hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
e61b0fd36cdaa8eee16647e4a0451cc1b0be25b9
1,965
py
Python
libra/account_resource.py
devos50/libra-client
7d1558848ff45ca8f42d756ef11e04846154e3cf
[ "MIT" ]
null
null
null
libra/account_resource.py
devos50/libra-client
7d1558848ff45ca8f42d756ef11e04846154e3cf
[ "MIT" ]
null
null
null
libra/account_resource.py
devos50/libra-client
7d1558848ff45ca8f42d756ef11e04846154e3cf
[ "MIT" ]
null
null
null
from canoser import * from libra.event import EventHandle from libra.hasher import gen_hasher from libra.account_config import AccountConfig from io import StringIO class AccountStateBlob: def __init__(self, blob): self.blob = blob @classmethod def from_proto(cls, proto): return cls(proto.blob) def hash(self): shazer = gen_hasher(b"AccountStateBlob") shazer.update(self.blob) return shazer.digest() class AccountState(Struct): _fields = [ ('ordered_map', {}) ] def __str__(self): concat = StringIO() concat.write(super().__str__()) resource = self.ordered_map[AccountConfig.ACCOUNT_RESOURCE_PATH] if resource: ar = AccountResource.deserialize(resource) concat.write("\nDecoded:\n") concat.write(ar.__str__()) return concat.getvalue() class AccountResource(Struct): _fields = [ ('authentication_key', [Uint8]), ('balance', Uint64), ('delegated_key_rotation_capability', bool), ('delegated_withdrawal_capability', bool), ('received_events', EventHandle), ('sent_events', EventHandle), ('sequence_number', Uint64) ] @classmethod def get_account_resource_or_default(cls, blob): if blob: omap = AccountState.deserialize(blob.blob).ordered_map resource = omap[AccountConfig.ACCOUNT_RESOURCE_PATH] return cls.deserialize(resource) else: return cls() def get_event_handle_by_query_path(self, query_path): if AccountConfig.account_received_event_path() == query_path: return self.received_events elif AccountConfig.account_sent_event_path() == query_path: return self.sent_events else: libra.proof.bail("Unrecognized query path: {}", query_path);
30.703125
73
0.62341
9d6a7430d99c54e6b279c54d0024ba9466e43d00
199
py
Python
xmonitor/contrib/plugins/artifacts_sample/__init__.py
froyobin/xmonitor
092dcaa01f834353ffd8dd3c40edf9e97543bfe8
[ "Apache-2.0" ]
null
null
null
xmonitor/contrib/plugins/artifacts_sample/__init__.py
froyobin/xmonitor
092dcaa01f834353ffd8dd3c40edf9e97543bfe8
[ "Apache-2.0" ]
null
null
null
xmonitor/contrib/plugins/artifacts_sample/__init__.py
froyobin/xmonitor
092dcaa01f834353ffd8dd3c40edf9e97543bfe8
[ "Apache-2.0" ]
null
null
null
from xmonitor.contrib.plugins.artifacts_sample.v1 import artifact as art1 from xmonitor.contrib.plugins.artifacts_sample.v2 import artifact as art2 MY_ARTIFACT = [art1.MyArtifact, art2.MyArtifact]
33.166667
73
0.839196
4e68707fdab645cd5efa3633c98b4aa3e81635ad
521
py
Python
riak/datatypes/errors.py
albeus/riak-python-client
51bf875f1f5e394d45540a3850a8453db0951c40
[ "Apache-2.0" ]
null
null
null
riak/datatypes/errors.py
albeus/riak-python-client
51bf875f1f5e394d45540a3850a8453db0951c40
[ "Apache-2.0" ]
null
null
null
riak/datatypes/errors.py
albeus/riak-python-client
51bf875f1f5e394d45540a3850a8453db0951c40
[ "Apache-2.0" ]
null
null
null
from riak import RiakError class ContextRequired(RiakError): """ This exception is raised when removals of map fields and set entries are attempted and the datatype hasn't been initialized with a context. """ _default_message = ("A context is required for remove operations, " "fetch the datatype first") def __init__(self, message=None): super(ContextRequired, self).__init__(message or self._default_message)
30.647059
71
0.629559
c8b2a633a028f5d13755b20e94aacd05dfa6371d
2,953
py
Python
messageApp_api/migrations/0004_auto_20210213_1829.py
yoniv/messageApp
495762fb6eee328df68f97260494d08c5041d926
[ "MIT" ]
null
null
null
messageApp_api/migrations/0004_auto_20210213_1829.py
yoniv/messageApp
495762fb6eee328df68f97260494d08c5041d926
[ "MIT" ]
null
null
null
messageApp_api/migrations/0004_auto_20210213_1829.py
yoniv/messageApp
495762fb6eee328df68f97260494d08c5041d926
[ "MIT" ]
null
null
null
# Generated by Django 3.0 on 2021-02-13 16:29 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('auth', '0011_update_proxy_permissions'), ('messageApp_api', '0003_message_is_read'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('email', models.EmailField(max_length=255, unique=True, verbose_name='email')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.DeleteModel( name='Users', ), ]
62.829787
329
0.657298
67a4dc5dd5440ed57b743f18f84e2d218d7c1ec4
5,216
py
Python
site/flask/lib/python2.7/site-packages/speaklater.py
theholyhades1/tartanHacks2015
a801b473f21cfbd136e2a5a74423e8c72d14f900
[ "MIT" ]
32
2015-01-19T12:13:26.000Z
2021-11-11T00:11:22.000Z
site/flask/lib/python2.7/site-packages/speaklater.py
theholyhades1/tartanHacks2015
a801b473f21cfbd136e2a5a74423e8c72d14f900
[ "MIT" ]
10
2020-06-05T19:42:26.000Z
2022-03-11T23:38:35.000Z
site/flask/lib/python2.7/site-packages/speaklater.py
theholyhades1/tartanHacks2015
a801b473f21cfbd136e2a5a74423e8c72d14f900
[ "MIT" ]
9
2015-07-18T01:03:56.000Z
2019-05-24T09:36:40.000Z
# -*- coding: utf-8 -*- r""" speaklater ~~~~~~~~~~ A module that provides lazy strings for translations. Basically you get an object that appears to be a string but changes the value every time the value is evaluated based on a callable you provide. For example you can have a global `lazy_gettext` function that returns a lazy string with the value of the current set language. Example: >>> from speaklater import make_lazy_string >>> sval = u'Hello World' >>> string = make_lazy_string(lambda: sval) This lazy string will evaluate to the value of the `sval` variable. >>> string lu'Hello World' >>> unicode(string) u'Hello World' >>> string.upper() u'HELLO WORLD' If you change the value, the lazy string will change as well: >>> sval = u'Hallo Welt' >>> string.upper() u'HALLO WELT' This is especially handy when combined with a thread local and gettext translations or dicts of translatable strings: >>> from speaklater import make_lazy_gettext >>> from threading import local >>> l = local() >>> l.translations = {u'Yes': 'Ja'} >>> lazy_gettext = make_lazy_gettext(lambda: l.translations.get) >>> yes = lazy_gettext(u'Yes') >>> print yes Ja >>> l.translations[u'Yes'] = u'Si' >>> print yes Si Lazy strings are no real strings so if you pass this sort of string to a function that performs an instance check, it will fail. In that case you have to explicitly convert it with `unicode` and/or `string` depending on what string type the lazy string encapsulates. To check if a string is lazy, you can use the `is_lazy_string` function: >>> from speaklater import is_lazy_string >>> is_lazy_string(u'yes') False >>> is_lazy_string(yes) True New in version 1.2: It's now also possible to pass keyword arguments to the callback used with `make_lazy_string`. :copyright: (c) 2010 by Armin Ronacher. :license: BSD, see LICENSE for more details. """ def is_lazy_string(obj): """Checks if the given object is a lazy string.""" return isinstance(obj, _LazyString) def make_lazy_string(__func, *args, **kwargs): """Creates a lazy string by invoking func with args.""" return _LazyString(__func, args, kwargs) def make_lazy_gettext(lookup_func): """Creates a lazy gettext function dispatches to a gettext function as returned by `lookup_func`. Example: >>> translations = {u'Yes': u'Ja'} >>> lazy_gettext = make_lazy_gettext(lambda: translations.get) >>> x = lazy_gettext(u'Yes') >>> x lu'Ja' >>> translations[u'Yes'] = u'Si' >>> x lu'Si' """ def lazy_gettext(string): if is_lazy_string(string): return string return make_lazy_string(lookup_func(), string) return lazy_gettext class _LazyString(object): """Class for strings created by a function call. The proxy implementation attempts to be as complete as possible, so that the lazy objects should mostly work as expected, for example for sorting. """ __slots__ = ('_func', '_args', '_kwargs') def __init__(self, func, args, kwargs): self._func = func self._args = args self._kwargs = kwargs value = property(lambda x: x._func(*x._args, **x._kwargs)) def __contains__(self, key): return key in self.value def __nonzero__(self): return bool(self.value) def __dir__(self): return dir(unicode) def __iter__(self): return iter(self.value) def __len__(self): return len(self.value) def __str__(self): return str(self.value) def __unicode__(self): return unicode(self.value) def __add__(self, other): return self.value + other def __radd__(self, other): return other + self.value def __mod__(self, other): return self.value % other def __rmod__(self, other): return other % self.value def __mul__(self, other): return self.value * other def __rmul__(self, other): return other * self.value def __lt__(self, other): return self.value < other def __le__(self, other): return self.value <= other def __eq__(self, other): return self.value == other def __ne__(self, other): return self.value != other def __gt__(self, other): return self.value > other def __ge__(self, other): return self.value >= other def __getattr__(self, name): if name == '__members__': return self.__dir__() return getattr(self.value, name) def __getstate__(self): return self._func, self._args, self._kwargs def __setstate__(self, tup): self._func, self._args, self._kwargs = tup def __getitem__(self, key): return self.value[key] def __copy__(self): return self def __repr__(self): try: return 'l' + repr(self.value) except Exception: return '<%s broken>' % self.__class__.__name__ if __name__ == '__main__': import doctest doctest.testmod()
25.950249
78
0.637078
99e5e7be96e296671513894d23e22cf62f8d65bb
6,391
py
Python
Assignment_1/Q3/input_data.py
hasagar97/DeepLearning
2b0e6ce2ef5e6216c8af63d1c14d98fe39286a0e
[ "MIT" ]
null
null
null
Assignment_1/Q3/input_data.py
hasagar97/DeepLearning
2b0e6ce2ef5e6216c8af63d1c14d98fe39286a0e
[ "MIT" ]
null
null
null
Assignment_1/Q3/input_data.py
hasagar97/DeepLearning
2b0e6ce2ef5e6216c8af63d1c14d98fe39286a0e
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Functions for downloading and reading MNIST data.""" import gzip import os from six.moves.urllib.request import urlretrieve import numpy SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting', filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): def __init__(self, images, labels, fake_data=False): if fake_data: self._num_examples = 10000 else: assert images.shape[0] == labels.shape[0], ( "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1.0 for _ in xrange(784)] fake_label = 0 return [fake_image for _ in xrange(batch_size)], [ fake_label for _ in xrange(batch_size)] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False): class DataSets(object): pass data_sets = DataSets() if fake_data: data_sets.train = DataSet([], [], fake_data=True) data_sets.validation = DataSet([], [], fake_data=True) data_sets.test = DataSet([], [], fake_data=True) return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels) data_sets.validation = DataSet(validation_images, validation_labels) data_sets.test = DataSet(test_images, test_labels) return data_sets
38.969512
79
0.627288
10e3f32de395844ee8a9b7cabdb9ff79f4728d8f
12,106
py
Python
pandas/core/ops/array_ops.py
garyteofanus/pandas
cc51219fad8add8f442b847ccdabd3f9e9077cb6
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2020-03-23T08:51:08.000Z
2020-03-23T08:51:08.000Z
pandas/core/ops/array_ops.py
garyteofanus/pandas
cc51219fad8add8f442b847ccdabd3f9e9077cb6
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/core/ops/array_ops.py
garyteofanus/pandas
cc51219fad8add8f442b847ccdabd3f9e9077cb6
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
""" Functions for arithmetic and comparison operations on NumPy arrays and ExtensionArrays. """ from functools import partial import operator from typing import Any, Optional import numpy as np from pandas._libs import Timedelta, Timestamp, lib, ops as libops from pandas._typing import ArrayLike from pandas.core.dtypes.cast import ( construct_1d_object_array_from_listlike, find_common_type, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDatetimeArray, ABCExtensionArray, ABCIndex, ABCIndexClass, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import isna, notna from pandas.core.ops import missing from pandas.core.ops.dispatch import dispatch_to_extension_op, should_extension_dispatch from pandas.core.ops.invalid import invalid_comparison from pandas.core.ops.roperator import rpow def comp_method_OBJECT_ARRAY(op, x, y): if isinstance(y, list): y = construct_1d_object_array_from_listlike(y) if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)): # Note: these checks can be for ABCIndex and not ABCIndexClass # because that is the only object-dtype class. if not is_object_dtype(y.dtype): y = y.astype(np.object_) if isinstance(y, (ABCSeries, ABCIndex)): y = y.values result = libops.vec_compare(x.ravel(), y, op) else: result = libops.scalar_compare(x.ravel(), y, op) return result.reshape(x.shape) def masked_arith_op(x, y, op): """ If the given arithmetic operation fails, attempt it again on only the non-null elements of the input array(s). Parameters ---------- x : np.ndarray y : np.ndarray, Series, Index op : binary operator """ # For Series `x` is 1D so ravel() is a no-op; calling it anyway makes # the logic valid for both Series and DataFrame ops. xrav = x.ravel() assert isinstance(x, np.ndarray), type(x) if isinstance(y, np.ndarray): dtype = find_common_type([x.dtype, y.dtype]) result = np.empty(x.size, dtype=dtype) # NB: ravel() is only safe since y is ndarray; for e.g. PeriodIndex # we would get int64 dtype, see GH#19956 yrav = y.ravel() mask = notna(xrav) & notna(yrav) if yrav.shape != mask.shape: # FIXME: GH#5284, GH#5035, GH#19448 # Without specifically raising here we get mismatched # errors in Py3 (TypeError) vs Py2 (ValueError) # Note: Only = an issue in DataFrame case raise ValueError("Cannot broadcast operands together.") if mask.any(): with np.errstate(all="ignore"): result[mask] = op(xrav[mask], yrav[mask]) else: if not is_scalar(y): raise TypeError( f"Cannot broadcast np.ndarray with operand of type { type(y) }" ) # mask is only meaningful for x result = np.empty(x.size, dtype=x.dtype) mask = notna(xrav) # 1 ** np.nan is 1. So we have to unmask those. if op is pow: mask = np.where(x == 1, False, mask) elif op is rpow: mask = np.where(y == 1, False, mask) if mask.any(): with np.errstate(all="ignore"): result[mask] = op(xrav[mask], y) result, _ = maybe_upcast_putmask(result, ~mask, np.nan) result = result.reshape(x.shape) # 2D compat return result def define_na_arithmetic_op(op, str_rep: str): def na_op(x, y): return na_arithmetic_op(x, y, op, str_rep) return na_op def na_arithmetic_op(left, right, op, str_rep: str): """ Return the result of evaluating op on the passed in values. If native types are not compatible, try coersion to object dtype. Parameters ---------- left : np.ndarray right : np.ndarray or scalar str_rep : str or None Returns ------- array-like Raises ------ TypeError : invalid operation """ import pandas.core.computation.expressions as expressions try: result = expressions.evaluate(op, str_rep, left, right) except TypeError: result = masked_arith_op(left, right, op) return missing.dispatch_fill_zeros(op, left, right, result) def arithmetic_op(left: ArrayLike, right: Any, op, str_rep: str): """ Evaluate an arithmetic operation `+`, `-`, `*`, `/`, `//`, `%`, `**`, ... Parameters ---------- left : np.ndarray or ExtensionArray right : object Cannot be a DataFrame or Index. Series is *not* excluded. op : {operator.add, operator.sub, ...} Or one of the reversed variants from roperator. str_rep : str Returns ------- ndarrray or ExtensionArray Or a 2-tuple of these in the case of divmod or rdivmod. """ from pandas.core.ops import maybe_upcast_for_op # NB: We assume that extract_array has already been called # on `left` and `right`. lvalues = left rvalues = right rvalues = maybe_upcast_for_op(rvalues, lvalues.shape) if should_extension_dispatch(left, rvalues) or isinstance( rvalues, (ABCTimedeltaArray, ABCDatetimeArray, Timestamp, Timedelta) ): # TimedeltaArray, DatetimeArray, and Timestamp are included here # because they have `freq` attribute which is handled correctly # by dispatch_to_extension_op. # Timedelta is included because numexpr will fail on it, see GH#31457 res_values = dispatch_to_extension_op(op, lvalues, rvalues) else: with np.errstate(all="ignore"): res_values = na_arithmetic_op(lvalues, rvalues, op, str_rep) return res_values def comparison_op(left: ArrayLike, right: Any, op) -> ArrayLike: """ Evaluate a comparison operation `=`, `!=`, `>=`, `>`, `<=`, or `<`. Parameters ---------- left : np.ndarray or ExtensionArray right : object Cannot be a DataFrame, Series, or Index. op : {operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le} Returns ------- ndarray or ExtensionArray """ # NB: We assume extract_array has already been called on left and right lvalues = left rvalues = right rvalues = lib.item_from_zerodim(rvalues) if isinstance(rvalues, list): # TODO: same for tuples? rvalues = np.asarray(rvalues) if isinstance(rvalues, (np.ndarray, ABCExtensionArray, ABCIndexClass)): # TODO: make this treatment consistent across ops and classes. # We are not catching all listlikes here (e.g. frozenset, tuple) # The ambiguous case is object-dtype. See GH#27803 if len(lvalues) != len(rvalues): raise ValueError("Lengths must match to compare") if should_extension_dispatch(lvalues, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) elif is_scalar(rvalues) and isna(rvalues): # numpy does not like comparisons vs None if op is operator.ne: res_values = np.ones(lvalues.shape, dtype=bool) else: res_values = np.zeros(lvalues.shape, dtype=bool) elif is_object_dtype(lvalues.dtype): res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues) else: op_name = f"__{op.__name__}__" method = getattr(lvalues, op_name) with np.errstate(all="ignore"): res_values = method(rvalues) if res_values is NotImplemented: res_values = invalid_comparison(lvalues, rvalues, op) if is_scalar(res_values): typ = type(rvalues) raise TypeError(f"Could not compare {typ} type with Series") return res_values def na_logical_op(x: np.ndarray, y, op): try: # For exposition, write: # yarr = isinstance(y, np.ndarray) # yint = is_integer(y) or (yarr and y.dtype.kind == "i") # ybool = is_bool(y) or (yarr and y.dtype.kind == "b") # xint = x.dtype.kind == "i" # xbool = x.dtype.kind == "b" # Then Cases where this goes through without raising include: # (xint or xbool) and (yint or bool) result = op(x, y) except TypeError: if isinstance(y, np.ndarray): # bool-bool dtype operations should be OK, should not get here assert not (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)) x = ensure_object(x) y = ensure_object(y) result = libops.vec_binop(x.ravel(), y.ravel(), op) else: # let null fall thru assert lib.is_scalar(y) if not isna(y): y = bool(y) try: result = libops.scalar_binop(x, y, op) except ( TypeError, ValueError, AttributeError, OverflowError, NotImplementedError, ): typ = type(y).__name__ raise TypeError( f"Cannot perform '{op.__name__}' with a dtyped [{x.dtype}] array " f"and scalar of type [{typ}]" ) return result.reshape(x.shape) def logical_op(left: ArrayLike, right: Any, op) -> ArrayLike: """ Evaluate a logical operation `|`, `&`, or `^`. Parameters ---------- left : np.ndarray or ExtensionArray right : object Cannot be a DataFrame, Series, or Index. op : {operator.and_, operator.or_, operator.xor} Or one of the reversed variants from roperator. Returns ------- ndarrray or ExtensionArray """ fill_int = lambda x: x def fill_bool(x, left=None): # if `left` is specifically not-boolean, we do not cast to bool if x.dtype.kind in ["c", "f", "O"]: # dtypes that can hold NA mask = isna(x) if mask.any(): x = x.astype(object) x[mask] = False if left is None or is_bool_dtype(left.dtype): x = x.astype(bool) return x is_self_int_dtype = is_integer_dtype(left.dtype) right = lib.item_from_zerodim(right) if is_list_like(right) and not hasattr(right, "dtype"): # e.g. list, tuple right = construct_1d_object_array_from_listlike(right) # NB: We assume extract_array has already been called on left and right lvalues = left rvalues = right if should_extension_dispatch(lvalues, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) else: if isinstance(rvalues, np.ndarray): is_other_int_dtype = is_integer_dtype(rvalues.dtype) rvalues = rvalues if is_other_int_dtype else fill_bool(rvalues, lvalues) else: # i.e. scalar is_other_int_dtype = lib.is_integer(rvalues) # For int vs int `^`, `|`, `&` are bitwise operators and return # integer dtypes. Otherwise these are boolean ops filler = fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool res_values = na_logical_op(lvalues, rvalues, op) res_values = filler(res_values) # type: ignore return res_values def get_array_op(op, str_rep: Optional[str] = None): """ Return a binary array operation corresponding to the given operator op. Parameters ---------- op : function Binary operator from operator or roperator module. str_rep : str or None, default None str_rep to pass to arithmetic_op Returns ------- function """ op_name = op.__name__.strip("_") if op_name in {"eq", "ne", "lt", "le", "gt", "ge"}: return partial(comparison_op, op=op) elif op_name in {"and", "or", "xor", "rand", "ror", "rxor"}: return partial(logical_op, op=op) else: return partial(arithmetic_op, op=op, str_rep=str_rep)
31.201031
88
0.617215
cfb74aeec821c618c3fabb938014614a922e01f6
8,118
py
Python
archive/solutions/lab1solutions.py
samuelcheang0419/python-labs
6f32c141412a1af4d8a39b25a56cc211d0a9040f
[ "BSD-2-Clause-FreeBSD" ]
48
2016-06-09T20:39:56.000Z
2022-01-30T12:49:20.000Z
archive/solutions/lab1solutions.py
samuelcheang0419/python-labs
6f32c141412a1af4d8a39b25a56cc211d0a9040f
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
archive/solutions/lab1solutions.py
samuelcheang0419/python-labs
6f32c141412a1af4d8a39b25a56cc211d0a9040f
[ "BSD-2-Clause-FreeBSD" ]
117
2015-10-15T21:08:39.000Z
2021-11-12T10:09:18.000Z
#!/usr/bin/env python3 -tt """ File: lab1solutions.py ---------------------- Reference solutions to Lab 1 for CS41: Hap.py Code. """ import math DICTIONARY_PATH = '/usr/share/dict/words' # Feel free to change this to your dictionary def say_hello(): """Prints "Hello, world!" """ print("Hello, World!") def print_tictactoe(): """Print out a tic tac toe board using print's `sep` keyword argument Note: this is just one of many ways to solve this problem, chosen to illustrate .join, list multiplication, .format, string multiplication, and, of course, `sep`. """ row = '|'.join([' '] * 3) # row = ' | | ' div = '\n{}\n'.format('-' * 9) # div = '--------' print(div.join([row] * 3)) def print_super_tictactoe(): """Prints a super tic-tac-toe board using print's `sep` keyword. Note: As above, this is just one of many ways to accomplish this program, and it isn't very readable, or very fast! But, it does illustrate using the `sep` keyword. """ row = 'H'.join([' | | '] * 3) # row = ' | | H | | H | | ' div = '\n'+ 'H'.join(['--+--+--'] * 3) + '\n' # div = '\n--+--+--H--+--+--H--+--+--\n' superdiv = '\n' + '+'.join(['=' * 8] * 3) + '\n' # superdiv = '\n========+========+========\n' block = div.join([row] * 3) print(superdiv.join([block] * 3)) def fizzbuzz(n): """Returns the sum of all numbers < n divisible by 3 or 5. This iterative approach will work really well, and if it gets the job done reasonably quickly, that's all we should ask for. If you want to write this in one line, the following will work: return sum([i for i in range(n) if i % 3 == 0 or i % 5 == 0]) However, that line isn't particularly Pythonic, since we're basically just compressing the syntax of an iterative for loop into one line - no big changes except for the use of `sum`. Another approach, as we'll learn about soon, is to use `filter`: return sum(filter(lambda i: i % 3 == 0 and i % 5 == 0, range(n))) However, in many ways, this isn't much different, since we're still specifying a function (admittedly, a `lambda` or anonymous function - which we'll learn about Week 4) over our range of numbers. For a job this simple, the iterative approach will suffice. """ count = 0 for i in range(n): if i % 3 == 0 or i % 5 == 0: count += i print(count) return count def collatz_len(n): """Computes the length of the Collatz sequence starting at `n`. While this iterative approach might look "unpythonic" at first, the Collatz sequence is a very iterative algorithm, and there aren't very many easy functional ways to solve this problem. One benefit of this approach is that we do not store the entire sequence in memory - since we're only interested in the length, that would be wasteful. """ length = 1 while n > 1: if n % 2 == 0: n //= 2 # We want to explicitly use integer division here, even though n is even. else: n = 3 * n + 1 length += 1 # Note: Python has no increment operator (like ++), so we use += 1 return length def max_collatz_len(n): """Computes the longest Collatz sequence length for starting numbers < n In Python, the `max` function returns the largest element of some collection. Since "finding the max element" isn't naturally iterative (although it can be solved iteratively), we can use this functional-looking code to compute the maximal collatz length. Note, however, that this approach buffers the list of lengths in memory (due to the list comprehension). In general, we can mitigate this problem using a generator comprehension (look it up!) rather than a list comprehension, but we'll cover that later in the course. An even more Pythonic way to solve this problem is to use `map`, which applies a function to all elements of a sequence. return max(map(collatz_len, range(1, n))) """ return max([collatz_len(i) for i in range(1, n)]) def collatz_len_fast(n, cache): """Slightly more clever way to find the collatz length. A dictionary is used as a cache of previous results, and since the dictionary passed in is mutable, our changes will reflect in the caller. """ if n == 1: return 1 if n in cache: return cache[n] if n % 2 == 0: cache[n] = collatz_len_fast(n // 2, cache) + 1 else: cache[n] = collatz_len_fast(3 * n + 1, cache) + 1 return cache[n] def max_collatz_len_fast(n): """Slightly faster way to compute the longest Collatz sequence for numbers < n We use the exact same tactic as in `max_collatz_len` above, with the added optimization that we only look over the second half of the range, since everything in the first half has a x2 preimage. """ cache = {} return max(collatz_len_fast(i, cache) for i in range(n // 2, n)) def convert_fahr_to_cels(deg_fahr): """Converts a temperature in degrees Fahrenheit to degrees Celsius.""" cels = (fahr - 32) * 5 / 9 def converter(): """Converts user-specified temperatures from Fahrenheit to Celsius. This problem exists to check that you're running Python 3, where `input` returns a string and division is double division by default, in contrast to Python 2, where `input` quasi-evaluates it's input and division is integer (floored) division by default. Note: There's some extra code here (the try/except/else stuff) so that the solutions can continue to run after you break out of the converter. We'll talk about advanced exception handling Week 5. """ print("Convert from Fahrenheit to Celsius with this lovely tool!") print("For the purposes of the lab solutions, hit CTRL+C to quit.") while True: try: fahr = float(input("Temperature F? ")) except KeyboardInterrupt: print("\nExiting converter...") break except ValueError as exc: print(exc) else: cels = (fahr - 32) * 5 / 9 # cels = round(cels, 2) # Round to two decimal places print("It is {} degrees Celsius".format(cels)) def get_english_words(dictionary_path): """Returns a set of trimmed, capitalized English words from a path to a dictionary. The dictionary is assumed to have one English word per line. If dictionary_path can not be read or is formatted incorrectly, a default English word set is returned containing some fruits. Note that we keep the file open for as little time as possible, which is generally a good practice. One downside of this implementation is that it buffers all of the words in memory (first as a string, and later as a collection of lines, but the word list is a known finite size (and that size isn't *too* big), so this approach will work fine. Iterating through the lines in the file with a for loop could mitigate this downside. We then use a set comprehension to build an uppercased collection of all of the words in the dictionary. Note that we choose to represent the English words as a set, because we want fast membership testing (using `in`) and also want to be able to iterate over all words. """ try: with open(dictionary_path, 'r') as f: content = f.read() return {line.strip().upper() for line in content.split('\n') if line} except OSError: return {'APPLE', 'BANANA', 'PEAR', 'ORANGE'} if __name__ == '__main__': """Runs each of the lab solution functions and prints the attached docstring and source.""" english = get_english_words(DICTIONARY_PATH) fns = [ # Comment out any functions that you do not want to run (say_hello, (), {}), (print_tictactoe, (), {}), (print_super_tictactoe, (), {}), (fizzbuzz, (1001,), {}), (max_collatz_len, (1000,), {}), (max_collatz_len_fast, (1000000,), {}), (converter, (), {}), ] for fn, args, kwargs in fns: name = fn.__name__ print("*" * len(name)) # header print(name) # function name print(fn.__doc__) # function docstring res = fn(*args, **kwargs) # variadic argument unpacking - cool stuff! '''if res: print(res) input("Press [ENTER] to continue...")''' print("Done!")
34.991379
97
0.667406
f7c497459a025a7b8cb01e6ed0c8e029607b88ab
8,273
py
Python
p2_continuous-control/ddpg/ddpg_agent.py
happykbs/udacity-drl-bongsang
4a5f9c0698543cf80e83020d333cb8589a179243
[ "MIT" ]
1
2019-02-11T15:53:20.000Z
2019-02-11T15:53:20.000Z
p2_continuous-control/ddpg/ddpg_agent.py
happykbs/udacity-drl-bongsang
4a5f9c0698543cf80e83020d333cb8589a179243
[ "MIT" ]
null
null
null
p2_continuous-control/ddpg/ddpg_agent.py
happykbs/udacity-drl-bongsang
4a5f9c0698543cf80e83020d333cb8589a179243
[ "MIT" ]
null
null
null
import numpy as np import random import copy from collections import namedtuple, deque from .model import Actor, Critic import torch import torch.nn.functional as F import torch.optim as optim BUFFER_SIZE = 100000 #int(1e5) # replay buffer size BATCH_SIZE = 256 #128 # minibatch size GAMMA = 0.9 #0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR_ACTOR = 0.001 #1e-4 # learning rate of the actor LR_CRITIC = 0.001 #1e-3 # learning rate of the critic WEIGHT_DECAY = 1e-6 #0 # L2 weight decay SIGMA = 0.1 # GPU = 0 # GPU ID # device = torch.device(f"cuda:{GPU}" if torch.cuda.is_available() else "cpu") device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.hard_copy(self.actor_target, self.actor_local) ## ! self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.hard_copy(self.critic_target, self.critic_local) ## ! self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed) def hard_copy(self, target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) def step(self, state, action, reward, next_state, done): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward self.memory.add(state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def reset(self): self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data) class OUNoise: """Ornstein-Uhlenbeck process.""" def __init__(self, size, seed, mu=0., theta=0.15, sigma=SIGMA): """Initialize parameters and noise process.""" self.mu = mu * np.ones(size) self.theta = theta self.sigma = sigma self.seed = random.seed(seed) self.reset() def reset(self): """Reset the internal state (= noise) to mean (mu).""" self.state = copy.copy(self.mu) def sample(self): """Update internal state and return it as a noise sample.""" x = self.state dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))]) self.state = x + dx return self.state class ReplayBuffer: """Fixed-size buffer to store experience tuples.""" def __init__(self, action_size, buffer_size, batch_size, seed): """Initialize a ReplayBuffer object. Params ====== buffer_size (int): maximum size of buffer batch_size (int): size of each training batch """ self.action_size = action_size self.memory = deque(maxlen=buffer_size) # internal memory (deque) self.batch_size = batch_size self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"]) self.seed = random.seed(seed) def add(self, state, action, reward, next_state, done): """Add a new experience to memory.""" e = self.experience(state, action, reward, next_state, done) self.memory.append(e) def sample(self): """Randomly sample a batch of experiences from memory.""" experiences = random.sample(self.memory, k=self.batch_size) states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device) actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device) rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device) next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device) dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device) return (states, actions, rewards, next_states, dones) def __len__(self): """Return the current size of internal memory.""" return len(self.memory)
41.782828
127
0.623474
ad50caed37544fa2d090221f51aa5069254d28e3
3,198
py
Python
psdaq/psdaq/cas/collection_widget.py
JBlaschke/lcls2
30523ef069e823535475d68fa283c6387bcf817b
[ "BSD-3-Clause-LBNL" ]
16
2017-11-09T17:10:56.000Z
2022-03-09T23:03:10.000Z
psdaq/psdaq/cas/collection_widget.py
JBlaschke/lcls2
30523ef069e823535475d68fa283c6387bcf817b
[ "BSD-3-Clause-LBNL" ]
6
2017-12-12T19:30:05.000Z
2020-07-09T00:28:33.000Z
psdaq/psdaq/cas/collection_widget.py
JBlaschke/lcls2
30523ef069e823535475d68fa283c6387bcf817b
[ "BSD-3-Clause-LBNL" ]
25
2017-09-18T20:02:43.000Z
2022-03-27T22:27:42.000Z
import sys import zmq from datetime import datetime, timezone from PyQt5 import QtCore, QtGui, QtWidgets PORT_BASE = 29980 POSIX_TIME_AT_EPICS_EPOCH = 631152000 def timestampStr(): current = datetime.now(timezone.utc) nsec = 1000 * current.microsecond sec = int(current.timestamp()) - POSIX_TIME_AT_EPICS_EPOCH return '%010d-%09d' % (sec, nsec) def create_msg(key, msg_id=None, sender_id=None, body={}): if msg_id is None: msg_id = timestampStr() msg = {'header': { 'key': key, 'msg_id': msg_id, 'sender_id': sender_id}, 'body': body} return msg def rep_port(platform): return PORT_BASE + platform + 20 class CollectionWidget(QtWidgets.QWidget): def __init__(self, partition, parent=None): super().__init__(parent) self.context = zmq.Context(1) self.socket = self.context.socket(zmq.REQ) self.socket.connect('tcp://drp-tst-acc06:%d' %rep_port(partition)) layout = QtWidgets.QGridLayout() layout.addWidget(QtWidgets.QLabel('Collection') , 0, 0, 1, 3) l = QtWidgets.QHBoxLayout() button = QtWidgets.QPushButton('Auto connect') button.clicked.connect(self.auto_connect) l.addWidget(button) button = QtWidgets.QPushButton('Reset') button.clicked.connect(self.reset) l.addWidget(button) layout.addLayout(l, 1, 0, 1, 3) self.label = QtWidgets.QLabel() layout.addWidget(self.label, 2, 0, 1, 3) self.listWidgets = {} for i, group in enumerate(['drp', 'teb', 'meb']): layout.addWidget(QtWidgets.QLabel(group), 3, i) w = QtWidgets.QListWidget() layout.addWidget(w, 4, i) self.listWidgets[group] = w self.setLayout(layout) self.setMaximumWidth(300) def auto_connect(self): self.label.clear() for w in self.listWidgets.values(): w.clear() for cmd in ['rollcall', 'alloc', 'connect']: self.socket.send_json(create_msg(cmd)) response = self.socket.recv_json() print(response) if 'err_info' in response['body']: self.label.setText(response['body']['err_info']) return self.get_state() def reset(self): self.label.clear() for w in self.listWidgets.values(): w.clear() self.socket.send_json(create_msg('reset')) print(self.socket.recv_json()) def get_state(self): msg = create_msg('getstate') self.socket.send_json(msg) reply = self.socket.recv_json() for group in reply['body']: if group not in self.listWidgets: print('unknown group:', group) continue w = self.listWidgets[group] w.clear() for k, v in reply['body'][group].items(): host = v['proc_info']['host'] QtWidgets.QListWidgetItem(host, w) if __name__ == '__main__': app = QtWidgets.QApplication([]) widget = CollectionWidget() widget.show() sys.exit(app.exec_())
31.048544
74
0.583802
7fb5134dc4e47a05b2513bcb086572e21ba8c386
5,043
py
Python
ffta/line.py
lindat18/ffta
f510a2068b7626e2984e54afc1a577450e560e97
[ "MIT" ]
null
null
null
ffta/line.py
lindat18/ffta
f510a2068b7626e2984e54afc1a577450e560e97
[ "MIT" ]
null
null
null
ffta/line.py
lindat18/ffta
f510a2068b7626e2984e54afc1a577450e560e97
[ "MIT" ]
null
null
null
"""line.py: Contains line class.""" # pylint: disable=E1101,R0902,C0103 __author__ = "Durmus U. Karatay" __copyright__ = "Copyright 2014, Ginger Lab" __maintainer__ = "Durmus U. Karatay" __email__ = "ukaratay@uw.edu" __status__ = "Development" import numpy as np from ffta import pixel class Line: """ Signal Processing to Extract Time-to-First-Peak. This class is a container for pixels in a line. Since the AFM scans are in lines, tha data taken is grouped in lines. This class takes the line data and passes it along to pixels. Parameters ---------- signal_array : (n_signals, n_points) array_like 2D real-valued signal array, corresponds to a line params : dict Includes parameters for processing. The list of parameters is: trigger = float (in seconds) total_time = float (in seconds) sampling_rate = int (in Hz) drive_freq = float (in Hz) roi = float (in seconds) window = string (see documentation of scipy.signal.get_window) bandpass_filter = int (0: no filtering, 1: FIR filter, 2: IIR filter) filter_bandwidth = float (in Hz) n_taps = integer (default: 999) wavelet_analysis = bool (0: Hilbert method, 1: Wavelet Method) wavelet_parameter = int (default: 5) recombination = bool (0: FF-trEFM, 1: Recombination) n_pixels : int Number of pixels in a line. pycroscopy : bool, optional Pycroscopy requires different orientation, so this corrects for this effect. Attributes ---------- n_points : int Number of points in a signal. n_signals : int Number of signals in a line. inst_freq : (n_points, n_pixels) array_like Instantenous frequencies of the line. tfp : (n_pixels,) array_like Time from trigger to first-peak, in seconds. shift : (n_pixels,) array_like Frequency shift from trigger to first-peak, in Hz. See Also -------- pixel: Pixel processing for FF-trEFM data. simulate: Simulation for synthetic FF-trEFM data. scipy.signal.get_window: Windows for signal processing. Examples -------- >>> from ffta import line, utils >>> >>> signal_file = '../data/SW_0000.ibw' >>> params_file = '../data/parameters.cfg' >>> >>> signal_array = utils.load.signal(signal_file) >>> n_pixels, params = utils.load.configuration(params_file) >>> >>> l = line.Line(signal_array, params, n_pixels) >>> tfp, shift, inst_freq = l.analyze() """ def __init__(self, signal_array, params, n_pixels, pycroscopy=False): # Pass inputs to the object. self.signal_array = signal_array if pycroscopy: self.signal_array = signal_array.T self.n_pixels = int(n_pixels) self.params = params # Initialize tFP and shift arrays. self.tfp = np.empty(self.n_pixels) self.shift = np.empty(self.n_pixels) self.inst_freq = np.empty((self.signal_array.shape[0], self.n_pixels)) self.avgs_per_pixel = int(self.signal_array.shape[1]/self.n_pixels) self.n_signals = self.signal_array.shape[0] return def analyze(self): """ Analyzes the line with the given method. Returns ------- tfp : (n_pixels,) array_like Time from trigger to first-peak, in seconds. shift : (n_pixels,) array_like Frequency shift from trigger to first-peak, in Hz. inst_freq : (n_points, n_pixels) array_like Instantaneous frequencies of the line. """ # Split the signal array into pixels. pixel_signals = np.split(self.signal_array, self.n_pixels, axis=1) # Iterate over pixels and return tFP and shift arrays. for i, pixel_signal in enumerate(pixel_signals): p = pixel.Pixel(pixel_signal, self.params) (self.tfp[i], self.shift[i], self.inst_freq[:, i]) = p.analyze() return (self.tfp, self.shift, self.inst_freq) def pixel_wise_avg(self): """ Averages the line per pixel and saves the result as signal_avg_array This functionality is primarily used in Pycroscopy-loading functions Returns ------- signal_avg_array : (n_points, n_pixels) numpy array Returns signal_averaged time-domain signal at each pixel """ self.signal_avg_array = np.empty((self.signal_array.shape[0], self.n_pixels)) for i in range(self.n_pixels): avg = self.signal_array[:, i*self.avgs_per_pixel:(i+1)*self.avgs_per_pixel] self.signal_avg_array[:, i] = avg.mean(axis=1) return self.signal_avg_array def clear_filter_flags(self): """Removes flags from parameters for setting filters""" #self.params['window'] = 0 self.params['bandpass_filter'] = 0 return
33.177632
87
0.624033
dcbf588284bc57a78498a74eb3617bec1a59dc93
1,907
py
Python
helpers/clean.py
abyoussef/ALTEGRAD_Challenge
eb1a47d7e558143d18ed6f9ac82e94df70a941d2
[ "MIT" ]
null
null
null
helpers/clean.py
abyoussef/ALTEGRAD_Challenge
eb1a47d7e558143d18ed6f9ac82e94df70a941d2
[ "MIT" ]
null
null
null
helpers/clean.py
abyoussef/ALTEGRAD_Challenge
eb1a47d7e558143d18ed6f9ac82e94df70a941d2
[ "MIT" ]
null
null
null
import re import string import nltk from nltk import PerceptronTagger from nltk.corpus import stopwords def clean_text_simple(text, tagger, keep, stpwds, stemmer, remove_stopwords=True, pos_filtering=True, stemming=True): # convert to lower case text = text.lower() # remove punctuation (preserving intra-word dashes) tokens = tokenization(text) if pos_filtering == True and len(tokens) > 0: tokens = pos_tagging(tokens, tagger, keep) if remove_stopwords: # remove stopwords tokens = [token for token in tokens if token not in stpwds] if stemming: # apply Porter's stemmer tokens = map(stemmer.stem, tokens) return tokens def pos_tagging(tokens, tagger, keep): # apply POS-tagging tagged_tokens = tagger.tag(tokens) # retain only nouns and adjectives tokens = [item[0] for item in tagged_tokens if item[1] in keep] return tokens def tokenization(text): punct = string.punctuation.replace('-', '') cond = '[' + re.escape(punct) + ']+' text = re.sub(cond, ' ', text) text = re.sub('(\s+-|-\s+)', ' ', text) # strip extra white space text = re.sub('-{2,}', ' ', text) text = re.sub('\s+', ' ', text) # strip leading and trailing white space text = text.strip() # tokenize (split based on whitespace) tokens = text.split(' ') tokens = filter(lambda x: len(x) > 0, tokens) return tokens def clean(X, col = 'body', cleaner = clean_text_simple, join = True): X_cleaned = X.copy() tagger = PerceptronTagger() keep = set(['NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJS', 'JJR']) stpwds = set(stopwords.words('english')) stemmer = nltk.stem.PorterStemmer() X_cleaned[col] = X_cleaned[col].apply(lambda x: cleaner(x, tagger, keep, stpwds, stemmer)) if join: X_cleaned[col] = X_cleaned[col].apply(lambda x: ' '.join(x)) return X_cleaned
34.053571
117
0.64237
f267150ccb6939073502dafc07ec82935c0a4d43
5,587
py
Python
rnnfft.py
srowen/rnn-fft
6be95ec714fb4b6a6dbd3b445a050678a9929c10
[ "Apache-2.0" ]
null
null
null
rnnfft.py
srowen/rnn-fft
6be95ec714fb4b6a6dbd3b445a050678a9929c10
[ "Apache-2.0" ]
null
null
null
rnnfft.py
srowen/rnn-fft
6be95ec714fb4b6a6dbd3b445a050678a9929c10
[ "Apache-2.0" ]
1
2020-04-13T10:13:14.000Z
2020-04-13T10:13:14.000Z
#!/usr/bin/env python3 ''' !pip3 install -U tensorflow-gpu keras numpy scipy ''' import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from scipy.io import wavfile from scipy.linalg.blas import daxpy from keras import backend as K from keras.callbacks import EarlyStopping from keras.layers import Dense, Embedding, GRU from keras.models import Sequential from keras.optimizers import RMSprop # Load a short audio file (breath_sr, breath_wav) = wavfile.read('11_Dialogue_Class_Rank.wav') # Retain just one stereo track data = breath_wav[:,0] # GPUs to use (0-1) gpu_count = 1 # Number of time-domain samples to convert to frequency domain in one window window_size = 1024 # Number of time-domain samples between successive windows slide = 256 # Frequency domain dimension freq_dim = 2 * (1 + (window_size // 2)) # x2 because of real-imag parts # Number of successive freq domain windows to predict the next window from sequence_len = 25 # Dimension of GRU units gru_dim = 1024 # Optimizer learning rate learning_rate=0.1 specgram = plt.specgram(data, NFFT=window_size, Fs=slide) print("Spectrum of input audio") plt.show() # Hanning window weights to apply to time-domain sample windows # Normalize weights to sum to 1, for later convenience window_weight = slide * np.hanning(window_size) / np.sum(np.hanning(window_size)) n = len(data) # Data, sliced into a series of windows, and weighted weighted_slices = data[np.arange(window_size)[None, :] + slide * np.arange(1 + (n - window_size) // slide)[:, None]] * window_weight del data # Apply the FFT to convert to a sequence of frequency-domain windows freq_slices = np.fft.rfft(weighted_slices) del weighted_slices # FFT outputs (real,imag) 64-bit pairs. Flatten them to two separate 32-bit values freq_slices_flattened = np.apply_along_axis(lambda a: a.view('(2,)float').flatten(), 1, freq_slices).astype('float32') del freq_slices # Select devices for training based on GPU availability if gpu_count > 0: config = tf.ConfigProto() config.gpu_options.allow_growth=True session = tf.Session(config=config) K.set_session(session) device1 = '/gpu:0' if gpu_count > 1: device2 = '/gpu:1' else: device2 = '/gpu:0' else: device1 = '/cpu:0' device2 = '/cpu:0' model = Sequential() with tf.device(device1): model.add(GRU(gru_dim, input_shape=(sequence_len, freq_dim))) with tf.device(device2): model.add(Dense(freq_dim, activation=None)) model.compile(optimizer=RMSprop(lr=learning_rate), loss='mean_absolute_error') model.summary() # Initialize predicted audio out with the first few input windows predicted_freq_slices = freq_slices_flattened[:sequence_len] # Build up batches of input windows, paired with next window as prediction target input_freq_slices = [] next_freq_slices = [] for i in range(0, len(freq_slices_flattened) - sequence_len - 1): input_freq_slices.append(freq_slices_flattened[i : i + sequence_len]) next_freq_slices.append(freq_slices_flattened[i + sequence_len]) del freq_slices_flattened # Convert them to numpy arrays for future use input_freq_slices = np.array(input_freq_slices) next_freq_slices = np.array(next_freq_slices) # Pick most (input,next) pairs as training; rest for validation shuffled_indices = np.random.permutation(len(input_freq_slices)) training_size = int(0.95 * len(input_freq_slices)) train_indices = shuffled_indices[:training_size] val_indices = shuffled_indices[training_size:] input_freq_slices_train = input_freq_slices[train_indices] input_freq_slices_val = input_freq_slices[val_indices] next_freq_slices_train = next_freq_slices[train_indices] next_freq_slices_val = next_freq_slices[val_indices] early_stopping = EarlyStopping(patience=10, verbose=1) model.fit(input_freq_slices_train, next_freq_slices_train, epochs=100, batch_size=64, shuffle=True, validation_data=(input_freq_slices_val, next_freq_slices_val), verbose=2, callbacks=[early_stopping]) # Starting with initial part of input audio, predict many next windows for i in range(0, 1000): pred_next_slice = model.predict(predicted_freq_slices[None,-sequence_len:]) predicted_freq_slices = np.append(predicted_freq_slices, pred_next_slice, axis=0) # Convert back to (real,imag) complex representation in freq domain predicted_freq_slices_unflattened = \ np.reshape(predicted_freq_slices, (-1, freq_dim//2, 2)).view('complex64').reshape(-1, freq_dim//2).astype('complex128') # Apply inverse FFT to get back time-domain windows pred_time_slices = np.fft.irfft(predicted_freq_slices_unflattened) # Reassemble full time domain signal by adding overlapping windows reassembled = np.zeros(window_size + (len(pred_time_slices) - 1) * slide) for i in range(0, len(pred_time_slices)): daxpy(pred_time_slices[i], reassembled, offy=slide * i) # Plot some of the first generated time-domain data as a check plot_sample_base = sequence_len * slide plt.plot(reassembled[plot_sample_base:plot_sample_base + window_size]) plt.show() # Scale time-domain data to have max at 32767, for 16-bit wav output reassembled_scale = np.max(np.abs(reassembled)) reassembled = reassembled * (32767 / reassembled_scale) print("Spectrum of output audio") specgram = plt.specgram(reassembled, NFFT=window_size, Fs=slide) plt.show() # Overwrite output to out.wav out_file = 'out.wav' if os.path.isfile(out_file): os.remove(out_file) wavfile.write(out_file, breath_sr, reassembled.astype(np.int16))
35.585987
132
0.758547
96acf19de44f42f201e08ba80d03a8b48c5d8962
31,245
py
Python
tests/test_gcloud/testbench/gcs_object.py
lgeiger/io
90be860451a705e2fbe8cfdec3c30030112b5c69
[ "Apache-2.0" ]
558
2018-11-09T22:45:27.000Z
2022-03-24T04:59:36.000Z
tests/test_gcloud/testbench/gcs_object.py
lgeiger/io
90be860451a705e2fbe8cfdec3c30030112b5c69
[ "Apache-2.0" ]
1,122
2018-12-09T03:30:40.000Z
2022-03-31T16:22:15.000Z
tests/test_gcloud/testbench/gcs_object.py
lgeiger/io
90be860451a705e2fbe8cfdec3c30030112b5c69
[ "Apache-2.0" ]
319
2018-12-09T00:18:47.000Z
2022-03-30T21:49:46.000Z
# Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement a class to simulate GCS objects.""" import base64 import crc32c import error_response import hashlib import json import struct import testbench_utils import time class GcsObjectVersion: """Represent a single revision of a GCS Object.""" def __init__(self, gcs_url, bucket_name, name, generation, request, media): """Initialize a new object revision. :param gcs_url:str the base URL for the GCS service. :param bucket_name:str the name of the bucket that contains the object. :param name:str the name of the object. :param generation:int the generation number for this object. :param request:flask.Request the contents of the HTTP request. :param media:str the contents of the object. """ self.gcs_url = gcs_url self.bucket_name = bucket_name self.name = name self.generation = str(generation) self.object_id = bucket_name + "/o/" + name + "/" + str(generation) now = time.gmtime(time.time()) timestamp = time.strftime("%Y-%m-%dT%H:%M:%SZ", now) self.media = media instructions = request.headers.get("x-goog-testbench-instructions") if instructions == "inject-upload-data-error": self.media = testbench_utils.corrupt_media(media) self.metadata = { "timeCreated": timestamp, "updated": timestamp, "metageneration": "0", "generation": str(generation), "location": "US", "storageClass": "STANDARD", "size": str(len(self.media)), "etag": "XYZ=", "owner": {"entity": "project-owners-123456789", "entityId": ""}, "md5Hash": base64.b64encode(hashlib.md5(self.media).digest()).decode( "utf-8" ), "crc32c": base64.b64encode( struct.pack(">I", crc32c.crc32(self.media)) ).decode("utf-8"), } if request.headers.get("content-type") is not None: self.metadata["contentType"] = request.headers.get("content-type") def update_from_metadata(self, metadata): """Update from a metadata dictionary. :param metadata:dict a dictionary with new metadata values. :rtype:NoneType """ tmp = self.metadata.copy() tmp.update(metadata) tmp["bucket"] = tmp.get("bucket", self.name) tmp["name"] = tmp.get("name", self.name) now = time.gmtime(time.time()) timestamp = time.strftime("%Y-%m-%dT%H:%M:%SZ", now) # Some values cannot be changed via updates, so we always reset them. tmp.update( { "kind": "storage#object", "bucket": self.bucket_name, "name": self.name, "id": self.object_id, "selfLink": self.gcs_url + self.name, "projectNumber": "123456789", "updated": timestamp, } ) tmp["metageneration"] = str(int(tmp.get("metageneration", "0")) + 1) self.metadata = tmp self._validate_hashes() def _validate_hashes(self): """Validate the md5Hash and crc32c fields against the stored media.""" self._validate_md5_hash() self._validate_crc32c() def _validate_md5_hash(self): """Validate the md5Hash field against the stored media.""" actual = self.metadata.get("md5Hash", "") expected = base64.b64encode(hashlib.md5(self.media).digest()).decode("utf-8") if actual != expected: raise error_response.ErrorResponse( "Mismatched MD5 hash expected={}, actual={}".format(expected, actual) ) def _validate_crc32c(self): """Validate the crc32c field against the stored media.""" actual = self.metadata.get("crc32c", "") expected = base64.b64encode(struct.pack(">I", crc32c.crc32(self.media))).decode( "utf-8" ) if actual != expected: raise error_response.ErrorResponse( "Mismatched CRC32C checksum expected={}, actual={}".format( expected, actual ) ) def validate_encryption_for_read(self, request, prefix="x-goog-encryption"): """Verify that the request includes the correct encryption keys. :param request:flask.Request the http request. :param prefix: str the prefix shared by the encryption headers, typically 'x-goog-encryption', but for rewrite requests it can be 'x-goog-copy-source-encryption'. :rtype:NoneType """ key_header = prefix + "-key" hash_header = prefix + "-key-sha256" algo_header = prefix + "-algorithm" encryption = self.metadata.get("customerEncryption") if encryption is None: # The object is not encrypted, no key is needed. if request.headers.get(key_header) is None: return else: # The data is not encrypted, sending an encryption key is an # error. testbench_utils.raise_csek_error() # The data is encrypted, the key must be present, match, and match its # hash. key_header_value = request.headers.get(key_header) hash_header_value = request.headers.get(hash_header) algo_header_value = request.headers.get(algo_header) testbench_utils.validate_customer_encryption_headers( key_header_value, hash_header_value, algo_header_value ) if encryption.get("keySha256") != hash_header_value: testbench_utils.raise_csek_error() def _capture_customer_encryption(self, request): """Capture the customer-supplied encryption key, if any. :param request:flask.Request the http request. :rtype:NoneType """ if request.headers.get("x-goog-encryption-key") is None: return prefix = "x-goog-encryption" key_header = prefix + "-key" hash_header = prefix + "-key-sha256" algo_header = prefix + "-algorithm" key_header_value = request.headers.get(key_header) hash_header_value = request.headers.get(hash_header) algo_header_value = request.headers.get(algo_header) testbench_utils.validate_customer_encryption_headers( key_header_value, hash_header_value, algo_header_value ) self.metadata["customerEncryption"] = { "encryptionAlgorithm": algo_header_value, "keySha256": hash_header_value, } def x_goog_hash_header(self): """Return the value for the x-goog-hash header.""" hashes = { "md5": self.metadata.get("md5Hash", ""), "crc32c": self.metadata.get("crc32c", ""), } hashes = ["{}={}".format(key, val) for key, val in hashes.items() if val] return ",".join(hashes) class GcsObject: """Represent a GCS Object, including all its revisions.""" def __init__(self, bucket_name, name): """Initialize a fake GCS Blob. :param bucket_name:str the bucket that will contain the new object. :param name:str the name of the new object. """ self.bucket_name = bucket_name self.name = name # A counter to create new generation numbers for the object revisions. # Note that 0 is an invalid generation number. The application can use # ifGenerationMatch=0 as a pre-condition that means "object does not # exist". self.generation_generator = 0 self.current_generation = None self.revisions = {} self.rewrite_token_generator = 0 self.rewrite_operations = {} def get_revision(self, request, version_field_name="generation"): """Get the information about a particular object revision or raise. :param request:flask.Request the contents of the http request. :param version_field_name:str the name of the generation parameter, typically 'generation', but sometimes 'sourceGeneration'. :return: the object revision. :rtype: GcsObjectVersion :raises:ErrorResponse if the request contains an invalid generation number. """ generation = request.args.get(version_field_name) if generation is None: return self.get_latest() version = self.revisions.get(generation) if version is None: raise error_response.ErrorResponse( "Precondition Failed: generation %s not found" % generation ) return version def del_revision(self, request): """Delete a version of a fake GCS Blob. :param request:flask.Request the contents of the HTTP request. :return: True if the object entry in the Bucket should be deleted. :rtype: bool """ generation = request.args.get("generation") or self.current_generation if generation is None: return True self.revisions.pop(generation) if len(self.revisions) == 0: self.current_generation = None return True self.current_generation = sorted(self.revisions.keys())[-1] return False @classmethod def _remove_non_writable_keys(cls, metadata): """Remove the keys from metadata (an update or patch) that are not writable. Both `Objects: patch` and `Objects: update` either ignore non-writable keys or return 400 if the key does not match the current value. In the testbench we simply always ignore them, to make life easier. :param metadata:dict a dictionary representing a patch or update to the metadata. :return metadata but with only any non-writable keys removed. :rtype: dict """ writeable_keys = { "acl", "cacheControl", "contentDisposition", "contentEncoding", "contentLanguage", "contentType", "eventBasedHold", "metadata", "temporaryHold", "storageClass", "customTime", } # Cannot change `metadata` while we are iterating over it, so we make # a copy keys = [key for key in metadata.keys()] for key in keys: if key not in writeable_keys: metadata.pop(key, None) return metadata def get_revision_by_generation(self, generation): """Get object revision by generation or None if not found. :param generation:int :return: the object revision by generation or None. :rtype:GcsObjectRevision """ return self.revisions.get(str(generation), None) def get_latest(self): return self.revisions.get(self.current_generation, None) def check_preconditions_by_value( self, generation_match, generation_not_match, metageneration_match, metageneration_not_match, ): """Verify that the given precondition values are met.""" current_generation = self.current_generation or "0" if generation_match is not None and generation_match != current_generation: raise error_response.ErrorResponse("Precondition Failed", status_code=412) # This object does not exist (yet), testing in this case is special. if ( generation_not_match is not None and generation_not_match == current_generation ): raise error_response.ErrorResponse("Precondition Failed", status_code=412) if self.current_generation is None: if metageneration_match is not None or metageneration_not_match is not None: raise error_response.ErrorResponse( "Precondition Failed", status_code=412 ) return current = self.revisions.get(current_generation) if current is None: raise error_response.ErrorResponse("Object not found", status_code=404) metageneration = current.metadata.get("metageneration") if ( metageneration_not_match is not None and metageneration_not_match == metageneration ): raise error_response.ErrorResponse("Precondition Failed", status_code=412) if metageneration_match is not None and metageneration_match != metageneration: raise error_response.ErrorResponse("Precondition Failed", status_code=412) def check_preconditions( self, request, if_generation_match="ifGenerationMatch", if_generation_not_match="ifGenerationNotMatch", if_metageneration_match="ifMetagenerationMatch", if_metageneration_not_match="ifMetagenerationNotMatch", ): """Verify that the preconditions in request are met. :param request:flask.Request the http request. :param if_generation_match:str the name of the generation match parameter name, typically 'ifGenerationMatch', but sometimes 'ifSourceGenerationMatch'. :param if_generation_not_match:str the name of the generation not-match parameter name, typically 'ifGenerationNotMatch', but sometimes 'ifSourceGenerationNotMatch'. :param if_metageneration_match:str the name of the metageneration match parameter name, typically 'ifMetagenerationMatch', but sometimes 'ifSourceMetagenerationMatch'. :param if_metageneration_not_match:str the name of the metageneration not-match parameter name, typically 'ifMetagenerationNotMatch', but sometimes 'ifSourceMetagenerationNotMatch'. :rtype:NoneType """ generation_match = request.args.get(if_generation_match) generation_not_match = request.args.get(if_generation_not_match) metageneration_match = request.args.get(if_metageneration_match) metageneration_not_match = request.args.get(if_metageneration_not_match) self.check_preconditions_by_value( generation_match, generation_not_match, metageneration_match, metageneration_not_match, ) def _insert_revision(self, revision): """Insert a new revision that has been initialized and checked. :param revision: GcsObjectVersion the new revision to insert. :rtype:NoneType """ update = {str(self.generation_generator): revision} bucket = testbench_utils.lookup_bucket(self.bucket_name) if not bucket.versioning_enabled(): self.revisions = update else: self.revisions.update(update) self.current_generation = str(self.generation_generator) def insert(self, gcs_url, request): """Insert a new revision based on the give flask request. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :return: the newly created object version. :rtype: GcsObjectVersion """ media = testbench_utils.extract_media(request) self.generation_generator += 1 revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, media, ) meta = revision.metadata.setdefault("metadata", {}) meta["x_testbench_upload"] = "simple" self._insert_revision(revision) return revision def insert_multipart(self, gcs_url, request, resource, media_headers, media_body): """Insert a new revision based on the give flask request. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param resource:dict JSON resource with object metadata. :param media_headers:dict media headers in a multi-part upload. :param media_body:str object data in a multi-part upload. :return: the newly created object version. :rtype: GcsObjectVersion """ # There are two ways to specify the content-type, the 'content-type' # header and the resource['contentType'] field. They must be consistent, # and the service generates an error when they are not. if ( resource.get("contentType") is not None and media_headers.get("content-type") is not None and resource.get("contentType") != media_headers.get("content-type") ): raise error_response.ErrorResponse( ( "Content-Type specified in the upload (%s) does not match" + "contentType specified in the metadata (%s)." ) % (media_headers.get("content-type"), resource.get("contentType")), status_code=400, ) # Set the contentType in the resource from the header. Note that if both # are set they have the same value. resource.setdefault("contentType", media_headers.get("content-type")) self.generation_generator += 1 revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, media_body, ) meta = revision.metadata.setdefault("metadata", {}) meta["x_testbench_upload"] = "multipart" if "md5Hash" in resource: # We should return `x_testbench_md5` only when the user enables # `MD5Hash` computations. meta["x_testbench_md5"] = resource.get("md5Hash") meta["x_testbench_crc32c"] = resource.get("crc32c", "") # Apply any overrides from the resource object part. revision.update_from_metadata(resource) self._insert_revision(revision) return revision def insert_resumable(self, gcs_url, request, media, resource): """Implement the final insert for a resumable upload. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param media:str the media for the object. :param resource:dict the metadata for the object. :return: the newly created object version. :rtype: GcsObjectVersion """ self.generation_generator += 1 revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, media, ) meta = revision.metadata.setdefault("metadata", {}) meta["x_testbench_upload"] = "resumable" meta["x_testbench_md5"] = resource.get("md5Hash", "") meta["x_testbench_crc32c"] = resource.get("crc32c", "") # Apply any overrides from the resource object part. revision.update_from_metadata(resource) self._insert_revision(revision) return revision def insert_xml(self, gcs_url, request): """Implement the insert operation using the XML API. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :return: the newly created object version. :rtype: GcsObjectVersion """ media = testbench_utils.extract_media(request) self.generation_generator += 1 goog_hash = request.headers.get("x-goog-hash") md5hash = None crc32c = None if goog_hash is not None: for hash in goog_hash.split(","): if hash.startswith("md5="): md5hash = hash[4:] if hash.startswith("crc32c="): crc32c = hash[7:] revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, media, ) meta = revision.metadata.setdefault("metadata", {}) meta["x_testbench_upload"] = "xml" if md5hash is not None: meta["x_testbench_md5"] = md5hash revision.update_from_metadata({"md5Hash": md5hash}) if crc32c is not None: meta["x_testbench_crc32c"] = crc32c revision.update_from_metadata({"crc32c": crc32c}) self._insert_revision(revision) return revision def copy_from(self, gcs_url, request, source_revision): """Insert a new revision based on the give flask request. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param source_revision:GcsObjectVersion the source object version to copy from. :return: the newly created object version. :rtype: GcsObjectVersion """ self.generation_generator += 1 source_revision.validate_encryption_for_read(request) revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, source_revision.media, ) metadata = json.loads(request.data) revision.update_from_metadata(metadata) self._insert_revision(revision) return revision def compose_from(self, gcs_url, request, composed_media): """Compose a new revision based on the give flask request. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param composed_media:str contents of the composed object :return: the newly created object version. :rtype: GcsObjectVersion """ self.generation_generator += 1 revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, composed_media, ) payload = json.loads(request.data) if payload.get("destination") is not None: revision.update_from_metadata(payload.get("destination")) # The server often discards the MD5 Hash when composing objects, we can # easily maintain them in the testbench, but dropping them helps us # detect bugs sooner. revision.metadata.pop("md5Hash") self._insert_revision(revision) return revision @classmethod def rewrite_fixed_args(cls): """The arguments that should not change between requests for the same rewrite operation.""" return [ "destinationKmsKeyName", "destinationPredefinedAcl", "ifGenerationMatch", "ifGenerationNotMatch", "ifMetagenerationMatch", "ifMetagenerationNotMatch", "ifSourceGenerationMatch", "ifSourceGenerationNotMatch", "ifSourceMetagenerationMatch", "ifSourceMetagenerationNotMatch", "maxBytesRewrittenPerCall", "projection", "sourceGeneration", "userProject", ] @classmethod def capture_rewrite_operation_arguments( cls, request, destination_bucket, destination_object ): """Captures the arguments used to validate related rewrite calls. :rtype:dict """ original_arguments = {} for arg in GcsObject.rewrite_fixed_args(): original_arguments[arg] = request.args.get(arg) original_arguments.update( { "destination_bucket": destination_bucket, "destination_object": destination_object, } ) return original_arguments @classmethod def make_rewrite_token( cls, operation, destination_bucket, destination_object, generation ): """Create a new rewrite token for the given operation.""" return base64.b64encode( bytearray( "/".join( [ str(operation.get("id")), destination_bucket, destination_object, str(generation), str(operation.get("bytes_rewritten")), ] ), "utf-8", ) ).decode("utf-8") def make_rewrite_operation(self, request, destination_bucket, destination_object): """Create a new rewrite token for `Objects: rewrite`.""" generation = request.args.get("sourceGeneration") if generation is None: generation = str(self.generation_generator) else: generation = generation self.rewrite_token_generator = self.rewrite_token_generator + 1 body = json.loads(request.data) original_arguments = self.capture_rewrite_operation_arguments( request, destination_object, destination_object ) operation = { "id": self.rewrite_token_generator, "original_arguments": original_arguments, "actual_generation": generation, "bytes_rewritten": 0, "body": body, } token = GcsObject.make_rewrite_token( operation, destination_bucket, destination_object, generation ) return token, operation def rewrite_finish(self, gcs_url, request, body, source): """Complete a rewrite from `source` into this object. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param body:dict the HTTP payload, parsed via json.loads() :param source:GcsObjectVersion the source object version. :return: the newly created object version. :rtype: GcsObjectVersion """ media = source.media self.check_preconditions(request) self.generation_generator += 1 revision = GcsObjectVersion( gcs_url, self.bucket_name, self.name, self.generation_generator, request, media, ) revision.update_from_metadata(body) self._insert_revision(revision) return revision def rewrite_step(self, gcs_url, request, destination_bucket, destination_object): """Execute an iteration of `Objects: rewrite. Objects: rewrite may need to be called multiple times before it succeeds. Only objects in the same location, with the same encryption, are guaranteed to complete in a single request. The implementation simulates some, but not all, the behaviors of the server, in particular, only rewrites within the same bucket and smaller than 1MiB complete immediately. :param gcs_url:str the root URL for the fake GCS service. :param request:flask.Request the contents of the HTTP request. :param destination_bucket:str where will the object be placed after the rewrite operation completes. :param destination_object:str the name of the object when the rewrite operation completes. :return: a dictionary prepared for JSON encoding of a `Objects: rewrite` response. :rtype:dict """ body = json.loads(request.data) rewrite_token = request.args.get("rewriteToken") if rewrite_token is not None and rewrite_token != "": # Note that we remove the rewrite operation, not just look it up. # That way if the operation completes in this call, and/or fails, # it is already removed. We need to insert it with a new token # anyway, so this makes sense. rewrite = self.rewrite_operations.pop(rewrite_token, None) if rewrite is None: raise error_response.ErrorResponse( "Invalid or expired token in rewrite", status_code=410 ) else: rewrite_token, rewrite = self.make_rewrite_operation( request, destination_bucket, destination_bucket ) # Compare the difference to the original arguments, on the first call # this is a waste, but the code is easier to follow. current_arguments = self.capture_rewrite_operation_arguments( request, destination_bucket, destination_object ) diff = set(current_arguments) ^ set(rewrite.get("original_arguments")) if len(diff) != 0: raise error_response.ErrorResponse( "Mismatched arguments to rewrite", status_code=412 ) # This will raise if the version is deleted while the operation is in # progress. source = self.get_revision_by_generation(rewrite.get("actual_generation")) source.validate_encryption_for_read( request, prefix="x-goog-copy-source-encryption" ) bytes_rewritten = rewrite.get("bytes_rewritten") bytes_rewritten += 1024 * 1024 result = {"kind": "storage#rewriteResponse", "objectSize": len(source.media)} if bytes_rewritten >= len(source.media): bytes_rewritten = len(source.media) rewrite["bytes_rewritten"] = bytes_rewritten # Success, the operation completed. Return the new object: object_path, destination = testbench_utils.get_object( destination_bucket, destination_object, GcsObject(destination_bucket, destination_object), ) revision = destination.rewrite_finish(gcs_url, request, body, source) testbench_utils.insert_object(object_path, destination) result["done"] = True result["resource"] = revision.metadata rewrite_token = "" else: rewrite["bytes_rewritten"] = bytes_rewritten rewrite_token = GcsObject.make_rewrite_token( rewrite, destination_bucket, destination_object, source.generation ) self.rewrite_operations[rewrite_token] = rewrite result["done"] = False result.update( {"totalBytesRewritten": bytes_rewritten, "rewriteToken": rewrite_token} ) return result
40.525292
88
0.621027
e9692ed4ff0261b736c565932abfc571b07cbd91
1,123
py
Python
setup.py
Naklecha/knip
7c416b8bf0eed88ddf29143311e24b8bfe616bde
[ "MIT" ]
10
2019-04-22T19:03:33.000Z
2022-01-14T07:06:14.000Z
setup.py
Naklecha/knip
7c416b8bf0eed88ddf29143311e24b8bfe616bde
[ "MIT" ]
3
2020-03-24T17:06:41.000Z
2021-02-02T22:06:09.000Z
setup.py
Naklecha/knip
7c416b8bf0eed88ddf29143311e24b8bfe616bde
[ "MIT" ]
null
null
null
from setuptools import setup with open("README.md","r") as fh: long_description = fh.read() setup( name="knip", version="0.0.3", description="Lets make coding hassle free!", py_modules=["knip"], package_dir={"":"src"}, classifiers=["Programming Language :: Python :: 3", "Programming Language :: Python :: 3.1", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)", "Operating System :: OS Independent" ], long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Naklecha/knip", author="Nishant Aklecha", author_email="nishant.aklecha@gmail.com", )
36.225806
95
0.551202
a5c735d65394a4c278e34a3199473a2bcc42db04
9,571
py
Python
MAX31855/max2csv.py
elliotta/hephaestus
67efe7490e1ef5572537627c3278d0cf9256960d
[ "MIT" ]
null
null
null
MAX31855/max2csv.py
elliotta/hephaestus
67efe7490e1ef5572537627c3278d0cf9256960d
[ "MIT" ]
null
null
null
MAX31855/max2csv.py
elliotta/hephaestus
67efe7490e1ef5572537627c3278d0cf9256960d
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Read data from an Adafruit MAX31855. After a testing reading out at 10Hz, it was determined that the temperatures returned by this board are stable enough that the current data point is sufficient, and averaging multiple data points is unnecessary. This code requires https://github.com/adafruit/Adafruit_Python_MAX31855 Other documentation: https://learn.adafruit.com/max31855-thermocouple-python-library?view=all https://learn.adafruit.com/calibrating-sensors/maxim-31855-linearization https://learn.adafruit.com/thermocouple/f-dot-a-q """ import os import sys import datetime from sys import stderr from collections import OrderedDict from math import exp import time import subprocess import Adafruit_GPIO.SPI as SPI import Adafruit_MAX31855.MAX31855 as MAX31855 # Raspberry Pi software SPI configuration. # All sensors will share CLK and DO, with separate CS for each sensor CLK = 24 DO = 25 CS = [23, 18, 22, 17] SENSOR_NAMES = ['Firebox', 'Cat', 'Stove Top', 'Flue'] def c_to_f(c): '''Convert Celcius temperature to Farenheit. ''' return c * 9.0 / 5.0 + 32.0 def get_output_file(filename, data_dict, sep): """Create or open the output file. If a new file is being created, add a header line. """ header_line = sep.join(data_dict.keys()) x = 1 while True: # Loop will break at a return statement if os.path.exists(filename) and not os.stat(filename).st_size == 0: # Check for a header line f_check = open(filename) if f_check.readline().strip() == header_line: # Headers match, we're good to go f_check.close() return open(filename, 'a', 1) # line buffered else: stderr.write('File %s has unexpected header line\n' % filename) x += 1 if x == 2: # only do this the first time, otherwise file will be foo-2-3-4.log! base, extension = os.path.splitext(filename) filename = base + '-' + str(x) + extension # The next loop will try with this new filename else: # Is safe to overwrite an empty file f = open(filename, 'w', 1) # line buffered f.write(header_line + '\n') return f def main(web_output_file, interval, web_server_port, verbose, log_interval, output_file_pattern, output_separator, log_short_interval, short_interval, short_output_file_pattern): '''Interval is in minutes. Short_interval is seconds. ''' # Hardware configuration is set at top of file global CLK, DO, CS # Setup output_file = None log_interval = datetime.timedelta(minutes=log_interval) file_start_time = None # For logging hours since start of file interval_start_time = None web_server = subprocess.Popen(['python', '-m', 'SimpleHTTPServer', str(web_server_port)], cwd=os.path.dirname(web_output_file)) if log_short_interval: short_output_file = None short_interval = datetime.timedelta(seconds=short_interval) short_file_start_time = None # For logging hours since start of file short_interval_start_time = None print('About to connect to %i sensors' % len(CS)) sensors = [MAX31855.MAX31855(CLK, this_CS, DO) for this_CS in CS] print('Sensors connected') while True: try: # Collect the data temps = [sensor.readAll() for sensor in sensors] for t in temps: for k in t.keys(): if k != 'state': t[k] = c_to_f(t[k]) now = datetime.datetime.now() # Stdout output if verbose: print(now.isoformat() + ' ' + '; '.join(['%.2f,%.2f,%.2f' % (t['temp'], t['internal'], t['linearized']) for t in temps])) # Html output # Always overwrite current file html = '<html><head><meta http-equiv="refresh" content="1"><title>Current Temps</title></head>' lines = ['%s: %.1f F' % (name, t['linearized']) for name, t in zip(SENSOR_NAMES, temps)] lines += ['<br>', '<br>'] lines += ['%s: %.1f internal; errors: %s' % (name, t['internal'], str([s for s, v in t['state'].items() if v])) for name, t in zip(SENSOR_NAMES, temps)] html += '<body><h1>%s<br><<%s></h1></body></html>' % ('<br>'.join(lines), now.isoformat()) with open(web_output_file, 'w') as web_file: web_file.write(html) # Log file output if not interval_start_time: interval_start_time = now if log_short_interval: if not short_interval_start_time: short_interval_start_time = now if (not file_start_time) or (now - interval_start_time >= log_interval): if not file_start_time: file_start_time = now # Assemble data dictionary data_dict = OrderedDict([('timestamp', now.strftime('%H:%M:%S')), ('hours', format((now-file_start_time).total_seconds()/3600.0, '06.3f'))]) data_dict.update([('%s F' % name, format(t['linearized'], '.2f')) for name, t in zip(SENSOR_NAMES, temps)]) data_dict.update([('internal %s F' % name, format(t['internal'], '.2f')) for name, t in zip(SENSOR_NAMES, temps)]) # Write out the data if not output_file or now.date() != current_date: if output_file: output_file.close() print('Opening new output file') current_date = datetime.datetime.now().date() output_file = get_output_file(current_date.strftime(output_file_pattern), data_dict, output_separator) output_file.write(output_separator.join([str(x) for x in data_dict.values()]) + '\n') interval_start_time = now if log_short_interval: if (not short_file_start_time) or (now - short_interval_start_time >=short_interval): if not short_file_start_time: short_file_start_time = now # Assemble data dictionary data_dict = OrderedDict([('timestamp', now.strftime('%H:%M:%S')), ('hours', format((now-short_file_start_time).total_seconds()/3600.0, '07.4f'))]) data_dict.update([('%s F' % name, format(t['linearized'], '.2f')) for name, t in zip(SENSOR_NAMES, temps)]) # Write out the data if not short_output_file or now.date() != current_date: if short_output_file: short_output_file.close() print('Opening new short output file') current_date = datetime.datetime.now().date() short_output_file = get_output_file(current_date.strftime(short_log_file_pattern), data_dict, output_separator) short_output_file.write(output_separator.join([str(x) for x in data_dict.values()]) + '\n') short_interval_start_time = now time.sleep(interval - time.time() % interval) # corrects for drift except KeyboardInterrupt: break web_server.terminate() # Cleanup if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Read data from MAX31855 sensors', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-w', '--web_output_file', default='/dev/shm/current_temp.html', help='Html output file') parser.add_argument('-i', '--interval', default=1, help='Seconds at which to update the web_output_file') parser.add_argument('-p', '--web_server_port', default=8080, type=int, help='Web server port for displaying web_output_file') parser.add_argument('-v', '--verbose', action='store_true', help='Print each data point to stdout') parser.add_argument('-o', '--output_file_pattern', default='%Y%m%d-temps.tsv', help='Output file name based on date') parser.add_argument('-l', '--log_interval', type=int, default=1, help='Interval to log, in integer minutes') parser.add_argument('-s', '--output_separator', default='\t', help='Separator for output file(s)') group = parser.add_argument_group('short interval logging') group.add_argument('--log_short_interval', action='store_true', help='Additional log at shorter interval') group.add_argument('--short_output_file_pattern', default='/dev/shm/%Y%m%d-short_interval.tsv', help='File to write shorter intervales to') group.add_argument('--short_interval', type=int, default=15, help='Interval to log, in integer seconds') parser.add_argument('-d', '--daemon', action='store_true', help='Run as a daemon') args = parser.parse_args() if args.daemon: # Pid file check #pidfile = '/var/run/max2csv.pid' pidfile = '/dev/shm/max2csv.pid' mypid = os.getpid() if os.path.exists(pidfile): f = open(pidfile) old_pid = int(f.readline().strip()) f.close() if os.path.exists('/proc/%i' % old_pid): print('Pid from %s already running' % pidfile) sys.exit() # Create pid file f = open(pidfile, 'w') f.write('%i\n' % mypid) f.close() kwargs = vars(args) del kwargs['daemon'] main( **kwargs)
46.014423
166
0.611326
ea7933d0ca3765c928eb80efed0b87d828132cfe
5,254
py
Python
bfgn/architectures/residual_unet.py
dmarvs/bfg-nets
0c8e7f469b6a50c7b167ead98cb545d238dee214
[ "MIT" ]
8
2019-08-01T17:52:58.000Z
2021-05-15T22:19:41.000Z
bfgn/architectures/residual_unet.py
pgbrodrick/rsCNN
0c8e7f469b6a50c7b167ead98cb545d238dee214
[ "MIT" ]
38
2019-06-22T19:45:02.000Z
2019-07-20T19:39:09.000Z
bfgn/architectures/residual_unet.py
pgbrodrick/rsCNN
0c8e7f469b6a50c7b167ead98cb545d238dee214
[ "MIT" ]
1
2020-01-13T20:28:28.000Z
2020-01-13T20:28:28.000Z
from typing import Tuple import keras from keras.layers import BatchNormalization, Concatenate, Conv2D, MaxPooling2D, UpSampling2D from bfgn.architectures import config_sections class ArchitectureConfigSection( config_sections.AutoencoderMixin, config_sections.BlockMixin, config_sections.GrowthMixin, config_sections.BaseArchitectureConfigSection, ): pass def create_model( inshape: Tuple[int, int, int], n_classes: int, output_activation: str, block_structure: Tuple[int, ...] = config_sections.DEFAULT_BLOCK_STRUCTURE, filters: int = config_sections.DEFAULT_FILTERS, internal_activation: str = config_sections.DEFAULT_INTERNAL_ACTIVATION, kernel_size: Tuple[int, int] = config_sections.DEFAULT_KERNEL_SIZE, padding: str = config_sections.DEFAULT_PADDING, pool_size: Tuple[int, int] = config_sections.DEFAULT_POOL_SIZE, use_batch_norm: bool = config_sections.DEFAULT_USE_BATCH_NORM, use_growth: bool = config_sections.DEFAULT_USE_GROWTH, use_initial_colorspace_transformation_layer: bool = config_sections.DEFAULT_USE_INITIAL_COLORSPACE_TRANSFORMATION_LAYER, ) -> keras.models.Model: input_width = inshape[0] minimum_width = input_width / 2 ** len(block_structure) assert minimum_width >= 2, ( "The convolution width in the last encoding block ({}) is less than 2." + "Reduce the number of blocks in block_structure (currently {}).".format(len(block_structure)) ) # Need to track the following throughout the model creation layers_pass_through = list() # Encodings inlayer = keras.layers.Input(shape=inshape) encoder = inlayer if use_initial_colorspace_transformation_layer: intermediate_color_depth = int(inshape[-1] ** 2) encoder = Conv2D(filters=intermediate_color_depth, kernel_size=(1, 1), padding="same")(inlayer) encoder = Conv2D(filters=inshape[-1], kernel_size=(1, 1), padding="same")(encoder) encoder = BatchNormalization()(encoder) # Each encoder block has a number of subblocks for num_subblocks in block_structure: # Store the subblock input for the residual connection input_subblock = encoder for idx_sublayer in range(num_subblocks): # Each subblock has a number of convolutions encoder = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(encoder) if use_batch_norm: encoder = BatchNormalization()(encoder) # Add the residual connection from the previous subblock output to the current subblock output encoder = _add_residual_shortcut(input_subblock, encoder) # Each encoder block passes its pre-pooled layers through to the decoder layers_pass_through.append(encoder) encoder = MaxPooling2D(pool_size=pool_size)(encoder) if use_growth: filters *= 2 # Decodings decoder = encoder # Each decoder block has a number of subblocks, but in reverse order of encoder for num_subblocks, layer_passed_through in zip(reversed(block_structure), reversed(layers_pass_through)): # Store the subblock input for the residual connection input_subblock = decoder for idx_sublayer in range(num_subblocks): # Each subblock has a number of convolutions decoder = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(decoder) if use_batch_norm: decoder = BatchNormalization()(decoder) # Add the residual connection from the previous subblock output to the current subblock output decoder = _add_residual_shortcut(input_subblock, decoder) decoder = UpSampling2D(size=pool_size)(decoder) decoder = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(decoder) if use_batch_norm: decoder = BatchNormalization()(decoder) decoder = Concatenate()([layer_passed_through, decoder]) if use_growth: filters = int(filters / 2) # Last convolutions output_layer = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(decoder) if use_batch_norm: output_layer = BatchNormalization()(output_layer) output_layer = Conv2D(filters=n_classes, kernel_size=(1, 1), padding="same", activation=output_activation)( output_layer ) return keras.models.Model(inputs=[inlayer], outputs=[output_layer]) def _add_residual_shortcut(input_tensor: keras.layers.Layer, residual_module: keras.layers.Layer): """ Adds a shortcut connection by combining a input tensor and residual module """ shortcut = input_tensor # We need to apply a convolution if the input and block shapes do not match, every block transition inshape = keras.backend.int_shape(input_tensor)[1:] residual_shape = keras.backend.int_shape(residual_module)[1:] if inshape != residual_shape: strides = (int(round(inshape[0] / residual_shape[0])), int(round(inshape[1] / residual_shape[1]))) shortcut = keras.layers.Conv2D( filters=residual_shape[-1], kernel_size=(1, 1), padding="valid", strides=strides )(shortcut) return keras.layers.add([shortcut, residual_module])
44.525424
124
0.719262
40032282478794bc7453291b36254ab842976d17
4,353
py
Python
account/views.py
SergePogorelov/bookmarks
2ee19469f6a91aea0b57b36e2dde2c4650f72a8e
[ "BSD-3-Clause" ]
null
null
null
account/views.py
SergePogorelov/bookmarks
2ee19469f6a91aea0b57b36e2dde2c4650f72a8e
[ "BSD-3-Clause" ]
2
2020-10-07T12:08:32.000Z
2021-06-10T23:28:57.000Z
account/views.py
SergePogorelov/bookmarks
2ee19469f6a91aea0b57b36e2dde2c4650f72a8e
[ "BSD-3-Clause" ]
null
null
null
from django.http import HttpResponse, JsonResponse from django.shortcuts import render, get_object_or_404 from django.contrib.auth import authenticate, login from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.contrib import messages from django.views.decorators.http import require_POST from common.decorators import ajax_required from .forms import LoginForm, UserRegistrationForm, UserEditForm, ProfileEditForm from .models import Profile, Contact from actions.utils import create_action from actions.models import Action def user_login(request): if request.method == "POST": form = LoginForm(request.POST) if form.is_valid(): cd = form.cleaned_data user = authenticate( request, username=cd["username"], password=cd["password"] ) if user is not None: if user.is_active: login(request, user) return HttpResponse("Authenticated successfully") else: return HttpResponse("Disabled account") else: return HttpResponse("Invalid login") else: form = LoginForm() return render(request, "account/login.html", {"form": form}) @login_required def dashboard(request): actions = Action.objects.exclude(user=request.user) following_ids = request.user.following.values_list("id", flat=True) if following_ids: actions = actions.filter(user_id__in=following_ids) actions = actions.select_related("user", "user__profile").prefetch_related( "target" )[:10] return render( request, "account/dashboard.html", {"section": dashboard, "actions": actions} ) def register(request): if request.method == "POST": user_form = UserRegistrationForm(request.POST) if user_form.is_valid(): new_user = user_form.save(commit=False) new_user.set_password(user_form.cleaned_data["password"]) new_user.save() Profile.objects.create(user=new_user) create_action(new_user, "has created an account") return render(request, "account/register_done.html", {"new_user": new_user}) else: user_form = UserRegistrationForm() return render(request, "account/register.html", {"user_form": user_form}) @login_required def edit(request): if request.method == "POST": user_form = UserEditForm(instance=request.user, data=request.POST) profile_form = ProfileEditForm( instance=request.user.profile, data=request.POST, files=request.FILES ) if user_form.is_valid() and profile_form.is_valid(): user_form.save() profile_form.save() messages.success(request, "Profile updated successfully") else: messages.error(request, "Error updating your profile") else: user_form = UserEditForm(instance=request.user) profile_form = ProfileEditForm(instance=request.user.profile) return render( request, "account/edit.html", {"user_form": user_form, "profile_form": profile_form}, ) @login_required def user_list(request): users = User.objects.filter(is_active=True, is_staff=False) return render( request, "account/user/list.html", {"section": "people", "users": users} ) @login_required def user_detail(request, username): user = get_object_or_404(User, username=username, is_active=True, is_staff=False) return render( request, "account/user/detail.html", {"section": "people", "user": user} ) @ajax_required @require_POST @login_required def user_follow(request): user_id = request.POST.get("id") action = request.POST.get("action") if user_id and action: try: user = User.objects.get(id=user_id) if action == "follow": Contact.objects.get_or_create(user_from=request.user, user_to=user) create_action(request.user, "is following", user) else: Contact.objects.filter(user_from=request.user, user_to=user).delete() return JsonResponse({"status": "ok"}) except User.DoesNotExit: return JsonResponse({"status": "ok"}) return JsonResponse({"status": "ok"})
35.390244
88
0.662302
5ab2d15fca351f993720a53d237514111455efb1
17,658
py
Python
Omni_Receiver_4_Directions_2D_CNN_No_Mapping_Outdoor.py
debashriroy/DeePOE
ae6d6dcb1bb1410ea8e078277e54aa6f363484a4
[ "MIT" ]
null
null
null
Omni_Receiver_4_Directions_2D_CNN_No_Mapping_Outdoor.py
debashriroy/DeePOE
ae6d6dcb1bb1410ea8e078277e54aa6f363484a4
[ "MIT" ]
null
null
null
Omni_Receiver_4_Directions_2D_CNN_No_Mapping_Outdoor.py
debashriroy/DeePOE
ae6d6dcb1bb1410ea8e078277e54aa6f363484a4
[ "MIT" ]
null
null
null
############################################################## # Radio Fingerprinting in RFML Environment # # Neural Network for Direction Finding Data 2020 # # Author: Debashri Roy # ############################################################# ############ IMPORTING NECESSARY PACKAGES ################ import numpy as np # Package for numerical computation np.set_printoptions(threshold=np.inf) # To print each elements import time # Package is for computing execution time import sys # Package to get command line arguments import tensorflow as tf from sklearn.model_selection import train_test_split from array import array # by setting env variables before Keras import you can set up which backend import os,random #os.environ["KERAS_BACKEND"] = "theano" os.environ["KERAS_BACKEND"] = "tensorflow" os.environ["THEANO_FLAGS"] = "device=cuda0, dnn.enabled=False" import theano #theano.config.mode = "" import theano as th import theano.tensor as T from keras.utils import np_utils import keras.models as models from keras.models import Sequential from keras.layers.core import Reshape,Dense,Dropout,Activation,Flatten from keras.layers import Embedding from keras.layers.noise import GaussianNoise from keras.layers.convolutional import Conv2D, Conv1D, Convolution2D, MaxPooling2D, ZeroPadding2D, Convolution1D from keras.regularizers import * from keras.optimizers import adam, Nadam, Adadelta from keras.optimizers import Adam, RMSprop, Adagrad from keras.layers.convolutional_recurrent import ConvLSTM2D from keras.optimizers import rmsprop from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint #from keras.regularizers import l2, activity_l2 from sklearn import preprocessing from sklearn.preprocessing import StandardScaler from keras.layers.advanced_activations import LeakyReLU, PReLU # import BatchNormalization from keras.layers.normalization import BatchNormalization from keras.layers import GRU, RNN, SimpleRNN, LSTM, GRUCell, SimpleRNNCell, LSTMCell from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from keras.utils.np_utils import to_categorical from keras.optimizers import SGD import matplotlib #matplotlib.use('TkAgg') matplotlib.use('Agg') import matplotlib.pyplot as plt #import seaborn as sns import keras import itertools import scipy from sklearn.linear_model import LinearRegression import pandas as pd from mpl_toolkits.mplot3d import Axes3D ########## FUNCTIONS TO CALCULATE F SCORE OF THE MODEL ############### from keras import backend as K def recall_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision_m(y_true, y_pred): true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision def f1_m(y_true, y_pred): precision = precision_m(y_true, y_pred) recall = recall_m(y_true, y_pred) return 2 * ((precision * recall) / (precision + recall + K.epsilon())) ###################################################################### data_file_loc1 = '/Users/debashri/Desktop/DirectionFinding_Data/Outdoor/W_E_02_06_2020_OUT_914MHz_source.dat' # TRANSMITTER IS WEST TO THE RECEIVER, TRANSMITTER ANTENNA TO EAST data_file_loc2 ='/Users/debashri/Desktop/DirectionFinding_Data/Outdoor/W_W_02_06_2020_OUT_914MHz_source.dat' # TRANSMITTER IS WEST TO THE RECEIVER, TRANSMITTER ANTENNA TO WEST data_file_loc3 = '/Users/debashri/Desktop/DirectionFinding_Data/Outdoor/W_N_02_06_2020_OUT_914MHz_source.dat'# TRANSMITTER IS WEST TO THE RECEIVER, TRANSMITTER ANTENNA TO NORTH data_file_loc4 = '/Users/debashri/Desktop/DirectionFinding_Data/Outdoor/W_S_02_06_2020_OUT_914MHz_source.dat' # TRANSMITTER IS WEST TO THE RECEIVER, TRANSMITTER ANTENNA TO SOUTH #dtype_all= np.dtype([('raw-iq0', 'c16')]) # gr_complex is '32fc' --> make any sense? dtype_all= scipy.dtype([('raw-iq', scipy.complex64)]) # gr_complex is '32fc' --> make any sense? # print("Total number of i/q samples for REEF BACK:") # print(scipy.fromfile(open(data_file_loc1), dtype=dtype_all).shape[0]) # # print("Total number of i/q samples for REEF FRONT LEFT:") # print(scipy.fromfile(open(data_file_loc3), dtype=dtype_all).shape[0]) # # print("Total number of i/q samples for REEF FRONT RIGHT:") # print(scipy.fromfile(open(data_file_loc2), dtype=dtype_all).shape[0]) sample_size = 512 # CHANGE no_of_samples = 8000 # CHANGE no_of_features = 2 # CHANGE iqdata_loc1 = scipy.fromfile(open(data_file_loc1), dtype=dtype_all, count = sample_size * no_of_samples) iqdata_loc2 = scipy.fromfile(open(data_file_loc2), dtype=dtype_all, count = sample_size * no_of_samples) iqdata_loc3 = scipy.fromfile(open(data_file_loc3), dtype=dtype_all, count = sample_size * no_of_samples) iqdata_loc4 = scipy.fromfile(open(data_file_loc4), dtype=dtype_all, count = sample_size * no_of_samples) # iqdata_loc1 = scipy.fromfile(open(data_file_loc1), dtype=dtype_all) # DATA COLLECTED at UCF # iqdata_loc2 = scipy.fromfile(open(data_file_loc2), dtype=dtype_all) # DATA COLLECTED at UCF # iqdata_loc3 = scipy.fromfile(open(data_file_loc3), dtype=dtype_all) # DATA COLLECTED at UCF # iqdata_loc4 = scipy.fromfile(open(data_file_loc4), dtype=dtype_all) # DATA COLLECTED at UCF start_time = time.time() # Taking start time to calculate overall execution time no_of_loc1 = iqdata_loc1.shape[0] no_of_loc2 = iqdata_loc2.shape[0] no_of_loc3 = iqdata_loc3.shape[0] no_of_loc4 = iqdata_loc4.shape[0] # USING ONLY LAST N SAMPLES OF DATA number_of_data_to_read = sample_size * no_of_samples extra_rows_loc1 = no_of_loc1 - number_of_data_to_read extra_rows_loc2 = no_of_loc2 - number_of_data_to_read extra_rows_loc3 = no_of_loc3 - number_of_data_to_read extra_rows_loc4 = no_of_loc4 - number_of_data_to_read xdata_loc1 = np.delete(iqdata_loc1, np.s_[:extra_rows_loc1], 0) xdata_loc2 = np.delete(iqdata_loc2, np.s_[:extra_rows_loc2], 0) xdata_loc3= np.delete(iqdata_loc3, np.s_[:extra_rows_loc3], 0) xdata_loc4= np.delete(iqdata_loc4, np.s_[:extra_rows_loc4], 0) # PREPARING THE DATA WITHOUT TIME INFORMATION no_of_data_loc1 = iqdata_loc1.shape[0] no_of_data_loc2 = iqdata_loc2.shape[0] no_of_data_loc3 = iqdata_loc3.shape[0] no_of_data_loc4 = iqdata_loc4.shape[0] ##################### CHANNELING REAL AND IMAGINARY PART OF XDATA ########################### # xdata1 = np.dstack((xydata['raw-iq0'].real.reshape(no_of_data, 1), xydata['raw-iq0'].imag.reshape(no_of_data, 1))) # for k in range(1, 1024): # st = "raw-iq" + str(k) # xdata_temp = np.dstack((xydata[st].real.reshape(no_of_data, 1), xydata[st].imag.reshape(no_of_data, 1))) # xdata1 = np.concatenate([xdata1, xdata_temp], axis=1) # ydata1 = xydata['trans-id'] # # xdata = xdata1.astype(np.float) # ydata = ydata1.astype(np.int).flatten() # # print("UNTIL XDATA CHANNELING") xdata_loc1= np.concatenate([iqdata_loc1['raw-iq'].real.reshape(number_of_data_to_read,1), iqdata_loc1['raw-iq'].imag.reshape(number_of_data_to_read,1)], axis=1) xdata_loc2= np.concatenate([iqdata_loc2['raw-iq'].real.reshape(number_of_data_to_read,1), iqdata_loc2['raw-iq'].imag.reshape(number_of_data_to_read,1)], axis=1) xdata_loc3= np.concatenate([iqdata_loc3['raw-iq'].real.reshape(number_of_data_to_read,1), iqdata_loc3['raw-iq'].imag.reshape(number_of_data_to_read,1)], axis=1) xdata_loc4= np.concatenate([iqdata_loc4['raw-iq'].real.reshape(number_of_data_to_read,1), iqdata_loc4['raw-iq'].imag.reshape(number_of_data_to_read,1)], axis=1) # DOES TRANSPOSE MAKE SENSE???? print("Before:::", xdata_loc1.shape) xdata_loc1= xdata_loc1.T.reshape(no_of_data_loc1//(sample_size), sample_size*no_of_features) # CHNAGED FROM 2 print("After", xdata_loc1.shape) xdata_loc2 = xdata_loc2.T.reshape(no_of_data_loc2//(sample_size), sample_size*no_of_features) xdata_loc3 = xdata_loc3.T.reshape(no_of_data_loc3//(sample_size), sample_size*no_of_features) xdata_loc4 = xdata_loc4.T.reshape(no_of_data_loc4//(sample_size), sample_size*no_of_features) xdata = np.concatenate([xdata_loc1, xdata_loc2, xdata_loc3, xdata_loc4], axis=0) # CREATING LABEL FOR THE DATASETS ydata_loc1 = np.full(xdata_loc1.shape[0], 0, dtype=int) ydata_loc2 = np.full(xdata_loc2.shape[0], 1, dtype=int) ydata_loc3 = np.full(xdata_loc3.shape[0], 2, dtype=int) ydata_loc4 = np.full(xdata_loc4.shape[0], 3, dtype=int) ydata = np.concatenate([ydata_loc1, ydata_loc2, ydata_loc3, ydata_loc4], axis=0) # PREPROCESSING X AND Y DATA xdata =xdata.astype(np.float) ydata = ydata.astype(np.int).flatten() # REMOVING THE NANS xdata = np.nan_to_num(xdata) # ############## RANDOMLY SHUFFLING THE DATA ################### # xydata = np.concatenate([xdata.reshape(xdata.shape[0], xdata.shape[1]), ydata.reshape(ydata.shape[0], 1)], axis=1) np.random.shuffle(xydata) print("Shape of XYDATA", xydata.shape) #xdata, ydata = xydata[:,0:sample_size*2+2], xydata[:,((sample_size*2+2))] # ADDED 2 FOR LAT LONG xdata, ydata = xydata[:,0:sample_size*no_of_features], xydata[:,((sample_size*no_of_features))] # multiplied by 8 because we augmented with weight matrix #################### NORMALIZE THE X DATA ####################### standard = preprocessing.StandardScaler().fit(xdata) # Normalize the data with zero mean and unit variance for each column xdata = standard.transform(xdata) ############### SEPARATING TRAIN AND TEST DATA ####################### xtrain, xtest, ytrain, ytest = train_test_split(xdata, ydata, test_size=0.2, random_state=42) # 90/20 is train/test size print("XTRAIN AND XTEST SHAPE:", xtrain.shape, xtest.shape) print("YTRAIN AND YTEST SHAPE:", ytrain.shape, ytest.shape) # reshape to be [samples][width][height][channels] xtrain = xtrain.reshape((xtrain.shape[0], no_of_features, sample_size, 1)).astype('float32') xtest = xtest.reshape((xtest.shape[0], no_of_features, sample_size, 1)).astype('float32') num_classes = 4 # TOTAL NUMBER OF Data # Convert labels to categorical one-hot encoding ytrain_one_hot = to_categorical(ytrain, num_classes=num_classes) # DEFINE THE NUMBER OF TOTAL CLASSES IN LABEL ytest_one_hot = to_categorical(ytest, num_classes=num_classes) print("XTRAIN AND XTEST SHAPE:", xtrain.shape, xtest.shape) print("YTRAIN AND YTEST SHAPE:", ytrain_one_hot.shape, ytest_one_hot.shape) ############################################################ # # ######## Building a Convolutional Neural Network ################# # # ############################################################ dr = 0.6 # dropout rate (%) batch_size = 64 # Mini batch size nb_epoch = 100 # Number of Epoch (Give a higher number to get better accuracy) # classes = array("i", [0, 1]) # CHANGE: LABEL # classes = ["T1","T2"] classes = ["W_E", "W_W", "W_N", "W_S"] # CHANGE LABEL in_shp = list(xtrain.shape[1:]) # Input Dimension print(in_shp) # model = models.Sequential() timesteps=1 data_dim=xtrain.shape[1] ############################### ########## NEXT CHANGE: MINIMIZE THE KERNEL SIZE AND STRIDES # THEN: CHANGE THE ACTIVATIONS OF THE LAYERS ############################## ############################################################ # # ######## Building a 2D Convolutional Neural Network ##### # # ############################################################ # xtrain = xtrain.reshape(xtrain.shape[0], 1, xtrain.shape[1]) # xtest = xtest.reshape(xtest.shape[0], 1, xtest.shape[1]) # print ("AFTER RESHAPE") ytrain_one_hot = np.reshape(ytrain_one_hot, (ytrain_one_hot.shape[0], num_classes)) # Used in training ytest_one_hot = np.reshape(ytest_one_hot, (ytest_one_hot.shape[0], num_classes)) # Used in training # Modeling the CNN model = Sequential() model.add(Conv2D(64, (2, 2), input_shape=(no_of_features, sample_size, 1), activation='relu')) # CHANGE # Stride (1, 1) #model.add(MaxPooling2D()) # Pool size: (2, 2) and stride (2, 2) model.add(Dropout(0.2)) # model.add(Conv2D(64, (2, 2), activation='relu')) # model.add(MaxPooling2D()) # model.add(Dropout(dr)) model.add(Flatten()) #model.add(Dense(256, activation='relu')) model.add(Dense(128, activation='relu')) model.add(Dense(num_classes, activation='softmax')) # Compile model # For a multi-class classification problem sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-8) # model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # Multiclass classification with rmsprop model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['acc', f1_m, precision_m, recall_m]) # Multiclass classification with rms adam optimizer # CHANGE #model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc', f1_m, precision_m, recall_m]) model.summary() filepath = '/Users/debashri/Desktop/DirectionFinding_Plots/direction_data_4_direction_2D_CNN_Outdoor.wts.h5' print("The dropout rate was: ") print(dr) # Fit the model # history= model.fit(xtrain, ytrain_one_hot, epochs=nb_epoch, batch_size=batch_size, validation_data = (xtest, ytest_one_hot), callbacks = [keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=2, save_best_only=True, mode='auto'), keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=2, mode='auto')]) history = model.fit(xtrain, ytrain_one_hot, epochs=nb_epoch, batch_size=batch_size, validation_split=0.1, callbacks=[ keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=2, save_best_only=True, mode='auto'), keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=2, mode='auto')]) # Evaluate the model loss, accuracy, f1_score, precision, recall = model.evaluate(xtest, ytest_one_hot, batch_size=batch_size) # CHANGE print("\nTest Loss: %s: %.2f%%" % (model.metrics_names[0], loss * 100)) # CHANGE print("\nTest Accuracy: %s: %.2f%%" % (model.metrics_names[1], accuracy * 100)) # CHANGE print("\nTest F1 Score: %s: %.2f%%" % (model.metrics_names[2], f1_score)) # CHANGE print("\nTest Precision: %s: %.2f%%" % (model.metrics_names[3], precision * 100)) # CHANGE print("\nTest Recall: %s: %.2f%%" % (model.metrics_names[4], recall * 100)) # CHANGE # Calculating total execution time end_time = time.time() # Taking end time to calculate overall execution time print("\n Total Execution Time (Minutes): ") print(((end_time - start_time) / 60)) #### SET PLOTTING PARAMETERS ######### params = {'legend.fontsize': 'xx-large', 'axes.labelsize': 'xx-large', 'axes.titlesize': 'xx-large', 'xtick.labelsize': 'xx-large', 'ytick.labelsize': 'xx-large'} plt.rcParams.update(params) # Show Accuracy Curves fig = plt.figure() # plt.title('Training Performance') plt.plot(history.epoch, history.history['acc'], label='Training Accuracy', linewidth=2.0, c='b') plt.plot(history.epoch, history.history['val_acc'], label='Validation Accuracy', linewidth=2.0, c='r') plt.ylabel('Accuracy(%)') plt.xlabel('Epoch') plt.legend() # fig = plt.subplots(nrows=1, ncols=1) # create figure & 1 axis # ax.plot([0, 1, 2], [1UCF0, 20, 3]) plt.tight_layout() fig.savefig('/Users/debashri/Desktop/DirectionFinding_Plots/direction_4_acc_2D_CNN_Outdoor.png') # save the figure to file plt.close(fig) # plt.show() def plot_confusion_matrix(cm, title='Confusion Matrix', cmap=plt.cm.YlGnBu, labels=[], normalize=False): if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # print("Normalized confusion matrix") else: cm = cm.astype('int') # print('Confusion matrix, without normalization') plt.rcParams.update(params) # ADDED fig = plt.figure(figsize=(12,12)) plt.imshow(cm, interpolation='nearest', cmap=cmap) # plt.title(title) plt.colorbar() tick_marks = np.arange(len(labels)) plt.xticks(tick_marks, labels, rotation=45) plt.yticks(tick_marks, labels) thresh = cm.max() / 2 fmt = '.2f' if normalize else 'd' for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i,"{:,}".format(cm[i, j]), plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", fontsize="xx-large", color="white" if cm[i, j] > thresh else "black") plt.ylabel('True label') plt.xlabel('Predicted label') # fig, ax = plt.subplots(nrows=1, ncols=1) # create figure & 1 axis # ax.plot([0, 1, 2], [10, 20, 3]) plt.tight_layout() fig.savefig('/Users/debashri/Desktop/DirectionFinding_Plots/direction_4_conf_mat_2D_CNN_Outdoor.png') # save the figure to file plt.close(fig) # plt.show() # Plot confusion matrix test_Y_hat = model.predict(xtest, batch_size=batch_size) conf = np.zeros([len(classes), len(classes)]) confnorm = np.zeros([len(classes), len(classes)]) for i in range(0, xtest.shape[0]): j = list(ytest_one_hot[i, :]).index(1) k = int(np.argmax(test_Y_hat[i, :])) conf[j, k] = conf[j, k] + 1 plot_confusion_matrix(conf, labels=classes, normalize=False) for i in range(0, len(classes)): confnorm[i, :] = conf[i, :] / np.sum(conf[i, :]) # plot_confusion_matrix(confnorm, labels=classes) end_time = time.time() # Taking end time to calculate overall execution time print("\n Total Execution Time (Minutes): ") print(((end_time-start_time)/60))
41.942993
335
0.702854
fba0137778a489a79340f3d93f389b1c946a9834
25,932
py
Python
generate/generate_miri.py
rendinam/pysiaf
b891e97037b250bfccb3f94b1ca156ffdf836594
[ "BSD-3-Clause" ]
null
null
null
generate/generate_miri.py
rendinam/pysiaf
b891e97037b250bfccb3f94b1ca156ffdf836594
[ "BSD-3-Clause" ]
null
null
null
generate/generate_miri.py
rendinam/pysiaf
b891e97037b250bfccb3f94b1ca156ffdf836594
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python """Generate MIRI SIAF and flight-like SIAF reference files. Authors ------- Johannes Sahlmann References ---------- This script was partially adapted from Colin Cox' miriifu.py. For a detailed description of the MIRI SIAF, the underlying reference files, and the transformations, see Law et al., (latest revision): MIRI SIAF Input (JWST-STScI-004741). The term `worksheet` refers to the excel worksheet in the respective SIAF.xlsx, which contained some of the SIAF generation logic previously. """ from collections import OrderedDict import copy import os from astropy.io import fits import numpy as np import pylab as pl import pysiaf from pysiaf import iando from pysiaf.constants import JWST_SOURCE_DATA_ROOT, JWST_TEMPORARY_DATA_ROOT, \ JWST_DELIVERY_DATA_ROOT from pysiaf.tests import test_miri from pysiaf.utils import compare from pysiaf.utils import polynomial import generate_reference_files ############################# instrument = 'MIRI' # regenerate SIAF reference files if needed regerenate_basic_reference_files = False if regerenate_basic_reference_files: generate_reference_files.generate_siaf_detector_layout() generate_reference_files.generate_siaf_detector_reference_file(instrument) generate_reference_files.generate_siaf_ddc_mapping_reference_file(instrument) # DDC name mapping ddc_apername_mapping = iando.read.read_siaf_ddc_mapping_reference_file(instrument) # MIRI detector parameters, e.g. XDetSize siaf_detector_parameters = iando.read.read_siaf_detector_reference_file(instrument) # definition of the master apertures detector_layout = iando.read.read_siaf_detector_layout() master_aperture_names = detector_layout['AperName'].data # directory containing reference files delivered by instrument team(s) source_data_dir = os.path.join(JWST_SOURCE_DATA_ROOT, instrument, 'delivery') print('Loading source data files from directory: {}'.format(source_data_dir)) miri_distortion_file = 'MIRI_FM_MIRIMAGE_DISTORTION_07.04.01.fits' # Fundamental aperture definitions: names, types, reference positions, dependencies # for MIRI this file is part of the delivered source files and contains more columns siaf_aperture_definitions = iando.read.read_siaf_aperture_definitions(instrument, directory=source_data_dir) def untangle(square): """Turn a square n x n array into a linear array. Parameters ---------- square : n x n array Input array Returns ------- linear : array Linearized array """ n = square.shape[0] t = n * (n + 1) // 2 linear = np.zeros(t) for i in range(n): for j in range(n - i): k = (i + j) * (i + j + 1) // 2 + i linear[k] = square[i, j] return linear def invcheck(A, B, C, D, order, low, high): """Round trip calculation to test inversion. Parameters ---------- A B C D order low high """ x = np.random.random(10) x = low + (high - low) * x y = np.random.random(10) y = low + (high - low) * y u = polynomial.poly(A, x, y, order) v = polynomial.poly(B, x, y, order) x2 = polynomial.poly(C, u, v, order) y2 = polynomial.poly(D, u, v, order) print('\n INVERSE CHECK') for i in range(10): print('%10.4f%10.4f%10.4f%10.4f%10.4f%10.4f%10.2e%10.2e' % (x[i], y[i], u[i], v[i], x2[i], y2[i], x2[i] - x[i], y2[i] - y[i])) print('Round trip errors %10.2e %10.2e' % ((x - x2).std(), (y - y2).std())) print('Round trip errors %10.3f %10.3f' % ((x - x2).std(), (y - y2).std())) def get_mirim_coefficients(distortion_file, verbose=False): """Read delivered FITS file for MIRI imager and return data to be ingested in SIAF. Parameters ---------- distortion_file : str Name of distortion file. verbose : bool verbosity Returns ------- csv_data : dict Dictionary containing the data """ miri = fits.open(os.path.join(source_data_dir, distortion_file)) T = miri['T matrix'].data TI = miri['TI matrix'].data # CDP7 T matrices transform from/to v2,v3 in arcsec # set VtoAN and ANtoV to unit matrix VtoAN = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) ANtoV = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) TV = np.dot(T, VtoAN) VT = np.dot(ANtoV, TI) prod = np.dot(VT, TV) TT = np.dot(T, TI) if verbose: print('T\n', T) print('TI\n', TI) print('VtoAN\n', VtoAN) print('\n TV V2V3 to XY Entrance') print(TV) print(1.0 / TV[1, 1], 'arcsec/mm') print('\nANtoV\n', ANtoV) print('\n VTXY entrance to V2V3') print('VT\n', VT) print() print('VT comparison\n', prod) print('T comparison\n', TT) # Get linear coefficient layout A = miri['AI matrix'].data B = miri['BI matrix'].data C = miri['A matrix'].data D = miri['B matrix'].data AL = untangle(A) BL = untangle(B) CL = untangle(C) DL = untangle(D) if verbose: print('Initial AL\n', AL) print('Initial BL\n', BL) print('CL\n', CL) print('DL\n', DL) # scale factor corresponding to 25 mum pixel size, i.e. 40 pixels/mm order = 4 k = 0 for i in range(order + 1): factor = 0.025 ** i for j in range(i + 1): AL[k] = AL[k] * factor BL[k] = BL[k] * factor k += 1 AF = VT[0, 0] * AL + VT[0, 1] * BL AF[0] = AF[0] + VT[0, 2] BF = VT[1, 0] * AL + VT[1, 1] * BL BF[0] = BF[0] + VT[1, 2] if verbose: polynomial.print_triangle(AF) polynomial.print_triangle(BF) print('AL scaled\n', AL) print('\n A FINAL') print('\n B FINAL') ## print('INVERSE TRANSFORMATIONS') # Combine TV with polynomial using polynomial.two_step # combination of several polynomial coefficients a = np.array([TV[0, 2], TV[0, 0], TV[0, 1]]) b = np.array([TV[1, 2], TV[1, 0], TV[1, 1]]) (C2, D2) = polynomial.two_step(CL, DL, a, b) CF = 40 * C2 DF = 40 * D2 if verbose: polynomial.print_triangle(CF) polynomial.print_triangle(DF) print('a', a) print('b', b) print('\nC Final') print('\nD Final') # if verbose: # Test two_step v2 = -280 v3 = -430 xin = TV[0, 0] * v2 + TV[0, 1] * v3 + TV[0, 2] yin = TV[1, 0] * v2 + TV[1, 1] * v3 + TV[1, 2] xmm = polynomial.poly(CL, xin, yin, 4) ymm = polynomial.poly(DL, xin, yin, 4) xmm2 = polynomial.poly(C2, v2, v3, 4) ymm2 = polynomial.poly(D2, v2, v3, 4) # Backwards check xp = 0 yp = 0 v2 = polynomial.poly(AF, xp, yp, 4) v3 = polynomial.poly(BF, xp, yp, 4) xpix = polynomial.poly(CF, v2, v3, 4) ypix = polynomial.poly(DF, v2, v3, 4) print('IN', xin, yin) print('MM', xmm, ymm) print('MM2', xmm2, ymm2) print('V', v2, v3) print('Original ', xp, yp) print('Recovered', xpix, ypix) print('Change ', xpix - xp, ypix - yp) invcheck(AF, BF, CF, DF, 4, -512.0, 512.0) CS = polynomial.shift_coefficients(CF, AF[0], BF[0]) DS = polynomial.shift_coefficients(DF, AF[0], BF[0]) CS[0] = 0.0 DS[0] = 0.0 # extract V2,V3 reference position V2cen = AF[0] V3cen = BF[0] # reset zero order coefficients to zero AF[0] = 0.0 BF[0] = 0.0 if verbose: polynomial.print_triangle(CS) polynomial.print_triangle(DS) invcheck(AF, BF, CS, DS, 4, -512.0, 512.0) print('\nCS') print('\nDS') print('\nDetector Center') # if verbose: xscalec = np.hypot(AF[1], BF[1]) yscalec = np.hypot(AF[2], BF[2]) # compute angles xanglec = np.rad2deg(np.arctan2(AF[1], BF[1])) yanglec = np.rad2deg(np.arctan2(AF[2], BF[2])) if verbose: print('Position', V2cen, V3cen) print('Scales %10.6f %10.6f' % (xscalec, yscalec)) print('Angles %10.6f %10.6f' % (xanglec, yanglec)) # if verbose: xcen = 1033 / 2 ycen = 1025 / 2 xref = 693.5 - xcen yref = 512.5 - ycen V2Ref = polynomial.poly(AF, xref, yref, 4) + V2cen V3Ref = polynomial.poly(BF, xref, yref, 4) + V3cen dV2dx = polynomial.dpdx(AF, xref, yref) dV3dx = polynomial.dpdx(BF, xref, yref) dV2dy = polynomial.dpdy(AF, xref, yref) dV3dy = polynomial.dpdy(BF, xref, yref) xangler = np.arctan2(dV2dx, dV3dx) yangler = np.arctan2(dV2dy, dV3dy) # if verbose: print('Axis angles', np.rad2deg(xangler), np.rad2deg(yangler)) # if verbose: # Illum reference position xscaler = np.hypot(dV2dx, dV3dx) yscaler = np.hypot(dV2dy, dV3dy) xangler = np.rad2deg(np.arctan2(dV2dx, dV3dx)) yangler = np.rad2deg(np.arctan2(dV2dy, dV3dy)) # if verbose: print('\nIllum reference position') print('xref=', xref) print('Position', V2Ref, V3Ref) print('Scales %10.6f %10.6f' % (xscaler, yscaler)) print('Angles %10.6f %10.6f %10.6f' % (xangler, yangler, yangler - xangler)) # if verbose: # Slit position xslit = (326.13) yslit = (300.70) dxslit = xslit - xcen dyslit = yslit - ycen V2slit = polynomial.poly(AF, dxslit, dyslit, 4) + V2cen V3slit = polynomial.poly(BF, dxslit, dyslit, 4) + V3cen dV2dx = polynomial.dpdx(AF, dxslit, yslit) dV3dx = polynomial.dpdx(BF, dxslit, dyslit) dV2dy = polynomial.dpdy(AF, dxslit, dyslit) dV3dy = polynomial.dpdy(BF, dxslit, dyslit) xangles = np.arctan2(dV2dx, dV3dx) yangles = np.arctan2(dV2dy, dV3dy) # if verbose: print('\nSlit') print('Position', dxslit, dyslit) print('V2,V3', V2slit, V3slit) print('Slit angles', np.rad2deg(xangles), np.rad2deg(yangles)) # if verbose: # Corners xc = np.array([-516.0, 516.0, 516.0, -516.0, -516.0]) yc = np.array([-512.0, -512.0, 512.0, 512.0, -512.0]) V2c = polynomial.poly(AF, xc, yc, 4) V3c = polynomial.poly(BF, xc, yc, 4) V2c = V2c + V2cen V3c = V3c + V3cen # if verbose: print('\nCorners') print('V2 %10.4f %10.4f %10.4f %10.4f' % (V2c[0], V2c[1], V2c[2], V2c[3])) print('V3 %10.4f %10.4f %10.4f %10.4f' % (V3c[0], V3c[1], V3c[2], V3c[3])) # make figure pl.figure(1) pl.clf() pl.title('MIRI Detector') pl.plot(V2cen, V3cen, 'r+') pl.plot(V2c, V3c, ':') pl.grid(True) pl.axis('equal') pl.plot(V2Ref, V3Ref, 'b+') pl.plot(V2slit, V3slit, 'c+') pl.gca().invert_xaxis() pl.show() ## Rotated versions print('Angle', yanglec) print('Rotated') # incorporate rotation in coefficients a = np.deg2rad(yanglec) AR = AF * np.cos(a) - BF * np.sin(a) BR = AF * np.sin(a) + BF * np.cos(a) CR = polynomial.prepend_rotation_to_polynomial(CS, yanglec) DR = polynomial.prepend_rotation_to_polynomial(DS, yanglec) if verbose: print('AR') polynomial.print_triangle(AR) print('BR') polynomial.print_triangle(BF) print('\n', AR[2], ' near zero') # if verbose: invcheck(AR, BR, CR, DR, 4, -512.0, 512.0) # Check positions using rotated (Ideal) coefficients # if verbose: xi = polynomial.poly(AR, xc, yc, 4) yi = polynomial.poly(BR, xc, yc, 4) v2r = xi * np.cos(a) + yi * np.sin(a) + V2cen v3r = -xi * np.sin(a) + yi * np.cos(a) + V3cen # if verbose: print('V2', v2r) print('V3', v3r) pl.plot(v2r, v3r, '--') CRFl = polynomial.flip_x(CR) DRFl = polynomial.flip_x(DR) # see TR: "polynomial origin being at the detector center with # pixel position (516.5, 512.5). " detector_center_pixel_x = 516.5 detector_center_pixel_y = 512.5 # dictionary holding data written to csv csv_data = {} csv_data['DET_OSS'] = {} csv_data['DET_OSS']['A'] = AR csv_data['DET_OSS']['B'] = BR csv_data['DET_OSS']['C'] = CR csv_data['DET_OSS']['D'] = DR csv_data['DET_OSS']['Xref'] = detector_center_pixel_x csv_data['DET_OSS']['Yref'] = detector_center_pixel_y csv_data['DET_OSS']['Xref_inv'] = V2cen csv_data['DET_OSS']['Yref_inv'] = V3cen csv_data['DET_OSS']['xAngle'] = xanglec csv_data['DET_OSS']['yAngle'] = yanglec csv_data['DET_DMF'] = {} csv_data['DET_DMF']['A'] = -AR csv_data['DET_DMF']['B'] = BR csv_data['DET_DMF']['C'] = CRFl csv_data['DET_DMF']['D'] = DRFl csv_data['DET_DMF']['Xref'] = detector_center_pixel_x csv_data['DET_DMF']['Yref'] = detector_center_pixel_y csv_data['DET_DMF']['Xref_inv'] = V2cen csv_data['DET_DMF']['Yref_inv'] = V3cen csv_data['DET_DMF']['xAngle'] = xanglec csv_data['DET_DMF']['yAngle'] = yanglec return csv_data def extract_ifu_data(aperture_table): """Extract relevant information from IFU slice reference files. Return one single table with columns that directly map to SIAF aperture entries. Parameters ---------- aperture_table : astropy.table.Table Table with aperture information Returns ------- table : astropy.table.Table instance Table containing data """ column_name_mapping = {} column_name_mapping['X1'] = 'v2ll' column_name_mapping['Y1'] = 'v3ll' column_name_mapping['X2'] = 'v2lr' column_name_mapping['Y2'] = 'v3lr' column_name_mapping['X3'] = 'v2ur' column_name_mapping['Y3'] = 'v3ur' column_name_mapping['X4'] = 'v2ul' column_name_mapping['Y4'] = 'v3ul' ifu_index = np.array([i for i, name in enumerate(aperture_table['AperName']) if 'MIRIFU_' in name]) table = copy.deepcopy(aperture_table[ifu_index]) table['V2Ref'] = table['v2ref'] table['V3Ref'] = table['v3ref'] # see IFU worksheet for axis in ['X', 'Y']: for index in [1, 2, 3, 4]: if axis == 'X': table['{}IdlVert{}'.format(axis, index)] = table['V2Ref'] \ - table[column_name_mapping['{}{}'.format(axis, index)]] elif axis == 'Y': table['{}IdlVert{}'.format(axis, index)] = table[ column_name_mapping['{}{}'.format(axis, index)]] \ - table['V3Ref'] return table csv_data = get_mirim_coefficients(miri_distortion_file, verbose=False) number_of_coefficients = len(csv_data['DET_OSS']['A']) polynomial_degree = polynomial.polynomial_degree(number_of_coefficients) # convert to column names in Calc worksheet for AperName in csv_data.keys(): csv_data[AperName]['dx'] = csv_data[AperName]['Xref'] csv_data[AperName]['dy'] = csv_data[AperName]['Yref'] csv_data[AperName]['dxIdl'] = csv_data[AperName]['Xref_inv'] csv_data[AperName]['dyIdl'] = csv_data[AperName]['Yref_inv'] k = 0 for i in range(polynomial_degree + 1): for j in np.arange(i + 1): csv_data[AperName]['Sci2IdlX{:d}{:d}'.format(i, j)] = csv_data[AperName]['A'][k] csv_data[AperName]['Sci2IdlY{:d}{:d}'.format(i, j)] = csv_data[AperName]['B'][k] csv_data[AperName]['Idl2SciX{:d}{:d}'.format(i, j)] = csv_data[AperName]['C'][k] csv_data[AperName]['Idl2SciY{:d}{:d}'.format(i, j)] = csv_data[AperName]['D'][k] k += 1 # get IFU aperture definitions slice_table = extract_ifu_data(siaf_aperture_definitions) idlvert_attributes = ['XIdlVert{}'.format(i) for i in [1, 2, 3, 4]] + [ 'YIdlVert{}'.format(i) for i in [1, 2, 3, 4]] aperture_dict = OrderedDict() aperture_name_list = siaf_aperture_definitions['AperName'].tolist() for aperture_index, AperName in enumerate(aperture_name_list): # new aperture to be constructed aperture = pysiaf.JwstAperture() aperture.AperName = AperName aperture.InstrName = siaf_detector_parameters['InstrName'][0].upper() # index in the aperture definition table aperture_definitions_index = siaf_aperture_definitions['AperName'].tolist().index(AperName) aperture.AperShape = siaf_detector_parameters['AperShape'][0] # Retrieve basic aperture parameters from definition files for attribute in 'XDetRef YDetRef AperType XSciSize YSciSize XSciRef YSciRef'.split(): value = siaf_aperture_definitions[attribute][aperture_definitions_index] if np.ma.is_masked(value): value = None setattr(aperture, attribute, value) if aperture.AperType not in ['COMPOUND', 'SLIT']: for attribute in 'XDetSize YDetSize'.split(): setattr(aperture, attribute, siaf_detector_parameters[attribute][0]) aperture.DDCName = 'not set' aperture.Comment = None aperture.UseAfterDate = '2014-01-01' master_aperture_name = 'MIRIM_FULL' # process master apertures if aperture.AperType not in ['COMPOUND', 'SLIT']: if aperture.AperType == 'OSS': aperture.VIdlParity = 1 aperture.DetSciYAngle = 0 aperture.DetSciParity = 1 csv_aperture_name = 'DET_OSS' else: detector_layout_index = detector_layout['AperName'].tolist().index(master_aperture_name) for attribute in 'DetSciYAngle DetSciParity VIdlParity'.split(): setattr(aperture, attribute, detector_layout[attribute][detector_layout_index]) # this is the name given to the pseudo-aperture in the Calc worksheet csv_aperture_name = 'DET_DMF' aperture.Sci2IdlDeg = polynomial_degree dx = aperture.XDetRef - csv_data[csv_aperture_name]['dx'] dy = aperture.YDetRef - csv_data[csv_aperture_name]['dy'] csv_data[csv_aperture_name]['A_shifted'] = polynomial.shift_coefficients( csv_data[csv_aperture_name]['A'], dx, dy, verbose=False) csv_data[csv_aperture_name]['B_shifted'] = polynomial.shift_coefficients( csv_data[csv_aperture_name]['B'], dx, dy, verbose=False) # apply polynomial to get reference location in ideal plane dxIdl = polynomial.poly(csv_data[csv_aperture_name]['A'], dx, dy, order=polynomial_degree) dyIdl = polynomial.poly(csv_data[csv_aperture_name]['B'], dx, dy, order=polynomial_degree) csv_data[csv_aperture_name]['C_shifted'] = polynomial.shift_coefficients( csv_data[csv_aperture_name]['C'], dxIdl, dyIdl, verbose=False) csv_data[csv_aperture_name]['D_shifted'] = polynomial.shift_coefficients( csv_data[csv_aperture_name]['D'], dxIdl, dyIdl, verbose=False) # set 00 coefficients to zero for coefficient_name in ['{}_shifted'.format(c) for c in 'A B C D'.split()]: csv_data[csv_aperture_name][coefficient_name][0] = 0. k = 0 for i in range(polynomial_degree + 1): for j in np.arange(i + 1): setattr(aperture, 'Sci2IdlX{:d}{:d}'.format(i, j), csv_data[csv_aperture_name]['A_shifted'][k]) setattr(aperture, 'Sci2IdlY{:d}{:d}'.format(i, j), csv_data[csv_aperture_name]['B_shifted'][k]) setattr(aperture, 'Idl2SciX{:d}{:d}'.format(i, j), csv_data[csv_aperture_name]['C_shifted'][k]) setattr(aperture, 'Idl2SciY{:d}{:d}'.format(i, j), csv_data[csv_aperture_name]['D_shifted'][k]) k += 1 aperture.V3SciYAngle = csv_data[csv_aperture_name]['yAngle'] aperture.V3SciXAngle = csv_data[csv_aperture_name]['xAngle'] aperture.V3IdlYAngle = aperture.V3SciYAngle aperture.V2Ref = csv_data[csv_aperture_name]['Xref_inv'] + aperture.VIdlParity * dxIdl * np.cos(np.deg2rad(aperture.V3IdlYAngle)) + dyIdl * np.sin(np.deg2rad(aperture.V3IdlYAngle)) aperture.V3Ref = csv_data[csv_aperture_name]['Yref_inv'] - aperture.VIdlParity * dxIdl * np.sin(np.deg2rad(aperture.V3IdlYAngle)) + dyIdl * np.cos(np.deg2rad(aperture.V3IdlYAngle)) # overwrite V3IdlYAngle if set in definition files for attribute in 'V3IdlYAngle'.split(): value = siaf_aperture_definitions[attribute][aperture_definitions_index] if np.ma.is_masked(value) is False: setattr(aperture, attribute, value) aperture.complement() elif AperName in slice_table['AperName']: slice_index = slice_table['AperName'].tolist().index(AperName) for attribute in 'V2Ref V3Ref V3IdlYAngle'.split() + idlvert_attributes: # setattr(aperture, attribute, slice_table[attribute][slice_index]) aperture.AperShape = siaf_detector_parameters['AperShape'][0] aperture.VIdlParity = -1 elif AperName == 'MIRIM_SLIT': # get MIRIM_SLIT definitions from source_file mirim_slit_definitions = copy.deepcopy(siaf_aperture_definitions[aperture_index]) aperture.V2Ref = mirim_slit_definitions['v2ref'] aperture.V3Ref = mirim_slit_definitions['v3ref'] for attribute_name in 'VIdlParity V3IdlYAngle'.split(): setattr(aperture, attribute_name, mirim_slit_definitions[attribute_name]) # the mapping is different from above because now we are treating this as 'true' v2v3 and transform to idl column_name_mapping = {} column_name_mapping['X1'] = 'v2ll' column_name_mapping['Y1'] = 'v3ll' column_name_mapping['X4'] = 'v2lr' column_name_mapping['Y4'] = 'v3lr' column_name_mapping['X3'] = 'v2ur' column_name_mapping['Y3'] = 'v3ur' column_name_mapping['X2'] = 'v2ul' column_name_mapping['Y2'] = 'v3ul' for index in [1, 2, 3, 4]: x_idl, y_idl = aperture.tel_to_idl(mirim_slit_definitions[column_name_mapping['{}{}'.format('X', index)]], mirim_slit_definitions[column_name_mapping['{}{}'.format('Y', index)]]) setattr(aperture, '{}IdlVert{}'.format('X', index), x_idl) setattr(aperture, '{}IdlVert{}'.format('Y', index), y_idl) aperture_dict[AperName] = aperture aperture_dict = OrderedDict(sorted(aperture_dict.items(), key=lambda t: aperture_name_list.index(t[0]))) # third pass to set DDCNames apertures, which depend on other apertures ddc_siaf_aperture_names = np.array([key for key in ddc_apername_mapping.keys()]) ddc_v2 = np.array( [aperture_dict[aperture_name].V2Ref for aperture_name in ddc_siaf_aperture_names]) ddc_v3 = np.array( [aperture_dict[aperture_name].V3Ref for aperture_name in ddc_siaf_aperture_names]) for AperName in aperture_name_list: separation_tel_from_ddc_aperture = np.sqrt( (aperture_dict[AperName].V2Ref - ddc_v2) ** 2 + ( aperture_dict[AperName].V3Ref - ddc_v3) ** 2) aperture_dict[AperName].DDCName = ddc_apername_mapping[ ddc_siaf_aperture_names[np.argmin(separation_tel_from_ddc_aperture)]] ###################################### # SIAF content generation finished ###################################### aperture_collection = pysiaf.ApertureCollection(aperture_dict) emulate_delivery = True if emulate_delivery: pre_delivery_dir = os.path.join(JWST_DELIVERY_DATA_ROOT, instrument) if not os.path.isdir(pre_delivery_dir): os.makedirs(pre_delivery_dir) # write the SIAF files to disk filenames = pysiaf.iando.write.write_jwst_siaf(aperture_collection, basepath=pre_delivery_dir, file_format=['xml', 'xlsx']) pre_delivery_siaf = pysiaf.Siaf(instrument, basepath=pre_delivery_dir) compare_against_prd = True compare_against_cdp7b = True print('\nRunning regression test of pre_delivery_siaf against test_data:') test_miri.test_against_test_data(siaf=pre_delivery_siaf, verbose=True) for compare_to in [pysiaf.JWST_PRD_VERSION]: if compare_to == 'cdp7b': ref_siaf = pysiaf.Siaf(instrument, filename=os.path.join(pre_delivery_dir, 'MIRI_SIAF_cdp7b.xml')) else: # compare new SIAF with PRD version ref_siaf = pysiaf.Siaf(instrument) tags = {'reference': compare_to, 'comparison': 'pre_delivery'} compare.compare_siaf(pre_delivery_siaf, reference_siaf_input=ref_siaf, fractional_tolerance=1e-6, report_dir=pre_delivery_dir, tags=tags) compare.compare_transformation_roundtrip(pre_delivery_siaf, reference_siaf_input=ref_siaf, tags=tags, report_dir=pre_delivery_dir) compare.compare_inspection_figures(pre_delivery_siaf, reference_siaf_input=ref_siaf, report_dir=pre_delivery_dir, tags=tags, xlimits=(-360, -520), ylimits=(-440, -300)) # run some tests on the new SIAF from pysiaf.tests import test_aperture print('\nRunning aperture_transforms test for pre_delivery_siaf') test_aperture.test_jwst_aperture_transforms([pre_delivery_siaf], verbose=False, threshold=0.04) print('\nRunning aperture_vertices test for pre_delivery_siaf') test_aperture.test_jwst_aperture_vertices([pre_delivery_siaf]) else: test_dir = os.path.join(JWST_TEMPORARY_DATA_ROOT, instrument, 'generate_test') if not os.path.isdir(test_dir): os.makedirs(test_dir) # write the SIAFXML to disk [filename] = pysiaf.iando.write.write_jwst_siaf(aperture_collection, basepath=test_dir, file_format=['xml']) print('SIAFXML written in {}'.format(filename))
36.472574
188
0.620006
583eb5cc625a3c1ee146ecec88ec983f9c074816
5,029
py
Python
gammapy/image/tests/test_profile.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/image/tests/test_profile.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
gammapy/image/tests/test_profile.py
watsonjj/gammapy
8d2498c8f63f73d1fbe4ba81ab02d9e72552df67
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose from astropy.table import Table from astropy import units as u from astropy.coordinates import Angle, SkyCoord from ...utils.testing import assert_quantity_allclose from ...utils.testing import requires_dependency, mpl_plot_check from ...maps import WcsNDMap, WcsGeom from ..profile import compute_binning, ImageProfile, ImageProfileEstimator @requires_dependency("pandas") def test_compute_binning(): data = [1, 3, 2, 2, 4] bin_edges = compute_binning(data, n_bins=3, method="equal width") assert_allclose(bin_edges, [1, 2, 3, 4]) bin_edges = compute_binning(data, n_bins=3, method="equal entries") # TODO: create test-cases that have been verified by hand here! assert_allclose(bin_edges, [1, 2, 2.66666667, 4]) @pytest.fixture(scope="session") def checkerboard_image(): nxpix, nypix = 10, 6 # set up data as a checkerboard of 0.5 and 1.5, so that the mean and sum # are not compeletely trivial to compute data = 1.5 * np.ones((nypix, nxpix)) data[slice(0, nypix + 1, 2), slice(0, nxpix + 1, 2)] = 0.5 data[slice(1, nypix + 1, 2), slice(1, nxpix + 1, 2)] = 0.5 geom = WcsGeom.create(npix=(nxpix, nypix), coordsys="GAL", binsz=0.02) return WcsNDMap(geom=geom, data=data, unit="cm-2 s-1") @pytest.fixture(scope="session") def cosine_profile(): table = Table() table["x_ref"] = np.linspace(-90, 90, 11) * u.deg table["profile"] = np.cos(table["x_ref"].to("rad")) * u.Unit("cm-2 s-1") table["profile_err"] = 0.1 * table["profile"] return ImageProfile(table) class TestImageProfileEstimator: def test_lat_profile_sum(self, checkerboard_image): p = ImageProfileEstimator(axis="lat", method="sum") profile = p.run(checkerboard_image) desired = 10 * np.ones(6) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_lon_profile_sum(self, checkerboard_image): p = ImageProfileEstimator(axis="lon", method="sum") profile = p.run(checkerboard_image) desired = 6 * np.ones(10) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_radial_profile_sum(self, checkerboard_image): center = SkyCoord(0, 0, unit="deg", frame="galactic") p = ImageProfileEstimator(axis="radial", method="sum", center=center) profile = p.run(checkerboard_image) desired = [4.0, 8.0, 20.0, 12.0, 12.0] * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_lat_profile_mean(self, checkerboard_image): p = ImageProfileEstimator(axis="lat", method="mean") profile = p.run(checkerboard_image) desired = np.ones(6) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_lon_profile_mean(self, checkerboard_image): p = ImageProfileEstimator(axis="lon", method="mean") profile = p.run(checkerboard_image) desired = np.ones(10) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_x_edges_lat(self, checkerboard_image): x_edges = Angle(np.linspace(-0.06, 0.06, 4), "deg") p = ImageProfileEstimator(x_edges=x_edges, axis="lat", method="sum") profile = p.run(checkerboard_image) desired = 20 * np.ones(3) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) def test_x_edges_lon(self, checkerboard_image): x_edges = Angle(np.linspace(-0.1, 0.1, 6), "deg") p = ImageProfileEstimator(x_edges=x_edges, axis="lon", method="sum") profile = p.run(checkerboard_image) desired = 12 * np.ones(5) * u.Unit("cm-2 s-1") assert_quantity_allclose(profile.profile, desired) class TestImageProfile: def test_normalize(self, cosine_profile): normalized = cosine_profile.normalize(mode="integral") profile = normalized.profile assert_quantity_allclose(profile.sum(), 1 * u.Unit("cm-2 s-1")) normalized = cosine_profile.normalize(mode="peak") profile = normalized.profile assert_quantity_allclose(profile.max(), 1 * u.Unit("cm-2 s-1")) def test_profile_x_edges(self, cosine_profile): assert_quantity_allclose(cosine_profile.x_ref.sum(), 0 * u.deg) @pytest.mark.parametrize("kernel", ["gauss", "box"]) def test_smooth(self, cosine_profile, kernel): # smoothing should preserve the mean desired_mean = cosine_profile.profile.mean() smoothed = cosine_profile.smooth(kernel, radius=3) assert_quantity_allclose(smoothed.profile.mean(), desired_mean) # smoothing should decrease errors assert smoothed.profile_err.mean() < cosine_profile.profile_err.mean() @requires_dependency("matplotlib") def test_peek(self, cosine_profile): with mpl_plot_check(): cosine_profile.peek()
38.098485
78
0.678664
f57524c187398072f4289e3a2754ca8af21b0657
26,246
py
Python
dataloader.py
hardik0/CTracker
a09d579c3621383280111f4771c0340fdcd72020
[ "Apache-2.0" ]
null
null
null
dataloader.py
hardik0/CTracker
a09d579c3621383280111f4771c0340fdcd72020
[ "Apache-2.0" ]
null
null
null
dataloader.py
hardik0/CTracker
a09d579c3621383280111f4771c0340fdcd72020
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function, division import sys import os import torch import numpy as np import random import cv2 import csv from six import raise_from from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torch.utils.data.sampler import Sampler import skimage.io import skimage.transform import skimage.color import skimage from PIL import Image, ImageEnhance RGB_MEAN = [0.485, 0.456, 0.406] RGB_STD = [0.229, 0.224, 0.225] class CSVDataset(Dataset): """CSV dataset.""" def __init__(self, root_path, train_file, class_list, transform=None): """ Args: train_file (string): CSV file with training annotations annotations (string): CSV file with class list test_file (string, optional): CSV file with testing annotations """ self.train_file = train_file self.class_list = class_list self.transform = transform self.root_path = root_path # parse the provided class file try: with self._open_for_csv(self.class_list) as file: self.classes = self.load_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise_from(ValueError('invalid CSV class file: {}: {}'.format(self.class_list, e)), None) self.labels = {} for key, value in self.classes.items(): self.labels[value] = key # csv with img_path, obj_id, x1, y1, x2, y2, class_name try: with self._open_for_csv(self.train_file) as file: self.image_data = self._read_annotations(csv.reader(file, delimiter=','), self.classes) except ValueError as e: raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(self.train_file, e)), None) self.image_names = list(self.image_data.keys()) self.name2video_frames = dict() self.image_name_prefix = list() for image_name in self.image_names: self.image_name_prefix.append(image_name[0:-len(image_name.split('/')[-1].split('_')[-1])]) self.image_name_prefix = set(self.image_name_prefix) print('Total video count: {}'.format(len(self.image_name_prefix))) for image_name in self.image_names: cur_prefix = image_name[0:-len(image_name.split('/')[-1].split('_')[-1])] if cur_prefix not in self.name2video_frames: self.name2video_frames[cur_prefix] = 1 else: self.name2video_frames[cur_prefix] = self.name2video_frames[cur_prefix] + 1 def _extract_frame_index(self, image_name): suffix_name = image_name.split('/')[-1].split('_')[-1] return int(float(suffix_name.split('.')[0])) def _get_random_surroud_name(self, image_name, max_diff=3, ignore_equal=True, pos_only=True): suffix_name = image_name.split('/')[-1].split('_')[-1] prefix = image_name[0:-len(suffix_name)] cur_index = int(float(suffix_name.split('.')[0])) total_number = self.name2video_frames[prefix] if total_number < 2: return image_name next_index = cur_index while True: range_low = max(1, cur_index - max_diff) range_high = min(cur_index + max_diff, total_number) if pos_only: range_low = cur_index if ignore_equal: range_low = range_low + 1 if cur_index == total_number: return image_name next_index = random.randint(range_low, range_high) if ignore_equal: if next_index == cur_index: continue break return prefix + '{0:06}.'.format(next_index) + suffix_name.split('.')[-1] def _extract_name_prefix(self, image_name): return image_name[0:-len(image_name.split('/')[-1].split('_')[-1])] def _parse(self, value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _open_for_csv(self, path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') def load_classes(self, csv_reader): result = {} for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = self._parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def __len__(self): return len(self.image_names) def __getitem__(self, idx): while True: try: img = self.load_image(idx) next_name = self._get_random_surroud_name(self.image_names[idx]) img_next = self.load_image_by_name(next_name) annot = self.load_annotations(idx) annot_next = self.load_annotationse_by_name(next_name) if (annot.shape[0] < 1) or (annot_next.shape[0] < 1): idx = random.randrange(0, len(self.image_names)) continue except FileNotFoundError: print ('FileNotFoundError in process image.') idx = random.randrange(0, len(self.image_names)) continue break if np.random.rand() < 0.5: sample = {'img': img, 'annot': annot, 'img_next': img_next, 'annot_next': annot_next} else: sample = {'img': img_next, 'annot': annot_next, 'img_next': img, 'annot_next': annot} if self.transform: sample = self.transform(sample) return sample def load_image_by_name(self, image_name): img = skimage.io.imread(image_name) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img def load_image(self, image_index): img = skimage.io.imread(self.image_names[image_index]) if len(img.shape) == 2: img = skimage.color.gray2rgb(img) return img def load_annotationse_by_name(self, image_name): # get ground truth annotations annotation_list = self.image_data[image_name] annotations = np.zeros((0, 6)) # some images appear to miss annotations (like image with id 257034) if len(annotation_list) == 0: return annotations # parse annotations for idx, a in enumerate(annotation_list): # some annotations have basically no width / height, skip them x1 = a['x1'] x2 = a['x2'] y1 = a['y1'] y2 = a['y2'] obj_id = a['obj_id'] if (x2-x1) < 1 or (y2-y1) < 1: continue annotation = np.zeros((1, 6)) annotation[0, 0] = x1 annotation[0, 1] = y1 annotation[0, 2] = x2 annotation[0, 3] = y2 annotation[0, 4] = self.name_to_label(a['class']) annotation[0, 5] = obj_id annotations = np.append(annotations, annotation, axis=0) return annotations def load_annotations(self, image_index): # get ground truth annotations annotation_list = self.image_data[self.image_names[image_index]] annotations = np.zeros((0, 6)) # some images appear to miss annotations (like image with id 257034) if len(annotation_list) == 0: return annotations # parse annotations for idx, a in enumerate(annotation_list): # some annotations have basically no width / height, skip them x1 = a['x1'] x2 = a['x2'] y1 = a['y1'] y2 = a['y2'] obj_id = a['obj_id'] if (x2-x1) < 1 or (y2-y1) < 1: continue annotation = np.zeros((1, 6)) annotation[0, 0] = x1 annotation[0, 1] = y1 annotation[0, 2] = x2 annotation[0, 3] = y2 annotation[0, 4] = self.name_to_label(a['class']) annotation[0, 5] = obj_id annotations = np.append(annotations, annotation, axis=0) return annotations def _read_annotations(self, csv_reader, classes): result = {} for line, row in enumerate(csv_reader): line += 1 try: img_file, obj_id, x1, y1, x2, y2, class_name = row[:7] except ValueError: raise_from(ValueError('line {}: format should be \'img_file,obj_id,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''.format(line)), None) img_file = os.path.join(self.root_path, img_file.strip()) if img_file not in result: result[img_file] = [] class_name = class_name.strip() # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = self._parse(float(x1), int, 'line {}: malformed x1: {{}}'.format(line)) y1 = self._parse(float(y1), int, 'line {}: malformed y1: {{}}'.format(line)) x2 = self._parse(float(x2), int, 'line {}: malformed x2: {{}}'.format(line)) y2 = self._parse(float(y2), int, 'line {}: malformed y2: {{}}'.format(line)) # Check that the bounding box is valid. if x2 <= x1: raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1)) if y2 <= y1: raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1)) # check if the current class name is correctly present if class_name not in classes: raise ValueError('line {}: unknown class name: \'{}\' (classes: {})'.format(line, class_name, classes)) result[img_file].append({'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': class_name, 'obj_id': obj_id}) return result def name_to_label(self, name): return self.classes[name] def label_to_name(self, label): return self.labels[label] def num_classes(self): return max(self.classes.values()) + 1 def image_aspect_ratio(self, image_index): image = Image.open(self.image_names[image_index]) return float(image.width) / float(image.height) def collater(data): imgs = [s['img'] for s in data] annots = [s['annot'] for s in data] imgs_next = [s['img_next'] for s in data] annots_next = [s['annot_next'] for s in data] widths = [int(s.shape[1]) for s in imgs] heights = [int(s.shape[0]) for s in imgs] batch_size = len(imgs) max_width = np.array(widths).max() max_height = np.array(heights).max() padded_imgs = torch.zeros(batch_size, max_height, max_width, 3) padded_imgs_next = torch.zeros(batch_size, max_height, max_width, 3) for i in range(batch_size): img = imgs[i] padded_imgs[i, :int(img.shape[0]), :int(img.shape[1]), :] = img img_next = imgs_next[i] padded_imgs_next[i, :int(img_next.shape[0]), :int(img_next.shape[1]), :] = img_next max_num_annots = max(annot.shape[0] for annot in annots) max_num_annots_next = max(annot.shape[0] for annot in annots_next) max_num_annots = max(max_num_annots, max_num_annots_next) if max_num_annots > 0: annot_padded = torch.ones((len(annots), max_num_annots, 6)) * -1 if max_num_annots > 0: for idx, annot in enumerate(annots): if annot.shape[0] > 0: annot_padded[idx, :annot.shape[0], :] = annot else: annot_padded = torch.ones((len(annots), 1, 6)) * -1 if max_num_annots > 0: annot_padded_next = torch.ones((len(annots_next), max_num_annots, 6)) * -1 if max_num_annots > 0: for idx, annot in enumerate(annots_next): if annot.shape[0] > 0: annot_padded_next[idx, :annot.shape[0], :] = annot else: annot_padded_next = torch.ones((len(annots_next), 1, 6)) * -1 padded_imgs = padded_imgs.permute(0, 3, 1, 2) padded_imgs_next = padded_imgs_next.permute(0, 3, 1, 2) return {'img': padded_imgs, 'annot': annot_padded, 'img_next': padded_imgs_next, 'annot_next': annot_padded_next} def intersect(box_a, box_b): max_xy = np.minimum(box_a[:, 2:], box_b[2:]) min_xy = np.maximum(box_a[:, :2], box_b[:2]) inter = np.clip((max_xy - min_xy + 1), a_min=0, a_max=np.inf) return inter[:, 0] * inter[:, 1] def jaccard_numpy(box_a, box_b): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: Multiple bounding boxes, Shape: [num_boxes,4] box_b: Single bounding box, Shape: [4] Return: jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]] """ inter = intersect(box_a, box_b) area_a = ((box_a[:, 2]-box_a[:, 0] + 1) * (box_a[:, 3]-box_a[:, 1] + 1)) # [A,B] area_b = ((box_b[2]-box_b[0] + 1) * (box_b[3]-box_b[1] + 1)) # [A,B] union = area_a + area_b - inter return inter / union # [A,B] def overlap_numpy(box_a, box_b): inter = intersect(box_a, box_b) area_a = ((box_a[:, 2]-box_a[:, 0] + 1) * (box_a[:, 3]-box_a[:, 1] + 1)) # [A,B] return inter / area_a # [A,B] class Resizer(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, min_side=608, max_side=1024): return sample image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next'] rows, cols, cns = image.shape smallest_side = min(rows, cols) # rescale the image so the smallest side is min_side scale = min_side / smallest_side # check if the largest side is now greater than max_side, which can happen # when images have a large aspect ratio largest_side = max(rows, cols) if largest_side * scale > max_side: scale = max_side / largest_side # resize the image with the computed scale image = skimage.transform.resize(image, (int(round(rows*scale)), int(round((cols*scale))))) image_next = skimage.transform.resize(image_next, (int(round(rows*scale)), int(round((cols*scale))))) rows, cols, cns = image.shape pad_w = 32 - rows % 32 pad_h = 32 - cols % 32 new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32) new_image[:rows, :cols, :] = image.astype(np.float32) new_image_next = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32) new_image_next[:rows, :cols, :] = image_next.astype(np.float32) annots[:, :4] *= scale annots_next[:, :4] *= scale return {'img': torch.from_numpy(new_image), 'annot': torch.from_numpy(annots), 'img_next': torch.from_numpy(new_image_next), 'annot_next': torch.from_numpy(annots_next), 'scale': scale} class Augmenter(object): """Convert ndarrays in sample to Tensors.""" def __call__(self, sample, flip_x=0.5): if np.random.rand() < flip_x: image, annots = sample['img'], sample['annot'] image_next, annots_next = sample['img_next'], sample['annot_next'] image = image[:, ::-1, :] image_next = image_next[:, ::-1, :] rows, cols, _ = image.shape rows_next, cols_next, _ = image_next.shape assert (rows == rows_next) and (cols == cols_next), 'size must be equal between adjacent images pair.' x1 = annots[:, 0].copy() x2 = annots[:, 2].copy() x_tmp = x1.copy() annots[:, 0] = cols - x2 annots[:, 2] = cols - x_tmp # for next x1 = annots_next[:, 0].copy() x2 = annots_next[:, 2].copy() x_tmp = x1.copy() annots_next[:, 0] = cols - x2 annots_next[:, 2] = cols - x_tmp sample = {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next} return sample class Normalizer(object): def __init__(self): self.mean = np.array([[RGB_MEAN]]) self.std = np.array([[RGB_STD]]) def __call__(self, sample): image, annots = sample['img'], sample['annot'] image_next, annots_next = sample['img_next'], sample['annot_next'] return {'img':torch.from_numpy((image.astype(np.float32) / 255.0 - self.mean) / self.std), 'annot': torch.from_numpy(annots), 'img_next':torch.from_numpy((image_next.astype(np.float32) / 255.0-self.mean)/self.std), 'annot_next': torch.from_numpy(annots_next)} class UnNormalizer(object): def __init__(self, mean=None, std=None): if mean == None: self.mean = RGB_MEAN else: self.mean = mean if std == None: self.std = RGB_STD else: self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) return tensor def random_brightness(img, img_next): prob = np.random.uniform(0, 1) if prob < 0.5: delta = np.random.uniform(-0.125, 0.125) + 1 img = ImageEnhance.Brightness(img).enhance(delta) img_next = ImageEnhance.Brightness(img_next).enhance(delta) return img, img_next def random_contrast(img, img_next): prob = np.random.uniform(0, 1) if prob < 0.5: delta = np.random.uniform(-0.5, 0.5) + 1 img = ImageEnhance.Contrast(img).enhance(delta) img_next = ImageEnhance.Contrast(img_next).enhance(delta) return img, img_next def random_saturation(img, img_next): prob = np.random.uniform(0, 1) if prob < 0.5: delta = np.random.uniform(-0.5, 0.5) + 1 img = ImageEnhance.Color(img).enhance(delta) img_next = ImageEnhance.Color(img_next).enhance(delta) return img, img_next def random_hue(img, img_next): prob = np.random.uniform(0, 1) if prob < 0.5: delta = np.random.uniform(-18, 18) img_hsv = np.array(img.convert('HSV')) img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta img = Image.fromarray(img_hsv, mode='HSV').convert('RGB') img_next_hsv = np.array(img_next.convert('HSV')) img_next_hsv[:, :, 0] = img_next_hsv[:, :, 0] + delta img_next = Image.fromarray(img_next_hsv, mode='HSV').convert('RGB') return img, img_next class PhotometricDistort(object): def __init__(self): pass def __call__(self, sample): image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next'] prob = np.random.uniform(0, 1) # Apply different distort order img = Image.fromarray(image) img_next = Image.fromarray(image_next) if prob > 0.5: img, img_next = random_brightness(img, img_next) img, img_next = random_contrast(img, img_next) img, img_next = random_saturation(img, img_next) img, img_next = random_hue(img, img_next) else: img, img_next = random_brightness(img, img_next) img, img_next = random_saturation(img, img_next) img, img_next = random_hue(img, img_next) img, img_next = random_contrast(img, img_next) image = np.array(img) image_next = np.array(img_next) return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next} class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, img, image_next): for t in self.transforms: img, image_next = t(img, image_next) return img, image_next class RandomSampleCrop(object): def __init__(self): pass def __call__(self, sample): image, annots, image_next, annots_next = sample['img'], sample['annot'], sample['img_next'], sample['annot_next'] #print('crop1',image.dtype) height, width, _ = image.shape shorter_side = min(height, width) crop_size = np.random.uniform(0.3 * shorter_side, 0.8 * shorter_side) target_size = 512 if shorter_side < 384: target_size = 256 min_iou = 0.2 crop_success = False # max trails (10) for _ in range(20): left = np.random.uniform(0, width - crop_size) top = np.random.uniform(0, height - crop_size) # convert to integer rect x1,y1,x2,y2 rect = np.array([int(left), int(top), int(left + crop_size), int(top + crop_size)]) # calculate IoU (jaccard overlap) b/t the cropped and gt boxes overlap = overlap_numpy(annots[:, :4], rect) overlap_next = overlap_numpy(annots_next[:, :4], rect) if overlap.max() < min_iou or overlap_next.max() < min_iou: continue crop_success = True image = image[rect[1]:rect[3], rect[0]:rect[2], :] image_next = image_next[rect[1]:rect[3], rect[0]:rect[2], :] annots = annots[overlap > min_iou, :].copy() annots_next = annots_next[overlap_next > min_iou, :].copy() annots[:, :2] -= rect[:2] annots[:, 2:4] -= rect[:2] annots_next[:, :2] -= rect[:2] annots_next[:, 2:4] -= rect[:2] #print('crop1',image.max()) expand_ratio = 1.0 if np.random.uniform(0, 1) > 0.75: height, width, depth = image.shape expand_ratio = random.uniform(1, 3) left = random.uniform(0, width * expand_ratio - width) top = random.uniform(0, height * expand_ratio - height) expand_image = np.zeros((int(height*expand_ratio), int(width*expand_ratio), depth), dtype=image.dtype) expand_image[:, :, :] = np.array([[RGB_MEAN]]) * 255.0 expand_image[int(top):int(top + height), int(left):int(left + width)] = image image = expand_image annots[:, :2] += (int(left), int(top)) annots[:, 2:4] += (int(left), int(top)) expand_next_image = np.zeros( (int(height*expand_ratio), int(width*expand_ratio), depth), dtype=image_next.dtype) expand_next_image[:, :, :] = np.array([[RGB_MEAN]]) * 255.0 expand_next_image[int(top):int(top + height), int(left):int(left + width)] = image_next image_next = expand_next_image annots_next[:, :2] += (int(left), int(top)) annots_next[:, 2:4] += (int(left), int(top)) # resize the image with the computed scale # resize the image with the computed scale image = (255.0 * skimage.transform.resize(image, (target_size, target_size))).astype(np.uint8) image_next = (255.0 * skimage.transform.resize(image_next, (target_size, target_size))).astype(np.uint8) annots[:, :4] *= (target_size / (crop_size * expand_ratio)) annots_next[:, :4] *= (target_size / (crop_size * expand_ratio)) #print('crop2',image.max()) return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next} if not crop_success: image = (255.0 * skimage.transform.resize(image, (height // 2, width // 2))).astype(np.uint8) image_next = (255.0 * skimage.transform.resize(image_next, (height // 2, width // 2))).astype(np.uint8) annots[:, :4] *= 0.5 annots_next[:, :4] *= 0.5 return {'img': image, 'annot': annots, 'img_next': image_next, 'annot_next': annots_next} class AspectRatioBasedSampler(Sampler): def __init__(self, data_source, batch_size, drop_last): self.data_source = data_source self.batch_size = batch_size self.drop_last = drop_last self.groups = self.group_images() def __iter__(self): random.shuffle(self.groups) for group in self.groups: yield group def __len__(self): if self.drop_last: return len(self.data_source) // self.batch_size else: return (len(self.data_source) + self.batch_size - 1) // self.batch_size def group_images(self): # determine the order of the images order = list(range(len(self.data_source))) order.sort(key=lambda x: self.data_source.image_aspect_ratio(x)) # divide into groups, one group = one batch return [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in range(0, len(order), self.batch_size)]
37.494286
267
0.578031
dcfa1f104275238d4f223acb55c16023cd01b96d
3,100
py
Python
edward2_autoreparam/models_test.py
kinoute/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
11
2020-01-29T07:25:04.000Z
2022-03-05T16:01:21.000Z
edward2_autoreparam/models_test.py
zhangyuezjx/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
13
2020-01-28T22:19:53.000Z
2022-02-10T00:39:26.000Z
edward2_autoreparam/models_test.py
zhangyuezjx/google-research
4a59cab927579ea9722e43252c695de5da4eb5e2
[ "Apache-2.0" ]
2
2019-12-07T19:01:03.000Z
2020-03-19T16:53:04.000Z
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for edward2_autoreparam.models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow_probability import edward2 as ed from edward2_autoreparam import models class ModelsTest(tf.test.TestCase): def _sanity_check_conversion(self, model, model_args, observed, to_cp, to_ncp, make_to_cp): with ed.tape() as model_tape: model(*model_args) model_tape_ = self.evaluate(model_tape) example_params = list(model_tape_.values())[:-1] # Test that `make_to_cp`, when given the centered parameterization as the # source, generates the identity fn. param_names = [p for v in model_tape_.keys() for p in (v + '_a', v + '_b')] centered_parameterization = {p: 1. for p in param_names} identity_cp = make_to_cp(**centered_parameterization) example_params_copy = identity_cp(example_params) c1_ = self.evaluate(example_params_copy) c2_ = self.evaluate(example_params_copy) self.assertAllClose(c1_, c2_) self.assertAllClose(c1_, example_params) # Test that `to_ncp` and `to_cp` are deterministic and consistent ncp_params = to_ncp(example_params) cp_params = to_cp(ncp_params) ncp_params_, cp_params_ = self.evaluate((ncp_params, cp_params)) ncp_params2_, cp_params2_ = self.evaluate((ncp_params, cp_params)) # Test determinism self.assertAllClose(ncp_params_, ncp_params2_) self.assertAllClose(cp_params_, cp_params2_) # Test round-trip consistency: self.assertAllClose(cp_params_, example_params) def test_german_credit_lognormal(self): (model, model_args, observed, to_cp, to_ncp, make_to_cp) = models.get_german_credit_lognormalcentered() self._sanity_check_conversion(model, model_args, observed, to_cp, to_ncp, make_to_cp) def test_radon_stddvs(self): (model, model_args, observed, to_cp, to_ncp, make_to_cp) = models.get_radon_model_stddvs() self._sanity_check_conversion(model, model_args, observed, to_cp, to_ncp, make_to_cp) def test_eight_schools(self): (model, model_args, observed, to_cp, to_ncp, make_to_cp) = models.get_eight_schools() self._sanity_check_conversion(model, model_args, observed, to_cp, to_ncp, make_to_cp) if __name__ == '__main__': tf.test.main()
36.046512
80
0.721935
0b02477973b984231866fa9147ad9bec4c2a9325
3,112
py
Python
contrib/zmq/zmq_sub.py
minblock/generalcoin
b3b51979823f77e54eb548df39e1b8037e480f50
[ "MIT" ]
null
null
null
contrib/zmq/zmq_sub.py
minblock/generalcoin
b3b51979823f77e54eb548df39e1b8037e480f50
[ "MIT" ]
null
null
null
contrib/zmq/zmq_sub.py
minblock/generalcoin
b3b51979823f77e54eb548df39e1b8037e480f50
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ ZMQ example using python3's asyncio Generalcoind should be started with the command line arguments: generalcoind -testnet -daemon \ -zmqpubrawtx=tcp://127.0.0.1:28332 \ -zmqpubrawblock=tcp://127.0.0.1:28332 \ -zmqpubhashtx=tcp://127.0.0.1:28332 \ -zmqpubhashblock=tcp://127.0.0.1:28332 We use the asyncio library here. `self.handle()` installs itself as a future at the end of the function. Since it never returns with the event loop having an empty stack of futures, this creates an infinite loop. An alternative is to wrap the contents of `handle` inside `while True`. A blocking example using python 2.7 can be obtained from the git history: https://github.com/bitcoin/bitcoin/blob/37a7fe9e440b83e2364d5498931253937abe9294/contrib/zmq/zmq_sub.py """ import binascii import asyncio import zmq import zmq.asyncio import signal import struct import sys if (sys.version_info.major, sys.version_info.minor) < (3, 5): print("This example only works with Python 3.5 and greater") sys.exit(1) port = 28332 class ZMQHandler(): def __init__(self): self.loop = asyncio.get_event_loop() self.zmqContext = zmq.asyncio.Context() self.zmqSubSocket = self.zmqContext.socket(zmq.SUB) self.zmqSubSocket.setsockopt(zmq.RCVHWM, 0) self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "hashblock") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "hashtx") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "rawblock") self.zmqSubSocket.setsockopt_string(zmq.SUBSCRIBE, "rawtx") self.zmqSubSocket.connect("tcp://127.0.0.1:%i" % port) async def handle(self) : msg = await self.zmqSubSocket.recv_multipart() topic = msg[0] body = msg[1] sequence = "Unknown" if len(msg[-1]) == 4: msgSequence = struct.unpack('<I', msg[-1])[-1] sequence = str(msgSequence) if topic == b"hashblock": print('- HASH BLOCK ('+sequence+') -') print(binascii.hexlify(body)) elif topic == b"hashtx": print('- HASH TX ('+sequence+') -') print(binascii.hexlify(body)) elif topic == b"rawblock": print('- RAW BLOCK HEADER ('+sequence+') -') print(binascii.hexlify(body[:80])) elif topic == b"rawtx": print('- RAW TX ('+sequence+') -') print(binascii.hexlify(body)) # schedule ourselves to receive the next message asyncio.ensure_future(self.handle()) def start(self): self.loop.add_signal_handler(signal.SIGINT, self.stop) self.loop.create_task(self.handle()) self.loop.run_forever() def stop(self): self.loop.stop() self.zmqContext.destroy() daemon = ZMQHandler() daemon.start()
36.186047
107
0.645244
c7c3373fb583f09ad9b98bbad30cc9806da172a5
1,295
py
Python
sdk/core/azure-core/tests/async_tests/test_rest_headers_async.py
navali-msft/azure-sdk-for-python
716a7d1f4a115a74243fd399fa2e6d08c81a9aeb
[ "MIT" ]
null
null
null
sdk/core/azure-core/tests/async_tests/test_rest_headers_async.py
navali-msft/azure-sdk-for-python
716a7d1f4a115a74243fd399fa2e6d08c81a9aeb
[ "MIT" ]
null
null
null
sdk/core/azure-core/tests/async_tests/test_rest_headers_async.py
navali-msft/azure-sdk-for-python
716a7d1f4a115a74243fd399fa2e6d08c81a9aeb
[ "MIT" ]
null
null
null
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE.txt in the project root for # license information. # ------------------------------------------------------------------------- import pytest from azure.core.rest import HttpRequest @pytest.mark.asyncio async def test_response_headers_case_insensitive(client): request = HttpRequest("GET", "/basic/headers") response = await client.send_request(request) response.raise_for_status() assert ( response.headers["lowercase-header"] == response.headers["LOWERCASE-HEADER"] == response.headers["Lowercase-Header"] == response.headers["lOwErCasE-HeADer"] == "lowercase" ) assert ( response.headers["allcaps-header"] == response.headers["ALLCAPS-HEADER"] == response.headers["Allcaps-Header"] == response.headers["AlLCapS-HeADer"] == "ALLCAPS" ) assert ( response.headers["camelcase-header"] == response.headers["CAMELCASE-HEADER"] == response.headers["CamelCase-Header"] == response.headers["cAMeLCaSE-hEadER"] == "camelCase" ) return response
35
75
0.580695
ef89793fd73dc996f442913f60e0920545d83d5b
3,231
py
Python
tensorflow/python/keras/applications/__init__.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
1
2019-11-27T16:08:48.000Z
2019-11-27T16:08:48.000Z
tensorflow/python/keras/applications/__init__.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
null
null
null
tensorflow/python/keras/applications/__init__.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras Applications are canned architectures with pre-trained weights.""" # pylint: disable=g-import-not-at-top # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import keras_applications from tensorflow.python.keras import backend from tensorflow.python.keras import engine from tensorflow.python.keras import layers from tensorflow.python.keras import models from tensorflow.python.keras.utils import all_utils from tensorflow.python.util import tf_inspect def keras_modules_injection(base_fun): """Decorator injecting tf.keras replacements for Keras modules. Arguments: base_fun: Application function to decorate (e.g. `MobileNet`). Returns: Decorated function that injects keyword argument for the tf.keras modules required by the Applications. """ def wrapper(*args, **kwargs): kwargs['backend'] = backend if 'layers' not in kwargs: kwargs['layers'] = layers kwargs['models'] = models kwargs['utils'] = all_utils return base_fun(*args, **kwargs) return wrapper from tensorflow.python.keras.applications.densenet import DenseNet121 from tensorflow.python.keras.applications.densenet import DenseNet169 from tensorflow.python.keras.applications.densenet import DenseNet201 from tensorflow.python.keras.applications.imagenet_utils import decode_predictions from tensorflow.python.keras.applications.imagenet_utils import preprocess_input from tensorflow.python.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.python.keras.applications.inception_v3 import InceptionV3 from tensorflow.python.keras.applications.mobilenet import MobileNet from tensorflow.python.keras.applications.mobilenet_v2 import MobileNetV2 from tensorflow.python.keras.applications.nasnet import NASNetLarge from tensorflow.python.keras.applications.nasnet import NASNetMobile from tensorflow.python.keras.applications.resnet import ResNet50 from tensorflow.python.keras.applications.resnet import ResNet101 from tensorflow.python.keras.applications.resnet import ResNet152 from tensorflow.python.keras.applications.resnet_v2 import ResNet50V2 from tensorflow.python.keras.applications.resnet_v2 import ResNet101V2 from tensorflow.python.keras.applications.resnet_v2 import ResNet152V2 from tensorflow.python.keras.applications.vgg16 import VGG16 from tensorflow.python.keras.applications.vgg19 import VGG19 from tensorflow.python.keras.applications.xception import Xception
44.260274
86
0.798514
9fc1fa2954c3927d04dfb85add55596ac5f227c3
805
py
Python
Concurrency/codeSample/Part10_The_Multiprocessing_Module/countdownp2.py
Chyi341152/pyConPaper
851190d59f8dc85b4f2a0b47c6505edd0367a6fe
[ "MIT" ]
1
2018-05-30T02:36:46.000Z
2018-05-30T02:36:46.000Z
Concurrency/codeSample/Part10_The_Multiprocessing_Module/countdownp2.py
Chyi341152/pyConPaper
851190d59f8dc85b4f2a0b47c6505edd0367a6fe
[ "MIT" ]
null
null
null
Concurrency/codeSample/Part10_The_Multiprocessing_Module/countdownp2.py
Chyi341152/pyConPaper
851190d59f8dc85b4f2a0b47c6505edd0367a6fe
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # countdownp2.py # A simple performance test of CPU-bound processes. Compare to the thread example module import time import multiprocessing # Functions as threads def countdown(count): while count > 0: count -= 1 return start = time.time() countdown(10000000) countdown(10000000) end = time.time() print("Sequential ", end-start) start = time.time() p1 = multiprocessing.Process(target=countdown, args=(10000000,)) # Create the thread object p2 = multiprocessing.Process(target=countdown, args=(10000000,)) # Create the thread object p1.start() # Launch the thread p2.start() p1.join() p2.join() end = time.time() print("Multiproceessing", end-start) print("Macintosh 1984")
22.361111
95
0.667081
11bc35b36ece1902b2e369be22d69f47c7f8ed44
11,609
py
Python
src/parity_game.py
olijzenga/bdd-parity-game-solver
22195bfb303986c872fce7ee710d0fe6284ab9a3
[ "Apache-2.0" ]
1
2021-06-21T07:22:48.000Z
2021-06-21T07:22:48.000Z
src/parity_game.py
olijzenga/bdd-parity-game-solver
22195bfb303986c872fce7ee710d0fe6284ab9a3
[ "Apache-2.0" ]
null
null
null
src/parity_game.py
olijzenga/bdd-parity-game-solver
22195bfb303986c872fce7ee710d0fe6284ab9a3
[ "Apache-2.0" ]
null
null
null
from dd.cudd import BDD from bdd_provider import make_bdd from graphviz import Source # Parity class which is a slightly altered version of the one used by Sanchez et al: # Sanchez, L., Wesselink, J.W., & Willemse, T.A.C. (2018). BDD-based parity game solving: a comparison of # Zielonka's recursive algorithm, priority promotion and fixpoint iteration. (Computer science reports; Vol. 1801). # Eindhoven: Technische Universiteit Eindhoven. # https://pure.tue.nl/ws/files/92755535/CSR_18_01.pdf class parity_game: def __init__ (self, bdd: BDD, variables, variables_, v: BDD, e: BDD, even: BDD, odd: BDD, p): """Initializes a parity game instance :param bdd: the BDD used as the data structure for this parity game :type bdd: dd.autoref.BDD :param variables: variables used for representing vertices in BDDs :type variables: list<str> :param variables_: variables used to represent successor vertices for edges and strategies :type variables_: list<str> :param v: BDD which can determine whether a vector represents a vertex in the parity game :type v: dd.autoref.BDD :param e: BDD which represents the edges of the parity game :type e: dd.autoref.BDD :param even: BDD which determines whether a vertex is owned by player even :type even: dd.autoref.BDD :param odd: BDD which determines whether a vertex is owned by player odd :type odd: dd.autoref.BDD :param p: maps a priority to a BDD which determines if a vertex has that priority :type p: dict<dd.autoref.BDD> """ self.bdd = bdd self.variables = variables self.variables_ = variables_ self.substitution_list = { variables[i] : variables_[i] for i in range(len(variables)) } self.reverse_substitution_list = { variables_[i] : variables[i] for i in range(len(variables)) } self.v = v self.e = e self.even = even self.odd = odd self.p = p self.d = max(p) self.prio_even = bdd.false self.prio_odd = bdd.false # Build a BDD for deciding for prio in p: if prio % 2: self.prio_odd = self.prio_odd | p[prio] else: self.prio_even = self.prio_even | p[prio] # Add empty priority BDDs for priorities which have no vertices for prio in range(0, self.d): if prio not in p: p[prio] = bdd.false # Return sum of SAT count of all BDDs def get_sat_count(self): count = 0 count += len(list(self.bdd.pick_iter(self.v, care_vars=self.variables))) count += len(list(self.bdd.pick_iter(self.e, care_vars=(self.variables + self.variables_)))) count += len(list(self.bdd.pick_iter(self.even, care_vars=self.variables))) count += len(list(self.bdd.pick_iter(self.odd, care_vars=self.variables))) count += sum([ len(list(self.bdd.pick_iter(self.p[prio], care_vars=self.variables))) for prio in self.p.keys() ]) count += len(list(self.bdd.pick_iter(self.prio_even, care_vars=self.variables))) count += len(list(self.bdd.pick_iter(self.prio_odd, care_vars=self.variables))) return count def get_avg_out_deg(self): return len(list(self.bdd.pick_iter(self.e, care_vars=(self.variables + self.variables_)))) / len(list(self.bdd.pick_iter(self.v, care_vars=self.variables))) # Convert a SAT value to a hex string for more compact representaton def sat_to_hex(self, sat, edge=False): res = "" bytea = [] pos = 0 cur = 0 for var in self.variables: if(sat[var]): cur += pow(2,pos) if pos == 7: bytea.append(cur) cur = 0 pos = 0 else: pos += 1 if pos != 0: bytea.append(cur) bytea.reverse() res += ''.join('{:02x}'.format(x) for x in bytea) if edge: bytea = [] pos = 0 cur = 0 for var in self.variables_: if(sat[var]): cur += pow(2,pos) if pos == 7: bytea.append(cur) cur = 0 pos = 0 else: pos += 1 if pos != 0: bytea.append(cur) bytea.reverse() res = ''.join('{:02x}'.format(x) for x in bytea) return res # Display the parity game using graphviz def show(self): self.make_dot("output/pg.dot") with open("output/pg.dot", "r") as text_file: s = Source(text_file.read(), filename="output/dot.png", format="png") s.view() # Prints the hex representation of each SAT of _bdd_ def bdd_sat(self, bdd: BDD): return ', '.join([self.sat_to_hex(sat) for sat in self.bdd.pick_iter(bdd, self.variables)]) # Prints the hex representation of each SAT of edges represented by _bdd_ def bdd_sat_edges(self, bdd: BDD): return ', '.join([self.sat_to_hex(sat) + " <==> " + self.sat_to_hex(sat, edge=True) for sat in self.bdd.pick_iter(bdd, care_vars=(self.variables_ + self.variables))]) # Gather data used for exporting this parity game to a dot file, or printing it def get_repr_data(self): data = {} for v_0 in self.bdd.pick_iter(self.even, care_vars=self.variables): data[self.sat_to_hex(v_0)] = ('Even', None, []) for v_1 in self.bdd.pick_iter(self.odd, care_vars=self.variables): data[self.sat_to_hex(v_1)] = ('Odd ', None, []) for prio in self.p: for v in self.bdd.pick_iter(self.p[prio], care_vars=self.variables): d = data[self.sat_to_hex(v)] data[self.sat_to_hex(v)] = (d[0], prio, []) for e in self.bdd.pick_iter(self.e, care_vars=(self.variables + self.variables_)): d = data[self.sat_to_hex(e)] d[2].append(self.sat_to_hex(e, edge=True)) data[self.sat_to_hex(e)] = (d[0], d[1], d[2]) return data def __repr__(self): data = self.get_repr_data() res = "" for h in sorted(data): d = data[h] res += h + ' ' + d[0] + ' prio: ' + str(d[1]) + ' edges: ' + (', '.join(d[2])) + '\n' return res # Build a dot file for this parity game def make_dot(self, filename): data = self.get_repr_data() res = "digraph parity_game {\n" for h in sorted(data): d = data[h] res += "\t\"" + h + "\" [label=\"" + str(d[1]) + " (" + h + ")\", shape=" + ('diamond' if d[0] == 'Even' else 'box') + "];\n" for h in sorted(data): d = data[h] #for e in d[2]: # res += "\t\"" + h + "\" -> \"" + e + "\"\n" res += "\t\"" + h + "\" -> {" + (', '.join([ "\"" + x + "\"" for x in d[2] ])) + "};\n" res += "\n}" with open(filename, "w") as text_file: print(res, file=text_file) def copy(self, deep=False): if deep: bdd = make_bdd() bdd.declare(*self.variables) bdd.declare(*self.variables_) v = self.bdd.copy(self.v, bdd) e = self.bdd.copy(self.e, bdd) even = self.bdd.copy(self.even, bdd) odd = self.bdd.copy(self.odd, bdd) p = { prio : self.bdd.copy(self.p[prio], bdd) for prio in self.p.keys() } c = parity_game(bdd, self.variables, self.variables_, v, e, even, odd, p) else: c = parity_game(self.bdd, self.variables, self.variables_, self.v, self.e, self.even, self.odd, self.p) return c def has_successor (self, U): #check whether U = { u in V | u in U /\ exists v in V: u --> v } V_= self.bdd.let(self.substitution_list, self.v) U_next = self.bdd.let(self.substitution_list, U) Z = self.bdd.quantify(U_next & self.e, self.variables_, forall = False) & U return (Z == U) def successor (self, U): U_next = self.bdd.quantify(self.e & U, self.variables, forall = False) U_next = U | self.bdd.let(self.reverse_substitution_list, U_next) return U_next def reachable (self, U): U_next = self.successor(U) i = 0 while U != U_next: U = U_next U_next = self.successor(U) i = i +1 return U_next def predecessor (self, player, U): # U is a BDD representing a set of vertices # player is either string 'even' or string 'odd' (V_player,V_opponent) = (self.even, self.odd) if (player == 'even') else (self.odd, self.even) V_ = self.bdd.let(self.substitution_list, self.v) U_next = self.bdd.let(self.substitution_list, U) U_player = V_player & self.bdd.quantify(U_next & self.e, self.variables_, forall = False) # V_opponent /\ {v in V | forall u in V: v --> u ==> u in U } = # V_opponent /\ {v in V | ~ (exists u in V: v --> u /\ u in V\U) } U_opponent = V_opponent & ~(self.bdd.quantify(self.e & V_ & ~U_next, self.variables_, forall = False) ) # return union of the two sets return U_player | U_opponent def predecessor_gen (self, player, X, U): # X,U are BDDs representing a set of vertices # X is used to restrict the set of edges to stay within X # player is either string 'even' or string 'odd' (V_player,V_opponent) = (self.even, self.odd) if (player == 'even') else (self.odd, self.even) V_ = self.bdd.let(self.substitution_list, self.v) X_ = self.bdd.let(self.substitution_list, X) E = self.e & X & X_ U_next = self.bdd.let(self.substitution_list, U) U_player = V_player & self.bdd.quantify(U_next & E, self.variables_, forall = False) # V_opponent /\ {v in V | forall u in V: v --> u ==> u in U } = # V_opponent /\ {v in V | ~ (exists u in V: v --> u /\ u in V\U) } U_opponent = V_opponent & ~(self.bdd.quantify(E & V_ & ~U_next, self.variables_, forall = False) ) # return union of the two sets return U_player | U_opponent def attractor (self, player, A): # U is a BDD representing a set of vertices # player is either string 'even' or string 'odd' # attractor computation is a least fixpoint computation tmp = self.bdd.false tmp_= A while tmp != tmp_: tmp = tmp_ tmp_ = tmp_ | self.predecessor ( player, tmp_) return tmp def attractor_gen(self, player, V, A): tmp = self.bdd.false tmp_ = A & V while tmp != tmp_: tmp = tmp_ tmp_ = V & (tmp_ | self.predecessor_gen( player, V, tmp_)) # the use of predecessor_gen and intersection with V are both required! return tmp def remove (self, A): # removing a set of vertices represented by BDD A (self.v, self.even, self.odd) = (self.v & ~A, self.even & ~A, self.odd & ~A) A_ = self.bdd.let(self.substitution_list, A) self.e = self.e & ~A & ~A_ p_ = { i : self.p[i] & ~A for i in self.p if self.p[i] & ~A != self.bdd.false} self.p = p_ #self.bdd.collect_garbage() # Convert a variable assignment to a boolean expression def sat_to_expr(sat: dict): return '&'.join([ var if sat[var] else ('~' + var) for var in sat.keys() ])
41.460714
174
0.565596
140d67fedf06fbae600d7d7a8aa0ee9177633960
58,529
py
Python
SLpackage/private/thirdparty/pythonpkgs/numpy/numpy_1.13.1/lib/python2.7/site-packages/numpy/f2py/rules.py
fanglab/6mASCOPE
3f1fdcb7693ff152f17623ce549526ec272698b1
[ "BSD-3-Clause" ]
5
2022-02-20T07:10:02.000Z
2022-03-18T17:47:53.000Z
SLpackage/private/thirdparty/pythonpkgs/numpy/numpy_1.13.1/lib/python2.7/site-packages/numpy/f2py/rules.py
fanglab/6mASCOPE
3f1fdcb7693ff152f17623ce549526ec272698b1
[ "BSD-3-Clause" ]
null
null
null
SLpackage/private/thirdparty/pythonpkgs/numpy/numpy_1.13.1/lib/python2.7/site-packages/numpy/f2py/rules.py
fanglab/6mASCOPE
3f1fdcb7693ff152f17623ce549526ec272698b1
[ "BSD-3-Clause" ]
null
null
null
#! python """ Rules for building C/API module with f2py2e. Here is a skeleton of a new wrapper function (13Dec2001): wrapper_function(args) declarations get_python_arguments, say, `a' and `b' get_a_from_python if (successful) { get_b_from_python if (successful) { callfortran if (successful) { put_a_to_python if (successful) { put_b_to_python if (successful) { buildvalue = ... } } } } cleanup_b } cleanup_a return buildvalue Copyright 1999,2000 Pearu Peterson all rights reserved, Pearu Peterson <pearu@ioc.ee> Permission to use, modify, and distribute this software is given under the terms of the NumPy License. NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK. $Date: 2005/08/30 08:58:42 $ Pearu Peterson """ from __future__ import division, absolute_import, print_function __version__ = "$Revision: 1.129 $"[10:-1] from . import __version__ f2py_version = __version__.version import os import time import copy from .auxfuncs import ( applyrules, debugcapi, dictappend, errmess, gentitle, getargs2, hascallstatement, hasexternals, hasinitvalue, hasnote, hasresultnote, isarray, isarrayofstrings, iscomplex, iscomplexarray, iscomplexfunction, iscomplexfunction_warn, isdummyroutine, isexternal, isfunction, isfunction_wrap, isint1array, isintent_aux, isintent_c, isintent_callback, isintent_copy, isintent_hide, isintent_inout, isintent_nothide, isintent_out, isintent_overwrite, islogical, islong_complex, islong_double, islong_doublefunction, islong_long, islong_longfunction, ismoduleroutine, isoptional, isrequired, isscalar, issigned_long_longarray, isstring, isstringarray, isstringfunction, issubroutine, issubroutine_wrap, isthreadsafe, isunsigned, isunsigned_char, isunsigned_chararray, isunsigned_long_long, isunsigned_long_longarray, isunsigned_short, isunsigned_shortarray, l_and, l_not, l_or, outmess, replace, stripcomma, ) from . import capi_maps from . import cfuncs from . import common_rules from . import use_rules from . import f90mod_rules from . import func2subr options = {} sepdict = {} #for k in ['need_cfuncs']: sepdict[k]=',' for k in ['decl', 'frompyobj', 'cleanupfrompyobj', 'topyarr', 'method', 'pyobjfrom', 'closepyobjfrom', 'freemem', 'userincludes', 'includes0', 'includes', 'typedefs', 'typedefs_generated', 'cppmacros', 'cfuncs', 'callbacks', 'latexdoc', 'restdoc', 'routine_defs', 'externroutines', 'initf2pywraphooks', 'commonhooks', 'initcommonhooks', 'f90modhooks', 'initf90modhooks']: sepdict[k] = '\n' #################### Rules for C/API module ################# module_rules = { 'modulebody': """\ /* File: #modulename#module.c * This file is auto-generated with f2py (version:#f2py_version#). * f2py is a Fortran to Python Interface Generator (FPIG), Second Edition, * written by Pearu Peterson <pearu@cens.ioc.ee>. * See http://cens.ioc.ee/projects/f2py2e/ * Generation date: """ + time.asctime(time.localtime(time.time())) + """ * $R""" + """evision:$ * $D""" + """ate:$ * Do not edit this file directly unless you know what you are doing!!! */ #ifdef __cplusplus extern \"C\" { #endif """ + gentitle("See f2py2e/cfuncs.py: includes") + """ #includes# #includes0# """ + gentitle("See f2py2e/rules.py: mod_rules['modulebody']") + """ static PyObject *#modulename#_error; static PyObject *#modulename#_module; """ + gentitle("See f2py2e/cfuncs.py: typedefs") + """ #typedefs# """ + gentitle("See f2py2e/cfuncs.py: typedefs_generated") + """ #typedefs_generated# """ + gentitle("See f2py2e/cfuncs.py: cppmacros") + """ #cppmacros# """ + gentitle("See f2py2e/cfuncs.py: cfuncs") + """ #cfuncs# """ + gentitle("See f2py2e/cfuncs.py: userincludes") + """ #userincludes# """ + gentitle("See f2py2e/capi_rules.py: usercode") + """ #usercode# /* See f2py2e/rules.py */ #externroutines# """ + gentitle("See f2py2e/capi_rules.py: usercode1") + """ #usercode1# """ + gentitle("See f2py2e/cb_rules.py: buildcallback") + """ #callbacks# """ + gentitle("See f2py2e/rules.py: buildapi") + """ #body# """ + gentitle("See f2py2e/f90mod_rules.py: buildhooks") + """ #f90modhooks# """ + gentitle("See f2py2e/rules.py: module_rules['modulebody']") + """ """ + gentitle("See f2py2e/common_rules.py: buildhooks") + """ #commonhooks# """ + gentitle("See f2py2e/rules.py") + """ static FortranDataDef f2py_routine_defs[] = { #routine_defs# \t{NULL} }; static PyMethodDef f2py_module_methods[] = { #pymethoddef# \t{NULL,NULL} }; #if PY_VERSION_HEX >= 0x03000000 static struct PyModuleDef moduledef = { \tPyModuleDef_HEAD_INIT, \t"#modulename#", \tNULL, \t-1, \tf2py_module_methods, \tNULL, \tNULL, \tNULL, \tNULL }; #endif #if PY_VERSION_HEX >= 0x03000000 #define RETVAL m PyMODINIT_FUNC PyInit_#modulename#(void) { #else #define RETVAL PyMODINIT_FUNC init#modulename#(void) { #endif \tint i; \tPyObject *m,*d, *s; #if PY_VERSION_HEX >= 0x03000000 \tm = #modulename#_module = PyModule_Create(&moduledef); #else \tm = #modulename#_module = Py_InitModule(\"#modulename#\", f2py_module_methods); #endif \tPy_TYPE(&PyFortran_Type) = &PyType_Type; \timport_array(); \tif (PyErr_Occurred()) \t\t{PyErr_SetString(PyExc_ImportError, \"can't initialize module #modulename# (failed to import numpy)\"); return RETVAL;} \td = PyModule_GetDict(m); \ts = PyString_FromString(\"$R""" + """evision: $\"); \tPyDict_SetItemString(d, \"__version__\", s); #if PY_VERSION_HEX >= 0x03000000 \ts = PyUnicode_FromString( #else \ts = PyString_FromString( #endif \t\t\"This module '#modulename#' is auto-generated with f2py (version:#f2py_version#).\\nFunctions:\\n\"\n#docs#\".\"); \tPyDict_SetItemString(d, \"__doc__\", s); \t#modulename#_error = PyErr_NewException (\"#modulename#.error\", NULL, NULL); \tPy_DECREF(s); \tfor(i=0;f2py_routine_defs[i].name!=NULL;i++) \t\tPyDict_SetItemString(d, f2py_routine_defs[i].name,PyFortranObject_NewAsAttr(&f2py_routine_defs[i])); #initf2pywraphooks# #initf90modhooks# #initcommonhooks# #interface_usercode# #ifdef F2PY_REPORT_ATEXIT \tif (! PyErr_Occurred()) \t\ton_exit(f2py_report_on_exit,(void*)\"#modulename#\"); #endif \treturn RETVAL; } #ifdef __cplusplus } #endif """, 'separatorsfor': {'latexdoc': '\n\n', 'restdoc': '\n\n'}, 'latexdoc': ['\\section{Module \\texttt{#texmodulename#}}\n', '#modnote#\n', '#latexdoc#'], 'restdoc': ['Module #modulename#\n' + '=' * 80, '\n#restdoc#'] } defmod_rules = [ {'body': '/*eof body*/', 'method': '/*eof method*/', 'externroutines': '/*eof externroutines*/', 'routine_defs': '/*eof routine_defs*/', 'initf90modhooks': '/*eof initf90modhooks*/', 'initf2pywraphooks': '/*eof initf2pywraphooks*/', 'initcommonhooks': '/*eof initcommonhooks*/', 'latexdoc': '', 'restdoc': '', 'modnote': {hasnote: '#note#', l_not(hasnote): ''}, } ] routine_rules = { 'separatorsfor': sepdict, 'body': """ #begintitle# static char doc_#apiname#[] = \"\\\n#docreturn##name#(#docsignatureshort#)\\n\\nWrapper for ``#name#``.\\\n\\n#docstrsigns#\"; /* #declfortranroutine# */ static PyObject *#apiname#(const PyObject *capi_self, PyObject *capi_args, PyObject *capi_keywds, #functype# (*f2py_func)(#callprotoargument#)) { \tPyObject * volatile capi_buildvalue = NULL; \tvolatile int f2py_success = 1; #decl# \tstatic char *capi_kwlist[] = {#kwlist##kwlistopt##kwlistxa#NULL}; #usercode# #routdebugenter# #ifdef F2PY_REPORT_ATEXIT f2py_start_clock(); #endif \tif (!PyArg_ParseTupleAndKeywords(capi_args,capi_keywds,\\ \t\t\"#argformat##keyformat##xaformat#:#pyname#\",\\ \t\tcapi_kwlist#args_capi##keys_capi##keys_xa#))\n\t\treturn NULL; #frompyobj# /*end of frompyobj*/ #ifdef F2PY_REPORT_ATEXIT f2py_start_call_clock(); #endif #callfortranroutine# if (PyErr_Occurred()) f2py_success = 0; #ifdef F2PY_REPORT_ATEXIT f2py_stop_call_clock(); #endif /*end of callfortranroutine*/ \t\tif (f2py_success) { #pyobjfrom# /*end of pyobjfrom*/ \t\tCFUNCSMESS(\"Building return value.\\n\"); \t\tcapi_buildvalue = Py_BuildValue(\"#returnformat#\"#return#); /*closepyobjfrom*/ #closepyobjfrom# \t\t} /*if (f2py_success) after callfortranroutine*/ /*cleanupfrompyobj*/ #cleanupfrompyobj# \tif (capi_buildvalue == NULL) { #routdebugfailure# \t} else { #routdebugleave# \t} \tCFUNCSMESS(\"Freeing memory.\\n\"); #freemem# #ifdef F2PY_REPORT_ATEXIT f2py_stop_clock(); #endif \treturn capi_buildvalue; } #endtitle# """, 'routine_defs': '#routine_def#', 'initf2pywraphooks': '#initf2pywraphook#', 'externroutines': '#declfortranroutine#', 'doc': '#docreturn##name#(#docsignature#)', 'docshort': '#docreturn##name#(#docsignatureshort#)', 'docs': '"\t#docreturn##name#(#docsignature#)\\n"\n', 'need': ['arrayobject.h', 'CFUNCSMESS', 'MINMAX'], 'cppmacros': {debugcapi: '#define DEBUGCFUNCS'}, 'latexdoc': ['\\subsection{Wrapper function \\texttt{#texname#}}\n', """ \\noindent{{}\\verb@#docreturn##name#@{}}\\texttt{(#latexdocsignatureshort#)} #routnote# #latexdocstrsigns# """], 'restdoc': ['Wrapped function ``#name#``\n' + '-' * 80, ] } ################## Rules for C/API function ############## rout_rules = [ { # Init 'separatorsfor': {'callfortranroutine': '\n', 'routdebugenter': '\n', 'decl': '\n', 'routdebugleave': '\n', 'routdebugfailure': '\n', 'setjmpbuf': ' || ', 'docstrreq': '\n', 'docstropt': '\n', 'docstrout': '\n', 'docstrcbs': '\n', 'docstrsigns': '\\n"\n"', 'latexdocstrsigns': '\n', 'latexdocstrreq': '\n', 'latexdocstropt': '\n', 'latexdocstrout': '\n', 'latexdocstrcbs': '\n', }, 'kwlist': '', 'kwlistopt': '', 'callfortran': '', 'callfortranappend': '', 'docsign': '', 'docsignopt': '', 'decl': '/*decl*/', 'freemem': '/*freemem*/', 'docsignshort': '', 'docsignoptshort': '', 'docstrsigns': '', 'latexdocstrsigns': '', 'docstrreq': '\\nParameters\\n----------', 'docstropt': '\\nOther Parameters\\n----------------', 'docstrout': '\\nReturns\\n-------', 'docstrcbs': '\\nNotes\\n-----\\nCall-back functions::\\n', 'latexdocstrreq': '\\noindent Required arguments:', 'latexdocstropt': '\\noindent Optional arguments:', 'latexdocstrout': '\\noindent Return objects:', 'latexdocstrcbs': '\\noindent Call-back functions:', 'args_capi': '', 'keys_capi': '', 'functype': '', 'frompyobj': '/*frompyobj*/', # this list will be reversed 'cleanupfrompyobj': ['/*end of cleanupfrompyobj*/'], 'pyobjfrom': '/*pyobjfrom*/', # this list will be reversed 'closepyobjfrom': ['/*end of closepyobjfrom*/'], 'topyarr': '/*topyarr*/', 'routdebugleave': '/*routdebugleave*/', 'routdebugenter': '/*routdebugenter*/', 'routdebugfailure': '/*routdebugfailure*/', 'callfortranroutine': '/*callfortranroutine*/', 'argformat': '', 'keyformat': '', 'need_cfuncs': '', 'docreturn': '', 'return': '', 'returnformat': '', 'rformat': '', 'kwlistxa': '', 'keys_xa': '', 'xaformat': '', 'docsignxa': '', 'docsignxashort': '', 'initf2pywraphook': '', 'routnote': {hasnote: '--- #note#', l_not(hasnote): ''}, }, { 'apiname': 'f2py_rout_#modulename#_#name#', 'pyname': '#modulename#.#name#', 'decl': '', '_check': l_not(ismoduleroutine) }, { 'apiname': 'f2py_rout_#modulename#_#f90modulename#_#name#', 'pyname': '#modulename#.#f90modulename#.#name#', 'decl': '', '_check': ismoduleroutine }, { # Subroutine 'functype': 'void', 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern void #fortranname#(#callprotoargument#);', ismoduleroutine: '', isdummyroutine: '' }, 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isdummyroutine): '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'need': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'F_FUNC'}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `#fortranname#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \t\tif (#setjmpbuf#) { \t\t\tf2py_success = 0; \t\t} else {"""}, {isthreadsafe: '\t\t\tPy_BEGIN_ALLOW_THREADS'}, {hascallstatement: '''\t\t\t\t#callstatement#; \t\t\t\t/*(*f2py_func)(#callfortran#);*/'''}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t\t\t\t(*f2py_func)(#callfortran#);'}, {isthreadsafe: '\t\t\tPy_END_ALLOW_THREADS'}, {hasexternals: """\t\t}"""} ], '_check': l_and(issubroutine, l_not(issubroutine_wrap)), }, { # Wrapped function 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern #ctype# #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); PyObject_SetAttrString(o,"_cpointer", F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL)); #if PY_VERSION_HEX >= 0x03000000 PyObject_SetAttrString(o,"__name__", PyUnicode_FromString("#name#")); #else PyObject_SetAttrString(o,"__name__", PyString_FromString("#name#")); #endif } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t(*f2py_func)(#callfortran#);'}, {hascallstatement: '\t#callstatement#;\n\t/*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'} ], '_check': isfunction_wrap, }, { # Wrapped subroutine 'functype': 'void', 'declfortranroutine': {l_not(l_or(ismoduleroutine, isdummyroutine)): 'extern void #F_WRAPPEDFUNC#(#name_lower#,#NAME#)(#callprotoargument#);', isdummyroutine: '', }, 'routine_def': {l_not(l_or(ismoduleroutine, isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_WRAPPEDFUNC#(#name_lower#,#NAME#),(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'initf2pywraphook': {l_not(l_or(ismoduleroutine, isdummyroutine)): ''' { extern void #F_FUNC#(#name_lower#,#NAME#)(void); PyObject* o = PyDict_GetItemString(d,"#name#"); PyObject_SetAttrString(o,"_cpointer", F2PyCapsule_FromVoidPtr((void*)#F_FUNC#(#name_lower#,#NAME#),NULL)); #if PY_VERSION_HEX >= 0x03000000 PyObject_SetAttrString(o,"__name__", PyUnicode_FromString("#name#")); #else PyObject_SetAttrString(o,"__name__", PyString_FromString("#name#")); #endif } '''}, 'need': {l_not(l_or(ismoduleroutine, isdummyroutine)): ['F_WRAPPEDFUNC', 'F_FUNC']}, 'callfortranroutine': [ {debugcapi: [ """\tfprintf(stderr,\"debug-capi:Fortran subroutine `f2pywrap#name_lower#(#callfortran#)\'\\n\");"""]}, {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t(*f2py_func)(#callfortran#);'}, {hascallstatement: '\t#callstatement#;\n\t/*(*f2py_func)(#callfortran#);*/'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'} ], '_check': issubroutine_wrap, }, { # Function 'functype': '#ctype#', 'docreturn': {l_not(isintent_hide): '#rname#,'}, 'docstrout': '#pydocsignout#', 'latexdocstrout': ['\\item[]{{}\\verb@#pydocsignout#@{}}', {hasresultnote: '--- #resultnote#'}], 'callfortranroutine': [{l_and(debugcapi, isstringfunction): """\ #ifdef USESCOMPAQFORTRAN \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callcompaqfortran#)\\n\"); #else \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); #endif """}, {l_and(debugcapi, l_not(isstringfunction)): """\ \tfprintf(stderr,\"debug-capi:Fortran function #ctype# #fortranname#(#callfortran#)\\n\"); """} ], '_check': l_and(isfunction, l_not(isfunction_wrap)) }, { # Scalar function 'declfortranroutine': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): 'extern #ctype# #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): 'extern #ctype# #fortranname#(#callprotoargument#);', isdummyroutine: '' }, 'routine_def': {l_and(l_not(l_or(ismoduleroutine, isintent_c)), l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c, l_not(isdummyroutine)): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},', isdummyroutine: '\t{\"#name#\",-1,{{-1}},0,NULL,(f2py_init_func)#apiname#,doc_#apiname#},', }, 'decl': [{iscomplexfunction_warn: '\t#ctype# #name#_return_value={0,0};', l_not(iscomplexfunction): '\t#ctype# #name#_return_value=0;'}, {iscomplexfunction: '\tPyObject *#name#_return_value_capi = Py_None;'} ], 'callfortranroutine': [ {hasexternals: """\ \tif (#setjmpbuf#) { \t\tf2py_success = 0; \t} else {"""}, {isthreadsafe: '\tPy_BEGIN_ALLOW_THREADS'}, {hascallstatement: '''\t#callstatement#; /*\t#name#_return_value = (*f2py_func)(#callfortran#);*/ '''}, {l_not(l_or(hascallstatement, isdummyroutine)) : '\t#name#_return_value = (*f2py_func)(#callfortran#);'}, {isthreadsafe: '\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t}'}, {l_and(debugcapi, iscomplexfunction) : '\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value.r,#name#_return_value.i);'}, {l_and(debugcapi, l_not(iscomplexfunction)): '\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value);'}], 'pyobjfrom': {iscomplexfunction: '\t#name#_return_value_capi = pyobj_from_#ctype#1(#name#_return_value);'}, 'need': [{l_not(isdummyroutine): 'F_FUNC'}, {iscomplexfunction: 'pyobj_from_#ctype#1'}, {islong_longfunction: 'long_long'}, {islong_doublefunction: 'long_double'}], 'returnformat': {l_not(isintent_hide): '#rformat#'}, 'return': {iscomplexfunction: ',#name#_return_value_capi', l_not(l_or(iscomplexfunction, isintent_hide)): ',#name#_return_value'}, '_check': l_and(isfunction, l_not(isstringfunction), l_not(isfunction_wrap)) }, { # String function # in use for --no-wrap 'declfortranroutine': 'extern void #F_FUNC#(#fortranname#,#FORTRANNAME#)(#callprotoargument#);', 'routine_def': {l_not(l_or(ismoduleroutine, isintent_c)): '\t{\"#name#\",-1,{{-1}},0,(char *)#F_FUNC#(#fortranname#,#FORTRANNAME#),(f2py_init_func)#apiname#,doc_#apiname#},', l_and(l_not(ismoduleroutine), isintent_c): '\t{\"#name#\",-1,{{-1}},0,(char *)#fortranname#,(f2py_init_func)#apiname#,doc_#apiname#},' }, 'decl': ['\t#ctype# #name#_return_value = NULL;', '\tint #name#_return_value_len = 0;'], 'callfortran':'#name#_return_value,#name#_return_value_len,', 'callfortranroutine':['\t#name#_return_value_len = #rlength#;', '\tif ((#name#_return_value = (string)malloc(sizeof(char)*(#name#_return_value_len+1))) == NULL) {', '\t\tPyErr_SetString(PyExc_MemoryError, \"out of memory\");', '\t\tf2py_success = 0;', '\t} else {', "\t\t(#name#_return_value)[#name#_return_value_len] = '\\0';", '\t}', '\tif (f2py_success) {', {hasexternals: """\ \t\tif (#setjmpbuf#) { \t\t\tf2py_success = 0; \t\t} else {"""}, {isthreadsafe: '\t\tPy_BEGIN_ALLOW_THREADS'}, """\ #ifdef USESCOMPAQFORTRAN \t\t(*f2py_func)(#callcompaqfortran#); #else \t\t(*f2py_func)(#callfortran#); #endif """, {isthreadsafe: '\t\tPy_END_ALLOW_THREADS'}, {hasexternals: '\t\t}'}, {debugcapi: '\t\tfprintf(stderr,"#routdebugshowvalue#\\n",#name#_return_value_len,#name#_return_value);'}, '\t} /* if (f2py_success) after (string)malloc */', ], 'returnformat': '#rformat#', 'return': ',#name#_return_value', 'freemem': '\tSTRINGFREE(#name#_return_value);', 'need': ['F_FUNC', '#ctype#', 'STRINGFREE'], '_check':l_and(isstringfunction, l_not(isfunction_wrap)) # ???obsolete }, { # Debugging 'routdebugenter': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#(#docsignature#)\\n");', 'routdebugleave': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: successful.\\n");', 'routdebugfailure': '\tfprintf(stderr,"debug-capi:Python C/API function #modulename#.#name#: failure.\\n");', '_check': debugcapi } ] ################ Rules for arguments ################## typedef_need_dict = {islong_long: 'long_long', islong_double: 'long_double', islong_complex: 'complex_long_double', isunsigned_char: 'unsigned_char', isunsigned_short: 'unsigned_short', isunsigned: 'unsigned', isunsigned_long_long: 'unsigned_long_long', isunsigned_chararray: 'unsigned_char', isunsigned_shortarray: 'unsigned_short', isunsigned_long_longarray: 'unsigned_long_long', issigned_long_longarray: 'long_long', } aux_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': ['\t/* Processing auxiliary variable #varname# */', {debugcapi: '\tfprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': '\t/* End of cleaning variable #varname# */', 'need': typedef_need_dict, }, # Scalars (not complex) { # Common 'decl': '\t#ctype# #varname# = 0;', 'need': {hasinitvalue: 'math.h'}, 'frompyobj': {hasinitvalue: '\t#varname# = #init#;'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { 'return': ',#varname#', 'docstrout': '#pydocsignout#', 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': l_and(isscalar, l_not(iscomplex), isintent_out), }, # Complex scalars { # Common 'decl': '\t#ctype# #varname#;', 'frompyobj': {hasinitvalue: '\t#varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': iscomplex }, # String { # Common 'decl': ['\t#ctype# #varname# = NULL;', '\tint slen(#varname#);', ], 'need':['len..'], '_check':isstring }, # Array { # Common 'decl': ['\t#ctype# *#varname# = NULL;', '\tnpy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', '\tconst int #varname#_Rank = #rank#;', ], 'need':['len..', {hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] arg_rules = [ { 'separatorsfor': sepdict }, { # Common 'frompyobj': ['\t/* Processing variable #varname# */', {debugcapi: '\tfprintf(stderr,"#vardebuginfo#\\n");'}, ], 'cleanupfrompyobj': '\t/* End of cleaning variable #varname# */', '_depend': '', 'need': typedef_need_dict, }, # Doc signatures { 'docstropt': {l_and(isoptional, isintent_nothide): '#pydocsign#'}, 'docstrreq': {l_and(isrequired, isintent_nothide): '#pydocsign#'}, 'docstrout': {isintent_out: '#pydocsignout#'}, 'latexdocstropt': {l_and(isoptional, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrreq': {l_and(isrequired, isintent_nothide): ['\\item[]{{}\\verb@#pydocsign#@{}}', {hasnote: '--- #note#'}]}, 'latexdocstrout': {isintent_out: ['\\item[]{{}\\verb@#pydocsignout#@{}}', {l_and(hasnote, isintent_hide): '--- #note#', l_and(hasnote, isintent_nothide): '--- See above.'}]}, 'depend': '' }, # Required/Optional arguments { 'kwlist': '"#varname#",', 'docsign': '#varname#,', '_check': l_and(isintent_nothide, l_not(isoptional)) }, { 'kwlistopt': '"#varname#",', 'docsignopt': '#varname#=#showinit#,', 'docsignoptshort': '#varname#,', '_check': l_and(isintent_nothide, isoptional) }, # Docstring/BuildValue { 'docreturn': '#outvarname#,', 'returnformat': '#varrformat#', '_check': isintent_out }, # Externals (call-back functions) { # Common 'docsignxa': {isintent_nothide: '#varname#_extra_args=(),'}, 'docsignxashort': {isintent_nothide: '#varname#_extra_args,'}, 'docstropt': {isintent_nothide: '#varname#_extra_args : input tuple, optional\\n Default: ()'}, 'docstrcbs': '#cbdocstr#', 'latexdocstrcbs': '\\item[] #cblatexdocstr#', 'latexdocstropt': {isintent_nothide: '\\item[]{{}\\verb@#varname#_extra_args := () input tuple@{}} --- Extra arguments for call-back function {{}\\verb@#varname#@{}}.'}, 'decl': ['\tPyObject *#varname#_capi = Py_None;', '\tPyTupleObject *#varname#_xa_capi = NULL;', '\tPyTupleObject *#varname#_args_capi = NULL;', '\tint #varname#_nofargs_capi = 0;', {l_not(isintent_callback): '\t#cbname#_typedef #varname#_cptr;'} ], 'kwlistxa': {isintent_nothide: '"#varname#_extra_args",'}, 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'xaformat': {isintent_nothide: 'O!'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'keys_xa': ',&PyTuple_Type,&#varname#_xa_capi', 'setjmpbuf': '(setjmp(#cbname#_jmpbuf))', 'callfortran': {l_not(isintent_callback): '#varname#_cptr,'}, 'need': ['#cbname#', 'setjmp.h'], '_check':isexternal }, { 'frompyobj': [{l_not(isintent_callback): """\ if(F2PyCapsule_Check(#varname#_capi)) { #varname#_cptr = F2PyCapsule_AsVoidPtr(#varname#_capi); } else { #varname#_cptr = #cbname#; } """}, {isintent_callback: """\ if (#varname#_capi==Py_None) { #varname#_capi = PyObject_GetAttrString(#modulename#_module,\"#varname#\"); if (#varname#_capi) { if (#varname#_xa_capi==NULL) { if (PyObject_HasAttrString(#modulename#_module,\"#varname#_extra_args\")) { PyObject* capi_tmp = PyObject_GetAttrString(#modulename#_module,\"#varname#_extra_args\"); if (capi_tmp) #varname#_xa_capi = (PyTupleObject *)PySequence_Tuple(capi_tmp); else #varname#_xa_capi = (PyTupleObject *)Py_BuildValue(\"()\"); if (#varname#_xa_capi==NULL) { PyErr_SetString(#modulename#_error,\"Failed to convert #modulename#.#varname#_extra_args to tuple.\\n\"); return NULL; } } } } if (#varname#_capi==NULL) { PyErr_SetString(#modulename#_error,\"Callback #varname# not defined (as an argument or module #modulename# attribute).\\n\"); return NULL; } } """}, """\ \t#varname#_nofargs_capi = #cbname#_nofargs; \tif (create_cb_arglist(#varname#_capi,#varname#_xa_capi,#maxnofargs#,#nofoptargs#,&#cbname#_nofargs,&#varname#_args_capi,\"failed in processing argument list for call-back #varname#.\")) { \t\tjmp_buf #varname#_jmpbuf;""", {debugcapi: ["""\ \t\tfprintf(stderr,\"debug-capi:Assuming %d arguments; at most #maxnofargs#(-#nofoptargs#) is expected.\\n\",#cbname#_nofargs); \t\tCFUNCSMESSPY(\"for #varname#=\",#cbname#_capi);""", {l_not(isintent_callback): """\t\tfprintf(stderr,\"#vardebugshowvalue# (call-back in C).\\n\",#cbname#);"""}]}, """\ \t\tCFUNCSMESS(\"Saving jmpbuf for `#varname#`.\\n\"); \t\tSWAP(#varname#_capi,#cbname#_capi,PyObject); \t\tSWAP(#varname#_args_capi,#cbname#_args_capi,PyTupleObject); \t\tmemcpy(&#varname#_jmpbuf,&#cbname#_jmpbuf,sizeof(jmp_buf));""", ], 'cleanupfrompyobj': """\ \t\tCFUNCSMESS(\"Restoring jmpbuf for `#varname#`.\\n\"); \t\t#cbname#_capi = #varname#_capi; \t\tPy_DECREF(#cbname#_args_capi); \t\t#cbname#_args_capi = #varname#_args_capi; \t\t#cbname#_nofargs = #varname#_nofargs_capi; \t\tmemcpy(&#cbname#_jmpbuf,&#varname#_jmpbuf,sizeof(jmp_buf)); \t}""", 'need': ['SWAP', 'create_cb_arglist'], '_check':isexternal, '_depend':'' }, # Scalars (not complex) { # Common 'decl': '\t#ctype# #varname# = 0;', 'pyobjfrom': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'return': {isintent_out: ',#varname#'}, '_check': l_and(isscalar, l_not(iscomplex)) }, { 'need': {hasinitvalue: 'math.h'}, '_check': l_and(isscalar, l_not(iscomplex)), }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': {isintent_inout: """\ \tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); \tif (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: "\t} /*if (f2py_success) of #varname# pyobjfrom*/"}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide) }, { 'frompyobj': [ # hasinitvalue... # if pyobj is None: # varname = init # else # from_pyobj(varname) # # isoptional and noinitvalue... # if pyobj is not None: # from_pyobj(varname) # else: # varname is uninitialized # # ... # from_pyobj(varname) # {hasinitvalue: '\tif (#varname#_capi == Py_None) #varname# = #init#; else', '_depend': ''}, {l_and(isoptional, l_not(hasinitvalue)): '\tif (#varname#_capi != Py_None)', '_depend': ''}, {l_not(islogical): '''\ \t\tf2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#"); \tif (f2py_success) {'''}, {islogical: '''\ \t\t#varname# = (#ctype#)PyObject_IsTrue(#varname#_capi); \t\tf2py_success = 1; \tif (f2py_success) {'''}, ], 'cleanupfrompyobj': '\t} /*if (f2py_success) of #varname#*/', 'need': {l_not(islogical): '#ctype#_from_pyobj'}, '_check': l_and(isscalar, l_not(iscomplex), isintent_nothide), '_depend': '' }, { # Hidden 'frompyobj': {hasinitvalue: '\t#varname# = #init#;'}, 'need': typedef_need_dict, '_check': l_and(isscalar, l_not(iscomplex), isintent_hide), '_depend': '' }, { # Common 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#);'}, '_check': l_and(isscalar, l_not(iscomplex)), '_depend': '' }, # Complex scalars { # Common 'decl': '\t#ctype# #varname#;', 'callfortran': {isintent_c: '#varname#,', l_not(isintent_c): '&#varname#,'}, 'pyobjfrom': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, 'return': {isintent_out: ',#varname#_capi'}, '_check': iscomplex }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, 'pyobjfrom': {isintent_inout: """\ \t\tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,&#varname#); \t\tif (f2py_success) {"""}, 'closepyobjfrom': {isintent_inout: "\t\t} /*if (f2py_success) of #varname# pyobjfrom*/"}, '_check': l_and(iscomplex, isintent_nothide) }, { 'frompyobj': [{hasinitvalue: '\tif (#varname#_capi==Py_None) {#varname#.r = #init.r#, #varname#.i = #init.i#;} else'}, {l_and(isoptional, l_not(hasinitvalue)) : '\tif (#varname#_capi != Py_None)'}, '\t\tf2py_success = #ctype#_from_pyobj(&#varname#,#varname#_capi,"#pyname#() #nth# (#varname#) can\'t be converted to #ctype#");' '\n\tif (f2py_success) {'], 'cleanupfrompyobj': '\t} /*if (f2py_success) of #varname# frompyobj*/', 'need': ['#ctype#_from_pyobj'], '_check': l_and(iscomplex, isintent_nothide), '_depend': '' }, { # Hidden 'decl': {isintent_out: '\tPyObject *#varname#_capi = Py_None;'}, '_check': l_and(iscomplex, isintent_hide) }, { 'frompyobj': {hasinitvalue: '\t#varname#.r = #init.r#, #varname#.i = #init.i#;'}, '_check': l_and(iscomplex, isintent_hide), '_depend': '' }, { # Common 'pyobjfrom': {isintent_out: '\t#varname#_capi = pyobj_from_#ctype#1(#varname#);'}, 'need': ['pyobj_from_#ctype#1'], '_check': iscomplex }, { 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",#varname#.r,#varname#.i);'}, '_check': iscomplex, '_depend': '' }, # String { # Common 'decl': ['\t#ctype# #varname# = NULL;', '\tint slen(#varname#);', '\tPyObject *#varname#_capi = Py_None;'], 'callfortran':'#varname#,', 'callfortranappend':'slen(#varname#),', 'pyobjfrom':{debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, 'return': {isintent_out: ',#varname#'}, 'need': ['len..'], # 'STRINGFREE'], '_check':isstring }, { # Common 'frompyobj': """\ \tslen(#varname#) = #length#; \tf2py_success = #ctype#_from_pyobj(&#varname#,&slen(#varname#),#init#,#varname#_capi,\"#ctype#_from_pyobj failed in converting #nth# `#varname#\' of #pyname# to C #ctype#\"); \tif (f2py_success) {""", 'cleanupfrompyobj': """\ \t\tSTRINGFREE(#varname#); \t} /*if (f2py_success) of #varname#*/""", 'need': ['#ctype#_from_pyobj', 'len..', 'STRINGFREE'], '_check':isstring, '_depend':'' }, { # Not hidden 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, 'pyobjfrom': {isintent_inout: '''\ \tf2py_success = try_pyarr_from_#ctype#(#varname#_capi,#varname#); \tif (f2py_success) {'''}, 'closepyobjfrom': {isintent_inout: '\t} /*if (f2py_success) of #varname# pyobjfrom*/'}, 'need': {isintent_inout: 'try_pyarr_from_#ctype#'}, '_check': l_and(isstring, isintent_nothide) }, { # Hidden '_check': l_and(isstring, isintent_hide) }, { 'frompyobj': {debugcapi: '\tfprintf(stderr,"#vardebugshowvalue#\\n",slen(#varname#),#varname#);'}, '_check': isstring, '_depend': '' }, # Array { # Common 'decl': ['\t#ctype# *#varname# = NULL;', '\tnpy_intp #varname#_Dims[#rank#] = {#rank*[-1]#};', '\tconst int #varname#_Rank = #rank#;', '\tPyArrayObject *capi_#varname#_tmp = NULL;', '\tint capi_#varname#_intent = 0;', ], 'callfortran':'#varname#,', 'return':{isintent_out: ',capi_#varname#_tmp'}, 'need': 'len..', '_check': isarray }, { # intent(overwrite) array 'decl': '\tint capi_overwrite_#varname# = 1;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=1,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 1', '_check': l_and(isarray, isintent_overwrite), }, { 'frompyobj': '\tcapi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_overwrite), '_depend': '', }, { # intent(copy) array 'decl': '\tint capi_overwrite_#varname# = 0;', 'kwlistxa': '"overwrite_#varname#",', 'xaformat': 'i', 'keys_xa': ',&capi_overwrite_#varname#', 'docsignxa': 'overwrite_#varname#=0,', 'docsignxashort': 'overwrite_#varname#,', 'docstropt': 'overwrite_#varname# : input int, optional\\n Default: 0', '_check': l_and(isarray, isintent_copy), }, { 'frompyobj': '\tcapi_#varname#_intent |= (capi_overwrite_#varname#?0:F2PY_INTENT_COPY);', '_check': l_and(isarray, isintent_copy), '_depend': '', }, { 'need': [{hasinitvalue: 'forcomb'}, {hasinitvalue: 'CFUNCSMESS'}], '_check': isarray, '_depend': '' }, { # Not hidden 'decl': '\tPyObject *#varname#_capi = Py_None;', 'argformat': {isrequired: 'O'}, 'keyformat': {isoptional: 'O'}, 'args_capi': {isrequired: ',&#varname#_capi'}, 'keys_capi': {isoptional: ',&#varname#_capi'}, '_check': l_and(isarray, isintent_nothide) }, { 'frompyobj': ['\t#setdims#;', '\tcapi_#varname#_intent |= #intent#;', {isintent_hide: '\tcapi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,Py_None);'}, {isintent_nothide: '\tcapi_#varname#_tmp = array_from_pyobj(#atype#,#varname#_Dims,#varname#_Rank,capi_#varname#_intent,#varname#_capi);'}, """\ \tif (capi_#varname#_tmp == NULL) { \t\tif (!PyErr_Occurred()) \t\t\tPyErr_SetString(#modulename#_error,\"failed in converting #nth# `#varname#\' of #pyname# to C/Fortran array\" ); \t} else { \t\t#varname# = (#ctype# *)(PyArray_DATA(capi_#varname#_tmp)); """, {hasinitvalue: [ {isintent_nothide: '\tif (#varname#_capi == Py_None) {'}, {isintent_hide: '\t{'}, {iscomplexarray: '\t\t#ctype# capi_c;'}, """\ \t\tint *_i,capi_i=0; \t\tCFUNCSMESS(\"#name#: Initializing #varname#=#init#\\n\"); \t\tif (initforcomb(PyArray_DIMS(capi_#varname#_tmp),PyArray_NDIM(capi_#varname#_tmp),1)) { \t\t\twhile ((_i = nextforcomb())) \t\t\t\t#varname#[capi_i++] = #init#; /* fortran way */ \t\t} else { \t\t\tif (!PyErr_Occurred()) \t\t\t\tPyErr_SetString(#modulename#_error,\"Initialization of #nth# #varname# failed (initforcomb).\"); \t\t\tf2py_success = 0; \t\t} \t} \tif (f2py_success) {"""]}, ], 'cleanupfrompyobj': [ # note that this list will be reversed '\t} /*if (capi_#varname#_tmp == NULL) ... else of #varname#*/', {l_not(l_or(isintent_out, isintent_hide)): """\ \tif((PyObject *)capi_#varname#_tmp!=#varname#_capi) { \t\tPy_XDECREF(capi_#varname#_tmp); }"""}, {l_and(isintent_hide, l_not(isintent_out)) : """\t\tPy_XDECREF(capi_#varname#_tmp);"""}, {hasinitvalue: '\t} /*if (f2py_success) of #varname# init*/'}, ], '_check': isarray, '_depend': '' }, # Scalararray { # Common '_check': l_and(isarray, l_not(iscomplexarray)) }, { # Not hidden '_check': l_and(isarray, l_not(iscomplexarray), isintent_nothide) }, # Integer*1 array {'need': '#ctype#', '_check': isint1array, '_depend': '' }, # Integer*-1 array {'need': '#ctype#', '_check': isunsigned_chararray, '_depend': '' }, # Integer*-2 array {'need': '#ctype#', '_check': isunsigned_shortarray, '_depend': '' }, # Integer*-8 array {'need': '#ctype#', '_check': isunsigned_long_longarray, '_depend': '' }, # Complexarray {'need': '#ctype#', '_check': iscomplexarray, '_depend': '' }, # Stringarray { 'callfortranappend': {isarrayofstrings: 'flen(#varname#),'}, 'need': 'string', '_check': isstringarray } ] ################# Rules for checking ############### check_rules = [ { 'frompyobj': {debugcapi: '\tfprintf(stderr,\"debug-capi:Checking `#check#\'\\n\");'}, 'need': 'len..' }, { 'frompyobj': '\tCHECKSCALAR(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': '\t} /*CHECKSCALAR(#check#)*/', 'need': 'CHECKSCALAR', '_check': l_and(isscalar, l_not(iscomplex)), '_break': '' }, { 'frompyobj': '\tCHECKSTRING(#check#,\"#check#\",\"#nth# #varname#\",\"#varshowvalue#\",#varname#) {', 'cleanupfrompyobj': '\t} /*CHECKSTRING(#check#)*/', 'need': 'CHECKSTRING', '_check': isstring, '_break': '' }, { 'need': 'CHECKARRAY', 'frompyobj': '\tCHECKARRAY(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': '\t} /*CHECKARRAY(#check#)*/', '_check': isarray, '_break': '' }, { 'need': 'CHECKGENERIC', 'frompyobj': '\tCHECKGENERIC(#check#,\"#check#\",\"#nth# #varname#\") {', 'cleanupfrompyobj': '\t} /*CHECKGENERIC(#check#)*/', } ] ########## Applying the rules. No need to modify what follows ############# #################### Build C/API module ####################### def buildmodule(m, um): """ Return """ global f2py_version, options outmess('\tBuilding module "%s"...\n' % (m['name'])) ret = {} mod_rules = defmod_rules[:] vrd = capi_maps.modsign2map(m) rd = dictappend({'f2py_version': f2py_version}, vrd) funcwrappers = [] funcwrappers2 = [] # F90 codes for n in m['interfaced']: nb = None for bi in m['body']: if not bi['block'] == 'interface': errmess('buildmodule: Expected interface block. Skipping.\n') continue for b in bi['body']: if b['name'] == n: nb = b break if not nb: errmess( 'buildmodule: Could not found the body of interfaced routine "%s". Skipping.\n' % (n)) continue nb_list = [nb] if 'entry' in nb: for k, a in nb['entry'].items(): nb1 = copy.deepcopy(nb) del nb1['entry'] nb1['name'] = k nb1['args'] = a nb_list.append(nb1) for nb in nb_list: api, wrap = buildapi(nb) if wrap: if ismoduleroutine(nb): funcwrappers2.append(wrap) else: funcwrappers.append(wrap) ar = applyrules(api, vrd) rd = dictappend(rd, ar) # Construct COMMON block support cr, wrap = common_rules.buildhooks(m) if wrap: funcwrappers.append(wrap) ar = applyrules(cr, vrd) rd = dictappend(rd, ar) # Construct F90 module support mr, wrap = f90mod_rules.buildhooks(m) if wrap: funcwrappers2.append(wrap) ar = applyrules(mr, vrd) rd = dictappend(rd, ar) for u in um: ar = use_rules.buildusevars(u, m['use'][u['name']]) rd = dictappend(rd, ar) needs = cfuncs.get_needs() code = {} for n in needs.keys(): code[n] = [] for k in needs[n]: c = '' if k in cfuncs.includes0: c = cfuncs.includes0[k] elif k in cfuncs.includes: c = cfuncs.includes[k] elif k in cfuncs.userincludes: c = cfuncs.userincludes[k] elif k in cfuncs.typedefs: c = cfuncs.typedefs[k] elif k in cfuncs.typedefs_generated: c = cfuncs.typedefs_generated[k] elif k in cfuncs.cppmacros: c = cfuncs.cppmacros[k] elif k in cfuncs.cfuncs: c = cfuncs.cfuncs[k] elif k in cfuncs.callbacks: c = cfuncs.callbacks[k] elif k in cfuncs.f90modhooks: c = cfuncs.f90modhooks[k] elif k in cfuncs.commonhooks: c = cfuncs.commonhooks[k] else: errmess('buildmodule: unknown need %s.\n' % (repr(k))) continue code[n].append(c) mod_rules.append(code) for r in mod_rules: if ('_check' in r and r['_check'](m)) or ('_check' not in r): ar = applyrules(r, vrd, m) rd = dictappend(rd, ar) ar = applyrules(module_rules, rd) fn = os.path.join(options['buildpath'], vrd['coutput']) ret['csrc'] = fn f = open(fn, 'w') f.write(ar['modulebody'].replace('\t', 2 * ' ')) f.close() outmess('\tWrote C/API module "%s" to file "%s"\n' % (m['name'], fn)) if options['dorestdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.rest') f = open(fn, 'w') f.write('.. -*- rest -*-\n') f.write('\n'.join(ar['restdoc'])) f.close() outmess('\tReST Documentation is saved to file "%s/%smodule.rest"\n' % (options['buildpath'], vrd['modulename'])) if options['dolatexdoc']: fn = os.path.join( options['buildpath'], vrd['modulename'] + 'module.tex') ret['ltx'] = fn f = open(fn, 'w') f.write( '%% This file is auto-generated with f2py (version:%s)\n' % (f2py_version)) if 'shortlatex' not in options: f.write( '\\documentclass{article}\n\\usepackage{a4wide}\n\\begin{document}\n\\tableofcontents\n\n') f.write('\n'.join(ar['latexdoc'])) if 'shortlatex' not in options: f.write('\\end{document}') f.close() outmess('\tDocumentation is saved to file "%s/%smodule.tex"\n' % (options['buildpath'], vrd['modulename'])) if funcwrappers: wn = os.path.join(options['buildpath'], vrd['f2py_wrapper_output']) ret['fsrc'] = wn f = open(wn, 'w') f.write('C -*- fortran -*-\n') f.write( 'C This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( 'C It contains Fortran 77 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers) + '\n').split('\n'): if l and l[0] == ' ': while len(l) >= 66: lines.append(l[:66] + '\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) f.close() outmess('\tFortran 77 wrappers are saved to "%s"\n' % (wn)) if funcwrappers2: wn = os.path.join( options['buildpath'], '%s-f2pywrappers2.f90' % (vrd['modulename'])) ret['fsrc'] = wn f = open(wn, 'w') f.write('! -*- f90 -*-\n') f.write( '! This file is autogenerated with f2py (version:%s)\n' % (f2py_version)) f.write( '! It contains Fortran 90 wrappers to fortran functions.\n') lines = [] for l in ('\n\n'.join(funcwrappers2) + '\n').split('\n'): if len(l) > 72 and l[0] == ' ': lines.append(l[:72] + '&\n &') l = l[72:] while len(l) > 66: lines.append(l[:66] + '&\n &') l = l[66:] lines.append(l + '\n') else: lines.append(l + '\n') lines = ''.join(lines).replace('\n &\n', '\n') f.write(lines) f.close() outmess('\tFortran 90 wrappers are saved to "%s"\n' % (wn)) return ret ################## Build C/API function ############# stnd = {1: 'st', 2: 'nd', 3: 'rd', 4: 'th', 5: 'th', 6: 'th', 7: 'th', 8: 'th', 9: 'th', 0: 'th'} def buildapi(rout): rout, wrap = func2subr.assubr(rout) args, depargs = getargs2(rout) capi_maps.depargs = depargs var = rout['vars'] if ismoduleroutine(rout): outmess('\t\t\tConstructing wrapper function "%s.%s"...\n' % (rout['modulename'], rout['name'])) else: outmess('\t\tConstructing wrapper function "%s"...\n' % (rout['name'])) # Routine vrd = capi_maps.routsign2map(rout) rd = dictappend({}, vrd) for r in rout_rules: if ('_check' in r and r['_check'](rout)) or ('_check' not in r): ar = applyrules(r, vrd, rout) rd = dictappend(rd, ar) # Args nth, nthk = 0, 0 savevrd = {} for a in args: vrd = capi_maps.sign2map(a, var[a]) if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules if not isintent_hide(var[a]): if not isoptional(var[a]): nth = nth + 1 vrd['nth'] = repr(nth) + stnd[nth % 10] + ' argument' else: nthk = nthk + 1 vrd['nth'] = repr(nthk) + stnd[nthk % 10] + ' keyword' else: vrd['nth'] = 'hidden' savevrd[a] = vrd for r in _rules: if '_depend' in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break for a in depargs: if isintent_aux(var[a]): _rules = aux_rules else: _rules = arg_rules vrd = savevrd[a] for r in _rules: if '_depend' not in r: continue if ('_check' in r and r['_check'](var[a])) or ('_check' not in r): ar = applyrules(r, vrd, var[a]) rd = dictappend(rd, ar) if '_break' in r: break if 'check' in var[a]: for c in var[a]['check']: vrd['check'] = c ar = applyrules(check_rules, vrd, var[a]) rd = dictappend(rd, ar) if isinstance(rd['cleanupfrompyobj'], list): rd['cleanupfrompyobj'].reverse() if isinstance(rd['closepyobjfrom'], list): rd['closepyobjfrom'].reverse() rd['docsignature'] = stripcomma(replace('#docsign##docsignopt##docsignxa#', {'docsign': rd['docsign'], 'docsignopt': rd['docsignopt'], 'docsignxa': rd['docsignxa']})) optargs = stripcomma(replace('#docsignopt##docsignxa#', {'docsignxa': rd['docsignxashort'], 'docsignopt': rd['docsignoptshort']} )) if optargs == '': rd['docsignatureshort'] = stripcomma( replace('#docsign#', {'docsign': rd['docsign']})) else: rd['docsignatureshort'] = replace('#docsign#[#docsignopt#]', {'docsign': rd['docsign'], 'docsignopt': optargs, }) rd['latexdocsignatureshort'] = rd['docsignatureshort'].replace('_', '\\_') rd['latexdocsignatureshort'] = rd[ 'latexdocsignatureshort'].replace(',', ', ') cfs = stripcomma(replace('#callfortran##callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) if len(rd['callfortranappend']) > 1: rd['callcompaqfortran'] = stripcomma(replace('#callfortran# 0,#callfortranappend#', { 'callfortran': rd['callfortran'], 'callfortranappend': rd['callfortranappend']})) else: rd['callcompaqfortran'] = cfs rd['callfortran'] = cfs if isinstance(rd['docreturn'], list): rd['docreturn'] = stripcomma( replace('#docreturn#', {'docreturn': rd['docreturn']})) + ' = ' rd['docstrsigns'] = [] rd['latexdocstrsigns'] = [] for k in ['docstrreq', 'docstropt', 'docstrout', 'docstrcbs']: if k in rd and isinstance(rd[k], list): rd['docstrsigns'] = rd['docstrsigns'] + rd[k] k = 'latex' + k if k in rd and isinstance(rd[k], list): rd['latexdocstrsigns'] = rd['latexdocstrsigns'] + rd[k][0:1] +\ ['\\begin{description}'] + rd[k][1:] +\ ['\\end{description}'] # Workaround for Python 2.6, 2.6.1 bug: http://bugs.python.org/issue4720 if rd['keyformat'] or rd['xaformat']: argformat = rd['argformat'] if isinstance(argformat, list): argformat.append('|') else: assert isinstance(argformat, str), repr( (argformat, type(argformat))) rd['argformat'] += '|' ar = applyrules(routine_rules, rd) if ismoduleroutine(rout): outmess('\t\t\t %s\n' % (ar['docshort'])) else: outmess('\t\t %s\n' % (ar['docshort'])) return ar, wrap #################### EOF rules.py #######################
39.653794
212
0.548651
24c0b02d167fa64a185141bede0ecdd803cc193d
4,371
py
Python
contrib/seeds/generate-seeds.py
Qbase-Foundation/Testnet
fefcbd91eb2f0ac35c4c3c5b41243f2afccf194e
[ "MIT" ]
6
2018-12-16T00:48:48.000Z
2021-10-16T19:17:30.000Z
contrib/seeds/generate-seeds.py
Qbase-Foundation/Testnet
fefcbd91eb2f0ac35c4c3c5b41243f2afccf194e
[ "MIT" ]
null
null
null
contrib/seeds/generate-seeds.py
Qbase-Foundation/Testnet
fefcbd91eb2f0ac35c4c3c5b41243f2afccf194e
[ "MIT" ]
2
2018-10-15T05:40:05.000Z
2021-05-20T18:14:57.000Z
#!/usr/bin/python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Script to generate list of seed nodes for chainparams.cpp. This script expects two text files in the directory that is passed as an argument: nodes_main.txt nodes_test.txt These files must consist of lines in the format <ip> <ip>:<port> [<ipv6>] [<ipv6>]:<port> <onion>.onion 0xDDBBCCAA (IPv4 little-endian old pnSeeds format) The output will be two data structures with the peers in binary format: static SeedSpec6 pnSeed6_main[]={ ... } static SeedSpec6 pnSeed6_test[]={ ... } These should be pasted into `src/chainparamsseeds.h`. ''' from __future__ import print_function, division from base64 import b32decode from binascii import a2b_hex import sys, os import re # ipv4 in ipv6 prefix pchIPv4 = bytearray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff]) # tor-specific ipv6 prefix pchOnionCat = bytearray([0xFD,0x87,0xD8,0x7E,0xEB,0x43]) def name_to_ipv6(addr): if len(addr)>6 and addr.endswith('.onion'): vchAddr = b32decode(addr[0:-6], True) if len(vchAddr) != 16-len(pchOnionCat): raise ValueError('Invalid onion %s' % s) return pchOnionCat + vchAddr elif '.' in addr: # IPv4 return pchIPv4 + bytearray((int(x) for x in addr.split('.'))) elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) return bytearray(sub[0] + ([0] * nullbytes) + sub[1]) elif addr.startswith('0x'): # IPv4-in-little-endian return pchIPv4 + bytearray(reversed(a2b_hex(addr[2:]))) else: raise ValueError('Could not parse address %s' % addr) def parse_spec(s, defaultport): match = re.match('\[([0-9a-fA-F:]+)\](?::([0-9]+))?$', s) if match: # ipv6 host = match.group(1) port = match.group(2) elif s.count(':') > 1: # ipv6, no port host = s port = '' else: (host,_,port) = s.partition(':') if not port: port = defaultport else: port = int(port) host = name_to_ipv6(host) return (host,port) def process_nodes(g, f, structname, defaultport): g.write('static SeedSpec6 %s[] = {\n' % structname) first = True for line in f: comment = line.find('#') if comment != -1: line = line[0:comment] line = line.strip() if not line: continue if not first: g.write(',\n') first = False (host,port) = parse_spec(line, defaultport) hoststr = ','.join(('0x%02x' % b) for b in host) g.write(' {{%s}, %i}' % (hoststr, port)) g.write('\n};\n') def main(): if len(sys.argv)<2: print(('Usage: %s <path_to_nodes_txt>' % sys.argv[0]), file=sys.stderr) exit(1) g = sys.stdout indir = sys.argv[1] g.write('#ifndef REDEN_CHAINPARAMSSEEDS_H\n') g.write('#define REDEN_CHAINPARAMSSEEDS_H\n') g.write('/**\n') g.write(' * List of fixed seed nodes for the qbase network\n') g.write(' * AUTOGENERATED by contrib/seeds/generate-seeds.py\n') g.write(' *\n') g.write(' * Each line contains a 16-byte IPv6 address and a port.\n') g.write(' * IPv4 as well as onion addresses are wrapped inside a IPv6 address accordingly.\n') g.write(' */\n') with open(os.path.join(indir,'nodes_main.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_main', 17817) g.write('\n') with open(os.path.join(indir,'nodes_test.txt'),'r') as f: process_nodes(g, f, 'pnSeed6_test', 17717) g.write('#endif // REDEN_CHAINPARAMSSEEDS_H\n') if __name__ == '__main__': main()
31.446043
98
0.581789
6602a91e2cb8c54312ef65b181b6033b114bf71d
834
py
Python
pymongoshell/mping.py
jdrumgoole/mongodbutils
9e74ce94e56f5b1a0eaa558c282b6c6659ebf1da
[ "Apache-2.0" ]
2
2019-01-17T21:32:08.000Z
2019-01-17T22:14:41.000Z
pymongoshell/mping.py
jdrumgoole/mongodbutils
9e74ce94e56f5b1a0eaa558c282b6c6659ebf1da
[ "Apache-2.0" ]
5
2021-04-20T20:55:02.000Z
2021-04-20T20:55:04.000Z
pymongoshell/mping.py
jdrumgoole/mongodbutils
9e74ce94e56f5b1a0eaa558c282b6c6659ebf1da
[ "Apache-2.0" ]
1
2017-04-29T19:32:24.000Z
2017-04-29T19:32:24.000Z
""" Author : joe@joedrumgoole.com MPing : Ping a MongoDB server with an is_master command. """ import pymongo from pymongo.errors import ConnectionFailure from datetime import datetime import pprint import sys if __name__ == "__main__": arg = None if len(sys.argv) > 1: arg = sys.argv[1] client = pymongo.MongoClient(host=arg) try: # The ismaster command is cheap and does not require auth. start = datetime.utcnow() doc = client.admin.command('ismaster') end = datetime.utcnow() duration = end - start print(f"ismaster took : {duration}") pprint.pprint(doc) except ConnectionFailure: end = datetime.utcnow() print("Server not available") duration = end - start print(f"connection failure took : {duration}")
22.540541
66
0.640288
ade9b236d36171955404991fe28d9a3288402866
3,318
py
Python
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2015_05_01/_configuration.py
moovy2/azure-sdk-for-python
6b0495dc9917d47a7264f26cbd3221d43461a537
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2015_05_01/_configuration.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/applicationinsights/azure-mgmt-applicationinsights/azure/mgmt/applicationinsights/v2015_05_01/_configuration.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMHttpLoggingPolicy from ._version import VERSION if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential class ApplicationInsightsManagementClientConfiguration(Configuration): """Configuration for ApplicationInsightsManagementClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str """ def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") if subscription_id is None: raise ValueError("Parameter 'subscription_id' must not be None.") super(ApplicationInsightsManagementClientConfiguration, self).__init__(**kwargs) self.credential = credential self.subscription_id = subscription_id self.api_version = "2015-05-01" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'mgmt-applicationinsights/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
46.083333
129
0.690175
98b0fe78010d93a4b7a5af536237d2516e55b877
5,591
py
Python
aoc/event2021/day24/solve.py
rjbatista/AoC
5c6ca4bcb376c24ec730eb12fd7044f5326ee473
[ "MIT" ]
null
null
null
aoc/event2021/day24/solve.py
rjbatista/AoC
5c6ca4bcb376c24ec730eb12fd7044f5326ee473
[ "MIT" ]
null
null
null
aoc/event2021/day24/solve.py
rjbatista/AoC
5c6ca4bcb376c24ec730eb12fd7044f5326ee473
[ "MIT" ]
null
null
null
import re ######## # PART 1 class ALU: _registers : list[int] def __init__(self) -> None: self._input = [] self._registers = [0] * 4 self.loaded_code = None self._pattern = re.compile(r"^(inp|add|mul|div|mod|eql) ([w-z])(?: (?:(-?\d+)|([w-z])))?$") def reset_registers(self): self._registers = [0] * 4 return self def __setitem__(self, reg: str, value: int) -> int: self._registers[ord(reg) - ord('w')] = value def __getitem__(self, reg: str) -> int: return self._registers[ord(reg) - ord('w')] def load(self, filename): with open("event2021/day24/" + filename, "r") as file: self.loaded_code = list(line.strip() for line in file.readlines()) def set_status(self, code, regs): self.loaded_code = code[:] self._registers = regs[:] def load_and_run(self, filename, input = [], reset = True, debug = False): self.load(filename) self.run_code(input = input, reset = reset, debug = debug) return self def run_code(self, input = [], reset = True, debug = False): if reset: self.reset_registers() self._input = input for ln, instruction in enumerate(self.loaded_code): match = self._pattern.match(instruction) if match: opcode = getattr(ALU, "_opcode_" + match[1]) arg1 = match[2] arg2 = int(match[3]) if match[3] else match[4] if arg2 is not None: opcode(self, arg1, arg2) else: opcode(self, arg1) if debug: print(f"{match[1]}\t{arg1}\t{arg2 if arg2 is not None else ''}\twxyz={self}") else: raise RuntimeError("Error on line " + str(ln) + ": " + instruction) return self def __str__(self) -> str: return str(self._registers) + str([self._registers[3] // (26*n) for n in range(1, 14)]) + str(self._registers[3] % 26) def _opcode_inp(self, a): """ inp a - Read an input value and write it to variable a. """ self[a] = self._input.pop(0) def _opcode_add(self, a, b): """ add a b - Add the value of a to the value of b, then store the result in variable a. """ self[a] += self[b] if isinstance(b, str) else b def _opcode_mul(self, a, b): """ mul a b - Multiply the value of a by the value of b, then store the result in variable a. """ self[a] *= self[b] if isinstance(b, str) else b def _opcode_div(self, a, b): """ div a b - Divide the value of a by the value of b, truncate the result to an integer, then store the result in variable a. (Here, "truncate" means to round the value toward zero.) """ self[a] //= self[b] if isinstance(b, str) else b def _opcode_mod(self, a, b): """ mod a b - Divide the value of a by the value of b, then store the remainder in variable a. (This is also called the modulo operation.) """ self[a] %= self[b] if isinstance(b, str) else b def _opcode_eql(self, a, b): """ eql a b - If the value of a and b are equal, then store the value 1 in variable a. Otherwise, store the value 0 in variable a. """ self[a] = 1 if self[a] == (self[b] if isinstance(b, str) else b) else 0 def digits(s): return [int(x) for x in s] #print(digits("99999999999998")) #print(alu.run_code(input=[9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8], debug=True)) def find_pairs(): alu = ALU() alu.load("input.txt") total_code = alu.loaded_code[:] # break down each digit inp_indexes = [] for i, instruction in enumerate(alu.loaded_code): if instruction.startswith('inp'): inp_indexes += [i] x_value_pattern = re.compile(r"add x (-?\d+)") y_value_pattern = re.compile(r"add y (-?\d+)") stack = [] in_push = None pairs = [] for idx, (start, end) in enumerate(zip(inp_indexes, inp_indexes[1:] + [len(alu.loaded_code)])): for instr in total_code[start:end]: if instr == "div z 1": in_push = True elif instr == "div z 26": in_push = False elif instr == "add y 25" or instr == "add y 1": continue elif in_push and (m := y_value_pattern.match(instr)): stack.append((idx, int(m[1]))) elif not in_push and (m := x_value_pattern.match(instr)): pairs.append((stack.pop(), (idx, int(m[1])))) return pairs def maximize(pairs): digits = [9] * 14 for (pa, va), (pb, vb) in pairs: while True: v = digits[pa] + vb + va if 1 <= v <= 9: break digits[pa] -= 1 digits[pb] = v return "".join([str(x) for x in digits]) pairs = find_pairs() answer = maximize(pairs) print("Part 1 =", answer) assert answer == "99298993199873" # check with accepted answer ######## # PART 2 def minimize(pairs): digits = [1] * 14 for (pa, va), (pb, vb) in pairs: while True: v = digits[pa] + vb + va if 1 <= v <= 9: break digits[pa] += 1 digits[pb] = v return "".join([str(x) for x in digits]) answer = minimize(pairs) print("Part 2 =", answer) assert answer == "73181221197111" # check with accepted answer
27.406863
126
0.53443
0802c0eabb3e4e31fb532043496bfff4184d5fa8
1,205
py
Python
api/index.py
bramaudi/gold-price
a67328a917ed3eadeda5b968c2ad47566f6ba305
[ "MIT" ]
null
null
null
api/index.py
bramaudi/gold-price
a67328a917ed3eadeda5b968c2ad47566f6ba305
[ "MIT" ]
null
null
null
api/index.py
bramaudi/gold-price
a67328a917ed3eadeda5b968c2ad47566f6ba305
[ "MIT" ]
null
null
null
import requests, json from http.server import BaseHTTPRequestHandler from cowpy import cow from bs4 import BeautifulSoup from sanic import Sanic from sanic.response import json http = requests.get('https://harga-emas.org/') soup = BeautifulSoup(http.content, 'html.parser') def sort_type(kurs): return { "oz": kurs[0], "gr": kurs[1], "kg": kurs[2], } list_usd = [] list_kurs_dollar = [] list_idr = [] table = soup.find_all('table')[1] for tr in table.find_all('tr'): satuan = tr.select('td[align=left]') if len(satuan): # print(satuan[0].parent.find_all('td')[0]) # satuan usd = satuan[0].parent.find_all('td')[1] list_usd.append(usd.get_text()) kurs_dollar = satuan[0].parent.find_all('td')[2] list_kurs_dollar.append(kurs_dollar.get_text()) idr = satuan[0].parent.find_all('td')[3] list_idr.append(idr.get_text()) response = { 'usd': sort_type(list_usd), 'kurs_dollar': sort_type(list_kurs_dollar), 'idr': sort_type(list_idr), } app = Sanic() @app.route('/') @app.route('/<path:path>') async def index(request, path=""): return json( response, headers={"Access-Control-Allow-Origin": "*"} ) # app.run(host='0.0.0.0', port=8080)
23.173077
56
0.66639
52a2aa0210df9b0e3442289e4febb8c415560b5a
6,870
py
Python
Maverick/Cache.py
Lumin0ux/Maverick
4ca5c0d212f473f1687ae62bb520b48fcb817740
[ "MIT" ]
null
null
null
Maverick/Cache.py
Lumin0ux/Maverick
4ca5c0d212f473f1687ae62bb520b48fcb817740
[ "MIT" ]
null
null
null
Maverick/Cache.py
Lumin0ux/Maverick
4ca5c0d212f473f1687ae62bb520b48fcb817740
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Handle cache """ import os import json import shutil from PIL import Image from PIL import ImageFile import urllib from .Config import g_conf from .Router import Router from urllib.parse import urlparse import urllib.request as request from .Utils import unify_joinpath, print_color, Color, safe_read, safe_write, gen_hash g_used_imgs = None g_sizeinfo_cache = None def quickQueryImgSize(src): """get size info by downloading small part of it """ try: with request.urlopen(src) as file: p = ImageFile.Parser() while True: data = file.read(1024) if not data: break p.feed(data) if p.image: return list(p.image.size) except BaseException as e: print_color('fetch error: ' + src, Color.RED.value) print_color(e, Color.RED.value) return None def cache_img(src, base_path): """Gen image cache 1. find image in cache dir 2. if src is remote URL, download it or call quickQueryImgSize 3. treat src as absolute path and find it 3. treat src as relative path and find it """ global g_used_imgs global g_sizeinfo_cache json_path = './tmp/used_imgs.json' sizeinfo_json_path = './cached_imgs/sizeinfo.json' cache_dir = './cached_imgs' if g_used_imgs is None: g_used_imgs = set(json.loads(safe_read(json_path) or '[]')) if g_sizeinfo_cache is None: g_sizeinfo_cache = json.loads( safe_read(sizeinfo_json_path) or '{}') def log_and_return(filename): global g_used_imgs global g_sizeinfo_cache g_used_imgs = g_used_imgs | set([filename]) info = { "src": '', "width": -1, "height": -1 } # if enable jsDelivr CDN, add prefix # if not, fallback (site_prefix) will be used router = Router(g_conf) static_prefix = router.gen_static_file_prefix() info['src'] = "%sarchives/assets/%s" % (static_prefix, filename) if filename in g_sizeinfo_cache: # if size info in cache info['width'] = g_sizeinfo_cache[filename][0] info['height'] = g_sizeinfo_cache[filename][1] print_color("Sizeinfo hit cache: %s (%s, %s)" % (src, info['width'], info['height']), Color.GREEN.value) else: try: img = Image.open(unify_joinpath(cache_dir, filename)) info['width'] = img.size[0] info['height'] = img.size[1] print_color("Parsed sizeinfo from local: %s (%s, %s)" % (src, info['width'], info['height']), Color.GREEN.value) g_sizeinfo_cache[filename] = [img.size[0], img.size[1]] except IOError: print_color("Pars sizeinfo from local failed", Color.RED.value) return info src_md5 = gen_hash(src) # find image in cache dir if not os.path.exists(cache_dir): os.makedirs(cache_dir) cached_imgs = [name for name in os.listdir(cache_dir)] for name in cached_imgs: if name.split('.')[0].lower() == src_md5.lower(): # in cache dir # print_color("Image hit cache: " + src, Color.GREEN.value) return log_and_return(name) # if it is remote image if src.startswith('http'): if g_conf.fetch_remote_imgs: # download and treat it as local image try: suffix = urlparse(src).path.split('.')[-1] filename = '.'.join([src_md5, suffix]) proxy = request.ProxyHandler({}) opener = request.build_opener(proxy) opener.addheaders = [('User-Agent', r'Mozilla/5.0 (Windows NT 10.0; Win64; x64) ' r'AppleWebKit/537.36(KHTML, like Gecko) ' r'Chrome/78.0.3904.108 Safari/537.36')] request.install_opener(opener) print_color("Trying to download: " + src, Color.BLUE.value) request.urlretrieve( src, unify_joinpath(cache_dir, filename)) return log_and_return(filename) except BaseException as e: print_color('Fetch error: ' + src, Color.RED.value) print_color(e, Color.RED.value) return { "src": src, "width": -1, "height": -1 } else: # download small part of it info = { "src": src, "width": -1, "height": -1 } if src in g_sizeinfo_cache: info['width'] = g_sizeinfo_cache[src][0] info['height'] = g_sizeinfo_cache[src][1] print_color("Sizeinfo hit cache: %s (%s, %s)" % (src, info['width'], info['height']), Color.GREEN.value) else: print_color("Trying to fetch size of "+src, Color.BLUE.value) size = quickQueryImgSize(src) if not size is None: info['width'] = size[0] info['height'] = size[1] g_sizeinfo_cache[src] = size print_color("Size fetched: (%s, %s)" % ( info['width'], info['height']), Color.BLUE.value) return info # treat src as absolute path if os.path.exists(src): print_color("Image found at local: " + src, Color.GREEN.value) filename = src_md5 + '.' + src.split('.')[-1] shutil.copyfile(src, unify_joinpath(cache_dir, filename)) return log_and_return(filename) # treat src as relative path to Markdown file if os.path.exists(unify_joinpath(base_path, src)): print_color("Image found at local: " + src, Color.GREEN.value) filename = src_md5 + '.' + src.split('.')[-1] shutil.copyfile(unify_joinpath(base_path, src), unify_joinpath(cache_dir, filename)) return log_and_return(filename) return { "src": src, "width": -1, "height": -1 } def dump_log(): global g_used_imgs global g_sizeinfo_cache json_path = './tmp/used_imgs.json' sizeinfo_json_path = './cached_imgs/sizeinfo.json' safe_write(json_path, json.dumps(list(g_used_imgs or []), indent=1)) safe_write(sizeinfo_json_path, json.dumps( g_sizeinfo_cache or {}, indent=1))
35.230769
87
0.534643
7c2a282222a6a50bcc7ab6311634942e0f0dc963
1,328
py
Python
setup.py
galamit86/nimbletl
7bee9894b45143f315b1a98d70d62c356fb6d70f
[ "MIT" ]
3
2020-05-13T18:19:40.000Z
2020-07-02T18:53:52.000Z
setup.py
galamit86/nimbletl
7bee9894b45143f315b1a98d70d62c356fb6d70f
[ "MIT" ]
7
2020-05-16T09:55:14.000Z
2020-08-25T10:54:59.000Z
setup.py
dkapitan/nimbletl
7bee9894b45143f315b1a98d70d62c356fb6d70f
[ "MIT" ]
1
2020-11-09T10:54:22.000Z
2020-11-09T10:54:22.000Z
#!/usr/bin/env python """The setup script.""" from setuptools import setup, find_packages with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() requirements = ["prefect>=0.11.0"] setup_requirements = [ "pytest-runner", ] test_requirements = [ "pytest>=3", ] setup( author="Daniel Kapitan", author_email="daniel@kapitan.net", python_requires=">=3.7", classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], description="Lightweight Python ETL toolkit using Prefect.", install_requires=requirements, license="MIT license", long_description=readme + "\n\n" + history, include_package_data=True, keywords="nimbletl", name="nimbletl", packages=find_packages(include=["nimbletl", "nimbletl.*"]), setup_requires=setup_requirements, test_suite="tests", tests_require=test_requirements, url="https://github.com/dkapitan/nimbletl", version="0.1.0", zip_safe=False, )
26.039216
64
0.652861
39d2dccbd32910ec74fc30e55e404aaccca51df2
1,044
py
Python
isi_sdk_8_1_1/test/test_node_drives_purposelist_node_purpose.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
24
2018-06-22T14:13:23.000Z
2022-03-23T01:21:26.000Z
isi_sdk_8_1_1/test/test_node_drives_purposelist_node_purpose.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
46
2018-04-30T13:28:22.000Z
2022-03-21T21:11:07.000Z
isi_sdk_8_1_1/test/test_node_drives_purposelist_node_purpose.py
mohitjain97/isilon_sdk_python
a371f438f542568edb8cda35e929e6b300b1177c
[ "Unlicense" ]
29
2018-06-19T00:14:04.000Z
2022-02-08T17:51:19.000Z
# coding: utf-8 """ Isilon SDK Isilon SDK - Language bindings for the OneFS API # noqa: E501 OpenAPI spec version: 6 Contact: sdk@isilon.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import isi_sdk_8_1_1 from isi_sdk_8_1_1.models.node_drives_purposelist_node_purpose import NodeDrivesPurposelistNodePurpose # noqa: E501 from isi_sdk_8_1_1.rest import ApiException class TestNodeDrivesPurposelistNodePurpose(unittest.TestCase): """NodeDrivesPurposelistNodePurpose unit test stubs""" def setUp(self): pass def tearDown(self): pass def testNodeDrivesPurposelistNodePurpose(self): """Test NodeDrivesPurposelistNodePurpose""" # FIXME: construct object with mandatory attributes with example values # model = isi_sdk_8_1_1.models.node_drives_purposelist_node_purpose.NodeDrivesPurposelistNodePurpose() # noqa: E501 pass if __name__ == '__main__': unittest.main()
25.463415
124
0.745211
5b4f764194628fb28c637cc1d12d42f57938c162
299
py
Python
app/api/errors/repository.py
karriva/myna_test
1def78a0c11b91a5d28c216333eec6ffe39e6fbb
[ "MIT" ]
null
null
null
app/api/errors/repository.py
karriva/myna_test
1def78a0c11b91a5d28c216333eec6ffe39e6fbb
[ "MIT" ]
1
2022-01-17T08:18:39.000Z
2022-01-17T08:18:39.000Z
app/api/errors/repository.py
karriva/myna_test
1def78a0c11b91a5d28c216333eec6ffe39e6fbb
[ "MIT" ]
null
null
null
from .common import SchemaEnhancedHTTPException class RepositoryHTTPException(SchemaEnhancedHTTPException): """ Raises when repository raised error. """ default_status_code = 400 default_error_kind = 'repository' default_error_code = 1200 message = 'Repository error.'
24.916667
59
0.745819
fd1610416cc70916e4af17427d53a1319dec6442
1,531
py
Python
test/functional/uacomment.py
arcana-coin/arcana-core
b5d6d71968d1f19c42dc3f351aff17800da5af36
[ "MIT" ]
null
null
null
test/functional/uacomment.py
arcana-coin/arcana-core
b5d6d71968d1f19c42dc3f351aff17800da5af36
[ "MIT" ]
null
null
null
test/functional/uacomment.py
arcana-coin/arcana-core
b5d6d71968d1f19c42dc3f351aff17800da5af36
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bytcoyn Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the -uacomment option.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal class UacommentTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self.log.info("test multiple -uacomment") test_uacomment = self.nodes[0].getnetworkinfo()["subversion"][-12:-1] assert_equal(test_uacomment, "(testnode0)") self.restart_node(0, ["-uacomment=foo"]) foo_uacomment = self.nodes[0].getnetworkinfo()["subversion"][-17:-1] assert_equal(foo_uacomment, "(testnode0; foo)") self.log.info("test -uacomment max length") self.stop_node(0) expected = "Total length of network version string (286) exceeds maximum length (256). Reduce the number or size of uacomments." self.assert_start_raises_init_error(0, ["-uacomment=" + 'a' * 256], expected) self.log.info("test -uacomment unsafe characters") for unsafe_char in ['/', ':', '(', ')']: expected = "User Agent comment (" + unsafe_char + ") contains unsafe characters" self.assert_start_raises_init_error(0, ["-uacomment=" + unsafe_char], expected) if __name__ == '__main__': UacommentTest().main()
42.527778
136
0.683867
a60967a746ba9aad03766a088b790b26dc4b1921
4,611
py
Python
gymnasiums/tests/tests_gymnasium_create_view.py
hbuyse/dj-gymnasiums
39f590dc703eec01c753ea54d7f4afd06f81a582
[ "MIT" ]
null
null
null
gymnasiums/tests/tests_gymnasium_create_view.py
hbuyse/dj-gymnasiums
39f590dc703eec01c753ea54d7f4afd06f81a582
[ "MIT" ]
null
null
null
gymnasiums/tests/tests_gymnasium_create_view.py
hbuyse/dj-gymnasiums
39f590dc703eec01c753ea54d7f4afd06f81a582
[ "MIT" ]
null
null
null
#! /usr/bin/env python # coding=utf-8 """Tests the views.""" # Django from django.contrib.auth import get_user_model from django.test import TestCase from django.urls import reverse # Current django project from gymnasiums.models import Gymnasium class TestGymnasiumCreateViewAsAnonymous(TestCase): """Tests.""" def test_get(self): """Tests.""" r = self.client.get(reverse('gymnasiums:create')) self.assertEqual(r.status_code, 403) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } r = self.client.post(reverse('gymnasiums:create'), d) self.assertEqual(r.status_code, 403) class TestGymnasiumCreateViewAsLogged(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse" } get_user_model().objects.create_user(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('gymnasiums:create')) self.assertEqual(r.status_code, 403) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('gymnasiums:create'), d) self.assertEqual(r.status_code, 403) class TestGymnasiumCreateViewAsStaff(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse", 'is_staff': True } get_user_model().objects.create_user(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('gymnasiums:create')) self.assertEqual(r.status_code, 200) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('gymnasiums:create'), d) self.assertEqual(r.status_code, 302) g = Gymnasium.objects.last() self.assertEqual("/{}".format(g.id), r.url) class TestGymnasiumCreateViewAsSuperuser(TestCase): """Tests.""" def setUp(self): """Setup for al the following tests.""" self.dict = { 'username': "hbuyse", 'password': "usermodel", 'first_name': "Henri", 'last_name': "Buyse", 'email': 'henri.buyse@gmail.com' } get_user_model().objects.create_superuser(**self.dict) def test_get(self): """Tests.""" self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.get(reverse('gymnasiums:create')) self.assertEqual(r.status_code, 200) def test_post(self): """Tests.""" d = { 'name': 'Watteau', 'address': '37 rue Lequesne', 'city': 'Nogent-Sur-Marne', 'zip_code': '94130', 'phone': '0100000000', 'surface': '123', 'capacity': '456', } self.assertTrue(self.client.login(username=self.dict['username'], password=self.dict['password'])) r = self.client.post(reverse('gymnasiums:create'), d) self.assertEqual(r.status_code, 302) g = Gymnasium.objects.last() self.assertEqual("/{}".format(g.id), r.url)
29.369427
106
0.551074
e79c278ba8194bc0d1cb08d8038a358dca650ea4
8,340
py
Python
angrmanagement/ui/widgets/qfeature_map.py
Kyle-Kyle/angr-management
6ea65f19d813be510a38f06510b2b2148a6b5000
[ "BSD-2-Clause" ]
2
2022-01-23T21:43:54.000Z
2022-02-02T08:20:20.000Z
angrmanagement/ui/widgets/qfeature_map.py
Kyle-Kyle/angr-management
6ea65f19d813be510a38f06510b2b2148a6b5000
[ "BSD-2-Clause" ]
1
2021-12-04T01:11:46.000Z
2021-12-04T01:11:46.000Z
angrmanagement/ui/widgets/qfeature_map.py
Kyle-Kyle/angr-management
6ea65f19d813be510a38f06510b2b2148a6b5000
[ "BSD-2-Clause" ]
1
2021-05-17T05:46:19.000Z
2021-05-17T05:46:19.000Z
from sortedcontainers import SortedDict from PySide2.QtWidgets import QWidget, QHBoxLayout, QGraphicsScene, QSizePolicy, QGraphicsSceneMouseEvent from PySide2.QtGui import QPaintEvent, QPainter, QBrush, QPen, QPolygonF from PySide2.QtCore import Qt, QRectF, QSize, QPointF import cle from angr.block import Block from angr.analyses.cfg.cfb import Unknown from ...config import Conf from ...data.object_container import ObjectContainer from .qgraph import QZoomableDraggableGraphicsView import logging l = logging.getLogger(name=__name__) class Orientation: Vertical = 0 Horizontal = 1 class QClickableGraphicsScene(QGraphicsScene): def __init__(self, feature_map): """ :param QFeatureMap feature_map: """ super().__init__() self._feature_map = feature_map def mousePressEvent(self, mouseEvent): """ :param QGraphicsSceneMouseEvent mouseEvent: :return: """ if mouseEvent.button() == Qt.LeftButton: pos = mouseEvent.scenePos() offset = pos.x() self._feature_map.select_offset(offset) class QFeatureMapView(QZoomableDraggableGraphicsView): def __init__(self, parent=None): super().__init__(parent) self._scene = QClickableGraphicsScene(parent) self.setScene(self._scene) class QFeatureMap(QWidget): """ Byte-level map of the memory space. """ def __init__(self, disasm_view, parent=None): super().__init__(parent) self.disasm_view = disasm_view self.workspace = disasm_view.workspace self.instance = self.workspace.instance self.orientation = Orientation.Vertical # widgets self.view = None # type: QFeatureMapView # items self._insn_indicators = [ ] # data instance self.addr = ObjectContainer(None, name='The current address of the Feature Map.') # cached values self._addr_to_region = SortedDict() self._regionaddr_to_offset = SortedDict() self._offset_to_regionaddr = SortedDict() self._total_size = None self._regions_painted = False self._init_widgets() self._register_events() def sizeHint(self): return QSize(25, 25) # # Public methods # def refresh(self): if self.view is None: return if not self._regions_painted: self._regions_painted = self._paint_regions() def select_offset(self, offset): addr = self._get_addr_from_pos(offset) if addr is None: return self.addr.am_obj = addr self.addr.am_event() # # Private methods # def _init_widgets(self): self.view = QFeatureMapView(self) layout = QHBoxLayout() layout.addWidget(self.view) layout.setContentsMargins(0, 0, 0, 0) self.setLayout(layout) def _register_events(self): self.disasm_view.infodock.selected_insns.am_subscribe(self._paint_insn_indicators) def _paint_regions(self): cfb = self.instance.cfb_container.am_obj if cfb is None: return False # colors func_color = Conf.feature_map_color_regular_function data_color = Conf.feature_map_color_data unknown_color = Conf.feature_map_color_unknown delimiter_color = Conf.feature_map_color_delimiter if self._total_size is None: # calculate the total number of bytes b = 0 self._addr_to_region.clear() self._regionaddr_to_offset.clear() for mr in cfb.regions: self._addr_to_region[mr.addr] = mr self._regionaddr_to_offset[mr.addr] = b self._offset_to_regionaddr[b] = mr.addr b += self._adjust_region_size(mr) self._total_size = b # iterate through all items and draw the image offset = 0 total_width = self.width() current_region = None height = self.height() l.debug("total width %d", total_width) for addr, obj in cfb.ceiling_items(): # are we in a new region? new_region = False if current_region is None or not (current_region.addr <= addr < current_region.addr + current_region.size): try: current_region_addr = next(self._addr_to_region.irange(maximum=addr, reverse=True)) except StopIteration: # FIXME: it's not within any of the known regions # we should fix this in the future. for now, let's make sure it does not crash continue current_region = self._addr_to_region[current_region_addr] new_region = True # adjust size adjusted_region_size = self._adjust_region_size(current_region) adjusted_size = min(obj.size, current_region.addr + adjusted_region_size - addr) if adjusted_size <= 0: continue pos = offset * total_width // self._total_size length = adjusted_size * total_width // self._total_size offset += adjusted_size # draw a rectangle if isinstance(obj, Unknown): pen = QPen(data_color) brush = QBrush(data_color) elif isinstance(obj, Block): # TODO: Check if it belongs to a function or not pen = QPen(func_color) brush = QBrush(func_color) else: pen = QPen(unknown_color) brush = QBrush(unknown_color) rect = QRectF(pos, 0, length, height) self.view._scene.addRect(rect, pen, brush) # if at the beginning of a new region, draw a line if new_region: pen = QPen(delimiter_color) self.view._scene.addLine(pos, 0, pos, height, pen) return True def _adjust_region_size(self, memory_region): if isinstance(memory_region.object, (cle.ExternObject, cle.TLSObject, cle.KernelObject)): # Draw unnecessary objects smaller return 80 else: l.debug("memory_region.size: %x memory_region.object: %s", memory_region.size, memory_region.object) return memory_region.size def _get_pos_from_addr(self, addr): # find the region it belongs to try: mr_base = next(self._addr_to_region.irange(maximum=addr, reverse=True)) except StopIteration: return None # get the base offset of that region base_offset = self._regionaddr_to_offset[mr_base] offset = base_offset + addr - mr_base return offset * self.width() // self._total_size def _get_addr_from_pos(self, pos): offset = int(pos * self._total_size // self.width()) try: base_offset = next(self._offset_to_regionaddr.irange(maximum=offset, reverse=True)) except StopIteration: return None region_addr = self._offset_to_regionaddr[base_offset] return region_addr + offset - base_offset def _paint_insn_indicators(self, **kwargs): scene = self.view.scene() # type: QGraphicsScene for item in self._insn_indicators: scene.removeItem(item) self._insn_indicators.clear() for selected_insn_addr in self.disasm_view.infodock.selected_insns: pos = self._get_pos_from_addr(selected_insn_addr) if pos is None: continue pos -= 1 # this is the top-left x coordinate of our arrow body (the rectangle) pen = QPen(Qt.yellow) brush = QBrush(Qt.yellow) rect = QRectF(pos, 0, 2, 5) # rectangle item = scene.addRect(rect, pen, brush) self._insn_indicators.append(item) # triangle triangle = QPolygonF() triangle.append(QPointF(pos - 1, 5)) triangle.append(QPointF(pos + 3, 5)) triangle.append(QPointF(pos + 1, 7)) triangle.append(QPointF(pos - 1, 5)) item = scene.addPolygon(triangle, pen, brush) self._insn_indicators.append(item)
31.353383
119
0.614269
b88f79af369a2590db24e82d3ac36b2d0e6a75fb
378
py
Python
examples/simple_requests.py
Coffee-Meets-Bagel/python-leanplum
41a7a295488ac23dd44da65d511ce8313326b26f
[ "MIT" ]
3
2018-07-17T17:05:05.000Z
2019-12-16T20:11:52.000Z
examples/simple_requests.py
Coffee-Meets-Bagel/python-leanplum
41a7a295488ac23dd44da65d511ce8313326b26f
[ "MIT" ]
1
2021-08-23T16:02:57.000Z
2021-10-04T15:40:41.000Z
examples/simple_requests.py
Coffee-Meets-Bagel/python-leanplum
41a7a295488ac23dd44da65d511ce8313326b26f
[ "MIT" ]
null
null
null
from leanplum.client import Client APP_ID = "your-app-id" CLIENT_KEY = "your-client-key" client = Client(APP_ID, CLIENT_KEY) client.users.track(133700, event="Joined Faction", params={"Faction Name": "Rebels"}) client.users.advance(133700, state="Member", params={"Membership": "Rebel Scum"}) client.users.set_user_attributes(133700, {"email": "wookie@milleniumfalcon.com"})
34.363636
85
0.751323
faa67371860dcd471fac2a2528918c7e01792d0f
2,192
py
Python
fund/fund_annouce.py
cogitate3/stock
bba986cbbb17de9f424c3b5417a17d1bb1204403
[ "BSD-3-Clause" ]
3,401
2016-05-20T02:49:18.000Z
2022-03-31T07:02:05.000Z
fund/fund_annouce.py
sulongniao/stock
bba986cbbb17de9f424c3b5417a17d1bb1204403
[ "BSD-3-Clause" ]
23
2017-06-09T14:18:57.000Z
2022-01-07T10:38:57.000Z
fund/fund_annouce.py
sulongniao/stock
bba986cbbb17de9f424c3b5417a17d1bb1204403
[ "BSD-3-Clause" ]
947
2016-08-23T14:51:46.000Z
2022-03-31T07:02:10.000Z
# -*- coding: utf-8 -*- # @Time : 2021/3/19 0:04 # @File : fund_annouce.py # @Author : Rocky C@www.30daydo.com # 基金公告数据 # http://fund.szse.cn/api/disc/info/find/tannInfo?random=0.5044519418668192&type=2&pageSize=30&pageNum=3 import datetime import math import sys sys.path.append('..') from common.BaseService import BaseService class FundAnnouce(BaseService): def __init__(self): super(FundAnnouce, self).__init__('../log/fund_annouce.log') self.PAGE_SIZE=30 self.base_url = 'http://fund.szse.cn/api/disc/info/find/tannInfo?type=2&pageSize={}&pageNum={}' # def get(self, url, _json=False, binary=False, retry=5): @property def headers(self): _header = { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh,en;q=0.9,en-US;q=0.8,zh-CN;q=0.7", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Type": "application/json", "Host": "fund.szse.cn", "Pragma": "no-cache", "Referer": "http://fund.szse.cn/disclosurelist/index.html", "User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36", "X-Request-Type": "ajax", "X-Requested-With": "XMLHttpRequest", } return _header def get_page(self): content = self.get(self.base_url.format(self.PAGE_SIZE,1), _json=True) announceCount=content['announceCount'] total_page = math.ceil(announceCount/self.PAGE_SIZE) return total_page def run(self): total_page=self.get_page() if total_page<1: self.logger.info('empty content') return for page in range(1,total_page): content = self.get(self.base_url.format(self.PAGE_SIZE, 1), _json=True) self.parse(content) def parse(self, content): for item in content.get('data'): item['crawltime']=datetime.datetime.now() def main(): app = FundAnnouce() app.run() if __name__ == '__main__': main()
31.768116
142
0.604015
2619bbbbf7135369dc0cd5b0d887051197e14377
13,988
py
Python
data/KVR/read_data_for_tree.py
ElliottYan/KB-Chat
ed39d0c95756008668a8a3901a9ed0db827c32d1
[ "MIT" ]
1
2019-03-10T15:29:18.000Z
2019-03-10T15:29:18.000Z
data/KVR/read_data_for_tree.py
ElliottYan/KB-Chat
ed39d0c95756008668a8a3901a9ed0db827c32d1
[ "MIT" ]
null
null
null
data/KVR/read_data_for_tree.py
ElliottYan/KB-Chat
ed39d0c95756008668a8a3901a9ed0db827c32d1
[ "MIT" ]
null
null
null
import json from nltk import wordpunct_tokenize as tokenizer import argparse import pickle import os import pdb from utils.structure import Node def entity_replace(temp, bot, user, names={}): # change poi, location, event first global_rp = { "pf changs": "p_.f_._changs", "p f changs": "p_.f_._changs", "'": "", "restaurants": "restaurant", "activities": "activity", "appointments": "appointment", "doctors": "doctor", "doctor s": "doctor", "optometrist s": "optometrist", "conferences": "conference", "meetings": "meeting", "labs": "lab", "stores": "store", "stops": "stop", "centers": "center", "garages": "garage", "stations": "station", "hospitals": "hospital" } for grp in global_rp.keys(): bot = bot.replace(grp, global_rp[grp]) user = user.replace(grp, global_rp[grp]) # will it be not exactly match ? for name in names.keys(): if name in bot: bot = bot.replace(name, names[name]) if name in user: user = user.replace(name, names[name]) for e in temp: for wo in e.keys(): inde = bot.find(wo) if (inde != -1): bot = bot.replace(wo, e[wo]) inde = user.find(wo) if (inde != -1): user = user.replace(wo, e[wo]) return bot, user def cleaner(token_array): new_token_array = [] for idx, token in enumerate(token_array): temp = token if token == ".." or token == "." or token == "...": continue # remove exact time information ? only with am and pm ?? if (token == "am" or token == "pm") and token_array[idx - 1].isdigit(): new_token_array.pop() new_token_array.append(token_array[idx - 1] + token) continue if token == ":),": continue if token == "avenue": temp = "ave" if token == "heavey" and "traffic" in token_array[idx + 1]: temp = "heavy" if token == "heave" and "traffic" in token_array[idx + 1]: temp = "heavy" if token == "'": continue # ?? if token == "-" and "0" in token_array[idx - 1]: new_token_array.pop() new_token_array.append(token_array[idx - 1] + "f") if "f" not in token_array[idx + 1]: token_array[idx + 1] = token_array[idx + 1] + "f" new_token_array.append(temp) return new_token_array def main(root_path): parser = argparse.ArgumentParser(description='') parser.add_argument('--json', dest='json', default='kvret_train_public.json', help='process json file') args = parser.parse_args() task = args.json.split('_')[1] with open(os.path.join(root_path, args.json)) as f: dialogues = json.load(f) with open(os.path.join(root_path, 'kvret_entities.json')) as f: entities_dict = json.load(f) # drop poi and poi_type here. global_kb_type = ['distance', 'traffic_info', 'location', 'weather_attribute', 'temperature', "weekly_time", 'event', 'time', 'date', 'party', 'room', 'agenda'] global_temp = [] di = {} # connect infos with '_' and map from original str to str with '_' for e in global_kb_type: for p in map(lambda x: str(x).lower(), entities_dict[e]): if "_" in p and p.replace("_", " ") != p: di[p.replace("_", " ")] = p else: if p != p.replace(" ", "_"): di[p] = p.replace(" ", "_") global_temp.append(di) example_kbs = [] for d in dialogues: roots = [] if (d['scenario']['task']['intent'] == "navigate"): # "schedule" "navigate" print("#navigate#") temp = [] names = {} # iterate through all kb infos. for el in d['scenario']['kb']['items']: poi = " ".join(tokenizer(el['poi'].replace("'", " "))).replace(" ", "_").lower() slots = ['poi', 'distance', 'traffic_info', 'poi_type', 'address'] # remvoe "'" and convert to lower for slot in slots: el[slot] = " ".join(tokenizer(el[slot].replace("'", " "))).lower() names[el['poi']] = poi di = { el['distance']: el['distance'].replace(" ", "_"), el['traffic_info']: el['traffic_info'].replace(" ", "_"), el['poi_type']: el['poi_type'].replace(" ", "_"), el['address']: el['address'].replace(" ", "_"), } print( "0 " + di[el['distance']] + " " + di[el['traffic_info']] + " " + di[el['poi_type']] + " poi " + poi) print("0 " + poi + " distance " + di[el['distance']]) print("0 " + poi + " traffic_info " + di[el['traffic_info']]) print("0 " + poi + " poi_type " + di[el['poi_type']]) print("0 " + poi + " address " + di[el['address']]) temp.append(di) # construct tree root for each kb item root = Node(poi, 'poi', layer=0) # except poi again for slot in slots[1:]: root.children.append(Node(di[el[slot]], slot, layer=1)) roots.append(root) # use for latter entity matching ? temp += global_temp # drop last one. if (len(d['dialogue']) % 2 != 0): d['dialogue'].pop() j = 1 for i in range(0, len(d['dialogue']), 2): user = " ".join(cleaner(tokenizer(str(d['dialogue'][i]['data']['utterance']).lower()))) bot = " ".join(cleaner(tokenizer(str(d['dialogue'][i + 1]['data']['utterance']).lower()))) # replace entity names with names joined by "_" bot, user = entity_replace(temp, bot, user, names) navigation = global_kb_type # ['distance','traffic_info'] nav_poi = ['address', 'poi', 'type'] gold_entity = [] for key in bot.split(' '): for e in navigation: for p in map(lambda x: str(x).lower(), entities_dict[e]): if (key == p): gold_entity.append(key) elif (key == str(p).replace(" ", "_")): gold_entity.append(key) for e in entities_dict['poi']: for p in nav_poi: if (key == str(e[p]).lower()): gold_entity.append(key) elif (key == str(e[p]).lower().replace(" ", "_")): gold_entity.append(key) # gold entity for each turn of dialogue. gold_entity = list(set(gold_entity)) if bot != "" and user != "": print(str(j) + " " + user + '\t' + bot + '\t' + str(gold_entity)) j += 1 print("") elif (d['scenario']['task']['intent'] == "weather"): # "weather" print("#weather#") temp = [] j = 1 print("0 today " + d['scenario']['kb']['items'][0]["today"]) today = d['scenario']['kb']['items'][0]["today"] for el in d['scenario']['kb']['items']: for el_key in el.keys(): el[el_key] = " ".join(tokenizer(el[el_key])).lower() loc = el['location'].replace(" ", "_") di = {el['location']: loc} temp.append(di) days = ["monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday"] for day in days: print("0 " + loc + " " + day + " " + el[day].split(',')[0].rstrip().replace(" ", "_")) print("0 " + loc + " " + day + " " + el[day].split(',')[1].split(" ")[1] + " " + el[day].split(',')[1].split(" ")[3]) print("0 " + loc + " " + day + " " + el[day].split(',')[2].split(" ")[1] + " " + el[day].split(',')[2].split(" ")[3]) # construct tree root for each kb item # root = Node(loc, 'location', layer=0) slots = ['weather', 'high', 'low'] for day in days: root = Node(loc, 'location', layer=0) ''' tmp = Node(el[day], day, layer=1) val = el[day] splits = [item.strip() for item in val.split(',')] tmp.children.append(Node(splits[0], 'weather', layer=2)) tmp.children.append(Node(splits[1], splits[1].split()[0], layer=2)) tmp.children.append(Node(splits[2], splits[2].split()[0], layer=2)) root.children.append(tmp) ''' # change weather to 1-layer tree. val = el[day] splits = [item.strip() for item in val.split(',')] root.children.append(Node(day, 'date', layer=1)) # more delicate for vals root.children.append(Node(splits[1], splits[1].split()[0], layer=1)) root.children.append(Node(splits[2], splits[2].split()[0], layer=1)) # miss this in original dataset... if today == day: root.children.append(Node('yes', 'today', layer=1)) else: root.children.append(Node('no', 'today', layer=1)) roots.append(root) temp += global_temp if (len(d['dialogue']) % 2 != 0): d['dialogue'].pop() for i in range(0, len(d['dialogue']), 2): user = " ".join(cleaner(tokenizer(str(d['dialogue'][i]['data']['utterance']).lower()))) bot = " ".join(cleaner(tokenizer(str(d['dialogue'][i + 1]['data']['utterance']).lower()))) bot, user = entity_replace(temp, bot, user) weather = global_kb_type # ['location', 'weather_attribute','temperature',"weekly_time"] gold_entity = [] for key in bot.split(' '): for e in weather: for p in map(lambda x: str(x).lower(), entities_dict[e]): if (key == p): gold_entity.append(key) elif (key == str(p).replace(" ", "_")): gold_entity.append(key) gold_entity = list(set(gold_entity)) if bot != "" and user != "": print(str(j) + " " + user + '\t' + bot + '\t' + str(gold_entity)) j += 1 print("") if (d['scenario']['task']['intent'] == "schedule"): # "schedule" print("#schedule#") temp = [] names = {} j = 1 # for all kb triple if (d['scenario']['kb']['items'] != None): for el in d['scenario']['kb']['items']: for el_key in el.keys(): el[el_key] = " ".join(tokenizer(el[el_key])).lower() ev = el['event'].replace(" ", "_") names[el['event']] = ev slots = ['time', 'date', 'party', 'room', 'agenda'] di = {} for slot in slots: if el[slot] == "-": continue if slot == "time": print("0 " + ev + " " + slot + " " + el[slot].replace(" ", "")) di[el[slot]] = el[slot].replace(" ", "") else: print("0 " + ev + " " + slot + " " + el[slot].replace(" ", "_")) di[el[slot]] = el[slot].replace(" ", "_") temp.append(di) root = Node(ev, 'event', layer=0) for slot in slots: tmp = Node(el[slot], slot, layer=1) root.children.append(tmp) roots.append(root) temp += global_temp if (len(d['dialogue']) % 2 != 0): d['dialogue'].pop() for i in range(0, len(d['dialogue']), 2): user = " ".join(cleaner(tokenizer(str(d['dialogue'][i]['data']['utterance']).lower()))) bot = " ".join(cleaner(tokenizer(str(d['dialogue'][i + 1]['data']['utterance']).lower()))) bot, user = entity_replace(temp, bot, user, names) calendar = global_kb_type # ['event','time', 'date', 'party', 'room', 'agenda'] gold_entity = [] for key in bot.split(' '): for e in calendar: for p in map(lambda x: str(x).lower(), entities_dict[e]): if (key == p): gold_entity.append(key) elif (key == str(p).replace(" ", "_")): gold_entity.append(key) gold_entity = list(set(gold_entity)) if bot != "" and user != "": print(str(j) + " " + user + '\t' + bot + '\t' + str(gold_entity)) j += 1 print("") # add to example kbs. example_kbs.append(roots) # next step : save to file. with open(os.path.join(root_path, '{}_example_kbs.dat'.format(task)), 'wb') as f: pickle.dump(example_kbs, f)
43.576324
120
0.44145
e0345f1d617ab5278b7e3a63063d9400f9a8d94f
9,496
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_peer_express_route_circuit_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_peer_express_route_circuit_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_12_01/operations/_peer_express_route_circuit_connections_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class PeerExpressRouteCircuitConnectionsOperations(object): """PeerExpressRouteCircuitConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.PeerExpressRouteCircuitConnection" """Gets the specified Peer Express Route Circuit Connection from the specified express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the express route circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :param connection_name: The name of the peer express route circuit connection. :type connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PeerExpressRouteCircuitConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_12_01.models.PeerExpressRouteCircuitConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PeerExpressRouteCircuitConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PeerExpressRouteCircuitConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/peerConnections/{connectionName}'} # type: ignore def list( self, resource_group_name, # type: str circuit_name, # type: str peering_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.PeerExpressRouteCircuitConnectionListResult"] """Gets all global reach peer connections associated with a private peering in an express route circuit. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param circuit_name: The name of the circuit. :type circuit_name: str :param peering_name: The name of the peering. :type peering_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PeerExpressRouteCircuitConnectionListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2019_12_01.models.PeerExpressRouteCircuitConnectionListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PeerExpressRouteCircuitConnectionListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'circuitName': self._serialize.url("circuit_name", circuit_name, 'str'), 'peeringName': self._serialize.url("peering_name", peering_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('PeerExpressRouteCircuitConnectionListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/expressRouteCircuits/{circuitName}/peerings/{peeringName}/peerConnections'} # type: ignore
48.697436
231
0.66944
39c7f8ad0294fa4c72edb9952280d7b5b39f2c99
1,476
py
Python
tests/beem/test_notify.py
MWFIAE/beem
8447150a15b6908dc89e075cbe79a6be1dabd95b
[ "MIT" ]
null
null
null
tests/beem/test_notify.py
MWFIAE/beem
8447150a15b6908dc89e075cbe79a6be1dabd95b
[ "MIT" ]
null
null
null
tests/beem/test_notify.py
MWFIAE/beem
8447150a15b6908dc89e075cbe79a6be1dabd95b
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from builtins import range from builtins import super import mock import string import unittest import random import itertools from pprint import pprint from beem import Steem from beemapi.websocket import SteemWebsocket from beem.notify import Notify from beem.instance import set_shared_steem_instance from beem.nodelist import NodeList # Py3 compatibility import sys wif = "5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3" core_unit = "STM" class TestBot: def init(self): self.notify = None self.blocks = 0 def new_block(self, block): chunk = 5 self.blocks = self.blocks + 1 if self.blocks >= chunk: self.notify.close() class Testcases(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) nodelist = NodeList() nodelist.update_nodes(steem_instance=Steem(node=nodelist.get_nodes(normal=True, appbase=True), num_retries=10)) self.bts = Steem( node=nodelist.get_nodes(), nobroadcast=True, num_retries=10 ) def test_connect(self): tb = TestBot() tb.init() notify = Notify(on_block=tb.new_block, steem_instance=self.bts) tb.notify = notify notify.listen() self.assertEqual(tb.blocks, 5)
26.357143
119
0.697832
26eebe9b495a22ab9c0c449e611b2e161804a290
1,153
py
Python
generateEntities.py
greablezzq/CRL_Environment
9be54be37f253fe7a08b956a12bc6319f95e8de4
[ "MIT" ]
null
null
null
generateEntities.py
greablezzq/CRL_Environment
9be54be37f253fe7a08b956a12bc6319f95e8de4
[ "MIT" ]
null
null
null
generateEntities.py
greablezzq/CRL_Environment
9be54be37f253fe7a08b956a12bc6319f95e8de4
[ "MIT" ]
null
null
null
from typing import Dict import random from past.utils import old_div def generateEntity(x,y,z,type): return '<DrawEntity x="{0[0]}" y="{0[1]}" z="{0[2]}" type="{0[3]}" />'.format([x,y,z,type]) def generateEntities(xRange,y,zRange, typesDictionary:Dict): entitiesString = [] space = [[i,j] for i in xRange for j in zRange] k = sum(typesDictionary.values()) positions = random.choices(space, k=k) for entity in typesDictionary.keys(): for _ in range(typesDictionary[entity]): position = positions.pop() entitiesString.append(generateEntity(position[0],y,position[1],entity)) return entitiesString # copy from malmo source code begin def getCorner(index,top,left,expand=0,y=0, ARENA_WIDTH = 20, ARENA_BREADTH = 20): ''' Return part of the XML string that defines the requested corner''' x = str(-(expand+old_div(ARENA_WIDTH,2))) if left else str(expand+old_div(ARENA_WIDTH,2)) z = str(-(expand+old_div(ARENA_BREADTH,2))) if top else str(expand+old_div(ARENA_BREADTH,2)) return 'x'+index+'="'+x+'" y'+index+'="' +str(y)+'" z'+index+'="'+z+'"' # copy from malmo souce code end
41.178571
96
0.66869
bdcd4089529c8b0d6c301507c16846281f3eecf8
6,840
py
Python
lib/rucio/daemons/judge/cleaner.py
brianv0/rucio
127a36fd53e5b4d9eb14ab02fe6c36443d78bfd0
[ "Apache-2.0" ]
null
null
null
lib/rucio/daemons/judge/cleaner.py
brianv0/rucio
127a36fd53e5b4d9eb14ab02fe6c36443d78bfd0
[ "Apache-2.0" ]
null
null
null
lib/rucio/daemons/judge/cleaner.py
brianv0/rucio
127a36fd53e5b4d9eb14ab02fe6c36443d78bfd0
[ "Apache-2.0" ]
null
null
null
# Copyright European Organization for Nuclear Research (CERN) # # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Martin Barisits, <martin.barisits@cern.ch>, 2013-2016 # - Mario Lassnig, <mario.lassnig@cern.ch>, 2013, 2015 """ Judge-Cleaner is a daemon to clean expired replication rules. """ import logging import ntplib import os import socket import sys import threading import time import traceback from copy import deepcopy from datetime import datetime, timedelta from re import match from random import randint from sqlalchemy.exc import DatabaseError from rucio.common.config import config_get from rucio.common.exception import DatabaseException, UnsupportedOperation, RuleNotFound from rucio.core.heartbeat import live, die, sanity_check from rucio.core.rule import delete_rule, get_expired_rules from rucio.core.monitor import record_counter graceful_stop = threading.Event() logging.basicConfig(stream=sys.stdout, level=getattr(logging, config_get('common', 'loglevel').upper()), format='%(asctime)s\t%(process)d\t%(levelname)s\t%(message)s') def rule_cleaner(once=False): """ Main loop to check for expired replication rules """ hostname = socket.gethostname() pid = os.getpid() current_thread = threading.current_thread() paused_rules = {} # {rule_id: datetime} # Make an initial heartbeat so that all judge-cleaners have the correct worker number on the next try live(executable='rucio-judge-cleaner', hostname=hostname, pid=pid, thread=current_thread) graceful_stop.wait(1) while not graceful_stop.is_set(): try: # heartbeat heartbeat = live(executable='rucio-judge-cleaner', hostname=hostname, pid=pid, thread=current_thread) start = time.time() # Refresh paused rules iter_paused_rules = deepcopy(paused_rules) for key in iter_paused_rules: if datetime.utcnow() > paused_rules[key]: del paused_rules[key] rules = get_expired_rules(total_workers=heartbeat['nr_threads'] - 1, worker_number=heartbeat['assign_thread'], limit=200, blacklisted_rules=[key for key in paused_rules]) logging.debug('rule_cleaner[%s/%s] index query time %f fetch size is %d' % (heartbeat['assign_thread'], heartbeat['nr_threads'] - 1, time.time() - start, len(rules))) if not rules and not once: logging.debug('rule_cleaner[%s/%s] did not get any work (paused_rules=%s)' % (heartbeat['assign_thread'], heartbeat['nr_threads'] - 1, str(len(paused_rules)))) graceful_stop.wait(60) else: for rule in rules: rule_id = rule[0] rule_expression = rule[1] logging.info('rule_cleaner[%s/%s]: Deleting rule %s with expression %s' % (heartbeat['assign_thread'], heartbeat['nr_threads'] - 1, rule_id, rule_expression)) if graceful_stop.is_set(): break try: start = time.time() delete_rule(rule_id=rule_id, nowait=True) logging.debug('rule_cleaner[%s/%s]: deletion of %s took %f' % (heartbeat['assign_thread'], heartbeat['nr_threads'] - 1, rule_id, time.time() - start)) except (DatabaseException, DatabaseError, UnsupportedOperation), e: if match('.*ORA-00054.*', str(e.args[0])): paused_rules[rule_id] = datetime.utcnow() + timedelta(seconds=randint(600, 2400)) record_counter('rule.judge.exceptions.LocksDetected') logging.warning('rule_cleaner[%s/%s]: Locks detected for %s' % (heartbeat['assign_thread'], heartbeat['nr_threads'] - 1, rule_id)) elif match('.*QueuePool.*', str(e.args[0])): logging.warning(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) elif match('.*ORA-03135.*', str(e.args[0])): logging.warning(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) else: logging.error(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) except RuleNotFound, e: pass except (DatabaseException, DatabaseError), e: if match('.*QueuePool.*', str(e.args[0])): logging.warning(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) elif match('.*ORA-03135.*', str(e.args[0])): logging.warning(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) else: logging.critical(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) except Exception, e: logging.critical(traceback.format_exc()) record_counter('rule.judge.exceptions.%s' % e.__class__.__name__) if once: break die(executable='rucio-judge-cleaner', hostname=hostname, pid=pid, thread=current_thread) def stop(signum=None, frame=None): """ Graceful exit. """ graceful_stop.set() def run(once=False, threads=1): """ Starts up the Judge-Clean threads. """ try: ntpc = ntplib.NTPClient() response = ntpc.request('137.138.16.69', version=3) # 137.138.16.69 CERN IP-TIME-1 NTP Server (Stratum 2) if response.offset > 60 * 60 + 10: # 1hour 10seconds logging.critical('Offset between NTP server and system time too big. Stopping Cleaner') return except: return hostname = socket.gethostname() sanity_check(executable='rucio-judge-cleaner', hostname=hostname) if once: rule_cleaner(once) else: logging.info('Cleaner starting %s threads' % str(threads)) threads = [threading.Thread(target=rule_cleaner, kwargs={'once': once}) for i in xrange(0, threads)] [t.start() for t in threads] # Interruptible joins require a timeout. while threads[0].is_alive(): [t.join(timeout=3.14) for t in threads]
42.484472
178
0.605848
77c338d5cbfcb434722852755bfc109d2698c229
332
py
Python
Code/grace/__init__.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
1
2016-05-17T22:52:19.000Z
2016-05-17T22:52:19.000Z
Code/grace/__init__.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
null
null
null
Code/grace/__init__.py
AndreasMadsen/grace
bf472d30a2fac76145d3f68e819c92da4a1970ba
[ "MIT" ]
null
null
null
# Configureation file for the module allows `import grace`. Grace will then # contain the dataset as (grace.grids, grace.dates, grace.positions) # Automaticly build datafiles if they don't exists import build build.autobuild() # Load datafiles from load import grids, dates, positions __all__ = ["grids", "dates", "positions"]
23.714286
75
0.756024
7a96fedc89b32c7081a6b45fd82fb13380f736b4
74,125
py
Python
tensorflow/python/training/tracking/util_test.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
8
2020-07-29T18:50:45.000Z
2021-07-25T07:06:43.000Z
tensorflow/python/training/tracking/util_test.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
203
2019-06-14T23:53:10.000Z
2022-02-10T02:27:23.000Z
tensorflow/python/training/tracking/util_test.py
joshz123/tensorflow
7841ca029060ab78e221e757d4b1ee6e3e0ffaa4
[ "Apache-2.0" ]
11
2020-05-31T13:14:56.000Z
2021-12-14T04:39:25.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import os import weakref from absl.testing import parameterized import six from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import input_layer from tensorflow.python.keras.engine import sequential from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import template from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import checkpoint_management from tensorflow.python.training import saver as saver_lib from tensorflow.python.training import training_util from tensorflow.python.training.saving import checkpoint_options from tensorflow.python.training.tracking import base from tensorflow.python.training.tracking import graph_view from tensorflow.python.training.tracking import tracking from tensorflow.python.training.tracking import util as trackable_utils class NonLayerTrackable(tracking.AutoTrackable): def __init__(self): super(NonLayerTrackable, self).__init__() self.a_variable = trackable_utils.add_variable( self, name="a_variable", shape=[]) # pylint: disable=not-callable class MyModel(training.Model): """A concrete Model for testing.""" def __init__(self): super(MyModel, self).__init__() self._named_dense = core.Dense(1, use_bias=True) self._second = core.Dense(1, use_bias=False) # We can still track Trackables which aren't Layers. self._non_layer = NonLayerTrackable() def call(self, values): ret = self._second(self._named_dense(values)) return ret class InterfaceTests(test.TestCase): def testLayerDeduplication(self): model = training.Model() layer_one = core.Dense(1) layer_two = core.Dense(1) model.other_path = [layer_one, layer_two] model.l2 = layer_two model.l1 = layer_one self.assertEqual([layer_one, layer_two], model.layers) def testSaveWithOnlyKerasSession(self): with ops.Graph().as_default(): inp = input_layer.Input([1]) dense = core.Dense(1)(inp) model = training.Model(inp, dense) model.compile(optimizer="sgd", loss="mse") model.fit([1.], [2.]) checkpoint = trackable_utils.Checkpoint(model=model) checkpoint.save(os.path.join(self.get_temp_dir(), "ckpt")) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testAddVariable(self): obj = NonLayerTrackable() with self.assertRaisesRegexp(ValueError, "do not specify shape"): trackable_utils.add_variable( obj, name="shape_specified_twice", shape=[], initializer=1) constant_initializer = trackable_utils.add_variable( obj, name="constant_initializer", initializer=1) with variable_scope.variable_scope("some_variable_scope"): ones_initializer = trackable_utils.add_variable( obj, name="ones_initializer", shape=[2], initializer=init_ops.ones_initializer(dtype=dtypes.float32)) bare_initializer = trackable_utils.add_variable( obj, name="bare_initializer", shape=[2, 2], dtype=dtypes.float64, initializer=init_ops.zeros_initializer) # Even in graph mode, there are no naming conflicts between objects, only # naming conflicts within an object. other_duplicate = resource_variable_ops.ResourceVariable( name="duplicate", initial_value=1.) duplicate = trackable_utils.add_variable( obj, name="duplicate", shape=[]) with self.assertRaisesRegexp(ValueError, "'duplicate'.*already declared"): trackable_utils.add_variable(obj, name="duplicate", shape=[]) self.evaluate(trackable_utils.gather_initializers(obj)) self.assertEqual("constant_initializer:0", constant_initializer.name) self.assertEqual(1, self.evaluate(constant_initializer)) self.assertEqual("some_variable_scope/ones_initializer:0", ones_initializer.name) self.assertAllEqual([1, 1], self.evaluate(ones_initializer)) self.assertAllEqual([[0., 0.], [0., 0.]], self.evaluate(bare_initializer)) self.assertEqual("a_variable:0", obj.a_variable.name) self.assertEqual("duplicate:0", other_duplicate.name) if context.executing_eagerly(): # When executing eagerly, there's no uniquification of variable names. The # checkpoint name will be the same. self.assertEqual("duplicate:0", duplicate.name) else: # The .name attribute may be globally influenced, but the checkpoint name # won't be (tested below). self.assertEqual("duplicate_1:0", duplicate.name) named_variables, _, _ = ( graph_view.ObjectGraphView(obj).serialize_object_graph()) expected_checkpoint_names = ( "a_variable/.ATTRIBUTES/VARIABLE_VALUE", "bare_initializer/.ATTRIBUTES/VARIABLE_VALUE", "constant_initializer/.ATTRIBUTES/VARIABLE_VALUE", "duplicate/.ATTRIBUTES/VARIABLE_VALUE", "ones_initializer/.ATTRIBUTES/VARIABLE_VALUE", ) six.assertCountEqual( self, expected_checkpoint_names, [v.name for v in named_variables]) def testInitNotCalled(self): class NoInit(tracking.AutoTrackable): def __init__(self): pass # __init__ for Trackable will be called implicitly. trackable_utils.add_variable(NoInit(), "var", shape=[]) def testShapeDtype(self): root = tracking.AutoTrackable() v1 = trackable_utils.add_variable( root, name="v1", initializer=3., dtype=dtypes.float64) self.assertEqual(dtypes.float64, v1.dtype) v2 = trackable_utils.add_variable( root, name="v2", shape=[3], initializer=init_ops.ones_initializer, dtype=dtypes.float64) self.assertEqual(dtypes.float64, v2.dtype) self.assertAllEqual([1., 1., 1.], self.evaluate(v2)) def testObjectMetadata(self): with context.eager_mode(): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") dense = core.Dense(1) checkpoint = trackable_utils.Checkpoint(dense=dense) dense(constant_op.constant([[1.]])) save_path = checkpoint.save(checkpoint_prefix) objects = trackable_utils.object_metadata(save_path) all_variable_names = [] for obj in objects.nodes: for attribute in obj.attributes: all_variable_names.append(attribute.full_name) self.assertIn("dense/kernel", all_variable_names) def testNotTrackable(self): class CallsFunctionalStuff( tracking.NotTrackable, tracking.AutoTrackable): pass test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") checkpoint = trackable_utils.Checkpoint(x=CallsFunctionalStuff()) with self.assertRaises(NotImplementedError): checkpoint.save(prefix) class CallsFunctionalStuffOtherMRO( tracking.AutoTrackable, tracking.NotTrackable): pass checkpoint_reversed = trackable_utils.Checkpoint( x=CallsFunctionalStuffOtherMRO()) with self.assertRaises(NotImplementedError): checkpoint_reversed.save(prefix) class _MirroringSaveable(saver_lib.BaseSaverBuilder.SaveableObject): def __init__(self, primary_variable, mirrored_variable, name): self._primary_variable = primary_variable self._mirrored_variable = mirrored_variable tensor = self._primary_variable.read_value() spec = saver_lib.BaseSaverBuilder.SaveSpec( tensor=tensor, slice_spec="", name=name) super(_MirroringSaveable, self).__init__( tensor, [spec], name) def restore(self, restored_tensors, restored_shapes): """Restore the same value into both variables.""" tensor, = restored_tensors return control_flow_ops.group( self._primary_variable.assign(tensor), self._mirrored_variable.assign(tensor)) class _OwnsMirroredVariables(base.Trackable): """A Trackable object which returns a more complex SaveableObject.""" def __init__(self): self.non_dep_variable = variable_scope.get_variable( name="non_dep_variable", initializer=6., use_resource=True) self.mirrored = variable_scope.get_variable( name="mirrored", initializer=15., use_resource=True) def _gather_saveables_for_checkpoint(self): def _saveable_factory(name=self.non_dep_variable.name): return _MirroringSaveable( primary_variable=self.non_dep_variable, mirrored_variable=self.mirrored, name=name) return {base.VARIABLE_VALUE_KEY: _saveable_factory} # The Saver sorts by name before parsing, so we need a name property. @property def name(self): return self.non_dep_variable.name class CheckpointingTests(parameterized.TestCase, test.TestCase): @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNamingWithOptimizer(self): input_value = constant_op.constant([[3.]]) model = MyModel() # A nuisance Model using the same optimizer. Its slot variables should not # go in the checkpoint, since it is never depended on. other_model = MyModel() optimizer = adam.Adam(0.001) step = training_util.get_or_create_global_step() root_trackable = trackable_utils.Checkpoint( optimizer=optimizer, model=model, step=step) with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) train_op = control_flow_ops.group( optimizer.apply_gradients(zip(gradients, variables)), step.assign_add(1)) with backprop.GradientTape() as tape: loss = other_model(input_value) variables = other_model.trainable_variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) self.evaluate(trackable_utils.gather_initializers( root_trackable)) self.evaluate(train_op) named_variables, serialized_graph, _ = graph_view.ObjectGraphView( root_trackable).serialize_object_graph() expected_slot_keys = ( "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_second/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/kernel/.OPTIMIZER_SLOT/optimizer/v", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/m", "model/_named_dense/bias/.OPTIMIZER_SLOT/optimizer/v", ) expected_checkpoint_names = ( # Created in the root node, so no prefix. "step", "model/_second/kernel", "model/_named_dense/kernel", "model/_named_dense/bias", # non-Layer dependency of the model "model/_non_layer/a_variable", "optimizer/learning_rate", "optimizer/beta_1", "optimizer/beta_2", "optimizer/iter", "optimizer/decay", ) + expected_slot_keys suffix = "/.ATTRIBUTES/VARIABLE_VALUE" expected_checkpoint_names = [ name + suffix for name in expected_checkpoint_names] named_variables = {v.name: v for v in named_variables} six.assertCountEqual(self, expected_checkpoint_names, named_variables.keys()) # Check that we've mapped to the right variable objects (not exhaustive) self.assertEqual( "global_step", named_variables["step" + suffix].full_name) self.assertEqual( "my_model/dense_1/kernel", named_variables["model/_second/kernel" + suffix].full_name) self.assertEqual( "my_model/dense/kernel", named_variables["model/_named_dense/kernel" + suffix].full_name) self.assertEqual("Adam/beta_1", named_variables["optimizer/beta_1" + suffix].full_name) self.assertEqual("Adam/beta_2", named_variables["optimizer/beta_2" + suffix].full_name) # Spot check the generated protocol buffers. self.assertEqual("optimizer", serialized_graph.nodes[0].children[1].local_name) optimizer_node = serialized_graph.nodes[serialized_graph.nodes[0].children[ 1].node_id] children = [node.local_name for node in optimizer_node.children] six.assertCountEqual( self, # hyper variable dependencies ["beta_1", "beta_2", "iter", "decay", "learning_rate"], children) serialized_slot_keys = [] for slot in optimizer_node.slot_variables: for attribute in ( serialized_graph.nodes[slot.slot_variable_node_id].attributes): serialized_slot_keys.append(attribute.checkpoint_key) six.assertCountEqual( self, [key + suffix for key in expected_slot_keys], serialized_slot_keys) @test_util.run_in_graph_and_eager_modes def testMoreComplexSaveableReturned(self): v = _OwnsMirroredVariables() checkpoint = trackable_utils.Checkpoint(v=v) test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") self.evaluate(v.non_dep_variable.assign(42.)) save_path = checkpoint.save(prefix) self.evaluate(v.non_dep_variable.assign(43.)) self.evaluate(v.mirrored.assign(44.)) checkpoint.restore(save_path).assert_consumed().initialize_or_restore() self.assertEqual(42., self.evaluate(v.non_dep_variable)) self.assertEqual(42., self.evaluate(v.mirrored)) self.evaluate(v.non_dep_variable.assign(44.)) save_path = checkpoint.save(prefix) self.evaluate(v.non_dep_variable.assign(45.)) checkpoint.restore(save_path).assert_consumed().initialize_or_restore() self.assertEqual(44., self.evaluate(v.non_dep_variable)) self.assertEqual(44., self.evaluate(v.mirrored)) @test_util.run_in_graph_and_eager_modes def testMoreComplexSaveableReturnedWithGlobalName(self): # The same object can also be saved using the name-based saver. v = _OwnsMirroredVariables() saver = saver_lib.Saver(var_list=[v]) test_dir = self.get_temp_dir() prefix = os.path.join(test_dir, "ckpt") with self.cached_session() as sess: self.evaluate(v.non_dep_variable.assign(42.)) save_path = saver.save(sess, prefix) self.evaluate(v.non_dep_variable.assign(43.)) self.evaluate(v.mirrored.assign(44.)) saver.restore(sess, save_path) self.assertEqual(42., self.evaluate(v.non_dep_variable)) self.assertEqual(42., self.evaluate(v.mirrored)) @test_util.run_in_graph_and_eager_modes def testAssertConsumedNoCheckpoint(self): prefix = os.path.join(self.get_temp_dir(), "ckpt") v = variable_scope.get_variable(name="v", initializer=0.) self.evaluate(v.initializer) ckpt = trackable_utils.Checkpoint(v=v) self.evaluate(trackable_utils.gather_initializers(ckpt)) save_path = ckpt.save(file_prefix=prefix) status = ckpt.restore(save_path=save_path) del ckpt status.assert_consumed() @test_util.run_in_graph_and_eager_modes def testPassingCheckpointOptions(self): localhost = "/job:localhost/device:CPU:0" options = checkpoint_options.CheckpointOptions( experimental_io_device=localhost) prefix = os.path.join(self.get_temp_dir(), "ckpt") v = variable_scope.get_variable(name="v", initializer=0.) self.evaluate(v.initializer) ckpt = trackable_utils.Checkpoint(v=v) self.evaluate(trackable_utils.gather_initializers(ckpt)) save_path = ckpt.save(file_prefix=prefix, options=options) status = ckpt.restore(save_path=save_path, options=options) del ckpt status.assert_consumed() # In graph mode, verify that the save and restore ops were set to run on # localhost. if not context.executing_eagerly(): for op in ops.get_default_graph().get_operations(): if op.type in ("SaveV2", "RestoreV2"): self.assertEqual(localhost, op.device) @test_util.run_in_graph_and_eager_modes def testSaveRestore(self): model = MyModel() optimizer = adam.Adam(0.001) root_trackable = trackable_utils.Checkpoint( optimizer=optimizer, model=model) input_value = constant_op.constant([[3.]]) with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) train_op = optimizer.apply_gradients(zip(gradients, variables)) self.assertFalse(root_trackable.save_counter.trainable) self.evaluate(trackable_utils.gather_initializers( root_trackable)) self.evaluate(train_op) prefix = os.path.join(self.get_temp_dir(), "ckpt") self.evaluate(state_ops.assign(model._named_dense.variables[1], [42.])) m_bias_slot = optimizer.get_slot(model._named_dense.variables[1], "m") self.evaluate(state_ops.assign(m_bias_slot, [1.5])) save_path = root_trackable.save(file_prefix=prefix) self.evaluate(state_ops.assign(model._named_dense.variables[1], [43.])) self.evaluate(state_ops.assign(root_trackable.save_counter, 3)) optimizer_variables = self.evaluate( sorted(optimizer.variables(), key=lambda v: v.name)) self.evaluate(state_ops.assign(m_bias_slot, [-2.])) # Immediate restoration status = root_trackable.restore(save_path=save_path).assert_consumed() status.run_restore_ops() self.assertAllEqual([42.], self.evaluate(model._named_dense.variables[1])) self.assertAllEqual(1, self.evaluate(root_trackable.save_counter)) self.assertAllEqual([1.5], self.evaluate(m_bias_slot)) if not context.executing_eagerly(): return # Restore-on-create is only supported when executing eagerly on_create_model = MyModel() on_create_optimizer = adam.Adam(0.001) on_create_root = trackable_utils.Checkpoint( optimizer=on_create_optimizer, model=on_create_model) # Deferred restoration status = on_create_root.restore(save_path=save_path) status.assert_nontrivial_match() status.assert_existing_objects_matched() with self.assertRaises(AssertionError): status.assert_consumed() on_create_model(constant_op.constant([[3.]])) # create variables self.assertAllEqual(1, self.evaluate(on_create_root.save_counter)) self.assertAllEqual([42.], self.evaluate( on_create_model._named_dense.variables[1])) on_create_m_bias_slot = on_create_optimizer.get_slot( on_create_model._named_dense.variables[1], "m") status.assert_existing_objects_matched() if not context.executing_eagerly(): with self.assertRaises(AssertionError): status.assert_consumed() # Optimizer slot variables are created when the original variable is # restored. self.assertAllEqual([1.5], self.evaluate(on_create_m_bias_slot)) dummy_var = resource_variable_ops.ResourceVariable([1.]) on_create_optimizer.minimize(loss=dummy_var.read_value, var_list=[dummy_var]) status.assert_existing_objects_matched() status.assert_consumed() self.assertAllEqual( optimizer_variables, # Creation order is different, so .variables() needs to be re-sorted. self.evaluate(sorted(optimizer.variables(), key=lambda v: v.name))) # TODO(allenl): Debug garbage created by this test in python3. def testDeferredRestorationUsageEager(self): """An idiomatic eager execution example.""" num_training_steps = 10 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): model = MyModel() optimizer = adam.Adam(0.001) root = trackable_utils.Checkpoint( optimizer=optimizer, model=model) root.restore(checkpoint_management.latest_checkpoint( checkpoint_directory)) for _ in range(num_training_steps): # TODO(allenl): Use a Dataset and serialize/checkpoint it. input_value = constant_op.constant([[3.]]) with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) root.save(file_prefix=checkpoint_prefix) self.assertEqual((training_continuation + 1) * num_training_steps, root.optimizer.iterations.numpy()) def testUsageGraph(self): """Expected usage when graph building.""" with context.graph_mode(): num_training_steps = 10 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): with ops.Graph().as_default(): model = MyModel() optimizer = adam.Adam(0.001) root = trackable_utils.CheckpointV1( optimizer=optimizer, model=model) input_value = constant_op.constant([[3.]]) with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) train_op = optimizer.apply_gradients(zip(gradients, variables)) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) with self.session(graph=ops.get_default_graph()) as session: status = root.restore(save_path=checkpoint_path) status.initialize_or_restore(session=session) if checkpoint_path is None: self.assertEqual(0, training_continuation) with self.assertRaises(AssertionError): status.assert_consumed() with self.assertRaises(AssertionError): status.assert_existing_objects_matched() else: status.assert_consumed() status.assert_existing_objects_matched() for _ in range(num_training_steps): session.run(train_op) root.save(file_prefix=checkpoint_prefix, session=session) self.assertEqual((training_continuation + 1) * num_training_steps, session.run(root.optimizer.iterations)) self.assertEqual(training_continuation + 1, session.run(root.save_counter)) @test_util.run_in_graph_and_eager_modes def testAgnosticUsage(self): """Graph/eager agnostic usage.""" # Does create garbage when executing eagerly due to ops.Graph() creation. num_training_steps = 10 checkpoint_directory = self.get_temp_dir() def _train_fn(model, input_value): with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) return optimizer.apply_gradients(zip(gradients, variables)) for training_continuation in range(3): with test_util.device(use_gpu=True): model = MyModel() optimizer = adam.Adam(0.001) root = trackable_utils.Checkpoint( optimizer=optimizer, model=model) manager = checkpoint_management.CheckpointManager( root, checkpoint_directory, max_to_keep=1) status = root.restore(save_path=manager.latest_checkpoint) input_value = constant_op.constant([[3.]]) train_fn = functools.partial(_train_fn, model, input_value) if not context.executing_eagerly(): train_fn = functools.partial(self.evaluate, train_fn()) status.initialize_or_restore() for _ in range(num_training_steps): train_fn() manager.save() self.assertEqual((training_continuation + 1) * num_training_steps, self.evaluate(root.optimizer.iterations)) self.assertEqual(training_continuation + 1, self.evaluate(root.save_counter)) @test_util.run_in_graph_and_eager_modes def testFreezing(self): with test_util.use_gpu(): # Save an object-based checkpoint using a frozen saver directory = self.get_temp_dir() prefix = os.path.join(directory, "ckpt") v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64) checkpoint = trackable_utils.Checkpoint(v=v) self.evaluate(v.assign(3)) # Create the save counter so assert_consumed doesn't complain about it not # existing in the checkpoint on restore. self.evaluate(checkpoint.save_counter.assign(12)) saver = trackable_utils.frozen_saver(checkpoint) with ops.device("cpu:0"): prefix_tensor = constant_op.constant(prefix) self.evaluate(saver.save(prefix_tensor)) self.evaluate(v.assign(10)) # Use the frozen saver to restore the same object graph self.evaluate(saver.restore(prefix_tensor)) self.assertEqual(3, self.evaluate(v)) # Restore using another frozen saver on an identical object graph del v, checkpoint, saver v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64) checkpoint = trackable_utils.Checkpoint(v=v) saver = trackable_utils.frozen_saver(checkpoint) self.evaluate(saver.restore(prefix_tensor)) self.assertEqual(3, self.evaluate(v)) # Restore as an object-based checkpoint del v, checkpoint, saver checkpoint = trackable_utils.Checkpoint() status = checkpoint.restore(prefix) v = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64) if context.executing_eagerly(): self.assertEqual(12, self.evaluate(checkpoint.save_counter)) self.assertEqual(0, self.evaluate(v)) checkpoint.v = v status.assert_consumed().run_restore_ops() self.assertEqual(3, self.evaluate(v)) self.assertEqual(12, self.evaluate(checkpoint.save_counter)) @test_util.run_in_graph_and_eager_modes def testCustomNumbering(self): directory = self.get_temp_dir() prefix = os.path.join(directory, "ckpt") step = resource_variable_ops.ResourceVariable(0, dtype=dtypes.int64) checkpoint = trackable_utils.Checkpoint(step=step) self.evaluate(step.initializer) for i in range(5): path = checkpoint.write("%s-%d" % (prefix, self.evaluate(step))) expected_suffix = "-%d" % (2 * i,) if not path.endswith(expected_suffix): self.fail("%s should have suffix %s" % (path, expected_suffix)) self.evaluate(step.assign_add(2)) def testPartialRestoreWarningObject(self): with context.eager_mode(): optimizer = adam.Adam(0.0) original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.), v2=variables_lib.Variable(3.), optimizer=optimizer) # Create a slot variable to save optimizer.minimize(original_root.v1.read_value, [original_root.v1]) prefix = os.path.join(self.get_temp_dir(), "ckpt") save_path = original_root.save(prefix) partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.)) weak_partial_root = weakref.ref(partial_root) weak_v1 = weakref.ref(partial_root.v1) partial_root.restore(save_path) self.assertEqual(2., partial_root.v1.numpy()) with test.mock.patch.object(logging, "warning") as mock_log: del partial_root self.assertIsNone(weak_partial_root()) self.assertIsNone(weak_v1()) messages = str(mock_log.call_args_list) self.assertIn("(root).v2'", messages) self.assertIn("(root).optimizer's state 'm' for (root).v1", messages) self.assertNotIn("(root).v1'", messages) self.assertIn("expect_partial()", messages) def testPartialRestoreWarningAttribute(self): with context.eager_mode(): original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.), v2=variables_lib.Variable(3.)) prefix = os.path.join(self.get_temp_dir(), "ckpt") save_path = original_root.save(prefix) partial_root = trackable_utils.Checkpoint(v1=base.Trackable(), v2=variables_lib.Variable(0.)) weak_partial_root = weakref.ref(partial_root) with test.mock.patch.object(logging, "warning") as mock_log: # Note: Unlike in testPartialRestoreWarningObject, the warning actually # prints immediately here, since all of the objects have been created # and there's no deferred restoration sitting around. partial_root.restore(save_path) self.assertEqual(3., partial_root.v2.numpy()) del partial_root self.assertIsNone(weak_partial_root()) messages = str(mock_log.call_args_list) self.assertIn("(root).v1", messages) self.assertNotIn("(root).v2", messages) self.assertIn("expect_partial()", messages) def testAttributeException(self): with context.eager_mode(): original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.), v2=variables_lib.Variable(3.)) prefix = os.path.join(self.get_temp_dir(), "ckpt") save_path = original_root.save(prefix) partial_root = trackable_utils.Checkpoint(v1=base.Trackable(), v2=variables_lib.Variable(0.)) status = partial_root.restore(save_path) with self.assertRaisesRegexp( AssertionError, r"Unused attributes(.|\n)*\(root\).v1"): status.assert_consumed() def testSilencePartialWarning(self): with context.eager_mode(): original_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(2.), v2=variables_lib.Variable(3.)) prefix = os.path.join(self.get_temp_dir(), "ckpt") save_path = original_root.save(prefix) partial_root = trackable_utils.Checkpoint(v1=variables_lib.Variable(0.)) weak_partial_root = weakref.ref(partial_root) weak_v1 = weakref.ref(partial_root.v1) partial_root.restore(save_path).expect_partial() self.assertEqual(2., partial_root.v1.numpy()) with test.mock.patch.object(logging, "warning") as mock_log: del partial_root self.assertIsNone(weak_partial_root()) self.assertIsNone(weak_v1()) self.assertEmpty(mock_log.call_args_list) # pylint: disable=cell-var-from-loop @test_util.run_in_graph_and_eager_modes @test_util.run_v1_only("b/120545219") def testWithDefun(self): num_training_steps = 2 checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") for training_continuation in range(3): with test_util.device(use_gpu=True): model = MyModel() # Don't actually train so we can test variable values optimizer = adam.Adam(0.) root = trackable_utils.Checkpoint( optimizer=optimizer, model=model) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) status = root.restore(save_path=checkpoint_path) def train_fn(): @def_function.function def _call_model(x): return model(x) with backprop.GradientTape() as tape: loss = _call_model(constant_op.constant([[3.]])) gradients = tape.gradient(loss, model.variables) return optimizer.apply_gradients(zip(gradients, model.variables)) if not context.executing_eagerly(): train_fn = functools.partial( self.evaluate, train_fn()) status.initialize_or_restore() for _ in range(num_training_steps): train_fn() if training_continuation > 0: status.assert_consumed() self.assertAllClose([[42.]], self.evaluate(model.variables[0])) else: self.evaluate(model.variables[0].assign([[42.]])) root.save(file_prefix=checkpoint_prefix) self.assertEqual((training_continuation + 1) * num_training_steps, self.evaluate(optimizer.iterations)) self.assertEqual(training_continuation + 1, self.evaluate(root.save_counter)) # pylint: enable=cell-var-from-loop def _get_checkpoint_name(self, name): root = tracking.AutoTrackable() trackable_utils.add_variable( root, name=name, shape=[1, 2], dtype=dtypes.float64) (named_variable,), _, _ = graph_view.ObjectGraphView( root).serialize_object_graph() with ops.name_scope("root/" + named_variable.name): pass # Make sure we can use this as an op name if we prefix it. return named_variable.name @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testVariableNameEscaping(self): suffix = "/.ATTRIBUTES/VARIABLE_VALUE" self.assertEqual(r"a.Sb.Sc" + suffix, self._get_checkpoint_name(r"a/b/c")) self.assertEqual(r"b" + suffix, self._get_checkpoint_name(r"b")) self.assertEqual(r"c.S" + suffix, self._get_checkpoint_name(r"c/")) self.assertEqual(r"d.S..S" + suffix, self._get_checkpoint_name(r"d/.S")) self.assertEqual(r"d.S..ATTRIBUTES.Sf" + suffix, self._get_checkpoint_name(r"d/.ATTRIBUTES/f")) @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) def testNumberedPath(self): root = tracking.AutoTrackable() leaf = tracking.AutoTrackable() root.leaf = leaf trackable_utils.add_variable(leaf, name="v", shape=[]) (named_variable,), _, _ = graph_view.ObjectGraphView( root).serialize_object_graph() self.assertEqual(r"leaf/v/.ATTRIBUTES/VARIABLE_VALUE", named_variable.name) @test_util.run_in_graph_and_eager_modes def testLocalNameValidation(self): root = tracking.AutoTrackable() leaf = tracking.AutoTrackable() # Dots are escaped, which avoids conflicts with reserved names. root._track_trackable(leaf, name=".ATTRIBUTES") trackable_utils.add_variable(trackable=leaf, name="a", shape=[]) (named_variable,), _, _ = graph_view.ObjectGraphView( root).serialize_object_graph() self.assertEqual("..ATTRIBUTES/a/.ATTRIBUTES/VARIABLE_VALUE", named_variable.name) def testAnonymousVarsInInit(self): class Model(training.Model): def __init__(self): super(Model, self).__init__() self.w = resource_variable_ops.ResourceVariable(0.0) self.b = resource_variable_ops.ResourceVariable(0.0) self.vars = [self.w, self.b] def call(self, x): return x * self.w + self.b with context.eager_mode(): model = Model() optimizer = adam.Adam(learning_rate=0.05) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") checkpoint = trackable_utils.Checkpoint( model=model, optimizer=optimizer) for _ in range(2): checkpoint.save(checkpoint_prefix) with backprop.GradientTape() as tape: loss = (constant_op.constant(1.) - model(constant_op.constant(1.))) ** 2 grad = tape.gradient(loss, model.vars) optimizer.apply_gradients( [(g, v) for g, v in zip(grad, model.vars)]) @test_util.run_in_graph_and_eager_modes def testLateDependencyTracking(self): class Dependency(tracking.AutoTrackable): def build(self): self.var = trackable_utils.add_variable( self, "var", initializer=0.) class LateDependencies(trackable_utils.Checkpoint): def add_dep(self): self.dep = Dependency() self.dep.build() original = LateDependencies() original.add_dep() self.evaluate(state_ops.assign(original.dep.var, 123.)) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = original.save(checkpoint_prefix) load_into = LateDependencies() status = load_into.restore(save_path) status.assert_existing_objects_matched() with self.assertRaises(AssertionError): status.assert_consumed() load_into.add_dep() status.assert_consumed() status.assert_existing_objects_matched().run_restore_ops() self.assertEqual(123., self.evaluate(load_into.dep.var)) @test_util.run_in_graph_and_eager_modes def testDepAfterVar(self): class Dependency(tracking.AutoTrackable): def build(self): self.var = trackable_utils.add_variable( self, "var", initializer=0.) class DepAfterVar(trackable_utils.Checkpoint): def add_dep(self): dep = Dependency() dep.build() self.dep = dep dep_after_var = DepAfterVar() dep_after_var.add_dep() self.evaluate(state_ops.assign(dep_after_var.dep.var, -14.)) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = dep_after_var.save(checkpoint_prefix) loaded_dep_after_var = DepAfterVar() status = loaded_dep_after_var.restore(save_path) loaded_dep_after_var.add_dep() status.assert_consumed() status.run_restore_ops() self.assertEqual(-14., self.evaluate(loaded_dep_after_var.dep.var)) @test_util.run_in_graph_and_eager_modes def testDeferredSlotRestoration(self): checkpoint_directory = self.get_temp_dir() root = trackable_utils.Checkpoint() root.var = trackable_utils.add_variable( root, name="var", initializer=0.) optimizer = adam.Adam(0.1) variables = [root.var] gradients = [1.] train_op = optimizer.apply_gradients(zip(gradients, variables)) # Note that `optimizer` has not been added as a dependency of # `root`. Create a one-off grouping so that slot variables for `root.var` # get initialized too. self.evaluate(trackable_utils.gather_initializers( trackable_utils.Checkpoint(root=root, optimizer=optimizer))) self.evaluate(train_op) self.evaluate(state_ops.assign(root.var, 12.)) no_slots_path = root.save(os.path.join(checkpoint_directory, "no_slots")) root.optimizer = optimizer self.evaluate(state_ops.assign(root.var, 13.)) self.evaluate(state_ops.assign( optimizer.get_slot(slot_name="m", var=root.var), 14.)) slots_path = root.save(os.path.join(checkpoint_directory, "with_slots")) new_root = trackable_utils.Checkpoint() # Load the slot-containing checkpoint (deferred), then immediately overwrite # the non-slot variable (also deferred). slot_status = new_root.restore(slots_path) no_slot_status = new_root.restore(no_slots_path) with self.assertRaises(AssertionError): no_slot_status.assert_consumed() new_root.var = trackable_utils.add_variable( new_root, name="var", shape=[]) no_slot_status.assert_consumed() no_slot_status.run_restore_ops() self.assertEqual(12., self.evaluate(new_root.var)) new_root.optimizer = adam.Adam(0.1) slot_status.assert_existing_objects_matched() if not context.executing_eagerly(): with self.assertRaisesRegexp(AssertionError, "Unresolved object"): slot_status.assert_consumed() self.assertEqual(12., self.evaluate(new_root.var)) if context.executing_eagerly(): # Slot variables are only created with restoring initializers when # executing eagerly. self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(slot_name="m", var=new_root.var))) else: # Slot variables are not created eagerly when graph building. with self.assertRaises(KeyError): new_root.optimizer.get_slot(slot_name="m", var=new_root.var) variables = [new_root.var] gradients = [1.] train_op = new_root.optimizer.apply_gradients(zip(gradients, variables)) # The slot variable now exists; restore() didn't create it, but we should # now have a restore op for it. slot_status.run_restore_ops() if not context.executing_eagerly(): # The train op hasn't run when graph building, so the slot variable has # its restored value. It has run in eager, so the value will be different. self.assertEqual(14., self.evaluate( new_root.optimizer.get_slot(slot_name="m", var=new_root.var))) self.evaluate(train_op) slot_status.assert_consumed() @test_util.run_in_graph_and_eager_modes def testOverlappingRestores(self): checkpoint_directory = self.get_temp_dir() save_root = trackable_utils.Checkpoint() save_root.dep = tracking.AutoTrackable() save_root.dep.var = trackable_utils.add_variable( save_root.dep, name="var", initializer=0.) self.evaluate(state_ops.assign(save_root.dep.var, 12.)) first_path = save_root.save(os.path.join(checkpoint_directory, "first")) self.evaluate(state_ops.assign(save_root.dep.var, 13.)) second_path = save_root.save(os.path.join(checkpoint_directory, "second")) first_root = trackable_utils.Checkpoint() second_root = trackable_utils.Checkpoint() first_status = first_root.restore(first_path) second_status = second_root.restore(second_path) load_dep = tracking.AutoTrackable() load_dep.var = trackable_utils.add_variable( load_dep, name="var", shape=[]) first_root.dep = load_dep first_status.assert_consumed() first_status.run_restore_ops() self.assertEqual(12., self.evaluate(load_dep.var)) second_root.dep = load_dep second_status.assert_consumed() second_status.run_restore_ops() self.assertEqual(13., self.evaluate(load_dep.var)) # Try again with the order of the restore() reversed. The last restore # determines the final value. first_root = trackable_utils.Checkpoint() second_root = trackable_utils.Checkpoint() second_status = second_root.restore(second_path) first_status = first_root.restore(first_path) load_dep = tracking.AutoTrackable() load_dep.var = trackable_utils.add_variable( load_dep, name="var", shape=[]) first_root.dep = load_dep first_status.assert_consumed() first_status.run_restore_ops() self.assertEqual(12., self.evaluate(load_dep.var)) second_root.dep = load_dep second_status.assert_consumed() second_status.run_restore_ops() self.assertEqual(12., self.evaluate(load_dep.var)) @test_util.run_in_graph_and_eager_modes def testAmbiguousLoad(self): # Not OK to split one checkpoint object into two checkpoint_directory = self.get_temp_dir() save_root = trackable_utils.Checkpoint() save_root.dep_one = tracking.AutoTrackable() save_root.dep_two = tracking.AutoTrackable() dep_three = tracking.AutoTrackable() save_root.dep_one.dep_three = dep_three save_root.dep_two.dep_three = dep_three trackable_utils.add_variable(dep_three, name="var", initializer=0.) self.evaluate(trackable_utils.gather_initializers(save_root)) save_path = save_root.save(os.path.join(checkpoint_directory, "ckpt")) load_root = trackable_utils.Checkpoint() status = load_root.restore(save_path) load_root.dep_one = tracking.AutoTrackable() load_root.dep_two = tracking.AutoTrackable() load_root.dep_one.dep_three = tracking.AutoTrackable() load_root.dep_two.dep_three = tracking.AutoTrackable() trackable_utils.add_variable( load_root.dep_one.dep_three, name="var", initializer=0.) trackable_utils.add_variable( load_root.dep_two.dep_three, name="var", initializer=0.) with self.assertRaises(AssertionError): status.assert_consumed() with self.assertRaises(AssertionError): status.assert_existing_objects_matched() @test_util.run_in_graph_and_eager_modes def testObjectsCombined(self): # Currently fine to load two checkpoint objects into one Python object checkpoint_directory = self.get_temp_dir() save_root = trackable_utils.Checkpoint() save_root.dep_one = tracking.AutoTrackable() save_root.dep_two = tracking.AutoTrackable() trackable_utils.add_variable( save_root.dep_one, name="var1", initializer=32., dtype=dtypes.float64) trackable_utils.add_variable( save_root.dep_two, name="var2", initializer=64., dtype=dtypes.float64) self.evaluate(trackable_utils.gather_initializers(save_root)) save_path = save_root.save(os.path.join(checkpoint_directory, "ckpt")) load_root = trackable_utils.Checkpoint() load_root.dep_one = tracking.AutoTrackable() load_root.dep_two = load_root.dep_one v1 = trackable_utils.add_variable( load_root.dep_one, name="var1", shape=[], dtype=dtypes.float64) v2 = trackable_utils.add_variable( load_root.dep_one, name="var2", shape=[], dtype=dtypes.float64) status = load_root.restore( save_path).assert_consumed().assert_existing_objects_matched() status.run_restore_ops() self.assertEqual(32., self.evaluate(v1)) self.assertEqual(64., self.evaluate(v2)) @test_util.run_in_graph_and_eager_modes def testEmptyContainersIgnored(self): checkpoint_directory = self.get_temp_dir() save_root = trackable_utils.Checkpoint(a=[]) path = save_root.save(checkpoint_directory) load_root = trackable_utils.Checkpoint(b=[]) load_root.dep = [] load_root.dep.append([]) status = load_root.restore(path) status.assert_consumed() status.assert_existing_objects_matched() status.assert_nontrivial_match() @test_util.run_in_graph_and_eager_modes def testDependencyLoop(self): # Note: this test creates garbage during eager execution because it # purposefully creates a reference cycle. first = trackable_utils.Checkpoint() second = trackable_utils.Checkpoint() first.second = second second.first = first first.v = trackable_utils.add_variable( first, "v1", initializer=[3., 1., 4.]) second.v = trackable_utils.add_variable( second, "v2", initializer=[1., 1., 2., 3.]) self.evaluate(trackable_utils.gather_initializers(first)) checkpoint_directory = self.get_temp_dir() save_path = first.save(os.path.join(checkpoint_directory, "ckpt")) # Test deferred loading first_load = trackable_utils.Checkpoint() status = first_load.restore(save_path) second_load = tracking.AutoTrackable() first_load.second = second_load second_load.first = first_load with self.assertRaises(AssertionError): status.assert_consumed() first_load.v = trackable_utils.add_variable( first_load, "v1", shape=[3]) second_load.v = trackable_utils.add_variable( second_load, "v2", shape=[4]) status.assert_consumed() status.run_restore_ops() self.assertAllEqual([3., 1., 4.], self.evaluate(first_load.v)) self.assertAllEqual([1., 1., 2., 3.], self.evaluate(second_load.v)) # Test loading when variables have already been created self.evaluate(first_load.v.assign([2., 7., 1.])) self.assertAllEqual([2., 7., 1.], self.evaluate(first_load.v)) self.evaluate(second_load.v.assign([2., 7., 1., 8.])) self.assertAllEqual([2., 7., 1., 8.], self.evaluate(second_load.v)) status = first_load.restore(save_path).assert_consumed() status.run_restore_ops() self.assertAllEqual([3., 1., 4.], self.evaluate(first_load.v)) self.assertAllEqual([1., 1., 2., 3.], self.evaluate(second_load.v)) @test_util.run_in_graph_and_eager_modes def testRestoreOnAssign(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") first = trackable_utils.Checkpoint() first.var1 = variables_lib.Variable(0., name="outside_var") first.var2 = variables_lib.Variable(0., name="blah") self.evaluate(first.var1.assign(4.)) self.evaluate(first.var2.assign(8.)) save_path = first.save(checkpoint_prefix) second = trackable_utils.Checkpoint() second.var2 = variables_lib.Variable(0., name="blah") status = second.restore(save_path) recreated_var1 = variables_lib.Variable(0., name="outside_var") status.run_restore_ops() self.assertEqual(8., self.evaluate(second.var2)) self.evaluate(recreated_var1.assign(-2.)) self.assertEqual(-2., self.evaluate(recreated_var1)) second.var1 = recreated_var1 status.run_restore_ops() self.assertEqual(4., self.evaluate(recreated_var1)) def testManySavesGraph(self): """Saves after the first should not modify the graph.""" with context.graph_mode(): graph = ops.Graph() with graph.as_default(), self.session(graph): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = trackable_utils.Checkpoint() obj.var = variables_lib.Variable(0., name="v") obj.opt = adam.Adam(0.1) variables = [obj.var] gradients = [1.] obj.opt.apply_gradients(zip(gradients, variables)) self.evaluate(trackable_utils.gather_initializers(obj)) obj.save(checkpoint_prefix) graph.finalize() obj.save(checkpoint_prefix) @test_util.run_in_graph_and_eager_modes def testCheckpointState(self): # No checkpoints are deleted by default checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = tracking.AutoTrackable() obj.var = variable_scope.get_variable(name="v", initializer=0.) self.evaluate(trackable_utils.gather_initializers(obj)) saver = trackable_utils.Checkpoint(obj=obj) for _ in range(10): saver.save(checkpoint_prefix) expected_filenames = ["checkpoint"] for checkpoint_number in range(1, 11): expected_filenames.append("ckpt-%d.index" % (checkpoint_number,)) self.assertEmpty( set(expected_filenames) - set(os.listdir(checkpoint_directory))) @test_util.run_in_graph_and_eager_modes def testCheckpointStateChangingVarList(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = tracking.AutoTrackable() obj.var = variable_scope.get_variable(name="v", initializer=0.) self.evaluate(trackable_utils.gather_initializers(obj)) checkpoint = trackable_utils.Checkpoint(obj=obj) looped_variables = [] for iteration in range(10): new_variable = resource_variable_ops.ResourceVariable(iteration) self.evaluate(new_variable.initializer) setattr(checkpoint, "var_%d" % iteration, new_variable) checkpoint.save(checkpoint_prefix) looped_variables.append(new_variable) expected_filenames = ["checkpoint"] # We've copied the saver each time, but checkpoint management should still # be consistent. Nothing gets deleted. for checkpoint_number in range(1, 11): expected_filenames.append("ckpt-%d.index" % (checkpoint_number,)) self.assertEmpty( set(expected_filenames) - set(os.listdir(checkpoint_directory))) self.assertEqual( checkpoint_prefix + "-10", checkpoint_management.latest_checkpoint(checkpoint_directory)) # The checkpoint list only contains the most recent checkpoint, but they're # all on disk. This means we won't eventually run into proto size limits. self.assertEqual( [checkpoint_prefix + "-10"], (checkpoint_management.get_checkpoint_state(checkpoint_directory) .all_model_checkpoint_paths)) for v in looped_variables: self.evaluate(v.assign(314)) checkpoint.restore(checkpoint_prefix + "-6").run_restore_ops() self.assertEqual(314, self.evaluate(checkpoint.var_9)) self.assertEqual(314, self.evaluate(checkpoint.var_8)) self.assertEqual(314, self.evaluate(checkpoint.var_6)) self.assertEqual(5, self.evaluate(checkpoint.var_5)) self.assertEqual(1, self.evaluate(checkpoint.var_1)) self.assertEqual(0, self.evaluate(checkpoint.var_0)) checkpoint.restore(checkpoint_prefix + "-10").run_restore_ops() self.assertEqual(9, self.evaluate(checkpoint.var_9)) self.assertEqual(8, self.evaluate(checkpoint.var_8)) self.assertEqual(1, self.evaluate(checkpoint.var_1)) self.assertEqual(0, self.evaluate(checkpoint.var_0)) def testManyRestoresGraph(self): """Restores after the first should not modify the graph.""" with context.graph_mode(): graph = ops.Graph() with graph.as_default(), self.session(graph): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") obj = trackable_utils.Checkpoint() obj.var = variables_lib.Variable(0., name="v") obj.opt = adam.Adam(0.1) variables = [obj.var] gradients = [1.] obj.opt.apply_gradients(zip(gradients, variables)) self.evaluate(trackable_utils.gather_initializers(obj)) save_path = obj.save(checkpoint_prefix) obj.restore(save_path) graph.finalize() obj.restore(save_path) @test_util.run_in_graph_and_eager_modes def test_sequential(self): model = sequential.Sequential() checkpoint = trackable_utils.Checkpoint(model=model) model.add(core.Dense(4)) second_dense = core.Dense(5) model.add(second_dense) model(constant_op.constant([[1.]])) checkpoint.restore(None).initialize_or_restore() self.evaluate(second_dense.bias.assign( constant_op.constant([1., 2., 3., 4., 5.]))) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = checkpoint.save(checkpoint_prefix) self.evaluate(second_dense.bias.assign( constant_op.constant([5., 6., 7., 8., 9.]))) checkpoint.restore(save_path).assert_consumed().run_restore_ops() self.assertAllEqual([1., 2., 3., 4., 5.], self.evaluate(second_dense.bias)) deferred_sequential = sequential.Sequential() deferred_sequential_checkpoint = trackable_utils.Checkpoint( model=deferred_sequential) status = deferred_sequential_checkpoint.restore(save_path) deferred_sequential.add(core.Dense(4)) deferred_second_dense = core.Dense(5) deferred_sequential.add(deferred_second_dense) deferred_sequential(constant_op.constant([[1.]])) status.run_restore_ops() self.assertAllEqual([1., 2., 3., 4., 5.], self.evaluate(deferred_second_dense.bias)) @test_util.run_in_graph_and_eager_modes def test_initialize_if_not_restoring(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") optimizer_only_prefix = os.path.join(checkpoint_directory, "opt") with test_util.device(use_gpu=True): model = MyModel() optimizer = adam.Adam(0.001) root = trackable_utils.Checkpoint( model=model) # Do not save the optimizer with the checkpoint. optimizer_checkpoint = trackable_utils.Checkpoint( optimizer=optimizer) checkpoint_path = checkpoint_management.latest_checkpoint( checkpoint_directory) status = root.restore(save_path=checkpoint_path) input_value = constant_op.constant([[3.]]) def train_fn(): with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) return optimizer.apply_gradients(zip(gradients, variables)) if not context.executing_eagerly(): train_fn = functools.partial(self.evaluate, train_fn()) status.initialize_or_restore() # TODO(tanzheny): Add hyper variables to .variables(), and set them with # set_weights etc. variables_not_in_the_variables_property = [ obj for obj in optimizer._hyper.values() if isinstance(obj, variables_lib.Variable)] self.evaluate([v.initializer for v in optimizer.variables() + variables_not_in_the_variables_property]) train_fn() model_save_path = root.save(file_prefix=checkpoint_prefix) self.evaluate(optimizer.beta_1.assign(42.)) optimizer_save_path = optimizer_checkpoint.save(optimizer_only_prefix) del train_fn # Restore into a graph with the optimizer with test_util.device(use_gpu=True): model = MyModel() optimizer = adam.Adam(0.001) root = trackable_utils.Checkpoint( optimizer=optimizer, model=model) status = root.restore(save_path=model_save_path) input_value = constant_op.constant([[3.]]) def train_fn1(): with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) return optimizer.apply_gradients(zip(gradients, variables)) if not context.executing_eagerly(): train_fn1 = functools.partial(self.evaluate, train_fn1()) status.initialize_or_restore() train_fn1() with self.assertRaises(AssertionError): status.assert_existing_objects_matched() with self.assertRaises(AssertionError): status.assert_consumed() del train_fn1 # Make sure initialization doesn't clobber later restores with test_util.device(use_gpu=True): model = MyModel() optimizer = adam.Adam(0.001, beta_1=1.0) root = trackable_utils.Checkpoint( optimizer=optimizer, model=model) opt_root = trackable_utils.Checkpoint( optimizer=optimizer) status = root.restore(save_path=model_save_path) init_only_optimizer_status = opt_root.restore(save_path=None) optimizer_status = opt_root.restore(save_path=optimizer_save_path) input_value = constant_op.constant([[3.]]) def train_fn2(): with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) return optimizer.apply_gradients(zip(gradients, variables)) if not context.executing_eagerly(): train_fn2 = functools.partial(self.evaluate, train_fn2()) optimizer_status.run_restore_ops() status.initialize_or_restore() init_only_optimizer_status.initialize_or_restore() train_fn2() self.assertEqual(42., self.evaluate(optimizer.beta_1)) @test_util.run_in_graph_and_eager_modes def test_restore_after_adding_empty_trackable_data_structure(self): model = NonLayerTrackable() checkpoint = trackable_utils.Checkpoint(model=model) checkpoint.restore(None).initialize_or_restore() checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = checkpoint.save(checkpoint_prefix) del model, checkpoint model = NonLayerTrackable() model.dict = {"a": 1} model.list = {"b": 1} checkpoint = trackable_utils.Checkpoint(model=model) load_status = checkpoint.restore(save_path) load_status.assert_existing_objects_matched().run_restore_ops() @test_util.run_in_graph_and_eager_modes def test_write_checkpoint_from_function(self): checkpoint_prefix = os.path.join(self.get_temp_dir(), "ckpt") save_checkpoint = trackable_utils.Checkpoint(v=variables_lib.Variable(1.)) @def_function.function def _write_checkpoint(): save_path = save_checkpoint.write(checkpoint_prefix) return save_path self.evaluate([save_checkpoint.v.initializer]) self.evaluate(_write_checkpoint()) load_checkpoint = trackable_utils.Checkpoint(v=variables_lib.Variable(0.)) # Use read() instead of restore() which allows us to check that all # existing objects were loaded. status = load_checkpoint.read(checkpoint_prefix) status.assert_existing_objects_matched() status.assert_consumed() status.run_restore_ops() self.assertEqual(1., self.evaluate(load_checkpoint.v)) self.evaluate(save_checkpoint.v.assign(3.)) self.evaluate(_write_checkpoint()) self.evaluate(save_checkpoint.v.assign(0.)) status = load_checkpoint.read(checkpoint_prefix) status.assert_existing_objects_matched() status.assert_consumed() status.run_restore_ops() self.assertEqual(3., self.evaluate(load_checkpoint.v)) def test_inititialize_with_data_structures(self): checkpoint = trackable_utils.Checkpoint( a=[variables_lib.Variable(0.), variables_lib.Variable(1.)], b={"a": variables_lib.Variable(2.), "b": variables_lib.Variable(3.)}) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = checkpoint.save(checkpoint_prefix) load_checkpoint = trackable_utils.Checkpoint( a=[variables_lib.Variable(4.), variables_lib.Variable(5.)], b={"a": variables_lib.Variable(6.), "b": variables_lib.Variable(7.)}) load_checkpoint.restore(save_path) self.assertAllClose(self.evaluate(load_checkpoint.a), [0, 1]) self.assertAllClose(self.evaluate(load_checkpoint.b), {"a": 2, "b": 3}) class _ManualScope(tracking.AutoTrackable): def __call__(self): with variable_scope.variable_scope("ManualScope") as vs: self.variable_scope = vs with trackable_utils.capture_dependencies(template=self): return self._build() def _build(self): return variable_scope.get_variable(name="in_manual_scope", shape=[]) class TemplateTests(parameterized.TestCase, test.TestCase): @test_util.run_in_graph_and_eager_modes def test_trackable_save_restore(self): def _templated(): v = variable_scope.get_variable( "v", shape=[1], initializer=init_ops.zeros_initializer(), use_resource=True) v2 = variable_scope.get_variable( "v2", shape=[1], initializer=init_ops.zeros_initializer(), use_resource=True) manual = _ManualScope() return v, v + 1., v2, manual, manual() save_template = template.make_template("s1", _templated) v1_save, _, v2_save, manual_scope, manual_scope_v = save_template() six.assertCountEqual( self, [id(v1_save), id(v2_save), id(manual_scope), id(manual_scope_v), id(save_template)], map(id, trackable_utils.list_objects(save_template))) manual_dep, = manual_scope._checkpoint_dependencies self.assertEqual("in_manual_scope", manual_dep.name) self.assertIs(manual_scope_v, manual_dep.ref) optimizer = adam.Adam(0.0) save_root = trackable_utils.Checkpoint( my_template=save_template, optimizer=optimizer) optimizer.minimize(v1_save.read_value, var_list=[v1_save]) self.evaluate([v.initializer for v in save_template.variables]) optimizer_variables = optimizer.variables() + list( optimizer._hyper.values()) self.evaluate([v.initializer for v in optimizer_variables]) self.evaluate(v1_save.assign([12.])) self.evaluate(v2_save.assign([14.])) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = save_root.save(checkpoint_prefix) load_template = template.make_template("s2", _templated) load_optimizer = adam.Adam(0.0) load_root = trackable_utils.Checkpoint( my_template=load_template, optimizer=load_optimizer) status = load_root.restore(save_path) var, var_plus_one, var2, _, _ = load_template() load_optimizer.minimize(var.read_value, var_list=[var]) self.assertLen(load_template._checkpoint_dependencies, 3) self.assertEqual("v", load_template._checkpoint_dependencies[0].name) self.assertEqual("v2", load_template._checkpoint_dependencies[1].name) self.assertEqual("ManualScope", load_template._checkpoint_dependencies[2].name) status.assert_consumed().run_restore_ops() self.assertAllEqual([12.], self.evaluate(var)) self.assertAllEqual([13.], self.evaluate(var_plus_one)) self.assertAllEqual([14.], self.evaluate(var2)) @test_util.run_in_graph_and_eager_modes def test_trackable_save_restore_nested(self): def _inner_template(): v = variable_scope.get_variable( "v", shape=[1], initializer=init_ops.zeros_initializer()) return v def _outer_template(): first_inner = template.make_template("i1", _inner_template) second_inner = template.make_template("i2", _inner_template) v1 = first_inner() v2 = second_inner() v3 = second_inner() return (first_inner, second_inner), (v1, v2, v3) with variable_scope.variable_scope("ignored"): save_template = template.make_template("s1", _outer_template) save_root = trackable_utils.Checkpoint(my_template=save_template) (inner_template_one, inner_template_two), _ = save_template() self.evaluate(inner_template_one.variables[0].assign([20.])) self.evaluate(inner_template_two.variables[0].assign([25.])) checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") save_path = save_root.save(checkpoint_prefix) load_template = template.make_template("s2", _outer_template) load_root = trackable_utils.Checkpoint(my_template=load_template) status = load_root.restore(save_path) (inner_template_one, inner_template_two), (v1, v2, v3) = load_template() outer_template_dependencies = load_root.my_template._checkpoint_dependencies self.assertLen(outer_template_dependencies, 2) self.assertEqual("i1", outer_template_dependencies[0].name) self.assertIs(inner_template_one, outer_template_dependencies[0].ref) self.assertEqual("i2", outer_template_dependencies[1].name) self.assertIs(inner_template_two, outer_template_dependencies[1].ref) self.assertLen(inner_template_one._checkpoint_dependencies, 1) self.assertEqual("v", inner_template_one._checkpoint_dependencies[0].name) self.assertLen(inner_template_two._checkpoint_dependencies, 1) self.assertEqual("v", inner_template_two._checkpoint_dependencies[0].name) status.assert_consumed().run_restore_ops() self.assertAllEqual([20.], self.evaluate(v1)) self.assertAllEqual([25.], self.evaluate(v2)) self.assertAllEqual([25.], self.evaluate(v3)) class CheckpointCompatibilityTests(test.TestCase): def _initialized_model(self): input_value = constant_op.constant([[3.]]) model = MyModel() optimizer = adam.Adam(0.001) root_trackable = trackable_utils.Checkpoint( optimizer=optimizer, model=model) with backprop.GradientTape() as tape: loss = model(input_value) variables = model.trainable_variables gradients = tape.gradient(loss, variables) train_op = optimizer.apply_gradients(zip(gradients, variables)) self.evaluate(trackable_utils.gather_initializers( root_trackable)) self.evaluate(train_op) # A regular variable, a slot variable, and a non-slot Optimizer variable # with known values to check when loading. self.evaluate(model._named_dense.bias.assign([1.])) self.evaluate(optimizer.get_slot( var=model._named_dense.bias, slot_name="m").assign([2.])) self.evaluate(optimizer.beta_1.assign(3.)) return root_trackable def _set_sentinels(self, root_trackable): self.evaluate(root_trackable.model._named_dense.bias.assign([101.])) self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, slot_name="m") .assign([102.])) self.evaluate(root_trackable.optimizer.beta_1.assign(103.)) def _check_sentinels(self, root_trackable): self.assertAllEqual( [1.], self.evaluate(root_trackable.model._named_dense.bias)) self.assertAllEqual([2.], self.evaluate( root_trackable.optimizer.get_slot( var=root_trackable.model._named_dense.bias, slot_name="m"))) self.assertAllEqual(3., self.evaluate(root_trackable.optimizer.beta_1)) def _write_name_based_checkpoint(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.session( graph=save_graph) as session: root = self._initialized_model() name_saver = saver_lib.Saver() return name_saver.save( sess=session, save_path=checkpoint_prefix, global_step=root.optimizer.iterations) @test_util.run_in_graph_and_eager_modes def testLoadFromNameBasedSaver(self): """Save a name-based checkpoint, load it using the object-based API.""" with test_util.device(use_gpu=True): save_path = self._write_name_based_checkpoint() root = self._initialized_model() self._set_sentinels(root) with self.assertRaises(AssertionError): self._check_sentinels(root) object_saver = trackable_utils.TrackableSaver( graph_view.ObjectGraphView(root)) self._set_sentinels(root) status = object_saver.restore(save_path) if context.executing_eagerly(): self._check_sentinels(root) if context.executing_eagerly(): status.assert_consumed() status.assert_existing_objects_matched() status.assert_nontrivial_match() else: # When graph building, we haven't read any keys, so we don't know # whether the restore will be complete. with self.assertRaisesRegexp(AssertionError, "not restored"): status.assert_consumed() with self.assertRaisesRegexp(AssertionError, "not restored"): status.assert_existing_objects_matched() with self.assertRaisesRegexp(AssertionError, "not restored"): status.assert_nontrivial_match() status.run_restore_ops() self._check_sentinels(root) self._set_sentinels(root) status = object_saver.restore(save_path) status.initialize_or_restore() status.assert_nontrivial_match() self._check_sentinels(root) # Check that there is no error when keys are missing from the name-based # checkpoint. root.not_in_name_checkpoint = resource_variable_ops.ResourceVariable([1.]) status = object_saver.restore(save_path) with self.assertRaises(AssertionError): status.assert_existing_objects_matched() def testSaveGraphLoadEager(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.session( graph=save_graph): root = self._initialized_model() save_path = root.save(file_prefix=checkpoint_prefix) with context.eager_mode(): root = self._initialized_model() self._set_sentinels(root) root.restore(save_path).assert_consumed() self._check_sentinels(root) def testSaveEagerLoadGraph(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with context.eager_mode(): root = self._initialized_model() save_path = root.save(file_prefix=checkpoint_prefix) with context.graph_mode(): save_graph = ops.Graph() with save_graph.as_default(), self.session( graph=save_graph): root = self._initialized_model() self._set_sentinels(root) root.restore(save_path).assert_consumed().run_restore_ops() self._check_sentinels(root) def testIgnoreSaveCounter(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") with self.cached_session() as session: # Create and save a model using Saver() before using a Checkpoint. This # generates a snapshot without the Checkpoint's `save_counter`. model = sequential.Sequential() model.add(core.Flatten(input_shape=(1,))) model.add(core.Dense(1)) name_saver = saver_lib.Saver(model.trainable_variables) save_path = name_saver.save( sess=session, save_path=checkpoint_prefix, global_step=1) # Checkpoint.restore must successfully load that checkpoint. ckpt = trackable_utils.Checkpoint(model=model) status = ckpt.restore(save_path) status.assert_existing_objects_matched() # It should, however, refuse to load a checkpoint where an unrelated # `save_counter` variable is missing. model.layers[1].var = variables_lib.Variable(0., name="save_counter") status = ckpt.restore(save_path) with self.assertRaises(AssertionError): status.assert_existing_objects_matched() if __name__ == "__main__": ops.enable_eager_execution() test.main()
43.322618
80
0.709046
84032250d1dc0d8b43527391368b2ca3ad6df970
6,987
py
Python
lark/parsers/lalr_parser.py
plannigan/lark
5662083377866ac07b40b7598ce85d9861ccf68c
[ "MIT" ]
2,653
2018-04-24T07:29:58.000Z
2022-03-31T03:17:56.000Z
lark/parsers/lalr_parser.py
plannigan/lark
5662083377866ac07b40b7598ce85d9861ccf68c
[ "MIT" ]
900
2018-04-24T00:08:42.000Z
2022-03-31T20:30:55.000Z
lark/parsers/lalr_parser.py
plannigan/lark
5662083377866ac07b40b7598ce85d9861ccf68c
[ "MIT" ]
356
2018-04-25T22:46:05.000Z
2022-03-31T08:39:37.000Z
"""This module implements a LALR(1) Parser """ # Author: Erez Shinan (2017) # Email : erezshin@gmail.com from copy import deepcopy, copy from ..exceptions import UnexpectedInput, UnexpectedToken from ..lexer import Token from ..utils import Serialize from .lalr_analysis import LALR_Analyzer, Shift, Reduce, IntParseTable from .lalr_interactive_parser import InteractiveParser from lark.exceptions import UnexpectedCharacters, UnexpectedInput, UnexpectedToken ###{standalone class LALR_Parser(Serialize): def __init__(self, parser_conf, debug=False): analysis = LALR_Analyzer(parser_conf, debug=debug) analysis.compute_lalr() callbacks = parser_conf.callbacks self._parse_table = analysis.parse_table self.parser_conf = parser_conf self.parser = _Parser(analysis.parse_table, callbacks, debug) @classmethod def deserialize(cls, data, memo, callbacks, debug=False): inst = cls.__new__(cls) inst._parse_table = IntParseTable.deserialize(data, memo) inst.parser = _Parser(inst._parse_table, callbacks, debug) return inst def serialize(self, memo): return self._parse_table.serialize(memo) def parse_interactive(self, lexer, start): return self.parser.parse(lexer, start, start_interactive=True) def parse(self, lexer, start, on_error=None): try: return self.parser.parse(lexer, start) except UnexpectedInput as e: if on_error is None: raise while True: if isinstance(e, UnexpectedCharacters): s = e.interactive_parser.lexer_state.state p = s.line_ctr.char_pos if not on_error(e): raise e if isinstance(e, UnexpectedCharacters): # If user didn't change the character position, then we should if p == s.line_ctr.char_pos: s.line_ctr.feed(s.text[p:p+1]) try: return e.interactive_parser.resume_parse() except UnexpectedToken as e2: if (isinstance(e, UnexpectedToken) and e.token.type == e2.token.type == '$END' and e.interactive_parser == e2.interactive_parser): # Prevent infinite loop raise e2 e = e2 except UnexpectedCharacters as e2: e = e2 class ParseConf: __slots__ = 'parse_table', 'callbacks', 'start', 'start_state', 'end_state', 'states' def __init__(self, parse_table, callbacks, start): self.parse_table = parse_table self.start_state = self.parse_table.start_states[start] self.end_state = self.parse_table.end_states[start] self.states = self.parse_table.states self.callbacks = callbacks self.start = start class ParserState: __slots__ = 'parse_conf', 'lexer', 'state_stack', 'value_stack' def __init__(self, parse_conf, lexer, state_stack=None, value_stack=None): self.parse_conf = parse_conf self.lexer = lexer self.state_stack = state_stack or [self.parse_conf.start_state] self.value_stack = value_stack or [] @property def position(self): return self.state_stack[-1] # Necessary for match_examples() to work def __eq__(self, other): if not isinstance(other, ParserState): return NotImplemented return len(self.state_stack) == len(other.state_stack) and self.position == other.position def __copy__(self): return type(self)( self.parse_conf, self.lexer, # XXX copy copy(self.state_stack), deepcopy(self.value_stack), ) def copy(self): return copy(self) def feed_token(self, token, is_end=False): state_stack = self.state_stack value_stack = self.value_stack states = self.parse_conf.states end_state = self.parse_conf.end_state callbacks = self.parse_conf.callbacks while True: state = state_stack[-1] try: action, arg = states[state][token.type] except KeyError: expected = {s for s in states[state].keys() if s.isupper()} raise UnexpectedToken(token, expected, state=self, interactive_parser=None) assert arg != end_state if action is Shift: # shift once and return assert not is_end state_stack.append(arg) value_stack.append(token if token.type not in callbacks else callbacks[token.type](token)) return else: # reduce+shift as many times as necessary rule = arg size = len(rule.expansion) if size: s = value_stack[-size:] del state_stack[-size:] del value_stack[-size:] else: s = [] value = callbacks[rule](s) _action, new_state = states[state_stack[-1]][rule.origin.name] assert _action is Shift state_stack.append(new_state) value_stack.append(value) if is_end and state_stack[-1] == end_state: return value_stack[-1] class _Parser: def __init__(self, parse_table, callbacks, debug=False): self.parse_table = parse_table self.callbacks = callbacks self.debug = debug def parse(self, lexer, start, value_stack=None, state_stack=None, start_interactive=False): parse_conf = ParseConf(self.parse_table, self.callbacks, start) parser_state = ParserState(parse_conf, lexer, state_stack, value_stack) if start_interactive: return InteractiveParser(self, parser_state, parser_state.lexer) return self.parse_from_state(parser_state) def parse_from_state(self, state): # Main LALR-parser loop try: token = None for token in state.lexer.lex(state): state.feed_token(token) end_token = Token.new_borrow_pos('$END', '', token) if token else Token('$END', '', 0, 1, 1) return state.feed_token(end_token, True) except UnexpectedInput as e: try: e.interactive_parser = InteractiveParser(self, state, state.lexer) except NameError: pass raise e except Exception as e: if self.debug: print("") print("STATE STACK DUMP") print("----------------") for i, s in enumerate(state.state_stack): print('%d)' % i , s) print("") raise ###}
34.761194
106
0.584657
7c989d394e31ee02ee8126830cce17880ecb2194
10,275
py
Python
librosa/core/pitch.py
SleezusJ/librosa
0ac24ab2894f925cfa3155789304850543e58949
[ "ISC" ]
null
null
null
librosa/core/pitch.py
SleezusJ/librosa
0ac24ab2894f925cfa3155789304850543e58949
[ "ISC" ]
null
null
null
librosa/core/pitch.py
SleezusJ/librosa
0ac24ab2894f925cfa3155789304850543e58949
[ "ISC" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """Pitch-tracking and tuning estimation""" import warnings import numpy as np from .spectrum import _spectrogram from . import time_frequency from .._cache import cache from .. import util __all__ = ["estimate_tuning", "pitch_tuning", "piptrack"] def estimate_tuning( y=None, sr=22050, S=None, n_fft=2048, resolution=0.01, bins_per_octave=12, **kwargs ): """Estimate the tuning of an audio time series or spectrogram input. Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to measurements in cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave kwargs : additional keyword arguments Additional arguments passed to `piptrack` Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- piptrack Pitch tracking by parabolic interpolation Examples -------- >>> # With time-series input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr) 0.089999999999999969 >>> # In tenths of a cent >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, resolution=1e-3) 0.093999999999999972 >>> # Using spectrogram input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> librosa.estimate_tuning(S=S, sr=sr) 0.089999999999999969 >>> # Using pass-through arguments to `librosa.piptrack` >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> librosa.estimate_tuning(y=y, sr=sr, n_fft=8192, ... fmax=librosa.note_to_hz('G#9')) 0.070000000000000062 """ pitch, mag = piptrack(y=y, sr=sr, S=S, n_fft=n_fft, **kwargs) # Only count magnitude where frequency is > 0 pitch_mask = pitch > 0 if pitch_mask.any(): threshold = np.median(mag[pitch_mask]) else: threshold = 0.0 return pitch_tuning( pitch[(mag >= threshold) & pitch_mask], resolution=resolution, bins_per_octave=bins_per_octave, ) def pitch_tuning(frequencies, resolution=0.01, bins_per_octave=12): """Given a collection of pitches, estimate its tuning offset (in fractions of a bin) relative to A440=440.0Hz. Parameters ---------- frequencies : array-like, float A collection of frequencies detected in the signal. See `piptrack` resolution : float in `(0, 1)` Resolution of the tuning as a fraction of a bin. 0.01 corresponds to cents. bins_per_octave : int > 0 [scalar] How many frequency bins per octave Returns ------- tuning: float in `[-0.5, 0.5)` estimated tuning deviation (fractions of a bin) See Also -------- estimate_tuning Estimating tuning from time-series or spectrogram input Examples -------- >>> # Generate notes at +25 cents >>> freqs = librosa.cqt_frequencies(24, 55, tuning=0.25) >>> librosa.pitch_tuning(freqs) 0.25 >>> # Track frequencies from a real spectrogram >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes, stft = librosa.ifptrack(y, sr) >>> # Select out pitches with high energy >>> pitches = pitches[magnitudes > np.median(magnitudes)] >>> librosa.pitch_tuning(pitches) 0.089999999999999969 """ frequencies = np.atleast_1d(frequencies) # Trim out any DC components frequencies = frequencies[frequencies > 0] if not np.any(frequencies): warnings.warn("Trying to estimate tuning from empty frequency set.") return 0.0 # Compute the residual relative to the number of bins residual = np.mod(bins_per_octave * time_frequency.hz_to_octs(frequencies), 1.0) # Are we on the wrong side of the semitone? # A residual of 0.95 is more likely to be a deviation of -0.05 # from the next tone up. residual[residual >= 0.5] -= 1.0 bins = np.linspace(-0.5, 0.5, int(np.ceil(1.0 / resolution)) + 1) counts, tuning = np.histogram(residual, bins) # return the histogram peak return tuning[np.argmax(counts)] @cache(level=30) def piptrack( y=None, sr=22050, S=None, n_fft=2048, hop_length=None, fmin=150.0, fmax=4000.0, threshold=0.1, win_length=None, window="hann", center=True, pad_mode="reflect", ref=None, ): """Pitch tracking on thresholded parabolically-interpolated STFT. This implementation uses the parabolic interpolation method described by [1]_. .. [1] https://ccrma.stanford.edu/~jos/sasp/Sinusoidal_Peak_Interpolation.html Parameters ---------- y: np.ndarray [shape=(n,)] or None audio signal sr : number > 0 [scalar] audio sampling rate of `y` S: np.ndarray [shape=(d, t)] or None magnitude or power spectrogram n_fft : int > 0 [scalar] or None number of FFT bins to use, if `y` is provided. hop_length : int > 0 [scalar] or None number of samples to hop threshold : float in `(0, 1)` A bin in spectrum `S` is considered a pitch when it is greater than `threshold*ref(S)`. By default, `ref(S)` is taken to be `max(S, axis=0)` (the maximum value in each column). fmin : float > 0 [scalar] lower frequency cutoff. fmax : float > 0 [scalar] upper frequency cutoff. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. ref : scalar or callable [default=np.max] If scalar, the reference value against which `S` is compared for determining pitches. If callable, the reference value is computed as `ref(S, axis=0)`. .. note:: One of `S` or `y` must be provided. If `S` is not given, it is computed from `y` using the default parameters of `librosa.core.stft`. Returns ------- pitches : np.ndarray [shape=(d, t)] magnitudes : np.ndarray [shape=(d,t)] Where `d` is the subset of FFT bins within `fmin` and `fmax`. `pitches[f, t]` contains instantaneous frequency at bin `f`, time `t` `magnitudes[f, t]` contains the corresponding magnitudes. Both `pitches` and `magnitudes` take value 0 at bins of non-maximal magnitude. Notes ----- This function caches at level 30. Examples -------- Computing pitches from a waveform input >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> pitches, magnitudes = librosa.piptrack(y=y, sr=sr) Or from a spectrogram input >>> S = np.abs(librosa.stft(y)) >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr) Or with an alternate reference value for pitch detection, where values above the mean spectral energy in each frame are counted as pitches >>> pitches, magnitudes = librosa.piptrack(S=S, sr=sr, threshold=1, ... ref=np.mean) """ # Check that we received an audio time series or STFT S, n_fft = _spectrogram( y=y, S=S, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, ) # Make sure we're dealing with magnitudes S = np.abs(S) # Truncate to feasible region fmin = np.maximum(fmin, 0) fmax = np.minimum(fmax, float(sr) / 2) fft_freqs = time_frequency.fft_frequencies(sr=sr, n_fft=n_fft) # Do the parabolic interpolation everywhere, # then figure out where the peaks are # then restrict to the feasible range (fmin:fmax) avg = 0.5 * (S[2:] - S[:-2]) shift = 2 * S[1:-1] - S[2:] - S[:-2] # Suppress divide-by-zeros. # Points where shift == 0 will never be selected by localmax anyway shift = avg / (shift + (np.abs(shift) < util.tiny(shift))) # Pad back up to the same shape as S avg = np.pad(avg, ([1, 1], [0, 0]), mode="constant") shift = np.pad(shift, ([1, 1], [0, 0]), mode="constant") dskew = 0.5 * avg * shift # Pre-allocate output pitches = np.zeros_like(S) mags = np.zeros_like(S) # Clip to the viable frequency range freq_mask = ((fmin <= fft_freqs) & (fft_freqs < fmax)).reshape((-1, 1)) # Compute the column-wise local max of S after thresholding # Find the argmax coordinates if ref is None: ref = np.max if callable(ref): ref_value = threshold * ref(S, axis=0) else: ref_value = np.abs(ref) idx = np.argwhere(freq_mask & util.localmax(S * (S > ref_value))) # Store pitch and magnitude pitches[idx[:, 0], idx[:, 1]] = ( (idx[:, 0] + shift[idx[:, 0], idx[:, 1]]) * float(sr) / n_fft ) mags[idx[:, 0], idx[:, 1]] = S[idx[:, 0], idx[:, 1]] + dskew[idx[:, 0], idx[:, 1]] return pitches, mags
28.701117
87
0.615961
06299ca6092ae34fa30eae51cacfad16287d3278
113
py
Python
events/admin.py
anurag0singh/Jagrati
d4487e08368da38cf53a77dc1303ea8841c71ba9
[ "MIT" ]
null
null
null
events/admin.py
anurag0singh/Jagrati
d4487e08368da38cf53a77dc1303ea8841c71ba9
[ "MIT" ]
null
null
null
events/admin.py
anurag0singh/Jagrati
d4487e08368da38cf53a77dc1303ea8841c71ba9
[ "MIT" ]
null
null
null
from django.contrib import admin # Register your models here. from .models import * admin.site.register(events)
18.833333
32
0.787611
a23957a7c721819d3df0d1e6ee1e1afcbc307248
169
py
Python
mollie_oscar/urls.py
fourdigits/django-oscar-mollie
1d182bf1bcfc6378511b4315c5b2dcb8f42e94a8
[ "BSD-2-Clause" ]
null
null
null
mollie_oscar/urls.py
fourdigits/django-oscar-mollie
1d182bf1bcfc6378511b4315c5b2dcb8f42e94a8
[ "BSD-2-Clause" ]
null
null
null
mollie_oscar/urls.py
fourdigits/django-oscar-mollie
1d182bf1bcfc6378511b4315c5b2dcb8f42e94a8
[ "BSD-2-Clause" ]
null
null
null
from django.conf.urls import url from . import views app_name = "mollie_oscar" urlpatterns = [ url(r'^webhook/', views.WebhookView.as_view(), name='webhook'), ]
15.363636
67
0.698225
aa578285ef931b74bced5aa21e5561a330755710
69
py
Python
modules/python-codes/modules/variables/04-complex.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
1
2020-09-06T22:17:19.000Z
2020-09-06T22:17:19.000Z
modules/python-codes/modules/variables/04-complex.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
null
null
null
modules/python-codes/modules/variables/04-complex.py
drigols/Studies
9c293156935b491ded24be6b511daac67fd43538
[ "MIT" ]
null
null
null
# Complex cmplex = 2 + 3j print(cmplex) print(type(cmplex)) print()
9.857143
19
0.681159
cbb026923ec0dff98d77eba22b728fd35917ca25
15,437
py
Python
sockeye/decoder.py
annacurrey/sockeye
429f8478b29d7d28d5bb22dcebd080531f7e6f4e
[ "Apache-2.0" ]
1
2020-08-12T18:02:59.000Z
2020-08-12T18:02:59.000Z
sockeye/decoder.py
barbaradarques/sockeye
92a020a25cbe75935c700ce2f29b286b31a87189
[ "Apache-2.0" ]
null
null
null
sockeye/decoder.py
barbaradarques/sockeye
92a020a25cbe75935c700ce2f29b286b31a87189
[ "Apache-2.0" ]
null
null
null
# Copyright 2017--2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Decoders for sequence-to-sequence models. """ import logging from abc import abstractmethod from itertools import islice from typing import Dict, List, Optional, Tuple, Union, Type import mxnet as mx from . import constants as C from . import layers from . import transformer logger = logging.getLogger(__name__) DecoderConfig = Union[transformer.TransformerConfig] def get_decoder(config: DecoderConfig, inference_only: bool = False, prefix: str = '', dtype: str = C.DTYPE_FP32) -> 'Decoder': return Decoder.get_decoder(config, inference_only, prefix, dtype) class Decoder(mx.gluon.Block): """ Generic decoder interface. A decoder needs to implement code to decode a target sequence known in advance (decode_sequence), and code to decode a single word given its decoder state (decode_step). The latter is typically used for inference graphs in beam search. For the inference module to be able to keep track of decoder's states a decoder provides methods to return initial states (init_states), state variables and their shapes. """ __registry = {} # type: Dict[Type[DecoderConfig], Tuple[Type['Decoder'], str]] @classmethod def register(cls, config_type: Type[DecoderConfig], suffix: str): """ Registers decoder type for configuration. Suffix is appended to decoder prefix. :param config_type: Configuration type for decoder. :param suffix: String to append to decoder prefix. :return: Class decorator. """ def wrapper(target_cls): cls.__registry[config_type] = (target_cls, suffix) return target_cls return wrapper @classmethod def get_decoder(cls, config: DecoderConfig, inference_only: bool, prefix: str, dtype: str) -> 'Decoder': """ Creates decoder based on config type. :param config: Decoder config. :param inference_only: Create a decoder that is only used for inference. :param prefix: Prefix to prepend for decoder. :param dtype: Data type for weights. :return: Decoder instance. """ config_type = type(config) if config_type not in cls.__registry: raise ValueError('Unsupported decoder configuration %s' % config_type.__name__) decoder_cls, suffix = cls.__registry[config_type] # TODO: move final suffix/prefix construction logic into config builder return decoder_cls(config=config, inference_only=inference_only, prefix=prefix + suffix, dtype=dtype) @abstractmethod def __init__(self): super().__init__() @abstractmethod def state_structure(self) -> str: raise NotImplementedError() @abstractmethod def init_state_from_encoder(self, encoder_outputs: mx.nd.NDArray, encoder_valid_length: Optional[mx.nd.NDArray] = None) -> List[mx.nd.NDArray]: raise NotImplementedError() @abstractmethod def decode_seq(self, inputs: mx.nd.NDArray, states: List[mx.nd.NDArray]): """ Decodes a sequence of embedded target words and returns sequence of last decoder representations for each time step. :param inputs: Encoded source: (batch_size, source_encoded_max_length, encoder_depth). :param states: List of initial states, as given by init_state_from_encoder(). :return: Decoder output. Shape: (batch_size, target_embed_max_length, decoder_depth). """ raise NotImplementedError() @abstractmethod def get_num_hidden(self): raise NotImplementedError() @Decoder.register(transformer.TransformerConfig, C.TRANSFORMER_DECODER_PREFIX) class TransformerDecoder(Decoder, mx.gluon.HybridBlock): """ Transformer decoder as in Vaswani et al, 2017: Attention is all you need. In training, computation scores for each position of the known target sequence are computed in parallel, yielding most of the speedup. At inference time, the decoder block is evaluated again and again over a maximum length input sequence that is initially filled with zeros and grows during beam search with predicted tokens. Appropriate masking at every time-step ensures correct self-attention scores and is updated with every step. :param config: Transformer configuration. :param prefix: Name prefix for symbols of this decoder. :param inference_only: Only use the model for inference enabling some optimizations, such as disabling the auto-regressive mask. """ def __init__(self, config: transformer.TransformerConfig, prefix: str = C.TRANSFORMER_DECODER_PREFIX, inference_only: bool = False, dtype: str = C.DTYPE_FP32) -> None: Decoder.__init__(self) mx.gluon.HybridBlock.__init__(self, prefix=prefix) self.config = config self.inference_only = inference_only with self.name_scope(): self.pos_embedding = layers.PositionalEmbeddings(weight_type=self.config.positional_embedding_type, num_embed=self.config.model_size, max_seq_len=self.config.max_seq_len_target, prefix=C.TARGET_POSITIONAL_EMBEDDING_PREFIX, scale_up_input=True, scale_down_positions=False) self.autoregressive_bias = transformer.AutoRegressiveBias(prefix="autoregressive_bias_") self.valid_length_mask = transformer.TransformerValidLengthMask(num_heads=self.config.attention_heads, fold_heads=False, name="bias") self.layers = mx.gluon.nn.HybridSequential() for i in range(config.num_layers): self.layers.add(transformer.TransformerDecoderBlock(config, prefix="%d_" % i, dtype=dtype, inference_only=self.inference_only)) self.final_process = transformer.TransformerProcessBlock(sequence=config.preprocess_sequence, dropout=config.dropout_prepost, prefix="final_process_", num_hidden=self.config.model_size) def state_structure(self) -> str: """ Returns the structure of states used for manipulation of the states. Each state is either labeled 's' for step, 'b' for source_mask, 'd' for decoder, or 'e' for encoder. """ structure = '' if self.inference_only: structure += C.STEP_STATE + C.BIAS_STATE + C.ENCODER_STATE * self.config.num_layers * 2 else: structure += C.STEP_STATE + C.ENCODER_STATE + C.BIAS_STATE total_num_states = sum(layer.num_state_tensors for layer in self.layers) structure += C.DECODER_STATE * total_num_states return structure def init_state_from_encoder(self, encoder_outputs: mx.nd.NDArray, encoder_valid_length: Optional[mx.nd.NDArray] = None) -> List[mx.nd.NDArray]: """ Returns the initial states given encoder output. States for teacher-forced training are encoder outputs and a valid length mask for encoder outputs. At inference, this method returns the following state tuple: valid length bias, step state, [projected encoder attention keys, projected encoder attention values] * num_layers, [autoregressive state dummies] * num_layers. :param encoder_outputs: Encoder outputs. Shape: (batch, source_length, encoder_dim). :param encoder_valid_length: Valid lengths of encoder outputs. Shape: (batch,). :return: Initial states. """ source_mask = self.valid_length_mask(encoder_outputs, encoder_valid_length) # (batch_size, 1) step = mx.nd.expand_dims(mx.nd.zeros_like(encoder_valid_length), axis=1) if self.inference_only: # Encoder projection caching, therefore we don't pass the encoder_outputs states = [step, source_mask] for layer in self.layers: encoder_attention_keys, encoder_attention_values = \ layer.enc_attention.project_and_isolate_heads(mx.nd, encoder_outputs) states.append(encoder_attention_keys) states.append(encoder_attention_values) else: # NO encoder projection caching states = [step, encoder_outputs, source_mask] batch_size = encoder_outputs.shape[0] dummy_autoregr_states = [mx.nd.zeros(layer.get_states_shape(batch_size), ctx=encoder_outputs.context, dtype=encoder_outputs.dtype) for layer in self.layers for _ in range(layer.num_state_tensors)] states += dummy_autoregr_states return states def decode_seq(self, inputs: mx.nd.NDArray, states: List[mx.nd.NDArray]): """ Decodes a sequence of embedded target words and returns sequence of last decoder representations for each time step. :param inputs: Encoded source: (batch_size, source_encoded_max_length, encoder_depth). :param states: List of initial states, as given by init_state_from_encoder(). :return: Decoder output. Shape: (batch_size, target_embed_max_length, decoder_depth). """ outputs, _ = self.forward(inputs, states) return outputs def forward(self, step_input, states): """ Run forward pass of the decoder. step_input is either: (batch, num_hidden): single decoder step at inference time (batch, seq_len, num_hidden): full sequence decode during training. states is either: if self.inference_only == False: (Training and Checkpoint decoder during training) steps, encoder_outputs, source_bias, layer_caches... else: (during translation outside of training) steps, source_bias, layer_caches..., projected encoder outputs... """ input_shape = step_input.shape is_inference = len(input_shape) == 2 if is_inference: # Just add the length dimension: # (batch, num_hidden) -> (batch, 1, num_hidden) step_input = mx.nd.expand_dims(step_input, axis=1) else: assert not self.inference_only, "Decoder created with inference_only=True but used during training." # Replace the single step by multiple steps for training step, *states = states # Create steps (1, trg_seq_len,) steps = mx.nd.expand_dims(mx.nd.arange(step_input.shape[1], ctx=step_input.context), axis=0) states = [steps] + states # run decoder op target, autoregr_states = super().forward(step_input, states) if is_inference: # During inference, length dimension of decoder output has size 1, squeeze it # (batch, num_hidden) target = mx.nd.reshape(target, shape=(-1, self.get_num_hidden())) # We also increment time step state (1st state in the list) and add new caches step = states[0] + 1 if self.inference_only: # pass in cached encoder states encoder_attention_keys_values = states[2:2 + self.config.num_layers * 2] new_states = [step, states[1]] + encoder_attention_keys_values + autoregr_states else: encoder_outputs = states[1] source_mask = states[2] new_states = [step, encoder_outputs, source_mask] + autoregr_states assert len(new_states) == len(states) else: new_states = None # we don't care about states in training return target, new_states def hybrid_forward(self, F, step_input, states): mask = None if self.inference_only: steps, source_mask, *other = states source_encoded = None # use constant pre-computed key value projections from the states enc_att_kv = other[:self.config.num_layers * 2] enc_att_kv = [enc_att_kv[i:i + 2] for i in range(0, len(enc_att_kv), 2)] autoregr_states = other[self.config.num_layers * 2:] else: if any(layer.needs_mask for layer in self.layers): mask = self.autoregressive_bias(step_input) # mask: (1, length, length) steps, source_encoded, source_mask, *autoregr_states = states enc_att_kv = [(None, None) for _ in range(self.config.num_layers)] if any(layer.num_state_tensors > 1 for layer in self.layers): # separates autoregressive states by layer states_iter = iter(autoregr_states) autoregr_states = [list(islice(states_iter, 0, layer.num_state_tensors)) for layer in self.layers] # Fold the heads of source_mask (batch_size, num_heads, seq_len) -> (batch_size * num_heads, 1, seq_len) source_mask = F.expand_dims(F.reshape(source_mask, shape=(-3, -2)), axis=1) # target: (batch_size, length, model_size) target = self.pos_embedding(step_input, steps) if self.config.dropout_prepost > 0.0: target = F.Dropout(data=target, p=self.config.dropout_prepost) new_autoregr_states = [] for layer, layer_autoregr_state, (enc_att_k, enc_att_v) in zip(self.layers, autoregr_states, enc_att_kv): target, new_layer_autoregr_state = layer(target, mask, source_encoded, source_mask, layer_autoregr_state, enc_att_k, enc_att_v) new_autoregr_states += [*new_layer_autoregr_state] # NOTE: the list expansion is needed in order to handle both a tuple (of Symbols) and a Symbol as a new state target = self.final_process(target, None) return target, new_autoregr_states def get_num_hidden(self): return self.config.model_size
46.496988
132
0.624862
96e2f15f08759487beb7568cc5c2f9717e4d7201
141,747
py
Python
datalad/support/gitrepo.py
emdupre/datalad
9dce81cb4d3c004150571bb7d9fbddcd8338eba2
[ "MIT" ]
null
null
null
datalad/support/gitrepo.py
emdupre/datalad
9dce81cb4d3c004150571bb7d9fbddcd8338eba2
[ "MIT" ]
null
null
null
datalad/support/gitrepo.py
emdupre/datalad
9dce81cb4d3c004150571bb7d9fbddcd8338eba2
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Interface to Git via GitPython For further information on GitPython see http://gitpython.readthedocs.org/ """ from itertools import chain import logging from collections import OrderedDict import re import shlex import time import os import os.path as op import warnings from os import linesep from os.path import join as opj from os.path import exists from os.path import normpath from os.path import isabs from os.path import commonprefix from os.path import relpath from os.path import realpath from os.path import dirname from os.path import basename from os.path import curdir from os.path import pardir from os.path import sep import posixpath from functools import wraps from weakref import WeakValueDictionary from six import string_types from six import text_type from six import add_metaclass from six import iteritems from six import PY2 import git as gitpy from git import RemoteProgress from gitdb.exc import BadName from git.exc import GitCommandError from git.exc import NoSuchPathError from git.exc import InvalidGitRepositoryError from git.objects.blob import Blob from datalad.support.due import due, Doi from datalad import ssh_manager from datalad.cmd import GitRunner from datalad.cmd import BatchedCommand from datalad.consts import GIT_SSH_COMMAND from datalad.dochelpers import exc_str from datalad.config import ConfigManager import datalad.utils as ut from datalad.utils import Path from datalad.utils import assure_bytes from datalad.utils import assure_list from datalad.utils import optional_args from datalad.utils import on_windows from datalad.utils import getpwd from datalad.utils import posix_relpath from datalad.utils import assure_dir from datalad.utils import generate_file_chunks from ..utils import assure_unicode # imports from same module: from .external_versions import external_versions from .exceptions import CommandError from .exceptions import DeprecatedError from .exceptions import FileNotInRepositoryError from .exceptions import GitIgnoreError from .exceptions import InvalidGitReferenceError from .exceptions import MissingBranchError from .exceptions import OutdatedExternalDependencyWarning from .exceptions import PathKnownToRepositoryError from .network import RI, PathRI from .network import is_ssh from .repo import Flyweight from .repo import RepoInterface # shortcuts _curdirsep = curdir + sep _pardirsep = pardir + sep lgr = logging.getLogger('datalad.gitrepo') _lgr_level = lgr.getEffectiveLevel() if _lgr_level <= 2: from ..log import LoggerHelper # Let's also enable gitpy etc debugging gitpy_lgr = LoggerHelper(logtarget="git").get_initialized_logger() gitpy_lgr.setLevel(_lgr_level) gitpy_lgr.propagate = True # Override default GitPython's DB backend to talk directly to git so it doesn't # interfere with possible operations performed by gc/repack default_git_odbt = gitpy.GitCmdObjectDB # TODO: Figure out how GIT_PYTHON_TRACE ('full') is supposed to be used. # Didn't work as expected on a first try. Probably there is a neatier way to # log Exceptions from git commands. # TODO: ignore leading and/or trailing underscore to allow for # python-reserved words @optional_args def kwargs_to_options(func, split_single_char_options=True, target_kw='options'): """Decorator to provide convenient way to pass options to command calls. Parameters ---------- func: Callable function to decorate split_single_char_options: bool whether or not to split key and value of single char keyword arguments into two subsequent entries of the list target_kw: str keyword argument to pass the generated list of cmdline arguments to Returns ------- Callable """ # TODO: don't overwrite options, but join @wraps(func) def newfunc(self, *args, **kwargs): t_kwargs = dict() t_kwargs[target_kw] = \ gitpy.Git().transform_kwargs( split_single_char_options=split_single_char_options, **kwargs) return func(self, *args, **t_kwargs) return newfunc def to_options(**kwargs): """Transform keyword arguments into a list of cmdline options Parameters ---------- split_single_char_options: bool kwargs: Returns ------- list """ # TODO: borrow_docs! return gitpy.Git().transform_kwargs(**kwargs) def _normalize_path(base_dir, path): """Helper to check paths passed to methods of this class. Checks whether `path` is beneath `base_dir` and normalizes it. Additionally paths are converted into relative paths with respect to `base_dir`, considering PWD in case of relative paths. This is intended to be used in repository classes, which means that `base_dir` usually will be the repository's base directory. Parameters ---------- base_dir: str directory to serve as base to normalized, relative paths path: str path to be normalized Returns ------- str: path, that is a relative path with respect to `base_dir` """ if not path: return path base_dir = realpath(base_dir) # realpath OK # path = normpath(path) # Note: disabled normpath, because it may break paths containing symlinks; # But we don't want to realpath relative paths, in case cwd isn't the # correct base. if isabs(path): # path might already be a symlink pointing to annex etc, # so realpath only its directory, to get "inline" with # realpath(base_dir) above path = opj(realpath(dirname(path)), basename(path)) # realpath OK # Executive decision was made to not do this kind of magic! # # elif commonprefix([realpath(getpwd()), base_dir]) == base_dir: # # If we are inside repository, rebuilt relative paths. # path = opj(realpath(getpwd()), path) # # BUT with relative curdir/pardir start it would assume relative to curdir # elif path.startswith(_curdirsep) or path.startswith(_pardirsep): path = normpath(opj(realpath(getpwd()), path)) # realpath OK else: # We were called from outside the repo. Therefore relative paths # are interpreted as being relative to self.path already. return path if commonprefix([path, base_dir]) != base_dir: raise FileNotInRepositoryError(msg="Path outside repository: %s" % path, filename=path) return relpath(path, start=base_dir) @optional_args def normalize_path(func): """Decorator to provide unified path conversion for a single file Unlike normalize_paths, intended to be used for functions dealing with a single filename at a time Note ---- This is intended to be used within the repository classes and therefore returns a class method! The decorated function is expected to take a path at first positional argument (after 'self'). Additionally the class `func` is a member of, is expected to have an attribute 'path'. """ @wraps(func) def newfunc(self, file_, *args, **kwargs): file_new = _normalize_path(self.path, file_) return func(self, file_new, *args, **kwargs) return newfunc @optional_args def normalize_paths(func, match_return_type=True, map_filenames_back=False, serialize=False): """Decorator to provide unified path conversions. Note ---- This is intended to be used within the repository classes and therefore returns a class method! The decorated function is expected to take a path or a list of paths at first positional argument (after 'self'). Additionally the class `func` is a member of, is expected to have an attribute 'path'. Accepts either a list of paths or a single path in a str. Passes a list to decorated function either way, but would return based on the value of match_return_type and possibly input argument. If a call to the wrapped function includes normalize_path and it is False no normalization happens for that function call (used for calls to wrapped functions within wrapped functions, while possible CWD is within a repository) Parameters ---------- match_return_type : bool, optional If True, and a single string was passed in, it would return the first element of the output (after verifying that it is a list of length 1). It makes easier to work with single files input. map_filenames_back : bool, optional If True and returned value is a dictionary, it assumes to carry entries one per file, and then filenames are mapped back to as provided from the normalized (from the root of the repo) paths serialize : bool, optional Loop through files giving only a single one to the function one at a time. This allows to simplify implementation and interface to annex commands which do not take multiple args in the same call (e.g. checkpresentkey) """ @wraps(func) def newfunc(self, files, *args, **kwargs): normalize = _normalize_path if kwargs.pop('normalize_paths', True) \ else lambda rpath, filepath: filepath if files: if isinstance(files, string_types) or not files: files_new = [normalize(self.path, files)] single_file = True elif isinstance(files, list): files_new = [normalize(self.path, path) for path in files] single_file = False else: raise ValueError("_files_decorator: Don't know how to handle " "instance of %s." % type(files)) else: single_file = None files_new = [] if map_filenames_back: def remap_filenames(out): """Helper to map files back to non-normalized paths""" if isinstance(out, dict): assert(len(out) == len(files_new)) files_ = [files] if single_file else files mapped = out.__class__() for fin, fout in zip(files_, files_new): mapped[fin] = out[fout] return mapped else: return out else: remap_filenames = lambda x: x if serialize: # and not single_file: result = [ func(self, f, *args, **kwargs) for f in files_new ] else: result = func(self, files_new, *args, **kwargs) if single_file is None: # no files were provided, nothing we can do really return result elif (result is None) or not match_return_type or not single_file: # If function doesn't return anything or no denormalization # was requested or it was not a single file return remap_filenames(result) elif single_file: if len(result) != 1: # Magic doesn't apply return remap_filenames(result) elif isinstance(result, (list, tuple)): return result[0] elif isinstance(result, dict) and tuple(result)[0] == files_new[0]: # assume that returned dictionary has files as keys. return tuple(result.values())[0] else: # no magic can apply return remap_filenames(result) else: return RuntimeError("should have not got here... check logic") return newfunc def check_git_configured(): """Do a check if git is configured (user.name and user.email are set) Raises ------ RuntimeError if any of those two variables are not set Returns ------- dict with user.name and user.email entries """ check_runner = GitRunner() vals = {} exc_ = "" for c in 'user.name', 'user.email': try: v, err = check_runner.run(['git', 'config', c]) vals[c] = v.rstrip('\n') except CommandError as exc: exc_ += exc_str(exc) if exc_: lgr.warning( "It is highly recommended to configure git first (set both " "user.name and user.email) before using DataLad. Failed to " "verify that git is configured: %s. Some operations might fail or " "not perform correctly." % exc_ ) return vals def _remove_empty_items(list_): """Remove empty entries from list This is needed, since some functions of GitPython may convert an empty entry to '.', when used with a list of paths. Parameter: ---------- list_: list of str Returns ------- list of str """ if not isinstance(list_, list): lgr.warning( "_remove_empty_items() called with non-list type: %s" % type(list_)) return list_ return [file_ for file_ in list_ if file_] def Repo(*args, **kwargs): """Factory method around gitpy.Repo to consistently initiate with different backend """ # TODO: This probably doesn't work as intended (or at least not as # consistently as intended). gitpy.Repo could be instantiated by # classmethods Repo.init or Repo.clone_from. In these cases 'odbt' # would be needed as a parameter to these methods instead of the # constructor. if 'odbt' not in kwargs: kwargs['odbt'] = default_git_odbt return gitpy.Repo(*args, **kwargs) def split_remote_branch(branch): """Splits a remote branch's name into the name of the remote and the name of the branch. Parameters ---------- branch: str the remote branch's name to split Returns ------- list of str """ assert '/' in branch, \ "remote branch %s must have had a /" % branch assert not branch.endswith('/'), \ "branch name with trailing / is invalid. (%s)" % branch return branch.split('/', 1) def guard_BadName(func): """A helper to guard against BadName exception Workaround for https://github.com/gitpython-developers/GitPython/issues/768 also see https://github.com/datalad/datalad/issues/2550 Let's try to precommit (to flush anything flushable) and do it again """ @wraps(func) def wrapped(repo, *args, **kwargs): try: return func(repo, *args, **kwargs) except BadName: repo.precommit() return func(repo, *args, **kwargs) return wrapped class GitPythonProgressBar(RemoteProgress): """A handler for Git commands interfaced by GitPython which report progress """ # GitPython operates with op_codes which are a mask for actions. _known_ops = { RemoteProgress.COUNTING: "counting objects", RemoteProgress.COMPRESSING: "compressing objects", RemoteProgress.WRITING: "writing objects", RemoteProgress.RECEIVING: "receiving objects", RemoteProgress.RESOLVING: "resolving stuff", RemoteProgress.FINDING_SOURCES: "finding sources", RemoteProgress.CHECKING_OUT: "checking things out" } # To overcome the bug when GitPython (<=2.1.11), with tentative fix # in https://github.com/gitpython-developers/GitPython/pull/798 # we will collect error_lines from the last progress bar used by GitPython # To do that reliably this class should be used as a ContextManager, # or .close() should be called explicitly before analysis of this # attribute is done. # TODO: remove the workaround whenever new GitPython version provides # it natively and we boost versioned dependency on it _last_error_lines = None def __init__(self, action): super(GitPythonProgressBar, self).__init__() self._action = action from datalad.ui import ui self._ui = ui self._pbar = None self._op_code = None GitPythonProgressBar._last_error_lines = None def __del__(self): self.close() def close(self): GitPythonProgressBar._last_error_lines = self.error_lines self._close_pbar() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _close_pbar(self): if self._pbar: self._pbar.finish() self._pbar = None def _get_human_msg(self, op_code): """Return human readable action message """ op_id = op_code & self.OP_MASK op = self._known_ops.get(op_id, "doing other evil") return "%s (%s)" % (self._action, op) def update(self, op_code, cur_count, max_count=None, message=''): # ATM we ignore message which typically includes bandwidth info etc try: if not max_count: # spotted used by GitPython tests, so may be at times it is not # known and assumed to be a 100%...? TODO max_count = 100.0 if op_code: # Apparently those are composite and we care only about the ones # we know, so to avoid switching the progress bar for no good # reason - first & with the mask op_code = op_code & self.OP_MASK if self._op_code is None or self._op_code != op_code: # new type of operation self._close_pbar() self._pbar = self._ui.get_progressbar( self._get_human_msg(op_code), total=max_count, unit=' objects' ) self._op_code = op_code if not self._pbar: lgr.error("Ended up without progress bar... how?") return self._pbar.update(cur_count, increment=False) except Exception as exc: lgr.debug("GitPythonProgressBar errored with %s", exc_str(exc)) return #import time; time.sleep(0.001) # to see that things are actually "moving" # without it we would get only a blink on initial 0 value, istead of # a blink at some higher value. Anyways git provides those # without flooding so should be safe to force here. self._pbar.refresh() @add_metaclass(Flyweight) class GitRepo(RepoInterface): """Representation of a git repository """ # We use our sshrun helper GIT_SSH_ENV = {'GIT_SSH_COMMAND': GIT_SSH_COMMAND, 'GIT_SSH_VARIANT': 'ssh'} # We must check git config to have name and email set, but # should do it once _config_checked = False # Begin Flyweight: _unique_instances = WeakValueDictionary() @classmethod def _flyweight_id_from_args(cls, *args, **kwargs): if args: # to a certain degree we need to simulate an actual call to __init__ # and make sure, passed arguments are fitting: # TODO: Figure out, whether there is a cleaner way to do this in a # generic fashion assert('path' not in kwargs) path = args[0] args = args[1:] elif 'path' in kwargs: path = kwargs.pop('path') else: raise TypeError("__init__() requires argument `path`") if path is None: raise AttributeError # mirror what is happening in __init__ if isinstance(path, ut.PurePath): path = text_type(path) # Sanity check for argument `path`: # raise if we cannot deal with `path` at all or # if it is not a local thing: path = RI(path).localpath # resolve symlinks to make sure we have exactly one instance per # physical repository at a time path = realpath(path) kwargs['path'] = path return path, args, kwargs @classmethod def _flyweight_invalid(cls, id_): return not cls.is_valid_repo(id_) @classmethod def _flyweight_reject(cls, id_, *args, **kwargs): # TODO: # This is a temporary approach. See PR # ... # create = kwargs.pop('create', None) # kwargs.pop('path', None) # if create and kwargs: # # we have `create` plus options other than `path` # return "Call to {0}() with args {1} and kwargs {2} conflicts " \ # "with existing instance {3}." \ # "This is likely to be caused by inconsistent logic in " \ # "your code." \ # "".format(cls, args, kwargs, cls._unique_instances[id_]) pass # End Flyweight def __hash__(self): # the flyweight key is already determining unique instances # add the class name to distinguish from strings of a path return hash((self.__class__.__name__, self.__weakref__.key)) # This is the least common denominator to claim that a user # used DataLad. # For now citing Zenodo's all (i.e., latest) version @due.dcite(Doi("10.5281/zenodo.808846"), # override path since there is no need ATM for such details path="datalad", description="DataLad - Data management and distribution platform") def __init__(self, path, url=None, runner=None, create=True, git_opts=None, repo=None, fake_dates=False, create_sanity_checks=True, **kwargs): """Creates representation of git repository at `path`. Can also be used to create a git repository at `path`. Parameters ---------- path: str path to the git repository; In case it's not an absolute path, it's relative to PWD url: str, optional DEPRECATED -- use .clone() class method url to the to-be-cloned repository. Requires a valid git url according to: http://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS . create: bool, optional if true, creates a git repository at `path` if there is none. Also creates `path`, if it doesn't exist. If set to false, an exception is raised in case `path` doesn't exist or doesn't contain a git repository. repo: git.Repo, optional GitPython's Repo instance to (re)use if provided create_sanity_checks: bool, optional Whether to perform sanity checks during initialization (when `create=True` and target path is not a valid repo already), such as that new repository is not created in the directory where git already tracks some files. kwargs: keyword arguments serving as additional options to the git-init command. Therefore, it makes sense only if called with `create`. Generally, this way of passing options to the git executable is (or will be) used a lot in this class. It's a transformation of python-style keyword arguments (or a `dict`) to command line arguments, provided by GitPython. A single character keyword will be prefixed by '-', multiple characters by '--'. An underscore in the keyword becomes a dash. The value of the keyword argument is used as the value for the corresponding command line argument. Assigning a boolean creates a flag. Examples: no_commit=True => --no-commit C='/my/path' => -C /my/path """ if url is not None: raise DeprecatedError( new=".clone() class method", version="0.5.0", msg="RF: url passed to init()" ) # So that we "share" control paths with git/git-annex if ssh_manager: ssh_manager.assure_initialized() if not GitRepo._config_checked: check_git_configured() GitRepo._config_checked = True self.realpath = realpath(path) # note: we may also want to distinguish between a path to the worktree # and the actual repository # Could be used to e.g. disable automatic garbage and autopacking # ['-c', 'receive.autogc=0', '-c', 'gc.auto=0'] self._GIT_COMMON_OPTIONS = [] # actually no need with default GitPython db backend not in memory # default_git_odbt but still allows for faster testing etc. # May be eventually we would make it switchable _GIT_COMMON_OPTIONS = [] if git_opts is None: git_opts = {} if kwargs: git_opts.update(kwargs) self.path = path self.cmd_call_wrapper = runner or GitRunner(cwd=self.path) self._repo = repo self._cfg = None _valid_repo = GitRepo.is_valid_repo(path) if create and not _valid_repo: if repo is not None: # `repo` passed with `create`, which doesn't make sense raise TypeError("argument 'repo' must not be used with 'create'") self._repo = self._create_empty_repo(path, create_sanity_checks, **git_opts) else: # Note: We used to call gitpy.Repo(path) here, which potentially # raised NoSuchPathError or InvalidGitRepositoryError. This is # used by callers of GitRepo.__init__() to detect whether we have a # valid repo at `path`. Now, with switching to lazy loading property # `repo`, we detect those cases without instantiating a # gitpy.Repo(). if not exists(path): raise NoSuchPathError(path) if not _valid_repo: raise InvalidGitRepositoryError(path) # inject git options into GitPython's git call wrapper: # Note: `None` currently can happen, when Runner's protocol prevents # calls above from being actually executed (DryRunProtocol) if self._repo is not None: self._repo.git._persistent_git_options = self._GIT_COMMON_OPTIONS # with DryRunProtocol path might still not exist if exists(self.realpath): self.inode = os.stat(self.realpath).st_ino else: self.inode = None if fake_dates: self.configure_fake_dates() # Set by fake_dates_enabled to cache config value across this instance. self._fake_dates_enabled = None self.pathobj = ut.Path(self.path) def _create_empty_repo(self, path, sanity_checks=True, **kwargs): if not op.lexists(path): os.makedirs(path) elif sanity_checks and external_versions['cmd:git'] < '2.14.0': warnings.warn( "Your git version (%s) is too old, we will not safe-guard " "against creating a new repository under already known to git " "subdirectory" % external_versions['cmd:git'], OutdatedExternalDependencyWarning ) elif sanity_checks: # Verify that we are not trying to initialize a new git repository # under a directory some files of which are already tracked by git # use case: https://github.com/datalad/datalad/issues/3068 try: stdout, _ = self._git_custom_command( None, ['git', 'ls-files'], cwd=path, expect_fail=True ) if stdout: raise PathKnownToRepositoryError( "Failing to initialize new repository under %s where " "following files are known to a repository above: %s" % (path, stdout) ) except CommandError: # assume that all is good -- we are not under any repo pass cmd = ['git', 'init'] cmd.extend(kwargs.pop('_from_cmdline_', [])) cmd.extend(to_options(**kwargs)) lgr.debug( "Initialize empty Git repository at '%s'%s", path, ' %s' % cmd[2:] if cmd[2:] else '') try: stdout, stderr = self._git_custom_command( None, cmd, cwd=path, log_stderr=True, log_stdout=True, log_online=False, expect_stderr=False, shell=False, # we don't want it to scream on stdout expect_fail=True) except CommandError as exc: lgr.error(exc_str(exc)) raise # we want to return None and have lazy eval take care of # the rest return @property def repo(self): # with DryRunProtocol path not exist if exists(self.realpath): inode = os.stat(self.realpath).st_ino else: inode = None if self.inode != inode: # reset background processes invoked by GitPython: self._repo.git.clear_cache() self.inode = inode if self._repo is None: # Note, that this may raise GitCommandError, NoSuchPathError, # InvalidGitRepositoryError: self._repo = self.cmd_call_wrapper( Repo, # Encode path on Python 2 because, as of v2.1.11, GitPython's # Repo will pass the path to str() otherwise. assure_bytes(self.path) if PY2 else self.path) lgr.log(8, "Using existing Git repository at %s", self.path) # inject git options into GitPython's git call wrapper: # Note: `None` currently can happen, when Runner's protocol prevents # call of Repo(path) above from being actually executed (DryRunProtocol) if self._repo is not None: self._repo.git._persistent_git_options = self._GIT_COMMON_OPTIONS return self._repo @classmethod def clone(cls, url, path, *args, **kwargs): """Clone url into path Provides workarounds for known issues (e.g. https://github.com/datalad/datalad/issues/785) Parameters ---------- url : str path : str expect_fail : bool Whether expect that command might fail, so error should be logged then at DEBUG level instead of ERROR """ if 'repo' in kwargs: raise TypeError("argument 'repo' conflicts with cloning") # TODO: what about 'create'? expect_fail = kwargs.pop('expect_fail', False) # fail early on non-empty target: from os import listdir if exists(path) and listdir(path): # simulate actual GitCommandError: lgr.warning("destination path '%s' already exists and is not an " "empty directory." % path) raise GitCommandError( ['git', 'clone', '-v', url, path], 128, "fatal: destination path '%s' already exists and is not an " "empty directory." % path) else: # protect against cloning into existing and obviously dangling # instance for that location try: del cls._unique_instances[path] except KeyError: # didn't exist - all fine pass # Massage URL url_ri = RI(url) if not isinstance(url, RI) else url # try to get a local path from `url`: try: url = url_ri.localpath url_ri = RI(url) except ValueError: pass if is_ssh(url_ri): ssh_manager.get_connection(url).open() # TODO: with git <= 2.3 keep old mechanism: # with rm.repo.git.custom_environment(GIT_SSH="wrapper_script"): env = GitRepo.GIT_SSH_ENV else: if isinstance(url_ri, PathRI): new_url = os.path.expanduser(url) if url != new_url: # TODO: remove whenever GitPython is fixed: # https://github.com/gitpython-developers/GitPython/issues/731 lgr.info("Expanded source path to %s from %s", new_url, url) url = new_url env = None ntries = 5 # 3 is not enough for robust workaround for trial in range(ntries): try: lgr.debug("Git clone from {0} to {1}".format(url, path)) with GitPythonProgressBar("Cloning") as git_progress: repo = gitpy.Repo.clone_from( url, path, env=env, odbt=default_git_odbt, progress=git_progress ) # Note/TODO: signature for clone from: # (url, to_path, progress=None, env=None, **kwargs) lgr.debug("Git clone completed") break except GitCommandError as e: # log here but let caller decide what to do e_str = exc_str(e) # see https://github.com/datalad/datalad/issues/785 if re.search("Request for .*aborted.*Unable to find", str(e), re.DOTALL) \ and trial < ntries - 1: lgr.info( "Hit a known issue with Git (see GH#785). Trial #%d, " "retrying", trial) continue (lgr.debug if expect_fail else lgr.error)(e_str) raise except ValueError as e: if gitpy.__version__ == '1.0.2' \ and "I/O operation on closed file" in str(e): # bug https://github.com/gitpython-developers/GitPython # /issues/383 raise GitCommandError( "clone has failed, telling ya", 999, # good number stdout="%s already exists" if exists(path) else "") raise # reraise original gr = cls(path, *args, repo=repo, **kwargs) return gr def __del__(self): # unbind possibly bound ConfigManager, to prevent all kinds of weird # stalls etc self._cfg = None # Make sure to flush pending changes, especially close batch processes # (internal `git cat-file --batch` by GitPython) try: if getattr(self, '_repo', None) is not None and exists(self.path): # gc might be late, so the (temporary) # repo doesn't exist on FS anymore self._repo.git.clear_cache() # We used to write out the index to flush GitPython's # state... but such unconditional write is really a workaround # and does not play nice with read-only operations - permission # denied etc. So disabled #if exists(opj(self.path, '.git')): # don't try to write otherwise # self.repo.index.write() except InvalidGitRepositoryError: # might have being removed and no longer valid pass def __repr__(self): return "<GitRepo path=%s (%s)>" % (self.path, type(self)) def __eq__(self, obj): """Decides whether or not two instances of this class are equal. This is done by comparing the base repository path. """ return self.realpath == obj.realpath @classmethod def is_valid_repo(cls, path): """Returns if a given path points to a git repository""" path = Path(path) / '.git' # the aim here is to have this test as cheap as possible, because # it is performed a lot # recognize two things as good-enough indicators of a present # repo: 1) a non-empty .git directory (#3473) and 2) a pointer # file or symlink return path.exists() and ( not path.is_dir() or \ any(path.iterdir())) @staticmethod def get_git_dir(repo): """figure out a repo's gitdir '.git' might be a directory, a symlink or a file Parameter --------- repo: path or Repo instance currently expected to be the repos base dir Returns ------- str relative path to the repo's git dir; So, default would be ".git" """ if hasattr(repo, 'path'): # repo instance like given repo = repo.path dot_git = op.join(repo, ".git") if not op.exists(dot_git): raise RuntimeError("Missing .git in %s." % repo) elif op.islink(dot_git): git_dir = os.readlink(dot_git) elif op.isdir(dot_git): git_dir = ".git" elif op.isfile(dot_git): with open(dot_git) as f: git_dir = f.readline() if git_dir.startswith("gitdir:"): git_dir = git_dir[7:] git_dir = git_dir.strip() return git_dir @property def config(self): """Get an instance of the parser for the persistent repository configuration. Note: This allows to also read/write .datalad/config, not just .git/config Returns ------- ConfigManager """ if self._cfg is None: # associate with this dataset and read the entire config hierarchy self._cfg = ConfigManager(dataset=self, dataset_only=False) return self._cfg def is_with_annex(self, only_remote=False): """Return True if GitRepo (assumed) at the path has remotes with git-annex branch Parameters ---------- only_remote: bool, optional Check only remote (no local branches) for having git-annex branch """ return any((b.endswith('/git-annex') or 'annex/direct' in b for b in self.get_remote_branches())) or \ ((not only_remote) and any((b == 'git-annex' or 'annex/direct' in b for b in self.get_branches()))) @classmethod def get_toppath(cls, path, follow_up=True, git_options=None): """Return top-level of a repository given the path. Parameters ----------- follow_up : bool If path has symlinks -- they get resolved by git. If follow_up is True, we will follow original path up until we hit the same resolved path. If no such path found, resolved one would be returned. git_options: list of str options to be passed to the git rev-parse call Return None if no parent directory contains a git repository. """ cmd = ['git'] if git_options: cmd.extend(git_options) cmd += ["rev-parse", "--show-toplevel"] try: toppath, err = GitRunner().run( cmd, cwd=path, log_stdout=True, log_stderr=True, expect_fail=True, expect_stderr=True) toppath = toppath.rstrip('\n\r') except CommandError: return None except OSError: toppath = GitRepo.get_toppath(dirname(path), follow_up=follow_up, git_options=git_options) if follow_up: path_ = path path_prev = "" while path_ and path_ != path_prev: # on top /.. = / if realpath(path_) == toppath: toppath = path_ break path_prev = path_ path_ = dirname(path_) return toppath # classmethod so behavior could be tuned in derived classes @classmethod def _get_added_files_commit_msg(cls, files): if not files: return "No files were added" msg = "Added %d file" % len(files) if len(files) > 1: msg += "s" return msg + '\n\nFiles:\n' + '\n'.join(files) @normalize_paths def add(self, files, git=True, git_options=None, update=False): """Adds file(s) to the repository. Parameters ---------- files: list list of paths to add git: bool somewhat ugly construction to be compatible with AnnexRepo.add(); has to be always true. update: bool --update option for git-add. From git's manpage: Update the index just where it already has an entry matching <pathspec>. This removes as well as modifies index entries to match the working tree, but adds no new files. If no <pathspec> is given when --update option is used, all tracked files in the entire working tree are updated (old versions of Git used to limit the update to the current directory and its subdirectories). Returns ------- list Of status dicts. """ # under all circumstances call this class' add_ (otherwise # AnnexRepo.add would go into a loop return list(GitRepo.add_(self, files, git=git, git_options=git_options, update=update)) def add_(self, files, git=True, git_options=None, update=False): """Like `add`, but returns a generator""" # TODO: git_options is used as options for the git-add here, # instead of options to the git executable => rename for consistency if not git: lgr.warning( 'GitRepo.add() called with git=%s, this should not happen', git) git = True # there is no other way then to collect all files into a list # at this point, because we need to pass them at once to a single # `git add` call files = [_normalize_path(self.path, f) for f in assure_list(files) if f] if not (files or git_options or update): # wondering why just a warning? in cmdline this is also not an error lgr.warning("add was called with empty file list and no options.") return try: # without --verbose git 2.9.3 add does not return anything add_out = self._git_custom_command( files, ['git', 'add'] + assure_list(git_options) + to_options(update=update) + ['--verbose'] ) # get all the entries for o in self._process_git_get_output(*add_out): yield o # Note: as opposed to git cmdline, force is True by default in # gitpython, which would lead to add things, that are # ignored or excluded otherwise # 2. Note: There is an issue with globbing (like adding '.'), # which apparently doesn't care for 'force' and therefore # adds '.git/...'. May be it's expanded at the wrong # point in time or sth. like that. # For now, use direct call to git add. #self.cmd_call_wrapper(self.repo.index.add, files, write=True, # force=False) # TODO: May be make use of 'fprogress'-option to indicate # progress # But then, we don't have it for git-annex add, anyway. # # TODO: Is write=True a reasonable way to do it? # May be should not write until success of operation is # confirmed? # What's best in case of a list of files? except OSError as e: lgr.error("add: %s" % e) raise # Make sure return value from GitRepo is consistent with AnnexRepo # currently simulating similar return value, assuming success # for all files: # TODO: Make return values consistent across both *Repo classes! return @staticmethod def _process_git_get_output(stdout, stderr=None): """Given both outputs (stderr is ignored atm) of git add - process it Primarily to centralize handling in both indirect annex and direct modes when ran through proxy """ return [{u'file': f, u'success': True} for f in re.findall("'(.*)'[\n$]", assure_unicode(stdout))] @normalize_paths(match_return_type=False) def remove(self, files, recursive=False, **kwargs): """Remove files. Calls git-rm. Parameters ---------- files: str list of paths to remove recursive: False whether to allow recursive removal from subdirectories kwargs: see `__init__` Returns ------- [str] list of successfully removed files. """ files = _remove_empty_items(files) if recursive: kwargs['r'] = True stdout, stderr = self._git_custom_command( files, ['git', 'rm'] + to_options(**kwargs)) # output per removed file is expected to be "rm 'PATH'": return [line.strip()[4:-1] for line in stdout.splitlines()] #return self.repo.git.rm(files, cached=False, **kwargs) def precommit(self): """Perform pre-commit maintenance tasks """ # All GitPython commands should take care about flushing index # whenever they modify it, so we would not care to do anything # if self.repo is not None and exists(opj(self.path, '.git')): # don't try to write otherwise: # # flush possibly cached in GitPython changes to index: # # if self.repo.git: # # sys.stderr.write("CLEARING\n") # # self.repo.git.clear_cache() # self.repo.index.write() # Close batched by GitPython git processes etc # Ref: https://github.com/gitpython-developers/GitPython/issues/718 self.repo.__del__() pass @staticmethod def _get_prefixed_commit_msg(msg): DATALAD_PREFIX = "[DATALAD]" return DATALAD_PREFIX if not msg else "%s %s" % (DATALAD_PREFIX, msg) def configure_fake_dates(self): """Configure repository to use fake dates. """ lgr.debug("Enabling fake dates") self.config.set("datalad.fake-dates", "true") @property def fake_dates_enabled(self): """Is the repository configured to use fake dates? """ if self._fake_dates_enabled is None: self._fake_dates_enabled = \ self.config.getbool('datalad', 'fake-dates', default=False) return self._fake_dates_enabled def add_fake_dates(self, env): """Add fake dates to `env`. Parameters ---------- env : dict or None Environment variables. Returns ------- A dict (copied from env), with date-related environment variables for git and git-annex set. """ env = (env if env is not None else os.environ).copy() # Note: Use _git_custom_command here rather than repo.git.for_each_ref # so that we use annex-proxy in direct mode. last_date = self._git_custom_command( None, ["git", "for-each-ref", "--count=1", "--sort=-committerdate", "--format=%(committerdate:raw)", "refs/heads"])[0].strip() if last_date: # Drop the "contextual" timezone, leaving the unix timestamp. We # avoid :unix above because it wasn't introduced until Git v2.9.4. last_date = last_date.split()[0] seconds = int(last_date) else: seconds = self.config.obtain("datalad.fake-dates-start") seconds_new = seconds + 1 date = "@{} +0000".format(seconds_new) lgr.debug("Setting date to %s", time.strftime("%a %d %b %Y %H:%M:%S +0000", time.gmtime(seconds_new))) env["GIT_AUTHOR_DATE"] = date env["GIT_COMMITTER_DATE"] = date env["GIT_ANNEX_VECTOR_CLOCK"] = str(seconds_new) return env def commit(self, msg=None, options=None, _datalad_msg=False, careless=True, files=None, date=None, index_file=None): """Commit changes to git. Parameters ---------- msg: str, optional commit-message options: list of str, optional cmdline options for git-commit _datalad_msg: bool, optional To signal that commit is automated commit by datalad, so it would carry the [DATALAD] prefix careless: bool, optional if False, raise when there's nothing actually committed; if True, don't care files: list of str, optional path(s) to commit date: str, optional Date in one of the formats git understands index_file: str, optional An alternative index to use """ self.precommit() if _datalad_msg: msg = self._get_prefixed_commit_msg(msg) options = options or [] if not msg: if options: if "--allow-empty-message" not in options: options.append("--allow-empty-message") else: options = ["--allow-empty-message"] if date: options += ["--date", date] # Note: We used to use a direct call to git only if there were options, # since we can't pass all possible options to gitpython's implementation # of commit. # But there's an additional issue. GitPython implements commit in a way, # that it might create a new commit, when a direct call wouldn't. This # was discovered with a modified (but unstaged) submodule, leading to a # commit, that apparently did nothing - git status still showed the very # same thing afterwards. But a commit was created nevertheless: # diff --git a/sub b/sub # --- a/sub # +++ b/sub # @@ -1 +1 @@ # -Subproject commit d3935338a3b3735792de1078bbfb5e9913ef998f # +Subproject commit d3935338a3b3735792de1078bbfb5e9913ef998f-dirty # # Therefore, for now always use direct call. # TODO: Figure out, what exactly is going on with gitpython here cmd = ['git', 'commit'] + (["-m", msg if msg else ""]) if options: cmd.extend(options) lgr.debug("Committing via direct call of git: %s" % cmd) try: self._git_custom_command(files, cmd, expect_stderr=True, expect_fail=True, check_fake_dates=True, index_file=index_file) except CommandError as e: if 'nothing to commit' in e.stdout: if careless: lgr.debug(u"nothing to commit in {}. " "Ignored.".format(self)) else: raise elif 'no changes added to commit' in e.stdout or \ 'nothing added to commit' in e.stdout: if careless: lgr.debug(u"no changes added to commit in {}. " "Ignored.".format(self)) else: raise elif "did not match any file(s) known to git" in e.stderr: # TODO: Improve FileNotInXXXXError classes to better deal with # multiple files; Also consider PathOutsideRepositoryError raise FileNotInRepositoryError(cmd=e.cmd, msg="File(s) unknown to git", code=e.code, filename=linesep.join( [l for l in e.stderr.splitlines() if l.startswith("pathspec")])) else: raise def get_indexed_files(self): """Get a list of files in git's index Returns ------- list list of paths rooting in git's base dir """ return [x[0] for x in self.cmd_call_wrapper( self.repo.index.entries.keys)] def format_commit(self, fmt, commitish=None): """Return `git show` output for `commitish`. Parameters ---------- fmt : str A format string accepted by `git show`. commitish: str, optional Any commit identifier (defaults to "HEAD"). Returns ------- str or, if there are not commits yet, None. """ cmd = ['git', 'show', '-z', '--no-patch', '--format=' + fmt] if commitish is not None: cmd.append(commitish + "^{commit}") # make sure Git takes our argument as a revision cmd.append('--') try: stdout, stderr = self._git_custom_command( '', cmd, expect_stderr=True, expect_fail=True) except CommandError as e: if 'bad revision' in e.stderr: raise ValueError("Unknown commit identifier: %s" % commitish) elif 'does not have any commits yet' in e.stderr: return None else: raise e # This trailing null is coming from the -z above, which avoids the # newline that Git would append to the output. We could drop -z and # strip the newline directly, but then we'd have to worry about # compatibility across platforms. return stdout.rsplit("\0", 1)[0] def get_hexsha(self, commitish=None, short=False): """Return a hexsha for a given commitish. Parameters ---------- commitish : str, optional Any identifier that refers to a commit (defaults to "HEAD"). short : bool, optional Return the abbreviated form of the hexsha. Returns ------- str or, if there are not commits yet, None. """ stdout = self.format_commit("%{}".format('h' if short else 'H'), commitish) if stdout is not None: stdout = stdout.splitlines() assert(len(stdout) == 1) return stdout[0] @normalize_paths(match_return_type=False) def get_last_commit_hash(self, files): """Return the hash of the last commit the modified any of the given paths""" try: stdout, stderr = self._git_custom_command( files, ['git', 'log', '-n', '1', '--pretty=format:%H'], expect_fail=True) commit = stdout.strip() return commit except CommandError as e: if 'does not have any commits' in e.stderr: return None raise def commit_exists(self, commitish): """Does `commitish` exist in the repo? Parameters ---------- commitish : str A commit or an object that can be dereferenced to one. Returns ------- bool """ try: # Note: The peeling operator "^{commit}" is required so that # rev-parse doesn't succeed if passed a full hexsha that is valid # but doesn't exist. self._git_custom_command( "", ["git", "rev-parse", "--verify", commitish + "^{commit}"], expect_fail=True) except CommandError: return False return True def get_merge_base(self, commitishes): """Get a merge base hexsha Parameters ---------- commitishes: str or list of str List of commitishes (branches, hexshas, etc) to determine the merge base of. If a single value provided, returns merge_base with the current branch. Returns ------- str or None If no merge-base for given commits, or specified treeish doesn't exist, None returned """ if isinstance(commitishes, string_types): commitishes = [commitishes] if not commitishes: raise ValueError("Provide at least a single value") elif len(commitishes) == 1: commitishes = commitishes + [self.get_active_branch()] try: bases = self.repo.merge_base(*commitishes) except GitCommandError as exc: if "fatal: Not a valid object name" in str(exc): return None raise if not bases: return None assert(len(bases) == 1) # we do not do 'all' yet return bases[0].hexsha def is_ancestor(self, reva, revb): """Is `reva` an ancestor of `revb`? Parameters ---------- reva, revb : str Revisions. Returns ------- bool """ try: self._git_custom_command( "", ["git", "merge-base", "--is-ancestor", reva, revb], expect_fail=True) except CommandError: return False return True def get_commit_date(self, branch=None, date='authored'): """Get the date stamp of the last commit (in a branch or head otherwise) Parameters ---------- date: {'authored', 'committed'} Which date to return. "authored" will be the date shown by "git show" and the one possibly specified via --date to `git commit` Returns ------- int or None None if no commit """ try: if branch: commit = next(self.get_branch_commits(branch)) else: commit = self.repo.head.commit except Exception as exc: lgr.debug("Got exception while trying to get last commit: %s", exc_str(exc)) return None return getattr(commit, "%s_date" % date) def get_active_branch(self): try: branch = self.repo.active_branch.name except TypeError as e: if "HEAD is a detached symbolic reference" in str(e): lgr.debug("detached HEAD in {0}".format(self)) return None else: raise return branch def get_branches(self): """Get all branches of the repo. Returns ------- [str] Names of all branches of this repository. """ return [branch.name for branch in self.repo.branches] def get_remote_branches(self): """Get all branches of all remotes of the repo. Returns ----------- [str] Names of all remote branches. """ # TODO: Reconsider melting with get_branches() # TODO: treat entries like this: origin/HEAD -> origin/master' # currently this is done in collection # For some reason, this is three times faster than the version below: remote_branches = list() for remote in self.repo.remotes: try: for ref in remote.refs: remote_branches.append(ref.name) except AssertionError as e: if str(e).endswith("did not have any references"): # this will happen with git annex special remotes pass else: raise e return remote_branches # return [branch.strip() for branch in # self.repo.git.branch(r=True).splitlines()] def get_remotes(self, with_urls_only=False): """Get known remotes of the repository Parameters ---------- with_urls_only : bool, optional return only remotes which have urls Returns ------- remotes : list of str List of names of the remotes """ # Note: read directly from config and spare instantiation of gitpy.Repo # since we need this in AnnexRepo constructor. Furthermore gitpy does it # pretty much the same way and the use of a Repo instance seems to have # no reason other than a nice object oriented look. from datalad.utils import unique self.config.reload() remotes = unique([x[7:] for x in self.config.sections() if x.startswith("remote.")]) if with_urls_only: remotes = [ r for r in remotes if self.config.get('remote.%s.url' % r) ] return remotes def get_files(self, branch=None): """Get a list of files in git. Lists the files in the (remote) branch. Parameters ---------- branch: str Name of the branch to query. Default: active branch. Returns ------- [str] list of files. """ # TODO: RF codes base and melt get_indexed_files() in if branch is None: # active branch can be queried way faster: return self.get_indexed_files() else: return [item.path for item in self.repo.tree(branch).traverse() if isinstance(item, Blob)] def get_file_content(self, file_, branch='HEAD'): """ Returns ------- [str] content of file_ as a list of lines. """ content_str = self.repo.commit(branch).tree[file_].data_stream.read() # in python3 a byte string is returned. Need to convert it: from six import PY3 if PY3: conv_str = u'' for b in bytes(content_str): conv_str += chr(b) return conv_str.splitlines() else: return content_str.splitlines() # TODO: keep splitlines? def _get_files_history(self, files, branch='HEAD'): """ Parameters ---------- files: list list of files, only commits with queried files are considered branch: str Name of the branch to query. Default: HEAD. Returns ------- [iterator] yielding Commit items generator from branch history associated with files """ return gitpy.objects.commit.Commit.iter_items(self.repo, branch, paths=files) def _get_remotes_having_commit(self, commit_hexsha, with_urls_only=True): """Traverse all branches of the remote and check if commit in any of their ancestry It is a generator yielding names of the remotes """ out, err = self._git_custom_command( '', 'git branch -r --contains ' + commit_hexsha ) # sanitize a bit (all the spaces and new lines) remote_branches = [ b # could be origin/HEAD -> origin/master, we just skip -> for b in filter(bool, out.split()) if b != '->' ] return [ remote for remote in self.get_remotes(with_urls_only=with_urls_only) if any(rb.startswith(remote + '/') for rb in remote_branches) ] @normalize_paths(match_return_type=False) def _git_custom_command(self, files, cmd_str, log_stdout=True, log_stderr=True, log_online=False, expect_stderr=True, cwd=None, env=None, shell=None, expect_fail=False, check_fake_dates=False, index_file=None, updates_tree=False): """Allows for calling arbitrary commands. Helper for developing purposes, i.e. to quickly implement git commands for proof of concept without the need to figure out, how this is done via GitPython. Parameters ---------- files: list of files cmd_str: str or list arbitrary command str. `files` is appended to that string. updates_tree: bool whether or not command updates the working tree. If True, triggers necessary reevaluations like self.config.reload() Returns ------- stdout, stderr """ # ensure cmd_str becomes a well-formed list: if isinstance(cmd_str, string_types): cmd = shlex.split(cmd_str, posix=not on_windows) else: cmd = cmd_str[:] # we will modify in-place assert(cmd[0] == 'git') cmd = cmd[:1] + self._GIT_COMMON_OPTIONS + cmd[1:] if check_fake_dates and self.fake_dates_enabled: env = self.add_fake_dates(env) if index_file: env = (env if env is not None else os.environ).copy() env['GIT_INDEX_FILE'] = index_file # TODO?: wouldn't splitting interfer with above GIT_INDEX_FILE # handling???? try: out, err = self._run_command_files_split( self.cmd_call_wrapper.run, cmd, files, log_stderr=log_stderr, log_stdout=log_stdout, log_online=log_online, expect_stderr=expect_stderr, cwd=cwd, env=env, shell=shell, expect_fail=expect_fail) except CommandError as e: ignored = re.search(GitIgnoreError.pattern, e.stderr) if ignored: raise GitIgnoreError(cmd=e.cmd, msg=e.stderr, code=e.code, stdout=e.stdout, stderr=e.stderr, paths=ignored.groups()[0].splitlines()) raise if updates_tree: lgr.debug("Reloading config due to supposed working tree update") self.config.reload() return out, err # TODO: could be static or class method even def _run_command_files_split( self, func, cmd, files, *args, **kwargs ): """ Run `func(cmd + files, ...)` possibly multiple times if `files` is too long """ assert isinstance(cmd, list) if not files: file_chunks = [[]] else: file_chunks = generate_file_chunks(files, cmd) out, err = "", "" for file_chunk in file_chunks: out_, err_ = func( cmd + (['--'] if file_chunk else []) + file_chunk, *args, **kwargs) # out_, err_ could be None, and probably no need to append empty strings if out_: out += out_ if err_: err += err_ return out, err # TODO: -------------------------------------------------------------------- def add_remote(self, name, url, options=None): """Register remote pointing to a url """ cmd = ['git', 'remote', 'add'] if options: cmd += options cmd += [name, url] result = self._git_custom_command('', cmd) self.config.reload() return result def remove_remote(self, name): """Remove existing remote """ # TODO: testing and error handling! from .exceptions import RemoteNotAvailableError try: out, err = self._git_custom_command( '', ['git', 'remote', 'remove', name]) except CommandError as e: if 'fatal: No such remote' in e.stderr: raise RemoteNotAvailableError(name, cmd="git remote remove", msg="No such remote", stdout=e.stdout, stderr=e.stderr) else: raise e # TODO: config.reload necessary? self.config.reload() return def update_remote(self, name=None, verbose=False): """ """ options = ["-v"] if verbose else [] name = [name] if name else [] self._git_custom_command( '', ['git', 'remote'] + name + ['update'] + options, expect_stderr=True ) # TODO: centralize all the c&p code in fetch, pull, push # TODO: document **kwargs passed to gitpython @guard_BadName def fetch(self, remote=None, refspec=None, all_=False, **kwargs): """Fetches changes from a remote (or all_ remotes). Parameters ---------- remote: str (optional) name of the remote to fetch from. If no remote is given and `all_` is not set, the tracking branch is fetched. refspec: str (optional) refspec to fetch. all_: bool fetch all_ remotes (and all_ of their branches). Fails if `remote` was given. kwargs: passed to gitpython. TODO: Figure it out, make consistent use of it and document it. Returns ------- list FetchInfo objects of the items fetched from remote """ # TODO: options=> **kwargs): # Note: Apparently there is no explicit (fetch --all) in gitpython, # but fetch is always bound to a certain remote instead. # Therefore implement it on our own: if remote is None: if refspec is not None: # conflicts with using tracking branch or fetch all remotes # For now: Just fail. # TODO: May be check whether it fits to tracking branch raise ValueError("refspec specified without a remote. (%s)" % refspec) if all_: remotes_to_fetch = [ self.repo.remote(r) for r in self.get_remotes(with_urls_only=True) ] else: # No explicit remote to fetch. # => get tracking branch: tb_remote, refspec = self.get_tracking_branch() if tb_remote is not None: remotes_to_fetch = [self.repo.remote(tb_remote)] else: # No remote, no tracking branch # => fail raise ValueError("Neither a remote is specified to fetch " "from nor a tracking branch is set up.") else: remotes_to_fetch = [self.repo.remote(remote)] fi_list = [] for rm in remotes_to_fetch: fetch_url = \ self.config.get('remote.%s.fetchurl' % rm.name, self.config.get('remote.%s.url' % rm.name, None)) if fetch_url is None: lgr.debug("Remote %s has no URL", rm) return [] fi_list += self._call_gitpy_with_progress( "Fetching %s" % rm.name, rm.fetch, rm.repo, refspec, fetch_url, **kwargs ) # TODO: fetch returns a list of FetchInfo instances. Make use of it. return fi_list def _call_gitpy_with_progress(self, msg, callable, git_repo, refspec, url, **kwargs): """A helper to reduce code duplication Wraps call to a GitPython method with all needed decoration for workarounds of having aged git, or not providing full stderr when monitoring progress of the operation """ with GitPythonProgressBar(msg) as git_progress: git_kwargs = dict( refspec=refspec, progress=git_progress, **kwargs ) if is_ssh(url): ssh_manager.get_connection(url).open() # TODO: with git <= 2.3 keep old mechanism: # with rm.repo.git.custom_environment( # GIT_SSH="wrapper_script"): with git_repo.git.custom_environment(**GitRepo.GIT_SSH_ENV): ret = callable(**git_kwargs) # TODO: +kwargs else: ret = callable(**git_kwargs) # TODO: +kwargs return ret def pull(self, remote=None, refspec=None, **kwargs): """See fetch """ if remote is None: if refspec is not None: # conflicts with using tracking branch or fetch all remotes # For now: Just fail. # TODO: May be check whether it fits to tracking branch raise ValueError("refspec specified without a remote. (%s)" % refspec) # No explicit remote to pull from. # => get tracking branch: tb_remote, refspec = self.get_tracking_branch() if tb_remote is not None: remote = self.repo.remote(tb_remote) else: # No remote, no tracking branch # => fail raise ValueError("No remote specified to pull from nor a " "tracking branch is set up.") else: remote = self.repo.remote(remote) fetch_url = \ remote.config_reader.get( 'fetchurl' if remote.config_reader.has_option('fetchurl') else 'url') return self._call_gitpy_with_progress( "Pulling", remote.pull, remote.repo, refspec, fetch_url, **kwargs ) def push(self, remote=None, refspec=None, all_remotes=False, **kwargs): """Push to remote repository Parameters ---------- remote: str name of the remote to push to refspec: str specify what to push all_remotes: bool if set to True push to all remotes. Conflicts with `remote` not being None. kwargs: dict options to pass to `git push` Returns ------- list PushInfo objects of the items pushed to remote """ if remote is None: if refspec is not None: # conflicts with using tracking branch or fetch all remotes # For now: Just fail. # TODO: May be check whether it fits to tracking branch raise ValueError("refspec specified without a remote. (%s)" % refspec) if all_remotes: remotes_to_push = self.repo.remotes else: # Nothing explicitly specified. Just call `git push` and let git # decide what to do would be an option. But: # - without knowing the remote and its URL we cannot provide # shared SSH connection # - we lose ability to use GitPython's progress info and return # values # (the latter would be solvable: # Provide a Repo.push() method for GitPython, copying # Remote.push() for similar return value and progress # (also: fetch, pull) # Do what git would do: # 1. branch.*.remote for current branch or 'origin' as default # if config is missing # 2. remote.*.push or push.default # TODO: check out "same procedure" for fetch/pull tb_remote, refspec = self.get_tracking_branch() if tb_remote is None: tb_remote = 'origin' remotes_to_push = [self.repo.remote(tb_remote)] # use no refspec; let git find remote.*.push or push.default on # its own else: if all_remotes: lgr.warning("Option 'all_remotes' conflicts with specified " "remote '%s'. Option ignored.") remotes_to_push = [self.repo.remote(remote)] pi_list = [] for rm in remotes_to_push: push_url = \ rm.config_reader.get('pushurl' if rm.config_reader.has_option('pushurl') else 'url') pi_list += self._call_gitpy_with_progress( "Pushing %s" % rm.name, rm.push, rm.repo, refspec, push_url, **kwargs ) return pi_list def get_remote_url(self, name, push=False): """Get the url of a remote. Reads the configuration of remote `name` and returns its url or None, if there is no url configured. Parameters ---------- name: str name of the remote push: bool if True, get the pushurl instead of the fetch url. """ var = 'remote.{0}.{1}'.format(name, 'pushurl' if push else 'url') return self.config.get(var, None) def set_remote_url(self, name, url, push=False): """Set the URL a remote is pointing to Sets the URL of the remote `name`. Requires the remote to already exist. Parameters ---------- name: str name of the remote url: str push: bool if True, set the push URL, otherwise the fetch URL """ var = 'remote.{0}.{1}'.format(name, 'pushurl' if push else 'url') self.config.set(var, url, where='local', reload=True) def get_branch_commits(self, branch=None, limit=None, stop=None, value=None): """Return GitPython's commits for the branch Pretty much similar to what 'git log <branch>' does. It is a generator which returns top commits first Parameters ---------- branch: str, optional If not provided, assumes current branch limit: None | 'left-only', optional Limit which commits to report. If None -- all commits (merged or not), if 'left-only' -- only the commits from the left side of the tree upon merges stop: str, optional hexsha of the commit at which stop reporting (matched one is not reported either) value: None | 'hexsha', optional What to yield. If None - entire commit object is yielded, if 'hexsha' only its hexsha """ if not branch: branch = self.get_active_branch() try: _branch = self.repo.branches[branch] except IndexError: raise MissingBranchError(self, branch, [b.name for b in self.repo.branches]) fvalue = {None: lambda x: x, 'hexsha': lambda x: x.hexsha}[value] if not limit: def gen(): # traverse doesn't yield original commit co = _branch.commit yield co for co_ in co.traverse(): yield co_ elif limit == 'left-only': # we need a custom implementation since couldn't figure out how to # do with .traversal def gen(): co = _branch.commit while co: yield co co = co.parents[0] if co.parents else None else: raise ValueError(limit) for c in gen(): if stop and c.hexsha == stop: return yield fvalue(c) def checkout(self, name, options=None): """ """ # TODO: May be check for the need of -b options herein? cmd = ['git', 'checkout'] if options: cmd += options cmd += [str(name)] self._git_custom_command('', cmd, expect_stderr=True, updates_tree=True) # TODO: Before implementing annex merge, find usages and check for a needed # change to call super().merge def merge(self, name, options=None, msg=None, allow_unrelated=False, **kwargs): if options is None: options = [] if msg: options = options + ["-m", msg] if allow_unrelated and external_versions['cmd:git'] >= '2.9': options += ['--allow-unrelated-histories'] self._git_custom_command( '', ['git', 'merge'] + options + [name], check_fake_dates=True, **kwargs ) def remove_branch(self, branch): self._git_custom_command( '', ['git', 'branch', '-D', branch] ) def cherry_pick(self, commit): """Cherry pick `commit` to the current branch. Parameters ---------- commit : str A single commit. """ self._git_custom_command("", ["git", "cherry-pick", commit], check_fake_dates=True) @property def dirty(self): """Is the repository dirty? Note: This provides a quick answer when you simply want to know if there are any untracked changes or modifications in this repository or its submodules. For finer-grained control and more detailed reporting, use status() instead. """ stdout, _ = self._git_custom_command( [], ["git", "status", "--porcelain", # Ensure the result isn't influenced by status.showUntrackedFiles. "--untracked-files=normal", # Ensure the result isn't influenced by diff.ignoreSubmodules. "--ignore-submodules=none"]) return bool(stdout.strip()) @property def untracked_files(self): """Legacy interface, do not use! Use the status() method instead. Despite its name, it also reports on untracked datasets, and yields their names with trailing path separators. """ return [ '{}{}'.format( text_type(p.relative_to(self.pathobj)), os.sep if props['type'] != 'file' else '' ) for p, props in iteritems(self.status( untracked='all', eval_submodule_state='no')) if props.get('state', None) == 'untracked' ] def gc(self, allow_background=False, auto=False): """Perform house keeping (garbage collection, repacking)""" cmd_options = ['git'] if not allow_background: cmd_options += ['-c', 'gc.autodetach=0'] cmd_options += ['gc', '--aggressive'] if auto: cmd_options += ['--auto'] self._git_custom_command('', cmd_options) def get_submodules(self, sorted_=True): """Return a list of git.Submodule instances for all submodules""" # check whether we have anything in the repo. if not go home early if not self.repo.head.is_valid(): return [] submodules = self.repo.submodules if sorted_: submodules = sorted(submodules, key=lambda x: x.path) return submodules def is_submodule_modified(self, name, options=[]): """Whether a submodule has new commits Note: This is an adhoc method. It parses output of 'git submodule summary' and currently is not able to distinguish whether or not this change is staged in `self` and whether this would be reported 'added' or 'modified' by 'git status'. Parsing isn't heavily tested yet. Parameters ---------- name: str the submodule's name options: list options to pass to 'git submodule summary' Returns ------- bool True if there are commits in the submodule, differing from what is registered in `self` -------- """ out, err = self._git_custom_command('', ['git', 'submodule', 'summary'] + \ options + ['--', name]) return any([line.split()[1] == name for line in out.splitlines() if line and len(line.split()) > 1]) def add_submodule(self, path, name=None, url=None, branch=None): """Add a new submodule to the repository. This will alter the index as well as the .gitmodules file, but will not create a new commit. If the submodule already exists, no matter if the configuration differs from the one provided, the existing submodule is considered as already added and no further action is performed. Parameters ---------- path : str repository-relative path at which the submodule should be located, and which will be created as required during the repository initialization. name : str or None name/identifier for the submodule. If `None`, the `path` will be used as name. url : str or None git-clone compatible URL. If `None`, the repository is assumed to exist, and the url of the first remote is taken instead. This is useful if you want to make an existing repository a submodule of another one. branch : str or None name of branch to be checked out in the submodule. The given branch must exist in the remote repository, and will be checked out locally as a tracking branch. If `None`, remote HEAD will be checked out. """ if name is None: name = Path(path).as_posix() # XXX the following should do it, but GitPython will refuse to add a submodule # unless you specify a URL that is configured as one of its remotes, or you # specify no URL, but the repo has at least one remote. # this is stupid, as for us it is valid to not have any remote, because we can # still obtain the submodule from a future publication location, based on the # parent # gitpy.Submodule.add(self.repo, name, path, url=url, branch=branch) # going git native instead cmd = ['git', 'submodule', 'add', '--name', name] if branch is not None: cmd += ['-b', branch] if url is None: # repo must already exist locally subm = GitRepo(op.join(self.path, path), create=False, init=False) # check that it has a commit, and refuse # to operate on it otherwise, or we would get a bastard # submodule that cripples git operations if not subm.get_hexsha(): raise InvalidGitRepositoryError( 'cannot add subdataset {} with no commits'.format(subm)) # make an attempt to configure a submodule source URL based on the # discovered remote configuration remote, branch = subm.get_tracking_branch() url = subm.get_remote_url(remote) if remote else None if url is None: # had no luck with a remote URL if not isabs(path): # need to recode into a relative path "URL" in POSIX # style, even on windows url = posixpath.join(curdir, posix_relpath(path)) else: url = path cmd += [url, path] self._git_custom_command('', cmd) # record dataset ID if possible for comprehesive metadata on # dataset components within the dataset itself subm_id = GitRepo(op.join(self.path, path)).config.get( 'datalad.dataset.id', None) if subm_id: self._git_custom_command( '', ['git', 'config', '--file', '.gitmodules', '--replace-all', 'submodule.{}.datalad-id'.format(name), subm_id]) # ensure supported setup _fixup_submodule_dotgit_setup(self, path) # TODO: return value def deinit_submodule(self, path, **kwargs): """Deinit a submodule Parameters ---------- path: str path to the submodule; relative to `self.path` kwargs: see `__init__` """ self._git_custom_command(path, ['git', 'submodule', 'deinit'] + to_options(**kwargs)) # TODO: return value def update_submodule(self, path, mode='checkout', init=False): """Update a registered submodule. This will make the submodule match what the superproject expects by cloning missing submodules and updating the working tree of the submodules. The "updating" can be done in several ways depending on the value of submodule.<name>.update configuration variable, or the `mode` argument. Parameters ---------- path : str Identifies which submodule to operate on by it's repository-relative path. mode : {checkout, rebase, merge} Update procedure to perform. 'checkout': the commit recorded in the superproject will be checked out in the submodule on a detached HEAD; 'rebase': the current branch of the submodule will be rebased onto the commit recorded in the superproject; 'merge': the commit recorded in the superproject will be merged into the current branch in the submodule. init : bool If True, initialize all submodules for which "git submodule init" has not been called so far before updating. Primarily provided for internal purposes and should not be used directly since would result in not so annex-friendly .git symlinks/references instead of full featured .git/ directories in the submodules """ cmd = ['git', 'submodule', 'update', '--%s' % mode] if init: cmd.append('--init') subgitpath = opj(self.path, path, '.git') if not exists(subgitpath): # TODO: wouldn't with --init we get all those symlink'ed .git/? # At least let's warn lgr.warning( "Do not use update_submodule with init=True to avoid git creating " "symlinked .git/ directories in submodules" ) # yoh: I thought I saw one recently but thought it was some kind of # an artifact from running submodule update --init manually at # some point, but looking at this code now I worry that it was not self._git_custom_command(path, cmd) # TODO: return value def update_ref(self, ref, value, symbolic=False): """Update the object name stored in a ref "safely". Just a shim for `git update-ref` call if not symbolic, and `git symbolic-ref` if symbolic Parameters ---------- ref : str Reference, such as `ref/heads/BRANCHNAME` or HEAD. value : str Value to update to, e.g. hexsha of a commit when updating for a branch ref, or branch ref if updating HEAD symbolic : None To instruct if ref is symbolic, e.g. should be used in case of ref=HEAD """ self._git_custom_command( '', ['git', 'symbolic-ref' if symbolic else 'update-ref', ref, value] ) def tag(self, tag, message=None): """Assign a tag to current commit Parameters ---------- tag : str Custom tag label. message : str, optional If provided, would create an annotated tag with that message """ # TODO later to be extended with tagging particular commits and signing # TODO: call in save.py complains about extensive logging. When does it # happen in what way? Figure out, whether to just silence it or raise or # whatever else. options = [] if message: options += ['-m', message] self._git_custom_command( '', ['git', 'tag'] + options + [str(tag)], check_fake_dates=True ) def get_tags(self, output=None): """Get list of tags Parameters ---------- output : str, optional If given, limit the return value to a list of values matching that particular key of the tag properties. Returns ------- list Each item is a dictionary with information on a tag. At present this includes 'hexsha', and 'name', where the latter is the string label of the tag, and the format the hexsha of the object the tag is attached to. The list is sorted by commit date, with the most recent commit being the last element. """ tag_objs = sorted( self.repo.tags, key=lambda t: t.commit.committed_date ) tags = [ { 'name': t.name, 'hexsha': t.commit.hexsha } for t in tag_objs ] if output: return [t[output] for t in tags] else: return tags def describe(self, commitish=None, **kwargs): """ Quick and dirty implementation to call git-describe Parameters: ----------- kwargs: transformed to cmdline options for git-describe; see __init__ for description of the transformation """ # TODO: be more precise what failure to expect when and raise actual # errors cmd = ['git', 'describe'] + to_options(**kwargs) if commitish is not None: cmd.append(commitish) try: describe, outerr = self._git_custom_command( [], cmd, expect_fail=True) return describe.strip() # TODO: WTF "catch everything"? except: return None def get_tracking_branch(self, branch=None): """Get the tracking branch for `branch` if there is any. Parameters ---------- branch: str local branch to look up. If none is given, active branch is used. Returns ------- tuple (remote or None, refspec or None) of the tracking branch """ if branch is None: branch = self.get_active_branch() if branch is None: return None, None track_remote = self.config.get('branch.{0}.remote'.format(branch), None) track_branch = self.config.get('branch.{0}.merge'.format(branch), None) return track_remote, track_branch @property def count_objects(self): """return dictionary with count, size(in KiB) information of git objects """ count_cmd = ['git', 'count-objects', '-v'] count_str, err = self._git_custom_command('', count_cmd) count = {key: int(value) for key, value in [item.split(': ') for item in count_str.split('\n') if len(item.split(': ')) == 2]} return count def get_changed_files(self, staged=False, diff_filter='', index_file=None, files=None): """Return files that have changed between the index and working tree. Parameters ---------- staged: bool, optional Consider changes between HEAD and the index instead of changes between the index and the working tree. diff_filter: str, optional Any value accepted by the `--diff-filter` option of `git diff`. Common ones include "A", "D", "M" for add, deleted, and modified files, respectively. index_file: str, optional Alternative index file for git to use """ opts = ['--name-only', '-z'] kwargs = {} if staged: opts.append('--staged') if diff_filter: opts.append('--diff-filter=%s' % diff_filter) if index_file: kwargs['env'] = {'GIT_INDEX_FILE': index_file} if files is not None: opts.append('--') # might be too many, need to chunk up optss = ( opts + file_chunk for file_chunk in generate_file_chunks(files, ['git', 'diff'] + opts) ) else: optss = [opts] return [ normpath(f) # Call normpath to convert separators on Windows. for f in chain( *(self.repo.git.diff(*opts, **kwargs).split('\0') for opts in optss) ) if f ] def get_missing_files(self): """Return a list of paths with missing files (and no staged deletion)""" return self.get_changed_files(diff_filter='D') def get_deleted_files(self): """Return a list of paths with deleted files (staged deletion)""" return self.get_changed_files(staged=True, diff_filter='D') def get_git_attributes(self): """Query gitattributes which apply to top level directory It is a thin compatibility/shortcut wrapper around more versatile get_gitattributes which operates on a list of paths and returns a dictionary per each path Returns ------- dict: a dictionary with attribute name and value items relevant for the top ('.') directory of the repository, and thus most likely the default ones (if not overwritten with more rules) for all files within repo. """ return self.get_gitattributes('.')['.'] def get_gitattributes(self, path, index_only=False): """Query gitattributes for one or more paths Parameters ---------- path: path or list Path(s) to query. Paths may be relative or absolute. index_only: bool Flag whether to consider only gitattribute setting that are reflected in the repository index, not just in the work tree content. Returns ------- dict: Each key is a queried path (always relative to the repostiory root), each value is a dictionary with attribute name and value items. Attribute values are either True or False, for set and unset attributes, or are the literal attribute value. """ path = assure_list(path) cmd = ["git", "check-attr", "-z", "--all"] if index_only: cmd.append('--cached') stdout, stderr = self._git_custom_command(path, cmd) # make sure we have one entry for each query path to # simplify work with the result attributes = {_normalize_path(self.path, p): {} for p in path} attr = [] for item in stdout.split('\0'): attr.append(item) if len(attr) < 3: continue # we have a full record p, name, value = attr attrs = attributes[p] attrs[name] = \ True if value == 'set' else False if value == 'unset' else value # done, reset item attr = [] return attributes def set_gitattributes(self, attrs, attrfile='.gitattributes', mode='a'): """Set gitattributes By default appends additional lines to `attrfile`. Note, that later lines in `attrfile` overrule earlier ones, which may or may not be what you want. Set `mode` to 'w' to replace the entire file by what you provided in `attrs`. Parameters ---------- attrs : list Each item is a 2-tuple, where the first element is a path pattern, and the second element is a dictionary with attribute key/value pairs. The attribute dictionary must use the same semantics as those returned by `get_gitattributes()`. Path patterns can use absolute paths, in which case they will be normalized relative to the directory that contains the target .gitattributes file (see `attrfile`). attrfile: path Path relative to the repository root of the .gitattributes file the attributes shall be set in. mode: str 'a' to append .gitattributes, 'w' to replace it """ git_attributes_file = op.join(self.path, attrfile) attrdir = op.dirname(git_attributes_file) if not op.exists(attrdir): os.makedirs(attrdir) with open(git_attributes_file, mode) as f: for pattern, attr in sorted(attrs, key=lambda x: x[0]): # normalize the pattern relative to the target .gitattributes file npath = _normalize_path( op.join(self.path, op.dirname(attrfile)), pattern) attrline = u'' if npath.count(' '): # quote patterns with spaces attrline += u'"{}"'.format(npath.replace('"', '\\"')) else: attrline += npath for a in sorted(attr): val = attr[a] if val is True: attrline += ' {}'.format(a) elif val is False: attrline += ' -{}'.format(a) else: attrline += ' {}={}'.format(a, val) f.write('\n{}'.format(attrline)) def get_content_info(self, paths=None, ref=None, untracked='all', eval_file_type=True): """Get identifier and type information from repository content. This is simplified front-end for `git ls-files/tree`. Both commands differ in their behavior when queried about subdataset paths. ls-files will not report anything, ls-tree will report on the subdataset record. This function uniformly follows the behavior of ls-tree (report on the respective subdataset mount). Parameters ---------- paths : list(pathlib.PurePath) Specific paths, relative to the resolved repository root, to query info for. Paths must be normed to match the reporting done by Git, i.e. no parent dir components (ala "some/../this"). If none are given, info is reported for all content. ref : gitref or None If given, content information is retrieved for this Git reference (via ls-tree), otherwise content information is produced for the present work tree (via ls-files). With a given reference, the reported content properties also contain a 'bytesize' record, stating the size of a file in bytes. untracked : {'no', 'normal', 'all'} If and how untracked content is reported when no `ref` was given: 'no': no untracked files are reported; 'normal': untracked files and entire untracked directories are reported as such; 'all': report individual files even in fully untracked directories. eval_file_type : bool If True, inspect file type of untracked files, and report annex symlink pointers as type 'file'. This convenience comes with a cost; disable to get faster performance if this information is not needed. Returns ------- dict Each content item has an entry under a pathlib `Path` object instance pointing to its absolute path inside the repository (this path is guaranteed to be underneath `Repo.path`). Each value is a dictionary with properties: `type` Can be 'file', 'symlink', 'dataset', 'directory' Note that the reported type will not always match the type of content committed to Git, rather it will reflect the nature of the content minus platform/mode-specifics. For example, a symlink to a locked annexed file on Unix will have a type 'file', reported, while a symlink to a file in Git or directory will be of type 'symlink'. `gitshasum` SHASUM of the item as tracked by Git, or None, if not tracked. This could be different from the SHASUM of the file in the worktree, if it was modified. Raises ------ ValueError In case of an invalid Git reference (e.g. 'HEAD' in an empty repository) """ lgr.debug('%s.get_content_info(...)', self) # TODO limit by file type to replace code in subdatasets command info = OrderedDict() if paths: # path matching will happen against what Git reports # and Git always reports POSIX paths # any incoming path has to be relative already, so we can simply # convert unconditionally paths = [ut.PurePosixPath(p) for p in paths] # this will not work in direct mode, but everything else should be # just fine if not ref: # make sure no operations are pending before we figure things # out in the worktree self.precommit() # --exclude-standard will make sure to honor and standard way # git can be instructed to ignore content, and will prevent # crap from contaminating untracked file reports cmd = ['git', 'ls-files', '--stage', '-z', '-d', '-m', '--exclude-standard'] # untracked report mode, using labels from `git diff` option style if untracked == 'all': cmd.append('-o') elif untracked == 'normal': cmd += ['-o', '--directory', '--no-empty-directory'] elif untracked == 'no': pass else: raise ValueError( 'unknown value for `untracked`: %s', untracked) props_re = re.compile( r'(?P<type>[0-9]+) (?P<sha>.*) (.*)\t(?P<fname>.*)$') else: cmd = ['git', 'ls-tree', ref, '-z', '-r', '--full-tree', '-l'] props_re = re.compile( r'(?P<type>[0-9]+) ([a-z]*) (?P<sha>[^ ]*) [\s]*(?P<size>[0-9-]+)\t(?P<fname>.*)$') lgr.debug('Query repo: %s', cmd) try: stdout, stderr = self._git_custom_command( # specifically always ask for a full report and # filter out matching path later on to # homogenize wrt subdataset content paths across # ls-files and ls-tree None, cmd, log_stderr=True, log_stdout=True, # not sure why exactly, but log_online has to be false! log_online=False, expect_stderr=False, shell=False, # we don't want it to scream on stdout expect_fail=True) except CommandError as exc: if "fatal: Not a valid object name" in text_type(exc): raise InvalidGitReferenceError(ref) raise lgr.debug('Done query repo: %s', cmd) if not eval_file_type: _get_link_target = None elif ref: def _read_symlink_target_from_catfile(lines): # it is always the second line, all checks done upfront header = lines.readline() if header.rstrip().endswith('missing'): # something we do not know about, should not happen # in real use, but guard against to avoid stalling return '' return lines.readline().rstrip() _get_link_target = BatchedCommand( ['git', 'cat-file', '--batch'], path=self.path, output_proc=_read_symlink_target_from_catfile, ) else: def try_readlink(path): try: return os.readlink(path) except OSError: # readlink will fail if the symlink reported by ls-files is # not in the working tree (it could be removed or # unlocked). Fall back to a slower method. return op.realpath(path) _get_link_target = try_readlink try: self._get_content_info_line_helper( paths, ref, info, stdout.split('\0'), props_re, _get_link_target) finally: if ref and _get_link_target: # cancel batch process _get_link_target.close() lgr.debug('Done %s.get_content_info(...)', self) return info def _get_content_info_line_helper(self, paths, ref, info, lines, props_re, get_link_target): """Internal helper of get_content_info() to parse Git output""" mode_type_map = { '100644': 'file', '100755': 'file', '120000': 'symlink', '160000': 'dataset', } for line in lines: if not line: continue inf = {} props = props_re.match(line) if not props: # not known to Git, but Git always reports POSIX path = ut.PurePosixPath(line) inf['gitshasum'] = None else: # again Git reports always in POSIX path = ut.PurePosixPath(props.group('fname')) # rejects paths as early as possible # the function assumes that any `path` is a relative path lib # instance if there were path constraints given, we need to reject # paths now # reject anything that is: # - not a direct match with a constraint # - has no constraint as a parent # (relevant to find matches of regular files in a repository) # - is not a parent of a constraint # (relevant for finding the matching subds entry for # subds-content paths) if paths \ and not any( path == c or path in c.parents or c in path.parents for c in paths): continue # revisit the file props after this path has not been rejected if props: inf['gitshasum'] = props.group('sha') inf['type'] = mode_type_map.get( props.group('type'), props.group('type')) if get_link_target and inf['type'] == 'symlink' and \ ((ref is None and '.git/annex/objects' in \ ut.Path( get_link_target(text_type(self.pathobj / path)) ).as_posix()) or \ (ref and \ '.git/annex/objects' in get_link_target( u'{}:{}'.format( ref, text_type(path)))) ): # report annex symlink pointers as file, their # symlink-nature is a technicality that is dependent # on the particular mode annex is in inf['type'] = 'file' if ref and inf['type'] == 'file': inf['bytesize'] = int(props.group('size')) # join item path with repo path to get a universally useful # path representation with auto-conversion and tons of other # stuff path = self.pathobj.joinpath(path) if 'type' not in inf: # be nice and assign types for untracked content inf['type'] = 'symlink' if path.is_symlink() \ else 'directory' if path.is_dir() else 'file' info[path] = inf def status(self, paths=None, untracked='all', eval_submodule_state='full'): """Simplified `git status` equivalent. Parameters ---------- paths : list or None If given, limits the query to the specified paths. To query all paths specify `None`, not an empty list. If a query path points into a subdataset, a report is made on the subdataset record within the queried dataset only (no recursion). untracked : {'no', 'normal', 'all'} If and how untracked content is reported: 'no': no untracked files are reported; 'normal': untracked files and entire untracked directories are reported as such; 'all': report individual files even in fully untracked directories. eval_submodule_state : {'full', 'commit', 'no'} If 'full' (the default), the state of a submodule is evaluated by considering all modifications, with the treatment of untracked files determined by `untracked`. If 'commit', the modification check is restricted to comparing the submodule's HEAD commit to the one recorded in the superdataset. If 'no', the state of the subdataset is not evaluated. Returns ------- dict Each content item has an entry under a pathlib `Path` object instance pointing to its absolute path inside the repository (this path is guaranteed to be underneath `Repo.path`). Each value is a dictionary with properties: `type` Can be 'file', 'symlink', 'dataset', 'directory' `state` Can be 'added', 'untracked', 'clean', 'deleted', 'modified'. """ lgr.debug('Query status of %r for %s paths', self, len(paths) if paths else 'all') return self.diffstatus( fr='HEAD' if self.get_hexsha() else None, to=None, paths=paths, untracked=untracked, eval_submodule_state=eval_submodule_state) def diff(self, fr, to, paths=None, untracked='all', eval_submodule_state='full'): """Like status(), but reports changes between to arbitrary revisions Parameters ---------- fr : str or None Revision specification (anything that Git understands). Passing `None` considers anything in the target state as new. to : str or None Revision specification (anything that Git understands), or None to compare to the state of the work tree. paths : list or None If given, limits the query to the specified paths. To query all paths specify `None`, not an empty list. untracked : {'no', 'normal', 'all'} If and how untracked content is reported when `to` is None: 'no': no untracked files are reported; 'normal': untracked files and entire untracked directories are reported as such; 'all': report individual files even in fully untracked directories. eval_submodule_state : {'full', 'commit', 'no'} If 'full' (the default), the state of a submodule is evaluated by considering all modifications, with the treatment of untracked files determined by `untracked`. If 'commit', the modification check is restricted to comparing the submodule's HEAD commit to the one recorded in the superdataset. If 'no', the state of the subdataset is not evaluated. Returns ------- dict Each content item has an entry under a pathlib `Path` object instance pointing to its absolute path inside the repository (this path is guaranteed to be underneath `Repo.path`). Each value is a dictionary with properties: `type` Can be 'file', 'symlink', 'dataset', 'directory' `state` Can be 'added', 'untracked', 'clean', 'deleted', 'modified'. """ return {k: v for k, v in iteritems(self.diffstatus( fr=fr, to=to, paths=paths, untracked=untracked, eval_submodule_state=eval_submodule_state)) if v.get('state', None) != 'clean'} def diffstatus(self, fr, to, paths=None, untracked='all', eval_submodule_state='full', eval_file_type=True, _cache=None): """Like diff(), but reports the status of 'clean' content too""" return self._diffstatus( fr, to, paths, untracked, eval_submodule_state, eval_file_type, _cache) def _diffstatus(self, fr, to, paths, untracked, eval_state, eval_file_type, _cache): """Just like diffstatus(), but supports an additional evaluation state 'global'. If given, it will return a single 'modified' (vs. 'clean') state label for the entire repository, as soon as it can.""" def _get_cache_key(label, paths, ref, untracked=None): return self.path, label, tuple(paths) if paths else None, \ ref, untracked if _cache is None: _cache = {} if paths: # at this point we must normalize paths to the form that # Git would report them, to easy matching later on paths = [ut.Path(p) for p in paths] paths = [ p.relative_to(self.pathobj) if p.is_absolute() else p for p in paths ] # TODO report more info from get_content_info() calls in return # value, those are cheap and possibly useful to a consumer # we need (at most) three calls to git if to is None: # everything we know about the worktree, including os.stat # for each file key = _get_cache_key('ci', paths, None, untracked) if key in _cache: to_state = _cache[key] else: to_state = self.get_content_info( paths=paths, ref=None, untracked=untracked, eval_file_type=eval_file_type) _cache[key] = to_state # we want Git to tell us what it considers modified and avoid # reimplementing logic ourselves key = _get_cache_key('mod', paths, None) if key in _cache: modified = _cache[key] else: modified = set( self.pathobj.joinpath(ut.PurePosixPath(p)) for p in self._git_custom_command( # low-level code cannot handle pathobjs [text_type(p) for p in paths] if paths else None, ['git', 'ls-files', '-z', '-m'])[0].split('\0') if p) _cache[key] = modified else: key = _get_cache_key('ci', paths, to) if key in _cache: to_state = _cache[key] else: to_state = self.get_content_info( paths=paths, ref=to, eval_file_type=eval_file_type) _cache[key] = to_state # we do not need worktree modification detection in this case modified = None # origin state key = _get_cache_key('ci', paths, fr) if key in _cache: from_state = _cache[key] else: if fr: from_state = self.get_content_info( paths=paths, ref=fr, eval_file_type=eval_file_type) else: # no ref means from nothing from_state = {} _cache[key] = from_state status = OrderedDict() for f, to_state_r in iteritems(to_state): props = None if f not in from_state: # this is new, or rather not known to the previous state props = dict( state='added' if to_state_r['gitshasum'] else 'untracked', ) if 'type' in to_state_r: props['type'] = to_state_r['type'] elif to_state_r['gitshasum'] == from_state[f]['gitshasum'] and \ (modified is None or f not in modified): if to_state_r['type'] != 'dataset': # no change in git record, and no change on disk props = dict( state='clean' if f.exists() or \ f.is_symlink() else 'deleted', type=to_state_r['type'], ) else: # a dataset props = dict(type=to_state_r['type']) if to is not None: # we can only be confident without looking # at the worktree, if we compare to a recorded # state props['state'] = 'clean' else: # report the shasum that we know, for further # wrangling of subdatasets below props['gitshasum'] = to_state_r['gitshasum'] props['prev_gitshasum'] = from_state[f]['gitshasum'] else: # change in git record, or on disk props = dict( # TODO we could have a new file that is already staged # but had subsequent modifications done to it that are # unstaged. Such file would presently show up as 'added' # ATM I think this is OK, but worth stating... state='modified' if f.exists() or \ f.is_symlink() else 'deleted', # TODO record before and after state for diff-like use # cases type=to_state_r['type'], ) state = props.get('state', None) if eval_state == 'global' and \ state not in ('clean', None): # any modification means globally 'modified' return 'modified' if state in ('clean', 'added', 'modified'): props['gitshasum'] = to_state_r['gitshasum'] if 'bytesize' in to_state_r: # if we got this cheap, report it props['bytesize'] = to_state_r['bytesize'] elif props['state'] == 'clean' and 'bytesize' in from_state[f]: # no change, we can take this old size info props['bytesize'] = from_state[f]['bytesize'] if state in ('clean', 'modified', 'deleted'): props['prev_gitshasum'] = from_state[f]['gitshasum'] status[f] = props for f, from_state_r in iteritems(from_state): if f not in to_state: # we new this, but now it is gone and Git is not complaining # about it being missing -> properly deleted and deletion # stages status[f] = dict( state='deleted', type=from_state_r['type'], # report the shasum to distinguish from a plainly vanished # file gitshasum=from_state_r['gitshasum'], ) if eval_state == 'global': return 'modified' if to is not None or eval_state == 'no': # if we have `to` we are specifically comparing against # a recorded state, and this function only attempts # to label the state of a subdataset, not investigate # specifically what the changes in subdatasets are # this is done by a high-level command like rev-diff # so the comparison within this repo and the present # `state` label are all we need, and they are done already if eval_state == 'global': return 'clean' else: return status # loop over all subdatasets and look for additional modifications for f, st in iteritems(status): f = text_type(f) if 'state' in st or not st['type'] == 'dataset': # no business here continue if not GitRepo.is_valid_repo(f): # submodule is not present, no chance for a conflict st['state'] = 'clean' continue # we have to recurse into the dataset and get its status subrepo = GitRepo(f) subrepo_commit = subrepo.get_hexsha() st['gitshasum'] = subrepo_commit # subdataset records must be labeled clean up to this point # test if current commit in subdataset deviates from what is # recorded in the dataset st['state'] = 'modified' \ if st['prev_gitshasum'] != subrepo_commit \ else 'clean' if eval_state == 'global' and st['state'] == 'modified': return 'modified' if eval_state == 'commit': continue # the recorded commit did not change, so we need to make # a more expensive traversal st['state'] = subrepo._diffstatus( # we can use 'HEAD' because we know that the commit # did not change. using 'HEAD' will facilitate # caching the result fr='HEAD', to=None, paths=None, untracked=untracked, eval_state='global', eval_file_type=False, _cache=_cache) if st['state'] == 'clean' else 'modified' if eval_state == 'global' and st['state'] == 'modified': return 'modified' if eval_state == 'global': return 'clean' else: return status def _save_pre(self, paths, _status, **kwargs): # helper to get an actionable status report if paths is not None and not paths and not _status: return if _status is None: if 'untracked' not in kwargs: kwargs['untracked'] = 'normal' status = self.status( paths=paths, **{k: kwargs[k] for k in kwargs if k in ('untracked', 'eval_submodule_state')}) else: # we want to be able to add items down the line # make sure to detach from prev. owner status = _status.copy() status = OrderedDict( (k, v) for k, v in iteritems(status) if v.get('state', None) != 'clean' ) return status def get_staged_paths(self): """Returns a list of any stage repository path(s) This is a rather fast call, as it will not depend on what is going on in the worktree. """ try: stdout, stderr = self._git_custom_command( None, ['git', 'diff', '--name-only', '--staged'], cwd=self.path, log_stderr=True, log_stdout=True, log_online=False, expect_stderr=False, expect_fail=True) except CommandError as e: lgr.debug(exc_str(e)) stdout = '' return [f for f in stdout.split('\n') if f] def _save_post(self, message, status, partial_commit): # helper to commit changes reported in status _datalad_msg = False if not message: message = 'Recorded changes' _datalad_msg = True # TODO remove pathobj stringification when commit() can # handle it to_commit = [text_type(f.relative_to(self.pathobj)) for f, props in iteritems(status)] \ if partial_commit else None if not partial_commit or to_commit: # we directly call GitRepo.commit() to avoid a whole slew # if direct-mode safeguards and workarounds in the AnnexRepo # implementation (which also run an additional dry-run commit GitRepo.commit( self, files=to_commit, msg=message, _datalad_msg=_datalad_msg, options=None, # do not raise on empty commit # it could be that the `add` in this save-cycle has already # brought back a 'modified' file into a clean state careless=True, ) def save(self, message=None, paths=None, _status=None, **kwargs): """Save dataset content. Parameters ---------- message : str or None A message to accompany the changeset in the log. If None, a default message is used. paths : list or None Any content with path matching any of the paths given in this list will be saved. Matching will be performed against the dataset status (GitRepo.status()), or a custom status provided via `_status`. If no paths are provided, ALL non-clean paths present in the repo status or `_status` will be saved. _status : dict or None If None, Repo.status() will be queried for the given `ds`. If a dict is given, its content will be used as a constraint. For example, to save only modified content, but no untracked content, set `paths` to None and provide a `_status` that has no entries for untracked content. **kwargs : Additional arguments that are passed to underlying Repo methods. Supported: - git : bool (passed to Repo.add() - eval_submodule_state : {'full', 'commit', 'no'} passed to Repo.status() - untracked : {'no', 'normal', 'all'} - passed to Repo.satus() """ return list( self.save_( message=message, paths=paths, _status=_status, **kwargs ) ) def save_(self, message=None, paths=None, _status=None, **kwargs): """Like `save()` but working as a generator.""" from datalad.interface.results import get_status_dict status = self._save_pre(paths, _status, **kwargs) if not status: # all clean, nothing todo lgr.debug('Nothing to save in %r, exiting early', self) return # three things are to be done: # - remove (deleted if not already staged) # - add (modified/untracked) # - commit (with all paths that have been touched, to bypass # potential pre-staged bits) need_partial_commit = True if self.get_staged_paths() else False # remove first, because removal of a subds would cause a # modification of .gitmodules to be added to the todo list to_remove = [ # TODO remove pathobj stringification when delete() can # handle it text_type(f.relative_to(self.pathobj)) for f, props in iteritems(status) if props.get('state', None) == 'deleted' and # staged deletions have a gitshasum reported for them # those should not be processed as git rm will error # due to them being properly gone already not props.get('gitshasum', None)] vanished_subds = any( props.get('type', None) == 'dataset' and props.get('state', None) == 'deleted' for f, props in iteritems(status)) if to_remove: for r in self.remove( to_remove, # we would always see individual files recursive=False): # TODO normalize result yield get_status_dict( action='delete', refds=self.pathobj, # TODO make remove() report the type # for now it claims to report on files only type='file', path=(self.pathobj / ut.PurePosixPath(r)), # make remove() report on failures too status='ok', logger=lgr) # TODO this additonal query should not be, base on status as given # if anyhow possible, however, when paths are given, status may # not contain all required information. In case of path=None AND # _status=None, we should be able to avoid this, because # status should have the full info already # looks for contained repositories added_submodule = False untracked_dirs = [f.relative_to(self.pathobj) for f, props in iteritems(status) if props.get('state', None) == 'untracked' and props.get('type', None) == 'directory'] if untracked_dirs: to_add_submodules = [sm for sm, sm_props in iteritems( self.get_content_info( untracked_dirs, ref=None, # request exhaustive list, so that everything that is # still reported as a directory must be its own repository untracked='all')) if sm_props.get('type', None) == 'directory'] for cand_sm in to_add_submodules: try: self.add_submodule( text_type(cand_sm.relative_to(self.pathobj)), url=None, name=None) except (CommandError, InvalidGitRepositoryError) as e: yield get_status_dict( action='add_submodule', ds=self, path=self.pathobj / ut.PurePosixPath(cand_sm), status='error', message=e.stderr if hasattr(e, 'stderr') else ('not a Git repository: %s', exc_str(e)), logger=lgr) continue # This mirrors the result structure yielded for # to_stage_submodules below. yield get_status_dict( action='add', refds=self.pathobj, type='file', key=None, path=self.pathobj / ut.PurePosixPath(cand_sm), status='ok', logger=lgr) added_submodule = True if not need_partial_commit: # without a partial commit an AnnexRepo would ignore any submodule # path in its add helper, hence `git add` them explicitly to_stage_submodules = { text_type(f.relative_to(self.pathobj)): props for f, props in iteritems(status) if props.get('state', None) in ('modified', 'untracked') and props.get('type', None) == 'dataset'} if to_stage_submodules: lgr.debug( '%i submodule path(s) to stage in %r %s', len(to_stage_submodules), self, to_stage_submodules if len(to_stage_submodules) < 10 else '') for r in GitRepo._save_add( self, to_stage_submodules, git_opts=None): # TODO the helper can yield proper dicts right away yield get_status_dict( action=r.get('command', 'add'), refds=self.pathobj, type='file', path=(self.pathobj / ut.PurePosixPath(r['file'])) if 'file' in r else None, status='ok' if r.get('success', None) else 'error', key=r.get('key', None), logger=lgr) if added_submodule or vanished_subds: # need to include .gitmodules in what needs saving status[self.pathobj.joinpath('.gitmodules')] = dict( type='file', state='modified') if hasattr(self, 'annexstatus') and not kwargs.get('git', False): # we cannot simply hook into the coming add-call # as this would go to annex, so make a dedicted git-add # call to ensure .gitmodules is not annexed # in any normal DataLad dataset .gitattributes will # prevent this, but in a plain repo it won't # https://github.com/datalad/datalad/issues/3306 for r in GitRepo._save_add( self, {op.join(self.path, '.gitmodules'): None}): yield get_status_dict( action='add', refds=self.pathobj, type='file', path=(self.pathobj / ut.PurePosixPath(r['file'])), status='ok' if r.get('success', None) else 'error', logger=lgr) to_add = { # TODO remove pathobj stringification when add() can # handle it text_type(f.relative_to(self.pathobj)): props for f, props in iteritems(status) if props.get('state', None) in ('modified', 'untracked')} if to_add: lgr.debug( '%i path(s) to add to %s %s', len(to_add), self, to_add if len(to_add) < 10 else '') for r in self._save_add( to_add, git_opts=None, **{k: kwargs[k] for k in kwargs if k in (('git',) if hasattr(self, 'annexstatus') else tuple())}): # TODO the helper can yield proper dicts right away yield get_status_dict( action=r.get('command', 'add'), refds=self.pathobj, type='file', path=(self.pathobj / ut.PurePosixPath(r['file'])) if 'file' in r else None, status='ok' if r.get('success', None) else 'error', key=r.get('key', None), logger=lgr) self._save_post(message, status, need_partial_commit) # TODO yield result for commit, prev helper checked hexsha pre # and post... def _save_add(self, files, git_opts=None): """Simple helper to add files in save()""" try: # without --verbose git 2.9.3 add does not return anything add_out = self._git_custom_command( list(files.keys()), ['git', 'add'] + assure_list(git_opts) + ['--verbose'] ) # get all the entries for o in self._process_git_get_output(*add_out): yield o except OSError as e: lgr.error("add: %s" % e) raise # TODO # remove submodule: nope, this is just deinit_submodule + remove # status? def _fixup_submodule_dotgit_setup(ds, relativepath): """Implementation of our current of .git in a subdataset Each subdataset/module has its own .git directory where a standalone repository would have it. No gitdir files, no symlinks. """ # move .git to superrepo's .git/modules, remove .git, create # .git-file path = opj(ds.path, relativepath) subds_dotgit = opj(path, ".git") src_dotgit = GitRepo.get_git_dir(path) if src_dotgit == '.git': # this is what we want return # first we want to remove any conflicting worktree setup # done by git to find the checkout at the mountpoint of the # submodule, if we keep that, any git command will fail # after we move .git GitRepo(path, init=False).config.unset( 'core.worktree', where='local') # what we have here is some kind of reference, remove and # replace by the target os.remove(subds_dotgit) # make absolute src_dotgit = opj(path, src_dotgit) # move .git from os import rename, listdir, rmdir assure_dir(subds_dotgit) for dot_git_entry in listdir(src_dotgit): rename(opj(src_dotgit, dot_git_entry), opj(subds_dotgit, dot_git_entry)) assert not listdir(src_dotgit) rmdir(src_dotgit)
38.341087
103
0.556357
8882a9417ba4e01fb2269a4a038d16c1476e6e82
2,166
py
Python
src/main.py
shubhamgoel27/satellite-image-downloader
05c21b45f19c43ad9c9f20d589dc4f01178b3ce0
[ "Apache-2.0" ]
2
2021-02-14T10:27:59.000Z
2021-10-29T18:51:34.000Z
src/main.py
shubhamgoel27/satellite-image-downloader
05c21b45f19c43ad9c9f20d589dc4f01178b3ce0
[ "Apache-2.0" ]
3
2021-06-08T21:41:01.000Z
2022-01-13T02:48:30.000Z
src/main.py
shubhamgoel27/satellite-image-downloader
05c21b45f19c43ad9c9f20d589dc4f01178b3ce0
[ "Apache-2.0" ]
2
2020-06-05T14:54:48.000Z
2021-12-22T16:35:56.000Z
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='3' import argparse from SatMaps.Maps import Maps from utils.utils import setup_logger from distutils.dir_util import mkpath def parse_args(): """Evaluation options for SatMaps download tool""" parser = argparse.ArgumentParser(description='Satellite Map Generator') # input_folder parser.add_argument('project', action='store', help='Directory to store this project in') parser.add_argument('--southwest', action='store', required=True, help='Southwest latitude and longitude. e.g. --southwest=39.1,-83.2') parser.add_argument('--northeast', action='store', required=True, help='Northeast latitude and longitude, e.g. --northeast=40.3,-82.4') parser.add_argument('--scale', action='store', type=int, default=1, help='Scale of image (1, 2)') parser.add_argument('--size', action='store', type=int, default=2048, help='Size of image') parser.add_argument('--format', action='store', default='png', help='File type') parser.add_argument('--maptype', action='store', default='satellite', help='Map type') parser.add_argument('--clientID', action='store',default=os.environ['GOOGLE_CLIENT_ID'], help='Google API client ID') parser.add_argument('--secret_key', action='store', default=os.environ['GOOGLE_SECRET_KEY'], help='Google API secret key') parser.add_argument('--skip', action='store_true', help='Redownload existing tiles') parser.add_argument('--raster_path', action='store', default='output.tif', help='Output Raster path') parser.add_argument('--data_dir', type=str, default='data/', help='data directory (default: /data/input/)') args, unknown = parser.parse_known_args() return args, unknown if __name__ == "__main__": args, unknown = parse_args() wrdr = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) mkpath(args.data_dir) logger = setup_logger('gis_logger', os.path.join(args.data_dir,"Maps.log")) logger.info('Logger initialized') maps = Maps(args, logger, unknown) tiles = maps.generate() maps.download(tiles) maps.stitch(tiles)
52.829268
139
0.695291
a48ac74e887a13f618641f24a44110811697daf6
1,874
py
Python
examples/example_mcmc_fit_script.py
jtschindler/sculptor
67b7ebfb05ee8ec9d00399c6d80c238d2104eebc
[ "BSD-3-Clause" ]
7
2021-01-25T16:45:57.000Z
2022-03-31T11:53:23.000Z
examples/example_mcmc_fit_script.py
jtschindler/sculptor
67b7ebfb05ee8ec9d00399c6d80c238d2104eebc
[ "BSD-3-Clause" ]
1
2022-03-31T15:41:33.000Z
2022-03-31T15:41:33.000Z
examples/example_mcmc_fit_script.py
jtschindler/sculptor
67b7ebfb05ee8ec9d00399c6d80c238d2104eebc
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python import corner import matplotlib.pyplot as plt from astropy.cosmology import FlatLambdaCDM from lmfit import Model, Parameters, fit_report from sculptor import specfit as scfit def example_fit_mcmc(): """Fitting the Sculptor example spectrum CIV line using MCMC :return: """ # Import the saved example spectrum fit = scfit.SpecFit() fit.load('example_spectrum_fit') # Setting the fit method to MCMC via emcee fit.fitting_method = 'Maximum likelihood via Monte-Carlo Markov Chain' # Set the MCMC keywords # They can be accessed via fit.emcee_kws fit.emcee_kws['steps'] = 5000 fit.emcee_kws['burn'] = 500 # We are fitting 6 parameters so nwalker=50 is fine fit.emcee_kws['nwalkers'] = 50 # No multiprocessing for now fit.emcee_kws['workers'] = 1 fit.emcee_kws['thin'] = 2 fit.emcee_kws['progress'] = True # Take uncertainties into account fit.emcee_kws['is_weighted'] = True # Select the CIV emission line SpecModel civ_model = fit.specmodels[2] # Fit the SpecModel using the MCMC method and emcee_kws modified above civ_model.fit() # Print the fit result print(civ_model.fit_result.fit_report()) # Retrieve the MCMC flat chain of the CIV model fit data = civ_model.fit_result.flatchain.to_numpy() # Visualize the flat chain fit results using the typical corner plot corner_plot = corner.corner(data, labels=civ_model.fit_result.var_names, quantiles=[0.16, 0.5, 0.84], show_titles=True, title_kwargs={"fontsize": 12} ) plt.show() # Save the MCMC flatchain to a file for analysis civ_model.save_mcmc_chain('example_spectrum_fit') example_fit_mcmc()
30.225806
74
0.653682
6d61594a470e6b89d12e49d206d5225e8ebb07e0
6,702
py
Python
closed/Alibaba/code/resnet/tfcpp/quantize/converter.py
EldritchJS/inference_results_v0.5
5552490e184d9fc342d871fcc410ac423ea49053
[ "Apache-2.0" ]
null
null
null
closed/Alibaba/code/resnet/tfcpp/quantize/converter.py
EldritchJS/inference_results_v0.5
5552490e184d9fc342d871fcc410ac423ea49053
[ "Apache-2.0" ]
null
null
null
closed/Alibaba/code/resnet/tfcpp/quantize/converter.py
EldritchJS/inference_results_v0.5
5552490e184d9fc342d871fcc410ac423ea49053
[ "Apache-2.0" ]
1
2019-12-05T18:53:17.000Z
2019-12-05T18:53:17.000Z
# Copyright 2019 The MLPerf Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import os import sys import argparse from google.protobuf import text_format import hgai from hgai.frontend.tensorflow import converter import tensorflow as tf import json import shutil import pudb # initialize HanGuangAI hgai.tf_init() def make_path(fpth): """make sure directory exists before read and write Arguments: fpth {str} -- path to desired file """ folder = os.path.dirname(fpth) if folder is None or folder == '': return if not os.path.isdir(folder): os.makedirs(folder) # read graphdef from tensorflow pb file def read_proto(pb_fname: str, as_text: bool = False): graph_def = tf.GraphDef() with open(pb_fname, "rb") as f: if not as_text: graph_def.ParseFromString(f.read()) else: text_format.Merge(f.read(), graph_def) return graph_def # write graphdef to tensorflow pb file def write_proto(graph_def, pb_fname, as_text: bool = False): make_path(pb_fname) if as_text: with open(pb_fname, 'w') as f: f.write(str(graph_def)) else: with open(pb_fname, 'wb') as f: f.write(graph_def.SerializeToString()) # initialize and update config settings for HanGuangAI quantization process def update_config(output_type): config = {} config['input_shapes'] = [[1, 224, 224, 3]] config['image_shape'] = [1, 224, 224, 3] config['output_dir'] = 'output' config['model_dir'] = os.getenv('MODEL_DIR') config['data_dir'] = os.getenv('DATA_DIR') config['cal_list_dir'] = os.getenv('LG_PATH') + '/../calibration/ImageNet/cal_image_list_option_1.txt' config['quant_cfg'] = {} for item in ['avgpool_input', 'avgpool_output', 'matmul_activations', 'matmul_weights', 'matmul_output', 'mean_input', 'mean_output', 'maxpool_input', 'maxpool_output', 'conv_activations', 'conv_weights', 'conv_output', 'reshape_input', 'reshape_output']: config['quant_cfg'][item] = {} config['quant_cfg'][item]['is_per_channel'] = False config['quant_cfg'][item]['num_bits'] = 8 config['quant_cfg'][item]['data_format'] = 'NHWC' for item in ['conv_weights', 'conv_output', 'matmul_weights', 'matmul_output']: config['quant_cfg'][item]['is_per_channel'] = True config['quant_cfg']['conv_weights']['data_format'] = 'HWIO' config['quant_cfg']['matmul_activations']['data_format'] = 'NC' config['quant_cfg']['matmul_weights']['data_format'] = 'IO' config['quant_cfg']['matmul_output']['data_format'] = 'NC' config['quant_cfg']['reshape_output']['data_format'] = 'NC' config['input_nodes'] = ['input_tensor'] config['output_nodes'] = ['ArgMax'] config['fp32_model_path'] = config['model_dir'] + '/fp32.pb' config['qfp32_quant_path'] = config['model_dir'] + '/quant.pb' config['qfp32_cal_path'] = config['model_dir'] + '/cal.pb' config['npu_model_path'] = config['model_dir'] + '/npu.pb' config['output_dir'] = 'output' config['output_type'] = output_type config['cal_cmd'] = '../classification_and_detection/cpp/classification --dataset={} --calibration={}'.format(config['data_dir'], config['cal_list_dir']) + ' --model={}' config['test_cmd'] = '../classification_and_detection/cpp/classification --dataset={} --scenario=SingleStream --queries-single=1 --skip-warmup --count=1 --accuracy'.format(config['data_dir']) + ' --model={}' assert output_type in ['qfp32', 'npu'], "output_type should in [qfp32, npu]" config['use_prequant'] = True config['enable_EMA'] = False config['remove_input_quant'] = True return config # HanGuangAI quantization process def quantize(config): # create directory for tmp files generated during process cal_data_path = config['output_dir'] if os.path.exists(cal_data_path): shutil.rmtree(cal_data_path) os.makedirs(cal_data_path, exist_ok=True) # read original graphdef from fp32 model graph_def = read_proto(config['fp32_model_path']) # create HanGuangAI converter object c = converter(graph_def, config) # calibration cal_model = c.to_cal() write_proto(cal_model, config['qfp32_cal_path']) cal_cmd = config['cal_cmd'].format(config['qfp32_cal_path']) print('cal: ' + cal_cmd) os.system(cal_cmd) # quantization quant_model = c.to_quant() write_proto(quant_model, config['qfp32_quant_path']) test_cmd = config['test_cmd'].format(config['qfp32_quant_path']) print('qfp32: ' + test_cmd) input_quant_path = '{}/input_quant_nodes.txt'.format(config['model_dir']) if os.path.exists('input_quant_nodes.txt'): os.remove('input_quant_nodes.txt') if os.path.exists(input_quant_path): os.remove(input_quant_path) os.system(test_cmd) # compilation and finalization npu_model = c.to_npu() write_proto(npu_model, config['npu_model_path']) if os.path.exists('input_quant_nodes.txt'): os.rename('input_quant_nodes.txt', input_quant_path) # final test to make sure the generated npu.pb working test_cmd = config['test_cmd'].format(config['npu_model_path']) print('npu: ' + test_cmd) os.system(test_cmd) if __name__ == "__main__": # command line option parsing parser = argparse.ArgumentParser() parser.add_argument('--output_type', default='qfp32', help='quantize output type, [qfp32, npu]') parser.add_argument('--debug', action='store_true', help='enable debug') args = parser.parse_args() # enable debugging if needed if args.debug: pu.db # initialize and update config settings c = update_config(args.output_type) # HanGuangAI quantization process quantize(c)
36.032258
211
0.643987
5837ed185ccacaffd048c92b68766206b4d3165a
32,965
py
Python
now_lms/__init__.py
bmosoluciones/now-lms
102c00f32ac63f80e428906a8f492e5ff6d4769e
[ "Apache-2.0" ]
null
null
null
now_lms/__init__.py
bmosoluciones/now-lms
102c00f32ac63f80e428906a8f492e5ff6d4769e
[ "Apache-2.0" ]
9
2021-10-30T15:32:00.000Z
2022-03-27T23:26:28.000Z
now_lms/__init__.py
bmosoluciones/now-lms
102c00f32ac63f80e428906a8f492e5ff6d4769e
[ "Apache-2.0" ]
1
2021-10-17T22:33:03.000Z
2021-10-17T22:33:03.000Z
# Copyright 2021 BMO Soluciones, S.A. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Contributors: # - William José Moreno Reyes """NOW Learning Management System.""" # Libreria standar: import sys from functools import wraps from os import environ, name, path, cpu_count from pathlib import Path from typing import Dict, Union # Librerias de terceros: from flask import Flask, abort, flash, redirect, request, render_template, url_for, current_app from flask.cli import FlaskGroup from flask_alembic import Alembic from flask_login import LoginManager, UserMixin, current_user, login_required, login_user, logout_user from flask_sqlalchemy import SQLAlchemy from flask_wtf import FlaskForm from flask_uploads import IMAGES, UploadSet, configure_uploads from loguru import logger as log from pg8000.dbapi import ProgrammingError as PGProgrammingError from pg8000.exceptions import DatabaseError from sqlalchemy.exc import ArgumentError, OperationalError, ProgrammingError from wtforms import BooleanField, DecimalField, DateField, IntegerField, PasswordField, SelectField, StringField, SubmitField from wtforms.validators import DataRequired # Recursos locales: from now_lms.version import PRERELEASE, VERSION # < --------------------------------------------------------------------------------------------- > # Metadatos __version__: str = VERSION DESARROLLO: bool = ( (PRERELEASE is not None) or ("FLASK_DEBUG" in environ) or (environ.get("FLASK_ENV") == "development") or ("CI" in environ) ) APPNAME: str = "NOW LMS" if DESARROLLO: log.warning("Opciones de desarrollo detectadas, favor revise su configuración.") # < --------------------------------------------------------------------------------------------- > # Datos predefinidos TIPOS_DE_USUARIO: list = ["admin", "user", "instructor", "moderator"] # < --------------------------------------------------------------------------------------------- > # Directorios de la aplicacion DIRECTORIO_APP: str = path.abspath(path.dirname(__file__)) DIRECTORIO_PRINCICIPAL: Path = Path(DIRECTORIO_APP).parent.absolute() DIRECTORIO_PLANTILLAS: str = path.join(DIRECTORIO_APP, "templates") DIRECTORIO_ARCHIVOS: str = path.join(DIRECTORIO_APP, "static") DIRECTORIO_BASE_ARCHIVOS_DE_USUARIO: str = path.join(DIRECTORIO_APP, "static", "files") DIRECTORIO_ARCHIVOS_PUBLICOS: str = path.join(DIRECTORIO_BASE_ARCHIVOS_DE_USUARIO, "public") DIRECTORIO_ARCHIVOS_PRIVADOS: str = path.join(DIRECTORIO_BASE_ARCHIVOS_DE_USUARIO, "private") # < --------------------------------------------------------------------------------------------- > # Directorios utilizados para la carga de archivos. DIRECTORIO_IMAGENES: str = path.join(DIRECTORIO_ARCHIVOS_PUBLICOS, "img") CARGA_IMAGENES = UploadSet("photos", IMAGES) # < --------------------------------------------------------------------------------------------- > # Ubicación predeterminada de base de datos SQLITE if name == "nt": SQLITE: str = "sqlite:///" + str(DIRECTORIO_PRINCICIPAL) + "\\now_lms.db" else: SQLITE = "sqlite:///" + str(DIRECTORIO_PRINCICIPAL) + "/now_lms.db" # < --------------------------------------------------------------------------------------------- > # Configuración de la aplicación, siguiendo "Twelve Factors App" las opciones se leen del entorno # o se utilizan valores predeterminados. CONFIGURACION: Dict = { "ADMIN_USER": environ.get("LMS_USER") or "lms-admin", "ADMIN_PSWD": environ.get("LMS_PSWD") or "lms-admin", "SECRET_KEY": environ.get("LMS_KEY") or "dev", "SQLALCHEMY_DATABASE_URI": environ.get("LMS_DB") or SQLITE, "SQLALCHEMY_TRACK_MODIFICATIONS": "False", # Carga de archivos "UPLOADED_PHOTOS_DEST": DIRECTORIO_IMAGENES, } # < --------------------------------------------------------------------------------------------- > # Inicialización de extensiones de terceros alembic: Alembic = Alembic() administrador_sesion: LoginManager = LoginManager() database: SQLAlchemy = SQLAlchemy() # < --------------------------------------------------------------------------------------------- > # Base de datos relacional MAXIMO_RESULTADOS_EN_CONSULTA_PAGINADA: int = 3 # Para hacer feliz a Sonar Cloud # https://sonarcloud.io/project/overview?id=bmosoluciones_now-lms LLAVE_FORONEA_CURSO: str = "curso.codigo" LLAVE_FORONEA_USUARIO: str = "usuario.usuario" # pylint: disable=too-few-public-methods # pylint: disable=no-member class BaseTabla: """Columnas estandar para todas las tablas de la base de datos.""" # Pistas de auditoria comunes a todas las tablas. id = database.Column(database.Integer(), primary_key=True, nullable=True) status = database.Column(database.String(50), nullable=True) creado = database.Column(database.DateTime, default=database.func.now(), nullable=False) creado_por = database.Column(database.String(15), nullable=True) modificado = database.Column(database.DateTime, default=database.func.now(), onupdate=database.func.now(), nullable=True) modificado_por = database.Column(database.String(15), nullable=True) class Usuario(UserMixin, database.Model, BaseTabla): # type: ignore[name-defined] """Una entidad con acceso al sistema.""" # Información Básica __table_args__ = (database.UniqueConstraint("usuario", name="usuario_unico"),) usuario = database.Column(database.String(150), nullable=False) acceso = database.Column(database.LargeBinary(), nullable=False) nombre = database.Column(database.String(100)) apellido = database.Column(database.String(100)) correo_electronico = database.Column(database.String(100)) # Tipo puede ser: admin, user, instructor, moderator tipo = database.Column(database.String(20)) activo = database.Column(database.Boolean()) genero = database.Column(database.String(1)) nacimiento = database.Column(database.Date()) class Curso(database.Model, BaseTabla): # type: ignore[name-defined] """Un curso es la base del aprendizaje en NOW LMS.""" __table_args__ = (database.UniqueConstraint("codigo", name="curso_codigo_unico"),) nombre = database.Column(database.String(150), nullable=False) codigo = database.Column(database.String(20), unique=True) descripcion = database.Column(database.String(500), nullable=False) # draft, public, active, closed estado = database.Column(database.String(10), nullable=False) # mooc publico = database.Column(database.Boolean()) certificado = database.Column(database.Boolean()) auditable = database.Column(database.Boolean()) precio = database.Column(database.Numeric()) capacidad = database.Column(database.Integer()) fecha_inicio = database.Column(database.Date()) fecha_fin = database.Column(database.Date()) duracion = database.Column(database.Integer()) portada = database.Column(database.String(250), nullable=True, default=None) nivel = database.Column(database.Integer()) class CursoSeccion(database.Model, BaseTabla): # type: ignore[name-defined] """Los cursos tienen secciones para dividir el contenido en secciones logicas.""" curso = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_CURSO), nullable=False) nombre = database.Column(database.String(150), nullable=False) indice = database.Column(database.Integer()) class CursoRecurso(database.Model, BaseTabla): # type: ignore[name-defined] """Un curso consta de una serie de recursos.""" curso = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_CURSO), nullable=False) seccion = database.Column(database.Integer(), database.ForeignKey("curso_seccion.id"), nullable=False) nombre = database.Column(database.String(150), nullable=False) indice = database.Column(database.Integer()) class Files(database.Model, BaseTabla): # type: ignore[name-defined] """Listado de archivos que se han cargado a la aplicacion.""" archivo = database.Column(database.String(100), nullable=False) tipo = database.Column(database.String(15), nullable=False) hash = database.Column(database.String(50), nullable=False) url = database.Column(database.String(100), nullable=False) class DocenteCurso(database.Model, BaseTabla): # type: ignore[name-defined] """Uno o mas usuario de tipo intructor pueden estar a cargo de un curso.""" curso = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_CURSO), nullable=False) usuario = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_USUARIO), nullable=False) vigente = database.Column(database.Boolean()) class ModeradorCurso(database.Model, BaseTabla): # type: ignore[name-defined] """Uno o mas usuario de tipo moderator pueden estar a cargo de un curso.""" curso = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_CURSO), nullable=False) usuario = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_USUARIO), nullable=False) vigente = database.Column(database.Boolean()) class EstudianteCurso(database.Model, BaseTabla): # type: ignore[name-defined] """Uno o mas usuario de tipo user pueden estar a cargo de un curso.""" curso = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_CURSO), nullable=False) usuario = database.Column(database.String(10), database.ForeignKey(LLAVE_FORONEA_USUARIO), nullable=False) vigente = database.Column(database.Boolean()) class Configuracion(database.Model, BaseTabla): # type: ignore[name-defined] """ Repositorio Central para la configuración de la aplicacion. Realmente esta tabla solo va a contener un registro con una columna para cada opción, en las plantillas va a estar disponible como la variable global config. """ titulo = database.Column(database.String(150), nullable=False) descripcion = database.Column(database.String(500), nullable=False) # Uno de mooc, school, training modo = database.Column(database.String(500), nullable=False, default="mooc") # Pagos en linea paypal_key = database.Column(database.String(150), nullable=True) stripe_key = database.Column(database.String(150), nullable=True) # Micelaneos dev_docs = database.Column(database.Boolean(), default=False) # Permitir al usuario cargar archivos file_uploads = database.Column(database.Boolean(), default=False) # < --------------------------------------------------------------------------------------------- > # Funciones auxiliares relacionadas a contultas de la base de datos. def verifica_docente_asignado_a_curso(id_curso: Union[None, str] = None): """Si el usuario no esta asignado como docente al curso devuelve None.""" if current_user.is_authenticated: return DocenteCurso.query.filter(DocenteCurso.usuario == current_user.usuario, DocenteCurso.curso == id_curso) else: return False def verifica_moderador_asignado_a_curso(id_curso: Union[None, str] = None): """Si el usuario no esta asignado como moderador al curso devuelve None.""" if current_user.is_authenticated: return ModeradorCurso.query.filter(ModeradorCurso.usuario == current_user.usuario, ModeradorCurso.curso == id_curso) else: return False def verifica_estudiante_asignado_a_curso(id_curso: Union[None, str] = None): """Si el usuario no esta asignado como estudiante al curso devuelve None.""" if current_user.is_authenticated: return EstudianteCurso.query.filter(EstudianteCurso.usuario == current_user.usuario, EstudianteCurso.curso == id_curso) else: return False # < --------------------------------------------------------------------------------------------- > # Control de acceso a la aplicación @administrador_sesion.user_loader def cargar_sesion(identidad): """Devuelve la entrada correspondiente al usuario que inicio sesión.""" if identidad is not None: return Usuario.query.get(identidad) return None @administrador_sesion.unauthorized_handler def no_autorizado(): """Redirecciona al inicio de sesión usuarios no autorizados.""" flash("Favor iniciar sesión para acceder al sistema.") return INICIO_SESION def proteger_passwd(clave): """Devuelve una contraseña salteada con bcrytp.""" from bcrypt import hashpw, gensalt return hashpw(clave.encode(), gensalt()) def validar_acceso(usuario_id, acceso): """Verifica el inicio de sesión del usuario.""" from bcrypt import checkpw registro = Usuario.query.filter_by(usuario=usuario_id).first() if registro is not None: clave_validada = checkpw(acceso.encode(), registro.acceso) else: clave_validada = False return clave_validada # < --------------------------------------------------------------------------------------------- > # Definición de formularios class LoginForm(FlaskForm): """Formulario de inicio de sesión.""" usuario = StringField(validators=[DataRequired()]) acceso = PasswordField(validators=[DataRequired()]) inicio_sesion = SubmitField() class LogonForm(FlaskForm): """Formulario para crear un nuevo usuario.""" usuario = StringField(validators=[DataRequired()]) acceso = PasswordField(validators=[DataRequired()]) nombre = StringField(validators=[DataRequired()]) apellido = StringField(validators=[DataRequired()]) correo_electronico = StringField(validators=[DataRequired()]) class CurseForm(FlaskForm): """Formulario para crear un nuevo curso.""" nombre = StringField(validators=[DataRequired()]) codigo = StringField(validators=[DataRequired()]) descripcion = StringField(validators=[DataRequired()]) publico = BooleanField(validators=[]) auditable = BooleanField(validators=[]) certificado = BooleanField(validators=[]) precio = DecimalField(validators=[]) capacidad = IntegerField(validators=[]) fecha_inicio = DateField(validators=[]) fecha_fin = DateField(validators=[]) duracion = IntegerField(validators=[]) nivel = SelectField("User", choices=[(0, "Introductorio"), (1, "Principiante"), (2, "Intermedio"), (2, "Avanzado")]) # < --------------------------------------------------------------------------------------------- > # Definición de la aplicación lms_app = Flask( "now_lms", template_folder=DIRECTORIO_PLANTILLAS, static_folder=DIRECTORIO_ARCHIVOS, ) lms_app.config.from_mapping(CONFIGURACION) with lms_app.app_context(): alembic.init_app(lms_app) administrador_sesion.init_app(lms_app) database.init_app(lms_app) configure_uploads(app=lms_app, upload_sets=[CARGA_IMAGENES]) try: CONFIG = Configuracion.query.first() except OperationalError: CONFIG = None except ProgrammingError: CONFIG = None except PGProgrammingError: CONFIG = None except DatabaseError: CONFIG = None if CONFIG: log.info("Configuración detectada.") else: log.warning("No se pudo cargar la configuración.") lms_app.jinja_env.globals["current_user"] = current_user lms_app.jinja_env.globals["config"] = CONFIG lms_app.jinja_env.globals["docente_asignado"] = verifica_docente_asignado_a_curso lms_app.jinja_env.globals["moderador_asignado"] = verifica_moderador_asignado_a_curso lms_app.jinja_env.globals["estudiante_asignado"] = verifica_estudiante_asignado_a_curso def init_app(): """Funcion auxiliar para iniciar la aplicacion.""" with current_app.app_context(): if DESARROLLO: log.warning("Modo desarrollo detectado.") log.warning("Iniciando una base de datos nueva.") database.drop_all() if not database.engine.has_table("usuario"): log.info("Iniciando Configuracion de la aplicacion.") log.info("Creando esquema de base de datos.") database.create_all() log.info("Creando usuario administrador.") administrador = Usuario( usuario=CONFIGURACION.get("ADMIN_USER"), acceso=proteger_passwd(CONFIGURACION.get("ADMIN_PSWD")), tipo="admin", activo=True, ) config = Configuracion( titulo="NOW LMS", descripcion="Sistema de aprendizaje en linea.", ) database.session.add(administrador) database.session.add(config) database.session.commit() else: log.warning("NOW LMS ya se encuentra configurado.") log.warning("Intente ejecutar 'python -m now_lms'") @lms_app.cli.command() def setup(): # pragma: no cover """Inicia al aplicacion.""" with current_app.app_context(): init_app() @lms_app.cli.command() def serve(): # pragma: no cover """Servidor WSGI predeterminado.""" from waitress import serve as server if not CONFIG: init_app() if environ.get("LMS_PORT"): PORT: int = int(environ.get("LMS_PORT")) elif environ.get("PORT"): PORT = int(environ.get("PORT")) else: PORT = 8080 if DESARROLLO: THREADS: int = 4 else: if environ.get("LMS_THREADS"): THREADS = int(environ.get("LMS_THREADS")) else: THREADS = (cpu_count() * 2) + 1 log.info("Iniciando servidor WSGI en puerto {puerto} con {threads} hilos.", puerto=PORT, threads=THREADS) server(app=lms_app, port=int(PORT), threads=THREADS) @lms_app.errorhandler(404) def error_404(error): """Pagina personalizada para recursos no encontrados.""" assert error is not None return render_template("404.html"), 404 @lms_app.errorhandler(403) def error_403(error): """Pagina personalizada para recursos no autorizados.""" assert error is not None return render_template("403.html"), 403 # < --------------------------------------------------------------------------------------------- > # Interfaz de linea de comandos COMMAND_LINE_INTERFACE = FlaskGroup( help="""\ Interfaz de linea de comandos para la administración de NOW LMS. """ ) def command(as_module=False) -> None: """Linea de comandos para administración de la aplicacion.""" COMMAND_LINE_INTERFACE.main(args=sys.argv[1:], prog_name="python -m flask" if as_module else None) # < --------------------------------------------------------------------------------------------- > # Funciones auxiliares def asignar_curso_a_instructor(curso_codigo: Union[None, str] = None, usuario_id: Union[None, str] = None): """Asigna un usuario como instructor de un curso.""" ASIGNACION = DocenteCurso(curso=curso_codigo, usuario=usuario_id, vigente=True, creado_por=current_user.usuario) database.session.add(ASIGNACION) database.session.commit() def asignar_curso_a_moderador(curso_codigo: Union[None, str] = None, usuario_id: Union[None, str] = None): """Asigna un usuario como moderador de un curso.""" ASIGNACION = ModeradorCurso(usuario=usuario_id, curso=curso_codigo, vigente=True, creado_por=current_user.usuario) database.session.add(ASIGNACION) database.session.commit() def asignar_curso_a_estudiante(curso_codigo: Union[None, str] = None, usuario_id: Union[None, str] = None): """Asigna un usuario como moderador de un curso.""" ASIGNACION = EstudianteCurso( creado_por=current_user.usuario, curso=curso_codigo, usuario=usuario_id, vigente=True, ) database.session.add(ASIGNACION) database.session.commit() def cambia_tipo_de_usuario_por_id(id_usuario: Union[None, str] = None, nuevo_tipo: Union[None, str] = None): """ Cambia el estatus de un usuario del sistema. Los valores reconocidos por el sistema son: admin, user, instructor, moderator. """ USUARIO = Usuario.query.filter_by(usuario=id_usuario).first() USUARIO.tipo = nuevo_tipo database.session.commit() def cambia_estado_curso_por_id(id_curso: Union[None, str, int] = None, nuevo_estado: Union[None, str] = None): """ Cambia el estatus de un curso. Los valores reconocidos por el sistema son: draft, public, open, closed. """ CURSO = Curso.query.filter_by(codigo=id_curso).first() CURSO.estado = nuevo_estado database.session.commit() def cambia_curso_publico(id_curso: Union[None, str, int] = None): """Cambia el estatus publico de un curso.""" CURSO = Curso.query.filter_by(codigo=id_curso).first() if CURSO.publico: CURSO.publico = False else: CURSO.publico = True database.session.commit() # < --------------------------------------------------------------------------------------------- > # Definición de rutas/vistas def perfil_requerido(perfil_id): """Comprueba si un usuario tiene acceso a un recurso determinado en base a su tipo.""" def decorator_verifica_acceso(func): @wraps(func) def wrapper(*args, **kwargs): if (current_user.is_authenticated and current_user.tipo == perfil_id) or current_user.tipo == "admin": return func(*args, **kwargs) else: flash("No se encuentra autorizado a acceder al recurso solicitado.") return abort(403) return wrapper return decorator_verifica_acceso # < --------------------------------------------------------------------------------------------- > # Definición de rutas/vistas # pylint: disable=singleton-comparison # <-------- Autenticación de usuarios --------> INICIO_SESION = redirect("/login") @lms_app.route("/login", methods=["GET", "POST"]) def inicio_sesion(): """Inicio de sesión del usuario.""" form = LoginForm() if form.validate_on_submit(): if validar_acceso(form.usuario.data, form.acceso.data): identidad = Usuario.query.filter_by(usuario=form.usuario.data).first() if identidad.activo: login_user(identidad) return redirect(url_for("panel")) else: flash("Su cuenta esta inactiva.") return INICIO_SESION else: flash("Inicio de Sesion Incorrecto.") return INICIO_SESION return render_template("auth/login.html", form=form, titulo="Inicio de Sesion - NOW LMS") @lms_app.route("/logon", methods=["GET", "POST"]) def crear_cuenta(): """Crear cuenta de usuario.""" form = LogonForm() if form.validate_on_submit() or request.method == "POST": usuario_ = Usuario( usuario=form.usuario.data, acceso=proteger_passwd(form.acceso.data), nombre=form.nombre.data, apellido=form.apellido.data, correo_electronico=form.correo_electronico.data, tipo="user", activo=False, ) try: database.session.add(usuario_) database.session.commit() flash("Cuenta creada exitosamente.") return INICIO_SESION except OperationalError: flash("Error al crear la cuenta.") return redirect("/logon") else: return render_template("auth/logon.html", form=form, titulo="Crear cuenta - NOW LMS") @lms_app.route("/new_user", methods=["GET", "POST"]) def crear_usuario(): """Crear manualmente una cuenta de usuario.""" form = LogonForm() if form.validate_on_submit() or request.method == "POST": usuario_ = Usuario( usuario=form.usuario.data, acceso=proteger_passwd(form.acceso.data), nombre=form.nombre.data, apellido=form.apellido.data, correo_electronico=form.correo_electronico.data, tipo="user", activo=False, ) try: database.session.add(usuario_) database.session.commit() flash("Usuario creado exitosamente.") return redirect(url_for("usuario", id_usuario=form.usuario.data)) except OperationalError: flash("Error al crear la cuenta.") return redirect("/new_user") else: return render_template( "learning/nuevo_usuario.html", form=form, ) @lms_app.route("/exit") @lms_app.route("/logout") @lms_app.route("/salir") def cerrar_sesion(): """Finaliza la sesion actual.""" logout_user() return redirect("/home") # <-------- Estructura general de al aplicación --------> @lms_app.route("/") @lms_app.route("/home") @lms_app.route("/index") def home(): """Página principal de la aplicación.""" CURSOS = Curso.query.filter(Curso.publico == True, Curso.estado == "public").paginate( # noqa: E712 request.args.get("page", default=1, type=int), 6, False ) return render_template("inicio/mooc.html", cursos=CURSOS) @lms_app.route("/dashboard") @lms_app.route("/panel") @login_required def panel(): """Panel principal de la aplicacion.""" return render_template("inicio/panel.html") @lms_app.route("/student") @login_required def pagina_estudiante(): """Perfil de usuario.""" return render_template("perfiles/estudiante.html") @lms_app.route("/moderator") @login_required def pagina_moderador(): """Perfil de usuario moderador.""" return render_template("perfiles/moderador.html") @lms_app.route("/instructor") @login_required def pagina_instructor(): """Perfil de usuario instructor.""" return render_template("perfiles/instructor.html") @lms_app.route("/admin") @login_required def pagina_admin(): """Perfil de usuario administrador.""" return render_template("perfiles/admin.html", inactivos=Usuario.query.filter_by(activo=False).count() or 0) # <-------- Aprendizaje --------> @lms_app.route("/program") @lms_app.route("/programa") def programa(): """ Página principal del programa. Un programa puede constar de uno o mas cursos individuales """ @lms_app.route("/new_curse", methods=["GET", "POST"]) @login_required @perfil_requerido("instructor") def nuevo_curso(): """Formulario para crear un nuevo usuario.""" form = CurseForm() if form.validate_on_submit() or request.method == "POST": nuevo_curso_ = Curso( nombre=form.nombre.data, codigo=form.codigo.data, descripcion=form.descripcion.data, estado="draft", publico=form.publico.data, auditable=form.auditable.data, certificado=form.certificado.data, precio=form.precio.data, capacidad=form.capacidad.data, fecha_inicio=form.fecha_inicio.data, fecha_fin=form.fecha_fin.data, duracion=form.duracion.data, creado_por=current_user.usuario, nivel=form.nivel.data, ) try: database.session.add(nuevo_curso_) database.session.commit() asignar_curso_a_instructor(curso_codigo=form.codigo.data, usuario_id=current_user.usuario) flash("Curso creado exitosamente.") return redirect(url_for("curso", course_code=form.codigo.data)) except OperationalError: flash("Hubo en error al crear su curso.") return redirect("/instructor") else: return render_template("learning/nuevo_curso.html", form=form) @lms_app.route("/courses") @lms_app.route("/cursos") @login_required def cursos(): """Pagina principal del curso.""" if current_user.tipo == "admin": lista_cursos = Curso.query.paginate( request.args.get("page", default=1, type=int), MAXIMO_RESULTADOS_EN_CONSULTA_PAGINADA, False ) else: try: lista_cursos = ( Curso.query.join(Curso.creado_por) .filter(Usuario.id == current_user.id) .paginate(request.args.get("page", default=1, type=int), MAXIMO_RESULTADOS_EN_CONSULTA_PAGINADA, False) ) except ArgumentError: lista_cursos = None return render_template("learning/curso_lista.html", consulta=lista_cursos) @lms_app.route("/course/<course_code>") @lms_app.route("/curso") def curso(course_code): """Pagina principal del curso.""" return render_template( "learning/curso.html", curso=Curso.query.filter_by(codigo=course_code).first(), secciones=CursoSeccion.query.filter_by(curso=course_code).all(), recursos=CursoRecurso.query.filter_by(curso=course_code).all(), ) # <-------- Administración --------> @lms_app.route("/users") @login_required @perfil_requerido("admin") def usuarios(): """Lista de usuarios con acceso a al aplicación.""" CONSULTA = Usuario.query.paginate( request.args.get("page", default=1, type=int), MAXIMO_RESULTADOS_EN_CONSULTA_PAGINADA, False ) return render_template( "admin/users.html", consulta=CONSULTA, ) @lms_app.route("/inactive_users") @login_required @perfil_requerido("admin") def usuarios_inactivos(): """Lista de usuarios con acceso a al aplicación.""" CONSULTA = Usuario.query.filter_by(activo=False).paginate( request.args.get("page", default=1, type=int), MAXIMO_RESULTADOS_EN_CONSULTA_PAGINADA, False ) return render_template( "admin/inactive_users.html", consulta=CONSULTA, ) @lms_app.route("/user/<id_usuario>") @login_required @perfil_requerido("admin") def usuario(id_usuario): """Acceso administrativo al perfil de un usuario.""" perfil_usuario = Usuario.query.filter_by(usuario=id_usuario).first() # La misma plantilla del perfil de usuario con permisos elevados como # activar desactivar el perfil o cambiar el perfil del usuario. return render_template("inicio/perfil.html", perfil=perfil_usuario) # <-------- Espacio del usuario --------> @lms_app.route("/perfil") @login_required def perfil(): """Perfil del usuario.""" perfil_usuario = Usuario.query.filter_by(usuario=current_user.usuario).first() return render_template("inicio/perfil.html", perfil=perfil_usuario) # <-------- Funciones Auxiliares --------> @lms_app.route("/set_user_as_active/<user_id>") @login_required @perfil_requerido("admin") def activar_usuario(user_id): """Estable el usuario como activo y redirecciona a la vista dada.""" perfil_usuario = Usuario.query.filter_by(usuario=user_id).first() perfil_usuario.activo = True database.session.add(perfil_usuario) database.session.commit() return redirect(url_for("usuario", id_usuario=user_id)) @lms_app.route("/set_user_as_inactive/<user_id>") @login_required @perfil_requerido("admin") def inactivar_usuario(user_id): """Estable el usuario como activo y redirecciona a la vista dada.""" perfil_usuario = Usuario.query.filter_by(usuario=user_id).first() perfil_usuario.activo = False database.session.add(perfil_usuario) database.session.commit() return redirect(url_for("usuario", id_usuario=user_id)) @lms_app.route("/delete_user/<user_id>") @login_required @perfil_requerido("admin") def eliminar_usuario(user_id): """Elimina un usuario por su id y redirecciona a la vista dada.""" perfil_usuario = Usuario.query.filter(Usuario.usuario == user_id) perfil_usuario.delete() database.session.commit() return redirect(url_for(request.args.get("ruta", default="home", type=str))) @lms_app.route("/change_user_tipo") @login_required @perfil_requerido("admin") def cambiar_tipo_usario(): """Actualiza el tipo de usuario.""" cambia_tipo_de_usuario_por_id( id_usuario=request.args.get("user"), nuevo_tipo=request.args.get("type"), ) return redirect(url_for("usuario", id_usuario=request.args.get("user"))) @lms_app.route("/change_curse_status") @login_required @perfil_requerido("admin") def cambiar_estatus_curso(): """Actualiza el estatus de un curso.""" cambia_estado_curso_por_id( id_curso=request.args.get("curse"), nuevo_estado=request.args.get("status"), ) return redirect(url_for("curso", course_code=request.args.get("curse"))) @lms_app.route("/change_curse_public") @login_required @perfil_requerido("admin") def cambiar_curso_publico(): """Actualiza el estado publico de un curso.""" cambia_curso_publico( id_curso=request.args.get("curse"), ) return redirect(url_for("curso", course_code=request.args.get("curse"))) # Los servidores WSGI buscan por defecto una app app = lms_app
36.791295
127
0.666859
e1cb7acab81d706eb3e3c33a350c94b56c0ff899
8,879
py
Python
scipy/constants/constants.py
seberg/scipy
d8081cdd40ed8cbebd5905c0ad6c323c57d5da6e
[ "BSD-3-Clause" ]
2
2015-10-30T10:04:46.000Z
2017-03-11T00:58:21.000Z
scipy/constants/constants.py
seberg/scipy
d8081cdd40ed8cbebd5905c0ad6c323c57d5da6e
[ "BSD-3-Clause" ]
null
null
null
scipy/constants/constants.py
seberg/scipy
d8081cdd40ed8cbebd5905c0ad6c323c57d5da6e
[ "BSD-3-Clause" ]
null
null
null
""" Collection of physical constants and conversion factors. Most constants are in SI units, so you can do print '10 mile per minute is', 10*mile/minute, 'm/s or', 10*mile/(minute*knot), 'knots' The list is not meant to be comprehensive, but just a convenient list for everyday use. """ """ BasSw 2006 physical constants: imported from CODATA unit conversion: see e.g. NIST special publication 811 Use at own risk: double-check values before calculating your Mars orbit-insertion burn. Some constants exist in a few variants, which are marked with suffixes. The ones without any suffix should be the most common one. """ import math as _math from codata import value as _cd import numpy as _np #mathematical constants pi = _math.pi golden = golden_ratio = (1 + _math.sqrt(5)) / 2 #SI prefixes yotta = 1e24 zetta = 1e21 exa = 1e18 peta = 1e15 tera = 1e12 giga = 1e9 mega = 1e6 kilo = 1e3 hecto = 1e2 deka = 1e1 deci = 1e-1 centi = 1e-2 milli = 1e-3 micro = 1e-6 nano = 1e-9 pico = 1e-12 femto = 1e-15 atto = 1e-18 zepto = 1e-21 #binary prefixes kibi = 2**10 mebi = 2**20 gibi = 2**30 tebi = 2**40 pebi = 2**50 exbi = 2**60 zebi = 2**70 yobi = 2**80 #physical constants c = speed_of_light = _cd('speed of light in vacuum') mu_0 = 4e-7*pi epsilon_0 = 1 / (mu_0*c*c) h = Planck = _cd('Planck constant') hbar = h / (2 * pi) G = gravitational_constant = _cd('Newtonian constant of gravitation') g = _cd('standard acceleration of gravity') e = elementary_charge = _cd('elementary charge') R = gas_constant = _cd('molar gas constant') alpha = fine_structure = _cd('fine-structure constant') N_A = Avogadro = _cd('Avogadro constant') k = Boltzmann = _cd('Boltzmann constant') sigma = Stefan_Boltzmann = _cd('Stefan-Boltzmann constant') Wien = _cd('Wien wavelength displacement law constant') Rydberg = _cd('Rydberg constant') #weight in kg gram = 1e-3 metric_ton = 1e3 grain = 64.79891e-6 lb = pound = 7000 * grain #avoirdupois oz = ounce = pound / 16 stone = 14 * pound long_ton = 2240 * pound short_ton = 2000 * pound troy_ounce = 480 * grain #only for metals / gems troy_pound = 12 * troy_ounce carat = 200e-6 m_e = electron_mass = _cd('electron mass') m_p = proton_mass = _cd('proton mass') m_n = neutron_mass = _cd('neutron mass') m_u = u = atomic_mass = _cd('atomic mass constant') #angle in rad degree = pi / 180 arcmin = arcminute = degree / 60 arcsec = arcsecond = arcmin / 60 #time in second minute = 60.0 hour = 60 * minute day = 24 * hour week = 7 * day year = 365 * day Julian_year = 365.25 * day #length in meter inch = 0.0254 foot = 12 * inch yard = 3 * foot mile = 1760 * yard mil = inch / 1000 pt = point = inch / 72 #typography survey_foot = 1200.0 / 3937 survey_mile = 5280 * survey_foot nautical_mile = 1852.0 fermi = 1e-15 angstrom = 1e-10 micron = 1e-6 au = astronomical_unit = 149597870691.0 light_year = Julian_year * c parsec = au / arcsec #pressure in pascal atm = atmosphere = _cd('standard atmosphere') bar = 1e5 torr = mmHg = atm / 760 psi = pound * g / (inch * inch) #area in meter**2 hectare = 1e4 acre = 43560 * foot**2 #volume in meter**3 litre = liter = 1e-3 gallon = gallon_US = 231 * inch**3 #US #pint = gallon_US / 8 fluid_ounce = fluid_ounce_US = gallon_US / 128 bbl = barrel = 42 * gallon_US #for oil gallon_imp = 4.54609e-3 #uk fluid_ounce_imp = gallon_imp / 160 #speed in meter per second kmh = 1e3 / hour mph = mile / hour mach = speed_of_sound = 340.5 #approx value at 15 degrees in 1 atm. is this a common value? knot = nautical_mile / hour #temperature in kelvin zero_Celsius = 273.15 degree_Fahrenheit = 1/1.8 #only for differences #energy in joule eV = electron_volt = elementary_charge # * 1 Volt calorie = calorie_th = 4.184 calorie_IT = 4.1868 erg = 1e-7 Btu_th = pound * degree_Fahrenheit * calorie_th / gram Btu = Btu_IT = pound * degree_Fahrenheit * calorie_IT / gram ton_TNT = 1e9 * calorie_th #Wh = watt_hour #power in watt hp = horsepower = 550 * foot * pound * g #force in newton dyn = dyne = 1e-5 lbf = pound_force = pound * g kgf = kilogram_force = g # * 1 kg #functions for conversions that are not linear def C2K(C): """ Convert Celsius to Kelvin Parameters ---------- C : array_like Celsius temperature(s) to be converted. Returns ------- K : float or array of floats Equivalent Kelvin temperature(s). Notes ----- Computes ``K = C + zero_Celsius`` where `zero_Celsius` = 273.15, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius. Examples -------- >>> from scipy.constants.constants import C2K >>> C2K(_np.array([-40, 40.0])) array([ 233.15, 313.15]) """ return _np.asanyarray(C) + zero_Celsius def K2C(K): """ Convert Kelvin to Celsius Parameters ---------- K : array_like Kelvin temperature(s) to be converted. Returns ------- C : float or array of floats Equivalent Celsius temperature(s). Notes ----- Computes ``C = K - zero_Celsius`` where `zero_Celsius` = 273.15, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius. Examples -------- >>> from scipy.constants.constants import K2C >>> K2C(_np.array([233.15, 313.15])) array([-40., 40.]) """ return _np.asanyarray(K) - zero_Celsius def F2C(F): """ Convert Fahrenheit to Celsius Parameters ---------- F : array_like Fahrenheit temperature(s) to be converted. Returns ------- C : float or array of floats Equivalent Celsius temperature(s). Notes ----- Computes ``C = (F - 32) / 1.8``. Examples -------- >>> from scipy.constants.constants import F2C >>> F2C(_np.array([-40, 40.0])) array([-40. , 4.44444444]) """ return (_np.asanyarray(F) - 32) / 1.8 def C2F(C): """ Convert Celsius to Fahrenheit Parameters ---------- C : array_like Celsius temperature(s) to be converted. Returns ------- F : float or array of floats Equivalent Fahrenheit temperature(s). Notes ----- Computes ``F = 1.8 * C + 32``. Examples -------- >>> from scipy.constants.constants import C2F >>> C2F(_np.array([-40, 40.0])) array([ -40., 104.]) """ return 1.8 * _np.asanyarray(C) + 32 def F2K(F): """ Convert Fahrenheit to Kelvin Parameters ---------- F : array_like Fahrenheit temperature(s) to be converted. Returns ------- K : float or array of floats Equivalent Kelvin temperature(s). Notes ----- Computes ``K = (F - 32)/1.8 + zero_Celsius`` where `zero_Celsius` = 273.15, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius. Examples -------- >>> from scipy.constants.constants import F2K >>> F2K(_np.array([-40, 104])) array([ 233.15, 313.15]) """ return C2K(F2C(_np.asanyarray(F))) def K2F(K): """ Convert Kelvin to Fahrenheit Parameters ---------- K : array_like Kelvin temperature(s) to be converted. Returns ------- F : float or array of floats Equivalent Fahrenheit temperature(s). Notes ----- Computes ``F = 1.8 * (K - zero_Celsius) + 32`` where `zero_Celsius` = 273.15, i.e., (the absolute value of) temperature "absolute zero" as measured in Celsius. Examples -------- >>> from scipy.constants.constants import K2F >>> K2F(_np.array([233.15, 313.15])) array([ -40., 104.]) """ return C2F(K2C(_np.asanyarray(K))) #optics def lambda2nu(lambda_): """ Convert wavelength to optical frequency Parameters ---------- lambda : array_like Wavelength(s) to be converted. Returns ------- nu : float or array of floats Equivalent optical frequency. Notes ----- Computes ``nu = c / lambda`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants.constants import lambda2nu >>> lambda2nu(_np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return _np.asanyarray(c) / lambda_ def nu2lambda(nu): """ Convert optical frequency to wavelength. Parameters ---------- nu : array_like Optical frequency to be converted. Returns ------- lambda : float or array of floats Equivalent wavelength(s). Notes ----- Computes ``lambda = c / nu`` where c = 299792458.0, i.e., the (vacuum) speed of light in meters/second. Examples -------- >>> from scipy.constants.constants import nu2lambda >>> nu2lambda(_np.array((1, speed_of_light))) array([ 2.99792458e+08, 1.00000000e+00]) """ return c / _np.asanyarray(nu)
22.253133
91
0.628562
984973de3680969d21de7daf893405ea2914817e
1,971
py
Python
Python3/745.py
rakhi2001/ecom7
73790d44605fbd51e8f7e804b9808e364fcfc680
[ "MIT" ]
854
2018-11-09T08:06:16.000Z
2022-03-31T06:05:53.000Z
Python3/745.py
rakhi2001/ecom7
73790d44605fbd51e8f7e804b9808e364fcfc680
[ "MIT" ]
29
2019-06-02T05:02:25.000Z
2021-11-15T04:09:37.000Z
Python3/745.py
rakhi2001/ecom7
73790d44605fbd51e8f7e804b9808e364fcfc680
[ "MIT" ]
347
2018-12-23T01:57:37.000Z
2022-03-12T14:51:21.000Z
__________________________________________________________________________________________________ sample 716 ms submission class WordFilter: def __init__(self, words): from collections import defaultdict self.prefixes = defaultdict(set) self.suffixes = defaultdict(set) self.weights = {} for index, word in enumerate(words): prefix, suffix = '', '' for char in [''] + list(word): prefix += char self.prefixes[prefix].add(word) for char in [''] + list(word[::-1]): suffix += char self.suffixes[suffix[::-1]].add(word) self.weights[word] = index def f(self, prefix, suffix): weight = -1 for word in self.prefixes[prefix] & self.suffixes[suffix]: if self.weights[word] > weight: weight = self.weights[word] return weight __________________________________________________________________________________________________ sample 748 ms submission class WordFilter: def __init__(self, words: List[str]): self.filters = {} for idx, word in enumerate(words): n = len(word) prefixes = ['']*(n+1) suffixes = ['']*(n+1) for i in range(n): prefixes[i+1] = prefixes[i] + word[i] suffixes[i+1] = word[n-i-1] + suffixes[i] for pre in prefixes: for suf in suffixes: self.filters[pre + '_' + suf] = idx def f(self, prefix: str, suffix: str) -> int: key = prefix + '_' + suffix if key in self.filters: return self.filters[key] return -1 # Your WordFilter object will be instantiated and called as such: # obj = WordFilter(words) # param_1 = obj.f(prefix,suffix) __________________________________________________________________________________________________
36.5
98
0.591578
2b4c9f9014c2ed80a8f51f2e884d312bec02ba67
10,737
py
Python
contrib/devtools/update-translations.py
SparkBaseHub/SparkToken
d5c560c8750fee02e6551e6b8254b6b3ebe3c6c2
[ "MIT" ]
2
2018-11-01T20:51:47.000Z
2018-11-03T03:32:11.000Z
contrib/devtools/update-translations.py
SparkBaseHub/SparkToken
d5c560c8750fee02e6551e6b8254b6b3ebe3c6c2
[ "MIT" ]
null
null
null
contrib/devtools/update-translations.py
SparkBaseHub/SparkToken
d5c560c8750fee02e6551e6b8254b6b3ebe3c6c2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) - update git for added translations - update build system ''' import argparse import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'spark_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 # Minimum completion percentage required to download from transifex MINIMUM_PERC = 80 # Path to git GIT = os.getenv("GIT", "git") def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) sys.exit(1) def remove_current_translations(): ''' Remove current translations, as well as temporary files that might be left behind We only want the active translations that are currently on transifex. This leaves spark_en.ts untouched. ''' for (_,name) in all_ts_files(): os.remove(name) for (_,name) in all_ts_files('.orig'): os.remove(name + '.orig') def fetch_all_translations(fAll = False): call_list = [TX, 'pull', '-f', '-a'] if not fAll: call_list.append('--minimum-perc=%s' % MINIMUM_PERC) if subprocess.call(call_list): print('Error while fetching translations', file=sys.stderr) sys.exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix='', include_source=False): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or (not include_source and filename == SOURCE_LANG+suffix): continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors def update_git(): ''' Add new files to git repository. (Removing files isn't necessary here, as `git commit -a` will take care of removing files that are gone) ''' file_paths = [filepath for (filename, filepath) in all_ts_files()] subprocess.check_call([GIT, 'add'] + file_paths) def update_build_systems(): ''' Update build system and Qt resource descriptors. ''' filename_lang = [re.match(r'((spark_(.*)).ts)$', filename).groups() for (filename, filepath) in all_ts_files(include_source=True)] filename_lang.sort(key=lambda x: x[0]) # update qrc locales with open('src/qt/spark_locale.qrc', 'w', encoding="utf8") as f: f.write('<!DOCTYPE RCC><RCC version="1.0">\n') f.write(' <qresource prefix="/translations">\n') for (filename, basename, lang) in filename_lang: f.write(f' <file alias="{lang}">locale/{basename}.qm</file>\n') f.write(' </qresource>\n') f.write('</RCC>\n') # update Makefile include with open('src/Makefile.qt_locale.include', 'w', encoding="utf8") as f: f.write('QT_TS = \\\n') f.write(' \\\n'.join(f' qt/locale/{filename}' for (filename, basename, lang) in filename_lang)) f.write('\n') # make sure last line doesn't end with a backslash if __name__ == '__main__': parser = argparse.ArgumentParser(add_help=False, usage='%(prog)s [update-translations.py options] [flags]', description=__doc__, epilog='', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--ignore_completion', '-i', action='store_true', help='fetch all translations, even those not reaching the completion threshold') args, unknown_args = parser.parse_known_args() check_at_repository_root() remove_current_translations() fetch_all_translations(args.ignore_completion) postprocess_translations() update_git() update_build_systems()
39.474265
154
0.632486
07d41e6dc8abb01474724b30ca742e51c0f85d15
1,073
py
Python
Assignment 01 - Python Basics/problem3.py
lmottasin/Simulation_Lab
e3b365f7bb7f6ac4b542f2c6bd721e4a77c056ea
[ "MIT" ]
2
2021-07-13T04:44:47.000Z
2022-01-17T20:21:11.000Z
Assignment 01 - Python Basics/problem3.py
lmottasin/Simulation_Lab
e3b365f7bb7f6ac4b542f2c6bd721e4a77c056ea
[ "MIT" ]
null
null
null
Assignment 01 - Python Basics/problem3.py
lmottasin/Simulation_Lab
e3b365f7bb7f6ac4b542f2c6bd721e4a77c056ea
[ "MIT" ]
3
2021-06-30T11:16:27.000Z
2022-03-11T18:32:46.000Z
#!/usr/bin/env python # coding: utf-8 # In[70]: import pandas as pd import matplotlib.pyplot as plt #Load the CSV into a DataFrame data = pd.read_csv("SalesData.csv") # scatter plot #plt.subplot(2, 1, 1) #fig size plt.figure(figsize=(8,5)) #title plt.title("Scatter Plot") #plotting the points plt.scatter(data["Day"],data["Product A"]) plt.scatter(data["Day"],data["Product B"]) plt.scatter(data["Day"],data["Product C"]) # giving names to points by given order in points labels = ['Product A', 'Product B', 'Product C'] #add the labels plt.legend(labels) # x,y label plt.xlabel("Days") plt.ylabel("Sales") #showing the plotting plt.show() #plt.subplot(2, 1, 2) #line plot #plot size plt.figure(figsize=(8,5)) #title plt.title("Line Plot") #plotting the points plt.plot(data["Day"],data["Product A"]) plt.plot(data["Day"],data["Product B"]) plt.plot(data["Day"],data["Product C"]) labels = ['Product A', 'Product B', 'Product C'] #add the labels plt.legend(labels) # x,y label plt.xlabel("Days") plt.ylabel("Sales") #plot show plt.show() # In[ ]:
15.779412
49
0.675676
7612ec494254e959c8965f7fb21f5da8915934f6
41,334
py
Python
readthedocs/rtd_tests/tests/test_sync_versions.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
1
2021-11-20T11:38:26.000Z
2021-11-20T11:38:26.000Z
readthedocs/rtd_tests/tests/test_sync_versions.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
4
2021-02-08T21:06:18.000Z
2021-06-10T23:24:55.000Z
readthedocs/rtd_tests/tests/test_sync_versions.py
chirathr/readthedocs.org
4f1a5dc07fd9d55d4284fdb22deae735932b2ec9
[ "MIT" ]
1
2018-10-12T22:15:39.000Z
2018-10-12T22:15:39.000Z
# -*- coding: utf-8 -*- from __future__ import ( absolute_import, division, print_function, unicode_literals) import json from django.test import TestCase from django.core.urlresolvers import reverse import pytest from readthedocs.builds.constants import BRANCH, STABLE, TAG from readthedocs.builds.models import Version from readthedocs.projects.models import Project class TestSyncVersions(TestCase): fixtures = ['eric', 'test_data'] def setUp(self): self.client.login(username='eric', password='test') self.pip = Project.objects.get(slug='pip') Version.objects.create( project=self.pip, identifier='origin/master', verbose_name='master', active=True, machine=True, type=BRANCH, ) Version.objects.create( project=self.pip, identifier='to_delete', verbose_name='to_delete', active=False, type=TAG, ) def test_proper_url_no_slash(self): version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/to_add', 'verbose_name': 'to_add', }, ], } r = self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) json_data = json.loads(r.content) self.assertEqual(json_data['deleted_versions'], ['to_delete']) self.assertEqual(json_data['added_versions'], ['to_add']) def test_new_tag_update_active(self): Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', active=True, ) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/to_add', 'verbose_name': 'to_add', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_9 = Version.objects.get(slug='0.9') self.assertTrue(version_9.active) # Version 0.9 becomes the stable version self.assertEqual( version_9.identifier, self.pip.get_stable_version().identifier, ) def test_new_tag_update_inactive(self): Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', active=False, ) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/to_add', 'verbose_name': 'to_add', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) # Version 0.9 becomes the stable version and active version_9 = Version.objects.get(slug='0.9') self.assertEqual( version_9.identifier, self.pip.get_stable_version().identifier, ) self.assertTrue(version_9.active) # Version 0.8.3 is still inactive version_8 = Version.objects.get(slug='0.8.3') self.assertFalse(version_8.active) def test_delete_version(self): Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', active=False, ) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], } self.assertTrue( Version.objects.filter(slug='0.8.3').exists() ) self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) # There isn't a v0.8.3 self.assertFalse( Version.objects.filter(slug='0.8.3').exists() ) def test_machine_attr_when_user_define_stable_tag_and_delete_it(self): """ The user creates a tag named ``stable`` on an existing repo, when syncing the versions, the RTD's ``stable`` is lost (set to machine=False) and doesn't update automatically anymore, when the tag is deleted on the user repository, the RTD's ``stable`` is back (set to machine=True). """ version8 = Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', type=TAG, active=False, machine=False, ) self.pip.update_stable_version() current_stable = self.pip.get_stable_version() # 0.8.3 is the current stable self.assertEqual( version8.identifier, current_stable.identifier ) self.assertTrue(current_stable.machine) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ # User new stable { 'identifier': '1abc2def3', 'verbose_name': 'stable', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) current_stable = self.pip.get_stable_version() self.assertEqual( '1abc2def3', current_stable.identifier ) # Deleting the tag should return the RTD's stable version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The version 8 should be the new stable. # The stable isn't stuck with the previous commit current_stable = self.pip.get_stable_version() self.assertEqual( '0.8.3', current_stable.identifier ) self.assertTrue(current_stable.machine) def test_machine_attr_when_user_define_stable_tag_and_delete_it_new_project(self): """ The user imports a new project with a tag named ``stable``, when syncing the versions, the RTD's ``stable`` is lost (set to machine=False) and doesn't update automatically anymore, when the tag is deleted on the user repository, the RTD's ``stable`` is back (set to machine=True). """ # There isn't a stable version yet self.pip.versions.exclude(slug='master').delete() current_stable = self.pip.get_stable_version() self.assertIsNone(current_stable) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ # User stable { 'identifier': '1abc2def3', 'verbose_name': 'stable', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) current_stable = self.pip.get_stable_version() self.assertEqual( '1abc2def3', current_stable.identifier ) # User activates the stable version current_stable.active = True current_stable.save() # Deleting the tag should return the RTD's stable version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The version 8 should be the new stable. # The stable isn't stuck with the previous commit current_stable = self.pip.get_stable_version() self.assertEqual( '0.8.3', current_stable.identifier ) self.assertTrue(current_stable.machine) def test_machine_attr_when_user_define_stable_branch_and_delete_it(self): """ The user creates a branch named ``stable`` on an existing repo, when syncing the versions, the RTD's ``stable`` is lost (set to machine=False) and doesn't update automatically anymore, when the branch is deleted on the user repository, the RTD's ``stable`` is back (set to machine=True). """ # Project with just branches self.pip.versions.filter(type=TAG).delete() Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', type=BRANCH, active=False, machine=False, ) self.pip.update_stable_version() current_stable = self.pip.get_stable_version() # 0.8.3 is the current stable self.assertEqual( '0.8.3', current_stable.identifier ) self.assertTrue(current_stable.machine) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, # User new stable { 'identifier': 'origin/stable', 'verbose_name': 'stable', }, { 'identifier': 'origin/0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) current_stable = self.pip.get_stable_version() self.assertEqual( 'origin/stable', current_stable.identifier ) # Deleting the branch should return the RTD's stable version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The version 8 should be the new stable. # The stable isn't stuck with the previous branch current_stable = self.pip.get_stable_version() self.assertEqual( 'origin/0.8.3', current_stable.identifier ) self.assertTrue(current_stable.machine) def test_machine_attr_when_user_define_stable_branch_and_delete_it_new_project(self): """ The user imports a new project with a branch named ``stable``, when syncing the versions, the RTD's ``stable`` is lost (set to machine=False) and doesn't update automatically anymore, when the branch is deleted on the user repository, the RTD's ``stable`` is back (set to machine=True). """ # There isn't a stable version yet self.pip.versions.exclude(slug='master').delete() current_stable = self.pip.get_stable_version() self.assertIsNone(current_stable) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, # User stable { 'identifier': 'origin/stable', 'verbose_name': 'stable', }, { 'identifier': 'origin/0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) current_stable = self.pip.get_stable_version() self.assertEqual( 'origin/stable', current_stable.identifier ) # User activates the stable version current_stable.active = True current_stable.save() # Deleting the branch should return the RTD's stable version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The version 8 should be the new stable. # The stable isn't stuck with the previous commit current_stable = self.pip.get_stable_version() self.assertEqual( 'origin/0.8.3', current_stable.identifier ) self.assertTrue(current_stable.machine) def test_machine_attr_when_user_define_latest_tag_and_delete_it(self): """ The user creates a tag named ``latest`` on an existing repo, when syncing the versions, the RTD's ``latest`` is lost (set to machine=False) and doesn't update automatically anymore, when the tag is deleted on the user repository, the RTD's ``latest`` is back (set to machine=True). """ version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ # User new stable { 'identifier': '1abc2def3', 'verbose_name': 'latest', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The tag is the new latest version_latest = self.pip.versions.get(slug='latest') self.assertEqual( '1abc2def3', version_latest.identifier ) # Deleting the tag should return the RTD's latest version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [] } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The latest isn't stuck with the previous commit version_latest = self.pip.versions.get(slug='latest') self.assertEqual( 'master', version_latest.identifier ) self.assertTrue(version_latest.machine) def test_machine_attr_when_user_define_latest_branch_and_delete_it(self): """ The user creates a branch named ``latest`` on an existing repo, when syncing the versions, the RTD's ``latest`` is lost (set to machine=False) and doesn't update automatically anymore, when the branch is deleted on the user repository, the RTD's ``latest`` is back (set to machine=True). """ version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, # User new latest { 'identifier': 'origin/latest', 'verbose_name': 'latest', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The branch is the new latest version_latest = self.pip.versions.get(slug='latest') self.assertEqual( 'origin/latest', version_latest.identifier ) # Deleting the branch should return the RTD's latest version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # The latest isn't stuck with the previous branch version_latest = self.pip.versions.get(slug='latest') self.assertEqual( 'master', version_latest.identifier, ) self.assertTrue(version_latest.machine) class TestStableVersion(TestCase): fixtures = ['eric', 'test_data'] def setUp(self): self.client.login(username='eric', password='test') self.pip = Project.objects.get(slug='pip') def test_stable_versions(self): version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, { 'identifier': 'origin/to_add', 'verbose_name': 'to_add', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8', 'verbose_name': '0.8', }, ], } self.assertRaises( Version.DoesNotExist, Version.objects.get, slug=STABLE, ) self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '0.9') def test_pre_release_are_not_stable(self): version_post_data = { 'branches': [], 'tags': [ {'identifier': '1.0a1', 'verbose_name': '1.0a1'}, {'identifier': '0.9', 'verbose_name': '0.9'}, {'identifier': '0.9b1', 'verbose_name': '0.9b1'}, {'identifier': '0.8', 'verbose_name': '0.8'}, {'identifier': '0.8rc2', 'verbose_name': '0.8rc2'}, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '0.9') def test_post_releases_are_stable(self): version_post_data = { 'branches': [], 'tags': [ {'identifier': '1.0', 'verbose_name': '1.0'}, {'identifier': '1.0.post1', 'verbose_name': '1.0.post1'}, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0.post1') def test_invalid_version_numbers_are_not_stable(self): self.pip.versions.all().delete() version_post_data = { 'branches': [], 'tags': [ { 'identifier': 'this.is.invalid', 'verbose_name': 'this.is.invalid' }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) self.assertFalse(Version.objects.filter(slug=STABLE).exists()) version_post_data = { 'branches': [], 'tags': [ { 'identifier': '1.0', 'verbose_name': '1.0', }, { 'identifier': 'this.is.invalid', 'verbose_name': 'this.is.invalid' }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0') def test_update_stable_version(self): version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8', 'verbose_name': '0.8', }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '0.9') version_post_data = { 'tags': [ { 'identifier': '1.0.0', 'verbose_name': '1.0.0', }, ] } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0.0') version_post_data = { 'tags': [ { 'identifier': '0.7', 'verbose_name': '0.7', }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0.0') def test_update_inactive_stable_version(self): version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertEqual(version_stable.identifier, '0.9') version_stable.active = False version_stable.save() version_post_data['tags'].append({ 'identifier': '1.0.0', 'verbose_name': '1.0.0', }) self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertFalse(version_stable.active) self.assertEqual(version_stable.identifier, '0.9') def test_stable_version_tags_over_branches(self): version_post_data = { 'branches': [ # 2.0 development {'identifier': 'origin/2.0', 'verbose_name': '2.0'}, {'identifier': 'origin/0.9.1rc1', 'verbose_name': '0.9.1rc1'}, ], 'tags': [ {'identifier': '1.0rc1', 'verbose_name': '1.0rc1'}, {'identifier': '0.9', 'verbose_name': '0.9'}, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) # If there is a branch with a higher version, tags takes preferences # over the branches to select the stable version version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '0.9') version_post_data['tags'].append({ 'identifier': '1.0', 'verbose_name': '1.0', }) self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0') def test_stable_version_same_id_tag_branch(self): version_post_data = { 'branches': [ # old 1.0 development branch {'identifier': 'origin/1.0', 'verbose_name': '1.0'}, ], 'tags': [ # tagged 1.0 final version {'identifier': '1.0', 'verbose_name': '1.0'}, {'identifier': '0.9', 'verbose_name': '0.9'}, ], } self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) version_stable = Version.objects.get(slug=STABLE) self.assertTrue(version_stable.active) self.assertEqual(version_stable.identifier, '1.0') self.assertEqual(version_stable.type, 'tag') def test_unicode(self): version_post_data = { 'branches': [], 'tags': [ {'identifier': 'foo-£', 'verbose_name': 'foo-£'}, ], } resp = self.client.post( '/api/v2/project/{}/sync_versions/'.format(self.pip.pk), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) def test_user_defined_stable_version_tag_with_tags(self): Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', active=True, ) # A pre-existing active stable tag that was machine created Version.objects.create( project=self.pip, identifier='foo', type=TAG, verbose_name='stable', active=True, machine=True, ) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ # A new user-defined stable tag { 'identifier': '1abc2def3', 'verbose_name': 'stable', }, { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # Didn't update to newest tag version_9 = self.pip.versions.get(slug='0.9') self.assertFalse(version_9.active) # Did update to user-defined stable version version_stable = self.pip.versions.get(slug='stable') self.assertFalse(version_stable.machine) self.assertTrue(version_stable.active) self.assertEqual( '1abc2def3', self.pip.get_stable_version().identifier ) # There arent others stable slugs like stable_a other_stable = self.pip.versions.filter( slug__startswith='stable_' ) self.assertFalse(other_stable.exists()) # Check that posting again doesn't change anything from current state. resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) version_stable = self.pip.versions.get(slug='stable') self.assertFalse(version_stable.machine) self.assertTrue(version_stable.active) self.assertEqual( '1abc2def3', self.pip.get_stable_version().identifier ) other_stable = self.pip.versions.filter( slug__startswith='stable_' ) self.assertFalse(other_stable.exists()) def test_user_defined_stable_version_branch_with_tags(self): Version.objects.create( project=self.pip, identifier='0.8.3', verbose_name='0.8.3', active=True, ) # A pre-existing active stable branch that was machine created Version.objects.create( project=self.pip, identifier='foo', type=BRANCH, verbose_name='stable', active=True, machine=True, ) version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, # A new user-defined stable branch { 'identifier': 'origin/stable', 'verbose_name': 'stable', }, ], 'tags': [ { 'identifier': '0.9', 'verbose_name': '0.9', }, { 'identifier': '0.8.3', 'verbose_name': '0.8.3', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # Didn't update to newest tag version_9 = self.pip.versions.get(slug='0.9') self.assertFalse(version_9.active) # Did update to user-defined stable version version_stable = self.pip.versions.get(slug='stable') self.assertFalse(version_stable.machine) self.assertTrue(version_stable.active) self.assertEqual( 'origin/stable', self.pip.get_stable_version().identifier ) # There arent others stable slugs like stable_a other_stable = self.pip.versions.filter( slug__startswith='stable_' ) self.assertFalse(other_stable.exists()) # Check that posting again doesn't change anything from current state. resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) version_stable = self.pip.versions.get(slug='stable') self.assertFalse(version_stable.machine) self.assertTrue(version_stable.active) self.assertEqual( 'origin/stable', self.pip.get_stable_version().identifier ) other_stable = self.pip.versions.filter( slug__startswith='stable_' ) self.assertFalse(other_stable.exists()) class TestLatestVersion(TestCase): fixtures = ['eric', 'test_data'] def setUp(self): self.client.login(username='eric', password='test') self.pip = Project.objects.get(slug='pip') Version.objects.create( project=self.pip, identifier='origin/master', verbose_name='master', active=True, machine=True, type=BRANCH, ) # When the project is saved, the RTD's ``latest`` version # is created. self.pip.save() def test_user_defined_latest_version_tag(self): # TODO: the ``latest`` versions are created # as a BRANCH, then here we will have a # ``latest_a`` version. version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, ], 'tags': [ # A new user-defined latest tag { 'identifier': '1abc2def3', 'verbose_name': 'latest', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # Did update to user-defined latest version version_latest = self.pip.versions.get(slug='latest') self.assertFalse(version_latest.machine) self.assertTrue(version_latest.active) self.assertEqual( '1abc2def3', version_latest.identifier ) # There arent others latest slugs like latest_a other_latest = self.pip.versions.filter( slug__startswith='latest_' ) self.assertFalse(other_latest.exists()) # Check that posting again doesn't change anything from current state. resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) version_latest = self.pip.versions.get(slug='latest') self.assertFalse(version_latest.machine) self.assertTrue(version_latest.active) self.assertEqual( '1abc2def3', version_latest.identifier ) other_latest = self.pip.versions.filter( slug__startswith='latest_' ) self.assertFalse(other_latest.exists()) def test_user_defined_latest_version_branch(self): version_post_data = { 'branches': [ { 'identifier': 'origin/master', 'verbose_name': 'master', }, # A new user-defined latest branch { 'identifier': 'origin/latest', 'verbose_name': 'latest', }, ], } resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) # Did update to user-defined latest version version_latest = self.pip.versions.get(slug='latest') self.assertFalse(version_latest.machine) self.assertTrue(version_latest.active) self.assertEqual( 'origin/latest', version_latest.identifier ) # There arent others latest slugs like latest_a other_latest = self.pip.versions.filter( slug__startswith='latest_' ) self.assertFalse(other_latest.exists()) # Check that posting again doesn't change anything from current state. resp = self.client.post( reverse('project-sync-versions', args=[self.pip.pk]), data=json.dumps(version_post_data), content_type='application/json', ) self.assertEqual(resp.status_code, 200) version_latest = self.pip.versions.get(slug='latest') self.assertFalse(version_latest.machine) self.assertTrue(version_latest.active) self.assertEqual( 'origin/latest', version_latest.identifier ) other_latest = self.pip.versions.filter( slug__startswith='latest_' ) self.assertFalse(other_latest.exists())
32.21668
89
0.508105
4f6dbc83b16890ce3d7c9e0b420c13bcd536e4de
3,625
py
Python
PaperExperiments/XHExp207/parameters.py
stefan-c-kremer/TE_World2
8e1fae218af8a1eabae776deecac62192c22e0ca
[ "MIT" ]
null
null
null
PaperExperiments/XHExp207/parameters.py
stefan-c-kremer/TE_World2
8e1fae218af8a1eabae776deecac62192c22e0ca
[ "MIT" ]
null
null
null
PaperExperiments/XHExp207/parameters.py
stefan-c-kremer/TE_World2
8e1fae218af8a1eabae776deecac62192c22e0ca
[ "MIT" ]
null
null
null
# parameters.py """ Exp 207 - {'Initial_genes': '5000', 'Host_mutation_rate': '0.30', 'TE_progeny': '0.00, 0, 0.55, 1, 0.30, 2, 0.15, 3', 'TE_Insertion_Distribution': 'Flat()', 'Carrying_capacity': '300', 'TE_excision_rate': '0.5', 'Junk_BP': '1.4', 'Gene_Insertion_Distribution': 'Flat()', 'mutation_effect': '0.01', 'TE_death_rate': '0.0005'} """ from TEUtil import *; # note that "#" indicates a comment # set the following to True if you want messages printed to the screen # while the program runs - search for these keywords in TESim.py to see # what each one prints out output = { "SPLAT": False, "SPLAT FITNESS": False, "INITIALIZATION": False, "GENERATION": True, "HOST EXTINCTION": True, "TE EXTINCTION": True, "TRIAL NO": True, "GENE INIT": False, "TE INIT": False, }; TE_Insertion_Distribution = Flat(); Gene_Insertion_Distribution = Flat(); # Triangle( pmax, pzero ) generates values between pmax and pzero with # a triangular probability distribution, where pmax is the point of highest # probability, and pzero is the point of lowest probability # - you can change the orientation of the triangle by reversing the values # of pmax and pzero # Flat() generates values between 0 and 1 with uniform probability Gene_length = 1000; # use 1000? TE_length = 1000; # use 1000? TE_death_rate = 0.0005; TE_excision_rate = 0.5; # set this to zero for retro transposons # for retro transposons this is the probability of the given number of progeny # for dna transposons this is the probability of the given number of progeny # ___PLUS___ the original re-inserting TE_progeny = ProbabilityTable( 0.00, 0, 0.55, 1, 0.30, 2, 0.15, 3 ); Initial_genes = 5000; Append_gene = True; # True: when the intialization routine tries to place # a gene inside another gene, it instead appends it # at the end of the original gene (use this with small # amounts of Junk_BP). # False: when the intialization routine tries to place # a gene inside another gene, try to place it somewhere # else again (don't use theis option with samll amounts # of Junk_BP). Initial_TEs = 1; MILLION = 1000000; Junk_BP = 1.4 * MILLION; Host_start_fitness = 1.0; Host_mutation_rate = 0.30; Host_mutation = ProbabilityTable( 0.40, lambda fit: 0.0, 0.30, lambda fit: fit - random.random()*0.01, 0.15, lambda fit: fit, 0.15, lambda fit: fit + random.random()*0.01 ); # what happens when a TA hits a gene Insertion_effect = ProbabilityTable(0.30, lambda fit: 0.0, 0.20, lambda fit: fit - random.random()*0.01, 0.30, lambda fit: fit, 0.20, lambda fit: fit + random.random()*0.01 ); Carrying_capacity = 300; Host_reproduction_rate = 1; # how many offspring each host has Host_survival_rate = lambda propfit: min( Carrying_capacity * propfit, 0.95 ); # propfit = proportion of fitness owned by this individual Maximum_generations = 1500; Terminate_no_TEs = True; # end simulation if there are no TEs left # seed = 0; seed = None; # if seed = None, the random number generator's initial state is # set "randomly" save_frequency = 50; # Frequency with with which to save state of experiment saved = None; # if saved = None then we start a new simulation from scratch # if saves = string, then we open that file and resume a simulation
37.760417
324
0.647448
33297b55761feecf298920a8ed3463af51b869b3
1,151
py
Python
incasem/gunpowder/merge_masks.py
kirchhausenlab/incasem
ee9e007c5c04571e547e2fb5af5e800bd2d2b435
[ "BSD-3-Clause" ]
null
null
null
incasem/gunpowder/merge_masks.py
kirchhausenlab/incasem
ee9e007c5c04571e547e2fb5af5e800bd2d2b435
[ "BSD-3-Clause" ]
null
null
null
incasem/gunpowder/merge_masks.py
kirchhausenlab/incasem
ee9e007c5c04571e547e2fb5af5e800bd2d2b435
[ "BSD-3-Clause" ]
null
null
null
from typing import List import numpy as np import gunpowder as gp class MergeMasks(gp.BatchFilter): def __init__( self, arrays: List[gp.ArrayKey], output_array: gp.ArrayKey): """Merge multiple binary masks with a logical and Args: arrays: list of binary masks for different structures output_array: """ self.arrays = arrays self.output_array = output_array def setup(self): self.enable_autoskip() spec = self.spec[self.arrays[0]].copy() self.provides(self.output_array, spec) def prepare(self, request): deps = gp.BatchRequest() for array in self.arrays: deps[array] = request[self.output_array] return deps def process(self, batch, request): output = gp.Batch() spec = batch[self.arrays[0]].spec.copy() mask = np.logical_and.reduce( [batch[key].data.astype(np.bool) for key in self.arrays] ) mask = mask.astype(np.uint8) output[self.output_array] = gp.Array(data=mask, spec=spec) return output
25.021739
68
0.594266
1508cad526d8e3a05a55f990970c3eabfb0a77ab
1,398
py
Python
tests/utils/test_run_async.py
Alirezaja1384/tortoise-orm
e7ecbc81d43860a3b0b6d5d9da27497ed6234049
[ "Apache-2.0" ]
33
2018-04-07T09:50:22.000Z
2018-08-24T10:25:29.000Z
tests/utils/test_run_async.py
Alirezaja1384/tortoise-orm
e7ecbc81d43860a3b0b6d5d9da27497ed6234049
[ "Apache-2.0" ]
41
2018-03-29T17:09:18.000Z
2018-08-24T16:37:38.000Z
tests/utils/test_run_async.py
Alirezaja1384/tortoise-orm
e7ecbc81d43860a3b0b6d5d9da27497ed6234049
[ "Apache-2.0" ]
4
2018-06-27T08:45:11.000Z
2018-07-30T18:16:55.000Z
import os from unittest import skipIf from tortoise import Tortoise, connections, run_async from tortoise.contrib.test import TestCase @skipIf(os.name == "nt", "stuck with Windows") class TestRunAsync(TestCase): async def asyncSetUp(self) -> None: pass async def asyncTearDown(self) -> None: pass def setUp(self): self.somevalue = 1 async def init(self): await Tortoise.init(db_url="sqlite://:memory:", modules={"models": []}) self.somevalue = 2 self.assertNotEqual(connections._get_storage(), {}) async def init_raise(self): await Tortoise.init(db_url="sqlite://:memory:", modules={"models": []}) self.somevalue = 3 self.assertNotEqual(connections._get_storage(), {}) raise Exception("Some exception") def test_run_async(self): self.assertEqual(connections._get_storage(), {}) self.assertEqual(self.somevalue, 1) run_async(self.init()) self.assertEqual(connections._get_storage(), {}) self.assertEqual(self.somevalue, 2) def test_run_async_raised(self): self.assertEqual(connections._get_storage(), {}) self.assertEqual(self.somevalue, 1) with self.assertRaises(Exception): run_async(self.init_raise()) self.assertEqual(connections._get_storage(), {}) self.assertEqual(self.somevalue, 3)
31.772727
79
0.655222
334e737bdb1ff24dce4e4f458bcfa03610bafb83
6,349
py
Python
moto/glacier/responses.py
symroe/moto
4e106995af6f2820273528fca8a4e9ee288690a5
[ "Apache-2.0" ]
null
null
null
moto/glacier/responses.py
symroe/moto
4e106995af6f2820273528fca8a4e9ee288690a5
[ "Apache-2.0" ]
1
2022-03-07T07:39:03.000Z
2022-03-07T07:39:03.000Z
moto/glacier/responses.py
symroe/moto
4e106995af6f2820273528fca8a4e9ee288690a5
[ "Apache-2.0" ]
null
null
null
import json from moto.core.responses import BaseResponse from .models import glacier_backends from .utils import vault_from_glacier_url class GlacierResponse(BaseResponse): @property def glacier_backend(self): return glacier_backends[self.region] def all_vault_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._all_vault_response(headers) def _all_vault_response(self, headers): vaults = self.glacier_backend.list_vaults() response = json.dumps( {"Marker": None, "VaultList": [vault.to_dict() for vault in vaults]} ) headers["content-type"] = "application/json" return 200, headers, response def vault_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._vault_response(request, full_url, headers) def _vault_response(self, request, full_url, headers): method = request.method vault_name = vault_from_glacier_url(full_url) if method == "GET": return self._vault_response_get(vault_name, headers) elif method == "PUT": return self._vault_response_put(vault_name, headers) elif method == "DELETE": return self._vault_response_delete(vault_name, headers) def _vault_response_get(self, vault_name, headers): vault = self.glacier_backend.get_vault(vault_name) headers["content-type"] = "application/json" return 200, headers, json.dumps(vault.to_dict()) def _vault_response_put(self, vault_name, headers): self.glacier_backend.create_vault(vault_name) return 201, headers, "" def _vault_response_delete(self, vault_name, headers): self.glacier_backend.delete_vault(vault_name) return 204, headers, "" def vault_archive_response(self, request, full_url, headers): return self._vault_archive_response(request, full_url, headers) def _vault_archive_response(self, request, full_url, headers): method = request.method if hasattr(request, "body"): body = request.body else: body = request.data description = "" if "x-amz-archive-description" in request.headers: description = request.headers["x-amz-archive-description"] vault_name = full_url.split("/")[-2] if method == "POST": return self._vault_archive_response_post( vault_name, body, description, headers ) else: return 400, headers, "400 Bad Request" def _vault_archive_response_post(self, vault_name, body, description, headers): vault = self.glacier_backend.upload_archive(vault_name, body, description) headers["x-amz-archive-id"] = vault["archive_id"] headers["x-amz-sha256-tree-hash"] = vault["sha256"] return 201, headers, "" def vault_archive_individual_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._vault_archive_individual_response(request, full_url, headers) def _vault_archive_individual_response(self, request, full_url, headers): method = request.method vault_name = full_url.split("/")[-3] archive_id = full_url.split("/")[-1] if method == "DELETE": vault = self.glacier_backend.get_vault(vault_name) vault.delete_archive(archive_id) return 204, headers, "" def vault_jobs_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._vault_jobs_response(request, full_url, headers) def _vault_jobs_response(self, request, full_url, headers): method = request.method if hasattr(request, "body"): body = request.body else: body = request.data account_id = full_url.split("/")[1] vault_name = full_url.split("/")[-2] if method == "GET": jobs = self.glacier_backend.list_jobs(vault_name) headers["content-type"] = "application/json" return ( 200, headers, json.dumps( {"JobList": [job.to_dict() for job in jobs], "Marker": None} ), ) elif method == "POST": json_body = json.loads(body.decode("utf-8")) job_type = json_body["Type"] archive_id = None if "ArchiveId" in json_body: archive_id = json_body["ArchiveId"] if "Tier" in json_body: tier = json_body["Tier"] else: tier = "Standard" job_id = self.glacier_backend.initiate_job( vault_name, job_type, tier, archive_id ) headers["x-amz-job-id"] = job_id headers["Location"] = "/{0}/vaults/{1}/jobs/{2}".format( account_id, vault_name, job_id ) return 202, headers, "" def vault_jobs_individual_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._vault_jobs_individual_response(full_url, headers) def _vault_jobs_individual_response(self, full_url, headers): vault_name = full_url.split("/")[-3] archive_id = full_url.split("/")[-1] job = self.glacier_backend.describe_job(vault_name, archive_id) return 200, headers, json.dumps(job.to_dict()) def vault_jobs_output_response(self, request, full_url, headers): self.setup_class(request, full_url, headers) return self._vault_jobs_output_response(full_url, headers) def _vault_jobs_output_response(self, full_url, headers): vault_name = full_url.split("/")[-4] job_id = full_url.split("/")[-2] output = self.glacier_backend.get_job_output(vault_name, job_id) if output is None: return 404, headers, "404 Not Found" if isinstance(output, dict): headers["content-type"] = "application/json" return 200, headers, json.dumps(output) else: headers["content-type"] = "application/octet-stream" return 200, headers, output
38.713415
83
0.630966
b785813a9aab9e2dc337b5b53e89a871a4ff34ad
2,547
py
Python
examples/dfp/v201411/suggested_ad_unit_service/approve_all_suggested_ad_units.py
cmm08/googleads-python-lib
97743df32eff92cf00cb8beaddcda42dfa0a37f4
[ "Apache-2.0" ]
1
2018-09-06T18:50:58.000Z
2018-09-06T18:50:58.000Z
examples/dfp/v201411/suggested_ad_unit_service/approve_all_suggested_ad_units.py
cmm08/googleads-python-lib
97743df32eff92cf00cb8beaddcda42dfa0a37f4
[ "Apache-2.0" ]
null
null
null
examples/dfp/v201411/suggested_ad_unit_service/approve_all_suggested_ad_units.py
cmm08/googleads-python-lib
97743df32eff92cf00cb8beaddcda42dfa0a37f4
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example approves all suggested ad units with 50 or more requests. This feature is only available to DFP premium solution networks. """ # Import appropriate modules from the client library. from googleads import dfp THRESHOLD_NUMBER_OF_REQUESTS = '50' def main(client): # Initialize appropriate service. suggested_ad_unit_service = client.GetService( 'SuggestedAdUnitService', version='v201411') values = [{ 'key': 'numRequests', 'value': { 'xsi_type': 'NumberValue', 'value': THRESHOLD_NUMBER_OF_REQUESTS } }] query = 'WHERE numRequests > :numRequests' # Create a filter statement. statement = dfp.FilterStatement(query, values) num_approved_suggested_ad_units = 0 # Get suggested ad units by statement. while True: response = suggested_ad_unit_service.getSuggestedAdUnitsByStatement( statement.ToStatement()) if 'results' in response: # Print suggested ad units that will be approved. for suggested_ad_unit in response['results']: print ('Suggested ad unit with id \'%s\', and number of requests \'%s\'' ' will be approved.' % (suggested_ad_unit['id'], suggested_ad_unit['numRequests'])) # Approve suggested ad units. result = suggested_ad_unit_service.performSuggestedAdUnitAction( {'xsi_type': 'ApproveSuggestedAdUnit'}, statement.ToStatement()) if result and int(result['numChanges']) > 0: num_approved_suggested_ad_units += int(result['numChanges']) else: break if num_approved_suggested_ad_units > 0: print ('Number of suggested ad units approved: %s' % num_approved_suggested_ad_units) else: print 'No suggested ad units were approved.' if __name__ == '__main__': # Initialize client object. dfp_client = dfp.DfpClient.LoadFromStorage() main(dfp_client)
32.240506
80
0.698076
eab3c48fe3187d1064f781a68228840d686d1dca
1,322
py
Python
open_bus_siri_requester/health_daemon.py
hasadna/open-bus-siri-requester
4c1fa315eec54a5340b9334de0ebff28a3ddea3e
[ "MIT" ]
null
null
null
open_bus_siri_requester/health_daemon.py
hasadna/open-bus-siri-requester
4c1fa315eec54a5340b9334de0ebff28a3ddea3e
[ "MIT" ]
1
2022-02-08T15:08:46.000Z
2022-02-09T13:24:33.000Z
open_bus_siri_requester/health_daemon.py
hasadna/open-bus-siri-requester
4c1fa315eec54a5340b9334de0ebff28a3ddea3e
[ "MIT" ]
null
null
null
from http.server import ThreadingHTTPServer from http.server import BaseHTTPRequestHandler from . import config from . import storage class HealthDaemonHTTPRequestHandler(BaseHTTPRequestHandler): def _send_ok(self, msg='OK'): self.send_response(200) self.send_header("Content-type", "application/json; charset=utf-8") self.end_headers() self.wfile.write(msg.encode()) def _send_error(self, error='Server Error', status_code=500): self.send_response(status_code) self.end_headers() self.wfile.write(error.encode()) def do_GET(self): seconds_since_last_snapshot = storage.get_seconds_since_last_snapshot() msg = '{} seconds since last snapshot'.format(seconds_since_last_snapshot) if seconds_since_last_snapshot > config.HEALTH_DAEMON_MAX_SECONDS_SINCE_LAST_SNAPSHOT: self._send_error(error='ERROR: ' + msg) else: self._send_ok(msg='OK: ' + msg) class HealthDaemonHTTPServer(ThreadingHTTPServer): def __init__(self): print("Starting health daemon on port {}".format(config.HEALTH_DAEMON_PORT)) super(HealthDaemonHTTPServer, self).__init__(('0.0.0.0', config.HEALTH_DAEMON_PORT), HealthDaemonHTTPRequestHandler) def start(): HealthDaemonHTTPServer().serve_forever()
33.897436
124
0.717852
b7136b7d2c69e94485568e4bbba78e187cb3294b
5,265
py
Python
hill2.py
Ziggareto/national_cipher_challenge
afac5a4b3c31ec78e6c8ef211ba9dd664a4070f7
[ "MIT" ]
null
null
null
hill2.py
Ziggareto/national_cipher_challenge
afac5a4b3c31ec78e6c8ef211ba9dd664a4070f7
[ "MIT" ]
null
null
null
hill2.py
Ziggareto/national_cipher_challenge
afac5a4b3c31ec78e6c8ef211ba9dd664a4070f7
[ "MIT" ]
null
null
null
#hill2 import basics import genetic_algorithm as ga import math import numpy as np import random """ Hill Cipher - uses a matrix as a key, and splits text into small chunks [1, 2, 3] ['a'][1] [14] ['n'] [4, 5, 6] ['b'][2] = [32] mod(26) = ['f'] [7, 8, 9] ['c'][3] [50] ['x'] """ def encrypt_text(text, key_matrix): """Returns the encrypted by key_matrix text""" length = len(key_matrix) chunks = split(text, length) comp = '' for num in range(math.ceil(len(text)/length)): comp += convert_chunk(chunks[num], key_matrix) return(comp) def decrypt_text2(text, key): dm1m26 = key.T % 26 new = (key * dm1m26).T length = len(key) chunks = split(text, length) comp = '' for num in range(math.ceil(len(text)/length)): comp += convert_chunk(chunks[num], key) return(comp) def decrypt_text(text, key): length = len(key) chunks = split(text, length) chunknums = [chunk_to_num(chunk) for chunk in chunks][:-1] posses = [] for numpair in chunknums: posses.append(solve_equation([key[0][0], key[0][1], numpair[0]], [key[1][0], key[1][1], numpair[1]])) return(posses) comp = '' for thing in posses: for mini in thing: comp += basics.alphabet[mini[0]] return(comp) def solve2(eq1, eq2): e1, e2 = np.array(eq1), np.array(eq2) def split(text, length): """Splits the text into chunks of length length, returning the list of chunks e.g. text='abcdefghi', length=3 -> ['abc', 'def', 'ghi'] If the text isn't long enough, the last chunk might be shorter """ chunks = [] count = 0 iterations = math.floor(len(text)/length) while count < iterations: chunks.append(text[length*count : length*(count+1)]) count += 1 #Catches the tail end which might be shorter than length chunks.append(text[length*count:]) if len(chunks[-1]) > 0: #If there was some leftover for num in range(length-len(chunks[-1])):#pad with 'a' as necessary chunks[-1] += 'a' return(chunks) def convert_chunk(chunk, key_matrix): a = np.array([basics.alphabet.index(letter) for letter in chunk]) b = np.dot(key_matrix, a) b = b % 26 comp = ''.join([basics.alphabet[int(index)] for index in b]) return(comp) def chunk_to_num(chunk): return([basics.alphabet.index(char) for char in chunk]) def get_key(th, he): thnum = chunk_to_num(th) henum = chunk_to_num(he) poss1 = solve_equation([19, 7, thnum[0]], [7, 4, henum[0]]) poss2 = solve_equation([19, 7, thnum[1]], [7, 4, henum[1]]) return(poss1 + poss2) def solve_equation(eq1, eq2): """Takes in e.g. eq1 = [q, w, e], eq2 = [r, t, y] where qa + wb = e mod(26) and ra + tb = y mod(26). Returns values of a and b """ e1, e2 = solve_half_p1(eq1, eq2), solve_half_p1([eq1[1], eq1[0], eq1[2]], [eq2[1], eq2[0], eq2[2]]) aposs, bposs = find_possibilities(e1[0], e1[2]), find_possibilities(e2[0], e2[2]) return([aposs, bposs]) def solve_half_p1(eq1, eq2): #Works by elimination e1, e2 = np.array(eq1), np.array(eq2) e1x = e1 * e2[1] e2x = e2 * e1[1] e3 = (e1x - e2x) % 26 return(e3) def find_possibilities(a, b): """Given ax = b mod(26), finds possibilities for a and b""" prac = np.array([x for x in range(26)]) prac *= a prac = prac % 26 indices = [] for index in range(26): if prac[index] == b: indices.append(index) return(indices) class hill_cipher_node(ga.node): def reproduce(self, another): #Returns a node, whose keyword is a breeding of self and another's length = len(self.key) baby_key = np.zeros([length, length], int) for rownum in range(length): for colnum in range(length): if random.randint(0, 1): out = self.key[rownum][colnum] else: out = self.key[rownum][colnum] if random.randint(0, 12) == 12: out = random.randint(0, 25) baby_key[rownum][colnum] = out return(hill_cipher_node(baby_key)) class hill_cipher_algorithm(ga.genetic_algorithm): def __init__(self, text, population_size, breeding_times, node_class, key_matrix_side_length): super(type(self), self).__init__(text, population_size, breeding_times, node_class) self.key_matrix_side_length = key_matrix_side_length self.initialize_population() def decrypt(self, text, key): return(encrypt_text(text, key)) def initialize_population(self): for num in range(self.population_size): self.population.append(self.node(self.make_key(self.key_matrix_side_length))) @staticmethod def make_key(length): key = np.zeros([length, length], int) for rownum in range(length): for colnum in range(length): key[rownum][colnum] = random.randint(0, 25) return(key)
32.103659
110
0.576068
65b6f3454d483db1b9e007039aafb9d0b3b155b2
1,550
py
Python
src/utils/UtilsDecorators.py
Gabvaztor/tensorflowCode
e206ea4544552b87c2d43274cea3182f6b385a87
[ "Apache-2.0" ]
4
2019-12-14T08:06:18.000Z
2020-09-12T10:09:31.000Z
src/utils/UtilsDecorators.py
Gabvaztor/tensorflowCode
e206ea4544552b87c2d43274cea3182f6b385a87
[ "Apache-2.0" ]
null
null
null
src/utils/UtilsDecorators.py
Gabvaztor/tensorflowCode
e206ea4544552b87c2d43274cea3182f6b385a87
[ "Apache-2.0" ]
2
2020-09-12T10:10:07.000Z
2021-09-15T11:58:37.000Z
""" To manage Errors """ import logging def logger(): """ Creates a logging object and returns it """ logger = logging.getLogger("example_logger") logger.setLevel(logging.INFO) # create the logging file handler fh = logging.FileHandler(r"/path/to/test.log") fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' formatter = logging.Formatter(fmt) fh.setFormatter(formatter) # add handler to logger object logger.addHandler(fh) return logger def exception(logger): """ A decorator that wraps the passed in function and logs exceptions should one occur @param logger: The logging object """ def decorator(func): def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except: # log the exception err = "There was an exception in " err += func.__name__ logger.exception(err) necessary_to_raise = False # TODO (@gabvaztor) Send flag to check if it is necessary to raise if necessary_to_raise: # re-raise the exception raise return wrapper return decorator def for_all_methods(decorator): def decorate(cls): for attr in cls.__dict__: # there's propably a better way to do this if callable(getattr(cls, attr)): setattr(cls, attr, decorator(getattr(cls, attr))) return cls return decorate
26.271186
83
0.582581
fb275daf0b33717026cc90c37243e29d2aa198c3
633
py
Python
generators/skip_first.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
6
2017-12-21T04:32:35.000Z
2022-02-15T07:06:45.000Z
generators/skip_first.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
21
2017-09-08T13:02:18.000Z
2020-03-28T19:10:01.000Z
generators/skip_first.py
CodyKochmann/generators
a637bf9cb5e48251aa800753ba0aa79b3ca18dcf
[ "MIT" ]
2
2018-09-30T16:16:10.000Z
2019-05-06T02:16:11.000Z
# -*- coding: utf-8 -*- # @Author: Cody Kochmann # @Date: 2018-02-17 10:42:15 # @Last Modified by: Cody Kochmann # @Last Modified time: 2018-02-17 12:02:24 from .skip import skip def skip_first(pipe, items=1): ''' this is an alias for skip to parallel the dedicated skip_last function to provide a little more readability to the code. the action of actually skipping does not occur until the first iteration is done ''' pipe = iter(pipe) for i in skip(pipe, items): yield i if __name__ == '__main__': l = list(range(10)) print(l) for i in skip_first(l, 5): print(i)
27.521739
80
0.64139
39cedbe14b7715f4709ca8efcfac99d1ef86d3c3
11,772
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/_network_management_client_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/_network_management_client_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2017_03_01/aio/_network_management_client_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Optional, TYPE_CHECKING from azure.mgmt.core import AsyncARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from azure.core.credentials_async import AsyncTokenCredential from ._configuration_async import NetworkManagementClientConfiguration from .operations_async import ApplicationGatewaysOperations from .operations_async import NetworkManagementClientOperationsMixin from .operations_async import ExpressRouteCircuitAuthorizationsOperations from .operations_async import ExpressRouteCircuitPeeringsOperations from .operations_async import ExpressRouteCircuitsOperations from .operations_async import ExpressRouteServiceProvidersOperations from .operations_async import LoadBalancersOperations from .operations_async import NetworkInterfacesOperations from .operations_async import NetworkSecurityGroupsOperations from .operations_async import SecurityRulesOperations from .operations_async import NetworkWatchersOperations from .operations_async import PacketCapturesOperations from .operations_async import PublicIPAddressesOperations from .operations_async import RouteFiltersOperations from .operations_async import RouteFilterRulesOperations from .operations_async import RouteTablesOperations from .operations_async import RoutesOperations from .operations_async import BgpServiceCommunitiesOperations from .operations_async import UsagesOperations from .operations_async import VirtualNetworksOperations from .operations_async import SubnetsOperations from .operations_async import VirtualNetworkPeeringsOperations from .operations_async import VirtualNetworkGatewaysOperations from .operations_async import VirtualNetworkGatewayConnectionsOperations from .operations_async import LocalNetworkGatewaysOperations from .. import models class NetworkManagementClient(NetworkManagementClientOperationsMixin): """Network Client. :ivar application_gateways: ApplicationGatewaysOperations operations :vartype application_gateways: azure.mgmt.network.v2017_03_01.aio.operations_async.ApplicationGatewaysOperations :ivar express_route_circuit_authorizations: ExpressRouteCircuitAuthorizationsOperations operations :vartype express_route_circuit_authorizations: azure.mgmt.network.v2017_03_01.aio.operations_async.ExpressRouteCircuitAuthorizationsOperations :ivar express_route_circuit_peerings: ExpressRouteCircuitPeeringsOperations operations :vartype express_route_circuit_peerings: azure.mgmt.network.v2017_03_01.aio.operations_async.ExpressRouteCircuitPeeringsOperations :ivar express_route_circuits: ExpressRouteCircuitsOperations operations :vartype express_route_circuits: azure.mgmt.network.v2017_03_01.aio.operations_async.ExpressRouteCircuitsOperations :ivar express_route_service_providers: ExpressRouteServiceProvidersOperations operations :vartype express_route_service_providers: azure.mgmt.network.v2017_03_01.aio.operations_async.ExpressRouteServiceProvidersOperations :ivar load_balancers: LoadBalancersOperations operations :vartype load_balancers: azure.mgmt.network.v2017_03_01.aio.operations_async.LoadBalancersOperations :ivar network_interfaces: NetworkInterfacesOperations operations :vartype network_interfaces: azure.mgmt.network.v2017_03_01.aio.operations_async.NetworkInterfacesOperations :ivar network_security_groups: NetworkSecurityGroupsOperations operations :vartype network_security_groups: azure.mgmt.network.v2017_03_01.aio.operations_async.NetworkSecurityGroupsOperations :ivar security_rules: SecurityRulesOperations operations :vartype security_rules: azure.mgmt.network.v2017_03_01.aio.operations_async.SecurityRulesOperations :ivar network_watchers: NetworkWatchersOperations operations :vartype network_watchers: azure.mgmt.network.v2017_03_01.aio.operations_async.NetworkWatchersOperations :ivar packet_captures: PacketCapturesOperations operations :vartype packet_captures: azure.mgmt.network.v2017_03_01.aio.operations_async.PacketCapturesOperations :ivar public_ip_addresses: PublicIPAddressesOperations operations :vartype public_ip_addresses: azure.mgmt.network.v2017_03_01.aio.operations_async.PublicIPAddressesOperations :ivar route_filters: RouteFiltersOperations operations :vartype route_filters: azure.mgmt.network.v2017_03_01.aio.operations_async.RouteFiltersOperations :ivar route_filter_rules: RouteFilterRulesOperations operations :vartype route_filter_rules: azure.mgmt.network.v2017_03_01.aio.operations_async.RouteFilterRulesOperations :ivar route_tables: RouteTablesOperations operations :vartype route_tables: azure.mgmt.network.v2017_03_01.aio.operations_async.RouteTablesOperations :ivar routes: RoutesOperations operations :vartype routes: azure.mgmt.network.v2017_03_01.aio.operations_async.RoutesOperations :ivar bgp_service_communities: BgpServiceCommunitiesOperations operations :vartype bgp_service_communities: azure.mgmt.network.v2017_03_01.aio.operations_async.BgpServiceCommunitiesOperations :ivar usages: UsagesOperations operations :vartype usages: azure.mgmt.network.v2017_03_01.aio.operations_async.UsagesOperations :ivar virtual_networks: VirtualNetworksOperations operations :vartype virtual_networks: azure.mgmt.network.v2017_03_01.aio.operations_async.VirtualNetworksOperations :ivar subnets: SubnetsOperations operations :vartype subnets: azure.mgmt.network.v2017_03_01.aio.operations_async.SubnetsOperations :ivar virtual_network_peerings: VirtualNetworkPeeringsOperations operations :vartype virtual_network_peerings: azure.mgmt.network.v2017_03_01.aio.operations_async.VirtualNetworkPeeringsOperations :ivar virtual_network_gateways: VirtualNetworkGatewaysOperations operations :vartype virtual_network_gateways: azure.mgmt.network.v2017_03_01.aio.operations_async.VirtualNetworkGatewaysOperations :ivar virtual_network_gateway_connections: VirtualNetworkGatewayConnectionsOperations operations :vartype virtual_network_gateway_connections: azure.mgmt.network.v2017_03_01.aio.operations_async.VirtualNetworkGatewayConnectionsOperations :ivar local_network_gateways: LocalNetworkGatewaysOperations operations :vartype local_network_gateways: azure.mgmt.network.v2017_03_01.aio.operations_async.LocalNetworkGatewaysOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials_async.AsyncTokenCredential :param subscription_id: The subscription credentials which uniquely identify the Microsoft Azure subscription. The subscription ID forms part of the URI for every service call. :type subscription_id: str :param str base_url: Service URL :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ def __init__( self, credential: "AsyncTokenCredential", subscription_id: str, base_url: Optional[str] = None, **kwargs: Any ) -> None: if not base_url: base_url = 'https://management.azure.com' self._config = NetworkManagementClientConfiguration(credential, subscription_id, **kwargs) self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.application_gateways = ApplicationGatewaysOperations( self._client, self._config, self._serialize, self._deserialize) self.express_route_circuit_authorizations = ExpressRouteCircuitAuthorizationsOperations( self._client, self._config, self._serialize, self._deserialize) self.express_route_circuit_peerings = ExpressRouteCircuitPeeringsOperations( self._client, self._config, self._serialize, self._deserialize) self.express_route_circuits = ExpressRouteCircuitsOperations( self._client, self._config, self._serialize, self._deserialize) self.express_route_service_providers = ExpressRouteServiceProvidersOperations( self._client, self._config, self._serialize, self._deserialize) self.load_balancers = LoadBalancersOperations( self._client, self._config, self._serialize, self._deserialize) self.network_interfaces = NetworkInterfacesOperations( self._client, self._config, self._serialize, self._deserialize) self.network_security_groups = NetworkSecurityGroupsOperations( self._client, self._config, self._serialize, self._deserialize) self.security_rules = SecurityRulesOperations( self._client, self._config, self._serialize, self._deserialize) self.network_watchers = NetworkWatchersOperations( self._client, self._config, self._serialize, self._deserialize) self.packet_captures = PacketCapturesOperations( self._client, self._config, self._serialize, self._deserialize) self.public_ip_addresses = PublicIPAddressesOperations( self._client, self._config, self._serialize, self._deserialize) self.route_filters = RouteFiltersOperations( self._client, self._config, self._serialize, self._deserialize) self.route_filter_rules = RouteFilterRulesOperations( self._client, self._config, self._serialize, self._deserialize) self.route_tables = RouteTablesOperations( self._client, self._config, self._serialize, self._deserialize) self.routes = RoutesOperations( self._client, self._config, self._serialize, self._deserialize) self.bgp_service_communities = BgpServiceCommunitiesOperations( self._client, self._config, self._serialize, self._deserialize) self.usages = UsagesOperations( self._client, self._config, self._serialize, self._deserialize) self.virtual_networks = VirtualNetworksOperations( self._client, self._config, self._serialize, self._deserialize) self.subnets = SubnetsOperations( self._client, self._config, self._serialize, self._deserialize) self.virtual_network_peerings = VirtualNetworkPeeringsOperations( self._client, self._config, self._serialize, self._deserialize) self.virtual_network_gateways = VirtualNetworkGatewaysOperations( self._client, self._config, self._serialize, self._deserialize) self.virtual_network_gateway_connections = VirtualNetworkGatewayConnectionsOperations( self._client, self._config, self._serialize, self._deserialize) self.local_network_gateways = LocalNetworkGatewaysOperations( self._client, self._config, self._serialize, self._deserialize) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "NetworkManagementClient": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
65.4
180
0.797316
1e36a1fe1b7b56dc2324075659ea2b63af794882
35,061
py
Python
py_trees/blackboard.py
fjulian/py_trees
63fffdfb581f390546c375f13d064b10fdace786
[ "BSD-3-Clause" ]
null
null
null
py_trees/blackboard.py
fjulian/py_trees
63fffdfb581f390546c375f13d064b10fdace786
[ "BSD-3-Clause" ]
null
null
null
py_trees/blackboard.py
fjulian/py_trees
63fffdfb581f390546c375f13d064b10fdace786
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # License: BSD # https://raw.githubusercontent.com/splintered-reality/py_trees/devel/LICENSE # ############################################################################## # Documentation ############################################################################## """ Blackboards are not a necessary component of behaviour tree implementations, but are nonetheless, a fairly common mechanism for for sharing data between behaviours in the tree. See, for example, the `design notes`_ for blackboards in Unreal Engine. .. image:: images/blackboard.jpg :width: 300px :align: center Implementations vary widely depending on the needs of the framework using them. The simplest implementations take the form of a key-value store with global access, while more rigorous implementations scope access and form a secondary graph overlaying the tree graph connecting data ports between behaviours. The implementation here strives to remain simple to use (so 'rapid development' does not become just 'development'), yet sufficiently featured so that the magic behind the scenes (i.e. the data sharing on the blackboard) is exposed and helpful in debugging tree applications. To be more concrete, the following is a list of features that this implementation either embraces or does not. * [+] Centralised key-value store * [+] Client based usage with registration of read/write intentions at construction * [+] Activity stream that tracks read/write operations by behaviours * [-] Sharing between tree instances * [-] Exclusive locks for reading/writing * [-] Priority policies for variable instantiations .. include:: weblinks.rst """ ############################################################################## # Imports ############################################################################## import enum import operator import re import typing import uuid from . import console from . import utilities ############################################################################## # Classes ############################################################################## class KeyMetaData(object): """ Stores the aggregated metadata for a key on the blackboard. """ def __init__(self): self.read = set() self.write = set() class ActivityType(enum.Enum): """An enumerator representing the operation on a blackboard variable""" READ = "READ" """Read from the blackboard""" INITIALISED = "INITIALISED" """Initialised a key-value pair on the blackboard""" WRITE = "WRITE" """Wrote to the blackboard.""" ACCESSED = "ACCESSED" """Key accessed, either for reading, or modification of the value's internal attributes (e.g. foo.bar).""" ACCESS_DENIED = "ACCESS_DENIED" """Client did not have access to read/write a key.""" NO_KEY = "NO_KEY" """Tried to access a key that does not yet exist on the blackboard.""" NO_OVERWRITE = "NO_OVERWRITE" """Tried to write but variable already exists and a no-overwrite request was respected.""" UNSET = "UNSET" """Key was removed from the blackboard""" class ActivityItem(object): """ Recorded data pertaining to activity on the blackboard. Args: key: name of the variable on the blackboard client_name: convenient name of the client performing the operation client_id: unique id of the client performing the operation activity_type: type of activity previous_value: of the given key (None if this field is not relevant) current_value: current value for the given key (None if this field is not relevant) """ def __init__( self, key, client_name: str, client_id: uuid.UUID, activity_type: ActivityType, previous_value: typing.Any=None, current_value: typing.Any=None): # TODO validity checks for values passed/not passed on the # respective activity types. Note: consider using an enum # for 'no value here' since None is a perfectly acceptable # value for a key self.key = key self.client_name = client_name self.client_id = client_id self.activity_type = activity_type self.previous_value = previous_value self.current_value = current_value class ActivityStream(object): """ Storage container with convenience methods for manipulating the stored activity stream. Attributes: data (typing.List[ActivityItem]: list of activity items, earliest first maximum_size (int): pop items if this size is exceeded """ def __init__(self, maximum_size: int=500): """ Initialise the stream with a maximum storage limit. Args: maximum_size: pop items from the stream if this size is exceeded """ self.data = [] self.maximum_size = maximum_size def push(self, activity_item: ActivityItem): """ Push the next activity item to the stream. Args: activity_item: new item to append to the stream """ if len(self.data) > self.maximum_size: self.data.pop() self.data.append(activity_item) def clear(self): """ Delete all activities from the stream. """ self.data = [] class Blackboard(object): """ Centralised key-value store for sharing data between behaviours. This class is a coat-hanger for the centralised data store, metadata for it's administration and static methods for interacting with it. This api is intended for authors of debugging and introspection tools on the blackboard. Users should make use of the :class:`BlackboardClient`. Attributes: Blackboard.clients (typing.Dict[uuid.UUID, Blackboard]): clients, gathered by uuid Blackboard.storage (typing.Dict[str, typing.Any]): key-value data store Blackboard.metadata (typing.Dict[str, KeyMetaData]): key associated metadata Blackboard.activity_stream (ActivityStream): logged activity """ storage = {} # Dict[str, Any] / key-value storage metadata = {} # Dict[ str, KeyMetaData ] / key-metadata information clients = {} # Dict[ uuid.UUID, Blackboard] / id-client information activity_stream = None @staticmethod def keys() -> typing.Set[str]: """ Get the set of blackboard keys. Returns: the complete set of keys registered by clients """ # return registered keys, those on the blackboard are not # necessarily written to yet return Blackboard.metadata.keys() @staticmethod def get(variable_name: str) -> typing.Any: """ Extract the value associated with the given a variable name, can be nested, e.g. battery.percentage. This differs from the client get method in that it doesn't pass through the client access checks. To be used for utility tooling (e.g. display methods) and not by users directly. Args: variable_name: of the variable to get, can be nested, e.g. battery.percentage Raises: KeyError: if the variable or it's nested attributes do not yet exist on the blackboard Return: The stored value for the given variable """ # convenience, just in case they used slashes instead of .'s if '/' in variable_name: variable_name = ".".join(variable_name.split('/')) name_components = variable_name.split('.') key = name_components[0] key_attributes = '.'.join(name_components[1:]) # can raise KeyError value = Blackboard.storage[key] if key_attributes: try: value = operator.attrgetter(key_attributes)(value) except AttributeError: raise KeyError("Key exists, but does not have the specified nested attributes [{}]".format(variable_name)) return value @staticmethod def set(variable_name: str, value: typing.Any): """ Set the value associated with the given a variable name, can be nested, e.g. battery.percentage. This differs from the client get method in that it doesn't pass through the client access checks. To be used for utility tooling (e.g. display methods) and not by users directly. Args: variable_name: of the variable to set, can be nested, e.g. battery.percentage Raises: AttributeError: if it is attempting to set a nested attribute tha does not exist. """ name_components = variable_name.split('.') key = name_components[0] key_attributes = '.'.join(name_components[1:]) if not key_attributes: Blackboard.storage[key] = value else: setattr(Blackboard.storage[key], key_attributes, value) @staticmethod def unset(key: str): """ For when you need to completely remove a blackboard variable (key-value pair), this provides a convenient helper method. Args: key: name of the variable to remove Returns: True if the variable was removed, False if it was already absent """ try: del Blackboard.storage[key] return True except KeyError: return False @staticmethod def keys_filtered_by_regex(regex: str) -> typing.Set[str]: """ Get the set of blackboard keys filtered by regex. Args: regex: a python regex string Returns: subset of keys that have been registered and match the pattern """ pattern = re.compile(regex) return [key for key in Blackboard.metadata.keys() if pattern.search(key) is not None] @staticmethod def keys_filtered_by_clients(client_ids: typing.Union[typing.List[str], typing.Set[str]]) -> typing.Set[str]: """ Get the set of blackboard keys filtered by client ids. Args: client_ids: set of client uuid's. Returns: subset of keys that have been registered by the specified clients """ # convenience for users if type(client_ids) == list: client_ids = set(client_ids) keys = set() for key in Blackboard.metadata.keys(): # for sets, | is union, & is intersection key_clients = set(Blackboard.metadata[key].read) | set(Blackboard.metadata[key].write) if key_clients & client_ids: keys.add(key) return keys @staticmethod def enable_activity_stream(maximum_size: int=500): """ Enable logging of activities on the blackboard. Args: maximum_size: pop items from the stream if this size is exceeded Raises: RuntimeError if the activity stream is already enabled """ if Blackboard.activity_stream is None: Blackboard.activity_stream = ActivityStream(maximum_size) else: RuntimeError("activity stream is already enabled for this blackboard") @staticmethod def disable_activity_stream(): """ Disable logging of activities on the blackboard """ Blackboard.activity_stream = None @staticmethod def clear(): """ Completely clear all key, value and client information from the blackboard. Also deletes the activity stream. """ Blackboard.storage.clear() Blackboard.metadata.clear() Blackboard.clients.clear() Blackboard.activity_stream = None class BlackboardClient(object): """ Client to the key-value store for sharing data between behaviours. **Examples** Blackboard clients will accept a user-friendly name / unique identifier for registration on the centralised store or create them for you if none is provided. .. code-block:: python provided = py_trees.blackboard.BlackboardClient( name="Provided", unique_identifier=uuid.uuid4() ) print(provided) generated = py_trees.blackboard.BlackboardClient() print(generated) .. figure:: images/blackboard_client_instantiation.png :align: center Client Instantiation Register read/write access for keys on the blackboard. Note, registration is not initialisation. .. code-block:: python blackboard = py_trees.blackboard.BlackboardClient( name="Client", read={"foo"}, write={"bar"} ) blackboard.register_key(key="foo", write=True) blackboard.foo = "foo" print(blackboard) .. figure:: images/blackboard_read_write.png :align: center Variable Read/Write Registration Disconnected instances will discover the centralised key-value store. .. code-block:: python def check_foo(): blackboard = py_trees.blackboard.BlackboardClient(name="Reader", read={"foo"}) print("Foo: {}".format(blackboard.foo)) blackboard = py_trees.blackboard.BlackboardClient(name="Writer", write={"foo"}) blackboard.foo = "bar" check_foo() To respect an already initialised key on the blackboard: .. code-block:: python blackboard = BlackboardClient(name="Writer", read={"foo")) result = blackboard.set("foo", "bar", overwrite=False) Store complex objects on the blackboard: .. code-block:: python class Nested(object): def __init__(self): self.foo = None self.bar = None def __str__(self): return str(self.__dict__) writer = py_trees.blackboard.BlackboardClient( name="Writer", write={"nested"} ) reader = py_trees.blackboard.BlackboardClient( name="Reader", read={"nested"} ) writer.nested = Nested() writer.nested.foo = "foo" writer.nested.bar = "bar" foo = reader.nested.foo print(writer) print(reader) .. figure:: images/blackboard_nested.png :align: center Log and display the activity stream: .. code-block:: python py_trees.blackboard.Blackboard.enable_activity_stream(maximum_size=100) blackboard_reader = py_trees.blackboard.BlackboardClient(name="Reader", read={"foo"}) blackboard_writer = py_trees.blackboard.BlackboardClient(name="Writer", write={"foo"}) blackboard_writer.foo = "bar" blackboard_writer.foo = "foobar" unused_result = blackboard_reader.foo print(py_trees.display.unicode_blackboard_activity_stream()) py_trees.blackboard.Blackboard.activity_stream.clear() .. figure:: images/blackboard_activity_stream.png :align: center Display the blackboard on the console, or part thereof: .. code-block:: python writer = py_trees.blackboard.BlackboardClient( name="Writer", write={"foo", "bar", "dude", "dudette"} ) reader = py_trees.blackboard.BlackboardClient( name="Reader", read={"foo", "bBlackboardClient( ) writer.foo = "foo" writer.bar = "bar" writer.dude = "bob" # all key-value pairs print(py_trees.display.unicode_blackboard()) # various filtered views print(py_trees.display.unicode_blackboard(key_filter={"foo"})) print(py_trees.display.unicode_blackboard(regex_filter="dud*")) print(py_trees.display.unicode_blackboard(client_filter={reader.unique_identifier})) # list the clients associated with each key print(py_trees.display.unicode_blackboard(display_only_key_metadata=True)) .. figure:: images/blackboard_display.png :align: center Behaviours register their own blackboard clients with the same name/id as the behaviour itself. This helps associate blackboard variables with behaviours, enabling various introspection and debugging capabilities on the behaviour trees. Creating a custom behaviour with blackboard variables: .. code-block:: python class Foo(py_trees.behaviours.Behaviour): def __init__(self, name): super().__init__(name=name) self.blackboard.register_key("foo", read=True) def update(self): self.feedback_message = self.blackboard.foo return py_trees.common.Status.Success Rendering a dot graph for a behaviour tree, complete with blackboard variables: .. code-block:: python # in code py_trees.display.render_dot_tree(py_trees.demos.blackboard.create_root()) # command line tools py-trees-render --with-blackboard-variables py_trees.demos.blackboard.create_root .. graphviz:: dot/demo-blackboard.dot :align: center And to demonstrate that it doesn't become a tangled nightmare at scale, an example of a more complex tree: .. graphviz:: dot/blackboard-with-variables.dot :align: center With judicious use of the display methods / activity stream around the ticks of a tree (refer to :class:`py_trees.visitors.DisplaySnapshotVisitor` for examplar code): .. figure:: images/blackboard_trees.png :align: center .. seealso:: * :ref:`py-trees-demo-blackboard <py-trees-demo-blackboard-program>` * :class:`py_trees.visitors.DisplaySnapshotVisitor` * :class:`py_trees.behaviours.SetBlackboardVariable` * :class:`py_trees.behaviours.UnsetBlackboardVariable` * :class:`py_trees.behaviours.CheckBlackboardVariableExists` * :class:`py_trees.behaviours.WaitForBlackboardVariable` * :class:`py_trees.behaviours.CheckBlackboardVariableValue` * :class:`py_trees.behaviours.WaitForBlackboardVariableValue` Attributes: name (str): client's convenient, but not necessarily unique identifier unique_identifier (uuid.UUID): client's unique identifier read (typing.List[str]): keys this client has permission to read write (typing.List[str]): keys this client has permission to write """ def __init__( self, *, name: str=None, unique_identifier: uuid.UUID=None, read: typing.Set[str]=None, write: typing.Set[str]=None): """ Args: name: client's convenient identifier (stringifies the uuid if None) unique_identifier: client's unique identifier (auto-generates if None) read: list of keys this client has permission to read write: list of keys this client has permission to write Raises: TypeError: if the provided name/unique identifier is not of type str/uuid.UUID ValueError: if the unique identifier has already been registered """ # unique identifier if unique_identifier is None: super().__setattr__("unique_identifier", uuid.uuid4()) else: if type(unique_identifier) != uuid.UUID: raise TypeError("provided unique identifier is not of type uuid.UUID") super().__setattr__("unique_identifier", unique_identifier) if super().__getattribute__("unique_identifier") in Blackboard.clients.keys(): raise ValueError("this unique identifier has already been registered") # name if name is None or not name: name = utilities.truncate( original=str(super().__getattribute__("unique_identifier")).replace('-', '_'), length=7 ) super().__setattr__("name", name) else: if not isinstance(name, str): raise TypeError("provided name is not of type str [{}]".format(type(name))) super().__setattr__("name", name) # read if read is None: super().__setattr__("read", set()) elif type(read) is list: super().__setattr__("read", set(read)) else: super().__setattr__("read", read) for key in super().__getattribute__("read"): Blackboard.metadata.setdefault(key, KeyMetaData()) Blackboard.metadata[key].read.add( super().__getattribute__("unique_identifier") ) # write if write is None: super().__setattr__("write", set()) elif type(write) is list: super().__setattr__("write", set(write)) else: super().__setattr__("write", write) for key in super().__getattribute__("write"): Blackboard.metadata.setdefault(key, KeyMetaData()) Blackboard.metadata[key].write.add( super().__getattribute__("unique_identifier") ) Blackboard.clients[ super().__getattribute__("unique_identifier") ] = self def __setattr__(self, name: str, value: typing.Any): """ Convenience attribute style referencing with checking against permissions. Raises: AttributeError: if the client does not have write access to the variable """ # print("__setattr__ [{}][{}]".format(name, value)) if name not in super().__getattribute__("write"): if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item(name, ActivityType.ACCESS_DENIED) ) raise AttributeError("client '{}' does not have write access to '{}'".format(self.name, name)) if Blackboard.activity_stream is not None: if name in Blackboard.storage.keys(): Blackboard.activity_stream.push( self._generate_activity_item( key=name, activity_type=ActivityType.WRITE, previous_value=Blackboard.storage[name], current_value=value ) ) else: Blackboard.activity_stream.push( self._generate_activity_item( key=name, activity_type=ActivityType.INITIALISED, current_value=value ) ) Blackboard.storage[name] = value def __getattr__(self, name: str): """ Convenience attribute style referencing with checking against permissions. Raises: AttributeError: if the client does not have read access to the variable KeyError: if the variable does not yet exist on the blackboard """ # print("__getattr__ [{}]".format(name)) if name not in (super().__getattribute__("read") | super().__getattribute__("write")): if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item(name, ActivityType.ACCESS_DENIED) ) raise AttributeError("client '{}' does not have read/write access to '{}'".format(self.name, name)) try: if name in super().__getattribute__("write"): if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item( key=name, activity_type=ActivityType.ACCESSED, current_value=Blackboard.storage[name], ) ) return Blackboard.storage[name] if name in super().__getattribute__("read"): if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item( key=name, activity_type=ActivityType.READ, current_value=Blackboard.storage[name], ) ) return Blackboard.storage[name] except KeyError as e: if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item(name, ActivityType.NO_KEY) ) raise KeyError("client '{}' tried to access '{}' but it does not yet exist on the blackboard".format(self.name, name)) from e def set(self, name: str, value: typing.Any, overwrite: bool=True) -> bool: """ Set, conditionally depending on whether the variable already exists or otherwise. This is most useful when initialising variables and multiple elements seek to do so. A good policy to adopt for your applications in these situations is a first come, first served policy. Ensure global configuration has the first opportunity followed by higher priority behaviours in the tree and so forth. Lower priority behaviours would use this to respect the pre-configured setting and at most, just validate that it is acceptable to the functionality of it's own behaviour. Args: name: name of the variable to set value: value of the variable to set overwrite: do not set if the variable already exists on the blackboard Returns: success or failure (overwrite is False and variable already set) Raises: AttributeError: if the client does not have write access to the variable KeyError: if the variable does not yet exist on the blackboard """ name_components = name.split('.') key = name_components[0] key_attributes = '.'.join(name_components[1:]) if key not in super().__getattribute__("write"): if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item(name, ActivityType.ACCESS_DENIED) ) raise AttributeError("client '{}' does not have write access to '{}'".format(self.name, name)) if not overwrite: if key in Blackboard.storage: if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item( key=key, activity_type=ActivityType.NO_OVERWRITE, current_value=Blackboard.storage[name]) ) return False if not key_attributes: setattr(self, name, value) return True else: blackboard_object = getattr(self, key) try: setattr(blackboard_object, key_attributes, value) return True except AttributeError: # when the object doesn't have the attributes return False def exists(self, name: str) -> bool: """ Check if the specified variable exists on the blackboard. Args: name: name of the variable to get, can be nested, e.g. battery.percentage Raises: AttributeError: if the client does not have read access to the variable """ try: unused_value = self.get(name) return True except KeyError: return False def get(self, name: str) -> typing.Any: """ Method based accessor to the blackboard variables (as opposed to simply using '.<name>'). Args: name: name of the variable to get, can be nested, e.g. battery.percentage Raises: AttributeError: if the client does not have read access to the variable KeyError: if the variable or it's nested attributes do not yet exist on the blackboard """ # key attributes is an empty string if not a nested variable name name_components = name.split('.') key = name_components[0] key_attributes = '.'.join(name_components[1:]) value = getattr(self, key) # will run through client access checks in __getattr__ if key_attributes: try: value = operator.attrgetter(key_attributes)(value) except AttributeError: raise KeyError("Key exists, but does not have the specified nested attributes [{}]".format(name)) return value def unset(self, key: str): """ For when you need to completely remove a blackboard variable (key-value pair), this provides a convenient helper method. Args: key: name of the variable to remove Returns: True if the variable was removed, False if it was already absent """ if Blackboard.activity_stream is not None: Blackboard.activity_stream.push( self._generate_activity_item(key, ActivityType.UNSET) ) # Three means of handling a non-existent key - 1) raising a KeyError, 2) catching # the KeyError and passing, 3) catch the KeyError and return True/False. # Option 1) is inconvenient - requires a redundant try/catch 99% of cases # Option 2) hides information - bad # Option 3) no extra code necessary and information is there if desired try: del Blackboard.storage[key] return True except KeyError: return False def __str__(self): indent = " " s = console.green + "Blackboard Client" + console.reset + "\n" s += console.white + indent + "Client Data" + console.reset + "\n" keys = ["name", "unique_identifier", "read", "write"] s += self._stringify_key_value_pairs(keys, self.__dict__, 2 * indent) s += console.white + indent + "Variables" + console.reset + "\n" keys = self.read | self.write s += self._stringify_key_value_pairs(keys, Blackboard.storage, 2 * indent) return s def _generate_activity_item(self, key, activity_type, previous_value=None, current_value=None): return ActivityItem( key=key, client_name=super().__getattribute__("name"), client_id=super().__getattribute__("unique_identifier"), activity_type=activity_type, previous_value=previous_value, current_value=current_value ) def _stringify_key_value_pairs(self, keys, key_value_dict, indent): s = "" max_length = 0 for key in keys: max_length = len(key) if len(key) > max_length else max_length for key in keys: try: value = key_value_dict[key] lines = ('{0}'.format(value)).split('\n') if len(lines) > 1: s += console.cyan + indent + '{0: <{1}}'.format(key, max_length + 1) + console.reset + ":\n" for line in lines: s += console.yellow + indent + " {0}\n".format(line) + console.reset else: s += console.cyan + indent + '{0: <{1}}'.format(key, max_length + 1) + console.reset + ": " + console.yellow + '{0}\n'.format(value) + console.reset except KeyError: s += console.cyan + indent + '{0: <{1}}'.format(key, max_length + 1) + console.reset + ": " + console.yellow + "-\n" + console.reset s += console.reset return s def unregister(self, clear: bool=True): """ Unregister this blackboard client and if requested, clear key-value pairs if this client is the last user of those variables. Args: clear: remove key-values pairs from the blackboard """ self.unregister_all_keys(clear) del Blackboard.clients[super().__getattribute__("unique_identifier")] def unregister_all_keys(self, clear: bool=True): """ Unregister all keys currently registered by this blackboard client and if requested, clear key-value pairs if this client is the last user of those variables. Args: clear: remove key-values pairs from the blackboard """ for key in self.read: Blackboard.metadata[key].read.remove(super().__getattribute__("unique_identifier")) for key in self.write: Blackboard.metadata[key].write.remove(super().__getattribute__("unique_identifier")) if clear: for key in (set(self.read) | set(self.write)): if not (set(Blackboard.metadata[key].read) | set(Blackboard.metadata[key].write)): try: del Blackboard.storage[key] except KeyError: pass # perfectly acceptal for a key to not exist on the blackboard yet del Blackboard.metadata[key] def register_key(self, key: str, read: bool=False, write: bool=False): """ Register a key on the blackboard to associate with this client. Args: key: key to register read: permit/track read access write: permit/track write access """ Blackboard.metadata.setdefault(key, KeyMetaData()) if read: super().__getattribute__("read").add(key) Blackboard.metadata[key].read.add(super().__getattribute__("unique_identifier")) if write: super().__getattribute__("write").add(key) Blackboard.metadata[key].write.add(super().__getattribute__("unique_identifier")) def unregister_key(self, key: str, clear: bool=True): """ Unegister a key associated with this client. Args: key: key to unregister clear: remove key-values pairs from the blackboard Raises: KeyError if the key has not been previously registered """ super().__getattribute__("read").discard(key) # doesn't throw exceptions if it not present super().__getattribute__("write").discard(key) Blackboard.metadata[key].read.discard(super().__getattribute__("unique_identifier")) Blackboard.metadata[key].write.discard(super().__getattribute__("unique_identifier")) if not (Blackboard.metadata[key].read | Blackboard.metadata[key].write): del Blackboard.metadata[key] if clear: try: del Blackboard.storage[key] except KeyError: pass # perfectly legitimate for a registered key to not exist on the blackboard
38.109783
168
0.609823
7436fba3286534bf59a40571433f71e1782e5e42
951
py
Python
AnalyticsVidhya/AmExpert2021/bhaTrain1.py
BharathC15/bharathML
ab0460eace3bc83a6b9a7ba7c40e9721baead09a
[ "MIT" ]
null
null
null
AnalyticsVidhya/AmExpert2021/bhaTrain1.py
BharathC15/bharathML
ab0460eace3bc83a6b9a7ba7c40e9721baead09a
[ "MIT" ]
null
null
null
AnalyticsVidhya/AmExpert2021/bhaTrain1.py
BharathC15/bharathML
ab0460eace3bc83a6b9a7ba7c40e9721baead09a
[ "MIT" ]
null
null
null
# on XGBoosting [Not working] import numpy as np import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split import xgboost as xgb if __name__=='__main__': print('Starting the Program') df = pd.read_csv('trainData.csv') print(df.head()) print(df.info()) # Extraction of Track columns TargetCol = df.columns[df.columns.str.startswith('Target')] targetDF = df[TargetCol] df.drop(TargetCol,inplace=True,axis=1) X_train, X_test, y_train, y_test = train_test_split(df, targetDF, test_size = 0.2) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) model = xgb.XGBClassifier(objective='multi:softprob') model.fit(X_train, y_train) print(model) expected_y = y_test predicted_y = model.predict(X_test) print(metrics.classification_report(expected_y, predicted_y)) print(metrics.confusion_matrix(expected_y, predicted_y))
28.818182
86
0.722397
2c95dd2bd5bc65d7dfea362155f92d527594014b
10,377
py
Python
pointnet2_ops_lib/pointnet2_ops/pointnet2_utils.py
liruiw/Pointnet2_PyTorch
e803915c929b3b69bafe4c07e1f2c322e7a20aae
[ "Unlicense" ]
null
null
null
pointnet2_ops_lib/pointnet2_ops/pointnet2_utils.py
liruiw/Pointnet2_PyTorch
e803915c929b3b69bafe4c07e1f2c322e7a20aae
[ "Unlicense" ]
null
null
null
pointnet2_ops_lib/pointnet2_ops/pointnet2_utils.py
liruiw/Pointnet2_PyTorch
e803915c929b3b69bafe4c07e1f2c322e7a20aae
[ "Unlicense" ]
1
2021-01-07T03:15:04.000Z
2021-01-07T03:15:04.000Z
import torch import torch.nn as nn import warnings from torch.autograd import Function try: import pointnet2_ops._ext as _ext except ImportError: from torch.utils.cpp_extension import load import glob import os.path as osp import os warnings.warn("Unable to load pointnet2_ops cpp extension. JIT Compiling.") _ext_src_root = osp.join(osp.dirname(__file__), "_ext-src") _ext_sources = glob.glob(osp.join(_ext_src_root, "src", "*.cpp")) + glob.glob( osp.join(_ext_src_root, "src", "*.cu") ) _ext_headers = glob.glob(osp.join(_ext_src_root, "include", "*")) os.environ["TORCH_CUDA_ARCH_LIST"] = "3.7+PTX;5.0;6.0;6.1;6.2;7.0;7.5" _ext = load( "_ext", sources=_ext_sources, extra_include_paths=[osp.join(_ext_src_root, "include")], extra_cflags=["-O3"], extra_cuda_cflags=["-O3", "-Xfatbin", "-compress-all"], with_cuda=True, ) class FurthestPointSampling(Function): @staticmethod def forward(ctx, xyz, npoint): # type: (Any, torch.Tensor, int) -> torch.Tensor r""" Uses iterative furthest point sampling to select a set of npoint features that have the largest minimum distance Parameters ---------- xyz : torch.Tensor (B, N, 3) tensor where N > npoint npoint : int32 number of features in the sampled set Returns ------- torch.Tensor (B, npoint) tensor containing the set """ out = _ext.furthest_point_sampling(xyz, npoint) ctx.mark_non_differentiable(out) return out @staticmethod def backward(ctx, grad_out): return () furthest_point_sample = FurthestPointSampling.apply class GatherOperation(Function): @staticmethod def forward(ctx, features, idx): # type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- features : torch.Tensor (B, C, N) tensor idx : torch.Tensor (B, npoint) tensor of the features to gather Returns ------- torch.Tensor (B, C, npoint) tensor """ ctx.save_for_backward(idx, features) return _ext.gather_points(features, idx) @staticmethod def backward(ctx, grad_out): idx, features = ctx.saved_tensors N = features.size(2) grad_features = _ext.gather_points_grad(grad_out.contiguous(), idx, N) return grad_features, None gather_operation = GatherOperation.apply class ThreeNN(Function): @staticmethod def forward(ctx, unknown, known): # type: (Any, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor] r""" Find the three nearest neighbors of unknown in known Parameters ---------- unknown : torch.Tensor (B, n, 3) tensor of known features known : torch.Tensor (B, m, 3) tensor of unknown features Returns ------- dist : torch.Tensor (B, n, 3) l2 distance to the three nearest neighbors idx : torch.Tensor (B, n, 3) index of 3 nearest neighbors """ dist2, idx = _ext.three_nn(unknown, known) dist = torch.sqrt(dist2) ctx.mark_non_differentiable(dist, idx) return dist, idx @staticmethod def backward(ctx, grad_dist, grad_idx): return () three_nn = ThreeNN.apply class ThreeInterpolate(Function): @staticmethod def forward(ctx, features, idx, weight): # type(Any, torch.Tensor, torch.Tensor, torch.Tensor) -> Torch.Tensor r""" Performs weight linear interpolation on 3 features Parameters ---------- features : torch.Tensor (B, c, m) Features descriptors to be interpolated from idx : torch.Tensor (B, n, 3) three nearest neighbors of the target features in features weight : torch.Tensor (B, n, 3) weights Returns ------- torch.Tensor (B, c, n) tensor of the interpolated features """ ctx.save_for_backward(idx, weight, features) return _ext.three_interpolate(features, idx, weight) @staticmethod def backward(ctx, grad_out): # type: (Any, torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor] r""" Parameters ---------- grad_out : torch.Tensor (B, c, n) tensor with gradients of ouputs Returns ------- grad_features : torch.Tensor (B, c, m) tensor with gradients of features None None """ idx, weight, features = ctx.saved_tensors m = features.size(2) grad_features = _ext.three_interpolate_grad( grad_out.contiguous(), idx, weight, m ) return grad_features, torch.zeros_like(idx), torch.zeros_like(weight) three_interpolate = ThreeInterpolate.apply class GroupingOperation(Function): @staticmethod def forward(ctx, features, idx): # type: (Any, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- features : torch.Tensor (B, C, N) tensor of features to group idx : torch.Tensor (B, npoint, nsample) tensor containing the indicies of features to group with Returns ------- torch.Tensor (B, C, npoint, nsample) tensor """ ctx.save_for_backward(idx, features) return _ext.group_points(features, idx) @staticmethod def backward(ctx, grad_out): # type: (Any, torch.tensor) -> Tuple[torch.Tensor, torch.Tensor] r""" Parameters ---------- grad_out : torch.Tensor (B, C, npoint, nsample) tensor of the gradients of the output from forward Returns ------- torch.Tensor (B, C, N) gradient of the features None """ idx, features = ctx.saved_tensors N = features.size(2) grad_features = _ext.group_points_grad(grad_out.contiguous(), idx, N) return grad_features, torch.zeros_like(idx) grouping_operation = GroupingOperation.apply class BallQuery(Function): @staticmethod def forward(ctx, radius, nsample, xyz, new_xyz): # type: (Any, float, int, torch.Tensor, torch.Tensor) -> torch.Tensor r""" Parameters ---------- radius : float radius of the balls nsample : int maximum number of features in the balls xyz : torch.Tensor (B, N, 3) xyz coordinates of the features new_xyz : torch.Tensor (B, npoint, 3) centers of the ball query Returns ------- torch.Tensor (B, npoint, nsample) tensor with the indicies of the features that form the query balls """ output = _ext.ball_query(new_xyz, xyz, radius, nsample) ctx.mark_non_differentiable(output) return output @staticmethod def backward(ctx, grad_out): return () ball_query = BallQuery.apply class QueryAndGroup(nn.Module): r""" Groups with a ball query of radius Parameters --------- radius : float32 Radius of ball nsample : int32 Maximum number of features to gather in the ball """ def __init__(self, radius, nsample, use_xyz=True): # type: (QueryAndGroup, float, int, bool) -> None super(QueryAndGroup, self).__init__() self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz def forward(self, xyz, new_xyz, features=None): # type: (QueryAndGroup, torch.Tensor. torch.Tensor, torch.Tensor) -> Tuple[Torch.Tensor] r""" Parameters ---------- xyz : torch.Tensor xyz coordinates of the features (B, N, 3) new_xyz : torch.Tensor centriods (B, npoint, 3) features : torch.Tensor Descriptors of the features (B, C, N) Returns ------- new_features : torch.Tensor (B, 3 + C, npoint, nsample) tensor """ idx = ball_query(self.radius, self.nsample, xyz, new_xyz) xyz_trans = xyz.transpose(1, 2).contiguous() grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample) grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1) if features is not None: grouped_features = grouping_operation(features, idx) if self.use_xyz: new_features = torch.cat( [grouped_xyz, grouped_features], dim=1 ) # (B, C + 3, npoint, nsample) else: new_features = grouped_features else: assert ( self.use_xyz ), "Cannot have not features and not use xyz as a feature!" new_features = grouped_xyz return new_features class GroupAll(nn.Module): r""" Groups all features Parameters --------- """ def __init__(self, use_xyz=True): # type: (GroupAll, bool) -> None super(GroupAll, self).__init__() self.use_xyz = use_xyz def forward(self, xyz, new_xyz, features=None): # type: (GroupAll, torch.Tensor, torch.Tensor, torch.Tensor) -> Tuple[torch.Tensor] r""" Parameters ---------- xyz : torch.Tensor xyz coordinates of the features (B, N, 3) new_xyz : torch.Tensor Ignored features : torch.Tensor Descriptors of the features (B, C, N) Returns ------- new_features : torch.Tensor (B, C + 3, 1, N) tensor """ grouped_xyz = xyz.transpose(1, 2).unsqueeze(2) if features is not None: grouped_features = features.unsqueeze(2) if self.use_xyz: new_features = torch.cat( [grouped_xyz, grouped_features], dim=1 ) # (B, 3 + C, 1, N) else: new_features = grouped_features else: new_features = grouped_xyz return new_features
27.307895
103
0.571552
a589d8c2054f0126a76102c6f5735a4762a2c530
661
py
Python
commitizen/factory.py
blaggacao/commitizen
a108872bafebd601358b282d0385760b5fca036d
[ "MIT" ]
null
null
null
commitizen/factory.py
blaggacao/commitizen
a108872bafebd601358b282d0385760b5fca036d
[ "MIT" ]
null
null
null
commitizen/factory.py
blaggacao/commitizen
a108872bafebd601358b282d0385760b5fca036d
[ "MIT" ]
null
null
null
from commitizen import BaseCommitizen, out from commitizen.config import BaseConfig from commitizen.cz import registry from commitizen.error_codes import NO_COMMITIZEN_FOUND def commiter_factory(config: BaseConfig) -> BaseCommitizen: """Return the correct commitizen existing in the registry.""" name: str = config.settings["name"] try: _cz = registry[name](config) except KeyError: msg_error = ( "The committer has not been found in the system.\n\n" f"Try running 'pip install {name}'\n" ) out.error(msg_error) raise SystemExit(NO_COMMITIZEN_FOUND) else: return _cz
31.47619
65
0.6823
7431b7d2acf46186b050a80bf16be78881218d54
2,229
py
Python
sigstore/_internal/set.py
trailofbits/sigstore-python
1772dba7b416b4537f4d71605ab0ac2cf8491899
[ "Apache-2.0" ]
5
2022-03-15T18:38:45.000Z
2022-03-24T20:59:29.000Z
sigstore/_internal/set.py
trailofbits/sigstore-python
1772dba7b416b4537f4d71605ab0ac2cf8491899
[ "Apache-2.0" ]
9
2022-03-22T01:55:06.000Z
2022-03-27T09:21:59.000Z
sigstore/_internal/set.py
trailofbits/sigstore-python
1772dba7b416b4537f4d71605ab0ac2cf8491899
[ "Apache-2.0" ]
1
2022-03-21T21:36:17.000Z
2022-03-21T21:36:17.000Z
# Copyright 2022 The Sigstore Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for verifying Signed Entry Timestamps. """ import base64 from importlib import resources from typing import cast import cryptography.hazmat.primitives.asymmetric.ec as ec from cryptography.exceptions import InvalidSignature from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.serialization import load_pem_public_key from securesystemslib.formats import encode_canonical from sigstore._internal.rekor import RekorEntry REKOR_ROOT_PUBKEY = resources.read_binary("sigstore._store", "rekor.pub") class InvalidSetError(Exception): pass def verify_set(entry: RekorEntry) -> None: """Verify the Signed Entry Timestamp for a given Rekor entry""" # Put together the payload # # This involves removing any non-required fields (verification and attestation) and then # canonicalizing the remaining JSON in accordance with IETF's RFC 8785. raw_data = entry.raw_data.copy() del raw_data["verification"] del raw_data["attestation"] canon_data: bytes = encode_canonical(raw_data).encode() # Decode the SET field signed_entry_ts: bytes = base64.b64decode( entry.verification["signedEntryTimestamp"].encode() ) # Load the Rekor public key rekor_key = load_pem_public_key(REKOR_ROOT_PUBKEY) rekor_key = cast(ec.EllipticCurvePublicKey, rekor_key) # Validate the SET try: rekor_key.verify( signature=signed_entry_ts, data=canon_data, signature_algorithm=ec.ECDSA(hashes.SHA256()), ) except InvalidSignature as inval_sig: raise InvalidSetError from inval_sig
32.779412
92
0.750112
376bd4205672e05c29d60f03c82229cf96c4eeda
46,038
py
Python
ivy/functional/ivy/general.py
VedPatwardhan/ivy
7b2105fa8cf38879444a1029bfaa7f0b2f27717a
[ "Apache-2.0" ]
null
null
null
ivy/functional/ivy/general.py
VedPatwardhan/ivy
7b2105fa8cf38879444a1029bfaa7f0b2f27717a
[ "Apache-2.0" ]
null
null
null
ivy/functional/ivy/general.py
VedPatwardhan/ivy
7b2105fa8cf38879444a1029bfaa7f0b2f27717a
[ "Apache-2.0" ]
null
null
null
"""Collection of general Ivy functions.""" # global import gc import math import einops import inspect import numpy as np from numbers import Number from typing import Callable, Any, Union, List, Tuple, Dict, Iterable, Optional # local import ivy from ivy.functional.ivy.device import dev from ivy.backend_handler import current_backend as _cur_backend from ivy.func_wrapper import ( infer_device, inputs_to_native_arrays, to_native_arrays_and_back, handle_out_argument, ) FN_CACHE = dict() INF = float("inf") TIMEOUT = 15.0 TMP_DIR = "/tmp" def get_referrers_recursive( item, depth=0, max_depth=None, seen_set=None, local_set=None ): """Summary. Parameters ---------- item depth (Default value = 0) max_depth (Default value = None) seen_set (Default value = None) local_set (Default value = None) """ seen_set = ivy.default(seen_set, set()) local_set = ivy.default(local_set, set()) ret_cont = ivy.Container( repr=str(item).replace(" ", ""), alphabetical_keys=False, keyword_color_dict={"repr": "magenta"}, ) referrers = [ ref for ref in gc.get_referrers(item) if not ( isinstance(ref, dict) and min([k in ref for k in ["depth", "max_depth", "seen_set", "local_set"]]) ) ] local_set.add(str(id(referrers))) for ref in referrers: ref_id = str(id(ref)) if ref_id in local_set or hasattr(ref, "cell_contents"): continue seen = ref_id in seen_set seen_set.add(ref_id) refs_rec = lambda: get_referrers_recursive( ref, depth + 1, max_depth, seen_set, local_set ) this_repr = "tracked" if seen else str(ref).replace(" ", "") if not seen and (not max_depth or depth < max_depth): val = ivy.Container( repr=this_repr, alphabetical_keys=False, keyword_color_dict={"repr": "magenta"}, ) refs = refs_rec() for k, v in refs.items(): val[k] = v else: val = this_repr ret_cont[str(ref_id)] = val return ret_cont def is_native_array(x: Any, exclusive: bool = False) -> bool: """Determines whether the input x is a Native Array. Parameters ---------- x The input to check exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is an array. """ try: return _cur_backend(x).is_native_array(x, exclusive) except ValueError: return False def is_ivy_array(x: Any, exclusive: bool = False) -> bool: """Determines whether the input x is an Ivy Array. Parameters ---------- x The input to check exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is an array. Examples -------- >>> x = [0., 1., 2.] >>> ivy.is_ivy_array(x) False >>> x = ivy.array([0., 1., 2.]) >>> ivy.is_ivy_array(x) True """ return isinstance(x, ivy.Array) and ivy.is_native_array(x.data, exclusive) def is_array(x: Any, exclusive: bool = False) -> bool: """Determines whether the input x is either an Ivy Array or a Native Array. Parameters ---------- x The input to check exclusive Whether to check if the data type is exclusively an array, rather than a variable or traced array. Returns ------- ret Boolean, whether or not x is an array. """ return ivy.is_ivy_array(x, exclusive) or ivy.is_native_array(x, exclusive) def is_ivy_container(x: Any) -> bool: """Determines whether the input x is an Ivy Container. Parameters ---------- x The input to check Returns ------- ret Boolean, whether or not x is an ivy container. """ return isinstance(x, ivy.Container) @to_native_arrays_and_back @handle_out_argument def copy_array( x: Union[ivy.Array, ivy.NativeArray] ) -> Union[ivy.Array, ivy.NativeArray]: """Copy an array. Returns ------- ret a copy of the input array ``x``. Examples -------- >>> x = ivy.array([-1, 0, 1]) >>> y = ivy.copy_array(x) >>> print(y) ivy.array([-1, 0, 1]) """ return _cur_backend(x).copy_array(x) @inputs_to_native_arrays def array_equal( x0: Union[ivy.Array, ivy.NativeArray], x1: Union[ivy.Array, ivy.NativeArray] ) -> bool: """Determines whether two input arrays are equal across all elements. Parameters ---------- x0 The first input array to compare. x1 The second input array to compare. dtype array data type Returns ------- ret Boolean, whether or not the input arrays are equal across all elements. Examples -------- >>> x = ivy.array([1,0,1]) >>> y = ivy.array([1,0,-1]) >>> z = ivy.array_equal(x,y) >>> print(z) False >>> a = ivy.array([1, 2]) >>> b = ivy.array([1, 2]) >>> c = ivy.array_equal(a,b) >>> print(c) True >>> i = ivy.array([1, 2]) >>> j = ivy.array([1, 2, 3]) >>> k = ivy.array_equal(i,j) >>> print(k) False """ return _cur_backend(x0).array_equal(x0, x1) @inputs_to_native_arrays def arrays_equal(xs: List[Union[ivy.Array, ivy.NativeArray]]) -> bool: """Determines whether input arrays are equal across all elements. Parameters ---------- xs Sequence of arrays to compare for equality dtype list data type Returns ------- ret Boolean, whether or not all of the input arrays are equal across all elements. Functional Examples ------------------- With :code:`ivy.Array` input: >>> i = ivy.array([1, 2]) >>> j = ivy.arrays_equal([i]) >>> print(j) True >>> x = ivy.array([0, 1, 2]) >>> y = ivy.array([1, 0, 2]) >>> z = ivy.array([0, 1, 2]) >>> w = ivy.arrays_equal([x, y, z]) >>> print(w) False >>> a = ivy.array([-1, 0, 1]) >>> b = ivy.array([-1, 0, 1]) >>> c = ivy.array([-1, 0, 1]) >>> d = ivy.arrays_equal([a, b, c]) >>> print(d) True >>> x = ivy.array([0.1, 1.1]) >>> y = ivy.array([0.1, 1.1, 2.1]) >>> z = ivy.array([0.1, 1.1]) >>> w = ivy.arrays_equal([x, y, z]) >>> print(w) False With :code:`ivy.NativeArray` input: >>> m = ivy.native_array([1.1, 0.2, 1.3]) >>> n = ivy.native_array([1.1, 0.2, 1.4]) >>> o = ivy.arrays_equal([m, n]) >>> print(o) False >>> a = ivy.native_array([1, 2, 3, 0, -1]) >>> b = ivy.array([1, 2, 3, 0, -1]) >>> c = ivy.arrays_equal([a,b]) >>> print(c) True >>> a = ivy.native_array([1, 2, 3, 0, -1]) >>> b = ivy.array([1, 2, 3, 0, -2]) >>> c = ivy.arrays_equal([a,b]) >>> print(c) False With :code:`ivy.Container` input: >>> r = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([3., 4., 5.])) >>> s = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([3., 4., 5.])) >>> t = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([6., 7., 8.])) >>> print(ivy.arrays_equal([r,s,t])) { a: true, b: false } >>> x = ivy.Container(a=ivy.array([0, 1, 2]), b=ivy.array([3, 4, 5])) >>> y = ivy.array([0,1,2]) >>> z = ivy.arrays_equal([x,y]) >>> print(z) { a: true, b: false } """ x0 = xs[0] for x in xs[1:]: if not array_equal(x0, x): return False return True @to_native_arrays_and_back def all_equal( *xs: Iterable[Any], equality_matrix: bool = False ) -> Union[bool, Union[ivy.Array, ivy.NativeArray]]: """Determines whether the inputs are all equal. Parameters ---------- xs inputs to compare. equality_matrix Whether to return a matrix of equalities comparing each input with every other. Default is False. Returns ------- ret Boolean, whether or not the inputs are equal, or matrix array of booleans if equality_matrix=True is set. """ equality_fn = ivy.array_equal if ivy.is_native_array(xs[0]) else lambda a, b: a == b if equality_matrix: num_arrays = len(xs) mat = [[None for _ in range(num_arrays)] for _ in range(num_arrays)] for i, xa in enumerate(xs): for j_, xb in enumerate(xs[i:]): j = j_ + i res = equality_fn(xa, xb) if ivy.is_native_array(res): # noinspection PyTypeChecker res = ivy.to_scalar(res) # noinspection PyTypeChecker mat[i][j] = res # noinspection PyTypeChecker mat[j][i] = res return ivy.array(mat) x0 = xs[0] for x in xs[1:]: if not equality_fn(x0, x): return False return True @inputs_to_native_arrays def to_numpy(x: Union[ivy.Array, ivy.NativeArray]) -> np.ndarray: """Converts an array into a numpy array. Parameters ---------- x input array Returns ------- ret a numpy array copying all the element of the array ``x``. Examples -------- With :code:`ivy.Array` input: >>> x = ivy.array([-1, 0, 1]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([-1 0 1]) >>> print(type(y)) <class 'numpy.ndarray'> >>> x = ivy.array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([[-1 0 1] \ [-1 0 1] \ [1 0 -1]]) >>> print(type(y)) <class 'numpy.ndarray'> >>> x = ivy.array([[[-1, 0, 1], [1, 0, -1]], [[1, -1, 0], [1, 0, -1]]]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([[[-1 0 1] \ [1 0 -1]] \ [[1 -1 0] \ [1 0 -1]]]) >>> print(type(y)) <class 'numpy.ndarray'> With :code:`ivy.NativeArray` input: >>> x = ivy.native_array([-1, 0, 1]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([-1 0 1]) >>> print(type(y)) <class 'numpy.ndarray'> >>> x = ivy.native_array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([[-1 0 1] \ [-1 0 1] \ [1 0 -1]]) >>> print(type(y)) <class 'numpy.ndarray'> >>> x = ivy.native_array([[[-1, 0, 1], [1, 0, -1]], [[1, -1, 0], [1, 0, -1]]]) >>> y = ivy.to_numpy(x) >>> print(y) np.ndarray([[[-1 0 1] \ [1 0 -1]] \ [[1 -1 0] \ [1 0 -1]]]) >>> print(type(y)) <class 'numpy.ndarray'> With a mix of :code:`ivy.Container` and :code:`ivy.NativeArray` input: >>> x = ivy.Container(ivy.native_array([-1, 0, 1])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([-1 0 1]) } >>> x = ivy.Container(ivy.native_array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([[-1 0 1] \ [-1 0 1] \ [1 0 -1]]) } >>> x = ivy.Container(ivy.native_array([[[-1, 0, 1], [1, 0, -1]], ... [[1, -1, 0], [1, 0, -1]]])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([[[-1 0 1] \ [1 0 -1]] \ [[1 -1 0] \ [1 0 -1]]]) } With a mix of :code:`ivy.Container` and :code:`ivy.Array` input: >>> x = ivy.Container(ivy.array([-1, 0, 1])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([-1 0 1]) } >>> x = ivy.Container(ivy.array([[-1, 0, 1],[-1, 0, 1], [1,0,-1]])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([[-1 0 1] \ [-1 0 1] \ [1 0 -1]]) } >>> x = ivy.Container(ivy.array([[[-1, 0, 1], [1, 0, -1]], ... [[1, -1, 0], [1, 0, -1]]])) >>> y = ivy.to_numpy(x) >>> print(y) { np.ndarray([[[-1 0 1] \ [1 0 -1]] \ [[1 -1 0] \ [1 0 -1]]]) } """ return _cur_backend(x).to_numpy(x) @inputs_to_native_arrays def to_scalar(x: Union[ivy.Array, ivy.NativeArray]) -> Number: """Converts an array with a single element into a scalar. Parameters ---------- x Input array with a single element. Returns ------- ret a scalar copying the element of the array ``x``. Examples -------- >>> x = ivy.array([-1]) >>> y = ivy.to_scalar(x) >>> print(y) -1 >>> print(ivy.is_int_dtype(y)) True """ return _cur_backend(x).to_scalar(x) @inputs_to_native_arrays def to_list(x: Union[ivy.Array, ivy.NativeArray]) -> List: """Creates a (possibly nested) list from input array. Parameters ---------- x Input array. Returns ------- ret A list representation of the input array ``x``. Examples -------- >>> x = ivy.array([-1, 0, 1]) >>> y = ivy.to_list(x) >>> print(y) [-1, 0, 1] >>> print(isinstance(y, list)) True """ return _cur_backend(x).to_list(x) def clip_vector_norm( x: Union[ivy.Array, ivy.NativeArray], max_norm: float, p: float = 2.0, *, out: Optional[ivy.Array] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Clips (limits) the vector p-norm of an array. Parameters ---------- x array, input array containing elements to clip. max_norm float, the maximum value of the array norm. p optional float, the p-value for computing the p-norm. Default is 2. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array with the vector norm downscaled to the max norm if needed. """ norm = ivy.vector_norm(x, keepdims=True, ord=p) ratio = ivy.stable_divide(max_norm, norm) if ratio < 1: ret = ratio * x else: ret = x if ivy.exists(out): return ivy.inplace_update(out, ret) return ret @to_native_arrays_and_back def clip_matrix_norm( x: Union[ivy.Array, ivy.NativeArray], max_norm: float, p: float = 2.0, out: Optional[ivy.Array] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Clips (limits) the matrix norm of an array. Parameters ---------- x Input array containing elements to clip. max_norm The maximum value of the array norm. p The p-value for computing the p-norm. Default is 2. Returns ------- ret An array with the matrix norm downscaled to the max norm if needed. """ norms = ivy.matrix_norm(x, p, keepdims=True) ratios = ivy.maximum(ivy.stable_divide(max_norm, norms), 1.0) return ivy.multiply(ratios, x, out=out) @to_native_arrays_and_back @handle_out_argument def floormod( x: Union[ivy.Array, ivy.NativeArray], y: Union[ivy.Array, ivy.NativeArray], *, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Returns element-wise remainder of division. Parameters ---------- x array, input to floormod y array, denominator input for floormod. out optional output array, for writing the result to. It must have a shape that the inputs broadcast to. Returns ------- ret An array of the same shape and type as x, with the elements floor modded. """ return _cur_backend(x).floormod(x, y, out=out) @to_native_arrays_and_back def unstack( x: Union[ivy.Array, ivy.NativeArray], axis: int, keepdims: bool = False ) -> Union[ivy.Array, ivy.NativeArray]: """Unpacks the given dimension of a rank-R array into rank-(R-1) arrays. Parameters ---------- x Input array to unstack. axis Axis for which to unpack the array. keepdims Whether to keep dimension 1 in the unstack dimensions. Default is False. Returns ------- ret List of arrays, unpacked along specified dimensions. """ return _cur_backend(x).unstack(x, axis, keepdims) @to_native_arrays_and_back def fourier_encode( x: Union[ivy.Array, ivy.NativeArray], max_freq: Union[float, Union[ivy.Array, ivy.NativeArray]], num_bands: int = 4, linear: bool = False, concat: bool = True, flatten: bool = False, ) -> Union[ivy.Array, ivy.NativeArray, Tuple]: """Pads an array with fourier encodings. Parameters ---------- x Input array to encode. max_freq The maximum frequency of the encoding. num_bands The number of frequency bands for the encoding. Default is 4. linear Whether to space the frequency bands linearly as opposed to geometrically. Default is False. concat Whether to concatenate the position, sin and cos values, or return seperately. Default is True. flatten Whether to flatten the position dimension into the batch dimension. Default is False. Returns ------- ret New array with the final dimension expanded, and the encodings stored in this channel. """ x_in = x dim = x.shape[-1] x = ivy.expand_dims(x, -1) orig_x = x if linear: scales = ivy.linspace(1.0, max_freq / 2, num_bands, device=dev(x)) else: if ivy.backend == "torch" and isinstance(max_freq, float): scales = ivy.logspace( 0.0, ivy.log(ivy.array(max_freq / 2)) / math.log(10), num_bands, base=10, device=dev(x), ) else: scales = ivy.logspace( 0.0, ivy.log(max_freq / 2) / math.log(10), num_bands, base=10, device=dev(x), ) scales = ivy.astype(scales, ivy.dtype(x)) scales = scales[(*((None,) * (len(x.shape) - len(scales.shape))), Ellipsis)] x = x * scales * math.pi sin_x = ivy.sin(x) cos_x = ivy.cos(x) if flatten: orig_x = x_in sin_x = ivy.reshape(sin_x, [-1, num_bands * dim]) cos_x = ivy.reshape(cos_x, [-1, num_bands * dim]) if concat: return ivy.concat([orig_x, sin_x, cos_x], -1) return sin_x, cos_x @inputs_to_native_arrays def value_is_nan( x: Union[ivy.Array, ivy.NativeArray, Number], include_infs: bool = True ) -> bool: """Determine whether the single valued array or scalar is of nan type. Parameters ---------- x The input to check Input array. include_infs Whether to include infs and -infs in the check. Default is True. Returns ------- ret Boolean as to whether the input value is a nan or not. """ x_scalar = ivy.to_scalar(x) if ivy.is_native_array(x) else x if not x_scalar == x_scalar: return True if include_infs and x_scalar == INF or x_scalar == -INF: return True return False @inputs_to_native_arrays def has_nans(x: Union[ivy.Array, ivy.NativeArray], include_infs: bool = True) -> bool: """Determine whether the array contains any nans, as well as infs or -infs if specified. Parameters ---------- x Input array. include_infs Whether to include infs and -infs in the check. Default is True. Returns ------- ret Boolean as to whether the array contains nans. """ return value_is_nan(ivy.sum(x), include_infs) def exists(x: Any) -> bool: """Simple check as to whether the input is None or not. Parameters ---------- x Input to check. Returns ------- ret True if x is not None, else False. """ return x is not None def default( x: Any, default_val: Any, catch_exceptions: bool = False, rev: bool = False, with_callable: bool = False, ) -> Any: """Returns x provided it exists (is not None), else returns default value. Parameters ---------- x Input which may or may not exist (be None). default_val The default value. catch_exceptions Whether to catch exceptions from callable x. Default is False. rev Whether to reverse the input x and default_val. Default is False. with_callable Whether either of the arguments might be callable functions. Default is False. Returns ------- ret x if x exists (is not None), else default. """ with_callable = catch_exceptions or with_callable if rev: tmp = x x = default_val default_val = tmp if with_callable: x_callable = callable(x) default_callable = callable(default_val) else: x_callable = False default_callable = False if catch_exceptions: # noinspection PyBroadException try: x = x() if x_callable else x except Exception: return default_val() if default_callable else default_val else: x = x() if x_callable else x return x if exists(x) else default_val() if default_callable else default_val def shape_to_tuple(shape: Union[int, Tuple[int], List[int]]): """Returns a tuple representation of the input shape. Parameters ---------- shape The shape input to convert to tuple representation. Returns ------- The shape in tuple representation """ if isinstance(shape, int): return (shape,) else: return tuple(shape) def try_else_none(fn): """Try and return the function, otherwise return None if an exception was raised during function execution. Parameters ---------- fn Function to try and call and return. """ return default(fn, None, True) def arg_names(receiver): """Get the expected keyword arguments for a function or class constructor. Parameters ---------- receiver """ return list(inspect.signature(receiver).parameters.keys()) def match_kwargs(kwargs, *receivers, allow_duplicates=False): """Match keyword arguments to either class or function receivers. Parameters ---------- kwargs Keyword arguments to match. receivers Functions and/or classes to match the keyword arguments to. allow_duplicates Whether to allow one keyword argument to be used for multiple receivers. Default is False. Returns ------- ret Sequence of keyword arguments split as best as possible. """ split_kwargs = list() for receiver in receivers: expected_kwargs = arg_names(receiver) found_kwargs = {k: v for k, v in kwargs.items() if k in expected_kwargs} if not allow_duplicates: for k in found_kwargs.keys(): del kwargs[k] split_kwargs.append(found_kwargs) if len(split_kwargs) == 1: return split_kwargs[0] return split_kwargs def cache_fn(func: Callable) -> Callable: """Wrap a function, such that when cache=True is passed as an argument, a previously cached output is returned. Parameters ---------- func The function to wrap, whose output should be cached for later. Returns ------- ret The newly cache wrapped function. """ global FN_CACHE if func not in FN_CACHE: FN_CACHE[func] = dict() def cached_fn(*args, **kwargs): """Summary. Parameters ---------- *args **kwargs """ key = "".join( [str(i) + ", " for i in args] + [" kw, "] + [str(i) + ", " for i in sorted(kwargs.items())] ) cache = FN_CACHE[func] if key in cache: return cache[key] ret = func(*args, **kwargs) cache[key] = ret return ret return cached_fn def current_backend_str() -> Union[str, None]: """Summary. Returns ------- ret The framework string. """ fw = _cur_backend() if fw is None: return None return fw.current_backend_str() @to_native_arrays_and_back def einops_rearrange( x: Union[ivy.Array, ivy.NativeArray], pattern: str, out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> ivy.Array: """Perform einops rearrange operation on input array x. Parameters ---------- x Input array to be re-arranged. pattern Rearrangement pattern. axes_lengths Any additional specifications for dimensions. Returns ------- ret New array with einops.rearrange having been applied. """ ret = einops.rearrange(x, pattern, **axes_lengths) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret @to_native_arrays_and_back def einops_reduce( x: Union[ivy.Array, ivy.NativeArray], pattern: str, reduction: Union[str, Callable], out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> ivy.Array: """Perform einops reduce operation on input array x. Parameters ---------- x Input array to be reduced. pattern Reduction pattern. reduction One of available reductions ('min', 'max', 'sum', 'mean', 'prod'), or callable. axes_lengths Any additional specifications for dimensions. Returns ------- ret New array with einops.reduce having been applied. """ ret = einops.reduce(x, pattern, reduction, **axes_lengths) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret @to_native_arrays_and_back def einops_repeat( x: Union[ivy.Array, ivy.NativeArray], pattern: str, out: Optional[ivy.Array] = None, **axes_lengths: Dict[str, int], ) -> Union[ivy.Array, ivy.NativeArray]: """Perform einops repeat operation on input array x. Parameters ---------- x Input array to be repeated. pattern Rearrangement pattern. axes_lengths Any additional specifications for dimensions. Returns ------- ret New array with einops.repeat having been applied. """ ret = einops.repeat(x, pattern, **axes_lengths) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def get_min_denominator() -> float: """Get the global minimum denominator used by ivy for numerically stable division. Returns ------- ret A float number of the global minimum denominator. Examples -------- >>> x = ivy.get_min_denominator() >>> print(x) 1e-12 """ return ivy._MIN_DENOMINATOR def set_min_denominator(val: float) -> None: """Set the global minimum denominator used by ivy for numerically stable division. Parameters ---------- val The new value to set the minimum denominator to. """ ivy._MIN_DENOMINATOR = val def get_min_base() -> float: """Get the global minimum base used by ivy for numerically stable power raising.""" # noinspection PyProtectedMember return ivy._MIN_BASE def set_min_base(val: float) -> None: """Set the global minimum base used by ivy for numerically stable power raising. Parameters ---------- val The new value to set the minimum base to. """ ivy._MIN_BASE = val def stable_divide( numerator: Any, denominator: Any, min_denominator: float = None ) -> Any: """Divide the numerator by the denominator, with min denominator added to the denominator for numerical stability. Parameters ---------- numerator The numerator of the division. denominator The denominator of the division. min_denominator The minimum denominator to use, use global ivy._MIN_DENOMINATOR by default. Returns ------- ret The new item following the numerically stable division. """ # noinspection PyProtectedMember return numerator / (denominator + default(min_denominator, ivy._MIN_DENOMINATOR)) def stable_pow(base: Any, exponent: Any, min_base: float = None) -> Any: """Raise the base by the power, with MIN_BASE added to the base when exponent > 1 for numerical stability. Parameters ---------- base The numerator of the division. exponent The denominator of the division. min_base The minimum base to use, use global ivy._MIN_BASE by default. Returns ------- ret The new item following the numerically stable division. """ # noinspection PyProtectedMember return (base + default(min_base, ivy._MIN_BASE)) ** exponent def get_all_arrays_in_memory(): """Gets all arrays which are currently alive.""" all_arrays = list() for obj in gc.get_objects(): # noinspection PyBroadException try: if ivy.is_native_array(obj): all_arrays.append(obj) except Exception: pass return all_arrays def num_arrays_in_memory(): """Returns the number of arrays which are currently alive.""" return len(get_all_arrays_in_memory()) def print_all_arrays_in_memory(): """Prints all arrays which are currently alive.""" for arr in get_all_arrays_in_memory(): print(type(arr), arr.shape) def set_queue_timeout(timeout): """Set the global queue timeout values (in seconds). Default value without this function being called is 10 seconds. Parameters ---------- timeout The timeout to set in seconds. """ global TIMEOUT TIMEOUT = timeout def queue_timeout(): """Get the global queue timeout values (in seconds). Default value without this function being called is 10 seconds. """ global TIMEOUT return TIMEOUT def tmp_dir(): """""" return TMP_DIR def set_tmp_dir(tmp_dr): """Set the directory for saving temporary files. Parameters ---------- tmp_dr """ global TMP_DIR TMP_DIR = tmp_dr def container_types(): """Summary. Returns ------- ret a key-value structure, and exposes public methods .keys(), .values() and items(). """ # noinspection PyBroadException try: return _cur_backend().container_types() except ValueError: return [] def inplace_arrays_supported(f=None): """Determine whether inplace arrays are supported for the current backend framework. Parameters ---------- f (Default value = None) Returns ------- ret Boolean, whether or not inplace arrays are supported. """ return _cur_backend().inplace_arrays_supported() def inplace_variables_supported(f=None): """Determine whether inplace variables are supported for the current backend framework. Parameters ---------- f (Default value = None) Returns ------- ret Boolean, whether or not inplace variables are supported. """ return _cur_backend().inplace_variables_supported() @inputs_to_native_arrays def supports_inplace(x): """Determine whether inplace operations are supported for the data type of x. Parameters ---------- x Input variable or array to check for inplace support for. Returns ------- ret Boolean, whether or not inplace operations are supported for x. """ if ivy.is_variable(x): return ivy.inplace_variables_supported() elif ivy.is_native_array(x): return ivy.inplace_arrays_supported() raise Exception("Input x must be either a variable or an array.") @inputs_to_native_arrays def assert_supports_inplace(x): """Asserts that inplace operations are supported for x, else raises exception. Parameters ---------- x Input variable or array to check for inplace support for. Returns ------- ret True if support, raises exception otherwise """ if not ivy.supports_inplace(x): raise Exception( "Inplace operations are not supported {} types with {} backend".format( type(x), ivy.current_backend_str() ) ) return True def inplace_update( x: Union[ivy.Array, ivy.NativeArray], val: Union[ivy.Array, ivy.NativeArray], ensure_in_backend: bool = False, ) -> ivy.Array: """Perform in-place update for the input array. This will always be performed on ivy.Array instances pass in the input, and will also be performed on the native array classes in the backend when the backend supports this. If the backend does not natively support inplace updates, and x is an ivy.NativeArray instance, then an exception will be thrown. Parameters ---------- x The variable to update. val The array to update the variable with. ensure_in_backend Whether or not to ensure that the `ivy.NativeArray` is also inplace updated. In cases where it should be, backends which do not natively support inplace updates will raise an exception. Returns ------- ret The array following the in-place update. """ return _cur_backend(x).inplace_update(x, val, ensure_in_backend) def inplace_decrement(x, val): """Perform in-place decrement for the input array. Parameters ---------- x The array to decrement. val The array to decrement the variable with. Returns ------- ret The array following the in-place decrement. """ return _cur_backend(x).inplace_decrement(x, val) def inplace_increment(x, val): """Perform in-place increment for the input array. Parameters ---------- x The array to increment. val The array to increment the variable with. Returns ------- ret The array following the in-place increment. """ return _cur_backend(x).inplace_increment(x, val) @to_native_arrays_and_back @handle_out_argument def cumsum( x: Union[ivy.Array, ivy.NativeArray], axis: int = 0, *, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Returns the cumulative sum of the elements along a given axis. Parameters ---------- x Input array. axis int, Axis along which the cumulative sum is computed. By default 0. out optional output array, for writing the result to. Returns ------- ret Input array with cumulatively summed elements along axis """ return _cur_backend(x).cumsum(x, axis, out=out) @to_native_arrays_and_back @handle_out_argument def cumprod( x: Union[ivy.Array, ivy.NativeArray], axis: int = 0, exclusive: Optional[bool] = False, *, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Returns the cumulative product of the elements along a given axis. Parameters ---------- x Input array. axis int , axis along which the cumulative product is computed. By default 0. exclusive optional bool, Whether to perform the cumprod exclusively. Defaults is False. Returns ------- ret Input array with cumulatively multiplied elements along axis. """ return _cur_backend(x).cumprod(x, axis, exclusive, out=out) @to_native_arrays_and_back @handle_out_argument @infer_device def scatter_flat( indices: Union[ivy.Array, ivy.NativeArray], updates: Union[ivy.Array, ivy.NativeArray], size: Optional[int] = None, tensor: Optional[Union[ivy.Array, ivy.NativeArray]] = None, reduction: str = "sum", *, device: Union[ivy.Device, ivy.NativeDevice] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Scatter flat updates into a new flat array according to flat indices. Parameters ---------- indices Indices for the new values to occupy. updates Values for the new array to hold. size The size of the result. tensor The tensor in which to scatter the results, default is None, in which case the size is used to scatter into a zeros array. reduction The reduction method for the scatter, one of 'sum', 'min', 'max' or 'replace' device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as updates if None. Returns ------- ret New array of given shape, with the values scattered at the indices. """ return _cur_backend(indices).scatter_flat( indices, updates, size, tensor, reduction, device=device ) @to_native_arrays_and_back @handle_out_argument @infer_device def scatter_nd( indices: Union[ivy.Array, ivy.NativeArray], updates: Union[ivy.Array, ivy.NativeArray], shape: Optional[Iterable[int]] = None, tensor: Optional[Union[ivy.Array, ivy.NativeArray]] = None, reduction: str = "sum", *, device: Union[ivy.Device, ivy.NativeDevice] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Scatter updates into a new array according to indices. Parameters ---------- indices Indices for the new values to occupy. updates Values for the new array to hold. shape The shape of the result. Default is None, in which case tensor argument must be provided. tensor The tensor in which to scatter the results, default is None, in which case the shape arg is used to scatter into a zeros array. reduction The reduction method for the scatter, one of 'sum', 'min', 'max' or 'replace' device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as updates if None. Returns ------- ret New array of given shape, with the values scattered at the indices. """ return _cur_backend(indices).scatter_nd( indices, updates, shape, tensor, reduction, device=device ) @to_native_arrays_and_back @handle_out_argument @infer_device def gather( params: Union[ivy.Array, ivy.NativeArray], indices: Union[ivy.Array, ivy.NativeArray], axis: int = -1, *, device: Union[ivy.Device, ivy.NativeDevice] = None, out: Optional[Union[ivy.Array, ivy.NativeArray]] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Gather slices from params at axis according to indices. Parameters ---------- params array, the array from which to gather values. indices array, index array. axis optional int, the axis from which to gather from. Default is -1. device optional ivy.Device, device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None. out optional output array, for writing the result to. Returns ------- ret New array with the values gathered at the specified indices along the specified axis. Both the description and the type hints above assumes an array input for simplicity, but this function is *nestable*, and therefore also accepts :code:`ivy.Container` instances in place of any of the arguments. Functional Examples ------------------- With :code:`ivy.Array` input: >>> x = ivy.array([0., 1., 2.]) >>> y = ivy.array([0, 1]) >>> print(ivy.gather(x, y)) ivy.array([0., 1.]) >>> x = ivy.array([[0., 1., 2.], \ [3., 4., 5.]]) >>> y = ivy.array([[0, 1], \ [1, 2]]) >>> z = ivy.array([[0., 0.], \ [0., 0.]]) >>> ivy.gather(x, y, device='cpu', out=z) >>> print(z) ivy.array([[0., 1.], [4., 5.]]) >>> x = ivy.array([[[0., 1.], [2., 3.]], \ [[4., 5.], [6., 7.]], \ [[8., 9.], [10., 11.]]]) >>> y = ivy.array([[[0, 1]], \ [[1, 2]], \ [[2, 0]]]) >>> ivy.gather(x, y, axis=0, out=x) >>> print(x) ivy.array([[[ 0., 5.], [ 2., 7.]], [[ 4., 9.], [ 6., 11.]], [[ 8., 1.], [10., 3.]]]) With :code:`ivy.NativeArray` input: >>> x = ivy.native_array([0., 1., 2.]) >>> y = ivy.native_array([0, 1]) >>> print(ivy.gather(x, y)) ivy.array([0., 1.]) With a mix of :code:`ivy.Array` and :code:`ivy.NativeArray` inputs: >>> x = ivy.native_array([0., 1., 2.]) >>> y = ivy.array([0, 1]) >>> print(ivy.gather(x, y)) ivy.array([0., 1.]) With a mix of :code:`ivy.Array` and :code:`ivy.Container` inputs: >>> x = ivy.Container(a = ivy.array([0., 1., 2.]), \ b = ivy.array([4., 5., 6.])) >>> y = ivy.array([0, 1]) >>> print(ivy.gather(x, y)) { a: ivy.array([0., 1.]), b: ivy.array([4., 5.]) } With :code:`ivy.Container` input: >>> x = ivy.Container(a = ivy.array([0., 1., 2.]), \ b = ivy.array([4., 5., 6.])) >>> y = ivy.Container(a = ivy.array([0, 1]), \ b = ivy.array([1, 2])) >>> print(ivy.gather(x, y)) { a: ivy.array([0., 1.]), b: ivy.array([5., 6.]) } Instance Method Examples ------------------------ Using :code:`ivy.Array` instance method: >>> x = ivy.array([0., 1., 2.]) >>> y = ivy.array([0, 1]) >>> print(x.gather(y)) ivy.array([0., 1.]) Using :code:`ivy.Container` instance method: >>> x = ivy.Container(a = ivy.array([0., 1., 2.]), \ b = ivy.array([4., 5., 6.])) >>> y = ivy.Container(a = ivy.array([0, 1]), \ b = ivy.array([1, 2])) >>> print(x.gather(y)) { a: { a: ivy.array([0., 1.]), b: ivy.array([1., 2.]) }, b: { a: ivy.array([4., 5.]), b: ivy.array([5., 6.]) } } """ return _cur_backend(params).gather(params, indices, axis, device=device, out=out) @to_native_arrays_and_back @handle_out_argument @infer_device def gather_nd( params: Union[ivy.Array, ivy.NativeArray], indices: Union[ivy.Array, ivy.NativeArray], *, device: Union[ivy.Device, ivy.NativeDevice] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Gather slices from params into a array with shape specified by indices. Parameters ---------- params The array from which to gather values. indices Index array. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None. Returns ------- ret New array of given shape, with the values gathered at the indices. """ return _cur_backend(params).gather_nd(params, indices, device=device) def multiprocessing(context: str = None): """Return backend-specific multiprocessing module. Parameters ---------- context The context of the multiprocessing, either fork, forkserver or spawn. Default is None. Returns ------- ret Multiprocessing module """ return _cur_backend().multiprocessing(context) @to_native_arrays_and_back @handle_out_argument def indices_where( x: Union[ivy.Array, ivy.NativeArray] ) -> Union[ivy.Array, ivy.NativeArray]: """Returns indices or true elements in an input boolean array. Parameters ---------- x Boolean array, for which indices are desired. Returns ------- ret Indices for where the boolean array is True. """ return _cur_backend(x).indices_where(x) @to_native_arrays_and_back @handle_out_argument @infer_device def one_hot( indices: Union[ivy.Array, ivy.NativeArray], depth: int, *, device: Union[ivy.Device, ivy.NativeDevice] = None, ) -> Union[ivy.Array, ivy.NativeArray]: """Returns a one-hot array. Parameters ---------- indices Indices for where the ones should be scattered *[batch_shape, dim]* depth Scalar defining the depth of the one-hot dimension. device device on which to create the array 'cuda:0', 'cuda:1', 'cpu' etc. Same as x if None. Returns ------- ret Tensor of zeros with the same shape and type as a, unless dtype provided which overrides. """ return _cur_backend(indices).one_hot(indices, depth, device=device) @inputs_to_native_arrays def shape( x: Union[ivy.Array, ivy.NativeArray], as_array: bool = False ) -> Iterable[int]: """Returns the shape of the array ``x``. Parameters ---------- x Input array to infer the shape of. as_array Whether to return the shape as a array, default False. Returns ------- ret Shape of the array ``x``. Examples -------- >>> x = ivy.array([[-1, 0, 1],[1,0,-1]]) >>> y_tuple = ivy.shape(x) >>> y_tensor = ivy.shape(x, as_tensor = True) >>> print(y_tuple) (2, 3) >>> print(y_tensor) ivy.array([2, 3]) """ return _cur_backend(x).shape(x, as_array) @inputs_to_native_arrays def get_num_dims(x: Union[ivy.Array, ivy.NativeArray], as_array: bool = False) -> int: """Returns the number of dimensions of the array x. Parameters ---------- x Input array to infer the number of dimensions for. as_array Whether to return the shape as a array, default False. Returns ------- ret Shape of the array """ return _cur_backend(x).get_num_dims(x, as_array)
24.449283
88
0.576828
9017787151f97b256be69ed090bb5eae68f16749
6,320
py
Python
nova/tests/test_hooks.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
7
2015-09-22T11:27:16.000Z
2015-11-02T12:33:46.000Z
nova/tests/test_hooks.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
9
2015-05-20T11:20:17.000Z
2017-07-27T08:21:33.000Z
nova/tests/test_hooks.py
vmthunder/nova
baf05caab705c5778348d9f275dc541747b7c2de
[ "Apache-2.0" ]
13
2015-05-05T09:34:04.000Z
2017-11-08T02:03:46.000Z
# Copyright (c) 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for hook customization.""" import stevedore from nova import hooks from nova import test class SampleHookA(object): name = "a" def _add_called(self, op, kwargs): called = kwargs.get('called', None) if called is not None: called.append(op + self.name) def pre(self, *args, **kwargs): self._add_called("pre", kwargs) class SampleHookB(SampleHookA): name = "b" def post(self, rv, *args, **kwargs): self._add_called("post", kwargs) class SampleHookC(SampleHookA): name = "c" def pre(self, f, *args, **kwargs): self._add_called("pre" + f.__name__, kwargs) def post(self, f, rv, *args, **kwargs): self._add_called("post" + f.__name__, kwargs) class SampleHookExceptionPre(SampleHookA): name = "epre" exception = Exception() def pre(self, f, *args, **kwargs): raise self.exception class SampleHookExceptionPost(SampleHookA): name = "epost" exception = Exception() def post(self, f, rv, *args, **kwargs): raise self.exception class MockEntryPoint(object): def __init__(self, cls): self.cls = cls def load(self): return self.cls class MockedHookTestCase(test.BaseHookTestCase): def _mock_load_plugins(self, iload, *iargs, **ikwargs): return [] def setUp(self): super(MockedHookTestCase, self).setUp() hooks.reset() self.stubs.Set(stevedore.extension.ExtensionManager, '_load_plugins', self._mock_load_plugins) class HookTestCase(MockedHookTestCase): def _mock_load_plugins(self, iload, *iargs, **ikwargs): return [ stevedore.extension.Extension('test_hook', MockEntryPoint(SampleHookA), SampleHookA, SampleHookA()), stevedore.extension.Extension('test_hook', MockEntryPoint(SampleHookB), SampleHookB, SampleHookB()), ] def setUp(self): super(HookTestCase, self).setUp() hooks.reset() self.stubs.Set(stevedore.extension.ExtensionManager, '_load_plugins', self._mock_load_plugins) @hooks.add_hook('test_hook') def _hooked(self, a, b=1, c=2, called=None): return 42 def test_basic(self): self.assertEqual(42, self._hooked(1)) mgr = hooks._HOOKS['test_hook'] self.assert_has_hook('test_hook', self._hooked) self.assertEqual(2, len(mgr.extensions)) self.assertEqual(SampleHookA, mgr.extensions[0].plugin) self.assertEqual(SampleHookB, mgr.extensions[1].plugin) def test_order_of_execution(self): called_order = [] self._hooked(42, called=called_order) self.assertEqual(['prea', 'preb', 'postb'], called_order) class HookTestCaseWithFunction(MockedHookTestCase): def _mock_load_plugins(self, iload, *iargs, **ikwargs): return [ stevedore.extension.Extension('function_hook', MockEntryPoint(SampleHookC), SampleHookC, SampleHookC()), ] @hooks.add_hook('function_hook', pass_function=True) def _hooked(self, a, b=1, c=2, called=None): return 42 def test_basic(self): self.assertEqual(42, self._hooked(1)) mgr = hooks._HOOKS['function_hook'] self.assert_has_hook('function_hook', self._hooked) self.assertEqual(1, len(mgr.extensions)) self.assertEqual(SampleHookC, mgr.extensions[0].plugin) def test_order_of_execution(self): called_order = [] self._hooked(42, called=called_order) self.assertEqual(['pre_hookedc', 'post_hookedc'], called_order) class HookFailPreTestCase(MockedHookTestCase): def _mock_load_plugins(self, iload, *iargs, **ikwargs): return [ stevedore.extension.Extension('fail_pre', MockEntryPoint(SampleHookExceptionPre), SampleHookExceptionPre, SampleHookExceptionPre()), ] @hooks.add_hook('fail_pre', pass_function=True) def _hooked(self, a, b=1, c=2, called=None): return 42 def test_hook_fail_should_still_return(self): self.assertEqual(42, self._hooked(1)) mgr = hooks._HOOKS['fail_pre'] self.assert_has_hook('fail_pre', self._hooked) self.assertEqual(1, len(mgr.extensions)) self.assertEqual(SampleHookExceptionPre, mgr.extensions[0].plugin) def test_hook_fail_should_raise_fatal(self): self.stubs.Set(SampleHookExceptionPre, 'exception', hooks.FatalHookException()) self.assertRaises(hooks.FatalHookException, self._hooked, 1) class HookFailPostTestCase(MockedHookTestCase): def _mock_load_plugins(self, iload, *iargs, **ikwargs): return [ stevedore.extension.Extension('fail_post', MockEntryPoint(SampleHookExceptionPost), SampleHookExceptionPost, SampleHookExceptionPost()), ] @hooks.add_hook('fail_post', pass_function=True) def _hooked(self, a, b=1, c=2, called=None): return 42 def test_hook_fail_should_still_return(self): self.assertEqual(42, self._hooked(1)) mgr = hooks._HOOKS['fail_post'] self.assert_has_hook('fail_post', self._hooked) self.assertEqual(1, len(mgr.extensions)) self.assertEqual(SampleHookExceptionPost, mgr.extensions[0].plugin) def test_hook_fail_should_raise_fatal(self): self.stubs.Set(SampleHookExceptionPost, 'exception', hooks.FatalHookException()) self.assertRaises(hooks.FatalHookException, self._hooked, 1)
30.679612
78
0.65269
c81b12b22bcb7e655d8f57ac6b96803b6dfd3b23
948
py
Python
lib/tree.py
Lucas2012/ProbablisticNeuralProgramedNetwork
56e33dae1ec01580bca267011adf6c45c1fd505d
[ "Apache-2.0" ]
3
2020-07-12T02:15:27.000Z
2021-07-18T06:00:49.000Z
lib/tree.py
Lucas2012/ProbablisticNeuralProgramedNetwork
56e33dae1ec01580bca267011adf6c45c1fd505d
[ "Apache-2.0" ]
1
2021-07-18T06:00:10.000Z
2021-07-24T11:51:17.000Z
lib/tree.py
Lucas2012/ProbablisticNeuralProgramedNetwork
56e33dae1ec01580bca267011adf6c45c1fd505d
[ "Apache-2.0" ]
null
null
null
# tree object from stanfordnlp/treelstm class Tree(object): def __init__(self): self.parent = None self.num_children = 0 self.children = list() def add_child(self, child): child.parent = self self.num_children += 1 self.children.append(child) def size(self): if getattr(self, '_size'): return self._size count = 1 for i in xrange(self.num_children): count += self.children[i].size() self._size = count return self._size def depth(self): if getattr(self, '_depth'): return self._depth count = 0 if self.num_children > 0: for i in xrange(self.num_children): child_depth = self.children[i].depth() if child_depth > count: count = child_depth count += 1 self._depth = count return self._depth
27.882353
54
0.543249
0e4dfe809517ffd0df1d6dbc145fa6e8b583edf1
1,008
py
Python
graph_a2_vs_alpha.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
graph_a2_vs_alpha.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
graph_a2_vs_alpha.py
Thefalas/disksMD
1f3a0a1814baf1fd8905da2e88d2244de90d14ec
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon May 28 19:25:21 2018 @author: malopez """ import pandas as pd import numpy as np import matplotlib.pyplot as plt data_folder = "C:/Users/malopez/Desktop/disksMD/data" output_image = './plot.png' alphas = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] size_X_inches = 8 size_Y_inches = 6 size_figure = (size_X_inches, size_Y_inches) fig, ax = plt.subplots(figsize=size_figure, dpi=250) ax.set_xlim([0,1]) a2s = [] for alpha in alphas: file_name = data_folder + "/a2_alpha"+str(alpha)+".dat" data = pd.read_table(file_name, sep='\s+', header = None, names =['x', 'y']) # Promediar ultimas 1500 colisiones mean_a2 = data.iloc[-2000:,1].mean() a2s.append(mean_a2) plt.xkcd() plt.scatter(alphas, a2s, marker='o') # Fit plt.plot(np.unique(alphas), np.poly1d(np.polyfit(alphas, a2s, 10))(np.unique(alphas))) plt.axhline(y=0.0, color='black', linestyle='-') plt.show() fig.savefig(output_image) plt.close()
24.585366
86
0.65377
fc13bed2a48225602a9bbbe7473d967a524dfa98
1,178
py
Python
deepgmap/post_train_tools/PCA.py
koonimaru/DeepGMAP
7daac354229fc25fba81649b741921345dc5db05
[ "Apache-2.0" ]
11
2018-06-27T11:45:47.000Z
2021-07-01T15:32:56.000Z
deepgmap/post_train_tools/PCA.py
koonimaru/DeepGMAP
7daac354229fc25fba81649b741921345dc5db05
[ "Apache-2.0" ]
3
2020-01-28T21:45:15.000Z
2020-04-20T02:40:48.000Z
deepgmap/post_train_tools/PCA.py
koonimaru/DeepGMAP
7daac354229fc25fba81649b741921345dc5db05
[ "Apache-2.0" ]
1
2018-10-19T19:43:27.000Z
2018-10-19T19:43:27.000Z
# Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target #print X.shape n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) #print X_ipca.shape pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) colors = ['navy', 'turquoise', 'darkorange'] for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], color=color, lw=2, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best", shadow=False, scatterpoints=1) plt.axis([-4, 4, -1.5, 1.5]) plt.show()
28.047619
75
0.662988
1f06cc574f69e68730da19fc4a384ccf417369e3
42
py
Python
instapush/version.py
adamwen829/instapush-py
6b7c186af9671aea94085f18a95946844df63349
[ "MIT" ]
21
2015-01-12T04:46:01.000Z
2017-12-19T02:56:20.000Z
instapush/version.py
adamwen829/instapush-py
6b7c186af9671aea94085f18a95946844df63349
[ "MIT" ]
4
2015-01-13T11:46:14.000Z
2021-04-21T01:10:23.000Z
instapush/version.py
adamwen829/instapush-py
6b7c186af9671aea94085f18a95946844df63349
[ "MIT" ]
9
2015-03-26T14:50:51.000Z
2020-02-18T21:36:51.000Z
# -*- coding: utf-8 -*- VERSION = '0.1.2'
14
23
0.47619
f59d40f75338d27845a11075a124001fc7a0346b
734
py
Python
src/common/methods/root_separation/segment_tabulation.py
GirZ0n/Methods-of-Computation
65e0c5c965d80a8f7c3875621460324d208b1934
[ "Unlicense" ]
2
2021-09-14T07:10:34.000Z
2021-09-28T21:41:34.000Z
src/common/methods/root_separation/segment_tabulation.py
GirZ0n/Methods-of-Computation
65e0c5c965d80a8f7c3875621460324d208b1934
[ "Unlicense" ]
3
2021-09-27T19:21:32.000Z
2021-09-28T18:46:37.000Z
src/common/methods/root_separation/segment_tabulation.py
GirZ0n/Methods-of-Computation
65e0c5c965d80a8f7c3875621460324d208b1934
[ "Unlicense" ]
null
null
null
from typing import Callable, List from src.common.model.line_segment import LineSegment from src.common.model.root_separator import RootSeparator class Tabulator(RootSeparator): number_of_parts: int def __init__(self, number_of_parts: int): self.number_of_parts = number_of_parts def separate(self, *, f: Callable, line_segment: LineSegment) -> List[LineSegment]: segments = line_segment.split_into_segments(self.number_of_parts) found_segments = [] for segment in segments: left_value = f(segment.left) right_value = f(segment.right) if left_value * right_value <= 0: found_segments.append(segment) return found_segments
29.36
87
0.69346
faeeb68996e7ae910b138fbb2fad26e9d16f2d65
4,565
py
Python
CNN - RNN/Embedding.py
sajR/SAD
9d4cee51e6f5a85cc8ffe724fe6078ef4a35c782
[ "MIT" ]
null
null
null
CNN - RNN/Embedding.py
sajR/SAD
9d4cee51e6f5a85cc8ffe724fe6078ef4a35c782
[ "MIT" ]
null
null
null
CNN - RNN/Embedding.py
sajR/SAD
9d4cee51e6f5a85cc8ffe724fe6078ef4a35c782
[ "MIT" ]
null
null
null
# The code below obtains embeddings/features from existing CNN models. # Due to a high number of images the pre-processing (getting features from the existing models) can take time and power. # Thus, the pre-processing is done beforehand whereby features are stored as CSV. Avoids generating features each time a model is experimented. # Images are read in the order of non-speech to speech. Provides control and order in which the features are saved and the abilty to generate sequences for the images/features (as the features/images are in order) # By default the embedding length is 2048 for Xception, import os from keras import applications from keras.preprocessing import image import numpy as np #images directories train_speech_dir="/Train/speach" train_nonspeech_dir="/Train/nonspeech" test_speech_dir="/Test/speach" test_nonspeech_dir="/Test/nonspeech" val_speech_dir="/Validation/speach" val_nonspeech_dir="/Validation/nonspeech" class Embeddings(): def __init__(self, model_name): # Initialising key variables and obtaining relevant models for pre-processing and obtaining features with a pretrained model # include_top=False removes the fully connected layer at the end/top of the network # This allows to get the feature vector as opposed to a classification self.model_name=model_name if model_name == 'Xception': self.model=applications.xception self.pretrained_model=applications.xception.Xception(weights='imagenet', include_top=False, pooling='avg') if model_name == 'VGG16': self.model.vgg16 self.pretrained_model=applications.vgg16.VGG16(weights='imagenet', include_top=False, pooling='avg') if model_name == 'InceptionV3': self.model=applications.inception_v3 self.pretrained_model=applications.inception_v3.InceptionV3(weights='imagenet', include_top=False, pooling='avg') def getEmbeddings(self,imagePath,filename): #Obtains features for every image in a given folder and stores as train,val and test. print (filename) imageFormat=".png" label="" fileList=[os.path.join(imagePath,f) for f in os.listdir(imagePath) if f.endswith(imageFormat)] for imageName in fileList: img = image.load_img(imageName, target_size=(100, 100)) if img is not None: processed_array=self.formatEmbedding(img) # obtains features by predicting the processed/formatted image array to the existing model features=self.pretrained_model.predict(processed_array) # Adds a "1" or "0" depending on speech/non-speech to establish feature as a speech/non-speech if "nospeaking" in imageName: label="0," else: label="1," with open(filename,"a") as file: file.write(label) # Each line is written with a label followed by feature np.savetxt(file,features,delimiter=",") else: print ("error with obtaining image") def formatEmbedding(self,img): # formats the image as array and pre-processes the array based on the model. image_array=image.img_to_array(img) # converts image array to numpy array and alters the shape of the array, expected by the model image_array=np.expand_dims(image_array,axis=0) # pre-proces the image array based on the model, either 0-255 or -1 to +1 etc processed_array=self.model.preprocess_input(image_array) return processed_array if __name__ == '__main__': # flow of the program. model name is defined, embeddings for each image directory, names for the CSV files. XceptionEmbeddings=Embeddings('Xception') model=XceptionEmbeddings.pretrained_model model.summary() XceptionEmbeddings.getEmbeddings(train_speech_dir,("train"+XceptionEmbeddings.model_name+'.csv')) XceptionEmbeddings.getEmbeddings(train_nonspeech_dir,("train"+XceptionEmbeddings.model_name+'.csv')) XceptionEmbeddings.getEmbeddings(val_speech_dir,("val"+XceptionEmbeddings.model_name+'.csv')) XceptionEmbeddings.getEmbeddings(val_nonspeech_dir,("val"+XceptionEmbeddings.model_name+'.csv')) XceptionEmbeddings.getEmbeddings(test_speech_dir,("test"+XceptionEmbeddings.model_name+'.csv')) XceptionEmbeddings.getEmbeddings(test_nonspeech_dir,("test"+XceptionEmbeddings.model_name+'.csv'))
53.081395
214
0.704053
ee390e1221183e53ece2275c1e18f40c94651ebf
500
py
Python
output/models/nist_data/list_pkg/normalized_string/schema_instance/nistschema_sv_iv_list_normalized_string_length_4_xsd/nistschema_sv_iv_list_normalized_string_length_4.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/nist_data/list_pkg/normalized_string/schema_instance/nistschema_sv_iv_list_normalized_string_length_4_xsd/nistschema_sv_iv_list_normalized_string_length_4.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/nist_data/list_pkg/normalized_string/schema_instance/nistschema_sv_iv_list_normalized_string_length_4_xsd/nistschema_sv_iv_list_normalized_string_length_4.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from dataclasses import dataclass, field from typing import List __NAMESPACE__ = "NISTSchema-SV-IV-list-normalizedString-length-4-NS" @dataclass class NistschemaSvIvListNormalizedStringLength4: class Meta: name = "NISTSchema-SV-IV-list-normalizedString-length-4" namespace = "NISTSchema-SV-IV-list-normalizedString-length-4-NS" value: List[str] = field( default_factory=list, metadata={ "length": 8, "tokens": True, } )
25
72
0.666
29220a4026fef3d918c471e137e490605a18dd2e
2,294
py
Python
publish_firmware.py
bpapesh/testTravis
12ef3d79c279ca5065e2f2aedca2222099917d45
[ "Apache-2.0" ]
null
null
null
publish_firmware.py
bpapesh/testTravis
12ef3d79c279ca5065e2f2aedca2222099917d45
[ "Apache-2.0" ]
null
null
null
publish_firmware.py
bpapesh/testTravis
12ef3d79c279ca5065e2f2aedca2222099917d45
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2014-present PlatformIO <contact@platformio.org> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests import sys from os.path import basename from platformio import util Import('env') project_config = util.load_project_config() bintray_config = {k: v for k, v in project_config.items("bintray")} version = project_config.get("common", "release_version") # # Push new firmware to the Bintray storage using API # def publish_firmware(source, target, env): firmware_path = str(source[0]) firmware_name = basename(firmware_path) print("Uploading {0} to Bintray. Version: {1}".format( firmware_name, version)) url = "/".join([ "https://api.bintray.com", "content", bintray_config.get("user"), bintray_config.get("repository"), bintray_config.get("package"), version, firmware_name ]) headers = { "Content-type": "application/octet-stream", "X-Bintray-Publish": "1", "X-Bintray-Override": "1" } r = None try: r = requests.put(url, data=open(firmware_path, "rb"), headers=headers, auth=(bintray_config.get("user"), bintray_config.get("api_token"))) r.raise_for_status() except requests.exceptions.RequestException as e: sys.stderr.write("Failed to submit package: %s\n" % ("%s\n%s" % (r.status_code, r.text) if r else str(e))) env.Exit(1) print("The firmware has been successfuly published at Bintray.com!") # Custom upload command and program name env.Replace(PROGNAME="firmware_v_%s" % version, UPLOADCMD=publish_firmware)
33.246377
80
0.637751
2e5355211f6cdb22e4aebc41ea4cb69cdb442deb
79,416
py
Python
DtsShape_Blender.py
pchan126/Blender_DTS_30
730dabe3d620b088811b86e34583e92ed30dd184
[ "MIT" ]
null
null
null
DtsShape_Blender.py
pchan126/Blender_DTS_30
730dabe3d620b088811b86e34583e92ed30dd184
[ "MIT" ]
null
null
null
DtsShape_Blender.py
pchan126/Blender_DTS_30
730dabe3d620b088811b86e34583e92ed30dd184
[ "MIT" ]
null
null
null
''' Dts.Shape_Blender.py Copyright (c) 2005 - 2006 James Urquhart(j_urquhart@btinternet.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' bl_info = { "name": "Torque Shape (.dts)...", "author": "Paul Jan", "version": (1, 0), "blender": (2, 75, 0), "location": "File > Export > Torque (.dts)", "description": "Export to Torque (.dts) format.", "warning": "", "wiki_url": "", "category": "Export", } from . import DTSPython from .DTSPython import * from . import DtsMesh_Blender from .DtsMesh_Blender import * import bpy # from bpy import NMesh, Armature, Scene, Object, Material, Texture # from bpy import Mathutils as bMath from . import DtsPoseUtil import gc ''' Util functions used by class as well as exporter gui ''' # ------------------------------------------------------------------------------------------------- # Helpful function to make a map of curve names def BuildCurveMap(ipo): curvemap = {} ipocurves = ipo.getCurves() for i in range(ipo.getNcurves()): curvemap[ipocurves[i].getName()] = i return curvemap # Function to determine what animation is present in a curveMap def getCMapSupports(curveMap): try: foo = curveMap['LocX'] has_loc = True except KeyError: has_loc = False try: foo = curveMap['QuatX'] has_rot = True except KeyError: has_rot = False try: foo = curveMap['SizeX'] has_scale = True except KeyError: has_scale = False return has_loc, has_rot, has_scale # gets the highest frame in an action def getHighestActFrame(act): actFrames = act.getFrameNumbers() highest = 0 for fr in actFrames: if fr > highest: highest = int(fr) return highest ''' Shape Class (Blender Export) ''' # ------------------------------------------------------------------------------------------------- class BlenderShape(DtsShape): def __init__(self, prefs): DtsShape.__init__(self) self.preferences = prefs # Add Root Node to catch meshes and vertices not assigned to the armature n = Node(self.addName("Exp-Catch-Root"), -1) # Add default translations and rotations for this bone self.defaultTranslations.append(Vector(0, 0, 0)) self.defaultRotations.append(Quaternion(0, 0, 0, 1)) self.nodes.append(n) # Detail level counts self.numBaseDetails = 0 self.numCollisionDetails = 0 self.numLOSCollisionDetails = 0 self.subshapes.append(SubShape(0, 0, 0, 1, 0, 0)) # Regular meshes self.subshapes.append(SubShape(0, 0, 0, 1, 0, 0)) # Collision meshes self.addedArmatures = [] # Armature object, Armature matrix self.externalSequences = [] self.scriptMaterials = [] # temp container that holds the raw rest transforms, including default scale self.restTransforms = None # set rest frame before initializing transformUtil # Blender.Set('curframe', prefs['RestFrame']) bpy.context.scene.frame_set(prefs['RestFrame']) # this object is the interface through which we get blender tranform data # for object and bone nodes self.transformUtil = DtsPoseUtil.NodeTransformUtil(self.preferences['ExportScale']) # extra book keeping for armature modifier warning (see long note/explanation in Dts_Blender.py) self.badArmatures = [] gc.enable() def __del__(self): DtsShape.__del__(self) del self.addedArmatures del self.externalSequences del self.scriptMaterials # Find an existing dts object in the shape def findDtsObject(self, dtsObjName): # get/add dts object to shape masterObject = None for dObj in self.objects: if self.sTable.get(dObj.name).upper() == dtsObjName.upper(): masterObject = dObj return masterObject # Adds a dts object to the shape def addDtsObject(self, dtsObjName, pNodeIdx): masterObject = dObject(self.addName(dtsObjName), -1, -1, pNodeIdx) masterObject.tempMeshes = [] self.objects.append(masterObject) return masterObject # Adds a mesh to a dts object def addMesh(self, o, masterObject): hasArmatureDeform = False armParentDeform = False # Check for armature modifier for mod in o.modifiers: if mod.type == 'ARMATURE': hasArmatureDeform = True # Check for an armature parent try: if o.parentType == 'ARMATURE': hasArmatureDeform = True armParentDeform = True except: pass # does the object have geometry? # do we even have any modifiers? If not, we can skip copying the display data. hasMultiRes = False try: for modifier in o.modifiers: if modifier.type == "MULTIRES": hasMultiRes = True except AttributeError: hasMultiRes = False hasModifiers = False for mod in o.modifiers: # skip armature modifiers if mod.type == 'ARMATURE': continue # skip modifiers that are "OK" if we know they can't affect the number # of verts in the mesh. # undocumented implicit "Collision" modifier if mod.type == 23: continue # if we've got a skinned mesh, we can safely bake some modifiers # into the mesh's root pose. if hasArmatureDeform: if mod.type == 'CURVE' \ or mod.type == 'LATTACE' \ or mod.type == 'WAVE' \ or mod.type == 'DISPLAY' \ or mod.type == 'SMOOTH' \ or mod.type == 'CAST': continue # if we made it here we've got at least one valid (non-armature) modifier on the mesh Torque_Util.dump_writeln("hasModifiers:" + modifier.type) hasModifiers = True break # if a mesh has multires, treat it as if it has modifiers if hasMultiRes: hasModifiers = True mesh_data = None # Get display data for non-skinned mesh with modifiers if (not hasArmatureDeform) and (hasModifiers or (o.type in DtsGlobals.needDisplayDataTypes)): # print "mesh:", o.name, "has modifers but not armature deform or is not a true mesh." try: temp_obj = bpy.data.objects["DTSExpObj_Tmp"] except: me = bpy.data.meshes.new() temp_obj = bpy.data.objects.new(obName, me) try: mesh_data = bpy.data.meshes("DTSExpMshObj_Tmp") except: mesh_data = bpy.data.meshes.new("DTSExpMshObj_Tmp") # try to get the raw display data try: mesh_data.getFromObject(o) temp_obj.link(mesh_data) except: # todo - warn when we couldn't get mesh data? pass # Get display data for skinned mesh without (additional) modifiers elif hasArmatureDeform and not (hasModifiers or (o.type in DtsGlobals.needDisplayDataTypes)): # print "mesh:", o.name, "has armature deform but no modifiers." # originalMesh = o.getData(False, True) if o.type == "MESH": originalMesh = o.data for modifier in o.modifiers: print(modifier.type) if modifier.type == 'MULTIRES': originalMesh = modifier # get vertex weight info influences = {} for v in originalMesh.vertices: # for k in v.groups.values(): # Torque_Util.dump_writeln('Vertex %d has a weight of %f for bone %s' % (v.index, k.weight, o.vertex_groups[k.group].name)) influences[v.index] = v.groups.items() arm = bpy.data.objects['Armature'] # obj_verts = originalMesh.vertices # obj_group_names = [g.name for g in o.vertex_groups] # for x in obj_verts: # influences[x.index] = [] # for bone in arm.pose.bones: # if bone.name not in obj_group_names: # continue # # gidx = o.vertex_groups[bone.name].index # # bone_verts = [v for v in obj_verts if gidx in [g.group for g in v.groups]] # # for v in bone_verts: # w = v.groups[gidx].weight # # influences[v.index].append([bone.name,w]) # Torque_Util.dump_writeln('Vertex %d has a weight of %f for bone %s' % (v.index, w, bone.name)) groups = [] for gps in o.vertex_groups: groups.append(gps.name) # ----------------------------- # apply armature modifier try: temp_obj = bpy.data.objects["DTSExpObj_Tmp"] except: me = bpy.data.meshes.new("DTSExpMshObj_Tmp") temp_obj = bpy.data.objects.new("DTSExpObj_Tmp", me) try: mesh_data = bpy.data.meshes("DTSExpMshObj_Tmp") except: mesh_data = bpy.data.meshes.new("DTSExpMshObj_Tmp") # try to get the raw display data try: mesh_data.getFromObject(o) temp_obj.link(mesh_data) except: # todo - warn when we couldn't get mesh data? pass # ----------------------------- # remove any existing groups if we are recycling a datablock # if len(mesh_data.getVertGroupNames()) != 0: # for group in mesh_data.getVertGroupNames(): # mesh_data.removeVertsFromGroup(group) o.vertex_groups.clear() # mesh_data.update() o.data.update() # add vertex weights back in # existingNames = mesh_data.getVertGroupNames() # for group in groups: # if not group in existingNames: # mesh_data.addVertGroup(group) # recreate vertex groups # for vIdx in list(influences.keys()): # for inf in influences[vIdx]: # group, weight = inf # mesh_data.assignVertsToGroup(group, [vIdx], weight, add) # Get (non-display) mesh data for ordinary mesh with no armature deform or modifiers elif (not hasArmatureDeform) and not (hasModifiers or (o.type in DtsGlobals.needDisplayDataTypes)): # print "mesh:", o.name, "has no modifiers and no armature deform" for modifier in o.modifiers: Torque_Util.dump_writeln("modtype:" + modifier.type) if modifier.type == "MULTIRES": mesh_data = modifier # mesh_data = o.getData(False, True) temp_obj = None if o.type == "MESH": mesh_data = o.data Torque_Util.dump_writeln("object type " + o.type) # if not hasArmatureDeform: # Torque_Util.dump_writeln("not hasArmatureDeform") # if not o.type in DtsGlobals.needDisplayDataTypes: # Torque_Util.dump_writeln("not hasModifiers") # if not hasArmatureDeform: # Torque_Util.dump_writeln("not o.type in DtsGlobals.needDisplayDataTypes") if mesh_data is None: raise Exception("no multires not hasArmatureDeform") # Give error message if we've got a skinned mesh with additional modifiers elif hasArmatureDeform and (hasModifiers or (o.type in DtsGlobals.needDisplayDataTypes)): # we can't support this, since the number of verts in the mesh may have been changed # by one if the modifiers, it is impossible to reconstruct vertex groups. print("Can't reconstruct vertex group for skinned mesh with additional modifiers!") for modifier in o.modifiers: Torque_Util.dump_writeln("modtype:" + modifier.type) if modifier.type == "MULTIRES": mesh_data = modifier # mesh_data = o.getData(False, True) if o.type == "MESH": mesh_data = o.data Torque_Util.dump_writeln("huh1") if mesh_data is None: raise Exception("no multires hasArmatureDeform") temp_obj = None else: # unknown mesh configuration?! raise Exception("Unknown mesh configuration!!!") # Get Object's Matrix mat = self.collapseBlenderTransform(o) # print "mat = \n", str(mat) # Get armatures targets if mesh is skinned armTargets = DtsGlobals.SceneInfo.getSkinArmTargets(o) # Import Mesh, process flags try: x = self.preferences['PrimType'] except KeyError: self.preferences['PrimType'] = "Tris" if mesh_data is None: raise Exception("empty mesh_data") if type(o) is BlenderShape: raise Exception("huh") tmsh = BlenderMesh(self, o, o.name, mesh_data, -1, 1.0, mat, o.scale, hasArmatureDeform, armTargets, False, (self.preferences['PrimType'] == "TriLists" or self.preferences['PrimType'] == "TriStrips")) # Add mesh flags based on blender object game properties. if len(o.game.properties) > 0: propNames = [] for prop in o.game.properties: if (prop.type == 'BOOL' and prop.value == True) \ or (prop.type == 'INT' and prop.value != 0) \ or (prop.type == 'FLOAT' and prop.value != 0.0) \ or (prop.type == 'STRING' and prop.value.lower() == "true"): propNames.append(prop.getName()) tmsh.setBlenderMeshFlags(propNames) # If we ended up being a Sorted Mesh, sort the faces if tmsh.mtype == tmsh.T_Sorted: tmsh.sortMesh(self.preferences['AlwaysWriteDepth'], self.preferences['ClusterDepth']) # Increment polycount metric polyCount = tmsh.getPolyCount() masterObject.tempMeshes.append(tmsh) # clean up temporary objects try: bpy.context.scene.objects.unlink(bpy.context.objects["DTSExpObj_Tmp"]) except: pass del mesh_data del temp_obj return polyCount # todo - combine with addMesh and paramatize def addCollisionMesh(self, o, masterObject): mesh_data = o.data; # Get Object's Matrix mat = self.collapseBlenderTransform(o) # Import Mesh, process flags tmsh = BlenderMesh(self, o, o.name, mesh_data, -1, 1.0, mat, o.scale, False, None, True) # Increment polycount metric polyCount = tmsh.getPolyCount() masterObject.tempMeshes.append(tmsh) return polyCount # Adds all meshes, detail levels, and dts objects to the shape. # this should be called after nodes are added. def addAllDetailLevels(self, dtsObjects, sortedObjects): # get lists of visible and collision detail levels sortedDetailLevels = DtsGlobals.Prefs.getSortedDLNames() visDetailLevels = [] colDetailLevels = [] for dlName in sortedDetailLevels: strippedDLName = DtsGlobals.Prefs.getTextPortion(dlName) if strippedDLName.upper() == "DETAIL": visDetailLevels.append(dlName) else: colDetailLevels.append(dlName) # add visible detail levels self.addDetailLevels(dtsObjects, sortedObjects, visDetailLevels) # add collision detail levels colDLObjects = self.getCollisionDLObjects(dtsObjects, sortedObjects) self.addDetailLevels(dtsObjects, colDLObjects, colDetailLevels) # gets a list of objects that exist in visible dls. def getVisibleDLObjects(self, dtsObjects, sortedObjects): sortedDetailLevels = DtsGlobals.Prefs.getSortedDLNames() dtsObjList = dtsObjects visObjList = [] for dlName in sortedDetailLevels: # -------------------------------------------- strippedDLName = DtsGlobals.Prefs.getTextPortion(dlName) if strippedDLName.upper() != "DETAIL": continue for dtsObjName in sortedObjects: # get nodeinfo struct for the current DL and dts object ni = dtsObjects[dtsObjName][dlName] if (ni != None) and (dtsObjName not in visObjList): visObjList.append(dtsObjName) return visObjList # gets a list of objects that exist in collision dls. def getCollisionDLObjects(self, dtsObjects, sortedObjects): sortedDetailLevels = DtsGlobals.Prefs.getSortedDLNames() dtsObjList = dtsObjects colObjList = [] for dlName in sortedDetailLevels: # -------------------------------------------- strippedDLName = DtsGlobals.Prefs.getTextPortion(dlName) if strippedDLName.upper() == "DETAIL": continue for dtsObjName in sortedObjects: # get nodeinfo struct for the current DL and dts object ni = dtsObjects[dtsObjName][dlName] if (ni != None) and (dtsObjName not in colObjList): colObjList.append(dtsObjName) return colObjList # Adds all meshes, detail levels, and dts objects to the shape. # this should be called after nodes are added. def addDetailLevels(self, dtsObjects, sortedObjects, sortedDLWorkingList): sortedDetailLevels = DtsGlobals.Prefs.getSortedDLNames() # set current frame to rest frame restFrame = self.preferences['RestFrame'] # if Blender.Get('curframe') == restFrame: Blender.Set('curframe',restFrame+1) # Blender.Set('curframe', restFrame) if bpy.context.scene.frame_current == restFrame: bpy.context.scene.frame_set(restFrame + 1) bpy.context.scene.frame_set(restFrame) # dtsObjList = dtsObjects.keys() dtsObjList = dtsObjects # add each detail level for dlName in sortedDLWorkingList: # -------------------------------------------- numAddedMeshes = 0 polyCount = 0 size = DtsGlobals.Prefs.getTrailingNumber(dlName) # loop through each dts object, add dts objects and meshes to the shape. for dtsObjName in sortedObjects: # get nodeinfo struct for the current DL and dts object ni = dtsObjects[dtsObjName][dlName] # get parent node index for dts object pNodeNI = None # find the actual parent node for dln in sortedDetailLevels: if dtsObjects[dtsObjName][dln] != None: pNodeNI = dtsObjects[dtsObjName][dln].getGoodMeshParentNI() break if pNodeNI == None: pNodeIdx = -1 else: pNodeIdx = -1 for node in self.nodes: if self.sTable.get(node.name).upper() == pNodeNI.dtsNodeName.upper(): pNodeIdx = node.name break # get/add dts object to shape masterObject = self.findDtsObject(dtsObjName) if masterObject == None: masterObject = self.addDtsObject(dtsObjName, pNodeIdx) if ni == None: # add a null mesh if there's no mesh for this dl masterObject.tempMeshes.append(DtsMesh(DtsMesh.T_Null)) else: # otherwise add a regular mesh o = ni.getBlenderObj() if dlName[0:3].upper() == "DET": polyCount += self.addMesh(o, masterObject) elif dlName[0:3].upper() == "COL" or dlName[0:3].upper() == "LOS": polyCount += self.addCollisionMesh(o, masterObject) numAddedMeshes += 1 # Modify base subshape if required if self.numBaseDetails == 0: self.subshapes[0].firstObject = len(self.objects) - numAddedMeshes self.subshapes[0].numObjects = numAddedMeshes # Get name, do housekeeping strippedDLName = DtsGlobals.Prefs.getTextPortion(dlName) self.numBaseDetails += 1 if strippedDLName.upper() == "DETAIL": detailName = "Detail-%d" % (self.numBaseDetails) elif strippedDLName.upper() == "COLLISION": self.numCollisionDetails += 1 detailName = "Collision-%d" % (self.numCollisionDetails) elif strippedDLName.upper() == "LOSCOLLISION": self.numLOSCollisionDetails += 1 LOSTrailingNumber = -int(DtsGlobals.Prefs.getTrailingNumber(dlName)) # look for a matching collision detail level i = 0 found = False for dl in self.detaillevels: dln = self.sTable.get(dl.name) if dln[0:3].lower() == "col": tn = -int(DtsGlobals.Prefs.getTrailingNumber(dln)) # print self.sTable.get(dl.name), tn if tn == LOSTrailingNumber: detailName = "LOS-%d" % (i + 9) found = True i += 1 # if we didn't find a matching collision detail level, # pick a name. Need to make sure we don't match any col # dls and that we don't have a name collision with another # loscollision detail level. if not found: detailName = "LOS-%d" % (len(sortedDetailLevels) + 9 + self.numLOSCollisionDetails) # Store constructed detail level info into shape self.detaillevels.append( DetailLevel(self.addName(detailName), 0, self.numBaseDetails - 1, size, -1, -1, polyCount)) # -------------------------------------------- def addBillboardDetailLevel(self, dispDetail, equator, polar, polarangle, dim, includepoles, size): self.numBaseDetails += 1 bb = DetailLevel(self.addName("BILLBOARD-%d" % (self.numBaseDetails)), -1, encodeBillBoard( equator, polar, polarangle, dispDetail, dim, includepoles), size, -1, -1, 0) self.detaillevels.insert(self.numBaseDetails - self.numLOSCollisionDetails - self.numCollisionDetails - 1, bb) # create triangle strips def stripMeshes(self, maxsize): subshape = self.subshapes[0] for obj in self.objects[subshape.firstObject:subshape.firstObject + ( subshape.numObjects - (self.numCollisionDetails + self.numLOSCollisionDetails))]: for i in range(obj.firstMesh, (obj.firstMesh + obj.numMeshes)): tmsh = self.meshes[i] if len(tmsh.primitives) == 0: continue tmsh.windStrip(maxsize) return True # this should probably be called before the other finalize functions def finalizeMaterials(self): # Go through materials, strip ".ignore", add IFL image frames. for i in range(0, len(self.materials.materials)): mat = self.materials.materials[i] if mat.flags & mat.IFLMaterial != 0: # remove the trailing numbers from the IFL material mntp = self.preferences.getTextPortion(mat.name) # add a name for our IflMaterial into the string table si = self.sTable.addString(mntp + ".ifl") # create an IflMaterial object and append it to the shape iflMat = IflMaterial(si, i, 0, 0, 0) self.iflmaterials.append(iflMat) mat.name = finalizeImageName(mat.name, False) def finalizeObjects(self): # Go through objects, add meshes, set transforms for o in self.objects: o.numMeshes = len(o.tempMeshes) o.firstMesh = len(self.meshes) # Initial animation frame # (We could add other frames here for visibility / material / vertex animation) self.objectstates.append(ObjectState(1.0, 0, 0)) # Get node from first mesh if len(o.tempMeshes) == 0: Torque_Util.dump_writeWarning("Warning: Object '%s' has no meshes!" % self.sTable.get(o.name)); continue isSkinned = False # if o.tempMeshes[0].mtype != o.tempMeshes[0].T_Null: o.mainMaterial = o.tempMeshes[0].mainMaterial # else: o.mainMaterial = None # Determine mesh type for these objects (assumed by first entry) if o.tempMeshes[0].mtype != o.tempMeshes[0].T_Skin: if o.tempMeshes[0].getNodeIndex(0) != None: o.node = o.tempMeshes[0].getNodeIndex(0) elif o.node < 1: o.node = 0 else: # o.node = -1 o.node = 0 isSkinned = True Torque_Util.dump_writeln("Object %s, Skinned" % (self.sTable.get(o.name))) for tmsh in o.tempMeshes: ''' We need to assign nodes to objects and set transforms. Rigid meshes can be attached to a single node, in which case we need to transform the vertices into the node's local space. ''' if not isSkinned: # Transform the mesh into node space. The Mesh vertices # must all be relative to the bone they're attached to world_trans, world_rot = self.getNodeWorldPosRot(o.node) tmsh.translate(-world_trans) tmsh.rotate(world_rot.inverse()) if tmsh.mtype == tmsh.T_Skin: tmsh.mtype = tmsh.T_Standard Torque_Util.dump_writeWarning( "Warning: Invalid skinned mesh in rigid object '%s'!" % (self.sTable.get(o.name))) else: for n in range(0, tmsh.getNodeIndexCount()): # The node transform must take us from shape space to bone space world_trans, world_rot = self.getNodeWorldPosRot(tmsh.getNodeIndex(n)) tmsh.setNodeTransform(n, world_trans, world_rot) self.meshes.append(tmsh) # To conclude, remove subshape's and details we don't need if self.subshapes[1].numObjects == 0: del self.subshapes[1] if self.subshapes[0].numObjects == 0: del self.subshapes[0] count = 0 while count != len(self.detaillevels): if self.detaillevels[count].subshape >= len(self.subshapes): del self.detaillevels[count] else: count += 1 # Calculate bounds and sizes if len(self.detaillevels) == 0: Torque_Util.dump_writeErr(" Error : Shape contains no meshes (no valid detail levels)!") self.calcSmallestSize() # Get smallest size where shape is visible # Calculate the bounds, # If we have an object in blender called "Bounds" of type "Mesh", use that. try: bound_obj = bpy.data.objects["Bounds"] matf = self.collapseBlenderTransform(bound_obj) if bound_obj.type == "MESH": bmesh = bound_obj.data self.bounds.max = Vector(-10e30, -10e30, -10e30) self.bounds.min = Vector(10e30, 10e30, 10e30) for v in bmesh.vertices: real_vert = matf.passPoint(v) self.bounds.min[0] = min(self.bounds.min.x(), real_vert[0]) self.bounds.min[1] = min(self.bounds.min.y(), real_vert[1]) self.bounds.min[2] = min(self.bounds.min.z(), real_vert[2]) self.bounds.max[0] = max(self.bounds.max.x(), real_vert[0]) self.bounds.max[1] = max(self.bounds.max.y(), real_vert[1]) self.bounds.max[2] = max(self.bounds.max.z(), real_vert[2]) # The center... self.center = self.bounds.max.midpoint(self.bounds.min) # Tube Radius. dist = self.bounds.max - self.center self.tubeRadius = Vector2(dist[0], dist[1]).length() # Radius... self.radius = (self.bounds.max - self.center).length() else: self.calculateBounds() self.calculateCenter() self.calculateRadius() self.calculateTubeRadius() except KeyError: self.calculateBounds() self.calculateCenter() self.calculateRadius() self.calculateTubeRadius() # Converts a blender matrix to a Torque_Util.MatrixF def toTorqueUtilMatrix(self, blendermatrix): return MatrixF([blendermatrix[0][0], blendermatrix[0][1], blendermatrix[0][2], blendermatrix[0][3], blendermatrix[1][0], blendermatrix[1][1], blendermatrix[1][2], blendermatrix[1][3], blendermatrix[2][0], blendermatrix[2][1], blendermatrix[2][2], blendermatrix[2][3], blendermatrix[3][0], blendermatrix[3][1], blendermatrix[3][2], blendermatrix[3][3]]) # Creates a matrix that transforms to shape space def collapseBlenderTransform(self, object): cmat = self.toTorqueUtilMatrix(object.matrix_world) # add on scaling factor exportScale = self.preferences['ExportScale'] scaleMat = MatrixF([exportScale, 0.0, 0.0, 0.0, 0.0, exportScale, 0.0, 0.0, 0.0, 0.0, exportScale, 0.0, 0.0, 0.0, 0.0, exportScale]) return scaleMat * cmat # Creates a cumilative scaling ratio for an object def collapseBlenderScale(self, object): csize = object.getSize() csize = [csize[0], csize[1], csize[2]] parent = object.getParent() while parent != None: nsize = parent.getSize() csize[0], csize[1], csize[2] = csize[0] * nsize[0], csize[1] * nsize[1], csize[2] * nsize[2] parent = parent.getParent() exportScale = self.preferences['ExportScale'] # add on export scale factor csize[0], csize[1], csize[2] = csize[0] * exportScale, csize[1] * exportScale, csize[2] * exportScale return csize # A utility method that gets the min and max positions of the nodes in an armature # within a passed-in ordered list. def getMinMax(self, rootNode, nodeOrder, nodeOrderDict, warning=False): # find the current node in our ordered list try: pos = nodeOrderDict[rootNode.dtsNodeName] minPos, maxPos = pos, pos except: minPos, maxPos = 99999, -99999 cMin = [] cMax = [] nnames = [] for child in [x for x in list(self.transformUtil.nodes.values()) if x.getGoodNodeParentNI() == rootNode]: nnames.append(child.dtsNodeName) start, end, warning = self.getMinMax(child, nodeOrder, nodeOrderDict, warning) if start == None and end == None: continue if end > maxPos: maxPos = end if start < minPos: minPos = start cMin.append(start) cMax.append(end) # check all children of the current root bone to make sure their min/max values don't # overlap. for i in range(0, len(cMin)): for j in range(i + 1, len(cMin)): if (cMin[i] <= cMax[j] and cMin[i] >= cMin[j]) \ or (cMax[i] <= cMax[j] and cMax[i] >= cMin[j]) \ or (cMin[j] <= cMax[i] and cMin[j] >= cMin[i]) \ or (cMax[j] <= cMax[i] and cMax[j] >= cMin[i]): Torque_Util.dump_writeWarning( "-\nWarning: Invalid Traversal - Node hierarchy cannot be matched with the") Torque_Util.dump_writeln(" node ordering specified in the NodeOrder text buffer.") Torque_Util.dump_writeln(" Details:") Torque_Util.dump_writeln(" node tree with root node \'%s\'" % nnames[i]) Torque_Util.dump_writeln(" overlaps sibling tree with root node \'%s\'" % nnames[j]) Torque_Util.dump_writeln(" in the NodeOrder text buffer.") Torque_Util.dump_writeln(" cMin[i], cMax[i] = %i, %i" % (cMin[i], cMax[i])) Torque_Util.dump_writeln(" cMin[j], cMax[j] = %i, %i\n-" % (cMin[j], cMax[j])) warning = True return minPos, maxPos, warning def createOrderedNodeList(self): orderedNodeList = [] # read in desired node ordering from a text buffer, if it exists. no = None try: noTxt = bpy.data.objects["NodeOrder"] no = noTxt.asLines() Torque_Util.dump_writeln("NodeOrder text buffer found, attempting to export nodes in the order specified.") except: no = None nodeOrderDict = {} if no != None: # build a dictionary for fast order compares i = 0 for n in no: nodeOrderDict[n] = i i += 1 boneTree = [] # Validate the node ordering against the bone hierarchy in our armatures. # # Validation rules: # # 1. Child nodes must come after their parents in the node order # list. # # 2. The min and max positions of all child nodes in a given bone # tree should not overlap the min/max positions of other bone # trees on the same level of the overall tree. # Test Rule #1 for nodeInfo in list(self.transformUtil.nodes.values()): if nodeInfo.getGoodNodeParentNI() != None: if nodeInfo.dtsNodeName in list(nodeOrderDict.keys()) \ and nodeInfo.getGoodNodeParentNI() != None \ and nodeInfo.getGoodNodeParentNI().dtsNodeName in list(nodeOrderDict.keys()): if nodeOrderDict[nodeInfo.dtsNodeName] < nodeOrderDict[ nodeInfo.getGoodNodeParentNI().dtsNodeName]: Torque_Util.dump_writeWarning( "-\nWarning: Invalid node order, child bone \'%s\' comes before" % nodeInfo.dtsNodeName) Torque_Util.dump_writeln( " parent bone \'%s\' in the NodeOrder text buffer\n-" % nodeInfo.getGoodNodeParentNI().dtsNodeName) # Test Rule #2 start, end, warning = self.getMinMax(None, no, nodeOrderDict) if not warning: # export in the specified order orderedNodeList = self.walkNodeTreeInOrder(None, nodeOrderDict, []) else: # otherwise export in natural order orderedNodeList = self.walkNodeTree(None, []) else: # get list of nodes in natural order orderedNodeList = self.walkNodeTree(None, []) return orderedNodeList # Walks the node tree recursively and returns a list of nodes in natural order def walkNodeTree(self, nodeInfo, nodeOrderList): thisLevel = [x for x in list(self.transformUtil.nodes.values()) if x.getGoodNodeParentNI() == nodeInfo] thisLevel.sort(key=lambda x: x.dtsNodeName) for child in thisLevel: if not child.isBanned(): nodeOrderList.append(child.dtsNodeName) nodeOrderList = self.walkNodeTree(child, nodeOrderList) return nodeOrderList # Walks the node tree recursively and returns a list of nodes in the specified order, if possible def walkNodeTreeInOrder(self, nodeInfo, nodeOrderDict, nodeOrderList): childList = [x for x in list(self.transformUtil.nodes.values()) if x.getGoodNodeParentNI() == nodeInfo] orderedChildList = [x for x in childList if x.dtsNodeName in list(nodeOrderDict.keys())] extraChildList = [x for x in childList if not (x.dtsNodeName in list(nodeOrderDict.keys()))] orderedChildList.sort(key=lambda x: nodeOrderDict[x.dtsNodeName]) for child in orderedChildList: if not child.isBanned(): nodeOrderList.append(child.dtsNodeName) nodeOrderList = self.walkNodeTreeInOrder(child, nodeOrderDict, nodeOrderList) for child in extraChildList: if not child.isBanned(): nodeOrderList.append(child.dtsNodeName) nodeOrderList = self.walkNodeTreeInOrder(child, nodeOrderDict, nodeOrderList) return nodeOrderList # adds all object and bone nodes to the shape using the poseUtil tree def addAllNodes(self): orderedNodeList = self.createOrderedNodeList() # add armatures to our list for arm in [x for x in bpy.context.scene.objects if x.type == 'ARMATURE']: self.addedArmatures.append(arm) # build a dict of node indices for lookup nodeIndices = {} i = 1 for nodeName in orderedNodeList: nodeInfo = self.transformUtil.nodes[nodeName] if not nodeInfo.isBanned(): nodeIndices[nodeName] = i i += 1 # add nodes in order for nodeName in orderedNodeList: nodeInfo = self.transformUtil.nodes[nodeName] if not nodeInfo.isBanned(): if nodeInfo.getGoodNodeParentNI() != None: parentNodeIndex = nodeIndices[nodeInfo.getGoodNodeParentNI().dtsNodeName] else: parentNodeIndex = -1 n = Node(self.sTable.addString(nodeInfo.dtsNodeName), parentNodeIndex) try: n.armName = nodeInfo.armParentNI.dtsNodeName except: n.armName = None n.obj = nodeInfo.getBlenderObj() self.nodes.append(n) nodeIndex = len(self.nodes) - 1 self.subshapes[0].numNodes += 1 # dump node transforms for the rest frame # Blender.Set('curframe', self.preferences['RestFrame']) bpy.context.scene.frame_set(self.preferences['RestFrame']) self.restTransforms = self.transformUtil.dumpReferenceFrameTransforms(orderedNodeList, self.preferences['RestFrame'], self.preferences[ 'SequenceExportTwoPassMode']) # Set up default translations and rotations for nodes. i = 0 for nname in orderedNodeList: pos = self.restTransforms[i][0] rot = self.restTransforms[i][2] self.defaultTranslations.append(pos) self.defaultRotations.append(rot) i += 1 # adds a ground frame to a sequence def addGroundFrame(self, sequence, frame_idx, boundsStartMat): # quit trying to export ground frames if we have had an error. try: x = self.GroundFrameError except: self.GroundFrameError = False if self.GroundFrameError: return # Add ground frames if enabled if sequence.has_ground: # Check if we have any more ground frames to add if sequence.ground_target != sequence.numGroundFrames: # Ok, we can add a ground frame, but do we add it now? duration = sequence.numKeyFrames / sequence.ground_target if frame_idx >= (duration * (sequence.numGroundFrames + 1)) - 1: # We are ready, lets stomp! try: bound_obj = bpy.data.objects["Bounds"] matf = self.collapseBlenderTransform(bound_obj) pos = Vector(matf.get(3, 0), matf.get(3, 1), matf.get(3, 2)) pos = pos - Vector(boundsStartMat.get(3, 0), boundsStartMat.get(3, 1), boundsStartMat.get(3, 2)) matf = boundsStartMat.inverse() * matf rot = Quaternion().fromMatrix(matf).inverse() self.groundTranslations.append(pos) self.groundRotations.append(rot) sequence.numGroundFrames += 1 except ValueError: # record the error state so we don't repeat ourselves. self.GroundFrameError = True sequence.has_ground = False # <- nope, no ground frames. Torque_Util.dump_writeErr("Error: Could not get ground frames for sequence %s." % sequence.name) Torque_Util.dump_writeln( " You must have an object named Bounds in your scene to export ground frames.") # Adds a generic sequence def addSequence(self, seqName, seqPrefs, scene=None, action=None): numFrameSamples = self.preferences.getSeqNumFrames(seqName) visIsValid = validateVisibility(seqName, seqPrefs) IFLIsValid = validateIFL(seqName, seqPrefs) # ActionIsValid = validateAction(seqName, seqPrefs) ActionIsValid = True if numFrameSamples < 1: ActionIsValid = False visIsValid = False IFLIsValid = False # Did we have any valid animations at all for the sequence? if not (visIsValid or IFLIsValid or ActionIsValid): Torque_Util.dump_writeln( " Skipping sequence %s, no animation types were valid for the sequence. " % seqName) return None # We've got something to export, so lets start off with the basic sequence sequence = Sequence(self.sTable.addString(seqName)) sequence.name = seqName sequence.numTriggers = 0 sequence.firstTrigger = -1 sequence.numKeyFrames = 0 sequence.has_vis = False sequence.has_ifl = False sequence.has_loc = False sequence.has_rot = False sequence.has_scale = False sequence.has_ground = False sequence.frames = [] for n in self.nodes: sequence.matters_translation.append(False) sequence.matters_rotation.append(False) sequence.matters_scale.append(False) sequence.frames.append(0) # apply common sequence settings sequence.fps = seqPrefs['FPS'] if seqPrefs['Cyclic']: sequence.flags |= sequence.Cyclic sequence.duration = seqPrefs['Duration'] sequence.priority = seqPrefs['Priority'] lastFrameRemoved = False if ActionIsValid: # startTime = Blender.sys.time() sequence, lastFrameRemoved = self.addNodeSeq(sequence, action, numFrameSamples, scene, seqPrefs) # endTime = Blender.sys.time() # print "Sequence export finished in:", str(endTime-startTime) # if we had to remove the last frame from a cyclic action, and the original action # frame samples was the same as the overall number of frames for the sequence, adjust # the overall sequence length. if lastFrameRemoved: numFrameSamples -= 1 if visIsValid: sequence = self.addSequenceVisibility(sequence, numFrameSamples, seqPrefs, int(seqPrefs['StartFrame']), int(seqPrefs['EndFrame'])) if IFLIsValid: sequence = self.addSequenceIFL(sequence, getNumIFLFrames(seqName, seqPrefs), seqPrefs) self.sequences.append(sequence) # add triggers if len(seqPrefs['Triggers']) != 0: self.addSequenceTriggers(sequence, seqPrefs['Triggers'], numFrameSamples) return sequence # Import an action def addNodeSeq(self, sequence, action, numOverallFrames, scene, seqPrefs): ''' This adds an action to a shape as a sequence. Sequences are added on a one-by-one basis. The first part of the function determines if the action is worth exporting - if not, the function fails, otherwise it is setup. The second part of the function determines what the action animates. The third part of the function adds the keyframes, making heavy use of the getPoseTransform function. You can control the amount of frames exported via the 'FrameSamples' option. Finally, the sequence data is dumped to the shape. Additionally, if the sequence has been marked as a dsq, the dsq writer function is invoked - the data for that particular sequence is then removed from the shape. NOTE: this function needs to be called AFTER all calls to addArmature/addNode, for obvious reasons. ''' # build ordered node list. orderedNodeList = [] for nodeIndex in range(1, len(self.nodes)): orderedNodeList.append(self.sTable.get(self.nodes[nodeIndex].name)) # Get a list of armatures that need to be checked in order to issue # warnings regarding armature modifiers (see long note in Dts_Blender.py) checkArmatureNIs = DtsGlobals.SceneInfo.getArmaturesOfConcern() # Add sequence flags if seqPrefs['Blend']: isBlend = True sequence.flags |= sequence.Blend else: isBlend = False if seqPrefs['NumGroundFrames'] != 0: sequence.has_ground = True sequence.ground_target = seqPrefs['NumGroundFrames'] sequence.flags |= sequence.MakePath else: sequence.has_ground = False # Determine the number of key frames. Takes into account channels for bones that are # not being exported, as they may still effect the animation through IK or other constraints. # sequence.numKeyFrames = getNumFrames(action.getAllChannelIpos().values(), False) sequence.numKeyFrames = numOverallFrames interpolateInc = 1 Torque_Util.dump_writeln(" Frames: %d " % numOverallFrames) # Depending on what we have, set the bases accordingly if sequence.has_ground: sequence.firstGroundFrame = len(self.groundTranslations) else: sequence.firstGroundFrame = -1 # this is the number of real action frames we are exporting. numFrameSamples = numOverallFrames removeLast = False baseTransforms = [] useAction = None useFrame = None if isBlend: # Need to build a list of node transforms to use as the # base transforms for nodes in our blend animation. # useAction = seqPrefs['Action']['BlendRefPoseAction'] refFrame = seqPrefs['BlendRefPoseFrame'] baseTransforms = self.transformUtil.dumpBlendRefFrameTransforms(orderedNodeList, refFrame, self.preferences[ 'SequenceExportTwoPassMode']) if baseTransforms == None: Torque_Util.dump_writeln("Error getting base Transforms!!!!!") # *** special processing for the first frame: # store off the default position of the bounds box try: # Blender.Set('curframe', self.preferences['RestFrame']) bpy.context.scene.frame_set(self.preferences['RestFrame']) bound_obj = bpy.data.objects["Bounds"] boundsStartMat = self.collapseBlenderTransform(bound_obj) except ValueError: boundsStartMat = MatrixF() # For blend animations, we need to reset the pose to the reference pose instead of the default # transforms. Otherwise, we won't be able to tell reliably which bones have actually moved # during the blend sequence. if isBlend: # Set the current frame in blender pass # For normal animations, loop through each node and reset it's transforms. # This avoids transforms carrying over from other action animations. else: # need to cycle through ALL bones and reset the transforms. for armOb in bpy.context.scene.objects: if (armOb.type != 'ARMATURE'): continue tempPose = armOb.pose armDb = armOb.data for bonename in list(armDb.bones.keys()): # for bonename in self.poseUtil.armBones[armOb.name].keys(): # reset the bone's transform tempPose.bones[bonename].quat = bMath.Quaternion().identity() tempPose.bones[bonename].size = bMath.Vector(1.0, 1.0, 1.0) tempPose.bones[bonename].loc = bMath.Vector(0.0, 0.0, 0.0) # update the pose. tempPose.update() # create blank frames for each node for nodeIndex in range(1, len(self.nodes)): sequence.frames[nodeIndex] = [] # get transforms for every frame in a big nested list. if isBlend: transforms = self.transformUtil.dumpBlendFrameTransforms(orderedNodeList, seqPrefs['StartFrame'], seqPrefs['EndFrame'], self.preferences['SequenceExportTwoPassMode']) else: transforms = self.transformUtil.dumpFrameTransforms(orderedNodeList, seqPrefs['StartFrame'], seqPrefs['EndFrame'], self.preferences['SequenceExportTwoPassMode']) # if this is a blend animation, calculate deltas if isBlend and baseTransforms != None: transforms = self.transformUtil.getDeltasFromRef(baseTransforms, transforms, orderedNodeList) # loop through each frame and transcribe transforms for frameTransforms in transforms: for nodeIndex in range(1, len(self.nodes)): if isBlend: # print "nodeIndex=", nodeIndex baseTransform = baseTransforms[nodeIndex - 1] else: baseTransform = None loc, scale, rot = frameTransforms[nodeIndex - 1] sequence.frames[nodeIndex].append([loc, rot, scale]) # add ground frames for frame in range(0, numOverallFrames): self.addGroundFrame(sequence, frame, boundsStartMat) # calculate matters for nodeIndex in range(1, len(self.nodes)): # get root transforms if not isBlend: rootLoc = self.defaultTranslations[nodeIndex] rootRot = self.defaultRotations[nodeIndex] else: rootLoc = Vector(0.0, 0.0, 0.0) rootRot = Quaternion(0.0, 0.0, 0.0, 1.0) for fr in range(0, len(transforms)): # check deltas from base transforms if sequence.matters_translation[nodeIndex] == False: if not rootLoc.eqDelta(transforms[fr][nodeIndex - 1][0], 0.02): # print "LOC detected:" # print " rootLoc=", rootLoc # print " loc =", transforms[fr][nodeIndex-1][0] sequence.matters_translation[nodeIndex] = True sequence.has_loc = True if sequence.matters_rotation[nodeIndex] == False: # print "angle between quats is:", rootRot.angleBetween(transforms[fr][nodeIndex-1][2]) # if not rootRot.eqDelta(transforms[fr][nodeIndex-1][2], 0.02): if rootRot.angleBetween(transforms[fr][nodeIndex - 1][2]) > 0.008: # print "ROT detected:" # print " rootRot=", rootRot # print " rot =", transforms[fr][nodeIndex-1][2] sequence.matters_rotation[nodeIndex] = True sequence.has_rot = True if sequence.matters_scale[nodeIndex] == False: if not Vector(1.0, 1.0, 1.0).eqDelta(transforms[fr][nodeIndex - 1][1], 0.02): # print "Scale detected:" # print " deltaScale=", transforms[fr][nodeIndex-1][1] sequence.matters_scale[nodeIndex] = True sequence.has_scale = True # if nothing was actually animated abandon exporting the action. if not (sequence.has_loc or sequence.has_rot or sequence.has_scale): # don't write this warning anymore, not needed. # Torque_Util.dump_writeWarning("Warning: Action has no keyframes, aborting export for this animation.") return sequence, False # set the aligned scale flag if we have scale. if sequence.has_scale: sequence.flags |= Sequence.AlignedScale # It should be safe to add this sequence to the list now. # self.sequences.append(sequence) # Now that we have all the transforms for each node at # every frame, remove the ones that we don't need. This is much faster than doing # two passes through the blender frames to determine what's animated and what's not. for nodeIndex in range(1, len(self.nodes)): if not sequence.matters_translation[nodeIndex]: for frame in range(0, numOverallFrames): sequence.frames[nodeIndex][frame][0] = None if not sequence.matters_rotation[nodeIndex]: for frame in range(0, numOverallFrames): sequence.frames[nodeIndex][frame][1] = None if not sequence.matters_scale[nodeIndex]: for frame in range(0, numOverallFrames): sequence.frames[nodeIndex][frame][2] = None remove_translation, remove_rotation, remove_scale = True, True, True if seqPrefs['Cyclic']: for nodeIndex in range(1, len(self.nodes)): # If we added any new translations, and the first frame is equal to the last, # allow the next pass of nodes to happen, to remove the last frame. # (This fixes the "dead-space" issue) if len(sequence.frames[nodeIndex]) != 0: if (sequence.frames[nodeIndex][0][0] != None) and ( sequence.frames[nodeIndex][-1][0] != None) and not sequence.frames[nodeIndex][0][ 0].eqDelta( sequence.frames[nodeIndex][-1][0], 0.01): remove_translation = False if (sequence.frames[nodeIndex][0][1] != None) and ( sequence.frames[nodeIndex][-1][1] != None) and not sequence.frames[nodeIndex][0][ 1].eqDelta( sequence.frames[nodeIndex][-1][1], 0.01): remove_rotation = False if (sequence.frames[nodeIndex][0][2] != None) and ( sequence.frames[nodeIndex][-1][2] != None) and not sequence.frames[nodeIndex][0][ 2].eqDelta( sequence.frames[nodeIndex][-1][2], 0.01): remove_scale = False # Determine if the change has affected all that we animate if (remove_translation) and (remove_rotation) and (remove_scale): removeLast = True Torque_Util.dump_write(" Animates:") if sequence.has_loc: Torque_Util.dump_write("loc") if sequence.has_rot: Torque_Util.dump_write("rot") if sequence.has_scale: Torque_Util.dump_write("scale") if sequence.has_ground: Torque_Util.dump_write("ground") Torque_Util.dump_writeln("") # We can now reveal the true number of keyframes # sequence.numKeyFrames = numFrameSamples-1 # Do a second pass on the nodes to remove the last frame for cyclic anims if removeLast: # Go through list of frames for nodes animated in sequence and delete the last frame from all of them for nodeIndex in range(len(self.nodes)): if sequence.matters_translation[nodeIndex] or sequence.matters_rotation[nodeIndex] or \ sequence.matters_scale[nodeIndex]: del sequence.frames[nodeIndex][-1] sequence.numKeyFrames -= 1 Torque_Util.dump_writeln(" Note: Duplicate frames removed, (was %d, now %d)" % ( sequence.numKeyFrames + 1, sequence.numKeyFrames)) # Calculate Bases if sequence.has_loc: sequence.baseTranslation = len(self.nodeTranslations) else: sequence.baseTranslation = -1 if sequence.has_rot: sequence.baseRotation = len(self.nodeRotations) else: sequence.baseRotation = -1 if sequence.has_scale: sequence.baseScale = len(self.nodeAlignedScales) else: sequence.baseScale = -1 # To simplify things, we now assume everything is internal and just dump the sequence # Dump Frames for node in sequence.frames: if node == 0: continue for frame in node: if frame[0]: self.nodeTranslations.append(frame[0]) if frame[1]: self.nodeRotations.append(frame[1]) if frame[2]: self.nodeAlignedScales.append(frame[2]) # Clean out temporary junk del sequence.frames return sequence, removeLast def addSequenceTriggers(self, sequence, unsortedTriggers, nFrames): print("addSequenceTriggers called!!!") if sequence.firstTrigger == -1: sequence.firstTrigger = len(self.triggers) # Sort triggers by position triggers = [] for u in unsortedTriggers: if len(triggers) == 0: triggers.append(u) continue for i in range(0, len(triggers)): if (triggers[i][1] <= u[1]): triggers.insert(i, u) break elif (i == (len(triggers) - 1)): triggers.append(u) triggers.reverse() # Check for triggers with both on and off states triggerState = [] for t in triggers: triggerState.append(False) for comp in triggers: if (t[0] == comp[0]) and (t[2] != comp[2]): # Trigger controls a state that is turned on and off, so must state must reverse # if played backwards triggerState[-1] = True break for i in range(0, len(triggers)): # [ state(1-32), position(0-1.0), on(True/False) ] if triggers[i][1] <= 1: realPos = 0.0 else: realPos = float(triggers[i][1] - 1) / (nFrames - 1) print("realPos=", realPos) self.triggers.append(Trigger(triggers[i][0], triggers[i][2], realPos, triggerState[i])) del triggerState sequence.numTriggers += len(triggers) sequence.flags |= sequence.MakePath # Add sequence matters for IFL animation. def addSequenceIFL(self, sequence, numFrameSamples, sequenceKey): sequence.matters_ifl = [False] * len(self.materials.materials) if sequence.baseObjectState == -1: sequence.baseObjectState = len(self.objectstates) # Now we can dump each frame for the objects # Sequence matters_ifl indexes iflmaterials. for i in range(0, len(self.iflmaterials)): mat = self.iflmaterials[i] IFLMatName = self.sTable.get(mat.name) # must strip last four chars from IFLMatName (".ifl") if self.preferences.getTextPortion(sequenceKey['IFL']['Material']) == IFLMatName[0:len(IFLMatName) - 4]: sequence.matters_ifl[i] = True else: pass sequence.has_ifl = True return sequence # Processes a material ipo and incorporates it into the Action def addSequenceVisibility(self, sequence, numOverallFrames, sequenceKey, startFrame, endFrame): ''' This adds ObjectState tracks to the sequence. Since blender's Actions don't support object or material ipo's, we need to use the ipos directly. In addition, a starting point and end point must be defined, which is useful in using a the ipo in more than 1 animation track. If the visibility subsequence is shorter than the other subsequences belonging to the same sequence, sampling of the IPOs will continue past the end of the subsequence until the full sequence is finished. If the visibility sequence is longer than the other subsequences, other subsequences will be sampled past the end of their runs until the full sequence is finished. NOTE: this function needs to be called AFTER finalizeObjects, for obvious reasons. ''' scene = bpy.context.scene sequence.matters_vis = [False] * len(self.objects) # includes last frame # numVisFrames = int((startFrame - endFrame) + 1) # Just do it. for i in range(0, len(self.objects)): dObj = self.objects[i] dObjName = self.sTable.get(dObj.name) try: keyedObj = sequenceKey['Vis']['Tracks'][dObjName] except: sequence.matters_vis[i] = False continue # skip this object if the vis track is not enabled if not keyedObj['hasVisTrack']: continue try: if keyedObj['IPOType'] == "Object": bObj = bpy.data.objects[keyedObj['IPOObject']] elif keyedObj['IPOType'] == "Material": bObj = bpy.data.objects[keyedObj['IPOObject']] bIpo = bObj.getIpo() IPOCurveName = getBlenderIPOChannelConst(keyedObj['IPOType'], keyedObj['IPOChannel']) IPOCurve = None IPOCurveConst = bIpo.curveConsts[IPOCurveName] IPOCurve = bIpo[IPOCurveConst] if IPOCurve == None: raise TypeError except: Torque_Util.dump_writeErr( "Error: Could not get animation curve for visibility animation: %s " % sequence.name) continue sequence.matters_vis[i] = True if sequence.baseObjectState == -1: sequence.baseObjectState = len(self.objectstates) # add the object states, include the last frame for fr in range(startFrame, numOverallFrames + startFrame): val = IPOCurve[int(fr)] if val > 1.0: val = 1.0 elif val < 0.0: val = 0.0 # Make sure we're still in the user defined frame range. if fr <= endFrame: self.objectstates.append(ObjectState(val, 0, 0)) print("appending vis frame with val of:", val) # If we're past the user defined frame range, pad out object states # with copies of the good last frame state. else: val = IPOCurve[int(endFrame)] if val > 1.0: val = 1.0 elif val < 0.0: val = 0.0 self.objectstates.append(ObjectState(val, 0, 0)) print("appending vis frame with val of:", val) sequence.has_vis = True return sequence def convertAndDumpSequenceToDSQ(self, sequence, filename, version): # Write entry for this in shape script, if neccesary self.externalSequences.append(self.sTable.get(sequence.nameIndex)) # Simple task of opening the file and dumping sequence data dsq_file = open(filename, "wb") self.writeDSQSequence(dsq_file, sequence, version) # Write only current sequence data dsq_file.close() # Remove anything we added (using addNodeSeq or addSequenceTrigger only) to the main list if sequence.baseTranslation != -1: del self.nodeTranslations[ sequence.baseTranslation - 1:sequence.baseTranslation + sequence.numKeyFrames] if sequence.baseRotation != -1: del self.nodeRotations[ sequence.baseRotation - 1:sequence.baseRotation + sequence.numKeyFrames] if sequence.baseScale != -1: del self.nodeAlignedScales[ sequence.baseScale - 1:sequence.baseScale + sequence.numKeyFrames] if sequence.firstTrigger != -1: del self.triggers[ sequence.firstTrigger - 1:sequence.firstTrigger + sequence.numTriggers] if sequence.firstGroundFrame != -1: del self.groundTranslations[ sequence.firstGroundFrame - 1:sequence.firstGroundFrame + sequence.numGroundFrames] del self.groundRotations[sequence.firstGroundFrame - 1:sequence.firstGroundFrame + sequence.numGroundFrames] # ^^ Add other data here once exporter has support for it. # Remove sequence from list for i in range(0, len(self.sequences)): if self.sequences[i] == sequence: del self.sequences[i] break return True # Generic object addition def addObject(self, object): if object.type == "ARMATURE": return self.addArmature(object) elif object.type == "CAMERA": return self.addNode(object) elif object.type == "MESH": return self.addDetailLevel([object], -1) else: Torque_Util.dump_writeln("addObject() failed for type %s!" % object.type) return False # Material addition def addMaterial(self, imageName): if imageName == None: Torque_Util.dump_writeln("addMaterial() returning none") return None # find the material associated with the texture image file name material = None try: Torque_Util.dump_writeln("test1") mat = self.preferences['Materials'][imageName] Torque_Util.dump_writeln("test2") flags = 0x00000000 if mat['SWrap'] == True: flags |= dMaterial.SWrap if mat['TWrap'] == True: flags |= dMaterial.TWrap if mat['Translucent'] == True: flags |= dMaterial.Translucent if mat['Additive'] == True: flags |= dMaterial.Additive if mat['Subtractive'] == True: flags |= dMaterial.Subtractive if mat['SelfIlluminating'] == True: flags |= dMaterial.SelfIlluminating if mat['NeverEnvMap'] == True: flags |= dMaterial.NeverEnvMap if mat['NoMipMap'] == True: flags |= dMaterial.NoMipMap if mat['MipMapZeroBorder'] == True: flags |= dMaterial.MipMapZeroBorder if mat['IFLMaterial'] == True: flags |= dMaterial.IFLMaterial material = dMaterial(mat['BaseTex'], flags, -1, -1, -1, (1.0 / mat['detailScale']), mat['reflectance']) # Must have something in the reflectance slot to prevent TGE from # crashing when env mapping without a reflectance map. material.reflectance = len(self.materials.materials) if mat['DetailMapFlag'] == True and mat['DetailTex'] != None: dmFlags = 0x00000000 if mat['SWrap'] == True: dmFlags |= dMaterial.SWrap if mat['TWrap'] == True: dmFlags |= dMaterial.TWrap dmFlags |= dMaterial.DetailMap # detail_map = dMaterial(mat['DetailTex'], dmFlags,-1,-1,-1,1.0,mat['reflectance']) detail_map = dMaterial(mat['DetailTex'], dmFlags, -1, -1, -1, 1.0, 0.0) material.detail = self.materials.add(detail_map) if mat['NeverEnvMap'] == False: Torque_Util.dump_writeWarning( " Warning: Material (%s) is using environment mapping with a detail map, strange things may happen!" % imageName) if mat['BumpMapFlag'] == True and mat['BumpMapTex'] != None: bmFlags = 0x00000000 if mat['SWrap'] == True: bmFlags |= dMaterial.SWrap if mat['TWrap'] == True: bmFlags |= dMaterial.TWrap bmFlags |= dMaterial.BumpMap bump_map = dMaterial(mat['BumpMapTex'], bmFlags, -1, -1, -1, 1.0, mat['reflectance']) material.bump = self.materials.add(bump_map) if mat['ReflectanceMapFlag'] == True and mat['RefMapTex'] != None: rmFlags = 0x00000000 if mat['SWrap'] == True: rmFlags |= dMaterial.SWrap if mat['TWrap'] == True: rmFlags |= dMaterial.TWrap rmFlags |= dMaterial.ReflectanceMap refl_map = dMaterial(mat['RefMapTex'], rmFlags, -1, -1, -1, 1.0, mat['reflectance']) material.reflectance = self.materials.add(refl_map) except KeyError: Torque_Util.dump_writeWarning( " Warning: Texture Image (%s) is used on a mesh but could not be found in the material list!" % imageName) return None material.name = imageName retVal = self.materials.add(material) if self.preferences['TSEMaterial']: self.addTGEAMaterial(imageName) return retVal # Material addition (TGEA mode) def addTGEAMaterial(self, imageName): mat = self.preferences['Materials'][imageName] # Build the material string. materialString = "new Material(%s)\n{\n" % ( finalizeImageName(SceneInfoClass.stripImageExtension(imageName), True)) materialString += "// Rendering Stage 0\n" materialString += "baseTex[0] = \"./%s\";\n" % ( finalizeImageName(SceneInfoClass.stripImageExtension(imageName))) if mat['DetailMapFlag'] == True and mat['DetailTex'] != None: materialString += "detailTex[0] = \"./%s\";\n" % (mat['DetailTex']) if mat['BumpMapFlag'] == True and mat['BumpMapTex'] != None: materialString += "bumpTex[0] = \"./%s\";\n" % (mat['BumpMapTex']) if mat['SelfIlluminating'] == True: materialString += "emissive[0] = true;\n" if mat['Translucent'] == True: materialString += "translucent[0] = true;\n" if mat['Additive'] == True: materialString += "TranslucentBlendOp[0] = Add;\n" # <- not sure if it's Add or $Add, docs incomplete... elif mat['Subtractive'] == True: materialString += "TranslucentBlendOp[0] = Sub;\n" # <- ditto # need to set a default blend op? Which one? materialString += "};\n\n" self.scriptMaterials.append(materialString) # Finalizes shape def finalize(self, writeShapeScript=False): pathSep = "/" if "\\" in self.preferences['exportBasepath']: pathSep = "\\" # Write out shape script if writeShapeScript: Torque_Util.dump_writeln(" Writing script%s%s%s.cs" % ( self.preferences['exportBasepath'], pathSep, self.preferences['exportBasename'])) shapeScript = open( "%s%s%s.cs" % (self.preferences['exportBasepath'], pathSep, self.preferences['exportBasename']), "w") shapeScript.write("datablock TSShapeConstructor(%sDts)\n" % self.preferences['exportBasename']) shapeScript.write("{\n") # don't need to write out the full path, in fact, it causes problems to do so. We'll just assume # that the player is putting their shape script in the same folder as the .dts. shapeScript.write(" baseShape = \"./%s\";\n" % (self.preferences['exportBasename'] + ".dts")) count = 0 for sequence in self.externalSequences: # shapeScript.write(" sequence%d = \"./%s_%s.dsq %s\";\n" % (count,self.preferences['exportBasepath'],sequence,sequence)) shapeScript.write(" sequence%d = \"./%s.dsq %s\";\n" % (count, sequence, sequence)) count += 1 shapeScript.write("};") shapeScript.close() # Write out TGEA Material Script if self.preferences['TSEMaterial']: Torque_Util.dump_writeln( " Writing material script %s%smaterials.cs" % (self.preferences['exportBasepath'], pathSep)) materialScript = open("%s%smaterials.cs" % (self.preferences['exportBasepath'], pathSep), "w") materialScript.write("// Script automatically generated by Blender DTS Exporter\n\n") for materialDef in self.scriptMaterials: materialScript.write(materialDef) materialScript.write("// End of generated script\n") materialScript.close() # Write out IFL File # Now we can dump each frame for seqName in list(self.preferences['Sequences'].keys()): seqPrefs = self.preferences['Sequences'][seqName] if seqPrefs['IFL']['Enabled'] and validateIFL(seqName, seqPrefs) and seqPrefs['IFL']['WriteIFLFile']: iflName = self.preferences.getTextPortion(seqPrefs['IFL']['Material']) Torque_Util.dump_writeln( " Writing IFL script %s%s%s.ifl" % (self.preferences['exportBasepath'], pathSep, iflName)) IFLScript = open("%s%s%s.ifl" % (self.preferences['exportBasepath'], pathSep, iflName), "w") for frame in seqPrefs['IFL']['IFLFrames']: IFLScript.write("%s %i\n" % (frame[0], frame[1])) IFLScript.close() def dumpShapeInfo(self): Torque_Util.dump_writeln(" > Nodes") for n in range(0, len(self.nodes)): if self.nodes[n].parent == -1: self.dumpShapeNode(n) Torque_Util.dump_writeln(" > Objects") for obj in self.objects: Torque_Util.dump_write(" '%s' :" % self.sTable.get(obj.name)) for mesh in self.meshes[obj.firstMesh:obj.firstMesh + obj.numMeshes]: if mesh.mtype == mesh.T_Standard: Torque_Util.dump_write("Standard") elif mesh.mtype == mesh.T_Skin: Torque_Util.dump_write("Skinned") elif mesh.mtype == mesh.T_Decal: Torque_Util.dump_write("Decal") elif mesh.mtype == mesh.T_Sorted: Torque_Util.dump_write("Sorted") elif mesh.mtype == mesh.T_Null: Torque_Util.dump_write("Null") else: Torque_Util.dump_write("Unknown") Torque_Util.dump_writeln("") Torque_Util.dump_writeln(" > Materials") for mat in self.materials.materials: Torque_Util.dump_writeln(" %s" % mat.name) Torque_Util.dump_writeln(" > Detail Levels") for detail in self.detaillevels: Torque_Util.dump_writeln(" %s (size : %d)" % (self.sTable.get(detail.name), detail.size)) if len(self.detaillevels) > 0: Torque_Util.dump_writeln(" Smallest : %s (size : %d)" % ( self.sTable.get(self.detaillevels[self.mSmallestVisibleDL].name), self.mSmallestVisibleSize)) Torque_Util.dump_writeln(" > Internal Sequences") for sequence in self.sequences: Torque_Util.dump_writeln(" - %s" % self.sTable.get(sequence.nameIndex)) Torque_Util.dump_write(" Animates:") if sequence.has_ifl: Torque_Util.dump_write("ifl") if sequence.has_vis: Torque_Util.dump_write("vis") if sequence.has_loc: Torque_Util.dump_write("loc") if sequence.has_rot: Torque_Util.dump_write("rot") if sequence.has_scale: Torque_Util.dump_write("scale") if sequence.has_ground: Torque_Util.dump_write("ground") Torque_Util.dump_writeln("") Torque_Util.dump_writeln(" Frames: %d" % sequence.numKeyFrames) Torque_Util.dump_writeln(" Ground Frames: %d" % sequence.numGroundFrames) Torque_Util.dump_writeln(" Triggers: %d" % sequence.numTriggers) def dumpShapeNode(self, nodeIdx, indent=0): Torque_Util.dump_write(" " * (indent + 4)) Torque_Util.dump_writeln( "^^ Bone [%s] (parent %d)" % (self.sTable.get(self.nodes[nodeIdx].name), self.nodes[nodeIdx].parent)) for n in range(0, len(self.nodes)): if self.nodes[n].parent == nodeIdx: self.dumpShapeNode(n, indent + 1)
45.328767
143
0.574431
9510f7e2ff5506dbdfe8e62a51d7e9b2d05c4878
7,012
py
Python
algorithms/POMDP/3-DRQN-Store-State-HeavenHellSimple/train.py
zhihanyang2022/drqn
ac2482e3b42094e6242c042583dbbd9c98e4750b
[ "MIT" ]
5
2021-03-28T14:12:40.000Z
2021-11-19T20:46:10.000Z
algorithms/POMDP/3-DRQN-Store-State-HeavenHellSimple/train.py
zhihanyang2022/drqn
ac2482e3b42094e6242c042583dbbd9c98e4750b
[ "MIT" ]
null
null
null
algorithms/POMDP/3-DRQN-Store-State-HeavenHellSimple/train.py
zhihanyang2022/drqn
ac2482e3b42094e6242c042583dbbd9c98e4750b
[ "MIT" ]
null
null
null
import os import sys import random import numpy as np import torch import torch.optim as optim import torch.nn.functional as F from model import DRQN from memory import Memory # from tensorboardX import SummaryWriter import argparse import wandb from heaven_hell_simple import HeavenHellSimple # ================================================== # hyper-parameters that need tuning """ python algorithms/POMDP/3-DRQN-Store-State-HeavenHellSimple/train.py \ --lr=0.00001 \ --use_experts=0 \ --debug_mode=0 \ --device_str=cpu \ --use_deeper_net=1 \ --use_early_stopping=1 \ --seed=1 """ parser = argparse.ArgumentParser() parser.add_argument('--lr', type=float, help='learning rate (e.g., 0.001)') parser.add_argument('--use_experts', type=int, help='whether to use two experts to guide exploration (0 for on; 1 for off)') parser.add_argument('--seed', type=int, help='seed for np.random.seed and torch.manual_seed (e.g., 42)') parser.add_argument('--debug_mode', type=int) parser.add_argument('--device_str', type=str) parser.add_argument('--use_deeper_net', type=int) parser.add_argument('--use_early_stopping', type=int) args = parser.parse_args() lr = args.lr use_experts = bool(args.use_experts) seed = args.seed debug_mode = bool(args.debug_mode) device = torch.device(args.device_str) use_deeper_net = bool(args.use_deeper_net) use_early_stopping = bool(args.use_early_stopping) if debug_mode: print('Running debug mode (i.e., without wandb)') # ================================================== # ================================================== # fixed hyper-parameters gamma = 0.99 sequence_length = 8 max_episodes = int(10 * 1e3) # 10k episodes; less than or equal to 10k * 20 = 200k steps epsilon = 1.0 # initial uniform exploration terminal_epsilon = 0.1 decay_over_episodes = int(3 * 1e3) # 3k episodes decay_per_episode = (epsilon - terminal_epsilon) / decay_over_episodes replay_memory_capacity = max_episodes # can store 500 episodes batch_size = 32 update_target = 1000 # once per 1000 steps log_interval = 10 # one console log per 10 episodes target_score = 0.99 patience = 3 # ================================================== # ================================================== # logging settings if debug_mode is False: group_name = f"lr={lr} use_experts={use_experts} use_deeper_net={use_deeper_net} use_early_stopping={use_early_stopping}" run_name = f"seed={seed}" print('Group name:') print(group_name) print('Run name:') print(run_name) wandb.init( project="drqn", entity='pomdpr', group=group_name, settings=wandb.Settings(_disable_stats=True), name=run_name ) # ================================================== def get_action(obs, target_net, epsilon, env, hidden, expert_actions=None): action, hidden = target_net.get_action(obs, hidden) if np.random.rand() <= epsilon: if expert_actions is None: return env.action_space.sample(), hidden else: return np.random.choice(expert_actions), hidden else: return action, hidden def update_target_model(online_net, target_net): # Target <- Net target_net.load_state_dict(online_net.state_dict()) def one_hot_encode_obs(obs:int): one_hot_repr = np.zeros((HeavenHellSimple().observation_space_dim, )) one_hot_repr[obs] = 1 return one_hot_repr env = HeavenHellSimple() np.random.seed(seed) torch.manual_seed(seed) num_inputs = env.observation_space_dim num_actions = env.action_space_dim print('observation size:', num_inputs) print('action size:', num_actions) online_net = DRQN(num_inputs, num_actions, sequence_length, use_deeper_net) target_net = DRQN(num_inputs, num_actions, sequence_length, use_deeper_net) update_target_model(online_net, target_net) optimizer = optim.Adam(online_net.parameters(), lr=lr) # if use_experts is False: # writer = SummaryWriter('logs/normal') # else: # writer = SummaryWriter('logs/experts') online_net.to(device) target_net.to(device) online_net.train() target_net.train() memory = Memory(replay_memory_capacity, sequence_length) steps = 0 # number of actions taken in the environment / number of parameter updates loss = 0 running_score = 0 converged = False patience_used = 0 for e in range(max_episodes): done = False obs = env.reset() obs = one_hot_encode_obs(obs) obs = torch.Tensor(obs).to(device) hidden = (torch.Tensor().new_zeros(1, 1, 16), torch.Tensor().new_zeros(1, 1, 16)) episode_len = 0 # incremented per action taken trajectory = [] while not done: if use_experts is False: # do the normal thing action, new_hidden = get_action(obs, target_net, epsilon, env, hidden) else: action, new_hidden = get_action(obs, target_net, epsilon, env, hidden, expert_actions=env.get_expert_actions()) episode_len += 1 trajectory.append( (episode_len, int(torch.argmax(obs)), int(action)) ) next_obs, reward, done = env.step(action) next_obs = one_hot_encode_obs(next_obs) next_obs = torch.Tensor(next_obs) mask = 0 if done else 1 if use_early_stopping is False: memory.push(obs, next_obs, action, reward, mask, hidden) else: if converged is False: memory.push(obs, next_obs, action, reward, mask, hidden) hidden = new_hidden obs = next_obs if len(memory) > batch_size and (use_early_stopping is False or converged is False): # Result of use_early_stopping is False or converged is False # use_early_stopping | converged | results # True True False -> avoid updated # True False True -> do update # False True True -> do update # False False True -> do update batch = memory.sample(batch_size) loss = DRQN.train_model(online_net, target_net, optimizer, batch, batch_size, sequence_length, gamma, use_deeper_net) if steps % update_target == 0: update_target_model(online_net, target_net) steps += 1 trajectory.append( (episode_len + 1, int(torch.argmax(obs)), None) ) if epsilon > terminal_epsilon: epsilon -= decay_per_episode # wandb logging if debug_mode is False: wandb.log({ "return": reward, "episode_len": episode_len }) # console logging running_score = 0.95 * running_score + 0.05 * reward if running_score >= target_score: patience_used += 1 if patience_used >= patience: converged = True else: patience_used = 0 if e % log_interval == 0: print(f'Iteration {e} / {max_episodes} | Running score {round(running_score, 2)} | Epsilon {round(epsilon, 2)}') print(trajectory)
29.462185
129
0.645893
fddc481bae7c46b47a263326b7e3cdac41e70998
710
py
Python
env/Lib/site-packages/plotly/validators/scattermapbox/marker/colorbar/tickformatstop/_dtickrange.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/Lib/site-packages/plotly/validators/scattermapbox/marker/colorbar/tickformatstop/_dtickrange.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/Lib/site-packages/plotly/validators/scattermapbox/marker/colorbar/tickformatstop/_dtickrange.py
andresgreen-byte/Laboratorio-1--Inversion-de-Capital
8a4707301d19c3826c31026c4077930bcd6a8182
[ "MIT" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
import _plotly_utils.basevalidators class DtickrangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__( self, plotly_name="dtickrange", parent_name="scattermapbox.marker.colorbar.tickformatstop", **kwargs ): super(DtickrangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), items=kwargs.pop( "items", [ {"editType": "calc", "valType": "any"}, {"editType": "calc", "valType": "any"}, ], ), **kwargs )
29.583333
75
0.529577
5fa5642b9baa29634c4d96e766d13516614b24d8
8,161
py
Python
tools/utils_3d.py
sunnyln/birdnet2
d1a2b703475345d887c325c135013ed9f72d3a57
[ "Apache-2.0" ]
null
null
null
tools/utils_3d.py
sunnyln/birdnet2
d1a2b703475345d887c325c135013ed9f72d3a57
[ "Apache-2.0" ]
null
null
null
tools/utils_3d.py
sunnyln/birdnet2
d1a2b703475345d887c325c135013ed9f72d3a57
[ "Apache-2.0" ]
null
null
null
import numpy as np import cv2 import csv import pdb import math from tools.utils_calib import Calibration # color_dict = {'Car':[0.2, 0.2, 0.9], # 'Van':[0.4, 0.2, 0.4], # 'Truck':[0.6, 0.2, 0.6], # 'Pedestrian':[0.9, 0.2, 0.2], # 'Person_sitting':[0.6, 0.2, 0.4], # 'Cyclist':[0.2, 0.9, 0.2], # 'Tram':[0.2, 0.6, 0.2], # 'Misc':[0.2, 0.4, 0.2], # 'DontCare':[0.2, 0.2, 0.2]} color_dict = {'Car':[216, 216, 100], 'Pedestrian':[0, 210, 0], 'Cyclist':[0, 128, 255]} def dottedline(img,p0,p1,linepoints,width,color): xpts = np.linspace(p0[0],p1[0],linepoints) ypts = np.linspace(p0[1],p1[1],linepoints) for xp,yp in zip(xpts,ypts): cv2.circle(img,(int(xp),int(yp)),width,color,-1) return img def _draw_projection_obstacle_to_cam(obs, calib_file, bvres, only_front, draw, img=None, bv_img=None, is_kitti_gt=False, n=None, is_kitti_ann=False): ''' This script is used for fullfil two complementary task: * Obtain 2D bbox in camera view * Draw BV and camera predictions in 3D It totally depends on the parameter draw ''' calib_c = Calibration(calib_file) yaw = -obs.yaw + math.pi/2 if is_kitti_gt or is_kitti_ann: xyz = calib_c.project_rect_to_velo(np.array([[obs.location.x,obs.location.y,obs.location.z]])) x = xyz[0][0] y = xyz[0][1] z = xyz[0][2] + obs.height / 2 else: x = obs.location.x y = obs.location.y z = obs.location.z + obs.height / 2 l = obs.length h = obs.height w = obs.width centroid = np.array([x, y]) corners = np.array([ [x - l / 2., y + w / 2.], [x + l / 2., y + w / 2.], [x + l / 2., y - w / 2.], [x - l / 2., y - w / 2.] ]) # Compute rotation matrix c, s = np.cos(yaw), np.sin(yaw) R = np.array([[c, -s], [s, c]]) # Rotate all corners at once by yaw rot_corners = np.dot(corners - centroid, R.T) + centroid if draw: # Convert x to x in BV xs = bv_img.shape[1] / 2 - rot_corners[:, 1] / bvres ys = (bv_img.shape[0] if only_front else bv_img.shape[0]/2) - rot_corners[:, 0] / bvres xsc = bv_img.shape[1] / 2 - centroid[1] / bvres ysc = (bv_img.shape[0] if only_front else bv_img.shape[0]/2) - centroid[0] / bvres pt1 = np.array([xs[0], ys[0]]) pt2 = np.array([xs[1], ys[1]]) pt3 = np.array([xs[2], ys[2]]) pt4 = np.array([xs[3], ys[3]]) ctr = np.array([pt1, pt2, pt3, pt4]).reshape((-1, 1, 2)).astype(np.int32) for j in range(4): k = (j + 1) % 4 if is_kitti_gt: # print(ctr[j][0],ctr[k][0]) bv_img = dottedline(bv_img,ctr[j][0],ctr[k][0],5,2,(0,135,135)) else: cv2.line(bv_img,( int(ctr[j][0][0]), int(ctr[j][0][1])), ( int(ctr[k][0][0]), int(ctr[k][0][1])), color_dict[obs.kind_name],3) arrow_len = (l/bvres)/2.+10 xs1 = arrow_len*math.cos(obs.yaw) ys1 = arrow_len*math.sin(obs.yaw) bv_img = cv2.arrowedLine(bv_img, (int(xsc),int(ysc)), (int(xs1+xsc),int(ys1+ysc)), color_dict[obs.kind_name],3) x1 = rot_corners[0,0] x2 = rot_corners[1,0] x3 = rot_corners[2,0] x4 = rot_corners[3,0] y1 = rot_corners[0,1] y2 = rot_corners[1,1] y3 = rot_corners[2,1] y4 = rot_corners[3,1] # Project the 8 vertices of the prism vertices = [] vertices.append([x1, y1, z+h/2]) vertices.append([x2, y2, z+h/2]) vertices.append([x3, y3, z+h/2]) vertices.append([x4, y4, z+h/2]) vertices.append([x1, y1, z-h/2]) vertices.append([x2, y2, z-h/2]) vertices.append([x3, y3, z-h/2]) vertices.append([x4, y4, z-h/2]) image_pts = calib_c.project_velo_to_image(np.array(vertices)) #3D draw: front-backs-sides if draw: if is_kitti_gt: for j in np.arange(0,8,2): # print(image_pts[j][0],[image_pts[j][0],image_pts[j][1]],[image_pts[j+1][0],image_pts[j+1][1]]) img = dottedline(img,[image_pts[j][0],image_pts[j][1]],[image_pts[j+1][0],image_pts[j+1][1]],10,2,(0,255,255)) img = dottedline(img,[image_pts[0][0],image_pts[0][1]],[image_pts[4][0],image_pts[4][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[4][0],image_pts[4][1]],[image_pts[7][0],image_pts[7][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[7][0],image_pts[7][1]],[image_pts[3][0],image_pts[3][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[3][0],image_pts[3][1]],[image_pts[0][0],image_pts[0][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[1][0],image_pts[1][1]],[image_pts[5][0],image_pts[5][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[5][0],image_pts[5][1]],[image_pts[6][0],image_pts[6][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[6][0],image_pts[6][1]],[image_pts[2][0],image_pts[2][1]],7,2,(0,255,255)) img = dottedline(img,[image_pts[2][0],image_pts[2][1]],[image_pts[1][0],image_pts[1][1]],7,2,(0,255,255)) else: for j in range(0,3): #0,0-3,0 cv2.line(img,( int(np.ceil(image_pts[j][0])), int(np.ceil(image_pts[j][1]))), ( int(np.ceil(image_pts[j+1][0])), int(np.ceil(image_pts[j+1][1]))), color_dict[obs.kind_name],3) #4,0-7,0 cv2.line(img,( int(np.ceil(image_pts[j+4][0])), int(np.ceil(image_pts[j+4][1]))), ( int(np.ceil(image_pts[j+5][0])), int(np.ceil(image_pts[j+5][1]))), color_dict[obs.kind_name],3) cv2.line(img,( int(np.ceil(image_pts[0][0])), int(np.ceil(image_pts[0][1]))), ( int(np.ceil(image_pts[3][0])), int(np.ceil(image_pts[3][1]))), color_dict[obs.kind_name],3) cv2.line(img,( int(np.ceil(image_pts[4][0])), int(np.ceil(image_pts[4][1]))), ( int(np.ceil(image_pts[7][0])), int(np.ceil(image_pts[7][1]))), color_dict[obs.kind_name],3) for j in range(0,2): cv2.line(img,( int(np.ceil(image_pts[j*2][0])), int(np.ceil(image_pts[j*2][1]))), ( int(np.ceil(image_pts[j*2+4][0])), int(np.ceil(image_pts[j*2+4][1]))), color_dict[obs.kind_name],3) cv2.line(img,( int(np.ceil(image_pts[j*2+1][0])), int(np.ceil(image_pts[j*2+1][1]))), ( int(np.ceil(image_pts[j*2+5][0])), int(np.ceil(image_pts[j*2+5][1]))), color_dict[obs.kind_name],3) # Extreme object points in the image image_u1 = np.min(image_pts[:, 0]) # Limits for kitti dataset image_v1 = np.min(image_pts[:, 1]) image_u2 = np.max(image_pts[:, 0]) image_v2 = np.max(image_pts[:, 1]) if (image_u1 <= 0 and image_u2 <= 0) or \ (image_u1 >= 1242. - 1 and image_u2 >= 1242. - 1) or \ (image_v1 <= 0 and image_v2 <= 0) or \ (image_v1 >= 375. - 1 and image_v2 >= 375. - 1): return img, bv_img, None image_u1 = np.min((np.max((image_u1,0.)),1242.)) image_v1 = np.min((np.max((image_v1,0.)),375.)) image_u2 = np.min((np.max((image_u2,0.)),1242.)) image_v2 = np.min((np.max((image_v2,0.)),375.)) # if draw: # #2D draw: front-side # if is_kitti_gt: # cv2.rectangle(img, (int(image_u1), int(image_v1)), # (int(image_u2), int(image_v2)), # (255,255,255), 2) # else: # cv2.rectangle(img, (int(image_u1), int(image_v1)), # (int(image_u2), int(image_v2)), # (100,100,100), 4) return img, bv_img, [image_u1, image_v1, image_u2, image_v2]
42.952632
149
0.513908
f03a52935db0e45d557a3a1b737f409064966208
1,085
py
Python
cogs/info/prefix.py
FevenKitsune/Fox-Utilities
95bc63897a35977989378cf54d5aa8356b238ec8
[ "MIT" ]
3
2020-07-19T15:11:21.000Z
2021-07-01T13:40:48.000Z
cogs/info/prefix.py
FevenKitsune/Fox-Utilities
95bc63897a35977989378cf54d5aa8356b238ec8
[ "MIT" ]
23
2019-05-03T15:42:14.000Z
2021-05-16T03:19:59.000Z
cogs/info/prefix.py
FevenKitsune/Fox-Utilities
95bc63897a35977989378cf54d5aa8356b238ec8
[ "MIT" ]
1
2020-07-23T19:46:56.000Z
2020-07-23T19:46:56.000Z
from discord import Embed from discord.ext.commands import Cog, command from config.globals import message_color from utils.generators import generate_footer class Prefix(Cog): category = "info" def __init__(self, client): self.client = client @command( name="prefix", brief="Information about setting Fox Utilities prefix.", usage="", help="Returns information on how to use the Fox Utilities prefix tags to configure the prefix used in your " "guild." ) async def prefix(self, ctx): """Gives the user information on prefix tags. This allows per-guild prefix settings.""" em = Embed( title="Fox Utilities Prefix Tags", description="Create a server role with the syntax `fox_prefix:desired_prefix`. Assign this role to the " "Fox Utilities bot to give it a new prefix.", color=message_color) em.set_footer(text=generate_footer(ctx)) await ctx.send(embed=em) def setup(client): client.add_cog(Prefix(client))
31
116
0.652535
e670da0bc9798434e0da10a75c20e777a2367847
3,567
py
Python
pyarray/pyarray.py
AlanCristhian/pyarray
632407c71cdcb884347f43848fdb1b9deb40bdea
[ "MIT" ]
null
null
null
pyarray/pyarray.py
AlanCristhian/pyarray
632407c71cdcb884347f43848fdb1b9deb40bdea
[ "MIT" ]
null
null
null
pyarray/pyarray.py
AlanCristhian/pyarray
632407c71cdcb884347f43848fdb1b9deb40bdea
[ "MIT" ]
null
null
null
from array import array __all__ = ["Int8", "UInt8", "Int16", "UInt16", "Int32", "UInt32", "Int64", "UInt64", "Float32", "Float64", ] _TEMPLATE = """ class {name}Meta(type): def __call__(cls, *initializer): if len(initializer) == 1: if isinstance(initializer[0], (list, tuple)): initializer = initializer[0] {name}_array = array("{typecode}", initializer) class {name}Class: # Methods: append = {name}_array.append buffer_info = {name}_array.buffer_info byteswap = {name}_array.byteswap count = {name}_array.count extend = {name}_array.extend fromfile = {name}_array.fromfile fromlist = {name}_array.fromlist frombytes = {name}_array.frombytes index = {name}_array.index insert = {name}_array.insert pop = {name}_array.pop remove = {name}_array.remove reverse = {name}_array.reverse tofile = {name}_array.tofile tolist = {name}_array.tolist tobytes = {name}_array.tobytes # Attributes: typecode = {name}_array.typecode itemsize = {name}_array.itemsize # Methods defined here: __add__ = {name}_array.__add__ __contains__ = {name}_array.__contains__ __copy__ = {name}_array.__copy__ __deepcopy__ = {name}_array.__deepcopy__ __delitem__ = {name}_array.__delitem__ __eq__ = {name}_array.__eq__ __ge__ = {name}_array.__ge__ __getattribute__ = {name}_array.__getattribute__ __getitem__ = {name}_array.__getitem__ __gt__ = {name}_array.__gt__ __iadd__ = {name}_array.__iadd__ __imul__ = {name}_array.__imul__ __iter__ = {name}_array.__iter__ __le__ = {name}_array.__le__ __len__ = {name}_array.__len__ __lt__ = {name}_array.__lt__ __mul__ = {name}_array.__mul__ __ne__ = {name}_array.__ne__ __reduce_ex__ = {name}_array.__reduce_ex__ __rmul__ = {name}_array.__rmul__ __setitem__ = {name}_array.__setitem__ __sizeof__ = {name}_array.__sizeof__ def __repr__(self): return {name}_array.__repr__() \ .replace("array('{typecode}', ", "{name}(") cls.__parent = {name}Class cls.__typecode = {name}_array.__repr__().split("'")[1] return {name}Class() def __instancecheck__(self, other): return (self.__parent in type(other).__mro__) \ and (self.__typecode == '{typecode}') class {name}(metaclass={name}Meta): pass """ # I define this just to calmdown linters. Just ignore the next 10 lines Int8 = array UInt8 = array Int16 = array UInt16 = array Int32 = array UInt32 = array Int64 = array UInt64 = array Float32 = array Float64 = array # Here is the real definition exec(_TEMPLATE.format(name="Int8", typecode="b")) exec(_TEMPLATE.format(name="UInt8", typecode="B")) exec(_TEMPLATE.format(name="Int16", typecode="h")) exec(_TEMPLATE.format(name="UInt16", typecode="H")) exec(_TEMPLATE.format(name="Int32", typecode="l")) exec(_TEMPLATE.format(name="UInt32", typecode="L")) exec(_TEMPLATE.format(name="Int64", typecode="q")) exec(_TEMPLATE.format(name="UInt64", typecode="Q")) exec(_TEMPLATE.format(name="Float32", typecode="f")) exec(_TEMPLATE.format(name="Float64", typecode="d"))
33.336449
74
0.599383
9117ca6e2b0d75549d2a60d5508ffa79a7b724d2
329
py
Python
invenio_formatter/context_processors/__init__.py
torchingloom/invenio-formatter
e9b8b35ef53734c0500b5528ae3e9eb8ab0f2ccf
[ "MIT" ]
1
2015-08-19T12:49:20.000Z
2015-08-19T12:49:20.000Z
invenio_formatter/context_processors/__init__.py
torchingloom/invenio-formatter
e9b8b35ef53734c0500b5528ae3e9eb8ab0f2ccf
[ "MIT" ]
39
2015-08-12T11:25:27.000Z
2021-04-30T14:45:13.000Z
invenio_formatter/context_processors/__init__.py
torchingloom/invenio-formatter
e9b8b35ef53734c0500b5528ae3e9eb8ab0f2ccf
[ "MIT" ]
32
2015-08-12T07:44:07.000Z
2021-11-25T09:13:10.000Z
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2016-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Context processors for Invenio.""" from __future__ import absolute_import, print_function
27.416667
72
0.732523
cf7551891fac09044c2a380e85116a24a445f9b0
445
py
Python
fossil/auth/models.py
Remember-Fossil/Fossil-Server
45b9002a8431fa9377ee3eba23ab01aeb564559a
[ "MIT" ]
null
null
null
fossil/auth/models.py
Remember-Fossil/Fossil-Server
45b9002a8431fa9377ee3eba23ab01aeb564559a
[ "MIT" ]
null
null
null
fossil/auth/models.py
Remember-Fossil/Fossil-Server
45b9002a8431fa9377ee3eba23ab01aeb564559a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from google.appengine.ext import db class User(db.Model): facebook_id = db.StringProperty() name = db.StringProperty() profile_image = db.StringProperty() created_at = db.DateTimeProperty(auto_now_add=True) class FacebookSession(db.Model): user = db.ReferenceProperty(User) token = db.StringProperty() expires = db.IntegerProperty() created_at = db.DateTimeProperty(auto_now_add=True)
26.176471
55
0.716854
ac4a1ebab001735fdd08a4a7600654fd465fe6bd
737
py
Python
setup.py
Cracky5457/ebrains-drive
d5c08d44c423c38e91e246859ab34e2eeca109b1
[ "Apache-2.0" ]
null
null
null
setup.py
Cracky5457/ebrains-drive
d5c08d44c423c38e91e246859ab34e2eeca109b1
[ "Apache-2.0" ]
null
null
null
setup.py
Cracky5457/ebrains-drive
d5c08d44c423c38e91e246859ab34e2eeca109b1
[ "Apache-2.0" ]
null
null
null
from setuptools import setup, find_packages from version_query import predict_version_str __version__ = predict_version_str() setup(name='ebrains-drive', version=__version__, license='Apache-2.0 License', description='Python client interface for EBrains Collaboratory Seafile storage', author='Ebrains, CNRS', author_email='support@ebrains.eu', url='http://seafile.com', platforms=['Any'], packages=find_packages(), install_requires=['requests'], classifiers=['Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python'], )
33.5
86
0.641791