hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
31b1491cb1218b11a46facdc384274b8e0baf48c
860
py
Python
test/unit/rules/resources/dynamodb/test_billing_mode.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1
2020-05-08T20:12:31.000Z
2020-05-08T20:12:31.000Z
test/unit/rules/resources/dynamodb/test_billing_mode.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
null
null
null
test/unit/rules/resources/dynamodb/test_billing_mode.py
tomislacker/cfn-python-lint
f209ddfef9bcc1a005adfebcfcc16220b18deddb
[ "MIT-0" ]
1
2020-12-01T14:54:28.000Z
2020-12-01T14:54:28.000Z
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from test.unit.rules import BaseRuleTestCase from cfnlint.rules.resources.dynamodb.BillingMode import BillingMode # pylint: disable=E0401 class TestBillingMode(BaseRuleTestCase): """Test BillingMode""" def setUp(self): """Setup""" super(TestBillingMode, self).setUp() self.collection.register(BillingMode()) self.success_templates = [ 'test/fixtures/templates/good/resources/dynamodb/billing_mode.yaml' ] def test_file_positive(self): """Test Positive""" self.helper_file_positive() def test_file_negative_alias(self): """Test failure""" self.helper_file_negative( 'test/fixtures/templates/bad/resources/dynamodb/billing_mode.yaml', 3)
30.714286
93
0.686047
8bd46bb3dd76883746a69195c7e016be18a7828a
36,235
py
Python
src/urllib3/connectionpool.py
perfectykills/urllib3-pyqt5
5d01683120051e78ed46467c1f24649970e82c0a
[ "MIT" ]
null
null
null
src/urllib3/connectionpool.py
perfectykills/urllib3-pyqt5
5d01683120051e78ed46467c1f24649970e82c0a
[ "MIT" ]
null
null
null
src/urllib3/connectionpool.py
perfectykills/urllib3-pyqt5
5d01683120051e78ed46467c1f24649970e82c0a
[ "MIT" ]
null
null
null
from __future__ import absolute_import import errno import logging import sys import warnings from socket import error as SocketError, timeout as SocketTimeout import socket from .exceptions import ( ClosedPoolError, ProtocolError, EmptyPoolError, HeaderParsingError, HostChangedError, LocationValueError, MaxRetryError, ProxyError, ReadTimeoutError, SSLError, TimeoutError, InsecureRequestWarning, NewConnectionError, ) from .packages.ssl_match_hostname import CertificateError from .packages import six from .packages.six.moves import queue from .packages.rfc3986.normalizers import normalize_host from .connection import ( port_by_scheme, DummyConnection, HTTPConnection, HTTPSConnection, VerifiedHTTPSConnection, HTTPException, BaseSSLError, ) from .request import RequestMethods from .response import HTTPResponse from .util.connection import is_connection_dropped from .util.request import set_file_position from .util.response import assert_header_parsing from .util.retry import Retry from .util.timeout import Timeout from .util.url import get_host, Url, NORMALIZABLE_SCHEMES from .util.queue import LifoQueue from PyQt5.QtCore import QObject xrange = six.moves.xrange log = logging.getLogger(__name__) _Default = QObject() # Pool objects class ConnectionPool(QObject): """ Base class for all connection pools, such as :class:`.HTTPConnectionPool` and :class:`.HTTPSConnectionPool`. """ scheme = None QueueCls = LifoQueue def __init__(self, host, port=None): if not host: raise LocationValueError("No host specified.") self.host = _normalize_host(host, scheme=self.scheme) self._proxy_host = host.lower() self.port = port def __str__(self): return "%s(host=%r, port=%r)" % (type(self).__name__, self.host, self.port) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() # Return False to re-raise any potential exceptions return False def close(self): """ Close all pooled connections and disable the pool. """ pass # This is taken from http://hg.python.org/cpython/file/7aaba721ebc0/Lib/socket.py#l252 _blocking_errnos = {errno.EAGAIN, errno.EWOULDBLOCK} class HTTPConnectionPool(ConnectionPool, RequestMethods): """ Thread-safe connection pool for one host. :param host: Host used for this HTTP Connection (e.g. "localhost"), passed into :class:`httplib.HTTPConnection`. :param port: Port used for this HTTP Connection (None is equivalent to 80), passed into :class:`httplib.HTTPConnection`. :param strict: Causes BadStatusLine to be raised if the status line can't be parsed as a valid HTTP/1.0 or 1.1 status line, passed into :class:`httplib.HTTPConnection`. .. note:: Only works in Python 2. This parameter is ignored in Python 3. :param timeout: Socket timeout in seconds for each individual connection. This can be a float or integer, which sets the timeout for the HTTP request, or an instance of :class:`urllib3.util.Timeout` which gives you more fine-grained control over request timeouts. After the constructor has been parsed, this is always a `urllib3.util.Timeout` object. :param maxsize: Number of connections to save that can be reused. More than 1 is useful in multithreaded situations. If ``block`` is set to False, more connections will be created but they will not be saved once they've been used. :param block: If set to True, no more than ``maxsize`` connections will be used at a time. When no free connections are available, the call will block until a connection has been released. This is a useful side effect for particular multithreaded situations where one does not want to use more than maxsize connections per host to prevent flooding. :param headers: Headers to include with all requests, unless other headers are given explicitly. :param retries: Retry configuration to use by default with requests in this pool. :param _proxy: Parsed proxy URL, should not be used directly, instead, see :class:`urllib3.connectionpool.ProxyManager`" :param _proxy_headers: A dictionary with proxy headers, should not be used directly, instead, see :class:`urllib3.connectionpool.ProxyManager`" :param \\**conn_kw: Additional parameters are used to create fresh :class:`urllib3.connection.HTTPConnection`, :class:`urllib3.connection.HTTPSConnection` instances. """ scheme = "http" ConnectionCls = HTTPConnection ResponseCls = HTTPResponse def __init__( self, host, port=None, strict=False, timeout=Timeout.DEFAULT_TIMEOUT, maxsize=1, block=False, headers=None, retries=None, _proxy=None, _proxy_headers=None, **conn_kw ): ConnectionPool.__init__(self, host, port) RequestMethods.__init__(self, headers) self.strict = strict if not isinstance(timeout, Timeout): timeout = Timeout.from_float(timeout) if retries is None: retries = Retry.DEFAULT self.timeout = timeout self.retries = retries self.pool = self.QueueCls(maxsize) self.block = block self.proxy = _proxy self.proxy_headers = _proxy_headers or {} # Fill the queue up so that doing get() on it will block properly for _ in xrange(maxsize): self.pool.put(None) # These are mostly for testing and debugging purposes. self.num_connections = 0 self.num_requests = 0 self.conn_kw = conn_kw if self.proxy: # Enable Nagle's algorithm for proxies, to avoid packet fragmentation. # We cannot know if the user has added default socket options, so we cannot replace the # list. self.conn_kw.setdefault("socket_options", []) def _new_conn(self): """ Return a fresh :class:`HTTPConnection`. """ self.num_connections += 1 log.debug( "Starting new HTTP connection (%d): %s:%s", self.num_connections, self.host, self.port or "80", ) conn = self.ConnectionCls( host=self.host, port=self.port, timeout=self.timeout.connect_timeout, strict=self.strict, **self.conn_kw ) return conn def _get_conn(self, timeout=None): """ Get a connection. Will return a pooled connection if one is available. If no connections are available and :prop:`.block` is ``False``, then a fresh connection is returned. :param timeout: Seconds to wait before giving up and raising :class:`urllib3.exceptions.EmptyPoolError` if the pool is empty and :prop:`.block` is ``True``. """ conn = None try: conn = self.pool.get(block=self.block, timeout=timeout) except AttributeError: # self.pool is None raise ClosedPoolError(self, "Pool is closed.") except queue.Empty: if self.block: raise EmptyPoolError( self, "Pool reached maximum size and no more " "connections are allowed.", ) pass # Oh well, we'll create a new connection then # If this is a persistent connection, check if it got disconnected if conn and is_connection_dropped(conn): log.debug("Resetting dropped connection: %s", self.host) conn.close() if getattr(conn, "auto_open", 1) == 0: # This is a proxied connection that has been mutated by # httplib._tunnel() and cannot be reused (since it would # attempt to bypass the proxy) conn = None return conn or self._new_conn() def _put_conn(self, conn): """ Put a connection back into the pool. :param conn: Connection object for the current host and port as returned by :meth:`._new_conn` or :meth:`._get_conn`. If the pool is already full, the connection is closed and discarded because we exceeded maxsize. If connections are discarded frequently, then maxsize should be increased. If the pool is closed, then the connection will be closed and discarded. """ try: self.pool.put(conn, block=False) return # Everything is dandy, done. except AttributeError: # self.pool is None. pass except queue.Full: # This should never happen if self.block == True log.warning("Connection pool is full, discarding connection: %s", self.host) # Connection never got put back into the pool, close it. if conn: conn.close() def _validate_conn(self, conn): """ Called right before a request is made, after the socket is created. """ pass def _prepare_proxy(self, conn): # Nothing to do for HTTP connections. pass def _get_timeout(self, timeout): """ Helper that always returns a :class:`urllib3.util.Timeout` """ if timeout is _Default: return self.timeout.clone() if isinstance(timeout, Timeout): return timeout.clone() else: # User passed us an int/float. This is for backwards compatibility, # can be removed later return Timeout.from_float(timeout) def _raise_timeout(self, err, url, timeout_value): """Is the error actually a timeout? Will raise a ReadTimeout or pass""" if isinstance(err, SocketTimeout): raise ReadTimeoutError( self, url, "Read timed out. (read timeout=%s)" % timeout_value ) # See the above comment about EAGAIN in Python 3. In Python 2 we have # to specifically catch it and throw the timeout error if hasattr(err, "errno") and err.errno in _blocking_errnos: raise ReadTimeoutError( self, url, "Read timed out. (read timeout=%s)" % timeout_value ) # Catch possible read timeouts thrown as SSL errors. If not the # case, rethrow the original. We need to do this because of: # http://bugs.python.org/issue10272 if "timed out" in str(err) or "did not complete (read)" in str( err ): # Python < 2.7.4 raise ReadTimeoutError( self, url, "Read timed out. (read timeout=%s)" % timeout_value ) def _make_request( self, conn, method, url, timeout=_Default, chunked=False, **httplib_request_kw ): """ Perform a request on a given urllib connection object taken from our pool. :param conn: a connection from one of our connection pools :param timeout: Socket timeout in seconds for the request. This can be a float or integer, which will set the same timeout value for the socket connect and the socket read, or an instance of :class:`urllib3.util.Timeout`, which gives you more fine-grained control over your timeouts. """ self.num_requests += 1 timeout_obj = self._get_timeout(timeout) timeout_obj.start_connect() conn.timeout = timeout_obj.connect_timeout # Trigger any extra validation we need to do. try: self._validate_conn(conn) except (SocketTimeout, BaseSSLError) as e: # Py2 raises this as a BaseSSLError, Py3 raises it as socket timeout. self._raise_timeout(err=e, url=url, timeout_value=conn.timeout) raise # conn.request() calls httplib.*.request, not the method in # urllib3.request. It also calls makefile (recv) on the socket. if chunked: conn.request_chunked(method, url, **httplib_request_kw) else: conn.request(method, url, **httplib_request_kw) # Reset the timeout for the recv() on the socket read_timeout = timeout_obj.read_timeout # App Engine doesn't have a sock attr if getattr(conn, "sock", None): # In Python 3 socket.py will catch EAGAIN and return None when you # try and read into the file pointer created by http.client, which # instead raises a BadStatusLine exception. Instead of catching # the exception and assuming all BadStatusLine exceptions are read # timeouts, check for a zero timeout before making the request. if read_timeout == 0: raise ReadTimeoutError( self, url, "Read timed out. (read timeout=%s)" % read_timeout ) if read_timeout is Timeout.DEFAULT_TIMEOUT: conn.sock.settimeout(socket.getdefaulttimeout()) else: # None or a value conn.sock.settimeout(read_timeout) # Receive the response from the server try: try: # Python 2.7, use buffering of HTTP responses httplib_response = conn.getresponse(buffering=True) except TypeError: # Python 3 try: httplib_response = conn.getresponse() except Exception as e: # Remove the TypeError from the exception chain in Python 3; # otherwise it looks like a programming error was the cause. six.raise_from(e, None) except (SocketTimeout, BaseSSLError, SocketError) as e: self._raise_timeout(err=e, url=url, timeout_value=read_timeout) raise # AppEngine doesn't have a version attr. http_version = getattr(conn, "_http_vsn_str", "HTTP/?") log.debug( '%s://%s:%s "%s %s %s" %s %s', self.scheme, self.host, self.port, method, url, http_version, httplib_response.status, httplib_response.length, ) try: assert_header_parsing(httplib_response.msg) except (HeaderParsingError, TypeError) as hpe: # Platform-specific: Python 3 log.warning( "Failed to parse headers (url=%s): %s", self._absolute_url(url), hpe, exc_info=True, ) return httplib_response def _absolute_url(self, path): return Url(scheme=self.scheme, host=self.host, port=self.port, path=path).url def close(self): """ Close all pooled connections and disable the pool. """ if self.pool is None: return # Disable access to the pool old_pool, self.pool = self.pool, None try: while True: conn = old_pool.get(block=False) if conn: conn.close() except queue.Empty: pass # Done. def is_same_host(self, url): """ Check if the given ``url`` is a member of the same host as this connection pool. """ if url.startswith("/"): return True # TODO: Add optional support for socket.gethostbyname checking. scheme, host, port = get_host(url) if host is not None: host = _normalize_host(host, scheme=scheme) # Use explicit default port for comparison when none is given if self.port and not port: port = port_by_scheme.get(scheme) elif not self.port and port == port_by_scheme.get(scheme): port = None return (scheme, host, port) == (self.scheme, self.host, self.port) def urlopen( self, method, url, body=None, headers=None, retries=None, redirect=True, assert_same_host=True, timeout=_Default, pool_timeout=None, release_conn=None, chunked=False, body_pos=None, **response_kw ): """ Get a connection from the pool and perform an HTTP request. This is the lowest level call for making a request, so you'll need to specify all the raw details. .. note:: More commonly, it's appropriate to use a convenience method provided by :class:`.RequestMethods`, such as :meth:`request`. .. note:: `release_conn` will only behave as expected if `preload_content=False` because we want to make `preload_content=False` the default behaviour someday soon without breaking backwards compatibility. :param method: HTTP request method (such as GET, POST, PUT, etc.) :param body: Data to send in the request body (useful for creating POST requests, see HTTPConnectionPool.post_url for more convenience). :param headers: Dictionary of custom headers to send, such as User-Agent, If-None-Match, etc. If None, pool headers are used. If provided, these headers completely replace any pool-specific headers. :param retries: Configure the number of retries to allow before raising a :class:`~urllib3.exceptions.MaxRetryError` exception. Pass ``None`` to retry until you receive a response. Pass a :class:`~urllib3.util.retry.Retry` object for fine-grained control over different types of retries. Pass an integer number to retry connection errors that many times, but no other types of errors. Pass zero to never retry. If ``False``, then retries are disabled and any exception is raised immediately. Also, instead of raising a MaxRetryError on redirects, the redirect response will be returned. :type retries: :class:`~urllib3.util.retry.Retry`, False, or an int. :param redirect: If True, automatically handle redirects (status codes 301, 302, 303, 307, 308). Each redirect counts as a retry. Disabling retries will disable redirect, too. :param assert_same_host: If ``True``, will make sure that the host of the pool requests is consistent else will raise HostChangedError. When False, you can use the pool on an HTTP proxy and request foreign hosts. :param timeout: If specified, overrides the default timeout for this one request. It may be a float (in seconds) or an instance of :class:`urllib3.util.Timeout`. :param pool_timeout: If set and the pool is set to block=True, then this method will block for ``pool_timeout`` seconds and raise EmptyPoolError if no connection is available within the time period. :param release_conn: If False, then the urlopen call will not release the connection back into the pool once a response is received (but will release if you read the entire contents of the response such as when `preload_content=True`). This is useful if you're not preloading the response's content immediately. You will need to call ``r.release_conn()`` on the response ``r`` to return the connection back into the pool. If None, it takes the value of ``response_kw.get('preload_content', True)``. :param chunked: If True, urllib3 will send the body using chunked transfer encoding. Otherwise, urllib3 will send the body using the standard content-length form. Defaults to False. :param int body_pos: Position to seek to in file-like body in the event of a retry or redirect. Typically this won't need to be set because urllib3 will auto-populate the value when needed. :param \\**response_kw: Additional parameters are passed to :meth:`urllib3.response.HTTPResponse.from_httplib` """ if headers is None: headers = self.headers if not isinstance(retries, Retry): retries = Retry.from_int(retries, redirect=redirect, default=self.retries) if release_conn is None: release_conn = response_kw.get("preload_content", True) # Check host if assert_same_host and not self.is_same_host(url): raise HostChangedError(self, url, retries) conn = None # Track whether `conn` needs to be released before # returning/raising/recursing. Update this variable if necessary, and # leave `release_conn` constant throughout the function. That way, if # the function recurses, the original value of `release_conn` will be # passed down into the recursive call, and its value will be respected. # # See issue #651 [1] for details. # # [1] <https://github.com/shazow/urllib3/issues/651> release_this_conn = release_conn # Merge the proxy headers. Only do this in HTTP. We have to copy the # headers dict so we can safely change it without those changes being # reflected in anyone else's copy. if self.scheme == "http": headers = headers.copy() headers.update(self.proxy_headers) # Must keep the exception bound to a separate variable or else Python 3 # complains about UnboundLocalError. err = None # Keep track of whether we cleanly exited the except block. This # ensures we do proper cleanup in finally. clean_exit = False # Rewind body position, if needed. Record current position # for future rewinds in the event of a redirect/retry. body_pos = set_file_position(body, body_pos) try: # Request a connection from the queue. timeout_obj = self._get_timeout(timeout) conn = self._get_conn(timeout=pool_timeout) conn.timeout = timeout_obj.connect_timeout is_new_proxy_conn = self.proxy is not None and not getattr( conn, "sock", None ) if is_new_proxy_conn: self._prepare_proxy(conn) # Make the request on the httplib connection object. httplib_response = self._make_request( conn, method, url, timeout=timeout_obj, body=body, headers=headers, chunked=chunked, ) # If we're going to release the connection in ``finally:``, then # the response doesn't need to know about the connection. Otherwise # it will also try to release it and we'll have a double-release # mess. response_conn = conn if not release_conn else None # Pass method to Response for length checking response_kw["request_method"] = method # Import httplib's response into our own wrapper object response = self.ResponseCls.from_httplib( httplib_response, pool=self, connection=response_conn, retries=retries, **response_kw ) # Everything went great! clean_exit = True except queue.Empty: # Timed out by queue. raise EmptyPoolError(self, "No pool connections are available.") except ( TimeoutError, HTTPException, SocketError, ProtocolError, BaseSSLError, SSLError, CertificateError, ) as e: # Discard the connection for these exceptions. It will be # replaced during the next _get_conn() call. clean_exit = False if isinstance(e, (BaseSSLError, CertificateError)): e = SSLError(e) elif isinstance(e, (SocketError, NewConnectionError)) and self.proxy: e = ProxyError("Cannot connect to proxy.", e) elif isinstance(e, (SocketError, HTTPException)): e = ProtocolError("Connection aborted.", e) retries = retries.increment( method, url, error=e, _pool=self, _stacktrace=sys.exc_info()[2] ) retries.sleep() # Keep track of the error for the retry warning. err = e finally: if not clean_exit: # We hit some kind of exception, handled or otherwise. We need # to throw the connection away unless explicitly told not to. # Close the connection, set the variable to None, and make sure # we put the None back in the pool to avoid leaking it. conn = conn and conn.close() release_this_conn = True if release_this_conn: # Put the connection back to be reused. If the connection is # expired then it will be None, which will get replaced with a # fresh connection during _get_conn. self._put_conn(conn) if not conn: # Try again log.warning( "Retrying (%r) after connection " "broken by '%r': %s", retries, err, url, ) return self.urlopen( method, url, body, headers, retries, redirect, assert_same_host, timeout=timeout, pool_timeout=pool_timeout, release_conn=release_conn, body_pos=body_pos, **response_kw ) def drain_and_release_conn(response): try: # discard any remaining response body, the connection will be # released back to the pool once the entire response is read response.read() except ( TimeoutError, HTTPException, SocketError, ProtocolError, BaseSSLError, SSLError, ): pass # Handle redirect? redirect_location = redirect and response.get_redirect_location() if redirect_location: if response.status == 303: method = "GET" try: retries = retries.increment(method, url, response=response, _pool=self) except MaxRetryError: if retries.raise_on_redirect: # Drain and release the connection for this response, since # we're not returning it to be released manually. drain_and_release_conn(response) raise return response # drain and return the connection to the pool before recursing drain_and_release_conn(response) retries.sleep_for_retry(response) log.debug("Redirecting %s -> %s", url, redirect_location) return self.urlopen( method, redirect_location, body, headers, retries=retries, redirect=redirect, assert_same_host=assert_same_host, timeout=timeout, pool_timeout=pool_timeout, release_conn=release_conn, body_pos=body_pos, **response_kw ) # Check if we should retry the HTTP response. has_retry_after = bool(response.getheader("Retry-After")) if retries.is_retry(method, response.status, has_retry_after): try: retries = retries.increment(method, url, response=response, _pool=self) except MaxRetryError: if retries.raise_on_status: # Drain and release the connection for this response, since # we're not returning it to be released manually. drain_and_release_conn(response) raise return response # drain and return the connection to the pool before recursing drain_and_release_conn(response) retries.sleep(response) log.debug("Retry: %s", url) return self.urlopen( method, url, body, headers, retries=retries, redirect=redirect, assert_same_host=assert_same_host, timeout=timeout, pool_timeout=pool_timeout, release_conn=release_conn, body_pos=body_pos, **response_kw ) return response class HTTPSConnectionPool(HTTPConnectionPool): """ Same as :class:`.HTTPConnectionPool`, but HTTPS. When Python is compiled with the :mod:`ssl` module, then :class:`.VerifiedHTTPSConnection` is used, which *can* verify certificates, instead of :class:`.HTTPSConnection`. :class:`.VerifiedHTTPSConnection` uses one of ``assert_fingerprint``, ``assert_hostname`` and ``host`` in this order to verify connections. If ``assert_hostname`` is False, no verification is done. The ``key_file``, ``cert_file``, ``cert_reqs``, ``ca_certs``, ``ca_cert_dir``, ``ssl_version``, ``key_password`` are only used if :mod:`ssl` is available and are fed into :meth:`urllib3.util.ssl_wrap_socket` to upgrade the connection socket into an SSL socket. """ scheme = "https" ConnectionCls = HTTPSConnection def __init__( self, host, port=None, strict=False, timeout=Timeout.DEFAULT_TIMEOUT, maxsize=1, block=False, headers=None, retries=None, _proxy=None, _proxy_headers=None, key_file=None, cert_file=None, cert_reqs=None, key_password=None, ca_certs=None, ssl_version=None, assert_hostname=None, assert_fingerprint=None, ca_cert_dir=None, **conn_kw ): HTTPConnectionPool.__init__( self, host, port, strict, timeout, maxsize, block, headers, retries, _proxy, _proxy_headers, **conn_kw ) self.key_file = key_file self.cert_file = cert_file self.cert_reqs = cert_reqs self.key_password = key_password self.ca_certs = ca_certs self.ca_cert_dir = ca_cert_dir self.ssl_version = ssl_version self.assert_hostname = assert_hostname self.assert_fingerprint = assert_fingerprint def _prepare_conn(self, conn): """ Prepare the ``connection`` for :meth:`urllib3.util.ssl_wrap_socket` and establish the tunnel if proxy is used. """ if isinstance(conn, VerifiedHTTPSConnection): conn.set_cert( key_file=self.key_file, key_password=self.key_password, cert_file=self.cert_file, cert_reqs=self.cert_reqs, ca_certs=self.ca_certs, ca_cert_dir=self.ca_cert_dir, assert_hostname=self.assert_hostname, assert_fingerprint=self.assert_fingerprint, ) conn.ssl_version = self.ssl_version return conn def _prepare_proxy(self, conn): """ Establish tunnel connection early, because otherwise httplib would improperly set Host: header to proxy's IP:port. """ conn.set_tunnel(self._proxy_host, self.port, self.proxy_headers) conn.connect() def _new_conn(self): """ Return a fresh :class:`httplib.HTTPSConnection`. """ self.num_connections += 1 log.debug( "Starting new HTTPS connection (%d): %s:%s", self.num_connections, self.host, self.port or "443", ) if not self.ConnectionCls or self.ConnectionCls is DummyConnection: raise SSLError( "Can't connect to HTTPS URL because the SSL " "module is not available." ) actual_host = self.host actual_port = self.port if self.proxy is not None: actual_host = self.proxy.host actual_port = self.proxy.port conn = self.ConnectionCls( host=actual_host, port=actual_port, timeout=self.timeout.connect_timeout, strict=self.strict, cert_file=self.cert_file, key_file=self.key_file, key_password=self.key_password, **self.conn_kw ) return self._prepare_conn(conn) def _validate_conn(self, conn): """ Called right before a request is made, after the socket is created. """ super(HTTPSConnectionPool, self)._validate_conn(conn) # Force connect early to allow us to validate the connection. if not getattr(conn, "sock", None): # AppEngine might not have `.sock` conn.connect() if not conn.is_verified: warnings.warn( ( "Unverified HTTPS request is being made. " "Adding certificate verification is strongly advised. See: " "https://urllib3.readthedocs.io/en/latest/advanced-usage.html" "#ssl-warnings" ), InsecureRequestWarning, ) def connection_from_url(url, **kw): """ Given a url, return an :class:`.ConnectionPool` instance of its host. This is a shortcut for not having to parse out the scheme, host, and port of the url before creating an :class:`.ConnectionPool` instance. :param url: Absolute URL string that must include the scheme. Port is optional. :param \\**kw: Passes additional parameters to the constructor of the appropriate :class:`.ConnectionPool`. Useful for specifying things like timeout, maxsize, headers, etc. Example:: >>> conn = connection_from_url('http://google.com/') >>> r = conn.request('GET', '/') """ scheme, host, port = get_host(url) port = port or port_by_scheme.get(scheme, 80) if scheme == "https": return HTTPSConnectionPool(host, port=port, **kw) else: return HTTPConnectionPool(host, port=port, **kw) def _normalize_host(host, scheme): """ Normalize hosts for comparisons and use with sockets. """ # httplib doesn't like it when we include brackets in IPv6 addresses # Specifically, if we include brackets but also pass the port then # httplib crazily doubles up the square brackets on the Host header. # Instead, we need to make sure we never pass ``None`` as the port. # However, for backward compatibility reasons we can't actually # *assert* that. See http://bugs.python.org/issue28539 if host.startswith("[") and host.endswith("]"): host = host.strip("[]") if scheme in NORMALIZABLE_SCHEMES: host = normalize_host(host) return host
34.841346
99
0.59368
a84fd3572717a7c1126090679403169e719ec280
2,673
py
Python
research/object_detection/tpu_exporters/export_saved_model_tpu_lib_tf1_test.py
hjkim-haga/TF-OD-API
22ac477ff4dfb93fe7a32c94b5f0b1e74330902b
[ "Apache-2.0" ]
1
2021-05-22T12:50:50.000Z
2021-05-22T12:50:50.000Z
object_detection/tpu_exporters/export_saved_model_tpu_lib_tf1_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
object_detection/tpu_exporters/export_saved_model_tpu_lib_tf1_test.py
DemonDamon/mask-detection-based-on-tf2odapi
192ae544169c1230c21141c033800aa1bd94e9b6
[ "MIT" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for object detection's TPU exporter.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import unittest from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from object_detection.tpu_exporters import export_saved_model_tpu_lib from object_detection.utils import tf_version flags = tf.app.flags FLAGS = flags.FLAGS def get_path(path_suffix): return os.path.join(tf.resource_loader.get_data_files_path(), 'testdata', path_suffix) @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.') class ExportSavedModelTPUTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('ssd', get_path('ssd/ssd_pipeline.config'), 'image_tensor', True, 20), ('faster_rcnn', get_path('faster_rcnn/faster_rcnn_resnet101_atrous_coco.config'), 'image_tensor', True, 20)) def testExportAndLoad(self, pipeline_config_file, input_type='image_tensor', use_bfloat16=False, repeat=1): input_placeholder_name = 'placeholder_tensor' export_dir = os.path.join(FLAGS.test_tmpdir, 'tpu_saved_model') if tf.gfile.Exists(export_dir): tf.gfile.DeleteRecursively(export_dir) ckpt_path = None export_saved_model_tpu_lib.export(pipeline_config_file, ckpt_path, export_dir, input_placeholder_name, input_type, use_bfloat16) inputs = np.random.rand(256, 256, 3) tensor_dict_out = export_saved_model_tpu_lib.run_inference_from_saved_model( inputs, export_dir, input_placeholder_name, repeat) for k, v in tensor_dict_out.items(): tf.logging.info('{}: {}'.format(k, v)) if __name__ == '__main__': tf.test.main()
37.125
81
0.668911
8540a505322d5f71a92064fee9061673c674b5d3
106
py
Python
sparv/modules/saldo/__init__.py
heatherleaf/sparv-pipeline
0fe5f27d0d82548ecc6cb21a69289668aac54cf1
[ "MIT" ]
17
2018-09-21T07:01:45.000Z
2022-02-24T23:26:49.000Z
sparv/modules/saldo/__init__.py
heatherleaf/sparv-pipeline
0fe5f27d0d82548ecc6cb21a69289668aac54cf1
[ "MIT" ]
146
2018-11-13T19:13:25.000Z
2022-03-31T09:57:56.000Z
sparv/modules/saldo/__init__.py
heatherleaf/sparv-pipeline
0fe5f27d0d82548ecc6cb21a69289668aac54cf1
[ "MIT" ]
5
2019-02-14T00:50:38.000Z
2021-03-29T15:37:41.000Z
"""SALDO-related annotations.""" from . import compound, nst_comp_model, saldo, saldo_model, stats_model
26.5
71
0.773585
784fee27ec83c80903d6becec35fc6273d1f861c
5,514
py
Python
tests/gold_tests/logging/log-filter.test.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
null
null
null
tests/gold_tests/logging/log-filter.test.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
null
null
null
tests/gold_tests/logging/log-filter.test.py
zhaorun/trafficserver
757256129811441f29eea288b1d7e19bc54fab9c
[ "Apache-2.0" ]
null
null
null
''' ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os Test.Summary = ''' Test log filter. ''' # Only on Linux (why??) Test.SkipUnless( Condition.IsPlatform("linux") ) # Define default ATS ts = Test.MakeATSProcess("ts") # Microserver server = Test.MakeOriginServer("server") request_header = {'timestamp': 100, "headers": "GET /test-1 HTTP/1.1\r\nHost: test-1\r\n\r\n", "body": ""} response_header = {'timestamp': 100, "headers": "HTTP/1.1 200 OK\r\nTest: 1\r\nContent-Type: application/json\r\nConnection: close\r\nContent-Type: application/json\r\n\r\n", "body": "Test 1"} server.addResponse("sessionlog.json", request_header, response_header) server.addResponse("sessionlog.json", {'timestamp': 101, "headers": "GET /test-2 HTTP/1.1\r\nHost: test-2\r\n\r\n", "body": ""}, {'timestamp': 101, "headers": "HTTP/1.1 200 OK\r\nTest: 2\r\nContent-Type: application/jason\r\nConnection: close\r\nContent-Type: application/json\r\n\r\n", "body": "Test 2"} ) server.addResponse("sessionlog.json", {'timestamp': 102, "headers": "GET /test-3 HTTP/1.1\r\nHost: test-3\r\n\r\n", "body": ""}, {'timestamp': 102, "headers": "HTTP/1.1 200 OK\r\nTest: 3\r\nConnection: close\r\nContent-Type: application/json\r\n\r\n", "body": "Test 3"} ) server.addResponse("sessionlog.json", {'timestamp': 103, "headers": "GET /test-4 HTTP/1.1\r\nHost: test-4\r\n\r\n", "body": ""}, {'timestamp': 103, "headers": "HTTP/1.1 200 OK\r\nTest: 4\r\nConnection: close\r\nContent-Type: application/json\r\n\r\n", "body": "Test 4"} ) server.addResponse("sessionlog.json", {'timestamp': 104, "headers": "GET /test-5 HTTP/1.1\r\nHost: test-5\r\n\r\n", "body": ""}, {'timestamp': 104, "headers": "HTTP/1.1 200 OK\r\nTest: 5\r\nConnection: close\r\nContent-Type: application/json\r\n\r\n", "body": "Test 5"} ) ts.Disk.records_config.update({ 'proxy.config.net.connections_throttle': 100, 'proxy.config.http.cache.http': 0 }) # setup some config file for this server ts.Disk.remap_config.AddLine( 'map / http://localhost:{}/'.format(server.Variables.Port) ) ts.Disk.logging_yaml.AddLines( ''' logging: filters: - name: queryparamescaper_cquuc action: WIPE_FIELD_VALUE condition: cquuc CASE_INSENSITIVE_CONTAIN password,secret,access_token,session_redirect,cardNumber,code,query,search-query,prefix,keywords,email,handle formats: - name: custom format: '%<cquuc>' logs: - filename: filter-test format: custom filters: - queryparamescaper_cquuc '''.split("\n") ) # ######################################################################### # at the end of the different test run a custom log file should exist # Because of this we expect the testruns to pass the real test is if the # customlog file exists and passes the format check Test.Disk.File(os.path.join(ts.Variables.LOGDIR, 'filter-test.log'), exists=True, content='gold/filter-test.gold') # first test is a miss for default tr = Test.AddTestRun() # Wait for the micro server tr.Processes.Default.StartBefore(server) # Delay on readiness of our ssl ports tr.Processes.Default.StartBefore(Test.Processes.ts) tr.Processes.Default.Command = 'curl --verbose --header "Host: test-1" "http://localhost:{0}/test-1?name=value&email=123@gmail.com"' .format( ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr = Test.AddTestRun() tr.Processes.Default.Command = 'curl --verbose --header "Host: test-2" "http://localhost:{0}/test-2?email=123@gmail.com&name=password"' .format( ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr = Test.AddTestRun() tr.Processes.Default.Command = 'curl --verbose --header "Host: test-3" "http://localhost:{0}/test-3?trivial=password&name1=val1&email=123@gmail.com"' .format( ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr = Test.AddTestRun() tr.Processes.Default.Command = 'curl --verbose --header "Host: test-4" "http://localhost:{0}/test-4?trivial=password&email=&name=handle&session_redirect=wiped_string"' .format( ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr = Test.AddTestRun() tr.Processes.Default.Command = 'curl --verbose --header "Host: test-5" "http://localhost:{0}/test-5?trivial=password&email=123@gmail.com&email=456@gmail.com&session_redirect=wiped_string&email=789@gmail.com&name=value"' .format( ts.Variables.port) tr.Processes.Default.ReturnCode = 0 tr = Test.AddTestRun() tr.DelayStart = 10 tr.Processes.Default.Command = 'echo "Delay for log flush"' tr.Processes.Default.ReturnCode = 0
44.112
228
0.673558
4c752c722ef9f3bd15c73d4917e51758c0eb8e2c
2,157
py
Python
source/conf.py
junisky/doc
a5a8b65edfb6466677ea36d88f864c93fa8a5df9
[ "MIT" ]
null
null
null
source/conf.py
junisky/doc
a5a8b65edfb6466677ea36d88f864c93fa8a5df9
[ "MIT" ]
null
null
null
source/conf.py
junisky/doc
a5a8b65edfb6466677ea36d88f864c93fa8a5df9
[ "MIT" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'junisky' copyright = '2021, junisky' author = 'junisky' # The full version, including alpha/beta/rc tags release = '1.0' # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = 'ko' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
34.238095
79
0.676866
1e18c69a09a301223512c5ea1a53991e7dcb044a
1,039
py
Python
Python/queue-reconstruction-by-height.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
1
2020-10-27T03:22:31.000Z
2020-10-27T03:22:31.000Z
Python/queue-reconstruction-by-height.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
null
null
null
Python/queue-reconstruction-by-height.py
se77enn/LeetCode-Solution
d29ef5358cae592b63952c3d293897a176fb75e1
[ "MIT" ]
1
2021-03-22T18:58:23.000Z
2021-03-22T18:58:23.000Z
# Time: O(n * sqrt(n)) # Space: O(n) class Solution(object): def reconstructQueue(self, people): """ :type people: List[List[int]] :rtype: List[List[int]] """ people.sort(key=lambda h_k: (-h_k[0], h_k[1])) blocks = [[]] for p in people: index = p[1] for i, block in enumerate(blocks): if index <= len(block): break index -= len(block) block.insert(index, p) if len(block) * len(block) > len(people): blocks.insert(i+1, block[len(block)/2:]) del block[len(block)/2:] return [p for block in blocks for p in block] class Solution2(object): def reconstructQueue(self, people): """ :type people: List[List[int]] :rtype: List[List[int]] """ people.sort(key=lambda h_k1: (-h_k1[0], h_k1[1])) result = [] for p in people: result.insert(p[1], p) return result
25.975
57
0.485082
f8d454c48db24502fc7410180cd849711f08c44b
171
py
Python
chat/routing.py
hamraa/channels-demo
9bcc3395bdc8062f55ef15052be1d2a5b8af2631
[ "MIT" ]
1
2022-01-06T16:57:48.000Z
2022-01-06T16:57:48.000Z
chat/routing.py
hamraa/channels-demo
9bcc3395bdc8062f55ef15052be1d2a5b8af2631
[ "MIT" ]
null
null
null
chat/routing.py
hamraa/channels-demo
9bcc3395bdc8062f55ef15052be1d2a5b8af2631
[ "MIT" ]
null
null
null
from django.urls import re_path from . import consumers websocket_urlpatterns = [ re_path(r'ws/chat/(?P<room_name>\w+)/$', consumers.AsyncChatConsumer.as_asgi()), ]
21.375
84
0.730994
b57a883822ff08ece5dc8d8a11d0eb4d087db883
13,496
py
Python
students/models.py
tnemisteam/cdf-steps
78896eebd08ba9975a2dece97f73dca9aa781238
[ "MIT" ]
null
null
null
students/models.py
tnemisteam/cdf-steps
78896eebd08ba9975a2dece97f73dca9aa781238
[ "MIT" ]
null
null
null
students/models.py
tnemisteam/cdf-steps
78896eebd08ba9975a2dece97f73dca9aa781238
[ "MIT" ]
null
null
null
from django.db import models from django.db.models.fields import * from baseapp.models import * import caching.base from imagekit.models import ProcessedImageField from imagekit.processors import ResizeToFill from django.db.models.signals import post_save, post_delete from imagekit import ImageSpec, register from imagekit.processors import ResizeToFill from django.conf import settings as django_settings import os from django.core.exceptions import ValidationError class Thumbnail(ImageSpec): processors = [ResizeToFill(150, 150)] format = 'JPEG' options = {'quality': 60} register.generator('students:thumbnail', Thumbnail) class Child_detail(caching.base.CachingMixin, models.Model): def save(self): if not self.unique_id_no: self.unique_id_no = ( self.school.school_code * 100000) + ( self.school.student_id_count + 1) super(Child_detail, self).save() def validate_image(fieldfile_obj): filesize = fieldfile_obj.file.size kb_limit = 50 Kilobyte_limit = 1024 *50 if filesize > Kilobyte_limit: raise ValidationError("Max file size is %sKB" % str(kb_limit)) def get_path(instance, filename): import random import string random=''.join([random.choice(string.ascii_letters + string.digits) for n in xrange(32)]) extension = filename.split('.')[-1] a = instance.block.block_name.replace(" ", ".") a.replace("(", '_') a.replace(")", '_') try: child = Child_detail.objects.get(unique_id_no=instance.unique_id_no) path=django_settings.MEDIA_ROOT+"/"+str(child.photograph) os.remove(path) except: pass dir = "images/child_pics/%s/%s" % (a, instance.school.school_code) name = str(instance.unique_id_no)+"_"+random return "%s/%s.%s" % (dir, name, extension) name = models.CharField(default='', max_length=200) name_tamil = models.CharField(default='', max_length=200,blank=True, null=True) aadhaar_id = models.CharField(max_length=3) aadhaar_eid_number = models.CharField(max_length=50,blank=True, null=True) aadhaar_uid_number = models.BigIntegerField(blank=True, null=True) photograph = ProcessedImageField(upload_to=get_path, processors=[ResizeToFill(200, 200)], format='JPEG', options={'quality': 60}, blank=True, null=True, validators=[validate_image]) photo = ProcessedImageField(upload_to=get_path, processors=[ResizeToFill(125, 125)], format='JPEG', options={'quality': 60}, blank=True, null=True, ) gender = models.CharField(max_length=15) dob = models.DateField(default='1990-01-01') community = models.ForeignKey(Community,blank=True,null=True) community_certificate = models.CharField(max_length=3,blank=True,null=True) community_certificate_no = models.CharField(max_length=200,blank=True,null=True) community_certificate_date = models.DateField(blank=True,null=True,default='1990-01-01') nativity_certificate = models.CharField(max_length=3,blank=True,null=True) religion = models.ForeignKey(Religion) mothertounge = models.ForeignKey(Language) phone_number = BigIntegerField(default=0, blank=True, null=True) email = models.CharField(max_length=100, blank=True, null=True) child_differently_abled = models.CharField(max_length=3) differently_abled = models.CharField(max_length=1000,blank=True,null=True) child_admitted_under_reservation = models.CharField(max_length=3,blank=True,null=True) weaker_section = models.CharField(max_length=3) weaker_section_income_certificate_no = models.CharField(max_length=200,blank=True,null=True) child_disadvantaged_group = models.CharField(max_length=3,blank=True,null=True) disadvantaged_group = models.CharField(max_length=1000,blank=True,null=True) subcaste = ChainedForeignKey(Sub_Castes, chained_field='community', chained_model_field='community', auto_choose=True, blank=True, null=True) nationality = models.ForeignKey(Nationality) child_status = models.CharField(max_length=200,blank=True, null=True) house_address = models.CharField(default='', max_length=1000,blank=True, null=True) native_district = models.CharField(max_length=50, blank=True, null=True) pin_code = models.PositiveIntegerField(default=6, blank=True, null=True) blood_group = models.CharField(max_length=10, blank=True, null=True) height = models.PositiveIntegerField(max_length=3, default=0, blank=True, null=True) weight = models.PositiveIntegerField(default=0, blank=True, null=True) mother_name = models.CharField(default='', max_length=100, blank=True, null=True) mother_occupation = models.CharField(max_length=50, blank=True, null=True) father_name = models.CharField(default='', max_length=100, blank=True, null=True) father_occupation = models.CharField(max_length=50, blank=True, null=True) parent_income = models.PositiveIntegerField(default=0, blank=True, null=True) guardian_name = models.CharField(default='', max_length=100, blank=True, null=True) class_studying = models.ForeignKey(Class_Studying) class_section = models.CharField(max_length=30) group_code = models.ForeignKey(Group_code, blank=True, null=True) attendance_status = models.CharField(max_length=30, blank=True, null=True) sport_participation = models.CharField(max_length=20, blank=True, null=True) laptop_issued = models.CharField(max_length=3,blank=True,null=True) laptop_slno = models.CharField(max_length=200,blank=True,null=True) education_medium = models.ForeignKey(Education_medium) state = models.ForeignKey(State) district = models.ForeignKey(District) block = models.ForeignKey(Block) unique_id_no = models.BigIntegerField(blank=True, null=True) school = models.ForeignKey(School) staff_id = models.CharField(max_length=30) student_admitted_section = models.CharField(max_length=100,blank=True, null=True) school_admission_no = models.CharField(max_length=100) bank = models.ForeignKey(Bank, blank=True, null=True) bank_account_no = models.BigIntegerField(default='', blank=True, null=True) bank_ifsc_code = models.BigIntegerField(default='', blank=True, null=True) sports_player = models.CharField(max_length=3) sports_name = models.CharField(max_length=1000,blank=True,null=True) # govt_schemes_status = models.CharField(max_length=5) schemes = models.CharField(max_length=1000,blank=True,null=True) academic_year = models.ForeignKey(Academic_Year) scholarship_from_other_source = models.CharField(max_length=3) scholarship_details = models.CharField(max_length=1000,blank=True,null=True) scholarship_other_details = models.CharField(max_length=1000,blank=True,null=True) bus_pass = models.CharField(max_length=3) bus_from_route = models.CharField(max_length=50,blank=True,null=True) bus_to_route = models.CharField(max_length=50,blank=True,null=True) bus_route_no = models.CharField(max_length=5,blank=True,null=True) transfer_flag = models.PositiveIntegerField( default=0, blank=True, null=True) transfer_date = models.DateField(blank=True, null=True) nutritious_meal_flag = models.CharField(default='', max_length=5, blank=True, null=True) modification_flag = models.PositiveIntegerField( default=0, blank=True, null=True) verification_flag = models.PositiveIntegerField( default=0, blank=True, null=True) created_date = models.DateTimeField(auto_now_add=True, editable=False) modified_date = models.DateTimeField(auto_now=True) objects = caching.base.CachingManager() # history = HistoricalRecords() def __unicode__(self): return u'%s %s %s %s' % (self.unique_id_no, self.name, self.staff_id, self.verification_flag) class Child_family_detail(caching.base.CachingMixin, models.Model): child_key = models.ForeignKey(Child_detail) si_no = models.PositiveIntegerField() block = models.ForeignKey(Block) sibling_name = models.CharField(max_length=50) sibling_relationship = models.CharField(max_length=20) sibling_age = models.IntegerField(max_length=3) sibling_status = models.CharField(max_length=50, blank=True, null=True) sibling_studying = models.CharField(max_length=50, blank=True, null=True) sibling_studying_same_school = models.CharField(max_length=3) staff_id = models.CharField(max_length=30) created_date = models.DateTimeField(auto_now_add=True, editable=False) modified_date = models.DateTimeField(auto_now=True) # history = HistoricalRecords() objects = caching.base.CachingManager() def __unicode__(self): return u'%s %s' % (self.child_key, self.sibling_name) """ Model for Old school """ class Child_Transfer_History(models.Model): child_key = models.ForeignKey(Child_detail) old_school = models.ForeignKey(School) tc_issue_date = models.DateField() created_date = models.DateTimeField(auto_now_add=True, editable=False) modified_date = models.DateTimeField(auto_now=True) # history = HistoricalRecords() # objects = caching.base.CachingManager() def __unicode__(self): return u'%s %s' % (self.child_key, self.old_school) def ensure_stud_count_increase(sender, instance, **kwargs): if kwargs.get('created', True): school = School.objects.get( school_code=instance.school.school_code) school.student_id_count += 1 school.save() post_save.connect(ensure_stud_count_increase, sender=Child_detail) """ Model for school child count """ class School_child_count(models.Model): school = models.ForeignKey(School) one = models.PositiveIntegerField() two = models.PositiveIntegerField() three = models.PositiveIntegerField() four = models.PositiveIntegerField() five = models.PositiveIntegerField() six = models.PositiveIntegerField() seven = models.PositiveIntegerField() eight = models.PositiveIntegerField() nine = models.PositiveIntegerField() ten = models.PositiveIntegerField() eleven = models.PositiveIntegerField() twelve = models.PositiveIntegerField() total_count = models.PositiveIntegerField() def school_child_count_increase(sender, instance, **kwargs): # import ipdb;ipdb.set_trace() if kwargs.get('created', True): try: child = School_child_count.objects.get(school=instance.school) except School_child_count.DoesNotExist: child=School_child_count.objects.create(school=instance.school,one=0,two=0,three=0,four=0,five=0,six=0,seven=0,eight=0,nine=0,ten=0,eleven=0,twelve=0,total_count=0) class_studying= instance.class_studying if str(class_studying)=='I': child.one += 1 elif str(class_studying)=='II': child.two += 1 elif str(class_studying)=='III': child.three += 1 elif str(class_studying)=='IV': child.four += 1 elif str(class_studying)=='V': child.five += 1 elif str(class_studying)=='VI': child.six += 1 elif str(class_studying)=='VII': child.seven += 1 elif str(class_studying)=='VIII': child.eight += 1 elif str(class_studying)=='IX': child.nine+= 1 elif str(class_studying)=='X': child.ten += 1 elif str(class_studying)=='XI': child.eleven += 1 elif str(class_studying)=='XII': child.twelve += 1 child.total_count += 1 child.save() post_save.connect(school_child_count_increase, sender=Child_detail) def school_child_count_decrease(sender, instance, **kwargs): child = School_child_count.objects.get(school=instance.school) class_studying= instance.class_studying if str(class_studying)=='I': child.one -=1 elif str(class_studying)=='II': child.two -=1 elif str(class_studying)=='III': child.three -=1 elif str(class_studying)=='IV': child.four -=1 elif str(class_studying)=='V': child.five -=1 elif str(class_studying)=='VI': child.six -=1 elif str(class_studying)=='VII': child.seven -=1 elif str(class_studying)=='VIII': child.eight -=1 elif str(class_studying)=='IX': child.nine-=1 elif str(class_studying)=='X': child.ten -=1 elif str(class_studying)=='XI': child.eleven -=1 elif str(class_studying)=='XII': child.twelve -=1 child.total_count -= 1 child.save() post_delete.connect(school_child_count_decrease, sender=Child_detail) """ Model for Parent's Annual Income """ class Parent_annual_income(models.Model): income = models.CharField(max_length=50)
43.118211
176
0.679238
d0c12fcc98685367ba3a03554e853f2875656c14
5,814
py
Python
server-py/room.py
pwmarcz/minefield
f4055da45251b79185d26fff7de7ccb153b5c171
[ "MIT" ]
22
2015-03-22T21:36:57.000Z
2021-11-08T12:37:33.000Z
server-py/room.py
pwmarcz/minefield
f4055da45251b79185d26fff7de7ccb153b5c171
[ "MIT" ]
10
2015-03-22T20:21:07.000Z
2021-05-09T09:59:02.000Z
server-py/room.py
pwmarcz/minefield
f4055da45251b79185d26fff7de7ccb153b5c171
[ "MIT" ]
6
2015-03-26T04:23:13.000Z
2021-04-06T05:55:12.000Z
import unittest import logging from game import Game from utils import make_key logger = logging.getLogger('room') class Room(object): def __init__(self, nicks=['P1', 'P2'], game_class=Game): self.game = game_class(callback=self.send_to_player) self.nicks = nicks self.players = [None, None] self.messages = [[], []] self.keys = self.make_keys() self.aborted = False self.id = None def init_from_data(self, data): self.game = Game.from_data(data['game'], callback=self.send_to_player) del data['game'] self.players = [None, None] super(Room, self).init_from_data(data) def start_game(self): logger.info('[room %s] starting', self.id) self.game.start() def make_keys(self): return (make_key(), make_key()) def send_to_player(self, idx, msg_type, **msg): self.messages[idx].append((msg_type, msg)) if self.players[idx]: logger.info('[room %s] send to %d: %s %r', self.id, idx, msg_type, msg) self.players[idx].send(msg_type, **msg) def add_player(self, idx, player, n_received=0): assert not self.players[idx] self.players[idx] = player player.set_room(self, idx) self.replay_messages(idx, n_received) def remove_player(self, idx): self.players[idx] = None def replay_messages(self, idx, n_received): messages = self.messages[idx] for msg_type, msg in messages[n_received:]: # we don't replay move info, only send the last one to the player if msg_type in ['start_move', 'end_move']: continue logger.info('[room %s] replay to %d: %s %r', self.id, idx, msg_type, msg) self.players[idx].send('replay', msg={'type': msg_type, **msg}) self.game.send_move(idx) def send_to_game(self, idx, msg_type, **msg): logger.info('[room %s] receive from %d: %s %r', self.id, idx, msg_type, msg) try: handler = getattr(self.game, 'on_'+msg_type) handler(idx, **msg) except: logger.exception('exception after receiving') self.abort() def beat(self): if self.finished: return try: self.game.beat() except: logger.exception('exception in beat') self.abort() def abort(self): self.aborted = True for idx in range(2): if self.players[idx]: self.players[idx].shutdown() @property def finished(self): return self.aborted or self.game.finished class RoomTest(unittest.TestCase): class MockGame(object): def __init__(self, nicks=None, east=None, callback=None): self.callback = callback self.started = False def start(self): assert not self.started self.started = True def on_ping(self, idx, **msg): self.callback(1-idx, 'pong', **msg) def on_crash(self, idx, **msg): raise RuntimeError('crashed') def send_move(self, idx): pass class MockPlayer(object): def __init__(self): self.messages = [] self.finished = False self.room = None self.idx = None def send(self, msg_type, **msg): self.messages.append((msg_type, msg)) def shutdown(self): self.finished = True def set_room(self, room, idx): self.room = room self.idx = idx def create_room(self, players=[None, None]): room = Room(game_class=self.MockGame) for idx, player in enumerate(players): if player: room.add_player(idx, player) room.start_game() return room def test_create(self): room = self.create_room() self.assertIsInstance(room.game, self.MockGame) self.assertTrue(room.game.started) def test_send_immediately(self): player0 = self.MockPlayer() room = self.create_room([player0, None]) room.game.callback(0, 'ping_0') self.assertEquals(len(player0.messages), 1) self.assertEquals(player0.messages[0][0], 'ping_0') player1 = self.MockPlayer() room.add_player(1, player1) room.game.callback(1, 'ping_1') self.assertEquals(len(player1.messages), 1) self.assertEquals(player1.messages[0][0], 'ping_1') def test_replay_after_connect(self): room = self.create_room() room.game.callback(0, 'a') room.game.callback(0, 'b') room.game.callback(1, 'c') room.game.callback(1, 'd') room.game.callback(0, 'e') player0 = self.MockPlayer() room.add_player(0, player0, n_received=1) self.assertEquals(len(player0.messages), 2) self.assertEquals(player0.messages[0], ('replay', {'msg': {'type': 'b'}})) self.assertEquals(player0.messages[1], ('replay', {'msg': {'type': 'e'}})) def test_send_to_game(self): player0 = self.MockPlayer() player1 = self.MockPlayer() room = self.create_room([player0, player1]) room.send_to_game(1, 'ping') self.assertEquals(len(player0.messages), 1) self.assertEquals(player0.messages[0][0], 'pong') def test_send_and_crash(self): player0 = self.MockPlayer() player1 = self.MockPlayer() room = self.create_room([player0, player1]) room.send_to_game(0, 'crash') self.assertTrue(player0.finished) self.assertTrue(player1.finished) if __name__ == '__main__': #logging.basicConfig(level=logging.INFO, format='[%(levelname)s] %(name)s: %(message)s') unittest.main()
31.427027
92
0.586171
50194a34ec8b1f5aefa20e42f423939adafc4627
365
py
Python
Pics/migrations/0007_auto_20191013_1408.py
IreneMercy/Instapic
98e3f48bffbc7c182cecb5460972872865f6e336
[ "MIT" ]
null
null
null
Pics/migrations/0007_auto_20191013_1408.py
IreneMercy/Instapic
98e3f48bffbc7c182cecb5460972872865f6e336
[ "MIT" ]
8
2019-12-05T00:36:46.000Z
2022-02-10T10:32:41.000Z
Pics/migrations/0007_auto_20191013_1408.py
IreneMercy/Instapic
98e3f48bffbc7c182cecb5460972872865f6e336
[ "MIT" ]
1
2020-07-05T19:24:28.000Z
2020-07-05T19:24:28.000Z
# Generated by Django 2.2 on 2019-10-13 11:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Pics', '0006_auto_20191013_1405'), ] operations = [ migrations.RenameField( model_name='profile', old_name='image', new_name='profile_photo', ), ]
19.210526
45
0.589041
a07b2632346dbd2688db31cea1a1ec4f24dec322
613
py
Python
Python/tests.py
ayan59dutta/Small-Scripts
b560d7800445ee1f35d23eaf92900b87a902b238
[ "Unlicense" ]
2
2018-04-13T18:41:47.000Z
2021-11-19T13:20:06.000Z
Python/tests.py
ayan59dutta/Small-Scripts
b560d7800445ee1f35d23eaf92900b87a902b238
[ "Unlicense" ]
4
2018-03-29T17:12:35.000Z
2018-04-13T18:57:16.000Z
Python/tests.py
ayan59dutta/Small-Scripts
b560d7800445ee1f35d23eaf92900b87a902b238
[ "Unlicense" ]
2
2018-03-30T13:22:50.000Z
2019-10-24T18:57:18.000Z
#!/usr/bin/env python3 import unittest # Imports for caesar.py tests from caesar import decrypt from caesar import encrypt # Unit Tests for caesar.py class CaesarTest(unittest.TestCase): def test_decrypt_key(self): self.assertEqual('I am a good boy', encrypt('L dp d jrrg erb',-3)) def test_encrypt(self): self.assertEqual('L dp d jrrg erb', encrypt('I am a good boy', 3)) def test_decrypt_big(self): self.assertEqual('THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG', decrypt('QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD')) if __name__ == '__main__': unittest.main()
24.52
127
0.696574
98da3f35ef2deccde2028103bca8757b28a3af36
222
py
Python
watchdog_kj_kultura/organizations/apps.py
watchdogpolska/watchdog-kj-kultura
ea1a5c52ef2a174c012cc08eff5fdd7aa3b911b0
[ "MIT" ]
null
null
null
watchdog_kj_kultura/organizations/apps.py
watchdogpolska/watchdog-kj-kultura
ea1a5c52ef2a174c012cc08eff5fdd7aa3b911b0
[ "MIT" ]
138
2016-12-10T19:18:18.000Z
2019-06-10T19:32:40.000Z
watchdog_kj_kultura/organizations/apps.py
watchdogpolska/watchdog-kj-kultura
ea1a5c52ef2a174c012cc08eff5fdd7aa3b911b0
[ "MIT" ]
null
null
null
from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ class OrganizationsConfig(AppConfig): name = 'watchdog_kj_kultura.organizations' verbose_name = _("Organizations module")
27.75
55
0.801802
3d35e5e000a6bb40f519026206eee82216e1b4e0
4,694
py
Python
sdk/logic/azure-mgmt-logic/azure/mgmt/logic/models/edifact_delimiter_override_py3.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/logic/azure-mgmt-logic/azure/mgmt/logic/models/edifact_delimiter_override_py3.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
226
2019-07-24T07:57:21.000Z
2019-10-15T01:07:24.000Z
sdk/logic/azure-mgmt-logic/azure/mgmt/logic/models/edifact_delimiter_override_py3.py
iscai-msft/azure-sdk-for-python
83715b95c41e519d5be7f1180195e2fba136fc0f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class EdifactDelimiterOverride(Model): """The Edifact delimiter override settings. All required parameters must be populated in order to send to Azure. :param message_id: The message id. :type message_id: str :param message_version: The message version. :type message_version: str :param message_release: The message release. :type message_release: str :param data_element_separator: Required. The data element separator. :type data_element_separator: int :param component_separator: Required. The component separator. :type component_separator: int :param segment_terminator: Required. The segment terminator. :type segment_terminator: int :param repetition_separator: Required. The repetition separator. :type repetition_separator: int :param segment_terminator_suffix: Required. The segment terminator suffix. Possible values include: 'NotSpecified', 'None', 'CR', 'LF', 'CRLF' :type segment_terminator_suffix: str or ~azure.mgmt.logic.models.SegmentTerminatorSuffix :param decimal_point_indicator: Required. The decimal point indicator. Possible values include: 'NotSpecified', 'Comma', 'Decimal' :type decimal_point_indicator: str or ~azure.mgmt.logic.models.EdifactDecimalIndicator :param release_indicator: Required. The release indicator. :type release_indicator: int :param message_association_assigned_code: The message association assigned code. :type message_association_assigned_code: str :param target_namespace: The target namespace on which this delimiter settings has to be applied. :type target_namespace: str """ _validation = { 'data_element_separator': {'required': True}, 'component_separator': {'required': True}, 'segment_terminator': {'required': True}, 'repetition_separator': {'required': True}, 'segment_terminator_suffix': {'required': True}, 'decimal_point_indicator': {'required': True}, 'release_indicator': {'required': True}, } _attribute_map = { 'message_id': {'key': 'messageId', 'type': 'str'}, 'message_version': {'key': 'messageVersion', 'type': 'str'}, 'message_release': {'key': 'messageRelease', 'type': 'str'}, 'data_element_separator': {'key': 'dataElementSeparator', 'type': 'int'}, 'component_separator': {'key': 'componentSeparator', 'type': 'int'}, 'segment_terminator': {'key': 'segmentTerminator', 'type': 'int'}, 'repetition_separator': {'key': 'repetitionSeparator', 'type': 'int'}, 'segment_terminator_suffix': {'key': 'segmentTerminatorSuffix', 'type': 'SegmentTerminatorSuffix'}, 'decimal_point_indicator': {'key': 'decimalPointIndicator', 'type': 'EdifactDecimalIndicator'}, 'release_indicator': {'key': 'releaseIndicator', 'type': 'int'}, 'message_association_assigned_code': {'key': 'messageAssociationAssignedCode', 'type': 'str'}, 'target_namespace': {'key': 'targetNamespace', 'type': 'str'}, } def __init__(self, *, data_element_separator: int, component_separator: int, segment_terminator: int, repetition_separator: int, segment_terminator_suffix, decimal_point_indicator, release_indicator: int, message_id: str=None, message_version: str=None, message_release: str=None, message_association_assigned_code: str=None, target_namespace: str=None, **kwargs) -> None: super(EdifactDelimiterOverride, self).__init__(**kwargs) self.message_id = message_id self.message_version = message_version self.message_release = message_release self.data_element_separator = data_element_separator self.component_separator = component_separator self.segment_terminator = segment_terminator self.repetition_separator = repetition_separator self.segment_terminator_suffix = segment_terminator_suffix self.decimal_point_indicator = decimal_point_indicator self.release_indicator = release_indicator self.message_association_assigned_code = message_association_assigned_code self.target_namespace = target_namespace
51.582418
376
0.697912
46e8ae2bdca053ee87cb93f3897ba819e617d26f
7,440
py
Python
ludolph/message.py
erigones/Ludolph
f46d2c0484db2b54b491be40b6324be8c64243db
[ "BSD-3-Clause" ]
33
2015-01-12T16:48:22.000Z
2022-01-24T09:45:56.000Z
ludolph/message.py
erigones/Ludolph
f46d2c0484db2b54b491be40b6324be8c64243db
[ "BSD-3-Clause" ]
36
2015-01-24T19:23:27.000Z
2020-10-03T20:04:47.000Z
ludolph/message.py
erigones/Ludolph
f46d2c0484db2b54b491be40b6324be8c64243db
[ "BSD-3-Clause" ]
10
2015-01-24T19:27:20.000Z
2022-02-24T16:47:54.000Z
""" Ludolph: Monitoring Jabber bot Copyright (C) 2012-2015 Erigones, s. r. o. This file is part of Ludolph. See the file LICENSE for copying permission. """ import logging import re from datetime import datetime, timedelta from sleekxmpp.xmlstream import ET from sleekxmpp.stanza import Message try: from xml.etree.ElementTree import ParseError except ImportError: from xml.parsers.expat import ExpatError as ParseError __all__ = ('red', 'green', 'blue', 'IncomingLudolphMessage', 'OutgoingLudolphMessage') logger = logging.getLogger(__name__) r = re.compile TEXT2BODY = ( (r(r'\*\*(.+?)\*\*'), r'*\1*'), (r(r'__(.+?)__'), r'\1'), (r(r'\^\^(.+?)\^\^'), r'\1'), (r(r'~~(.+?)~~'), r'\1'), (r(r'%{(.+?)}(.+)%'), r'\2'), (r(r'\[\[(.+?)\|(.+?)\]\]'), r'\1'), ) TEXT2HTML = ( ('&', '&#38;'), ('<', '&#60;'), ('>', '&#62;'), ("'", '&#39;'), ('"', '&#34;'), (r(r'\*\*(.+?)\*\*'), r'<b>\1</b>'), (r(r'__(.+?)__'), r'<i>\1</i>'), (r(r'\^\^(.+?)\^\^'), r'<sup>\1</sup>'), (r(r'~~(.+?)~~'), r'<sub>\1</sub>'), (r(r'\[\[(.+?)\|(.+?)\]\]'), r'<a href="\1">\2</a>'), (r(r'%{(.+?)}(.+?)%'), r'<span style="\1">\2</span>'), (r(r'(ERROR)'), r'<span style="color:#FF0000;">\1</span>'), (r(r'(PROBLEM|OFF)'), r'<span style="color:#FF0000;"><strong>\1</strong></span>'), (r(r'(OK|ON)'), r'<span style="color:#00FF00;"><strong>\1</strong></span>'), (r(r'([Dd]isaster)'), r'<span style="color:#FF0000;"><strong>\1</strong></span>'), (r(r'([Cc]ritical)'), r'<span style="color:#FF3300;"><strong>\1</strong></span>'), (r(r'([Hh]igh)'), r'<span style="color:#FF6600;"><strong>\1</strong></span>'), (r(r'([Aa]verage)'), r'<span style="color:#FF9900;"><strong>\1</strong></span>'), (r(r'([Ww]arning)'), r'<span style="color:#FFCC00;"><strong>\1</strong></span>'), # (r(r'([Ii]nformation)'), r'<span style="color:#FFFF00;"><strong>\1</strong></span>'), (r(r'(Monitored)'), r'<span style="color:#00FF00;"><strong>\1</strong></span>'), (r(r'(Not\ monitored)'), r'<span style="color:#FF0000;"><strong>\1</strong></span>'), ('\n', '<br/>\n'), ) class MessageError(Exception): """ Error while creating new XMPP message. """ pass def red(s): return '%%{color:#FF0000}%s%%' % s def green(s): return '%%{color:#00FF00}%s%%' % s def blue(s): return '%%{color:#0000FF}%s%%' % s # noinspection PyAttributeOutsideInit class IncomingLudolphMessage(Message): """ SleekXMPP Message object wrapper. """ _ludolph_attrs = ('reply_output', 'stream_output') @classmethod def wrap_msg(cls, msg): """Inject our properties into original Message object""" if isinstance(msg, cls): raise TypeError('Message object is already wrapped') obj = cls() obj.__class__ = type(msg.__class__.__name__, (cls, msg.__class__), {}) obj.__dict__ = msg.__dict__ return obj def dump(self): data = {} # The underlying ElementBase object does not implement the dict interface properly for k in self.interfaces: v = self.get(k, None) if v is not None: data[k] = str(v) # Add our custom attributes for i in self._ludolph_attrs: data[i] = getattr(self, i) return data @classmethod def load(cls, data): from ludolph.bot import get_xmpp obj = cls(stream=get_xmpp().client) # First set our custom attributes for i in cls._ludolph_attrs: try: setattr(obj, i, data.pop(i)) except KeyError: continue # The all other ElementBase items for k, v in data.items(): obj[k] = v return obj def _get_ludolph_attr(self, attr, default, set_default=False): try: return getattr(self, attr) except AttributeError: if set_default: setattr(self, attr, default) return default def get_reply_output(self, default=True, set_default=False): return self._get_ludolph_attr('_reply_output_', default, set_default=set_default) def set_reply_output(self, value): self._reply_output_ = value reply_output = property(get_reply_output, set_reply_output) def get_stream_output(self, default=False, set_default=False): return self._get_ludolph_attr('_stream_output_', default, set_default=set_default) def set_stream_output(self, value): self._stream_output_ = value stream_output = property(get_stream_output, set_stream_output) class OutgoingLudolphMessage(object): """ Creating and sending bots messages (replies). """ def __init__(self, mbody, mhtml=None, mtype=None, msubject=None, delay=None, timestamp=None): """ Construct message body in plain text and html. """ self.mtype = mtype self.msubject = msubject if mbody is not None: self.mbody = self._text2body(str(mbody)) if mhtml is None and mbody is not None: self.mhtml = self._text2html(str(mbody)) else: self.mhtml = str(mhtml) if delay: timestamp = datetime.utcnow() + timedelta(seconds=delay) self.timestamp = timestamp @staticmethod def _replace(replist, text): """ Helper for replacing text parts according to replist. """ for rx, te in replist: # noinspection PyProtectedMember if isinstance(rx, re._pattern_type): try: text = rx.sub(te, text) except re.error as exc: logger.error('Regexp error during message text replacement: %s', exc) else: text = text.replace(rx, te) return text def _text2body(self, text): """ Remove tags from text. """ body = self._replace(TEXT2BODY, text.strip()) return body def _text2html(self, text): """ Convert text to html. """ html = self._replace(TEXT2HTML, text.strip()) html = '<div>\n' + html + '\n</div>' try: # noinspection PyUnresolvedReferences return ET.XML(html) except (ParseError, SyntaxError) as e: logger.error('Could not parse html: %s', e) return None @classmethod def create(cls, mbody, **kwargs): """ Return LudolphMessage instance. """ if isinstance(mbody, cls): return mbody return cls(mbody, **kwargs) def send(self, xmpp, mto, mfrom=None, mnick=None): """ Send a new message. """ msg = xmpp.client.make_message(mto, self.mbody, msubject=self.msubject, mtype=self.mtype, mhtml=self.mhtml, mfrom=mfrom, mnick=mnick) if self.timestamp: msg['delay'].set_stamp(self.timestamp) return msg.send() def reply(self, msg, clear=True): """ Send a reply to incoming msg. """ msg.reply(self.mbody, clear=clear) msg['html']['body'] = self.mhtml if self.timestamp: msg['delay'].set_stamp(self.timestamp) return msg.send() LudolphMessage = OutgoingLudolphMessage # Backward compatibility
29.0625
115
0.557258
61016253d65208ae4a9dd7de8bc18e95b89738ac
984
py
Python
standard_library/threads/demo_consumer_producer.py
2581676612/python
b309564a05838b23044bb8112fd4ef71307266b6
[ "MIT" ]
112
2017-09-19T17:38:38.000Z
2020-05-27T18:00:27.000Z
standard_library/threads/demo_consumer_producer.py
tomoncle/Python-notes
ce675486290c3d1c7c2e4890b57e3d0c8a1228cc
[ "MIT" ]
null
null
null
standard_library/threads/demo_consumer_producer.py
tomoncle/Python-notes
ce675486290c3d1c7c2e4890b57e3d0c8a1228cc
[ "MIT" ]
56
2017-09-20T01:24:12.000Z
2020-04-16T06:19:31.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/4/29 14:44 # @Author : tom.lee # @Site : # @File : consumer_producer.py # @Software: PyCharm import time import threading import Queue class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: msg = self._queue.get() if isinstance(msg, str) and msg == 'quit': break print "I'm a thread, and I received %s!!" % msg self._queue.task_done() print 'Bye byes!' def producer(): queue = Queue.Queue() worker = Consumer(queue) worker.start() start_time = time.time() # While under 5 seconds.. while time.time() - start_time < 5: queue.put('something at %s' % time.time()) time.sleep(1) queue.put('quit') worker.join() if __name__ == '__main__': print 'test' producer()
21.391304
59
0.569106
f20734a7d1a08c44b84b414beed794b22624cacc
477
py
Python
training/size_convertion.py
ndl-lab/ssd_keras
94c951cbe7b3d8c59a3ef5b2db26af5aa2099cc4
[ "CC-BY-4.0", "MIT" ]
4
2019-08-23T13:12:44.000Z
2019-12-24T05:40:17.000Z
training/size_convertion.py
ndl-lab/ssd_keras
94c951cbe7b3d8c59a3ef5b2db26af5aa2099cc4
[ "CC-BY-4.0", "MIT" ]
null
null
null
training/size_convertion.py
ndl-lab/ssd_keras
94c951cbe7b3d8c59a3ef5b2db26af5aa2099cc4
[ "CC-BY-4.0", "MIT" ]
null
null
null
import numpy as np import os import glob import pandas as pd import cv2 from xml.etree import ElementTree import random import shutil import glob from PIL import Image for dirname in os.listdir("tmp"): print(dirname) for fpath in glob.glob(os.path.join("fullsizeimg",dirname,"original","*")): img=Image.open(fpath) img_resize = img.resize((300, 300),Image.LANCZOS) img_resize.save(os.path.join("300_300img",dirname+"_"+os.path.basename(fpath)))
28.058824
87
0.721174
16470838ce12928e0b9945d343c1bc7d3952caee
235
py
Python
20211125_PwnIntro/3_java/solution.py
alessandro-massarenti/Cybersec2021
3d6dcc4b255dd425b1be66d440df1d94d5ea5ac0
[ "BSD-3-Clause" ]
15
2021-10-01T16:10:48.000Z
2022-02-19T20:45:35.000Z
20211125_PwnIntro/3_java/solution.py
alessandro-massarenti/Cybersec2021
3d6dcc4b255dd425b1be66d440df1d94d5ea5ac0
[ "BSD-3-Clause" ]
null
null
null
20211125_PwnIntro/3_java/solution.py
alessandro-massarenti/Cybersec2021
3d6dcc4b255dd425b1be66d440df1d94d5ea5ac0
[ "BSD-3-Clause" ]
2
2021-11-06T08:32:41.000Z
2021-12-11T16:18:54.000Z
from pwn import * context.binary = "./java" p = process() p.sendline(b"java" + b"A" * 28 + p64(context.binary.functions["bash"].address + 0x32)) p.sendline(b"cat flag.txt") log.success(p.recvline_regex(rb".*{.*}.*").decode("ascii"))
26.111111
86
0.655319
eca90e337e79d729395c28aaf83ac96fbce7ebd4
1,952
py
Python
tests/cli/helpers/language.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
2
2019-10-23T03:37:59.000Z
2020-08-14T17:09:26.000Z
tests/cli/helpers/language.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
null
null
null
tests/cli/helpers/language.py
cugu-stars/plaso
a205f8e52dfe4c239aeae5558d572806b7b00e81
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the language CLI arguments helper.""" import argparse import unittest from plaso.cli import tools from plaso.cli.helpers import language from plaso.lib import errors from tests.cli import test_lib as cli_test_lib class LanguagergumentsHelperTest(cli_test_lib.CLIToolTestCase): """Tests for the language CLI arguments helper.""" # pylint: disable=no-member,protected-access _EXPECTED_OUTPUT = """\ usage: cli_helper.py [--language LANGUAGE] Test argument parser. optional arguments: --language LANGUAGE The preferred language identifier for Windows Event Log message strings. Use "--language list" to see a list of available language identifiers. Note that formatting will fall back on en-US (LCID 0x0409) if the preferred language is not available in the database of message string templates. """ def testAddArguments(self): """Tests the AddArguments function.""" argument_parser = argparse.ArgumentParser( prog='cli_helper.py', description='Test argument parser.', add_help=False, formatter_class=cli_test_lib.SortedArgumentsHelpFormatter) language.LanguageArgumentsHelper.AddArguments(argument_parser) output = self._RunArgparseFormatHelp(argument_parser) self.assertEqual(output, self._EXPECTED_OUTPUT) def testParseOptions(self): """Tests the ParseOptions function.""" options = cli_test_lib.TestOptions() options.preferred_language = 'is' test_tool = tools.CLITool() language.LanguageArgumentsHelper.ParseOptions(options, test_tool) self.assertEqual(test_tool._preferred_language, options.preferred_language) with self.assertRaises(errors.BadConfigObject): language.LanguageArgumentsHelper.ParseOptions(options, None) if __name__ == '__main__': unittest.main()
31.483871
79
0.720287
6445b6a74b119c1876423ab6d483861eb080e4bc
16,508
py
Python
NetBuilder.py
xxxyyyqqq12345/NetBuilder
7ff2c441c397aa44b0e4435639609c4cb155f969
[ "MIT" ]
null
null
null
NetBuilder.py
xxxyyyqqq12345/NetBuilder
7ff2c441c397aa44b0e4435639609c4cb155f969
[ "MIT" ]
null
null
null
NetBuilder.py
xxxyyyqqq12345/NetBuilder
7ff2c441c397aa44b0e4435639609c4cb155f969
[ "MIT" ]
null
null
null
import numpy as np import tensorflow as tf from Graph import * class NNetLayers(object): tfConvs=[tf.layers.conv1d,tf.layers.conv2d,tf.layers.conv3d] tfConvsT=[tf.layers.conv1d,tf.layers.conv2d_transpose,tf.layers.conv3d_transpose] tfMPools=[tf.layers.max_pooling1d,tf.layers.max_pooling2d,tf.layers.max_pooling3d] tfAPools=[tf.layers.average_pooling1d,tf.layers.average_pooling2d,tf.layers.average_pooling3d] tflayer_map={"dense":tf.layers.dense,"conv":tfConvs,"conv1d":tf.layers.conv1d,"conv2d":tf.layers.conv2d, "conv3d":tf.layers.conv3d,"conv_t":tfConvsT,"conv1d_t":tf.layers.conv1d, "conv2d_t":tf.layers.conv2d_transpose,"conv3d_t":tf.layers.conv3d_transpose,"dropout":tf.layers.dropout, "Maxpool":tfMPools,"Averagepool":tfAPools,"Apool":tfAPools,"Avpool":tfAPools,"flatten":tf.layers.Flatten, "LSTM":tf.contrib.rnn.LayerNormBasicLSTMCell,"lstm":tf.contrib.rnn.LayerNormBasicLSTMCell, "+":tf.math.add,"/":tf.math.divide,"-":tf.math.subtract,"*":tf.math.multiply,"Input":tf.placeholder, "input":tf.placeholder,"Inputs":tf.placeholder,"inputs":tf.placeholder, "mean_squared_error":tf.losses.mean_squared_error,"MSE":tf.losses.mean_squared_error, "softmax_cross_entropy":tf.losses.softmax_cross_entropy,"SoftCE":tf.losses.softmax_cross_entropy, "sigmoid_cross_entropy":tf.losses.sigmoid_cross_entropy,"SigtCE":tf.losses.sigmoid_cross_entropy } tfDenseArg=["inputs","units","activation","use_bias","kernel_initializer","bias_initializer","kernel_regularizer", "bias_regularizer","activity_regularizer","kernel_constraint","bias_constraint","trainable","name","reuse"] tfConvArg=["inputs","filters","kernel_size","strides","padding","data_format","dilation_rate","activation","use_bias", "kernel_initializer","bias_initializer","kernel_regularizer","bias_regularizer","activity_regularizer", "kernel_constraint","bias_constraint","trainable","name","reuse"] tfConvTArg=["inputs","filters","kernel_size","strides","padding","data_format","activation","use_bias", "kernel_initializer","bias_initializer","kernel_regularizer","bias_regularizer","activity_regularizer", "kernel_constraint","bias_constraint","trainable","name","reuse"] tfDropoutArg=["inputs","rate","noise_shape","seed","training","name"] tfFlattenArg=["inputs","name"] tfPoolArg=["inputs","pool_size","strides","padding","data_format","name"] tfoperatorargs=["x","y","name"] tfoperatorinputargs=["dtype","shape","name"] tfMSE=["labels","predictions","weights","scope","loss_collection","reduction"] tfSCE=["labels","logits","weights","label_smoothing","scope","loss_collection","reduction"] tfArgList={tf.layers.dense:tfDenseArg,tf.layers.conv1d:tfConvArg,tf.layers.conv2d:tfConvArg,tf.layers.conv3d:tfConvArg, tf.layers.conv2d_transpose:tfConvTArg,tf.layers.conv3d_transpose:tfConvTArg,tf.layers.dropout:tfDropoutArg, tf.layers.Flatten:tfFlattenArg,tf.layers.max_pooling1d:tfPoolArg,tf.layers.max_pooling2d:tfPoolArg, tf.layers.max_pooling3d:tfPoolArg,tf.layers.average_pooling1d:tfPoolArg,tf.layers.average_pooling2d:tfPoolArg, tf.layers.average_pooling3d:tfPoolArg,tf.math.add:tfoperatorargs,tf.math.divide:tfoperatorargs, tf.math.multiply:tfoperatorargs,tf.math.subtract:tfoperatorargs,tf.placeholder:tfoperatorinputargs, tf.losses.mean_squared_error:tfMSE,tf.losses.softmax_cross_entropy:tfSCE, tf.losses.sigmoid_cross_entropy:tfSCE } inputx2=["+","-","*","/","mean_squared_error","softmax_cross_entropy","sigmoid_cross_entropy","MSE","SoftCE","SigtCE"] Input_variation=["Input","Inputs","input","inputs"] def __init__(self,ntype,dim=None,net_specification={},custom_func=None,name=None): self.type=ntype self.dim=dim self.net_specification=net_specification self.custom_func=custom_func self.values=None self.name=name self.trainning_var=None self.W=None self.b=None def build_layer(self,inp,pack): self.pack=pack if pack is "tf": return self.build_tf(inp) elif pack is "keras": return self.build_keras(inp) elif pack is "pytorch": return self.build_pytorch(inp) def build_keras(self,inp): pass def build_pytorch(self,inp): pass def build_tf(self,inp): layer_func=self._get_func("tf",self.type,self.dim) args=self._fill_func(inp,layer_func) if type(args) is list: self.layer=layer_func(*args) elif type(args is dict): self.layer=layer_func(**args) return self.layer def _get_func(self,pack,ntype,dim=None): if pack is "tf": if self.custom_func is not None: return self.custom_func lfunc=self.tflayer_map[ntype] if type(lfunc) is list: lfunc=lfunc[dim-1] elif pack is "keras": pass else: pass return lfunc def get_input_length(self): if self.type in self.Input_variation: return 0 elif self.type in self.inputx2: return 2 else: return 1 def _fill_func(self,Input,layer_func): input_len=self.get_input_length() inp=[i.layer for i in Input] assert(len(inp)==input_len) if type(self.net_specification) is list: args=inp+self.net_specification elif type(self.net_specification) is dict: args={} if "inputs" in self.tfArgList[layer_func]: args["inputs"]=inp[0] if "x" in self.tfArgList[layer_func]: args["x"]=inp[0] if "labels" in self.tfArgList[layer_func]: args["labels"]=inp[0] if "y" in self.tfArgList[layer_func]: args["y"]=inp[1] if "predictions" in self.tfArgList[layer_func]: args["predictions"]=inp[1] if "logits" in self.tfArgList[layer_func]: args["logits"]=inp[1] if self.custom_func is not None: return args if self.custom_func is not None: return args #check everything is alright and only feed required args for arg in self.tfArgList[layer_func]: if arg in self.net_specification: args[arg]=self.net_specification[arg] if "training" in self.tfArgList[layer_func] and self.trainning_var is not None: args["training"]=self.trainning_var return args def set_train_var(self,var): self.trainning_var=var def helpfunc(self,pack=None,ntype=None): if ntype is None: ntype=self.type if pack is None or pack is "tf": print("Tensorflow Parameters:") for i in self.tfArgList[self._get_func("tf",ntype)]: print(" "+i) elif pack is None or pack is "keras": pass def save_weights(self,args={}): if self.pack is "tf": assert("sess" in args) self._save_weights_tf(args["sess"]) elif self.pack is "keras": self._save_weights_keras() elif self.pack is "pytorch": self._save_weights_pytorch() def _save_weights_tf(self,sess): Name=self.layer.name.partition(":")[0].partition("/")[0] W=[v for v in tf.trainable_variables() if v.name == Name+"/kernel:0"] b=[v for v in tf.trainable_variables() if v.name == Name+"/bias:0"] if len(W)>0: self.W=W[0].eval(sess) self.b=b[0].eval(sess) def assign_weights(self,args={}): if self.pack is "tf": assert("sess" in args) self._assign_weights_tf(args["sess"]) elif self.pack is "keras": self._assign_weights_keras() elif self.pack is "pytorch": self._assign_weights_pytorch() def _assign_weights_tf(self,sess): Name=self.layer.name.partition(":")[0].partition("/")[0] W=[v for v in tf.trainable_variables() if v.name == Name+"/kernel:0"] b=[v for v in tf.trainable_variables() if v.name == Name+"/bias:0"] if self.W is not None: W[0].load(self.W,sess) if self.b is not None: b[0].load(self.b,sess) def _assign_weights_keras(self): pass def _assign_weights_pytorch(self): pass class Optimizer(object): Optimizers_tf={"Adam":tf.train.AdamOptimizer,"AdamOptimizer":tf.train.AdamOptimizer, "Adagrad":tf.train.AdagradOptimizer,"AdagradOptimizer":tf.train.AdagradOptimizer, "Adadelta":tf.train.AdadeltaOptimizer,"AdadeltaOptimizer":tf.train.AdadeltaOptimizer} Optimizers_keras={} Optimizers_pythorch={} Optimizers={"tf":Optimizers_tf,"keras":Optimizers_keras,"pythorch":Optimizers_pythorch} def __init__(self,opttype,inputs,args,ntype=None): self.ntype=ntype self.opttype=opttype self.inputs=inputs self.args=args self.built=0 if ntype is not None: self.build(ntype) def build(self,ntype): if not self.built: if type(self.inputs) is list: Input=[Inp.layer for Inp in self.inputs] else: Input=self.inputs.layer self.ntype=ntype if type(self.args) is list: self.optimizer=self.Optimizers[self.ntype][self.opttype](*self.args).minimize(Input) elif type(self.args) is dict: self.optimizer=self.Optimizers[self.ntype][self.opttype](**self.args).minimize(Input) self.built=1 class NNet(object): def __init__(self,inputs,outputs,Net,name=None): self.name=name self.inputs=inputs # dict or list of inputs self.outputs=outputs self.Net=Net self.optimizers={} self.loss={} #loss functions self.layers={} for v in self.Net.V: self.layers[v.name]=v self.ntype=None self.net_built=0 def build_net(self,pack): self.ntype=pack if pack is "tf": self._build_tf_net() elif pack is "keras": self._build_keras_net() elif pack is "pytorch": self._build_pytorch_net() for optimizer in self.optimizers: self.optimizers[optimizer].build(self.ntype) def create_optimizer(self,name,optimizer_type,inputs,args={"learning_rate":0.01}): if self.optimizers is None: self.optimizers={} if type(inputs) is list: Input=[] for inp in inputs: Input+=[self.layers[inp]] else: Input=self.layers[inputs] self.optimizers[name]=Optimizer(optimizer_type,Input,args,self.ntype) def display(self): #to change away from nx library G=nx.DiGraph() for e in self.Net.E: G.add_edge(e[0].name,e[1].name) nx.draw(G, with_labels = True) plt.show() def _build_tf_net(self): self._is_training=tf.placeholder_with_default(True,shape=()) built_layer_list=[] for inp in self.inputs: self.inputs[inp].build_layer([],"tf") built_layer_list+=[self.inputs[inp]] forward_net=self.Net.get_forward_graph() for layers in forward_net: for layer in layers: layer.set_train_var(self._is_training) if layer not in built_layer_list: InputFrom=self.Net.E_in[layer] layer_input=InputFrom layer.build_layer(layer_input,"tf") self.net_built=1 def _build_keras_net(self): raise Exception("not implemented for keras yet") def _build_pytorch_net(self): raise Exception("not implemented for pytorch yet") def save_net(self): pass def load_net(self): pass def init_weights(self,args={}): for name,layer in self.layers.items(): layer.assign_weights(args) def run_net(self,inputs,outputs=None): if not self.net_built: raise Exception("Net not built, run build_net(tool_type)") if self.ntype is "tf": out=self._run_net_tf(inputs) elif self.ntype is "keras": pass elif self.ntype is "pytorch": pass return out def _run_net_tf(self,inputs,outputs=None): #implement selecting outputs #to change maybe to remove sess elsewhere sess = tf.Session() sess.run(tf.global_variables_initializer()) #reassign all weights self.init_weights({"sess":sess}) feed_dict={} feed_dict[self._is_training]=False for inp in inputs: if inp in self.inputs: feed_dict[self.inputs[inp].layer]=inputs[inp] if type(self.outputs) is list: tf_out=[out.layer for out in self.outputs] elif type(self.outputs) is dict: tf_out=[out.layer for out in self.outputs.values] out=sess.run(tf_out,feed_dict=feed_dict) sess.close() return out def train_net(self,inputs,optimizer_name,outputs=None,batch_size=1,test_perc=0,epochs=1): if not self.net_built: raise Exception("Net not built, run build_net(tool_type)") if self.ntype is "tf": out=self._train_net_tf(inputs,optimizer_name,outputs,batch_size,test_perc,epochs) elif self.ntype is "keras": pass elif self.ntype is "pytorch": pass return out def _train_net_tf(self,inputs,optimizer_name,outputs=None,batch_size=1,test_perc=0,epochs=1): """ inputs: a matrix of inputs, the 1st dimension is assumed to be the batch size optimizer_name: name of the optimizer function used outputs: actual outputs for training purpose, None if not used batch_size: batch_size of every train step test_perc: percentage of test set, test ratio+train ratio=1 epochs: number of trainning epochs """ sess = tf.Session() sess.run(tf.global_variables_initializer()) exp_set_size=None for inp in inputs: if exp_set_size is not None: assert(inputs[inp].shape[0]==exp_set_size) else: exp_set_size=inputs[inp].shape[0] Opt=self.optimizers[optimizer_name].optimizer run_vals=[Opt] #reassign all weights self.init_weights({"sess":sess}) if outputs is None: if type(self.outputs) is list: run_vals+=[out.layer for out in self.outputs] elif type(self.outputs) is dict: run_vals+=[out.layer for out in self.outputs.values] else: if type(outputs) is list: run_vals+=[self.layers[out].layer for out in outputs] elif type(outputs) is dict: run_vals+=[self.layers[out].layer for out in outputs.values] if test_perc==0: Test_Set=[] train_range=exp_set_size-1 else: Test_Set=[] train_range=exp_set_size-1 #to change and implement test_perc last_outs=[] for i in range(epochs): inp_set=np.random.choice(train_range, batch_size, replace=False) feed_dict={} feed_dict[self._is_training]=True for inp in inputs: if inp in self.inputs: feed_dict[self.inputs[inp].layer]=inputs[inp][inp_set] out=sess.run(run_vals, feed_dict=feed_dict) out=out[1:len(out)] last_outs+=[out] if len(last_outs)>10: last_outs=last_outs[1:len(last_outs)] for name,layer in self.layers.items(): layer.save_weights({"sess":sess}) sess.close() return last_outs
42.437018
125
0.606797
e0c16832154470689bcfa03e85670610fa9db21b
5,022
py
Python
deploy.py
shusain93/dehydrated-dreamhost-hook
3b49bbf4395a092499b73017b0c853a6433d24d9
[ "MIT" ]
null
null
null
deploy.py
shusain93/dehydrated-dreamhost-hook
3b49bbf4395a092499b73017b0c853a6433d24d9
[ "MIT" ]
1
2020-11-15T16:45:42.000Z
2020-11-15T16:45:42.000Z
deploy.py
shusain93/dehydrated-dreamhost-hook
3b49bbf4395a092499b73017b0c853a6433d24d9
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ Deploys new Let's Encrypt certificate. Copyright (c) 2016 Erin Morelli Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. """ from __future__ import print_function import filecmp import os import sys import shutil import subprocess import yaml # Define letsencrypt.sh defaults LETSENCRYPT_ROOT = '/etc/dehydrated/certs/{domain}/{pem}.pem' # Set user config file path CONFIG_FILE = os.path.join( os.path.expanduser('~'), '.config', 'dehydrated', 'deploy.conf') # Set generic error message template ERROR = ' + ERROR: Could not locate {name} files:\n\t{files}' def parse_config(): """Parse the user config file.""" print( '# INFO: Using deployment config file {0}'.format(CONFIG_FILE), file=sys.stdout ) # Make sure file exists if not os.path.exists(CONFIG_FILE): sys.exit(ERROR.format(name='deployment config', files=CONFIG_FILE)) # Parse YAML config file return yaml.load(file(CONFIG_FILE, 'r')) def deploy_file(file_type, old_file, new_file): """Deploy new file and store old file.""" # If the two files are the same, bail if filecmp.cmp(old_file, new_file): print( ' + WARNING: {0} matches new {1}, skipping deployment'.format( old_file, file_type ), file=sys.stdout ) return False # Get old file information stat = os.stat(old_file) # Rename existing file os.rename(old_file, '{0}.bak'.format(old_file)) # # Copy new file shutil.copy(new_file, old_file) # Update file ownership os.chown(old_file, stat.st_uid, stat.st_gid) # Update file permissions os.chmod(old_file, stat.st_mode) print( ' + Succesfully deployed new {0} to {1}'.format(file_type, old_file), file=sys.stdout ) return True def deploy_domain(domain, config): """Deploy new certs for a given domain.""" print('Deploying new files for: {0}'.format(domain), file=sys.stdout) deployed = False # Deploy new certs for each location for location in config: # Loop through file types for file_type in location.keys(): # Get the new version of this file new_file = LETSENCRYPT_ROOT.format(domain=domain, pem=file_type) # Make sure it exists if not os.path.exists(new_file): sys.exit( ERROR.format( name='new {0}'.format(file_type), files=new_file ) ) # Get the old version old_file = location[file_type] # Make sure it exists if not os.path.exists(old_file): sys.exit( ERROR.format( name='old {0}'.format(file_type), files=old_file ) ) # Deploy new file deploy_success = deploy_file(file_type, old_file, new_file) # Set deploy status if deploy_success: deployed = True return deployed def run_deployment(): """Main wrapper function.""" print('Starting new file deployment', file=sys.stdout) # Get user deploy config config = parse_config() # Monitor for new deloyments saw_new_deployments = False # Iterate over domains for domain in config['domains'].keys(): # Deploy new files for the domain deployed = deploy_domain(domain, config['domains'][domain]) if deployed: saw_new_deployments = True # Only run post-deployment actions if we saw new deploys if saw_new_deployments: # Run post deployment actions print('Starting post-deployment actions', file=sys.stdout) for action in config['post_actions']: print(' + Attempting action: {0}'.format(action), file=sys.stdout) try: # Attempt action status = subprocess.call(action, shell=True) # Return result print( ' + Action exited with status {0}'.format(status), file=sys.stdout ) except OSError as error: # Catch errors print(' + ERROR: {0}'.format(error), file=sys.stderr) print('New file deployment done.', file=sys.stdout) if __name__ == '__main__': run_deployment()
27.9
78
0.607129
ce288d8f965086e32006ac63d641074c31d7cea4
2,528
py
Python
app/management/commands/train_item_cf.py
skeptycal/albedo
50f76f080c7a834cb75ac42daa56a1895af2e595
[ "MIT" ]
1
2021-12-30T17:09:14.000Z
2021-12-30T17:09:14.000Z
app/management/commands/train_item_cf.py
00mjk/albedo
be94cad3e806616850af985e5befffa2f0898a21
[ "MIT" ]
1
2021-06-10T23:12:19.000Z
2021-06-10T23:12:19.000Z
app/management/commands/train_item_cf.py
00mjk/albedo
be94cad3e806616850af985e5befffa2f0898a21
[ "MIT" ]
null
null
null
# coding: utf-8 from django.core.management.base import BaseCommand from sklearn.metrics.pairwise import pairwise_distances import numpy as np import pandas as pd from app.utils_repo import prepare_user_item_df class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('-u', '--username', action='store', dest='username', required=True) def handle(self, *args, **options): active_user = options['username'] print(self.style.SUCCESS('Active user: @{0}'.format(active_user))) user_item_df = prepare_user_item_df(min_stargazers_count=500) n_users, n_items = user_item_df.shape print(self.style.SUCCESS('Build the utility matrix:')) print(self.style.SUCCESS('The number of users: {0}'.format(n_users))) print(self.style.SUCCESS('The number of items: {0}'.format(n_items))) print(self.style.SUCCESS('Calculate similarities of items')) user_item_matrix = user_item_df.as_matrix() item_user_matrix = user_item_df.T.as_matrix() similarity_method = 'cosine' filename = 'caches/item-similarities-{0}x{1}-{2}.pickle'.format(n_users, n_items, similarity_method) try: item_similarities = np.load(open(filename, 'rb')) except IOError: item_similarities = 1 - pairwise_distances(item_user_matrix, metric=similarity_method) np.save(open(filename, 'wb'), item_similarities) print(self.style.SUCCESS('Calculate predictions')) users_array = user_item_df.index items_array = user_item_df.columns predictions = user_item_matrix.dot(item_similarities) / np.abs(item_similarities).sum(axis=1) prediction_df = pd.DataFrame(predictions, index=users_array, columns=items_array) print('item_user_matrix: {0}'.format(item_user_matrix.shape)) print('item_similarities: {0}'.format(item_similarities.shape)) print('predictions: {0}'.format(predictions.shape)) user_starred = user_item_df.loc[active_user, :][user_item_df.loc[active_user, :] == 1] user_unstarred = prediction_df.loc[active_user, :].drop(user_starred.index) user_unstarred.sort_values(ascending=False) recommendations = user_unstarred.sort_values(ascending=False).index.tolist() print(self.style.SUCCESS('Recommended repositories:')) for i, repo in enumerate(recommendations[:100]): print(self.style.SUCCESS('{0:02d}. https://github.com/{1}'.format(i + 1, repo)))
41.442623
108
0.69462
71984fb5c8d0c7fcc50afc77418691f478616baa
1,023
py
Python
stars_etc/multipleSnowflakesrandomColours.py
cmulliss/turtles-doing-things
70c8241bcf6d3b37104a59e92b5cf5a002fcb0bf
[ "CC0-1.0" ]
null
null
null
stars_etc/multipleSnowflakesrandomColours.py
cmulliss/turtles-doing-things
70c8241bcf6d3b37104a59e92b5cf5a002fcb0bf
[ "CC0-1.0" ]
null
null
null
stars_etc/multipleSnowflakesrandomColours.py
cmulliss/turtles-doing-things
70c8241bcf6d3b37104a59e92b5cf5a002fcb0bf
[ "CC0-1.0" ]
null
null
null
# Multiple snowflakes from turtle import * import random mode('logo') shape('turtle') color('white') bgcolor('blue') pensize(2) shapesize(1) speed(600) colours = ['cyan', 'white', 'green', "red", 'yellow', 'red', 'orange', 'pink','purple', 'magenta','grey', 'turquoise' ] #beginning of snowflake function def snowflake(flakeSize): color(random.choice(colours)) dFull = random.randint(4, 80) dBranch = (dFull / 6) dRem = (dFull / 2) for i in range(6): fd(dFull) for i in range(3): bk(dBranch) lt(60) fd(dBranch) bk(dBranch) rt(120) fd(dBranch) bk(dBranch) lt(60) bk(dRem) rt(60) #end of snowflake function #loop to create multiple snowflakes in different locations for i in range(20): x = random.randint(-400, 400) y = random.randint(-400, 400) flakeSize = random.randint(1, 100) penup() goto(x, y) pendown() snowflake(flakeSize)
20.058824
119
0.57087
940a97c96fce4d5f9a8030c86500227dd4e0fe04
3,039
py
Python
test/pyaz/group/lock/__init__.py
bigdatamoore/py-az-cli
54383a4ee7cc77556f6183e74e992eec95b28e01
[ "MIT" ]
null
null
null
test/pyaz/group/lock/__init__.py
bigdatamoore/py-az-cli
54383a4ee7cc77556f6183e74e992eec95b28e01
[ "MIT" ]
9
2021-09-24T16:37:24.000Z
2021-12-24T00:39:19.000Z
test/pyaz/group/lock/__init__.py
bigdatamoore/py-az-cli
54383a4ee7cc77556f6183e74e992eec95b28e01
[ "MIT" ]
null
null
null
import json, subprocess from ... pyaz_utils import get_cli_name, get_params def create(name, lock_type, resource_group, __RESOURCE_PROVIDER_NAMESPACE=None, notes=None, __PARENT_RESOURCE_PATH=None, __RESOURCE_TYPE=None, __RESOURCE_NAME=None): params = get_params(locals()) command = "az group lock create " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def delete(name=None, resource_group=None, __RESOURCE_PROVIDER_NAMESPACE=None, __PARENT_RESOURCE_PATH=None, __RESOURCE_TYPE=None, __RESOURCE_NAME=None, ids=None): params = get_params(locals()) command = "az group lock delete " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def list(resource_group=None, __RESOURCE_PROVIDER_NAMESPACE=None, __PARENT_RESOURCE_PATH=None, __RESOURCE_TYPE=None, __RESOURCE_NAME=None, filter_string=None): params = get_params(locals()) command = "az group lock list " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def show(name=None, resource_group=None, __RESOURCE_PROVIDER_NAMESPACE=None, __PARENT_RESOURCE_PATH=None, __RESOURCE_TYPE=None, __RESOURCE_NAME=None, ids=None): params = get_params(locals()) command = "az group lock show " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr) def update(name=None, resource_group=None, __RESOURCE_PROVIDER_NAMESPACE=None, notes=None, __PARENT_RESOURCE_PATH=None, __RESOURCE_TYPE=None, __RESOURCE_NAME=None, lock_type=None, ids=None): params = get_params(locals()) command = "az group lock update " + params print(command) output = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout = output.stdout.decode("utf-8") stderr = output.stderr.decode("utf-8") if stdout: return json.loads(stdout) print(stdout) else: raise Exception(stderr) print(stderr)
41.067568
190
0.699572
bfb0edb73bb137813640133aefffa7dedbf66fa5
839
py
Python
utils.py
FanLgchen/JWT-Certification
3f840696a5a296f0ea9e5400625bbcc502779323
[ "MIT" ]
null
null
null
utils.py
FanLgchen/JWT-Certification
3f840696a5a296f0ea9e5400625bbcc502779323
[ "MIT" ]
null
null
null
utils.py
FanLgchen/JWT-Certification
3f840696a5a296f0ea9e5400625bbcc502779323
[ "MIT" ]
null
null
null
import jwt as jwt from flask import current_app def generate_jwt(payload, expiry, secret=None): """ 生成jwt :param payload: dict 载荷 :param expiry: datetime 有效期 :param secret: 密钥 :return: jwt """ _payload = {'exp': expiry} _payload.update(payload) if not secret: secret = current_app.config['JWT_SECRET'] # 获取token token = jwt.encode(_payload, secret, algorithm='HS256') # 返回token return token.decode() def verify_jwt(token, secret=None): """ 检验jwt :param token: jwt :param secret: 密钥 :return: dict: payload """ if not secret: secret = current_app.config['JWT_SECRET'] try: # 校验jwt payload = jwt.decode(token, secret, algorithm=['HS256']) except jwt.PyJWTError: payload = None return payload
17.479167
64
0.61025
99fabbea20b8537db72f4eb26799884a13f22ad3
24,350
py
Python
arc/mainTest.py
mefuller/ARC
69b877bd2e6063bc51410de6c65129a476a97bae
[ "MIT" ]
30
2019-02-02T01:45:40.000Z
2022-03-20T13:03:27.000Z
arc/mainTest.py
mefuller/ARC
69b877bd2e6063bc51410de6c65129a476a97bae
[ "MIT" ]
434
2018-12-24T18:00:07.000Z
2022-03-13T15:55:26.000Z
arc/mainTest.py
mefuller/ARC
69b877bd2e6063bc51410de6c65129a476a97bae
[ "MIT" ]
19
2019-01-04T19:05:45.000Z
2022-03-20T13:03:28.000Z
#!/usr/bin/env python3 # encoding: utf-8 """ This module contains unit tests for the arc.main module """ import os import shutil import unittest from arc.common import ARC_PATH from arc.exceptions import InputError from arc.imports import settings from arc.main import ARC, StatmechEnum, process_adaptive_levels from arc.species.species import ARCSpecies servers = settings['servers'] class TestEnumerationClasses(unittest.TestCase): """ Contains unit tests for various enumeration classes. """ def test_statmech_enum(self): """Test the StatmechEnum class""" self.assertEqual(StatmechEnum('arkane').value, 'arkane') with self.assertRaises(ValueError): StatmechEnum('wrong') class TestARC(unittest.TestCase): """ Contains unit tests for the ARC class """ @classmethod def setUpClass(cls): """ A method that is run before all unit tests in this class. """ cls.maxDiff = None cls.servers = servers.keys() cls.job_types1 = {'conformers': True, 'opt': True, 'fine_grid': False, 'freq': True, 'sp': True, 'rotors': False, 'orbitals': False, 'lennard_jones': False, 'bde': True, } def test_as_dict(self): """Test the as_dict() method of ARC""" spc1 = ARCSpecies(label='spc1', smiles='CC', compute_thermo=False, ) arc0 = ARC(project='arc_test', job_types=self.job_types1, species=[spc1], level_of_theory='ccsd(t)-f12/cc-pvdz-f12//b3lyp/6-311+g(3df,2p)', three_params=False, ) arc0.freq_level.args['keyword']['general'] = 'scf=(NDump=30)' restart_dict = arc0.as_dict() long_thermo_description = restart_dict['species'][0]['long_thermo_description'] self.assertIn('Bond corrections:', long_thermo_description) self.assertIn("'C-C': 1", long_thermo_description) self.assertIn("'C-H': 6", long_thermo_description) # mol.atoms are not tested since all id's (including connectivity) changes depending on how the test is run. expected_dict = {'T_count': 50, 'T_max': None, 'T_min': None, 'allow_nonisomorphic_2d': False, 'arkane_level_of_theory': {'basis': 'cc-pvdz-f12', 'method': 'ccsd(t)-f12', 'method_type': 'wavefunction', 'software': 'molpro'}, 'calc_freq_factor': True, 'compute_transport': False, 'conformer_level': {'basis': 'def2svp', 'compatible_ess': ['gaussian', 'terachem'], 'method': 'wb97xd', 'method_type': 'dft', 'software': 'gaussian'}, 'e_confs': 5.0, 'ess_settings': {'gaussian': ['local', 'server2'], 'molpro': ['local', 'server2'], 'onedmin': ['server1'], 'orca': ['local'], 'qchem': ['server1'], 'terachem': ['server1']}, 'freq_level': {'basis': '6-311+g(3df,2p)', 'method': 'b3lyp', 'method_type': 'dft', 'software': 'gaussian'}, 'freq_scale_factor': 0.967, 'irc_level': {'basis': 'def2tzvp', 'compatible_ess': ['gaussian', 'terachem'], 'method': 'wb97xd', 'method_type': 'dft', 'software': 'gaussian'}, 'job_memory': 14, 'job_types': {'bde': True, 'conformers': True, 'fine': False, 'freq': True, 'irc': True, 'onedmin': False, 'opt': True, 'orbitals': False, 'rotors': False, 'sp': True}, 'kinetics_adapter': 'arkane', 'max_job_time': 120, 'n_confs': 10, 'opt_level': {'basis': '6-311+g(3df,2p)', 'method': 'b3lyp', 'method_type': 'dft', 'software': 'gaussian'}, 'output': {}, 'project': 'arc_test', 'reactions': [], 'running_jobs': {}, 'sp_level': {'basis': 'cc-pvdz-f12', 'method': 'ccsd(t)-f12', 'method_type': 'wavefunction', 'software': 'molpro'}, 'species': [{'arkane_file': None, 'bond_corrections': {'C-C': 1, 'C-H': 6}, 'charge': 0, 'compute_thermo': False, 'consider_all_diastereomers': True, 'force_field': 'MMFF94s', 'is_ts': False, 'label': 'spc1', 'long_thermo_description': long_thermo_description, 'mol': {'atoms': restart_dict['species'][0]['mol']['atoms'], 'multiplicity': 1, 'props': {}}, 'multiplicity': 1, 'number_of_rotors': 0}], 'thermo_adapter': 'arkane', 'three_params': False} # import pprint # left intentionally for debugging # print(pprint.pprint(restart_dict)) self.assertEqual(restart_dict, expected_dict) def test_from_dict(self): """Test the from_dict() method of ARC""" restart_dict = {'composite_method': '', 'conformer_level': 'b97-d3/6-311+g(d,p)', 'freq_level': 'wb97x-d3/6-311+g(d,p)', 'freq_scale_factor': 0.96, 'opt_level': 'wb97x-d3/6-311+g(d,p)', 'output': {}, 'project': 'testing_from_dict', 'reactions': [], 'scan_level': '', 'sp_level': 'ccsd(t)-f12/cc-pvqz-f12', 'species': [{'bond_corrections': {'C-C': 1, 'C-H': 6}, 'charge': 1, 'conformer_energies': [], 'conformers': [], 'external_symmetry': 1, 'compute_thermo': False, 'is_ts': False, 'label': 'testing_spc1', 'mol': '1 C u0 p0 c0 {2,S} {3,S} {4,S} {5,S}\n2 C u0 p0 c0 {1,S} {6,S} {7,S} {8,S}' '\n3 H u0 p0 c0 {1,S}\n4 H u0 p0 c0 {1,S}\n5 H u0 p0 c0 {1,S}\n6 H u0 p0 ' 'c0 {2,S}\n7 H u0 p0 c0 {2,S}\n8 H u0 p0 c0 {2,S}\n', 'multiplicity': 1, 'neg_freqs_trshed': [], 'number_of_rotors': 0, 'opt_level': '', 'optical_isomers': 1, 'rotors_dict': {}, 'xyzs': []}], 'three_params': False, 'project_directory': os.path.join(ARC_PATH, 'Projects', 'arc_project_for_testing_delete_after_usage_test_from_dict'), } arc1 = ARC(project='wrong', freq_scale_factor=0.95) self.assertEqual(arc1.freq_scale_factor, 0.95) # user input arc2 = ARC(**restart_dict) self.assertEqual(arc2.freq_scale_factor, 0.96) # loaded from the restart dict self.assertEqual(arc2.project, 'testing_from_dict') self.assertIn('arc_project_for_testing_delete_after_usage', arc2.project_directory) self.assertTrue(arc2.job_types['fine']) self.assertTrue(arc2.job_types['rotors']) self.assertEqual(arc2.sp_level.simple(), 'ccsd(t)-f12/cc-pvqz-f12') self.assertEqual(arc2.level_of_theory, '') self.assertEqual(arc2.species[0].label, 'testing_spc1') self.assertFalse(arc2.species[0].is_ts) self.assertEqual(arc2.species[0].charge, 1) self.assertFalse(arc2.three_params) def test_from_dict_specific_job(self): """Test the from_dict() method of ARC""" restart_dict = {'specific_job_type': 'bde', 'project': 'unit_test_specific_job', 'project_directory': os.path.join(ARC_PATH, 'Projects', 'unit_test_specific_job'), } arc1 = ARC(**restart_dict) job_type_expected = {'conformers': False, 'opt': True, 'freq': True, 'sp': True, 'rotors': False, 'orbitals': False, 'bde': True, 'onedmin': False, 'fine': True, 'irc': False} self.assertEqual(arc1.job_types, job_type_expected) def test_check_project_name(self): """Test project name invalidity""" with self.assertRaises(InputError): ARC(project='ar c') with self.assertRaises(InputError): ARC(project='ar:c') with self.assertRaises(InputError): ARC(project='ar<c') with self.assertRaises(InputError): ARC(project='ar%c') def test_determine_model_chemistry_and_freq_scale_factor(self): """Test determining the model chemistry and the frequency scaling factor""" arc0 = ARC(project='arc_model_chemistry_test', level_of_theory='CBS-QB3') self.assertEqual(str(arc0.arkane_level_of_theory), "cbs-qb3, software: gaussian (composite)") self.assertEqual(arc0.freq_scale_factor, 1.00386) # 0.99 * 1.014 = 1.00386 arc1 = ARC(project='arc_model_chemistry_test', level_of_theory='cbs-qb3-paraskevas') self.assertEqual(str(arc1.arkane_level_of_theory), 'cbs-qb3-paraskevas, software: gaussian (composite)') self.assertEqual(arc1.freq_scale_factor, 1.00386) # 0.99 * 1.014 = 1.00386 self.assertEqual(arc1.bac_type, 'p') arc2 = ARC(project='arc_model_chemistry_test', level_of_theory='ccsd(t)-f12/cc-pvtz-f12//m06-2x/cc-pvtz') self.assertEqual(str(arc2.arkane_level_of_theory), 'ccsd(t)-f12/cc-pvtz-f12, software: molpro (wavefunction)') self.assertEqual(arc2.freq_scale_factor, 0.955) arc3 = ARC(project='arc_model_chemistry_test', sp_level='ccsd(t)-f12/cc-pvtz-f12', opt_level='wb97xd/def2tzvp') self.assertEqual(str(arc3.arkane_level_of_theory), 'ccsd(t)-f12/cc-pvtz-f12, software: molpro (wavefunction)') self.assertEqual(arc3.freq_scale_factor, 0.988) def test_determine_model_chemistry_for_job_types(self): """Test determining the model chemistry specification dictionary for job types""" # Test conflicted inputs: specify both level_of_theory and composite_method with self.assertRaises(InputError): ARC(project='test', level_of_theory='ccsd(t)-f12/cc-pvtz-f12//wb97x-d/aug-cc-pvtz', composite_method='cbs-qb3') # Test illegal level of theory specification (method contains multiple slashes) with self.assertRaises(ValueError): ARC(project='test', level_of_theory='dlpno-mp2-f12/D/cc-pVDZ(fi/sf/fw)//b3lyp/G/def2svp') # Test illegal job level specification (method contains multiple slashes) with self.assertRaises(ValueError): ARC(project='test', opt_level='b3lyp/d/def2tzvp/def2tzvp/c') # Test illegal job level specification (method contains empty space) with self.assertRaises(ValueError): ARC(project='test', opt_level='b3lyp/def2tzvp def2tzvp/c') # Test direct job level specification conflicts with level of theory specification with self.assertRaises(InputError): ARC(project='test', level_of_theory='b3lyp/sto-3g', opt_level='wb97xd/def2tzvp') # Test deduce levels from default method from settings.py arc1 = ARC(project='test') self.assertEqual(arc1.opt_level.simple(), 'wb97xd/def2tzvp') self.assertEqual(arc1.freq_level.simple(), 'wb97xd/def2tzvp') self.assertEqual(arc1.sp_level.simple(), 'ccsd(t)-f12/cc-pvtz-f12') # Test deduce levels from composite method specification arc2 = ARC(project='test', composite_method='cbs-qb3') self.assertIsNone(arc2.opt_level) self.assertIsNone(arc2.sp_level) self.assertIsNone(arc2.orbitals_level) self.assertEqual(arc2.freq_level.simple(), 'b3lyp/cbsb7') self.assertEqual(arc2.scan_level.simple(), 'b3lyp/cbsb7') self.assertEqual(arc2.composite_method.simple(), 'cbs-qb3') # Test deduce levels from level of theory specification arc3 = ARC(project='test', level_of_theory='ccsd(t)-f12/cc-pvtz-f12//wb97m-v/def2tzvpd') self.assertEqual(arc3.opt_level.simple(), 'wb97m-v/def2tzvpd') self.assertEqual(arc3.freq_level.simple(), 'wb97m-v/def2tzvpd') self.assertEqual(arc3.sp_level.simple(), 'ccsd(t)-f12/cc-pvtz-f12') self.assertEqual(arc3.scan_level.simple(), 'wb97m-v/def2tzvpd') self.assertIsNone(arc3.orbitals_level) arc4 = ARC(project='test', opt_level='wb97x-d3/6-311++G(3df,3pd)', freq_level='m062x/def2-tzvpp', sp_level='ccsd(t)f12/aug-cc-pvqz', calc_freq_factor=False) self.assertEqual(arc4.opt_level.simple(), 'wb97x-d3/6-311++g(3df,3pd)') self.assertEqual(arc4.freq_level.simple(), 'm062x/def2-tzvpp') self.assertEqual(arc4.sp_level.simple(), 'ccsd(t)f12/aug-cc-pvqz') # Test deduce freq level from opt level arc7 = ARC(project='test', opt_level='wb97xd/aug-cc-pvtz', calc_freq_factor=False) self.assertEqual(arc7.opt_level.simple(), 'wb97xd/aug-cc-pvtz') self.assertEqual(arc7.freq_level.simple(), 'wb97xd/aug-cc-pvtz') # Test a level not supported by Arkane does not raise error if compute_thermo is False arc8 = ARC(project='test', sp_level='method/unsupported', calc_freq_factor=False, compute_thermo=False) self.assertEqual(arc8.sp_level.simple(), 'method/unsupported') self.assertEqual(arc8.freq_level.simple(), 'wb97xd/def2tzvp') # Test that a level not supported by Arkane does raise an error if compute_thermo is True (default) with self.assertRaises(ValueError): ARC(project='test', sp_level='method/unsupported', calc_freq_factor=False) # Test dictionary format specification with auxiliary basis and DFT dispersion arc9 = ARC(project='test', opt_level={}, freq_level={'method': 'B3LYP/G', 'basis': 'cc-pVDZ(fi/sf/fw)', 'auxiliary_basis': 'def2-svp/C', 'dispersion': 'DEF2-tzvp/c'}, sp_level={'method': 'DLPNO-CCSD(T)-F12', 'basis': 'cc-pVTZ-F12', 'auxiliary_basis': 'aug-cc-pVTZ/C cc-pVTZ-F12-CABS'}, calc_freq_factor=False, compute_thermo=False) self.assertEqual(arc9.opt_level.simple(), 'wb97xd/def2tzvp') self.assertEqual(str(arc9.freq_level), 'b3lyp/g/cc-pvdz(fi/sf/fw), auxiliary_basis: def2-svp/c, ' 'dispersion: def2-tzvp/c, software: gaussian (dft)') self.assertEqual(str(arc9.sp_level), 'dlpno-ccsd(t)-f12/cc-pvtz-f12, auxiliary_basis: aug-cc-pvtz/c cc-pvtz-f12-cabs, ' 'software: orca (wavefunction)') # Test using default frequency and orbital level for composite job, also forbid rotors job arc10 = ARC(project='test', composite_method='cbs-qb3', calc_freq_factor=False, job_types={'rotors': False, 'orbitals': True}) self.assertEqual(arc10.freq_level.simple(), 'b3lyp/cbsb7') self.assertIsNone(arc10.scan_level) self.assertEqual(arc10.orbitals_level.simple(), 'b3lyp/cbsb7') # Test using specified frequency, scan, and orbital for composite job arc11 = ARC(project='test', composite_method='cbs-qb3', freq_level='wb97xd/6-311g', scan_level='apfd/def2svp', orbitals_level='hf/sto-3g', job_types={'orbitals': True}, calc_freq_factor=False) self.assertEqual(arc11.scan_level.simple(), 'apfd/def2svp') self.assertEqual(arc11.freq_level.simple(), 'wb97xd/6-311g') self.assertEqual(arc11.orbitals_level.simple(), 'hf/sto-3g') # Test using default frequency and orbital level for job specified from level of theory, also forbid rotors job arc12 = ARC(project='test', level_of_theory='b3lyp/sto-3g', calc_freq_factor=False, job_types={'rotors': False, 'orbitals': True}, compute_thermo=False) self.assertIsNone(arc12.scan_level) self.assertEqual(arc12.orbitals_level.simple(), 'wb97x-d3/def2tzvp') # Test using specified scan level arc13 = ARC(project='test', level_of_theory='b3lyp/sto-3g', calc_freq_factor=False, scan_level='apfd/def2svp', job_types={'rotors': True}, compute_thermo=False) self.assertEqual(arc13.scan_level.simple(), 'apfd/def2svp') # Test specifying semi-empirical and force-field methods using dictionary arc14 = ARC(project='test', opt_level={'method': 'AM1'}, freq_level={'method': 'PM6'}, sp_level={'method': 'AMBER'}, calc_freq_factor=False, compute_thermo=False) self.assertEqual(arc14.opt_level.simple(), 'am1') self.assertEqual(arc14.freq_level.simple(), 'pm6') self.assertEqual(arc14.sp_level.simple(), 'amber') def test_determine_unique_species_labels(self): """Test the determine_unique_species_labels method""" spc0 = ARCSpecies(label='spc0', smiles='CC', compute_thermo=False) spc1 = ARCSpecies(label='spc1', smiles='CC', compute_thermo=False) spc2 = ARCSpecies(label='spc2', smiles='CC', compute_thermo=False) arc0 = ARC(project='arc_test', job_types=self.job_types1, species=[spc0, spc1, spc2], level_of_theory='ccsd(t)-f12/cc-pvdz-f12//b3lyp/6-311+g(3df,2p)') self.assertEqual(arc0.unique_species_labels, ['spc0', 'spc1', 'spc2']) spc3 = ARCSpecies(label='spc0', smiles='CC', compute_thermo=False) arc0.species.append(spc3) with self.assertRaises(ValueError): arc0.determine_unique_species_labels() def test_add_hydrogen_for_bde(self): """Test the add_hydrogen_for_bde method""" spc0 = ARCSpecies(label='spc0', smiles='CC', compute_thermo=False) arc0 = ARC(project='arc_test', job_types=self.job_types1, species=[spc0], level_of_theory='ccsd(t)-f12/cc-pvdz-f12//b3lyp/6-311+g(3df,2p)') arc0.add_hydrogen_for_bde() self.assertEqual(len(arc0.species), 1) spc1 = ARCSpecies(label='spc1', smiles='CC', compute_thermo=False, bdes=['all_h']) arc1 = ARC(project='arc_test', job_types=self.job_types1, species=[spc1], level_of_theory='ccsd(t)-f12/cc-pvdz-f12//b3lyp/6-311+g(3df,2p)') arc1.add_hydrogen_for_bde() self.assertEqual(len(arc1.species), 2) self.assertIn('H', [spc.label for spc in arc1.species]) def test_process_adaptive_levels(self): """Test processing the adaptive levels""" adaptive_levels_1 = {(1, 5): {('opt', 'freq'): 'wb97xd/6-311+g(2d,2p)', ('sp',): 'ccsd(t)-f12/aug-cc-pvtz-f12'}, (6, 15): {('opt', 'freq'): 'b3lyp/cbsb7', 'sp': 'dlpno-ccsd(t)/def2-tzvp'}, (16, 30): {('opt', 'freq'): 'b3lyp/6-31g(d,p)', 'sp': {'method': 'wb97xd', 'basis': '6-311+g(2d,2p)'}}, (31, 'inf'): {('opt', 'freq'): 'b3lyp/6-31g(d,p)', 'sp': 'b3lyp/6-311+g(d,p)'}} processed_1 = process_adaptive_levels(adaptive_levels_1) self.assertEqual(processed_1[(6, 15)][('sp',)].simple(), 'dlpno-ccsd(t)/def2-tzvp') self.assertEqual(processed_1[(16, 30)][('sp',)].simple(), 'wb97xd/6-311+g(2d,2p)') # test non dict with self.assertRaises(InputError): process_adaptive_levels(4) # wrong atom range with self.assertRaises(InputError): process_adaptive_levels({5: {('opt', 'freq'): 'wb97xd/6-311+g(2d,2p)', ('sp',): 'ccsd(t)-f12/aug-cc-pvtz-f12'}, (6, 'inf'): {('opt', 'freq'): 'b3lyp/6-31g(d,p)', 'sp': 'b3lyp/6-311+g(d,p)'}}) # no 'inf with self.assertRaises(InputError): process_adaptive_levels({(1, 5): {('opt', 'freq'): 'wb97xd/6-311+g(2d,2p)', ('sp',): 'ccsd(t)-f12/aug-cc-pvtz-f12'}, (6, 75): {('opt', 'freq'): 'b3lyp/6-31g(d,p)', 'sp': 'b3lyp/6-311+g(d,p)'}}) # adaptive level not a dict with self.assertRaises(InputError): process_adaptive_levels({(1, 5): {('opt', 'freq'): 'wb97xd/6-311+g(2d,2p)', ('sp',): 'ccsd(t)-f12/aug-cc-pvtz-f12'}, (6, 'inf'): 'b3lyp/6-31g(d,p)'}) # non-consecutive atom ranges with self.assertRaises(InputError): process_adaptive_levels({(1, 5): {('opt', 'freq'): 'wb97xd/6-311+g(2d,2p)', ('sp',): 'ccsd(t)-f12/aug-cc-pvtz-f12'}, (15, 'inf'): {('opt', 'freq'): 'b3lyp/6-31g(d,p)', 'sp': 'b3lyp/6-311+g(d,p)'}}) @classmethod def tearDownClass(cls): """ A function that is run ONCE after all unit tests in this class. Delete all project directories created during these unit tests """ projects = ['arc_project_for_testing_delete_after_usage_test_from_dict', 'arc_model_chemistry_test', 'arc_test', 'test', 'unit_test_specific_job', 'wrong'] for project in projects: project_directory = os.path.join(ARC_PATH, 'Projects', project) shutil.rmtree(project_directory, ignore_errors=True) if __name__ == '__main__': unittest.main(testRunner=unittest.TextTestRunner(verbosity=2))
54.842342
120
0.522587
8882edc18e59bc6723d5b4e7475655a6c0848a60
387
py
Python
processData.py
ganesh-cc/ticket_update
b01689e99422704080cd9a54d50be9ccc695fde0
[ "Unlicense" ]
null
null
null
processData.py
ganesh-cc/ticket_update
b01689e99422704080cd9a54d50be9ccc695fde0
[ "Unlicense" ]
null
null
null
processData.py
ganesh-cc/ticket_update
b01689e99422704080cd9a54d50be9ccc695fde0
[ "Unlicense" ]
null
null
null
import freshdeskService from collections import defaultdict name_mapping = { 480XXXX7506:"agent1", 480XXXX2697:"agent2", 480XXXX4635:"agent3", 480XXXX0364:"agent4" } fin = {} fd = defaultdict(list) def dataMapper(fd): for k in fd: for ke, va in name_mapping.items(): if(k == ke): key = name_mapping.get(ke) value = fd.get(k) fin[key] = value return(fin)
13.344828
37
0.669251
c6299197bc4d1378357665bae7afc2dc03af904a
726
py
Python
World 1/If...Else/ex034 - Multiple Increase.py
MiguelChichorro/PythonExercises
3b2726e7d9ef92c1eb6b977088692c42a2a7b86e
[ "MIT" ]
2
2021-04-23T19:18:06.000Z
2021-05-15T17:45:21.000Z
World 1/If...Else/ex034 - Multiple Increase.py
MiguelChichorro/PythonExercises
3b2726e7d9ef92c1eb6b977088692c42a2a7b86e
[ "MIT" ]
1
2021-05-14T00:29:23.000Z
2021-05-14T00:29:23.000Z
World 1/If...Else/ex034 - Multiple Increase.py
MiguelChichorro/PythonExercises
3b2726e7d9ef92c1eb6b977088692c42a2a7b86e
[ "MIT" ]
1
2021-05-14T00:19:33.000Z
2021-05-14T00:19:33.000Z
from time import sleep colors = {"clean": "\033[m", "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "purple": "\033[35m", "cian": "\033[36m"} sal = int(input("Enter your salary:")) print("{}Loading...{}".format(colors["green"], colors["clean"])) sleep(2) if sal > 1250: newsal = sal + (sal * 0.10) print("{}Your new salary with 10% increase is US${}{}".format(colors["green"], newsal, colors["clean"])) else: newsal = sal + (sal * 0.15) print("{}Your new salary with 15% increase is US${}{}".format(colors["green"], newsal, colors["clean"])) print("{}Congratulations!!!{}".format(colors["yellow"], colors["clean"]))
38.210526
108
0.553719
cb58aab54a57076131aef487d1d60c71a4c53dca
10,964
py
Python
src/m3_nested_loops_in_printing.py
khoslarr/18-LoopsWithinLoops
d18a4fd071779f9958b442e08503c4a8e1183454
[ "MIT" ]
null
null
null
src/m3_nested_loops_in_printing.py
khoslarr/18-LoopsWithinLoops
d18a4fd071779f9958b442e08503c4a8e1183454
[ "MIT" ]
null
null
null
src/m3_nested_loops_in_printing.py
khoslarr/18-LoopsWithinLoops
d18a4fd071779f9958b442e08503c4a8e1183454
[ "MIT" ]
null
null
null
""" This project demonstrates NESTED LOOPS (i.e., loops within loops) in the context of PRINTING on the CONSOLE. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and Rishav Khosla. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. def main(): """ Calls the other functions to test them. """ run_test_rectangle_of_stars() run_test_triangle_of_stars() run_test_decreasing_exclamation_marks() run_test_alternating_brackets() run_test_triangle_same_number_in_each_row() run_test_triangle_all_numbers_in_each_row() def run_test_rectangle_of_stars(): """ Tests the rectangle_of_stars function. """ print() print('--------------------------------------------') print('Testing the RECTANGLE_OF_STARS function:') print('--------------------------------------------') print('Test 1 of rectangle_of_stars: (3, 5)') rectangle_of_stars(3, 5) print('Test 2 of rectangle_of_stars: (4, 11)') rectangle_of_stars(4, 11) print('Test 3 of rectangle_of_stars: (6, 2)') rectangle_of_stars(6, 2) def rectangle_of_stars(r, c): """ Prints a rectangle of stars (asterisks), with r rows and c columns. For example, when r = 3 and c = 5: ***** ***** ***** Preconditions: r and c are non-negative integers. """ # ------------------------------------------------------------------ # DONE: 2. Implement and test this function. # Some tests are already written for you (above). # # *** Unless your instructor directs you otherwise, # see the video # nested_loops_in_PRINTING.mp4 # in Preparation for Session 18 # ** NOW ** # and follow along in that video as you do this problem. # (Pause the video when it completes this problem.) # *** # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(r): for k in range(c): print('*', end='') print() def run_test_triangle_of_stars(): """ Tests the triangle_of_stars function. """ print() print('-------------------------------------------') print('Testing the TRIANGLE_OF_STARS function:') print('-------------------------------------------') print('Test 1 of triangle_of_stars: (5)') triangle_of_stars(5) print('Test 2 of triangle_of_stars: (1)') triangle_of_stars(1) print('Test 3 of triangle_of_stars: (3)') triangle_of_stars(3) print('Test 4 of triangle_of_stars: (6)') triangle_of_stars(6) def triangle_of_stars(r): """ Prints a triangle of stars (asterisks), with r rows. -- The first row is 1 star, the second is 2 stars, the third is 3 stars, and so forth. For example, when r = 5: * ** *** **** ***** Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 3. Implement and test this function. # Some tests are already written for you (above). # # *** Unless your instructor directs you otherwise, # see the video # nested_loops_in_PRINTING.mp4 # in Preparation for Session 18 # ** NOW ** # and follow along in that video as you do this problem. # (Continue the video from where you paused it # in the previous problem.) # *** # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(r): for k in range(j+1): print('*', end='') print() def run_test_decreasing_exclamation_marks(): """ Tests the decreasing_exclamation_marks function. """ print() print('----------------------------------------------------------') print('Testing the DECREASING_EXCLAMATION_MARKS function:') print('----------------------------------------------------------') print('Test 1 of decreasing_exclamation_marks: (5, 2)') decreasing_exclamation_marks(5, 2) print('Test 2 of decreasing_exclamation_marks: (3, 1)') decreasing_exclamation_marks(3, 1) print('Test 3 of decreasing_exclamation_marks: (4, 4)') decreasing_exclamation_marks(4, 4) print('Test 4 of decreasing_exclamation_marks: (8, 6)') decreasing_exclamation_marks(8, 6) def decreasing_exclamation_marks(m, n): """ Prints exclamation marks: m on the first row, m-1 on the next row, m-2 on the next, etc, until n on the last row. For example, when m = 5 and n = 2: !!!!! !!!! !!! !! Precondition: m and n are positive integers with m >= n. """ # ------------------------------------------------------------------ # DONE: 4. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(m-n+1): for k in range(m-j): print('!', end='') print() def run_test_alternating_brackets(): """ Tests the alternating_brackets function. """ print() print('----------------------------------------------------------') print('Testing the ALTERNATING_BRACKETS function:') print('----------------------------------------------------------') print('Test 1 of alternating_brackets: (5, 2)') alternating_brackets(5, 2) print('Test 2 of alternating_brackets: (3, 1)') alternating_brackets(3, 1) print('Test 3 of alternating_brackets: (4, 4)') alternating_brackets(4, 4) print('Test 4 of alternating_brackets: (8, 6)') alternating_brackets(8, 6) def alternating_brackets(m, n): """ Prints alternating left/right square brackets: m on the first row, m-1 on the next row, m-2 on the next, etc, until n on the last row. For example, when m = 5 and n = 2: [][][ [][] [][ [] Precondition: m and n are positive integers with m >= n. """ # ------------------------------------------------------------------ # DONE: 5. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(m-n+1): for k in range(m-j): if k % 2 == 0: print('[', end='') else: print(']', end='') print() def run_test_triangle_same_number_in_each_row(): """ Tests the triangle_same_number_in_each_row function. """ print() print('----------------------------------------------------------') print('Testing the TRIANGLE_SAME_NUMBER_IN_EACH_ROW function:') print('----------------------------------------------------------') print('Test 1 of triangle_same_number_in_each_row: (5)') triangle_same_number_in_each_row(5) print('Test 2 of triangle_same_number_in_each_row: (1)') triangle_same_number_in_each_row(1) print('Test 3 of triangle_same_number_in_each_row: (3)') triangle_same_number_in_each_row(3) print('Test 4 of triangle_same_number_in_each_row: (6)') triangle_same_number_in_each_row(6) def triangle_same_number_in_each_row(r): """ Prints a triangle of numbers, with r rows. The first row is 1, the 2nd is 22, the 3rd is 333, etc. For example, when r = 5: 1 22 333 4444 55555 Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 6. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(r): for k in range(j): print(j,end='') print() def run_test_triangle_all_numbers_in_each_row(): """ Tests the triangle_all_numbers_in_each_row function. """ print() print('----------------------------------------------------------') print('Testing the TRIANGLE_ALL_NUMBERS_IN_EACH_ROW function:') print('----------------------------------------------------------') print('Test 1 of triangle_all_numbers_in_each_row: (5)') triangle_all_numbers_in_each_row(5) print('Test 2 of triangle_all_numbers_in_each_row: (1)') triangle_all_numbers_in_each_row(1) print('Test 3 of triangle_all_numbers_in_each_row: (3)') triangle_all_numbers_in_each_row(3) print('Test 4 of triangle_all_numbers_in_each_row: (6)') triangle_all_numbers_in_each_row(6) def triangle_all_numbers_in_each_row(r): """ Prints a triangle of numbers, with r rows. The first row is 1, the 2nd is 12, the 3rd is 123, etc. For example, when r = 5: 1 12 123 1234 12345 Precondition: r is a non-negative integer. """ # ------------------------------------------------------------------ # DONE: 7. Implement and test this function. # Some tests are already written for you (above). # # IMPLEMENTATION RESTRICTION: # ** You may NOT use string multiplication ** # in this or the other problems in this module, as doing so # would defeat the goal of providing practice at loops within loops. # ------------------------------------------------------------------ for j in range(r): for k in range(j+1): print(k+1, end='') print() # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # ---------------------------------------------------------------------- main()
34.049689
74
0.530828
0ee22d74b57c3bc124ab3e4f95bb482e9d22fde5
9,249
py
Python
docs/source/conf.py
guidj/jsonuri-py
0e266be86a52dc93d792b05e458e07f0b279e490
[ "Apache-2.0" ]
null
null
null
docs/source/conf.py
guidj/jsonuri-py
0e266be86a52dc93d792b05e458e07f0b279e490
[ "Apache-2.0" ]
5
2015-06-17T05:34:55.000Z
2018-01-29T19:01:11.000Z
docs/source/conf.py
guidj/jsonuri-py
0e266be86a52dc93d792b05e458e07f0b279e490
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # JsonUri documentation build configuration file, created by # sphinx-quickstart on Thu Mar 19 01:41:24 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../../')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'JsonURI' copyright = '2015-2018, Guilherme Dinis J' author = 'Guilherme Dinis J' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.2.1' # The full version, including alpha/beta/rc tags. release = '0.2.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'JsonUridoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'JsonUri.tex', 'JsonUri Documentation', 'Guilherme Dinis J', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'jsonuri', 'JsonUri Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'JsonUri', 'JsonUri Documentation', author, 'JsonUri', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
32.00346
79
0.716618
fc255974b5b6637d2a3dbaa153aa8c94b3c781d9
656
py
Python
leetcode/1133-last-substring-in-lexicographical-order.py
Magic07/online-judge-solutions
02a289dd7eb52d7eafabc97bd1a043213b65f70a
[ "MIT" ]
null
null
null
leetcode/1133-last-substring-in-lexicographical-order.py
Magic07/online-judge-solutions
02a289dd7eb52d7eafabc97bd1a043213b65f70a
[ "MIT" ]
null
null
null
leetcode/1133-last-substring-in-lexicographical-order.py
Magic07/online-judge-solutions
02a289dd7eb52d7eafabc97bd1a043213b65f70a
[ "MIT" ]
null
null
null
class Solution: def lastSubstring(self, s: str) -> str: currentMax=0 start=1 length=0 while start+length<len(s): if s[currentMax+length]==s[start+length]: length+=1 continue if s[currentMax+length]>s[start+length]: start=start+length+1 else: currentMax=start start+=1 length=0 return s[currentMax:] # Ref: https://leetcode.com/problems/last-substring-in-lexicographical-order/discuss/363662/Short-python-code-O(n)-time-and-O(1)-space-with-proof-and-visualization
36.444444
163
0.545732
125f37a1d1eb1f4462372874a95427fd3d6be79b
3,406
py
Python
.dev_scripts/convert_train_benchmark_script.py
mrzhuzhe/mmdetection
c04ca2c2a65500bc248a5d2ab6ace5b15f00064d
[ "Apache-2.0" ]
null
null
null
.dev_scripts/convert_train_benchmark_script.py
mrzhuzhe/mmdetection
c04ca2c2a65500bc248a5d2ab6ace5b15f00064d
[ "Apache-2.0" ]
null
null
null
.dev_scripts/convert_train_benchmark_script.py
mrzhuzhe/mmdetection
c04ca2c2a65500bc248a5d2ab6ace5b15f00064d
[ "Apache-2.0" ]
null
null
null
# Copyright (c) OpenMMLab. All rights reserved. import argparse import os import os.path as osp def parse_args(): parser = argparse.ArgumentParser( description='Convert benchmark model json to script') parser.add_argument( 'txt_path', type=str, help='txt path output by benchmark_filter') parser.add_argument( '--partition', type=str, default='openmmlab', help='slurm partition name') parser.add_argument( '--max-keep-ckpts', type=int, default=1, help='The maximum checkpoints to keep') parser.add_argument( '--run', action='store_true', help='run script directly') parser.add_argument( '--out', type=str, help='path to save model benchmark script') args = parser.parse_args() return args def main(): args = parse_args() if args.out: out_suffix = args.out.split('.')[-1] assert args.out.endswith('.sh'), \ f'Expected out file path suffix is .sh, but get .{out_suffix}' assert args.out or args.run, \ ('Please specify at least one operation (save/run/ the ' 'script) with the argument "--out" or "--run"') partition = args.partition # cluster name root_name = './tools' train_script_name = osp.join(root_name, 'slurm_train.sh') # stdout is no output stdout_cfg = '>/dev/null' max_keep_ckpts = args.max_keep_ckpts commands = [] with open(args.txt_path, 'r') as f: model_cfgs = f.readlines() for i, cfg in enumerate(model_cfgs): cfg = cfg.strip() if len(cfg) == 0: continue # print cfg name echo_info = f'echo \'{cfg}\' &' commands.append(echo_info) commands.append('\n') fname, _ = osp.splitext(osp.basename(cfg)) out_fname = osp.join(root_name, 'work_dir', fname) # default setting if cfg.find('16x') >= 0: command_info = f'GPUS=16 GPUS_PER_NODE=8 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' elif cfg.find('gn-head_4x4_1x_coco.py') >= 0 or \ cfg.find('gn-head_4x4_2x_coco.py') >= 0: command_info = f'GPUS=4 GPUS_PER_NODE=4 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' else: command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \ f'CPUS_PER_TASK=2 {train_script_name} ' command_info += f'{partition} ' command_info += f'{fname} ' command_info += f'{cfg} ' command_info += f'{out_fname} ' if max_keep_ckpts: command_info += f'--cfg-options ' \ f'checkpoint_config.max_keep_ckpts=' \ f'{max_keep_ckpts}' + ' ' command_info += f'{stdout_cfg} &' commands.append(command_info) if i < len(model_cfgs): commands.append('\n') command_str = ''.join(commands) if args.out: with open(args.out, 'w') as f: f.write(command_str) if args.run: os.system(command_str) if __name__ == '__main__': main()
34.06
75
0.525837
39c4f0f926dab2b8a69d373d2799595996223947
1,510
py
Python
tests/test_intersection.py
abdessamad14/zellij
ac49d4abc3779eb4bd11e425f502fd1de96cc0b8
[ "Apache-2.0" ]
12
2017-07-10T16:44:49.000Z
2021-11-09T21:24:57.000Z
tests/test_intersection.py
abdessamad14/zellije
ac49d4abc3779eb4bd11e425f502fd1de96cc0b8
[ "Apache-2.0" ]
2
2017-09-05T16:13:21.000Z
2018-05-05T19:46:46.000Z
tests/test_intersection.py
abdessamad14/zellije
ac49d4abc3779eb4bd11e425f502fd1de96cc0b8
[ "Apache-2.0" ]
3
2017-08-16T00:13:29.000Z
2021-11-09T21:29:58.000Z
from hypothesis import assume, given from hypothesis.strategies import builds, lists, integers, tuples from zellij.defuzz import Defuzzer from zellij.euclid import collinear, Segment, BadGeometry from zellij.intersection import segment_intersections from zellij.postulates import all_pairs nums = integers(min_value=-1000, max_value=1000) points = tuples(nums, nums) segments = builds(lambda l: Segment(*l), lists(points, min_size=2, max_size=2, unique=True)) @given(lists(segments, min_size=2, max_size=100, unique=True)) def test_intersections(segments): defuzz = Defuzzer().defuzz # Check that none of our segment pairs are pathological, and collect the # true answers the hard way, by checking pair-wise. true = set() for s1, s2 in all_pairs(segments): try: ipt = s1.intersect(s2) if ipt is not None: true.add(defuzz(ipt)) except BadGeometry: # If two segments don't have an answer, then don't use this test # case. assume(False) # Run the actual function we care about. isects = segment_intersections(segments) for pt, segs in isects.items(): # Property: the answer should be in the true answers we found the hard # way. assert defuzz(pt) in true # Property: every intersection should be collinear with the segment it # claims to be part of. for seg in segs: s1, s2 = seg assert collinear(s1, pt, s2)
34.318182
92
0.669536
013efe4985b14efa1224cd76e8e3be655ae6f076
3,945
py
Python
airflow/providers/elasticsearch/backport_provider_setup.py
gtossou/airflow
0314a3a218f864f78ec260cc66134e7acae34bc5
[ "Apache-2.0" ]
2
2020-12-03T01:29:54.000Z
2020-12-03T01:30:06.000Z
airflow/providers/elasticsearch/backport_provider_setup.py
gtossou/airflow
0314a3a218f864f78ec260cc66134e7acae34bc5
[ "Apache-2.0" ]
null
null
null
airflow/providers/elasticsearch/backport_provider_setup.py
gtossou/airflow
0314a3a218f864f78ec260cc66134e7acae34bc5
[ "Apache-2.0" ]
null
null
null
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # NOTE! THIS FILE IS AUTOMATICALLY GENERATED AND WILL BE\ # OVERWRITTEN WHEN RUNNING # # ./breeze prepare-provider-readme # # IF YOU WANT TO MODIFY IT, YOU SHOULD MODIFY THE TEMPLATE # `SETUP_TEMPLATE.py.jinja2` IN the `provider_packages` DIRECTORY """Setup.py for the apache-airflow-backport-providers-elasticsearch package.""" import logging import os import sys from os.path import dirname from setuptools import find_packages, setup logger = logging.getLogger(__name__) version = '2020.10.29' my_dir = dirname(__file__) try: with open( os.path.join(my_dir, 'airflow/providers/elasticsearch/BACKPORT_PROVIDER_README.md'), encoding='utf-8' ) as f: long_description = f.read() except FileNotFoundError: long_description = '' def do_setup(version_suffix_for_pypi=''): """Perform the package apache-airflow-backport-providers-elasticsearch setup.""" setup( name='apache-airflow-backport-providers-elasticsearch', description='Backport provider package ' 'apache-airflow-backport-providers-elasticsearch for Apache Airflow', long_description=long_description, long_description_content_type='text/markdown', license='Apache License 2.0', version=version + version_suffix_for_pypi, packages=find_packages(include=['airflow.providers.elasticsearch*']), zip_safe=False, install_requires=['apache-airflow~=1.10'], setup_requires=['setuptools', 'wheel'], extras_require={}, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System :: Monitoring', ], author='Apache Software Foundation', author_email='dev@airflow.apache.org', url='http://airflow.apache.org/', download_url=('https://archive.apache.org/dist/airflow/backport-providers'), python_requires='~=3.6', project_urls={ 'Documentation': 'https://airflow.apache.org/docs/', 'Bug Tracker': 'https://github.com/apache/airflow/issues', 'Source Code': 'https://github.com/apache/airflow', }, ) # # Note that --version-suffix-for-pypi should only be used in case we generate RC packages for PyPI # Those packages should have actual RC version in order to be published even if source version # should be the final one. # if __name__ == "__main__": suffix = '' if len(sys.argv) > 1 and sys.argv[1] == "--version-suffix-for-pypi": if len(sys.argv) < 3: print("ERROR! --version-suffix-for-pypi needs parameter!", file=sys.stderr) sys.exit(1) suffix = sys.argv[2] sys.argv = [sys.argv[0]] + sys.argv[3:] do_setup(version_suffix_for_pypi=suffix)
37.571429
109
0.677567
701a4065c3659ab1b245837fcaa77fbdc5b775c4
730
py
Python
jichu/api.py
theoturner/Fetch-Jichu
a6f34a0c6519b0a5d5a006acd13fc677ab7fbdbe
[ "Apache-2.0" ]
null
null
null
jichu/api.py
theoturner/Fetch-Jichu
a6f34a0c6519b0a5d5a006acd13fc677ab7fbdbe
[ "Apache-2.0" ]
null
null
null
jichu/api.py
theoturner/Fetch-Jichu
a6f34a0c6519b0a5d5a006acd13fc677ab7fbdbe
[ "Apache-2.0" ]
1
2019-10-22T15:29:32.000Z
2019-10-22T15:29:32.000Z
from flask import Flask, render_template, request, redirect, url_for from contract import ContractDeployer app = Flask(__name__) # Load secret key using local config / env var in production app.config["SECRET_KEY"] = "session-cookie-signing-key" txhash = '' @app.route("/") def index(): return render_template("index.html", txhash = txhash) @app.route("/deploy", methods = ["POST"]) def deploy(): # Server-side cookie to get around this golbal dropping Quart, no async! global txhash address = request.form['address'] contract = request.form['contract'] cd = ContractDeployer(address, 8000) txhash = cd.deploy(contract) return redirect(url_for('index')) if __name__ == "__main__": app.run()
30.416667
76
0.706849
59a400d46130b8c8c86037cc3ec3c807b4828675
5,314
py
Python
coherence_timeseries.py
olliestephenson/dpm-rnn-public
bc4247fd7126eac66dd07c50149a62be72a316ec
[ "MIT" ]
13
2021-07-03T09:58:55.000Z
2022-03-30T13:36:30.000Z
coherence_timeseries.py
olliestephenson/dpm-rnn-public
bc4247fd7126eac66dd07c50149a62be72a316ec
[ "MIT" ]
null
null
null
coherence_timeseries.py
olliestephenson/dpm-rnn-public
bc4247fd7126eac66dd07c50149a62be72a316ec
[ "MIT" ]
5
2021-02-18T16:54:25.000Z
2022-03-31T08:02:54.000Z
import os import numpy as np import torch from torch.utils.data import Dataset from enum import Enum class Mode(Enum): DEPLOY = 0 TRAIN = 1 TEST = 2 class Coherence_Timeseries(Dataset): data_dim = 1 # coherence values are scalar (dimension = 1) mode = Mode.DEPLOY # default mode def __init__(self, data_config): # Check fields in data_config assert 'path' in data_config and isinstance(data_config['path'], str) assert 'shape' in data_config and isinstance(data_config['shape'], list) and len(data_config['shape']) == 2 assert 'length' in data_config and isinstance(data_config['length'], int) assert 'event_index' in data_config and isinstance(data_config['event_index'], int) # Load data assert data_config['path'][-4:] == '.npy' self.data = np.load(data_config['path']) assert isinstance(self.data, np.ndarray) # Check dataset.shape assert len(self.data.shape) == 3 assert self.data.shape == (data_config['shape'][0], data_config['shape'][1], data_config['length']) self.dataset_shape = (self.data.shape[0], self.data.shape[1]) self.sequence_length = self.data.shape[2] # Check event_index assert 0 <= data_config['event_index'] < self.sequence_length self.event_index = data_config['event_index'] # Flatten data self.data = np.reshape(self.data, (-1, self.data.shape[-1])) self.data = np.expand_dims(self.data, axis=2) # last dimension 1 since coherence values are scalars def remove_nans(self): """Remove sequences with nan values from dataset.""" nans = np.isnan(self.data) nan_count = np.sum(np.sum(nans, axis=-1), axis=-1) self.not_nan_inds = np.where(nan_count == 0)[0] self.data = self.data[self.not_nan_inds] def unbound(self,transform): """ Transform coherence values into unbounded range with inverse sigmoid. Can transform coherence or squared coherence Transform on squared coherence closely matches cramer-rao bound on phase variance (see paper) Can also add further transforms here """ if transform == 'logit_squared': # Convert to higher precision to avoid divide by zero error in log # Don't seem to need this with logit transform self.data = np.float64(self.data) # Make sure all values in [0,1] range first eps = 1e-6 # small epsilon value self.data[self.data <= 0.0] = eps self.data[self.data >= 1.0] = 1.0-eps # Apply inverse sigmoid print('Using transform: {}'.format(transform)) if transform == 'logit': self.data = np.log(self.data/(1-self.data)) elif transform == 'logit_squared': self.data = np.log(np.square(self.data)/(1.0-np.square(self.data))) else: raise Exception('Data transform not defined') def create_test_set(self, train_split=0.8, seed=128): """ Create test dataset. This is memory efficient and doesn't duplicate self.data The training set is: self.data[self.shuffle_inds[:self.train_set_size]] The test set is: self.data[self.shuffle_inds[self.train_set_size:]] Args: train_split: proportion of data to use for training, rest for test. seed: seed to fix randomness. """ np.random.seed(seed) # fix randomness self.shuffle_inds = np.random.permutation(len(self.data)) # shuffle a random permutation self.train_set_size = int(train_split*len(self.data)) # set training set size def deploy(self): self.mode = Mode.DEPLOY def train(self): self.mode = Mode.TRAIN def test(self): self.mode = Mode.TEST def __len__(self): """ Length of dataset. Must override this method when extending Dataset object. """ if self.mode == Mode.DEPLOY: return len(self.data) elif self.mode == Mode.TRAIN: return self.train_set_size elif self.mode == Mode.TEST: return len(self.data)-self.train_set_size else: raise NotImplementedError def __getitem__(self, index): """ For getting data with indices. Must override this method when extending Dataset object. Return: (preseismic timeseries, coseismic coherence) """ if self.mode == Mode.DEPLOY: batch_preseismic = self.data[index,:self.event_index] batch_coseismic = self.data[index,self.event_index] elif self.mode == Mode.TRAIN: train_index = self.shuffle_inds[index] batch_preseismic = self.data[train_index,:self.event_index] batch_coseismic = self.data[train_index,self.event_index] elif self.mode == Mode.TEST: test_index = self.shuffle_inds[index+self.train_set_size] batch_preseismic = self.data[test_index,:self.event_index] batch_coseismic = self.data[test_index,self.event_index] else: raise NotImplementedError return torch.tensor(batch_preseismic).float(), torch.tensor(batch_coseismic).float()
37.160839
122
0.629093
d3825a517263d7c77e0670ea7e6260ca8ae1d204
7,178
bzl
Python
apple/internal/binary_support.bzl
acecilia/rules_apple
3a295d2a2702800d77e2c583f3a77262e764823e
[ "Apache-2.0" ]
1
2022-02-16T12:42:23.000Z
2022-02-16T12:42:23.000Z
apple/internal/binary_support.bzl
acecilia/rules_apple
3a295d2a2702800d77e2c583f3a77262e764823e
[ "Apache-2.0" ]
11
2019-10-15T23:03:57.000Z
2020-06-14T16:10:12.000Z
apple/internal/binary_support.bzl
acecilia/rules_apple
3a295d2a2702800d77e2c583f3a77262e764823e
[ "Apache-2.0" ]
7
2019-07-04T14:23:54.000Z
2020-04-27T08:52:51.000Z
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Binary creation support functions.""" load( "@build_bazel_rules_apple//apple/internal:entitlement_rules.bzl", "entitlements", ) load( "@build_bazel_rules_apple//apple/internal:exported_symbols_lists_rules.bzl", "exported_symbols_lists", ) load( "@build_bazel_rules_apple//apple/internal:swift_support.bzl", "swift_runtime_linkopts", ) def _create_swift_runtime_linkopts_target( name, deps, is_static, is_test, tags, testonly): """Creates a build target to propagate Swift runtime linker flags. Args: name: The name of the base target. deps: The list of dependencies of the base target. is_static: True to use the static Swift runtime, or False to use the dynamic Swift runtime. is_test: True to make sure test specific linkopts are propagated. tags: Tags to add to the created targets. testonly: Whether the target should be testonly. Returns: A build label that can be added to the deps of the binary target. """ swift_runtime_linkopts_name = name + ".swift_runtime_linkopts" swift_runtime_linkopts( name = swift_runtime_linkopts_name, is_static = is_static, is_test = is_test, testonly = testonly, tags = tags, deps = deps, ) return ":" + swift_runtime_linkopts_name def _add_entitlements_and_swift_linkopts( name, platform_type, product_type, include_entitlements = True, is_stub = False, link_swift_statically = False, is_test = False, exported_symbols_lists = None, **kwargs): """Adds entitlements and Swift linkopts targets for a bundle target. This function creates an entitlements target to ensure that a binary created using the `link_multi_arch_binary` API or by copying a stub executable gets signed appropriately. Similarly, for bundles with user-provided binaries, this function also adds any Swift linkopts that are necessary for it to link correctly. Args: name: The name of the bundle target, from which the targets' names will be derived. platform_type: The platform type of the bundle. product_type: The product type of the bundle. include_entitlements: True/False, indicates whether to include an entitlements target. Defaults to True. is_stub: True/False, indicates whether the function is being called for a bundle that uses a stub executable. link_swift_statically: True/False, indicates whether the static versions of the Swift standard libraries should be used during linking. Only used if include_swift_linkopts is True. is_test: True/False, indicates if test specific linker flags should be propagated. exported_symbols_lists: A list of text files representing exported symbols lists that should be linked with thefinal binary. **kwargs: The arguments that were passed into the top-level macro. Returns: A modified copy of `**kwargs` that should be passed to the bundling rule. """ bundling_args = dict(kwargs) tags = bundling_args.get("tags", None) testonly = bundling_args.get("testonly", None) additional_deps = [] if include_entitlements: entitlements_value = bundling_args.get("entitlements") provisioning_profile = bundling_args.get("provisioning_profile") entitlements_name = "%s_entitlements" % name entitlements( name = entitlements_name, bundle_id = bundling_args.get("bundle_id"), entitlements = entitlements_value, platform_type = platform_type, product_type = product_type, provisioning_profile = provisioning_profile, tags = tags, testonly = testonly, validation_mode = bundling_args.get("entitlements_validation"), ) # Replace the `entitlements` attribute with the preprocessed entitlements. bundling_args["entitlements"] = ":" + entitlements_name if not is_stub: # Also add the target as a dependency if the target is not a stub, since it may # propagate linkopts. additional_deps.append(":{}".format(entitlements_name)) exported_symbols_list_deps = _add_exported_symbols_lists( name, exported_symbols_lists, ) deps = bundling_args.get("deps", []) if not is_stub: # Propagate the linker flags that dynamically link the Swift runtime, if Swift was used. If # it wasn't, this target propagates no linkopts. additional_deps.append( _create_swift_runtime_linkopts_target( name, deps, link_swift_statically, bool(is_test or testonly), tags = tags, testonly = testonly, ), ) all_deps = deps + additional_deps + exported_symbols_list_deps if all_deps: bundling_args["deps"] = all_deps return bundling_args def _add_exported_symbols_lists(name, exported_symbols_lists_value): """Adds one or more exported symbols lists to a bundle target. These lists are references to files that provide a list of global symbol names that will remain as global symbols in the output file. All other global symbols will be treated as if they were marked as __private_extern__ (aka visibility=hidden) and will not be global in the output file. See the man page documentation for ld(1) on macOS for more details. Args: name: The name of the bundle target, from which the binary target's name will be derived. exported_symbols_lists_value: A list of text files representing exported symbols lists that should be linked with thefinal binary. Returns: A modified copy of `**kwargs` that should be passed to the bundling rule. """ if exported_symbols_lists_value: exported_symbols_lists_name = "%s_exported_symbols_lists" % name exported_symbols_lists( name = exported_symbols_lists_name, lists = exported_symbols_lists_value, ) exported_symbols_list_deps = [":" + exported_symbols_lists_name] else: exported_symbols_list_deps = [] return exported_symbols_list_deps # Define the loadable module that lists the exported symbols in this file. binary_support = struct( add_entitlements_and_swift_linkopts = _add_entitlements_and_swift_linkopts, )
38.180851
100
0.690582
b126aeab73d672fb64e7e9f736b3cc2c4ee0a256
5,270
py
Python
salt/_compat.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
1
2016-03-13T09:05:15.000Z
2016-03-13T09:05:15.000Z
salt/_compat.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
null
null
null
salt/_compat.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Salt compatibility code ''' # pylint: disable=W0611 # Import python libs import sys import types try: import cPickle as pickle except ImportError: import pickle try: # Python >2.5 import xml.etree.cElementTree as ElementTree except ImportError: try: # Python >2.5 import xml.etree.ElementTree as ElementTree except ImportError: try: # normal cElementTree install import cElementTree as ElementTree except ImportError: try: # normal ElementTree install import elementtree.ElementTree as ElementTree except ImportError: raise # True if we are running on Python 3. PY3 = sys.version_info[0] == 3 if PY3: MAX_SIZE = sys.maxsize else: MAX_SIZE = sys.maxint # pylint: disable=C0103 if PY3: string_types = str, integer_types = int, class_types = type, text_type = str binary_type = bytes long = int else: string_types = basestring, integer_types = (int, long) class_types = (type, types.ClassType) text_type = unicode binary_type = str long = long if PY3: def callable(obj): return any('__call__' in klass.__dict__ for klass in type(obj).__mro__) else: callable = callable def text_(s, encoding='latin-1', errors='strict'): ''' If ``s`` is an instance of ``binary_type``, return ``s.decode(encoding, errors)``, otherwise return ``s`` ''' if isinstance(s, binary_type): return s.decode(encoding, errors) return s def bytes_(s, encoding='latin-1', errors='strict'): ''' If ``s`` is an instance of ``text_type``, return ``s.encode(encoding, errors)``, otherwise return ``s`` ''' if isinstance(s, text_type): return s.encode(encoding, errors) return s if PY3: def ascii_native_(s): if isinstance(s, text_type): s = s.encode('ascii') return str(s, 'ascii', 'strict') else: def ascii_native_(s): if isinstance(s, text_type): s = s.encode('ascii') return str(s) ascii_native_.__doc__ = ''' Python 3: If ``s`` is an instance of ``text_type``, return ``s.encode('ascii')``, otherwise return ``str(s, 'ascii', 'strict')`` Python 2: If ``s`` is an instance of ``text_type``, return ``s.encode('ascii')``, otherwise return ``str(s)`` ''' if PY3: def native_(s, encoding='latin-1', errors='strict'): ''' If ``s`` is an instance of ``text_type``, return ``s``, otherwise return ``str(s, encoding, errors)`` ''' if isinstance(s, text_type): return s return str(s, encoding, errors) else: def native_(s, encoding='latin-1', errors='strict'): ''' If ``s`` is an instance of ``text_type``, return ``s.encode(encoding, errors)``, otherwise return ``str(s)`` ''' if isinstance(s, text_type): return s.encode(encoding, errors) return str(s) native_.__doc__ = ''' Python 3: If ``s`` is an instance of ``text_type``, return ``s``, otherwise return ``str(s, encoding, errors)`` Python 2: If ``s`` is an instance of ``text_type``, return ``s.encode(encoding, errors)``, otherwise return ``str(s)`` ''' if PY3: # pylint: disable=E0611 from urllib.parse import urlparse from urllib.parse import urlunparse from urllib.error import URLError import http.server as BaseHTTPServer from urllib.error import HTTPError from urllib.parse import quote as url_quote from urllib.parse import quote_plus as url_quote_plus from urllib.parse import unquote as url_unquote from urllib.parse import urlencode as url_encode from urllib.request import urlopen as url_open from urllib.request import HTTPPasswordMgrWithDefaultRealm as url_passwd_mgr from urllib.request import HTTPBasicAuthHandler as url_auth_handler from urllib.request import build_opener as url_build_opener from urllib.request import install_opener as url_install_opener url_unquote_text = url_unquote url_unquote_native = url_unquote else: from urlparse import urlparse from urlparse import urlunparse import BaseHTTPServer from urllib2 import HTTPError, URLError from urllib import quote as url_quote from urllib import quote_plus as url_quote_plus from urllib import unquote as url_unquote from urllib import urlencode as url_encode from urllib2 import urlopen as url_open from urllib2 import HTTPPasswordMgrWithDefaultRealm as url_passwd_mgr from urllib2 import HTTPBasicAuthHandler as url_auth_handler from urllib2 import build_opener as url_build_opener from urllib2 import install_opener as url_install_opener def url_unquote_text(v, encoding='utf-8', errors='replace'): v = url_unquote(v) return v.decode(encoding, errors) def url_unquote_native(v, encoding='utf-8', errors='replace'): return native_(url_unquote_text(v, encoding, errors)) if PY3: zip = zip else: from future_builtins import zip if PY3: from io import StringIO else: from StringIO import StringIO if PY3: import queue as Queue else: import Queue # pylint: enable=C0103
28.333333
80
0.663378
b28a39c4dde1a8fc70edad7bc8121516ad6030e5
6,669
py
Python
Room.py
AldoAbdn/Polar-Simulator-2017
1824cc1faa76fbaed8e4fa143679f1aed8685590
[ "MIT" ]
null
null
null
Room.py
AldoAbdn/Polar-Simulator-2017
1824cc1faa76fbaed8e4fa143679f1aed8685590
[ "MIT" ]
null
null
null
Room.py
AldoAbdn/Polar-Simulator-2017
1824cc1faa76fbaed8e4fa143679f1aed8685590
[ "MIT" ]
null
null
null
import pygame from pygame.locals import * from EventManager import EventManager from EventHandlers import RoomEventHandlers from SoundManager import SoundManager from Crate import Crate from Wall import Wall from WarehouseKeeper import WarehouseKeeper from Tile import Diamond from Tile import Tile from Grid import Grid class Room(object): """These are the 'levels' of the game. There will be 5 in total""" def __init__(self,level,map,roomRes,imagePath=""): self.roomResolution = roomRes self.level = level self.moves = 0 self.grid = Grid(map, roomRes) self.player = self.grid.getPlayer() self.eventHandlers = RoomEventHandlers(self) #Getters def getMoves(self): return self.moves def getLevel(self): return self.level def getEventHandlers(self): return self.eventHandlers def getGrid(self): return self.grid def __getResolution__(self): return self.roomResolution def __getPlayer__(self): return self.player #Setters def setMoves(self, value): self.moves = value def __setLevel__(self, value): self.level = value def __setEventHandlers__(self, value): self.eventHandlers = value def __setResolution__(self,value): self.roomResolution = value def __setGrid(self, value): self.grid = value def __setPlayer__(self, value): self.player = value #Draw def draw(self, surface): self.grid.draw(surface) #Draws all the sprites def clickPlayerMove(self, pos): possiblePlayerCoords = self.grid.predictPlayerPossibleCoords() clickedItem = self.grid.getItemByPos(pos) if clickedItem: clickedItemCoords = clickedItem.getCoordinates() for coords in possiblePlayerCoords: if clickedItemCoords == coords: direction = self.grid.convertCoordsToDirection(coords) if direction: self.playerMove(direction) return #This is what is called when a WASD is pressed, checks if player, or player and crate can move def playerMove(self, direction): playerMove = self.__spriteMoved__(direction) if playerMove: self.__incrementMoves__() pygame.event.post(EventManager.Events["Player Move"]) #If the player moves, call player move event to update count roomOver = self.__isRoomOver__() if roomOver: pygame.event.post(EventManager.Events["Room Over"]) #Used to predict where a sprite will be if it were to move a certain direction def __predictCoordinates__(self,currentCoordinates, direction): if direction.lower() == "up": possibleCoordinates = (currentCoordinates[0] - 1, currentCoordinates[1]) elif direction.lower() == "down": possibleCoordinates = (currentCoordinates[0] + 1, currentCoordinates[1]) elif direction.lower() == "left": possibleCoordinates = (currentCoordinates[0], currentCoordinates[1] - 1) elif direction.lower() == "right": possibleCoordinates = (currentCoordinates[0], currentCoordinates[1] + 1) return possibleCoordinates #Takes in a sprite, checks if hits a wall. Moves sprite depending on type def __spriteMoved__(self, direction): if not self.player.getMoving() and not self.grid.crateMoving(): #Predicts next possible position based on direction currentCoordinates = self.player.getCoordinates() #Gets current coordinates possibleCoordinates = self.__predictCoordinates__(currentCoordinates,direction) roomOver= False canMove = None # try: #Catches out of range exeption if player tries to move out of grid and there is no wall if possibleCoordinates[0] >= 0 and possibleCoordinates[0] < self.grid.rows and possibleCoordinates[1] >= 0 and possibleCoordinates[1] < self.grid.cols: items = self.grid.getItems(possibleCoordinates[0], possibleCoordinates[1]) if any(isinstance(x, Wall) for x in items): return False elif any(isinstance(x, Crate) for x in items): crate = None for possibleCrate in items: if isinstance(possibleCrate, Crate): crate = possibleCrate break crateCurrentCoordinates = crate.getCoordinates() cratePossibleCoordinates = self.__predictCoordinates__(crateCurrentCoordinates, direction) if cratePossibleCoordinates[0] >= 0 and cratePossibleCoordinates[0] < self.grid.rows and cratePossibleCoordinates[1] >= 0 and cratePossibleCoordinates[1] < self.grid.cols: items = self.grid.getItems(cratePossibleCoordinates[0], cratePossibleCoordinates[1]) if any(isinstance(x, Wall) for x in items) or any(isinstance(x, Crate) for x in items): return False elif any(isinstance(x, Diamond) for x in items): crate.toggleActive(True) else: crate.toggleActive(False) self.player.setCoordinates(possibleCoordinates) crate.setCoordinates(cratePossibleCoordinates) return True else: self.player.setCoordinates(possibleCoordinates) return True else: return False def __incrementMoves__(self): #Increments moves for the room self.moves += 1 def __isRoomOver__(self): #Checks for room over, compares crate positions to diamond positions crates = self.grid.getCrates() diamonds = self.grid.getDiamonds() counter = 0 #Compares the coordinates of each crate to each diamond in a room, adds to a counter if they are in the same position for i in range(0, len(crates)): for j in range(0, len(diamonds)): if crates[i].getCoordinates() == diamonds[j].getCoordinates(): counter += 1 #If all crates are on diamonds, room over return true if counter == len(crates): return True else: return False
40.664634
192
0.606838
35cfe3e9fb76f502a6b60ce3f92e37e261cfc81a
6,096
py
Python
qa/rpc-tests/proxy_test.py
MichaelHDesigns/Bitcoin-Token-Core
61f7837fe83994cb9b76d28a55e75dc9fa86f1fd
[ "MIT" ]
null
null
null
qa/rpc-tests/proxy_test.py
MichaelHDesigns/Bitcoin-Token-Core
61f7837fe83994cb9b76d28a55e75dc9fa86f1fd
[ "MIT" ]
null
null
null
qa/rpc-tests/proxy_test.py
MichaelHDesigns/Bitcoin-Token-Core
61f7837fe83994cb9b76d28a55e75dc9fa86f1fd
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2015 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import socket import traceback, sys from binascii import hexlify import time, os from socks5 import Socks5Configuration, Socks5Command, Socks5Server, AddressType from test_framework import BitcoinTestFramework from util import * ''' Test plan: - Start bitcoind's with different proxy configurations - Use addnode to initiate connections - Verify that proxies are connected to, and the right connection command is given - Proxy configurations to test on bitcoind side: - `-proxy` (proxy everything) - `-onion` (proxy just onions) - `-proxyrandomize` Circuit randomization - Proxy configurations to test on proxy side, - support no authentication (other proxy) - support no authentication + user/pass authentication (Tor) - proxy on IPv6 - Create various proxies (as threads) - Create bitcoinds that connect to them - Manipulate the bitcoinds using addnode (onetry) an observe effects addnode connect to IPv4 addnode connect to IPv6 addnode connect to onion addnode connect to generic DNS name ''' class ProxyTest(BitcoinTestFramework): def __init__(self): # Create two proxies on different ports # ... one unauthenticated self.conf1 = Socks5Configuration() self.conf1.addr = ('127.0.0.1', 13000 + (os.getpid() % 1000)) self.conf1.unauth = True self.conf1.auth = False # ... one supporting authenticated and unauthenticated (Tor) self.conf2 = Socks5Configuration() self.conf2.addr = ('127.0.0.1', 14000 + (os.getpid() % 1000)) self.conf2.unauth = True self.conf2.auth = True # ... one on IPv6 with similar configuration self.conf3 = Socks5Configuration() self.conf3.af = socket.AF_INET6 self.conf3.addr = ('::1', 15000 + (os.getpid() % 1000)) self.conf3.unauth = True self.conf3.auth = True self.serv1 = Socks5Server(self.conf1) self.serv1.start() self.serv2 = Socks5Server(self.conf2) self.serv2.start() self.serv3 = Socks5Server(self.conf3) self.serv3.start() def setup_nodes(self): # Note: proxies are not used to connect to local nodes # this is because the proxy to use is based on CService.GetNetwork(), which return NET_UNROUTABLE for localhost return start_nodes(4, self.options.tmpdir, extra_args=[ ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf1.addr),'-proxyrandomize=1'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf1.addr),'-onion=%s:%i' % (self.conf2.addr),'-proxyrandomize=0'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=%s:%i' % (self.conf2.addr),'-proxyrandomize=1'], ['-listen', '-debug=net', '-debug=proxy', '-proxy=[%s]:%i' % (self.conf3.addr),'-proxyrandomize=0'] ]) def node_test(self, node, proxies, auth): rv = [] # Test: outgoing IPv4 connection through node node.addnode("15.61.23.23:1234", "onetry") cmd = proxies[0].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "15.61.23.23") assert_equal(cmd.port, 1234) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing IPv6 connection through node node.addnode("[1233:3432:2434:2343:3234:2345:6546:4534]:5443", "onetry") cmd = proxies[1].queue.get() assert(isinstance(cmd, Socks5Command)) # Note: bitcoind's SOCKS5 implementation only sends atyp DOMAINNAME, even if connecting directly to IPv4/IPv6 assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "1233:3432:2434:2343:3234:2345:6546:4534") assert_equal(cmd.port, 5443) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing onion connection through node node.addnode("btctvj7kcklujarx.onion:88888", "onetry") cmd = proxies[2].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "btctvj7kcklujarx.onion") assert_equal(cmd.port, 88888) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) # Test: outgoing DNS name connection through node node.addnode("node.noumenon:8333", "onetry") cmd = proxies[3].queue.get() assert(isinstance(cmd, Socks5Command)) assert_equal(cmd.atyp, AddressType.DOMAINNAME) assert_equal(cmd.addr, "node.noumenon") assert_equal(cmd.port, 8333) if not auth: assert_equal(cmd.username, None) assert_equal(cmd.password, None) rv.append(cmd) return rv def run_test(self): # basic -proxy self.node_test(self.nodes[0], [self.serv1, self.serv1, self.serv1, self.serv1], False) # -proxy plus -onion self.node_test(self.nodes[1], [self.serv1, self.serv1, self.serv2, self.serv1], False) # -proxy plus -onion, -proxyrandomize rv = self.node_test(self.nodes[2], [self.serv2, self.serv2, self.serv2, self.serv2], True) # Check that credentials as used for -proxyrandomize connections are unique credentials = set((x.username,x.password) for x in rv) assert_equal(len(credentials), 4) # proxy on IPv6 localhost self.node_test(self.nodes[3], [self.serv3, self.serv3, self.serv3, self.serv3], False) if __name__ == '__main__': ProxyTest().main()
41.753425
145
0.652887
519e7cc48cab3c9573d007ce00af528a04335789
1,322
py
Python
commit_data.py
iwangjian/ByteCup2018
c59c6a495f81c493eaaf7fda710c8acd7ef148b9
[ "MIT" ]
80
2018-09-08T01:11:36.000Z
2022-01-18T13:41:30.000Z
commit_data.py
BoostMom/ByteCup2018
c59c6a495f81c493eaaf7fda710c8acd7ef148b9
[ "MIT" ]
3
2018-12-02T15:08:05.000Z
2020-02-10T04:11:28.000Z
commit_data.py
BoostMom/ByteCup2018
c59c6a495f81c493eaaf7fda710c8acd7ef148b9
[ "MIT" ]
21
2018-10-27T07:40:25.000Z
2022-03-28T12:30:01.000Z
import os import argparse def process_decoded(args): if not os.path.exists(args.result_dir): os.mkdir(args.result_dir) punct = ["/", "`", "+", "-", ";", "-lrb-", "-rrb-", "``", "|", "~", "&quot"] for file in os.listdir(args.decode_dir): file_path = os.path.join(args.decode_dir, file) file_id = int(str(file).split('.')[0]) + 1 res_file = str(file_id) + '.txt' res_path = os.path.join(args.result_dir, res_file) temp = [] with open(file_path, 'r') as fr: text = fr.read().strip() data = text.split(" ") for word in data: if not word in punct: temp.append(word) with open(res_path, 'w', encoding='utf-8') as fw: fw.write(" ".join(temp)) fw.write('\n') print("Finished: %s" % args.result_dir) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert decoded files to commit files') parser.add_argument('--decode_dir', action='store', required=True, help='directory of decoded summaries') parser.add_argument('--result_dir', action='store', required=True, help='directory of submission') args = parser.parse_args() process_decoded(args)
33.897436
89
0.553707
886c36e0f2c94072803f50ab03678d988783fba7
349
py
Python
JustPy/04.Handling/mail.py
sarincr/Python-Web-Frameworks-and-Template-Engines
a830cafb0075539527688ea3c12e3e2d97d3519f
[ "MIT" ]
null
null
null
JustPy/04.Handling/mail.py
sarincr/Python-Web-Frameworks-and-Template-Engines
a830cafb0075539527688ea3c12e3e2d97d3519f
[ "MIT" ]
null
null
null
JustPy/04.Handling/mail.py
sarincr/Python-Web-Frameworks-and-Template-Engines
a830cafb0075539527688ea3c12e3e2d97d3519f
[ "MIT" ]
null
null
null
import justpy as jp def my_click(self, msg): self.text = 'I was clicked' print(msg.event_type) print(msg['event_type']) print(msg) def event_demo(): wp = jp.WebPage() d = jp.P(text='Not clicked yet', a=wp, classes='text-xl m-2 p-2 bg-blue-500 text-white') d.on('click', my_click) return wp jp.justpy(event_demo)
20.529412
92
0.636103
e14ddb6cae4737692f361260b3fece66704c6fc7
836
py
Python
visualize.py
nime6/voxeldc-gan
e11e8248dc8ce0e3930de0f2867ef0fb395d5934
[ "MIT" ]
146
2016-09-30T01:41:23.000Z
2022-03-10T15:16:45.000Z
visualize.py
nime6/voxeldc-gan
e11e8248dc8ce0e3930de0f2867ef0fb395d5934
[ "MIT" ]
7
2017-03-02T14:13:32.000Z
2020-01-07T07:22:00.000Z
visualize.py
nime6/voxeldc-gan
e11e8248dc8ce0e3930de0f2867ef0fb395d5934
[ "MIT" ]
40
2017-01-20T13:36:33.000Z
2020-04-07T04:25:28.000Z
import tensorflow as tf import numpy as np import util import config from model import * netG = Generator() z = tf.placeholder(tf.float32, [config.batch_size, config.nz]) train = tf.placeholder(tf.bool) x = netG(z, train, config.nsf, config.nvx) t_vars = tf.trainable_variables() varsG = [var for var in t_vars if var.name.startswith('G')] saver = tf.train.Saver(varsG + tf.moving_average_variables()) config_proto = tf.ConfigProto() config_proto.gpu_options.allow_growth = True with tf.Session(config=config_proto) as sess: saver.restore(sess, config.params_path) batch_z = np.random.uniform(-1, 1, [config.batch_size, config.nz]).astype(np.float32) x_g = sess.run(x, feed_dict={z:batch_z, train:False}) for i, data in enumerate(x_g): util.save_binvox("out/{0}.binvox".format(i), data[:, :, :, 0] > 0.9)
29.857143
89
0.715311
d9dadb00c503d68ce7fa353d6d1f317a72e28769
929
py
Python
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/operations/__init__.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/operations/__init__.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-containerregistry/azure/mgmt/containerregistry/v2018_09_01/operations/__init__.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-08-28T14:36:47.000Z
2018-08-28T14:36:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .registries_operations import RegistriesOperations from .operations import Operations from .replications_operations import ReplicationsOperations from .webhooks_operations import WebhooksOperations from .runs_operations import RunsOperations from .tasks_operations import TasksOperations __all__ = [ 'RegistriesOperations', 'Operations', 'ReplicationsOperations', 'WebhooksOperations', 'RunsOperations', 'TasksOperations', ]
34.407407
76
0.662002
f717953473fd5d44045b712a4f139e641a8c661b
27,730
py
Python
InstallOpenface/fix_sklearn/label.py
s123600g/openfaceInstallscript
962b4b89c5626318b5701d7297d49df3423b0fe4
[ "MIT" ]
null
null
null
InstallOpenface/fix_sklearn/label.py
s123600g/openfaceInstallscript
962b4b89c5626318b5701d7297d49df3423b0fe4
[ "MIT" ]
null
null
null
InstallOpenface/fix_sklearn/label.py
s123600g/openfaceInstallscript
962b4b89c5626318b5701d7297d49df3423b0fe4
[ "MIT" ]
null
null
null
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Joel Nothman <joel.nothman@gmail.com> # Hamzeh Alsalhi <ha258@cornell.edu> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import sparse_min_max from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') y = column_or_1d(y, warn=True) classes = np.unique(y) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) # raise ValueError("y contains new labels: %s" % str(diff)) raise ValueError("y contains previously unseen labels: % s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) # if diff: # raise ValueError("y contains new labels: %s" % str(diff)) if len(diff): raise ValueError("y contains previously unseen labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'. sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : array of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def fit_transform(self, y): """Fit label binarizer and transform multi-class labels to binary labels. The output of transform is sometimes referred to as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ return self.fit(y).transform(y) def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when ``Y`` contains the output of decision_function (classifier). Use 0.5 when ``Y`` contains the output of predict_proba. If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if n_classes == 1: if sparse_output: return sp.csr_matrix((n_samples, 1), dtype=int) else: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = np.in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = Y.astype(int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = Y.data.astype(int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: return np.repeat(classes[0], len(y)) else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> from sklearn.preprocessing import MultiLabelBinarizer >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) # ensure yt.indices keeps its current dtype yt.indices = np.array(inverse[yt.indices], dtype=yt.indices.dtype, copy=False) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ check_is_fitted(self, 'classes_') class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ check_is_fitted(self, 'classes_') if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
33.329327
87
0.588136
d8d281e08b8a9f30580b7ba5501ec6efe951376e
17,695
py
Python
experiments/net_rec.py
small-yellow-duck/titanic-ede
0a3e1b352ccff83a8308e190955bf839be9d2ef5
[ "BSD-3-Clause" ]
1
2019-07-24T14:15:38.000Z
2019-07-24T14:15:38.000Z
experiments/net_rec.py
small-yellow-duck/titanic-ede
0a3e1b352ccff83a8308e190955bf839be9d2ef5
[ "BSD-3-Clause" ]
null
null
null
experiments/net_rec.py
small-yellow-duck/titanic-ede
0a3e1b352ccff83a8308e190955bf839be9d2ef5
[ "BSD-3-Clause" ]
null
null
null
# -*- encoding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np from torch.nn.parameter import Parameter from torch.nn import functional as F def get_embedding_weight(num_embeddings, embedding_dim, use_cuda): t = torch.rand(num_embeddings, embedding_dim) t = t - torch.mean(t, 0).view(1, -1).repeat(num_embeddings, 1) if use_cuda: return Parameter(t).cuda() else: return Parameter(t) class VariationalEmbedding(nn.Module): def __init__(self, n_tokens, embdim, _weight=None, _spread=None): super(VariationalEmbedding, self).__init__() self.weight = Parameter(_weight) self.spread = Parameter(_spread) self.n_tokens = self.weight.size(0) self.embdim = embdim assert list(_weight.shape) == [n_tokens, embdim], \ 'Shape of weight does not match num_embeddings and embedding_dim' def reparameterize(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() eps = Variable(std.data.new(std.size()).normal_()) return eps.mul(std).add_(mu) else: return mu def forward(self, indices): mu = F.embedding(indices, self.weight) std = F.embedding(indices, self.spread) return self.reparameterize(mu, std) class EmbeddingToIndex(nn.Module): def __init__(self, n_tokens, embdim, _weight=None): super(EmbeddingToIndex, self).__init__() self.weight = Parameter(_weight) self.n_tokens = self.weight.size(0) self.embdim = embdim assert list(_weight.shape) == [n_tokens, embdim], \ 'Shape of weight does not match num_embeddings and embedding_dim' def forward(self, X): mb_size = X.size(0) adotb = torch.matmul(X, self.weight.permute(1, 0)) if len(X.size()) == 3: seqlen = X.size(1) adota = torch.matmul(X.view(-1, seqlen, 1, self.embdim), X.view(-1, seqlen, self.embdim, 1)) adota = adota.view(-1, seqlen, 1).repeat(1, 1, self.n_tokens) else: # (X.size()) == 2: adota = torch.matmul(X.view(-1, 1, self.embdim), X.view(-1, self.embdim, 1)) adota = adota.view(-1, 1).repeat(1, self.n_tokens) bdotb = torch.bmm(self.weight.unsqueeze(-1).permute(0, 2, 1), self.weight.unsqueeze(-1)).permute(1, 2, 0) if len(X.size()) == 3: bdotb = bdotb.repeat(mb_size, seqlen, 1) else: bdotb = bdotb.reshape(1, self.n_tokens).repeat(mb_size, 1) dist = adota - 2 * adotb + bdotb return torch.min(dist, dim=len(dist.size()) - 1)[1] class MakeMissing(nn.Module): def __init__(self, dropoutrate): super(MakeMissing, self).__init__() self._name = 'MakeMissing' self.dropoutrate = dropoutrate def forward(self, inputs): rvals = torch.rand(inputs.size()).cuda() r = torch.gt(torch.rand(inputs.size()).cuda(), self.dropoutrate * torch.ones_like(inputs)).float() return r * inputs - rvals * (torch.ones_like(r) - r) class ReLUSigmoid(nn.Module): def __init__(self): super(ReLUSigmoid, self).__init__() self._name = 'ReLUSigmoid' def forward(self, inputs): r = torch.lt(inputs[:, 0].cuda(), torch.zeros_like(inputs[:, 0])).float() # rvals = torch.rand(inputs[:, 0].size()).cuda() # return -r*rvals + (torch.ones_like(r)-r)*torch.sigmoid(inputs[:, 1]) return -r * torch.sigmoid(inputs[:, 1]) + (torch.ones_like(r) - r) * torch.sigmoid(inputs[:, 1]) class PlaceHolder(nn.Module): def __init__(self): super(PlaceHolder, self).__init__() self._name = 'place_holder' def forward(self, inputs): if len(inputs.size()) == 1: return inputs.view(-1, 1) else: return inputs # choose an item from a tuple or list class SelectItem(nn.Module): def __init__(self, item_index): super(SelectItem, self).__init__() self._name = 'selectitem' self.item_index = item_index def forward(self, inputs): return inputs[self.item_index] class SwapAxes(nn.Module): def __init__(self, reordered_axes): super(SwapAxes, self).__init__() self._name = 'SwapAxes' self.reordered_axes = reordered_axes def forward(self, inputs): return inputs.permute(self.reordered_axes) class Flatten(nn.Module): def __init__(self): super(Flatten, self).__init__() self._name = 'Flatten' def forward(self, inputs): return inputs.reshape(inputs.size(0), -1) class Reshape(nn.Module): def __init__(self, out_shape): super(Reshape, self).__init__() self._name = 'Reshape' self.out_shape = out_shape def forward(self, inputs): return inputs.reshape((inputs.size(0),) + self.out_shape) class Repeat(nn.Module): def __init__(self, viewshape, repeat): super(Repeat, self).__init__() self._name = 'Repeat' self.viewshape = viewshape # (input.size(0), 1, -1) self.repeat = repeat # (1, self.maxlen, 1) def forward(self, input): return input.view((input.size(0),) + self.viewshape).repeat((1,) + self.repeat) class DropAll(nn.Module): def __init__(self, dropoutrate): super(DropAll, self).__init__() self._name = 'DropAll' self.dropoutrate = dropoutrate def forward(self, inputs): if self.training: r = torch.lt(torch.rand((inputs.size(0))).cuda(), self.dropoutrate).float() r = r.reshape([-1] + [1 for i in inputs.size()[1:]]).repeat((1,) + inputs.size()[1:]) return (1 - r) * inputs # -r*torch.ones_like(inputs) + (1-r)*inputs else: return inputs def calc_input_size(input_dict, recurrent_hidden_size, num_layers, bidirectional, continuous_input_dim): input_size = 0 if bidirectional: bidir = 2 else: bidir = 1 for inp in input_dict['discrete']: input_size += continuous_input_dim print(inp, continuous_input_dim) for inp in input_dict['continuous']: input_size += continuous_input_dim print(inp, continuous_input_dim) for inp in input_dict['text']: input_size += bidir * recurrent_hidden_size * num_layers # continuous_input_dim # print(inp, continuous_input_dim) for inp in input_dict['onehot']: input_size += input_dict['onehot'][inp] # continuous_input_dim # print(inp, input_dict['onehot'][inp]) # continuous_input_dim return input_size class Decoder(nn.Module): def __init__(self, input_dict, maxlens, dim=24, recurrent_hidden_size=8): super(Decoder, self).__init__() self._name = 'decoder' self.dim = dim self.recurrent_hidden_size = recurrent_hidden_size self.input_dict = input_dict self.maxlens = maxlens self.hidden_dim = 8 * self.dim self.bidirectional_rnn = True self.num_layers = 2 self.preprocess = nn.Sequential( nn.utils.weight_norm(nn.Linear(self.dim, int(1 * self.hidden_dim / 2)), dim=None), # nn.Linear(self.dim, int(self.hidden_dim/2)), nn.ReLU(True), nn.utils.weight_norm(nn.Linear(int(1 * self.hidden_dim / 2), int(self.hidden_dim / 1)), dim=None), nn.ReLU(True), ) self.main = nn.Sequential( nn.utils.weight_norm(nn.Conv2d(int(self.hidden_dim / 1), int(self.hidden_dim / 1), 1)), # nn.Conv2d(self.hidden_dim, self.hidden_dim, 1), nn.ReLU(True), nn.utils.weight_norm(nn.Conv2d(int(self.hidden_dim / 1), int(self.hidden_dim / 1), 1)), # nn.Conv2d(self.hidden_dim, self.hidden_dim, 1), nn.ReLU(True), Flatten() ) self.outputs = {dtype: {} for dtype in self.input_dict.keys()} for col in self.input_dict['discrete']: # self.outputs['discrete'][col] = nn.utils.weight_norm(nn.Linear(self.hidden_dim, 1)) self.outputs['discrete'][col] = self.get_numeric(self.hidden_dim) self.add_module(col + '_output', self.outputs['discrete'][col]) for col in self.input_dict['continuous']: # self.outputs['continuous'][col] = nn.utils.weight_norm(nn.Linear(self.hidden_dim, 1)) self.outputs['continuous'][col] = self.get_numeric(self.hidden_dim) self.add_module(col + '_output', self.outputs['continuous'][col]) for col, emb_size in self.input_dict['text'].items(): # self.outputs['text'][col] = nn.GRU(self.hidden_dim, emb_size, bidirectional=False, batch_first=True) self.outputs['text'][col] = self.get_rec(emb_size, self.maxlens[col]) self.add_module(col + '_output', self.outputs['text'][col]) for col, emb_size in self.input_dict['onehot'].items(): # self.outputs['onehot'][col] = nn.utils.weight_norm(nn.Linear(self.hidden_dim, emb_size)) self.outputs['onehot'][col] = self.get_lin(self.hidden_dim, emb_size) self.add_module(col + '_output', self.outputs['onehot'][col]) def get_numeric(self, hidden_size): net = nn.Sequential( nn.utils.weight_norm(nn.Linear(hidden_size, 1)), # Reshape((hidden_size, 1)), # nn.utils.weight_norm(nn.Conv1d(hidden_size, self.dim, 1)), # nn.ReLU(), # nn.utils.weight_norm(nn.Conv1d(self.dim, 1, 1)), # Flatten(), nn.Tanh() # ReLUSigmoid() ) return net def get_lin(self, hidden_size, emb_size): net = nn.Sequential( nn.utils.weight_norm(nn.Linear(hidden_size, emb_size)), ) return net def get_rec(self, emb_size, string_len): if self.bidirectional_rnn: scale = 2 else: scale = 1 net = nn.Sequential( # nn.utils.weight_norm(nn.Linear(self.hidden_dim, self.dim)), # nn.Tanh(), Reshape((self.hidden_dim, 1)), nn.utils.weight_norm(nn.Conv1d(self.hidden_dim, self.dim, 1)), nn.Tanh(), Flatten(), Repeat((1, -1), (string_len, 1)), nn.GRU(self.dim, emb_size, batch_first=True, bidirectional=self.bidirectional_rnn, num_layers=self.num_layers), # , SelectItem(0) ) return net def forward(self, input): x = self.preprocess(input) x = x.view(x.size(0), -1, 1, 1) x = self.main(x) x = x.view(input.size(0), -1) output_dict = {} for col in self.input_dict['discrete']: output_dict[col] = self.outputs['discrete'][col](x) for col in self.input_dict['continuous']: output_dict[col] = self.outputs['continuous'][col](x) for col, emb_size in self.input_dict['text'].items(): # n_tokens = self.input_dict['text'][col] # print(x.size()) # xrep = x2.view(input.size(0), 1, -1).repeat(1, self.maxlens[col], 1) # print('xrep_'+col, xrep.size()) # output_dict[col] = self.outputs['text'][col](xrep)[:, :, -emb_size:] #[0] output_dict[col] = self.outputs['text'][col](x)[:, :, -emb_size:] # [0] # print(col, output_dict[col].size()) for col in self.input_dict['onehot'].keys(): output_dict[col] = self.outputs['onehot'][col](x) return output_dict # https://github.com/neale/Adversarial-Autoencoder/blob/master/generators.py class Encoder(nn.Module): # can't turn dropout off completely because otherwise the loss -> NaN.... # batchnorm does not seem to help things... def __init__(self, input_dict, dim=24, recurrent_hidden_size=8, sigmoidout=False): super(Encoder, self).__init__() self._name = 'encoder' self.sigmoidout = sigmoidout self.input_dict = input_dict self.dim = dim if self.sigmoidout: self.outputdim = 1 else: self.outputdim = dim self.hidden_dim = 8 * self.dim self.recurrent_hidden_size = recurrent_hidden_size self.dropout = 0.0 #2.0 / self.outputdim # 0.0625 #0.03125 #0.015625# 0.125 # self.bidirectional_rnn = True self.num_layers = 2 self.continuous_input_dim = 1 self.input_size = calc_input_size(self.input_dict, self.recurrent_hidden_size, self.num_layers, self.bidirectional_rnn, self.continuous_input_dim) # self.rec = {inp: nn.GRU(emb_size, self.recurrent_hidden_size, bidirectional=False) for inp, emb_size in self.input_dict['text'].items()} # for inp, layer in self.rec.items(): # self.add_module(inp+'_rec', layer) self.input_layers = {} for datatype in self.input_dict.keys(): if datatype == 'text': for inp, emb_size in self.input_dict[datatype].items(): self.input_layers[inp] = self.get_rec(emb_size) # self.add_module(inp + '_input', self.input_layers[inp]) elif datatype == 'onehot': for inp, emb_size in self.input_dict[datatype].items(): self.input_layers[inp] = self.get_onehot() # PlaceHolder() self.add_module(inp + '_input', self.input_layers[inp]) else: for inp in self.input_dict[datatype]: self.input_layers[inp] = self.get_lin() # PlaceHolder() self.add_module(inp + '_input', self.input_layers[inp]) self.main = {} self.main[0] = nn.Dropout(p=self.dropout) self.main[1] = nn.utils.weight_norm(nn.Conv2d(self.input_size, int(self.hidden_dim / 1), 1, dilation=1, stride=1)) self.main[2] = nn.ReLU(True) self.main[3] = nn.utils.weight_norm(nn.Conv2d(self.input_size+int(self.hidden_dim / 1), int(self.hidden_dim / 1), 1, dilation=1, stride=1)) self.main[4] = nn.ReLU(True) self.getmu = nn.Sequential( nn.utils.weight_norm(nn.Linear(int(self.hidden_dim / 1), int(1 * self.hidden_dim / 2))), nn.ReLU(True), nn.utils.weight_norm(nn.Linear(int(1 * self.hidden_dim / 2), self.outputdim)), ) self.getlogvar = nn.Sequential( nn.utils.weight_norm(nn.Linear(int(self.hidden_dim / 1), int(1 * self.hidden_dim / 2))), nn.ReLU(True), nn.utils.weight_norm(nn.Linear(int(1 * self.hidden_dim / 2), self.outputdim)), ) def get_main(self, x0): for idx, op in self.main.items(): x = self.main[idx](x0) def get_rec(self, emb_size): if self.bidirectional_rnn: bidir = 2 else: bidir = 1 net = nn.Sequential( nn.GRU(emb_size, self.recurrent_hidden_size, batch_first=True, bidirectional=self.bidirectional_rnn, num_layers=self.num_layers), # nn.Dropout(p=self.dropout) SelectItem(1), SwapAxes((1, 0, 2)), Flatten(), ) return net def get_lin(self): net = nn.Sequential( PlaceHolder(), # Reshape((1, 1)), # nn.utils.weight_norm(nn.Conv1d(1, self.outputdim, 1)), # nn.ReLU(), # nn.utils.weight_norm(nn.Conv1d(self.outputdim, 1, 1)), # nn.ReLU(), # Flatten() ) return net def get_onehot(self): net = nn.Sequential( PlaceHolder() ) return net def reparameterize(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() # std = 0.5*torch.ones_like(mu) eps = Variable(std.data.new(std.size()).normal_()) return eps.mul(std).add_(mu) else: return mu def forward(self, inputs): preprocessed_inputs = [] for inp in self.input_dict['discrete']: # preprocessed_inputs.append(inputs[inp]) preprocessed_inputs.append(self.input_layers[inp](inputs[inp])) for inp in self.input_dict['continuous']: # preprocessed_inputs.append(inputs[inp]) t = self.input_layers[inp](inputs[inp]) preprocessed_inputs.append(t) for inp in self.input_dict['text'].keys(): # GRU returns output and hn - we just want hn # print('inp '+inp, inputs[inp].size()) # t = self.input_layers[inp](inputs[inp])[1].permute(1, 0, 2) t = self.input_layers[inp](inputs[inp]) # print(t.size()) # t = torch.squeeze(t) preprocessed_inputs.append(t.reshape(inputs[inp].size(0), -1)) for inp in self.input_dict['onehot'].keys(): # preprocessed_inputs.append(inputs[inp]) preprocessed_inputs.append(self.input_layers[inp](inputs[inp])) # for p in preprocessed_inputs: # print(p.size(), p.dtype) x = torch.cat(preprocessed_inputs, 1) x = x.view(x.size(0), -1, 1, 1) x = self.main(x) # x = self.main(x) x = x.view(x.size(0), -1) mu = self.getmu(x) ''' if self.sigmoidout: x = torch.sigmoid(x) #print('sigmoid') else: x = torch.tanh(x) #print('tanh') ''' # print('enc out ', self.sigmoidout, x.size()) return mu, self.getlogvar(x)
36.559917
147
0.586324
6bcc38c2c21b6f3a3b0caf51bcc0b9113e5424f4
2,811
py
Python
src/emcr/skeleton.py
shashankvadrevu/EMCR
6ec548e3b9e1f97606b24e91807d655e2a180674
[ "MIT" ]
null
null
null
src/emcr/skeleton.py
shashankvadrevu/EMCR
6ec548e3b9e1f97606b24e91807d655e2a180674
[ "MIT" ]
null
null
null
src/emcr/skeleton.py
shashankvadrevu/EMCR
6ec548e3b9e1f97606b24e91807d655e2a180674
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This is a skeleton file that can serve as a starting point for a Python console script. To run this script uncomment the following lines in the [options.entry_points] section in setup.cfg: console_scripts = fibonacci = emcr.skeleton:run Then run `python setup.py install` which will install the command `fibonacci` inside your current environment. Besides console scripts, the header (i.e. until _logger...) of this file can also be used as template for Python modules. Note: This skeleton file can be safely removed if not needed! """ import argparse import sys import logging from emcr import __version__ __author__ = "shashankvadrevu" __copyright__ = "shashankvadrevu" __license__ = "mit" _logger = logging.getLogger(__name__) def fib(n): """Fibonacci example function Args: n (int): integer Returns: int: n-th Fibonacci number """ assert n > 0 a, b = 1, 1 for i in range(n-1): a, b = b, a+b return a def parse_args(args): """Parse command line parameters Args: args ([str]): command line parameters as list of strings Returns: :obj:`argparse.Namespace`: command line parameters namespace """ parser = argparse.ArgumentParser( description="Just a Fibonnaci demonstration") parser.add_argument( '--version', action='version', version='EMCR {ver}'.format(ver=__version__)) parser.add_argument( dest="n", help="n-th Fibonacci number", type=int, metavar="INT") parser.add_argument( '-v', '--verbose', dest="loglevel", help="set loglevel to INFO", action='store_const', const=logging.INFO) parser.add_argument( '-vv', '--very-verbose', dest="loglevel", help="set loglevel to DEBUG", action='store_const', const=logging.DEBUG) return parser.parse_args(args) def setup_logging(loglevel): """Setup basic logging Args: loglevel (int): minimum loglevel for emitting messages """ logformat = "[%(asctime)s] %(levelname)s:%(name)s:%(message)s" logging.basicConfig(level=loglevel, stream=sys.stdout, format=logformat, datefmt="%Y-%m-%d %H:%M:%S") def main(args): """Main entry point allowing external calls Args: args ([str]): command line parameter list """ args = parse_args(args) setup_logging(args.loglevel) _logger.debug("Starting crazy calculations...") print("The {}-th Fibonacci number is {}".format(args.n, fib(args.n))) _logger.info("Script ends here") def run(): """Entry point for console_scripts """ main(sys.argv[1:]) if __name__ == "__main__": run()
24.025641
77
0.635005
cb8bef2677dd3a83ffd137ece313c87f279d6f31
4,737
py
Python
demo_site/settings.py
williwacker/django-qr-code
17aba885a82a7fde1ac784e9c183f4c7e40cd7eb
[ "BSD-3-Clause" ]
null
null
null
demo_site/settings.py
williwacker/django-qr-code
17aba885a82a7fde1ac784e9c183f4c7e40cd7eb
[ "BSD-3-Clause" ]
null
null
null
demo_site/settings.py
williwacker/django-qr-code
17aba885a82a7fde1ac784e9c183f4c7e40cd7eb
[ "BSD-3-Clause" ]
null
null
null
""" Django settings for qr_code_demo project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os from distutils.version import StrictVersion import django # Build paths inside the project like this: os.path.join(BASE_DIR, ...) from qr_code.qrcode import constants BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '8l4)()f1&tg*dtxh6whlew#k-d5&79npe#j_dg9l0b)m8^g#8u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'qr_code', 'qr_code_demo' ] django_version = StrictVersion(django.get_version()) if django_version >= StrictVersion('1.10'): MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] else: MIDDLEWARE_CLASSES = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'demo_site.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'demo_site.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # Caches. CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, 'qr-code': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'qr-code-cache', 'TIMEOUT': 3600 } } # Django QR Code specific options. QR_CODE_CACHE_ALIAS = 'qr-code' QR_CODE_URL_PROTECTION = { constants.TOKEN_LENGTH: 30, # Optional random token length for URL protection. Defaults to 20. constants.SIGNING_KEY: 'my-secret-signing-key', # Optional signing key for URL token. Uses SECRET_KEY if not defined. constants.SIGNING_SALT: 'my-signing-salt', # Optional signing salt for URL token. constants.ALLOWS_EXTERNAL_REQUESTS_FOR_REGISTERED_USER: False # Tells whether a registered user can request the QR code URLs from outside a site that uses this app. It can be a boolean value used for any user, or a callable that takes a user as parameter. Defaults to False (nobody can access the URL without the security token). }
31.370861
335
0.709943
5551d6fa219aee9b3ced7d5f7daceb7fb28b837a
3,239
py
Python
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/util.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/util.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
plugins/holland.backup.mysql_lvm/holland/backup/mysql_lvm/plugin/raw/util.py
Alibloke/holland
e630b511a95ed8e36205e8300e632018918223ff
[ "BSD-3-Clause" ]
null
null
null
"""Utility functions to help out the mysql-lvm plugin""" import os import tempfile import logging from holland.core.backup import BackupError from holland.lib.compression import open_stream from holland.backup.mysql_lvm.actions import ( FlushAndLockMySQLAction, RecordMySQLReplicationAction, InnodbRecoveryAction, TarArchiveAction, DirArchiveAction, ) from holland.backup.mysql_lvm.plugin.common import log_final_snapshot_size, connect_simple from holland.backup.mysql_lvm.plugin.innodb import MySQLPathInfo, check_innodb LOG = logging.getLogger(__name__) def setup_actions(snapshot, config, client, snap_datadir, spooldir): """Setup actions for a LVM snapshot based on the provided configuration. Optional actions: * MySQL locking * InnoDB recovery * Recording MySQL replication """ mysql = connect_simple(config["mysql:client"]) if mysql.show_variable("have_innodb") == "YES": try: pathinfo = MySQLPathInfo.from_mysql(mysql) finally: mysql.close() try: check_innodb(pathinfo, ensure_subdir_of_datadir=True) except BackupError: if not config["mysql-lvm"]["force-innodb-backup"]: raise if config["mysql-lvm"]["lock-tables"]: extra_flush = config["mysql-lvm"]["extra-flush-tables"] act = FlushAndLockMySQLAction(client, extra_flush) snapshot.register("pre-snapshot", act, priority=100) snapshot.register("post-snapshot", act, priority=100) if config["mysql-lvm"].get("replication", True): repl_cfg = config.setdefault("mysql:replication", {}) act = RecordMySQLReplicationAction(client, repl_cfg) snapshot.register("pre-snapshot", act, 0) if config["mysql-lvm"]["innodb-recovery"]: mysqld_config = dict(config["mysqld"]) mysqld_config["datadir"] = snap_datadir if not mysqld_config["tmpdir"]: mysqld_config["tmpdir"] = tempfile.gettempdir() ib_log_size = client.show_variable("innodb_log_file_size") mysqld_config["innodb-log-file-size"] = ib_log_size act = InnodbRecoveryAction(mysqld_config) snapshot.register("post-mount", act, priority=100) if config["mysql-lvm"]["archive-method"] == "dir": try: backup_datadir = os.path.join(spooldir, "backup_data") os.mkdir(backup_datadir) except OSError as exc: raise BackupError("Unable to create archive directory '%s': %s" % (backup_datadir, exc)) act = DirArchiveAction(snap_datadir, backup_datadir, config["tar"]) snapshot.register("post-mount", act, priority=50) else: try: archive_stream = open_stream( os.path.join(spooldir, "backup.tar"), "w", **config["compression"] ) except OSError as exc: raise BackupError( "Unable to create archive file '%s': %s" % (os.path.join(spooldir, "backup.tar"), exc) ) act = TarArchiveAction(snap_datadir, archive_stream, config["tar"]) snapshot.register("post-mount", act, priority=50) snapshot.register("pre-remove", log_final_snapshot_size)
39.987654
100
0.658845
6a15b6798016b88098740182d6aaba11969bb524
11,660
py
Python
notify_sdk/model/easy_flow/target_info_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
notify_sdk/model/easy_flow/target_info_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
notify_sdk/model/easy_flow/target_info_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: target_info.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from notify_sdk.model.cmdb import cluster_info_pb2 as notify__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2 from notify_sdk.model.easy_flow import version_info_pb2 as notify__sdk_dot_model_dot_easy__flow_dot_version__info__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='target_info.proto', package='easy_flow', syntax='proto3', serialized_options=_b('ZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flow'), serialized_pb=_b('\n\x11target_info.proto\x12\teasy_flow\x1a(notify_sdk/model/cmdb/cluster_info.proto\x1a-notify_sdk/model/easy_flow/version_info.proto\"\x9b\x04\n\nTargetInfo\x12\x10\n\x08targetId\x18\x01 \x01(\t\x12\x12\n\ntargetName\x18\x02 \x01(\t\x12\x12\n\ninstanceId\x18\x03 \x01(\t\x12\"\n\x07\x63luster\x18\x04 \x01(\x0b\x32\x11.cmdb.ClusterInfo\x12\x38\n\x0cinstanceInfo\x18\x05 \x03(\x0b\x32\".easy_flow.TargetInfo.InstanceInfo\x12:\n\roperationInfo\x18\x06 \x03(\x0b\x32#.easy_flow.TargetInfo.OperationInfo\x1a\x8b\x01\n\x0cInstanceInfo\x12\x13\n\x0bversionName\x18\x01 \x01(\t\x12+\n\x0bversionInfo\x18\x02 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12\x11\n\tpackageId\x18\x03 \x01(\t\x12\x13\n\x0binstallPath\x18\x04 \x01(\t\x12\x11\n\tversionId\x18\x05 \x01(\t\x1a\xaa\x01\n\rOperationInfo\x12\x11\n\toperation\x18\x01 \x01(\t\x12-\n\rversionToInfo\x18\x02 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12/\n\x0fversionFromInfo\x18\x03 \x01(\x0b\x32\x16.easy_flow.VersionInfo\x12\x13\n\x0binstallPath\x18\x04 \x01(\t\x12\x11\n\tpackageId\x18\x05 \x01(\tBEZCgo.easyops.local/contracts/protorepo-models/easyops/model/easy_flowb\x06proto3') , dependencies=[notify__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2.DESCRIPTOR,notify__sdk_dot_model_dot_easy__flow_dot_version__info__pb2.DESCRIPTOR,]) _TARGETINFO_INSTANCEINFO = _descriptor.Descriptor( name='InstanceInfo', full_name='easy_flow.TargetInfo.InstanceInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='versionName', full_name='easy_flow.TargetInfo.InstanceInfo.versionName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionInfo', full_name='easy_flow.TargetInfo.InstanceInfo.versionInfo', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_flow.TargetInfo.InstanceInfo.packageId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='installPath', full_name='easy_flow.TargetInfo.InstanceInfo.installPath', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionId', full_name='easy_flow.TargetInfo.InstanceInfo.versionId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=349, serialized_end=488, ) _TARGETINFO_OPERATIONINFO = _descriptor.Descriptor( name='OperationInfo', full_name='easy_flow.TargetInfo.OperationInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='operation', full_name='easy_flow.TargetInfo.OperationInfo.operation', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionToInfo', full_name='easy_flow.TargetInfo.OperationInfo.versionToInfo', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='versionFromInfo', full_name='easy_flow.TargetInfo.OperationInfo.versionFromInfo', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='installPath', full_name='easy_flow.TargetInfo.OperationInfo.installPath', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='packageId', full_name='easy_flow.TargetInfo.OperationInfo.packageId', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=491, serialized_end=661, ) _TARGETINFO = _descriptor.Descriptor( name='TargetInfo', full_name='easy_flow.TargetInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='targetId', full_name='easy_flow.TargetInfo.targetId', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='targetName', full_name='easy_flow.TargetInfo.targetName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceId', full_name='easy_flow.TargetInfo.instanceId', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='cluster', full_name='easy_flow.TargetInfo.cluster', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='instanceInfo', full_name='easy_flow.TargetInfo.instanceInfo', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='operationInfo', full_name='easy_flow.TargetInfo.operationInfo', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[_TARGETINFO_INSTANCEINFO, _TARGETINFO_OPERATIONINFO, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=122, serialized_end=661, ) _TARGETINFO_INSTANCEINFO.fields_by_name['versionInfo'].message_type = notify__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_INSTANCEINFO.containing_type = _TARGETINFO _TARGETINFO_OPERATIONINFO.fields_by_name['versionToInfo'].message_type = notify__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_OPERATIONINFO.fields_by_name['versionFromInfo'].message_type = notify__sdk_dot_model_dot_easy__flow_dot_version__info__pb2._VERSIONINFO _TARGETINFO_OPERATIONINFO.containing_type = _TARGETINFO _TARGETINFO.fields_by_name['cluster'].message_type = notify__sdk_dot_model_dot_cmdb_dot_cluster__info__pb2._CLUSTERINFO _TARGETINFO.fields_by_name['instanceInfo'].message_type = _TARGETINFO_INSTANCEINFO _TARGETINFO.fields_by_name['operationInfo'].message_type = _TARGETINFO_OPERATIONINFO DESCRIPTOR.message_types_by_name['TargetInfo'] = _TARGETINFO _sym_db.RegisterFileDescriptor(DESCRIPTOR) TargetInfo = _reflection.GeneratedProtocolMessageType('TargetInfo', (_message.Message,), { 'InstanceInfo' : _reflection.GeneratedProtocolMessageType('InstanceInfo', (_message.Message,), { 'DESCRIPTOR' : _TARGETINFO_INSTANCEINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo.InstanceInfo) }) , 'OperationInfo' : _reflection.GeneratedProtocolMessageType('OperationInfo', (_message.Message,), { 'DESCRIPTOR' : _TARGETINFO_OPERATIONINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo.OperationInfo) }) , 'DESCRIPTOR' : _TARGETINFO, '__module__' : 'target_info_pb2' # @@protoc_insertion_point(class_scope:easy_flow.TargetInfo) }) _sym_db.RegisterMessage(TargetInfo) _sym_db.RegisterMessage(TargetInfo.InstanceInfo) _sym_db.RegisterMessage(TargetInfo.OperationInfo) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
46.64
1,148
0.761407
a560a32700f691dc73b420e6e6856a4d4560d976
19,233
py
Python
edexOsgi/com.raytheon.uf.common.aviation/utility/common_static/base/aviation/python/GridData.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
edexOsgi/com.raytheon.uf.common.aviation/utility/common_static/base/aviation/python/GridData.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
null
null
null
edexOsgi/com.raytheon.uf.common.aviation/utility/common_static/base/aviation/python/GridData.py
srcarter3/awips2
37f31f5e88516b9fd576eaa49d43bfb762e1d174
[ "Apache-2.0" ]
1
2021-10-30T00:03:05.000Z
2021-10-30T00:03:05.000Z
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: Raytheon Company # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # # Name: # GridData.py # GFS1-NHD:A7800.0000-SCRIPT;1.25 # # Status: # DELIVERED # # History: # # Revision AWIPS II NJENSEN # Updated to work with AWIPS II and directly retrieve GFE data # # Revision 1.25 (DELIVERED) # Created: 29-OCT-2008 12:51:49 OBERFIEL # Non-operationally important weather now ignored, e.g. FR == # frost # # Revision 1.24 (DELIVERED) # Created: 18-APR-2008 14:53:34 OBERFIEL # Updated header in TAF viewer # # Revision 1.23 (DELIVERED) # Created: 13-JUN-2006 14:33:00 BLI # Fixed for unable to handle missing cigHt # # Revision 1.22 (DELIVERED) # Created: 12-JUN-2006 16:00:51 BLI # Fixed for missing CigHt # # Revision 1.21 (DELIVERED) # Created: 16-MAY-2006 12:06:55 BLI # multiplied cig with 100 # # Revision 1.20 (DELIVERED) # Created: 04-MAY-2006 09:54:40 BLI # Grids are now displaying 'CigHt' instead of 'CigCat'. # # Revision 1.19 (DELIVERED) # Created: 29-JAN-2006 14:26:50 TROJAN # Fixed fog key in the symbol translation dictionary # # Revision 1.18 (APPROVED) # Created: 29-JAN-2006 12:16:16 TROJAN # stdr 958 # # Revision 1.17 (DELIVERED) # Created: 06-JUL-2005 20:50:38 TROJAN # spr 6910 # # Revision 1.16 (DELIVERED) # Created: 07-MAY-2005 11:33:53 OBERFIEL # Added Item Header Block # # Revision 1.15 (DELIVERED) # Created: 04-APR-2005 15:51:06 TROJAN # spr 6775 # # Revision 1.14 (APPROVED) # Created: 21-MAR-2005 15:32:31 TROJAN # spr 6733 # # Revision 1.13 (DELIVERED) # Created: 07-MAR-2005 22:43:02 TROJAN # spr 6710 # # Revision 1.12 (APPROVED) # Created: 04-MAR-2005 15:22:45 TROJAN # spr 6699 # # Revision 1.11 (APPROVED) # Created: 15-FEB-2005 18:12:21 TROJAN # spr 6561 # # Revision 1.10 (DELIVERED) # Created: 04-FEB-2005 19:12:38 BLI # Added variable wind # # Revision 1.9 (APPROVED) # Created: 01-FEB-2005 20:30:15 BLI # Fixed to include intensity # # Revision 1.8 (APPROVED) # Created: 01-FEB-2005 18:59:02 BLI # Fixed it to include prob30 group # # Revision 1.7 (APPROVED) # Created: 01-FEB-2005 18:45:18 BLI # Make GridViewer call a new taf formater # # Revision 1.6 (APPROVED) # Created: 24-JAN-2005 15:51:13 TROJAN # spr 6259 # # Revision 1.5 (APPROVED) # Created: 24-NOV-2004 19:15:00 OBERFIEL # Fixed logic problem while processing new format IFPS grid # files # # Revision 1.4 (APPROVED) # Created: 21-OCT-2004 19:36:11 TROJAN # spr 6420 # # Revision 1.3 (APPROVED) # Created: 30-SEP-2004 20:22:10 TROJAN # stdr 873 # # Revision 1.2 (APPROVED) # Created: 19-AUG-2004 20:42:56 OBERFIEL # Code change # # Revision 1.1 (APPROVED) # Created: 01-JUL-2004 14:40:40 OBERFIEL # date and time created -2147483647/-2147483648/-2147481748 # -2147483648:-2147483648:-2147483648 by oberfiel # # Change Document History: # 1: # Change Document: GFS1-NHD_SPR_7383 # Action Date: 06-NOV-2008 15:25:22 # Relationship Type: In Response to # Status: TEST # Title: AvnFPS: Lack of customization in QC check # # <pre> # # Retrieves data at airport locations as points from GFE and builds a data structure # from that data. Partially ported from AWIPS 1 GridData.py. # # SOFTWARE HISTORY # Date Ticket# Engineer Description # ------------ ---------- ----------- -------------------------- # Initial creation. # Mar 07, 2013 1735 rferrel Changes to obtain grid data for a list of sites. # Apr 23, 2014 3006 randerso Fix Wx parsing, handling of missing pdcs # Feb 23, 2018 7227 njensen Request Vsby, PredHgt, CigHgt to get variable # visibility and ceiling in NDFD TAFs # ## # ## # This is a base file that is not intended to be overridden. ## import logging, time, ConfigParser import Avn, AvnLib, AvnParser, JUtil, cPickle import PointDataView, GfeValues # These variables are unchanged from AWIPS 1 AvnFPS _Missing = '' _WxCode = {'L': 'DZ', 'R': 'RA', 'RW': 'SHRA', 'ZL': 'FZDZ', 'ZR': 'FZRA', \ 'IP': 'PL', 'IPW': 'SHPL', 'S': 'SN', 'SP': 'SG', 'SW': 'SHSN', \ 'K': 'FU', 'IC': 'IC', 'BR': 'BR', 'FG': 'FG', 'H': 'HZ', \ 'BS': 'BLSN', 'BD': 'BLDU'} _IntCode = {'--': '-', '-': '-', 'm': '', '+': '+'} _Keys = ['Temp', 'DwptT', 'WDir', 'WSpd', 'WGust', 'Obvis', 'Vsby', \ 'Sky', 'PrdHt', 'CigHt', 'Tstm', 'PTyp1', 'Ints1', 'Prob1', 'PTyp2', \ 'Ints2', 'Prob2', 'PTyp3', 'Ints3', 'Prob3'] _NumHours = 36 # Parameters to request from GFE. These were determined by the parameters # requested in the AWIPS 1 AvnFPS IFPS2AvnFPS.py's _makeProduct(). Parameters = ['Sky', 'T', 'Td', 'Wind', 'WindGust', 'PoP', 'Wx', 'Vsby', 'PredHgt', 'CigHgt'] # Translations of AvnFPS parameter names to GFE parameter names Translate = { 'Sky':'Sky', 'Temp':'T', 'DwptT':'Td', 'WDir':'WindDir', 'WSpd':'WindSpd', 'WGust':'WindGust', 'PoP1h':'PoP', 'Obvis':'Wx', 'PoP':'PoP', 'Tstm':'Wx', 'Tint':'Wx', 'PTyp1':'Wx', 'Prob1':'Wx', 'Ints1':'Wx', 'PTyp2':'Wx', 'Prob2':'Wx', 'Ints2':'Wx', 'PTyp3':'Wx', 'Prob3':'Wx', 'Ints3':'Wx', 'Vsby': 'Vsby', 'PrdHt': 'PredHgt', 'CigHt': 'CigHgt' } # 'PrdCt': 'PredHgtCat', 'CigCt': 'CigHgtCat' _Logger = logging.getLogger(Avn.CATEGORY) ############################################################################## # This function is unchanged from the AWIPS 1 AvnFPS function. def _wxcode(c): return _WxCode.get(c, _Missing) # This function is unchanged from the AWIPS 1 AvnFPS function. def _intcode(c): return _IntCode.get(c, _Missing) # This function is unchanged from the AWIPS 1 AvnFPS function. def _vis(c): try: v = int(c) if v < 999: return v/100.0 except ValueError: pass return 999 # This function is unchanged from the AWIPS 1 AvnFPS function. def _cldHgt(c): try: v = int(c) if v < 999: return AvnLib.fixCldBase(v) except ValueError: pass return 999 # This function is unchanged from the AWIPS 1 AvnFPS function. def _cig(c): try: if c != '999': v = int(c)/100 else: v = int(c) if v < 0: v = 250 if v < 999: return AvnLib.fixCldBase(v) except ValueError: pass return 999 # This function is unchanged from the AWIPS 1 AvnFPS function. def _skycode(c): try: ic = int(c) if ic == 0: return 'SKC' elif ic < 3: return 'FEW' elif ic < 6: return 'SCT' elif ic < 10: return 'BKN' elif ic == 10: return 'OVC' else: return '' except ValueError: return '' # This function is unchanged from the AWIPS 1 AvnFPS function. def _stripmsng(c): if c == '999': return _Missing else: return c # This function is unchanged from the AWIPS 1 AvnFPS function. def _winddir(c): try: v = int(c) if 0 <= v <= 36: return 10*v except ValueError: pass return None # This function is unchanged from the AWIPS 1 AvnFPS function. def _windspd(c): try: v = int(c) if 0 <= v <= 200: return v except ValueError: pass return None # This function is ported from AWIPS 1 AvnFPS to return the same # data structure as AWIPS 1 AvnFPS returned. def _getData(pdc, firstTime): organizedData = {} data = [] if pdc is not None : for i in range(pdc.getCurrentSz()): jpdv = pdc.readRandom(i) jpdv.setContainer(pdc) pdv = PointDataView.PointDataView(jpdv) fcstHr = round(((pdv['time'] - firstTime) / 1000) / 3600) organizedData[fcstHr] = pdv for n in range(_NumHours): dd = {'time': 3600.0*n+(firstTime / 1000)} dd = _createRecord(dd, organizedData[n]) data.append(dd) else : return None return {'issuetime': (firstTime / 1000), 'record': data} # This function is a port of AWIPS 1 AvnFPS' function _cvt(itime, d). def _createRecord(dd, pdv): for k in Translate: try: arg = pdv[Translate[k]] except: v = '999' if k in ['Temp', 'DwptT']: v = int(GfeValues.scalarValue(arg)) elif k == 'Obvis': v = _wxcode(GfeValues.obvisValue(arg)) elif k == 'Sky': v = _skycode(GfeValues.skyValue(arg)) elif k == 'WDir': v = _winddir(GfeValues.windDirValue(arg)) elif k in ['WSpd', 'WGust']: if k == 'WSpd': v = GfeValues.windMagValue(arg) elif k == 'WGust': v = GfeValues.scalarValue(arg) v = _windspd(v) elif k == 'PrdHt': v = _cldHgt(GfeValues.scalarValue(arg)) elif k == 'CigHt': v = _cig(GfeValues.scalarValue(arg)) elif k == 'Vsby': v = _vis(GfeValues.vsbyValue(arg)) elif k == 'Tstm': v = _stripmsng(GfeValues.wxTstm(arg)) elif k == 'Tint': v = _stripmsng(GfeValues.wxTstmInt(arg)) elif k[:4] == 'Prob': v = _stripmsng(GfeValues.wxValCov(arg, int(k[4]))) elif k[:4] == 'PTyp': v = _wxcode(GfeValues.wxVal(arg, int(k[4]))) elif k[:4] == 'Ints': v = _intcode(GfeValues.wxValInst(arg, int(k[4]))) else: v = _stripmsng(arg) dd[k] = v for ptype, pints, pprob in [('PTyp1','Ints1','Prob1'), ('PTyp2','Ints2','Prob2'), ('PTyp3', 'Ints3', 'Prob3')]: try: if dd[ptype] == _Missing: dd[pints] = dd[pprob] = _Missing except KeyError: pass return dd # This function is unchanged from the AWIPS 1 AvnFPS function. def _setPop(config,prbStr,dt): if dt<=9*3600: return config['before9hr'][prbStr] else: return config['after9hr'][prbStr] # This function is unchanged from the AWIPS 1 AvnFPS function. def _makePeriod(prbConfig,rec,itime): grp = {'time': {'from': rec['time'], 'to': rec['time']+3600.0}} dd = rec.get('WDir') ff = rec.get('WSpd') if not None in (dd, ff): gg = rec.get('WGust') if gg is None or gg <= ff: gg = None if gg is not None and gg > ff: grp['wind'] = {'dd': dd, 'ff': ff, 'gg': gg, \ 'str': '%03d%02dG%02dKT' % (dd, ff, gg)} else: grp['wind'] = {'dd': dd, 'ff': ff, 'str': '%03d%02dKT' % (dd, ff)} pot = 0 if 'Tstm' in rec and rec['Tstm']: pot = _setPop(prbConfig,rec['Tstm'],rec['time']-itime) max_pop = 0 p_str = "" for i in range(3): pstr = 'Prob%d' % i; istr = 'Ints%d' % i; tstr = 'PTyp%d' % i if pstr in rec and istr in rec and tstr in rec: if rec[pstr]: pop = _setPop(prbConfig,rec[pstr],rec['time']-itime) if pop > max_pop: max_pop = pop p_str = rec[istr]+rec[tstr] grp['pcp'] = {'str': p_str, 'pop': max_pop, 'pot': pot} h = rec.get('PrdHt') cig = rec.get('CigHt') if cig: cig = cig*100 else: cig = 3000 if cig < 0: cig = Avn.UNLIMITED if h is None or h == 999: h = 300 else: h = AvnLib.fixCldBase(h) s = rec.get('Sky', None) if s: cld = s cover = {'SKC': 0, 'FEW': 1, 'SCT': 2, 'BKN': 3, 'OVC': 4} if cld == 'SKC': grp['sky'] = {'str': 'SKC', 'cig': Avn.UNLIMITED, \ 'cover': cover[cld]} else: grp['sky'] = {'str': '%s%03d' % (cld, h), 'cig': cig, \ 'cover': cover[cld]} # 3.2 formatter adds CB when TS is present # if 'Tstm' in rec and rec['Tstm']: # grp['sky']['str'] = grp['sky']['str'] + 'CB' obv = rec.get('Obvis') v = rec.get('Vsby') if v is None: if obv: grp['vsby'] = {'str': '6SM', 'value': 6.0} else: grp['vsby'] = {'str': 'P6SM', 'value': 99.0} elif v >= 6.5: grp['vsby'] = {'str': 'P6SM', 'value': 99.0} else: grp['vsby'] = AvnLib.fixTafVsby(v) if not obv and grp['pcp']['str'] == '': if v <= 0.6: obv = 'FG' else: obv = 'BR' grp['obv'] = {'str': obv} return grp # This function is unchanged from the AWIPS 1 AvnFPS function. def _readPrbConf(): conf=ConfigParser.ConfigParser() conf.read(Avn.getTafPath('XXXX', 'grid_prob.cfg')) prb_conf={'before9hr': {},'after9hr': {}} wxkeys = ['S', 'IS', 'WS', 'SC', 'NM', 'O', 'C', 'D', 'WP', 'L'] for wx in wxkeys: prb_conf['before9hr'][wx] = conf.getint('before9hr',wx) prb_conf['after9hr'][wx] = conf.getint('after9hr',wx) return prb_conf # This function is ported from AWIPS 1 AvnFPS to return the same # data structure as AWIPS 1 AvnFPS returned. def makeData(siteID, timeSeconds): data = retrieveData(siteID, timeSeconds) return formatData(siteID, timeSeconds, data) # This function was extracted from AWIPS 1 AvnFPS' makeData(ident, text). def formatData(siteID, timeSeconds, data): if data is None or data['issuetime'] < time.time() - 86400: msg = 'Grid data is not available' _Logger.info(msg) raise Avn.AvnError(msg) d = __formatData(data, siteID) return d # This function was extracted from AWIPS 1 AvnFPS' makeData(ident, text). def __formatData(data, siteID): if data is not None: prbConfig=_readPrbConf() itime = data['issuetime'] d = {'itime': {'value': itime, 'str': time.strftime('%d%H%MZ', \ time.gmtime(itime))}, 'ident': {'str': siteID}} d['group'] = [_makePeriod(prbConfig,data['record'][n],itime) \ for n in range(_NumHours)] return d # This function is unchanged from the AWIPS 1 AvnFPS function. def makeTable(siteID, timeSeconds): def _tostr(x): s = str(x) if s in ['-1', '999']: s = '' return s data = retrieveData(siteID, timeSeconds) if data is None or data.get('issuetime', 0.0) < time.time() - 86400: msg = 'Grid data for %s is not available', siteID _Logger.info(msg) raise Avn.AvnError(msg) rpt = {'header': '', 'hours': [], 'element': [], 'data': []} itime = data['issuetime'] rpt = ['%s NDFD Guidance %s' % (siteID, \ time.strftime('%x %H%M UTC', time.gmtime(itime)))] rpt.append('hour ' + ' '.join([time.strftime('%H', \ time.gmtime(itime+3600.0*n)) for n in range(_NumHours)])) try: for k in _Keys: if not k in data['record'][0]: continue tok = [_tostr(data['record'][n][k]) for n in range(_NumHours)] rpt.append('%-5s' % k + '%+5s' * _NumHours % tuple(tok)) return Avn.Bunch(data=__formatData(data, siteID), rpt=rpt) except KeyError: _Logger.info('Grid data for %s is not available', siteID) msg = 'Grid data for %s is not available', siteID raise Avn.AvnError(msg) def retrieveData(siteID, timeSeconds, parameters=Parameters): results = _retrieveMapData([siteID], timeSeconds, parameters) return results[siteID] def retrieveMapData(siteIDs, timeSeconds, parameters=Parameters): r = _retrieveMapData(siteIDs, timeSeconds, parameters=Parameters) results = {} for siteID in siteIDs: results[siteID] = cPickle.dumps(r[siteID]) return JUtil.pyDictToJavaMap(results) # New function in AWIPS 2. Determine the latitude and longitude of each site # in siteIDs and then makes a request to send to EDEX for GFE data. def _retrieveMapData(siteIDs, timeSeconds, parameters=Parameters): import JUtil from com.raytheon.uf.common.dataplugin.gfe.request import GetPointDataRequest from com.vividsolutions.jts.geom import Coordinate from com.raytheon.viz.aviation.guidance import GuidanceUtil from com.raytheon.uf.viz.core.localization import LocalizationManager gfeSiteId = LocalizationManager.getInstance().getCurrentSite() task = GetPointDataRequest() task.setSiteID(gfeSiteId) db = gfeSiteId + '_GRID__Official_00000000_0000' task.setDatabaseID(db) for siteID in siteIDs: config = AvnParser.getTafSiteCfg(siteID) lat = config['geography']['lat'] lon = config['geography']['lon'] c = Coordinate(float(lon), float(lat)) task.addCoordinate(c) task.setNumberHours(_NumHours) task.setStartTime(long(timeSeconds * 1000)) for p in parameters: task.addParameter(p) pdcs = GuidanceUtil.getGFEPointsData(task) results = {} if pdcs is None : for siteId in siteIDs: _Logger.info('Data not available for %s', siteID) results[siteID] = None return results for i, siteID in enumerate(siteIDs): data = None if i < pdcs.getSize(): pdc = pdcs.getContainer(i) data = _getData(pdc, timeSeconds * 1000) if data is None: _Logger.info('Data not available for %s', siteID) results[siteID] = data return results ###############################################################################
34.283422
122
0.542089
83318e398572b3738fc257571cdb6bc759a514c1
7,490
py
Python
addon-fEVR/rootfs/var/www/html/cgi-bin/events.py
BeardedTek/BeardedTek-hassio-addons
1f3468417d98c0939a405770a4efedf7e52a43df
[ "MIT" ]
2
2021-12-26T03:03:48.000Z
2022-03-07T03:11:45.000Z
addon-fEVR/rootfs/var/www/html/cgi-bin/events.py
BeardedTek/BeardedTek-hassio-addons
1f3468417d98c0939a405770a4efedf7e52a43df
[ "MIT" ]
1
2021-12-18T21:48:20.000Z
2022-03-07T17:51:35.000Z
addon-fEVR/rootfs/var/www/html/cgi-bin/events.py
BeardedTek/BeardedTek-hassio-addons
1f3468417d98c0939a405770a4efedf7e52a43df
[ "MIT" ]
null
null
null
#!/usr/bin/python # fEVR (Frigate Event Video Recorder) Events Menu # # Copyright (C) 2021-2022 The Bearded Tek (http://www.beardedtek.com) William Kenny # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import os stub='../stub/event.html' class events: def __init__(self): from os.path import basename self.script = basename(__file__) from logit import logit self.error = logit() self.getOptions() self.noResults = False def getOptions(self): import cgi fieldStorage = cgi.FieldStorage() self.count="" self.order="" self.selectors={} self.extraOptions={} for key in fieldStorage.keys(): item = fieldStorage.getvalue(key) if key == 'count': self.count = item elif key == 'order': self.order = item else: for field in ['camera','type','ack','clip','snap','score']: if key == field: self.selectors[key] = item else: self.extraOptions[key] = item def getEvent(self,event,thumbSize=180,location='/var/www/html/events/'): eventPATH = f"{location}{event['id']}" snapPATH = f"{eventPATH}{self.frigate['snap']}" thumbPATH= f"{eventPATH}/thumb.jpg" clipPATH = f"{location}{event['id']}{self.frigate['clip']}" if not os.path.exists(thumbPATH): if not os.path.exists(eventPATH): os.makedirs(eventPATH) snapURL = f"{self.frigate['url']}{self.frigate['api']}{event['id']}{self.frigate['snap']}" clipURL = f"{self.frigate['url']}{self.frigate['api']}{event['id']}{self.frigate['clip']}" import requests snap = requests.get(snapURL, allow_redirects=True) open(snapPATH,'wb').write(snap.content) self.resizeImg(snapPATH,thumbPATH,thumbSize) clip = requests.get(clipURL, allow_redirects=True) open(clipPATH,'wb').write(clip.content) def resizeImg(self,img,thumbPATH,height=180,ratio=(16/9)): # Resizes an image from the filesystem size = (int((height*ratio)),height) from PIL import Image as CompressImage picture = CompressImage.open(img) thumb = picture.resize(size) thumb.save(thumbPATH,"JPEG",optimize=True) def convertTZ(self,dt_str): from datetime import datetime from dateutil import tz import pytz format = "%Y-%m-%d %H:%M:%S" dt_utc = datetime.strptime(dt_str,format) dt_utc = dt_utc.replace(tzinfo=pytz.UTC) return dt_utc.astimezone(pytz.timezone('America/Anchorage')) def noEvents(self): if os.path.isfile(stub): with open(stub) as eventStub: url = "/install.html" thumbURL = "/img/not_available.jpg" caption = "No Events Found" data = eventStub.read() data = data.replace('##EVENT_URL##',url) data = data.replace('##EVENT_IMG##',thumbURL) data = data.replace('##EVENT_CAPTION##',caption) if data: return data def generateEventDiv(self,event): from datetime import datetime time = datetime.fromtimestamp(int(event['id'].split('.')[0])) ftime = str(self.convertTZ(str(time))) event['time'] = ftime[ftime.index('-')+1:] if os.path.isfile(stub): with open(stub) as eventStub: if str(event['ack']).lower() != "true": newMarker = "NEW" else: newMarker = "" url = f"/cgi-bin/event.py?id={event['id']}" thumbURL = f"/events/{event['id']}/thumb.jpg" caption = f"{event['time']}<br/>\n {event['type']} detected in {event['camera']}" data = eventStub.read() data = data.replace('##EVENT_URL##',url) data = data.replace('##EVENT_IMG##',thumbURL) data = data.replace('##EVENT_CAPTION##',caption) data = data.replace('##NEW##',newMarker) if data: return data def getStub(self,stub): if os.path.isfile(stub): with open(stub) as Stub: return Stub.read() def getEvents(self,count=False,selectors=False,order=False): wheres = "" if selectors: for key in selectors: self.error.execute(selectors[key],src=self.script) self.error.execute(f"COUNT: {count}",src=self.script) wheres += f"""WHERE {key}='{selectors[key]}'""" sql = """SELECT * FROM events """ if wheres: sql += wheres if order: if order['field'] and order['direction']: sql += f"""ORDER BY {order['field']} {order['direction']}""" else: sql += """ORDER BY event DESC""" if count: sql += f""" LIMIT {str(count)};""" from fetch import fetchEvent from sqlite import sqlite fsqlite = sqlite() fsqlite.open(self.fevr['db']) self.error.execute(sql,src=self.script) items = fsqlite.retrieve(sql) self.error.execute(f"# ITEMS: {len(items)}",src=self.script) data ="" for row in items: event = {} event['id'] = row[1] event['camera'] = row[2] event['type'] = row[3] event['ack'] = row[4] event['clip'] = row[5] event['snap'] = row[6] event['score'] = row[7] fetchevent = fetchEvent(self.frigate,event['id']) fetchevent.execute() data += self.generateEventDiv(event) if len(items) < 1: self.noResults = True return data def execute(self): from config import Config fconfig = Config() print('content-type: text/html; charset=UTF-8\n\n') print() if fconfig.exists: self.debug = fconfig.debug self.config = fconfig.config self.frigate = self.config['frigate'] self.fevr = self.config['fevr'] self.error.execute(self.frigate,src=self.script) self.error.execute(self.fevr,src=self.script) content = self.getEvents(self.count,self.selectors,self.order) else: content = self.getStub("/var/www/html/config.html") if self.noResults: content = self.noEvents() header = self.getStub("/var/www/html/stub/eventsHeader.html") footer = self.getStub("/var/www/html/stub/eventsFooter.html") print(f"{header}{content}{footer}") def main(): fevents = events() fevents.execute() main()
41.381215
102
0.557677
274400daaf7a8f1786e00c9d36a6514fcfbb666b
1,276
py
Python
predict.py
KelvinKim1/promotion_lab
7e2847146383dc8948f9004a1217c1263de4ab56
[ "MIT" ]
null
null
null
predict.py
KelvinKim1/promotion_lab
7e2847146383dc8948f9004a1217c1263de4ab56
[ "MIT" ]
null
null
null
predict.py
KelvinKim1/promotion_lab
7e2847146383dc8948f9004a1217c1263de4ab56
[ "MIT" ]
null
null
null
import regression_tree import Bayes_classifier import sys import csv data = [] with open("training_set.csv") as csvfile, open("test_set.csv") as csvfile2, open("predicted.csv","w") as t: readCSV = csv.reader(csvfile, delimiter=',') readCSV2 = csv.reader(csvfile2, delimiter=',') temp = csv.writer(t,delimiter=',') for row in readCSV: data.append(list(row)) tree = regression_tree.buildtree(data, min_gain = 0.001, min_samples = 5) result = Bayes_classifier.make_naive_bayes_classfier(data) instance = 0 count1 = 0 count2 = 0 for row in readCSV2: instance+=1 probability = regression_tree.classify(row,tree) if probability < 0.5: predicted1 = 0 else: predicted1 = 1 predicted2 = Bayes_classifier.naive_bayes_classify(row,result) if predicted1 == int(row[-1]): count1+=1 if predicted2 == int(row[-1]): count2+=1 output = [instance,row[-1],predicted1, probability] temp.writerow(output) print("Accuracy of decision tree is ") print(count1/instance) print("Accuracy of naive Bayes classfier is ") print(count2/instance) csvfile.close() csvfile2.close() t.close()
25.019608
107
0.626176
2c2ad689e2c1ae754f37ee6ed5ba2c30ff57db1d
2,459
py
Python
recipe_scrapers/hellofresh.py
chrisbubernak/recipe-scrapers
1617a542f6e728552886aebd29f14e97feeb8f5c
[ "MIT" ]
1
2021-02-07T17:48:09.000Z
2021-02-07T17:48:09.000Z
recipe_scrapers/hellofresh.py
chrisbubernak/recipe-scrapers
1617a542f6e728552886aebd29f14e97feeb8f5c
[ "MIT" ]
null
null
null
recipe_scrapers/hellofresh.py
chrisbubernak/recipe-scrapers
1617a542f6e728552886aebd29f14e97feeb8f5c
[ "MIT" ]
null
null
null
import re from ._abstract import AbstractScraper from ._utils import get_minutes, normalize_string, get_yields class HelloFresh(AbstractScraper): @classmethod def host(self, domain="com"): return f"hellofresh.{domain}" def title(self): return self.soup.find("h1").get_text() def total_time(self): return get_minutes( self.soup.find( "span", {"data-translation-id": "recipe-detail.preparation-time"} ).parent.parent ) def yields(self): return get_yields( self.soup.find( "span", {"data-translation-id": "recipe-detail.recipe-detail.serving-amount"}, ) .parent.parent.find("div", {"variant": "secondary"}) .contents[0] ) def ingredients(self): ingredients_container = self.soup.find( "div", {"data-test-id": "recipeDetailFragment.ingredients"} ) ingredients = ingredients_container.findAll("p") return [ " ".join( [ normalize_string(ingredient_first_part.get_text()), normalize_string(ingredient_second_part.get_text()), ] ).strip() for ingredient_first_part, ingredient_second_part in zip( ingredients[0::2], ingredients[1::2] ) ] def instructions(self): instructions_regex = re.compile(r"recipeDetailFragment.instructions.step-(\d)") instructions_container = self.soup.findAll( "div", {"data-test-id": instructions_regex} ) instructions = [subdiv.findAll("p") for subdiv in instructions_container] instructions = sum(instructions, []) # flatten return "\n".join( [ " ".join( [ str(instruction_order) + ")", normalize_string(instruction.get_text()), ] ) for instruction_order, instruction in zip( range(1, len(instructions) + 1), instructions ) ] ) def image(self): container = self.soup.find("div", {"class": "recipe-header-left"}) if not container: return None image = container.find("img", {"src": True}) return image["src"] if image else None
29.626506
87
0.53233
72571bf4fad4e7b4e8346f4b64a7455ee6ce740c
30,036
py
Python
zerver/tests/test_docs.py
yuroitaki/zulip
95303a9929424b55a1f7c7cce9313c4619a9533b
[ "Apache-2.0" ]
1
2022-01-26T14:45:16.000Z
2022-01-26T14:45:16.000Z
zerver/tests/test_docs.py
jai2201/zulip
95303a9929424b55a1f7c7cce9313c4619a9533b
[ "Apache-2.0" ]
null
null
null
zerver/tests/test_docs.py
jai2201/zulip
95303a9929424b55a1f7c7cce9313c4619a9533b
[ "Apache-2.0" ]
null
null
null
import os import re from typing import TYPE_CHECKING, Any, Dict, Sequence from unittest import mock, skipUnless from urllib.parse import urlsplit import orjson from django.conf import settings from django.test import override_settings from django.utils.timezone import now as timezone_now from corporate.models import Customer, CustomerPlan from zerver.context_processors import get_apps_page_url from zerver.lib.integrations import INTEGRATIONS from zerver.lib.test_classes import ZulipTestCase from zerver.lib.test_helpers import HostRequestMock from zerver.models import Realm, get_realm from zerver.views.documentation import add_api_uri_context if TYPE_CHECKING: from django.test.client import _MonkeyPatchedWSGIResponse as TestHttpResponse class DocPageTest(ZulipTestCase): def get_doc(self, url: str, subdomain: str) -> "TestHttpResponse": if url[0:23] == "/integrations/doc-html/": return self.client_get(url, subdomain=subdomain, HTTP_X_REQUESTED_WITH="XMLHttpRequest") return self.client_get(url, subdomain=subdomain) def print_msg_if_error(self, url: str, response: "TestHttpResponse") -> None: # nocoverage if response.status_code == 200: return print("Error processing URL:", url) if response.get("Content-Type") == "application/json": content = orjson.loads(response.content) print() print("======================================================================") print("ERROR: {}".format(content.get("msg"))) print() def _test( self, url: str, expected_content: str, extra_strings: Sequence[str] = [], landing_missing_strings: Sequence[str] = [], landing_page: bool = True, doc_html_str: bool = False, ) -> None: # Test the URL on the "zephyr" subdomain result = self.get_doc(url, subdomain="zephyr") self.print_msg_if_error(url, result) self.assertEqual(result.status_code, 200) self.assertIn(expected_content, str(result.content)) for s in extra_strings: self.assertIn(s, str(result.content)) if not doc_html_str: self.assert_in_success_response( ['<meta name="robots" content="noindex,nofollow" />'], result ) # Test the URL on the root subdomain result = self.get_doc(url, subdomain="") self.print_msg_if_error(url, result) self.assertEqual(result.status_code, 200) self.assertIn(expected_content, str(result.content)) if not doc_html_str: self.assert_in_success_response( ['<meta name="robots" content="noindex,nofollow" />'], result ) for s in extra_strings: self.assertIn(s, str(result.content)) if not landing_page: return with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): # Test the URL on the root subdomain with the landing page setting result = self.get_doc(url, subdomain="") self.print_msg_if_error(url, result) self.assertEqual(result.status_code, 200) self.assertIn(expected_content, str(result.content)) for s in extra_strings: self.assertIn(s, str(result.content)) for s in landing_missing_strings: self.assertNotIn(s, str(result.content)) if not doc_html_str: # Every page has a meta-description self.assert_in_success_response(['<meta name="description" content="'], result) self.assert_not_in_success_response( ['<meta name="robots" content="noindex,nofollow" />'], result ) # Test the URL on the "zephyr" subdomain with the landing page setting result = self.get_doc(url, subdomain="zephyr") self.print_msg_if_error(url, result) self.assertEqual(result.status_code, 200) self.assertIn(expected_content, str(result.content)) for s in extra_strings: self.assertIn(s, str(result.content)) if not doc_html_str: self.assert_in_success_response( ['<meta name="robots" content="noindex,nofollow" />'], result ) def test_api_doc_endpoints(self) -> None: # We extract the set of /api/ endpoints to check by parsing # the /api/ page sidebar for links starting with /api/. api_page_raw = str(self.client_get("/api/").content) ENDPOINT_REGEXP = re.compile(r"href=\"/api/\s*(.*?)\"") endpoint_list_set = set(re.findall(ENDPOINT_REGEXP, api_page_raw)) endpoint_list = [f"/api/{endpoint}" for endpoint in endpoint_list_set] # Validate that the parsing logic isn't broken, since if it # broke, the below would become a noop. self.assertGreater(len(endpoint_list), 70) for endpoint in endpoint_list: self._test(endpoint, "", doc_html_str=True) result = self.client_get( "/api/nonexistent-page", follow=True, HTTP_X_REQUESTED_WITH="XMLHttpRequest", ) self.assertEqual(result.status_code, 404) def test_doc_endpoints(self) -> None: self._test("/api/", "The Zulip API") self._test("/api/api-keys", "be careful with it") self._test("/api/installation-instructions", "No download required!") self._test("/api/send-message", "steal away your hearts") self._test("/api/render-message", "**foo**") self._test("/api/get-streams", "include_public") self._test("/api/get-stream-id", "The name of the stream to access.") self._test("/api/get-subscriptions", "Get all streams that the user is subscribed to.") self._test("/api/get-users", "client_gravatar") self._test("/api/register-queue", "apply_markdown") self._test("/api/get-events", "dont_block") self._test("/api/delete-queue", "Delete a previously registered queue") self._test("/api/update-message", "propagate_mode") self._test("/api/get-own-user", "does not accept any parameters.") self._test("/api/subscribe", "authorization_errors_fatal") self._test("/api/create-user", "zuliprc-admin") self._test("/api/unsubscribe", "not_removed") if settings.ZILENCER_ENABLED: self._test("/team/", "industry veterans") self._test("/history/", "Cambridge, Massachusetts") # Test the i18n version of one of these pages. self._test("/en/history/", "Cambridge, Massachusetts") if settings.ZILENCER_ENABLED: self._test("/apps/", "Apps for every platform.") self._test("/features/", "Beautiful messaging") self._test("/use-cases/", "Use cases and customer stories") self._test("/hello/", "Chat for distributed teams", landing_missing_strings=["Log in"]) self._test("/development-community/", "Zulip development community") self._test("/why-zulip/", "Why Zulip?") self._test("/for/open-source/", "for open source projects") self._test("/for/events/", "for conferences and events") self._test("/for/education/", "education pricing") self._test("/case-studies/tum/", "Technical University of Munich") self._test("/case-studies/ucsd/", "UCSD") self._test("/case-studies/rust/", "Rust programming language") self._test("/case-studies/recurse-center/", "Recurse Center") self._test("/case-studies/lean/", "Lean theorem prover") self._test("/case-studies/idrift/", "Case study: iDrift AS") self._test("/case-studies/asciidoctor/", "Case study: Asciidoctor") self._test("/for/research/", "for research") self._test("/for/business/", "Communication efficiency represents") self._test("/for/communities/", "Zulip for communities") self._test("/self-hosting/", "Self-host Zulip") self._test("/security/", "TLS encryption") self._test("/attribution/", "Attributions") self._test("/devlogin/", "Normal users", landing_page=False) self._test("/devtools/", "Useful development URLs") self._test("/errors/404/", "Page not found") self._test("/errors/5xx/", "Internal server error") self._test("/emails/", "manually generate most of the emails by clicking") result = self.client_get( "/integrations/doc-html/nonexistent_integration", follow=True, HTTP_X_REQUESTED_WITH="XMLHttpRequest", ) self.assertEqual(result.status_code, 404) result = self.client_get("/new-user/") self.assertEqual(result.status_code, 301) self.assertIn("hello", result["Location"]) result = self.client_get("/developer-community/") self.assertEqual(result.status_code, 301) self.assertIn("development-community", result["Location"]) result = self.client_get("/for/companies/", follow=True) self.assert_in_success_response(["Communication efficiency represents"], result) def test_portico_pages_open_graph_metadata(self) -> None: # Why Zulip url = "/why-zulip/" title = '<meta property="og:title" content="Team chat with first-class threading" />' description = '<meta property="og:description" content="Most team chats are overwhelming' self._test(url, title, doc_html_str=True) self._test(url, description, doc_html_str=True) # Features url = "/features/" title = '<meta property="og:title" content="Zulip features" />' description = '<meta property="og:description" content="First class threading' self._test(url, title, doc_html_str=True) self._test(url, description, doc_html_str=True) def test_integration_doc_endpoints(self) -> None: self._test( "/integrations/", "native integrations.", extra_strings=[ "And hundreds more through", "Zapier", "IFTTT", ], ) for integration in INTEGRATIONS.keys(): url = f"/integrations/doc-html/{integration}" self._test(url, "", doc_html_str=True) def test_integration_pages_open_graph_metadata(self) -> None: url = "/integrations/doc/github" title = '<meta property="og:title" content="Connect GitHub to Zulip" />' description = '<meta property="og:description" content="Zulip comes with over' self._test(url, title, doc_html_str=True) self._test(url, description, doc_html_str=True) # Test category pages url = "/integrations/communication" title = '<meta property="og:title" content="Connect your Communication tools to Zulip" />' description = '<meta property="og:description" content="Zulip comes with over' self._test(url, title, doc_html_str=True) self._test(url, description, doc_html_str=True) # Test integrations page url = "/integrations/" title = '<meta property="og:title" content="Connect the tools you use to Zulip" />' description = '<meta property="og:description" content="Zulip comes with over' self._test(url, title, doc_html_str=True) self._test(url, description, doc_html_str=True) def test_doc_html_str_non_ajax_call(self) -> None: # We don't need to test all the pages for 404 for integration in list(INTEGRATIONS.keys())[5]: with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): url = f"/en/integrations/doc-html/{integration}" result = self.client_get(url, subdomain="", follow=True) self.assertEqual(result.status_code, 404) result = self.client_get(url, subdomain="zephyr", follow=True) self.assertEqual(result.status_code, 404) url = f"/en/integrations/doc-html/{integration}" result = self.client_get(url, subdomain="", follow=True) self.assertEqual(result.status_code, 404) result = self.client_get(url, subdomain="zephyr", follow=True) self.assertEqual(result.status_code, 404) result = self.client_get("/integrations/doc-html/nonexistent_integration", follow=True) self.assertEqual(result.status_code, 404) def test_electron_detection(self) -> None: result = self.client_get("/accounts/password/reset/") # TODO: Ideally, this Mozilla would be the specific browser. self.assertTrue('data-platform="Mozilla"' in result.content.decode()) result = self.client_get("/accounts/password/reset/", HTTP_USER_AGENT="ZulipElectron/1.0.0") self.assertTrue('data-platform="ZulipElectron"' in result.content.decode()) class HelpTest(ZulipTestCase): def test_help_settings_links(self) -> None: result = self.client_get("/help/change-the-time-format") self.assertEqual(result.status_code, 200) self.assertIn( 'Go to <a href="/#settings/display-settings">Display settings</a>', str(result.content) ) # Check that the sidebar was rendered properly. self.assertIn("Getting started with Zulip", str(result.content)) with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): result = self.client_get("/help/change-the-time-format", subdomain="") self.assertEqual(result.status_code, 200) self.assertIn("<strong>Display settings</strong>", str(result.content)) self.assertNotIn("/#settings", str(result.content)) def test_help_relative_links_for_gear(self) -> None: result = self.client_get("/help/analytics") self.assertIn('<a href="/stats">Usage statistics</a>', str(result.content)) self.assertEqual(result.status_code, 200) with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): result = self.client_get("/help/analytics", subdomain="") self.assertEqual(result.status_code, 200) self.assertIn("<strong>Usage statistics</strong>", str(result.content)) self.assertNotIn("/stats", str(result.content)) def test_help_relative_links_for_stream(self) -> None: result = self.client_get("/help/message-a-stream-by-email") self.assertIn('<a href="/#streams/subscribed">Subscribed streams</a>', str(result.content)) self.assertEqual(result.status_code, 200) with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): result = self.client_get("/help/message-a-stream-by-email", subdomain="") self.assertEqual(result.status_code, 200) self.assertIn("<strong>Manage streams</strong>", str(result.content)) self.assertNotIn("/#streams", str(result.content)) class IntegrationTest(ZulipTestCase): def test_check_if_every_integration_has_logo_that_exists(self) -> None: for integration in INTEGRATIONS.values(): path = urlsplit(integration.logo_url).path self.assertTrue(os.path.isfile(settings.DEPLOY_ROOT + path), integration.name) def test_api_url_view_subdomains_base(self) -> None: context: Dict[str, Any] = {} add_api_uri_context(context, HostRequestMock()) self.assertEqual(context["api_url_scheme_relative"], "testserver/api") self.assertEqual(context["api_url"], "http://testserver/api") self.assertTrue(context["html_settings_links"]) @override_settings(ROOT_DOMAIN_LANDING_PAGE=True) def test_api_url_view_subdomains_homepage_base(self) -> None: context: Dict[str, Any] = {} add_api_uri_context(context, HostRequestMock()) self.assertEqual(context["api_url_scheme_relative"], "yourZulipDomain.testserver/api") self.assertEqual(context["api_url"], "http://yourZulipDomain.testserver/api") self.assertFalse(context["html_settings_links"]) def test_api_url_view_subdomains_full(self) -> None: context: Dict[str, Any] = {} request = HostRequestMock(host="mysubdomain.testserver") add_api_uri_context(context, request) self.assertEqual(context["api_url_scheme_relative"], "mysubdomain.testserver/api") self.assertEqual(context["api_url"], "http://mysubdomain.testserver/api") self.assertTrue(context["html_settings_links"]) def test_html_settings_links(self) -> None: context: Dict[str, Any] = {} with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): add_api_uri_context(context, HostRequestMock()) self.assertEqual(context["settings_html"], "Zulip settings page") self.assertEqual(context["subscriptions_html"], "streams page") context = {} with self.settings(ROOT_DOMAIN_LANDING_PAGE=True): add_api_uri_context(context, HostRequestMock(host="mysubdomain.testserver")) self.assertEqual(context["settings_html"], '<a href="/#settings">Zulip settings page</a>') self.assertEqual( context["subscriptions_html"], '<a target="_blank" href="/#streams">streams page</a>' ) context = {} add_api_uri_context(context, HostRequestMock()) self.assertEqual(context["settings_html"], '<a href="/#settings">Zulip settings page</a>') self.assertEqual( context["subscriptions_html"], '<a target="_blank" href="/#streams">streams page</a>' ) class AboutPageTest(ZulipTestCase): @skipUnless(settings.ZILENCER_ENABLED, "requires zilencer") def test_endpoint(self) -> None: with self.settings(CONTRIBUTOR_DATA_FILE_PATH="zerver/tests/fixtures/authors.json"): result = self.client_get("/team/") self.assert_in_success_response(["Our amazing community"], result) self.assert_in_success_response(["2017-11-20"], result) self.assert_in_success_response(["timabbott", "showell", "gnprice", "rishig"], result) with mock.patch("zerver.views.portico.open", side_effect=FileNotFoundError) as m: result = self.client_get("/team/") self.assertEqual(result.status_code, 200) self.assert_in_success_response(["Never ran"], result) m.assert_called_once() with self.settings(ZILENCER_ENABLED=False): result = self.client_get("/team/") self.assertEqual(result.status_code, 301) self.assertEqual(result["Location"], "https://zulip.com/team/") class SmtpConfigErrorTest(ZulipTestCase): def test_smtp_error(self) -> None: result = self.client_get("/config-error/smtp") self.assertEqual(result.status_code, 200) self.assert_in_success_response(["email configuration"], result) class PlansPageTest(ZulipTestCase): def test_plans_auth(self) -> None: root_domain = "" result = self.client_get("/plans/", subdomain=root_domain) self.assert_in_success_response(["Self-host Zulip"], result) self.assert_not_in_success_response(["/upgrade#sponsorship"], result) self.assert_in_success_response(["/accounts/go/?next=%2Fupgrade%23sponsorship"], result) non_existent_domain = "moo" result = self.client_get("/plans/", subdomain=non_existent_domain) self.assertEqual(result.status_code, 404) self.assert_in_response("does not exist", result) realm = get_realm("zulip") realm.plan_type = Realm.PLAN_TYPE_STANDARD_FREE realm.save(update_fields=["plan_type"]) result = self.client_get("/plans/", subdomain="zulip") self.assertEqual(result.status_code, 302) self.assertEqual(result["Location"], "/accounts/login/?next=/plans") guest_user = "polonius" self.login(guest_user) result = self.client_get("/plans/", subdomain="zulip", follow=True) self.assertEqual(result.status_code, 404) organization_member = "hamlet" self.login(organization_member) result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response(["Current plan"], result) self.assert_in_success_response(["/upgrade#sponsorship"], result) self.assert_not_in_success_response(["/accounts/go/?next=%2Fupgrade%23sponsorship"], result) # Test root domain, with login on different domain result = self.client_get("/plans/", subdomain="") # TODO: works in manual testing, but I suspect something is funny in # the test environment # self.assert_in_success_response(["Sign up now"], result) def test_CTA_text_by_plan_type(self) -> None: sign_up_now = "Create organization" upgrade_to_standard = "Upgrade to Standard" current_plan = "Current plan" sponsorship_pending = "Sponsorship pending" # Root domain result = self.client_get("/plans/", subdomain="") self.assert_in_success_response([sign_up_now, upgrade_to_standard], result) self.assert_not_in_success_response([current_plan, sponsorship_pending], result) realm = get_realm("zulip") realm.plan_type = Realm.PLAN_TYPE_SELF_HOSTED realm.save(update_fields=["plan_type"]) with self.settings(PRODUCTION=True): result = self.client_get("/plans/", subdomain="zulip") self.assertEqual(result.status_code, 302) self.assertEqual(result["Location"], "https://zulip.com/plans") self.login("iago") # SELF_HOSTED should hide the local plans page, even if logged in result = self.client_get("/plans/", subdomain="zulip") self.assertEqual(result.status_code, 302) self.assertEqual(result["Location"], "https://zulip.com/plans") # But in the development environment, it renders a page result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([sign_up_now, upgrade_to_standard], result) self.assert_not_in_success_response([current_plan, sponsorship_pending], result) realm.plan_type = Realm.PLAN_TYPE_LIMITED realm.save(update_fields=["plan_type"]) result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([current_plan, upgrade_to_standard], result) self.assert_not_in_success_response([sign_up_now, sponsorship_pending], result) with self.settings(FREE_TRIAL_DAYS=60): result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([current_plan, "Start 60 day free trial"], result) self.assert_not_in_success_response( [sign_up_now, sponsorship_pending, upgrade_to_standard], result ) realm.plan_type = Realm.PLAN_TYPE_STANDARD_FREE realm.save(update_fields=["plan_type"]) result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([current_plan], result) self.assert_not_in_success_response( [sign_up_now, upgrade_to_standard, sponsorship_pending], result ) realm.plan_type = Realm.PLAN_TYPE_STANDARD realm.save(update_fields=["plan_type"]) result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([current_plan], result) self.assert_not_in_success_response( [sign_up_now, upgrade_to_standard, sponsorship_pending], result ) customer = Customer.objects.create(realm=get_realm("zulip"), stripe_customer_id="cus_id") plan = CustomerPlan.objects.create( customer=customer, tier=CustomerPlan.STANDARD, status=CustomerPlan.FREE_TRIAL, billing_cycle_anchor=timezone_now(), billing_schedule=CustomerPlan.MONTHLY, ) result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response(["Current plan (free trial)"], result) self.assert_not_in_success_response( [sign_up_now, upgrade_to_standard, sponsorship_pending], result ) realm.plan_type = Realm.PLAN_TYPE_LIMITED realm.save() customer.sponsorship_pending = True customer.save() plan.delete() result = self.client_get("/plans/", subdomain="zulip") self.assert_in_success_response([current_plan], result) self.assert_in_success_response([current_plan, sponsorship_pending], result) self.assert_not_in_success_response([sign_up_now, upgrade_to_standard], result) class AppsPageTest(ZulipTestCase): def test_get_apps_page_url(self) -> None: with self.settings(ZILENCER_ENABLED=False): apps_page_url = get_apps_page_url() self.assertEqual(apps_page_url, "https://zulip.com/apps/") with self.settings(ZILENCER_ENABLED=True): apps_page_url = get_apps_page_url() self.assertEqual(apps_page_url, "/apps/") def test_apps_view(self) -> None: result = self.client_get("/apps") self.assertEqual(result.status_code, 301) self.assertTrue(result["Location"].endswith("/apps/")) with self.settings(ZILENCER_ENABLED=False): result = self.client_get("/apps/") self.assertEqual(result.status_code, 301) self.assertTrue(result["Location"] == "https://zulip.com/apps/") with self.settings(ZILENCER_ENABLED=False): result = self.client_get("/apps/linux") self.assertEqual(result.status_code, 301) self.assertTrue(result["Location"] == "https://zulip.com/apps/") with self.settings(ZILENCER_ENABLED=True): result = self.client_get("/apps/") self.assertEqual(result.status_code, 200) html = result.content.decode() self.assertIn("Apps for every platform.", html) def test_app_download_link_view(self) -> None: return_value = "https://desktop-download.zulip.com/v5.4.3/Zulip-Web-Setup-5.4.3.exe" with mock.patch( "zerver.views.portico.get_latest_github_release_download_link_for_platform", return_value=return_value, ) as m: result = self.client_get("/apps/download/windows") m.assert_called_once_with("windows") self.assertEqual(result.status_code, 302) self.assertTrue(result["Location"] == return_value) result = self.client_get("/apps/download/plan9") self.assertEqual(result.status_code, 404) class PrivacyTermsTest(ZulipTestCase): def test_terms_and_policies_index(self) -> None: with self.settings(POLICIES_DIRECTORY="corporate/policies"): response = self.client_get("/policies/") self.assert_in_success_response(["Terms and policies"], response) def test_custom_terms_of_service_template(self) -> None: not_configured_message = "This server is an installation" with self.settings(POLICIES_DIRECTORY="zerver/policies_absent"): response = self.client_get("/policies/terms") self.assert_in_response(not_configured_message, response) with self.settings(POLICIES_DIRECTORY="corporate/policies"): response = self.client_get("/policies/terms") self.assert_in_success_response(["Kandra Labs"], response) def test_custom_privacy_policy_template(self) -> None: not_configured_message = "This server is an installation" with self.settings(POLICIES_DIRECTORY="zerver/policies_absent"): response = self.client_get("/policies/privacy") self.assert_in_response(not_configured_message, response) with self.settings(POLICIES_DIRECTORY="corporate/policies"): response = self.client_get("/policies/privacy") self.assert_in_success_response(["Kandra Labs"], response) def test_custom_privacy_policy_template_with_absolute_url(self) -> None: """Verify that using our recommended production default of an absolute path like /etc/zulip/policies/ works.""" current_dir = os.path.dirname(os.path.abspath(__file__)) abs_path = os.path.abspath( os.path.join(current_dir, "..", "..", "templates/corporate/policies") ) with self.settings(POLICIES_DIRECTORY=abs_path): response = self.client_get("/policies/privacy") self.assert_in_success_response(["Kandra Labs"], response) with self.settings(POLICIES_DIRECTORY=abs_path): response = self.client_get("/policies/nonexistent") self.assert_in_response("No such page", response) def test_redirects_from_older_urls(self) -> None: with self.settings(POLICIES_DIRECTORY="corporate/policies"): result = self.client_get("/privacy/", follow=True) self.assert_in_success_response(["Kandra Labs"], result) with self.settings(POLICIES_DIRECTORY="corporate/policies"): result = self.client_get("/terms/", follow=True) self.assert_in_success_response(["Kandra Labs"], result) def test_no_nav(self) -> None: # Test that our ?nav=0 feature of /privacy and /terms, # designed to comply with the Apple App Store draconian # policies that ToS/Privacy pages linked from an iOS app have # no links to the rest of the site if there's pricing # information for anything elsewhere on the site. # We don't have this link at all on these pages; this first # line of the test would change if we were to adjust the # design. response = self.client_get("/policies/terms") self.assert_not_in_success_response(["Back to Zulip"], response) response = self.client_get("/policies/terms", {"nav": "no"}) self.assert_not_in_success_response(["Back to Zulip"], response) response = self.client_get("/policies/privacy", {"nav": "no"}) self.assert_not_in_success_response(["Back to Zulip"], response)
47.07837
100
0.659475
a7df4eec6c025af7efb1f55e70c01bdf539d5584
983
py
Python
budgetportal/migrations/0005_department-unique-together-constraints.py
fluenty/datamanager
97ba9d58d4527b7d61b730ea4896f09a56e6ae60
[ "MIT" ]
null
null
null
budgetportal/migrations/0005_department-unique-together-constraints.py
fluenty/datamanager
97ba9d58d4527b7d61b730ea4896f09a56e6ae60
[ "MIT" ]
null
null
null
budgetportal/migrations/0005_department-unique-together-constraints.py
fluenty/datamanager
97ba9d58d4527b7d61b730ea4896f09a56e6ae60
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2017-12-14 10:27 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('budgetportal', '0004_government-unique-together-constraints'), ] operations = [ migrations.AlterField( model_name='department', name='name', field=models.CharField(max_length=200), ), migrations.AlterField( model_name='department', name='slug', field=models.SlugField(max_length=200), ), migrations.AlterField( model_name='department', name='vote_number', field=models.IntegerField(), ), migrations.AlterUniqueTogether( name='department', unique_together=set([('government', 'slug'), ('government', 'name'), ('government', 'vote_number')]), ), ]
28.085714
113
0.581892
13ed68b0a627c01009fc291acf7e79224dc3d799
25,549
py
Python
pajbot/modules/playsound.py
sadlyfell/bullbot
b6ef96f61678fab4a245d8ccddf9d1ae7aae9fee
[ "MIT" ]
null
null
null
pajbot/modules/playsound.py
sadlyfell/bullbot
b6ef96f61678fab4a245d8ccddf9d1ae7aae9fee
[ "MIT" ]
null
null
null
pajbot/modules/playsound.py
sadlyfell/bullbot
b6ef96f61678fab4a245d8ccddf9d1ae7aae9fee
[ "MIT" ]
null
null
null
import json import logging import re from argparse import ArgumentParser from pajbot.managers.db import DBManager from pajbot.models.playsound import Playsound from pajbot.modules import BaseModule from pajbot.modules import ModuleSetting log = logging.getLogger(__name__) class PlaysoundModule(BaseModule): ID = __name__.split(".")[-1] NAME = "Playsound" DESCRIPTION = "Play a sound on stream with !playsound" CATEGORY = "Feature" SETTINGS = [ ModuleSetting( key="point_cost", label="Point cost", type="number", required=True, placeholder="Point cost", default=200, constraints={"min_value": 0, "max_value": 999999}, ), ModuleSetting( key="token_cost", label="Token cost", type="number", required=True, placeholder="Token cost", default=0, constraints={"min_value": 0, "max_value": 15}, ), ModuleSetting( key="global_cd", label="Global playsound cooldown (seconds)", type="number", required=True, placeholder="", default=10, constraints={"min_value": 0, "max_value": 600}, ), ModuleSetting( key="default_sample_cd", label="Default per-sample cooldown (seconds)", type="number", required=True, placeholder="", default=30, constraints={"min_value": 0, "max_value": 600}, ), ModuleSetting( key="global_volume", label="Global volume (0-100)", type="number", required=True, placeholder="", default=40, constraints={"min_value": 0, "max_value": 100}, ), ModuleSetting(key="sub_only", label="Subscribers only", type="boolean", required=True, default=False), ModuleSetting(key="can_whisper", label="Command can be whispered", type="boolean", required=True, default=True), ModuleSetting( key="confirmation_whisper", label="Send user a whisper when sound was successfully played", type="boolean", required=True, default=True, ), ModuleSetting( key="global_cd_whisper", label="Send user a whisper playsounds are on global cooldown", type="boolean", required=True, default=True, ), ] def __init__(self, bot): super().__init__(bot) # this is for the "Test on stream" button on the admin page if bot: bot.socket_manager.add_handler("playsound.play", self.on_web_playsound) self.sample_cooldown = [] self.global_cooldown = False # when a "Test on stream" is triggered via the Web UI. def on_web_playsound(self, data): # on playsound test triggered by the Web UI # this works even if the module is not enabled. playsound_name = data["name"] with DBManager.create_session_scope() as session: playsound = session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: log.warning("Web UI tried to play invalid playsound. Ignoring.") return payload = { "link": playsound.link, "volume": int(round(playsound.volume * self.settings["global_volume"] / 100)), } log.debug("Playsound module is emitting payload: {}".format(json.dumps(payload))) self.bot.websocket_manager.emit("play_sound", payload) def reset_global_cd(self): self.global_cooldown = False def play_sound(self, **options): bot = options["bot"] message = options["message"] source = options["source"] playsoundURL = "https://{}/playsounds".format(self.bot.config["web"]["domain"]) if not message: bot.say("Playsounds can be tried out at {}".format(playsoundURL)) return False playsound_name = message.split(" ")[0].lower() with DBManager.create_session_scope() as session: # load playsound from the database playsound = session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: bot.whisper( source.username, "The playsound you gave does not exist. Check out all the valid playsounds here: " + "{}".format(playsoundURL), ) return False if self.global_cooldown and source.username not in ["admiralbulldog", "datguy1"]: if self.settings["global_cd_whisper"]: bot.whisper( source.username, "Another user played a sample too recently. Please try again after the global cooldown " + "of {} seconds has run out.".format(self.settings["global_cd"]), ) return False cooldown = playsound.cooldown if cooldown is None: cooldown = self.settings["default_sample_cd"] if playsound_name in self.sample_cooldown and source.username not in ["admiralbulldog", "datguy1"]: bot.whisper( source.username, "The playsound {0} was played too recently. ".format(playsound.name) + "Please wait until its cooldown of {} seconds has run out.".format(cooldown), ) return False cost = playsound.cost if cost is None: cost = self.settings["point_cost"] if not source.can_afford(cost): bot.whisper( source.username, "You need {0} points to play this playsound, ".format(cost) + "you have {}.".format(source.points), ) return False if not playsound.enabled: bot.whisper( source.username, "The playsound you gave is disabled. Check out all the valid playsounds here: " "https://{}/playsounds".format(self.bot.config["web"]["domain"]), ) return False payload = { "link": playsound.link, "volume": int(round(playsound.volume * self.settings["global_volume"] / 100)), } log.debug("Playsound module is emitting payload: {}".format(json.dumps(payload))) bot.websocket_manager.emit("play_sound", payload) if source.username not in ["datguy1", "admiralbulldog"]: source.points = source.points - cost if self.settings["confirmation_whisper"]: bot.whisper(source.username, "Successfully played the sound {} on stream!".format(playsound_name)) self.global_cooldown = True self.sample_cooldown.append(playsound.name) bot.execute_delayed(cooldown, self.sample_cooldown.remove, (playsound.name,)) bot.execute_delayed(self.settings["global_cd"], self.reset_global_cd, ()) @staticmethod def parse_playsound_arguments(message): """ Available options: --volume VOLUME --cooldown COOLDOWN --enabled/--disabled """ parser = ArgumentParser() parser.add_argument("--volume", dest="volume", type=int) # we parse this manually so we can allow "none" and things like that to unset it parser.add_argument("--cost", dest="cost", type=str) parser.add_argument("--cooldown", dest="cooldown", type=str) parser.add_argument("--enabled", dest="enabled", action="store_true") parser.add_argument("--disabled", dest="enabled", action="store_false") parser.set_defaults(volume=None, cooldown=None, enabled=None) try: args, unknown = parser.parse_known_args(message.split()) except SystemExit: return False, False, False except: log.exception("Unhandled exception in add_command") return False, False, False # Strip options of any values that are set as None options = {k: v for k, v in vars(args).items() if v is not None} if len(unknown) < 1: # no name return False, False, False name = unknown[0] link = None if len(unknown) < 2 else " ".join(unknown[1:]) return options, name, link @staticmethod def validate_name(name): return name is not None re_valid_links = re.compile("^https://\\S*$") @staticmethod def validate_link(link): return link is not None and PlaysoundModule.re_valid_links.match(link) def update_link(self, bot, source, playsound, link): if link is not None: if not self.validate_link(link): bot.whisper( source.username, "Error: Invalid link. Valid links must start with https:// " "and cannot contain spaces", ) return False playsound.link = link return True @staticmethod def validate_volume(volume): return volume is not None and 0 <= volume <= 100 def update_volume(self, bot, source, playsound, parsed_options): if "volume" in parsed_options: if not self.validate_volume(parsed_options["volume"]): bot.whisper(source.username, "Error: Volume must be between 0 and 100.") return False playsound.volume = parsed_options["volume"] return True @staticmethod def validate_cooldown(cooldown): return cooldown is None or cooldown >= 0 def update_cooldown(self, bot, source, playsound, parsed_options): if "cooldown" in parsed_options: if parsed_options["cooldown"].lower() == "none": cooldown_int = None else: try: cooldown_int = int(parsed_options["cooldown"]) except ValueError: bot.whisper(source.username, 'Error: Cooldown must be a number or the string "none".') return False if not self.validate_cooldown(cooldown_int): bot.whisper(source.username, "Error: Cooldown must be positive.") return False playsound.cooldown = cooldown_int return True @staticmethod def validate_cost(cost): return cost is None or cost >= 0 def update_cost(self, bot, source, playsound, parsed_options): if "cost" in parsed_options: if parsed_options["cost"].lower() == "none": cost_int = None else: try: cost_int = int(parsed_options["cost"]) except ValueError: bot.whisper(source.username, 'Error: Cost must be a number or the string "none".') return False if not self.validate_cost(cost_int): bot.whisper(source.username, "Error: Cost must be positive.") return False playsound.cost = cost_int return True @staticmethod def update_enabled(bot, source, playsound, parsed_options): if "enabled" in parsed_options: playsound.enabled = parsed_options["enabled"] return True def add_playsound_command(self, **options): """Method for creating playsounds. Usage: !add playsound PLAYSOUNDNAME LINK [options] Multiple options available: --volume VOLUME --cooldown COOLDOWN --enabled/--disabled """ bot = options["bot"] message = options["message"] source = options["source"] options, name, link = self.parse_playsound_arguments(message) # the parser does not enforce a link being present because the edit function # doesn't require it strictly, so apart from "False" link is being checked # for being None here. if options is False or name is False or link is False or link is None: bot.whisper( source.username, "Invalid usage. Correct syntax: !add playsound <name> <link> " + "[--volume 0-100] [--cost 10000/none] [--cooldown 60/none] [--enabled/--disabled]", ) return with DBManager.create_session_scope() as session: count = session.query(Playsound).filter(Playsound.name == name).count() if count > 0: bot.whisper( source.username, "A Playsound with that name already exists. Use !edit playsound " + "or !remove playsound to edit or delete it.", ) return playsound = Playsound(name=name) if not self.update_link(bot, source, playsound, link): return if not self.update_volume(bot, source, playsound, options): return if not self.update_cost(bot, source, playsound, options): return if not self.update_cooldown(bot, source, playsound, options): return if not self.update_enabled(bot, source, playsound, options): return session.add(playsound) bot.whisper(source.username, "Successfully added your playsound.") def edit_playsound_command(self, **options): """Method for editing playsounds. Usage: !edit playsound PLAYSOUNDNAME [LINK] [options] Multiple options available: --volume VOLUME --cooldown COOLDOWN --enabled/--disabled """ bot = options["bot"] message = options["message"] source = options["source"] options, name, link = self.parse_playsound_arguments(message) if options is False or name is False or link is False: bot.whisper( source.username, "Invalid usage. Correct syntax: !edit playsound <name> [link] " + "[--volume 0-100] [--cost 10000/none] [--cooldown 60/none] [--enabled/--disabled]", ) return with DBManager.create_session_scope() as session: playsound = session.query(Playsound).filter(Playsound.name == name).one_or_none() if playsound is None: bot.whisper( source.username, "No playsound with that name exists. You can create playsounds with " "!add playsound <name> <link> [options].", ) return if not self.update_link(bot, source, playsound, link): return if not self.update_volume(bot, source, playsound, options): return if not self.update_cost(bot, source, playsound, options): return if not self.update_cooldown(bot, source, playsound, options): return if not self.update_enabled(bot, source, playsound, options): return session.add(playsound) bot.whisper(source.username, "Successfully edited your playsound.") @staticmethod def remove_playsound_command(**options): """Method for removing playsounds. Usage: !edit playsound PLAYSOUNDNAME """ bot = options["bot"] message = options["message"] source = options["source"] playsound_name = message.split(" ")[0].lower() # check for empty string if not playsound_name: bot.whisper(source.username, "Invalid usage. Correct syntax: !remove playsound <name>") return with DBManager.create_session_scope() as session: playsound = session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: bot.whisper(source.username, "No playsound with that name exists.") return session.delete(playsound) bot.whisper(source.username, "Successfully deleted your playsound.") @staticmethod def debug_playsound_command(**options): """Method for debugging (printing info about) playsounds. Usage: !debug playsound PLAYSOUNDNAME """ bot = options["bot"] message = options["message"] source = options["source"] playsound_name = message.split(" ")[0].lower() # check for empty string if not playsound_name: bot.whisper(source.username, "Invalid usage. Correct syntax: !debug playsound <name>") return with DBManager.create_session_scope() as session: playsound = session.query(Playsound).filter(Playsound.name == playsound_name).one_or_none() if playsound is None: bot.whisper(source.username, "No playsound with that name exists.") return bot.whisper( source.username, "name={}, link={}, volume={}, cost={}, cooldown={}, enabled={}".format( playsound.name, playsound.link, playsound.volume, playsound.cost, playsound.cooldown, playsound.enabled, ), ) def load_commands(self, **options): from pajbot.models.command import Command from pajbot.models.command import CommandExample self.commands["playsound"] = Command.raw_command( self.play_sound, cost=0, sub_only=self.settings["sub_only"], delay_all=0, delay_user=0, description="Play a sound on stream!", can_execute_with_whisper=self.settings["can_whisper"], examples=[ CommandExample( None, 'Play the "doot" sample', chat="user:!playsound doot\n" "bot>user:Successfully played the sound doot on stream!", ).parse() ], ) self.commands["playsound"].long_description = 'Playsounds can be tried out <a href="/playsounds">here</a>' self.commands["add"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="add", commands={ "playsound": Command.raw_command( self.add_playsound_command, level=500, delay_all=0, delay_user=0, description="Creates a new playsound", examples=[ CommandExample( None, "Create a new playsound", chat="user:!add playsound doot https://i.nuuls.com/Bb4aX.mp3\n" "bot>user:Successfully created your playsound", description='Creates the "doot" playsound with the given link.', ).parse(), CommandExample( None, "Create a new playsound and sets volume", chat="user:!add playsound doot https://i.nuuls.com/Bb4aX.mp3 --volume 50\n" "bot>user:Successfully created your playsound", description='Creates the "doot" playsound with the given link and 50% volume.', ).parse(), CommandExample( None, "Create a new playsound and sets cooldown", chat="user:!add playsound doot https://i.nuuls.com/Bb4aX.mp3 --cooldown 60\n" "bot>user:Successfully created your playsound", description='Creates the "doot" playsound with the given link and 1 minute cooldown.', ).parse(), CommandExample( None, "Create a new playsound and disable it", chat="user:!add playsound doot https://i.nuuls.com/Bb4aX.mp3 --disabled\n" "bot>user:Successfully created your playsound", description='Creates the "doot" playsound with the given link and initially disables it.', ).parse(), ], ) }, ) self.commands["edit"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="edit", commands={ "playsound": Command.raw_command( self.edit_playsound_command, level=500, delay_all=0, delay_user=0, description="Edits an existing playsound", examples=[ CommandExample( None, "Edit an existing playsound's link", chat="user:!edit playsound doot https://i.nuuls.com/Bb4aX.mp3\n" "bot>user:Successfully edited your playsound", description='Updates the link of the "doot" playsound.', ).parse(), CommandExample( None, "Edit an existing playsound's volume", chat="user:!edit playsound doot --volume 50\n" "bot>user:Successfully edited your playsound", description='Updates the volume of the "doot" playsound to 50%.', ).parse(), CommandExample( None, "Edit an existing playsound's cooldown", chat="user:!edit playsound doot --cooldown 60\n" "bot>user:Successfully edited your playsound", description='Updates the cooldown of the "doot" playsound to 1 minute.', ).parse(), CommandExample( None, "Disable an existing playsound", chat="user:!edit playsound doot --disabled\n" "bot>user:Successfully edited your playsound", description='Disables the "doot" playsound.', ).parse(), CommandExample( None, "Enable an existing playsound", chat="user:!edit playsound doot --enabled\n" "bot>user:Successfully edited your playsound", description='Enables the "doot" playsound.', ).parse(), ], ) }, ) self.commands["remove"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="remove", commands={ "playsound": Command.raw_command( self.remove_playsound_command, level=500, delay_all=0, delay_user=0, description="Removes an existing playsound", examples=[ CommandExample( None, "Remove an existing playsound", chat="user:!remove playsound doot\n" "bot>user:Successfully removed your playsound", description='Removes the "doot" playsound.', ).parse() ], ) }, ) self.commands["debug"] = Command.multiaction_command( level=100, delay_all=0, delay_user=0, default=None, command="debug", commands={ "playsound": Command.raw_command( self.debug_playsound_command, level=250, delay_all=0, delay_user=0, description="Prints data about a playsound", examples=[ CommandExample( None, 'Get information about the "doot" playsound', chat="user:!debug playsound doot\n" "bot>user: name=doot, link=https://i.nuuls.com/Bb4aX.mp3, volume=100, " "cooldown=None, enabled=True", ).parse() ], ) }, )
38.887367
120
0.526205
6df7d2565de18251cbc1741f5efc0493428dacfd
182
py
Python
hTools2.roboFontExt/lib/Scripts/selected glyphs/transform/gridfit.py
frankrolf/hTools2_extension
9d73b8640c85209853a72f8d4b167768de5e0d60
[ "BSD-3-Clause" ]
2
2019-12-18T16:12:07.000Z
2019-12-21T01:19:23.000Z
hTools2.roboFontExt/lib/Scripts/selected glyphs/transform/gridfit.py
frankrolf/hTools2_extension
9d73b8640c85209853a72f8d4b167768de5e0d60
[ "BSD-3-Clause" ]
null
null
null
hTools2.roboFontExt/lib/Scripts/selected glyphs/transform/gridfit.py
frankrolf/hTools2_extension
9d73b8640c85209853a72f8d4b167768de5e0d60
[ "BSD-3-Clause" ]
null
null
null
# [h] fit to grid dialog import hTools2.dialogs.glyphs.gridfit import importlib importlib.reload(hTools2.dialogs.glyphs.gridfit) hTools2.dialogs.glyphs.gridfit.roundToGridDialog()
22.75
50
0.824176
c961e7968ad6a762f86b400d59107435a0f7337a
926
py
Python
cosypose/simulator/textures.py
ompugao/cosypose
4e471c16f19d5ee632668cd52eaa57b562f287d6
[ "MIT" ]
202
2020-08-19T19:28:03.000Z
2022-03-29T07:10:47.000Z
cosypose/simulator/textures.py
ompugao/cosypose
4e471c16f19d5ee632668cd52eaa57b562f287d6
[ "MIT" ]
66
2020-08-24T09:28:05.000Z
2022-03-31T07:11:06.000Z
cosypose/simulator/textures.py
ompugao/cosypose
4e471c16f19d5ee632668cd52eaa57b562f287d6
[ "MIT" ]
66
2020-08-19T19:28:05.000Z
2022-03-18T20:47:55.000Z
import numpy as np from collections import defaultdict import pybullet as pb def apply_random_textures(body, texture_ids, per_link=False, np_random=np.random): data = body.visual_shape_data visual_shapes_ids = [t[1] for t in data] n_shapes = defaultdict(lambda: 0) for i in visual_shapes_ids: n_shapes[i] += 1 for link_id, n_shapes in n_shapes.items(): texture_id = np_random.choice(texture_ids) for link_shape_id in range(n_shapes): if per_link: texture_id = np_random.choice(texture_ids) specular = np_random.randint(0, 1000) pb.changeVisualShape(body._body_id, link_id, link_shape_id, textureUniqueId=texture_id, rgbaColor=[1, 1, 1, 1], physicsClientId=body._client.client_id, specularColor=specular * np.ones(3)) return
38.583333
84
0.62635
fa50320b27220309d4d11b8fd1707c8fc39e59d1
2,202
py
Python
src/features.py
sebastiani/versa
019503c568b9e62aec05dc29eb75db9ff7c1ab9c
[ "MIT" ]
null
null
null
src/features.py
sebastiani/versa
019503c568b9e62aec05dc29eb75db9ff7c1ab9c
[ "MIT" ]
null
null
null
src/features.py
sebastiani/versa
019503c568b9e62aec05dc29eb75db9ff7c1ab9c
[ "MIT" ]
null
null
null
import tensorflow as tf from utilities import conv2d_pool_block, dense_block, conv2d_transpose_layer, dense_layer def extract_features(images, output_size, use_batch_norm, dropout_keep_prob): """ Based on the architecture described in 'Matching Networks for One-Shot Learning' http://arxiv.org/abs/1606.04080.pdf. :param images: batch of images. :param output_size: dimensionality of the output features. :param use_batch_norm: whether to use batch normalization or not. :param dropout_keep_prob: keep probability parameter for dropout. :return: features. """ # 4X conv2d + pool blocks h = conv2d_pool_block(images, use_batch_norm, dropout_keep_prob, 'fe_block_1') h = conv2d_pool_block(h, use_batch_norm, dropout_keep_prob, 'fe_block_2') h = conv2d_pool_block(h, use_batch_norm, dropout_keep_prob, 'fe_block_3') h = conv2d_pool_block(h, use_batch_norm, dropout_keep_prob, 'fe_block_4') # flatten output h = tf.contrib.layers.flatten(h) # dense layer h = dense_block(h, output_size, use_batch_norm, dropout_keep_prob, 'fe_dense') return h def generate_views(angles, adaptation_inputs): """ Based on the architecture described in 'Matching Networks for One-Shot Learning' http://arxiv.org/abs/1606.04080.pdf. :param angles: batch of orientationses. :param adaptation_inputs: batch of adaptation_inputs. :return: batch of generated views. """ h = tf.concat([angles, adaptation_inputs], -1) h = dense_layer(inputs=h, output_size=512, activation=tf.nn.relu, use_bias=False, name='generate_dense_1') h = dense_layer(inputs=h, output_size=1024, activation=tf.nn.relu, use_bias=False, name='generate_dense_2') h = tf.reshape(h, shape=[-1, 2, 2, 256]) h = conv2d_transpose_layer(inputs=h, filters=128, activation=tf.nn.relu, name='generate_deconv_1') h = conv2d_transpose_layer(inputs=h, filters=64, activation=tf.nn.relu, name='generate_deconv_2') h = conv2d_transpose_layer(inputs=h, filters=32, activation=tf.nn.relu, name='generate_deconv_3') h = conv2d_transpose_layer(inputs=h, filters=1, activation=tf.nn.sigmoid, name='generate_deconv_4') return h
40.777778
111
0.737057
24add0adfd598625649d003ed0767b0d6acadca4
804
py
Python
04_jump_the_five/jump.py
claracoo/tiny_python_projects
120a414e3b6125b537ce94f1fdec7faa9cf59b1f
[ "MIT" ]
null
null
null
04_jump_the_five/jump.py
claracoo/tiny_python_projects
120a414e3b6125b537ce94f1fdec7faa9cf59b1f
[ "MIT" ]
null
null
null
04_jump_the_five/jump.py
claracoo/tiny_python_projects
120a414e3b6125b537ce94f1fdec7faa9cf59b1f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Jump the Five""" import argparse # -------------------------------------------------- def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args() # -------------------------------------------------- def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} print(args.text.translate(str.maketrans(jumper))) # -------------------------------------------------- if __name__ == '__main__': main()
25.125
65
0.458955
bc8fc1b51b55e07f3f5c533ec2e8a318aea38cb1
18,819
py
Python
log_complete/model_698.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_698.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
log_complete/model_698.py
LoLab-VU/Bayesian_Inference_of_Network_Dynamics
54a5ef7e868be34289836bbbb024a2963c0c9c86
[ "MIT" ]
null
null
null
# exported from PySB model 'model' from pysb import Model, Monomer, Parameter, Expression, Compartment, Rule, Observable, Initial, MatchOnce, Annotation, ANY, WILD Model() Monomer('Ligand', ['Receptor']) Monomer('ParpU', ['C3A']) Monomer('C8A', ['BidU', 'C3pro']) Monomer('SmacM', ['BaxA']) Monomer('BaxM', ['BidM', 'BaxA']) Monomer('Apop', ['C3pro', 'Xiap']) Monomer('Fadd', ['Receptor', 'C8pro']) Monomer('SmacC', ['Xiap']) Monomer('ParpC') Monomer('Xiap', ['SmacC', 'Apop', 'C3A']) Monomer('C9') Monomer('C3ub') Monomer('C8pro', ['Fadd', 'C6A']) Monomer('C6A', ['C8pro']) Monomer('C3pro', ['Apop', 'C8A']) Monomer('CytoCM', ['BaxA']) Monomer('CytoCC') Monomer('BaxA', ['BaxM', 'BaxA_1', 'BaxA_2', 'SmacM', 'CytoCM']) Monomer('ApafI') Monomer('BidU', ['C8A']) Monomer('BidT') Monomer('C3A', ['Xiap', 'ParpU', 'C6pro']) Monomer('ApafA') Monomer('BidM', ['BaxM']) Monomer('Receptor', ['Ligand', 'Fadd']) Monomer('C6pro', ['C3A']) Parameter('bind_0_Ligand_binder_Receptor_binder_target_2kf', 1.0) Parameter('bind_0_Ligand_binder_Receptor_binder_target_1kr', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_2kf', 1.0) Parameter('bind_0_Receptor_binder_Fadd_binder_target_1kr', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf', 1.0) Parameter('substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr', 1.0) Parameter('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf', 1.0) Parameter('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf', 1.0) Parameter('inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf', 1.0) Parameter('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf', 1.0) Parameter('inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf', 1.0) Parameter('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr', 1.0) Parameter('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kf', 1.0) Parameter('equilibration_0_BidT_equil_a_BidM_equil_b_1kr', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf', 1.0) Parameter('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr', 1.0) Parameter('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf', 1.0) Parameter('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr', 1.0) Parameter('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc', 1.0) Parameter('pore_formation_0_BaxA_pore_2kf', 1.0) Parameter('pore_formation_0_BaxA_pore_1kr', 1.0) Parameter('pore_formation_1_BaxA_pore_2kf', 1.0) Parameter('pore_formation_1_BaxA_pore_1kr', 1.0) Parameter('pore_formation_2_BaxA_pore_2kf', 1.0) Parameter('pore_formation_2_BaxA_pore_1kr', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf', 1.0) Parameter('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr', 1.0) Parameter('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf', 1.0) Parameter('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr', 1.0) Parameter('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf', 1.0) Parameter('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr', 1.0) Parameter('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf', 1.0) Parameter('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr', 1.0) Parameter('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc', 1.0) Parameter('Ligand_0', 1000.0) Parameter('ParpU_0', 1000000.0) Parameter('C8A_0', 0.0) Parameter('SmacM_0', 100000.0) Parameter('BaxM_0', 40000.0) Parameter('Apop_0', 0.0) Parameter('Fadd_0', 130000.0) Parameter('SmacC_0', 0.0) Parameter('ParpC_0', 0.0) Parameter('Xiap_0', 174500.0) Parameter('C9_0', 100000.0) Parameter('C3ub_0', 0.0) Parameter('C8pro_0', 130000.0) Parameter('C6A_0', 0.0) Parameter('C3pro_0', 21000.0) Parameter('CytoCM_0', 500000.0) Parameter('CytoCC_0', 0.0) Parameter('BaxA_0', 0.0) Parameter('ApafI_0', 100000.0) Parameter('BidU_0', 171000.0) Parameter('BidT_0', 0.0) Parameter('C3A_0', 0.0) Parameter('ApafA_0', 0.0) Parameter('BidM_0', 0.0) Parameter('Receptor_0', 100.0) Parameter('C6pro_0', 100.0) Observable('Ligand_obs', Ligand()) Observable('ParpU_obs', ParpU()) Observable('C8A_obs', C8A()) Observable('SmacM_obs', SmacM()) Observable('BaxM_obs', BaxM()) Observable('Apop_obs', Apop()) Observable('Fadd_obs', Fadd()) Observable('SmacC_obs', SmacC()) Observable('ParpC_obs', ParpC()) Observable('Xiap_obs', Xiap()) Observable('C9_obs', C9()) Observable('C3ub_obs', C3ub()) Observable('C8pro_obs', C8pro()) Observable('C6A_obs', C6A()) Observable('C3pro_obs', C3pro()) Observable('CytoCM_obs', CytoCM()) Observable('CytoCC_obs', CytoCC()) Observable('BaxA_obs', BaxA()) Observable('ApafI_obs', ApafI()) Observable('BidU_obs', BidU()) Observable('BidT_obs', BidT()) Observable('C3A_obs', C3A()) Observable('ApafA_obs', ApafA()) Observable('BidM_obs', BidM()) Observable('Receptor_obs', Receptor()) Observable('C6pro_obs', C6pro()) Rule('bind_0_Ligand_binder_Receptor_binder_target', Ligand(Receptor=None) + Receptor(Ligand=None, Fadd=None) | Ligand(Receptor=1) % Receptor(Ligand=1, Fadd=None), bind_0_Ligand_binder_Receptor_binder_target_2kf, bind_0_Ligand_binder_Receptor_binder_target_1kr) Rule('bind_0_Receptor_binder_Fadd_binder_target', Receptor(Ligand=ANY, Fadd=None) + Fadd(Receptor=None, C8pro=None) | Receptor(Ligand=ANY, Fadd=1) % Fadd(Receptor=1, C8pro=None), bind_0_Receptor_binder_Fadd_binder_target_2kf, bind_0_Receptor_binder_Fadd_binder_target_1kr) Rule('substrate_binding_0_Fadd_catalyzer_C8pro_substrate', Fadd(Receptor=ANY, C8pro=None) + C8pro(Fadd=None, C6A=None) | Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None), substrate_binding_0_Fadd_catalyzer_C8pro_substrate_2kf, substrate_binding_0_Fadd_catalyzer_C8pro_substrate_1kr) Rule('catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product', Fadd(Receptor=ANY, C8pro=1) % C8pro(Fadd=1, C6A=None) >> Fadd(Receptor=ANY, C8pro=None) + C8A(BidU=None, C3pro=None), catalytic_step_0_Fadd_catalyzer_C8pro_substrate_C8A_product_1kc) Rule('catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=None, C3pro=None) + BidU(C8A=None) | C8A(BidU=1, C3pro=None) % BidU(C8A=1), catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_2kf, catalysis_0_C8A_catalyzer_BidU_substrate_BidT_product_1kr) Rule('catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product', C8A(BidU=1, C3pro=None) % BidU(C8A=1) >> C8A(BidU=None, C3pro=None) + BidT(), catalysis_1_C8A_catalyzer_BidU_substrate_BidT_product_1kc) Rule('conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex', ApafI() + CytoCC() | ApafA(), conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_2kf, conversion_0_CytoCC_subunit_d_ApafI_subunit_c_ApafA_complex_1kr) Rule('inhibition_0_SmacC_inhibitor_Xiap_inh_target', SmacC(Xiap=None) + Xiap(SmacC=None, Apop=None, C3A=None) | SmacC(Xiap=1) % Xiap(SmacC=1, Apop=None, C3A=None), inhibition_0_SmacC_inhibitor_Xiap_inh_target_2kf, inhibition_0_SmacC_inhibitor_Xiap_inh_target_1kr) Rule('conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex', ApafA() + C9() | Apop(C3pro=None, Xiap=None), conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_2kf, conversion_0_C9_subunit_d_ApafA_subunit_c_Apop_complex_1kr) Rule('catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=None, Xiap=None) + C3pro(Apop=None, C8A=None) | Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None), catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_Apop_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product', Apop(C3pro=1, Xiap=None) % C3pro(Apop=1, C8A=None) >> Apop(C3pro=None, Xiap=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_Apop_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('inhibition_0_Xiap_inhibitor_Apop_inh_target', Xiap(SmacC=None, Apop=None, C3A=None) + Apop(C3pro=None, Xiap=None) | Xiap(SmacC=None, Apop=1, C3A=None) % Apop(C3pro=None, Xiap=1), inhibition_0_Xiap_inhibitor_Apop_inh_target_2kf, inhibition_0_Xiap_inhibitor_Apop_inh_target_1kr) Rule('catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=None) + C3A(Xiap=None, ParpU=None, C6pro=None) | Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None), catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_2kf, catalysis_0_Xiap_catalyzer_C3A_substrate_C3ub_product_1kr) Rule('catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product', Xiap(SmacC=None, Apop=None, C3A=1) % C3A(Xiap=1, ParpU=None, C6pro=None) >> Xiap(SmacC=None, Apop=None, C3A=None) + C3ub(), catalysis_1_Xiap_catalyzer_C3A_substrate_C3ub_product_1kc) Rule('catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=None, C6pro=None) + ParpU(C3A=None) | C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1), catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_2kf, catalysis_0_C3A_catalyzer_ParpU_substrate_ParpC_product_1kr) Rule('catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product', C3A(Xiap=None, ParpU=1, C6pro=None) % ParpU(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + ParpC(), catalysis_1_C3A_catalyzer_ParpU_substrate_ParpC_product_1kc) Rule('equilibration_0_BidT_equil_a_BidM_equil_b', BidT() | BidM(BaxM=None), equilibration_0_BidT_equil_a_BidM_equil_b_1kf, equilibration_0_BidT_equil_a_BidM_equil_b_1kr) Rule('catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=None) + BaxM(BidM=None, BaxA=None) | BidM(BaxM=1) % BaxM(BidM=1, BaxA=None), catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_2kf, catalysis_0_BidM_catalyzer_BaxM_substrate_BaxA_product_1kr) Rule('catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product', BidM(BaxM=1) % BaxM(BidM=1, BaxA=None) >> BidM(BaxM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), catalysis_1_BidM_catalyzer_BaxM_substrate_BaxA_product_1kc) Rule('self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxM(BidM=None, BaxA=None) | BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1), self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_2kf, self_catalyze_0_BaxA_self_catalyzer_BaxM_self_substrate_1kr) Rule('self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate', BaxA(BaxM=1, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) % BaxM(BidM=None, BaxA=1) >> BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), self_catalyze_1_BaxA_self_catalyzer_BaxM_self_substrate_1kc) Rule('pore_formation_0_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None), pore_formation_0_BaxA_pore_2kf, pore_formation_0_BaxA_pore_1kr) Rule('pore_formation_1_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=None, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=None, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None), pore_formation_1_BaxA_pore_2kf, pore_formation_1_BaxA_pore_1kr) Rule('pore_formation_2_BaxA_pore', BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None) + BaxA(BaxM=None, BaxA_1=3, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None), pore_formation_2_BaxA_pore_2kf, pore_formation_2_BaxA_pore_1kr) Rule('transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5), transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_2kf, transport_0_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kr) Rule('transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=5, CytoCM=None) % SmacM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + SmacC(Xiap=None), transport_1_BaxA_pore_SmacM_cargo_M_SmacC_cargo_C_1kc) Rule('transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCM(BaxA=None) | BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5), transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_2kf, transport_0_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kr) Rule('transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C', BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=5) % CytoCM(BaxA=5) >> BaxA(BaxM=None, BaxA_1=4, BaxA_2=1, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=1, BaxA_2=2, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=2, BaxA_2=3, SmacM=None, CytoCM=None) % BaxA(BaxM=None, BaxA_1=3, BaxA_2=4, SmacM=None, CytoCM=None) + CytoCC(), transport_1_BaxA_pore_CytoCM_cargo_M_CytoCC_cargo_C_1kc) Rule('catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=None) + C3pro(Apop=None, C8A=None) | C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1), catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_2kf, catalysis_0_C8A_catalyzer_C3pro_substrate_C3A_product_1kr) Rule('catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product', C8A(BidU=None, C3pro=1) % C3pro(Apop=None, C8A=1) >> C8A(BidU=None, C3pro=None) + C3A(Xiap=None, ParpU=None, C6pro=None), catalysis_1_C8A_catalyzer_C3pro_substrate_C3A_product_1kc) Rule('catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=None) + C6pro(C3A=None) | C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1), catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_2kf, catalysis_0_C3A_catalyzer_C6pro_substrate_C6A_product_1kr) Rule('catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product', C3A(Xiap=None, ParpU=None, C6pro=1) % C6pro(C3A=1) >> C3A(Xiap=None, ParpU=None, C6pro=None) + C6A(C8pro=None), catalysis_1_C3A_catalyzer_C6pro_substrate_C6A_product_1kc) Rule('catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=None) + C8pro(Fadd=None, C6A=None) | C6A(C8pro=1) % C8pro(Fadd=None, C6A=1), catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_2kf, catalysis_0_C6A_catalyzer_C8pro_substrate_C8A_product_1kr) Rule('catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product', C6A(C8pro=1) % C8pro(Fadd=None, C6A=1) >> C6A(C8pro=None) + C8A(BidU=None, C3pro=None), catalysis_1_C6A_catalyzer_C8pro_substrate_C8A_product_1kc) Initial(Ligand(Receptor=None), Ligand_0) Initial(ParpU(C3A=None), ParpU_0) Initial(C8A(BidU=None, C3pro=None), C8A_0) Initial(SmacM(BaxA=None), SmacM_0) Initial(BaxM(BidM=None, BaxA=None), BaxM_0) Initial(Apop(C3pro=None, Xiap=None), Apop_0) Initial(Fadd(Receptor=None, C8pro=None), Fadd_0) Initial(SmacC(Xiap=None), SmacC_0) Initial(ParpC(), ParpC_0) Initial(Xiap(SmacC=None, Apop=None, C3A=None), Xiap_0) Initial(C9(), C9_0) Initial(C3ub(), C3ub_0) Initial(C8pro(Fadd=None, C6A=None), C8pro_0) Initial(C6A(C8pro=None), C6A_0) Initial(C3pro(Apop=None, C8A=None), C3pro_0) Initial(CytoCM(BaxA=None), CytoCM_0) Initial(CytoCC(), CytoCC_0) Initial(BaxA(BaxM=None, BaxA_1=None, BaxA_2=None, SmacM=None, CytoCM=None), BaxA_0) Initial(ApafI(), ApafI_0) Initial(BidU(C8A=None), BidU_0) Initial(BidT(), BidT_0) Initial(C3A(Xiap=None, ParpU=None, C6pro=None), C3A_0) Initial(ApafA(), ApafA_0) Initial(BidM(BaxM=None), BidM_0) Initial(Receptor(Ligand=None, Fadd=None), Receptor_0) Initial(C6pro(C3A=None), C6pro_0)
91.354369
710
0.806525
75d746fd45140bb01d6d31ebc50bbb45880e0865
103,634
py
Python
flakylib.py
R-Mussabayev/flakylib
dc79ec1b1210ca91aac64fec28ba94fa087cc90e
[ "MIT" ]
3
2020-07-08T18:31:31.000Z
2022-03-03T10:26:53.000Z
flakylib.py
R-Mussabayev/flakylib
dc79ec1b1210ca91aac64fec28ba94fa087cc90e
[ "MIT" ]
null
null
null
flakylib.py
R-Mussabayev/flakylib
dc79ec1b1210ca91aac64fec28ba94fa087cc90e
[ "MIT" ]
null
null
null
# Flaky Clustering Library v0.1 # Big MSSC (Minimum Sum-Of-Squares Clustering) # Nenad Mladenovic, Rustam Mussabayev, Alexander Krassovitskiy # rmusab@gmail.com # v0.11 - 06/09/2021 - Revision of VNS logic in Membership_Shaking_VNS and Center_Shaking_VNS # v0.1 - 30/06/2021 - Bug fixing in multi_portion_mssc # v0.09 - 10/11/2020 - Revision of shake_centers logic # v0.08 - 18/09/2020 - Bug fixing; # v0.07 - 19/07/2020 - New functionality: distance matrices calculation routines with GPU support; different distance metrics; revision of optimal number of clusters routine; # v0.06 - 05/06/2020 - New functionality: method sequencing; # v0.05 - 04/06/2020 - New functionality: Simple center shaking VNS, Membership shaking VNS, Iterative extra center insertion/deletion, procedure for choosing the new n additional centers for existing ones using the k-means++ logic; # v0.04 - 17/03/2020 - Different initialization modes were added to "Decomposition/aggregation k-means"; # v0.03 - 13/03/2020 - New functionality: k-means++; # v0.02 - 10/03/2020 - New functionality: Decomposition/aggregation k-means; # v0.01 - 27/02/2020 - Initial release: multiprocessing k-means. import math import time import pickle import threading import cupy as cp import numpy as np import numba as nb from itertools import cycle import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from numba import njit, prange, objmode, cuda def load_obj(name): with open(name + '.pkl', 'rb') as f: return pickle.load(f) def save_obj(obj, name): pickle.dump(obj,open(name + '.pkl', 'wb'), protocol=pickle.HIGHEST_PROTOCOL) def normalization(X): X_min = np.amin(X, axis=0) X = X - X_min X_max = np.amax(X, axis=0) if X_max.ndim == 1: X_max[X_max == 0.0] = 1.0 elif X_max.ndim == 0: if X_max == 0.0: X_max = 1.0 else: X_max = 1.0 X = X / X_max return X @njit(parallel=True) def normalization1D(X, min_scaling = True): assert X.ndim == 1 n = X.shape[0] X_min = np.inf for i in range(n): if X[i] < X_min: X_min = X[i] X_max = np.NINF if min_scaling: for i in range(n): X[i] -= X_min if X[i] > X_max: X_max = X[i] else: for i in range(n): if X[i] > X_max: X_max = X[i] if X_max != 0: for i in prange(n): X[i] = X[i]/X_max @njit(parallel=True) def normalization2D(X, min_scaling = True): assert X.ndim == 2 n, m = X.shape for i in prange(m): min_val = np.inf for j in range(n): if X[j,i] < min_val: min_val = X[j,i] max_val = np.NINF if min_scaling: for j in range(n): X[j,i] -= min_val if X[j,i] > max_val: max_val = X[j,i] else: for j in range(n): if X[j,i] > max_val: max_val = X[j,i] if max_val != 0.0: for j in range(n): X[j,i] = X[j,i]/max_val # Generate isotropic Gaussian blobs def gaussian_blobs(n_features = 2, n_samples = 1000, n_clusters = 5, cluster_std = 0.1): true_centers = np.random.rand(n_clusters, n_features) X, labels = make_blobs(n_samples=n_samples, centers=true_centers, cluster_std=cluster_std) N = np.concatenate((true_centers,X)) N = normalization(N) true_centers = N[:n_clusters] X = N[n_clusters:] return X, true_centers, labels def draw_dataset(X, true_centers, original_labels, title = 'DataSet'): n_clusters = len(true_centers) plt.rcParams['figure.figsize'] = [10,10] plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') if original_labels.shape[0] == X.shape[0]: for k, col in zip(range(n_clusters), colors): my_members = original_labels == k plt.plot(X[my_members, 0], X[my_members, 1], col + '.') if true_centers.shape[0] > 0: cluster_center = true_centers[k] plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) else: plt.plot(X[:, 0], X[:, 1], '.') plt.title('DataSet') plt.show() def generate_grid_nodes(coordinates1D, n_dimensions=3): coordinatesND = n_dimensions*[coordinates1D] mesh = np.array(np.meshgrid(*coordinatesND)) grid_nodes = mesh.T.reshape(-1, n_dimensions) return grid_nodes def generate_blobs_on_grid(n_samples=3000, grid_size=3, n_features=3, standard_deviation = 0.1): assert grid_size > 0 cell_size = 1/grid_size half_cell_size = cell_size/2 coordinates1D = np.linspace(half_cell_size, 1.0-half_cell_size, grid_size) true_centroids = generate_grid_nodes(coordinates1D, n_features) samples, sample_membership = make_blobs(n_samples=n_samples, centers=true_centroids, cluster_std=standard_deviation) mask = np.all((samples >= 0.0) & (samples <= 1.0) , axis = 1) samples = samples[mask] sample_membership = sample_membership[mask] return samples, sample_membership, true_centroids @njit(inline='always') def condensed_size(matrix_size): return int((matrix_size*(matrix_size-1))/2) @njit(inline='always') def condensed_idx(i,j,n): return int(i*n + j - i*(i+1)/2 - i - 1) @njit(inline='always') def regular_idx(condensed_idx, n): i = int(math.ceil((1/2.) * (- (-8*condensed_idx + 4 *n**2 -4*n - 7)**0.5 + 2*n -1) - 1)) ii = i+1 j = int(n - (ii * (n - 1 - ii) + (ii*(ii + 1))/2) + condensed_idx) return i,j @njit(parallel = True) def row_of_condensed_matrix(row_ind, condensed_matrix): assert row_ind > -1 condensed_len = len(condensed_matrix) size = matrix_size(condensed_matrix) assert row_ind < size out = np.empty(size, dtype = condensed_matrix.dtype) out[row_ind] = 0 if row_ind < size-1: ind1 = condensed_idx(row_ind, row_ind+1, size) ind2 = condensed_idx(row_ind, size-1, size) out[row_ind+1:size] = condensed_matrix[ind1:ind2+1] for i in prange(0,row_ind): out[i] = condensed_matrix[condensed_idx(i,row_ind,size)] return out @njit def matrix_size(condensed_matrix): n = math.ceil((condensed_matrix.shape[0] * 2)**.5) if (condensed_matrix.ndim != 1) or (n * (n - 1) / 2 != condensed_matrix.shape[0]): raise ValueError('Incompatible vector size.') return n @njit(inline='always') def matrix_element(i, j, N, condensed_matrix, diagonal_value): if j > i: return condensed_matrix[condensed_idx(i,j,N)] elif j < i: return condensed_matrix[condensed_idx(j,i,N)] else: return diagonal_value # Extraction of submatrix from condensed_matrix where # rows, cols - indices of rows and columns which must be included to submatrix # diagonal_value - diagonal value in the original full square matrix # Functionality is similar to Advanced Indexing in Numpy: submatrix = matrix[rows][:,cols] def _submatrix(condensed_matrix, rows, cols, diagonal_value): N = matrix_size(condensed_matrix) if (condensed_matrix.ndim != 1) or (rows.ndim != 1) or (cols.ndim != 1) or ((N * (N - 1) / 2) != condensed_matrix.shape[0]): raise ValueError('Incompatible vector size.') if (N > 0) and (condensed_matrix.ndim == 1) and (rows.ndim == 1) and (cols.ndim == 1) and ((N * (N - 1) / 2) == condensed_matrix.shape[0]): if len(rows) == 0: new_rows = np.arange(N) else: new_rows = rows if len(cols) == 0: new_cols = np.arange(N) else: new_cols = cols n_rows = len(new_rows) n_cols = len(new_cols) chunk = np.empty((n_rows, n_cols), dtype = condensed_matrix.dtype) chunk = np.empty((n_rows, n_cols), dtype = condensed_matrix.dtype) for i in prange(n_rows): for j in range(n_cols): chunk[i,j] = matrix_element(new_rows[i],new_cols[j],N,condensed_matrix,diagonal_value) else: chunk = np.empty((0, 0), dtype = condensed_matrix.dtype) return chunk submatrix = njit(parallel=False)(_submatrix) submatrix_parallel = njit(parallel=True)(_submatrix) # Squared Euclidian distance (standard realization) @njit(inline='always') def euclidian2_distance(u, v): d = u.dtype.type(0.0) for i in range(u.shape[0]): d += (u[i] - v[i]) ** 2.0 return d @njit(inline='always') def cosine_distance(u, v): n = u.shape[0] udotv = 0. u_norm = 0. v_norm = 0. for i in range(n): udotv += u[i] * v[i] u_norm += u[i] * u[i] v_norm += v[i] * v[i] if (u_norm == 0.) or (v_norm == 0.): d = 1. else: d = abs(1.-udotv / (u_norm * v_norm) ** .5) # Return absolute value to avoid small negative value due to rounding return u.dtype.type(d) @njit(inline='always') def calc_distance(u, v, distance_measure=0): if distance_measure == 0: d = euclidian2_distance(u, v) else: d = cosine_distance(u, v) return d @cuda.jit def distance_matrix_gpu(X, out, distance_measure=0): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j < n): if j > i: d = calc_distance(X[i], X[j], distance_measure) out[i,j] = d out[j,i] = d elif i == j: out[i,j] = 0. @cuda.jit def distance_matrix_XY_gpu(X, Y, out, distance_measure=0): i,j = cuda.grid(2) nX = X.shape[0] nY = Y.shape[0] if (i < nX) and (j < nY): out[i,j] = calc_distance(X[i], Y[j], distance_measure) @cuda.jit def distance_matrix_condensed_gpu(X, out, distance_measure=0): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j > i) and (j < n): out[condensed_idx(i,j,n)] = calc_distance(X[i], X[j], distance_measure) @cuda.jit def distance_matrix_XY_part_of_symmetric_gpu(start_row, start_col, X, Y, out, distance_measure=0): i,j = cuda.grid(2) nX = X.shape[0] nY = Y.shape[0] global_i = start_row + i global_j = start_col + j if (i < nX) and (j < nY) and (global_i < global_j): out[i,j] = calc_distance(X[i], Y[j], distance_measure) @njit(parallel=True) def distance_matrix_euclidean2_cpu(X): n = X.shape[0] out = np.dot(X, X.T) for i in prange(n): for j in range(i+1,n): out[i,j] = out[i,i] - 2.*out[i,j] + out[j,j] out[j,i] = out[i,j] np.fill_diagonal(out, 0.) return out @njit(parallel=True) def distance_matrix_euclidean2_XY_cpu(X,Y): nX = X.shape[0] nY = Y.shape[0] out = np.dot(X, Y.T) NX = np.sum(X*X, axis=1) NY = np.sum(Y*Y, axis=1) for i in prange(nX): for j in range(nY): out[i,j] = NX[i] - 2.*out[i,j] + NY[j] return out @njit(parallel=True) def distance_matrix_euclidean2_XY_weighted_cpu(X, Y, weightsX, weightsY): nX = X.shape[0] nY = Y.shape[0] n_weightsX = weightsX.shape[0] n_weightsY = weightsY.shape[0] weighted = (n_weightsX > 0) and (n_weightsY > 0) out = np.dot(X, Y.T) NX = np.sum(X*X, axis=1) NY = np.sum(Y*Y, axis=1) if weighted: for i in prange(nX): for j in range(nY): out[i,j] = (NX[i] - 2. * out[i,j] + NY[j]) * weightsX[i] * weightsY[j] else: for i in prange(nX): for j in range(nY): out[i,j] = NX[i] - 2. * out[i,j] + NY[j] return out @njit(parallel=True) def distance_matrix_euclidean2_condensed_cpu(X): n = X.shape[0] condensed_len = int((n*(n-1))/2) out = np.empty(condensed_len, dtype = X.dtype) gram = np.dot(X, X.T) for i in prange(n): for j in range(i+1,n): out[condensed_idx(i,j,n)] = gram[i,i] - 2.*gram[i,j] + gram[j,j] return out @njit(parallel=True) def distance_matrix_cosine_cpu(X): n = X.shape[0] out = np.dot(X, X.T) for i in prange(n): for j in range(i+1,n): if out[i,i]==0. or out[j,j]==0.: out[i,j] = 1. else: out[i,j] = abs(1.-out[i,j] / (out[i,i] * out[j,j]) ** .5) # Return absolute value to avoid small negative value due to rounding out[j,i] = out[i,j] np.fill_diagonal(out, 0.) return out @njit(parallel=True) def distance_matrix_cosine_XY_cpu(X, Y): nX = X.shape[0] nY = Y.shape[0] out = np.dot(X, Y.T) NX = np.sum(X*X, axis=1) NY = np.sum(Y*Y, axis=1) for i in prange(nX): for j in range(nY): if NX[i]==0. or NY[j]==0.: out[i,j] = 1. else: out[i,j] = abs(1.0-out[i,j] / (NX[i] * NY[j]) ** .5) # Return absolute value to avoid small negative value due to rounding return out @njit(parallel=True) def distance_matrix_cosine_XY_weighted_cpu(X, Y, weightsX, weightsY): nX = X.shape[0] nY = Y.shape[0] n_weightsX = weightsX.shape[0] n_weightsY = weightsY.shape[0] weighted = (n_weightsX > 0) and (n_weightsY > 0) out = np.dot(X, Y.T) NX = np.sum(X*X, axis=1) NY = np.sum(Y*Y, axis=1) if weighted: for i in prange(nX): for j in range(nY): if NX[i]==0. or NY[j]==0.: out[i,j] = 1. * weightsX[i] * weightsY[j] else: out[i,j] = abs(1.0-out[i,j] / (NX[i] * NY[j]) ** .5) * weightsX[i] * weightsY[j] else: for i in prange(nX): for j in range(nY): if NX[i]==0. or NY[j]==0.: out[i,j] = 1. else: out[i,j] = abs(1.0-out[i,j] / (NX[i] * NY[j]) ** .5) return out @njit(parallel=True) def distance_matrix_cosine_condensed_cpu(X): n = X.shape[0] condensed_len = int((n*(n-1))/2) gram = np.dot(X, X.T) out = np.empty(condensed_len, dtype = X.dtype) for i in prange(n): for j in range(i+1,n): if gram[i,i]==0. or gram[j,j]==0.: out[condensed_idx(i,j,n)] = 1. else: out[condensed_idx(i,j,n)] = 1.-gram[i,j] / (gram[i,i] * gram[j,j]) ** .5 return out @njit(parallel=True) def distance_matrix_cpu(X, distance_measure=0): n = X.shape[0] out = np.empty((n,n), dtype = X.dtype) for i in prange(n): u = X[i] out[i,i] = 0.0 for j in range(i+1, n): d = calc_distance(u, X[j], distance_measure) out[i,j] = d out[j,i] = d return out @njit(parallel=True) def distance_matrix_XY_cpu(X, Y, distance_measure=0): nX = X.shape[0] nY = Y.shape[0] out = np.empty((nX, nY), dtype = X.dtype) for i in prange(nX): u = X[i] for j in range(0, nY): out[i,j] = calc_distance(u, Y[j], distance_measure) return out @njit(parallel=True) def distance_matrix_condensed_cpu(X, distance_measure=0): n = X.shape[0] condensed_len = int((n*(n-1))/2) out = np.empty(condensed_len, dtype = X.dtype) for i in prange(n): u = X[i] for j in range(i+1, n): out[condensed_idx(i,j,n)] = calc_distance(u, X[j], distance_measure) return out def pairwise_distances_cpu(X, Y = None, distance_measure=0, condensed = True): assert ((Y is None) or (X.dtype == Y.dtype)) and (X.dtype == np.float32 or X.dtype == np.float64) if distance_measure == 0: if Y is None: if condensed: D = distance_matrix_euclidean2_condensed_cpu(X) else: D = distance_matrix_euclidean2_cpu(X) else: D = distance_matrix_euclidean2_XY_cpu(X,Y) else: if Y is None: if condensed: D = distance_matrix_cosine_condensed_cpu(X) else: D = distance_matrix_cosine_cpu(X) else: D = distance_matrix_cosine_XY_cpu(X,Y) return D @cuda.jit def distance_matrix_euclidean2_XY_gpu(X, Y, NX, NY, out): i,j = cuda.grid(2) nX = X.shape[0] nY = Y.shape[0] if (i < nX) and (j < nY): out[i,j] = NX[i] - 2.*out[i,j] + NY[j] # Diagonal must be filled separately by zeros @cuda.jit def distance_matrix_euclidean2_gpu(X, out): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j < n) and (j > i): d = out[i,i] - 2.*out[i,j] + out[j,j] out[i,j] = d out[j,i] = d @cuda.jit def distance_matrix_euclidean2_condensed_gpu(X, gram, out): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j > i) and (j < n): out[condensed_idx(i,j,n)] = gram[i,i] - 2.*gram[i,j] + gram[j,j] @cuda.jit def distance_matrix_cosine_XY_gpu(X, Y, NX, NY, out): i,j = cuda.grid(2) nX = X.shape[0] nY = Y.shape[0] if (i < nX) and (j < nY): if NX[i]==0. or NY[j]==0.: out[i,j] = 1. else: out[i,j] = 1.-out[i,j] / (NX[i] * NY[j]) ** .5 # Diagonal must be filled separately by zeros @cuda.jit def distance_matrix_cosine_gpu(X, out): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j < n) and (j > i): if out[i,i]==0. or out[j,j]==0.: out[i,j] = 1. else: out[i,j] = 1.-out[i,j] / (out[i,i] * out[j,j]) ** .5 @cuda.jit def distance_matrix_cosine_condensed_gpu(X, gram, out): i,j = cuda.grid(2) n = X.shape[0] if (i < n) and (j > i) and (j < n): if gram[i,i]==0. or gram[j,j]==0.: out[condensed_idx(i,j,n)] = 1. else: out[condensed_idx(i,j,n)] = 1.-gram[i,j] / (gram[i,i] * gram[j,j]) ** .5 def pairwise_distances_gpu(X, Y = None, distance_measure=0, condensed = True, gpu_device_id = 0, threads_per_block = (4, 16)): assert (len(X.shape) == 2) and (X.shape[0] > 0) available_gpu_ids = set([gpu.id for gpu in nb.cuda.gpus.lst]) assert (gpu_device_id > -1) and (gpu_device_id in available_gpu_ids) assert ((Y is None) or (X.dtype == Y.dtype)) and (X.dtype == np.float32 or X.dtype == np.float64) gpu = nb.cuda.select_device(gpu_device_id) cp.cuda.Device(gpu_device_id).use() nX = X.shape[0] X_gpu = cp.asarray(X) if Y is None: nY = 0 grid_dim = (int(nX/threads_per_block[0] + 1), int(nX/threads_per_block[1] + 1)) if condensed: condensed_len = condensed_size(n_rowsX) gram_gpu = X_gpu.dot(X_gpu.T) out_gpu = cp.empty(condensed_len, dtype = X_gpu.dtype) if distance_measure == 0: distance_matrix_euclidean2_condensed_gpu[grid_dim, threads_per_block](X_gpu, gram_gpu, out_gpu) else: distance_matrix_cosine_condensed_gpu[grid_dim, threads_per_block](X_gpu, gram_gpu, out_gpu) else: out_gpu = X_gpu.dot(X_gpu.T) if distance_measure == 0: distance_matrix_euclidean2_gpu[grid_dim, threads_per_block](X_gpu, out_gpu) else: distance_matrix_cosine_gpu[grid_dim, threads_per_block](X_gpu, out_gpu) cp.fill_diagonal(out_gpu, 0.) else: assert (len(Y.shape) == 2) and (Y.shape[0] > 0) and (X.shape[1]==Y.shape[1]) nY = Y.shape[0] Y_gpu = cp.asarray(Y) grid_dim = (int(nX/threads_per_block[0] + 1), int(nY/threads_per_block[1] + 1)) out_gpu = cp.dot(X_gpu, Y_gpu.T) NX_gpu = cp.sum(X_gpu*X_gpu, axis=1) NY_gpu = cp.sum(Y_gpu*Y_gpu, axis=1) if distance_measure == 0: distance_matrix_euclidean2_XY_gpu[grid_dim, threads_per_block](X_gpu, Y_gpu, NX_gpu, NY_gpu, out_gpu) else: distance_matrix_cosine_XY_gpu[grid_dim, threads_per_block](X_gpu, Y_gpu, NX_gpu, NY_gpu, out_gpu) out = cp.asnumpy(out_gpu) return out # gpu_device_id - ID of GPU divice that will be used for perform calculations # if gpu_device_id = -1 then the CPUs will be used for calculations def distance_matrix(X, Y = None, distance_measure=0, condensed = True, gpu_device_id = -1, threads_per_block = (4, 16)): if gpu_device_id > -1: pairwise_distances_gpu(X, Y, distance_measure, condensed, gpu_device_id, threads_per_block) else: out = pairwise_distances_cpu(X, Y, distance_measure, condensed) return out # # https://stackoverflow.com/questions/58002793/how-can-i-use-multiple-gpus-in-cupy # # https://github.com/numba/numba/blob/master/numba/cuda/tests/cudapy/test_multigpu.py # # usage # def pairwise_distances_multigpu(X, Y = None, distance_measure=0, devices = [], memory_usage = 0.95, threads_per_block = (4, 16)): # assert ((Y is None) or (X.dtype == Y.dtype)) and (X.dtype == np.float32 or X.dtype == np.float64) # assert memory_usage > 0. and memory_usage <= 1. # nX = X.shape[0] # n_devices = len(devices) # available_devices = [gpu.id for gpu in nb.cuda.gpus.lst] # if n_devices == 0: # used_devices = available_devices # else: # used_devices = list(set(devices).intersection(set(available_devices))) # n_used_devices = len(used_devices) # capacities = np.empty(n_used_devices) # for i in range(n_used_devices): # capacities[i] = nb.cuda.current_context(used_devices[i]).get_memory_info().free * memory_usage # full_capacity = np.sum(capacities) # fractions = capacities / full_capacity # n_elements = condensed_size(nX) # if X.dtype == np.float32: # n_bytes = n_elements * 4 # else: # n_bytes = n_elements * 8 # n_portions = n_bytes / full_capacity ###################################### #Multi-GPU distance matrix calculation ###################################### # Split the dataset into portions and calculate the distance matrix for each portion on multiple GPUs in parallel. # X: array of pairwise distances between samples, or a feature array; # Y: an optional second feature array; # D: a distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. # sizeX: portion size for X; # sizeY: portion size for Y; # If condensed = True, then condenced representation for matrix D will be used; # distance_measure: 0 - Squared Euclidean distance; 1 - Euclidean distance; 2 - cosine distance; # gpu_device_ids: list of GPU ids that will be used for calculations def distance_matrix_multi_gpu(X, Y = None, sizeX = None, sizeY = None, condensed = True, distance_measure=0, gpu_device_ids = [], show_progress = False, threads_per_block = (4, 16)): @njit(parallel = True) def aggregation_1D_1D(out, size, sub_mat, row, col): sub_mat_condensed_len = sub_mat.shape[0] sub_mat_size = matrix_size(sub_mat) for i in prange(sub_mat_condensed_len): x,y = regular_idx(i, sub_mat_size) x += row y += col if x < y: out[condensed_idx(x,y,size)] = sub_mat[i] @njit(parallel = True) def aggregation_1D_2D(out, size, sub_mat, row, col): n_rows, n_cols = sub_mat.shape for i in prange(n_rows): for j in range(n_cols): x = row + i y = col + j if x < y: out[condensed_idx(x,y,size)] = sub_mat[i,j] @njit(parallel = True) def aggregation_2D_1D(out, sub_mat, row, col): sub_mat_condensed_len = sub_mat.shape[0] sub_mat_size = matrix_size(sub_mat) for i in prange(sub_mat_condensed_len): x,y = regular_idx(i, sub_mat_size) x += row y += col out[x,y] = sub_mat[i] out[y,x] = sub_mat[i] @njit(parallel = True) def aggregation_2D_2D_symmetric(out, sub_mat, row, col): n_rows, n_cols = sub_mat.shape for i in prange(n_rows): for j in range(n_cols): x = row + i y = col + j if x < y: out[x,y] = sub_mat[i,j] out[y,x] = sub_mat[i,j] @njit(parallel = True) def aggregation_2D_2D_asymmetric(out, sub_mat, row, col): n_rows, n_cols = sub_mat.shape for i in prange(n_rows): for j in range(n_cols): x = row + i y = col + j out[x,y] = sub_mat[i,j] def calc_submatrix(X, Y, i, j, row1, row2, col1, col2, out, threads_per_block, distance_measure): NX = X.shape[0] nX = row2-row1 nY = col2-col1 symmetric = Y is None is_condensed_out = out.ndim == 1 stream = cuda.stream() grid_dim = (int(nX/threads_per_block[0] + 1), int(nY/threads_per_block[1] + 1)) X_cu = cuda.to_device(X[row1:row2], stream=stream) if symmetric and (row1 < col2-1): if (i == j) and (nX == nY): sub_mat_cu = cuda.device_array(shape=int((nX*(nX-1))/2), dtype = X_cu.dtype, stream=stream) distance_matrix_condensed_gpu[grid_dim, threads_per_block, stream](X_cu, sub_mat_cu, distance_measure) sub_mat = sub_mat_cu.copy_to_host(stream=stream) if is_condensed_out: aggregation_1D_1D(out, NX, sub_mat, row1, col1) else: aggregation_2D_1D(out, sub_mat, row1, col1) else: Y_cu = cuda.to_device(X[col1:col2], stream=stream) sub_mat_cu = cuda.device_array(shape=(nX,nY), dtype = X_cu.dtype, stream=stream) distance_matrix_XY_part_of_symmetric_gpu[grid_dim, threads_per_block, stream](row1, col1, X_cu, Y_cu, sub_mat_cu, distance_measure) sub_mat = sub_mat_cu.copy_to_host(stream=stream) if is_condensed_out: aggregation_1D_2D(out, NX, sub_mat, row1, col1) else: aggregation_2D_2D_symmetric(out, sub_mat, row1, col1) elif (not symmetric): Y_cu = cuda.to_device(Y[col1:col2], stream=stream) sub_mat_cu = cuda.device_array(shape=(nX,nY), dtype = Y_cu.dtype, stream=stream) distance_matrix_XY_gpu[grid_dim, threads_per_block, stream](X_cu, Y_cu, sub_mat_cu, distance_measure) sub_mat = sub_mat_cu.copy_to_host(stream=stream) aggregation_2D_2D_asymmetric(out, sub_mat, row1, col1) def calc_portion(portion, bounds, X, Y, out, device_id, threads_per_block, distance_measure): if device_id > -1: gpu = nb.cuda.select_device(device_id) for B in [bounds[i] for i in portion]: calc_submatrix(X, Y, B[0], B[1], B[2], B[3], B[4], B[5], out, threads_per_block, distance_measure) if show_progress: print(device_id, B) available_gpu_device_ids = [gpu.id for gpu in nb.cuda.gpus.lst] symmetric = Y is None assert (len(X.shape) == 2) and (X.shape[0] > 0) assert symmetric or ((len(Y.shape) == 2) and (Y.shape[0] > 0) and (Y.shape[1]==X.shape[1])) NX = X.shape[0] if (sizeX is None) or (sizeX < 1) or (sizeX > NX): sizeX = NX else: sizeX = int(sizeX) n_partsX = math.ceil(NX / sizeX) if symmetric: NY = NX sizeY = sizeX n_partsY = n_partsX else: NY = Y.shape[0] if (sizeY is None) or (sizeY < 1) or (sizeY > NY): sizeY = NY else: sizeY = int(sizeY) n_partsY = math.ceil(NY / sizeY) if condensed and symmetric: out = np.empty(shape = int((NX*(NX-1))/2), dtype = X.dtype) else: out = np.empty((NX,NY), dtype = X.dtype) bounds = [] for i in range(n_partsX): row1 = i*sizeX row2 = min(row1 + sizeX, NX) for j in range(n_partsY): col1 = j*sizeY col2 = min(col1 + sizeY, NY) bounds.append((i, j, row1, row2, col1, col2)) n_bounds = len(bounds) if n_bounds > 0: used_gpu_device_ids = list(set(gpu_device_ids).intersection(set(available_gpu_device_ids))) n_gpu = len(used_gpu_device_ids) if (n_gpu > 0) and (n_bounds > 1): sequence = np.random.permutation(n_bounds) if n_bounds < n_gpu: n_portions = n_bounds portion_size = 1 else: n_portions = n_gpu portion_size = n_bounds // n_gpu portions = [] for i in range(n_portions): a = i * portion_size if i < n_portions-1: b = a + portion_size else: b = n_bounds portions.append(sequence[a:b]) threads = [threading.Thread(target=calc_portion, args=(portions[i], bounds, X, Y, out, used_gpu_device_ids[i], threads_per_block, distance_measure)) for i in range(n_portions)] for th in threads: th.start() for th in threads: th.join() else: for B in bounds: calc_submatrix(X, Y, B[0], B[1], B[2], B[3], B[4], B[5], out, threads_per_block, distance_measure) return out @njit def search_sorted(X, val): n = X.shape[0] ind = -1 if n > 0: for i in range(0,n): if val <= X[i]: ind = i break if ind == -1: ind = n return ind @njit def cum_sum(X, cumsum): summ = 0.0 for i in range(X.shape[0]): if math.isnan(X[i]): cumsum[i] = X[i] else: summ += X[i] cumsum[i] = summ @njit def random_choice(cumsum): potential = cumsum[cumsum.shape[0]-1] rand_val = np.random.random_sample() * potential ind = search_sorted(cumsum, rand_val) max_ind = cumsum.shape[0]-1 if ind > max_ind: ind = max_ind return ind @njit def cum_search(X, vals, out): n = X.shape[0] n_vals = vals.shape[0] assert n>0 and n_vals == out.shape[0] and n_vals>0 cum_sum = 0.0 ind_vals = 0 sorted_inds = np.argsort(vals) for i in range(n): if not math.isnan(X[i]): cum_sum += X[i] while vals[sorted_inds[ind_vals]] <= cum_sum: out[sorted_inds[ind_vals]] = i ind_vals += 1 if ind_vals == n_vals: return out[sorted_inds[ind_vals: n_vals]] = n-1 @njit(parallel = True) def k_means_pp_naive(samples, sample_weights, n_clusters, distance_measure=0): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape assert ((n_samples == n_sample_weights) or (n_sample_weights == 0)) centroid_inds = np.full(n_clusters, -1) if (n_samples > 0) and (n_features > 0): if n_sample_weights > 0: weights = np.copy(sample_weights) else: weights = np.full(n_samples, 1.0) cumsum = np.empty(n_samples) cum_sum(weights, cumsum) new_centroid = random_choice(cumsum) n_centroids = 0 centroid_inds[n_centroids] = new_centroid n_centroids += 1 while n_centroids < n_clusters: for i in prange(n_samples): weights[i] = 0.0 for i in prange(n_samples): min_dist = np.inf for j in range(n_centroids): dist = calc_distance(samples[i], samples[centroid_inds[j]], distance_measure) dist *= sample_weights[i]*sample_weights[centroid_inds[j]] if dist < min_dist: min_dist = dist if min_dist < np.inf: weights[i] = min_dist cum_sum(weights, cumsum) new_centroid = random_choice(cumsum) centroid_inds[n_centroids] = new_centroid n_centroids += 1 return centroid_inds @njit(parallel=True) def additional_centers_naive(samples, sample_weights, centroids, n_additional_centers=1, distance_measure=0): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape n_centers = centroids.shape[0] assert ((n_samples == n_sample_weights) or (n_sample_weights == 0)) center_inds = np.full(n_additional_centers, -1) nondegenerate_mask = np.sum(np.isnan(centroids), axis = 1) == 0 n_nondegenerate_clusters = np.sum(nondegenerate_mask) center_inds = np.full(n_additional_centers, -1) if (n_samples > 0) and (n_features > 0) and (n_additional_centers > 0): cumsum = np.empty(n_samples) n_added_centers = 0 if n_nondegenerate_clusters == 0: if n_sample_weights > 0: cum_sum(sample_weights, cumsum) center_inds[0] = random_choice(cumsum) else: center_inds[0] = np.random.randint(n_samples) n_added_centers += 1 nondegenerate_centroids = centroids[nondegenerate_mask] weights = np.empty(n_samples) for c in range(n_added_centers, n_additional_centers): for i in prange(n_samples): weights[i] = 0.0 for i in prange(n_samples): min_dist = np.inf for j in range(n_nondegenerate_clusters): dist = calc_distance(samples[i], nondegenerate_centroids[j], distance_measure) if dist < min_dist: min_dist = dist for j in range(n_added_centers): dist = calc_distance(samples[i], samples[center_inds[j]], distance_measure) if dist < min_dist: min_dist = dist if min_dist < np.inf: weights[i] = min_dist * sample_weights[i] cum_sum(weights, cumsum) new_centroid = random_choice(cumsum) center_inds[c] = new_centroid n_added_centers += 1 return center_inds # k-means++ : algorithm for choosing the initial cluster centers (or "seeds") for the k-means clustering algorithm # samples должны быть хорошо перемешаны ??????? !!!!!!!!!!!!!!!!!! @njit(parallel=True) def k_means_pp(samples, sample_weights, n_centers=3, n_candidates=3, distance_measure=0): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape assert ((n_samples == n_sample_weights) or (n_sample_weights == 0)) center_inds = np.full(n_centers, -1) if (n_samples > 0) and (n_features > 0) and (n_centers > 0): if (n_candidates <= 0) or (n_candidates is None): n_candidates = 2 + int(np.log(n_centers)) if n_sample_weights > 0: cumsum = np.empty(n_samples) cum_sum(sample_weights, cumsum) center_inds[0] = random_choice(cumsum) else: center_inds[0] = np.random.randint(n_samples) #dist_mat = np.empty((1,n_samples)) indices = np.full(1, center_inds[0]) if distance_measure == 1: dist_mat = distance_matrix_cosine_XY_weighted_cpu(samples[indices], samples, sample_weights[indices], sample_weights) else: dist_mat = distance_matrix_euclidean2_XY_weighted_cpu(samples[indices], samples, sample_weights[indices], sample_weights) closest_dist_sq = dist_mat[0] current_pot = 0.0 for i in prange(n_samples): current_pot += closest_dist_sq[i] candidate_ids = np.full(n_candidates, -1) #distance_to_candidates = np.empty((n_candidates,n_samples)) candidates_pot = np.empty(n_candidates) for c in range(1,n_centers): rand_vals = np.random.random_sample(n_candidates) * current_pot cum_search(closest_dist_sq, rand_vals, candidate_ids) if distance_measure == 1: distance_to_candidates = distance_matrix_cosine_XY_weighted_cpu(samples[candidate_ids], samples, sample_weights[candidate_ids], sample_weights) else: distance_to_candidates = distance_matrix_euclidean2_XY_weighted_cpu(samples[candidate_ids], samples, sample_weights[candidate_ids], sample_weights) for i in prange(n_candidates): candidates_pot[i] = 0.0 for j in range(n_samples): distance_to_candidates[i,j] = min(distance_to_candidates[i,j],closest_dist_sq[j]) candidates_pot[i] += distance_to_candidates[i,j] best_candidate = np.argmin(candidates_pot) current_pot = candidates_pot[best_candidate] for i in prange(n_samples): closest_dist_sq[i] = distance_to_candidates[best_candidate][i] center_inds[c] = candidate_ids[best_candidate] return center_inds # choosing the new n additional centers for existing ones using the k-means++ logic @njit(parallel=True) def additional_centers(samples, sample_weights, centroids, n_additional_centers=3, n_candidates=3, distance_measure=0): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape n_centers = centroids.shape[0] assert ((n_samples == n_sample_weights) or (n_sample_weights == 0)) center_inds = np.full(n_additional_centers, -1) nondegenerate_mask = np.sum(np.isnan(centroids), axis = 1) == 0 n_nondegenerate_clusters = np.sum(nondegenerate_mask) center_inds = np.full(n_additional_centers, -1) if (n_samples > 0) and (n_features > 0) and (n_additional_centers > 0): if (n_candidates <= 0) or (n_candidates is None): n_candidates = 2 + int(np.log(n_nondegenerate_clusters+n_additional_centers)) if n_nondegenerate_clusters > 0: closest_dist_sq = np.full(n_samples, np.inf) #distance_to_centroids = np.empty((n_nondegenerate_clusters, n_samples)) centroid_weights = np.ones(n_nondegenerate_clusters) if distance_measure == 1: distance_to_centroids = distance_matrix_cosine_XY_weighted_cpu(centroids[nondegenerate_mask], samples, centroid_weights, sample_weights) else: distance_to_centroids = distance_matrix_euclidean2_XY_weighted_cpu(centroids[nondegenerate_mask], samples, centroid_weights, sample_weights) current_pot = 0.0 for i in prange(n_samples): for j in range(n_nondegenerate_clusters): closest_dist_sq[i] = min(distance_to_centroids[j,i],closest_dist_sq[i]) current_pot += closest_dist_sq[i] n_added_centers = 0 else: if n_sample_weights > 0: cumsum = np.empty(n_samples) cum_sum(sample_weights, cumsum) center_inds[0] = random_choice(cumsum) else: center_inds[0] = np.random.randint(n_samples) #dist_mat = np.empty((1,n_samples)) indices = np.full(1, center_inds[0]) if distance_measure == 1: dist_mat = distance_matrix_cosine_XY_weighted_cpu(samples[indices], samples, sample_weights[indices], sample_weights) else: dist_mat = distance_matrix_euclidean2_XY_weighted_cpu(samples[indices], samples, sample_weights[indices], sample_weights) closest_dist_sq = dist_mat[0] current_pot = 0.0 for i in prange(n_samples): current_pot += closest_dist_sq[i] n_added_centers = 1 candidate_ids = np.full(n_candidates, -1) #distance_to_candidates = np.empty((n_candidates,n_samples)) candidates_pot = np.empty(n_candidates) for c in range(n_added_centers, n_additional_centers): rand_vals = np.random.random_sample(n_candidates) * current_pot cum_search(closest_dist_sq, rand_vals, candidate_ids) if distance_measure == 1: distance_to_candidates = distance_matrix_cosine_XY_weighted_cpu(samples[candidate_ids], samples, sample_weights[candidate_ids], sample_weights) else: distance_to_candidates = distance_matrix_euclidean2_XY_weighted_cpu(samples[candidate_ids], samples, sample_weights[candidate_ids], sample_weights) for i in prange(n_candidates): candidates_pot[i] = 0.0 for j in range(n_samples): distance_to_candidates[i,j] = min(distance_to_candidates[i,j],closest_dist_sq[j]) candidates_pot[i] += distance_to_candidates[i,j] best_candidate = np.argmin(candidates_pot) current_pot = candidates_pot[best_candidate] for i in prange(n_samples): closest_dist_sq[i] = distance_to_candidates[best_candidate][i] center_inds[c] = candidate_ids[best_candidate] return center_inds @njit def check_shapes(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives): assert samples.ndim == 2 n_samples, n_features = samples.shape assert (sample_weights.shape == (n_samples,)) or (sample_weights.shape == (0,)) assert sample_membership.shape == (n_samples,) assert (sample_objectives.shape == (n_samples,)) or (sample_objectives.shape[0] == 0) assert (centroids.ndim == 2) and (centroids.shape[1] == n_features) n_clusters = centroids.shape[0] assert centroid_sums.shape == (n_clusters, n_features) assert centroid_counts.shape == (n_clusters, ) assert centroid_objectives.shape == (n_clusters,) @njit def empty_state(n_samples, n_features, n_clusters): sample_weights = np.ones(n_samples) sample_membership = np.full(n_samples, -1) sample_objectives = np.full(n_samples, np.nan) centroids = np.full((n_clusters, n_features), np.nan) centroid_sums = np.full((n_clusters, n_features), np.nan) centroid_counts = np.full(n_clusters, 0.0) centroid_objectives = np.full(n_clusters, np.nan) return sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives @njit def sub_sections(n_samples, n_sections): n_samples = int(abs(n_samples)) # Распространить этот подход на другие функции n_sections = int(abs(n_sections)) samples_per_section, n_extras = divmod(n_samples, n_sections) if samples_per_section == 0: n_sections = n_extras points = np.full(n_sections, samples_per_section) for i in range(n_extras): points[i] += 1 cumsum = 0 for i in range(n_sections): cumsum += points[i] points[i] = cumsum sections = np.empty((n_sections,2), dtype = points.dtype) start_ind = 0 for i in range(n_sections): sections[i,0] = start_ind sections[i,1] = points[i] start_ind = points[i] return sections @njit def random_membership(n_samples, n_clusters, sample_membership): sample_membership[:] = np.random.randint(0, n_clusters, n_samples) @njit(parallel = True) def initialize_by_membership(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] n_sample_weights = sample_weights.shape[0] centroids.fill(np.nan) centroid_sums.fill(0.0) centroid_counts.fill(0.0) centroid_objectives.fill(0.0) thread_ranges = sub_sections(n_samples, nb.config.NUMBA_NUM_THREADS) n_threads = thread_ranges.shape[0] thread_centroid_sums = np.zeros((n_threads,n_clusters,n_features)) thread_centroid_counts = np.zeros((n_threads,n_clusters)) if n_sample_weights > 0: for i in prange(n_threads): for j in range(thread_ranges[i,0],thread_ranges[i,1]): centroid_ind = sample_membership[j] for k in range(n_features): thread_centroid_sums[i,centroid_ind,k] += sample_weights[j] * samples[j,k] thread_centroid_counts[i,centroid_ind] += sample_weights[j] else: for i in prange(n_threads): for j in range(thread_ranges[i,0],thread_ranges[i,1]): centroid_ind = sample_membership[j] for k in range(n_features): thread_centroid_sums[i,centroid_ind,k] += samples[j,k] thread_centroid_counts[i,centroid_ind] += 1.0 for i in range(n_threads): for j in range(n_clusters): centroid_counts[j] += thread_centroid_counts[i,j] for k in range(n_features): centroid_sums[j,k] += thread_centroid_sums[i,j,k] for i in range(n_clusters): if centroid_counts[i] > 0.0: for j in range(n_features): centroids[i,j] = centroid_sums[i,j] / centroid_counts[i] objective = 0.0 for i in range(n_samples): centroid_ind = sample_membership[i] dist = 0.0 for j in range(n_features): dist += (centroids[centroid_ind,j]-samples[i,j])**2 if n_sample_weights > 0: sample_objectives[i] = sample_weights[i]*dist else: sample_objectives[i] = dist centroid_objectives[centroid_ind] += dist objective += dist return objective @njit def cluster_objective_change(sample, sample_weight, centroid, centroid_count): n_features = sample.shape[0] dist = 0.0 for i in range(n_features): dist += (centroid[i] - sample[i])**2 return centroid_count/(centroid_count+sample_weight)*dist @njit def reallocation_effect(sample, sample_weight, origin_centroid, origin_centroid_counts, destination_centroid, destination_centroid_counts): origin_objective_change = cluster_objective_change(sample, -sample_weight, origin_centroid, origin_centroid_counts) destination_objective_change = cluster_objective_change(sample, sample_weight, destination_centroid, destination_centroid_counts) objective_change = destination_objective_change - origin_objective_change return objective_change # Hartigan–Wong method # first-improvement strategy # https://en.wikipedia.org/wiki/K-means_clustering#Hartigan%E2%80%93Wong_method @njit def h_means_first(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, max_iters = 300, tol=0.0001): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] n_sample_weights = sample_weights.shape[0] sample_objectives = np.full(0, np.nan) check_shapes(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) improved = True n_iters = 0 tolerance = np.inf while improved and (objective > 0.0) and (n_iters < max_iters) and (tolerance > tol): improved = False previous_objective = objective for i in range(n_samples): sample = samples[i] if n_sample_weights > 0: sample_weight = sample_weights[i] else: sample_weight = 1.0 weighted_sample = sample*sample_weight cluster_i = sample_membership[i] count_i = centroid_counts[cluster_i] if count_i-sample_weight != 0.0: objective_change_i = cluster_objective_change(sample, -sample_weight, centroids[cluster_i], count_i) else: objective_change_i = centroid_objectives[cluster_i] best_cluster_j = -1 best_objective_change = np.inf best_objective_change_j = np.nan for cluster_j in range(n_clusters): if cluster_j != cluster_i: count_j = centroid_counts[cluster_j] if count_j+sample_weight != 0.0: objective_change_j = cluster_objective_change(sample, sample_weight, centroids[cluster_j], count_j) objective_change = objective_change_j - objective_change_i if objective_change < best_objective_change: best_cluster_j = cluster_j best_objective_change_j = objective_change_j best_objective_change = objective_change if (best_cluster_j > -1) and (best_objective_change < 0.0): centroid_sums[cluster_i] -= weighted_sample centroid_counts[cluster_i] -= sample_weight if centroid_counts[cluster_i] != 0.0: centroids[cluster_i] = centroid_sums[cluster_i]/centroid_counts[cluster_i] else: centroids[cluster_i].fill(np.nan) centroid_objectives[cluster_i] -= objective_change_i sample_membership[i] = best_cluster_j centroid_sums[best_cluster_j] += weighted_sample centroid_counts[best_cluster_j] += sample_weight if centroid_counts[best_cluster_j] != 0.0: centroids[best_cluster_j] = centroid_sums[best_cluster_j]/centroid_counts[best_cluster_j] else: centroids[best_cluster_j].fill(np.nan) centroid_objectives[best_cluster_j] += best_objective_change_j objective += best_objective_change improved = True n_iters += 1 tolerance = 1 - objective/previous_objective return objective, n_iters # Hartigan–Wong method # best-improvement strategy @njit(parallel = True) def h_means_best(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, max_iters = 3000, tol=0.0001): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] n_sample_weights = sample_weights.shape[0] sample_objectives = np.full(0,np.nan) check_shapes(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) improved = True n_iters = 0 tolerance = np.inf objective_changes = np.full(n_samples, 0.0) new_cluster_inds = np.full(n_samples, -1) while improved and (objective > 0.0) and (n_iters < max_iters) and (tolerance > tol): improved = False previous_objective = objective objective_changes.fill(0.0) new_cluster_inds.fill(-1) for i in prange(n_samples): p_sample = samples[i] if n_sample_weights > 0: p_sample_weight = sample_weights[i] else: p_sample_weight = 1.0 p_cluster_i = sample_membership[i] p_count_i = centroid_counts[p_cluster_i] if p_count_i-p_sample_weight != 0.0: p_objective_change_i = cluster_objective_change(p_sample, -p_sample_weight, centroids[p_cluster_i], p_count_i) else: p_objective_change_i = centroid_objectives[p_cluster_i] p_best_cluster_j = -1 p_best_objective_change = np.inf p_best_objective_change_j = np.nan for p_cluster_j in range(n_clusters): if p_cluster_j != p_cluster_i: p_count_j = centroid_counts[p_cluster_j] if p_count_j+p_sample_weight != 0.0: p_objective_change_j = cluster_objective_change(p_sample, p_sample_weight, centroids[p_cluster_j], p_count_j) p_objective_change = p_objective_change_j - p_objective_change_i if p_objective_change < p_best_objective_change: p_best_cluster_j = p_cluster_j p_best_objective_change_j = p_objective_change_j p_best_objective_change = p_objective_change if (p_best_cluster_j > -1) and (p_best_objective_change < 0.0): objective_changes[i] = p_best_objective_change new_cluster_inds[i] = p_best_cluster_j best_sample_ind = -1 best_objective_change = np.inf for i in range(n_samples): if objective_changes[i] < best_objective_change: best_sample_ind = i best_objective_change = objective_changes[i] if (best_sample_ind > -1) and (new_cluster_inds[best_sample_ind] > -1) and (best_objective_change < 0.0): sample = samples[best_sample_ind] if n_sample_weights > 0: sample_weight = sample_weights[best_sample_ind] else: sample_weight = 1.0 weighted_sample = sample_weight * samples[best_sample_ind] cluster_i = sample_membership[best_sample_ind] cluster_j = new_cluster_inds[best_sample_ind] if centroid_counts[cluster_j]+sample_weight != 0.0: if centroid_counts[cluster_i]-sample_weight != 0.0: objective_change_i = cluster_objective_change(sample, -sample_weight, centroids[cluster_i], centroid_counts[cluster_i]) else: objective_change_i = centroid_objectives[cluster_i] centroid_objectives[cluster_i] -= objective_change_i objective_change_j = cluster_objective_change(sample, sample_weight, centroids[cluster_j], centroid_counts[cluster_j]) centroid_objectives[cluster_j] += objective_change_j centroid_sums[cluster_i] -= weighted_sample centroid_counts[cluster_i] -= sample_weight if centroid_counts[cluster_i] != 0.0: centroids[cluster_i] = centroid_sums[cluster_i]/centroid_counts[cluster_i] else: centroids[cluster_i].fill(np.nan) sample_membership[best_sample_ind] = cluster_j centroid_sums[cluster_j] += weighted_sample centroid_counts[cluster_j] += sample_weight if centroid_counts[cluster_j] != 0.0: centroids[cluster_j] = centroid_sums[cluster_j]/centroid_counts[cluster_j] else: centroids[cluster_j].fill(np.nan) objective += best_objective_change improved = True n_iters += 1 tolerance = 1 - objective/previous_objective return objective, n_iters def _assignment(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_objectives): n_samples, n_features = samples.shape n_centroids = centroids.shape[0] n_sample_weights = sample_weights.shape[0] n_sample_membership = sample_membership.shape[0] n_sample_objectives = sample_objectives.shape[0] n_centroid_objectives = centroid_objectives.shape[0] if n_centroid_objectives > 0: centroid_objectives.fill(np.nan) objective = 0.0 n_changed_membership = 0 for i in prange(n_samples): min_dist2 = np.inf min_ind = -1 for j in range(n_centroids): if not np.isnan(centroids[j,0]): dist2 = 0.0 for h in range(n_features): dist2 += (centroids[j,h] - samples[i,h])**2 if dist2 < min_dist2: min_dist2 = dist2 min_ind = j if min_ind == -1: min_dist2 = np.nan if (n_sample_membership > 0) and (sample_membership[i] != min_ind): n_changed_membership += 1 sample_membership[i] = min_ind if n_sample_weights > 0: sample_objective = sample_weights[i]*min_dist2 else: sample_objective = min_dist2 if n_sample_objectives > 0: sample_objectives[i] = sample_objective if (n_centroid_objectives > 0) and (min_ind > -1): if np.isnan(centroid_objectives[min_ind]): centroid_objectives[min_ind] = sample_objective else: centroid_objectives[min_ind] += sample_objective objective += sample_objective return objective, n_changed_membership assignment = njit(parallel=False)(_assignment) assignment_parallel = njit(parallel=True)(_assignment) @njit(parallel = False) def update_centroids(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] n_sample_weights = sample_weights.shape[0] for i in range(n_clusters): centroid_counts[i] = 0.0 for j in range(n_features): centroid_sums[i,j] = 0.0 centroids[i,j] = np.nan if n_sample_weights > 0: for i in range(n_samples): centroid_ind = sample_membership[i] for j in range(n_features): centroid_sums[centroid_ind,j] += sample_weights[i] * samples[i,j] centroid_counts[centroid_ind] += sample_weights[i] else: for i in range(n_samples): centroid_ind = sample_membership[i] for j in range(n_features): centroid_sums[centroid_ind,j] += samples[i,j] centroid_counts[centroid_ind] += 1.0 for i in range(n_clusters): if centroid_counts[i] > 0.0: for j in range(n_features): centroids[i,j] = centroid_sums[i,j] / centroid_counts[i] @njit(parallel = True) def update_centroids_parallel(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] n_sample_weights = sample_weights.shape[0] for i in range(n_clusters): centroid_counts[i] = 0.0 for j in range(n_features): centroid_sums[i,j] = 0.0 thread_ranges = sub_sections(n_samples, nb.config.NUMBA_NUM_THREADS) n_threads = thread_ranges.shape[0] thread_centroid_sums = np.zeros((n_threads,n_clusters,n_features)) thread_centroid_counts = np.zeros((n_threads,n_clusters)) if n_sample_weights > 0: for i in prange(n_threads): for j in range(thread_ranges[i,0],thread_ranges[i,1]): centroid_ind = sample_membership[j] for k in range(n_features): thread_centroid_sums[i,centroid_ind,k] += sample_weights[j] * samples[j,k] thread_centroid_counts[i,centroid_ind] += sample_weights[j] else: for i in prange(n_threads): for j in range(thread_ranges[i,0],thread_ranges[i,1]): centroid_ind = sample_membership[j] for k in range(n_features): thread_centroid_sums[i,centroid_ind,k] += samples[j,k] thread_centroid_counts[i,centroid_ind] += 1.0 for i in range(n_threads): for j in range(n_clusters): centroid_counts[j] += thread_centroid_counts[i,j] for k in range(n_features): centroid_sums[j,k] += thread_centroid_sums[i,j,k] for i in range(n_clusters): if centroid_counts[i] > 0.0: for j in range(n_features): centroids[i,j] = centroid_sums[i,j] / centroid_counts[i] else: for j in range(n_features): centroids[i,j] = np.nan centroid_sums[i,j] = np.nan @njit def k_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, max_iters = 300, tol=0.0001, parallel = True): n_samples, n_features = samples.shape n_clusters = centroids.shape[0] check_shapes(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) objective = np.inf n_iters = 0 sample_membership.fill(-1) sample_objectives.fill(np.nan) centroid_objectives.fill(np.nan) if (n_samples > 0) and (n_features > 0) and (n_clusters > 0): n_changed_membership = 1 objective_previous = np.inf tolerance = np.inf while True: if parallel: objective, n_changed_membership = assignment_parallel(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_objectives) else: objective, n_changed_membership = assignment(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_objectives) tolerance = 1 - objective/objective_previous objective_previous = objective n_iters += 1 if (n_iters >= max_iters) or (n_changed_membership <= 0) or (tolerance <= tol) or (objective <= 0.0): break if parallel: update_centroids_parallel(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts) else: update_centroids(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts) return objective, n_iters @njit def k_h_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, k_max_iters = 300, h_max_iters = 300, k_tol=0.0001, h_tol=0.0001): k_objective, k_iters = k_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, k_max_iters, k_tol, True) update_centroids_parallel(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts) h_objective, h_iters = h_means_first(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts, centroid_objectives, k_objective, h_max_iters, h_tol) return h_objective, k_iters+h_iters # Local search heuristic for solving the minimum sum of squares clustering problem by iteratively # new extra center insertion, searching and worst centroid deletion. New center insertions are made # by using k-means++ logic. Worst center for deletion identified by its largest objective value. @njit(parallel = True) def iterative_extra_center_insertion_deletion(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters = 300, local_tol=0.0001, max_iters = 300, tol=0.0001, max_cpu_time=10, n_candidates=3, printing=False): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape n_centers = centroids.shape[0] with objmode(start_time = 'float64'): start_time = time.perf_counter() n_iters = 0 n_local_iters = 0 cpu_time = 0.0 if (n_samples > 0) and (n_features > 0) and (n_centers > 0): n_centers_ext = n_centers + 1 ext_sample_membership = np.full(n_samples, -1) ext_sample_objectives = np.full(n_samples, np.nan) ext_centroids = np.full((n_centers_ext, n_features), np.nan) ext_centroid_sums = np.full((n_centers_ext, n_features), np.nan) ext_centroid_counts = np.full(n_centers_ext, 0.0) ext_centroid_objectives = np.full(n_centers_ext, np.nan) best_sample_membership = np.full(n_samples, -1) best_sample_objectives = np.full(n_samples, np.nan) best_centroids = np.full((n_centers_ext, n_features), np.nan) best_centroid_sums = np.full((n_centers_ext, n_features), np.nan) best_centroid_counts = np.full(n_centers_ext, 0.0) best_centroid_objectives = np.full(n_centers_ext, np.nan) best_objective = objective best_excess_centroid_ind = -1 for i in prange(n_samples): best_sample_membership[i] = sample_membership[i] best_sample_objectives[i] = sample_objectives[i] for i in range(n_centers): best_centroid_counts[i] = centroid_counts[i] best_centroid_objectives[i] = centroid_objectives[i] for j in range(n_features): best_centroids[i,j] = centroids[i,j] best_centroid_sums[i,j] = centroid_sums[i,j] n_iters = 0 tolerance = np.inf cumsum = np.empty(n_centers_ext) with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time - start_time if printing: with objmode: print ('%-30s%-15s%-15s' % ('objective', 'n_iters', 'cpu_time')) while (cpu_time < max_cpu_time) and (n_iters < max_iters) and (tolerance > tol): for i in prange(n_samples): ext_sample_membership[i] = best_sample_membership[i] for i in range(n_centers_ext): for j in range(n_features): ext_centroids[i,j] = best_centroids[i,j] degenerate_mask = ext_centroid_counts == 0.0 n_degenerate = np.sum(degenerate_mask) new_center_inds = additional_centers(samples, sample_weights, centroids, n_degenerate, n_candidates, distance_measure=0) ext_centroids[degenerate_mask,:] = samples[new_center_inds,:] ext_objective, ext_n_iters = k_means(samples, sample_weights, ext_sample_membership, ext_sample_objectives, ext_centroids, ext_centroid_sums, ext_centroid_counts, ext_centroid_objectives, local_max_iters, local_tol, True) cum_sum(ext_centroid_objectives, cumsum) excess_centroid_ind = random_choice(cumsum) for i in range(n_features): ext_centroids[excess_centroid_ind,i] = np.nan ext_objective, ext_n_iters = k_means(samples, sample_weights, ext_sample_membership, ext_sample_objectives, ext_centroids, ext_centroid_sums, ext_centroid_counts, ext_centroid_objectives, local_max_iters, local_tol, True) with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time - start_time if ext_objective < best_objective: tolerance = 1 - ext_objective/best_objective best_objective = ext_objective for i in prange(n_samples): best_sample_membership[i] = ext_sample_membership[i] best_sample_objectives[i] = ext_sample_objectives[i] for i in range(n_centers_ext): best_centroid_counts[i] = ext_centroid_counts[i] best_centroid_objectives[i] = ext_centroid_objectives[i] for j in range(n_features): best_centroids[i,j] = ext_centroids[i,j] best_centroid_sums[i,j] = ext_centroid_sums[i,j] best_excess_centroid_ind = excess_centroid_ind n_local_iters = ext_n_iters if printing: with objmode: print ('%-30f%-15i%-15.2f' % (best_objective, n_iters, cpu_time)) n_iters += 1 if best_excess_centroid_ind > -1: objective = best_objective for i in prange(n_samples): sample_objectives[i] = best_sample_objectives[i] if best_sample_membership[i] <= best_excess_centroid_ind: sample_membership[i] = best_sample_membership[i] else: sample_membership[i] = best_sample_membership[i]-1 for i in range(n_centers_ext): if i <= best_excess_centroid_ind: ind = i else: ind = i-1 if i != best_excess_centroid_ind: centroid_counts[ind] = best_centroid_counts[i] centroid_objectives[ind] = best_centroid_objectives[i] for j in range(n_features): centroids[ind,j] = best_centroids[i,j] centroid_sums[ind,j] = best_centroid_sums[i,j] if printing: with objmode: print ('%-30f%-15i%-15.2f' % (best_objective, n_iters, cpu_time)) return objective, n_iters, n_local_iters @njit def empty_solution(sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives): empty_sample_membership = np.empty_like(sample_membership) empty_sample_objectives = np.empty_like(sample_objectives) empty_centroids = np.empty_like(centroids) empty_centroid_sums = np.empty_like(centroid_sums) empty_centroid_counts = np.empty_like(centroid_counts) empty_centroid_objectives = np.empty_like(centroid_objectives) return empty_sample_membership, empty_sample_objectives, empty_centroids, empty_centroid_sums, empty_centroid_counts, empty_centroid_objectives @njit(parallel = True) def copy_solution(sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, copy_sample_membership, copy_sample_objectives, copy_centroids, copy_centroid_sums, copy_centroid_counts, copy_centroid_objectives): for i in prange(sample_membership.shape[0]): copy_sample_membership[i] = sample_membership[i] copy_sample_objectives[i] = sample_objectives[i] for i in range(centroids.shape[0]): copy_centroid_counts[i] = centroid_counts[i] copy_centroid_objectives[i] = centroid_objectives[i] for j in range(centroids.shape[1]): copy_centroids[i,j] = centroids[i,j] copy_centroid_sums[i,j] = centroid_sums[i,j] @njit def shake_membership(n_reallocations, n_samples, n_clusters, sample_membership): for i in range(n_reallocations): sample_membership[np.random.randint(n_samples)] = np.random.randint(n_clusters) # Попробовать сделать так чтобы принимелись не любые даже сколько-нибудь малые улучшения, # а только значимые улучшения, т.е. выше определённого порога (для этого ввести соответствующий дополнительный параметр) @njit(parallel = True) def Membership_Shaking_VNS(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, k_max_iters=300, h_max_iters=300, k_tol=0.0001, h_tol=0.0001, kmax=5, max_cpu_time=10, max_iters=100, printing=False): n_samples, n_features = samples.shape n_centers = centroids.shape[0] cpu_time = 0.0 n_iters = 0 k = 1 n_iters_k = 0 if printing: with objmode: print ('%-30s%-7s%-15s%-15s%-15s' % ('objective', 'k', 'n_iters', 'n_iters_k', 'cpu_time')) with objmode(start_time = 'float64'): start_time = time.perf_counter() best_sample_membership, best_sample_objectives, best_centroids, best_centroid_sums, best_centroid_counts, best_centroid_objectives = empty_solution(sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) best_objective = objective copy_solution(sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, best_sample_membership, best_sample_objectives, best_centroids, best_centroid_sums, best_centroid_counts, best_centroid_objectives) with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time- start_time while (cpu_time < max_cpu_time) and (n_iters < max_iters): # neighborhood solution for i in prange(n_samples): sample_membership[i] = best_sample_membership[i] shake_membership(k, n_samples, n_centers, sample_membership) objective = initialize_by_membership(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) objective, n_local_iters = k_h_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, k_max_iters, h_max_iters, k_tol, h_tol) with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time - start_time if objective < best_objective: best_objective = objective copy_solution(sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, best_sample_membership, best_sample_objectives, best_centroids, best_centroid_sums, best_centroid_counts, best_centroid_objectives) if printing: with objmode: print ('%-30f%-7i%-15i%-15i%-15.2f' % (best_objective, k, n_iters, n_iters_k, cpu_time)) k = 1 n_iters_k += 1 else: if k < kmax: k += 1 n_iters += 1 objective = best_objective copy_solution(best_sample_membership, best_sample_objectives, best_centroids, best_centroid_sums, best_centroid_counts, best_centroid_objectives, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives) if printing: with objmode: print ('%-30f%-7i%-15i%-15i%-15.2f' % (best_objective, k, n_iters, n_iters_k, cpu_time)) return objective, n_iters # The parameter "shaking_mode" is used to define the used logic of centroid-to-entity reallocations: # 0 - "Lumped mode" - finding a center with the worst objective and k-1 closest to it other centers, then replace these k centers with new ones (like in J-means); # 1 - "Scatter mode" - finding a k centers distributed in the space and not connected to each other, then replace them with new ones (like in J-means); # 2 - finding the k centers with the worst objectives and replace each of them with a random internal entity from their corresponding clusters (like I-means in [Nilolaev and Mladenovic 2015]) # 3 - replace all nondegenerate centers with a random internal entity from their corresponding clusters @njit def shake_centers(k, samples, sample_weights, sample_membership, centroids, centroid_counts, centroid_objectives, n_candidates=3, shaking_mode=1, fully_random = False): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape n_centers = centroids.shape[0] degenerate_mask = np.sum(np.isnan(centroids), axis = 1) > 0 nondegenerate_mask = ~degenerate_mask n_degenerate = np.sum(degenerate_mask) n_nondegenerate = n_centers-n_degenerate if (k > 0) and (n_nondegenerate > 0): if k > n_nondegenerate: k = n_nondegenerate nondegenerate_inds = np.arange(n_centers)[nondegenerate_mask] nondegenerate_objectives = centroid_objectives[nondegenerate_mask] sum_of_centroid_objectives = np.sum(nondegenerate_objectives) if shaking_mode == 0: if fully_random: target = nondegenerate_inds[np.random.randint(nondegenerate_inds.shape[0])] else: rand_val = np.random.random_sample(1) * sum_of_centroid_objectives target_ind = np.full(1, -1) cum_search(nondegenerate_objectives, rand_val, target_ind) target = nondegenerate_inds[target_ind[0]] if target > -1: if k-1 > 0: centroid_weights = np.empty(0) dists = distance_matrix_euclidean2_XY_weighted_cpu(centroids[np.array([target])], centroids[nondegenerate_mask], centroid_weights, centroid_weights)[0] replaced_inds = np.argsort(dists)[:k] else: replaced_inds = np.full(1, target) centroids[nondegenerate_inds[replaced_inds],:] = np.nan if fully_random: additional_center_inds = np.random.choice(n_samples, k, replace=False) else: additional_center_inds = additional_centers(samples, sample_weights, centroids, k, n_candidates, distance_measure=0) centroids[nondegenerate_inds[replaced_inds],:] = samples[additional_center_inds,:] elif shaking_mode == 1: if fully_random: replaced_inds = nondegenerate_inds[np.random.choice(nondegenerate_inds.shape[0], k, replace=False)] else: rand_vals = np.random.random_sample(k) * sum_of_centroid_objectives replaced_inds = np.full(k, -1) cum_search(nondegenerate_objectives, rand_vals, replaced_inds) centroids[nondegenerate_inds[replaced_inds],:] = np.nan if fully_random: additional_center_inds = np.random.choice(n_samples, k, replace=False) else: additional_center_inds = additional_centers(samples, sample_weights, centroids, k, n_candidates, distance_measure=0) centroids[nondegenerate_inds[replaced_inds],:] = samples[additional_center_inds,:] elif shaking_mode == 2: if fully_random: replaced_inds = nondegenerate_inds[np.random.choice(nondegenerate_inds.shape[0], k, replace=False)] else: rand_vals = np.random.random_sample(k) * sum_of_centroid_objectives replaced_inds = np.full(k, -1) cum_search(nondegenerate_objectives, rand_vals, replaced_inds) sample_inds = np.arange(n_samples) target_inds = nondegenerate_inds[replaced_inds] for i in range(k): candidate_inds = sample_inds[sample_membership == target_inds[i]] sample_ind = candidate_inds[np.random.randint(candidate_inds.shape[0])] centroids[target_inds[i],:] = samples[sample_ind,:] elif shaking_mode == 3: sample_inds = np.arange(n_samples) for i in nondegenerate_inds: candidate_inds = sample_inds[sample_membership == i] sample_ind = candidate_inds[np.random.randint(candidate_inds.shape[0])] centroids[i,:] = samples[sample_ind,:] else: raise KeyError if n_degenerate > 0: additional_center_inds = additional_centers(samples, sample_weights, centroids, n_degenerate, n_candidates, distance_measure=0) centroids[degenerate_mask,:] = samples[additional_center_inds,:] # Simple center shaking VNS @njit(parallel = True) def Center_Shaking_VNS(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters=300, local_tol=0.0001, kmax=3, max_cpu_time=10, max_iters=100, n_candidates=3, shaking_mode = 0, fully_random=False, printing=False): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape n_centers = centroids.shape[0] cpu_time = 0.0 n_iters = 0 k = 1 n_iters_k = 0 if printing: with objmode: print ('%-30s%-7s%-15s%-15s%-15s' % ('objective', 'k', 'n_iters', 'n_iters_k', 'cpu_time')) with objmode(start_time = 'float64'): start_time = time.perf_counter() best_objective = objective best_n_local_iters = 0 if (n_samples > 0) and (n_features > 0) and (n_centers > 0): # Empty Neighborhood Solution neighborhood_sample_membership = np.full(n_samples, -1) neighborhood_sample_objectives = np.full(n_samples, np.nan) neighborhood_centroids = np.full((n_centers, n_features), np.nan) neighborhood_centroid_sums = np.full((n_centers, n_features), np.nan) neighborhood_centroid_counts = np.full(n_centers, 0.0) neighborhood_centroid_objectives = np.full(n_centers, np.nan) # Empty Best Solution best_sample_membership = np.full(n_samples, -1) best_sample_objectives = np.full(n_samples, np.nan) best_centroids = np.full((n_centers, n_features), np.nan) best_centroid_sums = np.full((n_centers, n_features), np.nan) best_centroid_counts = np.full(n_centers, 0.0) best_centroid_objectives = np.full(n_centers, np.nan) # Best Solution is the Current One for i in prange(n_samples): best_sample_membership[i] = sample_membership[i] best_sample_objectives[i] = sample_objectives[i] for i in range(n_centers): best_centroid_counts[i] = centroid_counts[i] best_centroid_objectives[i] = centroid_objectives[i] for j in range(n_features): best_centroids[i,j] = centroids[i,j] best_centroid_sums[i,j] = centroid_sums[i,j] with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time - start_time k = 1 while (cpu_time < max_cpu_time) and (n_iters < max_iters): # Neighborhood Solution for i in prange(n_samples): neighborhood_sample_membership[i] = best_sample_membership[i] neighborhood_sample_objectives[i] = best_sample_objectives[i] for i in range(n_centers): neighborhood_centroid_counts[i] = best_centroid_counts[i] neighborhood_centroid_objectives[i] = best_centroid_objectives[i] for j in range(n_features): neighborhood_centroids[i,j] = best_centroids[i,j] neighborhood_centroid_sums[i,j] = best_centroid_sums[i,j] shake_centers(k, samples, sample_weights, sample_membership, neighborhood_centroids, neighborhood_centroid_counts, neighborhood_centroid_objectives, n_candidates, shaking_mode, fully_random) # Local Search Initialized by Neighborhood Solution neighborhood_objective, neighborhood_n_iters = k_means(samples, sample_weights, neighborhood_sample_membership, neighborhood_sample_objectives, neighborhood_centroids, neighborhood_centroid_sums, neighborhood_centroid_counts, neighborhood_centroid_objectives, local_max_iters, local_tol, True) with objmode(current_time = 'float64'): current_time = time.perf_counter() cpu_time = current_time - start_time # Check for the Best if neighborhood_objective < best_objective: best_objective = neighborhood_objective best_n_local_iters = neighborhood_n_iters if printing: with objmode: print ('%-30f%-7i%-15i%-15i%-15.2f' % (best_objective, k, n_iters, n_iters_k, cpu_time)) k = 1 n_iters_k += 1 # Remember the Best Solution for i in prange(n_samples): best_sample_membership[i] = neighborhood_sample_membership[i] best_sample_objectives[i] = neighborhood_sample_objectives[i] for i in range(n_centers): best_centroid_counts[i] = neighborhood_centroid_counts[i] best_centroid_objectives[i] = neighborhood_centroid_objectives[i] for j in range(n_features): best_centroids[i,j] = neighborhood_centroids[i,j] best_centroid_sums[i,j] = neighborhood_centroid_sums[i,j] else: if k < kmax: k += 1 n_iters += 1 # Replace Current Solution by the Best One for i in prange(n_samples): sample_membership[i] = best_sample_membership[i] sample_objectives[i] = best_sample_objectives[i] for i in range(n_centers): centroid_counts[i] = best_centroid_counts[i] centroid_objectives[i] = best_centroid_objectives[i] for j in range(n_features): centroids[i,j] = best_centroids[i,j] centroid_sums[i,j] = best_centroid_sums[i,j] # if printing: # with objmode: # print ('%-30f%-7i%-15i%-15i%-15.2f' % (best_objective, k, n_iters, n_iters_k, cpu_time)) return best_objective, n_iters, best_n_local_iters # Для обработки больших данных сделать возможность обработки разряженного входного датасета??? (или кому надо тот сам на вход подаст разряженный датасет???) # Доработать эту процедуру чтобы можно было выбрать метрику. # Использовать k-medoids вместо k-means чтобы можно было использовать полную предрасчитанную матрицу расстояний # # The idea of the algorithm is inspired by: # Likasa A., Vlassisb N., Verbeek J.J. The global k-means clustering algorithm // # Pattern Recognition 36 (2003), pp. 451 – 461 @njit(parallel=True) def number_of_clusters(samples, min_num=-1, max_num=-1, max_iters=300, tol=0.0001): n_samples = samples.shape[0] n_features = samples.shape[1] if min_num < 2 or min_num > n_samples: min_num = 2 if max_num < 0 or max_num > n_samples: max_num = n_samples if n_samples > 0 and n_features > 0 and min_num < max_num: objectives = np.full(max_num, 0.0) used_samples = np.full(n_samples, False) global_centroid = np.reshape(np.sum(samples, axis=0) / n_samples, (1, samples.shape[1])) D = distance_matrix_euclidean2_XY_cpu(global_centroid, samples) medoid_ind = np.argmin(D[0]) n_centroids = 1 sample_weights, sample_membership, sample_objectives, centroids2, centroid_sums, centroid_counts, centroid_objectives = empty_state(n_samples, n_features, n_centroids) centroids2[0, :] = samples[medoid_ind, :] centroids = np.full((max_num, n_features), np.nan) centroids[0, :] = samples[medoid_ind, :] used_samples[medoid_ind] = True objectives[0], _ = assignment(samples, sample_weights, sample_membership, sample_objectives, centroids2, centroid_objectives) local_objectives = np.empty(n_samples) for i in range(1, max_num): local_objectives.fill(np.inf) for j in prange(n_samples): if not used_samples[j]: sample_weights, sample_membership, sample_objectives, centroids2, centroid_sums, centroid_counts, centroid_objectives = empty_state(n_samples, n_features, n_centroids) centroids2 = np.concatenate((centroids[:n_centroids], np.reshape(samples[j], (1, samples.shape[1])))) local_objectives[j], _ = assignment(samples, sample_weights, sample_membership, sample_objectives, centroids2, centroid_objectives) min_ind = np.argmin(local_objectives) used_samples[min_ind] = True centroids[n_centroids, :] = samples[min_ind, :] objectives[n_centroids] = local_objectives[min_ind] n_centroids += 1 cluster_nums = np.arange(min_num, max_num) drop_rates = np.empty(cluster_nums.shape[0]) for i in range(min_num - 1, max_num - 1): p1 = objectives[i - 1] p2 = objectives[i] p3 = objectives[i + 1] d1 = abs(p1 - p2) d2 = abs(p2 - p3) #d1 = p1 - p2 #d2 = p2 - p3 if d2 != 0.0: drop_rates[i - min_num + 1] = d1 / d2 else: drop_rates[i - min_num + 1] = 0.0 n_clusters = cluster_nums[np.argmax(drop_rates)] else: n_clusters = -1 cluster_nums = np.full(0, -1) drop_rates = np.empty(0) objectives = np.empty(0) return n_clusters, cluster_nums, drop_rates, objectives @njit def method_sequencing(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, local_max_iters=300, local_tol=0.00001, n_candidates=3, shaking_mode = 0, printing=False): assert method_sequence.ndim == 1 and time_sequence.ndim == 1 and kmax_sequence.ndim == 1 sequence_size = method_sequence.shape[0] assert time_sequence.shape[0] == sequence_size and max_iters_sequence.shape[0] == sequence_size and kmax_sequence.shape[0] == sequence_size methods = {0,1,2,3,4,5,6} for i in range(sequence_size): method = method_sequence[i] assert method in methods if method == 1: if printing: print('H-means (first improvement strategy):') objective, n_iters = h_means_first(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters, local_tol) if printing: print(objective) print() elif method == 2: if printing: print('H-means (best-improvement strategy):') objective, n_iters = h_means_best(samples, sample_weights, sample_membership, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters, local_tol) if printing: print(objective) print() elif method == 3: if printing: print('K-H-means:') objective, n_iters = k_h_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, local_max_iters, local_max_iters, local_tol, local_tol) if printing: print(objective) print() elif method == 4: if printing: print('Center Shaking VNS:') objective, n_iters, n_local_iters = Center_Shaking_VNS(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters, local_tol, kmax_sequence[i], time_sequence[i], max_iters_sequence[i], n_candidates, shaking_mode, False, printing) if printing: print() elif method == 5: if printing: print('Membership Shaking VNS:') objective, n_iters = Membership_Shaking_VNS(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters, local_max_iters, local_tol, local_tol, kmax_sequence[i], time_sequence[i], max_iters_sequence[i], printing) if printing: print() elif method == 6: if printing: print('Extra Center Insertion/Deletion:') objective, n_iters, n_local_iters = iterative_extra_center_insertion_deletion(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, objective, local_max_iters, local_tol, max_iters_sequence[i], local_tol, time_sequence[i], n_candidates) if printing: print() else: if printing: print('K-means:') objective, n_iters = k_means(samples, sample_weights, sample_membership, sample_objectives, centroids, centroid_sums, centroid_counts, centroid_objectives, local_max_iters, local_tol, True) if printing: print(objective) print() return objective # Parallel multi-portion Minimum Sum-of-Squares Clustering (MSSC) @njit(parallel = True) def multi_portion_mssc(samples, sample_weights, centers, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, n_clusters = 3, portion_size = -1, n_portions = 3, init_method = 1, local_max_iters=300, local_tol=0.0001, n_candidates=3): n_samples, n_features = samples.shape n_centers, n_center_features = centers.shape n_sample_weights, = sample_weights.shape init_methods = {0,1,2} assert ((n_samples == n_sample_weights) or (n_sample_weights == 0)) assert ((init_method != 2) or (n_features == n_center_features)) assert (((init_method != 2) and (n_centers == 0)) or (n_centers == n_clusters)) assert (portion_size == -1) or (portion_size <= n_samples) assert init_method in init_methods collected_centroids = np.full((0, 0, 0), np.nan) collected_centroid_counts = np.full((0, 0), 0.0) collected_centroid_objectives = np.full((0, 0), np.nan) collected_objectives = np.full(0, np.nan) if (n_samples > 0) and (n_features > 0) and (n_clusters > 0) and (n_portions > 0) and ((portion_size > 0) or (portion_size == -1)) and (portion_size < n_samples): collected_centroids = np.full((n_portions, n_clusters, n_features), np.nan) collected_centroid_counts = np.full((n_portions, n_clusters), 0.0) collected_centroid_objectives = np.full((n_portions, n_clusters), np.nan) collected_objectives = np.full(n_portions, np.nan) if portion_size == -1: p_samples = samples p_n_samples = n_samples p_sample_weights = sample_weights for i in prange(n_portions): if portion_size > 0: p_inds = np.random.choice(n_samples, portion_size, replace = False) p_samples = samples[p_inds] p_n_samples = portion_size if n_sample_weights > 0: p_sample_weights = sample_weights[p_inds] else: p_sample_weights = np.full(0, 0.0) if init_method == 1: collected_centroids[i] = p_samples[k_means_pp(p_samples, p_sample_weights, n_clusters, n_candidates, distance_measure=0)] elif init_method == 2: collected_centroids[i] = np.copy(centers) else: collected_centroids[i] = np.random.rand(n_clusters, n_features) p_sample_membership = np.empty_like(p_inds) p_sample_objectives = np.empty(p_n_samples) p_centroid_sums = np.empty((n_clusters, n_features)) collected_objectives[i] = method_sequencing(p_samples, p_sample_weights, p_sample_membership, p_sample_objectives, collected_centroids[i], p_centroid_sums, collected_centroid_counts[i], collected_centroid_objectives[i], np.inf, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, local_max_iters, local_tol, n_candidates, False) return collected_centroids, collected_centroid_counts, collected_centroid_objectives, collected_objectives @njit(parallel = True) def decomposition_aggregation_mssc(samples, sample_weights, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, n_clusters = 3, portion_size = -1, n_portions = 3, init_method = 1, local_max_iters=300, local_tol=0.0001, n_candidates=3, aggregation_method = 0, basis_n_init = 3): n_samples, n_features = samples.shape n_sample_weights, = sample_weights.shape final_objective = np.inf final_n_iters = 0 final_sample_membership = np.full(n_samples, -1) final_sample_objectives = np.full(n_samples, np.nan) final_centroids = np.full((n_clusters,n_features), np.nan) final_centroid_sums = np.full((n_clusters,n_features), np.nan) final_centroid_counts = np.full(n_clusters, 0.0) final_centroid_objectives = np.full(n_clusters, np.nan) if (n_samples > 0) and (n_features > 0) and (n_portions > 0) and (portion_size > 0) and (portion_size <= n_samples) and (basis_n_init > 0): centers = np.empty((0, n_features)) centroids, centroid_counts, centroid_objectives, objectives = multi_portion_mssc(samples, sample_weights, centers, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, n_clusters, portion_size, n_portions, init_method, local_max_iters, local_tol, n_candidates) full_objectives = np.empty_like(objectives) sample_membership = np.full(0, 0) sample_objectives = np.full(0, 0.0) centroid_objectives = np.empty((n_portions, n_clusters)) for i in prange(n_portions): full_objectives[i], n_changed_membership = assignment(samples, sample_weights, sample_membership, sample_objectives, centroids[i], centroid_objectives[i]) if aggregation_method == 0: min_ind = np.argmin(full_objectives) final_centroids[:,:] = centroids[min_ind,:,:] else: n_basis_samples = np.sum(centroid_counts > 0.0) basis_samples = np.empty((n_basis_samples, n_features), dtype = samples.dtype) basis_weights = np.empty(n_basis_samples) ind = 0 for i in range(n_portions): for j in range(n_clusters): if centroid_counts[i,j] > 0.0: basis_samples[ind] = centroids[i,j] #basis_weights[ind] = centroid_objectives[i,j]*full_objectives[i] #basis_weights[ind] = centroid_objectives[i,j] #basis_weights[ind] = centroid_objectives[i,j]/centroid_counts[i,j] #!!!!!!!!! basis_weights[ind] = full_objectives[i] #basis_weights[ind] = (centroid_objectives[i,j]*full_objectives[i])/centroid_counts[i,j] ind += 1 normalization1D(basis_weights, True) for i in range(n_basis_samples): basis_weights[i] = np.exp(1-basis_weights[i]) basis_objectives = np.empty(basis_n_init) basis_centroids = np.full((basis_n_init, n_clusters, n_features), np.nan) for i in prange(basis_n_init): basis_sample_membership = np.full(n_basis_samples, -1) basis_sample_objectives = np.full(n_basis_samples, np.nan) basis_centroid_sums = np.full((n_clusters,n_features), np.nan) basis_centroid_counts = np.full(n_clusters, 0.0) basis_centroid_objectives = np.full(n_clusters, np.nan) basis_centroids[i,:,:] = basis_samples[k_means_pp(basis_samples, basis_weights, n_clusters, n_candidates, distance_measure=0)][:,:] basis_objectives[i] = method_sequencing(basis_samples, basis_weights, basis_sample_membership, basis_sample_objectives, basis_centroids[i], basis_centroid_sums, basis_centroid_counts, basis_centroid_objectives, np.inf, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, local_max_iters, local_tol, n_candidates, False) min_ind = np.argmin(basis_objectives) final_centroids[:,:] = basis_centroids[min_ind,:,:] final_objective = method_sequencing(samples, sample_weights, final_sample_membership, final_sample_objectives, final_centroids, final_centroid_sums, final_centroid_counts, final_centroid_objectives, np.inf, method_sequence, time_sequence, max_iters_sequence, kmax_sequence, local_max_iters, local_tol, n_candidates, False) return final_objective, final_sample_membership, final_sample_objectives, final_centroids, final_centroid_sums, final_centroid_counts, final_centroid_objectives
41.974079
355
0.607947
d258d57a19f8c4d94fa0aab9a02b2d728f8ab239
3,132
py
Python
zunis_lib/zunis/utils/function_wrapper.py
NGoetz/zunis
a2d3ba2392ef802349723465c6559e8eb407db54
[ "MIT" ]
18
2020-08-20T15:29:12.000Z
2022-03-21T09:41:44.000Z
zunis_lib/zunis/utils/function_wrapper.py
NGoetz/zunis
a2d3ba2392ef802349723465c6559e8eb407db54
[ "MIT" ]
13
2020-08-25T10:53:58.000Z
2022-03-25T15:25:10.000Z
zunis_lib/zunis/utils/function_wrapper.py
NGoetz/zunis
a2d3ba2392ef802349723465c6559e8eb407db54
[ "MIT" ]
2
2020-09-07T17:17:36.000Z
2020-12-30T01:22:23.000Z
"""Function wrappers to provide API-compatible functions""" import torch def wrap_numpy_hypercube_batch_function(f): """Take a function that evaluates on numpy batches with values in the unit hypercube and return a function that evaluates on pytorch batches in the unit hypercube """ def torchf(x): npx = x.detach().cpu().numpy() npfx = f(npx) return torch.tensor(npfx, device=x.device) return torchf def wrap_numpy_compact_batch_function(f, dimensions): """Take a function that evaluates on numpy batches with values in compact intervals provided as a list of shape (d,2) where each element is the pair (lower,upper) of interval boundaries. and return a function that evaluates on pytorch batches in the unit hypercube, weighted by the proper Jacobian factor to preserve integrals. """ tdim = torch.tensor(dimensions) assert tdim.shape[1] == 2, "argument dimensions is expected to have shape (N,2)" assert torch.all(tdim[:, 1] > tdim[:, 0]), "Each dimension is expected to be (a,b) with a<b" starts = tdim[:, 0] lengths = tdim[:, 1] - tdim[:, 0] jac = torch.prod(lengths).cpu().item() def torchf(x): npx = (x * lengths.to(x.device) + starts.to(x.device)).detach().cpu().numpy() npfx = f(npx) return (torch.tensor(npfx) * jac).to(x.device) return torchf def wrap_compact_arguments_function(f, dimensions): """Take a function that evaluates on a sequence of arguments with values in compact intervals provided as a list of shape (d,2) where each element is the pair (lower,upper) of interval boundaries and return a function that evaluates on pytorch batches in the unit hypercube, weighted by the proper Jacobian factor to preserve integrals. Explicitly: f(x_1,x_2,...,x_N) where x_i are numbers in [dimensions[i][0], dimensions[i][1]] returns a single float. """ tdim = torch.tensor(dimensions) assert tdim.shape[1] == 2, "argument dimensions is expected to have shape (N,2)" assert torch.all(tdim[:, 1] > tdim[:, 0]), "Each dimension is expected to be (a,b) with a<b" starts = tdim[:, 0] lengths = tdim[:, 1] - tdim[:, 0] jac = torch.prod(lengths).item() def torchf(x): lxs = (x * lengths.to(x.device) + starts.to(x.device)).detach().cpu().tolist() fxs = torch.zeros(x.shape[0], device=x.device) for i, lx in enumerate(lxs): fxs[i] = f(*lx) return fxs * jac return torchf def wrap_hypercube_arguments_function(f): """Take a function that evaluates on a sequence of arguments with values in the unit hypercube and return a function that evaluates on pytorch batches in the unit hypercube, weighted by the proper Jacobian factor to preserve integrals. Explicitly: f(x_1,x_2,...,x_N) where x_i are numbers in [0, 1] returns a single float. """ def torchf(x): lxs = x.detach().cpu().tolist() fxs = torch.zeros(x.shape[0], device=x.device) for i, lx in enumerate(lxs): fxs[i] = f(*lx) return fxs return torchf
39.64557
120
0.6606
1737012686d95b66a64c0594f35e9dc641baecc5
47,655
py
Python
calico/felix/plugins/fiptgenerator.py
ozdanborne/felix
5eff313e6498b3a7d775aa16cb09fd4578331701
[ "Apache-2.0" ]
6
2016-10-18T04:04:25.000Z
2016-10-18T04:06:49.000Z
calico/felix/plugins/fiptgenerator.py
ozdanborne/felix
5eff313e6498b3a7d775aa16cb09fd4578331701
[ "Apache-2.0" ]
1
2021-06-01T21:45:37.000Z
2021-06-01T21:45:37.000Z
calico/felix/plugins/fiptgenerator.py
ozdanborne/felix
5eff313e6498b3a7d775aa16cb09fd4578331701
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2015-2016 Tigera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ felix.fiptgenerator.py ~~~~~~~~~~~~ Default implementation of the Felix iptables Generator plugin. This module is responsible for generating the vast majority of rules that get programmed to iptables. Specifically this includes: - the per endpoint chains - the per profile chains - the global Felix PREROUTING, INPUT and FORWARD chains. Exceptions are the single rules that get inserted into the top level kernel chains (owned instead by the felix.frules module) and the dispatch chains that fan packets out to the appropriate endpoint chains (owned instead by felix.dispatch). This module is loaded by core Felix as a plugin via the calico.felix.iptables_generator entrypoint, making it theoretically possible for alternative implementations to be loaded instead. However, this interface is currently HIGHLY EXPERIMENTAL. It should not be considered stable, and may change significantly, or be removed completely, in future releases. """ import logging import re import itertools import syslog from calico.common import KNOWN_RULE_KEYS from calico.datamodel_v1 import TieredPolicyId from calico.felix import futils from calico.felix.fplugin import FelixPlugin from calico.felix.profilerules import UnsupportedICMPType from calico.felix.frules import (CHAIN_TO_ENDPOINT, CHAIN_FROM_ENDPOINT, CHAIN_TO_PREFIX, CHAIN_FROM_PREFIX, CHAIN_PREROUTING, CHAIN_POSTROUTING, CHAIN_INPUT, CHAIN_FORWARD, FELIX_PREFIX, CHAIN_FIP_DNAT, CHAIN_FIP_SNAT, CHAIN_TO_IFACE, CHAIN_FROM_IFACE, CHAIN_OUTPUT, CHAIN_FAILSAFE_IN, CHAIN_FAILSAFE_OUT) CHAIN_PROFILE_PREFIX = FELIX_PREFIX + "p-" _log = logging.getLogger(__name__) # Maximum number of port entries in a "multiport" match rule. Ranges count for # 2 entries. MAX_MULTIPORT_ENTRIES = 15 # The default syslog level that packets get logged at when using the log # action. DEFAULT_PACKET_LOG_LEVEL = syslog.LOG_NOTICE class FelixIptablesGenerator(FelixPlugin): """ Felix plugin responsible for generating the actual rules that get written to iptables. """ def __init__(self): self.IFACE_PREFIX = None self.IFACE_MATCH = None self.DEFAULT_INPUT_CHAIN_ACTION = None self.METADATA_IP = None self.METADATA_PORT = None self.IPTABLES_MARK_ACCEPT = None self.IPTABLES_MARK_NEXT_TIER = None self.IPTABLES_MARK_ENDPOINTS = None self.FAILSAFE_INBOUND_PORTS = None self.FAILSAFE_OUTBOUND_PORTS = None self.ACTION_ON_DROP = None def store_and_validate_config(self, config): # We don't have any plugin specific parameters, but we need to save # off any other global config that we're interested in at this point. super(FelixIptablesGenerator, self).store_and_validate_config(config) self.IFACE_PREFIX = config.IFACE_PREFIX self.IFACE_MATCH = [prefix + "+" for prefix in self.IFACE_PREFIX] self.METADATA_IP = config.METADATA_IP self.METADATA_PORT = config.METADATA_PORT self.DEFAULT_INPUT_CHAIN_ACTION = config.DEFAULT_INPUT_CHAIN_ACTION self.IPTABLES_MARK_ACCEPT = config.IPTABLES_MARK_ACCEPT self.IPTABLES_MARK_NEXT_TIER = config.IPTABLES_MARK_NEXT_TIER self.IPTABLES_MARK_ENDPOINTS = config.IPTABLES_MARK_ENDPOINTS self.FAILSAFE_INBOUND_PORTS = config.FAILSAFE_INBOUND_PORTS self.FAILSAFE_OUTBOUND_PORTS = config.FAILSAFE_OUTBOUND_PORTS self.ACTION_ON_DROP = config.ACTION_ON_DROP def raw_rpfilter_failed_chain(self, ip_version): """ Generate the RAW felix-PREROUTING chain -- currently only IPv6. Returns a list of iptables fragments with which to program the felix-PREROUTING chain that is invoked from the IPv6 RAW PREROUTING kernel chain. Note this chain is ONLY INVOKED in the case that packets fail the rpfilter match. The list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. Currently always 6. :returns Tuple: list of rules, set of deps. """ # We only program this chain for IPv6 assert ip_version == 6 chain = self.drop_rules(ip_version, CHAIN_PREROUTING, None, "IPv6 rpfilter failed") return chain, {} def nat_prerouting_chain(self, ip_version): """ Generate the NAT felix-PREROUTING chain. Returns a list of iptables fragments with which to program the felix-PREROUTING chain which is unconditionally invoked from the NAT PREROUTING chain. Note that the list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. :returns Tuple: list of rules, set of deps. """ chain = ["--append %s --jump %s" % (CHAIN_PREROUTING, CHAIN_FIP_DNAT)] deps = set([CHAIN_FIP_DNAT]) if ip_version == 4 and self.METADATA_IP is not None: # Need to expose the metadata server on a link-local. # DNAT tcp -- any any anywhere 169.254.169.254 # tcp dpt:http to:127.0.0.1:9697 chain.append( "--append " + CHAIN_PREROUTING + " " "--protocol tcp " "--dport 80 " "--destination 169.254.169.254/32 " "--jump DNAT --to-destination %s:%s" % (self.METADATA_IP, self.METADATA_PORT)) return chain, deps def nat_postrouting_chain(self, ip_version): """ Generate the NAT felix-POSTROUTING chain. Returns a list of iptables fragments with which to program the felix-POSTROUTING chain which is unconditionally invoked from the NAT POSTROUTING chain. Note that the list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. :returns Tuple: list of rules, set of deps. """ chain = ["--append %s --jump %s" % (CHAIN_POSTROUTING, CHAIN_FIP_SNAT)] deps = set([CHAIN_FIP_SNAT]) return chain, deps def filter_input_chain(self, ip_version, hosts_set_name=None): """ Generate the IPv4/IPv6 FILTER felix-INPUT chains. Returns a list of iptables fragments with which to program the felix-INPUT chain that is unconditionally invoked from both the IPv4 and IPv6 FILTER INPUT kernel chains. Note that the list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. Whether this is the IPv4 or IPv6 FILTER table. :returns Tuple: list of rules, set of deps. """ if ip_version == 4: metadata_addr = self.METADATA_IP metadata_port = self.METADATA_PORT dhcp_src_port = 68 dhcp_dst_port = 67 else: metadata_addr = None metadata_port = None dhcp_src_port = 546 dhcp_dst_port = 547 chain = [] deps = set() if hosts_set_name: # IP-in-IP enabled, drop any IP-in-IP packets that are not from # other Calico hosts. _log.info("IPIP enabled, dropping IPIP packets from non-Calico " "hosts.") # The ipencap proctol uses the ID "4". Some versions of iptables # can't understand protocol names. chain.extend(self.drop_rules( ip_version, CHAIN_INPUT, "--protocol 4 --match set " "! --match-set %s src" % hosts_set_name, None) ) # Allow established connections via the conntrack table. chain.extend(self.drop_rules(ip_version, CHAIN_INPUT, "--match conntrack --ctstate INVALID", None)) chain.append("--append %s --match conntrack " "--ctstate RELATED,ESTABLISHED --jump ACCEPT" % CHAIN_INPUT) chain.append( "--append {chain} --jump MARK --set-mark 0/{mark}".format( chain=CHAIN_INPUT, mark=self.IPTABLES_MARK_ENDPOINTS) ) for iface_match in self.IFACE_MATCH: chain.append( "--append {chain} --in-interface {iface} " "--jump MARK --set-mark {mark}/{mark}".format( chain=CHAIN_INPUT, iface=iface_match, mark=self.IPTABLES_MARK_ENDPOINTS) ) # Incoming traffic on host endpoints. chain.append( "--append {chain} --goto {goto} --match mark " "--mark 0/{mark}".format( chain=CHAIN_INPUT, goto=CHAIN_FROM_IFACE, mark=self.IPTABLES_MARK_ENDPOINTS) ) deps.add(CHAIN_FROM_IFACE) # To act as a router for IPv6, we have to accept various types of # ICMPv6 messages, as follows: # # - 130: multicast listener query. # - 131: multicast listener report. # - 132: multicast listener done. # - 133: router solicitation, which an endpoint uses to request # configuration information rather than waiting for an # unsolicited router advertisement. # - 135: neighbor solicitation. # - 136: neighbor advertisement. if ip_version == 6: for icmp_type in ["130", "131", "132", "133", "135", "136"]: chain.append("--append %s --jump ACCEPT " "--protocol ipv6-icmp " "--icmpv6-type %s" % (CHAIN_INPUT, icmp_type)) if metadata_addr is not None: _log.info("Metadata address specified, whitelisting metadata " "service") chain.append( "--append %s --protocol tcp " "--destination %s --dport %s --jump ACCEPT" % (CHAIN_INPUT, metadata_addr, metadata_port) ) # Special-case: allow DHCP. chain.append( "--append %s --protocol udp --sport %d " "--dport %s --jump ACCEPT" % (CHAIN_INPUT, dhcp_src_port, dhcp_dst_port) ) # Special-case: allow DNS. dns_dst_port = 53 chain.append( "--append %s --protocol udp --dport %s --jump ACCEPT" % (CHAIN_INPUT, dns_dst_port) ) if self.DEFAULT_INPUT_CHAIN_ACTION != "DROP": # Optimisation: the from-ENDPOINT chain signals acceptance of a # packet by RETURNing. If we're going to drop the packet # anyway, don't bother applying the from-ENDPOINT chain. _log.info("Default endpoint->host action set to %s, felix will " "apply per-endpoint policy to packets in the INPUT " "chain.", self.DEFAULT_INPUT_CHAIN_ACTION) chain.append( "--append %s --jump %s" % (CHAIN_INPUT, CHAIN_FROM_ENDPOINT) ) deps.add(CHAIN_FROM_ENDPOINT) if self.DEFAULT_INPUT_CHAIN_ACTION != "RETURN": # Optimisation: RETURN is the default if the packet reaches the end # of the chain so no need to program it. if self.DEFAULT_INPUT_CHAIN_ACTION == "DROP": chain.extend(self.drop_rules(ip_version, CHAIN_INPUT, None, "Drop all packets from " "endpoints to the host")) else: chain.append( "--append %s --jump %s" % (CHAIN_INPUT, self.DEFAULT_INPUT_CHAIN_ACTION) ) return chain, deps def filter_output_chain(self, ip_version, hosts_set_name=None): """ Generate the IPv4/IPv6 FILTER felix-OUTPUT chains. Returns a list of iptables fragments with which to program the felix-OUTPUT chain that is unconditionally invoked from both the IPv4 and IPv6 FILTER OUTPUT kernel chains. Note that the list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. Whether this is the IPv4 or IPv6 FILTER table. :returns Tuple: list of rules, set of deps. """ chain = [] deps = set() # Allow established connections via the conntrack table. chain.extend(self.drop_rules(ip_version, CHAIN_OUTPUT, "--match conntrack --ctstate INVALID", None)) chain.append("--append %s --match conntrack " "--ctstate RELATED,ESTABLISHED --jump ACCEPT" % CHAIN_OUTPUT) chain.append( "--append {chain} --jump MARK --set-mark 0/{mark}".format( chain=CHAIN_OUTPUT, mark=self.IPTABLES_MARK_ENDPOINTS) ) # Outgoing traffic on host endpoints. for iface_match in self.IFACE_MATCH: chain.append( "--append {chain} --out-interface {iface} " "--jump MARK --set-mark {mark}/{mark}".format( chain=CHAIN_OUTPUT, iface=iface_match, mark=self.IPTABLES_MARK_ENDPOINTS) ) chain.append( "--append {chain} --goto {goto} --match mark " "--mark 0/{mark}".format( chain=CHAIN_OUTPUT, goto=CHAIN_TO_IFACE, mark=self.IPTABLES_MARK_ENDPOINTS) ) deps.add(CHAIN_TO_IFACE) return chain, deps def filter_forward_chain(self, ip_version): """ Generate the IPv4/IPv6 FILTER felix-FORWARD chains. Returns a list of iptables fragments with which to program the felix-FORWARD chain that is unconditionally invoked from both the IPv4 and IPv6 FILTER FORWARD kernel chains. Note that the list returned here should be the complete set of rules required as any existing chain will be overwritten. :param ip_version. Whether this is the IPv4 or IPv6 FILTER table. :returns Tuple: list of rules, set of deps. """ forward_chain = [] for iface_match in self.IFACE_MATCH: forward_chain.extend(self.drop_rules( ip_version, CHAIN_FORWARD, "--in-interface %s --match conntrack --ctstate " "INVALID" % iface_match, None)) forward_chain.extend( self.drop_rules( ip_version, CHAIN_FORWARD, "--out-interface %s --match conntrack --ctstate " "INVALID" % iface_match, None)) forward_chain.extend([ # First, a pair of conntrack rules, which accept established # flows to/from workload interfaces. "--append %s --in-interface %s --match conntrack " "--ctstate RELATED,ESTABLISHED --jump ACCEPT" % (CHAIN_FORWARD, iface_match), "--append %s --out-interface %s --match conntrack " "--ctstate RELATED,ESTABLISHED --jump ACCEPT" % (CHAIN_FORWARD, iface_match), # Then, for traffic from a workload interface, jump to the # from endpoint chain. It will either DROP the packet or, # if policy allows, return it to this chain for further # processing. "--append %s --jump %s --in-interface %s" % (CHAIN_FORWARD, CHAIN_FROM_ENDPOINT, iface_match), # Then, for traffic to a workload interface, jump to the # "to endpoint" chain. Note: a packet that's going from one # endpoint to another on the same host will go through both # the "from" and "to" chains. "--append %s --jump %s --out-interface %s" % (CHAIN_FORWARD, CHAIN_TO_ENDPOINT, iface_match), # Finally, if the packet is from/to a workload and it passes # both the "from" and "to" chains without being dropped, it # must be allowed by policy; ACCEPT it. "--append %s --jump ACCEPT --in-interface %s" % (CHAIN_FORWARD, iface_match), "--append %s --jump ACCEPT --out-interface %s" % (CHAIN_FORWARD, iface_match), ]) return forward_chain, set([CHAIN_FROM_ENDPOINT, CHAIN_TO_ENDPOINT]) def endpoint_chain_names(self, endpoint_suffix): """ Returns the set of chains belonging to a given endpoint. This is used e.g. to identify the set of chains that should be deleted to clean up a endpoint. :param endpoint_suffix: The suffix of the endpoint we want to know the chains for. :returns set[string]: the set of chain names """ to_chain_name = (CHAIN_TO_PREFIX + endpoint_suffix) from_chain_name = (CHAIN_FROM_PREFIX + endpoint_suffix) return set([to_chain_name, from_chain_name]) def host_endpoint_updates(self, ip_version, endpoint_id, suffix, profile_ids, pol_ids_by_tier): return self.endpoint_updates( ip_version=ip_version, endpoint_id=endpoint_id, suffix=suffix, mac=None, profile_ids=profile_ids, pol_ids_by_tier=pol_ids_by_tier, to_direction="outbound", from_direction="inbound", with_failsafe=True, ) def endpoint_updates(self, ip_version, endpoint_id, suffix, mac, profile_ids, pol_ids_by_tier, to_direction="inbound", from_direction="outbound", with_failsafe=False): """ Generate a set of iptables updates that will program all of the chains needed for a given endpoint. For each endpoint the following two top level chains must be defined as they are referenced from the dispatch chains programmed by core Felix. - CHAIN_TO_PREFIX + endpoint_suffix - CHAIN_FROM_PREFIX + endpoint_suffix :param ip_version. Whether these are for the IPv4 or IPv6 iptables. :param endpoint_id: The endpoint's ID. :param suffix: The endpoint's suffix. :param mac: The endpoint's MAC address :param profile_ids: the set of profile_ids associated with this endpoint :param OrderedDict pol_ids_by_tier: ordered dict mapping tier name to list of profiles. :returns Tuple: updates, deps """ to_chain_name = (CHAIN_TO_PREFIX + suffix) from_chain_name = (CHAIN_FROM_PREFIX + suffix) to_chain, to_deps = self._build_to_or_from_chain( ip_version, endpoint_id, profile_ids, pol_ids_by_tier, to_chain_name, to_direction, with_failsafe=with_failsafe, ) from_chain, from_deps = self._build_to_or_from_chain( ip_version, endpoint_id, profile_ids, pol_ids_by_tier, from_chain_name, from_direction, expected_mac=mac, with_failsafe=with_failsafe, ) updates = {to_chain_name: to_chain, from_chain_name: from_chain} deps = {to_chain_name: to_deps, from_chain_name: from_deps} return updates, deps def failsafe_in_chain(self): updates = [] for port in self.FAILSAFE_INBOUND_PORTS: updates.append("--append %s --protocol tcp --dport %s " "--jump ACCEPT" % (CHAIN_FAILSAFE_IN, port)) deps = set() return updates, deps def failsafe_out_chain(self): updates = [] for port in self.FAILSAFE_OUTBOUND_PORTS: updates.append("--append %s --protocol tcp --dport %s " "--jump ACCEPT" % (CHAIN_FAILSAFE_OUT, port)) deps = set() return updates, deps def profile_chain_names(self, profile_id): """ Returns the set of chains belonging to a given profile. This is used e.g. to identify the set of chains that should be deleted to clean up a profile. :param profile_id: The profile ID we want to know the chains for. :returns set[string]: the set of chain names """ return set([self._profile_to_chain_name("inbound", profile_id), self._profile_to_chain_name("outbound", profile_id)]) def profile_updates(self, profile_id, profile, ip_version, tag_to_ipset, selector_to_ipset, comment_tag=None): """ Generate a set of iptables updates that will program all of the chains needed for a given profile. :returns Tuple: updates, deps """ # Generates an inbound and an outbound chain for each profile. # Within each chain, the logic is as follows: # * If we hit an allow rule, we'll return with the Accept mark bit set # to indicate that we matched. # * If we hit a deny rule, we'll drop the packet immediately. # * If we reach the end of the chain, we'll return with no mark set. updates = {} deps = {} for direction in ("inbound", "outbound"): chain_name = self._profile_to_chain_name(direction, profile_id) rules_key = "%s_rules" % direction rules = profile.get(rules_key, []) fragments = [] for r in rules: rule_version = r.get('ip_version') if rule_version is None or rule_version == ip_version: fragments.extend(self._rule_to_iptables_fragments( chain_name, r, ip_version, tag_to_ipset, selector_to_ipset)) updates[chain_name] = fragments return updates, deps def logged_drop_rules(self, ip_version, chain_name, rule_spec=None, comment=None, ipt_action="--append", log_pfx=None): """ Return a list of iptables updates that can be applied to a chain to drop packets that meet a given rule_spec, with optional log. :param ip_version. Whether these are for the IPv4 or IPv6 iptables. :param chain_name: the chain that the updates will be applied to :param rule_spec: the rule spec (e.g. match criteria). May be None to drop all packets. :param comment: any comment that should be associated with the rule. May be None to not include a comment. :param ipt_action: the action that should be used to apply the rule (e.g. --append or --insert) :param log_pfx: If not None, the rules will trigger an iptables LOG action with this log prefix before dropping the packet. :return list: a list of iptables fragments of the form [ipt_action] [chain_name] [rule_spec] [action] [comment] e.g. --append my_chain --match conntrack --ctstate INVALID --jump DROP """ drop_rules = self.drop_rules(ip_version, chain_name, rule_spec=rule_spec, comment=comment, ipt_action=ipt_action) if log_pfx is not None: log_target = self._log_target(log_pfx=log_pfx) log_rule = " ".join( [ipt_action, chain_name, rule_spec, "--jump", log_target] ) drop_rules[0:0] = [log_rule] return drop_rules def drop_rules(self, ip_version, chain_name, rule_spec=None, comment=None, ipt_action="--append"): """ Return a list of iptables updates that can be applied to a chain to drop packets that meet a given rule_spec. :param ip_version. Whether these are for the IPv4 or IPv6 iptables. :param chain_name: the chain that the updates will be applied to :param rule_spec: the rule spec (e.g. match criteria). May be None to drop all packets. :param comment: any comment that should be associated with the rule. May be None to not include a comment. :param ipt_action: the action that should be used to apply the rule (e.g. --append or --insert) :return list: a list of iptables fragments of the form [ipt_action] [chain_name] [rule_spec] [action] [comment] e.g. --append my_chain --match conntrack --ctstate INVALID --jump DROP """ comment_str = None if comment is not None: comment = comment[:255] # Limit imposed by iptables. assert re.match(r'[\w: ]{,255}', comment), \ "Invalid comment %r" % comment comment_str = '-m comment --comment "%s"' % comment rules = [] if self.ACTION_ON_DROP.startswith("LOG-"): # log-and-accept, log-and-drop. log_spec = '--jump LOG --log-prefix "calico-drop: " --log-level 4' log_rule = " ".join( [p for p in [ipt_action, chain_name, rule_spec, log_spec, comment_str] if p is not None] ) rules.append(log_rule) if self.ACTION_ON_DROP.endswith("ACCEPT"): action_spec = ( '--jump ACCEPT -m comment ' '--comment "!SECURITY DISABLED! DROP overridden to ACCEPT"' ) else: assert self.ACTION_ON_DROP.endswith("DROP") action_spec = "--jump DROP" drop_rule = " ".join( [p for p in [ipt_action, chain_name, rule_spec, action_spec, comment_str] if p is not None] ) rules.append(drop_rule) return rules def _build_to_or_from_chain(self, ip_version, endpoint_id, profile_ids, prof_ids_by_tier, chain_name, direction, expected_mac=None, with_failsafe=False): """ Generate the necessary set of iptables fragments for a to or from chain for a given endpoint. :param ip_version. Whether this chain is for IPv4 or IPv6 iptables. :param endpoint_id: The endpoint's ID. :param profile_ids: The set of profile_ids associated with this endpoint. :param chain_name: The name of the chain to generate. :param direction: One of "inbound" or "outbound". :param expected_mac: The expected source MAC address. If not None then the chain will explicitly drop any packets that do not have this expected source MAC address. :returns Tuple: chain, deps. Chain is a list of fragments that can be submitted to iptables to program the requested chain. Deps is a set containing names of chains that this endpoint chain depends on. """ if with_failsafe: if direction == "inbound": failsafe_chain = CHAIN_FAILSAFE_IN else: failsafe_chain = CHAIN_FAILSAFE_OUT chain = [ "--append %(chain)s --jump %(failsafe_chain)s" % { "chain": chain_name, "failsafe_chain": failsafe_chain } ] deps = {failsafe_chain} else: chain = [] deps = set() # Ensure the Accept MARK is set to 0 when we start so that unmatched # packets will be dropped. chain.append( "--append %(chain)s --jump MARK --set-mark 0/%(mark)s" % { 'chain': chain_name, 'mark': self.IPTABLES_MARK_ACCEPT } ) if expected_mac: _log.debug("Policing source MAC: %s", expected_mac) chain.extend(self.drop_rules( ip_version, chain_name, "--match mac ! --mac-source %s" % expected_mac, "Incorrect source MAC")) # Tiered policies come first. # Each tier must either accept the packet outright or pass it to the # next tier for further processing. for tier, pol_ids in prof_ids_by_tier.iteritems(): # Zero the "next-tier packet" mark. Then process each policy # in turn. chain.append('--append %(chain)s ' '--jump MARK --set-mark 0/%(mark)s ' '--match comment --comment "Start of tier %(tier)s"' % { "chain": chain_name, "mark": self.IPTABLES_MARK_NEXT_TIER, "tier": tier, }) for pol_id in pol_ids: policy_chain = self._profile_to_chain_name(direction, pol_id) deps.add(policy_chain) # Only process the profile if none of the previous profiles # set the next-tier mark. chain.append("--append %(chain)s " "--match mark --mark 0/%(mark)s " "--jump %(pol_chain)s" % { "chain": chain_name, "mark": self.IPTABLES_MARK_NEXT_TIER, "pol_chain": policy_chain, }) # If the policy accepted the packet, it sets the Accept # MARK==1. Immediately RETURN the packet to signal that it's # been accepted. chain.append('--append %(chain)s ' '--match mark --mark %(mark)s/%(mark)s ' '--match comment ' '--comment "Return if policy accepted" ' '--jump RETURN' % { "chain": chain_name, "mark": self.IPTABLES_MARK_ACCEPT, }) chain.extend(self.drop_rules( ip_version, chain_name, "--match mark --mark 0/%s" % self.IPTABLES_MARK_NEXT_TIER, comment="Drop if no policy in tier passed" )) # Then, jump to each directly-referenced profile in turn. The profile # will do one of the following: # # * DROP the packet; in which case we won't see it again. # * RETURN the packet with Accept MARK==1, indicating it accepted the # packet. In which case, we RETURN and skip further profiles. # * RETURN the packet with Accept MARK==0, indicating it did not match # the packet. In which case, we carry on and process the next # profile. for profile_id in profile_ids: policy_chain = self._profile_to_chain_name(direction, profile_id) deps.add(policy_chain) chain.append("--append %s --jump %s" % (chain_name, policy_chain)) # If the profile accepted the packet, it sets Accept MARK==1. # Immediately RETURN the packet to signal that it's been accepted. chain.append( '--append %(chain)s --match mark --mark %(mark)s/%(mark)s ' '--match comment --comment "Profile accepted packet" ' '--jump RETURN' % { 'chain': chain_name, 'mark': self.IPTABLES_MARK_ACCEPT } ) # Default drop rule. chain.extend( self.drop_rules( ip_version, chain_name, None, "Packet did not match any profile (endpoint %s)" % endpoint_id ) ) return chain, deps def _profile_to_chain_name(self, inbound_or_outbound, profile_id): """ Returns the name of the chain to use for a given profile (and direction). The profile ID that we are supplied might be (far) too long for us to use, but truncating it is dangerous (for example, in OpenStack the profile is the ID of each security group in use, joined with underscores). Hence we make a unique string out of it and use that. :param inbound_or_outbound: Either "inbound" or "outbound". :param profile_id: The profile ID we want to know a name for. :returns string: The name of the chain """ if isinstance(profile_id, TieredPolicyId): profile_id = "%s/%s" % (profile_id.tier, profile_id.policy_id) profile_string = futils.uniquely_shorten(profile_id, 16) return CHAIN_PROFILE_PREFIX + "%s-%s" % (profile_string, inbound_or_outbound[:1]) def _rule_to_iptables_fragments(self, chain_name, rule, ip_version, tag_to_ipset, selector_to_ipset): """ Convert a rule dict to a list of iptables fragments suitable to use with iptables-restore. Most rules result in result list containing one item. :param str chain_name: Name of the chain this rule belongs to (used in the --append) :param dict[str,str|list|int] rule: Rule dict. :param ip_version. Whether these are for the IPv4 or IPv6 iptables. :param dict[str] tag_to_ipset: dictionary mapping from tag key to ipset name. :param dict[SelectorExpression,str] selector_to_ipset: dict mapping from selector to the name of the ipset that represents it. :return list[str]: iptables --append fragments. """ # Check we've not got any unknown fields. unknown_keys = set(rule.keys()) - KNOWN_RULE_KEYS assert not unknown_keys, "Unknown keys: %s" % ", ".join(unknown_keys) # Ports are special, we have a limit on the number of ports that can go # in one rule so we need to break up rules with a lot of ports into # chunks. We take the cross product of the chunks to cover all the # combinations. If there are not ports or if there are only a few ports # then the cross product ends up with only one entry. src_ports = rule.get("src_ports", []) dst_ports = rule.get("dst_ports", []) src_port_chunks = self._split_port_lists(src_ports) dst_port_chunks = self._split_port_lists(dst_ports) # Only need a shallow copy so we can replace ports. rule_copy = dict(rule) try: fragments = [] for src_ports, dst_ports in itertools.product(src_port_chunks, dst_port_chunks): rule_copy["src_ports"] = src_ports rule_copy["dst_ports"] = dst_ports frags = self._rule_to_iptables_fragments_inner( chain_name, rule_copy, ip_version, tag_to_ipset, selector_to_ipset) fragments.extend(frags) return fragments except Exception as e: # Defensive: isolate failures to parse the rule (which has already # passed validation by this point) to this chain. _log.exception("Failed to parse rules: %r", e) return self.drop_rules(ip_version, chain_name, None, "ERROR failed to parse rules") def _split_port_lists(self, ports): """ Splits a list of ports and port ranges into chunks that are small enough to use with the multiport match. :param list[str|int] ports: list of ports or ranges, specified with ":"; for example, '1024:6000' :return list[list[str]]: list of chunks. If the input is empty, then returns a list containing a single empty list. """ chunks = [] chunk = [] entries_in_chunk = 0 for port_or_range in ports: port_or_range = str(port_or_range) # Defensive, support ints too. if ":" in port_or_range: # This is a range, which counts for 2 entries. num_entries = 2 else: # Just a port. num_entries = 1 if entries_in_chunk + num_entries > MAX_MULTIPORT_ENTRIES: chunks.append(chunk) chunk = [] entries_in_chunk = 0 chunk.append(port_or_range) entries_in_chunk += num_entries if chunk or not chunks: chunks.append(chunk) return chunks def _rule_to_iptables_fragments_inner(self, chain_name, rule, ip_version, tag_to_ipset, selector_to_ipset): """ Convert a rule dict to iptables fragments suitable to use with iptables-restore. :param str chain_name: Name of the chain this rule belongs to (used in the --append) :param dict[str,str|list|int] rule: Rule dict. :param ip_version. Whether these are for the IPv4 or IPv6 iptables. :param dict[str] tag_to_ipset: dictionary mapping from tag key to ipset name. :param dict[SelectorExpression,str] selector_to_ipset: dict mapping from selector to the name of the ipset that represents it. :returns list[str]: list of iptables --append fragments. """ # Check we've not got any unknown fields. _log.debug("converting rule %s to iptables fragments", rule) unknown_keys = set(rule.keys()) - KNOWN_RULE_KEYS assert not unknown_keys, "Unknown keys: %s" % ", ".join(unknown_keys) # Build up the update in chunks and join them below. rule_spec = [] append = lambda *args: rule_spec.extend(args) proto = rule.get("protocol") for neg_pfx in ["", "!"]: maybe_neg_proto = rule.get(neg_pfx + "protocol") if maybe_neg_proto: append(neg_pfx, "--protocol", str(maybe_neg_proto)) for dirn in ["src", "dst"]: # Some params use the long-form of the name. direction = "source" if dirn == "src" else "destination" # Network (CIDR). net_key = neg_pfx + dirn + "_net" if net_key in rule and rule[net_key] is not None: ip_or_cidr = rule[net_key] if (":" in ip_or_cidr) == (ip_version == 6): append(neg_pfx, "--%s" % direction, ip_or_cidr) # Tag, which maps to an ipset. tag_key = neg_pfx + dirn + "_tag" if tag_key in rule and rule[tag_key] is not None: ipset_name = tag_to_ipset[rule[tag_key]] append("--match set", neg_pfx, "--match-set", ipset_name, dirn) # Selector, likewise. sel_key = neg_pfx + dirn + "_selector" if sel_key in rule and rule[sel_key] is not None: ipset_name = selector_to_ipset[rule[sel_key]] append("--match set", neg_pfx, "--match-set", ipset_name, dirn) # Port lists/ranges, which we map to multiport. ports_key = neg_pfx + dirn + "_ports" ports = rule.get(ports_key) if ports: # Ignore empty list. # Can only match if the (non-negated) is set to a supported # value. assert proto in ["tcp", "udp"], \ "Protocol %s not supported with %s (%s)" % \ (proto, ports_key, rule) if neg_pfx == '': # Positive match; caller has already chunked the # ports list up into blocks of suitable length for # _ports_to_multiport. We only see one chunk. ports_str = self._ports_to_multiport(ports) append("--match multiport", "--%s-ports" % direction, ports_str) else: # This is a negative match. While an individual # multi-port match can only match 15 ports we can # supply multiple multi-port matches, which will be # and-ed together. (This doesn't work for positive # matches because we need those to be or-ed together.) port_chunks = self._split_port_lists(ports) for chunk in port_chunks: ports_str = self._ports_to_multiport(chunk) append("--match multiport", "!", "--%s-ports" % direction, ports_str) icmp_type = rule.get(neg_pfx + "icmp_type") icmp_code = rule.get(neg_pfx + "icmp_code") if icmp_type is not None: _log.debug("ICMP type set to %s, checking for a more " "detailed code", icmp_type) if icmp_type == 255: # Temporary work-around for this issue: # https://github.com/projectcalico/felix/issues/451 # This exception will be caught by the caller, which will # replace this rule with a DROP rule. That's arguably # better than forbidding this case in the validation # routine, which would replace the whole chain with a DROP. _log.error("Kernel doesn't support matching on ICMP type " "255.") raise UnsupportedICMPType() assert isinstance(icmp_type, int), "ICMP type should be an int" if icmp_code is not None: _log.debug("ICMP code set to %s", icmp_code) assert isinstance(icmp_code, int), "ICMP code should be " \ "an int" icmp_filter = "%s/%s" % (icmp_type, icmp_code) else: icmp_filter = icmp_type if proto == "icmp" and ip_version == 4: append("--match icmp", neg_pfx, "--icmp-type", icmp_filter) elif ip_version == 6: assert proto == "icmpv6" # Note variant spelling of icmp[v]6 append("--match icmp6", neg_pfx, "--icmpv6-type", icmp_filter) action = rule.get("action", "allow") extra_rules = [] if action in {"allow", "next-tier"}: if action == "allow": mark_bit = self.IPTABLES_MARK_ACCEPT else: mark_bit = self.IPTABLES_MARK_NEXT_TIER # allow and next-tier require two rules, one to mark the packet # so the parent chain knows what happened and a second rule to # return to the parent chain if the packet was marked. ipt_target = "MARK --set-mark %(mark)s/%(mark)s" % { "mark": mark_bit } mark_match_fragment = ( "--append %(chain)s --match mark --mark %(mark)s/%(mark)s " % { "chain": chain_name, "mark": mark_bit, } ) if "log_prefix" in rule: # We've been asked to log when we hit this rule. extra_rules.append( mark_match_fragment + "--jump " + self._log_target(rule=rule) ) extra_rules.append(mark_match_fragment + "--jump RETURN") elif action == "log": ipt_target = self._log_target(rule=rule) elif action == "deny": ipt_target = "DROP" else: # Validation should prevent unknown actions from getting this # far. raise ValueError("Unknown rule action %s" % action) rule_spec_str = " ".join(str(x) for x in rule_spec if x != "") if ipt_target == "DROP": rules = self.logged_drop_rules(ip_version, chain_name, rule_spec_str, log_pfx=rule.get("log_prefix")) else: rules = [" ".join(["--append", chain_name, rule_spec_str, "--jump", ipt_target])] if extra_rules: rules.extend(extra_rules) return rules def _log_target(self, rule=None, log_pfx=None): """ :return: an iptables logging target "LOG --log-prefix ..." for the given rule or explicit prefix. """ if log_pfx is None: log_pfx = rule.get("log_prefix", "calico-packet") log_target = ( 'LOG --log-prefix "%s: " --log-level %s' % (log_pfx, DEFAULT_PACKET_LOG_LEVEL) ) return log_target def _ports_to_multiport(self, ports): """ Convert a list of ports and ranges into a multiport match string. :param list[int|str] ports: List of ports as per the datamodel. """ ports_str = ','.join([str(p) for p in ports]) # Check that the output has at most 15 port numbers in i, which is a # limit imposed by iptables. Ranges, such as "1234:5678" count as 2 # numbers. assert (ports_str.count(",") + ports_str.count(":") + 1) <= 15, \ "Too many ports (%s)" % ports_str return ports_str
43.009928
79
0.562333
409f4fe3277097ce43757facb093414115570ce0
182
py
Python
app/ssp_module/errors.py
khushalt/ssp_india
02d760ae25917e86ea03ac5f5845068d7d987bdb
[ "MIT" ]
1
2020-07-04T14:42:49.000Z
2020-07-04T14:42:49.000Z
app/ssp_module/errors.py
khushalt/ssp_india
02d760ae25917e86ea03ac5f5845068d7d987bdb
[ "MIT" ]
null
null
null
app/ssp_module/errors.py
khushalt/ssp_india
02d760ae25917e86ea03ac5f5845068d7d987bdb
[ "MIT" ]
null
null
null
from flask import render_template from app.ssp_module import create_app @create_app().errorhandler(404) def not_found_error(error): return render_template('error/404.html'), 404
30.333333
49
0.807692
e969021a6cfb1ee2142d5bf0508049c43785e67f
5,913
py
Python
sct_custom/spinalcordtoolbox/scripts/sct_crop_image.py
nidebroux/lumbosacral_segmentation
3217960c6f0f5c3886dfdf46e1286ad2f737f4aa
[ "Unlicense", "MIT" ]
1
2021-09-07T08:52:21.000Z
2021-09-07T08:52:21.000Z
sct_custom/spinalcordtoolbox/scripts/sct_crop_image.py
nidebroux/lumbosacral_segmentation
3217960c6f0f5c3886dfdf46e1286ad2f737f4aa
[ "Unlicense", "MIT" ]
null
null
null
sct_custom/spinalcordtoolbox/scripts/sct_crop_image.py
nidebroux/lumbosacral_segmentation
3217960c6f0f5c3886dfdf46e1286ad2f737f4aa
[ "Unlicense", "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 # # CLI script to crop an image. # # Copyright (c) 2019 Polytechnique Montreal <www.neuro.polymtl.ca> # Authors: Julien Cohen-Adad # # About the license: see the file LICENSE.TXT import sys import os from spinalcordtoolbox.cropping import ImageCropper, BoundingBox from spinalcordtoolbox.image import Image, add_suffix from spinalcordtoolbox.utils import SCTArgumentParser, Metavar, init_sct, display_viewer_syntax, set_global_loglevel def get_parser(): parser = SCTArgumentParser( description="Tools to crop an image. Either via command line or via a Graphical User Interface (GUI). See " "example usage at the end.", epilog="EXAMPLES:\n" "- To crop an image using the GUI (this does not allow to crop along the right-left dimension):\n" "sct_crop_image -i t2.nii.gz -g 1\n\n" "- To crop an image using a binary mask:\n" "sct_crop_image -i t2.nii.gz -m mask.nii.gz\n\n" "- To crop an image using a reference image:\n" "sct_crop_image -i t2.nii.gz -ref mt1.nii.gz\n\n" "- To crop an image by specifying min/max (you don't need to specify all dimensions). In the example " "below, cropping will occur between x=5 and x=60, and between z=5 and z=zmax-1\n" "sct_crop_image -i t2.nii.gz -xmin 5 -xmax 60 -zmin 5 -zmax -2\n\n" ) mandatoryArguments = parser.add_argument_group("\nMANDATORY ARGUMENTS") mandatoryArguments.add_argument( '-i', required=True, help="Input image. Example: t2.nii.gz", metavar=Metavar.file, ) optional = parser.add_argument_group("\nOPTIONAL ARGUMENTS") optional.add_argument( '-h', '--help', action='help', help="Show this help message and exit") optional.add_argument( '-o', help="Output image. By default, the suffix '_crop' will be added to the input image.", metavar=Metavar.str, ) optional.add_argument( '-g', type=int, help="0: Cropping via command line | 1: Cropping via GUI. Has priority over -m.", choices=(0, 1), default=0, ) optional.add_argument( '-m', help="Binary mask that will be used to extract bounding box for cropping the image. Has priority over -ref.", metavar=Metavar.file, ) optional.add_argument( '-ref', help="Image which dimensions (in the physical coordinate system) will be used as a reference to crop the " "input image. Only works for 3D images. Has priority over min/max method.", metavar=Metavar.file, ) optional.add_argument( '-xmin', type=int, default=0, help="Lower bound for cropping along X.", metavar=Metavar.int, ) optional.add_argument( '-xmax', type=int, default=-1, help="Higher bound for cropping along X. Setting '-1' will crop to the maximum dimension (i.e. no change), " "'-2' will crop to the maximum dimension minus 1 slice, etc.", metavar=Metavar.int, ) optional.add_argument( '-ymin', type=int, default=0, help="Lower bound for cropping along Y.", metavar=Metavar.int, ) optional.add_argument( '-ymax', type=int, default=-1, help="Higher bound for cropping along Y. Follows the same rules as xmax.", metavar=Metavar.int, ) optional.add_argument( '-zmin', type=int, default=0, help="Lower bound for cropping along Z.", metavar=Metavar.int, ) optional.add_argument( '-zmax', type=int, default=-1, help="Higher bound for cropping along Z. Follows the same rules as xmax.", metavar=Metavar.int, ) optional.add_argument( '-b', type=int, default=None, help="If this flag is declared, the image will not be cropped (i.e. the dimension will not change). Instead, " "voxels outside the bounding box will be set to the value specified by this flag. For example, to have " "zeros outside the bounding box, use: '-b 0'", metavar=Metavar.int, ) optional.add_argument( '-v', metavar=Metavar.int, type=int, choices=[0, 1, 2], default=1, # Values [0, 1, 2] map to logging levels [WARNING, INFO, DEBUG], but are also used as "if verbose == #" in API help="Verbosity. 0: Display only errors/warnings, 1: Errors/warnings + info messages, 2: Debug mode") return parser def main(argv=None): """ Main function :param argv: :return: """ parser = get_parser() arguments = parser.parse_args(argv) verbose = arguments.v set_global_loglevel(verbose=verbose) # initialize ImageCropper cropper = ImageCropper(Image(arguments.i)) cropper.verbose = verbose # Switch across cropping methods if arguments.g: cropper.get_bbox_from_gui() elif arguments.m: cropper.get_bbox_from_mask(Image(arguments.m)) elif arguments.ref: cropper.get_bbox_from_ref(Image(arguments.ref)) else: cropper.get_bbox_from_minmax( BoundingBox(arguments.xmin, arguments.xmax, arguments.ymin, arguments.ymax, arguments.zmin, arguments.zmax) ) # Crop image img_crop = cropper.crop(background=arguments.b) # Write cropped image to file if arguments.o is None: fname_out = add_suffix(arguments.i, '_crop') else: fname_out = arguments.o img_crop.save(fname_out) display_viewer_syntax([arguments.i, fname_out]) if __name__ == "__main__": init_sct() main(sys.argv[1:])
32.489011
118
0.611703
1b21b3ce9aa871f15ec056aca3271ed0019d0b68
1,589
gyp
Python
third_party/fontconfig/fontconfig.gyp
iplo/Chain
8bc8943d66285d5258fffc41bed7c840516c4422
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
231
2015-01-08T09:04:44.000Z
2021-12-30T03:03:10.000Z
third_party/fontconfig/fontconfig.gyp
JasonEric/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2017-02-14T21:55:58.000Z
2017-02-14T21:55:58.000Z
third_party/fontconfig/fontconfig.gyp
JasonEric/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
268
2015-01-21T05:53:28.000Z
2022-03-25T22:09:01.000Z
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'fontconfig', 'type': '<(component)', 'dependencies' : [ '../zlib/zlib.gyp:zlib', '../../build/linux/system.gyp:freetype2', '../libxml/libxml.gyp:libxml', ], 'defines': [ 'HAVE_CONFIG_H', 'FC_CACHEDIR="/var/cache/fontconfig"', 'FONTCONFIG_PATH="/etc/fonts"', ], 'sources': [ 'src/src/fcarch.h', 'src/src/fcatomic.c', 'src/src/fcblanks.c', 'src/src/fccache.c', 'src/src/fccfg.c', 'src/src/fccharset.c', 'src/src/fccompat.c', 'src/src/fcdbg.c', 'src/src/fcdefault.c', 'src/src/fcdir.c', 'src/src/fcformat.c', 'src/src/fcfreetype.c', 'src/src/fcfs.c', 'src/src/fchash.c', 'src/src/fcinit.c', 'src/src/fclang.c', 'src/src/fclist.c', 'src/src/fcmatch.c', 'src/src/fcmatrix.c', 'src/src/fcname.c', 'src/src/fcobjs.c', 'src/src/fcpat.c', 'src/src/fcserialize.c', 'src/src/fcstat.c', 'src/src/fcstr.c', 'src/src/fcxml.c', 'src/src/ftglue.h', 'src/src/ftglue.c', ], 'include_dirs': [ 'src', 'include', 'include/src', ], 'direct_dependent_settings': { 'include_dirs': [ 'src', ], }, }, ], }
25.222222
72
0.488357
bcfbfe486a266b015cb48714e8753a1d0909ad34
1,126
py
Python
UltronRoBo/utils/filter_groups.py
UltronRoBo/UltronRoBoAssistant
874dcf725d453ffabd85543533d2a07676af4d65
[ "MIT" ]
null
null
null
UltronRoBo/utils/filter_groups.py
UltronRoBo/UltronRoBoAssistant
874dcf725d453ffabd85543533d2a07676af4d65
[ "MIT" ]
null
null
null
UltronRoBo/utils/filter_groups.py
UltronRoBo/UltronRoBoAssistant
874dcf725d453ffabd85543533d2a07676af4d65
[ "MIT" ]
null
null
null
""" MIT License Copyright (c) 2021 UltronRoBo Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ karma_positive_group = 3 karma_negative_group = 4
41.703704
78
0.801066
f63217b8619e680626a8582b22c6519590b2800c
227
py
Python
Programmers/[cutz]hate same num.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
3
2019-11-26T14:31:01.000Z
2020-01-10T18:19:46.000Z
Programmers/[cutz]hate same num.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
null
null
null
Programmers/[cutz]hate same num.py
cutz-j/AlgorithmStudy
de0f81220e29bd5e109d174800f507b12a3bee36
[ "MIT" ]
null
null
null
import sys def solution(arr): # 중복 수 제거 / 순서 유지 # 10**6 --> O(n) answer = [arr[0]] for a in arr[1:]: if a == answer[-1]: continue else: answer.append(a) return answer
18.916667
28
0.45815
9b14420a0061ef096b38daa64cd2955d62ae77e1
21,427
py
Python
lms/resources/_js_config/__init__.py
hypothesis/lms
722dac444dc1e73298eea5193f871f3ddefe46fd
[ "BSD-2-Clause" ]
38
2017-12-30T23:49:53.000Z
2022-02-15T21:07:49.000Z
lms/resources/_js_config/__init__.py
hypothesis/lms
722dac444dc1e73298eea5193f871f3ddefe46fd
[ "BSD-2-Clause" ]
1,733
2017-11-09T18:46:05.000Z
2022-03-31T11:05:50.000Z
lms/resources/_js_config/__init__.py
hypothesis/lms
722dac444dc1e73298eea5193f871f3ddefe46fd
[ "BSD-2-Clause" ]
10
2018-07-11T17:12:46.000Z
2022-01-07T20:00:23.000Z
import functools from enum import Enum from typing import List, Optional from lms.models import ApplicationInstance, GroupInfo, HUser from lms.resources._js_config.file_picker_config import FilePickerConfig from lms.services import HAPIError from lms.validation.authentication import BearerTokenSchema from lms.views.helpers import via_url class JSConfig: """The config for the app's JavaScript code.""" class Mode(str, Enum): OAUTH2_REDIRECT_ERROR = "oauth2-redirect-error" BASIC_LTI_LAUNCH = "basic-lti-launch" CONTENT_ITEM_SELECTION = "content-item-selection" ERROR_DIALOG = "error-dialog" class ErrorCode(str, Enum): BLACKBOARD_MISSING_INTEGRATION = "blackboard_missing_integration" CANVAS_INVALID_SCOPE = "canvas_invalid_scope" REUSED_CONSUMER_KEY = "reused_consumer_key" def __init__(self, context, request): self._context = context self._request = request self._authority = request.registry.settings["h_authority"] self._grading_info_service = request.find_service(name="grading_info") self._lti_user = request.lti_user @property def _h_user(self): return self._lti_user.h_user @property def _consumer_key(self): return self._lti_user.oauth_consumer_key def _application_instance(self): """ Return the current request's ApplicationInstance. :raise ApplicationInstanceNotFound: if request.lti_user.oauth_consumer_key isn't in the DB """ return self._request.find_service(name="application_instance").get_current() def add_document_url(self, document_url): """ Set the document to the document at the given document_url. This configures the frontend to inject the Via iframe with this URL as its src immediately, without making any further API requests to get the Via URL. :raise HTTPBadRequest: if a request param needed to generate the config is missing """ if document_url.startswith("blackboard://"): self._config["api"]["viaUrl"] = { "authUrl": self._request.route_url("blackboard_api.oauth.authorize"), "path": self._request.route_path( "blackboard_api.files.via_url", course_id=self._request.params["context_id"], _query={"document_url": document_url}, ), } elif document_url.startswith("canvas://"): self._config["api"]["viaUrl"] = { "authUrl": self._request.route_url("canvas_api.oauth.authorize"), "path": self._request.route_path( "canvas_api.files.via_url", resource_link_id=self._request.params["resource_link_id"], ), } else: self._config["viaUrl"] = via_url(self._request, document_url) self._add_canvas_speedgrader_settings(document_url=document_url) def add_vitalsource_launch_config(self, book_id, cfi=None): vitalsource_svc = self._request.find_service(name="vitalsource") launch_url, launch_params = vitalsource_svc.get_launch_params( book_id, cfi, self._request.lti_user ) self._config["vitalSource"] = { "launchUrl": launch_url, "launchParams": launch_params, } self._add_canvas_speedgrader_settings( vitalsource_book_id=book_id, vitalsource_cfi=cfi ) def asdict(self): """ Return the configuration for the app's JavaScript code. :raise HTTPBadRequest: if a request param needed to generate the config is missing :rtype: dict """ return self._config def enable_oauth2_redirect_error_mode( self, auth_route: str, error_code=None, error_details: Optional[dict] = None, canvas_scopes: List[str] = None, ): """ Configure the frontend to show the "Authorization failed" dialog. This is shown when authorizing with a third-party OAuth API like the Canvas API or the Blackboard API fails after the redirect to the third-party authorization endpoint. :param error_code: Code identifying a particular error :param error_details: JSON-serializable technical details about the error :param auth_route: route for the "Try again" button in the dialog :param canvas_scopes: List of scopes that were requested """ if self._lti_user: bearer_token = BearerTokenSchema(self._request).authorization_param( self._lti_user ) auth_url = self._request.route_url( auth_route, _query=[("authorization", bearer_token)], ) else: auth_url = None self._config.update( { "mode": JSConfig.Mode.OAUTH2_REDIRECT_ERROR, "OAuth2RedirectError": { "authUrl": auth_url, "errorCode": error_code, "canvasScopes": canvas_scopes or [], }, } ) if error_details: self._config["OAuth2RedirectError"]["errorDetails"] = error_details def enable_error_dialog_mode(self, error_code, error_details=None): self._config.update( { "mode": JSConfig.Mode.ERROR_DIALOG, "errorDialog": {"errorCode": error_code}, } ) if error_details: self._config["errorDialog"]["errorDetails"] = error_details def enable_lti_launch_mode(self): """ Put the JavaScript code into "LTI launch" mode. This mode launches an assignment. :raise ApplicationInstanceNotFound: if request.lti_user.oauth_consumer_key isn't in the DB """ self._config["mode"] = JSConfig.Mode.BASIC_LTI_LAUNCH self._config["api"]["sync"] = self._sync_api() # The config object for the Hypothesis client. # Our JSON-RPC server passes this to the Hypothesis client over # postMessage. self._config["hypothesisClient"] = self._hypothesis_client self._config["rpcServer"] = { "allowedOrigins": self._request.registry.settings["rpc_allowed_origins"] } def _create_assignment_api(self): if not self._context.is_canvas: return None return { "path": self._request.route_path("api.assignments.create"), "data": { "ext_lti_assignment_id": self._request.params["ext_lti_assignment_id"], "course_id": self._request.params["custom_canvas_course_id"], }, } def enable_content_item_selection_mode(self, form_action, form_fields): """ Put the JavaScript code into "content item selection" mode. This mode shows teachers an assignment configuration UI where they can choose the document to be annotated for the assignment. :param form_action: the HTML `action` attribute for the URL that we'll submit the user's chosen document to :param form_fields: the fields (keys and values) to include in the HTML form that we submit :raise ApplicationInstanceNotFound: if request.lti_user.oauth_consumer_key isn't in the DB """ args = self._context, self._request, self._application_instance() self._config.update( { "mode": JSConfig.Mode.CONTENT_ITEM_SELECTION, "filePicker": { "formAction": form_action, "formFields": form_fields, "createAssignmentAPI": self._create_assignment_api(), # The "content item selection" that we submit to Canvas's # content_item_return_url is actually an LTI launch URL with # the selected document URL or file_id as a query parameter. To # construct these launch URLs our JavaScript code needs the # base URL of our LTI launch endpoint. "ltiLaunchUrl": self._request.route_url("lti_launches"), # Specific config for pickers "blackboard": FilePickerConfig.blackboard_config(*args), "canvas": FilePickerConfig.canvas_config(*args), "google": FilePickerConfig.google_files_config(*args), "microsoftOneDrive": FilePickerConfig.microsoft_onedrive(*args), "vitalSource": FilePickerConfig.vital_source_config(*args), }, } ) def maybe_enable_grading(self): """Enable our LMS app's built-in assignment grading UI, if appropriate.""" if not self._lti_user.is_instructor: # Only instructors can grade assignments. return if "lis_outcome_service_url" not in self._request.params: # Only "gradeable" assignments can be graded. # Assignments that don't have the lis_outcome_service_url param # aren't set as gradeable in the LMS. return if self._context.is_canvas: # Don't show our built-in grader in Canvas because it has its own # "SpeedGrader" and we support that instead. return self._config["grading"] = { "enabled": True, "courseName": self._request.params.get("context_title"), "assignmentName": self._request.params.get("resource_link_title"), "students": list(self._get_students()), } def maybe_set_focused_user(self): """ Configure the Hypothesis client to focus on a particular user. If there is a focused_user request param then add the necessary Hypothesis client config to get the client to focus on the particular user identified by the focused_user param, showing only that user's annotations and not others. In practice the focused_user param is only ever present in Canvas SpeedGrader launches. We add a focused_user query param to the SpeedGrader LTI launch URLs that we submit to Canvas for each student when the student launches an assignment. Later, Canvas uses these URLs to launch us when a teacher grades the assignment in SpeedGrader. In theory, though, the focused_user param could work outside of Canvas as well if we ever want it to. :raise ApplicationInstanceNotFound: if request.lti_user.oauth_consumer_key isn't in the DB """ focused_user = self._request.params.get("focused_user") if not focused_user: return self._hypothesis_client["focus"] = {"user": {"username": focused_user}} # Unfortunately we need to pass the user's current display name to the # Hypothesis client, and we need to make a request to the h API to # retrieve that display name. try: display_name = ( self._request.find_service(name="h_api") .get_user(focused_user) .display_name ) except HAPIError: display_name = "(Couldn't fetch student name)" self._hypothesis_client["focus"]["user"]["displayName"] = display_name def _add_canvas_speedgrader_settings(self, **kwargs): """ Add config used by the JS to call our record_canvas_speedgrader_submission API. :raise HTTPBadRequest: if a request param needed to generate the config is missing """ lis_result_sourcedid = self._request.params.get("lis_result_sourcedid") lis_outcome_service_url = self._request.params.get("lis_outcome_service_url") # Don't set the Canvas submission params in non-Canvas LMS's. if not self._context.is_canvas: return # When a Canvas assignment is launched by a teacher or other # non-gradeable user there's no lis_result_sourcedid in the LTI # launch params. # Don't post submission to Canvas for these cases. if not lis_result_sourcedid: return # When a Canvas assignment isn't gradeable there's no # lis_outcome_service_url. # Don't post submission to Canvas for these cases. if not lis_outcome_service_url: return self._config["canvas"]["speedGrader"] = { "submissionParams": { "h_username": self._h_user.username, "lis_result_sourcedid": lis_result_sourcedid, "lis_outcome_service_url": lis_outcome_service_url, "learner_canvas_user_id": self._request.params["custom_canvas_user_id"], "group_set": self._request.params.get("group_set"), # Canvas doesn't send the right value for this on speed grader launches # sending instead the same value as for "context_id" "resource_link_id": self._request.params.get("resource_link_id"), # Canvas doesn't send this value at all on speed grader submissions "ext_lti_assignment_id": self._request.params.get( "ext_lti_assignment_id" ), **kwargs, }, } def _auth_token(self): """Return the authToken setting.""" return BearerTokenSchema(self._request).authorization_param(self._lti_user) @property @functools.lru_cache() def _config(self): """ Return the current configuration dict. This method populates the default parameters used by all frontend apps. The `enable_xxx_mode` methods configures the specific parameters needed by a particular frontend mode. :raise HTTPBadRequest: if a request param needed to generate the config is missing :rtype: dict """ # This is a lazy-computed property so that if it's going to raise an # exception that doesn't happen until someone actually reads it. # If it instead crashed in JSConfig.__init__() that would happen # earlier in the request processing pipeline and could change the error # response. # # We cache this property (@functools.lru_cache()) so that it's # mutable. You can do self._config["foo"] = "bar" and the mutation will # be preserved. config = { # Settings to do with the API that the backend provides for the # frontend to call. "api": { # The auth token that the JavaScript code will use to # authenticate itself to the API. "authToken": self._auth_token() }, "canvas": {}, # Some debug information, currently used in the Gherkin tests. "debug": {"tags": []}, # Tell the JavaScript code whether we're in "dev" mode. "dev": self._request.registry.settings["dev"], # What "mode" to put the JavaScript code in. # For example in "basic-lti-launch" mode the JavaScript code # launches its BasicLtiLaunchApp, whereas in # "content-item-selection" mode it launches its FilePickerApp. "mode": None, } if self._lti_user: config["debug"]["tags"].append( "role:instructor" if self._lti_user.is_instructor else "role:learner" ) return config def _get_students(self): """ Yield the student dicts for the request. Yield one student dict for each student who has launched the assignment and had grading info recorded for them. """ grading_infos = self._grading_info_service.get_by_assignment( oauth_consumer_key=self._consumer_key, context_id=self._request.params.get("context_id"), resource_link_id=self._request.params.get("resource_link_id"), ) # Yield a "student" dict for each GradingInfo. for grading_info in grading_infos: h_user = HUser( username=grading_info.h_username, display_name=grading_info.h_display_name, ) yield { "userid": h_user.userid(self._authority), "lmsId": grading_info.user_id, "displayName": h_user.display_name, "LISResultSourcedId": grading_info.lis_result_sourcedid, "LISOutcomeServiceUrl": grading_info.lis_outcome_service_url, } @property @functools.lru_cache() def _hypothesis_client(self): """ Return the config object for the Hypothesis client. :raise HTTPBadRequest: if a request param needed to generate the config is missing :raise ApplicationInstanceNotFound: if request.lti_user.oauth_consumer_key isn't in the DB """ # This is a lazy-computed property so that if it's going to raise an # exception that doesn't happen until someone actually reads it. # If it instead crashed in JSConfig.__init__() that would happen # earlier in the request processing pipeline and could change the error # response. # # We cache this property (@functools.lru_cache()) so that it's # mutable. You can do self._hypothesis_client["foo"] = "bar" and the # mutation will be preserved. if not self._application_instance().provisioning: return {} api_url = self._request.registry.settings["h_api_url_public"] # Generate a short-lived login token for the Hypothesis client. grant_token_svc = self._request.find_service(name="grant_token") grant_token = grant_token_svc.generate_token(self._h_user) return { # For documentation of these Hypothesis client settings see: # https://h.readthedocs.io/projects/client/en/latest/publishers/config/#configuring-the-client-using-json "services": [ { "allowFlagging": False, "allowLeavingGroups": False, "apiUrl": api_url, "authority": self._authority, "enableShareLinks": False, "grantToken": grant_token, "groups": self._groups(), } ] } def _groups(self): if self._context.canvas_sections_enabled or self._context.is_group_launch: return "$rpc:requestGroups" return [self._context.h_group.groupid(self._authority)] def _canvas_sync_api(self): req = self._request sync_api_config = { "authUrl": req.route_url("canvas_api.oauth.authorize"), "path": req.route_path("canvas_api.sync"), "data": { "lms": { "tool_consumer_instance_guid": req.params[ "tool_consumer_instance_guid" ], }, "course": { "context_id": req.params["context_id"], "custom_canvas_course_id": req.params["custom_canvas_course_id"], "group_set": req.params.get("group_set"), }, "group_info": { key: value for key, value in req.params.items() if key in GroupInfo.columns() }, }, } if "learner_canvas_user_id" in req.params: sync_api_config["data"]["learner"] = { "canvas_user_id": req.params["learner_canvas_user_id"], "group_set": req.params.get("group_set"), } return sync_api_config def _blackboard_sync_api(self): req = self._request return { "authUrl": req.route_url("blackboard_api.oauth.authorize"), "path": req.route_path("blackboard_api.sync"), "data": { "lms": { "tool_consumer_instance_guid": req.params[ "tool_consumer_instance_guid" ], }, "course": { "context_id": req.params["context_id"], }, "assignment": { "resource_link_id": req.params["resource_link_id"], }, "group_info": { key: value for key, value in req.params.items() if key in GroupInfo.columns() }, }, } def _sync_api(self): if self._context.is_canvas and ( self._context.canvas_sections_enabled or self._context.canvas_is_group_launch ): return self._canvas_sync_api() if ( self._application_instance().product == ApplicationInstance.Product.BLACKBOARD and self._context.is_blackboard_group_launch ): return self._blackboard_sync_api() return None
38.817029
117
0.601344
cb7c5b7df70ada1b943c479aede913bb7f43898a
1,328
py
Python
setup.py
CIGIHub/newsletter_generator
2af3e183ffedce55ad26bf998c488282f94d477e
[ "MIT" ]
null
null
null
setup.py
CIGIHub/newsletter_generator
2af3e183ffedce55ad26bf998c488282f94d477e
[ "MIT" ]
null
null
null
setup.py
CIGIHub/newsletter_generator
2af3e183ffedce55ad26bf998c488282f94d477e
[ "MIT" ]
null
null
null
import os from setuptools import setup from setuptools import find_packages with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='newsletter-generator', version='0.1', packages=find_packages(), include_package_data=True, install_requires=[ "django>=1.7", ], license='MIT License', description='Newsletter Generator.', long_description=README, url='http://dm.cigionline.org/', author='Caroline Simpson', author_email='csimpson@cigionline.org', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', # Replace these appropriately if you are stuck on Python 2. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
32.390244
78
0.636295
f3bb25ac43535b771a6d2ab70dc603b83d78d59a
4,519
py
Python
test/generic_distributed_util_test.py
jerryzh168/ClassyVision-1
6acfb00a77487a9015803fbaad805330081293a9
[ "MIT" ]
1
2020-04-13T03:50:26.000Z
2020-04-13T03:50:26.000Z
test/generic_distributed_util_test.py
pkassotis/ClassyVision
e8704ecaa59a15dbb2f4b0724e85d6e5cb2f704e
[ "MIT" ]
null
null
null
test/generic_distributed_util_test.py
pkassotis/ClassyVision
e8704ecaa59a15dbb2f4b0724e85d6e5cb2f704e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tempfile import unittest from itertools import product from typing import Any, Dict, List import torch from classy_vision.generic.distributed_util import _PRIMARY_RANK, broadcast_object from torch.multiprocessing import Event, Process, Queue def init_and_run_process( rank, world_size, filename, fn, input, q, wait_event, backend="gloo" ): torch.distributed.init_process_group( backend, init_method=f"file://{filename}", rank=rank, world_size=world_size ) r = fn(*input) q.put(r) wait_event.wait() return def run_in_process_group(filename: str, calls: List[Dict[str, Any]]): if torch.distributed.is_initialized(): torch.distributed.destroy_process_group() processes = [] q = Queue() wait_event = Event() # run the remaining processes # for rank in range(world_size - 1): for rank, call in enumerate(calls): p = Process( target=init_and_run_process, args=( rank, call["world_size"], filename, call["function"], call["inputs"], q, wait_event, ), ) p.start() processes.append(p) # fetch the results from the queue before joining, the background processes # need to be alive if the queue contains tensors. See # https://discuss.pytorch.org/t/using-torch-tensor-over-multiprocessing-queue-process-fails/2847/3 # noqa: B950 results = [] for _ in range(len(processes)): results.append(q.get()) wait_event.set() for p in processes: p.join() return results class TestDistributedUtil(unittest.TestCase): @staticmethod def _get_test_objects(): return [ {"a": 12, "b": [2, 3, 4], "tensor": torch.randn(10, 10)}, None, {"tensor": torch.randn(10000, 10000)}, # 400 MB ] def test_broadcast_object(self): world_size = 3 for use_disk, obj in product([True, False], self._get_test_objects()): filename = tempfile.NamedTemporaryFile(delete=True).name inputs = [None] * world_size inputs[0] = obj # only the master worker has the object calls = [ { "world_size": world_size, "function": broadcast_object, "inputs": [i, _PRIMARY_RANK, use_disk], } for i in inputs ] results = run_in_process_group(filename, calls) # check that all replicas got identical objects self.assertEqual(len(results), world_size) for result in results: if isinstance(obj, dict): for key in obj: if key == "tensor": self.assertTrue(torch.allclose(result[key], obj[key])) else: self.assertEqual(result[key], obj[key]) else: self.assertEqual(result, obj) def test_broadcast_object_pick_source(self): world_size = 3 for use_disk, obj in product([True, False], self._get_test_objects()): filename = tempfile.NamedTemporaryFile(delete=True).name inputs = [None] * world_size source_rank = 1 inputs[source_rank] = obj # only the rank 1 worker has the object calls = [ { "world_size": world_size, "function": broadcast_object, "inputs": [i, source_rank, use_disk], } for i in inputs ] results = run_in_process_group(filename, calls) # check that all replicas got identical objects self.assertEqual(len(results), world_size) for result in results: if isinstance(obj, dict): for key in obj: if key == "tensor": self.assertTrue(torch.allclose(result[key], obj[key])) else: self.assertEqual(result[key], obj[key]) else: self.assertEqual(result, obj)
32.985401
116
0.55322
f609b5fb8bc157283e76ef0f5e2a04ed34fef994
13,556
py
Python
doc/source/conf.py
walterst/bipy
49a3a9c33fd0c8c12bbb8f5cbb7e171f78fc4a96
[ "BSD-3-Clause" ]
null
null
null
doc/source/conf.py
walterst/bipy
49a3a9c33fd0c8c12bbb8f5cbb7e171f78fc4a96
[ "BSD-3-Clause" ]
null
null
null
doc/source/conf.py
walterst/bipy
49a3a9c33fd0c8c12bbb8f5cbb7e171f78fc4a96
[ "BSD-3-Clause" ]
1
2018-09-21T01:58:43.000Z
2018-09-21T01:58:43.000Z
import shutil import glob import sys import os import sphinx_bootstrap_theme import skbio # NOTE: parts of this file were taken from scipy's doc/source/conf.py. See # scikit-bio/licenses/scipy.txt for scipy's license. # If readthedocs.org is building the project, delete the generated/ directory, # which is created by autosummary when generating the API reference. For some # reason, when RTD rebuilds the docs (i.e., not starting from a fresh build), # some links are not generated correctly if generated/ already exists. Links to # modules/subpackages work, but links aren't created for classes, methods, # attributes, etc. and we get a bunch of warnings. This does not happen when # building the docs locally or on Travis. # # Code to check whether RTD is building our project is taken from # http://read-the-docs.readthedocs.org/en/latest/faq.html on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: generated_path = os.path.join(os.path.dirname(__file__), 'generated') if os.path.exists(generated_path): shutil.rmtree(generated_path) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../sphinxext/numpydoc')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = '1.1' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'numpydoc', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.autosummary' ] # Determine if the matplotlib has a recent enough version of the # plot_directive. try: from matplotlib.sphinxext import plot_directive except ImportError: use_matplotlib_plot_directive = False else: try: use_matplotlib_plot_directive = (plot_directive.__version__ >= 2) except AttributeError: use_matplotlib_plot_directive = False if use_matplotlib_plot_directive: extensions.append('matplotlib.sphinxext.plot_directive') else: raise RuntimeError("You need a recent enough version of matplotlib") # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'scikit-bio' copyright = u'2014--, scikit-bio development team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = skbio.__version__ # The full version, including alpha/beta/rc tags. release = skbio.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # Exclude this file since it is only used by autosummary to generate other RST # files during the build process, and it will generate sphinx errors and # warnings otherwise. exclude_patterns = ['_templates/autosummary/*.rst'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { # Navigation bar title. (Default: ``project`` value) 'navbar_title': 'scikit-bio docs', # Render the next and previous page links in navbar. (Default: true) 'navbar_sidebarrel': False, # Bootswatch (http://bootswatch.com/) theme. # # Options are nothing with "" (default) or the name of a valid theme # such as "amelia" or "cosmo". 'bootswatch_theme': 'spacelab', # Location of link to source. # Options are "nav" (default), "footer" or anything else to exclude. 'source_link_position': False } # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static/'] html_style = 'skbio.css' # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-biodoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'scikit-bio.tex', u'scikit-bio Documentation', u'scikit-bio development team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'scikit-bio', u'scikit-bio Documentation', [u'scikit-bio development team'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'scikit-bio', u'scikit-bio Documentation', u'scikit-bio development team', 'scikit-bio', 'Core objects, functions and statistics for working with biological data ' 'in Python.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for autosummary ---------------------------------------------- autosummary_generate = glob.glob('*.rst') # -- Options for numpydoc ------------------------------------------------- # Generate plots for example sections numpydoc_use_plots = True #------------------------------------------------------------------------------ # Plot #------------------------------------------------------------------------------ plot_pre_code = """ import numpy as np import scipy as sp np.random.seed(123) """ plot_include_source = True #plot_formats = [('png', 96), 'pdf'] #plot_html_show_formats = False import math phi = (math.sqrt(5) + 1)/2 font_size = 13*72/96.0 # 13 px plot_rcparams = { 'font.size': font_size, 'axes.titlesize': font_size, 'axes.labelsize': font_size, 'xtick.labelsize': font_size, 'ytick.labelsize': font_size, 'legend.fontsize': font_size, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, } if not use_matplotlib_plot_directive: import matplotlib matplotlib.rcParams.update(plot_rcparams) # ----------------------------------------------------------------------------- # Source code links # ----------------------------------------------------------------------------- import inspect from os.path import relpath, dirname for name in ['sphinx.ext.linkcode', 'linkcode', 'numpydoc.linkcode']: try: __import__(name) extensions.append(name) break except ImportError: pass else: print "NOTE: linkcode extension not found -- no links to source generated" def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except: fn = None if not fn: return None try: source, lineno = inspect.findsource(obj) except: lineno = None if lineno: linespec = "#L%d" % (lineno + 1) else: linespec = "" fn = relpath(fn, start=dirname(skbio.__file__)) if 'dev' in skbio.__version__: return "http://github.com/biocore/scikit-bio/blob/master/skbio/%s%s" % ( fn, linespec) else: return "http://github.com/biocore/scikit-bio/blob/%s/skbio/%s%s" % ( skbio.__version__, fn, linespec) #------------------------------------------------------------------------------ # linkcheck #------------------------------------------------------------------------------ # Link-checking on Travis sometimes times out. linkcheck_timeout = 30
31.163218
80
0.673134
681419994324038e4930e366c07abd5f6ae43dc1
1,555
py
Python
stubs.min/Autodesk/Revit/DB/__init___parts/CurtainCell.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2017-07-25T14:30:18.000Z
2017-07-25T14:30:18.000Z
stubs.min/Autodesk/Revit/DB/__init___parts/CurtainCell.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/Autodesk/Revit/DB/__init___parts/CurtainCell.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class CurtainCell(APIObject,IDisposable): """ Represents a CurtainCell within Autodesk Revit. """ def Dispose(self): """ Dispose(self: APIObject,A_0: bool) """ pass def ReleaseManagedResources(self,*args): """ ReleaseManagedResources(self: APIObject) """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: APIObject) """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass CurveLoops=property(lambda self: object(),lambda self,v: None,lambda self: None) """The cell boundaries on the reference face. The boundaries can have more than one CurveLoop. Each item in the returned array represents a CurveLoop containing 3 or more than 3 edges. Get: CurveLoops(self: CurtainCell) -> CurveArrArray """ PlanarizedCurveLoops=property(lambda self: object(),lambda self,v: None,lambda self: None) """The planarized curve loops for cell boundaries. The boundaries can have more than one CurveLoop. Each item in the returned array represents a CurveLoop containing 3 or more than 3 edges. Get: PlanarizedCurveLoops(self: CurtainCell) -> CurveArrArray """
43.194444
215
0.725402
620a33e4fc35345e615b41847b46ef5b53c016b9
214
py
Python
dosing_rl_gym/__init__.py
strongio/dosing-rl-gym
e9f0553080830dc621e97e0652c68b86788b7296
[ "MIT" ]
6
2020-01-30T11:31:53.000Z
2021-12-02T10:35:27.000Z
dosing_rl_gym/__init__.py
strongio/dosing-rl-gym
e9f0553080830dc621e97e0652c68b86788b7296
[ "MIT" ]
null
null
null
dosing_rl_gym/__init__.py
strongio/dosing-rl-gym
e9f0553080830dc621e97e0652c68b86788b7296
[ "MIT" ]
3
2019-11-13T15:56:14.000Z
2021-04-12T07:20:23.000Z
from gym.envs.registration import register register( id='Diabetic-v0', entry_point='dosing_rl_gym.envs:Diabetic0Env' ) register( id='Diabetic-v1', entry_point='dosing_rl_gym.envs:Diabetic1Env' )
16.461538
49
0.733645
79e36026c8411796fc4a9913d922d28f169892ba
89,274
py
Python
lib/sqlalchemy/orm/strategies.py
rgargente/sqlalchemy
2734439fff953a7bb8aecdedb5f851441b5122e9
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/strategies.py
rgargente/sqlalchemy
2734439fff953a7bb8aecdedb5f851441b5122e9
[ "MIT" ]
null
null
null
lib/sqlalchemy/orm/strategies.py
rgargente/sqlalchemy
2734439fff953a7bb8aecdedb5f851441b5122e9
[ "MIT" ]
null
null
null
# orm/strategies.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """sqlalchemy.orm.interfaces.LoaderStrategy implementations, and related MapperOptions.""" from __future__ import absolute_import import collections import itertools from . import attributes from . import exc as orm_exc from . import interfaces from . import loading from . import properties from . import query from . import unitofwork from . import util as orm_util from .base import _DEFER_FOR_STATE from .base import _RAISE_FOR_STATE from .base import _SET_DEFERRED_EXPIRED from .interfaces import LoaderStrategy from .interfaces import StrategizedProperty from .session import _state_session from .state import InstanceState from .util import _none_set from .util import aliased from .. import event from .. import exc as sa_exc from .. import inspect from .. import log from .. import sql from .. import util from ..sql import util as sql_util from ..sql import visitors def _register_attribute( prop, mapper, useobject, compare_function=None, typecallable=None, callable_=None, proxy_property=None, active_history=False, impl_class=None, **kw ): listen_hooks = [] uselist = useobject and prop.uselist if useobject and prop.single_parent: listen_hooks.append(single_parent_validator) if prop.key in prop.parent.validators: fn, opts = prop.parent.validators[prop.key] listen_hooks.append( lambda desc, prop: orm_util._validator_events( desc, prop.key, fn, **opts ) ) if useobject: listen_hooks.append(unitofwork.track_cascade_events) # need to assemble backref listeners # after the singleparentvalidator, mapper validator if useobject: backref = prop.back_populates if backref: listen_hooks.append( lambda desc, prop: attributes.backref_listeners( desc, backref, uselist ) ) # a single MapperProperty is shared down a class inheritance # hierarchy, so we set up attribute instrumentation and backref event # for each mapper down the hierarchy. # typically, "mapper" is the same as prop.parent, due to the way # the configure_mappers() process runs, however this is not strongly # enforced, and in the case of a second configure_mappers() run the # mapper here might not be prop.parent; also, a subclass mapper may # be called here before a superclass mapper. That is, can't depend # on mappers not already being set up so we have to check each one. for m in mapper.self_and_descendants: if prop is m._props.get( prop.key ) and not m.class_manager._attr_has_impl(prop.key): desc = attributes.register_attribute_impl( m.class_, prop.key, parent_token=prop, uselist=uselist, compare_function=compare_function, useobject=useobject, trackparent=useobject and ( prop.single_parent or prop.direction is interfaces.ONETOMANY ), typecallable=typecallable, callable_=callable_, active_history=active_history, impl_class=impl_class, send_modified_events=not useobject or not prop.viewonly, doc=prop.doc, **kw ) for hook in listen_hooks: hook(desc, prop) @properties.ColumnProperty.strategy_for(instrument=False, deferred=False) class UninstrumentedColumnLoader(LoaderStrategy): """Represent a non-instrumented MapperProperty. The polymorphic_on argument of mapper() often results in this, if the argument is against the with_polymorphic selectable. """ __slots__ = ("columns",) def __init__(self, parent, strategy_key): super(UninstrumentedColumnLoader, self).__init__(parent, strategy_key) self.columns = self.parent_property.columns def setup_query( self, context, query_entity, path, loadopt, adapter, column_collection=None, **kwargs ): for c in self.columns: if adapter: c = adapter.columns[c] column_collection.append(c) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): pass @log.class_logger @properties.ColumnProperty.strategy_for(instrument=True, deferred=False) class ColumnLoader(LoaderStrategy): """Provide loading behavior for a :class:`.ColumnProperty`.""" __slots__ = "columns", "is_composite" def __init__(self, parent, strategy_key): super(ColumnLoader, self).__init__(parent, strategy_key) self.columns = self.parent_property.columns self.is_composite = hasattr(self.parent_property, "composite_class") def setup_query( self, context, query_entity, path, loadopt, adapter, column_collection, memoized_populators, **kwargs ): for c in self.columns: if adapter: c = adapter.columns[c] column_collection.append(c) fetch = self.columns[0] if adapter: fetch = adapter.columns[fetch] memoized_populators[self.parent_property] = fetch def init_class_attribute(self, mapper): self.is_class_level = True coltype = self.columns[0].type # TODO: check all columns ? check for foreign key as well? active_history = ( self.parent_property.active_history or self.columns[0].primary_key or mapper.version_id_col in set(self.columns) ) _register_attribute( self.parent_property, mapper, useobject=False, compare_function=coltype.compare_values, active_history=active_history, ) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): # look through list of columns represented here # to see which, if any, is present in the row. for col in self.columns: if adapter: col = adapter.columns[col] getter = result._getter(col, False) if getter: populators["quick"].append((self.key, getter)) break else: populators["expire"].append((self.key, True)) @log.class_logger @properties.ColumnProperty.strategy_for(query_expression=True) class ExpressionColumnLoader(ColumnLoader): def __init__(self, parent, strategy_key): super(ExpressionColumnLoader, self).__init__(parent, strategy_key) def setup_query( self, context, query_entity, path, loadopt, adapter, column_collection, memoized_populators, **kwargs ): if loadopt and "expression" in loadopt.local_opts: columns = [loadopt.local_opts["expression"]] for c in columns: if adapter: c = adapter.columns[c] column_collection.append(c) fetch = columns[0] if adapter: fetch = adapter.columns[fetch] memoized_populators[self.parent_property] = fetch def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): # look through list of columns represented here # to see which, if any, is present in the row. if loadopt and "expression" in loadopt.local_opts: columns = [loadopt.local_opts["expression"]] for col in columns: if adapter: col = adapter.columns[col] getter = result._getter(col, False) if getter: populators["quick"].append((self.key, getter)) break else: populators["expire"].append((self.key, True)) def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=False, compare_function=self.columns[0].type.compare_values, accepts_scalar_loader=False, ) @log.class_logger @properties.ColumnProperty.strategy_for(deferred=True, instrument=True) @properties.ColumnProperty.strategy_for( deferred=True, instrument=True, raiseload=True ) @properties.ColumnProperty.strategy_for(do_nothing=True) class DeferredColumnLoader(LoaderStrategy): """Provide loading behavior for a deferred :class:`.ColumnProperty`.""" __slots__ = "columns", "group", "raiseload" def __init__(self, parent, strategy_key): super(DeferredColumnLoader, self).__init__(parent, strategy_key) if hasattr(self.parent_property, "composite_class"): raise NotImplementedError( "Deferred loading for composite " "types not implemented yet" ) self.raiseload = self.strategy_opts.get("raiseload", False) self.columns = self.parent_property.columns self.group = self.parent_property.group def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): # for a DeferredColumnLoader, this method is only used during a # "row processor only" query; see test_deferred.py -> # tests with "rowproc_only" in their name. As of the 1.0 series, # loading._instance_processor doesn't use a "row processing" function # to populate columns, instead it uses data in the "populators" # dictionary. Normally, the DeferredColumnLoader.setup_query() # sets up that data in the "memoized_populators" dictionary # and "create_row_processor()" here is never invoked. if not self.is_class_level: if self.raiseload: set_deferred_for_local_state = ( self.parent_property._raise_column_loader ) else: set_deferred_for_local_state = ( self.parent_property._deferred_column_loader ) populators["new"].append((self.key, set_deferred_for_local_state)) else: populators["expire"].append((self.key, False)) def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=False, compare_function=self.columns[0].type.compare_values, callable_=self._load_for_state, load_on_unexpire=False, ) def setup_query( self, context, query_entity, path, loadopt, adapter, column_collection, memoized_populators, only_load_props=None, **kw ): if ( ( loadopt and "undefer_pks" in loadopt.local_opts and set(self.columns).intersection( self.parent._should_undefer_in_wildcard ) ) or ( loadopt and self.group and loadopt.local_opts.get( "undefer_group_%s" % self.group, False ) ) or (only_load_props and self.key in only_load_props) ): self.parent_property._get_strategy( (("deferred", False), ("instrument", True)) ).setup_query( context, query_entity, path, loadopt, adapter, column_collection, memoized_populators, **kw ) elif self.is_class_level: memoized_populators[self.parent_property] = _SET_DEFERRED_EXPIRED elif not self.raiseload: memoized_populators[self.parent_property] = _DEFER_FOR_STATE else: memoized_populators[self.parent_property] = _RAISE_FOR_STATE def _load_for_state(self, state, passive): if not state.key: return attributes.ATTR_EMPTY if not passive & attributes.SQL_OK: return attributes.PASSIVE_NO_RESULT localparent = state.manager.mapper if self.group: toload = [ p.key for p in localparent.iterate_properties if isinstance(p, StrategizedProperty) and isinstance(p.strategy, DeferredColumnLoader) and p.group == self.group ] else: toload = [self.key] # narrow the keys down to just those which have no history group = [k for k in toload if k in state.unmodified] session = _state_session(state) if session is None: raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "deferred load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) if self.raiseload: self._invoke_raise_load(state, passive, "raise") query = session.query(localparent) if ( loading.load_on_ident( query, state.key, only_load_props=group, refresh_state=state ) is None ): raise orm_exc.ObjectDeletedError(state) return attributes.ATTR_WAS_SET def _invoke_raise_load(self, state, passive, lazy): raise sa_exc.InvalidRequestError( "'%s' is not available due to raiseload=True" % (self,) ) class LoadDeferredColumns(object): """serializable loader object used by DeferredColumnLoader""" def __init__(self, key, raiseload=False): self.key = key self.raiseload = raiseload def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key localparent = state.manager.mapper prop = localparent._props[key] if self.raiseload: strategy_key = ( ("deferred", True), ("instrument", True), ("raiseload", True), ) else: strategy_key = (("deferred", True), ("instrument", True)) strategy = prop._get_strategy(strategy_key) return strategy._load_for_state(state, passive) class AbstractRelationshipLoader(LoaderStrategy): """LoaderStratgies which deal with related objects.""" __slots__ = "mapper", "target", "uselist", "entity" def __init__(self, parent, strategy_key): super(AbstractRelationshipLoader, self).__init__(parent, strategy_key) self.mapper = self.parent_property.mapper self.entity = self.parent_property.entity self.target = self.parent_property.target self.uselist = self.parent_property.uselist @log.class_logger @properties.RelationshipProperty.strategy_for(do_nothing=True) class DoNothingLoader(LoaderStrategy): """Relationship loader that makes no change to the object's state. Compared to NoLoader, this loader does not initialize the collection/attribute to empty/none; the usual default LazyLoader will take effect. """ @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="noload") @properties.RelationshipProperty.strategy_for(lazy=None) class NoLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=None". """ __slots__ = () def init_class_attribute(self, mapper): self.is_class_level = True _register_attribute( self.parent_property, mapper, useobject=True, typecallable=self.parent_property.collection_class, ) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): def invoke_no_load(state, dict_, row): if self.uselist: attributes.init_state_collection(state, dict_, self.key) else: dict_[self.key] = None populators["new"].append((self.key, invoke_no_load)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy=True) @properties.RelationshipProperty.strategy_for(lazy="select") @properties.RelationshipProperty.strategy_for(lazy="raise") @properties.RelationshipProperty.strategy_for(lazy="raise_on_sql") @properties.RelationshipProperty.strategy_for(lazy="baked_select") class LazyLoader(AbstractRelationshipLoader, util.MemoizedSlots): """Provide loading behavior for a :class:`.RelationshipProperty` with "lazy=True", that is loads when first accessed. """ __slots__ = ( "_lazywhere", "_rev_lazywhere", "use_get", "is_aliased_class", "_bind_to_col", "_equated_columns", "_rev_bind_to_col", "_rev_equated_columns", "_simple_lazy_clause", "_raise_always", "_raise_on_sql", "_bakery", ) def __init__(self, parent, strategy_key): super(LazyLoader, self).__init__(parent, strategy_key) self._raise_always = self.strategy_opts["lazy"] == "raise" self._raise_on_sql = self.strategy_opts["lazy"] == "raise_on_sql" self.is_aliased_class = inspect(self.entity).is_aliased_class join_condition = self.parent_property._join_condition ( self._lazywhere, self._bind_to_col, self._equated_columns, ) = join_condition.create_lazy_clause() ( self._rev_lazywhere, self._rev_bind_to_col, self._rev_equated_columns, ) = join_condition.create_lazy_clause(reverse_direction=True) self.logger.info("%s lazy loading clause %s", self, self._lazywhere) # determine if our "lazywhere" clause is the same as the mapper's # get() clause. then we can just use mapper.get() # # TODO: the "not self.uselist" can be taken out entirely; a m2o # load that populates for a list (very unusual, but is possible with # the API) can still set for "None" and the attribute system will # populate as an empty list. self.use_get = ( not self.is_aliased_class and not self.uselist and self.entity._get_clause[0].compare( self._lazywhere, use_proxies=True, equivalents=self.mapper._equivalent_columns, ) ) if self.use_get: for col in list(self._equated_columns): if col in self.mapper._equivalent_columns: for c in self.mapper._equivalent_columns[col]: self._equated_columns[c] = self._equated_columns[col] self.logger.info( "%s will use query.get() to " "optimize instance loads", self ) def init_class_attribute(self, mapper): self.is_class_level = True active_history = ( self.parent_property.active_history or self.parent_property.direction is not interfaces.MANYTOONE or not self.use_get ) # MANYTOONE currently only needs the # "old" value for delete-orphan # cascades. the required _SingleParentValidator # will enable active_history # in that case. otherwise we don't need the # "old" value during backref operations. _register_attribute( self.parent_property, mapper, useobject=True, callable_=self._load_for_state, typecallable=self.parent_property.collection_class, active_history=active_history, ) def _memoized_attr__simple_lazy_clause(self): criterion, bind_to_col = (self._lazywhere, self._bind_to_col) params = [] def visit_bindparam(bindparam): bindparam.unique = False visitors.traverse(criterion, {}, {"bindparam": visit_bindparam}) def visit_bindparam(bindparam): if bindparam._identifying_key in bind_to_col: params.append( ( bindparam.key, bind_to_col[bindparam._identifying_key], None, ) ) elif bindparam.callable is None: params.append((bindparam.key, None, bindparam.value)) criterion = visitors.cloned_traverse( criterion, {}, {"bindparam": visit_bindparam} ) return criterion, params def _generate_lazy_clause(self, state, passive): criterion, param_keys = self._simple_lazy_clause if state is None: return sql_util.adapt_criterion_to_null( criterion, [key for key, ident, value in param_keys] ) mapper = self.parent_property.parent o = state.obj() # strong ref dict_ = attributes.instance_dict(o) if passive & attributes.INIT_OK: passive ^= attributes.INIT_OK params = {} for key, ident, value in param_keys: if ident is not None: if passive and passive & attributes.LOAD_AGAINST_COMMITTED: value = mapper._get_committed_state_attr_by_column( state, dict_, ident, passive ) else: value = mapper._get_state_attr_by_column( state, dict_, ident, passive ) params[key] = value return criterion, params def _invoke_raise_load(self, state, passive, lazy): raise sa_exc.InvalidRequestError( "'%s' is not available due to lazy='%s'" % (self, lazy) ) def _load_for_state(self, state, passive): if not state.key and ( ( not self.parent_property.load_on_pending and not state._load_pending ) or not state.session_id ): return attributes.ATTR_EMPTY pending = not state.key primary_key_identity = None if (not passive & attributes.SQL_OK and not self.use_get) or ( not passive & attributes.NON_PERSISTENT_OK and pending ): return attributes.PASSIVE_NO_RESULT if ( # we were given lazy="raise" self._raise_always # the no_raise history-related flag was not passed and not passive & attributes.NO_RAISE and ( # if we are use_get and related_object_ok is disabled, # which means we are at most looking in the identity map # for history purposes or otherwise returning # PASSIVE_NO_RESULT, don't raise. This is also a # history-related flag not self.use_get or passive & attributes.RELATED_OBJECT_OK ) ): self._invoke_raise_load(state, passive, "raise") session = _state_session(state) if not session: if passive & attributes.NO_RAISE: return attributes.PASSIVE_NO_RESULT raise orm_exc.DetachedInstanceError( "Parent instance %s is not bound to a Session; " "lazy load operation of attribute '%s' cannot proceed" % (orm_util.state_str(state), self.key) ) # if we have a simple primary key load, check the # identity map without generating a Query at all if self.use_get: primary_key_identity = self._get_ident_for_use_get( session, state, passive ) if attributes.PASSIVE_NO_RESULT in primary_key_identity: return attributes.PASSIVE_NO_RESULT elif attributes.NEVER_SET in primary_key_identity: return attributes.NEVER_SET if _none_set.issuperset(primary_key_identity): return None if self.key in state.dict: return attributes.ATTR_WAS_SET # look for this identity in the identity map. Delegate to the # Query class in use, as it may have special rules for how it # does this, including how it decides what the correct # identity_token would be for this identity. instance = session._identity_lookup( self.entity, primary_key_identity, passive=passive, lazy_loaded_from=state, ) if instance is not None: return instance elif ( not passive & attributes.SQL_OK or not passive & attributes.RELATED_OBJECT_OK ): return attributes.PASSIVE_NO_RESULT return self._emit_lazyload( session, state, primary_key_identity, passive ) def _get_ident_for_use_get(self, session, state, passive): instance_mapper = state.manager.mapper if passive & attributes.LOAD_AGAINST_COMMITTED: get_attr = instance_mapper._get_committed_state_attr_by_column else: get_attr = instance_mapper._get_state_attr_by_column dict_ = state.dict return [ get_attr(state, dict_, self._equated_columns[pk], passive=passive) for pk in self.mapper.primary_key ] @util.dependencies("sqlalchemy.ext.baked") def _memoized_attr__bakery(self, baked): return baked.bakery(size=50) @util.dependencies("sqlalchemy.orm.strategy_options") def _emit_lazyload( self, strategy_options, session, state, primary_key_identity, passive ): # emit lazy load now using BakedQuery, to cut way down on the overhead # of generating queries. # there are two big things we are trying to guard against here: # # 1. two different lazy loads that need to have a different result, # being cached on the same key. The results between two lazy loads # can be different due to the options passed to the query, which # take effect for descendant objects. Therefore we have to make # sure paths and load options generate good cache keys, and if they # don't, we don't cache. # 2. a lazy load that gets cached on a key that includes some # "throwaway" object, like a per-query AliasedClass, meaning # the cache key will never be seen again and the cache itself # will fill up. (the cache is an LRU cache, so while we won't # run out of memory, it will perform terribly when it's full. A # warning is emitted if this occurs.) We must prevent the # generation of a cache key that is including a throwaway object # in the key. # note that "lazy='select'" and "lazy=True" make two separate # lazy loaders. Currently the LRU cache is local to the LazyLoader, # however add ourselves to the initial cache key just to future # proof in case it moves q = self._bakery(lambda session: session.query(self.entity), self) q.add_criteria( lambda q: q._adapt_all_clauses()._with_invoke_all_eagers(False), self.parent_property, ) if not self.parent_property.bake_queries: q.spoil(full=True) if self.parent_property.secondary is not None: q.add_criteria( lambda q: q.select_from( self.mapper, self.parent_property.secondary ) ) pending = not state.key # don't autoflush on pending if pending or passive & attributes.NO_AUTOFLUSH: q.add_criteria(lambda q: q.autoflush(False)) if state.load_options: # here, if any of the options cannot return a cache key, # the BakedQuery "spoils" and caching will not occur. a path # that features Cls.attribute.of_type(some_alias) will cancel # caching, for example, since "some_alias" is user-defined and # is usually a throwaway object. effective_path = state.load_path[self.parent_property] q._add_lazyload_options(state.load_options, effective_path) if self.use_get: if self._raise_on_sql: self._invoke_raise_load(state, passive, "raise_on_sql") return ( q(session) .with_post_criteria(lambda q: q._set_lazyload_from(state)) ._load_on_pk_identity( session.query(self.mapper), primary_key_identity ) ) if self.parent_property.order_by: q.add_criteria( lambda q: q.order_by( *util.to_list(self.parent_property.order_by) ) ) for rev in self.parent_property._reverse_property: # reverse props that are MANYTOONE are loading *this* # object from get(), so don't need to eager out to those. if ( rev.direction is interfaces.MANYTOONE and rev._use_get and not isinstance(rev.strategy, LazyLoader) ): q.add_criteria( lambda q: q.options( strategy_options.Load.for_existing_path( q._current_path[rev.parent] ).lazyload(rev.key) ) ) lazy_clause, params = self._generate_lazy_clause(state, passive) if self.key in state.dict: return attributes.ATTR_WAS_SET if pending: if util.has_intersection(orm_util._none_set, params.values()): return None elif util.has_intersection(orm_util._never_set, params.values()): return None if self._raise_on_sql: self._invoke_raise_load(state, passive, "raise_on_sql") q.add_criteria(lambda q: q.filter(lazy_clause)) # set parameters in the query such that we don't overwrite # parameters that are already set within it def set_default_params(q): params.update(q._params) q._params = params return q result = ( q(session) .with_post_criteria(lambda q: q._set_lazyload_from(state)) .with_post_criteria(set_default_params) .all() ) if self.uselist: return result else: l = len(result) if l: if l > 1: util.warn( "Multiple rows returned with " "uselist=False for lazily-loaded attribute '%s' " % self.parent_property ) return result[0] else: return None def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): key = self.key if not self.is_class_level: # we are not the primary manager for this attribute # on this class - set up a # per-instance lazyloader, which will override the # class-level behavior. # this currently only happens when using a # "lazyload" option on a "no load" # attribute - "eager" attributes always have a # class-level lazyloader installed. set_lazy_callable = ( InstanceState._instance_level_callable_processor )(mapper.class_manager, LoadLazyAttribute(key, self), key) populators["new"].append((self.key, set_lazy_callable)) elif context.populate_existing or mapper.always_refresh: def reset_for_lazy_callable(state, dict_, row): # we are the primary manager for this attribute on # this class - reset its # per-instance attribute state, so that the class-level # lazy loader is # executed when next referenced on this instance. # this is needed in # populate_existing() types of scenarios to reset # any existing state. state._reset(dict_, key) populators["new"].append((self.key, reset_for_lazy_callable)) class LoadLazyAttribute(object): """serializable loader object used by LazyLoader""" def __init__(self, key, initiating_strategy): self.key = key self.strategy_key = initiating_strategy.strategy_key def __call__(self, state, passive=attributes.PASSIVE_OFF): key = self.key instance_mapper = state.manager.mapper prop = instance_mapper._props[key] strategy = prop._strategies[self.strategy_key] return strategy._load_for_state(state, passive) class PostLoader(AbstractRelationshipLoader): """A relationship loader that emits a second SELECT statement.""" def _immediateload_create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): return self.parent_property._get_strategy( (("lazy", "immediate"),) ).create_row_processor( context, path, loadopt, mapper, result, adapter, populators ) @properties.RelationshipProperty.strategy_for(lazy="immediate") class ImmediateLoader(PostLoader): __slots__ = () def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, parentmapper=None, **kwargs ): pass def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): def load_immediate(state, dict_, row): state.get_impl(self.key).get(state, dict_) populators["delayed"].append((self.key, load_immediate)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="subquery") class SubqueryLoader(PostLoader): __slots__ = ("join_depth",) def __init__(self, parent, strategy_key): super(SubqueryLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def setup_query( self, context, entity, path, loadopt, adapter, column_collection=None, parentmapper=None, **kwargs ): if not context.query._enable_eagerloads or context.refresh_state: return elif context.query._yield_per: context.query._no_yield_per("subquery") path = path[self.parent_property] # build up a path indicating the path from the leftmost # entity to the thing we're subquery loading. with_poly_entity = path.get( context.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: effective_entity = with_poly_entity else: effective_entity = self.entity subq_path = context.attributes.get( ("subquery_path", None), orm_util.PathRegistry.root ) subq_path = subq_path + path # if not via query option, check for # a cycle if not path.contains(context.attributes, "loader"): if self.join_depth: if ( ( context.query._current_path.length if context.query._current_path else 0 ) + path.length ) / 2 > self.join_depth: return elif subq_path.contains_mapper(self.mapper): return ( leftmost_mapper, leftmost_attr, leftmost_relationship, ) = self._get_leftmost(subq_path) orig_query = context.attributes.get( ("orig_query", SubqueryLoader), context.query ) # generate a new Query from the original, then # produce a subquery from it. left_alias = self._generate_from_original_query( orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, entity.entity_zero, ) # generate another Query that will join the # left alias to the target relationships. # basically doing a longhand # "from_self()". (from_self() itself not quite industrial # strength enough for all contingencies...but very close) q = orig_query.session.query(effective_entity) q._attributes = { ("orig_query", SubqueryLoader): orig_query, ("subquery_path", None): subq_path, } q = q._set_enable_single_crit(False) to_join, local_attr, parent_alias = self._prep_for_joins( left_alias, subq_path ) q = q.order_by(*local_attr) q = q.add_columns(*local_attr) q = self._apply_joins( q, to_join, left_alias, parent_alias, effective_entity ) q = self._setup_options(q, subq_path, orig_query, effective_entity) q = self._setup_outermost_orderby(q) # add new query to attributes to be picked up # by create_row_processor path.set(context.attributes, "subquery", q) def _get_leftmost(self, subq_path): subq_path = subq_path.path subq_mapper = orm_util._class_to_mapper(subq_path[0]) # determine attributes of the leftmost mapper if ( self.parent.isa(subq_mapper) and self.parent_property is subq_path[1] ): leftmost_mapper, leftmost_prop = self.parent, self.parent_property else: leftmost_mapper, leftmost_prop = subq_mapper, subq_path[1] leftmost_cols = leftmost_prop.local_columns leftmost_attr = [ getattr( subq_path[0].entity, leftmost_mapper._columntoproperty[c].key ) for c in leftmost_cols ] return leftmost_mapper, leftmost_attr, leftmost_prop def _generate_from_original_query( self, orig_query, leftmost_mapper, leftmost_attr, leftmost_relationship, orig_entity, ): # reformat the original query # to look only for significant columns q = orig_query._clone().correlate(None) # set the query's "FROM" list explicitly to what the # FROM list would be in any case, as we will be limiting # the columns in the SELECT list which may no longer include # all entities mentioned in things like WHERE, JOIN, etc. if not q._from_obj: q._set_select_from( list( set( [ ent["entity"] for ent in orig_query.column_descriptions if ent["entity"] is not None ] ) ), False, ) # select from the identity columns of the outer (specifically, these # are the 'local_cols' of the property). This will remove # other columns from the query that might suggest the right entity # which is why we do _set_select_from above. target_cols = q._adapt_col_list(leftmost_attr) q._set_entities(target_cols) distinct_target_key = leftmost_relationship.distinct_target_key if distinct_target_key is True: q._distinct = True elif distinct_target_key is None: # if target_cols refer to a non-primary key or only # part of a composite primary key, set the q as distinct for t in set(c.table for c in target_cols): if not set(target_cols).issuperset(t.primary_key): q._distinct = True break if q._order_by is False: q._order_by = leftmost_mapper.order_by # don't need ORDER BY if no limit/offset if q._limit is None and q._offset is None: q._order_by = None # the original query now becomes a subquery # which we'll join onto. embed_q = q.with_labels().subquery() left_alias = orm_util.AliasedClass( leftmost_mapper, embed_q, use_mapper_path=True ) return left_alias def _prep_for_joins(self, left_alias, subq_path): # figure out what's being joined. a.k.a. the fun part to_join = [] pairs = list(subq_path.pairs()) for i, (mapper, prop) in enumerate(pairs): if i > 0: # look at the previous mapper in the chain - # if it is as or more specific than this prop's # mapper, use that instead. # note we have an assumption here that # the non-first element is always going to be a mapper, # not an AliasedClass prev_mapper = pairs[i - 1][1].mapper to_append = prev_mapper if prev_mapper.isa(mapper) else mapper else: to_append = mapper to_join.append((to_append, prop.key)) # determine the immediate parent class we are joining from, # which needs to be aliased. if len(to_join) < 2: # in the case of a one level eager load, this is the # leftmost "left_alias". parent_alias = left_alias else: info = inspect(to_join[-1][0]) if info.is_aliased_class: parent_alias = info.entity else: # alias a plain mapper as we may be # joining multiple times parent_alias = orm_util.AliasedClass( info.entity, use_mapper_path=True ) local_cols = self.parent_property.local_columns local_attr = [ getattr(parent_alias, self.parent._columntoproperty[c].key) for c in local_cols ] return to_join, local_attr, parent_alias def _apply_joins( self, q, to_join, left_alias, parent_alias, effective_entity ): ltj = len(to_join) if ltj == 1: to_join = [ getattr(left_alias, to_join[0][1]).of_type(effective_entity) ] elif ltj == 2: to_join = [ getattr(left_alias, to_join[0][1]).of_type(parent_alias), getattr(parent_alias, to_join[-1][1]).of_type( effective_entity ), ] elif ltj > 2: middle = [ ( orm_util.AliasedClass(item[0]) if not inspect(item[0]).is_aliased_class else item[0].entity, item[1], ) for item in to_join[1:-1] ] inner = [] while middle: item = middle.pop(0) attr = getattr(item[0], item[1]) if middle: attr = attr.of_type(middle[0][0]) else: attr = attr.of_type(parent_alias) inner.append(attr) to_join = ( [getattr(left_alias, to_join[0][1]).of_type(inner[0].parent)] + inner + [ getattr(parent_alias, to_join[-1][1]).of_type( effective_entity ) ] ) for attr in to_join: q = q.join(attr, from_joinpoint=True) return q def _setup_options(self, q, subq_path, orig_query, effective_entity): # propagate loader options etc. to the new query. # these will fire relative to subq_path. q = q._with_current_path(subq_path) q = q._conditional_options(*orig_query._with_options) if orig_query._populate_existing: q._populate_existing = orig_query._populate_existing return q def _setup_outermost_orderby(self, q): if self.parent_property.order_by: # if there's an ORDER BY, alias it the same # way joinedloader does, but we have to pull out # the "eagerjoin" from the query. # this really only picks up the "secondary" table # right now. eagerjoin = q._from_obj[0] eager_order_by = eagerjoin._target_adapter.copy_and_process( util.to_list(self.parent_property.order_by) ) q = q.order_by(*eager_order_by) return q class _SubqCollections(object): """Given a :class:`.Query` used to emit the "subquery load", provide a load interface that executes the query at the first moment a value is needed. """ _data = None def __init__(self, subq): self.subq = subq def get(self, key, default): if self._data is None: self._load() return self._data.get(key, default) def _load(self): self._data = dict( (k, [vv[0] for vv in v]) for k, v in itertools.groupby(self.subq, lambda x: x[1:]) ) def loader(self, state, dict_, row): if self._data is None: self._load() def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): if context.refresh_state: return self._immediateload_create_row_processor( context, path, loadopt, mapper, result, adapter, populators ) if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) path = path[self.parent_property] subq = path.get(context.attributes, "subquery") if subq is None: return assert subq.session is context.session, ( "Subquery session doesn't refer to that of " "our context. Are there broken context caching " "schemes being used?" ) local_cols = self.parent_property.local_columns # cache the loaded collections in the context # so that inheriting mappers don't re-load when they # call upon create_row_processor again collections = path.get(context.attributes, "collections") if collections is None: collections = self._SubqCollections(subq) path.set(context.attributes, "collections", collections) if adapter: local_cols = [adapter.columns[c] for c in local_cols] if self.uselist: self._create_collection_loader( context, result, collections, local_cols, populators ) else: self._create_scalar_loader( context, result, collections, local_cols, populators ) def _create_collection_loader( self, context, result, collections, local_cols, populators ): tuple_getter = result._tuple_getter(local_cols) def load_collection_from_subq(state, dict_, row): collection = collections.get(tuple_getter(row), ()) state.get_impl(self.key).set_committed_value( state, dict_, collection ) def load_collection_from_subq_existing_row(state, dict_, row): if self.key not in dict_: load_collection_from_subq(state, dict_, row) populators["new"].append((self.key, load_collection_from_subq)) populators["existing"].append( (self.key, load_collection_from_subq_existing_row) ) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) def _create_scalar_loader( self, context, result, collections, local_cols, populators ): tuple_getter = result._tuple_getter(local_cols) def load_scalar_from_subq(state, dict_, row): collection = collections.get(tuple_getter(row), (None,)) if len(collection) > 1: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self ) scalar = collection[0] state.get_impl(self.key).set_committed_value(state, dict_, scalar) def load_scalar_from_subq_existing_row(state, dict_, row): if self.key not in dict_: load_scalar_from_subq(state, dict_, row) populators["new"].append((self.key, load_scalar_from_subq)) populators["existing"].append( (self.key, load_scalar_from_subq_existing_row) ) if context.invoke_all_eagers: populators["eager"].append((self.key, collections.loader)) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="joined") @properties.RelationshipProperty.strategy_for(lazy=False) class JoinedLoader(AbstractRelationshipLoader): """Provide loading behavior for a :class:`.RelationshipProperty` using joined eager loading. """ __slots__ = "join_depth", "_aliased_class_pool" def __init__(self, parent, strategy_key): super(JoinedLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth self._aliased_class_pool = [] def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) def setup_query( self, context, query_entity, path, loadopt, adapter, column_collection=None, parentmapper=None, chained_from_outerjoin=False, **kwargs ): """Add a left outer join to the statement that's being constructed.""" if not context.query._enable_eagerloads: return elif context.query._yield_per and self.uselist: context.query._no_yield_per("joined collection") path = path[self.parent_property] with_polymorphic = None user_defined_adapter = ( self._init_user_defined_eager_proc(loadopt, context) if loadopt else False ) if user_defined_adapter is not False: ( clauses, adapter, add_to_collection, ) = self._setup_query_on_user_defined_adapter( context, query_entity, path, adapter, user_defined_adapter ) else: # if not via query option, check for # a cycle if not path.contains(context.attributes, "loader"): if self.join_depth: if path.length / 2 > self.join_depth: return elif path.contains_mapper(self.mapper): return ( clauses, adapter, add_to_collection, chained_from_outerjoin, ) = self._generate_row_adapter( context, query_entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin, ) with_poly_entity = path.get( context.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: with_polymorphic = inspect( with_poly_entity ).with_polymorphic_mappers else: with_polymorphic = None path = path[self.entity] loading._setup_entity_query( context, self.mapper, query_entity, path, clauses, add_to_collection, with_polymorphic=with_polymorphic, parentmapper=self.mapper, chained_from_outerjoin=chained_from_outerjoin, ) if with_poly_entity is not None and None in set( context.secondary_columns ): raise sa_exc.InvalidRequestError( "Detected unaliased columns when generating joined " "load. Make sure to use aliased=True or flat=True " "when using joined loading with with_polymorphic()." ) def _init_user_defined_eager_proc(self, loadopt, context): # check if the opt applies at all if "eager_from_alias" not in loadopt.local_opts: # nope return False path = loadopt.path.parent # the option applies. check if the "user_defined_eager_row_processor" # has been built up. adapter = path.get( context.attributes, "user_defined_eager_row_processor", False ) if adapter is not False: # just return it return adapter # otherwise figure it out. alias = loadopt.local_opts["eager_from_alias"] root_mapper, prop = path[-2:] if alias is not None: if isinstance(alias, str): alias = prop.target.alias(alias) adapter = sql_util.ColumnAdapter( alias, equivalents=prop.mapper._equivalent_columns ) else: if path.contains(context.attributes, "path_with_polymorphic"): with_poly_entity = path.get( context.attributes, "path_with_polymorphic" ) adapter = orm_util.ORMAdapter( with_poly_entity, equivalents=prop.mapper._equivalent_columns, ) else: adapter = context.query._polymorphic_adapters.get( prop.mapper, None ) path.set( context.attributes, "user_defined_eager_row_processor", adapter ) return adapter def _setup_query_on_user_defined_adapter( self, context, entity, path, adapter, user_defined_adapter ): # apply some more wrapping to the "user defined adapter" # if we are setting up the query for SQL render. adapter = entity._get_entity_clauses(context.query, context) if adapter and user_defined_adapter: user_defined_adapter = user_defined_adapter.wrap(adapter) path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter, ) elif adapter: user_defined_adapter = adapter path.set( context.attributes, "user_defined_eager_row_processor", user_defined_adapter, ) add_to_collection = context.primary_columns return user_defined_adapter, adapter, add_to_collection def _gen_pooled_aliased_class(self, context): # keep a local pool of AliasedClass objects that get re-used. # we need one unique AliasedClass per query per appearance of our # entity in the query. if inspect(self.entity).is_aliased_class: alt_selectable = inspect(self.entity).selectable else: alt_selectable = None key = ("joinedloader_ac", self) if key not in context.attributes: context.attributes[key] = idx = 0 else: context.attributes[key] = idx = context.attributes[key] + 1 if idx >= len(self._aliased_class_pool): to_adapt = orm_util.AliasedClass( self.mapper, alias=alt_selectable.alias(flat=True) if alt_selectable is not None else None, flat=True, use_mapper_path=True, ) # load up the .columns collection on the Alias() before # the object becomes shared among threads. this prevents # races for column identities. inspect(to_adapt).selectable.c self._aliased_class_pool.append(to_adapt) return self._aliased_class_pool[idx] def _generate_row_adapter( self, context, entity, path, loadopt, adapter, column_collection, parentmapper, chained_from_outerjoin, ): with_poly_entity = path.get( context.attributes, "path_with_polymorphic", None ) if with_poly_entity: to_adapt = with_poly_entity else: to_adapt = self._gen_pooled_aliased_class(context) clauses = inspect(to_adapt)._memo( ("joinedloader_ormadapter", self), orm_util.ORMAdapter, to_adapt, equivalents=self.mapper._equivalent_columns, adapt_required=True, allow_label_resolve=False, anonymize_labels=True, ) assert clauses.aliased_class is not None if self.parent_property.uselist: context.multi_row_eager_loaders = True innerjoin = ( loadopt.local_opts.get("innerjoin", self.parent_property.innerjoin) if loadopt is not None else self.parent_property.innerjoin ) if not innerjoin: # if this is an outer join, all non-nested eager joins from # this path must also be outer joins chained_from_outerjoin = True context.create_eager_joins.append( ( self._create_eager_join, entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin, ) ) add_to_collection = context.secondary_columns path.set(context.attributes, "eager_row_processor", clauses) return clauses, adapter, add_to_collection, chained_from_outerjoin def _create_eager_join( self, context, query_entity, path, adapter, parentmapper, clauses, innerjoin, chained_from_outerjoin, ): if parentmapper is None: localparent = query_entity.mapper else: localparent = parentmapper # whether or not the Query will wrap the selectable in a subquery, # and then attach eager load joins to that (i.e., in the case of # LIMIT/OFFSET etc.) should_nest_selectable = ( context.multi_row_eager_loaders and context.query._should_nest_selectable ) query_entity_key = None if ( query_entity not in context.eager_joins and not should_nest_selectable and context.from_clause ): indexes = sql_util.find_left_clause_that_matches_given( context.from_clause, query_entity.selectable ) if len(indexes) > 1: # for the eager load case, I can't reproduce this right # now. For query.join() I can. raise sa_exc.InvalidRequestError( "Can't identify which query entity in which to joined " "eager load from. Please use an exact match when " "specifying the join path." ) if indexes: clause = context.from_clause[indexes[0]] # join to an existing FROM clause on the query. # key it to its list index in the eager_joins dict. # Query._compile_context will adapt as needed and # append to the FROM clause of the select(). query_entity_key, default_towrap = indexes[0], clause if query_entity_key is None: query_entity_key, default_towrap = ( query_entity, query_entity.selectable, ) towrap = context.eager_joins.setdefault( query_entity_key, default_towrap ) if adapter: if getattr(adapter, "aliased_class", None): # joining from an adapted entity. The adapted entity # might be a "with_polymorphic", so resolve that to our # specific mapper's entity before looking for our attribute # name on it. efm = inspect(adapter.aliased_class)._entity_for_mapper( localparent if localparent.isa(self.parent) else self.parent ) # look for our attribute on the adapted entity, else fall back # to our straight property onclause = getattr(efm.entity, self.key, self.parent_property) else: onclause = getattr( orm_util.AliasedClass( self.parent, adapter.selectable, use_mapper_path=True ), self.key, self.parent_property, ) else: onclause = self.parent_property assert clauses.aliased_class is not None attach_on_outside = ( not chained_from_outerjoin or not innerjoin or innerjoin == "unnested" or query_entity.entity_zero.represents_outer_join ) if attach_on_outside: # this is the "classic" eager join case. eagerjoin = orm_util._ORMJoin( towrap, clauses.aliased_class, onclause, isouter=not innerjoin or query_entity.entity_zero.represents_outer_join or (chained_from_outerjoin and isinstance(towrap, sql.Join)), _left_memo=self.parent, _right_memo=self.mapper, ) else: # all other cases are innerjoin=='nested' approach eagerjoin = self._splice_nested_inner_join( path, towrap, clauses, onclause ) context.eager_joins[query_entity_key] = eagerjoin # send a hint to the Query as to where it may "splice" this join eagerjoin.stop_on = query_entity.selectable if not parentmapper: # for parentclause that is the non-eager end of the join, # ensure all the parent cols in the primaryjoin are actually # in the # columns clause (i.e. are not deferred), so that aliasing applied # by the Query propagates those columns outward. # This has the effect # of "undefering" those columns. for col in sql_util._find_columns( self.parent_property.primaryjoin ): if localparent.persist_selectable.c.contains_column(col): if adapter: col = adapter.columns[col] context.primary_columns.append(col) if self.parent_property.order_by: context.eager_order_by += ( eagerjoin._target_adapter.copy_and_process )(util.to_list(self.parent_property.order_by)) def _splice_nested_inner_join( self, path, join_obj, clauses, onclause, splicing=False ): if splicing is False: # first call is always handed a join object # from the outside assert isinstance(join_obj, orm_util._ORMJoin) elif isinstance(join_obj, sql.selectable.FromGrouping): return self._splice_nested_inner_join( path, join_obj.element, clauses, onclause, splicing ) elif not isinstance(join_obj, orm_util._ORMJoin): if path[-2] is splicing: return orm_util._ORMJoin( join_obj, clauses.aliased_class, onclause, isouter=False, _left_memo=splicing, _right_memo=path[-1].mapper, ) else: # only here if splicing == True return None target_join = self._splice_nested_inner_join( path, join_obj.right, clauses, onclause, join_obj._right_memo ) if target_join is None: right_splice = False target_join = self._splice_nested_inner_join( path, join_obj.left, clauses, onclause, join_obj._left_memo ) if target_join is None: # should only return None when recursively called, # e.g. splicing==True assert ( splicing is not False ), "assertion failed attempting to produce joined eager loads" return None else: right_splice = True if right_splice: # for a right splice, attempt to flatten out # a JOIN b JOIN c JOIN .. to avoid needless # parenthesis nesting if not join_obj.isouter and not target_join.isouter: eagerjoin = join_obj._splice_into_center(target_join) else: eagerjoin = orm_util._ORMJoin( join_obj.left, target_join, join_obj.onclause, isouter=join_obj.isouter, _left_memo=join_obj._left_memo, ) else: eagerjoin = orm_util._ORMJoin( target_join, join_obj.right, join_obj.onclause, isouter=join_obj.isouter, _right_memo=join_obj._right_memo, ) eagerjoin._target_adapter = target_join._target_adapter return eagerjoin def _create_eager_adapter(self, context, result, adapter, path, loadopt): user_defined_adapter = ( self._init_user_defined_eager_proc(loadopt, context) if loadopt else False ) if user_defined_adapter is not False: decorator = user_defined_adapter # user defined eagerloads are part of the "primary" # portion of the load. # the adapters applied to the Query should be honored. if context.adapter and decorator: decorator = decorator.wrap(context.adapter) elif context.adapter: decorator = context.adapter else: decorator = path.get(context.attributes, "eager_row_processor") if decorator is None: return False if self.mapper._result_has_identity_key(result, decorator): return decorator else: # no identity key - don't return a row # processor, will cause a degrade to lazy return False def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) our_path = path[self.parent_property] eager_adapter = self._create_eager_adapter( context, result, adapter, our_path, loadopt ) if eager_adapter is not False: key = self.key _instance = loading._instance_processor( self.mapper, context, result, our_path[self.entity], eager_adapter, ) if not self.uselist: self._create_scalar_loader(context, key, _instance, populators) else: self._create_collection_loader( context, key, _instance, populators ) else: self.parent_property._get_strategy( (("lazy", "select"),) ).create_row_processor( context, path, loadopt, mapper, result, adapter, populators ) def _create_collection_loader(self, context, key, _instance, populators): def load_collection_from_joined_new_row(state, dict_, row): # note this must unconditionally clear out any existing collection. # an existing collection would be present only in the case of # populate_existing(). collection = attributes.init_state_collection(state, dict_, key) result_list = util.UniqueAppender( collection, "append_without_event" ) context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_existing_row(state, dict_, row): if (state, key) in context.attributes: result_list = context.attributes[(state, key)] else: # appender_key can be absent from context.attributes # with isnew=False when self-referential eager loading # is used; the same instance may be present in two # distinct sets of result columns collection = attributes.init_state_collection( state, dict_, key ) result_list = util.UniqueAppender( collection, "append_without_event" ) context.attributes[(state, key)] = result_list inst = _instance(row) if inst is not None: result_list.append(inst) def load_collection_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append( (self.key, load_collection_from_joined_new_row) ) populators["existing"].append( (self.key, load_collection_from_joined_existing_row) ) if context.invoke_all_eagers: populators["eager"].append( (self.key, load_collection_from_joined_exec) ) def _create_scalar_loader(self, context, key, _instance, populators): def load_scalar_from_joined_new_row(state, dict_, row): # set a scalar object instance directly on the parent # object, bypassing InstrumentedAttribute event handlers. dict_[key] = _instance(row) def load_scalar_from_joined_existing_row(state, dict_, row): # call _instance on the row, even though the object has # been created, so that we further descend into properties existing = _instance(row) # conflicting value already loaded, this shouldn't happen if key in dict_: if existing is not dict_[key]: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded attribute '%s' " % self ) else: # this case is when one row has multiple loads of the # same entity (e.g. via aliasing), one has an attribute # that the other doesn't. dict_[key] = existing def load_scalar_from_joined_exec(state, dict_, row): _instance(row) populators["new"].append((self.key, load_scalar_from_joined_new_row)) populators["existing"].append( (self.key, load_scalar_from_joined_existing_row) ) if context.invoke_all_eagers: populators["eager"].append( (self.key, load_scalar_from_joined_exec) ) @log.class_logger @properties.RelationshipProperty.strategy_for(lazy="selectin") class SelectInLoader(PostLoader, util.MemoizedSlots): __slots__ = ( "join_depth", "omit_join", "_parent_alias", "_query_info", "_fallback_query_info", "_bakery", ) query_info = collections.namedtuple( "queryinfo", [ "load_only_child", "load_with_join", "in_expr", "pk_cols", "zero_idx", "child_lookup_cols", ], ) _chunksize = 500 def __init__(self, parent, strategy_key): super(SelectInLoader, self).__init__(parent, strategy_key) self.join_depth = self.parent_property.join_depth is_m2o = self.parent_property.direction is interfaces.MANYTOONE if self.parent_property.omit_join is not None: self.omit_join = self.parent_property.omit_join else: lazyloader = self.parent_property._get_strategy( (("lazy", "select"),) ) if is_m2o: self.omit_join = lazyloader.use_get else: self.omit_join = self.parent._get_clause[0].compare( lazyloader._rev_lazywhere, use_proxies=True, equivalents=self.parent._equivalent_columns, ) if self.omit_join: if is_m2o: self._query_info = self._init_for_omit_join_m2o() self._fallback_query_info = self._init_for_join() else: self._query_info = self._init_for_omit_join() else: self._query_info = self._init_for_join() def _init_for_omit_join(self): pk_to_fk = dict( self.parent_property._join_condition.local_remote_pairs ) pk_to_fk.update( (equiv, pk_to_fk[k]) for k in list(pk_to_fk) for equiv in self.parent._equivalent_columns.get(k, ()) ) pk_cols = fk_cols = [ pk_to_fk[col] for col in self.parent.primary_key if col in pk_to_fk ] if len(fk_cols) > 1: in_expr = sql.tuple_(*fk_cols) zero_idx = False else: in_expr = fk_cols[0] zero_idx = True return self.query_info(False, False, in_expr, pk_cols, zero_idx, None) def _init_for_omit_join_m2o(self): pk_cols = self.mapper.primary_key if len(pk_cols) > 1: in_expr = sql.tuple_(*pk_cols) zero_idx = False else: in_expr = pk_cols[0] zero_idx = True lazyloader = self.parent_property._get_strategy((("lazy", "select"),)) lookup_cols = [lazyloader._equated_columns[pk] for pk in pk_cols] return self.query_info( True, False, in_expr, pk_cols, zero_idx, lookup_cols ) def _init_for_join(self): self._parent_alias = aliased(self.parent.class_) pa_insp = inspect(self._parent_alias) pk_cols = [ pa_insp._adapt_element(col) for col in self.parent.primary_key ] if len(pk_cols) > 1: in_expr = sql.tuple_(*pk_cols) zero_idx = False else: in_expr = pk_cols[0] zero_idx = True return self.query_info(False, True, in_expr, pk_cols, zero_idx, None) def init_class_attribute(self, mapper): self.parent_property._get_strategy( (("lazy", "select"),) ).init_class_attribute(mapper) @util.dependencies("sqlalchemy.ext.baked") def _memoized_attr__bakery(self, baked): return baked.bakery(size=50) def create_row_processor( self, context, path, loadopt, mapper, result, adapter, populators ): if context.refresh_state: return self._immediateload_create_row_processor( context, path, loadopt, mapper, result, adapter, populators ) if not self.parent.class_manager[self.key].impl.supports_population: raise sa_exc.InvalidRequestError( "'%s' does not support object " "population - eager loading cannot be applied." % self ) selectin_path = ( context.query._current_path or orm_util.PathRegistry.root ) + path if not orm_util._entity_isa(path[-1], self.parent): return if loading.PostLoad.path_exists(context, selectin_path, self.key): return path_w_prop = path[self.parent_property] selectin_path_w_prop = selectin_path[self.parent_property] # build up a path indicating the path from the leftmost # entity to the thing we're subquery loading. with_poly_entity = path_w_prop.get( context.attributes, "path_with_polymorphic", None ) if with_poly_entity is not None: effective_entity = with_poly_entity else: effective_entity = self.entity if not path_w_prop.contains(context.attributes, "loader"): if self.join_depth: if selectin_path_w_prop.length / 2 > self.join_depth: return elif selectin_path_w_prop.contains_mapper(self.mapper): return loading.PostLoad.callable_for_path( context, selectin_path, self.parent, self.key, self._load_for_path, effective_entity, ) @util.dependencies("sqlalchemy.ext.baked") def _load_for_path( self, baked, context, path, states, load_only, effective_entity ): if load_only and self.key not in load_only: return query_info = self._query_info if query_info.load_only_child: our_states = collections.defaultdict(list) none_states = [] mapper = self.parent for state, overwrite in states: state_dict = state.dict related_ident = tuple( mapper._get_state_attr_by_column( state, state_dict, lk, passive=attributes.PASSIVE_NO_FETCH, ) for lk in query_info.child_lookup_cols ) # if the loaded parent objects do not have the foreign key # to the related item loaded, then degrade into the joined # version of selectinload if attributes.PASSIVE_NO_RESULT in related_ident: query_info = self._fallback_query_info break # organize states into lists keyed to particular foreign # key values. if None not in related_ident: our_states[related_ident].append( (state, state_dict, overwrite) ) else: # For FK values that have None, add them to a # separate collection that will be populated separately none_states.append((state, state_dict, overwrite)) # note the above conditional may have changed query_info if not query_info.load_only_child: our_states = [ (state.key[1], state, state.dict, overwrite) for state, overwrite in states ] pk_cols = query_info.pk_cols in_expr = query_info.in_expr if not query_info.load_with_join: # in "omit join" mode, the primary key column and the # "in" expression are in terms of the related entity. So # if the related entity is polymorphic or otherwise aliased, # we need to adapt our "pk_cols" and "in_expr" to that # entity. in non-"omit join" mode, these are against the # parent entity and do not need adaption. insp = inspect(effective_entity) if insp.is_aliased_class: pk_cols = [insp._adapt_element(col) for col in pk_cols] in_expr = insp._adapt_element(in_expr) pk_cols = [insp._adapt_element(col) for col in pk_cols] q = self._bakery( lambda session: session.query( query.Bundle("pk", *pk_cols), effective_entity ), self, ) if not query_info.load_with_join: # the Bundle we have in the "omit_join" case is against raw, non # annotated columns, so to ensure the Query knows its primary # entity, we add it explicitly. If we made the Bundle against # annotated columns, we hit a performance issue in this specific # case, which is detailed in issue #4347. q.add_criteria(lambda q: q.select_from(effective_entity)) else: # in the non-omit_join case, the Bundle is against the annotated/ # mapped column of the parent entity, but the #4347 issue does not # occur in this case. pa = self._parent_alias q.add_criteria( lambda q: q.select_from(pa).join( getattr(pa, self.parent_property.key).of_type( effective_entity ) ) ) if query_info.load_only_child: q.add_criteria( lambda q: q.filter( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ) ) else: q.add_criteria( lambda q: q.filter( in_expr.in_(sql.bindparam("primary_keys", expanding=True)) ).order_by(*pk_cols) ) orig_query = context.query q._add_lazyload_options( orig_query._with_options, path[self.parent_property] ) if orig_query._populate_existing: q.add_criteria(lambda q: q.populate_existing()) if self.parent_property.order_by: if not query_info.load_with_join: eager_order_by = self.parent_property.order_by if insp.is_aliased_class: eager_order_by = [ insp._adapt_element(elem) for elem in eager_order_by ] q.add_criteria(lambda q: q.order_by(*eager_order_by)) else: def _setup_outermost_orderby(q): # imitate the same method that subquery eager loading uses, # looking for the adapted "secondary" table eagerjoin = q._from_obj[0] return q.order_by( *eagerjoin._target_adapter.copy_and_process( util.to_list(self.parent_property.order_by) ) ) q.add_criteria(_setup_outermost_orderby) if query_info.load_only_child: self._load_via_child( our_states, none_states, query_info, q, context ) else: self._load_via_parent(our_states, query_info, q, context) def _load_via_child(self, our_states, none_states, query_info, q, context): uselist = self.uselist # this sort is really for the benefit of the unit tests our_keys = sorted(our_states) while our_keys: chunk = our_keys[0 : self._chunksize] our_keys = our_keys[self._chunksize :] data = { k: v for k, v in q(context.session).params( primary_keys=[ key[0] if query_info.zero_idx else key for key in chunk ] ) } for key in chunk: # for a real foreign key and no concurrent changes to the # DB while running this method, "key" is always present in # data. However, for primaryjoins without real foreign keys # a non-None primaryjoin condition may still refer to no # related object. related_obj = data.get(key, None) for state, dict_, overwrite in our_states[key]: if not overwrite and self.key in dict_: continue state.get_impl(self.key).set_committed_value( state, dict_, related_obj if not uselist else [related_obj], ) # populate none states with empty value / collection for state, dict_, overwrite in none_states: if not overwrite and self.key in dict_: continue # note it's OK if this is a uselist=True attribute, the empty # collection will be populated state.get_impl(self.key).set_committed_value(state, dict_, None) def _load_via_parent(self, our_states, query_info, q, context): uselist = self.uselist _empty_result = () if uselist else None while our_states: chunk = our_states[0 : self._chunksize] our_states = our_states[self._chunksize :] primary_keys = [ key[0] if query_info.zero_idx else key for key, state, state_dict, overwrite in chunk ] data = { k: [vv[1] for vv in v] for k, v in itertools.groupby( q(context.session).params(primary_keys=primary_keys), lambda x: x[0], ) } for key, state, state_dict, overwrite in chunk: if not overwrite and self.key in state_dict: continue collection = data.get(key, _empty_result) if not uselist and collection: if len(collection) > 1: util.warn( "Multiple rows returned with " "uselist=False for eagerly-loaded " "attribute '%s' " % self ) state.get_impl(self.key).set_committed_value( state, state_dict, collection[0] ) else: # note that empty tuple set on uselist=False sets the # value to None state.get_impl(self.key).set_committed_value( state, state_dict, collection ) def single_parent_validator(desc, prop): def _do_check(state, value, oldvalue, initiator): if value is not None and initiator.key == prop.key: hasparent = initiator.hasparent(attributes.instance_state(value)) if hasparent and oldvalue is not value: raise sa_exc.InvalidRequestError( "Instance %s is already associated with an instance " "of %s via its %s attribute, and is only allowed a " "single parent." % (orm_util.instance_str(value), state.class_, prop) ) return value def append(state, value, initiator): return _do_check(state, value, None, initiator) def set_(state, value, oldvalue, initiator): return _do_check(state, value, oldvalue, initiator) event.listen( desc, "append", append, raw=True, retval=True, active_history=True ) event.listen(desc, "set", set_, raw=True, retval=True, active_history=True)
34.736965
79
0.578153
17ce1ce266694cb465d80ed7bccf45dac81bc227
11,220
py
Python
hummingbot/market/bittrex/bittrex_order_book_tracker.py
fakecoinbase/Grandthraxslashhumming_extended
54e959520f515697b5a88d3fc3636e702ea381e5
[ "Apache-2.0" ]
2
2020-08-02T17:56:53.000Z
2021-02-12T18:47:04.000Z
hummingbot/market/bittrex/bittrex_order_book_tracker.py
Grandthrax/humming_extended
54e959520f515697b5a88d3fc3636e702ea381e5
[ "Apache-2.0" ]
1
2019-06-05T23:13:35.000Z
2019-06-05T23:13:35.000Z
hummingbot/market/bittrex/bittrex_order_book_tracker.py
Grandthrax/humming_extended
54e959520f515697b5a88d3fc3636e702ea381e5
[ "Apache-2.0" ]
2
2020-08-02T17:59:03.000Z
2021-09-05T22:19:28.000Z
#!/usr/bin/env python import asyncio import bisect import logging import time from collections import ( defaultdict, deque, ) from typing import ( Optional, Dict, List, Set, Deque, ) from hummingbot.core.data_type.order_book_message import ( OrderBookMessageType, OrderBookMessage, ) from hummingbot.core.event.events import TradeType from hummingbot.logger import HummingbotLogger from hummingbot.core.data_type.order_book_tracker import OrderBookTracker, OrderBookTrackerDataSourceType from hummingbot.core.data_type.order_book_tracker_data_source import OrderBookTrackerDataSource from hummingbot.market.bittrex.bittrex_active_order_tracker import BittrexActiveOrderTracker from hummingbot.market.bittrex.bittrex_api_order_book_data_source import BittrexAPIOrderBookDataSource from hummingbot.market.bittrex.bittrex_order_book import BittrexOrderBook from hummingbot.market.bittrex.bittrex_order_book_message import BittrexOrderBookMessage from hummingbot.market.bittrex.bittrex_order_book_tracker_entry import BittrexOrderBookTrackerEntry class BittrexOrderBookTracker(OrderBookTracker): _btobt_logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._btobt_logger is None: cls._btobt_logger = logging.getLogger(__name__) return cls._btobt_logger def __init__( self, data_source_type: OrderBookTrackerDataSourceType = OrderBookTrackerDataSourceType.EXCHANGE_API, trading_pairs: Optional[List[str]] = None, ): super().__init__(data_source_type=data_source_type) self._ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() self._data_source: Optional[OrderBookTrackerDataSource] = None self._order_book_snapshot_stream: asyncio.Queue = asyncio.Queue() self._order_book_diff_stream: asyncio.Queue = asyncio.Queue() self._process_msg_deque_task: Optional[asyncio.Task] = None self._past_diffs_windows: Dict[str, Deque] = {} self._order_books: Dict[str, BittrexOrderBook] = {} self._saved_message_queues: Dict[str, Deque[BittrexOrderBookMessage]] = defaultdict(lambda: deque(maxlen=1000)) self._active_order_trackers: Dict[str, BittrexActiveOrderTracker] = defaultdict(BittrexActiveOrderTracker) self._trading_pairs: Optional[List[str]] = trading_pairs self._order_book_stream_listener_task: Optional[asyncio.Task] = None @property def data_source(self) -> OrderBookTrackerDataSource: if not self._data_source: if self._data_source_type is OrderBookTrackerDataSourceType.EXCHANGE_API: self._data_source = BittrexAPIOrderBookDataSource(trading_pairs=self._trading_pairs) else: raise ValueError(f"data_source_type {self._data_source_type} is not supported.") return self._data_source @property def exchange_name(self) -> str: return "bittrex" async def _refresh_tracking_tasks(self): """ Starts tracking for any new trading pairs, and stop tracking for any inactive trading pairs. """ tracking_trading_pair: Set[str] = set( [key for key in self._tracking_tasks.keys() if not self._tracking_tasks[key].done()] ) available_pairs: Dict[str, BittrexOrderBookTrackerEntry] = await self.data_source.get_tracking_pairs() available_trading_pair: Set[str] = set(available_pairs.keys()) new_trading_pair: Set[str] = available_trading_pair - tracking_trading_pair deleted_trading_pair: Set[str] = tracking_trading_pair - available_trading_pair for trading_pair in new_trading_pair: order_book_tracker_entry: BittrexOrderBookTrackerEntry = available_pairs[trading_pair] self._active_order_trackers[trading_pair] = order_book_tracker_entry.active_order_tracker self._order_books[trading_pair] = order_book_tracker_entry.order_book self._tracking_message_queues[trading_pair] = asyncio.Queue() self._tracking_tasks[trading_pair] = asyncio.ensure_future(self._track_single_book(trading_pair)) self.logger().info(f"Started order book tracking for {trading_pair}.") for trading_pair in deleted_trading_pair: self._tracking_tasks[trading_pair].cancel() del self._tracking_tasks[trading_pair] del self._order_books[trading_pair] del self._active_order_trackers[trading_pair] del self._tracking_message_queues[trading_pair] self.logger().info(f"Stopped order book tracking for {trading_pair}.") async def _order_book_diff_router(self): """ Route the real-time order book diff messages to the correct order book. """ last_message_timestamp: float = time.time() message_queued: int = 0 message_accepted: int = 0 message_rejected: int = 0 while True: try: ob_message: BittrexOrderBookMessage = await self._order_book_diff_stream.get() trading_pair: str = ob_message.trading_pair if trading_pair not in self._tracking_message_queues: message_queued += 1 # Save diff messages received before snaphsots are ready self._saved_message_queues[trading_pair].append(ob_message) continue message_queue: asyncio.Queue = self._tracking_message_queues[trading_pair] # Check the order book's initial update ID. If it's larger, don't bother. order_book: BittrexOrderBook = self._order_books[trading_pair] if order_book.snapshot_uid > ob_message.update_id: message_rejected += 1 continue await message_queue.put(ob_message) message_accepted += 1 if len(ob_message.content["f"]) != 0: for trade in ob_message.content["f"]: trade_type = float(TradeType.SELL.value) if trade["OT"].upper() == "SELL" \ else float(TradeType.BUY.value) self._order_book_trade_stream.put_nowait(OrderBookMessage(OrderBookMessageType.TRADE, { "trading_pair": ob_message.trading_pair, "trade_type": trade_type, "trade_id": trade["FI"], "update_id": trade["T"], "price": trade["R"], "amount": trade["Q"] }, timestamp=trade["T"])) # Log some statistics now: float = time.time() if int(now / 60.0) > int(last_message_timestamp / 60.0): self.logger().debug( f"Diff message processed: " f"{message_accepted}, " f"rejected: {message_rejected}, " f"queued: {message_queue}" ) message_accepted = 0 message_rejected = 0 message_queued = 0 last_message_timestamp = now except asyncio.CancelledError: raise except Exception: self.logger().network( f"Unexpected error routing order book messages.", exc_info=True, app_warning_msg=f"Unexpected error routing order book messages. Retrying after 5 seconds.", ) await asyncio.sleep(5.0) async def _track_single_book(self, trading_pair: str): past_diffs_window: Deque[BittrexOrderBookMessage] = deque() self._past_diffs_windows[trading_pair] = past_diffs_window message_queue: asyncio.Queue = self._tracking_message_queues[trading_pair] order_book: BittrexOrderBook = self._order_books[trading_pair] active_order_tracker: BittrexActiveOrderTracker = self._active_order_trackers[trading_pair] last_message_timestamp = order_book.snapshot_uid diff_message_accepted: int = 0 while True: try: message: BittrexOrderBookMessage = None save_messages: Deque[BittrexOrderBookMessage] = self._saved_message_queues[trading_pair] # Process saved messages first if there are any if len(save_messages) > 0: message = save_messages.popleft() elif message_queue.qsize() > 0: message = await message_queue.get() else: # Waits to received some diff messages await asyncio.sleep(3) continue # Processes diff stream if message.type is OrderBookMessageType.DIFF: bids, asks = active_order_tracker.convert_diff_message_to_order_book_row(message) order_book.apply_diffs(bids, asks, message.update_id) past_diffs_window.append(message) while len(past_diffs_window) > self.PAST_DIFF_WINDOW_SIZE: past_diffs_window.popleft() diff_message_accepted += 1 # Output some statistics periodically. now: float = message.update_id if now > last_message_timestamp: self.logger().debug(f"Processed {diff_message_accepted} order book diffs for {trading_pair}") diff_message_accepted = 0 last_message_timestamp = now # Processes snapshot stream elif message.type is OrderBookMessageType.SNAPSHOT: past_diffs: List[BittrexOrderBookMessage] = list(past_diffs_window) # only replay diffs later than snapshot, first update active order with snapshot then replay diffs replay_position = bisect.bisect_right(past_diffs, message) replay_diffs = past_diffs[replay_position:] s_bids, s_asks = active_order_tracker.convert_snapshot_message_to_order_book_row(message) order_book.apply_snapshot(s_bids, s_asks, message.update_id) for diff_message in replay_diffs: d_bids, d_asks = active_order_tracker.convert_diff_message_to_order_book_row(diff_message) order_book.apply_diffs(d_bids, d_asks, diff_message.update_id) self.logger().debug("Processed order book snapshot for %s.", trading_pair) except asyncio.CancelledError: raise except Exception: self.logger().network( f"Unexpected error processing order book messages for {trading_pair}.", exc_info=True, app_warning_msg=f"Unexpected error processing order book messages. Retrying after 5 seconds.", ) await asyncio.sleep(5.0)
48.571429
119
0.638948
9c6abf8233686ef9c771045703fdf4b5eaa98a4e
2,686
py
Python
cloudmesh/common/systeminfo.py
aporlowski/cloudmesh-common
ff991c07eb17b899742a1535665118a33d679f2d
[ "Apache-2.0" ]
null
null
null
cloudmesh/common/systeminfo.py
aporlowski/cloudmesh-common
ff991c07eb17b899742a1535665118a33d679f2d
[ "Apache-2.0" ]
null
null
null
cloudmesh/common/systeminfo.py
aporlowski/cloudmesh-common
ff991c07eb17b899742a1535665118a33d679f2d
[ "Apache-2.0" ]
null
null
null
import platform import sys import os from pathlib import Path from cloudmesh.common.util import readfile from collections import OrderedDict import pip import psutil import humanize def sys_user(): if "COLAB_GPU" in os.environ: return "collab" elif sys.platform == "win32": return os.environ["USERNAME"] else: return os.environ["USER"] def get_platform(): if sys.platform == "darwin": return "macos" elif sys.platform == "win32": return "windows" try: content = readfile('/etc/os-release') if sys.platform == 'linux' and "raspbian" in content: return "raspberry" else: return sys.platform except: return sys.platform def systeminfo(): uname = platform.uname() mem = psutil.virtual_memory() # noinspection PyPep8 def add_binary(value): try: r = humanize.naturalsize(value, binary=True) except: r = "" return r data = OrderedDict({ 'uname.system': uname.system, 'uname.node': uname.node, 'uname.release': uname.release, 'uname.version': uname.version, 'uname.machine': uname.machine, 'uname.processor': uname.processor, 'sys.platform': sys.platform, 'python': sys.version, 'python.version': sys.version.split(" ", 1)[0], 'python.pip': pip.__version__, 'user': sys_user(), 'mem.percent': str(mem.percent) + " %", }) for attribute in ["total", "available", "used", "free", "active", "inactive", "wired" ]: try: data[f"mem.{attribute}"] = \ humanize.naturalsize(getattr(mem, attribute), binary=True) except: pass # svmem(total=17179869184, available=6552825856, percent=61.9, if data['sys.platform'] == 'darwin': data['platform.version'] = platform.mac_ver()[0] elif data['sys.platform'] == 'win32': data['platform.version'] = platform.win32_ver() else: data['platform.version'] = uname.version try: release_files = Path("/etc").glob("*release") for filename in release_files: content = readfile(filename.resolve()).splitlines() for line in content: if "=" in line: attribute, value = line.split("=", 1) attribute = attribute.replace(" ", "") data[attribute] = value except: pass return dict(data)
27.690722
74
0.538347
ca25a67cc33477e6815dd3de8155b2d2d72696c6
4,504
py
Python
cgc/ThreeColors.py
Jfeatherstone/ColorGlass
f242541df614a8eea97c43d3480c779e92660ebb
[ "MIT" ]
null
null
null
cgc/ThreeColors.py
Jfeatherstone/ColorGlass
f242541df614a8eea97c43d3480c779e92660ebb
[ "MIT" ]
null
null
null
cgc/ThreeColors.py
Jfeatherstone/ColorGlass
f242541df614a8eea97c43d3480c779e92660ebb
[ "MIT" ]
null
null
null
from .Wavefunction import Wavefunction import numpy as np from scipy.fft import ifft2, fft2 from scipy.linalg import expm class Nucleus(Wavefunction): _wilsonLine = None _adjointWilsonLine = None # Some variables to keep track of what has been calculated/generated so far # allowing us to avoid redundant computations _wilsonLineExists = False _adjointWilsonLineExists = False # The Gell-Mann matrices, for use in calculating the adjoint representation of the wilson line # specific to using 3 color charges # First entry is the identity, latter 8 are the proper Gell-Mann matrices _gell_mann = np.array([[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 1, 0], [1, 0, 0], [0, 0, 0]], [[0, -1.j, 0], [1.j, 0, 0], [0, 0, 0]], [[1, 0, 0], [0, -1, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [1, 0, 0]], [[0, 0, -1.j], [0, 0, 0], [1.j, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 1, 0]], [[0, 0, 0], [0, 0, -1.j], [0, 1, 0]], [[1/np.sqrt(3), 0, 0], [0, 1/np.sqrt(3), 0], [0, 0, -2/np.sqrt(3)]] ], dtype='complex') def __init__(self, N, delta, mu, fftNormalization=None, M=.5, g=1): r""" Constructor ----------- Wrapper for `super.__init__` with `colorCharges` = 3. Parameters ---------- N : positive integer The size of the square lattice to simulate delta : positive float The distance between adjacent lattice sites mu : positive float The scaling for the random gaussian distribution that generates the color charge density fftNormalization : None | "backward" | "ortho" | "forward" Normalization procedure used when computing fourier transforms; see [scipy documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.fft.fft.html) for more information M : float Experimental parameter in the laplace equation for the gauge field g : float Parameter in the laplace equation for the gauge field """ super().__init__(3, N, delta, mu, fftNormalization, M, g) # Super constructor with colorCharges=3 def wilsonLine(self): """ Calculate the Wilson line by numerically computing the exponential of the gauge field times the Gell-mann matrices. Numerical calculation is done using [scipy's expm](https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html) If the line already exists, it is simply returned and no calculation is done. """ if self._wilsonLineExists: return self._wilsonLine # Make sure the gauge field has already been calculated if not self._gaugeFieldExists: self.gaugeField() # We have a 3x3 matrix at each lattice point self._wilsonLine = np.zeros([self.N, self.N, 3, 3], dtype='complex') for i in range(self.N): for j in range(self.N): # Numerical form for SU(n) self._wilsonLine[i,j] = expm(1.j*sum([self._gaugeField[k,i,j]*self._gell_mann[k+1] for k in range(self.gluonDOF)])) self._wilsonLineExists = True return self._wilsonLine def adjointWilsonLine(self): """ Calculate the Wilson line in the adjoint representation. If the line already exists, it is simply returned and no calculation is done. """ if self._adjointWilsonLineExists: return self._adjointWilsonLine # Make sure the wilson line has already been calculated if not self._wilsonLineExists: self.wilsonLine() self._adjointWilsonLine = np.zeros([self.gluonDOF+1, self.gluonDOF+1, self.N, self.N], dtype='complex') for a in range(self.gluonDOF+1): for b in range(self.gluonDOF+1): for i in range(self.N): for j in range(self.N): V = self._wilsonLine[i,j] Vdag = np.conjugate(np.transpose(V)) self._adjointWilsonLine[a,b,i,j] = .5 * np.trace(np.dot(np.dot(self._gell_mann[a], V), np.dot(self._gell_mann[b], Vdag))) self._adjointWilsonLineExists = True return self._adjointWilsonLine
37.22314
195
0.574822
e43767ef2b648d0d5d57c00f38ccbd38390e38da
19,134
py
Python
tb_check.py
N1kYan/vssil
214363f1a924414415cfef940404d8057f6912e7
[ "MIT" ]
6,139
2017-06-13T02:43:20.000Z
2022-03-30T23:56:28.000Z
tb_check.py
N1kYan/vssil
214363f1a924414415cfef940404d8057f6912e7
[ "MIT" ]
3,239
2017-06-14T15:49:50.000Z
2022-03-31T23:43:15.000Z
tb_check.py
N1kYan/vssil
214363f1a924414415cfef940404d8057f6912e7
[ "MIT" ]
1,882
2017-06-15T01:33:54.000Z
2022-03-30T15:27:25.000Z
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Self-diagnosis script for TensorBoard. Instructions: Save this script to your local machine, then execute it in the same environment (virtualenv, Conda, etc.) from which you normally run TensorBoard. Read the output and follow the directions. """ # This script may only depend on the Python standard library. It is not # built with Bazel and should not assume any third-party dependencies. import collections import errno import functools import hashlib import inspect import logging import os import pipes import shlex import socket import subprocess import sys import tempfile import textwrap import traceback # A *check* is a function (of no arguments) that performs a diagnostic, # writes log messages, and optionally yields suggestions. Each check # runs in isolation; exceptions will be caught and reported. CHECKS = [] # A suggestion to the end user. # headline (str): A short description, like "Turn it off and on # again". Should be imperative with no trailing punctuation. May # contain inline Markdown. # description (str): A full enumeration of the steps that the user # should take to accept the suggestion. Within this string, prose # should be formatted with `reflow`. May contain Markdown. Suggestion = collections.namedtuple("Suggestion", ("headline", "description")) def check(fn): """Decorator to register a function as a check. Checks are run in the order in which they are registered. Args: fn: A function that takes no arguments and either returns `None` or returns a generator of `Suggestion`s. (The ability to return `None` is to work around the awkwardness of defining empty generator functions in Python.) Returns: A wrapped version of `fn` that returns a generator of `Suggestion`s. """ @functools.wraps(fn) def wrapper(): result = fn() return iter(()) if result is None else result CHECKS.append(wrapper) return wrapper def reflow(paragraph): return textwrap.fill(textwrap.dedent(paragraph).strip()) def pip(args): """Invoke command-line Pip with the specified args. Returns: A bytestring containing the output of Pip. """ # Suppress the Python 2.7 deprecation warning. PYTHONWARNINGS_KEY = "PYTHONWARNINGS" old_pythonwarnings = os.environ.get(PYTHONWARNINGS_KEY) new_pythonwarnings = "%s%s" % ( "ignore:DEPRECATION", ",%s" % old_pythonwarnings if old_pythonwarnings else "", ) command = [sys.executable, "-m", "pip", "--disable-pip-version-check"] command.extend(args) try: os.environ[PYTHONWARNINGS_KEY] = new_pythonwarnings return subprocess.check_output(command) finally: if old_pythonwarnings is None: del os.environ[PYTHONWARNINGS_KEY] else: os.environ[PYTHONWARNINGS_KEY] = old_pythonwarnings def which(name): """Return the path to a binary, or `None` if it's not on the path. Returns: A bytestring. """ binary = "where" if os.name == "nt" else "which" try: return subprocess.check_output([binary, name]) except subprocess.CalledProcessError: return None def sgetattr(attr, default): """Get an attribute off the `socket` module, or use a default.""" sentinel = object() result = getattr(socket, attr, sentinel) if result is sentinel: print("socket.%s does not exist" % attr) return default else: print("socket.%s = %r" % (attr, result)) return result @check def autoidentify(): """Print the Git hash of this version of `diagnose_tensorboard.py`. Given this hash, use `git cat-file blob HASH` to recover the relevant version of the script. """ module = sys.modules[__name__] try: source = inspect.getsource(module).encode("utf-8") except TypeError: logging.info("diagnose_tensorboard.py source unavailable") else: # Git inserts a length-prefix before hashing; cf. `git-hash-object`. blob = b"blob %d\0%s" % (len(source), source) hash = hashlib.sha1(blob).hexdigest() logging.info("diagnose_tensorboard.py version %s", hash) @check def general(): logging.info("sys.version_info: %s", sys.version_info) logging.info("os.name: %s", os.name) na = type("N/A", (object,), {"__repr__": lambda self: "N/A"}) logging.info( "os.uname(): %r", getattr(os, "uname", na)(), ) logging.info( "sys.getwindowsversion(): %r", getattr(sys, "getwindowsversion", na)(), ) @check def package_management(): conda_meta = os.path.join(sys.prefix, "conda-meta") logging.info("has conda-meta: %s", os.path.exists(conda_meta)) logging.info("$VIRTUAL_ENV: %r", os.environ.get("VIRTUAL_ENV")) @check def installed_packages(): freeze = pip(["freeze", "--all"]).decode("utf-8").splitlines() packages = {line.split("==")[0]: line for line in freeze} packages_set = frozenset(packages) # For each of the following families, expect exactly one package to be # installed. expect_unique = [ frozenset( [ "tensorboard", "tb-nightly", "tensorflow-tensorboard", ] ), frozenset( [ "tensorflow", "tensorflow-gpu", "tf-nightly", "tf-nightly-2.0-preview", "tf-nightly-gpu", "tf-nightly-gpu-2.0-preview", ] ), frozenset( [ "tensorflow-estimator", "tensorflow-estimator-2.0-preview", "tf-estimator-nightly", ] ), ] salient_extras = frozenset(["tensorboard-data-server"]) found_conflict = False for family in expect_unique: actual = family & packages_set for package in actual: logging.info("installed: %s", packages[package]) if len(actual) == 0: logging.warning("no installation among: %s", sorted(family)) elif len(actual) > 1: logging.warning("conflicting installations: %s", sorted(actual)) found_conflict = True for package in sorted(salient_extras & packages_set): logging.info("installed: %s", packages[package]) if found_conflict: preamble = reflow( """ Conflicting package installations found. Depending on the order of installations and uninstallations, behavior may be undefined. Please uninstall ALL versions of TensorFlow and TensorBoard, then reinstall ONLY the desired version of TensorFlow, which will transitively pull in the proper version of TensorBoard. (If you use TensorBoard without TensorFlow, just reinstall the appropriate version of TensorBoard directly.) """ ) packages_to_uninstall = sorted( frozenset().union(*expect_unique) & packages_set ) commands = [ "pip uninstall %s" % " ".join(packages_to_uninstall), "pip install tensorflow # or `tensorflow-gpu`, or `tf-nightly`, ...", ] message = "%s\n\nNamely:\n\n%s" % ( preamble, "\n".join("\t%s" % c for c in commands), ) yield Suggestion("Fix conflicting installations", message) wit_version = packages.get("tensorboard-plugin-wit") if wit_version == "tensorboard-plugin-wit==1.6.0.post2": # This is only incompatible with TensorBoard prior to 2.2.0, but # we just issue a blanket warning so that we don't have to pull # in a `pkg_resources` dep to parse the version. preamble = reflow( """ Versions of the What-If Tool (`tensorboard-plugin-wit`) prior to 1.6.0.post3 are incompatible with some versions of TensorBoard. Please upgrade this package to the latest version to resolve any startup errors: """ ) command = "pip install -U tensorboard-plugin-wit" message = "%s\n\n\t%s" % (preamble, command) yield Suggestion("Upgrade `tensorboard-plugin-wit`", message) @check def tensorboard_python_version(): from tensorboard import version logging.info("tensorboard.version.VERSION: %r", version.VERSION) @check def tensorflow_python_version(): import tensorflow as tf logging.info("tensorflow.__version__: %r", tf.__version__) logging.info("tensorflow.__git_version__: %r", tf.__git_version__) @check def tensorboard_data_server_version(): try: import tensorboard_data_server except ImportError: logging.info("no data server installed") return path = tensorboard_data_server.server_binary() logging.info("data server binary: %r", path) if path is None: return try: subprocess_output = subprocess.run( [path, "--version"], capture_output=True, check=True, ) except subprocess.CalledProcessError as e: logging.info("failed to check binary version: %s", e) else: logging.info( "data server binary version: %s", subprocess_output.stdout.strip() ) @check def tensorboard_binary_path(): logging.info("which tensorboard: %r", which("tensorboard")) @check def addrinfos(): sgetattr("has_ipv6", None) family = sgetattr("AF_UNSPEC", 0) socktype = sgetattr("SOCK_STREAM", 0) protocol = 0 flags_loopback = sgetattr("AI_ADDRCONFIG", 0) flags_wildcard = sgetattr("AI_PASSIVE", 0) hints_loopback = (family, socktype, protocol, flags_loopback) infos_loopback = socket.getaddrinfo(None, 0, *hints_loopback) print("Loopback flags: %r" % (flags_loopback,)) print("Loopback infos: %r" % (infos_loopback,)) hints_wildcard = (family, socktype, protocol, flags_wildcard) infos_wildcard = socket.getaddrinfo(None, 0, *hints_wildcard) print("Wildcard flags: %r" % (flags_wildcard,)) print("Wildcard infos: %r" % (infos_wildcard,)) @check def readable_fqdn(): # May raise `UnicodeDecodeError` for non-ASCII hostnames: # https://github.com/tensorflow/tensorboard/issues/682 try: logging.info("socket.getfqdn(): %r", socket.getfqdn()) except UnicodeDecodeError as e: try: binary_hostname = subprocess.check_output(["hostname"]).strip() except subprocess.CalledProcessError: binary_hostname = b"<unavailable>" is_non_ascii = not all( 0x20 <= (ord(c) if not isinstance(c, int) else c) <= 0x7E # Python 2 for c in binary_hostname ) if is_non_ascii: message = reflow( """ Your computer's hostname, %r, contains bytes outside of the printable ASCII range. Some versions of Python have trouble working with such names (https://bugs.python.org/issue26227). Consider changing to a hostname that only contains printable ASCII bytes. """ % (binary_hostname,) ) yield Suggestion("Use an ASCII hostname", message) else: message = reflow( """ Python can't read your computer's hostname, %r. This can occur if the hostname contains non-ASCII bytes (https://bugs.python.org/issue26227). Consider changing your hostname, rebooting your machine, and rerunning this diagnosis script to see if the problem is resolved. """ % (binary_hostname,) ) yield Suggestion("Use a simpler hostname", message) raise e @check def stat_tensorboardinfo(): # We don't use `manager._get_info_dir`, because (a) that requires # TensorBoard, and (b) that creates the directory if it doesn't exist. path = os.path.join(tempfile.gettempdir(), ".tensorboard-info") logging.info("directory: %s", path) try: stat_result = os.stat(path) except OSError as e: if e.errno == errno.ENOENT: # No problem; this is just fine. logging.info(".tensorboard-info directory does not exist") return else: raise logging.info("os.stat(...): %r", stat_result) logging.info("mode: 0o%o", stat_result.st_mode) if stat_result.st_mode & 0o777 != 0o777: preamble = reflow( """ The ".tensorboard-info" directory was created by an old version of TensorBoard, and its permissions are not set correctly; see issue #2010. Change that directory to be world-accessible (may require superuser privilege): """ ) # This error should only appear on Unices, so it's okay to use # Unix-specific utilities and shell syntax. quote = getattr(shlex, "quote", None) or pipes.quote # Python <3.3 command = "chmod 777 %s" % quote(path) message = "%s\n\n\t%s" % (preamble, command) yield Suggestion('Fix permissions on "%s"' % path, message) @check def source_trees_without_genfiles(): roots = list(sys.path) if "" not in roots: # Catch problems that would occur in a Python interactive shell # (where `""` is prepended to `sys.path`) but not when # `diagnose_tensorboard.py` is run as a standalone script. roots.insert(0, "") def has_tensorboard(root): return os.path.isfile(os.path.join(root, "tensorboard", "__init__.py")) def has_genfiles(root): sample_genfile = os.path.join("compat", "proto", "summary_pb2.py") return os.path.isfile(os.path.join(root, "tensorboard", sample_genfile)) def is_bad(root): return has_tensorboard(root) and not has_genfiles(root) tensorboard_roots = [root for root in roots if has_tensorboard(root)] bad_roots = [root for root in roots if is_bad(root)] logging.info( "tensorboard_roots (%d): %r; bad_roots (%d): %r", len(tensorboard_roots), tensorboard_roots, len(bad_roots), bad_roots, ) if bad_roots: if bad_roots == [""]: message = reflow( """ Your current directory contains a `tensorboard` Python package that does not include generated files. This can happen if your current directory includes the TensorBoard source tree (e.g., you are in the TensorBoard Git repository). Consider changing to a different directory. """ ) else: preamble = reflow( """ Your Python path contains a `tensorboard` package that does not include generated files. This can happen if your current directory includes the TensorBoard source tree (e.g., you are in the TensorBoard Git repository). The following directories from your Python path may be problematic: """ ) roots = [] realpaths_seen = set() for root in bad_roots: label = repr(root) if root else "current directory" realpath = os.path.realpath(root) if realpath in realpaths_seen: # virtualenvs on Ubuntu install to both `lib` and `local/lib`; # explicitly call out such duplicates to avoid confusion. label += " (duplicate underlying directory)" realpaths_seen.add(realpath) roots.append(label) message = "%s\n\n%s" % ( preamble, "\n".join(" - %s" % s for s in roots), ) yield Suggestion( "Avoid `tensorboard` packages without genfiles", message ) # Prefer to include this check last, as its output is long. @check def full_pip_freeze(): logging.info( "pip freeze --all:\n%s", pip(["freeze", "--all"]).decode("utf-8") ) def set_up_logging(): # Manually install handlers to prevent TensorFlow from stomping the # default configuration if it's imported: # https://github.com/tensorflow/tensorflow/issues/28147 logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(logging.Formatter("%(levelname)s: %(message)s")) logger.addHandler(handler) def main(): set_up_logging() print("### Diagnostics") print() print("<details>") print("<summary>Diagnostics output</summary>") print() markdown_code_fence = "``````" # seems likely to be sufficient print(markdown_code_fence) suggestions = [] for (i, check) in enumerate(CHECKS): if i > 0: print() print("--- check: %s" % check.__name__) try: suggestions.extend(check()) except Exception: traceback.print_exc(file=sys.stdout) pass print(markdown_code_fence) print() print("</details>") for suggestion in suggestions: print() print("### Suggestion: %s" % suggestion.headline) print() print(suggestion.description) print() print("### Next steps") print() if suggestions: print( reflow( """ Please try each suggestion enumerated above to determine whether it solves your problem. If none of these suggestions works, please copy ALL of the above output, including the lines containing only backticks, into your GitHub issue or comment. Be sure to redact any sensitive information. """ ) ) else: print( reflow( """ No action items identified. Please copy ALL of the above output, including the lines containing only backticks, into your GitHub issue or comment. Be sure to redact any sensitive information. """ ) ) if __name__ == "__main__": main()
33.865487
82
0.610902
20e7f581435e325d89fb845110fc48bbbdf3cb72
2,465
py
Python
opentelemetry-api/setup.py
ThePumpingLemma/opentelemetry-python
9ed98eb9320b9064e43c3b43ee7c4990eec3657a
[ "Apache-2.0" ]
null
null
null
opentelemetry-api/setup.py
ThePumpingLemma/opentelemetry-python
9ed98eb9320b9064e43c3b43ee7c4990eec3657a
[ "Apache-2.0" ]
null
null
null
opentelemetry-api/setup.py
ThePumpingLemma/opentelemetry-python
9ed98eb9320b9064e43c3b43ee7c4990eec3657a
[ "Apache-2.0" ]
null
null
null
# Copyright 2019, OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import setuptools BASE_DIR = os.path.dirname(__file__) VERSION_FILENAME = os.path.join( BASE_DIR, "src", "opentelemetry", "util", "version.py" ) PACKAGE_INFO = {} with open(VERSION_FILENAME) as f: exec(f.read(), PACKAGE_INFO) setuptools.setup( name="opentelemetry-api", version=PACKAGE_INFO["__version__"], author="OpenTelemetry Authors", author_email="cncf-opentelemetry-contributors@lists.cncf.io", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", ], description="OpenTelemetry Python API", include_package_data=True, long_description=open("README.rst").read(), long_description_content_type="text/x-rst", install_requires=[ "typing; python_version<'3.5'", "aiocontextvars; python_version<'3.7' and python_version>='3.5'", ], extras_require={}, license="Apache-2.0", package_dir={"": "src"}, packages=setuptools.find_namespace_packages( where="src", include="opentelemetry.*" ), url=( "https://github.com/open-telemetry/opentelemetry-python" "/tree/master/opentelemetry-api" ), zip_safe=False, entry_points={ "opentelemetry_context": [ "contextvars_context = " "opentelemetry.context.contextvars_context:" "ContextVarsRuntimeContext", "threadlocal_context = " "opentelemetry.context.threadlocal_context:" "ThreadLocalRuntimeContext", ] }, )
33.767123
74
0.664909
33d63c5c5b02e606550a6c37cb50f553f4f798a5
282
py
Python
solutions/Luck_check.py
AlexGameAndWebDev/CodeWars-Python
222b8244e9f248dbb4e5fabd390dd4cce446dc84
[ "MIT" ]
44
2015-05-24T13:46:22.000Z
2022-03-22T10:40:10.000Z
solutions/Luck_check.py
badruu/CodeWars-Python
222b8244e9f248dbb4e5fabd390dd4cce446dc84
[ "MIT" ]
3
2016-09-10T07:14:02.000Z
2021-09-14T12:16:25.000Z
solutions/Luck_check.py
badruu/CodeWars-Python
222b8244e9f248dbb4e5fabd390dd4cce446dc84
[ "MIT" ]
48
2016-04-03T04:48:33.000Z
2022-03-14T23:32:17.000Z
""" Luck check http://www.codewars.com/kata/5314b3c6bb244a48ab00076c/train/python """ def luck_check(string): i, j, total = 0, len(string) - 1, 0 while i != j and i < j: total += (int(string[i]) - int(string[j])) i += 1 j -= 1 return total == 0
21.692308
66
0.556738
aa75c2452fa34b449c1595bc69b1e225d220c8d1
541
py
Python
glashammer/utils/log.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
1
2016-07-04T15:23:59.000Z
2016-07-04T15:23:59.000Z
glashammer/utils/log.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
null
null
null
glashammer/utils/log.py
passy/glashammer-rdrei
9e56952d70b961d8945707469aad9cfe97c4e7b7
[ "MIT" ]
null
null
null
def add_log_handler(handler): root_logger = getLogger('') root_logger.addHandler(handler) def debug(msg): # Racy from glashammer.utils import emit_event emit_event('log', 'debug', msg) def info(msg): # Racy from glashammer.utils import emit_event emit_event('log', 'debug', msg) def warning(msg): # Racy from glashammer.utils import emit_event emit_event('log', 'warning', msg) def error(msg): # Racy from glashammer.utils import emit_event emit_event('log', 'error', msg)
16.90625
43
0.665434
0b14731419a7f2ec299cdbe928ffacc7ee1f1165
1,278
py
Python
dataset.py
NB-prog/multiclass-classificationDistilBert
ed64da14ac59e1c2992a8eb80e45befee6f02879
[ "MIT" ]
null
null
null
dataset.py
NB-prog/multiclass-classificationDistilBert
ed64da14ac59e1c2992a8eb80e45befee6f02879
[ "MIT" ]
null
null
null
dataset.py
NB-prog/multiclass-classificationDistilBert
ed64da14ac59e1c2992a8eb80e45befee6f02879
[ "MIT" ]
null
null
null
import config import torch from torch.utils.data import Dataset, DataLoader import transformers from transformers import DistilBertModel, DistilBertTokenizer class Triage(Dataset): def __init__(self, dataframe): self.len = len(dataframe) self.data = dataframe self.tokenizer = config.tokenizer self.max_len = config.MAX_LEN def __getitem__(self, index): title = str(self.data.TITLE[index]) title = " ".join(title.split()) inputs = self.tokenizer.encode_plus( title, None, add_special_tokens=True, max_length=self.max_len, padding=True, return_token_type_ids=True, truncation=True ) ids = inputs['input_ids'] mask = inputs['attention_mask'] padding_length = self.max_len - len(ids) ids = ids + ([0] * padding_length) mask = mask + ([0] * padding_length) return { 'ids': torch.tensor(ids, dtype=torch.long), 'mask': torch.tensor(mask, dtype=torch.long), 'targets': torch.tensor(self.data.ENCODE_CAT[index], dtype=torch.long) } def __len__(self): return self.len
31.170732
83
0.576682
ddf20b6a36293ec87eda1b7bbedccaf358e26505
1,242
py
Python
load_testing/ial2_sign_up.locustfile.py
18F/identity-loadtes
b437643f21bb47a1b2c7eff82e9bd6569e9f081b
[ "CC0-1.0" ]
null
null
null
load_testing/ial2_sign_up.locustfile.py
18F/identity-loadtes
b437643f21bb47a1b2c7eff82e9bd6569e9f081b
[ "CC0-1.0" ]
18
2020-03-25T21:44:21.000Z
2021-12-16T00:47:59.000Z
load_testing/ial2_sign_up.locustfile.py
18F/identity-loadtes
b437643f21bb47a1b2c7eff82e9bd6569e9f081b
[ "CC0-1.0" ]
2
2021-01-12T10:08:38.000Z
2021-08-24T17:35:40.000Z
from locust import HttpUser, TaskSet, task, between from common_flows import flow_ial2_proofing, flow_sign_up, flow_helper import logging class IAL2SignUpLoad(TaskSet): # Preload drivers license data license_front = flow_helper.load_fixture("mock-front.jpeg") license_back = flow_helper.load_fixture("mock-back.jpeg") def on_start(self): logging.info("*** Starting Sign-Up and IAL2 proof load tests ***") def on_stop(self): logging.info("*** Ending IAL2 Sign-Up load tests ***") """ @task(<weight>) : value=3 executes 3x as often as value=1 """ """ Things inside task are synchronous. Tasks are async """ @task(1) def sign_up_and_proof_load_test(self): # Sign up flow flow_sign_up.do_sign_up(self) # Get /account page flow_helper.do_request(self, "get", "/account", "/account", "") # IAL2 Proofing flow flow_ial2_proofing.do_ial2_proofing(self) # Get the /account page now flow_helper.do_request(self, "get", "/account", "/account", "") # Now log out flow_helper.do_request(self, "get", "/logout", "/", "") class WebsiteUser(HttpUser): tasks = [IAL2SignUpLoad] wait_time = between(5, 9)
29.571429
74
0.652979
015b1a814579cf43b5516d3c75b393af0664560e
1,016
py
Python
esp32-pulsetimer/test-pt.py
tve/mpy-lib
9f102459c61a5be424291a277e421bd1fc16843a
[ "MIT" ]
6
2020-02-27T11:17:54.000Z
2020-12-04T10:14:26.000Z
esp32-pulsetimer/test-pt.py
tve/mpy-lib
9f102459c61a5be424291a277e421bd1fc16843a
[ "MIT" ]
4
2020-07-29T14:07:04.000Z
2021-05-19T05:10:33.000Z
esp32-pulsetimer/test-pt.py
tve/mpy-lib
9f102459c61a5be424291a277e421bd1fc16843a
[ "MIT" ]
3
2020-05-16T08:15:16.000Z
2021-09-30T10:39:37.000Z
import time, machine out_pin = 21 in_pin = 22 print("Testing pulsetimer, outputting on pin %d and reading pulsetimer on pin %d", out_pin, in_pin) print("Loading pulsetimer module") time.sleep_ms(100) import pulsetimer print("Instantiating output pin") out = machine.Pin(out_pin, machine.Pin.OUT, value=0) print("Setting up pulsetimer") pt_pin = machine.Pin(in_pin, machine.Pin.IN) def dummy(p): pass q = [] def pulse(t): q.append(t) pt_pin.irq(dummy, machine.Pin.IRQ_RISING) pulsetimer.set_time_handler(in_pin, pulse) if True: print("Testing positive edge") assert len(q) == 0 out(1) time.sleep_ms(100) print(q) assert len(q) == 1 print("Testing negative edge") out(0) time.sleep_ms(100) assert len(q) == 1 print("Testing 10 pulses") for i in range(10): out(1) out(0) time.sleep_ms(20) time.sleep_ms(100) print([time.ticks_diff(q[i], q[i - 1]) for i in range(1, len(q))]) assert len(q) == 11 print("DONE")
17.824561
99
0.647638
f0aaeb810c20debffc4af960dcd2634ce2c58be8
4,476
py
Python
lite/examples/speech_commands/ml/train.py
samirma/examples
eab959e9033aff9b08ac8e8f90715f71ce7861ec
[ "Apache-2.0" ]
null
null
null
lite/examples/speech_commands/ml/train.py
samirma/examples
eab959e9033aff9b08ac8e8f90715f71ce7861ec
[ "Apache-2.0" ]
null
null
null
lite/examples/speech_commands/ml/train.py
samirma/examples
eab959e9033aff9b08ac8e8f90715f71ce7861ec
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from tensorflow.keras.callbacks import TensorBoard from callbacks import ConfusionMatrixCallback from model import speech_model, prepare_model_settings from generator import AudioProcessor, prepare_words_list from classes import get_classes from utils import data_gen parser = argparse.ArgumentParser(description='set input arguments') parser.add_argument( '-sample_rate', action='store', dest='sample_rate', type=int, default=16000, help='Sample rate of audio') parser.add_argument( '-batch_size', action='store', dest='batch_size', type=int, default=32, help='Size of the training batch') parser.add_argument( '-output_representation', action='store', dest='output_representation', type=str, default='raw', help='raw, spec, mfcc or mfcc_and_raw') parser.add_argument( '-data_dirs', '--list', dest='data_dirs', nargs='+', required=True, help='<Required> The list of data directories. e.g., data/train') args = parser.parse_args() parser.print_help() print('input args: ', args) if __name__ == '__main__': data_dirs = args.data_dirs output_representation = args.output_representation sample_rate = args.sample_rate batch_size = args.batch_size classes = get_classes(wanted_only=True) model_settings = prepare_model_settings( label_count=len(prepare_words_list(classes)), sample_rate=sample_rate, clip_duration_ms=1000, window_size_ms=30.0, window_stride_ms=10.0, dct_coefficient_count=80, num_log_mel_features=60, output_representation=output_representation) print(model_settings) ap = AudioProcessor( data_dirs=data_dirs, wanted_words=classes, silence_percentage=13.0, unknown_percentage=60.0, validation_percentage=10.0, testing_percentage=0.0, model_settings=model_settings, output_representation=output_representation) train_gen = data_gen(ap, sess, batch_size=batch_size, mode='training') val_gen = data_gen(ap, sess, batch_size=batch_size, mode='validation') model = speech_model( 'conv_1d_time_stacked', model_settings['fingerprint_size'] if output_representation != 'raw' else model_settings['desired_samples'], # noqa num_classes=model_settings['label_count'], **model_settings) # embed() checkpoints_path = os.path.join('checkpoints', 'conv_1d_time_stacked_model') if not os.path.exists(checkpoints_path): os.makedirs(checkpoints_path) callbacks = [ ConfusionMatrixCallback( val_gen, ap.set_size('validation') // batch_size, wanted_words=prepare_words_list(get_classes(wanted_only=True)), all_words=prepare_words_list(classes), label2int=ap.word_to_index), ReduceLROnPlateau( monitor='val_categorical_accuracy', mode='max', factor=0.5, patience=4, verbose=1, min_lr=1e-5), TensorBoard(log_dir='logs'), ModelCheckpoint( os.path.join(checkpoints_path, 'ep-{epoch:03d}-vl-{val_loss:.4f}.hdf5'), save_best_only=True, monitor='val_categorical_accuracy', mode='max') ] model.fit_generator( train_gen, steps_per_epoch=ap.set_size('training') // batch_size, epochs=100, verbose=1, callbacks=callbacks) eval_res = model.evaluate_generator(val_gen, ap.set_size('validation') // batch_size) print(eval_res)
31.521127
80
0.691466
51f5f52d487bac13720b21b2e472aabcc4ea0532
261
py
Python
pgmpy/utils/decorators.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
pgmpy/utils/decorators.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
pgmpy/utils/decorators.py
predictive-analytics-lab/pgmpy
6c2a31641adc72793acd130d007190fdb1632271
[ "MIT" ]
null
null
null
def convert_args_tuple(func): def _convert_param_to_tuples(obj, variable, parents=tuple(), complete_samples_only=None): parents = tuple(parents) return func(obj, variable, parents, complete_samples_only) return _convert_param_to_tuples
37.285714
93
0.758621
1264a8bb915513b19aa6ec501f841ec3f3944db5
7,481
py
Python
pybind/nos/v7_1_0/rbridge_id/route_map/content/set_/ip/global_/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/rbridge_id/route_map/content/set_/ip/global_/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
null
null
null
pybind/nos/v7_1_0/rbridge_id/route_map/content/set_/ip/global_/__init__.py
shivharis/pybind
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import next_global_hop class global_(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-rbridge - based on the path /rbridge-id/route-map/content/set/ip/global. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Next hop Global IP address """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__next_global_hop',) _yang_name = 'global' _rest_name = 'global' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__next_global_hop = YANGDynClass(base=YANGListType("next_hop",next_global_hop.next_global_hop, yang_name="next-global-hop", rest_name="next-global-hop", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='next-hop', extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}), is_container='list', yang_name="next-global-hop", rest_name="next-global-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='list', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'rbridge-id', u'route-map', u'content', u'set', u'ip', u'global'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'rbridge-id', u'route-map', u'set', u'ip', u'global'] def _get_next_global_hop(self): """ Getter method for next_global_hop, mapped from YANG variable /rbridge_id/route_map/content/set/ip/global/next_global_hop (list) """ return self.__next_global_hop def _set_next_global_hop(self, v, load=False): """ Setter method for next_global_hop, mapped from YANG variable /rbridge_id/route_map/content/set/ip/global/next_global_hop (list) If this variable is read-only (config: false) in the source YANG file, then _set_next_global_hop is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_next_global_hop() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("next_hop",next_global_hop.next_global_hop, yang_name="next-global-hop", rest_name="next-global-hop", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='next-hop', extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}), is_container='list', yang_name="next-global-hop", rest_name="next-global-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """next_global_hop must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("next_hop",next_global_hop.next_global_hop, yang_name="next-global-hop", rest_name="next-global-hop", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='next-hop', extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}), is_container='list', yang_name="next-global-hop", rest_name="next-global-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='list', is_config=True)""", }) self.__next_global_hop = t if hasattr(self, '_set'): self._set() def _unset_next_global_hop(self): self.__next_global_hop = YANGDynClass(base=YANGListType("next_hop",next_global_hop.next_global_hop, yang_name="next-global-hop", rest_name="next-global-hop", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='next-hop', extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}), is_container='list', yang_name="next-global-hop", rest_name="next-global-hop", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'pbrglobalnexthop-cp', u'cli-drop-node-name': None, u'cli-suppress-mode': None}}, namespace='urn:brocade.com:mgmt:brocade-ip-policy', defining_module='brocade-ip-policy', yang_type='list', is_config=True) next_global_hop = __builtin__.property(_get_next_global_hop, _set_next_global_hop) _pyangbind_elements = {'next_global_hop': next_global_hop, }
59.373016
825
0.725972
cd63b278f1d4c6a14a58216501e618ab745f04bd
1,619
py
Python
atst/forms/forms.py
philip-dds/atst
a227044ccf464dd0e3144dd74cecfafe8d6841b9
[ "MIT" ]
1
2020-01-16T16:15:52.000Z
2020-01-16T16:15:52.000Z
atst/forms/forms.py
philip-dds/atst
a227044ccf464dd0e3144dd74cecfafe8d6841b9
[ "MIT" ]
null
null
null
atst/forms/forms.py
philip-dds/atst
a227044ccf464dd0e3144dd74cecfafe8d6841b9
[ "MIT" ]
null
null
null
from flask_wtf import FlaskForm from flask import current_app, request as http_request import re from atst.utils.flash import formatted_flash as flash EMPTY_LIST_FIELD = ["", None] def remove_empty_string(value): # only return strings that contain non whitespace characters if value and re.search(r"\S", value): return value.strip() else: return None class BaseForm(FlaskForm): def __init__(self, formdata=None, **kwargs): # initialize the form with data from the cache formdata = formdata or {} cached_data = current_app.form_cache.from_request(http_request) cached_data.update(formdata) super().__init__(cached_data, **kwargs) @property def data(self): # remove 'csrf_token' key/value pair # remove empty strings and None from list fields # prevent values that are not an option in a RadioField from being saved to the DB _data = super().data _data.pop("csrf_token", None) for field in _data: if _data[field].__class__.__name__ == "list": _data[field] = [el for el in _data[field] if el not in EMPTY_LIST_FIELD] if self[field].__class__.__name__ == "RadioField": choices = [el[0] for el in self[field].choices] if _data[field] not in choices: _data[field] = None return _data def validate(self, *args, flash_invalid=True, **kwargs): valid = super().validate(*args, **kwargs) if not valid and flash_invalid: flash("form_errors") return valid
34.446809
90
0.639284
20b514c63c39a8e277d8f178ee401ad7385f98c1
17,111
py
Python
src/genie/libs/parser/iosxe/tests/ShowInterfaces/cli/equal/golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
204
2018-06-27T00:55:27.000Z
2022-03-06T21:12:18.000Z
src/genie/libs/parser/iosxe/tests/ShowInterfaces/cli/equal/golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
468
2018-06-19T00:33:18.000Z
2022-03-31T23:23:35.000Z
src/genie/libs/parser/iosxe/tests/ShowInterfaces/cli/equal/golden_output_expected.py
balmasea/genieparser
d1e71a96dfb081e0a8591707b9d4872decd5d9d3
[ "Apache-2.0" ]
309
2019-01-16T20:21:07.000Z
2022-03-30T12:56:41.000Z
expected_output = { "Port-channel12": { "flow_control": {"send": False, "receive": False}, "err_disabled": False, "suspended": False, "type": "EtherChannel", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d23h", "out_interface_resets": 2, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 2000, "in_rate_pkts": 2, }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 961622, "in_multicast_pkts": 4286699522, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 72614643, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 944818, "out_pkts": 39281, "out_late_collision": 0, "out_octets": 6235318, "in_overrun": 0, "out_babble": 0, }, "auto_negotiate": True, "phys_address": "0057.d2ff.422a", "keepalive": 10, "output_hang": "never", "txload": "1/255", "oper_status": "up", "arp_type": "arpa", "rxload": "1/255", "duplex_mode": "full", "link_type": "auto", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 2000, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 0, "queue_strategy": "fifo", }, "encapsulations": { "encapsulation": "qinq virtual lan", "first_dot1q": "10", "second_dot1q": "20", }, "last_input": "never", "last_output": "1d22h", "line_protocol": "up", "mac_address": "0057.d2ff.422a", "connected": True, "port_channel": { "port_channel_member": True, "port_channel_member_intfs": ["GigabitEthernet1/0/2"], }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "port_speed": "1000mb/s", "enabled": True, "mtu": 1500, "delay": 10, "reliability": "255/255", }, "GigabitEthernet1/0/1": { "flow_control": {"send": False, "receive": False}, "err_disabled": False, "suspended": False, "type": "Gigabit Ethernet", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d02h", "out_interface_resets": 2, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 30, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0, }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 12127, "in_multicast_pkts": 4171, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 2297417, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 4173, "out_pkts": 12229, "out_late_collision": 0, "out_octets": 2321107, "in_overrun": 0, "out_babble": 0, }, "phys_address": "0057.d2ff.428c", "keepalive": 10, "output_hang": "never", "txload": "1/255", "description": "desc", "oper_status": "down", "arp_type": "arpa", "rxload": "1/255", "duplex_mode": "auto", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo", }, "ipv4": {"10.1.1.1/24": {"prefix_length": "24", "ip": "10.1.1.1"}}, "encapsulations": {"encapsulation": "arpa"}, "last_input": "never", "last_output": "04:39:18", "line_protocol": "down", "mac_address": "0057.d2ff.428c", "connected": False, "port_channel": {"port_channel_member": False}, "media_type": "10/100/1000BaseTX", "bandwidth": 768, "port_speed": "1000mb/s", "enabled": False, "arp_timeout": "04:00:00", "mtu": 1500, "delay": 3330, "reliability": "255/255", }, "GigabitEthernet3": { "flow_control": {"send": False, "receive": False}, "type": "CSR vNIC", "auto_negotiate": True, "duplex_mode": "full", "link_type": "auto", "media_type": "RJ45", "port_speed": "1000mbps", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "never", "out_interface_resets": 1, "in_mac_pause_frames": 0, "out_collision": 0, "in_crc_errors": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0, }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 6, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 480, "out_unknown_protocl_drops": 0, "out_no_carrier": 0, "out_lost_carrier": 0, "in_broadcast_pkts": 0, "out_pkts": 28, "out_late_collision": 0, "out_octets": 7820, "in_overrun": 0, "out_babble": 0, }, "phys_address": "5254.00ff.0e7e", "keepalive": 10, "output_hang": "never", "txload": "1/255", "reliability": "255/255", "arp_type": "arpa", "rxload": "1/255", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo", }, "ipv4": { "192.168.154.1/24": {"prefix_length": "24", "ip": "192.168.154.1"}, "unnumbered": {"interface_ref": "Loopback0"}, }, "encapsulations": {"encapsulation": "arpa"}, "last_output": "00:00:27", "line_protocol": "up", "mac_address": "5254.00ff.0e7e", "oper_status": "up", "port_channel": {"port_channel_member": False}, "arp_timeout": "04:00:00", "bandwidth": 1000000, "enabled": True, "mtu": 1500, "delay": 10, "last_input": "never", }, "Loopback0": { "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 75, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 0, "queue_strategy": "fifo", }, "mtu": 1514, "encapsulations": {"encapsulation": "loopback"}, "last_output": "never", "type": "Loopback", "line_protocol": "up", "oper_status": "up", "keepalive": 10, "output_hang": "never", "txload": "1/255", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d04h", "out_interface_resets": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0, }, "in_pkts": 0, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 0, "in_crc_errors": 0, "out_unknown_protocl_drops": 0, "in_broadcast_pkts": 0, "out_pkts": 72, "out_octets": 5760, "in_overrun": 0, "in_abort": 0, }, "reliability": "255/255", "bandwidth": 8000000, "port_channel": {"port_channel_member": False}, "enabled": True, "ipv4": {"192.168.154.1/24": {"prefix_length": "24", "ip": "192.168.154.1"}}, "rxload": "1/255", "delay": 5000, "last_input": "1d02h", }, "Vlan100": { "type": "Ethernet SVI", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d04h", "out_interface_resets": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 0, "in_rate_pkts": 0, }, "in_pkts": 50790, "in_multicast_pkts": 0, "in_runts": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_errors": 0, "in_errors": 0, "in_octets": 3657594, "in_crc_errors": 0, "out_unknown_protocl_drops": 0, "in_broadcast_pkts": 0, "out_pkts": 72, "out_octets": 5526, "in_overrun": 0, }, "phys_address": "0057.d2ff.4279", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 375, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo", }, "txload": "1/255", "reliability": "255/255", "arp_type": "arpa", "rxload": "1/255", "output_hang": "never", "ipv4": {"192.168.234.1/24": {"prefix_length": "24", "ip": "192.168.234.1"}}, "encapsulations": {"encapsulation": "arpa"}, "last_output": "1d03h", "line_protocol": "up", "mac_address": "0057.d2ff.4279", "oper_status": "up", "port_channel": {"port_channel_member": False}, "arp_timeout": "04:00:00", "bandwidth": 1000000, "enabled": True, "mtu": 1500, "delay": 10, "last_input": "never", }, "GigabitEthernet1/0/2": { "flow_control": {"send": False, "receive": False}, "err_disabled": False, "suspended": False, "type": "Gigabit Ethernet", "counters": { "out_buffer_failure": 0, "out_underruns": 0, "in_giants": 0, "in_throttles": 0, "in_frame": 0, "in_ignored": 0, "last_clear": "1d02h", "out_interface_resets": 5, "in_mac_pause_frames": 0, "out_collision": 0, "rate": { "out_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "in_rate": 3000, "in_rate_pkts": 5, }, "in_watchdog": 0, "out_deferred": 0, "out_mac_pause_frames": 0, "in_pkts": 545526, "in_multicast_pkts": 535961, "in_runts": 0, "out_unknown_protocl_drops": 0, "in_no_buffer": 0, "out_buffers_swapped": 0, "out_lost_carrier": 0, "out_errors": 0, "in_errors": 0, "in_octets": 41210298, "in_crc_errors": 0, "out_no_carrier": 0, "in_with_dribble": 0, "in_broadcast_pkts": 535996, "out_pkts": 23376, "out_late_collision": 0, "out_octets": 3642296, "in_overrun": 0, "out_babble": 0, }, "phys_address": "0057.d2ff.422a", "keepalive": 10, "output_hang": "never", "txload": "1/255", "oper_status": "up", "arp_type": "arpa", "media_type": "10/100/1000BaseTX", "rxload": "1/255", "duplex_mode": "full", "queues": { "input_queue_size": 0, "total_output_drop": 0, "input_queue_drops": 0, "input_queue_max": 2000, "output_queue_size": 0, "input_queue_flushes": 0, "output_queue_max": 40, "queue_strategy": "fifo", }, "encapsulations": {"encapsulation": "arpa"}, "last_input": "never", "last_output": "00:00:02", "line_protocol": "up", "mac_address": "0057.d2ff.422a", "connected": True, "port_channel": { "port_channel_member": True, "port_channel_int": "Port-channel12", }, "arp_timeout": "04:00:00", "bandwidth": 1000000, "port_speed": "1000mb/s", "enabled": True, "mtu": 1500, "delay": 10, "reliability": "255/255", }, "GigabitEthernet0/0/4": { "arp_timeout": "04:00:00", "arp_type": "arpa", "bandwidth": 1000000, "auto_negotiate": True, "counters": { "in_broadcast_pkts": 0, "in_crc_errors": 0, "in_errors": 0, "in_frame": 0, "in_giants": 0, "in_ignored": 0, "in_mac_pause_frames": 0, "in_multicast_pkts": 0, "in_no_buffer": 0, "in_octets": 0, "in_overrun": 0, "in_pkts": 0, "in_runts": 0, "in_throttles": 0, "in_watchdog": 0, "last_clear": "never", "out_babble": 0, "out_collision": 0, "out_deferred": 0, "out_errors": 0, "out_interface_resets": 1, "out_late_collision": 0, "out_lost_carrier": 0, "out_mac_pause_frames": 0, "out_no_carrier": 0, "out_octets": 0, "out_pkts": 0, "out_underruns": 0, "out_unknown_protocl_drops": 0, "rate": { "in_rate": 0, "in_rate_pkts": 0, "load_interval": 300, "out_rate": 0, "out_rate_pkts": 0, }, }, "delay": 10, "duplex_mode": "full", "link_type": "auto", "port_speed": "1000mbps", "media_type": "unknown", "enabled": False, "encapsulations": {"encapsulation": "arpa"}, "flow_control": {"receive": False, "send": False}, "last_input": "never", "last_output": "never", "line_protocol": "down", "mac_address": "380e.4dff.dc72", "phys_address": "380e.4dff.dc72", "mtu": 1500, "oper_status": "down", "output_hang": "never", "port_channel": {"port_channel_member": False}, "queues": { "input_queue_drops": 0, "input_queue_flushes": 0, "input_queue_max": 375, "input_queue_size": 0, "output_queue_max": 40, "output_queue_size": 0, "queue_strategy": "fifo", "total_output_drop": 0, }, "reliability": "255/255", "rxload": "1/255", "txload": "1/255", "type": "BUILT-IN-2T+6X1GE", }, }
31.804833
85
0.453919
5445646be3f26f6a69b259975e86cdb28353313a
1,254
py
Python
tests/unit/notifier/test_slack_notifer.py
steveYeah/amqpeek
0bcbedb2c96a4d77306e6143fac450ad620aad0d
[ "MIT" ]
3
2016-10-30T23:30:25.000Z
2019-03-13T13:44:05.000Z
tests/unit/notifier/test_slack_notifer.py
steveYeah/amqpeek
0bcbedb2c96a4d77306e6143fac450ad620aad0d
[ "MIT" ]
7
2016-10-13T11:53:05.000Z
2020-10-02T15:34:54.000Z
tests/unit/notifier/test_slack_notifer.py
steveYeah/amqpeek
0bcbedb2c96a4d77306e6143fac450ad620aad0d
[ "MIT" ]
2
2017-05-03T10:18:20.000Z
2017-05-18T05:29:01.000Z
"""Tests the slack notifier module.""" from unittest.mock import patch import pytest from amqpeek.notifier import SlackNotifier class TestSlackNotifier(object): """Tests for the SlackNotifier class.""" @pytest.fixture def slack_notifier_args(self) -> dict: """Some default args to use for these tests.""" return {"api_key": "my_key", "username": "test", "channel": "#general"} @pytest.fixture def slack_notifier(self, slack_notifier_args: dict) -> SlackNotifier: """Patch the slack notifier.""" with patch("amqpeek.notifier.Slacker"): return SlackNotifier(**slack_notifier_args) def test_notify( self, slack_notifier: SlackNotifier, slack_notifier_args: dict, message_args: dict, ) -> None: """Test the notfiy method calls slack correctly.""" slack_notifier.notify( subject=message_args["subject"], message=message_args["message"] ) slack_notifier.slack.chat.post_message.assert_called_once_with( channel=slack_notifier_args["channel"], text="{}: {}".format(message_args["subject"], message_args["message"]), username=slack_notifier_args["username"], )
31.35
83
0.649123
8e7b321484c32cb61222cb2fd645aefc315d8112
1,589
py
Python
tests/wycheproof/test_x448.py
wdscxsj/cryptography
94590a9aecc9e5ef6fc8eda52bae43643a4c44bd
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
4,492
2015-01-02T23:02:52.000Z
2022-03-31T12:59:57.000Z
tests/wycheproof/test_x448.py
wdscxsj/cryptography
94590a9aecc9e5ef6fc8eda52bae43643a4c44bd
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
3,692
2015-01-01T03:16:56.000Z
2022-03-31T19:20:25.000Z
tests/wycheproof/test_x448.py
wdscxsj/cryptography
94590a9aecc9e5ef6fc8eda52bae43643a4c44bd
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause" ]
1,155
2015-01-09T00:48:05.000Z
2022-03-31T23:46:43.000Z
# This file is dual licensed under the terms of the Apache License, Version # 2.0, and the BSD License. See the LICENSE file in the root of this repository # for complete details. import binascii import pytest from cryptography.hazmat.primitives.asymmetric.x448 import ( X448PrivateKey, X448PublicKey, ) from .utils import wycheproof_tests @pytest.mark.supported( only_if=lambda backend: backend.x448_supported(), skip_message="Requires OpenSSL with X448 support", ) @wycheproof_tests("x448_test.json") def test_x448(backend, wycheproof): assert set(wycheproof.testgroup.items()) == { ("curve", "curve448"), ("type", "XdhComp"), } private_key = X448PrivateKey.from_private_bytes( binascii.unhexlify(wycheproof.testcase["private"]) ) public_key_bytes = binascii.unhexlify(wycheproof.testcase["public"]) if len(public_key_bytes) == 57: assert wycheproof.acceptable assert wycheproof.has_flag("NonCanonicalPublic") with pytest.raises(ValueError): X448PublicKey.from_public_bytes(public_key_bytes) return public_key = X448PublicKey.from_public_bytes(public_key_bytes) assert wycheproof.valid or wycheproof.acceptable expected = binascii.unhexlify(wycheproof.testcase["shared"]) if expected == b"\x00" * 56: assert wycheproof.acceptable # OpenSSL returns an error on all zeros shared key with pytest.raises(ValueError): private_key.exchange(public_key) else: assert private_key.exchange(public_key) == expected
30.557692
79
0.713656
e029b55e773f1ab54a0fe9ede69f7a4a3d1ae9e2
375
py
Python
base/tasks.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
null
null
null
base/tasks.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
5
2019-10-20T06:17:36.000Z
2021-06-10T18:13:29.000Z
base/tasks.py
0xelectron/mhtportal-web
bd05069d6245e86d4ae887cacf33b04ef9476816
[ "MIT" ]
2
2019-05-11T17:25:25.000Z
2019-10-12T17:59:47.000Z
import logging import requests from celery import shared_task logger = logging.getLogger(__name__) @shared_task def send_sms_async(url, params=None): try: if params: requests.post(url, data=params) else: requests.get(url) except requests.RequestException as e: logger.exception('While sending sms using requests')
19.736842
60
0.68
ffd3816d8cc9a364e7823e48f7eb3be36c2eef11
8,807
py
Python
tests/test_model.py
toni-moreno/loudml
0252b6792393fc46f2dc9c1da25dd89fc27a5fa4
[ "Apache-2.0" ]
245
2018-01-30T08:11:53.000Z
2022-03-26T07:17:42.000Z
tests/test_model.py
robcowart/loudml
0008baef02259a8ae81dd210d3f91a51ffc9ed9f
[ "Apache-2.0" ]
620
2018-01-28T22:58:24.000Z
2022-03-13T13:40:42.000Z
tests/test_model.py
robcowart/loudml
0008baef02259a8ae81dd210d3f91a51ffc9ed9f
[ "Apache-2.0" ]
97
2018-03-06T14:44:26.000Z
2022-03-24T01:57:31.000Z
import unittest from loudml import ( errors, ) from loudml.model import ( Feature, flatten_features, Model, ) class TestModel(unittest.TestCase): def invalid_feature(self, **kwargs): with self.assertRaises(errors.Invalid): Feature(**kwargs) def test_validate_feature(self): # Valid Feature( name="foo", field="bar", metric="avg", ) Feature( name="foo", field="bar", metric="avg", measurement="baz", default=0, ) Feature( name="foo", field="prefix.bar", metric="avg", measurement="prefix.baz", ) # Invalid self.invalid_feature( name="foo/invalid", field="bar", metric="avg", ) self.invalid_feature( metric="avg", field="bar", ) self.invalid_feature( name="foo", field="bar", ) self.invalid_feature( name="foo", metric="avg", ) self.invalid_feature( name="foo", metric="avg", field="bar", default="invalid", ) def invalid_model(self, **kwargs): with self.assertRaises(errors.Invalid): Model(**kwargs) def test_validate_model(self): # Valid Model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'avg', }, { 'name': 'bar', 'field': 'baz', 'metric': 'count', } ], } ) Model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'avg', }, ], 'routing': 'cux', } ) Model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'bar', 'measurement': 'prefix.measurement', 'field': 'prefix.baz', 'metric': 'avg', }, ], 'routing': 'cux', } ) # Invalid self.invalid_model( settings={ 'type': 'generic', 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'avg', }, ], } ) self.invalid_model( settings={ 'name': 'foo', 'type': 'generic', 'features': [], } ) self.invalid_model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'avg', 'io': 'i', }, ], } ) self.invalid_model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'count', 'io': 'o', } ], } ) self.invalid_model( settings={ 'name': 'foo/invalid', 'type': 'generic', 'features': [ { 'name': 'bar', 'field': 'baz', 'metric': 'avg', }, ], } ) def test_flatten_features(self): res = flatten_features([ { 'name': 'foo', 'field': 'foo', 'metric': 'avg', }, ]) self.assertEqual(len(res), 1) self.assertEqual(res[0]['io'], 'io') res = flatten_features([ { 'name': 'foo', 'field': 'foo', 'metric': 'avg', 'io': 'i', }, { 'name': 'bar', 'field': 'bar', 'metric': 'avg', 'io': 'io', }, { 'name': 'baz', 'field': 'baz', 'metric': 'avg', 'io': 'o', }, ]) self.assertEqual(res, [ { 'name': 'bar', 'field': 'bar', 'metric': 'avg', 'io': 'io', }, { 'name': 'baz', 'field': 'baz', 'metric': 'avg', 'io': 'o', }, { 'name': 'foo', 'field': 'foo', 'metric': 'avg', 'io': 'i', }, ]) res = flatten_features({ 'io': [ { 'name': 'foo', 'field': 'foo', 'metric': 'avg', }, ], 'o': [ { 'name': 'bar', 'field': 'bar', 'metric': 'avg', }, ], 'i': [ { 'name': 'baz', 'field': 'baz', 'metric': 'avg', }, ] }) self.assertEqual(res, [ { 'name': 'foo', 'field': 'foo', 'metric': 'avg', 'io': 'io', }, { 'name': 'bar', 'field': 'bar', 'metric': 'avg', 'io': 'o', }, { 'name': 'baz', 'field': 'baz', 'metric': 'avg', 'io': 'i', }, ]) def test_agg_id(self): model = Model( settings={ 'name': "foo", 'type': "generic", 'features': [ { 'name': 'f1', 'measurement': 'm', 'field': 'f', 'metric': 'avg', }, { 'name': 'f2', 'measurement': 'm', 'field': 'f', 'metric': 'avg', 'match_all': [ {'key': 'key', 'value': 'value'} ], }, { 'name': 'f3', 'measurement': 'm', 'field': 'f', 'metric': 'avg', 'match_all': [ {'key': 'key', 'value': 'value'} ], }, { 'name': 'f4', 'measurement': 'm', 'field': 'f', 'metric': 'avg', 'match_all': [ {'key': 'key', 'value': 'value2'} ], }, { 'name': 'f5', 'field': 'f', 'metric': 'avg', }, ], } ) agg_ids = [feature.agg_id for feature in model.features] self.assertEqual(agg_ids[0], 'm') self.assertEqual( agg_ids[1], 'm_ced1b023686195d411caee8450821ff77ed0c5eb') self.assertEqual(agg_ids[2], agg_ids[1]) self.assertEqual( agg_ids[3], 'm_7359bacde7a306a62e35501cc9bb905e6b2c6f72') self.assertEqual(agg_ids[4], 'all')
26.368263
69
0.269899
b4dc32f904e7ddc460920e869406ae35587ad393
3,553
py
Python
bigbench/api/model.py
colinzhaoust/BIG-bench
34cf4e737879f2fed7642c8df7648fef47cc463b
[ "Apache-2.0" ]
null
null
null
bigbench/api/model.py
colinzhaoust/BIG-bench
34cf4e737879f2fed7642c8df7648fef47cc463b
[ "Apache-2.0" ]
null
null
null
bigbench/api/model.py
colinzhaoust/BIG-bench
34cf4e737879f2fed7642c8df7648fef47cc463b
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model abstraction for BIG-bench. """ import abc from typing import List, Union, Optional class Model(abc.ABC): """Abstract language model class for BIG-bench""" @abc.abstractmethod def generate_text( self, inputs: Union[str, List[str]], max_length: int, stop_string: Optional[str], output_regex: Optional[str], ) -> Union[str, List[str]]: """Generates text for given inputs. Args: inputs: String or list of strings as inputs for model. max_length: Maximum string length of output. stop_string: If specified, model output will be truncated to the shortest string which includes stop_string. output_regex: If specified, the the first match to the python regular expression output_regex in the model output will be returned. If there is no match, an empty string will be returned. Returns: String or list of strings generated by model. """ @abc.abstractmethod def cond_log_prob( self, inputs: Union[str, List[str]], targets: Union[List[str], List[List[str]]], absolute_normalization: Optional[bool], ) -> Union[List[float], List[List[float]]]: """Computes conditional log probabilities of targets given inputs. Args: `inputs`: A single string input or a list of string inputs. `targets`: Possible string outputs for each input. If input is a string, this is a list `[t_1, t_2, ..., t_n]` of possible string outputs. If input is a list of strings, then this is a nested list `[[t_1, t_2, ..., t_n], ...]` with length equal to `len(inputs)`. `absolute_normalization`: When True, the function returns the log probability of unconstrained generation or the target sequence. When False (default), log probabilities are normalized so that the probabilities of generating `targets` sum to 1. Note that setting `absolute_normalization` to True restricts the class of models that can be evaluated to those that can assign absolute probabilities to sequences. Returns: If a single string input is provided, returns a list of log-probabilities `[lp_1, lp_2, ..., lp_n]` predicted by the model, where `lp_i = log(prob(t_i | input)` is the conditional log-prob to generate target `t_i` given input. If a list of string inputs was provided, returns a list of such elements of the form `[[lp_1, lp_2, ..., lp_n], ...]`, where each element contains the log-probabilities for the corresponding input and targets. In this case, the length of the returned list is `len(input)`. If conditional probabilities are not supported by the model, the model returns None. """
42.807229
89
0.649029
9bc6914528c2ea8cbf07bea7aa7ac6ea43ac798d
6,233
py
Python
test/test_simple_macd.py
alexanu/TradingBot
9fabb6a0be51fbc1dba5a30605a7c29127f29fa2
[ "MIT" ]
null
null
null
test/test_simple_macd.py
alexanu/TradingBot
9fabb6a0be51fbc1dba5a30605a7c29127f29fa2
[ "MIT" ]
null
null
null
test/test_simple_macd.py
alexanu/TradingBot
9fabb6a0be51fbc1dba5a30605a7c29127f29fa2
[ "MIT" ]
null
null
null
import os import sys import inspect import pytest import json from datetime import datetime as dt import pandas as pd currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, "{}/src".format(parentdir)) from Strategies.SimpleMACD import SimpleMACD from Utility.Utils import TradeDirection from Interfaces.Market import Market from Components.Broker import Broker, Interval from Components.IGInterface import IGInterface from Components.AVInterface import AVInterface from common.MockRequests import ( ig_request_login, ig_request_set_account, ig_request_market_info, ig_request_prices, av_request_macd_ext, av_request_prices, ) @pytest.fixture def config(): """ Returns a dict with config parameter for strategy and simpleMACD """ # Read configuration file try: with open("config/config.json", "r") as file: config = json.load(file) config["alpha_vantage"]["enable"] = True config["alpha_vantage"]["api_timeout"] = 0 except IOError: exit() return config @pytest.fixture def credentials(): """ Returns a dict with credentials parameters """ return { "username": "user", "password": "pwd", "api_key": "12345", "account_id": "12345", "av_api_key": "12345", } @pytest.fixture def broker(config, credentials, requests_mock): """ Initialise the strategy with mock services """ ig_request_login(requests_mock) ig_request_set_account(requests_mock) services = { "ig_index": IGInterface(config, credentials), "alpha_vantage": AVInterface(credentials["av_api_key"], config), } return Broker(config, services) def create_mock_market(broker, requests_mock): ig_request_market_info(requests_mock) data = broker.get_market_info("mock") market = Market() market.epic = data["epic"] market.id = data["market_id"] market.name = data["name"] market.bid = data["bid"] market.offer = data["offer"] market.high = data["high"] market.low = data["low"] market.stop_distance_min = data["stop_distance_min"] return market def datafram_from_json(filepath): """Load a json file and return a dataframe""" try: with open(filepath, "r") as file: px = pd.DataFrame.from_dict( json.load(file)["Technical Analysis: MACDEXT"], orient="index", dtype=float, ) px.index = pd.to_datetime(px.index) return px except IOError: exit() def test_find_trade_signal_buy(config, broker, requests_mock): strategy = SimpleMACD(config, broker) data = datafram_from_json("test/test_data/alpha_vantage/mock_macd_ext_buy.json") # Create a mock market data from the json file market = create_mock_market(broker, requests_mock) # Call function to test tradeDir, limit, stop = strategy.find_trade_signal(market, data) assert tradeDir is not None assert limit is not None assert stop is not None assert tradeDir == TradeDirection.BUY def test_find_trade_signal_sell(config, broker, requests_mock): strategy = SimpleMACD(config, broker) data = datafram_from_json("test/test_data/alpha_vantage/mock_macd_ext_sell.json") # Create a mock market data from the json file market = create_mock_market(broker, requests_mock) tradeDir, limit, stop = strategy.find_trade_signal(market, data) assert tradeDir is not None assert limit is not None assert stop is not None assert tradeDir == TradeDirection.SELL def test_find_trade_signal_hold(config, broker, requests_mock): strategy = SimpleMACD(config, broker) data = datafram_from_json("test/test_data/alpha_vantage/mock_macd_ext_hold.json") # Create a mock market data from the json file market = create_mock_market(broker, requests_mock) tradeDir, limit, stop = strategy.find_trade_signal(market, data) assert tradeDir is not None assert limit is None assert stop is None assert tradeDir == TradeDirection.NONE def test_find_trade_signal_exception(config): # TODO provide wrong data and assert exception thrown assert True def test_calculate_stop_limit(config, broker): strategy = SimpleMACD(config, broker) limit, stop = strategy.calculate_stop_limit(TradeDirection.BUY, 100, 100, 10, 10) assert limit == 110 assert stop == 90 limit, stop = strategy.calculate_stop_limit(TradeDirection.SELL, 100, 100, 10, 10) assert limit == 90 assert stop == 110 limit, stop = strategy.calculate_stop_limit(TradeDirection.NONE, 100, 100, 10, 10) assert limit is None assert stop is None def test_generate_signals_from_dataframe(config, broker): strategy = SimpleMACD(config, broker) data = datafram_from_json("test/test_data/alpha_vantage/mock_macd_ext_hold.json") px = strategy.generate_signals_from_dataframe(data) assert "positions" in px assert len(px) > 26 # TODO add more checks def test_get_trade_direction_from_signals(config, broker, requests_mock): strategy = SimpleMACD(config, broker) data = datafram_from_json("test/test_data/alpha_vantage/mock_macd_ext_buy.json") dataframe = strategy.generate_signals_from_dataframe(data) tradeDir = strategy.get_trade_direction_from_signals(dataframe) # BUY becasue the mock response loads the buy test json assert tradeDir == TradeDirection.BUY def test_backtest(config, broker, requests_mock): av_request_macd_ext(requests_mock, data="mock_macd_ext_buy.json") av_request_prices(requests_mock) strategy = SimpleMACD(config, broker) # Create a mock market data from the json file market = create_mock_market(broker, requests_mock) result = strategy.backtest( market, dt.strptime("2018-01-01", "%Y-%m-%d"), dt.strptime("2018-06-01", "%Y-%m-%d"), ) assert "balance" in result assert result["balance"] is not None assert result["balance"] == 997.9299999999998 assert "trades" in result assert len(result["trades"]) == 8
29.966346
86
0.703995
eac14dc3b5c17390abd3dfa617466ff9c11b15c1
790
py
Python
tgpush.py
Verrickt/zju-dailyhealth-autocheck
43854717852727c640c3360e289aa54a36be7694
[ "MIT" ]
5
2021-12-22T04:27:03.000Z
2021-12-23T03:42:50.000Z
tgpush.py
Verrickt/zju-dailyhealth-autocheck
43854717852727c640c3360e289aa54a36be7694
[ "MIT" ]
null
null
null
tgpush.py
Verrickt/zju-dailyhealth-autocheck
43854717852727c640c3360e289aa54a36be7694
[ "MIT" ]
null
null
null
from requests import post import os """ TG 消息推送模块 """ def post_tg(config,message): TG_TOKEN = config['bot_token'] CHAT_ID = config['chat_id'] PROXY = config['proxy'] telegram_message = f"{message}" params = ( ('chat_id', CHAT_ID), ('text', telegram_message), ('parse_mode', "Markdown"), #可选Html或Markdown ('disable_web_page_preview', "yes") ) telegram_url = "https://api.telegram.org/bot" + TG_TOKEN + "/sendMessage" proxies = { 'https':PROXY, 'http': PROXY } telegram_req = post(telegram_url, params=params,proxies=proxies) telegram_status = telegram_req.status_code if telegram_status == 200: print(f"INFO: Telegram Message sent") else: print("Telegram Error")
23.235294
77
0.61519
ab88d9cbaf815ac2d205a77dd23961825d2ec06a
1,916
py
Python
3.Understanding Convolutions/3_image.py
OwenGranot/Deep-Learning
436cc00783c7aeef527f1f06b6550e6d0ab944e0
[ "MIT" ]
null
null
null
3.Understanding Convolutions/3_image.py
OwenGranot/Deep-Learning
436cc00783c7aeef527f1f06b6550e6d0ab944e0
[ "MIT" ]
null
null
null
3.Understanding Convolutions/3_image.py
OwenGranot/Deep-Learning
436cc00783c7aeef527f1f06b6550e6d0ab944e0
[ "MIT" ]
null
null
null
# Disable debbuging logs (to get rid of cuda warnings) import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np from scipy import signal from scipy import misc import matplotlib.pyplot as plt from PIL import Image image = Image.open('bird.jpg') # convert("L") translates color images into b/w image_gr = image.convert("L") print("\n Original type: %r \n \n" % image_gr) # Original type: <PIL.Image.Image image mode=L size=1920x1440 at 0x247634E89D0> # convert image to a matrix with values from 0 to 255 (uint8) arr = np.asarray(image_gr) print("After conversion to numerical representation: \n\n %r" % arr) ### Plot image imgplot = plt.imshow(arr) imgplot.set_cmap('gray') #you can experiment different colormaps (Greys,winter,autumn) print("\n Input image converted to gray scale: \n") # plt.show(imgplot) I have no idea why this isn't showing ''' Now we can use an edge detector kernel ''' kernel = np.array([[0,1,0], [1, -4, 1], [0, 1, 0], ]) grad = signal.convolve2d(arr, kernel, mode="same", boundary="symm") print('GRADIENT MAGNITUDE - Feature map') fig, aux = plt.subplots(figsize=(10, 10)) aux.imshow(np.absolute(grad), cmap='gray') ''' If we change the kernel and start to analyze the outputs we would be acting as a CNN. The difference is that a NN do all this work automaticcaly, as in the kernel adjustment using different weights. In addition, we can understand how biases affect the behaviour of feature maps. Please not that when you are dealing with most of the real applications of CNNs, you usually convert the pixels values to a range from 0 to 1. This process is called normalization. ''' grad_biases = np.absolute(grad) + 100 grad_biases[grad_biases > 255] = 255 print("GRADIENT MAGNITUDE - Feature map") fig, aux = plt.subplots(figsize=(10, 10)) aux.imshow(np.absolute(grad_biases), cmap='gray')
29.476923
126
0.709812