle.cloud.tasks.v2beta2.RetryConfig.max\_attempts] times. For example, if [min\_backoff][google.cloud.tasks.v2beta2.Retr yConfig.min\_backoff] is 10s, [max\_backoff][google.cloud.task s.v2beta2.RetryConfig.max\_backoff] is 300s, and ``max_doublings`` is 3, then the a task will first be retried in 10s. The retry interval will double three times, and then increase linearly by 2^3 \* 10s. Finally, the task will retry at intervals of [max\_backoff][google.cloud.tasks.v2beta2.Retr yConfig.max\_backoff] until the task has been attempted [max\_ attempts][google.cloud.tasks.v2beta2.RetryConfig.max\_attempts ] times. Thus, the requests will retry at 10s, 20s, 40s, 80s, 160s, 240s, 300s, 300s, .... If unspecified when the queue is created, Cloud Tasks will pick the default. This field is output only for [pull queues][google.cloud.tasks.v2beta2.PullTarget]. This field has the same meaning as `max\_doublings in queue.yaml/xml <htt ps://cloud.google.com/appengine/docs/standard/python/config/qu eueref#retry_parameters>`_. """, # @@protoc_insertion_point(class_scope:google.cloud.tasks.v2beta2.RetryConfig) ), ) _sym_db.RegisterMessage(RetryConfig) DESCRIPTOR._options = None _QUEUE._options = None # @@protoc_insertion_point(module_scope)
41.966794
1,874
0.650091
149133f641bf8fcb0f289d4dd1126fbb6e7f7437
2,746
py
Python
ayb/net/http.py
msolo/ayb
3bb804846033cc0b054f06c2e6298131d22d49f2
[ "BSD-3-Clause" ]
null
null
null
ayb/net/http.py
msolo/ayb
3bb804846033cc0b054f06c2e6298131d22d49f2
[ "BSD-3-Clause" ]
null
null
null
ayb/net/http.py
msolo/ayb
3bb804846033cc0b054f06c2e6298131d22d49f2
[ "BSD-3-Clause" ]
null
null
null
import asynchat import asyncore import os import socket import string import sys import StringIO import mimetools ROOT = "." PORT = 8000 class HTTPChannel(asynchat.async_chat): def __init__(self, server, sock, addr): asynchat.async_chat.__init__(self, sock) self.server = server self.set_terminator("\r\n\r\n") self.header = None self.data = "" self.shutdown = 0 def collect_incoming_data(self, data): self.data = self.data + data if len(self.data) > 16384: # limit the header size to prevent attacks self.shutdown = 1 def found_terminator(self): if not self.header: # parse http header fp = StringIO.StringIO(self.data) request = string.split(fp.readline(), None, 2) if len(request) != 3: # badly formed request; just shut down self.shutdown = 1 else: # parse message header self.header = mimetools.Message(fp) self.set_terminator("\r\n") self.server.handle_request( self, request[0], request[1], self.header ) self.close_when_done() self.data = "" else: pass # ignore body data, for now def pushstatus(self, status, explanation="OK"): self.push("HTTP/1.0 %d %s\r\n" % (status, explanation)) class FileProducer: # a producer which reads data from a file object def __init__(self, file): self.file = file def more(self): if self.file: data = self.file.read(2048) if data: return data self.file = None return "" class HTTPServer(asyncore.dispatcher): def __init__(self, port=None, request=None): asyncore.dispatcher.__init__(self) if not port: port = 80 self.port = port if request: self.handle_request = request # external request handler self.create_socket(socket.AF_INET, socket.SOCK_STREAM) self.bind(("", port)) self.listen(5) def handle_accept(self): conn, addr = self.accept() HTTPChannel(self, conn, addr) def handle_request(self, channel, method, path, header): try: # this is not safe! while path[:1] == "/": path = path[1:] filename = os.path.join(ROOT, path) print path, "=>", filename file = open(filename, "r") except IOError: channel.pushstatus(404, "Not found") channel.push("Content-type: text/html\r\n") channel.push("\r\n") channel.push("<html><body>File not found.</body></html>\r\n") else: channel.pushstatus(200, "OK") channel.push("Content-type: text/html\r\n") channel.push("\r\n") channel.push_with_producer(FileProducer(file)) if __name__ == '__main__': s = HTTPServer(PORT) print "serving at port", PORT asyncore.loop()
25.425926
67
0.630736
faa27f9fb4cb28649b8bd961b2b4e6571733a175
792
py
Python
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
0-notes/job-search/Cracking the Coding Interview/C10SortingSearching/questions/10.10-question.py
eengineergz/Lambda
1fe511f7ef550aed998b75c18a432abf6ab41c5f
[ "MIT" ]
null
null
null
# Rank from Stream # Imagine you are reading in a stream of integers. # Periodically, you wish to be able to look up the rank off a number x, # the number of values less than or equal to x. # Implement the data structures and algorithms to support these operations. # That is, implement the method track(int x), which is called when each # number is generated. # The method getRankOfNumber(int x), which returns the number of values less # than or equal to x (not including this instance of x itself). ''' EXAMPLE: Stream (in order of appearance): 5, 1, 4, 4, 5, 9, 7, 13, 3 getRankOfNumber(1) = 0 // values: getRankOfNumber(3) = 1 // values: s[1] = 1 getRankOfNumber(4) = 3 // values: s[1] = 1, s[2] = 4, s[8] = 3 ''' # time complexity: O() # space complexity: O()
36
76
0.67803
aed1e76940a0c934b9b2b8d42ea0e4fa4b96d2b4
11,190
py
Python
Lib/unittest/test/test_runner.py
deadsnakes/python3.2
c0deccc710b5c1c8dd40a1c6d46a8271b60617f1
[ "PSF-2.0" ]
null
null
null
Lib/unittest/test/test_runner.py
deadsnakes/python3.2
c0deccc710b5c1c8dd40a1c6d46a8271b60617f1
[ "PSF-2.0" ]
1
2018-04-15T22:59:15.000Z
2018-04-15T22:59:15.000Z
Lib/unittest/test/test_runner.py
deadsnakes/python3.2
c0deccc710b5c1c8dd40a1c6d46a8271b60617f1
[ "PSF-2.0" ]
null
null
null
import io import os import sys import pickle import subprocess import unittest from .support import LoggingResult, ResultWithNoStartTestRunStopTestRun class TestCleanUp(unittest.TestCase): def testCleanUp(self): class TestableTest(unittest.TestCase): def testNothing(self): pass test = TestableTest('testNothing') self.assertEqual(test._cleanups, []) cleanups = [] def cleanup1(*args, **kwargs): cleanups.append((1, args, kwargs)) def cleanup2(*args, **kwargs): cleanups.append((2, args, kwargs)) test.addCleanup(cleanup1, 1, 2, 3, four='hello', five='goodbye') test.addCleanup(cleanup2) self.assertEqual(test._cleanups, [(cleanup1, (1, 2, 3), dict(four='hello', five='goodbye')), (cleanup2, (), {})]) self.assertTrue(test.doCleanups()) self.assertEqual(cleanups, [(2, (), {}), (1, (1, 2, 3), dict(four='hello', five='goodbye'))]) def testCleanUpWithErrors(self): class TestableTest(unittest.TestCase): def testNothing(self): pass class MockOutcome(object): success = True errors = [] test = TestableTest('testNothing') test._outcomeForDoCleanups = MockOutcome exc1 = Exception('foo') exc2 = Exception('bar') def cleanup1(): raise exc1 def cleanup2(): raise exc2 test.addCleanup(cleanup1) test.addCleanup(cleanup2) self.assertFalse(test.doCleanups()) self.assertFalse(MockOutcome.success) (Type1, instance1, _), (Type2, instance2, _) = reversed(MockOutcome.errors) self.assertEqual((Type1, instance1), (Exception, exc1)) self.assertEqual((Type2, instance2), (Exception, exc2)) def testCleanupInRun(self): blowUp = False ordering = [] class TestableTest(unittest.TestCase): def setUp(self): ordering.append('setUp') if blowUp: raise Exception('foo') def testNothing(self): ordering.append('test') def tearDown(self): ordering.append('tearDown') test = TestableTest('testNothing') def cleanup1(): ordering.append('cleanup1') def cleanup2(): ordering.append('cleanup2') test.addCleanup(cleanup1) test.addCleanup(cleanup2) def success(some_test): self.assertEqual(some_test, test) ordering.append('success') result = unittest.TestResult() result.addSuccess = success test.run(result) self.assertEqual(ordering, ['setUp', 'test', 'tearDown', 'cleanup2', 'cleanup1', 'success']) blowUp = True ordering = [] test = TestableTest('testNothing') test.addCleanup(cleanup1) test.run(result) self.assertEqual(ordering, ['setUp', 'cleanup1']) def testTestCaseDebugExecutesCleanups(self): ordering = [] class TestableTest(unittest.TestCase): def setUp(self): ordering.append('setUp') self.addCleanup(cleanup1) def testNothing(self): ordering.append('test') def tearDown(self): ordering.append('tearDown') test = TestableTest('testNothing') def cleanup1(): ordering.append('cleanup1') test.addCleanup(cleanup2) def cleanup2(): ordering.append('cleanup2') test.debug() self.assertEqual(ordering, ['setUp', 'test', 'tearDown', 'cleanup1', 'cleanup2']) class Test_TextTestRunner(unittest.TestCase): """Tests for TextTestRunner.""" def test_init(self): runner = unittest.TextTestRunner() self.assertFalse(runner.failfast) self.assertFalse(runner.buffer) self.assertEqual(runner.verbosity, 1) self.assertEqual(runner.warnings, None) self.assertTrue(runner.descriptions) self.assertEqual(runner.resultclass, unittest.TextTestResult) def test_multiple_inheritance(self): class AResult(unittest.TestResult): def __init__(self, stream, descriptions, verbosity): super(AResult, self).__init__(stream, descriptions, verbosity) class ATextResult(unittest.TextTestResult, AResult): pass # This used to raise an exception due to TextTestResult not passing # on arguments in its __init__ super call ATextResult(None, None, 1) def testBufferAndFailfast(self): class Test(unittest.TestCase): def testFoo(self): pass result = unittest.TestResult() runner = unittest.TextTestRunner(stream=io.StringIO(), failfast=True, buffer=True) # Use our result object runner._makeResult = lambda: result runner.run(Test('testFoo')) self.assertTrue(result.failfast) self.assertTrue(result.buffer) def testRunnerRegistersResult(self): class Test(unittest.TestCase): def testFoo(self): pass originalRegisterResult = unittest.runner.registerResult def cleanup(): unittest.runner.registerResult = originalRegisterResult self.addCleanup(cleanup) result = unittest.TestResult() runner = unittest.TextTestRunner(stream=io.StringIO()) # Use our result object runner._makeResult = lambda: result self.wasRegistered = 0 def fakeRegisterResult(thisResult): self.wasRegistered += 1 self.assertEqual(thisResult, result) unittest.runner.registerResult = fakeRegisterResult runner.run(unittest.TestSuite()) self.assertEqual(self.wasRegistered, 1) def test_works_with_result_without_startTestRun_stopTestRun(self): class OldTextResult(ResultWithNoStartTestRunStopTestRun): separator2 = '' def printErrors(self): pass class Runner(unittest.TextTestRunner): def __init__(self): super(Runner, self).__init__(io.StringIO()) def _makeResult(self): return OldTextResult() runner = Runner() runner.run(unittest.TestSuite()) def test_startTestRun_stopTestRun_called(self): class LoggingTextResult(LoggingResult): separator2 = '' def printErrors(self): pass class LoggingRunner(unittest.TextTestRunner): def __init__(self, events): super(LoggingRunner, self).__init__(io.StringIO()) self._events = events def _makeResult(self): return LoggingTextResult(self._events) events = [] runner = LoggingRunner(events) runner.run(unittest.TestSuite()) expected = ['startTestRun', 'stopTestRun'] self.assertEqual(events, expected) def test_pickle_unpickle(self): # Issue #7197: a TextTestRunner should be (un)pickleable. This is # required by test_multiprocessing under Windows (in verbose mode). stream = io.StringIO("foo") runner = unittest.TextTestRunner(stream) for protocol in range(2, pickle.HIGHEST_PROTOCOL + 1): s = pickle.dumps(runner, protocol) obj = pickle.loads(s) # StringIO objects never compare equal, a cheap test instead. self.assertEqual(obj.stream.getvalue(), stream.getvalue()) def test_resultclass(self): def MockResultClass(*args): return args STREAM = object() DESCRIPTIONS = object() VERBOSITY = object() runner = unittest.TextTestRunner(STREAM, DESCRIPTIONS, VERBOSITY, resultclass=MockResultClass) self.assertEqual(runner.resultclass, MockResultClass) expectedresult = (runner.stream, DESCRIPTIONS, VERBOSITY) self.assertEqual(runner._makeResult(), expectedresult) def test_warnings(self): """ Check that warnings argument of TextTestRunner correctly affects the behavior of the warnings. """ # see #10535 and the _test_warnings file for more information def get_parse_out_err(p): return [b.splitlines() for b in p.communicate()] opts = dict(stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=os.path.dirname(__file__)) ae_msg = b'Please use assertEqual instead.' at_msg = b'Please use assertTrue instead.' # no args -> all the warnings are printed, unittest warnings only once p = subprocess.Popen([sys.executable, '_test_warnings.py'], **opts) out, err = get_parse_out_err(p) self.assertIn(b'OK', err) # check that the total number of warnings in the output is correct self.assertEqual(len(out), 12) # check that the numbers of the different kind of warnings is correct for msg in [b'dw', b'iw', b'uw']: self.assertEqual(out.count(msg), 3) for msg in [ae_msg, at_msg, b'rw']: self.assertEqual(out.count(msg), 1) args_list = ( # passing 'ignore' as warnings arg -> no warnings [sys.executable, '_test_warnings.py', 'ignore'], # -W doesn't affect the result if the arg is passed [sys.executable, '-Wa', '_test_warnings.py', 'ignore'], # -W affects the result if the arg is not passed [sys.executable, '-Wi', '_test_warnings.py'] ) # in all these cases no warnings are printed for args in args_list: p = subprocess.Popen(args, **opts) out, err = get_parse_out_err(p) self.assertIn(b'OK', err) self.assertEqual(len(out), 0) # passing 'always' as warnings arg -> all the warnings printed, # unittest warnings only once p = subprocess.Popen([sys.executable, '_test_warnings.py', 'always'], **opts) out, err = get_parse_out_err(p) self.assertIn(b'OK', err) self.assertEqual(len(out), 14) for msg in [b'dw', b'iw', b'uw', b'rw']: self.assertEqual(out.count(msg), 3) for msg in [ae_msg, at_msg]: self.assertEqual(out.count(msg), 1) def testStdErrLookedUpAtInstantiationTime(self): # see issue 10786 old_stderr = sys.stderr f = io.StringIO() sys.stderr = f try: runner = unittest.TextTestRunner() self.assertTrue(runner.stream.stream is f) finally: sys.stderr = old_stderr def testSpecifiedStreamUsed(self): # see issue 10786 f = io.StringIO() runner = unittest.TextTestRunner(f) self.assertTrue(runner.stream.stream is f)
33.704819
101
0.592761
4d6ecaef08ba17e990185613fb50af05c8e3b4bf
4,981
py
Python
runfile_localVol.py
buwu-DWJ/neural_locVol
a3703fa83edb4694f8c1596676869b2533ade7ad
[ "MIT" ]
null
null
null
runfile_localVol.py
buwu-DWJ/neural_locVol
a3703fa83edb4694f8c1596676869b2533ade7ad
[ "MIT" ]
null
null
null
runfile_localVol.py
buwu-DWJ/neural_locVol
a3703fa83edb4694f8c1596676869b2533ade7ad
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # MIT License # Copyright (c) 2020 Christa Cuchiero, Wahid Khosrawi, Josef Teichmann # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """runfile_localVol.py: 基于输入的给定参数和期权画 local vol 图 This file implements the the functionality for computing and plotting local-vol implied volatilities for the sampled parameters given as input and options also given as input. Starting point is the main function. """ import matplotlib.pyplot as plt import numpy as np, tensorflow as tf import os from compute_pM import MC_pM_locvol from finModels.helpers_finModels import fin_surface import pickle import helpers # Env variables HOSTNAME = os.uname()[1] os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def makePrices(para_locVol, option, para_MC, just_ops = False): '''Compute locVol prices for the given parameters. ''' version = para_locVol['version'] if not os.path.exists('caliRes/'+version): os.mkdir('caliRes/'+version) Batchsize_tf = tf.placeholder(dtype=tf.int32, shape=()) strikes_tf = [tf.placeholder(dtype=tf.float32, shape=(option.nK[i]) ) for i in range(option.nT) ] pM_tf = MC_pM_locvol(para_locVol, option, para_MC, Batchsize_tf, strikes_tf) if just_ops: return(pM_tf, Batchsize_tf, strikes_tf) N_mc_data = para_MC['N_mc_data'] N_mc_inner = para_MC['N_mc_inner'] helpers.init_folders_and_readme(mode='create_data', version=version) print('I run this script on host: {}'.format(HOSTNAME), version) # Check if Data version already exists if os.path.isfile('caliRes/pM_'+version+'.pkl'): if version != 'test': raise Exception('Data file already exists. Give new name to store it.\n\n') # Compute the number of MC rounds we need to get to Batchsize N_MC_outer = int(np.trunc(N_mc_data/N_mc_inner)) D = dict(zip(strikes_tf, option.K) ) with tf.Session() as sess: print('\nData computation progress:') pM = sess.run( pM_tf, feed_dict={**D,Batchsize_tf: N_mc_inner} ) prog = 100 /(N_MC_outer) print('\rMC simulation {:7} | progress: {:10.4}% '.format(1,prog), end='') for i in np.arange(2, N_MC_outer+1): prog = 100*i /(N_MC_outer) pM_aux = sess.run(pM_tf, feed_dict={**D,Batchsize_tf: N_mc_inner}) pM = [ pM[iteraux] + pM_aux[iteraux] for iteraux in range( len(pM) ) ] print('\rMC simulation {:7} | progress: {:10.4}% '.format(i,prog), end='') pM = [pM[iteraux] / N_MC_outer for iteraux in range( len(pM) ) ] # Save the prices to disk for later calibration with open('data/locVolPrices/pM_'+version+'.pkl', 'wb') as f: pickle.dump(pM, f) def plot_IV(para, option): '''load computed prices and create fin_surf instance. Also do all needed conversions''' log_m = option.log_m_list(para['S0']) version = para['version'] with open('data/locVolPrices/pM_'+version+'.pkl', 'rb') as f: pM = pickle.load(f) # Constuct the object that handles conversion data_handler = fin_surface(mats=option.T, strikes=option.K, spot=para['S0'], version = version) data_handler.paralocVol = para data_handler.feed_prices(prices= [p for p in pM] ) data_handler.convert(direction='price->iV') for i in range(len(pM)): plt.plot(log_m[i], data_handler.iV[i] ) if not os.path.exists('caliRes/'+version): os.mkdir('caliRes/'+version) plt.savefig('caliRes/'+version+'/plot_{}.png'.format(str(i+1).zfill(3)) ) plt.close() return(data_handler) def main(para_locVol, option, para_MC, compute_prices): '''wrapper function. Depending on compute_prices data is computed or just loaded.''' if compute_prices: makePrices(para_locVol, option, para_MC) finsurf = plot_IV(para_locVol, option) return(finsurf) if __name__ == "__main__": pass
37.171642
103
0.687011
80ed2e6cc6df195a0f9df32190d725ff8b026d2a
8,035
py
Python
scripts/implementations.py
yannvon/higgs-boson
4d0804e1987a9e08f6417f8d7119c37572f35515
[ "MIT" ]
null
null
null
scripts/implementations.py
yannvon/higgs-boson
4d0804e1987a9e08f6417f8d7119c37572f35515
[ "MIT" ]
null
null
null
scripts/implementations.py
yannvon/higgs-boson
4d0804e1987a9e08f6417f8d7119c37572f35515
[ "MIT" ]
1
2021-11-01T12:55:40.000Z
2021-11-01T12:55:40.000Z
import numpy as np # ----- Helper functions linear regression ----------------------------------------------------------- def calculate_mse(e): """Calculate the mse for vector e.""" return 1/2 * np.mean(e**2) def compute_loss_mse(y, tx, w): """Calculate the loss using mean squared error loss function""" e = y - tx @ w return calculate_mse(e) def compute_gradient(y, tx, w): """Compute the gradient.""" N = len(y) e = y - tx @ w gradient = -(1.0 / N) * (tx.T @ e) return gradient, e # ----- Implement ML methods ------------------------------------------------------------------------- # Linear regression using gradient descent def least_squares_GD(y, tx, initial_w, max_iters, gamma): """Gradient descent algorithm.""" weights = initial_w for n_iter in range(max_iters): # Compute gradient and loss gradient, e = compute_gradient(y, tx, weights) loss = calculate_mse(e) # Update w by gradient # print("loss", loss) weights = weights - gamma * gradient # return the last w and loss return weights, loss # Linear regression using stochastic gradient descent def least_squares_SGD(y, tx, initial_w, max_iters, gamma): """Stochastic gradient descent with batch size of 1""" np.random.seed(1) weights = initial_w min_weights = weights min_loss = calculate_mse(y - tx.dot(weights)) for n_iter in range(max_iters): #Select a random element of y and tx r = np.random.randint(0, len(y)) y_elem = np.array([y[r]]) tx_elem = np.array([tx[r]]) # Compute its stochastic gradient gradient, err = compute_gradient(y_elem, tx_elem, weights) # Update w weights = weights - gamma * gradient #Compute loss using mean squared error loss = calculate_mse(y - tx.dot(weights)) if(loss < min_loss): min_loss = loss min_weights = weights #print("loss", loss) return min_weights, min_loss # Least squares regression using normal equations def least_squares(y, tx): """calculate the least squares solution.""" weights = np.linalg.solve(tx.T @ tx, tx.T @ y) return weights, compute_loss_mse(y, tx, weights) # Ridge regression using normal equations def ridge_regression(y, tx, lambda_): """implement ridge regression.""" l = 2 * tx.shape[0] * lambda_ weights = np.linalg.solve(tx.T @ tx + l * np.identity(tx.shape[1]), tx.T @ y) return weights, compute_loss_mse(y, tx, weights) # Logistic regression using gradient descent def logistic_regression(y, tx, initial_w, max_iters, gamma): """implements logistic regression using gradient descent.""" w = initial_w # start the logistic regression for iter in range(max_iters): # get loss, gradient and update w. loss = calculate_loss_logistic_regression(y, tx, w) gradient = calculate_gradient_logistic_regression(y, tx, w) w = w - gamma * gradient # log info if iter % 100 == 0: print("Current iteration={i}, loss={l}".format(i=iter, l=loss)) loss = calculate_loss_logistic_regression(y, tx, w) print("loss={l}".format(l=loss)) return w, loss # Regularized logistic regression using gradient descent def reg_logistic_regression(y, tx, lambda_, initial_w, max_iters, gamma): """implements regularized logistic regression using gradient descent.""" w = initial_w # start the logistic regression for iter in range(max_iters): # get loss, gradient and update w. loss = calculate_loss_reg_logistic_regression(y, tx, w, lambda_) gradient = calculate_gradient_reg_logistic_regression(y, tx, w, lambda_) w = w - gamma * gradient # log info if iter % 100 == 0: print("Current iteration={i}, loss={l}".format(i=iter, l=loss)) print("Weights size:" + str(np.squeeze(w.T @ w))) loss = calculate_loss_reg_logistic_regression(y, tx, w, lambda_) print("loss={l}".format(l=loss)) return w, loss # Regularized logistic regression using SGD def reg_logistic_regression_SGD(y, tx, lambda_, initial_w, max_iters, gamma): """implements regularized logistic regression using stochastic gradient descent.""" w = initial_w min_weights = w min_loss = calculate_loss_reg_logistic_regression(y, tx, w, lambda_) # start the logistic regression for iter in range(max_iters): # get loss, gradient and update w. # stochastic -> select random element of y and tx r = np.random.randint(0, len(y)) y_elem = np.array([y[r]]) tx_elem = np.array([tx[r]]) gradient = calculate_gradient_reg_logistic_regression(y_elem, tx_elem, w, lambda_) w = w - gamma * gradient # log info if iter % 10000 == 0: loss = calculate_loss_reg_logistic_regression(y, tx, w, lambda_) print("Current iteration={i}, loss={l}".format(i=iter, l=loss)) print("weights size:" + str(np.squeeze(w.T @ w))) loss = calculate_loss_reg_logistic_regression(y, tx, w, lambda_) print("loss={l}".format(l=loss)) return w, loss # ----- Helper functions for logistic regression ---------------------------------------------------- def sigmoid(t): """apply sigmoid function on t.""" return 1.0 / (1 + np.exp(-t)) def calculate_loss_logistic_regression(y, tx, w): """compute the cost by negative log likelihood.""" # Note: this function takes y with values either 0 or 1 return - np.squeeze((y.T @ np.log(sigmoid(tx @ w)) + (1 - y).T @ np.log(1 - sigmoid(tx @ w)))) def calculate_gradient_logistic_regression(y, tx, w): """compute the gradient of loss.""" # Note: this function takes y with values either 0 or 1 return tx.T @ (sigmoid(tx @ w) - y) # ----- Helper functions for penalized logistic regression ------------------------------------------- def calculate_loss_reg_logistic_regression(y, tx, w, lambda_): """compute the cost by negative log likelihood.""" # Here we use lambda as defined as in class ! return calculate_loss_logistic_regression(y, tx, w) + lambda_ / 2 * np.squeeze(w.T @ w) def calculate_gradient_reg_logistic_regression(y, tx, w, lambda_): """compute the gradient of loss.""" # Here we use lambda as defined as in class ! return calculate_gradient_logistic_regression(y, tx, w) + lambda_ * w # ----- Additional section: Newton method --------------------------------------------------------------------------- # Note this Newton does not have the regularization term, easy to add ! def calculate_hessian(y, tx, w): """return the hessian of the loss function.""" # compute S matrix N = tx.shape[0] S = np.zeros((N,N)) for n in range(N): sig = sigmoid(tx[n].T @ w) S[n, n] = sig * (1 - sig) H = tx.T @ S @ tx return H def learning_by_newton_method(y, tx, w, lambda_, gamma): """ Do one step on Newton's method. return the loss and updated w. """ loss = calculate_loss_logistic_regression(y, tx, w) + lambda_ / 2 * np.squeeze(w.T @ w) gradient = calculate_gradient_logistic_regression(y, tx, w) + lambda_ * w hessian = calculate_hessian(y, tx, w) + lambda_ w = w - gamma * np.linalg.inv(hessian) @ gradient return w, loss def logistic_regression_newton(y, tx, lambda_, initial_w, max_iters, gamma): ''' Perform logistic regression with Newton's method ''' w = initial_w # start the logistic regression for iter in range(max_iters): # get loss and update w. w, loss = learning_by_newton_method(y, tx, w, lambda_, gamma) # log info if iter % 100 == 0: print("Current iteration={i}, the loss={l}".format(i=iter, l=loss)) print("Weights size:" + str(np.squeeze(w.T @ w))) loss = calculate_loss_logistic_regression(y, tx, w) print("loss={l}".format(l=loss)) return w, loss
35.711111
117
0.620162
ab9e2c04538ab2e0dd58674edd5cc38457997567
7,037
py
Python
plugins/module_utils/oci_key_management_custom_helpers.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
108
2020-05-19T20:46:10.000Z
2022-03-25T14:10:01.000Z
plugins/module_utils/oci_key_management_custom_helpers.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
90
2020-06-14T22:07:11.000Z
2022-03-07T05:40:29.000Z
plugins/module_utils/oci_key_management_custom_helpers.py
slmjy/oci-ansible-collection
349c91e2868bf4706a6e3d6fb3b47fc622bfe11b
[ "Apache-2.0" ]
42
2020-08-30T23:09:12.000Z
2022-03-25T16:58:01.000Z
# Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. from __future__ import absolute_import, division, print_function __metaclass__ = type from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils logger = oci_common_utils.get_logger("oci_key_management_custom_helpers") def _debug(s): get_logger().debug(s) def _info(s): get_logger().info(s) def get_logger(): return logger class KeyVersionHelperCustom: def get_module_resource_id_param(self): return "id" def get_module_resource_id(self): return self.module.params.get("id") # Currently the module doesn't have the keyVersionId param # The ID is returned after create in CreateOperationLifecycleStateWaiter # This customization can be replaced with a new waiter logic in the future def get_resource(self): if self.module.params.get("id") is None: return None else: return oci_common_utils.call_with_backoff( self.client.get_key_version, key_id=self.module.params.get("key_id"), key_version_id=self.module.params.get("id"), ) # there is no concept of idempotency for this module # it re-executes create new version every time module is invoked def get_matching_resource(self): return None def is_create(self): return True class VaultActionsHelperCustom: REPLICA_CREATION_SUMMARY_STATUS = ["CREATED", "CREATING"] REPLICA_DELETION_SUMMARY_STATUS = ["DELETED", "DELETING"] def is_action_necessary(self, action, resource=None): # For replica actions: create/delete we check if the replica exists by checking if there are any replication details # and if for the given region whether the status is same as what we are expecting to change it to. if action == "create_vault_replica": replication_details = getattr(resource, "replica_details", None) if replication_details is None: return True region_param = self.module.params.get("replica_region") existing_replicas = self.client.list_vault_replicas( self.module.params.get("vault_id") ) for replica in existing_replicas: existing_region = getattr(replica, "region", None) existing_status = getattr(replica, "status", None) if ( existing_region == region_param and existing_status in self.REPLICA_CREATION_SUMMARY_STATUS ): return False return True elif action == "delete_vault_replica": replication_details = getattr(resource, "replica_details", None) if replication_details is None: return False region_param = self.module.params.get("replica_region") existing_replicas = self.client.list_vault_replicas( self.module.params.get("vault_id") ) for replica in existing_replicas: existing_region = getattr(replica, "region", None) existing_status = getattr(replica, "status", None) if ( getattr(replica, "region", None) == region_param and existing_status in self.REPLICA_CREATION_SUMMARY_STATUS ): return True return False elif kms_is_action_necessary(self, action, resource) is False: return False return super(VaultActionsHelperCustom, self).is_action_necessary( action, resource ) # waiting as the change compartment for vault takes time to come back to Active state def get_default_module_wait_timeout(self): return int(1 * 2400) class KeyActionsHelperCustom: def is_action_necessary(self, action, resource): if kms_is_action_necessary(self, action, resource) is False: return False return super(KeyActionsHelperCustom, self).is_action_necessary(action, resource) class KeyVersionActionsHelperCustom: def is_action_necessary(self, action, resource): if kms_is_action_necessary(self, action, resource) is False: return False return super(KeyVersionActionsHelperCustom, self).is_action_necessary( action, resource ) def kms_is_action_necessary(resource_helper, action, resource): # For schedule_key_deletion key (idempotence), we see that the updated key does not have time_of_deletion set, as the key is in PENDING_DELETION state. if ( hasattr(resource, "lifecycle_state") and ( resource.lifecycle_state == "PENDING_DELETION" or resource.lifecycle_state == "DELETED" ) and hasattr(resource, "time_of_deletion") and resource.time_of_deletion is not None and action == "schedule_key_deletion" and resource_helper.module.params.get("time_of_deletion") is None ): return False else: # Idempotency for modules with delete date like KMS (consider only in deleted lifecycle_state) # If the deleted date is equal to the request delete date, we should not execute the action (changed=false) # If the deleted date is different, we will execute the action and return server errors if ( hasattr(resource, "lifecycle_state") and ( resource.lifecycle_state == "PENDING_DELETION" or resource.lifecycle_state == "DELETED" ) and hasattr(resource, "time_of_deletion") and resource.time_of_deletion is not None and resource_helper.module.params.get("time_of_deletion") is not None ): if resource.time_of_deletion == oci_common_utils.deserialize_datetime( resource_helper.module.params["time_of_deletion"] ): return False else: resource_helper.module.warn( "This resource was deleted on: {0}. To change the deletion date, " "cancel the current deletion and delete this resource again using the new requested date {1}".format( resource.time_of_deletion.isoformat(sep="T"), resource_helper.module.params["time_of_deletion"], ) ) return True class SecretActionsHelperCustom: def is_action_necessary(self, action, resource): if kms_is_action_necessary(self, action, resource) is False: return False return super(SecretActionsHelperCustom, self).is_action_necessary( action, resource )
39.533708
155
0.64843
4795b6799991a11796a10c641edcd27eee2ee7ce
2,820
py
Python
examples/smtp-vrfy.py
karpierz/libcurl
531bd28ab32fb07c152e5b5ca4bd4dbde059b9a8
[ "Zlib" ]
null
null
null
examples/smtp-vrfy.py
karpierz/libcurl
531bd28ab32fb07c152e5b5ca4bd4dbde059b9a8
[ "Zlib" ]
null
null
null
examples/smtp-vrfy.py
karpierz/libcurl
531bd28ab32fb07c152e5b5ca4bd4dbde059b9a8
[ "Zlib" ]
null
null
null
#*************************************************************************** # _ _ ____ _ # Project ___| | | | _ \| | # / __| | | | |_) | | # | (__| |_| | _ <| |___ # \___|\___/|_| \_\_____| # # Copyright (C) 1998 - 2021, Daniel Stenberg, <daniel@haxx.se>, et al. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://curl.se/docs/copyright.html. # # You may opt to use, copy, modify, merge, publish, distribute and/or sell # copies of the Software, and permit persons to whom the Software is # furnished to do so, under the terms of the COPYING file. # # This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY # KIND, either express or implied. # #*************************************************************************** """ SMTP example showing how to verify an e-mail address """ import sys import ctypes as ct import libcurl as lcurl from curltestutils import * # noqa if not lcurl.CURL_AT_LEAST_VERSION(7, 34, 0): print("This example requires curl 7.34.0 or later", file=sys.stderr) sys.exit(-1) # This is a simple example showing how to verify an e-mail address from an # SMTP server. # # Notes: # # 1) Not all email servers support this command and even if your email server # does support it, it may respond with a 252 response code even though the # address does not exist. def main(argv=sys.argv[1:]): curl: ct.POINTER(lcurl.CURL) = lcurl.easy_init() with curl_guard(False, curl): if not curl: return 1 # This is the URL for your mailserver lcurl.easy_setopt(curl, lcurl.CURLOPT_URL, b"smtp://mail.example.com") # Note that the CURLOPT_MAIL_RCPT takes a list, not a char array recipients = ct.POINTER(lcurl.slist)() recipients = lcurl.slist_append(recipients, b"<recipient@example.com>") lcurl.easy_setopt(curl, lcurl.CURLOPT_MAIL_RCPT, recipients) # Perform the custom request res: lcurl.CURLcode = lcurl.easy_perform(curl) # Check for errors if res != lcurl.CURLE_OK: handle_easy_perform_error(res) # Free the list of recipients lcurl.slist_free_all(recipients) # curl will not send the QUIT command until you call cleanup, so you # should be able to re-use this connection for additional requests. It # may not be a good idea to keep the connection open for a very long time # though (more than a few minutes may result in the server timing out the # connection) and you do want to clean up in the end. return 0 sys.exit(main())
35.25
81
0.60922
ff33f8c364e27fa9568b5f2ad9297e30b1b78e80
5,206
py
Python
FLutils/data_utils.py
Rand2AI/FedBoosting
999dc879a2fe06563f27fab0a356e07d342dfc34
[ "MIT" ]
3
2021-12-10T19:25:30.000Z
2021-12-10T20:58:55.000Z
FLutils/data_utils.py
Rand2AI/FedBoosting
999dc879a2fe06563f27fab0a356e07d342dfc34
[ "MIT" ]
null
null
null
FLutils/data_utils.py
Rand2AI/FedBoosting
999dc879a2fe06563f27fab0a356e07d342dfc34
[ "MIT" ]
1
2021-11-25T14:03:49.000Z
2021-11-25T14:03:49.000Z
import numpy as np import base64, json, cv2 class DataHandler: def __init__(self, debug = False): self.debug = debug self.train_data = None self.evaluate_data = None self.test_data = None def split_data(self, ratio): thres = int(len(self.train_data)*ratio) self.evaluate_data = self.train_data[thres:len(self.train_data)] self.train_data = self.train_data[0:thres] print(f"Number of training images is {len(self.train_data)}") print(f"Number of evaluating images is {len(self.evaluate_data)}") def process_train_data(self, Datapath): TrainFile = Datapath + '/train_FL.json' if self.debug: train_data = [] with open(TrainFile, 'r', encoding='utf-8') as imgf: train_data_line = imgf.readline() while train_data_line: train_data.append(train_data_line) if len(train_data)==50000: break train_data_line = imgf.readline() else: with open(TrainFile, 'r', encoding='utf-8') as imgf: train_data = imgf.readlines() self.train_data = train_data print(f"Number of total images is {len(self.train_data)}") def process_test_data(self, Datapath): TestFile = Datapath + '/test_FL.json' if self.debug: test_data = [] with open(TestFile, 'r', encoding='utf-8') as imgf: test_data_line = imgf.readline() while test_data_line: test_data.append(test_data_line) if len(test_data) == 10000: break test_data_line = imgf.readline() else: with open(TestFile, 'r', encoding='utf-8') as imgf: test_data = imgf.readlines() self.test_data = test_data def assign_data_to_clients(self, clients): for client in clients: client.receive_data(self.train_data, self.evaluate_data) def gen_character(filepath): char = '' with open(filepath, encoding='utf-8') as fid: for ch in fid.readlines(): ch = ch.strip('\r\n') char += ch char_to_id = {j: i for i, j in enumerate(char)} return char_to_id class sequence_order_num: def __init__(self, total, batchsize=64): self.total = total self.range = [i for i in range(total)] self.index = 0 max_index = int(total / batchsize) self.index_list = [i for i in range(max_index)] np.random.shuffle(self.index_list) def get(self, batchsize): s_o = [] if self.index + batchsize > self.total: s_o_1 = self.range[self.index:self.total] self.index = (self.index + batchsize) - self.total s_o_2 = self.range[0:self.index] s_o.extend(s_o_1) s_o.extend(s_o_2) else: s_o = self.range[self.index:self.index + batchsize] self.index = self.index + batchsize return s_o def shuffle_batch(self, batchsize): if self.index== len(self.index_list): self.index=0 start_index = self.index_list[self.index]*batchsize end_index = start_index + batchsize s_o = self.range[start_index:end_index] self.index += 1 return s_o def generator(client_train_dict: dict, data, mode="train"): if mode=="train": batchsize = client_train_dict["batch_size"] else: batchsize = client_train_dict["val_batch_size"] batchsize = min(batchsize, len(data)) char_to_id = gen_character(client_train_dict["char_file"]) idlist = sequence_order_num(total=len(data), batchsize=batchsize) while True: index = idlist.get(batchsize) x_generator = np.zeros((len(index), client_train_dict["image_size"][0], client_train_dict["image_size"][1], 3), dtype=np.float32) y_generator = np.ones([len(index), client_train_dict["max_label_length"]]) * 10000 input_length_generator = np.zeros([len(index), 1]) label_length_generator = np.zeros([len(index), 1]) for ind, i in enumerate(index): temp = json.loads(data[i].strip('\r\n')) IdNumber = temp['label'].upper() labelL = len(IdNumber) Img = temp['img'].encode('utf-8') Img = cv2.imdecode(np.frombuffer(base64.b64decode(Img), np.uint8), 1) if len(Img.shape) < 3 or Img.shape[2] == 1: Img = cv2.merge([Img, Img, Img]) img1 = cv2.resize(Img, (100, 32)) inputL = img1.shape[1] // 4 img1 = (np.array(img1, 'f') - 127.5) / 127.5 x_generator[ind] = img1 y_generator[ind, :labelL] = [char_to_id[i] for i in IdNumber] input_length_generator[ind] = inputL label_length_generator[ind] = labelL inputs = {'the_image': x_generator, 'the_label_text': y_generator, 'the_length_image': input_length_generator, 'the_length_texts': label_length_generator } outputs = {'loss_ctc': np.zeros([len(index)])} yield inputs, outputs
40.671875
137
0.589512
d194d3f18fd5f7516046fb8774134e53d7e5a1f9
2,303
py
Python
src/emmental/scorer.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
src/emmental/scorer.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
src/emmental/scorer.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
import logging from functools import partial from typing import Callable, Dict, List from numpy import ndarray from emmental.metrics import METRICS from emmental.utils.utils import array_to_numpy logger = logging.getLogger(__name__) class Scorer(object): r"""A class to score tasks. Args: metrics(list): a list of metric names which provides in emmental (e.g., accuracy), defaults to []. customize_metric_funcs(dict): a dict of customize metric where key is the metric name and value is the metric function which takes gold, preds, probs, uids as input, defaults to {}. """ def __init__( self, metrics: List[str] = [], customize_metric_funcs: Dict[str, Callable] = {} ) -> None: self.metrics: Dict[str, Callable] = dict() for metric in metrics: if metric in METRICS: self.metrics[metric] = METRICS[metric] # type: ignore elif metric.startswith("accuracy@"): self.metrics[metric] = partial( METRICS["accuracy"], topk=int(metric.split("@")[1]) # type: ignore ) else: raise ValueError(f"Unrecognized metric: {metric}") self.metrics.update(customize_metric_funcs) def score( self, golds: ndarray, preds: ndarray, probs: ndarray, uids: List[str] = None ) -> Dict[str, float]: """Calculate the score. Args: golds(ndarray): Ground truth values. probs(ndarray): Predicted probabilities. preds(ndarray): Predicted values. uids(list, optional): Unique ids, defaults to None. Returns: dict: score dict. """ metric_dict = dict() for metric_name, metric in self.metrics.items(): # handle no examples if len(golds) == 0: metric_dict[metric_name] = float("nan") continue golds = array_to_numpy(golds) preds = array_to_numpy(preds) probs = array_to_numpy(probs) res = metric(golds, preds, probs, uids) if isinstance(res, dict): metric_dict.update(res) else: metric_dict[metric_name] = res return metric_dict
29.909091
87
0.587929
86ae30d50ec1f56010a8c5e3678c98dcd5c9fc24
41
py
Python
py_pkg_demo/mod_a.py
webee/python-packaging-demo
0c60831420d7f2cd6fec270ddd33bd324366e30f
[ "MIT" ]
null
null
null
py_pkg_demo/mod_a.py
webee/python-packaging-demo
0c60831420d7f2cd6fec270ddd33bd324366e30f
[ "MIT" ]
null
null
null
py_pkg_demo/mod_a.py
webee/python-packaging-demo
0c60831420d7f2cd6fec270ddd33bd324366e30f
[ "MIT" ]
null
null
null
# coding=utf-8 def a(): return "a"
6.833333
14
0.512195
82ff85742f2926c89480d45e6fba754a533be242
5,038
py
Python
tests/test_processing.py
IoT-Inspector/unblob
4a6c871dae6805a922e55d30a7925910dc6a4eda
[ "MIT" ]
17
2021-11-23T10:05:24.000Z
2022-03-10T15:40:41.000Z
tests/test_processing.py
IoT-Inspector/unblob
4a6c871dae6805a922e55d30a7925910dc6a4eda
[ "MIT" ]
184
2021-11-22T12:25:05.000Z
2022-03-31T16:27:41.000Z
tests/test_processing.py
IoT-Inspector/unblob
4a6c871dae6805a922e55d30a7925910dc6a4eda
[ "MIT" ]
2
2021-11-25T09:34:01.000Z
2022-02-18T00:14:23.000Z
from pathlib import Path from typing import List import attr import pytest from unblob.models import UnknownChunk, ValidChunk from unblob.processing import ( ExtractionConfig, calculate_buffer_size, calculate_entropy, calculate_unknown_chunks, draw_entropy_plot, remove_inner_chunks, ) def assert_same_chunks(expected, actual, explanation=None): """An assert, that ignores the chunk.id-s""" assert len(expected) == len(actual), explanation for i, (e, a) in enumerate(zip(expected, actual)): assert attr.evolve(e, id="") == attr.evolve(a, id=""), explanation @pytest.mark.parametrize( "chunks, expected, explanation", [ ([], [], "Empty list as chunks (No chunk found)"), ( [ ValidChunk(1, 2), ], [ValidChunk(1, 2)], "Only one chunk", ), ( [ ValidChunk(0, 5), ValidChunk(1, 2), ], [ValidChunk(0, 5)], "One chunk within another", ), ( [ ValidChunk(10, 20), ValidChunk(11, 13), ValidChunk(14, 19), ], [ValidChunk(10, 20)], "Multiple chunks within 1 outer chunk", ), ( [ ValidChunk(11, 13), ValidChunk(10, 20), ValidChunk(14, 19), ], [ValidChunk(10, 20)], "Multiple chunks within 1 outer chunk, in different order", ), ( [ ValidChunk(1, 5), ValidChunk(6, 10), ], [ValidChunk(1, 5), ValidChunk(6, 10)], "Multiple outer chunks", ), ( [ ValidChunk(1, 5), ValidChunk(2, 3), ValidChunk(6, 10), ValidChunk(7, 8), ], [ValidChunk(1, 5), ValidChunk(6, 10)], "Multiple outer chunks, with chunks inside", ), ], ) def test_remove_inner_chunks( chunks: List[ValidChunk], expected: List[ValidChunk], explanation: str ): assert_same_chunks(expected, remove_inner_chunks(chunks), explanation) @pytest.mark.parametrize( "chunks, file_size, expected", [ ([], 0, []), ([], 10, []), ([ValidChunk(0x0, 0x5)], 5, []), ([ValidChunk(0x0, 0x5), ValidChunk(0x5, 0xA)], 10, []), ([ValidChunk(0x0, 0x5), ValidChunk(0x5, 0xA)], 12, [UnknownChunk(0xA, 0xC)]), ([ValidChunk(0x3, 0x5)], 5, [UnknownChunk(0x0, 0x3)]), ([ValidChunk(0x0, 0x5), ValidChunk(0x7, 0xA)], 10, [UnknownChunk(0x5, 0x7)]), ( [ValidChunk(0x8, 0xA), ValidChunk(0x0, 0x5), ValidChunk(0xF, 0x14)], 20, [UnknownChunk(0x5, 0x8), UnknownChunk(0xA, 0xF)], ), ], ) def test_calculate_unknown_chunks( chunks: List[ValidChunk], file_size: int, expected: List[UnknownChunk] ): assert_same_chunks(expected, calculate_unknown_chunks(chunks, file_size)) @pytest.mark.parametrize( "file_size, chunk_count, min_limit, max_limit, expected", [ (1000, 1, 10, 100, 100), (1000, 10, 10, 100, 100), (1000, 100, 10, 100, 10), ], ) def test_calculate_buffer_size( file_size: int, chunk_count: int, min_limit: int, max_limit: int, expected: int ): assert expected == calculate_buffer_size( file_size, chunk_count=chunk_count, min_limit=min_limit, max_limit=max_limit ) def test_draw_entropy_plot_error(): with pytest.raises(TypeError): draw_entropy_plot([]) @pytest.mark.parametrize( "percentages", [ pytest.param([0.0] * 100, id="zero-array"), pytest.param([99.99] * 100, id="99-array"), pytest.param([100.0] * 100, id="100-array"), ], ) def test_draw_entropy_plot_no_exception(percentages: List[float]): assert draw_entropy_plot(percentages) is None @pytest.mark.parametrize( "path, draw_plot", [ pytest.param(Path("/proc/self/exe"), True, id="draw-plot"), pytest.param(Path("/proc/self/exe"), False, id="no-plot"), ], ) def test_calculate_entropy_no_exception(path: Path, draw_plot: bool): assert calculate_entropy(path, draw_plot=draw_plot) is None @pytest.mark.parametrize( "extract_root, path, extract_dir_prefix", [ ("/extract", "firmware", "firmware"), ("/extract", "relative/firmware", "firmware"), ("/extract", "/extract/dir/firmware", "dir/firmware"), ("/extract/dir", "/extract/dir/firmware", "firmware"), ("/extract", "/some/place/else/firmware", "firmware"), ], ) def test_ExtractionConfig_get_extract_dir_for( extract_root: str, path: str, extract_dir_prefix: str ): cfg = ExtractionConfig(extract_root=Path(extract_root), entropy_depth=0) assert cfg.get_extract_dir_for(Path(path)) == ( cfg.extract_root / Path(extract_dir_prefix + cfg.extract_suffix) )
29.121387
85
0.568083
64cf3a585857525c7a514426b4f081636ce23ca2
540
py
Python
backend/app/alembic/versions/cd18d2dcd1fd_.py
lianjy357/vue-element-admin-fastapi
70f697af33ca747a154d0de129f4cbd7f9d03f7b
[ "MIT" ]
10
2020-12-16T07:31:29.000Z
2022-01-27T08:01:22.000Z
backend/app/alembic/versions/cd18d2dcd1fd_.py
lianjy357/vue-element-admin-fastapi
70f697af33ca747a154d0de129f4cbd7f9d03f7b
[ "MIT" ]
null
null
null
backend/app/alembic/versions/cd18d2dcd1fd_.py
lianjy357/vue-element-admin-fastapi
70f697af33ca747a154d0de129f4cbd7f9d03f7b
[ "MIT" ]
3
2021-03-18T11:38:21.000Z
2021-09-02T06:23:15.000Z
""" Revision ID: cd18d2dcd1fd Revises: 250e78708916 Create Date: 2020-06-28 10:18:25.456332 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'cd18d2dcd1fd' down_revision = '250e78708916' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ###
18.62069
65
0.681481
766b8395bc2aaae41e1fabb19b985330a9f48e99
2,503
py
Python
test/functional/feature_help.py
lionco-in/lioncoin
3335eea7bef6ca4f309d9ed9b9c92207084da20e
[ "MIT" ]
null
null
null
test/functional/feature_help.py
lionco-in/lioncoin
3335eea7bef6ca4f309d9ed9b9c92207084da20e
[ "MIT" ]
null
null
null
test/functional/feature_help.py
lionco-in/lioncoin
3335eea7bef6ca4f309d9ed9b9c92207084da20e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Verify that starting lioncoin with -h works as expected.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal class HelpTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self): self.add_nodes(self.num_nodes) # Don't start the node def get_node_output(self, *, ret_code_expected): ret_code = self.nodes[0].process.wait(timeout=5) assert_equal(ret_code, ret_code_expected) self.nodes[0].stdout.seek(0) self.nodes[0].stderr.seek(0) out = self.nodes[0].stdout.read() err = self.nodes[0].stderr.read() self.nodes[0].stdout.close() self.nodes[0].stderr.close() # Clean up TestNode state self.nodes[0].running = False self.nodes[0].process = None self.nodes[0].rpc_connected = False self.nodes[0].rpc = None return out, err def run_test(self): self.log.info("Start lioncoin with -h for help text") self.nodes[0].start(extra_args=['-h']) # Node should exit immediately and output help to stdout. output, _ = self.get_node_output(ret_code_expected=0) assert b'Options' in output self.log.info("Help text received: {} (...)".format(output[0:60])) self.log.info("Start lioncoin with -version for version information") self.nodes[0].start(extra_args=['-version']) # Node should exit immediately and output version to stdout. output, _ = self.get_node_output(ret_code_expected=0) assert b'version' in output self.log.info("Version text received: {} (...)".format(output[0:60])) # Test that arguments not in the help results in an error self.log.info("Start lioncoind with -fakearg to make sure it does not start") self.nodes[0].start(extra_args=['-fakearg']) # Node should exit immediately and output an error to stderr _, output = self.get_node_output(ret_code_expected=1) assert b'Error parsing command line arguments' in output self.log.info("Error message received: {} (...)".format(output[0:60])) if __name__ == '__main__': HelpTest().main()
39.730159
85
0.664003
8591a6d6f4d088d5a1ab55160f05088a775db01d
306
py
Python
config.py
yucheng6039/WebAuto
13fa954dd58407ee23e89be89f73cb97f5c11108
[ "Apache-2.0" ]
null
null
null
config.py
yucheng6039/WebAuto
13fa954dd58407ee23e89be89f73cb97f5c11108
[ "Apache-2.0" ]
null
null
null
config.py
yucheng6039/WebAuto
13fa954dd58407ee23e89be89f73cb97f5c11108
[ "Apache-2.0" ]
null
null
null
import os BaseDir = os.path.dirname(os.path.abspath(__file__)) # http://npm.taobao.org/mirrors/chromedriver/ 请在镜像库下载webdriver Driver_Path = os.path.join(BaseDir, "static/driver/chromedriver") Start_Url = "https://spectrum-test.cytekbio.com/" Step_Time = 0.2 # 每一步间隔 DefaultTimeOut = 5 # 默认等待时间
21.857143
66
0.738562
9c808faa440423eb91adc1678e4575a09d81ca68
18,169
py
Python
pyaoscx/configuration.py
aruba/pyaoscx
913506eef8643f4e7b92f0d1633310e62ec5f7e2
[ "Apache-2.0" ]
25
2020-03-12T15:55:03.000Z
2022-03-25T14:39:17.000Z
pyaoscx/configuration.py
aruba/pyaoscx
913506eef8643f4e7b92f0d1633310e62ec5f7e2
[ "Apache-2.0" ]
13
2020-09-25T18:59:30.000Z
2022-01-19T05:46:51.000Z
pyaoscx/configuration.py
aruba/pyaoscx
913506eef8643f4e7b92f0d1633310e62ec5f7e2
[ "Apache-2.0" ]
11
2020-05-20T15:08:13.000Z
2022-03-21T18:42:12.000Z
# (C) Copyright 2019-2021 Hewlett Packard Enterprise Development LP. # Apache License 2.0 from pyaoscx.exceptions.generic_op_error import GenericOperationError from pyaoscx.exceptions.response_error import ResponseError from pyaoscx.exceptions.verification_error import VerificationError from pyaoscx.pyaoscx_module import PyaoscxModule import pyaoscx.utils.util as utils import logging import json from urllib.parse import quote_plus class Configuration(): """ Represents a Device's Configuration and all of its attributes. Keeping all configuration information """ base_uri = "system" def __init__(self, session): self.session = session # Used to set attributes self.config_attrs = [] self.materialized = False # Attribute used to know if object was changed recently self.__modified = False @PyaoscxModule.connected def get(self): """ Perform a GET call to retrieve system attributes """ logging.info("Retrieving the switch attributes and capabilities") depth = self.session.api.default_depth uri = "{base_url}{class_uri}?depth={depth}".format( base_url=self.session.base_url, class_uri=Configuration.base_uri, depth=depth ) try: response = self.session.s.get( uri, verify=False, proxies=self.session.proxy) except Exception as e: raise ResponseError("GET", e) if not utils._response_ok(response, "GET"): raise GenericOperationError(response.text, response.status_code) data = json.loads(response.text) # Create class attributes using util.create_attrs utils.create_attrs(self, data) # Second GET request to obtain just the variables that are writable selector = self.session.api.default_selector payload = { "depth": depth, "selector": selector } uri = "{base_url}{class_uri}".format( base_url=self.session.base_url, class_uri=Configuration.base_uri, ) try: response = self.session.s.get( uri, verify=False, proxies=self.session.proxy, params=payload) except Exception as e: raise ResponseError("GET", e) if not utils._response_ok(response, "GET"): raise GenericOperationError(response.text, response.status_code) # Configurable data config_data = json.loads(response.text) # Set self.config_attrs and delete ID from it utils.set_config_attrs(self, config_data, "config_attrs") # Set original attributes self.__original_attributes = config_data # Set device as materialized self.materialized = True @PyaoscxModule.connected def apply(self): """ Main method used to update System Attributes Checks whether the System is materialized Calls self.update() if the configuration is being updated :return modified: Boolean, True if object was modified """ modified = False if self.materialized: modified = self.update() else: raise VerificationError("Device", "Not materialized") return modified @PyaoscxModule.connected def update(self): """ Perform a PUT call to apply changes to a Device Configuration :return modified: Boolean, True if object was modified """ system_data = {} system_data = utils.get_attrs(self, self.config_attrs) uri = "{base_url}{class_uri}".format( base_url=self.session.base_url, class_uri=Configuration.base_uri ) # Compare dictionaries if system_data == self.__original_attributes: # Object was not modified modified = False else: put_data = json.dumps(system_data, sort_keys=True, indent=4) try: response = self.session.s.put( uri, verify=False, data=put_data, proxies=self.session.proxy) except Exception as e: raise ResponseError("PUT", e) if not utils._response_ok(response, "PUT"): raise GenericOperationError( response.text, response.status_code, "UPDATE SYSTEM ATTRIBUTES") else: logging.info("SUCCESS: Updating System Attributes") # Set new original attributes self.__original_attributes = system_data # Object was modified, returns True modified = True return modified #################################################################### # IMPERATIVE FUNCTIONS #################################################################### def get_full_config(self, config_name="running-config"): """ Perform a GET request to obtain the device's full config :param config_name: String with the local-config name wanted Defaults to running-config :return config_data: Data containing the full configuration """ uri = "{base_url}fullconfigs/{cfg}".format( base_url=self.session.base_url, cfg=config_name ) try: response = self.session.s.get( uri, verify=False, proxies=self.session.proxy) except Exception as e: raise ResponseError("GET", e) if not utils._response_ok(response, "GET"): raise GenericOperationError(response.text, response.status_code) # Configurable data config_data = json.loads(response.text) return config_data def tftp_switch_config_from_remote_location(self, config_file_location, config_name, vrf): """ TFTP switch config from TFTP server. :param config_file_location: TFTP server address and path for uploading configuration. :param config_name: Config file or checkpoint to be uploaded to. When using TFTP only running-config or startup-config can be used. :param vrf: VRF to be used to contact TFTP server, required if remote_output_file_tftp_path is provided. :return success: Return True if response is successful or False if it was not. """ success = False uri = "{base_url}fullconfigs/"\ "{cfg}?from={dest}&vrf={vrf}".format( base_url=self.session.base_url, cfg=config_name, dest=config_file_location, vrf=vrf) try: response = self.session.s.put( uri, verify=False, proxies=self.session.proxy) success = True except Exception as e: raise ResponseError("PUT", e) if not utils._response_ok(response, "PUT"): raise GenericOperationError(response.text, response.status_code) return success def copy_switch_config_to_remote_location(self, config_name, config_type, destination, vrf): """ Copy TFTP switch config to TFTP server using a PUT request :param config_name: String with the config file or checkpoint to be downloaded. When using TFTP only running-config or startup-config can be used :param config_type: Configuration type to be downloaded, JSON or CLI version of the config. 'json' or 'cli' :param destination: TFTP server address and path for copying off configuration, must be reachable through provided vrf :param vrf: VRF to be used to contact TFTP server :return True if completed """ uri = "{base_url}fullconfigs/"\ "{cfg}?to={dest}&type={type}"\ "&vrf={vrf}".format( base_url=self.session.base_url, cfg=config_name, dest=destination, type=config_type, vrf=vrf) try: response = self.session.s.get( uri, verify=False, proxies=self.session.proxy) except Exception as e: raise ResponseError("GET", e) if not utils._response_ok(response, "GET"): raise GenericOperationError(response.text, response.status_code) # If no errors, return True for completion return True def backup_configuration(self, config_name, output_file=None, vrf=None, config_type="json", remote_file_tftp_path=None): """ Obtains the switch's full config in json format and saves it to a local file or a remote location over TFTP :param config_name: String with the config file or checkpoint to be downloaded. When using TFTP only running-config or startup-config can be used :param output_file: String with the File name and path for locally downloading configuration, only JSON version of configuration will be downloaded :param vrf: VRF to be used to contact TFTP server :param config_type: Configuration type to be downloaded, JSON or CLI version of the config. 'json' or 'cli' Defaults to json :param remote_file_tftp_path: TFTP server address and path for copying off configuration, must be reachable through provided vrf :return bool: True if success """ success = False if remote_file_tftp_path is not None: tftp_path = remote_file_tftp_path if vrf is None: raise VerificationError( "Backup Config", "VRF needs to be provided in order to TFTP " "the configuration from the switch") tftp_path_encoded = quote_plus(tftp_path) if config_name != "running-config" and \ config_name != "startup-config": raise VerificationError( "Backup Config", "Only running-config or " + "startup-config can be backed-up using TFTP") success = self.copy_switch_config_to_remote_location( config_name, config_type, tftp_path_encoded, vrf) else: config_json = self.get_full_config() with open(output_file, "w") as to_file: formatted_file = json.dumps(config_json, indent=4) to_file.write(formatted_file) success = True # Return result return success def create_checkpoint(self, source_config, destination_config): """ Perform a PUT request to create a new checkpoint or copy an existing checkpoint to AOS-CX switch config. :param source_config: Name of the source configuration from which checkpoint needs to be created or copied. :param destination_config: Name of the destination configuration or name of checkpoint. :return bool: True if success """ success = False uri = ( "{base_url}fullconfigs/{dest}?from={prefix}fullconfigs/{src}" ).format( base_url=self.session.base_url, prefix=self.session.resource_prefix, dest=destination_config, src=source_config) try: response = self.session.s.put( uri, verify=False, proxies=self.session.proxy) except Exception as e: raise ResponseError("PUT", e) if not utils._response_ok(response, "PUT"): raise GenericOperationError(response.text, response.status_code) success = True # Return result return success def setup_mgmt_nameservers_dns(self, primary=None, secondary=None): """ Setup primary and secondary name servers on a mgmt interface :param primary: Primary nameservers on mgmt interface, a IPv4 address. Example: "10.10.2.10" :param secondary: Secondary nameservers on mgmt interface, a IP address. Example: "10.10.2.10" :return modified: Return True if coinfig was modified """ if "mode" in self.mgmt_intf: mgmt_if_mode = self.mgmt_intf["mode"] else: mgmt_if_mode = "dhcp" if mgmt_if_mode != "static": message_part1 = "The management interface must have static" message_part2 = "IP to configure management interface name servers" raise Exception(message_part1 + " " + message_part2) if primary is not None: self.mgmt_intf["dns_server_1"] = primary elif secondary is not None: self.mgmt_intf["dns_server_2"] = secondary return self.apply() def delete_mgmt_nameservers_dns(self): """ Delete primary and secondary name servers on a mgmt interface :return modified: Return True if coinfig was modified """ if "dns_server_1" in self.mgmt_intf: self.mgmt_intf.pop("dns_server_1") if "dns_server_2" in self.mgmt_intf: self.mgmt_intf.pop("dns_server_2") return self.apply() def upload_switch_config(self, config_name=None, config_file=None, config_json=None, vrf=None, remote_file_tftp_path=None): """ Uploads configuration from a configuration file. :param config_name: String with the Config file or checkpoint to be uploaded to. When using TFTP only running-config or startup-config can be used. Default: None. :param config_file: String with the File name and path for locally downloading configuration, only JSON version of configuration will be downloaded. Default: None. :param config_json: String with the JSON file name and path for locally uploading configuration, only JSON version of configuration can be uploaded. Default: None. :param vrf: String for VRF to be used to contact TFTP server, required if remote_output_file_tftp_path is provided. Default: None. :param remote_file_tftp_path: String for TFTP server address and path for copying off configuration, must be reachable through provided vrf. Default: None. :return success: Return boolean True if response is successful or False if it was not. """ success = False if remote_file_tftp_path is not None: if vrf is None: raise VerificationError( "Upload Config", "VRF needs to be provided in order to TFTP " "the configuration onto the switch") tftp_path_encoded = quote_plus( remote_file_tftp_path) if config_name != "running-config" and\ config_name != "startup-config": raise VerificationError( "Upload Config", "Only running-config or startup-config " "can be uploaded using TFTP") success = self.tftp_switch_config_from_remote_location( tftp_path_encoded, config_name, vrf) else: success = self.upload_switch_config_from_local( config_json, config_file, config_name) return success def upload_switch_config_from_local(self, config_json=None, config_file=None, config_name=None): """ Uploads configuration from a configuration file. :param config_name: String with the Config file or checkpoint to be uploaded to. When using TFTP only running-config or startup-config can be used. Default: None. :param config_file: String with the File name and path for locally downloading configuration, only JSON version of configuration will be downloaded. Default: None. :param config_json: String with the JSON file name and path for locally uploading configuration, only JSON version of configuration can be uploaded. Default: None. :return success: Return boolean True if response is successful or False if it was not. """ success = False if config_json: with open(config_json) as json_file: config_json = json.load(json_file) if config_file: with open(config_file) as json_file: config_json = json.load(json_file) config_json = json.dumps(config_json) # Create URI from the session base url and the configuration name uri = "{base_url}fullconfigs/{cfg}".format( base_url=self.session.base_url, cfg=config_name ) try: # Put (REST) configuration file response = self.session.s.put( url=uri, verify=False, proxies=self.session.proxy, data=config_json) success = True except Exception as e: raise ResponseError("PUT", e) if not utils._response_ok(response, "PUT"): raise GenericOperationError( response.text, response.status_code) return success
35.07529
79
0.584622
09607d737a45b3501767844c6567be7348cc58c0
16,916
py
Python
Chapter6/01_cnn_improved.py
SDCND/Hands-On-Vision-and-Behavior-for-Self-Driving-Cars
1802d0ad3184bf53a3920921eeebf3bf9ae979dd
[ "MIT" ]
null
null
null
Chapter6/01_cnn_improved.py
SDCND/Hands-On-Vision-and-Behavior-for-Self-Driving-Cars
1802d0ad3184bf53a3920921eeebf3bf9ae979dd
[ "MIT" ]
null
null
null
Chapter6/01_cnn_improved.py
SDCND/Hands-On-Vision-and-Behavior-for-Self-Driving-Cars
1802d0ad3184bf53a3920921eeebf3bf9ae979dd
[ "MIT" ]
null
null
null
import cv2 import keras #from keras.datasets import mnist, cifar10 #from keras.models import Sequential #from keras.layers import Dense, Dropout, Flatten, BatchNormalization, SpatialDropout2D #from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D #from keras.callbacks import ModelCheckpoint, EarlyStopping #from keras.optimizers import Adam #from keras.losses import categorical_crossentropy import tensorflow.keras from tensorflow.keras.datasets import mnist, cifar10 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Flatten, BatchNormalization, SpatialDropout2D from tensorflow.keras.layers import Conv2D, MaxPooling2D, AveragePooling2D from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import categorical_crossentropy from time import time import numpy as np import sys sys.path.append('../') from utils import show_history,save #from keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing.image import ImageDataGenerator use_mnist = True # Customize the training name = "mnist" if use_mnist else "cifar10" batch_size = 64 num_classes = 10 epochs = 250 augment = True patience = 20 datagen = ImageDataGenerator(rotation_range=15, width_shift_range=[-5, 0, 5], horizontal_flip=True) #datagen = ImageDataGenerator(rotation_range=15, width_shift_range=[-8, -4, 0, 4, 8], horizontal_flip=True, height_shift_range=[-5, 0, 5], zoom_range=[0.9, 1.1]) print("Dataset in use: ", name.upper()) # Loading test and training datasets if use_mnist: (x_train, y_train), (x_test, y_test) = mnist.load_data() print(x_train.shape) x_train = np.reshape(x_train, np.append(x_train.shape, (1))) print(x_train.shape) x_test = np.reshape(x_test, np.append(x_test.shape, (1))) else: (x_train, y_train), (x_test, y_test) = cifar10.load_data() save(name + "_train.jpg", cv2.hconcat([x_train[0], x_train[1], x_train[2], x_train[3], x_train[4]])) save(name + "_test.jpg", cv2.hconcat([x_test[0], x_test[1], x_test[2], x_test[3], x_test[4]])) print('X Train', x_train.shape, ' - X Test', x_test.shape) print('Y Train', y_train.shape, ' - Y Test', y_test.shape) print('First 5 labels, train:', y_train[0], y_train[1], y_train[2], y_train[3], y_train[4]) print('First 5 labels, test:', y_test[0], y_test[1], y_test[2], y_test[3], y_test[4]) y_train = tensorflow.keras.utils.to_categorical(y_train, num_classes) y_test = tensorflow.keras.utils.to_categorical(y_test, num_classes) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 model_name = name + ".h5" checkpoint = ModelCheckpoint(model_name, monitor='val_loss', mode='min', verbose=1, save_best_only=True) early_stopping = EarlyStopping(min_delta=0.0005, patience=patience, verbose=1) def create_model_0(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='elu', input_shape=x_train.shape[1:])) model.add(AveragePooling2D()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu')) model.add(AveragePooling2D()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=128, activation='relu')) model.add(Dense(units=64, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_1(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:])) model.add(AveragePooling2D()) model.add(Conv2D(filters=256, kernel_size=(3, 3), activation='relu')) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_2(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:])) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_3(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=512, activation='relu')) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_4(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=256, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=128, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_5(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=128, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_bn_1(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=256, activation='relu')) model.add(Dense(units=128, activation='relu')) model.add(Dense(units=num_classes, activation = 'softmax')) return model def create_model_bn_2_dropout(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=384, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=192, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(units=num_classes, activation='softmax')) return model def create_model_bn_3_dropout(): model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Dropout(0.5)) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=384, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=192, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(units=num_classes, activation='softmax')) return model def create_model_bn_4_dropout(): # Max Accuracy: 0.73944 # Max Validation Accuracy: 0.8144999742507935 model = Sequential() # Convolutional layers model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='elu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.3)) model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(SpatialDropout2D(0.3)) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(SpatialDropout2D(0.2)) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Dropout(0.2)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Dropout(0.2)) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=384, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=192, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(units=num_classes, activation='softmax')) return model def create_model_bn_5_dropout(): #Max Accuracy: 0.78884 #Max Validation Accuracy: 0.8482999801635742 model = Sequential() # Convolutional layers model.add(Conv2D(filters=20, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=20, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(MaxPooling2D()) model.add(SpatialDropout2D(0.25)) model.add(Conv2D(filters=40, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=40, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(MaxPooling2D()) model.add(SpatialDropout2D(0.2)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(MaxPooling2D()) model.add(Dropout(0.15)) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=384, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=192, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(units=num_classes, activation='softmax')) return model def create_model_bn_6_dropout(): # Max Accuracy: 0.84324 # Max Validation Accuracy: 0.8779000043869019 model = Sequential() # Convolutional layers model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=x_train.shape[1:], padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(SpatialDropout2D(0.2)) model.add(Conv2D(filters=48, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=48, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(SpatialDropout2D(0.2)) model.add(Conv2D(filters=72, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(Conv2D(filters=72, kernel_size=(3, 3), activation='relu', padding="same")) model.add(BatchNormalization()) model.add(AveragePooling2D()) model.add(Dropout(0.1)) # Fully Connected layers model.add(Flatten()) model.add(Dense(units=384, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=192, activation='relu')) model.add(Dropout(0.1)) model.add(Dense(units=num_classes, activation='softmax')) return model # Choose the model that you want to train model = create_model_bn_6_dropout() model.summary() opt = Adam() model.compile(loss=categorical_crossentropy, optimizer=opt, metrics=['accuracy']) start = time() if augment: it_train = datagen.flow(x_train, y_train, batch_size=batch_size) history_object = model.fit(it_train, epochs=epochs, validation_data=(x_test, y_test), shuffle=True, callbacks=[checkpoint, early_stopping]) else: history_object = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), shuffle=True, callbacks=[checkpoint, early_stopping]) print("Training time:", time()-start) show_history(history_object)
40.4689
174
0.708028
f0fc9a319c71e75beb6ee5ac025d21a108f88d9c
3,200
py
Python
vtapi3/vtapi3base.py
drobotun/virustotalapi3
7d9e278dc58fa9702ddf8c62de09c852a7316148
[ "MIT" ]
8
2020-01-10T00:19:06.000Z
2022-01-12T18:13:27.000Z
vtapi3/vtapi3base.py
drobotun/virustotalapi3
7d9e278dc58fa9702ddf8c62de09c852a7316148
[ "MIT" ]
2
2020-02-07T22:01:55.000Z
2020-02-11T19:52:48.000Z
vtapi3/vtapi3base.py
drobotun/virustotalapi3
7d9e278dc58fa9702ddf8c62de09c852a7316148
[ "MIT" ]
3
2020-01-10T00:19:18.000Z
2020-12-08T17:13:41.000Z
"""The module describes the VirusTotalAPI base class Author: Evgeny Drobotun (c) 2019 License: MIT (https://github.com/drobotun/virustotalapi3/blob/master/LICENSE) More information: https://virustotalapi3.readthedocs.io/en/latest/base_class.html """ import requests class VirusTotalAPI: """A base class for subclasses that implement methods for working with files, URLs, domain names, and IP addresses. Attributes: base_url: The base URL for sending requests (str). headers: Request header containing API key (dict). timeout: Server response timeout. A tuple that includes a timeout value for 'connect' and a timeout value for 'read'. If specify a single timeout value, it will be applied to both timeout 'connect' and timeout 'read'. proxies: The Protocol and the URL of the proxy server (dict). _version_api: VirusTotal API version (str). _last_http_error: HTTP status code of last operation (int). _last_result: Result of the last execution of a subclass method of this class. Constants: HTTP error codes constants. Methods: get_version_api(): Return the API version values. get_last_http_error(): Return the HTTP status code of last operation. get_last_result(): Return the result of executing methods of subclasses of this class. """ HTTP_OK = requests.codes['ok'] HTTP_BAD_REQUEST_ERROR = requests.codes['bad_request'] HTTP_AUTHENTICATION_REQUIRED_ERROR = requests.codes['unauthorized'] HTTP_FORBIDDEN_ERROR = requests.codes['forbidden'] HTTP_NOT_FOUND_ERROR = requests.codes['not_found'] HTTP_ALREADY_EXISTS_ERROR = requests.codes['conflict'] HTTP_QUOTA_EXCEEDED_ERROR = requests.codes['too_many_requests'] HTTP_TRANSIENT_ERROR = requests.codes['service_unavailable'] def __init__(self, api_key=None, timeout=None, proxies=None): """Inits VirusTotalAPI. Args: api_key: your API key to access the functions of the service VirusTotal (str). timeout: Server response timeout (int). Optional. proxies: The Protocol and the URL of the proxy server (dict). Optional. """ self.base_url = 'https://www.virustotal.com/api/v3' self.headers = {'x-apikey' : api_key} self.timeout = timeout self.proxies = proxies self._version_api = 'version 3' self._last_http_error = None self._last_result = None def get_version_api(self): """Return the API version values. Return: String containing API version ('version 3'). """ return self._version_api def get_last_http_error(self): """Return the HTTP status code of last operation. Return: HTTP status code of last operation. """ return self._last_http_error def get_last_result(self): """Return the result of executing methods of subclasses of this class. Return: Result of the last execution of a subclass method of this class. """ return self._last_result
38.554217
99
0.665938
904e840fec14e6e7f06f8029c4057ddb95f52a26
2,632
py
Python
tokenwiser/pipeline/_concat.py
Btibert3/tokenwiser
64f78be285d24ebc53bcc6991466517aed633888
[ "Apache-2.0" ]
50
2020-11-21T04:29:34.000Z
2022-02-12T11:16:52.000Z
tokenwiser/pipeline/_concat.py
Btibert3/tokenwiser
64f78be285d24ebc53bcc6991466517aed633888
[ "Apache-2.0" ]
33
2020-11-26T11:03:52.000Z
2021-12-04T20:27:44.000Z
tokenwiser/pipeline/_concat.py
Btibert3/tokenwiser
64f78be285d24ebc53bcc6991466517aed633888
[ "Apache-2.0" ]
7
2021-04-07T08:54:34.000Z
2021-11-11T00:18:17.000Z
from sklearn.pipeline import _name_estimators from sklearn.base import BaseEstimator class TextConcat(BaseEstimator): """ A component like `FeatureUnion` but this also concatenates the text. Arguments: transformer_list: list of (name, text-transformer)-tuples Example: ```python from tokenwiser.textprep import HyphenTextPrep, Cleaner from tokenwiser.pipeline import TextConcat tc = TextConcat([("hyp", HyphenTextPrep()), ("clean", Cleaner())]) results = tc.fit_transform(["dinosaurhead", "another$$ sentence$$"]) expected = ['di no saur head dinosaurhead', 'an other $$ sen tence$$ another sentence'] assert results == expected ``` """ def __init__(self, transformer_list): self.transformer_list = transformer_list def fit(self, X, y=None): """ Fits the components in a single batch. """ names = [n for n, t in self.transformer_list] if len(names) != len(set(names)): raise ValueError("Make sure that the names of each step are unique.") return self def partial_fit(self, X, y=None): """ Fits the components, but allow for batches. """ names = [n for n, t in self.transformer_list] if len(names) != len(set(names)): raise ValueError("Make sure that the names of each step are unique.") return self def transform(self, X, y=None): """ Transformers the text. """ names = [n for n, t in self.transformer_list] if len(names) != len(set(names)): raise ValueError("Make sure that the names of each step are unique.") results = {} for name, tfm in self.transformer_list: results[name] = tfm.transform(X) return [" ".join([results[n][i] for n in names]) for i in range(len(X))] def fit_transform(self, X, y=None): """ Fits the components and transforms the text in one step. """ return self.fit(X, y).transform(X, y) def make_concat(*steps): """ Utility function to generate a `TextConcat` Arguments: steps: a collection of text-transformers ```python from tokenwiser.textprep import HyphenTextPrep, Cleaner from tokenwiser.pipeline import make_concat tc = make_concat(HyphenTextPrep(), Cleaner()) results = tc.fit_transform(["dinosaurhead", "another$$ sentence$$"]) expected = ['di no saur head dinosaurhead', 'an other $$ sen tence$$ another sentence'] assert results == expected ``` """ return TextConcat(_name_estimators(steps))
30.964706
91
0.62576
cf03b6895dca4dd89d0d4717f54326562928d4d6
199
py
Python
HolePlateMaker/addBlock.py
henjin0/HolePlateMaker
daf7ef5269b03f2ac2fdc9a8132f945b14177aa0
[ "MIT" ]
2
2020-10-10T21:46:18.000Z
2021-11-01T03:53:16.000Z
HolePlateMaker/addBlock.py
henjin0/HolePlateMaker
daf7ef5269b03f2ac2fdc9a8132f945b14177aa0
[ "MIT" ]
null
null
null
HolePlateMaker/addBlock.py
henjin0/HolePlateMaker
daf7ef5269b03f2ac2fdc9a8132f945b14177aa0
[ "MIT" ]
null
null
null
import numpy as np from stl import mesh def addBlock(curMesh, newMesh): curMesh = mesh.Mesh(np.concatenate([ curMesh.data.copy(), newMesh.data.copy(), ])) return curMesh
19.9
40
0.643216
3071e285c0629c0422781be0bdf91b00ad65a122
110
py
Python
scheduler/reminders/admin.py
maplefeline/scheduler
cb17aca882d64944efdc7622a4536790457170e4
[ "MIT" ]
null
null
null
scheduler/reminders/admin.py
maplefeline/scheduler
cb17aca882d64944efdc7622a4536790457170e4
[ "MIT" ]
18
2020-12-01T06:54:23.000Z
2022-03-02T03:06:10.000Z
scheduler/reminders/admin.py
maplefeline/scheduler
cb17aca882d64944efdc7622a4536790457170e4
[ "MIT" ]
null
null
null
from django.contrib import admin # type: ignore from .models import Reminder admin.site.register(Reminder)
18.333333
48
0.790909
47775deaac79c513855b692c3e7ceb07a2efcf53
392
py
Python
Panda3D/panda3 - GLSL2/ex04 - Transparency/main.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
Panda3D/panda3 - GLSL2/ex04 - Transparency/main.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
Panda3D/panda3 - GLSL2/ex04 - Transparency/main.py
hoppfull/Legacy-Python
43f465bfdb76c91f2ac16aabb0783fdf5f459adb
[ "MIT" ]
null
null
null
import direct.showbase.ShowBase as p3d_SB import panda3d.core as p3d_Core class MyApp(p3d_SB.ShowBase): def __init__(self): p3d_SB.ShowBase.__init__(self) mesh_np = loader.loadModel("res/plane") mesh_np.reparentTo(render) mesh_np.set_shader( p3d_Core.Shader.load(p3d_Core.Shader.SL_GLSL, "res/vs.glsl", "res/fs.glsl") ) if __name__ == "__main__": myapp = MyApp() myapp.run()
28
99
0.742347
2a73ffc3657e756bbd45de9ad0c61ebd80e07d31
10,477
py
Python
src/wavestate/model/system/algo_AC.py
wavestate/wavestate-model
d5e9cd3bd7352e07cc789b40a4d9452975b27237
[ "Apache-2.0" ]
null
null
null
src/wavestate/model/system/algo_AC.py
wavestate/wavestate-model
d5e9cd3bd7352e07cc789b40a4d9452975b27237
[ "Apache-2.0" ]
null
null
null
src/wavestate/model/system/algo_AC.py
wavestate/wavestate-model
d5e9cd3bd7352e07cc789b40a4d9452975b27237
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: © 2021 Massachusetts Institute of Technology. # SPDX-FileCopyrightText: © 2021 Lee McCuller <mcculler@mit.edu> # NOTICE: authors should document their contributions in concisely in NOTICE # with details inline in source files, comments, and docstrings. """ """ import collections from .. import base from . import algo_phys class PhysicsACAlgorithm(object): def __init__(self, pa, dc): self.pa = pa self.log = pa.log self.pbg = pa.pbg self.dc = dc # pg.print_parameters_eval() self.bg = pa.bg self.fs = pa.fs self.check_build = pa.check_build # {(obj, lport)} self._drives = set() # obj-> (lportRow, lportCol) -> kmatrix self._object_edges = collections.defaultdict(dict) # indicates which outputs to monitor for sensitivity # views = {(self._obj, lport)} self._views = set() # indicates which outputs to monitor for sensitivity # views = {(self._obj, lport) : kmatrix} self._noise = dict() self._build_matrix_AC() self._solve_matrix_AC() return def _parameter_to_fdict(self, fparam): if isinstance(fparam, str): # TODO, check that the key exists return base.FrequencyKey({fparam: 1}) elif isinstance(fparam, collections.Mapping): return base.FrequencyKey(fparam) def _optical_frequency_allowed(self, fk): return fk in self.fs.freq_set_optical def __call__( self, port_fr, port_to, obj_fr=None, obj_to=None, dir_fr="in", dir_to="out", demod={}, quadrature=1, ): """ Gets the power or current at a photodiode. units, defaults to 'W' for total power, but may be 'A', or 'Q' for quanta-based counts. For multiple-wavelengths these can look inconsistent. demod takes a frequency dictionary. """ oLp_fr = self.bg.rBp2oLp(port_fr, dir=dir_fr) oLp_to = self.bg.rBp2oLp(port_to, dir=dir_to) demod = self.fs.parameter_to_fk(demod) seq, req, edges = self._solutions_AC_SRE solvect = edges[oLp_fr, oLp_to] if quadrature == "I": quadrature = 1 elif quadrature == "Q": quadrature = 1j else: quadrature = quadrature / abs(quadrature) # TODO, make a upperphoton_pmAC quantum keyset # from icecream import ic # ic(solvect.kmatrix) datavec_p = solvect.kmatrix[(demod, "+AC")][(base.FrequencyKey({}), "+AC")][ ..., 0, 0 ] datavec_m = solvect.kmatrix[(demod, "-AC")][(base.FrequencyKey({}), "+AC")][ ..., 0, 0 ] # TODO, check realness return quadrature * datavec_p + quadrature.conjugate() * datavec_m def _solve_matrix_AC(self): SREIO = self.SREIO_AC( subtract_1=True, ) (seq, req, edges, inputs, outputs) = SREIO del SREIO with self.log.heading("AC_inversion"): seq, req, edges = matrix.SREkmatrix_inverse( seq, req, edges, outputs_set=outputs, inputs_set=inputs, verbose=False, log=self.log, ) edges2 = dict() for (n_fr, n_to), edge in edges.items(): oLp_fr = n_fr oLp_to = n_to edges2[oLp_fr, oLp_to] = edge self._solutions_AC_SRE = seq, req, edges2 def _build_matrix_AC(self): for obj in self.pbg.object_iter(): try: visit_algo = obj.visit_matrix_algorithm_DCAC except AttributeError: continue else: # TODO verbose option for found objects? # print(obj) pass manip = PhysicsAlgorithmACManipulator( obj=obj, ac_algo=self, ) visit_algo(manip) return def SREIO_AC(self, subtract_1=False): seq = collections.defaultdict(set) req = collections.defaultdict(set) edges = dict() for oLp_fr, eset in self.bg.link_seq.items(): m_fr = oLp_fr # print("FT: ", m_fr, [map_nodes(oLp_to) for oLp_to in eset]) for oLp_to in eset: m_to = oLp_to edges[m_fr, m_to] = 1 seq[m_fr].add(m_to) req[m_to].add(m_fr) for obj, edict in self._object_edges.items(): for (l_fr, l_to), e_kmat in edict.items(): m_to = (obj, l_to) m_fr = (obj, l_fr) edges[m_fr, m_to] = e_kmat seq[m_fr].add(m_to) req[m_to].add(m_fr) if subtract_1: for e_key, e_val in edges.items(): edges[e_key] = -e_val nodes = set(seq.keys()) nodes.update(req.keys()) for node in nodes: seq[node].add(node) req[node].add(node) kdiag = edges.get((node, node), 0) kdiag = 1 + kdiag edges[node, node] = kdiag inputs = set() for k_in in self._drives: inputs.add(k_in) outputs = set() for k_in in self._views: outputs.add(k_in) return (seq, req, edges, inputs, outputs) class PhysicsAlgorithmACView(algo_phys.PhysicsAlgorithmView): _ac_algo = None def __init__(self, ac_algo, **kw): super(PhysicsAlgorithmACView, self).__init__( bg_algo=ac_algo.bg, pbg=ac_algo.pbg, pa_algo=ac_algo.pa, **kw ) self._ac_algo = ac_algo self._dc_algo = ac_algo.dc # is a dictionary of known basis elements as of this linkage def link_basis(self, lport): op = (self._obj, lport) btype = self._bg_algo.link_basis_types[op] return { "optical": self._pa_algo.optical_basis_AC, "mechanical": self._pa_algo.mechanical_basis_AC, "signal": self._pa_algo.signal_basis_AC, "electrical": self._pa_algo.electrical_basis_AC, }[btype] def configure_optical_wavelength(self, wdict): # TODO, check that the wavenumber exists # assert(len(self._pa_algo.fs.freq_set_wavelengths) == 1) return base.FrequencyKey(wdict) def parameter_to_fdict(self, fparam): return self._ac_algo._parameter_to_fdict(fparam) def optical_frequency_allowed(self, fk): return self._ac_algo._optical_frequency_allowed(fk) def basis_frequencies_DC(self, with_keys=False): # print("FVs: ", self._pa_algo._basis_frequency_values_DC_optical) if with_keys: return zip( self._pa_algo.optical_basis_DC["frequency"].enumerated, self._pa_algo._basis_frequency_values_DC_optical, ) else: return self._pa_algo._basis_frequency_values_DC_optical def basis_WFQ_optical_pm(self): """ This method iterates over all wavenumber, frequencies and quantum, with conjugation or negative-frequency shifting for negative quantum usage: for (Wk, Fk, Qk), (wnval, fval, conj) in manip.basis_WFQ_pm(): while this method doesn't do a ton for DC analysis. It is overloaded for AC analysis to make things simpler """ for Wk, wnval in self.basis_wavenumbers(with_keys=True): for Fk, fval in self.basis_frequencies_DC(with_keys=True): for Qk, conj in (("+AC", False), ("-AC", True)): if not conj: yield (Wk, Fk, Qk), ( wnval, fval + self._ac_algo.fs.AC_fspan, conj, ) else: yield (Wk, Fk, Qk), ( wnval, fval - self._ac_algo.fs.AC_fspan, conj, ) return class PhysicsAlgorithmACManipulator(PhysicsAlgorithmACView): is_DC = False is_AC = True def get_field_DC(self, lport): return self._dc_algo._solutions_DC[(self._obj, lport)] def add_drive(self, lport): self._ac_algo._drives.add((self._obj, lport)) def add_view(self, lport): self._ac_algo._views.add((self._obj, lport)) def add_noise(self, lport, nmatrix): self._ac_algo._noise[(self._obj, lport)] = nmatrix def add_link(self, lport_fr, lport_to, kmatrix, lowering_only=False): """ Adds a link to the system matrix The lowering_only indicates that only the lowering (non conjugated) operator is supplied, and so needs some additional completion """ if lowering_only: km_new = dict() for krow, kvect in kmatrix.kmatrix.items(): kvect_new_p = km_new.setdefault(krow + ("+AC",), dict()) kvect_new_n = km_new.setdefault(krow + ("-AC",), dict()) for kcol, kdm in kvect.items(): kvect_new_p[kcol + ("+AC",)] = kdm kvect_new_n[kcol + ("-AC",)] = kdm.conjugate() # TODO, not always using the optical basis for this kmatrix = kmatrix.__class__( stR=kmatrix.stR + (self._pa_algo.optical_basis_AC["quantum"],), stC=kmatrix.stC + (self._pa_algo.optical_basis_AC["quantum"],), dtR=kmatrix.dtR, dtC=kmatrix.dtC, kmatrix=km_new, build=False, check=self.check_build, ) if isinstance(kmatrix, base.KeyMatrixBase): basisR = set(self.link_basis(lport_to).values()) assert set(kmatrix.stR + kmatrix.dtR) <= basisR basisC = set(self.link_basis(lport_fr).values()) assert set(kmatrix.stC + kmatrix.dtC) <= basisC self._ac_algo._object_edges[self._obj][lport_fr, lport_to] = kmatrix else: # is probably just a number or array self._ac_algo._object_edges[self._obj][lport_fr, lport_to] = kmatrix
33.688103
84
0.557507
c34a1bed0463b8d5be16f7a78a40e6f179a5eee9
184
py
Python
unipipeline/answer/uni_answer_params.py
aliaksandr-master/unipipeline
d8eac38534172aee59ab5777321cabe67f3779ef
[ "MIT" ]
null
null
null
unipipeline/answer/uni_answer_params.py
aliaksandr-master/unipipeline
d8eac38534172aee59ab5777321cabe67f3779ef
[ "MIT" ]
1
2021-09-14T13:08:13.000Z
2021-09-14T13:08:13.000Z
unipipeline/answer/uni_answer_params.py
aliaksandr-master/unipipeline
d8eac38534172aee59ab5777321cabe67f3779ef
[ "MIT" ]
null
null
null
from uuid import UUID from pydantic import BaseModel class UniAnswerParams(BaseModel): topic: str id: UUID class Config: frozen = True extra = 'forbid'
14.153846
33
0.652174
da6f710e488b0728db33dd17fa3e7155b22d190f
3,468
py
Python
python/paml/codeml-parallel.py
lotharwissler/bioinformatics
83a53771222ecb0759e3b4bfa2018d2cd7647643
[ "MIT" ]
10
2016-01-13T00:39:30.000Z
2020-11-30T05:56:19.000Z
python/paml/codeml-parallel.py
lotharwissler/bioinformatics
83a53771222ecb0759e3b4bfa2018d2cd7647643
[ "MIT" ]
1
2017-02-09T22:46:49.000Z
2017-02-09T22:46:49.000Z
python/paml/codeml-parallel.py
lotharwissler/bioinformatics
83a53771222ecb0759e3b4bfa2018d2cd7647643
[ "MIT" ]
10
2015-10-09T00:29:16.000Z
2019-06-09T05:32:15.000Z
#!/usr/bin/python import os, sys # low level handling, such as command line stuff import string # string methods available import re # regular expressions import getopt # comand line argument handling import tempfile from low import * # custom functions, written by myself # ============================================================================= def show_help( ): """ displays the program parameter list and usage information """ stdout( "usage: " + sys.argv[0] + " -f <path>" ) stdout( " " ) stdout( " option description" ) stdout( " -h help (this text here)" ) stdout( " -f nt alignment file" ) stdout( " -t tree file (newick format)" ) stdout( " -m models to run (comma separates)" ) stdout( " -p path to PAML codeml" ) stdout( " " ) sys.exit(1) # ============================================================================= def handle_arguments(): """ verifies the presence of all necessary arguments and returns the data dir """ if len ( sys.argv ) == 1: stderr( "no arguments provided." ) show_help() try: # check for the right arguments keys, values = getopt.getopt( sys.argv[1:], "hf:t:m:p:" ) except getopt.GetoptError: stderr( "invalid arguments provided." ) show_help() args = {} for key, value in keys: if key == '-f': args['aln'] = value if key == '-t': args['tree'] = value if key == '-p': args['codeml'] = value if key == '-m': args['models'] = value.split(",") if not args.has_key('aln'): stderr( "aln file missing." ) show_help() if not file_exists( args.get('aln') ): stderr( "aln file does not exist." ) show_help() if not args.has_key('tree'): stderr( "tree file missing." ) show_help() if not file_exists( args.get('tree') ): stderr( "tree file does not exist." ) show_help() if not args.has_key('models'): stderr( "no models to run." ) show_help() if not file_exists( args.get('codeml') ): stderr( "codeml binary not found." ) show_help() args['pamlfolder'] = os.path.split(args.get('codeml'))[0] + '/' if not dir_exists( args.get('pamlfolder') ): stderr( "paml folder does not exist" ) show_help() return args # ============================================================================= # ============================================================================= def main( args ): models = args['models'] aln, tree = args['aln'], args['tree'] codemlbin = args['codeml'] ctlbase = args['pamlfolder'] + 'codeml.ctl.' for model in models: if tree.count("."): ext = os.path.splitext(tree)[1] outfile = aln+".codeml"+ext+"."+model else: outfile = aln+".codeml."+model tempdir = tempfile.mkdtemp(suffix=model, prefix='tmp.codeml.', dir='.') os.system("cp %s %s" %(aln, tempdir + '/in-aln')) os.system("cp %s %s" %(tree, tempdir + '/in-tree')) os.system("cp %s %s" %(ctlbase + model, tempdir + '/codeml.ctl')) os.chdir(tempdir) os.system(codemlbin) os.chdir("..") os.system("mv %s/out-codeml %s" %(tempdir, outfile)) os.system("rm -rf %s" % tempdir) # ============================================================================= # === MAIN ==================================================================== # ============================================================================= args = handle_arguments( ) main( args )
33.669903
83
0.504614
60ee73675e706c52e4c3c69bb789bff3cc66cb34
6,749
py
Python
bindings/python/ensmallen_graph/datasets/string/clostridiumcellulovorans.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/clostridiumcellulovorans.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
bindings/python/ensmallen_graph/datasets/string/clostridiumcellulovorans.py
caufieldjh/ensmallen_graph
14e98b1cdbc73193a84a913d7d4f2b2b3eb2c43a
[ "MIT" ]
null
null
null
""" This file offers the methods to automatically retrieve the graph Clostridium cellulovorans. The graph is automatically retrieved from the STRING repository. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 21:14:08.272584 The undirected graph Clostridium cellulovorans has 4180 nodes and 337028 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.03859 and has 29 connected components, where the component with most nodes has 4114 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 122, the mean node degree is 161.26, and the node degree mode is 1. The top 5 most central nodes are 573061.Clocel_0020 (degree 1795), 573061.Clocel_2730 (degree 1461), 573061.Clocel_2840 (degree 1302), 573061.Clocel_2962 (degree 1292) and 573061.Clocel_0022 (degree 1221). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ClostridiumCellulovorans # Then load the graph graph = ClostridiumCellulovorans() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen_graph import EnsmallenGraph # pylint: disable=import-error def ClostridiumCellulovorans( directed: bool = False, verbose: int = 2, cache_path: str = "graphs/string", **additional_graph_kwargs: Dict ) -> EnsmallenGraph: """Return new instance of the Clostridium cellulovorans graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False, Wether to load the graph as directed or undirected. By default false. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache_path: str = "graphs", Where to store the downloaded graphs. additional_graph_kwargs: Dict, Additional graph kwargs. Returns ----------------------- Instace of Clostridium cellulovorans graph. Report --------------------- At the time of rendering these methods (please see datetime below), the graph had the following characteristics: Datetime: 2021-02-02 21:14:08.272584 The undirected graph Clostridium cellulovorans has 4180 nodes and 337028 weighted edges, of which none are self-loops. The graph is dense as it has a density of 0.03859 and has 29 connected components, where the component with most nodes has 4114 nodes and the component with the least nodes has 2 nodes. The graph median node degree is 122, the mean node degree is 161.26, and the node degree mode is 1. The top 5 most central nodes are 573061.Clocel_0020 (degree 1795), 573061.Clocel_2730 (degree 1461), 573061.Clocel_2840 (degree 1302), 573061.Clocel_2962 (degree 1292) and 573061.Clocel_0022 (degree 1221). References --------------------- Please cite the following if you use the data: @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } Usage example ---------------------- The usage of this graph is relatively straightforward: .. code:: python # First import the function to retrieve the graph from the datasets from ensmallen_graph.datasets.string import ClostridiumCellulovorans # Then load the graph graph = ClostridiumCellulovorans() # Finally, you can do anything with it, for instance, compute its report: print(graph) # If you need to run a link prediction task with validation, # you can split the graph using a connected holdout as follows: train_graph, validation_graph = graph.connected_holdout( # You can use an 80/20 split the holdout, for example. train_size=0.8, # The random state is used to reproduce the holdout. random_state=42, # Wether to show a loading bar. verbose=True ) # Remember that, if you need, you can enable the memory-time trade-offs: train_graph.enable( vector_sources=True, vector_destinations=True, vector_outbounds=True ) # Consider using the methods made available in the Embiggen package # to run graph embedding or link prediction tasks. """ return AutomaticallyRetrievedGraph( graph_name="ClostridiumCellulovorans", dataset="string", directed=directed, verbose=verbose, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
35.335079
223
0.706327
e964c46252258591545f1008d908b1195525ce0d
586
py
Python
manga-or-illust/client.py
qhgz2013/ml-experiment
95f553f5331d3a8f54f3619f65dc0ec0a19b36af
[ "Apache-2.0" ]
null
null
null
manga-or-illust/client.py
qhgz2013/ml-experiment
95f553f5331d3a8f54f3619f65dc0ec0a19b36af
[ "Apache-2.0" ]
null
null
null
manga-or-illust/client.py
qhgz2013/ml-experiment
95f553f5331d3a8f54f3619f65dc0ec0a19b36af
[ "Apache-2.0" ]
null
null
null
import requests import base64 def main(): print("Input an empty path to exit this program.") while True: path = input('Input image path: ') with open(path, 'rb') as file: length = file.seek(0, 2) file.seek(0) img_binary = file.read(length) img_binary = base64.encodebytes(img_binary) img = str(img_binary, 'utf-8') req = requests.post('http://localhost:10087/classify', data={'image': img}) resp = str(req.content, 'utf-8') print(resp) if __name__ == '__main__': main()
26.636364
83
0.569966
57eef4dad804ba2a80f9ec5e50bb5aa946744b92
23,134
py
Python
io_scene_webaverse/blender/exp/gltf2_blender_gather_nodes.py
chrislatorres/blender-plugin
b0cd2dc6af8652a3ab841a8b620dbcf1a5a281e7
[ "Apache-2.0" ]
3
2021-02-01T09:09:30.000Z
2021-11-12T14:39:28.000Z
io_scene_webaverse/blender/exp/gltf2_blender_gather_nodes.py
chrislatorres/blender-plugin
b0cd2dc6af8652a3ab841a8b620dbcf1a5a281e7
[ "Apache-2.0" ]
4
2021-04-01T10:58:30.000Z
2021-08-23T12:27:42.000Z
io_scene_webaverse/blender/exp/gltf2_blender_gather_nodes.py
chrislatorres/blender-plugin
b0cd2dc6af8652a3ab841a8b620dbcf1a5a281e7
[ "Apache-2.0" ]
3
2021-02-22T21:39:41.000Z
2021-11-22T15:12:47.000Z
# Copyright 2018-2019 The glTF-Blender-IO authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import bpy from mathutils import Matrix, Quaternion, Vector from . import gltf2_blender_export_keys from io_scene_webaverse.blender.com import gltf2_blender_math from io_scene_webaverse.blender.exp.gltf2_blender_gather_cache import cached from io_scene_webaverse.blender.exp import gltf2_blender_gather_skins from io_scene_webaverse.blender.exp import gltf2_blender_gather_cameras from io_scene_webaverse.blender.exp import gltf2_blender_gather_mesh from io_scene_webaverse.blender.exp import gltf2_blender_gather_joints from io_scene_webaverse.blender.exp import gltf2_blender_gather_lights from ..com.gltf2_blender_extras import generate_extras from io_scene_webaverse.io.com import gltf2_io from io_scene_webaverse.io.com import gltf2_io_extensions from io_scene_webaverse.io.exp.gltf2_io_user_extensions import export_user_extensions from io_scene_webaverse.io.com.gltf2_io_debug import print_console def gather_node(blender_object, library, blender_scene, dupli_object_parent, export_settings): # custom cache to avoid cache miss when called from animation # with blender_scene=None # invalidate cache if export settings have changed if not hasattr(gather_node, "__export_settings") or export_settings != gather_node.__export_settings: gather_node.__cache = {} gather_node.__export_settings = export_settings if blender_scene is None and (blender_object.name, library) in gather_node.__cache: return gather_node.__cache[(blender_object.name, library)] node = __gather_node(blender_object, library, blender_scene, dupli_object_parent, export_settings) gather_node.__cache[(blender_object.name, library)] = node return node @cached def __gather_node(blender_object, library, blender_scene, dupli_object_parent, export_settings): children = __gather_children(blender_object, blender_scene, export_settings) camera = None mesh = None skin = None weights = None # If blender_scene is None, we are coming from animation export # Check to know if object is exported is already done, so we don't check # again if object is instanced in scene : this check was already done when exporting object itself if not __filter_node(blender_object, blender_scene, export_settings): if children: # This node should be filtered out, but has un-filtered children present. # So, export this node, excluding its camera, mesh, skin, and weights. # The transformations and animations on this node will have visible effects on children. pass else: # This node is filtered out, and has no un-filtered children or descendants. return None else: # This node is being fully exported. camera = __gather_camera(blender_object, export_settings) mesh = __gather_mesh(blender_object, library, export_settings) skin = __gather_skin(blender_object, export_settings) weights = __gather_weights(blender_object, export_settings) node = gltf2_io.Node( camera=camera, children=children, extensions=__gather_extensions(blender_object, export_settings), extras=__gather_extras(blender_object, export_settings), matrix=__gather_matrix(blender_object, export_settings), mesh=mesh, name=__gather_name(blender_object, export_settings), rotation=None, scale=None, skin=skin, translation=None, weights=weights ) # If node mesh is skined, transforms should be ignored at import, so no need to set them here if node.skin is None: node.translation, node.rotation, node.scale = __gather_trans_rot_scale(blender_object, export_settings) if export_settings[gltf2_blender_export_keys.YUP]: # Checking node.extensions is making sure that the type of lamp is managed, and will be exported if blender_object.type == 'LIGHT' and export_settings[gltf2_blender_export_keys.LIGHTS] and node.extensions: correction_node = __get_correction_node(blender_object, export_settings) correction_node.extensions = {"KHR_lights_punctual": node.extensions["KHR_lights_punctual"]} del node.extensions["KHR_lights_punctual"] node.children.append(correction_node) if blender_object.type == 'CAMERA' and export_settings[gltf2_blender_export_keys.CAMERAS]: correction_node = __get_correction_node(blender_object, export_settings) correction_node.camera = node.camera node.children.append(correction_node) node.camera = None export_user_extensions('gather_node_hook', export_settings, node, blender_object) return node def __filter_node(blender_object, blender_scene, export_settings): if blender_object.users == 0: return False if blender_scene is not None: instanced = any([blender_object.name in layer.objects for layer in blender_scene.view_layers]) if instanced is False: # Check if object is from a linked collection if any([blender_object.name in coll.objects for coll in bpy.data.collections if coll.library is not None]): pass else: # Not instanced, not linked -> We don't keep this object return False if export_settings[gltf2_blender_export_keys.SELECTED] and blender_object.select_get() is False: return False return True def __gather_camera(blender_object, export_settings): if blender_object.type != 'CAMERA': return None return gltf2_blender_gather_cameras.gather_camera(blender_object.data, export_settings) def __gather_children(blender_object, blender_scene, export_settings): children = [] # standard children for _child_object in blender_object.children: if _child_object.parent_bone: # this is handled further down, # as the object should be a child of the specific bone, # not the Armature object continue child_object = _child_object.proxy if _child_object.proxy else _child_object node = gather_node(child_object, child_object.library.name if child_object.library else None, blender_scene, None, export_settings) if node is not None: children.append(node) # blender dupli objects if blender_object.instance_type == 'COLLECTION' and blender_object.instance_collection: for dupli_object in blender_object.instance_collection.objects: if dupli_object.parent is not None: continue if dupli_object.type == "ARMATURE": continue # There is probably a proxy node = gather_node(dupli_object, dupli_object.library.name if dupli_object.library else None, blender_scene, blender_object.name, export_settings) if node is not None: children.append(node) # blender bones if blender_object.type == "ARMATURE": root_joints = [] if export_settings["gltf_def_bones"] is False: bones = blender_object.pose.bones else: bones, _, _ = gltf2_blender_gather_skins.get_bone_tree(None, blender_object) bones = [blender_object.pose.bones[b.name] for b in bones] for blender_bone in bones: if not blender_bone.parent: joint = gltf2_blender_gather_joints.gather_joint(blender_object, blender_bone, export_settings) children.append(joint) root_joints.append(joint) # handle objects directly parented to bones direct_bone_children = [child for child in blender_object.children if child.parent_bone] def find_parent_joint(joints, name): for joint in joints: if joint.name == name: return joint parent_joint = find_parent_joint(joint.children, name) if parent_joint: return parent_joint return None for child in direct_bone_children: # find parent joint parent_joint = find_parent_joint(root_joints, child.parent_bone) if not parent_joint: continue child_node = gather_node(child, None, None, None, export_settings) if child_node is None: continue blender_bone = blender_object.pose.bones[parent_joint.name] # fix rotation if export_settings[gltf2_blender_export_keys.YUP]: rot = child_node.rotation if rot is None: rot = [0, 0, 0, 1] rot_quat = Quaternion(rot) axis_basis_change = Matrix( ((1.0, 0.0, 0.0, 0.0), (0.0, 0.0, -1.0, 0.0), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0))) mat = child.matrix_parent_inverse @ child.matrix_basis mat = mat @ axis_basis_change _, rot_quat, _ = mat.decompose() child_node.rotation = [rot_quat[1], rot_quat[2], rot_quat[3], rot_quat[0]] # fix translation (in blender bone's tail is the origin for children) trans, _, _ = child.matrix_local.decompose() if trans is None: trans = [0, 0, 0] # bones go down their local y axis if blender_bone.matrix.to_scale()[1] >= 1e-6: bone_tail = [0, blender_bone.length / blender_bone.matrix.to_scale()[1], 0] else: bone_tail = [0,0,0] # If scale is 0, tail == head child_node.translation = [trans[idx] + bone_tail[idx] for idx in range(3)] parent_joint.children.append(child_node) return children def __gather_extensions(blender_object, export_settings): extensions = {} if export_settings["gltf_lights"] and (blender_object.type == "LAMP" or blender_object.type == "LIGHT"): blender_lamp = blender_object.data light = gltf2_blender_gather_lights.gather_lights_punctual( blender_lamp, export_settings ) if light is not None: light_extension = gltf2_io_extensions.ChildOfRootExtension( name="KHR_lights_punctual", path=["lights"], extension=light ) extensions["KHR_lights_punctual"] = gltf2_io_extensions.Extension( name="KHR_lights_punctual", extension={ "light": light_extension } ) return extensions if extensions else None def __gather_extras(blender_object, export_settings): if export_settings['gltf_extras']: return generate_extras(blender_object) return None def __gather_matrix(blender_object, export_settings): # return blender_object.matrix_local return [] def __gather_mesh(blender_object, library, export_settings): if blender_object.type in ['CURVE', 'SURFACE', 'FONT']: return __gather_mesh_from_nonmesh(blender_object, library, export_settings) if blender_object.type != "MESH": return None # If not using vertex group, they are irrelevant for caching --> ensure that they do not trigger a cache miss vertex_groups = blender_object.vertex_groups modifiers = blender_object.modifiers if len(vertex_groups) == 0: vertex_groups = None if len(modifiers) == 0: modifiers = None if export_settings[gltf2_blender_export_keys.APPLY]: armature_modifiers = {} if export_settings[gltf2_blender_export_keys.SKINS]: # temporarily disable Armature modifiers if exporting skins for idx, modifier in enumerate(blender_object.modifiers): if modifier.type == 'ARMATURE': armature_modifiers[idx] = modifier.show_viewport modifier.show_viewport = False depsgraph = bpy.context.evaluated_depsgraph_get() blender_mesh_owner = blender_object.evaluated_get(depsgraph) blender_mesh = blender_mesh_owner.to_mesh(preserve_all_data_layers=True, depsgraph=depsgraph) for prop in blender_object.data.keys(): blender_mesh[prop] = blender_object.data[prop] skip_filter = True if export_settings[gltf2_blender_export_keys.SKINS]: # restore Armature modifiers for idx, show_viewport in armature_modifiers.items(): blender_object.modifiers[idx].show_viewport = show_viewport else: blender_mesh = blender_object.data skip_filter = False # If no skin are exported, no need to have vertex group, this will create a cache miss if not export_settings[gltf2_blender_export_keys.SKINS]: vertex_groups = None modifiers = None else: # Check if there is an armature modidier if len([mod for mod in blender_object.modifiers if mod.type == "ARMATURE"]) == 0: vertex_groups = None # Not needed if no armature, avoid a cache miss modifiers = None materials = tuple(ms.material for ms in blender_object.material_slots) material_names = tuple(None if mat is None else mat.name for mat in materials) # retrieve armature # Because mesh data will be transforms to skeleton space, # we can't instantiate multiple object at different location, skined by same armature blender_object_for_skined_data = None if export_settings[gltf2_blender_export_keys.SKINS]: for idx, modifier in enumerate(blender_object.modifiers): if modifier.type == 'ARMATURE': blender_object_for_skined_data = blender_object result = gltf2_blender_gather_mesh.gather_mesh(blender_mesh, library, blender_object_for_skined_data, vertex_groups, modifiers, skip_filter, material_names, export_settings) if export_settings[gltf2_blender_export_keys.APPLY]: blender_mesh_owner.to_mesh_clear() return result def __gather_mesh_from_nonmesh(blender_object, library, export_settings): """Handles curves, surfaces, text, etc.""" needs_to_mesh_clear = False try: # Convert to a mesh try: if export_settings[gltf2_blender_export_keys.APPLY]: depsgraph = bpy.context.evaluated_depsgraph_get() blender_mesh_owner = blender_object.evaluated_get(depsgraph) blender_mesh = blender_mesh_owner.to_mesh(preserve_all_data_layers=True, depsgraph=depsgraph) # TODO: do we need preserve_all_data_layers? else: blender_mesh_owner = blender_object blender_mesh = blender_mesh_owner.to_mesh() except Exception: return None needs_to_mesh_clear = True skip_filter = True material_names = tuple([ms.material.name for ms in blender_object.material_slots if ms.material is not None]) vertex_groups = None modifiers = None blender_object_for_skined_data = None result = gltf2_blender_gather_mesh.gather_mesh(blender_mesh, library, blender_object_for_skined_data, vertex_groups, modifiers, skip_filter, material_names, export_settings) finally: if needs_to_mesh_clear: blender_mesh_owner.to_mesh_clear() return result def __gather_name(blender_object, export_settings): return blender_object.name def __gather_trans_rot_scale(blender_object, export_settings): if blender_object.matrix_parent_inverse == Matrix.Identity(4): trans = blender_object.location if blender_object.rotation_mode in ['QUATERNION', 'AXIS_ANGLE']: rot = blender_object.rotation_quaternion else: rot = blender_object.rotation_euler.to_quaternion() sca = blender_object.scale else: # matrix_local = matrix_parent_inverse*location*rotation*scale # Decomposing matrix_local gives less accuracy, but is needed if matrix_parent_inverse is not the identity. if blender_object.matrix_local[3][3] != 0.0: trans, rot, sca = blender_object.matrix_local.decompose() else: # Some really weird cases, scale is null (if parent is null when evaluation is done) print_console('WARNING', 'Some nodes are 0 scaled during evaluation. Result can be wrong') trans = blender_object.location if blender_object.rotation_mode in ['QUATERNION', 'AXIS_ANGLE']: rot = blender_object.rotation_quaternion else: rot = blender_object.rotation_euler.to_quaternion() sca = blender_object.scale # make sure the rotation is normalized rot.normalize() trans = __convert_swizzle_location(trans, export_settings) rot = __convert_swizzle_rotation(rot, export_settings) sca = __convert_swizzle_scale(sca, export_settings) if blender_object.instance_type == 'COLLECTION' and blender_object.instance_collection: offset = -__convert_swizzle_location( blender_object.instance_collection.instance_offset, export_settings) s = Matrix.Diagonal(sca).to_4x4() r = rot.to_matrix().to_4x4() t = Matrix.Translation(trans).to_4x4() o = Matrix.Translation(offset).to_4x4() m = t @ r @ s @ o trans = m.translation translation, rotation, scale = (None, None, None) trans[0], trans[1], trans[2] = gltf2_blender_math.round_if_near(trans[0], 0.0), gltf2_blender_math.round_if_near(trans[1], 0.0), \ gltf2_blender_math.round_if_near(trans[2], 0.0) rot[0], rot[1], rot[2], rot[3] = gltf2_blender_math.round_if_near(rot[0], 1.0), gltf2_blender_math.round_if_near(rot[1], 0.0), \ gltf2_blender_math.round_if_near(rot[2], 0.0), gltf2_blender_math.round_if_near(rot[3], 0.0) sca[0], sca[1], sca[2] = gltf2_blender_math.round_if_near(sca[0], 1.0), gltf2_blender_math.round_if_near(sca[1], 1.0), \ gltf2_blender_math.round_if_near(sca[2], 1.0) if trans[0] != 0.0 or trans[1] != 0.0 or trans[2] != 0.0: translation = [trans[0], trans[1], trans[2]] if rot[0] != 1.0 or rot[1] != 0.0 or rot[2] != 0.0 or rot[3] != 0.0: rotation = [rot[1], rot[2], rot[3], rot[0]] if sca[0] != 1.0 or sca[1] != 1.0 or sca[2] != 1.0: scale = [sca[0], sca[1], sca[2]] return translation, rotation, scale def __gather_skin(blender_object, export_settings): modifiers = {m.type: m for m in blender_object.modifiers} if "ARMATURE" not in modifiers or modifiers["ARMATURE"].object is None: return None # no skin needed when the modifier is linked without having a vertex group vertex_groups = blender_object.vertex_groups if len(vertex_groups) == 0: return None # check if any vertices in the mesh are part of a vertex group depsgraph = bpy.context.evaluated_depsgraph_get() blender_mesh_owner = blender_object.evaluated_get(depsgraph) blender_mesh = blender_mesh_owner.to_mesh(preserve_all_data_layers=True, depsgraph=depsgraph) if not any(vertex.groups is not None and len(vertex.groups) > 0 for vertex in blender_mesh.vertices): return None # Prevent infinite recursive error. A mesh can't have an Armature modifier # and be bone parented to a bone of this armature # In that case, ignore the armature modifier, keep only the bone parenting if blender_object.parent is not None \ and blender_object.parent_type == 'BONE' \ and blender_object.parent.name == modifiers["ARMATURE"].object.name: return None # Skins and meshes must be in the same glTF node, which is different from how blender handles armatures return gltf2_blender_gather_skins.gather_skin(modifiers["ARMATURE"].object, export_settings) def __gather_weights(blender_object, export_settings): return None def __get_correction_node(blender_object, export_settings): correction_quaternion = __convert_swizzle_rotation( Quaternion((1.0, 0.0, 0.0), math.radians(-90.0)), export_settings) correction_quaternion = [correction_quaternion[1], correction_quaternion[2], correction_quaternion[3], correction_quaternion[0]] return gltf2_io.Node( camera=None, children=[], extensions=None, extras=None, matrix=None, mesh=None, name=blender_object.name + '_Orientation', rotation=correction_quaternion, scale=None, skin=None, translation=None, weights=None ) def __convert_swizzle_location(loc, export_settings): """Convert a location from Blender coordinate system to glTF coordinate system.""" if export_settings[gltf2_blender_export_keys.YUP]: return Vector((loc[0], loc[2], -loc[1])) else: return Vector((loc[0], loc[1], loc[2])) def __convert_swizzle_rotation(rot, export_settings): """ Convert a quaternion rotation from Blender coordinate system to glTF coordinate system. 'w' is still at first position. """ if export_settings[gltf2_blender_export_keys.YUP]: return Quaternion((rot[0], rot[1], rot[3], -rot[2])) else: return Quaternion((rot[0], rot[1], rot[2], rot[3])) def __convert_swizzle_scale(scale, export_settings): """Convert a scale from Blender coordinate system to glTF coordinate system.""" if export_settings[gltf2_blender_export_keys.YUP]: return Vector((scale[0], scale[2], scale[1])) else: return Vector((scale[0], scale[1], scale[2]))
43.322097
134
0.658771
a6e1ddad0f80b2dc2f42586dc0c241e2b40e24dd
6,463
py
Python
main.py
Arseny569/CheckHeart
fb4c71edbd8f5c49a4d6f9c97faa8666136cb534
[ "CC0-1.0" ]
null
null
null
main.py
Arseny569/CheckHeart
fb4c71edbd8f5c49a4d6f9c97faa8666136cb534
[ "CC0-1.0" ]
null
null
null
main.py
Arseny569/CheckHeart
fb4c71edbd8f5c49a4d6f9c97faa8666136cb534
[ "CC0-1.0" ]
null
null
null
# Создание и запуск приложения, программирование интерфейса экранов и действий на них # Здесь должен быть твой код from kivy.app import App from kivy.uix.label import Label from kivy.uix.button import Button from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.boxlayout import BoxLayout from kivy.uix.textinput import TextInput from kivy.uix.scrollview import ScrollView from scrollLabel import ScrollLabel from ruffier import * from instructions import * from seconds import Seconds p1, p2, p3 = 0, 0, 0 def check_int(value): try: return int(value) except: return False class InitScreen(Screen): def __init__(self, **kwargs): super().__init__(**kwargs) instr = ScrollLabel(ltext=txt_instruction) l1 = Label(text="Введите имя:") self.name_input = TextInput() l2 = Label(text="Введите возраст:") self.age_input = TextInput() self.btn = Button(text="Начать") self.btn.background_color = (0, 0.5, 0.5, 1) self.btn.on_press = self.next line1 = BoxLayout(orientation="vertical", size_hint=(1, None), height='60sp') line1.add_widget(l1) line1.add_widget(self.name_input) line2 = BoxLayout(orientation="vertical", size_hint=(1, None), height='60sp') line2.add_widget(l2) line2.add_widget(self.age_input) linemain = BoxLayout(orientation="vertical", padding=8, spacing=8) linemain.add_widget(instr) linemain.add_widget(line1) linemain.add_widget(line2) linemain.add_widget(self.btn) self.add_widget(linemain) def next(self): global age, name name = self.name_input.text age = check_int(self.age_input.text) if name != "" and age >= 7: self.manager.current = "test" class SittingScreen(Screen): def __init__(self, **kwargs): super().__init__(**kwargs) instr = ScrollLabel(ltext=txt_sitting) self.ltimer = Seconds(45) self.ltimer.bind(done=self.timer_end) self.btn = Button(text = "Далее") self.btn.background_color = (0, 0.5, 0.5, 1) self.btn.on_press = self.next linemain = BoxLayout(orientation="vertical", padding=8, spacing=8) linemain.add_widget(instr) linemain.add_widget(self.ltimer) linemain.add_widget(self.btn) self.add_widget(linemain) def on_enter(self): self.ltimer.start() def timer_end(self, *args): self.btn.set_disabled(False) def next(self): self.manager.current = "test_result" class TestScreen(Screen): def __init__(self, **kwargs): super().__init__(**kwargs) instr = ScrollLabel(ltext=txt_test1) self.ltimer = Seconds(15) self.ltimer.bind(done=self.timer_end) l1 = Label(text="Запишите результат") self.test_input = TextInput(text = '0') self.test_input.set_disabled(True) self.btn = Button(text = "Далее") self.btn.background_color = (0, 0.5, 0.5, 1) self.btn.set_disabled(True) self.btn.on_press = self.next line1 = BoxLayout(orientation="vertical", size_hint=(1, None), height='60sp') line1.add_widget(l1) line1.add_widget(self.test_input) linemain = BoxLayout(orientation="vertical", padding=8, spacing=8) linemain.add_widget(instr) linemain.add_widget(self.ltimer) linemain.add_widget(line1) linemain.add_widget(self.btn) self.add_widget(linemain) def on_enter(self): self.ltimer.start() def timer_end(self, *args): self.test_input.set_disabled(False) self.btn.set_disabled(False) def next(self): global p1 p1 = check_int(self.test_input.text) if p1 != False and p1 > 0: self.manager.current = "sitting" class Test2Screen(Screen): def __init__(self, **kwargs): super().__init__(**kwargs) instr = ScrollLabel(ltext=txt_test2) l1 = Label(text=" Результат после приседания") self.test2_input = TextInput() l2 = Label(text="") self.test3_input = TextInput() self.t1 = Seconds(15) self.t2 = Seconds(45) self.t3 = Seconds(15 ) self.btn = Button(text="Показать результат") self.btn.background_color = (0, 0.5, 0.5, 1) self.btn.on_press = self.next line1 = BoxLayout(orientation="vertical", size_hint=(1, None), height='60sp') line1.add_widget(l1) line1.add_widget(self.test2_input) line2 = BoxLayout(orientation="vertical", size_hint=(1, None), height='60sp') line2.add_widget(l2) line2.add_widget(self.test3_input) linemain = BoxLayout(orientation="vertical", padding=8, spacing=8) linemain.add_widget(instr) linemain.add_widget(line1) linemain.add_widget(line2) linemain.add_widget(self.btn) self.add_widget(linemain) def on_enter(self): self.t1.start() self.t2.start() def t1_end(self, *args): self.test2_input.set_disabled(False) def t2_end(self, *args): self.t3.start() def t3_end(self, *args): self.test3_input.set_disabled(False) self.btn.set_disabled(False) def next(self): global p2, p3 p2 = int(self.test2_input.text) p3 = int(self.test3_input.text) self.manager.current = "result" class ResultScreen(Screen): def __init__(self, **kwargs): super().__init__(**kwargs) index = ruffier_index(p1, p2, p3) self.l = ScrollLabel(ltext="") self.add_widget(self.l) def on_enter(self): index = ruffier_index(p1,p2,p3) self.l.label.text = "Ваш индекс Руфье равен " + str(index) class CheckHeart(App): def build(self): sm = ScreenManager() sm.add_widget(InitScreen(name="main")) sm.add_widget(SittingScreen(name="sitting")) sm.add_widget(TestScreen(name="test")) sm.add_widget(Test2Screen(name="test_result")) sm.add_widget(ResultScreen(name="result")) return sm app = CheckHeart() app.run()
29.377273
86
0.607148
a1e43c22bfb1eafd5bdb6b88be7b176702073ed4
15,499
py
Python
autotest/gcore/basic_test.py
NathanW2/gdal
a5fc0fa500765f484b497d23ec5459176837e422
[ "MIT" ]
2
2015-07-24T16:16:34.000Z
2015-07-24T16:16:37.000Z
autotest/gcore/basic_test.py
samalone/gdal-ios
beed159503ce550c4e09edb25c168c8344e8998c
[ "MIT" ]
null
null
null
autotest/gcore/basic_test.py
samalone/gdal-ios
beed159503ce550c4e09edb25c168c8344e8998c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # $Id$ # # Project: GDAL/OGR Test Suite # Purpose: Test basic GDAL open # Author: Even Rouault <even dot rouault at mines dash paris dot org> # ############################################################################### # Copyright (c) 2008-2013, Even Rouault <even dot rouault at mines-paris dot org> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### import os import sys sys.path.append( '../pymod' ) import gdaltest from osgeo import gdal # Nothing exciting here. Just trying to open non existing files, # or empty names, or files that are not valid datasets... def basic_test_1(): gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ds = gdal.Open('non_existing_ds', gdal.GA_ReadOnly) gdal.PopErrorHandler() if ds is None and gdal.GetLastErrorMsg() == '`non_existing_ds\' does not exist in the file system,\nand is not recognised as a supported dataset name.\n': return 'success' else: return 'fail' def basic_test_2(): gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ds = gdal.Open('non_existing_ds', gdal.GA_Update) gdal.PopErrorHandler() if ds is None and gdal.GetLastErrorMsg() == '`non_existing_ds\' does not exist in the file system,\nand is not recognised as a supported dataset name.\n': return 'success' else: return 'fail' def basic_test_3(): gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ds = gdal.Open('', gdal.GA_ReadOnly) gdal.PopErrorHandler() if ds is None and gdal.GetLastErrorMsg() == '`\' does not exist in the file system,\nand is not recognised as a supported dataset name.\n': return 'success' else: return 'fail' def basic_test_4(): gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ds = gdal.Open('', gdal.GA_Update) gdal.PopErrorHandler() if ds is None and gdal.GetLastErrorMsg() == '`\' does not exist in the file system,\nand is not recognised as a supported dataset name.\n': return 'success' else: return 'fail' def basic_test_5(): gdal.PushErrorHandler( 'CPLQuietErrorHandler' ) ds = gdal.Open('data/doctype.xml', gdal.GA_ReadOnly) gdal.PopErrorHandler() if ds is None and gdal.GetLastErrorMsg() == '`data/doctype.xml\' not recognised as a supported file format.\n': return 'success' else: return 'fail' ############################################################################### # Issue several AllRegister() to check that GDAL drivers are good citizens def basic_test_6(): gdal.AllRegister() gdal.AllRegister() gdal.AllRegister() return 'success' ############################################################################### # Test fix for #3077 (check that errors are cleared when using UseExceptions()) def basic_test_7_internal(): try: ds = gdal.Open('non_existing_ds', gdal.GA_ReadOnly) gdaltest.post_reason('opening should have thrown an exception') return 'fail' except: # Special case: we should still be able to get the error message # until we call a new GDAL function if gdal.GetLastErrorMsg() != '`non_existing_ds\' does not exist in the file system,\nand is not recognised as a supported dataset name.\n': gdaltest.post_reason('did not get expected error message') return 'fail' if gdal.GetLastErrorType() == 0: gdaltest.post_reason('did not get expected error type') return 'fail' # Should issue an implicit CPLErrorReset() gdal.GetCacheMax() if gdal.GetLastErrorType() != 0: gdaltest.post_reason('got unexpected error type') return 'fail' return 'success' def basic_test_7(): old_use_exceptions_status = gdal.GetUseExceptions() gdal.UseExceptions() ret = basic_test_7_internal() if old_use_exceptions_status == 0: gdal.DontUseExceptions() return ret ############################################################################### # Test gdal.VersionInfo('RELEASE_DATE') and gdal.VersionInfo('LICENSE') def basic_test_8(): ret = gdal.VersionInfo('RELEASE_DATE') if len(ret) != 8: gdaltest.post_reason('fail') print(ret) return 'fail' python_exe = sys.executable if sys.platform == 'win32': python_exe = python_exe.replace('\\', '/') ret = gdaltest.runexternal(python_exe + ' basic_test.py LICENSE 0') if ret.find('GDAL/OGR is released under the MIT/X license') != 0 and ret.find('GDAL/OGR Licensing') < 0: gdaltest.post_reason('fail') print(ret) return 'fail' f = open('tmp/LICENSE.TXT', 'wt') f.write('fake_license') f.close() ret = gdaltest.runexternal(python_exe + ' basic_test.py LICENSE 1') os.unlink('tmp/LICENSE.TXT') if ret.find('fake_license') != 0 and ret.find('GDAL/OGR Licensing') < 0: gdaltest.post_reason('fail') print(ret) return 'fail' return 'success' ############################################################################### # Test gdal.PushErrorHandler() with a Python error handler def my_python_error_handler(eErrClass, err_no, msg): gdaltest.eErrClass = eErrClass gdaltest.err_no = err_no gdaltest.msg = msg def basic_test_9(): gdaltest.eErrClass = 0 gdaltest.err_no = 0 gdaltest.msg = '' gdal.PushErrorHandler(my_python_error_handler) gdal.Error(1,2,'test') gdal.PopErrorHandler() if gdaltest.eErrClass != 1: gdaltest.post_reason('fail') return 'fail' if gdaltest.err_no != 2: gdaltest.post_reason('fail') return 'fail' if gdaltest.msg != 'test': gdaltest.post_reason('fail') return 'fail' return 'success' ############################################################################### # Test gdal.PushErrorHandler() with a Python error handler as a method (#5186) class my_python_error_handler_class: def __init__(self): pass def handler(self, eErrClass, err_no, msg): gdaltest.eErrClass = eErrClass gdaltest.err_no = err_no gdaltest.msg = msg def basic_test_10(): gdaltest.eErrClass = 0 gdaltest.err_no = 0 gdaltest.msg = '' # Check that reference counting works OK gdal.PushErrorHandler(my_python_error_handler_class().handler) gdal.Error(1,2,'test') gdal.PopErrorHandler() if gdaltest.eErrClass != 1: gdaltest.post_reason('fail') return 'fail' if gdaltest.err_no != 2: gdaltest.post_reason('fail') return 'fail' if gdaltest.msg != 'test': gdaltest.post_reason('fail') return 'fail' return 'success' ############################################################################### # Test gdal.OpenEx() def basic_test_11(): ds = gdal.OpenEx('data/byte.tif') if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_RASTER) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_VECTOR) if ds is not None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_RASTER | gdal.OF_VECTOR) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_ALL) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_UPDATE) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', gdal.OF_RASTER | gdal.OF_VECTOR | gdal.OF_UPDATE | gdal.OF_VERBOSE_ERROR) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', allowed_drivers = [] ) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', allowed_drivers = ['GTiff'] ) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', allowed_drivers = ['PNG'] ) if ds is not None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('data/byte.tif', open_options = ['FOO'] ) if ds is None: gdaltest.post_reason('fail') return 'fail' ar_ds = [ gdal.OpenEx('data/byte.tif', gdal.OF_SHARED) for i in range(1024) ] if ar_ds[1023] is None: gdaltest.post_reason('fail') return 'fail' ar_ds = None ds = gdal.OpenEx('../ogr/data/poly.shp', gdal.OF_RASTER) if ds is not None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('../ogr/data/poly.shp', gdal.OF_VECTOR) if ds is None: gdaltest.post_reason('fail') return 'fail' if ds.GetLayerCount() != 1: gdaltest.post_reason('fail') return 'fail' if ds.GetLayer(0) is None: gdaltest.post_reason('fail') return 'fail' ds.GetLayer(0).GetMetadata() ds = gdal.OpenEx('../ogr/data/poly.shp', allowed_drivers = ['ESRI Shapefile'] ) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('../ogr/data/poly.shp', gdal.OF_RASTER | gdal.OF_VECTOR) if ds is None: gdaltest.post_reason('fail') return 'fail' ds = gdal.OpenEx('non existing') if ds is not None or gdal.GetLastErrorMsg() != '': gdaltest.post_reason('fail') return 'fail' gdal.PushErrorHandler('CPLQuietErrorHandler') ds = gdal.OpenEx('non existing', gdal.OF_VERBOSE_ERROR) gdal.PopErrorHandler() if ds is not None or gdal.GetLastErrorMsg() == '': gdaltest.post_reason('fail') return 'fail' return 'success' ############################################################################### # Test GDAL layer API def basic_test_12(): ds = gdal.GetDriverByName('MEMORY').Create('bar', 0, 0, 0) if ds.GetDescription() != 'bar': gdaltest.post_reason('failure') print(ds.GetDescription()) return 'fail' lyr = ds.CreateLayer("foo") if lyr is None: gdaltest.post_reason('failure') return 'fail' if lyr.GetDescription() != 'foo': gdaltest.post_reason('failure') print(lyr.GetDescription()) return 'fail' from osgeo import ogr if lyr.TestCapability(ogr.OLCCreateField) != 1: gdaltest.post_reason('failure') return 'fail' if ds.GetLayerCount() != 1: gdaltest.post_reason('failure') return 'fail' lyr = ds.GetLayerByName("foo") if lyr is None: gdaltest.post_reason('failure') return 'fail' lyr = ds.GetLayerByIndex(0) if lyr is None: gdaltest.post_reason('failure') return 'fail' lyr = ds.GetLayer(0) if lyr is None: gdaltest.post_reason('failure') return 'fail' sql_lyr = ds.ExecuteSQL('SELECT * FROM foo') if sql_lyr is None: gdaltest.post_reason('failure') return 'fail' ds.ReleaseResultSet(sql_lyr) new_lyr = ds.CopyLayer(lyr, 'bar') if new_lyr is None: gdaltest.post_reason('failure') return 'fail' if ds.DeleteLayer(0) != 0: gdaltest.post_reason('failure') return 'fail' if ds.DeleteLayer('bar') != 0: gdaltest.post_reason('failure') return 'fail' ds.SetStyleTable(ds.GetStyleTable()) ds = None return 'success' ############################################################################### # Test correct sorting of StringList / metadata (#5540, #5557) def basic_test_13(): ds = gdal.GetDriverByName('MEM').Create('',1,1) for i in range(3): if i == 0: ds.SetMetadataItem("ScaleBounds","True") ds.SetMetadataItem("ScaleBounds.MinScale","0") ds.SetMetadataItem("ScaleBounds.MaxScale","2000000") elif i == 1: ds.SetMetadataItem("ScaleBounds.MaxScale","2000000") ds.SetMetadataItem("ScaleBounds.MinScale","0") ds.SetMetadataItem("ScaleBounds","True") else: ds.SetMetadataItem("ScaleBounds.MinScale","0") ds.SetMetadataItem("ScaleBounds","True") ds.SetMetadataItem("ScaleBounds.MaxScale","2000000") if ds.GetMetadataItem('scalebounds') != 'True': gdaltest.post_reason('failure') return 'fail' if ds.GetMetadataItem('ScaleBounds') != 'True': gdaltest.post_reason('failure') return 'fail' if ds.GetMetadataItem('SCALEBOUNDS') != 'True': gdaltest.post_reason('failure') return 'fail' if ds.GetMetadataItem('ScaleBounds.MinScale') != '0': gdaltest.post_reason('failure') return 'fail' if ds.GetMetadataItem('ScaleBounds.MaxScale') != '2000000': gdaltest.post_reason('failure') return 'fail' ds = None ds = gdal.GetDriverByName('MEM').Create('',1,1) for i in range(200): ds.SetMetadataItem("FILENAME_%d" % i, "%d" % i) for i in range(200): if ds.GetMetadataItem("FILENAME_%d" % i) != '%d' % i: gdaltest.post_reason('failure') return 'fail' return 'success' gdaltest_list = [ basic_test_1, basic_test_2, basic_test_3, basic_test_4, basic_test_5, basic_test_6, basic_test_7, basic_test_8, basic_test_9, basic_test_10, basic_test_11, basic_test_12, basic_test_13 ] if __name__ == '__main__': if len(sys.argv) == 3 and sys.argv[1] == "LICENSE": if sys.argv[2] == '0': gdal.SetConfigOption('GDAL_DATA', '/foo') else: gdal.SetConfigOption('GDAL_DATA', 'tmp') gdal.VersionInfo('LICENSE') print(gdal.VersionInfo('LICENSE')) import testnonboundtoswig testnonboundtoswig.GDALDestroyDriverManager() sys.exit(0) gdaltest.setup_run( 'basic_test' ) gdaltest.run_tests( gdaltest_list ) gdaltest.summarize()
32.289583
158
0.595329
5a98a824534bd42cea39c51ca0c4839e233e52f0
744
py
Python
lang/Python/function-composition-3.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/function-composition-3.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
lang/Python/function-composition-3.py
ethansaxenian/RosettaDecode
8ea1a42a5f792280b50193ad47545d14ee371fb7
[ "MIT" ]
null
null
null
from math import (acos, cos, asin, sin) # compose (<<<) :: (b -> c) -> (a -> b) -> a -> c def compose(g, f): '''Right to left function composition.''' return lambda x: g(f(x)) # main :: IO () def main(): '''Test''' print((list([f(0.5) for f in zipWith(compose)( [sin, cos, lambda x: x ** 3.0] )([asin, acos, lambda x: x ** (1 / 3.0)])]))) # GENERIC FUNCTIONS --------------------------------------- # zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] def zipWith(f): '''A list constructed by zipping with a custom function, rather than with the default tuple constructor.''' return lambda xs: lambda ys: ( list(map(f, xs, ys)) ) if __name__ == '__main__': main()
21.882353
59
0.487903
20347941051455ebee58823b4b0be93762912b0a
7,508
py
Python
tools/third_party/pywebsocket3/test/test_util.py
twiss/wpt
df5dd5a92d8c014b21b670841ce6787e422865df
[ "BSD-3-Clause" ]
2
2020-04-16T18:41:05.000Z
2021-01-30T04:33:07.000Z
tools/third_party/pywebsocket3/test/test_util.py
sh3beyat/wpt
cb9c3cad6fbeb2ea8e6cb2424536c95e9be3b557
[ "BSD-3-Clause" ]
21
2021-03-31T19:48:22.000Z
2022-03-12T00:24:53.000Z
tools/third_party/pywebsocket3/test/test_util.py
sh3beyat/wpt
cb9c3cad6fbeb2ea8e6cb2424536c95e9be3b557
[ "BSD-3-Clause" ]
2
2021-01-05T23:43:46.000Z
2021-01-07T23:36:34.000Z
#!/usr/bin/env python # # Copyright 2011, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests for util module.""" from __future__ import absolute_import from __future__ import print_function import os import random import sys import unittest import struct import set_sys_path # Update sys.path to locate mod_pywebsocket module. from mod_pywebsocket import util from six.moves import range from six import PY3 from six import int2byte _TEST_DATA_DIR = os.path.join(os.path.split(__file__)[0], 'testdata') class UtilTest(unittest.TestCase): """A unittest for util module.""" def test_prepend_message_to_exception(self): exc = Exception('World') self.assertEqual('World', str(exc)) util.prepend_message_to_exception('Hello ', exc) self.assertEqual('Hello World', str(exc)) def test_get_script_interp(self): cygwin_path = 'c:\\cygwin\\bin' cygwin_perl = os.path.join(cygwin_path, 'perl') self.assertEqual( None, util.get_script_interp(os.path.join(_TEST_DATA_DIR, 'README'))) self.assertEqual( None, util.get_script_interp(os.path.join(_TEST_DATA_DIR, 'README'), cygwin_path)) self.assertEqual( '/usr/bin/perl -wT', util.get_script_interp(os.path.join(_TEST_DATA_DIR, 'hello.pl'))) self.assertEqual( cygwin_perl + ' -wT', util.get_script_interp(os.path.join(_TEST_DATA_DIR, 'hello.pl'), cygwin_path)) def test_hexify(self): self.assertEqual('61 7a 41 5a 30 39 20 09 0d 0a 00 ff', util.hexify(b'azAZ09 \t\r\n\x00\xff')) class RepeatedXorMaskerTest(unittest.TestCase): """A unittest for RepeatedXorMasker class.""" def test_mask(self): # Sample input e6,97,a5 is U+65e5 in UTF-8 masker = util.RepeatedXorMasker(b'\xff\xff\xff\xff') result = masker.mask(b'\xe6\x97\xa5') self.assertEqual(b'\x19\x68\x5a', result) masker = util.RepeatedXorMasker(b'\x00\x00\x00\x00') result = masker.mask(b'\xe6\x97\xa5') self.assertEqual(b'\xe6\x97\xa5', result) masker = util.RepeatedXorMasker(b'\xe6\x97\xa5\x20') result = masker.mask(b'\xe6\x97\xa5') self.assertEqual(b'\x00\x00\x00', result) def test_mask_twice(self): masker = util.RepeatedXorMasker(b'\x00\x7f\xff\x20') # mask[0], mask[1], ... will be used. result = masker.mask(b'\x00\x00\x00\x00\x00') self.assertEqual(b'\x00\x7f\xff\x20\x00', result) # mask[2], mask[0], ... will be used for the next call. result = masker.mask(b'\x00\x00\x00\x00\x00') self.assertEqual(b'\x7f\xff\x20\x00\x7f', result) def test_mask_large_data(self): masker = util.RepeatedXorMasker(b'mASk') original = b''.join([util.pack_byte(i % 256) for i in range(1000)]) result = masker.mask(original) expected = b''.join([ util.pack_byte((i % 256) ^ ord('mASk'[i % 4])) for i in range(1000) ]) self.assertEqual(expected, result) masker = util.RepeatedXorMasker(b'MaSk') first_part = b'The WebSocket Protocol enables two-way communication.' result = masker.mask(first_part) self.assertEqual( b'\x19\t6K\x1a\x0418"\x028\x0e9A\x03\x19"\x15<\x08"\rs\x0e#' b'\x001\x07(\x12s\x1f:\x0e~\x1c,\x18s\x08"\x0c>\x1e#\x080\n9' b'\x08<\x05c', result) second_part = b'It has two parts: a handshake and the data transfer.' result = masker.mask(second_part) self.assertEqual( b"('K%\x00 K9\x16<K=\x00!\x1f>[s\nm\t2\x05)\x12;\n&\x04s\n#" b"\x05s\x1f%\x04s\x0f,\x152K9\x132\x05>\x076\x19c", result) def get_random_section(source, min_num_chunks): chunks = [] bytes_chunked = 0 while bytes_chunked < len(source): chunk_size = random.randint( 1, min(len(source) / min_num_chunks, len(source) - bytes_chunked)) chunk = source[bytes_chunked:bytes_chunked + chunk_size] chunks.append(chunk) bytes_chunked += chunk_size return chunks class InflaterDeflaterTest(unittest.TestCase): """A unittest for _Inflater and _Deflater class.""" def test_inflate_deflate_default(self): input = b'hello' + b'-' * 30000 + b'hello' inflater15 = util._Inflater(15) deflater15 = util._Deflater(15) inflater8 = util._Inflater(8) deflater8 = util._Deflater(8) compressed15 = deflater15.compress_and_finish(input) compressed8 = deflater8.compress_and_finish(input) inflater15.append(compressed15) inflater8.append(compressed8) self.assertNotEqual(compressed15, compressed8) self.assertEqual(input, inflater15.decompress(-1)) self.assertEqual(input, inflater8.decompress(-1)) def test_random_section(self): random.seed(a=0) source = b''.join( [int2byte(random.randint(0, 255)) for i in range(100 * 1024)]) chunked_input = get_random_section(source, 10) print("Input chunk sizes: %r" % [len(c) for c in chunked_input]) deflater = util._Deflater(15) compressed = [] for chunk in chunked_input: compressed.append(deflater.compress(chunk)) compressed.append(deflater.compress_and_finish(b'')) chunked_expectation = get_random_section(source, 10) print("Expectation chunk sizes: %r" % [len(c) for c in chunked_expectation]) inflater = util._Inflater(15) inflater.append(b''.join(compressed)) for chunk in chunked_expectation: decompressed = inflater.decompress(len(chunk)) self.assertEqual(chunk, decompressed) self.assertEqual(b'', inflater.decompress(-1)) if __name__ == '__main__': unittest.main() # vi:sts=4 sw=4 et
38.502564
79
0.655434
072a3d7cfd6be0f554d91000a01ef38e1a310073
4,183
py
Python
env/lib/python3.8/site-packages/plotly/graph_objs/choroplethmapbox/_stream.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/choroplethmapbox/_stream.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/choroplethmapbox/_stream.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Stream(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "choroplethmapbox" _path_str = "choroplethmapbox.stream" _valid_props = {"maxpoints", "token"} # maxpoints # --------- @property def maxpoints(self): """ Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. The 'maxpoints' property is a number and may be specified as: - An int or float in the interval [0, 10000] Returns ------- int|float """ return self["maxpoints"] @maxpoints.setter def maxpoints(self, val): self["maxpoints"] = val # token # ----- @property def token(self): """ The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. The 'token' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["token"] @token.setter def token(self, val): self["token"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. """ def __init__(self, arg=None, maxpoints=None, token=None, **kwargs): """ Construct a new Stream object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.choroplethmapbox.Stream` maxpoints Sets the maximum number of points to keep on the plots from an incoming stream. If `maxpoints` is set to 50, only the newest 50 points will be displayed on the plot. token The stream id number links a data trace on a plot with a stream. See https://chart-studio.plotly.com/settings for more details. Returns ------- Stream """ super(Stream, self).__init__("stream") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.choroplethmapbox.Stream constructor must be a dict or an instance of :class:`plotly.graph_objs.choroplethmapbox.Stream`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("maxpoints", None) _v = maxpoints if maxpoints is not None else _v if _v is not None: self["maxpoints"] = _v _v = arg.pop("token", None) _v = token if token is not None else _v if _v is not None: self["token"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
29.457746
82
0.543629
90c08775744427d819a071d7686bf4a0b63534aa
5,016
py
Python
networks/networks_pytorch.py
SamuelSchmidgall/RodentNavigation
2ec49c5f43aa456ba648d1117a1b76241ad7a946
[ "MIT" ]
2
2021-01-03T17:41:02.000Z
2022-02-28T22:37:48.000Z
Learning/Networks/networks_pytorch.py
SamuelSchmidgall/ImpossibleArcade
945e6b6a39809e35a80eeda4e3da537c4dc92eb7
[ "MIT" ]
null
null
null
Learning/Networks/networks_pytorch.py
SamuelSchmidgall/ImpossibleArcade
945e6b6a39809e35a80eeda4e3da537c4dc92eb7
[ "MIT" ]
1
2022-02-28T22:37:48.000Z
2022-02-28T22:37:48.000Z
import torch import numpy as np import torch.nn as nn from torch.distributions import Normal from Learning.Networks.network_modules_torch import * LOG_SIG_MAX = 2 LOG_SIG_MIN = -20 class ValueNetwork(nn.Module): def __init__(self, input_dim, output_dim=1): super(ValueNetwork, self).__init__() ff1_meta = { "activation": None, "input_size": input_dim, "output_size": 64, "initialization": "orthogonal"} self.ff1 = NetworkConnectivityModule("linear", ff1_meta) ff2_meta = { "activation": None, "input_size": 64, "output_size": 64, "initialization": "orthogonal"} self.ff2 = NetworkConnectivityModule("linear", ff2_meta) ff3_meta = { "activation": None, "input_size": 64, "output_size": output_dim, "initialization": "orthogonal"} self.ff3 = NetworkConnectivityModule("linear", ff3_meta) def forward(self, x): x = torch.relu(self.ff1(x)) x = torch.relu(self.ff2(x)) x = self.ff3(x) return x class QNetwork(nn.Module): def __init__(self, num_inputs, num_actions, output_dim=1): super(QNetwork, self).__init__() # Q1 architecture ff1_1_meta = { "activation": None, "input_size": num_inputs + num_actions, "output_size": 256, "initialization": "orthogonal"} self.ff1_1 = NetworkConnectivityModule("linear", ff1_1_meta) ff1_2_meta = { "activation": None, "input_size": 256, "output_size": 256, "initialization": "orthogonal"} self.ff1_2 = NetworkConnectivityModule("linear", ff1_2_meta) ff1_3_meta = { "activation": None, "input_size": 256, "output_size": output_dim, "initialization": "orthogonal"} self.ff1_3 = NetworkConnectivityModule("linear", ff1_3_meta) # Q2 architecture ff2_1_meta = { "activation": None, "input_size": num_inputs + num_actions, "output_size": 256, "initialization": "orthogonal"} self.ff2_1 = NetworkConnectivityModule("linear", ff2_1_meta) ff2_2_meta = { "activation": None, "input_size": 256, "output_size": 256, "initialization": "orthogonal"} self.ff2_2 = NetworkConnectivityModule("linear", ff2_2_meta) ff2_3_meta = { "activation": None, "input_size": 256, "output_size": output_dim, "initialization": "orthogonal"} self.ff2_3 = NetworkConnectivityModule("linear", ff2_3_meta) def forward(self, state, action): xu = torch.cat([state, action], 1) x1 = torch.relu(self.ff1_1(xu)) x1 = torch.relu(self.ff1_2(x1)) x1 = self.ff1_3(x1) x2 = torch.relu(self.ff2_1(xu)) x2 = torch.relu(self.ff2_2(x2)) x2 = self.ff2_3(x2) return x1, x2 class PongNetwork(nn.Module): def __init__(self, input_dim, output_dim, action_high, action_low): super(PongNetwork, self).__init__() self.input_dim = input_dim self.output_dim = output_dim self.action_bias = torch.FloatTensor((action_high + action_low) / 2.) self.action_scale = torch.FloatTensor((action_high - action_low) / 2.) ff1_meta = { "activation": None, "input_size": input_dim, "output_size": 256, "initialization": "orthogonal"} self.ff1 = NetworkConnectivityModule("linear", ff1_meta) ff2_meta = { "activation": None, "input_size": 256, "output_size": 256, "initialization": "orthogonal"} self.ff2 = NetworkConnectivityModule("linear", ff2_meta) ff3_meta = { "activation": None, "input_size": 256, "output_size": output_dim, "initialization": "orthogonal"} self.ff3 = NetworkConnectivityModule("linear", ff3_meta) log_std_linear_meta = { "activation": None, "input_size": 256, "output_size": output_dim, "initialization": "orthogonal"} self.log_std_linear = NetworkConnectivityModule("linear", log_std_linear_meta) def forward(self, x): x = torch.relu(self.ff1(x)) x = torch.relu(self.ff2(x)) mean = self.ff3(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, min=LOG_SIG_MIN, max=LOG_SIG_MAX) return mean, log_std def sample(self, state): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) x_t = normal.rsample() # for reparameterization trick (mean + std * N(0,1)) y_t = torch.tanh(x_t) action = y_t * self.action_scale + self.action_bias log_prob = normal.log_prob(x_t) # Enforcing Action Bound log_prob -= torch.log(self.action_scale * (1 - y_t.pow(2)) + 1e-6) log_prob = log_prob.sum(1, keepdim=True) mean = torch.tanh(mean) * self.action_scale + self.action_bias return action, log_prob, mean
33.218543
86
0.615032
132458dab35e41c22da4265fa7bb28b9624418b3
182
py
Python
ABC/045/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/045/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
ABC/045/a.py
fumiyanll23/AtCoder
362ca9fcacb5415c1458bc8dee5326ba2cc70b65
[ "MIT" ]
null
null
null
def main(): # input a = int(input()) b = int(input()) h = int(input()) # compute # output print((a+b) * h // 2) if __name__ == '__main__': main()
12.133333
26
0.456044
59066d236b8014879b0608d92991af890d43981d
5,003
py
Python
magenta/video/tools/extract_frames.py
fanzhiyan/magenta
622c47c19bb84c6f57b286ed03b738516b2f27d6
[ "Apache-2.0" ]
16
2016-09-02T04:59:30.000Z
2022-01-11T10:38:29.000Z
magenta/video/tools/extract_frames.py
fanzhiyan/magenta
622c47c19bb84c6f57b286ed03b738516b2f27d6
[ "Apache-2.0" ]
2
2016-09-25T16:39:59.000Z
2016-11-18T17:43:41.000Z
magenta/video/tools/extract_frames.py
fanzhiyan/magenta
622c47c19bb84c6f57b286ed03b738516b2f27d6
[ "Apache-2.0" ]
10
2016-09-02T04:59:32.000Z
2021-09-29T06:57:24.000Z
# Copyright 2019 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Transform one or multiple video in a set of frames. Files are prefixed by a f followed by the frame number. """ from __future__ import print_function import argparse import glob import os from PIL import Image import skvideo.io PARSER = argparse.ArgumentParser(description=""" Transform one or multiple video in a set of frames. Files are prefixed by a f followed by the frame number""") PARSER.add_argument( '--video_in', dest='video_in', help="""one video or a path and a wildcard, wildcard need to be inside a quote, please note that ~ can be expanded only outside quote for instance ~/test.'*' works, but '~/test.*' won't""", required=True) PARSER.add_argument( '--from', dest='from_s', type=float, default=-1, help='starting time in second (-1)') PARSER.add_argument( '--to', dest='to_s', type=float, default=-1, help='last time in second (-1)') PARSER.add_argument( '--path_out', dest='path_out', default='./', help='Destination folder (./)') PARSER.add_argument( '--offset', dest='offset', type=int, default=0, help="""skip first frame to offset the output (0) useful with '--skip' to extract only a subset""") PARSER.add_argument( '--skip', dest='skip', type=int, default=1, help='"--skip n" will extract every n frames (1)') PARSER.add_argument( '--size', dest='size', type=int, default=256, help='size (256), this argument is used, only if cropped') PARSER.add_argument( '--start', dest='start', type=int, default=0, help='starting number for the filename (0)') PARSER.add_argument( '--multiple', dest='multiple', type=int, default=10000, help= '''if used with a wildcard (*), "multiple" will be added for each video (10000)''' ) PARSER.add_argument( '--format', dest='format_ext', default='jpg', help='(jpg) or png') PARSER.add_argument( '--crop', dest='crop', action='store_true', help='by default the video is cropped') PARSER.add_argument( '--strech', dest='crop', action='store_false', help='the video can be streched to a square ratio') PARSER.set_defaults(crop=True) ARGS = PARSER.parse_args() def crop(img, size): """resize the images. Args: img: a pillow image size: the size of the image (both x & y) Returns: nothing """ small_side = min(img.size) center = img.size[0] / 2 margin_left = center - small_side / 2 margin_right = margin_left + small_side img = img.crop((margin_left, 0, margin_right, small_side)) img = img.resize((size, size), Image.ANTIALIAS) return img def main(_): """The main fonction use skvideo to extract frames as jpg. It can do it from a part or the totality of the video. Args: Nothing """ print('argument to expand', ARGS.video_in) print('argument expanded', glob.glob(ARGS.video_in)) video_count = 0 for video_filename in glob.glob(ARGS.video_in): print('start parsing', video_filename) data = skvideo.io.ffprobe(video_filename)['video'] rate_str = data['@r_frame_rate'].split('/') rate = float(rate_str[0]) / float(rate_str[1]) print('detected frame rate:', rate) print('load frames:') video = skvideo.io.vreader(video_filename) frame_count = 0 file_count = 0 for frame in video: if (frame_count > ARGS.offset) and \ ((frame_count-ARGS.offset)%ARGS.skip == 0) and \ (frame_count/rate >= ARGS.from_s) and \ (frame_count/rate <= ARGS.to_s or ARGS.to_s == -1): print(frame_count,) img = Image.fromarray(frame) if ARGS.crop: img = crop(img, ARGS.size) # save file file_number = file_count + video_count * ARGS.multiple + ARGS.start if ARGS.format_ext.lower() == 'jpg': file_out = os.path.join(ARGS.path_out, 'f{:07d}.jpg'.format(file_number)) img.save(file_out, 'JPEG') elif ARGS.format_ext.lower() == 'png': file_out = os.path.join(ARGS.path_out, 'f{:07d}.png'.format(file_number)) img.save(file_out, 'PNG') else: print('unrecognize format', ARGS.format_ext) quit() file_count += 1 frame_count += 1 video_count += 1 if __name__ == '__main__': main(0)
28.426136
80
0.637018
cc5b06a166c7483387845050c7feb974c80221d9
27,941
py
Python
custom_components/openhasp/__init__.py
Chorty/openHASP-custom-component
21174f1b6d5c41cee27bdcf52526b362a440f9fa
[ "MIT" ]
null
null
null
custom_components/openhasp/__init__.py
Chorty/openHASP-custom-component
21174f1b6d5c41cee27bdcf52526b362a440f9fa
[ "MIT" ]
null
null
null
custom_components/openhasp/__init__.py
Chorty/openHASP-custom-component
21174f1b6d5c41cee27bdcf52526b362a440f9fa
[ "MIT" ]
null
null
null
"""HASP components module.""" import hashlib import json import logging import os import pathlib import re import jsonschema from homeassistant.components.binary_sensor import DOMAIN as BINARY_SENSOR_DOMAIN from homeassistant.components.light import DOMAIN as LIGHT_DOMAIN from homeassistant.components.switch import DOMAIN as SWITCH_DOMAIN from homeassistant.const import CONF_NAME, STATE_UNAVAILABLE, STATE_UNKNOWN from homeassistant.core import callback from homeassistant.exceptions import TemplateError from homeassistant.helpers import device_registry as dr, entity_registry import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.event import TrackTemplate, async_track_template_result from homeassistant.helpers.network import get_url from homeassistant.helpers.reload import async_integration_yaml_config from homeassistant.helpers.restore_state import RestoreEntity from homeassistant.helpers.service import async_call_from_config from homeassistant.util import slugify import voluptuous as vol from .common import HASP_IDLE_SCHEMA from .const import ( ATTR_CONFIG_SUBMODULE, ATTR_HEIGHT, ATTR_IDLE, ATTR_IMAGE, ATTR_OBJECT, ATTR_PAGE, ATTR_PATH, ATTR_COMMAND_KEYWORD, ATTR_COMMAND_PARAMETERS, ATTR_CONFIG_PARAMETERS, ATTR_WIDTH, CONF_COMPONENT, CONF_EVENT, CONF_HWID, CONF_OBJECTS, CONF_OBJID, CONF_PAGES, CONF_PAGES_PATH, CONF_PLATE, CONF_PROPERTIES, CONF_TOPIC, CONF_TRACK, DATA_IMAGES, DATA_LISTENER, DISCOVERED_MANUFACTURER, DISCOVERED_MODEL, DISCOVERED_URL, DISCOVERED_VERSION, DOMAIN, EVENT_HASP_PLATE_OFFLINE, EVENT_HASP_PLATE_ONLINE, HASP_EVENT, HASP_EVENT_DOWN, HASP_EVENT_RELEASE, HASP_EVENT_UP, HASP_EVENTS, HASP_LWT, HASP_NUM_PAGES, HASP_ONLINE, HASP_VAL, MAJOR, MINOR, SERVICE_CLEAR_PAGE, SERVICE_LOAD_PAGE, SERVICE_PAGE_CHANGE, SERVICE_PAGE_NEXT, SERVICE_PAGE_PREV, SERVICE_PUSH_IMAGE, SERVICE_WAKEUP, SERVICE_COMMAND, SERVICE_CONFIG, ) from .image import ImageServeView, image_to_rgb565 _LOGGER = logging.getLogger(__name__) PLATFORMS = [LIGHT_DOMAIN, SWITCH_DOMAIN, BINARY_SENSOR_DOMAIN] def hasp_object(value): """Validade HASP-LVGL object format.""" if re.match("p[0-9]+b[0-9]+", value): return value raise vol.Invalid("Not an HASP-LVGL object p#b#") # Configuration YAML schemas EVENT_SCHEMA = cv.schema_with_slug_keys([cv.SERVICE_SCHEMA]) PROPERTY_SCHEMA = cv.schema_with_slug_keys(cv.template) OBJECT_SCHEMA = vol.Schema( { vol.Required(CONF_OBJID): hasp_object, vol.Optional(CONF_TRACK, default=None): vol.Any(cv.entity_id, None), vol.Optional(CONF_PROPERTIES, default={}): PROPERTY_SCHEMA, vol.Optional(CONF_EVENT, default={}): EVENT_SCHEMA, } ) PLATE_SCHEMA = vol.Schema( { vol.Optional(CONF_OBJECTS): vol.All(cv.ensure_list, [OBJECT_SCHEMA]), }, ) CONFIG_SCHEMA = vol.Schema( {DOMAIN: vol.Schema({cv.slug: PLATE_SCHEMA})}, extra=vol.ALLOW_EXTRA ) # JSON Messages from HASP schemas HASP_VAL_SCHEMA = vol.Schema( {vol.Required(HASP_VAL): vol.All(int, vol.Range(min=0, max=1))}, extra=vol.ALLOW_EXTRA, ) HASP_EVENT_SCHEMA = vol.Schema( {vol.Required(HASP_EVENT): vol.Any(*HASP_EVENTS)}, extra=vol.ALLOW_EXTRA ) HASP_STATUSUPDATE_SCHEMA = vol.Schema( { vol.Required("node"): cv.string, vol.Required("version"): cv.string, vol.Required("uptime"): int, vol.Required("canUpdate"): cv.boolean, }, extra=vol.ALLOW_EXTRA, ) HASP_LWT_SCHEMA = vol.Schema(vol.Any(*HASP_LWT)) HASP_PAGE_SCHEMA = vol.Schema(vol.All(vol.Coerce(int), vol.Range(min=0, max=12))) PUSH_IMAGE_SCHEMA = vol.Schema( { vol.Required(ATTR_IMAGE): vol.Any(cv.url, cv.isfile), vol.Required(ATTR_OBJECT): hasp_object, vol.Optional(ATTR_WIDTH): cv.positive_int, vol.Optional(ATTR_HEIGHT): cv.positive_int, }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Set up the MQTT async example component.""" conf = config.get(DOMAIN) if conf is None: # We still depend in YAML so we must fail _LOGGER.error( "openHASP requires you to setup your plate objects in your YAML configuration." ) return False hass.data[DOMAIN] = {CONF_PLATE: {}} component = hass.data[DOMAIN][CONF_COMPONENT] = EntityComponent( _LOGGER, DOMAIN, hass ) component.async_register_entity_service(SERVICE_WAKEUP, {}, "async_wakeup") component.async_register_entity_service( SERVICE_PAGE_NEXT, {}, "async_change_page_next" ) component.async_register_entity_service( SERVICE_PAGE_PREV, {}, "async_change_page_prev" ) component.async_register_entity_service( SERVICE_PAGE_CHANGE, {vol.Required(ATTR_PAGE): int}, "async_change_page" ) component.async_register_entity_service( SERVICE_LOAD_PAGE, {vol.Required(ATTR_PATH): cv.isfile}, "async_load_page" ) component.async_register_entity_service( SERVICE_CLEAR_PAGE, {vol.Optional(ATTR_PAGE): int}, "async_clearpage" ) component.async_register_entity_service( SERVICE_COMMAND, { vol.Required(ATTR_COMMAND_KEYWORD): cv.string, vol.Optional(ATTR_COMMAND_PARAMETERS, default=""): cv.string, }, "async_command_service", ) component.async_register_entity_service( SERVICE_CONFIG, { vol.Required(ATTR_CONFIG_SUBMODULE): cv.string, vol.Required(ATTR_CONFIG_PARAMETERS): cv.string, }, "async_config_service", ) component.async_register_entity_service( SERVICE_PUSH_IMAGE, PUSH_IMAGE_SCHEMA, "async_push_image" ) hass.data[DOMAIN][DATA_IMAGES] = dict() hass.http.register_view(ImageServeView) return True async def async_update_options(hass, entry): """Handle options update.""" _LOGGER.debug("Reloading") await hass.config_entries.async_reload(entry.entry_id) async def async_setup_entry(hass, entry) -> bool: """Set up OpenHASP via a config entry.""" plate = entry.data[CONF_NAME] _LOGGER.debug("Setup %s", plate) hass_config = await async_integration_yaml_config(hass, DOMAIN) if DOMAIN not in hass_config or slugify(plate) not in hass_config[DOMAIN]: _LOGGER.error( "No YAML configuration for %s, \ please create an entry under 'openhasp' with the slug: %s", plate, slugify(plate), ) return False config = hass_config[DOMAIN][slugify(plate)] # Register Plate device device_registry = await dr.async_get_registry(hass) device_registry.async_get_or_create( config_entry_id=entry.entry_id, identifiers={(DOMAIN, entry.data[CONF_HWID])}, manufacturer=entry.data[DISCOVERED_MANUFACTURER], model=entry.data[DISCOVERED_MODEL], sw_version=entry.data[DISCOVERED_VERSION], configuration_url=entry.data.get(DISCOVERED_URL), name=plate, ) # Add entity to component component = hass.data[DOMAIN][CONF_COMPONENT] plate_entity = SwitchPlate(hass, config, entry) await component.async_add_entities([plate_entity]) hass.data[DOMAIN][CONF_PLATE][plate] = plate_entity for domain in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, domain) ) listener = entry.add_update_listener(async_update_options) hass.data[DOMAIN][CONF_PLATE][DATA_LISTENER] = listener return True async def async_unload_entry(hass, entry): """Remove a config entry.""" plate = entry.data[CONF_NAME] _LOGGER.debug("Unload entry for plate %s", plate) listener = hass.data[DOMAIN][CONF_PLATE][DATA_LISTENER] # Only remove services if it is the last if len(hass.data[DOMAIN][CONF_PLATE]) == 1: hass.services.async_remove(DOMAIN, SERVICE_WAKEUP) hass.services.async_remove(DOMAIN, SERVICE_PAGE_NEXT) hass.services.async_remove(DOMAIN, SERVICE_PAGE_PREV) hass.services.async_remove(DOMAIN, SERVICE_PAGE_CHANGE) hass.services.async_remove(DOMAIN, SERVICE_LOAD_PAGE) hass.services.async_remove(DOMAIN, SERVICE_CLEAR_PAGE) hass.services.async_remove(DOMAIN, SERVICE_COMMAND) for domain in PLATFORMS: await hass.config_entries.async_forward_entry_unload(entry, domain) device_registry = await dr.async_get_registry(hass) dev = device_registry.async_get_device( identifiers={(DOMAIN, entry.data[CONF_HWID])} ) if entry.entry_id in dev.config_entries: _LOGGER.debug("Removing device %s", dev) device_registry.async_remove_device(dev.id) component = hass.data[DOMAIN][CONF_COMPONENT] await component.async_remove_entity(hass.data[DOMAIN][CONF_PLATE][plate].entity_id) # Component does not remove entity from entity_registry, so we must do it registry = await entity_registry.async_get_registry(hass) registry.async_remove(hass.data[DOMAIN][CONF_PLATE][plate].entity_id) listener() # Remove Plate entity del hass.data[DOMAIN][CONF_PLATE][plate] return True # pylint: disable=R0902 class SwitchPlate(RestoreEntity): """Representation of an openHASP Plate.""" def __init__(self, hass, config, entry): """Initialize a plate.""" super().__init__() self._entry = entry self._topic = entry.data[CONF_TOPIC] self._pages_jsonl = entry.options.get( CONF_PAGES_PATH, entry.data.get(CONF_PAGES_PATH) ) self._objects = [] for obj in config[CONF_OBJECTS]: new_obj = HASPObject(hass, self._topic, obj) self._objects.append(new_obj) self._statusupdate = {HASP_NUM_PAGES: entry.data[CONF_PAGES]} self._available = False self._page = 1 self._subscriptions = [] with open( pathlib.Path(__file__).parent.joinpath("pages_schema.json"), "r" ) as schema_file: self.json_schema = json.load(schema_file) async def async_will_remove_from_hass(self): """Run before entity is removed.""" _LOGGER.debug("Remove plate %s", self._entry.data[CONF_NAME]) for obj in self._objects: await obj.disable_object() for subscription in self._subscriptions: subscription() async def async_added_to_hass(self): """Run when entity about to be added.""" await super().async_added_to_hass() state = await self.async_get_last_state() if state and state.state not in [STATE_UNAVAILABLE, STATE_UNKNOWN, None]: self._page = int(state.state) @callback async def page_update_received(msg): """Process page state.""" try: self._page = HASP_PAGE_SCHEMA(msg.payload) _LOGGER.debug("Page changed to %s", self._page) self.async_write_ha_state() except vol.error.Invalid as err: _LOGGER.error("%s in %s", err, msg.payload) self._subscriptions.append( await self.hass.components.mqtt.async_subscribe( f"{self._topic}/state/page", page_update_received ) ) @callback async def statusupdate_message_received(msg): """Process statusupdate.""" try: message = HASP_STATUSUPDATE_SCHEMA(json.loads(msg.payload)) major, minor, _ = message["version"].split(".") if (major, minor) != (MAJOR, MINOR): self.hass.components.persistent_notification.create( f"You require firmware version {MAJOR}.{MINOR}.x \ in plate {self._entry.data[CONF_NAME]} \ for this component to work properly.\ <br>Some features will simply not work!", title="openHASP Firmware mismatch", notification_id="openhasp_firmware_notification", ) _LOGGER.error( "%s firmware mismatch %s <> %s", self._entry.data[CONF_NAME], (major, minor), (MAJOR, MINOR), ) self._available = True self._statusupdate = message self._page = message[ATTR_PAGE] self.async_write_ha_state() except vol.error.Invalid as err: _LOGGER.error("While processing status update: %s", err) self._subscriptions.append( await self.hass.components.mqtt.async_subscribe( f"{self._topic}/state/statusupdate", statusupdate_message_received ) ) await self.hass.components.mqtt.async_publish( self.hass, f"{self._topic}/command", "statusupdate", qos=0, retain=False ) @callback async def idle_message_received(msg): """Process idle message.""" try: self._statusupdate[ATTR_IDLE] = HASP_IDLE_SCHEMA(msg.payload) self.async_write_ha_state() except vol.error.Invalid as err: _LOGGER.error("While processing idle message: %s", err) self._subscriptions.append( await self.hass.components.mqtt.async_subscribe( f"{self._topic}/state/idle", idle_message_received ) ) @callback async def lwt_message_received(msg): """Process LWT.""" _LOGGER.debug("Received LWT = %s", msg.payload) try: message = HASP_LWT_SCHEMA(msg.payload) if message == HASP_ONLINE: self._available = True self.hass.bus.async_fire( EVENT_HASP_PLATE_ONLINE, {CONF_PLATE: self._entry.data[CONF_HWID]}, ) if self._pages_jsonl: await self.async_load_page(self._pages_jsonl) else: await self.refresh() for obj in self._objects: await obj.enable_object() else: self._available = False self.hass.bus.async_fire( EVENT_HASP_PLATE_OFFLINE, {CONF_PLATE: self._entry.data[CONF_HWID]}, ) for obj in self._objects: await obj.disable_object() self.async_write_ha_state() except vol.error.Invalid as err: _LOGGER.error("While processing LWT: %s", err) self._subscriptions.append( await self.hass.components.mqtt.async_subscribe( f"{self._topic}/LWT", lwt_message_received ) ) @property def unique_id(self): """Return the plate identifier.""" return self._entry.data[CONF_HWID] @property def name(self): """Return the name of the plate.""" return self._entry.data[CONF_NAME] @property def icon(self): """Return the icon to be used for this entity.""" return "mdi:gesture-tap-box" @property def state(self): """Return the state of the component.""" return self._page @property def available(self): """Return if entity is available.""" return self._available @property def state_attributes(self): """Return the state attributes.""" attributes = {} if self._statusupdate: attributes = {**attributes, **self._statusupdate} if ATTR_PAGE in attributes: del attributes[ ATTR_PAGE ] # Page is tracked in the state, don't confuse users return attributes async def async_wakeup(self): """Wake up the display.""" cmd_topic = f"{self._topic}/command" _LOGGER.warning("Wakeup will be deprecated in 0.8.0") # remove in version 0.8.0 await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, "wakeup", qos=0, retain=False ) async def async_change_page_next(self): """Change page to next one.""" cmd_topic = f"{self._topic}/command/page" _LOGGER.warning( "page next service will be deprecated in 0.8.0" ) # remove in version 0.8.0 await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, "page next", qos=0, retain=False ) async def async_change_page_prev(self): """Change page to previous one.""" cmd_topic = f"{self._topic}/command/page" _LOGGER.warning( "page prev service will be deprecated in 0.8.0" ) # remove in version 0.8.0 await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, "page prev", qos=0, retain=False ) async def async_clearpage(self, page="all"): """Clear page.""" cmd_topic = f"{self._topic}/command" await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, f"clearpage {page}", qos=0, retain=False ) if page == "all": await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, "page 1", qos=0, retain=False ) async def async_change_page(self, page): """Change page to number.""" cmd_topic = f"{self._topic}/command/page" if self._statusupdate: num_pages = self._statusupdate[HASP_NUM_PAGES] if page <= 0 or page > num_pages: _LOGGER.error( "Can't change to %s, available pages are 1 to %s", page, num_pages ) return self._page = page _LOGGER.debug("Change page %s", self._page) await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, self._page, qos=0, retain=False ) self.async_write_ha_state() async def async_command_service(self, keyword, parameters): """Sends commands directly to the plate entity""" await self.hass.components.mqtt.async_publish( self.hass, f"{self._topic}/command", f"{keyword} {parameters}".strip(), qos=0, retain=False, ) async def async_config_service(self, submodule, parameters): """Sends configuration commands to plate entity""" await self.hass.components.mqtt.async_publish( self.hass, f"{self._topic}/config/{submodule}", f"{parameters}".strip(), qos=0, retain=False, ) async def async_push_image(self, image, obj, width=None, height=None): """update object image.""" image_id = hashlib.md5(image.encode("utf-8")).hexdigest() rgb_image = await self.hass.async_add_executor_job( image_to_rgb565, image, (width, height) ) self.hass.data[DOMAIN][DATA_IMAGES][image_id] = rgb_image cmd_topic = f"{self._topic}/command/{obj}.src" rgb_image_url = ( f"{get_url(self.hass, allow_external=False)}/api/openhasp/serve/{image_id}" ) _LOGGER.debug("Push %s with %s", cmd_topic, rgb_image_url) await self.hass.components.mqtt.async_publish( self.hass, cmd_topic, rgb_image_url, qos=0, retain=False ) async def refresh(self): """Refresh objects in the SwitchPlate.""" _LOGGER.info("Refreshing %s", self._entry.data[CONF_NAME]) for obj in self._objects: await obj.refresh() await self.async_change_page(self._page) async def async_load_page(self, path): """Load pages file on the SwitchPlate, existing pages will not be cleared.""" cmd_topic = f"{self._topic}/command" _LOGGER.info("Load page %s to %s", path, cmd_topic) if not self.hass.config.is_allowed_path(path): _LOGGER.error("'%s' is not an allowed directory", path) return async def send_lines(lines): mqtt_payload_buffer = "" for line in lines: if len(mqtt_payload_buffer) + len(line) > 1000: await self.hass.components.mqtt.async_publish( self.hass, f"{cmd_topic}/jsonl", mqtt_payload_buffer, qos=0, retain=False ) mqtt_payload_buffer = line else: mqtt_payload_buffer = mqtt_payload_buffer + line await self.hass.components.mqtt.async_publish( self.hass, f"{cmd_topic}/jsonl", mqtt_payload_buffer, qos=0, retain=False ) try: with open(path, "r") as pages_file: if path.endswith(".json"): json_data = json.load(pages_file) jsonschema.validate(instance=json_data, schema=self.json_schema) lines = [] for item in json_data: if isinstance(item, dict): lines.append(json.dumps(item) + "\n") await send_lines(lines) else: await send_lines(pages_file) await self.refresh() except (IndexError, FileNotFoundError, IsADirectoryError, UnboundLocalError): _LOGGER.error( "File or data not present at the moment: %s", os.path.basename(path), ) except json.JSONDecodeError: _LOGGER.error( "Error decoding .json file: %s", os.path.basename(path), ) except jsonschema.ValidationError as e: _LOGGER.error( "Schema check failed for %s. Validation Error: %s", os.path.basename(path), e.message, ) # pylint: disable=R0902 class HASPObject: """Representation of an HASP-LVGL object.""" def __init__(self, hass, plate_topic, config): """Initialize an object.""" self.hass = hass self.obj_id = config[CONF_OBJID] self.command_topic = f"{plate_topic}/command/{self.obj_id}." self.state_topic = f"{plate_topic}/state/{self.obj_id}" self.cached_properties = {} self.properties = config.get(CONF_PROPERTIES) self.event_services = config.get(CONF_EVENT) self._tracked_property_templates = [] self._freeze_properties = [] self._subscriptions = [] async def enable_object(self): """Initialize object events and properties subscriptions.""" if self.event_services: _LOGGER.debug("Setup event_services for '%s'", self.obj_id) self._subscriptions.append(await self.async_listen_hasp_events()) for _property, template in self.properties.items(): self._tracked_property_templates.append( await self.async_set_property(_property, template) ) async def disable_object(self): """Remove subscriptions and event tracking.""" _LOGGER.debug("Disabling HASPObject %s", self.obj_id) for subscription in self._subscriptions: subscription() self._subscriptions = [] for tracked_template in self._tracked_property_templates: tracked_template.async_remove() self._tracked_property_templates = [] async def async_set_property(self, _property, template): """Set HASP Object property to template value.""" @callback async def _async_template_result_changed(event, updates): track_template_result = updates.pop() template = track_template_result.template result = track_template_result.result if isinstance(result, TemplateError) or result is None: entity = event and event.data.get("entity_id") _LOGGER.error( "TemplateError('%s') " "while processing template '%s' " "in entity '%s'", result, template, entity, ) return self.cached_properties[_property] = result if _property in self._freeze_properties: # Skip update to plate to avoid feedback loops return _LOGGER.debug( "%s.%s - %s changed, updating with: %s", self.obj_id, _property, template, result, ) await self.hass.components.mqtt.async_publish( self.hass, self.command_topic + _property, result ) property_template = async_track_template_result( self.hass, [TrackTemplate(template, None)], _async_template_result_changed, ) property_template.async_refresh() return property_template async def refresh(self): """Refresh based on cached values.""" for _property, result in self.cached_properties.items(): _LOGGER.debug("Refresh object %s.%s = %s", self.obj_id, _property, result) await self.hass.components.mqtt.async_publish( self.hass, self.command_topic + _property, result ) async def async_listen_hasp_events(self): """Listen to messages on MQTT for HASP events.""" @callback async def message_received(msg): """Process object state MQTT message.""" try: message = HASP_EVENT_SCHEMA(json.loads(msg.payload)) if message[HASP_EVENT] == HASP_EVENT_DOWN: # store properties that shouldn't be updated while button pressed self._freeze_properties = message.keys() elif message[HASP_EVENT] in [HASP_EVENT_UP, HASP_EVENT_RELEASE]: self._freeze_properties = [] for event in self.event_services: if event in message[HASP_EVENT]: _LOGGER.debug( "Service call for '%s' triggered by '%s' on '%s' with variables %s", event, msg.payload, msg.topic, message, ) for service in self.event_services[event]: await async_call_from_config( self.hass, service, validate_config=False, variables=message, ) except vol.error.Invalid: _LOGGER.debug( "Could not handle openHASP event: '%s' on '%s'", msg.payload, msg.topic, ) except json.decoder.JSONDecodeError as err: _LOGGER.error( "Error decoding received JSON message: %s on %s", err.doc, msg.topic ) _LOGGER.debug("Subscribe to '%s' events on '%s'", self.obj_id, self.state_topic) return await self.hass.components.mqtt.async_subscribe( self.state_topic, message_received )
33.826877
97
0.605562
57785e3742249e6e69fdb5606027bac6121de3f7
3,262
py
Python
evaluate.py
m4ln/HIWI_classification
f872c3da03bf999aeddd870eeed34332c8a9471a
[ "MIT" ]
1
2020-09-07T10:02:07.000Z
2020-09-07T10:02:07.000Z
evaluate.py
m4ln/HIWI_classification
f872c3da03bf999aeddd870eeed34332c8a9471a
[ "MIT" ]
1
2020-09-16T14:26:01.000Z
2020-09-16T14:26:01.000Z
evaluate.py
m4ln/HIWI_classification
f872c3da03bf999aeddd870eeed34332c8a9471a
[ "MIT" ]
1
2020-09-07T11:29:47.000Z
2020-09-07T11:29:47.000Z
""" call in shell: python evaluate.py --dir <rootdir/experiment/> --epoch <epoch to> e.g. in shell: python evaluate.py --dir Runs/se_resnet_trained_final/ --epoch 149 loops over all folds and calculates + stores the accuracies in a file in the root folder of the experiment you might change the model in line 45 from resnet to se_resnet (see comment) """ import torch from torch.utils.data import Dataset, DataLoader #import matplotlib.pyplot as plt #import seaborn as sns; sns.set() import numpy as np import os from os.path import join import argparse import Training_custom.load_dataset from senet.baseline import resnet20 from senet.se_resnet import se_resnet20 parser = argparse.ArgumentParser() parser.add_argument('-d', '--dir', type=str, metavar='', required=True, help='Directory of the x_folds.') parser.add_argument('-e', '--epoch', type=int, metavar='', required=True, help='from which epoch should the model be loaded?') args = parser.parse_args() working_dir = os.getcwd() rootpath = join(working_dir, args.dir) def evaluate(fold_i): # path zu einem checkpoint CHKPT = f"{args.dir}/fold_{fold_i}/checkpoints/train_chkpt_{args.epoch}.tar" # Das file train_chkpt_100.tar is ein dictionary das ein snapshot vom trainingszustand # der 100. epoche ist. # es interessieren eig nur die keys "train_loss", "val_loss" und "model_state_dict". # Train und val loss sind 1D torch tensors die den mean loss von der jeweiligen epoche (idx) # halten. train_status = torch.load(CHKPT, map_location='cpu') #print(train_status) # model wiederherstellen model = resnet20(num_classes=4) #resnet20(num_classes=4) or alternatively: se_resnet20(num_classes=4, reduction=16) model.load_state_dict(train_status['model_state_dict']) model.eval() test_data = Training_custom.load_dataset.imagewise_dataset(datadir = '/home/vbarth/HIWI/classificationDataValentin/mixed_cropped/test') #dataloader = DataLoader(test_data, batch_size=16, # shuffle=False, num_workers=0) acc=0 #initialize accuracy i = 0 #will count up for x, y in test_data: #iterate over testset x = x.unsqueeze(0) #add one dimension (batch missing) to get 4d tensor y_pred = model(x).squeeze() pred, ind = torch.max(y_pred, 0) if y.item() == ind.item(): acc = acc + 1 #add one when the prediction was right else add nothing i = i +1 ##print every 3000th sampel if i % 3000 == 0: print("Sample: ", i, "\n y_pred: ",y_pred, "\n pred: ", pred, "\n ind: ", ind, "\n y: ", y.item()) acc = acc/len(test_data) #print("Accuracy: ", acc ) ##def of accuracy return f"folder: {fold_i}, accuracy: {acc} \n" if __name__ == "__main__": n_files = (len([name for name in os.listdir(rootpath)])) #print(n_files) accs = [] for fold in range(n_files): print(f"Processing folder number {fold}") acc_str = evaluate(fold+1) accs.append(acc_str) with open(join(rootpath, "accuracies"), 'w') as f: for string in accs: f.write(string)
34.336842
139
0.656039
16628614db6700e2dfa237f28d80ff917bc8cc77
1,231
py
Python
pytest-20210411/test_calculator.py
ti132520/pytest-vlog
c6688ed2b1c5e10b91057a22e672dffc1cd54d53
[ "CC0-1.0" ]
1
2021-08-15T09:34:45.000Z
2021-08-15T09:34:45.000Z
pytest-20210411/test_calculator.py
yuhuifei/pytest-vlog
c9f4adbf83bd01613176700f939f57af3e1cdf86
[ "CC0-1.0" ]
null
null
null
pytest-20210411/test_calculator.py
yuhuifei/pytest-vlog
c9f4adbf83bd01613176700f939f57af3e1cdf86
[ "CC0-1.0" ]
2
2021-04-12T14:40:22.000Z
2021-08-28T08:47:27.000Z
import pytest @pytest.fixture(scope='class', autouse=True) def init_class(): print('开始测试 class 级别输出') yield print('测试结束 class 级别输出') @pytest.fixture(scope='session', autouse=True) def init_session(): print('开始测试 session 级别输出') yield print('测试结束 session 级别输出') class TestCal: # pytest @pytest.mark.test_add @pytest.mark.parametrize('a,b', [ [1, 2], [2, 3] ], ids=['one', 'two']) # 测试用例:计算器加法测试 def test_add(self, init_calculator_fun, a, b): assert init_calculator_fun.add_fun(a, b) in [3, 5] @pytest.mark.parametrize('a,b', [ [1, 1], [3, 3] ], ids=['计算器加法测试1', '计算器加法测试2']) # 测试用例:计算器除法测试 @pytest.mark.run(2) def test_div(self, init_calculator_fun, a, b): assert init_calculator_fun.div_fun(a, b) == 1 # yaml 参数导入1 @pytest.mark.run(0) def test_yaml_add(self, init_calculator_fun, init_calculator_data): assert init_calculator_fun.add_fun(init_calculator_data[0], init_calculator_data[1]) > 0 # yaml 参数导入2 @pytest.mark.second def test_yaml_add2(self, init_calculator_fun, init_calculator_data): assert init_calculator_fun.add_fun(init_calculator_data[0], init_calculator_data[1]) > 0
27.355556
96
0.659626
4db4d2e28a13bb5b290768e405030caf6dd27333
661
py
Python
covid_19_ph/users/tests/test_urls.py
reyesvicente/unofficial-covidtracker-ph
d1a0548f9f838ccbd0abb88fffb762784354c8a9
[ "MIT" ]
null
null
null
covid_19_ph/users/tests/test_urls.py
reyesvicente/unofficial-covidtracker-ph
d1a0548f9f838ccbd0abb88fffb762784354c8a9
[ "MIT" ]
null
null
null
covid_19_ph/users/tests/test_urls.py
reyesvicente/unofficial-covidtracker-ph
d1a0548f9f838ccbd0abb88fffb762784354c8a9
[ "MIT" ]
null
null
null
import pytest from django.urls import resolve, reverse from covid_19_ph.users.models import User pytestmark = pytest.mark.django_db def test_detail(user: User): assert ( reverse("users:detail", kwargs={"username": user.username}) == f"/users/{user.username}/" ) assert resolve(f"/users/{user.username}/").view_name == "users:detail" def test_update(): assert reverse("users:update") == "/users/~update/" assert resolve("/users/~update/").view_name == "users:update" def test_redirect(): assert reverse("users:redirect") == "/users/~redirect/" assert resolve("/users/~redirect/").view_name == "users:redirect"
26.44
74
0.677761