hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
384af3d12db6a0b77b5903c57fea8fb3389b584d
6,502
py
Python
examples/classification.py
jonpas/myo-raw
efd54c47d413c38808457697dc1ca8aaa23ac09e
[ "MIT" ]
8
2017-11-24T10:33:59.000Z
2022-03-17T01:04:52.000Z
examples/classification.py
jonpas/myo-raw
efd54c47d413c38808457697dc1ca8aaa23ac09e
[ "MIT" ]
4
2018-05-31T22:39:57.000Z
2018-06-28T16:06:09.000Z
examples/classification.py
jonpas/myo-raw
efd54c47d413c38808457697dc1ca8aaa23ac09e
[ "MIT" ]
6
2017-10-30T01:00:47.000Z
2020-04-22T02:22:55.000Z
# # Original work Copyright (c) 2014 Danny Zhu # Modified work Copyright (c) 2017 Matthias Gazzari # # Licensed under the MIT license. See the LICENSE file for details. # from collections import Counter, deque import sys import struct import numpy as np from myo_raw import MyoRaw, DataCategory, EMGMode try: from sklearn import neighbors, svm HAVE_SK = True except ImportError: HAVE_SK = False try: import pygame from pygame.locals import * HAVE_PYGAME = True except ImportError: HAVE_PYGAME = False SUBSAMPLE = 3 K = 15 class NNClassifier(object): '''A wrapper for sklearn's nearest-neighbor classifier that stores training data in vals0, ..., vals9.dat.''' def __init__(self): for i in range(10): with open('vals%d.dat' % i, 'ab') as f: pass self.read_data() def store_data(self, cls, vals): with open('vals%d.dat' % cls, 'ab') as f: f.write(struct.pack('<8H', *vals)) self.train(np.vstack([self.X, vals]), np.hstack([self.Y, [cls]])) def read_data(self): X = [] Y = [] for i in range(10): X.append(np.fromfile('vals%d.dat' % i, dtype=np.uint16).reshape((-1, 8))) Y.append(i + np.zeros(X[-1].shape[0])) self.train(np.vstack(X), np.hstack(Y)) def train(self, X, Y): self.X = X self.Y = Y if HAVE_SK and self.X.shape[0] >= K * SUBSAMPLE: self.nn = neighbors.KNeighborsClassifier(n_neighbors=K, algorithm='kd_tree') self.nn.fit(self.X[::SUBSAMPLE], self.Y[::SUBSAMPLE]) else: self.nn = None def nearest(self, d): dists = ((self.X - d)**2).sum(1) ind = dists.argmin() return self.Y[ind] def classify(self, d): if self.X.shape[0] < K * SUBSAMPLE: return 0 if not HAVE_SK: return self.nearest(d) return int(self.nn.predict(d)[0]) class Myo(MyoRaw): '''Adds higher-level pose classification and handling onto MyoRaw.''' HIST_LEN = 25 def __init__(self, cls, tty=None): MyoRaw.__init__(self, tty) self.cls = cls self.history = deque([0] * Myo.HIST_LEN, Myo.HIST_LEN) self.history_cnt = Counter(self.history) self.add_handler(DataCategory.EMG, self.emg_handler) self.last_pose = None self.pose_handlers = [] def emg_handler(self, timestamp, emg, moving, characteristic_num): y = self.cls.classify(emg) self.history_cnt[self.history[0]] -= 1 self.history_cnt[y] += 1 self.history.append(y) r, n = self.history_cnt.most_common(1)[0] if self.last_pose is None or (n > self.history_cnt[self.last_pose] + 5 and n > Myo.HIST_LEN / 2): self.on_raw_pose(r) self.last_pose = r def add_raw_pose_handler(self, h): self.pose_handlers.append(h) def on_raw_pose(self, pose): for h in self.pose_handlers: h(pose) class EMGHandler(object): def __init__(self, m): self.recording = -1 self.m = m self.emg = (0,) * 8 def __call__(self, timestamp, emg, moving, characteristic_num): self.emg = emg if self.recording >= 0: self.m.cls.store_data(self.recording, emg) def classify(m): if HAVE_PYGAME: pygame.init() w, h = 800, 320 scr = pygame.display.set_mode((w, h)) font = pygame.font.Font(None, 30) hnd = EMGHandler(m) m.add_handler(DataCategory.EMG, hnd) m.subscribe(emg_mode=EMGMode.SMOOTHED) while True: m.run() r = m.history_cnt.most_common(1)[0][0] if HAVE_PYGAME: for ev in pygame.event.get(): if ev.type == QUIT or (ev.type == KEYDOWN and ev.unicode == 'q'): raise KeyboardInterrupt() elif ev.type == KEYDOWN: if K_0 <= ev.key <= K_9: hnd.recording = ev.key - K_0 elif K_KP0 <= ev.key <= K_KP9: hnd.recording = ev.key - K_Kp0 elif ev.unicode == 'r': hnd.cl.read_data() elif ev.type == KEYUP: if K_0 <= ev.key <= K_9 or K_KP0 <= ev.key <= K_KP9: hnd.recording = -1 scr.fill((0, 0, 0), (0, 0, w, h)) for i in range(10): x = 0 y = 0 + 30 * i clr = (0,200,0) if i == r else (255,255,255) txt = font.render('%5d' % (m.cls.Y == i).sum(), True, (255,255,255)) scr.blit(txt, (x + 20, y)) txt = font.render('%d' % i, True, clr) scr.blit(txt, (x + 110, y)) scr.fill((0,0,0), (x+130, y + txt.get_height() / 2 - 10, len(m.history) * 20, 20)) scr.fill(clr, (x+130, y + txt.get_height() / 2 - 10, m.history_cnt[i] * 20, 20)) if HAVE_SK and m.cls.nn is not None: dists, inds = m.cls.nn.kneighbors(hnd.emg) for i, (d, ind) in enumerate(zip(dists[0], inds[0])): y = m.cls.Y[SUBSAMPLE*ind] pos = (650, 20 * i) txt = '%d %6d' % (y, d) clr = (255, 255, 255) scr.blit(font.render(txt, True, clr), pos) pygame.display.flip() else: for i in range(10): if i == r: sys.stdout.write('\x1b[32m') print(i, '-' * m.history_cnt[i], '\x1b[K') if i == r: sys.stdout.write('\x1b[m') sys.stdout.write('\x1b[11A') print() def detect(m): import subprocess m.add_raw_pose_handler(print) def page(pose): if pose == 5: subprocess.call(['xte', 'key Page_Down']) elif pose == 6: subprocess.call(['xte', 'key Page_Up']) m.add_raw_pose_handler(page) m.subscribe(emg_mode=EMGMode.SMOOTHED) while True: m.run() if __name__ == '__main__': m = Myo(NNClassifier(), sys.argv[1] if len(sys.argv) >= 2 else None) try: while True: choice = input('Do you want to (c)lassify or (d)etect poses?\n') if choice == 'c': classify(m) break elif choice == 'd': detect(m) break except KeyboardInterrupt: pass finally: m.disconnect() print("Disconnected")
31.717073
105
0.528299
c325ded23b824548e1f8c2c49b69356354ce4d7e
2,011
py
Python
args.py
torlenor/kalah
12a5520445c60855ed42c5bd30e512c168d531ca
[ "MIT" ]
1
2020-11-30T21:20:33.000Z
2020-11-30T21:20:33.000Z
args.py
torlenor/kalah
12a5520445c60855ed42c5bd30e512c168d531ca
[ "MIT" ]
6
2020-11-13T11:07:53.000Z
2020-11-13T14:33:32.000Z
args.py
torlenor/kalah
12a5520445c60855ed42c5bd30e512c168d531ca
[ "MIT" ]
1
2020-12-10T17:53:06.000Z
2020-12-10T17:53:06.000Z
def add_common_train_args(parser): parser.add_argument('--episodes', type=int, default=1000, metavar='E', help='number of episodes to train (default: 1000)') parser.add_argument('--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument('--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument('--render', action='store_true', help='render the environment') parser.add_argument('--evaluation-interval', type=int, default=100, metavar='E', help='interval between evaluation runs (default: 100)') parser.add_argument('--evaluation-games', type=int, default=100, metavar='EG', help='how many games to play to check win rate during training (default: 100)') parser.add_argument('--bins', type=int, default=6, metavar='B', help='bins of the Kalah board (default: 6)') parser.add_argument('--seeds', type=int, default=4, metavar='S', help='seeds of the Kalah board (default: 4)') parser.add_argument('--learning-rate', type=float, default=0.01, metavar='L', help='learning rate (default: 0.01)') parser.add_argument('--solved', type=float, default=95, metavar='SL', help='consider problem solved when agent wins x percent of the games (default: 95)') parser.add_argument('--neurons', type=int, default=512, metavar='NE', help='how many neurons in each layer (default: 512)') parser.add_argument('--run-id', type=str, required=True, metavar='RUN_ID', help='the identifier for the training run.') parser.add_argument('--force', dest='force', action='store_const', const=True, default=False, help='force overwrite already existing results')
69.344828
108
0.595724
0d225f92795f232073396004802762e356a9ac35
782
py
Python
tests/terraform/checks/resource/aws/test_SQSQueueEncryption.py
mgmt1pyro/Test-Theme
d3e20b62111636ecbe4267c5fff7c2820a9a892d
[ "Apache-2.0" ]
null
null
null
tests/terraform/checks/resource/aws/test_SQSQueueEncryption.py
mgmt1pyro/Test-Theme
d3e20b62111636ecbe4267c5fff7c2820a9a892d
[ "Apache-2.0" ]
null
null
null
tests/terraform/checks/resource/aws/test_SQSQueueEncryption.py
mgmt1pyro/Test-Theme
d3e20b62111636ecbe4267c5fff7c2820a9a892d
[ "Apache-2.0" ]
null
null
null
import unittest from checkov.terraform.checks.resource.aws.SQSQueueEncryption import check from checkov.terraform.models.enums import CheckResult class TestS3Encryption(unittest.TestCase): def test_failure(self): resource_conf = {'name': ['terraform-example-queue']} scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): resource_conf = {'name': ['terraform-example-queue'], 'kms_master_key_id': ['alias/aws/sqs'], 'kms_data_key_reuse_period_seconds': [300]} scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) if __name__ == '__main__': unittest.main()
34
101
0.717391
560f85cc5b86defccf054e7dc048064e7ec0f1a0
591
py
Python
questions/serializers/section.py
Ivin0022/django-questions
ac241b23108a5a0083e206458d586969a9ce6ef0
[ "MIT" ]
null
null
null
questions/serializers/section.py
Ivin0022/django-questions
ac241b23108a5a0083e206458d586969a9ce6ef0
[ "MIT" ]
9
2020-06-06T02:19:16.000Z
2022-03-12T00:39:33.000Z
questions/serializers/section.py
Ivin0022/django-questions
ac241b23108a5a0083e206458d586969a9ce6ef0
[ "MIT" ]
null
null
null
from rest_framework import serializers # djangorestframework-recursive from rest_framework_recursive.fields import RecursiveField # local from .question import QuestionSerializer from ..models import Section class SectionSerializer(serializers.ModelSerializer): children = RecursiveField(required=False, allow_null=True, many=True) question_set = QuestionSerializer(many=True) class Meta: model = Section fields = ( 'id', 'url', 'title', 'parent', 'question_set', 'children', )
23.64
73
0.654822
b43bfa36d634429b494d5dc2926219951ef02372
4,044
py
Python
lda_classification/utils/model_selection/xgboost_features.py
FeryET/lda_classification
530f972b8955c9f51668475ef640cb644f9b3ab7
[ "MIT" ]
8
2020-10-12T07:35:13.000Z
2022-02-24T21:30:31.000Z
lda_classification/utils/model_selection/xgboost_features.py
FeryET/LDAThis
530f972b8955c9f51668475ef640cb644f9b3ab7
[ "MIT" ]
null
null
null
lda_classification/utils/model_selection/xgboost_features.py
FeryET/LDAThis
530f972b8955c9f51668475ef640cb644f9b3ab7
[ "MIT" ]
3
2021-01-12T22:45:15.000Z
2022-01-15T02:25:04.000Z
from sklearn.base import TransformerMixin, BaseEstimator from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.model_selection import RepeatedStratifiedKFold, cross_val_score from tqdm import tqdm from xgboost.sklearn import XGBClassifier, XGBRegressor from xgboost.plotting import plot_importance import numpy as np from sklearn.model_selection import train_test_split import pandas as pd import matplotlib.pyplot as plt def _evaluate_thresholds(model, thresholds, x_train, y_train, x_test=None, y_test=None): results = [] for thresh in thresholds: selection = SelectFromModel(model, threshold=thresh, prefit=True) select_x_train = selection.transform(x_train) selection_model = XGBClassifier() selection_model.fit(select_x_train, y_train) select_x_test = selection.transform(x_test) predictions = selection_model.predict(select_x_test) acc = accuracy_score(y_test, predictions) results.append( {"n_features": select_x_train.shape[1], "threshold": thresh, "accuracy": acc * 100.0}) return results def _optimal_values(results): df = pd.DataFrame(results) df["count"] = 1 df = df.groupby("n_features").sum() df = df[df["count"] > 5] df[["threshold", "accuracy"]] = df[["threshold", "accuracy"]].div( df["count"], axis=0) df = df.reset_index() df.sort_values("accuracy", ascending=False, ignore_index=True, inplace=True) n_features = df["n_features"][0] threshold = df["threshold"][0] return n_features, threshold class XGBoostFeatureSelector(TransformerMixin, BaseEstimator): def __init__(self, n_repeats=5, n_splits=10, **kwargs): """ :param n_repeats: number of repeats for inner KFold crossvalidation :param n_splits: number of splits for inner KFold crossvalidation :param kwargs: parameters for training the inner XGBClassifer model. """ self.model = XGBClassifier(**kwargs) self.n_repeats = n_repeats self.n_splits = n_splits self.selected_indexes = None def fit_transform(self, X, y=None, **fit_params): return self.fit(X, y).transform(X) def fit(self, X, y): if y is None: raise ValueError( "y should be provided, since this is a supervised method.") folds = RepeatedStratifiedKFold(n_repeats=self.n_repeats, n_splits=self.n_splits) scores = [] for train_idx, test_idx in tqdm(folds.split(X, y), desc="Feature Selection", total=self.n_repeats * self.n_splits): x_train, y_train = X[train_idx], y[train_idx] x_test, y_test = X[test_idx], y[test_idx] self.model.fit(x_train, y_train) thresholds = sorted(set(self.model.feature_importances_)) scores.extend(_evaluate_thresholds(self.model, thresholds, x_train, y_train, x_test, y_test)) optimal_n_features, optimal_threshold = _optimal_values(scores) self.model.fit(X, y) importances = sorted(list(enumerate(self.model.feature_importances_)), key=lambda x: x[1], reverse=True) self.selected_indexes, _ = list(zip(*importances[:optimal_n_features])) self.selected_indexes = np.array(self.selected_indexes) return self def transform(self, X): if self.selected_indexes is None: raise RuntimeError("You should train the feature selector first.") return X[:, self.selected_indexes] def plot_importance(self, *args, **kwargs): """ Checkout xgboost.plotting.plot_importance for a list of arguments :param args: :param kwargs: :return: """ return plot_importance(self.model, *args, **kwargs)
40.848485
80
0.642681
e3a032529f2cc68f738bdeb818386382953d0358
942
py
Python
t99/t99_response.py
1099policy/ten99policy-python
168106808350e2d524aa6f00880c72e111ab6167
[ "MIT" ]
null
null
null
t99/t99_response.py
1099policy/ten99policy-python
168106808350e2d524aa6f00880c72e111ab6167
[ "MIT" ]
null
null
null
t99/t99_response.py
1099policy/ten99policy-python
168106808350e2d524aa6f00880c72e111ab6167
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, print_function import json from collections import OrderedDict class T99ResponseBase(object): def __init__(self, code, headers): self.code = code self.headers = headers @property def idempotency_key(self): try: return self.headers["idempotency-key"] except KeyError: return None @property def request_id(self): try: return self.headers["request-id"] except KeyError: return None class T99Response(T99ResponseBase): def __init__(self, body, code, headers): T99ResponseBase.__init__(self, code, headers) self.body = body self.data = json.loads(body, object_pairs_hook=OrderedDict) class T99StreamResponse(T99ResponseBase): def __init__(self, io, code, headers): T99ResponseBase.__init__(self, code, headers) self.io = io
24.789474
67
0.656051
e3afbae4aff54a4e41030ce1320a57370af59923
381
py
Python
auctions/admin.py
iSythnic/Augere-eCommerece
2d60874d80f762c3605f0321676ec8ba65dc4b9e
[ "MIT" ]
null
null
null
auctions/admin.py
iSythnic/Augere-eCommerece
2d60874d80f762c3605f0321676ec8ba65dc4b9e
[ "MIT" ]
null
null
null
auctions/admin.py
iSythnic/Augere-eCommerece
2d60874d80f762c3605f0321676ec8ba65dc4b9e
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import User, listings, comments, bids, categories # Register your models here. class userAdmin(admin.ModelAdmin): list_display = ("id", "first_name", "last_name", "username") admin.site.register(User, userAdmin) admin.site.register(listings) admin.site.register(comments) admin.site.register(bids) admin.site.register(categories)
31.75
64
0.782152
2e65c1ad65be2923f4438dc8e2a6c25f0890aa18
62
py
Python
HelloWorld.py
phango-767/2021_refresher
6610649b864afc886a54e14e7c45e24f245718ba
[ "MIT" ]
null
null
null
HelloWorld.py
phango-767/2021_refresher
6610649b864afc886a54e14e7c45e24f245718ba
[ "MIT" ]
null
null
null
HelloWorld.py
phango-767/2021_refresher
6610649b864afc886a54e14e7c45e24f245718ba
[ "MIT" ]
null
null
null
#this program prints "Hello, World!" print("Hello, World!")
12.4
36
0.677419
33607c73baa1c2413a92e399ab8d98fdb44e07c8
1,580
py
Python
homework5/main.py
Bodhert/StandfordAlgorithmCourse
025547dcddbf6524357c383dbfbbb02a6b4d0822
[ "MIT" ]
null
null
null
homework5/main.py
Bodhert/StandfordAlgorithmCourse
025547dcddbf6524357c383dbfbbb02a6b4d0822
[ "MIT" ]
null
null
null
homework5/main.py
Bodhert/StandfordAlgorithmCourse
025547dcddbf6524357c383dbfbbb02a6b4d0822
[ "MIT" ]
1
2020-02-02T21:33:22.000Z
2020-02-02T21:33:22.000Z
from PriorityQueue import PriorityQueue MAXN = 205 adjList = {} dist = [] def dijskstra(source): global dist global adjList pq = PriorityQueue() dist[source] = 0 pq.insertNode((source, 0)) while pq.getSize() > 1: currPair = pq.getMin() currNodeIndex = currPair[0] currWeight = currPair[1] if( currWeight > dist[currNodeIndex]): continue for neighbor in adjList[currNodeIndex]: nextNodeIndex = neighbor[0] nextWeight = neighbor[1] if dist[currNodeIndex] + nextWeight < dist[nextNodeIndex]: dist[nextNodeIndex] = dist[currNodeIndex] + nextWeight pq.insertNode(neighbor) def setVariables(): global dist global MAXN dist = [float('inf')] * MAXN def buildGraphFromInput(): global adjList with open('dijkstraData.txt') as inputFile: for line in inputFile: source, *dest = map(str, line.split()) source = int(source) dest = [tuple(element.split(',')) for element in dest] dest = [tuple(map(int, tup)) for tup in dest] adjList[source] = dest def main(): global dist buildGraphFromInput() setVariables() dijskstra(1) print(dist[7]) print(dist[37]) print(dist[59]) print(dist[82]) print(dist[99]) print(dist[115]) print(dist[133]) print(dist[165]) print(dist[188]) print(dist[197]) # 7,37,59,82,99,115,133,165,188,197 if __name__ == '__main__': main()
21.944444
70
0.577848
d90348f71c21b29aed2e40f20efc44b4c71de8d0
1,991
py
Python
tests/test_symbols.py
pkjmesra/nseta
28cd8cede465efe9f506a38c5933602c463e5185
[ "MIT" ]
8
2020-10-12T02:59:03.000Z
2022-03-20T15:06:50.000Z
tests/test_symbols.py
pkjmesra/nseta
28cd8cede465efe9f506a38c5933602c463e5185
[ "MIT" ]
3
2020-10-13T16:30:09.000Z
2021-01-07T23:57:05.000Z
tests/test_symbols.py
pkjmesra/nseta
28cd8cede465efe9f506a38c5933602c463e5185
[ "MIT" ]
5
2020-10-12T14:57:41.000Z
2021-12-30T11:52:34.000Z
# -*- coding: utf-8 -*- import unittest from nseta.common.symbols import get_symbol_list, get_index_constituents_list from baseUnitTest import baseUnitTest class TestSymbols(baseUnitTest): def setUp(self, redirect_logs=True): super().setUp() def test_symbol_list(self): df = get_symbol_list() # Check popular names are in the list _ril = df['SYMBOL'] == 'RELIANCE' # Expect 1 row self.assertEqual(df[_ril].shape[0], 1) _sbi = df['SYMBOL'] == 'SBIN' # Check company matches the expected value self.assertEqual(df[_sbi].iloc[0].get( 'NAME OF COMPANY'), 'State Bank of India') def test_index_constituents_list(self): df = get_index_constituents_list('NIFTY50') # Check for 50 items self.assertEqual(df.shape[0], 50) # Check popular names are in the list _sbi = df['Symbol'] == 'SBIN' # Check company matches the expected value self.assertEqual(df[_sbi].iloc[0].get( 'Company Name'), 'State Bank of India') self.assertEqual(df[_sbi].iloc[0].get( 'Industry'), 'FINANCIAL SERVICES') df = get_index_constituents_list('NIFTYCPSE') # Check popular names are in the list _oil = df['Symbol'] == 'OIL' # Check company matches the expected value self.assertEqual(df[_oil].iloc[0].get('ISIN Code'), 'INE274J01014') def tearDown(self): super().tearDown() if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestSymbols) result = unittest.TextTestRunner(verbosity=2).run(suite) if six.PY2: if result.wasSuccessful(): print('tests OK') for (test, error) in result.errors: print('=========Error in: %s===========' % test) print(error) print('======================================') for (test, failures) in result.failures: print('=========Error in: %s===========' % test) print(failures) print('======================================')
33.745763
78
0.607735
4d1ab92b84eb8661ad4dd4f3242aaaebc043e368
188
py
Python
chat_playground/chat.py
maxhumber/fikiwiki
db196c1e3e2bb27d1f8f3dea774227b8dd5682e3
[ "MIT" ]
null
null
null
chat_playground/chat.py
maxhumber/fikiwiki
db196c1e3e2bb27d1f8f3dea774227b8dd5682e3
[ "MIT" ]
null
null
null
chat_playground/chat.py
maxhumber/fikiwiki
db196c1e3e2bb27d1f8f3dea774227b8dd5682e3
[ "MIT" ]
2
2020-10-09T09:24:49.000Z
2020-10-21T17:31:50.000Z
from flask import Flask, render_template from flask_socketio import SocketIO, emit app = Flask(__name__) app.config['SECRET_KEY'] = 'secret!' socketio = SocketIO(app) app.route('/') def
18.8
41
0.755319
cb86e78770b5b9e9c08f7a3bd48dee0ae299c6fb
1,866
py
Python
src/network/receivequeuethread.py
iljah/PyBitmessage
5dbe832a1a4fde5d67ec9d13631a2d6733d47730
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
src/network/receivequeuethread.py
iljah/PyBitmessage
5dbe832a1a4fde5d67ec9d13631a2d6733d47730
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
src/network/receivequeuethread.py
iljah/PyBitmessage
5dbe832a1a4fde5d67ec9d13631a2d6733d47730
[ "MIT", "BSD-2-Clause-FreeBSD" ]
null
null
null
""" Process data incoming from network """ import errno import queue import socket import state from network.advanceddispatcher import UnknownStateError from network.connectionpool import BMConnectionPool from queues import receiveDataQueue from network.threads import StoppableThread class ReceiveQueueThread(StoppableThread): """This thread processes data received from the network (which is done by the asyncore thread)""" def __init__(self, num=0): super(ReceiveQueueThread, self).__init__(name="ReceiveQueue_%i" % num) def run(self): while not self._stopped and state.shutdown == 0: try: dest = receiveDataQueue.get(block=True, timeout=1) except queue.Empty: continue if self._stopped or state.shutdown: break # cycle as long as there is data # methods should return False if there isn't enough data, # or the connection is to be aborted # state_* methods should return False if there isn't # enough data, or the connection is to be aborted try: connection = BMConnectionPool().getConnectionByAddr(dest) # connection object not found except KeyError: receiveDataQueue.task_done() continue try: connection.process() # state isn't implemented except UnknownStateError: pass except socket.error as err: if err.errno == errno.EBADF: connection.set_state("close", 0) else: self.logger.error('Socket error: %s', err) except: self.logger.error('Error processing', exc_info=True) receiveDataQueue.task_done()
32.736842
78
0.60075
0c8e4ff01cb7ee76e0b33693343d47df1fe9f084
1,933
py
Python
pyscfad/pbc/gto/test/test_cell.py
yangdatou/pyscfad
8b90c928928f8244237e5fe415858e074dd5e5fb
[ "MIT" ]
9
2021-05-22T07:39:23.000Z
2021-11-13T23:25:50.000Z
pyscfad/pbc/gto/test/test_cell.py
yangdatou/pyscfad
8b90c928928f8244237e5fe415858e074dd5e5fb
[ "MIT" ]
1
2021-05-22T08:28:17.000Z
2021-05-23T04:29:02.000Z
pyscfad/pbc/gto/test/test_cell.py
yangdatou/pyscfad
8b90c928928f8244237e5fe415858e074dd5e5fb
[ "MIT" ]
1
2021-09-13T18:34:58.000Z
2021-09-13T18:34:58.000Z
import pytest import numpy import jax from pyscfad.lib import numpy as jnp from pyscfad.pbc import gto @pytest.fixture def get_cell(): cell = gto.Cell() cell.atom = '''Si 0., 0., 0. Si 1.3467560987, 1.3467560987, 1.3467560987''' cell.a = '''0. 2.6935121974 2.6935121974 2.6935121974 0. 2.6935121974 2.6935121974 2.6935121974 0. ''' cell.basis = 'gth-szv' cell.pseudo = 'gth-pade' cell.mesh = [5,5,5] cell.build(trace_coords=True) return cell def test_SI(get_cell): cell = get_cell Gv = cell.get_Gv() SI = cell.get_SI() natm = cell.natm ng = Gv.shape[0] g0 = numpy.zeros((natm,ng,natm,3), dtype=numpy.complex128) for i in range(natm): g0[i,:,i] += -1j * numpy.einsum("gx,g->gx", Gv, SI[i]) jac_fwd = jax.jacfwd(cell.__class__.get_SI)(cell) assert abs(jac_fwd.coords - g0).max() < 1e-10 # NOTE vjp for functions f:R->C will lose the imaginary part, # and reverse-mode autodiff will fail in such cases. For # functions f:R->R or f:C->C, both jvp and vjp will work. _, func_vjp = jax.vjp(cell.__class__.get_SI, cell) ct = jnp.eye((natm*ng), dtype=jnp.complex128).reshape(natm*ng,natm,ng) jac_bwd = jax.vmap(func_vjp)(ct)[0].coords.reshape(natm,ng,natm,3) assert abs(jac_bwd - g0.real).max() < 1e-10 def fun(cell): out = [] SI = cell.get_SI() for i in range(natm): out.append((SI[i] * SI[i].conj()).real.sum()) return out jac_fwd = jax.jacfwd(fun)(cell) jac_bwd = jax.jacrev(fun)(cell) norm = fun(cell) for i in range(natm): grad = jnp.einsum("gnx,g->nx", g0[i], SI[i].conj()) grad += grad.conj() grad = (grad * 0.5 / norm[i]).real assert abs(grad - jac_fwd[i].coords).max() < 1e-10 assert abs(grad - jac_bwd[i].coords).max() < 1e-10
33.912281
74
0.579928
53c5856097bb1ca240a016b20318df10be7968df
3,207
py
Python
external-contacts/python/external-contacts.py
PrinceMerluza/developercenter-tutorials
571512d304d5d6d49b6fc1a208e0e01f5aa89d65
[ "MIT" ]
26
2016-04-19T13:35:48.000Z
2022-01-12T15:36:46.000Z
external-contacts/python/external-contacts.py
PrinceMerluza/developercenter-tutorials
571512d304d5d6d49b6fc1a208e0e01f5aa89d65
[ "MIT" ]
28
2016-04-14T13:55:17.000Z
2022-02-18T15:41:28.000Z
external-contacts/python/external-contacts.py
PrinceMerluza/developercenter-tutorials
571512d304d5d6d49b6fc1a208e0e01f5aa89d65
[ "MIT" ]
41
2016-02-10T18:41:42.000Z
2022-02-17T08:48:54.000Z
import base64, csv, sys, requests, os import PureCloudPlatformClientV2 from pprint import pprint from PureCloudPlatformClientV2.rest import ApiException print('-------------------------------------------------------------') print('- Python3 External Contacts -') print('-------------------------------------------------------------') # Credentials CLIENT_ID = os.environ['GENESYS_CLOUD_CLIENT_ID'] CLIENT_SECRET = os.environ['GENESYS_CLOUD_CLIENT_SECRET'] ORG_REGION = os.environ['GENESYS_CLOUD_REGION'] # eg. us_east_1 # Set environment region = PureCloudPlatformClientV2.PureCloudRegionHosts[ORG_REGION] PureCloudPlatformClientV2.configuration.host = region.get_api_host() # OAuth when using Client Credentials api_client = PureCloudPlatformClientV2.api_client.ApiClient() \ .get_client_credentials_token(CLIENT_ID, CLIENT_SECRET) # Create an instance of the External Contacts API API external_contacts_api = PureCloudPlatformClientV2.ExternalContactsApi(api_client) # Define a new External Organization new_org = PureCloudPlatformClientV2.ExternalOrganization() new_org.name = "Developer Tutorial Company" new_org.industry = "Software" new_org.address = PureCloudPlatformClientV2.ContactAddress() new_org.address.address1 = "601 Interactive Way" new_org.address.city = "Indianapolis" new_org.address.state = "Indiana" new_org.address.postalCode = "46278" new_org.address.countryCode = "USA" new_org.employee_count = 2000 new_org.websites = ["https://developer.mypurecloud.com"] new_org.twitter_id = PureCloudPlatformClientV2.TwitterId() new_org.twitter_id.screen_name = 'GenesysCloudDev' try: # Create an external organization new_org_response = external_contacts_api.post_externalcontacts_organizations(new_org) org_id = new_org_response.id print(f"Created organization {org_id}") except ApiException as e: print("Exception when calling ExternalContactsApi->post_externalcontacts_organizations: %s\n" % e) sys.exit() # Loop through the CSV file and add each contact with open("contacts.csv", mode="r", encoding='utf-8-sig') as csv_file: csv_reader = csv.DictReader(csv_file) print("Adding contacts...") for row in csv_reader: new_contact = PureCloudPlatformClientV2.ExternalContact() new_contact.first_name = row["GivenName"] new_contact.last_name = row["Surname"] new_contact.title = row["Title"] new_contact.work_phone = PureCloudPlatformClientV2.PhoneNumber() new_contact.work_phone.display = row["TelephoneNumber"] new_contact.address = PureCloudPlatformClientV2.ContactAddress() new_contact.address.address1 = row["StreetAddress"] new_contact.address.city = row["City"] new_contact.address.postal_code = row["ZipCode"] new_contact.work_email = row["EmailAddress"] new_contact.external_organization = new_org_response try: # Create an external contact api_response = external_contacts_api.post_externalcontacts_contacts(new_contact) pprint(api_response) except ApiException as e: print(f"Error occurred when adding {new_contact.first_name}") print("All contacts added.")
41.649351
102
0.732148
6aa54f21aa2273be6f62c08535ee3340e840e64b
367
py
Python
server/inference_api/v1/status.py
TreeinRandomForest/logo-detector
c957032b1fcbce32dfd55a3a21e2ace44ee0ee4b
[ "MIT" ]
1
2021-03-25T17:09:40.000Z
2021-03-25T17:09:40.000Z
server/inference_api/v1/status.py
TreeinRandomForest/logo-detector
c957032b1fcbce32dfd55a3a21e2ace44ee0ee4b
[ "MIT" ]
6
2021-03-10T09:57:47.000Z
2022-03-12T00:21:00.000Z
server/inference_api/v1/status.py
TreeinRandomForest/logo-detector
c957032b1fcbce32dfd55a3a21e2ace44ee0ee4b
[ "MIT" ]
1
2020-04-06T14:20:31.000Z
2020-04-06T14:20:31.000Z
import sys import time from flask import jsonify from inference_api.v1 import v1 @v1.route('/status', methods=['GET']) def status(): status_obj = { 'version': '0.1', 'python_version': '.'.join(str(n) for n in sys.version_info), 'status': 'ok', 'time': time.strftime('%A %B, %d %Y %H:%M:%S') } return jsonify(status_obj)
21.588235
69
0.588556
72aed8172338f24ccd45723b981472d76c869d00
468
py
Python
icekit/appsettings.py
ic-labs/django-icekit
c507ea5b1864303732c53ad7c5800571fca5fa94
[ "MIT" ]
52
2016-09-13T03:50:58.000Z
2022-02-23T16:25:08.000Z
icekit/appsettings.py
ic-labs/django-icekit
c507ea5b1864303732c53ad7c5800571fca5fa94
[ "MIT" ]
304
2016-08-11T14:17:30.000Z
2020-07-22T13:35:18.000Z
icekit/appsettings.py
ic-labs/django-icekit
c507ea5b1864303732c53ad7c5800571fca5fa94
[ "MIT" ]
12
2016-09-21T18:46:35.000Z
2021-02-15T19:37:50.000Z
from django.conf import settings ICEKIT = getattr(settings, 'ICEKIT', {}) # Sources for `icekit.plugins.FileSystemLayoutPlugin`. LAYOUT_TEMPLATES = ICEKIT.get('LAYOUT_TEMPLATES', []) # File class referenced by `icekit.plugins.file.abstract_models.AbstractFileItem`. FILE_CLASS = ICEKIT.get('FILE_CLASS', 'icekit_plugins_file.File') DASHBOARD_FEATURED_APPS = ICEKIT.get('DASHBOARD_FEATURED_APPS', ()) DASHBOARD_SORTED_APPS = ICEKIT.get('DASHBOARD_SORTED_APPS', ())
36
82
0.786325
6abad205f9fcdba16d2898aceb79cee44cc4d870
5,578
py
Python
train_grnn.py
airalcorn2/baller2vec
bfe0cc4d7988bd8104d7ef3ecd22867b275310ec
[ "MIT" ]
54
2021-02-08T02:20:58.000Z
2021-08-10T05:14:51.000Z
train_grnn.py
airalcorn2/baller2vec
bfe0cc4d7988bd8104d7ef3ecd22867b275310ec
[ "MIT" ]
4
2021-03-18T14:56:01.000Z
2021-09-28T21:18:48.000Z
train_grnn.py
airalcorn2/baller2vec
bfe0cc4d7988bd8104d7ef3ecd22867b275310ec
[ "MIT" ]
4
2021-02-11T23:10:18.000Z
2021-08-15T06:30:29.000Z
import sys import time import torch import yaml from grnn import GRNN from settings import * from torch import nn, optim from train_baller2vec import init_datasets SEED = 2010 torch.manual_seed(SEED) torch.set_printoptions(linewidth=160) def init_model(opts, train_dataset): model_config = opts["model"] # Add one for the generic player. model_config["n_player_ids"] = train_dataset.n_player_ids + 1 model_config["seq_len"] = train_dataset.chunk_size // train_dataset.hz - 1 model_config["n_players"] = train_dataset.n_players model_config["n_player_labels"] = train_dataset.player_traj_n ** 2 model = GRNN(**model_config) return model def get_preds_labels(tensors): player_trajs = tensors["player_trajs"].flatten() n_player_trajs = len(player_trajs) labels = player_trajs.to(device) preds = model(tensors)["player"][:n_player_trajs] return (preds, labels) def train_model(): # Initialize optimizer. train_params = [params for params in model.parameters()] optimizer = optim.Adam(train_params, lr=opts["train"]["learning_rate"]) criterion = nn.CrossEntropyLoss() # Continue training on a prematurely terminated model. try: model.load_state_dict(torch.load(f"{JOB_DIR}/best_params.pth")) try: optimizer.load_state_dict(torch.load(f"{JOB_DIR}/optimizer.pth")) except ValueError: print("Old optimizer doesn't match.") except FileNotFoundError: pass best_train_loss = float("inf") best_valid_loss = float("inf") test_loss_best_valid = float("inf") total_train_loss = None no_improvement = 0 for epoch in range(175): print(f"\nepoch: {epoch}", flush=True) model.eval() total_valid_loss = 0.0 with torch.no_grad(): n_valid = 0 for valid_tensors in valid_loader: # Skip bad sequences. if len(valid_tensors["player_idxs"]) < model.seq_len: continue (preds, labels) = get_preds_labels(valid_tensors) loss = criterion(preds, labels) total_valid_loss += loss.item() n_valid += 1 probs = torch.softmax(preds, dim=1) print(probs.view(model.seq_len, model.n_players), flush=True) print(preds.view(model.seq_len, model.n_players), flush=True) print(labels.view(model.seq_len, model.n_players), flush=True) total_valid_loss /= n_valid if total_valid_loss < best_valid_loss: best_valid_loss = total_valid_loss torch.save(optimizer.state_dict(), f"{JOB_DIR}/optimizer.pth") torch.save(model.state_dict(), f"{JOB_DIR}/best_params.pth") test_loss_best_valid = 0.0 with torch.no_grad(): n_test = 0 for test_tensors in test_loader: # Skip bad sequences. if len(test_tensors["player_idxs"]) < model.seq_len: continue (preds, labels) = get_preds_labels(test_tensors) loss = criterion(preds, labels) test_loss_best_valid += loss.item() n_test += 1 test_loss_best_valid /= n_test elif no_improvement < patience: no_improvement += 1 if no_improvement == patience: print("Reducing learning rate.") optimizer = optim.Adam( train_params, lr=0.1 * opts["train"]["learning_rate"] ) print(f"total_train_loss: {total_train_loss}") print(f"best_train_loss: {best_train_loss}") print(f"total_valid_loss: {total_valid_loss}") print(f"best_valid_loss: {best_valid_loss}") print(f"test_loss_best_valid: {test_loss_best_valid}") model.train() total_train_loss = 0.0 n_train = 0 start_time = time.time() for (train_idx, train_tensors) in enumerate(train_loader): if train_idx % 1000 == 0: print(train_idx, flush=True) # Skip bad sequences. if len(train_tensors["player_idxs"]) < model.seq_len: continue optimizer.zero_grad() (preds, labels) = get_preds_labels(train_tensors) loss = criterion(preds, labels) total_train_loss += loss.item() loss.backward() optimizer.step() n_train += 1 epoch_time = time.time() - start_time total_train_loss /= n_train if total_train_loss < best_train_loss: best_train_loss = total_train_loss print(f"epoch_time: {epoch_time:.2f}", flush=True) if __name__ == "__main__": JOB = sys.argv[1] JOB_DIR = f"{EXPERIMENTS_DIR}/{JOB}" try: os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[2] except IndexError: os.environ["CUDA_VISIBLE_DEVICES"] = "0" opts = yaml.safe_load(open(f"{JOB_DIR}/{JOB}.yaml")) patience = opts["train"]["patience"] # Initialize datasets. ( train_dataset, train_loader, valid_dataset, valid_loader, test_dataset, test_loader, ) = init_datasets(opts) # Initialize model. device = torch.device("cuda:0") model = init_model(opts, train_dataset).to(device) print(model) n_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"Parameters: {n_params}") train_model()
31.874286
78
0.609896
87c88e9c21030b0920cbf578215b9fa41e06fd7a
201
py
Python
framework/cei_python3/setup.py
macomfan/cei
49efb1baf39e0bb3e390791fafa3508226644975
[ "MIT" ]
2
2020-05-09T01:54:04.000Z
2020-12-31T02:36:45.000Z
framework/cei_python3/setup.py
macomfan/cei
49efb1baf39e0bb3e390791fafa3508226644975
[ "MIT" ]
27
2020-04-18T11:21:07.000Z
2022-02-26T22:22:33.000Z
framework/cei_python3/setup.py
macomfan/cei
49efb1baf39e0bb3e390791fafa3508226644975
[ "MIT" ]
1
2020-04-26T10:58:02.000Z
2020-04-26T10:58:02.000Z
#!/usr/bin/env python3 from setuptools import setup setup( name="cei-python", version="0.0.1", packages=['impl'], install_requires=['requests', 'urllib3', 'websocket-client'] )
22.333333
65
0.631841
814093a03040e2655d2280327f5d1efe4fd40a0f
395
py
Python
zoo/services/migrations/0007_service_service_url.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
90
2018-11-20T10:58:24.000Z
2022-02-19T16:12:46.000Z
zoo/services/migrations/0007_service_service_url.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
348
2018-11-21T09:22:31.000Z
2021-11-03T13:45:08.000Z
zoo/services/migrations/0007_service_service_url.py
aexvir/the-zoo
7816afb9a0a26c6058b030b4a987c73e952d92bd
[ "MIT" ]
11
2018-12-08T18:42:07.000Z
2021-02-21T06:27:58.000Z
# Generated by Django 2.1 on 2018-08-28 09:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("services", "0006_service_name_slug")] operations = [ migrations.AddField( model_name="service", name="service_url", field=models.URLField(blank=True, max_length=500, null=True), ) ]
23.235294
73
0.635443
9a61dd931ac9b7805c2da603e4fd34bd11d23c6f
3,577
py
Python
main.py
Omicron02/SNEK
9388168697fe09f9f3c5b81800d3f6fd8ef0cf36
[ "MIT" ]
null
null
null
main.py
Omicron02/SNEK
9388168697fe09f9f3c5b81800d3f6fd8ef0cf36
[ "MIT" ]
null
null
null
main.py
Omicron02/SNEK
9388168697fe09f9f3c5b81800d3f6fd8ef0cf36
[ "MIT" ]
null
null
null
import pygame import time import random pygame.init() pygame.mixer.init() EAT_SOUND = pygame.mixer.Sound('./add.mp3') END_SOUND = pygame.mixer.Sound('./end.mp3') width,height=800,600#screen disp=pygame.display.set_mode((width,height)) pygame.display.set_caption("SNEK") green,red,black,white,brown=(0,204,153),(255,8,0),(0,0,0),(255,255,255),(165,42,42) font_style=pygame.font.SysFont(None,30) cell=20 def get_food_position(width, height, body): while True: food_x=round(random.randrange(0,width-cell)/cell)*cell food_y=round(random.randrange(0,height-cell)/cell)*cell if [food_x, food_y] not in body: return food_x, food_y def gameloop(): end=0 x,y,x1,y1=width/2,height/2,0,0#x,y->head pos;x1,y1->change in pos snake_speed=10 level = 1 body,blen=[],1 clk=pygame.time.Clock() food_x, food_y= get_food_position(width,height, body) while not end: for event in pygame.event.get(): if event.type==pygame.QUIT: end=1 if event.type==pygame.KEYDOWN: if event.key==pygame.K_LEFT: x1,y1=-cell,0 elif event.key==pygame.K_UP: x1,y1=-0,-cell elif event.key==pygame.K_RIGHT: x1,y1=cell,0 elif event.key==pygame.K_DOWN: x1,y1=0,cell x+=x1;y+=y1 if x>width or x<0 or y>height or y<0:#screen boundary condition break disp.fill(black) pygame.draw.rect(disp,red,[food_x,food_y,cell,cell]) head=[] head.append(x);head.append(y) body.append(head)#append new head to body for block in body[:blen-1]: if block==head:#snake head touches body end=1 if len(body)>blen:#snake movement display del body[0] for block in body: pygame.draw.rect(disp,green,[block[0],block[1],cell,cell]) score=font_style.render("Score: "+str(blen-1),True,white) disp.blit(score,[0,0]) pygame.display.update() level_display = font_style.render("Level: " + str(level), True, white) disp.blit(level_display,[(width - 80),0]) pygame.display.update() speed_display = font_style.render("Speed: " + str(snake_speed), True, white) disp.blit(speed_display,[10,height-20]) pygame.display.update() if food_x==x and food_y==y:#contact with food food_x, food_y= get_food_position(width,height, body) blen+=1#body length increases EAT_SOUND.play() if snake_speed<30: snake_speed+=0.5; if(blen % 10 == 1): level += 1 clk.tick(snake_speed)#fps clk.tick(snake_speed) disp.fill(black) m=font_style.render("Game Over",True,red) END_SOUND.play() disp.blit(m,[(width/2)-40,height/2]) f = open("score.txt","a") f.write(str(blen-1)+"\n") f.close() with open("score.txt", "r") as f: score = f.read() # Read all file in case values are not on a single line score_ints = [ int(x) for x in score.split() ] # Convert strings to ints highscore = max(score_ints) # sum all elements of the list f_score=font_style.render("Score: "+str(blen-1),True,white) disp.blit(f_score,[(width/2)-30,(height/2)+27]) f_hscore=font_style.render("High Score: "+str(highscore),True,white) disp.blit(f_hscore,[(width/2)-50,(height/2)+50]) pygame.display.update() time.sleep(2) pygame.quit() quit() gameloop()
36.5
84
0.598546
52a3ccd7a93d4cd8ae9e92a663445d79b3a1797d
4,237
py
Python
shadow4tests/test_beamline/old/test_empty_against_shadow3.py
srio/shadow4tests
7123475d830fa619a866dbde9afe28a9ff405dfd
[ "MIT" ]
null
null
null
shadow4tests/test_beamline/old/test_empty_against_shadow3.py
srio/shadow4tests
7123475d830fa619a866dbde9afe28a9ff405dfd
[ "MIT" ]
null
null
null
shadow4tests/test_beamline/old/test_empty_against_shadow3.py
srio/shadow4tests
7123475d830fa619a866dbde9afe28a9ff405dfd
[ "MIT" ]
null
null
null
import numpy from shadow4.sources.source_geometrical.source_geometrical import SourceGeometrical from shadow4.beamline.optical_elements.ideal_elements.s4_empty import S4EmptyElement import Shadow from Shadow.ShadowTools import plotxy from shadow4tests.compatibility.beam3 import Beam3 from numpy.testing import assert_almost_equal from shadow4tests.compatibility.global_definitions import SHADOW3_BINARY class FakeOE(): pass def test_empty_element( do_plot=0, do_assert = True, do_shadow3_fortran = True, N = 1000, alpha_deg = None, # 20, # None=rondomize theta1_deg = None, # 10.0, # None=rondomize theta2_deg = None, # 170.0, # None=rondomize p = None, # 15.0, # None=rondomize q = None, # 100.0 # None=rondomize, ): source = SourceGeometrical() source.set_angular_distribution_gaussian(1e-6,1e-6) beam0 = source.calculate_beam(N=N, POL_DEG=1) print(beam0.info()) beam0s3 = Beam3.initialize_from_shadow4_beam(beam0) beam1s3 = Beam3.initialize_from_shadow4_beam(beam0) if alpha_deg is None: alpha_deg = numpy.random.random() * 360.0 if theta1_deg is None: theta1_deg = numpy.random.random() * 90.0 if theta2_deg is None: theta2_deg = numpy.random.random() * 180.0 if p is None: p = numpy.random.random() * 100.0 if q is None: q = numpy.random.random() * 100.0 # # shadow4 # empty = S4EmptyElement() empty.get_coordinates().set_positions(angle_radial=theta1_deg*numpy.pi/180, angle_radial_out=theta2_deg*numpy.pi/180, angle_azimuthal=alpha_deg*numpy.pi/180, p=p, q=q) beam1, mirr1 = empty.trace_beam(beam0) # # shadow3 # oe1 = Shadow.OE() oe1.ALPHA = alpha_deg oe1.DUMMY = 100.0 oe1.FWRITE = 0 # 1 oe1.F_REFRAC = 2 oe1.T_IMAGE = q oe1.T_INCIDENCE = theta1_deg oe1.T_REFLECTION = theta2_deg oe1.T_SOURCE = p if do_shadow3_fortran: import os os.system("/bin/rm begin.dat start.01 star.01") beam0s3.write("begin.dat") oe1.write("start.01") f = open("systemfile.dat","w") f.write("start.01\n") f.close() f = open("shadow3.inp","w") f.write("trace\nsystemfile\n0\nexit\n") f.close() os.system("%s < shadow3.inp" % SHADOW3_BINARY) beam1f = Beam3(N=N) beam1f.load("star.01") beam1s3.traceOE(oe1,1) if do_plot: plotxy(beam1, 4, 6, title="Image shadow4", nbins=201) plotxy(beam1s3, 4, 6, title="Image shadow3", nbins=201) print("alpha_deg, theta1_deg, theta2_deg = ",alpha_deg, theta1_deg, theta2_deg) print("p, q = ", p, q) print("\ncol# shadow4 shadow3 (shadow3_fortran) (source)") for i in range(18): if do_shadow3_fortran: print("col%d %f %f %f %f " % (i + 1, beam1.rays[0, i], beam1s3.rays[0, i], beam1f.rays[0, i], beam0s3.rays[0, i])) else: print("col%d %f %f " % (i+1, beam1.rays[0,i], beam1s3.rays[0,i])) if do_assert: assert_almost_equal (beam1.rays[:,i], beam1s3.rays[:,i], 4) if __name__ == "__main__": # a first test with plots test_empty_element(do_plot=False, do_assert = True, do_shadow3_fortran = True, N = 1000, alpha_deg=20, theta1_deg = 10.0, theta2_deg = 170.0, p = 15.0, q = 100.0) # 10 random tests for i in range(10): test_empty_element(do_plot=0, do_assert = True, do_shadow3_fortran = True, N = 1000, alpha_deg=None, theta1_deg = None, theta2_deg = None, p = None, q = None)
30.927007
91
0.540005
b512bac2af8bfdf24933dd5b360eb83b4d04d5d4
754
py
Python
telegram_bot/handlers/errors/error_handler.py
Oorzhakau/TeamForce_bot
b8037d53b228bc2ab5149fa67dde6bea17f25a65
[ "MIT" ]
null
null
null
telegram_bot/handlers/errors/error_handler.py
Oorzhakau/TeamForce_bot
b8037d53b228bc2ab5149fa67dde6bea17f25a65
[ "MIT" ]
null
null
null
telegram_bot/handlers/errors/error_handler.py
Oorzhakau/TeamForce_bot
b8037d53b228bc2ab5149fa67dde6bea17f25a65
[ "MIT" ]
null
null
null
import logging from aiogram.utils.exceptions import ( CantParseEntities, MessageNotModified, TelegramAPIError, ) from loader import dp @dp.errors_handler() async def errors_handler(update, exception): """Error handler, перехватывающий все исключения.""" if isinstance(exception, MessageNotModified): logging.exception("Message is not modified") return True if isinstance(exception, CantParseEntities): logging.exception(f"CantParseEntities: {exception} \nUpdate: {update}") return True if isinstance(exception, TelegramAPIError): logging.exception(f"TelegramAPIError: {exception} \nUpdate: {update}") return True logging.exception(f"Update: {update} \n{exception}")
26
79
0.712202
f9a1cdc65d56e0139bf6c9a0e07609f4a1ee953b
986
py
Python
blog/migrations/0001_initial.py
vierageorge/bootstrapDeploy
dd55a242b8ea11cf949a90a884b678453549eaca
[ "MIT" ]
null
null
null
blog/migrations/0001_initial.py
vierageorge/bootstrapDeploy
dd55a242b8ea11cf949a90a884b678453549eaca
[ "MIT" ]
null
null
null
blog/migrations/0001_initial.py
vierageorge/bootstrapDeploy
dd55a242b8ea11cf949a90a884b678453549eaca
[ "MIT" ]
null
null
null
# Generated by Django 2.0.4 on 2018-04-24 21:04 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('text', models.TextField()), ('created_date', models.DateTimeField(default=django.utils.timezone.now)), ('published_date', models.DateTimeField(blank=True, null=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
32.866667
120
0.634888
b9a45a87ceb6daa50fe912858b5531845cfb78dc
28,485
py
Python
paddlenlp/transformers/unified_transformer/tokenizer.py
qhpeklh5959/PaddleNLP
64a56737d57debfbc7b4c970b254d89dd4a07048
[ "Apache-2.0" ]
null
null
null
paddlenlp/transformers/unified_transformer/tokenizer.py
qhpeklh5959/PaddleNLP
64a56737d57debfbc7b4c970b254d89dd4a07048
[ "Apache-2.0" ]
null
null
null
paddlenlp/transformers/unified_transformer/tokenizer.py
qhpeklh5959/PaddleNLP
64a56737d57debfbc7b4c970b254d89dd4a07048
[ "Apache-2.0" ]
1
2021-04-28T09:01:37.000Z
2021-04-28T09:01:37.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import io import json import os import six import re import unicodedata from shutil import copyfile import numpy as np import jieba import paddle from paddle.utils import try_import from .. import PretrainedTokenizer from ..tokenizer_utils import convert_to_unicode, whitespace_tokenize, _is_whitespace, _is_control from ...data.vocab import Vocab __all__ = ['UnifiedTransformerTokenizer'] class UnifiedTransformerTokenizer(PretrainedTokenizer): resource_files_names = { "vocab_file": "vocab.txt", "sentencepiece_model_file": "spm.model", } # for save_pretrained pretrained_resource_files_map = { "vocab_file": { "unified_transformer-12L-cn": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/unified_transformer-12L-cn-vocab.txt", "unified_transformer-12L-cn-luge": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/unified_transformer-12L-cn-vocab.txt", "plato-mini": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/plato-mini-vocab.txt", }, "sentencepiece_model_file": { "unified_transformer-12L-cn": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/unified_transformer-12L-cn-spm.model", "unified_transformer-12L-cn-luge": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/unified_transformer-12L-cn-spm.model", "plato-mini": "https://paddlenlp.bj.bcebos.com/models/transformers/unified_transformer/plato-mini-spm.model", }, } pretrained_init_configuration = { "unified_transformer-12L-cn": { "do_lower_case": False }, "unified_transformer-12L-cn-luge": { "do_lower_case": False }, "plato-mini": { "do_lower_case": False }, } TASK_TO_SPECIAL_TOKEN = { 'chitchat': "[CHAT]", 'knowledge': "[KNOW]", 'recommend': "[RECO]", } def __init__(self, vocab_file, sentencepiece_model_file, do_lower_case=False, unk_token="[UNK]", pad_token="[PAD]", cls_token="[CLS]", sep_token="[SEP]", mask_token="[MASK]", special_tokens_file=""): mod = try_import('sentencepiece') self.spm_model = mod.SentencePieceProcessor() self.do_lower_case = do_lower_case if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the " "vocabulary from a pretrained model please use " "`tokenizer = ErnieTinyTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" .format(vocab_file)) self.vocab = self.load_vocabulary( vocab_file, unk_token, pad_token, cls_token, sep_token, mask_token=mask_token) # if the sentencepiece_model_file is not exists, just the default sentence-piece model if os.path.isfile(sentencepiece_model_file): self.spm_model.Load(sentencepiece_model_file) pat_str = "" if os.path.isfile(special_tokens_file): self.specials = self.read_file(special_tokens_file) for special in self.specials: pat_str += "(" + re.escape(special) + ")|" else: self.specials = {} pat_str += r"([a-zA-Z0-9\S]+)" self.pat = re.compile(pat_str) self.vocab_file = vocab_file self.sentencepiece_model_file = sentencepiece_model_file @property def vocab_size(self): """ return the size of vocabulary. Returns: int: the size of vocabulary. """ return len(self.vocab) def preprocess_text(self, inputs, remove_space=True, lower=False, is_split_into_words=True): """preprocess data by removing extra space and normalize data.""" if not is_split_into_words: inputs = " ".join(jieba.lcut(inputs)) outputs = inputs if remove_space: outputs = " ".join(inputs.strip().split()) outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" text = text.replace(u"“", u'"')\ .replace(u'”', u'"')\ .replace(u'‘', "'")\ .replace(u'’', u"'")\ .replace(u'—', u'-') output = [] for char in text: if _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) def encode_pieces(self, spm_model, text, return_unicode=True, sample=False): """turn sentences into word pieces.""" # liujiaxiang: add for ernie-albert, mainly consider for “/”/‘/’/— causing too many unk text = self.clean_text(text) if not sample: pieces = spm_model.EncodeAsPieces(text) else: pieces = spm_model.SampleEncodeAsPieces(text, 64, 0.1) return pieces def _tokenize(self, text, is_split_into_words=True): """ End-to-end tokenization for BERT models. Args: text (str): The text to be tokenized. Returns: list: A list of string representing converted tokens. """ text = self.preprocess_text( text, lower=self.do_lower_case, is_split_into_words=is_split_into_words) tokens = [] for match in self.pat.finditer(text): part_text = match.group(0) if part_text in self.specials: tokens.append(part_text) continue part_tokens = self.encode_pieces(self.spm_model, part_text) tokens.extend(part_tokens) return tokens def tokenize(self, text, is_split_into_words=True): """ End-to-end tokenization for BERT models. Args: text (str): The text to be tokenized. is_split_into_words(bool, optinal): Whether or not the input `text` has been pretokenized. Default True. Returns: list: A list of string representing converted tokens. """ return self._tokenize(text, is_split_into_words=is_split_into_words) def merge_subword(self, tokens): """Merge subword.""" ret = [] for token in tokens: if token.startswith(u"▁"): ret.append(token[1:]) else: if len(ret): ret[-1] += token else: ret.append(token) ret = [token for token in ret if token] return ret def convert_tokens_to_string(self, tokens, keep_space=True): """ Converts a sequence of tokens (list of string) in a single string. Since the usage of WordPiece introducing `__` to concat subwords, also remove `__` when converting. Args: tokens (list): A list of string representing tokens to be converted. Returns: str: Converted string from tokens. """ tokens = self.merge_subword(tokens) if keep_space: out_string = " ".join(tokens).replace("<s>", "") else: out_string = "".join(tokens).replace("<s>", "") out_string = out_string.replace("</s>", "\n").replace("\n ", "\n").strip() return out_string def convert_ids_to_string(self, ids, keep_space=True): """Convert ids to string.""" tokens = self.convert_ids_to_tokens(ids) out_string = self.convert_tokens_to_string(tokens, keep_space) return out_string def num_special_tokens_to_add(self, pair=False): """ Returns the number of added tokens when encoding a sequence with special tokens. Note: This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this inside your training loop. Args: pair (bool, optional): Returns the number of added tokens in the case of a sequence pair if set to True, returns the number of added tokens in the case of a single sequence if set to False. Default False. Returns: Number of tokens added to sequences """ token_ids_0 = [] token_ids_1 = [] return len( self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None)) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence by concatenating and adding special tokens. An UnifiedTransformer sequence has the following format: :: - single sequence: ``[CLS] X [SEP]`` - pair of sequences: ``[CLS] A [SEP] B [SEP]`` Args: token_ids_0 (list): List of IDs to which the special tokens will be added. token_ids_1 (list, optional): Optional second list of IDs for sequence pairs. Default None. Returns: list: List of input_ids with the appropriate special tokens. """ _cls = [self.cls_token_id] _sep = [self.sep_token_id] if token_ids_1 is None: return _cls + token_ids_0 + _sep return _cls + token_ids_0 + _sep + token_ids_1 + _sep def build_offset_mapping_with_special_tokens(self, offset_mapping_0, offset_mapping_1=None): """ Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. An UnifiedTransformer offset_mapping has the following format: :: - single sequence: ``(0,0) X (0,0)`` - pair of sequences: `(0,0) A (0,0) B (0,0)`` Args: offset_mapping_ids_0 (list): List of char offsets to which the special tokens will be added. offset_mapping_ids_1 (list, optional): Optional second list of char offsets for offset mapping pairs. Dafault None Returns: list: List of char offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return [(0, 0)] + offset_mapping_0 + [(0, 0) ] + offset_mapping_1 + [(0, 0)] def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1=None): """ Create the token_type_ids from the two sequences passed for the model. An UnifiedTransformer sequence token_type_ids has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If `token_ids_1` is None, this method only returns the first portion (0s). Args: token_ids_0 (list): List of IDs. token_ids_1 (list, optional): Optional second list of IDs for sequence pairs. Default None Returns: list: List of token_type_id according to the given sequence(s). """ _cls = [self.cls_token_id] _sep = [self.sep_token_id] if token_ids_1 is None: return [0] * len(_cls + token_ids_0 + _sep) return [0] * len(_cls + token_ids_0 + _sep) + [1] * len(token_ids_1 + _sep) def get_special_tokens_mask(self, token_ids_0, token_ids_1=None, already_has_special_tokens=False): """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (list): List of IDs. token_ids_1 (list, optional): Optional second list of IDs for sequence pairs. Default None. already_has_special_tokens (bool, optional): Whether or not the token list is already formatted with special tokens for the model. Default False. Returns: list: A list of integers in the range [0, 1]. 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list( map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ( [0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def save_resources(self, save_directory): """ Save tokenizer related resources to files under `save_directory`. Args: save_directory (str): Directory to save files into. """ for name, file_name in self.resource_files_names.items(): src_path = getattr(self, name) save_path = os.path.join(save_directory, file_name) if os.path.abspath(src_path) != os.path.abspath(save_path): copyfile(src_path, save_path) @staticmethod def read_file(filepath): token_to_idx = {} with open(filepath, 'r', encoding='utf-8') as f: for num, line in enumerate(f): items = convert_to_unicode(line.rstrip()).split("\t") if len(items) > 2: break token = items[0] index = int(items[1]) if len(items) == 2 else num token = token.strip() token_to_idx[token] = index return token_to_idx @staticmethod def load_vocabulary(filepath, unk_token=None, pad_token=None, bos_token=None, eos_token=None, **kwargs): """ Instantiate an instance of `Vocab` from a file reserving all tokens by using `Vocab.from_dict`. The file contains a token and index of the token per line, separated by '\t'. Args: filepath (str): path of file to construct vocabulary. unk_token (str): special token for unknown token. If no need, it also could be None. Default: None. pad_token (str): special token for padding token. If no need, it also could be None. Default: None. bos_token (str): special token for bos token. If no need, it also could be None. Default: None. eos_token (str): special token for eos token. If no need, it also could be None. Default: None. **kwargs (dict): keyword arguments for `Vocab.from_dict`. Returns: Vocab: An instance of `Vocab`. """ token_to_idx = UnifiedTransformerTokenizer.read_file(filepath) vocab = Vocab.from_dict( token_to_idx, unk_token=unk_token, pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, **kwargs) # Filtered the tokens that are mapped to the same id idx_to_token = {v: k for k, v in vocab._token_to_idx.items()} vocab._idx_to_token = [ idx_to_token[idx] for idx in sorted(idx_to_token.keys()) ] return vocab def dialogue_encode(self, history, response=None, knowledge=None, task_type=None, max_seq_len=512, max_response_len=128, max_knowledge_len=128, return_position_ids=True, return_token_type_ids=True, return_attention_mask=True, return_length=False, add_start_token_as_response=False, pad_to_max_seq_len=False, return_tensors=False, is_split_into_words=True): """ Main method to encode the single-turn or multi-turn dialogue conversation. It will return a dictionary containing the encoded sequence and other relative informations which meets the input format requirements of the UnifiedTransformer model. See detail at https://github.com/PaddlePaddle/Knover/tree/luge-dialogue/luge-dialogue Args: history (str|list|tuple): The history of dialogue conversation. It is an utterance or list of utterances to be encoded. Each utterance is a string. response (str, optional): The response of dialogue conversation. It should be set when training the model. It should not be set when running inference. Default None. knowledge (str, optional): The knowledge information of dialogue conversation. It should be set if the `task_type` is "knowledge" or "recommend". Default None. task_type (str, optional): The type of dialogue conversation. It is one of "chitchat", "knowledge" and "recommend". They represent the chitchat dialogue, knowledge grounded dialogue and conversational recommendation respectively. Default None, which means there is no `special_token` added in output sequence for identifying different conversation types. max_seq_len (int, optional): The maximum encoded sequence length. Default 512. max_response_len (int, optional): The maximum encoded sequence length of the input `response`. Default 128. max_knowledge_len (int, optional): The maximum encoded sequence length of the input `knowledge`. Default 128. return_position_ids (bool, optional): Whether to return the position_ids. Default True. return_token_type_ids (bool, optional): Whether to return the token_type_ids. Default True. return_attention_mask (bool, optional): Whether to return the attention_mask. Default True. return_length (bool, optional): Whether to return the length of the encoded sequence. Default False. add_start_token_as_response (bool, optional): Whether to add the special token [CLS] at the end of sequence as the begining of the response when running inference to force the model to start generating response sequence. Default False. pad_to_max_seq_len (bool, optional): Whether to pad the returned sequences to the `max_seq_len`. Note that, in this method, returned sequences will be padded on the left. Default False. return_tensors (bool, optional): Whether to convert the returned sequences to Tensor. Default False. is_split_into_words(bool, optinal): Whether or not the input text (`history`, `response` and `knowledge`) has been pretokenized. Default True. """ # Input type checking for clearer error assert isinstance(history, str) or ( isinstance(history, (list, tuple)) and (len(history) == 0 or len(history) != 0 and isinstance(history[0], str))), ( "The input `history` must be with type `str` (single context) " "or `List[str]` (multi-turn context). But received: {}".format( history)) assert response is None or isinstance(response, str), ( "The input `response` must of be with type `str`. But received: {}". format(response)) assert knowledge is None or isinstance(knowledge, str), ( "The input `knowledge` must of be with type `str`. But received: {}". format(knowledge)) assert task_type is None or task_type in self.TASK_TO_SPECIAL_TOKEN, ( "The input `task_type` must be None or one of {}.".format(", ".join( self.TASK_TO_SPECIAL_TOKEN.keys()))) assert max_seq_len > max_response_len + max_knowledge_len, ( "`max_seq_len` must be greater than the sum of `max_response_len` " "and `max_knowledge_len`. But received `max_seq_len` is {}, " "`max_response_len` is {}, `max_knowledge_len` is {}.".format( max_seq_len, max_response_len, max_knowledge_len)) assert response is None or not add_start_token_as_response, ( "`add_start_token_as_response` only works when `response` is " "`None`. But received `add_start_token_as_response`: `{}`, " "`response`: {}.".format(add_start_token_as_response, response)) knowledge_ids = [] if knowledge is not None: tokens = self._tokenize(knowledge, is_split_into_words) knowledge_ids = self.convert_tokens_to_ids(tokens) if len(knowledge_ids) > max_knowledge_len - 1: knowledge_ids = knowledge_ids[:max_knowledge_len - 1] knowledge_ids += [self.sep_token_id] response_ids = [] if response is not None: tokens = self._tokenize(response, is_split_into_words) response_ids = [self.cls_token_id] + self.convert_tokens_to_ids( tokens) if len(response_ids) > max_response_len - 1: response_ids = response_ids[:max_response_len - 1] response_ids += [self.sep_token_id] elif add_start_token_as_response: response_ids = [self.cls_token_id] if task_type is not None: special_token = self.TASK_TO_SPECIAL_TOKEN[task_type] assert special_token in self.vocab._token_to_idx, ( "The vocab file should contain the special token corresponding " "to the task: {}.".format(task_type)) special_token_id = self.vocab._token_to_idx[special_token] knowledge_ids = [self.cls_token_id, special_token_id ] + knowledge_ids else: knowledge_ids = [self.cls_token_id] + knowledge_ids max_history_len = max_seq_len - len(knowledge_ids) - len(response_ids) if isinstance(history, str): history = [history] history_ids = [] for i in range(len(history) - 1, -1, -1): tokens = self._tokenize(history[i], is_split_into_words) if len(history_ids) + len(tokens) + 1 > max_history_len: if i == len(history) - 1: tokens = tokens[1 - max_history_len:] history_ids = (self.convert_tokens_to_ids(tokens) + [self.sep_token_id]) break history_ids = (self.convert_tokens_to_ids(tokens) + [self.sep_token_id]) + history_ids history_ids = knowledge_ids + history_ids # Build output dictionnary encoded_inputs = {} encoded_inputs["input_ids"] = history_ids + response_ids # Check lengths sequence_length = len(encoded_inputs["input_ids"]) assert sequence_length <= max_seq_len # Considering that the logits at the last time step in the API of # generative task are taken to generate the next token. In order to # avoid the last time step being a pad, so take padding on the left. pad_length = max_seq_len - sequence_length if pad_to_max_seq_len else 0 if pad_length > 0: encoded_inputs["input_ids"] = [ self.pad_token_id ] * pad_length + encoded_inputs["input_ids"] if return_tensors: # Add dimention for batch_size encoded_inputs["input_ids"] = paddle.to_tensor(encoded_inputs[ "input_ids"]).unsqueeze(0) if return_token_type_ids: encoded_inputs["token_type_ids"] = [0] * len( history_ids) + [1] * len(response_ids) if pad_length > 0: encoded_inputs["token_type_ids"] = [ self.pad_token_id ] * pad_length + encoded_inputs["token_type_ids"] if return_tensors: # Add dimention for batch_size encoded_inputs["token_type_ids"] = paddle.to_tensor( encoded_inputs["token_type_ids"]).unsqueeze(0) if return_length: encoded_inputs["seq_len"] = sequence_length if return_position_ids: encoded_inputs["position_ids"] = list(range(sequence_length)) if pad_length > 0: encoded_inputs["position_ids"] = [ self.pad_token_id ] * pad_length + encoded_inputs["position_ids"] if return_tensors: # Add dimention for batch_size encoded_inputs["position_ids"] = paddle.to_tensor( encoded_inputs["position_ids"]).unsqueeze(0) if return_attention_mask: attention_mask = np.ones( (sequence_length, sequence_length), dtype='float32') * -1e9 start = len(history_ids) end = sequence_length attention_mask[:end, :start] = 0.0 # Generate the lower triangular matrix using the slice of matrix tmp = np.triu( np.ones( [end - start, end - start], dtype='float32') * -1e9, 1) attention_mask[start:end, start:end] = tmp encoded_inputs["attention_mask"] = attention_mask if pad_length > 0: new_mask = np.ones( (max_seq_len, max_seq_len), dtype='float32') * -1e9 new_mask[-sequence_length:, -sequence_length:] = attention_mask encoded_inputs["attention_mask"] = new_mask if return_tensors: # Add dimentions for batch_size and num_heads encoded_inputs["attention_mask"] = paddle.to_tensor( encoded_inputs["attention_mask"]).unsqueeze((0, 1)) return encoded_inputs
43.159091
123
0.576058
21615b5f06dfc02b7c70dadaff7ae271d33cae0a
22,549
py
Python
python/taichi/profiler/kernel_profiler.py
rwilliams251/taichi
442710331be55baf5af17f9667db650c19cbb0b2
[ "MIT" ]
1
2022-02-07T06:34:03.000Z
2022-02-07T06:34:03.000Z
python/taichi/profiler/kernel_profiler.py
rwilliams251/taichi
442710331be55baf5af17f9667db650c19cbb0b2
[ "MIT" ]
null
null
null
python/taichi/profiler/kernel_profiler.py
rwilliams251/taichi
442710331be55baf5af17f9667db650c19cbb0b2
[ "MIT" ]
null
null
null
from contextlib import contextmanager from taichi._lib import core as _ti_core from taichi.lang import impl from taichi.profiler.kernel_metrics import default_cupti_metrics class StatisticalResult: """Statistical result of records. Profiling records with the same kernel name will be counted in a ``StatisticalResult`` instance via function ``insert_record(time)``. Currently, only the kernel elapsed time is counted, other statistics related to the kernel will be added in the feature. """ def __init__(self, name): self.name = name self.counter = 0 self.min_time = 0.0 self.max_time = 0.0 self.total_time = 0.0 def __lt__(self, other): # For sorted() return self.total_time < other.total_time def insert_record(self, time): """Insert records with the same kernel name. Currently, only the kernel elapsed time is counted. """ if self.counter == 0: self.min_time = time self.max_time = time self.counter += 1 self.total_time += time self.min_time = min(self.min_time, time) self.max_time = max(self.max_time, time) class KernelProfiler: """Kernel profiler of Taichi. Kernel profiler acquires kernel profiling records from backend, counts records in Python scope, and prints the results to the console by :func:`~taichi.profiler.kernel_profiler.KernelProfiler.print_info`. ``KernelProfiler`` now support detailed low-level performance metrics (such as memory bandwidth consumption) in its advanced mode. This mode is only available for the CUDA backend with CUPTI toolkit, i.e. you need ``ti.init(kernel_profiler=True, arch=ti.cuda)``. Note: For details about using CUPTI in Taichi, please visit https://docs.taichi.graphics/docs/lang/articles/misc/profiler#advanced-mode. """ def __init__(self): self._profiling_mode = False self._profiling_toolkit = 'default' self._metric_list = [default_cupti_metrics] self._total_time_ms = 0.0 self._traced_records = [] self._statistical_results = {} # public methods def set_kernel_profiler_mode(self, mode=False): """Turn on or off :class:`~taichi.profiler.kernel_profiler.KernelProfiler`.""" if type(mode) is bool: self._profiling_mode = mode else: raise TypeError( f'Arg `mode` must be of type boolean. Type {type(mode)} is not supported.' ) def get_kernel_profiler_mode(self): """Get status of :class:`~taichi.profiler.kernel_profiler.KernelProfiler`.""" return self._profiling_mode def set_toolkit(self, toolkit_name='default'): if self._check_not_turned_on_with_warning_message(): return False status = impl.get_runtime().prog.set_kernel_profiler_toolkit( toolkit_name) if status is True: self._profiling_toolkit = toolkit_name else: _ti_core.warn( f'Failed to set kernel profiler toolkit ({toolkit_name}) , keep using ({self._profiling_toolkit}).' ) return status def get_total_time(self): """Get elapsed time of all kernels recorded in KernelProfiler. Returns: time (float): total time in second. """ if self._check_not_turned_on_with_warning_message(): return 0.0 self._update_records() # kernel records self._count_statistics() # _total_time_ms is counted here return self._total_time_ms / 1000 # ms to s def clear_info(self): """Clear all records both in front-end :class:`~taichi.profiler.kernel_profiler.KernelProfiler` and back-end instance ``KernelProfilerBase``. Note: The values of ``self._profiling_mode`` and ``self._metric_list`` will not be cleared. """ if self._check_not_turned_on_with_warning_message(): return None #sync first impl.get_runtime().prog.sync_kernel_profiler() #then clear backend & frontend info impl.get_runtime().prog.clear_kernel_profile_info() self._clear_frontend() return None def query_info(self, name): """For docstring of this function, see :func:`~taichi.profiler.query_kernel_profiler_info`.""" if self._check_not_turned_on_with_warning_message(): return None self._update_records() # kernel records self._count_statistics() # statistics results # TODO : query self.StatisticalResult in python scope return impl.get_runtime().prog.query_kernel_profile_info(name) def set_metrics(self, metric_list=default_cupti_metrics): """For docstring of this function, see :func:`~taichi.profiler.set_kernel_profiler_metrics`.""" if self._check_not_turned_on_with_warning_message(): return None self._metric_list = metric_list metric_name_list = [metric.name for metric in metric_list] self.clear_info() impl.get_runtime().prog.reinit_kernel_profiler_with_metrics( metric_name_list) return None @contextmanager def collect_metrics_in_context(self, metric_list=default_cupti_metrics): """This function is not exposed to user now. For usage of this function, see :func:`~taichi.profiler.collect_kernel_profiler_metrics`. """ if self._check_not_turned_on_with_warning_message(): return None self.set_metrics(metric_list) yield self self.set_metrics() #back to default metric list return None # mode of print_info COUNT = 'count' # print the statistical results (min,max,avg time) of Taichi kernels. TRACE = 'trace' # print the records of launched Taichi kernels with specific profiling metrics (time, memory load/store and core utilization etc.) def print_info(self, mode=COUNT): """Print the profiling results of Taichi kernels. For usage of this function, see :func:`~taichi.profiler.print_kernel_profiler_info`. Args: mode (str): the way to print profiling results. """ if self._check_not_turned_on_with_warning_message(): return None self._update_records() # kernel records self._count_statistics() # statistics results #COUNT mode (default) : print statistics of all kernel if mode == self.COUNT: self._print_statistics_info() #TRACE mode : print records of launched kernel elif mode == self.TRACE: self._print_kernel_info() else: raise ValueError( 'Arg `mode` must be of type \'str\', and has the value \'count\' or \'trace\'.' ) return None # private methods def _check_not_turned_on_with_warning_message(self): if self._profiling_mode is False: _ti_core.warn( 'use \'ti.init(kernel_profiler = True)\' to turn on KernelProfiler.' ) return True return False def _clear_frontend(self): """Clear member variables in :class:`~taichi.profiler.kernel_profiler.KernelProfiler`. Note: The values of ``self._profiling_mode`` and ``self._metric_list`` will not be cleared. """ self._total_time_ms = 0.0 self._traced_records.clear() self._statistical_results.clear() def _update_records(self): """Acquires kernel records from a backend.""" impl.get_runtime().prog.sync_kernel_profiler() self._clear_frontend() self._traced_records = impl.get_runtime( ).prog.get_kernel_profiler_records() def _count_statistics(self): """Counts the statistics of launched kernels during the profiling period. The profiling records with the same kernel name are counted as a profiling result. """ for record in self._traced_records: if self._statistical_results.get(record.name) is None: self._statistical_results[record.name] = StatisticalResult( record.name) self._statistical_results[record.name].insert_record( record.kernel_time) self._total_time_ms += record.kernel_time self._statistical_results = { k: v for k, v in sorted(self._statistical_results.items(), key=lambda item: item[1], reverse=True) } def _make_table_header(self, mode): header_str = f'Kernel Profiler({mode}, {self._profiling_toolkit})' arch_name = f' @ {_ti_core.arch_name(impl.current_cfg().arch).upper()}' device_name = impl.get_runtime().prog.get_kernel_profiler_device_name() if len(device_name) > 1: # default device_name = ' ' device_name = ' on ' + device_name return header_str + arch_name + device_name def _print_statistics_info(self): """Print statistics of launched kernels during the profiling period.""" # headers table_header = table_header = self._make_table_header('count') column_header = '[ % total count | min avg max ] Kernel name' # partition line line_length = max(len(column_header), len(table_header)) outer_partition_line = '=' * line_length inner_partition_line = '-' * line_length #message in one line string_list = [] values_list = [] for key in self._statistical_results: result = self._statistical_results[key] fraction = result.total_time / self._total_time_ms * 100.0 string_list.append( '[{:6.2f}% {:7.3f} s {:6d}x |{:9.3f} {:9.3f} {:9.3f} ms] {}') values_list.append([ fraction, result.total_time / 1000.0, result.counter, result.min_time, result.total_time / result.counter, # avg_time result.max_time, result.name ]) # summary summary_line = '[100.00%] Total execution time: ' summary_line += f'{self._total_time_ms/1000:7.3f} s ' summary_line += f'number of results: {len(self._statistical_results)}' # print print(outer_partition_line) print(table_header) print(outer_partition_line) print(column_header) print(inner_partition_line) result_num = len(self._statistical_results) for idx in range(result_num): print(string_list[idx].format(*values_list[idx])) print(inner_partition_line) print(summary_line) print(outer_partition_line) def _print_kernel_info(self): """Print a list of launched kernels during the profiling period.""" metric_list = self._metric_list values_num = len(self._traced_records[0].metric_values) # We currently get kernel attributes through CUDA Driver API, # there is no corresponding implementation in other backends yet. # Profiler dose not print invalid kernel attributes info for now. kernel_attribute_state = self._traced_records[0].register_per_thread > 0 # headers table_header = self._make_table_header('trace') column_header = ('[ start.time | kernel.time |') #default if kernel_attribute_state: column_header += ( ' regs | shared mem | grid size | block size | occupancy |' ) #kernel_attributes for idx in range(values_num): column_header += metric_list[idx].header + '|' column_header = (column_header + '] Kernel name').replace("|]", "]") # partition line line_length = max(len(column_header), len(table_header)) outer_partition_line = '=' * line_length inner_partition_line = '-' * line_length # message in one line: formatted_str.format(*values) fake_timestamp = 0.0 string_list = [] values_list = [] for record in self._traced_records: formatted_str = '[{:9.3f} ms |{:9.3f} ms |' #default values = [fake_timestamp, record.kernel_time] #default if kernel_attribute_state: formatted_str += ' {:4d} | {:6d} bytes | {:6d} | {:6d} | {:2d} blocks |' values += [ record.register_per_thread, record.shared_mem_per_block, record.grid_size, record.block_size, record.active_blocks_per_multiprocessor ] for idx in range(values_num): formatted_str += metric_list[idx].format + '|' values += [record.metric_values[idx] * metric_list[idx].scale] formatted_str = (formatted_str + '] ' + record.name) string_list.append(formatted_str.replace("|]", "]")) values_list.append(values) fake_timestamp += record.kernel_time # print print(outer_partition_line) print(table_header) print(outer_partition_line) print(column_header) print(inner_partition_line) record_num = len(self._traced_records) for idx in range(record_num): print(string_list[idx].format(*values_list[idx])) print(inner_partition_line) print(f"Number of records: {len(self._traced_records)}") print(outer_partition_line) _ti_kernel_profiler = KernelProfiler() def get_default_kernel_profiler(): """We have only one :class:`~taichi.profiler.kernelprofiler.KernelProfiler` instance(i.e. ``_ti_kernel_profiler``) now. For ``KernelProfiler`` using ``CuptiToolkit``, GPU devices can only work in a certain configuration. Profiling mode and metrics are configured by the host(CPU) via CUPTI APIs, and device(GPU) will use its counter registers to collect specific metrics. So if there are multiple instances of ``KernelProfiler``, the device will work in the latest configuration, the profiling configuration of other instances will be changed as a result. For data retention purposes, multiple instances will be considered in the future. """ return _ti_kernel_profiler def print_kernel_profiler_info(mode='count'): """Print the profiling results of Taichi kernels. To enable this profiler, set ``kernel_profiler=True`` in ``ti.init()``. ``'count'`` mode: print the statistics (min,max,avg time) of launched kernels, ``'trace'`` mode: print the records of launched kernels with specific profiling metrics (time, memory load/store and core utilization etc.), and defaults to ``'count'``. Args: mode (str): the way to print profiling results. Example:: >>> import taichi as ti >>> ti.init(ti.cpu, kernel_profiler=True) >>> var = ti.field(ti.f32, shape=1) >>> @ti.kernel >>> def compute(): >>> var[0] = 1.0 >>> compute() >>> ti.profiler.print_kernel_profiler_info() >>> # equivalent calls : >>> # ti.profiler.print_kernel_profiler_info('count') >>> ti.profiler.print_kernel_profiler_info('trace') Note: Currently the result of `KernelProfiler` could be incorrect on OpenGL backend due to its lack of support for `ti.sync()`. For advanced mode of `KernelProfiler`, please visit https://docs.taichi.graphics/docs/lang/articles/misc/profiler#advanced-mode. """ get_default_kernel_profiler().print_info(mode) def query_kernel_profiler_info(name): """Query kernel elapsed time(min,avg,max) on devices using the kernel name. To enable this profiler, set `kernel_profiler=True` in `ti.init`. Args: name (str): kernel name. Returns: KernelProfilerQueryResult (class): with member variables(counter, min, max, avg) Example:: >>> import taichi as ti >>> ti.init(ti.cpu, kernel_profiler=True) >>> n = 1024*1024 >>> var = ti.field(ti.f32, shape=n) >>> @ti.kernel >>> def fill(): >>> for i in range(n): >>> var[i] = 0.1 >>> fill() >>> ti.profiler.clear_kernel_profiler_info() #[1] >>> for i in range(100): >>> fill() >>> query_result = ti.profiler.query_kernel_profiler_info(fill.__name__) #[2] >>> print("kernel excuted times =",query_result.counter) >>> print("kernel elapsed time(min_in_ms) =",query_result.min) >>> print("kernel elapsed time(max_in_ms) =",query_result.max) >>> print("kernel elapsed time(avg_in_ms) =",query_result.avg) Note: [1] To get the correct result, query_kernel_profiler_info() must be used in conjunction with clear_kernel_profiler_info(). [2] Currently the result of `KernelProfiler` could be incorrect on OpenGL backend due to its lack of support for `ti.sync()`. """ return get_default_kernel_profiler().query_info(name) def clear_kernel_profiler_info(): """Clear all KernelProfiler records.""" get_default_kernel_profiler().clear_info() def get_kernel_profiler_total_time(): """Get elapsed time of all kernels recorded in KernelProfiler. Returns: time (float): total time in second. """ return get_default_kernel_profiler().get_total_time() def set_kernel_profiler_toolkit(toolkit_name='default'): """Set the toolkit used by KernelProfiler. Currently, we only support toolkits: ``'default'`` and ``'cupti'``. Args: toolkit_name (str): string of toolkit name. Returns: status (bool): whether the setting is successful or not. Example:: >>> import taichi as ti >>> ti.init(arch=ti.cuda, kernel_profiler=True) >>> x = ti.field(ti.f32, shape=1024*1024) >>> @ti.kernel >>> def fill(): >>> for i in x: >>> x[i] = i >>> ti.profiler.set_kernel_profiler_toolkit('cupti') >>> for i in range(100): >>> fill() >>> ti.profiler.print_kernel_profiler_info() >>> ti.profiler.set_kernel_profiler_toolkit('default') >>> for i in range(100): >>> fill() >>> ti.profiler.print_kernel_profiler_info() """ return get_default_kernel_profiler().set_toolkit(toolkit_name) def set_kernel_profiler_metrics(metric_list=default_cupti_metrics): """Set metrics that will be collected by the CUPTI toolkit. Args: metric_list (list): a list of :class:`~taichi.profiler.CuptiMetric()` instances, default value: :data:`~taichi.profiler.kernel_metrics.default_cupti_metrics`. Example:: >>> import taichi as ti >>> ti.init(kernel_profiler=True, arch=ti.cuda) >>> ti.profiler.set_kernel_profiler_toolkit('cupti') >>> num_elements = 128*1024*1024 >>> x = ti.field(ti.f32, shape=num_elements) >>> y = ti.field(ti.f32, shape=()) >>> y[None] = 0 >>> @ti.kernel >>> def reduction(): >>> for i in x: >>> y[None] += x[i] >>> # In the case of not pramater, Taichi will print its pre-defined metrics list >>> ti.profiler.get_predefined_cupti_metrics() >>> # get Taichi pre-defined metrics >>> profiling_metrics = ti.profiler.get_predefined_cupti_metrics('shared_access') >>> global_op_atom = ti.profiler.CuptiMetric( >>> name='l1tex__t_set_accesses_pipe_lsu_mem_global_op_atom.sum', >>> header=' global.atom ', >>> format=' {:8.0f} ') >>> # add user defined metrics >>> profiling_metrics += [global_op_atom] >>> # metrics setting will be retained until the next configuration >>> ti.profiler.set_kernel_profile_metrics(profiling_metrics) >>> for i in range(16): >>> reduction() >>> ti.profiler.print_kernel_profiler_info('trace') Note: Metrics setting will be retained until the next configuration. """ get_default_kernel_profiler().set_metrics(metric_list) @contextmanager def collect_kernel_profiler_metrics(metric_list=default_cupti_metrics): """Set temporary metrics that will be collected by the CUPTI toolkit within this context. Args: metric_list (list): a list of :class:`~taichi.profiler.CuptiMetric()` instances, default value: :data:`~taichi.profiler.kernel_metrics.default_cupti_metrics`. Example:: >>> import taichi as ti >>> ti.init(kernel_profiler=True, arch=ti.cuda) >>> ti.profiler.set_kernel_profiler_toolkit('cupti') >>> num_elements = 128*1024*1024 >>> x = ti.field(ti.f32, shape=num_elements) >>> y = ti.field(ti.f32, shape=()) >>> y[None] = 0 >>> @ti.kernel >>> def reduction(): >>> for i in x: >>> y[None] += x[i] >>> # In the case of not pramater, Taichi will print its pre-defined metrics list >>> ti.profiler.get_predefined_cupti_metrics() >>> # get Taichi pre-defined metrics >>> profiling_metrics = ti.profiler.get_predefined_cupti_metrics('device_utilization') >>> global_op_atom = ti.profiler.CuptiMetric( >>> name='l1tex__t_set_accesses_pipe_lsu_mem_global_op_atom.sum', >>> header=' global.atom ', >>> format=' {:8.0f} ') >>> # add user defined metrics >>> profiling_metrics += [global_op_atom] >>> # metrics setting is temporary, and will be clear when exit from this context. >>> with ti.profiler.collect_kernel_profiler_metrics(profiling_metrics): >>> for i in range(16): >>> reduction() >>> ti.profiler.print_kernel_profiler_info('trace') Note: The configuration of the ``metric_list`` will be clear when exit from this context. """ get_default_kernel_profiler().set_metrics(metric_list) yield get_default_kernel_profiler() get_default_kernel_profiler().set_metrics() __all__ = [ 'clear_kernel_profiler_info', 'collect_kernel_profiler_metrics', 'get_kernel_profiler_total_time', 'print_kernel_profiler_info', 'query_kernel_profiler_info', 'set_kernel_profiler_metrics', 'set_kernel_profiler_toolkit' ]
38.025295
166
0.633509
5c5cbfe167f1ab3a54e471d8efb74d9b1ec7ac27
2,747
py
Python
4/4-2.py
softwaretestbook/apitest_book
29f640363ab6ef301ea685196b43805a4ed5a3d4
[ "Apache-2.0" ]
null
null
null
4/4-2.py
softwaretestbook/apitest_book
29f640363ab6ef301ea685196b43805a4ed5a3d4
[ "Apache-2.0" ]
null
null
null
4/4-2.py
softwaretestbook/apitest_book
29f640363ab6ef301ea685196b43805a4ed5a3d4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/9/3 17:43 # @Author : CrissChan # @Site : https://blog.csdn.net/crisschan # @File : 4-2.py # @Software: PyCharm import requests import json print('--------post-param-------') url_login = 'http://127.0.0.1:12356/login' username='CrissChan' password='CrissChan' payload = {'username': username,'password':password} res_login = requests.post(url_login,data=json.dumps(payload))# 字符串参数 res_login = requests.post(url_login,data=payload)#form传参,参数'username': 'CrissChan','password':'password' payload = (('color', 'red'),('color','green')) res_login = requests.post(url_login,data=payload)# form传递,参数'color':['red','green'] print(res_login.cookies['username']) print(res_login.text) print(res_login.status_code) print(res_login.headers) ## get print('--------get-------') url = 'http://127.0.0.1:12356' res_index = requests.get(url) print(res_index.encoding) print(res_index.json()) res_index = requests.get(url,stream=True) print(res_index.raw) if res_index.status_code == requests.codes.ok: print(requests.codes.ok) print(res_index.text) print(res_index.status_code) print(res_index.headers) print(res_index.headers['Content-Type']) print(res_index.headers['content-type']) print(res_index.headers.get('Content-Type')) print(res_index.headers.get('content-type')) ## get--headers print('--------get-headers------') url = 'http://127.0.0.1:12356' headers = {'Host': '127.0.0.1', 'Connection': 'keep-alive', 'Content-Type': 'text/plain', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/93.0.4577.82 Safari/537.36', 'Accept': '*/*', 'Accept-Encoding': 'gzip, deflate, br', 'X-usrg': 'criss'} res_index = requests.get(url,headers = headers) print(res_index.text) print(res_index.status_code) print(res_index.headers) ## get_param print('--------get_param-------') url_diff = 'http://127.0.0.1:12356/diff' payload = {'diff':'easy'} res_diff = requests.get(url_diff,params=payload) print(res_diff.text) print(res_diff.status_code) print(res_diff.headers) ## 超时 res_github=requests.get('http://github.com',timeout=0.001) ## post print('--------post-------') url_login = 'http://127.0.0.1:12356/login' username='CrissChan' password='CrissChan' payload = {'username': username,'password':password} res_login = requests.post(url_login,data=json.dumps(payload)) print(res_login.cookies['username']) print(res_login.text) print(res_login.status_code) print(res_login.headers) ## ReqeustsCookieJar cookie_jar = requests.cookies.RequestsCookieJar() cookie_jar.set('JSESSIONID', '23A15FE6655327749BC822A79CF77198', domain='127.0.0.1', path='/') url = 'http://127.0.0.1:12356' r = requests.get(url, cookies=cookie_jar)
28.030612
131
0.709137
c498efcdfbdd4bb51234d719de42842c4fc206bb
924
py
Python
test/test_algos/test_opt_algorithm/test_paretoopt/test_paretoopt.py
HowardHu97/ZOOpt
01568e8e6b0e65ac310d362af2da5245ac375e53
[ "MIT" ]
1
2018-11-03T12:05:00.000Z
2018-11-03T12:05:00.000Z
test/test_algos/test_opt_algorithm/test_paretoopt/test_paretoopt.py
HowardHu97/ZOOpt
01568e8e6b0e65ac310d362af2da5245ac375e53
[ "MIT" ]
null
null
null
test/test_algos/test_opt_algorithm/test_paretoopt/test_paretoopt.py
HowardHu97/ZOOpt
01568e8e6b0e65ac310d362af2da5245ac375e53
[ "MIT" ]
null
null
null
from zoopt.algos.opt_algorithms.paretoopt.paretoopt import ParetoOpt from zoopt import Objective, Parameter, Opt from math import exp from sparse_mse import SparseMSE class TestParetoOpt(object): def test_mutation(self): a = [0, 1, 0, 1] n = 4 res = ParetoOpt.mutation(a, n) assert res != a def test_performance(self): mse = SparseMSE('example/sparse_regression/sonar.arff') mse.set_sparsity(8) # setup objective # print(mse.get_dim().get_size()) objective = Objective(func=mse.loss, dim=mse.get_dim(), constraint=mse.constraint) parameter = Parameter(algorithm='poss', budget=2 * exp(1) * (mse.get_sparsity() ** 2) * mse.get_dim().get_size()) # perform sparse regression with constraint |w|_0 <= k solution = Opt.min(objective, parameter) assert solution.get_value()[0] < 0.6
34.222222
103
0.635281
82a23c7dcca3004944c9907e431c1e15ed1de88e
1,636
py
Python
gladier/utils/automate.py
rohithj494/gladier
00fc1cfd0a05f6f18b94b8afd9fef2503d2d3189
[ "Apache-2.0" ]
2
2021-01-19T15:53:16.000Z
2021-02-26T15:56:27.000Z
gladier/utils/automate.py
globus-labs/gladier_tools
0dc4a23af81a2355a908b9a9026f0e68a527c6dc
[ "Apache-2.0" ]
120
2021-01-16T16:50:29.000Z
2022-03-28T14:49:56.000Z
gladier/utils/automate.py
globus-labs/gladier_tools
0dc4a23af81a2355a908b9a9026f0e68a527c6dc
[ "Apache-2.0" ]
3
2021-01-30T00:33:05.000Z
2021-07-28T15:59:28.000Z
import traceback import logging from funcx.serialize import FuncXSerializer log = logging.getLogger(__name__) automate_response_keys = {'action_id', 'status', 'state_name'} funcx_response_keys = {'result', 'status', 'exception', 'task_id'} def is_automate_response(state_output): return ( isinstance(state_output, dict) and set(state_output.keys()).intersection(automate_response_keys) ) def is_funcx_response(state_output): return ( is_automate_response(state_output) and set(state_output['details'].keys()).intersection(funcx_response_keys) ) def get_details(response, state_name=None): if state_name and is_automate_response(response['details']['output'].get(state_name)): return response['details']['output'][state_name] if is_funcx_response(response['details']['output'].get(state_name)): resp = response['details']['output'][state_name] if resp.get('exception'): resp['exception'] = deserialize_exception(resp['exception']) return resp for flow_state, data in response['details']['output'].items(): # Reject any output that isn't structured as a response if not is_funcx_response(data): continue if isinstance(data['details'], dict) and data['details'].get('exception'): exc = deserialize_exception(data['details']['exception']) data['details']['exception'] = exc return response def deserialize_exception(encoded_exc): try: FuncXSerializer().deserialize(encoded_exc).reraise() except Exception: return traceback.format_exc()
32.72
90
0.687653
855bb245ba430c445b252d4c638c6e1799b176bf
176
py
Python
students/K33422/laboratory_works/Daria Plotskaya/lr_3/users/apps.py
olticher/ITMO_ICT_WebDevelopment_2021-2022
3de8728c29638d6733ad0664bf13e0d1eccae899
[ "MIT" ]
null
null
null
students/K33422/laboratory_works/Daria Plotskaya/lr_3/users/apps.py
olticher/ITMO_ICT_WebDevelopment_2021-2022
3de8728c29638d6733ad0664bf13e0d1eccae899
[ "MIT" ]
null
null
null
students/K33422/laboratory_works/Daria Plotskaya/lr_3/users/apps.py
olticher/ITMO_ICT_WebDevelopment_2021-2022
3de8728c29638d6733ad0664bf13e0d1eccae899
[ "MIT" ]
null
null
null
from django.apps import AppConfig class UsersConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'users' verbose_name = "Пользователи"
22
56
0.744318
202c116a07206b47d16a770230d567c5e5223b55
295
py
Python
baekjoon/not-classified/1463/1463.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
2
2019-02-08T01:23:07.000Z
2020-11-19T12:23:52.000Z
baekjoon/not-classified/1463/1463.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
null
null
null
baekjoon/not-classified/1463/1463.py
honux77/algorithm
2ed8cef1fbee7ad96d8f2ae583666d52bd8892ee
[ "MIT" ]
null
null
null
n = int(input()) d = {} d[1] = 0 def solution(n): if n in d: return d[n] d[n] = solution(n - 1) + 1 if (n % 2 == 0): d[n] = min(solution(n / 2) + 1, d[n]) if (n % 3 == 0): d[n] = min(solution(n / 3) + 1, d[n]) return d[n] print(solution(n))
14.75
45
0.40678
689b8e64355a2fab756df6b312c45a837cf675be
62,364
py
Python
ckan/controllers/package.py
jcballesteros/ckan
312b7a0d44fb1610deb037da5434820ffb698f96
[ "Apache-2.0" ]
null
null
null
ckan/controllers/package.py
jcballesteros/ckan
312b7a0d44fb1610deb037da5434820ffb698f96
[ "Apache-2.0" ]
null
null
null
ckan/controllers/package.py
jcballesteros/ckan
312b7a0d44fb1610deb037da5434820ffb698f96
[ "Apache-2.0" ]
null
null
null
import logging from urllib import urlencode import datetime import os import mimetypes import cgi from pylons import config from genshi.template import MarkupTemplate from genshi.template.text import NewTextTemplate from paste.deploy.converters import asbool import paste.fileapp import ckan.logic as logic import ckan.lib.base as base import ckan.lib.maintain as maintain import ckan.lib.package_saver as package_saver import ckan.lib.i18n as i18n import ckan.lib.navl.dictization_functions as dict_fns import ckan.lib.accept as accept import ckan.lib.helpers as h import ckan.model as model import ckan.lib.datapreview as datapreview import ckan.lib.plugins import ckan.lib.uploader as uploader import ckan.plugins as p import ckan.lib.render from ckan.common import OrderedDict, _, json, request, c, g, response from home import CACHE_PARAMETERS log = logging.getLogger(__name__) render = base.render abort = base.abort redirect = base.redirect NotFound = logic.NotFound NotAuthorized = logic.NotAuthorized ValidationError = logic.ValidationError check_access = logic.check_access get_action = logic.get_action tuplize_dict = logic.tuplize_dict clean_dict = logic.clean_dict parse_params = logic.parse_params flatten_to_string_key = logic.flatten_to_string_key lookup_package_plugin = ckan.lib.plugins.lookup_package_plugin def _encode_params(params): return [(k, v.encode('utf-8') if isinstance(v, basestring) else str(v)) for k, v in params] def url_with_params(url, params): params = _encode_params(params) return url + u'?' + urlencode(params) def search_url(params, package_type=None): if not package_type or package_type == 'dataset': url = h.url_for(controller='package', action='search') else: url = h.url_for('{0}_search'.format(package_type)) return url_with_params(url, params) class PackageController(base.BaseController): def _package_form(self, package_type=None): return lookup_package_plugin(package_type).package_form() def _setup_template_variables(self, context, data_dict, package_type=None): return lookup_package_plugin(package_type).\ setup_template_variables(context, data_dict) def _new_template(self, package_type): return lookup_package_plugin(package_type).new_template() def _edit_template(self, package_type): return lookup_package_plugin(package_type).edit_template() def _search_template(self, package_type): return lookup_package_plugin(package_type).search_template() def _read_template(self, package_type): return lookup_package_plugin(package_type).read_template() def _history_template(self, package_type): return lookup_package_plugin(package_type).history_template() def _guess_package_type(self, expecting_name=False): """ Guess the type of package from the URL handling the case where there is a prefix on the URL (such as /data/package) """ # Special case: if the rot URL '/' has been redirected to the package # controller (e.g. by an IRoutes extension) then there's nothing to do # here. if request.path == '/': return 'dataset' parts = [x for x in request.path.split('/') if x] idx = -1 if expecting_name: idx = -2 pt = parts[idx] if pt == 'package': pt = 'dataset' return pt def search(self): from ckan.lib.search import SearchError package_type = self._guess_package_type() try: context = {'model': model, 'user': c.user or c.author, 'auth_user_obj': c.userobj} check_access('site_read', context) except NotAuthorized: abort(401, _('Not authorized to see this page')) # unicode format (decoded from utf8) q = c.q = request.params.get('q', u'') c.query_error = False try: page = int(request.params.get('page', 1)) except ValueError, e: abort(400, ('"page" parameter must be an integer')) limit = g.datasets_per_page # most search operations should reset the page counter: params_nopage = [(k, v) for k, v in request.params.items() if k != 'page'] def drill_down_url(alternative_url=None, **by): return h.add_url_param(alternative_url=alternative_url, controller='package', action='search', new_params=by) c.drill_down_url = drill_down_url def remove_field(key, value=None, replace=None): return h.remove_url_param(key, value=value, replace=replace, controller='package', action='search') c.remove_field = remove_field sort_by = request.params.get('sort', None) params_nosort = [(k, v) for k, v in params_nopage if k != 'sort'] def _sort_by(fields): """ Sort by the given list of fields. Each entry in the list is a 2-tuple: (fieldname, sort_order) eg - [('metadata_modified', 'desc'), ('name', 'asc')] If fields is empty, then the default ordering is used. """ params = params_nosort[:] if fields: sort_string = ', '.join('%s %s' % f for f in fields) params.append(('sort', sort_string)) return search_url(params, package_type) c.sort_by = _sort_by if sort_by is None: c.sort_by_fields = [] else: c.sort_by_fields = [field.split()[0] for field in sort_by.split(',')] def pager_url(q=None, page=None): params = list(params_nopage) params.append(('page', page)) return search_url(params, package_type) c.search_url_params = urlencode(_encode_params(params_nopage)) try: c.fields = [] # c.fields_grouped will contain a dict of params containing # a list of values eg {'tags':['tag1', 'tag2']} c.fields_grouped = {} search_extras = {} fq = '' for (param, value) in request.params.items(): if param not in ['q', 'page', 'sort'] \ and len(value) and not param.startswith('_'): if not param.startswith('ext_'): c.fields.append((param, value)) fq += ' %s:"%s"' % (param, value) if param not in c.fields_grouped: c.fields_grouped[param] = [value] else: c.fields_grouped[param].append(value) else: search_extras[param] = value context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj} if package_type and package_type != 'dataset': # Only show datasets of this particular type fq += ' +dataset_type:{type}'.format(type=package_type) else: # Unless changed via config options, don't show non standard # dataset types on the default search page if not asbool(config.get('ckan.search.show_all_types', 'False')): fq += ' +dataset_type:dataset' facets = OrderedDict() default_facet_titles = { 'organization': _('Organizations'), 'groups': _('Groups'), 'tags': _('Tags'), 'res_format': _('Formats'), 'license_id': _('Licenses'), } for facet in g.facets: if facet in default_facet_titles: facets[facet] = default_facet_titles[facet] else: facets[facet] = facet # Facet titles for plugin in p.PluginImplementations(p.IFacets): facets = plugin.dataset_facets(facets, package_type) c.facet_titles = facets data_dict = { 'q': q, 'fq': fq.strip(), 'facet.field': facets.keys(), 'rows': limit, 'start': (page - 1) * limit, 'sort': sort_by, 'extras': search_extras } query = get_action('package_search')(context, data_dict) c.sort_by_selected = query['sort'] c.page = h.Page( collection=query['results'], page=page, url=pager_url, item_count=query['count'], items_per_page=limit ) c.facets = query['facets'] c.search_facets = query['search_facets'] c.page.items = query['results'] except SearchError, se: log.error('Dataset search error: %r', se.args) c.query_error = True c.facets = {} c.search_facets = {} c.page = h.Page(collection=[]) c.search_facets_limits = {} for facet in c.search_facets.keys(): try: limit = int(request.params.get('_%s_limit' % facet, g.facets_default_number)) except ValueError: abort(400, _('Parameter "{parameter_name}" is not ' 'an integer').format( parameter_name='_%s_limit' % facet )) c.search_facets_limits[facet] = limit maintain.deprecate_context_item( 'facets', 'Use `c.search_facets` instead.') self._setup_template_variables(context, {}, package_type=package_type) return render(self._search_template(package_type)) def _content_type_from_extension(self, ext): ct, mu, ext = accept.parse_extension(ext) if not ct: return None, None, None, return ct, ext, (NewTextTemplate, MarkupTemplate)[mu] def _content_type_from_accept(self): """ Given a requested format this method determines the content-type to set and the genshi template loader to use in order to render it accurately. TextTemplate must be used for non-xml templates whilst all that are some sort of XML should use MarkupTemplate. """ ct, mu, ext = accept.parse_header(request.headers.get('Accept', '')) return ct, ext, (NewTextTemplate, MarkupTemplate)[mu] def resources(self, id): package_type = self._get_package_type(id.split('@')[0]) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: check_access('package_update', context, data_dict) except NotAuthorized, e: abort(401, _('User %r not authorized to edit %s') % (c.user, id)) # check if package exists try: c.pkg_dict = get_action('package_show')(context, data_dict) c.pkg = context['package'] except NotFound: abort(404, _('Dataset not found')) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % id) self._setup_template_variables(context, {'id': id}, package_type=package_type) return render('package/resources.html') def read(self, id, format='html'): if not format == 'html': ctype, extension, loader = \ self._content_type_from_extension(format) if not ctype: # An unknown format, we'll carry on in case it is a # revision specifier and re-constitute the original id id = "%s.%s" % (id, format) ctype, format, loader = "text/html; charset=utf-8", "html", \ MarkupTemplate else: ctype, format, loader = self._content_type_from_accept() response.headers['Content-Type'] = ctype package_type = self._get_package_type(id.split('@')[0]) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj} data_dict = {'id': id} # interpret @<revision_id> or @<date> suffix split = id.split('@') if len(split) == 2: data_dict['id'], revision_ref = split if model.is_id(revision_ref): context['revision_id'] = revision_ref else: try: date = h.date_str_to_datetime(revision_ref) context['revision_date'] = date except TypeError, e: abort(400, _('Invalid revision format: %r') % e.args) except ValueError, e: abort(400, _('Invalid revision format: %r') % e.args) elif len(split) > 2: abort(400, _('Invalid revision format: %r') % 'Too many "@" symbols') # check if package exists try: c.pkg_dict = get_action('package_show')(context, data_dict) c.pkg = context['package'] except NotFound: abort(404, _('Dataset not found')) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % id) # used by disqus plugin c.current_package_id = c.pkg.id c.related_count = c.pkg.related_count # can the resources be previewed? for resource in c.pkg_dict['resources']: resource['can_be_previewed'] = self._resource_preview( {'resource': resource, 'package': c.pkg_dict}) self._setup_template_variables(context, {'id': id}, package_type=package_type) package_saver.PackageSaver().render_package(c.pkg_dict, context) template = self._read_template(package_type) template = template[:template.index('.') + 1] + format try: return render(template, loader_class=loader) except ckan.lib.render.TemplateNotFound: msg = _("Viewing {package_type} datasets in {format} format is " "not supported (template file {file} not found).".format( package_type=package_type, format=format, file=template)) abort(404, msg) assert False, "We should never get here" def history(self, id): package_type = self._get_package_type(id.split('@')[0]) if 'diff' in request.params or 'selected1' in request.params: try: params = {'id': request.params.getone('pkg_name'), 'diff': request.params.getone('selected1'), 'oldid': request.params.getone('selected2'), } except KeyError, e: if 'pkg_name' in dict(request.params): id = request.params.getone('pkg_name') c.error = \ _('Select two revisions before doing the comparison.') else: params['diff_entity'] = 'package' h.redirect_to(controller='revision', action='diff', **params) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: c.pkg_dict = get_action('package_show')(context, data_dict) c.pkg_revisions = get_action('package_revision_list')(context, data_dict) # TODO: remove # Still necessary for the authz check in group/layout.html c.pkg = context['package'] except NotAuthorized: abort(401, _('Unauthorized to read package %s') % '') except NotFound: abort(404, _('Dataset not found')) format = request.params.get('format', '') if format == 'atom': # Generate and return Atom 1.0 document. from webhelpers.feedgenerator import Atom1Feed feed = Atom1Feed( title=_(u'CKAN Dataset Revision History'), link=h.url_for(controller='revision', action='read', id=c.pkg_dict['name']), description=_(u'Recent changes to CKAN Dataset: ') + (c.pkg_dict['title'] or ''), language=unicode(i18n.get_lang()), ) for revision_dict in c.pkg_revisions: revision_date = h.date_str_to_datetime( revision_dict['timestamp']) try: dayHorizon = int(request.params.get('days')) except: dayHorizon = 30 dayAge = (datetime.datetime.now() - revision_date).days if dayAge >= dayHorizon: break if revision_dict['message']: item_title = u'%s' % revision_dict['message'].\ split('\n')[0] else: item_title = u'%s' % revision_dict['id'] item_link = h.url_for(controller='revision', action='read', id=revision_dict['id']) item_description = _('Log message: ') item_description += '%s' % (revision_dict['message'] or '') item_author_name = revision_dict['author'] item_pubdate = revision_date feed.add_item( title=item_title, link=item_link, description=item_description, author_name=item_author_name, pubdate=item_pubdate, ) feed.content_type = 'application/atom+xml' return feed.writeString('utf-8') c.related_count = c.pkg.related_count return render(self._history_template(c.pkg_dict.get('type', package_type))) def new(self, data=None, errors=None, error_summary=None): package_type = self._guess_package_type(True) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj, 'save': 'save' in request.params} # Package needs to have a organization group in the call to # check_access and also to save it try: check_access('package_create', context) except NotAuthorized: abort(401, _('Unauthorized to create a package')) if context['save'] and not data: return self._save_new(context, package_type=package_type) data = data or clean_dict(dict_fns.unflatten(tuplize_dict(parse_params( request.params, ignore_keys=CACHE_PARAMETERS)))) c.resources_json = h.json.dumps(data.get('resources', [])) # convert tags if not supplied in data if data and not data.get('tag_string'): data['tag_string'] = ', '.join( h.dict_list_reduce(data.get('tags', {}), 'name')) errors = errors or {} error_summary = error_summary or {} # in the phased add dataset we need to know that # we have already completed stage 1 stage = ['active'] if data.get('state') == 'draft': stage = ['active', 'complete'] elif data.get('state') == 'draft-complete': stage = ['active', 'complete', 'complete'] # if we are creating from a group then this allows the group to be # set automatically data['group_id'] = request.params.get('group') or \ request.params.get('groups__0__id') vars = {'data': data, 'errors': errors, 'error_summary': error_summary, 'action': 'new', 'stage': stage} c.errors_json = h.json.dumps(errors) self._setup_template_variables(context, {}, package_type=package_type) # TODO: This check is to maintain backwards compatibility with the # old way of creating custom forms. This behaviour is now deprecated. if hasattr(self, 'package_form'): c.form = render(self.package_form, extra_vars=vars) else: c.form = render(self._package_form(package_type=package_type), extra_vars=vars) return render(self._new_template(package_type), extra_vars={'stage': stage}) def resource_edit(self, id, resource_id, data=None, errors=None, error_summary=None): if request.method == 'POST' and not data: data = data or clean_dict(dict_fns.unflatten(tuplize_dict(parse_params( request.POST)))) # we don't want to include save as it is part of the form del data['save'] context = {'model': model, 'session': model.Session, 'api_version': 3, 'for_edit': True, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data['package_id'] = id try: if resource_id: data['id'] = resource_id get_action('resource_update')(context, data) else: get_action('resource_create')(context, data) except ValidationError, e: errors = e.error_dict error_summary = e.error_summary return self.resource_edit(id, resource_id, data, errors, error_summary) except NotAuthorized: abort(401, _('Unauthorized to edit this resource')) redirect(h.url_for(controller='package', action='resource_read', id=id, resource_id=resource_id)) context = {'model': model, 'session': model.Session, 'api_version': 3, 'for_edit': True, 'user': c.user or c.author, 'auth_user_obj': c.userobj} pkg_dict = get_action('package_show')(context, {'id': id}) if pkg_dict['state'].startswith('draft'): # dataset has not yet been fully created resource_dict = get_action('resource_show')(context, {'id': resource_id}) fields = ['url', 'resource_type', 'format', 'name', 'description', 'id'] data = {} for field in fields: data[field] = resource_dict[field] return self.new_resource(id, data=data) # resource is fully created try: resource_dict = get_action('resource_show')(context, {'id': resource_id}) except NotFound: abort(404, _('Resource not found')) c.pkg_dict = pkg_dict c.resource = resource_dict # set the form action c.form_action = h.url_for(controller='package', action='resource_edit', resource_id=resource_id, id=id) if not data: data = resource_dict errors = errors or {} error_summary = error_summary or {} vars = {'data': data, 'errors': errors, 'error_summary': error_summary, 'action': 'new'} return render('package/resource_edit.html', extra_vars=vars) def new_resource(self, id, data=None, errors=None, error_summary=None): ''' FIXME: This is a temporary action to allow styling of the forms. ''' if request.method == 'POST' and not data: save_action = request.params.get('save') data = data or clean_dict(dict_fns.unflatten(tuplize_dict(parse_params( request.POST)))) # we don't want to include save as it is part of the form del data['save'] resource_id = data['id'] del data['id'] context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} # see if we have any data that we are trying to save data_provided = False for key, value in data.iteritems(): if ((value or isinstance(value, cgi.FieldStorage)) and key != 'resource_type'): data_provided = True break if not data_provided and save_action != "go-dataset-complete": if save_action == 'go-dataset': # go to final stage of adddataset redirect(h.url_for(controller='package', action='edit', id=id)) # see if we have added any resources try: data_dict = get_action('package_show')(context, {'id': id}) except NotAuthorized: abort(401, _('Unauthorized to update dataset')) except NotFound: abort(404, _('The dataset {id} could not be found.').format(id=id)) if not len(data_dict['resources']): # no data so keep on page msg = _('You must add at least one data resource') # On new templates do not use flash message if g.legacy_templates: h.flash_error(msg) redirect(h.url_for(controller='package', action='new_resource', id=id)) else: errors = {} error_summary = {_('Error'): msg} return self.new_resource(id, data, errors, error_summary) # we have a resource so let them add metadata redirect(h.url_for(controller='package', action='new_metadata', id=id)) data['package_id'] = id try: if resource_id: data['id'] = resource_id get_action('resource_update')(context, data) else: get_action('resource_create')(context, data) except ValidationError, e: errors = e.error_dict error_summary = e.error_summary return self.new_resource(id, data, errors, error_summary) except NotAuthorized: abort(401, _('Unauthorized to create a resource')) except NotFound: abort(404, _('The dataset {id} could not be found.').format(id=id)) if save_action == 'go-metadata': # go to final stage of add dataset redirect(h.url_for(controller='package', action='new_metadata', id=id)) elif save_action == 'go-dataset': # go to first stage of add dataset redirect(h.url_for(controller='package', action='edit', id=id)) elif save_action == 'go-dataset-complete': # go to first stage of add dataset redirect(h.url_for(controller='package', action='read', id=id)) else: # add more resources redirect(h.url_for(controller='package', action='new_resource', id=id)) errors = errors or {} error_summary = error_summary or {} vars = {'data': data, 'errors': errors, 'error_summary': error_summary, 'action': 'new'} vars['pkg_name'] = id # get resources for sidebar context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: pkg_dict = get_action('package_show')(context, {'id': id}) except NotFound: abort(404, _('The dataset {id} could not be found.').format(id=id)) # required for nav menu vars['pkg_dict'] = pkg_dict template = 'package/new_resource_not_draft.html' if pkg_dict['state'] == 'draft': vars['stage'] = ['complete', 'active'] template = 'package/new_resource.html' elif pkg_dict['state'] == 'draft-complete': vars['stage'] = ['complete', 'active', 'complete'] template = 'package/new_resource.html' return render(template, extra_vars=vars) def new_metadata(self, id, data=None, errors=None, error_summary=None): ''' FIXME: This is a temporary action to allow styling of the forms. ''' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} if request.method == 'POST' and not data: save_action = request.params.get('save') data = data or clean_dict(dict_fns.unflatten(tuplize_dict(parse_params( request.POST)))) # we don't want to include save as it is part of the form del data['save'] data_dict = get_action('package_show')(context, {'id': id}) data_dict['id'] = id # update the state if save_action == 'finish': # we want this to go live when saved data_dict['state'] = 'active' elif save_action in ['go-resources', 'go-dataset']: data_dict['state'] = 'draft-complete' # allow the state to be changed context['allow_state_change'] = True data_dict.update(data) try: get_action('package_update')(context, data_dict) except ValidationError, e: errors = e.error_dict error_summary = e.error_summary return self.new_metadata(id, data, errors, error_summary) except NotAuthorized: abort(401, _('Unauthorized to update dataset')) if save_action == 'go-resources': # we want to go back to the add resources form stage redirect(h.url_for(controller='package', action='new_resource', id=id)) elif save_action == 'go-dataset': # we want to go back to the add dataset stage redirect(h.url_for(controller='package', action='edit', id=id)) redirect(h.url_for(controller='package', action='read', id=id)) if not data: data = get_action('package_show')(context, {'id': id}) errors = errors or {} error_summary = error_summary or {} vars = {'data': data, 'errors': errors, 'error_summary': error_summary} vars['pkg_name'] = id package_type = self._get_package_type(id) self._setup_template_variables(context, {}, package_type=package_type) return render('package/new_package_metadata.html', extra_vars=vars) def edit(self, id, data=None, errors=None, error_summary=None): package_type = self._get_package_type(id) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj, 'save': 'save' in request.params, 'moderated': config.get('moderated'), 'pending': True} if context['save'] and not data: return self._save_edit(id, context, package_type=package_type) try: c.pkg_dict = get_action('package_show')(context, {'id': id}) context['for_edit'] = True old_data = get_action('package_show')(context, {'id': id}) # old data is from the database and data is passed from the # user if there is a validation error. Use users data if there. if data: old_data.update(data) data = old_data except NotAuthorized: abort(401, _('Unauthorized to read package %s') % '') except NotFound: abort(404, _('Dataset not found')) # are we doing a multiphase add? if data.get('state', '').startswith('draft'): c.form_action = h.url_for(controller='package', action='new') c.form_style = 'new' return self.new(data=data, errors=errors, error_summary=error_summary) c.pkg = context.get("package") c.resources_json = h.json.dumps(data.get('resources', [])) try: check_access('package_update', context) except NotAuthorized, e: abort(401, _('User %r not authorized to edit %s') % (c.user, id)) # convert tags if not supplied in data if data and not data.get('tag_string'): data['tag_string'] = ', '.join(h.dict_list_reduce( c.pkg_dict.get('tags', {}), 'name')) errors = errors or {} vars = {'data': data, 'errors': errors, 'error_summary': error_summary, 'action': 'edit'} c.errors_json = h.json.dumps(errors) self._setup_template_variables(context, {'id': id}, package_type=package_type) c.related_count = c.pkg.related_count # we have already completed stage 1 vars['stage'] = ['active'] if data.get('state') == 'draft': vars['stage'] = ['active', 'complete'] elif data.get('state') == 'draft-complete': vars['stage'] = ['active', 'complete', 'complete'] # TODO: This check is to maintain backwards compatibility with the # old way of creating custom forms. This behaviour is now deprecated. if hasattr(self, 'package_form'): c.form = render(self.package_form, extra_vars=vars) else: c.form = render(self._package_form(package_type=package_type), extra_vars=vars) return render(self._edit_template(package_type), extra_vars={'stage': vars['stage']}) def read_ajax(self, id, revision=None): package_type = self._get_package_type(id) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj, 'revision_id': revision} try: data = get_action('package_show')(context, {'id': id}) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % '') except NotFound: abort(404, _('Dataset not found')) data.pop('tags') data = flatten_to_string_key(data) response.headers['Content-Type'] = 'application/json;charset=utf-8' return h.json.dumps(data) def history_ajax(self, id): context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: pkg_revisions = get_action('package_revision_list')( context, data_dict) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % '') except NotFound: abort(404, _('Dataset not found')) data = [] approved = False for num, revision in enumerate(pkg_revisions): if not approved and revision['approved_timestamp']: current_approved, approved = True, True else: current_approved = False data.append({'revision_id': revision['id'], 'message': revision['message'], 'timestamp': revision['timestamp'], 'author': revision['author'], 'approved': bool(revision['approved_timestamp']), 'current_approved': current_approved}) response.headers['Content-Type'] = 'application/json;charset=utf-8' return h.json.dumps(data) def _get_package_type(self, id): """ Given the id of a package it determines the plugin to load based on the package's type name (type). The plugin found will be returned, or None if there is no plugin associated with the type. """ pkg = model.Package.get(id) if pkg: return pkg.type or 'dataset' return None def _tag_string_to_list(self, tag_string): ''' This is used to change tags from a sting to a list of dicts ''' out = [] for tag in tag_string.split(','): tag = tag.strip() if tag: out.append({'name': tag, 'state': 'active'}) return out def _save_new(self, context, package_type=None): # The staged add dataset used the new functionality when the dataset is # partially created so we need to know if we actually are updating or # this is a real new. is_an_update = False ckan_phase = request.params.get('_ckan_phase') from ckan.lib.search import SearchIndexError try: data_dict = clean_dict(dict_fns.unflatten( tuplize_dict(parse_params(request.POST)))) if ckan_phase: # prevent clearing of groups etc context['allow_partial_update'] = True # sort the tags data_dict['tags'] = self._tag_string_to_list( data_dict['tag_string']) if data_dict.get('pkg_name'): is_an_update = True # This is actually an update not a save data_dict['id'] = data_dict['pkg_name'] del data_dict['pkg_name'] # this is actually an edit not a save pkg_dict = get_action('package_update')(context, data_dict) if request.params['save'] == 'go-metadata': # redirect to add metadata url = h.url_for(controller='package', action='new_metadata', id=pkg_dict['name']) else: # redirect to add dataset resources url = h.url_for(controller='package', action='new_resource', id=pkg_dict['name']) redirect(url) # Make sure we don't index this dataset if request.params['save'] not in ['go-resource', 'go-metadata']: data_dict['state'] = 'draft' # allow the state to be changed context['allow_state_change'] = True data_dict['type'] = package_type context['message'] = data_dict.get('log_message', '') pkg_dict = get_action('package_create')(context, data_dict) if ckan_phase: # redirect to add dataset resources url = h.url_for(controller='package', action='new_resource', id=pkg_dict['name']) redirect(url) self._form_save_redirect(pkg_dict['name'], 'new', package_type=package_type) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % '') except NotFound, e: abort(404, _('Dataset not found')) except dict_fns.DataError: abort(400, _(u'Integrity Error')) except SearchIndexError, e: try: exc_str = unicode(repr(e.args)) except Exception: # We don't like bare excepts exc_str = unicode(str(e)) abort(500, _(u'Unable to add package to search index.') + exc_str) except ValidationError, e: errors = e.error_dict error_summary = e.error_summary if is_an_update: # we need to get the state of the dataset to show the stage we # are on. pkg_dict = get_action('package_show')(context, data_dict) data_dict['state'] = pkg_dict['state'] return self.edit(data_dict['id'], data_dict, errors, error_summary) data_dict['state'] = 'none' return self.new(data_dict, errors, error_summary) def _save_edit(self, name_or_id, context, package_type=None): from ckan.lib.search import SearchIndexError log.debug('Package save request name: %s POST: %r', name_or_id, request.POST) try: data_dict = clean_dict(dict_fns.unflatten( tuplize_dict(parse_params(request.POST)))) if '_ckan_phase' in data_dict: # we allow partial updates to not destroy existing resources context['allow_partial_update'] = True data_dict['tags'] = self._tag_string_to_list( data_dict['tag_string']) del data_dict['_ckan_phase'] del data_dict['save'] context['message'] = data_dict.get('log_message', '') if not context['moderated']: context['pending'] = False data_dict['id'] = name_or_id pkg = get_action('package_update')(context, data_dict) if request.params.get('save', '') == 'Approve': get_action('make_latest_pending_package_active')( context, data_dict) c.pkg = context['package'] c.pkg_dict = pkg self._form_save_redirect(pkg['name'], 'edit', package_type=package_type) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % id) except NotFound, e: abort(404, _('Dataset not found')) except dict_fns.DataError: abort(400, _(u'Integrity Error')) except SearchIndexError, e: try: exc_str = unicode(repr(e.args)) except Exception: # We don't like bare excepts exc_str = unicode(str(e)) abort(500, _(u'Unable to update search index.') + exc_str) except ValidationError, e: errors = e.error_dict error_summary = e.error_summary return self.edit(name_or_id, data_dict, errors, error_summary) def _form_save_redirect(self, pkgname, action, package_type=None): '''This redirects the user to the CKAN package/read page, unless there is request parameter giving an alternate location, perhaps an external website. @param pkgname - Name of the package just edited @param action - What the action of the edit was ''' assert action in ('new', 'edit') url = request.params.get('return_to') or \ config.get('package_%s_return_url' % action) if url: url = url.replace('<NAME>', pkgname) else: if package_type is None or package_type == 'dataset': url = h.url_for(controller='package', action='read', id=pkgname) else: url = h.url_for('{0}_read'.format(package_type), id=pkgname) redirect(url) def _adjust_license_id_options(self, pkg, fs): options = fs.license_id.render_opts['options'] is_included = False for option in options: license_id = option[1] if license_id == pkg.license_id: is_included = True if not is_included: options.insert(1, (pkg.license_id, pkg.license_id)) def delete(self, id): if 'cancel' in request.params: h.redirect_to(controller='package', action='edit', id=id) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: check_access('package_delete', context, {'id': id}) except NotAuthorized: abort(401, _('Unauthorized to delete package %s') % '') try: if request.method == 'POST': get_action('package_delete')(context, {'id': id}) h.flash_notice(_('Dataset has been deleted.')) h.redirect_to(controller='package', action='search') c.pkg_dict = get_action('package_show')(context, {'id': id}) except NotAuthorized: abort(401, _('Unauthorized to delete package %s') % '') except NotFound: abort(404, _('Dataset not found')) return render('package/confirm_delete.html') def resource_delete(self, id, resource_id): if 'cancel' in request.params: h.redirect_to(controller='package', action='resource_edit', resource_id=resource_id, id=id) context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: check_access('package_delete', context, {'id': id}) except NotAuthorized: abort(401, _('Unauthorized to delete package %s') % '') try: if request.method == 'POST': get_action('resource_delete')(context, {'id': resource_id}) h.flash_notice(_('Resource has been deleted.')) h.redirect_to(controller='package', action='read', id=id) c.resource_dict = get_action('resource_show')(context, {'id': resource_id}) c.pkg_id = id except NotAuthorized: abort(401, _('Unauthorized to delete resource %s') % '') except NotFound: abort(404, _('Resource not found')) return render('package/confirm_delete_resource.html') def autocomplete(self): # DEPRECATED in favour of /api/2/util/dataset/autocomplete q = unicode(request.params.get('q', '')) if not len(q): return '' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'q': q} packages = get_action('package_autocomplete')(context, data_dict) pkg_list = [] for pkg in packages: pkg_list.append('%s|%s' % (pkg['match_displayed']. replace('|', ' '), pkg['name'])) return '\n'.join(pkg_list) def _render_edit_form(self, fs, params={}, clear_session=False): # errors arrive in c.error and fs.errors c.log_message = params.get('log_message', '') # rgrp: expunge everything from session before dealing with # validation errors) so we don't have any problematic saves # when the fs.render causes a flush. # seb: If the session is *expunged*, then the form can't be # rendered; I've settled with a rollback for now, which isn't # necessarily what's wanted here. # dread: I think this only happened with tags because until # this changeset, Tag objects were created in the Renderer # every time you hit preview. So I don't believe we need to # clear the session any more. Just in case I'm leaving it in # with the log comments to find out. if clear_session: # log to see if clearing the session is ever required if model.Session.new or model.Session.dirty or \ model.Session.deleted: log.warn('Expunging session changes which were not expected: ' '%r %r %r', (model.Session.new, model.Session.dirty, model.Session.deleted)) try: model.Session.rollback() except AttributeError: # older SQLAlchemy versions model.Session.clear() edit_form_html = fs.render() c.form = h.literal(edit_form_html) return h.literal(render('package/edit_form.html')) def _update_authz(self, fs): validation = fs.validate() if not validation: c.form = self._render_edit_form(fs, request.params) raise package_saver.ValidationException(fs) try: fs.sync() except Exception, inst: model.Session.rollback() raise else: model.Session.commit() def resource_read(self, id, resource_id): context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: c.resource = get_action('resource_show')(context, {'id': resource_id}) c.package = get_action('package_show')(context, {'id': id}) # required for nav menu c.pkg = context['package'] c.pkg_dict = c.package except NotFound: abort(404, _('Resource not found')) except NotAuthorized: abort(401, _('Unauthorized to read resource %s') % id) # get package license info license_id = c.package.get('license_id') try: c.package['isopen'] = model.Package.\ get_license_register()[license_id].isopen() except KeyError: c.package['isopen'] = False # TODO: find a nicer way of doing this c.datastore_api = '%s/api/action' % config.get('ckan.site_url', '').rstrip('/') c.related_count = c.pkg.related_count c.resource['can_be_previewed'] = self._resource_preview( {'resource': c.resource, 'package': c.package}) return render('package/resource_read.html') def _resource_preview(self, data_dict): return bool(datapreview.res_format(data_dict['resource']) in datapreview.direct() + datapreview.loadable() or datapreview.get_preview_plugin( data_dict, return_first=True)) def resource_download(self, id, resource_id, filename=None): """ Provides a direct download by either redirecting the user to the url stored or downloading an uploaded file directly. """ context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: rsc = get_action('resource_show')(context, {'id': resource_id}) pkg = get_action('package_show')(context, {'id': id}) except NotFound: abort(404, _('Resource not found')) except NotAuthorized: abort(401, _('Unauthorized to read resource %s') % id) if rsc.get('url_type') == 'upload': upload = uploader.ResourceUpload(rsc) filepath = upload.get_path(rsc['id']) fileapp = paste.fileapp.FileApp(filepath) try: status, headers, app_iter = request.call_application(fileapp) except OSError: abort(404, _('Resource data not found')) response.headers.update(dict(headers)) content_type, content_enc = mimetypes.guess_type(rsc.get('url','')) response.headers['Content-Type'] = content_type response.status = status return app_iter elif not 'url' in rsc: abort(404, _('No download is available')) redirect(rsc['url']) def follow(self, id): '''Start following this dataset.''' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: get_action('follow_dataset')(context, data_dict) package_dict = get_action('package_show')(context, data_dict) h.flash_success(_("You are now following {0}").format( package_dict['title'])) except ValidationError as e: error_message = (e.extra_msg or e.message or e.error_summary or e.error_dict) h.flash_error(error_message) except NotAuthorized as e: h.flash_error(e.extra_msg) h.redirect_to(controller='package', action='read', id=id) def unfollow(self, id): '''Stop following this dataset.''' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: get_action('unfollow_dataset')(context, data_dict) package_dict = get_action('package_show')(context, data_dict) h.flash_success(_("You are no longer following {0}").format( package_dict['title'])) except ValidationError as e: error_message = (e.extra_msg or e.message or e.error_summary or e.error_dict) h.flash_error(error_message) except (NotFound, NotAuthorized) as e: error_message = e.extra_msg or e.message h.flash_error(error_message) h.redirect_to(controller='package', action='read', id=id) def followers(self, id=None): context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: c.pkg_dict = get_action('package_show')(context, data_dict) c.pkg = context['package'] c.followers = get_action('dataset_follower_list')(context, {'id': c.pkg_dict['id']}) c.related_count = c.pkg.related_count except NotFound: abort(404, _('Dataset not found')) except NotAuthorized: abort(401, _('Unauthorized to read package %s') % id) return render('package/followers.html') def groups(self, id): context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj, 'use_cache': False} data_dict = {'id': id} try: c.pkg_dict = get_action('package_show')(context, data_dict) except NotFound: abort(404, _('Dataset not found')) except NotAuthorized: abort(401, _('Unauthorized to read dataset %s') % id) if request.method == 'POST': new_group = request.POST.get('group_added') if new_group: data_dict = {"id": new_group, "object": id, "object_type": 'package', "capacity": 'public'} try: get_action('member_create')(context, data_dict) except NotFound: abort(404, _('Group not found')) removed_group = request.POST.get('group_removed') if removed_group: data_dict = {"id": removed_group, "object": id, "object_type": 'package'} try: get_action('member_delete')(context, data_dict) except NotFound: abort(404, _('Group not found')) redirect(h.url_for(controller='package', action='groups', id=id)) context['is_member'] = True users_groups = get_action('group_list_authz')(context, data_dict) pkg_group_ids = set(group['id'] for group in c.pkg_dict.get('groups', [])) user_group_ids = set(group['id'] for group in users_groups) c.group_dropdown = [[group['id'], group['display_name']] for group in users_groups if group['id'] not in pkg_group_ids] for group in c.pkg_dict.get('groups', []): group['user_member'] = (group['id'] in user_group_ids) return render('package/group_list.html') def activity(self, id): '''Render this package's public activity stream page.''' context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'for_view': True, 'auth_user_obj': c.userobj} data_dict = {'id': id} try: c.pkg_dict = get_action('package_show')(context, data_dict) c.pkg = context['package'] c.package_activity_stream = get_action( 'package_activity_list_html')(context, {'id': c.pkg_dict['id']}) c.related_count = c.pkg.related_count except NotFound: abort(404, _('Dataset not found')) except NotAuthorized: abort(401, _('Unauthorized to read dataset %s') % id) return render('package/activity.html') def resource_embedded_dataviewer(self, id, resource_id, width=500, height=500): """ Embeded page for a read-only resource dataview. Allows for width and height to be specified as part of the querystring (as well as accepting them via routes). """ context = {'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj} try: c.resource = get_action('resource_show')(context, {'id': resource_id}) c.package = get_action('package_show')(context, {'id': id}) c.resource_json = h.json.dumps(c.resource) # double check that the resource belongs to the specified package if not c.resource['id'] in [r['id'] for r in c.package['resources']]: raise NotFound except NotFound: abort(404, _('Resource not found')) except NotAuthorized: abort(401, _('Unauthorized to read resource %s') % id) # Construct the recline state state_version = int(request.params.get('state_version', '1')) recline_state = self._parse_recline_state(request.params) if recline_state is None: abort(400, ('"state" parameter must be a valid recline ' 'state (version %d)' % state_version)) c.recline_state = h.json.dumps(recline_state) c.width = max(int(request.params.get('width', width)), 100) c.height = max(int(request.params.get('height', height)), 100) c.embedded = True return render('package/resource_embedded_dataviewer.html') def _parse_recline_state(self, params): state_version = int(request.params.get('state_version', '1')) if state_version != 1: return None recline_state = {} for k, v in request.params.items(): try: v = h.json.loads(v) except ValueError: pass recline_state[k] = v recline_state.pop('width', None) recline_state.pop('height', None) recline_state['readOnly'] = True # previous versions of recline setup used elasticsearch_url attribute # for data api url - see http://trac.ckan.org/ticket/2639 # fix by relocating this to url attribute which is the default location if 'dataset' in recline_state and 'elasticsearch_url' in recline_state['dataset']: recline_state['dataset']['url'] = recline_state['dataset']['elasticsearch_url'] # Ensure only the currentView is available # default to grid view if none specified if not recline_state.get('currentView', None): recline_state['currentView'] = 'grid' for k in recline_state.keys(): if k.startswith('view-') and \ not k.endswith(recline_state['currentView']): recline_state.pop(k) return recline_state def resource_datapreview(self, id, resource_id): ''' Embeded page for a resource data-preview. Depending on the type, different previews are loaded. This could be an img tag where the image is loaded directly or an iframe that embeds a webpage, recline or a pdf preview. ''' context = { 'model': model, 'session': model.Session, 'user': c.user or c.author, 'auth_user_obj': c.userobj } try: c.resource = get_action('resource_show')(context, {'id': resource_id}) c.package = get_action('package_show')(context, {'id': id}) data_dict = {'resource': c.resource, 'package': c.package} preview_plugin = datapreview.get_preview_plugin(data_dict) if preview_plugin is None: abort(409, _('No preview has been defined.')) preview_plugin.setup_template_variables(context, data_dict) c.resource_json = json.dumps(c.resource) except NotFound: abort(404, _('Resource not found')) except NotAuthorized: abort(401, _('Unauthorized to read resource %s') % id) else: return render(preview_plugin.preview_template(context, data_dict))
41.826962
103
0.549708
2fde84402b9257eccc54cdf46e8ddb603708ca95
26,135
py
Python
tuning/cactus_tuning.py
benedictpaten/cactusTools
374b9cbe352d71f111977751f25e6c70c52ab041
[ "MIT-0" ]
2
2019-11-17T06:38:17.000Z
2020-04-26T09:12:07.000Z
tuning/cactus_tuning.py
benedictpaten/cactusTools
374b9cbe352d71f111977751f25e6c70c52ab041
[ "MIT-0" ]
null
null
null
tuning/cactus_tuning.py
benedictpaten/cactusTools
374b9cbe352d71f111977751f25e6c70c52ab041
[ "MIT-0" ]
null
null
null
#!/usr/bin/env python #Copyright (C) 2009-2011 by Benedict Paten (benedictpaten@gmail.com) # #Released under the MIT license, see LICENSE.txt #!/usr/bin/env python """Wrapper to run cactus on different combinations of cactus_workflow_config.xml (cactus parameters) and simulations, followed by evaluations steps. """ #nknguyen@soe.ucsc.edu #05/26/2010 import os, re, sys, time from optparse import OptionParser import xml.etree.ElementTree as ET from jobTree.src.jobTree import runJobTree from jobTree.scriptTree.target import Target from sonLib.bioio import logger from sonLib.bioio import system from sonLib.bioio import nameValue from sonLib.bioio import getTempDirectory from sonLib.bioio import setLogLevel from cactus.shared.common import cactusRootPath from cactus.shared.common import runCactusWorkflow from cactus.shared.common import runCactusMAFGenerator from cactus.shared.common import runCactusTreeStats class CactusTuningWrapper(Target): """Wrapper to run cactus on different sets of parameters and different simulation data """ def __init__(self, options): Target.__init__(self) self.options = options def run(self): #-------------------------------------------------------------------------------------- #Get parameter sets. For each set, issue job to run cactus on different simulation data #-------------------------------------------------------------------------------------- setLogLevel("DEBUG") system("rm -rf %s*" % self.options.outputDir) logger.info("Remove output directory if exists\n") #Convert true.mfa of each simulation to maf format #simTrueMafDir = os.path.join(self.options.outputDir, "sim") simTrueMafDir = self.options.simTrueMafDir check_dir(simTrueMafDir) for sim in self.options.sim: #convert mfa file of current simulation into MAF format: sim = modify_dirname(sim) simName = getRootDir(sim) trueMAF = os.path.join(simTrueMafDir, "%s_true.maf" %(simName)) if not os.path.exists(trueMAF): trueMFA = os.path.join(sim, "true.mfa") runEvalMFAToMAF(trueMFA, trueMAF) logger.info("Converted true.mfa of simulation %s to %s\n" % (sim, trueMAF)) else: logger.info("TrueMAF already exists: %s\n" %(trueMAF)) for parameterFile, parameterName in getParameters(self.options.config): outDir = os.path.join(self.options.outputDir, parameterName) #system("rm -rf %s" % outDir) os.mkdir(outDir) system("mv %s %s/" % (parameterFile, outDir)) logger.info("Created output directory %s for parameter set %s and moved config file to that directory\n" % (outDir, parameterName)) paraFile = os.path.join(outDir, 'param.xml') statsDir = os.path.join(outDir, "stats") os.mkdir(statsDir) logger.info("Created directory for stats files: %s\n" % (statsDir)) self.addChildTarget(CactusTuningSimulationsWrapper(self.options, paraFile, outDir)) logger.info("Added CactusTuningSimulationsWrapper as child for parameter %s\n" %(parameterName)) #Summarize results #self.setFollowOnTarget(CactusTuningSummary(self.options)) logger.info("Added CactusTuningSummary\n") class CactusTuningSimulationsWrapper(Target): """Run cactus for a set of different simulation data and report results """ def __init__(self, options, paraFile, outDir): Target.__init__(self) self.options = options self.paraFile = paraFile self.outDir = outDir def run(self): #-------------------------------------------- #Run cactus & evaluations for each simulation #-------------------------------------------- logger.info("CactusTuningSimulationsWrapper: going to issue cactus runs for all simulations for parameter %s\n" %(self.paraFile)) simNum = 0 for sim in self.options.sim: sim = modify_dirname(sim) simName = getRootDir(sim) #Get path to sequence file of each species sequenceFiles = " ".join([ os.path.join(sim, spc) for spc in self.options.species ]) logger.info("Got sequence files: %s\n" % (sequenceFiles)) #add child #self.addChildTarget(CactusWorkflowWrapper(sim, simNum, self.paraFile, self.outDir, sequenceFiles, self.options.tree)) self.addChildTarget(CactusWorkflowWrapper(sim, simName, self.options.simTrueMafDir, self.paraFile, self.outDir, sequenceFiles, self.options.tree)) logger.info("Added child CactusWorkflowWrapper for sim %s and confi %s\n" % (sim, self.paraFile)) simNum += 1 #---------------------------------------------------------------- #Done running cactus & evaluations steps for all the simulations. #Now Merge results & clean up. #---------------------------------------------------------------- logger.info("Done running cactus & evaluations for parameter %s. Now merge results and clean up.\n" %(self.paraFile)) self.setFollowOnTarget(CactusMergeResultsAndCleanup(simNum, self.outDir, self.options)) logger.info("Added CactusMergeResultsAndCleanup as FollowOnTarget for %s\n" %(self.outDir)) class CactusWorkflowWrapper(Target): """runCactusWorkFlow and issue child Target to generate MAF for the cactus results """ #def __init__(self, simulation, simNum, paraFile, outDir, sequenceFiles, tree): def __init__(self, simulation, simName, simTrueMafDir, paraFile, outDir, sequenceFiles, tree): Target.__init__(self) self.simulation = simulation #self.simNum = str(simNum) self.simName = simName self.simTrueMafDir = simTrueMafDir self.paraFile = paraFile self.outDir = outDir self.sequenceFiles = sequenceFiles self.tree = tree def run(self): #---------------------------------------- # Run cactus_workflow.py and report time# #---------------------------------------- logger.info("CactusWorkflowWrapper: going to issue cactus run for simulation %s, parameter %s\n" %(self.simulation, self.paraFile)) tempDir = getTempDirectory(self.outDir) flowerdisk = os.path.join(tempDir, "cactusDisk") jobtreeDir = os.path.join(tempDir, "jobTree") #batchSystem = "single_machine" batchSystem = "parasol" retryCount = 0 command = "cactus_workflow.py --speciesTree='%s' %s --configFile %s --buildTrees --setupAndBuildAlignments --cactusDisk %s --logDebug --job=JOB_FILE" %(self.tree, self.sequenceFiles, self.paraFile, flowerdisk) starttime = time.time() runJobTree(command, jobtreeDir, "DEBUG", retryCount, batchSystem, None) #runCactusWorkflow(flowerdisk, self.sequenceFiles, self.tree, jobtreeDir, "DEBUG", 0, batchSystem, None, True, True, False, False, self.config) runtime = time.time() - starttime logger.info("Done cactus_workflow for simulation %s, config %s\n" %(self.simulation, self.paraFile)) #----------------------- # Run cactus_treeStats # #----------------------- #statsFile = os.path.join(self.outDir, "stats", "%s.xml" % self.simNum) statsFile = os.path.join(self.outDir, "stats", "%s.xml" % self.simName) runCactusTreeStats(outputFile=statsFile, cactusDisk=flowerdisk) #self.addChildCommand(command) #------------------- Adding child ------------------------# #self.addChildTarget(CactusMAFGeneratorWrapper(self.outDir, tempDir, self.simNum, runtime)) self.addChildTarget(CactusMAFGeneratorWrapper(self.outDir, tempDir, self.simTrueMafDir, self.simName, runtime)) logger.info("Added child CactusMAFGeneratorWrapper at %s\n" % self.outDir) #------------------- Cleaning up -------------------------# self.setFollowOnTarget(CactusWorkflowWrapperCleanup(tempDir)) class CactusMAFGeneratorWrapper(Target): """run cactus_MAFGenerator and issue child EvalMafComparatorWrapper """ #def __init__(self, outDir, resultsDir, simNum, cactusRunTime): def __init__(self, outDir, resultsDir, simTrueMafDir, simName, cactusRunTime): Target.__init__(self) self.outDir = outDir self.resultsDir = resultsDir #Directory contains cactus cactusDisk and jobTree #self.simNum = simNum self.simTrueMafDir = simTrueMafDir self.simName = simName self.cactusRunTime = cactusRunTime def run(self): flowerdisk = os.path.join(self.resultsDir, "cactusDisk") maffile = os.path.join(self.resultsDir, "cactus.maf") runCactusMAFGenerator(mAFFile = maffile, cactusDisk = flowerdisk) #truemaffile = os.path.join(self.outDir,"..","sim", "%s_true.maf" %(self.simNum)) #mafCompareFile = os.path.join(self.outDir, "mafCompare%s.xml" %self.simNum) truemaffile = os.path.join(self.simTrueMafDir, "%s_true.maf" %(self.simName)) mafCompareFile = os.path.join(self.outDir, "mafCompare%s.xml" %self.simName) self.addChildTarget(EvalMafComparatorWrapper(truemaffile, maffile, mafCompareFile, self.cactusRunTime)) class EvalMafComparatorWrapper(Target): def __init__(self, maf1, maf2, outputFile, time): Target.__init__(self) self.maf1 = maf1 self.maf2 = maf2 self.outputFile = outputFile self.time = time def run(self): sampleNumber = "1000000" runEvalMAFComparator(self.maf1, self.maf2, self.outputFile, sampleNumber) #Add the the run time to the results resultsNode = ET.parse(self.outputFile).getroot() resultsNode.attrib["time"] = str(self.time) fileHandle = open(self.outputFile, 'w') ET.ElementTree(resultsNode).write(fileHandle) fileHandle.close() class CactusWorkflowWrapperCleanup(Target): def __init__(self, dir): Target.__init__(self) self.dir = dir def run(self): system("rm -rf %s" % self.dir) logger.info("Clean up tempDir for next run\n") class CactusMergeResultsAndCleanup(Target): """ """ def __init__(self, count, outDir, options): Target.__init__(self) self.count = count #number of files to merge self.outDir = outDir self.options = options def run(self): mergedFile = os.path.join(self.outDir, "mafCompare.xml") count = 0 for sim in self.options.sim: simName = getRootDir(modify_dirname(sim)) currentFile = os.path.join(self.outDir, "mafCompare%s.xml" %simName) if count == 0: system("mv %s %s" % (currentFile, mergedFile)) logger.info("Moved %s to %s\n" %(currentFile, mergedFile)) else: system("mergeMafComparatorResults.py --logLevel DEBUG --results1 %s --results2 %s --outputFile %s" % (mergedFile, currentFile, mergedFile)) logger.info("Merged %s to %s\n" %(currentFile, mergedFile)) count += 1 #system("rm -f %s" % currentFile) #logger.info("Removed %s\n" %(currentFile)) class CactusTuningSummary(Target): """ """ def __init__(self, options): Target.__init__(self) self.options = options def run(self): getCactusTuningSummary(self.options.outputDir, self.options.species, self.options.sim) #============================ Getting parameters =======================================# def fn(min, max, loops): if loops == 0 or loops == 1: return 0 return float(min - max)/(loops - 1) #The value must be zero def getParameters(startFile): for minimumTreeCoverage in (0.0,): for annealingRounds in (5,): #1+trim+minimumChainLength/2): for lastzThreshold in (1800,): for (minimumTrim, maximumTrim) in ((0, 3),): trimChange = fn(minimumTrim, maximumTrim, annealingRounds) for minimumChainLength, maximumChainLength in ((5,30),): minimumChainLengthChange = fn(minimumChainLength, maximumChainLength, annealingRounds) for minimumBlockLength , maximumBlockLength in ((0, 0),): minimumBlockLengthChange = fn(minimumBlockLength, maximumBlockLength, annealingRounds) for alignRepeatsAtRound in set((0,)): for deannealingRounds in set((10,)): for baseLevel in (True,): #for minimumTreeCoverage in (0.0,0.5,1.0): # for annealingRounds in (5,): #1+trim+minimumChainLength/2): # for lastzThreshold in (1800,2200,2600,3000): # for (minimumTrim, maximumTrim) in ((0, 3),(1, 3),(2, 3),(3, 5)): # trimChange = fn(minimumTrim, maximumTrim, annealingRounds) # for minimumChainLength, maximumChainLength in ((5,30), (5,100), (10,30),(10, 100),(20,30),(20, 100)): # minimumChainLengthChange = fn(minimumChainLength, maximumChainLength, annealingRounds) # for minimumBlockLength , maximumBlockLength in ((0, 0),(2, 2),): # minimumBlockLengthChange = fn(minimumBlockLength, maximumBlockLength, annealingRounds) # for alignRepeatsAtRound in set((0,)): # for deannealingRounds in set((10,)): # for baseLevel in (True, False): config = ET.parse(startFile).getroot() iterationNode = config.find("alignment").find("iterations").findall("iteration")[-2] #node = config.find("alignment").find("iterations").findall("iteration")[-2].find("core") blastNode = iterationNode.find("blast") blastNode.attrib["blastString"] = "lastz --format=cigar --hspthresh=%s SEQ_FILE_1[multiple][nameparse=darkspace] SEQ_FILE_2[nameparse=darkspace] > CIGARS_FILE" % lastzThreshold blastNode.attrib["selfBlastString"]="lastz --format=cigar --hspthresh=%s SEQ_FILE[nameparse=darkspace] --self > CIGARS_FILE" % lastzThreshold node = iterationNode.find("core") node.attrib["minimumTreeCoverage"] = str(minimumTreeCoverage) node.attrib["annealingRounds"] = str(annealingRounds) node.attrib["trim"] = str(maximumTrim) node.attrib["trimChange"] = str(trimChange) node.attrib["alignRepeatsAtRound"] = str(alignRepeatsAtRound) node.attrib["minimumBlockLength"] = str(maximumBlockLength) node.attrib["minimumBlockLengthChange"] = str(minimumBlockLengthChange) node.attrib["minimumChainLength"] = str(maximumChainLength) node.attrib["minimumChainLengthChange"] = str(minimumChainLengthChange) node.attrib["deannealingRounds"] = str(deannealingRounds) #Remove the base alignment stage: if not baseLevel: config.find("alignment").find("iterations").remove(config.find("alignment").find("iterations").findall("iteration")[-1]) paramFile = os.path.join(os.getcwd(), "param.xml") fileHandle = open(paramFile, 'w') tree = ET.ElementTree(config) tree.write(fileHandle) fileHandle.close() yield (paramFile, ("results_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s" % (minimumTreeCoverage, annealingRounds, maximumTrim, trimChange, alignRepeatsAtRound, maximumChainLength, minimumChainLengthChange, maximumBlockLength, minimumBlockLengthChange, deannealingRounds, lastzThreshold, baseLevel))) #yield (paramFile, ("results_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s" % (minimumTreeCoverage, annealingRounds, maximumTrim, trimChange, alignRepeatsAtRound, maximumChainLength, minimumChainLengthChange, maximumBlockLength, minimumBlockLengthChange, deannealingRounds))) #============================ Results summary ==========================================# def getCactusTuningSummary(dir, species, sim): l = [] #Use the stat file of first simulation as an estimate for stats of other simulations: firstSimName = getRootDir(modify_dirname(sim[0])) for resultsName in os.listdir(dir): results = os.path.join(dir, resultsName) statsDir = os.path.join(results, "stats") #maxBlockMaxDegree = str(getStats(statsDir)) try: stats = ET.parse(os.path.join(statsDir, "%s.xml" %(firstSimName))).getroot() config = ET.parse(os.path.join(results, "param.xml")).getroot() scores = ET.parse(os.path.join(results, "mafCompare.xml")).getroot() except IOError: continue blocksNode = stats.find("blocks") sensNode = scores.findall("homology_tests")[0] specNode = scores.findall("homology_tests")[1] if len(config.find("alignment").find("iterations").findall("iteration")) == 4: baseLevel = True iterationNode = config.find("alignment").find("iterations").findall("iteration")[-2] else: baseLevel = False iterationNode = config.find("alignment").find("iterations").findall("iteration")[-1] node = iterationNode.find("core") #node = config.find("alignment").find("iterations").findall("iteration")[-2].find("core") #node = config.find("alignment").find("iterations").findall("iteration")[-1].find("core")#Because obmit the base level l.append((sensNode.attrib["average"], specNode.attrib["average"], node.attrib["minimumTreeCoverage"], node.attrib["annealingRounds"], \ node.attrib["trim"], node.attrib["trimChange"], \ node.attrib["alignRepeatsAtRound"], node.attrib["minimumChainLength"], \ node.attrib["minimumChainLengthChange"], node.attrib["deannealingRounds"], \ node.attrib["minimumBlockLength"], node.attrib["minimumBlockLengthChange"], \ node.attrib["deannealingRounds"], str(baseLevel), blocksNode.find("degrees").attrib["max"], scores.attrib["time"], \ fn("HUMAN", "MOUSE", sensNode), fn("HUMAN", "MOUSE", specNode),\ fn("HUMAN", "DOG", sensNode), fn("HUMAN", "DOG", specNode),\ fn("HUMAN", "CHIMP", sensNode), fn("HUMAN", "CHIMP", specNode),\ fn("HUMAN", "BABOON", sensNode), fn("HUMAN", "BABOON", specNode),\ fn("MOUSE", "RAT", sensNode), fn("MOUSE", "RAT", specNode),\ fn("DOG", "COW", sensNode), fn("DOG", "COW", specNode),\ fn("MOUSE", "DOG", sensNode), fn("MOUSE", "DOG", specNode), stats.find("terminal_group_sizes").attrib["max"], stats.find("chains").find("base_block_lengths").attrib["median"], stats.find("chains").find("base_block_lengths").attrib["avg"], stats.find("chains").find("base_block_lengths").attrib["max"], fn2("tangles", stats), fn2("links", stats), fn3(iterationNode.find("blast")))) #currList = [(sensNode.attrib["average"], specNode.attrib["average"], node.attrib["minimumTreeCoverage"], node.attrib["annealingRounds"], \ #node.attrib["trim"], node.attrib["trimChange"], \ #node.attrib["alignRepeatsAtRound"], node.attrib["minimumChainLength"], \ #node.attrib["minimumChainLengthChange"], node.attrib["deannealingRounds"], \ #node.attrib["minimumBlockLength"], node.attrib["minimumBlockLengthChange"], \ #node.attrib["deannealingRounds"], \ #blocksNode.find("degrees").attrib["max"], scores.attrib["time"], \ #stats.find("terminal_group_sizes").attrib["max"], \ #stats.find("chains").find("base_block_lengths").attrib["median"], \ #stats.find("chains").find("base_block_lengths").attrib["avg"], \ #stats.find("chains").find("base_block_lengths").attrib["max"], \ #fn2("tangles", stats), fn2("links", stats))] #for i in range(len(species) -1): # for j in range(i+1, len(species)): # currList.extend(fn1(species[i], species[j], sensNode)) # currList.extend(fn1(species[i], species[j], specNode)) #l.append(currList) stats = None config = None scores = None l.sort(cmpFn) l2 = ("sens\t\tspec\t\tmTCo", "AR", "trim", "trimR", "ARaL", "mCL", "mCLI", "mCLUSS", "mBL", "mBLC", "DAR", "BASE", "deg", "time", \ "HMSE", "HMSP", "HDSE", "HDSP", "HCSE", "HCSP", "HBSE", "HBSP", "MRSE", "MRSP", "DCSE", "DCSP", "MDSE", "MDSP", \ "TGS", "CML", "CAL", "CMXL", "NTTN", "NTLN") #l2 = ["sens", "spec", "mTCo", "AR", "trim", "trimR", "ARaL", "mCL", "mCLI", "mCLUSS", "mBL", "mBLC", "DAR", "deg", "time", \ # "TGS", "CML", "CAL", "CMXL", "NTTN", "NTLN"] #for i in range(len(species) -1): # for j in range(i+1, len(species)): # sensCol = "%s_%s_SE" %(species[i], species[j]) # specCol = "%s_%s_SP" %(species[i], species[j]) # l2.extend((sensCol, specCol)) #"HMSE", "HMSP", "HDSE", "HDSP", "HCSE", "HCSP", "HBSE", "HBSP", "MRSE", "MRSP", "DCSE", "DCSP", "MDSE", "MDSP", \ outFile = os.path.join(dir, "summary") f = open(outFile, 'w') f.write("\t".join(l2) + "\n") for i in l: f.write("\t".join(i) + "\n") #for c in i: # f.write(c + "\t") #f.write("\n") f.write("\t".join(l2) + "\n") f.close() def fn1(speciesA, speciesB, node): for hTest in node.findall("homology_test"): #print hTest.attrib, speciesA, speciesB if (hTest.attrib["sequenceA"] == speciesA and hTest.attrib["sequenceB"] == speciesB) or \ (hTest.attrib["sequenceA"] == speciesB and hTest.attrib["sequenceB"] == speciesA): return hTest.attrib["average"] assert False def fn2(type, node): for ends in node.findall("ends"): if ends.attrib["include_terminal_groups"] == '1' and ends.attrib["include_non_terminal_groups"] == '0': if type == "tangles" and ends.attrib["include_tangle_groups"] == '1' and ends.attrib["include_link_groups"] == '0': return ends.find("counts").attrib["total"] if type == "links" and ends.attrib["include_tangle_groups"] == '0' and ends.attrib["include_link_groups"] == '1': return ends.find("counts").attrib["total"] assert False def fn3(node): return node.attrib["blastString"].split()[2] def getStats(statsDir): maxBlockMaxDegree = 0 statsList = os.listdir(statsDir) for s in statsList: statsFile = os.path.join(statsDir, s) try: stats = ET.parse(statsFile).getroot() except IOError: continue blocksNode = stats.find("blocks") blockMaxDegree = int(blocksNode.find("degrees").attrib["max"]) if maxBlockMaxDegree < blockMaxDegree: maxBlockMaxDegree = blockMaxDegree return maxBlockMaxDegree #============================ Utilities functions ======================================# def runEvalMAFComparator(mafFile1, mafFile2, outputFile, sampleNumber): command = "mafComparator -b %s -c %s -d %s -e %s" %(mafFile1, mafFile2, outputFile, sampleNumber) system(command) logger.info("Compared MAF %s with MAF %s\n" %(mafFile1, mafFile2)) def runEvalMFAToMAF(mfa, maf): command = "mfaToMaf -b %s -d %s --logLevel DEBUG" %(mfa, maf) system(command) logger.info("Converted MFA %s to MAF %s\n" %(mfa, maf)) def cmpFn(a, b): i = float(a[0]) j = float(b[0]) return cmp(i, j) def modify_dirname(dir): """Add slash / at the end of the directory name if it doesnt have yet""" if (not re.search('/$', dir)): #not end with / dir = dir + '/' return dir def check_dir(path): """Check if directories on the path, and create them if not.""" if not os.path.exists(path): os.makedirs(path) def getList(file): f = open(file, 'r') list = [] for line in f.readlines(): list.append(line.rstrip()) f.close() return list def getFirstLine(file): f = open(file, 'r') line = f.readline().rstrip() f.close() return line def getRoot(path): pathLi = path.split('/') if len(pathLi) < 1: return '' else: li = pathLi[len(pathLi) -1].split('.') return li[0] def getRootDir(path): pathLi = path.split('/') if len(pathLi) < 2: return '' else: li = pathLi[len(pathLi) -2].split('.') return li[0] def main(): usg = "Usage: %prog [options]\n" parser = OptionParser(usage=usg) parser.add_option("-d", "--simList", dest="sim", help="List of simulation directories. Default: simulations.lst", default="simulations.lst") parser.add_option("-c", "--configStartFile", dest="config", help="cactus_workflow_config.xml", default="cactus_workflow_config.xml") parser.add_option("-o", "--outputDir", dest="outputDir", help="Directory for the outputs of the runs. Default: out", default="out/") parser.add_option("-m", "--simTrueMafDir", dest="simTrueMafDir", help="Directory for 'true' mafs of the simulations. Default: sim/", default="sim/") parser.add_option("-t", "--tree", dest="tree", help="Phylogeny tree of the species of interest, in Newick format.Default: tree", default="tree") parser.add_option("-s", "--species", dest="species", help="List of species in the order as they appear in the Newick tree. Default: species.lst", default="species.lst") parser.add_option("-j", "--job", dest="jobFile", help="Job file containing command to run.", default=None) (options, args) = parser.parse_args() #Process options: options.outputDir = modify_dirname(options.outputDir) check_dir(options.outputDir) options.tree = getFirstLine(options.tree) #assert options.tree == '' options.species = getFirstLine(options.species).split() #assert len(options.species) == 0 options.sim = getList(options.sim) #assert len(options.sim) == 0 #options.config = getList(options.config) #assert len(options.config) == 0 logger.info("Processed options\n") #Tuning cactusTuningWrapper = CactusTuningWrapper(options) cactusTuningWrapper.execute(options.jobFile) if __name__ == "__main__": main()
48.578067
322
0.623646
2a503d6bc20830efc2107181ea1fe9c606c94f0d
1,437
py
Python
examples/modular.py
RickardSjogren/sacred
93a0df32ddb22e7634790bda08b530bf7bc45d61
[ "MIT" ]
null
null
null
examples/modular.py
RickardSjogren/sacred
93a0df32ddb22e7634790bda08b530bf7bc45d61
[ "MIT" ]
null
null
null
examples/modular.py
RickardSjogren/sacred
93a0df32ddb22e7634790bda08b530bf7bc45d61
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 """ This is a very basic example of how to use Sacred. """ from sacred import Experiment, Ingredient # ============== Ingredient 0: settings ================= s = Ingredient("settings") @s.config def cfg1(): verbose = True # ============== Ingredient 1: dataset.paths ================= data_paths = Ingredient("dataset.paths", ingredients=[s]) @data_paths.config def cfg2(settings): v = not settings['verbose'] base = '/home/sacred/' # ============== Ingredient 2: dataset ======================= data = Ingredient("dataset", ingredients=[data_paths, s]) @data.config def cfg3(paths): basepath = paths['base'] + 'datasets/' filename = "foo.hdf5" @data.capture def foo(basepath, filename, paths, settings): print(paths) print(settings) return basepath + filename # ============== Experiment ============================== ex = Experiment('modular_example', ingredients=[data, data_paths]) @ex.config def cfg(dataset): a = 10 b = 17 c = a + b out_base = dataset['paths']['base'] + 'outputs/' out_filename = dataset['filename'].replace('.hdf5', '.out') @ex.automain def main(a, b, c, out_base, out_filename, dataset): print('a =', a) print('b =', b) print('c =', c) print('out_base =', out_base, out_filename) # print("dataset", dataset) # print("dataset.paths", dataset['paths']) print("foo()", foo())
21.447761
66
0.578984
031e735f9d4a1beaed5d151a0902951668f7cd29
102,742
py
Python
pyeccodes/defs/grib1/localConcepts/eswi/shortName_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
7
2020-04-14T09:41:17.000Z
2021-08-06T09:38:19.000Z
pyeccodes/defs/grib1/localConcepts/eswi/shortName_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
null
null
null
pyeccodes/defs/grib1/localConcepts/eswi/shortName_def.py
ecmwf/pyeccodes
dce2c72d3adcc0cb801731366be53327ce13a00b
[ "Apache-2.0" ]
3
2020-04-30T12:44:48.000Z
2020-12-15T08:40:26.000Z
import pyeccodes.accessors as _ def load(h): def wrapped(h): table2Version = h.get_l('table2Version') indicatorOfParameter = h.get_l('indicatorOfParameter') if table2Version == 253 and indicatorOfParameter == 239: return 'zt' if table2Version == 253 and indicatorOfParameter == 6: return 'z' if table2Version == 253 and indicatorOfParameter == 161: return 'xhail' if table2Version == 253 and indicatorOfParameter == 30: return 'wvsp' if table2Version == 253 and indicatorOfParameter == 80: return 'wtmp' if table2Version == 253 and indicatorOfParameter == 32: return 'ws' if table2Version == 253 and indicatorOfParameter == 126: return 'wmixe' if table2Version == 253 and indicatorOfParameter == 245: return 'wevap' if table2Version == 253 and indicatorOfParameter == 31: return 'wdir' if table2Version == 253 and indicatorOfParameter == 193: return 'w_so_ice' if table2Version == 253 and indicatorOfParameter == 192: return 'w_i' if table2Version == 253 and indicatorOfParameter == 39: return 'w' if table2Version == 253 and indicatorOfParameter == 46: return 'vvcsh' if table2Version == 253 and indicatorOfParameter == 45: return 'vucsh' if table2Version == 253 and indicatorOfParameter == 12: return 'vptmp' if table2Version == 253 and indicatorOfParameter == 55: return 'vp' if table2Version == 253 and indicatorOfParameter == 43: return 'vo' if table2Version == 253 and indicatorOfParameter == 20: return 'vis' if table2Version == 253 and indicatorOfParameter == 96: return 'vice' if table2Version == 253 and indicatorOfParameter == 163: return 'vgst' if table2Version == 253 and indicatorOfParameter == 125: return 'vflx' if table2Version == 253 and indicatorOfParameter == 87: return 'veg' if table2Version == 253 and indicatorOfParameter == 213: return 'vdiv' if table2Version == 253 and indicatorOfParameter == 50: return 'vcurr' if table2Version == 253 and indicatorOfParameter == 34: return 'v' if table2Version == 253 and indicatorOfParameter == 214: return 'upom' if table2Version == 253 and indicatorOfParameter == 216: return 'upmf' if table2Version == 253 and indicatorOfParameter == 95: return 'uice' if table2Version == 253 and indicatorOfParameter == 162: return 'ugst' if table2Version == 253 and indicatorOfParameter == 124: return 'uflx' if table2Version == 253 and indicatorOfParameter == 49: return 'ucurr' if table2Version == 253 and indicatorOfParameter == 33: return 'u' if table2Version == 253 and indicatorOfParameter == 40: return 'tw' if table2Version == 253 and indicatorOfParameter == 68: return 'tthdp' if table2Version == 253 and indicatorOfParameter == 60: return 'tstm' if table2Version == 253 and indicatorOfParameter == 185: return 'tpsolid' if table2Version == 253 and indicatorOfParameter == 61: return 'tp' if table2Version == 253 and indicatorOfParameter == 167: return 'totqv' if table2Version == 253 and indicatorOfParameter == 16: return 'tmin' if table2Version == 253 and indicatorOfParameter == 15: return 'tmax' if table2Version == 253 and indicatorOfParameter == 200: return 'tke' if table2Version == 253 and indicatorOfParameter == 17: return 'td' if table2Version == 253 and indicatorOfParameter == 10: return 'tco' if table2Version == 253 and indicatorOfParameter == 71: return 'tcc' if table2Version == 253 and indicatorOfParameter == 25: return 'ta' if table2Version == 253 and indicatorOfParameter == 11: return 't' if table2Version == 253 and indicatorOfParameter == 238: return 'swv' if table2Version == 253 and indicatorOfParameter == 120: return 'swrad' if table2Version == 253 and indicatorOfParameter == 106: return 'swper' if table2Version == 253 and indicatorOfParameter == 110: return 'swp' if table2Version == 253 and indicatorOfParameter == 100: return 'swh' if table2Version == 253 and indicatorOfParameter == 105: return 'swell' if table2Version == 253 and indicatorOfParameter == 104: return 'swdir' if table2Version == 253 and indicatorOfParameter == 116: return 'swavr' if table2Version == 253 and indicatorOfParameter == 35: return 'strf' if table2Version == 253 and indicatorOfParameter == 220: return 'stdo' if table2Version == 253 and indicatorOfParameter == 122: return 'sshf' if table2Version == 253 and indicatorOfParameter == 64: return 'srweq' if table2Version == 253 and indicatorOfParameter == 83: return 'srg' if table2Version == 253 and indicatorOfParameter == 182: return 'srain' if table2Version == 253 and indicatorOfParameter == 48: return 'spc' if table2Version == 253 and indicatorOfParameter == 246: return 'snsub' if table2Version == 253 and indicatorOfParameter == 184: return 'snow' if table2Version == 253 and indicatorOfParameter == 99: return 'snom' if table2Version == 253 and indicatorOfParameter == 231: return 'smnr' if table2Version == 253 and indicatorOfParameter == 86: return 'sm' if table2Version == 253 and indicatorOfParameter == 85: return 'slt' if table2Version == 253 and indicatorOfParameter == 121: return 'slhf' if table2Version == 253 and indicatorOfParameter == 226: return 'slfr' if table2Version == 253 and indicatorOfParameter == 237: return 'sld' if table2Version == 253 and indicatorOfParameter == 94: return 'siced' if table2Version == 253 and indicatorOfParameter == 102: return 'shww' if table2Version == 253 and indicatorOfParameter == 247: return 'shis' if table2Version == 253 and indicatorOfParameter == 38: return 'sgcvv' if table2Version == 253 and indicatorOfParameter == 65: return 'sf' if table2Version == 253 and indicatorOfParameter == 235: return 'se' if table2Version == 253 and indicatorOfParameter == 66: return 'sdp' if table2Version == 253 and indicatorOfParameter == 56: return 'satd' if table2Version == 253 and indicatorOfParameter == 88: return 's' if table2Version == 253 and indicatorOfParameter == 191: return 'rsn' if table2Version == 253 and indicatorOfParameter == 90: return 'ro' if table2Version == 253 and indicatorOfParameter == 242: return 'rmx' if table2Version == 253 and indicatorOfParameter == 241: return 'rmn' if table2Version == 253 and indicatorOfParameter == 240: return 'rev' if table2Version == 253 and indicatorOfParameter == 210: return 'refl' if table2Version == 253 and indicatorOfParameter == 23: return 'rdsp' if table2Version == 253 and indicatorOfParameter == 181: return 'rain' if table2Version == 253 and indicatorOfParameter == 52: return 'r' if table2Version == 253 and indicatorOfParameter == 51: return 'q' if table2Version == 253 and indicatorOfParameter == 54: return 'pwat' if table2Version == 253 and indicatorOfParameter == 4: return 'pv' if table2Version == 253 and indicatorOfParameter == 3: return 'ptend' if table2Version == 253 and indicatorOfParameter == 13: return 'pt' if table2Version == 253 and indicatorOfParameter == 138: return 'pstbc' if table2Version == 253 and indicatorOfParameter == 137: return 'pstb' if table2Version == 253 and indicatorOfParameter == 139: return 'pscw' if table2Version == 253 and indicatorOfParameter == 136: return 'psct' if table2Version == 253 and indicatorOfParameter == 144: return 'prtp' if table2Version == 253 and indicatorOfParameter == 26: return 'presa' if table2Version == 253 and indicatorOfParameter == 1: return 'pres' if table2Version == 253 and indicatorOfParameter == 59: return 'prate' if table2Version == 253 and indicatorOfParameter == 24: return 'pli' if table2Version == 253 and indicatorOfParameter == 212: return 'pdep' if table2Version == 253 and indicatorOfParameter == 14: return 'papt' if table2Version == 253 and indicatorOfParameter == 113: return 'nswrt' if table2Version == 253 and indicatorOfParameter == 111: return 'nswrs' if table2Version == 253 and indicatorOfParameter == 114: return 'nlwrt' if table2Version == 253 and indicatorOfParameter == 112: return 'nlwrs' if table2Version == 253 and indicatorOfParameter == 69: return 'mthd' if table2Version == 253 and indicatorOfParameter == 70: return 'mtha' if table2Version == 253 and indicatorOfParameter == 2: return 'msl' if table2Version == 253 and indicatorOfParameter == 133: return 'msca' if table2Version == 253 and indicatorOfParameter == 158: return 'mrad' if table2Version == 253 and indicatorOfParameter == 103: return 'mpww' if table2Version == 253 and indicatorOfParameter == 108: return 'mpps' if table2Version == 253 and indicatorOfParameter == 37: return 'mntsf' if table2Version == 253 and indicatorOfParameter == 67: return 'mld' if table2Version == 253 and indicatorOfParameter == 53: return 'mixr' if table2Version == 253 and indicatorOfParameter == 101: return 'mdww' if table2Version == 253 and indicatorOfParameter == 107: return 'mdps' if table2Version == 253 and indicatorOfParameter == 166: return 'mcn' if table2Version == 253 and indicatorOfParameter == 74: return 'mcc' if table2Version == 253 and indicatorOfParameter == 119: return 'lwrad' if table2Version == 253 and indicatorOfParameter == 115: return 'lwavr' if table2Version == 253 and indicatorOfParameter == 62: return 'lsp' if table2Version == 253 and indicatorOfParameter == 81: return 'lsm' if table2Version == 253 and indicatorOfParameter == 79: return 'lsf' if table2Version == 253 and indicatorOfParameter == 244: return 'lhsub' if table2Version == 253 and indicatorOfParameter == 132: return 'lhe' if table2Version == 253 and indicatorOfParameter == 209: return 'lgt' if table2Version == 253 and indicatorOfParameter == 73: return 'lcc' if table2Version == 253 and indicatorOfParameter == 19: return 'lapr' if table2Version == 253 and indicatorOfParameter == 232: return 'lai' if table2Version == 253 and indicatorOfParameter == 127: return 'imgd' if table2Version == 253 and indicatorOfParameter == 92: return 'icetk' if table2Version == 253 and indicatorOfParameter == 135: return 'icei' if table2Version == 253 and indicatorOfParameter == 97: return 'iceg' if table2Version == 253 and indicatorOfParameter == 98: return 'iced' if table2Version == 253 and indicatorOfParameter == 91: return 'icec' if table2Version == 253 and indicatorOfParameter == 5: return 'icaht' if table2Version == 253 and indicatorOfParameter == 9: return 'hstdv' if table2Version == 253 and indicatorOfParameter == 75: return 'hcc' if table2Version == 253 and indicatorOfParameter == 204: return 'hail' if table2Version == 253 and indicatorOfParameter == 8: return 'h' if table2Version == 253 and indicatorOfParameter == 196: return 'gwdv' if table2Version == 253 and indicatorOfParameter == 195: return 'gwdu' if table2Version == 253 and indicatorOfParameter == 201: return 'grpl' if table2Version == 253 and indicatorOfParameter == 117: return 'grad' if table2Version == 253 and indicatorOfParameter == 27: return 'gpa' if table2Version == 253 and indicatorOfParameter == 7: return 'gh' if table2Version == 253 and indicatorOfParameter == 188: return 'ful' if table2Version == 253 and indicatorOfParameter == 129: return 'frmsp' if table2Version == 253 and indicatorOfParameter == 228: return 'fg' if table2Version == 253 and indicatorOfParameter == 57: return 'e' if table2Version == 253 and indicatorOfParameter == 234: return 'dvi' if table2Version == 253 and indicatorOfParameter == 243: return 'dutp' if table2Version == 253 and indicatorOfParameter == 222: return 'dtop' if table2Version == 253 and indicatorOfParameter == 82: return 'dslm' if table2Version == 253 and indicatorOfParameter == 215: return 'dnom' if table2Version == 253 and indicatorOfParameter == 217: return 'dnmf' if table2Version == 253 and indicatorOfParameter == 109: return 'dirsw' if table2Version == 253 and indicatorOfParameter == 47: return 'dirc' if table2Version == 253 and indicatorOfParameter == 93: return 'diced' if table2Version == 253 and indicatorOfParameter == 18: return 'depr' if table2Version == 253 and indicatorOfParameter == 89: return 'den' if table2Version == 253 and indicatorOfParameter == 44: return 'd' if table2Version == 253 and indicatorOfParameter == 76: return 'cwat' if table2Version == 253 and indicatorOfParameter == 187: return 'ct' if table2Version == 253 and indicatorOfParameter == 130: return 'cssw' if table2Version == 253 and indicatorOfParameter == 131: return 'cslw' if table2Version == 253 and indicatorOfParameter == 78: return 'csf' if table2Version == 253 and indicatorOfParameter == 183: return 'cr' if table2Version == 253 and indicatorOfParameter == 250: return 'co' if table2Version == 253 and indicatorOfParameter == 225: return 'clfr' if table2Version == 253 and indicatorOfParameter == 58: return 'ciwc' if table2Version == 253 and indicatorOfParameter == 72: return 'ccc' if table2Version == 253 and indicatorOfParameter == 186: return 'cb' if table2Version == 253 and indicatorOfParameter == 160: return 'cape' if table2Version == 253 and indicatorOfParameter == 118: return 'btmp' if table2Version == 253 and indicatorOfParameter == 249: return 'bo' if table2Version == 253 and indicatorOfParameter == 77: return 'bli' if table2Version == 253 and indicatorOfParameter == 123: return 'bld' if table2Version == 253 and indicatorOfParameter == 221: return 'atop' if table2Version == 253 and indicatorOfParameter == 190: return 'asn' if table2Version == 253 and indicatorOfParameter == 128: return 'armsp' if table2Version == 253 and indicatorOfParameter == 248: return 'ao' if table2Version == 253 and indicatorOfParameter == 230: return 'alv' if table2Version == 253 and indicatorOfParameter == 229: return 'alb' if table2Version == 253 and indicatorOfParameter == 84: return 'al' if table2Version == 253 and indicatorOfParameter == 251: return 'aers' if table2Version == 253 and indicatorOfParameter == 252: return 'aerl' if table2Version == 253 and indicatorOfParameter == 254: return 'aerd' if table2Version == 253 and indicatorOfParameter == 253: return 'aerc' if table2Version == 253 and indicatorOfParameter == 63: return 'acpcp' if table2Version == 253 and indicatorOfParameter == 41: return 'absv' if table2Version == 253 and indicatorOfParameter == 42: return 'absd' if table2Version == 151 and indicatorOfParameter == 255: return 'Missing' if table2Version == 151 and indicatorOfParameter == 57: return 'eP' if table2Version == 151 and indicatorOfParameter == 3: return 'tp_>50' if table2Version == 151 and indicatorOfParameter == 2: return 'tp_10_50' if table2Version == 151 and indicatorOfParameter == 1: return 'tp_1_10' if table2Version == 151 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 150 and indicatorOfParameter == 255: return 'Missing' if table2Version == 150 and indicatorOfParameter == 58: return 'spw' if table2Version == 150 and indicatorOfParameter == 57: return 'eP' if table2Version == 150 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 140 and indicatorOfParameter == 255: return 'Missing' if table2Version == 140 and indicatorOfParameter == 9: return 'STDC' if table2Version == 140 and indicatorOfParameter == 8: return 'SCTCDC' if table2Version == 140 and indicatorOfParameter == 7: return 'SCTGDC' if table2Version == 140 and indicatorOfParameter == 6: return 'TAAPC' if table2Version == 140 and indicatorOfParameter == 5: return 'CTCAAPC' if table2Version == 140 and indicatorOfParameter == 4: return 'CTGAAPC' if table2Version == 140 and indicatorOfParameter == 3: return 'TDC' if table2Version == 140 and indicatorOfParameter == 2: return 'CTCDC' if table2Version == 140 and indicatorOfParameter == 1: return 'CTGDC' if table2Version == 140 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 137 and indicatorOfParameter == 255: return 'Missing' if table2Version == 137 and indicatorOfParameter == 137: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 136: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 135: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 134: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 133: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 132: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 131: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 130: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 127: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 126: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 125: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 124: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 123: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 122: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 121: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 120: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 117: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 116: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 115: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 114: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 113: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 112: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 111: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 110: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 107: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 106: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 105: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 104: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 103: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 102: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 101: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 100: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 77: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 76: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 75: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 74: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 73: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 72: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 71: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 70: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 67: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 66: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 65: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 64: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 63: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 62: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 61: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 60: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 57: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 56: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 55: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 54: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 53: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 52: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 51: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 50: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 47: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 46: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 45: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 44: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 43: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 42: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 41: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 40: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 37: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 36: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 35: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 34: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 33: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 32: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 31: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 30: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 27: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 26: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 25: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 24: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 23: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 22: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 21: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 20: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 17: return 'SOX_HIL' if table2Version == 137 and indicatorOfParameter == 16: return 'XSOX_TOT' if table2Version == 137 and indicatorOfParameter == 15: return 'XSOX_WET' if table2Version == 137 and indicatorOfParameter == 14: return 'XSOX_DRY_WA' if table2Version == 137 and indicatorOfParameter == 13: return 'XSOX_DRY_UR' if table2Version == 137 and indicatorOfParameter == 12: return 'XSOX_DRY_MH' if table2Version == 137 and indicatorOfParameter == 11: return 'XSOX_DRY_WE' if table2Version == 137 and indicatorOfParameter == 10: return 'XSOX_DRY_PI' if table2Version == 137 and indicatorOfParameter == 7: return 'XSOX_DRY_SP' if table2Version == 137 and indicatorOfParameter == 6: return 'XSOX_DRY_DE' if table2Version == 137 and indicatorOfParameter == 5: return 'XSOX_DRY_BO' if table2Version == 137 and indicatorOfParameter == 4: return 'XSOX_DRY_AR' if table2Version == 137 and indicatorOfParameter == 3: return 'XSOX_DRY_PA' if table2Version == 137 and indicatorOfParameter == 2: return 'XSOX_DRY_MIX' if table2Version == 137 and indicatorOfParameter == 1: return 'XSOX_HIL' if table2Version == 137 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 136 and indicatorOfParameter == 255: return 'Missing' if table2Version == 136 and indicatorOfParameter == 206: return 'totO3' if table2Version == 136 and indicatorOfParameter == 175: return 'sn_1h' if table2Version == 136 and indicatorOfParameter == 165: return 'pr_1h' if table2Version == 136 and indicatorOfParameter == 120: return 'PAR' if table2Version == 136 and indicatorOfParameter == 119: return 'sun' if table2Version == 136 and indicatorOfParameter == 118: return 'BNirr' if table2Version == 136 and indicatorOfParameter == 117: return 'GLirr' if table2Version == 136 and indicatorOfParameter == 116: return 'UVirr' if table2Version == 136 and indicatorOfParameter == 91: return 'icec' if table2Version == 136 and indicatorOfParameter == 84: return 'al' if table2Version == 136 and indicatorOfParameter == 79: return 'ct_sig' if table2Version == 136 and indicatorOfParameter == 78: return 'cb_sig' if table2Version == 136 and indicatorOfParameter == 77: return 'cb_sigpr' if table2Version == 136 and indicatorOfParameter == 73: return 'lcc' if table2Version == 136 and indicatorOfParameter == 71: return 'tcc' if table2Version == 136 and indicatorOfParameter == 66: return 'sd' if table2Version == 136 and indicatorOfParameter == 54: return 'pwat' if table2Version == 136 and indicatorOfParameter == 51: return 'q' if table2Version == 136 and indicatorOfParameter == 11: return 't' if table2Version == 136 and indicatorOfParameter == 1: return 'pres' if table2Version == 136 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 135 and indicatorOfParameter == 255: return 'Missing' if table2Version == 135 and indicatorOfParameter == 254: return 'nlpres' if table2Version == 135 and indicatorOfParameter == 253: return 'isor' if table2Version == 135 and indicatorOfParameter == 252: return 'gwd' if table2Version == 135 and indicatorOfParameter == 251: return 'slsgor' if table2Version == 135 and indicatorOfParameter == 250: return 'angsgor' if table2Version == 135 and indicatorOfParameter == 249: return 'stdsgor' if table2Version == 135 and indicatorOfParameter == 248: return '5wava' if table2Version == 135 and indicatorOfParameter == 247: return 'hbpl' if table2Version == 135 and indicatorOfParameter == 246: return 'v-gwd' if table2Version == 135 and indicatorOfParameter == 245: return 'u-gwd' if table2Version == 135 and indicatorOfParameter == 244: return '5wavh' if table2Version == 135 and indicatorOfParameter == 243: return 'denalt' if table2Version == 135 and indicatorOfParameter == 242: return 'presalt' if table2Version == 135 and indicatorOfParameter == 241: return 'thick' if table2Version == 135 and indicatorOfParameter == 240: return 'alts' if table2Version == 135 and indicatorOfParameter == 239: return 'eta' if table2Version == 135 and indicatorOfParameter == 238: return 'cd' if table2Version == 135 and indicatorOfParameter == 237: return 'vstm' if table2Version == 135 and indicatorOfParameter == 236: return 'ustm' if table2Version == 135 and indicatorOfParameter == 235: return 'mflx' if table2Version == 135 and indicatorOfParameter == 234: return 'vwsh' if table2Version == 135 and indicatorOfParameter == 233: return 'vgust' if table2Version == 135 and indicatorOfParameter == 232: return 'ugust' if table2Version == 135 and indicatorOfParameter == 231: return 'cswc' if table2Version == 135 and indicatorOfParameter == 230: return 'crwc' if table2Version == 135 and indicatorOfParameter == 229: return 'ciwc' if table2Version == 135 and indicatorOfParameter == 228: return 'clwc' if table2Version == 135 and indicatorOfParameter == 227: return 'iprate' if table2Version == 135 and indicatorOfParameter == 226: return 'fprate' if table2Version == 135 and indicatorOfParameter == 225: return 'sprate' if table2Version == 135 and indicatorOfParameter == 224: return 'rprate' if table2Version == 135 and indicatorOfParameter == 223: return 'tciwv' if table2Version == 135 and indicatorOfParameter == 222: return 'se' if table2Version == 135 and indicatorOfParameter == 221: return 'sdwe' if table2Version == 135 and indicatorOfParameter == 220: return 'lssrate' if table2Version == 135 and indicatorOfParameter == 219: return 'csrate' if table2Version == 135 and indicatorOfParameter == 218: return 'tsrate' if table2Version == 135 and indicatorOfParameter == 217: return 'prs_gsp' if table2Version == 135 and indicatorOfParameter == 216: return 'csrwe' if table2Version == 135 and indicatorOfParameter == 215: return 'lsprate' if table2Version == 135 and indicatorOfParameter == 214: return 'tcw' if table2Version == 135 and indicatorOfParameter == 213: return 'tsnowp' if table2Version == 135 and indicatorOfParameter == 212: return 'twatp' if table2Version == 135 and indicatorOfParameter == 211: return 'tqs' if table2Version == 135 and indicatorOfParameter == 210: return 'tqr' if table2Version == 135 and indicatorOfParameter == 209: return 'facra' if table2Version == 135 and indicatorOfParameter == 208: return 'fra' if table2Version == 135 and indicatorOfParameter == 171: return 'AOD-10000' if table2Version == 135 and indicatorOfParameter == 170: return 'AOD-3500' if table2Version == 135 and indicatorOfParameter == 169: return 'AOD-1064' if table2Version == 135 and indicatorOfParameter == 168: return 'AOD-1020' if table2Version == 135 and indicatorOfParameter == 167: return 'AOD-870' if table2Version == 135 and indicatorOfParameter == 166: return 'AOD-675' if table2Version == 135 and indicatorOfParameter == 165: return 'AOD-532' if table2Version == 135 and indicatorOfParameter == 164: return 'AOD-500' if table2Version == 135 and indicatorOfParameter == 163: return 'AOD-440' if table2Version == 135 and indicatorOfParameter == 162: return 'AOD-380' if table2Version == 135 and indicatorOfParameter == 161: return 'AOD-355' if table2Version == 135 and indicatorOfParameter == 160: return 'AOD-340' if table2Version == 135 and indicatorOfParameter == 151: return 'EXT-10000' if table2Version == 135 and indicatorOfParameter == 150: return 'EXT-3500' if table2Version == 135 and indicatorOfParameter == 149: return 'EXT-1064' if table2Version == 135 and indicatorOfParameter == 148: return 'EXT-1020' if table2Version == 135 and indicatorOfParameter == 147: return 'EXT-870' if table2Version == 135 and indicatorOfParameter == 146: return 'EXT-675' if table2Version == 135 and indicatorOfParameter == 145: return 'EXT-532' if table2Version == 135 and indicatorOfParameter == 144: return 'EXT-500' if table2Version == 135 and indicatorOfParameter == 143: return 'EXT-440' if table2Version == 135 and indicatorOfParameter == 142: return 'EXT-380' if table2Version == 135 and indicatorOfParameter == 141: return 'EXT-355' if table2Version == 135 and indicatorOfParameter == 140: return 'EXT-340' if table2Version == 135 and indicatorOfParameter == 131: return 'BSCA-10000' if table2Version == 135 and indicatorOfParameter == 130: return 'BSCA-3500' if table2Version == 135 and indicatorOfParameter == 129: return 'BSCA-1064' if table2Version == 135 and indicatorOfParameter == 128: return 'BSCA-1020' if table2Version == 135 and indicatorOfParameter == 127: return 'BSCA-870' if table2Version == 135 and indicatorOfParameter == 126: return 'BSCA-675' if table2Version == 135 and indicatorOfParameter == 125: return 'BSCA-532' if table2Version == 135 and indicatorOfParameter == 124: return 'BSCA-500' if table2Version == 135 and indicatorOfParameter == 123: return 'BSCA-440' if table2Version == 135 and indicatorOfParameter == 122: return 'BSCA-380' if table2Version == 135 and indicatorOfParameter == 121: return 'BSCA-355' if table2Version == 135 and indicatorOfParameter == 120: return 'BSCA-340' if table2Version == 135 and indicatorOfParameter == 111: return 'VIS-10000' if table2Version == 135 and indicatorOfParameter == 110: return 'VIS-3500' if table2Version == 135 and indicatorOfParameter == 109: return 'VIS-1064' if table2Version == 135 and indicatorOfParameter == 108: return 'VIS-1020' if table2Version == 135 and indicatorOfParameter == 107: return 'VIS-870' if table2Version == 135 and indicatorOfParameter == 106: return 'VIS-675' if table2Version == 135 and indicatorOfParameter == 105: return 'VIS-532' if table2Version == 135 and indicatorOfParameter == 104: return 'VIS-500' if table2Version == 135 and indicatorOfParameter == 103: return 'VIS-440' if table2Version == 135 and indicatorOfParameter == 102: return 'VIS-380' if table2Version == 135 and indicatorOfParameter == 101: return 'VIS-355' if table2Version == 135 and indicatorOfParameter == 100: return 'VIS-340' if table2Version == 135 and indicatorOfParameter == 5: return 'GRG5' if table2Version == 135 and indicatorOfParameter == 4: return 'GRG4' if table2Version == 135 and indicatorOfParameter == 3: return 'GRG3' if table2Version == 135 and indicatorOfParameter == 2: return 'GRG2' if table2Version == 135 and indicatorOfParameter == 1: return 'GRG1' if table2Version == 135 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 134 and indicatorOfParameter == 255: return 'Missing' if table2Version == 134 and indicatorOfParameter == 113: return 'H2CCHCl' if table2Version == 134 and indicatorOfParameter == 112: return 'COCl2' if table2Version == 134 and indicatorOfParameter == 111: return 'HCN' if table2Version == 134 and indicatorOfParameter == 110: return 'SF6' if table2Version == 134 and indicatorOfParameter == 108: return 'CH3NH2' if table2Version == 134 and indicatorOfParameter == 107: return 'CS2' if table2Version == 134 and indicatorOfParameter == 106: return 'Hcl' if table2Version == 134 and indicatorOfParameter == 105: return 'HF' if table2Version == 134 and indicatorOfParameter == 103: return 'CH2OC2' if table2Version == 134 and indicatorOfParameter == 102: return 'CH2OC2H3Cl' if table2Version == 134 and indicatorOfParameter == 101: return '(CH3)2NNH2' if table2Version == 134 and indicatorOfParameter == 100: return 'CH2CHCN' if table2Version == 134 and indicatorOfParameter == 92: return 'TOLUENE' if table2Version == 134 and indicatorOfParameter == 91: return 'BIGALK' if table2Version == 134 and indicatorOfParameter == 90: return 'BIGENE' if table2Version == 134 and indicatorOfParameter == 84: return 'CH2CO2HCH3' if table2Version == 134 and indicatorOfParameter == 83: return 'CH2CCH3' if table2Version == 134 and indicatorOfParameter == 82: return 'MACOOH' if table2Version == 134 and indicatorOfParameter == 81: return 'MACO3H' if table2Version == 134 and indicatorOfParameter == 80: return 'MACRO2' if table2Version == 134 and indicatorOfParameter == 79: return 'AOH1H' if table2Version == 134 and indicatorOfParameter == 78: return 'AOH1' if table2Version == 134 and indicatorOfParameter == 77: return 'MACR' if table2Version == 134 and indicatorOfParameter == 76: return 'ISNIRH' if table2Version == 134 and indicatorOfParameter == 75: return 'ISNIR' if table2Version == 134 and indicatorOfParameter == 74: return 'ISNI' if table2Version == 134 and indicatorOfParameter == 70: return 'BENZENE' if table2Version == 134 and indicatorOfParameter == 68: return 'MVKO2H' if table2Version == 134 and indicatorOfParameter == 67: return 'MVKO2' if table2Version == 134 and indicatorOfParameter == 66: return 'MVK' if table2Version == 134 and indicatorOfParameter == 65: return 'ISRO2H' if table2Version == 134 and indicatorOfParameter == 64: return 'OXYO2' if table2Version == 134 and indicatorOfParameter == 63: return 'XO2' if table2Version == 134 and indicatorOfParameter == 62: return 'IPRO2' if table2Version == 134 and indicatorOfParameter == 61: return 'MALO2H' if table2Version == 134 and indicatorOfParameter == 60: return 'CH3COCHO2HCH3' if table2Version == 134 and indicatorOfParameter == 59: return 'CH3CHOOHCH2OH' if table2Version == 134 and indicatorOfParameter == 58: return 'CH2OOHCH2OH' if table2Version == 134 and indicatorOfParameter == 57: return 'SECC4H9O2H' if table2Version == 134 and indicatorOfParameter == 56: return 'OXYO2H' if table2Version == 134 and indicatorOfParameter == 55: return 'CH3COO2H' if table2Version == 134 and indicatorOfParameter == 54: return 'C2H5OOH' if table2Version == 134 and indicatorOfParameter == 53: return 'ISOPROD' if table2Version == 134 and indicatorOfParameter == 52: return 'ISRO2' if table2Version == 134 and indicatorOfParameter == 51: return 'MALO2' if table2Version == 134 and indicatorOfParameter == 50: return 'MAL' if table2Version == 134 and indicatorOfParameter == 49: return 'CH3CHO2CH2OH' if table2Version == 134 and indicatorOfParameter == 48: return 'CH2O2CH2OH' if table2Version == 134 and indicatorOfParameter == 47: return 'ACETOL' if table2Version == 134 and indicatorOfParameter == 46: return 'CH3COCHO2CH3' if table2Version == 134 and indicatorOfParameter == 45: return 'SECC4H9O2' if table2Version == 134 and indicatorOfParameter == 44: return 'CH3COO2' if table2Version == 134 and indicatorOfParameter == 43: return 'C2H5O2' if table2Version == 134 and indicatorOfParameter == 42: return 'CH3O2H' if table2Version == 134 and indicatorOfParameter == 41: return 'CH3O2' if table2Version == 134 and indicatorOfParameter == 40: return '-' if table2Version == 134 and indicatorOfParameter == 34: return 'O1D' if table2Version == 134 and indicatorOfParameter == 33: return 'O' if table2Version == 134 and indicatorOfParameter == 32: return 'H2' if table2Version == 134 and indicatorOfParameter == 31: return 'HO2' if table2Version == 134 and indicatorOfParameter == 30: return 0 if table2Version == 134 and indicatorOfParameter == 29: return 'HONO' if table2Version == 134 and indicatorOfParameter == 28: return 'ISONO3H' if table2Version == 134 and indicatorOfParameter == 27: return 'MPAN' if table2Version == 134 and indicatorOfParameter == 26: return 'HO2NO2' if table2Version == 134 and indicatorOfParameter == 25: return 'ISONRO2' if table2Version == 134 and indicatorOfParameter == 24: return 'ONIT' if table2Version == 134 and indicatorOfParameter == 23: return 'N2O5' if table2Version == 134 and indicatorOfParameter == 22: return 'NO3' if table2Version == 134 and indicatorOfParameter == 21: return 'PAN' if table2Version == 134 and indicatorOfParameter == 20: return 0 if table2Version == 134 and indicatorOfParameter == 19: return 'NMVOC_C' if table2Version == 134 and indicatorOfParameter == 15: return 'CH3COOH' if table2Version == 134 and indicatorOfParameter == 14: return 'HCOOH' if table2Version == 134 and indicatorOfParameter == 13: return 'CH3OH' if table2Version == 134 and indicatorOfParameter == 12: return 'C2H5OH' if table2Version == 134 and indicatorOfParameter == 11: return 'C5H8' if table2Version == 134 and indicatorOfParameter == 10: return 'GLYOX' if table2Version == 134 and indicatorOfParameter == 9: return 'MGLYOX' if table2Version == 134 and indicatorOfParameter == 8: return 'CH3COC2H5' if table2Version == 134 and indicatorOfParameter == 7: return 'CH3CHO' if table2Version == 134 and indicatorOfParameter == 6: return 'HCHO' if table2Version == 134 and indicatorOfParameter == 5: return 'OXYLENE' if table2Version == 134 and indicatorOfParameter == 4: return 'C3H6' if table2Version == 134 and indicatorOfParameter == 3: return 'C2H4' if table2Version == 134 and indicatorOfParameter == 2: return 'NC4H10' if table2Version == 134 and indicatorOfParameter == 1: return 'C2H6' if table2Version == 134 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 133 and indicatorOfParameter == 255: return 'Missing' if table2Version == 133 and indicatorOfParameter == 243: return 'dpt' if table2Version == 133 and indicatorOfParameter == 239: return 'tsn' if table2Version == 133 and indicatorOfParameter == 233: return 'wcurmean' if table2Version == 133 and indicatorOfParameter == 232: return 'vcurmean' if table2Version == 133 and indicatorOfParameter == 231: return 'ucurmean' if table2Version == 133 and indicatorOfParameter == 223: return 'Rd' if table2Version == 133 and indicatorOfParameter == 222: return 'Rh' if table2Version == 133 and indicatorOfParameter == 221: return 'hrdg' if table2Version == 133 and indicatorOfParameter == 220: return 'hlev' if table2Version == 133 and indicatorOfParameter == 203: return 'Kh' if table2Version == 133 and indicatorOfParameter == 202: return 'Km' if table2Version == 133 and indicatorOfParameter == 201: return 'DTKE' if table2Version == 133 and indicatorOfParameter == 200: return 'TKE' if table2Version == 133 and indicatorOfParameter == 166: return 'NO3_agg' if table2Version == 133 and indicatorOfParameter == 165: return 'flag' if table2Version == 133 and indicatorOfParameter == 164: return 'diat' if table2Version == 133 and indicatorOfParameter == 163: return 'inorg_mat' if table2Version == 133 and indicatorOfParameter == 162: return 'li_wacol' if table2Version == 133 and indicatorOfParameter == 161: return 'SiO2_bi' if table2Version == 133 and indicatorOfParameter == 160: return 'SiO4' if table2Version == 133 and indicatorOfParameter == 159: return 'benP' if table2Version == 133 and indicatorOfParameter == 158: return 'benN' if table2Version == 133 and indicatorOfParameter == 157: return 'dtr' if table2Version == 133 and indicatorOfParameter == 156: return 'zpl' if table2Version == 133 and indicatorOfParameter == 155: return 'phpl' if table2Version == 133 and indicatorOfParameter == 154: return 'O2' if table2Version == 133 and indicatorOfParameter == 153: return 'PO4' if table2Version == 133 and indicatorOfParameter == 152: return 'NH4' if table2Version == 133 and indicatorOfParameter == 151: return 'NO3' if table2Version == 133 and indicatorOfParameter == 131: return 'vsurf' if table2Version == 133 and indicatorOfParameter == 130: return 'usurf' if table2Version == 133 and indicatorOfParameter == 113: return 'pp1d' if table2Version == 133 and indicatorOfParameter == 112: return 'wadir' if table2Version == 133 and indicatorOfParameter == 111: return 'mpw' if table2Version == 133 and indicatorOfParameter == 110: return 'persw' if table2Version == 133 and indicatorOfParameter == 109: return 'dirsw' if table2Version == 133 and indicatorOfParameter == 108: return 'perpw' if table2Version == 133 and indicatorOfParameter == 107: return 'dirpw' if table2Version == 133 and indicatorOfParameter == 106: return 'swper' if table2Version == 133 and indicatorOfParameter == 105: return 'shps' if table2Version == 133 and indicatorOfParameter == 104: return 'swdir' if table2Version == 133 and indicatorOfParameter == 103: return 'mpww' if table2Version == 133 and indicatorOfParameter == 102: return 'shww' if table2Version == 133 and indicatorOfParameter == 101: return 'wvdir' if table2Version == 133 and indicatorOfParameter == 100: return 'swh' if table2Version == 133 and indicatorOfParameter == 98: return 'iced' if table2Version == 133 and indicatorOfParameter == 97: return 'iceg' if table2Version == 133 and indicatorOfParameter == 96: return 'vice' if table2Version == 133 and indicatorOfParameter == 95: return 'uice' if table2Version == 133 and indicatorOfParameter == 94: return 'siced' if table2Version == 133 and indicatorOfParameter == 93: return 'diced' if table2Version == 133 and indicatorOfParameter == 92: return 'icetk' if table2Version == 133 and indicatorOfParameter == 91: return 'icec' if table2Version == 133 and indicatorOfParameter == 89: return 'den' if table2Version == 133 and indicatorOfParameter == 88: return 's' if table2Version == 133 and indicatorOfParameter == 82: return 'dslm' if table2Version == 133 and indicatorOfParameter == 80: return 'wtmp' if table2Version == 133 and indicatorOfParameter == 71: return 'tcc' if table2Version == 133 and indicatorOfParameter == 70: return 'mtha' if table2Version == 133 and indicatorOfParameter == 69: return 'mthd' if table2Version == 133 and indicatorOfParameter == 68: return 'tthdp' if table2Version == 133 and indicatorOfParameter == 67: return 'mld' if table2Version == 133 and indicatorOfParameter == 66: return 'sd' if table2Version == 133 and indicatorOfParameter == 51: return 'q' if table2Version == 133 and indicatorOfParameter == 50: return 'vcur' if table2Version == 133 and indicatorOfParameter == 49: return 'ucur' if table2Version == 133 and indicatorOfParameter == 48: return 'spdhcur' if table2Version == 133 and indicatorOfParameter == 47: return 'dirhcur' if table2Version == 133 and indicatorOfParameter == 46: return 'vshv' if table2Version == 133 and indicatorOfParameter == 45: return 'vshu' if table2Version == 133 and indicatorOfParameter == 44: return 'd' if table2Version == 133 and indicatorOfParameter == 43: return 'vo' if table2Version == 133 and indicatorOfParameter == 42: return 'absd' if table2Version == 133 and indicatorOfParameter == 41: return 'absv' if table2Version == 133 and indicatorOfParameter == 40: return 'wcur_ge' if table2Version == 133 and indicatorOfParameter == 39: return 'wcur_pr' if table2Version == 133 and indicatorOfParameter == 38: return 'sgcvv' if table2Version == 133 and indicatorOfParameter == 37: return 'mntsf' if table2Version == 133 and indicatorOfParameter == 36: return 'vp' if table2Version == 133 and indicatorOfParameter == 35: return 'strf' if table2Version == 133 and indicatorOfParameter == 34: return 'v' if table2Version == 133 and indicatorOfParameter == 33: return 'u' if table2Version == 133 and indicatorOfParameter == 32: return 'ws' if table2Version == 133 and indicatorOfParameter == 31: return 'wdir' if table2Version == 133 and indicatorOfParameter == 30: return 'wvsp3' if table2Version == 133 and indicatorOfParameter == 29: return 'wvsp2' if table2Version == 133 and indicatorOfParameter == 28: return 'wvsp1' if table2Version == 133 and indicatorOfParameter == 13: return 'pt' if table2Version == 133 and indicatorOfParameter == 11: return 't' if table2Version == 133 and indicatorOfParameter == 1: return 'MSL' if table2Version == 133 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 131 and indicatorOfParameter == 255: return 'Missing' if table2Version == 131 and indicatorOfParameter == 252: return 'TKEdiss' if table2Version == 131 and indicatorOfParameter == 251: return 'TKE' if table2Version == 131 and indicatorOfParameter == 250: return 'heat_pr' if table2Version == 131 and indicatorOfParameter == 246: return 'icfr_pr' if table2Version == 131 and indicatorOfParameter == 245: return 'intic_pr' if table2Version == 131 and indicatorOfParameter == 244: return 'icth_ri' if table2Version == 131 and indicatorOfParameter == 241: return 'bit_pr' if table2Version == 131 and indicatorOfParameter == 196: return 'fl' if table2Version == 131 and indicatorOfParameter == 183: return 'icc' if table2Version == 131 and indicatorOfParameter == 180: return 'sst' if table2Version == 131 and indicatorOfParameter == 173: return 'icth_E' if table2Version == 131 and indicatorOfParameter == 172: return 'icth_D' if table2Version == 131 and indicatorOfParameter == 171: return 'icth_C' if table2Version == 131 and indicatorOfParameter == 170: return 'icth_ABC' if table2Version == 131 and indicatorOfParameter == 164: return 'Elake' if table2Version == 131 and indicatorOfParameter == 163: return 'Dlake' if table2Version == 131 and indicatorOfParameter == 162: return 'Clake' if table2Version == 131 and indicatorOfParameter == 161: return 'dp_ABC' if table2Version == 131 and indicatorOfParameter == 160: return 'ar_ABC' if table2Version == 131 and indicatorOfParameter == 153: return 't_E' if table2Version == 131 and indicatorOfParameter == 152: return 't_D' if table2Version == 131 and indicatorOfParameter == 151: return 't_C' if table2Version == 131 and indicatorOfParameter == 150: return 't_ABC' if table2Version == 131 and indicatorOfParameter == 92: return 'icth_pr' if table2Version == 131 and indicatorOfParameter == 91: return 'iccLAKE' if table2Version == 131 and indicatorOfParameter == 66: return 'sd_pr' if table2Version == 131 and indicatorOfParameter == 50: return 'ncurr' if table2Version == 131 and indicatorOfParameter == 49: return 'ecurr' if table2Version == 131 and indicatorOfParameter == 11: return 'sstLAKE' if table2Version == 131 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 130 and indicatorOfParameter == 255: return 'Missing' if table2Version == 130 and indicatorOfParameter == 149: return 'parmedian' if table2Version == 130 and indicatorOfParameter == 148: return 'parmean' if table2Version == 130 and indicatorOfParameter == 147: return 'Wsymb' if table2Version == 130 and indicatorOfParameter == 146: return 'pcat' if table2Version == 130 and indicatorOfParameter == 145: return 'ptype' if table2Version == 130 and indicatorOfParameter == 143: return 'parmax' if table2Version == 130 and indicatorOfParameter == 142: return 'parmin' if table2Version == 130 and indicatorOfParameter == 141: return 'pis' if table2Version == 130 and indicatorOfParameter == 140: return 'pit' if table2Version == 130 and indicatorOfParameter == 139: return 'parmean2' if table2Version == 130 and indicatorOfParameter == 138: return 'parmax2' if table2Version == 130 and indicatorOfParameter == 137: return 'parmin2' if table2Version == 130 and indicatorOfParameter == 136: return 'ct_sig' if table2Version == 130 and indicatorOfParameter == 135: return 'cb_sig' if table2Version == 130 and indicatorOfParameter == 131: return 'gust' if table2Version == 130 and indicatorOfParameter == 130: return 'maxws' if table2Version == 130 and indicatorOfParameter == 111: return 'epststdv' if table2Version == 130 and indicatorOfParameter == 110: return 'epstm' if table2Version == 130 and indicatorOfParameter == 100: return '2tmax3dind' if table2Version == 130 and indicatorOfParameter == 77: return 'cm' if table2Version == 130 and indicatorOfParameter == 75: return 'hcc' if table2Version == 130 and indicatorOfParameter == 74: return 'mcc' if table2Version == 130 and indicatorOfParameter == 73: return 'lcc' if table2Version == 130 and indicatorOfParameter == 72: return 'ccc' if table2Version == 130 and indicatorOfParameter == 71: return 'tcc' if table2Version == 130 and indicatorOfParameter == 70: return 'tccarmean' if table2Version == 130 and indicatorOfParameter == 69: return 'tccarmedian' if table2Version == 130 and indicatorOfParameter == 68: return 'tccarmax' if table2Version == 130 and indicatorOfParameter == 67: return 'tccarmin' if table2Version == 130 and indicatorOfParameter == 65: return 'sdwe' if table2Version == 130 and indicatorOfParameter == 61: return 'tp' if table2Version == 130 and indicatorOfParameter == 60: return 'tstm' if table2Version == 130 and indicatorOfParameter == 58: return 'fzrpr' if table2Version == 130 and indicatorOfParameter == 52: return 'r' if table2Version == 130 and indicatorOfParameter == 34: return 'v' if table2Version == 130 and indicatorOfParameter == 33: return 'u' if table2Version == 130 and indicatorOfParameter == 20: return 'vis' if table2Version == 130 and indicatorOfParameter == 11: return 't' if table2Version == 130 and indicatorOfParameter == 1: return 'msl' if table2Version == 130 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 129 and indicatorOfParameter == 255: return 'Missing' if table2Version == 129 and indicatorOfParameter == 239: return 'frsn15h_corsta' if table2Version == 129 and indicatorOfParameter == 238: return 'frsn9h_corsta' if table2Version == 129 and indicatorOfParameter == 237: return 'frsn3h_corsta' if table2Version == 129 and indicatorOfParameter == 236: return 'frsn2h_corsta' if table2Version == 129 and indicatorOfParameter == 235: return 'frsn1h_corsta' if table2Version == 129 and indicatorOfParameter == 234: return 'frsn24h_corsta' if table2Version == 129 and indicatorOfParameter == 233: return 'frsn18h_corsta' if table2Version == 129 and indicatorOfParameter == 232: return 'frsn12h_corsta' if table2Version == 129 and indicatorOfParameter == 231: return 'frsn6h_corsta' if table2Version == 129 and indicatorOfParameter == 229: return 'prec15h_corsta' if table2Version == 129 and indicatorOfParameter == 228: return 'prec9h_corsta' if table2Version == 129 and indicatorOfParameter == 227: return 'prec3h_corsta' if table2Version == 129 and indicatorOfParameter == 226: return 'prec2h_corsta' if table2Version == 129 and indicatorOfParameter == 225: return 'prec1h_corsta' if table2Version == 129 and indicatorOfParameter == 224: return 'prec24h_corsta' if table2Version == 129 and indicatorOfParameter == 223: return 'prec18h_corsta' if table2Version == 129 and indicatorOfParameter == 222: return 'prec12h_corsta' if table2Version == 129 and indicatorOfParameter == 221: return 'prec6h_corsta' if table2Version == 129 and indicatorOfParameter == 219: return 'frsn15h_sta' if table2Version == 129 and indicatorOfParameter == 218: return 'frsn9h_sta' if table2Version == 129 and indicatorOfParameter == 217: return 'frsn3h_sta' if table2Version == 129 and indicatorOfParameter == 216: return 'frsn2h_sta' if table2Version == 129 and indicatorOfParameter == 215: return 'frsn1h_sta' if table2Version == 129 and indicatorOfParameter == 214: return 'frsn24h_sta' if table2Version == 129 and indicatorOfParameter == 213: return 'frsn18h_sta' if table2Version == 129 and indicatorOfParameter == 212: return 'frsn12h_sta' if table2Version == 129 and indicatorOfParameter == 211: return 'frsn6h_sta' if table2Version == 129 and indicatorOfParameter == 209: return 'prec15h_sta' if table2Version == 129 and indicatorOfParameter == 208: return 'prec9h_sta' if table2Version == 129 and indicatorOfParameter == 207: return 'prec3h_sta' if table2Version == 129 and indicatorOfParameter == 206: return 'prec2h_sta' if table2Version == 129 and indicatorOfParameter == 205: return 'prec1h_sta' if table2Version == 129 and indicatorOfParameter == 204: return 'prec24h_sta' if table2Version == 129 and indicatorOfParameter == 203: return 'prec18h_sta' if table2Version == 129 and indicatorOfParameter == 202: return 'prec12h_sta' if table2Version == 129 and indicatorOfParameter == 201: return 'prec6h_sta' if table2Version == 129 and indicatorOfParameter == 199: return 'frsn15h_cor' if table2Version == 129 and indicatorOfParameter == 198: return 'frsn9h_cor' if table2Version == 129 and indicatorOfParameter == 197: return 'frsn3h_cor' if table2Version == 129 and indicatorOfParameter == 196: return 'frsn2h_cor' if table2Version == 129 and indicatorOfParameter == 195: return 'frsn1h_cor' if table2Version == 129 and indicatorOfParameter == 194: return 'frsn24h_cor' if table2Version == 129 and indicatorOfParameter == 193: return 'frsn18h_cor' if table2Version == 129 and indicatorOfParameter == 192: return 'frsn12h_cor' if table2Version == 129 and indicatorOfParameter == 191: return 'frsn6h_cor' if table2Version == 129 and indicatorOfParameter == 189: return 'prec15h_cor' if table2Version == 129 and indicatorOfParameter == 188: return 'prec9h_cor' if table2Version == 129 and indicatorOfParameter == 187: return 'prec3h_cor' if table2Version == 129 and indicatorOfParameter == 186: return 'prec2h_cor' if table2Version == 129 and indicatorOfParameter == 185: return 'prec1h_cor' if table2Version == 129 and indicatorOfParameter == 184: return 'prec24h_cor' if table2Version == 129 and indicatorOfParameter == 183: return 'prec18h_cor' if table2Version == 129 and indicatorOfParameter == 182: return 'prec12h_cor' if table2Version == 129 and indicatorOfParameter == 181: return 'prec6h_cor' if table2Version == 129 and indicatorOfParameter == 179: return 'frsn15h' if table2Version == 129 and indicatorOfParameter == 178: return 'frsn9h' if table2Version == 129 and indicatorOfParameter == 177: return 'frsn3h' if table2Version == 129 and indicatorOfParameter == 176: return 'frsn2h' if table2Version == 129 and indicatorOfParameter == 175: return 'frsn1h' if table2Version == 129 and indicatorOfParameter == 174: return 'frsn24h' if table2Version == 129 and indicatorOfParameter == 173: return 'frsn18h' if table2Version == 129 and indicatorOfParameter == 172: return 'frsn12h' if table2Version == 129 and indicatorOfParameter == 171: return 'frsn6h' if table2Version == 129 and indicatorOfParameter == 169: return 'prec15h' if table2Version == 129 and indicatorOfParameter == 168: return 'prec9h' if table2Version == 129 and indicatorOfParameter == 167: return 'prec3h' if table2Version == 129 and indicatorOfParameter == 166: return 'prec2h' if table2Version == 129 and indicatorOfParameter == 165: return 'prec1h' if table2Version == 129 and indicatorOfParameter == 164: return 'prec24h' if table2Version == 129 and indicatorOfParameter == 163: return 'prec18h' if table2Version == 129 and indicatorOfParameter == 162: return 'prec12h' if table2Version == 129 and indicatorOfParameter == 161: return 'prec6h' if table2Version == 129 and indicatorOfParameter == 146: return 'prsort' if table2Version == 129 and indicatorOfParameter == 145: return 'prtype' if table2Version == 129 and indicatorOfParameter == 79: return 'ct_sig' if table2Version == 129 and indicatorOfParameter == 78: return 'cb_sig' if table2Version == 129 and indicatorOfParameter == 77: return 'c_sigfr' if table2Version == 129 and indicatorOfParameter == 75: return 'hcc' if table2Version == 129 and indicatorOfParameter == 74: return 'mcc' if table2Version == 129 and indicatorOfParameter == 73: return 'lcc' if table2Version == 129 and indicatorOfParameter == 71: return 'tcc' if table2Version == 129 and indicatorOfParameter == 52: return 'r' if table2Version == 129 and indicatorOfParameter == 34: return 'v' if table2Version == 129 and indicatorOfParameter == 33: return 'u' if table2Version == 129 and indicatorOfParameter == 32: return 'gust' if table2Version == 129 and indicatorOfParameter == 20: return 'vis' if table2Version == 129 and indicatorOfParameter == 16: return 'tmin' if table2Version == 129 and indicatorOfParameter == 15: return 'tmax' if table2Version == 129 and indicatorOfParameter == 13: return 'mean2t24h' if table2Version == 129 and indicatorOfParameter == 12: return 'Tiw' if table2Version == 129 and indicatorOfParameter == 11: return 't' if table2Version == 129 and indicatorOfParameter == 1: return 'MSL' if table2Version == 129 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 128 and indicatorOfParameter == 255: return 'Missing' if table2Version == 128 and indicatorOfParameter == 242: return 'LAT' if table2Version == 128 and indicatorOfParameter == 241: return 'LONG' if table2Version == 128 and indicatorOfParameter == 240: return 'EMIS' if table2Version == 128 and indicatorOfParameter == 223: return 'DXDY' if table2Version == 128 and indicatorOfParameter == 222: return 'CONV_TOP' if table2Version == 128 and indicatorOfParameter == 221: return 'CONV_BOT' if table2Version == 128 and indicatorOfParameter == 220: return 'CONV_TIED' if table2Version == 128 and indicatorOfParameter == 219: return 'DAOD' if table2Version == 128 and indicatorOfParameter == 218: return 'AOD' if table2Version == 128 and indicatorOfParameter == 217: return 'BSCA' if table2Version == 128 and indicatorOfParameter == 216: return 'EXT' if table2Version == 128 and indicatorOfParameter == 215: return 'VIS' if table2Version == 128 and indicatorOfParameter == 214: return 'ASYMPAR' if table2Version == 128 and indicatorOfParameter == 213: return 'SSALB' if table2Version == 128 and indicatorOfParameter == 212: return 'SOILTYPE' if table2Version == 128 and indicatorOfParameter == 211: return 'LAI' if table2Version == 128 and indicatorOfParameter == 210: return 'SURFTYPE' if table2Version == 128 and indicatorOfParameter == 204: return 'Z-D' if table2Version == 128 and indicatorOfParameter == 203: return 'W*' if table2Version == 128 and indicatorOfParameter == 202: return 'U*' if table2Version == 128 and indicatorOfParameter == 201: return 'L' if table2Version == 128 and indicatorOfParameter == 200: return 'KZ' if table2Version == 128 and indicatorOfParameter == 180: return 'BIRCH_POLLEN' if table2Version == 128 and indicatorOfParameter == 175: return 'PM' if table2Version == 128 and indicatorOfParameter == 174: return 'PM2.5' if table2Version == 128 and indicatorOfParameter == 173: return 'SOA' if table2Version == 128 and indicatorOfParameter == 172: return 'PPM10' if table2Version == 128 and indicatorOfParameter == 171: return 'PPMFINE' if table2Version == 128 and indicatorOfParameter == 170: return 'PNHX' if table2Version == 128 and indicatorOfParameter == 169: return 'PNOX' if table2Version == 128 and indicatorOfParameter == 168: return 'PSOX' if table2Version == 128 and indicatorOfParameter == 167: return 'PM10' if table2Version == 128 and indicatorOfParameter == 166: return 'PMASS' if table2Version == 128 and indicatorOfParameter == 165: return 'PSURFACE' if table2Version == 128 and indicatorOfParameter == 164: return 'PRADIUS' if table2Version == 128 and indicatorOfParameter == 163: return 'PNUMBER' if table2Version == 128 and indicatorOfParameter == 162: return 'DUST' if table2Version == 128 and indicatorOfParameter == 161: return 'PMCOARSE' if table2Version == 128 and indicatorOfParameter == 160: return 'PMFINE' if table2Version == 128 and indicatorOfParameter == 140: return 'Cl2' if table2Version == 128 and indicatorOfParameter == 128: return 'XCA' if table2Version == 128 and indicatorOfParameter == 126: return 'XK' if table2Version == 128 and indicatorOfParameter == 125: return 'XMG' if table2Version == 128 and indicatorOfParameter == 124: return 'Ca++' if table2Version == 128 and indicatorOfParameter == 123: return 'K+' if table2Version == 128 and indicatorOfParameter == 122: return 'Mg++' if table2Version == 128 and indicatorOfParameter == 121: return 'Na+' if table2Version == 128 and indicatorOfParameter == 120: return 'NACL' if table2Version == 128 and indicatorOfParameter == 119: return 'ALL' if table2Version == 128 and indicatorOfParameter == 116: return 'Pb210' if table2Version == 128 and indicatorOfParameter == 115: return 'Pu241' if table2Version == 128 and indicatorOfParameter == 114: return 'Np239' if table2Version == 128 and indicatorOfParameter == 113: return 'Np238' if table2Version == 128 and indicatorOfParameter == 112: return 'Ce144' if table2Version == 128 and indicatorOfParameter == 111: return 'Nb95' if table2Version == 128 and indicatorOfParameter == 110: return 'Zr95' if table2Version == 128 and indicatorOfParameter == 108: return 'Ra228' if table2Version == 128 and indicatorOfParameter == 106: return 'Ra223' if table2Version == 128 and indicatorOfParameter == 105: return 'Cs137' if table2Version == 128 and indicatorOfParameter == 104: return 'Cs134' if table2Version == 128 and indicatorOfParameter == 103: return 'Ru106' if table2Version == 128 and indicatorOfParameter == 102: return 'Ru103' if table2Version == 128 and indicatorOfParameter == 101: return 'Co60' if table2Version == 128 and indicatorOfParameter == 100: return 'Sr90' if table2Version == 128 and indicatorOfParameter == 98: return 'I135' if table2Version == 128 and indicatorOfParameter == 97: return 'I133' if table2Version == 128 and indicatorOfParameter == 96: return 'I132' if table2Version == 128 and indicatorOfParameter == 95: return 'I131' if table2Version == 128 and indicatorOfParameter == 93: return 'Rn222' if table2Version == 128 and indicatorOfParameter == 92: return 'Xe133' if table2Version == 128 and indicatorOfParameter == 91: return 'Xe131' if table2Version == 128 and indicatorOfParameter == 88: return 'Kr88' if table2Version == 128 and indicatorOfParameter == 87: return 'Kr85' if table2Version == 128 and indicatorOfParameter == 86: return 'Ar41' if table2Version == 128 and indicatorOfParameter == 85: return 'H3' if table2Version == 128 and indicatorOfParameter == 84: return 'Inert' if table2Version == 128 and indicatorOfParameter == 83: return 'TRACER' if table2Version == 128 and indicatorOfParameter == 82: return 'PMCP' if table2Version == 128 and indicatorOfParameter == 81: return 'PMCH' if table2Version == 128 and indicatorOfParameter == 80: return 'CF6' if table2Version == 128 and indicatorOfParameter == 75: return 'EC' if table2Version == 128 and indicatorOfParameter == 74: return 'OC' if table2Version == 128 and indicatorOfParameter == 73: return 'CH4' if table2Version == 128 and indicatorOfParameter == 72: return 'CO2' if table2Version == 128 and indicatorOfParameter == 71: return 'CO' if table2Version == 128 and indicatorOfParameter == 70: return 'C' if table2Version == 128 and indicatorOfParameter == 65: return 'OX' if table2Version == 128 and indicatorOfParameter == 64: return 'H2O2_AQ' if table2Version == 128 and indicatorOfParameter == 63: return 'O3_AQ' if table2Version == 128 and indicatorOfParameter == 62: return 'OH' if table2Version == 128 and indicatorOfParameter == 61: return 'H2O2' if table2Version == 128 and indicatorOfParameter == 60: return 'O3' if table2Version == 128 and indicatorOfParameter == 59: return 'NHX_N' if table2Version == 128 and indicatorOfParameter == 58: return 'LRT_NHX_N' if table2Version == 128 and indicatorOfParameter == 57: return 'LRT_NH4_N' if table2Version == 128 and indicatorOfParameter == 56: return 'LRT_NH3_N' if table2Version == 128 and indicatorOfParameter == 55: return 'NH4_N' if table2Version == 128 and indicatorOfParameter == 54: return 'NH3_N' if table2Version == 128 and indicatorOfParameter == 52: return 'AMMONIUM' if table2Version == 128 and indicatorOfParameter == 51: return 'NH4(+1)' if table2Version == 128 and indicatorOfParameter == 50: return 'NH3' if table2Version == 128 and indicatorOfParameter == 49: return 'NOZ_N' if table2Version == 128 and indicatorOfParameter == 48: return 'NOY_N' if table2Version == 128 and indicatorOfParameter == 47: return 'NOX_N' if table2Version == 128 and indicatorOfParameter == 46: return 'NO2_N' if table2Version == 128 and indicatorOfParameter == 45: return 'NO_N' if table2Version == 128 and indicatorOfParameter == 44: return 'NOX' if table2Version == 128 and indicatorOfParameter == 43: return 'LRT_NOZ_N' if table2Version == 128 and indicatorOfParameter == 42: return 'LRT_NO2_N' if table2Version == 128 and indicatorOfParameter == 41: return 'LRT_HNO3_N' if table2Version == 128 and indicatorOfParameter == 40: return 'LRT_NO3_N' if table2Version == 128 and indicatorOfParameter == 39: return 'HNO3_N' if table2Version == 128 and indicatorOfParameter == 38: return 'NO3_N' if table2Version == 128 and indicatorOfParameter == 37: return 'LRT_NOY_N' if table2Version == 128 and indicatorOfParameter == 36: return 'PNO3' if table2Version == 128 and indicatorOfParameter == 35: return 'NITRATE' if table2Version == 128 and indicatorOfParameter == 34: return 'NH4NO3' if table2Version == 128 and indicatorOfParameter == 33: return 'NO3(-1)' if table2Version == 128 and indicatorOfParameter == 32: return 'HNO3' if table2Version == 128 and indicatorOfParameter == 31: return 'NO2' if table2Version == 128 and indicatorOfParameter == 30: return 'NO' if table2Version == 128 and indicatorOfParameter == 29: return 'SOX_S' if table2Version == 128 and indicatorOfParameter == 28: return 'SO4_S' if table2Version == 128 and indicatorOfParameter == 27: return 'SO2_S' if table2Version == 128 and indicatorOfParameter == 26: return 'XSOX_S' if table2Version == 128 and indicatorOfParameter == 25: return 'LRT_SOX_S' if table2Version == 128 and indicatorOfParameter == 24: return 'LRT_SO4_S' if table2Version == 128 and indicatorOfParameter == 23: return 'LRT_SO2_S' if table2Version == 128 and indicatorOfParameter == 11: return 'SO4_AQ' if table2Version == 128 and indicatorOfParameter == 10: return 'SO2_AQ' if table2Version == 128 and indicatorOfParameter == 9: return 'SFT' if table2Version == 128 and indicatorOfParameter == 8: return 'NH42SO4' if table2Version == 128 and indicatorOfParameter == 7: return 'NH4HSO4' if table2Version == 128 and indicatorOfParameter == 6: return 'NH4SO4' if table2Version == 128 and indicatorOfParameter == 5: return 'H2S' if table2Version == 128 and indicatorOfParameter == 4: return 'MSA' if table2Version == 128 and indicatorOfParameter == 3: return 'DMS' if table2Version == 128 and indicatorOfParameter == 2: return 'SO4(2-)' if table2Version == 128 and indicatorOfParameter == 1: return 'SO2' if table2Version == 128 and indicatorOfParameter == 0: return 'Reserved' if table2Version == 1 and indicatorOfParameter == 255: return 'Missing' if table2Version == 1 and indicatorOfParameter == 251: return 'anpr12' if table2Version == 1 and indicatorOfParameter == 250: return 'anpr3' if table2Version == 1 and indicatorOfParameter == 228: return 'gust' if table2Version == 1 and indicatorOfParameter == 227: return 'vfr' if table2Version == 1 and indicatorOfParameter == 226: return 'ptype' if table2Version == 1 and indicatorOfParameter == 225: return 'CAPE' if table2Version == 1 and indicatorOfParameter == 224: return 'ci' if table2Version == 1 and indicatorOfParameter == 223: return 'lnb' if table2Version == 1 and indicatorOfParameter == 222: return 'lcl' if table2Version == 1 and indicatorOfParameter == 210: return 'iceex' if table2Version == 1 and indicatorOfParameter == 209: return 'sdsso' if table2Version == 1 and indicatorOfParameter == 208: return 'mssso' if table2Version == 1 and indicatorOfParameter == 206: return 'anmo' if table2Version == 1 and indicatorOfParameter == 205: return 'amo' if table2Version == 1 and indicatorOfParameter == 204: return 'orostdv' if table2Version == 1 and indicatorOfParameter == 200: return 'TKE' if table2Version == 1 and indicatorOfParameter == 199: return 'vgtyp' if table2Version == 1 and indicatorOfParameter == 198: return 'fool' if table2Version == 1 and indicatorOfParameter == 197: return 'fof' if table2Version == 1 and indicatorOfParameter == 196: return 'fol' if table2Version == 1 and indicatorOfParameter == 195: return 'slt' if table2Version == 1 and indicatorOfParameter == 194: return 'frst' if table2Version == 1 and indicatorOfParameter == 193: return 'ssi' if table2Version == 1 and indicatorOfParameter == 192: return 'watcn' if table2Version == 1 and indicatorOfParameter == 191: return 'dsn' if table2Version == 1 and indicatorOfParameter == 190: return 'asn' if table2Version == 1 and indicatorOfParameter == 189: return 'swi' if table2Version == 1 and indicatorOfParameter == 169: return 'al_scorr' if table2Version == 1 and indicatorOfParameter == 168: return 'hero' if table2Version == 1 and indicatorOfParameter == 167: return 'frasp' if table2Version == 1 and indicatorOfParameter == 166: return 'skwf' if table2Version == 1 and indicatorOfParameter == 165: return 'susl' if table2Version == 1 and indicatorOfParameter == 164: return 'movegro' if table2Version == 1 and indicatorOfParameter == 163: return 'RSHB' if table2Version == 1 and indicatorOfParameter == 162: return 'RSHA' if table2Version == 1 and indicatorOfParameter == 161: return 'shfr' if table2Version == 1 and indicatorOfParameter == 160: return 'slfr' if table2Version == 1 and indicatorOfParameter == 143: return 'dptland' if table2Version == 1 and indicatorOfParameter == 142: return 'rhland' if table2Version == 1 and indicatorOfParameter == 141: return 'qland' if table2Version == 1 and indicatorOfParameter == 140: return 'tland' if table2Version == 1 and indicatorOfParameter == 139: return 'sd_cold_ol' if table2Version == 1 and indicatorOfParameter == 138: return 'sd_cold' if table2Version == 1 and indicatorOfParameter == 137: return 'icc' if table2Version == 1 and indicatorOfParameter == 136: return 'mingust' if table2Version == 1 and indicatorOfParameter == 135: return 'maxgust' if table2Version == 1 and indicatorOfParameter == 134: return 'cwref' if table2Version == 1 and indicatorOfParameter == 133: return 'wvbt_corr' if table2Version == 1 and indicatorOfParameter == 132: return 'wvbt' if table2Version == 1 and indicatorOfParameter == 131: return 'ctt' if table2Version == 1 and indicatorOfParameter == 130: return 'radtop' if table2Version == 1 and indicatorOfParameter == 129: return 'qten' if table2Version == 1 and indicatorOfParameter == 128: return 'mofl' if table2Version == 1 and indicatorOfParameter == 127: return 'imgd' if table2Version == 1 and indicatorOfParameter == 126: return 'wmixe' if table2Version == 1 and indicatorOfParameter == 125: return 'vflx' if table2Version == 1 and indicatorOfParameter == 124: return 'uflx' if table2Version == 1 and indicatorOfParameter == 123: return 'bld' if table2Version == 1 and indicatorOfParameter == 122: return 'shtfl' if table2Version == 1 and indicatorOfParameter == 121: return 'lhtfl' if table2Version == 1 and indicatorOfParameter == 120: return 'swrad' if table2Version == 1 and indicatorOfParameter == 119: return 'lwrad' if table2Version == 1 and indicatorOfParameter == 118: return 'btmp' if table2Version == 1 and indicatorOfParameter == 117: return 'grad' if table2Version == 1 and indicatorOfParameter == 116: return 'swavr' if table2Version == 1 and indicatorOfParameter == 115: return 'lwavr' if table2Version == 1 and indicatorOfParameter == 114: return 'nlwrt' if table2Version == 1 and indicatorOfParameter == 113: return 'nswrt' if table2Version == 1 and indicatorOfParameter == 112: return 'nlwrs' if table2Version == 1 and indicatorOfParameter == 111: return 'nswrs' if table2Version == 1 and indicatorOfParameter == 110: return 'persw' if table2Version == 1 and indicatorOfParameter == 109: return 'dirsw' if table2Version == 1 and indicatorOfParameter == 108: return 'perpw' if table2Version == 1 and indicatorOfParameter == 107: return 'prwd' if table2Version == 1 and indicatorOfParameter == 106: return 'swper' if table2Version == 1 and indicatorOfParameter == 105: return 'swell' if table2Version == 1 and indicatorOfParameter == 104: return 'swdir' if table2Version == 1 and indicatorOfParameter == 103: return 'mpww' if table2Version == 1 and indicatorOfParameter == 102: return 'shww' if table2Version == 1 and indicatorOfParameter == 101: return 'mdww' if table2Version == 1 and indicatorOfParameter == 100: return 'swh' if table2Version == 1 and indicatorOfParameter == 99: return 'snom' if table2Version == 1 and indicatorOfParameter == 98: return 'iced' if table2Version == 1 and indicatorOfParameter == 97: return 'iceg' if table2Version == 1 and indicatorOfParameter == 96: return 'vice' if table2Version == 1 and indicatorOfParameter == 95: return 'uice' if table2Version == 1 and indicatorOfParameter == 94: return 'siced' if table2Version == 1 and indicatorOfParameter == 93: return 'diced' if table2Version == 1 and indicatorOfParameter == 92: return 'icetk' if table2Version == 1 and indicatorOfParameter == 91: return 'icec' if table2Version == 1 and indicatorOfParameter == 90: return 'watr' if table2Version == 1 and indicatorOfParameter == 89: return 'den' if table2Version == 1 and indicatorOfParameter == 88: return 's' if table2Version == 1 and indicatorOfParameter == 87: return 'veg' if table2Version == 1 and indicatorOfParameter == 86: return 'ssw' if table2Version == 1 and indicatorOfParameter == 85: return 'st' if table2Version == 1 and indicatorOfParameter == 84: return 'al' if table2Version == 1 and indicatorOfParameter == 83: return 'sr' if table2Version == 1 and indicatorOfParameter == 82: return 'dslm' if table2Version == 1 and indicatorOfParameter == 81: return 'lsm' if table2Version == 1 and indicatorOfParameter == 80: return 'wtmp' if table2Version == 1 and indicatorOfParameter == 79: return 'lsf' if table2Version == 1 and indicatorOfParameter == 78: return 'csf' if table2Version == 1 and indicatorOfParameter == 77: return 'bli' if table2Version == 1 and indicatorOfParameter == 76: return 'cwat' if table2Version == 1 and indicatorOfParameter == 75: return 'hcc' if table2Version == 1 and indicatorOfParameter == 74: return 'mcc' if table2Version == 1 and indicatorOfParameter == 73: return 'lcc' if table2Version == 1 and indicatorOfParameter == 72: return 'ccc' if table2Version == 1 and indicatorOfParameter == 71: return 'tcc' if table2Version == 1 and indicatorOfParameter == 70: return 'mtha' if table2Version == 1 and indicatorOfParameter == 69: return 'mthd' if table2Version == 1 and indicatorOfParameter == 68: return 'tthdp' if table2Version == 1 and indicatorOfParameter == 67: return 'mld' if table2Version == 1 and indicatorOfParameter == 66: return 'sd' if table2Version == 1 and indicatorOfParameter == 65: return 'sdwe' if table2Version == 1 and indicatorOfParameter == 64: return 'srweq' if table2Version == 1 and indicatorOfParameter == 63: return 'acpcp' if table2Version == 1 and indicatorOfParameter == 62: return 'lsp' if table2Version == 1 and indicatorOfParameter == 61: return 'tp' if table2Version == 1 and indicatorOfParameter == 60: return 'tstm' if table2Version == 1 and indicatorOfParameter == 59: return 'prate' if table2Version == 1 and indicatorOfParameter == 58: return 'cice' if table2Version == 1 and indicatorOfParameter == 57: return 'e' if table2Version == 1 and indicatorOfParameter == 56: return 'satd' if table2Version == 1 and indicatorOfParameter == 55: return 'vp' if table2Version == 1 and indicatorOfParameter == 54: return 'pwat' if table2Version == 1 and indicatorOfParameter == 53: return 'mixr' if table2Version == 1 and indicatorOfParameter == 52: return 'r' if table2Version == 1 and indicatorOfParameter == 51: return 'q' if table2Version == 1 and indicatorOfParameter == 50: return 'vcurr' if table2Version == 1 and indicatorOfParameter == 49: return 'ucurr' if table2Version == 1 and indicatorOfParameter == 48: return 'spc' if table2Version == 1 and indicatorOfParameter == 47: return 'dirc' if table2Version == 1 and indicatorOfParameter == 46: return 'vvsch' if table2Version == 1 and indicatorOfParameter == 45: return 'vusch' if table2Version == 1 and indicatorOfParameter == 44: return 'd' if table2Version == 1 and indicatorOfParameter == 43: return 'vo' if table2Version == 1 and indicatorOfParameter == 42: return 'absd' if table2Version == 1 and indicatorOfParameter == 41: return 'absv' if table2Version == 1 and indicatorOfParameter == 40: return 'w' if table2Version == 1 and indicatorOfParameter == 39: return 'omega' if table2Version == 1 and indicatorOfParameter == 38: return 'sgcvv' if table2Version == 1 and indicatorOfParameter == 37: return 'mntsf' if table2Version == 1 and indicatorOfParameter == 36: return 'vp' if table2Version == 1 and indicatorOfParameter == 35: return 'strf' if table2Version == 1 and indicatorOfParameter == 34: return 'v' if table2Version == 1 and indicatorOfParameter == 33: return 'u' if table2Version == 1 and indicatorOfParameter == 32: return 'ws' if table2Version == 1 and indicatorOfParameter == 31: return 'wdir' if table2Version == 1 and indicatorOfParameter == 30: return 'wvsp3' if table2Version == 1 and indicatorOfParameter == 29: return 'wvsp2' if table2Version == 1 and indicatorOfParameter == 28: return 'wvsp1' if table2Version == 1 and indicatorOfParameter == 27: return 'gpa' if table2Version == 1 and indicatorOfParameter == 26: return 'presa' if table2Version == 1 and indicatorOfParameter == 25: return 'ta' if table2Version == 1 and indicatorOfParameter == 24: return 'pli' if table2Version == 1 and indicatorOfParameter == 23: return 'rdsp3' if table2Version == 1 and indicatorOfParameter == 22: return 'rdsp2' if table2Version == 1 and indicatorOfParameter == 21: return 'rdsp1' if table2Version == 1 and indicatorOfParameter == 20: return 'vis' if table2Version == 1 and indicatorOfParameter == 19: return 'lapr' if table2Version == 1 and indicatorOfParameter == 18: return 'dptd' if table2Version == 1 and indicatorOfParameter == 17: return 'dpt' if table2Version == 1 and indicatorOfParameter == 16: return 'tmin' if table2Version == 1 and indicatorOfParameter == 15: return 'tmax' if table2Version == 1 and indicatorOfParameter == 14: return 'papt' if table2Version == 1 and indicatorOfParameter == 13: return 'pt' if table2Version == 1 and indicatorOfParameter == 12: return 'vtmp' if table2Version == 1 and indicatorOfParameter == 11: return 't' if table2Version == 1 and indicatorOfParameter == 10: return 'tozne' if table2Version == 1 and indicatorOfParameter == 9: return 'hstdv' if table2Version == 1 and indicatorOfParameter == 8: return 'h' if table2Version == 1 and indicatorOfParameter == 7: return 'gh' if table2Version == 1 and indicatorOfParameter == 6: return 'z' if table2Version == 1 and indicatorOfParameter == 5: return 'icaht' if table2Version == 1 and indicatorOfParameter == 4: return 'pv' if table2Version == 1 and indicatorOfParameter == 3: return 'ptend' if table2Version == 1 and indicatorOfParameter == 2: return 'msl' if table2Version == 1 and indicatorOfParameter == 1: return 'pres' if table2Version == 1 and indicatorOfParameter == 0: return 'Reserved' return wrapped
30.797962
64
0.588902
a0f0f179fa613ba2fa52fccd7affb6deb3f40b3e
5,770
py
Python
python_modules/dagster-graphql/dagster_graphql/implementation/fetch_assets.py
kyohei3/dagster
60319ba89d765abdd77a0934ca90eeb154f66a03
[ "Apache-2.0" ]
null
null
null
python_modules/dagster-graphql/dagster_graphql/implementation/fetch_assets.py
kyohei3/dagster
60319ba89d765abdd77a0934ca90eeb154f66a03
[ "Apache-2.0" ]
null
null
null
python_modules/dagster-graphql/dagster_graphql/implementation/fetch_assets.py
kyohei3/dagster
60319ba89d765abdd77a0934ca90eeb154f66a03
[ "Apache-2.0" ]
null
null
null
from dagster import AssetKey, DagsterEventType, EventRecordsFilter, check, seven from .utils import capture_error def _normalize_asset_cursor_str(cursor_string): # the cursor for assets is derived from a json serialized string of the path. Because there are # json serialization differences between JS and Python in its treatment of whitespace, we should # take extra precaution here and do a deserialization/serialization pass if not cursor_string: return cursor_string try: return seven.json.dumps(seven.json.loads(cursor_string)) except seven.JSONDecodeError: return cursor_string @capture_error def get_assets(graphene_info, prefix=None, cursor=None, limit=None): from ..schema.pipelines.pipeline import GrapheneAsset from ..schema.roots.assets import GrapheneAssetConnection instance = graphene_info.context.instance normalized_cursor_str = _normalize_asset_cursor_str(cursor) materialized_keys = instance.get_asset_keys( prefix=prefix, limit=limit, cursor=normalized_cursor_str ) asset_nodes_by_asset_key = { asset_key: asset_node for asset_key, asset_node in get_asset_nodes_by_asset_key(graphene_info).items() if (not prefix or asset_key.path[: len(prefix)] == prefix) and (not cursor or asset_key.to_string() > cursor) } asset_keys = sorted(set(materialized_keys).union(asset_nodes_by_asset_key.keys()), key=str) if limit: asset_keys = asset_keys[:limit] return GrapheneAssetConnection( nodes=[ GrapheneAsset( key=asset_key, definition=asset_nodes_by_asset_key.get(asset_key), ) for asset_key in asset_keys ] ) def get_asset_nodes_by_asset_key(graphene_info): from ..schema.asset_graph import GrapheneAssetNode return { external_asset_node.asset_key: GrapheneAssetNode(repository, external_asset_node) for location in graphene_info.context.repository_locations for repository in location.get_repositories().values() for external_asset_node in repository.get_external_asset_nodes() } def get_asset_nodes(graphene_info): from ..schema.asset_graph import GrapheneAssetNode return [ GrapheneAssetNode(repository, external_asset_node) for location in graphene_info.context.repository_locations for repository in location.get_repositories().values() for external_asset_node in repository.get_external_asset_nodes() ] def get_asset_node(graphene_info, asset_key): from ..schema.errors import GrapheneAssetNotFoundError check.inst_param(asset_key, "asset_key", AssetKey) node = next((n for n in get_asset_nodes(graphene_info) if n.assetKey == asset_key), None) if not node: return GrapheneAssetNotFoundError(asset_key=asset_key) return node def get_asset(graphene_info, asset_key): from ..schema.errors import GrapheneAssetNotFoundError from ..schema.pipelines.pipeline import GrapheneAsset check.inst_param(asset_key, "asset_key", AssetKey) instance = graphene_info.context.instance asset_nodes_by_asset_key = get_asset_nodes_by_asset_key(graphene_info) asset_node = asset_nodes_by_asset_key.get(asset_key) if not asset_node and not instance.has_asset_key(asset_key): return GrapheneAssetNotFoundError(asset_key=asset_key) return GrapheneAsset(key=asset_key, definition=asset_node) def get_asset_materializations( graphene_info, asset_key, partitions=None, limit=None, before_timestamp=None, after_timestamp=None, ): check.inst_param(asset_key, "asset_key", AssetKey) check.opt_int_param(limit, "limit") check.opt_float_param(before_timestamp, "before_timestamp") instance = graphene_info.context.instance event_records = instance.get_event_records( EventRecordsFilter( event_type=DagsterEventType.ASSET_MATERIALIZATION, asset_key=asset_key, asset_partitions=partitions, before_timestamp=before_timestamp, after_timestamp=after_timestamp, ), limit=limit, ) return [event_record.event_log_entry for event_record in event_records] def get_asset_observations( graphene_info, asset_key, partitions=None, limit=None, before_timestamp=None, after_timestamp=None, ): check.inst_param(asset_key, "asset_key", AssetKey) check.opt_int_param(limit, "limit") check.opt_float_param(before_timestamp, "before_timestamp") check.opt_float_param(after_timestamp, "after_timestamp") instance = graphene_info.context.instance event_records = instance.get_event_records( EventRecordsFilter( event_type=DagsterEventType.ASSET_OBSERVATION, asset_key=asset_key, asset_partitions=partitions, before_timestamp=before_timestamp, after_timestamp=after_timestamp, ), limit=limit, ) return [event_record.event_log_entry for event_record in event_records] def get_asset_run_ids(graphene_info, asset_key): check.inst_param(asset_key, "asset_key", AssetKey) instance = graphene_info.context.instance return instance.run_ids_for_asset_key(asset_key) def get_assets_for_run_id(graphene_info, run_id): from ..schema.pipelines.pipeline import GrapheneAsset check.str_param(run_id, "run_id") records = graphene_info.context.instance.all_logs(run_id) asset_keys = [ record.dagster_event.asset_key for record in records if record.is_dagster_event and record.dagster_event.asset_key ] return [GrapheneAsset(key=asset_key) for asset_key in asset_keys]
33.941176
100
0.734315
7451f8e73b23701def1d108e476b04ccf1addc0d
2,973
py
Python
local_configs/10.14/logits_sg128_64.py
wzpscott/SegformerDistillation
6558757f5071251410e90270e197755860a6f41c
[ "DOC" ]
null
null
null
local_configs/10.14/logits_sg128_64.py
wzpscott/SegformerDistillation
6558757f5071251410e90270e197755860a6f41c
[ "DOC" ]
null
null
null
local_configs/10.14/logits_sg128_64.py
wzpscott/SegformerDistillation
6558757f5071251410e90270e197755860a6f41c
[ "DOC" ]
null
null
null
_base_ = [ '../_base_/datasets/ade20k_repeat.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k_adamw.py' ] norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='SDModule', cfg_s=dict( type='EncoderDecoder', pretrained='pretrained/mit_b0.pth', backbone=dict( type='mit_b0', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[32, 64, 160, 256], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=256), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ), cfg_t=dict( type='EncoderDecoder', backbone=dict( type='mit_b4', style='pytorch'), decode_head=dict( type='SegFormerHead', in_channels=[64, 128, 320, 512], in_index=[0, 1, 2, 3], feature_strides=[4, 8, 16, 32], channels=128, dropout_ratio=0.1, num_classes=150, norm_cfg=norm_cfg, align_corners=False, decoder_params=dict(embed_dim=768), loss_decode=dict(type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)) ), distillation = [ {'student_layer':'decode_head.linear_pred', 'teacher_layer':'decode_head.linear_pred', 'loss_name':'KLDLoss', 'loss_config':{ 'weight':1, 'tau':1, 'reshape_config':'logits', 'resize_config':{'mode':'bilinear','align_corners':False}, 'mask_config':False, 'transform_config':{'loss_type':'spatial','kernel_size':128,'stride':64}, 'ff_config':False }, }, ], s_pretrain = './pretrained/mit_b0.pth', # 学生的预训练模型 t_pretrain = './pretrained/segformer.b4.512x512.ade.160k.pth', # 老师的预训练模型 train_cfg=dict(), test_cfg=dict(mode='whole'), ) optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9,0.999), weight_decay=0.01, paramwise_cfg=dict(custom_keys={'pos_block': dict(decay_mult=0.), 'norm': dict(decay_mult=0.), 'head': dict(lr_mult=10.) })) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) work_dir = '/apdcephfs/private_inchzhang/shared_info/sg/logits_sg127_stride64' data = dict(samples_per_gpu=2) evaluation = dict(interval=16000, metric='mIoU') # resume_from = ''
35.392857
95
0.541541
53112168bf7e0a13d3abd82d1591242adcaa7574
20,577
py
Python
src/zope/index/text/tests/mhindex.py
minddistrict/zope.index
7fd8bbad0584e21c0158e73681bcf99b6bacb699
[ "ZPL-2.1" ]
null
null
null
src/zope/index/text/tests/mhindex.py
minddistrict/zope.index
7fd8bbad0584e21c0158e73681bcf99b6bacb699
[ "ZPL-2.1" ]
null
null
null
src/zope/index/text/tests/mhindex.py
minddistrict/zope.index
7fd8bbad0584e21c0158e73681bcf99b6bacb699
[ "ZPL-2.1" ]
1
2021-09-29T19:54:14.000Z
2021-09-29T19:54:14.000Z
#!/usr/bin/env python ############################################################################## # # Copyright (c) 2003 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """MH mail indexer. To index messages from a single folder (messages defaults to 'all'): mhindex.py [options] -u +folder [messages ...] To bulk index all messages from several folders: mhindex.py [options] -b folder ...; the folder name ALL means all folders. To execute a single query: mhindex.py [options] query To enter interactive query mode: mhindex.py [options] Common options: -d FILE -- specify the Data.fs to use (default ~/.Data.fs) -w -- dump the word list in alphabetical order and exit -W -- dump the word list ordered by word id and exit Indexing options: -O -- do a prescan on the data to compute optimal word id assignments; this is only useful the first time the Data.fs is used -t N -- commit a transaction after every N messages (default 20000) -p N -- pack after every N commits (by default no packing is done) Querying options: -m N -- show at most N matching lines from the message (default 3) -n N -- show the N best matching messages (default 3) """ from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function from __future__ import print_function import os import re import sys import time import mhlib import getopt import traceback from StringIO import StringIO from stat import ST_MTIME DATAFS = "~/.mhindex.fs" ZOPECODE = "~/projects/Zope3/lib/python" zopecode = os.path.expanduser(ZOPECODE) sys.path.insert(0, zopecode) from ZODB.DB import DB from ZODB.Storage.FileStorage import FileStorage import transaction from BTrees.IOBTree import IOBTree from BTrees.OIBTree import OIBTree from BTrees.IIBTree import IIBTree from zope.index.text.okapiindex import OkapiIndex from zope.index.text.lexicon import Splitter from zope.index.text.lexicon import CaseNormalizer, StopWordRemover from zope.index.text.stopdict import get_stopdict from zope.index.text.textindexwrapper import TextIndexWrapper NBEST = 3 MAXLINES = 3 def main(): try: opts, args = getopt.getopt(sys.argv[1:], "bd:fhm:n:Op:t:uwW") except getopt.error as msg: print(msg) print("use -h for help") return 2 update = 0 bulk = 0 optimize = 0 nbest = NBEST maxlines = MAXLINES datafs = os.path.expanduser(DATAFS) pack = 0 trans = 20000 dumpwords = dumpwids = dumpfreqs = 0 for o, a in opts: if o == "-b": bulk = 1 if o == "-d": datafs = a if o == "-f": dumpfreqs = 1 if o == "-h": print(__doc__) return if o == "-m": maxlines = int(a) if o == "-n": nbest = int(a) if o == "-O": optimize = 1 if o == "-p": pack = int(a) if o == "-t": trans = int(a) if o == "-u": update = 1 if o == "-w": dumpwords = 1 if o == "-W": dumpwids = 1 ix = Indexer(datafs, writable=update or bulk, trans=trans, pack=pack) if dumpfreqs: ix.dumpfreqs() if dumpwords: ix.dumpwords() if dumpwids: ix.dumpwids() if dumpwords or dumpwids or dumpfreqs: return if bulk: if optimize: ix.optimize(args) ix.bulkupdate(args) elif update: ix.update(args) elif args: for i in range(len(args)): a = args[i] if " " in a: if a[0] == "-": args[i] = '-"' + a[1:] + '"' else: args[i] = '"' + a + '"' ix.query(" ".join(args), nbest, maxlines) else: ix.interact(nbest) if pack: ix.pack() class Indexer(object): filestorage = database = connection = root = None def __init__(self, datafs, writable=0, trans=0, pack=0): self.trans_limit = trans self.pack_limit = pack self.trans_count = 0 self.pack_count = 0 self.stopdict = get_stopdict() self.mh = mhlib.MH() self.filestorage = FileStorage(datafs, read_only=(not writable)) self.database = DB(self.filestorage) self.connection = self.database.open() self.root = self.connection.root() try: self.index = self.root["index"] except KeyError: self.index = self.root["index"] = TextIndexWrapper() try: self.docpaths = self.root["docpaths"] except KeyError: self.docpaths = self.root["docpaths"] = IOBTree() try: self.doctimes = self.root["doctimes"] except KeyError: self.doctimes = self.root["doctimes"] = IIBTree() try: self.watchfolders = self.root["watchfolders"] except KeyError: self.watchfolders = self.root["watchfolders"] = {} self.path2docid = OIBTree() for docid in self.docpaths.keys(): path = self.docpaths[docid] self.path2docid[path] = docid try: self.maxdocid = max(self.docpaths.keys()) except ValueError: self.maxdocid = 0 print(len(self.docpaths), "Document ids") print(len(self.path2docid), "Pathnames") print(self.index.lexicon.length(), "Words") def dumpfreqs(self): lexicon = self.index.lexicon index = self.index.index assert isinstance(index, OkapiIndex) L = [] for wid in lexicon.wids(): freq = 0 for f in index._wordinfo.get(wid, {}).values(): freq += f L.append((freq, wid, lexicon.get_word(wid))) L.sort() L.reverse() for freq, wid, word in L: print("%10d %10d %s" % (wid, freq, word)) def dumpwids(self): lexicon = self.index.lexicon index = self.index.index assert isinstance(index, OkapiIndex) for wid in lexicon.wids(): freq = 0 for f in index._wordinfo.get(wid, {}).values(): freq += f print("%10d %10d %s" % (wid, freq, lexicon.get_word(wid))) def dumpwords(self): lexicon = self.index.lexicon index = self.index.index assert isinstance(index, OkapiIndex) for word in lexicon.words(): wid = lexicon.get_wid(word) freq = 0 for f in index._wordinfo.get(wid, {}).values(): freq += f print("%10d %10d %s" % (wid, freq, word)) def close(self): self.root = None if self.connection is not None: self.connection.close() self.connection = None if self.database is not None: self.database.close() self.database = None if self.filestorage is not None: self.filestorage.close() self.filestorage = None def interact(self, nbest=NBEST, maxlines=MAXLINES): try: import readline except ImportError: pass text = "" top = 0 results = [] while 1: try: line = raw_input("Query: ") except EOFError: print("\nBye.") break line = line.strip() if line.startswith("/"): self.specialcommand(line, results, top - nbest) continue if line: text = line top = 0 else: if not text: continue try: results, n = self.timequery(text, top + nbest) except KeyboardInterrupt: raise except: reportexc() text = "" continue if len(results) <= top: if not n: print("No hits for %r." % text) else: print("No more hits for %r." % text) text = "" continue print("[Results %d-%d from %d" % (top+1, min(n, top+nbest), n), end=' ') print("for query %s]" % repr(text)) self.formatresults(text, results, maxlines, top, top+nbest) top += nbest def specialcommand(self, line, results, first): assert line.startswith("/") line = line[1:] if not line: n = first else: try: n = int(line) - 1 except: print("Huh?") return if n < 0 or n >= len(results): print("Out of range") return docid, score = results[n] path = self.docpaths[docid] i = path.rfind("/") assert i > 0 folder = path[:i] n = path[i+1:] cmd = "show +%s %s" % (folder, n) if os.getenv("DISPLAY"): os.system("xterm -e sh -c '%s | less' &" % cmd) else: os.system(cmd) def query(self, text, nbest=NBEST, maxlines=MAXLINES): results, n = self.timequery(text, nbest) if not n: print("No hits for %r." % text) return print("[Results 1-%d from %d]" % (len(results), n)) self.formatresults(text, results, maxlines) def timequery(self, text, nbest): t0 = time.time() c0 = time.clock() results, n = self.index.query(text, 0, nbest) t1 = time.time() c1 = time.clock() print("[Query time: %.3f real, %.3f user]" % (t1-t0, c1-c0)) return results, n def formatresults(self, text, results, maxlines=MAXLINES, lo=0, hi=sys.maxint): stop = self.stopdict.has_key words = [w for w in re.findall(r"\w+\*?", text.lower()) if not stop(w)] pattern = r"\b(" + "|".join(words) + r")\b" pattern = pattern.replace("*", ".*") # glob -> re syntax prog = re.compile(pattern, re.IGNORECASE) print('='*70) rank = lo for docid, score in results[lo:hi]: rank += 1 path = self.docpaths[docid] score *= 100.0 print("Rank: %d Score: %d%% File: %s" % (rank, score, path)) path = os.path.join(self.mh.getpath(), path) try: fp = open(path) except (IOError, OSError) as msg: print("Can't open:", msg) continue msg = mhlib.Message("<folder>", 0, fp) for header in "From", "To", "Cc", "Bcc", "Subject", "Date": h = msg.getheader(header) if h: print("%-8s %s" % (header+":", h)) text = self.getmessagetext(msg) if text: print() nleft = maxlines for part in text: for line in part.splitlines(): if prog.search(line): print(line) nleft -= 1 if nleft <= 0: break if nleft <= 0: break print('-'*70) def update(self, args): folder = None seqs = [] for arg in args: if arg.startswith("+"): if folder is None: folder = arg[1:] else: print("only one folder at a time") return else: seqs.append(arg) if not folder: folder = self.mh.getcontext() if not seqs: seqs = ['all'] try: f = self.mh.openfolder(folder) except mhlib.Error as msg: print(msg) return dict = {} for seq in seqs: try: nums = f.parsesequence(seq) except mhlib.Error as msg: print(msg or "unparsable message sequence: %s" % repr(seq)) return for n in nums: dict[n] = n msgs = dict.keys() msgs.sort() self.updatefolder(f, msgs) self.commit() def optimize(self, args): uniqwords = {} for folder in args: if folder.startswith("+"): folder = folder[1:] print("\nOPTIMIZE FOLDER", folder) try: f = self.mh.openfolder(folder) except mhlib.Error as msg: print(msg) continue self.prescan(f, f.listmessages(), uniqwords) L = [(uniqwords[word], word) for word in uniqwords.keys()] L.sort() L.reverse() for i in range(100): print("%3d. %6d %s" % ((i+1,) + L[i])) self.index.lexicon.sourceToWordIds([word for (count, word) in L]) def prescan(self, f, msgs, uniqwords): pipeline = [Splitter(), CaseNormalizer(), StopWordRemover()] for n in msgs: print("prescanning", n) m = f.openmessage(n) text = self.getmessagetext(m, f.name) for p in pipeline: text = p.process(text) for word in text: uniqwords[word] = uniqwords.get(word, 0) + 1 def bulkupdate(self, args): if not args: print("No folders specified; use ALL to bulk-index all folders") return if "ALL" in args: i = args.index("ALL") args[i:i+1] = self.mh.listfolders() for folder in args: if folder.startswith("+"): folder = folder[1:] print("\nFOLDER", folder) try: f = self.mh.openfolder(folder) except mhlib.Error as msg: print(msg) continue self.updatefolder(f, f.listmessages()) print("Total", len(self.docpaths)) self.commit() print("Indexed", self.index.lexicon._nbytes, "bytes and", end=' ') print(self.index.lexicon._nwords, "words;", end=' ') print(len(self.index.lexicon._words), "unique words.") def updatefolder(self, f, msgs): self.watchfolders[f.name] = self.getmtime(f.name) for n in msgs: path = "%s/%s" % (f.name, n) docid = self.path2docid.get(path, 0) if docid and self.getmtime(path) == self.doctimes.get(docid, 0): print("unchanged", docid, path) continue docid = self.newdocid(path) try: m = f.openmessage(n) except IOError: print("disappeared", docid, path) self.unindexpath(path) continue text = self.getmessagetext(m, f.name) if not text: self.unindexpath(path) continue print("indexing", docid, path) self.index.index_doc(docid, text) self.maycommit() # Remove messages from the folder that no longer exist for path in list(self.path2docid.keys(f.name)): if not path.startswith(f.name + "/"): break if self.getmtime(path) == 0: self.unindexpath(path) print("done.") def unindexpath(self, path): if path in self.path2docid: docid = self.path2docid[path] print("unindexing", docid, path) del self.docpaths[docid] del self.doctimes[docid] del self.path2docid[path] try: self.index.unindex_doc(docid) except KeyError as msg: print("KeyError", msg) self.maycommit() def getmessagetext(self, m, name=None): L = [] if name: L.append("_folder " + name) # To restrict search to a folder self.getheaders(m, L) try: self.getmsgparts(m, L, 0) except KeyboardInterrupt: raise except: print("(getmsgparts failed:)") reportexc() return L def getmsgparts(self, m, L, level): ctype = m.gettype() if level or ctype != "text/plain": print(". "*level + str(ctype)) if ctype == "text/plain": L.append(m.getbodytext()) elif ctype in ("multipart/alternative", "multipart/mixed"): for part in m.getbodyparts(): self.getmsgparts(part, L, level+1) elif ctype == "message/rfc822": f = StringIO(m.getbodytext()) m = mhlib.Message("<folder>", 0, f) self.getheaders(m, L) self.getmsgparts(m, L, level+1) def getheaders(self, m, L): H = [] for key in "from", "to", "cc", "bcc", "subject": value = m.get(key) if value: H.append(value) if H: L.append("\n".join(H)) def newdocid(self, path): docid = self.path2docid.get(path) if docid is not None: self.doctimes[docid] = self.getmtime(path) return docid docid = self.maxdocid + 1 self.maxdocid = docid self.docpaths[docid] = path self.doctimes[docid] = self.getmtime(path) self.path2docid[path] = docid return docid def getmtime(self, path): path = os.path.join(self.mh.getpath(), path) try: st = os.stat(path) except os.error as msg: return 0 return int(st[ST_MTIME]) def maycommit(self): self.trans_count += 1 if self.trans_count >= self.trans_limit > 0: self.commit() def commit(self): if self.trans_count > 0: print("committing...") transaction.commit() self.trans_count = 0 self.pack_count += 1 if self.pack_count >= self.pack_limit > 0: self.pack() def pack(self): if self.pack_count > 0: print("packing...") self.database.pack() self.pack_count = 0 def reportexc(): traceback.print_exc() if __name__ == "__main__": sys.exit(main())
32.507109
84
0.543471
75699a62219908547bb9f766ea1d89682e4352df
5,771
py
Python
dojo/db_migrations/0004_cve_field.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,772
2018-01-22T23:32:15.000Z
2022-03-31T14:49:33.000Z
dojo/db_migrations/0004_cve_field.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
3,461
2018-01-20T19:12:28.000Z
2022-03-31T17:14:39.000Z
dojo/db_migrations/0004_cve_field.py
mtcolman/django-DefectDojo
76175aca446e077884bdb5e1d8e2a671a0840775
[ "BSD-3-Clause" ]
1,173
2018-01-23T07:10:23.000Z
2022-03-31T14:40:43.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.20 on 2019-05-06 21:54 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dojo', '0003_test_title'), ] operations = [ migrations.AddField( model_name='finding', name='cve', field=models.TextField(max_length=20, null=True, validators=[django.core.validators.RegexValidator(message=b"CVE must be entered in the format: 'CVE-9999-9999'. ", regex=b'^CVE-\\d{4}-\\d{4,7}$')]), ), migrations.AddField( model_name='finding_template', name='cve', field=models.TextField(max_length=20, null=True, validators=[django.core.validators.RegexValidator(message=b"CVE must be entered in the format: 'CVE-9999-9999'. ", regex=b'^CVE-\\d{4}-\\d{4,7}$')]), ), migrations.AlterField( model_name='child_rule', name='match_field', field=models.CharField(choices=[('id', 'id'), (b'title', b'title'), (b'date', b'date'), (b'cwe', b'cwe'), (b'cve', b'cve'), (b'url', b'url'), (b'severity', b'severity'), (b'description', b'description'), (b'mitigation', b'mitigation'), (b'impact', b'impact'), (b'steps_to_reproduce', b'steps_to_reproduce'), (b'severity_justification', b'severity_justification'), (b'references', b'references'), (b'test', b'test'), (b'is_template', b'is_template'), (b'active', b'active'), (b'verified', b'verified'), (b'false_p', b'false_p'), (b'duplicate', b'duplicate'), (b'duplicate_finding', b'duplicate_finding'), (b'out_of_scope', b'out_of_scope'), (b'under_review', b'under_review'), (b'review_requested_by', b'review_requested_by'), (b'under_defect_review', b'under_defect_review'), (b'defect_review_requested_by', b'defect_review_requested_by'), (b'thread_id', b'thread_id'), (b'mitigated', b'mitigated'), (b'mitigated_by', b'mitigated_by'), (b'reporter', b'reporter'), (b'numerical_severity', b'numerical_severity'), (b'last_reviewed', b'last_reviewed'), (b'last_reviewed_by', b'last_reviewed_by'), (b'line_number', b'line_number'), (b'sourcefilepath', b'sourcefilepath'), (b'sourcefile', b'sourcefile'), (b'param', b'param'), (b'payload', b'payload'), (b'hash_code', b'hash_code'), (b'line', b'line'), (b'file_path', b'file_path'), (b'static_finding', b'static_finding'), (b'dynamic_finding', b'dynamic_finding'), (b'created', b'created'), (b'scanner_confidence', b'scanner_confidence')], max_length=200), ), migrations.AlterField( model_name='rule', name='applied_field', field=models.CharField(choices=[('id', 'id'), (b'title', b'title'), (b'date', b'date'), (b'cwe', b'cwe'), (b'cve', b'cve'), (b'url', b'url'), (b'severity', b'severity'), (b'description', b'description'), (b'mitigation', b'mitigation'), (b'impact', b'impact'), (b'steps_to_reproduce', b'steps_to_reproduce'), (b'severity_justification', b'severity_justification'), (b'references', b'references'), (b'test', b'test'), (b'is_template', b'is_template'), (b'active', b'active'), (b'verified', b'verified'), (b'false_p', b'false_p'), (b'duplicate', b'duplicate'), (b'duplicate_finding', b'duplicate_finding'), (b'out_of_scope', b'out_of_scope'), (b'under_review', b'under_review'), (b'review_requested_by', b'review_requested_by'), (b'under_defect_review', b'under_defect_review'), (b'defect_review_requested_by', b'defect_review_requested_by'), (b'thread_id', b'thread_id'), (b'mitigated', b'mitigated'), (b'mitigated_by', b'mitigated_by'), (b'reporter', b'reporter'), (b'numerical_severity', b'numerical_severity'), (b'last_reviewed', b'last_reviewed'), (b'last_reviewed_by', b'last_reviewed_by'), (b'line_number', b'line_number'), (b'sourcefilepath', b'sourcefilepath'), (b'sourcefile', b'sourcefile'), (b'param', b'param'), (b'payload', b'payload'), (b'hash_code', b'hash_code'), (b'line', b'line'), (b'file_path', b'file_path'), (b'static_finding', b'static_finding'), (b'dynamic_finding', b'dynamic_finding'), (b'created', b'created'), (b'scanner_confidence', b'scanner_confidence')], max_length=200), ), migrations.AlterField( model_name='rule', name='match_field', field=models.CharField(choices=[('id', 'id'), (b'title', b'title'), (b'date', b'date'), (b'cwe', b'cwe'), (b'cve', b'cve'), (b'url', b'url'), (b'severity', b'severity'), (b'description', b'description'), (b'mitigation', b'mitigation'), (b'impact', b'impact'), (b'steps_to_reproduce', b'steps_to_reproduce'), (b'severity_justification', b'severity_justification'), (b'references', b'references'), (b'test', b'test'), (b'is_template', b'is_template'), (b'active', b'active'), (b'verified', b'verified'), (b'false_p', b'false_p'), (b'duplicate', b'duplicate'), (b'duplicate_finding', b'duplicate_finding'), (b'out_of_scope', b'out_of_scope'), (b'under_review', b'under_review'), (b'review_requested_by', b'review_requested_by'), (b'under_defect_review', b'under_defect_review'), (b'defect_review_requested_by', b'defect_review_requested_by'), (b'thread_id', b'thread_id'), (b'mitigated', b'mitigated'), (b'mitigated_by', b'mitigated_by'), (b'reporter', b'reporter'), (b'numerical_severity', b'numerical_severity'), (b'last_reviewed', b'last_reviewed'), (b'last_reviewed_by', b'last_reviewed_by'), (b'line_number', b'line_number'), (b'sourcefilepath', b'sourcefilepath'), (b'sourcefile', b'sourcefile'), (b'param', b'param'), (b'payload', b'payload'), (b'hash_code', b'hash_code'), (b'line', b'line'), (b'file_path', b'file_path'), (b'static_finding', b'static_finding'), (b'dynamic_finding', b'dynamic_finding'), (b'created', b'created'), (b'scanner_confidence', b'scanner_confidence')], max_length=200), ), ]
137.404762
1,513
0.670941
8c7439d1e8ec4a2278d503c671a02953b95c25b1
4,003
py
Python
pyfos/utils/zoning/zoning_alias_remove.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
44
2017-11-17T12:03:11.000Z
2022-02-03T20:57:56.000Z
pyfos/utils/zoning/zoning_alias_remove.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
13
2018-10-09T15:34:15.000Z
2022-02-24T20:03:17.000Z
pyfos/utils/zoning/zoning_alias_remove.py
madhavinaiduprathap/pyfosbrocade
ec100e77c441761c3e688f1d8e5d18ad38cc83f4
[ "Apache-2.0" ]
23
2017-12-14T18:08:33.000Z
2022-02-03T15:33:40.000Z
#!/usr/bin/env python3 # Copyright © 2018 Broadcom. All Rights Reserved. The term “Broadcom” refers to # Broadcom Inc. and/or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may also obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`zoning_alias_remove` - PyFOS util for alias remove use case *********************************************************************************** The :mod:`zoning_alias_remove` supports an alias remove use case. This module is a stand-alone script and API that can be used to remove members from an existing alias(es). * Inputs: * -L=<login>: Login ID. If not provided, an interactive prompt will request one. * -P=<password>: Password. If not provided, an interactive prompt will request one. * -i=<IP address>: IP address. * --name=<alias name>: string name of an existing alias * --members=<member list>: list of members separated by ";". Multiple members need to be enclosed by "". * -f=<VFID>: VFID or -1 if VF is disabled. If unspecified, a VFID of 128 is assumed. * Outputs: * Python dictionary content with RESTCONF response data. """ import sys from pyfos import pyfos_auth import pyfos.pyfos_brocade_zone as pyfos_zone from pyfos.utils import brcd_zone_util from pyfos.utils import brcd_util def aliasremove(session, aliases): """Remove members from existing alias(es). Example usage of the method:: aliases = [ { "alias-name": name, "member-entry": {"alias-entry-name": members} } ] result = aliasremove(session, aliases) :param session: session returned by login. :param aliases: an array of alias and to be removed members. :rtype: Dictionary of return status matching rest response. *Use cases* Remove members from an existing alias. """ new_defined = pyfos_zone.defined_configuration() new_defined.set_alias(aliases) result = new_defined.delete(session) return result def __aliasremove(session, name, members): aliases = [ { "alias-name": name, "member-entry": {"alias-entry-name": members}} ] return aliasremove(session, aliases) def usage(): print(" Script specific options:") print("") print(" --name=NAME name of alias") print(" --members=MEMBERS ; separated list of alias members") print(" multiple members enclosed by \"\"") print("") def main(argv): valid_options = ["name", "members"] inputs = brcd_util.generic_input(argv, usage, valid_options) session = pyfos_auth.login(inputs["login"], inputs["password"], inputs["ipaddr"], inputs["secured"], verbose=inputs["verbose"]) if pyfos_auth.is_failed_login(session): print("login failed because", session.get(pyfos_auth.CREDENTIAL_KEY) [pyfos_auth.LOGIN_ERROR_KEY]) brcd_util.full_usage(usage, valid_options) sys.exit() brcd_util.exit_register(session) vfid = None if 'vfid' in inputs: vfid = inputs['vfid'] if vfid is not None: pyfos_auth.vfid_set(session, vfid) brcd_zone_util.zone_name_members_func( session, inputs, usage, __aliasremove) pyfos_auth.logout(session) if __name__ == "__main__": main(sys.argv[1:])
31.031008
83
0.625031
6e36d6bc84817ab81f9bd98ba3adf73f0c5cc401
5,031
py
Python
lib/streamlit/elements/checkbox.py
sujithapandalaneni/streamlit
5f39da13c0c551533a6d313dd0e2f6f9f0f9a5ac
[ "Apache-2.0" ]
1
2022-01-19T10:48:49.000Z
2022-01-19T10:48:49.000Z
lib/streamlit/elements/checkbox.py
sujithapandalaneni/streamlit
5f39da13c0c551533a6d313dd0e2f6f9f0f9a5ac
[ "Apache-2.0" ]
null
null
null
lib/streamlit/elements/checkbox.py
sujithapandalaneni/streamlit
5f39da13c0c551533a6d313dd0e2f6f9f0f9a5ac
[ "Apache-2.0" ]
null
null
null
# Copyright 2018-2021 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from streamlit.script_run_context import ScriptRunContext, get_script_run_ctx from streamlit.type_util import Key, to_key from textwrap import dedent from typing import cast, Optional import streamlit from streamlit.proto.Checkbox_pb2 import Checkbox as CheckboxProto from streamlit.state.widgets import register_widget from streamlit.state.session_state import ( WidgetArgs, WidgetCallback, WidgetKwargs, ) from .form import current_form_id from .utils import check_callback_rules, check_session_state_rules class CheckboxMixin: def checkbox( self, label: str, value: bool = False, key: Optional[Key] = None, help: Optional[str] = None, on_change: Optional[WidgetCallback] = None, args: Optional[WidgetArgs] = None, kwargs: Optional[WidgetKwargs] = None, *, # keyword-only arguments: disabled: bool = False, ) -> bool: """Display a checkbox widget. Parameters ---------- label : str A short label explaining to the user what this checkbox is for. value : bool Preselect the checkbox when it first renders. This will be cast to bool internally. key : str or int An optional string or integer to use as the unique key for the widget. If this is omitted, a key will be generated for the widget based on its content. Multiple widgets of the same type may not share the same key. help : str An optional tooltip that gets displayed next to the checkbox. on_change : callable An optional callback invoked when this checkbox's value changes. args : tuple An optional tuple of args to pass to the callback. kwargs : dict An optional dict of kwargs to pass to the callback. disabled : bool An optional boolean, which disables the checkbox if set to True. The default is False. This argument can only be supplied by keyword. Returns ------- bool Whether or not the checkbox is checked. Example ------- >>> agree = st.checkbox('I agree') >>> >>> if agree: ... st.write('Great!') """ ctx = get_script_run_ctx() return self._checkbox( label=label, value=value, key=key, help=help, on_change=on_change, args=args, kwargs=kwargs, disabled=disabled, ctx=ctx, ) def _checkbox( self, label: str, value: bool = False, key: Optional[Key] = None, help: Optional[str] = None, on_change: Optional[WidgetCallback] = None, args: Optional[WidgetArgs] = None, kwargs: Optional[WidgetKwargs] = None, *, # keyword-only arguments: disabled: bool = False, ctx: Optional[ScriptRunContext] = None, ) -> bool: key = to_key(key) check_callback_rules(self.dg, on_change) check_session_state_rules( default_value=None if value is False else value, key=key ) checkbox_proto = CheckboxProto() checkbox_proto.label = label checkbox_proto.default = bool(value) checkbox_proto.form_id = current_form_id(self.dg) checkbox_proto.disabled = disabled if help is not None: checkbox_proto.help = dedent(help) def deserialize_checkbox(ui_value: Optional[bool], widget_id: str = "") -> bool: return bool(ui_value if ui_value is not None else value) current_value, set_frontend_value = register_widget( "checkbox", checkbox_proto, user_key=key, on_change_handler=on_change, args=args, kwargs=kwargs, deserializer=deserialize_checkbox, serializer=bool, ctx=ctx, ) if set_frontend_value: checkbox_proto.value = current_value checkbox_proto.set_value = True self.dg._enqueue("checkbox", checkbox_proto) return cast(bool, current_value) @property def dg(self) -> "streamlit.delta_generator.DeltaGenerator": """Get our DeltaGenerator.""" return cast("streamlit.delta_generator.DeltaGenerator", self)
33.54
88
0.622739
ecb808d6103af26da2ee84ad5e81c139b36e4f5c
401
py
Python
music_review/wsgi.py
wmalarski/music-reviews
7190a2fc489965d951b3879ef89bfdf7893b2456
[ "MIT" ]
null
null
null
music_review/wsgi.py
wmalarski/music-reviews
7190a2fc489965d951b3879ef89bfdf7893b2456
[ "MIT" ]
80
2020-09-22T19:26:24.000Z
2021-09-22T19:44:09.000Z
music_review/wsgi.py
wmalarski/music-reviews
7190a2fc489965d951b3879ef89bfdf7893b2456
[ "MIT" ]
null
null
null
""" WSGI config for music_review project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "music_review.settings") application = get_wsgi_application()
23.588235
78
0.790524
5ad6cfcd17b221dc9d9eedf6123f29b71e364f66
867
py
Python
backend/authentication/urls.py
Gimb0/financeManager
b054567ccbcc66535b30b92af1bf11e270968779
[ "MIT" ]
null
null
null
backend/authentication/urls.py
Gimb0/financeManager
b054567ccbcc66535b30b92af1bf11e270968779
[ "MIT" ]
null
null
null
backend/authentication/urls.py
Gimb0/financeManager
b054567ccbcc66535b30b92af1bf11e270968779
[ "MIT" ]
null
null
null
from django.urls import path, include from rest_framework_simplejwt import views as jwt_views from .views import ObtainTokenPairWithColorView, CustomUserCreate from rest_framework import routers from spendings.views import ExpensesView, CategoryView router = routers.DefaultRouter() router.register(r'expenses', ExpensesView, 'expenses') router.register(r'categories', CategoryView, 'categories') urlpatterns = [ path('user/create/', CustomUserCreate.as_view(), name="create_user"), path('token/obtain/', ObtainTokenPairWithColorView.as_view(), name='token_create'), path('token/refresh/', jwt_views.TokenRefreshView.as_view(), name='token_refresh'), path('spendings/', include(router.urls)), # path('spendings/expenses/', ExpensesView.as_view, name="expenses"), # path('spendings/categories/', CategoryView.as_view, name="categories"), ]
41.285714
87
0.769319
e29ac73ee0f89532fb7185ece9d9d79626d29a76
105
py
Python
lbry/__init__.py
StripedMonkey/lbry-sdk
b7cb2a7aa553cf3eafc239275fa6e4e30b9057e1
[ "MIT" ]
null
null
null
lbry/__init__.py
StripedMonkey/lbry-sdk
b7cb2a7aa553cf3eafc239275fa6e4e30b9057e1
[ "MIT" ]
null
null
null
lbry/__init__.py
StripedMonkey/lbry-sdk
b7cb2a7aa553cf3eafc239275fa6e4e30b9057e1
[ "MIT" ]
null
null
null
__version__ = "0.70.0" version = tuple(map(int, __version__.split('.'))) # pylint: disable=invalid-name
35
81
0.695238
1b64be6d7fb2e25f4cbb36303f70d04c23bf8f7c
687
py
Python
codegen/scripts/test_validator.py
Citrusboa/firmware_xiv
4379cefae900fd67bd14d930da6b8acfce625176
[ "MIT" ]
14
2019-11-12T00:11:29.000Z
2021-12-13T05:32:41.000Z
codegen/scripts/test_validator.py
123Logan321/firmware_xiv
14468d55753ad62f8a63a9289511e72131443042
[ "MIT" ]
191
2019-11-12T05:36:58.000Z
2022-03-21T19:54:46.000Z
codegen/scripts/test_validator.py
123Logan321/firmware_xiv
14468d55753ad62f8a63a9289511e72131443042
[ "MIT" ]
14
2020-06-06T14:43:14.000Z
2022-03-08T00:48:11.000Z
"""Module for testing validator methods.""" from __future__ import absolute_import, division, print_function, unicode_literals import unittest import validator from constants import NUM_CAN_MESSAGES class TestValidatorMethods(unittest.TestCase): """Tests the validator module methods.""" def test_valid_can_id_in_range(self): """Tests if a valid can message is in range.""" for can_msg_id in range(0, NUM_CAN_MESSAGES): self.assertTrue(validator.valid_can_id(can_msg_id)) def test_valid_can_id_out_of_range(self): """Tests if a valid can message is out of range.""" self.assertFalse(validator.valid_can_id(NUM_CAN_MESSAGES))
32.714286
82
0.743814
316bf2b6ee73e303cfd2af021ccebefeb88cf8dc
1,408
py
Python
api/applications/views/party_documents.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
3
2019-05-15T09:30:39.000Z
2020-04-22T16:14:23.000Z
api/applications/views/party_documents.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
85
2019-04-24T10:39:35.000Z
2022-03-21T14:52:12.000Z
api/applications/views/party_documents.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
1
2021-01-17T11:12:19.000Z
2021-01-17T11:12:19.000Z
from django.db import transaction from rest_framework.views import APIView from api.applications.libraries.get_applications import get_application from api.applications.libraries.document_helpers import upload_party_document, delete_party_document, get_party_document from api.core.authentication import ExporterAuthentication from api.core.decorators import authorised_to_view_application from api.users.models import ExporterUser class PartyDocumentView(APIView): """ Retrieve, add or delete an end user document from an application """ authentication_classes = (ExporterAuthentication,) @authorised_to_view_application(ExporterUser) def get(self, request, pk, party_pk): application = get_application(pk) party = application.get_party(party_pk) return get_party_document(party) @transaction.atomic @authorised_to_view_application(ExporterUser) def post(self, request, pk, party_pk): application = get_application(pk) party = application.get_party(party_pk) return upload_party_document(party, request.data, application, request.user) @transaction.atomic @authorised_to_view_application(ExporterUser) def delete(self, request, pk, party_pk): application = get_application(pk) party = application.get_party(party_pk) return delete_party_document(party, application, request.user)
38.054054
120
0.772727
67ca6f6fa9d170915986b76886eec289a455cdbc
26,382
py
Python
discord/permissions.py
z03h/discord.py
7e5831ba9cc3f881e11b3536159a3851fba6ab52
[ "MIT" ]
null
null
null
discord/permissions.py
z03h/discord.py
7e5831ba9cc3f881e11b3536159a3851fba6ab52
[ "MIT" ]
7
2021-09-06T04:52:13.000Z
2022-01-13T04:56:21.000Z
discord/permissions.py
z03h/discord.py
7e5831ba9cc3f881e11b3536159a3851fba6ab52
[ "MIT" ]
null
null
null
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import Callable, Any, ClassVar, Dict, Iterator, Set, TYPE_CHECKING, Tuple, Type, TypeVar, Optional from .flags import BaseFlags, flag_value, fill_with_flags, alias_flag_value __all__ = ( 'Permissions', 'PermissionOverwrite', ) # A permission alias works like a regular flag but is marked # So the PermissionOverwrite knows to work with it class permission_alias(alias_flag_value): alias: str def make_permission_alias(alias: str) -> Callable[[Callable[[Any], int]], permission_alias]: def decorator(func: Callable[[Any], int]) -> permission_alias: ret = permission_alias(func) ret.alias = alias return ret return decorator P = TypeVar('P', bound='Permissions') @fill_with_flags() class Permissions(BaseFlags): """Wraps up the Discord permission value. The properties provided are two way. You can set and retrieve individual bits using the properties as if they were regular bools. This allows you to edit permissions. .. versionchanged:: 1.3 You can now use keyword arguments to initialize :class:`Permissions` similar to :meth:`update`. .. container:: operations .. describe:: x == y Checks if two permissions are equal. .. describe:: x != y Checks if two permissions are not equal. .. describe:: x <= y Checks if a permission is a subset of another permission. .. describe:: x >= y Checks if a permission is a superset of another permission. .. describe:: x < y Checks if a permission is a strict subset of another permission. .. describe:: x > y Checks if a permission is a strict superset of another permission. .. describe:: hash(x) Return the permission's hash. .. describe:: iter(x) Returns an iterator of ``(perm, value)`` pairs. This allows it to be, for example, constructed as a dict or a list of pairs. Note that aliases are not shown. Attributes ----------- value: :class:`int` The raw value. This value is a bit array field of a 53-bit integer representing the currently available permissions. You should query permissions via the properties rather than using this raw value. """ __slots__ = () def __init__(self, permissions: int = 0, **kwargs: bool): if not isinstance(permissions, int): raise TypeError(f'Expected int parameter, received {permissions.__class__.__name__} instead.') self.value = permissions for key, value in kwargs.items(): if key not in self.VALID_FLAGS: raise TypeError(f'{key!r} is not a valid permission name.') setattr(self, key, value) def is_subset(self, other: Permissions) -> bool: """Returns ``True`` if self has the same or fewer permissions as other.""" if isinstance(other, Permissions): return (self.value & other.value) == self.value else: raise TypeError(f"cannot compare {self.__class__.__name__} with {other.__class__.__name__}") def is_superset(self, other: Permissions) -> bool: """Returns ``True`` if self has the same or more permissions as other.""" if isinstance(other, Permissions): return (self.value | other.value) == self.value else: raise TypeError(f"cannot compare {self.__class__.__name__} with {other.__class__.__name__}") def is_strict_subset(self, other: Permissions) -> bool: """Returns ``True`` if the permissions on other are a strict subset of those on self.""" return self.is_subset(other) and self != other def is_strict_superset(self, other: Permissions) -> bool: """Returns ``True`` if the permissions on other are a strict superset of those on self.""" return self.is_superset(other) and self != other __le__ = is_subset __ge__ = is_superset __lt__ = is_strict_subset __gt__ = is_strict_superset @classmethod def none(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all permissions set to ``False``.""" return cls(0) @classmethod def all(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all permissions set to ``True``. """ return cls(0b11111111111111111111111111111111111111111) @classmethod def all_channel(cls: Type[P]) -> P: """A :class:`Permissions` with all channel-specific permissions set to ``True`` and the guild-specific ones set to ``False``. The guild-specific permissions are currently: - :attr:`manage_emojis` - :attr:`view_audit_log` - :attr:`view_guild_insights` - :attr:`manage_guild` - :attr:`change_nickname` - :attr:`manage_nicknames` - :attr:`kick_members` - :attr:`ban_members` - :attr:`administrator` .. versionchanged:: 1.7 Added :attr:`stream`, :attr:`priority_speaker` and :attr:`use_slash_commands` permissions. .. versionchanged:: 2.0 Added :attr:`create_public_threads`, :attr:`create_private_threads`, :attr:`manage_threads`, :attr:`use_external_stickers`, :attr:`send_messages_in_threads` and :attr:`request_to_speak` permissions. """ return cls(0b111110110110011111101111111111101010001) @classmethod def general(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "General" permissions from the official Discord UI set to ``True``. .. versionchanged:: 1.7 Permission :attr:`read_messages` is now included in the general permissions, but permissions :attr:`administrator`, :attr:`create_instant_invite`, :attr:`kick_members`, :attr:`ban_members`, :attr:`change_nickname` and :attr:`manage_nicknames` are no longer part of the general permissions. """ return cls(0b01110000000010000000010010110000) @classmethod def membership(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Membership" permissions from the official Discord UI set to ``True``. .. versionadded:: 1.7 """ return cls(0b10000000000001100000000000000000000000111) @classmethod def text(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Text" permissions from the official Discord UI set to ``True``. .. versionchanged:: 1.7 Permission :attr:`read_messages` is no longer part of the text permissions. Added :attr:`use_slash_commands` permission. .. versionchanged:: 2.0 Added :attr:`create_public_threads`, :attr:`create_private_threads`, :attr:`manage_threads`, :attr:`send_messages_in_threads` and :attr:`use_external_stickers` permissions. """ return cls(0b111110010000000000001111111100001000000) @classmethod def voice(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Voice" permissions from the official Discord UI set to ``True``.""" return cls(0b1000000000000011111100000000001100000000) @classmethod def stage(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Stage Channel" permissions from the official Discord UI set to ``True``. .. versionadded:: 1.7 """ return cls(1 << 32) @classmethod def stage_moderator(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Stage Moderator" permissions from the official Discord UI set to ``True``. .. versionadded:: 1.7 """ return cls(0b100000001010000000000000000000000) @classmethod def advanced(cls: Type[P]) -> P: """A factory method that creates a :class:`Permissions` with all "Advanced" permissions from the official Discord UI set to ``True``. .. versionadded:: 1.7 """ return cls(1 << 3) def update(self, **kwargs: bool) -> None: r"""Bulk updates this permission object. Allows you to set multiple attributes by using keyword arguments. The names must be equivalent to the properties listed. Extraneous key/value pairs will be silently ignored. Parameters ------------ \*\*kwargs A list of key/value pairs to bulk update permissions with. """ for key, value in kwargs.items(): if key in self.VALID_FLAGS: setattr(self, key, value) def handle_overwrite(self, allow: int, deny: int) -> None: # Basically this is what's happening here. # We have an original bit array, e.g. 1010 # Then we have another bit array that is 'denied', e.g. 1111 # And then we have the last one which is 'allowed', e.g. 0101 # We want original OP denied to end up resulting in # whatever is in denied to be set to 0. # So 1010 OP 1111 -> 0000 # Then we take this value and look at the allowed values. # And whatever is allowed is set to 1. # So 0000 OP2 0101 -> 0101 # The OP is base & ~denied. # The OP2 is base | allowed. self.value = (self.value & ~deny) | allow @flag_value def create_instant_invite(self) -> int: """:class:`bool`: Returns ``True`` if the user can create instant invites.""" return 1 << 0 @flag_value def kick_members(self) -> int: """:class:`bool`: Returns ``True`` if the user can kick users from the guild.""" return 1 << 1 @flag_value def ban_members(self) -> int: """:class:`bool`: Returns ``True`` if a user can ban users from the guild.""" return 1 << 2 @flag_value def administrator(self) -> int: """:class:`bool`: Returns ``True`` if a user is an administrator. This role overrides all other permissions. This also bypasses all channel-specific overrides. """ return 1 << 3 @flag_value def manage_channels(self) -> int: """:class:`bool`: Returns ``True`` if a user can edit, delete, or create channels in the guild. This also corresponds to the "Manage Channel" channel-specific override.""" return 1 << 4 @flag_value def manage_guild(self) -> int: """:class:`bool`: Returns ``True`` if a user can edit guild properties.""" return 1 << 5 @flag_value def add_reactions(self) -> int: """:class:`bool`: Returns ``True`` if a user can add reactions to messages.""" return 1 << 6 @flag_value def view_audit_log(self) -> int: """:class:`bool`: Returns ``True`` if a user can view the guild's audit log.""" return 1 << 7 @flag_value def priority_speaker(self) -> int: """:class:`bool`: Returns ``True`` if a user can be more easily heard while talking.""" return 1 << 8 @flag_value def stream(self) -> int: """:class:`bool`: Returns ``True`` if a user can stream in a voice channel.""" return 1 << 9 @flag_value def view_channel(self) -> int: """:class:`bool`: Returns ``True`` if a user can read messages from all or specific text channels. .. versionchanged:: 2.0 No longer an alias for :attr:`read_messages`. """ return 1 << 10 @make_permission_alias('view_channel') def read_messages(self) -> int: """:class:`bool`: An alias for :attr:`view_channel`. .. versionadded:: 1.3 .. versionchanged:: 2.0 Is now an alias for :attr:`view_channel`. """ return 1 << 10 @flag_value def send_messages(self) -> int: """:class:`bool`: Returns ``True`` if a user can send messages from all or specific text channels.""" return 1 << 11 @flag_value def send_tts_messages(self) -> int: """:class:`bool`: Returns ``True`` if a user can send TTS messages from all or specific text channels.""" return 1 << 12 @flag_value def manage_messages(self) -> int: """:class:`bool`: Returns ``True`` if a user can delete or pin messages in a text channel. .. note:: Note that there are currently no ways to edit other people's messages. """ return 1 << 13 @flag_value def embed_links(self) -> int: """:class:`bool`: Returns ``True`` if a user's messages will automatically be embedded by Discord.""" return 1 << 14 @flag_value def attach_files(self) -> int: """:class:`bool`: Returns ``True`` if a user can send files in their messages.""" return 1 << 15 @flag_value def read_message_history(self) -> int: """:class:`bool`: Returns ``True`` if a user can read a text channel's previous messages.""" return 1 << 16 @flag_value def mention_everyone(self) -> int: """:class:`bool`: Returns ``True`` if a user's @everyone or @here will mention everyone in the text channel.""" return 1 << 17 @flag_value def external_emojis(self) -> int: """:class:`bool`: Returns ``True`` if a user can use emojis from other guilds.""" return 1 << 18 @make_permission_alias('external_emojis') def use_external_emojis(self) -> int: """:class:`bool`: An alias for :attr:`external_emojis`. .. versionadded:: 1.3 """ return 1 << 18 @flag_value def view_guild_insights(self) -> int: """:class:`bool`: Returns ``True`` if a user can view the guild's insights. .. versionadded:: 1.3 """ return 1 << 19 @flag_value def connect(self) -> int: """:class:`bool`: Returns ``True`` if a user can connect to a voice channel.""" return 1 << 20 @flag_value def speak(self) -> int: """:class:`bool`: Returns ``True`` if a user can speak in a voice channel.""" return 1 << 21 @flag_value def mute_members(self) -> int: """:class:`bool`: Returns ``True`` if a user can mute other users.""" return 1 << 22 @flag_value def deafen_members(self) -> int: """:class:`bool`: Returns ``True`` if a user can deafen other users.""" return 1 << 23 @flag_value def move_members(self) -> int: """:class:`bool`: Returns ``True`` if a user can move users between other voice channels.""" return 1 << 24 @flag_value def use_voice_activation(self) -> int: """:class:`bool`: Returns ``True`` if a user can use voice activation in voice channels.""" return 1 << 25 @flag_value def change_nickname(self) -> int: """:class:`bool`: Returns ``True`` if a user can change their nickname in the guild.""" return 1 << 26 @flag_value def manage_nicknames(self) -> int: """:class:`bool`: Returns ``True`` if a user can change other user's nickname in the guild.""" return 1 << 27 @flag_value def manage_roles(self) -> int: """:class:`bool`: Returns ``True`` if a user can create or edit roles less than their role's position. This also corresponds to the "Manage Permissions" channel-specific override. """ return 1 << 28 @make_permission_alias('manage_roles') def manage_permissions(self) -> int: """:class:`bool`: An alias for :attr:`manage_roles`. .. versionadded:: 1.3 """ return 1 << 28 @flag_value def manage_webhooks(self) -> int: """:class:`bool`: Returns ``True`` if a user can create, edit, or delete webhooks.""" return 1 << 29 @flag_value def manage_emojis(self) -> int: """:class:`bool`: Returns ``True`` if a user can create, edit, or delete emojis.""" return 1 << 30 @make_permission_alias('manage_emojis') def manage_emojis_and_stickers(self) -> int: """:class:`bool`: An alias for :attr:`manage_emojis`. .. versionadded:: 2.0 """ return 1 << 30 @flag_value def use_slash_commands(self) -> int: """:class:`bool`: Returns ``True`` if a user can use slash commands. .. versionadded:: 1.7 """ return 1 << 31 @flag_value def request_to_speak(self) -> int: """:class:`bool`: Returns ``True`` if a user can request to speak in a stage channel. .. versionadded:: 1.7 """ return 1 << 32 @flag_value def manage_events(self) -> int: """:class:`bool`: Returns ``True`` if a user can manage guild events. .. versionadded:: 2.0 """ return 1 << 33 @flag_value def manage_threads(self) -> int: """:class:`bool`: Returns ``True`` if a user can manage threads. .. versionadded:: 2.0 """ return 1 << 34 @flag_value def create_public_threads(self) -> int: """:class:`bool`: Returns ``True`` if a user can create public threads. .. versionadded:: 2.0 """ return 1 << 35 @flag_value def create_private_threads(self) -> int: """:class:`bool`: Returns ``True`` if a user can create private threads. .. versionadded:: 2.0 """ return 1 << 36 @flag_value def external_stickers(self) -> int: """:class:`bool`: Returns ``True`` if a user can use stickers from other guilds. .. versionadded:: 2.0 """ return 1 << 37 @make_permission_alias('external_stickers') def use_external_stickers(self) -> int: """:class:`bool`: An alias for :attr:`external_stickers`. .. versionadded:: 2.0 """ return 1 << 37 @flag_value def send_messages_in_threads(self) -> int: """:class:`bool`: Returns ``True`` if a user can send messages in threads. .. versionadded:: 2.0 """ return 1 << 38 @flag_value def start_embedded_activities(self) -> int: """:class:`bool`: Returns ``True`` if a user can start embedded activities. .. versionadded:: 2.0 """ return 1 << 39 @flag_value def moderate_members(self) -> int: """:class:`bool`: Returns ``True`` if a user can timeout other users. .. versionadded:: 2.0 """ return 1 << 40 PO = TypeVar('PO', bound='PermissionOverwrite') def _augment_from_permissions(cls): cls.VALID_NAMES = set(Permissions.VALID_FLAGS) aliases = set() # make descriptors for all the valid names and aliases for name, value in Permissions.__dict__.items(): if isinstance(value, permission_alias): key = value.alias aliases.add(name) elif isinstance(value, flag_value): key = name else: continue # god bless Python def getter(self, x=key): return self._values.get(x) def setter(self, value, x=key): self._set(x, value) prop = property(getter, setter) setattr(cls, name, prop) cls.PURE_FLAGS = cls.VALID_NAMES - aliases return cls @_augment_from_permissions class PermissionOverwrite: r"""A type that is used to represent a channel specific permission. Unlike a regular :class:`Permissions`\, the default value of a permission is equivalent to ``None`` and not ``False``. Setting a value to ``False`` is **explicitly** denying that permission, while setting a value to ``True`` is **explicitly** allowing that permission. The values supported by this are the same as :class:`Permissions` with the added possibility of it being set to ``None``. .. container:: operations .. describe:: x == y Checks if two overwrites are equal. .. describe:: x != y Checks if two overwrites are not equal. .. describe:: iter(x) Returns an iterator of ``(perm, value)`` pairs. This allows it to be, for example, constructed as a dict or a list of pairs. Note that aliases are not shown. Parameters ----------- \*\*kwargs Set the value of permissions by their name. """ __slots__ = ('_values',) if TYPE_CHECKING: VALID_NAMES: ClassVar[Set[str]] PURE_FLAGS: ClassVar[Set[str]] # I wish I didn't have to do this create_instant_invite: Optional[bool] kick_members: Optional[bool] ban_members: Optional[bool] administrator: Optional[bool] manage_channels: Optional[bool] manage_guild: Optional[bool] add_reactions: Optional[bool] view_audit_log: Optional[bool] priority_speaker: Optional[bool] stream: Optional[bool] read_messages: Optional[bool] view_channel: Optional[bool] send_messages: Optional[bool] send_tts_messages: Optional[bool] manage_messages: Optional[bool] embed_links: Optional[bool] attach_files: Optional[bool] read_message_history: Optional[bool] mention_everyone: Optional[bool] external_emojis: Optional[bool] use_external_emojis: Optional[bool] view_guild_insights: Optional[bool] connect: Optional[bool] speak: Optional[bool] mute_members: Optional[bool] deafen_members: Optional[bool] move_members: Optional[bool] use_voice_activation: Optional[bool] change_nickname: Optional[bool] manage_nicknames: Optional[bool] manage_roles: Optional[bool] manage_permissions: Optional[bool] manage_webhooks: Optional[bool] manage_emojis: Optional[bool] manage_emojis_and_stickers: Optional[bool] use_slash_commands: Optional[bool] request_to_speak: Optional[bool] manage_events: Optional[bool] manage_threads: Optional[bool] create_public_threads: Optional[bool] create_private_threads: Optional[bool] send_messages_in_threads: Optional[bool] external_stickers: Optional[bool] use_external_stickers: Optional[bool] start_embedded_activities: Optional[bool] def __init__(self, **kwargs: Optional[bool]): self._values: Dict[str, Optional[bool]] = {} for key, value in kwargs.items(): if key not in self.VALID_NAMES: raise ValueError(f'no permission called {key}.') setattr(self, key, value) def __eq__(self, other: Any) -> bool: return isinstance(other, PermissionOverwrite) and self._values == other._values def _set(self, key: str, value: Optional[bool]) -> None: if value not in (True, None, False): raise TypeError(f'Expected bool or NoneType, received {value.__class__.__name__}') if value is None: self._values.pop(key, None) else: self._values[key] = value def pair(self) -> Tuple[Permissions, Permissions]: """Tuple[:class:`Permissions`, :class:`Permissions`]: Returns the (allow, deny) pair from this overwrite.""" allow = Permissions.none() deny = Permissions.none() for key, value in self._values.items(): if value is True: setattr(allow, key, True) elif value is False: setattr(deny, key, True) return allow, deny @classmethod def from_pair(cls: Type[PO], allow: Permissions, deny: Permissions) -> PO: """Creates an overwrite from an allow/deny pair of :class:`Permissions`.""" ret = cls() for key, value in allow: if value is True: setattr(ret, key, True) for key, value in deny: if value is True: setattr(ret, key, False) return ret def is_empty(self) -> bool: """Checks if the permission overwrite is currently empty. An empty permission overwrite is one that has no overwrites set to ``True`` or ``False``. Returns ------- :class:`bool` Indicates if the overwrite is empty. """ return len(self._values) == 0 def update(self, **kwargs: bool) -> None: r"""Bulk updates this permission overwrite object. Allows you to set multiple attributes by using keyword arguments. The names must be equivalent to the properties listed. Extraneous key/value pairs will be silently ignored. Parameters ------------ \*\*kwargs A list of key/value pairs to bulk update with. """ for key, value in kwargs.items(): if key not in self.VALID_NAMES: continue setattr(self, key, value) def __iter__(self) -> Iterator[Tuple[str, Optional[bool]]]: for key in self.PURE_FLAGS: yield key, self._values.get(key)
33.823077
119
0.615344
b3562d942aeaec8882c21c4abaaa1792d4f7a9d0
1,565
py
Python
tests/test_gnets_legalize.py
enics-labs/salamandra
e3f334d0ead5296b02c471b56cb90b1516e12769
[ "Apache-2.0" ]
1
2021-11-18T10:45:26.000Z
2021-11-18T10:45:26.000Z
tests/test_gnets_legalize.py
enics-labs/salamandra
e3f334d0ead5296b02c471b56cb90b1516e12769
[ "Apache-2.0" ]
null
null
null
tests/test_gnets_legalize.py
enics-labs/salamandra
e3f334d0ead5296b02c471b56cb90b1516e12769
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 EnICS Labs, Bar-Ilan University. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 import sys, os sys.path.append(os.path.abspath('..')) from salamandra import * def main(): test(is_metatest=False) def test(is_metatest): nand = Component('nand') and_ = Component('and2') and_.add_pinbus(Bus(Output, 'A_b_o', 8)) and_.add_pinbus(Bus(Output, 'A_b_o2', 8)) and_.add_pinbus(Bus(Input, 'A_b_i', 8)) and_.add_pin(Input('A')) nand.add_subcomponent(and_, 'i_and') nand.add_pinbus(Bus(Input, 'A_b', 5)) nand.add_pin(Input('A')) nand.connect("1'b0", 'i_and.A') # nand.connect('A_b[1]', 'i_and.A_b_o[4]') # nand.connect('A_b[2]', 'i_and.A_b_o[5]') nand.connect('1\'b0', 'i_and.A_b_i[2]') nand.connect('1\'b0', 'i_and.A_b_i[3]') nand.connect('A_b[1]', 'i_and.A_b_i[4]') nand.connect('A_b[2]', 'i_and.A_b_i[5]') nand.connect('1\'b0', 'i_and.A_b_i[6]') nand.connect('1\'b1', 'i_and.A_b_i[7]') nand2 = Component('nand2', nand) nand.legalize() nand2.legalize() if not is_metatest: # with open('verilog_files/{}.v'.format(re.findall(r'/(\w+)\.py', __file__)[0]), 'w') as f: # for com in [and_, nand, nand2]: # for l in com.write_verilog(): # f.write(l) # f.write('\n') for com in [nand, nand2]: for l in com.write_verilog(): print(l) return True if __name__ == '__main__': main()
29.528302
99
0.584026
d790434f58f48fbc8f083f7855591bf2875e192b
832
py
Python
setup.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
null
null
null
setup.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
null
null
null
setup.py
renereimann/FID_Simulation
40fe7f0892a5f4600d863658f748906bff050b67
[ "MIT" ]
1
2020-04-11T04:18:31.000Z
2020-04-11T04:18:31.000Z
import setuptools with open("README.md", "r") as fh: long_description = fh.read() with open('LICENSE') as f: license = f.read() setuptools.setup( name="FreeInductionDecay", # Replace with your own username version="0.0.1", author="Rene Reimann ", author_email="rreimann@uni-mainz.de", description="A package to simulate Free Induction Decay signals in pulsed NMR", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/renereimann/FID_Simulation", license=license, packages=setuptools.find_packages(exclude=('tests', 'docs')), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
30.814815
83
0.673077
a29d9aec87f516112f2333b8e4d257f351013125
3,949
py
Python
mtg_deckbuilder/users/migrations/0001_initial.py
MrGreenTea/deckbuilder
ec6617add05e8567d8b9e4ada90b86ad50055f0e
[ "MIT" ]
null
null
null
mtg_deckbuilder/users/migrations/0001_initial.py
MrGreenTea/deckbuilder
ec6617add05e8567d8b9e4ada90b86ad50055f0e
[ "MIT" ]
null
null
null
mtg_deckbuilder/users/migrations/0001_initial.py
MrGreenTea/deckbuilder
ec6617add05e8567d8b9e4ada90b86ad50055f0e
[ "MIT" ]
null
null
null
import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [("auth", "0008_alter_user_username_max_length")] operations = [ migrations.CreateModel( name="User", fields=[ ("id", models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name="ID")), ("password", models.CharField(max_length=128, verbose_name="password")), ("last_login", models.DateTimeField(blank=True, null=True, verbose_name="last login")), ( "is_superuser", models.BooleanField( default=False, help_text="Designates that this user has all permissions without explicitly assigning them.", verbose_name="superuser status", ), ), ( "username", models.CharField( error_messages={"unique": "A user with that username already exists."}, help_text="Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.", max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name="username", ), ), ("first_name", models.CharField(blank=True, max_length=30, verbose_name="first name")), ("last_name", models.CharField(blank=True, max_length=150, verbose_name="last name")), ("email", models.EmailField(blank=True, max_length=254, verbose_name="email address")), ( "is_staff", models.BooleanField( default=False, help_text="Designates whether the user can log into this admin site.", verbose_name="staff status", ), ), ( "is_active", models.BooleanField( default=True, help_text="Designates whether this user should be treated as active. Unselect this instead of deleting accounts.", verbose_name="active", ), ), ("date_joined", models.DateTimeField(default=django.utils.timezone.now, verbose_name="date joined")), ("name", models.CharField(blank=True, max_length=255, verbose_name="Name of User")), ( "groups", models.ManyToManyField( blank=True, help_text="The groups this user belongs to. A user will get all permissions granted to each of their groups.", related_name="user_set", related_query_name="user", to="auth.Group", verbose_name="groups", ), ), ( "user_permissions", models.ManyToManyField( blank=True, help_text="Specific permissions for this user.", related_name="user_set", related_query_name="user", to="auth.Permission", verbose_name="user permissions", ), ), ], options={"verbose_name_plural": "users", "verbose_name": "user", "abstract": False}, managers=[("objects", django.contrib.auth.models.UserManager())], ) ]
45.390805
138
0.488731
9666b3142e97951c09a65a4297c38d03e636dc7c
6,520
py
Python
src/data/make_dataset.py
mlotfic/Communicate-Dtata-Finding
f2b7e283e93e9a78bf5179d5907d42706a33861d
[ "MIT" ]
null
null
null
src/data/make_dataset.py
mlotfic/Communicate-Dtata-Finding
f2b7e283e93e9a78bf5179d5907d42706a33861d
[ "MIT" ]
null
null
null
src/data/make_dataset.py
mlotfic/Communicate-Dtata-Finding
f2b7e283e93e9a78bf5179d5907d42706a33861d
[ "MIT" ]
null
null
null
# import all packages and set plots to be embedded inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime import time from pathlib import Path import os relative_path = Path(__file__).parents[2] if not os.path.exists('{}/data/interim'.format(relative_path)): os.makedirs('{}/data/interim'.format(relative_path)) ''' schema = { 'Year' : str, 'Month' : str, 'DayofMonth' : str, 'DayOfWeek' : str, 'DepTime' : str, 'CRSDepTime' : str, 'ArrTime' : str, 'CRSArrTime' : str, 'UniqueCarrier' : str, 'FlightNum' : str, 'TailNum' : str, 'ActualElapsedTime' : int, 'CRSElapsedTime' : int, 'AirTime' : int, 'ArrDelay' : int, 'DepDelay' : int, 'Origin' : str, 'Dest' : str, 'Distance' : int, 'TaxiIn' : int, 'TaxiOut' : int, 'Cancelled' : bool, 'CancellationCode' : str, 'Diverted' : bool, 'CarrierDelay' : int, 'WeatherDelay' : int, 'NASDelay' : int, 'SecurityDelay' : int, 'LateAircraftDelay' : int } ''' # user define function def load_dataset(year='2008'): ''' Description: load dataset acoordding to year parameter year string return dataframe ''' t1 = time.time() df = pd.read_csv('{}/data/raw/{}.csv.bz2'.format(relative_path, year), compression='bz2', dtype=str, na_values=['na', '-', '.', '']) t2 = time.time() print('Elapsed loading time :', t2-t1) return df def validate_int2str(col, l=1, _min=False): ''' validate data to int and then to str parameter : float , int string number col : string text l : min length of the number _min: bool return : string type ''' try: if col: col = int(float(col)) if (_min and (l > len(str(col)))): return np.NaN elif (_min and (l <= len(str(col)))): col = str(col).zfill(4) col = datetime.strptime(col, '%H%M').time().strftime("%I:%M %p") return col else: return np.NaN except Exception as e: return np.NaN ''' # test function print(validate_int2str("1.0", 1, 1)) print(validate_int2str("1.0", 0, 1)) print(validate_int2str("12.0x")) print(validate_int2str("12.0")) ''' def validate_str(col): ''' validate data to str parameter : float , int string number col : string text return : string type ''' try: if str(col).strip(): return str(col) else: return np.NaN except Exception as e: return np.NaN ''' # test function print(validate_str("")) print(validate_str(" ")) print(validate_str(" \n")) print(validate_str("12.0x")) print(validate_str("12.0")) print(validate_str(12)) ''' # load dataset 2008 df = load_dataset() # correcting dates formate df['DepTime'] = df['DepTime'].apply(lambda x: str(int(x)).zfill(4) if pd.notnull(x) else x) df['CRSDepTime'] = df['CRSDepTime'].apply(lambda x: str(int(x)).zfill(4) if pd.notnull(x) else x) df['ArrTime'] = df.ArrTime.apply(lambda x: str(int(x)).zfill(4) if pd.notnull(x) else x) df['CRSArrTime'] = df.CRSArrTime.apply(lambda x: str(int(x)).zfill(4) if pd.notnull(x) else x) # validate data df['Year'] = df['Year'].apply(lambda x: validate_str(x)) df['Month'] = df['Month'].apply(lambda x: validate_str(x)) df['DayofMonth'] = df['DayofMonth'].apply(lambda x: validate_str(x)) df['DayOfWeek'] = df['DayOfWeek'].apply(lambda x: validate_str(x)) ''' #Col 1 = where you want the values replaced #Col 2 = where you want to take the values from df.["Col 1"].fillna(df.["Col 2"], inplace=True) # datetime(year, month, day, hour, minute, second, microsecond) ''' # remove one number value and reformat hh:mm AM t1 = time.time() df['DepTime'] = df['DepTime'].apply(lambda x: validate_int2str(x, l=1, _min=True)) df['CRSDepTime'] = df['CRSDepTime'].astype('str').apply(lambda x: validate_int2str(x, l=1, _min=True)) df['ArrTime'] = df['ArrTime'].astype('str').apply(lambda x: validate_int2str(x, l=1, _min=True)) df['CRSArrTime'] = df['CRSArrTime'].astype('str').apply(lambda x: validate_int2str(x, l=1, _min=True)) t2 = time.time() print('Elapsed loading time :', t2-t1) # filling nan to zero to modify schema df['CarrierDelay'].fillna(0, inplace=True) df['WeatherDelay'].fillna(0, inplace=True) df['NASDelay'].fillna(0, inplace=True) df['SecurityDelay'].fillna(0, inplace=True) df['LateAircraftDelay'].fillna(0, inplace=True) df['CarrierDelay'] = df['CarrierDelay'].astype('int') df['WeatherDelay'] = df['WeatherDelay'].astype('int') df['NASDelay'] = df['NASDelay'].astype('int') df['SecurityDelay'] = df['SecurityDelay'].astype('int') df['LateAircraftDelay'] = df['LateAircraftDelay'].astype('int') # divide dataset into # divide dataset in two # - flights # - cancelled # - diverted # df[~df.CancellationCode.notna()] flights = df[~(df.Diverted == 1)] flights = flights[~(flights.Cancelled == 1)].drop(columns=['Cancelled', 'CancellationCode', 'Diverted']) t1 = time.time() flights.to_csv('{}/data/interim/{}.csv'.format(relative_path, 'flights'), index=False) t2 = time.time() print('Elapsed saving time :', t2-t1) del flights df_cancelled = df[df.Cancelled == '1'].drop(columns=['DepTime', 'ArrTime', 'ActualElapsedTime', 'AirTime', 'ArrDelay', 'DepDelay', 'TaxiIn', 'TaxiOut', 'Cancelled', 'Diverted', 'CarrierDelay', 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay']) t1 = time.time() df_cancelled.to_csv('{}/data/interim/{}.csv'.format(relative_path, 'canceled'), index=False) t2 = time.time() print('Elapsed saving time :', t2-t1) del df_cancelled df_diverted = df[df.Diverted == '1'].drop(columns=['ArrTime', 'CRSArrTime', 'CRSElapsedTime', 'Cancelled', 'CancellationCode', 'Diverted', 'CarrierDelay', 'WeatherDelay', 'NASDelay', 'SecurityDelay', 'LateAircraftDelay', 'TaxiIn', 'TaxiOut']) t1 = time.time() df_diverted.to_csv('{}/data/interim/{}.csv'.format(relative_path, 'diverted'), index=False) t2 = time.time() print('Elapsed saving time :', t2-t1) del df_diverted
32.929293
139
0.602301
a479214d8dd8a8d0514c7f9047a21ce049d55f4f
151
py
Python
scofield/customer/admin.py
howiworkdaily/scofield-project
f0daaf785c344a0da1f5b624518c9fa6c0514745
[ "BSD-3-Clause" ]
4
2016-04-10T13:37:58.000Z
2018-06-11T18:49:29.000Z
scofield/customer/admin.py
howiworkdaily/scofield-project
f0daaf785c344a0da1f5b624518c9fa6c0514745
[ "BSD-3-Clause" ]
null
null
null
scofield/customer/admin.py
howiworkdaily/scofield-project
f0daaf785c344a0da1f5b624518c9fa6c0514745
[ "BSD-3-Clause" ]
2
2015-04-08T19:52:19.000Z
2021-02-10T08:08:19.000Z
from models import * from django.contrib import admin admin.site.register(Customer) admin.site.register(Phonenumber) admin.site.register(Address)
13.727273
32
0.801325
8b404776ad282d3c7a1773c45bdb528ce9a03d9a
55,569
py
Python
lib/rucio/core/rse.py
DanilaOleynik/rucio
b6708b41abd6e781f976970e758babbd87a8941e
[ "Apache-2.0" ]
2
2020-02-18T22:34:24.000Z
2022-03-09T16:26:18.000Z
lib/rucio/core/rse.py
DanilaOleynik/rucio
b6708b41abd6e781f976970e758babbd87a8941e
[ "Apache-2.0" ]
null
null
null
lib/rucio/core/rse.py
DanilaOleynik/rucio
b6708b41abd6e781f976970e758babbd87a8941e
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2012-2022 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Vincent Garonne <vincent.garonne@cern.ch>, 2012-2018 # - Ralph Vigne <ralph.vigne@cern.ch>, 2012-2015 # - Mario Lassnig <mario.lassnig@cern.ch>, 2012-2021 # - Martin Barisits <martin.barisits@cern.ch>, 2013-2020 # - Cedric Serfon <cedric.serfon@cern.ch>, 2013-2021 # - Thomas Beermann <thomas.beermann@cern.ch>, 2014-2017 # - Wen Guan <wen.guan@cern.ch>, 2015-2016 # - Brian Bockelman <bbockelm@cse.unl.edu>, 2018 # - Frank Berghaus <frank.berghaus@cern.ch>, 2018 # - Joaquín Bogado <jbogado@linti.unlp.edu.ar>, 2018 # - Hannes Hansen <hannes.jakob.hansen@cern.ch>, 2018-2019 # - Dimitrios Christidis <dimitrios.christidis@cern.ch>, 2018-2021 # - James Perry <j.perry@epcc.ed.ac.uk>, 2019 # - Andrew Lister <andrew.lister@stfc.ac.uk>, 2019 # - Brandon White <bjwhite@fnal.gov>, 2019 # - Gabriele Fronze' <gfronze@cern.ch>, 2019 # - Aristeidis Fkiaras <aristeidis.fkiaras@cern.ch>, 2019 # - Patrick Austin <patrick.austin@stfc.ac.uk>, 2020 # - Eli Chadwick <eli.chadwick@stfc.ac.uk>, 2020 # - Benedikt Ziemons <benedikt.ziemons@cern.ch>, 2020-2021 # - Tomas Javurek <tomas.javurek@cern.ch>, 2020 # - Radu Carpa <radu.carpa@cern.ch>, 2021-2022 # - Joel Dierkes <joel.dierkes@cern.ch>, 2021 # - David Población Criado <david.poblacion.criado@cern.ch>, 2021 import json from io import StringIO from re import match from typing import TYPE_CHECKING import sqlalchemy import sqlalchemy.orm from dogpile.cache.api import NO_VALUE from six import string_types from sqlalchemy.exc import DatabaseError, IntegrityError, OperationalError from sqlalchemy.orm import aliased from sqlalchemy.orm.exc import FlushError from sqlalchemy.sql.expression import or_, false import rucio.core.account_counter from rucio.common import exception, utils from rucio.common.cache import make_region_memcached from rucio.common.config import get_lfn2pfn_algorithm_default from rucio.common.utils import CHECKSUM_KEY, is_checksum_valid, GLOBALLY_SUPPORTED_CHECKSUMS from rucio.core.rse_counter import add_counter, get_counter from rucio.db.sqla import models from rucio.db.sqla.constants import RSEType from rucio.db.sqla.session import read_session, transactional_session, stream_session if TYPE_CHECKING: from typing import Dict, Optional from sqlalchemy.orm import Session REGION = make_region_memcached(expiration_time=900) @transactional_session def add_rse(rse, vo='def', deterministic=True, volatile=False, city=None, region_code=None, country_name=None, continent=None, time_zone=None, ISP=None, staging_area=False, rse_type=RSEType.DISK, longitude=None, latitude=None, ASN=None, availability=7, session=None): """ Add a rse with the given location name. :param rse: the name of the new rse. :param vo: the vo to add the RSE to. :param deterministic: Boolean to know if the pfn is generated deterministically. :param volatile: Boolean for RSE cache. :param city: City for the RSE. :param region_code: The region code for the RSE. :param country_name: The country. :param continent: The continent. :param time_zone: Timezone. :param ISP: Internet service provider. :param staging_area: Staging area. :param rse_type: RSE type. :param latitude: Latitude coordinate of RSE. :param longitude: Longitude coordinate of RSE. :param ASN: Access service network. :param availability: Availability. :param session: The database session in use. """ if isinstance(rse_type, string_types): rse_type = RSEType(rse_type) new_rse = models.RSE(rse=rse, vo=vo, deterministic=deterministic, volatile=volatile, city=city, region_code=region_code, country_name=country_name, continent=continent, time_zone=time_zone, staging_area=staging_area, ISP=ISP, availability=availability, rse_type=rse_type, longitude=longitude, latitude=latitude, ASN=ASN) try: new_rse.save(session=session) except IntegrityError: raise exception.Duplicate('RSE \'%(rse)s\' already exists!' % locals()) except DatabaseError as error: raise exception.RucioException(error.args) # Add rse name as a RSE-Tag add_rse_attribute(rse_id=new_rse.id, key=rse, value=True, session=session) # Add counter to monitor the space usage add_counter(rse_id=new_rse.id, session=session) # Add account counter rucio.core.account_counter.create_counters_for_new_rse(rse_id=new_rse.id, session=session) return new_rse.id @read_session def rse_exists(rse, vo='def', include_deleted=False, session=None): """ Checks to see if RSE exists. :param rse: Name of the rse. :param vo: The VO for the RSE. :param session: The database session in use. :returns: True if found, otherwise false. """ return True if session.query(models.RSE).filter_by(rse=rse, vo=vo, deleted=include_deleted).first() else False @read_session def sort_rses(rses, session=None): """ Sort a list of RSES by free space (ascending order). :param rses: List of RSEs. :param session: The database session in use. :returns: Sorted list of RSEs """ if not rses: raise exception.InputValidationError('The list rses should not be empty!') if len(rses) == 1: return rses false_value = False query = session.query(models.RSE.rse, models.RSE.staging_area, models.RSEUsage.rse_id).\ filter(models.RSEUsage.source == 'storage').\ filter(models.RSEUsage.rse_id == models.RSE.id).\ filter(models.RSE.deleted == false_value) condition = [] for rse in rses: condition.append(models.RSE.id == rse['id']) query = query.filter(or_(*condition)).order_by(models.RSEUsage.free.asc()) return [{'rse': rse, 'staging_area': staging_area, 'id': rse_id} for rse, staging_area, rse_id in query] @transactional_session def del_rse(rse_id, session=None): """ Disable a rse with the given rse id. :param rse_id: the rse id. :param session: The database session in use. """ old_rse = None try: old_rse = session.query(models.RSE).filter_by(id=rse_id, deleted=False).one() if not rse_is_empty(rse_id=rse_id, session=session): raise exception.RSEOperationNotSupported('RSE \'%s\' is not empty' % get_rse_name(rse_id=rse_id, session=session)) except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id) rse = old_rse.rse old_rse.delete(session=session) try: del_rse_attribute(rse_id=rse_id, key=rse, session=session) except exception.RSEAttributeNotFound: pass @transactional_session def restore_rse(rse_id, session=None): """ Restore a rse with the given rse id. :param rse_id: the rse id. :param session: The database session in use. """ old_rse = None try: old_rse = session.query(models.RSE).filter_by(id=rse_id, deleted=True).one() except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id) old_rse.deleted = False old_rse.deleted_at = None old_rse.save(session=session) rse = old_rse.rse add_rse_attribute(rse_id=rse_id, key=rse, value=True, session=session) @read_session def rse_is_empty(rse_id, session=None): """ Check if a RSE is empty. :param rse_id: the rse id. :param session: the database session in use. """ is_empty = False try: is_empty = get_counter(rse_id, session=session)['bytes'] == 0 except exception.CounterNotFound: is_empty = True return is_empty @read_session def get_rse(rse_id, session=None): """ Get a RSE or raise if it does not exist. :param rse_id: The rse id. :param session: The database session in use. :raises RSENotFound: If referred RSE was not found in the database. """ false_value = False # To make pep8 checker happy ... try: tmp = session.query(models.RSE).\ filter(sqlalchemy.and_(models.RSE.deleted == false_value, models.RSE.id == rse_id))\ .one() tmp['type'] = tmp.rse_type return tmp except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with id \'%s\' cannot be found' % rse_id) @read_session def get_rse_id(rse, vo='def', session=None, include_deleted=True): """ Get a RSE ID or raise if it does not exist. :param rse: the rse name. :param session: The database session in use. :param include_deleted: Flag to toggle finding rse's marked as deleted. :returns: The rse id. :raises RSENotFound: If referred RSE was not found in the database. """ if include_deleted: if vo != 'def': cache_key = 'rse-id_{}@{}'.format(rse, vo).replace(' ', '.') else: cache_key = 'rse-id_{}'.format(rse).replace(' ', '.') result = REGION.get(cache_key) if result != NO_VALUE: return result try: query = session.query(models.RSE.id).filter_by(rse=rse, vo=vo) if not include_deleted: query = query.filter_by(deleted=False) result = query.one()[0] except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound("RSE '%s' cannot be found in vo '%s'" % (rse, vo)) if include_deleted: REGION.set(cache_key, result) return result @read_session def get_rse_name(rse_id, session=None, include_deleted=True): """ Get a RSE name or raise if it does not exist. :param rse_id: the rse uuid from the database. :param session: The database session in use. :param include_deleted: Flag to toggle finding rse's marked as deleted. :returns: The rse name. :raises RSENotFound: If referred RSE was not found in the database. """ if include_deleted: cache_key = 'rse-name_{}'.format(rse_id) result = REGION.get(cache_key) if result != NO_VALUE: return result try: query = session.query(models.RSE.rse).filter_by(id=rse_id) if not include_deleted: query = query.filter_by(deleted=False) result = query.one()[0] except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with ID \'%s\' cannot be found' % rse_id) if include_deleted: REGION.set(cache_key, result) return result @read_session def get_rse_vo(rse_id, session=None, include_deleted=True): """ Get the VO for a given RSE id. :param rse_id: the rse uuid from the database. :param session: the database session in use. :param include_deleted: Flag to toggle finding rse's marked as deleted. :returns The vo name. :raises RSENotFound: If referred RSE was not found in database. """ if include_deleted: cache_key = 'rse-vo_{}'.format(rse_id) result = REGION.get(cache_key) if result != NO_VALUE: return result try: query = session.query(models.RSE.vo).filter_by(id=rse_id) if not include_deleted: query = query.filter_by(deleted=False) result = query.one()[0] except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with ID \'%s\' cannot be found' % rse_id) if include_deleted: REGION.set(cache_key, result) return result @read_session def list_rses(filters={}, session=None): """ Returns a list of all RSEs. :param filters: dictionary of attributes by which the results should be filtered. :param session: The database session in use. :returns: a list of dictionaries. """ rse_list = [] availability_mask1 = 0 availability_mask2 = 7 availability_mapping = {'availability_read': 4, 'availability_write': 2, 'availability_delete': 1} false_value = False # To make pep8 checker happy ... if filters and filters.get('vo'): filters = filters.copy() # Make a copy so we can pop('vo') without affecting the object `filters` outside this function vo = filters.pop('vo') else: vo = None if filters: if 'availability' in filters and ('availability_read' in filters or 'availability_write' in filters or 'availability_delete' in filters): raise exception.InvalidObject('Cannot use availability and read, write, delete filter at the same time.') query = session.query(models.RSE).\ join(models.RSEAttrAssociation, models.RSE.id == models.RSEAttrAssociation.rse_id).\ filter(models.RSE.deleted == false_value).group_by(models.RSE) for (k, v) in filters.items(): if hasattr(models.RSE, k): if k == 'rse_type': query = query.filter(getattr(models.RSE, k) == RSEType[v]) else: query = query.filter(getattr(models.RSE, k) == v) elif k in ['availability_read', 'availability_write', 'availability_delete']: if v: availability_mask1 = availability_mask1 | availability_mapping[k] else: availability_mask2 = availability_mask2 & ~availability_mapping[k] else: t = aliased(models.RSEAttrAssociation) query = query.join(t, t.rse_id == models.RSEAttrAssociation.rse_id) query = query.filter(t.key == k, t.value == v) condition1, condition2 = [], [] for i in range(0, 8): if i | availability_mask1 == i: condition1.append(models.RSE.availability == i) if i & availability_mask2 == i: condition2.append(models.RSE.availability == i) if 'availability' not in filters: query = query.filter(sqlalchemy.and_(sqlalchemy.or_(*condition1), sqlalchemy.or_(*condition2))) else: query = session.query(models.RSE).filter_by(deleted=False).order_by(models.RSE.rse) if vo: query = query.filter(getattr(models.RSE, 'vo') == vo) for row in query: dic = {} for column in row.__table__.columns: dic[column.name] = getattr(row, column.name) rse_list.append(dic) return rse_list @transactional_session def add_rse_attribute(rse_id, key, value, session=None): """ Adds a RSE attribute. :param rse_id: the rse id. :param key: the key name. :param value: the value name. :param issuer: The issuer account. :param session: The database session in use. :returns: True is successful """ try: new_rse_attr = models.RSEAttrAssociation(rse_id=rse_id, key=key, value=value) new_rse_attr = session.merge(new_rse_attr) new_rse_attr.save(session=session) except IntegrityError: rse = get_rse_name(rse_id=rse_id, session=session) raise exception.Duplicate("RSE attribute '%(key)s-%(value)s\' for RSE '%(rse)s' already exists!" % locals()) return True @transactional_session def del_rse_attribute(rse_id, key, session=None): """ Delete a RSE attribute. :param rse_id: the id of the rse. :param key: the attribute key. :param session: The database session in use. :return: True if RSE attribute was deleted. """ rse_attr = None try: query = session.query(models.RSEAttrAssociation).filter_by(rse_id=rse_id).filter(models.RSEAttrAssociation.key == key) rse_attr = query.one() except sqlalchemy.orm.exc.NoResultFound: raise exception.RSEAttributeNotFound('RSE attribute \'%s\' cannot be found' % key) rse_attr.delete(session=session) return True @read_session def list_rse_attributes(rse_id, session=None): """ List RSE attributes for a RSE. :param rse_id: The RSE id. :param session: The database session in use. :returns: A dictionary with RSE attributes for a RSE. """ rse_attrs = {} query = session.query(models.RSEAttrAssociation).filter_by(rse_id=rse_id) for attr in query: rse_attrs[attr.key] = attr.value return rse_attrs @read_session def has_rse_attribute(rse_id, key, session=None): """ Indicates whether the named key is present for the RSE. :param rse_id: The RSE id. :param key: The key for the attribute. :param session: The database session in use. :returns: True or False """ if session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key).first(): return True return False @read_session def get_rses_with_attribute(key, session=None): """ Return all RSEs with a certain attribute. :param key: The key for the attribute. :param session: The database session in use. :returns: List of rse dictionaries """ rse_list = [] query = session.query(models.RSE).\ join(models.RSEAttrAssociation, models.RSE.id == models.RSEAttrAssociation.rse_id).\ filter(models.RSE.deleted == False, models.RSEAttrAssociation.key == key).group_by(models.RSE) # NOQA for row in query: d = {} for column in row.__table__.columns: d[column.name] = getattr(row, column.name) rse_list.append(d) return rse_list @read_session def get_rses_with_attribute_value(key, value, lookup_key, vo='def', session=None): """ Return all RSEs with a certain attribute. :param key: The key for the attribute. :param value: The value for the attribute. :param lookup_key: The value of the this key will be returned. :param session: The database session in use. :returns: List of rse dictionaries with the rse_id and lookup_key/value pair """ if vo != 'def': cache_key = 'av-%s-%s-%s@%s' % (key, value, lookup_key, vo) else: cache_key = 'av-%s-%s-%s' % (key, value, lookup_key) result = REGION.get(cache_key) if result is NO_VALUE: rse_list = [] subquery = session.query(models.RSEAttrAssociation.rse_id)\ .filter(models.RSEAttrAssociation.key == key, models.RSEAttrAssociation.value == value)\ .subquery() query = session.query(models.RSEAttrAssociation.rse_id, models.RSEAttrAssociation.key, models.RSEAttrAssociation.value)\ .join(models.RSE, models.RSE.id == models.RSEAttrAssociation.rse_id)\ .join(subquery, models.RSEAttrAssociation.rse_id == subquery.c.rse_id)\ .filter(models.RSE.deleted == false(), models.RSEAttrAssociation.key == lookup_key, models.RSE.vo == vo) for row in query: rse_list.append({'rse_id': row[0], 'key': row[1], 'value': row[2]}) REGION.set(cache_key, rse_list) return rse_list return result @read_session def get_rse_attribute(key, rse_id=None, value=None, use_cache=True, session=None): """ Retrieve RSE attribute value. :param rse_id: The RSE id. :param key: The key for the attribute. :param value: Optionally, the desired value for the attribute. :param use_cache: Boolean to use memcached. :param session: The database session in use. :returns: A list with RSE attribute values for a Key. """ result = NO_VALUE if use_cache: result = REGION.get('%s-%s-%s' % (key, rse_id, value)) if result is NO_VALUE: rse_attrs = [] if rse_id: query = session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key).distinct() if value: query = session.query(models.RSEAttrAssociation.value).filter_by(rse_id=rse_id, key=key, value=value).distinct() else: query = session.query(models.RSEAttrAssociation.value).filter_by(key=key).distinct() if value: query = session.query(models.RSEAttrAssociation.value).filter_by(key=key, value=value).distinct() for attr_value in query: rse_attrs.append(attr_value[0]) REGION.set('%s-%s-%s' % (key, rse_id, value), rse_attrs) return rse_attrs return result @read_session def get_rse_supported_checksums(rse_id, session=None): """ Retrieve from the DB and parse the RSE attribute defining the checksum supported by the RSE """ return parse_checksum_support_attribute(get_rse_attribute(key=CHECKSUM_KEY, rse_id=rse_id, session=session)) def get_rse_supported_checksums_from_attributes(rse_attributes): """ Parse the RSE attribute defining the checksum supported by the RSE :param rse_attributes: attributes retrieved using list_rse_attributes """ return parse_checksum_support_attribute(rse_attributes.get(CHECKSUM_KEY)) def parse_checksum_support_attribute(checksum_attribute): """ Parse the checksum support RSE attribute. :param checksum_attribute: The value of the RSE attribute storing the checksum value :returns: The list of checksums supported by the selected RSE. If the list is empty (aka attribute is not set) it returns all the default checksums. Use 'none' to explicitly tell the RSE does not support any checksum algorithm. """ if not checksum_attribute: return GLOBALLY_SUPPORTED_CHECKSUMS else: supported_checksum_list = checksum_attribute[0].split(',') if 'none' in supported_checksum_list: return [] return supported_checksum_list @read_session def get_rse_is_checksum_supported(checksum_name, rse_id=None, session=None): """ Retrieve RSE attribute value. :param checksum_name: The desired checksum name for the attribute. :param rse_id: The RSE id. :param session: The database session in use. :returns: True if required checksum is supported, False otherwise. """ if is_checksum_valid(checksum_name): return checksum_name in get_rse_supported_checksums(rse_id=rse_id, session=session) else: return False @transactional_session def set_rse_usage(rse_id, source, used, free, files=None, session=None): """ Set RSE usage information. :param rse_id: the location id. :param source: The information source, e.g. srm. :param used: the used space in bytes. :param free: the free in bytes. :param files: the number of files :param session: The database session in use. :returns: True if successful, otherwise false. """ rse_usage = models.RSEUsage(rse_id=rse_id, source=source, used=used, free=free, files=files) # versioned_session(session) rse_usage = session.merge(rse_usage) rse_usage.save(session=session) # rse_usage_history = models.RSEUsage.__history_mapper__.class_(rse_id=rse.id, source=source, used=used, free=free) # rse_usage_history.save(session=session) return True @read_session def get_rse_usage(rse_id, source=None, session=None, per_account=False): """ get rse usage information. :param rse_id: The RSE id. :param source: The information source, e.g. srm. :param session: The database session in use. :param per_account: Boolean whether the usage should be also calculated per account or not. :returns: List of RSE usage data. """ query_rse_usage = session.query(models.RSEUsage).filter_by(rse_id=rse_id) usage = list() if source: query_rse_usage = query_rse_usage.filter_by(source=source) rse = get_rse_name(rse_id=rse_id, session=session) for row in query_rse_usage: total = (row.free or 0) + (row.used or 0) rse_usage = {'rse_id': rse_id, 'rse': rse, 'source': row.source, 'used': row.used, 'free': row.free, 'total': total, 'files': row.files, 'updated_at': row.updated_at} if per_account and row.source == 'rucio': query_account_usage = session.query(models.AccountUsage).filter_by(rse_id=rse_id) account_usages = [] for row in query_account_usage: if row.bytes != 0: percentage = round(float(row.bytes) / float(total) * 100, 2) if total else 0 account_usages.append({'used': row.bytes, 'account': row.account, 'percentage': percentage}) account_usages.sort(key=lambda x: x['used'], reverse=True) rse_usage['account_usages'] = account_usages usage.append(rse_usage) return usage @transactional_session def set_rse_limits(rse_id: str, name: str, value: int, session: 'Session' = None) -> bool: """ Set RSE limits. :param rse_id: The RSE id. :param name: The name of the limit. :param value: The feature value. :param session: The database session in use. :returns: True if successful, otherwise false. """ rse_limit = models.RSELimit(rse_id=rse_id, name=name, value=value) rse_limit = session.merge(rse_limit) rse_limit.save(session=session) return True @read_session def get_rse_limits(rse_id: str, name: 'Optional[str]' = None, session: 'Session' = None) -> 'Dict[str, int]': """ Get RSE limits. :param rse_id: The RSE id. :param name: A Limit name. :returns: A dictionary with the limits {'limit.name': limit.value}. """ query = session.query(models.RSELimit).filter_by(rse_id=rse_id) if name: query = query.filter_by(name=name) return {limit.name: limit.value for limit in query} @transactional_session def delete_rse_limits(rse_id: str, name: 'Optional[str]' = None, session: 'Session' = None) -> None: """ Delete RSE limit. :param rse_id: The RSE id. :param name: The name of the limit. """ try: session.query(models.RSELimit).filter_by(rse_id=rse_id, name=name).delete() except IntegrityError as error: raise exception.RucioException(error.args) @transactional_session def set_rse_transfer_limits(rse_id, activity, rse_expression=None, max_transfers=0, transfers=0, waitings=0, volume=0, deadline=1, strategy='fifo', session=None): """ Set RSE transfer limits. :param rse_id: The RSE id. :param activity: The activity. :param rse_expression: RSE expression string. :param max_transfers: Maximum transfers. :param transfers: Current number of tranfers. :param waitings: Current number of waitings. :param volume: Maximum transfer volume in bytes. :param deadline: Maximum waiting time in hours until a datasets gets released. :param strategy: Stragey to handle datasets `fifo` or `grouped_fifo`. :param session: The database session in use. :returns: True if successful, otherwise false. """ try: rse_tr_limit = models.RSETransferLimit(rse_id=rse_id, activity=activity, rse_expression=rse_expression, max_transfers=max_transfers, transfers=transfers, waitings=waitings, volume=volume, strategy=strategy, deadline=deadline) rse_tr_limit = session.merge(rse_tr_limit) rowcount = rse_tr_limit.save(session=session) return rowcount except IntegrityError as error: raise exception.RucioException(error.args) @read_session def get_rse_transfer_limits(rse_id=None, activity=None, session=None): """ Get RSE transfer limits. :param rse_id: The RSE id. :param activity: The activity. :returns: A dictionary with the limits {'limit.activity': {'limit.rse_id': {'max_transfers': limit.max_transfers, 'transfers': 0, 'waitings': 0, 'volume': 1}}}. """ try: query = session.query(models.RSETransferLimit) if rse_id: query = query.filter_by(rse_id=rse_id) if activity: query = query.filter_by(activity=activity) limits = {} for limit in query: if limit.activity not in limits: limits[limit.activity] = {} limits[limit.activity][limit.rse_id] = {'max_transfers': limit.max_transfers, 'transfers': limit.transfers, 'waitings': limit.waitings, 'volume': limit.volume, 'strategy': limit.strategy, 'deadline': limit.deadline} return limits except IntegrityError as error: raise exception.RucioException(error.args) @transactional_session def delete_rse_transfer_limits(rse_id, activity=None, session=None): """ Delete RSE transfer limits. :param rse_id: The RSE id. :param activity: The activity. """ try: query = session.query(models.RSETransferLimit).filter_by(rse_id=rse_id) if activity: query = query.filter_by(activity=activity) rowcount = query.delete() return rowcount except IntegrityError as error: raise exception.RucioException(error.args) @stream_session def list_rse_usage_history(rse_id, source=None, session=None): """ List RSE usage history information. :param rse_id: The RSE id. :param source: The source of the usage information (srm, rucio). :param session: The database session in use. :returns: A list of historic RSE usage. """ query = session.query(models.RSEUsageHistory).filter_by(rse_id=rse_id).order_by(models.RSEUsageHistory.updated_at.desc()) # pylint: disable=no-member if source: query = query.filter_by(source=source) rse = get_rse_name(rse_id=rse_id, session=session) for usage in query.yield_per(5): yield ({'rse_id': rse_id, 'rse': rse, 'source': usage.source, 'used': usage.used if usage.used else 0, 'total': usage.used if usage.used else 0 + usage.free if usage.free else 0, 'free': usage.free if usage.free else 0, 'updated_at': usage.updated_at}) @transactional_session def add_protocol(rse_id, parameter, session=None): """ Add a protocol to an existing RSE. If entries with equal or less priority for an operation exist, the existing one will be reorded (i.e. +1). :param rse_id: the id of the new rse. :param parameter: parameters of the new protocol entry. :param session: The database session in use. :raises RSENotFound: If RSE is not found. :raises RSEOperationNotSupported: If no scheme supported the requested operation for the given RSE. :raises RSEProtocolDomainNotSupported: If an undefined domain was provided. :raises RSEProtocolPriorityError: If the provided priority for the scheme is to big or below zero. :raises Duplicate: If scheme with identifier, hostname and port already exists for the given RSE. """ rse = "" try: rse = get_rse_name(rse_id=rse_id, session=session, include_deleted=False) except exception.RSENotFound: raise exception.RSENotFound('RSE id \'%s\' not found' % rse_id) # Insert new protocol entry parameter['rse_id'] = rse_id # Default values parameter['port'] = parameter.get('port', 0) parameter['hostname'] = parameter.get('hostname', 'localhost') # Transform nested domains to match DB schema e.g. [domains][lan][read] => [read_lan] if 'domains' in parameter.keys(): for s in parameter['domains']: if s not in utils.rse_supported_protocol_domains(): raise exception.RSEProtocolDomainNotSupported('The protocol domain \'%s\' is not defined in the schema.' % s) for op in parameter['domains'][s]: if op not in utils.rse_supported_protocol_operations(): raise exception.RSEOperationNotSupported('Operation \'%s\' not defined in schema.' % (op)) op_name = op if op == 'third_party_copy' else ''.join([op, '_', s]).lower() if parameter['domains'][s][op] < 0: raise exception.RSEProtocolPriorityError('The provided priority (%s)for operation \'%s\' in domain \'%s\' is not supported.' % (parameter['domains'][s][op], op, s)) parameter[op_name] = parameter['domains'][s][op] del parameter['domains'] if ('extended_attributes' in parameter) and parameter['extended_attributes']: try: parameter['extended_attributes'] = json.dumps(parameter['extended_attributes'], separators=(',', ':')) except ValueError: pass # String is not JSON if parameter['scheme'] == 'srm': if ('extended_attributes' not in parameter) or ('web_service_path' not in parameter['extended_attributes']): raise exception.InvalidObject('Missing values! For SRM, extended_attributes and web_service_path must be specified') try: new_protocol = models.RSEProtocols() new_protocol.update(parameter) new_protocol.save(session=session) except (IntegrityError, FlushError, OperationalError) as error: if ('UNIQUE constraint failed' in error.args[0]) or ('conflicts with persistent instance' in error.args[0]) \ or match('.*IntegrityError.*ORA-00001: unique constraint.*RSE_PROTOCOLS_PK.*violated.*', error.args[0]) \ or match('.*IntegrityError.*1062.*Duplicate entry.*for key.*', error.args[0]) \ or match('.*IntegrityError.*duplicate key value violates unique constraint.*', error.args[0]) \ or match('.*UniqueViolation.*duplicate key value violates unique constraint.*', error.args[0]) \ or match('.*IntegrityError.*columns.*are not unique.*', error.args[0]): raise exception.Duplicate('Protocol \'%s\' on port %s already registered for \'%s\' with hostname \'%s\'.' % (parameter['scheme'], parameter['port'], rse, parameter['hostname'])) elif 'may not be NULL' in error.args[0] \ or match('.*IntegrityError.*ORA-01400: cannot insert NULL into.*RSE_PROTOCOLS.*IMPL.*', error.args[0]) \ or match('.*IntegrityError.*Column.*cannot be null.*', error.args[0]) \ or match('.*IntegrityError.*null value in column.*violates not-null constraint.*', error.args[0]) \ or match('.*IntegrityError.*NOT NULL constraint failed.*', error.args[0]) \ or match('.*NotNullViolation.*null value in column.*violates not-null constraint.*', error.args[0]) \ or match('.*OperationalError.*cannot be null.*', error.args[0]): raise exception.InvalidObject('Missing values!') raise exception.RucioException(error.args) return new_protocol @read_session def get_rse_protocols(rse_id, schemes=None, session=None): """ Returns protocol information. Parameter combinations are: (operation OR default) XOR scheme. :param rse_id: The id of the rse. :param schemes: a list of schemes to filter by. :param session: The database session. :returns: A dict with RSE information and supported protocols :raises RSENotFound: If RSE is not found. """ _rse = get_rse(rse_id=rse_id, session=session) if not _rse: raise exception.RSENotFound('RSE with id \'%s\' not found' % rse_id) lfn2pfn_algorithms = get_rse_attribute('lfn2pfn_algorithm', rse_id=_rse.id, session=session) # Resolve LFN2PFN default algorithm as soon as possible. This way, we can send back the actual # algorithm name in response to REST queries. lfn2pfn_algorithm = get_lfn2pfn_algorithm_default() if lfn2pfn_algorithms: lfn2pfn_algorithm = lfn2pfn_algorithms[0] # Copy verify_checksum from the attributes, later: assume True if not specified verify_checksum = get_rse_attribute('verify_checksum', rse_id=_rse.id, session=session) # Copy sign_url from the attributes sign_url = get_rse_attribute('sign_url', rse_id=_rse.id, session=session) read = True if _rse.availability & 4 else False write = True if _rse.availability & 2 else False delete = True if _rse.availability & 1 else False info = {'availability_delete': delete, 'availability_read': read, 'availability_write': write, 'credentials': None, 'deterministic': _rse.deterministic, 'domain': utils.rse_supported_protocol_domains(), 'id': _rse.id, 'lfn2pfn_algorithm': lfn2pfn_algorithm, 'protocols': list(), 'qos_class': _rse.qos_class, 'rse': _rse.rse, 'rse_type': _rse.rse_type.name, 'sign_url': sign_url[0] if sign_url else None, 'staging_area': _rse.staging_area, 'verify_checksum': verify_checksum[0] if verify_checksum else True, 'volatile': _rse.volatile} for op in utils.rse_supported_protocol_operations(): info['%s_protocol' % op] = 1 # 1 indicates the default protocol query = None terms = [models.RSEProtocols.rse_id == _rse.id] if schemes: if not type(schemes) is list: schemes = [schemes] terms.extend([models.RSEProtocols.scheme.in_(schemes)]) query = session.query(models.RSEProtocols.hostname, models.RSEProtocols.scheme, models.RSEProtocols.port, models.RSEProtocols.prefix, models.RSEProtocols.impl, models.RSEProtocols.read_lan, models.RSEProtocols.write_lan, models.RSEProtocols.delete_lan, models.RSEProtocols.read_wan, models.RSEProtocols.write_wan, models.RSEProtocols.delete_wan, models.RSEProtocols.third_party_copy, models.RSEProtocols.extended_attributes).filter(*terms) for row in query: p = {'hostname': row.hostname, 'scheme': row.scheme, 'port': row.port, 'prefix': row.prefix if row.prefix is not None else '', 'impl': row.impl, 'domains': { 'lan': {'read': row.read_lan, 'write': row.write_lan, 'delete': row.delete_lan}, 'wan': {'read': row.read_wan, 'write': row.write_wan, 'delete': row.delete_wan, 'third_party_copy': row.third_party_copy} }, 'extended_attributes': row.extended_attributes} try: p['extended_attributes'] = json.load(StringIO(p['extended_attributes'])) except ValueError: pass # If value is not a JSON string info['protocols'].append(p) info['protocols'] = sorted(info['protocols'], key=lambda p: (p['hostname'], p['scheme'], p['port'])) return info @transactional_session def update_protocols(rse_id, scheme, data, hostname, port, session=None): """ Updates an existing protocol entry for an RSE. If necessary, priorities for read, write, and delete operations of other protocol entires will be updated too. :param rse_id: the id of the new rse. :param scheme: Protocol identifer. :param data: Dict with new values (keys must match column names in the database). :param hostname: Hostname defined for the scheme, used if more than one scheme is registered with the same identifier. :param port: The port registered for the hostename, used if more than one scheme is regsitered with the same identifier and hostname. :param session: The database session in use. :raises RSENotFound: If RSE is not found. :raises RSEProtocolNotSupported: If no macthing protocol was found for the given RSE. :raises RSEOperationNotSupported: If no protocol supported the requested operation for the given RSE. :raises RSEProtocolDomainNotSupported: If an undefined domain was provided. :raises RSEProtocolPriorityError: If the provided priority for the protocol is to big or below zero. :raises KeyNotFound: Invalid data for update provided. :raises Duplicate: If protocol with identifier, hostname and port already exists for the given RSE. """ # Transform nested domains to match DB schema e.g. [domains][lan][read] => [read_lan] if 'domains' in data: for s in data['domains']: if s not in utils.rse_supported_protocol_domains(): raise exception.RSEProtocolDomainNotSupported('The protocol domain \'%s\' is not defined in the schema.' % s) for op in data['domains'][s]: if op not in utils.rse_supported_protocol_operations(): raise exception.RSEOperationNotSupported('Operation \'%s\' not defined in schema.' % (op)) op_name = op if op != 'third_party_copy': op_name = ''.join([op, '_', s]) no = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) >= 0)).\ count() if not 0 <= data['domains'][s][op] <= no: raise exception.RSEProtocolPriorityError('The provided priority (%s)for operation \'%s\' in domain \'%s\' is not supported.' % (data['domains'][s][op], op, s)) data[op_name] = data['domains'][s][op] del data['domains'] if 'extended_attributes' in data: try: data['extended_attributes'] = json.dumps(data['extended_attributes'], separators=(',', ':')) except ValueError: pass # String is not JSON try: rse = get_rse_name(rse_id=rse_id, session=session, include_deleted=False) except exception.RSENotFound: raise exception.RSENotFound('RSE with id \'%s\' not found' % rse_id) terms = [models.RSEProtocols.rse_id == rse_id, models.RSEProtocols.scheme == scheme, models.RSEProtocols.hostname == hostname, models.RSEProtocols.port == port] try: up = session.query(models.RSEProtocols).filter(*terms).first() if up is None: msg = 'RSE \'%s\' does not support protocol \'%s\' for hostname \'%s\' on port \'%s\'' % (rse, scheme, hostname, port) raise exception.RSEProtocolNotSupported(msg) # Preparing gaps if priority is updated for domain in utils.rse_supported_protocol_domains(): for op in utils.rse_supported_protocol_operations(): op_name = op if op != 'third_party_copy': op_name = ''.join([op, '_', domain]) if op_name in data: prots = [] if (not getattr(up, op_name)) and data[op_name]: # reactivate protocol e.g. from 0 to 1 prots = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) >= data[op_name])).\ order_by(getattr(models.RSEProtocols, op_name).asc()) val = data[op_name] + 1 elif getattr(up, op_name) and (not data[op_name]): # deactivate protocol e.g. from 1 to 0 prots = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) > getattr(up, op_name))).\ order_by(getattr(models.RSEProtocols, op_name).asc()) val = getattr(up, op_name) elif getattr(up, op_name) > data[op_name]: # shift forward e.g. from 5 to 2 prots = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) >= data[op_name], getattr(models.RSEProtocols, op_name) < getattr(up, op_name))).\ order_by(getattr(models.RSEProtocols, op_name).asc()) val = data[op_name] + 1 elif getattr(up, op_name) < data[op_name]: # shift backward e.g. from 1 to 3 prots = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) <= data[op_name], getattr(models.RSEProtocols, op_name) > getattr(up, op_name))).\ order_by(getattr(models.RSEProtocols, op_name).asc()) val = getattr(up, op_name) for p in prots: p.update({op_name: val}) val += 1 up.update(data, flush=True, session=session) except (IntegrityError, OperationalError) as error: if 'UNIQUE'.lower() in error.args[0].lower() or 'Duplicate' in error.args[0]: # Covers SQLite, Oracle and MySQL error raise exception.Duplicate('Protocol \'%s\' on port %s already registered for \'%s\' with hostname \'%s\'.' % (scheme, port, rse, hostname)) elif 'may not be NULL' in error.args[0] or "cannot be null" in error.args[0]: raise exception.InvalidObject('Missing values: %s' % error.args[0]) raise error except DatabaseError as error: if match('.*DatabaseError.*ORA-01407: cannot update .*RSE_PROTOCOLS.*IMPL.*to NULL.*', error.args[0]): raise exception.InvalidObject('Invalid values !') raise error @transactional_session def del_protocols(rse_id, scheme, hostname=None, port=None, session=None): """ Deletes an existing protocol entry for an RSE. :param rse_id: the id of the new rse. :param scheme: Protocol identifer. :param hostname: Hostname defined for the scheme, used if more than one scheme is registered with the same identifier. :param port: The port registered for the hostename, used if more than one scheme is regsitered with the same identifier and hostname. :param session: The database session in use. :raises RSENotFound: If RSE is not found. :raises RSEProtocolNotSupported: If no macthing scheme was found for the given RSE. """ try: rse_name = get_rse_name(rse_id=rse_id, session=session, include_deleted=False) except exception.RSENotFound: raise exception.RSENotFound('RSE \'%s\' not found' % rse_id) terms = [models.RSEProtocols.rse_id == rse_id, models.RSEProtocols.scheme == scheme] if hostname: terms.append(models.RSEProtocols.hostname == hostname) if port: terms.append(models.RSEProtocols.port == port) p = session.query(models.RSEProtocols).filter(*terms) if not p.all(): msg = 'RSE \'%s\' does not support protocol \'%s\'' % (rse_name, scheme) msg += ' for hostname \'%s\'' % hostname if hostname else '' msg += ' on port \'%s\'' % port if port else '' raise exception.RSEProtocolNotSupported(msg) for row in p: row.delete(session=session) # Filling gaps in protocol priorities for domain in utils.rse_supported_protocol_domains(): for op in utils.rse_supported_protocol_operations(): op_name = ''.join([op, '_', domain]) if getattr(models.RSEProtocols, op_name, None): prots = session.query(models.RSEProtocols).\ filter(sqlalchemy.and_(models.RSEProtocols.rse_id == rse_id, getattr(models.RSEProtocols, op_name) > 0)).\ order_by(getattr(models.RSEProtocols, op_name).asc()) i = 1 for p in prots: p.update({op_name: i}) i += 1 @transactional_session def update_rse(rse_id, parameters, session=None): """ Update RSE properties like availability or name. :param rse_id: the id of the new rse. :param parameters: A dictionnary with property (name, read, write, delete as keys). :param session: The database session in use. :raises RSENotFound: If RSE is not found. """ try: query = session.query(models.RSE).filter_by(id=rse_id).one() except sqlalchemy.orm.exc.NoResultFound: raise exception.RSENotFound('RSE with ID \'%s\' cannot be found' % rse_id) availability = 0 rse = query.rse for column in query: if column[0] == 'availability': availability = column[1] or availability param = {} availability_mapping = {'availability_read': 4, 'availability_write': 2, 'availability_delete': 1} for key in parameters: if key == 'name' and parameters['name'] != rse: # Needed due to wrongly setting name in pre1.22.7 clients param['rse'] = parameters['name'] elif key in ['availability_read', 'availability_write', 'availability_delete']: if parameters[key] is True: availability = availability | availability_mapping[key] else: availability = availability & ~availability_mapping[key] elif key in ['latitude', 'longitude', 'time_zone', 'rse_type', 'volatile', 'deterministic', 'region_code', 'country_name', 'city', 'staging_area', 'qos_class']: param[key] = parameters[key] param['availability'] = availability # handle null-able keys for key in parameters: if key in ['qos_class']: if param[key] and param[key].lower() in ['', 'none', 'null']: param[key] = None query.update(param) if 'rse' in param: add_rse_attribute(rse_id=rse_id, key=parameters['name'], value=True, session=session) query = session.query(models.RSEAttrAssociation).filter_by(rse_id=rse_id).filter(models.RSEAttrAssociation.key == rse) rse_attr = query.one() rse_attr.delete(session=session) @read_session def export_rse(rse_id, session=None): """ Get the internal representation of an RSE. :param rse_id: The RSE id. :returns: A dictionary with the internal representation of an RSE. """ query = session.query(models.RSE).filter_by(id=rse_id) rse_data = {} for _rse in query: for k, v in _rse: rse_data[k] = v rse_data.pop('continent') rse_data.pop('ASN') rse_data.pop('ISP') rse_data.pop('deleted') rse_data.pop('deleted_at') # get RSE attributes rse_data['attributes'] = list_rse_attributes(rse_id=rse_id, session=session) protocols = get_rse_protocols(rse_id=rse_id, session=session) rse_data['lfn2pfn_algorithm'] = protocols.get('lfn2pfn_algorithm') rse_data['verify_checksum'] = protocols.get('verify_checksum') rse_data['credentials'] = protocols.get('credentials') rse_data['availability_delete'] = protocols.get('availability_delete') rse_data['availability_write'] = protocols.get('availability_write') rse_data['availability_read'] = protocols.get('availability_read') rse_data['protocols'] = protocols.get('protocols') # get RSE limits limits = get_rse_limits(rse_id=rse_id, session=session) rse_data['MinFreeSpace'] = limits.get('MinFreeSpace') rse_data['MaxBeingDeletedFiles'] = limits.get('MaxBeingDeletedFiles') return rse_data @transactional_session def add_qos_policy(rse_id, qos_policy, session=None): """ Add a QoS policy from an RSE. :param rse_id: The id of the RSE. :param qos_policy: The QoS policy to add. :param session: The database session in use. :raises Duplicate: If the QoS policy already exists. :returns: True if successful, except otherwise. """ try: new_qos_policy = models.RSEQoSAssociation() new_qos_policy.update({'rse_id': rse_id, 'qos_policy': qos_policy}) new_qos_policy.save(session=session) except (IntegrityError, FlushError, OperationalError) as error: if ('UNIQUE constraint failed' in error.args[0]) or ('conflicts with persistent instance' in error.args[0]) \ or match('.*IntegrityError.*ORA-00001: unique constraint.*RSE_PROTOCOLS_PK.*violated.*', error.args[0]) \ or match('.*IntegrityError.*1062.*Duplicate entry.*for key.*', error.args[0]) \ or match('.*IntegrityError.*duplicate key value violates unique constraint.*', error.args[0])\ or match('.*UniqueViolation.*duplicate key value violates unique constraint.*', error.args[0])\ or match('.*IntegrityError.*columns.*are not unique.*', error.args[0]): raise exception.Duplicate('QoS policy %s already exists!' % qos_policy) except DatabaseError as error: raise exception.RucioException(error.args) return True @transactional_session def delete_qos_policy(rse_id, qos_policy, session=None): """ Delete a QoS policy from an RSE. :param rse_id: The id of the RSE. :param qos_policy: The QoS policy to delete. :param session: The database session in use. :returns: True if successful, silent failure if QoS policy does not exist. """ try: session.query(models.RSEQoSAssociation).filter_by(rse_id=rse_id, qos_policy=qos_policy).delete() except DatabaseError as error: raise exception.RucioException(error.args) return True @read_session def list_qos_policies(rse_id, session=None): """ List all QoS policies of an RSE. :param rse_id: The id of the RSE. :param session: The database session in use. :returns: List containing all QoS policies. """ qos_policies = [] try: query = session.query(models.RSEQoSAssociation.qos_policy).filter_by(rse_id=rse_id) for qos_policy in query: qos_policies.append(qos_policy[0]) except DatabaseError as error: raise exception.RucioException(error.args) return qos_policies
39.663812
191
0.641329
8f0ead51b24fb58afbd0cf4b4af38e57648eccc7
83
py
Python
backend/feed/apps.py
stasfilin/rss_portal
e6e9f8d254c80c8a7a40901b3b7dab059f259d55
[ "MIT" ]
null
null
null
backend/feed/apps.py
stasfilin/rss_portal
e6e9f8d254c80c8a7a40901b3b7dab059f259d55
[ "MIT" ]
3
2021-04-08T21:05:07.000Z
2022-02-10T10:05:39.000Z
sfymca/feed/apps.py
streeter/sf-ymca-pools
7f3ff7d561d51158ae27b8abba05f61f4966e862
[ "MIT" ]
null
null
null
from django.apps import AppConfig class FeedConfig(AppConfig): name = "feed"
13.833333
33
0.73494
54721c3f7c48efd199f9fff8b3e4b3d30311994f
5,360
py
Python
src/main/python/twitter/thermos/config/loader.py
isomer/incubator-aurora
5f54d4de25413bb18acec16120eb18f3e08c6bf0
[ "Apache-2.0" ]
null
null
null
src/main/python/twitter/thermos/config/loader.py
isomer/incubator-aurora
5f54d4de25413bb18acec16120eb18f3e08c6bf0
[ "Apache-2.0" ]
null
null
null
src/main/python/twitter/thermos/config/loader.py
isomer/incubator-aurora
5f54d4de25413bb18acec16120eb18f3e08c6bf0
[ "Apache-2.0" ]
null
null
null
import copy import json import os import re import textwrap from twitter.common.dirutil import safe_open from twitter.common.lang import Compatibility from twitter.thermos.common.planner import TaskPlanner from twitter.thermos.config.schema import Task from pystachio import Ref from pystachio.config import Config class PortExtractor(object): class InvalidPorts(Exception): pass @staticmethod def extract(obj): port_scope = Ref.from_address('thermos.ports') _, uninterp = obj.interpolate() ports = [] for ref in uninterp: subscope = port_scope.scoped_to(ref) if subscope is not None: if not subscope.is_index(): raise PortExtractor.InvalidPorts( 'Bad port specification "%s" (should be of form "thermos.ports[name]"' % ref.address()) ports.append(subscope.action().value) return ports class ThermosProcessWrapper(object): # >=1 characters && anything but NULL and '/' VALID_PROCESS_NAME_RE = re.compile(r'^[^./][^/]*$') class InvalidProcess(Exception): pass def __init__(self, process): self._process = process def ports(self): try: return PortExtractor.extract(self._process) except PortExtractor.InvalidPorts: raise self.InvalidProcess('Process has invalid ports scoping!') @staticmethod def assert_valid_process_name(name): if not ThermosProcessWrapper.VALID_PROCESS_NAME_RE.match(name): raise ThermosProcessWrapper.InvalidProcess('Invalid process name: %s' % name) class ThermosTaskWrapper(object): class InvalidTask(Exception): pass def __init__(self, task, bindings=None, strict=True): if bindings: task = task.bind(*bindings) if not task.check().ok() and strict: raise ThermosTaskWrapper.InvalidTask(task.check().message()) self._task = task @property def task(self): return self._task def ports(self): ti, _ = self._task.interpolate() ports = set() if ti.has_processes(): for process in ti.processes(): try: ports.update(ThermosProcessWrapper(process).ports()) except ThermosProcessWrapper.InvalidProcess: raise self.InvalidTask('Task has invalid process: %s' % process) return ports def to_json(self): return json.dumps(self._task.get()) def to_file(self, filename): ti, _ = self._task.interpolate() with safe_open(filename, 'w') as fp: json.dump(ti.get(), fp) @staticmethod def from_file(filename, **kw): try: with safe_open(filename) as fp: task = Task.json_load(fp) return ThermosTaskWrapper(task, **kw) except Exception as e: return None # TODO(wickman) These should be validators pushed onto ThermosConfigLoader.plugins class ThermosTaskValidator(object): class InvalidTaskError(Exception): pass @classmethod def assert_valid_task(cls, task): cls.assert_valid_names(task) cls.assert_typecheck(task) cls.assert_valid_plan(task) @classmethod def assert_valid_plan(cls, task): try: TaskPlanner(task, process_filter=lambda proc: proc.final().get() == False) TaskPlanner(task, process_filter=lambda proc: proc.final().get() == True) except TaskPlanner.InvalidSchedule as e: raise cls.InvalidTaskError('Task has invalid plan: %s' % e) @classmethod def assert_valid_names(cls, task): for process in task.processes(): name = process.name().get() try: ThermosProcessWrapper.assert_valid_process_name(name) except ThermosProcessWrapper.InvalidProcess as e: raise cls.InvalidTaskError('Task has invalid process: %s' % e) @classmethod def assert_typecheck(cls, task): typecheck = task.check() if not typecheck.ok(): raise cls.InvalidTaskError('Failed to fully evaluate task: %s' % typecheck.message()) @classmethod def assert_valid_ports(cls, task, portmap): for port in ThermosTaskWrapper(task).ports(): if port not in portmap: raise cls.InvalidTaskError('Task requires unbound port %s!' % port) @classmethod def assert_same_task(cls, spec, task): active_task = spec.given(state='active').getpath('task_path') if os.path.exists(active_task): task_on_disk = ThermosTaskWrapper.from_file(active_task) if not task_on_disk or task_on_disk.task != task: raise cls.InvalidTaskError('Task differs from on disk copy: %r vs %r' % ( task_on_disk.task if task_on_disk else None, task)) class ThermosConfigLoader(object): SCHEMA = textwrap.dedent(""" from pystachio import * from twitter.thermos.config.schema import * __TASKS = [] def export(task): __TASKS.append(Task(task) if isinstance(task, dict) else task) """) @classmethod def load(cls, loadable, **kw): config = Config(loadable, schema=cls.SCHEMA) return cls(ThermosTaskWrapper(task, **kw) for task in config.environment['__TASKS']) @classmethod def load_json(cls, filename, **kw): tc = cls() task = ThermosTaskWrapper.from_file(filename, **kw) if task: ThermosTaskValidator.assert_valid_task(task.task()) tc.add_task(task) return tc def __init__(self, exported_tasks=None): self._exported_tasks = exported_tasks or [] def add_task(self, task): self._exported_tasks.append(task) def tasks(self): return self._exported_tasks
29.777778
99
0.698881
706ac65a996211faf94af010fe5d635479da724a
175
py
Python
examples/sponza/dependencies.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
70
2017-03-31T12:01:41.000Z
2022-01-05T06:30:57.000Z
examples/sponza/dependencies.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
69
2017-06-18T22:37:46.000Z
2020-01-23T04:02:22.000Z
examples/sponza/dependencies.py
Contraz/demosys-py
0479e0f3b0a3901f601bffd2d11e155f97b47555
[ "0BSD" ]
9
2017-05-13T21:13:02.000Z
2020-10-01T18:09:49.000Z
from demosys.resources.meta import SceneDescription effect_packages = [] resources = [ SceneDescription(label="sponza", path="sponza/Sponza/glTF/Sponza.gltf"), ]
21.875
77
0.725714
ac6f42278ead1b750b57b1738720719e7cef4d47
199
py
Python
ex066.py
brunocorbetta/exerciciocursoemvideo
b6ef52f3426f70f211ad70f233f0222c703a2c41
[ "MIT" ]
null
null
null
ex066.py
brunocorbetta/exerciciocursoemvideo
b6ef52f3426f70f211ad70f233f0222c703a2c41
[ "MIT" ]
null
null
null
ex066.py
brunocorbetta/exerciciocursoemvideo
b6ef52f3426f70f211ad70f233f0222c703a2c41
[ "MIT" ]
null
null
null
cont = 0 soma = 0 while True: n1 = int(input('Digite 999 para parar: ')) if n1 == 999: break cont += 1 soma += n1 print(f'Você digitou {cont} numeros e a soma deles da {soma} ')
19.9
63
0.577889
13e94eb6232feaec4d46f9963967606be1610e67
447
py
Python
polls/forms.py
davidefabbrico/Progetto_School
e32e345d154764725b96e2d22b441a17fae67ade
[ "MIT" ]
1
2021-09-04T08:56:32.000Z
2021-09-04T08:56:32.000Z
polls/forms.py
davidefabbrico/Progetto_School
e32e345d154764725b96e2d22b441a17fae67ade
[ "MIT" ]
null
null
null
polls/forms.py
davidefabbrico/Progetto_School
e32e345d154764725b96e2d22b441a17fae67ade
[ "MIT" ]
null
null
null
from django.forms import ModelForm from .models import * from django.contrib.auth.forms import UserCreationForm from django import forms from django.contrib.auth.models import User class Form(forms.ModelForm): class Meta: model = School fields = '__all__' class CreateUserForm(UserCreationForm): class Meta: model = User fields = ['username', 'email', 'password1', 'password2']
23.526316
68
0.666667
72f5e5eb668c9a46fd2aa529ed524fec0ca5cbb3
3,573
py
Python
server/UserProfile/models.py
dimejiconsult/Telemedicine
af812bd8703d86e648105dc0c01b02f6af783dee
[ "MIT" ]
null
null
null
server/UserProfile/models.py
dimejiconsult/Telemedicine
af812bd8703d86e648105dc0c01b02f6af783dee
[ "MIT" ]
8
2020-08-04T22:42:45.000Z
2022-03-12T00:48:53.000Z
server/UserProfile/models.py
dimejiconsult/Telemedicine
af812bd8703d86e648105dc0c01b02f6af783dee
[ "MIT" ]
null
null
null
from django.db import models from django.contrib.auth.models import BaseUserManager,AbstractBaseUser, PermissionsMixin from django.utils.translation import ugettext_lazy as _ Gender = ( ('Male', 'Male'), ('Female', 'Female') ) class UserManager(BaseUserManager): def create_user(self, email, password=None, active=False, staff=False, admin=False, **extra_fields): """ usermanager for creating users """ if not email: raise ValueError('please provide a email') email = self.normalize_email(email) user =self.model(email=email, **extra_fields) user.active = False user.set_password(password) user.save(using=self._db) return user def create_superuser(self,email,password): """ create super user """ user =self.create_user(email,password) user.admin = True user.staff = True user.active = True user.superuser =True user.save(using=self._db) return user # def create_DoctorProfile(self,email,password,**extra_fields): # """ create super user """ # user =self.create_user(email,password,**extra_fields) # user.is_active = False # user.save(using=self._db) # return user def get_by_natural_key(self, email): return self.get(email=email) class Profile(AbstractBaseUser, PermissionsMixin): first_name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.EmailField(db_index=True, unique=True) active = models.BooleanField(default=True) admin = models.BooleanField(default=False) staff = models.BooleanField(default=False) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def get_full_name(self): return (self.first_name+' '+self.last_name) def get_short_name(self): return self.first_name def natural_key(self): return (self.first_name, self.last_name) def __str__(self): return self.email def has_perm(self, perm, obj=None): "Does the user have a specific permission?" # Simplest possible answer: Yes, always return True def has_module_perms(self, app_label): "Does the user have permissions to view the app `app_label`?" # Simplest possible answer: Yes, always return True @property def is_staff(self): "Is the user a member of staff?" # Simplest possible answer: All admins are staff return self.staff def is_admin(self): "Is the user a admin member?" return self.admin class DoctorProfile(Profile, PermissionsMixin): gender = models.CharField(max_length=7, choices=Gender) date_of_birth = models.DateField() Year_of_Graduation = models.DateField() Sch_of_Graduation = models.CharField(max_length=255) Hospital_of_housemanship = models.CharField(max_length=255) Folio_Number = models.CharField(max_length=50) Full_License = models.FileField(upload_to='../media/License_document/%Y/%m/%d/') Evidence_of_License_Reg = models.FileField(upload_to='../media/Evidence_of_Annual_License_Reg/%Y/%m/%d/') CV = models.FileField(upload_to='../media/CV/%Y/%m/%d/') Specialization = models.CharField(max_length=50) objects = UserManager() def __str__(self): return self.first_name+' '+self.last_name
31.342105
109
0.670025
073659812594ba8061e59acae25d4774af47a863
274
py
Python
gcamp_analysis_files_finished/180313-04-top-acclimate/src/delta_video_config.py
eleanorlutz/aedes-aegypti-gcamp6s-larval-behavior
f8773525124a4138278b56f6de4fc5a9910a6319
[ "MIT" ]
null
null
null
gcamp_analysis_files_finished/180313-04-top-acclimate/src/delta_video_config.py
eleanorlutz/aedes-aegypti-gcamp6s-larval-behavior
f8773525124a4138278b56f6de4fc5a9910a6319
[ "MIT" ]
null
null
null
gcamp_analysis_files_finished/180313-04-top-acclimate/src/delta_video_config.py
eleanorlutz/aedes-aegypti-gcamp6s-larval-behavior
f8773525124a4138278b56f6de4fc5a9910a6319
[ "MIT" ]
null
null
null
class Config: def __init__(self): self.basename = 'delta_video' self.directory = '/home/eleanor/Documents/gcamp_analysis_files_temp/180313-04-top-acclimate/data' self.topics = ['/multi_tracker/1/delta_video',] self.record_length_hours = 1
45.666667
105
0.693431
c8c75af43565f6e140287644aaaefa97dd6e67c5
2,982
py
Python
ldm/modules/ema.py
samedii/latent-diffusion
f13bf9bf463d95b5a16aeadd2b02abde31f769f8
[ "MIT" ]
563
2021-12-21T02:26:38.000Z
2022-03-31T05:54:51.000Z
ldm/modules/ema.py
samedii/latent-diffusion
f13bf9bf463d95b5a16aeadd2b02abde31f769f8
[ "MIT" ]
23
2021-12-22T10:00:00.000Z
2022-03-24T20:43:49.000Z
ldm/modules/ema.py
samedii/latent-diffusion
f13bf9bf463d95b5a16aeadd2b02abde31f769f8
[ "MIT" ]
51
2021-12-21T02:27:04.000Z
2022-03-23T12:30:31.000Z
import torch from torch import nn class LitEma(nn.Module): def __init__(self, model, decay=0.9999, use_num_upates=True): super().__init__() if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.m_name2s_name = {} self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates else torch.tensor(-1,dtype=torch.int)) for name, p in model.named_parameters(): if p.requires_grad: #remove as '.'-character is not allowed in buffers s_name = name.replace('.','') self.m_name2s_name.update({name:s_name}) self.register_buffer(s_name,p.clone().detach().data) self.collected_params = [] def forward(self,model): decay = self.decay if self.num_updates >= 0: self.num_updates += 1 decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: sname = self.m_name2s_name[key] shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: assert not key in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: assert not key in self.m_name2s_name def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data)
38.727273
102
0.60228
b42eb69bc2f0185ac2ec8f9d76d2f17e7507678e
3,163
py
Python
benchmark/startCirq2698.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq2698.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq2698.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=41 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.Y.on(input_qubit[3])) # number=36 c.append(cirq.H.on(input_qubit[3])) # number=16 c.append(cirq.CZ.on(input_qubit[1],input_qubit[3])) # number=17 c.append(cirq.H.on(input_qubit[3])) # number=18 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=37 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=38 c.append(cirq.Z.on(input_qubit[1])) # number=39 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=40 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[3])) # number=32 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=33 c.append(cirq.H.on(input_qubit[3])) # number=34 c.append(cirq.H.on(input_qubit[3])) # number=26 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=27 c.append(cirq.H.on(input_qubit[3])) # number=28 c.append(cirq.X.on(input_qubit[3])) # number=24 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=25 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=12 c.append(cirq.H.on(input_qubit[2])) # number=29 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=30 c.append(cirq.H.on(input_qubit[2])) # number=31 c.append(cirq.X.on(input_qubit[2])) # number=21 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=22 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=13 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=14 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq2698.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
36.77907
77
0.681315
b81afcddd4de1126ee8d2c87f25050a73bc30287
7,130
py
Python
env/Lib/site-packages/plotly/graph_objs/scattersmith/marker/colorbar/_title.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
7
2022-01-16T12:28:16.000Z
2022-03-04T15:31:45.000Z
env/Lib/site-packages/plotly/graph_objs/scattersmith/marker/colorbar/_title.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
14
2021-10-20T23:33:47.000Z
2021-12-21T04:50:37.000Z
env/Lib/site-packages/plotly/graph_objs/scattersmith/marker/colorbar/_title.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
null
null
null
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Title(_BaseTraceHierarchyType): # class properties # -------------------- _parent_path_str = "scattersmith.marker.colorbar" _path_str = "scattersmith.marker.colorbar.title" _valid_props = {"font", "side", "text"} # font # ---- @property def font(self): """ Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of :class:`plotly.graph_objs.scattersmith.marker.colorbar.title.Font` - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly.graph_objs.scattersmith.marker.colorbar.title.Font """ return self["font"] @font.setter def font(self, val): self["font"] = val # side # ---- @property def side(self): """ Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. The 'side' property is an enumeration that may be specified as: - One of the following enumeration values: ['right', 'top', 'bottom'] Returns ------- Any """ return self["side"] @side.setter def side(self, val): self["side"] = val # text # ---- @property def text(self): """ Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self["text"] @text.setter def text(self, val): self["text"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """ def __init__(self, arg=None, font=None, side=None, text=None, **kwargs): """ Construct a new Title object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.scattersmith.m arker.colorbar.Title` font Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. side Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. text Sets the title of the color bar. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- Title """ super(Title, self).__init__("title") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.scattersmith.marker.colorbar.Title constructor must be a dict or an instance of :class:`plotly.graph_objs.scattersmith.marker.colorbar.Title`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("font", None) _v = font if font is not None else _v if _v is not None: self["font"] = _v _v = arg.pop("side", None) _v = side if side is not None else _v if _v is not None: self["side"] = _v _v = arg.pop("text", None) _v = text if text is not None else _v if _v is not None: self["text"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
33.791469
93
0.543198
458d5ce62a9e9557847f69a30f64f71be1f7f272
30,348
py
Python
srg3d/potential.py
cheshyre/srg3d-py
a62592c0d9bcb62d6a54d13827882cdfe46fa706
[ "MIT" ]
null
null
null
srg3d/potential.py
cheshyre/srg3d-py
a62592c0d9bcb62d6a54d13827882cdfe46fa706
[ "MIT" ]
null
null
null
srg3d/potential.py
cheshyre/srg3d-py
a62592c0d9bcb62d6a54d13827882cdfe46fa706
[ "MIT" ]
1
2020-02-25T14:47:54.000Z
2020-02-25T14:47:54.000Z
# pylint: disable=too-many-lines """Nuclear potential module. Module containing representations of 3D potentials for use in nuclear theory. Also contains logic to read them from and save them to files with a standard naming convention. class Channel ------------- A container for the channel information for a potential. It has the following method:: channel = Channel(spin, orb_ang_mom_1, orb_ang_mom_2, tot_ang_mom, isospin) These are also commonly read as S, L, L, J, and T. class CoupledChannel -------------------- A container to handle coupled channels. It has the following method:: channel = CoupledChannel(list_of_channels) All channels in coupled channel should have same S, J, and T. class PotentialType ------------------- A container class to hold all the physical information about the potential. It has the following method:: potential_type = PotentialType(n_body, order, name, channel, particles) class Potential --------------- Abstraction for the representation of a potential. Handles the logic of adding and removing weights. Can generate corresponding kinetic energy. It has the following methods:: potential = Potential(potential_type, nodes, weights, potential, lam=50.0, has_weights=False) kinetic_energy = potential.kinetic_energy() potential_data_wo_weights = potential.without_weights() potential_data_w_weights = potential.with_weights() new_potential = potential.copy(potential_data, lam) reduced_potential = potential.reduce_dim(dim) class CoupledPotential ---------------------- Abstraction for representation for potential of coupled channel. Handles logic of adding and removing weights. Can generate kinetic energy. It has the following methods:: potential = CoupledPotential([potential1, potential2, potential3, potential4]) kinetic_energy = potential.kinetic_energy() potential_data_wo_weights = potential.without_weights() potential_data_w_weights = potential.with_weights() new_potential = potential.copy(potential_data, lam) reduced_potential = potential.reduce_dim(dim) channel_potential = potential.extract_channel_potential( potential1.potential_type.channel ) Methods ------- potential = load_from_file(file_str) Method to load a potential from a file. Requires that standard file-naming conventions have been followed. potential = load(n_body, order, name, channel, lambda, particles, num_points='*') Method to load potential from a standard directory. Requires that potential was saved there earlier. save(potential, directory=None) Method to save potential with correct naming convention either to a standard folder or to a user-specified directory. Changelog: 2018.11.14 Added: CoupledChannel for coupled channels CoupledPotential for potentials in coupled channels 2018.11.09 Added: load_from_file method Changed: Make load take parameters and use load_from_file for loading from a specific file Save now has different parameter ordering with the dir_str param being optional 2018.11.06 Added: Initial creation of module """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import glob from math import pi from math import sqrt import os import re import numpy as np import matplotlib.pyplot as plt NBODY_DICT = { 'NN': 2, '3N': 3, } STANDARD_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'potentials') INV_NBODY_DICT = {v: k for k, v in NBODY_DICT.items()} ORDER_DICT = { 'LO': 0, 'NLO': 1, 'N2LO': 2, 'N3LO': 3, } INV_ORDER_DICT = {v: k for k, v in ORDER_DICT.items()} class Channel: """Container for information on channel for potential.""" # pylint: disable=too-many-arguments def __init__(self, spin, orb_ang_mom_1, orb_ang_mom_2, tot_ang_mom, isospin): """Create Channel object. Parameters ---------- spin : int Spin quantum number. orb_ang_mom_1 : int First angular momentum quantum number. orb_ang_mom_2 : int Second angular momentum quantum number. tot_ang_mom : int Total angular momentum. isospin : int 2-body isospin quantum number. """ self._spin = spin self._l1 = orb_ang_mom_1 self._l2 = orb_ang_mom_2 self._j = tot_ang_mom self._isospin = isospin def as_5tuple(self): """Return 5-tuple representation of channel. Returns ------- (int, int, int, int, int) 5-tuple with channel quantum numbers. """ return (self._spin, self._l1, self._l2, self._j, self._isospin) def __str__(self): """Return string representation of channel. Returns ------- str String of 5 integers with channel information which are SLLJT. """ return '{}{}{}{}{}'.format(self._spin, self._l1, self._l2, self._j, self._isospin) def __eq__(self, other): """Return whether channel is same as another channel object. Returns ------- bool True if self and other are the same, False otherwise. """ return self.as_5tuple() == other.as_5tuple() def __ne__(self, other): """Return whether channel is different from another channel object. Returns ------- bool False if self and other are the same, False otherwise. """ return self.as_5tuple() != other.as_5tuple() class CoupledChannel(Channel): """Container for information about coupled channel.""" def __init__(self, list_of_channels): """Create coupled channel container. Parameters ---------- list_of_channels : list of Channel objects List of channels in coupled channel. """ spins = {x.as_5tuple()[0] for x in list_of_channels} tot_ang_moms = {x.as_5tuple()[3] for x in list_of_channels} isospins = {x.as_5tuple()[4] for x in list_of_channels} if len(spins) * len(isospins) * len(tot_ang_moms) != 1: raise ValueError('Given channels cannot be coupled.') super(CoupledChannel, self).__init__(spins.pop(), '*', '*', tot_ang_moms.pop(), isospins.pop()) self._channels = list_of_channels @property def channels(self): """Return list of channels in coupled channel. Returns ------- list of Channel objects """ return self._channels def __eq__(self, other): """Return whether coupled channel object is same as another. Returns ------- bool True if coupled channels are equal, False otherwise. """ return False not in {x == y for x, y in zip(self.channels, other.channels)} def __ne__(self, other): """Return whether coupled channel object is not same as another. Returns ------- bool True if coupled channels are not equal, False otherwise. """ return False in {x == y for x, y in zip(self.channels, other.channels)} class PotentialType: """Container for information related to potential.""" # pylint: disable=too-many-arguments def __init__(self, n_body, order, name, channel, particles): """Construct potential type. Parameters ---------- n_body : int Number of particles interacting in potential. order : int Order to which potential was calculated. name : str Name for potential, may reflect something about origin. channel: Channel Object representing the partial wave channel for the potential. particles: str String representing constituent particles in the interaction. """ self._n_body = n_body self._order = order self._name = name self._channel = channel self._particles = particles @property def n_body(self): """Return number of particles in potential. Returns ------- int Number of particles. """ return self._n_body @property def order(self): """Return order to which potential was calculated. Returns ------- int Order of potential. """ return self._order @property def name(self): """Return name of potential. Returns ------- str Name of potential. """ return self._name @property def channel(self): """Return partial wave channel of potential. Returns ------- Channel Channel object representing partial wave channel. """ return self._channel @property def particles(self): """Return particles in interaction to which potential applies. Returns ------- str String with particles in interaction. """ return self._particles def __eq__(self, other): """Return whether potential type is same as other potential type. Returns ------- bool True if same, False otherwise. """ return ((self.n_body == other.n_body) and (self.order == other.order) and (self.name == other.name) and (self.channel == other.channel) and (self.particles == other.particles)) def __ne__(self, other): """Return whether potential type is not same as other potential type. Returns ------- bool False if same, True otherwise. """ return not ((self.n_body == other.n_body) and (self.order == other.order) and (self.name == other.name) and (self.channel == other.channel) and (self.particles == other.particles)) class Potential: """Class encapsulating all relevant information about a potential.""" # pylint: disable=too-many-arguments def __init__(self, potential_type, nodes, weights, potential, lam=50.0, has_weights=False): """Create potential from parameters. Parameters ---------- potential_type : PotentialType PotentialType instance with information about the potential. nodes : list of floats List of momenta at which the potential is defined. weights : list of floats List of integration weights corresponding to nodes. potential : matrix of floats Value of potential at incoming and outgoing momenta in nodes. lam : float, optional Value of lambda (SRG flow parameter) for potential. For unevolved potentials, a value of 50 is the default. has_weights : bool, optional Specifies whether potential given has weights factored in already. """ self._potential_type = potential_type self._nodes = nodes self._weights = weights self._lam = lam if has_weights: potential = _rem_w(potential, self._weights, self._nodes) self._potential = potential def copy(self, potential, lam): """Create potential from current potential with new data and lam. Parameters ---------- potential : matrix of floats Potential data. lam : float Value of lambda Returns ------- Potential New potential with new data. """ return Potential(self._potential_type, self._nodes, self._weights, potential, lam) def with_weights(self): """Return potential with weights factored in (for calculations). Returns ------- matrix of floats Potential with integration weights. """ return _add_w(self._potential, self._weights, self._nodes) def without_weights(self): """Return potential without weights (for visualization). Returns ------- matrix of floats Potential without integration weights. """ return np.array(self._potential) def reduce_dim(self, dim): """Return new potential with only `dim` lowest energy states. Parameters ---------- dim : int Dimension to which potential is to be reduced. Returns ------- Potential New reduced dimension potential. Raises ------ ValueError When value for new dim is too small or too large. """ if dim >= len(self.nodes): raise ValueError('Value of dim is not smaller than current dim.') if dim <= 0: raise ValueError('Zero or negative dim is not allowed.') new_data = self._potential[np.ix_(list(range(dim)), list(range(dim)))] new_nodes = self._nodes[:dim] new_weights = self._weights[:dim] return Potential(self._potential_type, new_nodes, new_weights, new_data, self._lam) def kinetic_energy(self): """Return kinetic energy for potential (for calculations). Returns ------- matrix of floats Kinetic energy matrix. """ return np.diag(np.array([p**2 for p in self._nodes])) def __eq__(self, other): """Return whether two potentials are equal to with numerical error. Returns ------- bool True when potential type, nodes, weights, potential, and lam are all equal within epsilon, False otherwise. """ # Numerical errors smaller than this are acceptable # If there is something wrong with the physics, it should produce # errors larger than this. eps = 10**(-4) if self.potential_type != other.potential_type: return False if self.dim != other.dim: return False if abs(self.lam - other.lam) > eps: return False for p_self, p_other, w_self, w_other in zip(self.nodes, other.nodes, self.weights, other.weights): if abs(p_self - p_other) > eps or abs(w_self - w_other) > eps: return False for i in range(self.dim): for j in range(self.dim): diff = abs(self.without_weights()[i][j] - other.without_weights()[i][j]) if diff > eps: return False return True def __ne__(self, other): """Return whether two potentials are not equal to with numerical error. Returns ------- bool False when potential type, nodes, weights, potential, and lam are all equal within epsilon, True otherwise. """ # Numerical errors smaller than this are acceptable # If there is something wrong with the physics, it should produce # errors larger than this. eps = 10**(-4) if self.potential_type != other.potential_type: return True if self.dim != other.dim: return True if abs(self.lam - other.lam) > eps: return True for p_self, p_other, w_self, w_other in zip(self.nodes, other.nodes, self.weights, other.weights): if abs(p_self - p_other) > eps or abs(w_self - w_other) > eps: return True for i in range(self.dim): for j in range(self.dim): diff = abs(self.without_weights()[i][j] - other.without_weights()[i][j]) if diff > eps: return True return False @property def dim(self): """Return the dimension of the potential matrix. Returns ------- int The dimension of the (square) potential matrix. """ return len(self._nodes) @property def potential_type(self): """Return `PotentialType` object for potential. Returns ------- PotentialType Object with all physics related information for the potential. """ return self._potential_type @property def nodes(self): """Return the nodes for the potential. Returns ------- list of floats List of momenta at which potential is defined. """ return self._nodes @property def weights(self): """Return weights for the potential. Returns ------- list of floats Integration weights corresponding to nodes for potential. """ return self._weights @property def lam(self): """Return lambda for potential. Returns ------- float Value of lambda, the SRG flow parameter, for potential. """ return self._lam class CoupledPotential(Potential): """Representation of potential of coupled channel.""" def __init__(self, list_of_potentials): # pylint: disable=too-many-locals """Create potential from list of potentials in a coupled channel. Parameters ---------- list_of_potentials : list of Potential objects List of potentials to form coupled channel. Returns ------- Potential New potential with full coupled channel. """ self._construction = list_of_potentials channels = [x.potential_type.channel for x in list_of_potentials] n_body = {x.potential_type.n_body for x in list_of_potentials} order = {x.potential_type.order for x in list_of_potentials} name = {x.potential_type.name for x in list_of_potentials} particles = {x.potential_type.particles for x in list_of_potentials} if len(n_body) * len(order) * len(name) * len(particles) != 1: raise ValueError('Given potentials cannot be coupled.') coupled_channel = CoupledChannel(channels) potential_type = PotentialType(n_body.pop(), order.pop(), name.pop(), coupled_channel, particles.pop()) lam = {x.lam for x in list_of_potentials} if len(lam) != 1: raise ValueError('Not all given potentials are at the same lam.') lam = lam.pop() dim = {x.dim for x in list_of_potentials} if len(dim) != 1: raise ValueError('Not all given potentials have same dim.') dim = dim.pop() c_dim = int(sqrt(len(list_of_potentials))) if c_dim**2 != len(list_of_potentials): raise ValueError('Non-square number of potentials given.') nodes = [] weights = [] for pot in list_of_potentials[:c_dim]: nodes += pot.nodes weights += pot.weights nodes = np.array(nodes) weights = np.array(weights) potential_data = np.zeros((c_dim * dim, c_dim * dim)) self._channel_indexes = [] for i in range(c_dim): for j in range(c_dim): r_s = i * dim r_e = (i + 1) * dim c_s = j * dim c_e = (j + 1) * dim data = list_of_potentials[i * c_dim + j].without_weights() potential_data[r_s:r_e, c_s:c_e] = data self._channel_indexes.append((r_s, r_e, c_s, c_e)) super(CoupledPotential, self).__init__(potential_type, nodes, weights, potential_data, lam) self._c_dim = c_dim self._w_dim = dim self._channels = channels def copy(self, potential, lam): """Create potential from current potential with new data and lam. Parameters ---------- potential : matrix of floats Potential data. lam : float Value of lambda Returns ------- Potential New potential with new data. """ new_potentials = [] for pot, ranges in zip(self._construction, self._channel_indexes): sub_matrix = _submatrix(potential, ranges) new_potentials.append(pot.copy(sub_matrix, lam)) return CoupledPotential(new_potentials) def reduce_dim(self, dim): """Return new potential with only `dim` lowest energy states. Parameters ---------- dim : int Dimension to which potential is to be reduced. Returns ------- Potential New reduced dimension potential. Raises ------ ValueError When value for new dim is too small or too large. """ if dim >= self._w_dim: raise ValueError('Value of dim is not smaller than current dim.') if dim <= 0: raise ValueError('Zero or negative dim is not allowed.') new_potentials = [] for pot, ranges in zip(self._construction, self._channel_indexes): sub_matrix = _submatrix(self._potential, ranges) new_potentials.append(pot.copy(sub_matrix, self._lam).reduce_dim(dim)) return CoupledPotential(new_potentials) def extract_channel_potential(self, channel): """Return potential corresponding to channel. Parameters ---------- channel : Channel Channel to extract. Returns ------- Potential Potential corresponding to channel. """ for chan, potential, ranges in zip(self._channels, self._construction, self._channel_indexes): if channel == chan: sub_matrix = _submatrix(self._potential, ranges) return potential.copy(sub_matrix, self._lam) raise ValueError('Channel not found.') @property def dim(self): """Return the dimension of single channel in the potential matrix. Returns ------- int The dimension of a single channel in the (square) potential matrix. """ return self._w_dim # pylint: disable=too-many-locals def load_from_file(file_str): """Load potential from file. Parameters ---------- file_str : str String path to file with potential data. Returns ------- Potential Potential created from extracted information and data from file. """ # Parse info about potential from filename # Strip directory structure end = file_str.split('/')[-1] # Match regular expression regex_str = r'V(.*)_(.*)_(.*)_SLLJT_(.*)_lambda_(.*)_Np_(.*)_(.*)\.dat' result = re.search(regex_str, end) # Extract values from matches n_body_str = result.group(1) order_str = result.group(2) name = result.group(3) channel_str = result.group(4) lam = float(result.group(5)) particles = result.group(7) # Convert string values to integer values n_body = NBODY_DICT[n_body_str] order = ORDER_DICT[order_str] # Convert channel to 5-tuple, then Channel object channel = Channel(*tuple([int(n) for n in channel_str])) # Get number of points num_points = int(result.group(6)) # Read potential with open(file_str) as file: nodes = [] weights = [] for _ in range(num_points): vals = file.readline().split() weights.append(float(vals[0])) nodes.append(float(vals[1])) potential = np.array([[float(file.readline().split()[-1]) for _ in range(num_points)] for _ in range(num_points)]) # Create potential_type potential_type = PotentialType(n_body, order, name, channel, particles) # Return potential return Potential(potential_type, nodes, weights, potential, lam) # pylint: disable=too-many-arguments def load(n_body, order, name, channel, lam, particles, num_points='*'): """Load potential based on parameters. Parameters ---------- n_body : int Number of particles interacting in potential. order : int Order to which potential was calculated. name : str Name for potential, may reflect something about origin. channel: Channel or (int, int, int, int, int) or str Object representing the partial wave channel for the potential. lam : float Value of SRG flow parameter for potential. particles: str String representing constituent particles in the interaction. num_points : int, optional Number of points in potential. Should only be specified if multiple versions of same potential are saved and you need a specific one. Otherwise, will match the first one in lexicographical ordering. Returns ------- Potential Potential created from extracted information and data from file. Raises ------ FileNotFoundError If globbing doesn't match any files. """ # Set up format string file_format_str = '{}/V{}_{}_{}_SLLJT_{}_lambda_{:.2f}_Np_{}_{}.dat' # Get values for format string n_body_str = INV_NBODY_DICT[n_body] order_str = INV_ORDER_DICT[order] # Handle non-string formats if isinstance(channel, Channel): channel = str(channel) elif isinstance(channel, tuple): channel = ''.join(channel) dir_str = os.path.join(STANDARD_PATH, n_body_str, 'SLLJT_{}'.format(channel)) # Create full file path string file_path = file_format_str.format(dir_str, n_body_str, order_str, name, channel, lam, num_points, particles) # Handle globbing if num_points == '*': try: file_path = glob.glob(file_path)[0] except IndexError: raise FileNotFoundError('No potential with those params found.') return load_from_file(file_path) def save(potential, dir_str=None): """Save potential with correct file-naming. Parameters ---------- potential : Potential Potential to be saved. dir_str : str, optional String corresponding to directory where file should be saved. May have trailing `/`. """ # Set up format strings file_format_str = '{}/V{}_{}_{}_SLLJT_{}_lambda_{:.2f}_Np_{}_{}.dat' nodes_format_str = '{:.5e} {:.5e}\n' potential_format_str = '{:.5e} {:.5e} {:.5e}\n' # Get values for format string potential_type = potential.potential_type n_body = potential_type.n_body n_body_str = INV_NBODY_DICT[n_body] order = potential_type.order order_str = INV_ORDER_DICT[order] name = potential_type.name channel_str = str(potential_type.channel) lam = potential.lam num_points = len(potential.nodes) particles = potential_type.particles # Handle optional argument if dir_str is None: dir_str = os.path.join(STANDARD_PATH, n_body_str, 'SLLJT_{}'.format(channel_str)) # Strip potential trailing '/' if dir_str[-1] == '/': dir_str = dir_str[:-1] # Create full file path string file_path = file_format_str.format(dir_str, n_body_str, order_str, name, channel_str, lam, num_points, particles) # Create directory if it doesnt exist _ensure_dir_for_file(file_path) # Output potential with open(file_path, 'w+') as file: for weight, node in zip(potential.weights, potential.nodes): file.write(nodes_format_str.format(weight, node)) for i in range(num_points): for j in range(num_points): file.write(potential_format_str.format( potential.nodes[i], potential.nodes[j], potential.without_weights()[i][j])) def plot(potential, v_min=None, v_max=None): """Plot potential with colorbar. Parameters ---------- potential : Potential Potential to be plotted. v_min : int, optional Minimum value to be reflected on the colorbar scale. v_max : int, optional Maximum value to be reflected on the colorbar scale. """ if v_min is None or v_max is None: plt.matshow(potential.without_weights()) else: plt.matshow(potential.without_weights(), vmin=v_min, vmax=v_max) plt.colorbar() plt.show() plt.close() # ------------------- Internal Methods ------------------------------------- # def _add_w(matrix, weights, nodes): factor_vector = [sqrt(w) * p for w, p in zip(weights, nodes)] weighted_matrix = np.dot(np.dot(np.diag(factor_vector), matrix), np.diag(factor_vector)) return 2 / pi * weighted_matrix def _rem_w(matrix, weights, nodes): factor_vector = [1/(sqrt(w) * p) for w, p in zip(weights, nodes)] unweighted_matrix = np.dot(np.dot(np.diag(factor_vector), pi / 2 * matrix), np.diag(factor_vector)) return unweighted_matrix def _ensure_dir_for_file(file): directory = os.path.dirname(file) if not os.path.exists(directory): os.makedirs(directory) def _submatrix(potential, ranges): return potential[np.ix_(list(range(ranges[0], ranges[1])), list(range(ranges[2], ranges[3])))]
30.137041
79
0.588474
3690ff6bf4c8454401253f8bde218fc801093ff8
21,694
py
Python
scripts/Crawlers/OSFCrawler.py
emmetaobrien/conp-dataset
7776edbb9025711eb38e8482c221fbb45715f27d
[ "MIT" ]
18
2018-05-15T23:01:38.000Z
2021-09-22T17:12:13.000Z
scripts/Crawlers/OSFCrawler.py
emmetaobrien/conp-dataset
7776edbb9025711eb38e8482c221fbb45715f27d
[ "MIT" ]
411
2019-01-07T15:05:54.000Z
2022-03-21T15:08:36.000Z
scripts/Crawlers/OSFCrawler.py
emmetaobrien/conp-dataset
7776edbb9025711eb38e8482c221fbb45715f27d
[ "MIT" ]
92
2018-05-15T21:04:02.000Z
2022-01-31T02:48:37.000Z
import datetime import json import os from typing import Any from typing import Callable from typing import Dict from typing import List from typing import Optional import humanize import requests from datalad.distribution.dataset import Dataset from git import Repo from scripts.Crawlers.BaseCrawler import BaseCrawler def _create_osf_tracker(path, dataset): with open(path, "w") as f: data = { "version": dataset["version"], "title": dataset["title"], } json.dump(data, f, indent=4) class OSFCrawler(BaseCrawler): def __init__(self, github_token, config_path, verbose, force, no_pr, basedir): super().__init__(github_token, config_path, verbose, force, no_pr, basedir) self.osf_token = self._get_token() def _get_token(self): if os.path.isfile(self.config_path): with open(self.config_path) as f: data = json.load(f) if "osf_token" in data.keys(): return data["osf_token"] def _get_request_with_bearer_token(self, link, redirect=True): header = {"Authorization": f"Bearer {self.osf_token}"} r = requests.get(link, headers=header, allow_redirects=redirect) if r.ok: return r else: raise Exception(f"Request to {r.url} failed: {r.content}") def _query_osf(self): query = "https://api.osf.io/v2/nodes/?filter[tags]=canadian-open-neuroscience-platform" r_json = self._get_request_with_bearer_token(query).json() results = r_json["data"] # Retrieve results from other pages if r_json["links"]["meta"]["total"] > r_json["links"]["meta"]["per_page"]: next_page = r_json["links"]["next"] while next_page is not None: next_page_json = self._get_request_with_bearer_token(next_page).json() results.extend(next_page_json["data"]) next_page = next_page_json["links"]["next"] if self.verbose: print("OSF query: {}".format(query)) return results def _download_files( self, link, current_dir, inner_path, d, annex, sizes, is_private=False, ): r_json = self._get_request_with_bearer_token(link).json() files = r_json["data"] # Retrieve the files in the other pages if there are more than 1 page if ( "links" in r_json.keys() and r_json["links"]["meta"]["total"] > r_json["links"]["meta"]["per_page"] ): next_page = r_json["links"]["next"] while next_page is not None: next_page_json = self._get_request_with_bearer_token(next_page).json() files.extend(next_page_json["data"]) next_page = next_page_json["links"]["next"] for file in files: # Handle folders if file["attributes"]["kind"] == "folder": folder_path = os.path.join(current_dir, file["attributes"]["name"]) os.mkdir(folder_path) self._download_files( file["relationships"]["files"]["links"]["related"]["href"], folder_path, os.path.join(inner_path, file["attributes"]["name"]), d, annex, sizes, is_private, ) # Handle single files elif file["attributes"]["kind"] == "file": # Private dataset/files if is_private: correct_download_link = self._get_request_with_bearer_token( file["links"]["download"], redirect=False, ).headers["location"] if "https://accounts.osf.io/login" not in correct_download_link: zip_file = ( True if file["attributes"]["name"].split(".")[-1] == "zip" else False ) d.download_url( correct_download_link, path=os.path.join(inner_path, ""), archive=zip_file, ) else: # Token did not work for downloading file, return print( f'Unable to download file {file["links"]["download"]} with current token, skipping file', ) return # Public file else: # Handle zip files if file["attributes"]["name"].split(".")[-1] == "zip": d.download_url( file["links"]["download"], path=os.path.join(inner_path, ""), archive=True, ) else: d.download_url( file["links"]["download"], path=os.path.join(inner_path, ""), ) # append the size of the downloaded file to the sizes array file_size = file["attributes"]["size"] if not file_size: # if the file size cannot be found in the OSF API response, then get it from git annex info inner_file_path = os.path.join( inner_path, file["attributes"]["name"], ) annex_info_dict = json.loads( annex("info", "--bytes", "--json", inner_file_path), ) file_size = int(annex_info_dict.get("size", 0)) sizes.append(file_size) def _download_components( self, components_list, current_dir, inner_path, d, annex, dataset_size, is_private, ): # Loop through each available components and download their files for component in components_list: component_title = self._clean_dataset_title( component["attributes"]["title"], ) component_inner_path = os.path.join( inner_path, "components", component_title, ) os.makedirs(os.path.join(current_dir, component_inner_path)) self._download_files( component["relationships"]["files"]["links"]["related"]["href"], os.path.join(current_dir, component_inner_path), component_inner_path, d, annex, dataset_size, is_private, ) # check if the component contains (sub)components, in which case, download the (sub)components data subcomponents_list = self._get_components( component["relationships"]["children"]["links"]["related"]["href"], ) if subcomponents_list: self._download_components( subcomponents_list, current_dir, os.path.join(component_inner_path), d, annex, dataset_size, is_private, ) # Once we have downloaded all the components files, check to see if there are any empty # directories (in the case the 'OSF parent' dataset did not have any downloaded files list_of_empty_dirs = [ dirpath for (dirpath, dirnames, filenames) in os.walk(current_dir) if len(dirnames) == 0 and len(filenames) == 0 ] for empty_dir in list_of_empty_dirs: os.rmdir(empty_dir) def _get_contributors(self, link): r = self._get_request_with_bearer_token(link) contributors = [ contributor["embeds"]["users"]["data"]["attributes"]["full_name"] for contributor in r.json()["data"] ] return contributors def _get_license(self, link): r = self._get_request_with_bearer_token(link) return r.json()["data"]["attributes"]["name"] def _get_components(self, link): r = self._get_request_with_bearer_token(link) return r.json()["data"] def _get_wiki(self, link) -> Optional[str]: r = self._get_request_with_bearer_token(link) data = r.json()["data"] if len(data) > 0: return self._get_request_with_bearer_token( data[0]["links"]["download"] ).content.decode() def _get_institutions(self, link): r = self._get_request_with_bearer_token(link) if r.json()["data"]: institutions = [ institution["attributes"]["name"] for institution in r.json()["data"] ] return institutions def _get_identifier(self, link): r = self._get_request_with_bearer_token(link) return r.json()["data"][0]["attributes"]["value"] if r.json()["data"] else False def get_all_dataset_description(self): osf_dois = [] datasets = self._query_osf() for dataset in datasets: # skip datasets that have a parent since the files' components will # go into the parent dataset. if "parent" in dataset["relationships"].keys(): continue attributes = dataset["attributes"] # Retrieve keywords/tags keywords = list(map(lambda x: {"value": x}, attributes["tags"])) # Retrieve contributors/creators contributors = self._get_contributors( dataset["relationships"]["contributors"]["links"]["related"]["href"], ) # Retrieve license license_ = "None" if "license" in dataset["relationships"].keys(): license_ = self._get_license( dataset["relationships"]["license"]["links"]["related"]["href"], ) # Retrieve institution information institutions = self._get_institutions( dataset["relationships"]["affiliated_institutions"]["links"]["related"][ "href" ], ) # Retrieve identifier information identifier = self._get_identifier( dataset["relationships"]["identifiers"]["links"]["related"]["href"], ) # Get link for the dataset files files_link = dataset["relationships"]["files"]["links"]["related"]["href"] # Get components list components_list = self._get_components( dataset["relationships"]["children"]["links"]["related"]["href"], ) # Get wiki to put in README wiki: Optional[str] = None try: wiki = self._get_wiki( dataset["relationships"]["wikis"]["links"]["related"]["href"] ) except Exception as e: print(f'Error getting wiki for {attributes["title"]} because of {e}') # Gather extra properties extra_properties = [ { "category": "logo", "values": [ { "value": "https://osf.io/static/img/institutions/shields/cos-shield.png", }, ], }, ] if institutions: extra_properties.append( { "category": "origin_institution", "values": list( map(lambda x: {"value": x}, institutions), ), }, ) # Retrieve dates date_created = datetime.datetime.strptime( attributes["date_created"], "%Y-%m-%dT%H:%M:%S.%f", ) date_modified = datetime.datetime.strptime( attributes["date_modified"], "%Y-%m-%dT%H:%M:%S.%f", ) dataset_dats_content = { "title": attributes["title"], "files": files_link, "components_list": components_list, "homepage": dataset["links"]["html"], "creators": list( map(lambda x: {"name": x}, contributors), ), "description": attributes["description"], "wiki": wiki, "version": attributes["date_modified"], "licenses": [ { "name": license_, }, ], "dates": [ { "date": date_created.strftime("%Y-%m-%d %H:%M:%S"), "type": { "value": "date created", }, }, { "date": date_modified.strftime("%Y-%m-%d %H:%M:%S"), "type": { "value": "date modified", }, }, ], "keywords": keywords, "distributions": [ { "size": 0, "unit": {"value": "B"}, "access": { "landingPage": dataset["links"]["html"], "authorizations": [ { "value": "public" if attributes["public"] else "private", }, ], }, }, ], "extraProperties": extra_properties, } if identifier: source = "OSF DOI" if "OSF.IO" in identifier else "DOI" dataset_dats_content["identifier"] = { "identifier": identifier, "identifierSource": source, } osf_dois.append(dataset_dats_content) if self.verbose: print("Retrieved OSF DOIs: ") for osf_doi in osf_dois: print( "- Title: {}, Last modified: {}".format( osf_doi["title"], osf_doi["version"], ), ) return osf_dois def add_new_dataset(self, dataset: Dict[str, Any], dataset_dir: str): d: Dataset = self.datalad.Dataset(dataset_dir) d.no_annex(".conp-osf-crawler.json") d.save() annex: Callable = Repo(dataset_dir).git.annex dataset_size: List[int] = [] # Setup private OSF dataset if the dataset is private is_private: bool = self._setup_private_dataset( dataset["files"], dataset_dir, annex, d, ) self._download_files( dataset["files"], dataset_dir, "", d, annex, dataset_size, is_private, ) if dataset["components_list"]: self._download_components( dataset["components_list"], dataset_dir, "", d, annex, dataset_size, is_private, ) dataset_size_num, dataset_unit = humanize.naturalsize(sum(dataset_size)).split( " ", ) dataset["distributions"][0]["size"] = float(dataset_size_num) dataset["distributions"][0]["unit"]["value"] = dataset_unit # Add .conp-osf-crawler.json tracker file _create_osf_tracker( os.path.join(dataset_dir, ".conp-osf-crawler.json"), dataset, ) def update_if_necessary(self, dataset_description, dataset_dir): tracker_path = os.path.join(dataset_dir, ".conp-osf-crawler.json") if not os.path.isfile(tracker_path): print("{} does not exist in dataset, skipping".format(tracker_path)) return False with open(tracker_path) as f: tracker = json.load(f) if tracker["version"] == dataset_description["version"]: # Same version, no need to update if self.verbose: print( "{}, version {} same as OSF version DOI, no need to update".format( dataset_description["title"], dataset_description["version"], ), ) return False else: # Update dataset if self.verbose: print( "{}, version {} different from OSF version DOI {}, updating".format( dataset_description["title"], tracker["version"], dataset_description["version"], ), ) # Remove all data and DATS.json files for file_name in os.listdir(dataset_dir): if file_name[0] == ".": continue self.datalad.remove(os.path.join(dataset_dir, file_name), check=False) d = self.datalad.Dataset(dataset_dir) annex = Repo(dataset_dir).git.annex dataset_size = [] is_private: bool = self._is_private_dataset(dataset_description["files"]) self._download_files( dataset_description["files"], dataset_dir, "", d, annex, dataset_size, is_private, ) if dataset_description["components_list"]: self._download_components( dataset_description["components_list"], dataset_dir, "", d, annex, dataset_size, is_private, ) dataset_size, dataset_unit = humanize.naturalsize(sum(dataset_size)).split( " ", ) dataset_description["distributions"][0]["size"] = float(dataset_size) dataset_description["distributions"][0]["unit"]["value"] = dataset_unit # Add .conp-osf-crawler.json tracker file _create_osf_tracker( os.path.join(dataset_dir, ".conp-osf-crawler.json"), dataset_description, ) return True def get_readme_content(self, dataset): readme_content = ( f'# {dataset["title"]}\n\nCrawled from [OSF]({dataset["homepage"]})' ) if "description" in dataset and dataset["description"]: readme_content += f'\n\n## Description\n\n{dataset["description"]}' if "identifier" in dataset and dataset["identifier"]: readme_content += f'\n\n## DOI: {dataset["identifier"]["identifier"]}' if "wiki" in dataset and dataset["wiki"]: readme_content += f'\n\n## WIKI\n\n{dataset["wiki"]}' return readme_content def _setup_private_dataset( self, files_url: str, dataset_dir: str, annex: Callable, dataset: Dataset, ) -> bool: # Check if the dataset is indeed private if self._is_private_dataset(files_url): if self.verbose: print( "Dataset is private, creating OSF provider and make git annex autoenable datalad remote", ) # Create OSF provider file and needed directories and don't annex the file datalad_dir: str = os.path.join(dataset_dir, ".datalad") if not os.path.exists(datalad_dir): os.mkdir(datalad_dir) providers_dir: str = os.path.join(datalad_dir, "providers") if not os.path.exists(providers_dir): os.mkdir(providers_dir) osf_config_path: str = os.path.join(providers_dir, "OSF.cfg") with open(osf_config_path, "w") as f: f.write( """[provider:OSF] url_re = .*osf\\.io.* authentication_type = bearer_token credential = OSF [credential:OSF] # If known, specify URL or email to how/where to request credentials # url = ??? type = token""" ) dataset.no_annex(os.path.join("**", "OSF.cfg")) # Make git annex autoenable datalad remote annex( "initremote", "datalad", "externaltype=datalad", "type=external", "encryption=none", "autoenable=true", ) # Set OSF token as a environment variable for authentication os.environ["DATALAD_OSF_token"] = self.osf_token # Save changes dataset.save() return True return False def _is_private_dataset(self, files_url) -> bool: return True if requests.get(files_url).status_code == 401 else False
36.277592
117
0.487692
b0b21ca1e91460afa559f9cc2002af13cc207631
3,678
py
Python
colour_demosaicing/bayer/demosaicing/bilinear.py
jewfro-cuban/colour-demosaicing
fcdb5fd769d611a440b804340e735bf0ee222b51
[ "BSD-3-Clause" ]
null
null
null
colour_demosaicing/bayer/demosaicing/bilinear.py
jewfro-cuban/colour-demosaicing
fcdb5fd769d611a440b804340e735bf0ee222b51
[ "BSD-3-Clause" ]
null
null
null
colour_demosaicing/bayer/demosaicing/bilinear.py
jewfro-cuban/colour-demosaicing
fcdb5fd769d611a440b804340e735bf0ee222b51
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Bilinear Bayer CFA Demosaicing ============================== *Bayer* CFA (Colour Filter Array) bilinear demosaicing. References ---------- - :cite:`Losson2010c` : Losson, O., Macaire, L., & Yang, Y. (2010). Comparison of Color Demosaicing Methods. In Advances in Imaging and Electron Physics (Vol. 162, pp. 173-265). doi:10.1016/S1076-5670(10)62005-8 """ from __future__ import division, unicode_literals from scipy.ndimage.filters import convolve from colour.utilities import as_float_array, tstack from colour_demosaicing.bayer import masks_CFA_Bayer __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2015-2019 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = 'colour-science@googlegroups.com' __status__ = 'Production' __all__ = ['demosaicing_CFA_Bayer_bilinear'] def demosaicing_CFA_Bayer_bilinear(CFA, pattern='RGGB'): """ Returns the demosaiced *RGB* colourspace array from given *Bayer* CFA using bilinear interpolation. Parameters ---------- CFA : array_like *Bayer* CFA. pattern : unicode, optional **{'RGGB', 'BGGR', 'GRBG', 'GBRG'}**, Arrangement of the colour filters on the pixel array. Returns ------- ndarray *RGB* colourspace array. Notes ----- - The definition output is not clipped in range [0, 1] : this allows for direct HDRI / radiance image generation on *Bayer* CFA data and post demosaicing of the high dynamic range data as showcased in this `Jupyter Notebook <https://github.com/colour-science/colour-hdri/\ blob/develop/colour_hdri/examples/\ examples_merge_from_raw_files_with_post_demosaicing.ipynb>`_. References ---------- :cite:`Losson2010c` Examples -------- >>> import numpy as np >>> CFA = np.array( ... [[0.30980393, 0.36078432, 0.30588236, 0.3764706], ... [0.35686275, 0.39607844, 0.36078432, 0.40000001]]) >>> demosaicing_CFA_Bayer_bilinear(CFA) array([[[ 0.69705884, 0.17941177, 0.09901961], [ 0.46176472, 0.4509804 , 0.19803922], [ 0.45882354, 0.27450981, 0.19901961], [ 0.22941177, 0.5647059 , 0.30000001]], <BLANKLINE> [[ 0.23235295, 0.53529412, 0.29705883], [ 0.15392157, 0.26960785, 0.59411766], [ 0.15294118, 0.4509804 , 0.59705884], [ 0.07647059, 0.18431373, 0.90000002]]]) >>> CFA = np.array( ... [[0.3764706, 0.360784320, 0.40784314, 0.3764706], ... [0.35686275, 0.30980393, 0.36078432, 0.29803923]]) >>> demosaicing_CFA_Bayer_bilinear(CFA, 'BGGR') array([[[ 0.07745098, 0.17941177, 0.84705885], [ 0.15490197, 0.4509804 , 0.5882353 ], [ 0.15196079, 0.27450981, 0.61176471], [ 0.22352942, 0.5647059 , 0.30588235]], <BLANKLINE> [[ 0.23235295, 0.53529412, 0.28235295], [ 0.4647059 , 0.26960785, 0.19607843], [ 0.45588237, 0.4509804 , 0.20392157], [ 0.67058827, 0.18431373, 0.10196078]]]) """ CFA = as_float_array(CFA) R_m, G_m, B_m = masks_CFA_Bayer(CFA.shape, pattern) H_G = as_float_array( [[0, 1, 0], [1, 4, 1], [0, 1, 0]]) / 4 # yapf: disable H_RB = as_float_array( [[1, 2, 1], [2, 4, 2], [1, 2, 1]]) / 4 # yapf: disable R = convolve(CFA * R_m, H_RB) G = convolve(CFA * G_m, H_G) B = convolve(CFA * B_m, H_RB) del R_m, G_m, B_m, H_RB, H_G return tstack([R, G, B])
31.982609
79
0.600598
fd2a9bc2808019d4667810c7810bb50831a960ca
274
py
Python
Chapter05_code/Ch05_R03/my_module_ch15r03/models.py
PacktPublishing/Odoo-Development-Cookbook
5553110c0bc352c4541f11904e236cad3c443b8b
[ "MIT" ]
55
2016-05-23T16:05:50.000Z
2021-07-19T00:16:46.000Z
Chapter05_code/Ch05_R03/my_module_ch15r03/models.py
kogkog098/Odoo-Development-Cookbook
166c9b98efbc9108b30d719213689afb1f1c294d
[ "MIT" ]
1
2016-12-09T02:14:21.000Z
2018-07-02T09:02:20.000Z
Chapter05_code/Ch05_R03/my_module_ch15r03/models.py
kogkog098/Odoo-Development-Cookbook
166c9b98efbc9108b30d719213689afb1f1c294d
[ "MIT" ]
52
2016-06-01T20:03:59.000Z
2020-10-31T23:58:25.000Z
# coding: utf-8 from openerp import models, api class LibraryBook(models.Model): _inherit = 'library.book' @api.model def get_all_library_members(self): library_member_model = self.env['library.member'] return library_member_model.search([])
21.076923
57
0.70073
17523664b6d4e13caf5234fd0d49d6eaf441c9f7
1,558
py
Python
common/framework_excuter/tensorflow_excute.py
wavelet2008/rknn-v5
16288a88844e887634f74df8f43fff9b82f4ba62
[ "Apache-2.0" ]
11
2022-02-24T10:44:54.000Z
2022-03-31T03:40:21.000Z
common/framework_excuter/tensorflow_excute.py
wavelet2008/rknn-v5
16288a88844e887634f74df8f43fff9b82f4ba62
[ "Apache-2.0" ]
1
2022-03-01T07:21:04.000Z
2022-03-31T11:03:47.000Z
common/framework_excuter/tensorflow_excute.py
wavelet2008/rknn-v5
16288a88844e887634f74df8f43fff9b82f4ba62
[ "Apache-2.0" ]
5
2022-03-18T09:05:50.000Z
2022-03-30T07:35:55.000Z
import tensorflow as tf from tensorflow.python.framework import graph_util from tensorflow.python.platform import gfile class Tensorflow_model_container: def __init__(self, model_path, inputs, outputs) -> None: self.input_names = [] for i, item in enumerate(inputs): self.input_names.append('import/' + item + ':0') self.output_names = [] for item in outputs: self.output_names.append('import/' + item + ':0') self.sess = tf.compat.v1.Session() with gfile.FastGFile(model_path, 'rb') as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) self.sess.graph.as_default() tf.import_graph_def(graph_def) # tensor_name_list = [tensor.name for tensor in tf.compat.v1.get_default_graph().as_graph_def().node] # print(tensor_name_list) self.tf_inputs = list() for _name in self.input_names: in_tensor = self.sess.graph.get_tensor_by_name(_name) self.tf_inputs.append(in_tensor) self.tf_outputs = list() for _name in self.output_names: out_tensor = self.sess.graph.get_tensor_by_name(_name) self.tf_outputs.append(out_tensor) def run(self, input_datas): feed_dict = {} for i in range(len(self.tf_inputs)): feed_dict[self.tf_inputs[i]] = input_datas[i] out_res = self.sess.run(self.tf_outputs, feed_dict=feed_dict) return out_res
37.095238
113
0.621951
dea5c85f3f89a8e76c1e46b841bc397777b785f6
2,606
py
Python
turn_in/TSPAllVisited.py
OSU-CS-325/Project_Four_TSP
c88e496b755fa5dfc3220f68a3daa3eba2e57e2e
[ "MIT" ]
null
null
null
turn_in/TSPAllVisited.py
OSU-CS-325/Project_Four_TSP
c88e496b755fa5dfc3220f68a3daa3eba2e57e2e
[ "MIT" ]
null
null
null
turn_in/TSPAllVisited.py
OSU-CS-325/Project_Four_TSP
c88e496b755fa5dfc3220f68a3daa3eba2e57e2e
[ "MIT" ]
null
null
null
#!/usr/bin/python import math, re, sys # usage: python TSPAllVisited.py input_file output_file def main(input_file, output_file): input_point_labels = read_input_vals(input_file) output_point_labels = read_output_vals(output_file) problems = check_match(input_point_labels, output_point_labels) if( len(problems) == 0): print('Each item appears to exist in both the input file and the output file.') else: print('possible problems include:\n') for each in problems: print(problems[each]) def read_input_vals(in_file): # each line of in_file shoudl have a label as its first int on each line, # this captures a list of those labels # (expected from 0 to n - 1, but only uniqueness is necessary) file = open(in_file,'r') line = file.readline() #points tracks the points as teh key and the number of visitations as the value at that key points = [] while len(line) > 1: line_parse = re.findall(r'[^,;\s]+', line) points.append(int(line_parse[0])) line = file.readline() file.close() points = sorted(points) return points def read_output_vals(out_file): # each line of in_file should have a label as its first int on each line, # this captures a list of those labels # (expected from 0 to n - 1, but only uniqueness is necessary) file = open(out_file,'r') # toss the first line, which should contain a total file.readline() line = file.readline() #points tracks the points as teh key and the number of visitations as the value at that key points = [] while len(line) > 1: line_parse = re.findall(r'[^,;\s]+', line) points.append(int(line_parse[0])) line = file.readline() file.close() points = sorted(points) return points def check_match(list_a, list_b): problems = dict() if(len(list_a) != len(list_b) ): problems[-1] = ('Different number of points in the files, so they cannot match.') #smaller = min(len(list_a), len(list_b) ) offset_a = 0 offset_b = 0 problem_count = 0 while (offset_a < len(list_a) ) and (offset_b < len(list_b) ): item_a = list_a[offset_a] item_b = list_b[offset_b] #print(str(item_a) + ', ' + str(item_b) ) if(item_a < item_b): problem = (str(offset_a) + ' seems to be missing from the output.') problems[offset_a] = problem offset_a += 1 problem_count += 1 elif(item_a > item_b): problem = (str(offset_b) + ' seems to be missing from the output.') problems[offset_a] = problem offset_b += 1 problem_count += 1 else: offset_a += 1 offset_b += 1 return problems #if __name__ == '__main__': #main(sys.argv[1], sys.argv[2])
25.300971
92
0.686109
3eee4026a225d87ce1ac42ec074b4f9ccbd2a06c
1,460
py
Python
twitchat/settings.py
Fittiboy/twitchat
c82341675f5eb7ce49c06f41f0f71ecf07bdcdea
[ "MIT" ]
6
2021-01-11T05:50:03.000Z
2022-03-24T01:55:41.000Z
twitchat/settings.py
Fittiboy/twitchat
c82341675f5eb7ce49c06f41f0f71ecf07bdcdea
[ "MIT" ]
4
2020-07-30T19:39:26.000Z
2021-06-12T20:08:54.000Z
twitchat/settings.py
Fittiboy/python-twitch-bot
b810688bb0d24bf059a228e771eb2aae91cc43d0
[ "MIT" ]
1
2021-08-04T17:35:23.000Z
2021-08-04T17:35:23.000Z
import json from twitchat.permissions import permissions def main(): try: with open('settings.json') as settings_file: settings = json.load(settings_file) except FileNotFoundError: settings = {} try: open('timers.json').close() except FileNotFoundError: with open('timers.json', 'w') as timers_file: json.dump({}, timers_file, indent=4) try: open('extra_commands.py').close() except FileNotFoundError: open('extra_commands.py', 'w').close() try: open('permissions.json').close() except FileNotFoundError: with open('permissions.json', 'w') as permissions_file: json.dump(permissions, permissions_file, indent=4) set_setting(settings, 'username', 'Username: ') set_setting(settings, 'client_id', 'Client-ID: ') set_setting(settings, 'token', 'Token: ') set_setting(settings, 'channel', 'Channel: ') settings['keepalive'] = 300 with open('settings.json', 'w') as settings_file: json.dump(settings, settings_file, indent=4) def set_setting(settings, setting, prompt): choice = input(prompt) if not choice: print("You have not entered a value. " + "If you want to leave this blank, " + "just hit enter again") if setting == "channel": choice = choice.lower() settings[setting] = choice
31.06383
64
0.603425
f7d5da05cbb9a7018163ed4a345cc1ee09ccb0a7
1,794
py
Python
src/sounds.py
ScampyOwl/robolab-group138
c5151bc3c541d49d8ebc2fdb74eb2703f0cb5685
[ "MIT" ]
null
null
null
src/sounds.py
ScampyOwl/robolab-group138
c5151bc3c541d49d8ebc2fdb74eb2703f0cb5685
[ "MIT" ]
null
null
null
src/sounds.py
ScampyOwl/robolab-group138
c5151bc3c541d49d8ebc2fdb74eb2703f0cb5685
[ "MIT" ]
1
2020-08-20T14:11:50.000Z
2020-08-20T14:11:50.000Z
import ev3dev.ev3 as ev3 class Sounds: def __init__(self): self.sounds = ev3.Sound def say_red(self): self.sounds.speak("red").wait() def say_blue(self): self.sounds.speak("blue").wait() def say_white(self): self.sounds.speak("white").wait() def say_black(self): self.sounds.speak("black").wait() def say_obstacle(self): self.sounds.speak("rrrr").wait() def obstacle_mel(self): self.sounds.tone([(550, 50, 20), (500, 50, 20), (450, 50, 20), (400, 50, 20)]).wait() def down(self): self.sounds.tone([(550, 150, 50), (500, 150, 50), (450, 150, 50), (400, 150, 50), (350, 150, 50), (300, 150, 50), (250, 150, 50), (200, 150, 50), (150, 150, 50), (100, 150, 50), (90, 150, 50), (80, 150, 50)]).wait() def test(self): self.sounds.play_song(( ('D4', 'e3'), # intro anacrouse ('A4', 'h.'), )).wait() def victory(self): self.sounds.play_song((('F3', 'q'), ('A3', 'q'), ('C4', 'q'), ('F4', 'h'), )).wait() def sound_obstacle(self): self.sounds.play("/home/robot/src/src/zonk.wav").wait() def sound_startup(self): self.sounds.play("/home/robot/src/src/startup.wav").wait() def sound_shutdown(self): self.sounds.play("/home/robot/src/src/shutdown.wav").wait() def say_coordinate(self, position, direction): position_x = position[0] position_y = position[1] self.sounds.speak("new position ").wait() self.sounds.speak(position_x).wait() self.sounds.speak("and").wait() self.sounds.speak(position_y).wait() self.sounds.speak("direction is").wait() self.sounds.speak(direction).wait()
30.931034
95
0.549052
8721c6f17c18aa6186367933fcc9b2fb9befd4fe
6,224
py
Python
lib/neovim/msgpack_rpc/event_loop/base.py
nicholas-zww/ActualVim
e9a1c74411748a8e68c7436a62cea846f25411d7
[ "MIT" ]
849
2017-03-28T14:20:24.000Z
2022-03-29T14:10:37.000Z
lib/neovim/msgpack_rpc/event_loop/base.py
nicholas-zww/ActualVim
e9a1c74411748a8e68c7436a62cea846f25411d7
[ "MIT" ]
113
2017-03-27T14:13:55.000Z
2020-06-21T00:40:21.000Z
lib/neovim/msgpack_rpc/event_loop/base.py
nicholas-zww/ActualVim
e9a1c74411748a8e68c7436a62cea846f25411d7
[ "MIT" ]
40
2017-05-29T00:37:03.000Z
2022-02-22T09:11:33.000Z
"""Common code for event loop implementations.""" import signal import threading # When signals are restored, the event loop library may reset SIGINT to SIG_DFL # which exits the program. To be able to restore the python interpreter to it's # default state, we keep a reference to the default handler default_int_handler = signal.getsignal(signal.SIGINT) main_thread = threading.current_thread() class BaseEventLoop(object): """Abstract base class for all event loops. Event loops act as the bottom layer for Nvim sessions created by this library. They hide system/transport details behind a simple interface for reading/writing bytes to the connected Nvim instance. This class exposes public methods for interacting with the underlying event loop and delegates implementation-specific work to the following methods, which subclasses are expected to implement: - `_init()`: Implementation-specific initialization - `_connect_tcp(address, port)`: connect to Nvim using tcp/ip - `_connect_socket(path)`: Same as tcp, but use a UNIX domain socket or or named pipe. - `_connect_stdio()`: Use stdin/stdout as the connection to Nvim - `_connect_child(argv)`: Use the argument vector `argv` to spawn an embedded Nvim that has it's stdin/stdout connected to the event loop. - `_start_reading()`: Called after any of _connect_* methods. Can be used to perform any post-connection setup or validation. - `_send(data)`: Send `data`(byte array) to Nvim. The data is only - `_run()`: Runs the event loop until stopped or the connection is closed. calling the following methods when some event happens: actually sent when the event loop is running. - `_on_data(data)`: When Nvim sends some data. - `_on_signal(signum)`: When a signal is received. - `_on_error(message)`: When a non-recoverable error occurs(eg: connection lost) - `_stop()`: Stop the event loop - `_interrupt(data)`: Like `stop()`, but may be called from other threads this. - `_setup_signals(signals)`: Add implementation-specific listeners for for `signals`, which is a list of OS-specific signal numbers. - `_teardown_signals()`: Removes signal listeners set by `_setup_signals` """ def __init__(self, transport_type, *args): """Initialize and connect the event loop instance. The only arguments are the transport type and transport-specific configuration, like this: >>> BaseEventLoop('tcp', '127.0.0.1', 7450) Traceback (most recent call last): ... AttributeError: 'BaseEventLoop' object has no attribute '_init' >>> BaseEventLoop('socket', '/tmp/nvim-socket') Traceback (most recent call last): ... AttributeError: 'BaseEventLoop' object has no attribute '_init' >>> BaseEventLoop('stdio') Traceback (most recent call last): ... AttributeError: 'BaseEventLoop' object has no attribute '_init' >>> BaseEventLoop('child', ['nvim', '--embed', '-u', 'NONE']) Traceback (most recent call last): ... AttributeError: 'BaseEventLoop' object has no attribute '_init' This calls the implementation-specific initialization `_init`, one of the `_connect_*` methods(based on `transport_type`) and `_start_reading()` """ self._transport_type = transport_type self._signames = dict((k, v) for v, k in signal.__dict__.items() if v.startswith('SIG')) self._on_data = None self._error = None self._init() getattr(self, '_connect_{}'.format(transport_type))(*args) self._start_reading() def connect_tcp(self, address, port): """Connect to tcp/ip `address`:`port`. Delegated to `_connect_tcp`.""" self._connect_tcp(address, port) def connect_socket(self, path): """Connect to socket at `path`. Delegated to `_connect_socket`.""" self._connect_socket(path) def connect_stdio(self): """Connect using stdin/stdout. Delegated to `_connect_stdio`.""" self._connect_stdio() def connect_child(self, argv): """Connect a new Nvim instance. Delegated to `_connect_child`.""" self._connect_child(argv) def send(self, data): """Queue `data` for sending to Nvim.""" self._send(data) def threadsafe_call(self, fn): """Call a function in the event loop thread. This is the only safe way to interact with a session from other threads. """ self._threadsafe_call(fn) def run(self, data_cb): """Run the event loop.""" if self._error: err = self._error if isinstance(self._error, KeyboardInterrupt): # KeyboardInterrupt is not destructive(it may be used in # the REPL). # After throwing KeyboardInterrupt, cleanup the _error field # so the loop may be started again self._error = None raise err self._on_data = data_cb if threading.current_thread() == main_thread: self._setup_signals([signal.SIGINT, signal.SIGTERM]) self._run() if threading.current_thread() == main_thread: self._teardown_signals() signal.signal(signal.SIGINT, default_int_handler) self._on_data = None def stop(self): """Stop the event loop.""" self._stop() def _on_signal(self, signum): msg = 'Received {}'.format(self._signames[signum]) if signum == signal.SIGINT and self._transport_type == 'stdio': # When the transport is stdio, we are probably running as a Nvim # child process. In that case, we don't want to be killed by # ctrl+C return cls = Exception if signum == signal.SIGINT: cls = KeyboardInterrupt self._error = cls(msg) self.stop() def _on_error(self, error): self._error = IOError(error) self.stop() def _on_interrupt(self): self.stop()
39.643312
79
0.640585
127cf076f5ddcb96abb8c134a7ecf580e6db5f50
698
py
Python
base/forms/order_form.py
geek911/hospitalmanagement
32ace7a10cfbd919a39e2101ae60bf2633224788
[ "MIT" ]
null
null
null
base/forms/order_form.py
geek911/hospitalmanagement
32ace7a10cfbd919a39e2101ae60bf2633224788
[ "MIT" ]
null
null
null
base/forms/order_form.py
geek911/hospitalmanagement
32ace7a10cfbd919a39e2101ae60bf2633224788
[ "MIT" ]
null
null
null
from django.forms import ModelForm from django.forms import TextInput, NumberInput, EmailInput from base.models.order import Order class OrderForm(ModelForm): class Meta: model = Order fields = '__all__' widgets = { 'full_name': TextInput(attrs={'class': 'form-control', 'id': 'name', 'placeholder': 'Enter Full Name'}), 'email': EmailInput(attrs={'class': 'form-control', 'id': 'name', 'placeholder': 'Enter email address'}), 'phn_number': NumberInput(attrs={'class': 'form-control', 'id': 'phn_number'}), 'address': TextInput(attrs={'class': 'form-control', 'id': 'name', 'placeholder': 'Enter address'}) }
36.736842
117
0.618911
21edc83388c8bd732ef7b2dbccdfc37e4c9272b3
21,440
py
Python
tfjs-converter/python/tensorflowjs/converters/tf_saved_model_conversion_v2_test.py
esouthren/tfjs
b473e3c30b7910a154158374e93cc703fb3d6ece
[ "Apache-2.0" ]
1
2021-10-10T12:44:35.000Z
2021-10-10T12:44:35.000Z
tfjs-converter/python/tensorflowjs/converters/tf_saved_model_conversion_v2_test.py
orta/tfjs
ee8b2ae9d16328e63cfe5ad287cf19eb1ef2cb2f
[ "Apache-2.0" ]
49
2020-09-07T07:37:04.000Z
2022-03-02T05:33:40.000Z
tfjs-converter/python/tensorflowjs/converters/tf_saved_model_conversion_v2_test.py
rriveros/Tensorflowjs
26de95605ea5b72bf6f46b11adefa0ea1ebdacb7
[ "Apache-2.0" ]
1
2021-11-05T04:33:49.000Z
2021-11-05T04:33:49.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Unit tests for artifact conversion to and from Tensorflow SavedModel v2.""" import base64 import glob import json import os import shutil import sys import tempfile import unittest import tensorflow as tf from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import variables from tensorflow.python.training.tracking import tracking from tensorflow.python.saved_model.save import save import tensorflow_hub as hub from tensorflowjs import version from tensorflowjs.converters import tf_saved_model_conversion_v2 SAVED_MODEL_DIR = 'saved_model' HUB_MODULE_DIR = 'hub_module' class ConvertTest(tf.test.TestCase): def setUp(self): super(ConvertTest, self).setUp() self._tmp_dir = tempfile.mkdtemp() def tearDown(self): if os.path.isdir(self._tmp_dir): shutil.rmtree(self._tmp_dir) super(ConvertTest, self).tearDown() def _create_saved_model_v1(self): """Create a TensorFlow SavedModel for testing.""" graph = tf.Graph() with graph.as_default(): x = tf.compat.v1.constant([[37.0, -23.0], [1.0, 4.0]]) w = tf.compat.v1.get_variable('w', shape=[2, 2]) y = tf.compat.v1.matmul(x, w) output = tf.compat.v1.nn.softmax(y) init_op = w.initializer # Create a builder. save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(save_dir) with tf.compat.v1.Session() as sess: # Run the initializer on `w`. sess.run(init_op) builder.add_meta_graph_and_variables( sess, [tf.compat.v1.saved_model.tag_constants.SERVING], signature_def_map={ "serving_default": tf.compat.v1.saved_model \ .signature_def_utils.predict_signature_def( inputs={"x": x}, outputs={"output": output}) }, assets_collection=None) builder.save() def _create_saved_model_v1_with_hashtable(self): """Create a TensorFlow SavedModel V1 with unused hash table for testing.""" graph = tf.Graph() with graph.as_default(): x = tf.placeholder('float32', [2, 2]) w = tf.compat.v1.get_variable('w', shape=[2, 2]) output = tf.compat.v1.matmul(x, w) init_op = w.initializer # Add a hash table that is not used by the output. keys = tf.constant(['key']) values = tf.constant([1]) initializer = tf.contrib.lookup.KeyValueTensorInitializer(keys, values) table = tf.contrib.lookup.HashTable(initializer, -1) # Create a builder. save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(save_dir) with tf.compat.v1.Session() as sess: # Run the initializer on `w`. sess.run(init_op) table.init.run() builder.add_meta_graph_and_variables( sess, [tf.compat.v1.saved_model.tag_constants.SERVING], signature_def_map={ "serving_default": tf.compat.v1.saved_model \ .signature_def_utils.predict_signature_def( inputs={"x": x}, outputs={"output": output}) }, assets_collection=None) builder.save() def _create_saved_model_with_fusable_conv2d(self): """Test a basic model with fusable conv2d.""" layers = [ tf.keras.layers.Conv2D( 16, [3, 3], padding='same', use_bias=False), tf.keras.layers.BatchNormalization(), tf.keras.layers.ReLU() ] model = tf.keras.Sequential(layers) model.predict(tf.ones((1, 224, 224, 3))) tf.keras.backend.set_learning_phase(0) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) tf.saved_model.save(model, save_dir) def _create_saved_model_with_prelu(self): """Test a basic model with fusable conv2d.""" layers = [ tf.keras.layers.Conv2D( 16, [3, 3], padding='same', use_bias=True), tf.keras.layers.PReLU() ] model = tf.keras.Sequential(layers) model.predict(tf.ones((1, 224, 224, 3))) tf.keras.backend.set_learning_phase(0) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) tf.saved_model.save(model, save_dir) def _create_saved_model(self): """Test a basic model with functions to make sure functions are inlined.""" input_data = constant_op.constant(1., shape=[1]) root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) to_save = root.f.get_concrete_function(input_data) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) save(root, save_dir, to_save) def _create_saved_model_with_control_flow(self): """Test a basic model with control flow to inlined.""" @tf.function def find_next_odd(v): v1 = v + 1 while tf.equal(v1 % 2, 0): v1 = v1 + 1 return v1 root = tracking.AutoTrackable() root.f = find_next_odd to_save = root.f.get_concrete_function( tensor_spec.TensorSpec([], dtypes.int32)) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) save(root, save_dir, to_save) def _create_unsupported_saved_model(self): root = tracking.AutoTrackable() root.w = variables.Variable(tf.random.uniform([2, 2])) @def_function.function def exported_function(x): root.x = constant_op.constant([[37.0, -23.0], [1.0, 4.0]]) root.y = tf.matmul(root.x, root.w) # unsupported op: linalg.diag root.z = tf.linalg.diag(root.y) return root.z * x root.f = exported_function to_save = root.f.get_concrete_function( tensor_spec.TensorSpec([], dtypes.float32)) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) save(root, save_dir, to_save) def _create_saved_model_with_debug_ops(self): root = tracking.AutoTrackable() root.w = variables.Variable(tf.random.uniform([2, 2])) @def_function.function def exported_function(x): root.x = constant_op.constant([[37.0, -23.0], [1.0, 4.0]]) root.y = tf.matmul(root.x, root.w) tf.compat.v1.Print(root.x, [root.x]) tf.compat.v1.Assert(tf.greater(tf.reduce_max(root.x), 0), [root.x]) tf.compat.v1.check_numerics(root.x, 'NaN found') return root.y * x root.f = exported_function to_save = root.f.get_concrete_function( tensor_spec.TensorSpec([], dtypes.float32)) save_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) save(root, save_dir, to_save) def _create_hub_module(self): # Module function that doubles its input. def double_module_fn(): w = tf.Variable([2.0, 4.0]) x = tf.compat.v1.placeholder(dtype=tf.float32) hub.add_signature(inputs=x, outputs=x*w) graph = tf.Graph() with graph.as_default(): spec = hub.create_module_spec(double_module_fn) m = hub.Module(spec) # Export the module. with tf.compat.v1.Session(graph=graph) as sess: sess.run(tf.compat.v1.global_variables_initializer()) m.export(os.path.join(self._tmp_dir, HUB_MODULE_DIR), sess) def test_convert_saved_model_v1(self): self._create_saved_model_v1() input_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) output_dir = os.path.join(input_dir, 'js') tf_saved_model_conversion_v2.convert_tf_saved_model( input_dir, output_dir ) expected_weights_manifest = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'float32', 'name': 'w', 'shape': [2, 2]}]}] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'js') # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, expected_weights_manifest) # Check meta-data in the artifact JSON. self.assertEqual(model_json['format'], 'graph-model') self.assertEqual( model_json['convertedBy'], 'TensorFlow.js Converter v%s' % version.version) self.assertEqual(model_json['generatedBy'], tf.__version__) self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def test_convert_saved_model_v1_with_hashtable(self): self._create_saved_model_v1_with_hashtable() input_dir = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) output_dir = os.path.join(input_dir, 'js') tf_saved_model_conversion_v2.convert_tf_saved_model( input_dir, output_dir ) expected_weights_manifest = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'float32', 'name': 'w', 'shape': [2, 2]}]}] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'js') # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, expected_weights_manifest) # Check meta-data in the artifact JSON. self.assertEqual(model_json['format'], 'graph-model') self.assertEqual( model_json['convertedBy'], 'TensorFlow.js Converter v%s' % version.version) self.assertEqual(model_json['generatedBy'], tf.__version__) self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def test_convert_saved_model(self): self._create_saved_model() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR) ) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'float32', 'name': 'StatefulPartitionedCall/mul', 'shape': []}]}] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(len(weights_manifest), len(weights)) if sys.version_info[0] < 3: self.assertItemsEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertItemsEqual(weights_manifest[0]['weights'], weights[0]['weights']) else: self.assertCountEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertCountEqual(weights_manifest[0]['weights'], weights[0]['weights']) def test_convert_saved_model_with_fused_conv2d(self): self._create_saved_model_with_fusable_conv2d() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR) ) tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) nodes = model_json['modelTopology']['node'] fusedOp = None for node in nodes: self.assertTrue(not 'BatchNorm' in node['op']) self.assertTrue(not 'Relu' in node['op']) self.assertTrue(not 'BiasAdd' in node['op']) if node['op'] == '_FusedConv2D': fusedOp = node self.assertTrue(fusedOp is not None) self.assertEqual( base64.b64decode(fusedOp['attr']['fused_ops']['list']['s'][0]), b'BiasAdd') self.assertEqual( base64.b64decode(fusedOp['attr']['fused_ops']['list']['s'][1]), b'Relu') # Check meta-data in the artifact JSON. self.assertEqual(model_json['format'], 'graph-model') self.assertEqual( model_json['convertedBy'], 'TensorFlow.js Converter v%s' % version.version) self.assertEqual(model_json['generatedBy'], tf.__version__) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) def test_convert_saved_model_with_prelu(self): self._create_saved_model_with_prelu() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR) ) tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) nodes = model_json['modelTopology']['node'] prelu_op = None fused_op = None for node in nodes: if node['op'] == 'Prelu': prelu_op = node if node['op'] == '_FusedConv2D': fused_op = node self.assertTrue(prelu_op is None) self.assertTrue(fused_op is not None) fused_ops = list(map(base64.b64decode, fused_op['attr']['fused_ops']['list']['s'])) self.assertEqual(fused_ops, [b'BiasAdd', b'Prelu']) self.assertEqual(fused_op['attr']['num_args']['i'], '2') # Check meta-data in the artifact JSON. self.assertEqual(model_json['format'], 'graph-model') self.assertEqual( model_json['convertedBy'], 'TensorFlow.js Converter v%s' % version.version) self.assertEqual(model_json['generatedBy'], tf.__version__) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) def test_convert_saved_model_with_control_flow(self): self._create_saved_model_with_control_flow() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR) ) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'int32', 'shape': [], 'name': 'StatefulPartitionedCall/while/loop_counter'}, {'dtype': 'int32', 'shape': [], 'name': 'StatefulPartitionedCall/while/maximum_iterations' }, {'dtype': 'int32', 'shape': [], 'name': 'StatefulPartitionedCall/while/cond/_3/mod/y'}, {'dtype': 'int32', 'shape': [], 'name': 'StatefulPartitionedCall/while/cond/_3/Equal/y'}, {'dtype': 'int32', 'shape': [], 'name': 'StatefulPartitionedCall/while/body/_4/add_1/y'}, {'name': 'StatefulPartitionedCall/add/y', 'dtype': 'int32', 'shape': []}]}] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(len(weights_manifest), len(weights)) if sys.version_info[0] < 3: self.assertItemsEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertItemsEqual(weights_manifest[0]['weights'], weights[0]['weights']) else: self.assertCountEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertCountEqual(weights_manifest[0]['weights'], weights[0]['weights']) # Check meta-data in the artifact JSON. self.assertEqual(model_json['format'], 'graph-model') self.assertEqual( model_json['convertedBy'], 'TensorFlow.js Converter v%s' % version.version) self.assertEqual(model_json['generatedBy'], tf.__version__) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) def test_optimizer_add_unsupported_op(self): self._create_unsupported_saved_model() with self.assertRaisesRegexp( # pylint: disable=deprecated-method ValueError, r'^Unsupported Ops'): tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR) ) def test_convert_saved_model_skip_op_check(self): self._create_unsupported_saved_model() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR), skip_op_check=True ) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'float32', 'name': 'StatefulPartitionedCall/MatrixDiag', 'shape': [2, 2, 2]}]}] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, weights) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) # (TODO: piyu) disable this test, need to change # convert_variables_to_constants_v2 to set function_optimization=aggressive. @unittest.skip('not supported') def test_convert_saved_model_strip_debug_ops(self): self._create_saved_model_with_debug_ops() tf_saved_model_conversion_v2.convert_tf_saved_model( os.path.join(self._tmp_dir, SAVED_MODEL_DIR), os.path.join(self._tmp_dir, SAVED_MODEL_DIR), strip_debug_ops=True) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'dtype': 'float32', 'name': 'add', 'shape': [2, 2] }] }] tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, weights) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) def test_convert_hub_module_v1(self): self._create_hub_module() module_path = os.path.join(self._tmp_dir, HUB_MODULE_DIR) tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) tf_saved_model_conversion_v2.convert_tf_hub_module(module_path, tfjs_path) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'shape': [2], 'name': 'module/Variable', 'dtype': 'float32' }] }] # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, weights) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) def test_convert_hub_module_v2(self): self._create_saved_model() module_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) tfjs_path = os.path.join(self._tmp_dir, SAVED_MODEL_DIR) tf_saved_model_conversion_v2.convert_tf_hub_module( module_path, tfjs_path, "serving_default", "serve") weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'shape': [], 'name': 'StatefulPartitionedCall/mul', 'dtype': 'float32' }] }] # Check model.json and weights manifest. with open(os.path.join(tfjs_path, 'model.json'), 'rt') as f: model_json = json.load(f) self.assertTrue(model_json['modelTopology']) weights_manifest = model_json['weightsManifest'] self.assertEqual(weights_manifest, weights) self.assertTrue( glob.glob( os.path.join(self._tmp_dir, SAVED_MODEL_DIR, 'group*-*'))) if __name__ == '__main__': tf.test.main()
37.157712
80
0.646315
2ccd578390715161e9978e81775557bdc6cd2200
1,242
py
Python
docs/conf.py
gfairbro/pycounts-gf
765295490614374e2d8717745670981fc4445aa0
[ "MIT" ]
null
null
null
docs/conf.py
gfairbro/pycounts-gf
765295490614374e2d8717745670981fc4445aa0
[ "MIT" ]
null
null
null
docs/conf.py
gfairbro/pycounts-gf
765295490614374e2d8717745670981fc4445aa0
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Project information ----------------------------------------------------- project = u"pycounts" copyright = u"2022, Gabriel Fairbrother" author = u"Gabriel Fairbrother" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "myst_nb", "autoapi.extension", "sphinx.ext.napoleon", "sphinx.ext.viewcode", ] autoapi_dirs = ["../src"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme"
33.567568
78
0.646538
7619923447b8f9579af81381a97c4469ed88ed1f
10,063
py
Python
examples/train_pointconv.py
Ndersam/learning3d
2483054191111420c4cefc9f4e6c9db75bcb4866
[ "MIT" ]
null
null
null
examples/train_pointconv.py
Ndersam/learning3d
2483054191111420c4cefc9f4e6c9db75bcb4866
[ "MIT" ]
null
null
null
examples/train_pointconv.py
Ndersam/learning3d
2483054191111420c4cefc9f4e6c9db75bcb4866
[ "MIT" ]
null
null
null
import argparse import os import sys import logging import numpy import numpy as np import torch import torch.utils.data import torchvision from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from tqdm import tqdm # Only if the files are in example folder. BASE_DIR = os.path.dirname(os.path.abspath(__file__)) if BASE_DIR[-8:] == 'examples': sys.path.append(os.path.join(BASE_DIR, os.pardir)) os.chdir(os.path.join(BASE_DIR, os.pardir)) from learning3d.models import create_pointconv from learning3d.models import Classifier from learning3d.data_utils import ClassificationData, ModelNet40Data def _init_(args): if not os.path.exists('checkpoints'): os.makedirs('checkpoints') if not os.path.exists('checkpoints/' + args.exp_name): os.makedirs('checkpoints/' + args.exp_name) if not os.path.exists('checkpoints/' + args.exp_name + '/' + 'models'): os.makedirs('checkpoints/' + args.exp_name + '/' + 'models') os.system('cp main.py checkpoints' + '/' + args.exp_name + '/' + 'main.py.backup') os.system('cp model.py checkpoints' + '/' + args.exp_name + '/' + 'model.py.backup') class IOStream: def __init__(self, path): self.f = open(path, 'a') def cprint(self, text): print(text) self.f.write(text + '\n') self.f.flush() def close(self): self.f.close() def test_one_epoch(device, model, test_loader): model.eval() test_loss = 0.0 pred = 0.0 count = 0 for i, data in enumerate(tqdm(test_loader)): points, target = data target = target[:, 0] points = points.to(device) target = target.to(device) output = model(points) loss_val = torch.nn.functional.nll_loss( torch.nn.functional.log_softmax(output, dim=1), target, size_average=False) test_loss += loss_val.item() count += output.size(0) _, pred1 = output.max(dim=1) ag = (pred1 == target) am = ag.sum() pred += am.item() test_loss = float(test_loss) / count accuracy = float(pred) / count return test_loss, accuracy def test(args, model, test_loader, textio): test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader) textio.cprint('Validation Loss: %f & Validation Accuracy: %f' % (test_loss, test_accuracy)) def train_one_epoch(device, model, train_loader, optimizer): model.train() train_loss = 0.0 pred = 0.0 count = 0 for i, data in enumerate(tqdm(train_loader)): points, target = data target = target[:, 0] points = points.to(device) target = target.to(device) output = model(points) loss_val = torch.nn.functional.nll_loss( torch.nn.functional.log_softmax(output, dim=1), target, size_average=False) # print(loss_val.item()) # forward + backward + optimize optimizer.zero_grad() loss_val.backward() optimizer.step() train_loss += loss_val.item() count += output.size(0) _, pred1 = output.max(dim=1) ag = (pred1 == target) am = ag.sum() pred += am.item() train_loss = float(train_loss) / count accuracy = float(pred) / count return train_loss, accuracy def train(args, model, train_loader, test_loader, boardio, textio, checkpoint): learnable_params = filter(lambda p: p.requires_grad, model.parameters()) if args.optimizer == 'Adam': optimizer = torch.optim.Adam(learnable_params) else: optimizer = torch.optim.SGD(learnable_params, lr=0.1) if checkpoint is not None: min_loss = checkpoint['min_loss'] optimizer.load_state_dict(checkpoint['optimizer']) best_test_loss = np.inf for epoch in range(args.start_epoch, args.epochs): train_loss, train_accuracy = train_one_epoch(args.device, model, train_loader, optimizer) test_loss, test_accuracy = test_one_epoch(args.device, model, test_loader) if test_loss < best_test_loss: best_test_loss = test_loss snap = {'epoch': epoch + 1, 'model': model.state_dict(), 'min_loss': best_test_loss, 'optimizer': optimizer.state_dict(), } torch.save(snap, 'checkpoints/%s/models/best_model_snap.t7' % (args.exp_name)) torch.save(model.state_dict(), 'checkpoints/%s/models/best_model.t7' % (args.exp_name)) torch.save(model.feature_model.state_dict(), 'checkpoints/%s/models/best_ptnet_model.t7' % (args.exp_name)) torch.save(snap, 'checkpoints/%s/models/model_snap.t7' % (args.exp_name)) torch.save(model.state_dict(), 'checkpoints/%s/models/model.t7' % (args.exp_name)) torch.save(model.feature_model.state_dict(), 'checkpoints/%s/models/ptnet_model.t7' % (args.exp_name)) boardio.add_scalar('Train Loss', train_loss, epoch + 1) boardio.add_scalar('Test Loss', test_loss, epoch + 1) boardio.add_scalar('Best Test Loss', best_test_loss, epoch + 1) boardio.add_scalar('Train Accuracy', train_accuracy, epoch + 1) boardio.add_scalar('Test Accuracy', test_accuracy, epoch + 1) textio.cprint('EPOCH:: %d, Traininig Loss: %f, Testing Loss: %f, Best Loss: %f' % ( epoch + 1, train_loss, test_loss, best_test_loss)) textio.cprint( 'EPOCH:: %d, Traininig Accuracy: %f, Testing Accuracy: %f' % (epoch + 1, train_accuracy, test_accuracy)) def options(): parser = argparse.ArgumentParser(description='Point Cloud Registration') parser.add_argument('--exp_name', type=str, default='exp_classifier', metavar='N', help='Name of the experiment') parser.add_argument('--dataset_path', type=str, default='ModelNet40', metavar='PATH', help='path to the input dataset') # like '/path/to/ModelNet40' parser.add_argument('--eval', type=bool, default=False, help='Train or Evaluate the network.') # settings for input data parser.add_argument('--dataset_type', default='modelnet', choices=['modelnet', 'shapenet2'], metavar='DATASET', help='dataset type (default: modelnet)') parser.add_argument('--num_points', default=1024, type=int, metavar='N', help='points in point-cloud (default: 1024)') # settings for PointNet parser.add_argument('--pointnet', default='tune', type=str, choices=['fixed', 'tune'], help='train pointnet (default: tune)') parser.add_argument('--emb_dims', default=1024, type=int, metavar='K', help='dim. of the feature vector (default: 1024)') parser.add_argument('--symfn', default='max', choices=['max', 'avg'], help='symmetric function (default: max)') # settings for on training parser.add_argument('--seed', type=int, default=1234) parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-b', '--batch_size', default=32, type=int, metavar='N', help='mini-batch size (default: 32)') parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--optimizer', default='Adam', choices=['Adam', 'SGD'], metavar='METHOD', help='name of an optimizer (default: Adam)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: null (no-use))') parser.add_argument('--pretrained', default='', type=str, metavar='PATH', help='path to pretrained model file (default: null (no-use))') parser.add_argument('--device', default='cuda:0', type=str, metavar='DEVICE', help='use CUDA if available') args = parser.parse_args() return args def main(): args = options() args.dataset_path = os.path.join(os.getcwd(), os.pardir, os.pardir, 'ModelNet40', 'ModelNet40') torch.backends.cudnn.deterministic = True torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) boardio = SummaryWriter(log_dir='checkpoints/' + args.exp_name) _init_(args) textio = IOStream('checkpoints/' + args.exp_name + '/run.log') textio.cprint(str(args)) trainset = ClassificationData(ModelNet40Data(train=True)) testset = ClassificationData(ModelNet40Data(train=False)) train_loader = DataLoader(trainset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_workers=args.workers) test_loader = DataLoader(testset, batch_size=args.batch_size, shuffle=False, drop_last=False, num_workers=args.workers) if not torch.cuda.is_available(): args.device = 'cpu' args.device = torch.device(args.device) # Create PointConv Model. PointConv = create_pointconv(classifier=False, pretrained=None) ptconv = PointConv(emb_dims=args.emb_dims, classifier=False, pretrained=None) model = Classifier(feature_model=ptconv) checkpoint = None if args.resume: assert os.path.isfile(args.resume) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['model']) if args.pretrained: assert os.path.isfile(args.pretrained) model.load_state_dict(torch.load(args.pretrained, map_location='cpu')) model.to(args.device) if args.eval: test(args, model, test_loader, textio) else: train(args, model, train_loader, test_loader, boardio, textio, checkpoint) if __name__ == '__main__': main()
39.155642
119
0.639968
23fb6dd24d6c73465a38f0376c06b35eef330ef2
20,545
py
Python
flux_mito/model_4.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_mito/model_4.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
flux_mito/model_4.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('Bcl2', ['BidM', 'BaxA']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'Bcl2', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM', 'Bcl2']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6A', ['C8pro']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf', 1.0) Parameter('inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 0.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('Bcl2_0', 40000.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6A_0', 0.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('Bcl2_obs', Bcl2()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6A_obs', C6A()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None, Bcl2=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None, Bcl2=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1, Bcl2=None) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None, Bcl2=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('inhibition_0_Bcl2_inhibitor_BidM_inh_target', Bcl2(BidM=None, BaxA=None) + BidM(BaxM=None, Bcl2=None) | Bcl2(BidM=1, BaxA=None) % BidM(BaxM=None, Bcl2=1), inhibition_0_Bcl2_inhibitor_BidM_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BidM_inh_target_1kr) Rule('inhibition_0_Bcl2_inhibitor_BaxA_inh_target', Bcl2(BidM=None, BaxA=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | Bcl2(BidM=None, BaxA=1) % BaxA(BaxM=None, Bcl2=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), inhibition_0_Bcl2_inhibitor_BaxA_inh_target_2kf, inhibition_0_Bcl2_inhibitor_BaxA_inh_target_1kr) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, Bcl2=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, Bcl2=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(Bcl2(BidM=None, BaxA=None), Bcl2_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, Bcl2=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None, Bcl2=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6A(C8pro=None), C6A_0) Initial(C6pro(C3A=None), C6pro_0)
95.115741
798
0.804089
964c24210d5ba89b8c2f858c1e866f42bccc8d9f
1,844
py
Python
setup.py
hgldarby/tablite
db083c496e8030595e73f1823e51142814994884
[ "MIT" ]
null
null
null
setup.py
hgldarby/tablite
db083c496e8030595e73f1823e51142814994884
[ "MIT" ]
null
null
null
setup.py
hgldarby/tablite
db083c496e8030595e73f1823e51142814994884
[ "MIT" ]
null
null
null
""" tablite """ build_tag = "cf5b524aa45416c38ee51aab61fa3c1e5e5f2740a126f7c7d73250c948d8b" from setuptools import setup from pathlib import Path folder = Path(__file__).parent file = "README.md" readme = folder / file assert isinstance(readme, Path) assert readme.exists(), readme with open(str(readme), encoding='utf-8') as f: long_description = f.read() keywords = list({ 'table', 'tables', 'csv', 'txt', 'excel', 'xlsx', 'ods', 'zip', 'log', 'any', 'all', 'filter', 'column', 'columns', 'rows', 'from', 'json', 'to', 'inner join', 'outer join', 'left join', 'groupby', 'pivot', 'pivot table', 'sort', 'is sorted', 'show', 'use disk', 'out-of-memory', 'list on disk', 'stored list', 'min', 'max', 'sum', 'first', 'last', 'count', 'unique', 'average', 'standard deviation', 'median', 'mode', 'in-memory', 'index' }) keywords.sort(key=lambda x: x.lower()) setup( name="tablite", version="2020.11.3.62707", url="https://github.com/root-11/tablite", license="MIT", author="Bjorn Madsen", author_email="bjorn.madsen@operationsresearchgroup.com", description="A table crunching library", long_description=long_description, long_description_content_type='text/markdown', keywords=keywords, packages=["table"], include_package_data=True, data_files=[(".", ["LICENSE", "README.md"])], platforms="any", install_requires=[ 'xlrd>=1.2.0', 'pyexcel-ods>=0.5.6', 'openpyxl>=3.0.5', 'pyperclip>=1.8.1', ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], )
30.229508
79
0.621475
007a8d06472c42b76cfe5e99c29fec355596527e
286
py
Python
COE/contents/resources/stone.py
Python-Project-Cheap-Empire/cheap-of-empire
44aaae29e4fadc9df46734f529031ce8c4bb3475
[ "MIT" ]
null
null
null
COE/contents/resources/stone.py
Python-Project-Cheap-Empire/cheap-of-empire
44aaae29e4fadc9df46734f529031ce8c4bb3475
[ "MIT" ]
2
2022-01-31T21:05:15.000Z
2022-01-31T21:08:11.000Z
COE/contents/resources/stone.py
Python-Project-Cheap-Empire/cheap-of-empire
44aaae29e4fadc9df46734f529031ce8c4bb3475
[ "MIT" ]
1
2022-02-04T12:05:14.000Z
2022-02-04T12:05:14.000Z
from .resource import Resource from COE.contents.entity import Entity from .resource_type import ResourceType class Stone(Resource, Entity): def __init__(self, **kwargs): Resource.__init__(self, r_type=ResourceType.STONE, **kwargs) Entity.__init__(self, **kwargs)
28.6
68
0.741259
40501f16afda3b082412bce1e6e9eb9c1fdc2245
12,046
py
Python
src/psfmachine/aperture.py
SSDataLab/psfmachine
8bb5b6573cb80b0686cc361de38cdc1eec6cec68
[ "MIT" ]
14
2020-10-07T17:50:00.000Z
2022-03-18T15:23:18.000Z
src/psfmachine/aperture.py
SSDataLab/psfmachine
8bb5b6573cb80b0686cc361de38cdc1eec6cec68
[ "MIT" ]
43
2020-11-05T23:00:21.000Z
2022-03-29T18:32:46.000Z
src/psfmachine/aperture.py
SSDataLab/psfmachine
8bb5b6573cb80b0686cc361de38cdc1eec6cec68
[ "MIT" ]
2
2020-10-26T21:01:29.000Z
2020-11-05T02:09:41.000Z
""" Collection of aperture utils lifted from [Kepler-Apertures](https://github.com/jorgemarpa/kepler-apertures) and adapted to work with PSFMachine. Some this functions inputs and operate on a `Machine` object but we move them out of `mahine.py` to keep the latter smowhow clean and short. """ import numpy as np import matplotlib.pyplot as plt from scipy import optimize from tqdm import tqdm def optimize_aperture( psf_model, target_complete=0.9, target_crowd=0.9, max_iter=100, percentile_bounds=[0, 100], quiet=False, ): """ Function to optimize the aperture mask for a given source. The optimization is done using scipy Brent's algorithm and it uses a custom loss function `goodness_metric_obj_fun` that uses a Leaky ReLU term to achive the target value for both metrics. Parameters ---------- psf_model : scipy.sparce.csr_matrix Sparse matrix with the PSF models for all targets in the scene. It has shape [n_sources, n_pixels]. target_complete : float Value of the target completeness metric. target_crowd : float Value of the target crowdeness metric. max_iter : int Numer of maximum iterations to be performed by the optimizer. percentile_bounds : tuple Tuple of minimun and maximun values for allowed percentile values during the optimization. Default is the widest range of [0, 100]. Returns ------- optimal_percentile : numpy.ndarray An array with the percentile value to defines the "optimal" aperture for each source. """ # optimize percentile cut for every source optimal_percentile = [] for sdx in tqdm( range(psf_model.shape[0]), desc="Optimizing apertures per source", disable=quiet, ): optim_params = { "percentile_bounds": percentile_bounds, "target_complete": target_complete, "target_crowd": target_crowd, "max_iter": max_iter, "psf_models": psf_model, "sdx": sdx, } minimize_result = optimize.minimize_scalar( goodness_metric_obj_fun, method="Bounded", bounds=percentile_bounds, options={"maxiter": max_iter, "disp": False}, args=(optim_params), ) optimal_percentile.append(minimize_result.x) return np.array(optimal_percentile) def goodness_metric_obj_fun(percentile, optim_params): """ The objective function to minimize with scipy.optimize.minimize_scalar called during optimization of the photometric aperture. Parameters ---------- percentile : int Percentile of the normalized flux distribution that defines the isophote. optim_params : dictionary Dictionary with the variables needed to evaluate the metric: * psf_models * sdx * target_complete * target_crowd Returns ------- penalty : float Value of the objective function to be used for optiization. """ psf_models = optim_params["psf_models"] sdx = optim_params["sdx"] # Find the value where to cut cut = np.nanpercentile(psf_models[sdx].data, percentile) # create "isophot" mask with current cut mask = (psf_models[sdx] > cut).toarray()[0] # Do not compute and ignore if target score < 0 if optim_params["target_complete"] > 0: # compute_FLFRCSAP returns an array of size 1 when doing only one source completMetric = compute_FLFRCSAP(psf_models[sdx], mask)[0] else: completMetric = 1.0 # Do not compute and ignore if target score < 0 if optim_params["target_crowd"] > 0: crowdMetric = compute_CROWDSAP(psf_models, mask, idx=sdx) else: crowdMetric = 1.0 # Once we hit the target we want to ease-back on increasing the metric # However, we don't want to ease-back to zero pressure, that will # unconstrain the penalty term and cause the optmizer to run wild. # So, use a "Leaky ReLU" # metric' = threshold + (metric - threshold) * leakFactor leakFactor = 0.01 if ( optim_params["target_complete"] > 0 and completMetric >= optim_params["target_complete"] ): completMetric = optim_params["target_complete"] + leakFactor * ( completMetric - optim_params["target_complete"] ) if optim_params["target_crowd"] > 0 and crowdMetric >= optim_params["target_crowd"]: crowdMetric = optim_params["target_crowd"] + leakFactor * ( crowdMetric - optim_params["target_crowd"] ) penalty = -(completMetric + crowdMetric) return penalty def plot_flux_metric_diagnose(psf_model, idx=0, ax=None, optimal_percentile=None): """ Function to evaluate the flux metrics for a single source as a function of the parameter that controls the aperture size. The flux metrics are computed by taking into account the PSF models of neighbor sources. This function is meant to be used only to generate diagnostic figures. Parameters ---------- psf_model : scipy.sparce.csr_matrix Sparse matrix with the PSF models for all targets in the scene. It has shape [n_sources, n_pixels]. idx : int Index of the source for which the metrcs will be computed. Has to be a number between 0 and psf_models.shape[0]. ax : matplotlib.axes Axis to be used to plot the figure Returns ------- ax : matplotlib.axes Figure axes """ compl, crowd, cut = [], [], [] for p in range(0, 101, 1): cut.append(p) mask = (psf_model[idx] >= np.nanpercentile(psf_model[idx].data, p)).toarray()[0] crowd.append(compute_CROWDSAP(psf_model, mask, idx)) compl.append(compute_FLFRCSAP(psf_model[idx], mask)) if ax is None: fig, ax = plt.subplots(1) ax.plot(cut, compl, label=r"FLFRCSAP", c="tab:blue") ax.plot(cut, crowd, label=r"CROWDSAP", c="tab:green") if optimal_percentile: ax.axvline(optimal_percentile, c="tab:red", label="optimal") ax.set_xlabel("Percentile") ax.set_ylabel("Metric") ax.legend() return ax def estimate_source_centroids_aperture(aperture_mask, flux, column, row): """ Computes the centroid via 2D moments methods for all sources all times. It needs `aperture_mask` to be computed first by runing `compute_aperture_photometry`. Parameters ---------- aperture_mask : numpy.ndarray Aperture mask, shape is [n_surces, n_pixels] flux: numpy.ndarray Flux values at each pixels and times in units of electrons / sec column : numpy.ndarray Data array containing the "columns" of the detector that each pixel is on. row : numpy.ndarray Data array containing the "rows" of the detector that each pixel is on. Returns ------- centroid_col : numpy.ndarray Column pixel number of the moments centroid, shape is [nsources, ntimes]. centroid_row : numpy.ndarray Row pixel number of the moments centroid, shape is [nsources, ntimes]. """ centroid_col, centroid_row = [], [] for idx in range(aperture_mask.shape[0]): total_flux = np.nansum(flux[:, aperture_mask[idx]], axis=1) centroid_col.append( np.nansum( np.tile(column[aperture_mask[idx]], (flux.shape[0], 1)) * flux[:, aperture_mask[idx]], axis=1, ) / total_flux ) centroid_row.append( np.nansum( np.tile(row[aperture_mask[idx]], (flux.shape[0], 1)) * flux[:, aperture_mask[idx]], axis=1, ) / total_flux ) return np.array(centroid_col), np.array(centroid_row) def compute_FLFRCSAP(psf_models, aperture_mask): """ Compute fraction of target flux enclosed in the optimal aperture to total flux for a given source (flux completeness). Follows definition by Kinemuchi at al. 2012. Parameters ---------- psf_models : scipy.sparce.csr_matrix Sparse matrix with the PSF models for all targets in the scene. It has shape [n_sources, n_pixels]. aperture_mask: numpy.ndarray Array of boolean indicating the aperture for the target source. It has shape of [n_sources, n_pixels]. Returns ------- FLFRCSAP: numpy.ndarray Completeness metric """ return np.array( psf_models.multiply(aperture_mask.astype(float)).sum(axis=1) / psf_models.sum(axis=1) ).ravel() def compute_CROWDSAP(psf_models, aperture_mask, idx=None): """ Compute the ratio of target flux relative to flux from all sources within the photometric aperture (i.e. 1 - Crowdeness). Follows definition by Kinemuchi at al. 2012. Parameters ---------- psf_models : scipy.sparce.csr_matrix Sparse matrix with the PSF models for all targets in the scene. It has shape [n_sources, n_pixels]. aperture_mask : numpy.ndarray Array of boolean indicating the aperture for the target source. It has shape of [n_sources, n_pixels]. idx : int Source index for what the metric is computed. Value has to be betweeen 0 and psf_model first dimension size. If None, it returns the metric for all sources (first dimension of psf_model). Returns ------- CROWDSAP : numpy.ndarray Crowdeness metric """ ratio = psf_models.multiply(1 / psf_models.sum(axis=0)).tocsr() if idx is None: return np.array( ratio.multiply(aperture_mask.astype(float)).sum(axis=1) ).ravel() / aperture_mask.sum(axis=1) else: return ratio[idx].toarray()[0][aperture_mask].sum() / aperture_mask.sum() def aperture_mask_to_2d(tpfs, sources, aperture_mask, column, row): """ Convert 1D aperture mask into 2D to match the shape of TPFs. This 2D aperture masks are useful to plot them with lightkurve TPF plot. Because a sources can be in more than one TPF, having 2D array masks per object with the shape of a single TPF is not possible. Parameters ---------- tpfs: lightkurve TargetPixelFileCollection Collection of Target Pixel files tpfs_meta : list List of source indices for every TPF in `tpfs`. aperture_mask : numpy.ndarray Aperture mask, shape is [n_surces, n_pixels] column : numpy.ndarray Data array containing the "columns" of the detector that each pixel is on. row : numpy.ndarray Data array containing the "rows" of the detector that each pixel is on. Returns ------- aperture_mask_2d : dictionary Is a dictionary with key values as 'TPFindex_SOURCEindex', e.g. a source (idx=10) with multiple TPF (TPF index 1 and 2) data will look '1_10' and '2_10'. """ aperture_mask_2d = {} for k, tpf in enumerate(tpfs): # find sources in tpf sources_in = sources[k] # row_col pix value of TPF rc = [ "%i_%i" % (y, x) for y in np.arange(tpf.row, tpf.row + tpf.shape[1]) for x in np.arange(tpf.column, tpf.column + tpf.shape[2]) ] # iter sources in the TPF for sdx in sources_in: # row_col value of pixels inside aperture rc_in = [ "%i_%i" % ( row[aperture_mask[sdx]][i], column[aperture_mask[sdx]][i], ) for i in range(aperture_mask[sdx].sum()) ] # create initial mask mask = np.zeros(tpf.shape[1:], dtype=bool).ravel() # populate mask with True when pixel is inside aperture mask[np.in1d(rc, rc_in)] = True mask = mask.reshape(tpf.shape[1:]) aperture_mask_2d["%i_%i" % (k, sdx)] = mask return aperture_mask_2d
35.119534
88
0.63822
819b9dc64118b3438434bf68ed102272f36a1d22
398
py
Python
doctorUI/scan/views.py
award28/Diabetic_Retinopathy_Detection
079a7af791f3442853577c0731c9a797433bbcda
[ "MIT" ]
2
2018-08-04T21:47:39.000Z
2019-03-23T02:56:59.000Z
doctorUI/scan/views.py
award28/Diabetic_Retinopathy_Detection
079a7af791f3442853577c0731c9a797433bbcda
[ "MIT" ]
null
null
null
doctorUI/scan/views.py
award28/Diabetic_Retinopathy_Detection
079a7af791f3442853577c0731c9a797433bbcda
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from django.views import View # Create your views here. class Scan(View): template_name = 'scan/index.html' def get(self, request, *args, **kwargs): return render(request, self.template_name) def post(self, request, *args, **kwargs): return HttpRequest("Nice post asshole. Now finish the view")
30.615385
68
0.71608
0fa911d2b58d19906104dfdffc24f4da39a3aa77
11,102
py
Python
scri/asymptotic_bondi_data/__init__.py
10220/scri
87fc7506038a53432b0a0749d6947aaac0d60996
[ "MIT" ]
null
null
null
scri/asymptotic_bondi_data/__init__.py
10220/scri
87fc7506038a53432b0a0749d6947aaac0d60996
[ "MIT" ]
null
null
null
scri/asymptotic_bondi_data/__init__.py
10220/scri
87fc7506038a53432b0a0749d6947aaac0d60996
[ "MIT" ]
2
2020-11-12T19:41:23.000Z
2020-12-23T19:40:57.000Z
import numpy as np from spherical_functions import LM_total_size from .. import ModesTimeSeries from .. import Inertial from .. import sigma, psi4, psi3, psi2, psi1, psi0 class AsymptoticBondiData: """Class to store asymptotic Bondi data This class stores time data, along with the corresponding values of psi0 through psi4 and sigma. For simplicity, the data are stored as one contiguous array. That is, *all* values are stored at all times, even if they are zero, and all Modes objects are stored with ell_min=0, even when their spins are not zero. The single contiguous array is then viewed as 6 separate ModesTimeSeries objects, which enables them to track their spin weights, and provides various convenient methods like `eth` and `ethbar`; `dot` and `ddot` for time-derivatives; `int` and `iint` for time-integrations; `norm` to take the norm of a function over the sphere; `bar` for conjugation of the functions (which is different from just conjugating the mode weights); etc. It also handles algebra correctly -- particularly addition (which is disallowed when the spin weights differ) and multiplication (which can be delicate with regards to the resulting ell values). This may lead to some headaches when the user tries to do things that are disabled by Modes objects. The goal is to create headaches if and only if the user is trying to do things that really should never be done (like conjugating mode weights, rather than the underlying function; adding modes with different spin weights; etc.). Please open issues for any situations that don't meet this standard. This class also provides various convenience methods for computing things like the mass aspect, the Bondi four-momentum, the Bianchi identities, etc. """ def __init__(self, time, ell_max, multiplication_truncator=sum, frameType=Inertial): """Create new storage for asymptotic Bondi data Parameters ========== time: int or array_like Times at which the data will be stored. If this is an int, an empty array of that size will be created. Otherwise, this must be a 1-dimensional array of floats. ell_max: int Maximum ell value to be stored multiplication_truncator: callable [defaults to `sum`, even though `max` is nicer] Function to be used by default when multiplying Modes objects together. See the documentation for spherical_functions.Modes.multiply for more details. The default behavior with `sum` is the most correct one -- keeping all ell values that result -- but also the most wasteful, and very likely to be overkill. The user should probably always use `max`. (Unfortunately, this must remain an opt-in choice, to ensure that the user is aware of the situation.) """ import functools if np.ndim(time) == 0: # Assume this is just the size of the time array; construct an empty array time = np.empty((time,), dtype=float) elif np.ndim(time) > 1: raise ValueError(f"Input `time` parameter must be an integer or a 1-d array; it has shape {time.shape}") if time.dtype != float: raise ValueError(f"Input `time` parameter must have dtype float; it has dtype {time.dtype}") ModesTS = functools.partial(ModesTimeSeries, ell_max=ell_max, multiplication_truncator=multiplication_truncator) shape = [6, time.size, LM_total_size(0, ell_max)] self.frame = np.array([]) self.frameType = frameType self._time = time.copy() self._raw_data = np.zeros(shape, dtype=complex) self._psi0 = ModesTS(self._raw_data[0], self._time, spin_weight=2) self._psi1 = ModesTS(self._raw_data[1], self._time, spin_weight=1) self._psi2 = ModesTS(self._raw_data[2], self._time, spin_weight=0) self._psi3 = ModesTS(self._raw_data[3], self._time, spin_weight=-1) self._psi4 = ModesTS(self._raw_data[4], self._time, spin_weight=-2) self._sigma = ModesTS(self._raw_data[5], self._time, spin_weight=2) @property def time(self): return self._time @time.setter def time(self, new_time): self._time[:] = new_time return self._time u = time t = time @property def n_times(self): return self.time.size @property def n_modes(self): return self._raw_data.shape[-1] @property def ell_min(self): return self._psi2.ell_min @property def ell_max(self): return self._psi2.ell_max @property def LM(self): return self.psi2.LM @property def sigma(self): return self._sigma @sigma.setter def sigma(self, sigmaprm): self._sigma[:] = sigmaprm return self.sigma @property def psi4(self): return self._psi4 @psi4.setter def psi4(self, psi4prm): self._psi4[:] = psi4prm return self.psi4 @property def psi3(self): return self._psi3 @psi3.setter def psi3(self, psi3prm): self._psi3[:] = psi3prm return self.psi3 @property def psi2(self): return self._psi2 @psi2.setter def psi2(self, psi2prm): self._psi2[:] = psi2prm return self.psi2 @property def psi1(self): return self._psi1 @psi1.setter def psi1(self, psi1prm): self._psi1[:] = psi1prm return self.psi1 @property def psi0(self): return self._psi0 @psi0.setter def psi0(self, psi0prm): self._psi0[:] = psi0prm return self.psi0 def copy(self): import copy new_abd = type(self)(self.t, self.ell_max) state = copy.deepcopy(self.__dict__) new_abd.__dict__.update(state) return new_abd def interpolate(self, new_times): new_abd = type(self)(new_times, self.ell_max) new_abd.frameType = self.frameType # interpolate waveform data new_abd.sigma = self.sigma.interpolate(new_times) new_abd.psi4 = self.psi4.interpolate(new_times) new_abd.psi3 = self.psi3.interpolate(new_times) new_abd.psi2 = self.psi2.interpolate(new_times) new_abd.psi1 = self.psi1.interpolate(new_times) new_abd.psi0 = self.psi0.interpolate(new_times) # interpolate frame data if necessary if self.frame.shape[0] == self.n_times: import quaternion new_abd.frame = quaternion.squad(self.frame, self.t, new_times) return new_abd def select_data(self, dataType): if dataType == sigma: return self.sigma elif dataType == psi4: return self.psi4 elif dataType == psi3: return self.psi3 elif dataType == psi2: return self.psi2 elif dataType == psi1: return self.psi1 elif dataType == psi0: return self.psi0 def speciality_index(self, **kwargs): """Computes the Baker-Campanelli speciality index (arXiv:gr-qc/0003031). NOTE: This quantity can only determine algebraic speciality but can not determine the type! The rule of thumb given by Baker and Campanelli is that for an algebraically special spacetime the speciality index should differ from unity by no more than a factor of two. """ import spinsfast import spherical_functions as sf from spherical_functions import LM_index output_ell_max = kwargs.pop("output_ell_max") if "output_ell_max" in kwargs else self.ell_max working_ell_max = kwargs.pop("working_ell_max") if "working_ell_max" in kwargs else 2 * self.ell_max n_theta = n_phi = 2 * working_ell_max + 1 # Transform to grid representation psi4 = np.empty((self.n_times, n_theta, n_phi), dtype=complex) psi3 = np.empty((self.n_times, n_theta, n_phi), dtype=complex) psi2 = np.empty((self.n_times, n_theta, n_phi), dtype=complex) psi1 = np.empty((self.n_times, n_theta, n_phi), dtype=complex) psi0 = np.empty((self.n_times, n_theta, n_phi), dtype=complex) for t_i in range(self.n_times): psi4[t_i, :, :] = spinsfast.salm2map( self.psi4.ndarray[t_i, :], self.psi4.spin_weight, lmax=self.ell_max, Ntheta=n_theta, Nphi=n_phi ) psi3[t_i, :, :] = spinsfast.salm2map( self.psi3.ndarray[t_i, :], self.psi3.spin_weight, lmax=self.ell_max, Ntheta=n_theta, Nphi=n_phi ) psi2[t_i, :, :] = spinsfast.salm2map( self.psi2.ndarray[t_i, :], self.psi2.spin_weight, lmax=self.ell_max, Ntheta=n_theta, Nphi=n_phi ) psi1[t_i, :, :] = spinsfast.salm2map( self.psi1.ndarray[t_i, :], self.psi1.spin_weight, lmax=self.ell_max, Ntheta=n_theta, Nphi=n_phi ) psi0[t_i, :, :] = spinsfast.salm2map( self.psi0.ndarray[t_i, :], self.psi0.spin_weight, lmax=self.ell_max, Ntheta=n_theta, Nphi=n_phi ) curvature_invariant_I = psi4 * psi0 - 4 * psi3 * psi1 + 3 * psi2 ** 2 curvature_invariant_J = ( psi4 * (psi2 * psi0 - psi1 ** 2) - psi3 * (psi3 * psi0 - psi1 * psi2) + psi2 * (psi3 * psi1 - psi2 ** 2) ) speciality_index = 27 * curvature_invariant_J ** 2 / curvature_invariant_I ** 3 # Transform back to mode representation speciality_index_modes = np.empty((self.n_times, (working_ell_max) ** 2), dtype=complex) for t_i in range(self.n_times): speciality_index_modes[t_i, :] = spinsfast.map2salm(speciality_index[t_i, :], 0, lmax=working_ell_max - 1) # Convert product ndarray to a ModesTimeSeries object speciality_index_modes = speciality_index_modes[:, : LM_index(output_ell_max, output_ell_max, 0) + 1] speciality_index_modes = ModesTimeSeries( sf.SWSH_modes.Modes( speciality_index_modes, spin_weight=0, ell_min=0, ell_max=output_ell_max, multiplication_truncator=max ), time=self.t, ) return speciality_index_modes from .from_initial_values import from_initial_values from .transformations import transform from .constraints import ( bondi_constraints, bondi_violations, bondi_violation_norms, bianchi_0, bianchi_1, bianchi_2, constraint_3, constraint_4, constraint_mass_aspect, ) from .bms_charges import ( mass_aspect, bondi_rest_mass, bondi_four_momentum, bondi_angular_momentum, bondi_dimensionless_spin, bondi_boost_charge, bondi_CoM_charge, supermomentum, ) from .frame_rotations import ( to_inertial_frame, to_corotating_frame, to_coprecessing_frame, rotate_physical_system, rotate_decomposition_basis, )
38.020548
120
0.64601
514a880c3c23e48fe922ca3a9b6de88e40959b89
6,260
py
Python
src/oci/osub_subscription/models/product.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/osub_subscription/models/product.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
src/oci/osub_subscription/models/product.py
LaudateCorpus1/oci-python-sdk
b0d3ce629d5113df4d8b83b7a6502b2c5bfa3015
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class Product(object): """ Product description """ def __init__(self, **kwargs): """ Initializes a new Product object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param part_number: The value to assign to the part_number property of this Product. :type part_number: str :param name: The value to assign to the name property of this Product. :type name: str :param unit_of_measure: The value to assign to the unit_of_measure property of this Product. :type unit_of_measure: str :param billing_category: The value to assign to the billing_category property of this Product. :type billing_category: str :param product_category: The value to assign to the product_category property of this Product. :type product_category: str :param ucm_rate_card_part_type: The value to assign to the ucm_rate_card_part_type property of this Product. :type ucm_rate_card_part_type: str """ self.swagger_types = { 'part_number': 'str', 'name': 'str', 'unit_of_measure': 'str', 'billing_category': 'str', 'product_category': 'str', 'ucm_rate_card_part_type': 'str' } self.attribute_map = { 'part_number': 'partNumber', 'name': 'name', 'unit_of_measure': 'unitOfMeasure', 'billing_category': 'billingCategory', 'product_category': 'productCategory', 'ucm_rate_card_part_type': 'ucmRateCardPartType' } self._part_number = None self._name = None self._unit_of_measure = None self._billing_category = None self._product_category = None self._ucm_rate_card_part_type = None @property def part_number(self): """ **[Required]** Gets the part_number of this Product. Product part numner :return: The part_number of this Product. :rtype: str """ return self._part_number @part_number.setter def part_number(self, part_number): """ Sets the part_number of this Product. Product part numner :param part_number: The part_number of this Product. :type: str """ self._part_number = part_number @property def name(self): """ **[Required]** Gets the name of this Product. Product name :return: The name of this Product. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this Product. Product name :param name: The name of this Product. :type: str """ self._name = name @property def unit_of_measure(self): """ **[Required]** Gets the unit_of_measure of this Product. Unit of measure :return: The unit_of_measure of this Product. :rtype: str """ return self._unit_of_measure @unit_of_measure.setter def unit_of_measure(self, unit_of_measure): """ Sets the unit_of_measure of this Product. Unit of measure :param unit_of_measure: The unit_of_measure of this Product. :type: str """ self._unit_of_measure = unit_of_measure @property def billing_category(self): """ Gets the billing_category of this Product. Metered service billing category :return: The billing_category of this Product. :rtype: str """ return self._billing_category @billing_category.setter def billing_category(self, billing_category): """ Sets the billing_category of this Product. Metered service billing category :param billing_category: The billing_category of this Product. :type: str """ self._billing_category = billing_category @property def product_category(self): """ Gets the product_category of this Product. Product category :return: The product_category of this Product. :rtype: str """ return self._product_category @product_category.setter def product_category(self, product_category): """ Sets the product_category of this Product. Product category :param product_category: The product_category of this Product. :type: str """ self._product_category = product_category @property def ucm_rate_card_part_type(self): """ Gets the ucm_rate_card_part_type of this Product. Rate card part type of Product :return: The ucm_rate_card_part_type of this Product. :rtype: str """ return self._ucm_rate_card_part_type @ucm_rate_card_part_type.setter def ucm_rate_card_part_type(self, ucm_rate_card_part_type): """ Sets the ucm_rate_card_part_type of this Product. Rate card part type of Product :param ucm_rate_card_part_type: The ucm_rate_card_part_type of this Product. :type: str """ self._ucm_rate_card_part_type = ucm_rate_card_part_type def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
27.699115
245
0.62524
e87f3873ed85e1d9f0bd8dbd9917354cfb98c6df
514
py
Python
v0_back/users/admin.py
japarra27/project1-wo-docker
c448aa187186c6a037bb214d5cd20082391c9b76
[ "MIT" ]
null
null
null
v0_back/users/admin.py
japarra27/project1-wo-docker
c448aa187186c6a037bb214d5cd20082391c9b76
[ "MIT" ]
null
null
null
v0_back/users/admin.py
japarra27/project1-wo-docker
c448aa187186c6a037bb214d5cd20082391c9b76
[ "MIT" ]
1
2020-08-31T18:41:39.000Z
2020-08-31T18:41:39.000Z
from django.contrib import admin from django.contrib.auth import admin as auth_admin from django.contrib.auth import get_user_model from v0_back.users.forms import UserChangeForm, UserCreationForm User = get_user_model() @admin.register(User) class UserAdmin(auth_admin.UserAdmin): form = UserChangeForm add_form = UserCreationForm fieldsets = (("User", {"fields": ("name",)}),) + auth_admin.UserAdmin.fieldsets list_display = ["username", "name", "is_superuser"] search_fields = ["name"]
28.555556
83
0.747082
0da55a250b4a6239d692660deef51aa1b2097105
227
py
Python
flixed_django/flixed_django/utils.py
nilesh1168/flixed-movie-tracker
1ca1c9c74731596e386da001d393230fb86045af
[ "MIT" ]
null
null
null
flixed_django/flixed_django/utils.py
nilesh1168/flixed-movie-tracker
1ca1c9c74731596e386da001d393230fb86045af
[ "MIT" ]
null
null
null
flixed_django/flixed_django/utils.py
nilesh1168/flixed-movie-tracker
1ca1c9c74731596e386da001d393230fb86045af
[ "MIT" ]
null
null
null
from flixedREST.serializers import UserSerializer def my_jwt_response_handler(token, user=None, request=None): return { 'token': token, 'user': UserSerializer(user, context={'request': request}).data }
28.375
71
0.696035
6e6bb934fa54aa9b6f9748f48f78131f586b3a9f
1,079
py
Python
kubernetes/test/test_v1alpha1_certificate_signing_request_condition.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1alpha1_certificate_signing_request_condition.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
kubernetes/test/test_v1alpha1_certificate_signing_request_condition.py
amanagarwal33/python
e31693557f75950805fb4dc5af4cb7434a470e26
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: v1.5.3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import kubernetes.client from kubernetes.client.rest import ApiException from kubernetes.client.models.v1alpha1_certificate_signing_request_condition import V1alpha1CertificateSigningRequestCondition class TestV1alpha1CertificateSigningRequestCondition(unittest.TestCase): """ V1alpha1CertificateSigningRequestCondition unit test stubs """ def setUp(self): pass def tearDown(self): pass def testV1alpha1CertificateSigningRequestCondition(self): """ Test V1alpha1CertificateSigningRequestCondition """ model = kubernetes.client.models.v1alpha1_certificate_signing_request_condition.V1alpha1CertificateSigningRequestCondition() if __name__ == '__main__': unittest.main()
25.093023
132
0.768304
38d9f4ff3acb4af90d7f4987a1d2bc920a932a62
1,252
py
Python
src/leetcodepython/top100likedquestions/merge_nums.py
zhangyu345293721/leetcode
1aa5bcb984fd250b54dcfe6da4be3c1c67d14162
[ "MIT" ]
90
2018-12-25T06:01:30.000Z
2022-01-03T14:01:26.000Z
src/leetcodepython/top100likedquestions/merge_nums.py
zhangyu345293721/leetcode
1aa5bcb984fd250b54dcfe6da4be3c1c67d14162
[ "MIT" ]
1
2020-08-27T09:53:49.000Z
2020-08-28T08:57:49.000Z
src/leetcodepython/top100likedquestions/merge_nums.py
zhangyu345293721/leetcode
1aa5bcb984fd250b54dcfe6da4be3c1c67d14162
[ "MIT" ]
27
2019-01-02T01:41:32.000Z
2022-01-03T14:01:30.000Z
# encoding='utf-8' ''' 合并数组 author:zhangyu date:2020.1.9 题目: 两个有序数组进行合并为一个数组,其中保证数组中没有重复元素 如: nums1=[1,2,3,4] nums2=[4,5,6,7,8] 合并之后为:result=[1,2,3,,4,5,6,7,8] ''' from typing import List class Solution: def merge(self, nums1: List[int], nums2: List[int]) -> List[int]: ''' 合并两个数组 Args: nums1:数组1 nums2:数组2 Returns: 合并后数组 ''' if not nums1: return nums2 if not nums2: return nums1 i, j, result = 0, 0, [] while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: result.append(nums1[i]) i += 1 elif nums1[i] == nums2[j]: result.append(nums1[i]) i += 1 j += 1 else: result.append(nums2[j]) j += 1 if i == len(nums1): result.extend(nums2[j:len(nums2)]) if j == len(nums2): result.extend(nums1[i:len(nums1)]) return result if __name__ == '__main__': nums1 = [1, 2, 3, 4] nums2 = [4, 5, 6, 7, 8] solution = Solution() res = solution.merge(nums1, nums2) print(res)
22.357143
69
0.454473
8f8cf3639086c3c4a8e167d65fcaf238f51af2c8
1,660
py
Python
obswsrc/requests.py
avmaint/obs-ws-rc
8ff2c36bdd2ac1636feabb356864b9ebb20e9b30
[ "MIT" ]
38
2017-08-07T04:30:28.000Z
2021-11-03T08:30:47.000Z
obswsrc/requests.py
avmaint/obs-ws-rc
8ff2c36bdd2ac1636feabb356864b9ebb20e9b30
[ "MIT" ]
10
2017-09-20T11:21:41.000Z
2021-09-27T22:56:22.000Z
obswsrc/requests.py
avmaint/obs-ws-rc
8ff2c36bdd2ac1636feabb356864b9ebb20e9b30
[ "MIT" ]
13
2017-10-28T20:41:39.000Z
2020-12-28T02:51:03.000Z
""" This module holds dynamically generated classes. For more info see protocol.py and protocol.json. """ # ============================================================================= # >> IMPORTS # ============================================================================= # Python from enum import Enum # obs-ws-rc from .struct import Struct, StructField, StructMeta # ============================================================================= # >> BASE CLASSES # ============================================================================= class ResponseStatus(Enum): OK = 'OK' ERROR = 'ERROR' class BaseResponseMeta(StructMeta): def __init__(cls, name, bases, namespace): cls._fields = cls._fields[:] + ( StructField('message_id', "message-id", str), StructField( 'status', "status", lambda status: ResponseStatus(status.upper()) ), StructField('error', "error", str, True), ) super().__init__(name, bases, namespace) class BaseResponse(Struct, metaclass=BaseResponseMeta): pass class BaseRequest(Struct): @property def type_name(self): raise NotImplementedError class response_class(BaseResponse): pass def get_request_data(self, message_id): dict_ = self.copy() dict_['request-type'] = self.type_name dict_['message-id'] = message_id return dict_ def dummy_request(**kwargs): raise NotImplementedError("protocol.json doesn't implement this request") AuthenticateRequest = dummy_request GetAuthRequiredRequest = dummy_request
26.349206
79
0.51988
ad7b427f793f509bdb8b05cd6e9c647c3ee5f3a3
6,966
py
Python
tests/cli/commands/test_webserver_command.py
mebelousov/airflow
d99833c9b5be9eafc0c7851343ee86b6c20aed40
[ "Apache-2.0" ]
2
2021-07-30T17:35:51.000Z
2021-08-03T13:50:57.000Z
tests/cli/commands/test_webserver_command.py
mebelousov/airflow
d99833c9b5be9eafc0c7851343ee86b6c20aed40
[ "Apache-2.0" ]
8
2021-02-08T20:40:47.000Z
2022-03-29T22:27:53.000Z
tests/cli/commands/test_webserver_command.py
mebelousov/airflow
d99833c9b5be9eafc0c7851343ee86b6c20aed40
[ "Apache-2.0" ]
1
2021-05-12T11:37:59.000Z
2021-05-12T11:37:59.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import subprocess import tempfile import unittest from time import sleep from unittest import mock import psutil from airflow import settings from airflow.cli import cli_parser from airflow.cli.commands import webserver_command from airflow.cli.commands.webserver_command import get_num_ready_workers_running from airflow.models import DagBag from airflow.utils.cli import setup_locations from tests.test_utils.config import conf_vars class TestCLIGetNumReadyWorkersRunning(unittest.TestCase): @classmethod def setUpClass(cls): cls.dagbag = DagBag(include_examples=True) cls.parser = cli_parser.get_parser() def setUp(self): self.gunicorn_master_proc = mock.Mock(pid=None) self.children = mock.MagicMock() self.child = mock.MagicMock() self.process = mock.MagicMock() def test_ready_prefix_on_cmdline(self): self.child.cmdline.return_value = [settings.GUNICORN_WORKER_READY_PREFIX] self.process.children.return_value = [self.child] with mock.patch('psutil.Process', return_value=self.process): self.assertEqual(get_num_ready_workers_running(self.gunicorn_master_proc), 1) def test_ready_prefix_on_cmdline_no_children(self): self.process.children.return_value = [] with mock.patch('psutil.Process', return_value=self.process): self.assertEqual(get_num_ready_workers_running(self.gunicorn_master_proc), 0) def test_ready_prefix_on_cmdline_zombie(self): self.child.cmdline.return_value = [] self.process.children.return_value = [self.child] with mock.patch('psutil.Process', return_value=self.process): self.assertEqual(get_num_ready_workers_running(self.gunicorn_master_proc), 0) def test_ready_prefix_on_cmdline_dead_process(self): self.child.cmdline.side_effect = psutil.NoSuchProcess(11347) self.process.children.return_value = [self.child] with mock.patch('psutil.Process', return_value=self.process): self.assertEqual(get_num_ready_workers_running(self.gunicorn_master_proc), 0) def test_cli_webserver_debug(self): env = os.environ.copy() proc = psutil.Popen(["airflow", "webserver", "--debug"], env=env) sleep(3) # wait for webserver to start return_code = proc.poll() self.assertEqual( None, return_code, "webserver terminated with return code {} in debug mode".format(return_code)) proc.terminate() proc.wait() class TestCliWebServer(unittest.TestCase): @classmethod def setUpClass(cls): cls.parser = cli_parser.get_parser() def setUp(self) -> None: self._check_processes() self._clean_pidfiles() def _check_processes(self): try: # Confirm that webserver hasn't been launched. # pgrep returns exit status 1 if no process matched. self.assertEqual(1, subprocess.Popen(["pgrep", "--full", "--count", "airflow webserver"]).wait()) self.assertEqual(1, subprocess.Popen(["pgrep", "--count", "gunicorn"]).wait()) except: # noqa: E722 subprocess.Popen(["ps", "-ax"]).wait() raise def tearDown(self) -> None: self._check_processes() def _clean_pidfiles(self): pidfile_webserver = setup_locations("webserver")[0] pidfile_monitor = setup_locations("webserver-monitor")[0] if os.path.exists(pidfile_webserver): os.remove(pidfile_webserver) if os.path.exists(pidfile_monitor): os.remove(pidfile_monitor) def _wait_pidfile(self, pidfile): while True: try: with open(pidfile) as file: return int(file.read()) except Exception: # pylint: disable=broad-except sleep(1) def test_cli_webserver_foreground(self): # Run webserver in foreground and terminate it. proc = subprocess.Popen(["airflow", "webserver"]) proc.terminate() proc.wait() @unittest.skipIf("TRAVIS" in os.environ and bool(os.environ["TRAVIS"]), "Skipping test due to lack of required file permission") def test_cli_webserver_foreground_with_pid(self): # Run webserver in foreground with --pid option pidfile = tempfile.mkstemp()[1] proc = subprocess.Popen(["airflow", "webserver", "--pid", pidfile]) # Check the file specified by --pid option exists self._wait_pidfile(pidfile) # Terminate webserver proc.terminate() proc.wait() @unittest.skipIf("TRAVIS" in os.environ and bool(os.environ["TRAVIS"]), "Skipping test due to lack of required file permission") def test_cli_webserver_background(self): pidfile_webserver = setup_locations("webserver")[0] pidfile_monitor = setup_locations("webserver-monitor")[0] # Run webserver as daemon in background. Note that the wait method is not called. subprocess.Popen(["airflow", "webserver", "--daemon"]) pid_monitor = self._wait_pidfile(pidfile_monitor) self._wait_pidfile(pidfile_webserver) # Assert that gunicorn and its monitor are launched. self.assertEqual(0, subprocess.Popen(["pgrep", "--full", "--count", "airflow webserver"]).wait()) self.assertEqual(0, subprocess.Popen(["pgrep", "--count", "gunicorn"]).wait()) # Terminate monitor process. proc = psutil.Process(pid_monitor) proc.terminate() proc.wait() # Patch for causing webserver timeout @mock.patch("airflow.cli.commands.webserver_command.get_num_workers_running", return_value=0) def test_cli_webserver_shutdown_when_gunicorn_master_is_killed(self, _): # Shorten timeout so that this test doesn't take too long time args = self.parser.parse_args(['webserver']) with conf_vars({('webserver', 'web_server_master_timeout'): '10'}): with self.assertRaises(SystemExit) as e: webserver_command.webserver(args) self.assertEqual(e.exception.code, 1)
39.355932
109
0.682314
e4c4e8e654d44b30bf71104be01c9eb95d3d8102
2,779
py
Python
computer_version/object_detection/main.py
afterloe/opencv-practice
83d76132d004ebbc96d99d34a0fd3fc37a044f9f
[ "MIT" ]
5
2020-03-13T07:34:30.000Z
2021-10-01T03:03:05.000Z
computer_version/object_detection/main.py
afterloe/Opencv-practice
83d76132d004ebbc96d99d34a0fd3fc37a044f9f
[ "MIT" ]
null
null
null
computer_version/object_detection/main.py
afterloe/Opencv-practice
83d76132d004ebbc96d99d34a0fd3fc37a044f9f
[ "MIT" ]
1
2020-03-01T12:35:02.000Z
2020-03-01T12:35:02.000Z
#!/usr/bin/env python3 # -*- coding=utf-8 -*- import argparse from imutils.video import VideoStream, FPS import imutils import numpy as np import time import cv2 as cv import logging __version__ = "1.0.0" logging.basicConfig(level=logging.INFO, format='[%(asctime)8s][%(filename)s][%(levelname)s] - %(message)s', datefmt='%a, %d %b %Y %H:%M:%S') CONSOLE = logging.getLogger("dev") CONSOLE.setLevel(logging.DEBUG) CONSOLE.info("实时对象检测 %s", __version__) CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3)) if "__main__" == __name__: ap = argparse.ArgumentParser() ap.add_argument("-p", "--prototxt", required=True, help="Caffe 模型部署描述文件") ap.add_argument("-m", "--model", required=True, help="Caffe 模型") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="阈值") args = vars(ap.parse_args()) CONSOLE.info("加载模型") net_model = cv.dnn.readNetFromCaffe(args["prototxt"], args["model"]) CONSOLE.info("加载视频") vs = VideoStream(src=0).start() time.sleep(2.0) fps = FPS().start() while True: frame = vs.read() if None is frame: CONSOLE.error("无法读取视频流") break frame = imutils.resize(frame, width=400) h, w = frame.shape[: 2] blob_data = cv.dnn.blobFromImage(cv.resize(frame, (300, 300)), 0.007843, (300, 300), 127.5) net_model.setInput(blob_data) detections = net_model.forward() for i in np.arange(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if args["confidence"] < confidence: idx = int(detections[0, 0, i, 1]) box = detections[0, 0, i, 3: 7] * np.array([w, h, w, h]) start_x, start_y, end_x, end_y = box.astype("int") content = "%s: %.2f%%" % (CLASSES[idx], confidence * 100) cv.rectangle(frame, (start_x, start_y), (end_x, end_y), COLORS[idx], 2) y = start_y - 15 if 15 < start_y - 15 else start_y + 15 cv.putText(frame, content, (start_x, y), cv.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2) cv.imshow("frame", frame) key = cv.waitKey(1) & 0xff if ord("q") == key: CONSOLE.info("退出监控") break fps.update() fps.stop() CONSOLE.info("视频播放时间: %.2f" % fps.elapsed()) CONSOLE.info("平均FPS: %.2f" % fps.fps()) cv.destroyAllWindows() vs.stop()
39.140845
103
0.558114
bb9471714a07f5fabab30ca3ddff74d892c06a20
6,097
py
Python
chs_s111/ascii_time_series.py
osgirl/chs-s111
a88a3de20868d0a0884498fffe3c1a1ea106bd12
[ "BSD-2-Clause" ]
null
null
null
chs_s111/ascii_time_series.py
osgirl/chs-s111
a88a3de20868d0a0884498fffe3c1a1ea106bd12
[ "BSD-2-Clause" ]
null
null
null
chs_s111/ascii_time_series.py
osgirl/chs-s111
a88a3de20868d0a0884498fffe3c1a1ea106bd12
[ "BSD-2-Clause" ]
null
null
null
#****************************************************************************** # #****************************************************************************** from datetime import datetime from datetime import timedelta import pytz #****************************************************************************** class AsciiTimeSeries: #****************************************************************************** def __init__(self, file_name): self.file_name = file_name self.ascii_file = None self.interval = None self.start_time = None self.end_time = None self.number_of_records = 0 self.current_record = 0 self.latitude = 0 self.longitude = 0 #Open the file. self.ascii_file = open(self.file_name, 'r') #Skip the header self.read_header() #****************************************************************************** def read_header(self): """Read the header of the time series file.""" #The header contains 24 rows, so read them all. for rowIndex in range(0, 24): #Read a line of data data = self.ascii_file.readline() #If this is the 1st row, then lets decode the start date and time. if rowIndex == 0: #66-66 1 : Units of depth [m: metres, f: feet] self.unit = data[65:66] #68-71 4 : Date (Year) of first data record year = data[67:71] #73-74 2 : Date (Month) of first data record month = data[72:74] #76-77 2 : Date (Day) of first data record day = data[75:77] #If this is the 2nd row, then lets decode the x and y positions. elif rowIndex == 1: #14-15 2 : Latitude (Degrees) latDeg = data[13:15] #17-23 7 : Latitude (Minutes up to 4 places of decimal) latMin = data[16:23] self.latitude = float(latDeg) + (float(latMin) / 60.0) #24-24 1 : 'N' or 'S' if data[23:24] == 'S': self.latitude *= -1.0 #26-28 3 Longitude (Degrees) lonDeg = data[25:28] #30-36 7 : Longitude (Minutes up to 4 places of decimal) lonMin = data[29:36] self.longitude = float(lonDeg) + (float(lonMin) / 60.0) #37-37 1 : 'W' or 'E' if data[36:37] == 'W': self.longitude *= -1.0 #62-66 5 : Time Zone [# of hours to add to determine UTC, always include + or - and # always left justify, (leaves space for Nfld. time). i.e. +03.5] utcOffset = data[61:66] #68-69 2 : Time (Hour) of first data record hour = data[67:69] #70-71 2 : Time (Minute) of first data record minute = data[69:71] #73-74 2 : Time (Second) of first data record seconds = data[72:74] #We now have enought information to construct our timestamp. timeNotInUTC = datetime(year = int(year), month = int(month), day = int(day), hour = int(hour), minute = int(minute), second = int(seconds), tzinfo = pytz.utc) self.deltaToUTC = timedelta(hours = float(utcOffset)) #Store the start time as UTC. self.start_time = timeNotInUTC + self.deltaToUTC #If this is the 3rd row, then lets decode the number of records in the file. elif rowIndex == 2: #col 01-10 10 : Number of Records to follow header self.number_of_records = int(data[0:10]) #68-69 2 : Sampling interval (Hours) sampleHours = data[67:69] #70-71 2 : Sampling interval (Minutes) sampleMinutes = data[69:71] #73-74 2 : Sampling interval (Seconds) sampleSeconds = data[72:74] self.interval = timedelta(hours = int(sampleHours), minutes = int(sampleMinutes), seconds = int(sampleSeconds)) #With the start time, number of records, and interval... we can figure out the end time. self.end_time = self.start_time + (self.number_of_records - 1) * self.interval #****************************************************************************** def done(self): """Determine if we have read all records in the time series file. :returns: true if all records have been read, else false. """ if self.current_record < self.number_of_records: return False return True #****************************************************************************** def read_next_row(self): """Read the next row of data from the time series file. :returns: A tuple containing the date, direction, and speed (in m/s). """ #If we are done... throw an error. if self.done(): raise Exception('AsciiTimeSeries is done!') self.current_record += 1 asciiData = self.ascii_file.readline() #We expect the following: Date (YYYY/MM/DD), HourMinute (hhmm), Direction (deg T), Speed (m/s) components = asciiData.split() if len(components) != 4: raise Exception('Record does not have the correct number of values.') #decode the date and time, and then covert it to UTC. dateAndTime = datetime.strptime(components[0] + components[1], '%Y/%m/%d%H:%M') dateAndTime = dateAndTime + self.deltaToUTC direction = float(components[2]) speed = float(components[3]) #Return a tuple with dateAndTime, direction, and speed return (dateAndTime, direction, speed)
38.10625
132
0.478596
efd58823ec21719e7465de218b174308d5f4e384
345
py
Python
core/floor/__init__.py
BlenderCN-Org/building_tool
9c101dcf2a0df884e19ade87d8724eaa5ed7842b
[ "MIT" ]
1
2019-05-25T07:34:15.000Z
2019-05-25T07:34:15.000Z
core/floor/__init__.py
BlenderCN-Org/building_tool
9c101dcf2a0df884e19ade87d8724eaa5ed7842b
[ "MIT" ]
null
null
null
core/floor/__init__.py
BlenderCN-Org/building_tool
9c101dcf2a0df884e19ade87d8724eaa5ed7842b
[ "MIT" ]
1
2019-07-05T05:41:13.000Z
2019-07-05T05:41:13.000Z
import bpy from .floor import Floor from .floor_ops import BTOOLS_OT_add_floors from .floor_props import FloorProperty classes = (FloorProperty, BTOOLS_OT_add_floors) def register_floor(): for cls in classes: bpy.utils.register_class(cls) def unregister_floor(): for cls in classes: bpy.utils.unregister_class(cls)
19.166667
47
0.753623
98a9a115152570f8df97deafacecd588f122f0d6
3,550
py
Python
bindings/python/ensmallen/datasets/string/lactobacillusspwkb10.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
5
2021-02-17T00:44:45.000Z
2021-08-09T16:41:47.000Z
bindings/python/ensmallen/datasets/string/lactobacillusspwkb10.py
AnacletoLAB/ensmallen_graph
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
18
2021-01-07T16:47:39.000Z
2021-08-12T21:51:32.000Z
bindings/python/ensmallen/datasets/string/lactobacillusspwkb10.py
AnacletoLAB/ensmallen
b2c1b18fb1e5801712852bcc239f239e03076f09
[ "MIT" ]
3
2021-01-14T02:20:59.000Z
2021-08-04T19:09:52.000Z
""" This file offers the methods to automatically retrieve the graph Lactobacillus sp. wkB10. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def LactobacillusSpWkb10( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Lactobacillus sp. wkB10 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Lactobacillus sp. wkB10 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="LactobacillusSpWkb10", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
32.87037
223
0.676056
19cf78330b5b673652db2e5967c6a6998208890e
5,803
py
Python
scripts/synapse_pos_specificity.py
cabrittin/volumetric_analysis
82004378abae963ef02858bf4711786dad76f133
[ "MIT" ]
null
null
null
scripts/synapse_pos_specificity.py
cabrittin/volumetric_analysis
82004378abae963ef02858bf4711786dad76f133
[ "MIT" ]
null
null
null
scripts/synapse_pos_specificity.py
cabrittin/volumetric_analysis
82004378abae963ef02858bf4711786dad76f133
[ "MIT" ]
null
null
null
""" synaptic_specificity.py Distribution of differences between homologous mean synapse positions. Author: Christopher Brittin Created: 07 February 2018 """ import sys sys.path.append(r'./volumetric_analysis/') import matplotlib.pyplot as plt import matplotlib as mpl import db from connectome.load import from_db import connectome.synspecificity as synspec import figures.stats as fstats import aux mpl.rcParams['xtick.labelsize'] = 24 mpl.rcParams['ytick.labelsize'] = 24 ADULT_COL = '#FFC300' L4_COL = '#3380FF' AL_COL = '#14FA29' lr_pairs = './mat/lr_neurons.txt' lr_dict = './mat/lr_dict.txt' homologs = './mat/homologs.txt' left_nodes = './mat/left_nodes.txt' right_nodes = './mat/right_nodes.txt' def write_source(fout,_data): data = [] for n1 in _data: for stype in _data[n1]: for n2 in _data[n1][stype]: if n2 in ['mean','std','size']: continue data.append([stype,n1,n2,_data[n1][stype][n2]]) aux.write.from_list(fout,data) def format_subcell(S,D,thresh=0.05): dgap,mgap = [],[] dpre,mpre = [],[] dpost,mpost = [],[] for n in S: #print(n) if S[n][0] <= thresh and n in D: dgap += D[n][0] #mgap += D[n][0][1] if S[n][1] <= thresh and n in D: dpre += D[n][1] #mpre += D[n][1][1] if S[n][2] <= thresh and n in D: dpost += D[n][2] #mpost += D[n][2][1] # data = [dgap,mgap,dpre,mpre,dpost,mpost] data = [dgap,dpre,dpost] #for i in xrange(len(data)): # data[i] = [d for d in data[i] if d <= 1] return data def run(fout=None,source_data=None): N2U = 'N2U' JSH = 'JSH' _remove = ['VC01','VD01','VB01','VB02'] neurons = aux.read.into_list2(lr_pairs) lrd = aux.read.into_lr_dict(lr_dict) left = aux.read.into_list(left_nodes) left.remove('CEHDL') left.remove('CEHVL') left.remove('HSNL') left.remove('PVNL') left.remove('PLNL') N2U = from_db(N2U,adjacency=True,chemical=True, electrical=True,remove=_remove,dataType='networkx') JSH = from_db(JSH,adjacency=True,chemical=True, electrical=True,remove=_remove,dataType='networkx') n2ucon = db.connect.default('N2U') n2ucur = n2ucon.cursor() jshcon = db.connect.default('JSH') jshcur = jshcon.cursor() if source_data: fsplit = source_data.split('.') nout = fsplit[0] + '_adult.' + fsplit[1] jout = fsplit[0] + '_l4.' + fsplit[1] src = synspec.get_source_data(n2ucur,N2U.A.nodes()) write_source(nout,src) src = synspec.get_source_data(jshcur,JSH.A.nodes()) write_source(jout,src) both_nodes = set(N2U.A.nodes()) & set(JSH.A.nodes()) both_nodes.remove('SABD') both_nodes.remove('FLPL') both_nodes.remove('FLPR') if 'VD01' in both_nodes: both_nodes.remove('VD01') S1 = synspec.get_bilateral_specificity(N2U,lrd,left) D1 = synspec.get_bilateral_subcell_specificity(n2ucur,neurons,lrd) B1 = format_subcell(S1,D1) S2 = synspec.get_bilateral_specificity(JSH,lrd,left) D2 = synspec.get_bilateral_subcell_specificity(jshcur,neurons,lrd) B2 = format_subcell(S2,D2) S3 = synspec.get_developmental_specificity(N2U,JSH, both_nodes=both_nodes) D3 = synspec.get_developmental_subcell_specificity(n2ucur, jshcur, both_nodes=both_nodes) B3 = format_subcell(S3,D3) n2ucon.close() jshcon.close() labels = None pos = [1.5,2,2.5,3.5,4,4.5,5.5,6,6.5] data = [B1[0],B2[0],B3[0], B1[1],B2[1],B3[1], B1[2],B2[2],B3[2]] print('Stats:') fstats.print_wilcoxon(data[0],'Adult L/R gap') fstats.print_wilcoxon(data[1],'L4 L/R gap') fstats.print_wilcoxon(data[2],'Adult/L4 gap') fstats.print_wilcoxon(data[3],'Adult L/R pre') fstats.print_wilcoxon(data[4],'L4 L/R pre') fstats.print_wilcoxon(data[5],'Adult/L4 pre') fstats.print_wilcoxon(data[6],'Adult L/R post') fstats.print_wilcoxon(data[7],'L4 L/R post') fstats.print_wilcoxon(data[8],'Adult/L4 post') colors = [ADULT_COL,L4_COL,AL_COL, ADULT_COL,L4_COL,AL_COL, ADULT_COL,L4_COL,AL_COL,] fig,ax = plt.subplots(1,1,figsize=(15,10)) bp = fstats.plot_boxplots(ax,data,labels=labels,positions=pos, ylim=[-5,5], ylabel='Mean position difference', title='Mean synapse position', showfliers=True,width=0.2,colors=colors) _len = [len(d) for d in data] _ticklabels = ['gap j.', 'presyn.', 'postsyn.'] for i in range(3): n = ','.join(list(map(str,[_len[3*i + _j] for _j in range(3)]))) _ticklabels[i] += "\n($n=" + n +"$)" ax.set_xticklabels(_ticklabels) ax.set_xticks([2, 4, 6]) ax.xaxis.set_tick_params(labelsize=32) ax.set_ylim([-1,1]) ax.axvspan(0,3,facecolor='#C3C3C3') ax.axvspan(3,5,facecolor='#D8D7D7') ax.axvspan(5,8,facecolor='#C3C3C3') ax.axhline(0,color='r',linewidth=3,linestyle='--') _A, = ax.plot([1,1],ADULT_COL) _L, = ax.plot([1,1],L4_COL) _AL, = ax.plot([1,1],AL_COL) leg =ax.legend((_A, _L,_AL), ('Adult L/R', 'L4 L/R','Adult/L4'), fontsize=18) for legobj in leg.legendHandles: legobj.set_linewidth(4.0) _A.set_visible(False) _L.set_visible(False) _AL.set_visible(False) plt.tight_layout() if fout: plt.savefig(fout) plt.show() if __name__=='__main__': run()
31.367568
77
0.58487
ef10c8d719f83011e9d443407de82ed11e97b7dd
799
py
Python
keras_addon/activations.py
fedorovarthur/Keras-NALU-Layer
1c8b3f63c07b954384d54061fe9f38a2ca4d8998
[ "MIT" ]
null
null
null
keras_addon/activations.py
fedorovarthur/Keras-NALU-Layer
1c8b3f63c07b954384d54061fe9f38a2ca4d8998
[ "MIT" ]
null
null
null
keras_addon/activations.py
fedorovarthur/Keras-NALU-Layer
1c8b3f63c07b954384d54061fe9f38a2ca4d8998
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from math import pi, sqrt import keras.backend as K def gelu(x, approximation='tanh'): assert approximation in ('sigmoid', 'tanh'), \ 'Approximation method must be chosen from [tanh, sigmoid]' if approximation == 'tanh': return .5 * x * (1 + K.tanh(sqrt(2/pi) * (x + .044715 * x ** 3))) else: return x * K.sigmoid(1.702 * x) def silu(x): return x * K.sigmoid(x) def swish(x, beta=1): return x * K.sigmoid(beta * x) def lelu(x, mu=0, s=1): return x * K.sigmoid((x - mu)/s) def nac(x, w, m): return K.dot(x, K.tanh(w) * K.sigmoid(m)) def log_nac(x, w, m): return K.exp(K.dot(K.log(K.abs(x) + K.epsilon()), nac(x, w, m)))
21.026316
73
0.612015
4741132de6d64bdd5d37261092c9dc02d60be71f
397
py
Python
database.py
tugberkozkara/songs-i-like-api
7581e63cb016cc749d5a5ac85f05bd4eca51d994
[ "MIT" ]
null
null
null
database.py
tugberkozkara/songs-i-like-api
7581e63cb016cc749d5a5ac85f05bd4eca51d994
[ "MIT" ]
null
null
null
database.py
tugberkozkara/songs-i-like-api
7581e63cb016cc749d5a5ac85f05bd4eca51d994
[ "MIT" ]
null
null
null
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import os # Local Postgres #engine = create_engine("postgresql://postgres:postgres@localhost/songs_db", # echo=True #) # Heroku Postgres engine = create_engine(os.environ['DATABASE_URL']) Base = declarative_base() SessionLocal = sessionmaker(bind=engine)
20.894737
76
0.798489
4c7b27152a6725c24fb8eb85c73ba3da1a2e204c
2,265
py
Python
tests/support/mock_server.py
nelsond/sirah-matisse-commander
78699878b2acd098a18bfe8029aa33c4b1b12fed
[ "MIT" ]
1
2021-11-02T15:10:49.000Z
2021-11-02T15:10:49.000Z
tests/support/mock_server.py
nelsond/sirah-matisse-commander
78699878b2acd098a18bfe8029aa33c4b1b12fed
[ "MIT" ]
2
2021-11-02T15:10:26.000Z
2021-11-02T15:37:49.000Z
tests/support/mock_server.py
nelsond/sirah-matisse-commander
78699878b2acd098a18bfe8029aa33c4b1b12fed
[ "MIT" ]
null
null
null
import socket import threading import time class MockServer: """ Simple TCP mock server running in a separate thread for testing network connections to remote. Arguments: port (int, optional): Listening port, 30000 by default. """ def __init__(self, port: int = 30000): self._port = port self._request = None self._response = None self._ready = None self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self._socket.settimeout(1) self._thread = None self._loop = False def start(self): """Start server.""" attempts = 1 while self._loop is False and attempts < 10: try: self._socket.bind(('127.0.0.1', self._port)) self._loop = True except OSError: time.sleep(0.1 * attempts) attempts += 1 if self._loop is False: raise RuntimeError('Could not bind to network address.') self._ready = threading.Event() self._thread = threading.Thread(target=self.listen) self._thread.daemon = True self._thread.start() return self._ready def stop(self): """Stop server.""" self._loop = False if self._thread is not None: self._thread.join() def setup(self, request: bytes, response: bytes): """ Set expected request and response data. Arguments: request (bytes): Expected request data. reponse (bytes): Response data once expected request data is received. """ self._request = request self._response = response def listen(self): """Listen for new connections.""" while self._loop is True: self._socket.listen() self._ready.set() try: conn, _ = self._socket.accept() request = conn.recv(1024) if request == self._request: conn.send(self._response) conn.close() except socket.timeout: pass
25.166667
75
0.550552
ba2a5e341af77e37663f0e96c04bb953c0ea0f81
7,784
py
Python
spinup/utils/test_policy_action_plain.py
ColorlessBoy/spinningup
2d6cf818e0f370dcbbc43ebdcde483a129d0dd9c
[ "MIT" ]
null
null
null
spinup/utils/test_policy_action_plain.py
ColorlessBoy/spinningup
2d6cf818e0f370dcbbc43ebdcde483a129d0dd9c
[ "MIT" ]
null
null
null
spinup/utils/test_policy_action_plain.py
ColorlessBoy/spinningup
2d6cf818e0f370dcbbc43ebdcde483a129d0dd9c
[ "MIT" ]
null
null
null
import time import joblib import os import os.path as osp import tensorflow as tf import torch from spinup import EpochLogger from spinup.utils.logx import restore_tf_graph import numpy as np import matplotlib.pyplot as plt from matplotlib import animation from mpl_toolkits.mplot3d import Axes3D device = torch.device('cuda') def load_policy_and_env(fpath, itr='last', deterministic=False): """ Load a policy from save, whether it's TF or PyTorch, along with RL env. Not exceptionally future-proof, but it will suffice for basic uses of the Spinning Up implementations. Checks to see if there's a tf1_save folder. If yes, assumes the model is tensorflow and loads it that way. Otherwise, loads as if there's a PyTorch save. """ # determine if tf save or pytorch save if any(['tf1_save' in x for x in os.listdir(fpath)]): backend = 'tf1' else: backend = 'pytorch' # handle which epoch to load from if itr=='last': # check filenames for epoch (AKA iteration) numbers, find maximum value if backend == 'tf1': saves = [int(x[8:]) for x in os.listdir(fpath) if 'tf1_save' in x and len(x)>8] elif backend == 'pytorch': pytsave_path = osp.join(fpath, 'pyt_save') # Each file in this folder has naming convention 'modelXX.pt', where # 'XX' is either an integer or empty string. Empty string case # corresponds to len(x)==8, hence that case is excluded. saves = [int(x.split('.')[0][5:]) for x in os.listdir(pytsave_path) if len(x)>8 and 'model' in x] itr = '%d'%max(saves) if len(saves) > 0 else '' else: assert isinstance(itr, int), \ "Bad value provided for itr (needs to be int or 'last')." itr = '%d'%itr # load the get_action function if backend == 'tf1': get_action = load_tf_policy(fpath, itr, deterministic) else: get_action = load_pytorch_policy(fpath, itr, deterministic) # try to load environment from save # (sometimes this will fail because the environment could not be pickled) try: state = joblib.load(osp.join(fpath, 'vars'+itr+'.pkl')) env = state['env'] except: env = None return env, get_action def load_tf_policy(fpath, itr, deterministic=False): """ Load a tensorflow policy saved with Spinning Up Logger.""" fname = osp.join(fpath, 'tf1_save'+itr) print('\n\nLoading from %s.\n\n'%fname) # load the things! sess = tf.Session() model = restore_tf_graph(sess, fname) # get the correct op for executing actions if deterministic and 'mu' in model.keys(): # 'deterministic' is only a valid option for SAC policies print('Using deterministic action op.') action_op = model['mu'] else: print('Using default action op.') action_op = model['pi'] # make function for producing an action given a single state get_action = lambda x : sess.run(action_op, feed_dict={model['x']: x[None,:]})[0] return get_action def load_pytorch_policy(fpath, itr, deterministic=False): """ Load a pytorch policy saved with Spinning Up Logger.""" fname = osp.join(fpath, 'pyt_save', 'model'+itr+'.pt') print('\n\nLoading from %s.\n\n'%fname) model = torch.load(fname).to(device) # make function for producing an action given a single state def get_action(o): with torch.no_grad(): o = torch.FloatTensor(o.reshape(1, -1)).to(device) action = model.act(o, deterministic) if 'gac' not in fpath: action = action[0] return action return get_action def run_policy(env, get_action, max_ep_len=None, num_episodes=100, render=True, name='default'): assert env is not None, \ "Environment not found!\n\n It looks like the environment wasn't saved, " + \ "and we can't run the agent in it. :( \n\n Check out the readthedocs " + \ "page on Experiment Outputs for how to handle this situation." # axis_bound = env.action_space.high[0] + 0.01 axis_bound = 1.0 + 0.01 # fig = plt.figure(figsize=(10, 10)) # ax = Axes3D(fig) # dots = ax.scatter([], [], [], 'b.', alpha=0.06) # dots1 = ax.scatter([], [], [], 'r.', alpha=0.02) # dots2 = ax.scatter([], [], [], 'r.', alpha=0.02) # dots3 = ax.scatter([], [], [], 'r.', alpha=0.02) fig, axs = plt.subplots(1, 3, figsize=(15, 5)) axs = axs.reshape(-1) dots = [ax.plot([], [], 'bo', alpha=0.005)[0] for ax in axs] def init(): # ax.set_xlim(-axis_bound, axis_bound) # ax.set_ylim(-axis_bound, axis_bound) # ax.set_zlim(-axis_bound, axis_bound) # ax.set_xlabel('X') # ax.set_ylabel('Y') # ax.set_zlabel('Z') # ax.set_title(name, fontsize='large') # ax.grid() axis_name = ['XY', 'XZ', 'YZ'] for ax, s in zip(axs, axis_name): ax.set_xlim(-axis_bound, axis_bound) ax.set_ylim(-axis_bound, axis_bound) ax.set_xlabel(s[0]) ax.set_ylabel(s[1]) ax.set_title(name+'-'+s, fontsize='x-large') ax.grid() def gen_dot(): o, r, d, ep_ret, ep_len, n = env.reset(), 0, False, 0, 0, 0 logger = EpochLogger() while n < num_episodes: if render: env.render() time.sleep(1e-3) a = get_action(o) o, r, d, _ = env.step(a) ep_ret += r ep_len += 1 actions = [] for _ in range(1000): a = get_action(o) actions.append(a) yield np.array(actions) if d or (ep_len == max_ep_len): logger.store(EpRet=ep_ret, EpLen=ep_len) print('Episode %d \t EpRet %.3f \t EpLen %d'%(n, ep_ret, ep_len)) o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 n += 1 logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.dump_tabular() def update_dot(actions): # dots._offsets3d = (actions[:, 0], actions[:, 1], actions[:, 2]) # dots1._offsets3d = (actions[:, 0], actions[:, 1], -axis_bound) # dots2._offsets3d = (actions[:, 0], axis_bound, actions[:, 2]) # dots3._offsets3d = (-axis_bound, actions[:, 1], actions[:, 2]) dots[0].set_data(actions[:, 0], actions[:, 1]) dots[1].set_data(actions[:, 0], actions[:, 2]) dots[2].set_data(actions[:, 1], actions[:, 2]) return dots ani = animation.FuncAnimation(fig, update_dot, frames = gen_dot, interval = 500, init_func=init) ani.save('./{}.gif'.format(name), writer='pillow', fps=2) # init() # for idx, actions in enumerate(gen_dot()): # update_dot(actions) # fig.savefig('./pics/{}-{}.png'.format(name, str(idx))) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('fpath', type=str) parser.add_argument('--len', '-l', type=int, default=0) parser.add_argument('--episodes', '-n', type=int, default=100) parser.add_argument('--norender', '-nr', action='store_true') parser.add_argument('--itr', '-i', type=int, default=-1) parser.add_argument('--deterministic', '-d', action='store_true') parser.add_argument('--name', type=str, default='default') args = parser.parse_args() env, get_action = load_policy_and_env(args.fpath, args.itr if args.itr >=0 else 'last', args.deterministic) run_policy(env, get_action, args.len, args.episodes, not(args.norender), args.name)
35.870968
109
0.595838
d3035c6291155a7d5bff0879bc745075e5b44201
17,596
py
Python
UNITER/train_nlvr2.py
dinhanhx/hateful_memes_classification
1be84b6489512f313b4272cc8644dc354e84f051
[ "MIT" ]
1
2021-09-24T03:22:35.000Z
2021-09-24T03:22:35.000Z
train_nlvr2.py
hexiang-hu/UNITER
f2582bc2532b58f95a07973f3112b4876ed3de3e
[ "MIT" ]
null
null
null
train_nlvr2.py
hexiang-hu/UNITER
f2582bc2532b58f95a07973f3112b4876ed3de3e
[ "MIT" ]
null
null
null
""" Copyright (c) Microsoft Corporation. Licensed under the MIT license. UNITER finetuning for NLVR2 """ import argparse import os from os.path import exists, join from time import time import torch from torch.nn import functional as F from torch.nn.utils import clip_grad_norm_ from torch.utils.data import DataLoader from apex import amp from horovod import torch as hvd from tqdm import tqdm from data import (DistributedTokenBucketSampler, DetectFeatLmdb, TxtTokLmdb, Nlvr2PairedDataset, Nlvr2PairedEvalDataset, Nlvr2TripletDataset, Nlvr2TripletEvalDataset, nlvr2_paired_collate, nlvr2_paired_eval_collate, nlvr2_triplet_collate, nlvr2_triplet_eval_collate, PrefetchLoader) from model.nlvr2 import (UniterForNlvr2Paired, UniterForNlvr2Triplet, UniterForNlvr2PairedAttn) from optim import get_lr_sched from optim.misc import build_optimizer from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list, broadcast_tensors) from utils.save import ModelSaver, save_training_meta from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed from utils.const import IMG_DIM, BUCKET_SIZE def create_dataloader(img_path, txt_path, batch_size, is_train, dset_cls, collate_fn, opts): img_db = DetectFeatLmdb(img_path, opts.conf_th, opts.max_bb, opts.min_bb, opts.num_bb, opts.compressed_db) txt_db = TxtTokLmdb(txt_path, opts.max_txt_len if is_train else -1) dset = dset_cls(txt_db, img_db, opts.use_img_type) sampler = DistributedTokenBucketSampler( hvd.size(), hvd.rank(), dset.lens, bucket_size=BUCKET_SIZE, batch_size=batch_size, droplast=is_train) loader = DataLoader(dset, batch_sampler=sampler, num_workers=opts.n_workers, pin_memory=opts.pin_mem, collate_fn=collate_fn) return PrefetchLoader(loader) def main(opts): hvd.init() n_gpu = hvd.size() device = torch.device("cuda", hvd.local_rank()) torch.cuda.set_device(hvd.local_rank()) rank = hvd.rank() opts.rank = rank LOGGER.info("device: {} n_gpu: {}, rank: {}, " "16-bits training: {}".format( device, n_gpu, hvd.rank(), opts.fp16)) if opts.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, " "should be >= 1".format( opts.gradient_accumulation_steps)) set_random_seed(opts.seed) # train_examples = None LOGGER.info(f"Loading Train Dataset {opts.train_txt_db}, " f"{opts.train_img_dir}") if 'paired' in opts.model: DatasetCls = Nlvr2PairedDataset EvalDatasetCls = Nlvr2PairedEvalDataset collate_fn = nlvr2_paired_collate eval_collate_fn = nlvr2_paired_eval_collate if opts.model == 'paired': ModelCls = UniterForNlvr2Paired elif opts.model == 'paired-attn': ModelCls = UniterForNlvr2PairedAttn else: raise ValueError('unrecognized model type') elif opts.model == 'triplet': DatasetCls = Nlvr2TripletDataset EvalDatasetCls = Nlvr2TripletEvalDataset ModelCls = UniterForNlvr2Triplet collate_fn = nlvr2_triplet_collate eval_collate_fn = nlvr2_triplet_eval_collate else: raise ValueError('unrecognized model type') # data loaders train_dataloader = create_dataloader(opts.train_img_db, opts.train_txt_db, opts.train_batch_size, True, DatasetCls, collate_fn, opts) val_dataloader = create_dataloader(opts.val_img_db, opts.val_txt_db, opts.val_batch_size, False, EvalDatasetCls, eval_collate_fn, opts) test_dataloader = create_dataloader(opts.test_img_db, opts.test_txt_db, opts.val_batch_size, False, EvalDatasetCls, eval_collate_fn, opts) # Prepare model if opts.checkpoint: checkpoint = torch.load(opts.checkpoint) else: checkpoint = {} model = ModelCls.from_pretrained(opts.model_config, state_dict=checkpoint, img_dim=IMG_DIM) model.init_type_embedding() model.to(device) # make sure every process has same model parameters in the beginning broadcast_tensors([p.data for p in model.parameters()], 0) set_dropout(model, opts.dropout) # Prepare optimizer optimizer = build_optimizer(model, opts) model, optimizer = amp.initialize(model, optimizer, enabled=opts.fp16, opt_level='O2') global_step = 0 if rank == 0: save_training_meta(opts) TB_LOGGER.create(join(opts.output_dir, 'log')) pbar = tqdm(total=opts.num_train_steps) model_saver = ModelSaver(join(opts.output_dir, 'ckpt')) os.makedirs(join(opts.output_dir, 'results')) # store val predictions add_log_to_file(join(opts.output_dir, 'log', 'log.txt')) else: LOGGER.disabled = True pbar = NoOp() model_saver = NoOp() LOGGER.info(f"***** Running training with {n_gpu} GPUs *****") LOGGER.info(" Num examples = %d", len(train_dataloader.dataset)) LOGGER.info(" Batch size = %d", opts.train_batch_size) LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps) LOGGER.info(" Num steps = %d", opts.num_train_steps) running_loss = RunningMeter('loss') model.train() n_examples = 0 n_epoch = 0 start = time() # quick hack for amp delay_unscale bug optimizer.zero_grad() optimizer.step() while True: for step, batch in enumerate(train_dataloader): targets = batch['targets'] n_examples += targets.size(0) loss = model(**batch, compute_loss=True) loss = loss.mean() delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0 with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale ) as scaled_loss: scaled_loss.backward() if not delay_unscale: # gather gradients from every processes # do this before unscaling to make sure every process uses # the same gradient scale grads = [p.grad.data for p in model.parameters() if p.requires_grad and p.grad is not None] all_reduce_and_rescale_tensors(grads, float(1)) running_loss(loss.item()) if (step + 1) % opts.gradient_accumulation_steps == 0: global_step += 1 # learning rate scheduling lr_this_step = get_lr_sched(global_step, opts) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step TB_LOGGER.add_scalar('lr', lr_this_step, global_step) # log loss losses = all_gather_list(running_loss) running_loss = RunningMeter( 'loss', sum(l.val for l in losses)/len(losses)) TB_LOGGER.add_scalar('loss', running_loss.val, global_step) TB_LOGGER.step() # update model params if opts.grad_norm != -1: grad_norm = clip_grad_norm_(amp.master_params(optimizer), opts.grad_norm) TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step) optimizer.step() optimizer.zero_grad() pbar.update(1) if global_step % 100 == 0: # monitor training throughput tot_ex = sum(all_gather_list(n_examples)) ex_per_sec = int(tot_ex / (time()-start)) LOGGER.info(f'Step {global_step}: ' f'{tot_ex} examples trained at ' f'{ex_per_sec} ex/s') TB_LOGGER.add_scalar('perf/ex_per_s', ex_per_sec, global_step) if global_step % opts.valid_steps == 0: for split, loader in [('val', val_dataloader), ('test', test_dataloader)]: LOGGER.info(f"Step {global_step}: start running " f"validation on {split} split...") log, results = validate(model, loader, split) with open(f'{opts.output_dir}/results/' f'{split}_results_{global_step}_' f'rank{rank}.csv', 'w') as f: for id_, ans in results: f.write(f'{id_},{ans}\n') TB_LOGGER.log_scaler_dict(log) model_saver.save(model, global_step) if global_step >= opts.num_train_steps: break if global_step >= opts.num_train_steps: break n_epoch += 1 LOGGER.info(f"Step {global_step}: finished {n_epoch} epochs") for split, loader in [('val', val_dataloader), ('test', test_dataloader)]: LOGGER.info(f"Step {global_step}: start running " f"validation on {split} split...") log, results = validate(model, loader, split) with open(f'{opts.output_dir}/results/' f'{split}_results_{global_step}_' f'rank{rank}_final.csv', 'w') as f: for id_, ans in results: f.write(f'{id_},{ans}\n') TB_LOGGER.log_scaler_dict(log) model_saver.save(model, f'{global_step}_final') @torch.no_grad() def validate(model, val_loader, split): model.eval() val_loss = 0 tot_score = 0 n_ex = 0 st = time() results = [] for i, batch in enumerate(val_loader): qids = batch['qids'] targets = batch['targets'] del batch['targets'] del batch['qids'] scores = model(**batch, targets=None, compute_loss=False) loss = F.cross_entropy(scores, targets, reduction='sum') val_loss += loss.item() tot_score += (scores.max(dim=-1, keepdim=False)[1] == targets ).sum().item() answers = ['True' if i == 1 else 'False' for i in scores.max(dim=-1, keepdim=False )[1].cpu().tolist()] results.extend(zip(qids, answers)) n_ex += len(qids) val_loss = sum(all_gather_list(val_loss)) tot_score = sum(all_gather_list(tot_score)) n_ex = sum(all_gather_list(n_ex)) tot_time = time()-st val_loss /= n_ex val_acc = tot_score / n_ex val_log = {f'valid/{split}_loss': val_loss, f'valid/{split}_acc': val_acc, f'valid/{split}_ex_per_s': n_ex/tot_time} model.train() LOGGER.info(f"validation finished in {int(tot_time)} seconds, " f"score: {val_acc*100:.2f}") return val_log, results if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--train_txt_db", default=None, type=str, help="The input train corpus. (LMDB)") parser.add_argument("--train_img_dir", default=None, type=str, help="The input train images.") parser.add_argument("--val_txt_db", default=None, type=str, help="The input validation corpus. (LMDB)") parser.add_argument("--val_img_dir", default=None, type=str, help="The input validation images.") parser.add_argument("--test_txt_db", default=None, type=str, help="The input test corpus. (LMDB)") parser.add_argument("--test_img_dir", default=None, type=str, help="The input test images.") parser.add_argument('--compressed_db', action='store_true', help='use compressed LMDB') parser.add_argument("--model_config", default=None, type=str, help="json file for model architecture") parser.add_argument("--checkpoint", default=None, type=str, help="pretrained model") parser.add_argument("--model", default='paired', choices=['paired', 'triplet', 'paired-attn'], help="choose from 2 model architecture") parser.add_argument('--use_img_type', action='store_true', help="expand the type embedding for 2 image types") parser.add_argument( "--output_dir", default=None, type=str, help="The output directory where the model checkpoints will be " "written.") # Prepro parameters parser.add_argument('--max_txt_len', type=int, default=60, help='max number of tokens in text (BERT BPE)') parser.add_argument('--conf_th', type=float, default=0.2, help='threshold for dynamic bounding boxes ' '(-1 for fixed)') parser.add_argument('--max_bb', type=int, default=100, help='max number of bounding boxes') parser.add_argument('--min_bb', type=int, default=10, help='min number of bounding boxes') parser.add_argument('--num_bb', type=int, default=36, help='static number of bounding boxes') # training parameters parser.add_argument("--train_batch_size", default=4096, type=int, help="Total batch size for training. " "(batch by tokens)") parser.add_argument("--val_batch_size", default=4096, type=int, help="Total batch size for validation. " "(batch by tokens)") parser.add_argument('--gradient_accumulation_steps', type=int, default=16, help="Number of updates steps to accumualte before " "performing a backward/update pass.") parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--valid_steps", default=1000, type=int, help="Run validation every X steps") parser.add_argument("--num_train_steps", default=100000, type=int, help="Total number of training updates to perform.") parser.add_argument("--optim", default='adam', choices=['adam', 'adamax', 'adamw'], help="optimizer") parser.add_argument("--betas", default=[0.9, 0.98], nargs='+', type=float, help="beta for adam optimizer") parser.add_argument("--dropout", default=0.1, type=float, help="tune dropout regularization") parser.add_argument("--weight_decay", default=0.0, type=float, help="weight decay (L2) regularization") parser.add_argument("--grad_norm", default=0.25, type=float, help="gradient clipping (-1 for no clipping)") parser.add_argument("--warmup_steps", default=4000, type=int, help="Number of training steps to perform linear " "learning rate warmup for.") # device parameters parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead " "of 32-bit") parser.add_argument('--n_workers', type=int, default=4, help="number of data workers") parser.add_argument('--pin_mem', action='store_true', help="pin memory") # can use config files parser.add_argument('--config', help='JSON config files') args = parse_with_config(parser) if exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError("Output directory ({}) already exists and is not " "empty.".format(args.output_dir)) if args.conf_th == -1: assert args.max_bb + args.max_txt_len + 2 <= 512 else: assert args.num_bb + args.max_txt_len + 2 <= 512 main(args)
42.708738
79
0.558479
6aea56851a7c9a89cd4b7526325ec47769ed1544
2,781
py
Python
sqlalchemy_continuum/operation.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
1
2015-04-25T18:42:22.000Z
2015-04-25T18:42:22.000Z
sqlalchemy_continuum/operation.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
null
null
null
sqlalchemy_continuum/operation.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
null
null
null
from copy import copy try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict import six import sqlalchemy as sa from sqlalchemy_utils import identity class Operation(object): INSERT = 0 UPDATE = 1 DELETE = 2 def __init__(self, target, type): self.target = target self.type = type self.processed = False def __eq__(self, other): return ( self.target == other.target and self.type == other.type ) def __ne__(self, other): return not (self == other) class Operations(object): """ A collection of operations """ def __init__(self): self.objects = OrderedDict() def format_key(self, target): # We cannot use target._sa_instance_state.identity here since object's # identity is not yet updated at this phase return (target.__class__, identity(target)) def __contains__(self, target): return self.format_key(target) in self.objects def __setitem__(self, key, operation): self.objects[key] = operation def __getitem__(self, key): return self.objects[key] def __delitem__(self, key): del self.objects[key] def __bool__(self): return bool(self.objects) def __nonzero__(self): return self.__bool__() @property def entities(self): """ Return a set of changed versioned entities for given session. :param session: SQLAlchemy session object """ return set(key[0] for key, _ in self.iteritems()) def iteritems(self): return six.iteritems(self.objects) def items(self): return self.objects.items() def add(self, operation): self[self.format_key(operation.target)] = operation def add_insert(self, target): if target in self: # If the object is deleted and then inserted within the same # transaction we are actually dealing with an update. self.add(Operation(target, Operation.UPDATE)) else: self.add(Operation(target, Operation.INSERT)) def add_update(self, target): state_copy = copy(sa.inspect(target).committed_state) relationships = sa.inspect(target.__class__).relationships # Remove all ONETOMANY and MANYTOMANY relationships for rel_key, relationship in relationships.items(): if relationship.direction.name in ['ONETOMANY', 'MANYTOMANY']: if rel_key in state_copy: del state_copy[rel_key] if state_copy: self.add(Operation(target, Operation.UPDATE)) def add_delete(self, target): self.add(Operation(target, Operation.DELETE))
27.264706
78
0.636102
e04451c561610a9a456a8bea1c72ed06a4e9f0f0
457
py
Python
OpenCV/1.1.py
Nivedya-27/Autumn-of-Automation
2f645b58d035d6277f7ee0ff77814be812815f6d
[ "MIT" ]
null
null
null
OpenCV/1.1.py
Nivedya-27/Autumn-of-Automation
2f645b58d035d6277f7ee0ff77814be812815f6d
[ "MIT" ]
null
null
null
OpenCV/1.1.py
Nivedya-27/Autumn-of-Automation
2f645b58d035d6277f7ee0ff77814be812815f6d
[ "MIT" ]
null
null
null
import cv2 as cv import numpy as np import sys import os img=cv.imread('test.png') if img is None: sys.exit('could not read the image; check directory') grey=cv.cvtColor(img,cv.COLOR_BGR2GRAY) ret,bw=cv.threshold(grey,127,255,cv.THRESH_BINARY) images=[grey,bw] titles=['grayscale','black and white'] os.makedirs('bw_gray') for i in range(2): cv.imwrite(os.path.join('bw_gray/',(titles[i]+'.png')),images[i]) if cv.waitKey(0)==27: cv.destroyAllWindows()
26.882353
67
0.730853