hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
385f371ceb5509451926af50b85caa241478e630
53
py
Python
tdict/__init__.py
royf/tdict
a54a33859587ff3324c8e306608d6c4306c569bc
[ "MIT" ]
null
null
null
tdict/__init__.py
royf/tdict
a54a33859587ff3324c8e306608d6c4306c569bc
[ "MIT" ]
null
null
null
tdict/__init__.py
royf/tdict
a54a33859587ff3324c8e306608d6c4306c569bc
[ "MIT" ]
null
null
null
from .tdict import Tdict from .tdict import tdictify
17.666667
27
0.811321
e8e163663b10ed8283b9a925abb00911a6b5967c
1,644
py
Python
xlsxwriter/test/comparison/test_chart_format30.py
eddiechapman/XlsxWriter
c636117ab30e64e4b7b824c9105595c42887c2c9
[ "BSD-2-Clause-FreeBSD" ]
2,766
2015-01-02T17:36:42.000Z
2022-03-31T09:23:30.000Z
xlsxwriter/test/comparison/test_chart_format30.py
xiaolanmeng86/XlsxWriter
6c3ea23a410e8216eab8f5751e5544ffb444b3da
[ "BSD-2-Clause-FreeBSD" ]
683
2015-01-03T09:55:02.000Z
2022-03-31T07:18:15.000Z
xlsxwriter/test/comparison/test_chart_format30.py
xiaolanmeng86/XlsxWriter
6c3ea23a410e8216eab8f5751e5544ffb444b3da
[ "BSD-2-Clause-FreeBSD" ]
636
2015-01-05T01:57:08.000Z
2022-03-25T18:42:41.000Z
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2021, John McNamara, jmcnamara@cpan.org # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_format30.xlsx') def test_create_file(self): """Test the creation of an XlsxWriter file with chart formatting.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'line'}) chart.axis_ids = [108652416, 108655744] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$B$1:$B$5', 'trendline': {'type': 'linear', 'intercept': 0.8, 'display_equation': True, 'display_r_squared': True}, }) chart.add_series({ 'categories': '=Sheet1!$A$1:$A$5', 'values': '=Sheet1!$C$1:$C$5', }) chart.set_legend({'delete_series': [0, 2]}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
25.6875
79
0.51764
8ba5888ddaf4ee0cbeba11010b9be7fe40a520ae
1,770
py
Python
app/user/serializers.py
paulovitorweb/recipe-app-api
3477c32c445afbb66fce566b9ae66918b21c28df
[ "MIT" ]
null
null
null
app/user/serializers.py
paulovitorweb/recipe-app-api
3477c32c445afbb66fce566b9ae66918b21c28df
[ "MIT" ]
null
null
null
app/user/serializers.py
paulovitorweb/recipe-app-api
3477c32c445afbb66fce566b9ae66918b21c28df
[ "MIT" ]
null
null
null
from django.contrib.auth import get_user_model, authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers from core.models import User class UserSerializer(serializers.ModelSerializer): """Serializer for the users object""" class Meta: model = get_user_model() fields = ('email', 'password', 'name') extra_kwargs = {'password': {'write_only': True, 'min_length': 5}} def create(self, validated_data): """Create a new user with encrypted password and return it""" return get_user_model().objects.create_user(**validated_data) def update(self, instance, validated_data: dict): """Update a user, setting the password correctly and return it""" password = validated_data.pop('password', None) user: User = super().update(instance, validated_data) if password: user.set_password(password) user.save() return user class AuthTokenSerializer(serializers.Serializer): """Serializer for the user authentication object""" email = serializers.CharField() password = serializers.CharField( style={'input_type': 'password'}, trim_whitespace=False ) def validate(self, attrs): """Validate and authenticate the user""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
31.052632
74
0.649153
947787263acb375d700d754eb7f81e28087f789b
775
py
Python
opencvPYTesting/denseFlow.py
Dwight-Englewood/0207-Rover-Ruckus
bf97c86644af33d601857142c59df4b714c625cd
[ "MIT" ]
2
2018-12-15T04:20:04.000Z
2018-12-15T04:20:09.000Z
opencvPYTesting/denseFlow.py
Dwight-Englewood-Robotics/0207-Rover-Ruckus
bf97c86644af33d601857142c59df4b714c625cd
[ "MIT" ]
10
2018-10-29T17:12:17.000Z
2018-11-08T12:45:13.000Z
opencvPYTesting/denseFlow.py
Dwight-Englewood-Robotics/0207-Rover-Ruckus
bf97c86644af33d601857142c59df4b714c625cd
[ "MIT" ]
1
2018-10-05T20:14:36.000Z
2018-10-05T20:14:36.000Z
import cv2 as cv import numpy as np cap = cv.VideoCapture("wood.mp4") ret, frame1 = cap.read() prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY) hsv = np.zeros_like(frame1) hsv[...,1] = 255 while(1): ret, frame2 = cap.read() next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY) flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0) mag, ang = cv.cartToPolar(flow[...,0], flow[...,1]) hsv[...,0] = ang*180/np.pi/2 hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX) bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR) cv.imshow('frame2',bgr) k = cv.waitKey(30) & 0xff if k == 27: break elif k == ord('s'): cv.imwrite('opticalfb.png',frame2) cv.imwrite('opticalhsv.png',bgr) prvs = next cap.release()
31
81
0.616774
4aa72a0be43791b8ef2c9dfd3d02a6f543da3a7f
5,581
py
Python
src/textpruner/pruners/vocabulary_pruner.py
zchu-hit-scir/TextPruner
77871ce2bc525630d69c5bb4db48e68a2e532757
[ "Apache-2.0" ]
null
null
null
src/textpruner/pruners/vocabulary_pruner.py
zchu-hit-scir/TextPruner
77871ce2bc525630d69c5bb4db48e68a2e532757
[ "Apache-2.0" ]
null
null
null
src/textpruner/pruners/vocabulary_pruner.py
zchu-hit-scir/TextPruner
77871ce2bc525630d69c5bb4db48e68a2e532757
[ "Apache-2.0" ]
null
null
null
import torch from torch import nn import os from ..model_map import MODEL_MAP from ..configurations import VocabularyPruningConfig, GeneralConfig from .utils import infer_model_type import logging from tqdm import tqdm from collections import abc from typing import Optional logger = logging.getLogger(__name__) class VocabularyPruner: """ Args: model : The model to be pruned. tokenizer : The tokenizer for the model. vocabulary_pruning_config : a :class:`~textpruner.configurations.VocabularyPruningConfig` object. general_config : a :class:`~textpruner.configurations.GeneralConfig` object. base_model_prefix : The prefix of the base model, i.e., the name of the base model as a member in the model. \ For example, if ``model.bert_encoder = BertModel(...)``, then the ``base_model_prefix`` is ``bert_encoder``. \ TextPruner will infer the ``base_model_prefix`` so we can leave its value as ``None``. But if it fails, users have to set its value explicitly. """ def __init__(self, model : nn.Module, tokenizer, vocabulary_pruning_config : Optional[VocabularyPruningConfig] = None, general_config : Optional[GeneralConfig] = None, base_model_prefix : Optional[str] = None): self.model = model self.tokenizer = tokenizer #infer model type base_model, model_type = infer_model_type(model, base_model_prefix) assert model_type in MODEL_MAP, \ f"Model type {self.model_type} is not supported, or not understood. Model type must be one of {list(MODEL_MAP.keys())}" self.base_model = base_model self.model_type = model_type self.general_config = GeneralConfig() if general_config is None else general_config self.vocabulary_pruning_config = VocabularyPruningConfig() if vocabulary_pruning_config is None else vocabulary_pruning_config self.model.to(self.general_config.device) self.model_vocab_resizer = MODEL_MAP[self.model_type]['resizer'] self.tokenizer_helper = MODEL_MAP[self.model_type]['tokenizer_helper'] self.pruned_token_ids = [] os.makedirs(self.general_config.output_dir, exist_ok=True) self.save_dir = None def prune(self, dataiter=None, additional_tokens=None, additional_token_ids=None, save_model=True) -> Optional[str]: ''' Prunes the vocabulay of the model and the tokenizer. The pruner will only keep the tokens in ``dataiter``, ``additional_tokens`` and ``additional_token_ids``. * Use ``dataiter`` to generate a set of tokens from the raw texts. * Use ``additional_tokens`` or ``additional_token_ids`` to specify the tokens or token_ids directly without running the tokenization. Args: dataiter : a list of pre-tokenized strings. These strings will be tokenized by the tokenizer to generate a set of tokens. additional_tokens : a list of tokens. These tokens must be existed in the original vocabulary. additional_token_ids : a list of ints representing the token ids. save_model : whether to save the model when the pruning is finished. ''' min_count = self.vocabulary_pruning_config.min_count lm_head_pruning= self.vocabulary_pruning_config.prune_lm_head pruned_token_ids = self.tokenizer_helper.get_token_ids(tokenizer=self.tokenizer, dataiter=dataiter, additional_tokens=additional_tokens, additional_token_ids=additional_token_ids, min_count=min_count) self.model_vocab_resizer.set_embeddings(model=self.base_model, token_ids=pruned_token_ids) if lm_head_pruning == 'auto' or lm_head_pruning is True: is_success = self.model_vocab_resizer.set_lm_head(self.model, pruned_token_ids) if is_success is False: if lm_head_pruning is True: logger.info("Cannot get output embeddings! Is your model has a MLM prediction head?") else: logger.info("Cannot get output embeddings. No LM head pruning.") self.pruned_token_ids = pruned_token_ids if save_model is True: self.save_dir = self.save_model() return self.save_dir def save_model(self, dir_name = None) -> str: if self.model_type.lower() in ['t5', 'mt5']: vocab_size = self.base_model.shared.weight.shape[0] else: vocab_size = len(self.pruned_token_ids) self.base_model.config.vocab_size = vocab_size if dir_name is None: save_dir = os.path.join(self.general_config.output_dir, f'pruned_V{vocab_size}') else: save_dir = os.path.join(self.general_config.output_dir, dir_name) os.makedirs(save_dir, exist_ok=True) # save tokenizer self.tokenizer_helper.save_vocab(self.tokenizer, self.pruned_token_ids, save_dir) # save weights torch.save(self.model.state_dict(),os.path.join(save_dir,f'pytorch_model.bin')) # save config config_dir = os.path.join(save_dir) self.base_model.config.save_pretrained(config_dir) logger.info(f"Model and configuration have been saved to {save_dir}") return save_dir
47.700855
166
0.658126
9a3d9e76acb80d35e7bb5844800ddaf71b2b712a
3,769
py
Python
data/states/audio.py
harryninja/Ping-Pong-Doen-a
eabc052872544f1acf53be67415d5fd2e233bc5d
[ "Unlicense" ]
null
null
null
data/states/audio.py
harryninja/Ping-Pong-Doen-a
eabc052872544f1acf53be67415d5fd2e233bc5d
[ "Unlicense" ]
null
null
null
data/states/audio.py
harryninja/Ping-Pong-Doen-a
eabc052872544f1acf53be67415d5fd2e233bc5d
[ "Unlicense" ]
null
null
null
import pygame as pg from .. import tools '''isso aqui importa o audio do codigo Tools em que direciona pra os resources''' class Audio(tools.States): def __init__(self, screen_rect): tools.States.__init__(self) self.screen_rect = screen_rect self.listings = [ 'Background Music', '-/+' ] self.options = ['Back'] self.next_list = ['MENU'] self.title, self.title_rect = self.make_text('Audio', (75,75,75), (self.screen_rect.centerx, 75), 150) self.pre_render_options() self.pre_render_listings() self.from_bottom = 400 self.from_bottom_listings = 225 self.spacer = 25 self.bg_music_modify(0) def bg_music_modify(self, amount, sound=None): self.background_music_volume += amount if self.background_music_volume > .9: self.background_music_volume = 1.0 volume_display = 'Max' elif self.background_music_volume < .1: self.background_music_volume = 0.0 volume_display = 'Mute' else: if sound: self.button_sound.sound.play() volume_display = '{:.1f}'.format(self.background_music_volume) self.bg_music_num, self.bg_music_num_rect = self.make_text( volume_display, (75,75,75), (self.screen_rect.centerx + 125, 250), 30) self.background_music.setup(self.background_music_volume) def get_event(self, event, keys): if event.type == pg.QUIT: self.quit = True elif event.type == pg.KEYDOWN: if event.key in [pg.K_UP, pg.K_w]: self.change_selected_option(-1) elif event.key in [pg.K_DOWN, pg.K_s]: self.change_selected_option(1) elif event.key == pg.K_RETURN: self.select_option(self.selected_index) elif event.key == self.controller_dict['back']: #self.button_sound.sound.play() self.done = True self.next = 'MENU' elif event.key in [pg.K_PLUS, pg.K_EQUALS]: self.bg_music_modify(.1, 'play') elif event.key in [pg.K_MINUS, pg.K_UNDERSCORE]: self.bg_music_modify(-.1, 'play') self.mouse_menu_click(event) def update(self, now, keys): #pg.mouse.set_visible(True) self.mouse_hover_sound() self.change_selected_option() def render(self, screen): screen.fill(self.bg_color) screen.blit(self.title, self.title_rect) screen.blit(self.bg_music_num, self.bg_music_num_rect) for i,opt in enumerate(self.rendered["des"]): opt[1].center = (self.screen_rect.centerx, self.from_bottom+i*self.spacer) if i == self.selected_index: rend_img,rend_rect = self.rendered["sel"][i] rend_rect.center = opt[1].center screen.blit(rend_img,rend_rect) else: screen.blit(opt[0],opt[1]) for i,opt in enumerate(self.rendered_listing['des']): opt[1].center = (self.screen_rect.centerx, self.from_bottom_listings + i * self.spacer) screen.blit(opt[0],opt[1]) def pre_render_listings(self): listing_text = tools.Font.load('impact.ttf', 25) rendered_msg = {"des":[],"sel":[]} for listing in self.listings: text = listing_text.render(listing, 1, (255,255,255)) text_rect = text.get_rect() rendered_msg["des"].append((text, text_rect)) self.rendered_listing = rendered_msg def cleanup(self): pass def entry(self): pass
38.85567
110
0.580525
c38190d5b840b28dfcd9600dd7b4e93618f960b4
10,268
bzl
Python
debian_versions.bzl
ursinnDev/GoogleContainerTools_distroless
10aa518a3b9aabcf4a6401e226eff81c9602e654
[ "Apache-2.0" ]
null
null
null
debian_versions.bzl
ursinnDev/GoogleContainerTools_distroless
10aa518a3b9aabcf4a6401e226eff81c9602e654
[ "Apache-2.0" ]
null
null
null
debian_versions.bzl
ursinnDev/GoogleContainerTools_distroless
10aa518a3b9aabcf4a6401e226eff81c9602e654
[ "Apache-2.0" ]
null
null
null
# AUTO GENERATED DEBIAN_PACKAGE_VERSIONS = { "amd64": { "debian10": { "base-files": "10.3+deb10u12", "ca-certificates": "20200601~deb10u2", "libbz2-1.0": "1.0.6-9.2~deb10u1", "libc-bin": "2.28-10+deb10u1", "libc6": "2.28-10+deb10u1", "libdb5.3": "5.3.28+dfsg1-0.5", "libffi6": "3.2.1-9", "libgcc1": "1:8.3.0-6", "libgomp1": "8.3.0-6", "liblzma5": "5.2.4-1+deb10u1", "libreadline7": "7.0-5", "libsqlite3-0": "3.27.2-3+deb10u1", "libssl1.1": "1.1.1n-0+deb10u2", "libstdcpp6": "8.3.0-6", "mime-support": "3.62", "netbase": "5.6", "openssl": "1.1.1n-0+deb10u2", "readline-common": "7.0-5", "tzdata": "2021a-0+deb10u5", }, "debian11": { "base-files": "11.1+deb11u3", "ca-certificates": "20210119", "dash": "0.5.11+git20200708+dd9ef66-5", "fontconfig-config": "2.13.1-4.2", "fonts-dejavu-core": "2.37-2", "libbrotli1": "1.0.9-2+b2", "libbz2-1.0": "1.0.8-4", "libc-bin": "2.31-13+deb11u3", "libc6": "2.31-13+deb11u3", "libcom-err2": "1.46.2-2", "libcrypt1": "1:4.4.18-4", "libdb5.3": "5.3.28+dfsg1-0.8", "libexpat1": "2.2.10-2+deb11u3", "libffi7": "3.3-6", "libfontconfig1": "2.13.1-4.2", "libfreetype6": "2.10.4+dfsg-1", "libgcc-s1": "10.2.1-6", "libglib2.0-0": "2.66.8-1", "libgomp1": "10.2.1-6", "libgraphite2-3": "1.3.14-1", "libgssapi-krb5-2": "1.18.3-6+deb11u1", "libharfbuzz0b": "2.7.4-1", "libjpeg62-turbo": "1:2.0.6-4", "libk5crypto3": "1.18.3-6+deb11u1", "libkeyutils1": "1.6.1-2", "libkrb5-3": "1.18.3-6+deb11u1", "libkrb5support0": "1.18.3-6+deb11u1", "liblcms2-2": "2.12~rc1-2", "liblzma5": "5.2.5-2.1~deb11u1", "libmpdec3": "2.5.1-1", "libncursesw6": "6.2+20201114-2", "libnsl2": "1.3.0-2", "libpcre3": "2:8.39-13", "libpng16-16": "1.6.37-3", "libpython3.9-minimal": "3.9.2-1", "libpython3.9-stdlib": "3.9.2-1", "libreadline8": "8.1-1", "libsqlite3-0": "3.34.1-3", "libssl1.1": "1.1.1n-0+deb11u2", "libstdcpp6": "10.2.1-6", "libtinfo6": "6.2+20201114-2", "libtirpc3": "1.3.1-1", "libuuid1": "2.36.1-8+deb11u1", "netbase": "6.3", "openjdk-11-jdk-headless": "11.0.15+10-1~deb11u1", "openjdk-11-jre-headless": "11.0.15+10-1~deb11u1", "openjdk-17-jdk-headless": "17.0.3+7-1~deb11u1", "openjdk-17-jre-headless": "17.0.3+7-1~deb11u1", "openssl": "1.1.1n-0+deb11u2", "python3-distutils": "3.9.2-1", "python3.9-minimal": "3.9.2-1", "tzdata": "2021a-1+deb11u4", "zlib1g": "1:1.2.11.dfsg-2+deb11u1", }, }, "arm": { "debian10": { "base-files": "10.3+deb10u12", "ca-certificates": "20200601~deb10u2", "libbz2-1.0": "1.0.6-9.2~deb10u1", "libc-bin": "2.28-10+deb10u1", "libc6": "2.28-10+deb10u1", "libdb5.3": "5.3.28+dfsg1-0.5", "libffi6": "3.2.1-9", "libgcc1": "1:8.3.0-6", "libgomp1": "8.3.0-6", "liblzma5": "5.2.4-1+deb10u1", "libreadline7": "7.0-5", "libsqlite3-0": "3.27.2-3+deb10u1", "libssl1.1": "1.1.1n-0+deb10u2", "libstdcpp6": "8.3.0-6", "mime-support": "3.62", "netbase": "5.6", "openssl": "1.1.1n-0+deb10u2", "readline-common": "7.0-5", "tzdata": "2021a-0+deb10u5", }, "debian11": { "base-files": "11.1+deb11u3", "ca-certificates": "20210119", "libc-bin": "2.31-13+deb11u3", "libc6": "2.31-13+deb11u3", "libgcc-s1": "10.2.1-6", "libgomp1": "10.2.1-6", "libssl1.1": "1.1.1n-0+deb11u2", "libstdcpp6": "10.2.1-6", "netbase": "6.3", "openssl": "1.1.1n-0+deb11u2", "tzdata": "2021a-1+deb11u4", }, }, "arm64": { "debian10": { "base-files": "10.3+deb10u12", "ca-certificates": "20200601~deb10u2", "libbz2-1.0": "1.0.6-9.2~deb10u1", "libc-bin": "2.28-10+deb10u1", "libc6": "2.28-10+deb10u1", "libdb5.3": "5.3.28+dfsg1-0.5", "libffi6": "3.2.1-9", "libgcc1": "1:8.3.0-6", "libgomp1": "8.3.0-6", "liblzma5": "5.2.4-1+deb10u1", "libreadline7": "7.0-5", "libsqlite3-0": "3.27.2-3+deb10u1", "libssl1.1": "1.1.1n-0+deb10u2", "libstdcpp6": "8.3.0-6", "mime-support": "3.62", "netbase": "5.6", "openssl": "1.1.1n-0+deb10u2", "readline-common": "7.0-5", "tzdata": "2021a-0+deb10u5", }, "debian11": { "base-files": "11.1+deb11u3", "ca-certificates": "20210119", "dash": "0.5.11+git20200708+dd9ef66-5", "fontconfig-config": "2.13.1-4.2", "fonts-dejavu-core": "2.37-2", "libbrotli1": "1.0.9-2+b2", "libbz2-1.0": "1.0.8-4", "libc-bin": "2.31-13+deb11u3", "libc6": "2.31-13+deb11u3", "libcom-err2": "1.46.2-2", "libcrypt1": "1:4.4.18-4", "libdb5.3": "5.3.28+dfsg1-0.8", "libexpat1": "2.2.10-2+deb11u3", "libffi7": "3.3-6", "libfontconfig1": "2.13.1-4.2", "libfreetype6": "2.10.4+dfsg-1", "libgcc-s1": "10.2.1-6", "libglib2.0-0": "2.66.8-1", "libgomp1": "10.2.1-6", "libgraphite2-3": "1.3.14-1", "libgssapi-krb5-2": "1.18.3-6+deb11u1", "libharfbuzz0b": "2.7.4-1", "libjpeg62-turbo": "1:2.0.6-4", "libk5crypto3": "1.18.3-6+deb11u1", "libkeyutils1": "1.6.1-2", "libkrb5-3": "1.18.3-6+deb11u1", "libkrb5support0": "1.18.3-6+deb11u1", "liblcms2-2": "2.12~rc1-2", "liblzma5": "5.2.5-2.1~deb11u1", "libmpdec3": "2.5.1-1", "libncursesw6": "6.2+20201114-2", "libnsl2": "1.3.0-2", "libpcre3": "2:8.39-13", "libpng16-16": "1.6.37-3", "libpython3.9-minimal": "3.9.2-1", "libpython3.9-stdlib": "3.9.2-1", "libreadline8": "8.1-1", "libsqlite3-0": "3.34.1-3", "libssl1.1": "1.1.1n-0+deb11u2", "libstdcpp6": "10.2.1-6", "libtinfo6": "6.2+20201114-2", "libtirpc3": "1.3.1-1", "libuuid1": "2.36.1-8+deb11u1", "netbase": "6.3", "openjdk-11-jdk-headless": "11.0.15+10-1~deb11u1", "openjdk-11-jre-headless": "11.0.15+10-1~deb11u1", "openjdk-17-jdk-headless": "17.0.3+7-1~deb11u1", "openjdk-17-jre-headless": "17.0.3+7-1~deb11u1", "openssl": "1.1.1n-0+deb11u2", "python3-distutils": "3.9.2-1", "python3.9-minimal": "3.9.2-1", "tzdata": "2021a-1+deb11u4", "zlib1g": "1:1.2.11.dfsg-2+deb11u1", }, }, "ppc64le": { "debian10": { "base-files": "10.3+deb10u12", "ca-certificates": "20200601~deb10u2", "libbz2-1.0": "1.0.6-9.2~deb10u1", "libc-bin": "2.28-10+deb10u1", "libc6": "2.28-10+deb10u1", "libdb5.3": "5.3.28+dfsg1-0.5", "libffi6": "3.2.1-9", "libgcc1": "1:8.3.0-6", "libgomp1": "8.3.0-6", "liblzma5": "5.2.4-1+deb10u1", "libreadline7": "7.0-5", "libsqlite3-0": "3.27.2-3+deb10u1", "libssl1.1": "1.1.1n-0+deb10u2", "libstdcpp6": "8.3.0-6", "mime-support": "3.62", "netbase": "5.6", "openssl": "1.1.1n-0+deb10u2", "readline-common": "7.0-5", "tzdata": "2021a-0+deb10u5", }, "debian11": { "base-files": "11.1+deb11u3", "ca-certificates": "20210119", "libc-bin": "2.31-13+deb11u3", "libc6": "2.31-13+deb11u3", "libgcc-s1": "10.2.1-6", "libgomp1": "10.2.1-6", "libssl1.1": "1.1.1n-0+deb11u2", "libstdcpp6": "10.2.1-6", "netbase": "6.3", "openssl": "1.1.1n-0+deb11u2", "tzdata": "2021a-1+deb11u4", }, }, "s390x": { "debian10": { "base-files": "10.3+deb10u12", "ca-certificates": "20200601~deb10u2", "libbz2-1.0": "1.0.6-9.2~deb10u1", "libc-bin": "2.28-10+deb10u1", "libc6": "2.28-10+deb10u1", "libdb5.3": "5.3.28+dfsg1-0.5", "libffi6": "3.2.1-9", "libgcc1": "1:8.3.0-6", "libgomp1": "8.3.0-6", "liblzma5": "5.2.4-1+deb10u1", "libreadline7": "7.0-5", "libsqlite3-0": "3.27.2-3+deb10u1", "libssl1.1": "1.1.1n-0+deb10u2", "libstdcpp6": "8.3.0-6", "mime-support": "3.62", "netbase": "5.6", "openssl": "1.1.1n-0+deb10u2", "readline-common": "7.0-5", "tzdata": "2021a-0+deb10u5", }, "debian11": { "base-files": "11.1+deb11u3", "ca-certificates": "20210119", "libc-bin": "2.31-13+deb11u3", "libc6": "2.31-13+deb11u3", "libgcc-s1": "10.2.1-6", "libgomp1": "10.2.1-6", "libssl1.1": "1.1.1n-0+deb11u2", "libstdcpp6": "10.2.1-6", "netbase": "6.3", "openssl": "1.1.1n-0+deb11u2", "tzdata": "2021a-1+deb11u4", }, }, }
38.313433
62
0.425691
d30a4a6656bb369dd93770d9789449b5296645b2
673
py
Python
src/uefi/BaseTools/Source/Python/AutoGen/__init__.py
kkennett/oscore.dev
59e786f12f9af969211c95a9d2863b1767528341
[ "BSD-3-Clause" ]
521
2019-03-29T15:44:08.000Z
2022-03-22T09:46:19.000Z
src/uefi/BaseTools/Source/Python/AutoGen/__init__.py
kkennett/oscore.dev
59e786f12f9af969211c95a9d2863b1767528341
[ "BSD-3-Clause" ]
30
2019-06-04T17:00:49.000Z
2021-09-08T20:44:19.000Z
src/uefi/BaseTools/Source/Python/AutoGen/__init__.py
kkennett/oscore.dev
59e786f12f9af969211c95a9d2863b1767528341
[ "BSD-3-Clause" ]
99
2019-03-29T16:04:13.000Z
2022-03-28T16:59:34.000Z
## @file # Python 'AutoGen' package initialization file. # # This file is required to make Python interpreter treat the directory # as containing package. # # Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # __all__ = ["AutoGen"]
37.388889
84
0.766716
812fb96b13d6ef94c9caf60f90b02c84fd6b3a31
2,084
py
Python
selenium_tests/test_A010_edit_password.py
garazoli/conduit
a261f4a6c539e5294889bfecf2be01eba72203dc
[ "MIT" ]
null
null
null
selenium_tests/test_A010_edit_password.py
garazoli/conduit
a261f4a6c539e5294889bfecf2be01eba72203dc
[ "MIT" ]
null
null
null
selenium_tests/test_A010_edit_password.py
garazoli/conduit
a261f4a6c539e5294889bfecf2be01eba72203dc
[ "MIT" ]
null
null
null
# TC_020 teszteset from selenium import webdriver from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager import time import locators # Headless mode opt = Options() opt.headless = True driver = webdriver.Chrome(executable_path=ChromeDriverManager().install(), options=opt) # Conduit megnyitasa driver.get(locators.CON_URL) time.sleep(10) def test_edit_password(): # Sign in gombra kattintas driver.find_element_by_xpath(locators.sign_in_x).click() time.sleep(10) # Bejelentkezesi adatok kitoltese def sign_in(email, password): driver.find_element_by_xpath(locators.si_email_x).send_keys(email) driver.find_element_by_xpath(locators.si_password_x).send_keys(password) driver.find_element_by_xpath(locators.sign_in_button_x).click() time.sleep(10) sign_in('testuser3@example.com', 'Abcd123$') # Jelszo megvatoztatasa def edit_settings(password): driver.find_element_by_xpath(locators.settings_x).click() time.sleep(10) driver.find_element_by_xpath(locators.new_password_x).send_keys(password) driver.find_element_by_xpath(locators.update_button_x).click() time.sleep(10) edit_settings('Efgh456$') assert driver.find_element_by_xpath(locators.update_success_x).text == 'Update successful!' driver.find_element_by_xpath(locators.update_ok_button_x).click() time.sleep(10) # Logout es bejelentkezes az uj jelszoval driver.find_element_by_xpath(locators.log_out_x).click() time.sleep(10) driver.find_element_by_xpath(locators.sign_in_x).click() time.sleep(10) # Bejelentkezes uj adatokkal sign_in('testuser3@example.com', 'Efgh456$') assert driver.find_element_by_xpath(locators.user_x).text == 'testuser3' # Eredeti allapot visszaallitasa: edit_settings('Abcd123$') assert driver.find_element_by_xpath(locators.update_success_x).text == 'Update successful!' driver.find_element_by_xpath(locators.update_ok_button_x).click() driver.close()
29.352113
95
0.754319
f9aff026c0bc3e9a8bb82011beb4da6859b8efc8
492
py
Python
RecoMET/METFilters/python/badGlobalMuonTaggersMiniAOD_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
RecoMET/METFilters/python/badGlobalMuonTaggersMiniAOD_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
RecoMET/METFilters/python/badGlobalMuonTaggersMiniAOD_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms badGlobalMuonTaggerMAOD = cms.EDFilter("BadGlobalMuonTagger", muons = cms.InputTag("slimmedMuons"), vtx = cms.InputTag("offlineSlimmedPrimaryVertices"), muonPtCut = cms.double(20), selectClones = cms.bool(False), taggingMode = cms.bool(False), ) cloneGlobalMuonTaggerMAOD = badGlobalMuonTaggerMAOD.clone( selectClones = True ) noBadGlobalMuonsMAOD = cms.Sequence(~cloneGlobalMuonTaggerMAOD + ~badGlobalMuonTaggerMAOD)
30.75
90
0.760163
d67bad03c4372e1679128c5595a0c2419571273a
31
py
Python
software_testing/__init__.py
rafaelleinio/software-testing
0cb9e95b65675121360a0e47ad127666c6c5ae7d
[ "MIT" ]
1
2021-02-28T02:12:35.000Z
2021-02-28T02:12:35.000Z
software_testing/__init__.py
rafaelleinio/software-testing
0cb9e95b65675121360a0e47ad127666c6c5ae7d
[ "MIT" ]
null
null
null
software_testing/__init__.py
rafaelleinio/software-testing
0cb9e95b65675121360a0e47ad127666c6c5ae7d
[ "MIT" ]
null
null
null
"""Software testing module."""
15.5
30
0.677419
702be65056d84d2408e87fbd324aca6a4b6d0b07
3,144
py
Python
configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco_custom.py
Alphafrey946/Colocalization-of-fluorescent_signals-using-deep-learning-with-Manders-overlapping-coefficient
cc8386b6cc6cbe823983647119511aa87e121f23
[ "Apache-2.0" ]
2
2021-02-23T04:42:07.000Z
2021-02-23T07:22:42.000Z
configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco_custom.py
Alphafrey946/Colocalization-of-fluorescent_signals-using-deep-learning-with-Manders-overlapping-coefficient
cc8386b6cc6cbe823983647119511aa87e121f23
[ "Apache-2.0" ]
null
null
null
configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco_custom.py
Alphafrey946/Colocalization-of-fluorescent_signals-using-deep-learning-with-Manders-overlapping-coefficient
cc8386b6cc6cbe823983647119511aa87e121f23
[ "Apache-2.0" ]
1
2021-02-23T04:42:08.000Z
2021-02-23T04:42:08.000Z
_base_ = [ '../_base_/datasets/my_custom_detection.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( type='FCOS', pretrained='open-mmlab://detectron/resnet50_caffe', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='caffe'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs=True, extra_convs_on_inputs=False, # use P5 num_outs=5, relu_before_extra_convs=True), bbox_head=dict( type='FCOSHead', num_classes=3, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0))) # training and testing settings train_cfg = dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), allowed_border=-1, pos_weight=-1, debug=False) test_cfg = dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100) img_norm_cfg = dict( mean=[102.9801, 115.9465, 122.7717], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=2, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer = dict( lr=0.01, paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.)) optimizer_config = dict( _delete_=True, grad_clip=dict(max_norm=35, norm_type=2)) # learning policy lr_config = dict( policy='step', warmup='constant', warmup_iters=500, warmup_ratio=1.0 / 3, step=[8, 11]) total_epochs = 12
29.660377
75
0.606234
c052152f413e626eb8e3705cc403596f06d5dd12
4,011
py
Python
app/tests/v1/test_redflags.py
timmwrite/ireporter
bc5a64740cf920010d8353985ece04a96ecdfafd
[ "MIT" ]
2
2019-01-21T10:47:40.000Z
2019-01-28T11:18:53.000Z
app/tests/v1/test_redflags.py
timmwrite/ireporter
bc5a64740cf920010d8353985ece04a96ecdfafd
[ "MIT" ]
6
2018-11-22T10:15:09.000Z
2021-04-20T17:55:41.000Z
app/tests/v1/test_redflags.py
timmwrite/ireporter
bc5a64740cf920010d8353985ece04a96ecdfafd
[ "MIT" ]
3
2018-12-03T08:16:45.000Z
2019-09-20T17:04:55.000Z
"""Tests for redflags run with pytest""" import json import unittest from ... import create_app class RedFlagTestCase(unittest.TestCase): """ This class represents the redflag test cases """ def setUp(self): APP = create_app("testing") self.app = APP.test_client() self.redflag = { "createdBy": 5, "type": "red-flag", "location": "66, 12", "status": "resolved", "images": "", "videos": "", "title": "NYS scandal", "comment": "53" } def test_get_all_redflags(self): """method to test get all""" response = self.app.get("/api/v1/red-flags") self.assertEqual(response.status_code, 200) def test_post_redflag(self): response = self.app.post("/api/v1/red-flags", headers={'Content-Type': 'application/json'}, data=json.dumps(self.redflag)) result = json.loads(response.data) self.assertEqual(response.status_code, 201) self.assertIn('Created red-flag record', str(result)) def test_get_specific_redflag(self): """method to test if one can get a specific redflag""" self.app.post("/api/v1/red-flags", headers={'Content-Type': 'application/json'}, data=json.dumps(self.redflag)) response = self.app.get("/api/v1/red-flags/1") json.loads(response.data) self.assertEqual(response.status_code, 200) def test_delete_specific_redflag(self): """method to test if one can delete a redflag""" self.app.post("/api/v1/red-flags", headers={'Content-Type': 'application/json'}, data=json.dumps(self.redflag)) response = self.app.delete("/api/v1/red-flags/1") result = json.loads(response.data) self.assertEqual(response.status_code, 200) self.assertIn('red-flag record has been deleted', str(result)) def test_update_location_of_specific_redflag(self): """method to test edit of location""" self.app.post("/api/v1/red-flags/1/location", headers={'Content-Type': 'application/json'}, data=json.dumps(self.redflag)) response = self.app.patch("/api/v1/red-flags/1/location", headers={ 'Content-Type': 'application/json'}, data=json.dumps({"location": "24.0 , 12.0"})) result = json.loads(response.data) self.assertEqual(response.status_code, 200) self.assertIn("Updated red-flag record's location", str(result)) def test_update_comment_of_specific_redflag(self): """method to test edit of comment""" self.app.post("/api/v1/red-flags/1/comment", headers={'Content-Type': 'application/json'}, data=json.dumps(self.redflag)) response = self.app.patch("/api/v1/red-flags/1/comment", headers={'Content-Type': 'application/json'}, data=json.dumps({"comment": "hello cohart 35"})) result = json.loads(response.data) self.assertEqual(response.status_code, 200) self.assertIn("Updated red-flag record's comment", str(result)) def test_redflag_not_found(self): """Test a redflag not found""" response = self.app.get("/api/v1/red-flags/100") result = json.loads(response.data) self.assertEqual(response.status_code, 404) self.assertEqual( result['error'], "red flag does not exit") def test_wrong_comment_key(self): """Test wrong comment key used in redflag""" response = self.app.patch("/api/v1/red-flags/1/comment", headers={'Content-Type': 'application/json'}, data=json.dumps({"comment1": "hello pac"})) result = json.loads(response.data) self.assertEqual(response.status_code, 500) self.assertEqual( result['error'], "KeyError Red-flag's comment not updated")
42.221053
116
0.598853
6268f8cc116bed3a67002ab4b72b36478f37a962
210
py
Python
docker/dockerTrader/gateway/ibGateway/__init__.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
docker/dockerTrader/gateway/ibGateway/__init__.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
docker/dockerTrader/gateway/ibGateway/__init__.py
OceanMT/vnpy_py3
0901e9381c54e615247eb753bac476a911c9ae5d
[ "MIT" ]
null
null
null
# encoding: UTF-8 import vtConstant from .ibGateway import IbGateway as gateway gatewayName = 'IB' gatewayDisplayName = gatewayName gatewayType = vtConstant.GATEWAYTYPE_INTERNATIONAL gatewayQryEnabled = False
23.333333
50
0.833333
fea4b5739933bd2964ac4b4e107c1a3808c56801
5,188
py
Python
aea/identity/base.py
bryanchriswhite/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
126
2019-09-07T09:32:44.000Z
2022-03-29T14:28:41.000Z
aea/identity/base.py
salman6049/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
1,814
2019-08-24T10:08:07.000Z
2022-03-31T14:28:36.000Z
aea/identity/base.py
salman6049/agents-aea
d3f177a963eb855d9528555167255bf2b478f4ba
[ "Apache-2.0" ]
46
2019-09-03T22:13:58.000Z
2022-03-22T01:25:16.000Z
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This module contains the identity class.""" from typing import Dict, Optional from aea.common import Address from aea.configurations.constants import DEFAULT_LEDGER from aea.exceptions import enforce from aea.helpers.base import SimpleId, SimpleIdOrStr class Identity: """ The identity holds the public elements identifying an agent. It includes: - the agent name - the addresses, a map from address identifier to address (can be a single key-value pair) """ __slots__ = ( "_name", "_address", "_public_key", "_public_keys", "_addresses", "_default_address_key", ) def __init__( self, name: SimpleIdOrStr, address: Optional[str] = None, public_key: Optional[str] = None, addresses: Optional[Dict[str, Address]] = None, public_keys: Optional[Dict[str, str]] = None, default_address_key: str = DEFAULT_LEDGER, ) -> None: """ Instantiate the identity. :param name: the name of the agent. :param address: the default address of the agent. :param public_key: the public key of the agent. :param addresses: the addresses of the agent. :param public_keys: the public keys of the agent. :param default_address_key: the key for the default address. """ self._name = SimpleId(name) if default_address_key is None: raise ValueError( "Provide a key for the default address." ) # pragma: nocover if (address is None) == (addresses is None): raise ValueError( "Either provide a single address or a dictionary of addresses, and not both." ) if address is None: if addresses is None or len(addresses) == 0: # pragma: nocover raise ValueError("Provide at least one pair of addresses.") if public_key is not None: raise ValueError( "If you provide a dictionary of addresses, you must not provide a single public key." ) if public_keys is None: raise ValueError( "If you provide a dictionary of addresses, you must provide its corresponding dictionary of public keys." ) enforce( public_keys.keys() == addresses.keys(), "Keys in public keys and addresses dictionaries do not match. They must be identical.", ) enforce( default_address_key in addresses and default_address_key in public_keys, "The default address key must exist in both addresses and public keys dictionaries.", ) address = addresses[default_address_key] public_key = public_keys[default_address_key] if addresses is None: if public_keys is not None: raise ValueError( "If you provide a single address, you must not provide a dictionary of public keys." ) if public_key is None: raise ValueError( "If you provide a single address, you must provide its corresponding public key." ) addresses = {default_address_key: address} public_keys = {default_address_key: public_key} self._address = address self._addresses = addresses self._public_key = public_key self._public_keys = public_keys self._default_address_key = default_address_key @property def default_address_key(self) -> str: """Get the default address key.""" return self._default_address_key @property def name(self) -> str: """Get the agent name.""" return str(self._name) @property def addresses(self) -> Dict[str, Address]: """Get the addresses.""" return self._addresses @property def address(self) -> Address: """Get the default address.""" return self._address @property def public_keys(self) -> Dict[str, str]: """Get the public keys.""" return self._public_keys # type: ignore @property def public_key(self) -> str: """Get the default public key.""" return self._public_key # type: ignore
35.054054
125
0.593678
f7bd493a4a6b9c29c45be6e230287ac9d5505f79
5,661
py
Python
links/tests.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
null
null
null
links/tests.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
1
2022-02-17T20:28:19.000Z
2022-02-17T20:28:19.000Z
links/tests.py
timptner/farafmb.de
2b154278d8b44ea3adecafcb8554c1b0b0055e01
[ "MIT" ]
null
null
null
from django.contrib.admin.sites import AdminSite from django.contrib.auth.models import User from django.contrib.messages.storage.fallback import FallbackStorage from django.http import HttpResponse, HttpResponseRedirect from django.test import TestCase, RequestFactory, override_settings, SimpleTestCase from django.urls import reverse from .admin import LinkAdmin from .forms import ChangeOrderForm from .models import Link from .views import change_order class LinkTests(TestCase): def test_object_representation(self): link = Link.objects.create(url='https://www.example.org', text='Example', position=1) self.assertEqual(str(link), link.text) class LinkAdminTests(TestCase): def setUp(self) -> None: site = AdminSite() self.factory = RequestFactory() self.user = User.objects.create(username='john', email='john@example.org', password='secret') self.admin = LinkAdmin(Link, site) def test_initial_data(self): request = self.factory.get(reverse('admin:links_link_changelist')) request.user = self.user initial_data = self.admin.get_changeform_initial_data(request) self.assertEqual(initial_data, {'icon': 'fas fa-link'}) def test_mark_as_active_action(self): request = self.factory.get(reverse('admin:links_link_changelist')) request.user = self.user # Required when using messages in action setattr(request, 'session', 'session') messages = FallbackStorage(request) setattr(request, '_messages', messages) Link.objects.bulk_create([ Link(url='https://www.example1.org', text='Example 1', position=1, is_active=False), Link(url='https://www.example2.org', text='Example 2', position=2, is_active=False), Link(url='https://www.example2.org', text='Example 3', position=3, is_active=False), ]) queryset = Link.objects.all() self.admin.mark_as_active(request, queryset) for link in queryset: self.assertTrue(link.is_active) def test_mark_as_inactive_action(self): request = self.factory.get(reverse('admin:links_link_changelist')) request.user = self.user # Required when using messages in action setattr(request, 'session', 'session') messages = FallbackStorage(request) setattr(request, '_messages', messages) Link.objects.bulk_create([ Link(url='https://www.example1.org', text='Example 1', position=1, is_active=True), Link(url='https://www.example2.org', text='Example 2', position=2, is_active=True), Link(url='https://www.example2.org', text='Example 3', position=3, is_active=True), ]) queryset = Link.objects.all() self.admin.mark_as_inactive(request, queryset) for link in queryset: self.assertFalse(link.is_active) @override_settings(LANGUAGE_CODE='en-us') class LinkViewTests(TestCase): def test_index(self): url = reverse('links:index') self.assertEqual(url, '/links/') response = self.client.get(url) self.assertEqual(response.status_code, 200) @override_settings(LANGUAGE_CODE='en-us') class ChangeOrderFormTests(TestCase): def test_clean_order_valid(self): form = ChangeOrderForm({'order': '4,8,15,16,23,42'}) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['order'], [4, 8, 15, 16, 23, 42]) def test_clean_order_invalid(self): form = ChangeOrderForm({'order': '4,8,x,23,42'}) self.assertFalse(form.is_valid()) self.assertIn('order', form.errors) self.assertEqual(form.errors['order'], ["Not all positions are integers."]) def test_save(self): link1 = Link.objects.create(position=0) link2 = Link.objects.create(position=1) link3 = Link.objects.create(position=2) order = f'{link3.pk},{link2.pk},{link1.pk}' form = ChangeOrderForm({'order': order}) self.assertTrue(form.is_valid()) form.save() link1.refresh_from_db() self.assertEqual(link1.position, 2) link2.refresh_from_db() self.assertEqual(link2.position, 1) link3.refresh_from_db() self.assertEqual(link3.position, 0) class ChangeOrderViewTests(TestCase): def setUp(self) -> None: self.factory = RequestFactory() self.user = User.objects.create_superuser(username='John', email='john@example.org', password='secret') def test_change_order(self): url = reverse('links:change_order') self.assertEqual(url, '/links/change_order/') response = self.client.get(url) self.assertEqual(response.status_code, 302) def test_change_order_get(self): request = self.factory.get('links:change_order') request.user = self.user response = change_order(request) self.assertEqual(response.status_code, 200) def test_change_order_post(self): link = Link.objects.create() request = self.factory.post('links:change_order') request.user = self.user request.POST = {'order': f'{link.pk}'} response = change_order(request) self.assertEqual(response.status_code, 302) self.assertEqual(response.headers['Location'], reverse('links:change_order_done')) class ChangeOrderDoneViewTests(SimpleTestCase): def test_change_order_done(self): url = reverse('links:change_order_done') self.assertEqual(url, '/links/change_order/done/') response = self.client.get(url) self.assertEqual(response.status_code, 302)
39.587413
111
0.671613
511843f2dcfdb8b7b3bd6a16b30b5f5e3871f92c
1,411
py
Python
samples/openapi3/client/petstore/python-legacy/test/test_class_model.py
JigarJoshi/openapi-generator
785535b8d6881b358463994823abbda2b26ff42e
[ "Apache-2.0" ]
11,868
2018-05-12T02:58:07.000Z
2022-03-31T21:19:39.000Z
samples/openapi3/client/petstore/python-legacy/test/test_class_model.py
JigarJoshi/openapi-generator
785535b8d6881b358463994823abbda2b26ff42e
[ "Apache-2.0" ]
9,672
2018-05-12T14:25:43.000Z
2022-03-31T23:59:30.000Z
samples/openapi3/client/petstore/python-legacy/test/test_class_model.py
JigarJoshi/openapi-generator
785535b8d6881b358463994823abbda2b26ff42e
[ "Apache-2.0" ]
4,776
2018-05-12T12:06:08.000Z
2022-03-31T19:52:51.000Z
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import petstore_api from petstore_api.models.class_model import ClassModel # noqa: E501 from petstore_api.rest import ApiException class TestClassModel(unittest.TestCase): """ClassModel unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ClassModel include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = petstore_api.models.class_model.ClassModel() # noqa: E501 if include_optional : return ClassModel( _class = '' ) else : return ClassModel( ) def testClassModel(self): """Test ClassModel""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
27.134615
174
0.666194
95c4be79e7b6e8cbffed4d2d0d16dbb8ad7d80c4
1,199
py
Python
tools/metrics/histograms/update_net_trust_anchors.py
zipated/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
tools/metrics/histograms/update_net_trust_anchors.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
tools/metrics/histograms/update_net_trust_anchors.py
cangulcan/src
2b8388091c71e442910a21ada3d97ae8bc1845d3
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
#!/usr/bin/env python # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Updates NetTrustAnchors enum in histograms.xml file with values read from net/data/ssl/root_stores/root_stores.json. If the file was pretty-printed, the updated version is pretty-printed too. """ import json import os.path import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common')) import path_util import update_histogram_enum NET_ROOT_CERTS_PATH = 'net/data/ssl/root_stores/root_stores.json' def main(): if len(sys.argv) > 1: print >>sys.stderr, 'No arguments expected!' sys.stderr.write(__doc__) sys.exit(1) with open(path_util.GetInputFile(NET_ROOT_CERTS_PATH)) as f: root_stores = json.load(f) spki_enum = {} spki_enum[0] = 'Unknown or locally-installed trust anchor' for spki, spki_data in sorted(root_stores['spkis'].items()): spki_enum[int(spki_data['id'])] = spki update_histogram_enum.UpdateHistogramFromDict( 'NetTrustAnchors', spki_enum, NET_ROOT_CERTS_PATH, os.path.basename(__file__)) if __name__ == '__main__': main()
27.883721
74
0.740617
8073802c60fe9f9b41fad29ad7abe384a7d8473e
3,829
py
Python
platform/handlers/user.py
THU-KEG/ECTE
db657c347b64ead086ccc79c2837df1235088b5d
[ "MIT" ]
null
null
null
platform/handlers/user.py
THU-KEG/ECTE
db657c347b64ead086ccc79c2837df1235088b5d
[ "MIT" ]
null
null
null
platform/handlers/user.py
THU-KEG/ECTE
db657c347b64ead086ccc79c2837df1235088b5d
[ "MIT" ]
1
2021-08-31T03:23:37.000Z
2021-08-31T03:23:37.000Z
import logging import time import tqdm class User: def __init__(self, user_id, recommender=None): assert type(user_id) is int self.user_id = user_id self.answered_questions = [] self.answer_count = 0 self.diamond_count = 0 if recommender: self.recommender = recommender from . import main_handler self.ignored = bool( main_handler.data_provider.exesql(f"SELECT ignored FROM users WHERE id = {self.user_id}")[0][0]) self.blocked = bool( main_handler.data_provider.exesql(f"SELECT blocked FROM users WHERE id = {self.user_id}")[0][0]) if self.ignored: logging.info(f"user {self.user_id} is ignored") if self.blocked: logging.info(f"user {self.user_id} is blocked") def ignore_me(self, is_init=False): if self.ignored and not is_init: logging.warning(f"Trying to ignore {self.user_id} which has already been ignored. Action canceled") return self.ignored = True logging.info(f"exceed_max_answers_count = {self.recommender.exceed_max_answers_count} + {len(self.answered_questions)}") self.recommender.exceed_max_answers_count += len(self.answered_questions) logging.info(f"Ignoring user {self.user_id}") for question in tqdm.tqdm(self.answered_questions): question.unchoose(self) def release_me(self): if not self.ignored: logging.warning(f"Trying to release {self.user_id} which has not been ignored. Action canceled") return self.ignored = False logging.info(f"exceed_max_answers_count = {self.recommender.exceed_max_answers_count} - {len(self.answered_questions)}") self.recommender.exceed_max_answers_count -= len(self.answered_questions) logging.info(f"Releasing user {self.user_id}") for question in tqdm.tqdm(self.answered_questions): question.choose(self, question.answers[self.user_id]) def exploit(self): best_question, best_match_score = None, -999999 for question in self.recommender.current_questions: if question.is_task_valid and self.user_id not in question.answers: question.given_time = time.time() try: # Ours algorithm score = (question.posterior @ self.alpha) except AttributeError: # KBIS algorithm directly return `question` return question logging.debug(f"{self.user_id} is not in {question.question_id}'s answers: {question.answers.keys()}") logging.debug(f"{self.user_id} and {question.question_id}'s score is {score}'") if score > best_match_score: best_question = question best_match_score = score if not best_question: raise RuntimeError(f"User {self.user_id} has been assigned all his/her valid questions in current question pool.\n " f"But he/she may not answer it. Anyway there is no more to recommend.") logging.info(f"recommending {best_question.question_id} for {self.user_id}") return best_question def get_partial_accuracy(self, answered_questions): correct_count = 0 total_count = 0 for question in answered_questions: if self.user_id in question.answers: answer_node = question.answers[self.user_id] if answer_node.get_subtree_path() == question.gold_answer: correct_count += 1 else: total_count += 1 if total_count: self.partial_accuracy = correct_count / total_count
47.8625
128
0.625751
936f5a5b622520c1b6863cc326e6d0cefd00b4d8
22,183
py
Python
cinderclient/tests/unit/v1/test_shell.py
scottdangelo/cinderclient-api-microversions
a0df4c76f2959ffed08cf65fd53de03484b1c0bc
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
cinderclient/tests/unit/v1/test_shell.py
scottdangelo/cinderclient-api-microversions
a0df4c76f2959ffed08cf65fd53de03484b1c0bc
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
cinderclient/tests/unit/v1/test_shell.py
scottdangelo/cinderclient-api-microversions
a0df4c76f2959ffed08cf65fd53de03484b1c0bc
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
# Copyright 2010 Jacob Kaplan-Moss # Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import fixtures from requests_mock.contrib import fixture as requests_mock_fixture from cinderclient import client from cinderclient import exceptions from cinderclient import shell from cinderclient.v1 import shell as shell_v1 from cinderclient.tests.unit.v1 import fakes from cinderclient.tests.unit import utils from cinderclient.tests.unit.fixture_data import keystone_client class ShellTest(utils.TestCase): FAKE_ENV = { 'CINDER_USERNAME': 'username', 'CINDER_PASSWORD': 'password', 'CINDER_PROJECT_ID': 'project_id', 'OS_VOLUME_API_VERSION': '1', 'CINDER_URL': keystone_client.BASE_URL, } # Patch os.environ to avoid required auth info. def setUp(self): """Run before each test.""" super(ShellTest, self).setUp() for var in self.FAKE_ENV: self.useFixture(fixtures.EnvironmentVariable(var, self.FAKE_ENV[var])) self.shell = shell.OpenStackCinderShell() # HACK(bcwaldon): replace this when we start using stubs self.old_get_client_class = client.get_client_class client.get_client_class = lambda *_: fakes.FakeClient self.requests = self.useFixture(requests_mock_fixture.Fixture()) self.requests.register_uri( 'GET', keystone_client.BASE_URL, text=keystone_client.keystone_request_callback) def tearDown(self): # For some method like test_image_meta_bad_action we are # testing a SystemExit to be thrown and object self.shell has # no time to get instantatiated which is OK in this case, so # we make sure the method is there before launching it. if hasattr(self.shell, 'cs'): self.shell.cs.clear_callstack() # HACK(bcwaldon): replace this when we start using stubs client.get_client_class = self.old_get_client_class super(ShellTest, self).tearDown() def run_command(self, cmd): self.shell.main(cmd.split()) def assert_called(self, method, url, body=None, **kwargs): return self.shell.cs.assert_called(method, url, body, **kwargs) def assert_called_anytime(self, method, url, body=None): return self.shell.cs.assert_called_anytime(method, url, body) def test_extract_metadata(self): # mimic the result of argparse's parse_args() method class Arguments(object): def __init__(self, metadata=None): self.metadata = metadata or [] inputs = [ ([], {}), (["key=value"], {"key": "value"}), (["key"], {"key": None}), (["k1=v1", "k2=v2"], {"k1": "v1", "k2": "v2"}), (["k1=v1", "k2"], {"k1": "v1", "k2": None}), (["k1", "k2=v2"], {"k1": None, "k2": "v2"}) ] for input in inputs: args = Arguments(metadata=input[0]) self.assertEqual(input[1], shell_v1._extract_metadata(args)) def test_translate_volume_keys(self): cs = fakes.FakeClient() v = cs.volumes.list()[0] setattr(v, 'os-vol-tenant-attr:tenant_id', 'fake_tenant') setattr(v, '_info', {'attachments': [{'server_id': 1234}], 'id': 1234, 'display_name': 'sample-volume', 'os-vol-tenant-attr:tenant_id': 'fake_tenant'}) shell_v1._translate_volume_keys([v]) self.assertEqual(v.tenant_id, 'fake_tenant') def test_list(self): self.run_command('list') # NOTE(jdg): we default to detail currently self.assert_called('GET', '/volumes/detail') def test_list_filter_tenant_with_all_tenants(self): self.run_command('list --tenant=123 --all-tenants 1') self.assert_called('GET', '/volumes/detail?all_tenants=1&project_id=123') def test_list_filter_tenant_without_all_tenants(self): self.run_command('list --tenant=123') self.assert_called('GET', '/volumes/detail?all_tenants=1&project_id=123') def test_metadata_args_with_limiter(self): self.run_command('create --metadata key1="--test1" 1') expected = {'volume': {'snapshot_id': None, 'display_description': None, 'source_volid': None, 'status': 'creating', 'size': 1, 'volume_type': None, 'imageRef': None, 'availability_zone': None, 'attach_status': 'detached', 'user_id': None, 'project_id': None, 'metadata': {'key1': '"--test1"'}, 'display_name': None}} self.assert_called_anytime('POST', '/volumes', expected) def test_metadata_args_limiter_display_name(self): self.run_command('create --metadata key1="--t1" --display-name="t" 1') expected = {'volume': {'snapshot_id': None, 'display_description': None, 'source_volid': None, 'status': 'creating', 'size': 1, 'volume_type': None, 'imageRef': None, 'availability_zone': None, 'attach_status': 'detached', 'user_id': None, 'project_id': None, 'metadata': {'key1': '"--t1"'}, 'display_name': '"t"'}} self.assert_called_anytime('POST', '/volumes', expected) def test_delimit_metadata_args(self): self.run_command('create --metadata key1="test1" key2="test2" 1') expected = {'volume': {'snapshot_id': None, 'display_description': None, 'source_volid': None, 'status': 'creating', 'size': 1, 'volume_type': None, 'imageRef': None, 'availability_zone': None, 'attach_status': 'detached', 'user_id': None, 'project_id': None, 'metadata': {'key1': '"test1"', 'key2': '"test2"'}, 'display_name': None}} self.assert_called_anytime('POST', '/volumes', expected) def test_delimit_metadata_args_display_name(self): self.run_command('create --metadata key1="t1" --display-name="t" 1') expected = {'volume': {'snapshot_id': None, 'display_description': None, 'source_volid': None, 'status': 'creating', 'size': 1, 'volume_type': None, 'imageRef': None, 'availability_zone': None, 'attach_status': 'detached', 'user_id': None, 'project_id': None, 'metadata': {'key1': '"t1"'}, 'display_name': '"t"'}} self.assert_called_anytime('POST', '/volumes', expected) def test_list_filter_status(self): self.run_command('list --status=available') self.assert_called('GET', '/volumes/detail?status=available') def test_list_filter_display_name(self): self.run_command('list --display-name=1234') self.assert_called('GET', '/volumes/detail?display_name=1234') def test_list_all_tenants(self): self.run_command('list --all-tenants=1') self.assert_called('GET', '/volumes/detail?all_tenants=1') def test_list_availability_zone(self): self.run_command('availability-zone-list') self.assert_called('GET', '/os-availability-zone') def test_list_limit(self): self.run_command('list --limit=10') self.assert_called('GET', '/volumes/detail?limit=10') def test_show(self): self.run_command('show 1234') self.assert_called('GET', '/volumes/1234') def test_delete(self): self.run_command('delete 1234') self.assert_called('DELETE', '/volumes/1234') def test_delete_by_name(self): self.run_command('delete sample-volume') self.assert_called_anytime('GET', '/volumes/detail?all_tenants=1&' 'display_name=sample-volume') self.assert_called('DELETE', '/volumes/1234') def test_delete_multiple(self): self.run_command('delete 1234 5678') self.assert_called_anytime('DELETE', '/volumes/1234') self.assert_called('DELETE', '/volumes/5678') def test_backup(self): self.run_command('backup-create 1234') self.assert_called('POST', '/backups') def test_restore(self): self.run_command('backup-restore 1234') self.assert_called('POST', '/backups/1234/restore') def test_snapshot_list_filter_volume_id(self): self.run_command('snapshot-list --volume-id=1234') self.assert_called('GET', '/snapshots/detail?volume_id=1234') def test_snapshot_list_filter_status_and_volume_id(self): self.run_command('snapshot-list --status=available --volume-id=1234') self.assert_called('GET', '/snapshots/detail?' 'status=available&volume_id=1234') def test_rename(self): # basic rename with positional arguments self.run_command('rename 1234 new-name') expected = {'volume': {'display_name': 'new-name'}} self.assert_called('PUT', '/volumes/1234', body=expected) # change description only self.run_command('rename 1234 --display-description=new-description') expected = {'volume': {'display_description': 'new-description'}} self.assert_called('PUT', '/volumes/1234', body=expected) # rename and change description self.run_command('rename 1234 new-name ' '--display-description=new-description') expected = {'volume': { 'display_name': 'new-name', 'display_description': 'new-description', }} self.assert_called('PUT', '/volumes/1234', body=expected) # Call rename with no arguments self.assertRaises(SystemExit, self.run_command, 'rename') def test_rename_snapshot(self): # basic rename with positional arguments self.run_command('snapshot-rename 1234 new-name') expected = {'snapshot': {'display_name': 'new-name'}} self.assert_called('PUT', '/snapshots/1234', body=expected) # change description only self.run_command('snapshot-rename 1234 ' '--display-description=new-description') expected = {'snapshot': {'display_description': 'new-description'}} self.assert_called('PUT', '/snapshots/1234', body=expected) # snapshot-rename and change description self.run_command('snapshot-rename 1234 new-name ' '--display-description=new-description') expected = {'snapshot': { 'display_name': 'new-name', 'display_description': 'new-description', }} self.assert_called('PUT', '/snapshots/1234', body=expected) # Call snapshot-rename with no arguments self.assertRaises(SystemExit, self.run_command, 'snapshot-rename') def test_set_metadata_set(self): self.run_command('metadata 1234 set key1=val1 key2=val2') self.assert_called('POST', '/volumes/1234/metadata', {'metadata': {'key1': 'val1', 'key2': 'val2'}}) def test_set_metadata_delete_dict(self): self.run_command('metadata 1234 unset key1=val1 key2=val2') self.assert_called('DELETE', '/volumes/1234/metadata/key1') self.assert_called('DELETE', '/volumes/1234/metadata/key2', pos=-2) def test_set_metadata_delete_keys(self): self.run_command('metadata 1234 unset key1 key2') self.assert_called('DELETE', '/volumes/1234/metadata/key1') self.assert_called('DELETE', '/volumes/1234/metadata/key2', pos=-2) def test_reset_state(self): self.run_command('reset-state 1234') expected = {'os-reset_status': {'status': 'available'}} self.assert_called('POST', '/volumes/1234/action', body=expected) def test_reset_state_attach(self): self.run_command('reset-state --state in-use 1234') expected = {'os-reset_status': {'status': 'in-use'}} self.assert_called('POST', '/volumes/1234/action', body=expected) def test_reset_state_with_flag(self): self.run_command('reset-state --state error 1234') expected = {'os-reset_status': {'status': 'error'}} self.assert_called('POST', '/volumes/1234/action', body=expected) def test_reset_state_multiple(self): self.run_command('reset-state 1234 5678 --state error') expected = {'os-reset_status': {'status': 'error'}} self.assert_called_anytime('POST', '/volumes/1234/action', body=expected) self.assert_called_anytime('POST', '/volumes/5678/action', body=expected) def test_reset_state_two_with_one_nonexistent(self): cmd = 'reset-state 1234 123456789' self.assertRaises(exceptions.CommandError, self.run_command, cmd) expected = {'os-reset_status': {'status': 'available'}} self.assert_called_anytime('POST', '/volumes/1234/action', body=expected) def test_reset_state_one_with_one_nonexistent(self): cmd = 'reset-state 123456789' self.assertRaises(exceptions.CommandError, self.run_command, cmd) def test_snapshot_reset_state(self): self.run_command('snapshot-reset-state 1234') expected = {'os-reset_status': {'status': 'available'}} self.assert_called('POST', '/snapshots/1234/action', body=expected) def test_snapshot_reset_state_with_flag(self): self.run_command('snapshot-reset-state --state error 1234') expected = {'os-reset_status': {'status': 'error'}} self.assert_called('POST', '/snapshots/1234/action', body=expected) def test_snapshot_reset_state_multiple(self): self.run_command('snapshot-reset-state 1234 5678') expected = {'os-reset_status': {'status': 'available'}} self.assert_called_anytime('POST', '/snapshots/1234/action', body=expected) self.assert_called_anytime('POST', '/snapshots/5678/action', body=expected) def test_encryption_type_list(self): """ Test encryption-type-list shell command. Verify a series of GET requests are made: - one to get the volume type list information - one per volume type to retrieve the encryption type information """ self.run_command('encryption-type-list') self.assert_called_anytime('GET', '/types') self.assert_called_anytime('GET', '/types/1/encryption') self.assert_called_anytime('GET', '/types/2/encryption') def test_encryption_type_show(self): """ Test encryption-type-show shell command. Verify two GET requests are made per command invocation: - one to get the volume type information - one to get the encryption type information """ self.run_command('encryption-type-show 1') self.assert_called('GET', '/types/1/encryption') self.assert_called_anytime('GET', '/types/1') def test_encryption_type_create(self): """ Test encryption-type-create shell command. Verify GET and POST requests are made per command invocation: - one GET request to retrieve the relevant volume type information - one POST request to create the new encryption type """ expected = {'encryption': {'cipher': None, 'key_size': None, 'provider': 'TestProvider', 'control_location': 'front-end'}} self.run_command('encryption-type-create 2 TestProvider') self.assert_called('POST', '/types/2/encryption', body=expected) self.assert_called_anytime('GET', '/types/2') def test_encryption_type_update(self): """ Test encryption-type-update shell command. Verify two GETs/one PUT requests are made per command invocation: - one GET request to retrieve the relevant volume type information - one GET request to retrieve the relevant encryption type information - one PUT request to update the encryption type information """ self.skipTest("Not implemented") def test_encryption_type_delete(self): """ Test encryption-type-delete shell command. Verify one GET/one DELETE requests are made per command invocation: - one GET request to retrieve the relevant volume type information - one DELETE request to delete the encryption type information """ self.run_command('encryption-type-delete 1') self.assert_called('DELETE', '/types/1/encryption/provider') self.assert_called_anytime('GET', '/types/1') def test_migrate_volume(self): self.run_command('migrate 1234 fakehost --force-host-copy=True') expected = {'os-migrate_volume': {'force_host_copy': 'True', 'host': 'fakehost'}} self.assert_called('POST', '/volumes/1234/action', body=expected) def test_snapshot_metadata_set(self): self.run_command('snapshot-metadata 1234 set key1=val1 key2=val2') self.assert_called('POST', '/snapshots/1234/metadata', {'metadata': {'key1': 'val1', 'key2': 'val2'}}) def test_snapshot_metadata_unset_dict(self): self.run_command('snapshot-metadata 1234 unset key1=val1 key2=val2') self.assert_called_anytime('DELETE', '/snapshots/1234/metadata/key1') self.assert_called_anytime('DELETE', '/snapshots/1234/metadata/key2') def test_snapshot_metadata_unset_keys(self): self.run_command('snapshot-metadata 1234 unset key1 key2') self.assert_called_anytime('DELETE', '/snapshots/1234/metadata/key1') self.assert_called_anytime('DELETE', '/snapshots/1234/metadata/key2') def test_volume_metadata_update_all(self): self.run_command('metadata-update-all 1234 key1=val1 key2=val2') self.assert_called('PUT', '/volumes/1234/metadata', {'metadata': {'key1': 'val1', 'key2': 'val2'}}) def test_snapshot_metadata_update_all(self): self.run_command('snapshot-metadata-update-all\ 1234 key1=val1 key2=val2') self.assert_called('PUT', '/snapshots/1234/metadata', {'metadata': {'key1': 'val1', 'key2': 'val2'}}) def test_readonly_mode_update(self): self.run_command('readonly-mode-update 1234 True') expected = {'os-update_readonly_flag': {'readonly': True}} self.assert_called('POST', '/volumes/1234/action', body=expected) self.run_command('readonly-mode-update 1234 False') expected = {'os-update_readonly_flag': {'readonly': False}} self.assert_called('POST', '/volumes/1234/action', body=expected) def test_service_disable(self): self.run_command('service-disable host cinder-volume') self.assert_called('PUT', '/os-services/disable', {"binary": "cinder-volume", "host": "host"}) def test_services_disable_with_reason(self): cmd = 'service-disable host cinder-volume --reason no_reason' self.run_command(cmd) body = {'host': 'host', 'binary': 'cinder-volume', 'disabled_reason': 'no_reason'} self.assert_called('PUT', '/os-services/disable-log-reason', body) def test_service_enable(self): self.run_command('service-enable host cinder-volume') self.assert_called('PUT', '/os-services/enable', {"binary": "cinder-volume", "host": "host"}) def test_snapshot_delete(self): self.run_command('snapshot-delete 1234') self.assert_called('DELETE', '/snapshots/1234') def test_quota_delete(self): self.run_command('quota-delete 1234') self.assert_called('DELETE', '/os-quota-sets/1234') def test_snapshot_delete_multiple(self): self.run_command('snapshot-delete 1234 5678') self.assert_called('DELETE', '/snapshots/5678') def test_list_transfer(self): self.run_command('transfer-list') self.assert_called('GET', '/os-volume-transfer/detail') def test_list_transfer_all_tenants(self): self.run_command('transfer-list --all-tenants=1') self.assert_called('GET', '/os-volume-transfer/detail?all_tenants=1')
44.366
78
0.598882
527f4b849972092777545c6dac8e2efb9efd4eb5
1,100
py
Python
src/stage_00_template.py
sarikamohan08/transfer-learning-ANN
d41d1f8a9a8d8e22016b1fb5116cfe1a36943d38
[ "MIT" ]
1
2021-11-24T03:46:22.000Z
2021-11-24T03:46:22.000Z
src/stage_00_template.py
sarikamohan08/transfer-learning-ANN
d41d1f8a9a8d8e22016b1fb5116cfe1a36943d38
[ "MIT" ]
null
null
null
src/stage_00_template.py
sarikamohan08/transfer-learning-ANN
d41d1f8a9a8d8e22016b1fb5116cfe1a36943d38
[ "MIT" ]
null
null
null
import argparse import os import shutil from tqdm import tqdm import logging from src.utils.common import read_yaml, create_directories import random STAGE = "STAGE_NAME" ## <<< change stage name logging.basicConfig( filename=os.path.join("logs", 'running_logs.log'), level=logging.INFO, format="[%(asctime)s: %(levelname)s: %(module)s]: %(message)s", filemode="a" ) def main(config_path, params_path): ## read config files config = read_yaml(config_path) params = read_yaml(params_path) pass if __name__ == '__main__': args = argparse.ArgumentParser() args.add_argument("--config", "-c", default="configs/config.yaml") args.add_argument("--params", "-p", default="params.yaml") parsed_args = args.parse_args() try: logging.info("\n********************") logging.info(f">>>>> stage {STAGE} started <<<<<") main(config_path=parsed_args.config, params_path=parsed_args.params) logging.info(f">>>>> stage {STAGE} completed!<<<<<\n") except Exception as e: logging.exception(e) raise e
27.5
76
0.645455
52dc173b4bfd70fde11d49a7817ff0a7a5eed14f
2,582
py
Python
cli/aws_orbit/remote_files/cdk/lambda_sources/eks_service_handler/index.py
srinivasreddych/aws-orbit-workbench
2d154addff58d26f5459a73c06148aaf5e9fad46
[ "Apache-2.0" ]
94
2021-03-19T19:55:11.000Z
2022-03-31T19:50:01.000Z
cli/aws_orbit/remote_files/cdk/lambda_sources/eks_service_handler/index.py
srinivasreddych/aws-orbit-workbench
2d154addff58d26f5459a73c06148aaf5e9fad46
[ "Apache-2.0" ]
410
2021-03-19T18:04:48.000Z
2022-03-22T13:56:53.000Z
cli/aws_orbit/remote_files/cdk/lambda_sources/eks_service_handler/index.py
srinivasreddych/aws-orbit-workbench
2d154addff58d26f5459a73c06148aaf5e9fad46
[ "Apache-2.0" ]
24
2021-03-19T23:16:23.000Z
2022-03-04T01:05:18.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os from typing import Any, Dict, List, Optional import boto3 logger = logging.getLogger() logger.setLevel(logging.INFO) REGION: str = os.environ["REGION"] def get_nodegroups(cluster_name: str) -> List[Dict[str, Dict[str, str]]]: return_response: List[Dict[str, Dict[str, str]]] = [] eks_client = boto3.client("eks") try: nodegroups_response = eks_client.list_nodegroups(clusterName=cluster_name) for nodegroup_name in nodegroups_response["nodegroups"]: nodegroup_details = eks_client.describe_nodegroup(clusterName=cluster_name, nodegroupName=nodegroup_name) if "nodegroup" in nodegroup_details: nodegroup = nodegroup_details["nodegroup"] nodegroup_dict = { "nodegroup_name": nodegroup_name, "instance_types": nodegroup["instanceTypes"], "scaling_config": json.dumps(nodegroup["scalingConfig"]).encode("utf-8"), "status": nodegroup["status"], "capacity_type": nodegroup["capacityType"], } # Get Disk size if "diskSize" in nodegroup: nodegroup_dict["disk_size"] = nodegroup["diskSize"] # Get Launch Template details if "launchTemplate" in nodegroup: nodegroup_dict["launch_template"] = nodegroup["launchTemplate"] return_response.append(nodegroup_dict) except Exception as ekse: logger.error("Error describing cluster %s nodegroups: %s", cluster_name, ekse) raise ekse return return_response def handler(event: Dict[str, Any], context: Optional[Dict[str, Any]]) -> List[Dict[str, Dict[str, str]]]: cluster_name = event["cluster_name"] nodegroups: List[Dict[str, Dict[str, str]]] = get_nodegroups(cluster_name=cluster_name) return nodegroups
41.645161
117
0.659566
d5a74da4c429e3b6ed11953d4f05038d4e99b050
2,659
py
Python
src/functions.py
waldoeGeek/ulauncher-reddit-search
54a67b1137c412350e6d447c15c88c0526d1e4f1
[ "MIT" ]
null
null
null
src/functions.py
waldoeGeek/ulauncher-reddit-search
54a67b1137c412350e6d447c15c88c0526d1e4f1
[ "MIT" ]
null
null
null
src/functions.py
waldoeGeek/ulauncher-reddit-search
54a67b1137c412350e6d447c15c88c0526d1e4f1
[ "MIT" ]
null
null
null
import os from urllib.parse import urlparse import urllib.request as req import requests base_url = 'https://reddit.com/search.json?q=' class Searches: def save_thumbnail(thumb_url): # get thumbnail file = urlparse(thumb_url) # get thumbnail filename file_path = os.path.basename(file.path) icon_path = 'images/thumbs/' + file_path url = thumb_url req.urlretrieve(url, icon_path) def result_type_url(url, query, type): url = url url = url + query + '&type=' + type return url def get_results(url, query): type = 'all' query = query url = 'https://www.reddit.com/search.json?q=' + query response = requests.get(url, headers = {'User-Agent': 'google'}) data = response.json() data = data['data']['children'] #Check for empty results if not data: return 'No Results!' else: for child in data: child['data']['subreddit'] = f"/r/{child['data']['subreddit']}" return data def get_users(url, query): type = 'user' query = query # url = 'https://reddit.com/search.json?q=knives&type=user' url = Searches.result_type_url(url, query, type) # url = url + query + '&type=' + type response = requests.get(url, headers = {'User-Agent': 'google'}) data = response.json() data = data['data']['children'] # Check for empty results if not data: return 'No Results!' else: for child in data: user_url = f"{child['data']['subreddit']['url']}" child['data']['permalink'] = user_url child['data']['subreddit'] = f"/{child['data']['subreddit']['display_name_prefixed']}" child['data']['title'] = child['data']['name'] return data def get_subs(url, query): type = 'sr' query = query url = Searches.result_type_url(url, query, type) response = requests.get(url, headers = {'User-Agent': 'google'}) data = response.json() data = data['data']['children'] # Check for empty results if not data: return 'No Results' else: for child in data: sub_reddit_value = child['data']['public_description'] child['data']['subreddit'] = sub_reddit_value child['data']['title'] = child['data']['display_name_prefixed'] child['data']['permalink'] = f"/{child['data']['title']}" return data
27.412371
102
0.540429
3a5c8d5a35a6dc325b97521a19c27dfc920d5407
331
py
Python
LeetCodePython/hammingDistanceSln.py
YouenZeng/LeetCode
626da7e4fa8d84cd833355ad14ea5ea39fe0c3b9
[ "MIT" ]
1
2019-06-04T21:40:46.000Z
2019-06-04T21:40:46.000Z
LeetCodePython/hammingDistanceSln.py
YouenZeng/LeetCode
626da7e4fa8d84cd833355ad14ea5ea39fe0c3b9
[ "MIT" ]
1
2018-06-04T01:55:25.000Z
2018-06-04T01:55:25.000Z
LeetCodePython/hammingDistanceSln.py
YouenZeng/LeetCode
626da7e4fa8d84cd833355ad14ea5ea39fe0c3b9
[ "MIT" ]
null
null
null
class Solution: def hammingDistance(self, x, y): """ :type x: int :type y: int :rtype: int """ count = 0 while(x != 0 or y != 0): if x % 2 != y % 2: count = count + 1 x = int(x / 2) y = int(y / 2) return count
20.6875
36
0.356495
2a828ca43e892bfa54ae5e6675d4d7fb82861721
4,154
py
Python
vel_cont.py
npav5057/NSEpython
cec7f0af83e8414a0b18829c7bd923a71bea5ff3
[ "MIT" ]
1
2021-06-29T16:30:57.000Z
2021-06-29T16:30:57.000Z
vel_cont.py
npav5057/NSEpython
cec7f0af83e8414a0b18829c7bd923a71bea5ff3
[ "MIT" ]
null
null
null
vel_cont.py
npav5057/NSEpython
cec7f0af83e8414a0b18829c7bd923a71bea5ff3
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import matplotlib.animation as anim from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import BoundaryNorm import numpy as np import matplotlib as mpl from numpy.core.fromnumeric import ptp from skimage.transform import resize import os import sys from glob import glob # Enable looped gif by overwriting the PillowWriter class and adding loop=0 if(len(sys.argv)<2): print("folder name not Entered") print("enter Correct Folder name as system arguments") exit() class myPillow(anim.PillowWriter): def finish(self): self._frames[0].save( self._outfile, save_all=True, append_images=self._frames[1:], duration=int(1000 / self.fps), loop=0) home=os.getcwd() path=home+"/OUTPUT/"+sys.argv[1] if os.path.exists(path): os.chdir(path) print(path) else: print("Specified folder doesnt exist") print("checck the path:",path) print("or enter Correct Folder name: as system arguments") exit() files=sorted(glob("*npz")) print(len(files)) if(len(files)>3000): files=files[::10] # exit() data = np.load(files[10]) u=data['vx'] v=data['vy'] # v=v[::10] # u=u[::10] del data s = np.sqrt(u**2+ v**2) u_red = resize(u,(11,11)) v_red = resize(v,(11,11)) print(u.shape) print(len(files)) X,Y = np.meshgrid(np.linspace(0, 1,u.shape[0]), np.linspace(0, 1, u.shape[1])) cmap = mpl.cm.get_cmap('viridis') norm = BoundaryNorm(np.linspace(0, 1.5, 21), cmap.N) ct=0 for i in range(len(files)): ct+=1 if(ct>1): if(ct==20): ct=0 # for only 0.1 secs continue fig = plt.figure() ax = plt.axes() data = np.load(files[i]) u=data['vx'] v=data['vy'] s = np.sqrt(u**2+v**2) # p=data['pre'] del data,u,v t=i/(len(files)-1) print("Time:",t) plt.contourf(X, Y, s, 200,norm = norm, cmap=cmap,extent=(-1, 1, -1, 1),alpha=0.8) plt.colorbar() pr=plt.contour(X, Y, s, 20, colors='black') plt.clabel(pr, inline=True, fontsize=8) # plt.imshow(s, norm = norm,extent=(-1, 1, -1, 1), origin='lower',cmap=cmap,alpha=0.9) ax.set_title("Velocity at time:{}".format(t)) # bar = fig.colorbar(pr, orientation='vertical') plt.xlabel("X axis") plt.ylabel("Y axis") plt.savefig("Vel_{}.png".format(i)) plt.clf() plt.close() # ct=0 # for i in range(len(files)): # ct+=1 # if(ct>1): # if(ct==20): # ct=0 # continue # fig = plt.figure() # ax = plt.axes() # data = np.load(files[i]) # p=data['pre'] # del data # t=i/(len(files)-1) # print("Time:",t) # pr=ax.contourf(X, Y, p,cmap='viridis') # ax.set_title("Pressure at time:{}".format(t)) # plt.colorbar(p) # # bar = fig.colorbar(pr, orientation='vertical') # plt.xlabel("X axis") # plt.ylabel("Y axis") # plt.savefig("PRes_{}.png".format(t)) # plt.clf() # plt.close() # fig = plt.figure(1, [5, 5]) # ax = fig.gca() # # Plot colormap. # cmap = mpl.cm.get_cmap('viridis') # norm = BoundaryNorm(np.linspace(0.0, 1.0, 21), cmap.N) # speed = ax.imshow(s, norm = norm, cmap=cmap, origin = "lower", extent = (0, 1, 0, 1)) # # Plot colorbar. # divider = make_axes_locatable(ax) # cax = divider.append_axes('right', size='5%', pad=0.05) # bar = fig.colorbar(speed, cax=cax, orientation='vertical') # loc = mpl.ticker.MultipleLocator(0.2) # bar.locator = loc # bar.update_ticks() # # Plot vector field. # X, Y = np.mgrid[0:1:11j, 0:1:11j] # vec = ax.quiver(Y, X, u_red, v_red, scale=1.0, color="white") # plt.tight_layout() # def animate(n): # data = np.load(files[n]) # u=data['vx'] # v=data['vy'] # if(n%10==0): # print("frame::",n) # s = np.sqrt(u**2+v**2) # speed.set_data(s) # u_red = resize(u, (11, 11)) # v_red = resize(v, (11, 11)) # vec.set_UVC(u_red, v_red) # ax.text # return speed, vec # writer = myPillow() # writer.fps = 1 # animation = anim.FuncAnimation(fig, animate, frames=len(files), interval = 2, blit=True) # animation.save('Re1_50x50_v.gif', writer=writer)
23.077778
90
0.598219
80ab8e607bff611220e77f963b4097de724fa914
426
py
Python
sdk/python/pulumi_gcp/binaryauthorization/__init__.py
dimpu47/pulumi-gcp
38355de300a5768e11c49d344a8165ba0735deed
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_gcp/binaryauthorization/__init__.py
dimpu47/pulumi-gcp
38355de300a5768e11c49d344a8165ba0735deed
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_gcp/binaryauthorization/__init__.py
dimpu47/pulumi-gcp
38355de300a5768e11c49d344a8165ba0735deed
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** # Export this package's modules as members: from .attestor import * from .attestor_iam_binding import * from .attestor_iam_member import * from .attestor_iam_policy import * from .policy import * from ._inputs import * from . import outputs
32.769231
87
0.744131
b7155dc47e930c073b375140b1ca64d1d204b98c
2,402
py
Python
app/language_interface.py
Albert5544/frontend
dab95f2a6ba95e8521c0e439da0081d2edf69cf9
[ "MIT" ]
null
null
null
app/language_interface.py
Albert5544/frontend
dab95f2a6ba95e8521c0e439da0081d2edf69cf9
[ "MIT" ]
2
2021-02-02T22:48:24.000Z
2021-06-02T02:04:53.000Z
app/language_interface.py
Albert5544/frontend
dab95f2a6ba95e8521c0e439da0081d2edf69cf9
[ "MIT" ]
null
null
null
import sys from abc import abstractmethod, ABCMeta import docker import os from app import db, celery from app.models import User, Dataset class language_interface(object): __metaclass__ = ABCMeta # 指定这是一个抽象类 @abstractmethod def preprocessing(self, preprocess, dataverse_key='', doi='', zip_file='', run_instr='', user_pkg=''): pass @abstractmethod # 抽象方法 def build_docker_file(self, dir_name, docker_pkgs, addtional_info): pass @abstractmethod # 抽象方法 def create_report(self, current_user_id, name, dir_name): pass @abstractmethod # 抽象方法 def clean_up_datasets(self, dir): pass def build_docker_img(self, docker_file_dir, current_user_id, name): # create docker client instance client = docker.from_env() # build a docker image using docker file client.login(os.environ.get('DOCKER_USERNAME'), os.environ.get('DOCKER_PASSWORD')) # name for docker image current_user_obj = User.query.get(current_user_id) # image_name = ''.join(random.choice(string.ascii_lowercase) for _ in range(5)) image_name = current_user_obj.username + '-' + name repo_name = os.environ.get('DOCKER_REPO') + '/' client.images.build(path=docker_file_dir, tag=repo_name + image_name) ########## PUSHING IMG ###################################################################### def push_docker_img(self, dir_name,current_user_id, name, report): client = docker.from_env() current_user_obj = User.query.get(current_user_id) image_name = current_user_obj.username + '-' + name repo_name = os.environ.get('DOCKER_REPO') + '/' print(client.images.push(repository=repo_name + image_name), file=sys.stderr) ########## UPDATING DB ###################################################################### # add dataset to database new_dataset = Dataset(url="https://hub.docker.com/raas/" + repo_name + image_name + "/", author=current_user_obj, name=name, report=report) db.session.add(new_dataset) db.session.commit() ########## CLEANING UP ###################################################################### self.clean_up_datasets(dir_name) print("Returning")
36.393939
106
0.579101
a528b1e82fd5fd1dff27ada8a7d49492e1d385ab
1,531
py
Python
utils/constants.py
Saizuo/Photon-V1
bf63ac4c4982c7139ea5d010884756b7c8951108
[ "BSD-3-Clause" ]
9
2021-09-01T13:43:21.000Z
2022-02-23T02:46:11.000Z
utils/constants.py
ShackerFox/EpicBot
c911cd052b0d3c2b5d8de52b2bd704021e8f0d4d
[ "BSD-3-Clause" ]
null
null
null
utils/constants.py
ShackerFox/EpicBot
c911cd052b0d3c2b5d8de52b2bd704021e8f0d4d
[ "BSD-3-Clause" ]
null
null
null
brain_images = { "no_brain": [ "https://i1.sndcdn.com/artworks-000583301069-jy5ib2-t500x500.jpg", "https://i.pinimg.com/originals/6a/1c/84/6a1c843de4d7a5b5843ef63e6ba47e8b.jpg", "https://cdn.discordapp.com/attachments/859335247547990026/880461702355902544/Z.png" ], "small": [ "https://thumbs.dreamstime.com/b/small-brain-fingers-close-view-male-hand-taking-human-72334857.jpg", "https://media.istockphoto.com/photos/xray-of-a-man-with-small-brain-inside-picture-id182163441?k=6&m=182163441&s=170667a&w=0&h=gmcvJM2LKhh37Pi9WLtXWhMwtqCRa7h98UcaWUEYJJg=", "https://cdn.drawception.com/drawings/Gx0YdMvYOY.png", "https://thumbs.dreamstime.com/b/x-ray-small-brain-black-background-41056681.jpg", "https://culturedecanted.files.wordpress.com/2014/06/small.jpg?w=640" ], "medium": [ "https://img.i-scmp.com/cdn-cgi/image/fit=contain,width=425,format=auto/sites/default/files/styles/768x768/public/d8/images/methode/2020/07/10/ad89450a-c1d5-11ea-8c85-9f30eae6654e_image_hires_194031.JPG?itok=SmtqUNGR&v=1594381242", "https://ychef.files.bbci.co.uk/976x549/p028qsgx.jpg" ], # just like my dic- "big": [ "https://i1.sndcdn.com/avatars-000597831615-6q438f-t500x500.jpg", "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRgERYJeiv_ozoqu2sXNlINA6PXnoa3yfuCus7fpDIZ4ka2bZG1oL0vfnWbfqN8ElQN-ZY&usqp=CAU", "https://www.pngitem.com/pimgs/m/523-5238503_pepe-the-frog-big-brain-hd-png-download.png" ] }
61.24
239
0.717178
1f1935ac0f60cbab385d17a6cb557af116fc1132
17,619
py
Python
src/wstool/config_yaml.py
asaba96/wstool
9c44843e3fc1904ef1af94fde0fe519dc410abc8
[ "BSD-3-Clause" ]
null
null
null
src/wstool/config_yaml.py
asaba96/wstool
9c44843e3fc1904ef1af94fde0fe519dc410abc8
[ "BSD-3-Clause" ]
null
null
null
src/wstool/config_yaml.py
asaba96/wstool
9c44843e3fc1904ef1af94fde0fe519dc410abc8
[ "BSD-3-Clause" ]
null
null
null
# Software License Agreement (BSD License) # # Copyright (c) 2009, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os import yaml from vcstools.common import urlopen_netrc from wstool.common import MultiProjectException __REPOTYPES__ = ['svn', 'bzr', 'hg', 'git', 'tar'] __ALLTYPES__ = __REPOTYPES__ + ['other', 'setup-file'] ## The Path spec is a lightweight object to transport the ## specification of a config element between functions, ## independently of yaml structure. ## Specifications are persisted in yaml, this file deals ## with manipulations of any such structures representing configs as ## yaml. ## get_path_spec_from_yaml turns yaml into path_spec, and pathspec ## get_legacy_yaml returns yaml. def get_yaml_from_uri(uri): """reads and parses yaml from a local file or remote uri""" stream = None try: try: if os.path.isfile(uri): try: stream = open(uri, 'r') except IOError as ioe: raise MultiProjectException( "Unable open file [%s]: %s" % (uri, ioe)) else: try: stream = urlopen_netrc(uri) except IOError as ioe2: raise MultiProjectException( "Unable to download URL [%s]: %s" % (uri, ioe2)) except ValueError as vae: raise MultiProjectException( "Is not a local file, nor a valid URL [%s] : %s" % (uri, vae)) if not stream: raise MultiProjectException("couldn't load config uri %s" % uri) try: yamldata = yaml.load(stream) except yaml.YAMLError as yame: raise MultiProjectException( "Invalid multiproject yaml format in [%s]: %s" % (uri, yame)) # we want a list or a dict, but pyyaml parses xml as string if type(yamldata) == 'str': raise MultiProjectException( "Invalid multiproject yaml format in [%s]: %s" % (uri, yamldata)) finally: if stream is not None: stream.close() return yamldata def get_path_specs_from_uri(uri, config_filename=None, as_is=False): """ Builds a list of PathSpec elements from several types of input locations, "uris". The function treats other workspace folders/files as special uris to prevent mutual conflicts. :param uri: a folder, a file, or a web url :param config_filename: name for files to be treated special as other workspaces :param as_is: do not rewrite, used for loading the current workspace config without rewriting """ if os.path.isdir(uri): if (config_filename is not None and os.path.isfile(os.path.join(uri, config_filename))): uri = os.path.join(uri, config_filename) else: # plain folders returned as themselves return [PathSpec(local_name=uri)] yaml_spec = get_yaml_from_uri(uri) if yaml_spec is None: return [] specs = [get_path_spec_from_yaml(x) for x in yaml_spec] if (config_filename is not None and not as_is and os.path.isfile(uri) and os.path.basename(uri) == config_filename): # treat config files and folders with such files special # to prevent 2 workspaces from interacting specs = rewrite_included_source(specs, os.path.dirname(uri)) return specs def rewrite_included_source(source_path_specs, source_dir): """ assumes source_path_specs is the contents of a config file in another directory source dir. It rewrites all elements, by changing any relative path relative to source dir and changing vcs types to non-vcs types types, to prevent two environments from conflicting """ for index, pathspec in enumerate(source_path_specs): local_name = os.path.normpath(os.path.join(source_dir, pathspec.get_local_name())) pathspec.set_local_name(local_name) if pathspec.get_path() is not None: path = os.path.normpath( os.path.join(source_dir, pathspec.get_path())) pathspec.set_path(path) pathspec.detach_vcs_info() source_path_specs[index] = pathspec return source_path_specs def aggregate_from_uris(config_uris, config_filename=None, allow_other_element=True): """ Builds a List of PathSpec from a list of location strings (uri, paths). If locations is a folder, attempts to find config_filename in it, and use "folder/config_filename" instead(rewriting element path and stripping scm nature), else add folder as PathSpec. Anything else, parse yaml at location, and add a PathSpec for each element. :param config_uris: source of yaml :param config_filename: file to use when given a folder :param allow_other_element: if False, discards elements to be added without SCM information """ aggregate_source_yaml = [] # build up a merged list of config elements from all given config_uris if config_uris is None: return [] for loop_uri in config_uris: source_path_specs = get_path_specs_from_uri( loop_uri, config_filename) # allow duplicates, dealt with in Config class if not allow_other_element: for spec in source_path_specs: if not spec.get_scmtype(): raise MultiProjectException( "Forbidden non-SCM element: %s (%s)" % (spec.get_local_name(), spec.get_legacy_type())) aggregate_source_yaml.extend(source_path_specs) return aggregate_source_yaml class PathSpec: def __init__(self, # localname is used as ID, currently also is used as path local_name, scmtype=None, uri=None, version=None, curr_version=None, tags=None, revision=None, currevision=None, remote_revision=None, path=None, curr_uri=None): """ Fills in local properties based on dict, unifies different syntaxes :param local-name: to be unique within config, filesystem path to folder :param scmtype: one of __ALLTYPES__ :param uri: uri from config file :param version: version label from config file (branchname, tagname, sha-id) :param cur_version: version information label(s) from VCS (branchname, remote, tracking branch) :param tags: arbirtrary meta-information (used for ROS package indexing) :param revision: unique id of label stored in version :param currrevision: unique id of actual version in file system :param path: path to folder (currently equivalent to local_name) :param curr_uri: actual remote uri used in local checkout """ self._local_name = local_name self._path = path self._uri = uri self._curr_uri = curr_uri self._version = version self._curr_version = curr_version self._scmtype = scmtype self._tags = tags or [] self._revision = revision self._currevision = currevision self._remote_revision = remote_revision def __str__(self): return str(self.get_legacy_yaml()) def __repr__(self): return "PathSpec(%s)" % self.__str__() def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __ne__(self, other): return not self.__eq__(other) def detach_vcs_info(self): """if wrapper has VCS information, remove it to make it a plain folder""" if self._scmtype is not None: self._scmtype = None self._uri = None self._version = None self._curr_version = None self._revision = None self._currevision = None self._remote_revision = None def get_legacy_type(self): """return one of __ALLTYPES__""" if self._scmtype is not None: return self._scmtype elif self._tags is not None and 'setup-file' in self._tags: return 'setup-file' return 'other' def get_legacy_yaml(self, spec=True, exact=False): """ :param spec: If True, the version information will come from the workspace .rosinstall. If False, the version information will come from the current work trees. :param exact: If True, the versions will be set to the exact commit UUIDs. If False, the version name will be used, which might be a branch name aut cetera. return something like {hg: {local-name: common, version: common-1.0.2, uri: https://kforge.org/common/}} """ # TODO switch to new syntax properties = {'local-name': self._local_name} if spec: if self._uri is not None: properties['uri'] = self._uri if exact: if self._revision is not None: properties['version'] = self._revision else: if self._version is not None: properties['version'] = self._version else: if self._curr_uri is not None: properties['uri'] = self._curr_uri if exact: if self._currevision is not None: properties['version'] = self._currevision else: if self._curr_version is not None: properties['version'] = self._curr_version if self._tags is not None: for tag in self._tags: if tag != 'setup-file' and tag != []: if type(tag) == dict: properties.update(tag) else: properties[tag] = None yaml_dict = {self.get_legacy_type(): properties} return yaml_dict def get_local_name(self): return self._local_name def set_local_name(self, local_name): self._local_name = local_name def get_path(self): return self._path def set_path(self, path): self._path = path def get_tags(self): return self._tags def get_scmtype(self): return self._scmtype def get_version(self): return self._version def get_curr_version(self): return self._curr_version def get_revision(self): return self._revision def get_current_revision(self): return self._currevision def get_remote_revision(self): return self._remote_revision def get_uri(self): return self._uri def get_curr_uri(self): return self._curr_uri def get_path_spec_from_yaml(yaml_dict): """ Fills in local properties based on dict, unifies different syntaxes """ local_name = None uri = None version = None scmtype = None tags = [] if type(yaml_dict) != dict: raise MultiProjectException( "Yaml for each element must be in YAML dict form: %s " % yaml_dict) # old syntax: # - hg: {local-name: common_rosdeps, # version: common_rosdeps-1.0.2, # uri: https://kforge.ros.org/common/rosdepcore} # - setup-file: {local-name: /opt/ros/fuerte/setup.sh} # - other: {local-name: /opt/ros/fuerte/share/ros} # - other: {local-name: /opt/ros/fuerte/share} # - other: {local-name: /opt/ros/fuerte/stacks} if yaml_dict is None or len(yaml_dict) == 0: raise MultiProjectException("no element in yaml dict.") if len(yaml_dict) > 1: raise MultiProjectException( "too many keys in element dict %s" % (list(yaml_dict.keys()))) if not list(yaml_dict.keys())[0] in __ALLTYPES__: raise MultiProjectException( "Unknown element type '%s'" % (list(yaml_dict.keys())[0])) firstkey = list(yaml_dict.keys())[0] if firstkey in __REPOTYPES__: scmtype = list(yaml_dict.keys())[0] if firstkey == 'setup-file': tags.append('setup-file') values = yaml_dict[firstkey] if values is not None: for key, value in list(values.items()): if key == "local-name": local_name = value elif key == "meta": tags.append({key: value}) elif key == "uri": uri = value elif key == "version": # VCs tools expects version to be # string; otherwise, all integer # versions will break application if value is not None: version = str(value) else: raise MultiProjectException( "Unknown key %s in %s" % (key, yaml_dict)) # global validation if local_name is None: raise MultiProjectException( "Config element without a local-name: %s" % (yaml_dict)) if scmtype != None: if uri is None: raise MultiProjectException( "scm type without declared uri in %s" % (values)) # local_name is fixed, path may be normalized, made absolute, etc. path = local_name return PathSpec(local_name=local_name, path=path, scmtype=scmtype, uri=uri, version=version, tags=tags) def generate_config_yaml(config, filename, header, pretty=False, sort_with_localname=False, spec=True, exact=False, vcs_only=False): """ Writes file filename with header first and then the config as YAML. :param config: The configuration containing all the entries to be included in the generated YAML. :param filename: If filename is not an absolute path, it will be assumed to be relative to config.get_base_path(). If filename is None, the output will be sent to stdout instead of a file. :param header: A header to be included with the generated config YAML. :param pretty: If True, the generated config YAML will be printed in long-form YAML. If false, the default flow style will be used instead. :param sort_with_localname: If true, config entries will be sorted by their localname fields. If false, the order will be as passed in through config. :param spec: If True, the version information will come from the workspace .rosinstall. If False, the version information will come from the current work trees. :param exact: If True, the versions will be set to the exact commit UUIDs. If False, the version name will be used, which might be a branch name aut cetera. :param vcs_only: If True, the generated config YAML will include only version-controlled entries. If False, all entries in current workspace will be included. """ if not os.path.exists(config.get_base_path()): os.makedirs(config.get_base_path()) content = "" if header: content += header # Do a pass-through if just pulling versioning information straight from # the .rosinstall passthrough = spec and not exact items = config.get_source(not passthrough, vcs_only) if sort_with_localname: items = sorted(items, key=lambda x: x.get_local_name()) items = [x.get_legacy_yaml(spec, exact) for x in items] if items: if pretty: content += yaml.safe_dump(items, allow_unicode=True, default_flow_style=False) else: content += yaml.safe_dump(items) if filename: config_filepath = filename if os.path.isabs(filename) else \ os.path.realpath(os.path.join(config.get_base_path(), filename)) with open(config_filepath, 'w+b') as f: f.write(content.encode('UTF-8')) else: print(content)
38.053996
103
0.627958
ee65970340db3d1f2e7d5e9dd2e03535bd108580
583
py
Python
meals/urls.py
faix/registration
11b6f5f419bd39132e9a40f3366b27451a436778
[ "MIT" ]
1
2019-12-03T05:21:56.000Z
2019-12-03T05:21:56.000Z
meals/urls.py
oriolclosa/registration
91d85d7fbbf25339aa37ed9b46c49b696a5fc6d1
[ "MIT" ]
2
2020-10-12T15:38:57.000Z
2022-02-24T19:02:46.000Z
meals/urls.py
oriolclosa/registration
91d85d7fbbf25339aa37ed9b46c49b696a5fc6d1
[ "MIT" ]
4
2020-10-12T15:30:46.000Z
2022-03-13T13:27:58.000Z
from django.conf.urls import url from meals import views urlpatterns = [ url(r'^list/$', views.MealsList.as_view(), name='meals_list'), url(r'^add/$', views.MealAdd.as_view(), name='meal_add'), url(r'^users/$', views.MealsUsers.as_view(), name='meals_users'), url(r'^(?P<id>[\w-]+)$', views.MealDetail.as_view(), name='meal_detail'), url(r'^scan/(?P<id>[\w-]+)$', views.MealsCheckin.as_view(), name='meal_checkin'), url(r'^api/$', views.MealsApi.as_view(), name='meals_api'), url(r'^api/checkin$', views.MealsCoolAPI.as_view(), name='cool_meals_api') ]
41.642857
85
0.64837
6f9f142fb83cd79890a4a9c5e1cd19229d3b2f3a
46
py
Python
src/adafruit_blinka/microcontroller/starfive/JH71x0/__init__.py
twa127/Adafruit_Blinka
560ab1fcabf64b9941ed57a3cfed996b836178fa
[ "MIT" ]
294
2018-06-30T19:08:27.000Z
2022-03-26T21:08:47.000Z
src/adafruit_blinka/microcontroller/starfive/JH71x0/__init__.py
twa127/Adafruit_Blinka
560ab1fcabf64b9941ed57a3cfed996b836178fa
[ "MIT" ]
421
2018-06-30T20:54:46.000Z
2022-03-31T15:08:37.000Z
src/adafruit_blinka/microcontroller/starfive/JH71x0/__init__.py
twa127/Adafruit_Blinka
560ab1fcabf64b9941ed57a3cfed996b836178fa
[ "MIT" ]
234
2018-07-23T18:49:16.000Z
2022-03-28T16:59:48.000Z
"""Definition for the StarFive JH71x0 chip"""
23
45
0.73913
af23f15ed8f231b38680858b9de009a07c4dc42f
1,039
py
Python
Examples/Modules/nci_corrector/analysis_ncicorr.py
mrowan137/amrex
cafcb6bd5902fc72a4d6fa51b99fe837f5eb5381
[ "BSD-3-Clause-LBNL" ]
131
2018-09-29T08:11:40.000Z
2022-03-28T23:24:22.000Z
Examples/Modules/nci_corrector/analysis_ncicorr.py
mrowan137/amrex
cafcb6bd5902fc72a4d6fa51b99fe837f5eb5381
[ "BSD-3-Clause-LBNL" ]
1,656
2018-10-02T01:49:24.000Z
2022-03-31T21:27:31.000Z
Examples/Modules/nci_corrector/analysis_ncicorr.py
mrowan137/amrex
cafcb6bd5902fc72a4d6fa51b99fe837f5eb5381
[ "BSD-3-Clause-LBNL" ]
100
2018-10-01T20:41:14.000Z
2022-03-10T10:30:42.000Z
#! /usr/bin/env python # Copyright 2019 Jean-Luc Vay, Maxence Thevenet, Remi Lehe # Weiqun Zhang # # This file is part of WarpX. # # License: BSD-3-Clause-LBNL import sys import yt import re import numpy as np import scipy.constants as scc yt.funcs.mylog.setLevel(0) fn = sys.argv[1] use_MR = re.search( 'nci_correctorMR', fn ) != None if use_MR: energy_corrector_off = 5.e32 energy_threshold = 1.e28 else: energy_corrector_off = 1.5e26 energy_threshold = 1.e24 # Check EB energy after 1000 timesteps filename = sys.argv[1] ds = yt.load( filename ) ad0 = ds.covering_grid(level=0,left_edge=ds.domain_left_edge, dims=ds.domain_dimensions) ex = ad0['boxlib', 'Ex'].v ez = ad0['boxlib', 'Ez'].v by = ad0['boxlib', 'By'].v energy = np.sum(ex**2 + ez**2 + scc.c**2*by**2) print("use_MR: %s" %use_MR) print("energy if corrector off (from benchmark): %s" %energy_corrector_off) print("energy threshold (from benchmark): %s" %energy_threshold) print("energy from this run: %s" %energy) assert( energy < energy_threshold )
23.613636
88
0.706449
79d08b53f3f546a5fe2bffb5cbe2f56f66859a05
3,702
py
Python
utils.py
pavitra14/Text2Handwriting
c66fda8e1ba024102aee3e0cf3159ba461d41468
[ "MIT" ]
null
null
null
utils.py
pavitra14/Text2Handwriting
c66fda8e1ba024102aee3e0cf3159ba461d41468
[ "MIT" ]
1
2021-06-08T21:44:41.000Z
2021-06-08T21:44:41.000Z
utils.py
pavitra14/Text2Handwriting
c66fda8e1ba024102aee3e0cf3159ba461d41468
[ "MIT" ]
1
2020-10-23T03:10:08.000Z
2020-10-23T03:10:08.000Z
import pytesseract import cv2 import matplotlib.pyplot as plt from PIL import Image from flask import request from pytesseract import Output from werkzeug.utils import secure_filename import base64 import os import json import pickle # from BackgroundRemoval import processImage import shutil from TokenManagement import TokenManager # allow files of a specific type ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg']) def get_custom_handwriting() -> list: fp = open("custom.hw", "rb") custom_hw = pickle.load(fp) fp.close() return custom_hw def add_custom_handwriting(hw_name: str) -> list: fp = open("custom.hw", "rb") custom_hw = pickle.load(fp) fp.close() custom_hw.append(hw_name) with open("custom.hw", "wb") as fp: pickle.dump(custom_hw, fp) fp.close() return custom_hw def createEmptyCustomHW(): data = [] with open("custom.hw", "wb") as f: pickle.dump(data, f) def list_to_json(l: list) -> str: return json.dumps(l) def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS def load_image(image) -> Image: try: image = cv2.imread(image) return image except: return False def get_boxes(image: Image) -> dict: box_raw = pytesseract.image_to_boxes(image) boxes = {} h, w, _ = image.shape for b in box_raw.splitlines(): b = b.split(' ') char = b[0] x1 = int(b[1]) y1 = h - int(b[2]) x2 = int(b[3]) y2 = h - int(b[4]) boxes[char] = (x1, y1, x2, y2) return boxes def extract_letters(image: Image, boxes: dict, token: str): tk = TokenManager() hw_name = tk.getTokenName(token); path = os.path.join('./static/trained/',hw_name) defaultPath = os.path.join('./static/trained/','defaultText2') if not os.path.exists(path): os.mkdir(path) print(hw_name, "folder created at", path) for i in range(32, 126): status=False try: if i == 96: continue char = chr(i) filename_t = "{}_t.png".format(i) if char in boxes.keys(): #TODO x1,y1,x2,y2 = boxes[char] output = image[y1:y2, x1:x2] # output = processImage(letter) cv2.imwrite(os.path.join(path,filename_t), output) status=True else: source = os.path.join(defaultPath,filename_t) dest = os.path.join(path, filename_t) print("copying {} to {}".format(source, dest)) shutil.copyfile(source,dest) status=False yield (char,status) except Exception as ex: source = os.path.join(defaultPath,filename_t) dest = os.path.join(path, filename_t) print("copying {} to {}".format(source, dest)) shutil.copyfile(source,dest) yield (char,status) return True def get_base64(image): retval, buffer = cv2.imencode(".png", image) png = base64.b64encode(buffer) return png.decode('utf-8') def boxes_web(boxes: dict, image): for char in boxes: x1, y1, x2, y2 = boxes[char] cv2.rectangle(image, (x1,y1), (x2,y2), (0,255,0), 2) return get_base64(image) def get_handwriting_list() -> list: path = os.path.join("./static/", "trained") output = set(sorted([dI for dI in os.listdir(path) if os.path.isdir(os.path.join(path,dI))])) print(output) print(get_custom_handwriting()) output = output - set(get_custom_handwriting()) return list(sorted(list(output)))
29.616
97
0.594273
71e5bd291f2315b2bee17d963c5f1e2d97f3371a
99,677
py
Python
src/transformers/utils/dummy_pt_objects.py
Ravoxsg/transformers
3212a1d4a6fbded40daad7153f222c91acabe82d
[ "Apache-2.0" ]
3
2022-02-22T07:06:32.000Z
2022-03-16T05:30:19.000Z
src/transformers/utils/dummy_pt_objects.py
Ravoxsg/transformers
3212a1d4a6fbded40daad7153f222c91acabe82d
[ "Apache-2.0" ]
null
null
null
src/transformers/utils/dummy_pt_objects.py
Ravoxsg/transformers
3212a1d4a6fbded40daad7153f222c91acabe82d
[ "Apache-2.0" ]
null
null
null
# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..file_utils import DummyObject, requires_backends class PyTorchBenchmark(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PyTorchBenchmarkArguments(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GlueDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GlueDataTrainingArguments(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineTextDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithRefDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LineByLineWithSOPTextDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SquadDataTrainingArguments(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDataset(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TextDatasetForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamScorer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeamSearchScorer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ForcedBOSTokenLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ForcedEOSTokenLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HammingDiversityLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class InfNanRemoveLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsProcessorList(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LogitsWarper(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MinLengthLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NoBadWordsLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NoRepeatNGramLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PrefixConstrainedLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RepetitionPenaltyLogitsProcessor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TemperatureLogitsWarper(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopKLogitsWarper(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TopPLogitsWarper(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxLengthCriteria(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MaxTimeCriteria(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteria(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class StoppingCriteriaList(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def top_k_top_p_filtering(*args, **kwargs): requires_backends(top_k_top_p_filtering, ["torch"]) class Conv1D(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def apply_chunking_to_forward(*args, **kwargs): requires_backends(apply_chunking_to_forward, ["torch"]) def prune_layer(*args, **kwargs): requires_backends(prune_layer, ["torch"]) ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class AlbertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AlbertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_albert(*args, **kwargs): requires_backends(load_tf_weights_in_albert, ["torch"]) MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = None MODEL_FOR_CAUSAL_LM_MAPPING = None MODEL_FOR_CTC_MAPPING = None MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None MODEL_FOR_MASKED_LM_MAPPING = None MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None MODEL_FOR_OBJECT_DETECTION_MAPPING = None MODEL_FOR_PRETRAINING_MAPPING = None MODEL_FOR_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None MODEL_FOR_VISION_2_SEQ_MAPPING = None MODEL_MAPPING = None MODEL_WITH_LM_HEAD_MAPPING = None class AutoModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForAudioClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForAudioFrameClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForAudioXVector(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForImageSegmentation(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForObjectDetection(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSemanticSegmentation(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSeq2SeqLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForSpeechSeq2Seq(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForTableQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelForVision2Seq(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AutoModelWithLMHead(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) BART_PRETRAINED_MODEL_ARCHIVE_LIST = None class BartForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BartPretrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PretrainedBartModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BeitForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeitForMaskedImageModeling(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeitForSemanticSegmentation(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeitModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BeitPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_bert(*args, **kwargs): requires_backends(load_tf_weights_in_bert, ["torch"]) class BertGenerationDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertGenerationEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BertGenerationPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_bert_generation(*args, **kwargs): requires_backends(load_tf_weights_in_bert_generation, ["torch"]) BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None class BigBirdForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_big_bird(*args, **kwargs): requires_backends(load_tf_weights_in_big_bird, ["torch"]) BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None class BigBirdPegasusForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPegasusForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPegasusForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPegasusForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPegasusModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BigBirdPegasusPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None class BlenderbotSmallForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotSmallForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotSmallModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class BlenderbotSmallPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class CamembertForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CamembertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None class CanineForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CanineModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CaninePreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_canine(*args, **kwargs): requires_backends(load_tf_weights_in_canine, ["torch"]) CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None class CLIPModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CLIPPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CLIPTextModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CLIPVisionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ConvBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ConvBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_convbert(*args, **kwargs): requires_backends(load_tf_weights_in_convbert, ["torch"]) CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None class CTRLForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class CTRLPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None class DebertaV2ForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2ForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DebertaV2PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class DeiTForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DeiTForImageClassificationWithTeacher(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DeiTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DeiTPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class DistilBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DistilBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None class DPRContextEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedContextEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedQuestionEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRPretrainedReader(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRQuestionEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class DPRReader(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None class ElectraForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ElectraPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_electra(*args, **kwargs): requires_backends(load_tf_weights_in_electra, ["torch"]) class EncoderDecoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class FlaubertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FlaubertWithLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class FNetForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FNetPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FSMTForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FSMTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PretrainedFSMTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None class FunnelBaseModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class FunnelPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_funnel(*args, **kwargs): requires_backends(load_tf_weights_in_funnel, ["torch"]) GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPT2DoubleHeadsModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2ForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2ForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2LMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPT2PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_gpt2(*args, **kwargs): requires_backends(load_tf_weights_in_gpt2, ["torch"]) GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPTNeoForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTNeoForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTNeoModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTNeoPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_gpt_neo(*args, **kwargs): requires_backends(load_tf_weights_in_gpt_neo, ["torch"]) GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None class GPTJForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTJForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTJForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTJModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class GPTJPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class HubertForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HubertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HubertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class HubertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class IBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class IBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ImageGPTForCausalImageModeling(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ImageGPTForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ImageGPTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ImageGPTPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_imagegpt(*args, **kwargs): requires_backends(load_tf_weights_in_imagegpt, ["torch"]) LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None class LayoutLMv2ForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMv2ForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMv2ForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMv2Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LayoutLMv2PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) LED_PRETRAINED_MODEL_ARCHIVE_LIST = None class LEDForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LEDPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class LongformerForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LongformerSelfAttention(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None class LukeForEntityClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeForEntityPairClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeForEntitySpanClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukeModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LukePreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertVisualFeatureEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class LxmertXLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None class M2M100ForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class M2M100Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class M2M100PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MarianMTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MBartPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class MegatronBertForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MegatronBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MMBTForClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MMBTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ModalEmbeddings(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class MobileBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForNextSentencePrediction(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MobileBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_mobilebert(*args, **kwargs): requires_backends(load_tf_weights_in_mobilebert, ["torch"]) MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class MPNetForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MPNetPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5EncoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5ForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class MT5Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class NystromformerForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class NystromformerPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None class OpenAIGPTDoubleHeadsModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class OpenAIGPTPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_openai_gpt(*args, **kwargs): requires_backends(load_tf_weights_in_openai_gpt, ["torch"]) class PegasusForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PegasusForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PegasusModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PegasusPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None class PerceiverForImageClassificationConvProcessing(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForImageClassificationFourier(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForImageClassificationLearned(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForMultimodalAutoencoding(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForOpticalFlow(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class PerceiverPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class ProphetNetDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ProphetNetPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagSequenceForGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RagTokenForGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None class RealmEmbedder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmForOpenQA(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmKnowledgeAugEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmReader(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmRetriever(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RealmScorer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_realm(*args, **kwargs): requires_backends(load_tf_weights_in_realm, ["torch"]) REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class ReformerAttention(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerModelWithLMHead(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ReformerPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class RemBertForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RemBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_rembert(*args, **kwargs): requires_backends(load_tf_weights_in_rembert, ["torch"]) RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class RetriBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RetriBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class RobertaForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RobertaPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class RoFormerForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class RoFormerPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_roformer(*args, **kwargs): requires_backends(load_tf_weights_in_roformer, ["torch"]) SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None class SegformerDecodeHead(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SegformerForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SegformerForSemanticSegmentation(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SegformerLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SegformerModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SegformerPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None class SEWForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None class SEWDForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWDForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWDModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SEWDPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SpeechEncoderDecoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None class Speech2TextForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Speech2TextModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Speech2TextPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Speech2Text2ForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Speech2Text2PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None class SplinterForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SplinterLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SplinterModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SplinterPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class SqueezeBertForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertModule(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SqueezeBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None class SwinForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SwinModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class SwinPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) T5_PRETRAINED_MODEL_ARCHIVE_LIST = None class T5EncoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5ForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class T5PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_t5(*args, **kwargs): requires_backends(load_tf_weights_in_t5, ["torch"]) TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class AdaptiveEmbedding(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TransfoXLPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_transfo_xl(*args, **kwargs): requires_backends(load_tf_weights_in_transfo_xl, ["torch"]) TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None class TrOCRForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class TrOCRPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None class UniSpeechForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None class UniSpeechSatForAudioFrameClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatForXVector(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class UniSpeechSatPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) VILT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ViltForImageAndTextRetrieval(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltForImagesAndTextClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViltPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisionEncoderDecoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisionTextDualEncoderModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None class VisualBertForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForRegionToPhraseAlignment(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertForVisualReasoning(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class VisualBertPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None class ViTForImageClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = None class ViTMAEForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTMAELayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTMAEModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class ViTMAEPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None class Wav2Vec2ForAudioFrameClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForPreTraining(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2ForXVector(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2Model(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Wav2Vec2PreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class WavLMForAudioFrameClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class WavLMForCTC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class WavLMForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class WavLMForXVector(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class WavLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class WavLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class XGLMForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XGLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XGLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMWithLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMProphetNetDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetEncoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetForConditionalGeneration(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMProphetNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMRobertaForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLMRobertaXLForCausalLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLMRobertaXLPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None class XLNetForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetLMHeadModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class XLNetPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def load_tf_weights_in_xlnet(*args, **kwargs): requires_backends(load_tf_weights_in_xlnet, ["torch"]) YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None class YosoForMaskedLM(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoForMultipleChoice(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoForQuestionAnswering(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoForSequenceClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoForTokenClassification(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoLayer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class YosoPreTrainedModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class Adafactor(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) class AdamW(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def get_constant_schedule(*args, **kwargs): requires_backends(get_constant_schedule, ["torch"]) def get_constant_schedule_with_warmup(*args, **kwargs): requires_backends(get_constant_schedule_with_warmup, ["torch"]) def get_cosine_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_schedule_with_warmup, ["torch"]) def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) def get_linear_schedule_with_warmup(*args, **kwargs): requires_backends(get_linear_schedule_with_warmup, ["torch"]) def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) def get_scheduler(*args, **kwargs): requires_backends(get_scheduler, ["torch"]) class Trainer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) def torch_distributed_zero_first(*args, **kwargs): requires_backends(torch_distributed_zero_first, ["torch"]) class Seq2SeqTrainer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"])
23.34356
84
0.68745
587aee2a1f2d8cd34ee03c481a71ad57af15ae7f
2,829
py
Python
alipay/aop/api/response/AlipayTradeCustomsDeclareResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/response/AlipayTradeCustomsDeclareResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/response/AlipayTradeCustomsDeclareResponse.py
snowxmas/alipay-sdk-python-all
96870ced60facd96c5bce18d19371720cbda3317
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayTradeCustomsDeclareResponse(AlipayResponse): def __init__(self): super(AlipayTradeCustomsDeclareResponse, self).__init__() self._alipay_declare_no = None self._currency = None self._identity_check = None self._pay_code = None self._pay_transaction_id = None self._total_amount = None self._trade_no = None self._ver_dept = None @property def alipay_declare_no(self): return self._alipay_declare_no @alipay_declare_no.setter def alipay_declare_no(self, value): self._alipay_declare_no = value @property def currency(self): return self._currency @currency.setter def currency(self, value): self._currency = value @property def identity_check(self): return self._identity_check @identity_check.setter def identity_check(self, value): self._identity_check = value @property def pay_code(self): return self._pay_code @pay_code.setter def pay_code(self, value): self._pay_code = value @property def pay_transaction_id(self): return self._pay_transaction_id @pay_transaction_id.setter def pay_transaction_id(self, value): self._pay_transaction_id = value @property def total_amount(self): return self._total_amount @total_amount.setter def total_amount(self, value): self._total_amount = value @property def trade_no(self): return self._trade_no @trade_no.setter def trade_no(self, value): self._trade_no = value @property def ver_dept(self): return self._ver_dept @ver_dept.setter def ver_dept(self, value): self._ver_dept = value def parse_response_content(self, response_content): response = super(AlipayTradeCustomsDeclareResponse, self).parse_response_content(response_content) if 'alipay_declare_no' in response: self.alipay_declare_no = response['alipay_declare_no'] if 'currency' in response: self.currency = response['currency'] if 'identity_check' in response: self.identity_check = response['identity_check'] if 'pay_code' in response: self.pay_code = response['pay_code'] if 'pay_transaction_id' in response: self.pay_transaction_id = response['pay_transaction_id'] if 'total_amount' in response: self.total_amount = response['total_amount'] if 'trade_no' in response: self.trade_no = response['trade_no'] if 'ver_dept' in response: self.ver_dept = response['ver_dept']
29.46875
106
0.663132
9d420fa6a6fa1baeda66992d3ce18a3d9c5a6464
7,949
py
Python
sdk/python/pulumi_azure_native/netapp/v20200801/backup.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/v20200801/backup.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/netapp/v20200801/backup.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = ['Backup'] class Backup(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, backup_name: Optional[pulumi.Input[str]] = None, label: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, pool_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, volume_name: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Backup of a Volume :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: The name of the NetApp account :param pulumi.Input[str] backup_name: The name of the backup :param pulumi.Input[str] label: Label for backup :param pulumi.Input[str] location: Resource location :param pulumi.Input[str] pool_name: The name of the capacity pool :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] volume_name: The name of the volume """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__['account_name'] = account_name __props__['backup_name'] = backup_name __props__['label'] = label __props__['location'] = location if pool_name is None and not opts.urn: raise TypeError("Missing required property 'pool_name'") __props__['pool_name'] = pool_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if volume_name is None and not opts.urn: raise TypeError("Missing required property 'volume_name'") __props__['volume_name'] = volume_name __props__['backup_id'] = None __props__['backup_type'] = None __props__['creation_date'] = None __props__['name'] = None __props__['provisioning_state'] = None __props__['size'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:netapp/v20200801:Backup"), pulumi.Alias(type_="azure-native:netapp:Backup"), pulumi.Alias(type_="azure-nextgen:netapp:Backup"), pulumi.Alias(type_="azure-native:netapp/latest:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/latest:Backup"), pulumi.Alias(type_="azure-native:netapp/v20200501:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/v20200501:Backup"), pulumi.Alias(type_="azure-native:netapp/v20200601:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/v20200601:Backup"), pulumi.Alias(type_="azure-native:netapp/v20200701:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/v20200701:Backup"), pulumi.Alias(type_="azure-native:netapp/v20200901:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/v20200901:Backup"), pulumi.Alias(type_="azure-native:netapp/v20201101:Backup"), pulumi.Alias(type_="azure-nextgen:netapp/v20201101:Backup")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Backup, __self__).__init__( 'azure-native:netapp/v20200801:Backup', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Backup': """ Get an existing Backup resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["backup_id"] = None __props__["backup_type"] = None __props__["creation_date"] = None __props__["label"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["size"] = None __props__["type"] = None return Backup(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="backupId") def backup_id(self) -> pulumi.Output[str]: """ UUID v4 used to identify the Backup """ return pulumi.get(self, "backup_id") @property @pulumi.getter(name="backupType") def backup_type(self) -> pulumi.Output[str]: """ Type of backup adhoc or scheduled """ return pulumi.get(self, "backup_type") @property @pulumi.getter(name="creationDate") def creation_date(self) -> pulumi.Output[str]: """ The creation date of the backup """ return pulumi.get(self, "creation_date") @property @pulumi.getter def label(self) -> pulumi.Output[Optional[str]]: """ Label for backup """ return pulumi.get(self, "label") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Azure lifecycle management """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def size(self) -> pulumi.Output[float]: """ Size of backup """ return pulumi.get(self, "size") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
41.186528
935
0.630771
0c14456feea8602ddf535eb26e0fdfbcc2feb5c0
699
py
Python
swift/context.py
PdrLins/swift-morm
36f38cfd8d431d4530ead35ef2bf87eb46ee76ba
[ "MIT" ]
2
2018-08-21T07:49:37.000Z
2019-01-18T20:58:57.000Z
swift/context.py
PdrLins/swift-morm
36f38cfd8d431d4530ead35ef2bf87eb46ee76ba
[ "MIT" ]
1
2021-04-30T20:42:36.000Z
2021-04-30T20:42:36.000Z
swift/context.py
PdrLins/swift-morm
36f38cfd8d431d4530ead35ef2bf87eb46ee76ba
[ "MIT" ]
null
null
null
from flask import current_app from .sql_mapper import * class Context(SwiftSqlMapper): __providers_keys = [] def __init__(self, providers: []): self.setProviders(providers) @staticmethod def get_context(): post_connString = current_app.config.get('POSTGRESQL_DATABASE_URI') # need to define the connection string sqlServer_connString = current_app.config.get('SQLSERVER_DATABASE_URI') # need to define the connection string ins_Post = InstanceProvide(post_connString, PostgresSqlProvider) ins_sqlServer = InstanceProvide(sqlServer_connString, SqlServerProvider) context = Context([ins_Post, ins_sqlServer]) return context
36.789474
118
0.736767
6a39fcc2ea37df572c7a571ac385cfe66f708a88
347
py
Python
passGen.py
diegofer11/RandomPassGenerator
ea6bba5b1b723d19675e61f22fe7ba353afa33d7
[ "MIT" ]
null
null
null
passGen.py
diegofer11/RandomPassGenerator
ea6bba5b1b723d19675e61f22fe7ba353afa33d7
[ "MIT" ]
null
null
null
passGen.py
diegofer11/RandomPassGenerator
ea6bba5b1b723d19675e61f22fe7ba353afa33d7
[ "MIT" ]
null
null
null
from random import choice, choices from string import ascii_letters, digits def new_pass(paswlength): """Function that generates random password based on user given length.""" special = '#$%&()*+<=>?@_' lists = [ascii_letters, digits, special] pasw = ''.join(choice(choices(lists)[0]) for i in range(paswlength)) return pasw
31.545455
77
0.688761
4ea236c83e32e645d4f2e1d0d2ec2108126bb35b
2,481
py
Python
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/neutron_delete_security_group_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/neutron_delete_security_group_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-vpc/huaweicloudsdkvpc/v2/model/neutron_delete_security_group_response.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class NeutronDeleteSecurityGroupResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { } attribute_map = { } def __init__(self): """NeutronDeleteSecurityGroupResponse - a model defined in huaweicloud sdk""" super(NeutronDeleteSecurityGroupResponse, self).__init__() self.discriminator = None def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NeutronDeleteSecurityGroupResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
28.848837
85
0.559452
49cc12ac429c8bf2fa88482731a36912580b6c2b
2,111
py
Python
python/tests/test_circumradius.py
jorgensd/asimov-contact
08704ade6343c346bc54dfd38186983cc7ab4485
[ "MIT" ]
null
null
null
python/tests/test_circumradius.py
jorgensd/asimov-contact
08704ade6343c346bc54dfd38186983cc7ab4485
[ "MIT" ]
null
null
null
python/tests/test_circumradius.py
jorgensd/asimov-contact
08704ade6343c346bc54dfd38186983cc7ab4485
[ "MIT" ]
null
null
null
# Copyright (C) 2021 Sarah Roggendorf and Jørgen S. Dokken # # SPDX-License-Identifier: MIT import numpy as np import pytest import ufl from dolfinx.fem import Function, FunctionSpace, IntegralType from dolfinx.fem.petsc import LinearProblem from dolfinx.mesh import create_unit_cube, create_unit_square, locate_entities_boundary from mpi4py import MPI import dolfinx_contact.cpp @pytest.mark.parametrize("dim", [2, 3]) def test_circumradius(dim): if dim == 3: N = 5 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) else: N = 25 mesh = create_unit_square(MPI.COMM_WORLD, N, N) # Perturb geometry to get spatially varying circumradius V = FunctionSpace(mesh, ufl.VectorElement("CG", mesh.ufl_cell(), 1)) u = Function(V) if dim == 3: u.interpolate(lambda x: (0.1 * (x[1] > 0.5), 0.1 * np.sin(2 * np.pi * x[2]), np.zeros(x.shape[1]))) else: u.interpolate(lambda x: (0.1 * np.cos(x[1]) * (x[0] > 0.2), 0.1 * x[1] + 0.1 * np.sin(2 * np.pi * x[0]))) dolfinx_contact.update_geometry(u._cpp_object, mesh) mesh.topology.create_connectivity(dim - 1, dim) f_to_c = mesh.topology.connectivity(dim - 1, dim) # Find facets on boundary to integrate over facets = locate_entities_boundary( mesh, mesh.topology.dim - 1, lambda x: np.full(x.shape[1], True, dtype=bool)) sorted = np.argsort(facets) facets = facets[sorted] h1 = ufl.Circumradius(mesh) V = FunctionSpace(mesh, ("DG", 0)) v = ufl.TestFunction(V) u = ufl.TrialFunction(V) dx = ufl.Measure("dx", domain=mesh) a = u * v * dx L = h1 * v * dx problem = LinearProblem(a, L, bcs=[], petsc_options={"ksp_type": "preonly", "pc_type": "lu"}) uh = problem.solve() h2 = np.zeros(facets.size) for i, facet in enumerate(facets): cell = f_to_c.links(facet)[0] h2[i] = uh.vector[cell] active_facets = dolfinx_contact.cpp.compute_active_entities(mesh, facets, IntegralType.exterior_facet) h = dolfinx_contact.pack_circumradius(mesh, active_facets).reshape(-1) assert np.allclose(h, h2)
34.048387
113
0.657982
ac7967ab20a5c8843c54d560b1e54124771a2e02
2,768
py
Python
lab/tests/test_templatetags.py
lajarre/euphrosyne
14050097774b088e7345f9488ce74b205f7bd338
[ "MIT" ]
1
2022-03-09T19:47:29.000Z
2022-03-09T19:47:29.000Z
lab/tests/test_templatetags.py
lajarre/euphrosyne
14050097774b088e7345f9488ce74b205f7bd338
[ "MIT" ]
null
null
null
lab/tests/test_templatetags.py
lajarre/euphrosyne
14050097774b088e7345f9488ce74b205f7bd338
[ "MIT" ]
null
null
null
# pylint: disable=redefined-outer-name # pylint: disable=invalid-name from unittest.mock import patch import pytest from django.contrib.admin.helpers import AdminForm from django.contrib.admin.sites import AdminSite from django.contrib.admin.utils import flatten_fieldsets from django.contrib.auth.models import AnonymousUser from django.test.client import RequestFactory from django.urls import reverse from lab.widgets import DisabledSelectWithHidden from ..admin.run import RunAdmin from ..models import Run from ..templatetags.methods import ( _get_adminfield_name, detector_fields, filters_field, method_fields, ) @pytest.fixture(scope="module", autouse=True) def patch_disabledselectwithhidden_optgroups(): with patch.object( DisabledSelectWithHidden, "optgroups", return_value=[] ) as _fixture: yield _fixture @pytest.fixture(scope="module", autouse=True) def adminform(): # pylint: disable=line-too-long # Raincoat: pypi package: Django==4.0 path: django/contrib/admin/options.py element: ModelAdmin._changeform_view run_admin = RunAdmin(model=Run, admin_site=AdminSite()) request = RequestFactory().get(reverse("admin:lab_run_add")) request.user = AnonymousUser() fieldsets = run_admin.get_fieldsets(request, None) ModelForm = run_admin.get_form( # pylint: disable=invalid-name request, None, change=False, fields=flatten_fieldsets(fieldsets) ) initial = run_admin.get_changeform_initial_data(request) form = ModelForm(initial=initial) return AdminForm( form, list(fieldsets), {}, readonly_fields=run_admin.get_readonly_fields(request, None), model_admin=run_admin, ) def test_method_fields_returns_all_methods_in_order(adminform): assert [admin_field.field.name for admin_field in method_fields(adminform)] == [ f.name for f in Run.get_method_fields() ] def test_method_fields_returns_the_same_at_second_instanciation(adminform): assert method_fields(adminform) assert [_get_adminfield_name(f) for f in method_fields(adminform)] == [ _get_adminfield_name(f) for f in method_fields(adminform) ] def test_PIXE_detector_fields_returns_corresponding_detector_fieldnames_in_order( adminform, ): assert [ detector_admin_field.field.name for detector_admin_field in detector_fields(adminform, "method_PIXE") ] == [ "detector_LE0", "detector_HE1", "detector_HE2", "detector_HE3", "detector_HE4", ] def test_LE0_filters_fields_returns_corresponding_filter_fieldnames_in_order(adminform): assert ( filters_field(adminform, "detector_LE0").field.name == "filters_for_detector_LE0" )
30.755556
116
0.739162
7a28b56325a0a9c07824e427a4fac0c1cf48e5c7
1,783
py
Python
python2/tests/SMBConnectionTests/test_SMBHandler.py
Awingu/pysmb
93f442a0e4d92d0a9047184cc3e048d5b428f228
[ "Zlib" ]
280
2015-01-21T14:34:41.000Z
2022-03-02T03:36:05.000Z
python2/tests/SMBConnectionTests/test_SMBHandler.py
Awingu/pysmb
93f442a0e4d92d0a9047184cc3e048d5b428f228
[ "Zlib" ]
160
2015-01-09T22:05:44.000Z
2022-03-29T11:34:44.000Z
python2/tests/SMBConnectionTests/test_SMBHandler.py
Awingu/pysmb
93f442a0e4d92d0a9047184cc3e048d5b428f228
[ "Zlib" ]
101
2015-01-17T21:12:22.000Z
2022-01-26T11:12:16.000Z
# -*- coding: utf-8 -*- import os, urllib, urllib2, time, random from StringIO import StringIO from smb.SMBHandler import SMBHandler import util try: import hashlib def MD5(): return hashlib.md5() except ImportError: import md5 def MD5(): return md5.new() def test_basic(): # Basic test for smb URLs director = urllib2.build_opener(SMBHandler) fh = director.open('smb://%(user)s:%(password)s@%(server_ip)s/smbtest/rfc1001.txt' % util.getConnectionInfo()) s = fh.read() md = MD5() md.update(s) assert md.hexdigest() == '5367c2bbf97f521059c78eab65309ad3' assert len(s) == 158437 fh.close() def test_unicode(): # Test smb URLs with unicode paths director = urllib2.build_opener(SMBHandler) fh = director.open(u'smb://%(user)s:%(password)s@%(server_ip)s/smbtest/测试文件夹/垃圾文件.dat' % util.getConnectionInfo()) s = fh.read() md = MD5() md.update(s) assert md.hexdigest() == '8a44c1e80d55e91c92350955cdf83442' assert len(s) == 256000 fh.close() TEST_FILENAME = os.path.join(os.path.dirname(__file__), os.pardir, 'SupportFiles', 'binary.dat') TEST_FILESIZE = 256000 TEST_DIGEST = 'bb6303f76e29f354b6fdf6ef58587e48' def test_upload(): info = util.getConnectionInfo() info['filename'] = os.sep + 'StoreTest-%d-%d.dat' % ( time.time(), random.randint(0, 10000) ) director = urllib2.build_opener(SMBHandler) upload_fh = director.open('smb://%(user)s:%(password)s@%(server_ip)s/smbtest/%(filename)s' % info, data = open(TEST_FILENAME, 'rb')) retr_fh = director.open('smb://%(user)s:%(password)s@%(server_ip)s/smbtest/%(filename)s' % info) s = retr_fh.read() md = MD5() md.update(s) assert md.hexdigest() == TEST_DIGEST assert len(s) == TEST_FILESIZE
26.61194
136
0.667414
98bd8ef69536460803d892ac98811299af3d30f3
931
py
Python
troposphereWinds/Zonal/250v850.py
Mihir-DG/Tropospheric-Temperature-and-Zonal-Wind-Profiles
13e0c706faed446f10758341807c066670260e0b
[ "MIT" ]
null
null
null
troposphereWinds/Zonal/250v850.py
Mihir-DG/Tropospheric-Temperature-and-Zonal-Wind-Profiles
13e0c706faed446f10758341807c066670260e0b
[ "MIT" ]
null
null
null
troposphereWinds/Zonal/250v850.py
Mihir-DG/Tropospheric-Temperature-and-Zonal-Wind-Profiles
13e0c706faed446f10758341807c066670260e0b
[ "MIT" ]
null
null
null
from netCDF4 import Dataset as dst from matplotlib import pyplot as plt nc = dst('../uwnd.mon.mean.nc', mode='r') iterator = -120 while iterator < 0: profile850 = [] for latitude in list(nc.variables['uwnd'])[iterator][2]: item = [] for longitude in latitude: item.append(longitude) iterator += 1 average = sum(item)/len(item) profile850.append(average) iterator_a = -120 while iterator_a < 0: profile250 = [] for latitude in list(nc.variables['uwnd'])[iterator_a][8]: item2 = [] for longitude in latitude: item2.append(longitude) iterator_a += 1 average = sum(item2)/len(item2) profile250.append(average) print(nc.variables['level'][:]) a = plt.plot(nc.variables['lat'][:],profile850, color='r', label='850 mbar') b = plt.plot(nc.variables['lat'][:],profile250, color='g', label='250 mbar') plt.xlabel("Latitude (°)") plt.ylabel("Wind (m/s)") plt.legend() plt.savefig("plot_250v850.png") plt.show()
28.212121
76
0.684211
dbee3b4e48e997eb8cb4e5b5c1c1e4f19a96d714
511
py
Python
news/migrations/0005_auto_20180824_0009.py
Akshita-Rastogi/Summarizer
b8ad34720428c906ee9b6ce8c1a3b8ec01787cd5
[ "MIT" ]
9
2020-06-08T20:03:42.000Z
2021-06-24T10:52:02.000Z
news/migrations/0005_auto_20180824_0009.py
Akshita-Rastogi/Summarizer
b8ad34720428c906ee9b6ce8c1a3b8ec01787cd5
[ "MIT" ]
7
2020-06-06T01:26:08.000Z
2022-02-10T11:26:58.000Z
news/migrations/0005_auto_20180824_0009.py
shubham1507/sumup
053766da121ae22b3d04c87592ffab5e9e274ea8
[ "MIT" ]
7
2018-11-25T08:54:56.000Z
2021-12-21T21:12:19.000Z
# Generated by Django 2.0.5 on 2018-08-23 18:24 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('news', '0004_auto_20180824_0001'), ] operations = [ migrations.AlterField( model_name='document', name='summary_p', field=models.IntegerField(validators=[django.core.validators.MinValueValidator(10), django.core.validators.MaxValueValidator(50)]), ), ]
25.55
143
0.661448
f8318b4fe7374e790ed739188a05afaa66e0eff7
4,038
py
Python
custom_components/samsungtv_smart/api/upnp.py
hwikene/ha-samsungtv-smart
47a44da6a15af8084e56223e94c41e0f206327d5
[ "Apache-2.0" ]
null
null
null
custom_components/samsungtv_smart/api/upnp.py
hwikene/ha-samsungtv-smart
47a44da6a15af8084e56223e94c41e0f206327d5
[ "Apache-2.0" ]
null
null
null
custom_components/samsungtv_smart/api/upnp.py
hwikene/ha-samsungtv-smart
47a44da6a15af8084e56223e94c41e0f206327d5
[ "Apache-2.0" ]
null
null
null
# Smartthings TV integration# # import requests import xml.etree.ElementTree as ET from aiohttp import ClientSession from async_timeout import timeout from typing import Optional DEFAULT_TIMEOUT = 0.2 class upnp: def __init__(self, host, session: Optional[ClientSession] = None): self._host = host self._mute = False self._volume = 0 self._connected = False if session: self._session = session self._managed_session = False else: self._session = ClientSession() self._managed_session = True def __enter__(self): return self async def _SOAPrequest(self, action, arguments, protocole): headers = { "SOAPAction": '"urn:schemas-upnp-org:service:{protocole}:1#{action}"'.format( action=action, protocole=protocole ), "content-type": "text/xml", } body = """<?xml version="1.0" encoding="utf-8"?> <s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <s:Body> <u:{action} xmlns:u="urn:schemas-upnp-org:service:{protocole}:1"> <InstanceID>0</InstanceID> {arguments} </u:{action}> </s:Body> </s:Envelope>""".format( action=action, arguments=arguments, protocole=protocole ) response = None try: with timeout(DEFAULT_TIMEOUT): async with self._session.post( f"http://{self._host}:9197/upnp/control/{protocole}1", headers=headers, data=body, raise_for_status=True, ) as resp: response = await resp.content.read() self._connected = True except: self._connected = False return response @property def connected(self): return self._connected async def async_get_volume(self): response = await self._SOAPrequest( "GetVolume", "<Channel>Master</Channel>", "RenderingControl" ) if response is not None: volume_xml = response.decode("utf8") tree = ET.fromstring(volume_xml) for elem in tree.iter(tag="CurrentVolume"): self._volume = elem.text return self._volume async def async_set_volume(self, volume): await self._SOAPrequest( "SetVolume", "<Channel>Master</Channel><DesiredVolume>{}</DesiredVolume>".format(volume), "RenderingControl", ) async def async_get_mute(self): response = await self._SOAPrequest( "GetMute", "<Channel>Master</Channel>", "RenderingControl" ) if response is not None: # mute_xml = response.decode('utf8') tree = ET.fromstring(response.decode("utf8")) mute = 0 for elem in tree.iter(tag="CurrentMute"): mute = elem.text if int(mute) == 0: self._mute = False else: self._mute = True return self._mute async def async_set_current_media(self, url): """ Set media to playback and play it.""" try: await self._SOAPrequest( "SetAVTransportURI", "<CurrentURI>{url}</CurrentURI><CurrentURIMetaData></CurrentURIMetaData>".format( url=url ), "AVTransport", ) await self._SOAPrequest("Play", "<Speed>1</Speed>", "AVTransport") except Exception: pass async def async_play(self): """ Play media that was already set as current.""" try: await self._SOAPrequest("Play", "<Speed>1</Speed>", "AVTransport") except Exception: pass
33.65
140
0.540367
37d641b4258b341cbae037d1f4e0e4b957f6e889
3,722
py
Python
functions/ginput.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
functions/ginput.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
functions/ginput.py
chiluf/visvis.dev
373846ea25044b7ca50f44c63dab4248e14deacd
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (C) 2012, Almar Klein # # Visvis is distributed under the terms of the (new) BSD License. # The full license can be found in 'license.txt'. import visvis as vv from visvis.pypoints import Pointset import time class GinputHelper(object): """ GinputHelper() Helper class for ginput function. Keeps track of things. """ def __init__(self): self.axes = None self.pp = None self.N = 0 def Start(self, axes, pp, N): self.Unregister() if axes: # Store pointset and axes self.axes = axes self.pp = pp self.N = N # Register with axes self.axes.eventMouseDown.Bind(self.OnMouseDown) self.axes.eventDoubleClick.Bind(self.OnDoubleClick) # Register with figure fig = self.axes.GetFigure() if fig: fig.eventKeyDown.Unbind(self.OnKeyDown) fig.eventKeyDown.Bind(self.OnKeyDown) def Unregister(self): if self.axes: # Unregister axes self.axes.eventMouseDown.Unbind(self.OnMouseDown) self.axes.eventDoubleClick.Unbind(self.OnDoubleClick) # Unreister figure fig = self.axes.GetFigure() if fig: fig.eventKeyDown.Unbind(self.OnKeyDown) fig.eventKeyDown.Bind(self.OnKeyDown) # Remove references self.axes = None self.pp = None self.N = 0 def OnMouseDown(self, event): # Add point if self.pp is not None: self.pp.append(event.x2d, event.y2d, 0.1) # Draw if self.axes: fig = self.axes.GetFigure() if fig: fig.DrawNow() # Is this the last point? if self.pp is not None and self.N and len(self.pp)==self.N: self.Unregister() # Accept event return True def OnDoubleClick(self, event): self.Unregister() def OnKeyDown(self, event): if event.key == vv.KEY_ENTER: self.Unregister() ginputHelper = GinputHelper() def ginput(N=0, axes=None, ms='+', **kwargs): """ ginput(N=0, axes=None, ms='+', **kwargs) Graphical input: select N number of points with the mouse. Returns a 2D pointset. Parameters ---------- N : int The maximum number of points to capture. If N=0, will keep capturing until the user stops it. The capturing always stops when enter is pressed or the mouse is double clicked. In the latter case a final point is added. axes : Axes instance The axes to capture the points in, or the current axes if not given. ms : markerStyle The marker style to use for the points. See plot. Any other keyword arguments are passed to plot to show the selected points and the lines between them. """ # Get axes if not axes: axes = vv.gca() # Get figure fig = axes.GetFigure() if not fig: return # Init pointset, helper, and line object line = vv.plot(Pointset(2), axes=axes, ms=ms, **kwargs) pp = line._points ginputHelper.Start(axes, pp, N) # Enter a loop while ginputHelper.axes: fig._ProcessGuiEvents() time.sleep(0.1) # Remove line object and return points pp = Pointset(pp[:,:2]) line.Destroy() return pp if __name__ == '__main__': print vv.ginput(3)
25.847222
76
0.551316
58b93c6b7dea7de41e3b25ea8d52565a07f2e200
3,635
py
Python
indico/modules/events/registration/models/invitations.py
uxmaster/indico
ecd19f17ef6fdc9f5584f59c87ec647319ce5d31
[ "MIT" ]
1
2019-11-03T11:34:16.000Z
2019-11-03T11:34:16.000Z
indico/modules/events/registration/models/invitations.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
indico/modules/events/registration/models/invitations.py
NP-compete/indico
80db7ca0ef9d1f3240a16b9ff2d84bf0bf26c549
[ "MIT" ]
null
null
null
# This file is part of Indico. # Copyright (C) 2002 - 2019 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from __future__ import unicode_literals from uuid import uuid4 from sqlalchemy.dialects.postgresql import UUID from indico.core.db import db from indico.core.db.sqlalchemy import PyIntEnum from indico.util.i18n import L_ from indico.util.locators import locator_property from indico.util.string import format_repr, return_ascii from indico.util.struct.enum import RichIntEnum class InvitationState(RichIntEnum): __titles__ = [L_('Pending'), L_('Accepted'), L_('Declined')] pending = 0 accepted = 1 declined = 2 class RegistrationInvitation(db.Model): """An invitation for someone to register""" __tablename__ = 'invitations' __table_args__ = (db.CheckConstraint("(state = {state}) OR (registration_id IS NULL)" .format(state=InvitationState.accepted), name='registration_state'), db.UniqueConstraint('registration_form_id', 'email'), {'schema': 'event_registration'}) #: The ID of the invitation id = db.Column( db.Integer, primary_key=True ) #: The UUID of the invitation uuid = db.Column( UUID, index=True, unique=True, nullable=False, default=lambda: unicode(uuid4()) ) #: The ID of the registration form registration_form_id = db.Column( db.Integer, db.ForeignKey('event_registration.forms.id'), index=True, nullable=False ) #: The ID of the registration (if accepted) registration_id = db.Column( db.Integer, db.ForeignKey('event_registration.registrations.id'), index=True, unique=True, nullable=True ) #: The state of the invitation state = db.Column( PyIntEnum(InvitationState), nullable=False, default=InvitationState.pending ) #: Whether registration moderation should be skipped skip_moderation = db.Column( db.Boolean, nullable=False, default=False ) #: The email of the invited person email = db.Column( db.String, nullable=False ) #: The first name of the invited person first_name = db.Column( db.String, nullable=False ) #: The last name of the invited person last_name = db.Column( db.String, nullable=False ) #: The affiliation of the invited person affiliation = db.Column( db.String, nullable=False ) #: The associated registration registration = db.relationship( 'Registration', lazy=True, backref=db.backref( 'invitation', lazy=True, uselist=False ) ) # relationship backrefs: # - registration_form (RegistrationForm.invitations) @locator_property def locator(self): return dict(self.registration_form.locator, invitation_id=self.id) @locator.uuid def locator(self): """A locator suitable for 'display' pages. Instead of the numeric ID it uses the UUID """ assert self.uuid is not None return dict(self.registration_form.locator, invitation=self.uuid) @return_ascii def __repr__(self): full_name = '{} {}'.format(self.first_name, self.last_name) return format_repr(self, 'id', 'registration_form_id', 'email', 'state', _text=full_name)
28.178295
109
0.634388
8cc8517af231199933b870acd3c0d7b4bd57072a
1,803
py
Python
cubic/audio_io.py
cobaltspeech/examples-python
74a8ad1c48c46cb029ede389baedbd44fccf9dd0
[ "Apache-2.0" ]
null
null
null
cubic/audio_io.py
cobaltspeech/examples-python
74a8ad1c48c46cb029ede389baedbd44fccf9dd0
[ "Apache-2.0" ]
2
2021-07-22T15:57:53.000Z
2021-08-03T22:29:36.000Z
cubic/audio_io.py
cobaltspeech/examples-python
74a8ad1c48c46cb029ede389baedbd44fccf9dd0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright(2021) Cobalt Speech and Language Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess class Recorder(object): """Recorder launches an external application to handle recording audio.""" def __init__(self, cmd): self.args = cmd.split() self.process = None def start(self): """Start the external recording application.""" # Ignore if we already started it if self.process is not None: return # Start the subprocess self.process = subprocess.Popen(args=self.args, stdout=subprocess.PIPE) def stop(self): """Stop the external recording application.""" # Ignore if it is not running if self.process is None: return # Stop the subprocess self.process.stdout.close() self.process.terminate() self.process = None def read(self, bufsize): """Read audio data from the external recording application.""" # Raise an error if we haven't started the app if self.process is None: raise RuntimeError("Recording application is not running") # Get the data from stdout return self.process.stdout.read(bufsize)
30.559322
78
0.652246
61b081e2c76072d99ea2283632a4f35d260cc21a
2,478
py
Python
examples/python/mesapy_echo.py
yc-huang/incubator-teaclave
f7614d12b98984febd26c327f544c04cc2b94f98
[ "Apache-2.0" ]
null
null
null
examples/python/mesapy_echo.py
yc-huang/incubator-teaclave
f7614d12b98984febd26c327f544c04cc2b94f98
[ "Apache-2.0" ]
null
null
null
examples/python/mesapy_echo.py
yc-huang/incubator-teaclave
f7614d12b98984febd26c327f544c04cc2b94f98
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import sys from teaclave import (AuthenticationService, FrontendService, AuthenticationClient, FrontendClient) from utils import (AUTHENTICATION_SERVICE_ADDRESS, FRONTEND_SERVICE_ADDRESS, AS_ROOT_CA_CERT_PATH, ENCLAVE_INFO_PATH, USER_ID, USER_PASSWORD) class MesaPyEchoExample: def __init__(self, user_id, user_password): self.user_id = user_id self.user_password = user_password def echo(self, payload_file="mesapy_echo_payload.py", message="Hello, Teaclave!"): client = AuthenticationService( AUTHENTICATION_SERVICE_ADDRESS, AS_ROOT_CA_CERT_PATH, ENCLAVE_INFO_PATH).connect().get_client() print("[+] registering user") client.user_register(self.user_id, self.user_password) print("[+] login") token = client.user_login(self.user_id, self.user_password) client = FrontendService(FRONTEND_SERVICE_ADDRESS, AS_ROOT_CA_CERT_PATH, ENCLAVE_INFO_PATH).connect().get_client() metadata = {"id": self.user_id, "token": token} client.metadata = metadata print("[+] registering function") with open(payload_file, "rb") as f: payload = f.read() function_id = client.register_function( name="mesapy-echo", description="An echo function implemented in Python", executor_type="python", payload=list(payload), arguments=["message"]) print("[+] creating task") task_id = client.create_task(function_id=function_id, function_arguments={"message": message}, executor="mesapy") print("[+] invoking task") client.invoke_task(task_id) print("[+] getting result") result = client.get_task_result(task_id) print("[+] done") return bytes(result) def main(): example = MesaPyEchoExample(USER_ID, USER_PASSWORD) if len(sys.argv) == 2: message = sys.argv[1] rt = example.echo(message=message) elif len(sys.argv) == 3: payload = sys.argv[1] message = sys.argv[2] rt = example.echo(payload, message) else: rt = example.echo() print("[+] function return: ", rt) if __name__ == '__main__': main()
31.367089
77
0.592817
32beb35ad6e2c510eceef4909c0999c7bd172187
22,172
py
Python
grammar_induction/earley_parser/nltk/parse/featurechart.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
6
2017-01-22T03:15:01.000Z
2019-12-01T16:19:36.000Z
grammar_induction/earley_parser/nltk/parse/featurechart.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
3
2017-01-15T01:32:04.000Z
2017-01-16T00:25:46.000Z
grammar_induction/earley_parser/nltk/parse/featurechart.py
tdonca/OpenBottle
f03d80e7b3645232fb97f91cf7fc2dc02f101ac2
[ "MIT" ]
6
2017-01-19T21:49:55.000Z
2021-04-14T09:57:17.000Z
# -*- coding: utf-8 -*- # Natural Language Toolkit: Chart Parser for Feature-Based Grammars # # Copyright (C) 2001-2017 NLTK Project # Author: Rob Speer <rspeer@mit.edu> # Peter Ljunglöf <peter.ljunglof@heatherleaf.se> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Extension of chart parsing implementation to handle grammars with feature structures as nodes. """ from __future__ import print_function, unicode_literals from nltk.compat import xrange, python_2_unicode_compatible from nltk.featstruct import FeatStruct, unify, TYPE, find_variables from nltk.sem import logic from nltk.tree import Tree from nltk.grammar import (Nonterminal, Production, CFG, FeatStructNonterminal, is_nonterminal, is_terminal) from nltk.parse.chart import (TreeEdge, Chart, ChartParser, EdgeI, FundamentalRule, LeafInitRule, EmptyPredictRule, BottomUpPredictRule, SingleEdgeFundamentalRule, BottomUpPredictCombineRule, CachedTopDownPredictRule, TopDownInitRule) #//////////////////////////////////////////////////////////// # Tree Edge #//////////////////////////////////////////////////////////// @python_2_unicode_compatible class FeatureTreeEdge(TreeEdge): """ A specialized tree edge that allows shared variable bindings between nonterminals on the left-hand side and right-hand side. Each ``FeatureTreeEdge`` contains a set of ``bindings``, i.e., a dictionary mapping from variables to values. If the edge is not complete, then these bindings are simply stored. However, if the edge is complete, then the constructor applies these bindings to every nonterminal in the edge whose symbol implements the interface ``SubstituteBindingsI``. """ def __init__(self, span, lhs, rhs, dot=0, bindings=None): """ Construct a new edge. If the edge is incomplete (i.e., if ``dot<len(rhs)``), then store the bindings as-is. If the edge is complete (i.e., if ``dot==len(rhs)``), then apply the bindings to all nonterminals in ``lhs`` and ``rhs``, and then clear the bindings. See ``TreeEdge`` for a description of the other arguments. """ if bindings is None: bindings = {} # If the edge is complete, then substitute in the bindings, # and then throw them away. (If we didn't throw them away, we # might think that 2 complete edges are different just because # they have different bindings, even though all bindings have # already been applied.) if dot == len(rhs) and bindings: lhs = self._bind(lhs, bindings) rhs = [self._bind(elt, bindings) for elt in rhs] bindings = {} # Initialize the edge. TreeEdge.__init__(self, span, lhs, rhs, dot) self._bindings = bindings self._comparison_key = (self._comparison_key, tuple(sorted(bindings.items()))) @staticmethod def from_production(production, index): """ :return: A new ``TreeEdge`` formed from the given production. The new edge's left-hand side and right-hand side will be taken from ``production``; its span will be ``(index,index)``; and its dot position will be ``0``. :rtype: TreeEdge """ return FeatureTreeEdge(span=(index, index), lhs=production.lhs(), rhs=production.rhs(), dot=0) def move_dot_forward(self, new_end, bindings=None): """ :return: A new ``FeatureTreeEdge`` formed from this edge. The new edge's dot position is increased by ``1``, and its end index will be replaced by ``new_end``. :rtype: FeatureTreeEdge :param new_end: The new end index. :type new_end: int :param bindings: Bindings for the new edge. :type bindings: dict """ return FeatureTreeEdge(span=(self._span[0], new_end), lhs=self._lhs, rhs=self._rhs, dot=self._dot+1, bindings=bindings) def _bind(self, nt, bindings): if not isinstance(nt, FeatStructNonterminal): return nt return nt.substitute_bindings(bindings) def next_with_bindings(self): return self._bind(self.nextsym(), self._bindings) def bindings(self): """ Return a copy of this edge's bindings dictionary. """ return self._bindings.copy() def variables(self): """ :return: The set of variables used by this edge. :rtype: set(Variable) """ return find_variables([self._lhs] + list(self._rhs) + list(self._bindings.keys()) + list(self._bindings.values()), fs_class=FeatStruct) def __str__(self): if self.is_complete(): return TreeEdge.__unicode__(self) else: bindings = '{%s}' % ', '.join('%s: %r' % item for item in sorted(self._bindings.items())) return '%s %s' % (TreeEdge.__unicode__(self), bindings) #//////////////////////////////////////////////////////////// # A specialized Chart for feature grammars #//////////////////////////////////////////////////////////// # TODO: subsumes check when adding new edges class FeatureChart(Chart): """ A Chart for feature grammars. :see: ``Chart`` for more information. """ def select(self, **restrictions): """ Returns an iterator over the edges in this chart. See ``Chart.select`` for more information about the ``restrictions`` on the edges. """ # If there are no restrictions, then return all edges. if restrictions=={}: return iter(self._edges) # Find the index corresponding to the given restrictions. restr_keys = sorted(restrictions.keys()) restr_keys = tuple(restr_keys) # If it doesn't exist, then create it. if restr_keys not in self._indexes: self._add_index(restr_keys) vals = tuple(self._get_type_if_possible(restrictions[key]) for key in restr_keys) return iter(self._indexes[restr_keys].get(vals, [])) def _add_index(self, restr_keys): """ A helper function for ``select``, which creates a new index for a given set of attributes (aka restriction keys). """ # Make sure it's a valid index. for key in restr_keys: if not hasattr(EdgeI, key): raise ValueError('Bad restriction: %s' % key) # Create the index. index = self._indexes[restr_keys] = {} # Add all existing edges to the index. for edge in self._edges: vals = tuple(self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys) index.setdefault(vals, []).append(edge) def _register_with_indexes(self, edge): """ A helper function for ``insert``, which registers the new edge with all existing indexes. """ for (restr_keys, index) in self._indexes.items(): vals = tuple(self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys) index.setdefault(vals, []).append(edge) def _get_type_if_possible(self, item): """ Helper function which returns the ``TYPE`` feature of the ``item``, if it exists, otherwise it returns the ``item`` itself """ if isinstance(item, dict) and TYPE in item: return item[TYPE] else: return item def parses(self, start, tree_class=Tree): for edge in self.select(start=0, end=self._num_leaves): if ((isinstance(edge, FeatureTreeEdge)) and (edge.lhs()[TYPE] == start[TYPE]) and (unify(edge.lhs(), start, rename_vars=True)) ): for tree in self.trees(edge, complete=True, tree_class=tree_class): yield tree #//////////////////////////////////////////////////////////// # Fundamental Rule #//////////////////////////////////////////////////////////// class FeatureFundamentalRule(FundamentalRule): """ A specialized version of the fundamental rule that operates on nonterminals whose symbols are ``FeatStructNonterminal``s. Rather tha simply comparing the nonterminals for equality, they are unified. Variable bindings from these unifications are collected and stored in the chart using a ``FeatureTreeEdge``. When a complete edge is generated, these bindings are applied to all nonterminals in the edge. The fundamental rule states that: - ``[A -> alpha \* B1 beta][i:j]`` - ``[B2 -> gamma \*][j:k]`` licenses the edge: - ``[A -> alpha B3 \* beta][i:j]`` assuming that B1 and B2 can be unified to generate B3. """ def apply(self, chart, grammar, left_edge, right_edge): # Make sure the rule is applicable. if not (left_edge.end() == right_edge.start() and left_edge.is_incomplete() and right_edge.is_complete() and isinstance(left_edge, FeatureTreeEdge)): return found = right_edge.lhs() nextsym = left_edge.nextsym() if isinstance(right_edge, FeatureTreeEdge): if not is_nonterminal(nextsym): return if left_edge.nextsym()[TYPE] != right_edge.lhs()[TYPE]: return # Create a copy of the bindings. bindings = left_edge.bindings() # We rename vars here, because we don't want variables # from the two different productions to match. found = found.rename_variables(used_vars=left_edge.variables()) # Unify B1 (left_edge.nextsym) with B2 (right_edge.lhs) to # generate B3 (result). result = unify(nextsym, found, bindings, rename_vars=False) if result is None: return else: if nextsym != found: return # Create a copy of the bindings. bindings = left_edge.bindings() # Construct the new edge. new_edge = left_edge.move_dot_forward(right_edge.end(), bindings) # Add it to the chart, with appropriate child pointers. if chart.insert_with_backpointer(new_edge, left_edge, right_edge): yield new_edge class FeatureSingleEdgeFundamentalRule(SingleEdgeFundamentalRule): """ A specialized version of the completer / single edge fundamental rule that operates on nonterminals whose symbols are ``FeatStructNonterminal``s. Rather than simply comparing the nonterminals for equality, they are unified. """ _fundamental_rule = FeatureFundamentalRule() def _apply_complete(self, chart, grammar, right_edge): fr = self._fundamental_rule for left_edge in chart.select(end=right_edge.start(), is_complete=False, nextsym=right_edge.lhs()): for new_edge in fr.apply(chart, grammar, left_edge, right_edge): yield new_edge def _apply_incomplete(self, chart, grammar, left_edge): fr = self._fundamental_rule for right_edge in chart.select(start=left_edge.end(), is_complete=True, lhs=left_edge.nextsym()): for new_edge in fr.apply(chart, grammar, left_edge, right_edge): yield new_edge #//////////////////////////////////////////////////////////// # Top-Down Prediction #//////////////////////////////////////////////////////////// class FeatureTopDownInitRule(TopDownInitRule): def apply(self, chart, grammar): for prod in grammar.productions(lhs=grammar.start()): new_edge = FeatureTreeEdge.from_production(prod, 0) if chart.insert(new_edge, ()): yield new_edge class FeatureTopDownPredictRule(CachedTopDownPredictRule): """ A specialized version of the (cached) top down predict rule that operates on nonterminals whose symbols are ``FeatStructNonterminal``s. Rather than simply comparing the nonterminals for equality, they are unified. The top down expand rule states that: - ``[A -> alpha \* B1 beta][i:j]`` licenses the edge: - ``[B2 -> \* gamma][j:j]`` for each grammar production ``B2 -> gamma``, assuming that B1 and B2 can be unified. """ def apply(self, chart, grammar, edge): if edge.is_complete(): return nextsym, index = edge.nextsym(), edge.end() if not is_nonterminal(nextsym): return # If we've already applied this rule to an edge with the same # next & end, and the chart & grammar have not changed, then # just return (no new edges to add). nextsym_with_bindings = edge.next_with_bindings() done = self._done.get((nextsym_with_bindings, index), (None, None)) if done[0] is chart and done[1] is grammar: return for prod in grammar.productions(lhs=nextsym): # If the left corner in the predicted production is # leaf, it must match with the input. if prod.rhs(): first = prod.rhs()[0] if is_terminal(first): if index >= chart.num_leaves(): continue if first != chart.leaf(index): continue # We rename vars here, because we don't want variables # from the two different productions to match. if unify(prod.lhs(), nextsym_with_bindings, rename_vars=True): new_edge = FeatureTreeEdge.from_production(prod, edge.end()) if chart.insert(new_edge, ()): yield new_edge # Record the fact that we've applied this rule. self._done[nextsym_with_bindings, index] = (chart, grammar) #//////////////////////////////////////////////////////////// # Bottom-Up Prediction #//////////////////////////////////////////////////////////// class FeatureBottomUpPredictRule(BottomUpPredictRule): def apply(self, chart, grammar, edge): if edge.is_incomplete(): return for prod in grammar.productions(rhs=edge.lhs()): if isinstance(edge, FeatureTreeEdge): _next = prod.rhs()[0] if not is_nonterminal(_next): continue new_edge = FeatureTreeEdge.from_production(prod, edge.start()) if chart.insert(new_edge, ()): yield new_edge class FeatureBottomUpPredictCombineRule(BottomUpPredictCombineRule): def apply(self, chart, grammar, edge): if edge.is_incomplete(): return found = edge.lhs() for prod in grammar.productions(rhs=found): bindings = {} if isinstance(edge, FeatureTreeEdge): _next = prod.rhs()[0] if not is_nonterminal(_next): continue # We rename vars here, because we don't want variables # from the two different productions to match. used_vars = find_variables((prod.lhs(),) + prod.rhs(), fs_class=FeatStruct) found = found.rename_variables(used_vars=used_vars) result = unify(_next, found, bindings, rename_vars=False) if result is None: continue new_edge = (FeatureTreeEdge.from_production(prod, edge.start()) .move_dot_forward(edge.end(), bindings)) if chart.insert(new_edge, (edge,)): yield new_edge class FeatureEmptyPredictRule(EmptyPredictRule): def apply(self, chart, grammar): for prod in grammar.productions(empty=True): for index in xrange(chart.num_leaves() + 1): new_edge = FeatureTreeEdge.from_production(prod, index) if chart.insert(new_edge, ()): yield new_edge #//////////////////////////////////////////////////////////// # Feature Chart Parser #//////////////////////////////////////////////////////////// TD_FEATURE_STRATEGY = [LeafInitRule(), FeatureTopDownInitRule(), FeatureTopDownPredictRule(), FeatureSingleEdgeFundamentalRule()] BU_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictRule(), FeatureSingleEdgeFundamentalRule()] BU_LC_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictCombineRule(), FeatureSingleEdgeFundamentalRule()] class FeatureChartParser(ChartParser): def __init__(self, grammar, strategy=BU_LC_FEATURE_STRATEGY, trace_chart_width=20, chart_class=FeatureChart, **parser_args): ChartParser.__init__(self, grammar, strategy=strategy, trace_chart_width=trace_chart_width, chart_class=chart_class, **parser_args) class FeatureTopDownChartParser(FeatureChartParser): def __init__(self, grammar, **parser_args): FeatureChartParser.__init__(self, grammar, TD_FEATURE_STRATEGY, **parser_args) class FeatureBottomUpChartParser(FeatureChartParser): def __init__(self, grammar, **parser_args): FeatureChartParser.__init__(self, grammar, BU_FEATURE_STRATEGY, **parser_args) class FeatureBottomUpLeftCornerChartParser(FeatureChartParser): def __init__(self, grammar, **parser_args): FeatureChartParser.__init__(self, grammar, BU_LC_FEATURE_STRATEGY, **parser_args) #//////////////////////////////////////////////////////////// # Instantiate Variable Chart #//////////////////////////////////////////////////////////// class InstantiateVarsChart(FeatureChart): """ A specialized chart that 'instantiates' variables whose names start with '@', by replacing them with unique new variables. In particular, whenever a complete edge is added to the chart, any variables in the edge's ``lhs`` whose names start with '@' will be replaced by unique new ``Variable``s. """ def __init__(self, tokens): FeatureChart.__init__(self, tokens) def initialize(self): self._instantiated = set() FeatureChart.initialize(self) def insert(self, edge, child_pointer_list): if edge in self._instantiated: return False self.instantiate_edge(edge) return FeatureChart.insert(self, edge, child_pointer_list) def instantiate_edge(self, edge): """ If the edge is a ``FeatureTreeEdge``, and it is complete, then instantiate all variables whose names start with '@', by replacing them with unique new variables. Note that instantiation is done in-place, since the parsing algorithms might already hold a reference to the edge for future use. """ # If the edge is a leaf, or is not complete, or is # already in the chart, then just return it as-is. if not isinstance(edge, FeatureTreeEdge): return if not edge.is_complete(): return if edge in self._edge_to_cpls: return # Get a list of variables that need to be instantiated. # If there are none, then return as-is. inst_vars = self.inst_vars(edge) if not inst_vars: return # Instantiate the edge! self._instantiated.add(edge) edge._lhs = edge.lhs().substitute_bindings(inst_vars) def inst_vars(self, edge): return dict((var, logic.unique_variable()) for var in edge.lhs().variables() if var.name.startswith('@')) #//////////////////////////////////////////////////////////// # Demo #//////////////////////////////////////////////////////////// def demo_grammar(): from nltk.grammar import FeatureGrammar return FeatureGrammar.fromstring(""" S -> NP VP PP -> Prep NP NP -> NP PP VP -> VP PP VP -> Verb NP VP -> Verb NP -> Det[pl=?x] Noun[pl=?x] NP -> "John" NP -> "I" Det -> "the" Det -> "my" Det[-pl] -> "a" Noun[-pl] -> "dog" Noun[-pl] -> "cookie" Verb -> "ate" Verb -> "saw" Prep -> "with" Prep -> "under" """) def demo(print_times=True, print_grammar=True, print_trees=True, print_sentence=True, trace=1, parser=FeatureChartParser, sent='I saw John with a dog with my cookie'): import sys, time print() grammar = demo_grammar() if print_grammar: print(grammar) print() print("*", parser.__name__) if print_sentence: print("Sentence:", sent) tokens = sent.split() t = time.clock() cp = parser(grammar, trace=trace) chart = cp.chart_parse(tokens) trees = list(chart.parses(grammar.start())) if print_times: print("Time: %s" % (time.clock() - t)) if print_trees: for tree in trees: print(tree) else: print("Nr trees:", len(trees)) def run_profile(): import profile profile.run('for i in range(1): demo()', '/tmp/profile.out') import pstats p = pstats.Stats('/tmp/profile.out') p.strip_dirs().sort_stats('time', 'cum').print_stats(60) p.strip_dirs().sort_stats('cum', 'time').print_stats(60) if __name__ == '__main__': from nltk.data import load demo() print() grammar = load('grammars/book_grammars/feat0.fcfg') cp = FeatureChartParser(grammar, trace=2) sent = 'Kim likes children' tokens = sent.split() trees = cp.parse(tokens) for tree in trees: print(tree)
38.29361
89
0.583619
ef797e8b7060ed81343a048dd7a40516ba42a305
4,915
py
Python
research/skip_thoughts/skip_thoughts/ops/gru_cell.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
1
2019-09-11T09:41:11.000Z
2019-09-11T09:41:11.000Z
research/skip_thoughts/skip_thoughts/ops/gru_cell.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
research/skip_thoughts/skip_thoughts/ops/gru_cell.py
vincentcheny/models
afb1a59fc1bc792ac72d1a3e22e2469020529788
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """GRU cell implementation for the skip-thought vectors model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf _layer_norm = tf.contrib.layers.layer_norm class LayerNormGRUCell(tf.contrib.rnn.RNNCell): """GRU cell with layer normalization. The layer normalization implementation is based on: https://arxiv.org/abs/1607.06450. "Layer Normalization" Jimmy Lei Ba, Jamie Ryan Kiros, Geoffrey E. Hinton """ def __init__(self, num_units, w_initializer, u_initializer, b_initializer, activation=tf.nn.tanh): """Initializes the cell. Args: num_units: Number of cell units. w_initializer: Initializer for the "W" (input) parameter matrices. u_initializer: Initializer for the "U" (recurrent) parameter matrices. b_initializer: Initializer for the "b" (bias) parameter vectors. activation: Cell activation function. """ self._num_units = num_units self._w_initializer = w_initializer self._u_initializer = u_initializer self._b_initializer = b_initializer self._activation = activation @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def _w_h_initializer(self): """Returns an initializer for the "W_h" parameter matrix. See equation (23) in the paper. The "W_h" parameter matrix is the concatenation of two parameter submatrices. The matrix returned is [U_z, U_r]. Returns: A Tensor with shape [num_units, 2 * num_units] as described above. """ def _initializer(shape, dtype=tf.float32, partition_info=None): num_units = self._num_units assert shape == [num_units, 2 * num_units] u_z = self._u_initializer([num_units, num_units], dtype, partition_info) u_r = self._u_initializer([num_units, num_units], dtype, partition_info) return tf.concat([u_z, u_r], 1) return _initializer def _w_x_initializer(self, input_dim): """Returns an initializer for the "W_x" parameter matrix. See equation (23) in the paper. The "W_x" parameter matrix is the concatenation of two parameter submatrices. The matrix returned is [W_z, W_r]. Args: input_dim: The dimension of the cell inputs. Returns: A Tensor with shape [input_dim, 2 * num_units] as described above. """ def _initializer(shape, dtype=tf.float32, partition_info=None): num_units = self._num_units assert shape == [input_dim, 2 * num_units] w_z = self._w_initializer([input_dim, num_units], dtype, partition_info) w_r = self._w_initializer([input_dim, num_units], dtype, partition_info) return tf.concat([w_z, w_r], 1) return _initializer def __call__(self, inputs, state, scope=None): """GRU cell with layer normalization.""" input_dim = inputs.get_shape().as_list()[1] num_units = self._num_units with tf.variable_scope(scope or "gru_cell"): with tf.variable_scope("gates"): w_h = tf.get_variable( "w_h", [num_units, 2 * num_units], initializer=self._w_h_initializer()) w_x = tf.get_variable( "w_x", [input_dim, 2 * num_units], initializer=self._w_x_initializer(input_dim)) z_and_r = (_layer_norm(tf.matmul(state, w_h), scope="layer_norm/w_h") + _layer_norm(tf.matmul(inputs, w_x), scope="layer_norm/w_x")) z, r = tf.split(tf.sigmoid(z_and_r), 2, 1) with tf.variable_scope("candidate"): w = tf.get_variable( "w", [input_dim, num_units], initializer=self._w_initializer) u = tf.get_variable( "u", [num_units, num_units], initializer=self._u_initializer) h_hat = (r * _layer_norm(tf.matmul(state, u), scope="layer_norm/u") + _layer_norm(tf.matmul(inputs, w), scope="layer_norm/w")) new_h = (1 - z) * state + z * self._activation(h_hat) return new_h, new_h
36.407407
81
0.652492
5732e5b11700273781b162c6f1181ff05ff3e977
2,630
py
Python
src/convert_sparse_to_patoh.py
mywoodstock/HAMPtOn
43565122a0009e6b33c7131072281df312cb488b
[ "MIT" ]
null
null
null
src/convert_sparse_to_patoh.py
mywoodstock/HAMPtOn
43565122a0009e6b33c7131072281df312cb488b
[ "MIT" ]
null
null
null
src/convert_sparse_to_patoh.py
mywoodstock/HAMPtOn
43565122a0009e6b33c7131072281df312cb488b
[ "MIT" ]
null
null
null
## # Project: # # File: convert_sparse_to_patoh.py # Created: Mar 12, 2014 # # Author: Abhinav Sarje <asarje@lbl.gov> # # Description: Convert sparse graph representation (row, col, val) into hypergraph representation # for input to PATOH. ## import sys, getopt def parse_arguments(argv): try: opts, args = getopt.getopt(argv, "i:o:") if len(opts) < 2: raise getopt.GetoptError("Give arguments") except getopt.GetoptError: print "convert_sparse_to_hyper.py -i <inputfile> -o <outputfile>" sys.exit(2) for opt, arg in opts: if opt in ("-i"): inputfile = arg elif opt in ("-o"): outputfile = arg else: print "wrong argument" sys.exit(2) return inputfile, outputfile def read_sparse_file(filename, data): ff = open(filename) head = ff.readline() header = "" while head.startswith("%"): header += head head = ff.readline() headwords = head.strip().split() if len(headwords) == 2: nodes = int(headwords[0]) edges = int(headwords[1]) elif len(headwords) == 3: nodes = int(headwords[0]) nodes2 = int(headwords[1]) edges = int(headwords[2]) if nodes != nodes2: print "error: input matrix is not square" ff.close() sys.exit(2) else: print "wrong header in input file" ff.close() sys.exit(2) count = 0 while True: line = ff.readline() if not line: break count += 1 words = line.strip().split() data += [(int(words[0]), int(words[1]), float(words[2]))] if count != edges: print "error: mismatch in number of edges and data in input file" ff.close() sys.exit(2) ff.close() return nodes, edges ## assuming symmetric data is already present def convert_sparse_to_hyper(sparse_data, hyper_data): pins = 0 for row, col, val in sparse_data: if col not in hyper_data: hyper_data[col] = [] hyper_data[col] += [row] pins += 1 return pins def write_hyper_file(filename, nnodes, nedges, hyper_data): ff = open(filename, 'w') head = "%d\t%d\t%d\t%d\n" % (1, nnodes, nnodes, nedges) ff.write(head) count = 1 for net, nodes in sorted(hyper_data.items()): if count != net: print "error: missing data?" ff.close() sys.exit(2) record = "" for node in nodes: record += "%d\t" % node record += "\n" ff.write(record) count += 1 ff.close() infile, outfile = parse_arguments(sys.argv[1:]) sparse_data = [] nnodes, nedges = read_sparse_file(infile, sparse_data) hyper_data = {} ## { net/hyperedge = [ nodeid, ... ], ... } npins = convert_sparse_to_hyper(sparse_data, hyper_data) print "nodes = %d, edges = %d, pins = %d" % (nnodes, nedges, npins) write_hyper_file(outfile, nnodes, npins, hyper_data)
24.12844
98
0.658555
2efef8ac56adcfa21664afd54711c87b6f2142c3
7,996
py
Python
detect.py
2aliveDeepfake/face_5landmark
2db0edce855deea145f4ac80b6166faa0df04d2e
[ "MIT" ]
null
null
null
detect.py
2aliveDeepfake/face_5landmark
2db0edce855deea145f4ac80b6166faa0df04d2e
[ "MIT" ]
null
null
null
detect.py
2aliveDeepfake/face_5landmark
2db0edce855deea145f4ac80b6166faa0df04d2e
[ "MIT" ]
null
null
null
from __future__ import print_function import os import argparse import torch import torch.backends.cudnn as cudnn import numpy as np import time from data import cfg_mnet, cfg_slim, cfg_rfb from layers.functions.prior_box import PriorBox from utils.nms.py_cpu_nms import py_cpu_nms import cv2 from models.retinaface import RetinaFace from models.net_slim import Slim from models.net_rfb import RFB from utils.box_utils import decode, decode_landm from utils.timer import Timer parser = argparse.ArgumentParser(description='Test') parser.add_argument('-m', '--trained_model', default='./weights/RBF_Final.pth', type=str, help='Trained state_dict file path to open') parser.add_argument('--network', default='RFB', help='Backbone network mobile0.25 or slim or RFB') parser.add_argument('--origin_size', default=True, type=str, help='Whether use origin image size to evaluate') parser.add_argument('--long_side', default=640, help='when origin_size is false, long_side is scaled size(320 or 640 for long side)') parser.add_argument('--save_folder', default='./widerface_evaluate/widerface_txt/', type=str, help='Dir to save txt results') parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference') parser.add_argument('--confidence_threshold', default=0.02, type=float, help='confidence_threshold') parser.add_argument('--top_k', default=5000, type=int, help='top_k') parser.add_argument('--nms_threshold', default=0.4, type=float, help='nms_threshold') parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k') parser.add_argument('--save_image', action="store_true", default=True, help='show detection results') parser.add_argument('--vis_thres', default=0.6, type=float, help='visualization_threshold') args = parser.parse_args() def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print('Missing keys:{}'.format(len(missing_keys))) print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) print('Used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(model, pretrained_path, load_to_cpu): print('Loading pretrained model from {}'.format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model if __name__ == '__main__': torch.set_grad_enabled(False) cfg = None net = None if args.network == "mobile0.25": cfg = cfg_mnet net = RetinaFace(cfg = cfg, phase = 'test') elif args.network == "slim": cfg = cfg_slim net = Slim(cfg = cfg, phase = 'test') elif args.network == "RFB": cfg = cfg_rfb net = RFB(cfg = cfg, phase = 'test') else: print("Don't support network!") exit(0) net = load_model(net, args.trained_model, args.cpu) net.eval() print('Finished loading model!') print(net) cudnn.benchmark = True device = torch.device("cpu" if args.cpu else "cuda") net = net.to(device) # testing begin for i in range(100): image_path = "./img/sample.jpg" img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR) img = np.float32(img_raw) # testing scale target_size = args.long_side max_size = args.long_side im_shape = img.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) resize = float(target_size) / float(im_size_min) # prevent bigger axis from being more than max_size: if np.round(resize * im_size_max) > max_size: resize = float(max_size) / float(im_size_max) if args.origin_size: resize = 1 if resize != 1: img = cv2.resize(img, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR) im_height, im_width, _ = img.shape scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) img -= (104, 117, 123) img = img.transpose(2, 0, 1) img = torch.from_numpy(img).unsqueeze(0) img = img.to(device) scale = scale.to(device) tic = time.time() loc, conf, landms = net(img) # forward pass print('net forward time: {:.4f}'.format(time.time() - tic)) priorbox = PriorBox(cfg, image_size=(im_height, im_width)) priors = priorbox.forward() priors = priors.to(device) prior_data = priors.data boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) boxes = boxes * scale / resize boxes = boxes.cpu().numpy() scores = conf.squeeze(0).data.cpu().numpy()[:, 1] landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance']) scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2]]) scale1 = scale1.to(device) landms = landms * scale1 / resize landms = landms.cpu().numpy() # ignore low scores inds = np.where(scores > args.confidence_threshold)[0] boxes = boxes[inds] landms = landms[inds] scores = scores[inds] # keep top-K before NMS order = scores.argsort()[::-1][:args.top_k] boxes = boxes[order] landms = landms[order] scores = scores[order] # do NMS dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) keep = py_cpu_nms(dets, args.nms_threshold) # keep = nms(dets, args.nms_threshold,force_cpu=args.cpu) dets = dets[keep, :] landms = landms[keep] # keep top-K faster NMS dets = dets[:args.keep_top_k, :] landms = landms[:args.keep_top_k, :] dets = np.concatenate((dets, landms), axis=1) # show image if args.save_image: for b in dets: if b[4] < args.vis_thres: continue text = "{:.4f}".format(b[4]) b = list(map(int, b)) cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2) cx = b[0] cy = b[1] + 12 cv2.putText(img_raw, text, (cx, cy), cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255)) # landms cv2.circle(img_raw, (b[5], b[6]), 1, (0, 0, 255), 4) cv2.circle(img_raw, (b[7], b[8]), 1, (0, 255, 255), 4) cv2.circle(img_raw, (b[9], b[10]), 1, (255, 0, 255), 4) cv2.circle(img_raw, (b[11], b[12]), 1, (0, 255, 0), 4) cv2.circle(img_raw, (b[13], b[14]), 1, (255, 0, 0), 4) # save image name = "test.jpg" cv2.imwrite(name, img_raw)
39.98
133
0.626188
55dd2677a81c9d281b79f1d5bdd38cd4fbfbb22c
301
py
Python
338.counting-bits.py
W-KE/Leetcode-Solutions
b6f40e45ddfa1a61a05f832b79581a34dab832cd
[ "MIT" ]
null
null
null
338.counting-bits.py
W-KE/Leetcode-Solutions
b6f40e45ddfa1a61a05f832b79581a34dab832cd
[ "MIT" ]
null
null
null
338.counting-bits.py
W-KE/Leetcode-Solutions
b6f40e45ddfa1a61a05f832b79581a34dab832cd
[ "MIT" ]
null
null
null
class Solution: def countBits(self, num: int) -> List[int]: result = [0] index = 0 for i in range(1, num + 1): if i != 0 and (i & (i - 1)) == 0: index = 0 result.append(1 + result[index]) index += 1 return result
27.363636
47
0.431894
8c5774e573f2ea46603649c12902671dc02cd451
10,875
py
Python
source/features/successor.py
mike-gimelfarb/deep-successor-features-for-transfer
42a547fdc6c9e34e2e92735d615cdb9db0059aee
[ "MIT" ]
13
2021-04-24T23:21:09.000Z
2022-03-23T06:23:51.000Z
source/features/successor.py
mike-gimelfarb/successor-features-for-transfer
42a547fdc6c9e34e2e92735d615cdb9db0059aee
[ "MIT" ]
null
null
null
source/features/successor.py
mike-gimelfarb/successor-features-for-transfer
42a547fdc6c9e34e2e92735d615cdb9db0059aee
[ "MIT" ]
3
2021-02-20T09:21:21.000Z
2021-03-29T05:38:54.000Z
# -*- coding: UTF-8 -*- import numpy as np class SF: def __init__(self, learning_rate_w, *args, use_true_reward=False, **kwargs): """ Creates a new abstract successor feature representation. Parameters ---------- learning_rate_w : float the learning rate to use for learning the reward weights using gradient descent use_true_reward : boolean whether or not to use the true reward weights from the environment, or learn them using gradient descent """ self.alpha_w = learning_rate_w self.use_true_reward = use_true_reward if len(args) != 0 or len(kwargs) != 0: print(self.__class__.__name__ + ' ignoring parameters ' + str(args) + ' and ' + str(kwargs)) def build_successor(self, task, source=None): """ Builds a new successor feature map for the specified task. This method should not be called directly. Instead, add_task should be called instead. Parameters ---------- task : Task a new MDP environment for which to learn successor features source : integer if specified and not None, the parameters of the successor features for the task at the source index should be copied to the new successor features, as suggested in [1] Returns ------- object : the successor feature representation for the new task, which can be a Keras model, a lookup table (dictionary) or another learning representation """ raise NotImplementedError def get_successor(self, state, policy_index): """ Evaluates the successor features in given states for the specified task. Parameters ---------- state : object a state or collection of states of the MDP policy_index : integer the index of the task whose successor features to evaluate Returns ------- np.ndarray : the evaluation of the successor features, which is of shape [n_batch, n_actions, n_features], where n_batch is the number of states in the state argument n_actions is the number of actions of the MDP n_features is the number of features in the SF representation """ raise NotImplementedError def get_successors(self, state): """ Evaluates the successor features in given states for all tasks. Parameters ---------- state : object a state or collection of states of the MDP Returns ------- np.ndarray : the evaluation of the successor features, which is of shape [n_batch, n_tasks, n_actions, n_features], where n_batch is the number of states in the state argument n_tasks is the number of tasks n_actions is the number of actions of the MDP n_features is the number of features in the SF representation """ raise NotImplementedError def update_successor(self, transitions, policy_index): """ Updates the successor representation by training it on the given transition. Parameters ---------- transitions : object collection of transitions policy_index : integer the index of the task whose successor features to update """ raise NotImplementedError def reset(self): """ Removes all trained successor feature representations from the current object, all learned rewards, and all task information. """ self.n_tasks = 0 self.psi = [] self.true_w = [] self.fit_w = [] self.gpi_counters = [] def add_training_task(self, task, source=None): """ Adds a successor feature representation for the specified task. Parameters ---------- task : Task a new MDP environment for which to learn successor features source : integer if specified and not None, the parameters of the successor features for the task at the source index should be copied to the new successor features, as suggested in [1] """ # add successor features to the library self.psi.append(self.build_successor(task, source)) self.n_tasks = len(self.psi) # build new reward function true_w = task.get_w() self.true_w.append(true_w) if self.use_true_reward: fit_w = true_w else: n_features = task.feature_dim() fit_w = np.random.uniform(low=-0.01, high=0.01, size=(n_features, 1)) self.fit_w.append(fit_w) # add statistics for i in range(len(self.gpi_counters)): self.gpi_counters[i] = np.append(self.gpi_counters[i], 0) self.gpi_counters.append(np.zeros((self.n_tasks,), dtype=int)) def update_reward(self, phi, r, task_index, exact=False): """ Updates the reward parameters for the given task based on the observed reward sample from the environment. Parameters ---------- phi : np.ndarray the state features r : float the observed reward from the MDP task_index : integer the index of the task from which this reward was sampled exact : boolean if True, validates the true reward from the environment and the linear representation """ # update reward using linear regression w = self.fit_w[task_index] phi = phi.reshape(w.shape) r_fit = np.sum(phi * w) self.fit_w[task_index] = w + self.alpha_w * (r - r_fit) * phi # validate reward r_true = np.sum(phi * self.true_w[task_index]) if exact and not np.allclose(r, r_true): raise Exception('sampled reward {} != linear reward {} - please check task {}!'.format( r, r_true, task_index)) def GPE_w(self, state, policy_index, w): """ Implements generalized policy evaluation according to [1]. In summary, this uses the learned reward parameters of one task and successor features of a policy to estimate the Q-values of the policy if it were executed in that task. Parameters ---------- state : object a state or collection of states of the MDP policy_index : integer the index of the task whose policy to evaluate w : numpy array reward parameters of the task in which to evaluate the policy Returns ------- np.ndarray : the estimated Q-values of shape [n_batch, n_actions], where n_batch is the number of states in the state argument n_actions is the number of actions in the MDP """ psi = self.get_successor(state, policy_index) q = psi @ w # shape (n_batch, n_actions) return q def GPE(self, state, policy_index, task_index): """ Implements generalized policy evaluation according to [1]. In summary, this uses the learned reward parameters of one task and successor features of a policy to estimate the Q-values of the policy if it were executed in that task. Parameters ---------- state : object a state or collection of states of the MDP policy_index : integer the index of the task whose policy to evaluate task_index : integer the index of the task (e.g. reward) to use to evaluate the policy Returns ------- np.ndarray : the estimated Q-values of shpae [n_batch, n_actions], where n_batch is the number of states in the state argument n_actions is the number of actions in the MDP """ return self.GPE_w(state, policy_index, self.fit_w[task_index]) def GPI_w(self, state, w): """ Implements generalized policy improvement according to [1]. Parameters ---------- state : object a state or collection of states of the MDP w : numpy array the reward parameters of the task to control Returns ------- np.ndarray : the maximum Q-values computed by GPI for selecting actions of shape [n_batch, n_tasks, n_actions], where: n_batch is the number of states in the state argument n_tasks is the number of tasks n_actions is the number of actions in the MDP np.ndarray : the tasks that are active in each state of state_batch in GPi """ psi = self.get_successors(state) q = (psi @ w)[:,:,:, 0] # shape (n_batch, n_tasks, n_actions) task = np.squeeze(np.argmax(np.max(q, axis=2), axis=1)) # shape (n_batch,) return q, task def GPI(self, state, task_index, update_counters=False): """ Implements generalized policy improvement according to [1]. Parameters ---------- state : object a state or collection of states of the MDP task_index : integer the index of the task in which the GPI action will be used update_counters : boolean whether or not to keep track of which policies are active in GPI Returns ------- np.ndarray : the maximum Q-values computed by GPI for selecting actions of shape [n_batch, n_tasks, n_actions], where: n_batch is the number of states in the state argument n_tasks is the number of tasks n_actions is the number of actions in the MDP np.ndarray : the tasks that are active in each state of state_batch in GPi """ q, task = self.GPI_w(state, self.fit_w[task_index]) if update_counters: self.gpi_counters[task_index][task] += 1 return q, task def GPI_usage_percent(self, task_index): """ Counts the number of times that actions were transferred from other tasks. Parameters ---------- task_index : integer the index of the task Returns ------- float : the (normalized) number of actions that were transferred from other tasks in GPi. """ counts = self.gpi_counters[task_index] return 1. - (float(counts[task_index]) / np.sum(counts))
38.024476
109
0.587402
4fc8f391ff73f05a9e559fdf9f32a3eeb842955c
22,977
py
Python
google/cloud/recommender_v1beta1/services/recommender/transports/grpc_asyncio.py
googleapis/python-recommender
fc710260170dd6ec0b0547f5e2827e12b5b624a9
[ "Apache-2.0" ]
10
2020-09-19T18:33:54.000Z
2022-03-31T04:20:57.000Z
google/cloud/recommender_v1beta1/services/recommender/transports/grpc_asyncio.py
googleapis/python-recommender
fc710260170dd6ec0b0547f5e2827e12b5b624a9
[ "Apache-2.0" ]
50
2020-02-05T13:32:44.000Z
2022-03-07T16:59:56.000Z
google/cloud/recommender_v1beta1/services/recommender/transports/grpc_asyncio.py
googleapis/python-recommender
fc710260170dd6ec0b0547f5e2827e12b5b624a9
[ "Apache-2.0" ]
9
2020-02-08T13:52:09.000Z
2022-01-29T08:13:17.000Z
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Awaitable, Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import gapic_v1 from google.api_core import grpc_helpers_async from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from grpc.experimental import aio # type: ignore from google.cloud.recommender_v1beta1.types import insight from google.cloud.recommender_v1beta1.types import recommendation from google.cloud.recommender_v1beta1.types import recommender_service from .base import RecommenderTransport, DEFAULT_CLIENT_INFO from .grpc import RecommenderGrpcTransport class RecommenderGrpcAsyncIOTransport(RecommenderTransport): """gRPC AsyncIO backend transport for Recommender. Provides insights and recommendations for cloud customers for various categories like performance optimization, cost savings, reliability, feature discovery, etc. Insights and recommendations are generated automatically based on analysis of user resources, configuration and monitoring metrics. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _grpc_channel: aio.Channel _stubs: Dict[str, Callable] = {} @classmethod def create_channel( cls, host: str = "recommender.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> aio.Channel: """Create and return a gRPC AsyncIO channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: aio.Channel: A gRPC AsyncIO channel object. """ return grpc_helpers_async.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) def __init__( self, *, host: str = "recommender.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. channel (Optional[aio.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @property def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel @property def list_insights( self, ) -> Callable[ [recommender_service.ListInsightsRequest], Awaitable[recommender_service.ListInsightsResponse], ]: r"""Return a callable for the list insights method over gRPC. Lists insights for a Cloud project. Requires the recommender.*.list IAM permission for the specified insight type. Returns: Callable[[~.ListInsightsRequest], Awaitable[~.ListInsightsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_insights" not in self._stubs: self._stubs["list_insights"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/ListInsights", request_serializer=recommender_service.ListInsightsRequest.serialize, response_deserializer=recommender_service.ListInsightsResponse.deserialize, ) return self._stubs["list_insights"] @property def get_insight( self, ) -> Callable[[recommender_service.GetInsightRequest], Awaitable[insight.Insight]]: r"""Return a callable for the get insight method over gRPC. Gets the requested insight. Requires the recommender.*.get IAM permission for the specified insight type. Returns: Callable[[~.GetInsightRequest], Awaitable[~.Insight]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_insight" not in self._stubs: self._stubs["get_insight"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/GetInsight", request_serializer=recommender_service.GetInsightRequest.serialize, response_deserializer=insight.Insight.deserialize, ) return self._stubs["get_insight"] @property def mark_insight_accepted( self, ) -> Callable[ [recommender_service.MarkInsightAcceptedRequest], Awaitable[insight.Insight] ]: r"""Return a callable for the mark insight accepted method over gRPC. Marks the Insight State as Accepted. Users can use this method to indicate to the Recommender API that they have applied some action based on the insight. This stops the insight content from being updated. MarkInsightAccepted can be applied to insights in ACTIVE state. Requires the recommender.*.update IAM permission for the specified insight. Returns: Callable[[~.MarkInsightAcceptedRequest], Awaitable[~.Insight]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mark_insight_accepted" not in self._stubs: self._stubs["mark_insight_accepted"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/MarkInsightAccepted", request_serializer=recommender_service.MarkInsightAcceptedRequest.serialize, response_deserializer=insight.Insight.deserialize, ) return self._stubs["mark_insight_accepted"] @property def list_recommendations( self, ) -> Callable[ [recommender_service.ListRecommendationsRequest], Awaitable[recommender_service.ListRecommendationsResponse], ]: r"""Return a callable for the list recommendations method over gRPC. Lists recommendations for a Cloud project. Requires the recommender.*.list IAM permission for the specified recommender. Returns: Callable[[~.ListRecommendationsRequest], Awaitable[~.ListRecommendationsResponse]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_recommendations" not in self._stubs: self._stubs["list_recommendations"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/ListRecommendations", request_serializer=recommender_service.ListRecommendationsRequest.serialize, response_deserializer=recommender_service.ListRecommendationsResponse.deserialize, ) return self._stubs["list_recommendations"] @property def get_recommendation( self, ) -> Callable[ [recommender_service.GetRecommendationRequest], Awaitable[recommendation.Recommendation], ]: r"""Return a callable for the get recommendation method over gRPC. Gets the requested recommendation. Requires the recommender.*.get IAM permission for the specified recommender. Returns: Callable[[~.GetRecommendationRequest], Awaitable[~.Recommendation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_recommendation" not in self._stubs: self._stubs["get_recommendation"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/GetRecommendation", request_serializer=recommender_service.GetRecommendationRequest.serialize, response_deserializer=recommendation.Recommendation.deserialize, ) return self._stubs["get_recommendation"] @property def mark_recommendation_claimed( self, ) -> Callable[ [recommender_service.MarkRecommendationClaimedRequest], Awaitable[recommendation.Recommendation], ]: r"""Return a callable for the mark recommendation claimed method over gRPC. Marks the Recommendation State as Claimed. Users can use this method to indicate to the Recommender API that they are starting to apply the recommendation themselves. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationClaimed can be applied to recommendations in CLAIMED or ACTIVE state. Requires the recommender.*.update IAM permission for the specified recommender. Returns: Callable[[~.MarkRecommendationClaimedRequest], Awaitable[~.Recommendation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mark_recommendation_claimed" not in self._stubs: self._stubs["mark_recommendation_claimed"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/MarkRecommendationClaimed", request_serializer=recommender_service.MarkRecommendationClaimedRequest.serialize, response_deserializer=recommendation.Recommendation.deserialize, ) return self._stubs["mark_recommendation_claimed"] @property def mark_recommendation_succeeded( self, ) -> Callable[ [recommender_service.MarkRecommendationSucceededRequest], Awaitable[recommendation.Recommendation], ]: r"""Return a callable for the mark recommendation succeeded method over gRPC. Marks the Recommendation State as Succeeded. Users can use this method to indicate to the Recommender API that they have applied the recommendation themselves, and the operation was successful. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationSucceeded can be applied to recommendations in ACTIVE, CLAIMED, SUCCEEDED, or FAILED state. Requires the recommender.*.update IAM permission for the specified recommender. Returns: Callable[[~.MarkRecommendationSucceededRequest], Awaitable[~.Recommendation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mark_recommendation_succeeded" not in self._stubs: self._stubs[ "mark_recommendation_succeeded" ] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/MarkRecommendationSucceeded", request_serializer=recommender_service.MarkRecommendationSucceededRequest.serialize, response_deserializer=recommendation.Recommendation.deserialize, ) return self._stubs["mark_recommendation_succeeded"] @property def mark_recommendation_failed( self, ) -> Callable[ [recommender_service.MarkRecommendationFailedRequest], Awaitable[recommendation.Recommendation], ]: r"""Return a callable for the mark recommendation failed method over gRPC. Marks the Recommendation State as Failed. Users can use this method to indicate to the Recommender API that they have applied the recommendation themselves, and the operation failed. This stops the recommendation content from being updated. Associated insights are frozen and placed in the ACCEPTED state. MarkRecommendationFailed can be applied to recommendations in ACTIVE, CLAIMED, SUCCEEDED, or FAILED state. Requires the recommender.*.update IAM permission for the specified recommender. Returns: Callable[[~.MarkRecommendationFailedRequest], Awaitable[~.Recommendation]]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mark_recommendation_failed" not in self._stubs: self._stubs["mark_recommendation_failed"] = self.grpc_channel.unary_unary( "/google.cloud.recommender.v1beta1.Recommender/MarkRecommendationFailed", request_serializer=recommender_service.MarkRecommendationFailedRequest.serialize, response_deserializer=recommendation.Recommendation.deserialize, ) return self._stubs["mark_recommendation_failed"] def close(self): return self.grpc_channel.close() __all__ = ("RecommenderGrpcAsyncIOTransport",)
44.789474
100
0.654742
2522f3fb226e4b3936f90fd9fb681acc7a6de362
1,462
py
Python
cvat/apps/dataset_manager/formats/camvid.py
gitibharatibiswal/cvat-adas-team
a33c1ae38d79ed6e35a61a97b74cd2978853e4c2
[ "Intel", "MIT" ]
2
2022-03-13T03:45:15.000Z
2022-03-13T03:46:19.000Z
cvat/apps/dataset_manager/formats/camvid.py
gitibharatibiswal/cvat-adas-team
a33c1ae38d79ed6e35a61a97b74cd2978853e4c2
[ "Intel", "MIT" ]
3
2021-03-02T17:07:15.000Z
2021-04-14T13:33:20.000Z
cvat/apps/dataset_manager/formats/camvid.py
gitibharatibiswal/cvat-adas-team
a33c1ae38d79ed6e35a61a97b74cd2978853e4c2
[ "Intel", "MIT" ]
41
2020-12-16T05:52:41.000Z
2021-09-23T08:45:16.000Z
# Copyright (C) 2020 Intel Corporation # # SPDX-License-Identifier: MIT from tempfile import TemporaryDirectory from datumaro.components.dataset import Dataset from pyunpack import Archive from cvat.apps.dataset_manager.bindings import (GetCVATDataExtractor, import_dm_annotations) from cvat.apps.dataset_manager.util import make_zip_archive from .registry import dm_env, exporter, importer from .utils import make_colormap @exporter(name='CamVid', ext='ZIP', version='1.0') def _export(dst_file, instance_data, save_images=False): dataset = Dataset.from_extractors(GetCVATDataExtractor( instance_data, include_images=save_images), env=dm_env) dataset.transform('polygons_to_masks') dataset.transform('boxes_to_masks') dataset.transform('merge_instance_segments') label_map = make_colormap(instance_data) with TemporaryDirectory() as temp_dir: dataset.export(temp_dir, 'camvid', save_images=save_images, apply_colormap=True, label_map={label: label_map[label][0] for label in label_map}) make_zip_archive(temp_dir, dst_file) @importer(name='CamVid', ext='ZIP', version='1.0') def _import(src_file, instance_data): with TemporaryDirectory() as tmp_dir: Archive(src_file.name).extractall(tmp_dir) dataset = Dataset.import_from(tmp_dir, 'camvid', env=dm_env) dataset.transform('masks_to_polygons') import_dm_annotations(dataset, instance_data)
35.658537
74
0.75513
d75e9993aa570368d03533d540203ecee156ca81
895
py
Python
constant_listener/constant_listener.py
MattWis/constant_listener
0c0b32101041c4263114cd9e3306a62d20eedecb
[ "MIT" ]
1
2015-05-07T08:24:03.000Z
2015-05-07T08:24:03.000Z
constant_listener/constant_listener.py
MattWis/constant_listener
0c0b32101041c4263114cd9e3306a62d20eedecb
[ "MIT" ]
null
null
null
constant_listener/constant_listener.py
MattWis/constant_listener
0c0b32101041c4263114cd9e3306a62d20eedecb
[ "MIT" ]
null
null
null
from thread import start_new_thread from pyaudio import PyAudio from pyspeech import best_speech_result, put_audio_data_in_queue from time import sleep import Queue def background_stt(queue, profile, stt_type = 'google'): start_new_thread(_spawn_listeners, (queue, profile, stt_type,)) def _spawn_listeners(queue, profile, stt_type): p = PyAudio() audio_data_queue = Queue.Queue() start_new_thread(put_audio_data_in_queue, (p, audio_data_queue,)) while True: _listen(p, queue, audio_data_queue, profile, stt_type) def _listen(pyaudio, queue_out, queue_in, profile, stt_type): output = best_speech_result(pyaudio, queue_in.get(), profile, stt_type) if output != "": queue_out.put(output) if __name__ == "__main__": import yaml profile = yaml.load(open("profile.yml").read()) q = Queue.Queue() background_stt(q, profile, 'att') while True: print(q.get())
28.870968
73
0.747486
9f74533db45138669c45af097b2b25e26d5fa0a0
2,689
py
Python
tests/test_class_oelint_vars_pnbpnusage.py
skycaptain/oelint-adv
ff67d3149cf8b1de2b0b2d158a68f4e2cf5e9e46
[ "BSD-2-Clause" ]
null
null
null
tests/test_class_oelint_vars_pnbpnusage.py
skycaptain/oelint-adv
ff67d3149cf8b1de2b0b2d158a68f4e2cf5e9e46
[ "BSD-2-Clause" ]
null
null
null
tests/test_class_oelint_vars_pnbpnusage.py
skycaptain/oelint-adv
ff67d3149cf8b1de2b0b2d158a68f4e2cf5e9e46
[ "BSD-2-Clause" ]
null
null
null
import pytest from .base import TestBaseClass class TestClassOelintVarsPNBPNUsage(TestBaseClass): @pytest.mark.parametrize('id', ['oelint.vars.pnbpnusage']) @pytest.mark.parametrize('occurrence', [1]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': 'SRC_URI = "file://${PN}.patch"', }, { 'oelint_adv_test.bb': 'SRC_URI = "git://${PN}.com/${PN}.git"', }, { 'oelint_adv_test.bb': 'SRC_URI = "https://foo.org/${PN}"', }, ], ) def test_bad(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence) @pytest.mark.parametrize('id', ['oelint.vars.pnbpnusage']) @pytest.mark.parametrize('occurrence', [0]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': 'SRC_URI = "file://${BPN}.patch"', }, { 'oelint_adv_test.bb': 'SRC_URI = "git://${BPN}.com/${BPN}.git"', }, { 'oelint_adv_test.bb': 'SRC_URI = "https://foo.org/${BPN}"', }, { 'oelint_adv_test.bb': 'S = "${WORDKIR}/${BPN}"', }, { 'oelint_adv_test.bb': 'SRC_URI = "git://foo.org/baz.git;name=${PN}-super"', }, { 'oelint_adv_test.bb': 'SRC_URI = "git://foo.org/${BPN}.git;name=${PN}-ultra"', }, ], ) def test_good(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence)
44.081967
93
0.29788
364ecfe168695d0b4e872c8185c35200e3e99f54
4,988
py
Python
stubs.min/Autodesk/Revit/DB/__init___parts/ReferencePoint.py
denfromufa/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
1
2017-07-07T11:15:45.000Z
2017-07-07T11:15:45.000Z
stubs.min/Autodesk/Revit/DB/__init___parts/ReferencePoint.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
stubs.min/Autodesk/Revit/DB/__init___parts/ReferencePoint.py
hdm-dt-fb/ironpython-stubs
4d2b405eda3ceed186e8adca55dd97c332c6f49d
[ "MIT" ]
null
null
null
class ReferencePoint(Element,IDisposable): """ A reference point in an Autodesk Revit family. """ def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetCoordinatePlaneReferenceXY(self): """ GetCoordinatePlaneReferenceXY(self: ReferencePoint) -> Reference A reference for the XY plane of the coordinate system. """ pass def GetCoordinatePlaneReferenceXZ(self): """ GetCoordinatePlaneReferenceXZ(self: ReferencePoint) -> Reference A reference for the XZ plane of the coordinate system. """ pass def GetCoordinatePlaneReferenceYZ(self): """ GetCoordinatePlaneReferenceYZ(self: ReferencePoint) -> Reference A reference for the YZ plane of the coordinate system. """ pass def GetCoordinateSystem(self): """ GetCoordinateSystem(self: ReferencePoint) -> Transform The position and orientation of the ReferencePoint. """ pass def GetHubId(self): """ GetHubId(self: ReferencePoint) -> ElementId Id of associated Hub. """ pass def GetInterpolatingCurves(self): """ GetInterpolatingCurves(self: ReferencePoint) -> CurveByPointsArray The set of CurveByPoints elements that interpolate a ReferencePoint. """ pass def GetPointElementReference(self): """ GetPointElementReference(self: ReferencePoint) -> PointElementReference Retrieve a copy of the rule that computes the location of the ReferencePoint relative to other elements in the document. Returns: A PointElementReference object,or ll if the ReferencePoint does not have a reference. """ pass def GetVisibility(self): """ GetVisibility(self: ReferencePoint) -> FamilyElementVisibility Gets the visibility for the point. Returns: A copy of visibility settings for the ReferencePoint. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def SetCoordinateSystem(self,coordinateSystem): """ SetCoordinateSystem(self: ReferencePoint,coordinateSystem: Transform) The position and orientation of the ReferencePoint. """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def SetPointElementReference(self,pointElementReference): """ SetPointElementReference(self: ReferencePoint,pointElementReference: PointElementReference) Change the rule for computing the location of the ReferencePoint relative to other elements in the document. pointElementReference: An object specifying a rule for the location and orientation of a ReferencePoint. (Note: The ReferencePoint object does not store the pointElementReference object after this call.) """ pass def SetVisibility(self,visibility): """ SetVisibility(self: ReferencePoint,visibility: FamilyElementVisibility) Sets the visibility for the point. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass CoordinatePlaneVisibility=property(lambda self: object(),lambda self,v: None,lambda self: None) """Visibility settings for the coordinate reference planes. Get: CoordinatePlaneVisibility(self: ReferencePoint) -> CoordinatePlaneVisibility Set: CoordinatePlaneVisibility(self: ReferencePoint)=value """ Name=property(lambda self: object(),lambda self,v: None,lambda self: None) """Get: Name(self: ReferencePoint) -> str Set: Name(self: ReferencePoint)=value """ Position=property(lambda self: object(),lambda self,v: None,lambda self: None) """The position of the ReferencePoint. Get: Position(self: ReferencePoint) -> XYZ Set: Position(self: ReferencePoint)=value """ ShowNormalReferencePlaneOnly=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether all three coordinate planes are shown,or only the normal (XY) plane. Get: ShowNormalReferencePlaneOnly(self: ReferencePoint) -> bool Set: ShowNormalReferencePlaneOnly(self: ReferencePoint)=value """ Visible=property(lambda self: object(),lambda self,v: None,lambda self: None) """Whether the point is visible when the family is loaded into a project. Get: Visible(self: ReferencePoint) -> bool Set: Visible(self: ReferencePoint)=value """
30.601227
215
0.708901
ea03620c8e0b9b184e04b87fbe38324d87649c06
1,360
py
Python
applications/FluidDynamicsApplication/python_scripts/apply_embedded_nodes_initialization_process.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
778
2017-01-27T16:29:17.000Z
2022-03-30T03:01:51.000Z
applications/FluidDynamicsApplication/python_scripts/apply_embedded_nodes_initialization_process.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
6,634
2017-01-15T22:56:13.000Z
2022-03-31T15:03:36.000Z
applications/FluidDynamicsApplication/python_scripts/apply_embedded_nodes_initialization_process.py
lkusch/Kratos
e8072d8e24ab6f312765185b19d439f01ab7b27b
[ "BSD-4-Clause" ]
224
2017-02-07T14:12:49.000Z
2022-03-06T23:09:34.000Z
import KratosMultiphysics import KratosMultiphysics.FluidDynamicsApplication as KratosFluid def Factory(settings, Model): if(type(settings) != KratosMultiphysics.Parameters): raise Exception("expected input shall be a Parameters object, encapsulating a json string") return ApplyEmbeddedNodesInitializationProcess(Model, settings["Parameters"]) class ApplyEmbeddedNodesInitializationProcess(KratosMultiphysics.Process): def __init__(self, Model, settings): KratosMultiphysics.Process.__init__(self) default_parameters = KratosMultiphysics.Parameters( """ { "mesh_id" : 0, "model_part_name" : "CHOOSE_FLUID_MODELPART_NAME", "max_iteration" : 10 } """ ) settings.ValidateAndAssignDefaults(default_parameters); self.fluid_model_part = Model[settings["model_part_name"].GetString()] self.max_iteration = settings["max_iteration"].GetInt() self.EmbeddedNodesInitializationProcess = KratosFluid.EmbeddedNodesInitializationProcess(self.fluid_model_part, self.max_iteration) def ExecuteInitializeSolutionStep(self): self.EmbeddedNodesInitializationProcess.ExecuteInitializeSolutionStep()
41.212121
119
0.671324
41f58e8339ae3026d9471e8bfd3a068315cbadee
1,913
py
Python
examples/16_device_queue_event.py
cedorman/depthai-python
e6783a2b8c880db59fa866facf4448bfc0b5270c
[ "MIT" ]
null
null
null
examples/16_device_queue_event.py
cedorman/depthai-python
e6783a2b8c880db59fa866facf4448bfc0b5270c
[ "MIT" ]
null
null
null
examples/16_device_queue_event.py
cedorman/depthai-python
e6783a2b8c880db59fa866facf4448bfc0b5270c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # This example demonstrates use of queue events to block a thread until a message # arrives to any (of the specified) queue import cv2 import depthai as dai import numpy as np # Start defining a pipeline pipeline = dai.Pipeline() # Create Color and Mono cameras cam_rgb = pipeline.createColorCamera() cam_mono = pipeline.createMonoCamera() # Create separate streams for them xout_rgb = pipeline.createXLinkOut() xout_mono = pipeline.createXLinkOut() # Set properties xout_rgb.setStreamName("rgb") xout_mono.setStreamName("mono") # Cap color camera to 5 fps cam_rgb.setFps(5) cam_rgb.setInterleaved(True) cam_rgb.setPreviewSize(300, 300) # Connect cam_rgb.preview.link(xout_rgb.input) cam_mono.out.link(xout_mono.input) # Pipeline defined, now the device is connected to with dai.Device(pipeline) as device: # Start pipeline device.startPipeline() # Clear queue events device.getQueueEvents() while True: # Block until a message arrives to any of the specified queues queueName = device.getQueueEvent(("rgb", "mono")) # try getting that message from queue with name specified by the event # Note: number of events doesn't necessarily match number of messages in queues # because queues can be set to non-blocking (overwriting) behavior message = device.getOutputQueue(queueName).tryGet() # process separately if queueName == "rgb" and type(message) == dai.ImgFrame : frame_rgb = message.getData().reshape(message.getHeight(), message.getWidth(), 3) frame_rgb = np.ascontiguousarray(frame_rgb) cv2.imshow("rgb", frame_rgb) elif queueName == "mono" and type(message) == dai.ImgFrame : cv2.imshow("mono", message.getData().reshape((message.getHeight(), message.getWidth()))) if cv2.waitKey(1) == ord('q'): break
31.883333
100
0.701516
0e2cbac2a840bf09877d6bac12a26daa1baf3610
883
py
Python
pytorch_ssd/args.py
piotlinski/ssd
169e14fb949f476626617364e5a540249addf75a
[ "MIT" ]
null
null
null
pytorch_ssd/args.py
piotlinski/ssd
169e14fb949f476626617364e5a540249addf75a
[ "MIT" ]
null
null
null
pytorch_ssd/args.py
piotlinski/ssd
169e14fb949f476626617364e5a540249addf75a
[ "MIT" ]
null
null
null
"""Argument parsing utils.""" from argparse import ArgumentTypeError from ast import literal_eval from typing import Any, Tuple, Union def str2bool(value: Union[str, bool]) -> bool: """Convert input string to boolean.""" if isinstance(value, bool): return value if value.lower() in ("yes", "true", "t", "y", "1"): return True elif value.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError("Boolean value expected.") def comma_separated(value: str) -> Tuple[int, ...]: """Convert comma-separated values to tuple.""" converted = [int(v) for v in value.split(",") if v] return tuple(converted) def eq2kwargs(kwargs_str) -> Tuple[str, Any]: """Parse a key-value pair separated by '='.""" key, value = kwargs_str.split("=") return key.strip(), literal_eval(value.strip())
30.448276
58
0.631937
80671298e4ce38ef89be4ded0a458e72828bb239
7,964
py
Python
bin/icell8_stats.py
fls-bioinformatics-core/auto_process_ngs
1f07a08e14f118e6a61d3f37130515efc6049dd7
[ "AFL-3.0" ]
5
2017-01-31T21:37:09.000Z
2022-03-17T19:26:29.000Z
bin/icell8_stats.py
fls-bioinformatics-core/auto_process_ngs
1f07a08e14f118e6a61d3f37130515efc6049dd7
[ "AFL-3.0" ]
294
2015-08-14T09:00:30.000Z
2022-03-18T10:17:05.000Z
bin/icell8_stats.py
fls-bioinformatics-core/auto_process_ngs
1f07a08e14f118e6a61d3f37130515efc6049dd7
[ "AFL-3.0" ]
7
2017-11-23T07:52:21.000Z
2020-07-15T10:12:05.000Z
#!/usr/bin/env python # # icell8_stats.py: collects stats from fastqs from Wafergen iCell8 # Copyright (C) University of Manchester 2017 Peter Briggs # """ icell8_stats.py Utility to collect statistics across one or more FASTQ pairs from Wafergen iCell8. """ ###################################################################### # Imports ###################################################################### import sys import os import argparse import logging import tempfile import shutil import time from bcftbx.TabFile import TabFile from auto_process_ngs.fastq_utils import pair_fastqs from auto_process_ngs.icell8.utils import ICell8WellList from auto_process_ngs.icell8.utils import ICell8Stats from auto_process_ngs.icell8.utils import get_batch_size from auto_process_ngs.icell8.utils import batch_fastqs from auto_process_ngs.icell8.constants import MAXIMUM_BATCH_SIZE # Module specific logger logger = logging.getLogger("icell8_stats") ###################################################################### # Main ###################################################################### if __name__ == "__main__": print("[%s] ICell8 stats started" % time.strftime("%Y/%m/%d-%H:%M:%S")) # Handle the command line p = argparse.ArgumentParser() p.add_argument("fastqs",nargs='*',metavar="FASTQ_R1 FASTQ_R2", help="FASTQ file pairs") p.add_argument("-w","--well-list", dest="well_list_file",default=None, help="iCell8 'well list' file") p.add_argument("-u","--unassigned",action='store_true', help="include 'unassigned' reads") p.add_argument("-f","--stats-file", dest="stats_file", help="output statistics file") p.add_argument("-a","--append",action='store_true', help="append to statistics file") p.add_argument("-s","--suffix", dest="suffix", help="suffix to attach to column names") p.add_argument("-n","--nprocessors", type=int,default=1, help="number of processors/cores available for " "statistics generation (default: 1)") p.add_argument("-m","--max-batch-size", type=int,default=MAXIMUM_BATCH_SIZE, help="maximum number of reads per batch " "when dividing Fastqs (multicore only; " "default: %d)" % MAXIMUM_BATCH_SIZE) p.add_argument("-T","--temporary-directory", action="store",default=None,metavar="DIR", help="use DIR for temporaries, not $TMPDIR " "or /tmp") args = p.parse_args() # Input Fastqs fastqs = args.fastqs # Well list file if args.well_list_file is not None: well_list = ICell8WellList(args.well_list_file) else: well_list = None # Number of cores nprocs = args.nprocessors print("%d processor%s will be used" % (nprocs, ('s' if nprocs != 1 else ''))) # Pair up Fastq files fastqs,unpaired = pair_fastqs(fastqs) if unpaired: print("Unpaired Fastqs specified:") for fq in unpaired: print("- %s" % fq) logging.fatal("Unpaired Fastqs specified") sys.exit(1) # Only need R1 Fastqs fastqs = [pair[0] for pair in fastqs] # Set up a working directory if args.temporary_directory is not None: tmpdir = os.path.abspath(args.temporary_directory) else: try: tmpdir = os.path.abspath(os.environ["TMPDIR"]) except KeyError: tmpdir = None working_dir = tempfile.mkdtemp(suffix="icell8_stats", dir=tmpdir) print("Using working dir %s" % working_dir) # Split into batches for multiprocessing if nprocs > 1: try: batch_size,nbatches = get_batch_size( fastqs, max_batch_size=args.max_batch_size, min_batches=nprocs) batched_fastqs = batch_fastqs( fastqs,batch_size, basename="icell8_stats", out_dir=working_dir) except Exception as ex: logging.critical("Failed to split Fastqs into batches: " "%s" % ex) sys.exit(1) else: batched_fastqs = fastqs # Collect statistics stats = ICell8Stats(*batched_fastqs, nprocs=nprocs, verbose=True) # Remove the working directory shutil.rmtree(working_dir) # Report the stats if args.stats_file is not None: # Output column names stats_file = os.path.abspath(args.stats_file) nreads_col = "Nreads%s" % ('' if args.suffix is None else args.suffix) umis_col = "Distinct_UMIs%s" % ('' if args.suffix is None else args.suffix) if not (os.path.isfile(stats_file) and args.append): # Create new stats file if well_list is not None: # Initialise barcode and sample names from well list stats_data = TabFile(column_names=('Barcode', 'Sample')) for barcode in well_list.barcodes(): stats_data.append(data=(barcode, well_list.sample(barcode))) else: # Barcodes from collected data stats_data = TabFile(column_names=('Barcode',)) for barcode in stats.barcodes(): stats_data.append(data=(barcode,)) else: # Append to an existing file stats_data = TabFile(filen=stats_file, first_line_is_header=True) # Add new columns of data stats_data.appendColumn(nreads_col) stats_data.appendColumn(umis_col) # Populate columns for data_line in stats_data: barcode = data_line['Barcode'] try: data_line[nreads_col] = stats.nreads(barcode) data_line[umis_col] = len(stats.distinct_umis(barcode)) except KeyError: data_line[nreads_col] = 0 data_line[umis_col] = 0 # Deal with 'unassigned' reads if args.unassigned: # Count reads for barcodes not in list unassigned_reads = 0 unassigned_umis = set() if well_list is not None: expected_barcodes = well_list.barcodes() else: expected_barcodes = [l['Barcode'] for l in stats_data] for barcode in stats.barcodes(): if barcode not in expected_barcodes: unassigned_reads += stats.nreads(barcode=barcode) unassigned_umis.update( stats.distinct_umis(barcode=barcode)) # Check if 'unassigned' is already in stats file unassigned = stats_data.lookup('Barcode','Unassigned') try: data_line = unassigned[0] except IndexError: # Append the line data_line = stats_data.append() data_line['Barcode'] = 'Unassigned' data_line[nreads_col] = unassigned_reads data_line[umis_col] = len(unassigned_umis) # Write to file stats_data.write(filen=stats_file,include_header=True) # Report summary print("#barcodes : %s" % len(stats.barcodes())) print("#reads : %s" % stats.nreads()) print("[%s] ICell8 stats completed" % time.strftime("%Y/%m/%d-%H:%M:%S"))
38.105263
77
0.541185
c4f7c6cde4a2a5d414e5cd122caf8834480db4ca
6,089
py
Python
todo/commands/emojis.py
TwinDragon/JojoCogs
db94fba5656291250abd914e4f731e4ca284aca5
[ "MIT" ]
null
null
null
todo/commands/emojis.py
TwinDragon/JojoCogs
db94fba5656291250abd914e4f731e4ca284aca5
[ "MIT" ]
null
null
null
todo/commands/emojis.py
TwinDragon/JojoCogs
db94fba5656291250abd914e4f731e4ca284aca5
[ "MIT" ]
null
null
null
# Copyright (c) 2021 - Jojo#7791 # Licensed under MIT import asyncio from typing import Optional, Union import discord from emoji.unicode_codes import UNICODE_EMOJI_ENGLISH from redbot.core import commands from redbot.core.utils.predicates import ReactionPredicate from ..abc import TodoMixin __all__ = ["Emojis"] async def pretty(ctx: commands.Context) -> bool: return await ctx.cog.cache.get_user_setting(ctx.author, "pretty_todos") class EmojiConverter(commands.EmojiConverter): async def convert(self, ctx: commands.Context, arg: str) -> Union[str, discord.Emoji]: arg = arg.strip() return arg if arg in UNICODE_EMOJI_ENGLISH.keys() else await super().convert(ctx, arg) class Emojis(TodoMixin): """Emojis for todo... fun""" @commands.group(name="todoset") async def todo_settings(self, *args): ... @todo_settings.group(name="categoryemojis", aliases=["catemojis"]) async def category_emoji(self, ctx: commands.Context): """Set your category emojis""" pass @category_emoji.command(name="todoemoji", aliases=["temoji"]) async def category_todo_emoji( self, ctx: commands.Context, reset: Optional[bool], emoji: EmojiConverter = None ): """Set the emoji for the todo category. If you have markdown enabled only default emojis will work. By default the emoji will be '🔘'. **Arguments** - `reset` If specified this will reset the emoji back to default. - `emoji` The emoji that will be used for the category. This will skip the check. This argument can't be used if you have markdown enabled. """ if reset: await self.cache.set_user_setting(ctx.author, "todo_category_emoji", None) return await ctx.send("Your todo category emoji has been reset.") elif not emoji: return await ctx.send_help() use_md = await self.cache.get_user_setting(ctx.author, "use_markdown") if use_md: return await ctx.send("You can't use custom emojis while having markdown enabled") act_emoji = str(emoji) await self.cache.set_user_setting(ctx.author, "todo_category_emoji", act_emoji) return await ctx.send(f"Your todo category emoji has been set to '{act_emoji}'.") @category_emoji.command(name="completedemoji", aliases=["cemoji"]) async def category_completed_emoji( self, ctx: commands.Context, reset: Optional[bool], emoji: EmojiConverter = None ): """Set the emoji for the completed category. If you have markdown enabled only default emojis will work. By default the emoji will be '☑'. **Arguments** - `reset` If specified this will reset the emoji back to default. - `emoji` The emoji that will be used for the category. This will skip the check, and this argument can't be used if you have markdown enabled. """ if reset: await self.cache.set_user_setting(ctx.author, "completed_category_emoji", None) return await ctx.send("Your completed category emoji has been reset") elif not emoji: return await ctx.send_help() use_md = await self.cache.get_user_setting(ctx.author, "use_markdown") if use_md: return await ctx.send("You can't use custom emojis while having markdown enabled") act_emoji = str(emoji) await self.cache.set_user_setting(ctx.author, "completed_category_emoji", act_emoji) return await ctx.send(f"Your completed category emoji has been set to '{act_emoji}'.") @commands.check(pretty) @todo_settings.command(name="todoemoji", aliases=("temoji",)) async def todo_emoji( self, ctx: commands.Context, reset: Optional[bool], emoji: EmojiConverter = None ): """Set the emoji used for todos This will prompt you to react with an emoji. Note that the emoji must be one the bot can use. If you have markdown enabled only default emojis will work. **Arguments** - `reset` Whether to reset the emoji back to default. - `emoji` The emoji that will be used for this """ if reset: await self.cache.set_user_setting(ctx.author, "todo_emoji", None) return await ctx.send("Done. Your emoji has been reset.") elif not emoji: return await ctx.send_help() use_md = await self.cache.get_user_setting(ctx.author, "use_markdown") if use_md: return await ctx.send("You can't have custom emojis while markdown is enabled") act_emoji = str(emoji) await self.cache.set_user_setting(ctx.author, "todo_emoji", act_emoji) return await ctx.send(f"I have set your todo emoji to '{act_emoji}'") @commands.check(pretty) @todo_settings.command(name="completeemoji", aliases=("cemoji",)) async def todo_complete_emoji( self, ctx: commands.Context, reset: Optional[bool], emoji: EmojiConverter = None ): """Set the completed emoji used for completed todos. This will prompt you to react with an emoji. Note that only emojis that [botname] can use will work **Arguments** - `reset` Whether to reset the emoji back to default. - `emoji` The emoji to use for the complete mark. This has to be custom and can only be an emoji that [botname] can use. """ if reset: await self.cache.set_user_setting(ctx.author, "completed_emoji", None) return await ctx.send("Done. Your emoji has been reset.") elif not emoji: return await ctx.send_help() use_md = await self.cache.get_user_setting(ctx.author, "use_markdown") if use_md: return await ctx.send("You can't have custom emojis while markdown is enabled") act_emoji = str(emoji) await self.cache.set_user_setting(ctx.author, "completed_emoji", act_emoji) return await ctx.send(f"I have set your completed emoji to '{act_emoji}'")
42.284722
155
0.662999
49150ab19ead0f1ec196397ce3c831b16f67afbd
6,470
py
Python
ibis/backends/postgres/tests/test_udf.py
rtpsw/ibis
d7318fdf87121cd8fadbcf0369a2b217aab3053a
[ "Apache-2.0" ]
1
2022-03-22T10:39:37.000Z
2022-03-22T10:39:37.000Z
ibis/backends/postgres/tests/test_udf.py
marlenezw/ibis
14b9baf3e1021e8698e7f0ae3c0ae5747543431c
[ "Apache-2.0" ]
null
null
null
ibis/backends/postgres/tests/test_udf.py
marlenezw/ibis
14b9baf3e1021e8698e7f0ae3c0ae5747543431c
[ "Apache-2.0" ]
null
null
null
"""Test support for already-defined UDFs in Postgres""" import functools import pytest import ibis import ibis.expr.datatypes as dt pytest.importorskip("psycopg2") pytest.importorskip("sqlalchemy") from ibis.backends.postgres.udf import ( # noqa: E402 PostgresUDFError, existing_udf, udf, ) @pytest.fixture(scope='session') def next_serial(con): # `test_sequence` SEQUENCE is created in database in the # load-data.sh --> datamgr.py#postgres step # to avoid parallel attempts to create the same sequence (when testing # run in parallel serial_proxy = con.con.execute("SELECT nextval('test_sequence') as value;") return serial_proxy.fetchone()['value'] @pytest.fixture(scope='session') def test_schema(con, next_serial): schema_name = f'udf_test_{next_serial}' con.con.execute(f"CREATE SCHEMA IF NOT EXISTS {schema_name};") return schema_name @pytest.fixture(scope='session') def table_name(): return 'udf_test_users' @pytest.fixture(scope='session') def sql_table_setup(test_schema, table_name): return """DROP TABLE IF EXISTS {schema}.{table_name}; CREATE TABLE {schema}.{table_name} ( user_id integer, user_name varchar, name_length integer ); INSERT INTO {schema}.{table_name} VALUES (1, 'Raj', 3), (2, 'Judy', 4), (3, 'Jonathan', 8) ; """.format( schema=test_schema, table_name=table_name ) @pytest.fixture(scope='session') def sql_define_py_udf(test_schema): return """CREATE OR REPLACE FUNCTION {schema}.pylen(x varchar) RETURNS integer LANGUAGE plpython3u AS $$ return len(x) $$;""".format( schema=test_schema ) @pytest.fixture(scope='session') def sql_define_udf(test_schema): return """CREATE OR REPLACE FUNCTION {schema}.custom_len(x varchar) RETURNS integer LANGUAGE SQL AS $$ SELECT length(x); $$;""".format( schema=test_schema ) @pytest.fixture(scope='session') def con_for_udf( con, test_schema, sql_table_setup, sql_define_udf, sql_define_py_udf ): with con.con.begin() as c: c.execute(sql_table_setup) c.execute(sql_define_udf) c.execute(sql_define_py_udf) try: yield con finally: # teardown con.con.execute(f"DROP SCHEMA IF EXISTS {test_schema} CASCADE") @pytest.fixture def table(con_for_udf, table_name, test_schema): return con_for_udf.table(table_name, schema=test_schema) # Tests def test_existing_sql_udf(test_schema, table): """Test creating ibis UDF object based on existing UDF in the database""" # Create ibis UDF objects referring to UDFs already created in the database custom_length_udf = existing_udf( 'custom_len', input_types=[dt.string], output_type=dt.int32, schema=test_schema, ) result_obj = table[ table, custom_length_udf(table['user_name']).name('custom_len') ] result = result_obj.execute() assert result['custom_len'].sum() == result['name_length'].sum() def test_existing_plpython_udf(test_schema, table): # Create ibis UDF objects referring to UDFs already created in the database py_length_udf = existing_udf( 'pylen', input_types=[dt.string], output_type=dt.int32, schema=test_schema, ) result_obj = table[ table, py_length_udf(table['user_name']).name('custom_len') ] result = result_obj.execute() assert result['custom_len'].sum() == result['name_length'].sum() def mult_a_b(a, b): """Test function to be defined in-database as a UDF and used via ibis UDF""" return a * b def test_udf(con_for_udf, test_schema, table): """Test creating a UDF in database based on Python function and then creating an ibis UDF object based on that""" mult_a_b_udf = udf( con_for_udf, mult_a_b, (dt.int32, dt.int32), dt.int32, schema=test_schema, replace=True, language="plpython3u", ) table_filt = table.filter(table['user_id'] == 2) expr = table_filt[ mult_a_b_udf(table_filt['user_id'], table_filt['name_length']).name( 'mult_result' ) ] result = expr.execute() assert result['mult_result'].iloc[0] == 8 def pysplit(text, split): return text.split(split) def test_array_type(con_for_udf, test_schema, table): """Test that usage of Array types work Other scalar types can be represented either by the class or an instance, but Array types work differently. Array types must be an instance, because the Array class must be instantiated specifying the datatype of the elements of the array. """ pysplit_udf = udf( con_for_udf, pysplit, (dt.string, dt.string), dt.Array(dt.string), schema=test_schema, replace=True, language="plpython3u", ) splitter = ibis.literal(' ', dt.string) result = pysplit_udf(table['user_name'], splitter).name('split_name') result.execute() def test_client_udf_api(con_for_udf, test_schema, table): """Test creating a UDF in database based on Python function using an ibis client method.""" def multiply(a, b): return a * b multiply_udf = con_for_udf.udf( multiply, [dt.int32, dt.int32], dt.int32, schema=test_schema, replace=True, language="plpython3u", ) table_filt = table.filter(table['user_id'] == 2) expr = table_filt[ multiply_udf(table_filt['user_id'], table_filt['name_length']).name( 'mult_result' ) ] result = expr.execute() assert result['mult_result'].iloc[0] == 8 def test_client_udf_decorator_fails(con_for_udf, test_schema): """Test that UDF creation fails when creating a UDF based on a Python function that has been defined with decorators. Decorators are not currently supported, because the decorators end up in the body of the UDF but are not defined in the body, therefore causing a NameError.""" def decorator(f): @functools.wraps(f) def wrapped(*args, **kwds): return f(*args, **kwds) return wrapped @decorator def multiply(a, b): return a * b with pytest.raises(PostgresUDFError): con_for_udf.udf( multiply, [dt.int32, dt.int32], dt.int32, schema=test_schema, replace=True, language="plpython3u", )
26.408163
79
0.661669
0ad80b1b28c0385451d527ef4826a77675f5f474
1,686
py
Python
mmdet/ops/sigmoid_focal_loss/sigmoid_focal_loss.py
peisuke/mmdetection
342bcf97b7a56a079832e15dbc468289c9cb3f4b
[ "Apache-2.0" ]
null
null
null
mmdet/ops/sigmoid_focal_loss/sigmoid_focal_loss.py
peisuke/mmdetection
342bcf97b7a56a079832e15dbc468289c9cb3f4b
[ "Apache-2.0" ]
null
null
null
mmdet/ops/sigmoid_focal_loss/sigmoid_focal_loss.py
peisuke/mmdetection
342bcf97b7a56a079832e15dbc468289c9cb3f4b
[ "Apache-2.0" ]
null
null
null
import torch.nn as nn from torch.autograd import Function from torch.autograd.function import once_differentiable import mmdet if not mmdet.version.CPU_ONLY: from . import sigmoid_focal_loss_cuda class SigmoidFocalLossFunction(Function): @staticmethod def forward(ctx, input, target, gamma=2.0, alpha=0.25): ctx.save_for_backward(input, target) num_classes = input.shape[1] ctx.num_classes = num_classes ctx.gamma = gamma ctx.alpha = alpha loss = sigmoid_focal_loss_cuda.forward(input, target, num_classes, gamma, alpha) return loss @staticmethod @once_differentiable def backward(ctx, d_loss): input, target = ctx.saved_tensors num_classes = ctx.num_classes gamma = ctx.gamma alpha = ctx.alpha d_loss = d_loss.contiguous() d_input = sigmoid_focal_loss_cuda.backward(input, target, d_loss, num_classes, gamma, alpha) return d_input, None, None, None, None sigmoid_focal_loss = SigmoidFocalLossFunction.apply # TODO: remove this module class SigmoidFocalLoss(nn.Module): def __init__(self, gamma, alpha): super(SigmoidFocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha def forward(self, logits, targets): assert logits.is_cuda loss = sigmoid_focal_loss(logits, targets, self.gamma, self.alpha) return loss.sum() def __repr__(self): tmpstr = self.__class__.__name__ + '(gamma={}, alpha={})'.format( self.gamma, self.alpha) return tmpstr
29.068966
77
0.636418
898fbc92cbd215e476f58d12430de2ce061f8bc3
15,599
py
Python
pytorch_lightning/trainer/data_loading.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
1
2021-03-10T20:13:50.000Z
2021-03-10T20:13:50.000Z
pytorch_lightning/trainer/data_loading.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/trainer/data_loading.py
GimmickNG/pytorch-lightning
b36c5e86d014671b0fa922d750b27420bc73b6f9
[ "Apache-2.0" ]
1
2020-09-11T22:53:18.000Z
2020-09-11T22:53:18.000Z
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import platform from abc import ABC, abstractmethod from typing import Union, List, Tuple, Callable, Optional import torch.distributed as torch_distrib from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from pytorch_lightning.core import LightningModule from pytorch_lightning.utilities import rank_zero_warn from pytorch_lightning.utilities.data import has_iterable_dataset, has_len from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.debugging import InternalDebugger from pytorch_lightning.utilities.model_utils import is_overridden try: from apex import amp except ImportError: amp = None try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp except ImportError: XLA_AVAILABLE = False else: XLA_AVAILABLE = True try: import horovod.torch as hvd except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True class TrainerDataLoadingMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class global_rank: int use_ddp: bool use_ddp2: bool use_horovod: bool shown_warnings: ... val_check_interval: float use_tpu: bool tpu_local_core_rank: int train_dataloader: DataLoader num_training_batches: Union[int, float] val_check_batch: ... val_dataloaders: List[DataLoader] num_val_batches: List[Union[int, float]] test_dataloaders: List[DataLoader] num_test_batches: List[Union[int, float]] limit_train_batches: Union[int, float] limit_val_batches: Union[int, float] limit_test_batches: Union[int, float] replace_sampler_ddp: bool num_nodes: int num_processes: int distributed_backend: Optional[str] dev_debugger: InternalDebugger def _worker_check(self, dataloader: DataLoader, name: str) -> None: on_windows = platform.system() == 'Windows' # ddp_spawn + num_workers > 0 don't mix! tell the user is_dataloader = isinstance(dataloader, DataLoader) using_spawn = self.distributed_backend == 'ddp_spawn' if is_dataloader and not on_windows: if dataloader.num_workers > 0 and using_spawn: rank_zero_warn('Dataloader(num_workers>0) and ddp_spawn do not mix well!' ' Your performance might suffer dramatically.' ' Please consider setting distributed_backend=ddp to use num_workers > 0' ' (this is a bottleneck of Python .spawn() and PyTorch') elif dataloader.num_workers == 0 and using_spawn: rank_zero_warn('You are using `distributed_backend=ddp_spawn` with num_workers=0.' ' For much faster performance, switch to `distributed_backend=ddp`' ' and set `num_workers>0`') elif dataloader.num_workers <= 2 and multiprocessing.cpu_count() > 2 and not using_spawn: num_cpus = multiprocessing.cpu_count() rank_zero_warn(f'The dataloader, {name}, does not have many workers which may be a bottleneck.' ' Consider increasing the value of the `num_workers` argument`' f' (try {num_cpus} which is the number of cpus on this machine)' ' in the `DataLoader` init to improve performance.') def auto_add_sampler(self, dataloader: DataLoader, train: bool) -> DataLoader: # don't do anything if it's not a dataloader is_dataloader = isinstance(dataloader, DataLoader) # don't manipulate iterable datasets is_iterable_ds = has_iterable_dataset(dataloader) if not is_dataloader or is_iterable_ds: return dataloader need_dist_sampler = (self.use_ddp or self.use_ddp2 or self.use_horovod or self.use_tpu) if self.replace_sampler_ddp and need_dist_sampler: if not isinstance(dataloader.sampler, (SequentialSampler, RandomSampler)): raise MisconfigurationException( 'You seem to have configured a sampler in your DataLoader. This will be replaced ' ' by `DistributedSampler` since `replace_sampler_ddp` is True and you are using' ' distributed training. Either remove the sampler from your DataLoader or set' ' `replace_sampler_ddp`=False if you want to use your custom sampler.') # replace with distributed sampler sampler = self._get_distributed_sampler(dataloader, train) dataloader = self.replace_sampler(dataloader, sampler) return dataloader def replace_sampler(self, dataloader, sampler): skip_keys = ['sampler', 'batch_sampler', 'dataset_kind'] dl_args = { k: v for k, v in dataloader.__dict__.items() if not k.startswith('_') and k not in skip_keys } dl_args['sampler'] = sampler dataloader = type(dataloader)(**dl_args) return dataloader def _get_distributed_sampler(self, dataloader, train): if self.use_tpu: kwargs = dict(num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal()) elif self.use_horovod: kwargs = dict(num_replicas=hvd.size(), rank=hvd.rank()) else: world_size = { 'ddp': self.num_nodes * self.num_processes, 'ddp_spawn': self.num_nodes * self.num_processes, 'ddp2': self.num_nodes, 'ddp_cpu': self.num_processes * self.num_nodes } assert self.distributed_backend is not None kwargs = dict(num_replicas=world_size[self.distributed_backend], rank=self.global_rank) kwargs['shuffle'] = train sampler = DistributedSampler(dataloader.dataset, **kwargs) return sampler def reset_train_dataloader(self, model: LightningModule) -> None: """Resets the train dataloader and initialises required variables (number of batches, when to validate, etc.). Args: model: The current `LightningModule` """ self.train_dataloader = self.request_dataloader(model.train_dataloader) # debugging self.dev_debugger.track_load_dataloader_call('train_dataloader', dataloaders=[self.train_dataloader]) self.num_training_batches = 0 # automatically add samplers self.train_dataloader = self.auto_add_sampler(self.train_dataloader, train=True) self.num_training_batches = len(self.train_dataloader) if has_len(self.train_dataloader) else float('inf') self._worker_check(self.train_dataloader, 'train dataloader') if isinstance(self.limit_train_batches, int) or self.limit_train_batches == 0.0: self.num_training_batches = min(self.num_training_batches, int(self.limit_train_batches)) elif self.num_training_batches != float('inf'): self.num_training_batches = int(self.num_training_batches * self.limit_train_batches) elif self.limit_train_batches != 1.0: raise MisconfigurationException( 'When using an IterableDataset for `limit_train_batches`,' ' `Trainer(limit_train_batches)` must be `0.0`, `1.0` or an int. An int k specifies' ' `num_training_batches` to use.') # determine when to check validation # if int passed in, val checks that often # otherwise, it checks in [0, 1.0] % range of a training epoch if isinstance(self.val_check_interval, int): self.val_check_batch = self.val_check_interval if self.val_check_batch > self.num_training_batches: raise ValueError( f'`val_check_interval` ({self.val_check_interval}) must be less than or equal ' f'to the number of the training batches ({self.num_training_batches}). ' 'If you want to disable validation set `limit_val_batches` to 0.0 instead.') else: if not has_len(self.train_dataloader): if self.val_check_interval == 1.0: self.val_check_batch = float('inf') else: raise MisconfigurationException( 'When using an IterableDataset for `train_dataloader`,' ' `Trainer(val_check_interval)` must be `1.0` or an int. An int k specifies' ' checking validation every k training batches.') else: self.val_check_batch = int(self.num_training_batches * self.val_check_interval) self.val_check_batch = max(1, self.val_check_batch) def _reset_eval_dataloader( self, model: LightningModule, mode: str ) -> Tuple[List[Union[int, float]], List[DataLoader]]: """Generic method to reset a dataloader for evaluation. Args: model: The current `LightningModule` mode: Either `'val'` or `'test'` Returns: Tuple (num_batches, dataloaders) """ # use the training loader as val and test when overfitting loader_name = f'{mode}_dataloader' if self.overfit_batches > 0: loader_name = 'train_dataloader' # load loaders dataloaders = self.request_dataloader(getattr(model, loader_name)) if not isinstance(dataloaders, list): dataloaders = [dataloaders] self.dev_debugger.track_load_dataloader_call(loader_name, dataloaders=dataloaders) for loader_i in range(len(dataloaders)): loader = dataloaders[loader_i] # shuffling in val and test set is bad practice if mode in ('val', 'test') and hasattr(loader, 'sampler') and isinstance(loader.sampler, RandomSampler): # when overfitting, the dataloader should not have sampler if self.overfit_batches > 0: rank_zero_warn('You requested to overfit but enabled training dataloader shuffling.' ' We are turning it off for you.') dataloaders[loader_i] = self.replace_sampler(loader, SequentialSampler(loader.dataset)) else: rank_zero_warn(f'Your {mode}_dataloader has `shuffle=True`, it is best practice to turn' ' this off for validation and test dataloaders.') if any([dl is None for dl in dataloaders]): rank_zero_warn("One of given dataloaders is None and it will be skipped.") # add samplers dataloaders = [self.auto_add_sampler(dl, train=False) for dl in dataloaders if dl is not None] loader_num_batches = [] # determine number of batches # datasets could be none, 1 or 2+ if len(dataloaders) != 0: for i, dataloader in enumerate(dataloaders): num_batches = len(dataloader) if has_len(dataloader) else float('inf') self._worker_check(dataloader, f'{mode} dataloader {i}') # percent or num_steps limit_eval_batches = getattr(self, f'limit_{mode}_batches') # limit num batches either as a percent or num steps if isinstance(limit_eval_batches, int) or limit_eval_batches == 0.0: num_batches = min(num_batches, int(limit_eval_batches)) elif num_batches != float('inf'): num_batches = int(num_batches * limit_eval_batches) elif limit_eval_batches != 1.0: raise MisconfigurationException( 'When using an IterableDataset for `limit_{mode}_batches`,' f' `Trainer(limit_{mode}_batches)` must be `0.0`, `1.0` or an int. An int k specifies' f' `num_{mode}_batches` to use.') if num_batches == 0 and limit_eval_batches > 0.0 and isinstance(limit_eval_batches, float): min_pct = 1.0 / len(dataloader) raise MisconfigurationException( f'you requested to check {limit_eval_batches} of the {mode} dataloader but' f' {limit_eval_batches}*{num_batches} = 0. Please increase the limit_{mode}_batches.' f' Try at least limit_{mode}_batches={min_pct}' ) loader_num_batches.append(num_batches) return loader_num_batches, dataloaders def reset_val_dataloader(self, model: LightningModule) -> None: """Resets the validation dataloader and determines the number of batches. Args: model: The current `LightningModule` """ has_loader = is_overridden('val_dataloader', model) has_step = is_overridden('validation_step', model) if has_loader and has_step: self.num_val_batches, self.val_dataloaders = self._reset_eval_dataloader(model, 'val') def reset_test_dataloader(self, model) -> None: """Resets the validation dataloader and determines the number of batches. Args: model: The current `LightningModule` """ has_loader = is_overridden('test_dataloader', model) has_step = is_overridden('test_step', model) if has_loader and has_step: self.num_test_batches, self.test_dataloaders =\ self._reset_eval_dataloader(model, 'test') def request_dataloader(self, dataloader_fx: Callable) -> DataLoader: """Handles downloading data in the GPU or TPU case. Args: dataloader_fx: The bound dataloader getter Returns: The dataloader """ dataloader = dataloader_fx() # get the function we'll use to get data if self.use_ddp or self.use_ddp2: # all processes wait until data download has happened torch_distrib.barrier() # data download/load on TPU elif self.use_tpu and XLA_AVAILABLE: # all processes wait until data download has happened torch_xla.core.xla_model.rendezvous('pl.TrainerDataLoadingMixin.get_dataloaders') elif self.use_horovod: # all processes wait until data download has happened hvd.join() return dataloader def determine_data_use_amount(self, overfit_batches: float) -> None: """Use less data for debugging purposes""" if overfit_batches > 0: self.limit_train_batches = overfit_batches self.limit_val_batches = overfit_batches self.limit_test_batches = overfit_batches
43.940845
116
0.646516
aa4021376d75be1ba1c77b36b6b1a1e0db651219
12,187
py
Python
holoviews/tests/plotting/bokeh/testbarplot.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
holoviews/tests/plotting/bokeh/testbarplot.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
holoviews/tests/plotting/bokeh/testbarplot.py
cocoaaa/holoviews
bb3dc4975c2604f38d141ccad1c931ed5d9b1322
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from holoviews.core.overlay import NdOverlay from holoviews.element import Bars from bokeh.models import CategoricalColorMapper, LinearColorMapper from ..utils import ParamLogStream from .testplot import TestBokehPlot, bokeh_renderer class TestBarPlot(TestBokehPlot): def test_bars_hover_ensure_kdims_sanitized(self): obj = Bars(np.random.rand(10,2), kdims=['Dim with spaces']) obj = obj(plot={'tools': ['hover']}) self._test_hover_info(obj, [('Dim with spaces', '@{Dim_with_spaces}'), ('y', '@{y}')]) def test_bars_hover_ensure_vdims_sanitized(self): obj = Bars(np.random.rand(10,2), vdims=['Dim with spaces']) obj = obj(plot={'tools': ['hover']}) self._test_hover_info(obj, [('x', '@{x}'), ('Dim with spaces', '@{Dim_with_spaces}')]) def test_bars_suppress_legend(self): bars = Bars([('A', 1), ('B', 2)]).opts(plot=dict(show_legend=False)) plot = bokeh_renderer.get_plot(bars) plot.initialize_plot() fig = plot.state self.assertEqual(len(fig.legend), 0) def test_empty_bars(self): bars = Bars([], kdims=['x', 'y'], vdims=['z']).opts(plot=dict(group_index=1)) plot = bokeh_renderer.get_plot(bars) plot.initialize_plot() source = plot.handles['source'] for v in source.data.values(): self.assertEqual(len(v), 0) def test_bars_grouped_categories(self): bars = Bars([('A', 0, 1), ('A', 1, -1), ('B', 0, 2)], kdims=['Index', 'Category'], vdims=['Value']) plot = bokeh_renderer.get_plot(bars) source = plot.handles['source'] self.assertEqual([tuple(x) for x in source.data['xoffsets']], [('A', '0'), ('B', '0'), ('A', '1')]) self.assertEqual(list(source.data['Category']), ['0', '0', '1']) self.assertEqual(source.data['Value'], np.array([1, 2, -1])) x_range = plot.handles['x_range'] self.assertEqual(x_range.factors, [('A', '0'), ('A', '1'), ('B', '0'), ('B', '1')]) def test_box_whisker_multi_level_sorted(self): box= Bars((['A', 'B']*15, [3, 10, 1]*10, np.random.randn(30)), ['Group', 'Category'], 'Value').aggregate(function=np.mean) plot = bokeh_renderer.get_plot(box) x_range = plot.handles['x_range'] self.assertEqual(x_range.factors, [ ('A', '1'), ('A', '3'), ('A', '10'), ('B', '1'), ('B', '3'), ('B', '10')]) def test_bars_positive_negative_mixed(self): bars = Bars([('A', 0, 1), ('A', 1, -1), ('B', 0, 2)], kdims=['Index', 'Category'], vdims=['Value']) plot = bokeh_renderer.get_plot(bars.opts(plot=dict(stack_index=1))) source = plot.handles['source'] self.assertEqual(list(source.data['Category']), ['1', '0', '0']) self.assertEqual(list(source.data['Index']), ['A', 'A', 'B']) self.assertEqual(source.data['top'], np.array([0, 1, 2])) self.assertEqual(source.data['bottom'], np.array([-1, 0, 0])) def test_bars_logy(self): bars = Bars([('A', 1), ('B', 2), ('C', 3)], kdims=['Index'], vdims=['Value']) plot = bokeh_renderer.get_plot(bars.opts(plot=dict(logy=True))) source = plot.handles['source'] glyph = plot.handles['glyph'] y_range = plot.handles['y_range'] self.assertEqual(list(source.data['Index']), ['A', 'B', 'C']) self.assertEqual(source.data['Value'], np.array([1, 2, 3])) self.assertEqual(glyph.bottom, 10**(np.log10(3)-2)) self.assertEqual(y_range.start, 10**(np.log10(3)-2)) self.assertEqual(y_range.end, 3.) def test_bars_logy_explicit_range(self): bars = Bars([('A', 1), ('B', 2), ('C', 3)], kdims=['Index'], vdims=['Value']).redim.range(Value=(0.001, 3)) plot = bokeh_renderer.get_plot(bars.opts(plot=dict(logy=True))) source = plot.handles['source'] glyph = plot.handles['glyph'] y_range = plot.handles['y_range'] self.assertEqual(list(source.data['Index']), ['A', 'B', 'C']) self.assertEqual(source.data['Value'], np.array([1, 2, 3])) self.assertEqual(glyph.bottom, 0.001) self.assertEqual(y_range.start, 0.001) self.assertEqual(y_range.end, 3.0000000000000013) def test_bars_ylim(self): bars = Bars([1, 2, 3]).opts(ylim=(0, 200)) plot = bokeh_renderer.get_plot(bars) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, 0) self.assertEqual(y_range.end, 200) def test_bars_padding_square(self): points = Bars([(1, 2), (2, -1), (3, 3)]).options(padding=0.1) plot = bokeh_renderer.get_plot(points) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, -1.4) self.assertEqual(y_range.end, 3.4) def test_bars_padding_square_positive(self): points = Bars([(1, 2), (2, 1), (3, 3)]).options(padding=0.1) plot = bokeh_renderer.get_plot(points) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, 0) self.assertEqual(y_range.end, 3.2) def test_bars_padding_square_negative(self): points = Bars([(1, -2), (2, -1), (3, -3)]).options(padding=0.1) plot = bokeh_renderer.get_plot(points) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, -3.2) self.assertEqual(y_range.end, 0) def test_bars_padding_nonsquare(self): bars = Bars([(1, 2), (2, 1), (3, 3)]).options(padding=0.1, width=600) plot = bokeh_renderer.get_plot(bars) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, 0) self.assertEqual(y_range.end, 3.2) def test_bars_padding_logx(self): bars = Bars([(1, 1), (2, 2), (3,3)]).options(padding=0.1, logx=True) plot = bokeh_renderer.get_plot(bars) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, 0) self.assertEqual(y_range.end, 3.2) def test_bars_padding_logy(self): bars = Bars([(1, 2), (2, 1), (3, 3)]).options(padding=0.1, logy=True) plot = bokeh_renderer.get_plot(bars) y_range = plot.handles['y_range'] self.assertEqual(y_range.start, 0.033483695221017122) self.assertEqual(y_range.end, 3.3483695221017129) ########################### # Styling mapping # ########################### def test_bars_color_op(self): bars = Bars([(0, 0, '#000'), (0, 1, '#F00'), (0, 2, '#0F0')], vdims=['y', 'color']).options(color='color') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['color'], np.array(['#000', '#F00', '#0F0'])) self.assertEqual(glyph.fill_color, {'field': 'color'}) self.assertEqual(glyph.line_color, 'black') def test_bars_linear_color_op(self): bars = Bars([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims=['y', 'color']).options(color='color') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] cmapper = plot.handles['color_color_mapper'] self.assertTrue(cmapper, LinearColorMapper) self.assertEqual(cmapper.low, 0) self.assertEqual(cmapper.high, 2) self.assertEqual(cds.data['color'], np.array([0, 1, 2])) self.assertEqual(glyph.fill_color, {'field': 'color', 'transform': cmapper}) self.assertEqual(glyph.line_color, 'black') def test_bars_categorical_color_op(self): bars = Bars([(0, 0, 'A'), (0, 1, 'B'), (0, 2, 'C')], vdims=['y', 'color']).options(color='color') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] cmapper = plot.handles['color_color_mapper'] self.assertTrue(cmapper, CategoricalColorMapper) self.assertEqual(cmapper.factors, ['A', 'B', 'C']) self.assertEqual(cds.data['color'], np.array(['A', 'B', 'C'])) self.assertEqual(glyph.fill_color, {'field': 'color', 'transform': cmapper}) self.assertEqual(glyph.line_color, 'black') def test_bars_line_color_op(self): bars = Bars([(0, 0, '#000'), (0, 1, '#F00'), (0, 2, '#0F0')], vdims=['y', 'color']).options(line_color='color') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['line_color'], np.array(['#000', '#F00', '#0F0'])) self.assertNotEqual(glyph.fill_color, {'field': 'line_color'}) self.assertEqual(glyph.line_color, {'field': 'line_color'}) def test_bars_fill_color_op(self): bars = Bars([(0, 0, '#000'), (0, 1, '#F00'), (0, 2, '#0F0')], vdims=['y', 'color']).options(fill_color='color') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['fill_color'], np.array(['#000', '#F00', '#0F0'])) self.assertEqual(glyph.fill_color, {'field': 'fill_color'}) self.assertNotEqual(glyph.line_color, {'field': 'fill_color'}) def test_bars_alpha_op(self): bars = Bars([(0, 0, 0), (0, 1, 0.2), (0, 2, 0.7)], vdims=['y', 'alpha']).options(alpha='alpha') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['alpha'], np.array([0, 0.2, 0.7])) self.assertEqual(glyph.fill_alpha, {'field': 'alpha'}) def test_bars_line_alpha_op(self): bars = Bars([(0, 0, 0), (0, 1, 0.2), (0, 2, 0.7)], vdims=['y', 'alpha']).options(line_alpha='alpha') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['line_alpha'], np.array([0, 0.2, 0.7])) self.assertEqual(glyph.line_alpha, {'field': 'line_alpha'}) self.assertNotEqual(glyph.fill_alpha, {'field': 'line_alpha'}) def test_bars_fill_alpha_op(self): bars = Bars([(0, 0, 0), (0, 1, 0.2), (0, 2, 0.7)], vdims=['y', 'alpha']).options(fill_alpha='alpha') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['fill_alpha'], np.array([0, 0.2, 0.7])) self.assertNotEqual(glyph.line_alpha, {'field': 'fill_alpha'}) self.assertEqual(glyph.fill_alpha, {'field': 'fill_alpha'}) def test_bars_line_width_op(self): bars = Bars([(0, 0, 1), (0, 1, 4), (0, 2, 8)], vdims=['y', 'line_width']).options(line_width='line_width') plot = bokeh_renderer.get_plot(bars) cds = plot.handles['cds'] glyph = plot.handles['glyph'] self.assertEqual(cds.data['line_width'], np.array([1, 4, 8])) self.assertEqual(glyph.line_width, {'field': 'line_width'}) def test_op_ndoverlay_value(self): colors = ['blue', 'red'] overlay = NdOverlay({color: Bars(np.arange(i+2)) for i, color in enumerate(colors)}, 'Color').options('Bars', fill_color='Color') plot = bokeh_renderer.get_plot(overlay) for subplot, color in zip(plot.subplots.values(), colors): self.assertEqual(subplot.handles['glyph'].fill_color, color) def test_bars_color_index_color_clash(self): bars = Bars([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims=['y', 'color']).options(color='color', color_index='color') with ParamLogStream() as log: bokeh_renderer.get_plot(bars) log_msg = log.stream.read() warning = ("Cannot declare style mapping for 'color' option " "and declare a color_index; ignoring the color_index.\n") self.assertEqual(log_msg, warning)
47.054054
137
0.575531
08c453399ac8ae12f9ff2867b84b624f818d12a8
1,583
py
Python
db.py
tarnowski-git/hardware_parts_manager
e8dbfec0dfbf643f4ba97db88c53ee61b9b7b53b
[ "MIT" ]
1
2022-03-14T21:14:04.000Z
2022-03-14T21:14:04.000Z
db.py
tarnowski-git/hardware_parts_manager
e8dbfec0dfbf643f4ba97db88c53ee61b9b7b53b
[ "MIT" ]
null
null
null
db.py
tarnowski-git/hardware_parts_manager
e8dbfec0dfbf643f4ba97db88c53ee61b9b7b53b
[ "MIT" ]
null
null
null
import sqlite3 class Database: def __init__(self, db): self.conn = sqlite3.connect(db) self.cur = self.conn.cursor() self.cur.execute( "CREATE TABLE IF NOT EXISTS parts (id INTEGER PRIMARY KEY, part text, customer text, retailer text, price text)") self.conn.commit() def fetch(self): self.cur.execute("SELECT * FROM parts") rows = self.cur.fetchall() return rows def insert(self, part, customer, retailer, price): self.cur.execute("INSERT INTO parts VALUES (NULL, ?, ?, ?, ?)", (part, customer, retailer, price)) self.conn.commit() def remove(self, id): self.cur.execute("DELETE FROM parts WHERE id = ?", (id, )) self.conn.commit() def update(self, id, part, customer, retailer, price): self.cur.execute("UPDATE parts SET part = ?, customer = ?, retailer = ?, price = ? WHERE id = ?", (part, customer, retailer, price, id)) self.conn.commit() def __del__(self): self.conn.close() # To create a databese # db = Database("store.db") # db.insert("4GB DDR4 Ram", "John Doe", "Microcenter", "160") # db.insert("Asus Mobo", "Mike Henry", "Microcenter", "360") # db.insert("500w PSU", "Karen Johnson", "Newegg", "80") # db.insert("2GB DDR4 Ram", "Karen Johnson", "Newegg", "70") # db.insert("24 inch Samsung Monitor", "Sam Smith", "Best Buy", "180") # db.insert("NVIDIA RTX 2080", "Albert Kingston", "Newegg", "679") # db.insert("600w Corsair PSU", "Karen Johnson", "Newegg", "130")
36.813953
125
0.595073
8ed93fdfe17e4094620897285f1f6df4d1e77fa6
4,293
py
Python
misc/src/guid_c/system.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2016-10-30T09:51:06.000Z
2016-10-30T09:51:06.000Z
misc/src/guid_c/system.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2015-12-29T18:51:07.000Z
2015-12-29T18:51:07.000Z
misc/src/guid_c/system.py
hivesolutions/colony_plugins
cfd8fb2ac58037e01002966704b8a642feb37895
[ "Apache-1.1" ]
1
2018-01-26T12:54:13.000Z
2018-01-26T12:54:13.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Hive Colony Framework # Copyright (c) 2008-2020 Hive Solutions Lda. # # This file is part of Hive Colony Framework. # # Hive Colony Framework is free software: you can redistribute it and/or modify # it under the terms of the Apache License as published by the Apache # Foundation, either version 2.0 of the License, or (at your option) any # later version. # # Hive Colony Framework is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License for more details. # # You should have received a copy of the Apache License along with # Hive Colony Framework. If not, see <http://www.apache.org/licenses/>. __author__ = "João Magalhães <joamag@hive.pt>" """ The author(s) of the module """ __version__ = "1.0.0" """ The version of the module """ __revision__ = "$LastChangedRevision$" """ The revision number of the module """ __date__ = "$LastChangedDate$" """ The last change date of the module """ __copyright__ = "Copyright (c) 2008-2020 Hive Solutions Lda." """ The copyright for the module """ __license__ = "Apache License, Version 2.0" """ The license for the module """ import time import socket import random import threading import colony MAX_COUNTER = 0xfffffffe """ The max counter value """ class GUID(colony.System): """ The GUID class responsible for the generation and management of globally unique identifiers. :see: https://en.wikipedia.org/wiki/Universally_unique_identifier """ def __init__(self, plugin): colony.System.__init__(self, plugin) self.counter = colony.legacy.LONG(0) self.first_counter = MAX_COUNTER self.last_time = 0 self.ip = "" self.lock = threading.RLock() try: self.ip = socket.getaddrinfo(socket.gethostname(), 0)[-1][-1][0] self.hexadecimal_ip = make_hexadecimal_ip(self.ip) # in case there is no ip, defaults to something in the 10.x.x.x private range except Exception: self.ip = "10" rand = random.Random() for _index in colony.legacy.xrange(3): # might as well use IPv6 range if we're making it up self.ip += "." + str(rand.randrange(1, 0xffff)) self.hexadecimal_ip = make_hexadecimal_ip(self.ip) def generate_guid(self): """ Generates a GUID (unique in space and time) number. :rtype: String :return: The unique GUID. """ # acquires the lock, only one GUID at the same time self.lock.acquire() try: # the list that represents the various parts of the GUID parts = [] # do we need to wait for the next millisecond (are we out of counters?) now = colony.legacy.LONG(time.time() * 1000) while self.last_time == now and self.counter == self.first_counter: time.sleep(.01) now = colony.legacy.LONG(time.time() * 1000) # appends time part parts.append("%016x" % now) # time to start counter over since we have a different millisecond if self.last_time != now: # start at random position self.first_counter = colony.legacy.LONG(random.uniform(1, MAX_COUNTER)) self.counter = self.first_counter self.counter += 1 if self.counter > MAX_COUNTER: self.counter = 0 self.last_time = now # appends counter part parts.append("%08x" % (self.counter)) # appends ip part parts.append(self.hexadecimal_ip) # put all the parts together return "".join(parts) finally: # releases the lock, more GUID can be generated now self.lock.release() make_hexadecimal_ip = lambda ip: "".join(["%04x" % colony.legacy.LONG(index) for index in ip.split(".")]) """ Makes an hexadecimal IP from a decimal dot-separated ip (eg: 127.0.0.1) """
33.539063
106
0.607501
a102f247b4dd87832de9e512a65f627b183492a3
3,110
py
Python
website/website/settings.py
chrazbee/DataMole
cae54785c58409f8bc2c9df236bd51239504f0c2
[ "BSD-2-Clause" ]
null
null
null
website/website/settings.py
chrazbee/DataMole
cae54785c58409f8bc2c9df236bd51239504f0c2
[ "BSD-2-Clause" ]
null
null
null
website/website/settings.py
chrazbee/DataMole
cae54785c58409f8bc2c9df236bd51239504f0c2
[ "BSD-2-Clause" ]
1
2018-03-16T14:46:57.000Z
2018-03-16T14:46:57.000Z
""" Django settings for website project. Generated by 'django-admin startproject' using Django 1.11.3. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'srw23qt9s4ufp)dki1s#1hay9-k--a+fd@-#*p&^%_&6^d3h0v' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'testapp' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'website.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'website.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
25.491803
91
0.69582
ac69fe90296b56a4571e02cfe9e4a45d22d3f520
353
py
Python
X on graph paper.py
yoursamlan/FunWithTurtle
b4376c45e04bb3af9eaf50fa1bcda5baacd3d00f
[ "MIT" ]
1
2019-07-08T11:47:57.000Z
2019-07-08T11:47:57.000Z
X on graph paper.py
yoursamlan/FunWithTurtle
b4376c45e04bb3af9eaf50fa1bcda5baacd3d00f
[ "MIT" ]
null
null
null
X on graph paper.py
yoursamlan/FunWithTurtle
b4376c45e04bb3af9eaf50fa1bcda5baacd3d00f
[ "MIT" ]
1
2020-03-31T06:40:42.000Z
2020-03-31T06:40:42.000Z
#It's the funniest way to draw X on a graph paper import turtle from turtle import * for i in range (20,500,10): turtle.forward(int(i)) turtle.right(90) for j in range (20,100,10): turtle.forward(int(i-j)) turtle.right(90) for k in range (20,50,50): turtle.forward(int(i+k)) turtle.right(90)
25.214286
49
0.594901
93f07762bf16411b9b54a5f8b9aeb5d06883fde3
110
py
Python
test_suite/suite/test09/test.py
joncatanio/cannoli
410f6bea362bf9e33eecc0e01fb080dadd14ef23
[ "MIT" ]
755
2017-12-09T05:34:43.000Z
2022-03-26T09:15:56.000Z
test_suite/suite/test09/test.py
joncatanio/cannoli
410f6bea362bf9e33eecc0e01fb080dadd14ef23
[ "MIT" ]
8
2017-12-12T01:03:18.000Z
2020-06-29T01:41:03.000Z
test_suite/suite/test09/test.py
joncatanio/cannoli
410f6bea362bf9e33eecc0e01fb080dadd14ef23
[ "MIT" ]
23
2018-05-17T17:48:23.000Z
2022-03-26T09:15:57.000Z
import some_mod, other_mod some_mod.func() other_mod.functione(5) a = some_mod.some_class() a.print_self()
12.222222
26
0.763636
56eebe15f4e5e0bca5c782cafc43c500663d8afa
16,706
py
Python
mne/utils/_logging.py
0reza/mne-python
da02a256423404a81929d6de278bc63d3192a280
[ "BSD-3-Clause" ]
null
null
null
mne/utils/_logging.py
0reza/mne-python
da02a256423404a81929d6de278bc63d3192a280
[ "BSD-3-Clause" ]
null
null
null
mne/utils/_logging.py
0reza/mne-python
da02a256423404a81929d6de278bc63d3192a280
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """Some utility functions.""" # Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # # License: BSD-3-Clause import contextlib from decorator import FunctionMaker import importlib import inspect from io import StringIO import re import sys import logging import os.path as op import warnings from typing import Any, Callable, TypeVar from .docs import fill_doc logger = logging.getLogger('mne') # one selection here used across mne-python logger.propagate = False # don't propagate (in case of multiple imports) # class to provide frame information (should be low overhead, just on logger # calls) class _FrameFilter(logging.Filter): def __init__(self): self.add_frames = 0 def filter(self, record): record.frame_info = 'Unknown' if self.add_frames: # 5 is the offset necessary to get out of here and the logging # module, reversal is to put the oldest at the top frame_info = _frame_info(5 + self.add_frames)[5:][::-1] if len(frame_info): frame_info[-1] = (frame_info[-1] + ' :').ljust(30) if len(frame_info) > 1: frame_info[0] = '┌' + frame_info[0] frame_info[-1] = '└' + frame_info[-1] for ii, info in enumerate(frame_info[1:-1], 1): frame_info[ii] = '├' + info record.frame_info = '\n'.join(frame_info) return True _filter = _FrameFilter() logger.addFilter(_filter) # Provide help for static type checkers: # https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators _FuncT = TypeVar('_FuncT', bound=Callable[..., Any]) def verbose(function: _FuncT) -> _FuncT: """Verbose decorator to allow functions to override log-level. Parameters ---------- function : callable Function to be decorated by setting the verbosity level. Returns ------- dec : callable The decorated function. See Also -------- set_log_level set_config Notes ----- This decorator is used to set the verbose level during a function or method call, such as :func:`mne.compute_covariance`. The `verbose` keyword argument can be 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', True (an alias for 'INFO'), or False (an alias for 'WARNING'). To set the global verbosity level for all functions, use :func:`mne.set_log_level`. This function also serves as a docstring filler. Examples -------- You can use the ``verbose`` argument to set the verbose level on the fly:: >>> import mne >>> cov = mne.compute_raw_covariance(raw, verbose='WARNING') # doctest: +SKIP >>> cov = mne.compute_raw_covariance(raw, verbose='INFO') # doctest: +SKIP Using up to 49 segments Number of samples used : 5880 [done] """ # noqa: E501 # See https://decorator.readthedocs.io/en/latest/tests.documentation.html # #dealing-with-third-party-decorators try: fill_doc(function) except TypeError: # nothing to add pass # Anything using verbose should have `verbose=None` in the signature. # This code path will raise an error if this is not the case. body = """\ def %(name)s(%(signature)s):\n try: do_level_change = verbose is not None except (NameError, UnboundLocalError): raise RuntimeError('Function/method %%s does not accept verbose ' 'parameter' %% (_function_,)) from None if do_level_change: with _use_log_level_(verbose): return _function_(%(shortsignature)s) else: return _function_(%(shortsignature)s)""" evaldict = dict( _use_log_level_=use_log_level, _function_=function) fm = FunctionMaker(function, None, None, None, None, function.__module__) attrs = dict(__wrapped__=function, __qualname__=function.__qualname__, __globals__=function.__globals__) return fm.make(body, evaldict, addsource=True, **attrs) @fill_doc class use_log_level: """Context manager for logging level. Parameters ---------- %(verbose)s %(add_frames)s See Also -------- mne.verbose Notes ----- See the :ref:`logging documentation <tut-logging>` for details. Examples -------- >>> from mne import use_log_level >>> from mne.utils import logger >>> with use_log_level(False): ... # Most MNE logger messages are "info" level, False makes them not ... # print: ... logger.info('This message will not be printed') >>> with use_log_level(True): ... # Using verbose=True in functions, methods, or this context manager ... # will ensure they are printed ... logger.info('This message will be printed!') This message will be printed! """ def __init__(self, verbose, *, add_frames=None): # noqa: D102 self._level = verbose self._add_frames = add_frames self._old_frames = _filter.add_frames def __enter__(self): # noqa: D105 self._old_level = set_log_level( self._level, return_old_level=True, add_frames=self._add_frames) def __exit__(self, *args): # noqa: D105 add_frames = self._old_frames if self._add_frames is not None else None set_log_level(self._old_level, add_frames=add_frames) @fill_doc def set_log_level(verbose=None, return_old_level=False, add_frames=None): """Set the logging level. Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. If None, the environment variable MNE_LOGGING_LEVEL is read, and if it doesn't exist, defaults to INFO. return_old_level : bool If True, return the old verbosity level. %(add_frames)s Returns ------- old_level : int The old level. Only returned if ``return_old_level`` is True. """ from .config import get_config from .check import _check_option, _validate_type _validate_type(verbose, (bool, str, int, None), 'verbose') if verbose is None: verbose = get_config('MNE_LOGGING_LEVEL', 'INFO') elif isinstance(verbose, bool): if verbose is True: verbose = 'INFO' else: verbose = 'WARNING' if isinstance(verbose, str): verbose = verbose.upper() logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO, WARNING=logging.WARNING, ERROR=logging.ERROR, CRITICAL=logging.CRITICAL) _check_option('verbose', verbose, logging_types, '(when a string)') verbose = logging_types[verbose] old_verbose = logger.level if verbose != old_verbose: logger.setLevel(verbose) if add_frames is not None: _filter.add_frames = int(add_frames) fmt = '%(frame_info)s ' if add_frames else '' fmt += '%(message)s' fmt = logging.Formatter(fmt) for handler in logger.handlers: handler.setFormatter(fmt) return (old_verbose if return_old_level else None) def set_log_file(fname=None, output_format='%(message)s', overwrite=None): """Set the log to print to a file. Parameters ---------- fname : str, or None Filename of the log to print to. If None, stdout is used. To suppress log outputs, use set_log_level('WARN'). output_format : str Format of the output messages. See the following for examples: https://docs.python.org/dev/howto/logging.html e.g., "%(asctime)s - %(levelname)s - %(message)s". overwrite : bool | None Overwrite the log file (if it exists). Otherwise, statements will be appended to the log (default). None is the same as False, but additionally raises a warning to notify the user that log entries will be appended. """ _remove_close_handlers(logger) if fname is not None: if op.isfile(fname) and overwrite is None: # Don't use warn() here because we just want to # emit a warnings.warn here (not logger.warn) warnings.warn('Log entries will be appended to the file. Use ' 'overwrite=False to avoid this message in the ' 'future.', RuntimeWarning, stacklevel=2) overwrite = False mode = 'w' if overwrite else 'a' lh = logging.FileHandler(fname, mode=mode) else: """ we should just be able to do: lh = logging.StreamHandler(sys.stdout) but because doctests uses some magic on stdout, we have to do this: """ lh = logging.StreamHandler(WrapStdOut()) lh.setFormatter(logging.Formatter(output_format)) # actually add the stream handler logger.addHandler(lh) def _remove_close_handlers(logger): for h in list(logger.handlers): # only remove our handlers (get along nicely with nose) if isinstance(h, (logging.FileHandler, logging.StreamHandler)): if isinstance(h, logging.FileHandler): h.close() logger.removeHandler(h) class ClosingStringIO(StringIO): """StringIO that closes after getvalue().""" def getvalue(self, close=True): """Get the value.""" out = super().getvalue() if close: self.close() return out class catch_logging(object): """Store logging. This will remove all other logging handlers, and return the handler to stdout when complete. """ def __init__(self, verbose=None): self.verbose = verbose def __enter__(self): # noqa: D105 if self.verbose is not None: self._ctx = use_log_level(self.verbose) else: self._ctx = contextlib.nullcontext() self._data = ClosingStringIO() self._lh = logging.StreamHandler(self._data) self._lh.setFormatter(logging.Formatter('%(message)s')) self._lh._mne_file_like = True # monkey patch for warn() use _remove_close_handlers(logger) logger.addHandler(self._lh) self._ctx.__enter__() return self._data def __exit__(self, *args): # noqa: D105 self._ctx.__exit__(*args) logger.removeHandler(self._lh) set_log_file(None) @contextlib.contextmanager def _record_warnings(): # this is a helper that mostly acts like pytest.warns(None) did before # pytest 7 with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') yield w class WrapStdOut(object): """Dynamically wrap to sys.stdout. This makes packages that monkey-patch sys.stdout (e.g.doctest, sphinx-gallery) work properly. """ def __getattr__(self, name): # noqa: D105 # Even more ridiculous than this class, this must be sys.stdout (not # just stdout) in order for this to work (tested on OSX and Linux) if hasattr(sys.stdout, name): return getattr(sys.stdout, name) else: raise AttributeError("'file' object has not attribute '%s'" % name) _verbose_dec_re = re.compile('^<decorator-gen-[0-9]+>$') def warn(message, category=RuntimeWarning, module='mne', ignore_namespaces=('mne',)): """Emit a warning with trace outside the mne namespace. This function takes arguments like warnings.warn, and sends messages using both ``warnings.warn`` and ``logger.warn``. Warnings can be generated deep within nested function calls. In order to provide a more helpful warning, this function traverses the stack until it reaches a frame outside the ``mne`` namespace that caused the error. Parameters ---------- message : str Warning message. category : instance of Warning The warning class. Defaults to ``RuntimeWarning``. module : str The name of the module emitting the warning. ignore_namespaces : list of str Namespaces to ignore when traversing the stack. .. versionadded:: 0.24 """ root_dirs = [importlib.import_module(ns) for ns in ignore_namespaces] root_dirs = [op.dirname(ns.__file__) for ns in root_dirs] frame = None if logger.level <= logging.WARN: frame = inspect.currentframe() while frame: fname = frame.f_code.co_filename lineno = frame.f_lineno # in verbose dec if not _verbose_dec_re.search(fname): # treat tests as scripts # and don't capture unittest/case.py (assert_raises) if not (any(fname.startswith(rd) for rd in root_dirs) or ('unittest' in fname and 'case' in fname)) or \ op.basename(op.dirname(fname)) == 'tests': break frame = frame.f_back del frame # We need to use this instead of warn(message, category, stacklevel) # because we move out of the MNE stack, so warnings won't properly # recognize the module name (and our warnings.simplefilter will fail) warnings.warn_explicit( message, category, fname, lineno, module, globals().get('__warningregistry__', {})) # To avoid a duplicate warning print, we only emit the logger.warning if # one of the handlers is a FileHandler. See gh-5592 # But it's also nice to be able to do: # with mne.utils.use_log_level('warning', add_frames=3): # so also check our add_frames attribute. if any(isinstance(h, logging.FileHandler) or getattr(h, '_mne_file_like', False) for h in logger.handlers) or _filter.add_frames: logger.warning(message) def _get_call_line(): """Get the call line from within a function.""" frame = inspect.currentframe().f_back.f_back if _verbose_dec_re.search(frame.f_code.co_filename): frame = frame.f_back context = inspect.getframeinfo(frame).code_context context = 'unknown' if context is None else context[0].strip() return context def filter_out_warnings(warn_record, category=None, match=None): r"""Remove particular records from ``warn_record``. This helper takes a list of :class:`warnings.WarningMessage` objects, and remove those matching category and/or text. Parameters ---------- category: WarningMessage type | None class of the message to filter out match : str | None text or regex that matches the error message to filter out """ regexp = re.compile('.*' if match is None else match) is_category = [w.category == category if category is not None else True for w in warn_record._list] is_match = [regexp.match(w.message.args[0]) is not None for w in warn_record._list] ind = [ind for ind, (c, m) in enumerate(zip(is_category, is_match)) if c and m] for i in reversed(ind): warn_record._list.pop(i) @contextlib.contextmanager def wrapped_stdout(indent='', cull_newlines=False): """Wrap stdout writes to logger.info, with an optional indent prefix. Parameters ---------- indent : str The indentation to add. cull_newlines : bool If True, cull any new/blank lines at the end. """ orig_stdout = sys.stdout my_out = ClosingStringIO() sys.stdout = my_out try: yield finally: sys.stdout = orig_stdout pending_newlines = 0 for line in my_out.getvalue().split('\n'): if not line.strip() and cull_newlines: pending_newlines += 1 continue for _ in range(pending_newlines): logger.info('\n') logger.info(indent + line) def _frame_info(n): frame = inspect.currentframe() try: frame = frame.f_back infos = list() for _ in range(n): try: name = frame.f_globals['__name__'] except KeyError: # in our verbose dec pass else: infos.append(f'{name.lstrip("mne.")}:{frame.f_lineno}') frame = frame.f_back if frame is None: break return infos except Exception: return ['unknown'] finally: del frame
34.233607
86
0.626302
33e9d81423e8b3488419c35984c414eb5317c46a
5,042
py
Python
beans/beans_bill/apps/expense/views.py
tjhlp/beans_code
d9b5eceddfd2c0028875001d7d53fd3fd222edf9
[ "MIT" ]
null
null
null
beans/beans_bill/apps/expense/views.py
tjhlp/beans_code
d9b5eceddfd2c0028875001d7d53fd3fd222edf9
[ "MIT" ]
4
2021-06-08T22:00:26.000Z
2022-03-12T00:40:05.000Z
beans/beans_bill/apps/expense/views.py
tjhlp/beans_code
d9b5eceddfd2c0028875001d7d53fd3fd222edf9
[ "MIT" ]
null
null
null
from django.views import View import datetime from expense.models import * from bill.models import BillInfo from beans_bill.utils.response_code import * from beans_bill.utils.comm_utils import * class ExpenseListView(View): """ 显示账户下所有消费记录""" def post(self, request): params = {'user_id': (1, str), 'bill_name': (0, str), 'expense_type': (0, str), 'expense_time': (0, str)} js, code = valid_body_js(request, params) if code != CODE_SUCCESS: logger.error("invalid param") return json_response(code) req_params = {''} try: info_models = ExpenseInfo.objects.filter(user_id=js['user_id']) except Exception as error: logger.error("BillInfo got exception:%s, params:%s" % (str(error), js)) return json_response(CODE_NODE_SOURCE_MISSING) res = [] for info_model in info_models: # 查询账单信息 bill_info = BillInfo.objects.get(bill_id=info_model.bill_id) rsp = { 'bill_id': info_model.bill_id, 'bill_name': bill_info.bill_name, 'expense_id': info_model.expense_id, 'expense_name': info_model.expense_name, 'expense_type': info_model.expense_type, 'expense_time': json_type(info_model.expense_time), 'expense_cost': info_model.expense_cost, 'expense_content': info_model.expense_content } res.append(rsp) return json_response(CODE_SUCCESS, res) class ExpenseAddView(View): """ 添加消费记录""" def post(self, request): params = {'user_id': (1, str), 'bill_id_list': (1, list), 'expense_name': (1, str), 'expense_type': (1, str), 'expense_time': (1, str), 'expense_cost': (1, str), 'expense_content': (1, str)} js, code = valid_body_js(request, params) if code != CODE_SUCCESS: logger.error("invalid param") return json_response(code) bill_id_list = js.pop('bill_id_list') ex_list = [] for bill_id in bill_id_list: js['bill_id'] = bill_id ex_ = ExpenseInfo.objects.create(**js) ex_list.append(ex_.expense_id) rsp = { 'expense_id': ex_list } return json_response(CODE_SUCCESS, rsp) class ExpenseRemoveView(View): """ 删除消费记录""" def post(self, request): params = {'expense_id': (1, str)} js, code = valid_body_js(request, params) if code != CODE_SUCCESS: logger.error("invalid param") return json_response(code) ExpenseInfo.objects.get(expense_id=js['expense_id']).delete() return json_response(CODE_SUCCESS) class ExpenseUpdateView(View): """ 更改消费记录""" def post(self, request): params = {'expense_id': (1, str), 'expense_name': (0, str), 'expense_type': (0, str), 'expense_time': (0, str), 'expense_cost': (0, str), 'expense_content': (0, str)} js, code = valid_body_js(request, params) if code != CODE_SUCCESS: logger.error("invalid param") return json_response(code) expense_id = js.pop('expense_id') ex_ = ExpenseInfo.objects.get(expense_id=expense_id) ex_.expense_name = js['expense_name'] if js['expense_name'] else ex_.expense_name ex_.expense_type = js['expense_type'] if js['expense_type'] else ex_.expense_type ex_.expense_time = js['expense_time'] if js['expense_time'] else ex_.expense_time ex_.expense_cost = js['expense_cost'] if js['expense_cost'] else ex_.expense_cost ex_.expense_content = js['expense_content'] if js['expense_content'] else ex_.expense_content ex_.save() return json_response(CODE_SUCCESS) class ExpenseCostView(View): """ 个人消费总额""" def post(self, request): params = {'user_id': (1, str)} js, code = valid_body_js(request, params) if code != CODE_SUCCESS: logger.error("invalid param") return json_response(code) today = datetime.date.today() last_week = today - datetime.timedelta(days=7) last_month = today - datetime.timedelta(days=30) last_year = today - datetime.timedelta(days=365) week_model = ExpenseInfo.objects.filter(expense_time__gt=last_week) week_cost = 0 for week in week_model: week_cost += week.expense_cost month_model = ExpenseInfo.objects.filter(expense_time__gt=last_month) month_cost = 0 for month in month_model: month_cost += month.expense_cost year_model = ExpenseInfo.objects.filter(expense_time__gt=last_year) year_cost = 0 for year in year_model: year_cost += year.expense_cost rsp = { 'week_cost': week_cost, 'month_cost': month_cost, 'year_cost': year_cost, } return json_response(CODE_SUCCESS, rsp)
34.772414
117
0.608092
e50dda574001aa520706ebc14135a8092b12f5b2
903
py
Python
src/deploy/osp_deployer/dateloghandler.py
kamlesh6808/JetPack
54871b307cc7385939dd89f9bb5e9ed9bb3036fe
[ "Apache-2.0" ]
31
2017-11-14T02:21:18.000Z
2022-02-16T07:28:54.000Z
src/deploy/osp_deployer/dateloghandler.py
kamlesh6808/JetPack
54871b307cc7385939dd89f9bb5e9ed9bb3036fe
[ "Apache-2.0" ]
324
2018-01-10T16:52:25.000Z
2021-09-23T19:02:50.000Z
src/deploy/osp_deployer/dateloghandler.py
kamlesh6808/JetPack
54871b307cc7385939dd89f9bb5e9ed9bb3036fe
[ "Apache-2.0" ]
215
2017-11-01T15:50:16.000Z
2022-02-16T07:28:56.000Z
# Copyright (c) 2015-2021 Dell Inc. or its subsidiaries. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from datetime import datetime class Dateloghandler(logging.FileHandler): def __init__(self, filename, mode): path = '/auto_results/' fname = datetime.now().strftime(".%Y.%m.%d-%H.%M") super(Dateloghandler, self).__init__(path + filename + fname, mode)
34.730769
75
0.728682
63d412a3830715cd308ecb531bfdd9066e79132d
544
py
Python
heltour/tournament/migrations/0149_auto_20170307_1700.py
zbidwell/heltour
3895142695096a81cc65c3fefb7d4501ed796f46
[ "MIT" ]
41
2016-08-17T19:58:42.000Z
2021-11-08T10:52:07.000Z
heltour/tournament/migrations/0149_auto_20170307_1700.py
zbidwell/heltour
3895142695096a81cc65c3fefb7d4501ed796f46
[ "MIT" ]
257
2016-08-17T22:29:05.000Z
2022-01-13T00:42:05.000Z
heltour/tournament/migrations/0149_auto_20170307_1700.py
zbidwell/heltour
3895142695096a81cc65c3fefb7d4501ed796f46
[ "MIT" ]
31
2016-09-23T23:36:14.000Z
2022-01-14T17:05:08.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-03-07 17:00 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tournament', '0148_player_timezone_offset'), ] operations = [ migrations.AlterField( model_name='player', name='account_status', field=models.CharField(choices=[('normal', 'Normal'), ('engine', 'Engine'), ('booster', 'Booster'), ('closed', 'Closed')], default='normal', max_length=31), ), ]
25.904762
168
0.599265
16572a15be349542b56030cf6704034960edb6c1
927
py
Python
models.py
realityone/ApnManger
696d1eb945a29c5f8cd70004fc55e5ca37e1165a
[ "MIT" ]
3
2015-07-29T12:05:49.000Z
2015-10-09T07:35:23.000Z
models.py
realityone/ApnManger
696d1eb945a29c5f8cd70004fc55e5ca37e1165a
[ "MIT" ]
null
null
null
models.py
realityone/ApnManger
696d1eb945a29c5f8cd70004fc55e5ca37e1165a
[ "MIT" ]
null
null
null
from uuid import uuid4 from base64 import b64encode class ApnProxyConfig(object): description = 'Custom Apn Proxy Profile' organization = 'Realityone' def __init__(self, proxy_ip, port, name='Apn Proxy Config', username=None, password=None): self.name = name self.proxy_ip = proxy_ip self.port = port self.username = username or '' self.password = password or '' @property def password(self): return self._password @password.setter def password(self, value): self._password = b64encode(value).strip() @classmethod def _uuid(cls): return str(uuid4()).upper() @property def config_uid(self): return self._uuid() @property def file_uuid(self): return self._uuid() if __name__ == '__main__': apn = ApnProxyConfig('127.0.0.1', 1234) print apn.password, apn.file_uuid, apn.config_uid
23.769231
94
0.640777
b1853774f8a6d9f149843126199dd2b1612e53b0
1,154
py
Python
src/CryptoPlus/Hash/python_SHA512.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
1
2022-02-27T17:46:18.000Z
2022-02-27T17:46:18.000Z
src/CryptoPlus/Hash/python_SHA512.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
null
null
null
src/CryptoPlus/Hash/python_SHA512.py
voytecPL/pycryptoplus
86905bbb8661e00cfb2afdc4461d4a79b6429d8a
[ "MIT" ]
null
null
null
from .pysha512 import sha512 __all__ = ['new','digest_size'] def new(data=None): """Create a new pure python SHA-512 hash object data = initial input (raw string) to the hashing object if present, the method call update(arg) is made EXAMPLE: FIPS 180-2 ========= >>> from CryptoPlus.Hash import python_SHA512 >>> message = b"abc" >>> hasher = python_SHA512.new() >>> hasher.update(message) >>> hasher.hexdigest() 'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f' >>> message = b"abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu" >>> hasher = python_SHA512.new() >>> hasher.update(message) >>> hasher.hexdigest() '8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909' """ return sha512(data) digest_size = sha512.digest_size
37.225806
138
0.667244
9365c2f3f881a98000b9f5ce774491ebb8be1336
4,953
py
Python
huaweicloud-sdk-moderation/huaweicloudsdkmoderation/v1/model/image_detection_result_body.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-moderation/huaweicloudsdkmoderation/v1/model/image_detection_result_body.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
huaweicloud-sdk-moderation/huaweicloudsdkmoderation/v1/model/image_detection_result_body.py
Adek06/huaweicloud-sdk-python-v3
3d13b27d089e04a1ae567cd649b3c5509e0391d2
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 import pprint import re import six class ImageDetectionResultBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'detail': 'ImageDetectionResultDetail', 'suggestion': 'str', 'category_suggestion': 'object' } attribute_map = { 'detail': 'detail', 'suggestion': 'suggestion', 'category_suggestion': 'category_suggestion' } def __init__(self, detail=None, suggestion=None, category_suggestion=None): """ImageDetectionResultBody - a model defined in huaweicloud sdk""" self._detail = None self._suggestion = None self._category_suggestion = None self.discriminator = None if detail is not None: self.detail = detail if suggestion is not None: self.suggestion = suggestion if category_suggestion is not None: self.category_suggestion = category_suggestion @property def detail(self): """Gets the detail of this ImageDetectionResultBody. :return: The detail of this ImageDetectionResultBody. :rtype: ImageDetectionResultDetail """ return self._detail @detail.setter def detail(self, detail): """Sets the detail of this ImageDetectionResultBody. :param detail: The detail of this ImageDetectionResultBody. :type: ImageDetectionResultDetail """ self._detail = detail @property def suggestion(self): """Gets the suggestion of this ImageDetectionResultBody. 检测结果是否通过。 block:包含敏感信息,不通过 pass:不包含敏感信息,通过 review:需要人工复检 > 说明: 当同时检测多个场景时,suggestion的值以最可能包含敏感信息的场景为准。即任一场景出现了block则总的suggestion为block,所有场景都pass时suggestion为pass,这两种情况之外则一定有场景需要review,此时suggestion为review。 :return: The suggestion of this ImageDetectionResultBody. :rtype: str """ return self._suggestion @suggestion.setter def suggestion(self, suggestion): """Sets the suggestion of this ImageDetectionResultBody. 检测结果是否通过。 block:包含敏感信息,不通过 pass:不包含敏感信息,通过 review:需要人工复检 > 说明: 当同时检测多个场景时,suggestion的值以最可能包含敏感信息的场景为准。即任一场景出现了block则总的suggestion为block,所有场景都pass时suggestion为pass,这两种情况之外则一定有场景需要review,此时suggestion为review。 :param suggestion: The suggestion of this ImageDetectionResultBody. :type: str """ self._suggestion = suggestion @property def category_suggestion(self): """Gets the category_suggestion of this ImageDetectionResultBody. 具体每个场景的检测结果。 block:包含敏感信息,不通过 pass:不包含敏感信息,通过 review:需要人工复检 :return: The category_suggestion of this ImageDetectionResultBody. :rtype: object """ return self._category_suggestion @category_suggestion.setter def category_suggestion(self, category_suggestion): """Sets the category_suggestion of this ImageDetectionResultBody. 具体每个场景的检测结果。 block:包含敏感信息,不通过 pass:不包含敏感信息,通过 review:需要人工复检 :param category_suggestion: The category_suggestion of this ImageDetectionResultBody. :type: object """ self._category_suggestion = category_suggestion def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ImageDetectionResultBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
30.386503
212
0.617605
5a659059a6176edea06696098e694f4b071736eb
520
py
Python
dataloader_test.py
DocyNoah/Visualizing-CNNs-for-monocular-depth-estimation
38f10bee89c31379c399834e89905b5d39c31764
[ "MIT" ]
null
null
null
dataloader_test.py
DocyNoah/Visualizing-CNNs-for-monocular-depth-estimation
38f10bee89c31379c399834e89905b5d39c31764
[ "MIT" ]
null
null
null
dataloader_test.py
DocyNoah/Visualizing-CNNs-for-monocular-depth-estimation
38f10bee89c31379c399834e89905b5d39c31764
[ "MIT" ]
null
null
null
import loaddata import torch from PIL import Image import numpy as np def main(): batch_size = 8 train_loader = loaddata.getTrainingData(batch_size) for i, sample_batched in enumerate(train_loader): image, depth_ = sample_batched['image'], sample_batched['depth'] for j in range(batch_size): print(image[j].shape) np_image = np.array(image[j]) pil_image = Image.fromarray(np_image) pil_image.show(1) if __name__ == "__main__": main()
22.608696
72
0.646154
76e9d0e82dabebbba90d8afb2b24b7fb2d8e4a06
668
py
Python
exercicios-turtle/.history/firstinterface_20210627212745.py
Aleff13/poo-ufsc
bc1574df26f840a3c0fd5b1e0c72e5d69f61493d
[ "MIT" ]
1
2021-11-28T18:49:21.000Z
2021-11-28T18:49:21.000Z
exercicios-turtle/.history/firstinterface_20210627212745.py
Aleff13/poo-ufsc
bc1574df26f840a3c0fd5b1e0c72e5d69f61493d
[ "MIT" ]
null
null
null
exercicios-turtle/.history/firstinterface_20210627212745.py
Aleff13/poo-ufsc
bc1574df26f840a3c0fd5b1e0c72e5d69f61493d
[ "MIT" ]
null
null
null
import tkinter #main frame root = tkinter.Tk() root.geometry('400x400+3200+100') root.wm_title('Anotações') #list box #frame commentsFrame = tkinter.LabelFrame(root, text='Anotações') commentsFrame.place(relwidth=1, relheight=0.5) commentsList = tkinter.Listbox(commentsFrame) commentsList.place(relwidth=1, relheight=0.5) #opções LabelFrame optionsFrame = tkinter.LabelFrame(root, text='Opções') optionsFrame.place(relwidth=1, relheight=0.5, rely=0.5) inputCommentFrame = tkinter.LabelFrame(optionsFrame, text='Nova anotação') inputCommentFrame.place(relwidth=1, relheight=0.4) inputComment = tkinter.Entry(inputCommentFrame) input #start app root.mainloop()
23.857143
74
0.788922
e0ca91e280cd0e65f3c64296acbc0d32bc2389be
3,675
py
Python
kunquat/tracker/ui/model/column.py
cyberixae/kunquat
06ae72b2c1519686cc510ce887d9d45a5c3fa3a3
[ "CC0-1.0" ]
null
null
null
kunquat/tracker/ui/model/column.py
cyberixae/kunquat
06ae72b2c1519686cc510ce887d9d45a5c3fa3a3
[ "CC0-1.0" ]
null
null
null
kunquat/tracker/ui/model/column.py
cyberixae/kunquat
06ae72b2c1519686cc510ce887d9d45a5c3fa3a3
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Author: Tomi Jylhä-Ollila, Finland 2014 # # This file is part of Kunquat. # # CC0 1.0 Universal, http://creativecommons.org/publicdomain/zero/1.0/ # # To the extent possible under law, Kunquat Affirmers have waived all # copyright and related or neighboring rights to Kunquat. # from trigger import Trigger import tstamp COLUMNS_MAX = 64 # TODO: define in libkunquat interface class Column(): def __init__(self, pattern_id, col_num): assert pattern_id assert 0 <= col_num < COLUMNS_MAX self._pattern_id = pattern_id self._col_num = col_num self._trigger_rows = None self._store = None self._controller = None def __eq__(self, other): assert isinstance(other, Column) return (self._col_num == other._col_num) and \ (self._pattern_id == other._pattern_id) def __ne__(self, other): return not (self == other) def set_controller(self, controller): self._controller = controller self._store = controller.get_store() def get_trigger_row_positions(self): self._build_trigger_rows() return self._trigger_rows.keys() def get_trigger_row_positions_in_range(self, start, stop): self._build_trigger_rows() return [ts for ts in self._trigger_rows.keys() if start <= ts < stop] def get_trigger_count_at_row(self, row_ts): self._build_trigger_rows() return len(self._trigger_rows[row_ts]) def get_trigger(self, row_ts, trigger_index): self._build_trigger_rows() return self._trigger_rows[row_ts][trigger_index] def has_trigger(self, row_ts, trigger_index): try: self.get_trigger(row_ts, trigger_index) return True except (KeyError, IndexError): return False def insert_trigger(self, row_ts, trigger_index, trigger): self._build_trigger_rows() if row_ts not in self._trigger_rows: self._trigger_rows[row_ts] = [] self._trigger_rows[row_ts].insert(trigger_index, trigger) raw_data = self._make_raw_data(self._trigger_rows) self._store[self._get_key()] = raw_data def remove_trigger(self, row_ts, trigger_index): self._build_trigger_rows() assert self.has_trigger(row_ts, trigger_index) del self._trigger_rows[row_ts][trigger_index] raw_data = self._make_raw_data(self._trigger_rows) self._store[self._get_key()] = raw_data def _build_trigger_rows(self): if self._trigger_rows == None: self._trigger_rows = {} trigger_list = self._get_raw_data() for ts_data, evspec in trigger_list: ts = tstamp.Tstamp(ts_data) if ts not in self._trigger_rows: self._trigger_rows[ts] = [] trigger_type, argument = evspec trigger = Trigger(trigger_type, argument) self._trigger_rows[ts].append(trigger) def _get_key(self): key = '{}/col_{:02x}/p_triggers.json'.format( self._pattern_id, self._col_num) return key def _get_raw_data(self): key = self._get_key() try: triggers = self._store[key] return triggers except KeyError: return [] def _make_raw_data(self, trigger_rows): raw_data = [] for (ts, triggers) in trigger_rows.iteritems(): for trigger in triggers: evspec = [trigger.get_type(), trigger.get_argument()] raw_data.append([tuple(ts), evspec]) return raw_data
30.122951
77
0.633197
5048a0b75136e08b8f643b8f9017972c139a9b08
28,491
py
Python
owslib/util.py
mtauban/OWSLib
0b64e7a8f7eb9e1fca369716f9803821066bf0f3
[ "BSD-3-Clause" ]
null
null
null
owslib/util.py
mtauban/OWSLib
0b64e7a8f7eb9e1fca369716f9803821066bf0f3
[ "BSD-3-Clause" ]
null
null
null
owslib/util.py
mtauban/OWSLib
0b64e7a8f7eb9e1fca369716f9803821066bf0f3
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: ISO-8859-15 -*- # ============================================================================= # Copyright (c) 2008 Tom Kralidis # # Authors : Tom Kralidis <tomkralidis@gmail.com> # # Contact email: tomkralidis@gmail.com # ============================================================================= import os import sys from collections import OrderedDict from dateutil import parser from datetime import datetime, timedelta import pytz from owslib.etree import etree, ParseError from owslib.namespaces import Namespaces from urllib.parse import urlsplit, urlencode, urlparse, parse_qs, urlunparse, parse_qsl import copy from io import StringIO, BytesIO import re from copy import deepcopy import warnings import requests import codecs """ Utility functions and classes """ class ServiceException(Exception): # TODO: this should go in ows common module when refactored. pass # http://stackoverflow.com/questions/6256183/combine-two-dictionaries-of-dictionaries-python def dict_union(d1, d2): return dict((x, (dict_union(d1.get(x, {}), d2[x]) if isinstance(d2.get(x), dict) else d2.get(x, d1.get(x)))) for x in set(list(d1.keys()) + list(d2.keys()))) # Infinite DateTimes for Python. Used in SWE 2.0 and other OGC specs as "INF" and "-INF" class InfiniteDateTime(object): def __lt__(self, other): return False def __gt__(self, other): return True def timetuple(self): return tuple() class NegativeInfiniteDateTime(object): def __lt__(self, other): return True def __gt__(self, other): return False def timetuple(self): return tuple() first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def format_string(prop_string): """ Formats a property string to remove spaces and go from CamelCase to pep8 from: http://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-camel-case """ if prop_string is None: return '' st_r = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', prop_string) st_r = st_r.replace(' ', '') return re.sub('([a-z0-9])([A-Z])', r'\1_\2', st_r).lower() def xml_to_dict(root, prefix=None, depth=1, diction=None): """ Recursively iterates through an xml element to convert each element in the tree to a (key,val). Where key is the element tag and val is the inner-text of the element. Note that this recursively go through the tree until the depth specified. Parameters =========== :root - root xml element, starting point of iteration :prefix - a string to prepend to the resulting key (optional) :depth - the number of depths to process in the tree (optional) :diction - the dictionary to insert the (tag,text) pairs into (optional) Return ======= Dictionary of (key,value); where key is the element tag stripped of namespace and cleaned up to be pep8 and value is the inner-text of the element. Note that duplicate elements will be replaced by the last element of the same tag in the tree. """ ret = diction if diction is not None else dict() for child in root: val = testXMLValue(child) # skip values that are empty or None if val is None or val == '': if depth > 1: ret = xml_to_dict(child, prefix=prefix, depth=(depth - 1), diction=ret) continue key = format_string(child.tag.split('}')[-1]) if prefix is not None: key = prefix + key ret[key] = val if depth > 1: ret = xml_to_dict(child, prefix=prefix, depth=(depth - 1), diction=ret) return ret class ResponseWrapper(object): """ Return object type from openURL. Provides a thin shim around requests response object to maintain code compatibility. """ def __init__(self, response): self._response = response def info(self): return self._response.headers def read(self): return self._response.content def geturl(self): return self._response.url.replace('&&', '&') # @TODO: __getattribute__ for poking at response def openURL(url_base, data=None, method='Get', cookies=None, username=None, password=None, timeout=30, headers=None, verify=True, cert=None, auth=None): """ Function to open URLs. Uses requests library but with additional checks for OGC service exceptions and url formatting. Also handles cookies and simple user password authentication. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``. :param cert: (optional) A file with a client side certificate for SSL authentication to send with the :class:`Request`. :param auth: Instance of owslib.util.Authentication """ headers = headers if headers is not None else {} rkwargs = {} rkwargs['timeout'] = timeout if auth: if username: auth.username = username if password: auth.password = password if cert: auth.cert = cert verify = verify and auth.verify else: auth = Authentication(username, password, cert, verify) if auth.username and auth.password: rkwargs['auth'] = (auth.username, auth.password) rkwargs['cert'] = auth.cert rkwargs['verify'] = verify # FIXUP for WFS in particular, remove xml style namespace # @TODO does this belong here? method = method.split("}")[-1] if method.lower() == 'post': try: etree.fromstring(data) headers['Content-Type'] = 'text/xml' except (ParseError, UnicodeEncodeError): pass rkwargs['data'] = data elif method.lower() == 'get': rkwargs['params'] = data else: raise ValueError("Unknown method ('%s'), expected 'get' or 'post'" % method) if cookies is not None: rkwargs['cookies'] = cookies req = requests.request(method.upper(), url_base, headers=headers, **rkwargs) if req.status_code in [400, 401]: raise ServiceException(req.text) if req.status_code in [404, 500, 502, 503, 504]: # add more if needed req.raise_for_status() # check for service exceptions without the http header set if 'Content-Type' in req.headers and \ req.headers['Content-Type'] in ['text/xml', 'application/xml', 'application/vnd.ogc.se_xml']: # just in case 400 headers were not set, going to have to read the xml to see if it's an exception report. se_tree = etree.fromstring(req.content) # to handle the variety of namespaces and terms across services # and versions, especially for "legacy" responses like WMS 1.3.0 possible_errors = [ '{http://www.opengis.net/ows}Exception', '{http://www.opengis.net/ows/1.1}Exception', '{http://www.opengis.net/ogc}ServiceException', 'ServiceException' ] for possible_error in possible_errors: serviceException = se_tree.find(possible_error) if serviceException is not None: # and we need to deal with some message nesting raise ServiceException('\n'.join([t.strip() for t in serviceException.itertext() if t.strip()])) return ResponseWrapper(req) # default namespace for nspath is OWS common OWS_NAMESPACE = 'http://www.opengis.net/ows/1.1' def nspath(path, ns=OWS_NAMESPACE): """ Prefix the given path with the given namespace identifier. Parameters ---------- - path: ElementTree API Compatible path expression - ns: the XML namespace URI. """ if ns is None or path is None: return -1 components = [] for component in path.split('/'): if component != '*': component = '{%s}%s' % (ns, component) components.append(component) return '/'.join(components) def nspath_eval(xpath, namespaces): ''' Return an etree friendly xpath ''' out = [] for chunks in xpath.split('/'): namespace, element = chunks.split(':') out.append('{%s}%s' % (namespaces[namespace], element)) return '/'.join(out) def cleanup_namespaces(element): """ Remove unused namespaces from an element """ if etree.__name__ == 'lxml.etree': etree.cleanup_namespaces(element) return element else: return etree.fromstring(etree.tostring(element)) def add_namespaces(root, ns_keys): if isinstance(ns_keys, str): ns_keys = [ns_keys] namespaces = Namespaces() ns_keys = [(x, namespaces.get_namespace(x)) for x in ns_keys] if etree.__name__ != 'lxml.etree': # We can just add more namespaces when not using lxml. # We can't re-add an existing namespaces. Get a list of current # namespaces in use existing_namespaces = set() for elem in root.iter(): if elem.tag[0] == "{": uri, tag = elem.tag[1:].split("}") existing_namespaces.add(namespaces.get_namespace_from_url(uri)) for key, link in ns_keys: if link is not None and key not in existing_namespaces: root.set("xmlns:%s" % key, link) return root else: # lxml does not support setting xmlns attributes # Update the elements nsmap with new namespaces new_map = root.nsmap for key, link in ns_keys: if link is not None: new_map[key] = link # Recreate the root element with updated nsmap new_root = etree.Element(root.tag, nsmap=new_map) # Carry over attributes for a, v in list(root.items()): new_root.set(a, v) # Carry over children for child in root: new_root.append(deepcopy(child)) return new_root def getXMLInteger(elem, tag): """ Return the text within the named tag as an integer. Raises an exception if the tag cannot be found or if its textual value cannot be converted to an integer. Parameters ---------- - elem: the element to search within - tag: the name of the tag to look for """ e = elem.find(tag) if e is None: raise ValueError('Missing %s in %s' % (tag, elem)) return int(e.text.strip()) def testXMLValue(val, attrib=False): """ Test that the XML value exists, return val.text, else return None Parameters ---------- - val: the value to be tested """ if val is not None: if attrib: return val.strip() elif val.text: return val.text.strip() else: return None else: return None def testXMLAttribute(element, attribute): """ Test that the XML element and attribute exist, return attribute's value, else return None Parameters ---------- - element: the element containing the attribute - attribute: the attribute name """ if element is not None: return element.get(attribute) return None def http_post(url=None, request=None, lang='en-US', timeout=10, username=None, password=None, auth=None): """ Invoke an HTTP POST request Parameters ---------- - url: the URL of the server - request: the request message - lang: the language - timeout: timeout in seconds """ if url is None: raise ValueError("URL required") u = urlsplit(url) headers = { 'User-Agent': 'parcelle-recs', 'Content-type': 'text/xml', 'Accept': 'text/xml', 'Accept-Language': lang, 'Accept-Encoding': 'gzip,deflate', 'Host': u.netloc, } rkwargs = {} if auth: if username: auth.username = username if password: auth.password = password else: auth = Authentication(username, password) if auth.username is not None and auth.password is not None: rkwargs['auth'] = (auth.username, auth.password) rkwargs['verify'] = auth.verify rkwargs['cert'] = auth.cert up = requests.post(url, request, headers=headers, **rkwargs) return up.content def http_get(*args, **kwargs): # Copy input kwargs so the dict can be modified rkwargs = copy.deepcopy(kwargs) # Use Authentication instance if provided, else create one auth = rkwargs.pop('auth', None) if auth is not None: if isinstance(auth, (tuple, list)): auth = Authentication(*auth) else: auth = Authentication() # Populate values with other arguments supplied if 'username' in rkwargs: auth.username = rkwargs.pop('username') if 'password' in rkwargs: auth.password = rkwargs.pop('password') if 'cert' in rkwargs: auth.cert = rkwargs.pop('cert') if 'verify' in rkwargs: auth.verify = rkwargs.pop('verify') # Build keyword args for call to requests.get() if auth.username and auth.password: rkwargs.setdefault('auth', (auth.username, auth.password)) else: rkwargs.setdefault('auth', None) rkwargs.setdefault('cert', rkwargs.get('cert')) rkwargs.setdefault('verify', rkwargs.get('verify', True)) return requests.get(*args, **rkwargs) def element_to_string(element, encoding=None, xml_declaration=False): """ Returns a string from a XML object Parameters ---------- - element: etree Element - encoding (optional): encoding in string form. 'utf-8', 'ISO-8859-1', etc. - xml_declaration (optional): whether to include xml declaration """ output = None if encoding is None: encoding = "ISO-8859-1" if etree.__name__ == 'lxml.etree': if xml_declaration: if encoding in ['unicode', 'utf-8']: output = '<?xml version="1.0" encoding="utf-8" standalone="no"?>\n{}'.format( etree.tostring(element, encoding='unicode')) else: output = etree.tostring(element, encoding=encoding, xml_declaration=True) else: output = etree.tostring(element) else: if xml_declaration: output = '<?xml version="1.0" encoding="{}" standalone="no"?>\n{}'.format( encoding, etree.tostring(element, encoding=encoding)) else: output = etree.tostring(element) return output def xml2string(xml): """ Return a string of XML object Parameters ---------- - xml: xml string """ warnings.warn("DEPRECIATION WARNING! You should now use the 'element_to_string' method \ The 'xml2string' method will be removed in a future version of OWSLib.") return '<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>\n' + xml def xmlvalid(xml, xsd): """ Test whether an XML document is valid Parameters ---------- - xml: XML content - xsd: pointer to XML Schema (local file path or URL) """ xsd1 = etree.parse(xsd) xsd2 = etree.XMLSchema(xsd1) doc = etree.parse(StringIO(xml)) return xsd2.validate(doc) def xmltag_split(tag): ''' Return XML element bare tag name (without prefix) ''' try: return tag.split('}')[1] except Exception: return tag def getNamespace(element): ''' Utility method to extract the namespace from an XML element tag encoded as {namespace}localname. ''' if element.tag[0] == '{': return element.tag[1:].split("}")[0] else: return "" def build_get_url(base_url, params, overwrite=False): ''' Utility function to build a full HTTP GET URL from the service base URL and a dictionary of HTTP parameters. TODO: handle parameters case-insensitive? @param overwrite: boolean flag to allow overwrite of parameters of the base_url (default: False) ''' qs_base = [] if base_url.find('?') != -1: qs_base = parse_qsl(base_url.split('?')[1]) qs_params = [] for key, value in list(params.items()): qs_params.append((key, value)) qs = qs_add = [] if overwrite is True: # all params and additional base qs = qs_params qs_add = qs_base else: # all base and additional params qs = qs_base qs_add = qs_params pars = [x[0] for x in qs] for key, value in qs_add: if key not in pars: qs.append((key, value)) urlqs = urlencode(tuple(qs)) return base_url.split('?')[0] + '?' + urlqs def dump(obj, prefix=''): '''Utility function to print to standard output a generic object with all its attributes.''' print(("{} {}.{} : {}".format(prefix, obj.__module__, obj.__class__.__name__, obj.__dict__))) def getTypedValue(data_type, value): '''Utility function to cast a string value to the appropriate XSD type. ''' # If the default value is empty if value is None: return if data_type == 'boolean': return True if value.lower() == 'true' else False elif data_type == 'integer': return int(value) elif data_type == 'float': return float(value) elif data_type == 'string': return str(value) else: return value # no type casting def extract_time(element): ''' return a datetime object based on a gml text string ex: <gml:beginPosition>2006-07-27T21:10:00Z</gml:beginPosition> <gml:endPosition indeterminatePosition="now"/> If there happens to be a strange element with both attributes and text, use the text. ex: <gml:beginPosition indeterminatePosition="now">2006-07-27T21:10:00Z</gml:beginPosition> Would be 2006-07-27T21:10:00Z, not 'now' ''' if element is None: return None try: dt = parser.parse(element.text) except Exception: att = testXMLValue(element.attrib.get('indeterminatePosition'), True) if att and att == 'now': dt = datetime.utcnow() dt.replace(tzinfo=pytz.utc) else: dt = None return dt def extract_xml_list(elements): """ Some people don't have seperate tags for their keywords and seperate them with a newline. This will extract out all of the keywords correctly. """ keywords = (re.split(r'[\n\r]+', f.text) for f in elements if f.text) flattened = (item.strip() for sublist in keywords for item in sublist) remove_blank = [_f for _f in flattened if _f] return remove_blank def strip_bom(raw_text): """ return the raw (assumed) xml response without the BOM """ boms = [ # utf-8 codecs.BOM_UTF8, # utf-16 codecs.BOM, codecs.BOM_BE, codecs.BOM_LE, codecs.BOM_UTF16, codecs.BOM_UTF16_LE, codecs.BOM_UTF16_BE, # utf-32 codecs.BOM_UTF32, codecs.BOM_UTF32_LE, codecs.BOM_UTF32_BE ] if isinstance(raw_text, bytes): for bom in boms: if raw_text.startswith(bom): return raw_text[len(bom):] return raw_text def clean_ows_url(url): """ clean an OWS URL of basic service elements source: https://stackoverflow.com/a/11640565 """ if url is None or not url.startswith('http'): return url filtered_kvp = {} basic_service_elements = ('service', 'version', 'request') parsed = urlparse(url) qd = parse_qs(parsed.query, keep_blank_values=True) for key, value in list(qd.items()): if key.lower() not in basic_service_elements: filtered_kvp[key] = value newurl = urlunparse([ parsed.scheme, parsed.netloc, parsed.path, parsed.params, urlencode(filtered_kvp, doseq=True), parsed.fragment ]) return newurl def bind_url(url): """binds an HTTP GET query string endpiont""" if url.find('?') == -1: # like http://host/wms binder = '?' # if like http://host/wms?foo=bar& or http://host/wms?foo=bar if url.find('=') != -1: if url.find('&', -1) != -1: # like http://host/wms?foo=bar& binder = '' else: # like http://host/wms?foo=bar binder = '&' # if like http://host/wms?foo if url.find('?') != -1: if url.find('?', -1) != -1: # like http://host/wms? binder = '' elif url.find('&', -1) == -1: # like http://host/wms?foo=bar binder = '&' return '%s%s' % (url, binder) import logging # Null logging handler NullHandler = logging.NullHandler log = logging.getLogger('owslib') log.addHandler(NullHandler()) def which_etree(): """decipher which etree library is being used by OWSLib""" which_etree = None if 'lxml' in etree.__file__: which_etree = 'lxml.etree' elif 'xml/etree' in etree.__file__: which_etree = 'xml.etree' elif 'elementree' in etree.__file__: which_etree = 'elementtree.ElementTree' return which_etree def findall(root, xpath, attribute_name=None, attribute_value=None): """Find elements recursively from given root element based on xpath and possibly given attribute :param root: Element root element where to start search :param xpath: xpath defintion, like {http://foo/bar/namespace}ElementName :param attribute_name: name of possible attribute of given element :param attribute_value: value of the attribute :return: list of elements or None """ found_elements = [] if attribute_name is not None and attribute_value is not None: xpath = '%s[@%s="%s"]' % (xpath, attribute_name, attribute_value) found_elements = root.findall('.//' + xpath) if found_elements == []: found_elements = None return found_elements def datetime_from_iso(iso): """returns a datetime object from dates in the format 2001-07-01T00:00:00Z or 2001-07-01T00:00:00.000Z """ try: iso_datetime = datetime.strptime(iso, "%Y-%m-%dT%H:%M:%SZ") except Exception: iso_datetime = datetime.strptime(iso, "%Y-%m-%dT%H:%M:%S.%fZ") return iso_datetime def datetime_from_ansi(ansi): """Converts an ansiDate (expressed as a number = the nuber of days since the datum origin of ansi) to a python datetime object. """ datumOrigin = datetime(1600, 12, 31, 0, 0, 0) return datumOrigin + timedelta(ansi) def is_number(s): """simple helper to test if value is number as requests with numbers don't need quote marks """ try: float(s) return True except ValueError: return False def makeString(value): # using repr unconditionally breaks things in some circumstances if a # value is already a string if type(value) is not str: sval = repr(value) else: sval = value return sval def param_list_to_url_string(param_list, param_name): """Converts list of tuples for certain WCS GetCoverage keyword arguments (subsets, resolutions, sizes) to a url-encoded string """ string = '' for param in param_list: if len(param) > 2: if not is_number(param[1]): string += "&" + urlencode({param_name: param[0] + '("' + makeString(param[1]) + '","' + makeString(param[2]) + '")'}) # noqa else: string += "&" + urlencode({param_name: param[0] + "(" + makeString(param[1]) + "," + makeString(param[2]) + ")"}) # noqa else: if not is_number(param[1]): string += "&" + urlencode({param_name: param[0] + '("' + makeString(param[1]) + '")'}) # noqa else: string += "&" + urlencode({param_name: param[0] + "(" + makeString(param[1]) + ")"}) # noqa return string def is_vector_grid(grid_elem): pass class Authentication(object): _USERNAME = None _PASSWORD = None _CERT = None _VERIFY = None def __init__(self, username=None, password=None, cert=None, verify=True, shared=False): ''' :param str username=None: Username for basic authentication, None for unauthenticated access (or if using cert/verify) :param str password=None: Password for basic authentication, None for unauthenticated access (or if using cert/verify) :param cert=None: Either a str (path to a combined certificate/key) or tuple/list of paths (certificate, key). If supplied, the target files must exist. :param verify=True: Either a bool (verify SSL certificates, use system CA bundle) or str (path to a specific CA bundle). If a str, the target file must exist. :param bool shared=False: Set to True to make the values be class-level attributes (shared among instances where shared=True) instead of instance-level (shared=False, default) ''' self.shared = shared self.username = username self.password = password self.cert = cert self.verify = verify @property def username(self): if self.shared: return self._USERNAME return self._username @username.setter def username(self, value): if value is None: pass elif not isinstance(value, str): raise TypeError('Value for "username" must be a str') if self.shared: self.__class__._USERNAME = value else: self._username = value @property def password(self): if self.shared: return self._PASSWORD return self._password @password.setter def password(self, value): if value is None: pass elif not isinstance(value, str): raise TypeError('Value for "password" must be a str') if self.shared: self.__class__._PASSWORD = value else: self._password = value @property def cert(self): if self.shared: return self._CERT return self._cert @cert.setter def cert(self, certificate, key=None): error = 'Value for "cert" must be a str path to a file or list/tuple of str paths' value = None if certificate is None: value = certificate elif isinstance(certificate, (list, tuple)): for _ in certificate: if not isinstance(_, str): raise TypeError(error) os.stat(_) # Raises OSError/FileNotFoundError if missing # Both paths supplied as same argument value = tuple(certificate) elif isinstance(certificate, str): os.stat(certificate) # Raises OSError/FileNotFoundError if missing if isinstance(key, str): # Separate files for certificate and key value = (certificate, key) else: # Assume combined file of both certificate and key value = certificate else: raise TypeError(error) if self.shared: self.__class__._CERT = value else: self._cert = value @property def verify(self): if self.shared: return self._VERIFY return self._verify @verify.setter def verify(self, value): if value is None: pass # Passthrough when clearing the value elif not isinstance(value, (bool, str)): raise TypeError( 'Value for "verify" must a bool or str path to a file') elif isinstance(value, str): os.stat(value) # Raises OSError/FileNotFoundError if missing if self.shared: self.__class__._VERIFY = value else: self._verify = value @property def urlopen_kwargs(self): return { 'username': self.username, 'password': self.password, 'cert': self.cert, 'verify': self.verify } def __repr__(self, *args, **kwargs): return '<{} shared={} username={} password={} cert={} verify={}>'.format( self.__class__.__name__, self.shared, self.username, self.password, self.cert, self.verify)
29.493789
141
0.609034
4e0a39dc1ec7bc3a6ba8d908a09df47af61c9fe8
19,925
py
Python
tests/test_completion_engine.py
zzl0/litecli
cd5d4e0cf9164a147c0c59f6f559347c851db5d6
[ "BSD-3-Clause" ]
null
null
null
tests/test_completion_engine.py
zzl0/litecli
cd5d4e0cf9164a147c0c59f6f559347c851db5d6
[ "BSD-3-Clause" ]
null
null
null
tests/test_completion_engine.py
zzl0/litecli
cd5d4e0cf9164a147c0c59f6f559347c851db5d6
[ "BSD-3-Clause" ]
null
null
null
from litecli.packages.completion_engine import suggest_type import pytest def sorted_dicts(dicts): """input is a list of dicts.""" return sorted(tuple(x.items()) for x in dicts) def test_select_suggests_cols_with_visible_table_scope(): suggestions = suggest_type("SELECT FROM tabl", "SELECT ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_select_suggests_cols_with_qualified_table_scope(): suggestions = suggest_type("SELECT FROM sch.tabl", "SELECT ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [("sch", "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) @pytest.mark.parametrize( "expression", [ "SELECT * FROM tabl WHERE ", "SELECT * FROM tabl WHERE (", "SELECT * FROM tabl WHERE foo = ", "SELECT * FROM tabl WHERE bar OR ", "SELECT * FROM tabl WHERE foo = 1 AND ", "SELECT * FROM tabl WHERE (bar > 10 AND ", "SELECT * FROM tabl WHERE (bar AND (baz OR (qux AND (", "SELECT * FROM tabl WHERE 10 < ", "SELECT * FROM tabl WHERE foo BETWEEN ", "SELECT * FROM tabl WHERE foo BETWEEN foo AND ", ], ) def test_where_suggests_columns_functions(expression): suggestions = suggest_type(expression, expression) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) @pytest.mark.parametrize( "expression", ["SELECT * FROM tabl WHERE foo IN (", "SELECT * FROM tabl WHERE foo IN (bar, "], ) def test_where_in_suggests_columns(expression): suggestions = suggest_type(expression, expression) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_where_equals_any_suggests_columns_or_keywords(): text = "SELECT * FROM tabl WHERE foo = ANY(" suggestions = suggest_type(text, text) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_lparen_suggests_cols(): suggestion = suggest_type("SELECT MAX( FROM tbl", "SELECT MAX(") assert suggestion == [{"type": "column", "tables": [(None, "tbl", None)]}] def test_operand_inside_function_suggests_cols1(): suggestion = suggest_type("SELECT MAX(col1 + FROM tbl", "SELECT MAX(col1 + ") assert suggestion == [{"type": "column", "tables": [(None, "tbl", None)]}] def test_operand_inside_function_suggests_cols2(): suggestion = suggest_type( "SELECT MAX(col1 + col2 + FROM tbl", "SELECT MAX(col1 + col2 + " ) assert suggestion == [{"type": "column", "tables": [(None, "tbl", None)]}] def test_select_suggests_cols_and_funcs(): suggestions = suggest_type("SELECT ", "SELECT ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": []}, {"type": "column", "tables": []}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) @pytest.mark.parametrize( "expression", [ "SELECT * FROM ", "INSERT INTO ", "COPY ", "UPDATE ", "DESCRIBE ", "DESC ", "EXPLAIN ", "SELECT * FROM foo JOIN ", ], ) def test_expression_suggests_tables_views_and_schemas(expression): suggestions = suggest_type(expression, expression) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) @pytest.mark.parametrize( "expression", [ "SELECT * FROM sch.", "INSERT INTO sch.", "COPY sch.", "UPDATE sch.", "DESCRIBE sch.", "DESC sch.", "EXPLAIN sch.", "SELECT * FROM foo JOIN sch.", ], ) def test_expression_suggests_qualified_tables_views_and_schemas(expression): suggestions = suggest_type(expression, expression) assert sorted_dicts(suggestions) == sorted_dicts( [{"type": "table", "schema": "sch"}, {"type": "view", "schema": "sch"}] ) def test_truncate_suggests_tables_and_schemas(): suggestions = suggest_type("TRUNCATE ", "TRUNCATE ") assert sorted_dicts(suggestions) == sorted_dicts( [{"type": "table", "schema": []}, {"type": "schema"}] ) def test_truncate_suggests_qualified_tables(): suggestions = suggest_type("TRUNCATE sch.", "TRUNCATE sch.") assert sorted_dicts(suggestions) == sorted_dicts( [{"type": "table", "schema": "sch"}] ) def test_distinct_suggests_cols(): suggestions = suggest_type("SELECT DISTINCT ", "SELECT DISTINCT ") assert suggestions == [{"type": "column", "tables": []}] def test_col_comma_suggests_cols(): suggestions = suggest_type("SELECT a, b, FROM tbl", "SELECT a, b,") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tbl"]}, {"type": "column", "tables": [(None, "tbl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_table_comma_suggests_tables_and_schemas(): suggestions = suggest_type("SELECT a, b FROM tbl1, ", "SELECT a, b FROM tbl1, ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) def test_into_suggests_tables_and_schemas(): suggestion = suggest_type("INSERT INTO ", "INSERT INTO ") assert sorted_dicts(suggestion) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) def test_insert_into_lparen_suggests_cols(): suggestions = suggest_type("INSERT INTO abc (", "INSERT INTO abc (") assert suggestions == [{"type": "column", "tables": [(None, "abc", None)]}] def test_insert_into_lparen_partial_text_suggests_cols(): suggestions = suggest_type("INSERT INTO abc (i", "INSERT INTO abc (i") assert suggestions == [{"type": "column", "tables": [(None, "abc", None)]}] def test_insert_into_lparen_comma_suggests_cols(): suggestions = suggest_type("INSERT INTO abc (id,", "INSERT INTO abc (id,") assert suggestions == [{"type": "column", "tables": [(None, "abc", None)]}] def test_partially_typed_col_name_suggests_col_names(): suggestions = suggest_type( "SELECT * FROM tabl WHERE col_n", "SELECT * FROM tabl WHERE col_n" ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["tabl"]}, {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_dot_suggests_cols_of_a_table_or_schema_qualified_table(): suggestions = suggest_type("SELECT tabl. FROM tabl", "SELECT tabl.") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "tabl", None)]}, {"type": "table", "schema": "tabl"}, {"type": "view", "schema": "tabl"}, {"type": "function", "schema": "tabl"}, ] ) def test_dot_suggests_cols_of_an_alias(): suggestions = suggest_type("SELECT t1. FROM tabl1 t1, tabl2 t2", "SELECT t1.") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": "t1"}, {"type": "view", "schema": "t1"}, {"type": "column", "tables": [(None, "tabl1", "t1")]}, {"type": "function", "schema": "t1"}, ] ) def test_dot_col_comma_suggests_cols_or_schema_qualified_table(): suggestions = suggest_type( "SELECT t1.a, t2. FROM tabl1 t1, tabl2 t2", "SELECT t1.a, t2." ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "tabl2", "t2")]}, {"type": "table", "schema": "t2"}, {"type": "view", "schema": "t2"}, {"type": "function", "schema": "t2"}, ] ) @pytest.mark.parametrize( "expression", [ "SELECT * FROM (", "SELECT * FROM foo WHERE EXISTS (", "SELECT * FROM foo WHERE bar AND NOT EXISTS (", "SELECT 1 AS", ], ) def test_sub_select_suggests_keyword(expression): suggestion = suggest_type(expression, expression) assert suggestion == [{"type": "keyword"}] @pytest.mark.parametrize( "expression", [ "SELECT * FROM (S", "SELECT * FROM foo WHERE EXISTS (S", "SELECT * FROM foo WHERE bar AND NOT EXISTS (S", ], ) def test_sub_select_partial_text_suggests_keyword(expression): suggestion = suggest_type(expression, expression) assert suggestion == [{"type": "keyword"}] def test_outer_table_reference_in_exists_subquery_suggests_columns(): q = "SELECT * FROM foo f WHERE EXISTS (SELECT 1 FROM bar WHERE f." suggestions = suggest_type(q, q) assert suggestions == [ {"type": "column", "tables": [(None, "foo", "f")]}, {"type": "table", "schema": "f"}, {"type": "view", "schema": "f"}, {"type": "function", "schema": "f"}, ] @pytest.mark.parametrize( "expression", [ "SELECT * FROM (SELECT * FROM ", "SELECT * FROM foo WHERE EXISTS (SELECT * FROM ", "SELECT * FROM foo WHERE bar AND NOT EXISTS (SELECT * FROM ", ], ) def test_sub_select_table_name_completion(expression): suggestion = suggest_type(expression, expression) assert sorted_dicts(suggestion) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) def test_sub_select_col_name_completion(): suggestions = suggest_type( "SELECT * FROM (SELECT FROM abc", "SELECT * FROM (SELECT " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["abc"]}, {"type": "column", "tables": [(None, "abc", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) @pytest.mark.xfail def test_sub_select_multiple_col_name_completion(): suggestions = suggest_type( "SELECT * FROM (SELECT a, FROM abc", "SELECT * FROM (SELECT a, " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "abc", None)]}, {"type": "function", "schema": []}, ] ) def test_sub_select_dot_col_name_completion(): suggestions = suggest_type( "SELECT * FROM (SELECT t. FROM tabl t", "SELECT * FROM (SELECT t." ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "tabl", "t")]}, {"type": "table", "schema": "t"}, {"type": "view", "schema": "t"}, {"type": "function", "schema": "t"}, ] ) @pytest.mark.parametrize("join_type", ["", "INNER", "LEFT", "RIGHT OUTER"]) @pytest.mark.parametrize("tbl_alias", ["", "foo"]) def test_join_suggests_tables_and_schemas(tbl_alias, join_type): text = "SELECT * FROM abc {0} {1} JOIN ".format(tbl_alias, join_type) suggestion = suggest_type(text, text) assert sorted_dicts(suggestion) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) @pytest.mark.parametrize( "sql", [ "SELECT * FROM abc a JOIN def d ON a.", "SELECT * FROM abc a JOIN def d ON a.id = d.id AND a.", ], ) def test_join_alias_dot_suggests_cols1(sql): suggestions = suggest_type(sql, sql) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "abc", "a")]}, {"type": "table", "schema": "a"}, {"type": "view", "schema": "a"}, {"type": "function", "schema": "a"}, ] ) @pytest.mark.parametrize( "sql", [ "SELECT * FROM abc a JOIN def d ON a.id = d.", "SELECT * FROM abc a JOIN def d ON a.id = d.id AND a.id2 = d.", ], ) def test_join_alias_dot_suggests_cols2(sql): suggestions = suggest_type(sql, sql) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "column", "tables": [(None, "def", "d")]}, {"type": "table", "schema": "d"}, {"type": "view", "schema": "d"}, {"type": "function", "schema": "d"}, ] ) @pytest.mark.parametrize( "sql", [ "select a.x, b.y from abc a join bcd b on ", "select a.x, b.y from abc a join bcd b on a.id = b.id OR ", ], ) def test_on_suggests_aliases(sql): suggestions = suggest_type(sql, sql) assert suggestions == [{"type": "alias", "aliases": ["a", "b"]}] @pytest.mark.parametrize( "sql", [ "select abc.x, bcd.y from abc join bcd on ", "select abc.x, bcd.y from abc join bcd on abc.id = bcd.id AND ", ], ) def test_on_suggests_tables(sql): suggestions = suggest_type(sql, sql) assert suggestions == [{"type": "alias", "aliases": ["abc", "bcd"]}] @pytest.mark.parametrize( "sql", [ "select a.x, b.y from abc a join bcd b on a.id = ", "select a.x, b.y from abc a join bcd b on a.id = b.id AND a.id2 = ", ], ) def test_on_suggests_aliases_right_side(sql): suggestions = suggest_type(sql, sql) assert suggestions == [{"type": "alias", "aliases": ["a", "b"]}] @pytest.mark.parametrize( "sql", [ "select abc.x, bcd.y from abc join bcd on ", "select abc.x, bcd.y from abc join bcd on abc.id = bcd.id and ", ], ) def test_on_suggests_tables_right_side(sql): suggestions = suggest_type(sql, sql) assert suggestions == [{"type": "alias", "aliases": ["abc", "bcd"]}] @pytest.mark.parametrize("col_list", ["", "col1, "]) def test_join_using_suggests_common_columns(col_list): text = "select * from abc inner join def using (" + col_list assert suggest_type(text, text) == [ { "type": "column", "tables": [(None, "abc", None), (None, "def", None)], "drop_unique": True, } ] def test_2_statements_2nd_current(): suggestions = suggest_type( "select * from a; select * from ", "select * from a; select * from " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) suggestions = suggest_type( "select * from a; select from b", "select * from a; select " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["b"]}, {"type": "column", "tables": [(None, "b", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) # Should work even if first statement is invalid suggestions = suggest_type( "select * from; select * from ", "select * from; select * from " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) def test_2_statements_1st_current(): suggestions = suggest_type("select * from ; select * from b", "select * from ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) suggestions = suggest_type("select from a; select * from b", "select ") assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["a"]}, {"type": "column", "tables": [(None, "a", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_3_statements_2nd_current(): suggestions = suggest_type( "select * from a; select * from ; select * from c", "select * from a; select * from ", ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) suggestions = suggest_type( "select * from a; select from b; select * from c", "select * from a; select " ) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "alias", "aliases": ["b"]}, {"type": "column", "tables": [(None, "b", None)]}, {"type": "function", "schema": []}, {"type": "keyword"}, ] ) def test_create_db_with_template(): suggestions = suggest_type( "create database foo with template ", "create database foo with template " ) assert sorted_dicts(suggestions) == sorted_dicts([{"type": "database"}]) @pytest.mark.parametrize("initial_text", ["", " ", "\t \t"]) def test_specials_included_for_initial_completion(initial_text): suggestions = suggest_type(initial_text, initial_text) assert sorted_dicts(suggestions) == sorted_dicts( [{"type": "keyword"}, {"type": "special"}] ) def test_specials_not_included_after_initial_token(): suggestions = suggest_type("create table foo (dt d", "create table foo (dt d") assert sorted_dicts(suggestions) == sorted_dicts([{"type": "keyword"}]) def test_drop_schema_qualified_table_suggests_only_tables(): text = "DROP TABLE schema_name.table_name" suggestions = suggest_type(text, text) assert suggestions == [{"type": "table", "schema": "schema_name"}] @pytest.mark.parametrize("text", [",", " ,", "sel ,"]) def test_handle_pre_completion_comma_gracefully(text): suggestions = suggest_type(text, text) assert iter(suggestions) def test_cross_join(): text = "select * from v1 cross join v2 JOIN v1.id, " suggestions = suggest_type(text, text) assert sorted_dicts(suggestions) == sorted_dicts( [ {"type": "table", "schema": []}, {"type": "view", "schema": []}, {"type": "schema"}, ] ) @pytest.mark.parametrize("expression", ["SELECT 1 AS ", "SELECT 1 FROM tabl AS "]) def test_after_as(expression): suggestions = suggest_type(expression, expression) assert set(suggestions) == set() @pytest.mark.parametrize( "expression", [ "\\. ", "select 1; \\. ", "select 1;\\. ", "select 1 ; \\. ", "source ", "truncate table test; source ", "truncate table test ; source ", "truncate table test;source ", ], ) def test_source_is_file(expression): suggestions = suggest_type(expression, expression) assert suggestions == [{"type": "file_name"}]
30.795981
86
0.558745
777f29dc80ea5426553dbbbc35d4f566e2034938
666
py
Python
FamilyFood/manage.py
ZST-Devs/HomeFood
337edef7d6d567b1c0c6e4699d7b8c8ee4d91397
[ "MIT" ]
2
2022-01-15T16:58:40.000Z
2022-03-11T09:42:59.000Z
FamilyFood/manage.py
ZST-Devs/HomeFood
337edef7d6d567b1c0c6e4699d7b8c8ee4d91397
[ "MIT" ]
null
null
null
FamilyFood/manage.py
ZST-Devs/HomeFood
337edef7d6d567b1c0c6e4699d7b8c8ee4d91397
[ "MIT" ]
1
2022-01-08T17:06:37.000Z
2022-01-08T17:06:37.000Z
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'FamilyFood.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
28.956522
74
0.68018
2b2b73abde818c180d4d00fdce84088a3a251c19
1,626
py
Python
book_figures/chapter3/fig_prob_sum.py
StKyr/astroML_figures
45e9748335e0cd854d09319dff0e43ecd70e7b61
[ "BSD-2-Clause" ]
6
2019-08-31T16:43:43.000Z
2021-07-10T06:06:20.000Z
book_figures/chapter3/fig_prob_sum.py
StKyr/astroML_figures
45e9748335e0cd854d09319dff0e43ecd70e7b61
[ "BSD-2-Clause" ]
34
2018-09-10T22:35:07.000Z
2022-02-08T21:17:39.000Z
book_figures/chapter3/fig_prob_sum.py
StKyr/astroML_figures
45e9748335e0cd854d09319dff0e43ecd70e7b61
[ "BSD-2-Clause" ]
10
2017-06-22T09:21:19.000Z
2020-01-26T03:54:26.000Z
""" Sum of Probabilities -------------------- Figure 3.1. A representation of the sum of probabilities shown in eq.3.1. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. if "setup_text_plots" not in globals(): from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) # create plot fig = plt.figure(figsize=(5, 3.75), facecolor='w') ax = plt.axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False) # draw intersecting circles ax.add_patch(plt.Circle((1.5, 0.2), 2.2, fc='gray', ec='black', alpha=0.5)) ax.add_patch(plt.Circle((-1.5, 0.2), 2.2, fc='gray', ec='black', alpha=0.5)) # add text text_kwargs = dict(ha='center', va='center', fontsize=12) ax.text(-1.6, 0.2, "$p(A)$", **text_kwargs) ax.text(1.6, 0.2, "$p(B)$", **text_kwargs) ax.text(0.0, 0.2, "$p(A \cap B)$", **text_kwargs) ax.text(0, -2.3, "$p(A \cup B) = p(A) + p(B) - p(A \cap B)$", **text_kwargs) ax.set_xlim(-4, 4) ax.set_ylim(-3, 3) plt.show()
36.133333
79
0.646986
c269af34f1630bf1627c9328617254269bbda3ae
2,804
py
Python
day21/day21.py
r0mi/aoc2018
6a0db3b4fc6f5417a9e86fd7fe0d6aa5348a1dd5
[ "MIT" ]
null
null
null
day21/day21.py
r0mi/aoc2018
6a0db3b4fc6f5417a9e86fd7fe0d6aa5348a1dd5
[ "MIT" ]
null
null
null
day21/day21.py
r0mi/aoc2018
6a0db3b4fc6f5417a9e86fd7fe0d6aa5348a1dd5
[ "MIT" ]
null
null
null
# Let the 6 register be called A B ip C D E # 0 seti 123 0 3 # C = 123 # 1 bani 3 456 3 # C &= 456 | C = 72 # 2 eqri 3 72 3 # C = (C == 72) | C = 1 # 3 addr 3 2 2 # ip += C | ip = 4 | GOTO 5 # 4 seti 0 0 2 # ip = 0 | GOTO 1 # 5 seti 0 6 3 # C = 0 # 6 bori 3 65536 4 # D = C | 65536 | D = 65536 # 7 seti 2176960 8 3 # C = 2176960 # 8 bani 4 255 1 # B = D & 255 | B = 0 # 9 addr 3 1 3 # C += B | C = 2176960 # 10 bani 3 16777215 3 # C &= 16777215 | C = 2176960 # 11 muli 3 65899 3 # C *= 65899 | C = 143459487040 # 12 bani 3 16777215 3 # C &= 16777215 | C = 14290240 # if (256 > D) # GOTO 28 # else # GOTO 17 # 13 gtir 256 4 1 # B = (256 > D) | B = 0 # 14 addr 1 2 2 # ip += B | ip = 14/15 | GOTO 15/16 # 15 addi 2 1 2 # ip += 1 | ip = 16 | GOTO 17 # 16 seti 27 7 2 # ip = 27 | GOTO 28 # 17 seti 0 9 1 # B = 0 # 18 addi 1 1 5 # E = B + 1 # 19 muli 5 256 5 # E *= 256 # if (E > D) # GOTO 26 # else # B = 1 # GOTO 18 # 20 gtrr 5 4 5 # E = (E > D) | E = 0 # 21 addr 5 2 2 # ip += E | ip = 21/22 | GOTO 22/23 # 22 addi 2 1 2 # ip += 1 | ip = 23 | GOTO 24 # 23 seti 25 7 2 # ip = 25 | GOTO 26 # 24 addi 1 1 1 # B += 1 | B = 1 # 25 seti 17 2 2 # ip = 17 | GOTO 18 # 26 setr 1 7 4 # D = B | D = 2 # 27 seti 7 9 2 # ip = 7 | GOTO 8 # if (C == A) # RETURN # else # GOTO 6 # 28 eqrr 3 0 1 # B = (C == A) | B = 0 # 29 addr 1 2 2 # ip += B | ip = 29/30 | GOTO 30 / RETURN # 30 seti 5 9 2 # ip = 5 | GOTO 6 # The main loop in short A = B = C = D = E = 0 unique_c_values = set() previous_unique_c = 0 while True: # 6: D = C | 65536 C = 2176960 while True: # 8: B = D & 255 C += B C &= 16777215 C *= 65899 C &= 16777215 if 256 > D: if len(unique_c_values) == 0: print("Lowest register 0 value that causes the program to execute fewest instructions is", C) if C not in unique_c_values: previous_unique_c = C unique_c_values.add(C) else: # C values start to repeat, exit with previous unique value print("Lowest register 0 value that causes the program to execute most instructions is", previous_unique_c) exit(1) if C == A: exit(1) else: # GOTO 6 break else: # GOTO 17 # Optimised the following loop to D >>= 8 # Basically dividing by 256 in a very slow manner # 17: # B = 0 # while True: # # 18: # E = (B + 1) * 256 # if E > D: # D = B # # GOTO 8 # break # else: # B += 1 # # GOTO 18
26.205607
111
0.455777
94949c429c34c6c519881a3fb8f8800aa2845337
1,405
py
Python
handbrakecloud/tests/base.py
mtreinish/handbrakecloud
3a3319db57ab78db81051cc75eb59ec65c6bb130
[ "Apache-2.0" ]
null
null
null
handbrakecloud/tests/base.py
mtreinish/handbrakecloud
3a3319db57ab78db81051cc75eb59ec65c6bb130
[ "Apache-2.0" ]
null
null
null
handbrakecloud/tests/base.py
mtreinish/handbrakecloud
3a3319db57ab78db81051cc75eb59ec65c6bb130
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import fixtures import testtools class TestCase(testtools.TestCase): true = ('True', 'true', '1', 'yes') def setUp(self): super(TestCase, self).setUp() if os.environ.get('OS_STDOUT_CAPTURE') in self.true: stdout = self.useFixture(fixtures.StringStream('stdout')).stream self.useFixture(fixtures.MonkeyPatch('sys.stdout', stdout)) if os.environ.get('OS_STDERR_CAPTURE') in self.true: stderr = self.useFixture(fixtures.StringStream('stderr')).stream self.useFixture(fixtures.MonkeyPatch('sys.stderr', stderr)) if os.environ.get('OS_LOG_CAPTURE') != 'False': if os.environ.get('OS_LOG_CAPTURE') != '0': self.useFixture(fixtures.LoggerFixture(nuke_handlers=False, level=None))
39.027778
76
0.668327
9fa697eb048cee032422896ac5fe2fce245a2699
31,721
py
Python
src/C_WGAN_ResBlock/result_collect.py
chychen/nba_scrip_generation
942df59cc0426aa30b54a0e09c0f646aa8fd4f18
[ "MIT" ]
1
2020-07-09T09:00:09.000Z
2020-07-09T09:00:09.000Z
src/C_WGAN_ResBlock/result_collect.py
chychen/bball_defensive_strategies_generation
942df59cc0426aa30b54a0e09c0f646aa8fd4f18
[ "MIT" ]
null
null
null
src/C_WGAN_ResBlock/result_collect.py
chychen/bball_defensive_strategies_generation
942df59cc0426aa30b54a0e09c0f646aa8fd4f18
[ "MIT" ]
null
null
null
""" data url: http://140.113.210.14:6006/NBA/data/F2.npy data description: event by envet, with 300 sequence for each. (about 75 seconds) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import shutil import json import numpy as np import tensorflow as tf import game_visualizer from utils import DataFactory from Generator import G_MODEL from Critic import C_MODEL import plotly plotly.__version__ plotly.tools.set_credentials_file( username='ChenChiehYu', api_key='xh9rsxFXY6DNF1qAfUyQ') import plotly.plotly as py import plotly.graph_objs as go FLAGS = tf.app.flags.FLAGS # path parameters tf.app.flags.DEFINE_string('folder_path', None, "summary directory") tf.app.flags.DEFINE_string('data_path', '../../data/FixedFPS5-Train.npy', "summary directory") tf.app.flags.DEFINE_string('restore_path', None, "path of saving model eg: checkpoints/model.ckpt-5") # input parameters tf.app.flags.DEFINE_integer('seq_length', 100, "the maximum length of one training data") # model parameters tf.app.flags.DEFINE_string('gpus', '1', "define visible gpus") tf.app.flags.DEFINE_integer('batch_size', 128, "batch size") tf.app.flags.DEFINE_integer('latent_dims', 100, "latent_dims") # collect mode tf.app.flags.DEFINE_integer('n_latents', 100, "n_latents") tf.app.flags.DEFINE_integer('n_conditions', 128 * 9, # because there are 9 batch_size data amount in validation set "n_conditions") tf.app.flags.DEFINE_bool('is_valid', True, "is_valid") tf.app.flags.DEFINE_integer('mode', None, "mode to collect, \ 1 -> to collect results \ 2 -> to show diversity \ 3 -> to visulize weight \ 4 -> to analize code, only change first dimension for comparison \ 5 -> to calculate hueristic score on selected result\ 6 -> to draw different length result \ 7 -> to draw feature map \ 8 -> to find high-openshot-penalty data in real dataset \ 9 -> to collect results vary in length") # VISIBLE GPUS os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpus def z_samples(batch_size): return np.random.normal( 0., 1., size=[batch_size, FLAGS.latent_dims]) def mode_1(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to collect results Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=128*9, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=128*9] critic scores for each input data """ # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') G_samples_t = graph.get_tensor_by_name('G_samples:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') # critic_scores_t = graph.get_tensor_by_name( # 'Critic/C_inference_1/conv_output/Reshape:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/linear_result/BiasAdd:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # normalize data_factory = DataFactory(real_data) # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] # shuffle the data train_data, valid_data = data_factory.fetch_data() if is_valid: target_data = valid_data else: target_data = train_data target_data = np.load('ADD-100.npy') team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) team_AB = data_factory.normalize(team_AB) print(team_AB.shape) dummy_AB = np.zeros(shape=[98, 100, 23]) team_AB = np.concatenate([team_AB, dummy_AB], axis=0) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # for idx in range(0, FLAGS.batch_size, FLAGS.batch_size): real_samples = team_B real_conds = team_A # generate result temp_critic_scores = [] temp_A_fake_B = [] for i in range(FLAGS.n_latents): latents = z_samples(FLAGS.batch_size) feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) feed_dict = { G_samples_t: result, matched_cond_t: real_conds } critic_scores = sess.run( critic_scores_t, feed_dict=feed_dict) temp_A_fake_B.append(data_factory.recover_data( np.concatenate([real_conds, result], axis=-1))) temp_critic_scores.append(critic_scores) results_A_fake_B.append(temp_A_fake_B) results_critic_scores.append(temp_critic_scores) # concat along with conditions dimension (axis=1) results_A_fake_B = np.concatenate(results_A_fake_B, axis=1) results_critic_scores = np.concatenate(results_critic_scores, axis=1) results_A = data_factory.recover_BALL_and_A( real_conds) results_real_B = data_factory.recover_B( real_samples) results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30, FLAGS.seq_length, 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B)[:30].astype(np.float32).reshape([30, FLAGS.seq_length, 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores)[:, :30].astype(np.float32).reshape([FLAGS.n_latents, 30])) print('!!Completely Saved!!') def mode_2(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to show diversity Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[latent_dims=10, n_latents=11, n_conditions=128, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=128, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[latent_dims=10, n_latents=11, n_conditions=128] critic scores for each input data """ n_latents = 100 latent_dims = 1 # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') G_samples_t = graph.get_tensor_by_name('G_samples:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/linear_result/BiasAdd:0') # 'Generator/G_loss/C_inference/linear_result/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # normalize data_factory = DataFactory(real_data) # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] # shuffle the data train_data, valid_data = data_factory.fetch_data() if is_valid: target_data = valid_data else: target_data = train_data real_samples = target_data['B'][:512:4] real_conds = target_data['A'][:512:4] # generate result for target_dim in range(latent_dims): temp_critic_scores = [] temp_A_fake_B = [] for i in range(n_latents): latents = z_samples(FLAGS.batch_size) feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) feed_dict = { G_samples_t: result, matched_cond_t: real_conds } critic_scores = sess.run( critic_scores_t, feed_dict=feed_dict) temp_A_fake_B.append(data_factory.recover_data( np.concatenate([real_conds, result], axis=-1))) temp_critic_scores.append(critic_scores) results_A_fake_B.append(temp_A_fake_B) results_critic_scores.append(temp_critic_scores) # concat along with conditions dimension results_A_fake_B = np.concatenate(results_A_fake_B, axis=0) results_critic_scores = np.concatenate(results_critic_scores, axis=0) results_A = data_factory.recover_BALL_and_A( target_data['A'][:512:4]) results_real_B = data_factory.recover_B( target_data['B'][:512:4]) results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B).astype(np.float32).reshape([latent_dims, n_latents, 128, FLAGS.seq_length, 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B).astype(np.float32).reshape([128, FLAGS.seq_length, 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores).astype(np.float32).reshape([latent_dims, n_latents, 128])) print('!!Completely Saved!!') def weight_vis(graph, save_path): """ to visulize weight """ if not os.path.exists(save_path): os.makedirs(save_path) def __get_var_list(tag): """ to get both Generator's and Discriminator's trainable variables and add trainable variables into histogram """ trainable_V = tf.trainable_variables() for _, v in enumerate(trainable_V): if tag in v.name: return v # sesstion config config = tf.ConfigProto() config.gpu_options.allow_growth = True saver = tf.train.import_meta_graph(FLAGS.restore_path + '.meta') with tf.Session(config=config) as sess: # restored saver.restore(sess, FLAGS.restore_path) # target tensor conds_linear = __get_var_list('G_inference/conds_linear') latents_linear = __get_var_list('G_inference/latents_linear') print(conds_linear.shape) print(latents_linear.shape) conds_linear_result, latents_linear_result = sess.run( [conds_linear, latents_linear]) trace = go.Heatmap(z=np.concatenate( [conds_linear_result, latents_linear_result], axis=0)) data = [trace] plotly.offline.plot(data, filename=os.path.join( save_path, 'G_inference_input.html')) print('!!Completely Saved!!') def mode_4(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to analize code, only change first dimension for comparison Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=11, n_conditions=128*9] critic scores for each input data """ target_dims = 0 n_latents = 11 # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') G_samples_t = graph.get_tensor_by_name('G_samples:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/linear_result/BiasAdd:0') # 'Generator/G_loss/C_inference/linear_result/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # normalize data_factory = DataFactory(real_data) # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] # shuffle the data train_data, valid_data = data_factory.fetch_data() if is_valid: target_data = valid_data else: target_data = train_data latents = z_samples(FLAGS.batch_size) for idx in range(0, FLAGS.n_conditions, FLAGS.batch_size): real_samples = target_data['B'][idx:idx + FLAGS.batch_size] real_conds = target_data['A'][idx:idx + FLAGS.batch_size] # generate result temp_critic_scores = [] temp_A_fake_B = [] for i in range(n_latents): latents[:, target_dims] = -2.5 + 0.5 * i feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) feed_dict = { G_samples_t: result, matched_cond_t: real_conds } critic_scores = sess.run( critic_scores_t, feed_dict=feed_dict) temp_A_fake_B.append(data_factory.recover_data( np.concatenate([real_conds, result], axis=-1))) temp_critic_scores.append(critic_scores) results_A_fake_B.append(temp_A_fake_B) results_critic_scores.append(temp_critic_scores) # concat along with conditions dimension (axis=1) results_A_fake_B = np.concatenate(results_A_fake_B, axis=1) results_critic_scores = np.concatenate(results_critic_scores, axis=1) results_A = data_factory.recover_BALL_and_A( target_data['A'][:FLAGS.n_conditions]) results_real_B = data_factory.recover_B( target_data['B'][:FLAGS.n_conditions]) results_A_real_B = np.concatenate([results_A, results_real_B], axis=-1) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B).astype(np.float32).reshape([n_latents, FLAGS.n_conditions, FLAGS.seq_length, 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B).astype(np.float32).reshape([FLAGS.n_conditions, FLAGS.seq_length, 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores).astype(np.float32).reshape([n_latents, FLAGS.n_conditions])) print('!!Completely Saved!!') def mode_5(sess, graph, save_path): """ to calculate hueristic score on selected result """ NORMAL_C_ID = [154, 108, 32, 498, 2, 513, 263, 29, 439, 249, 504, 529, 24, 964, 641, 739, 214, 139, 819, 1078, 772, 349, 676, 1016, 582, 678, 39, 279, 918, 477, 809, 505, 896, 600, 564, 50, 810, 1132, 683, 578, 1131, 887, 621, 1097, 665, 528, 310, 631, 1102, 6, 945, 1020, 853, 490, 64, 1002, 656] NORMAL_N_ID = [58, 5, 47, 66, 79, 21, 70, 54, 3, 59, 67, 59, 84, 38, 71, 62, 55, 86, 14, 83, 94, 97, 83, 27, 38, 68, 95, 26, 60, 2, 54, 46, 34, 75, 38, 4, 59, 87, 52, 44, 92, 28, 86, 71, 24, 28, 13, 70, 87, 44, 52, 25, 59, 61, 86, 16, 98] GOOD_C_ID = [976, 879, 293, 750, 908, 878, 831, 1038, 486, 268, 265, 252, 1143, 383, 956, 974, 199, 777, 585, 34, 932] GOOD_N_ID = [52, 16, 87, 43, 45, 66, 22, 77, 36, 50, 47, 9, 34, 9, 82, 42, 65, 43, 7, 29, 62] BEST_C_ID = [570, 517, 962, 1088, 35, 623, 1081, 33, 255, 571, 333, 990, 632, 431, 453, 196, 991, 267, 591, 902, 597, 646] BEST_N_ID = [22, 42, 76, 92, 12, 74, 92, 58, 69, 69, 23, 63, 89, 7, 74, 27, 12, 20, 35, 77, 62, 63] DUMMY_ID = np.zeros(shape=[28]) ALL_C_ID = np.concatenate( [NORMAL_C_ID, GOOD_C_ID, BEST_C_ID, DUMMY_ID]).astype(np.int32) ALL_N_ID = np.concatenate( [NORMAL_N_ID, GOOD_N_ID, BEST_N_ID, DUMMY_ID]).astype(np.int32) print(ALL_C_ID.shape) print(ALL_N_ID.shape) fake_result_AB = np.load( 'v3/2/collect/mode_1/results_A_fake_B.npy')[ALL_N_ID, ALL_C_ID] real_result_AB = np.load( 'v3/2/collect/mode_1/results_A_real_B.npy')[ALL_C_ID] print(fake_result_AB.shape) print(real_result_AB.shape) # normalize real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) data_factory = DataFactory(real_data) fake_result_AB = data_factory.normalize(fake_result_AB) real_result_AB = data_factory.normalize(real_result_AB) # placeholder tensor real_data_t = graph.get_tensor_by_name('real_data:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor heuristic_penalty_pframe = graph.get_tensor_by_name( 'Critic/C_inference/heuristic_penalty/Min:0') # 'Generator/G_loss/C_inference/linear_result/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) # real feed_dict = { real_data_t: real_result_AB[:, :, 13:23], matched_cond_t: real_result_AB[:, :, :13] } real_hp_pframe = sess.run(heuristic_penalty_pframe, feed_dict=feed_dict) # fake feed_dict = { real_data_t: fake_result_AB[:, :, 13:23], matched_cond_t: fake_result_AB[:, :, :13] } fake_hp_pframe = sess.run(heuristic_penalty_pframe, feed_dict=feed_dict) print(np.mean(real_hp_pframe[:100])) print(np.mean(fake_hp_pframe[:100])) print('!!Completely Saved!!') def mode_6(sess, graph, save_path): """ to draw different length result """ # normalize real_data = np.load(FLAGS.data_path) print('real_data.shape', real_data.shape) data_factory = DataFactory(real_data) target_data = np.load('FEATURES-7.npy')[:, :] team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) team_AB = data_factory.normalize(team_AB) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') if not os.path.exists(save_path): os.makedirs(save_path) # result collector latents = z_samples(team_AB.shape[0]) feed_dict = { latent_input_t: latents, team_a_t: team_A } result_fake_B = sess.run(result_t, feed_dict=feed_dict) results_A_fake_B = np.concatenate([team_A, result_fake_B], axis=-1) results_A_fake_B = data_factory.recover_data(results_A_fake_B) for i in range(results_A_fake_B.shape[0]): game_visualizer.plot_data( results_A_fake_B[i], target_data.shape[1], file_path=save_path + str(i) + '.mp4', if_save=True) print('!!Completely Saved!!') def mode_7(sess, graph, save_path): """ to draw feature map """ # normalize real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) data_factory = DataFactory(real_data) target_data = np.load('FEATURES-6.npy')[:6] team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) dummy_AB = np.zeros(shape=[128 - 6, 100, 23]) team_AB = np.concatenate([team_AB, dummy_AB], axis=0) team_AB = data_factory.normalize(team_AB) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # placeholder tensor latent_input_t = graph.get_tensor_by_name('latent_input:0') team_a_t = graph.get_tensor_by_name('team_a:0') # result tensor conds_linear_t = graph.get_tensor_by_name( 'Generator/G_inference/conds_linear/BiasAdd:0') if not os.path.exists(save_path): os.makedirs(save_path) # result collector latents = np.concatenate([z_samples(1) for i in range(FLAGS.batch_size)], axis=0) feed_dict = { latent_input_t: latents, team_a_t: team_A } conds_linear = sess.run(conds_linear_t, feed_dict=feed_dict) for i in range(6): trace = go.Heatmap(z=conds_linear[i]) data = [trace] plotly.offline.plot(data, filename=os.path.join( save_path, 'G_conds_linear' + str(i) + '.html')) print('!!Completely Saved!!') def mode_8(sess, graph, save_path): """ to find high-openshot-penalty data in 1000 real data """ real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) data_factory = DataFactory(real_data) train_data, valid_data = data_factory.fetch_data() # placeholder tensor real_data_t = graph.get_tensor_by_name('real_data:0') matched_cond_t = graph.get_tensor_by_name('matched_cond:0') # result tensor heuristic_penalty_pframe = graph.get_tensor_by_name( 'Critic/C_inference/heuristic_penalty/Min:0') # 'Generator/G_loss/C_inference/linear_result/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_hp_pframe_all = [] for batch_id in range(train_data['A'].shape[0] // FLAGS.batch_size): index_id = batch_id * FLAGS.batch_size real_data = train_data['B'][index_id:index_id + FLAGS.batch_size] cond_data = train_data['A'][index_id:index_id + FLAGS.batch_size] # real feed_dict = { real_data_t: real_data, matched_cond_t: cond_data } real_hp_pframe = sess.run( heuristic_penalty_pframe, feed_dict=feed_dict) real_hp_pframe_all.append(real_hp_pframe) real_hp_pframe_all = np.concatenate(real_hp_pframe_all, axis=0) print(real_hp_pframe_all.shape) real_hp_pdata = np.mean(real_hp_pframe_all, axis=1) mean_ = np.mean(real_hp_pdata) std_ = np.std(real_hp_pdata) print(mean_) print(std_) concat_AB = np.concatenate( [train_data['A'], train_data['B']], axis=-1) recoverd = data_factory.recover_data(concat_AB) for i, v in enumerate(real_hp_pdata): if v > (mean_ + 2 * std_): print('bad', i, v) game_visualizer.plot_data( recoverd[i], recoverd.shape[1], file_path=save_path + 'bad_' + str(i) + '_' + str(v) + '.mp4', if_save=True) if v < 0.0025: print('good', i, v) game_visualizer.plot_data( recoverd[i], recoverd.shape[1], file_path=save_path + 'good_' + str(i) + '_' + str(v) + '.mp4', if_save=True) print('!!Completely Saved!!') def mode_9(sess, graph, save_path, is_valid=FLAGS.is_valid): """ to collect results vary in length Saved Result ------------ results_A_fake_B : float, numpy ndarray, shape=[n_latents=100, n_conditions=100, length=100, features=23] Real A + Fake B results_A_real_B : float, numpy ndarray, shape=[n_conditions=100, length=100, features=23] Real A + Real B results_critic_scores : float, numpy ndarray, shape=[n_latents=100, n_conditions=100] critic scores for each input data """ # placeholder tensor latent_input_t = graph.get_tensor_by_name('Generator/latent_input:0') team_a_t = graph.get_tensor_by_name('Generator/team_a:0') G_samples_t = graph.get_tensor_by_name('Critic/G_samples:0') matched_cond_t = graph.get_tensor_by_name('Critic/matched_cond:0') # result tensor result_t = graph.get_tensor_by_name( 'Generator/G_inference/conv_result/conv1d/Maximum:0') critic_scores_t = graph.get_tensor_by_name( 'Critic/C_inference_1/conv_output/Reshape:0') if not os.path.exists(save_path): os.makedirs(save_path) real_data = np.load(FLAGS.data_path)[:, :FLAGS.seq_length, :, :] print('real_data.shape', real_data.shape) # DataFactory data_factory = DataFactory(real_data) # target data target_data = np.load('../../data/FixedFPS5.npy')[-100:] target_length = np.load('../../data/FixedFPS5Length.npy')[-100:] print('target_data.shape', target_data.shape) team_AB = np.concatenate( [ # ball target_data[:, :, 0, :3].reshape( [target_data.shape[0], target_data.shape[1], 1 * 3]), # team A players target_data[:, :, 1:6, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]), # team B players target_data[:, :, 6:11, :2].reshape( [target_data.shape[0], target_data.shape[1], 5 * 2]) ], axis=-1 ) team_AB = data_factory.normalize(team_AB) team_A = team_AB[:, :, :13] team_B = team_AB[:, :, 13:] # result collector results_A_fake_B = [] results_A_real_B = [] results_critic_scores = [] for idx in range(team_AB.shape[0]): # given 100(FLAGS.n_latents) latents generate 100 results on same condition at once real_samples = team_B[idx:idx + 1, :target_length[idx]] real_samples = np.concatenate( [real_samples for _ in range(FLAGS.n_latents)], axis=0) real_conds = team_A[idx:idx + 1, :target_length[idx]] real_conds = np.concatenate( [real_conds for _ in range(FLAGS.n_latents)], axis=0) # generate result latents = z_samples(FLAGS.n_latents) feed_dict = { latent_input_t: latents, team_a_t: real_conds } result = sess.run( result_t, feed_dict=feed_dict) # calculate em distance feed_dict = { G_samples_t: result, matched_cond_t: real_conds } em_dist = sess.run( critic_scores_t, feed_dict=feed_dict) recoverd_A_fake_B = data_factory.recover_data( np.concatenate([real_conds, result], axis=-1)) # padding to length=200 dummy = np.zeros( shape=[FLAGS.n_latents, team_AB.shape[1] - target_length[idx], team_AB.shape[2]]) temp_A_fake_B_concat = np.concatenate( [recoverd_A_fake_B, dummy], axis=1) results_A_fake_B.append(temp_A_fake_B_concat) results_critic_scores.append(em_dist) print(np.array(results_A_fake_B).shape) print(np.array(results_critic_scores).shape) # concat along with conditions dimension (axis=1) results_A_fake_B = np.stack(results_A_fake_B, axis=1) results_critic_scores = np.stack(results_critic_scores, axis=1) # real data results_A = data_factory.recover_BALL_and_A(team_A) results_real_B = data_factory.recover_B(team_B) results_A_real_B = data_factory.recover_data(team_AB) # saved as numpy print(np.array(results_A_fake_B).shape) print(np.array(results_A_real_B).shape) print(np.array(results_critic_scores).shape) np.save(save_path + 'results_A_fake_B.npy', np.array(results_A_fake_B).astype(np.float32).reshape([FLAGS.n_latents, team_AB.shape[0], team_AB.shape[1], 23])) np.save(save_path + 'results_A_real_B.npy', np.array(results_A_real_B).astype(np.float32).reshape([team_AB.shape[0], team_AB.shape[1], 23])) np.save(save_path + 'results_critic_scores.npy', np.array(results_critic_scores).astype(np.float32).reshape([FLAGS.n_latents, team_AB.shape[0]])) print('!!Completely Saved!!') def main(_): with tf.get_default_graph().as_default() as graph: # sesstion config config = tf.ConfigProto() config.gpu_options.allow_growth = True saver = tf.train.import_meta_graph(FLAGS.restore_path + '.meta') with tf.Session(config=config) as sess: # restored saver.restore(sess, FLAGS.restore_path) # collect if FLAGS.mode == 1: mode_1(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_1/')) elif FLAGS.mode == 2: mode_2(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_2/')) elif FLAGS.mode == 3: weight_vis(graph, save_path=os.path.join( COLLECT_PATH, 'mode_3/')) elif FLAGS.mode == 4: mode_4(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_4/')) elif FLAGS.mode == 5: mode_5(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_5/')) elif FLAGS.mode == 6: mode_6(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_6/')) elif FLAGS.mode == 7: mode_7(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_7/')) elif FLAGS.mode == 8: mode_8(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_8/')) elif FLAGS.mode == 9: _, iterations = str(FLAGS.restore_path).split('-') mode_9(sess, graph, save_path=os.path.join( COLLECT_PATH, 'mode_9/', iterations)) if __name__ == '__main__': assert FLAGS.restore_path is not None assert FLAGS.mode is not None assert FLAGS.folder_path is not None global COLLECT_PATH COLLECT_PATH = os.path.join(FLAGS.folder_path, 'collect/') if not os.path.exists(COLLECT_PATH): os.makedirs(COLLECT_PATH) tf.app.run()
40.667949
165
0.635699
afe878b466efbc34e82fa3d3e7cf5198e2100044
582
py
Python
webarm/widgets/migrations/0001_initial.py
AlexGolovaschenko/WebArm
1019b73b1ad5560a626261bbce05137c01edcee5
[ "MIT" ]
null
null
null
webarm/widgets/migrations/0001_initial.py
AlexGolovaschenko/WebArm
1019b73b1ad5560a626261bbce05137c01edcee5
[ "MIT" ]
null
null
null
webarm/widgets/migrations/0001_initial.py
AlexGolovaschenko/WebArm
1019b73b1ad5560a626261bbce05137c01edcee5
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2021-01-15 15:13 from django.db import migrations, models import widgets.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='WidgetsTemplate', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('template', models.JSONField(default=widgets.models.get_default_template, verbose_name='Шаблон виджетов')), ], ), ]
25.304348
124
0.62543
d162a9563fa66f037abe34273116821a38b834e6
8,725
py
Python
test/python/pulse/test_commands.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
3
2019-05-19T17:39:38.000Z
2020-01-28T19:59:18.000Z
test/python/pulse/test_commands.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
4
2019-05-13T15:28:46.000Z
2019-12-19T20:47:02.000Z
test/python/pulse/test_commands.py
tareqdandachi/qiskit-terra
5221fe330adba5529bfa22dc25262ac8e6291aaf
[ "Apache-2.0" ]
1
2021-07-07T16:55:41.000Z
2021-07-07T16:55:41.000Z
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=invalid-name,unexpected-keyword-arg """Test cases for the pulse command group.""" import unittest import numpy as np from qiskit.pulse import (SamplePulse, Acquire, FrameChange, PersistentValue, Snapshot, Kernel, Discriminator, functional_pulse, Delay, PulseError) from qiskit.test import QiskitTestCase class TestSamplePulse(QiskitTestCase): """SamplePulse tests.""" def test_sample_pulse(self): """Test pulse initialization.""" n_samples = 100 samples = np.linspace(0, 1., n_samples, dtype=np.complex128) name = 'test' sample_pulse = SamplePulse(samples, name=name) self.assertEqual(sample_pulse.samples.dtype, np.complex128) np.testing.assert_almost_equal(sample_pulse.samples, samples) self.assertEqual(sample_pulse.duration, n_samples) self.assertEqual(sample_pulse.name, name) def test_type_casting(self): """Test casting of input samples to numpy array.""" n_samples = 100 samples_f64 = np.linspace(0, 1., n_samples, dtype=np.float64) sample_pulse_f64 = SamplePulse(samples_f64) self.assertEqual(sample_pulse_f64.samples.dtype, np.complex128) samples_c64 = np.linspace(0, 1., n_samples, dtype=np.complex64) sample_pulse_c64 = SamplePulse(samples_c64) self.assertEqual(sample_pulse_c64.samples.dtype, np.complex128) samples_list = np.linspace(0, 1., n_samples).tolist() sample_pulse_list = SamplePulse(samples_list) self.assertEqual(sample_pulse_list.samples.dtype, np.complex128) def test_pulse_limits(self): """Test that limits of pulse norm of one are enforced properly.""" # test norm is correct for complex128 numpy data unit_pulse_c128 = np.exp(1j*2*np.pi*np.linspace(0, 1, 1000), dtype=np.complex128) # test does not raise error try: SamplePulse(unit_pulse_c128) except PulseError: self.fail('SamplePulse incorrectly failed on approximately unit norm samples.') invalid_const = 1.1 with self.assertRaises(PulseError): SamplePulse(invalid_const*np.exp(1j*2*np.pi*np.linspace(0, 1, 1000))) # Test case where data is converted to python types with complex as a list # with form [re, im] and back to a numpy array. # This is how the transport layer handles samples in the qobj so it is important # to test. unit_pulse_c64 = np.exp(1j*2*np.pi*np.linspace(0, 1, 1000), dtype=np.complex64) sample_components = np.stack(np.transpose([np.real(unit_pulse_c64), np.imag(unit_pulse_c64)])) pulse_list = sample_components.tolist() recombined_pulse = [sample[0]+sample[1]*1j for sample in pulse_list] # test does not raise error try: SamplePulse(recombined_pulse) except PulseError: self.fail('SamplePulse incorrectly failed to approximately unit norm samples.') class TestAcquire(QiskitTestCase): """Acquisition tests.""" def test_can_construct_valid_acquire_command(self): """Test if valid acquire command can be constructed. """ kernel_opts = { 'start_window': 0, 'stop_window': 10 } kernel = Kernel(name='boxcar', **kernel_opts) discriminator_opts = { 'neighborhoods': [{'qubits': 1, 'channels': 1}], 'cal': 'coloring', 'resample': False } discriminator = Discriminator(name='linear_discriminator', **discriminator_opts) acq_command = Acquire(duration=10, kernel=kernel, discriminator=discriminator) self.assertEqual(acq_command.duration, 10) self.assertEqual(acq_command.discriminator.name, 'linear_discriminator') self.assertEqual(acq_command.discriminator.params, discriminator_opts) self.assertEqual(acq_command.kernel.name, 'boxcar') self.assertEqual(acq_command.kernel.params, kernel_opts) self.assertTrue(acq_command.name.startswith('acq')) def test_can_construct_acquire_command_with_default_values(self): """Test if an acquire command can be constructed with default discriminator and kernel. """ acq_command_a = Acquire(duration=10) acq_command_b = Acquire(duration=10) self.assertEqual(acq_command_a.duration, 10) self.assertEqual(acq_command_a.discriminator, None) self.assertEqual(acq_command_a.kernel, None) self.assertTrue(acq_command_a.name.startswith('acq')) self.assertNotEqual(acq_command_a.name, acq_command_b.name) self.assertEqual(acq_command_b.name, 'acq' + str(int(acq_command_a.name[3:]) + 1)) class TestFrameChangeCommand(QiskitTestCase): """FrameChange tests.""" def test_default(self): """Test default frame change. """ fc_command = FrameChange(phase=1.57) self.assertEqual(fc_command.phase, 1.57) self.assertEqual(fc_command.duration, 0) self.assertTrue(fc_command.name.startswith('fc')) class TestPersistentValueCommand(QiskitTestCase): """PersistentValue tests.""" def test_default(self): """Test default persistent value. """ pv_command = PersistentValue(value=0.5 - 0.5j) self.assertEqual(pv_command.value, 0.5-0.5j) self.assertEqual(pv_command.duration, 0) self.assertTrue(pv_command.name.startswith('pv')) class TestSnapshotCommand(QiskitTestCase): """Snapshot tests.""" def test_default(self): """Test default snapshot. """ snap_command = Snapshot(label='test_name', snapshot_type='state') self.assertEqual(snap_command.name, "test_name") self.assertEqual(snap_command.type, "state") self.assertEqual(snap_command.duration, 0) class TestDelayCommand(QiskitTestCase): """Delay tests.""" def test_delay(self): """Test delay.""" delay_command = Delay(10, name='test_name') self.assertEqual(delay_command.name, "test_name") self.assertEqual(delay_command.duration, 10) class TestFunctionalPulse(QiskitTestCase): """SamplePulse tests.""" def test_gaussian(self): """Test gaussian pulse. """ @functional_pulse def gaussian(duration, amp, t0, sig): x = np.linspace(0, duration - 1, duration) return amp * np.exp(-(x - t0) ** 2 / sig ** 2) pulse_command = gaussian(duration=10, name='test_pulse', amp=1, t0=5, sig=1) _y = 1 * np.exp(-(np.linspace(0, 9, 10) - 5)**2 / 1**2) self.assertListEqual(list(pulse_command.samples), list(_y)) # check name self.assertEqual(pulse_command.name, 'test_pulse') # check duration self.assertEqual(pulse_command.duration, 10) def test_variable_duration(self): """Test generation of sample pulse with variable duration. """ @functional_pulse def gaussian(duration, amp, t0, sig): x = np.linspace(0, duration - 1, duration) return amp * np.exp(-(x - t0) ** 2 / sig ** 2) _durations = np.arange(10, 15, 1) for _duration in _durations: pulse_command = gaussian(duration=_duration, amp=1, t0=5, sig=1) self.assertEqual(len(pulse_command.samples), _duration) class TestKernel(QiskitTestCase): """Kernel tests.""" def test_can_construct_kernel_with_default_values(self): """Test if Kernel can be constructed with default name and params.""" kernel = Kernel() self.assertEqual(kernel.name, None) self.assertEqual(kernel.params, {}) class TestDiscriminator(QiskitTestCase): """Discriminator tests.""" def test_can_construct_discriminator_with_default_values(self): """Test if Discriminator can be constructed with default name and params.""" discriminator = Discriminator() self.assertEqual(discriminator.name, None) self.assertEqual(discriminator.params, {}) if __name__ == '__main__': unittest.main()
35.040161
95
0.660401
f27edec3d9c03ba9762557f1c859baf59238f330
883
py
Python
idem_lxd/exec/lxd/snapshots.py
UtahDave/idem-lxd
8a0bbe3b3800b8fd1b616be47eb421676af366ec
[ "Apache-2.0" ]
null
null
null
idem_lxd/exec/lxd/snapshots.py
UtahDave/idem-lxd
8a0bbe3b3800b8fd1b616be47eb421676af366ec
[ "Apache-2.0" ]
null
null
null
idem_lxd/exec/lxd/snapshots.py
UtahDave/idem-lxd
8a0bbe3b3800b8fd1b616be47eb421676af366ec
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Manage LXD container snapshots """ __func_alias__ = {"list_": "list"} async def list_(hub, ctx, name: str): """ List all snapshots for a container CLI Example: .. code-block:: bash idem exec lxd.snapshots.list container01 """ ret = [] container = await hub.tool.lxd.api.request(ctx, "containers", "get", name=name) if "error" in container: return container snapshots = container.snapshots.all() for snap in snapshots: item = await _get_snapshot_info(snap) ret.append(item) return {"snapshots": ret} async def _get_snapshot_info(snap): """ Collect snapshot info """ item = {} item[snap.name] = {} item[snap.name]["name"] = snap.name item[snap.name]["created_at"] = snap.created_at item[snap.name]["stateful"] = snap.stateful return item
22.641026
83
0.616082
4f2ba8c7909893332c88d54e37f48148d37bd04f
5,156
py
Python
pyclue/features/cohort.py
linewalks/py-clue
ecea2a37d88387d909fc283fdbc145bc5a1187a8
[ "MIT" ]
null
null
null
pyclue/features/cohort.py
linewalks/py-clue
ecea2a37d88387d909fc283fdbc145bc5a1187a8
[ "MIT" ]
11
2022-01-13T09:30:03.000Z
2022-03-14T01:10:08.000Z
pyclue/features/cohort.py
linewalks/py-clue
ecea2a37d88387d909fc283fdbc145bc5a1187a8
[ "MIT" ]
null
null
null
from typing import List, Dict from clue_pb2 import ( RequestCohortList, RequestCohortStream ) from pyclue.converter import convert from pyclue.stream import Stream class CohortFeatures: @convert() def get_cohort_list( self, page: int = 1, length: int = 0, term: str = "" ) -> List[Dict]: """ Get the list of cohorts. :param int page: Page number. :param int length: Number of cohorts in a page. If 0, all cohorts will be returned. :param str term: Search term. :return: List of cohorts. :rtype: List of dictionaries. """ cohort_list = self.stub.GetCohortList(RequestCohortList( term=term, page=page, length=length, )).cohort_list return cohort_list def get_cohort_person_table(self, cohort_id: int) -> Stream: """ Get person table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortPersonTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_person_table(self, cohort_id: int) -> Stream: """ Get person table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortPersonTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_condition_occurrence_table(self, cohort_id: int) -> Stream: """ Get condition_occurrence table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortConditionOccurrenceTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_death_table(self, cohort_id: int) -> Stream: """ Get death table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortDeathTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_device_exposure_table(self, cohort_id: int) -> Stream: """ Get device_exposure table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortDeviceExposureTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_drug_exposure_table(self, cohort_id: int) -> Stream: """ Get drug_exposure table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortDrugExposureTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_measurement_table(self, cohort_id: int) -> Stream: """ Get measurement table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortMeasurementTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_observation_period_table(self, cohort_id: int) -> Stream: """ Get observation_period table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortObservationPeriodTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_observation_table(self, cohort_id: int) -> Stream: """ Get observation table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortObservationTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_procedure_occurrence_table(self, cohort_id: int) -> Stream: """ Get procedure_occurrence table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortProcedureOccurrenceTable, RequestCohortStream, cohort_id=cohort_id ) def get_cohort_visit_occurrence_table(self, cohort_id: int) -> Stream: """ Get visit_occurrence table of a cohort. Data stream connection will be opened. :param int cohort_id: ID of the cohort. :return: Stream object. :rtype: Stream """ return Stream( self.stub.GetCohortVisitOccurrenceTable, RequestCohortStream, cohort_id=cohort_id )
22.814159
76
0.647789
27e617adde694585cdf9e2a4f6939a26e034c716
6,990
py
Python
experiments/ashvin/corl2019/pcvae/pointmass/dynamics_cvae.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
experiments/ashvin/corl2019/pcvae/pointmass/dynamics_cvae.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
experiments/ashvin/corl2019/pcvae/pointmass/dynamics_cvae.py
Asap7772/rail-rl-franka-eval
4bf99072376828193d05b53cf83c7e8f4efbd3ba
[ "MIT" ]
null
null
null
import railrl.misc.hyperparameter as hyp from experiments.murtaza.multiworld.skew_fit.reacher.generate_uniform_dataset import generate_uniform_dataset_reacher from multiworld.envs.mujoco.cameras import sawyer_init_camera_zoomed_in from railrl.launchers.launcher_util import run_experiment from railrl.torch.grill.launcher import * import railrl.torch.vae.vae_schedules as vae_schedules from railrl.torch.vae.conv_vae import imsize48_default_architecture, imsize48_default_architecture_with_more_hidden_layers from railrl.launchers.arglauncher import run_variants from railrl.torch.grill.launcher import grill_her_twin_sac_online_vae_full_experiment, grill_her_twin_sac_full_experiment from multiworld.envs.pygame.multiobject_pygame_env import Multiobj2DEnv from multiworld.envs.mujoco.sawyer_xyz.sawyer_push_multiobj_subset import SawyerMultiobjectEnv from railrl.torch.vae.conditional_conv_vae import CDVAE from railrl.torch.vae.vae_trainer import CDVAETrainer def experiment(variant): full_experiment_variant_preprocess(variant) train_vae_and_update_variant(variant) if __name__ == "__main__": variant = dict( double_algo=False, online_vae_exploration=False, imsize=48, init_camera=sawyer_init_camera_zoomed_in, # env_id='SawyerPushNIPSEasy-v0', # env_class=SawyerMultiobjectEnv, # env_kwargs=dict( # # finger_sensors=False, # num_objects=10, # fixed_start=False, # object_meshes=None, # num_scene_objects=[1] # ), env_class=Multiobj2DEnv, env_kwargs=dict( render_onscreen=False, ball_radius=1.5, images_are_rgb=True, show_goal=False, fixed_colors=True, change_background=False, ), grill_variant=dict( save_video=True, custom_goal_sampler='replay_buffer', online_vae_trainer_kwargs=dict( beta=20, lr=0, ), save_video_period=100, qf_kwargs=dict( hidden_sizes=[400, 300], ), policy_kwargs=dict( hidden_sizes=[400, 300], ), vf_kwargs=dict( hidden_sizes=[400, 300], ), max_path_length=50, algo_kwargs=dict( batch_size=128, num_epochs=1000, num_eval_steps_per_epoch=500, num_expl_steps_per_train_loop=500, num_trains_per_train_loop=5, min_num_steps_before_training=1000, vae_training_schedule=vae_schedules.never_train, oracle_data=False, vae_save_period=25, parallel_vae_train=False, ), twin_sac_trainer_kwargs=dict( discount=0.98, reward_scale=1, soft_target_tau=1e-3, target_update_period=1, # 1 use_automatic_entropy_tuning=True, ), replay_buffer_kwargs=dict( start_skew_epoch=10, max_size=int(100000), fraction_goals_rollout_goals=0.2, fraction_goals_env_goals=0.5, exploration_rewards_type='None', vae_priority_type='vae_prob', priority_function_kwargs=dict( sampling_method='importance_sampling', decoder_distribution='gaussian_identity_variance', # decoder_distribution='bernoulli', num_latents_to_sample=10, ), power=-1, relabeling_goal_sampling_mode='vae_prior', ), exploration_goal_sampling_mode='vae_prior', evaluation_goal_sampling_mode='reset_of_env', normalize=False, render=False, exploration_noise=0.2, exploration_type='ou', training_mode='train', testing_mode='test', reward_params=dict( type='latent_distance', ), observation_key='latent_observation', desired_goal_key='latent_desired_goal', vae_wrapped_env_kwargs=dict( sample_from_true_prior=True, ), algorithm='ONLINE-VAE-SAC-BERNOULLI', ), train_vae_variant=dict( representation_size=4, beta=10, num_epochs=1500, dump_skew_debug_plots=False, # decoder_activation='gaussian', decoder_activation='sigmoid', use_linear_dynamics=True, generate_vae_dataset_kwargs=dict( N=10000, n_random_steps=5000, test_p=.9, use_cached=False, show=False, oracle_dataset=False, oracle_dataset_using_set_to_goal=False, non_presampled_goal_img_is_garbage=False, random_rollout_data=True, conditional_vae_dataset=True, save_trajectories=False, enviorment_dataset=False, ), vae_trainer_class=CDVAETrainer, vae_class=CDVAE, vae_kwargs=dict( dynamics_type='nonlinear', input_channels=3, architecture=imsize48_default_architecture_with_more_hidden_layers, decoder_distribution='gaussian_identity_variance', ), # TODO: why the redundancy? algo_kwargs=dict( start_skew_epoch=5000, is_auto_encoder=False, batch_size=32, lr=1e-3, skew_config=dict( method='vae_prob', power=0, ), skew_dataset=False, linearity_weight=100, distance_weight=100, priority_function_kwargs=dict( decoder_distribution='gaussian_identity_variance', sampling_method='importance_sampling', # sampling_method='true_prior_sampling', num_latents_to_sample=10, ), use_parallel_dataloading=False, ), save_period=25, ), ) search_space = { 'seedid': range(1), 'train_vae_variant.representation_size': [(4, 4),], #(3 * objects, 3 * colors) 'train_vae_variant.beta': [20], 'train_vae_variant.generate_vae_dataset_kwargs.n_random_steps': [100] } sweeper = hyp.DeterministicHyperparameterSweeper( search_space, default_parameters=variant, ) variants = [] for variant in sweeper.iterate_hyperparameters(): variants.append(variant) run_variants(experiment, variants, run_id=4)
37.379679
122
0.587268
a191ad89da95b1d5bbd52e22f90c33686df631ef
20,444
py
Python
airflow/providers/google/cloud/example_dags/example_vision.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
79
2021-10-15T07:32:27.000Z
2022-03-28T04:10:19.000Z
airflow/providers/google/cloud/example_dags/example_vision.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
153
2021-10-15T05:23:46.000Z
2022-02-23T06:07:10.000Z
airflow/providers/google/cloud/example_dags/example_vision.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
23
2021-10-15T02:36:37.000Z
2022-03-17T02:59:27.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Example Airflow DAG that creates, gets, updates and deletes Products and Product Sets in the Google Cloud Vision service. This DAG relies on the following OS environment variables * GCP_VISION_LOCATION - Zone where the instance exists. * GCP_VISION_PRODUCT_SET_ID - Product Set ID. * GCP_VISION_PRODUCT_ID - Product ID. * GCP_VISION_REFERENCE_IMAGE_ID - Reference Image ID. * GCP_VISION_REFERENCE_IMAGE_URL - A link to the bucket that contains the reference image. * GCP_VISION_ANNOTATE_IMAGE_URL - A link to the bucket that contains the file to be annotated. """ import os from airflow import models from airflow.operators.bash import BashOperator from airflow.providers.google.cloud.operators.vision import ( CloudVisionAddProductToProductSetOperator, CloudVisionCreateProductOperator, CloudVisionCreateProductSetOperator, CloudVisionCreateReferenceImageOperator, CloudVisionDeleteProductOperator, CloudVisionDeleteProductSetOperator, CloudVisionDeleteReferenceImageOperator, CloudVisionDetectImageLabelsOperator, CloudVisionDetectImageSafeSearchOperator, CloudVisionDetectTextOperator, CloudVisionGetProductOperator, CloudVisionGetProductSetOperator, CloudVisionImageAnnotateOperator, CloudVisionRemoveProductFromProductSetOperator, CloudVisionTextDetectOperator, CloudVisionUpdateProductOperator, CloudVisionUpdateProductSetOperator, ) from airflow.utils.dates import days_ago # [START howto_operator_vision_retry_import] from google.api_core.retry import Retry # isort:skip pylint: disable=wrong-import-order # [END howto_operator_vision_retry_import] # [START howto_operator_vision_product_set_import] from google.cloud.vision_v1.types import ProductSet # isort:skip pylint: disable=wrong-import-order # [END howto_operator_vision_product_set_import] # [START howto_operator_vision_product_import] from google.cloud.vision_v1.types import Product # isort:skip pylint: disable=wrong-import-order # [END howto_operator_vision_product_import] # [START howto_operator_vision_reference_image_import] from google.cloud.vision_v1.types import ReferenceImage # isort:skip pylint: disable=wrong-import-order # [END howto_operator_vision_reference_image_import] # [START howto_operator_vision_enums_import] from google.cloud.vision import enums # isort:skip pylint: disable=wrong-import-order # [END howto_operator_vision_enums_import] GCP_VISION_LOCATION = os.environ.get('GCP_VISION_LOCATION', 'europe-west1') GCP_VISION_PRODUCT_SET_ID = os.environ.get('GCP_VISION_PRODUCT_SET_ID', 'product_set_explicit_id') GCP_VISION_PRODUCT_ID = os.environ.get('GCP_VISION_PRODUCT_ID', 'product_explicit_id') GCP_VISION_REFERENCE_IMAGE_ID = os.environ.get('GCP_VISION_REFERENCE_IMAGE_ID', 'reference_image_explicit_id') GCP_VISION_REFERENCE_IMAGE_URL = os.environ.get('GCP_VISION_REFERENCE_IMAGE_URL', 'gs://bucket/image1.jpg') GCP_VISION_ANNOTATE_IMAGE_URL = os.environ.get('GCP_VISION_ANNOTATE_IMAGE_URL', 'gs://bucket/image2.jpg') # [START howto_operator_vision_product_set] product_set = ProductSet(display_name='My Product Set') # [END howto_operator_vision_product_set] # [START howto_operator_vision_product] product = Product(display_name='My Product 1', product_category='toys') # [END howto_operator_vision_product] # [START howto_operator_vision_reference_image] reference_image = ReferenceImage(uri=GCP_VISION_REFERENCE_IMAGE_URL) # [END howto_operator_vision_reference_image] # [START howto_operator_vision_annotate_image_request] annotate_image_request = { 'image': {'source': {'image_uri': GCP_VISION_ANNOTATE_IMAGE_URL}}, 'features': [{'type': enums.Feature.Type.LOGO_DETECTION}], } # [END howto_operator_vision_annotate_image_request] # [START howto_operator_vision_detect_image_param] DETECT_IMAGE = {"source": {"image_uri": GCP_VISION_ANNOTATE_IMAGE_URL}} # [END howto_operator_vision_detect_image_param] with models.DAG( 'example_gcp_vision_autogenerated_id', start_date=days_ago(1), schedule_interval=None ) as dag_autogenerated_id: # ################################## # # ### Autogenerated IDs examples ### # # ################################## # # [START howto_operator_vision_product_set_create] product_set_create = CloudVisionCreateProductSetOperator( location=GCP_VISION_LOCATION, product_set=product_set, retry=Retry(maximum=10.0), timeout=5, task_id='product_set_create', ) # [END howto_operator_vision_product_set_create] # [START howto_operator_vision_product_set_get] product_set_get = CloudVisionGetProductSetOperator( location=GCP_VISION_LOCATION, product_set_id="{{ task_instance.xcom_pull('product_set_create') }}", task_id='product_set_get', ) # [END howto_operator_vision_product_set_get] # [START howto_operator_vision_product_set_update] product_set_update = CloudVisionUpdateProductSetOperator( location=GCP_VISION_LOCATION, product_set_id="{{ task_instance.xcom_pull('product_set_create') }}", product_set=ProductSet(display_name='My Product Set 2'), task_id='product_set_update', ) # [END howto_operator_vision_product_set_update] # [START howto_operator_vision_product_set_delete] product_set_delete = CloudVisionDeleteProductSetOperator( location=GCP_VISION_LOCATION, product_set_id="{{ task_instance.xcom_pull('product_set_create') }}", task_id='product_set_delete', ) # [END howto_operator_vision_product_set_delete] # [START howto_operator_vision_product_create] product_create = CloudVisionCreateProductOperator( location=GCP_VISION_LOCATION, product=product, retry=Retry(maximum=10.0), timeout=5, task_id='product_create', ) # [END howto_operator_vision_product_create] # [START howto_operator_vision_product_get] product_get = CloudVisionGetProductOperator( location=GCP_VISION_LOCATION, product_id="{{ task_instance.xcom_pull('product_create') }}", task_id='product_get', ) # [END howto_operator_vision_product_get] # [START howto_operator_vision_product_update] product_update = CloudVisionUpdateProductOperator( location=GCP_VISION_LOCATION, product_id="{{ task_instance.xcom_pull('product_create') }}", product=Product(display_name='My Product 2', description='My updated description'), task_id='product_update', ) # [END howto_operator_vision_product_update] # [START howto_operator_vision_product_delete] product_delete = CloudVisionDeleteProductOperator( location=GCP_VISION_LOCATION, product_id="{{ task_instance.xcom_pull('product_create') }}", task_id='product_delete', ) # [END howto_operator_vision_product_delete] # [START howto_operator_vision_reference_image_create] reference_image_create = CloudVisionCreateReferenceImageOperator( location=GCP_VISION_LOCATION, reference_image=reference_image, product_id="{{ task_instance.xcom_pull('product_create') }}", reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID, retry=Retry(maximum=10.0), timeout=5, task_id='reference_image_create', ) # [END howto_operator_vision_reference_image_create] # [START howto_operator_vision_reference_image_delete] reference_image_delete = CloudVisionDeleteReferenceImageOperator( location=GCP_VISION_LOCATION, product_id="{{ task_instance.xcom_pull('product_create') }}", reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID, retry=Retry(maximum=10.0), timeout=5, task_id='reference_image_delete', ) # [END howto_operator_vision_reference_image_delete] # [START howto_operator_vision_add_product_to_product_set] add_product_to_product_set = CloudVisionAddProductToProductSetOperator( location=GCP_VISION_LOCATION, product_set_id="{{ task_instance.xcom_pull('product_set_create') }}", product_id="{{ task_instance.xcom_pull('product_create') }}", retry=Retry(maximum=10.0), timeout=5, task_id='add_product_to_product_set', ) # [END howto_operator_vision_add_product_to_product_set] # [START howto_operator_vision_remove_product_from_product_set] remove_product_from_product_set = CloudVisionRemoveProductFromProductSetOperator( location=GCP_VISION_LOCATION, product_set_id="{{ task_instance.xcom_pull('product_set_create') }}", product_id="{{ task_instance.xcom_pull('product_create') }}", retry=Retry(maximum=10.0), timeout=5, task_id='remove_product_from_product_set', ) # [END howto_operator_vision_remove_product_from_product_set] # Product path product_create >> product_get >> product_update >> product_delete # ProductSet path product_set_create >> product_set_get >> product_set_update >> product_set_delete # ReferenceImage path product_create >> reference_image_create >> reference_image_delete >> product_delete # Product/ProductSet path product_create >> add_product_to_product_set product_set_create >> add_product_to_product_set add_product_to_product_set >> remove_product_from_product_set remove_product_from_product_set >> product_delete remove_product_from_product_set >> product_set_delete with models.DAG( 'example_gcp_vision_explicit_id', start_date=days_ago(1), schedule_interval=None ) as dag_explicit_id: # ############################# # # ### Explicit IDs examples ### # # ############################# # # [START howto_operator_vision_product_set_create_2] product_set_create_2 = CloudVisionCreateProductSetOperator( product_set_id=GCP_VISION_PRODUCT_SET_ID, location=GCP_VISION_LOCATION, product_set=product_set, retry=Retry(maximum=10.0), timeout=5, task_id='product_set_create_2', ) # [END howto_operator_vision_product_set_create_2] # Second 'create' task with the same product_set_id to demonstrate idempotence product_set_create_2_idempotence = CloudVisionCreateProductSetOperator( product_set_id=GCP_VISION_PRODUCT_SET_ID, location=GCP_VISION_LOCATION, product_set=product_set, retry=Retry(maximum=10.0), timeout=5, task_id='product_set_create_2_idempotence', ) # [START howto_operator_vision_product_set_get_2] product_set_get_2 = CloudVisionGetProductSetOperator( location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, task_id='product_set_get_2' ) # [END howto_operator_vision_product_set_get_2] # [START howto_operator_vision_product_set_update_2] product_set_update_2 = CloudVisionUpdateProductSetOperator( location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, product_set=ProductSet(display_name='My Product Set 2'), task_id='product_set_update_2', ) # [END howto_operator_vision_product_set_update_2] # [START howto_operator_vision_product_set_delete_2] product_set_delete_2 = CloudVisionDeleteProductSetOperator( location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, task_id='product_set_delete_2' ) # [END howto_operator_vision_product_set_delete_2] # [START howto_operator_vision_product_create_2] product_create_2 = CloudVisionCreateProductOperator( product_id=GCP_VISION_PRODUCT_ID, location=GCP_VISION_LOCATION, product=product, retry=Retry(maximum=10.0), timeout=5, task_id='product_create_2', ) # [END howto_operator_vision_product_create_2] # Second 'create' task with the same product_id to demonstrate idempotence product_create_2_idempotence = CloudVisionCreateProductOperator( product_id=GCP_VISION_PRODUCT_ID, location=GCP_VISION_LOCATION, product=product, retry=Retry(maximum=10.0), timeout=5, task_id='product_create_2_idempotence', ) # [START howto_operator_vision_product_get_2] product_get_2 = CloudVisionGetProductOperator( location=GCP_VISION_LOCATION, product_id=GCP_VISION_PRODUCT_ID, task_id='product_get_2' ) # [END howto_operator_vision_product_get_2] # [START howto_operator_vision_product_update_2] product_update_2 = CloudVisionUpdateProductOperator( location=GCP_VISION_LOCATION, product_id=GCP_VISION_PRODUCT_ID, product=Product(display_name='My Product 2', description='My updated description'), task_id='product_update_2', ) # [END howto_operator_vision_product_update_2] # [START howto_operator_vision_product_delete_2] product_delete_2 = CloudVisionDeleteProductOperator( location=GCP_VISION_LOCATION, product_id=GCP_VISION_PRODUCT_ID, task_id='product_delete_2' ) # [END howto_operator_vision_product_delete_2] # [START howto_operator_vision_reference_image_create_2] reference_image_create_2 = CloudVisionCreateReferenceImageOperator( location=GCP_VISION_LOCATION, reference_image=reference_image, product_id=GCP_VISION_PRODUCT_ID, reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID, retry=Retry(maximum=10.0), timeout=5, task_id='reference_image_create_2', ) # [END howto_operator_vision_reference_image_create_2] # [START howto_operator_vision_reference_image_delete_2] reference_image_delete_2 = CloudVisionDeleteReferenceImageOperator( location=GCP_VISION_LOCATION, reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID, product_id=GCP_VISION_PRODUCT_ID, retry=Retry(maximum=10.0), timeout=5, task_id='reference_image_delete_2', ) # [END howto_operator_vision_reference_image_delete_2] # Second 'create' task with the same product_id to demonstrate idempotence reference_image_create_2_idempotence = CloudVisionCreateReferenceImageOperator( location=GCP_VISION_LOCATION, reference_image=reference_image, product_id=GCP_VISION_PRODUCT_ID, reference_image_id=GCP_VISION_REFERENCE_IMAGE_ID, retry=Retry(maximum=10.0), timeout=5, task_id='reference_image_create_2_idempotence', ) # [START howto_operator_vision_add_product_to_product_set_2] add_product_to_product_set_2 = CloudVisionAddProductToProductSetOperator( location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, product_id=GCP_VISION_PRODUCT_ID, retry=Retry(maximum=10.0), timeout=5, task_id='add_product_to_product_set_2', ) # [END howto_operator_vision_add_product_to_product_set_2] # [START howto_operator_vision_remove_product_from_product_set_2] remove_product_from_product_set_2 = CloudVisionRemoveProductFromProductSetOperator( location=GCP_VISION_LOCATION, product_set_id=GCP_VISION_PRODUCT_SET_ID, product_id=GCP_VISION_PRODUCT_ID, retry=Retry(maximum=10.0), timeout=5, task_id='remove_product_from_product_set_2', ) # [END howto_operator_vision_remove_product_from_product_set_2] # Product path product_create_2 >> product_create_2_idempotence >> product_get_2 >> product_update_2 >> product_delete_2 # ProductSet path product_set_create_2 >> product_set_get_2 >> product_set_update_2 >> product_set_delete_2 product_set_create_2 >> product_set_create_2_idempotence >> product_set_delete_2 # ReferenceImage path product_create_2 >> reference_image_create_2 >> reference_image_create_2_idempotence reference_image_create_2_idempotence >> reference_image_delete_2 >> product_delete_2 # Product/ProductSet path add_product_to_product_set_2 >> remove_product_from_product_set_2 product_set_create_2 >> add_product_to_product_set_2 product_create_2 >> add_product_to_product_set_2 remove_product_from_product_set_2 >> product_set_delete_2 remove_product_from_product_set_2 >> product_delete_2 with models.DAG( 'example_gcp_vision_annotate_image', start_date=days_ago(1), schedule_interval=None ) as dag_annotate_image: # ############################## # # ### Annotate image example ### # # ############################## # # [START howto_operator_vision_annotate_image] annotate_image = CloudVisionImageAnnotateOperator( request=annotate_image_request, retry=Retry(maximum=10.0), timeout=5, task_id='annotate_image' ) # [END howto_operator_vision_annotate_image] # [START howto_operator_vision_annotate_image_result] annotate_image_result = BashOperator( bash_command="echo {{ task_instance.xcom_pull('annotate_image')" "['logoAnnotations'][0]['description'] }}", task_id='annotate_image_result', ) # [END howto_operator_vision_annotate_image_result] # [START howto_operator_vision_detect_text] detect_text = CloudVisionDetectTextOperator( image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="detect_text", language_hints="en", web_detection_params={'include_geo_results': True}, ) # [END howto_operator_vision_detect_text] # [START howto_operator_vision_detect_text_result] detect_text_result = BashOperator( bash_command="echo {{ task_instance.xcom_pull('detect_text')['textAnnotations'][0] }}", task_id="detect_text_result", ) # [END howto_operator_vision_detect_text_result] # [START howto_operator_vision_document_detect_text] document_detect_text = CloudVisionTextDetectOperator( image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="document_detect_text" ) # [END howto_operator_vision_document_detect_text] # [START howto_operator_vision_document_detect_text_result] document_detect_text_result = BashOperator( bash_command="echo {{ task_instance.xcom_pull('document_detect_text')['textAnnotations'][0] }}", task_id="document_detect_text_result", ) # [END howto_operator_vision_document_detect_text_result] # [START howto_operator_vision_detect_labels] detect_labels = CloudVisionDetectImageLabelsOperator( image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="detect_labels" ) # [END howto_operator_vision_detect_labels] # [START howto_operator_vision_detect_labels_result] detect_labels_result = BashOperator( bash_command="echo {{ task_instance.xcom_pull('detect_labels')['labelAnnotations'][0] }}", task_id="detect_labels_result", ) # [END howto_operator_vision_detect_labels_result] # [START howto_operator_vision_detect_safe_search] detect_safe_search = CloudVisionDetectImageSafeSearchOperator( image=DETECT_IMAGE, retry=Retry(maximum=10.0), timeout=5, task_id="detect_safe_search" ) # [END howto_operator_vision_detect_safe_search] # [START howto_operator_vision_detect_safe_search_result] detect_safe_search_result = BashOperator( bash_command="echo {{ task_instance.xcom_pull('detect_safe_search') }}", task_id="detect_safe_search_result", ) # [END howto_operator_vision_detect_safe_search_result] annotate_image >> annotate_image_result detect_text >> detect_text_result document_detect_text >> document_detect_text_result detect_labels >> detect_labels_result detect_safe_search >> detect_safe_search_result
40.96994
110
0.756457
39fa1aa74d1bd6c6989479ff347d8b5feb3b5d75
4,025
py
Python
social_core/backends/github.py
kim-sojeong/social-core
0ce1fa4fbb4bbda4af30482c9484450103aa3922
[ "BSD-3-Clause" ]
3
2020-10-03T14:37:40.000Z
2021-03-28T17:21:44.000Z
social_core/backends/github.py
kim-sojeong/social-core
0ce1fa4fbb4bbda4af30482c9484450103aa3922
[ "BSD-3-Clause" ]
13
2020-03-24T17:53:51.000Z
2022-02-10T20:01:14.000Z
social_core/backends/github.py
kim-sojeong/social-core
0ce1fa4fbb4bbda4af30482c9484450103aa3922
[ "BSD-3-Clause" ]
2
2019-09-17T12:47:49.000Z
2019-09-17T12:47:56.000Z
""" Github OAuth2 backend, docs at: https://python-social-auth.readthedocs.io/en/latest/backends/github.html """ from requests import HTTPError from six.moves.urllib.parse import urljoin from .oauth import BaseOAuth2 from ..exceptions import AuthFailed class GithubOAuth2(BaseOAuth2): """Github OAuth authentication backend""" name = 'github' API_URL = 'https://api.github.com/' AUTHORIZATION_URL = 'https://github.com/login/oauth/authorize' ACCESS_TOKEN_URL = 'https://github.com/login/oauth/access_token' ACCESS_TOKEN_METHOD = 'POST' SCOPE_SEPARATOR = ',' REDIRECT_STATE = False STATE_PARAMETER = True SEND_USER_AGENT = True EXTRA_DATA = [ ('id', 'id'), ('expires', 'expires'), ('login', 'login') ] def api_url(self): return self.API_URL def get_user_details(self, response): """Return user details from Github account""" fullname, first_name, last_name = self.get_user_names( response.get('name') ) return {'username': response.get('login'), 'email': response.get('email') or '', 'fullname': fullname, 'first_name': first_name, 'last_name': last_name} def user_data(self, access_token, *args, **kwargs): """Loads user data from service""" data = self._user_data(access_token) if not data.get('email'): try: emails = self._user_data(access_token, '/emails') except (HTTPError, ValueError, TypeError): emails = [] if emails: email = emails[0] primary_emails = [ e for e in emails if not isinstance(e, dict) or e.get('primary') ] if primary_emails: email = primary_emails[0] if isinstance(email, dict): email = email.get('email', '') data['email'] = email return data def _user_data(self, access_token, path=None): url = urljoin(self.api_url(), 'user{0}'.format(path or '')) return self.get_json(url, params={'access_token': access_token}) class GithubMemberOAuth2(GithubOAuth2): no_member_string = '' def user_data(self, access_token, *args, **kwargs): """Loads user data from service""" user_data = super(GithubMemberOAuth2, self).user_data( access_token, *args, **kwargs ) try: self.request(self.member_url(user_data), params={ 'access_token': access_token }) except HTTPError as err: # if the user is a member of the organization, response code # will be 204, see http://bit.ly/ZS6vFl if err.response.status_code != 204: raise AuthFailed(self, 'User doesn\'t belong to the organization') return user_data def member_url(self, user_data): raise NotImplementedError('Implement in subclass') class GithubOrganizationOAuth2(GithubMemberOAuth2): """Github OAuth2 authentication backend for organizations""" name = 'github-org' no_member_string = 'User doesn\'t belong to the organization' def member_url(self, user_data): return urljoin( self.api_url(), 'orgs/{org}/members/{username}'.format( org=self.setting('NAME'), username=user_data.get('login') ) ) class GithubTeamOAuth2(GithubMemberOAuth2): """Github OAuth2 authentication backend for teams""" name = 'github-team' no_member_string = 'User doesn\'t belong to the team' def member_url(self, user_data): return urljoin( self.api_url(), 'teams/{team_id}/members/{username}'.format( team_id=self.setting('ID'), username=user_data.get('login') ) )
32.723577
76
0.580124
9629c8a3eb13dfef193097a562b2305f5033f825
518
py
Python
00_Original/35_Debugging_und_Qualitaetssicherung/Analyse_des_Laufzeitverhaltens/beispiel_Tracing.py
felixdittrich92/Python3_book
cd0e2b55aa72c51927d347b70199fb9ed928e06f
[ "MIT" ]
null
null
null
00_Original/35_Debugging_und_Qualitaetssicherung/Analyse_des_Laufzeitverhaltens/beispiel_Tracing.py
felixdittrich92/Python3_book
cd0e2b55aa72c51927d347b70199fb9ed928e06f
[ "MIT" ]
null
null
null
00_Original/35_Debugging_und_Qualitaetssicherung/Analyse_des_Laufzeitverhaltens/beispiel_Tracing.py
felixdittrich92/Python3_book
cd0e2b55aa72c51927d347b70199fb9ed928e06f
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import math import trace import sys def programm(): for i in range(100): i**2 for j in range(100): math.sqrt(j) for k in range(100): math.log(k+1) tracer = trace.Trace(ignoredirs = [sys.prefix, sys.exec_prefix], trace = 0) tracer.run("programm()") r = tracer.results() r.write_results(show_missing=True, coverdir="ergebnis_Tracing") print("Ergebnis geschrieben nach ergebnis_Tracing/beispiel_Tracing.cover")
23.545455
75
0.642857
fc8e742db99aff6d2def1d3be59cf89186f7d0ba
2,763
py
Python
mail_pusher/utils.py
qq20004604/Mail-Report-System
59d2390431251d8ffd0435cab510a37900f2dc17
[ "Apache-2.0" ]
1
2020-07-29T08:54:46.000Z
2020-07-29T08:54:46.000Z
mail_pusher/utils.py
qq20004604/Mail-Report-System
59d2390431251d8ffd0435cab510a37900f2dc17
[ "Apache-2.0" ]
6
2021-03-19T10:24:43.000Z
2021-09-22T19:30:43.000Z
mail_pusher/utils.py
qq20004604/Mail-Report-System
59d2390431251d8ffd0435cab510a37900f2dc17
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from django.utils import timezone from .models import RegVerifyMailModel, REG_EXPIRE_TIME from package import mail_client # 检查该用户当前是否可以推送验证码邮件 def can_send_regcode_email(email, ip): # 验证规则: # 1. 3 分钟内 1 封; # 2. 1 小时内 5 封; # 3. 24 小时 10 封; # 邮箱地址 和 ip 地址,分别查 now = timezone.now().timestamp() first_check = RegVerifyMailModel.objects.filter(email=email, push_time__gt=now - 60 * 3) ip_check = RegVerifyMailModel.objects.filter(ip=ip, push_time__gt=now - 60 * 3) if len(first_check) > 0 or len(ip_check) > 0: return '3 分钟内只能发送 1 次验证邮件' second_check = RegVerifyMailModel.objects.filter(email=email, push_time__gt=now - 60 * 60) ip_check = RegVerifyMailModel.objects.filter(ip=ip, push_time__gt=now - 60 * 60) if len(second_check) >= 5 or len(ip_check) > 5: return '60 分钟内只能发送 5 次验证邮件' third_check = RegVerifyMailModel.objects.filter(email=email, push_time__gt=now - 60 * 60 * 24) ip_check = RegVerifyMailModel.objects.filter(ip=ip, push_time__gt=now - 60 * 60 * 24) if len(third_check) >= 10 or len(ip_check) > 10: return '24 小时内只能发送 10 次验证邮件' return None # 检查邮件和验证码是否正确 def is_regcode_correct(email, regcode): now = timezone.now().timestamp() result = RegVerifyMailModel.objects.order_by('-id').filter(email=email, verify_code=regcode) if len(result) == 0: return '验证码错误' # 拿到最新一个 result = result[0] # 检查时间是否过期 if now - result.push_time > REG_EXPIRE_TIME: return '验证码已过期' return None # 推送验证码邮件 def send_regcode_email(email, regcode): # send_result = mail_client.send_mail_test() send_result = mail_client.send_mail(receiver=[email], title='注册验证', content=[ '<h4>', '你的邮箱注册验证码为:', '</h4>' '<h2>%s</h2>' % regcode ]) print(send_result) return send_result # 推送订阅邮件(都调用这个api推送) def send_feeds_mail(receiver_list, title, content): send_result = mail_client.send_mail(receiver=receiver_list, title=title, content=content) print(send_result) return send_result # 推送启动邮件邮件(都调用这个api推送) def send_started_mail(): send_result = mail_client.send_mail(receiver='20004604@qq.com', title='Mail Report System系统已启动', content=['Mail Report System系统已启动']) print(send_result) return send_result
34.974684
98
0.5827