hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
0671b27e8da87d02a9a00645b2c4b05892cec1db
1,266
py
Python
example/start_job.py
MUAS-DTLab-SoSe20-EnBeeMo/EnBeeMo_I
82240e022d4f9968adfd1e455f7f65db74d81d3b
[ "MIT" ]
null
null
null
example/start_job.py
MUAS-DTLab-SoSe20-EnBeeMo/EnBeeMo_I
82240e022d4f9968adfd1e455f7f65db74d81d3b
[ "MIT" ]
null
null
null
example/start_job.py
MUAS-DTLab-SoSe20-EnBeeMo/EnBeeMo_I
82240e022d4f9968adfd1e455f7f65db74d81d3b
[ "MIT" ]
null
null
null
# This script is an example how to start a batch of computing jobs with the PCR system. # Requires a properly set up AWS CLI or other source of credentials. # # Usage: # - copy this script to your machine (optional) # - install the PCR python package (see readme.md) # - prepare and push your example docker image # - replace the placeholders in the parameters below with your endpoints # - read and comprehend the script # - run the script # - wait until finished # - check results import json from PCR.JobSubmitter import JobSubmitter # infrastructure parameters containerImage = '<your manually pushed docker image>' job_queue = '<the aws batch queue - SEE CLOUDFORMATION STACK OUTPUT>' job_bucket = '<the job bucket name - SEE CLOUDFORMATION STACK OUTPUT>' batch_name = 'example' # Initialize job submitter job_submitter = JobSubmitter( batch_name=batch_name, container=containerImage, job_queue=job_queue, job_bucket=job_bucket, ) job_id = job_submitter.submit_job(input_data={ 'x': 2, 'y': 3 }) job_submitter.wait_until_jobs_finished() json_outputs = job_submitter.get_all_outputs() outputs = [] for json_output in json_outputs: output = json.loads(json_output) outputs.append(output) print(outputs)
25.836735
87
0.741706
18427aba2ec30094b23066e7961beb84f69ee439
1,701
py
Python
pyti/ichimoku_cloud.py
dibyajyotidash/https-github.com-kylejusticemagnuson-pyti
08532970f9d2b163f1223599e3ac80f6c51533e4
[ "MIT" ]
635
2017-04-04T20:24:47.000Z
2022-03-28T16:00:23.000Z
pyti/ichimoku_cloud.py
dibyajyotidash/https-github.com-kylejusticemagnuson-pyti
08532970f9d2b163f1223599e3ac80f6c51533e4
[ "MIT" ]
24
2017-10-22T15:01:54.000Z
2021-01-30T19:51:00.000Z
pyti/ichimoku_cloud.py
dibyajyotidash/https-github.com-kylejusticemagnuson-pyti
08532970f9d2b163f1223599e3ac80f6c51533e4
[ "MIT" ]
183
2017-07-01T16:06:39.000Z
2022-03-07T23:29:11.000Z
from __future__ import absolute_import import numpy as np from pyti import catch_errors from pyti.function_helper import fill_for_noncomputable_vals from six.moves import range def conversion_base_line_helper(data, period): """ The only real difference between TenkanSen and KijunSen is the period value """ catch_errors.check_for_period_error(data, period) cblh = [(np.max(data[idx+1-period:idx+1]) + np.min(data[idx+1-period:idx+1])) / 2 for idx in range(period-1, len(data))] cblh = fill_for_noncomputable_vals(data, cblh) return cblh def tenkansen(data, period=9): """ TenkanSen (Conversion Line) Formula: (H + L) / 2 :: default period=9 """ ts = conversion_base_line_helper(data, period) return ts def kijunsen(data, period=26): """ KijunSen (Base Line) Formula: (H + L) / 2 :: default period=26 """ ks = conversion_base_line_helper(data, period) return ks def chiku_span(data): """ Chiku Span (Lagging Span) Formula: Close shifted back 26 bars """ cs = data[25::] return cs def senkou_a(data): """ Senkou A (Leading Span A) Formula: (TenkanSen + KijunSen) / 2 :: Shift Forward 26 bars """ sa = (tenkansen(data) + kijunsen(data)) / 2 # shift forward shift_by = np.repeat(np.nan, 26) sa = np.append(shift_by, sa) return sa def senkou_b(data, period=52): """ Senkou B (Leading Span B) Formula: (H + L) / 2 :: default period=52 :: shifted forward 26 bars """ sb = conversion_base_line_helper(data, period) shift_by = np.repeat(np.nan, 26) sb = np.append(shift_by, sb) return sb
21.807692
88
0.63786
5c5c4380f1679f7ad9fa9b96e9ea15042f3033bb
10,416
py
Python
detectron2/export/api.py
MargeryLab/BMaskR-CNN
41f63d301d6be7fa30ba281a5a0f727fbca6ad2a
[ "Apache-2.0" ]
null
null
null
detectron2/export/api.py
MargeryLab/BMaskR-CNN
41f63d301d6be7fa30ba281a5a0f727fbca6ad2a
[ "Apache-2.0" ]
null
null
null
detectron2/export/api.py
MargeryLab/BMaskR-CNN
41f63d301d6be7fa30ba281a5a0f727fbca6ad2a
[ "Apache-2.0" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import copy import logging import os import torch from caffe2.proto import caffe2_pb2 from torch import nn from detectron2.config import CfgNode as CN from .caffe2_export import export_caffe2_detection_model from .caffe2_export import export_onnx_model as export_onnx_model_impl from .caffe2_export import run_and_save_graph from .caffe2_inference import ProtobufDetectionModel from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph __all__ = [ "add_export_config", "export_caffe2_model", "Caffe2Model", "export_onnx_model", "Caffe2Tracer", ] def add_export_config(cfg): """ Args: cfg (CfgNode): a detectron2 config Returns: CfgNode: an updated config with new options that will be used by :class:`Caffe2Tracer`. """ is_frozen = cfg.is_frozen() cfg.defrost() cfg.EXPORT_CAFFE2 = CN() cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT = False if is_frozen: cfg.freeze() return cfg class Caffe2Tracer: """ Make a detectron2 model traceable with caffe2 style. An original detectron2 model may not be traceable, or cannot be deployed directly after being traced, due to some reasons: 1. control flow in some ops 2. custom ops 3. complicated pre/post processing This class provides a traceable version of a detectron2 model by: 1. Rewrite parts of the model using ops in caffe2. Note that some ops do not have GPU implementation. 2. Define the inputs "after pre-processing" as inputs to the model 3. Remove post-processing and produce raw layer outputs More specifically about inputs: all builtin models take two input tensors. 1. NCHW float "data" which is an image (usually in [0, 255]) 2. Nx3 float "im_info", each row of which is (height, width, 1.0) After making a traceable model, the class provide methods to export such a model to different deployment formats. The class currently only supports models using builtin meta architectures. """ def __init__(self, cfg, model, inputs): """ Args: cfg (CfgNode): a detectron2 config, with extra export-related options added by :func:`add_export_config`. model (nn.Module): a model built by :func:`detectron2.modeling.build_model`. Weights have to be already loaded to this model. inputs: sample inputs that the given model takes for inference. Will be used to trace the model. Random input with no detected objects will not work if the model has data-dependent control flow (e.g., R-CNN). """ assert isinstance(cfg, CN), cfg assert isinstance(model, torch.nn.Module), type(model) if "EXPORT_CAFFE2" not in cfg: cfg = add_export_config(cfg) # will just the defaults self.cfg = cfg self.model = model self.inputs = inputs def _get_traceable(self): # TODO how to make it extensible to support custom models C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[self.cfg.MODEL.META_ARCHITECTURE] traceable_model = C2MetaArch(self.cfg, copy.deepcopy(self.model)) traceable_inputs = traceable_model.get_caffe2_inputs(self.inputs) return traceable_model, traceable_inputs def export_caffe2(self): """ Export the model to Caffe2's protobuf format. The returned object can be saved with ``.save_protobuf()`` method. The result can be loaded and executed using Caffe2 runtime. Returns: Caffe2Model """ model, inputs = self._get_traceable() predict_net, init_net = export_caffe2_detection_model(model, inputs) return Caffe2Model(predict_net, init_net) def export_onnx(self): """ Export the model to ONNX format. Note that the exported model contains custom ops only available in caffe2, therefore it cannot be directly executed by other runtime. Post-processing or transformation passes may be applied on the model to accommodate different runtimes. Returns: onnx.ModelProto: an onnx model. """ model, inputs = self._get_traceable() return export_onnx_model_impl(model, (inputs,)) def export_torchscript(self): """ Export the model to a ``torch.jit.TracedModule`` by tracing. The returned object can be saved to a file by ``.save()``. Returns: torch.jit.TracedModule: a torch TracedModule """ model, inputs = self._get_traceable() logger = logging.getLogger(__name__) logger.info("Tracing the model with torch.jit.trace ...") with torch.no_grad(): return torch.jit.trace(model, (inputs,), optimize=True) def export_caffe2_model(cfg, model, inputs): """ Export a detectron2 model to caffe2 format. Args: cfg (CfgNode): a detectron2 config, with extra export-related options added by :func:`add_export_config`. model (nn.Module): a model built by :func:`detectron2.modeling.build_model`. It will be modified by this function. inputs: sample inputs that the given model takes for inference. Will be used to trace the model. Returns: Caffe2Model """ return Caffe2Tracer(cfg, model, inputs).export_caffe2() def export_onnx_model(cfg, model, inputs): """ Export a detectron2 model to ONNX format. Note that the exported model contains custom ops only available in caffe2, therefore it cannot be directly executed by other runtime. Post-processing or transformation passes may be applied on the model to accommodate different runtimes. Args: cfg (CfgNode): a detectron2 config, with extra export-related options added by :func:`add_export_config`. model (nn.Module): a model built by :func:`detectron2.modeling.build_model`. It will be modified by this function. inputs: sample inputs that the given model takes for inference. Will be used to trace the model. Returns: onnx.ModelProto: an onnx model. """ return Caffe2Tracer(cfg, model, inputs).export_onnx() class Caffe2Model(nn.Module): """ A wrapper around the traced model in caffe2's pb format. """ def __init__(self, predict_net, init_net): super().__init__() self.eval() # always in eval mode self._predict_net = predict_net self._init_net = init_net self._predictor = None @property def predict_net(self): """ Returns: core.Net: the underlying caffe2 predict net """ return self._predict_net @property def init_net(self): """ Returns: core.Net: the underlying caffe2 init net """ return self._init_net __init__.__HIDE_SPHINX_DOC__ = True def save_protobuf(self, output_dir): """ Save the model as caffe2's protobuf format. Args: output_dir (str): the output directory to save protobuf files. """ logger = logging.getLogger(__name__) logger.info("Saving model to {} ...".format(output_dir)) os.makedirs(output_dir, exist_ok=True) with open(os.path.join(output_dir, "model.pb"), "wb") as f: f.write(self._predict_net.SerializeToString()) with open(os.path.join(output_dir, "model.pbtxt"), "w") as f: f.write(str(self._predict_net)) with open(os.path.join(output_dir, "model_init.pb"), "wb") as f: f.write(self._init_net.SerializeToString()) def save_graph(self, output_file, inputs=None): """ Save the graph as SVG format. Args: output_file (str): a SVG file inputs: optional inputs given to the model. If given, the inputs will be used to run the graph to record shape of every tensor. The shape information will be saved together with the graph. """ if inputs is None: save_graph(self._predict_net, output_file, op_only=False) else: size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0) device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii") inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device) inputs = [x.cpu().numpy() for x in inputs] run_and_save_graph(self._predict_net, self._init_net, inputs, output_file) @staticmethod def load_protobuf(dir): """ Args: dir (str): a directory used to save Caffe2Model with :meth:`save_protobuf`. The files "model.pb" and "model_init.pb" are needed. Returns: Caffe2Model: the caffe2 model loaded from this directory. """ predict_net = caffe2_pb2.NetDef() with open(os.path.join(dir, "model.pb"), "rb") as f: predict_net.ParseFromString(f.read()) init_net = caffe2_pb2.NetDef() with open(os.path.join(dir, "model_init.pb"), "rb") as f: init_net.ParseFromString(f.read()) return Caffe2Model(predict_net, init_net) def __call__(self, inputs): """ An interface that wraps around a caffe2 model and mimics detectron2's models' input & output format. This is used to compare the outputs of caffe2 model with its original torch model. Due to the extra conversion between torch/caffe2, this method is not meant for benchmark. """ if self._predictor is None: self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net) return self._predictor(inputs)
36.676056
99
0.634697
466e32946f419b8db1c9881776a13054a29dca37
74
py
Python
src/functions/array/__init__.py
pfnet-research/label-efficient-brain-tumor-segmentation
aad80ed7acb510a3147bb11c3910d2e17fb355d1
[ "MIT" ]
21
2020-09-23T11:05:14.000Z
2021-12-09T13:32:59.000Z
src/functions/array/__init__.py
shiontao/label-efficient-brain-tumor-segmentation
aad80ed7acb510a3147bb11c3910d2e17fb355d1
[ "MIT" ]
null
null
null
src/functions/array/__init__.py
shiontao/label-efficient-brain-tumor-segmentation
aad80ed7acb510a3147bb11c3910d2e17fb355d1
[ "MIT" ]
5
2020-10-29T05:57:15.000Z
2021-07-16T11:30:02.000Z
from src.functions.array.resize_images_3d import resize_images_3d # NOQA
37
73
0.851351
73be96430087f0e7e27fd24c23625484bf559e01
1,277
py
Python
main.py
apotl/ayydio
ba1aa0b95d6118e763c6c383181e07f9e0575c63
[ "BSD-2-Clause" ]
null
null
null
main.py
apotl/ayydio
ba1aa0b95d6118e763c6c383181e07f9e0575c63
[ "BSD-2-Clause" ]
null
null
null
main.py
apotl/ayydio
ba1aa0b95d6118e763c6c383181e07f9e0575c63
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python3 from mpd import MPDClient from lib.Song import Song print('ayydioctrl micro') c = MPDClient() c.timeout = 10 c.idletimeout = None c.connect("localhost",6600) c.update() def lsdb(): #for each file/dir for f in c.lsinfo(): try: print('\033[31m'+ f['directory']) for ff in c.lsinfo(f['directory']): try: print('\033[32m' + ff['file']) except KeyError: pass except KeyError: print('\033[32m' + f['file']) print('\033[30m') def makeChoice(): print('\033[34m') print('(1) list all available files in db') print('(2) queue a song(s)') print('(3) play') print('(4) next song') print('(5) show current playlist') print('(6) search') print('(q) quit') choice = input('option: ') return choice def queueUri(uri): try: c.add(uri) except: pass def searchdb(query): print() for result in c.search('file',str(query)): print(result['file']) while True: x = makeChoice() if x == '1': lsdb() elif x == '2': queueUri(input('Enter uri: ')) elif x == '3': c.play( 0) elif x == '4': c.next() elif x == '5': print('Current playlist:') for song in c.playlist(): print (song) elif x == '6': query = input('Search string: ') searchdb(query) elif x == 'q': break c.close() c.disconnect()
18.242857
44
0.605325
79a60fcb1dde792cb8826ede191818b2a8c19dcd
2,976
py
Python
lambda-python-git-secrets/demo4.py
mbacchi/secret-leak-prevention-demo
770dec9235b5dfbfb18465743aa6e1687c707eb0
[ "BSD-2-Clause" ]
3
2018-03-05T21:02:26.000Z
2022-03-25T18:08:01.000Z
lambda-python-git-secrets/demo4.py
mbacchi/secret-leak-prevention-demo
770dec9235b5dfbfb18465743aa6e1687c707eb0
[ "BSD-2-Clause" ]
null
null
null
lambda-python-git-secrets/demo4.py
mbacchi/secret-leak-prevention-demo
770dec9235b5dfbfb18465743aa6e1687c707eb0
[ "BSD-2-Clause" ]
1
2018-03-05T23:05:51.000Z
2018-03-05T23:05:51.000Z
import os import random import re import shutil from dulwich import porcelain from gitsecrets import GitSecrets from string import ascii_uppercase, ascii_lowercase, digits from tempfile import mkdtemp # For this demo we use Dulwich instead of Git to clone a repository from GitHub. # # This is because in an AWS Lambda function we don't want to rely on arbitrary # binaries such as Git being installed, we would rather use pure Python tools, # such as Dulwich. # # Dulwich is available via pip, or at https://github.com/jelmer/dulwich # # We also use python-git-secrets which is available via pip, or at # https://github.com/mbacchi/python-git-secrets.git # class Devnull(object): """ This mimics a stream to write to for dulwich porcelain status output. Since we don't want to see the status this is a hack to suppress anything printing on stdout. Borrowed from: https://stackoverflow.com/questions/2929899/cross-platform-dev-null-in-python """ def write(self, *_): pass def newfile(path, content): with open(path, "w") as f: f.write(content + '\n') def python_git_secrets(event, context): # Set the GitHub repository to clone and the directory to clone into for # demonstration purposes repo = 'https://github.com/mbacchi/python-git-secrets.git' target = mkdtemp() # If the target path exists remove it so we don't error out when cloning # later if os.path.exists(target): print("Removing directory \'{}\'...".format(target)) shutil.rmtree(target) print("Cloning repository \'{}\' into \'{}\'...\n".format(repo, target)) # Perform the clone operation nullstream = open(os.devnull, "w") newrepo = porcelain.clone(repo, target, errstream=Devnull()) # Create a random uppercase string that looks like an AWS ACCES_KEY_ID value print("Creating file in directory \'{}\' with content that looks like an AWS ACCESS_KEY_ID\n".format(target)) patterns = [''.join("A3T" + random.choice(ascii_uppercase)), 'AKIA', 'AGPA', 'AIDA', 'AROA', 'AIPA', 'ANPA', 'ANVA', 'ASIA'] prefix = random.choice(patterns) generated = ''.join(random.choice(ascii_uppercase) for _ in range(16)) key = prefix + generated newfile(target + '/aws-credentials', "aws_access_key_id=" + key) # Show the users the string we placed in the file above print("Contents of file: \'{}\':".format(target + '/aws-credentials')) with open(target + '/aws-credentials', "r") as f: blah = f.read().rstrip() print("\'{}\'\n".format(blah)) # Instantiate the GitSecrets class gs = GitSecrets() # Scan the repository which should find a string because we created a file # with a sample AWS_ACCESS_KEY above print("Now scanning directory \'{}\' for secrets".format(target)) if gs.scan_recursively(target): print("Found verboten string in path \'{}\'".format(target)) # Remove temp dir shutil.rmtree(target)
35.855422
113
0.686828
951acd0b50a0fc594bef08fb82e7d05f1c53e480
31,473
py
Python
shapely/geometry/base.py
IncoCura/Shapely
5d18af283e485a427d121e05fbf8e9968db4a569
[ "BSD-3-Clause" ]
null
null
null
shapely/geometry/base.py
IncoCura/Shapely
5d18af283e485a427d121e05fbf8e9968db4a569
[ "BSD-3-Clause" ]
null
null
null
shapely/geometry/base.py
IncoCura/Shapely
5d18af283e485a427d121e05fbf8e9968db4a569
[ "BSD-3-Clause" ]
1
2019-12-27T16:56:38.000Z
2019-12-27T16:56:38.000Z
"""Base geometry class and utilities Note: a third, z, coordinate value may be used when constructing geometry objects, but has no effect on geometric analysis. All operations are performed in the x-y plane. Thus, geometries with different z values may intersect or be equal. """ from binascii import a2b_hex from ctypes import pointer, c_size_t, c_char_p, c_void_p from itertools import islice import math import sys from warnings import warn from functools import wraps from shapely.affinity import affine_transform from shapely.coords import CoordinateSequence from shapely.errors import WKBReadingError, WKTReadingError from shapely.geos import WKBWriter, WKTWriter from shapely.geos import lgeos from shapely.impl import DefaultImplementation, delegated if sys.version_info[0] < 3: range = xrange integer_types = (int, long) else: integer_types = (int,) try: import numpy as np integer_types = integer_types + (np.integer,) except ImportError: pass GEOMETRY_TYPES = [ 'Point', 'LineString', 'LinearRing', 'Polygon', 'MultiPoint', 'MultiLineString', 'MultiPolygon', 'GeometryCollection', ] def dump_coords(geom): """Dump coordinates of a geometry in the same order as data packing""" if not isinstance(geom, BaseGeometry): raise ValueError('Must be instance of a geometry class; found ' + geom.__class__.__name__) elif geom.type in ('Point', 'LineString', 'LinearRing'): return geom.coords[:] elif geom.type == 'Polygon': return geom.exterior.coords[:] + [i.coords[:] for i in geom.interiors] elif geom.type.startswith('Multi') or geom.type == 'GeometryCollection': # Recursive call return [dump_coords(part) for part in geom] else: raise ValueError('Unhandled geometry type: ' + repr(geom.type)) def geometry_type_name(g): if g is None: raise ValueError("Null geometry has no type") return GEOMETRY_TYPES[lgeos.GEOSGeomTypeId(g)] def geom_factory(g, parent=None): # Abstract geometry factory for use with topological methods below if not g: raise ValueError("No Shapely geometry can be created from null value") ob = BaseGeometry() geom_type = geometry_type_name(g) # TODO: check cost of dynamic import by profiling mod = __import__( 'shapely.geometry', globals(), locals(), [geom_type], ) ob.__class__ = getattr(mod, geom_type) ob._geom = g ob.__p__ = parent if lgeos.methods['has_z'](g): ob._ndim = 3 else: ob._ndim = 2 ob._is_empty = False return ob def geom_from_wkt(data): warn("`geom_from_wkt` is deprecated. Use `geos.wkt_reader.read(data)`.", DeprecationWarning) if sys.version_info[0] >= 3: data = data.encode('ascii') geom = lgeos.GEOSGeomFromWKT(c_char_p(data)) if not geom: raise WKTReadingError( "Could not create geometry because of errors while reading input.") return geom_factory(geom) def geom_to_wkt(ob): warn("`geom_to_wkt` is deprecated. Use `geos.wkt_writer.write(ob)`.", DeprecationWarning) if ob is None or ob._geom is None: raise ValueError("Null geometry supports no operations") return lgeos.GEOSGeomToWKT(ob._geom) def deserialize_wkb(data): geom = lgeos.GEOSGeomFromWKB_buf(c_char_p(data), c_size_t(len(data))) if not geom: raise WKBReadingError( "Could not create geometry because of errors while reading input.") return geom def geom_from_wkb(data): warn("`geom_from_wkb` is deprecated. Use `geos.wkb_reader.read(data)`.", DeprecationWarning) return geom_factory(deserialize_wkb(data)) def geom_to_wkb(ob): warn("`geom_to_wkb` is deprecated. Use `geos.wkb_writer.write(ob)`.", DeprecationWarning) if ob is None or ob._geom is None: raise ValueError("Null geometry supports no operations") size = c_size_t() return lgeos.GEOSGeomToWKB_buf(c_void_p(ob._geom), pointer(size)) def geos_geom_from_py(ob, create_func=None): """Helper function for geos_*_from_py functions in each geom type. If a create_func is specified the coodinate sequence is cloned and a new geometry is created with it, otherwise the geometry is cloned directly. This behaviour is useful for converting between LineString and LinearRing objects. """ if create_func is None: geom = lgeos.GEOSGeom_clone(ob._geom) else: cs = lgeos.GEOSGeom_getCoordSeq(ob._geom) cs = lgeos.GEOSCoordSeq_clone(cs) geom = create_func(cs) N = ob._ndim return geom, N def exceptNull(func): """Decorator which helps avoid GEOS operations on null pointers.""" @wraps(func) def wrapper(*args, **kwargs): if not args[0]._geom or args[0].is_empty: raise ValueError("Null/empty geometry supports no operations") return func(*args, **kwargs) return wrapper class CAP_STYLE(object): round = 1 flat = 2 square = 3 class JOIN_STYLE(object): round = 1 mitre = 2 bevel = 3 EMPTY = deserialize_wkb(a2b_hex(b'010700000000000000')) class BaseGeometry(object): """ Provides GEOS spatial predicates and topological operations. """ # Attributes # ---------- # __geom__ : c_void_p # Cached ctypes pointer to GEOS geometry. Not to be accessed. # _geom : c_void_p # Property by which the GEOS geometry is accessed. # __p__ : object # Parent (Shapely) geometry # _ctypes_data : object # Cached ctypes data buffer # _ndim : int # Number of dimensions (2 or 3, generally) # _crs : object # Coordinate reference system. Available for Shapely extensions, but # not implemented here. # _other_owned : bool # True if this object's GEOS geometry is owned by another as in the # case of a multipart geometry member. __geom__ = EMPTY __p__ = None _ctypes_data = None _ndim = None _crs = None _other_owned = False _is_empty = True # Backend config impl = DefaultImplementation # a reference to the so/dll proxy to preserve access during clean up _lgeos = lgeos def empty(self, val=EMPTY): # TODO: defer cleanup to the implementation. We shouldn't be # explicitly calling a lgeos method here. if not self._is_empty and not self._other_owned and self.__geom__: try: self._lgeos.GEOSGeom_destroy(self.__geom__) except (AttributeError, TypeError): pass # _lgeos might be empty on shutdown self._is_empty = True self.__geom__ = val def __del__(self): self.empty(val=None) self.__p__ = None def __str__(self): return self.wkt # To support pickling def __reduce__(self): return (self.__class__, (), self.wkb) def __setstate__(self, state): self.empty() self.__geom__ = deserialize_wkb(state) self._is_empty = False if lgeos.methods['has_z'](self.__geom__): self._ndim = 3 else: self._ndim = 2 @property def _geom(self): return self.__geom__ @_geom.setter def _geom(self, val): self.empty() self._is_empty = val in [EMPTY, None] self.__geom__ = val # Operators # --------- def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __sub__(self, other): return self.difference(other) def __xor__(self, other): return self.symmetric_difference(other) def __eq__(self, other): return ( type(other) == type(self) and tuple(self.coords) == tuple(other.coords) ) def __ne__(self, other): return not self.__eq__(other) __hash__ = None # Array and ctypes interfaces # --------------------------- @property def ctypes(self): """Return ctypes buffer""" raise NotImplementedError @property def array_interface_base(self): if sys.byteorder == 'little': typestr = '<f8' elif sys.byteorder == 'big': typestr = '>f8' else: raise ValueError( "Unsupported byteorder: neither little nor big-endian") return { 'version': 3, 'typestr': typestr, 'data': self.ctypes, } @property def __array_interface__(self): """Provide the Numpy array protocol.""" raise NotImplementedError # Coordinate access # ----------------- def _get_coords(self): """Access to geometry's coordinates (CoordinateSequence)""" if self.is_empty: return [] return CoordinateSequence(self) def _set_coords(self, ob): raise NotImplementedError( "set_coords must be provided by derived classes") coords = property(_get_coords, _set_coords) @property def xy(self): """Separate arrays of X and Y coordinate values""" raise NotImplementedError # Python feature protocol @property def __geo_interface__(self): """Dictionary representation of the geometry""" raise NotImplementedError # Type of geometry and its representations # ---------------------------------------- def geometryType(self): return geometry_type_name(self._geom) @property def type(self): return self.geometryType() def to_wkb(self): warn("`to_wkb` is deprecated. Use the `wkb` property.", DeprecationWarning) return geom_to_wkb(self) def to_wkt(self): warn("`to_wkt` is deprecated. Use the `wkt` property.", DeprecationWarning) return geom_to_wkt(self) @property def wkt(self): """WKT representation of the geometry""" return WKTWriter(lgeos).write(self) @property def wkb(self): """WKB representation of the geometry""" return WKBWriter(lgeos).write(self) @property def wkb_hex(self): """WKB hex representation of the geometry""" return WKBWriter(lgeos).write_hex(self) def svg(self, scale_factor=1., **kwargs): """Raises NotImplementedError""" raise NotImplementedError def _repr_svg_(self): """SVG representation for iPython notebook""" svg_top = '<svg xmlns="http://www.w3.org/2000/svg" ' \ 'xmlns:xlink="http://www.w3.org/1999/xlink" ' if self.is_empty: return svg_top + '/>' else: # Establish SVG canvas that will fit all the data + small space xmin, ymin, xmax, ymax = self.bounds if xmin == xmax and ymin == ymax: # This is a point; buffer using an arbitrary size xmin, ymin, xmax, ymax = self.buffer(1).bounds else: # Expand bounds by a fraction of the data ranges expand = 0.04 # or 4%, same as R plots widest_part = max([xmax - xmin, ymax - ymin]) expand_amount = widest_part * expand xmin -= expand_amount ymin -= expand_amount xmax += expand_amount ymax += expand_amount dx = xmax - xmin dy = ymax - ymin width = min([max([100., dx]), 300]) height = min([max([100., dy]), 300]) try: scale_factor = max([dx, dy]) / max([width, height]) except ZeroDivisionError: scale_factor = 1. view_box = "{} {} {} {}".format(xmin, ymin, dx, dy) transform = "matrix(1,0,0,-1,0,{})".format(ymax + ymin) return svg_top + ( 'width="{1}" height="{2}" viewBox="{0}" ' 'preserveAspectRatio="xMinYMin meet">' '<g transform="{3}">{4}</g></svg>' ).format(view_box, width, height, transform, self.svg(scale_factor)) @property def geom_type(self): """Name of the geometry's type, such as 'Point'""" return self.geometryType() # Real-valued properties and methods # ---------------------------------- @property def area(self): """Unitless area of the geometry (float)""" return self.impl['area'](self) def distance(self, other): """Unitless distance to other geometry (float)""" return self.impl['distance'](self, other) def hausdorff_distance(self, other): """Unitless hausdorff distance to other geometry (float)""" return self.impl['hausdorff_distance'](self, other) @property def length(self): """Unitless length of the geometry (float)""" return self.impl['length'](self) # Topological properties # ---------------------- @property def boundary(self): """Returns a lower dimension geometry that bounds the object The boundary of a polygon is a line, the boundary of a line is a collection of points. The boundary of a point is an empty (null) collection. """ return geom_factory(self.impl['boundary'](self)) @property def bounds(self): """Returns minimum bounding region (minx, miny, maxx, maxy)""" if self.is_empty: return () else: return self.impl['bounds'](self) @property def centroid(self): """Returns the geometric center of the object""" return geom_factory(self.impl['centroid'](self)) @delegated def representative_point(self): """Returns a point guaranteed to be within the object, cheaply.""" return geom_factory(self.impl['representative_point'](self)) @property def convex_hull(self): """Imagine an elastic band stretched around the geometry: that's a convex hull, more or less The convex hull of a three member multipoint, for example, is a triangular polygon. """ return geom_factory(self.impl['convex_hull'](self)) @property def envelope(self): """A figure that envelopes the geometry""" return geom_factory(self.impl['envelope'](self)) @property def minimum_rotated_rectangle(self): """Returns the general minimum bounding rectangle of the geometry. Can possibly be rotated. If the convex hull of the object is a degenerate (line or point) this same degenerate is returned. """ # first compute the convex hull hull = self.convex_hull try: coords = hull.exterior.coords except AttributeError: # may be a Point or a LineString return hull # generate the edge vectors between the convex hull's coords edges = ((pt2[0] - pt1[0], pt2[1] - pt1[1]) for pt1, pt2 in zip( coords, islice(coords, 1, None))) def _transformed_rects(): for dx, dy in edges: # compute the normalized direction vector of the edge # vector. length = math.sqrt(dx ** 2 + dy ** 2) ux, uy = dx / length, dy / length # compute the normalized perpendicular vector vx, vy = -uy, ux # transform hull from the original coordinate system to # the coordinate system defined by the edge and compute # the axes-parallel bounding rectangle. transf_rect = affine_transform( hull, (ux, uy, vx, vy, 0, 0)).envelope # yield the transformed rectangle and a matrix to # transform it back to the original coordinate system. yield (transf_rect, (ux, vx, uy, vy, 0, 0)) # check for the minimum area rectangle and return it transf_rect, inv_matrix = min( _transformed_rects(), key=lambda r: r[0].area) return affine_transform(transf_rect, inv_matrix) def buffer(self, distance, resolution=16, quadsegs=None, cap_style=CAP_STYLE.round, join_style=JOIN_STYLE.round, mitre_limit=5.0): """Returns a geometry with an envelope at a distance from the object's envelope A negative distance has a "shrink" effect. A zero distance may be used to "tidy" a polygon. The resolution of the buffer around each vertex of the object increases by increasing the resolution keyword parameter or second positional parameter. Note: the use of a `quadsegs` parameter is deprecated and will be gone from the next major release. The styles of caps are: CAP_STYLE.round (1), CAP_STYLE.flat (2), and CAP_STYLE.square (3). The styles of joins between offset segments are: JOIN_STYLE.round (1), JOIN_STYLE.mitre (2), and JOIN_STYLE.bevel (3). The mitre limit ratio is used for very sharp corners. The mitre ratio is the ratio of the distance from the corner to the end of the mitred offset corner. When two line segments meet at a sharp angle, a miter join will extend the original geometry. To prevent unreasonable geometry, the mitre limit allows controlling the maximum length of the join corner. Corners with a ratio which exceed the limit will be beveled. Example: >>> from shapely.wkt import loads >>> g = loads('POINT (0.0 0.0)') >>> g.buffer(1.0).area # 16-gon approx of a unit radius circle 3.1365484905459389 >>> g.buffer(1.0, 128).area # 128-gon approximation 3.1415138011443009 >>> g.buffer(1.0, 3).area # triangle approximation 3.0 >>> list(g.buffer(1.0, cap_style='square').exterior.coords) [(1.0, 1.0), (1.0, -1.0), (-1.0, -1.0), (-1.0, 1.0), (1.0, 1.0)] >>> g.buffer(1.0, cap_style='square').area 4.0 """ if quadsegs is not None: warn( "The `quadsegs` argument is deprecated. Use `resolution`.", DeprecationWarning) res = quadsegs else: res = resolution if mitre_limit == 0.0: raise ValueError( 'Cannot compute offset from zero-length line segment') if cap_style == CAP_STYLE.round and join_style == JOIN_STYLE.round: return geom_factory(self.impl['buffer'](self, distance, res)) if 'buffer_with_style' not in self.impl: raise NotImplementedError("Styled buffering not available for " "GEOS versions < 3.2.") return geom_factory(self.impl['buffer_with_style'](self, distance, res, cap_style, join_style, mitre_limit)) @delegated def simplify(self, tolerance, preserve_topology=True): """Returns a simplified geometry produced by the Douglas-Peucker algorithm Coordinates of the simplified geometry will be no more than the tolerance distance from the original. Unless the topology preserving option is used, the algorithm may produce self-intersecting or otherwise invalid geometries. """ if preserve_topology: op = self.impl['topology_preserve_simplify'] else: op = self.impl['simplify'] return geom_factory(op(self, tolerance)) # Binary operations # ----------------- def difference(self, other): """Returns the difference of the geometries""" return geom_factory(self.impl['difference'](self, other)) def intersection(self, other): """Returns the intersection of the geometries""" return geom_factory(self.impl['intersection'](self, other)) def symmetric_difference(self, other): """Returns the symmetric difference of the geometries (Shapely geometry)""" return geom_factory(self.impl['symmetric_difference'](self, other)) def union(self, other): """Returns the union of the geometries (Shapely geometry)""" return geom_factory(self.impl['union'](self, other)) # Unary predicates # ---------------- @property def has_z(self): """True if the geometry's coordinate sequence(s) have z values (are 3-dimensional)""" return bool(self.impl['has_z'](self)) @property def is_empty(self): """True if the set of points in this geometry is empty, else False""" return (self._geom is None) or bool(self.impl['is_empty'](self)) @property def is_ring(self): """True if the geometry is a closed ring, else False""" return bool(self.impl['is_ring'](self)) @property def is_closed(self): """True if the geometry is closed, else False Applicable only to 1-D geometries.""" if self.geom_type == 'LinearRing': return True elif self.geom_type == 'LineString': if 'is_closed' in self.impl: return bool(self.impl['is_closed'](self)) else: return self.coords[0] == self.coords[-1] else: return False @property def is_simple(self): """True if the geometry is simple, meaning that any self-intersections are only at boundary points, else False""" return bool(self.impl['is_simple'](self)) @property def is_valid(self): """True if the geometry is valid (definition depends on sub-class), else False""" return bool(self.impl['is_valid'](self)) # Binary predicates # ----------------- def relate(self, other): """Returns the DE-9IM intersection matrix for the two geometries (string)""" return self.impl['relate'](self, other) def covers(self, other): """Returns True if the geometry covers the other, else False""" return bool(self.impl['covers'](self, other)) def contains(self, other): """Returns True if the geometry contains the other, else False""" return bool(self.impl['contains'](self, other)) def crosses(self, other): """Returns True if the geometries cross, else False""" return bool(self.impl['crosses'](self, other)) def disjoint(self, other): """Returns True if geometries are disjoint, else False""" return bool(self.impl['disjoint'](self, other)) def equals(self, other): """Returns True if geometries are equal, else False Refers to point-set equality (or topological equality), and is equivalent to (self.within(other) & self.contains(other)) """ return bool(self.impl['equals'](self, other)) def intersects(self, other): """Returns True if geometries intersect, else False""" return bool(self.impl['intersects'](self, other)) def overlaps(self, other): """Returns True if geometries overlap, else False""" return bool(self.impl['overlaps'](self, other)) def touches(self, other): """Returns True if geometries touch, else False""" return bool(self.impl['touches'](self, other)) def within(self, other): """Returns True if geometry is within the other, else False""" return bool(self.impl['within'](self, other)) def equals_exact(self, other, tolerance): """Returns True if geometries are equal to within a specified tolerance Refers to coordinate equality, which requires coordinates to be equal and in the same order for all components of a geometry """ return bool(self.impl['equals_exact'](self, other, tolerance)) def almost_equals(self, other, decimal=6): """Returns True if geometries are equal at all coordinates to a specified decimal place Refers to approximate coordinate equality, which requires coordinates be approximately equal and in the same order for all components of a geometry. """ return self.equals_exact(other, 0.5 * 10**(-decimal)) def relate_pattern(self, other, pattern): """Returns True if the DE-9IM string code for the relationship between the geometries satisfies the pattern, else False""" pattern = c_char_p(pattern.encode('ascii')) return bool(self.impl['relate_pattern'](self, other, pattern)) # Linear referencing # ------------------ @delegated def project(self, other, normalized=False): """Returns the distance along this geometry to a point nearest the specified point If the normalized arg is True, return the distance normalized to the length of the linear geometry. """ if normalized: op = self.impl['project_normalized'] else: op = self.impl['project'] return op(self, other) @delegated def interpolate(self, distance, normalized=False): """Return a point at the specified distance along a linear geometry Negative length values are taken as measured in the reverse direction from the end of the geometry. Out-of-range index values are handled by clamping them to the valid range of values. If the normalized arg is True, the distance will be interpreted as a fraction of the geometry's length. """ if normalized: op = self.impl['interpolate_normalized'] else: op = self.impl['interpolate'] return geom_factory(op(self, distance)) class BaseMultipartGeometry(BaseGeometry): def shape_factory(self, *args): # Factory for part instances, usually a geometry class raise NotImplementedError("To be implemented by derived classes") @property def ctypes(self): raise NotImplementedError( "Multi-part geometries have no ctypes representations") @property def __array_interface__(self): """Provide the Numpy array protocol.""" raise NotImplementedError("Multi-part geometries do not themselves " "provide the array interface") def _get_coords(self): raise NotImplementedError("Sub-geometries may have coordinate " "sequences, but collections do not") def _set_coords(self, ob): raise NotImplementedError("Sub-geometries may have coordinate " "sequences, but collections do not") @property def coords(self): raise NotImplementedError( "Multi-part geometries do not provide a coordinate sequence") @property def geoms(self): if self.is_empty: return [] return GeometrySequence(self, self.shape_factory) def __iter__(self): if not self.is_empty: return iter(self.geoms) else: return iter([]) def __len__(self): if not self.is_empty: return len(self.geoms) else: return 0 def __getitem__(self, index): if not self.is_empty: return self.geoms[index] else: return ()[index] def __eq__(self, other): return ( type(other) == type(self) and len(self) == len(other) and all(x == y for x, y in zip(self, other)) ) def __ne__(self, other): return not self.__eq__(other) __hash__ = None def svg(self, scale_factor=1., color=None): """Returns a group of SVG elements for the multipart geometry. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. color : str, optional Hex string for stroke or fill color. Default is to use "#66cc99" if geometry is valid, and "#ff3333" if invalid. """ if self.is_empty: return '<g />' if color is None: color = "#66cc99" if self.is_valid else "#ff3333" return '<g>' + \ ''.join(p.svg(scale_factor, color) for p in self) + \ '</g>' class GeometrySequence(object): """ Iterative access to members of a homogeneous multipart geometry. """ # Attributes # ---------- # _factory : callable # Returns instances of Shapely geometries # _geom : c_void_p # Ctypes pointer to the parent's GEOS geometry # _ndim : int # Number of dimensions (2 or 3, generally) # __p__ : object # Parent (Shapely) geometry shape_factory = None _geom = None __p__ = None _ndim = None def __init__(self, parent, type): self.shape_factory = type self.__p__ = parent def _update(self): self._geom = self.__p__._geom self._ndim = self.__p__._ndim def _get_geom_item(self, i): g = self.shape_factory() g._other_owned = True g._geom = lgeos.GEOSGetGeometryN(self._geom, i) g._ndim = self._ndim g.__p__ = self return g def __iter__(self): self._update() for i in range(self.__len__()): yield self._get_geom_item(i) def __len__(self): self._update() return lgeos.GEOSGetNumGeometries(self._geom) def __getitem__(self, key): self._update() m = self.__len__() if isinstance(key, integer_types): if key + m < 0 or key >= m: raise IndexError("index out of range") if key < 0: i = m + key else: i = key return self._get_geom_item(i) elif isinstance(key, slice): if type(self) == HeterogeneousGeometrySequence: raise TypeError( "Heterogenous geometry collections are not sliceable") res = [] start, stop, stride = key.indices(m) for i in range(start, stop, stride): res.append(self._get_geom_item(i)) return type(self.__p__)(res or None) else: raise TypeError("key must be an index or slice") @property def _longest(self): max = 0 for g in iter(self): l = len(g.coords) if l > max: max = l class HeterogeneousGeometrySequence(GeometrySequence): """ Iterative access to a heterogeneous sequence of geometries. """ def __init__(self, parent): super(HeterogeneousGeometrySequence, self).__init__(parent, None) def _get_geom_item(self, i): sub = lgeos.GEOSGetGeometryN(self._geom, i) g = geom_factory(sub, parent=self) g._other_owned = True return g class EmptyGeometry(BaseGeometry): def __init__(self): """Create an empty geometry.""" BaseGeometry.__init__(self) def _test(): """Test runner""" import doctest doctest.testmod() if __name__ == "__main__": _test()
32.313142
84
0.602326
b5ac105a1eecde7bec42a08a378ace8ccda31133
594
py
Python
order/migrations/0021_auto_20211122_0834.py
gheyderov/E-commerce-website
9a87e8e6658a69fb017bdc3b36d6dc5417e3124e
[ "MIT" ]
null
null
null
order/migrations/0021_auto_20211122_0834.py
gheyderov/E-commerce-website
9a87e8e6658a69fb017bdc3b36d6dc5417e3124e
[ "MIT" ]
null
null
null
order/migrations/0021_auto_20211122_0834.py
gheyderov/E-commerce-website
9a87e8e6658a69fb017bdc3b36d6dc5417e3124e
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-11-22 08:34 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('order', '0020_auto_20211122_0825'), ] operations = [ migrations.RemoveField( model_name='order', name='basket_items', ), migrations.AddField( model_name='order', name='basket_items', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='order.basketitem'), ), ]
24.75
116
0.614478
c6c381c7e793e64384ad2464c153a3208d682929
2,872
py
Python
perfkitbenchmarker/data/edw/script_driver.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
1
2018-08-28T19:33:21.000Z
2018-08-28T19:33:21.000Z
perfkitbenchmarker/data/edw/script_driver.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
null
null
null
perfkitbenchmarker/data/edw/script_driver.py
msidana/PerfKitBenchmarker
2784642d3e6b20b3f474c4e27edb1ef163804f66
[ "Apache-2.0" ]
null
null
null
"""Driver for running a script against a EDW cluster. Driver compiles the provider specific script execution command and returns the time taken to execute the script in seconds or -1 if the script fails. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import logging from subprocess import call import time from absl import app from absl import flags import provider_specific_script_driver __author__ = 'p3rf@google.com' flags.DEFINE_string('script', None, 'SQL script which contains the query.') flags.DEFINE_string('logfile_suffix', 'log', 'Suffix to use for the output and ' 'error files.') flags.DEFINE_multi_string('failing_scripts', [], 'List of failing scripts whose execution should be ' 'skipped.') FLAGS = flags.FLAGS DRIVER_NAME = './script_runner.sh' JOB_ID_KEY = 'INFO:googleapiclient.model:jobId:' API_LOG_FILE = 'apilog.out' def default_logfile_names(script, suffix): """Method to return the names for output and error log files.""" suffix = script.split('.')[0] if suffix is None else suffix output_logfile = '{}_out.txt'.format(suffix) error_logfile = '{}_err.txt'.format(suffix) return output_logfile, error_logfile def execute_script(script, logfile_suffix): """Method to execute a sql script on a EDW cluster. Arguments: script: SQL script which contains the query. logfile_suffix: Suffix to use for the output and error files. Returns: Dictionary containing the name of the script and its execution time (-1 if the script fails) """ response_status = 1 # assume failure by default job_id = 'undefined_job' if script not in FLAGS.failing_scripts: output, error = default_logfile_names(script, logfile_suffix) cmd = provider_specific_script_driver.generate_provider_specific_cmd_list( script, DRIVER_NAME, output, error) start_time = time.time() response_status = call(cmd) execution_time = -1 if (response_status != 0) else round((time.time() - start_time), 2) try: with open(API_LOG_FILE) as fp: line = fp.readline() while line: line_tokens = line.strip().split() if len(line_tokens) > 1 and line_tokens[0] == JOB_ID_KEY: job_id = line.strip().split()[1] break line = fp.readline() except IOError: pass script_execution_details = {'execution_time': execution_time, 'job_id': job_id} results = {script: script_execution_details} return json.dumps(results) def main(argv): del argv print(execute_script(FLAGS.script, FLAGS.logfile_suffix)) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) app.run(main)
31.56044
80
0.68663
30784f7b10bc674d258bc31324cea97f9778595b
407
py
Python
ctre/__init__.py
stmobo/robotpy-ctre
7ef83ae6f6bc0d5ef793dfb6e96ac5d641320aeb
[ "Apache-2.0" ]
null
null
null
ctre/__init__.py
stmobo/robotpy-ctre
7ef83ae6f6bc0d5ef793dfb6e96ac5d641320aeb
[ "Apache-2.0" ]
null
null
null
ctre/__init__.py
stmobo/robotpy-ctre
7ef83ae6f6bc0d5ef793dfb6e96ac5d641320aeb
[ "Apache-2.0" ]
null
null
null
from .wpi_talonsrx import WPI_TalonSRX from .wpi_victorspx import WPI_VictorSPX from .canifier import CANifier from .pigeonimu import PigeonIMU from ._impl import ( ControlMode, FeedbackDevice, RemoteFeedbackDevice, NeutralMode, ) from .trajectorypoint import TrajectoryPoint try: from .version import __version__ except ImportError: # pragma: nocover __version__ = 'master'
20.35
44
0.769042
e1462ea1619bc959f8fd5becf206a660ff1303b5
7,344
py
Python
plugins/module_utils/network/sonic/facts/l3_interfaces/l3_interfaces.py
ansible-collections/dellemc_networking.sonic
ca9382bb5a3bd021d3f9766077e8e452f710a1ce
[ "Apache-2.0" ]
null
null
null
plugins/module_utils/network/sonic/facts/l3_interfaces/l3_interfaces.py
ansible-collections/dellemc_networking.sonic
ca9382bb5a3bd021d3f9766077e8e452f710a1ce
[ "Apache-2.0" ]
null
null
null
plugins/module_utils/network/sonic/facts/l3_interfaces/l3_interfaces.py
ansible-collections/dellemc_networking.sonic
ca9382bb5a3bd021d3f9766077e8e452f710a1ce
[ "Apache-2.0" ]
2
2020-03-11T12:19:45.000Z
2020-03-11T15:37:53.000Z
# # -*- coding: utf-8 -*- # Copyright 2020 Dell Inc. or its subsidiaries. All Rights Reserved # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """ The sonic l3_interfaces fact class It is in this file the configuration is collected from the device for a given resource, parsed, and the facts tree is populated based on the configuration. """ from __future__ import absolute_import, division, print_function __metaclass__ = type import re from copy import deepcopy from ansible_collections.ansible.netcommon.plugins.module_utils.network.common import ( utils, ) from ansible_collections.dellemc.enterprise_sonic.plugins.module_utils.network.sonic.argspec.l3_interfaces.l3_interfaces import L3_interfacesArgs from ansible_collections.dellemc.enterprise_sonic.plugins.module_utils.network.sonic.sonic import ( to_request, edit_config ) from ansible.module_utils.connection import ConnectionError class L3_interfacesFacts(object): """ The sonic l3_interfaces fact class """ loop_backs = "," def __init__(self, module, subspec='config', options='options'): self._module = module self.argument_spec = L3_interfacesArgs.argument_spec spec = deepcopy(self.argument_spec) if subspec: if options: facts_argument_spec = spec[subspec][options] else: facts_argument_spec = spec[subspec] else: facts_argument_spec = spec self.generated_spec = utils.generate_dict(facts_argument_spec) def get_l3_interfaces(self): url = "data/openconfig-interfaces:interfaces/interface" method = "GET" request = [{"path": url, "method": method}] try: response = edit_config(self._module, to_request(self._module, request)) except ConnectionError as exc: self._module.fail_json(msg=str(exc), code=exc.code) l3_lists = [] if "openconfig-interfaces:interface" in response[0][1]: l3_lists = response[0][1].get("openconfig-interfaces:interface", []) l3_configs = [] for l3 in l3_lists: l3_dict = dict() l3_name = l3["name"] if l3_name == "eth0": continue l3_dict['name'] = l3_name ip = None anycast_addr = list() if l3.get('openconfig-vlan:routed-vlan'): ip = l3['openconfig-vlan:routed-vlan'] if ip.get('openconfig-if-ip:ipv4', None) and ip['openconfig-if-ip:ipv4'].get('openconfig-interfaces-ext:sag-ipv4', None): if ip['openconfig-if-ip:ipv4']['openconfig-interfaces-ext:sag-ipv4'].get('config', None): if ip['openconfig-if-ip:ipv4']['openconfig-interfaces-ext:sag-ipv4']['config'].get('static-anycast-gateway', None): anycast_addr = ip['openconfig-if-ip:ipv4']['openconfig-interfaces-ext:sag-ipv4']['config']['static-anycast-gateway'] else: ip = l3.get('subinterfaces', {}).get('subinterface', [{}])[0] l3_dict['ipv4'] = dict() l3_ipv4 = list() if anycast_addr: l3_dict['ipv4']['anycast_addresses'] = anycast_addr elif 'openconfig-if-ip:ipv4' in ip and 'addresses' in ip['openconfig-if-ip:ipv4'] and 'address' in ip['openconfig-if-ip:ipv4']['addresses']: for ipv4 in ip['openconfig-if-ip:ipv4']['addresses']['address']: if ipv4.get('config') and ipv4.get('config').get('ip'): temp = dict() temp['address'] = str(ipv4['config']['ip']) + '/' + str(ipv4['config']['prefix-length']) temp['secondary'] = ipv4['config']['secondary'] l3_ipv4.append(temp) if l3_ipv4: l3_dict['ipv4']['addresses'] = l3_ipv4 l3_dict['ipv6'] = dict() l3_ipv6 = list() if 'openconfig-if-ip:ipv6' in ip: if 'addresses' in ip['openconfig-if-ip:ipv6'] and 'address' in ip['openconfig-if-ip:ipv6']['addresses']: for ipv6 in ip['openconfig-if-ip:ipv6']['addresses']['address']: if ipv6.get('config') and ipv6.get('config').get('ip'): temp = dict() temp['address'] = str(ipv6['config']['ip']) + '/' + str(ipv6['config']['prefix-length']) l3_ipv6.append(temp) if l3_ipv6: l3_dict['ipv6']['addresses'] = l3_ipv6 if 'config' in ip['openconfig-if-ip:ipv6'] and 'enabled' in ip['openconfig-if-ip:ipv6']['config']: l3_dict['ipv6']['enabled'] = ip['openconfig-if-ip:ipv6']['config']['enabled'] l3_configs.append(l3_dict) return l3_configs def populate_facts(self, connection, ansible_facts, data=None): """ Populate the facts for l3_interfaces :param connection: the device connection :param ansible_facts: Facts dictionary :param data: previously collected conf :rtype: dictionary :returns: facts """ if connection: # just for linting purposes, remove pass if not data: resources = self.get_l3_interfaces() objs = [] for resource in resources: if resource: obj = self.render_config(self.generated_spec, resource) obj = self.transform_config(obj) if obj: objs.append(obj) ansible_facts['ansible_network_resources'].pop('l3_interfaces', None) facts = {} if objs: params = utils.validate_config(self.argument_spec, {'config': objs}) facts['l3_interfaces'] = params['config'] ansible_facts['ansible_network_resources'].update(facts) return ansible_facts def render_config(self, spec, conf): """ Render config as dictionary structure and delete keys from spec for null values :param spec: The facts tree, generated from the argspec :param conf: The configuration :rtype: dictionary :returns: The generated config """ return conf def transform_config(self, conf): exist_cfg = conf trans_cfg = None is_loop_back = False name = exist_cfg['name'] if name.startswith('Loopback'): is_loop_back = True pos = name.find('|') if pos > 0: name = name[0:pos] if not (is_loop_back and self.is_loop_back_already_esist(name)) and (name != "eth0"): trans_cfg = dict() trans_cfg['name'] = name if is_loop_back: self.update_loop_backs(name) trans_cfg['ipv4'] = exist_cfg.get('ipv4', {}) trans_cfg['ipv6'] = exist_cfg.get('ipv6', {}) return trans_cfg def reset_loop_backs(self): self.loop_backs = "," def update_loop_backs(self, loop_back): self.loop_backs += "{Loopback},".format(Loopback=loop_back) def is_loop_back_already_esist(self, loop_back): return(",{0},".format(loop_back) in self.loop_backs)
39.483871
152
0.587146
1f7d86def2f3f760566e7503d01ec197d66783ae
591
py
Python
encryptfinance/users/urls.py
dark-codr/encryptfinance
573a8179c3a7c4b0f68d71bc9d461246f6fdba29
[ "Apache-2.0" ]
null
null
null
encryptfinance/users/urls.py
dark-codr/encryptfinance
573a8179c3a7c4b0f68d71bc9d461246f6fdba29
[ "Apache-2.0" ]
null
null
null
encryptfinance/users/urls.py
dark-codr/encryptfinance
573a8179c3a7c4b0f68d71bc9d461246f6fdba29
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from django.urls import path from encryptfinance.users.views import ( user_detail_view, user_redirect_view, user_update_view, user_verify_view, ) app_name = "users" urlpatterns = [ path("~redirect/", view=user_redirect_view, name="redirect"), path("<username>/~update/", view=user_update_view, name="update"), path("<username>/", view=user_detail_view, name="detail"), path("<username>/~verify/", view=user_verify_view, name="verify"), # path("<str:username>/profile/", view=user_profile_view, name="profile"), ]
29.55
78
0.712352
6bc69ffd5cd3244a545448bb077bf7b59d2250cb
602,306
py
Python
python/paddle/fluid/layers/nn.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/nn.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
null
null
null
python/paddle/fluid/layers/nn.py
Joejiong/Paddle
6d6ea569dc1e9ff15fdc774c79276b0f79444f5e
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ All layers just related to the neural network. """ from __future__ import print_function import os import inspect import warnings import numpy as np import six import paddle from ..layer_helper import LayerHelper from ..initializer import Normal, Constant, NumpyArrayInitializer from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program, _varbase_creator, static_only from .. import dygraph_utils from ..param_attr import ParamAttr from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_ from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor from . import utils from .. import unique_name from functools import reduce from .. import core from ...utils import deprecated from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype import paddle from paddle.utils import deprecated __all__ = [ 'fc', 'embedding', 'linear_chain_crf', 'crf_decoding', 'cos_sim', 'chunk_eval', 'conv2d', 'conv3d', 'softmax', 'pool2d', 'pool3d', 'adaptive_pool2d', 'adaptive_pool3d', 'batch_norm', 'inplace_abn', 'instance_norm', 'data_norm', 'conv2d_transpose', 'conv3d_transpose', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min', 'reduce_prod', 'reduce_all', 'reduce_any', 'dropout', 'split', 'ctc_greedy_decoder', 'l2_normalize', 'matmul', 'topk', 'transpose', 'im2sequence', 'row_conv', 'multiplex', 'layer_norm', 'group_norm', 'spectral_norm', 'smooth_l1', 'one_hot', 'autoincreased_step_counter', 'reshape', 'squeeze', 'unsqueeze', 'lod_reset', 'lod_append', 'lrn', 'pad', 'pad_constant_like', 'label_smooth', 'roi_pool', 'roi_align', 'dice_loss', 'image_resize', 'image_resize_short', 'resize_linear', 'resize_bilinear', 'resize_trilinear', 'resize_nearest', 'gather', 'gather_nd', 'scatter', 'scatter_nd_add', 'scatter_nd', 'random_crop', 'mean_iou', 'relu', 'selu', 'log', 'crop', 'crop_tensor', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid', 'swish', 'prelu', 'brelu', 'leaky_relu', 'soft_relu', 'flatten', 'stack', 'pad2d', 'unstack', 'unique', 'unique_with_counts', 'expand', 'expand_as', 'scale', 'elementwise_add', 'elementwise_div', 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', 'elementwise_pow', 'elementwise_mod', 'elementwise_floordiv', 'uniform_random_batch_size_like', 'gaussian_random', 'sampling_id', 'gaussian_random_batch_size_like', 'sum', 'slice', 'strided_slice', 'shape', 'rank', 'size', 'logical_and', 'logical_or', 'logical_xor', 'logical_not', 'clip', 'clip_by_norm', 'mean', 'mul', 'maxout', 'space_to_depth', 'affine_grid', 'affine_channel', 'similarity_focus', 'hash', 'grid_sampler', 'log_loss', 'add_position_encoding', 'bilinear_tensor_product', 'merge_selected_rows', 'get_tensor_from_selected_rows', 'shuffle_channel', 'temporal_shift', 'py_func', 'psroi_pool', 'prroi_pool', 'pixel_shuffle', 'fsp_matrix', 'continuous_value_model', 'where', 'sign', 'deformable_conv', 'unfold', 'deformable_roi_pooling', 'filter_by_instag', 'shard_index', 'hard_swish', 'mish', 'gather_tree', 'uniform_random', 'unbind', ] @dygraph_only def _elementwise_op_in_dygraph(x, y, axis=-1, act=None, use_mkldnn=False, op_name=None): op = getattr(core.ops, op_name) out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn) return dygraph_utils._append_activation_in_dygraph( out, act, use_mkldnn=use_mkldnn) def fc(input, size, num_flatten_dims=1, param_attr=None, bias_attr=None, act=None, name=None): r""" :api_attr: Static Graph **Fully Connected Layer** This operator creates a fully connected layer in the network. It can take a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see Args in detail). It creates a variable called weight for each input Tensor, which represents a fully connected weight matrix from each input unit to each output unit. The fully connected layer multiplies each input Tensor with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` , where M is batch size. If a list of Tensor is given, the results of multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr` is not None, a bias variable will be created and added to the output. Finally, if :attr:`act` is not None, it will be applied to the output as well. When the input is a single Tensor(or LoDTensor): .. math:: Out = Act({XW + b}) When the input is a list of Tensor(or LoDTensor): .. math:: Out = Act({\sum_{i=0}^{N-1}X_iW_i + b}) In the above equation: * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable. * :math:`X_i`: The i-th input tensor. * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor. * :math:`b`: The bias parameter created by this layer (if needed). * :math:`Act`: The activation function. * :math:`Out`: The output Tensor. .. code-block:: text Case 1: Given a single Tensor data_1, and num_flatten_dims = 2: data_1.data = [[[0.1, 0.2], [0.3, 0.4]]] data_1.shape = (1, 2, 2) # 1 is batch_size out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2) Then output is: out.data = [[0.83234344], [0.34936576]] out.shape = (1, 2, 1) Case 2: Given a list of Tensor: data_1.data = [[[0.1, 0.2], [0.3, 0.4]]] data_1.shape = (1, 2, 2) # 1 is batch_size data_2 = [[[0.1, 0.2, 0.3]]] data_2.shape = (1, 1, 3) out = fluid.layers.fc(input=[data_1, data_2], size=2) Then: out.data = [[0.18669507, 0.1893476]] out.shape = (1, 2) Args: input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data type should be float32 or float64. size(int): The number of output units in this layer, which also means the feature size of output Tensor(or LoDTensor). num_flatten_dims (int): The fc layer can accept an input Tensor with more than two dimensions. If this happens, the multidimensional tensor will first be flattened into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1) dimensions will be flatten to form the first dimension of the final matrix (height of the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to form the second dimension of the final matrix (width of the matrix). For example, assuming that X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3. Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1. param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . act (str): Activation to be applied to the output of this layer, such as tanh, softmax, sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input. Raises: ValueError: If dimensions of the input Tensor is less than 2. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() # when input is single tensor data = fluid.data(name="data", shape=[-1, 32], dtype="float32") fc = fluid.layers.fc(input=data, size=1000, act="tanh") # when input are multiple tensors data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32") data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32") fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh") """ helper = LayerHelper("fc", **locals()) check_type(input, 'input', (list, tuple, Variable), 'fc') if isinstance(input, (list, tuple)): for i, input_x in enumerate(input): check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc') dtype = helper.input_dtype() check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc') mul_results = [] for input_var, param_attr in helper.iter_inputs_and_params(): input_shape = input_var.shape if num_flatten_dims == -1: num_flatten_dims = len(input_shape) - 1 param_shape = [ reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) ] + [size] w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) tmp = helper.create_variable_for_type_inference(dtype) helper.append_op( type="mul", inputs={"X": input_var, "Y": w}, outputs={"Out": tmp}, attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1}) mul_results.append(tmp) if len(mul_results) == 1: pre_bias = mul_results[0] else: pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}, attrs={"use_mkldnn": False}) # add bias pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims) # add activation return helper.append_activation(pre_activation) @deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding") def embedding(input, size, is_sparse=False, is_distributed=False, padding_idx=None, param_attr=None, dtype='float32'): r""" :api_attr: Static Graph **WARING:** This OP will be deprecated in a future release. This OP requires the last dimension of Tensor shape must be equal to 1. It is recommended to use fluid. :ref:`api_fluid_embedding` . The operator is used to lookup embeddings vector of ids provided by :attr:`input` . It automatically constructs a 2D embedding matrix based on the input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` . This OP requires the last dimension of Tensor shape must be equal to 1. The shape of output Tensor is generated by replacing the last dimension of the input Tensor shape with emb_size. **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , otherwise the program will throw an exception and exit. .. code-block:: text Case 1: input is a Tensor. padding_idx = -1 input.data = [[[1], [3]], [[2], [4]], [[4], [127]]] input.shape = [3, 2, 1] Given size = [128, 16] output is a Tensor: out.shape = [3, 2, 16] out.data = [[[0.129435295, 0.244512452, ..., 0.436322452], [0.345421456, 0.524563927, ..., 0.144534654]], [[0.345249859, 0.124939536, ..., 0.194353745], [0.945345345, 0.435394634, ..., 0.435345365]], [[0.945345345, 0.435394634, ..., 0.435345365], [0.0, 0.0, ..., 0.0 ]]] # padding data The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127 It will pad all-zero data when ids is 127. Case 2: input is a LoDTensor with 1-level LoD. padding_idx = 0 input.lod = [[2, 3]] input.data = [[1], [3], [2], [4], [0]] input.shape = [5, 1] Given size = [128, 16] output is a LoDTensor: out.lod = [[2, 3]] out.shape = [5, 16] out.data = [[0.129435295, 0.244512452, ..., 0.436322452], [0.345421456, 0.524563927, ..., 0.144534654], [0.345249859, 0.124939536, ..., 0.194353745], [0.945345345, 0.435394634, ..., 0.435345365], [0.0, 0.0, ..., 0.0 ]] # padding data It will pad all-zero data when ids is 0. Args: input(Variable): A Tensor or LoDTensor with type int64, which contains the id information. The last dimension of Tensor shape must be equal to 1. The value of the input id should satisfy :math:`0<= id < size[0]` . size(tuple|list): The shape of lookup table parameter. It should have two elements which indicates the size of the dictionary of embeddings and the size of each embedding vector respectively. is_sparse(bool): The flag indicating whether to use sparse update. This parameter only affects the performance of the backwards gradient update. It is recommended to set True because sparse update is faster. But some optimizer does not support sparse update, such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` , :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` . In these case, is_sparse must be False. Default: False. is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used in multi-machine distributed CPU training. Default: False. padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup encounters :math:`padding\_idx` in id. And the padding data will not be updated while training. If set None, it makes no effect to output. Default: None. param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition, user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. The local word vector needs to be transformed into numpy format, and the shape of local word vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer` is used to load custom or pre-trained word vectors. See code example 2 for details. dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor. It must be float32 or float64. Default: float32. Returns: Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` . Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() data = fluid.data(name='x', shape=[None, 1], dtype='int64') # example 1 emb_1 = fluid.embedding(input=data, size=[128, 64]) # example 2: load custom or pre-trained word vectors weight_data = np.random.random(size=(128, 100)) # word vectors with numpy format w_param_attrs = fluid.ParamAttr( name="emb_weight", learning_rate=0.5, initializer=fluid.initializer.NumpyArrayInitializer(weight_data), trainable=True) emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32') """ helper = LayerHelper('embedding', **locals()) check_variable_and_dtype(input, 'input', ['int64'], 'fluid.layers.embedding') check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'], 'fluid.layers.embedding') if is_distributed: is_distributed = False warnings.warn( "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed" ) remote_prefetch = True if is_sparse else False w = helper.create_parameter( attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) tmp = helper.create_variable_for_type_inference(dtype) padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) helper.append_op( type='lookup_table', inputs={'Ids': input, 'W': w}, outputs={'Out': tmp}, attrs={ 'is_sparse': is_sparse, 'is_distributed': is_distributed, 'remote_prefetch': remote_prefetch, 'padding_idx': padding_idx }) return tmp def _pull_sparse(input, size, table_id, accessor_class, name="embedding", ctr_label_name="", padding_id=0, dtype='float32', scale_sparse_grad=True): r""" **Pull Fleet Sparse Layer** This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in Fleet lookup table. The result of this lookup is the embedding of each ID in the :attr:`input`. Args: input(Variable|list of Variable): Input is a Tensor<int64> Variable, which contains the IDs information. size(int): The embedding size parameter, which indicates the size of each embedding vector respectively. table_id(int): the fleet table id of this embedding. accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor. ctr_label_name(str): the layer name of click. padding_id(int): the padding id during lookup, default is 0. dtype(str): The dtype refers to the data type of output tensor. Only supports float32 now. scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default is True. Returns: Variable|list of Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1) emb = fluid.layers.nn._pull_sparse( input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor") """ helper = LayerHelper(name, **locals()) inputs = helper.multiple_input() outs = [helper.create_variable_for_type_inference(dtype)] input_names = [i.name for i in inputs] attrs = { 'EmbeddingDim': size, 'TableId': table_id, 'AccessorClass': accessor_class, 'CtrLabelName': ctr_label_name, 'PaddingId': padding_id, 'ScaleSparseGrad': scale_sparse_grad, 'InputNames': input_names, # this is only for compatible with embedding op 'is_distributed': True } # this is only for compatible with embedding op w, _ = helper.create_or_get_global_variable( name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True) helper.append_op( type='pull_sparse', inputs={'Ids': inputs, 'W': w}, outputs={'Out': outs}, attrs=attrs) if len(outs) == 1: return outs[0] return outs def _pull_sparse_v2(input, size, table_id, accessor_class, name="embedding", ctr_label_name="", padding_id=0, dtype='float32', scale_sparse_grad=True): r""" **Pull Fleet Sparse Layer** This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in Fleet lookup table. The result of this lookup is the embedding of each ID in the :attr:`input`. Args: input(Variable|list of Variable): Input is a Tensor<int64> Variable, which contains the IDs information. size(int): The embedding size parameter, which indicates the size of each embedding vector respectively. table_id(int): the pslib table id of this embedding. accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor. ctr_label_name(str): the layer name of click. padding_id(int): the padding id during lookup, default is 0. dtype(str): The dtype refers to the data type of output tensor. Only supports float32 now. scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default is True. Returns: Variable|list of Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1) emb = fluid.layers.nn._pull_sparse_v2( input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor") """ helper = LayerHelper(name, **locals()) inputs = helper.multiple_input() outs = [helper.create_variable_for_type_inference(dtype)] input_names = [i.name for i in inputs] attrs = { 'EmbeddingDim': size, 'TableId': table_id, 'AccessorClass': accessor_class, 'CtrLabelName': ctr_label_name, 'PaddingId': padding_id, 'ScaleSparseGrad': scale_sparse_grad, 'InputNames': input_names, # this is only for compatible with embedding op 'is_distributed': True } # this is only for compatible with embedding op w, _ = helper.create_or_get_global_variable( name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True) helper.append_op( type='pull_sparse_v2', inputs={'Ids': inputs, 'W': w}, outputs={'Out': outs}, attrs=attrs) if len(outs) == 1: return outs[0] return outs def _pull_box_sparse(input, size, dtype='float32', is_distributed=False, is_sparse=False): r""" **Pull Box Sparse Layer** This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in BoxPS lookup table. The result of this lookup is the embedding of each ID in the :attr:`input`. Args: input(Variable|list of Variable): Input is a Tensor<int64> Variable, which contains the IDs information. size(int): The embedding size parameter, which indicates the size of each embedding vector respectively. dtype(str): The dtype refers to the data type of output tensor. Only supports float32 now. Returns: Variable|list of Variable: The tensor variable storing the embeddings of the \ supplied inputs. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1) emb = fluid.layers.pull_box_sparse(input=data, size=[11]) """ helper = LayerHelper('pull_box_sparse', **locals()) if dtype != 'float32': raise ValueError( "BoxPS only support float type embedding now, and your type is: " + dtype) helper.input_dtype() inputs = helper.multiple_input() outs = [ helper.create_variable_for_type_inference(dtype) for i in range(len(inputs)) ] w = helper.create_parameter( attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False) helper.append_op( type='pull_box_sparse', inputs={'Ids': inputs, 'W': w}, outputs={'Out': outs}, attrs={ 'size': size, 'is_distributed': is_distributed, 'is_sparse': is_sparse }) if len(outs) == 1: return outs[0] return outs @templatedoc() def linear_chain_crf(input, label, param_attr=None, length=None): """ :api_attr: Static Graph Linear Chain CRF. ${comment} Args: input(${emission_type}): ${emission_comment} label(${label_type}): ${label_comment} Length(${length_type}): ${length_comment} param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter. Returns: output(${emission_exps_type}): ${emission_exps_comment} \n output(${transition_exps_type}): ${transition_exps_comment} \n output(${log_likelihood_type}): ${log_likelihood_comment} \n Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() #define net structure, using LodTensor train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32') label = fluid.data(name='label', shape=[-1,1], dtype='int') emission= fluid.layers.fc(input=input_data, size=10, act="tanh") crf_cost = fluid.layers.linear_chain_crf( input=emission, label=label, param_attr=fluid.ParamAttr( name='crfw', learning_rate=0.01)) use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) #define data, using LoDTensor a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place) b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place) feed1 = {'input_data':a,'label':b} loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost]) print(loss) #define net structure, using padding train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32') label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int') label_length = fluid.data(name='length', shape=[-1,1], dtype='int') emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2) crf_cost2 = fluid.layers.linear_chain_crf( input=emission2, label=label2, length=label_length, param_attr=fluid.ParamAttr( name='crfw', learning_rate=0.01)) use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) #define data, using padding cc=np.random.rand(4,10,10).astype('float32') dd=np.random.rand(4,10,1).astype('int64') ll=np.array([[3],[3],[4],[2]]) feed2 = {'input_data2':cc,'label2':dd,'length':ll} loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2]) print(loss2) #[array([[ 7.8902354], # [ 7.3602567], # [ 10.004011], # [ 5.86721 ]], dtype=float32)] #you can use find_var to get transition parameter. transition=np.array(fluid.global_scope().find_var('crfw').get_tensor()) print(transition) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'linear_chain_crf') check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf') helper = LayerHelper('linear_chain_crf', **locals()) size = input.shape[2] if length else input.shape[1] transition = helper.create_parameter( attr=helper.param_attr, shape=[size + 2, size], dtype=helper.input_dtype()) alpha = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) emission_exps = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) transition_exps = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) log_likelihood = helper.create_variable_for_type_inference( dtype=helper.input_dtype()) this_inputs = { "Emission": [input], "Transition": transition, "Label": [label] } if length: this_inputs['Length'] = [length] helper.append_op( type='linear_chain_crf', inputs=this_inputs, outputs={ "Alpha": [alpha], "EmissionExps": [emission_exps], "TransitionExps": transition_exps, "LogLikelihood": log_likelihood }) return log_likelihood @templatedoc() def crf_decoding(input, param_attr, label=None, length=None): """ :api_attr: Static Graph ${comment} Args: input(Tensor): ${emission_comment} param_attr (ParamAttr|None): To specify the weight parameter attribute. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` . label(${label_type}, optional): ${label_comment} length(${length_type}, optional): ${length_comment} Returns: Tensor: ${viterbi_path_comment} Examples: .. code-block:: python import paddle paddle.enable_static() # LoDTensor-based example num_labels = 10 feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1) label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1) emission = paddle.static.nn.fc(feature, size=num_labels) crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, param_attr=paddle.ParamAttr(name="crfw")) crf_decode = paddle.static.nn.crf_decoding(input=emission, param_attr=paddle.ParamAttr(name="crfw")) # Common tensor example num_labels, max_len = 10, 20 feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32') label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64') length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64') emission = paddle.static.nn.fc(feature, size=num_labels, num_flatten_dims=2) crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length, param_attr=paddle.ParamAttr(name="crfw_pad")) crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length, param_attr=paddle.ParamAttr(name="crfw_pad")) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'crf_decoding') helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) viterbi_path = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.INT64) inputs = {"Emission": [input], "Transition": transition, "Label": label} if length: inputs['Length'] = length helper.append_op( type='crf_decoding', inputs=inputs, outputs={"ViterbiPath": [viterbi_path]}) return viterbi_path @templatedoc() def cos_sim(X, Y): """ ${comment} Args: X (Tensor): ${x_comment}. Y (Tensor): ${y_comment}. Returns: A Tensor representing the output of cosine(X, Y). Examples: .. code-block:: python import paddle x = paddle.rand(shape=[3, 7], dtype='float32') y = paddle.rand(shape=[1, 7], dtype='float32') out = paddle.fluid.layers.cos_sim(x, y) print(out) """ check_variable_and_dtype(X, 'X', ['float32'], 'cos_sim') check_variable_and_dtype(Y, 'Y', ['float32'], 'cos_sim') helper = LayerHelper('cos_sim', **locals()) out = helper.create_variable_for_type_inference(dtype=X.dtype) xnorm = helper.create_variable_for_type_inference(dtype=X.dtype) ynorm = helper.create_variable_for_type_inference(dtype=X.dtype) helper.append_op( type='cos_sim', inputs={'X': [X], 'Y': [Y]}, outputs={'Out': [out], 'XNorm': [xnorm], 'YNorm': [ynorm]}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout") def dropout(x, dropout_prob, is_test=None, seed=None, name=None, dropout_implementation="downgrade_in_infer"): """ Computes dropout. Drop or keep each element of `x` independently. Dropout is a regularization technique for reducing overfitting by preventing neuron co-adaption during training. The dropout operator randomly sets (according to the given dropout probability) the outputs of some units to zero, while others are remain unchanged. dropout op can be removed from the program to make the program more efficient. Args: x (Variable): The input tensor variable. The data type is float16 or float32 or float64. dropout_prob (float): Probability of setting units to zero. is_test (bool): A flag indicating whether it is in test phrase or not. Default None, in dynamic graph, it use global tracer mode; in static graph, it means False. seed (int): A Python integer used to create random seeds. If this parameter is set to None, a random seed is used. NOTE: If an integer seed is given, always the same output units will be dropped. DO NOT use a fixed seed in training.Default: None. name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train'] 1. downgrade_in_infer(default), downgrade the outcome at inference - train: out = input * mask - inference: out = input * (1.0 - dropout_prob) (mask is a tensor same shape with input, value is 0 or 1 ratio of 0 is dropout_prob) 2. upscale_in_train, upscale the outcome at training time - train: out = input * mask / ( 1.0 - dropout_prob ) - inference: out = input (mask is a tensor same shape with input, value is 0 or 1 ratio of 0 is dropout_prob) Returns: A Variable holding Tensor representing the dropout, has same shape and data type with `x`. Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32") dropped = fluid.layers.dropout(x, dropout_prob=0.5) """ # fast return for p == 0 if dropout_prob == 0: return x def get_attrs(prog, dropout_prob, is_test, seed): if (seed is None or seed == 0) and prog.random_seed != 0: seed = prog.random_seed attrs = { 'dropout_prob': dropout_prob, 'is_test': is_test, 'fix_seed': seed is not None, 'seed': seed if seed is not None else 0, 'dropout_implementation': dropout_implementation, } return attrs if in_dygraph_mode(): if (seed is None or seed == 0) and default_main_program().random_seed != 0: seed = default_main_program().random_seed if is_test is None: is_test = not _dygraph_tracer()._train_mode out, mask = core.ops.dropout( x, 'dropout_prob', dropout_prob, 'is_test', is_test, 'fix_seed', seed is not None, 'seed', seed if seed is not None else 0, 'dropout_implementation', dropout_implementation) return out helper = LayerHelper('dropout', **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'dropout') out = helper.create_variable_for_type_inference(dtype=x.dtype) mask = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.UINT8, stop_gradient=True) attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed) helper.append_op( type='dropout', inputs={'X': [x]}, outputs={'Out': [out], 'Mask': [mask]}, attrs=attrs) return out @templatedoc() def chunk_eval(input, label, chunk_scheme, num_chunk_types, excluded_chunk_types=None, seq_length=None): r""" This operator computes the precision, recall and F1-score for chunk detection. It is often used in sequence tagging tasks, such as Named Entity Recognition(NER). For some basics of chunking, please refer to `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ . This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. Here is a NER example for the usage of these tagging schemes: .. code-block:: python ====== ====== ====== ===== == ============ ===== ===== ===== == ========= Li Ming works at Agricultural Bank of China in Beijing. ====== ====== ====== ===== == ============ ===== ===== ===== == ========= IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC ====== ====== ====== ===== == ============ ===== ===== ===== == ========= There are three chunk types(named entity types) including PER(person), ORG(organization) and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` . Since the implementation of this operator actually uses label ids rather than label strings, to make it work, there should be a way to map label ids to tag types and chunk types. This operator uses the following way to do mapping: .. code-block:: python tag_type = label % num_tag_type chunk_type = label / num_tag_type where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type` is the num of chunk types, and `tag_type` get its value from the following table. .. code-block:: python Scheme Begin Inside End Single plain 0 - - - IOB 0 1 - - IOE - 0 1 - IOBES 0 1 2 3 Accordingly, in the above NER example, if the tagging scheme is IOB and chunk types are ORG, PER and LOC, then the label ids would be as follows: .. code-block:: python B-ORG 0 I-ORG 1 B-PER 2 I-PER 3 B-LOC 4 I-LOC 5 O 6 With which we can map each label id to the corresponding tag type and chunk type correctly. Args: input (Tensor): A Tensor representing the predicted labels from the network. Its shape would be `[N, M, 1]`, where `N` stands for batch size, `M` for sequence length. The data type should be int64. label (Tensor): A Tensor representing the ground-truth labels. It should have the same shape, lod and data type as ``input`` . chunk_scheme (str): Indicate the tagging schemes used here. The value must be IOB, IOE, IOBES or plain. num_chunk_types (int): The number of chunk types. excluded_chunk_types (list, optional): Indicate the chunk types shouldn't be taken into account. It should be a list of chunk type ids(integer). Default None. seq_length(Tensor, optional): A 1D Tensor containing the length of each sequence when ``input`` and ``label`` are Tensor. Default None. Returns: tuple: A tuple including precision, recall, F1-score, chunk number detected, \ chunk number in ground-truth, chunk number correctly detected. Each \ is a Tensor with shape `[1]`. The data type of precision, recall and \ F1-score all is float32, and the others' data type all is int64. Examples: .. code-block:: python import paddle.fluid as fluid dict_size = 10000 label_dict_len = 7 sequence = fluid.data( name='id', shape=[None, 1], lod_level=1, dtype='int64') embedding = fluid.embedding( input=sequence, size=[dict_size, 512]) hidden = fluid.layers.fc(input=embedding, size=512) label = fluid.data( name='label', shape=[None, 1], lod_level=1, dtype='int64') crf = fluid.layers.linear_chain_crf( input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw")) crf_decode = fluid.layers.crf_decoding( input=hidden, param_attr=fluid.ParamAttr(name="crfw")) fluid.layers.chunk_eval( input=crf_decode, label=label, chunk_scheme="IOB", num_chunk_types=int((label_dict_len - 1) / 2)) """ helper = LayerHelper("chunk_eval", **locals()) check_variable_and_dtype(input, 'input', ['int64'], 'chunk_eval') check_variable_and_dtype(label, 'label', ['int64'], 'chunk_eval') # prepare output precision = helper.create_variable_for_type_inference(dtype="float32") recall = helper.create_variable_for_type_inference(dtype="float32") f1_score = helper.create_variable_for_type_inference(dtype="float32") num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64") num_label_chunks = helper.create_variable_for_type_inference(dtype="int64") num_correct_chunks = helper.create_variable_for_type_inference( dtype="int64") this_input = {"Inference": [input], "Label": [label]} if seq_length is not None: this_input["SeqLength"] = [seq_length] helper.append_op( type="chunk_eval", inputs=this_input, outputs={ "Precision": [precision], "Recall": [recall], "F1-Score": [f1_score], "NumInferChunks": [num_infer_chunks], "NumLabelChunks": [num_label_chunks], "NumCorrectChunks": [num_correct_chunks] }, attrs={ "num_chunk_types": num_chunk_types, "chunk_scheme": chunk_scheme, "excluded_chunk_types": excluded_chunk_types or [] }) return (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) @deprecated(since="2.0.0", update_to="paddle.nn.functional.softmax") def softmax(input, use_cudnn=True, name=None, axis=-1): r""" This operator implements the softmax layer. The calculation process is as follows: 1. The dimension :attr:`axis` of the ``input`` will be permuted to the last. 2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's second dimension(row length) is the same as the dimension :attr:`axis` of the input tensor, and the first dimension(column length) is the product of all other dimensions of the input tensor. For each row of the matrix, the softmax operator squashes the K-dimensional(K is the width of the matrix, which is also the size of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional vector of real values in the range [0, 1] that add up to 1. 3. After the softmax operation is completed, the inverse operations of steps 1 and 2 are performed to restore the two-dimensional matrix to the same dimension as the ``input``. It computes the exponential of the given dimension and the sum of exponential values of all the other dimensions in the K-dimensional vector input. Then the ratio of the exponential of the given dimension and the sum of exponential values of all the other dimensions is the output of the softmax operator. For each row :math:`i` and each column :math:`j` in the matrix, we have: .. math:: Out[i, j] = \\frac{\\exp(X[i, j])}{\\sum_j(exp(X[i, j])} Example: .. code-block:: text Case 1: Input: X.shape = [2, 3, 4] X.data = [[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]] Attrs: axis = -1 Output: Out.shape = [2, 3, 4] Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.07232949, 0.19661193, 0.19661193, 0.53444665]], [[0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426], [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]] Case 2: Input: X.shape = [2, 3, 4] X.data = [[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]] Attrs: axis = 1 Output: Out.shape = [2, 3, 4] Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783], [0.01786798, 0.01786798, 0.04661262, 0.04661262], [0.97555875, 0.97555875, 0.93623955, 0.93623955]], [[0.00490169, 0.00490169, 0.00490169, 0.00490169], [0.26762315, 0.26762315, 0.26762315, 0.26762315], [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] Args: input (Tensor): The input tensor. A multi-dimension ``Tensor`` with type float32 or float64. use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \ library is installed. To improve performance, set use_cudnn to True by default. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None. will be named automatically. Default: None. axis (int, optional): The index of dimension to perform softmax calculations, it should be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of input tensor. Default: -1. -1 means the last dimension. Returns: Tensor: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` . Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.to_tensor([[[2.0, 3.0, 4.0, 5.0], [3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 8.0, 9.0]], [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0], [6.0, 7.0, 8.0, 9.0]]], dtype='float32') y = F.softmax(x, axis=1) print(y) # [[[0.00657326, 0.00657326, 0.01714783, 0.01714783], # [0.01786798, 0.01786798, 0.04661262, 0.04661262], # [0.97555870, 0.97555870, 0.93623954, 0.93623954]], # [[0.00490169, 0.00490169, 0.00490169, 0.00490169], # [0.26762316, 0.26762316, 0.26762316, 0.26762316], # [0.72747517, 0.72747517, 0.72747517, 0.72747517]]] """ if in_dygraph_mode(): return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn) inputs = {"X": [input]} attrs = {"axis": axis, "use_cudnn": use_cudnn} helper = LayerHelper('softmax', **locals()) check_variable_and_dtype(input, 'input/x', ['float16', 'float32', 'float64'], 'softmax') dtype = helper.input_dtype() softmax_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="softmax", inputs={"X": input}, outputs={"Out": softmax_out}, attrs=attrs) return softmax_out def conv2d(input, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format="NCHW"): r""" :api_attr: Static Graph The convolution2D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input and Output are in NCHW or NHWC format, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Filter is in MCHW format, where M is the number of output image channels, C is the number of input image channels, H is the height of the filter, and W is the width of the filter. If the groups is greater than 1, C will equal the number of input image channels divided by the groups. Please refer to UFLDL's `convolution <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ for more details. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) Where: * :math:`X`: Input value, a tensor with NCHW or NHWC format. * :math:`W`: Filter value, a tensor with MCHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type of input is float16 or float32 or float64. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_height, filter_size_width). Otherwise, filter_size_height = filter_size_width =\ filter_size. stride (int|tuple): The stride size. It means the stride in convolution. If stride is a tuple, it must contain two integers, (stride_height, stride_width). Otherwise, stride_height = stride_width = stride. Default: stride = 1. padding (string|int|list|tuple): The padding size. It means the number of zero-paddings on both sides for each dimension.If `padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If padding size is a tuple or list, it could be in three forms: `[pad_height, pad_width]` or `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NHWC"`, `pool_padding` can be in the form `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. dilation (int|tuple): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1. groups (int): The groups number of the Conv2d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv2d. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str): Activation type, if it is set to None, activation is not appended. Default: None name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Tensor representing the conv2d, whose data type is the same with input. If act is None, the tensor storing the convolution result, and if act is not None, the tensor storing convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCHW" or "NHWC". ValueError: If the channel dimmention of the input is less than or equal to zero. ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ShapeError: If the input is not 4-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels * groups. ShapeError: If the number of output channels is not be divided by groups. Examples: .. code-block:: python import paddle paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32') conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu") print(conv2d.shape) # [-1, 2, 30, 30] """ check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'conv2d') num_channels = input.shape[1] if not isinstance(use_cudnn, bool): raise ValueError("Attr(use_cudnn) should be True or False. Received " "Attr(use_cudnn): %s. " % str(use_cudnn)) if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'. Received " "Attr(data_format): %s." % str(data_format)) channel_last = (data_format == "NHWC") num_channels = input.shape[3] if channel_last else input.shape[1] if num_channels < 0: raise ValueError( "The channel dimmention of the input(%s) should be defined. " "Received: %s." % (str(input.shape), str(num_channels))) assert param_attr is not False, "param_attr should not be False here." l_type = 'conv2d' if (num_channels == groups and num_filters % num_channels == 0 and not use_cudnn): l_type = 'depthwise_conv2d' helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError( "the channel of input must be divisible by groups," "received: the channel of input is {}, the shape of input is {}" ", the groups is {}".format(num_channels, input.shape, groups)) num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') stride = utils.convert_to_list(stride, 2, 'stride') dilation = utils.convert_to_list(dilation, 2, 'dilation') # padding def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 4: if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:4] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): if not (padding[0] == [0, 0] and padding[3] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:3] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 4, 'padding') if utils._is_symmetric_padding(padding, 2): padding = [padding[0], padding[2]] else: padding = utils.convert_to_list(padding, 2, 'padding') return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding)) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0] padding = _update_padding(padding, data_format) filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer()) pre_bias = helper.create_variable_for_type_inference(dtype) if (core.is_compiled_with_cuda() and paddle.fluid.get_flags( "FLAGS_conv2d_disable_cudnn")["FLAGS_conv2d_disable_cudnn"]): use_cudnn = False helper.append_op( type=l_type, inputs={ 'Input': input, 'Filter': filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'use_mkldnn': False, 'fuse_relu_before_depthwise_conv': False, "padding_algorithm": padding_algorithm, "data_format": data_format, }) if data_format == 'NCHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4) return helper.append_activation(pre_act) def conv3d(input, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format="NCDHW"): r""" :api_attr: Static Graph The convolution3D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input(Input) and Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Convlution3D is similar with Convlution2D but adds one dimension(depth). If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) In the above equation: * :math:`X`: Input value, a tensor with NCDHW or NDHWC format. * :math:`W`: Filter value, a tensor with MCDHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\ H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 Args: input (Tensor): The input is 5-D Tensor with shape [N, C, D, H, W], the data type of input is float16 or float32 or float64. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_depth, filter_size_height, filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ filter_size_width = filter_size. stride (int|tuple): The stride size. It means the stride in convolution. If stride is a tuple, it must contain three integers, (stride_depth, stride_height, stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1. padding (string|int|list|tuple): The padding size. It means the number of zero-paddings on both sides for each dimension. If `padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If padding size is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NDHWC"`, `pool_padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. dilation (int|tuple): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1. groups (int): The groups number of the Conv3d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1 param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv3d. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as param_attr. If it is set to None, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str): Activation type, if it is set to None, activation is not appended. Default: None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Variable holding Tensor representing the conv3d, whose data type is the same with input. If act is None, the tensor variable storing the convolution result, and if act is not None, the tensor variable storing convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCDHW" or "NDHWC". ValueError: If the channel dimmention of the input is less than or equal to zero. ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ShapeError: If the input is not 5-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels * groups. ShapeError: If the number of output channels is not be divided by groups. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) res = paddle.static.nn.conv3d(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) x = np.random.rand(1, 3, 12, 32, 32).astype("float32") output = exe.run(feed={"data": x}, fetch_list=[res]) print(output) """ l_type = 'conv3d' assert param_attr is not False, "param_attr should not be False here." helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() if not isinstance(use_cudnn, bool): raise ValueError("Attr(use_cudnn) should be True or False. Received " "Attr(use_cudnn): %s. " % str(use_cudnn)) if data_format not in ["NCDHW", "NDHWC"]: raise ValueError( "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received " "Attr(data_format): %s." % str(data_format)) channel_last = (data_format == "NDHWC") num_channels = input.shape[4] if channel_last else input.shape[1] if num_channels < 0: raise ValueError( "The channel dimmention of the input(%s) should be defined. " "Received: %s." % (str(input.shape), str(num_channels))) if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError( "The number of input channels must be divisible by Attr(groups). " "Received: number of channels(%s), groups(%s)." % (str(num_channels), str(groups))) num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 3, 'filter_size') stride = utils.convert_to_list(stride, 3, 'stride') dilation = utils.convert_to_list(dilation, 3, 'dilation') def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 5: if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:5] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): if not (padding[0] == [0, 0] and padding[4] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:4] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] elif is_list_or_tuple(padding) and len(padding) == 6: padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] else: padding = utils.convert_to_list(padding, 3, 'padding') return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding)) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0] padding = _update_padding(padding, data_format) input_shape = input.shape filter_shape = [num_filters, num_filter_channels] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * filter_size[ 2] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer()) pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, inputs={ 'Input': input, 'Filter': filter_param, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'use_mkldnn': False, "padding_algorithm": padding_algorithm, "data_format": data_format, }) if data_format == 'NCDHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) return helper.append_activation(pre_act) @templatedoc() def pool2d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCHW"): """ ${comment} Args: input (Variable): The input tensor of pooling operator which is a 4-D tensor with shape [N, C, H, W]. The format of input tensor is `"NCHW"` or `"NHWC"`, where `N` is batch size, `C` is the number of channels, `H` is the height of the feature, and `W` is the width of the feature. The data type if float32 or float64. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). Otherwise, the pool kernel size will be a square of an int. pool_type: ${pooling_type_comment} pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list, it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise, the pool stride size will be a square of an int. pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If pool padding size is a tuple or list, it could be in three forms: `[pad_height, pad_width]` or `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NHWC"`, `pool_padding` can be in the form `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Otherwise, the pool padding size will be a square of an int. global_pooling (bool): ${global_pooling_comment} use_cudnn (bool): ${use_cudnn_comment} ceil_mode (bool): ${ceil_mode_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. exclusive (bool): Whether to exclude padding points in average pooling mode, default is `true`. data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: Variable: The output tensor of pooling result. The data type is same as input tensor. Raises: ValueError: If `pool_type` is not "max" nor "avg". ValueError: If `global_pooling` is False and `pool_size` is -1. TypeError: If `use_cudnn` is not a bool value. ValueError: If `data_format` is not "NCHW" or "NHWC". ValueError: If `pool_padding` is a string, but not "SAME" or "VALID". ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True. ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero. ShapeError: If the input is not a 4-D or 5-D Tensor. ShapeError: If the dimension of input minus the size of `pool_stride` is not 2. ShapeError: If the size of `pool_size` and `pool_stride` is not equal. ShapeError: If the output's shape calculated is not greater than 0. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') # max pool2d pool2d = fluid.layers.pool2d( input = data, pool_size = 2, pool_type = "max", pool_stride = 1, global_pooling=False) # average pool2d pool2d = fluid.layers.pool2d( input = data, pool_size = 2, pool_type = "avg", pool_stride = 1, global_pooling=False) # global average pool2d pool2d = fluid.layers.pool2d( input = data, pool_size = 2, pool_type = "avg", pool_stride = 1, global_pooling=True) # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW". out_1 = fluid.layers.pool2d( input = data, pool_size = 3, pool_type = "avg", pool_stride = 1, pool_padding = [1, 2, 1, 0], data_format = "NCHW") # Attr(pool_padding) is a string, Attr(data_format) is "NCHW". out_2 = fluid.layers.pool2d( input = data, pool_size = 3, pool_type = "avg", pool_stride = 1, pool_padding = "VALID", data_format = "NCHW") """ if pool_type not in ["max", "avg"]: raise ValueError( "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When Attr(global_pooling) is False, Attr(pool_size) must be passed " "and be a valid value. Received pool_size: %s." % str(pool_size)) if not isinstance(use_cudnn, bool): raise TypeError("Attr(use_cudnn) should be True or False. Received " "Attr(use_cudnn): %s." % str(use_cudnn)) if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'. Received " "Attr(data_format): %s." % str(data_format)) pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride') def update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 4: if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero pool_padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:4] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): if not (padding[0] == [0, 0] and padding[3] == [0, 0]): raise ValueError( "Non-zero pool_padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:3] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 4, 'padding') if utils._is_symmetric_padding(padding, 2): padding = [padding[0], padding[2]] else: padding = utils.convert_to_list(padding, 2, 'padding') return padding padding_algorithm = "EXPLICIT" if isinstance(pool_padding, str): pool_padding = pool_padding.upper() if pool_padding not in ["SAME", "VALID"]: raise ValueError( "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'." % str(pool_padding)) if pool_padding == "VALID": padding_algorithm = "VALID" pool_padding = [0, 0] if ceil_mode != False: raise ValueError( "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. " "Received ceil_mode: True.") elif pool_padding == "SAME": padding_algorithm = "SAME" pool_padding = [0, 0] pool_padding = update_padding(pool_padding, data_format) op_type = 'pool2d' helper = LayerHelper(op_type, **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type=op_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": pool_type, "ksize": pool_size, "global_pooling": global_pooling, "strides": pool_stride, "paddings": pool_padding, "padding_algorithm": padding_algorithm, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, "use_mkldnn": False, "exclusive": exclusive, "data_format": data_format, }) return pool_out @templatedoc() def pool3d(input, pool_size=-1, pool_type="max", pool_stride=1, pool_padding=0, global_pooling=False, use_cudnn=True, ceil_mode=False, name=None, exclusive=True, data_format="NCDHW"): """ ${comment} Args: input (Variable): The input tensor of pooling operator, which is a 5-D tensor with shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is the number of channels, `D` is the depth of the feature, `H` is the height of the feature, and `W` is the width of the feature. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three integers, (pool_size_Depth, pool_size_Height, pool_size_Width). Otherwise, the pool kernel size will be the cube of an int. pool_type (string): ${pooling_type_comment} pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If pool stride size is a tuple or list, it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`. Otherwise, the pool stride size will be a cube of an int. pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NDHWC"`, `pool_padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. global_pooling (bool): ${global_pooling_comment} use_cudnn (bool): ${use_cudnn_comment} ceil_mode (bool): ${ceil_mode_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. exclusive (bool): Whether to exclude padding points in average pooling mode, default is true. data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`. Returns: Variable: The output tensor of pooling result. The data type is same as input tensor. Raises: ValueError: If `pool_type` is not "max" nor "avg". ValueError: If `global_pooling` is False and `pool_size` is -1. TypeError: If `use_cudnn` is not a bool value. ValueError: If `data_format` is not "NCDHW" or "NDHWC". ValueError: If `pool_padding` is a string, but not "SAME" or "VALID". ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True. ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero. ShapeError: If the input is not a 4-D or 5-D Tensor. ShapeError: If the dimension of input minus the size of `pool_stride` is not 2. ShapeError: If the size of `pool_size` and `pool_stride` is not equal. ShapeError: If the output's shape calculated is not greater than 0. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32') # max pool3d pool3d = fluid.layers.pool3d( input = data, pool_size = 2, pool_type = "max", pool_stride = 1, global_pooling=False) # average pool3d pool3d = fluid.layers.pool3d( input = data, pool_size = 2, pool_type = "avg", pool_stride = 1, global_pooling=False) # global average pool3d pool3d = fluid.layers.pool3d( input = data, pool_size = 2, pool_type = "avg", pool_stride = 1, global_pooling=True) # example 1: # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW". out_1 = fluid.layers.pool3d( input = data, pool_size = 2, pool_type = "avg", pool_stride = 1, pool_padding = [1, 2, 1, 0, 1, 2], global_pooling = False, data_format = "NCDHW") # example 2: # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW". out_2 = fluid.layers.pool3d( input = data, pool_size = 3, pool_type = "avg", pool_stride = 1, pool_padding = "VALID", global_pooling = False, data_format = "NCDHW") """ if pool_type not in ["max", "avg"]: raise ValueError( "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if global_pooling is False and pool_size == -1: raise ValueError( "When Attr(global_pooling) is False, Attr(pool_size) must be passed " "and be a valid value. Received Attr(pool_size): %s." % str(pool_size)) if not isinstance(use_cudnn, bool): raise TypeError("Attr(use_cudnn) should be True or False. Received " "Attr(use_cudnn): %s. " % str(use_cudnn)) if data_format not in ["NCDHW", "NDHWC"]: raise ValueError( "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received " "Attr(data_format): %s" % str(data_format)) pool_size = utils.convert_to_list(pool_size, 3, 'pool_size') pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride') def update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, (list, tuple)): return True return False if is_list_or_tuple(padding) and len(padding) == 5: if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero pool_padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:5] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): if not (padding[0] == [0, 0] and padding[4] == [0, 0]): raise ValueError( "Non-zero pool_padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:4] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] elif is_list_or_tuple(padding) and len(padding) == 6: padding = utils.convert_to_list(padding, 6, 'padding') if utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] else: padding = utils.convert_to_list(padding, 3, 'padding') return padding padding_algorithm = "EXPLICIT" if isinstance(pool_padding, str): pool_padding = pool_padding.upper() if pool_padding not in ["SAME", "VALID"]: raise ValueError( "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'." % str(pool_padding)) if pool_padding == "VALID": padding_algorithm = "VALID" pool_padding = [0, 0, 0] if ceil_mode != False: raise ValueError( "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. " "Received ceil_mode: True.") elif pool_padding == "SAME": padding_algorithm = "SAME" pool_padding = [0, 0, 0] pool_padding = update_padding(pool_padding, data_format) op_type = "pool3d" helper = LayerHelper(op_type, **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type=op_type, inputs={"X": input}, outputs={"Out": pool_out}, attrs={ "pooling_type": pool_type, "ksize": pool_size, "global_pooling": global_pooling, "strides": pool_stride, "paddings": pool_padding, "padding_algorithm": padding_algorithm, "use_cudnn": use_cudnn, "ceil_mode": ceil_mode, "use_mkldnn": False, "exclusive": exclusive, "data_format": data_format, }) return pool_out @deprecated(since="2.0.0") @templatedoc(op_type="pool2d") def adaptive_pool2d(input, pool_size, pool_type="max", require_index=False, name=None): r""" This operation calculates the output based on the input, pool_size, pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(pool_size) should contain two elements which represent height and width, respectively. Also the H and W dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]] For average adaptive pool2d: .. math:: hstart &= floor(i * H_{in} / H_{out}) hend &= ceil((i + 1) * H_{in} / H_{out}) wstart &= floor(j * W_{in} / W_{out}) wend &= ceil((j + 1) * W_{in} / W_{out}) Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} Args: input (Tensor): The input tensor of pooling operator, which is a 4-D tensor with shape [N, C, H, W]. The format of input tensor is NCHW, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. The data type is float32 or float64. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). pool_type: ${pooling_type_comment} require_index (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: The output tensor of adaptive pooling result. The data type is same as input tensor. Raises: ValueError: 'pool_type' is not 'max' nor 'avg'. ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'. ValueError: 'pool_size' should be a list or tuple with length as 2. Examples: .. code-block:: python # average adaptive pool2d # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], # output shape is [N, C, m, n], adaptive pool divide H and W dimensions # of input data into m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: # # for i in range(m): # for j in range(n): # hstart = floor(i * H / m) # hend = ceil((i + 1) * H / m) # wstart = floor(i * W / n) # wend = ceil((i + 1) * W / n) # output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend]) # import paddle paddle.enable_static() data = paddle.rand(shape=[1,3,32,32]) pool_out = paddle.fluid.layers.adaptive_pool2d( input=data, pool_size=[3, 3], pool_type='avg') # max adaptive pool2d # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], # output shape is [N, C, m, n], adaptive pool divide H and W dimensions # of input data into m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: # # for i in range(m): # for j in range(n): # hstart = floor(i * H / m) # hend = ceil((i + 1) * H / m) # wstart = floor(i * W / n) # wend = ceil((i + 1) * W / n) # output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend]) # import paddle data = paddle.rand(shape=[1,3,32,32]) pool_out = paddle.fluid.layers.adaptive_pool2d( input=data, pool_size=[3, 3], pool_type='max') """ check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'], 'adaptive_pool2d') check_type(pool_type, 'pool_type', str, 'adaptive_pool2d') check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool2d') check_type(require_index, 'require_index', bool, 'adaptive_pool2d') if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if pool_type == "avg" and require_index: raise ValueError( "invalid setting 'require_index' true when 'pool_type' is 'avg'.") pool_size = utils.convert_to_list(pool_size, 2, 'pool_size') if pool_type == "max": l_type = 'max_pool2d_with_index' else: l_type = "pool2d" helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) outputs = {"Out": pool_out} if pool_type == "max": mask = helper.create_variable_for_type_inference(dtype) outputs["Mask"] = mask helper.append_op( type=l_type, inputs={"X": input}, outputs=outputs, attrs={ "pooling_type": pool_type, "ksize": pool_size, "adaptive": True, }) return (pool_out, mask) if require_index else pool_out @deprecated(since="2.0.0") @templatedoc(op_type="pool3d") def adaptive_pool3d(input, pool_size, pool_type="max", require_index=False, name=None): r""" This operation calculates the output based on the input, pool_size, pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Parameters(pool_size) should contain three elements which represent height and width, respectively. Also the D, H and W dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1], pool_size[2]] For average adaptive pool3d: .. math:: dstart &= floor(i * D_{in} / D_{out}) dend &= ceil((i + 1) * D_{in} / D_{out}) hstart &= floor(j * H_{in} / H_{out}) hend &= ceil((j + 1) * H_{in} / H_{out}) wstart &= floor(k * W_{in} / W_{out}) wend &= ceil((k + 1) * W_{in} / W_{out}) Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)} Args: input (Tensor): The input tensor of pooling operator, which is a 5-D tensor with shape [N, C, D, H, W]. The format of input tensor is NCDHW, where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. The data type is float32 or float64. pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three integers, (Depth, Height, Width). pool_type: ${pooling_type_comment} require_index (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: The output tensor of adaptive pooling result. The data type is same as input tensor. Raises: ValueError: 'pool_type' is not 'max' nor 'avg'. ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'. ValueError: 'pool_size' should be a list or tuple with length as 2. Examples: .. code-block:: python # average adaptive pool3d # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n], # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions # of input data into l * m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: # # for i in range(l): # for j in range(m): # for k in range(n): # dstart = floor(i * D / l) # dend = ceil((i + 1) * D / l) # hstart = floor(j * H / m) # hend = ceil((j + 1) * H / m) # wstart = floor(k * W / n) # wend = ceil((k + 1) * W / n) # output[:, :, i, j, k] = # avg(input[:, :, dstart:dend, hstart: hend, wstart: wend]) # import paddle paddle.enable_static() data = paddle.rand(shape=[1,3,32,32,32]) pool_out = paddle.fluid.layers.adaptive_pool3d( input=data, pool_size=[3, 3, 3], pool_type='avg') # max adaptive pool3d # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n], # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions # of input data into l * m * n grids averagely and performs poolings in each # grid to get output. # adaptive average pool performs calculations as follow: # # for i in range(l): # for j in range(m): # for k in range(n): # dstart = floor(i * D / l) # dend = ceil((i + 1) * D / l) # hstart = floor(j * H / m) # hend = ceil((j + 1) * H / m) # wstart = floor(k * W / n) # wend = ceil((k + 1) * W / n) # output[:, :, i, j, k] = # avg(input[:, :, dstart:dend, hstart: hend, wstart: wend]) # import paddle data = paddle.rand(shape=[1,3,32,32,32]) pool_out = paddle.fluid.layers.adaptive_pool3d( input=data, pool_size=[3, 3, 3], pool_type='max') """ check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'], 'adaptive_pool3d') check_type(pool_type, 'pool_type', str, 'adaptive_pool3d') check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool3d') check_type(require_index, 'require_index', bool, 'adaptive_pool3d') if pool_type not in ["max", "avg"]: raise ValueError( "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", str(pool_type)) if pool_type == "avg" and require_index: raise ValueError( "invalid setting 'require_index' true when 'pool_type' is 'avg'.") pool_size = utils.convert_to_list(pool_size, 3, 'pool_size') if pool_type == "max": l_type = 'max_pool3d_with_index' else: l_type = "pool3d" helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) outputs = {"Out": pool_out} if pool_type == "max": mask = helper.create_variable_for_type_inference(dtype) outputs["Mask"] = mask helper.append_op( type=l_type, inputs={"X": input}, outputs=outputs, attrs={ "pooling_type": pool_type, "ksize": pool_size, "adaptive": True, }) return (pool_out, mask) if require_index else pool_out def batch_norm(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, use_global_stats=False): r""" :api_attr: Static Graph **Batch Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. The required data format for this layer is one of the following: 1. NHWC `[batch, in_height, in_width, in_channels]` 2. NCHW `[batch, in_channels, in_height, in_width]` Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_ for more details. :math:`input` is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \ mini-batch\ mean \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\ moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) moving_mean is global mean and moving_var is global variance. When use_global_stats = True, the :math:`\\mu_{\\beta}` and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch. They are global (or running) statistics. (It usually got from the pre-trained model.) The training and testing (or inference) have the same behavior: .. math:: \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta Note: if build_strategy.sync_batch_norm=True, the batch_norm in network will use sync_batch_norm automatically. `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`. Args: input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type is float16 or float32 or float64. act(string, Default None): Activation type, linear|relu|prelu|... is_test (bool, Default False): A flag indicating whether it is in test phrase or not. momentum(float|Tensor, Default 0.9): The value used for the moving_mean and moving_var computation. This should be a float number or a Tensor with shape [1] and data type as float32. The updated formula is: :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)` :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)` Default is 0.9. epsilon(float, Default 1e-05): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|None): The parameter attribute for Parameter `scale` of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. in_place(bool, Default False): Make the input and output of batch norm reuse memory. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm will save global mean with the string. moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance. If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm will save global variance with the string. do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model average when model average is enabled. use_global_stats(bool, Default False): Whether to use global mean and variance. In inference or test mode, set use_global_stats to true or is_test to true, and the behavior is equivalent. In train mode, when setting use_global_stats True, the global mean and variance are also used during train period. Returns: A Tensor which is the result after applying batch normalization on the input, has same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = paddle.static.nn.fc(x=x, size=200) print(hidden1.shape) # [3, 200] hidden2 = paddle.static.nn.batch_norm(input=hidden1) print(hidden2.shape) # [3, 200] """ assert bias_attr is not False, "bias_attr should not be False in batch_norm." helper = LayerHelper('batch_norm', **locals()) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'batch_norm') dtype = helper.input_dtype() # use fp32 for bn parameter if dtype == core.VarDesc.VarType.FP16: dtype = core.VarDesc.VarType.FP32 input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) mean = helper.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=dtype) mean.stop_gradient = True variance = helper.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=dtype) variance.stop_gradient = True # create output # mean and mean_out share the same memory mean_out = mean # variance and variance_out share the same memory variance_out = variance saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) reserve_space = None if not is_test: reserve_space = helper.create_variable_for_type_inference( dtype=helper.input_dtype(), stop_gradient=True) batch_norm_out = input if in_place else \ helper.create_variable_for_type_inference(dtype) inputs = { "X": input, "Scale": scale, "Bias": bias, "Mean": mean, "Variance": variance } attrs = { "epsilon": epsilon, "is_test": is_test, "data_layout": data_layout, "use_mkldnn": False, "fuse_with_relu": False, "use_global_stats": use_global_stats } if isinstance(momentum, Variable): inputs['MomemtumTensor'] = momentum else: attrs['momentum'] = momentum outputs = { "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance } if reserve_space is not None: outputs["ReserveSpace"] = reserve_space helper.append_op( type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs) return helper.append_activation(batch_norm_out) def inplace_abn(input, act=None, is_test=False, momentum=0.9, epsilon=1e-05, param_attr=None, bias_attr=None, data_layout='NCHW', name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, use_global_stats=False, act_alpha=1.0): r""" **In-place Activation Batch Normalization Layer** This layer calculates batch normalization and activation with in-place memory. For batch normalization calculations, see `fluid.layers.batch_norm`. For in-place activation batch normalization, see `In-Place Activated BatchNorm for Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_ `inplace_abn` only support activation type as `None`, `identity`, `leaky_relu`, `elu` currently. `inplace_abn` only support data type as `float32`, `float64` currently. Note: if build_strategy.sync_batch_norm=True, the batch_norm in network will use sync_batch_norm automatically. `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`. Args: input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type is float16 or float32 or float64. act(string, Default None): Activation type, linear|relu|prelu|... is_test (bool, Default False): A flag indicating whether it is in test phrase or not. momentum(float|Variable, Default 0.9): The value used for the moving_mean and moving_var computation. This should be a float number or a Variable with shape [1] and data type as float32. The updated formula is: :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)` :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)` Default is 0.9. epsilon(float, Default 1e-05): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|None): The parameter attribute for Parameter `scale` of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr(ParamAttr|None): The parameter attribute for the bias of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it is set to None, inplace_abn will save global mean with a random name, otherwise, inplace_abn will save global mean with the string. moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance. If it is set to None, inplace_abn, will save global variance with a random name, otherwise, inplace_abn will save global variance with the string. do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model average when model average is enabled. use_global_stats(bool, Default False): Whether to use global mean and variance. In inference or test mode, set use_global_stats to true or is_test to true, and the behavior is equivalent. In train mode, when setting use_global_stats True, the global mean and variance are also used during train period. act_alpha(float, Default 1.0): when activation is in ['elu', 'identity', 'leaky_relu'], inplace activative batch normalization will be used, and alpha parameter for activation can be given by this parameter. Returns: A Variable holding Tensor which is the result after applying batch normalization and activation on the input, has same shape and data type with input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') hidden2 = fluid.layers.inplace_abn(input=hidden1) hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2) """ assert act in [None, 'identity', 'leaky_relu', 'elu'], \ "inplace_abn only support act as None, 'identity', " \ "'leaky_relu', 'elu' currently" assert bias_attr is not False, "bias_attr should not be False in inplace_abn." helper = LayerHelper('inplace_abn', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'inplace_abn') dtype = helper.input_dtype() input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) mean = helper.create_parameter( attr=ParamAttr( name=moving_mean_name, initializer=Constant(0.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=dtype) mean.stop_gradient = True variance = helper.create_parameter( attr=ParamAttr( name=moving_variance_name, initializer=Constant(1.0), trainable=False, do_model_average=do_model_average_for_mean_and_var), shape=param_shape, dtype=dtype) variance.stop_gradient = True # create output # mean and mean_out share the same memory mean_out = mean # variance and variance out share the same memory variance_out = variance saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) reserve_space = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) batch_norm_out = input inputs = { "X": input, "Scale": scale, "Bias": bias, "Mean": mean, "Variance": variance } attrs = { "epsilon": epsilon, "is_test": is_test, "data_layout": data_layout, "use_mkldnn": False, "fuse_with_relu": False, "use_global_stats": use_global_stats, "activation": act, "alpha": act_alpha, } if isinstance(momentum, Variable): inputs['MomemtumTensor'] = momentum else: attrs['momentum'] = momentum outputs = { "Y": batch_norm_out, "MeanOut": mean_out, "VarianceOut": variance_out, "SavedMean": saved_mean, "SavedVariance": saved_variance } if reserve_space is not None: outputs["ReserveSpace"] = reserve_space helper.append_op( type="inplace_abn", inputs=inputs, outputs=outputs, attrs=attrs) return batch_norm_out def instance_norm(input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None): r""" :api_attr: Static Graph **Instance Normalization Layer** Can be used as a normalizer function for convolution or fully_connected operations. The required data format for this layer is one of the following: DataLayout: NCHW `[batch, in_channels, in_height, in_width]` Refer to `Instance Normalization: The Missing Ingredient for Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_ for more details. :math:`input` is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\ \\ mean\ of\ one\ feature\ map\ in\ mini-batch \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift Note: `H` means height of feature map, `W` means width of feature map. Args: input(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type is float32 or float64. epsilon(float, Default 1e-05): A value added to the denominator for numerical stability. Default is 1e-5. param_attr(ParamAttr|None|bool, optional): The parameter attribute for Parameter `scale` of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. If the param_attr is set to False, instance_norm will not create param_attr. Default: None. bias_attr(ParamAttr|None|bool, optional): The parameter attribute for the bias of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. If the Initializer of the bias_attr is not set, the bias is initialized zero. If the bias_attr is set to False, instance_norm will not create bias_attr. Default: None. name(string, Default None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: A Tensor which is the result after applying instance normalization on the input, has same shape and data type with input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32') hidden1 = paddle.static.nn.fc(x, size=200) hidden2 = paddle.static.nn.instance_norm(hidden1) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'instance_norm') if param_attr is False: assert bias_attr is False, "param_attr and bias_attr must be set to Fasle at the same time in instance_norm" helper = LayerHelper('instance_norm', **locals()) dtype = helper.input_dtype() # use fp32 for in parameter if dtype == core.VarDesc.VarType.FP16: dtype = core.VarDesc.VarType.FP32 input_shape = input.shape channel_num = input_shape[1] param_shape = [channel_num] if param_attr != False and bias_attr != False: # create parameter scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True, default_initializer=Constant(0.0)) # create output saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) instance_norm_out = helper.create_variable_for_type_inference(dtype) inputs = {"X": input} if param_attr != False and bias_attr != False: inputs["Scale"] = scale inputs["Bias"] = bias helper.append_op( type="instance_norm", inputs=inputs, outputs={ "Y": instance_norm_out, "SavedMean": saved_mean, "SavedVariance": saved_variance }, attrs={"epsilon": epsilon, }) return instance_norm_out @static_only def data_norm(input, act=None, epsilon=1e-05, param_attr=None, data_layout='NCHW', in_place=False, name=None, moving_mean_name=None, moving_variance_name=None, do_model_average_for_mean_and_var=True, slot_dim=-1, sync_stats=False, summary_decay_rate=0.9999999, enable_scale_and_shift=False): r""" :api_attr: Static Graph **Data Normalization Layer** This op can be used as a normalizer function for conv2d and fully_connected operations. The required data format for this layer is one of the following: 1. NHWC `[batch, in_height, in_width, in_channels]` 2. NCHW `[batch, in_channels, in_height, in_width]` :math:`input` is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \ mini-batch\ mean \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift Args: input(Tensor): The input Tensor. act(string, Default None): Activation type, linear|relu|prelu|... epsilon(float, Default 1e-05): param_attr(ParamAttr): The parameter attribute for Parameter `scale`. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. in_place(bool, Default False): Make the input and output of batch norm reuse memory. name(string, Default None): A name for this layer(optional). If set None, the layer will be named automatically. moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance. do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model average when model average is enabled. slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first place of the embedding is the historical show number (occurence time of this feature id with a label 0). If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate the show number and judge if the show number is zero. If so, we choose to skip normalization on this embedding. sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the summary messages. summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary. enable_scale_and_shift(bool, Default False): do scale&shift after normalization. Returns: Tensor: A tensor which is the result after applying data normalization on the input. Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.randn(shape=[32,100]) hidden2 = paddle.static.nn.data_norm(input=x) """ helper = LayerHelper('data_norm', **locals()) dtype = helper.input_dtype() input_shape = input.shape if data_layout == 'NCHW': channel_num = input_shape[1] else: if data_layout == 'NHWC': channel_num = input_shape[-1] else: raise ValueError("unsupported data layout:" + data_layout) param_shape = [channel_num] batch_size_default = 1e4 batch_sum_default = 0.0 batch_square_sum_default = 1e4 scale_w_default = 1.0 bias_default = 0.0 if param_attr and isinstance(param_attr, dict): batch_size_default = param_attr.get("batch_size", 1e4) batch_sum_default = param_attr.get("batch_sum", 0.0) batch_square_sum_default = param_attr.get("batch_square", 1e4) if enable_scale_and_shift: scale_w_default = param_attr.get("scale_w", 1.0) bias_default = param_attr.get("bias", 0.0) # create scale and shift(bias) when enable_scale_and_shift is True if name == None: name = "dn" if enable_scale_and_shift: scale_w = helper.create_parameter( attr=ParamAttr( name=name + '.scale_w', initializer=Constant(value=float(scale_w_default)), trainable=True), shape=param_shape, dtype=input.dtype) bias = helper.create_parameter( attr=ParamAttr( name=name + '.bias', initializer=Constant(value=float(bias_default)), trainable=True), shape=param_shape, dtype=input.dtype) # create parameter batch_size = helper.create_parameter( attr=ParamAttr( name=name + '.batch_size', initializer=Constant(value=float(batch_size_default)), trainable=True), shape=param_shape, dtype=input.dtype) batch_sum = helper.create_parameter( attr=ParamAttr( name=name + '.batch_sum', initializer=Constant(value=float(batch_sum_default)), trainable=True), shape=param_shape, dtype=input.dtype) batch_square_sum = helper.create_parameter( attr=ParamAttr( name=name + '.batch_square_sum', initializer=Constant(value=float(batch_square_sum_default)), trainable=True), shape=param_shape, dtype=input.dtype) means = helper.create_variable(dtype=dtype, stop_gradient=True) scales = helper.create_variable(dtype=dtype, stop_gradient=True) data_norm_out = input if in_place else helper.create_variable(dtype=dtype) inputs = { "X": input, "BatchSize": batch_size, "BatchSum": batch_sum, "BatchSquareSum": batch_square_sum } attrs = { "epsilon": epsilon, "sync_stats": sync_stats, "summary_decay_rate": summary_decay_rate, } if slot_dim > 0: attrs["slot_dim"] = slot_dim if enable_scale_and_shift: attrs["enable_scale_and_shift"] = enable_scale_and_shift if enable_scale_and_shift: inputs["scale_w"] = scale_w inputs["bias"] = bias helper.append_op( type="data_norm", inputs=inputs, outputs={ "Y": data_norm_out, "Means": means, "Scales": scales, "BatchSize": batch_size, "BatchSum": batch_sum, "BatchSquareSum": batch_square_sum }, attrs=attrs) return helper.append_activation(data_norm_out) @templatedoc() def layer_norm(input, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, name=None): r""" :api_attr: Static Graph **Layer Normalization Layer** The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data. Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_ The formula is as follows: .. math:: \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon} y & = f(\\frac{g}{\\sigma}(x - \\mu) + b) - :math:`x`: the vector representation of the summed inputs to the neurons in that layer. - :math:`H`: the number of hidden units in a layers - :math:`\\epsilon`: the small value added to the variance to prevent division by zero. - :math:`g`: the trainable scale parameter. - :math:`b`: the trainable bias parameter. Args: input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64. scale(bool, optional): Whether to learn the adaptive gain :math:`g` after normalization. Default: True. shift(bool, optional): Whether to learn the adaptive bias :math:`b` after normalization. Default: True. begin_norm_axis(int, optional): The normalization will be performed along dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`. Default: 1. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-05. param_attr(ParamAttr, optional): The parameter attribute for the learnable gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is omitted. If :attr:`scale` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as scale. The :attr:`param_attr` is initialized as 1 if it is added. Default: None. bias_attr(ParamAttr, optional): The parameter attribute for the learnable bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is omitted. If :attr:`shift` is True and :attr:`param_attr` is None, a default :code:`ParamAttr` would be added as bias. The :attr:`bias_attr` is initialized as 0 if it is added. Default: None. act(str, optional): Activation to be applied to the output of layer normalization. Default: None. name(str): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: ``Tensor`` indicating the normalized result, the data type is the same as ``input`` , and the return dimension is the same as ``input`` . Examples: .. code-block:: python import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32') output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1) print(output.shape) # [8, 32, 32] """ assert in_dygraph_mode( ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!" helper = LayerHelper('layer_norm', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'layer_norm') dtype = helper.input_dtype() # create intput and parameters inputs = {'X': input} input_shape = input.shape param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])] if scale: assert param_attr is not False, "param_attr should not be False when using scale." scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) inputs['Scale'] = scale else: if param_attr: warnings.warn("param_attr is only available with scale is True.") if shift: assert bias_attr is not False, "bias_attr should not be False when using shift." bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) inputs['Bias'] = bias else: if bias_attr: warnings.warn("bias_attr is only available with shift is True.") # create output mean_out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) variance_out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) layer_norm_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="layer_norm", inputs=inputs, outputs={ "Y": layer_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis}) return helper.append_activation(layer_norm_out) @templatedoc() def group_norm(input, groups, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, data_layout='NCHW', name=None): """ :api_attr: Static Graph **Group Normalization Layer** Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ . Parameters: input(Tensor): 4-D Tensor, the data type is float32 or float64. groups(int): The number of groups that divided from channels, the data type is int32. epsilon(float, optional): The small value added to the variance to prevent division by zero, the data type is float32. Default: 1e-05. param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter attribute. If a bool type, only False is supported, which means there is no weight parameter. Default: None, the default weight parameter attribute is used. For more information, please refer to :ref:`api_guide_ParamAttr` . bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter attribute. If a bool type, only False is supported, which means there is no bias parameter. Default: None, the default bias parameter attribute is used. For more information, please refer to :ref:`api_guide_ParamAttr` . act(str, optional): Activation to be applied to the output of group normalization. data_layout(str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: A 4-D Tensor has same data type and data format with `input`. Examples: .. code-block:: python import paddle paddle.enable_static() data = paddle.static.data(name='data', shape=[2, 8, 32, 32], dtype='float32') x = paddle.static.nn.group_norm(input=data, groups=4) print(x.shape) # [2, 8, 32, 32] """ helper = LayerHelper('group_norm', **locals()) dtype = helper.input_dtype() check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'group_norm') # create intput and parameters inputs = {'X': input} input_shape = input.shape if data_layout != 'NCHW' and data_layout != 'NHWC': raise ValueError( "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received " + data_layout + " but only NCHW or NHWC supported.") channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1] param_shape = [channel_num] if param_attr: scale = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, default_initializer=Constant(1.0)) inputs['Scale'] = scale if bias_attr: bias = helper.create_parameter( attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) inputs['Bias'] = bias # create output mean_out = helper.create_variable(dtype=dtype, stop_gradient=True) variance_out = helper.create_variable(dtype=dtype, stop_gradient=True) group_norm_out = helper.create_variable(dtype=dtype) helper.append_op( type="group_norm", inputs=inputs, outputs={ "Y": group_norm_out, "Mean": mean_out, "Variance": variance_out, }, attrs={ "epsilon": epsilon, "groups": groups, "data_layout": data_layout }) return helper.append_activation(group_norm_out) @templatedoc() def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): r""" :api_attr: Static Graph **Spectral Normalization Layer** This operation calculates the spectral normalization value of weight parameters of fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D Parameters. Output tensor will be in same shape with input tensor. Calculations are showed as follows. Step 1: Generate vector U in shape of [H], and V in shape of [W]. While H is the :attr:`dim` th dimension of the input weights, and W is the product result of remaining dimensions. Step 2: :attr:`power_iters` should be a positive integer, do following calculations with U and V for :attr:`power_iters` rounds. Calculations as follows: .. math:: \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2} \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2} Step 3: Calculate :math:`\sigma(\mathbf{W})` and normalize weight values. .. math:: \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v} \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})} Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ . Args: weight(Tensor): ${weight_comment} dim(int): ${dim_comment} power_iters(int): ${power_iters_comment} eps(float): ${eps_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: A tensor of weight parameters after spectral normalization. The data type and shape is same as input tensor. Examples: .. code-block:: python import paddle paddle.enable_static() weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32') x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2) print(x.shape) # [2, 8, 32, 32] """ helper = LayerHelper('spectral_norm', **locals()) check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'spectral_norm') check_type(dim, 'dim', int, 'spectral_norm') check_type(power_iters, 'power_iters', int, 'spectral_norm') check_type(eps, 'eps', float, 'spectral_norm') dtype = weight.dtype # create intput and parameters inputs = {'Weight': weight} input_shape = weight.shape h = input_shape[dim] w = np.prod(input_shape) // h u = helper.create_parameter( attr=ParamAttr(), shape=[h], dtype=dtype, default_initializer=Normal(0., 1.)) u.stop_gradient = True inputs['U'] = u v = helper.create_parameter( attr=ParamAttr(), shape=[w], dtype=dtype, default_initializer=Normal(0., 1.)) inputs['V'] = v v.stop_gradient = True # create output out = helper.create_variable(dtype=dtype) helper.append_op( type="spectral_norm", inputs=inputs, outputs={"Out": out, }, attrs={ "dim": dim, "power_iters": power_iters, "eps": eps, }) return out def conv2d_transpose(input, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format='NCHW'): r""" :api_attr: Static Graph The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) Where: * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format. * :math:`W`: Filter value, a 4-D Tensor with MCHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ] Note: The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, when stride > 1, conv2d maps multiple input shape to the same output shape, so for conv2d_transpose, when stride > 1, input shape maps multiple output shape. If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, conv2d_transpose can compute the kernel size automatically. Args: input(Tensor): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format, its data type is float32 or float64. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple, optional): The output image size. If output size is a tuple, it must contain two integers, (image_height, image_width). None if use filter_size, padding, and stride to calculate output_size. If output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. output_size and filter_size should not be None at the same time. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_height, filter_size_width). Otherwise, filter_size_height = filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. filter_size and output_size should not be None at the same time. stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. If stride is a tuple, it must contain two integers, (stride_height, stride_width). Otherwise, stride_height = stride_width = stride. Default: stride = 1. padding(str|int|list|tuple, optional): The padding size. It means the number of zero-paddings on both sides for each dimension. If `padding` is a string, either 'VALID' or 'SAME' which is the padding algorithm. If `padding` is a tuple or list, it could be in three forms: `[pad_height, pad_width]` or `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `"NHWC"`, `padding` can be in the form `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_height, filter_size_width). Otherwise, filter_size_height = filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups = 1. param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Tensor representing the conv2d_transpose, whose data type is the same with input and shape is (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor storing the transposed convolution result, and if act is not None, the tensor storing transposed convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCHW" or "NHWC". ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ValueError: If `output_size` and filter_size are None at the same time. ShapeError: If the input is not 4-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels. ShapeError: If the size of `output_size` is not equal to that of `stride`. Examples: .. code-block:: python import paddle paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32') conv2d_transpose = paddle.static.nn.conv2d_transpose(input=data, num_filters=2, filter_size=3) print(conv2d_transpose.shape) # [-1, 2, 34, 34] """ assert param_attr is not False, "param_attr should not be False in conv2d_transpose." if data_format not in ['NCHW', 'NHWC']: raise ValueError( "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received " + data_format + " but only NCHW or NHWC supported.") input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1] op_type = 'conv2d_transpose' if (input_channel == groups and num_filters == input_channel and not use_cudnn): op_type = 'depthwise_conv2d_transpose' helper = LayerHelper(op_type, **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv2d_transpose must be Variable") stride = utils.convert_to_list(stride, 2, 'stride') dilation = utils.convert_to_list(dilation, 2, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 4: if is_list_or_tuple(padding[0]) and (data_format == "NCHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:4] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"): if not (padding[0] == [0, 0] and padding[3] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:3] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 4, 'padding') else: padding = utils.convert_to_list(padding, 2, 'padding') padding = [padding[0], padding[0], padding[1], padding[1]] return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding)) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0, 0] padding = _update_padding(padding, data_format) if filter_size is None: if output_size is None: raise ValueError("output_size must be set when filter_size is None") if isinstance(output_size, int): output_size = [output_size, output_size] h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1] w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2] filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] + padding[1] - 1) // dilation[0] + 1 filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] + padding[3] - 1) // dilation[1] + 1 filter_size = [filter_size_h, filter_size_w] else: filter_size = utils.convert_to_list(filter_size, 2, 'conv2d_transpose.filter_size') if len(padding) == 4 and utils._is_symmetric_padding(padding, 2): padding = [padding[0], padding[2]] if output_size is None: output_size = [] elif isinstance(output_size, (list, tuple, int)): output_size = utils.convert_to_list(output_size, 2, 'output_size') else: raise ValueError("output_size should be int, list[int] or tuple[int]") groups = 1 if groups is None else groups filter_shape = [input_channel, num_filters // groups] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=op_type, inputs={'Input': [input], 'Filter': [img_filter]}, outputs={'Output': pre_bias}, attrs={ 'output_size': output_size, 'strides': stride, 'paddings': padding, 'padding_algorithm': padding_algorithm, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'data_format': data_format }) if data_format == 'NCHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4) out = helper.append_activation(pre_act) return out def conv3d_transpose(input, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, name=None, data_format='NCDHW'): r""" :api_attr: Static Graph The convolution3D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma (W \\ast X + b) In the above equation: * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format. * :math:`W`: Filter value, a Tensor with MCDHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` Where .. math:: D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\ H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\ D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ] Note: The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, when stride > 1, conv3d maps multiple input shape to the same output shape, so for conv3d_transpose, when stride > 1, input shape maps multiple output shape. If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \ H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, conv3d_transpose can compute the kernel size automatically. Args: input(Tensor): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type of input is float32 or float64. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple, optional): The output image size. If output size is a tuple, it must contain three integers, (image_depth, image_height, image_width). This parameter only works when filter_size is None. If output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. Output_size and filter_size should not be None at the same time. filter_size(int|tuple, optional): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_depth, filter_size_height, filter_size_width). Otherwise, filter_size_depth = filter_size_height = \ filter_size_width = filter_size. None if use output size to calculate filter_size. Default: None. filter_size and output_size should not be None at the same time. padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string, either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding` is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `'NCDHW'`, `padding` can be in the form `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`. when `data_format` is `'NDHWC'`, `padding` can be in the form `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`. Default: padding = 0. stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. If stride is a tuple, it must contain three integers, (stride_depth, stride_height, stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1. dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. Default: dilation = 1. groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1 param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv3d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str, optional): Activation type, if it is set to None, activation is not appended. Default: None. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: A Variable holding Tensor representing the conv3d_transpose, whose data type is the same with input and shape is (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor variable storing the transposed convolution result, and if act is not None, the tensor variable storing transposed convolution and non-linearity activation result. Raises: ValueError: If the type of `use_cudnn` is not bool. ValueError: If `data_format` is not "NCDHW" or "NDHWC". ValueError: If `padding` is a string, but not "SAME" or "VALID". ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 or the element corresponding to the input's channel is not 0. ValueError: If `output_size` and filter_size are None at the same time. ShapeError: If the input is not 5-D Tensor. ShapeError: If the input's dimension size and filter's dimension size not equal. ShapeError: If the dimension size of input minus the size of `stride` is not 2. ShapeError: If the number of input channels is not equal to filter's channels. ShapeError: If the size of `output_size` is not equal to that of `stride`. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_static() data = paddle.static.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32') param_attr = paddle.framework.ParamAttr(name='conv3d.weight', initializer=paddle.nn.initializer.XavierNormal(), learning_rate=0.001) res = paddle.static.nn.conv3d_transpose(input=data, num_filters=2, filter_size=3, act="relu", param_attr=param_attr) place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) x = np.random.rand(1, 3, 12, 32, 32).astype("float32") output = exe.run(feed={"data": x}, fetch_list=[res]) print(output) """ assert param_attr is not False, "param_attr should not be False in conv3d_transpose." if data_format not in ['NCDHW', 'NDHWC']: raise ValueError( "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received " + data_format + " but only NCDHW or NDHWC supported.") l_type = "conv3d_transpose" helper = LayerHelper(l_type, **locals()) if not isinstance(input, Variable): raise TypeError("Input of conv3d_transpose must be Variable") input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[ -1] stride = utils.convert_to_list(stride, 3, 'stride') dilation = utils.convert_to_list(dilation, 3, 'dilation') if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") def _update_padding(padding, data_format): def is_list_or_tuple(ele): if isinstance(ele, list) or isinstance(ele, tuple): return True return False if is_list_or_tuple(padding) and len(padding) == 5: if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"): if not (padding[0] == [0, 0] and padding[1] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[2:5] padding = [ele for a_list in padding for ele in a_list] elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"): if not (padding[0] == [0, 0] and padding[4] == [0, 0]): raise ValueError( "Non-zero padding(%s) in the batch or channel dimensions " "is not supported." % str(padding)) padding = padding[1:4] padding = [ele for a_list in padding for ele in a_list] padding = utils.convert_to_list(padding, 6, 'padding') elif is_list_or_tuple(padding) and len(padding) == 6: padding = utils.convert_to_list(padding, 6, 'padding') else: padding = utils.convert_to_list(padding, 3, 'padding') padding = [ padding[0], padding[0], padding[1], padding[1], padding[2], padding[2] ] return padding padding_algorithm = "EXPLICIT" if isinstance(padding, str): padding = padding.upper() if padding not in ["SAME", "VALID"]: raise ValueError( "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." % str(padding)) if padding == "VALID": padding_algorithm = "VALID" padding = [0, 0, 0, 0, 0, 0] elif padding == "SAME": padding_algorithm = "SAME" padding = [0, 0, 0, 0, 0, 0] padding = _update_padding(padding, data_format) if filter_size is None: if output_size is None: raise ValueError("output_size must be set when filter_size is None") if isinstance(output_size, int): output_size = [output_size, output_size, output_size] d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1] h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2] w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3] filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] + padding[1] - 1) // dilation[0] + 1 filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] + padding[3] - 1) // dilation[1] + 1 filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] + padding[5] - 1) // dilation[2] + 1 filter_size = [filter_size_d, filter_size_h, filter_size_w] else: filter_size = utils.convert_to_list(filter_size, 3, 'conv3d_transpose.filter_size') if len(padding) == 6 and utils._is_symmetric_padding(padding, 3): padding = [padding[0], padding[2], padding[4]] if output_size is None: output_size = [] elif isinstance(output_size, (list, tuple, int)): output_size = utils.convert_to_list(output_size, 3, 'output_size') else: raise ValueError("output_size should be int, list[int] or tuple[int]") groups = 1 if groups is None else groups filter_shape = [input_channel, num_filters // groups] + filter_size img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) if data_format == 'NCDHW': data_format = 'NCHW' if data_format == 'NDHWC': data_format = 'NHWC' pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=l_type, inputs={'Input': [input], 'Filter': [img_filter]}, outputs={'Output': pre_bias}, attrs={ 'output_size': output_size, 'strides': stride, 'paddings': padding, 'padding_algorithm': padding_algorithm, 'dilations': dilation, 'groups': groups, 'use_cudnn': use_cudnn, 'data_format': data_format }) if data_format == 'NCHW': pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) else: pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5) out = helper.append_activation(pre_act) return out def reduce_sum(input, dim=None, keep_dim=False, name=None): """ Computes the sum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor, the data type is float32, float64, int32, int64. dim (list|int, optional): The dimensions along which the sum is performed. If :attr:`None`, sum all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: Tensor, results of summation operation on the specified dim of input tensor, it's data type is the same as input's Tensor. Raises: TypeError, if out data type is different with the input data type. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = fluid.data(name='x', shape=[2, 4], dtype='float32') fluid.layers.reduce_sum(x) # [3.5] fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6] fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6] fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]] # y is a Tensor variable with shape [2, 2, 2] and elements as below: # [[[1, 2], [3, 4]], # [[5, 6], [7, 8]]] # Each example is followed by the corresponding output tensor. y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32') fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26] fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20] """ if dim is not None and not isinstance(dim, list): dim = [dim] if in_dygraph_mode(): reduce_all = True if dim == None or dim == [] or len(dim) == len( input.shape) else False dim = dim if dim != None and dim != [] else [0] return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all) attrs = { 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False } check_variable_and_dtype( input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum') helper = LayerHelper('reduce_sum', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='reduce_sum', inputs={'X': input}, outputs={'Out': out}, attrs=attrs) return out @deprecated(since="2.0.0", update_to="paddle.mean") def reduce_mean(input, dim=None, keep_dim=False, name=None): """ Computes the mean of the input tensor's elements along the given dimension. Args: input (Variable): The input variable which is a Tensor, the data type is float32, float64, int32, int64. dim (list|int, optional): The dimension along which the mean is computed. If `None`, compute the mean over all elements of :attr:`input` and return a variable with a single element, otherwise it must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank(input) + dim[i]`. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: Tensor, results of average on the specified dim of input tensor, it's data type is the same as input's Tensor. Raises: TypeError, if out data type is different with the input data type. Examples: .. code-block:: python import paddle.fluid as fluid # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = fluid.data(name='x', shape=[2, 4], dtype='float32') fluid.layers.reduce_mean(x) # [0.4375] fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8] fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4] fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]] # y is a Tensor variable with shape [2, 2, 2] and elements as below: # [[[1.0, 2.0], [3.0, 4.0]], # [[5.0, 6.0], [7.0, 8.0]]] # Each example is followed by the corresponding output tensor. y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32') fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5] fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0] """ return paddle.mean(x=input, axis=dim, keepdim=keep_dim, name=name) def reduce_max(input, dim=None, keep_dim=False, name=None): """ Computes the maximum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor, the data type is float32, float64, int32, int64. dim (list|int, optional): The dimension along which the maximum is computed. If :attr:`None`, compute the maximum over all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: Tensor, results of maximum on the specified dim of input tensor, it's data type is the same as input's Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = fluid.data(name='x', shape=[2, 4], dtype='float32') fluid.layers.reduce_max(x) # [0.9] fluid.layers.reduce_max(x, dim=0) # [0.2, 0.3, 0.6, 0.9] fluid.layers.reduce_max(x, dim=-1) # [0.9, 0.7] fluid.layers.reduce_max(x, dim=1, keep_dim=True) # [[0.9], [0.7]] # y is a Tensor variable with shape [2, 2, 2] and elements as below: # [[[1.0, 2.0], [3.0, 4.0]], # [[5.0, 6.0], [7.0, 8.0]]] # Each example is followed by the corresponding output tensor. y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32') fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0] fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0] """ helper = LayerHelper('reduce_max', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( type='reduce_max', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False }) return out def reduce_min(input, dim=None, keep_dim=False, name=None): """ Computes the minimum of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor, the data type is float32, float64, int32, int64. dim (list|int, optional): The dimensions along which the minimum is computed. If :attr:`None`, compute the minimum over all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: Tensor, result of minimum on the specified dim of input tensor, it's data type is the same as input's Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = fluid.data(name='x', shape=[2, 4], dtype='float32') fluid.layers.reduce_min(x) # [0.1] fluid.layers.reduce_min(x, dim=0) # [0.1, 0.2, 0.5, 0.7] fluid.layers.reduce_min(x, dim=-1) # [0.2, 0.1] fluid.layers.reduce_min(x, dim=1, keep_dim=True) # [[0.2], [0.1]] # y is a Tensor variable with shape [2, 2, 2] and elements as below: # [[[1.0, 2.0], [3.0, 4.0]], # [[5.0, 6.0], [7.0, 8.0]]] # Each example is followed by the corresponding output tensor. y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32') fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0] fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0] """ helper = LayerHelper('reduce_min', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( type='reduce_min', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False }) return out def reduce_prod(input, dim=None, keep_dim=False, name=None): """ Computes the product of tensor elements over the given dimension. Args: input (Variable): The input variable which is a Tensor, the data type is float32, float64, int32, int64. dim (int|list|tuple, optional): The dimensions along which the product is performed. If :attr:`None`, multiply all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. keep_dim (bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true, default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: Tensor, result of product on the specified dim of input tensor, it's data type is the same as input's Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() # x is a Tensor variable with following elements: # [[0.2, 0.3, 0.5, 0.9] # [0.1, 0.2, 0.6, 0.7]] # Each example is followed by the corresponding output tensor. x = fluid.data(name='x', shape=[2, 4], dtype='float32') fluid.layers.reduce_prod(x) # [0.0002268] fluid.layers.reduce_prod(x, dim=0) # [0.02, 0.06, 0.3, 0.63] fluid.layers.reduce_prod(x, dim=-1) # [0.027, 0.0084] fluid.layers.reduce_prod(x, dim=1, keep_dim=True) # [[0.027], [0.0084]] # y is a Tensor variable with shape [2, 2, 2] and elements as below: # [[[1.0, 2.0], [3.0, 4.0]], # [[5.0, 6.0], [7.0, 8.0]]] # Each example is followed by the corresponding output tensor. y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32') fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0] fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0] """ helper = LayerHelper('reduce_prod', **locals()) if dim is not None and not isinstance(dim, list): if isinstance(dim, tuple): dim = list(dim) elif isinstance(dim, int): dim = [dim] else: raise TypeError( "The type of axis must be int, list or tuple, but received {}". format(type(dim))) check_variable_and_dtype( input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_prod') out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='reduce_prod', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False }) return out def reduce_all(input, dim=None, keep_dim=False, name=None): """ This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result. Args: input (Tensor): the input tensor, it's data type should be `bool`. dim (list|int|optional): The dimension along which the logical and is computed. If :attr:`None`, compute the logical and over all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. keep_dim (bool): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. The default value is None. Returns: Tensor, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np # x is a bool Tensor variable with following elements: # [[True, False] # [True, True]] x = fluid.layers.assign(np.array([[1, 0], [1, 1]], dtype='int32')) x = fluid.layers.cast(x, 'bool') out = fluid.layers.reduce_all(x) # False out = fluid.layers.reduce_all(x, dim=0) # [True, False] out = fluid.layers.reduce_all(x, dim=-1) # [False, True] # keep_dim=False, x.shape=(2,2), out.shape=(2,) out = fluid.layers.reduce_all(x, dim=1, keep_dim=True) # [[False], [True]] # keep_dim=True, x.shape=(2,2), out.shape=(2,1) """ check_variable_and_dtype(input, 'input', ('bool'), 'reduce_all') helper = LayerHelper('reduce_all', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( type='reduce_all', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False }) return out def reduce_any(input, dim=None, keep_dim=False, name=None): """ This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result. Args: input (Tensor): the input tensor, it's data type should be `bool`. dim (list|int|optional): The dimension along which the logical and is computed. If :attr:`None`, compute the logical and over all elements of :attr:`input` and return a Tensor variable with a single element, otherwise must be in the range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. keep_dim (bool): Whether to reserve the reduced dimension in the output Tensor. The result tensor will have one fewer dimension than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np # x is a bool Tensor variable with following elements: # [[True, False] # [False, False]] x = fluid.layers.assign(np.array([[1, 0], [0, 0]], dtype='int32')) x = fluid.layers.cast(x, 'bool') out = fluid.layers.reduce_any(x) # True out = fluid.layers.reduce_any(x, dim=0) # [True, False] out = fluid.layers.reduce_any(x, dim=-1) # [True, False] # keep_dim=False, x.shape=(2,2), out.shape=(2,) out = fluid.layers.reduce_any(x, dim=1, keep_dim=True) # [[True], [False]] # keep_dim=True, x.shape=(2,2), out.shape=(2,1) """ check_variable_and_dtype(input, 'input', ('bool'), 'reduce_any') helper = LayerHelper('reduce_any', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( type='reduce_any', inputs={'X': input}, outputs={'Out': out}, attrs={ 'dim': dim if dim != None and dim != [] else [0], 'keep_dim': keep_dim, 'reduce_all': True if dim == None or dim == [] or len(dim) == len(input.shape) else False }) return out def split(input, num_or_sections, dim=-1, name=None): """ Split the input tensor into multiple sub-Tensors. Args: input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64. num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections`` indicates the number of equal sized sub-Tensors that the ``input`` will be divided into. If ``num_or_sections`` is a list or tuple, the length of it indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors' dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim. dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`, the dimension to split along is :math:`rank(input) + dim`. Default is -1. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: list(Tensor): The list of segmented Tensors. Example: .. code-block:: python import paddle.fluid as fluid # input is a Tensor which shape is [3, 9, 5] input = fluid.data( name="input", shape=[3, 9, 5], dtype="float32") out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5] out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1) # out0.shape [3, 2, 5] # out1.shape [3, 3, 5] # out2.shape [3, 4, 5] out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1) # out0.shape [3, 2, 5] # out1.shape [3, 3, 5] # out2.shape [3, 4, 5] # dim is negative, the real dim is (rank(input) + axis) which real # value is 1. out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2) # out0.shape [3, 3, 5] # out1.shape [3, 3, 5] # out2.shape [3, 3, 5] """ if in_dygraph_mode(): num = None attrs = () if isinstance(dim, Variable): dim = dim.numpy() dim = dim.item(0) dim = (len(input.shape) + dim) if dim < 0 else dim attrs += ('axis', dim) if isinstance(num_or_sections, int): num = num_or_sections attrs += ('num', num_or_sections) elif isinstance(num_or_sections, (list, tuple)): num = len(num_or_sections) if utils._contain_var(num_or_sections): for index, item in enumerate(num_or_sections): if isinstance(item, Variable): num_or_sections[index] = num_or_sections[index].numpy()[ 0] attrs += ('sections', list(num_or_sections)) else: attrs += ('sections', list(num_or_sections)) else: raise TypeError( "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but " "received %s." % (type(num_or_sections))) return core.ops.split(input, num, *attrs) check_variable_and_dtype( input, 'input', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'split') check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split') check_type(dim, 'dim', (int, Variable), 'split') if isinstance(dim, Variable): check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split') helper = LayerHelper('split', **locals()) input_shape = input.shape inputs = {'X': input} attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0} def _get_SectionsTensorList(one_list): tensor_list = [] unk_dim_idx = -1 for idx, dim_size in enumerate(one_list): if isinstance(dim_size, Variable): dim_size.stop_gradient = True tensor_list.append(dim_size) else: assert (isinstance(dim_size, int)) if dim_size == -1: assert unk_dim_idx == -1, ( "Only one value of 'num_or_section' in split can " "be -1. But received num_or_section[%d] is also -1." % idx) unk_dim_idx = idx temp_out = helper.create_variable_for_type_inference('int32') fill_constant( [1], 'int32', dim_size, force_cpu=True, out=temp_out) tensor_list.append(temp_out) return tensor_list if isinstance(dim, Variable): dim.stop_gradient = True inputs['AxisTensor'] = dim else: dim = (len(input_shape) + dim) if dim < 0 else dim attrs['axis'] = dim if isinstance(num_or_sections, int): assert num_or_sections > 1, 'num_or_sections must be more than 1.' if isinstance(dim, int) and input_shape[dim] > 0: assert input_shape[dim] % num_or_sections ==0, \ "The input's size along the split dimension " \ "must be evenly divisible by Attr(num_or_sections). " \ "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim]) num = num_or_sections else: if isinstance(dim, int) and input_shape[dim] > 0: assert len(num_or_sections) <= input_shape[ dim], 'len(num_or_sections) must not be more than input.shape[dim].' num = len(num_or_sections) attrs['sections'] = list( map(lambda ele: -1 if isinstance(ele, Variable) else ele, num_or_sections)) if utils._contain_var(num_or_sections): inputs['SectionsTensorList'] = _get_SectionsTensorList( num_or_sections) outs = [ helper.create_variable_for_type_inference(dtype=helper.input_dtype()) for i in range(num) ] helper.append_op( type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs) return outs def l2_normalize(x, axis, epsilon=1e-12, name=None): r""" This op normalizes `x` along dimension `axis` using an L2 norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes .. math:: y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }} For `x` with more dimensions, this layer independently normalizes each 1-D slice along dimension `axis`. Args: x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64. axis(int): The axis on which to apply normalization. If `axis < 0`, \ the dimension to normalization is rank(X) + axis. -1 is the last dimension. epsilon(float): The epsilon value is used to avoid division by zero, \ the default value is 1e-12. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: The output has the same shape and data type with `x`. Examples: .. code-block:: python # declarative mode import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() input = fluid.data(name="input", shape=[2,3]) output = fluid.layers.l2_normalize(x=input,axis=0) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3).astype("float32") print(input_data) # [[0.5171216 0.12704141 0.56018186] # [0.93251234 0.5382788 0.81709313]] output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data) # [array([[0.48496857, 0.22970329, 0.56545246], # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)] # imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.l2_normalize(x=input, axis=-1) print(output.numpy()) # [[0.66907585 0.16437206 0.7247892 ] # [0.6899054 0.3982376 0.6045142 ]] """ if len(x.shape) == 1: axis = 0 check_variable_and_dtype(x, "X", ("float32", "float64"), "norm") helper = LayerHelper("l2_normalize", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) norm = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="norm", inputs={"X": x}, outputs={"Out": out, "Norm": norm}, attrs={ "axis": 1 if axis is None else axis, "epsilon": epsilon, }) return out @deprecated(since="2.0.0", update_to="paddle.matmul") def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): """ Applies matrix multiplication to two tensors. Currently, the input tensors' rank can be any, but when the rank of any inputs is bigger than 3, this two inputs' rank should be equal. The actual behavior depends on the shapes of :math:`x`, :math:`y` and the flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically: - If a transpose flag is specified, the last two dimensions of the tensor are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the opposite: It is treated as :math:`[D, 1]` in nontransposed form and as :math:`[1, D]` in transposed form. - After transpose, the two tensors are 2-D or n-D and matrix multiplication performs in the following way. - If both are 2-D, they are multiplied like conventional matrices. - If either is n-D, it is treated as a stack of matrices residing in the last two dimensions and a batched matrix multiply supporting broadcast applies on the two tensors. Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and nontransposed, the prepended or appended dimension :math:`1` will be removed after matrix multiplication. Args: x (Variable): The input variable which is a Tensor or LoDTensor. y (Variable): The input variable which is a Tensor or LoDTensor. transpose_x (bool): Whether to transpose :math:`x` before multiplication. transpose_y (bool): Whether to transpose :math:`y` before multiplication. alpha (float): The scale of output. Default 1.0. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Variable: The product Tensor (or LoDTensor) variable. Examples: .. code-block:: python # Examples to clarify shapes of the inputs and output # x: [B, ..., M, K], y: [B, ..., K, N] # fluid.layers.matmul(x, y) # out: [B, ..., M, N] # x: [B, M, K], y: [B, K, N] # fluid.layers.matmul(x, y) # out: [B, M, N] # x: [B, M, K], y: [K, N] # fluid.layers.matmul(x, y) # out: [B, M, N] # x: [M, K], y: [K, N] # fluid.layers.matmul(x, y) # out: [M, N] # x: [B, M, K], y: [K] # fluid.layers.matmul(x, y) # out: [B, M] # x: [K], y: [K] # fluid.layers.matmul(x, y) # out: [1] # x: [M], y: [N] # fluid.layers.matmul(x, y, True, True) # out: [M, N] import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32') y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32') out = fluid.layers.matmul(x, y, True, True) """ attrs = { 'transpose_X': transpose_x, 'transpose_Y': transpose_y, 'alpha': float(alpha), } if in_dygraph_mode(): out = _varbase_creator(dtype=x.dtype) core.ops.matmul(x, y, out, 'transpose_X', transpose_x, 'transpose_Y', transpose_y, 'alpha', float(alpha)) return out def __check_input(x, y): var_names = {'x': x, 'y': y} for name, val in var_names.items(): check_variable_and_dtype( val, name, ['float16', 'float32', 'float64'], 'matmul') x_shape = list(x.shape) y_shape = list(y.shape) if len(x_shape) == 1: x_shape = [1] + x_shape if len(y_shape) == 1: y_shape = y_shape + [1] # check the inner 2 dimensions if transpose_x: x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2] if transpose_y: y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2] if x_shape[-1] != y_shape[-2]: assert (x_shape[-1] == -1) or (y_shape[-2] == -1), \ "After performing an optional transpose, Input X's width should be " \ "equal to Y's width for multiplication " \ "prerequisites. But received X's shape: %s, Y's shape: %s\n" % \ (x_shape, y_shape) if len(y_shape) > 2 and len(x_shape) > 2: for i, dim_x in enumerate(x_shape[:-2]): # don't check neg shape if dim_x < 0 or y_shape[i] < 0: continue if dim_x != y_shape[i]: raise ValueError( "When the matrix is larger than 2 dimensions, the higher " "dimensional values of the two matrices need to be equal. " "But received x_shape[%d] != y_shape[%d]. X's shape: %s, " "Y's shape: %s.\n" % (i, i, x_shape, y_shape)) __check_input(x, y) helper = LayerHelper('matmul', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='matmul', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out def topk(input, k, name=None): """ :alias_main: paddle.topk :alias: paddle.topk,paddle.tensor.topk,paddle.tensor.search.topk :old_api: paddle.fluid.layers.topk This OP is used to find values and indices of the k largest entries for the last dimension. If the input is a 1-D Tensor, finds the k largest entries and outputs their values and indices. If the input is a Tensor with higher rank, this operator computes the top k entries along the last dimension. .. code-block:: text Case 1: Input: input.shape = [3, 4] input.data = [[5, 4, 2, 3], [9, 7, 10, 25], [6, 2, 10, 1]] k = 2 Output: The first output: values.shape = [3, 2] values.data = [[5, 4], [10, 25], [6, 10]] The second output: indices.shape = [3, 2] indices.data = [[0, 1], [2, 3], [0, 2]] Args: input(Variable): The input tensor. Support data types: float32, float64. k(int | Variable): The number of top elements to look for along the last dimension of input tensor. name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`. Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values. Raises: ValueError: If :math:`k < 1` or :math:`k > last dimension of input`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers # set batch size=None input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32') top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5] # 1D Tensor input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32') top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5] # k=Variable input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32') vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0] vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k] """ if in_dygraph_mode(): _k = k.numpy().item(0) if isinstance(k, Variable) else k out, indices = core.ops.top_k(input, 'k', _k) out.stop_gradient = True indices.stop_gradient = True return out, indices inputs = {"X": [input]} attrs = {} if isinstance(k, Variable): inputs['K'] = [k] else: attrs = {'k': k} helper = LayerHelper("top_k", **locals()) values = helper.create_variable_for_type_inference(dtype=input.dtype) indices = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="top_k", inputs=inputs, outputs={"Out": [values], "Indices": [indices]}, attrs=attrs) values.stop_gradient = True indices.stop_gradient = True return values, indices def ctc_greedy_decoder(input, blank, input_length=None, padding_value=0, name=None): r""" This op is used to decode sequences by greedy policy by the following steps: 1. Get the indexes of maximum value for each row in input. a.k.a. numpy.argmax(input, axis=0). 2. For each sequence in result of step1, merge repeated tokens between two blanks and delete all blanks. This op is implemented in two modes: lod and padding, either of them can be used. The input can be either LoDTensor or Tensor, corresponding to lod and padding mode respectively. A simple example as below: .. code-block:: text Given: (1) for lod mode: input.data = [[0.6, 0.1, 0.3, 0.1], [0.3, 0.2, 0.4, 0.1], [0.1, 0.5, 0.1, 0.3], [0.5, 0.1, 0.3, 0.1], [0.5, 0.1, 0.3, 0.1], [0.2, 0.2, 0.2, 0.4], [0.2, 0.2, 0.1, 0.5], [0.5, 0.1, 0.3, 0.1]] input.lod = [[4, 4]] Computation: step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get: [[0], [2], [1], [0]] step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence: [[2], [1]] Finally: output.data = [[2], [1], [3]] output.lod = [[2, 1]] (2) for padding mode: input.data = [[[0.6, 0.1, 0.3, 0.1], [0.3, 0.2, 0.4, 0.1], [0.1, 0.5, 0.1, 0.3], [0.5, 0.1, 0.3, 0.1]], [[0.5, 0.1, 0.3, 0.1], [0.2, 0.2, 0.2, 0.4], [0.2, 0.2, 0.1, 0.5], [0.5, 0.1, 0.3, 0.1]]] input_length.data = [[4], [4]] input.shape = [2, 4, 4] step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get: [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1] step2: Change the argmax result to use padding mode, then argmax result is [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]] step3: Apply ctc_align to padding argmax result, padding_value is 0 Finally: output.data = [[2, 1, 0, 0], [3, 0, 0, 0]] output_length.data = [[2], [1]] Parameters: input(Variable): the probabilities of variable-length sequences. When in lod mode, it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] where Lp is the sum of all input sequences' length and num_classes is the true number of classes. When in padding mode, it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1]. (not including the blank label). The data type can be float32 or float64. blank(int): the blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64. It is used for padding mode. In lod mode, input_length is None. padding_value(int): padding value. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \ data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \ in result were empty, the result LoDTensor will be [-1] with empty \ LoD [[]]. For padding mode, returns a tuple of (output, output_length), which was described as below: output, 2-D Tensor, shape is [batch_size, N], data type is int64. output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \ each sequence of output for padding mode. Return type: For lod mode: Variable For padding mode: tuple of two Variables (output, output_length). Examples: .. code-block:: python # for lod mode import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1) cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0) # for padding mode x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32') x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64') out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0, input_length=x_pad_len) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'ctc_greedy_decoder') helper = LayerHelper("ctc_greedy_decoder", **locals()) _, topk_indices = topk(input, k=1) # ctc align op ctc_out = helper.create_variable_for_type_inference(dtype="int64") if input_length is None: helper.append_op( type="ctc_align", inputs={"Input": [topk_indices]}, outputs={"Output": [ctc_out]}, attrs={"merge_repeated": True, "blank": blank}) return ctc_out else: ctc_out_len = helper.create_variable_for_type_inference(dtype="int64") ctc_input = squeeze(topk_indices, [2]) helper.append_op( type="ctc_align", inputs={"Input": [ctc_input], "InputLength": [input_length]}, outputs={"Output": [ctc_out], "OutputLength": [ctc_out_len]}, attrs={ "merge_repeated": True, "blank": blank, "padding_value": padding_value }) return ctc_out, ctc_out_len def transpose(x, perm, name=None): """ Permute the data dimensions of `input` according to `perm`. The `i`-th dimension of the returned tensor will correspond to the perm[i]-th dimension of `input`. Args: x (Tensor): The input Tensor. It is a N-D Tensor of data types float32, float64, int32. perm (list|tuple): Permute the input according to the data of perm. name (str): The name of this layer. It is optional. Returns: Tensor: A transposed n-D Tensor, with data type being float32, float64, int32, int64. For Example: .. code-block:: text x = [[[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] [[13 14 15 16] [17 18 19 20] [21 22 23 24]]] shape(x) = [2,3,4] # Example 1 perm0 = [1,0,2] y_perm0 = [[[ 1 2 3 4] [13 14 15 16]] [[ 5 6 7 8] [17 18 19 20]] [[ 9 10 11 12] [21 22 23 24]]] shape(y_perm0) = [3,2,4] # Example 2 perm1 = [2,1,0] y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]] [[ 2 14] [ 6 18] [10 22]] [[ 3 15] [ 7 19] [11 23]] [[ 4 16] [ 8 20] [12 24]]] shape(y_perm1) = [4,3,2] Examples: .. code-block:: python import paddle x = paddle.randn([2, 3, 4]) x_transposed = paddle.transpose(x, perm=[1, 0, 2]) print(x_transposed.shape) # [3L, 2L, 4L] """ if in_dygraph_mode(): out, _ = core.ops.transpose2(x, 'axis', perm) return out check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'transpose') check_type(perm, 'perm', (list, tuple), 'transpose') if isinstance(perm, tuple): perm = list(perm) if len(perm) != len(x.shape): raise ValueError( "Input(perm) is the permutation of dimensions of Input(x), " "its length should be equal to dimensions of Input(x), " "but received dimension of Input(x) is %s, " "the length of Input(perm) is %s." % (len(x.shape), len(perm))) for idx, dim in enumerate(perm): if dim >= len(x.shape): raise ValueError( "Each element in Input(perm) should be less than Input(x)'s dimension, " "but %d-th element in Input(perm) is %d which exceeds Input(x)'s " "dimension %d." % (idx, perm[idx], len(x.shape))) helper = LayerHelper('transpose', **locals()) out = helper.create_variable_for_type_inference(x.dtype) x_shape = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='transpose2', inputs={'X': [x]}, outputs={'Out': [out], 'XShape': [x_shape]}, attrs={'axis': perm}) return out def im2sequence(input, filter_size=1, stride=1, padding=0, input_image_size=None, out_stride=1, name=None): r""" :api_attr: Static Graph Extracts image patches from the input tensor to form a tensor of shape {input.batch_size * output_height * output_width, filter_size_height * filter_size_width * input.channels}. This op use filter to scan images and convert these images to sequences. After expanding, the number of time step are output_height * output_width for an image, in which output_height and output_width are calculated by below equation: .. math:: output\_height = 1 + \ (padding\_up + padding\_down + input\_height - filter\_size\_height + stride\_height - 1) / stride\_height \\\\ output\_width = 1 + \ (padding\_left + padding\_right + input\_width - filter\_size\_width + stride\_width - 1) / stride\_width And the dimension of each time step is filter_size_height * filter_size_width * input.channels. Parameters: input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32. filter_size(int32 | List[int32]): The filter size. If filter_size is a List, it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` . Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1. stride(int32 | List[int32]): The stride size. If stride is a List, it must contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1. padding(int32 | List[int32]): The padding size. If padding is a List, it can contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate paddings of four direction. Or it can contain two integers :math:`[padding\_height, padding\_width]` which means padding_up = padding_down = padding_height and padding_left = padding_right = padding_width. Otherwise, a scalar padding means padding_up = padding_down = padding_left = padding_right = padding. Default is 0. input_image_size(Variable, optional): the input contains image real size.It's dim is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None. out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None. If out_stride is List, it must contain two integers, :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise, the out_stride_height = out_stride_width = out_stride. Default is 1. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32. Return Type: Variable Examples: .. code-block:: text Given: x = [[[[ 6. 2. 1.] [ 8. 3. 5.] [ 0. 2. 6.]] [[ 2. 4. 4.] [ 6. 3. 0.] [ 6. 4. 7.]]] [[[ 6. 7. 1.] [ 5. 7. 9.] [ 2. 4. 8.]] [[ 1. 2. 1.] [ 1. 3. 5.] [ 9. 0. 8.]]]] x.dims = {2, 2, 3, 3} And: filter = [2, 2] stride = [1, 1] padding = [0, 0] Then: output.data = [[ 6. 2. 8. 3. 2. 4. 6. 3.] [ 2. 1. 3. 5. 4. 4. 3. 0.] [ 8. 3. 0. 2. 6. 3. 6. 4.] [ 3. 5. 2. 6. 3. 0. 4. 7.] [ 6. 7. 5. 7. 1. 2. 1. 3.] [ 7. 1. 7. 9. 2. 1. 3. 5.] [ 5. 7. 2. 4. 1. 3. 9. 0.] [ 7. 9. 4. 8. 3. 5. 0. 8.]] output.dims = {8, 8} output.lod = [[4, 4]] Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32') output = fluid.layers.im2sequence( input=data, stride=[1, 1], filter_size=[2, 2]) """ assert not in_dygraph_mode(), ( "sequence layer is not supported in dygraph mode yet.") check_variable_and_dtype(input, 'input', ['float32'], 'im2sequence') if isinstance(filter_size, int): filter_size = [filter_size, filter_size] if isinstance(stride, int): stride = [stride, stride] if isinstance(padding, int): padding = [padding, padding] if len(padding) == 2: padding.append(padding[0]) padding.append(padding[1]) inputs = {"X": input} attrs = {"kernels": filter_size, "strides": stride, "paddings": padding} if input_image_size: if isinstance(out_stride, int): out_stride = [out_stride, out_stride] inputs["Y"] = input_image_size attrs["out_stride"] = out_stride helper = LayerHelper('im2sequence', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out @templatedoc() def row_conv(input, future_context_size, param_attr=None, act=None): """ :api_attr: Static Graph ${comment} Args: input (${x_type}): ${x_comment}. future_context_size (int): Future context size. Please note, the shape of convolution kernel is [future_context_size + 1, D]. param_attr (ParamAttr): Attributes of parameters, including name, initializer etc. act (str): Non-linear activation to be applied to output variable. Returns: ${out_comment}. Examples: .. code-block:: python # for LodTensor inputs import paddle paddle.enable_static() x = paddle.static.data(name='x', shape=[9, 16], dtype='float32', lod_level=1) out = paddle.static.nn.row_conv(input=x, future_context_size=2) # for Tensor inputs x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32') out = paddle.static.nn.row_conv(input=x, future_context_size=2) """ helper = LayerHelper('row_conv', **locals()) check_variable_and_dtype(input, 'input', ['float32'], 'row_conv') dtype = helper.input_dtype() filter_shape = [future_context_size + 1, input.shape[-1]] filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='row_conv', inputs={'X': [input], 'Filter': [filter_param]}, outputs={'Out': [out]}) return helper.append_activation(out) @templatedoc() def multiplex(inputs, index, name=None): """ Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor. If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` . And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` . For Example: .. code-block:: text Given: inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]], [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]], [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]], [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]] index = [[3],[0],[1],[2]] out = [[3,0,3,4], # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4] [0,1,3,4], # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4] [1,2,4,2], # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2] [2,3,3,4]] # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4] Args: inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2. index (Tensor): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Output of multiplex OP, with data type being float32, float64, int32, int64. Examples: .. code-block:: python import paddle import numpy as np img1 = np.array([[1, 2], [3, 4]]).astype(np.float32) img2 = np.array([[5, 6], [7, 8]]).astype(np.float32) inputs = [paddle.to_tensor(img1), paddle.to_tensor(img2)] index = paddle.to_tensor(np.array([[1], [0]]).astype(np.int32)) res = paddle.multiplex(inputs, index) print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)] """ if in_dygraph_mode(): return core.ops.multiplex(index, inputs) helper = LayerHelper('multiplex', **locals()) check_type(inputs, 'inputs', (list), 'multiplex') if len(inputs) < 2: raise ValueError( "inputs should be a list object with at least 2 elements.") for id, x in enumerate(inputs): check_variable_and_dtype(x, 'input[' + str(id) + ']', ['float32', 'float64', 'int32', 'int64'], 'multiplex') check_variable_and_dtype(index, "index", ['int32', 'int64'], 'multiplex') out = helper.create_variable_for_type_inference(inputs[0].dtype) helper.append_op( type='multiplex', inputs={'X': inputs, 'Ids': index}, outputs={'Out': [out]}) return out def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): """ This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`. It takes the first dimension of :attr:`x` and :attr:`y` as batch size. For each instance, it computes the smooth L1 loss element by element first and then sums all the losses. So the shape of output Variable is [batch_size, 1]. Args: x (Variable): A tensor with rank at least 2. The input value of smooth L1 loss op with shape [batch_size, dim1, ..., dimN]. A LoDTensor or Tensor with type float32. y (Variable): A tensor with rank at least 2. The target value of smooth L1 loss op with same shape as :attr:`x`. A LoDTensor or Tensor with type float32. inside_weight (Variable|None): A tensor with rank at least 2. This input is optional and should have same shape with :attr:`x`. If provided, the result of (:attr:`x` - :attr:`y`) will be multiplied by this tensor element by element. A Tensor with type float32. outside_weight (Variable|None): A tensor with rank at least 2. This input is optional and should have same shape with :attr:`x`. If provided, the out smooth L1 loss will be multiplied by this tensor element by element. A Tensor with type float32. sigma (float|None): Hyper parameter of smooth L1 loss layer. A float scalar with default value 1.0. Returns: Variable: The output smooth L1 loss with shape [batch_size, 1]. A Tensor with type float32. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() data = fluid.data(name="x", shape=[-1, 3], dtype="float32") label = fluid.data(name="y", shape=[-1, 3], dtype="float32") result = fluid.layers.smooth_l1(data,label) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x = np.random.rand(3,3).astype("float32") y = np.random.rand(3,3).astype("float32") output= exe.run(feed={"x":x, "y":y}, fetch_list=[result]) print(output) #[array([[0.08220536], # [0.36652038], # [0.20541131]], dtype=float32)] """ check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'smooth_l1_loss') check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'smooth_l1_loss') helper = LayerHelper('smooth_l1_loss', **locals()) diff = helper.create_variable_for_type_inference(dtype=x.dtype) loss = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='smooth_l1_loss', inputs={ 'X': x, 'Y': y, 'InsideWeight': inside_weight, 'OutsideWeight': outside_weight }, outputs={'Diff': diff, 'Out': loss}, attrs={'sigma': sigma if sigma is not None else 1.0}) return loss @deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot') def one_hot(input, depth, allow_out_of_range=False): """ **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1. This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` . The operator converts each id in the input to an one-hot vector with a :attr:`depth` length. The value in the vector dimension corresponding to the id is 1, and the value in the remaining dimension is 0. The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension behind the last dimension of the input shape. .. code-block:: text Example 1 (allow_out_of_range=False): input: X.shape = [4, 1] X.data = [[1], [1], [3], [0]] depth = 4 output: Out.shape = [4, 4] Out.data = [[0., 1., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.], [1., 0., 0., 0.]] Example 2 (allow_out_of_range=True): input: X.shape = [4, 1] X.data = [[1], [1], [5], [0]] depth = 4 allow_out_of_range = True output: Out.shape = [4, 4] Out.data = [[0., 1., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data. [1., 0., 0., 0.]] Example 3 (allow_out_of_range=False): input: X.shape = [4, 1] X.data = [[1], [1], [5], [0]] depth = 4 allow_out_of_range = False output: Throw an exception for Illegal value The second dimension in X is 5, which is greater than depth. Allow_out_of_range =False means that does not allow the word id to exceed depth, so it throws an exception. Args: input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` , which contains at least one dimension and the last dimension must be 1. The data type is int32 or int64. depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input is word id, depth is generally the dictionary size. allow_out_of_range(bool): A bool value indicating whether the input indices could be out of range :math:`[0, depth)` . When input indices are out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range` is False, or zero-filling representations is created if it is set True. Default: False. Returns: Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32. Examples: .. code-block:: python import paddle.fluid as fluid # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4]. label = fluid.data(name="label", shape=[4, 1], dtype="int64") one_hot_label = fluid.layers.one_hot(input=label, depth=4) """ if in_dygraph_mode(): if isinstance(depth, Variable): depth = depth.numpy() assert depth.shape == ( 1, ), "depth of type Variable should have shape [1]" depth = depth.item(0) out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range', allow_out_of_range) out.stop_gradient = True return out helper = LayerHelper("one_hot", **locals()) check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot') check_type(depth, 'depth', (six.integer_types, Variable), 'one_hot') one_hot_out = helper.create_variable_for_type_inference(dtype='float32') if not isinstance(depth, Variable): # user attribute inputs = {'X': input} attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range} else: depth.stop_gradient = True inputs = {'X': input, 'depth_tensor': depth} attrs = {'allow_out_of_range': allow_out_of_range} helper.append_op( type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}) one_hot_out.stop_gradient = True return one_hot_out def autoincreased_step_counter(counter_name=None, begin=1, step=1): """ :api_attr: Static Graph Create an auto-increase variable. which will be automatically increased by 1 in every iteration. By default, the first return of this counter is 1, and the step size is 1. Args: counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'. begin(int, optional): The first return value of this counter. Default 1. step(int, optional): The step size. Default 1. Returns: Variable: The auto-increased Variable with data type int64. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() global_step = fluid.layers.autoincreased_step_counter( counter_name='@LR_DECAY_COUNTER@', begin=0, step=1) """ helper = LayerHelper('global_step_counter') if counter_name is None: counter_name = '@STEP_COUNTER@' counter, is_new_var = helper.create_or_get_global_variable( name=counter_name, dtype='int64', shape=[1], persistable=True, belong_to_optimizer=True) if is_new_var: helper.set_variable_initializer( counter, initializer=Constant( value=begin - 1, force_cpu=True)) helper.main_program.global_block()._prepend_op( type='increment', inputs={'X': [counter]}, outputs={'Out': [counter]}, attrs={'step': float(step)}) counter.stop_gradient = True return counter def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None): r""" :alias_main: paddle.reshape :alias: paddle.reshape,paddle.tensor.reshape,paddle.tensor.manipulation.reshape This operator changes the shape of ``x`` without changing its data. The target shape can be given by ``shape`` or ``actual_shape``. When ``shape`` and ``actual_shape`` are set at the same time, ``actual_shape`` has a higher priority than ``shape`` but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to guarantee shape inference in compile-time. Some tricks exist when specifying the target shape. 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1. 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The index of 0s in shape can not exceed the dimension of x. Here are some examples to explain it. 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged. 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape specified is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions. 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x. **Note**: The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape. Args: x(Tensor): An N-D Tensor. The data type is ``float32``, ``float64``, ``int32`` or ``int64``. shape(list|tuple|Tensor): Define the target shape. At most one dimension of the target shape can be -1. The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Tensor, it should be an 1-D Tensor . actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape according to this given shape rather than ``shape`` specifying shape. That is to say ``actual_shape`` has a higher priority than ``shape(list|tuple)`` but not ``shape(Tensor)``. \ This argument ``actual_shape`` will be removed in a future version. \ Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``. act (str, optional): The non-linear activation to be applied to the reshaped input. Default None. inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape`` are the same variable. Otherwise, the input and output of ``layers.reshape`` are different variable. Default False. Note that if ``x`` is more than one OPs' input, ``inplace`` must be False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor: A reshaped Tensor with the same data type as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable. Examples: .. code-block:: python import paddle import paddle.fluid as fluid paddle.enable_static() # example 1: # attr shape is a list which doesn't contain Tensors. data_1 = fluid.data( name='data_1', shape=[2, 4, 6], dtype='float32') reshaped_1 = fluid.layers.reshape( x=data_1, shape=[-1, 0, 3, 2]) # the shape of reshaped_1 is [2,4,3,2]. # example 2: # attr shape is a list which contains Tensors. data_2 = fluid.layers.fill_constant([2,25], "int32", 3) dim = fluid.layers.fill_constant([1], "int32", 5) reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10]) # the shape of reshaped_2 is [5,10]. # example 3: data_3 = fluid.data( name="data_3", shape=[2,4,6], dtype='float32') reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8]) # the shape of reshaped_3 is [6,8]. """ if in_dygraph_mode(): #TODO(zhiqiu): enable inplace in dygraph mode. if inplace: warnings.warn( "Inplace on reshape is not allowed and will be discarded in dygraph mode currently." ) if isinstance(shape, (list, tuple)): shape = [ item.numpy().item(0) if isinstance(item, Variable) else item for item in shape ] out, _ = core.ops.reshape2(x, None, 'shape', shape) elif isinstance(shape, Variable): shape.stop_gradient = True out, _ = core.ops.reshape2(x, shape) return dygraph_utils._append_activation_in_dygraph(out, act) check_variable_and_dtype(x, 'x', [ 'float16', 'float32', 'float64', 'int32', 'int64', 'bool', 'uint16' ], 'reshape') check_type(shape, 'shape', (list, tuple, Variable), 'reshape') check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape') helper = LayerHelper("reshape2", **locals()) def get_attr_shape(list_shape): unk_dim_idx = -1 attrs_shape = [] for dim_idx, dim_size in enumerate(list_shape): if isinstance(dim_size, Variable): attrs_shape.append(-1) else: attrs_shape.append(dim_size) if dim_size == -1: assert unk_dim_idx == -1, ( "Only one dimension value of 'shape' in reshape can " "be -1. But received shape[%d] is also -1." % dim_idx) unk_dim_idx = dim_idx elif dim_size == 0: assert dim_idx < len(x.shape), ( "The index of 0 in `shape` must be less than " "the input tensor X's dimensions. " "But received shape[%d] = 0, X's dimensions = %d." % (dim_idx, len(x.shape))) else: assert dim_size > 0, ( "Each dimension value of 'shape' in reshape must not " "be negative except one unknown dimension. " "But received shape[%d] = %s." % (dim_idx, str(dim_size))) return attrs_shape inputs = {"X": x} attrs = {} if isinstance(shape, Variable): shape.stop_gradient = True inputs["Shape"] = shape elif isinstance(shape, (list, tuple)): assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, " "but received %s." % len(shape)) attrs["shape"] = get_attr_shape(shape) if utils._contain_var(shape): inputs['ShapeTensor'] = utils._convert_to_tensor_list(shape) elif isinstance(actual_shape, Variable): actual_shape.stop_gradient = True inputs["Shape"] = actual_shape out = x if inplace else helper.create_variable_for_type_inference( dtype=x.dtype) x_shape = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="reshape2", inputs=inputs, attrs=attrs, outputs={"Out": out, "XShape": x_shape}) return helper.append_activation(out) def squeeze(input, axes, name=None): """ This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal to one will be deleted. .. code-block:: text Case1: Input: X.shape = (1, 3, 1, 5) axes = [0] Output: Out.shape = (3, 1, 5) Case2: Input: X.shape = (1, 3, 1, 5) axes = [] Output: Out.shape = (3, 5) Case3: Input: X.shape = [1,3,1,5] axes = [-2] Output: Out.shape = [1,3,5] Args: input (Variable): The input Tensor. Supported data type: float32, float64, bool, int8, int32, int64. axes (list): One integer or List of integers, indicating the dimensions to be squeezed. Axes range is :math:`[-rank(input), rank(input))`. If axes is negative, :math:`axes=axes+rank(input)`. name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: Variable: Output squeezed Tensor. Data type is same as input Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers # set batch size=None x = fluid.data(name='x', shape=[None, 5, 1, 10]) y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10] """ if in_dygraph_mode(): out, _ = core.ops.squeeze2(input, 'axes', axes) return out helper = LayerHelper("squeeze", **locals()) check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64'], 'squeeze') check_type(axes, 'axis/axes', (list, tuple), 'squeeze') out = helper.create_variable_for_type_inference(dtype=input.dtype) x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="squeeze2", inputs={"X": input}, attrs={"axes": axes}, outputs={"Out": out, "XShape": x_shape}) return out def unsqueeze(input, axes, name=None): """ Insert single-dimensional entries to the shape of a Tensor. Takes one required argument axes, a list of dimensions that will be inserted. Dimension indices in axes are as seen in the output tensor. For example: .. code-block:: text Given a tensor such that tensor with shape [3, 4, 5], then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1]. Args: input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64. axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor . name (str|None): Name for this layer. Returns: Variable: Unsqueezed Tensor, with the same data type as input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[5, 10]) y = fluid.layers.unsqueeze(input=x, axes=[1]) """ if in_dygraph_mode(): if isinstance(axes, int): axes = [axes] elif isinstance(axes, Variable): axes = axes.numpy().tolist() elif isinstance(axes, (list, tuple)): axes = [ item.numpy().item(0) if isinstance(item, Variable) else item for item in axes ] out, _ = core.ops.unsqueeze2(input, 'axes', axes) return out check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze') check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64', 'bool', 'int8', 'int32', 'int64'], 'unsqueeze') helper = LayerHelper("unsqueeze2", **locals()) inputs = {"X": input} attrs = {} if isinstance(axes, int): axes = [axes] if isinstance(axes, Variable): axes.stop_gradient = True inputs["AxesTensor"] = axes elif isinstance(axes, (list, tuple)): if utils._contain_var(axes): inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes) else: attrs["axes"] = axes out = helper.create_variable_for_type_inference(dtype=input.dtype) x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="unsqueeze2", inputs=inputs, attrs=attrs, outputs={"Out": out, "XShape": x_shape}) return out def lod_reset(x, y=None, target_lod=None): """ Set LoD of :attr:`x` to a new one specified by :attr:`y` or :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be considered as target LoD first, otherwise :attr:`y.data` would be considered as target LoD. If :attr:`y` is not provided, target LoD should be specified by :attr:`target_lod`. If target LoD is specified by :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported. .. code-block:: text * Example 1: Given a 1-level LoDTensor x: x.lod = [[ 2, 3, 1 ]] x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] x.dims = [6, 1] target_lod: [4, 2] then we get a 1-level LoDTensor: out.lod = [[4, 2]] out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] out.dims = [6, 1] * Example 2: Given a 1-level LoDTensor x: x.lod = [[2, 3, 1]] x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] x.dims = [6, 1] y is a Tensor: y.data = [[2, 4]] y.dims = [1, 3] then we get a 1-level LoDTensor: out.lod = [[2, 4]] out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] out.dims = [6, 1] * Example 3: Given a 1-level LoDTensor x: x.lod = [[2, 3, 1]] x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] x.dims = [6, 1] y is a 2-level LoDTensor: y.lod = [[2, 2], [2, 2, 1, 1]] y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]] y.dims = [6, 1] then we get a 2-level LoDTensor: out.lod = [[2, 2], [2, 2, 1, 1]] out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] out.dims = [6, 1] Args: x (Variable): Input variable which could be a Tensor or LoDTensor. The data type should be int32, int64, float32 or float64. y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`. If y's lod level>0, the data type can be any type. If y's lod level=0, the data type should be int32. target_lod (list|tuple, optional): One level LoD which should be considered as target LoD when :attr:`y` not provided. Returns: Variable: Output variable with LoD specified by this layer. Raises: ValueError: If :attr:`y` and :attr:`target_lod` are both None. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10]) y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2) out = fluid.layers.lod_reset(x=x, y=y) """ check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset') helper = LayerHelper("lod_reset", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) if y is not None: check_type(y, 'y', (Variable), 'lod_reset') #TODO: check y.lod_level = 0 dtype helper.append_op( type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}) elif target_lod is not None: helper.append_op( type="lod_reset", inputs={'X': x}, attrs={'target_lod': target_lod}, outputs={'Out': out}) else: raise ValueError("y and target_lod should not be both none.") return out def lod_append(x, level): """ Append level to LoD of :attr:`x`. .. code-block:: text * Example 1: given a 1-level LoDTensor x: x.lod = [[ 2, 3, 1 ]] x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] x.dims = [6, 1] level: [1, 1, 1, 1, 1, 1, 1] then we get a 2-level LoDTensor: x.lod = [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]] x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] x.dims = [6, 1] Args: x (Variable): Input variable which could be a tensor or LoDTensor. The data type should be int32, int64, float32 or float64. level (list|tuple|Variable, optional): The LoD level to be appended into LoD of x. If level is variable and its lod level>0, the data type can be any type. If level is variable and its lod level=0, the data type should be int32. Returns: Variable: Output variable with new LoD level. Raises: ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1) out = fluid.layers.lod_append(x, [1,1,1,1,1,1]) """ from collections import Iterable if x is None: raise ValueError("Input(x) can't be None.") if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)): raise ValueError("Input(level) must be list, tuple or Variable.") check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_append') helper = LayerHelper("lod_append", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) inputs = {'X': x} attrs = {'append': True} if isinstance(level, Variable): inputs['Y'] = level #TODO: check y.lod_level = 0 dtype else: attrs['target_lod'] = level helper.append_op( type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out}) return out def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None, data_format='NCHW'): r""" :alias_main: paddle.nn.functional.lrn :alias: paddle.nn.functional.lrn,paddle.nn.functional.norm.lrn :old_api: paddle.fluid.layers.lrn This operator implements the Local Response Normalization Layer. This layer performs a type of "lateral inhibition" by normalizing over local input regions. For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_ The formula is as follows: .. math:: Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta} In the above equation: - :math:`n` : The number of channels to sum over. - :math:`k` : The offset (avoid being divided by 0). - :math:`\\alpha` : The scaling parameter. - :math:`\\beta` : The exponent parameter. Args: input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError. n (int, optional): The number of channels to sum over. Default: 5 k (float, optional): An offset, positive. Default: 1.0 alpha (float, optional): The scaling parameter, positive. Default:1e-4 beta (float, optional): The exponent, positive. Default:0.75 name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: Variable: A tensor variable storing the transformation result with the same shape and data type as input. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.data( name="data", shape=[None, 3, 112, 112], dtype="float32") lrn = fluid.layers.lrn(input=data) print(lrn.shape) # [-1, 3, 112, 112] print(lrn.dtype) # float32 """ helper = LayerHelper('lrn', **locals()) check_variable_and_dtype(input, 'input', ['float32'], 'lrn') dtype = helper.input_dtype() input_shape = input.shape dims = len(input_shape) if dims != 4: raise ValueError( "Input's dimension size of Op(lrn) must be 4, but received %d." % (dims)) if data_format not in ['NCHW', 'NHWC']: raise ValueError( "Attr(data_format) of Op(lrn) got wrong value: received " + data_format + " but only NCHW or NHWC supported.") mid_out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True) lrn_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="lrn", inputs={"X": input}, outputs={ "Out": lrn_out, "MidOut": mid_out, }, attrs={ "n": n, "k": k, "alpha": alpha, "beta": beta, "data_format": data_format }) return lrn_out def pad(x, paddings, pad_value=0., name=None): r""" :alias_main: paddle.nn.functional.pad :alias: paddle.nn.functional.pad,paddle.nn.functional.common.pad :old_api: paddle.fluid.layers.pad This op will pad a tensor with a constant value given by :attr:`pad_value`, and the padded shape is specified by :attr:`paddings`. Specifically, the number of values padded before the elements of :attr:`x` in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number of values padded after the elements of :attr:`x` in dimension :attr:`i` is indicated by :attr:`paddings[2*i+1]`. See below for an example. .. code-block:: text Given: x = [[1, 2], [3, 4]] paddings = [0, 1, 1, 2] pad_value = 0 Return: out = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] [0, 0, 0, 0, 0]] Args: x (Variable): Tensor, data type is float32. paddings (list): A list of integers. Its elements specify the padded width before and after each dimension in turn. The length of :attr:`paddings` must be equal to :math:`rank(x) \\times 2`. pad_value (float): The constant value used to pad. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: The padded tensor, with the same data type and rank as :attr:`x` Return Type: Variable Examples: .. code-block:: python # x is a rank 2 tensor variable import paddle.fluid as fluid x = fluid.data(name='data', shape=[300, 300], dtype='float32') out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.) """ check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], "pad") helper = LayerHelper('pad', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad', inputs={'X': x}, outputs={'Out': out}, attrs={'paddings': paddings, 'pad_value': float(pad_value)}) return out def pad_constant_like(x, y, pad_value=0., name=None): r""" Pad :attr:`y` with :attr:`pad_value`, the number of values padded to the edges of each axis is specified by the difference of the shape of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n)) specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7). See below for an example. .. code-block:: text Given: X = [[[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]], [[12, 13, 14], [15, 16, 17]]], [[[18, 19, 20], [21, 22, 23]], [[24, 25, 26], [27, 28, 29]], [[30, 31, 32], [33, 34, 35]]]] X.shape = (2, 3, 2, 3) Y = [[[[35, 36, 37]], [[38, 39, 40]], [[41, 42, 43]]]] Y.shape = (1, 3, 1, 3) And pad_value = 0. Return: Out = [[[[35, 36, 37], [ 0, 0, 0]], [[38, 39, 40], [ 0, 0, 0]], [[41, 42, 43], [ 0, 0, 0]]], [[[ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 0], [ 0, 0, 0]], [[ 0, 0, 0], [ 0, 0, 0]]]] Out.shape = [2, 3, 2, 3] Args: x (Variable): Tensor, its shape specifies the shape of output. y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64. pad_value (float): The constant value used to pad. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y` Return Type: Variable Examples: .. code-block:: python # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3) # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3) import paddle.fluid as fluid x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32') y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32') out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.) # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3] """ check_type(x, 'x', (Variable), 'pad_constant_like') check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'], "pad_constant_like") helper = LayerHelper('pad_constant_like', **locals()) dtype = helper.input_dtype(input_param_name='y') out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad_constant_like', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'pad_value': float(pad_value)}) return out def label_smooth(label, prior_dist=None, epsilon=0.1, dtype="float32", name=None): r""" :alias_main: paddle.nn.functional.label_smooth :alias: paddle.nn.functional.label_smooth,paddle.nn.functional.common.label_smooth :old_api: paddle.fluid.layers.label_smooth Label smoothing is a mechanism to regularize the classifier layer and is called label-smoothing regularization (LSR). Label smoothing is proposed to encourage the model to be less confident, since optimizing the log-likelihood of the correct label directly may cause overfitting and reduce the ability of the model to adapt. Label smoothing replaces the ground-truth label :math:`y` with the weighted sum of itself and some fixed distribution :math:`\mu`. For class :math:`k`, i.e. .. math:: \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k, where :math:`1 - \epsilon` and :math:`\epsilon` are the weights respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually uniform distribution is used for :math:`\mu`. See more details about label smoothing in https://arxiv.org/abs/1512.00567. Parameters: label(Variable): The input variable containing the label data. The label data should use one-hot representation. It's a multidimensional tensor with a shape of :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64". prior_dist(Variable, optional): The prior distribution to be used to smooth labels. If not provided, an uniform distribution is used. It's a multidimensional tensor with a shape of :math:`[1, class\_num]` . The default value is None. epsilon(float, optional): The weight used to mix up the original ground-truth distribution and the fixed distribution. The default value is 0.1. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set as 'float32', 'float64'. The default value is 'float32'. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: The tensor variable containing the smoothed labels. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers label = layers.data(name="label", shape=[1], dtype="int32") one_hot_label = layers.one_hot(input=label, depth=10) smooth_label = layers.label_smooth( label=one_hot_label, epsilon=0.1, dtype="float32") """ if epsilon > 1. or epsilon < 0.: raise ValueError("The value of epsilon must be between 0 and 1.") if in_dygraph_mode(): return core.ops.label_smooth(label, prior_dist, 'epsilon', float(epsilon)) check_variable_and_dtype(label, 'label', ['float32', 'float64'], 'label_smooth') helper = LayerHelper("label_smooth", **locals()) label.stop_gradient = True smooth_label = helper.create_variable_for_type_inference(dtype) helper.append_op( type="label_smooth", inputs={"X": label, "PriorDist": prior_dist} if prior_dist else {"X": label}, outputs={"Out": smooth_label}, attrs={"epsilon": float(epsilon)}) return smooth_label @templatedoc() def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0, rois_num=None, name=None): """ This operator implements the roi_pooling layer. Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7). The operator has three steps: 1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height; 2. Finding the largest value in each section; 3. Copying these max values to the output buffer. For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn Args: input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64. rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. pooled_height (int, optional): The pooled output height, data type is int32. Default: 1 pooled_width (int, optional): The pooled output height, data type is int32. Default: 1 spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0 rois_num (Tensor): The number of RoIs in each image. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width]. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() DATATYPE='float32' place = fluid.CPUPlace() #place = fluid.CUDAPlace(0) input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE) roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place) rois_num_data = np.array([2]).astype('int32') x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE) rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE) rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32') pool_out = fluid.layers.roi_pool( input=x, rois=rois, pooled_height=1, pooled_width=1, spatial_scale=1.0, rois_num=rois_num) exe = fluid.Executor(place) out, = exe.run(feed={'input':input_data ,'roi':roi_data, 'rois_num': rois_num_data}, fetch_list=[pool_out.name]) print(out) #array([[[[11.]]], [[[16.]]]], dtype=float32) print(np.array(out).shape) # (2, 1, 1, 1) """ if in_dygraph_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." pool_out, argmaxes = core.ops.roi_pool( input, rois, rois_num, "pooled_height", pooled_height, "pooled_width", pooled_width, "spatial_scale", spatial_scale) return pool_out, argmaxes check_variable_and_dtype(input, 'input', ['float32'], 'roi_pool') check_variable_and_dtype(rois, 'rois', ['float32'], 'roi_pool') helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() pool_out = helper.create_variable_for_type_inference(dtype) argmaxes = helper.create_variable_for_type_inference(dtype='int32') inputs = { "X": input, "ROIs": rois, } if rois_num is not None: inputs['RoisNum'] = rois_num helper.append_op( type="roi_pool", inputs=inputs, outputs={"Out": pool_out, "Argmax": argmaxes}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale }) return pool_out @templatedoc() def roi_align(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0, sampling_ratio=-1, rois_num=None, name=None): """ ${comment} Args: input (Variable): ${x_comment} rois (Variable): ROIs (Regions of Interest) to pool over.It should be a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. pooled_height (int32, optional): ${pooled_height_comment} Default: 1 pooled_width (int32, optional): ${pooled_width_comment} Default: 1 spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0 sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1 rois_num (Tensor): The number of RoIs in each image. Default: None name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: Output: ${out_comment}. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() x = fluid.data( name='data', shape=[None, 256, 32, 32], dtype='float32') rois = fluid.data( name='rois', shape=[None, 4], dtype='float32') rois_num = fluid.data(name='rois_num', shape=[None], dtype='int32') align_out = fluid.layers.roi_align(input=x, rois=rois, pooled_height=7, pooled_width=7, spatial_scale=0.5, sampling_ratio=-1, rois_num=rois_num) """ if in_dygraph_mode(): assert rois_num is not None, "rois_num should not be None in dygraph mode." align_out = core.ops.roi_align( input, rois, rois_num, "pooled_height", pooled_height, "pooled_width", pooled_width, "spatial_scale", spatial_scale, "sampling_ratio", sampling_ratio) return align_out check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'roi_align') check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align') helper = LayerHelper('roi_align', **locals()) dtype = helper.input_dtype() align_out = helper.create_variable_for_type_inference(dtype) inputs = { "X": input, "ROIs": rois, } if rois_num is not None: inputs['RoisNum'] = rois_num helper.append_op( type="roi_align", inputs=inputs, outputs={"Out": align_out}, attrs={ "pooled_height": pooled_height, "pooled_width": pooled_width, "spatial_scale": spatial_scale, "sampling_ratio": sampling_ratio }) return align_out def dice_loss(input, label, epsilon=0.00001, name=None): r""" Dice loss for comparing the similarity between the input predictions and the label. This implementation is for binary classification, where the input is sigmoid predictions of each pixel, usually used for segmentation task. The dice loss can be defined as the following equation: .. math:: dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\ &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\ &= \\frac{(union\_area - intersection\_area)}{total\_area} Parameters: input (Tensor): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation. The data type can be float32 or float64. label (Tensor): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64. epsilon (float): The epsilon will be added to the numerator and denominator. If both input and label are empty, it makes sure dice is 1. Default: 0.00001 name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor, which shape is [1], data type is the same as `input` . Example: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.randn((3,224,224,2)) label = paddle.randint(high=2, shape=(3,224,224,1)) predictions = F.softmax(x) loss = F.dice_loss(input=predictions, label=label) """ label = one_hot(label, depth=input.shape[-1]) reduce_dim = list(range(1, len(input.shape))) inse = reduce_sum(input * label, dim=reduce_dim) dice_denominator = reduce_sum( input, dim=reduce_dim) + reduce_sum( label, dim=reduce_dim) dice_score = 1 - inse * 2 / (dice_denominator + epsilon) return reduce_mean(dice_score) def image_resize(input, out_shape=None, scale=None, name=None, resample='BILINEAR', actual_shape=None, align_corners=True, align_mode=1, data_format='NCHW'): """ This op resizes a batch of images. The input must be a 3-D Tensor of the shape (num_batches, channels, in_w) or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), and the resizing only applies on the three dimensions(depth, height and width). **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`out_shape` instead. Supporting resample methods: 'LINEAR' : Linear interpolation 'BILINEAR' : Bilinear interpolation 'TRILINEAR' : Trilinear interpolation 'NEAREST' : Nearest neighbor interpolation 'BICUBIC' : Bicubic interpolation Linear interpolation is the method of using a line connecting two known quantities to determine the value of an unknown quantity between the two known quantities. Nearest neighbor interpolation is to perform nearest neighbor interpolation in both the 3rd dimension(in height direction) and the 4th dimension(in width direction) on input tensor. Bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g. H-direction and W-direction in this op) on a rectilinear 2D grid. The key idea is to perform linear interpolation first in one direction, and then again in the other direction. Trilinear interpolation is an extension of linear interpolation for interpolating functions of three variables (e.g. D-direction, H-direction and W-direction in this op) on a rectilinear 3D grid. The linear interpolation is performed on three directions. Bicubic interpolation is an extension of cubic interpolation for interpolating data points on a two-dimensional regular grid. The interpolated surface is smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor interpolation. Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Example: .. code-block:: text For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Nearest neighbor interpolation: if: align_corners = False input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = floor (H_{in} * scale_{factor}) W_out = floor (W_{in} * scale_{factor}) else: align_corners = True input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = round(H_{in} * scale_{factor}) W_out = round(W_{in} * scale_{factor}) linear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,W_in) output: (N,C,W_out) where: W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,W_in) output: (N,C,H_out,W_out) where: W_out = W_{in} * scale_{factor} Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Trilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} Trilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} For details of linear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Linear_interpolation. For details of nearest neighbor interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation. For details of bilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation. For details of trilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation. For details of bicubic interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bicubic_interpolation Parameters: input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. out_shape (list|tuple|Variable|None): Output shape of image resize layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1]. If a Tensor Variable, its dimensions size should be a 1. scale(float|Variable|None): The multiplier for the input height or width. At least one of :attr:`out_shape` or :attr:`scale` must be set. And :attr:`out_shape` has a higher priority than :attr:`scale`. Default: None. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR' and 'NEAREST' currently. Default: 'BILINEAR' actual_shape(Variable): An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than :attr:`out_shape` and :attr:`scale` specifying shape. That is to say actual_shape has the highest priority. It is recommended to use :attr:`out_shape` if you want to specify output shape dynamically, because :attr:`actual_shape` will be deprecated. When using actual_shape to specify output shape, one of :attr:`out_shape` and :attr:`scale` should also be set, otherwise errors would be occurred in graph constructing stage. Default: None align_corners(bool) : An optional bool, If True, the centers of the 4 corner pixels of the input and output tensors are aligned, preserving the values at the corner pixels. Default: True align_mode(int) : An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for src_idx = scale*dst_index. data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`, `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`. Returns: A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels), A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels), or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels). Raises: TypeError: out_shape should be a list or tuple or Variable. TypeError: actual_shape should either be Variable or None. ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR', 'BICUBIC' or 'NEAREST' currently. ValueError: 'LINEAR' only support 3-D tensor. ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor. ValueError: 'TRILINEAR' only support 5-D tensor. ValueError: One of out_shape and scale must not be None. ValueError: out_shape length should be 1 for input 3-D tensor. ValueError: out_shape length should be 2 for input 4-D tensor. ValueError: out_shape length should be 3 for input 5-D tensor. ValueError: scale should be greater than zero. TypeError: align_corners should be a bool value ValueError: align_mode can only be '0' or '1' ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'. Examples: .. code-block:: python #declarative mode import paddle import paddle.fluid as fluid import numpy as np paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,10]) #1 output = fluid.layers.image_resize(input=input,out_shape=[12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1]) #3 #x = np.array([3,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.image_resize(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12) #2 # (2, 3, 12, 2) #3 # (2, 3, 3, 12) #4 # (2, 3, 3, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.image_resize(input=input, out_shape=[12,12]) print(output.shape) # [2L, 3L, 12L, 12L] """ resample_methods = { 'LINEAR': 'linear', 'BILINEAR': 'bilinear', 'TRILINEAR': 'trilinear', 'NEAREST': 'nearest', 'LINEAR': 'linear', } resample = resample.upper() if resample not in resample_methods: raise ValueError( "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' " "or 'NEAREST' currently.") resample_type = resample_methods[resample] if resample == 'LINEAR' and len(input.shape) != 3: raise ValueError("'LINER only support 3-D tensor.") elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4: raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.") elif resample == 'TRILINEAR' and len(input.shape) != 5: raise ValueError("'TRILINEAR'only support 5-D tensor.") if not isinstance(align_corners, bool): raise TypeError("Attr align_corners should be a bool value") if align_mode != 0 and align_mode != 1: raise ValueError("align_mode can only be 0 or 1") if out_shape is None and scale is None: raise ValueError("One of out_shape and scale must not be None.") helper = LayerHelper('{}_interp'.format(resample_type), **locals()) dtype = helper.input_dtype() if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCW` or `NWC` supported for 3-D input.") elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCHW` or `NHWC` supported for 4-D input.") elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']: raise ValueError( "Got wrong value for param `data_format`: " + data_format + " received but only `NCDHW` or `NDHWC` supported for 5-D input.") def _is_list_or_turple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW': data_layout = 'NCHW' if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC': data_layout = 'NHWC' inputs = {"X": input} attrs = { "out_d": -1, "out_h": -1, "out_w": -1, "interp_method": resample_type, "align_corners": align_corners, "align_mode": align_mode, "data_layout": data_layout } if out_shape is not None: if isinstance(out_shape, Variable): out_shape.stop_gradient = True inputs['OutSize'] = out_shape else: if not (_is_list_or_turple_(out_shape)): raise TypeError( "out_shape should be a list or tuple or Variable.") # Validate the shape contain_var = False for dim_idx, dim_size in enumerate(out_shape): if isinstance(dim_size, Variable): contain_var = True continue assert dim_size > 0, ( "Each dimension size given in out_shape must be greater than 0." ) if contain_var: new_size_tensor = [] size_list = [] for dim in out_shape: if isinstance(dim, Variable): dim.stop_gradient = True new_size_tensor.append(dim) size_list.append(-1) else: assert (isinstance(dim, int)) temp_out = helper.create_variable_for_type_inference( 'int32') fill_constant( [1], 'int32', dim, force_cpu=True, out=temp_out) new_size_tensor.append(temp_out) size_list.append(dim) inputs['SizeTensor'] = new_size_tensor if len(input.shape) == 3: if len(out_shape) != 1: raise ValueError("out_shape length should be 1 for " "input 3-D tensor.") if contain_var: attrs['out_w'] = size_list[0] else: out_shape = list(map(int, out_shape)) attrs['out_w'] = out_shape[0] elif len(input.shape) == 4: if len(out_shape) != 2: raise ValueError("out_shape length should be 2 for " "input 4-D tensor.") if contain_var: attrs['out_h'] = size_list[0] attrs['out_w'] = size_list[1] else: out_shape = list(map(int, out_shape)) attrs['out_h'] = out_shape[0] attrs['out_w'] = out_shape[1] if len(input.shape) == 5: if len(out_shape) != 3: raise ValueError("out_shape length should be 3 for " "input 5-D tensor.") if contain_var: attrs['out_d'] = size_list[0] attrs['out_h'] = size_list[1] attrs['out_w'] = size_list[2] else: out_shape = list(map(int, out_shape)) attrs['out_d'] = out_shape[0] attrs['out_h'] = out_shape[1] attrs['out_w'] = out_shape[2] else: if isinstance(scale, Variable): scale.stop_gradient = True inputs["Scale"] = scale elif isinstance(scale, float) or isinstance(scale, int): if scale <= 0: raise ValueError("Attr(scale) should be greater than zero.") attrs['scale'] = float(scale) else: raise TypeError( "Attr(scale)'s type should be float, int or Variable.") if isinstance(actual_shape, Variable): warnings.warn( "actual_shape will be deprecated, it is recommended to use " "out_shape instead of actual_shape to specify output shape dynamically." ) actual_shape.stop_gradient = True inputs["OutSize"] = actual_shape elif actual_shape is not None: raise TypeError("actual_shape should either be Variable or None.") out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='{}_interp'.format(resample_type), inputs=inputs, outputs={"Out": out}, attrs=attrs) return out @templatedoc(op_type="linear_interp") def resize_linear(input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCW'): """ This op resizes the input by performing linear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`out_shape` instead. Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Example: .. code-block:: text For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Linear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,W_in) output: (N,C,W_out) where: W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,W_in) output: (N,C,W_out) where: W_out = W_{in} * scale_{factor} Parameters: input(Variable): 3-D Tensor(NCW), its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. out_shape(list|tuple|Variable|None): Output shape of resize linear layer, the shape is (out_w,). Default: None. If a list, each element can be an integer or a Tensor Variable with shape: [1]. If a Tensor Variable, its dimension size should be 1. scale(float|Variable|None): The multiplier for the input height or width. At least one of :attr:`out_shape` or :attr:`scale` must be set. And :attr:`out_shape` has a higher priority than :attr:`scale`. Default: None. actual_shape(Variable): An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than :attr:`out_shape` and :attr:`scale` specifying shape. That is to say actual_shape has the highest priority. It is recommended to use :attr:`out_shape` if you want to specify output shape dynamically, because :attr:`actual_shape` will be deprecated. When using actual_shape to specify output shape, one of :attr:`out_shape` and :attr:`scale` should also be set, otherwise errors would be occurred in graph constructing stage. Default: None align_corners(bool): ${align_corners_comment} align_mode(bool): ${align_mode_comment} data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCW"`, `"NWC"`. The default is `"NCW"`. When it is `"NCW"`, the data is stored in the order of: `[batch_size, input_channels, input_width]`. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: 3-D tensor(NCW or NWC). Examples: .. code-block:: python #declarative mode import paddle.fluid as fluid import numpy as np input = fluid.data(name="input", shape=[None,3,100]) output = fluid.layers.resize_linear(input=input,out_shape=[50,]) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(1,3,100).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) # (1, 3, 50) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_linear(input=input, out_shape=[50,]) print(output.shape) # [1L, 3L, 50L] """ return image_resize(input, out_shape, scale, name, 'LINEAR', actual_shape, align_corners, align_mode, data_format) @templatedoc(op_type="bilinear_interp") def resize_bilinear(input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCHW'): """ This op resizes the input by performing bilinear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`out_shape` instead. Bilinear interpolation is an extension of linear interpolation for interpolating functions of two variables (e.g. H-direction and W-direction in this op) on a rectilinear 2D grid. The key idea is to perform linear interpolation first in one direction, and then again in the other direction. For details of bilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Example: .. code-block:: text For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Parameters: input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. out_shape(list|tuple|Variable|None): Output shape of resize bilinear layer, the shape is (out_h, out_w).Default: None. If a list, each element can be an integer or a Tensor Variable with shape: [1]. If a Tensor Variable, its dimension size should be 1. scale(float|Variable|None): The multiplier for the input height or width. At least one of :attr:`out_shape` or :attr:`scale` must be set. And :attr:`out_shape` has a higher priority than :attr:`scale`. Default: None. actual_shape(Variable): An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than :attr:`out_shape` and :attr:`scale` specifying shape. That is to say actual_shape has the highest priority. It is recommended to use :attr:`out_shape` if you want to specify output shape dynamically, because :attr:`actual_shape` will be deprecated. When using actual_shape to specify output shape, one of :attr:`out_shape` and :attr:`scale` should also be set, otherwise errors would be occurred in graph constructing stage. Default: None align_corners(bool): ${align_corners_comment} align_mode(bool): ${align_mode_comment} data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: 4-D tensor(NCHW or NHWC). Examples: .. code-block:: python #declarative mode import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,10]) #1 output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1]) #3 #x = np.array([3,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12) #2 # (2, 3, 12, 2) #3 # (2, 3, 3, 12) #4 # (2, 3, 3, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12]) print(output.shape) # [2L, 3L, 12L, 12L] """ return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape, align_corners, align_mode, data_format) @templatedoc(op_type="trilinear_interp") def resize_trilinear(input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, align_mode=1, data_format='NCDHW'): """ This op resizes the input by performing trilinear interpolation based on given output shape which specified by actual_shape, out_shape and scale in priority order. **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`out_shape` instead. Trilinear interpolation is an extension of linear interpolation for interpolating functions of three variables (e.g. D-direction, H-direction and W-direction in this op) on a rectilinear 3D grid. The linear interpolation is performed on three directions. For details of trilinear interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Trilinear_interpolation Align_corners and align_mode are optional parameters,the calculation method of interpolation can be selected by them. Example: .. code-block:: text For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Bilinear interpolation: if: align_corners = False , align_mode = 0 input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = (D_{in}+0.5) * scale_{factor} - 0.5 H_out = (H_{in}+0.5) * scale_{factor} - 0.5 W_out = (W_{in}+0.5) * scale_{factor} - 0.5 else: input : (N,C,D_in,H_in,W_in) output: (N,C,D_out,H_out,W_out) where: D_out = D_{in} * scale_{factor} H_out = H_{in} * scale_{factor} W_out = W_{in} * scale_{factor} Parameters: input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1. scale(float|Variable|None): The multiplier for the input depth, height or width. At least one of :attr:`out_shape` or :attr:`scale` must be set. And :attr:`out_shape` has a higher priority than :attr:`scale`. Default: None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` actual_shape(Variable): An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than :attr:`out_shape` and :attr:`scale` specifying shape. That is to say actual_shape has the highest priority. It is recommended to use :attr:`out_shape` if you want to specify output shape dynamically, because :attr:`actual_shape` will be deprecated. When using actual_shape to specify output shape, one of :attr:`out_shape` and :attr:`scale` should also be set, otherwise errors would be occurred in graph constructing stage. Default: None align_corners(bool): ${align_corners_comment} align_mode(bool): ${align_mode_comment} data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`. The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`. Returns: Variable: A 5-D Tensor(NCDHW or NDHWC) Examples: .. code-block:: python #declarative mode import paddle.fluid as fluid import paddle import numpy as np paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,8,10]) #1 output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4]) #3 #x = np.array([3,12,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,8,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12, 12) #2 # (2, 3, 12, 2, 4) #3 # (2, 3, 3, 12, 12) #4 # (2, 3, 3, 4, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12]) print(output.shape) # [2L, 3L, 12L, 12L, 12L] """ return image_resize(input, out_shape, scale, name, 'TRILINEAR', actual_shape, align_corners, align_mode, data_format) @templatedoc(op_type="nearest_interp") def resize_nearest(input, out_shape=None, scale=None, name=None, actual_shape=None, align_corners=True, data_format='NCHW'): """ This op resizes the input by performing nearest neighbor interpolation in both the height direction and the width direction based on given output shape which is specified by actual_shape, out_shape and scale in priority order. **Warning:** the parameter :attr:`actual_shape` will be deprecated in the future and only use :attr:`out_shape` instead. Example: .. code-block:: text For scale: if align_corners = True && out_size > 1 : scale_factor = (in_size-1.0)/(out_size-1.0) else: scale_factor = float(in_size/out_size) Nearest neighbor interpolation: if: align_corners = False input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = floor(H_{in} * scale_{factor}) W_out = floor(W_{in} * scale_{factor}) else: align_corners = True input : (N,C,H_in,W_in) output: (N,C,H_out,W_out) where: H_out = round(H_{in} * scale_{factor}) W_out = round(W_{in} * scale_{factor}) For details of nearest neighbor interpolation, please refer to Wikipedia: https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation Parameters: input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8, its data format is specified by :attr:`data_format`. out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1. scale(float|Variable|None): The multiplier for the input height or width. At least one of :attr:`out_shape` or :attr:`scale` must be set. And :attr:`out_shape` has a higher priority than :attr:`scale`. Default: None. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` actual_shape(Variable): An optional input to specify output shape dynamically. If provided, image resize according to this given shape rather than :attr:`out_shape` and :attr:`scale` specifying shape. That is to say actual_shape has the highest priority. It is recommended to use :attr:`out_shape` if you want to specify output shape dynamically, because :attr:`actual_shape` will be deprecated. When using actual_shape to specify output shape, one of :attr:`out_shape` and :attr:`scale` should also be set, otherwise errors would be occurred in graph constructing stage. Default: None align_corners(bool): ${align_corners_comment} data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. Returns: Variable: 4-D tensor(NCHW or NHWC). Examples: .. code-block:: python #declarative mode import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() input = fluid.data(name="input", shape=[None,3,6,10]) #1 output = fluid.layers.resize_nearest(input=input,out_shape=[12,12]) #2 #x = np.array([2]).astype("int32") #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") #fluid.layers.assign(input=x, output=dim1) #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1]) #3 #x = np.array([3,12]).astype("int32") #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32") #fluid.layers.assign(input=x, output=shape_tensor) #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor) #4 #x = np.array([0.5]).astype("float32") #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32") #fluid.layers.assign(x,scale_tensor) #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,3,6,10).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) print(output_data[0].shape) #1 # (2, 3, 12, 12) #2 # (2, 3, 12, 2) #3 # (2, 3, 3, 12) #4 # (2, 3, 3, 5) #imperative mode import paddle.fluid.dygraph as dg with dg.guard(place) as g: input = dg.to_variable(input_data) output = fluid.layers.resize_nearest(input=input, out_shape=[12,12]) print(output.shape) # [2L, 3L, 12L, 12L] """ return image_resize( input, out_shape, scale, name, 'NEAREST', actual_shape, align_corners, align_mode=1, data_format=data_format) def image_resize_short(input, out_short_len, resample='BILINEAR'): """ This op resizes a batch of images. The short edge of input images will be resized to the given 'out_short_len'. The long edge of input images will be resized proportionately to make images' length-width ratio constant. Parameters: input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer. out_short_len(int): The length of output images' short edge. resample (str): resample method, default: BILINEAR. Returns: Variable: 4-D tensor(NCHW). Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32") out = fluid.layers.image_resize_short(input, out_short_len=3) """ in_shape = input.shape if len(in_shape) != 4: raise ValueError( "The rank of input must be 4 (num_batches, channels, in_h, in_w).") hw = in_shape[2:4] short_idx = hw.index(min(hw)) long_idx = 1 - short_idx out_shape = list(hw) out_shape[short_idx] = out_short_len out_shape[long_idx] = int( float(out_shape[long_idx]) * (float(out_short_len) / float(hw[ short_idx])) + 0.5) return image_resize(input=input, out_shape=out_shape, resample=resample) @deprecated(since="2.0.0", update_to="paddle.gather") def gather(input, index, overwrite=True): """ Output is obtained by gathering entries of the outer-most dimension of X indexed by `index` and concatenate them together. .. math:: Out = X[Index] .. code-block:: text Given: X = [[1, 2], [3, 4], [5, 6]] Index = [1, 2] Then: Out = [[3, 4], [5, 6]] Args: input (Tensor): The source input tensor with rank>=1. Supported data type is int32, int64, float32, float64 and uint8 (only for CPU), float16 (only for GPU). index (Tensor): The index input tensor with rank=1. Data type is int32 or int64. overwrite (bool, optional): The mode that updating the grad when has same index. If True, use the overwrite mode to update the grad of the same index, if False, use the accumulate mode to update the grad of the same index. Default value is True. Returns: output (Tensor): The output is a tensor with the same rank as input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', shape=[-1, 5], dtype='float32') index = fluid.data(name='index', shape=[-1, 1], dtype='int32') output = fluid.layers.gather(x, index) """ if in_dygraph_mode(): return core.ops.gather(input, index, None, 'overwrite', overwrite) check_variable_and_dtype( input, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'uint8'], 'gather') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather') helper = LayerHelper('gather', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="gather", inputs={"X": input, "Index": index}, outputs={"Out": out}, attrs={'overwrite': overwrite}) return out @deprecated(since="2.0.0", update_to="paddle.gather_nd") def gather_nd(input, index, name=None): """ **Gather Nd Layer** This function is actually a high-dimensional extension of :code:`gather` and supports for simultaneous indexing by multiple axes. :attr:`index` is a K-dimensional integer tensor, which is regarded as a (K-1)-dimensional tensor of :attr:`index` into :attr:`input`, where each element defines a slice of params: .. math:: output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]] Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` . .. code-block:: text Given: input = [[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] input.shape = (2, 3, 4) * Case 1: index = [[1]] gather_nd(input, index) = [input[1, :, :]] = [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]] * Case 2: index = [[0,2]] gather_nd(input, index) = [input[0, 2, :]] = [8, 9, 10, 11] * Case 3: index = [[1, 2, 3]] gather_nd(input, index) = [input[1, 2, 3]] = [23] Args: input (Tensor): The input Tensor which it's data type should be bool, float32, float64, int32, int64. index (Tensor): The index input with rank > 1, index.shape[-1] <= input.rank. Its dtype should be int32, int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: output (Tensor): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:] Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32') index = fluid.data(name='index', shape=[2, 2], dtype='int32') output = fluid.layers.gather_nd(x, index) """ if in_dygraph_mode(): return core.ops.gather_nd(input, index) check_variable_and_dtype(input, 'input', ['bool', 'float32', 'float64', 'int32', 'int64'], 'gather_np') check_variable_and_dtype(index, 'index', ['int32', 'int64'], 'gather_np') helper = LayerHelper('gather_nd', **locals()) dtype = helper.input_dtype() output = helper.create_variable_for_type_inference(dtype) helper.append_op( type="gather_nd", inputs={"X": input, "Index": index}, outputs={"Out": output}) return output @deprecated(since="2.0.0", update_to="paddle.scatter") def scatter(input, index, updates, name=None, overwrite=True): """ :alias_main: paddle.scatter :alias: paddle.scatter,paddle.tensor.scatter,paddle.tensor.manipulation.scatter :old_api: paddle.fluid.layers.scatter **Scatter Layer** Output is obtained by updating the input on selected indices based on updates. .. code-block:: python import numpy as np #input: input = np.array([[1, 1], [2, 2], [3, 3]]) index = np.array([2, 1, 0, 1]) # shape of updates should be the same as input # shape of updates with dim > 1 should be the same as input updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]) overwrite = False # calculation: if not overwrite: for i in range(len(index)): input[index[i]] = np.zeros((2)) for i in range(len(index)): if (overwrite): input[index[i]] = updates[i] else: input[index[i]] += updates[i] # output: out = np.array([[3, 3], [6, 6], [1, 1]]) out.shape # [3, 2] Args: input (Variable): The input N-D Tensor with rank>=1. Data type can be float32. index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length. updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . overwrite (bool): The mode that updating the output when there are same indices. If True, use the overwrite mode to update the output of the same index, if False, use the accumulate mode to update the output of the same index. Default value is True. Returns: Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False) index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False) updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False) output = fluid.layers.scatter(input, index, updates, overwrite=False) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32) index_data = np.array([2, 1, 0, 1]).astype(np.int64) update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32) res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output]) print(res) # [array([[3., 3.], # [6., 6.], # [1., 1.]], dtype=float32)] """ helper = LayerHelper('scatter', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="scatter", inputs={"X": input, "Ids": index, "Updates": updates}, attrs={'overwrite': overwrite}, outputs={"Out": out}) return out def scatter_nd_add(ref, index, updates, name=None): r""" **Scatter_nd_add Layer** Output is obtained by applying sparse addition to a single value or slice in a Variable. :attr:`ref` is a Tensor with rank :math:`R` and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` is a Tensor with rank :math:`K - 1 + R - Q` and its shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` . According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` , add the corresponding :attr:`updates` slice to the :attr:`ref` slice which is obtained by the last one dimension of :attr:`index` . .. code-block:: text Given: * Case 1: ref = [0, 1, 2, 3, 4, 5] index = [[1], [2], [3], [1]] updates = [9, 10, 11, 12] we get: output = [0, 22, 12, 14, 4, 5] * Case 2: ref = [[65, 17], [-14, -25]] index = [[], []] updates = [[[-1, -2], [1, 2]], [[3, 4], [-3, -4]]] ref.shape = (2, 2) index.shape = (2, 0) updates.shape = (2, 2, 2) we get: output = [[67, 19], [-16, -27]] Args: ref (Variable): The ref input. Its dtype should be float32, float64. index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank. Its dtype should be int32 or int64 as it is used as indexes. updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:]. name (str|None): The output variable name. If set None, the layer will be named automatically. Returns: output (Variable): The output is a tensor with the same shape and dtype as ref. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32') index = fluid.data(name='index', shape=[3, 2], dtype='int32') updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32') output = fluid.layers.scatter_nd_add(ref, index, updates) """ if in_dygraph_mode(): op = getattr(core.ops, 'scatter_nd_add') return op(ref, index, updates) if ref.dtype != updates.dtype: raise ValueError("ref and updates must have same data type.") helper = LayerHelper('scatter_nd_add', **locals()) dtype = helper.input_dtype(input_param_name='ref') output = helper.create_variable_for_type_inference(dtype) helper.append_op( type="scatter_nd_add", inputs={"X": ref, "Index": index, "Updates": updates}, outputs={"Out": output}) return output def scatter_nd(index, updates, shape, name=None): """ **Scatter_nd Layer** Output is obtained by scattering the :attr:`updates` in a new tensor according to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` is equal to :code:`scatter_nd_add(paddle.zeros(shape, updates.dtype), index, updates)` . If :attr:`index` has repeated elements, then the corresponding updates are accumulated. Because of the numerical approximation issues, the different order of repeated elements in :attr:`index` may cause different results. The specific calculation method can be seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op. Args: index (Tensor): The index input with ndim > 1 and index.shape[-1] <= len(shape). Its dtype should be int32 or int64 as it is used as indexes. updates (Tensor): The updated value of scatter_nd op. Its dtype should be float32, float64. It must have the shape index.shape[:-1] + shape[index.shape[-1]:] shape(tuple|list): Shape of output tensor. name (str|None): The output Tensor name. If set None, the layer will be named automatically. Returns: output (Tensor): The output is a tensor with the same type as :attr:`updates` . Examples: .. code-block:: python import paddle import numpy as np index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64) index = paddle.to_tensor(index_data) updates = paddle.rand(shape=[3, 9, 10], dtype='float32') shape = [3, 5, 9, 10] output = paddle.scatter_nd(index, updates, shape) """ return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name) @templatedoc() def random_crop(x, shape, seed=None): """ ${comment} Args: x(${x_type}): ${x_comment} shape(${shape_type}): ${shape_comment} seed(int|${seed_type}|None): ${seed_comment} By default, the seed will get from `random.randint(-65536, 65535)`. Returns: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid img = fluid.data("img", [None, 3, 256, 256]) # cropped_img is [-1, 3, 224, 224] cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224]) # cropped_img2 shape: [-1, 2, 224, 224] # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224]) # cropped_img3 shape: [-1, 3, 128, 224] # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224]) """ helper = LayerHelper("random_crop", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32'], 'random_crop') check_type(shape, 'shape', (list, Variable), 'random_crop') dtype = x.dtype out = helper.create_variable_for_type_inference(dtype) if seed is None: seed = np.random.randint(-65536, 65536) op_attrs = {"shape": shape} if isinstance(seed, int): op_attrs["startup_seed"] = seed seed = helper.create_variable( name=unique_name.generate("random_crop_seed"), dtype="int64", persistable=True) elif not isinstance(seed, Variable): raise ValueError("'seed' must be a Variable or an int.") helper.append_op( type="random_crop", inputs={"X": x, "Seed": seed}, outputs={"Out": out, "SeedOut": seed}, attrs=op_attrs) return out def log(x, name=None): r""" Calculates the natural log of the given input tensor, element-wise. .. math:: Out = \\ln(x) Args: x (Tensor): Input Tensor. Must be one of the following types: float32, float64. name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: The natural log of the input Tensor computed element-wise. Examples: .. code-block:: python import paddle x = [[2,3,4], [7,8,9]] x = paddle.to_tensor(x, dtype='float32') res = paddle.log(x) # [[0.693147, 1.09861, 1.38629], [1.94591, 2.07944, 2.19722]] """ if in_dygraph_mode(): return core.ops.log(x) check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log") inputs = {'X': [x]} helper = LayerHelper('log', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.relu") def relu(x, name=None): """ ${comment} Args: x(Variable): ${x_comment} name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[-1,0],[1,2.6]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(in1) out1 = fluid.layers.relu(x1) print(out1.numpy()) # [[0. 0. ] # [1. 2.6]] """ if in_dygraph_mode(): return core.ops.relu(x) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu') inputs = {'X': [x]} helper = LayerHelper('relu', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.selu") def selu(x, scale=None, alpha=None, name=None): r""" Selu Operator. The equation is: .. math:: selu= \\lambda* \\begin{cases} x &\\quad \\text{ if } x>0 \n \\alpha * e^x - \\alpha &\\quad \\text{ if } x<=0 \\end{cases} The input `X` can carry the LoD (Level of Details) information, or not. And the output shares the LoD information with input `X`. Args: x (Variable): The input N-D Tensor. scale(float, optional): lambda in selu activation function, the default value is 1.0507009873554804934193349852946. For more information about this value, please refer to: https://arxiv.org/abs/1706.02515. alpha(float, optional): alpha in selu activation function, the default value is 1.6732632423543772848170429916717. For more information about this value, please refer to: https://arxiv.org/abs/1706.02515. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32") output = fluid.layers.selu(inputs) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) img = np.array([[0, 1],[2, 3]]).astype(np.float32) res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output]) print(res) # [array([[0. , 1.050701],[2.101402, 3.152103]], dtype=float32)] """ check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'selu') helper = LayerHelper('selu', **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) attrs = {} if scale is not None: attrs["scale"] = scale if alpha is not None: attrs["alpha"] = alpha helper.append_op( type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs) return out def mean_iou(input, label, num_classes): r""" Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: .. math:: IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}. The predictions are accumulated in a confusion matrix and mean-IOU is then calculated from it. Parameters: input (Tensor): A n-D Tensor of prediction results for semantic labels with type int32 or int64. label (Tensor): A Tensor of ground truth labels with type int32 or int64. Its shape should be the same as input. num_classes (int32): The possible number of labels. Returns: Three Tensors. - mean_iou(Tensor) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \ Data type is float32. - out_wrong(Tensor) : A 1-D Tensor with shape [num_classes]. Data type is int32. \ The wrong numbers of each class. - out_correct(Tensor): A 1-D Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class. Examples: .. code-block:: python import paddle iou_shape = [64, 32, 32] num_classes = 5 predict = paddle.randint(low=0, high=255, shape=iou_shape, dtype='int64') label = paddle.randint(low=0, high=255, shape=iou_shape, dtype='int64') mean_iou, out_wrong, out_correct = paddle.metric.mean_iou(predict, label, num_classes) """ if in_dygraph_mode(): return core.ops.mean_iou(input, label, 'num_classes', num_classes) helper = LayerHelper('mean_iou', **locals()) check_variable_and_dtype(input, 'Predictions', ['int32', 'int64'], 'mean_iou') check_variable_and_dtype(label, 'Labels', ['int32', 'int64'], 'mean_iou') out_mean_iou = helper.create_variable_for_type_inference(dtype='float32') out_wrong = helper.create_variable_for_type_inference(dtype='int32') out_correct = helper.create_variable_for_type_inference(dtype='int32') helper.append_op( type="mean_iou", inputs={"Predictions": input, "Labels": label}, outputs={ "OutMeanIou": out_mean_iou, "OutWrong": out_wrong, "OutCorrect": out_correct }, attrs={"num_classes": num_classes}) return out_mean_iou, out_wrong, out_correct def crop(x, shape=None, offsets=None, name=None): """ Crop input into output, as specified by offsets and shape. **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version. Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead. .. code-block:: text * Case 1: Given X = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] [0, 0, 0, 0, 0]], and shape = [2, 2], offsets = [0, 1], output is: Out = [[1, 2], [3, 4]]. * Case 2: Given X = [[0, 1, 2, 5, 0] [0, 3, 4, 6, 0] [0, 0, 0, 0, 0]], and shape is tensor shape = [[0, 0, 0] [0, 0, 0]] and offsets = [0, 1], output is: Out = [[1, 2, 5], [3, 4, 6]]. Parameters: x (Variable): Tensor, data type can be float32 or float64. shape (Variable|list/tuple of integers): The output shape is specified by `shape`, which can be a Tensor or a list/tuple of integers. If it is a Tensor, it's rank must be the same as `x` , only it's shape will be used, and the value of it will be ignored. This way is suitable for the case that the output shape may be changed each iteration. If it is a list/tuple of integers, it's length must be the same as the rank of `x` offsets (Variable|list/tuple of integers|None): Specifies the cropping offsets at each dimension. It can be a Tensor or a list/tuple of integers. If it is a Tensor, it's rank must be the same as `x`. This way is suitable for the case that the offsets may be changed each iteration. If it is a list/tuple of integers, it's length must be the same as the rank of `x`. If None, the offsets are 0 at each dimension. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: The cropped Tensor, which has the same rank and data type with `x` Return Type: Variable Raises: ValueError: If shape is not a list, tuple or Variable. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid as fluid import paddle paddle.enable_static() x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32") y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32") crop = fluid.layers.crop(x, shape=y) # or z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32") crop = fluid.layers.crop(z, shape=[2, 2, 3]) """ check_variable_and_dtype(x, 'x', ['float32'], 'crop') check_type(shape, 'shape', (list, tuple, Variable), 'crop') helper = LayerHelper('crop', **locals()) if offsets is None: offsets = [0] * len(x.shape) out = helper.create_variable_for_type_inference(x.dtype) ipts = {'X': x} attrs = {} if isinstance(shape, Variable): ipts['Y'] = shape else: attrs['shape'] = shape if isinstance(offsets, Variable): ipts['Offsets'] = offsets else: attrs['offsets'] = offsets helper.append_op( type='crop', inputs=ipts, outputs={'Out': out}, attrs=None if len(attrs) == 0 else attrs) return out def crop_tensor(x, shape=None, offsets=None, name=None): """ Crop input into output, as specified by offsets and shape. .. code-block:: text * Case 1 (input is a 2-D Tensor): Input: X.shape = [3, 5] X.data = [[0, 1, 2, 0, 0], [0, 3, 4, 0, 0], [0, 0, 0, 0, 0]] Parameters: shape = [2, 2] offsets = [0, 1] Output: Out.shape = [2, 2] Out.data = [[1, 2], [3, 4]] * Case 2 (input is a 3-D Tensor): Input: X.shape = [2, 3, 4] X.data = [[[0, 1, 2, 3], [0, 5, 6, 7], [0, 0, 0, 0]], [[0, 3, 4, 5], [0, 6, 7, 8], [0, 0, 0, 0]]] Parameters: shape = [2, 2, -1] offsets = [0, 0, 1] Output: Out.shape = [2, 2, 3] Out.data = [[[1, 2, 3], [5, 6, 7]], [[3, 4, 5], [6, 7, 8]]] Parameters: x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64. shape (list|tuple|Variable): The output shape is specified by `shape`. Its data type is int32. If a list/tuple, it's length must be the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1]. If Variable contained, it is suitable for the case that the shape may be changed each iteration. offsets (list|tuple|Variable, optional): Specifies the cropping offsets at each dimension. Its data type is int32. If a list/tuple, it's length must be the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1]. If Variable contained, it is suitable for the case that the offsets may be changed each iteration. Default: None, the offsets are 0 at each dimension. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: The cropped Tensor has same data type with `x`. Raises: TypeError: If the data type of `x` is not in: float32, float64, int32, int64. TypeError: If `shape` is not a list, tuple or Variable. TypeError: If the data type of `shape` is not int32. TypeError: If `offsets` is not None and not a list, tuple or Variable. TypeError: If the data type of `offsets` is not int32. ValueError: If the element in `offsets` is less than zero. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid as fluid import paddle paddle.enable_static() x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32") # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime. # shape is a 1-D Tensor crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32") crop0 = fluid.layers.crop_tensor(x, shape=crop_shape) # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime. # or shape is a list in which each element is a constant crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0]) # crop1.shape = [-1, 2, 3] # or shape is a list in which each element is a constant or Variable y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32") dim1 = fluid.data(name="dim1", shape=[1], dtype="int32") crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4]) # crop2.shape = [3, -1, 4] # offsets is a 1-D Tensor crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32") crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets) # crop3.shape = [-1, 2, 3] # offsets is a list in which each element is a constant or Variable offsets_var = fluid.data(name="dim1", shape=[1], dtype="int32") crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var]) # crop4.shape = [-1, 2, 3] """ helper = LayerHelper('crop_tensor', **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'crop_tensor') check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor') check_type(offsets, 'offsets', (list, tuple, Variable, type(None)), 'crop_tensor') if offsets is None: offsets = [0] * len(x.shape) out = helper.create_variable_for_type_inference(x.dtype) ipts = {'X': x} attrs = {} def _attr_shape_check(shape_val): if not isinstance(shape_val, int): raise TypeError( "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s." % type(shape_val)) if shape_val == 0: raise ValueError( "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s." % str(shape_val)) if shape_val < -1: raise ValueError( "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s." % str(shape_val)) def _attr_offsets_check(offset_val): if not isinstance(offset_val, int): raise TypeError( "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s." % type(offset_val)) if offset_val < 0: raise ValueError( "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s." % str(offset_val)) if isinstance(offsets, Variable): offsets.stop_gradient = True ipts['Offsets'] = offsets attrs['offsets'] = [-1] * len(x.shape) elif utils._contain_var(offsets): new_offsets_tensor = [] offsets_attr = [] for dim in offsets: if isinstance(dim, Variable): dim.stop_gradient = True new_offsets_tensor.append(dim) offsets_attr.append(-1) else: _attr_offsets_check(dim) temp_out = helper.create_variable_for_type_inference('int32') fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) new_offsets_tensor.append(temp_out) offsets_attr.append(dim) ipts['OffsetsTensor'] = new_offsets_tensor attrs['offsets'] = offsets_attr else: for offset in offsets: _attr_offsets_check(offset) attrs['offsets'] = offsets if isinstance(shape, Variable): shape.stop_gradient = True ipts['Shape'] = shape elif utils._contain_var(shape): new_shape_tensor = [] shape_attr = [] for dim_size in shape: if isinstance(dim_size, Variable): dim_size.stop_gradient = True new_shape_tensor.append(dim_size) shape_attr.append(0) else: _attr_shape_check(dim_size) temp_out = helper.create_variable_for_type_inference('int32') fill_constant( [1], 'int32', dim_size, force_cpu=True, out=temp_out) new_shape_tensor.append(temp_out) shape_attr.append(dim_size) ipts['ShapeTensor'] = new_shape_tensor attrs['shape'] = shape_attr else: for dim_size in shape: _attr_shape_check(dim_size) attrs['shape'] = shape helper.append_op( type='crop_tensor', inputs=ipts, outputs={'Out': out}, attrs=None if len(attrs) == 0 else attrs) return out def affine_grid(theta, out_shape, name=None): """ :alias_main: paddle.nn.functional.affine_grid :alias: paddle.nn.functional.affine_grid,paddle.nn.functional.vision.affine_grid :old_api: paddle.fluid.layers.affine_grid It generates a grid of (x,y) coordinates using the parameters of the affine transformation that correspond to a set of points where the input feature map should be sampled to produce the transformed output feature map. Args: theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters. The data type can be float32 or float64. out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width]. ``out_shape`` can be a Tensor or a list or tuple. The data type must be int32. name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. Raises: ValueError: If the type of arguments is not supported. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np place = fluid.CPUPlace() theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32") out_shape = fluid.data(name="y", shape=[4], dtype="int32") grid_0 = fluid.layers.affine_grid(theta, out_shape) grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28]) batch_size=2 exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"), "y": np.array([5, 3, 28, 28]).astype("int32")}, fetch_list=[grid_0.name, grid_1.name]) print(output[0]) print(output[1]) """ helper = LayerHelper('affine_grid') check_variable_and_dtype(theta, 'theta', ['float32', 'float64'], 'affine_grid') if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \ isinstance(out_shape, Variable)): raise ValueError("The out_shape should be a list, tuple or Variable.") if not isinstance(theta, Variable): raise ValueError("The theta should be a Variable.") out = helper.create_variable_for_type_inference(theta.dtype) ipts = {'Theta': theta} attrs = {} if isinstance(out_shape, Variable): ipts['OutputShape'] = out_shape check_variable_and_dtype(out_shape, 'out_shape', ['int32'], 'affine_grid') else: attrs['output_shape'] = out_shape helper.append_op( type='affine_grid', inputs=ipts, outputs={'Output': out}, attrs=None if len(attrs) == 0 else attrs) return out def pad2d(input, paddings=[0, 0, 0, 0], mode='constant', pad_value=0.0, data_format="NCHW", name=None): """ Pad 2-d images according to 'paddings' and 'mode'. If mode is 'reflect', paddings[0] and paddings[1] must be no greater than height-1. And the width dimension has the same condition. Parameters: input (Tensor): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32. paddings (Tensor | List[int32]): The padding size. If padding is a List, it must contain four integers, (padding_top, padding_bottom, padding_left, padding_right). Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32. Default is [0, 0, 0, 0]. mode (str): Three modes: 'constant' (default), 'reflect', 'edge' . When in 'constant' mode, this op uses a constant value to pad the input tensor. When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor. When in 'edge' mode, uses input boundaries to pad the input tensor. Default is 'constant' pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0 data_format (str): An string from: "NHWC", "NCHW". Specify the data format of the input data. Default is "NCHW" name (str, optional) : The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Tensor, a 4-D Tensor padded according to paddings and mode and data type is same as input. Examples: .. code-block:: text Input = [[[[1., 2., 3.], [4., 5., 6.]]]] Case 0: paddings = [0, 1, 2, 3], mode = 'constant' pad_value = 0 Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.], [0., 0., 4., 5., 6., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]]]] Case 1: paddings = [0, 1, 2, 1], mode = 'reflect' Out = [[[[3., 2., 1., 2., 3., 2.], [6., 5., 4., 5., 6., 5.], [3., 2., 1., 2., 3., 2.]]]] Case 2: paddings = [0, 1, 2, 1], mode = 'edge' Out = [[[[1., 1., 1., 2., 3., 3.], [4., 4., 4., 5., 6., 6.], [4., 4., 4., 5., 6., 6.]]]] Code Examples: .. code-block:: python import numpy as np import paddle import paddle.nn.functional as F # example 1 x_shape = (1, 1, 3, 4) x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1 tensor_x = paddle.to_tensor(x) y = paddle.fluid.layers.pad2d(tensor_x, paddings=[1, 2, 2, 1], pad_value=1, mode='constant') print(y.numpy()) # [[[[ 1. 1. 1. 1. 1. 1. 1.] # [ 1. 1. 1. 2. 3. 4. 1.] # [ 1. 1. 5. 6. 7. 8. 1.] # [ 1. 1. 9. 10. 11. 12. 1.] # [ 1. 1. 1. 1. 1. 1. 1.] # [ 1. 1. 1. 1. 1. 1. 1.]]]] # example 2 x_shape = (1, 1, 2, 3) x = np.arange(np.prod(x_shape), dtype=np.float32).reshape(x_shape) + 1 tensor_x = paddle.to_tensor(x) y = paddle.fluid.layers.pad2d(tensor_x, paddings=[1, 1, 1, 1], mode='reflect') print(y.numpy()) # [[[[5. 4. 5. 6. 5.] # [2. 1. 2. 3. 2.] # [5. 4. 5. 6. 5.] # [2. 1. 2. 3. 2.]]]] """ check_variable_and_dtype( input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'], "pad2d") if in_dygraph_mode(): _paddings = paddings.numpy().tolist() if isinstance( paddings, Variable) else paddings return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value, 'data_format', data_format, 'paddings', _paddings) attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format} inputs = {'X': [input]} if isinstance(paddings, Variable): inputs['Paddings'] = [paddings] attrs['paddings'] = [] else: attrs['paddings'] = paddings helper = LayerHelper('pad2d', **locals()) assert mode in ['reflect', 'edge', 'constant' ], "mode should be one of constant, reflect, edge." dtype = helper.input_dtype(input_param_name='input') out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.elu") def elu(x, alpha=1.0, name=None): """ :alias_main: paddle.nn.functional.elu :alias: paddle.nn.functional.elu,paddle.nn.functional.activation.elu :old_api: paddle.fluid.layers.elu ${comment} Args: x(${x_type}): ${x_comment} alpha(${alpha_type}|1.0): ${alpha_comment} name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: ${out_type}: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np input_elu = np.array([[-1,6],[1,15.6]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(input_elu) y = fluid.layers.elu(x, alpha=0.2) print(y.numpy()) # [[-0.12642411 6. ] # [ 1. 15.6 ]] """ helper = LayerHelper('elu', **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='elu', inputs={'X': x}, outputs={'Out': out}, attrs={'alpha': alpha}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.relu6") def relu6(x, threshold=6.0, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} threshold(float, optional): ${threshold_comment} name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: output(${out_type}): ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np in1 = np.array([[-1,0],[2.5,7.8]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(in1) out1 = fluid.layers.relu6(x=x1, threshold=6.0) print(out1.numpy()) # [[0. 0. ] # [2.5 6. ]] """ check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu6') helper = LayerHelper('relu6', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='relu6', inputs={'X': x}, outputs={'Out': out}, attrs={ 'threshold': threshold, 'use_mkldnn': core.globals()["FLAGS_use_mkldnn"] }) return out @templatedoc() def pow(x, factor=1.0, name=None): """ This is Pow Activation Operator. :math:`out = x^{factor}` Args: x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``. factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``. The exponential factor of Pow. Default 1.0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name="x", shape=[32,32], dtype="float32") # example 1: argument factor is float y_1 = fluid.layers.pow(x, factor=2.0) # y_1 is x^{2.0} # example 2: argument factor is Variable factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0) y_2 = fluid.layers.pow(x, factor=factor_tensor) # y_2 is x^{3.0} """ check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'pow') helper = LayerHelper('pow', **locals()) inputs = {'X': x} attrs = {} if isinstance(factor, Variable): check_variable_and_dtype(factor, 'factor', ['float32'], 'pow') factor.stop_gradient = True inputs['FactorTensor'] = factor else: attrs['factor'] = factor out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out @templatedoc() def stanh(x, scale_a=0.67, scale_b=1.7159, name=None): """ stanh activation. .. math:: out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}} Parameters: x (Tensor): The input Tensor with data type float32, float64. scale_a (float, optional): The scale factor a of the input. Default is 0.67. scale_b (float, optional): The scale factor b of the output. Default is 1.7159. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: A Tensor with the same data type and shape as ``x`` . Examples: .. code-block:: python import paddle x = paddle.to_tensor([1.0, 2.0, 3.0, 4.0]) out = paddle.stanh(x, scale_a=0.67, scale_b=1.72) # [1.00616539, 1.49927628, 1.65933108, 1.70390463] """ if in_dygraph_mode(): return core.ops.stanh(x, 'scale_a', scale_a, 'scale_b', scale_b) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'stanh') helper = LayerHelper('stanh', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='stanh', inputs={'X': x}, outputs={'Out': out}, attrs={'scale_a': scale_a, 'scale_b': scale_b}) return out @templatedoc() def hard_sigmoid(x, slope=0.2, offset=0.5, name=None): """ ${comment} Parameters: x (${x_type}): ${x_comment} slope (float, optional): ${slope_comment} offset (float, optional): ${offset_comment} name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: ${out_type}: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]] result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]] """ if in_dygraph_mode(): return core.ops.hard_sigmoid(x, 'slope', slope, 'offset', offset) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hard_sigmoid') helper = LayerHelper('hard_sigmoid', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='hard_sigmoid', inputs={'X': x}, outputs={'Out': out}, attrs={'slope': slope, 'offset': offset}) return out @templatedoc() def swish(x, beta=1.0, name=None): r""" :alias_main: paddle.nn.functional.swish :alias: paddle.nn.functional.swish,paddle.nn.functional.activation.swish :old_api: paddle.fluid.layers.swish Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details. Equation: .. math:: out = \\frac{x}{1 + e^{- beta * x}} Args: x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation. beta(float): Constant beta of swish operator, default 1.0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x. Examples: .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.data(name="x", shape=(-1, 3), dtype="float32") y = fluid.layers.swish(x, beta=2.0) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() data = np.random.randn(2, 3).astype("float32") exe.run(start) y_np, = exe.run(main, feed={"x": data}, fetch_list=[y]) data # array([[-1.1239197 , 1.3391294 , 0.03921051], # [ 1.1970421 , 0.02440812, 1.2055548 ]], dtype=float32) y_np # array([[-0.2756806 , 1.0610548 , 0.01998957], # [ 0.9193261 , 0.01235299, 0.9276883 ]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg data = np.random.randn(2, 3).astype("float32") place = fluid.CPUPlace() with dg.guard(place) as g: x = dg.to_variable(data) y = fluid.layers.swish(x) y_np = y.numpy() data # array([[-0.0816701 , 1.1603649 , -0.88325626], # [ 0.7522361 , 1.0978601 , 0.12987892]], dtype=float32) y_np # array([[-0.03916847, 0.8835007 , -0.25835553], # [ 0.51126915, 0.82324016, 0.06915068]], dtype=float32) """ check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'swish') helper = LayerHelper('swish', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='swish', inputs={'X': x}, outputs={'Out': out}, attrs={'slope': beta}) return out @deprecated(since="2.0.0", update_to="paddle.static.nn.prelu") def prelu(x, mode, param_attr=None, name=None): r""" prelu activation. .. math:: prelu(x) = max(0, x) + \\alpha * min(0, x) There are three modes for the activation: .. code-block:: text all: All elements share same alpha. channel: Elements in same channel share same alpha. element: All elements do not share alpha. Each element has its own alpha. Parameters: x (Tensor): The input Tensor or LoDTensor with data type float32. mode (str): The mode for weight sharing. param_attr (ParamAttr|None, optional): The parameter attribute for the learnable weight (alpha), it can be create by ParamAttr. None by default. For detailed information, please refer to :ref:`api_fluid_ParamAttr`. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A tensor with the same shape and data type as x. Examples: .. code-block:: python import paddle x = paddle.to_tensor([-1., 2., 3.]) param = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(0.2)) out = paddle.static.nn.prelu(x, 'all', param) # [-0.2, 2., 3.] """ check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'prelu') helper = LayerHelper('prelu', **locals()) if mode not in ['all', 'channel', 'element']: raise ValueError('mode should be one of all, channel, element.') alpha_shape = [1] # NOTE(): The input of this API should be ``N,C,...`` format, # which means x.shape[0] is batch_size and x.shape[0] is channel. if mode == 'channel': assert len( x.shape ) >= 2, "The size of input shape should be equal or larger than 2 in prelu() when mode is 'channel'" #NOTE(zhiqiu): The alpha_shape should be [1, channel] + [1] * len(x.shape[2:]). # To be consistent with Prelu, it is simplified. #NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version. alpha_shape = [1, x.shape[1], 1, 1] elif mode == 'element': assert len( x.shape ) >= 1, "The size of input shape should be equal or larger than 1 in prelu() when mode is 'element'" alpha_shape = [1] + list(x.shape)[1:] dtype = helper.input_dtype(input_param_name='x') alpha = helper.create_parameter( attr=helper.param_attr, shape=alpha_shape, dtype='float32', is_bias=False, default_initializer=Constant(0.25)) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prelu", inputs={"X": x, 'Alpha': alpha}, attrs={"mode": mode}, outputs={"Out": out}) return out @templatedoc() def brelu(x, t_min=0.0, t_max=24.0, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} t_min(${t_min_type}|0.0): ${t_min_comment} t_max(${t_max_type}|24.0): ${t_max_comment} name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: ${out_type}: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid import paddle import numpy as np paddle.enable_static() input_brelu = np.array([[-1,6],[1,15.6]]) with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(input_brelu) y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0) print(y.numpy()) #[[ 1. 6.] #[ 1. 10.]] """ if in_dygraph_mode(): return core.ops.brelu(x, 't_min', t_min, 't_max', t_max) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu') helper = LayerHelper('brelu', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='brelu', inputs={'X': x}, outputs={'Out': out}, attrs={'t_min': t_min, 't_max': t_max}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.leaky_relu") @templatedoc() def leaky_relu(x, alpha=0.02, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} alpha(${alpha_type}|0.02): ${alpha_comment} name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: output(${out_type}): ${out_comment} Examples: .. code-block:: python import paddle x = paddle.to_tensor([[-1, 2], [3, -4]], dtype='float32') y = paddle.fluid.layers.leaky_relu(x, alpha=0.1) print(y) # [[-0.1, 2], [3, -0.4]] """ return paddle.nn.functional.leaky_relu(x, alpha, name) def soft_relu(x, threshold=40.0, name=None): r""" SoftRelu Activation Operator. $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$ Args: x(Variable): Input of soft_relu operator. Data type can be float32, float64. threshold(float, optional): The threshold value of soft_relu, default value being 40.0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import numpy as np import paddle paddle.enable_static() inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32") output = fluid.layers.soft_relu(inputs, threshold=20.0) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) img = np.array([[0, 1],[2, 3]]).astype(np.float32) res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output]) print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)] """ check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'soft_relu') helper = LayerHelper('soft_relu', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='soft_relu', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold}) return out def flatten(x, axis=1, name=None): r""" **Flatten op** Flatten the input tensor into a 2D matrix. For Example: .. code-block:: text Case 1: Given X.shape = (3, 100, 100, 4) and axis = 2 We get: Out.shape = (3 * 100, 4 * 100) Case 2: Given X.shape = (3, 100, 100, 4) and axis = 0 We get: Out.shape = (1, 3 * 100 * 100 * 4) Args: x (Variable): A tensor of rank >= axis. A tensor with type float32, float64, int8, int32, int64. axis (int): Indicate up to which input dimensions (exclusive) should be flattened to the outer dimension of the output. The value for axis must be in the range [0, R], where R is the rank of the input tensor. Default: 1. name(str, Optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Variable: A 2D tensor with the contents of the input tensor, with input \ dimensions up to axis flattened to the outer dimension of \ the output and remaining input dimensions flattened into the \ inner dimension of the output. A Tensor with type same as input x. Raises: ValueError: If x is not a variable. ValueError: If axis is not in range [0, rank(x)]. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32") # x shape is [4, 4, 3] out = fluid.layers.flatten(x=x, axis=2) # out shape is [16, 3] """ check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int8', 'int32', 'int64'], 'flatten') helper = LayerHelper('flatten', **locals()) if not (isinstance(x, Variable)): raise ValueError("The input x should be a Variable") if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0: raise ValueError("The axis should be a int, and in range [0, rank(x)]") out = helper.create_variable_for_type_inference(x.dtype) x_shape = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='flatten2', inputs={"X": x}, outputs={'Out': out, 'XShape': x_shape}, attrs={"axis": axis}) return out def stack(x, axis=0, name=None): """ This OP stacks all the inputs :code:`x` along axis. .. code-block:: text Case 1: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 0 Output: Out.dims = [3, 1, 2] Out.data =[ [ [1.0, 2.0] ], [ [3.0, 4.0] ], [ [5.0, 6.0] ] ] Case 2: Input: x[0].shape = [1, 2] x[0].data = [ [1.0 , 2.0 ] ] x[1].shape = [1, 2] x[1].data = [ [3.0 , 4.0 ] ] x[2].shape = [1, 2] x[2].data = [ [5.0 , 6.0 ] ] Attrs: axis = 1 or axis = -2 Output: Out.shape = [1, 3, 2] Out.data =[ [ [1.0, 2.0] [3.0, 4.0] [5.0, 6.0] ] ] Args: x (list(Variable)|tuple(Variable)): Input :code:`x` can be a :code:`list` or :code:`tuple` of Tensors, the shapes of all these Tensors must be the same. Supposing input is N dims Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`. Supported data types: float32, float64, int32, int64. axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is ``[-(R+1), R+1)``, where ``R`` is the number of dimensions of the first input tensor ``x[0]``. If ``axis < 0``, ``axis = axis+R+1``. The default value of axis is 0. name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Returns: Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers # set batch size=None x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32') x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32') # stack Tensor list data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2] data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2] """ axis = 0 if axis is None else axis if in_dygraph_mode(): return core.ops.stack(x, 'axis', axis) if not isinstance(x, list) and not isinstance(x, tuple): # NOTE:(zhiqiu) Only support Variable as input if the Variable is a LOD_TENSOR_ARRAY create by create_array, array_write, array_read, etc. # In that case, Variable is array of tensors indeed. if isinstance(x, Variable) and x.desc.type( ) == core.VarDesc.VarType.LOD_TENSOR_ARRAY: x = [x] else: raise TypeError("The type of '%s' in %s must be %s, but received %s" % ('x', 'stack', 'list[Tensor], tuple[Tensor] or TensorArray', type(x))) helper = LayerHelper('stack', **locals()) out = helper.create_variable_for_type_inference(x[0].dtype) if x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY: assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \ "number of the elements must be 1, but received %s." % len(x) out_index = helper.create_variable_for_type_inference(dtype="int32") for i in x: check_variable_and_dtype(i, 'x', \ ['float16', 'float32', 'float64', 'int32', 'int64'], 'stack') helper.append_op( type='tensor_array_to_tensor', inputs={'X': x[0]}, outputs={'Out': [out], 'OutIndex': [out_index]}, attrs={'axis': axis, 'use_stack': True}) else: helper.append_op( type='stack', inputs={'X': x}, outputs={'Y': out}, attrs={'axis': axis}) return out @templatedoc(op_type="filter_by_instag") def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0): """ **Filter By Instag Layer** This function filter a batch of ins by instag, There are multiple ins, and every ins belongs to some tags. We can specify some tags we want. So the ins which belongs to that tags remains in the output, and others removed. For example, one batch has 4 ins. Every ins has its tag list. | Ins | Ins_Tag | |:-----:|:------:| | 0 | 0, 1 | | 1 | 1, 3 | | 2 | 0, 3 | | 3 | 2, 6 | And Lod is [1,1,1,1] And the filter tags [1] From the definition above, ins which has tag 1 can pass the filter So Ins 0 and Ins 1 can pass and be seen in the output, Ins 2 and 3 cannot pass because they do not has tag 1. Actually, if is_lod is false, it is normal tensor that equals to lod_tensor with all 1, similar to the example above. Args: ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor And first dimension can have lod info or not. ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list And split them by lod info filter_tag (Variable): Input Variable (1D Tensor/List), usually it is list that holds the tags. is_lod (Bool): Boolean value to indicate ins is lod tensor or not. out_val_if_empty(Int64): If the output after filter is empty, this value will be set to Output tensor. Returns: Variable: filtered ins (LoDTensor) and loss weight (Tensor) Examples: .. code-block:: python import paddle.fluid.layers as layers ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64') ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64') filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64') out, loss_weight = layers.filter_by_instag(ins, ins_tag, filter_tag, True) """ helper = LayerHelper('filter_by_instag', **locals()) out = helper.create_variable_for_type_inference(dtype=ins.dtype) loss_weight = helper.create_variable_for_type_inference(dtype=np.float64) mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype) helper.append_op( type='filter_by_instag', inputs={'Ins': ins, 'Ins_tag': ins_tag, 'Filter_tag': filter_tag}, outputs={'Out': out, 'LossWeight': loss_weight, 'IndexMap': mmap}, attrs={'is_lod': is_lod, 'out_val_if_empty': out_val_if_empty}) return [out, loss_weight] def unstack(x, axis=0, num=None): """ :alias_main: paddle.unstack :alias: paddle.unstack,paddle.tensor.unstack,paddle.tensor.manipulation.unstack :old_api: paddle.fluid.layers.unstack **UnStack Layer** This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`. If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`. If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`, and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is raised. Args: x (Tensor): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64. axis (int): The axis along which the input is unstacked. num (int|None): The number of output variables. Returns: list(Tensor): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64. Raises: ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D). Examples: .. code-block:: python import paddle x = paddle.ones(name='x', shape=[2, 3, 5], dtype='float32') # create a tensor with shape=[2, 3, 5] y = paddle.unstack(x, axis=1) # unstack with second axis, which results 3 tensors with shape=[2, 5] """ if in_dygraph_mode(): if num == None: num = x.shape[axis] return core.ops.unstack(x, num, 'axis', int(axis), 'num', num) helper = LayerHelper('unstack', **locals()) if num is None: if axis is None or x.shape[axis] <= 0: raise ValueError('unknown unstack number') else: num = x.shape[axis] outs = [] for _ in range(num): outs.append(helper.create_variable_for_type_inference(x.dtype)) helper.append_op( type='unstack', inputs={'X': [x]}, outputs={'Y': outs}, attrs={'axis': axis, 'num': num}) return outs @deprecated(since='2.0.0', update_to="paddle.expand") def expand(x, expand_times, name=None): """ :alias_main: paddle.expand :alias: paddle.expand,paddle.tensor.expand,paddle.tensor.manipulation.expand :old_api: paddle.fluid.layers.expand This operation tiles ``x`` multiple times according to the parameter ``expand_times``. The times number for each dimension of ``x`` is set by the parameter ``expand_times``. The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same with X's rank. Following is a using case: .. code-block:: text Input(X) is a 3-D tensor with shape [2, 3, 1]: [ [[1], [2], [3]], [[4], [5], [6]] ] Attr(expand_times): [1, 2, 2] Output(Out) is a 3-D tensor with shape [2, 6, 2]: [ [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]], [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]] ] Args: x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` . expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor. Expand times number for each dimension of ``x`` . name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` . Raises: TypeError: The type of ``expand_times`` must be list, tuple or Variable. ValueError: The elements of ``expand_times`` cannot be negative. Examples: .. code-block:: python import paddle.fluid as fluid # example 1: data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0) expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2]) # the shape of expanded_1 is [2, 6, 2]. # example 2: data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3) expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4) expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times) # the shape of expanded_2 is [48, 56]. """ if in_dygraph_mode(): attrs = () expand_times_tensor = None if isinstance(expand_times, (list, tuple)): expand_times = [ item.numpy().item(0) if isinstance(item, Variable) else item for item in expand_times ] attrs += ('expand_times', expand_times) elif isinstance(expand_times, Variable): expand_times_tensor = expand_times expand_times_tensor.stop_gradient = True return core.ops.expand(x, expand_times_tensor, *attrs) inputs = {"X": [x]} attrs = {} check_variable_and_dtype( x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand') check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand') if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True: raise ValueError( "expand op bool date type must set the stop_gradient to be False") helper = LayerHelper('expand', input=x, **locals()) def get_attr_expand_times(list_expand_times): attrs_expand_times = [] for idx, times in enumerate(list_expand_times): if isinstance(times, Variable): attrs_expand_times.append(-1) else: attrs_expand_times.append(times) assert times > 0, ( "Each element given in expand_times must not be negative.") return attrs_expand_times if isinstance(expand_times, Variable): expand_times.stop_gradient = True inputs['ExpandTimes'] = expand_times elif isinstance(expand_times, (list, tuple)): attrs['expand_times'] = get_attr_expand_times(expand_times) if utils._contain_var(expand_times): inputs['expand_times_tensor'] = utils._convert_to_tensor_list( expand_times) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out @deprecated(since='2.0.0', update_to="paddle.expand_as") def expand_as(x, target_tensor, name=None): """ :alias_main: paddle.expand_as :alias: paddle.expand_as,paddle.tensor.expand_as,paddle.tensor.manipulation.expand_as :old_api: paddle.fluid.layers.expand_as expand_as operator tiles to the input by given expand tensor. You should set expand tensor for each dimension by providing tensor 'target_tensor'. The rank of X should be in [1, 6]. Please note that size of 'target_tensor' must be the same with X's rank. Following is a using case: .. code-block:: text Input(X) is a 3-D tensor with shape [2, 3, 1]: [ [[1], [2], [3]], [[4], [5], [6]] ] target_tensor's shape: [2, 6, 2] Output(Out) is a 3-D tensor with shape [2, 6, 2]: [ [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]], [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]] ] Args: x (Variable): A Tensor with dtype float64, float32, int32. A tensor with rank in [1, 6]. target_tensor (Variable): A Tensor with dtype float64, float32, int32. target_tensor for expanding to Input(X). Only use target_tensor'shape. Returns: Variable: A Tensor with dtype float64, float32, int32. After expanding, size of each dimension of Output(Out) is equal to the size of the corresponding dimension of target_tensor multiplying the corresponding value given by target_tensor. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64') target_tensor = fluid.layers.data( name="target_tensor", shape=[-1,20], dtype='float64') result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) use_cuda = False place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) x = np.random.rand(3,10) y = np.random.rand(3,20) output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name]) print(output[0].shape) #(3,20) """ if in_dygraph_mode(): return core.ops.expand_as(x, target_tensor) check_variable_and_dtype( x, 'x', ['float32', 'float64', 'int32', 'int64', 'bool'], 'expand_as') check_variable_and_dtype(target_tensor, 'target_tensor', ['float32', 'float64', 'int32', 'int64', 'bool'], 'expand_as') helper = LayerHelper('expand_as', input=x, **locals()) dtype = helper.input_dtype(input_param_name='x') out = helper.create_variable_for_type_inference(dtype) inputs = {'X': x, 'target_tensor': target_tensor} helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out}) return out from paddle.fluid.framework import convert_np_dtype_to_dtype_ @deprecated(since='1.8.0', update_to="paddle.uniform") @templatedoc() def uniform_random_batch_size_like(input, shape, dtype='float32', input_dim_idx=0, output_dim_idx=0, min=-1.0, max=1.0, seed=0): """ This OP initializes a variable with random values sampled from a uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension. .. code-block:: text *Case 1: Given: input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3] shape=[2,4] result.shape[output_dim_idx] = input.shape[input_dim_idx], output_dim_idx = 0, input_dim_idx = 0, result.shape[0] = input.shape[0], then: result=[[ 0.3443427 , -0.23056602, 0.3477049 , 0.06139076]] # result.shape=[1,4] *Case 2: Given: input =[[0.946741 , 0.1357001 , 0.38086128]] # input.shape=[1,3] shape=[2,4] input_dim_idx=1 output_dim_idx=1 result.shape[output_dim_idx] = input.shape[input_dim_idx], output_dim_idx = 1, input_dim_idx = 1, result.shape[1] = input.shape[1], then: result=[[-0.23133647, -0.84195036, 0.21441269], [-0.08774924, 0.25605237, -0.09403259]] # result.shape=[2,3] Args: input (Variable): A Tensor. Supported data types: float32, float64. shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int. input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default 0. output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0. min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0. max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0. seed (int, optional): Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32. Returns: Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor. Examples: .. code-block:: python import paddle.fluid as fluid # example 1: input = fluid.data(name="input", shape=[1, 3], dtype='float32') out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4] # example 2: out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3] """ check_variable_and_dtype(input, 'Input', ("float32", 'float64'), 'uniform_random_batch_size_like') check_type(shape, 'shape', (list, tuple), 'uniform_random_batch_size_like') check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random_batch_size_like') helper = LayerHelper('uniform_random_batch_size_like', **locals()) out = helper.create_variable_for_type_inference(dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='uniform_random_batch_size_like', inputs={'Input': input}, outputs={'Out': out}, attrs={ 'shape': shape, 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx, 'min': min, 'max': max, 'seed': seed, 'dtype': c_dtype }) return out @deprecated(since="2.0.0", update_to="paddle.normal") @templatedoc() def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None): """ This OP returns a Tensor filled with random values sampled from a Gaussian distribution, with ``shape`` and ``dtype``. Args: shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). mean(float|int, optional): Mean of the output tensor, default is 0.0. std(float|int, optional): Standard deviation of the output tensor, default is 1.0. seed(int, optional): ${seed_comment} dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is float32. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a Gaussian distribution, with ``shape`` and ``dtype``. Examples: .. code-block:: python import paddle.fluid as fluid # example 1: # attr shape is a list which doesn't contain Tensor. result_1 = fluid.layers.gaussian_random(shape=[3, 4]) # [[-0.31261674, 1.8736548, -0.6274357, 0.96988016], # [-0.12294637, 0.9554768, 1.5690808, -1.2894802 ], # [-0.60082096, -0.61138713, 1.5345167, -0.21834975]] # example 2: # attr shape is a list which contains Tensor. dim_1 = fluid.layers.fill_constant([1], "int64", 2) dim_2 = fluid.layers.fill_constant([1], "int32", 3) result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2]) # [[ 0.51398206, -0.3389769, 0.23597084], # [ 1.0388143, -1.2015356, -1.0499583 ]] # example 3: # attr shape is a Tensor, the data type must be int64 or int32. var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") result_3 = fluid.layers.gaussian_random(var_shape) # if var_shape's value is [2, 3] # result_3 is: # [[-0.12310527, 0.8187662, 1.923219 ] # [ 0.70721835, 0.5210541, -0.03214082]] .. code-block:: python # declarative mode import numpy as np from paddle import fluid x = fluid.layers.gaussian_random((2, 3), std=2., seed=10) place = fluid.CPUPlace() exe = fluid.Executor(place) start = fluid.default_startup_program() main = fluid.default_main_program() exe.run(start) x_np, = exe.run(main, feed={}, fetch_list=[x]) x_np # array([[2.3060477, 2.676496 , 3.9911983], # [0.9990833, 2.8675377, 2.2279181]], dtype=float32) .. code-block:: python # imperative mode import numpy as np from paddle import fluid import paddle.fluid.dygraph as dg place = fluid.CPUPlace() with dg.guard(place) as g: x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10) x_np = x.numpy() x_np # array([[2.3060477 , 2.676496 , 3.9911983 , 0.9990833 ], # [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32) """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): shape = utils.convert_shape_to_list(shape) return core.ops.gaussian_random('shape', shape, 'mean', float(mean), 'std', float(std), 'seed', seed, 'dtype', dtype) check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn') check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn') inputs = {} attrs = { 'mean': mean, 'std': std, 'seed': seed, 'dtype': dtype, 'use_mkldnn': False } utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn') helper = LayerHelper('gaussian_random', **locals()) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out @templatedoc() def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'): """ This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample. Parameters: x (Variable): 2-D tensor, [batch_size, input_feature_dimensions] min (Float): minimum , default 0.0. max (Float): maximum, default 1.0. seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc Returns: Variable: sampling tensor. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.data( name="X", shape=[13, 11], dtype='float32') out = fluid.layers.sampling_id(x) """ helper = LayerHelper('sampling_id', **locals()) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='sampling_id', inputs={'X': x}, outputs={'Out': out}, attrs={'min': min, 'max': max, 'seed': seed}) return out @deprecated(since='1.8.0', update_to="paddle.normal") @templatedoc() def gaussian_random_batch_size_like(input, shape, input_dim_idx=0, output_dim_idx=0, mean=0.0, std=1.0, seed=0, dtype='float32'): """ ${comment} Args: input (Variable): ${input_comment} shape (tuple|list): ${shape_comment} input_dim_idx (int): ${input_dim_idx_comment} output_dim_idx (int): ${output_dim_idx_comment} mean (float): ${mean_comment} std (float): ${std_comment} seed (int): ${seed_comment} dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64. Returns: out (Variable): ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.data(name="input", shape=[13, 11], dtype='float32') out = fluid.layers.gaussian_random_batch_size_like( input, shape=[-1, 11], mean=1.0, std=2.0) """ helper = LayerHelper('gaussian_random_batch_size_like', **locals()) check_type(input, 'input', (Variable), 'fluid.layers.gaussian_random_batch_size_like') check_type(shape, 'shape', (list, tuple), 'fluid.layers.gaussian_random_batch_size_like') check_dtype(dtype, 'dtype', ['float16', 'float32', 'int'], 'fluid.layers.gaussian_random_batch_size_like') out = helper.create_variable_for_type_inference(dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='gaussian_random_batch_size_like', inputs={'Input': input}, outputs={'Out': out}, attrs={ 'shape': shape, 'input_dim_idx': input_dim_idx, 'output_dim_idx': output_dim_idx, 'mean': mean, 'std': std, 'seed': seed, 'dtype': c_dtype }) return out @templatedoc() def sum(x): """ ${comment} Case 1: :: Input: Input. Shape = [2, 3] Input = [[1, 2, 3], [4, 5, 6]] Output: The output. Shape = [2, 3] Output = [[1, 2, 3], [4, 5, 6]] Case 2: :: Input: First input: Input1. Shape = [2, 3] Input1 = [[1, 2, 3], [4, 5, 6]] The second input: Input2. Shape = [2, 3] Input2 = [[7, 8, 9], [10, 11, 12]] Output: The output. Shape = [2, 3] Output = [[8, 10, 12], [14, 16, 18]] Args: x (Variable|list(Variable)): ${x_comment} Returns: Variable: ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5) input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3) sum = fluid.layers.sum([input0, input1]) # You can print out 'sum' via executor. out = fluid.layers.Print(sum, message="the sum of input0 and input1: ") exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_main_program()) # The printed result is: # 1570701754 the sum of input0 and input1: The place is:CPUPlace # Tensor[sum_0.tmp_0] # shape: [2,3,] # dtype: l # data: 8,8,8,8,8,8, # the sum of input0 and input1 is 2-D Tensor with shape [2,3]. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ return paddle.add_n(x) @templatedoc() def slice(input, axes, starts, ends): """ This operator produces a slice of ``input`` along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed to ``starts`` or ``ends`` such as :math:`-i`, it represents the reverse position of the axis :math:`i-1` (here 0 is the initial position). If the value passed to ``starts`` or ``ends`` is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``. Following examples will explain how slice works: .. code-block:: text Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] # -1 denotes the reverse 0th position of dimension 0. Then: result = [ [2, 3, 4], ] # result = data[0:1, 1:4] Args: input (Tensor): A ``Tensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``. axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to . starts (list|tuple|Tensor): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``starts`` is an Tensor, it should be an 1-D Tensor. It represents starting indices of corresponding axis in ``axes``. ends (list|tuple|Tensor): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``ends`` is an Tensor, it should be an 1-D Tensor . It represents ending indices of corresponding axis in ``axes``. Returns: Tensor: A ``Tensor``. The data type is same as ``input``. Raises: TypeError: The type of ``starts`` must be list, tuple or Tensor. TypeError: The type of ``ends`` must be list, tuple or Tensor. Examples: .. code-block:: python import paddle input = paddle.rand(shape=[4, 5, 6], dtype='float32') # example 1: # attr starts is a list which doesn't contain tensor. axes = [0, 1, 2] starts = [-3, 0, 2] ends = [3, 2, 4] sliced_1 = paddle.slice(input, axes=axes, starts=starts, ends=ends) # sliced_1 is input[0:3, 0:2, 2:4]. # example 2: # attr starts is a list which contain tensor. minus_3 = paddle.full([1], -3, "int32") sliced_2 = paddle.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends) # sliced_2 is input[0:3, 0:2, 2:4]. """ if in_dygraph_mode(): attrs = () starts_tensor = None ends_tensor = None infer_flags = list(1 for i in range(len(axes))) if isinstance(starts, (list, tuple)): starts = [ item.numpy().item(0) if isinstance(item, Variable) else item for item in starts ] attrs += ('starts', starts) elif isinstance(starts, Variable): starts_tensor = starts starts.stop_gradient = True infer_flags = list(-1 for i in range(len(axes))) if isinstance(ends, (list, tuple)): ends = [ item.numpy().item(0) if isinstance(item, Variable) else item for item in ends ] attrs += ('ends', ends) elif isinstance(ends, Variable): ends_tensor = ends ends_tensor.stop_gradient = True infer_flags = list(-1 for i in range(len(axes))) return core.ops.slice(input, starts_tensor, ends_tensor, 'axes', axes, 'infer_flags', infer_flags, *attrs) if not isinstance(starts, (list, tuple, Variable)): raise ValueError( "Input starts must be an Variable, python list or tuple.") if not isinstance(ends, (list, tuple, Variable)): raise ValueError( "Input ends must be an Variable, python list or tuple.") helper = LayerHelper('slice', **locals()) inputs = {'Input': input} attrs = {'axes': axes} infer_flags = list(1 for i in range(len(axes))) # starts if isinstance(starts, Variable): starts.stop_gradient = True inputs['StartsTensor'] = starts infer_flags = list(-1 for i in range(len(axes))) elif isinstance(starts, (list, tuple)): attrs['starts'] = [] if utils._contain_var(starts): inputs['StartsTensorList'] = utils._convert_to_tensor_list(starts) for i, dim in enumerate(starts): if isinstance(dim, Variable): attrs['starts'].append(-1) infer_flags[i] = -1 else: attrs['starts'].append(dim) else: attrs['starts'] = starts # ends if isinstance(ends, Variable): ends.stop_gradient = True inputs['EndsTensor'] = ends infer_flags = list(-1 for i in range(len(axes))) elif isinstance(ends, (list, tuple)): attrs['ends'] = [] if utils._contain_var(ends): inputs['EndsTensorList'] = utils._convert_to_tensor_list(ends) for i, dim in enumerate(ends): if isinstance(dim, Variable): attrs['ends'].append(-1) infer_flags[i] = -1 else: attrs['ends'].append(dim) else: attrs['ends'] = ends # infer_flags attrs['infer_flags'] = infer_flags out = helper.create_variable_for_type_inference( dtype=helper.input_dtype('input')) helper.append_op( type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out}) return out @deprecated(since='2.0.0', update_to="paddle.strided_slice") def strided_slice(input, axes, starts, ends, strides): """ :alias_main: paddle.strided_slice :alias: paddle.strided_slice,paddle.tensor.strided_slice,paddle.tensor.manipulation.strided_slice :old_api: paddle.fluid.layers.strided_slice This operator produces a slice of ``input`` along multiple axes. Similar to numpy: https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and end dimension for each axis in the list of axes and Slice uses this information to slice the input data tensor. If a negative value is passed to ``starts`` or ``ends`` such as :math:`-i`, it represents the reverse position of the axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of slicing and if the ``strides`` is negative, slice operation is in the opposite direction. If the value passed to ``starts`` or ``ends`` is greater than n (the number of elements in this dimension), it represents n. For slicing to the end of a dimension with unknown size, it is recommended to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``. Following examples will explain how strided_slice works: .. code-block:: text Case1: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] strides = [1, 1] Then: result = [ [5, 6, 7], ] Case2: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [2, 0] strides = [1, -1] Then: result = [ [8, 7, 6], ] Case3: Given: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [0, 1] ends = [-1, 1000] strides = [1, 3] Then: result = [ [2], ] Args: input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``. axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to. It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`. starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor. It represents starting indices of corresponding axis in ``axes``. ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor . It represents ending indices of corresponding axis in ``axes``. strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor . It represents slice step of corresponding axis in ``axes``. Returns: Variable: A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``. Raises: TypeError: The type of ``starts`` must be list, tuple or Variable. TypeError: The type of ``ends`` must be list, tuple or Variable. TypeError: The type of ``strides`` must be list, tuple or Variable. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() input = fluid.data( name="input", shape=[3, 4, 5, 6], dtype='float32') # example 1: # attr starts is a list which doesn't contain tensor Variable. axes = [0, 1, 2] starts = [-3, 0, 2] ends = [3, 2, 4] strides_1 = [1, 1, 1] strides_2 = [1, 1, 2] sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1) # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1]. # example 2: # attr starts is a list which contain tensor Variable. minus_3 = fluid.layers.fill_constant([1], "int32", -3) sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2) # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2]. """ helper = LayerHelper('strided_slice', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64', 'int32', 'int64'], 'strided_slice') check_type(axes, 'axes', (list, tuple), 'strided_slice') check_type(starts, 'starts', (list, tuple, Variable), 'strided_slice') check_type(ends, 'ends', (list, tuple, Variable), 'strided_slice') check_type(strides, 'strides', (list, tuple, Variable), 'strided_slice') def check_list_elements_dtype(list_input, input_name): if isinstance(list_input, Variable): check_dtype(list_input.dtype, input_name, ['int32'], 'strided_slice') else: for i, var in enumerate(list_input): var_name = input_name + '[' + str(i) + ']' if isinstance(var, Variable): check_dtype(var.dtype, var_name, ['int32'], 'strided_slice') check_list_elements_dtype(axes, 'axes') check_list_elements_dtype(starts, 'starts') check_list_elements_dtype(ends, 'ends') check_list_elements_dtype(strides, 'strides') def get_new_list_tensor(old_list): new_list_tensor = [] for dim in old_list: if isinstance(dim, Variable): dim.stop_gradient = True new_list_tensor.append(dim) else: assert (isinstance(dim, int)) temp_out = helper.create_variable_for_type_inference('int32') fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out) new_list_tensor.append(temp_out) return new_list_tensor inputs = {'Input': input} attrs = {'axes': axes} infer_flags = list(1 for i in range(len(axes))) if in_dygraph_mode(): inputs = {'Input': input} attrs = { 'axes': axes, 'starts': starts, 'ends': ends, 'strides': strides, 'infer_flags': infer_flags } else: # starts if isinstance(starts, Variable): starts.stop_gradient = True inputs['StartsTensor'] = starts elif isinstance(starts, (list, tuple)): attrs['starts'] = [] if utils._contain_var(starts): inputs['StartsTensorList'] = get_new_list_tensor(starts) for i, dim in enumerate(starts): if isinstance(dim, Variable): attrs['starts'].append(-1) infer_flags[i] = -1 else: attrs['starts'].append(dim) else: attrs['starts'] = starts # ends if isinstance(ends, Variable): ends.stop_gradient = True inputs['EndsTensor'] = ends elif isinstance(ends, (list, tuple)): attrs['ends'] = [] if utils._contain_var(ends): inputs['EndsTensorList'] = get_new_list_tensor(ends) for i, dim in enumerate(ends): if isinstance(dim, Variable): attrs['ends'].append(-1) infer_flags[i] = -1 else: attrs['ends'].append(dim) else: attrs['ends'] = ends # strides if isinstance(strides, Variable): strides.stop_gradient = True inputs['StridesTensor'] = strides elif isinstance(strides, (list, tuple)): attrs['strides'] = [] if utils._contain_var(strides): inputs['StridesTensorList'] = get_new_list_tensor(strides) for i, dim in enumerate(strides): if isinstance(dim, Variable): attrs['strides'].append(-1) infer_flags[i] = -1 else: attrs['strides'].append(dim) else: attrs['strides'] = strides attrs['infer_flags'] = infer_flags out = helper.create_variable_for_type_inference( dtype=helper.input_dtype('input')) helper.append_op( type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out}) return out def shape(input): """ :alias_main: paddle.shape :alias: paddle.shape,paddle.tensor.shape,paddle.tensor.attribute.shape :old_api: paddle.fluid.layers.shape **Shape Layer** Get the shape of the input. .. code-block:: text Case1: Given N-D Tensor: input = [ [1, 2, 3, 4], [5, 6, 7, 8] ] Then: input.shape = [2, 4] Case2: Given SelectedRows: input.rows = [0, 4, 19] input.height = 20 input.value = [ [1, 2], [3, 4], [5, 6] ] # inner tensor Then: input.shape = [3, 2] Args: input (Variable): The input can be N-D Tensor or SelectedRows with data type bool, float16, float32, float64, int32, int64. If input variable is type of SelectedRows, returns the shape of it's inner tensor. Returns: Variable (Tensor): The shape of the input variable. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np inputs = fluid.data(name="x", shape=[3, 100, 100], dtype="float32") output = fluid.layers.shape(inputs) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) img = np.ones((3, 100, 100)).astype(np.float32) res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output]) print(res) # [array([ 3, 100, 100], dtype=int32)] """ check_variable_and_dtype( input, 'input', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'shape') helper = LayerHelper('shape', **locals()) out = helper.create_variable_for_type_inference(dtype='int32') helper.append_op( type='shape', inputs={'Input': input}, outputs={'Out': out}) return out def rank(input): """ The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor. Args: input (Tensor): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary. Returns: Tensor, the output data type is int32.: The 0-D tensor with the dimensions of the input Tensor. Examples: .. code-block:: python import paddle input = paddle.rand((3, 100, 100)) rank = paddle.rank(input) print(rank) # 3 """ check_type(input, 'input', (Variable), 'input') ndims = len(input.shape) out = assign(np.array(ndims, 'int32')) return out @deprecated(since="2.0.0", update_to="paddle.numel") def size(input): """ **Size Layer** Returns the number of elements for a tensor, which is a int64 Tensor with shape [1]. Args: input (Tensor): The input Tensor, it's data type can be bool, float16, float32, float64, int32, int64. Returns: Tensor: The number of elements for the input Tensor. Raises: TypeError: ``input`` must be a Tensor and the data type of ``input`` must be one of bool, float16, float32, float64, int32, int64. Examples: .. code-block:: python import paddle.fluid.layers as layers input = layers.data( name="input", shape=[3, 100], dtype="float32", append_batch_size=False) rank = layers.size(input) # 300 """ if in_dygraph_mode(): return core.ops.size(input) check_variable_and_dtype( input, 'input', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], "size") helper = LayerHelper('size', **locals()) out = helper.create_variable_for_type_inference(dtype='int64') helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out}) return out def _elementwise_op(helper): op_type = helper.layer_type x = helper.kwargs.get('x', None) y = helper.kwargs.get('y', None) assert x is not None, 'x cannot be None in {}'.format(op_type) assert y is not None, 'y cannot be None in {}'.format(op_type) check_variable_and_dtype( x, 'x', ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'], op_type) check_variable_and_dtype( y, 'y', ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'], op_type) axis = helper.kwargs.get('axis', -1) use_mkldnn = helper.kwargs.get('use_mkldnn', False) name = helper.kwargs.get('name', None) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type=op_type, inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs={'axis': axis, 'use_mkldnn': use_mkldnn}) return helper.append_activation(out) def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): """ Scale operator. Putting scale and bias to the input Tensor as following: ``bias_after_scale`` is True: .. math:: Out=scale*X+bias ``bias_after_scale`` is False: .. math:: Out=scale*(X+bias) Args: x(Tensor): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8. scale(float|Tensor): The scale factor of the input, it should be a float number or a Tensor with shape [1] and data type as float32. bias(float): The bias to be put on the input. bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances. act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Tensor: Output tensor of scale operator, with shape and data type same as input. Examples: .. code-block:: python # scale as a float32 number import paddle data = paddle.randn(shape=[2,3], dtype='float32') res = paddle.scale(data, scale=2.0, bias=1.0) .. code-block:: python # scale with parameter scale as a Tensor import paddle data = paddle.randn(shape=[2, 3], dtype='float32') factor = paddle.to_tensor([2], dtype='float32') res = paddle.scale(data, scale=factor, bias=1.0) """ if in_dygraph_mode(): _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale out = core.ops.scale(x, 'scale', float(_scale), 'bias', float(bias), 'bias_after_scale', bias_after_scale) return dygraph_utils._append_activation_in_dygraph(out) check_variable_and_dtype(x, "x", [ 'float16', 'uint16', 'float32', 'float64', 'int8', 'int16', 'int32', 'int64', 'uint8' ], "scale") inputs = {'X': [x]} attrs = { 'bias': float(bias), 'bias_after_scale': bias_after_scale, } if isinstance(scale, Variable): inputs['ScaleTensor'] = [scale] else: attrs['scale'] = float(scale) helper = LayerHelper('scale', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs) return helper.append_activation(out) def elementwise_add(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_add(x, y) # z = x + y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [3., 8., 6.] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_add(x, y, axis=1) # z = x + y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') z = fluid.layers.elementwise_add(x, y, axis=3) # z = x + y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_add', use_mkldnn=core.globals()["FLAGS_use_mkldnn"]) return _elementwise_op(LayerHelper('elementwise_add', **locals())) @deprecated(since="2.0.0", update_to="paddle.divide") def elementwise_div(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_div(x, y) # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [2., 0.6, 2.] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_div(x, y, axis=1) # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') z = fluid.layers.elementwise_div(x, y, axis=3) # z = x / y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_div') return _elementwise_op(LayerHelper('elementwise_div', **locals())) def elementwise_sub(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_sub(x, y) # z = x - y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [1., -2., 2.] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_sub(x, y, axis=1) # z = x - y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') z = fluid.layers.elementwise_sub(x, y, axis=3) # z = x - y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_sub') return _elementwise_op(LayerHelper('elementwise_sub', **locals())) @deprecated(since="2.0.0", update_to="paddle.multiply") def elementwise_mul(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_mul(x, y) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # [2., 15., 8.] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_mul(x, y, axis=1) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'), "y": np.random.randint(1, 5, size=[5]).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[5], dtype='float32') z = fluid.layers.elementwise_mul(x, y, axis=3) # z = x * y place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) # z.shape=[2,3,4,5] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_mul') return _elementwise_op(LayerHelper('elementwise_mul', **locals())) def elementwise_max(x, y, axis=-1, act=None, name=None): """ :alias_main: paddle.elementwise_max :alias: paddle.elementwise_max,paddle.tensor.elementwise_max,paddle.tensor.math.elementwise_max :old_api: paddle.fluid.layers.elementwise_max Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_max(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) #[2, 5, 4] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_max(x, y, axis=1) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_max') return _elementwise_op(LayerHelper('elementwise_max', **locals())) def elementwise_min(x, y, axis=-1, act=None, name=None): """ :alias_main: paddle.elementwise_min :alias: paddle.elementwise_min,paddle.tensor.elementwise_min,paddle.tensor.math.elementwise_min :old_api: paddle.fluid.layers.elementwise_min Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_min(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) #[1, 3, 2] .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.ones((2, 3, 4, 5)).astype('float32'), "y": np.zeros((3, 4)).astype('float32') } x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32') y = fluid.data(name="y", shape=[3,4], dtype='float32') z = fluid.layers.elementwise_min(x, y, axis=1) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_min') return _elementwise_op(LayerHelper('elementwise_min', **locals())) def elementwise_pow(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([2, 3, 4]).astype('float32'), "y": np.array([1, 5, 2]).astype('float32') } x = fluid.data(name="x", shape=[3], dtype='float32') y = fluid.data(name="y", shape=[3], dtype='float32') z = fluid.layers.elementwise_pow(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) #[2, 243, 16] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_pow') return _elementwise_op(LayerHelper('elementwise_pow', **locals())) @deprecated(since="2.0.0", update_to="paddle.remainder") def elementwise_mod(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([10, 15, 8]).astype('int32'), "y": np.array([3, 6, 5]).astype('int32') } x = fluid.data(name="x", shape=[3], dtype='int32') y = fluid.data(name="y", shape=[3], dtype='int32') z = fluid.layers.elementwise_mod(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) #[1, 3, 3] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_mod') return _elementwise_op(LayerHelper('elementwise_mod', **locals())) @deprecated(since="2.0.0", update_to="paddle.floor_divide") def elementwise_floordiv(x, y, axis=-1, act=None, name=None): """ Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np def gen_data(): return { "x": np.array([10, 15, 8]).astype('int32'), "y": np.array([3, 7, 5]).astype('int32') } x = fluid.data(name="x", shape=[3], dtype='int32') y = fluid.data(name="y", shape=[3], dtype='int32') z = fluid.layers.elementwise_floordiv(x, y) place = fluid.CPUPlace() exe = fluid.Executor(place) z_value = exe.run(feed=gen_data(), fetch_list=[z.name]) print(z_value) #[3, 2, 1] """ if in_dygraph_mode(): return _elementwise_op_in_dygraph( x, y, axis=axis, act=act, op_name='elementwise_floordiv') return _elementwise_op(LayerHelper('elementwise_floordiv', **locals())) for func in [ elementwise_add, elementwise_div, elementwise_sub, elementwise_mul, elementwise_max, elementwise_pow, elementwise_min, elementwise_mod, elementwise_floordiv, ]: op_proto = OpProtoHolder.instance().get_op_proto(func.__name__) # insert the c++ doc string on top of python doc string func.__doc__ = _generate_doc_string_( op_proto, additional_args_lines=[ "axis (int32, optional): If X.dimension != Y.dimension, \ Y.dimension must be a subsequence of x.dimension. \ And axis is the start dimension index for broadcasting Y onto X. ", "act (string, optional): Activation applied to the output. \ Default is None. Details: :ref:`api_guide_activations_en` ", "name (string, optional): Name of the output. \ Default is None. It's used to print debug info for developers. Details: \ :ref:`api_guide_Name` " ], skip_attrs_set={ "x_data_format", "y_data_format", "axis", "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out" }) + """\n""" + str(func.__doc__) doc_list = func.__doc__.splitlines() for idx, val in enumerate(doc_list): if val.startswith("Warning: ") and val.endswith( " instead." ) and "and will be removed in future versions." in val: doc_list.insert(0, doc_list.pop(idx)) func.__doc__ = "\n" + "\n".join(i for i in doc_list) break for func in []: op_proto = OpProtoHolder.instance().get_op_proto(func.__name__) func.__doc__ = _generate_doc_string_( op_proto, additional_args_lines=[ "act (basestring|None): Activation applied to the output.", "name (basestring|None): Name of the output." ]) func.__doc__ = func.__doc__ + """ Examples: .. code-block:: python import paddle.fluid as fluid # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5) x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32') y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32') z0 = fluid.layers.%s(x0, y0) # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5) x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32') y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32') z1 = fluid.layers.%s(x1, y1) # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2 x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32') y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32') z2 = fluid.layers.%s(x2, y2, axis=2) # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32') y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32') z3 = fluid.layers.%s(x3, y3, axis=1) # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32') y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32') z4 = fluid.layers.%s(x4, y4, axis=0) # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0 x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32') y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32') z5 = fluid.layers.%s(x5, y5, axis=0) """ % (func.__name__, func.__name__, func.__name__, func.__name__, func.__name__, func.__name__) def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): if in_dygraph_mode(): op = getattr(core.ops, op_name) if binary_op: return op(x, y) else: return op(x) check_variable_and_dtype(x, "x", ["bool"], op_name) if y is not None: check_variable_and_dtype(y, "y", ["bool"], op_name) if out is not None: check_type(out, "out", Variable, op_name) helper = LayerHelper(op_name, **locals()) if binary_op: assert x.dtype == y.dtype if out is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) if binary_op: helper.append_op( type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}) else: helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out}) return out def logical_and(x, y, out=None, name=None): r""" ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``x``, ``y`` and ``out`` are N-dim boolean ``Tensor``. Each element of ``out`` is calculated by .. math:: out = x \&\& y .. note:: ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`. Args: x (Tensor): the input tensor, it's data type should be bool. y (Tensor): the input tensor, it's data type should be bool. out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``. Examples: .. code-block:: python import paddle x = paddle.to_tensor([True]) y = paddle.to_tensor([True, False, True, False]) res = paddle.logical_and(x, y) print(res) # [True False True False] """ return _logical_op( op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True) def logical_or(x, y, out=None, name=None): """ ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``x``, ``y`` and ``out`` are N-dim boolean ``Tensor``. Each element of ``out`` is calculated by .. math:: out = x || y .. note:: ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`. Args: x (Tensor): the input tensor, it's data type should be bool. y (Tensor): the input tensor, it's data type should be bool. out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``. Examples: .. code-block:: python import paddle import numpy as np x_data = np.array([True, False], dtype=np.bool).reshape(2, 1) y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) res = paddle.logical_or(x, y) print(res) # [[ True True] [ True False]] """ return _logical_op( op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True) def logical_xor(x, y, out=None, name=None): r""" ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``x``, ``y`` and ``out`` are N-dim boolean ``Tensor``. Each element of ``out`` is calculated by .. math:: out = (x || y) \&\& !(x \&\& y) .. note:: ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`. Args: x (Tensor): the input tensor, it's data type should be bool. y (Tensor): the input tensor, it's data type should be bool. out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``. Examples: .. code-block:: python import paddle import numpy as np x_data = np.array([True, False], dtype=np.bool).reshape([2, 1]) y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2]) x = paddle.to_tensor(x_data) y = paddle.to_tensor(y_data) res = paddle.logical_xor(x, y) print(res) # [[False, True], [ True, False]] """ return _logical_op( op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True) @templatedoc() def logical_not(x, out=None, name=None): """ ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``x`` and ``out`` are N-dim boolean ``Variable``. Each element of ``out`` is calculated by .. math:: out = !x Args: x(Tensor): Operand of logical_not operator. Must be a Tensor of type bool. out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output. name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: ${out_comment} Examples: .. code-block:: python import paddle x = paddle.to_tensor([True, False, True, False]) res = paddle.logical_not(x) print(res) # [False True False True] """ return _logical_op( op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False) @templatedoc() def clip(x, min, max, name=None): """ :old_api: paddle.fluid.layers.clip ${comment} Args: x(${x_type}): ${x_comment} min(float): ${min_comment} max(float): ${max_comment} name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: ${out_comment} Return Type: ${out_type} Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.data( name='data', shape=[1], dtype='float32') reward = fluid.layers.clip(x=input, min=-1.0, max=1.0) """ helper = LayerHelper("clip", **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip') if name is None: name = unique_name.generate_with_ignorable_key(".".join( [helper.name, 'tmp'])) out = helper.create_variable( type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op( type="clip", inputs={"X": x}, attrs={"min": min, "max": max}, outputs={"Out": out}) return out @templatedoc() def clip_by_norm(x, max_norm, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} max_norm(${max_norm_type}): ${max_norm_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Tensor: out(${out_type}): ${out_comment} Examples: .. code-block:: python import paddle import paddle.fluid as fluid input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32') reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0) # [[0.5, 0.5], [0.5, 0.5]] """ if in_dygraph_mode(): return core.ops.clip_by_norm(x, 'max_norm', max_norm) helper = LayerHelper("clip_by_norm", **locals()) check_variable_and_dtype(x, 'X', ['float32'], 'clip_by_norm') check_type(max_norm, 'max_norm', (float), 'clip_by_norm') if name is None: name = unique_name.generate_with_ignorable_key(".".join( [helper.name, 'tmp'])) out = helper.create_variable( type=x.type, name=name, dtype=x.dtype, persistable=False) helper.append_op( type="clip_by_norm", inputs={"X": x}, attrs={"max_norm": max_norm}, outputs={"Out": out}) return out @deprecated(since="2.0.0", update_to="paddle.mean") @templatedoc() def mean(x, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} name(basestring|None): Name of the output. Returns: out(${out_type}): ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.layers.data( name='data', shape=[2, 3], dtype='float32') mean = fluid.layers.mean(input) """ if in_dygraph_mode(): return core.ops.mean(x) helper = LayerHelper("mean", **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}) return out @templatedoc() def merge_selected_rows(x, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} name(basestring|None): Name of the output. Returns: out(${out_type}): ${out_comment} Examples: .. code-block:: python import paddle.fluid as fluid b = fluid.default_main_program().global_block() var = b.create_var( name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS) y = fluid.layers.merge_selected_rows(var) """ helper = LayerHelper("merge_selected_rows", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="merge_selected_rows", inputs={"X": x}, attrs={}, outputs={"Out": out}) return out def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): """ Mul Operator. This operator is used to perform matrix multiplication for input $x$ and $y$. The equation is: .. math:: Out = x * y Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$. Args: x (Variable): The first input Tensor/LoDTensor of mul_op. y (Variable): The second input Tensor/LoDTensor of mul_op. x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. Returns: Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32") dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32") output = fluid.layers.mul(dataX, dataY, x_num_col_dims = 1, y_num_col_dims = 1) """ if in_dygraph_mode(): return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims, 'y_num_col_dims', y_num_col_dims) inputs = {"X": [x], "Y": [y]} attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims} helper = LayerHelper("mul", **locals()) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul') check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}) return out @deprecated(since="2.0.0", update_to="paddle.nn.functional.maxout") @templatedoc() def maxout(x, groups, name=None, axis=1): """ ${comment} Args: x(${x_type}): ${x_comment} groups(int): ${groups_comment} axis(int, optional): ${axis_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: ${out_comment} Raises: ValueError: If `axis` is not 1, -1 or 3. ValueError: If the number of input channels can not be divisible by `groups`. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() input = fluid.data( name='data', shape=[None, 256, 32, 32], dtype='float32') out = fluid.layers.maxout(input, groups=2) """ return paddle.nn.functional.maxout(**locals()) def space_to_depth(x, blocksize, name=None): r""" Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width] This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \ theinput LoDtensor where values from the height and width dimensions are moved to the channel \ dimension. The attr blocksize indicates the input block size. space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \ according to blocksize to construct output with shape \ [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]: - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location. - The Y, X coordinates within each block of the input become the high order component of the output channel index - channel should be divisible by square of blocksize - height, width should be divsible by blocksize This OP is useful for resizing the activations between convolutions \ (but keeping all data) .. code-block:: text Given the input x with the shape [1, 1, 4, 4]: x.data = [[[[1, 2, 5, 6], [3, 4, 7, 8], [9, 10, 13, 14], [11, 12, 15, 16]]]] blocksize = 2 then get the output with the shape [1, 4, 2, 2]: out.data = [[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[13, 14], [15, 16]]]] Args: x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \ [batch, channel, height, width] blocksize (int): The blocksize to select the element on each feature map should be > 2 name(str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \ [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize] Return Type: Variable Raises: TypeError: blocksize type must be int64. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import numpy as np import paddle paddle.enable_static() data = fluid.data( name='data', shape=[1, 4, 2, 2], dtype='float32') space_to_depthed = fluid.layers.space_to_depth( x=data, blocksize=2) exe = fluid.Executor(fluid.CPUPlace()) data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32') print(data_np) #array([[[[ 0., 1.], [ 2., 3.]], # [[ 4., 5.], [ 6., 7.]], # [[ 8., 9.], [10., 11.]], # [[12., 13.], [14., 15.]]]], dtype=float32) out_main = exe.run(fluid.default_main_program(), feed={'data': data_np}, fetch_list=[space_to_depthed]) print(out_main) #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]], # [[ 8.]], [[12.]], [[ 9.]], [[13.]], # [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]], # [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)] """ helper = LayerHelper("space_to_depth", **locals()) if not (isinstance(blocksize, int)): raise ValueError("blocksize must be a python Int") check_variable_and_dtype(x, 'x', \ ['float16', 'float32', 'float64', 'int32', 'int64'], 'space_to_depth') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="space_to_depth", inputs={"X": x}, attrs={"blocksize": blocksize}, outputs={"Out": out}) return out def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None, act=None): """ Applies a separate affine transformation to each channel of the input. Useful for replacing spatial batch norm with its equivalent fixed transformation. The input also can be 2D tensor and applies a affine transformation in second dimension. Args: x (Variable): Feature map input can be a 4D tensor with order NCHW or NHWC. It also can be a 2D tensor and the affine transformation is applied in the second dimension.The data type is float32 or float64. scale (Variable): 1D input of shape (C), the c-th element is the scale factor of the affine transformation for the c-th channel of the input.The data type is float32 or float64. bias (Variable): 1D input of shape (C), the c-th element is the bias of the affine transformation for the c-th channel of the input. The data type is float32 or float64. data_layout (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore data_layout. name (str, default None): The name of this layer. For more information, please refer to :ref:`api_guide_Name` . act (str, default None): Activation to be applied to the output of this layer. Returns: Variable: A tensor which has the same shape, data layout and data type with x. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.fluid as fluid import paddle paddle.enable_static() use_gpu = False place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32') input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32", default_initializer=fluid.initializer.Constant(2.0)) input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32", default_initializer=fluid.initializer.Constant(0.5)) out = fluid.layers.affine_channel(data,scale=input_scale, bias=input_bias) exe.run(fluid.default_startup_program()) test_program = fluid.default_main_program().clone(for_test=True) [out_array] = exe.run(test_program, fetch_list=out, feed={'data': np.ones([1,1,2,2]).astype('float32')}) # out_array is [[[[2.5, 2.5], # [2.5, 2.5]]]] with shape: [1, 1, 2, 2] """ helper = LayerHelper("affine_channel", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'affine_channel') check_type(scale, 'scale', (Variable, type(None)), 'affine_channel') check_type(bias, 'bias', (Variable, type(None)), 'affine_channel') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="affine_channel", inputs={"X": x, 'Scale': scale, 'Bias': bias}, attrs={"data_layout": data_layout}, outputs={"Out": out}) return helper.append_activation(out) def similarity_focus(input, axis, indexes, name=None): r""" SimilarityFocus Operator Generate a similarity focus mask with the same shape of input using the following method: 1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding to the axis according to the indexes. For example, if axis=1 and indexes=[a], it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C). 2. For each index, find the largest numbers in the tensor T, so that the same row and same column has at most one number(what it means is that if the largest number has been found in the i-th row and the j-th column, then the numbers in the i-th row or j-th column will be skipped. And then the next largest number will be selected from the remaining numbers. Obviously there will be min(B, C) numbers), and mark the corresponding position of the 3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for each index. 3. Broadcast the 3-D similarity focus mask to the same shape of input X. Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_ .. code-block:: text * Example : Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is the number of channels and the shape of feature map is (A, B): x.shape = (2, 3, 2, 2) x.data = [[[[0.8, 0.1], [0.4, 0.5]], [[0.9, 0.7], [0.9, 0.9]], [[0.8, 0.9], [0.1, 0.2]]], [[[0.2, 0.5], [0.3, 0.4]], [[0.9, 0.7], [0.8, 0.4]], [[0.0, 0.2], [0.4, 0.7]]]] Given axis: 1 (the axis of the channel) Given indexes: [0] then we get a 4-D tensor out with the same shape of input x: out.shape = (2, 3, 2, 2) out.data = [[[[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]]], [[[0.0, 1.0], [1.0, 0.0]], [[0.0, 1.0], [1.0, 0.0]], [[0.0, 1.0], [1.0, 0.0]]]] Args: input(Variable): The input tensor variable(default float). It should be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is float32 or float64. axis(int): Indicating the dimension to be selected. It can only be 1, 2 or 3. indexes(list): Indicating the indexes of the selected dimension. Returns: Variable: A tensor variable with the same shape and same type \ as the input. Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() data = fluid.data( name='data', shape=[-1, 3, 2, 2], dtype='float32') fluid.layers.similarity_focus(input=data, axis=1, indexes=[0]) """ helper = LayerHelper('similarity_focus', **locals()) # check attrs check_variable_and_dtype(input, 'input', ['float32', 'float64'], "similarity_focus") check_type(axis, 'axis', int, "similarity_focus") check_type(indexes, 'indexes', list, "similarity_focus") if axis != 1 and axis != 2 and axis != 3: raise ValueError("axis must be 1, 2 or 3.") if len(indexes) == 0: raise ValueError("indexes can not be empty.") out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='similarity_focus', inputs={'X': input}, outputs={'Out': out}, attrs={"axis": axis, "indexes": indexes}) return out def hash(input, hash_size, num_hash=1, name=None): """ This OP hash the input to an integer less than the hash_size. The hash algorithm we used was xxHash - Extremely fast hash algorithm (https://github.com/Cyan4973/xxHash/tree/v0.6.5) Args: input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64. **Only support LoDTensor**. num_hash(int, optional): The times of hash, default is 1. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: A LoDTensor with the same data type as input. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np import paddle paddle.enable_static() place = fluid.core.CPUPlace() x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1) res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) in1 = np.array([[1,2],[3,4]]).astype("int32") print(in1) x_i = fluid.create_lod_tensor(in1, [[0, 2]], place) res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False) print(np.array(res[0])) # [[[722] # [407] # [337] # [395]] # [[603] # [590] # [386] # [901]]] """ check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash') check_type(hash_size, 'hash_size', int, 'hash') check_type(num_hash, 'num_hash', int, 'hash') helper = LayerHelper('hash', **locals()) out = helper.create_variable_for_type_inference( helper.input_dtype(), stop_gradient=True) helper.append_op( type='hash', inputs={'X': input}, outputs={'Out': out}, attrs={'num_hash': num_hash, 'mod_by': hash_size}) return out @templatedoc() def grid_sampler(x, grid, name=None): """ This operation samples input X by using bilinear interpolation based on flow field grid, which is usually generated by :code:`affine_grid` . The grid of shape [N, H, W, 2] is the concatenation of (x, y) coordinates with shape [N, H, W] each, where x is indexing the 4th dimension (in width dimension) of input data x and y is indexing the 3rd dimension (in height dimension), finally results is the bilinear interpolation value of 4 nearest corner points. The output tensor shape will be [N, C, H, W]. .. code-block:: text Step 1: Get (x, y) grid coordinates and scale to [0, H-1/W-1]. .. code-block:: text grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1) grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1) Step 2: Indices input data X with grid (x, y) in each [H, W] area, and bilinear interpolate point value by 4 nearest points. wn ------- y_n ------- en | | | | d_n | | | | x_w --d_w-- grid--d_e-- x_e | | | | d_s | | | | ws ------- y_s ------- wn x_w = floor(x) // west side x coord x_e = x_w + 1 // east side x coord y_n = floor(y) // north side y coord y_s = y_s + 1 // south side y coord d_w = grid_x - x_w // distance to west side d_e = x_e - grid_x // distance to east side d_n = grid_y - y_n // distance to north side d_s = y_s - grid_y // distance to south side wn = X[:, :, y_n, x_w] // north-west point value en = X[:, :, y_n, x_e] // north-east point value ws = X[:, :, y_s, x_w] // south-east point value es = X[:, :, y_s, x_w] // north-east point value output = wn * d_e * d_s + en * d_w * d_s + ws * d_e * d_n + es * d_w * d_n Args: x(Variable): The input tensor, which is a 4-D tensor with shape [N, C, H, W], N is the batch size, C is the channel number, H and W is the feature height and width. The data type is float32 or float64. grid(Variable): Input grid tensor of shape [N, H, W, 2]. The data type is float32 or float64. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: Output of shape [N, C, H, W] data samples input X using bilnear interpolation based on input grid. The data type is same as input tensor. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid as fluid import paddle paddle.enable_static() # use with affine_grid x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32') theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32') grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32]) out = fluid.layers.grid_sampler(x=x, grid=grid) """ helper = LayerHelper("grid_sampler", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler') check_variable_and_dtype(grid, 'grid', ['float32', 'float64'], 'grid_sampler') if not isinstance(x, Variable): return ValueError("The x should be a Variable") if not isinstance(grid, Variable): return ValueError("The grid should be a Variable") out = helper.create_variable_for_type_inference(x.dtype) ipts = {'X': x, 'Grid': grid} helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out}) return out def log_loss(input, label, epsilon=1e-4, name=None): r""" **Negative Log Loss Layer** This layer accepts input predictions and target label and returns the negative log loss. .. math:: Out = -label * \\log{(input + \\epsilon)} - (1 - label) * \\log{(1 - input + \\epsilon)} Args: input (Tensor|list): A 2-D tensor with shape [N x 1], where N is the batch size. This input is a probability computed by the previous operator. Data type float32. label (Tensor|list): The ground truth which is a 2-D tensor with shape [N x 1], where N is the batch size. Data type float32. epsilon (float, optional): A small number for numerical stability. Default 1e-4. name(str|None): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. Returns: Tensor, which shape is [N x 1], data type is float32. Examples: .. code-block:: python import paddle import paddle.nn.functional as F label = paddle.randn((10,1)) prob = paddle.randn((10,1)) cost = F.log_loss(input=prob, label=label) """ helper = LayerHelper('log_loss', **locals()) check_variable_and_dtype(input, 'input', ['float32'], 'log_loss') check_variable_and_dtype(label, 'label', ['float32'], 'log_loss') loss = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='log_loss', inputs={'Predicted': [input], 'Labels': [label]}, outputs={'Loss': [loss]}, attrs={'epsilon': epsilon}) return loss def add_position_encoding(input, alpha, beta, name=None): r""" This operator performs weighted sum of input feature at each position (position in the sequence) and the corresponding position encoding. For more details of position encoding, please refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ . The formula is as follows: .. math:: PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})} \\\\ PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})} \\\\ Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i) Where: - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`. - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos` Args: input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a Tensor, the shape should be `[N, M, P]`, where `N` stands for batch size, `M` for sequence length, `P` for the size of feature dimension. If it is a LoDTensor, the shape should be `[N, P]`, where `N` stands for the total sequence lengths in this mini-batch, `P` for the size of feature. The data type should be float32 or float64. alpha(float): Indicate the weight coefficient for `input` when performing weighted sum. beta(float): Indicate the weight coefficient for position encoding when performing weighted sum. name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. Returns: Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`. Examples: .. code-block:: python import paddle tensor = paddle.randn([16, 32, 64]) position_tensor = paddle.fluid.layers.add_position_encoding( input=tensor, alpha=1.0, beta=1.0) """ if in_dygraph_mode(): return core.ops.add_position_encoding(input, "alpha", alpha, "beta", beta) helper = LayerHelper('add_position_encoding', **locals()) check_variable_and_dtype(input, 'input', ['float32', 'float64'], "add_position_encoding") dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type="add_position_encoding", inputs={"X": input}, outputs={"Out": out}, attrs={"alpha": alpha, "beta": beta}) return out def bilinear_tensor_product(x, y, size, act=None, name=None, param_attr=None, bias_attr=None): r""" :api_attr: Static Graph **Bilinear Tensor Product Layer** This layer performs bilinear tensor product on two inputs. For example: .. math:: out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1 In this formula: - :math:`x`: the first input contains M elements, shape is [batch_size, M]. - :math:`y`: the second input contains N elements, shape is [batch_size, N]. - :math:`W_{i}`: the i-th learned weight, shape is [M, N]. - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. Args: x (Variable): 2-D input tensor with shape [batch_size, M]. Data type is float32 or float64. y (Variable): 2-D input tensor with shape [batch_size, N]. Data type should be same as **x**. size (int): The dimension of this layer. act (str|None): Activation to be applied to the output of this layer. Default None. name(str|None): For detailed information, please refer to :ref:`api_guide_Name` . Usually name is no need to set and None by default. param_attr (ParamAttr|None): To specify the weight parameter attribute. Default: None, which means the default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . bias_attr (ParamAttr|None): To specify the bias parameter attribute. Default: None, which means the default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . Returns: Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**. Examples: .. code-block:: python import paddle paddle.enable_static() layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32") layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32") tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000) """ helper = LayerHelper('bilinear_tensor_product', **locals()) dtype = helper.input_dtype('x') param_shape = [size, x.shape[1], y.shape[1]] w = helper.create_parameter( attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False) out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {"X": x, "Y": y, "Weight": w} if helper.bias_attr: bias_size = [1, size] bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) inputs["Bias"] = bias helper.append_op( type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}) # add activation return helper.append_activation(out) @templatedoc() def get_tensor_from_selected_rows(x, name=None): """ This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor. .. code-block:: text input x is SelectedRows: x.rows = [0, 5, 5, 4, 19] x.height = 20 x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]] Ouput is LoDTensor: out.shape = [5, 2] out.data = [[1, 1], [2, 2], [2, 2], [3, 3], [6, 6]] Args: x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable: LoDTensor transformed from SelectedRows. The data type is same with input. Examples: .. code-block:: python import paddle.fluid as fluid b = fluid.default_main_program().global_block() input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS) out = fluid.layers.get_tensor_from_selected_rows(input) """ check_type(x, 'x', Variable, 'get_tensor_from_selected_rows') if x.type != core.VarDesc.VarType.SELECTED_ROWS: raise TypeError( "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS." ) helper = LayerHelper('get_tensor_from_selected_rows', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='get_tensor_from_selected_rows', inputs={'X': x}, outputs={'Out': out}, attrs={}) return out def shuffle_channel(x, group, name=None): """ This operator shuffles the channels of input x. It divide the input channels in each group into :attr:`group` subgroups, and obtain a new order by selecting element from every subgroup one by one. Please refer to the paper https://arxiv.org/pdf/1707.01083.pdf .. code-block:: text Given a 4-D tensor input with the shape (N, C, H, W): input.shape = (1, 4, 2, 2) input.data =[[[[0.1, 0.2], [0.2, 0.3]], [[0.3, 0.4], [0.4, 0.5]], [[0.5, 0.6], [0.6, 0.7]], [[0.7, 0.8], [0.8, 0.9]]]] Given group: 2 then we get a 4-D tensor out whth the same shape of input: out.shape = (1, 4, 2, 2) out.data = [[[[0.1, 0.2], [0.2, 0.3]], [[0.5, 0.6], [0.6, 0.7]], [[0.3, 0.4], [0.4, 0.5]], [[0.7, 0.8], [0.8, 0.9]]]] Args: x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W] group(int): Indicating the counts of subgroups, It should divide the number of channels. Returns: out(Variable): the channels shuffling result is a tensor variable with the same shape and same type as the input. Raises: ValueError: If group is not an int type variable. Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32') out = fluid.layers.shuffle_channel(x=input, group=2) """ helper = LayerHelper("shuffle_channel", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) if not isinstance(group, int): raise TypeError("group must be int type") helper.append_op( type="shuffle_channel", inputs={"X": x}, outputs={"Out": out}, attrs={"group": group}) return out @templatedoc() def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"): """ **Temporal Shift Operator** ${comment} Args: x(Tensor): ${x_comment} seg_num(int): ${seg_num_comment} shift_ratio(float): ${shift_ratio_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW". Returns: out(Tensor): The temporal shifting result is a tensor with the same shape and same data type as the input. Raises: TypeError: seg_num must be int type. Examples: .. code-block:: python import paddle import paddle.nn.functional as F input = paddle.randn([6, 4, 2, 2]) out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2) """ if data_format not in ["NCHW", "NHWC"]: raise ValueError("Attr(data_format) should be 'NCHW' or 'NHWC'. " "Received Attr(data_format): {}.".format(data_format)) if in_dygraph_mode(): return core.ops.temporal_shift(x, 'seg_num', seg_num, 'shift_ratio', shift_ratio, 'data_format', data_format) helper = LayerHelper("temporal_shift", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift') check_type(seg_num, 'seg_num', int, 'temporal_shift') check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift') out = helper.create_variable_for_type_inference(dtype=x.dtype) if not isinstance(seg_num, int): raise TypeError("seg_num must be int type.") helper.append_op( type="temporal_shift", inputs={"X": x}, outputs={"Out": out}, attrs={ "seg_num": seg_num, "shift_ratio": shift_ratio, "data_format": data_format }) return out class PyFuncRegistry(object): _register_funcs = [] def __init__(self, func): if func is None or not callable(func): raise TypeError('func must be a Python function') self._func = func # find named args using reflection args = inspect.getargspec(self._func) if len(args[0]) == 0 and args[1] is None and args[2] is None: # Function with no inputs self._named_args = None else: self._named_args = args[0] self._id = core._append_python_callable_object_and_return_id(self) ''' Why record self here? 1. For debug usage. Users can call :code:`py_func.registered_func(idx)` method to find the registered function corresponding to :code:`idx`. 2. For increasing reference count of self. It seems that to release Python object whose reference count is 1 would cause segmentation fault error in C++ side. May be lack of Python GC in C++ side? ''' PyFuncRegistry._register_funcs.append(self) @classmethod def registered_func(cls, idx): return cls._register_funcs[idx]._func @classmethod def registered_func_num(cls): return len(cls._register_funcs) @property def id(self): return self._id def __call__(self, *args): if self._named_args is None: func_ret = self._func() else: kwargs = dict() idx = 0 for arg in self._named_args: kwargs[arg] = args[idx] idx += 1 func_ret = self._func(*args[idx:], **kwargs) if not isinstance(func_ret, (list, tuple)): func_ret = (func_ret, ) ret = [] for each_ret in func_ret: if each_ret is None or isinstance(each_ret, core.LoDTensor): ret.append(each_ret) continue if not isinstance(each_ret, np.ndarray): each_ret = np.array(each_ret) tensor = core.LoDTensor() tensor.set(each_ret, core.CPUPlace()) ret.append(tensor) return tuple(ret) @static_only @templatedoc() def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None): """ :api_attr: Static Graph This OP is used to register customized Python OP to Paddle. The design principe of py_func is that Tensor and numpy array can be converted to each other easily. So you can use Python and numpy API to register a python OP. The forward function of the registered OP is ``func`` and the backward function of that is ``backward_func``. Paddle will call ``func`` at forward runtime and call ``backward_func`` at backward runtime(if ``backward_func`` is not None). ``x`` is the input of ``func``, whose type must be Tensor; ``out`` is the output of ``func``, whose type can be either Tensor or numpy array. The input of the backward function ``backward_func`` is ``x``, ``out`` and the gradient of ``out``. If ``out`` have no gradient, the relevant input of ``backward_func`` is None. If ``x`` do not have a gradient, the user should return None in ``backward_func``. The data type and shape of ``out`` should also be set correctly before this API is called, and the data type and shape of the gradient of ``out`` and ``x`` will be inferred automatically. This API can also be used to debug the neural network by setting the ``func`` as a function that only print variables. Args: func (callable): The forward function of the registered OP. When the network is running, the forward output ``out`` will be calculated according to this function and the forward input ``x``. In ``func`` , it's suggested that we actively convert Tensor into a numpy array, so that we can use Python and numpy API arbitrarily. If not, some operations of numpy may not be compatible. x (Tensor|tuple(Tensor)|list[Tensor]): The input of the forward function ``func``. It can be Tensor|tuple(Tensor)|list[Tensor]. In addition, Multiple Tensor should be passed in the form of tuple(Tensor) or list[Tensor]. out (T|tuple(T)|list[T]): The output of the forward function ``func``, it can be T|tuple(T)|list[T], where T can be either Tensor or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, you must create ``out`` in advance. backward_func (callable, optional): The backward function of the registered OP. Its default value is None, which means there is no reverse calculation. If it is not None, ``backward_func`` is called to calculate the gradient of ``x`` when the network is at backward runtime. skip_vars_in_backward_input (Tensor, optional): It's used to limit the input list of ``backward_func``, and it can be Tensor|tuple(Tensor)|list[Tensor]. It must belong to either ``x`` or ``out``. The default value is None, which means that no tensors need to be removed from ``x`` and ``out``. If it is not None, these tensors will not be the input of ``backward_func``. This parameter is only useful when ``backward_func`` is not None. Returns: Tensor|tuple(Tensor)|list[Tensor]: The output ``out`` of the forward function ``func``. Examples: .. code-block:: python # example 1: import paddle import six import numpy as np paddle.enable_static() # Creates a forward function, Tensor can be input directly without # being converted into numpy array. def tanh(x): return np.tanh(x) # Skip x in backward function and return the gradient of x # Tensor must be actively converted to numpy array, otherwise, # operations such as +/- can't be used. def tanh_grad(y, dy): return np.array(dy) * (1 - np.square(np.array(y))) # Creates a forward function for debugging running networks(print value) def debug_func(x): print(x) def create_tmp_var(name, dtype, shape): return paddle.static.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) def simple_net(img, label): hidden = img for idx in six.moves.range(4): hidden = paddle.static.nn.fc(hidden, size=200) new_hidden = create_tmp_var(name='hidden_{}'.format(idx), dtype=hidden.dtype, shape=hidden.shape) # User-defined forward and backward hidden = paddle.static.py_func(func=tanh, x=hidden, out=new_hidden, backward_func=tanh_grad, skip_vars_in_backward_input=hidden) # User-defined debug functions that print out the input Tensor paddle.static.py_func(func=debug_func, x=hidden, out=None) prediction = paddle.static.nn.fc(hidden, size=10, activation='softmax') ce_loss = paddle.nn.loss.CrossEntropyLoss() return ce_loss(prediction, label) x = paddle.static.data(name='x', shape=[1,4], dtype='float32') y = paddle.static.data(name='y', shape=[1,10], dtype='int64') res = simple_net(x, y) exe = paddle.static.Executor(paddle.CPUPlace()) exe.run(paddle.static.default_startup_program()) input1 = np.random.random(size=[1,4]).astype('float32') input2 = np.random.randint(1, 10, size=[1,10], dtype='int64') out = exe.run(paddle.static.default_main_program(), feed={'x':input1, 'y':input2}, fetch_list=[res.name]) print(out) .. code-block:: python # example 2: # This example shows how to turn Tensor into numpy array and # use numpy API to register an Python OP import paddle import numpy as np paddle.enable_static() def element_wise_add(x, y): # Tensor must be actively converted to numpy array, otherwise, # numpy.shape can't be used. x = np.array(x) y = np.array(y) if x.shape != y.shape: raise AssertionError("the shape of inputs must be the same!") result = np.zeros(x.shape, dtype='int32') for i in range(len(x)): for j in range(len(x[0])): result[i][j] = x[i][j] + y[i][j] return result def create_tmp_var(name, dtype, shape): return paddle.static.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) def py_func_demo(): start_program = paddle.static.default_startup_program() main_program = paddle.static.default_main_program() # Input of the forward function x = paddle.static.data(name='x', shape=[2,3], dtype='int32') y = paddle.static.data(name='y', shape=[2,3], dtype='int32') # Output of the forward function, name/dtype/shape must be specified output = create_tmp_var('output','int32', [3,1]) # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale] paddle.static.py_func(func=element_wise_add, x=[x,y], out=output) exe=paddle.static.Executor(paddle.CPUPlace()) exe.run(start_program) # Feed numpy array to main_program input1 = np.random.randint(1, 10, size=[2,3], dtype='int32') input2 = np.random.randint(1, 10, size=[2,3], dtype='int32') out = exe.run(main_program, feed={'x':input1, 'y':input2}, fetch_list=[output.name]) print("{0} + {1} = {2}".format(input1, input2, out)) py_func_demo() # Reference output: # [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13] # [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)] """ helper = LayerHelper('py_func', **locals()) check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func') if x is None: x = [] elif isinstance(x, Variable): x = [x] elif isinstance(x, tuple): x = list(x) elif not isinstance(x, (list, tuple, Variable)): raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)') check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func') if out is None: out_list = [] elif isinstance(out, Variable): out_list = [out] elif isinstance(out, tuple): out_list = list(out) elif isinstance(out, list): out_list = out else: raise TypeError( 'Output must be Variable/list(Variable)/tuple(Variable)') fwd_func_id = PyFuncRegistry(func).id bwd_func_id = PyFuncRegistry( backward_func).id if backward_func is not None else -1 for each_out in out_list: if len(each_out.shape) == 0: raise ValueError( 'Output shapes of py_func op should be provided by users manually' ) backward_skip_vars = set() if backward_func is not None and skip_vars_in_backward_input is not None: if isinstance(skip_vars_in_backward_input, Variable): skip_vars_in_backward_input = [skip_vars_in_backward_input] fwd_in_out = [v.name for v in x] fwd_in_out.extend([v.name for v in out_list]) fwd_in_out = set(fwd_in_out) backward_skip_vars = set() for v in skip_vars_in_backward_input: if not v.name in fwd_in_out: raise ValueError( 'Variable {} is not found in forward inputs and outputs' .format(v.name)) backward_skip_vars.add(v.name) helper.append_op( type='py_func', inputs={'X': x}, outputs={'Out': out_list}, attrs={ 'forward_callable_id': fwd_func_id, 'backward_callable_id': bwd_func_id, 'backward_skip_vars': list(backward_skip_vars) }) return out # For debug usage py_func.registered_func = PyFuncRegistry.registered_func py_func.registered_func_num = PyFuncRegistry.registered_func_num @templatedoc() def psroi_pool(input, rois, output_channels, spatial_scale, pooled_height, pooled_width, name=None): """ ${comment} Parameters: input (Variable): ${x_comment} rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. The data type is the same as `input` output_channels (int): ${output_channels_comment} spatial_scale (float): ${spatial_scale_comment} Default: 1.0 pooled_height (int): ${pooled_height_comment} Default: 1 pooled_width (int): ${pooled_width_comment} Default: 1 name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: ${out_comment}. Return Type: Variable Examples: .. code-block:: python import paddle.fluid as fluid import paddle paddle.enable_static() x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32') rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32') pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7) """ helper = LayerHelper('psroi_pool', **locals()) # check attrs if not isinstance(output_channels, int): raise TypeError("output_channels must be int type") if not isinstance(spatial_scale, float): raise TypeError("spatial_scale must be float type") if not isinstance(pooled_height, int): raise TypeError("pooled_height must be int type") if not isinstance(pooled_width, int): raise TypeError("pooled_width must be int type") dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='psroi_pool', inputs={'X': input, 'ROIs': rois}, outputs={'Out': out}, attrs={ 'output_channels': output_channels, 'spatial_scale': spatial_scale, 'pooled_height': pooled_height, 'pooled_width': pooled_width }) return out @templatedoc() def prroi_pool(input, rois, spatial_scale=1.0, pooled_height=1, pooled_width=1, batch_roi_nums=None, name=None): """ The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf Args: input (Variable):The input of precise roi pooliing.The shape of input tensor is [N,C,H,W]. Where N is batch size,C is number of input channels,H is height of the feature, and W is the width of the feature. rois (Variable): ROIs (Regions of Interest) to pool over.It should be a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level is 1 when it is LoDTensor. The LoD include the rois's batch index information. If rois is Tensor, its batch index information should be provided by batch_index. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates. spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width). Equals the reciprocal of total stride in convolutional layers, Default: 1.0. pooled_height (integer): The pooled output height. Default: 1. pooled_width (integer): The pooled output width. Default: 1. batch_roi_nums (Variable): The number of roi for each image in batch. It should be 1-D Tensor, with shape [N] and dtype int64, where N is the batch size. Default: None. Be note: The lod of input should be empty when batch_roi_nums has values; name (str, default None): The name of this operation. Returns: Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively. Examples: .. code-block:: python ## prroi_pool without batch_roi_num import paddle.fluid as fluid x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32') rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32') pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7) ## prroi_pool with batch_roi_num batchsize=4 x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32') rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32') batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64') pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num) """ check_variable_and_dtype(input, 'input', ['float32'], 'prroi_pool') check_variable_and_dtype(rois, 'rois', ['float32'], 'prroi_pool') helper = LayerHelper('prroi_pool', **locals()) # check attrs if not isinstance(spatial_scale, float): raise TypeError("spatial_scale must be float type") if not isinstance(pooled_height, int): raise TypeError("pooled_height must be int type") if not isinstance(pooled_width, int): raise TypeError("pooled_width must be int type") dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) inputs_op = {'X': input, 'ROIs': rois} if batch_roi_nums is not None: inputs_op['BatchRoINums'] = batch_roi_nums helper.append_op( type='prroi_pool', inputs=inputs_op, outputs={'Out': out}, attrs={ 'spatial_scale': spatial_scale, 'pooled_height': pooled_height, 'pooled_width': pooled_width }) return out def pixel_shuffle(x, upscale_factor): """ This op rearranges elements in a tensor of shape [N, C, H, W] to a tensor of shape [N, C/r**2, H*r, W*r]. This is useful for implementing efficient sub-pixel convolution with a stride of 1/r. Please refer to the paper: `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ . by Shi et. al (2016) for more details. Parameters: x(Variable): 4-D tensor, the data type should be float32 or float64. upscale_factor(int): factor to increase spatial resolution. Returns: Out(Variable): Reshaped tensor according to the new dimension. Raises: ValueError: If the square of upscale_factor cannot divide the channels of input. Examples: .. code-block:: python # declarative mode import paddle.fluid as fluid import numpy as np input = fluid.data(name="input", shape=[2,9,4,4]) output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) input_data = np.random.rand(2,9,4,4).astype("float32") output_data = exe.run(fluid.default_main_program(), feed={"input":input_data}, fetch_list=[output], return_numpy=True) # print(output.shape) # (2L, 1L, 12L, 12L) """ check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle') helper = LayerHelper("pixel_shuffle", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) if not isinstance(upscale_factor, int): raise TypeError("upscale factor must be int type") helper.append_op( type="pixel_shuffle", inputs={"X": x}, outputs={"Out": out}, attrs={"upscale_factor": upscale_factor}) return out def fsp_matrix(x, y): """ **FSP matrix op** This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps. Given feature map x with shape [x_channel, h, w] and feature map y with shape [y_channel, h, w], we can get the fsp matrix of x and y in two steps: 1. reshape x into matrix with shape [x_channel, h * w] and reshape and transpose y into matrix with shape [h * w, y_channel]. 2. multiply x and y to get fsp matrix with shape [x_channel, y_channel]. The output is a batch of fsp matrices. Args: x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width]. A Tensor with type float32, float64. y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width]. The y_channel can be different with the x_channel of Input(X) while the other dimensions must be the same with Input(X)'s. A Tensor with type float32, float64. Returns: fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel]. The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with type float32, float64. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.data(name='data', shape=[None, 3, 32, 32]) feature_map_0 = fluid.layers.conv2d(data, num_filters=2, filter_size=3) feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2, filter_size=1) loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1) """ check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fsp_matrix') check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'fsp_matrix') helper = LayerHelper('fsp_matrix', **locals()) out = helper.create_variable_for_type_inference(dtype=helper.input_dtype( input_param_name='x')) helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out}) return out def continuous_value_model(input, cvm, use_cvm=True): r""" **continuous_value_model layers** Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`. :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ). Show and click at first two dims of embedding vector D. If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` . If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` . :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` . Args: input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` . A Tensor with type float32, float64. cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click. A Tensor with type float32, float64. use_cvm (bool): Use show_click or not. if use, the output dim is the same as input. if not use, the output dim is `input dim - 2` (remove show and click) Returns: Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \ A Tensor with same type as input. Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.data(name="input", shape=[64, 1], dtype="int64") label = fluid.data(name="label", shape=[64, 1], dtype="int64") embed = fluid.layers.embedding( input=input, size=[100, 11], dtype='float32') ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1) show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32') show_clk.stop_gradient = True input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True) """ helper = LayerHelper('cvm', **locals()) out = helper.create_variable(dtype=input.dtype) check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'], 'cvm') helper.append_op( type='cvm', inputs={'X': [input], 'CVM': [cvm]}, outputs={'Y': [out]}, attrs={"use_cvm": use_cvm}) return out def where(condition): """ Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`. Args: condition(Variable): A bool tensor with rank at least 1, the data type is bool. Returns: Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers import numpy as np # condition is a tensor [True, False, True] condition = layers.assign(np.array([1, 0, 1], dtype='int32')) condition = layers.cast(condition, 'bool') out = layers.where(condition) # [[0], [2]] # condition is a tensor [[True, False], [False, True]] condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32')) condition = layers.cast(condition, 'bool') out = layers.where(condition) # [[0, 0], [1, 1]] # condition is a tensor [False, False, False] condition = layers.assign(np.array([0, 0, 0], dtype='int32')) condition = layers.cast(condition, 'bool') out = layers.where(condition) # [[]] """ helper = LayerHelper("where_index", **locals()) if in_dygraph_mode(): return core.ops.where_index(condition) out = helper.create_variable_for_type_inference( dtype=core.VarDesc.VarType.INT64) helper.append_op( type='where_index', inputs={'Condition': condition}, outputs={'Out': [out]}) return out @deprecated(since="2.0.0", update_to="paddle.sign") def sign(x): r""" This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero. Args: x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \ the input data type is float32 or float64. Returns: Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np # [1.0, 0.0, -1.0] data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) """ helper = LayerHelper("sign", **locals()) check_type(x, 'x', (Variable, np.ndarray), 'sign') if isinstance(x, np.ndarray): x = assign(x) check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign') out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]}) return out def unique(x, dtype='int32'): r""" Return a unique tensor for `x` and an index tensor pointing to this unique tensor. Args: x(Tensor): A 1-D input tensor, it's data type should be float32, float64, int32, int64. dtype(np.dtype|str, optional): The type of index tensor: int32, int64. Default: int32. Returns: tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \ `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32')) out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1] """ check_variable_and_dtype(x, "x", ['float32', 'float64', 'int32', 'int64'], "unique") helper = LayerHelper("unique", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) index = helper.create_variable_for_type_inference(dtype) helper.append_op( type='unique', inputs={'X': x}, attrs={'dtype': convert_np_dtype_to_dtype_(dtype)}, outputs={'Out': [out], 'Index': [index]}) return out, index def unique_with_counts(x, dtype='int32'): r""" This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \ and an index tensor pointing to this unique tensor. **NOTICE**: This op support the variable type of Tensor only. Args: x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64. dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32. Returns: tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \ and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\ the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\ to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\ the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32')) out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1] # count is [1, 3, 1, 1] # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,) """ check_variable_and_dtype(x, "x", ['float32', 'float64', 'int32', 'int64'], "unique_with_counts") if not (dtype == 'int32' or dtype == 'int64'): raise TypeError( "Op unique_with_counts, index dtype must be int32 or int64") if x is None or len(x.shape) != 1: raise ValueError( "Op unique_with_counts, x must not be null and size of dim must be 1" ) helper = LayerHelper("unique_with_counts", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) index = helper.create_variable_for_type_inference(dtype) count = helper.create_variable_for_type_inference(dtype) helper.append_op( type='unique_with_counts', inputs={'X': x}, attrs={'dtype': convert_np_dtype_to_dtype_(dtype)}, outputs={'Out': [out], 'Index': [index], 'Count': [count]}) return out, index, count def deformable_conv(input, offset, mask, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, deformable_groups=None, im2col_step=None, param_attr=None, bias_attr=None, modulated=True, name=None): r""" :api_attr: Static Graph **Deformable Convolution op** Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: Deformable Convolution v2: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k} Deformable Convolution v1: .. math:: y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)} Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})` Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: input (Variable): The input image with [N, C, H, W] format. A Tensor with type float32, float64. offset (Variable): The input coordinate offset of deformable convolution layer. A Tensor with type float32, float64. Mask (Variable, Optional): The input mask of deformable convolution layer. A Tensor with type float32, float64. It should be None when you use deformable convolution v1. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. padding (int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. dilation (int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups (int): The groups number of the deformable conv layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1. deformable_groups (int): The number of deformable group partitions. Default: deformable_groups = 1. im2col_step (int): Maximum number of images per im2col computation; The total batch size should be devisable by this value or smaller than this value; if you face out of memory problem, you can try to use a smaller value here. Default: im2col_step = 64. param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights of deformable conv. If it is set to None or one attribute of ParamAttr, deformable conv will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of deformable conv layer. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \ used while True. Default: True. name(str, Optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None. Returns: Variable: The tensor variable storing the deformable convolution \ result. A Tensor with type float32, float64. Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python #deformable conv v2: import paddle.fluid as fluid import paddle paddle.enable_static() C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask, num_filters=2, filter_size=filter_size, padding=1, modulated=True) #deformable conv v1: import paddle.fluid as fluid C_in, H_in, W_in = 3, 32, 32 filter_size, deformable_groups = 3, 1 data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32') offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32') out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None, num_filters=2, filter_size=filter_size, padding=1, modulated=False) """ check_variable_and_dtype(input, "input", ['float32', 'float64'], 'deformable_conv') check_variable_and_dtype(offset, "offset", ['float32', 'float64'], 'deformable_conv') check_type(mask, 'mask', (Variable, type(None)), 'deformable_conv') num_channels = input.shape[1] assert param_attr is not False, "param_attr should not be False here." helper = LayerHelper('deformable_conv', **locals()) dtype = helper.input_dtype() if not isinstance(input, Variable): raise TypeError("Input of deformable_conv must be Variable") if not isinstance(offset, Variable): raise TypeError("Input Offset of deformable_conv must be Variable") if groups is None: num_filter_channels = num_channels else: if num_channels % groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = num_channels // groups filter_size = utils.convert_to_list(filter_size, 2, 'filter_size') stride = utils.convert_to_list(stride, 2, 'stride') padding = utils.convert_to_list(padding, 2, 'padding') dilation = utils.convert_to_list(dilation, 2, 'dilation') input_shape = input.shape filter_shape = [num_filters, int(num_filter_channels)] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[1] * num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype, default_initializer=_get_default_param_initializer()) pre_bias = helper.create_variable_for_type_inference(dtype) if modulated: helper.append_op( type='deformable_conv', inputs={ 'Input': input, 'Filter': filter_param, 'Offset': offset, 'Mask': mask, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'deformable_groups': deformable_groups, 'im2col_step': im2col_step, }) else: helper.append_op( type='deformable_conv_v1', inputs={ 'Input': input, 'Filter': filter_param, 'Offset': offset, }, outputs={"Output": pre_bias}, attrs={ 'strides': stride, 'paddings': padding, 'dilations': dilation, 'groups': groups, 'deformable_groups': deformable_groups, 'im2col_step': im2col_step, }) output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) return output def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None): r""" This op returns a col buffer of sliding local blocks of input x, also known as im2col for batched 2D image tensors. For each block under the convolution filter, all element will be rearranged as a column. While the convolution filter sliding over the input feature map, a series of such columns will be formed. For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout] can be calculated as following. .. math:: dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1 dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1 hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1 wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1 Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1] Lout &= hout \\times wout Parameters: x(Tensor): 4-D Tensor, input tensor of format [N, C, H, W], data type can be float32 or float64 kernel_sizes(int|list): The size of convolution kernel, should be [k_h, k_w] or an integer k treated as [k, k]. strides(int|list): The strides, should be [stride_h, stride_w] or an integer stride treated as [sride, stride]. For default, strides will be [1, 1]. paddings(int|list): The paddings of each dimension, should be [padding_top, padding_left, padding_bottom, padding_right] or [padding_h, padding_w] or an integer padding. If [padding_h, padding_w] was given, it will expanded to [padding_h, padding_w, padding_h, padding_w]. If an integer padding was given, [padding, padding, padding, padding] will be used. For default, paddings will be [0, 0, 0, 0] dilations(int|list): the dilations of convolution kernel, should be [dilation_h, dilation_w], or an integer dilation treated as [dilation, dilation]. For default, it will be [1, 1]. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: The tensor corresponding to the sliding local blocks. The output shape is [N, Cout, Lout] as decriabled above. Cout is the total number of values within each block, and Lout is the total number of such blocks. The data type of output is the same as the input :math:`x` Return Type: Tensor Examples: .. code-block:: python import paddle import paddle.nn.functional as F x = paddle.randn((100,3,224,224)) y = F.unfold(x, [3, 3], 1, 1, 1) """ helper = LayerHelper("unfold", **locals()) check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold') assert len(x.shape) == 4, \ "input should be the format of [N, C, H, W]" if isinstance(kernel_sizes, int): kernel_sizes = [kernel_sizes, kernel_sizes] else: assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \ "kernel_sizes should either be an integer or a list of two integers" if isinstance(strides, int): strides = [strides, strides] else: assert isinstance(strides, list) and (len(strides) == 2), \ "strides should either be an integer or a list of two integers" if isinstance(dilations, int): dilations = [dilations, dilations] else: assert isinstance(dilations, list) and (len(dilations) == 2), \ "dilations should either be an integer or a list of two integers" if isinstance(paddings, int): paddings = [paddings] * 4 elif isinstance(paddings, list): if len(paddings) == 2: paddings = paddings * 2 elif len(paddings) == 4: pass else: raise ValueError( "paddings should either be an integer or a list of 2 or 4 integers" ) else: raise ValueError( "Unexpected type of paddings, it should be either an integer or a list" "of 2 or 4 integers") out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="unfold", inputs={"X": x}, outputs={"Y": out}, attrs={ "kernel_sizes": kernel_sizes, "strides": strides, "paddings": paddings, "dilations": dilations }) return out def deformable_roi_pooling(input, rois, trans, no_trans=False, spatial_scale=1.0, group_size=[1, 1], pooled_height=1, pooled_width=1, part_size=None, sample_per_part=1, trans_std=0.1, position_sensitive=False, name=None): r""" Deformable ROI Pooling Layer Performs deformable region-of-interest pooling on inputs. As described in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling. The operation has three steps: 1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height. 2. Add offset to pixel in ROI to get new location and the new value which are computed directly through bilinear interpolation with four nearest pixel. 3. Sample several points in each bin to get average values as output. Args: input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is [N, C, H, W]. Where N is batch size, C is number of input channels, H is height of the feature, and W is the width of the feature. rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be a 2-D LoDTensor of shape (num_rois, 4), and the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates, which value type is float32. trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where N is number of ROIs, C is number of channels, which indicate the offset distance in the x and y directions, H is pooled height, and W is pooled width. no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False. If value is True, no offset will be added in operation. Default: False. spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32. Equals the reciprocal of total stride in convolutional layers, Default: 1.0. group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1]. pooled_height (int): The pooled output height which value type is int32. Default: 1. pooled_width (int): The pooled output width which value type is int32. Default: 1. part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \ and pooled_width. Default: if None, default value is [pooled_height, pooled_width]. sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1. trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1. position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \ If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False. name (str|None): Name of layer. Default: None. Returns: Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\ input dimension should be the result of output dimension divided by pooled height and pooled width. Examples: .. code-block:: python # position_sensitive=True import paddle.fluid as fluid input = fluid.data(name="input", shape=[2, 192, 64, 64], dtype='float32') rois = fluid.data(name="rois", shape=[-1, 4], dtype='float32', lod_level=1) trans = fluid.data(name="trans", shape=[2, 384, 64, 64], dtype='float32') x = fluid.layers.deformable_roi_pooling(input=input, rois=rois, trans=trans, no_trans=False, spatial_scale=1.0, group_size=(1, 1), pooled_height=8, pooled_width=8, part_size=(8, 8), sample_per_part=4, trans_std=0.1, position_sensitive=True) # position_sensitive=False import paddle.fluid as fluid input = fluid.data(name="input", shape=[2, 192, 64, 64], dtype='float32') rois = fluid.data(name="rois", shape=[-1, 4], dtype='float32', lod_level=1) trans = fluid.data(name="trans", shape=[2, 384, 64, 64], dtype='float32') x = fluid.layers.deformable_roi_pooling(input=input, rois=rois, trans=trans, no_trans=False, spatial_scale=1.0, group_size=(1, 1), pooled_height=8, pooled_width=8, part_size=(8, 8), sample_per_part=4, trans_std=0.1, position_sensitive=False) """ check_variable_and_dtype(input, 'input', ['float32', 'float64'], 'deformable_roi_pooling') check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling') check_variable_and_dtype(trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling') check_type(group_size, 'group_size', (list, tuple), 'deformable_roi_pooling') if part_size is not None: check_type(part_size, 'part_size', (list, tuple), 'deformable_roi_pooling') input_channels = input.shape[1] if position_sensitive == False: output_channels = input_channels else: output_channels = input_channels / pooled_height / pooled_width if part_size is None: part_height = pooled_height part_width = pooled_width part_size = [part_height, part_width] part_size = utils.convert_to_list(part_size, 2, 'part_size') group_size = utils.convert_to_list(group_size, 2, 'group_size') helper = LayerHelper('deformable_psroi_pooling', **locals()) dtype = helper.input_dtype() output = helper.create_variable_for_type_inference(dtype) top_count = helper.create_variable_for_type_inference(dtype='int32') helper.append_op( type="deformable_psroi_pooling", inputs={"Input": input, "ROIs": rois, "Trans": trans}, outputs={"Output": output, "TopCount": top_count}, attrs={ "no_trans": no_trans, "spatial_scale": spatial_scale, "output_dim": output_channels, "group_size": group_size, "pooled_height": pooled_height, "pooled_width": pooled_width, "part_size": part_size, "sample_per_part": sample_per_part, "trans_std": trans_std }) return output @deprecated(since="2.0.0", update_to="paddle.shard_index") def shard_index(input, index_num, nshards, shard_id, ignore_value=-1): """ Recompute the `input` indices according to the offset of the shard. The length of the indices is evenly divided into N shards, and if the `shard_id` matches the shard with the input index inside, the index is recomputed on the basis of the shard offset, elsewise it is set to `ignore_value`. The detail is as follows: :: shard_size = (index_num + nshards - 1) // nshards y = x % shard_size if x // shard_size == shard_id else ignore_value NOTE: If the length of indices cannot be evely divided by the shard number, the size of the last shard will be less than the calculated `shard_size` Args: input (Tensor): Input indices with data type int64. It's last dimension must be 1. index_num (int): An integer defining the range of the index. nshards (int): The number of shards. shard_id (int): The index of the current shard. ignore_value (int): An integer value out of sharded index range. Returns: Tensor: The sharded index of input. Examples: .. code-block:: python import paddle label = paddle.to_tensor([[16], [1]], "int64") shard_label = paddle.shard_index(input=label, index_num=20, nshards=2, shard_id=0) print(shard_label) # [[-1], [1]] """ check_variable_and_dtype(input, 'input', ['int64'], 'shard_index') op_type = 'shard_index' helper = LayerHelper(op_type, **locals()) if shard_id < 0 or shard_id >= nshards: raise ValueError('The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)) out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=op_type, inputs={'X': [input]}, outputs={'Out': out}, attrs={ 'index_num': index_num, 'nshards': nshards, 'shard_id': shard_id, 'ignore_value': ignore_value }, stop_gradient=True) return out @templatedoc() def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None): r""" This operator implements the hard_swish activation function. Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function. For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf The formula is as follows: .. math:: out = \\frac{x * (min(max(0, x+offset), threshold))}{scale} In the above equation: ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters. Args: x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64. threshold (float, optional): The threshold in Relu function. Default: 6.0 scale (float, optional): The scale factor. Default: 6.0 offset (float, optional): The offset factor. Default: 3.0 name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: The output tensor with the same shape and data type as input. Examples: .. code-block:: python import paddle.fluid as fluid import paddle import numpy as np paddle.enable_static() DATATYPE='float32' x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE) x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE) y = fluid.layers.hard_swish(x) place = fluid.CPUPlace() #place = fluid.CUDAPlace(0) exe = fluid.Executor(place) out, = exe.run(feed={'x':x_data}, fetch_list=[y.name]) print(out) # [[0.66666667, 1.66666667,3., 4.]] """ if in_dygraph_mode(): return core.ops.hard_swish(x, 'threshold', threshold, 'scale', scale, 'offset', offset) check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'hard_swish') helper = LayerHelper('hard_swish', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='hard_swish', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold, 'scale': scale, 'offset': offset}) return out @templatedoc() def mish(x, threshold=20, name=None): r""" This operator implements the mish activation function. Refer to `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_ The formula is as follows if :attr:`threshold` is :code:`None` or negative: .. math:: out = x * \\tanh(\\ln(1 + e^{x})) The formula is as follows if :attr:`threshold` is set as positive value: .. math:: out = \\begin{cases} x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\ x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\ x \\ast \\tanh(\\ln(1 + e^{x})), \\text{otherwise} \\end{cases} Args: x (Variable): Input feature, multi-dimensional Tensor. The data type should be float16, float32 or float64. threshold (float|None): threshold for softplus in Mish operator. Approximate value of softplus will be used if absolute value of input is greater than :attr:threshold and :attr:threshold is set as positive value. For none or negative threshold, approximate value is not used. Default 20. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: The output tensor with the same shape and data type as input. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np DATATYPE='float32' x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE) x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE) y = fluid.layers.mish(x) place = fluid.CPUPlace() # place = fluid.CUDAPlace(0) exe = fluid.Executor(place) out, = exe.run(feed={'x':x_data}, fetch_list=[y.name]) print(out) # [[0.66666667, 1.66666667, 3., 4.]] """ check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish') check_type(threshold, 'threshold', (float, int), 'mish') assert threshold > 0, "threshold of mish should be greater than 0, " \ "but got {}".format(threshold) helper = LayerHelper('mish', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='mish', inputs={'X': x}, outputs={'Out': out}, attrs={'threshold': threshold or -1}) return out def gather_tree(ids, parents): r""" To be used after beam search. After beam search, we get selected ids at each time step and the corresponding parents in the search tree. Both ids and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then :attr:`gather_tree` is used to backtrace from the last time step and generate the full sequences by collecting selected ids. Here is an example: .. code-block:: text Given: ids = [[[2 2] [6 1]] [[3 9] [6 1]] [[0 1] [9 0]]] parents = [[[0 0] [1 1]] [[1 0] [1 0]] [[0 0] [0 1]]] Then: gather_tree(ids, parents) = [[[2 2] [1 6]] [[3 3] [6 1]] [[0 1] [9 0]]] Args: ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]` and data type :attr:`int32` or :attr:`int64`. It contains the selected ids of all time steps. parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`, It contains the parents corresponding to selected ids when searching among beams. Returns: A Tensor with the same shape and data type as :attr:`ids`. \ It contains the full sequences. The sequences are collected from \ :attr:`ids` by backtracing according to :attr:`parents`. Examples: .. code-block:: python import paddle ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]]) parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]]) final_sequences = paddle.nn.functional.gather_tree(ids, parents) # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]] """ if in_dygraph_mode(): return core.ops.gather_tree(ids, parents) else: helper = LayerHelper('gather_tree', **locals()) check_variable_and_dtype(ids, 'ids', ['int32', 'int64'], 'gather_tree') check_variable_and_dtype(parents, 'parents', ['int32', 'int64'], 'gather_tree') out = helper.create_variable_for_type_inference(dtype=ids.dtype) helper.append_op( type="gather_tree", inputs={"Ids": ids, "Parents": parents}, outputs={"Out": out}) return out @deprecated(since="2.0.0", update_to="paddle.uniform") @templatedoc() def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None): """ This OP returns a Tensor filled with random values sampled from a uniform distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. Examples: :: Input: shape = [1, 2] Output: result=[[0.8505902, 0.8397286]] Args: shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape`` is a list or tuple, the elements of it should be integers or Tensors (with the shape [1], and the data type int32 or int64). If ``shape`` is a Tensor, it should be a 1-D Tensor(with the data type int32 or int64). dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the output Tensor. Supported data types: float32, float64. Default is float32. min(float|int, optional): The lower bound on the range of random values to generate, ``min`` is included in the range. Default is -1.0. max(float|int, optional): The upper bound on the range of random values to generate, ``max`` is excluded in the range. Default is 1.0. seed(int, optional): Random seed used for generating samples. 0 means use a seed generated by the system. Note that if seed is not 0, this operator will always generate the same random numbers every time. Default is 0. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: A Tensor filled with random values sampled from a uniform distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``. Raises: TypeError: If ``shape`` is not list, tuple, Tensor. TypeError: If ``dtype`` is not float32, float64. Examples: .. code-block:: python import paddle.fluid as fluid # example 1: # attr shape is a list which doesn't contain Tensor. result_1 = fluid.layers.uniform_random(shape=[3, 4]) # [[ 0.84524226, 0.6921872, 0.56528175, 0.71690357], # [-0.34646994, -0.45116323, -0.09902662, -0.11397249], # [ 0.433519, 0.39483607, -0.8660099, 0.83664286]] # example 2: # attr shape is a list which contains Tensor. dim_1 = fluid.layers.fill_constant([1], "int64", 2) dim_2 = fluid.layers.fill_constant([1], "int32", 3) result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2]) # [[-0.9951253, 0.30757582, 0.9899647 ], # [ 0.5864527, 0.6607096, -0.8886161 ]] # example 3: # attr shape is a Tensor, the data type must be int64 or int32. var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") result_3 = fluid.layers.uniform_random(var_shape) # if var_shape's value is [2, 3] # result_3 is: # [[-0.8517412, -0.4006908, 0.2551912 ], # [ 0.3364414, 0.36278176, -0.16085452]] """ if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): shape = utils.convert_shape_to_list(shape) return core.ops.uniform_random('shape', shape, 'min', float(min), 'max', float(max), 'seed', seed, 'dtype', dtype) check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand') check_dtype(dtype, 'dtype', ('float32', 'float64'), 'uniform_random/rand') inputs = dict() attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype} utils.get_shape_tensor_inputs( inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand') helper = LayerHelper("uniform_random", **locals()) out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}) utils.try_set_static_shape_tensor(out, shape) return out def unbind(input, axis=0): """ Removes a tensor dimension, then split the input tensor into multiple sub-Tensors. Args: input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64. axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the dimension to unbind along is :math:`rank(input) + axis`. Default is 0. Returns: list(Variable): The list of segmented Tensor variables. Example: .. code-block:: python import paddle # input is a variable which shape is [3, 4, 5] input = paddle.fluid.data( name="input", shape=[3, 4, 5], dtype="float32") [x0, x1, x2] = paddle.tensor.unbind(input, axis=0) # x0.shape [4, 5] # x1.shape [4, 5] # x2.shape [4, 5] [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1) # x0.shape [3, 5] # x1.shape [3, 5] # x2.shape [3, 5] # x3.shape [3, 5] """ helper = LayerHelper("unbind", **locals()) check_type(input, 'input', (Variable), 'unbind') dtype = helper.input_dtype() check_dtype(dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind') if not isinstance(axis, (int)): raise TypeError("The type of 'axis' must be int, but received %s." % (type(axis))) if isinstance(axis, np.generic): axis = np.asscalar(axis) input_shape = input.shape axis_ = axis if axis >= 0 else len(input_shape) + axis num = input_shape[axis_] outs = [ helper.create_variable_for_type_inference(dtype=helper.input_dtype()) for i in range(num) ] helper.append_op( type="unbind", inputs={"X": input}, outputs={"Out": outs}, attrs={"axis": axis}) return outs
39.677602
946
0.577992
2b7dc6fc7937f15df8462efc8889da9dc7fcfb71
6,335
py
Python
libs/openpyxl/comments/comment_sheet.py
rocketbot-cl/PivotTableExcel
041c8db2bbcd9655d30bf4c37aca4902b3d1db7a
[ "MIT" ]
null
null
null
libs/openpyxl/comments/comment_sheet.py
rocketbot-cl/PivotTableExcel
041c8db2bbcd9655d30bf4c37aca4902b3d1db7a
[ "MIT" ]
1
2021-02-08T20:31:28.000Z
2021-02-08T20:31:28.000Z
venv/Lib/site-packages/openpyxl/comments/comment_sheet.py
ansonsry/Freshshop
79ab8beb1aa993f6365182c8d3bb478ee4e028f8
[ "MIT" ]
null
null
null
from __future__ import absolute_import # Copyright (c) 2010-2019 openpyxl ## Incomplete! from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Typed, Float, Integer, Set, String, Bool, ) from openpyxl.descriptors.excel import Guid, ExtensionList from openpyxl.descriptors.sequence import NestedSequence from openpyxl.utils.indexed_list import IndexedList from openpyxl.xml.constants import SHEET_MAIN_NS from openpyxl.xml.functions import tostring from openpyxl.cell.text import Text from .author import AuthorList from .comments import Comment from .shape_writer import ShapeWriter class ObjectAnchor(Serialisable): moveWithCells = Bool(allow_none=True) sizeWithCells = Bool(allow_none=True) #z-order = Integer(allow_none=True) needs alias #from #to defs from xdr def __init__(self, moveWithCells=None, sizeWithCells=None, #z-order=None, ): self.moveWithCells = moveWithCells self.sizeWithCells = sizeWithCells #self.z-order = z-order class Properties(Serialisable): locked = Bool(allow_none=True) defaultSize = Bool(allow_none=True) _print = Bool(allow_none=True) disabled = Bool(allow_none=True) uiObject = Bool(allow_none=True) autoFill = Bool(allow_none=True) autoLine = Bool(allow_none=True) altText = String(allow_none=True) textHAlign = Set(values=(['left', 'center', 'right', 'justify', 'distributed'])) textVAlign = Set(values=(['top', 'center', 'bottom', 'justify', 'distributed'])) lockText = Bool(allow_none=True) justLastX = Bool(allow_none=True) autoScale = Bool(allow_none=True) rowHidden = Bool(allow_none=True) colHidden = Bool(allow_none=True) anchor = Typed(expected_type=ObjectAnchor, ) __elements__ = ('anchor',) def __init__(self, locked=None, defaultSize=None, _print=None, disabled=None, uiObject=None, autoFill=None, autoLine=None, altText=None, textHAlign=None, textVAlign=None, lockText=None, justLastX=None, autoScale=None, rowHidden=None, colHidden=None, anchor=None, ): self.locked = locked self.defaultSize = defaultSize self._print = _print self.disabled = disabled self.uiObject = uiObject self.autoFill = autoFill self.autoLine = autoLine self.altText = altText self.textHAlign = textHAlign self.textVAlign = textVAlign self.lockText = lockText self.justLastX = justLastX self.autoScale = autoScale self.rowHidden = rowHidden self.colHidden = colHidden self.anchor = anchor class CommentRecord(Serialisable): tagname = "comment" ref = String() authorId = Integer() guid = Guid(allow_none=True) shapeId = Integer(allow_none=True) text = Typed(expected_type=Text) commentPr = Typed(expected_type=Properties, allow_none=True) author = String(allow_none=True) __elements__ = ('text', 'commentPr') __attrs__ = ('ref', 'authorId', 'guid', 'shapeId') def __init__(self, ref="", authorId=0, guid=None, shapeId=0, text=None, commentPr=None, author=None, height=79, width=144 ): self.ref = ref self.authorId = authorId self.guid = guid self.shapeId = shapeId if text is None: text = Text() self.text = text self.commentPr = commentPr self.author = author self.height = height self.width = width @classmethod def from_cell(cls, cell): """ Class method to convert cell comment """ comment = cell._comment ref = cell.coordinate self = cls(ref=ref, author=comment.author) self.text.t = comment.content self.height = comment.height self.width = comment.width return self @property def content(self): """ Remove all inline formatting and stuff """ return self.text.content class CommentSheet(Serialisable): tagname = "comments" authors = Typed(expected_type=AuthorList) commentList = NestedSequence(expected_type=CommentRecord, count=0) extLst = Typed(expected_type=ExtensionList, allow_none=True) _id = None _path = "/xl/comments/comment{0}.xml" mime_type = "application/vnd.openxmlformats-officedocument.spreadsheetml.comments+xml" _rel_type = "comments" _rel_id = None __elements__ = ('authors', 'commentList') def __init__(self, authors=None, commentList=None, extLst=None, ): self.authors = authors self.commentList = commentList def to_tree(self): tree = super(CommentSheet, self).to_tree() tree.set("xmlns", SHEET_MAIN_NS) return tree @property def comments(self): """ Return a dictionary of comments keyed by coord """ authors = self.authors.author for c in self.commentList: yield c.ref, Comment(c.content, authors[c.authorId], c.height, c.width) @classmethod def from_comments(cls, comments): """ Create a comment sheet from a list of comments for a particular worksheet """ authors = IndexedList() # dedupe authors and get indexes for comment in comments: comment.authorId = authors.add(comment.author) return cls(authors=AuthorList(authors), commentList=comments) def write_shapes(self, vml=None): """ Create the VML for comments """ sw = ShapeWriter(self.comments) return sw.write(vml) @property def path(self): """ Return path within the archive """ return self._path.format(self._id)
27.188841
90
0.597632
bb38b678679f047fb4c6daaa6def4f7ddc57666d
27,730
py
Python
sifter.py
jakiki6/sandsifter
d852d01560be908b85cb95734d31ace8909b85b1
[ "BSD-3-Clause" ]
2
2021-04-21T17:18:09.000Z
2021-07-29T15:50:36.000Z
sifter.py
jakiki6/sandsifter
d852d01560be908b85cb95734d31ace8909b85b1
[ "BSD-3-Clause" ]
null
null
null
sifter.py
jakiki6/sandsifter
d852d01560be908b85cb95734d31ace8909b85b1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python3 # instruction injector frontend # # github.com/xoreaxeaxeax/sandsifter // domas // @xoreaxeaxeax # # run as sudo for best results import signal import sys import subprocess import os from struct import * from capstone import * from collections import namedtuple from collections import deque import threading import time import curses from binascii import hexlify import re import random import argparse import code import copy from ctypes import * INJECTOR = "./injector" arch = "" OUTPUT = "./data/" LOG = OUTPUT + "log" SYNC = OUTPUT + "sync" TICK = OUTPUT + "tick" LAST = OUTPUT + "last" class ThreadState: pause = False run = True class InjectorResults(Structure): _fields_ = [('disas_length', c_int), ('disas_known', c_int), ('raw_insn', c_ubyte * 16), ('valid', c_int), ('length', c_int), ('signum', c_int), ('sicode', c_int), ('siaddr', c_int), ] class Settings: SYNTH_MODE_RANDOM = "r" SYNTH_MODE_BRUTE = "b" SYNTH_MODE_TUNNEL = "t" synth_mode = SYNTH_MODE_RANDOM root = False seed = 0 args = "" def __init__(self, args): if "-r" in args: self.synth_mode = self.SYNTH_MODE_RANDOM elif "-b" in args: self.synth_mode = self.SYNTH_MODE_BRUTE elif "-t" in args: self.synth_mode = self.SYNTH_MODE_TUNNEL self.args = args self.root = (os.geteuid() == 0) self.seed = random.getrandbits(32) def increment_synth_mode(self): if self.synth_mode == self.SYNTH_MODE_BRUTE: self.synth_mode = self.SYNTH_MODE_RANDOM elif self.synth_mode == self.SYNTH_MODE_RANDOM: self.synth_mode = self.SYNTH_MODE_TUNNEL elif self.synth_mode == self.SYNTH_MODE_TUNNEL: self.synth_mode = self.SYNTH_MODE_BRUTE class Tests: r = InjectorResults() # current result IL=20 # instruction log len UL=10 # artifact log len il = deque(maxlen=IL) # instruction log al = deque(maxlen=UL) # artifact log ad = dict() # artifact dict ic = 0 # instruction count ac = 0 # artifact count start_time = time.time() def elapsed(self): m, s = divmod(time.time() - self.start_time, 60) h, m = divmod(m, 60) return "%02d:%02d:%02d.%02d" % (h, m, int(s), int(100*(s-int(s))) ) class Tee(object): def __init__(self, name, mode): self.file = open(name, mode) self.stdout = sys.stdout sys.stdout = self def __del__(self): sys.stdout = self.stdout self.file.close() def write(self, data): self.file.write(data) self.stdout.write(data) def flush(self): self.file.flush() self.stdout.flush() # capstone disassembler md = None def disas_capstone(b): global md, arch if not md: if arch == "64": md = Cs(CS_ARCH_X86, CS_MODE_64) else: md = Cs(CS_ARCH_X86, CS_MODE_32) try: address, size, mnemonic, op_str = next(md.disasm_lite(b, 0)) except StopIteration: mnemonic="(unk)" op_str="" size = 0 return (mnemonic, op_str, size) # ndisasm disassembler # (ndidsasm breaks unnecessary prefixes onto its own line, which makes parsing # the output difficult. really only useful with the -P0 flag to disallow # prefixes) def disas_ndisasm(b): b = ''.join('\\x%02x' % ord(c) for c in b) if arch == "64": dis, errors = subprocess.Popen("echo -ne '%s' | ndisasm -b64 - | head -2" % b, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate() else: dis, errors = subprocess.Popen("echo -ne '%s' | ndisasm -b32 - | head -2" % b, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate() dis = dis.split("\n") extra = dis[1] dis = dis[0].split(None, 4) if extra.strip()[0] == '-': dis[1] = dis[1] + extra.strip()[1:] address = dis[0] insn = dis[1] mnemonic = dis[2] if len(dis) > 3: op_str = dis[3] else: op_str = "" if mnemonic == "db": mnemonic = "(unk)" insn = "" op_str = "" size = len(insn)//2 return (mnemonic, op_str, size) # objdump disassembler # (objdump breaks unnecessary prefixes onto its own line, which makes parsing # the output difficult. really only useful with the -P0 flag to disallow # prefixes) def disas_objdump(b): with open("/dev/shm/shifter", "w") as f: f.write(b) if arch == "64": dis, errors = subprocess.Popen("objdump -D --insn-width=256 -b binary \ -mi386 -Mx86-64 /dev/shm/shifter | head -8 | tail -1", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate() else: dis, errors = subprocess.Popen("objdump -D --insn-width=256 -b binary \ -mi386 /dev/shm/shifter | head -8 | tail -1", stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate() dis = dis[6:] # address raw = dis[:256*3].replace(" ","") dis = dis[256*3:].strip().split(None, 2) mnemonic = dis[0] if len(dis) > 1: op_str = dis[1] else: op_str = "" if mnemonic == "(bad)": mnemonic = "(unk)" insn = "" op_str = "" size = len(raw)//2 return (mnemonic, op_str, size) def cstr2py(s): return ''.join([chr(x) for x in s]) # targeting python 2.6 support def int_to_comma(x): if type(x) not in [type(0), type(0)]: raise TypeError("Parameter must be an integer.") if x < 0: return '-' + int_to_comma(-x) result = '' while x >= 1000: x, r = divmod(x, 1000) result = ",%03d%s" % (r, result) return "%d%s" % (x, result) def result_string(insn, result): s = "%30s %2d %2d %2d %2d (%s)\n" % ( hexlify(insn).decode(), result.valid, result.length, result.signum, result.sicode, hexlify(cstr2py(result.raw_insn).encode()).decode()) return s class Injector: process = None settings = None command = None def __init__(self, settings): self.settings = settings def start(self): self.command = "%s %s -%c -R %s -s %d" % \ ( INJECTOR, " ".join(self.settings.args), self.settings.synth_mode, "-0" if self.settings.root else "", self.settings.seed ) self.process = subprocess.Popen( "exec %s" % self.command, shell=True, stdout=subprocess.PIPE, stdin=subprocess.PIPE, preexec_fn=os.setsid ) def stop(self): if self.process: try: os.killpg(os.getpgid(self.process.pid), signal.SIGTERM) except OSError: pass class Poll: SIGILL = 4 SIGSEGV = 11 SIGFPE = 8 SIGBUS = 7 SIGTRAP = 5 def __init__(self, ts, injector, tests, command_line, sync=False, low_mem=False, search_unk=True, search_len=False, search_dis=False, search_ill=False, disassembler=disas_capstone): self.ts = ts self.injector = injector self.T = tests self.poll_thread = None self.sync = sync self.low_mem = low_mem self.search_len = search_len self.search_unk = search_unk self.search_dis = search_dis self.search_ill = search_ill self.disas = disassembler if self.sync: with open(SYNC, "w") as f: f.write("#\n") f.write("# %s\n" % command_line) f.write("# %s\n" % injector.command) f.write("#\n") f.write("# cpu:\n") cpu = get_cpu_info() for l in cpu: f.write("# %s\n" % l) f.write("# %s v l s c\n" % (" " * 28)) def start(self): self.poll_thread = threading.Thread(target=self.poll) self.poll_thread.start() def stop(self): self.poll_thread.join() while self.ts.run: time.sleep(.1) def poll(self): while self.ts.run: while self.ts.pause: time.sleep(.1) bytes_polled = self.injector.process.stdout.readinto(self.T.r) if bytes_polled == sizeof(self.T.r): self.T.ic = self.T.ic + 1 error = False if self.T.r.valid: if self.search_unk and not self.T.r.disas_known and self.T.r.signum != self.SIGILL: error = True if self.search_len and self.T.r.disas_known and self.T.r.disas_length != self.T.r.length: error = True if self.search_dis and self.T.r.disas_known \ and self.T.r.disas_length != self.T.r.length and self.T.r.signum != self.SIGILL: error = True if self.search_ill and self.T.r.disas_known and self.T.r.signum == self.SIGILL: error = True if error: insn = cstr2py(self.T.r.raw_insn).encode()[:self.T.r.length] r = copy.deepcopy(self.T.r) self.T.al.appendleft(r) if insn not in self.T.ad: if not self.low_mem: self.T.ad[insn] = r self.T.ac = self.T.ac + 1 if self.sync: with open(SYNC, "a") as f: f.write(result_string(insn, self.T.r)) else: if self.injector.process.poll() is not None: self.ts.run = False break class Gui: TIME_SLICE = .01 GRAY_BASE = 50 TICK_MASK = 0xff RATE_Q = 100 RATE_FACTOR = 1000 INDENT = 10 GRAYS = 50 BLACK = 1 WHITE = 2 BLUE = 3 RED = 4 GREEN = 5 COLOR_BLACK = 16 COLOR_WHITE = 17 COLOR_BLUE = 18 COLOR_RED = 19 COLOR_GREEN = 20 def __init__(self, ts, injector, tests, do_tick, disassembler=disas_capstone): self.ts = ts; self.injector = injector self.T = tests self.gui_thread = None self.do_tick = do_tick self.ticks = 0 self.last_ins_count = 0 self.delta_log = deque(maxlen=self.RATE_Q) self.time_log = deque(maxlen=self.RATE_Q) self.disas = disassembler self.stdscr = curses.initscr() curses.start_color() # doesn't work # self.orig_colors = [curses.color_content(x) for x in xrange(256)] curses.use_default_colors() curses.noecho() curses.cbreak() curses.curs_set(0) self.stdscr.nodelay(1) self.sx = 0 self.sy = 0 self.init_colors() self.stdscr.bkgd(curses.color_pair(self.WHITE)) self.last_time = time.time() def init_colors(self): if curses.has_colors() and curses.can_change_color(): curses.init_color(self.COLOR_BLACK, 0, 0, 0) curses.init_color(self.COLOR_WHITE, 1000, 1000, 1000) curses.init_color(self.COLOR_BLUE, 0, 0, 1000) curses.init_color(self.COLOR_RED, 1000, 0, 0) curses.init_color(self.COLOR_GREEN, 0, 1000, 0) # this will remove flicker, but gives boring colors ''' self.COLOR_BLACK = curses.COLOR_BLACK self.COLOR_WHITE = curses.COLOR_WHITE self.COLOR_BLUE = curses.COLOR_BLUE self.COLOR_RED = curses.COLOR_RED self.COLOR_GREEN = curses.COLOR_GREEN ''' for i in range(0, self.GRAYS): curses.init_color( self.GRAY_BASE + i, i * 1000 // (self.GRAYS - 1), i * 1000 // (self.GRAYS - 1), i * 1000 // (self.GRAYS - 1) ) curses.init_pair( self.GRAY_BASE + i, self.GRAY_BASE + i, self.COLOR_BLACK ) else: self.COLOR_BLACK = curses.COLOR_BLACK self.COLOR_WHITE = curses.COLOR_WHITE self.COLOR_BLUE = curses.COLOR_BLUE self.COLOR_RED = curses.COLOR_RED self.COLOR_GREEN = curses.COLOR_GREEN for i in range(0, self.GRAYS): curses.init_pair( self.GRAY_BASE + i, self.COLOR_WHITE, self.COLOR_BLACK ) curses.init_pair(self.BLACK, self.COLOR_BLACK, self.COLOR_BLACK) curses.init_pair(self.WHITE, self.COLOR_WHITE, self.COLOR_BLACK) curses.init_pair(self.BLUE, self.COLOR_BLUE, self.COLOR_BLACK) curses.init_pair(self.RED, self.COLOR_RED, self.COLOR_BLACK) curses.init_pair(self.GREEN, self.COLOR_GREEN, self.COLOR_BLACK) def gray(self, scale): if curses.can_change_color(): return curses.color_pair(self.GRAY_BASE + int(round(scale * (self.GRAYS - 1)))) else: return curses.color_pair(self.WHITE) def box(self, window, x, y, w, h, color): for i in range(1, w - 1): window.addch(y, x + i, curses.ACS_HLINE, color) window.addch(y + h - 1, x + i, curses.ACS_HLINE, color) for i in range(1, h - 1): window.addch(y + i, x, curses.ACS_VLINE, color) window.addch(y + i, x + w - 1, curses.ACS_VLINE, color) window.addch(y, x, curses.ACS_ULCORNER, color) window.addch(y, x + w - 1, curses.ACS_URCORNER, color) window.addch(y + h - 1, x, curses.ACS_LLCORNER, color) window.addch(y + h - 1, x + w - 1, curses.ACS_LRCORNER, color) def bracket(self, window, x, y, h, color): for i in range(1, h - 1): window.addch(y + i, x, curses.ACS_VLINE, color) window.addch(y, x, curses.ACS_ULCORNER, color) window.addch(y + h - 1, x, curses.ACS_LLCORNER, color) def vaddstr(self, window, x, y, s, color): for i in range(0, len(s)): window.addch(y + i, x, s[i], color) def draw(self): try: self.stdscr.erase() # constants left = self.sx + self.INDENT top = self.sy top_bracket_height = self.T.IL top_bracket_middle = self.T.IL // 2 mne_width = 10 op_width = 45 raw_width = (16*2) # render log bracket self.bracket(self.stdscr, left - 1, top, top_bracket_height + 2, self.gray(1)) # render logo self.vaddstr(self.stdscr, left - 3, top + top_bracket_middle - 5, "sand", self.gray(.2)) self.vaddstr(self.stdscr, left - 3, top + top_bracket_middle + 5, "sifter", self.gray(.2)) # refresh instruction log synth_insn = cstr2py(self.T.r.raw_insn).encode() mnemonic, op_str, size = self.disas(synth_insn) self.T.il.append( ( mnemonic, op_str, self.T.r.length, "%s" % hexlify(synth_insn).decode() ) ) # render instruction log try: for (i, r) in enumerate(self.T.il): line = i + self.T.IL - len(self.T.il) (mnemonic, op_str, length, raw) = r if i == len(self.T.il) - 1: # latest instruction # mnemonic self.stdscr.addstr( top + 1 + line, left, "%*s " % (mne_width, mnemonic), self.gray(1) ) # operands self.stdscr.addstr( top + 1 + line, left + (mne_width + 1), "%-*s " % (op_width, op_str), curses.color_pair(self.BLUE) ) # bytes if self.maxx > left + (mne_width + 1) + (op_width + 1) + (raw_width + 1): self.stdscr.addstr( top + 1 + line, left + (mne_width + 1) + (op_width + 1), "%s" % raw[0:length * 2], self.gray(.9) ) self.stdscr.addstr( top + 1 +line, left + (mne_width + 1) + (op_width + 1) + length * 2, "%s" % raw[length * 2:raw_width], self.gray(.3) ) else: # previous instructions # mnemonic, operands self.stdscr.addstr( top + 1 + line, left, "%*s %-*s" % (mne_width, mnemonic, op_width, op_str), self.gray(.5) ) # bytes if self.maxx > left + (mne_width + 1) + (op_width + 1) + (raw_width + 1): self.stdscr.addstr( top + 1 + line, left + (mne_width + 1) + (op_width + 1), "%s" % raw[0:length * 2], self.gray(.3) ) self.stdscr.addstr( top + 1 + line, left + (mne_width + 1) + (op_width + 1) + length * 2, "%s" % raw[length * 2:raw_width], self.gray(.1) ) except RuntimeError: # probably the deque was modified by the poller pass # rate calculation self.delta_log.append(self.T.ic - self.last_ins_count) self.last_ins_count = self.T.ic ctime = time.time() self.time_log.append(ctime - self.last_time) self.last_time = ctime rate = int(sum(self.delta_log)//sum(self.time_log)) # render timestamp if self.maxx > left + (mne_width + 1) + (op_width + 1) + (raw_width + 1): self.vaddstr( self.stdscr, left + (mne_width + 1) + (op_width + 1) + (raw_width + 1), top + 1, self.T.elapsed(), self.gray(.5) ) # render injection settings self.stdscr.addstr(top + 1, left - 8, "%d" % self.injector.settings.root, self.gray(.1)) self.stdscr.addstr(top + 1, left - 7, "%s" % arch, self.gray(.1)) self.stdscr.addstr(top + 1, left - 3, "%c" % self.injector.settings.synth_mode, self.gray(.5)) # render injection results self.stdscr.addstr(top + top_bracket_middle, left - 6, "v:", self.gray(.5)) self.stdscr.addstr(top + top_bracket_middle, left - 4, "%2x" % self.T.r.valid) self.stdscr.addstr(top + top_bracket_middle + 1, left - 6, "l:", self.gray(.5)) self.stdscr.addstr(top + top_bracket_middle + 1, left - 4, "%2x" % self.T.r.length) self.stdscr.addstr(top + top_bracket_middle + 2, left - 6, "s:", self.gray(.5)) self.stdscr.addstr(top + top_bracket_middle + 2, left - 4, "%2x" % self.T.r.signum) self.stdscr.addstr(top + top_bracket_middle + 3, left - 6, "c:", self.gray(.5)) self.stdscr.addstr(top + top_bracket_middle + 3, left - 4, "%2x" % self.T.r.sicode) # render instruction count self.stdscr.addstr(top + top_bracket_height + 2, left, "#", self.gray(.5)) self.stdscr.addstr(top + top_bracket_height + 2, left + 2, "%s" % (int_to_comma(self.T.ic)), self.gray(1)) # render rate self.stdscr.addstr(top + top_bracket_height + 3, left, " %d/s%s" % (rate, " " * min(rate // self.RATE_FACTOR, 100)), curses.A_REVERSE) # render artifact count self.stdscr.addstr(top + top_bracket_height + 4, left, "#", self.gray(.5)) self.stdscr.addstr(top + top_bracket_height + 4, left + 2, "%s" % (int_to_comma(self.T.ac)), curses.color_pair(self.RED)) # render artifact log if self.maxy >= top + top_bracket_height + 5 + self.T.UL + 2: # render artifact bracket self.bracket(self.stdscr, left - 1, top + top_bracket_height + 5, self.T.UL + 2, self.gray(1)) # render artifacts try: for (i, r) in enumerate(self.T.al): y = top_bracket_height + 5 + i insn_hex = hexlify(cstr2py(r.raw_insn).encode()).decode() # unexplainable hack to remove some of the unexplainable # flicker on my console. a bug in ncurses? doesn't # happen if using curses.COLOR_RED instead of a custom # red. doesn't happen if using a new random string each # time; doesn't happen if using a constant string each # time. only happens with the specific implementation below. #TODO: on systems with limited color settings, this # makes the background look like random characters random_string = ("%02x" % random.randint(0,100)) * (raw_width-2) self.stdscr.addstr(top + 1 + y, left, random_string, curses.color_pair(self.BLACK)) self.stdscr.addstr(top + 1 + y, left + 1, "%s" % insn_hex[0:r.length * 2], curses.color_pair(self.RED)) self.stdscr.addstr(top + 1 + y, left + 1 + r.length * 2, "%s" % insn_hex[r.length * 2:raw_width], self.gray(.25)) except RuntimeError: # probably the deque was modified by the poller pass self.stdscr.refresh() except curses.error: pass def start(self): self.gui_thread = threading.Thread(target=self.render) self.gui_thread.start() def stop(self): self.gui_thread.join() def checkkey(self): c = self.stdscr.getch() if c == ord('p'): self.ts.pause = not self.ts.pause elif c == ord('q'): self.ts.run = False elif c == ord('m'): self.ts.pause = True time.sleep(.1) self.injector.stop() self.injector.settings.increment_synth_mode() self.injector.start() self.ts.pause = False def render(self): while self.ts.run: while self.ts.pause: self.checkkey() time.sleep(.1) (self.maxy,self.maxx) = self.stdscr.getmaxyx() self.sx = 1 self.sy = max((self.maxy + 1 - (self.T.IL + self.T.UL + 5 + 2))//2, 0) self.checkkey() synth_insn = cstr2py(self.T.r.raw_insn).encode() if synth_insn and not self.ts.pause: self.draw() if self.do_tick: self.ticks = self.ticks + 1 if self.ticks & self.TICK_MASK == 0: with open(TICK, 'w') as f: f.write("{}".format(hexlify(synth_insn).decode())) time.sleep(self.TIME_SLICE) def get_cpu_info(): with open("/proc/cpuinfo", "r") as f: cpu = [l.strip() for l in f.readlines()[:7]] return cpu def dump_artifacts(r, injector, command_line): global arch tee = Tee(LOG, "w") tee.write("#\n") tee.write("# %s\n" % command_line) tee.write("# %s\n" % injector.command) tee.write("#\n") tee.write("# insn tested: %d\n" % r.ic) tee.write("# artf found: %d\n" % r.ac) tee.write("# runtime: %s\n" % r.elapsed()) tee.write("# seed: %d\n" % injector.settings.seed) tee.write("# arch: %s\n" % arch) tee.write("# date: %s\n" % time.strftime("%Y-%m-%d %H:%M:%S")) tee.write("#\n") tee.write("# cpu:\n") cpu = get_cpu_info() for l in cpu: tee.write("# %s\n" % l) tee.write("# %s v l s c\n" % (" " * 28)) for k in sorted(list(r.ad)): v = r.ad[k] tee.write(result_string(k, v)) def cleanup(gui, poll, injector, ts, tests, command_line, args): ts.run = False if gui: gui.stop() if poll: poll.stop() if injector: injector.stop() ''' # doesn't work if gui: for (i, c) in enumerate(gui.orig_colors): curses.init_color(i, c[0], c[1], c[2]) ''' curses.nocbreak(); curses.echo() curses.endwin() dump_artifacts(tests, injector, command_line) if args.save: with open(LAST, "w") as f: f.write(hexlify(cstr2py(tests.r.raw_insn).encode()).decode()) sys.exit(0) def main(): global arch def exit_handler(signal, frame): cleanup(gui, poll, injector, ts, tests, command_line, args) injector = None poll = None gui = None command_line = " ".join(sys.argv) parser = argparse.ArgumentParser() parser.add_argument("--len", action="store_true", default=False, help="search for length differences in all instructions (instructions\ that executed differently than the disassembler expected, or did not\ exist when the disassembler expected them to)" ) parser.add_argument("--dis", action="store_true", default=False, help="search for length differences in valid instructions (instructions\ that executed differently than the disassembler expected)" ) parser.add_argument("--unk", action="store_true", default=False, help="search for unknown instructions (instructions that the\ disassembler doesn't know about but successfully execute)" ) parser.add_argument("--ill", action="store_true", default=False, help="the inverse of --unk, search for invalid disassemblies\ (instructions that do not successfully execute but that the\ disassembler acknowledges)" ) parser.add_argument("--tick", action="store_true", default=False, help="periodically write the current instruction to disk" ) parser.add_argument("--save", action="store_true", default=False, help="save search progress on exit" ) parser.add_argument("--resume", action="store_true", default=False, help="resume search from last saved state" ) parser.add_argument("--sync", action="store_true", default=False, help="write search results to disk as they are found" ) parser.add_argument("--low-mem", action="store_true", default=False, help="do not store results in memory" ) parser.add_argument("injector_args", nargs=argparse.REMAINDER) args = parser.parse_args() injector_args = args.injector_args if "--" in injector_args: injector_args.remove("--") if not args.len and not args.unk and not args.dis and not args.ill: print("warning: no search type (--len, --unk, --dis, --ill) specified, results will not be recorded.") input() if args.resume: if "-i" in injector_args: print("--resume is incompatible with -i") sys.exit(1) if os.path.exists(LAST): with open(LAST, "r") as f: insn = f.read() injector_args.extend(['-i',insn]) else: print("no resume file found") sys.exit(1) if not os.path.exists(OUTPUT): os.makedirs(OUTPUT) injector_bitness, errors = \ subprocess.Popen( ['file', INJECTOR], stdout=subprocess.PIPE, stderr=subprocess.PIPE ).communicate() arch = "64" ts = ThreadState() signal.signal(signal.SIGINT, exit_handler) settings = Settings(args.injector_args) tests = Tests() injector = Injector(settings) injector.start() poll = Poll(ts, injector, tests, command_line, args.sync, args.low_mem, args.unk, args.len, args.dis, args.ill) poll.start() gui = Gui(ts, injector, tests, args.tick) gui.start() while ts.run: time.sleep(.1) cleanup(gui, poll, injector, ts, tests, command_line, args) if __name__ == '__main__': main()
32.777778
107
0.549802
3113c2f7e322f8fc161c40ecbe34907c3c3f1908
3,294
py
Python
alipay/aop/api/domain/CreditBankTraining.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/CreditBankTraining.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/CreditBankTraining.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class CreditBankTraining(object): def __init__(self): self._experience_time = None self._have_project_certificate = None self._inst_name = None self._project_name = None self._training_outer_id = None @property def experience_time(self): return self._experience_time @experience_time.setter def experience_time(self, value): self._experience_time = value @property def have_project_certificate(self): return self._have_project_certificate @have_project_certificate.setter def have_project_certificate(self, value): self._have_project_certificate = value @property def inst_name(self): return self._inst_name @inst_name.setter def inst_name(self, value): self._inst_name = value @property def project_name(self): return self._project_name @project_name.setter def project_name(self, value): self._project_name = value @property def training_outer_id(self): return self._training_outer_id @training_outer_id.setter def training_outer_id(self, value): self._training_outer_id = value def to_alipay_dict(self): params = dict() if self.experience_time: if hasattr(self.experience_time, 'to_alipay_dict'): params['experience_time'] = self.experience_time.to_alipay_dict() else: params['experience_time'] = self.experience_time if self.have_project_certificate: if hasattr(self.have_project_certificate, 'to_alipay_dict'): params['have_project_certificate'] = self.have_project_certificate.to_alipay_dict() else: params['have_project_certificate'] = self.have_project_certificate if self.inst_name: if hasattr(self.inst_name, 'to_alipay_dict'): params['inst_name'] = self.inst_name.to_alipay_dict() else: params['inst_name'] = self.inst_name if self.project_name: if hasattr(self.project_name, 'to_alipay_dict'): params['project_name'] = self.project_name.to_alipay_dict() else: params['project_name'] = self.project_name if self.training_outer_id: if hasattr(self.training_outer_id, 'to_alipay_dict'): params['training_outer_id'] = self.training_outer_id.to_alipay_dict() else: params['training_outer_id'] = self.training_outer_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = CreditBankTraining() if 'experience_time' in d: o.experience_time = d['experience_time'] if 'have_project_certificate' in d: o.have_project_certificate = d['have_project_certificate'] if 'inst_name' in d: o.inst_name = d['inst_name'] if 'project_name' in d: o.project_name = d['project_name'] if 'training_outer_id' in d: o.training_outer_id = d['training_outer_id'] return o
32.613861
99
0.637523
19ac3b725dd3b337e776bfb232ad9525b445b0dc
17,578
py
Python
python-3.4.4.amd64/Lib/distutils/command/build_py.py
CSnap/photogate
208272ef39f4e86f40d431da2ca523e21701f789
[ "CC0-1.0" ]
null
null
null
python-3.4.4.amd64/Lib/distutils/command/build_py.py
CSnap/photogate
208272ef39f4e86f40d431da2ca523e21701f789
[ "CC0-1.0" ]
null
null
null
python-3.4.4.amd64/Lib/distutils/command/build_py.py
CSnap/photogate
208272ef39f4e86f40d431da2ca523e21701f789
[ "CC0-1.0" ]
null
null
null
"""distutils.command.build_py Implements the Distutils 'build_py' command.""" import os import importlib.util import sys from glob import glob from distutils.core import Command from distutils.errors import * from distutils.util import convert_path, Mixin2to3 from distutils import log class build_py (Command): description = "\"build\" pure Python modules (copy to build directory)" user_options = [ ('build-lib=', 'd', "directory to \"build\" (copy) to"), ('compile', 'c', "compile .py to .pyc"), ('no-compile', None, "don't compile .py files [default]"), ('optimize=', 'O', "also compile with optimization: -O1 for \"python -O\", " "-O2 for \"python -OO\", and -O0 to disable [default: -O0]"), ('force', 'f', "forcibly build everything (ignore file timestamps)"), ] boolean_options = ['compile', 'force'] negative_opt = {'no-compile' : 'compile'} def initialize_options(self): self.build_lib = None self.py_modules = None self.package = None self.package_data = None self.package_dir = None self.compile = 0 self.optimize = 0 self.force = None def finalize_options(self): self.set_undefined_options('build', ('build_lib', 'build_lib'), ('force', 'force')) # Get the distribution options that are aliases for build_py # options -- list of packages and list of modules. self.packages = self.distribution.packages self.py_modules = self.distribution.py_modules self.package_data = self.distribution.package_data self.package_dir = {} if self.distribution.package_dir: for name, path in self.distribution.package_dir.items(): self.package_dir[name] = convert_path(path) self.data_files = self.get_data_files() # Ick, copied straight from install_lib.py (fancy_getopt needs a # type system! Hell, *everything* needs a type system!!!) if not isinstance(self.optimize, int): try: self.optimize = int(self.optimize) assert 0 <= self.optimize <= 2 except (ValueError, AssertionError): raise DistutilsOptionError("optimize must be 0, 1, or 2") def run(self): # XXX copy_file by default preserves atime and mtime. IMHO this is # the right thing to do, but perhaps it should be an option -- in # particular, a site administrator might want installed files to # reflect the time of installation rather than the last # modification time before the installed release. # XXX copy_file by default preserves mode, which appears to be the # wrong thing to do: if a file is read-only in the working # directory, we want it to be installed read/write so that the next # installation of the same module distribution can overwrite it # without problems. (This might be a Unix-specific issue.) Thus # we turn off 'preserve_mode' when copying to the build directory, # since the build directory is supposed to be exactly what the # installation will look like (ie. we preserve mode when # installing). # Two options control which modules will be installed: 'packages' # and 'py_modules'. The former lets us work with whole packages, not # specifying individual modules at all; the latter is for # specifying modules one-at-a-time. if self.py_modules: self.build_modules() if self.packages: self.build_packages() self.build_package_data() self.byte_compile(self.get_outputs(include_bytecode=0)) def get_data_files(self): """Generate list of '(package,src_dir,build_dir,filenames)' tuples""" data = [] if not self.packages: return data for package in self.packages: # Locate package source directory src_dir = self.get_package_dir(package) # Compute package build directory build_dir = os.path.join(*([self.build_lib] + package.split('.'))) # Length of path to strip from found files plen = 0 if src_dir: plen = len(src_dir)+1 # Strip directory from globbed filenames filenames = [ file[plen:] for file in self.find_data_files(package, src_dir) ] data.append((package, src_dir, build_dir, filenames)) return data def find_data_files(self, package, src_dir): """Return filenames for package's data files in 'src_dir'""" globs = (self.package_data.get('', []) + self.package_data.get(package, [])) files = [] for pattern in globs: # Each pattern has to be converted to a platform-specific path filelist = glob(os.path.join(src_dir, convert_path(pattern))) # Files that match more than one pattern are only added once files.extend([fn for fn in filelist if fn not in files and os.path.isfile(fn)]) return files def build_package_data(self): """Copy data files into build directory""" lastdir = None for package, src_dir, build_dir, filenames in self.data_files: for filename in filenames: target = os.path.join(build_dir, filename) self.mkpath(os.path.dirname(target)) self.copy_file(os.path.join(src_dir, filename), target, preserve_mode=False) def get_package_dir(self, package): """Return the directory, relative to the top of the source distribution, where package 'package' should be found (at least according to the 'package_dir' option, if any).""" path = package.split('.') if not self.package_dir: if path: return os.path.join(*path) else: return '' else: tail = [] while path: try: pdir = self.package_dir['.'.join(path)] except KeyError: tail.insert(0, path[-1]) del path[-1] else: tail.insert(0, pdir) return os.path.join(*tail) else: # Oops, got all the way through 'path' without finding a # match in package_dir. If package_dir defines a directory # for the root (nameless) package, then fallback on it; # otherwise, we might as well have not consulted # package_dir at all, as we just use the directory implied # by 'tail' (which should be the same as the original value # of 'path' at this point). pdir = self.package_dir.get('') if pdir is not None: tail.insert(0, pdir) if tail: return os.path.join(*tail) else: return '' def check_package(self, package, package_dir): # Empty dir name means current directory, which we can probably # assume exists. Also, os.path.exists and isdir don't know about # my "empty string means current dir" convention, so we have to # circumvent them. if package_dir != "": if not os.path.exists(package_dir): raise DistutilsFileError( "package directory '%s' does not exist" % package_dir) if not os.path.isdir(package_dir): raise DistutilsFileError( "supposed package directory '%s' exists, " "but is not a directory" % package_dir) # Require __init__.py for all but the "root package" if package: init_py = os.path.join(package_dir, "__init__.py") if os.path.isfile(init_py): return init_py else: log.warn(("package init file '%s' not found " + "(or not a regular file)"), init_py) # Either not in a package at all (__init__.py not expected), or # __init__.py doesn't exist -- so don't return the filename. return None def check_module(self, module, module_file): if not os.path.isfile(module_file): log.warn("file %s (for module %s) not found", module_file, module) return False else: return True def find_package_modules(self, package, package_dir): self.check_package(package, package_dir) module_files = glob(os.path.join(package_dir, "*.py")) modules = [] setup_script = os.path.abspath(self.distribution.script_name) for f in module_files: abs_f = os.path.abspath(f) if abs_f != setup_script: module = os.path.splitext(os.path.basename(f))[0] modules.append((package, module, f)) else: self.debug_print("excluding %s" % setup_script) return modules def find_modules(self): """Finds individually-specified Python modules, ie. those listed by module name in 'self.py_modules'. Returns a list of tuples (package, module_base, filename): 'package' is a tuple of the path through package-space to the module; 'module_base' is the bare (no packages, no dots) module name, and 'filename' is the path to the ".py" file (relative to the distribution root) that implements the module. """ # Map package names to tuples of useful info about the package: # (package_dir, checked) # package_dir - the directory where we'll find source files for # this package # checked - true if we have checked that the package directory # is valid (exists, contains __init__.py, ... ?) packages = {} # List of (package, module, filename) tuples to return modules = [] # We treat modules-in-packages almost the same as toplevel modules, # just the "package" for a toplevel is empty (either an empty # string or empty list, depending on context). Differences: # - don't check for __init__.py in directory for empty package for module in self.py_modules: path = module.split('.') package = '.'.join(path[0:-1]) module_base = path[-1] try: (package_dir, checked) = packages[package] except KeyError: package_dir = self.get_package_dir(package) checked = 0 if not checked: init_py = self.check_package(package, package_dir) packages[package] = (package_dir, 1) if init_py: modules.append((package, "__init__", init_py)) # XXX perhaps we should also check for just .pyc files # (so greedy closed-source bastards can distribute Python # modules too) module_file = os.path.join(package_dir, module_base + ".py") if not self.check_module(module, module_file): continue modules.append((package, module_base, module_file)) return modules def find_all_modules(self): """Compute the list of all modules that will be built, whether they are specified one-module-at-a-time ('self.py_modules') or by whole packages ('self.packages'). Return a list of tuples (package, module, module_file), just like 'find_modules()' and 'find_package_modules()' do.""" modules = [] if self.py_modules: modules.extend(self.find_modules()) if self.packages: for package in self.packages: package_dir = self.get_package_dir(package) m = self.find_package_modules(package, package_dir) modules.extend(m) return modules def get_source_files(self): return [module[-1] for module in self.find_all_modules()] def get_module_outfile(self, build_dir, package, module): outfile_path = [build_dir] + list(package) + [module + ".py"] return os.path.join(*outfile_path) def get_outputs(self, include_bytecode=1): modules = self.find_all_modules() outputs = [] for (package, module, module_file) in modules: package = package.split('.') filename = self.get_module_outfile(self.build_lib, package, module) outputs.append(filename) if include_bytecode: if self.compile: outputs.append(importlib.util.cache_from_source( filename, debug_override=True)) if self.optimize > 0: outputs.append(importlib.util.cache_from_source( filename, debug_override=False)) outputs += [ os.path.join(build_dir, filename) for package, src_dir, build_dir, filenames in self.data_files for filename in filenames ] return outputs def build_module(self, module, module_file, package): if isinstance(package, str): package = package.split('.') elif not isinstance(package, (list, tuple)): raise TypeError( "'package' must be a string (dot-separated), list, or tuple") # Now put the module source file into the "build" area -- this is # easy, we just copy it somewhere under self.build_lib (the build # directory for Python source). outfile = self.get_module_outfile(self.build_lib, package, module) dir = os.path.dirname(outfile) self.mkpath(dir) return self.copy_file(module_file, outfile, preserve_mode=0) def build_modules(self): modules = self.find_modules() for (package, module, module_file) in modules: # Now "build" the module -- ie. copy the source file to # self.build_lib (the build directory for Python source). # (Actually, it gets copied to the directory for this package # under self.build_lib.) self.build_module(module, module_file, package) def build_packages(self): for package in self.packages: # Get list of (package, module, module_file) tuples based on # scanning the package directory. 'package' is only included # in the tuple so that 'find_modules()' and # 'find_package_tuples()' have a consistent interface; it's # ignored here (apart from a sanity check). Also, 'module' is # the *unqualified* module name (ie. no dots, no package -- we # already know its package!), and 'module_file' is the path to # the .py file, relative to the current directory # (ie. including 'package_dir'). package_dir = self.get_package_dir(package) modules = self.find_package_modules(package, package_dir) # Now loop over the modules we found, "building" each one (just # copy it to self.build_lib). for (package_, module, module_file) in modules: assert package == package_ self.build_module(module, module_file, package) def byte_compile(self, files): if sys.dont_write_bytecode: self.warn('byte-compiling is disabled, skipping.') return from distutils.util import byte_compile prefix = self.build_lib if prefix[-1] != os.sep: prefix = prefix + os.sep # XXX this code is essentially the same as the 'byte_compile() # method of the "install_lib" command, except for the determination # of the 'prefix' string. Hmmm. if self.compile: byte_compile(files, optimize=0, force=self.force, prefix=prefix, dry_run=self.dry_run) if self.optimize > 0: byte_compile(files, optimize=self.optimize, force=self.force, prefix=prefix, dry_run=self.dry_run) class build_py_2to3(build_py, Mixin2to3): def run(self): self.updated_files = [] # Base class code if self.py_modules: self.build_modules() if self.packages: self.build_packages() self.build_package_data() # 2to3 self.run_2to3(self.updated_files) # Remaining base class code self.byte_compile(self.get_outputs(include_bytecode=0)) def build_module(self, module, module_file, package): res = build_py.build_module(self, module, module_file, package) if res[1]: # file was copied self.updated_files.append(res[0]) return res
42.153477
80
0.57572
18f2f9cadf0e59e1ca73a78aa0c7a419796785fc
405
py
Python
Binary search algorithm/main.py
Noha101/python
4cafd75f3e588e8dc3cccad786781316dab836f7
[ "MIT" ]
null
null
null
Binary search algorithm/main.py
Noha101/python
4cafd75f3e588e8dc3cccad786781316dab836f7
[ "MIT" ]
1
2021-09-07T09:59:56.000Z
2021-09-07T10:00:40.000Z
Binary search algorithm/main.py
Noha101/python
4cafd75f3e588e8dc3cccad786781316dab836f7
[ "MIT" ]
1
2021-09-07T09:42:31.000Z
2021-09-07T09:42:31.000Z
def search(arr, l, r, x): if r >= l: mid = l + (r - l) // 2 if arr[mid] == x: return mid elif arr[mid] > x: return search(arr, l, mid-1, x) else: return search(arr, mid + 1, r, x) else: return -1 arr = [ 2, 3, 4, 10, 40 ] x = 10 result = search(arr, 0, len(arr)-1, x) if result != -1: print(f"Element is present at index {result}") else: print("Element is not present in array")
18.409091
47
0.562963
00bdc1e96b5a7da9a2192e93c759e5b858e5578a
6,351
py
Python
geo_png_tiler/resources.py
sasakiassociates/qgis-geo-png-db
bb71daa68e3721074482944d12f6323ce5136fed
[ "MIT" ]
1
2021-10-01T11:44:59.000Z
2021-10-01T11:44:59.000Z
geo_png_tiler/resources.py
sasakiassociates/qgis-geo-png-db
bb71daa68e3721074482944d12f6323ce5136fed
[ "MIT" ]
null
null
null
geo_png_tiler/resources.py
sasakiassociates/qgis-geo-png-db
bb71daa68e3721074482944d12f6323ce5136fed
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.11.2) # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore qt_resource_data = b"\ \x00\x00\x04\x5c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x18\x00\x00\x00\x18\x08\x06\x00\x00\x00\xe0\x77\x3d\xf8\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x01\x54\x00\x00\x01\x54\ \x01\x04\x18\xa5\x96\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\ \x74\x77\x61\x72\x65\x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\ \x70\x65\x2e\x6f\x72\x67\x9b\xee\x3c\x1a\x00\x00\x03\xd9\x49\x44\ \x41\x54\x48\x89\x95\x95\x5d\x4c\x9b\x65\x14\xc7\x7f\xe7\x6d\xcb\ \x4a\x1b\xf0\x73\x0c\xdc\x34\x71\x81\xc5\x80\x8b\x17\xc5\x8f\x44\ \x65\x17\x46\x48\x48\x81\xee\x23\x5c\x39\x11\x5d\xbc\x70\x1b\xa0\ \x17\x2e\xd9\x2e\x6c\x34\x7e\xdc\xe8\x9c\x4c\x97\x88\x11\xa7\x66\ \x86\x9a\x18\xa1\x2f\x0b\x78\x61\x14\xbf\x16\x15\x17\x8d\x10\x43\ \x40\x8c\x23\xe0\x54\x98\x5a\xb6\xd2\xd2\xbe\xc7\x0b\xde\x96\x17\ \xd6\x0e\x76\x6e\x9e\xe7\x9c\xe7\x7f\xfe\xff\x73\x9e\x9c\x27\x8f\ \xe0\xb0\xd1\xee\x8d\x15\x96\x48\x3b\x42\xad\x95\x66\xab\xe1\xc2\ \x05\x30\xf9\x95\x9f\x1f\x3f\x2a\x76\x42\xd9\x69\x78\x86\x4a\x0d\ \xa9\xb1\xdd\x05\xe0\x77\x41\x3e\x49\xa5\x53\xc7\x4a\xfe\xfa\x61\ \x3c\x83\x33\x32\x9b\x9f\xdf\xd9\xf4\xa4\x65\xc8\x08\xc2\x7e\xa0\ \x22\x43\xbe\x4e\xf3\x02\xdb\x14\x3d\xe0\x72\xb9\x46\x67\xcb\xaa\ \x3b\x56\x08\x8c\x9c\x2c\x79\x0a\xd1\x57\x00\xcf\x55\x90\xe6\x33\ \x0f\x2a\x47\x67\x37\xdd\xd9\x0e\x20\xa3\xdd\x1b\x2b\x2c\x43\x46\ \x56\x91\xf7\xcd\x4d\x6e\x98\xbe\x38\x6b\xf8\x01\xfe\x9b\xf6\x4c\ \x8f\x7f\xee\x1b\x77\xb2\x3c\x68\xb8\xe3\xe5\x2e\x97\x1f\x40\x95\ \x22\x85\x1d\x02\x0d\x0e\x48\x32\x9d\x4e\x57\xb9\x2d\x91\x76\x27\ \xb9\xc2\xde\xed\x2d\x7f\xbe\xbf\x56\x99\x47\x2e\x0f\xbd\xfc\x77\ \x59\xf5\x5e\x51\x79\xd7\xf6\x0b\xdc\x2e\x77\xbb\x81\x50\xeb\xac\ \x3c\x17\xf9\xc0\xc0\xc0\xf5\xfd\xfd\xfd\xa5\xaa\x2a\x57\x12\xbd\ \x71\xe6\xfb\xf7\x14\xcc\xe5\x62\xb5\xd6\x00\x6e\xce\x04\x44\x18\ \x72\x26\xf4\xf5\xf5\x35\x9b\xa6\x39\xb2\xb8\xb8\x38\x6b\x59\xd6\ \x8c\x69\x9a\x53\xa6\x69\x1e\x8a\x44\x22\x79\x07\x40\xe0\x33\x87\ \x7b\x8b\xc1\xd2\x04\x2c\x29\xaa\xfc\x9b\xd9\x9b\xa6\x79\x58\x44\ \x7a\x54\xb5\xd2\x91\x70\x93\xaa\xbe\x54\x58\x58\xd8\x13\x0e\x87\ \x0d\x72\x99\x83\x03\xf0\xe6\x04\x45\xa3\xd1\x3b\x54\xf5\xb9\xa5\ \xae\xe4\x37\xe0\x80\xaa\xb6\x02\xdf\xd8\x90\xdd\x81\x40\xa0\x25\ \x5f\x17\x4e\x73\x9f\xf5\x3d\xf0\x65\xc6\xf1\xa7\x63\x71\xfb\x0a\ \x5b\x59\x1a\xe1\xf9\x54\x2a\x55\x13\x0a\x85\xce\x01\x44\x22\x91\ \x53\x3e\x9f\xef\xac\xdd\xd5\xa3\x40\xf7\x6a\xc2\xb1\xfb\x93\xf1\ \xe2\x3f\x5c\x59\x4e\xf7\x2f\x05\x77\xdf\x97\xed\x4e\xf5\xa4\x2d\ \xb0\xcd\x0e\x9d\x09\x85\x42\xe7\xa2\xd1\x68\x58\x55\xbd\x86\x61\ \x0c\xaa\x6a\x2f\x50\x09\xdc\x06\x60\x9a\xe6\x43\x96\x65\xdd\x2e\ \x22\x13\x0d\x0d\x0d\x5d\xa7\xdb\x12\x85\xaa\x92\xe5\x74\xe7\xe9\ \xac\xc0\x5e\x63\xf6\xda\x21\x22\xd7\x58\x96\x15\x13\x91\x4c\x6c\ \x03\x80\x65\x59\x3b\x45\x64\x17\xf0\x29\xd0\x75\xd9\x15\xe5\x62\ \x57\xd5\x21\x11\x99\x53\xd5\x6f\xed\x50\x0a\x40\x44\xbc\xc0\x30\ \xf0\x21\x10\xb7\x63\x85\x4e\xcc\xba\x04\x1a\x1b\x1b\x9f\x5d\x25\ \x38\x29\x22\x37\x00\xb5\xc3\xc3\xc3\xcf\x84\xc3\xe1\x8f\x61\xe9\ \x7d\x2c\x2e\x2e\xde\x63\xc3\x26\x72\x0a\xc4\xa6\xcb\x97\x1d\x6f\ \xbc\x3c\x17\x08\x38\x05\x54\x03\x77\x05\x02\x81\x9e\x68\x34\xfa\ \xba\x88\xf8\x93\xc9\x64\x58\x44\xae\xb3\x3b\xf9\x00\xc0\xf7\xcf\ \xe6\x72\x57\xd2\xb7\xcc\x19\xbf\x50\x9a\x75\xbc\xd7\x9e\x2f\xcb\ \x59\x85\xdb\xfd\x86\x65\x59\xbb\x55\xf5\x5e\x60\x0f\xb0\x47\x55\ \x11\xc9\x3e\xec\x13\xc1\x60\xf0\x0b\x00\x77\xc2\x5f\xe6\x9d\x2f\ \xc9\xe6\xe6\x7e\x2c\xab\xac\xbe\xbe\x3e\xe1\xf1\x78\xea\x80\x13\ \x40\xc2\x71\x74\x01\x78\x3a\x18\x0c\xee\xcf\x97\xeb\x16\x43\xd3\ \x6a\x89\x0b\x20\x9d\xf4\x5e\xca\x07\xac\xab\xab\xbb\x08\x3c\xd1\ \xdb\xdb\x7b\x48\x44\xaa\x54\x35\x91\x48\x24\x46\x9a\x9b\x9b\x93\ \x4e\x9c\x2b\x55\xb8\xcc\x21\x9a\x76\xab\xca\xaf\x40\x05\x40\x32\ \x5e\xbc\x79\xad\x6e\x9a\x9a\x9a\x62\xc0\x99\x7c\xe7\x9e\x44\xd1\ \x96\xac\xa3\x32\x61\xa0\x32\xb8\x2c\x28\x0d\xfb\x9e\xff\xee\xe1\ \xb5\x44\xf2\xd9\xf1\xb7\x1f\x6f\x41\x09\x3a\x42\x83\xf2\xd8\x8b\ \xc3\xe5\x86\xea\x28\x2b\x3f\x1c\x93\xf3\xb1\x29\x62\x0b\x7e\x00\ \x63\x76\x7e\x5a\x7f\x9a\x5a\xf1\xe1\xdc\xba\x6b\x26\x5e\xb4\x7d\ \x6e\xe9\xc3\xb1\xa4\x18\x83\x1d\xab\xc8\x93\x2a\x52\x29\x00\xfb\ \x5e\x18\xee\x10\xf4\x68\xbe\xca\x64\x74\x06\xf9\x7a\xe5\x98\x6f\ \x6d\x9d\x1c\xf2\x6d\xb9\x54\x93\x27\x05\xa0\xed\x60\x6b\x57\xa7\ \x01\xf0\xd6\xe1\xc0\xab\x28\x1d\x40\xf2\x0a\x09\xeb\xb5\xa4\x8a\ \xb4\x1f\x6c\xed\xea\x04\xc7\x98\x76\x1d\xa9\x3e\x66\x89\x54\x81\ \x1c\x07\xc6\x50\x4d\x5f\x05\xe9\x02\x30\x06\x74\xaa\x48\x65\xdb\ \x23\x6f\xbe\x96\x39\xf8\x1f\x98\x14\x7b\xbf\x36\xba\x39\xf5\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x07\ \x07\x3b\xe0\xb3\ \x00\x70\ \x00\x6c\x00\x75\x00\x67\x00\x69\x00\x6e\x00\x73\ \x00\x0d\ \x06\xe0\x4d\xe2\ \x00\x67\ \x00\x65\x00\x6f\x00\x5f\x00\x70\x00\x6e\x00\x67\x00\x5f\x00\x74\x00\x69\x00\x6c\x00\x65\x00\x72\ \x00\x08\ \x0a\x61\x5a\xa7\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x14\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x34\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x14\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x34\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x70\x5f\x85\x8e\x6b\ " qt_version = [int(v) for v in QtCore.qVersion().split('.')] if qt_version < [5, 8, 0]: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
47.395522
103
0.7265
aceaef86edba34239549a2829cb466ef4917088e
2,729
py
Python
sequencing_np/nn/rnn_cells/rnn.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
45
2017-08-06T15:02:12.000Z
2021-01-24T19:12:13.000Z
sequencing_np/nn/rnn_cells/rnn.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
null
null
null
sequencing_np/nn/rnn_cells/rnn.py
SwordYork/sequencing
bcbc2006bf17315411ac3d629f7014f790b70418
[ "MIT" ]
14
2017-08-07T04:56:55.000Z
2019-01-07T09:43:24.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Author: Sword York # GitHub: https://github.com/SwordYork/sequencing # No rights reserved. # from abc import ABCMeta, abstractmethod from ..base import Layer from ... import np, TIME_MAJOR class RNN(Layer, metaclass=ABCMeta): def __init__(self, init_state, param_keys, activation=None, base_name=None, name=None, *args, **kwargs): """ numpy rnn cell. It only used for inferring, not training, thus we don't need initialization in this implementation. The weights and other things are passed by params. :param init_state: initial states of RNN, [B, H] or tuple([B, H], ...) :param param_keys: name of params, such as kernel and bias :param activation: activation function :param base_name: name of parent Layer :param name: name of this Layer """ super(RNN, self).__init__(param_keys, base_name, name, **kwargs) # get state size if type(init_state) != type(np.empty([])): self.init_state = tuple(init_state) self.hidden_units = tuple(init_state)[0].shape[1] else: self.init_state = init_state self.hidden_units = init_state.shape[1] self.time_major = TIME_MAJOR self.activation = activation or np.tanh def encode(self, inputs, sequence_length=None, reverse=False): """ Encode multi-step inputs. :param inputs: if time_major [T, B, ...] else [B, T, ...] :param sequence_length: length of the sequence [B] :param reverse: used in bidirectional RNN :return: lstm outputs """ if not self.time_major: inputs = np.transpose(inputs, (1, 0, 2)) steps = inputs.shape[0] outputs = np.zeros(inputs.shape[:-1] + (self.hidden_units,), inputs.dtype) state = self.init_state iter_range = reversed(range(steps)) if reverse else range(steps) for idx in iter_range: # rnn step curr_input = inputs[idx, :, :] mask = idx < sequence_length if sequence_length is not None else None outputs[idx, :, :], state = self.step(state, curr_input, mask) if not self.time_major: outputs = np.transpose(outputs, (1, 0, 2)) return outputs, state @abstractmethod def step(self, prev_states, input_, mask=None): """ run rnn for one step :param prev_states: [B, ...] :param input_: [B, ...] :param mask: mask the terminated sequence in the batch :return: output, state """ raise NotImplementedError
34.1125
83
0.596189
0e29ca1eb19a7bdcc8c13c84d96ffe07b2543edc
2,199
py
Python
xlsxwriter/test/worksheet/test_worksheet05.py
DeltaEpsilon7787/XlsxWriter
550b9c5bd678c861dcc9f6f4072b33a69566e065
[ "BSD-2-Clause-FreeBSD" ]
2,766
2015-01-02T17:36:42.000Z
2022-03-31T09:23:30.000Z
xlsxwriter/test/worksheet/test_worksheet05.py
DeltaEpsilon7787/XlsxWriter
550b9c5bd678c861dcc9f6f4072b33a69566e065
[ "BSD-2-Clause-FreeBSD" ]
683
2015-01-03T09:55:02.000Z
2022-03-31T07:18:15.000Z
xlsxwriter/test/worksheet/test_worksheet05.py
jmcnamara/test_py_github_actions
d445d5d98b038b63453dd70c9c1a9ca1b325cb47
[ "BSD-2-Clause-FreeBSD" ]
636
2015-01-05T01:57:08.000Z
2022-03-25T18:42:41.000Z
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2021, John McNamara, jmcnamara@cpan.org # import unittest from io import StringIO from ..helperfunctions import _xml_to_list from ...worksheet import Worksheet from ...sharedstrings import SharedStringTable class TestAssembleWorksheet(unittest.TestCase): """ Test assembling a complete Worksheet file. """ def test_assemble_xml_file(self): """Test writing a worksheet with strings in cells.""" self.maxDiff = None fh = StringIO() worksheet = Worksheet() worksheet._set_filehandle(fh) worksheet.str_table = SharedStringTable() worksheet.select() # Write some strings. worksheet.write_string(0, 0, 'Foo') worksheet.write_string(2, 0, 'Bar') worksheet.write_string(2, 3, 'Baz') worksheet._assemble_xml_file() exp = _xml_to_list(""" <?xml version="1.0" encoding="UTF-8" standalone="yes"?> <worksheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main" xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"> <dimension ref="A1:D3"/> <sheetViews> <sheetView tabSelected="1" workbookViewId="0"/> </sheetViews> <sheetFormatPr defaultRowHeight="15"/> <sheetData> <row r="1" spans="1:4"> <c r="A1" t="s"> <v>0</v> </c> </row> <row r="3" spans="1:4"> <c r="A3" t="s"> <v>1</v> </c> <c r="D3" t="s"> <v>2</v> </c> </row> </sheetData> <pageMargins left="0.7" right="0.7" top="0.75" bottom="0.75" header="0.3" footer="0.3"/> </worksheet> """) got = _xml_to_list(fh.getvalue()) self.assertEqual(got, exp)
32.338235
171
0.482037
93350dabc6d5b32879d8f37d039b2b2a839d1408
2,003
py
Python
venv/lib/python3.8/site-packages/ansible_collections/cisco/ise/plugins/modules/portal_global_setting.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.8/site-packages/ansible_collections/cisco/ise/plugins/modules/portal_global_setting.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
venv/lib/python3.8/site-packages/ansible_collections/cisco/ise/plugins/modules/portal_global_setting.py
saeedya/docker-ansible
6fb0cfc6bc4a5925b21380952a5a4502ec02119a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2021, Cisco Systems # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" --- module: portal_global_setting short_description: Resource module for Portal Global Setting description: - Manage operation update of the resource Portal Global Setting. version_added: '1.0.0' extends_documentation_fragment: - cisco.ise.module author: Rafael Campos (@racampos) options: customization: description: Allowed values - HTML, - HTMLANDJAVASCRIPT. type: str id: description: Portal Global Setting's id. type: str requirements: - ciscoisesdk >= 1.1.0 - python >= 3.5 seealso: # Reference by Internet resource - name: Portal Global Setting reference description: Complete reference of the Portal Global Setting object model. link: https://ciscoisesdk.readthedocs.io/en/latest/api/api.html#v3-0-0-summary """ EXAMPLES = r""" - name: Update by id cisco.ise.portal_global_setting: ise_hostname: "{{ise_hostname}}" ise_username: "{{ise_username}}" ise_password: "{{ise_password}}" ise_verify: "{{ise_verify}}" state: present customization: string id: string """ RETURN = r""" ise_response: description: A dictionary or list with the response returned by the Cisco ISE Python SDK returned: always type: dict sample: > { "id": "string", "customization": "string", "link": { "rel": "string", "href": "string", "type": "string" } } ise_update_response: description: A dictionary or list with the response returned by the Cisco ISE Python SDK returned: always version_added: "1.1.0" type: dict sample: > { "UpdatedFieldsList": { "updatedField": { "field": "string", "oldValue": "string", "newValue": "string" }, "field": "string", "oldValue": "string", "newValue": "string" } } """
24.426829
92
0.651523
edfc7ece408ae46fd8045912656e1b3747cea708
105
py
Python
blogsNewsModule/apps.py
adityakekare/NewsAPIDjango
47ff0c69e3d48c10a257c8221916ccd2fdaf9abb
[ "MIT" ]
1
2020-10-14T17:13:45.000Z
2020-10-14T17:13:45.000Z
blogsNewsModule/apps.py
adityakekare/NewsAPIDjango
47ff0c69e3d48c10a257c8221916ccd2fdaf9abb
[ "MIT" ]
null
null
null
blogsNewsModule/apps.py
adityakekare/NewsAPIDjango
47ff0c69e3d48c10a257c8221916ccd2fdaf9abb
[ "MIT" ]
null
null
null
from django.apps import AppConfig class BlogsnewsmoduleConfig(AppConfig): name = 'blogsNewsModule'
17.5
39
0.790476
945b428c3dace5fc559da30e07b3607751dcb985
3,371
py
Python
src/tests/sys/netinet6/frag6/frag6_02.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/tests/sys/netinet6/frag6/frag6_02.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
src/tests/sys/netinet6/frag6/frag6_02.py
lastweek/source-freebsd
0821950b0c40cbc891a27964b342e0202a3859ec
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
#!/usr/bin/env python #- # SPDX-License-Identifier: BSD-2-Clause # # Copyright (c) 2019 Netflix, Inc. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # # $FreeBSD$ # import argparse import scapy.all as sp import socket import sys from sniffer import Sniffer from time import sleep def check_icmp6_error(args, packet): ip6 = packet.getlayer(sp.IPv6) if not ip6: return False oip6 = sp.IPv6(src=args.src[0], dst=args.to[0]) if ip6.dst != oip6.src: return False icmp6 = packet.getlayer(sp.ICMPv6ParamProblem) if not icmp6: return False # ICMP6_PARAMPROB_HEADER 0 if icmp6.code != 0: return False # Should we check the payload as well? # We are running in a very isolated environment and nothing else # should trigger an ICMPv6 Param Prob so leave it. #icmp6.display() return True def main(): parser = argparse.ArgumentParser("frag6.py", description="IPv6 fragementation test tool") parser.add_argument('--sendif', nargs=1, required=True, help='The interface through which the packet will be sent') parser.add_argument('--recvif', nargs=1, required=True, help='The interface on which to check for the packet') parser.add_argument('--src', nargs=1, required=True, help='The source IP address') parser.add_argument('--to', nargs=1, required=True, help='The destination IP address') parser.add_argument('--debug', required=False, action='store_true', help='Enable test debugging') args = parser.parse_args() # Start sniffing on recvif sniffer = Sniffer(args, check_icmp6_error) ######################################################################## # # A single start fragment with payload length not % 8. # # A: Error handling in code. # R: ICMPv6 param problem. # data = "6" * 1287 ip6f01 = sp.Ether() / \ sp.IPv6(src=args.src[0], dst=args.to[0]) / \ sp.IPv6ExtHdrFragment(offset=0, m=1, id=5) / \ sp.UDP(dport=3456, sport=6543) / \ data if args.debug : ip6f01.display() sp.sendp(ip6f01, iface=args.sendif[0], verbose=False) sleep(0.10) sniffer.setEnd() sniffer.join() if not sniffer.foundCorrectPacket: sys.exit(1) sys.exit(0) if __name__ == '__main__': main()
30.645455
76
0.719371
24f117ff3d75ff91ae9a2a9cd2d8f1fa088a9e24
4,045
py
Python
SC101_Assignments/SC101_Assignment6/boggle.py
JIllchen487/StanCode101
8025dd4e4cf0cb3d14d7314ef4ea6dfff3e5b5cc
[ "MIT" ]
null
null
null
SC101_Assignments/SC101_Assignment6/boggle.py
JIllchen487/StanCode101
8025dd4e4cf0cb3d14d7314ef4ea6dfff3e5b5cc
[ "MIT" ]
null
null
null
SC101_Assignments/SC101_Assignment6/boggle.py
JIllchen487/StanCode101
8025dd4e4cf0cb3d14d7314ef4ea6dfff3e5b5cc
[ "MIT" ]
null
null
null
""" File: boggle.py Name: ---------------------------------------- TODO: """ import time # This is the file name of the dictionary txt file # we will be checking if a word exists by searching through it FILE = 'dictionary.txt' dic = [] def main(): """ TODO: """ start = time.time() #################### global dic dic = read_dictionary() # print(dic) l1 = input_row('1 row of letters: ') # l1 = ['f', 'y', 'c', 'l'] l2 = input_row('2 row of letters: ') # l2 = ['i', 'o', 'm', 'g'] l3 = input_row('3 row of letters: ') # l3 = ['o', 'r', 'i', 'l'] l4 = input_row('4 row of letters: ') # l4 = ['h', 'j', 'h', 'u'] boggle_board = create_board([l1, l2, l3, l4]) find_words(boggle_board) #################### end = time.time() print('----------------------------------') print(f'The speed of your boggle algorithm: {end - start} seconds.') def read_dictionary(): """ This function reads file "dictionary.txt" stored in FILE and appends words in each line into a Python list """ with open(FILE, 'r') as f: for word in f: dic.append(word[:-1]) return dic def input_row(pmp): a = input(pmp) lst = a.split() for i in lst: if (not i.isalpha()) or len(i) != 1: print('Illegal Input') return return lst def create_board(list_of_lists): board = {} for i in range(4): lst = list_of_lists[i] for j in range(4): board[(j, i)] = lst[j] return board def find_words(board): """ :param board: (dictionary) A dictionary that is constructed by inputs of the boggle board :return: does not return anything but print out all the words with count """ chosen = [] for x in range(4): for y in range(4): coordinates = (x, y) forming_word = board[coordinates] visited = [coordinates] find_words_helper(coordinates, board, chosen, forming_word, visited) print(len(chosen)) def find_words_helper(coordinates, board, chosen_words, forming_word, visited): """ :param coordinates: (tuple) the pivot point to start with when searching for words :param board: (dictionary) A dictionary that is constructed by inputs of the boggle board :param chosen_words: (list) contains all the chosen vocab :param visited: (list) contains all the coordinates of chosen neighbors :return: does not return anything but print out all the words with count """ global dic neighbors = neighbor(coordinates, board) # Base Case if forming_word in dic and len(forming_word) >= 4: if forming_word not in chosen_words: print('Found: ', forming_word) chosen_words.append(forming_word) # Choose for neighbor_coordinates in neighbors: if neighbor_coordinates not in visited: new_word = forming_word + neighbors[neighbor_coordinates] if has_prefix(new_word): visited.append(neighbor_coordinates) # Explore find_words_helper(neighbor_coordinates, board, chosen_words, new_word, visited) # Un-choose visited.pop() def neighbor(coordinates, board): neighbors = {} x = coordinates[0] y = coordinates[1] for i in range(-1, 2): neighbor_x = x + i if 0 <= neighbor_x <= 3: for j in range(-1, 2): neighbor_y = y + j if 0 <= neighbor_y <= 3 and (i, j) != (0, 0): neighbors[(neighbor_x, neighbor_y)] = board[(neighbor_x, neighbor_y)] return neighbors def has_prefix(sub_s): """ :param sub_s: (str) A substring that is constructed by neighboring letters on a 4x4 square grid :return: (bool) If there is any words with prefix stored in sub_s """ for ele in dic: if ele.startswith(sub_s): return True return False if __name__ == '__main__': main()
28.286713
99
0.576267
9a3c54ee09fd8abced82afa7e500c813a3dfc431
5,190
py
Python
libs/labelFile.py
PaKyong/labelImg
8a5f08d624b4bb797aa4fad445e4fd7bb23c58cf
[ "MIT" ]
11
2018-10-17T08:57:27.000Z
2020-08-07T02:43:31.000Z
libs/labelFile.py
PaKyong/labelImg
8a5f08d624b4bb797aa4fad445e4fd7bb23c58cf
[ "MIT" ]
25
2020-09-25T22:33:07.000Z
2022-03-12T00:15:27.000Z
libs/labelFile.py
PaKyong/labelImg
8a5f08d624b4bb797aa4fad445e4fd7bb23c58cf
[ "MIT" ]
11
2019-11-02T01:31:20.000Z
2021-08-15T12:49:27.000Z
# Copyright (c) 2016 Tzutalin # Create by TzuTaLin <tzu.ta.lin@gmail.com> try: from PyQt5.QtGui import QImage except ImportError: from PyQt4.QtGui import QImage from base64 import b64encode, b64decode from libs.pascal_voc_io import PascalVocWriter from libs.yolo_io import YOLOWriter from libs.pascal_voc_io import XML_EXT import os.path import sys class LabelFileError(Exception): pass class LabelFile(object): # It might be changed as window creates. By default, using XML ext # suffix = '.lif' suffix = XML_EXT def __init__(self, filename=None): self.shapes = () self.imagePath = None self.imageData = None self.verified = False def savePascalVocFormat(self, filename, shapes, imagePath, imageData, lineColor=None, fillColor=None, databaseSrc=None): imgFolderPath = os.path.dirname(imagePath) imgFolderName = os.path.split(imgFolderPath)[-1] imgFileName = os.path.basename(imagePath) #imgFileNameWithoutExt = os.path.splitext(imgFileName)[0] # Read from file path because self.imageData might be empty if saving to # Pascal format image = QImage() image.load(imagePath) imageShape = [image.height(), image.width(), 1 if image.isGrayscale() else 3] writer = PascalVocWriter(imgFolderName, imgFileName, imageShape, localImgPath=imagePath) writer.verified = self.verified for shape in shapes: points = shape['points'] label = shape['label'] # Add Chris difficult = int(shape['difficult']) bndbox = LabelFile.convertPoints2BndBox(points) writer.addBndBox(bndbox[0], bndbox[1], bndbox[2], bndbox[3], label, difficult) writer.save(targetFile=filename) return def saveYoloFormat(self, filename, shapes, imagePath, imageData, classList, lineColor=None, fillColor=None, databaseSrc=None): imgFolderPath = os.path.dirname(imagePath) imgFolderName = os.path.split(imgFolderPath)[-1] imgFileName = os.path.basename(imagePath) #imgFileNameWithoutExt = os.path.splitext(imgFileName)[0] # Read from file path because self.imageData might be empty if saving to # Pascal format image = QImage() image.load(imagePath) imageShape = [image.height(), image.width(), 1 if image.isGrayscale() else 3] writer = YOLOWriter(imgFolderName, imgFileName, imageShape, localImgPath=imagePath) writer.verified = self.verified for shape in shapes: points = shape['points'] label = shape['label'] # Add Chris difficult = int(shape['difficult']) bndbox = LabelFile.convertPoints2BndBox(points) writer.addBndBox(bndbox[0], bndbox[1], bndbox[2], bndbox[3], label, difficult) writer.save(targetFile=filename, classList=classList) return def toggleVerify(self): self.verified = not self.verified ''' ttf is disable def load(self, filename): import json with open(filename, 'rb') as f: data = json.load(f) imagePath = data['imagePath'] imageData = b64decode(data['imageData']) lineColor = data['lineColor'] fillColor = data['fillColor'] shapes = ((s['label'], s['points'], s['line_color'], s['fill_color'])\ for s in data['shapes']) # Only replace data after everything is loaded. self.shapes = shapes self.imagePath = imagePath self.imageData = imageData self.lineColor = lineColor self.fillColor = fillColor def save(self, filename, shapes, imagePath, imageData, lineColor=None, fillColor=None): import json with open(filename, 'wb') as f: json.dump(dict( shapes=shapes, lineColor=lineColor, fillColor=fillColor, imagePath=imagePath, imageData=b64encode(imageData)), f, ensure_ascii=True, indent=2) ''' @staticmethod def isLabelFile(filename): fileSuffix = os.path.splitext(filename)[1].lower() return fileSuffix == LabelFile.suffix @staticmethod def convertPoints2BndBox(points): xmin = float('inf') ymin = float('inf') xmax = float('-inf') ymax = float('-inf') for p in points: x = p[0] y = p[1] xmin = min(x, xmin) ymin = min(y, ymin) xmax = max(x, xmax) ymax = max(y, ymax) # Martin Kersner, 2015/11/12 # 0-valued coordinates of BB caused an error while # training faster-rcnn object detector. if xmin < 1: xmin = 1 if ymin < 1: ymin = 1 return (int(xmin), int(ymin), int(xmax), int(ymax))
35.306122
91
0.581696
b16e02eebc00ebfd9713d5d3be84c9cedd91651f
411
py
Python
old_django_malliva/communications/models.py
olubiyiontheweb/malliva
b212e6b359eed54c92533f0a02afe3c0042150e2
[ "MIT" ]
null
null
null
old_django_malliva/communications/models.py
olubiyiontheweb/malliva
b212e6b359eed54c92533f0a02afe3c0042150e2
[ "MIT" ]
null
null
null
old_django_malliva/communications/models.py
olubiyiontheweb/malliva
b212e6b359eed54c92533f0a02afe3c0042150e2
[ "MIT" ]
1
2021-07-19T12:15:52.000Z
2021-07-19T12:15:52.000Z
from django.db import models from django.contrib.auth import get_user_model from django.db.models.deletion import DO_NOTHING User = get_user_model() # Create your models here. class Message(models.Model): id = models.BigAutoField(primary_key=True) initiated_by = models.ForeignKey(User, on_delete=DO_NOTHING, blank=False) # received_by = models.ForeignKey(User, on_delete=DO_NOTHING, blank=False)
34.25
78
0.788321
7052b592186ce90ac9ede26c6b8d3fc11ce5c40f
5,142
py
Python
CondTools/Ecal/test/tools/inspectEcal.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
CondTools/Ecal/test/tools/inspectEcal.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
CondTools/Ecal/test/tools/inspectEcal.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
#! /usr/bin/env python from __future__ import print_function import os,sys, DLFCN,getopt sys.setdlopenflags(DLFCN.RTLD_GLOBAL+DLFCN.RTLD_LAZY) from CondCore.Utilities import iovInspector as inspect from pluginCondDBPyInterface import * import pluginCondDBPyInterface as CondDB from ROOT import TCanvas,TH1F, TH2F,TFile def unhashEBDetId(i): pseudo_eta= i/360 - 85; ieta=0 if pseudo_eta <0 : ieta = pseudo_eta else : ieta = pseudo_eta +1 iphi = i%360 +1 return ieta,iphi def setWhat(w,ret) : for key in ret.keys(): _val = ret[key] if (isinstance(_val, type([]))) : _vi = CondDB.VInt() for i in _val : _vi.append(i) exec ('w.set_'+key+'(_vi)') else : exec ('w.set_'+key+'(w.'+key+'().'+ret[key]+')') return w def usage(): print("inspectEcal -c [connectstring] -P [authpath] -t [tag] -f [outfile] -l -h") print(" dump records in xml") print(" -l: list tags and exit") print(" -f [file] : dump to file") print(" -p plot distribution ") print(" -q compare [tag] ") print(" -r reference [tag] ") print(" -m draw map") print(" -h : help") try: opts, args = getopt.getopt(sys.argv[1:], "c:P:t:f:lhpq:r:m", ["connect=","authpath=","tag","file","listtags","help","plot","compare","reference","map"]) if not len(opts): usage() sys.exit(0) except getopt.GetoptError: #* print help information and exit:* usage() sys.exit(2) dbName = "oracle://cms_orcoff_prod/CMS_COND_31X_ECAL" authpath= "/afs/cern.ch/cms/DB/conddb" tag='EcalIntercalibConstants_mc' do_list_tags= 0 dump_to_file =0 outfile="" do_plot=0 do_compare=0 compare_tag="" reference_tag="" drawmap=0 for opt,arg in opts: if opt in ("-c","--connect"): try: dbname=arg except Exception as er : print(er) if opt in ("-P","--authpath"): try: rdbms=RDBMS(arg) except Exception as er : print(er) if opt in ("-t","--tag"): tag=arg if opt in ("-l","--listtags"): do_list_tags= 1 if opt in ("-f","--file"): dump_to_file= 1 outfile=arg if opt in ("-p","--plot"): do_plot= 1 if opt in ("-q","--compare"): do_compare=1 compare_tag=arg if opt in ("-r","--reference"): reference_tag=arg if opt in ("-m","--map"): drawmap=1 if opt in ("-h","--help"): usage() sys.exit(0) a = FWIncantation() rdbms = RDBMS(authpath) db = rdbms.getDB(dbName) if do_list_tags : tags=db.allTags() for tag in tags.split(): print(tag) sys.exit(0) try : iov = inspect.Iov(db,tag) print("===iov list ===") iovlist=iov.list() print(iovlist) print("===iov summaries ===") print(iov.summaries()) print("===payload dump ===") for p in iovlist: payload=inspect.PayLoad(db,p[0]) #print payload.summary() if dump_to_file: print("Dumping to file:", outfile) out = open(outfile,"w") print(payload, file=out) else: #print payload if drawmap: payload.plot("plot","",[],[]) if do_plot: exec('import '+db.moduleName(tag)+' as Plug') #what = {'how':'singleChannel','which': [0,1,2]} what = {'how':'barrel'} w = setWhat(Plug.What(),what) ex = Plug.Extractor(w) for elem in db.iov(tag).elements : p = Plug.Object(elem) p.extract(ex) v = [i for i in ex.values()] # print v histo=TH1F("h","h",100,-2,2) for c in v : histo.Fill(c) f=TFile("f.root","recreate") histo.Write() if do_compare: exec('import '+db.moduleName(tag)+' as Plug') what = {'how':'barrel'} w = setWhat(Plug.What(),what) ex = Plug.Extractor(w) for elem in db.iov(reference_tag).elements : p = Plug.Object(elem) p.extract(ex) coeff_1 = [i for i in ex.values()] for elem in db.iov(compare_tag).elements : p = Plug.Object(elem) p.extract(ex) coeff_2 = [i for i in ex.values()] can=TCanvas("c","c") histo = TH1F("h","h",100,-2,2) for i,c in enumerate(coeff_1): histo.Fill(c-coeff_2[i]) histo.Draw() can.SaveAs("h.svg") can2=TCanvas("cc","cc") histo2=TH2F("hh","hh",171,-85,86,360,1,361) for i,c in enumerate(coeff_1): factor = c/coeff_2[i] ieta,iphi= unhashEBDetId(i) histo2.Fill(ieta,iphi,factor) histo2.SetStats(0) histo2.Draw("colz") can2.SaveAs("h2.svg") except Exception as er : print(er)
25.455446
156
0.508751
1f7006bd3b5a6d1addef7364850c8a6336d4d5f8
1,085
py
Python
scripts/speech/audio-features-cat.py
zhrlove/seq2seq_attention_1
6535820c9381467508ba8dfeb8971173b3998510
[ "Apache-2.0" ]
1
2019-01-02T15:57:32.000Z
2019-01-02T15:57:32.000Z
scripts/speech/audio-features-cat.py
zhrlove/seq2seq_attention_1
6535820c9381467508ba8dfeb8971173b3998510
[ "Apache-2.0" ]
null
null
null
scripts/speech/audio-features-cat.py
zhrlove/seq2seq_attention_1
6535820c9381467508ba8dfeb8971173b3998510
[ "Apache-2.0" ]
2
2020-08-02T18:28:54.000Z
2021-07-30T07:28:40.000Z
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import struct import argparse parser = argparse.ArgumentParser() parser.add_argument('inputs', nargs='+') parser.add_argument('output') args = parser.parse_args() with open(args.output, 'wb') as output_file: lines = 0 dim = None for filename in args.inputs: with open(filename, 'rb') as input_file: header = input_file.read(8) lines_, dim_ = struct.unpack('ii', header) lines += lines_ if dim is not None and dim_ != dim: raise Exception('incompatible dimensions') dim = dim_ output_file.write(struct.pack('ii', lines, dim)) for filename in args.inputs: with open(filename, 'rb') as input_file: header = input_file.read(8) lines_, dim_ = struct.unpack('ii', header) for _ in range(lines_): x = input_file.read(4) frames, = struct.unpack('i', x) output_file.write(x) output_file.write(input_file.read(4 * frames * dim))
29.324324
68
0.581567
5bc5d289b252759bc894df219be54dfcc74df5c5
2,389
py
Python
annoyed-alligators/socl_media/urls.py
nishithshowri006/summer-code-jam-2020
a38a7c9c5e2578a803e18640a10c7d4ab96753e6
[ "MIT" ]
null
null
null
annoyed-alligators/socl_media/urls.py
nishithshowri006/summer-code-jam-2020
a38a7c9c5e2578a803e18640a10c7d4ab96753e6
[ "MIT" ]
null
null
null
annoyed-alligators/socl_media/urls.py
nishithshowri006/summer-code-jam-2020
a38a7c9c5e2578a803e18640a10c7d4ab96753e6
[ "MIT" ]
1
2021-07-10T14:23:55.000Z
2021-07-10T14:23:55.000Z
"""socl_media URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.contrib.auth import views as auth_views from socl_media.apps.users import views as users_views from socl_media.apps.chat.views import ChatListView urlpatterns = [ path('', include('socl_media.apps.feed.urls')), path('login/', auth_views.LoginView.as_view( template_name='users/login.html'), name="login"), path('signup/', users_views.signup, name="signup"), path('logout/', auth_views.LogoutView.as_view(), name="logout"), path('password-reset/', auth_views.PasswordResetView.as_view( template_name='users/password_reset.html'), name="password_reset"), path('password-reset/done/', auth_views.PasswordResetDoneView.as_view( template_name='users/password_reset_done.html'), name="password_reset_done"), path('password-reset-confirm/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.as_view( template_name='users/password_reset_confirm.html'), name="password_reset_confirm"), path('password-reset-complete', auth_views.PasswordResetCompleteView.as_view( template_name='users/password_reset_complete.html'), name="password_reset_complete"), path('password-change/', auth_views.PasswordChangeView.as_view( template_name='users/password_change_form.html'), name="password_change"), path('password-change/done', auth_views.PasswordChangeDoneView.as_view( template_name='users/password_change_done.html'), name="password_change_done"), path('admin/', admin.site.urls), path('terminal/', include('socl_media.apps.terminal.urls')), path('message-box/', ChatListView.as_view(), name='message-box') ]
45.942308
77
0.716199
3a480926e9a613c3913c9f6812668572b750cae7
5,871
py
Python
pyscisci/datasource/readwrite.py
kishorevasan/pyscisci
f067fa2c9feba457042aa86546270d81a4844e7e
[ "MIT" ]
null
null
null
pyscisci/datasource/readwrite.py
kishorevasan/pyscisci
f067fa2c9feba457042aa86546270d81a4844e7e
[ "MIT" ]
null
null
null
pyscisci/datasource/readwrite.py
kishorevasan/pyscisci
f067fa2c9feba457042aa86546270d81a4844e7e
[ "MIT" ]
null
null
null
import os import sys import pandas as pd import numpy as np from unidecode import unidecode import html # determine if we are loading from a jupyter notebook (to make pretty progress bars) if 'ipykernel' in sys.modules: from tqdm.notebook import tqdm else: from tqdm import tqdm from pyscisci.utils import isin_sorted def load_int(v): try: return int(v) except ValueError: return None def load_float(v): try: return float(v) except ValueError: return None def load_html_str(s): if s is None: return '' else: return unidecode(html.unescape(s)).strip() def load_xml_text(root_element, default=''): if root_element is None or len(root_element) == 0: try: return root_element.text except: return default else: return root_element[0].text def load_preprocessed_data(dataname, path2database, columns = None, filter_dict=None, duplicate_subset=None, duplicate_keep='last', dropna=None, keep_source_file=False, prefunc2apply=None, postfunc2apply=None, show_progress=False): """ Load the preprocessed DataFrame from a preprocessed directory. Parameters ---------- :param dataname : str The type of preprocessed data to load. :param path2database : str The path to the database directory. :param columns : list, default None Load only this subset of columns :param filter_dict : dict, default None Dictionary of format {"ColumnName":"ListofValues"} where "ColumnName" is a data column and "ListofValues" is a sorted list of valid values. A DataFrame only containing rows that appear in "ListofValues" will be returned. :param duplicate_subset : list, default None Drop any duplicate entries as specified by this subset of columns :param duplicate_keep : str, default 'last', Optional If duplicates are being dropped, keep the 'first' or 'last' (see `pandas.DataFram.drop_duplicates <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html>`_) :param dropna : list, default None, Optional Drop any NaN entries as specified by this subset of columns :param keep_source_file : bool, default False Keep track of the source file the data was loaded from. :param prefunc2apply : callable, default None A function to apply to each of the sub-DataFrames as they are loaded before filtering. :param postfunc2apply : callable, default None A function to apply to each of the sub-DataFrames as they are loaded after filtering. Returns ------- DataFrame dataname DataFrame. """ path2files = os.path.join(path2database, dataname) if not os.path.exists(path2files): # TODO: make a real warning raise NotImplementedError("First preprocess the raw data.") return [] if isinstance(columns, str): columns = [columns] if isinstance(dropna, str): dropna = [dropna] if isinstance(duplicate_subset, str): duplicate_subset = [duplicate_subset] if isinstance(filter_dict, dict): filter_dict = {isinkey:np.sort(isinlist) for isinkey, isinlist in filter_dict.items()} FileNumbers = sorted([int(fname.replace(dataname, '').split('.')[0]) for fname in os.listdir(path2files) if dataname in fname]) desc='' if isinstance(show_progress, str): desc = show_progress data_df = [] for ifile in tqdm(FileNumbers, desc=desc, leave=True, disable=not show_progress): fname = os.path.join(path2files, dataname+"{}.hdf".format(ifile)) subdf = pd.read_hdf(fname, mode = 'r') if callable(prefunc2apply): subdf = prefunc2apply(subdf) if isinstance(columns, list): subdf = subdf[columns] if isinstance(dropna, list): subdf.dropna(subset = dropna, inplace = True, how = 'any') if isinstance(filter_dict, dict): for isinkey, isinlist in filter_dict.items(): subdf = subdf[isin_sorted(subdf[isinkey], isinlist)] if isinstance(duplicate_subset, list): subdf.drop_duplicates(subset = duplicate_subset, keep = duplicate_keep, inplace = True) if keep_source_file: subdf['filetag'] = ifile if callable(postfunc2apply): postfunc2apply(subdf) data_df.append(subdf) data_df = pd.concat(data_df) if isinstance(duplicate_subset, list): data_df.drop_duplicates(subset = duplicate_subset, keep = duplicate_keep, inplace = True) data_df.name = dataname return data_df def append_to_preprocessed_df(newdf, path2database, preprocessname, startcount=0): """ Append the newdf to the preprocessed DataFrames from a preprocessed directory. Parameters ---------- :param newdf : DataFrame The new DataFrame to save on the processed data. It must have at least one column in common. :param path2database : str The path to the database directory. :param preprocessname : str The type of preprocessed data to which we append the new data. """ path2files = os.path.join(path2database, preprocessname) Nfiles = sum(preprocessname in fname for fname in os.listdir(path2files)) for ifile in range(Nfiles): datadf = pd.read_hdf(os.path.join(path2files, preprocessname + '{}.hdf'.format(ifile+startcount))) datadf = datadf.merge(newdf, how = 'left') datadf.to_hdf(os.path.join(path2files, preprocessname + '{}.hdf'.format(ifile+startcount)), key = preprocessname, mode = 'w')
32.436464
151
0.654744
84da9ccbf194d3b94b1df994e24d7f640e48f2b2
160
py
Python
examples/models/create_supervised_opf.py
gugarosa/opfython
19b467a92d85c7c26d231efec770645096827b4e
[ "Apache-2.0" ]
26
2018-04-24T20:16:18.000Z
2022-03-09T14:03:28.000Z
examples/models/create_supervised_opf.py
gugarosa/opfython
19b467a92d85c7c26d231efec770645096827b4e
[ "Apache-2.0" ]
4
2020-12-26T14:57:18.000Z
2022-03-30T02:34:18.000Z
examples/models/create_supervised_opf.py
gugarosa/opfython
19b467a92d85c7c26d231efec770645096827b4e
[ "Apache-2.0" ]
16
2019-05-20T15:41:56.000Z
2022-03-23T17:59:53.000Z
from opfython.models import SupervisedOPF # Creates a SupervisedOPF instance opf = SupervisedOPF(distance='log_squared_euclidean', pre_computed_distance=None)
32
81
0.85
654b8fd60ba8f7734cf55bc1951fc3401b19d545
6,159
py
Python
jyotisha/custom_transliteration.py
vedatemple/jyotisha
02ff8530c567ad534905300d63b17da177e90226
[ "MIT" ]
null
null
null
jyotisha/custom_transliteration.py
vedatemple/jyotisha
02ff8530c567ad534905300d63b17da177e90226
[ "MIT" ]
null
null
null
jyotisha/custom_transliteration.py
vedatemple/jyotisha
02ff8530c567ad534905300d63b17da177e90226
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- import re import swisseph as swe import sys from math import floor from indic_transliteration import xsanscript as sanscript import logging logging.basicConfig( level=logging.DEBUG, format="%(levelname)s: %(asctime)s {%(filename)s:%(lineno)d}: %(message)s " ) def romanise(iast_text): swapTable = {'ā': 'a', 'Ā': 'A', 'ī': 'i', 'ū': 'u', 'ṅ': 'n', 'ṇ': 'n', 'ḍ': 'd', 'ṭ': 't', 'ṃ': 'm', 'ñ': 'n', 'ṛ': 'ri', 'ś': 'sh', 'Ś': 'Sh', 'ṣ': 'sh', 'Ṣ': 'Sh', 'ḥ': '', '-': '-', ' ': '-'} roman_text = '' for char in iast_text: if char in swapTable: roman_text += swapTable[char] else: roman_text += char return roman_text.lower() def tr(text, scr, titled=True): # titled = True seems to be primarily for NOT TitleCasing IAST Shlokas... if scr == 'hk': scr = sanscript.HK if text == '': return '' text = text.replace('~', '##~##') # Simple fix to prevent transliteration of ~ text_bits = text.split('|') transliterated_text = [] if titled: for t in text_bits: t = t.rstrip('#~0123456789 ') if t[:3] == 'ta:': # Force Tamil! if scr == sanscript.DEVANAGARI: scr = sanscript.TAMIL t = t[3:] if scr == sanscript.TAMIL: transliterated_text.append('\\tamil{%s}' % sanscript.transliterate(data=t, _from=sanscript.HK, _to=scr).replace('C','Ch').replace('c','ch').title()) else: transliterated_text.append( sanscript.transliterate(data=t, _from=sanscript.HK, _to=scr).replace('C','Ch').replace('c','ch').title()) else: if t.find('RIGHTarrow') == -1: transliterated_text.append( sanscript.transliterate(data=t, _from=sanscript.HK, _to=scr).replace('C','Ch').replace('c','ch').title()) else: [txt, t1, arrow, t2] = t.split('\\') transliterated_text.append( '\\'.join([sanscript.transliterate(data=txt, _from=sanscript.HK, _to=scr).replace('C','Ch').replace('c','ch').title(), t1, arrow, t2])) else: for t in text_bits: t = t.rstrip('~0123456789 ') if t[:3] == 'ta:': # Force Tamil! if scr == sanscript.DEVANAGARI: scr = sanscript.TAMIL t = t[3:] transliterated_text.append( sanscript.transliterate(data=t, _from=sanscript.HK, _to=scr).replace('C','Ch').replace('c','ch').strip("{}").title()) else: if t.find('RIGHTarrow') == -1: transliterated_text.append(sanscript.transliterate(data=t, _from=sanscript.HK, _to=scr)) else: [txt, t1, arrow, t2] = t.split('\\') transliterated_text.append( '\\'.join([sanscript.transliterate(txt, _from=sanscript.HK, _to=scr), t1, arrow, t2])) return '|'.join(transliterated_text) def sexastr2deci(sexa_str): """Converts as sexagesimal string to decimal Converts a given sexagesimal string to its decimal value Args: A string encoding of a sexagesimal value, with the various components separated by colons Returns: A decimal value corresponding to the sexagesimal string Examples: >>> sexastr2deci('15:30:00') 15.5 >>> sexastr2deci('-15:30:45') -15.5125 """ if sexa_str[0] == '-': sgn = -1.0 dms = sexa_str[1:].split(':') # dms = degree minute second else: sgn = 1.0 dms = sexa_str.split(':') decival = 0 for i in range(0, len(dms)): decival = decival + float(dms[i]) / (60.0 ** i) return decival * sgn def revjul(jd, formatstr='%4d-%02d-%02d %02d:%02d:%02d', tz_off=0): """Returns a more human readable revjul compared to swe Converts a given jd (float) to a tuple [y,m,d,h,mm,ss] Args: A float corresponding to a Julian day Returns: A tuple detailing the year, month, day, hour, minute and second Examples: >>> revjul(2444961.7125, None) (1981, 12, 23, 5, 6, 0) >>> revjul(2444961.7125) '1981-12-23 05:06:00' """ if jd is None: return None year, month, day, h_float = swe.revjul(jd + tz_off / 24.0) hour = floor(h_float) h_float = (h_float - hour) * 60 minute = floor(h_float) h_float = (h_float - minute) * 60 second = int(round(h_float)) if second == 60: minute += 1 second = 0 if minute == 60: hour += 1 minute = 0 if hour == 24: year, month, day, _h = swe.revjul(jd + (tz_off + 1) / 24.0) if formatstr is None: return (year, month, day, hour, minute, second) else: return (formatstr % (year, month, day, hour, minute, second)) def print_lat_lon(lat, lon): """Returns a formatted string for a latitude and longitude Returns a formatted string for latitude and longitude, given sexagesimal 'strings' using colons for separation Args: str latstr str lonstr Returns: string corresponding to the formatted latitude and longitude Examples: >>> print_lat_lon('13:05:24','80:16:12') #Chennai "13°05'24''N, 80°16'12''E" >>> print_lat_lon('37:23:59','-122:08:34') #Palo Alto "37°23'59''N, 122°08'34''W" >>> print_lat_lon(1, -1) "1°0'0''N, 1°0'0''W" """ if lat < 0: lat = -lat lat_suffix = 'S' else: lat_suffix = 'N' if lon < 0: lon = -lon lon_suffix = 'W' else: lon_suffix = 'E' return '%.6f°%s, %.6f°%s' % (lat, lat_suffix, lon, lon_suffix) def longitudeToRightAscension(longitude): return (360 - longitude) / 360 * 24
29.753623
142
0.524436
b934ce455e4d77c9d7a39876a369462839e6ae20
2,586
py
Python
housepricesadv/data/make_dataset.py
chritter/housepricesadv
b1d17a7aa962855c34288874aaedb1abc7f7f58d
[ "MIT" ]
null
null
null
housepricesadv/data/make_dataset.py
chritter/housepricesadv
b1d17a7aa962855c34288874aaedb1abc7f7f58d
[ "MIT" ]
null
null
null
housepricesadv/data/make_dataset.py
chritter/housepricesadv
b1d17a7aa962855c34288874aaedb1abc7f7f58d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging from pathlib import Path import click from dotenv import find_dotenv, load_dotenv from sklearn import model_selection import pandas as pd def create_fold_file(file_in, file_out, n_splits=5, stratify=None): """ takes training file (e.g. train.csv) and produces new file with additional column kfold, indicating the validation folds! Parameters ---------- file_in : _type_ _description_ file_out : _type_ _description_ n_splits : int, optional _description_, by default 5 stratify : _type_, optional _description_, by default None Examples -------- >>> a = [1, 2, 3] >>> print([x + 3 for x in a]) [4, 5, 6] """ train = pd.read_csv(file_in, keep_default_na=False, na_values=[""]) # ensure training data is shuffled, do this outside/before of the folders train = train.sample(frac=1, random_state=42).reset_index(drop=True) if stratify: folder = model_selection.StratifiedKFold(n_splits=n_splits) else: folder = model_selection.KFold(n_splits=n_splits) for n_fold, (_, valid_idx) in enumerate(folder.split(X=train, y=stratify)): train.loc[valid_idx, "kfold"] = n_fold train['kfold'] = train['kfold'].astype(int) #fname = Path(file_in).stem # suffix = Path(file_in).suffix train.to_csv(file_out, index=False) @click.command() @click.argument('input_filepath', type=click.Path(exists=True)) @click.argument('output_filepath', type=click.Path()) def main(input_filepath, output_filepath): """ Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). Parameters ---------- input_filepath : _type_ _description_ output_filepath : _type_ _description_ """ logger = logging.getLogger(__name__) logger.info('making final data set from raw data') create_fold_file(input_filepath, output_filepath, n_splits=5, stratify=None) if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) # not used in this stub but often useful for finding various files project_dir = Path(__file__).resolve().parents[2] # find .env automagically by walking up directories until it's found, then # load up the .env entries as environment variables load_dotenv(find_dotenv()) main()
28.733333
79
0.656226
04e18a5cb48b4a3d29f52f04951c0fde0d43df33
4,780
py
Python
schemas/data.py
CIMAC-CIDC/cidc-ingestion-api
1877907119efd30c7698ecc7c5da84f877ba02d7
[ "MIT" ]
null
null
null
schemas/data.py
CIMAC-CIDC/cidc-ingestion-api
1877907119efd30c7698ecc7c5da84f877ba02d7
[ "MIT" ]
26
2019-01-30T16:13:42.000Z
2019-05-28T19:58:41.000Z
schemas/data.py
CIMAC-CIDC/cidc-ingestion-api
1877907119efd30c7698ecc7c5da84f877ba02d7
[ "MIT" ]
null
null
null
""" Data schema, each record represents a file in a google bucket. """ from schemas.fastq_schema import FASTQ_SCHEMA DATA = { 'public_methods': [], 'resource_methods': ['GET'], 'item_methods': ['GET'], 'allowed_roles': ['admin', 'user', 'uploader', 'system'], 'allowed_item_roles': ['admin', 'user', 'uploader', 'system'], 'datasource': { 'source': 'data', 'filter': { 'visibility': True }, }, 'schema': { 'data_format': { "type": "string", "required": True, }, 'file_name': { 'type': 'string', 'required': True, }, 'file_size': { 'type': 'integer', 'required': True }, 'sample_ids': { 'type': 'list', 'schema': { 'type': 'string', 'required': True } }, 'number_of_samples': { 'type': 'integer', 'required': True }, 'trial': { 'type': 'objectid', 'required': True, }, 'trial_name': { 'type': 'string', 'required': True, }, 'gs_uri': { 'type': 'string', 'required': True, }, 'assay': { 'type': 'objectid', 'required': True, }, 'experimental_strategy': { 'type': 'string', 'required': True, }, 'date_created': { 'type': 'string', 'required': True, }, 'analysis_id': { 'type': 'objectid', }, 'mapping': { 'type': 'string', 'required': True, }, 'processed': { 'type': 'boolean' }, 'visibility': { 'type': 'boolean' }, 'uuid_alias': { 'type': 'string', 'required': True, }, 'children': { 'type': 'list', 'schema': { 'type': 'dict', 'schema': { '_id': { 'type': 'objectid', 'required': True }, 'resource': { 'type': 'string', 'required': True } } } }, 'fastq_properties': { 'type': 'dict', 'nullable': True, 'schema': FASTQ_SCHEMA }, 'download_link': { 'type': 'string', 'nullable': True } } } DATA_EDIT = { "public_methods": [], "allowed_roles": ["admin", "system"], "allowed_item_roles": ["admin", "system"], "resource_methods": ["POST"], "item_methods": ["PATCH", "DELETE"], "datasource": { 'source': 'data', }, "schema": DATA["schema"] } DATA_TOGGLE_VIS = { "public_methods": [], "allowed_roles": ["admin", "user", "uploader", "system"], "allowed_item_roles": ["admin", "user", "uploader", "system"], "resource_methods": ["GET"], "item_methods": ["PATCH"], "datasource": { "source": "data", "projection": { "visibility": 1 } }, "schema": { "visibility": { "type": "boolean" } } } DATA_AGG_INPUTS = { 'allowed_roles': ["admin", "system"], 'allowed_item_roles': ["admin", "system"], 'datasource': { 'source': 'data', 'aggregation': { 'pipeline': [ { "$match": { "mapping": { "$in": "$inputs" }, "processed": False, "visibility": True } }, { "$group": { "_id": { "sample_ids": "$sample_ids", "assay": "$assay", "trial": "$trial", "experimental_strategy": "$experimental_strategy", "trial_name": "$trial_name" }, "records": { "$push": { "file_name": "$file_name", "gs_uri": "$gs_uri", "mapping": "$mapping", "data_format": "$data_format", '_id': '$_id' } } } } ] } } }
26.120219
78
0.347908
4aa1820359d1429c99b74230f41f07ac6c48b4ec
5,448
py
Python
tests/unit/test_parse.py
benknoble/Coqtail
c4d5c58771dd854671bd26b94693ecc1ffa21e39
[ "MIT" ]
null
null
null
tests/unit/test_parse.py
benknoble/Coqtail
c4d5c58771dd854671bd26b94693ecc1ffa21e39
[ "MIT" ]
null
null
null
tests/unit/test_parse.py
benknoble/Coqtail
c4d5c58771dd854671bd26b94693ecc1ffa21e39
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- # Author: Wolf Honore """Sentence parsing unit tests.""" from __future__ import absolute_import, division, print_function import pytest from coqtail import NoDotError, UnmatchedError, _get_message_range, _strip_comments # Test Values # tests = ( # Valid tests, no offset ("word", ["A."], (0, 1)), ("word2", ["A B."], (0, 3)), ("lwhite", [" A."], (0, 2)), ("rwhite", ["A. "], (0, 1)), ("comment pre", ["(* c. *) A."], (0, 10)), ("comment mid", ["A (* c. *) B."], (0, 12)), ("comment post", ["A (* c. *)."], (0, 10)), ("comment nest", ["A (* (* c. *) *)."], (0, 16)), ("str", ['A "B.".'], (0, 6)), ("str nest", ['A """B.""".'], (0, 10)), ("qualified", ["A.B."], (0, 3)), ("multi line", ["A", "B."], (1, 1)), ("multi line comment", ["A (*", ". *) B."], (1, 6)), ("multi line string", ['A "', '." B.'], (1, 4)), ("multi line comment nest", ["A (* (*", "c. ", "*) *) ."], (2, 6)), ("extra words", ["A. B."], (0, 1)), ("bullet -", ["- A."], (0, 0)), ("bullet +", ["+ A."], (0, 0)), ("bullet *", ["* A."], (0, 0)), ("bullet --", ["-- A."], (0, 1)), ("bullet ++", ["++ A."], (0, 1)), ("bullet **", ["** A."], (0, 1)), ("bullet {", ["{ A. }"], (0, 0)), ("bullet {{", ["{{ A. }}"], (0, 0)), ("bullet {{ 2", ["{{ A. }}"], (0, 1), (0, 1)), ("dot3", ["A..."], (0, 3)), ("large space", ("A" + ("\n" * 5000) + ".").split("\n"), (5000, 0)), ("large comment", ("(*" + ("\n" * 5000) + "*) A.").split("\n"), (5000, 4)), ("attribute word", ["#[A] B."], (0, 6)), ("attribute bullet {", ["#[A] { A. }"], (0, 5)), ("attribute string", ['#[A="B]."] C.'], (0, 12)), # Accept (tactic in *) ("star paren ok", ["A *) ."], (0, 5)), # or a bullet followed by a tactic notation that starts with ')' ("star paren ok post comment", ["(* A *) *) ."], (0, 8)), # Valid tests, offset ("bullet }", ["{ A. }"], (0, 4), (0, 5)), ("bullet dot } 1", ["{ A. }."], (0, 4), (0, 5)), ("bullet dot } 2", ["{ A. }."], (0, 6), (0, 6)), # Valid tests for non-bracketed goal selectors ("select no spacing", ["1:t."], (0, 3)), ("select space after colon", ["1: t."], (0, 4)), ("select space before space after", ["1 : t."], (0, 5)), ("select space before colon", ["1 :t."], (0, 4)), # Valid tests with bracketed goal selectors ("focus no spacing", ["1:{"], (0, 2)), ("focus trailing spacing", ["1:{ "], (0, 2)), ("focus space after colon", ["1: {"], (0, 3)), ("focus space before space after", ["1 : {"], (0, 4)), ("focus double space before double space after", ["1 : {"], (0, 6)), ("focus space before colon", ["1 :{"], (0, 3)), ("focus trailing command no spaces", ["2:{t."], (0, 2)), ("focus trailing command with spaces", ["2 : { t."], (0, 4)), # Invalid tests ("no dot", ["A"], (NoDotError, None)), ("dot2", ["A.."], (NoDotError, None)), ("unclosed comment pre", ["(* ."], (UnmatchedError, (0, 0))), ("unclosed comment", ["A (* ."], (UnmatchedError, (0, 2))), ("unclosed comment nest pre", ["(* (* A *) ."], (UnmatchedError, (0, 0))), ("unclosed string", ['A " .'], (UnmatchedError, (0, 2))), ("unclosed attribute", ["#[A B."], (UnmatchedError, (0, 0))), ("unclosed string attribute", ['#[A="B] C.'], (UnmatchedError, (0, 0))), ("only white", [" "], (NoDotError, None)), ("empty", [""], (NoDotError, None)), ) # Default 'start' to (0, 0) tests = ( ( t[0], list(map(lambda s: s.encode("utf-8"), t[1])), t[2] if len(t) == 4 else (0, 0), t[3] if len(t) == 4 else t[2], ) for t in tests ) # Test Cases # @pytest.mark.parametrize("_name, lines, start, stop", tests) def test_parse(_name, lines, start, stop): """'_get_message_range(lines)' should range from 'start' to 'stop'.""" if isinstance(stop[0], int): assert _get_message_range(lines, start) == {"start": start, "stop": stop} else: ex, stop = stop with pytest.raises(ex) as e: _get_message_range(lines, start) if stop is not None: assert e.value.range[0] == stop com_tests = ( ("no comment", b"abc", (b"abc", [])), ("pre", b"(*abc*)def", (b" def", [[0, 7]])), ("mid", b"ab(* c *)de", (b"ab de", [[2, 7]])), ("post", b"abc(*def *)", (b"abc", [[3, 8]])), ( "multi", b"abc (* com1 *) def (*com2 *) g", (b"abc def g", [[4, 10], [20, 9]]), ), ("nested", b"abc (* c1 (*c2 (*c3*) (*c4*) *) *)def", (b"abc def", [[4, 30]])), ("no comment newline", b"\nabc\n\n", (b"\nabc\n\n", [])), ("pre newline", b"(*ab\nc*)d\nef", (b" d\nef", [[0, 8]])), ("mid newline", b"ab(* c *)\nde", (b"ab \nde", [[2, 7]])), ("post newline", b"abc\n(*def *)\n", (b"abc\n \n", [[4, 8]])), ( "multi newline", b"abc (* com1 *)\n def \n(*\ncom2 *) g", (b"abc \n def \n g", [[4, 10], [21, 10]]), ), ( "nested newline", b"\nabc (* c1 (*c2 \n\n(*c3\n*) (*c4*) *) *)def\n", (b"\nabc def\n", [[5, 33]]), ), ("star paren", b"abc *)", (b"abc *)", [])), ("star paren post comment", b"(*abc*) *)", (b" *)", [[0, 7]])), ) @pytest.mark.parametrize("_name, msg, expected", com_tests) def test_strip_comment(_name, msg, expected): """_strip_comments() should remove only comments""" assert _strip_comments(msg) == expected
38.914286
83
0.449706
d8d33fcdd9864a2e17f3d6cc2ac72cb64d4bcffb
17,664
py
Python
benchmarks/f3_wrong_hints/scaling_ltl_timed_transition_system/11-sender_receiver_14.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
3
2021-04-23T23:29:26.000Z
2022-03-23T10:00:30.000Z
benchmarks/f3_wrong_hints/scaling_ltl_timed_transition_system/11-sender_receiver_14.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
null
null
null
benchmarks/f3_wrong_hints/scaling_ltl_timed_transition_system/11-sender_receiver_14.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
1
2021-11-17T22:02:56.000Z
2021-11-17T22:02:56.000Z
from typing import FrozenSet from collections import Iterable from math import log, ceil from mathsat import msat_term, msat_env from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_integer_type, msat_get_rational_type, msat_get_bool_type from mathsat import msat_make_and, msat_make_not, msat_make_or, msat_make_iff from mathsat import msat_make_leq, msat_make_equal, msat_make_true from mathsat import msat_make_number, msat_make_plus, msat_make_times from pysmt.environment import Environment as PysmtEnv import pysmt.typing as types from ltl.ltl import TermMap, LTLEncoder from utils import name_next, symb_to_next from hint import Hint, Location delta_name = "delta" def decl_consts(menv: msat_env, name: str, c_type) -> tuple: assert not name.startswith("_"), name s = msat_declare_function(menv, name, c_type) s = msat_make_constant(menv, s) x_s = msat_declare_function(menv, name_next(name), c_type) x_s = msat_make_constant(menv, x_s) return s, x_s def make_enum(menv, v_name: str, enum_size: int): bool_type = msat_get_bool_type(menv) num_bits = ceil(log(enum_size, 2)) b_vars = [] for idx in range(num_bits): c_name = "{}{}".format(v_name, idx) b_vars.append(tuple(decl_consts(menv, c_name, bool_type))) vals = [] x_vals = [] for enum_val in range(enum_size): bit_val = format(enum_val, '0{}b'.format(num_bits)) assert len(bit_val) == num_bits assert all(c in {'0', '1'} for c in bit_val) assign = [b_vars[idx] if c == '1' else (msat_make_not(menv, b_vars[idx][0]), msat_make_not(menv, b_vars[idx][1])) for idx, c in enumerate(reversed(bit_val))] pred = assign[0][0] x_pred = assign[0][1] for it in assign[1:]: pred = msat_make_and(menv, pred, it[0]) x_pred = msat_make_and(menv, x_pred, it[1]) vals.append(pred) x_vals.append(x_pred) assert len(vals) == enum_size assert len(x_vals) == enum_size return b_vars, vals, x_vals def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): m_one = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, m_one) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def diverging_symbs(menv: msat_env) -> frozenset: real_type = msat_get_rational_type(menv) delta = msat_declare_function(menv, delta_name, real_type) delta = msat_make_constant(menv, delta) return frozenset([delta]) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) r2s, x_r2s = decl_consts(menv, "r2s", int_type) s2r, x_s2r = decl_consts(menv, "s2r", int_type) delta, x_delta = decl_consts(menv, delta_name, real_type) sender = Sender("s", menv, enc, r2s, x_r2s, s2r, x_s2r, delta) receiver = Receiver("r", menv, enc, s2r, x_s2r, r2s, x_r2s, delta) curr2next = {r2s: x_r2s, s2r: x_s2r, delta: x_delta} for comp in [sender, receiver]: for s, x_s in comp.symb2next.items(): curr2next[s] = x_s zero = msat_make_number(menv, "0") init = msat_make_and(menv, receiver.init, sender.init) trans = msat_make_and(menv, receiver.trans, sender.trans) # invar delta >= 0 init = msat_make_and(menv, init, msat_make_geq(menv, delta, zero)) trans = msat_make_and(menv, trans, msat_make_geq(menv, x_delta, zero)) # delta > 0 -> (r2s' = r2s & s2r' = s2r) lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_equal(menv, x_r2s, r2s), msat_make_equal(menv, x_s2r, s2r)) trans = msat_make_and(menv, trans, msat_make_impl(menv, lhs, rhs)) # (G F !s.stutter) -> G (s.wait_ack -> F s.send) lhs = enc.make_G(enc.make_F(msat_make_not(menv, sender.stutter))) rhs = enc.make_G(msat_make_impl(menv, sender.wait_ack, enc.make_F(sender.send))) ltl = msat_make_impl(menv, lhs, rhs) return TermMap(curr2next), init, trans, ltl class Module: def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, *args, **kwargs): self.name = name self.menv = menv self.enc = enc self.symb2next = {} true = msat_make_true(menv) self.init = true self.trans = true def _symb(self, v_name, v_type): v_name = "{}_{}".format(self.name, v_name) return decl_consts(self.menv, v_name, v_type) def _enum(self, v_name: str, enum_size: int): c_name = "{}_{}".format(self.name, v_name) return make_enum(self.menv, c_name, enum_size) class Sender(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) int_type = msat_get_integer_type(menv) real_type = msat_get_rational_type(menv) loc, x_loc = self._symb("l", bool_type) evt, x_evt = self._symb("evt", bool_type) msg_id, x_msg_id = self._symb("msg_id", int_type) timeout, x_timeout = self._symb("timeout", real_type) c, x_c = self._symb("c", real_type) self.move = evt self.stutter = msat_make_not(menv, evt) self.x_move = x_evt self.x_stutter = msat_make_not(menv, x_evt) self.send = loc self.wait_ack = msat_make_not(menv, loc) self.x_send = x_loc self.x_wait_ack = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc, evt: x_evt, msg_id: x_msg_id, timeout: x_timeout, c: x_c} zero = msat_make_number(menv, "0") one = msat_make_number(menv, "1") base_timeout = one # send & c = 0 & msg_id = 0 self.init = msat_make_and(menv, msat_make_and(menv, self.send, msat_make_equal(menv, c, zero)), msat_make_equal(menv, msg_id, zero)) # invar: wait_ack -> c <= timeout self.init = msat_make_and( menv, self.init, msat_make_impl(menv, self.wait_ack, msat_make_leq(menv, c, timeout))) self.trans = msat_make_impl(menv, self.x_wait_ack, msat_make_leq(menv, x_c, x_timeout)) # delta > 0 | stutter -> l' = l & msg_id' = msg_id & timeout' = timeout & # c' = c + delta & out_c' = out_c lhs = msat_make_or(menv, msat_make_gt(menv, delta, zero), self.stutter) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_msg_id, msg_id)), msat_make_and(menv, msat_make_equal(menv, x_timeout, timeout), msat_make_equal(menv, x_c, msat_make_plus(menv, c, delta)))) rhs = msat_make_and(menv, rhs, msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) disc_t = msat_make_and(menv, self.move, msat_make_equal(menv, delta, zero)) # (send & send') -> # (msg_id' = msg_id & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_send)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msg_id), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (send & wait_ack') -> # (msg_id' = msg_id + 1 & timeout' = base_timeout & c' = 0 & out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.send, self.x_wait_ack)) rhs = msat_make_and( menv, msat_make_and(menv, msat_make_equal(menv, x_msg_id, msat_make_plus(menv, msg_id, one)), msat_make_equal(menv, x_timeout, base_timeout)), msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (c' = 0 & out_c' = out_c & # (wait_ack' <-> (in_c != msg_id & c > timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs_iff = msat_make_and(menv, msat_make_not(menv, msat_make_equal(menv, in_c, msg_id)), msat_make_geq(menv, c, timeout)) rhs_iff = msat_make_iff(menv, self.x_wait_ack, rhs_iff) rhs = msat_make_and(menv, msat_make_and(menv, msat_make_equal(menv, x_c, zero), msat_make_equal(menv, x_out_c, out_c)), rhs_iff) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & wait_ack') -> (timeout' > timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_wait_ack)) rhs = msat_make_gt(menv, x_timeout, timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack) -> (send' <-> (in_c = msg_id & c < timeout)) lhs = msat_make_and(menv, disc_t, self.wait_ack) rhs = msat_make_iff(menv, self.x_send, msat_make_and(menv, msat_make_equal(menv, in_c, msg_id), msat_make_lt(menv, c, timeout))) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait_ack & send') -> (timeout' = base_timeout) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait_ack, self.x_send)) rhs = msat_make_equal(menv, x_timeout, base_timeout) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) class Receiver(Module): def __init__(self, name: str, menv: msat_env, enc: LTLEncoder, in_c, x_in_c, out_c, x_out_c, delta): super().__init__(name, menv, enc) bool_type = msat_get_bool_type(menv) loc, x_loc = self._symb("l", bool_type) self.wait = loc self.work = msat_make_not(menv, loc) self.x_wait = x_loc self.x_work = msat_make_not(menv, x_loc) self.symb2next = {loc: x_loc} zero = msat_make_number(menv, "0") # wait self.init = self.wait # delta > 0 -> loc' = loc & out_c' = out_c lhs = msat_make_gt(menv, delta, zero) rhs = msat_make_and(menv, msat_make_iff(menv, x_loc, loc), msat_make_equal(menv, x_out_c, out_c)) self.trans = msat_make_impl(menv, lhs, rhs) disc_t = msat_make_equal(menv, delta, zero) # wait -> (wait' <-> in_c = out_c) lhs = msat_make_and(menv, disc_t, self.wait) rhs = msat_make_iff(menv, self.x_wait, msat_make_equal(menv, in_c, out_c)) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & wait') -> (out_c' = out_c) lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_wait)) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # (wait & work') -> out_c' = in_c lhs = msat_make_and(menv, disc_t, msat_make_and(menv, self.wait, self.x_work)) rhs = msat_make_equal(menv, x_out_c, in_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) # work -> out_c' = out_c lhs = msat_make_and(menv, disc_t, self.work) rhs = msat_make_equal(menv, x_out_c, out_c) self.trans = msat_make_and(menv, self.trans, msat_make_impl(menv, lhs, rhs)) def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager delta = mgr.Symbol(delta_name, types.REAL) r2s = mgr.Symbol("r2s", types.INT) s2r = mgr.Symbol("r2s", types.INT) s_l = mgr.Symbol("s_l", types.BOOL) s_evt = mgr.Symbol("s_evt", types.BOOL) s_msg_id = mgr.Symbol("s_msg_id", types.INT) s_timeout = mgr.Symbol("s_timeout", types.REAL) s_c = mgr.Symbol("s_c", types.REAL) r_l = mgr.Symbol("r_l", types.BOOL) symbs = frozenset([delta, r2s, s2r, s_l, s_evt, s_msg_id, s_timeout, s_c, r_l]) x_delta = symb_to_next(mgr, delta) x_r2s = symb_to_next(mgr, r2s) x_s2r = symb_to_next(mgr, s2r) x_s_l = symb_to_next(mgr, s_l) x_s_evt = symb_to_next(mgr, s_evt) x_s_msg_id = symb_to_next(mgr, s_msg_id) x_s_timeout = symb_to_next(mgr, s_timeout) x_s_c = symb_to_next(mgr, s_c) x_r_l = symb_to_next(mgr, r_l) res = [] r0 = mgr.Real(0) r1 = mgr.Real(1) i0 = mgr.Int(0) i1 = mgr.Int(1) loc0 = Location(env, s_l) loc0.set_progress(0, x_s_l) hint = Hint("h_s_l0", env, frozenset([s_l]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, s_evt) loc0.set_progress(0, x_s_evt) hint = Hint("h_s_evt0", env, frozenset([s_evt]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.Equals(s_c, r0)) loc0.set_progress(0, mgr.Equals(x_s_c, r0)) hint = Hint("h_s_c0", env, frozenset([s_c]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, r_l) loc0.set_progress(0, x_r_l) hint = Hint("h_r_l0", env, frozenset([r_l]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(delta, r0)) loc0.set_progress(0, mgr.Equals(x_delta, r1)) hint = Hint("h_delta1", env, frozenset([delta]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s2r, i0)) loc0.set_progress(0, mgr.Equals(x_s2r, i1)) hint = Hint("h_s2r1", env, frozenset([s2r]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(r2s, i0)) loc0.set_progress(0, mgr.Equals(x_r2s, i1)) hint = Hint("h_r2s1", env, frozenset([r2s]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_msg_id, i0)) loc0.set_progress(0, mgr.Equals(x_s_msg_id, mgr.Plus(s_msg_id, i1))) hint = Hint("h_s_msg_id1", env, frozenset([s_msg_id]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, mgr.GE(s_timeout, r0)) loc0.set_progress(0, mgr.Equals(x_s_timeout, mgr.Plus(s_timeout, r1))) hint = Hint("h_s_timeout1", env, frozenset([s_timeout]), symbs) hint.set_locs([loc0]) res.append(hint) loc0 = Location(env, r_l) loc0.set_progress(1, mgr.Not(x_r_l)) loc1 = Location(env, mgr.Not(r_l)) loc1.set_progress(0, x_r_l) hint = Hint("h_r_l1", env, frozenset([r_l]), symbs) hint.set_locs([loc0, loc1]) res.append(hint) loc0 = Location(env, mgr.GE(s2r, i0)) loc0.set_progress(0, mgr.Equals(x_s2r, mgr.Plus(s2r, i1))) hint = Hint("h_s2r2", env, frozenset([s2r]), symbs) hint.set_locs([loc0]) res.append(hint) return frozenset(res)
38.907489
89
0.573143
272d33d736943b6520b0411896ffec62d09a0b7a
45,757
py
Python
eventsourcing/domain.py
johnbywater/eventsourcing
83ec6aea90c3ffaf5021119c741c6b97361c4ea1
[ "BSD-3-Clause" ]
972
2015-09-16T02:03:44.000Z
2021-10-13T15:10:38.000Z
eventsourcing/domain.py
johnbywater/eventsourcing
83ec6aea90c3ffaf5021119c741c6b97361c4ea1
[ "BSD-3-Clause" ]
207
2015-10-13T15:46:29.000Z
2021-10-08T07:23:40.000Z
eventsourcing/domain.py
johnbywater/eventsourcing
83ec6aea90c3ffaf5021119c741c6b97361c4ea1
[ "BSD-3-Clause" ]
117
2015-10-13T13:24:56.000Z
2021-10-12T07:19:47.000Z
import inspect import os from abc import ABC, ABCMeta from dataclasses import dataclass from datetime import datetime, tzinfo from types import FunctionType, WrapperDescriptorType from typing import ( Any, Callable, Dict, Generic, Iterable, List, Optional, Set, Tuple, Type, TypeVar, Union, cast, overload, ) from uuid import UUID, uuid4 from eventsourcing.utils import get_method_name, get_topic, resolve_topic # noinspection SpellCheckingInspection TZINFO: tzinfo = resolve_topic(os.getenv("TZINFO_TOPIC", "datetime:timezone.utc")) class MetaDomainEvent(ABCMeta): def __new__( mcs, name: str, bases: Tuple[type, ...], cls_dict: Dict[str, Any] ) -> "MetaDomainEvent": event_cls = super().__new__(mcs, name, bases, cls_dict) event_cls = dataclass(frozen=True)(event_cls) # type: ignore return event_cls T = TypeVar("T") @dataclass(frozen=True) class DomainEvent(ABC, Generic[T]): """ Base class for domain events, such as aggregate :class:`AggregateEvent` and aggregate :class:`Snapshot`. """ originator_id: UUID originator_version: int timestamp: datetime def mutate(self, aggregate: Optional[T]) -> Optional[T]: """Abstract mutator method.""" @staticmethod def create_timestamp() -> datetime: return datetime.now(tz=TZINFO) TDomainEvent = TypeVar("TDomainEvent", bound=DomainEvent[Any]) TAggregate = TypeVar("TAggregate", bound="Aggregate") class AggregateEvent(DomainEvent[TAggregate], metaclass=MetaDomainEvent): """ Base class for aggregate events. Subclasses will model decisions made by the domain model aggregates. """ def mutate(self, aggregate: Optional[TAggregate]) -> Optional[TAggregate]: """ Changes the state of the aggregate according to domain event attributes. """ assert aggregate is not None # Check this event belongs to this aggregate. if self.originator_id != aggregate.id: raise OriginatorIDError(self.originator_id, aggregate.id) # Check this event is the next in its sequence. next_version = aggregate.version + 1 if self.originator_version != next_version: raise OriginatorVersionError(self.originator_version, next_version) # Call apply() before mutating values, in case exception is raised. self.apply(aggregate) # Update the aggregate version. aggregate.version = self.originator_version # Update the modified time. aggregate.modified_on = self.timestamp # Return the mutated aggregate. return aggregate def apply(self, aggregate: TAggregate) -> None: """ Applies the domain event to the aggregate. """ class AggregateCreated(AggregateEvent[TAggregate]): # noinspection PyUnresolvedReferences """ Domain event for when aggregate is created. Constructor arguments: :param UUID originator_id: ID of originating aggregate. :param int originator_version: version of originating aggregate. :param datetime timestamp: date-time of the event :param str originator_topic: topic for the aggregate class """ originator_topic: str def mutate(self, aggregate: Optional[TAggregate]) -> Optional[TAggregate]: """ Constructs aggregate instance defined by domain event object attributes. """ assert aggregate is None # Resolve originator topic. aggregate_class: Type[TAggregate] = resolve_topic( self.__dict__["originator_topic"] ) # Construct and return aggregate object. agg = aggregate_class.__new__(aggregate_class) # Separate the base class keywords arguments. base_kwargs = _select_kwargs_mentioned_in_sig(self.__dict__, agg.__base_init__) # Call the base class init method. agg.__base_init__(**base_kwargs) # Select values that aren't mentioned in the method signature. init_kwargs = _select_kwargs_mentioned_in_sig( self.__dict__, agg.__init__ # type: ignore ) # Provide the id, if the init method expects it. if aggregate_class in _init_mentions_id: init_kwargs["id"] = self.__dict__["originator_id"] # Call the aggregate class init method. agg.__init__(**init_kwargs) # type: ignore self.apply(agg) return agg def _select_kwargs_mentioned_in_sig( kwargs: Dict[str, Any], method: Callable[..., Any] ) -> Dict[str, Any]: method_signature = inspect.signature(method) names = set(method_signature.parameters) return {k: v for k, v in kwargs.items() if k in names} EventSpecType = Optional[Union[str, Type[AggregateEvent[Any]]]] AnyCallable = Callable[..., None] DecoratedObjType = TypeVar("DecoratedObjType", bound=Union[AnyCallable, property]) InjectEventType = bool class CommandMethodDecorator: def __init__( self, event_spec: EventSpecType, decorated_obj: DecoratedObjType, ): self.is_name_inferred_from_method = False self.given_event_cls: Optional[Type[AggregateEvent[Any]]] = None self.event_cls_name: Optional[str] = None self.decorated_property: Optional[property] = None self.is_property_setter = False self.property_setter_arg_name: Optional[str] = None self.decorated_method: AnyCallable # Event name has been specified. if isinstance(event_spec, str): if event_spec == "": raise ValueError("Can't use empty string as name of event class") self.event_cls_name = event_spec # Event class has been specified. elif isinstance(event_spec, type) and issubclass(event_spec, AggregateEvent): if event_spec in given_event_classes: name = event_spec.__name__ raise TypeError(f"{name} event class used in more than one decorator") self.given_event_cls = event_spec given_event_classes.add(event_spec) # Process a decorated property. if isinstance(decorated_obj, property): # Disallow putting event decorator on property getter. if decorated_obj.fset is None: assert decorated_obj.fget, "Property has no getter" method_name = decorated_obj.fget.__name__ raise TypeError( f"@event can't decorate {method_name}() property getter" ) # Remember we are decorating a property. self.decorated_property = decorated_obj # Remember the decorated method as the "setter" of the property. self.decorated_method = decorated_obj.fset assert isinstance(self.decorated_method, FunctionType) # Disallow deriving event class names from property names. if not self.given_event_cls and not self.event_cls_name: method_name = self.decorated_method.__name__ raise TypeError( f"@event on {method_name}() setter requires event name or class" ) # Remember the name of the second setter arg. setter_arg_names = list(inspect.signature(self.decorated_method).parameters) assert len(setter_arg_names) == 2 self.property_setter_arg_name = setter_arg_names[1] # Process a decorated method. elif isinstance(decorated_obj, FunctionType): # Remember the decorated method as the decorated object. self.decorated_method = decorated_obj # If necessary, derive an event class name from the method. if not self.given_event_cls and not self.event_cls_name: original_method_name = self.decorated_method.__name__ if original_method_name != "__init__": self.is_name_inferred_from_method = True self.event_cls_name = "".join( [s.capitalize() for s in original_method_name.split("_")] ) # Disallow decorating other types of object. else: raise TypeError(f"{decorated_obj} is not a function or property") # Disallow using methods with variable params to define event class. if self.event_cls_name: _check_no_variable_params(self.decorated_method) def __call__(self, *args: Any, **kwargs: Any) -> None: # Initialised decorator was called directly, presumably by # a decorating property that has this decorator as its fset. # So trigger an event. assert self.is_property_setter assert self.property_setter_arg_name assert len(args) == 2 assert len(kwargs) == 0 assert isinstance(args[0], Aggregate) aggregate_instance = args[0] bound = BoundCommandMethodDecorator(self, aggregate_instance) property_setter_arg_value = args[1] kwargs = {self.property_setter_arg_name: property_setter_arg_value} bound.trigger(**kwargs) @overload def __get__( self, instance: None, owner: "MetaAggregate" ) -> Union["UnboundCommandMethodDecorator", property]: ... # pragma: no cover @overload def __get__( self, instance: "Aggregate", owner: "MetaAggregate" ) -> Union["BoundCommandMethodDecorator", Any]: ... # pragma: no cover def __get__( self, instance: Optional["Aggregate"], owner: "MetaAggregate" ) -> Union[ "BoundCommandMethodDecorator", "UnboundCommandMethodDecorator", property, Any ]: # If we are decorating a property, then delegate to the property's __get__. if self.decorated_property: return self.decorated_property.__get__(instance, owner) # Return a "bound" command method decorator if we have an instance. elif instance: return BoundCommandMethodDecorator(self, instance) # Return an "unbound" command method decorator if we have no instance. else: return UnboundCommandMethodDecorator(self) def __set__(self, instance: "Aggregate", value: Any) -> None: # Set decorated property indirectly by triggering an event. assert self.property_setter_arg_name b = BoundCommandMethodDecorator(self, instance) kwargs = {self.property_setter_arg_name: value} b.trigger(**kwargs) # Called because specifying decorator params. @overload def event(arg: EventSpecType = None) -> Callable[[DecoratedObjType], DecoratedObjType]: ... # pragma: no cover # Called because Python is actually decorating something. @overload def event(arg: DecoratedObjType) -> DecoratedObjType: ... # pragma: no cover def event( arg: Union[EventSpecType, DecoratedObjType] = None, ) -> Union[Callable[[DecoratedObjType], DecoratedObjType], DecoratedObjType]: """ Can be used to decorate an aggregate method so that when the method is called an event is triggered. The body of the method will be used to apply the event to the aggregate, both when the event is triggered and when the aggregate is reconstructed from stored events. .. code-block:: python class MyAggregate(Aggregate): @event("NameChanged") def set_name(self, name: str): self.name = name ...is equivalent to... .. code-block:: python class MyAggregate(Aggregate): def set_name(self, name: str): self.trigger_event(self.NameChanged, name=name) class NameChanged(Aggregate.Event): name: str def apply(self, aggregate): aggregate.name = self.name In the example above, the event "NameChanged" is defined automatically by inspecting the signature of the `set_name()` method. If it is preferred to declare the event class explicitly, for example to define upcasting of old events, the event class itself can be mentioned in the event decorator rather than just providing the name of the event as a string. .. code-block:: python class MyAggregate(Aggregate): class NameChanged(Aggregate.Event): name: str @event(NameChanged) def set_name(self, name: str): aggregate.name = self.name """ if isinstance(arg, (FunctionType, property)): command_method_decorator = CommandMethodDecorator( event_spec=None, decorated_obj=arg, ) return cast( Callable[[DecoratedObjType], DecoratedObjType], command_method_decorator ) elif ( arg is None or isinstance(arg, str) or isinstance(arg, type) and issubclass(arg, AggregateEvent) ): event_spec = arg def create_command_method_decorator( decorated_obj: DecoratedObjType, ) -> DecoratedObjType: command_method_decorator = CommandMethodDecorator( event_spec=event_spec, decorated_obj=decorated_obj, ) return cast(DecoratedObjType, command_method_decorator) return create_command_method_decorator else: raise TypeError( f"{arg} is not a str, aggregate event class, function, or property" ) triggers = event class UnboundCommandMethodDecorator: """ Wraps an EventDecorator instance when attribute is accessed on an aggregate class. """ def __init__(self, event_decorator: CommandMethodDecorator): """ :param CommandMethodDecorator event_decorator: """ self.event_decorator = event_decorator assert event_decorator.decorated_method self.__qualname__ = event_decorator.decorated_method.__qualname__ self.__name__ = event_decorator.decorated_method.__name__ class BoundCommandMethodDecorator: """ Wraps an EventDecorator instance when attribute is accessed on an aggregate so that the aggregate methods can be accessed. """ def __init__( self, event_decorator: CommandMethodDecorator, aggregate: "TAggregate" ): """ :param CommandMethodDecorator event_decorator: :param Aggregate aggregate: """ assert event_decorator.decorated_method self.event_decorator = event_decorator self.__qualname__ = event_decorator.decorated_method.__qualname__ self.__name__ = event_decorator.decorated_method.__name__ self.aggregate = aggregate def trigger(self, *args: Any, **kwargs: Any) -> None: assert isinstance(self.event_decorator, CommandMethodDecorator) # for PyCharm assert self.event_decorator.decorated_method kwargs = _coerce_args_to_kwargs( self.event_decorator.decorated_method, args, kwargs ) event_cls = decorated_event_classes[self.event_decorator] kwargs = _select_kwargs_mentioned_in_sig(kwargs, event_cls.__dict__["__init__"]) self.aggregate.trigger_event(event_cls, **kwargs) def __call__(self, *args: Any, **kwargs: Any) -> None: self.trigger(*args, **kwargs) given_event_classes: Set[type] = set() decorated_methods: Dict[type, AnyCallable] = {} aggregate_has_many_created_event_classes: Dict[type, List[str]] = {} class DecoratedEvent(AggregateEvent[Any]): def apply(self, aggregate: "TAggregate") -> None: """ Applies event to aggregate by calling method decorated by @event. """ # Call super method, just in case any base classes need it. super().apply(aggregate) # Identify the method that was decorated. decorated_method = decorated_methods[type(self)] # Select event attributes mentioned in method signature. kwargs = _select_kwargs_mentioned_in_sig(self.__dict__, decorated_method) # Call the original method with event attribute values. decorated_method(aggregate, **kwargs) decorated_event_classes: Dict[CommandMethodDecorator, Type[DecoratedEvent]] = {} def _check_no_variable_params(method: FunctionType) -> None: for param in inspect.signature(method).parameters.values(): if param.kind is param.VAR_POSITIONAL: raise TypeError( f"*{param.name} not supported by decorator on {method.__name__}()" ) # Todo: Support VAR_POSITIONAL? # annotations["__star_args__"] = "typing.Any" if param.kind is param.VAR_KEYWORD: # Todo: Support VAR_KEYWORD? # annotations["__star_kwargs__"] = "typing.Any" raise TypeError( f"**{param.name} not supported by decorator on {method.__name__}()" ) def _coerce_args_to_kwargs( method: AnyCallable, args: Iterable[Any], kwargs: Dict[str, Any], expects_id: bool = False, ) -> Dict[str, Any]: assert isinstance(method, (FunctionType, WrapperDescriptorType)) method_signature = inspect.signature(method) copy_kwargs = dict(kwargs) args = tuple(args) positional_names = [] keyword_defaults = {} required_positional = [] required_keyword_only = [] if expects_id: positional_names.append("id") required_positional.append("id") for name, param in method_signature.parameters.items(): if name == "self": continue # elif param.kind in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD): if param.kind is param.KEYWORD_ONLY: required_keyword_only.append(name) if param.kind is param.POSITIONAL_OR_KEYWORD: positional_names.append(name) if param.default == param.empty: required_positional.append(name) if param.default != param.empty: keyword_defaults[name] = param.default # if not required_keyword_only and not positional_names: # if args or kwargs: # raise TypeError(f"{method.__name__}() takes no args") for name in kwargs: if name not in required_keyword_only and name not in positional_names: raise TypeError( f"{get_method_name(method)}() got an unexpected " f"keyword argument '{name}'" ) counter = 0 len_args = len(args) if len_args > len(positional_names): msg = ( f"{get_method_name(method)}() takes {len(positional_names) + 1} " f"positional argument{'' if len(positional_names) + 1 == 1 else 's'} " f"but {len_args + 1} were given" ) raise TypeError(msg) required_positional_not_in_kwargs = [ n for n in required_positional if n not in kwargs ] num_missing = len(required_positional_not_in_kwargs) - len_args if num_missing > 0: missing_names = [ f"'{name}'" for name in required_positional_not_in_kwargs[len_args:] ] msg = ( f"{get_method_name(method)}() missing {num_missing} required positional " f"argument{'' if num_missing == 1 else 's'}: " ) raise_missing_names_type_error(missing_names, msg) for name in positional_names: if counter + 1 > len_args: break if name not in kwargs: copy_kwargs[name] = args[counter] counter += 1 else: raise TypeError( f"{get_method_name(method)}() got multiple values for argument '{name}'" ) missing_keyword_only_arguments = [] for name in required_keyword_only: if name not in kwargs: missing_keyword_only_arguments.append(name) if missing_keyword_only_arguments: missing_names = [f"'{name}'" for name in missing_keyword_only_arguments] msg = ( f"{get_method_name(method)}() missing {len(missing_names)} " f"required keyword-only argument" f"{'' if len(missing_names) == 1 else 's'}: " ) raise_missing_names_type_error(missing_names, msg) for name, value in keyword_defaults.items(): if name not in copy_kwargs: copy_kwargs[name] = value return copy_kwargs def raise_missing_names_type_error(missing_names: List[str], msg: str) -> None: msg += missing_names[0] if len(missing_names) == 2: msg += f" and {missing_names[1]}" elif len(missing_names) > 2: msg += ", " + ", ".join(missing_names[1:-1]) msg += f", and {missing_names[-1]}" raise TypeError(msg) TT = TypeVar("TT", bound="type") _annotations_mention_id: Set["MetaAggregate"] = set() _init_mentions_id: Set["MetaAggregate"] = set() class MetaAggregate(ABCMeta): INITIAL_VERSION = 1 class Event(AggregateEvent[TAggregate]): pass class Created(Event[TAggregate], AggregateCreated[TAggregate]): pass _created_event_class: Type[AggregateCreated[Any]] def __new__(mcs: Type[TT], *args: Any, **kwargs: Any) -> TT: try: class_annotations = args[2]["__annotations__"] except KeyError: class_annotations = None annotations_mention_id = False else: try: class_annotations.pop("id") except KeyError: annotations_mention_id = False else: annotations_mention_id = True cls = ABCMeta.__new__(mcs, *args) if class_annotations: cls = dataclass(eq=False, repr=False)(cls) if annotations_mention_id: _annotations_mention_id.add(cls) return cls def __init__( cls, *args: Any, created_event_name: Optional[str] = None, ) -> None: super().__init__(*args) # Identify or define a base event class for this aggregate. base_event_name = "Event" try: base_event_cls = cls.__dict__[base_event_name] except KeyError: base_event_cls = cls._define_event_class( base_event_name, (cls.Event,), None ) setattr(cls, base_event_name, base_event_cls) # Make sure all events defined on aggregate subclass the base event class. for name, value in tuple(cls.__dict__.items()): if name == base_event_name: # Don't subclass the base event class again. continue if name.lower() == name: # Don't subclass lowercase named attributes that have classes. continue if isinstance(value, type) and issubclass(value, AggregateEvent): if not issubclass(value, base_event_cls): sub_class = cls._define_event_class( name, (value, base_event_cls), None ) setattr(cls, name, sub_class) # Identify or define the aggregate's "created" event class. created_event_class: Optional[Type[AggregateCreated[Any]]] = None # Has the "created" event class been indicated with '_created_event_class'. if "_created_event_class" in cls.__dict__: created_event_class = cls.__dict__["_created_event_class"] if isinstance(created_event_class, type) and issubclass( created_event_class, AggregateCreated ): # We just subclassed the event classes, so reassign this. created_event_class = getattr(cls, created_event_class.__name__) assert created_event_class cls._created_event_class = created_event_class else: raise TypeError( f"{created_event_class} not subclass of {AggregateCreated.__name__}" ) # Disallow using both '_created_event_class' and 'created_event_name'. if created_event_class and created_event_name: raise TypeError( "Can't use both '_created_event_class' and 'created_event_name'" ) # Is the init method method decorated with a CommandMethodDecorator? if isinstance(cls.__dict__.get("__init__"), CommandMethodDecorator): init_decorator: CommandMethodDecorator = cls.__dict__["__init__"] # Set the original method on the class (un-decorate __init__). cls.__init__ = init_decorator.decorated_method # type: ignore # Disallow using both 'created_event_name' and '_created_event_class'. if created_event_name: raise TypeError( "Can't use both 'created_event_name' and decorator on __init__" ) elif created_event_class: raise TypeError( "Can't use both '_created_event_class' and decorator on __init__" ) # Does the decorator specify a "create" event class? if init_decorator.given_event_cls: created_event_class = getattr( cls, init_decorator.given_event_cls.__name__ ) if isinstance(created_event_class, type) and issubclass( created_event_class, AggregateCreated ): assert created_event_class cls._created_event_class = created_event_class else: raise TypeError( f"{created_event_class} not subclass of " f"{AggregateCreated.__name__}" ) # Does the decorator specify a "create" event name? elif init_decorator.event_cls_name: created_event_name = init_decorator.event_cls_name # Disallow using decorator on __init__ without event spec. else: raise TypeError( "Decorator on __init__ has neither event name nor class" ) # Todo: Write a test to cover this when "Created" class is explicitly defined. # Check if init mentions ID. for param_name in inspect.signature(cls.__init__).parameters: # type: ignore if param_name == "id": _init_mentions_id.add(cls) break # If no "created" event class has been specified, find or create one. if created_event_class is None: # Discover all the "created" event classes already defined. created_event_classes: Dict[str, Type[AggregateCreated[Any]]] = {} for name, value in tuple(cls.__dict__.items()): if isinstance(value, type) and issubclass(value, AggregateCreated): created_event_classes[name] = value # Is a "created" event class already defined that matches the name? if created_event_name in created_event_classes: cls._created_event_class = created_event_classes[created_event_name] # If there is only one class defined, and we have no name, use it. elif len(created_event_classes) == 1 and not created_event_name: cls._created_event_class = next(iter(created_event_classes.values())) # If there are no "created" event classes already defined, or a name is # specified that hasn't matched, then define a "created" event class. elif len(created_event_classes) == 0 or created_event_name: # If no "created" event name has been specified, use default name. if not created_event_name: # This is safe because len(created_event_classes) == 0. created_event_name = "Created" # Disallow init method from having variable params if # we are using it to define a "created" event class. try: init_method = cls.__dict__["__init__"] except KeyError: init_method = None else: try: _check_no_variable_params(init_method) except TypeError: raise # Define a "created" event class for this aggregate. if issubclass(cls.Created, base_event_cls): # Don't subclass from base event class twice. bases: Tuple[type, ...] = (cls.Created,) else: bases = (cls.Created, base_event_cls) event_cls = cls._define_event_class( created_event_name, bases, init_method, ) # Set the event class as an attribute of the aggregate class. setattr(cls, created_event_name, event_cls) # Remember which is the "created" event class. cls._created_event_class = cast(Type[AggregateCreated[Any]], event_cls) # Prepare to disallow ambiguity of choice between created event classes. else: aggregate_has_many_created_event_classes[cls] = list( created_event_classes ) # Prepare the subsequent event classes. for attribute in tuple(cls.__dict__.values()): # Watch out for @property that sits over an @event. if isinstance(attribute, property) and isinstance( attribute.fset, CommandMethodDecorator ): attribute = attribute.fset if attribute.is_name_inferred_from_method: # We don't want name inferred from property (not past participle). method_name = attribute.decorated_method.__name__ raise TypeError( f"@event under {method_name}() property setter requires event " f"class name" ) # Attribute is a property decorating an event decorator. attribute.is_property_setter = True method_signature = inspect.signature(attribute.decorated_method) assert len(method_signature.parameters) == 2 attribute.property_setter_arg_name = list(method_signature.parameters)[ 1 ] # Attribute is an event decorator, so define a "decorated" event. if isinstance(attribute, CommandMethodDecorator): if attribute.given_event_cls: # Check this is not a "created" event class. if issubclass(attribute.given_event_cls, AggregateCreated): raise TypeError( f"{attribute.given_event_cls} " f"is subclass of AggregateCreated" ) # Define event class as subclass of given class. given_subclass = getattr(cls, attribute.given_event_cls.__name__) event_cls = cls._define_event_class( attribute.given_event_cls.__name__, (DecoratedEvent, given_subclass), None, ) else: assert attribute.event_cls_name # Check event class isn't already defined. if attribute.event_cls_name in cls.__dict__: raise TypeError( f"{attribute.event_cls_name} " f"event already defined on {cls.__name__}" ) # Define event class from signature of original method. event_cls = cls._define_event_class( attribute.event_cls_name, (DecoratedEvent, base_event_cls), attribute.decorated_method, ) # Cache the decorated method for the event class to use. decorated_methods[event_cls] = attribute.decorated_method # Set the event class as an attribute of the aggregate class. setattr(cls, event_cls.__name__, event_cls) # Remember which event class to trigger. decorated_event_classes[attribute] = cast( Type[DecoratedEvent], event_cls ) # Check any create_id method defined on this class is static or class method. if "create_id" in cls.__dict__: if not isinstance(cls.__dict__["create_id"], (staticmethod, classmethod)): raise TypeError( f"{cls.create_id} is not a static or class method: " f"{type(cls.create_id)}" ) # Get the parameters of the create_id method that will be used by this class. cls._create_id_param_names: List[str] = [] for name, param in inspect.signature(cls.create_id).parameters.items(): if param.kind in [param.KEYWORD_ONLY, param.POSITIONAL_OR_KEYWORD]: cls._create_id_param_names.append(name) # Define event classes for all events on bases. for aggregate_base_class in args[1]: for name, value in aggregate_base_class.__dict__.items(): if ( isinstance(value, type) and issubclass(value, AggregateEvent) and name not in cls.__dict__ and name.lower() != name ): sub_class = cls._define_event_class( name, (base_event_cls, value), None ) setattr(cls, name, sub_class) def _define_event_class( cls, name: str, bases: Tuple[type, ...], apply_method: Optional[AnyCallable], ) -> type: # Define annotations for the event class (specs the init method). annotations = {} if apply_method is not None: method_signature = inspect.signature(apply_method) supers = { s for b in bases for s in b.__mro__ if hasattr(s, "__annotations__") } super_annotations = {a for s in supers for a in s.__annotations__} for param_name, param in list(method_signature.parameters.items())[1:]: # Don't define 'id' on a "created" class. if param_name == "id" and apply_method.__name__ == "__init__": continue # Don't override super class annotations, unless no default on param. if param_name not in super_annotations or param.default == param.empty: annotations[param_name] = "typing.Any" # Todo: Improve this? event_cls_qualname = ".".join([cls.__qualname__, name]) event_cls_dict = { "__annotations__": annotations, "__module__": cls.__module__, "__qualname__": event_cls_qualname, } # Create the event class object. return type(name, bases, event_cls_dict) def __call__(cls, *args: Any, **kwargs: Any) -> Any: try: created_event_classes = aggregate_has_many_created_event_classes[cls] raise TypeError( """Can't decide which of many "created" event classes to use: """ f"""'{"', '".join(created_event_classes)}'. Please use class """ "arg 'created_event_name' or @event decorator on __init__ method." ) except KeyError: pass self_init: WrapperDescriptorType = cls.__init__ # type: ignore kwargs = _coerce_args_to_kwargs( self_init, args, kwargs, expects_id=cls in _annotations_mention_id, ) return cls._create( event_class=cls._created_event_class, **kwargs, ) def _create( cls, event_class: Type[AggregateCreated[TAggregate]], *, id: Optional[UUID] = None, **kwargs: Any, ) -> TAggregate: """ Factory method to construct a new aggregate object instance. """ # Construct the domain event class, # with an ID and version, and the # a topic for the aggregate class. create_id_kwargs = { k: v for k, v in kwargs.items() if k in cls._create_id_param_names } originator_id = id or cls.create_id(**create_id_kwargs) # Impose the required common "created" event attribute values. kwargs = kwargs.copy() kwargs.update( originator_topic=get_topic(cls), originator_id=originator_id, originator_version=cls.INITIAL_VERSION, timestamp=event_class.create_timestamp(), ) try: # noinspection PyArgumentList created_event = event_class( **kwargs, ) except TypeError as e: msg = f"Unable to construct '{event_class.__name__}' event: {e}" raise TypeError(msg) # Construct the aggregate object. agg = created_event.mutate(None) assert agg is not None # Append the domain event to pending list. agg.pending_events.append(created_event) # Return the aggregate. return agg # noinspection PyUnusedLocal @staticmethod def create_id(**kwargs: Any) -> UUID: """ Returns a new aggregate ID. """ return uuid4() class Aggregate(ABC, metaclass=MetaAggregate): """ Base class for aggregate roots. """ def __base_init__( self, originator_id: UUID, originator_version: int, timestamp: datetime ) -> None: """ Initialises an aggregate object with an :data:`id`, a :data:`version` number, and a :data:`timestamp`. """ self._id = originator_id self._version = originator_version self._created_on = timestamp self._modified_on = timestamp self._pending_events: List[AggregateEvent[Any]] = [] @property def id(self) -> UUID: """ The ID of the aggregate. """ return self._id @property def version(self) -> int: """ The version number of the aggregate. """ return self._version @version.setter def version(self, version: int) -> None: # noinspection PyAttributeOutsideInit self._version = version @property def created_on(self) -> datetime: """ The date and time when the aggregate was created. """ return self._created_on @property def modified_on(self) -> datetime: """ The date and time when the aggregate was last modified. """ return self._modified_on @modified_on.setter def modified_on(self, modified_on: datetime) -> None: # noinspection PyAttributeOutsideInit self._modified_on = modified_on @property def pending_events(self) -> List[AggregateEvent[Any]]: """ A list of pending events. """ return self._pending_events class Event(AggregateEvent[TAggregate]): pass class Created(Event[TAggregate], AggregateCreated[TAggregate]): pass def __eq__(self, other: Any) -> bool: return type(self) == type(other) and self.__dict__ == other.__dict__ def __repr__(self) -> str: attrs = [ f"{k.lstrip('_')}={v!r}" for k, v in self.__dict__.items() if k != "_pending_events" ] return f"{type(self).__name__}({', '.join(attrs)})" def trigger_event( self, event_class: Type[AggregateEvent[Any]], **kwargs: Any, ) -> None: """ Triggers domain event of given type, by creating an event object and using it to mutate the aggregate. """ # Construct the domain event as the # next in the aggregate's sequence. # Use counting to generate the sequence. next_version = self.version + 1 # Impose the required common domain event attribute values. kwargs = kwargs.copy() kwargs.update( originator_id=self.id, originator_version=next_version, timestamp=event_class.create_timestamp(), ) try: new_event = event_class(**kwargs) except TypeError as e: raise TypeError(f"Can't construct event {event_class}: {e}") # Mutate aggregate with domain event. new_event.mutate(self) # Append the domain event to pending list. self.pending_events.append(new_event) def collect_events(self) -> List[AggregateEvent[Any]]: """ Collects and returns a list of pending aggregate :class:`AggregateEvent` objects. """ collected = [] while self.pending_events: collected.append(self.pending_events.pop(0)) return collected # @overload # def aggregate(*, created_event_name: str) -> Callable[[Any], Type[Aggregate]]: # ... # # # @overload # def aggregate(cls: Any) -> Type[Aggregate]: # ... def aggregate( cls: Optional[Any] = None, *, created_event_name: Optional[str] = None, ) -> Union[Type[Aggregate], Callable[[Any], Type[Aggregate]]]: """ Converts the class that was passed in to inherit from Aggregate. .. code-block:: python @aggregate class MyAggregate: pass ...is equivalent to... .. code-block:: python class MyAggregate(Aggregate): pass """ def decorator(cls_: Any) -> Type[Aggregate]: if issubclass(cls_, Aggregate): raise TypeError(f"{cls_.__qualname__} is already an Aggregate") bases = cls_.__bases__ if bases == (object,): bases = (Aggregate,) else: bases += (Aggregate,) cls_dict = dict() cls_dict.update(cls_.__dict__) cls_ = MetaAggregate( cls_.__qualname__, bases, cls_dict, created_event_name=created_event_name, ) assert issubclass(cls_, Aggregate) return cls_ if cls: return decorator(cls) else: return decorator class OriginatorIDError(Exception): """ Raised when a domain event can't be applied to an aggregate due to an ID mismatch indicating the domain event is not in the aggregate's sequence of events. """ class OriginatorVersionError(Exception): """ Raised when a domain event can't be applied to an aggregate due to version mismatch indicating the domain event is not the next in the aggregate's sequence of events. """ class VersionError(OriginatorVersionError): """ Old name for 'OriginatorVersionError'. This class exists to maintain backwards-compatibility but will be removed in a future version Please use 'OriginatorVersionError' instead. """ class Snapshot(DomainEvent[TAggregate], metaclass=MetaDomainEvent): # noinspection PyUnresolvedReferences """ Snapshots represent the state of an aggregate at a particular version. Constructor arguments: :param UUID originator_id: ID of originating aggregate. :param int originator_version: version of originating aggregate. :param datetime timestamp: date-time of the event :param str topic: string that includes a class and its module :param dict state: version of originating aggregate. """ topic: str state: Dict[str, Any] @classmethod def take(cls, aggregate: TAggregate) -> "Snapshot[TAggregate]": """ Creates a snapshot of the given :class:`Aggregate` object. """ aggregate_state = dict(aggregate.__dict__) aggregate_state.pop("_pending_events") class_version = getattr(type(aggregate), "class_version", 1) if class_version > 1: aggregate_state["class_version"] = class_version originator_id = aggregate_state.pop("_id") originator_version = aggregate_state.pop("_version") # noinspection PyArgumentList return cls( # type: ignore originator_id=originator_id, originator_version=originator_version, timestamp=cls.create_timestamp(), topic=get_topic(type(aggregate)), state=aggregate_state, ) def mutate(self, _: Optional[TAggregate]) -> TAggregate: """ Reconstructs the snapshotted :class:`Aggregate` object. """ cls = resolve_topic(self.topic) assert issubclass(cls, Aggregate) aggregate_state = dict(self.state) from_version = aggregate_state.pop("class_version", 1) class_version = getattr(cls, "class_version", 1) while from_version < class_version: upcast_name = f"upcast_v{from_version}_v{from_version + 1}" upcast = getattr(cls, upcast_name) upcast(aggregate_state) from_version += 1 aggregate_state["_id"] = self.originator_id aggregate_state["_version"] = self.originator_version aggregate_state["_pending_events"] = [] aggregate: TAggregate = object.__new__(cls) aggregate.__dict__.update(aggregate_state) return aggregate
35.498061
88
0.61324
baa310ddd6f096314432716e92c19da3f423cffc
60,054
py
Python
pandas/tests/frame/methods/test_replace.py
Japanuspus/pandas
e38e987160c792f315685dc74fc1fc33d9389a71
[ "BSD-3-Clause" ]
1
2020-11-15T11:21:04.000Z
2020-11-15T11:21:04.000Z
pandas/tests/frame/methods/test_replace.py
Japanuspus/pandas
e38e987160c792f315685dc74fc1fc33d9389a71
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/frame/methods/test_replace.py
Japanuspus/pandas
e38e987160c792f315685dc74fc1fc33d9389a71
[ "BSD-3-Clause" ]
null
null
null
from datetime import datetime from io import StringIO import re from typing import Dict, List, Union import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm @pytest.fixture def mix_ab() -> Dict[str, List[Union[int, str]]]: return {"a": list(range(4)), "b": list("ab..")} @pytest.fixture def mix_abc() -> Dict[str, List[Union[float, str]]]: return {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]} class TestDataFrameReplace: def test_replace_inplace(self, datetime_frame, float_string_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan tsframe = datetime_frame.copy() return_value = tsframe.replace(np.nan, 0, inplace=True) assert return_value is None tm.assert_frame_equal(tsframe, datetime_frame.fillna(0)) # mixed type mf = float_string_frame mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan result = float_string_frame.replace(np.nan, 0) expected = float_string_frame.fillna(value=0) tm.assert_frame_equal(result, expected) tsframe = datetime_frame.copy() return_value = tsframe.replace([np.nan], [0], inplace=True) assert return_value is None tm.assert_frame_equal(tsframe, datetime_frame.fillna(0)) def test_regex_replace_scalar(self, mix_ab): obj = {"a": list("ab.."), "b": list("efgh")} dfobj = DataFrame(obj) dfmix = DataFrame(mix_ab) # simplest cases # regex -> value # obj frame res = dfobj.replace(r"\s*\.\s*", np.nan, regex=True) tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.replace(r"\s*\.\s*", np.nan, regex=True) tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True) objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True) mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.replace(re.compile(r"\s*\.\s*"), np.nan, regex=True) tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.replace(re.compile(r"\s*\.\s*"), np.nan, regex=True) tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.replace(re.compile(r"\s*(\.)\s*"), r"\1\1\1") objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.replace(re.compile(r"\s*(\.)\s*"), r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfmix.replace(regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfmix.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1") mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) def test_regex_replace_scalar_inplace(self, mix_ab): obj = {"a": list("ab.."), "b": list("efgh")} dfobj = DataFrame(obj) dfmix = DataFrame(mix_ab) # simplest cases # regex -> value # obj frame res = dfobj.copy() return_value = res.replace(r"\s*\.\s*", np.nan, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace(r"\s*\.\s*", np.nan, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True, inplace=True) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace(r"\s*(\.)\s*", r"\1\1\1", regex=True, inplace=True) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.copy() return_value = res.replace( re.compile(r"\s*\.\s*"), np.nan, regex=True, inplace=True ) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace( re.compile(r"\s*\.\s*"), np.nan, regex=True, inplace=True ) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace( re.compile(r"\s*(\.)\s*"), r"\1\1\1", regex=True, inplace=True ) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace( re.compile(r"\s*(\.)\s*"), r"\1\1\1", regex=True, inplace=True ) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) res = dfobj.copy() return_value = res.replace(regex=r"\s*\.\s*", value=np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace(regex=r"\s*\.\s*", value=np.nan, inplace=True) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1", inplace=True) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace(regex=r"\s*(\.)\s*", value=r"\1\1\1", inplace=True) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) # everything with compiled regexs as well res = dfobj.copy() return_value = res.replace( regex=re.compile(r"\s*\.\s*"), value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(dfobj, res.fillna(".")) # mixed res = dfmix.copy() return_value = res.replace( regex=re.compile(r"\s*\.\s*"), value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(dfmix, res.fillna(".")) # regex -> regex # obj frame res = dfobj.copy() return_value = res.replace( regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1", inplace=True ) assert return_value is None objc = obj.copy() objc["a"] = ["a", "b", "...", "..."] expec = DataFrame(objc) tm.assert_frame_equal(res, expec) # with mixed res = dfmix.copy() return_value = res.replace( regex=re.compile(r"\s*(\.)\s*"), value=r"\1\1\1", inplace=True ) assert return_value is None mixc = mix_ab.copy() mixc["b"] = ["a", "b", "...", "..."] expec = DataFrame(mixc) tm.assert_frame_equal(res, expec) def test_regex_replace_list_obj(self): obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"e|f|g"] values = [np.nan, "crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap"] * 3 + ["h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(e|f|g)"] values = [r"\1\1", r"\1_crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e_crap", "f_crap", "g_crap", "h"], "c": ["h", "e_crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.replace(value=values, regex=to_replace_res) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_regex_replace_list_obj_inplace(self): # same as above with inplace=True # lists of regexes and values obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"e|f|g"] values = [np.nan, "crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap"] * 3 + ["h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(e|f|g)"] values = [r"\1\1", r"\1_crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e_crap", "f_crap", "g_crap", "h"], "c": ["h", "e_crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"e"] values = [r"\1\1", r"crap"] res = dfobj.copy() return_value = res.replace(value=values, regex=to_replace_res, inplace=True) assert return_value is None expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_regex_replace_list_mixed(self, mix_ab): # mixed frame to make sure this doesn't break things dfmix = DataFrame(mix_ab) # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"a"] values = [np.nan, "crap"] mix2 = {"a": list(range(4)), "b": list("ab.."), "c": list("halo")} dfmix2 = DataFrame(mix2) res = dfmix2.replace(to_replace_res, values, regex=True) expec = DataFrame( { "a": mix2["a"], "b": ["crap", "b", np.nan, np.nan], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(a|b)"] values = [r"\1\1", r"\1_crap"] res = dfmix.replace(to_replace_res, values, regex=True) expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.replace(to_replace_res, values, regex=True) expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.replace(regex=to_replace_res, value=values) expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) def test_regex_replace_list_mixed_inplace(self, mix_ab): dfmix = DataFrame(mix_ab) # the same inplace # lists of regexes and values # list of [re1, re2, ..., reN] -> [v1, v2, ..., vN] to_replace_res = [r"\s*\.\s*", r"a"] values = [np.nan, "crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b", np.nan, np.nan]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [re1, re2, .., reN] to_replace_res = [r"\s*(\.)\s*", r"(a|b)"] values = [r"\1\1", r"\1_crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["a_crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) # list of [re1, re2, ..., reN] -> [(re1 or v1), (re2 or v2), ..., (reN # or vN)] to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.copy() return_value = res.replace(to_replace_res, values, inplace=True, regex=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) to_replace_res = [r"\s*(\.)\s*", r"a", r"(b)"] values = [r"\1\1", r"crap", r"\1_crap"] res = dfmix.copy() return_value = res.replace(regex=to_replace_res, value=values, inplace=True) assert return_value is None expec = DataFrame({"a": mix_ab["a"], "b": ["crap", "b_crap", "..", ".."]}) tm.assert_frame_equal(res, expec) def test_regex_replace_dict_mixed(self, mix_abc): dfmix = DataFrame(mix_abc) # dicts # single dict {re1: v1}, search the whole frame # need test for this... # list of dicts {re1: v1, re2: v2, ..., re3: v3}, search the whole # frame res = dfmix.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace( {"b": r"\s*\.\s*"}, {"b": np.nan}, inplace=True, regex=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) # list of dicts {re1: re11, re2: re12, ..., reN: re1N}, search the # whole frame res = dfmix.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True) res2 = dfmix.copy() return_value = res2.replace( {"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, inplace=True, regex=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) res = dfmix.replace(regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"}) res2 = dfmix.copy() return_value = res2.replace( regex={"b": r"\s*(\.)\s*"}, value={"b": r"\1ty"}, inplace=True ) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", ".ty", ".ty"], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) # scalar -> dict # to_replace regex, {value: value} expec = DataFrame( {"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]} ) res = dfmix.replace("a", {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace("a", {"b": np.nan}, regex=True, inplace=True) assert return_value is None tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) res = dfmix.replace("a", {"b": np.nan}, regex=True) res2 = dfmix.copy() return_value = res2.replace(regex="a", value={"b": np.nan}, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": [np.nan, "b", ".", "."], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) def test_regex_replace_dict_nested(self, mix_abc): # nested dicts will not work until this is implemented for Series dfmix = DataFrame(mix_abc) res = dfmix.replace({"b": {r"\s*\.\s*": np.nan}}, regex=True) res2 = dfmix.copy() res4 = dfmix.copy() return_value = res2.replace( {"b": {r"\s*\.\s*": np.nan}}, inplace=True, regex=True ) assert return_value is None res3 = dfmix.replace(regex={"b": {r"\s*\.\s*": np.nan}}) return_value = res4.replace(regex={"b": {r"\s*\.\s*": np.nan}}, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) tm.assert_frame_equal(res4, expec) def test_regex_replace_dict_nested_non_first_character(self): # GH 25259 df = DataFrame({"first": ["abc", "bca", "cab"]}) expected = DataFrame({"first": [".bc", "bc.", "c.b"]}) result = df.replace({"a": "."}, regex=True) tm.assert_frame_equal(result, expected) def test_regex_replace_dict_nested_gh4115(self): df = DataFrame({"Type": ["Q", "T", "Q", "Q", "T"], "tmp": 2}) expected = DataFrame({"Type": [0, 1, 0, 0, 1], "tmp": 2}) result = df.replace({"Type": {"Q": 0, "T": 1}}) tm.assert_frame_equal(result, expected) def test_regex_replace_list_to_scalar(self, mix_abc): df = DataFrame(mix_abc) expec = DataFrame( { "a": mix_abc["a"], "b": np.array([np.nan] * 4), "c": [np.nan, np.nan, np.nan, "d"], } ) res = df.replace([r"\s*\.\s*", "a|b"], np.nan, regex=True) res2 = df.copy() res3 = df.copy() return_value = res2.replace( [r"\s*\.\s*", "a|b"], np.nan, regex=True, inplace=True ) assert return_value is None return_value = res3.replace( regex=[r"\s*\.\s*", "a|b"], value=np.nan, inplace=True ) assert return_value is None tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_str_to_numeric(self, mix_abc): # what happens when you try to replace a numeric value with a regex? df = DataFrame(mix_abc) res = df.replace(r"\s*\.\s*", 0, regex=True) res2 = df.copy() return_value = res2.replace(r"\s*\.\s*", 0, inplace=True, regex=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=r"\s*\.\s*", value=0, inplace=True) assert return_value is None expec = DataFrame({"a": mix_abc["a"], "b": ["a", "b", 0, 0], "c": mix_abc["c"]}) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_regex_list_to_numeric(self, mix_abc): df = DataFrame(mix_abc) res = df.replace([r"\s*\.\s*", "b"], 0, regex=True) res2 = df.copy() return_value = res2.replace([r"\s*\.\s*", "b"], 0, regex=True, inplace=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=[r"\s*\.\s*", "b"], value=0, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", 0, 0, 0], "c": ["a", 0, np.nan, "d"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_series_of_regexes(self, mix_abc): df = DataFrame(mix_abc) s1 = Series({"b": r"\s*\.\s*"}) s2 = Series({"b": np.nan}) res = df.replace(s1, s2, regex=True) res2 = df.copy() return_value = res2.replace(s1, s2, inplace=True, regex=True) assert return_value is None res3 = df.copy() return_value = res3.replace(regex=s1, value=s2, inplace=True) assert return_value is None expec = DataFrame( {"a": mix_abc["a"], "b": ["a", "b", np.nan, np.nan], "c": mix_abc["c"]} ) tm.assert_frame_equal(res, expec) tm.assert_frame_equal(res2, expec) tm.assert_frame_equal(res3, expec) def test_regex_replace_numeric_to_object_conversion(self, mix_abc): df = DataFrame(mix_abc) expec = DataFrame({"a": ["a", 1, 2, 3], "b": mix_abc["b"], "c": mix_abc["c"]}) res = df.replace(0, "a") tm.assert_frame_equal(res, expec) assert res.a.dtype == np.object_ @pytest.mark.parametrize("metachar", ["[]", "()", r"\d", r"\w", r"\s"]) def test_replace_regex_metachar(self, metachar): df = DataFrame({"a": [metachar, "else"]}) result = df.replace({"a": {metachar: "paren"}}) expected = DataFrame({"a": ["paren", "else"]}) tm.assert_frame_equal(result, expected) def test_replace(self, datetime_frame): datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan zero_filled = datetime_frame.replace(np.nan, -1e8) tm.assert_frame_equal(zero_filled, datetime_frame.fillna(-1e8)) tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), datetime_frame) datetime_frame["A"][:5] = np.nan datetime_frame["A"][-5:] = np.nan datetime_frame["B"][:5] = -1e8 # empty df = DataFrame(index=["a", "b"]) tm.assert_frame_equal(df, df.replace(5, 7)) # GH 11698 # test for mixed data types. df = DataFrame( [("-", pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))] ) df1 = df.replace("-", np.nan) expected_df = DataFrame( [(np.nan, pd.to_datetime("20150101")), ("a", pd.to_datetime("20150102"))] ) tm.assert_frame_equal(df1, expected_df) def test_replace_list(self): obj = {"a": list("ab.."), "b": list("efgh"), "c": list("helo")} dfobj = DataFrame(obj) # lists of regexes and values # list of [v1, v2, ..., vN] -> [v1, v2, ..., vN] to_replace_res = [r".", r"e"] values = [np.nan, "crap"] res = dfobj.replace(to_replace_res, values) expec = DataFrame( { "a": ["a", "b", np.nan, np.nan], "b": ["crap", "f", "g", "h"], "c": ["h", "crap", "l", "o"], } ) tm.assert_frame_equal(res, expec) # list of [v1, v2, ..., vN] -> [v1, v2, .., vN] to_replace_res = [r".", r"f"] values = [r"..", r"crap"] res = dfobj.replace(to_replace_res, values) expec = DataFrame( { "a": ["a", "b", "..", ".."], "b": ["e", "crap", "g", "h"], "c": ["h", "e", "l", "o"], } ) tm.assert_frame_equal(res, expec) def test_replace_with_empty_list(self): # GH 21977 s = Series([["a", "b"], [], np.nan, [1]]) df = DataFrame({"col": s}) expected = df result = df.replace([], np.nan) tm.assert_frame_equal(result, expected) # GH 19266 with pytest.raises(ValueError, match="cannot assign mismatch"): df.replace({np.nan: []}) with pytest.raises(ValueError, match="cannot assign mismatch"): df.replace({np.nan: ["dummy", "alt"]}) def test_replace_series_dict(self): # from GH 3064 df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}}) result = df.replace(0, {"zero": 0.5, "one": 1.0}) expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 2.0, "b": 1.0}}) tm.assert_frame_equal(result, expected) result = df.replace(0, df.mean()) tm.assert_frame_equal(result, expected) # series to series/dict df = DataFrame({"zero": {"a": 0.0, "b": 1}, "one": {"a": 2.0, "b": 0}}) s = Series({"zero": 0.0, "one": 2.0}) result = df.replace(s, {"zero": 0.5, "one": 1.0}) expected = DataFrame({"zero": {"a": 0.5, "b": 1}, "one": {"a": 1.0, "b": 0.0}}) tm.assert_frame_equal(result, expected) result = df.replace(s, df.mean()) tm.assert_frame_equal(result, expected) def test_replace_convert(self): # gh 3907 df = DataFrame([["foo", "bar", "bah"], ["bar", "foo", "bah"]]) m = {"foo": 1, "bar": 2, "bah": 3} rep = df.replace(m) expec = Series([np.int64] * 3) res = rep.dtypes tm.assert_series_equal(expec, res) def test_replace_mixed(self, float_string_frame): mf = float_string_frame mf.iloc[5:20, mf.columns.get_loc("foo")] = np.nan mf.iloc[-10:, mf.columns.get_loc("A")] = np.nan result = float_string_frame.replace(np.nan, -18) expected = float_string_frame.fillna(value=-18) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result.replace(-18, np.nan), float_string_frame) result = float_string_frame.replace(np.nan, -1e8) expected = float_string_frame.fillna(value=-1e8) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result.replace(-1e8, np.nan), float_string_frame) # int block upcasting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), } ) expected = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0.5, 1], dtype="float64"), } ) result = df.replace(0, 0.5) tm.assert_frame_equal(result, expected) return_value = df.replace(0, 0.5, inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) # int block splitting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), "C": Series([1, 2], dtype="int64"), } ) expected = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0.5, 1], dtype="float64"), "C": Series([1, 2], dtype="int64"), } ) result = df.replace(0, 0.5) tm.assert_frame_equal(result, expected) # to object block upcasting df = DataFrame( { "A": Series([1.0, 2.0], dtype="float64"), "B": Series([0, 1], dtype="int64"), } ) expected = DataFrame( { "A": Series([1, "foo"], dtype="object"), "B": Series([0, 1], dtype="int64"), } ) result = df.replace(2, "foo") tm.assert_frame_equal(result, expected) expected = DataFrame( { "A": Series(["foo", "bar"], dtype="object"), "B": Series([0, "foo"], dtype="object"), } ) result = df.replace([1, 2], ["foo", "bar"]) tm.assert_frame_equal(result, expected) # test case from df = DataFrame( {"A": Series([3, 0], dtype="int64"), "B": Series([0, 3], dtype="int64")} ) result = df.replace(3, df.mean().to_dict()) expected = df.copy().astype("float64") m = df.mean() expected.iloc[0, 0] = m[0] expected.iloc[1, 1] = m[1] tm.assert_frame_equal(result, expected) def test_replace_simple_nested_dict(self): df = DataFrame({"col": range(1, 5)}) expected = DataFrame({"col": ["a", 2, 3, "b"]}) result = df.replace({"col": {1: "a", 4: "b"}}) tm.assert_frame_equal(expected, result) # in this case, should be the same as the not nested version result = df.replace({1: "a", 4: "b"}) tm.assert_frame_equal(expected, result) def test_replace_simple_nested_dict_with_nonexistent_value(self): df = DataFrame({"col": range(1, 5)}) expected = DataFrame({"col": ["a", 2, 3, "b"]}) result = df.replace({-1: "-", 1: "a", 4: "b"}) tm.assert_frame_equal(expected, result) result = df.replace({"col": {-1: "-", 1: "a", 4: "b"}}) tm.assert_frame_equal(expected, result) def test_replace_value_is_none(self, datetime_frame): orig_value = datetime_frame.iloc[0, 0] orig2 = datetime_frame.iloc[1, 0] datetime_frame.iloc[0, 0] = np.nan datetime_frame.iloc[1, 0] = 1 result = datetime_frame.replace(to_replace={np.nan: 0}) expected = datetime_frame.T.replace(to_replace={np.nan: 0}).T tm.assert_frame_equal(result, expected) result = datetime_frame.replace(to_replace={np.nan: 0, 1: -1e8}) tsframe = datetime_frame.copy() tsframe.iloc[0, 0] = 0 tsframe.iloc[1, 0] = -1e8 expected = tsframe tm.assert_frame_equal(expected, result) datetime_frame.iloc[0, 0] = orig_value datetime_frame.iloc[1, 0] = orig2 def test_replace_for_new_dtypes(self, datetime_frame): # dtypes tsframe = datetime_frame.copy().astype(np.float32) tsframe["A"][:5] = np.nan tsframe["A"][-5:] = np.nan zero_filled = tsframe.replace(np.nan, -1e8) tm.assert_frame_equal(zero_filled, tsframe.fillna(-1e8)) tm.assert_frame_equal(zero_filled.replace(-1e8, np.nan), tsframe) tsframe["A"][:5] = np.nan tsframe["A"][-5:] = np.nan tsframe["B"][:5] = -1e8 b = tsframe["B"] b[b == -1e8] = np.nan tsframe["B"] = b result = tsframe.fillna(method="bfill") tm.assert_frame_equal(result, tsframe.fillna(method="bfill")) @pytest.mark.parametrize( "frame, to_replace, value, expected", [ (DataFrame({"ints": [1, 2, 3]}), 1, 0, DataFrame({"ints": [0, 2, 3]})), ( DataFrame({"ints": [1, 2, 3]}, dtype=np.int32), 1, 0, DataFrame({"ints": [0, 2, 3]}, dtype=np.int32), ), ( DataFrame({"ints": [1, 2, 3]}, dtype=np.int16), 1, 0, DataFrame({"ints": [0, 2, 3]}, dtype=np.int16), ), ( DataFrame({"bools": [True, False, True]}), False, True, DataFrame({"bools": [True, True, True]}), ), ( DataFrame({"complex": [1j, 2j, 3j]}), 1j, 0, DataFrame({"complex": [0j, 2j, 3j]}), ), ( DataFrame( { "datetime64": Index( [ datetime(2018, 5, 28), datetime(2018, 7, 28), datetime(2018, 5, 28), ] ) } ), datetime(2018, 5, 28), datetime(2018, 7, 28), DataFrame({"datetime64": Index([datetime(2018, 7, 28)] * 3)}), ), # GH 20380 ( DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["foo"]}), "foo", "bar", DataFrame({"dt": [datetime(3017, 12, 20)], "str": ["bar"]}), ), ( DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [0, np.nan, 2], } ), Timestamp("20130102", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ), ), # GH 35376 ( DataFrame([[1, 1.0], [2, 2.0]]), 1.0, 5, DataFrame([[5, 5.0], [2, 2.0]]), ), ( DataFrame([[1, 1.0], [2, 2.0]]), 1, 5, DataFrame([[5, 5.0], [2, 2.0]]), ), ( DataFrame([[1, 1.0], [2, 2.0]]), 1.0, 5.0, DataFrame([[5, 5.0], [2, 2.0]]), ), ( DataFrame([[1, 1.0], [2, 2.0]]), 1, 5.0, DataFrame([[5, 5.0], [2, 2.0]]), ), ], ) def test_replace_dtypes(self, frame, to_replace, value, expected): result = getattr(frame, "replace")(to_replace, value) tm.assert_frame_equal(result, expected) def test_replace_input_formats_listlike(self): # both dicts to_rep = {"A": np.nan, "B": 0, "C": ""} values = {"A": 0, "B": -1, "C": "missing"} df = DataFrame( {"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) filled = df.replace(to_rep, values) expected = {k: v.replace(to_rep[k], values[k]) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) result = df.replace([0, 2, 5], [5, 2, 0]) expected = DataFrame( {"A": [np.nan, 5, np.inf], "B": [5, 2, 0], "C": ["", "asdf", "fd"]} ) tm.assert_frame_equal(result, expected) # scalar to dict values = {"A": 0, "B": -1, "C": "missing"} df = DataFrame( {"A": [np.nan, 0, np.nan], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) filled = df.replace(np.nan, values) expected = {k: v.replace(np.nan, values[k]) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) # list to list to_rep = [np.nan, 0, ""] values = [-2, -1, "missing"] result = df.replace(to_rep, values) expected = df.copy() for i in range(len(to_rep)): return_value = expected.replace(to_rep[i], values[i], inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) msg = r"Replacement lists must match in length\. Expecting 3 got 2" with pytest.raises(ValueError, match=msg): df.replace(to_rep, values[1:]) def test_replace_input_formats_scalar(self): df = DataFrame( {"A": [np.nan, 0, np.inf], "B": [0, 2, 5], "C": ["", "asdf", "fd"]} ) # dict to scalar to_rep = {"A": np.nan, "B": 0, "C": ""} filled = df.replace(to_rep, 0) expected = {k: v.replace(to_rep[k], 0) for k, v in df.items()} tm.assert_frame_equal(filled, DataFrame(expected)) msg = "value argument must be scalar, dict, or Series" with pytest.raises(TypeError, match=msg): df.replace(to_rep, [np.nan, 0, ""]) # list to scalar to_rep = [np.nan, 0, ""] result = df.replace(to_rep, -1) expected = df.copy() for i in range(len(to_rep)): return_value = expected.replace(to_rep[i], -1, inplace=True) assert return_value is None tm.assert_frame_equal(result, expected) def test_replace_limit(self): pass def test_replace_dict_no_regex(self): answer = Series( { 0: "Strongly Agree", 1: "Agree", 2: "Neutral", 3: "Disagree", 4: "Strongly Disagree", } ) weights = { "Agree": 4, "Disagree": 2, "Neutral": 3, "Strongly Agree": 5, "Strongly Disagree": 1, } expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1}) result = answer.replace(weights) tm.assert_series_equal(result, expected) def test_replace_series_no_regex(self): answer = Series( { 0: "Strongly Agree", 1: "Agree", 2: "Neutral", 3: "Disagree", 4: "Strongly Disagree", } ) weights = Series( { "Agree": 4, "Disagree": 2, "Neutral": 3, "Strongly Agree": 5, "Strongly Disagree": 1, } ) expected = Series({0: 5, 1: 4, 2: 3, 3: 2, 4: 1}) result = answer.replace(weights) tm.assert_series_equal(result, expected) def test_replace_dict_tuple_list_ordering_remains_the_same(self): df = DataFrame(dict(A=[np.nan, 1])) res1 = df.replace(to_replace={np.nan: 0, 1: -1e8}) res2 = df.replace(to_replace=(1, np.nan), value=[-1e8, 0]) res3 = df.replace(to_replace=[1, np.nan], value=[-1e8, 0]) expected = DataFrame({"A": [0, -1e8]}) tm.assert_frame_equal(res1, res2) tm.assert_frame_equal(res2, res3) tm.assert_frame_equal(res3, expected) def test_replace_doesnt_replace_without_regex(self): raw = """fol T_opp T_Dir T_Enh 0 1 0 0 vo 1 2 vr 0 0 2 2 0 0 0 3 3 0 bt 0""" df = pd.read_csv(StringIO(raw), sep=r"\s+") res = df.replace({r"\D": 1}) tm.assert_frame_equal(df, res) def test_replace_bool_with_string(self): df = DataFrame({"a": [True, False], "b": list("ab")}) result = df.replace(True, "a") expected = DataFrame({"a": ["a", False], "b": df.b}) tm.assert_frame_equal(result, expected) def test_replace_pure_bool_with_string_no_op(self): df = DataFrame(np.random.rand(2, 2) > 0.5) result = df.replace("asdf", "fdsa") tm.assert_frame_equal(df, result) def test_replace_bool_with_bool(self): df = DataFrame(np.random.rand(2, 2) > 0.5) result = df.replace(False, True) expected = DataFrame(np.ones((2, 2), dtype=bool)) tm.assert_frame_equal(result, expected) def test_replace_with_dict_with_bool_keys(self): df = DataFrame({0: [True, False], 1: [False, True]}) result = df.replace({"asdf": "asdb", True: "yes"}) expected = DataFrame({0: ["yes", False], 1: [False, "yes"]}) tm.assert_frame_equal(result, expected) def test_replace_dict_strings_vs_ints(self): # GH#34789 df = DataFrame({"Y0": [1, 2], "Y1": [3, 4]}) result = df.replace({"replace_string": "test"}) tm.assert_frame_equal(result, df) result = df["Y0"].replace({"replace_string": "test"}) tm.assert_series_equal(result, df["Y0"]) def test_replace_truthy(self): df = DataFrame({"a": [True, True]}) r = df.replace([np.inf, -np.inf], np.nan) e = df tm.assert_frame_equal(r, e) def test_nested_dict_overlapping_keys_replace_int(self): # GH 27660 keep behaviour consistent for simple dictionary and # nested dictionary replacement df = DataFrame({"a": list(range(1, 5))}) result = df.replace({"a": dict(zip(range(1, 5), range(2, 6)))}) expected = df.replace(dict(zip(range(1, 5), range(2, 6)))) tm.assert_frame_equal(result, expected) def test_nested_dict_overlapping_keys_replace_str(self): # GH 27660 a = np.arange(1, 5) astr = a.astype(str) bstr = np.arange(2, 6).astype(str) df = DataFrame({"a": astr}) result = df.replace(dict(zip(astr, bstr))) expected = df.replace({"a": dict(zip(astr, bstr))}) tm.assert_frame_equal(result, expected) def test_replace_swapping_bug(self): df = DataFrame({"a": [True, False, True]}) res = df.replace({"a": {True: "Y", False: "N"}}) expect = DataFrame({"a": ["Y", "N", "Y"]}) tm.assert_frame_equal(res, expect) df = DataFrame({"a": [0, 1, 0]}) res = df.replace({"a": {0: "Y", 1: "N"}}) expect = DataFrame({"a": ["Y", "N", "Y"]}) tm.assert_frame_equal(res, expect) def test_replace_period(self): d = { "fname": { "out_augmented_AUG_2011.json": pd.Period(year=2011, month=8, freq="M"), "out_augmented_JAN_2011.json": pd.Period(year=2011, month=1, freq="M"), "out_augmented_MAY_2012.json": pd.Period(year=2012, month=5, freq="M"), "out_augmented_SUBSIDY_WEEK.json": pd.Period( year=2011, month=4, freq="M" ), "out_augmented_AUG_2012.json": pd.Period(year=2012, month=8, freq="M"), "out_augmented_MAY_2011.json": pd.Period(year=2011, month=5, freq="M"), "out_augmented_SEP_2013.json": pd.Period(year=2013, month=9, freq="M"), } } df = DataFrame( [ "out_augmented_AUG_2012.json", "out_augmented_SEP_2013.json", "out_augmented_SUBSIDY_WEEK.json", "out_augmented_MAY_2012.json", "out_augmented_MAY_2011.json", "out_augmented_AUG_2011.json", "out_augmented_JAN_2011.json", ], columns=["fname"], ) assert set(df.fname.values) == set(d["fname"].keys()) # We don't support converting object -> specialized EA in # replace yet. expected = DataFrame( {"fname": [d["fname"][k] for k in df.fname.values]}, dtype=object ) result = df.replace(d) tm.assert_frame_equal(result, expected) def test_replace_datetime(self): d = { "fname": { "out_augmented_AUG_2011.json": Timestamp("2011-08"), "out_augmented_JAN_2011.json": Timestamp("2011-01"), "out_augmented_MAY_2012.json": Timestamp("2012-05"), "out_augmented_SUBSIDY_WEEK.json": Timestamp("2011-04"), "out_augmented_AUG_2012.json": Timestamp("2012-08"), "out_augmented_MAY_2011.json": Timestamp("2011-05"), "out_augmented_SEP_2013.json": Timestamp("2013-09"), } } df = DataFrame( [ "out_augmented_AUG_2012.json", "out_augmented_SEP_2013.json", "out_augmented_SUBSIDY_WEEK.json", "out_augmented_MAY_2012.json", "out_augmented_MAY_2011.json", "out_augmented_AUG_2011.json", "out_augmented_JAN_2011.json", ], columns=["fname"], ) assert set(df.fname.values) == set(d["fname"].keys()) expected = DataFrame({"fname": [d["fname"][k] for k in df.fname.values]}) result = df.replace(d) tm.assert_frame_equal(result, expected) def test_replace_datetimetz(self): # GH 11326 # behaving poorly when presented with a datetime64[ns, tz] df = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [0, np.nan, 2], } ) result = df.replace(np.nan, 1) expected = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": Series([0, 1, 2], dtype="float64"), } ) tm.assert_frame_equal(result, expected) result = df.fillna(1) tm.assert_frame_equal(result, expected) result = df.replace(0, np.nan) expected = DataFrame( { "A": date_range("20130101", periods=3, tz="US/Eastern"), "B": [np.nan, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.replace( Timestamp("20130102", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), ) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Eastern"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": pd.NaT}, Timestamp("20130104", tz="US/Eastern")) tm.assert_frame_equal(result, expected) # coerce to object result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": pd.NaT}, Timestamp("20130104", tz="US/Pacific")) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104", tz="US/Pacific"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) result = df.copy() result.iloc[1, 0] = np.nan result = result.replace({"A": np.nan}, Timestamp("20130104")) expected = DataFrame( { "A": [ Timestamp("20130101", tz="US/Eastern"), Timestamp("20130104"), Timestamp("20130103", tz="US/Eastern"), ], "B": [0, np.nan, 2], } ) tm.assert_frame_equal(result, expected) def test_replace_with_empty_dictlike(self, mix_abc): # GH 15289 df = DataFrame(mix_abc) tm.assert_frame_equal(df, df.replace({})) tm.assert_frame_equal(df, df.replace(Series([], dtype=object))) tm.assert_frame_equal(df, df.replace({"b": {}})) tm.assert_frame_equal(df, df.replace(Series({"b": {}}))) @pytest.mark.parametrize( "to_replace, method, expected", [ (0, "bfill", {"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}), ( np.nan, "bfill", {"A": [0, 1, 2], "B": [5.0, 7.0, 7.0], "C": ["a", "b", "c"]}, ), ("d", "ffill", {"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}), ( [0, 2], "bfill", {"A": [1, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( [1, 2], "pad", {"A": [0, 0, 0], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( (1, 2), "bfill", {"A": [0, 2, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}, ), ( ["b", "c"], "ffill", {"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "a", "a"]}, ), ], ) def test_replace_method(self, to_replace, method, expected): # GH 19632 df = DataFrame({"A": [0, 1, 2], "B": [5, np.nan, 7], "C": ["a", "b", "c"]}) result = df.replace(to_replace=to_replace, value=None, method=method) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "replace_dict, final_data", [({"a": 1, "b": 1}, [[3, 3], [2, 2]]), ({"a": 1, "b": 2}, [[3, 1], [2, 3]])], ) def test_categorical_replace_with_dict(self, replace_dict, final_data): # GH 26988 df = DataFrame([[1, 1], [2, 2]], columns=["a", "b"], dtype="category") final_data = np.array(final_data) a = pd.Categorical(final_data[:, 0], categories=[3, 2]) excat = [3, 2] if replace_dict["b"] == 1 else [1, 3] b = pd.Categorical(final_data[:, 1], categories=excat) expected = DataFrame({"a": a, "b": b}) result = df.replace(replace_dict, 3) tm.assert_frame_equal(result, expected) msg = ( r"Attributes of DataFrame.iloc\[:, 0\] \(column name=\"a\"\) are " "different" ) with pytest.raises(AssertionError, match=msg): # ensure non-inplace call does not affect original tm.assert_frame_equal(df, expected) return_value = df.replace(replace_dict, 3, inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "df, to_replace, exp", [ ( {"col1": [1, 2, 3], "col2": [4, 5, 6]}, {4: 5, 5: 6, 6: 7}, {"col1": [1, 2, 3], "col2": [5, 6, 7]}, ), ( {"col1": [1, 2, 3], "col2": ["4", "5", "6"]}, {"4": "5", "5": "6", "6": "7"}, {"col1": [1, 2, 3], "col2": ["5", "6", "7"]}, ), ], ) def test_replace_commutative(self, df, to_replace, exp): # GH 16051 # DataFrame.replace() overwrites when values are non-numeric # also added to data frame whilst issue was for series df = DataFrame(df) expected = DataFrame(exp) result = df.replace(to_replace) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "replacer", [ Timestamp("20170827"), np.int8(1), np.int16(1), np.float32(1), np.float64(1), ], ) def test_replace_replacer_dtype(self, replacer): # GH26632 df = DataFrame(["a"]) result = df.replace({"a": replacer, "b": replacer}) expected = DataFrame([replacer]) tm.assert_frame_equal(result, expected) def test_replace_after_convert_dtypes(self): # GH31517 df = DataFrame({"grp": [1, 2, 3, 4, 5]}, dtype="Int64") result = df.replace(1, 10) expected = DataFrame({"grp": [10, 2, 3, 4, 5]}, dtype="Int64") tm.assert_frame_equal(result, expected) def test_replace_invalid_to_replace(self): # GH 18634 # API: replace() should raise an exception if invalid argument is given df = DataFrame({"one": ["a", "b ", "c"], "two": ["d ", "e ", "f "]}) msg = ( r"Expecting 'to_replace' to be either a scalar, array-like, " r"dict or None, got invalid type.*" ) with pytest.raises(TypeError, match=msg): df.replace(lambda x: x.strip()) @pytest.mark.parametrize("dtype", ["float", "float64", "int64", "Int64", "boolean"]) @pytest.mark.parametrize("value", [np.nan, pd.NA]) def test_replace_no_replacement_dtypes(self, dtype, value): # https://github.com/pandas-dev/pandas/issues/32988 df = DataFrame(np.eye(2), dtype=dtype) result = df.replace(to_replace=[None, -np.inf, np.inf], value=value) tm.assert_frame_equal(result, df) @pytest.mark.parametrize("replacement", [np.nan, 5]) def test_replace_with_duplicate_columns(self, replacement): # GH 24798 result = DataFrame({"A": [1, 2, 3], "A1": [4, 5, 6], "B": [7, 8, 9]}) result.columns = list("AAB") expected = DataFrame( {"A": [1, 2, 3], "A1": [4, 5, 6], "B": [replacement, 8, 9]} ) expected.columns = list("AAB") result["B"] = result["B"].replace(7, replacement) tm.assert_frame_equal(result, expected) @pytest.mark.xfail( reason="replace() changes dtype from period to object, see GH34871", strict=True ) def test_replace_period_ignore_float(self): """ Regression test for GH#34871: if df.replace(1.0, 0.0) is called on a df with a Period column the old, faulty behavior is to raise TypeError. """ df = DataFrame({"Per": [pd.Period("2020-01")] * 3}) result = df.replace(1.0, 0.0) expected = DataFrame({"Per": [pd.Period("2020-01")] * 3}) tm.assert_frame_equal(expected, result) def test_replace_value_category_type(self): """ Test for #23305: to ensure category dtypes are maintained after replace with direct values """ # create input data input_dict = { "col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "d"], "col3": [1.5, 2.5, 3.5, 4.5], "col4": ["cat1", "cat2", "cat3", "cat4"], "col5": ["obj1", "obj2", "obj3", "obj4"], } # explicitly cast columns as category and order them input_df = DataFrame(data=input_dict).astype( {"col2": "category", "col4": "category"} ) input_df["col2"] = input_df["col2"].cat.reorder_categories( ["a", "b", "c", "d"], ordered=True ) input_df["col4"] = input_df["col4"].cat.reorder_categories( ["cat1", "cat2", "cat3", "cat4"], ordered=True ) # create expected dataframe expected_dict = { "col1": [1, 2, 3, 4], "col2": ["a", "b", "c", "z"], "col3": [1.5, 2.5, 3.5, 4.5], "col4": ["cat1", "catX", "cat3", "cat4"], "col5": ["obj9", "obj2", "obj3", "obj4"], } # explicitly cast columns as category and order them expected = DataFrame(data=expected_dict).astype( {"col2": "category", "col4": "category"} ) expected["col2"] = expected["col2"].cat.reorder_categories( ["a", "b", "c", "z"], ordered=True ) expected["col4"] = expected["col4"].cat.reorder_categories( ["cat1", "catX", "cat3", "cat4"], ordered=True ) # replace values in input dataframe input_df = input_df.replace("d", "z") input_df = input_df.replace("obj1", "obj9") result = input_df.replace("cat2", "catX") tm.assert_frame_equal(result, expected) @pytest.mark.xfail( reason="category dtype gets changed to object type after replace, see #35268", strict=True, ) def test_replace_dict_category_type(self, input_category_df, expected_category_df): """ Test to ensure category dtypes are maintained after replace with dict values """ # create input dataframe input_dict = {"col1": ["a"], "col2": ["obj1"], "col3": ["cat1"]} # explicitly cast columns as category input_df = DataFrame(data=input_dict).astype( {"col1": "category", "col2": "category", "col3": "category"} ) # create expected dataframe expected_dict = {"col1": ["z"], "col2": ["obj9"], "col3": ["catX"]} # explicitly cast columns as category expected = DataFrame(data=expected_dict).astype( {"col1": "category", "col2": "category", "col3": "category"} ) # replace values in input dataframe using a dict result = input_df.replace({"a": "z", "obj1": "obj9", "cat1": "catX"}) tm.assert_frame_equal(result, expected) def test_replace_with_compiled_regex(self): # https://github.com/pandas-dev/pandas/issues/35680 df = DataFrame(["a", "b", "c"]) regex = re.compile("^a$") result = df.replace({regex: "z"}, regex=True) expected = DataFrame(["z", "b", "c"]) tm.assert_frame_equal(result, expected) def test_replace_intervals(self): # https://github.com/pandas-dev/pandas/issues/35931 df = DataFrame({"a": [pd.Interval(0, 1), pd.Interval(0, 1)]}) result = df.replace({"a": {pd.Interval(0, 1): "x"}}) expected = DataFrame({"a": ["x", "x"]}) tm.assert_frame_equal(result, expected) def test_replace_unicode(self): # GH: 16784 columns_values_map = {"positive": {"正面": 1, "中立": 1, "负面": 0}} df1 = DataFrame({"positive": np.ones(3)}) result = df1.replace(columns_values_map) expected = DataFrame({"positive": np.ones(3)}) tm.assert_frame_equal(result, expected)
36.730275
88
0.498968
c6200be3c56d1f1791deae6ff1ffdb2adc482e72
3,457
py
Python
src/python/pants/backend/python/pipenv_requirements.py
gshuflin/pants
cf483ead6d4d4a4cc4fc4ae18e3b5b633509d933
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/python/pipenv_requirements.py
gshuflin/pants
cf483ead6d4d4a4cc4fc4ae18e3b5b633509d933
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/python/pipenv_requirements.py
gshuflin/pants
cf483ead6d4d4a4cc4fc4ae18e3b5b633509d933
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from json import load from pathlib import Path from typing import Iterable, Mapping, Optional from pkg_resources import Requirement from pants.base.build_environment import get_buildroot class PipenvRequirements: """Translates a Pipenv.lock file into an equivalent set `python_requirement_library` targets. You may also use the parameter `module_mapping` to teach Pants what modules each of your requirements provide. For any requirement unspecified, Pants will default to the name of the requirement. This setting is important for Pants to know how to convert your import statements back into your dependencies. For example: pipenv_requirements( module_mapping={ "ansicolors": ["colors"], "setuptools": ["pkg_resources"], } ) """ def __init__(self, parse_context): self._parse_context = parse_context def __call__( self, requirements_relpath: str = "Pipfile.lock", module_mapping: Optional[Mapping[str, Iterable[str]]] = None, pipfile_target: Optional[str] = None, ) -> None: """ :param requirements_relpath: The relpath from this BUILD file to the requirements file. Defaults to a `Pipfile.lock` file sibling to the BUILD file. :param module_mapping: a mapping of requirement names to a list of the modules they provide. For example, `{"ansicolors": ["colors"]}`. Any unspecified requirements will use the requirement name as the default module, e.g. "Django" will default to `modules=["django"]`. :param pipfile_target: a `_python_requirements_file` target to provide for cache invalidation if the requirements_relpath value is not in the current rel_path """ lock_info = {} requirements_path = Path( get_buildroot(), self._parse_context.rel_path, requirements_relpath ) with open(requirements_path, "r") as fp: lock_info = load(fp) if pipfile_target: requirements_dep = pipfile_target else: requirements_file_target_name = requirements_relpath self._parse_context.create_object( "_python_requirements_file", name=requirements_file_target_name, sources=[requirements_relpath], ) requirements_dep = f":{requirements_file_target_name}" requirements = {**lock_info.get("default", {}), **lock_info.get("develop", {})} for req, info in requirements.items(): req_str = f"{req}{info.get('version','')}" if info.get("markers"): req_str += f";{info['markers']}" parsed_req = Requirement.parse(req_str) req_module_mapping = ( {parsed_req.project_name: module_mapping[parsed_req.project_name]} if module_mapping and parsed_req.project_name in module_mapping else None ) self._parse_context.create_object( "python_requirement_library", name=parsed_req.project_name, requirements=[parsed_req], dependencies=[requirements_dep], module_mapping=req_module_mapping, )
38.842697
101
0.641307
c4974b063857b68e63d4627c6f8a99f6fcbd033e
6,558
py
Python
SciDataTool/Classes/Norm_ref.py
enjoyneer87/SciDataTool
37ddc4071f1edb1270ee03e43595c3f943fb9bd8
[ "Apache-2.0" ]
null
null
null
SciDataTool/Classes/Norm_ref.py
enjoyneer87/SciDataTool
37ddc4071f1edb1270ee03e43595c3f943fb9bd8
[ "Apache-2.0" ]
null
null
null
SciDataTool/Classes/Norm_ref.py
enjoyneer87/SciDataTool
37ddc4071f1edb1270ee03e43595c3f943fb9bd8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # File generated according to Generator/ClassesRef/Norm_ref.csv # WARNING! All changes made in this file will be lost! """Method code available at https://github.com/Eomys/SciDataTool/tree/master/SciDataTool/Methods//Norm_ref """ from os import linesep from sys import getsizeof from ._check import check_var, raise_ from ..Functions.save import save from ..Functions.copy import copy from ..Functions.load import load_init_dict from ..Functions.Load.import_class import import_class from .Normalization import Normalization # Import all class method # Try/catch to remove unnecessary dependencies in unused method try: from ..Methods.Norm_ref.normalize import normalize except ImportError as error: normalize = error from numpy import isnan from ._check import InitUnKnowClassError class Norm_ref(Normalization): """Normalization with a reference value (values/ref)""" VERSION = 1 # cf Methods.Norm_ref.normalize if isinstance(normalize, ImportError): normalize = property( fget=lambda x: raise_( ImportError("Can't use Norm_ref method normalize: " + str(normalize)) ) ) else: normalize = normalize # save and copy methods are available in all object save = save copy = copy def __init__(self, ref=1, unit="SI", init_dict=None, init_str=None): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for SciDataTool type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for SciDataTool Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "ref" in list(init_dict.keys()): ref = init_dict["ref"] if "unit" in list(init_dict.keys()): unit = init_dict["unit"] # Set the properties (value check and convertion are done in setter) self.ref = ref # Call Normalization init super(Norm_ref, self).__init__(unit=unit) # The class is frozen (in Normalization init), for now it's impossible to # add new properties def __str__(self): """Convert this object in a readeable string (for print)""" Norm_ref_str = "" # Get the properties inherited from Normalization Norm_ref_str += super(Norm_ref, self).__str__() Norm_ref_str += "ref = " + str(self.ref) + linesep return Norm_ref_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False # Check the properties inherited from Normalization if not super(Norm_ref, self).__eq__(other): return False if other.ref != self.ref: return False return True def compare(self, other, name="self", ignore_list=None, is_add_value=False): """Compare two objects and return list of differences""" if ignore_list is None: ignore_list = list() if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() # Check the properties inherited from Normalization diff_list.extend( super(Norm_ref, self).compare( other, name=name, ignore_list=ignore_list, is_add_value=is_add_value ) ) if ( other._ref is not None and self._ref is not None and isnan(other._ref) and isnan(self._ref) ): pass elif other._ref != self._ref: if is_add_value: val_str = ( " (self=" + str(self._ref) + ", other=" + str(other._ref) + ")" ) diff_list.append(name + ".ref" + val_str) else: diff_list.append(name + ".ref") # Filter ignore differences diff_list = list(filter(lambda x: x not in ignore_list, diff_list)) return diff_list def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object # Get size of the properties inherited from Normalization S += super(Norm_ref, self).__sizeof__() S += getsizeof(self.ref) return S def as_dict(self, type_handle_ndarray=0, keep_function=False, **kwargs): """ Convert this object in a json serializable dict (can be use in __init__). type_handle_ndarray: int How to handle ndarray (0: tolist, 1: copy, 2: nothing) keep_function : bool True to keep the function object, else return str Optional keyword input parameter is for internal use only and may prevent json serializability. """ # Get the properties inherited from Normalization Norm_ref_dict = super(Norm_ref, self).as_dict( type_handle_ndarray=type_handle_ndarray, keep_function=keep_function, **kwargs ) Norm_ref_dict["ref"] = self.ref # The class name is added to the dict for deserialisation purpose # Overwrite the mother class name Norm_ref_dict["__class__"] = "Norm_ref" return Norm_ref_dict def _set_None(self): """Set all the properties to None (except SciDataTool object)""" self.ref = None # Set to None the properties inherited from Normalization super(Norm_ref, self)._set_None() def _get_ref(self): """getter of ref""" return self._ref def _set_ref(self, value): """setter of ref""" check_var("ref", value, "float") self._ref = value ref = property( fget=_get_ref, fset=_set_ref, doc=u"""reference value :Type: float """, )
35.258065
107
0.597743
2b986fee48ef724eb923baaaa774d85889478d02
153
py
Python
CHCHCL.py
abphilip-codes/Codechef_Practice
21fd52e03df8a0f72a08b0e2a0b48dbd508aac95
[ "MIT" ]
2
2021-07-26T03:32:24.000Z
2021-07-31T02:32:14.000Z
CHCHCL.py
abphilip-codes/Codechef_Practice
21fd52e03df8a0f72a08b0e2a0b48dbd508aac95
[ "MIT" ]
null
null
null
CHCHCL.py
abphilip-codes/Codechef_Practice
21fd52e03df8a0f72a08b0e2a0b48dbd508aac95
[ "MIT" ]
1
2021-07-14T17:45:33.000Z
2021-07-14T17:45:33.000Z
# https://www.codechef.com/problems/CHCHCL for T in range(int(input())): n,m=map(int,input().split()) print("Yes") if(n*m%2==0) else print("No")
30.6
46
0.620915
a36eb31619b5aef927e32c1f88596ef850c938d5
13,513
py
Python
sphinx/ext/autosummary/generate.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
sphinx/ext/autosummary/generate.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
sphinx/ext/autosummary/generate.py
merwok-forks/sphinx
b7cada236f765003a73ab5dca48f975d54c0c298
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ sphinx.ext.autosummary.generate ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Usable as a library or script to generate automatic RST source files for items referred to in autosummary:: directives. Each generated RST file contains a single auto*:: directive which extracts the docstring of the referred item. Example Makefile rule:: generate: sphinx-autogen -o source/generated source/*.rst :copyright: Copyright 2007-2016 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import print_function import os import re import sys import pydoc import optparse import codecs from jinja2 import FileSystemLoader, TemplateNotFound from jinja2.sandbox import SandboxedEnvironment from sphinx import package_dir from sphinx.ext.autosummary import import_by_name, get_documenter from sphinx.jinja2glue import BuiltinTemplateLoader from sphinx.util.osutil import ensuredir from sphinx.util.inspect import safe_getattr # Add documenters to AutoDirective registry from sphinx.ext.autodoc import add_documenter, \ ModuleDocumenter, ClassDocumenter, ExceptionDocumenter, DataDocumenter, \ FunctionDocumenter, MethodDocumenter, AttributeDocumenter, \ InstanceAttributeDocumenter add_documenter(ModuleDocumenter) add_documenter(ClassDocumenter) add_documenter(ExceptionDocumenter) add_documenter(DataDocumenter) add_documenter(FunctionDocumenter) add_documenter(MethodDocumenter) add_documenter(AttributeDocumenter) add_documenter(InstanceAttributeDocumenter) if False: # For type annotation from typing import Any, Callable, Dict, Tuple, List # NOQA from jinja2 import BaseLoader # NOQA from sphinx import addnodes # NOQA from sphinx.builders import Builder # NOQA from sphinx.environment import BuildEnvironment # NOQA def main(argv=sys.argv): # type: (List[str]) -> None usage = """%prog [OPTIONS] SOURCEFILE ...""" p = optparse.OptionParser(usage.strip()) p.add_option("-o", "--output-dir", action="store", type="string", dest="output_dir", default=None, help="Directory to place all output in") p.add_option("-s", "--suffix", action="store", type="string", dest="suffix", default="rst", help="Default suffix for files (default: %default)") p.add_option("-t", "--templates", action="store", type="string", dest="templates", default=None, help="Custom template directory (default: %default)") p.add_option("-i", "--imported-members", action="store_true", dest="imported_members", default=False, help="Document imported members (default: %default)") options, args = p.parse_args(argv[1:]) if len(args) < 1: p.error('no input files given') generate_autosummary_docs(args, options.output_dir, "." + options.suffix, template_dir=options.templates, imported_members=options.imported_members) def _simple_info(msg): # type: (unicode) -> None print(msg) def _simple_warn(msg): # type: (unicode) -> None print('WARNING: ' + msg, file=sys.stderr) # -- Generating output --------------------------------------------------------- def generate_autosummary_docs(sources, output_dir=None, suffix='.rst', warn=_simple_warn, info=_simple_info, base_path=None, builder=None, template_dir=None, imported_members=False): # type: (List[unicode], unicode, unicode, Callable, Callable, unicode, Builder, unicode, bool) -> None # NOQA showed_sources = list(sorted(sources)) if len(showed_sources) > 20: showed_sources = showed_sources[:10] + ['...'] + showed_sources[-10:] info('[autosummary] generating autosummary for: %s' % ', '.join(showed_sources)) if output_dir: info('[autosummary] writing to %s' % output_dir) if base_path is not None: sources = [os.path.join(base_path, filename) for filename in sources] # create our own templating environment template_dirs = None # type: List[unicode] template_dirs = [os.path.join(package_dir, 'ext', 'autosummary', 'templates')] template_loader = None # type: BaseLoader if builder is not None: # allow the user to override the templates template_loader = BuiltinTemplateLoader() template_loader.init(builder, dirs=template_dirs) else: if template_dir: template_dirs.insert(0, template_dir) template_loader = FileSystemLoader(template_dirs) # type: ignore template_env = SandboxedEnvironment(loader=template_loader) # read items = find_autosummary_in_files(sources) # keep track of new files new_files = [] # write for name, path, template_name in sorted(set(items), key=str): if path is None: # The corresponding autosummary:: directive did not have # a :toctree: option continue path = output_dir or os.path.abspath(path) ensuredir(path) try: name, obj, parent, mod_name = import_by_name(name) except ImportError as e: warn('[autosummary] failed to import %r: %s' % (name, e)) continue fn = os.path.join(path, name + suffix) # skip it if it exists if os.path.isfile(fn): continue new_files.append(fn) with open(fn, 'w') as f: doc = get_documenter(obj, parent) if template_name is not None: template = template_env.get_template(template_name) else: try: template = template_env.get_template('autosummary/%s.rst' % doc.objtype) except TemplateNotFound: template = template_env.get_template('autosummary/base.rst') def get_members(obj, typ, include_public=[], imported=False): # type: (Any, unicode, List[unicode], bool) -> Tuple[List[unicode], List[unicode]] # NOQA items = [] # type: List[unicode] for name in dir(obj): try: value = safe_getattr(obj, name) except AttributeError: continue documenter = get_documenter(value, obj) if documenter.objtype == typ: if imported or getattr(value, '__module__', None) == obj.__name__: items.append(name) public = [x for x in items if x in include_public or not x.startswith('_')] return public, items ns = {} # type: Dict[unicode, Any] if doc.objtype == 'module': ns['members'] = dir(obj) ns['functions'], ns['all_functions'] = \ get_members(obj, 'function', imported=imported_members) ns['classes'], ns['all_classes'] = \ get_members(obj, 'class', imported=imported_members) ns['exceptions'], ns['all_exceptions'] = \ get_members(obj, 'exception', imported=imported_members) elif doc.objtype == 'class': ns['members'] = dir(obj) ns['methods'], ns['all_methods'] = \ get_members(obj, 'method', ['__init__'], imported=imported_members) ns['attributes'], ns['all_attributes'] = \ get_members(obj, 'attribute', imported=imported_members) parts = name.split('.') if doc.objtype in ('method', 'attribute'): mod_name = '.'.join(parts[:-2]) cls_name = parts[-2] obj_name = '.'.join(parts[-2:]) ns['class'] = cls_name else: mod_name, obj_name = '.'.join(parts[:-1]), parts[-1] ns['fullname'] = name ns['module'] = mod_name ns['objname'] = obj_name ns['name'] = parts[-1] ns['objtype'] = doc.objtype ns['underline'] = len(name) * '=' rendered = template.render(**ns) f.write(rendered) # type: ignore # descend recursively to new files if new_files: generate_autosummary_docs(new_files, output_dir=output_dir, suffix=suffix, warn=warn, info=info, base_path=base_path, builder=builder, template_dir=template_dir) # -- Finding documented entries in files --------------------------------------- def find_autosummary_in_files(filenames): # type: (List[unicode]) -> List[Tuple[unicode, unicode, unicode]] """Find out what items are documented in source/*.rst. See `find_autosummary_in_lines`. """ documented = [] # type: List[Tuple[unicode, unicode, unicode]] for filename in filenames: with codecs.open(filename, 'r', encoding='utf-8', # type: ignore errors='ignore') as f: lines = f.read().splitlines() documented.extend(find_autosummary_in_lines(lines, # type: ignore filename=filename)) return documented def find_autosummary_in_docstring(name, module=None, filename=None): # type: (unicode, Any, unicode) -> List[Tuple[unicode, unicode, unicode]] """Find out what items are documented in the given object's docstring. See `find_autosummary_in_lines`. """ try: real_name, obj, parent, modname = import_by_name(name) lines = pydoc.getdoc(obj).splitlines() return find_autosummary_in_lines(lines, module=name, filename=filename) except AttributeError: pass except ImportError as e: print("Failed to import '%s': %s" % (name, e)) except SystemExit as e: print("Failed to import '%s'; the module executes module level " "statement and it might call sys.exit()." % name) return [] def find_autosummary_in_lines(lines, module=None, filename=None): # type: (List[unicode], Any, unicode) -> List[Tuple[unicode, unicode, unicode]] """Find out what items appear in autosummary:: directives in the given lines. Returns a list of (name, toctree, template) where *name* is a name of an object and *toctree* the :toctree: path of the corresponding autosummary directive (relative to the root of the file name), and *template* the value of the :template: option. *toctree* and *template* ``None`` if the directive does not have the corresponding options set. """ autosummary_re = re.compile(r'^(\s*)\.\.\s+autosummary::\s*') automodule_re = re.compile( r'^\s*\.\.\s+automodule::\s*([A-Za-z0-9_.]+)\s*$') module_re = re.compile( r'^\s*\.\.\s+(current)?module::\s*([a-zA-Z0-9_.]+)\s*$') autosummary_item_re = re.compile(r'^\s+(~?[_a-zA-Z][a-zA-Z0-9_.]*)\s*.*?') toctree_arg_re = re.compile(r'^\s+:toctree:\s*(.*?)\s*$') template_arg_re = re.compile(r'^\s+:template:\s*(.*?)\s*$') documented = [] # type: List[Tuple[unicode, unicode, unicode]] toctree = None # type: unicode template = None current_module = module in_autosummary = False base_indent = "" for line in lines: if in_autosummary: m = toctree_arg_re.match(line) # type: ignore if m: toctree = m.group(1) if filename: toctree = os.path.join(os.path.dirname(filename), toctree) continue m = template_arg_re.match(line) # type: ignore if m: template = m.group(1).strip() continue if line.strip().startswith(':'): continue # skip options m = autosummary_item_re.match(line) # type: ignore if m: name = m.group(1).strip() if name.startswith('~'): name = name[1:] if current_module and \ not name.startswith(current_module + '.'): name = "%s.%s" % (current_module, name) documented.append((name, toctree, template)) continue if not line.strip() or line.startswith(base_indent + " "): continue in_autosummary = False m = autosummary_re.match(line) # type: ignore if m: in_autosummary = True base_indent = m.group(1) toctree = None template = None continue m = automodule_re.search(line) # type: ignore if m: current_module = m.group(1).strip() # recurse into the automodule docstring documented.extend(find_autosummary_in_docstring( current_module, filename=filename)) continue m = module_re.match(line) # type: ignore if m: current_module = m.group(2) continue return documented if __name__ == '__main__': main()
37.123626
114
0.577962
270f8d2368ef1ec1d66b4b1d096d66f743620362
6,613
py
Python
angr/analyses/cfg/indirect_jump_resolvers/mips_elf_fast.py
zhu8655/angr
c565292a2dd75a0eb77fad74a6b6dd2656216b1f
[ "BSD-2-Clause" ]
null
null
null
angr/analyses/cfg/indirect_jump_resolvers/mips_elf_fast.py
zhu8655/angr
c565292a2dd75a0eb77fad74a6b6dd2656216b1f
[ "BSD-2-Clause" ]
null
null
null
angr/analyses/cfg/indirect_jump_resolvers/mips_elf_fast.py
zhu8655/angr
c565292a2dd75a0eb77fad74a6b6dd2656216b1f
[ "BSD-2-Clause" ]
null
null
null
import logging import pyvex import archinfo from .... import options, BP_BEFORE from ....blade import Blade from ....annocfg import AnnotatedCFG from ....exploration_techniques import Slicecutor from .resolver import IndirectJumpResolver l = logging.getLogger(name=__name__) class OverwriteTmpValueCallback: def __init__(self, gp_value): self.gp_value = gp_value def overwrite_tmp_value(self, state): state.inspect.tmp_write_expr = state.solver.BVV(self.gp_value, state.arch.bits) class MipsElfFastResolver(IndirectJumpResolver): def __init__(self, project): super(MipsElfFastResolver, self).__init__(project, timeless=True) def filter(self, cfg, addr, func_addr, block, jumpkind): if not isinstance(self.project.arch, (archinfo.ArchMIPS32, archinfo.ArchMIPS64, )): return False return True def resolve(self, cfg, addr, func_addr, block, jumpkind): """ Resolves the indirect jump in MIPS ELF binaries where all external function calls are indexed using gp. :param cfg: A CFG instance. :param int addr: IRSB address. :param int func_addr: The function address. :param pyvex.IRSB block: The IRSB. :param str jumpkind: The jumpkind. :return: If it was resolved and targets alongside it :rtype: tuple """ project = self.project b = Blade(cfg.graph, addr, -1, cfg=cfg, project=project, ignore_sp=True, ignore_bp=True, ignored_regs=('gp',), cross_insn_opt=False, ) sources = [n for n in b.slice.nodes() if b.slice.in_degree(n) == 0] if not sources: return False, [] source = sources[0] source_addr = source[0] annotated_cfg = AnnotatedCFG(project, None, detect_loops=False) annotated_cfg.from_digraph(b.slice) state = project.factory.blank_state(addr=source_addr, mode="fastpath", remove_options=options.refs, # suppress unconstrained stack reads for `gp` add_options={options.SYMBOL_FILL_UNCONSTRAINED_MEMORY, options.NO_CROSS_INSN_OPT }, ) state.regs._t9 = func_addr func = cfg.kb.functions.function(addr=func_addr) gp_offset = project.arch.registers['gp'][0] # see if gp is used at all for stmt in project.factory.block(addr, cross_insn_opt=False).vex.statements: if isinstance(stmt, pyvex.IRStmt.WrTmp) \ and isinstance(stmt.data, pyvex.IRExpr.Get) \ and stmt.data.offset == gp_offset: gp_used = True break else: gp_used = False gp_value = None if gp_used: if 'gp' not in func.info: # this might a special case: gp is only used once in this function, and it can be initialized right # before its use site. # however, it should have been determined in CFGFast # cannot determine the value of gp. quit pass else: gp_value = func.info['gp'] if gp_value is None: l.warning('Failed to determine value of register gp for function %#x.', func.addr) return False, [] # Special handling for cases where `gp` is stored on the stack self._set_gp_load_callback(state, b, project, gp_offset, gp_value) state.regs._gp = gp_value simgr = self.project.factory.simulation_manager(state) simgr.use_technique(Slicecutor(annotated_cfg)) simgr.run() if simgr.cut: # pick the successor that is cut right after executing `addr` try: target_state = next(iter(cut for cut in simgr.cut if cut.history.addr == addr)) except StopIteration: l.debug("Indirect jump at %#x cannot be resolved by %s.", addr, repr(self)) return False, [ ] target = target_state.addr if self._is_target_valid(cfg, target): l.debug("Indirect jump at %#x is resolved to target %#x.", addr, target) return True, [ target ] l.debug("Indirect jump at %#x is resolved to target %#x, which seems to be invalid.", addr, target) return False, [ ] l.debug("Indirect jump at %#x cannot be resolved by %s.", addr, repr(self)) return False, [ ] @staticmethod def _set_gp_load_callback(state, blade, project, gp_offset, gp_value): got_gp_stack_store = False tmps = {} for block_addr_in_slice in set(slice_node[0] for slice_node in blade.slice.nodes()): for stmt in project.factory.block(block_addr_in_slice, cross_insn_opt=False).vex.statements: if isinstance(stmt, pyvex.IRStmt.WrTmp) and isinstance(stmt.data, pyvex.IRExpr.Load): # Load from memory to a tmp - assuming it's loading from the stack tmps[stmt.tmp] = 'stack' elif isinstance(stmt, pyvex.IRStmt.Put) and stmt.offset == gp_offset: if isinstance(stmt.data, pyvex.IRExpr.RdTmp): tmp_offset = stmt.data.tmp # pylint:disable=cell-var-from-loop if tmps.get(tmp_offset, None) == 'stack': # found the load from stack # we must make sure value of that temporary variable equals to the correct gp value state.inspect.make_breakpoint('tmp_write', when=BP_BEFORE, condition=lambda s, bbl_addr_=block_addr_in_slice, tmp_offset_=tmp_offset: s.scratch.bbl_addr == bbl_addr_ and s.inspect.tmp_write_num == tmp_offset_, action=OverwriteTmpValueCallback( gp_value).overwrite_tmp_value ) got_gp_stack_store = True break if got_gp_stack_store: break
43.222222
133
0.553909
907fe77f7a1362a5ad723c5b0dadaf065b6a3bfb
562
py
Python
inventories/migrations/0025_auto_20200602_1821.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
null
null
null
inventories/migrations/0025_auto_20200602_1821.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
7
2021-03-19T03:09:53.000Z
2022-01-13T02:48:44.000Z
inventories/migrations/0025_auto_20200602_1821.py
amado-developer/ReadHub-RestfulAPI
8d8b445c4a84810d52bbf78a2593e0b48351590c
[ "MIT" ]
null
null
null
# Generated by Django 3.0.6 on 2020-06-02 18:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('digital_books', '0008_digital_book_rating'), ('inventories', '0024_auto_20200602_1450'), ] operations = [ migrations.AlterField( model_name='inventory', name='digital_book', field=models.ForeignKey(default=0, on_delete=django.db.models.deletion.CASCADE, to='digital_books.Digital_Book'), ), ]
26.761905
125
0.660142
0c9f5aa187e4da721d1293488c5624083106b2f9
803
py
Python
ProgettiHWSW/api.py
ArdaSeremet/progettihwsw
565d1fb35d88d3e7c272c03b8a190231179cce74
[ "MIT" ]
1
2020-08-28T21:46:12.000Z
2020-08-28T21:46:12.000Z
ProgettiHWSW/api.py
ArdaSeremet/progettihwsw
565d1fb35d88d3e7c272c03b8a190231179cce74
[ "MIT" ]
null
null
null
ProgettiHWSW/api.py
ArdaSeremet/progettihwsw
565d1fb35d88d3e7c272c03b8a190231179cce74
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Arda Seremet <ardaseremet@outlook.com> import aiohttp import async_timeout from asyncio import TimeoutError class API: """Class to interact with the API of ProgettiHWSW boards.""" def __init__(self, ip: str): """Initialize the API.""" self.ip = ip async def request(self, path: str): try: with async_timeout.timeout(5): async with aiohttp.request("GET", f"{self.ip}/{path}") as resp: return await resp.text() except TimeoutError: return False async def execute(self, code: int): """Make requests with API codes for boards.""" try: return await self.request(f"index.htm?execute={code}") except Exception: return False
28.678571
79
0.596513
713b7f3e57676d34a8da9bfc4eb05c205744f2f1
1,007
py
Python
infinity/apps/infinite_redis/manager.py
ra101/Django-Infinity
9fd17c3c27e1d9f4c1796007b7dc053857edd294
[ "MIT" ]
null
null
null
infinity/apps/infinite_redis/manager.py
ra101/Django-Infinity
9fd17c3c27e1d9f4c1796007b7dc053857edd294
[ "MIT" ]
null
null
null
infinity/apps/infinite_redis/manager.py
ra101/Django-Infinity
9fd17c3c27e1d9f4c1796007b7dc053857edd294
[ "MIT" ]
null
null
null
import redis from django.conf import settings from django.db.models.manager import BaseManager from apps.infinite_redis.query import RedisQuerySet # Redis DB redis_ins = redis.StrictRedis( host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=0, password=settings.REDIS_PASSWORD, ) class RedisModelManager(BaseManager.from_queryset(RedisQuerySet)): """ Since Our Model is abstract so all operations will be performed from here by using from_queryset we are adding all the methods of RedisQuerySet to this manager class """ def __init__(self): super().__init__() self._db = redis_ins def bulk_upsert(self, data_dict): """bulk upsert using mset which takes in dict""" self._db.mset(data_dict) def save(self, instance, value): """custom save to update db""" self._db.set(instance.key, value) def delete(self, instance): """custom delete to update db""" self._db.delete(instance.key)
25.175
77
0.691162
56967a27884fdbc2a5fdcd117536785cb24d59ef
1,711
py
Python
app.py
minggli/mnist-dcgan
4315776c79745b0578b3601258d539821779dce1
[ "MIT" ]
4
2018-11-22T09:44:35.000Z
2020-09-21T07:12:04.000Z
app.py
minggli/mnist-dcgan
4315776c79745b0578b3601258d539821779dce1
[ "MIT" ]
19
2019-06-01T18:40:26.000Z
2022-03-11T23:13:33.000Z
app.py
minggli/mnist-dcgan
4315776c79745b0578b3601258d539821779dce1
[ "MIT" ]
1
2019-05-23T02:00:51.000Z
2019-05-23T02:00:51.000Z
#!/usr/bin/env python """ app flask app serving external client calls. """ import logging from random import randint from flask import Flask from flask_restplus import Api, Namespace, Resource from helper import _validate_integer from serving import grpc_generate from config import APP_CONFIG logger = logging.getLogger(__name__) application = Flask(__name__) application.config.update(APP_CONFIG) ns = Namespace('generate', description='Generate images.') api = Api( title='Wasserstein GAN', version='1.0', description='Generate images using GANs') @ns.route('/', defaults={'digit': None}) @ns.route('/<int:digit>') @ns.doc(params={'digit': '0-9 single integer'}) class Generate(Resource): def get(self, digit): if _validate_integer(digit) is None: digit = randint(0, 9) logger.info(f"request received to generate {digit}.") img = grpc_generate(digit) logger.info("image generated successfully.") return img api.add_namespace(ns) api.init_app(application) # TODO Wasserstein loss doesn't discriminate real or fake image like original # GAN loss function, more work needed to reuse Critic/Discriminator # to classify generated image. Loss function must include supervise element. # @app.route('/predict', methods=['GET', 'POST']) # def predict(): # if request.method == 'POST': # if 'file' not in request.files: # return redirect(request.url) # f = request.files['file'] # prob = grpc_predict(f) # return render_template('predict.html', result=prob) # return render_template('predict.html') if __name__ == '__main__': application.run(host='0.0.0.0', port='8000', debug=True)
29
77
0.694915
eca8f8a33b98426ff2cb4a71dbc4e040dd68b439
1,017
py
Python
2015/day05/python/test_part1.py
jmkacz/practice-advent-of-code
c06f474576e91ed0778c8a30a51bad848a602eb6
[ "MIT" ]
null
null
null
2015/day05/python/test_part1.py
jmkacz/practice-advent-of-code
c06f474576e91ed0778c8a30a51bad848a602eb6
[ "MIT" ]
null
null
null
2015/day05/python/test_part1.py
jmkacz/practice-advent-of-code
c06f474576e91ed0778c8a30a51bad848a602eb6
[ "MIT" ]
null
null
null
from part1 import compute_answer def test_compute_answer_sample_1(): lines = ["ugknbfddgicrmopn"] expected = 1 actual = compute_answer(lines) assert actual == expected def test_compute_answer_sample_2(): lines = ["aaa"] expected = 1 actual = compute_answer(lines) assert actual == expected def test_compute_answer_sample_3(): lines = ["jchzalrnumimnmhp"] expected = 0 actual = compute_answer(lines) assert actual == expected def test_compute_answer_sample_4(): lines = ["haegwjzuvuyypxyu"] expected = 0 actual = compute_answer(lines) assert actual == expected def test_compute_answer_sample_5(): lines = ["dvszwmarrgswjxmb"] expected = 0 actual = compute_answer(lines) assert actual == expected def test_compute_answer_full(): with open("../data/input.dat", "r") as infile: lines = [line.strip() for line in infile.readlines()] expected = 258 actual = compute_answer(lines) assert actual == expected
22.108696
61
0.684366
25d23dca41f3848c0acde06b08cf5574d38495b0
1,505
py
Python
setup.py
VENULLLC/updater4pyi
8d55dd51160ab7c76ebf0bccffab8293668074b3
[ "BSD-2-Clause" ]
null
null
null
setup.py
VENULLLC/updater4pyi
8d55dd51160ab7c76ebf0bccffab8293668074b3
[ "BSD-2-Clause" ]
null
null
null
setup.py
VENULLLC/updater4pyi
8d55dd51160ab7c76ebf0bccffab8293668074b3
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import os import os.path #from setuptools import setup from setuptools import setup import updater4pyi.upd_version def read(*paths): """Build a file path from *paths* and return the contents.""" with open(os.path.join(*paths), 'r') as f: return f.read() setup(name='updater4pyi', version=updater4pyi.upd_version.version_str, description='Lightweight library for software auto-update for applications frozen with pyinstaller', long_description=read('README.md'), author='Philippe Faist', # obfuscate e-mail in source script, will be in clear in the package author_email=("".join([chr(ord(x)+1) for x in 'oghkhood-e`hrs?aktdvhm-bg'])), url='https://github.com/phfaist/updater4pyi/', license='BSD', packages=['updater4pyi'], package_data={'updater4pyi': [ 'cacert.pem', 'installers/unix/*.sh', 'installers/win/do_install.exe.zip' ]}, py_modules=[], classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX :: Linux', 'Intended Audience :: Developers', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Software Distribution', ], )
35.833333
114
0.630565
be57a9377780dcc62681525cf4cbfef45857ce03
1,296
py
Python
dataactcore/scripts/database_setup.py
brianherman/data-act-broker-backend
80eb055b9d245046192f7ad4fd0be7d0e11d2dec
[ "CC0-1.0" ]
1
2019-06-22T21:53:16.000Z
2019-06-22T21:53:16.000Z
dataactcore/scripts/database_setup.py
brianherman/data-act-broker-backend
80eb055b9d245046192f7ad4fd0be7d0e11d2dec
[ "CC0-1.0" ]
3
2021-08-22T11:47:45.000Z
2022-03-29T22:06:49.000Z
dataactcore/scripts/database_setup.py
brianherman/data-act-broker-backend
80eb055b9d245046192f7ad4fd0be7d0e11d2dec
[ "CC0-1.0" ]
1
2020-07-17T23:50:56.000Z
2020-07-17T23:50:56.000Z
import sqlalchemy_utils import logging from dataactcore.config import ALEMBIC_PATH, MIGRATION_PATH from alembic.config import Config from alembic import command from sqlalchemy.exc import ProgrammingError from dataactcore.interfaces.db import db_uri def create_database(db_name): """Create specified database if it doesn't exist.""" connect_string = db_uri(db_name) if not sqlalchemy_utils.database_exists(connect_string): sqlalchemy_utils.create_database(connect_string) def drop_database(db_name): """Drop specified database.""" connect_string = db_uri(db_name) if sqlalchemy_utils.database_exists(connect_string): sqlalchemy_utils.drop_database(connect_string) def run_migrations(): """Run Alembic migrations for a specific database/model set.""" logging.disable(logging.WARN) alembic_cfg = Config(ALEMBIC_PATH) alembic_cfg.set_main_option("script_location", MIGRATION_PATH) try: command.upgrade(alembic_cfg, "head") except ProgrammingError as e: if "relation" and "already exists" in str(e): raise Exception("Cannot run initial db migration if tables " "already exist. " + str(e)) else: raise finally: logging.disable(logging.NOTSET)
33.230769
72
0.722222
13769a1470b344343e6028fda1a9aa7c060b8fc0
219
py
Python
Spotkanie 3/tr_01.py
abixadamj/lekcja-enter-przyklady
4f23ee32a139e955f992b727ad86c6effb87a6d6
[ "MIT" ]
null
null
null
Spotkanie 3/tr_01.py
abixadamj/lekcja-enter-przyklady
4f23ee32a139e955f992b727ad86c6effb87a6d6
[ "MIT" ]
null
null
null
Spotkanie 3/tr_01.py
abixadamj/lekcja-enter-przyklady
4f23ee32a139e955f992b727ad86c6effb87a6d6
[ "MIT" ]
null
null
null
width = 5.3 height = 3.67 triangle_area = (width * height) / 2 print("Pole trójkąta wynosi {triangle_area} cm^2") print(f"Pole trójkąta wynosi {triangle_area} cm^2") print("Pole trójkąta wynosi", triangle_area, "cm^2")
31.285714
52
0.726027
69eccf7fc67f3d44635e4245ed3700455444ea39
11,546
py
Python
google/cloud/dialogflowcx_v3beta1/types/security_settings.py
galz10/python-dialogflow-cx
e24bdfd499952199dfbdaa5634061653da8ae1db
[ "Apache-2.0" ]
null
null
null
google/cloud/dialogflowcx_v3beta1/types/security_settings.py
galz10/python-dialogflow-cx
e24bdfd499952199dfbdaa5634061653da8ae1db
[ "Apache-2.0" ]
null
null
null
google/cloud/dialogflowcx_v3beta1/types/security_settings.py
galz10/python-dialogflow-cx
e24bdfd499952199dfbdaa5634061653da8ae1db
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import field_mask_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.dialogflow.cx.v3beta1", manifest={ "GetSecuritySettingsRequest", "UpdateSecuritySettingsRequest", "ListSecuritySettingsRequest", "ListSecuritySettingsResponse", "CreateSecuritySettingsRequest", "DeleteSecuritySettingsRequest", "SecuritySettings", }, ) class GetSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettingsService.GetSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.GetSecuritySettings]. Attributes: name (str): Required. Resource name of the settings. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<security settings ID>``. """ name = proto.Field(proto.STRING, number=1,) class UpdateSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettingsService.UpdateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.UpdateSecuritySettings]. Attributes: security_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings): Required. [SecuritySettings] object that contains values for each of the fields to update. update_mask (google.protobuf.field_mask_pb2.FieldMask): Required. The mask to control which fields get updated. If the mask is not present, all fields will be updated. """ security_settings = proto.Field( proto.MESSAGE, number=1, message="SecuritySettings", ) update_mask = proto.Field( proto.MESSAGE, number=2, message=field_mask_pb2.FieldMask, ) class ListSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.ListSecuritySettings][]. Attributes: parent (str): Required. The location to list all security settings for. Format: ``projects/<Project ID>/locations/<Location ID>``. page_size (int): The maximum number of items to return in a single page. By default 20 and at most 100. page_token (str): The next_page_token value returned from a previous list request. """ parent = proto.Field(proto.STRING, number=1,) page_size = proto.Field(proto.INT32, number=2,) page_token = proto.Field(proto.STRING, number=3,) class ListSecuritySettingsResponse(proto.Message): r"""The response message for [SecuritySettings.ListSecuritySettings][]. Attributes: security_settings (Sequence[google.cloud.dialogflowcx_v3beta1.types.SecuritySettings]): The list of security settings. next_page_token (str): Token to retrieve the next page of results, or empty if there are no more results in the list. """ @property def raw_page(self): return self security_settings = proto.RepeatedField( proto.MESSAGE, number=1, message="SecuritySettings", ) next_page_token = proto.Field(proto.STRING, number=2,) class CreateSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.CreateSecuritySettings][]. Attributes: parent (str): Required. The location to create an [SecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettings] for. Format: ``projects/<Project ID>/locations/<Location ID>``. security_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings): Required. The security settings to create. """ parent = proto.Field(proto.STRING, number=1,) security_settings = proto.Field( proto.MESSAGE, number=2, message="SecuritySettings", ) class DeleteSecuritySettingsRequest(proto.Message): r"""The request message for [SecuritySettings.DeleteSecuritySettings][]. Attributes: name (str): Required. The name of the [SecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettings] to delete. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<Security Settings ID>``. """ name = proto.Field(proto.STRING, number=1,) class SecuritySettings(proto.Message): r"""Represents the settings related to security issues, such as data redaction and data retention. It may take hours for updates on the settings to propagate to all the related components and take effect. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: name (str): Resource name of the settings. Required for the [SecuritySettingsService.UpdateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.UpdateSecuritySettings] method. [SecuritySettingsService.CreateSecuritySettings][google.cloud.dialogflow.cx.v3beta1.SecuritySettingsService.CreateSecuritySettings] populates the name automatically. Format: ``projects/<Project ID>/locations/<Location ID>/securitySettings/<Security Settings ID>``. display_name (str): Required. The human-readable name of the security settings, unique within the location. redaction_strategy (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.RedactionStrategy): Strategy that defines how we do redaction. redaction_scope (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.RedactionScope): Defines the data for which Dialogflow applies redaction. Dialogflow does not redact data that it does not have access to – for example, Cloud logging. inspect_template (str): `DLP <https://cloud.google.com/dlp/docs>`__ inspect template name. Use this template to define inspect base settings. The ``DLP Inspect Templates Reader`` role is needed on the Dialogflow service identity service account (has the form ``service-PROJECT_NUMBER@gcp-sa-dialogflow.iam.gserviceaccount.com``) for your agent's project. If empty, we use the default DLP inspect config. The template name will have one of the following formats: ``projects/<Project ID>/locations/<Location ID>/inspectTemplates/<Template ID>`` OR ``organizations/<Organization ID>/locations/<Location ID>/inspectTemplates/<Template ID>`` Note: ``inspect_template`` must be located in the same region as the ``SecuritySettings``. deidentify_template (str): `DLP <https://cloud.google.com/dlp/docs>`__ deidentify template name. Use this template to define de-identification configuration for the content. The ``DLP De-identify Templates Reader`` role is needed on the Dialogflow service identity service account (has the form ``service-PROJECT_NUMBER@gcp-sa-dialogflow.iam.gserviceaccount.com``) for your agent's project. If empty, Dialogflow replaces sensitive info with ``[redacted]`` text. The template name will have one of the following formats: ``projects/<Project ID>/locations/<Location ID>/deidentifyTemplates/<Template ID>`` OR ``organizations/<Organization ID>/locations/<Location ID>/deidentifyTemplates/<Template ID>`` Note: ``deidentify_template`` must be located in the same region as the ``SecuritySettings``. retention_window_days (int): Retains data in interaction logging for the specified number of days. This does not apply to Cloud logging, which is owned by the user - not Dialogflow. User must set a value lower than Dialogflow's default 365d TTL. Setting a value higher than that has no effect. A missing value or setting to 0 also means we use Dialogflow's default TTL. Note: Interaction logging is a limited access feature. Talk to your Google representative to check availability for you. This field is a member of `oneof`_ ``data_retention``. purge_data_types (Sequence[google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.PurgeDataType]): List of types of data to remove when retention settings triggers purge. insights_export_settings (google.cloud.dialogflowcx_v3beta1.types.SecuritySettings.InsightsExportSettings): Controls conversation exporting settings to Insights after conversation is completed. If [retention_strategy][google.cloud.dialogflow.cx.v3beta1.SecuritySettings.retention_strategy] is set to REMOVE_AFTER_CONVERSATION, Insights export is disabled no matter what you configure here. """ class RedactionStrategy(proto.Enum): r"""Defines how we redact data.""" REDACTION_STRATEGY_UNSPECIFIED = 0 REDACT_WITH_SERVICE = 1 class RedactionScope(proto.Enum): r"""Defines what types of data to redact.""" REDACTION_SCOPE_UNSPECIFIED = 0 REDACT_DISK_STORAGE = 2 class PurgeDataType(proto.Enum): r"""Type of data we purge after retention settings triggers purge. """ PURGE_DATA_TYPE_UNSPECIFIED = 0 DIALOGFLOW_HISTORY = 1 class InsightsExportSettings(proto.Message): r"""Settings for exporting conversations to `Insights <https://cloud.google.com/dialogflow/priv/docs/insights>`__. Attributes: enable_insights_export (bool): If enabled, we will automatically exports conversations to Insights and Insights runs its analyzers. """ enable_insights_export = proto.Field(proto.BOOL, number=1,) name = proto.Field(proto.STRING, number=1,) display_name = proto.Field(proto.STRING, number=2,) redaction_strategy = proto.Field(proto.ENUM, number=3, enum=RedactionStrategy,) redaction_scope = proto.Field(proto.ENUM, number=4, enum=RedactionScope,) inspect_template = proto.Field(proto.STRING, number=9,) deidentify_template = proto.Field(proto.STRING, number=17,) retention_window_days = proto.Field(proto.INT32, number=6, oneof="data_retention",) purge_data_types = proto.RepeatedField(proto.ENUM, number=8, enum=PurgeDataType,) insights_export_settings = proto.Field( proto.MESSAGE, number=13, message=InsightsExportSettings, ) __all__ = tuple(sorted(__protobuf__.manifest))
40.798587
143
0.67911
01d252b4fd98b46982c886e8e0d350121739c6d9
6,079
py
Python
hwp_9/Les_9_1.py
drednout5786/Python-UII
2c3ea3884dfdc9fbb974e515b9736207f18bd1f4
[ "MIT" ]
null
null
null
hwp_9/Les_9_1.py
drednout5786/Python-UII
2c3ea3884dfdc9fbb974e515b9736207f18bd1f4
[ "MIT" ]
1
2019-12-19T11:22:12.000Z
2019-12-19T11:22:12.000Z
hwp_9/Les_9_1.py
drednout5786/Python-UII
2c3ea3884dfdc9fbb974e515b9736207f18bd1f4
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from statsmodels.stats.weightstats import zconfint from scipy import stats from statistics import mode class EBM: # Доказа́тельная медици́на, англ. evidence-based medicine (EBM) ''' Анализ одной переменной. ''' def __init__(self, file, p_val): # Инициализация self.file = file self.p_val = p_val def get_data_xlsx(self): # Считывание файла с данными try: self.df = pd.read_excel(self.file) if (self.df.empty): print("Файл '{}' пуст".format(self.file)) return False else: print("Файл '{}' загружен.".format(self.file)) print("Структура файла: \n", self.df.head(5)) return True except (IOError, Exception) as e: print(e) #raise Exception(f'castom error{e}') return False def get_file_info(self): # Краткое описание файла print("\nКраткое описание файла:") print("Количество строк: {} Количество столбцов: {}".format(self.df.shape[0], self.df.shape[1])) #print(f'Количество строк: {self.df.shape[0]} Количество столбцов: {self.df.shape[1]}') def get_column_name(self): # Вопрос пользователю - какой столбец анализируем? self.customer_choice = input('Введите название столбца, данные из которого хотите проанализировать?: {} \n' 'или 0, чтобы отказаться от выбора и окончить выполнение анализа.\n'.format(self.df.columns.tolist())) while (self.customer_choice != "0") and (self.customer_choice not in list(self.df)): print("Вы выбрали столбец: {}. Его нет в списке столбцов.".format(self.customer_choice)) self.customer_choice = input('Введите название столбца, данные из которого хотите проанализировать?: {} \n' 'или 0, чтобы отказаться от выбора и окончить выполнение анализа.\n'.format(self.df.columns.tolist())) return self.customer_choice def scale_type(self, var): # Определение типа шкалы переменной if self.df[var].dtype in ['int8', 'int16', 'int32', 'int64']: # print("Данные распределены по порядковой шкале.") self.__scale_t = 'порядковая' elif self.df[var].dtype in ['float32', 'float64']: # print("Данные распределены по количественной шкале.") self.__scale_t = 'количественная' elif self.df[var].dtype in ['O']: if type(self.df[var][0]) == np.str: # print("Данные распределены по номинальной (категориальной) шкале.") self.__scale_t = 'номинальная' else: # print("Данные распределены по неопределенной шкале.") self.__scale_t = 'не определен' else: # print("Данные распределены по неопределенной шкале.") self.__scale_t = 'не определен' return self.__scale_t def describe_value(self): # Краткое описание переменной print("Анализ - Краткое описание переменной") if (self.__scale_t == 'порядковая') or (self.__scale_t == 'количественная'): print(self.df[self.customer_choice].describe()) else: print(self.df[self.customer_choice].groupby(self.df[self.customer_choice]).count()) def normality_test(self, var): # Проверка на нормальность распределения if self.num_var == "2" : self.__scale_t = self.scale_type(var) if (self.__scale_t == 'порядковая') or (self.__scale_t == 'количественная'): SW = stats.shapiro(self.df[var]) if SW[1] > self.p_val: self.__norm = 1 print("Тест Шапиро-Уилка на нормальность распределения: W = {:.6}, p = {:f}. Вывод: распределение нормально.".format(SW[0], SW[1])) print('Среднее: {:.4} и 95% доверительный интервал: [{:.4}, {:.4}]'.format(np.mean(self.df[var], axis = 0), zconfint(self.df[var])[0], zconfint(self.df[var])[1])) else: self.__norm = 0 print("Тест Шапиро-Уилка на нормальность распределения: W = {:.6}, p = {:f}. Вывод: распределение НЕ нормально.".format(SW[0], SW[1])) else: print("Данные не имеют количественной природы. Проверка на нормальность не требуется.") self.__norm = -1 return self.__norm def typical_value(self): # Расчет типичного значения выборки if (self.__scale_t == 'порядковая') or (self.__scale_t == 'количественная'): if self.__norm == 0: q25, q50, q75 = np.percentile(self.df[self.customer_choice], [25, 50, 75]) print("Типичное значение выборки Медиана [Q1; Q3] = {} [{}; {}].".format(round(q50, 2), round(q25, 2), round(q75, 2))) else: print("Типичное значение выборки Среднее ± стандартное отклонение = {} ± {}.".format(round(np.mean(self.df[self.customer_choice], axis = 0), 2), round(np.std(self.df[self.customer_choice], axis = 0), 2))) elif self.__scale_t == 'номинальная': print("Типичное значение выборки Мода = {}.".format(mode(self.df[self.customer_choice]))) if __name__ == '__main__': EBM_easy = EBM("./для ЕВ.xlsx", 0.05) if EBM_easy.get_data_xlsx(): # Считывание файла с данными EBM_easy.get_file_info() # Краткое описание файла while (EBM_easy.get_column_name() != '0'): # Вопрос пользователю - какой столбец анализируем? EBM_easy.scale_type(EBM_easy.customer_choice) # Определение типа шкалы переменной EBM_easy.describe_value() # Краткое описание переменной EBM_easy.normality_test(EBM_easy.customer_choice) # Проверка на нормальность распределения EBM_easy.typical_value() # Расчет типичного значения выборки print('\nРабота программы по анализу данных закончена!')
54.276786
160
0.598454
1c52168f5a1830aeb1076b8be3de36d36b620de3
9,769
py
Python
Pyrado/scripts/hyperparam_optimization/hopt_qq-su_simopt-cem.py
KhanhThiVo/SimuRLacra
fdeaf2059c2ed80ea696f018c29290510b5c4cb9
[ "DOC", "Zlib", "BSD-3-Clause" ]
null
null
null
Pyrado/scripts/hyperparam_optimization/hopt_qq-su_simopt-cem.py
KhanhThiVo/SimuRLacra
fdeaf2059c2ed80ea696f018c29290510b5c4cb9
[ "DOC", "Zlib", "BSD-3-Clause" ]
null
null
null
Pyrado/scripts/hyperparam_optimization/hopt_qq-su_simopt-cem.py
KhanhThiVo/SimuRLacra
fdeaf2059c2ed80ea696f018c29290510b5c4cb9
[ "DOC", "Zlib", "BSD-3-Clause" ]
1
2020-11-24T15:25:26.000Z
2020-11-24T15:25:26.000Z
# Copyright (c) 2020, Fabio Muratore, Honda Research Institute Europe GmbH, and # Technical University of Darmstadt. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of Fabio Muratore, Honda Research Institute Europe GmbH, # or Technical University of Darmstadt, nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL FABIO MURATORE, HONDA RESEARCH INSTITUTE EUROPE GMBH, # OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER # IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ Optimize the hyper-parameters of SimOpt for the Quanser Qube swing-up task. """ import functools import optuna import os.path as osp import torch as to import pyrado from pyrado.algorithms.step_based.gae import GAE from pyrado.algorithms.episodic.cem import CEM from pyrado.algorithms.step_based.ppo import PPO from pyrado.algorithms.meta.simopt import SimOpt from pyrado.algorithms.episodic.sysid_via_episodic_rl import SysIdViaEpisodicRL from pyrado.domain_randomization.domain_parameter import NormalDomainParam from pyrado.domain_randomization.domain_randomizer import DomainRandomizer from pyrado.environment_wrappers.domain_randomization import DomainRandWrapperLive, MetaDomainRandWrapper from pyrado.environments.pysim.quanser_qube import QQubeSwingUpSim from pyrado.logger.experiment import save_dicts_to_yaml, setup_experiment from pyrado.logger.step import create_csv_step_logger from pyrado.policies.special.domain_distribution import DomainDistrParamPolicy from pyrado.policies.special.environment_specific import QQubeSwingUpAndBalanceCtrl from pyrado.policies.feed_forward.fnn import FNNPolicy from pyrado.sampling.parallel_rollout_sampler import ParallelRolloutSampler from pyrado.spaces import ValueFunctionSpace from pyrado.utils.argparser import get_argparser from pyrado.utils.data_types import EnvSpec from pyrado.utils.input_output import print_cbt def train_and_eval(trial: optuna.Trial, study_dir: str, seed: int): """ Objective function for the Optuna `Study` to maximize. .. note:: Optuna expects only the `trial` argument, thus we use `functools.partial` to sneak in custom arguments. :param trial: Optuna Trial object for hyper-parameter optimization :param study_dir: the parent directory for all trials in this study :param seed: seed value for the random number generators, pass `None` for no seeding :return: objective function value """ # Synchronize seeds between Optuna trials pyrado.set_seed(seed) # Environments env_hparams = dict(dt=1 / 100.0, max_steps=600) env_real = QQubeSwingUpSim(**env_hparams) env_real.domain_param = dict( Mr=0.095 * 0.9, # 0.095*0.9 = 0.0855 Mp=0.024 * 1.1, # 0.024*1.1 = 0.0264 Lr=0.085 * 0.9, # 0.085*0.9 = 0.0765 Lp=0.129 * 1.1, # 0.129*1.1 = 0.1419 ) env_sim = QQubeSwingUpSim(**env_hparams) randomizer = DomainRandomizer( NormalDomainParam(name="Mr", mean=0.0, std=1e6, clip_lo=1e-3), NormalDomainParam(name="Mp", mean=0.0, std=1e6, clip_lo=1e-3), NormalDomainParam(name="Lr", mean=0.0, std=1e6, clip_lo=1e-3), NormalDomainParam(name="Lp", mean=0.0, std=1e6, clip_lo=1e-3), ) env_sim = DomainRandWrapperLive(env_sim, randomizer) dp_map = { 0: ("Mr", "mean"), 1: ("Mr", "std"), 2: ("Mp", "mean"), 3: ("Mp", "std"), 4: ("Lr", "mean"), 5: ("Lr", "std"), 6: ("Lp", "mean"), 7: ("Lp", "std"), } trafo_mask = [True] * 8 env_sim = MetaDomainRandWrapper(env_sim, dp_map) # Subroutine for policy improvement behav_policy_hparam = dict(hidden_sizes=[64, 64], hidden_nonlin=to.tanh) behav_policy = FNNPolicy(spec=env_sim.spec, **behav_policy_hparam) vfcn_hparam = dict(hidden_sizes=[64, 64], hidden_nonlin=to.tanh) vfcn = FNNPolicy(spec=EnvSpec(env_sim.obs_space, ValueFunctionSpace), **vfcn_hparam) critic_hparam = dict( gamma=0.9885, lamda=0.9648, num_epoch=2, batch_size=500, standardize_adv=False, lr=5.792e-4, max_grad_norm=1.0, ) critic = GAE(vfcn, **critic_hparam) subrtn_policy_hparam = dict( max_iter=200, min_steps=3 * 23 * env_sim.max_steps, num_epoch=7, eps_clip=0.0744, batch_size=500, std_init=0.9074, lr=3.446e-04, max_grad_norm=1.0, num_workers=1, ) subrtn_policy = PPO(study_dir, env_sim, behav_policy, critic, **subrtn_policy_hparam) # Subroutine for system identification prior_std_denom = trial.suggest_uniform("prior_std_denom", 5, 20) prior = DomainRandomizer( NormalDomainParam(name="Mr", mean=0.095, std=0.095 / prior_std_denom), NormalDomainParam(name="Mp", mean=0.024, std=0.024 / prior_std_denom), NormalDomainParam(name="Lr", mean=0.085, std=0.085 / prior_std_denom), NormalDomainParam(name="Lp", mean=0.129, std=0.129 / prior_std_denom), ) ddp_policy = DomainDistrParamPolicy( mapping=dp_map, trafo_mask=trafo_mask, prior=prior, scale_params=trial.suggest_categorical("ddp_policy_scale_params", [True, False]), ) subsubrtn_distr_hparam = dict( max_iter=trial.suggest_categorical("subsubrtn_distr_max_iter", [20]), pop_size=trial.suggest_int("pop_size", 50, 500), num_init_states_per_domain=1, num_is_samples=trial.suggest_int("num_is_samples", 5, 20), expl_std_init=trial.suggest_loguniform("expl_std_init", 1e-3, 1e-1), expl_std_min=trial.suggest_categorical("expl_std_min", [1e-4]), extra_expl_std_init=trial.suggest_loguniform("expl_std_init", 1e-3, 1e-1), extra_expl_decay_iter=trial.suggest_int("extra_expl_decay_iter", 0, 10), num_workers=1, ) csv_logger = create_csv_step_logger(osp.join(study_dir, f"trial_{trial.number}")) subsubrtn_distr = CEM(study_dir, env_sim, ddp_policy, **subsubrtn_distr_hparam, logger=csv_logger) obs_vel_weight = trial.suggest_loguniform("obs_vel_weight", 1, 100) subrtn_distr_hparam = dict( metric=None, obs_dim_weight=[1, 1, 1, 1, obs_vel_weight, obs_vel_weight], num_rollouts_per_distr=trial.suggest_int("num_rollouts_per_distr", 20, 100), num_workers=1, ) subrtn_distr = SysIdViaEpisodicRL(subsubrtn_distr, behav_policy, **subrtn_distr_hparam) # Algorithm algo_hparam = dict( max_iter=trial.suggest_categorical("algo_max_iter", [10]), num_eval_rollouts=trial.suggest_categorical("algo_num_eval_rollouts", [5]), warmstart=trial.suggest_categorical("algo_warmstart", [True]), thold_succ_subrtn=trial.suggest_categorical("algo_thold_succ_subrtn", [50]), subrtn_snapshot_mode="latest", ) algo = SimOpt(study_dir, env_sim, env_real, subrtn_policy, subrtn_distr, **algo_hparam, logger=csv_logger) # Jeeeha algo.train(seed=args.seed) # Evaluate min_rollouts = 1000 sampler = ParallelRolloutSampler( env_real, algo.policy, num_workers=1, min_rollouts=min_rollouts ) # parallelize via optuna n_jobs ros = sampler.sample() mean_ret = sum([r.undiscounted_return() for r in ros]) / min_rollouts return mean_ret if __name__ == "__main__": # Parse command line arguments args = get_argparser().parse_args() if args.dir is None: ex_dir = setup_experiment( "hyperparams", QQubeSwingUpSim.name, f"{SimOpt.name}-{CEM.name}_{QQubeSwingUpAndBalanceCtrl.name}_100Hz" ) study_dir = osp.join(pyrado.TEMP_DIR, ex_dir) print_cbt(f"Starting a new Optuna study.", "c", bright=True) else: study_dir = args.dir if not osp.isdir(study_dir): raise pyrado.PathErr(given=study_dir) print_cbt(f"Continuing an existing Optuna study.", "c", bright=True) name = f"{QQubeSwingUpSim.name}_{SimOpt.name}-{CEM.name}_{QQubeSwingUpAndBalanceCtrl.name}_100Hz" study = optuna.create_study( study_name=name, storage=f"sqlite:////{osp.join(study_dir, f'{name}.db')}", direction="maximize", load_if_exists=True, ) # Start optimizing study.optimize(functools.partial(train_and_eval, study_dir=study_dir, seed=args.seed), n_trials=100, n_jobs=16) # Save the best hyper-parameters save_dicts_to_yaml( study.best_params, dict(seed=args.seed), save_dir=study_dir, file_name="best_hyperparams", )
43.035242
116
0.713481
88aba2aa01535de69744892927df030d6e4380c9
2,725
py
Python
tools/perf/contrib/vr_benchmarks/webvr_sample_pages.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
14,668
2015-01-01T01:57:10.000Z
2022-03-31T23:33:32.000Z
tools/perf/contrib/vr_benchmarks/webvr_sample_pages.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
113
2015-05-04T09:58:14.000Z
2022-01-31T19:35:03.000Z
tools/perf/contrib/vr_benchmarks/webvr_sample_pages.py
zealoussnow/chromium
fd8a8914ca0183f0add65ae55f04e287543c7d4a
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
5,941
2015-01-02T11:32:21.000Z
2022-03-31T16:35:46.000Z
# Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from contrib.vr_benchmarks.vr_sample_page import VrSamplePage from contrib.vr_benchmarks.vr_story_set import VrStorySet class WebVrSamplePage(VrSamplePage): def __init__(self, page_set, url_parameters, sample_page, extra_browser_args=None,): super(WebVrSamplePage, self).__init__( sample_page=sample_page, page_set=page_set, url_parameters=url_parameters, extra_browser_args=extra_browser_args) def RunPageInteractions(self, action_runner): action_runner.TapElement(selector='canvas[id="webgl-canvas"]') action_runner.MeasureMemory(True) # We don't want to be in VR or on a page with a WebGL canvas at the end of # the test, as this generates unnecessary heat while the trace data is being # processed, so navigate to a blank page if we're on a platform that cares # about the heat generation. if self._shared_page_state.ShouldNavigateToBlankPageBeforeFinishing(): action_runner.Navigate("about:blank") class WebVrSamplePageSet(VrStorySet): """A page set using the official WebVR sample with settings tweaked.""" def __init__(self, use_fake_pose_tracker=True): super(WebVrSamplePageSet, self).__init__( use_fake_pose_tracker=use_fake_pose_tracker) # Test cases that use the synthetic cube field page cube_test_cases = [ # Standard sample app with no changes ['canvasClickPresents=1', 'renderScale=1'], # Increased render scale ['canvasClickPresents=1', 'renderScale=1.5'], # Default render scale, increased load ['canvasClickPresents=1', 'renderScale=1', 'heavyGpu=1', 'cubeScale=0.2', 'workTime=5'], # Further increased load ['canvasClickPresents=1', 'renderScale=1', 'heavyGpu=1', 'cubeScale=0.3', 'workTime=10'], # Absurd load for fill-rate testing ['canvasClickPresents=1', 'renderScale=1.6', 'heavyGpu=1', 'cubeScale=0.3', 'workTime=4'], ] for url_parameters in cube_test_cases: # Standard set of pages with defaults self.AddStory(WebVrSamplePage(self, url_parameters, 'test-slow-render')) # Set of pages with standardized render size self.AddStory(WebVrSamplePage(self, url_parameters + ['standardSize=1'], 'test-slow-render')) # Test cases that use the 360 video page video_test_cases = [ # Test using the default, low resolution video ['canvasClickPresents=1'], ] for url_parameters in video_test_cases: self.AddStory(WebVrSamplePage(self, url_parameters, 'XX-360-video'))
39.492754
80
0.711927
144ea82b1e44b223ad52714bb717b95923eb1802
181
py
Python
workbench/expenses/apps.py
yoshson/workbench
701558cac3357cd82e4dc99f0fefed12ee81ddc5
[ "MIT" ]
15
2020-09-02T22:17:34.000Z
2022-02-01T20:09:10.000Z
workbench/expenses/apps.py
yoshson/workbench
701558cac3357cd82e4dc99f0fefed12ee81ddc5
[ "MIT" ]
18
2020-01-08T15:28:26.000Z
2022-02-28T02:46:41.000Z
workbench/expenses/apps.py
yoshson/workbench
701558cac3357cd82e4dc99f0fefed12ee81ddc5
[ "MIT" ]
8
2020-09-29T08:00:24.000Z
2022-01-16T11:58:19.000Z
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class Config(AppConfig): name = "workbench.expenses" verbose_name = _("expenses")
22.625
54
0.762431
2e18e41f0b3b97a27c48f4a70a834b94b867381f
629
py
Python
proxyclient/hv/trace_gpio.py
phire/m1n1
41f0874f9999d2ac95ef5418dfae4fdd42cdc507
[ "MIT" ]
1,604
2021-01-14T19:04:59.000Z
2022-03-31T18:34:16.000Z
proxyclient/hv/trace_gpio.py
stvhay/asahilinux-m1n1
bad788e67e9f4da4bfc805415c8dd5726decb7df
[ "MIT" ]
105
2021-01-15T03:52:27.000Z
2022-03-30T22:16:52.000Z
proxyclient/hv/trace_gpio.py
stvhay/asahilinux-m1n1
bad788e67e9f4da4bfc805415c8dd5726decb7df
[ "MIT" ]
96
2021-01-14T21:13:53.000Z
2022-03-31T12:14:14.000Z
# SPDX-License-Identifier: MIT from m1n1.trace.gpio import GPIOTracer #trace_device("/arm-io/gpio", True) # trace gpio interrups, useful to follow the cascaded interrupts aic_phandle = getattr(hv.adt["/arm-io/aic"], "AAPL,phandle") try: node = hv.adt["/arm-io/gpio0"] path = "/arm-io/gpio0" except: node = hv.adt["/arm-io/gpio"] path = "/arm-io/gpio" if getattr(node, "interrupt-parent") == aic_phandle: for irq in getattr(node, "interrupts"): hv.trace_irq(node.name, irq, 1, hv.IRQTRACE_IRQ) GPIOTracer = GPIOTracer._reloadcls() gpio_tracer = GPIOTracer(hv, path, verbose=0) gpio_tracer.start()
27.347826
64
0.693164
bd3096bd22b278ec6095c72b869da29f87b6cefe
668
py
Python
backend/manage.py
dpouris/chore-battle
12284cc8d6566bbae368f8257f2a022d924deb71
[ "RSA-MD" ]
1
2022-03-26T17:40:16.000Z
2022-03-26T17:40:16.000Z
backend/manage.py
dpouris/chore-battle
12284cc8d6566bbae368f8257f2a022d924deb71
[ "RSA-MD" ]
null
null
null
backend/manage.py
dpouris/chore-battle
12284cc8d6566bbae368f8257f2a022d924deb71
[ "RSA-MD" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'chore_battle.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
29.043478
76
0.681138
db742602a5cac6120aa55270d550a095efee8d81
22,148
py
Python
sonnet/python/modules/basic_rnn.py
ishandutta2007/sonnet
417a5bb73e579963728e3f9b40ad583ac014601a
[ "Apache-2.0" ]
345
2017-08-23T13:48:50.000Z
2022-03-17T05:43:34.000Z
sonnet/python/modules/basic_rnn.py
ishandutta2007/sonnet
417a5bb73e579963728e3f9b40ad583ac014601a
[ "Apache-2.0" ]
8
2017-09-30T15:01:23.000Z
2019-12-18T08:46:08.000Z
sonnet/python/modules/basic_rnn.py
ishandutta2007/sonnet
417a5bb73e579963728e3f9b40ad583ac014601a
[ "Apache-2.0" ]
224
2017-08-31T01:10:55.000Z
2022-03-09T06:14:12.000Z
# Copyright 2017 The Sonnet Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Basic RNN Cores for TensorFlow snt. This file contains the definitions of the simplest building blocks for Recurrent Neural Networks. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports from sonnet.python.modules import basic from sonnet.python.modules import rnn_core from sonnet.python.modules import util import tensorflow as tf from tensorflow.python.framework import tensor_shape from tensorflow.python.util import nest def _get_flat_core_sizes(cores): """Obtains the list flattened output sizes of a list of cores. Args: cores: list of cores to get the shapes from. Returns: List of lists that, for each core, contains the list of its output dimensions. """ core_sizes_lists = [] for core in cores: flat_output_size = nest.flatten(core.output_size) core_sizes_lists.append([tensor_shape.as_shape(size).as_list() for size in flat_output_size]) return core_sizes_lists def _get_shape_without_batch_dimension(tensor_nest): """Converts Tensor nest to a TensorShape nest, removing batch dimension.""" def _strip_batch_and_convert_to_shape(tensor): return tensor[0].get_shape() return nest.map_structure(_strip_batch_and_convert_to_shape, tensor_nest) class VanillaRNN(rnn_core.RNNCore): """Basic fully connected vanilla RNN core.""" IN_TO_HIDDEN = "in_to_hidden" HIDDEN_TO_HIDDEN = "hidden_to_hidden" POSSIBLE_INITIALIZER_KEYS = {IN_TO_HIDDEN, HIDDEN_TO_HIDDEN} def __init__(self, hidden_size, activation=tf.tanh, initializers=None, partitioners=None, regularizers=None, name="vanilla_rnn"): """Construct a Basic RNN core. Args: hidden_size: hidden size dimensionality. activation: activation function to use. initializers: optional dict containing ops to initialize the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. partitioners: optional dict containing ops to partition the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. regularizers: optional dict containing ops to regularize the weights. This dictionary may contain the keys 'in_to_hidden' and/or 'hidden_to_hidden'. name: name of the module. Raises: KeyError: if `initializers` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. KeyError: if `partitioners` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. KeyError: if `regularizers` contains any keys other than 'in_to_hidden' or 'hidden_to_hidden'. TypeError: If any of the given initializers are not callable. TypeError: If any of the given partitioners are not callable. TypeError: If any of the given regularizers are not callable. """ super(VanillaRNN, self).__init__(name=name) self._hidden_size = hidden_size self._activation = activation self._initializers = util.check_initializers( initializers, self.POSSIBLE_INITIALIZER_KEYS) self._partitioners = util.check_partitioners( partitioners, self.POSSIBLE_INITIALIZER_KEYS) self._regularizers = util.check_regularizers( regularizers, self.POSSIBLE_INITIALIZER_KEYS) def _build(self, input_, prev_state): """Connects the VanillaRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: input_: a 2D Tensor of size [batch_size, input_size]. prev_state: a 2D Tensor of size [batch_size, hidden_size]. Returns: output: a 2D Tensor of size [batch_size, hidden_size]. next_state: a Tensor of size [batch_size, hidden_size]. Raises: ValueError: if connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. """ self._in_to_hidden_linear = basic.Linear( self._hidden_size, name="in_to_hidden", initializers=self._initializers.get("in_to_hidden"), partitioners=self._partitioners.get("in_to_hidden"), regularizers=self._regularizers.get("in_to_hidden")) self._hidden_to_hidden_linear = basic.Linear( self._hidden_size, name="hidden_to_hidden", initializers=self._initializers.get("hidden_to_hidden"), partitioners=self._partitioners.get("hidden_to_hidden"), regularizers=self._regularizers.get("hidden_to_hidden")) in_to_hidden = self._in_to_hidden_linear(input_) hidden_to_hidden = self._hidden_to_hidden_linear(prev_state) output = self._activation(in_to_hidden + hidden_to_hidden) # For VanillaRNN, the next state of the RNN is the same as the output return output, output @property def in_to_hidden_linear(self): self._ensure_is_connected() return self._in_to_hidden_linear @property def hidden_to_hidden_linear(self): self._ensure_is_connected() return self._hidden_to_hidden_linear @property def in_to_hidden_variables(self): self._ensure_is_connected() return self._in_to_hidden_linear.get_variables() @property def hidden_to_hidden_variables(self): self._ensure_is_connected() return self._hidden_to_hidden_linear.get_variables() @property def state_size(self): return tf.TensorShape([self._hidden_size]) @property def output_size(self): return tf.TensorShape([self._hidden_size]) class DeepRNN(rnn_core.RNNCore): """RNN core that passes data through a number of internal modules or ops. This module is constructed by passing an iterable of externally constructed modules or ops. The DeepRNN takes `(input, prev_state)` as input and passes the input through each internal module in the order they were presented, using elements from `prev_state` as necessary for internal recurrent cores. The output is `(output, next_state)` in common with other RNN cores. By default, skip connections from the input to all internal modules and from each intermediate output to the final output are used. E.g.: ```python lstm1 = snt.LSTM(hidden_size=256) lstm2 = snt.LSTM(hidden_size=256) deep_rnn = snt.DeepRNN([lstm1, lstm2]) output, next_state = deep_rnn(input, prev_state) ``` The computation set up inside the DeepRNN has the same effect as: ```python prev_state1, prev_state2 = prev_state lstm1_output, next_state1 = lstm1(input, prev_state1) lstm2_output, next_state2 = lstm( tf.concat([input, lstm1_output], 1), prev_state2) next_state = (next_state1, next_state2) output = tf.concat([lstm1_output, lstm2_output], 1) ``` Every internal module receives the preceding module's output and the entire core's input. The output is created by concatenating each internal module's output. In the case of internal recurrent elements, corresponding elements of the state are used such that `state[i]` is passed to the `i`'th internal recurrent element. Note that the state of a `DeepRNN` is always a tuple, which will contain the same number of elements as there are internal recurrent cores. If no internal modules are recurrent, the state of the DeepRNN as a whole is the empty tuple. Wrapping non-recurrent modules into a DeepRNN can be useful to produce something API compatible with a "real" recurrent module, simplifying code that handles the cores. Without skip connections the previous example would become the following (note the only difference is the addition of `skip_connections=False`): ```python # ... declare other modules as above deep_rnn = snt.DeepRNN([lin, tanh, lstm], skip_connections=False) output, next_state = deep_rnn(input, prev_state) ``` which is equivalent to: ```python lin_output = lin(input) tanh_output = tanh(lin_output) lstm_output, lstm_next_state = lstm(tanh_output, prev_state[0]) next_state = (lstm_next_state,) output = lstm_output ``` Note: when using skip connections, all the cores should be recurrent. """ def __init__(self, cores, skip_connections=True, concat_final_output_if_skip=True, name="deep_rnn"): """Construct a Deep RNN core. Args: cores: iterable of modules or ops. skip_connections: a boolean that indicates whether to use skip connections. This means that the input is fed to all the layers, after being concatenated with the output of the previous layer. The output of the module will be the concatenation of all the outputs of the internal modules. concat_final_output_if_skip: A boolean that indicates whether the outputs of intermediate layers should be concatenated into the timestep-wise output of the core. By default this is True. If this is set to False, then the core output is that of the final layer, i.e. that of `cores[-1]`. name: name of the module. Raises: ValueError: if `cores` is not an iterable, or if `skip_connections` is True and not all the modules are recurrent. """ super(DeepRNN, self).__init__(name=name) if not isinstance(cores, collections.Iterable): raise ValueError("Cores should be an iterable object.") self._cores = tuple(cores) self._skip_connections = skip_connections self._concat_final_output_if_skip = concat_final_output_if_skip self._is_recurrent_list = [isinstance(core, rnn_core.RNNCore) for core in self._cores] if self._skip_connections: tf.logging.warning( "The `skip_connections` argument will be deprecated. Please use " "snt.SkipConnectionCore instead." ) if not all(self._is_recurrent_list): raise ValueError("skip_connections are enabled but not all cores are " "`snt.RNNCore`s, which is not supported. The following" " cores were specified: {}.".format(self._cores)) self._check_cores_output_sizes() self._num_recurrent = sum(self._is_recurrent_list) def _check_cores_output_sizes(self): """Checks the output_sizes of the cores of the DeepRNN module. Raises: ValueError: if the outputs of the cores cannot be concatenated along their first dimension. """ for core_sizes in zip(*tuple(_get_flat_core_sizes(self._cores))): first_core_list = core_sizes[0][1:] for i, core_list in enumerate(core_sizes[1:]): if core_list[1:] != first_core_list: raise ValueError("The outputs of the provided cores are not able " "to be concatenated along the first feature " "dimension. Core 0 has size %s, whereas Core %d " "has size %s" % (first_core_list, i, core_list)) def _build(self, inputs, prev_state): """Connects the DeepRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: a nested tuple of Tensors of arbitrary dimensionality, with at least an initial batch dimension. prev_state: a tuple of `prev_state`s that corresponds to the state of each one of the cores of the `DeepCore`. Returns: output: a nested tuple of Tensors of arbitrary dimensionality, with at least an initial batch dimension. next_state: a tuple of `next_state`s that corresponds to the updated state of each one of the cores of the `DeepCore`. Raises: ValueError: if connecting the module into the graph any time after the first time, and the inferred size of the inputs does not match previous invocations. This may happen if one connects a module any time after the first time that does not have the configuration of skip connections as the first time. """ current_input = inputs next_states = [] outputs = [] recurrent_idx = 0 for i, core in enumerate(self._cores): if self._skip_connections and i > 0: flat_input = (nest.flatten(inputs), nest.flatten(current_input)) flat_input = [tf.concat(input_, 1) for input_ in zip(*flat_input)] current_input = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input) # Determine if this core in the stack is recurrent or not and call # accordingly. if self._is_recurrent_list[i]: current_input, next_state = core(current_input, prev_state[recurrent_idx]) next_states.append(next_state) recurrent_idx += 1 else: current_input = core(current_input) if self._skip_connections: outputs.append(current_input) if self._skip_connections and self._concat_final_output_if_skip: flat_outputs = tuple(nest.flatten(output) for output in outputs) flat_outputs = [tf.concat(output, 1) for output in zip(*flat_outputs)] output = nest.pack_sequence_as(structure=outputs[0], flat_sequence=flat_outputs) else: output = current_input return output, tuple(next_states) def initial_state(self, batch_size, dtype=tf.float32, trainable=False, trainable_initializers=None, trainable_regularizers=None, name=None): """Builds the default start state for a DeepRNN. Args: batch_size: An int, float or scalar Tensor representing the batch size. dtype: The data type to use for the state. trainable: Boolean that indicates whether to learn the initial state. trainable_initializers: An initializer function or nested structure of functions with same structure as the `state_size` property of the core, to be used as initializers of the initial state variable. trainable_regularizers: Optional regularizer function or nested structure of functions with the same structure as the `state_size` property of the core, to be used as regularizers of the initial state variable. A regularizer should be a function that takes a single `Tensor` as an input and returns a scalar `Tensor` output, e.g. the L1 and L2 regularizers in `tf.contrib.layers`. name: Optional string used to prefix the initial state variable names, in the case of a trainable initial state. If not provided, defaults to the name of the module. Returns: A tensor or nested tuple of tensors with same structure and shape as the `state_size` property of the core. Raises: ValueError: if the number of passed initializers is not the same as the number of recurrent cores. """ initial_state = [] if trainable_initializers is None: trainable_initializers = [None] * self._num_recurrent if trainable_regularizers is None: trainable_regularizers = [None] * self._num_recurrent num_initializers = len(trainable_initializers) if num_initializers != self._num_recurrent: raise ValueError("The number of initializers and recurrent cores should " "be the same. Received %d initializers for %d specified " "recurrent cores." % (num_initializers, self._num_recurrent)) with tf.name_scope(self._initial_state_scope(name)): recurrent_idx = 0 for is_recurrent, core in zip(self._is_recurrent_list, self._cores): if is_recurrent: core_initial_state = core.initial_state( batch_size, dtype=dtype, trainable=trainable, trainable_initializers=trainable_initializers[recurrent_idx], trainable_regularizers=trainable_regularizers[recurrent_idx]) initial_state.append(core_initial_state) recurrent_idx += 1 return tuple(initial_state) @property def state_size(self): sizes = [] for is_recurrent, core in zip(self._is_recurrent_list, self._cores): if is_recurrent: sizes.append(core.state_size) return tuple(sizes) @property def output_size(self): if self._skip_connections and self._concat_final_output_if_skip: output_size = [] for core_sizes in zip(*tuple(_get_flat_core_sizes(self._cores))): added_core_size = core_sizes[0] added_core_size[0] = sum([size[0] for size in core_sizes]) output_size.append(tf.TensorShape(added_core_size)) return nest.pack_sequence_as(structure=self._cores[0].output_size, flat_sequence=output_size) else: # Assumes that an element of cores which does not have the output_size # property does not affect the output shape. Then the 'last' core in the # sequence with output_size information should be the output_size of the # DeepRNN. This heuristic is error prone, but we would lose a lot of # flexibility if we tried to enforce that the final core must have an # output_size field (e.g. it would be impossible to add a TF nonlinearity # as the final "core"), but we should at least print a warning if this # is the case. final_core = self._cores[-1] if hasattr(final_core, "output_size"): # This is definitely the correct value, so no warning needed. return final_core.output_size # If we have connected the module at least once, we can get the output # size of whatever was actually produced. The indexing of [-1] gets us # the most recent connection, and [0] gets us the first element of the # output tuple as opposed to the recurrent state. if self._connected_subgraphs: last_connected_output_size = _get_shape_without_batch_dimension( self._connected_subgraphs[-1].outputs[0]) tf.logging.warning( "Final core does not contain .output_size, but the " "DeepRNN has been connected into the graph, so inferred output " "size as %s", last_connected_output_size) return last_connected_output_size # If all else fails, iterate backwards through cores and return the # first one which has an output_size field. This can be incorrect in # various ways, so warn loudly. try: guessed_output_size = next(core.output_size for core in reversed(self._cores) if hasattr(core, "output_size")) except StopIteration: raise ValueError("None of the 'cores' have output_size information.") tf.logging.warning( "Trying to infer output_size of DeepRNN, but the final core %s does " "not have the .output_size field. The guessed output_size is %s " "but this may not be correct. If you see shape errors following this " "warning, you must change the cores used in the DeepRNN so that " "the final core used has a correct .output_size property.", final_core, guessed_output_size) return guessed_output_size class ModelRNN(rnn_core.RNNCore): """RNNCore that ignores input and uses a model to compute its next state.""" def __init__(self, model, name="model_rnn"): """Construct a Basic RNN core. Args: model: callable that computes the next state. name: name of the module. Raises: TypeError: if model is not a callable object or if it is an RNNCore. AttributeError: if model does not have an output_size attribute. """ super(ModelRNN, self).__init__(name=name) if not callable(model): raise TypeError("Model must be callable.") if isinstance(model, rnn_core.RNNCore): raise TypeError("Model should not be an RNNCore.") try: self._output_size = model.output_size except AttributeError: raise AttributeError("Model should have an output_size attribute.") self._model = model def _build(self, inputs, prev_state): """Connects the ModelRNN module into the graph. If this is not the first time the module has been connected to the graph, the Tensors provided as input_ and state must have the same final dimension, in order for the existing variables to be the correct size for their corresponding multiplications. The batch size may differ for each connection. Args: inputs: Tensor input to the ModelRNN (ignored). prev_state: Tensor of size `model.output_size`. Returns: output: Tensor of size `model.output_size`. next_state: Tensor of size `model.output_size`. """ next_state = self._model(prev_state) # For ModelRNN, the next state of the RNN is the same as the output return next_state, next_state @property def state_size(self): return self._output_size @property def output_size(self): return self._output_size
40.489945
80
0.700966
56d13b6029458edef06857a73013fd6757dafe1c
532
py
Python
melodb/loggers/ConsoleLogger.py
omarboukhris/melodb
043907857cd7a73857d8d9b06be0a2282f740253
[ "BSL-1.0" ]
null
null
null
melodb/loggers/ConsoleLogger.py
omarboukhris/melodb
043907857cd7a73857d8d9b06be0a2282f740253
[ "BSL-1.0" ]
null
null
null
melodb/loggers/ConsoleLogger.py
omarboukhris/melodb
043907857cd7a73857d8d9b06be0a2282f740253
[ "BSL-1.0" ]
null
null
null
from melodb.loggers.ILogger import ILogger from datetime import datetime class ConsoleLogger(ILogger): def __init__(self, component: str): super(ConsoleLogger, self).__init__(component) def info(self, log_message: str): print( f"INFO [{datetime.now()}] [{self.component}]: {log_message}" ) def warn(self, log_message: str): print( f"WARN [{datetime.now()}] [{self.component}]: {log_message}" ) def error(self, log_message: str): print( f"ERROR [{datetime.now()}] [{self.component}]: {log_message}" )
23.130435
64
0.68797
4bc64c83cb67b748c8356c55f47d67b161788b67
465
py
Python
igem_tuebingen_website/handlers/errors.py
blue1stone/igem_tuebingen_website
f0fee8d1d92459b17892fbeed1cab8fbc714316f
[ "MIT" ]
null
null
null
igem_tuebingen_website/handlers/errors.py
blue1stone/igem_tuebingen_website
f0fee8d1d92459b17892fbeed1cab8fbc714316f
[ "MIT" ]
null
null
null
igem_tuebingen_website/handlers/errors.py
blue1stone/igem_tuebingen_website
f0fee8d1d92459b17892fbeed1cab8fbc714316f
[ "MIT" ]
null
null
null
from flask import render_template from ..app import app @app.errorhandler(404) def page_not_found(error): return render_template('errors/404.html'), 404 @app.errorhandler(500) def internal_error(error): return render_template('errors/500.html'), 500 @app.errorhandler(403) def access_forbidden(error): return render_template('errors/403.html'), 403 @app.errorhandler(410) def page_gone(error): return render_template('errors/410.html'), 410
20.217391
50
0.754839
a59846e40600c6672e45266592c70a13e5b9d24d
1,497
py
Python
script/migrations/0001_initial.py
satamame/pscweb2
f15f6e2594a7339e4e964f2cb4d7363743b8cbd6
[ "MIT" ]
null
null
null
script/migrations/0001_initial.py
satamame/pscweb2
f15f6e2594a7339e4e964f2cb4d7363743b8cbd6
[ "MIT" ]
null
null
null
script/migrations/0001_initial.py
satamame/pscweb2
f15f6e2594a7339e4e964f2cb4d7363743b8cbd6
[ "MIT" ]
null
null
null
# Generated by Django 2.2.8 on 2019-12-29 04:07 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Script', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=50, verbose_name='題名')), ('author', models.CharField(blank=True, max_length=50, verbose_name='著者')), ('raw_data', models.TextField(blank=True, verbose_name='データ')), ('format', models.IntegerField(choices=[(1, 'Fountain JA')], default=1, verbose_name='フォーマット')), ('create_dt', models.DateTimeField(auto_now_add=True, verbose_name='作成日時')), ('modify_dt', models.DateTimeField(auto_now=True, verbose_name='変更日時')), ('public_level', models.IntegerField(choices=[(1, '公開しない'), (2, 'PSCWEB2 ユーザ')], default=1, verbose_name='公開レベル')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='所有者')), ], options={ 'verbose_name': '台本', 'verbose_name_plural': '台本', }, ), ]
41.583333
139
0.607214
477ec0c0f1488de6dbcb27b0146cfbe0319b079c
4,158
py
Python
verify-certificates.py
nanobot248/ssltools
7a940ac201559386793996eacad32e8e6dc9405e
[ "MIT" ]
null
null
null
verify-certificates.py
nanobot248/ssltools
7a940ac201559386793996eacad32e8e6dc9405e
[ "MIT" ]
null
null
null
verify-certificates.py
nanobot248/ssltools
7a940ac201559386793996eacad32e8e6dc9405e
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys import OpenSSL.crypto as crypto from ssltools.certificates import verify_certificate, find_certificates, load_certificate_store, certificate_to_dict import json from ssltools.json import to_json import argparse from jsonpointer import resolve_pointer from jsonpath_rw import jsonpath, parse if __name__ == "__main__": cli = argparse.ArgumentParser(description = "Verify the certificates provided in PEM format on STDIN.") cli.add_argument("--summary", "-s", dest = "summary", action = "store_true", help = "Only return a summary value 'Valid' or 'Invalid'.") cli.add_argument("--only", "-o", dest = "only", choices = ["valid", "invalid"], help = "Return an array of either only valid or invalid certificates.") cli.add_argument("--json-pointer", dest = "json_pointer", type = str, nargs = 1, help = "JSON pointer query string (RFC6901) to get a specific attribute from the result. " + "This is not applied in --summary mode.") cli.add_argument("--json-path", dest = "json_path", nargs = "+", help = "JSON path (http://goessner.net/articles/JsonPath/) filter string " + "to query a subset of the result data. Multiple queries can be specified that are executed in " + "order on the result of the previous query. This parameter is not used if " + "--summary mode is used.") cli.add_argument("-u", "--unwrap", dest = "unwrap", action = "store_true", help = "Unwrap transforms different data types into a simpler format. If a result is a simple string, " + "or a datetime the quotes are removed. If the result is an X509 name, its parts are joined to a string " + "in the way used by openssl (C=..., O=..., OU=..., CN=...). Unwrap has no effect on " + "a --summary value.") args = cli.parse_args() cert = sys.stdin.read() certs = find_certificates(cert) in_certs = [] for cert in certs: in_certs.append(crypto.load_certificate(crypto.FILETYPE_PEM, cert)) store = load_certificate_store() good_certs = [] while len(in_certs) > 0: good = [] for cert in in_certs: if verify_certificate(cert, store): good.append(cert) if len(good) < 1: break for cert in good: try: store.add_cert(cert) except: pass in_certs.remove(cert) good_certs.append(cert) if args.summary: only_valid = len(in_certs) < 1 result = ["Invalid", "Valid"][only_valid] print result sys.exit(0) tmp_certs = [] for cert in good_certs: cert = certificate_to_dict(cert) cert["verificationValid"] = True tmp_certs.append(cert) good_certs = tmp_certs tmp_certs = [] for cert in in_certs: cert = certificate_to_dict(cert) cert["verificationValid"] = False tmp_certs.append(cert) in_certs = tmp_certs tmp_certs = None out_certs = None if args.only != None: if args.only == "valid": out_certs = good_certs else: out_certs = in_certs else: out_certs = [] for cert in in_certs: out_certs.append(cert) for cert in good_certs: out_certs.append(cert) if args.json_path != None and len(args.json_path) > 0: for pathExpression in args.json_path: expr = parse(pathExpression) out_certs = [match.value for match in expr.find(out_certs)] if args.json_pointer != None and len(args.json_pointer) > 0: pointer = args.json_pointer[0] out_certs = resolve_pointer(out_certs, pointer) if args.unwrap and isinstance(out_certs, str): jsonData = out_certs elif args.unwrap and isinstance(jsonCerts, datetime): jsonData = out_certs.isoformat() elif args.unwrap and isinstance(out_certs, dict): jsonData = "" for key in out_certs: jsonData += key + "=" + out_certs[key] + ", " if len(jsonData) > 0: jsonData = jsonData[0:-2] else: jsonData = to_json(out_certs, pretty = True) print jsonData
38.146789
116
0.633237
e3da1d0e75cf32b6d5100db02234098dfa0fd253
163
py
Python
examples/docs_snippets/docs_snippets/guides/dagster/dagster_type_factories/schema_execution.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
1
2021-01-31T19:16:29.000Z
2021-01-31T19:16:29.000Z
examples/docs_snippets/docs_snippets/guides/dagster/dagster_type_factories/schema_execution.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
null
null
null
examples/docs_snippets/docs_snippets/guides/dagster/dagster_type_factories/schema_execution.py
rpatil524/dagster
6f918d94cbd543ab752ab484a65e3a40fd441716
[ "Apache-2.0" ]
1
2019-09-11T03:02:27.000Z
2019-09-11T03:02:27.000Z
from .schema import df, trips_schema trips_schema.validate(df) # => SchemaError: non-nullable series 'end_time' contains null values: # => 22 NaT # => 43 NaT
23.285714
70
0.711656
7ae193bf34a54e31588a5d9c60c7a4fdf2ec54e8
3,947
py
Python
sample/collect/service_imp/model/model_save.py
SelfDown/omnis-collect3
84f16ed108e4295719cf943b573aeb4ae3fe9c75
[ "MIT" ]
null
null
null
sample/collect/service_imp/model/model_save.py
SelfDown/omnis-collect3
84f16ed108e4295719cf943b573aeb4ae3fe9c75
[ "MIT" ]
null
null
null
sample/collect/service_imp/model/model_save.py
SelfDown/omnis-collect3
84f16ed108e4295719cf943b573aeb4ae3fe9c75
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @Time: 2021/7/14 16:32 @Author: zzhang zzhang@cenboomh.com @File: ModelUpdate.py @desc: """ from collect.collect_service import CollectService from collect.utils.collect_utils import get_safe_data class ModelSaveService(CollectService): def __init__(self, op_user): CollectService.__init__(self, op_user) pass def get_exclude_save_field_name(self): return self.const["exclude_save_field_name"] def get_exclude_save_field(self): return get_safe_data(self.get_exclude_save_field_name(), self.template) def handler_model_params(self, params): return CollectService.result(self, params) def validate_model(self, model_obj): from django.core.exceptions import ValidationError try: model_obj.full_clean() except ValidationError as e: msg_list = [] md = e.message_dict for field_key in md: template_params = self.get_template_params() param = get_safe_data(field_key, template_params) name = field_key detail = md[field_key] if param: n = get_safe_data("name", param) if n: name = n msg = "字段 【{name}】错误: {detail}".format(name=name, detail=" ".join(detail)) msg_list.append(msg) return self.fail(msg=",".join(msg_list)) return self.success(model_obj) def result(self, params=None): result = self.handler_model_params(params) if self.finish or not self.is_success(result): return result import time start = time.time() # 获取模型对象 model_obj_result = self.get_model_obj() if not self.is_success(model_obj_result): return model_obj_result model_obj = self.get_data(model_obj_result) # 更新字段 model_obj_result = self.update_field(model_obj) if not self.is_success(model_obj_result): return model_obj_result # 校验数据 model_obj_result = self.validate_model(model_obj) if not model_obj_result: return model_obj_result # 保存 fields = {} exclude_save_field = self.get_exclude_save_field() if exclude_save_field: # 去掉不可以修改的字段 update_fields = self.get_update_fields(model_obj) update_fields = [i for i in update_fields if i not in exclude_save_field] if len(update_fields) > 0: fields["update_fields"] = update_fields model_obj.save(**fields) else: model_obj.save() param_result = self.get_params_result() end = time.time() if self.can_log(): service_name = get_safe_data(self.get_service_name(), params) self.log("{service} 保存耗时 {spend}".format(service=service_name, spend=str(end - start))) def getDict(): fields = [] for field in model_obj._meta.fields: fields.append(field.name) d = {} def isAttrInstance(attr, clazz): return isinstance(getattr(model_obj, attr), clazz) import datetime for attr in fields: if isinstance(getattr(model_obj, attr), datetime.datetime): d[attr] = getattr(model_obj, attr).strftime('%Y-%m-%d %H:%M:%S') elif isinstance(getattr(model_obj, attr), datetime.date): d[attr] = getattr(model_obj, attr).strftime('%Y-%m-%d') elif isAttrInstance(attr, int) or isAttrInstance(attr, float) \ or isAttrInstance(attr, str): d[attr] = getattr(model_obj, attr) # else: # d[attr] = getattr(self, attr) return d return self.success(data=getDict(), msg="保存成功")
35.881818
99
0.587281
aaee56c85ac1ba40fa35d33cfa62e97af249a118
203
py
Python
shortcodes/templatetags/shortcodes_filters.py
ONWT/django-shortcodes
132082384902daa814a41695a679b5436ea14e57
[ "MIT" ]
null
null
null
shortcodes/templatetags/shortcodes_filters.py
ONWT/django-shortcodes
132082384902daa814a41695a679b5436ea14e57
[ "MIT" ]
null
null
null
shortcodes/templatetags/shortcodes_filters.py
ONWT/django-shortcodes
132082384902daa814a41695a679b5436ea14e57
[ "MIT" ]
null
null
null
from shortcodes import parser from django import template register = template.Library() def shortcodes_replace(value): return parser.parse(value) register.filter('shortcodes', shortcodes_replace)
20.3
49
0.802956
3b225a65fbbadb352361ee40a5c3ac9fad1cb4f4
1,193
py
Python
Awards/urls.py
olesigilai/Awards
8404517249c34f65cd2ce49fc2b13654056047d0
[ "MIT", "Unlicense" ]
null
null
null
Awards/urls.py
olesigilai/Awards
8404517249c34f65cd2ce49fc2b13654056047d0
[ "MIT", "Unlicense" ]
1
2021-04-06T19:27:04.000Z
2021-04-06T19:27:04.000Z
Awards/urls.py
olesigilai/Awards
8404517249c34f65cd2ce49fc2b13654056047d0
[ "MIT", "Unlicense" ]
null
null
null
"""Awards URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin # from django.conf.urls import include,path,url from django.urls import include,path from django_registration.backends.one_step.views import RegistrationView urlpatterns = [ path('admin/', admin.site.urls), path('accounts/register/', RegistrationView.as_view(success_url='/'), name='django_registration_register'), path('accounts/', include('django_registration.backends.one_step.urls')), path('accounts/', include('django.contrib.auth.urls')), path('', include ('user.urls')), ]
36.151515
77
0.70746
fc5394d88fb769d2d0b3af261ecb7a175871aad9
4,628
py
Python
tmp/quadrature.py
saustinp/3D-CG
8d3e161674273649af1f23b2a0e1d5100971477a
[ "MIT" ]
null
null
null
tmp/quadrature.py
saustinp/3D-CG
8d3e161674273649af1f23b2a0e1d5100971477a
[ "MIT" ]
null
null
null
tmp/quadrature.py
saustinp/3D-CG
8d3e161674273649af1f23b2a0e1d5100971477a
[ "MIT" ]
null
null
null
import numpy as np import logging logger = logging.getLogger(__name__) # Finding the sim root directory import sys from pathlib import Path cwd = Path.cwd() for dirname in tuple(cwd.parents): if dirname.name == '3D-CG': sim_root_dir = dirname continue sys.path.append(str(sim_root_dir.joinpath('util'))) from math_helper_fcns import inv def face_surface_integral(ho_pts, master, field, ndim): if ndim == 2: raise NotImplementedError elif ndim == 3: # First, prepare data structures to build PHI, DX, and DY, DETJ, and other matrices: n_gqpts = master['gptsface'].shape[0] # The following matrices are size (nplocal, npgauss), essentially restructuring the master.shap dataset PHI = master['shapface'][:, :, 0].T DPHI_DXI = master['shapface'][:, :, 1].T DPHI_DETA = master['shapface'][:, :, 2].T # GQ weights in matrix form W = np.diag(master['gwface']) # Why transpose again? And check the dimensions of g G_GQ = PHI.T@field # For now, assume the neumann condition is uniform across the face. But be prepared to change that in the future. J = np.zeros((n_gqpts, 2, 3)) J[:, 0, 0] = DPHI_DXI.T@ho_pts[:, 0] # DX_DXI J[:, 0, 1] = DPHI_DXI.T@ho_pts[:, 1] # DY_DXI J[:, 0, 2] = DPHI_DXI.T@ho_pts[:, 2] # DZ_DXI J[:, 1, 0] = DPHI_DETA.T@ho_pts[:, 0] # DX_DETA J[:, 1, 1] = DPHI_DETA.T@ho_pts[:, 1] # DY_DETA J[:, 1, 2] = DPHI_DETA.T@ho_pts[:, 2] # DZ_DETA # Determinants of Jacobians stored as a matrix, diagonal) JAC_DET = np.zeros((n_gqpts)) for i in np.arange(n_gqpts): JAC_DET[i] = np.linalg.norm(np.cross(J[i, 0, :], J[i, 1, :])) # Magic number 1/3 to correct scaling issue seen - not quite sure why here - but maybe the (1/2) and (1/3) should be combined to make (1/6) under the mapping from a cube to a tet volume? Not quite sure here. JAC_DET = np.diag(JAC_DET) # This is basically the same as in the volume integral case, except that the jacobian determinants represent the transformation from a square in the x-y plane to an arbitrarily oriented square in R^3 dF = PHI@W@JAC_DET@G_GQ # This is the contribution to the total integral from this particular volume element # return np.sum(dF) # Returning as a scalar return dF # Returning as a scalar def elem_volume_integral(ho_pts, master, field, ndim): if ndim == 2: raise NotImplementedError elif ndim == 3: # First, prepare data structures to build PHI, DX, and DY, DETJ, and other matrices: n_gqpts = master['gptsvol'].shape[0] # The following matrices are size (nplocal, npgauss), essentially restructuring the master.shap dataset PHI = master['shapvol'][:, :, 0].T DPHI_DXI = master['shapvol'][:, :, 1].T DPHI_DETA = master['shapvol'][:, :, 2].T DPHI_DGAMMA = master['shapvol'][:, :, 3].T # GQ weights in matrix form W = np.diag(master['gwvol']) # Why transpose again? And check the dimensions of g G_GQ = PHI.T@field # For now, assume the neumann condition is uniform across the face. But be prepared to change that in the future. J = np.zeros((n_gqpts, 3, 3)) J[:, 0, 0] = DPHI_DXI.T@ho_pts[:, 0] # DX_DXI J[:, 0, 1] = DPHI_DXI.T@ho_pts[:, 1] # DY_DXI J[:, 0, 2] = DPHI_DXI.T@ho_pts[:, 2] # DZ_DXI J[:, 1, 0] = DPHI_DETA.T@ho_pts[:, 0] # DX_DETA J[:, 1, 1] = DPHI_DETA.T@ho_pts[:, 1] # DY_DETA J[:, 1, 2] = DPHI_DETA.T@ho_pts[:, 2] # DZ_DETA J[:, 2, 0] = DPHI_DGAMMA.T@ho_pts[:, 0] # DX_DGAMMA J[:, 2, 1] = DPHI_DGAMMA.T@ho_pts[:, 1] # DY_DGAMMA J[:, 2, 2] = DPHI_DGAMMA.T@ho_pts[:, 2] # DZ_DGAMMA # Determinants of Jacobians stored as a matrix, diagonal) # __, JAC_DET = inv(J) JAC_DET = np.zeros((n_gqpts, 1)); # Determinants of Jacobians stored as a matrix, diagonal) for i in np.arange(n_gqpts): JAC_DET[i] = np.linalg.det(J[i, :, :]) JAC_DET = np.diag(np.squeeze(JAC_DET)) # JAC_DET = np.diag(JAC_DET) # This is basically the same as in the volume integral case, except that the jacobian determinants represent the transformation from a square in the x-y plane to an arbitrarily oriented square in R^3 dF = PHI@W@JAC_DET@G_GQ # This is the contribution to the total integral from this particular volume element return np.sum(dF) # Returning as a scalar
44.932039
281
0.613872
1d8dad04a98076083cfc1f8881e1f7096f5ed0b3
1,260
py
Python
Josh/Clustering/FinalCluster.py
aco8ogren/Tentin-Quarantino
08b494f5deb2c33e3bb5981135c780b0a34d5557
[ "MIT" ]
null
null
null
Josh/Clustering/FinalCluster.py
aco8ogren/Tentin-Quarantino
08b494f5deb2c33e3bb5981135c780b0a34d5557
[ "MIT" ]
null
null
null
Josh/Clustering/FinalCluster.py
aco8ogren/Tentin-Quarantino
08b494f5deb2c33e3bb5981135c780b0a34d5557
[ "MIT" ]
null
null
null
#%% import pickle import numpy as np import matplotlib.pyplot as plt import git import sys sys.path.append('Josh/Clustering') from kMeansClustering import Kmeans import time import os import pandas as pd repo=git.Repo('.', search_parent_directories=True) cwd=repo.working_dir os.chdir(cwd) File=open('Josh/Processing/Processed Data/GeoDict.pkl','rb') GeoDict=pickle.load(File) del GeoDict[0] # vals=[val for val in GeoDict.values()] # for i,val in enumerate(vals): # if (np.isnan(val)).any(): # del vals[i] GeoVals=np.array([[key]+[vall for vall in val] for key,val in GeoDict.items()]) vals=GeoVals[:,1:] #%% GeoDf=pd.DataFrame(GeoVals,columns=['fips','long','lat']) K=75 clusters=Kmeans(K,vals)[0] ClusterDf=pd.DataFrame(data={'fips':GeoVals[:,0],'cluster':clusters}) DF=GeoDf.merge(ClusterDf,how='left', on='fips') cols=['r','b','g','k','y','c','m'] colors=np.array([None]*len(DF)) for i in range(K): colors[DF['cluster'].values==i]=cols[i%len(cols)] plt.figure() plt.scatter(DF['long'],DF['lat'],color=colors) plt.title('K-Means Clustering:\nUS Counties') plt.xlabel('Longitude [°]') plt.ylabel('Latitude [°]') plt.show() # plt.savefig('ClusterResults.png') # DF.to_csv('Josh/Clustering/FinalClusters.csv',index=False) # %%
25.2
79
0.693651
f98a750d4dde92aefbeacf3b37a43cfa5744e9cc
166
py
Python
blog/blog_app/forms.py
nigel-otieno/assessment_reinhardt
2748560424ecccea996bff3ef8063195b580477f
[ "BSD-3-Clause" ]
null
null
null
blog/blog_app/forms.py
nigel-otieno/assessment_reinhardt
2748560424ecccea996bff3ef8063195b580477f
[ "BSD-3-Clause" ]
null
null
null
blog/blog_app/forms.py
nigel-otieno/assessment_reinhardt
2748560424ecccea996bff3ef8063195b580477f
[ "BSD-3-Clause" ]
null
null
null
from django import forms from .models import Comment class CommentForm(forms.ModelForm): class Meta: model = Comment fields = ['name', 'body']
16.6
35
0.656627
df2f76fadbcf08962ecd1f8ccddbe69fe8658705
799
py
Python
Lib/corpuscrawler/crawl_kup.py
cash/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
95
2019-06-13T23:34:21.000Z
2022-03-12T05:22:49.000Z
Lib/corpuscrawler/crawl_kup.py
sahwar/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
31
2019-06-02T18:56:53.000Z
2021-08-10T20:16:02.000Z
Lib/corpuscrawler/crawl_kup.py
sahwar/corpuscrawler
8913fe1fb2b6bfdfbf2ba01d2ce88057b3b5ba3d
[ "Apache-2.0" ]
35
2019-06-18T08:26:24.000Z
2022-01-11T13:59:40.000Z
# coding: utf-8 # Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function, unicode_literals import re def crawl(crawler): out = crawler.get_output(language='kup') crawler.crawl_pngscriptures_org(out, language='kup')
34.73913
74
0.764706
472ba03d8d98666bce6f74cc0195d9bf067b0e19
205
py
Python
socialregistration/contrib/instagram/templatetags/instagram.py
nypublicradio/legacy-publisher-django-socialregistration
181f75d152f553f77fa899dac895c4276108204f
[ "MIT" ]
63
2015-01-27T16:52:03.000Z
2021-08-29T04:23:51.000Z
socialregistration/contrib/instagram/templatetags/instagram.py
jairtrejo/django-socialregistration
c52b1db00bb7cfed2e0a44e587c3da6d2f5499c4
[ "MIT" ]
3
2016-05-26T07:46:53.000Z
2022-02-16T15:25:16.000Z
socialregistration/contrib/instagram/templatetags/instagram.py
jairtrejo/django-socialregistration
c52b1db00bb7cfed2e0a44e587c3da6d2f5499c4
[ "MIT" ]
23
2015-02-02T13:33:46.000Z
2020-10-25T20:02:53.000Z
from django import template from socialregistration.templatetags import button register = template.Library() register.tag('instagram_button', button('socialregistration/instagram/instagram_button.html'))
34.166667
94
0.843902
9c01b22bd1034986a6c9ec40cdb4d111c15ace27
459
py
Python
Compilation/liec_seance-e_files/jeu.py
bk211/fac
9d74875561f60978d2c39af3d5e97605d21c0cc9
[ "MIT" ]
1
2018-11-21T10:56:09.000Z
2018-11-21T10:56:09.000Z
Compilation/liec_seance-e_files/jeu.py
bk211/fac
9d74875561f60978d2c39af3d5e97605d21c0cc9
[ "MIT" ]
null
null
null
Compilation/liec_seance-e_files/jeu.py
bk211/fac
9d74875561f60978d2c39af3d5e97605d21c0cc9
[ "MIT" ]
1
2021-12-04T20:31:36.000Z
2021-12-04T20:31:36.000Z
prng_state = 42 def prng (sup): global prng_state prng_state = (prng_state * 1664525 + 1013904223) % 2**32 return prng_state % sup def jeu (max): print('Le nombre est entre 0 et ' + str(max)) n = prng(max) guess = -1 while guess != n: guess = int(input('Entrez un nombre: ')) if guess > n: print("Trop grand.") elif guess < n: print("Trop petit.") print("Bravo :).") jeu(300)
21.857143
60
0.544662
efa4a5907ca523b4fb6f6685ee55fb131fbaefd5
10,527
py
Python
test/smoothness_tests.py
Zhi-ChaoZhao/NRSurMemory_7qd4
0f49530e7602f136f99879fbb4c9bb6e2f48cdc0
[ "MIT" ]
null
null
null
test/smoothness_tests.py
Zhi-ChaoZhao/NRSurMemory_7qd4
0f49530e7602f136f99879fbb4c9bb6e2f48cdc0
[ "MIT" ]
null
null
null
test/smoothness_tests.py
Zhi-ChaoZhao/NRSurMemory_7qd4
0f49530e7602f136f99879fbb4c9bb6e2f48cdc0
[ "MIT" ]
1
2021-01-14T06:52:25.000Z
2021-01-14T06:52:25.000Z
import numpy as np import h5py import argparse import os import time import matplotlib.pyplot as P import surfinBH # Number of data points to generate for each 1d plot NUM_PARAMS = 50 # Number of 1d plots to generate per fit NUM_TESTS = 10 # plot settings marker_size=100 marker_size_star=9 label_fontsize = 14 title_fontsize = 16 ticks_fontsize = 16 line_width = 1.5 legend_size = 12 # -------------------------------------------------------------------------- def test_smoothness_wrapper(ax_pair, x_list, function, ylabel, \ params_list, label, y_index=None): """ Wrapper to make plots of fit errors along different 1d directions. x_list is an array of param values along the 1d direction. """ # Get list of q, chiA, and chiB if aligned_spin_only: q_list, chiAz_list, chiBz_list = params_list chiA_list = [[0,0,tmp] for tmp in chiAz_list] chiB_list = [[0,0,tmp] for tmp in chiBz_list] else: q_list, chiA_mag_list, chiA_th_list, chiA_ph_list, \ chiB_mag_list, chiB_th_list, chiB_ph_list = params_list chiA_list = np.array(\ [chiA_mag_list*np.sin(chiA_th_list)*np.cos(chiA_ph_list), chiA_mag_list*np.sin(chiA_th_list)*np.sin(chiA_ph_list), chiA_mag_list*np.cos(chiA_th_list)]\ ).T chiB_list = np.array(\ [chiB_mag_list*np.sin(chiB_th_list)*np.cos(chiB_ph_list), chiB_mag_list*np.sin(chiB_th_list)*np.sin(chiB_ph_list), chiB_mag_list*np.cos(chiB_th_list)]\ ).T # Plot function and error estimates in a row of subplots y_list = [] y_err_list = [] for i in range(len(q_list)): y, y_err = function(q_list[i], chiA_list[i], chiB_list[i]) if y_index is None: y_list.append(y) y_err_list.append(y_err) elif type(y_index) == int: y_list.append(y[y_index]) y_err_list.append(y_err[y_index]) elif y_index == 'magnitude': y_list.append(np.sqrt(np.sum(y**2))) y_err_list.append(np.sqrt(np.sum(y_err**2))) ax_pair[0].plot(x_list, y_list, label=label) ax_pair[1].semilogy(x_list, y_err_list, label=label) ax_pair[0].set_ylabel('%s'%ylabel, fontsize=label_fontsize) ax_pair[1].set_ylabel('$\Delta$%s'%ylabel, fontsize=label_fontsize) # -------------------------------------------------------------------------- def generate_params_along_line_aligned(x_param): """ Generates params along a 1d line for aligned-spin params. The given x_param is varied but all other params are kept const at some randomly chosen values. For each of the aligned-spin params: if x_param is this particular param, returns a uniform list of values in the range of this param. Also saves this list as x_list. else, returns a list, each element of which is the same, a randomly chosen value in the range of this param. Also returns a label with all the fixed params. """ label = '' if x_param == 'q': q_list = np.linspace(1, param_lims['q'], NUM_PARAMS) x_list = q_list else: q = np.random.uniform(1, param_lims['q']) q_list = [q for i in range(NUM_PARAMS)] label += '$q=%.2f$ '%q if x_param == 'chi1': chiAz_list = np.linspace(-param_lims['chiAmag'], \ param_lims['chiAmag'], NUM_PARAMS) x_list = chiAz_list else: chiAz = np.random.uniform(-param_lims['chiAmag'], param_lims['chiAmag']) chiAz_list = [chiAz for i in range(NUM_PARAMS)] label += '$\chi_{1z}=%.2f$ '%chiAz if x_param == 'chi2': chiBz_list = np.linspace(-param_lims['chiBmag'], \ param_lims['chiBmag'], NUM_PARAMS) x_list = chiBz_list else: chiBz = np.random.uniform(-param_lims['chiBmag'], param_lims['chiBmag']) chiBz_list = [chiBz for i in range(NUM_PARAMS)] label += '$\chi_{2z}=%.2f$ '%chiBz params_list = [q_list, chiAz_list, chiBz_list] return x_list, label, params_list # -------------------------------------------------------------------------- def generate_params_along_line(x_param): """ Generates params along a 1d line for 7d params. The given x_param is varied but all other params are kept const at some randomly chosen values. For each of the 7d params: if x_param is this particular param, returns a uniform list of values in the range of this param. Also saves this list as x_list. else, returns a list, each element of which is the same, a randomly chosen value in the range of this param. Also returns a label with all the fixed params. """ label = '' if x_param == 'q': q_list = np.linspace(1, param_lims['q'], NUM_PARAMS) x_list = q_list else: q = np.random.uniform(1, param_lims['q']) q_list = [q for i in range(NUM_PARAMS)] label += '$q=%.2f$ '%q if x_param == 'chi1': chiA_mag_list = np.linspace(0, param_lims['chiAmag'], NUM_PARAMS) x_list = chiA_mag_list else: chiA_mag = np.random.uniform(0, param_lims['chiAmag']) chiA_mag_list = [chiA_mag for i in range(NUM_PARAMS)] label += '$\chi_1=%.2f$ '%chiA_mag if x_param == 'chi1_th': chiA_th_list = np.linspace(0, np.pi, NUM_PARAMS) x_list = chiA_th_list else: chiA_th = np.random.uniform(0, np.pi) chiA_th_list = [chiA_th for i in range(NUM_PARAMS)] label += '$\chi_{1\\theta}=%.2f$ '%chiA_th if x_param == 'chi1_ph': chiA_ph_list = np.linspace(0, 2*np.pi, NUM_PARAMS) x_list = chiA_ph_list else: chiA_ph = np.random.uniform(0, 2*np.pi) chiA_ph_list = [chiA_ph for i in range(NUM_PARAMS)] label += '$\chi_{1\\phi}=%.2f$ '%chiA_ph if x_param == 'chi2': chiB_mag_list = np.linspace(0, param_lims['chiBmag'], NUM_PARAMS) x_list = chiB_mag_list else: chiB_mag = np.random.uniform(0, param_lims['chiBmag']) chiB_mag_list = [chiB_mag for i in range(NUM_PARAMS)] label += '$\chi_2=%.2f$ '%chiB_mag if x_param == 'chi2_th': chiB_th_list = np.linspace(0, np.pi, NUM_PARAMS) x_list = chiB_th_list else: chiB_th = np.random.uniform(0, np.pi) chiB_th_list = [chiB_th for i in range(NUM_PARAMS)] label += '$\chi_{2\\theta}=%.2f$ '%chiB_th if x_param == 'chi2_ph': chiB_ph_list = np.linspace(0, 2*np.pi, NUM_PARAMS) x_list = chiB_ph_list else: chiB_ph = np.random.uniform(0, 2*np.pi) chiB_ph_list = [chiB_ph for i in range(NUM_PARAMS)] label += '$\chi_{2\\phi}=%.2f$ '%chiB_ph params_list = [q_list, chiA_mag_list, chiA_th_list, chiA_ph_list, \ chiB_mag_list, chiB_th_list, chiB_ph_list] return x_list, label, params_list # -------------------------------------------------------------------------- def test_smoothness(x_param, x_param_label): """ Tests smoothness in the direction of x_param. Does NUM_TESTS number of tests, for each tests the rest of the params are fixed at some randomly chosen values. """ if aligned_spin_only: # Don't need spin direction plots for aligned-spin fits if x_param[-3:] in ['_th', '_ph']: return fig, axarr = P.subplots(4,2,figsize=(10,10)) else: fig, axarr = P.subplots(7,2,figsize=(10,15)) P.subplots_adjust(hspace=0.25, wspace=0.35) axarr = axarr.reshape(-1, order='C') comp_labels = ['x', 'y', 'z'] for i in range(NUM_TESTS): # Get parameters along a 1d line, where x_param is varied but # all other params are kept const at some randomly chosen values if aligned_spin_only: x_list, label, params_list \ = generate_params_along_line_aligned(x_param) else: x_list, label, params_list = generate_params_along_line(x_param) # final mass plots along the 1d line test_smoothness_wrapper(axarr[:2], x_list, fit.mf, '$m$', params_list, \ label) # final spin, but plot only z values for aligned-spins chi_idx = 0 for idx in range(3): if (idx == 2) or (not aligned_spin_only): test_smoothness_wrapper(\ axarr[2+2*chi_idx:4+2*chi_idx], x_list, fit.chif, \ '$\chi_{%s}$'%comp_labels[idx], params_list, label, \ y_index=idx) chi_idx += 1 # final kick, but plot only x,y values for aligned-spins vel_idx = 0 for idx in range(3): if (idx in [0,1]) or (not aligned_spin_only): test_smoothness_wrapper(\ axarr[2+2*chi_idx+2*vel_idx:4+2*chi_idx+2*vel_idx], \ x_list, fit.vf, '$v_{%s}$'%comp_labels[idx], \ params_list, label, y_index=idx) vel_idx += 1 axarr[-1].set_xlabel(x_param_label, fontsize=label_fontsize) axarr[-2].set_xlabel(x_param_label, fontsize=label_fontsize) axarr[1].legend(loc=(1.1,-1)) P.savefig('%s/%s_smoothness_1d_%s.png'%(outdir, args.name, x_param), \ bbox_inches='tight') P.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Tests smoothness of fit ' \ 'along different 1d directions', \ formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--name", "-n", type=str, required=True, \ help="Fit name without the surfinBH prefix. Eg. 7dq2.") args = parser.parse_args() # Load fit fit_name = args.name fit = surfinBH.LoadFits(fit_name) # get allowed range of params param_lims = fit.hard_param_lims # get bool for whether aligned_spin_only aligned_spin_only = fit.aligned_spin_only outdir = 'smoothness_tests' os.system('mkdir -p %s'%outdir) # test smoothness along different 1d directions test_smoothness('q', '$q$') test_smoothness('chi1', '$\chi_{1}$') test_smoothness('chi1_th', '$\chi_{1\\theta}$') test_smoothness('chi1_ph', '$\chi_{1\\phi}$') test_smoothness('chi2', '$\chi_{2}$') test_smoothness('chi2_th', '$\chi_{2\\theta}$') test_smoothness('chi2_ph', '$\chi_{2\\phi}$')
35.684746
80
0.596181
22850b56d63e294a5c6e53cea630fe67e6f15fb6
18,045
py
Python
etc/dbus-serialbattery/test_max17853.py
trixing/dbus-serialbattery
4bcbb20b8c27a01426dd41cc8688d11be1bad8ec
[ "MIT" ]
87
2020-09-17T21:10:04.000Z
2022-03-30T08:04:20.000Z
etc/dbus-serialbattery/test_max17853.py
trixing/dbus-serialbattery
4bcbb20b8c27a01426dd41cc8688d11be1bad8ec
[ "MIT" ]
74
2021-02-04T15:14:42.000Z
2022-03-31T22:35:45.000Z
etc/dbus-serialbattery/test_max17853.py
trixing/dbus-serialbattery
4bcbb20b8c27a01426dd41cc8688d11be1bad8ec
[ "MIT" ]
28
2021-02-10T20:46:45.000Z
2022-03-28T10:04:05.000Z
import spidev import time import math from gpiozero import LED def init_spi(): global spi, Q_time ,Q_Batt,Q_B_chg,kWh_dis,kWh_chg,cum_bp_kwh_in,\ cum_bp_kwh_out,Q_B_dis,Q_nom,SOH ,R_shunt,Vt_ref,V_bat_Sum,Ai,Ai_offs,\ Tj,Tbat,bal_stat,bal_stat2,p_genrun,p_charging ,p_loadshed,Fan_run_b, V_Cells,\ Ah_b_max, Ah_b_min,T_Cells,err_no, Q_Cycles,bal_count,chg_out,load_out,Genrun,Fan_run # temp home for BMS constants err_no = 0 Q_time = 0 Q_Batt = 1.8*60 Q_B_chg = 0 Q_Cycles = 0 kWh_dis = 0 kWh_chg = 0 cum_bp_kwh_in=0 cum_bp_kwh_out=0 Q_B_dis = 0 Q_nom = 3.6*36 SOH = 1 R_shunt = 0.025 V_Cells = [0]*8 T_Cells = [11]*8 Vt_ref = 3.299 V_bat_Sum = 25 Ai = 0 Ai_offs = 0.6 Ah_b_max = 0 Ah_b_min = 300 Tj = 25 Tbat = 25 bal_stat = 0 bal_stat2 = 0 bal_count = [0]*8 p_genrun = False p_charging = True p_loadshed = False Fan_run_b = False chg_out = LED(2) load_out =LED(3) Genrun = LED(4) Fan_run = LED(17) #spi = spidev.SpiDev() #spi.open(0,0) #spi.max_speed_hz = 500000 #spi.mode = 0 spi = None return (spi) def CrcA_MAX17( InputWord,WORD_LEN): CRC_LEN =3 CRC_POLY =0x0B CRC_SEED =0x000 CRCMask =(CRC_POLY<<(WORD_LEN-1)) LeftAlignedWord = InputWord<<CRC_LEN # /* Clear the CRC bit in the data frame*/ TestBitMask = 1 << ( WORD_LEN +2) BitCount = ( WORD_LEN ) while (0 != BitCount): BitCount -=1 if (0 != (LeftAlignedWord & TestBitMask)): # is and LeftAlignedWord ^= CRCMask # is xor CRCMask >>= 1 TestBitMask >>= 1 return (LeftAlignedWord) #returns word with CRC apended; crc test. def spi_xfer_MAX17(RW,Adr,xdata): global spi #********************* # Python 2.7 can't cope with 32 bit numbers #**************************** print("SPI:",RW,"{:02x}".format(Adr),"{:04x}".format(xdata)) return(0,0,Adr,xdata,0,0) txdata = [0,0,0,0] rxdata = [0,0,0,0] tdwd = RW<<8^Adr crca = CrcA_MAX17(tdwd,9) crcb = CrcA_MAX17(xdata,16) txword1 = 0^RW<<15 txword2 = 0^RW<<3 txword1 ^= Adr<<7 txword1 ^= crca<<4 txword1 ^= xdata&0xf000>>12 txword2 ^= xdata&0xfff<<4 txword2 ^= crcb txdata[0] =0^RW<<7^Adr>>1 #(txword1)>>8 fadr = Adr&1 gadr = fadr<<7 txdata[1] =gadr^crca<<4^xdata>>12 #(txword1&0x00ff) txdata[2] =(xdata>>4)&0xff #(txword2)>>8 txdata[3] =0^(xdata<<4)&0xff^RW<<3^crcb&0x7 #(txword2&0x00ff) rxdata = spi.xfer(txdata) # flags = rxdata[0] crcs = flags&0x07 flags = flags>>3 if RW == 0: radr = rxdata[1] rdat = rxdata[2]<<8^rxdata[3] rcrc = 0 rxok = rxdata[0]>>3&1 #crc check n-1 else: radr = Adr rdat = 0^((rxdata[1]&0x0f)<<16^rxdata[2]<<8^rxdata[3])>>4 rcrc = rxdata[3]&0x07 rxok = (rxdata[3]>>3)&0x01 time.sleep(.01) return(flags,crcs,radr,rdat,rcrc,rxok) def init_max(self): #*************************************8 # need to pick up cell min and max to set cell voltage # thresholds et al. #********************************************8 init_spi() time.sleep(0.1) for i in range(1,7): spi_xfer_MAX17(0,i,0x00) # clear por spi_xfer_MAX17(0,0x14,0x02) # set spi int on AL out spi_xfer_MAX17(0,0x15,0x04) #disable spi to spi_xfer_MAX17(0,0x16,0x00) #enable gpio anlg in t_cell = self.cell_count+1 tc = 0x2000 tc = tc | t_cell<<8 |t_cell<<4 | t_cell spi_xfer_MAX17(0,0x18,tc) # top cell selection spi_xfer_MAX17(0,0x19,0x3faf) #IRQ enable ov = 0x4000 for i in range(1,t_cell): ov |= 1<<i spi_xfer_MAX17(0,0x1a,ov) # Over voltage enable spi_xfer_MAX17(0,0x1b,ov) # Under voltage enable spi_xfer_MAX17(0,0x1c,0xf) # Aux Over voltage enable 0-5 spi_xfer_MAX17(0,0x1d,0xf) # Aux Under voltage enable 0-5 ovc = int((self.V_C_max-0.1)/0.000305) # V_Cell max - 100mV spi_xfer_MAX17(0,0x1f,ovc<<2) # over voltage clear thr 3.5V/.305mV <<2 ovs = int((self.V_C_max)/0.000305) # V_Cell max spi_xfer_MAX17(0,0x20,ovs<<2) # over voltage set thr 3.6V/.305mV <<2 uvc = int((self.V_C_min+0.1)/0.000305) # V_Cell min - 100mV spi_xfer_MAX17(0,0x21,uvc<<2) # under voltage clear thr 2.6V/.305mV <<2 uvs = int((self.V_C_min)/0.000305) # V_Cell min spi_xfer_MAX17(0,0x22,uvs<<2) # under voltage set thr 2.5V/.305mV <<2 spi_xfer_MAX17(0,0x23,0x514) # cell mismatch set thr 0.1V/.305mV <<2 bovc = int((self.max_battery_voltage-0.25)/0.001934) #max battery volt - 0.25 spi_xfer_MAX17(0,0x28,bovc<<2) # block ov clear thr 1.934/0.205mV <<2 bovs = int((self.max_battery_voltage)/0.001934) #max battery volt spi_xfer_MAX17(0,0x29,bovs<<2) # block ov set thr 1.984/0.201mV <<2 buvc = int((self.min_battery_voltage+0.25)/0.001934) #max battery volt + 0.25 spi_xfer_MAX17(0,0x2a,buvc<<2) # block uv cl thr 0.9907/0.201mV <<2 buvs = int((self.min_battery_voltage)/0.001934) #max battery volt spi_xfer_MAX17(0,0x2b,buvs<<2) # block uv set thr 0.9407/0.201mV <<2 tovc = xtemp(self.T_C_min+5) # Aux under temp clear T cell min + 5c - Neg temp coeff!! spi_xfer_MAX17(0,0x30,tovc<<2) # Aux undertemp clear thr V/3.967mV <<2 tovs = xtemp(self.T_C_min) # Aux under temp set T cell min spi_xfer_MAX17(0,0x31,tovs) # Aux under temp set thr V/3.967mV <<2 tuvc = xtemp(self.T_C_max-5) # Aux over temp clear T cell max - 5c - Neg temp coeff!! spi_xfer_MAX17(0,0x32,tuvc<<2) # Aux uv cl thr V/3.967mV <<2 tuvs = xtemp(self.T_C_max) # Aux over temp set T cell max - Neg temp coeff!! spi_xfer_MAX17(0,0x33,tuvs<<2) # Aux uv set thr 20.8V/3.967mV <<2 spi_xfer_MAX17(0,0x5f,0x01) # ADC Polarity spi_xfer_MAX17(0,0x62,0x4800) # ADCQ CFG spi_xfer_MAX17(0,0x63,0x303) # BALSWDLY 3 x 96uS cms = tc+1 spi_xfer_MAX17(0,0x64,cms) # cell measure enable spi_xfer_MAX17(0,0x65,0x803F) # filter init, AUX meas enable spi_xfer_MAX17(0,0x66,0xe21) # configure and init scan spi_xfer_MAX17(0,0x80,0x00) #reset Bal CTRL spi_xfer_MAX17(0,0x6f,0x1fe) spi_xfer_MAX17(0,0x7e,0x01) #set bal uv thr = mincell spi_xfer_MAX17(0,0x6b,1) # set die temp diag 1. return() def xtemp(temp): t = temp+12.74 s = math.exp(0.01988*t) r = int(0x3fff/s) return(r) def vblk_dec(xdata,ref,adr): global V_bat_Sum,VBS_max,VBS_min,min_rst_en,Q_Batt vblock = xdata*ref if adr == 22: V_bat_Sum = vblock return(vblock) def stat_scan(self): for i in range(2,0x17): # Read Status f= spi_xfer_MAX17(1,i,0x0) if i == 2: st_wd1 = f[3] if i ==3: st_wd2 = f[3] if i == 5: fema1 = f[3] for i in range (2,7): #Write stat 1:3, Fema to clear f = spi_xfer_MAX17(0,i,0) en = err_dec(st_wd1,st_wd2,fema1,self) #print("stat",en) return(en) def err_dec(st_wd1,st_wd2,fema1,self): global err_no, err_msg if st_wd1 & 0x04 > 0: err_no = 11 err_msg = "Bal Error?" if st_wd1 & 0x8 > 0: err_no = 10 err_msg = "Cal Error" if st_wd1 & 0x10 > 0 and st_wd2 & 0xd0 > 0: err_no = 9 err_msg = "SPI Error" if st_wd1 & 0x80 > 0: err_no = 8 err_msg = "Battery Over Temp" self.protection.temp_high_charge = True else: self.protection.temp_high_charge = False if st_wd1 & 0x100 > 0: err_no = 7 err_msg = "Battery Under Temp" self.protection.temp_low_charge else: self.protection.temp_low_charge = False if st_wd1 & 0x200 > 0: err_no = 6 err_msg = "Battery Undervoltage" self.protection.voltage_low = True else: self.protection.voltage_low = False if st_wd1 & 0x400 > 0: err_no = 5 err_msg = "Battery Overvoltage" self.protection.voltage_high = True else: self.protection.voltage_high = False if st_wd1 & 0x800 > 0: err_no = 4 err_msg = "Cell Undervoltage" self.protection.voltage_low = True else: self.protection.voltage_low = False if st_wd1 & 0x1000 > 0: err_no = 3 #overvoltage err_msg = "Cell Overvoltage" self.protection.voltage_high = True else: self.protection.voltage_high = False if st_wd1 & 0x2000 > 0: err_no = 2 #cell mismatch Dv too high err_msg = "Cell voltage mismatch" self.protection.cell_imbalance = True else: self.protection.cell_imbalance = False if st_wd1 & 0x4000 > 0: err_no = 1 #POR err_msg = "POR" if st_wd2 & 0x40 > 0: err_no = 13 err_msg += " SPI CLK" if st_wd2 & 0x20 > 0: err_no = 14 err_msg += " 16MHz CLK" if st_wd2 & 0x10 > 0: err_no = 15 err_msg += " SPI INT BUS FLT" if fema1 &0x08 >0: err_no = 16 #print(315) err_msg += " HV_UV" if fema1 &0x04 >0: err_no = 17 #print(319) err_msg += " HV_DR" if fema1 &0x70 >0: err_no = 18 err_msg += " gnd flt" if st_wd1 ==0 and st_wd2==0 and fema1 ==0: err_no = 0 err_msg = "No Error" #store_reg([err_no],0) #print(328,err_no) return(err_no) def v_cell_d(self): global vc_del,vc_min,vc_max,Q_Batt, V_Cells,p_genrun,p_charging,p_loadshed vc_del = 0 vc_max = 0 vc_min = 4 i_min =0 i_max = 0 b_lim = False for index,v in enumerate(V_Cells): if v > 3.55: b_lim = True if v> vc_max: vc_max = v i_max = index if v < vc_min: vc_min = v i_min = index self.cell_min_voltage = vc_min self.cell_max_voltage = vc_max self.cell_min_no = i_min self.cell_max_no = i_max vc_del = vc_max - vc_min # current control done elsewhere. if vc_min<(self.V_C_min+0.05): p_genrun = True p_loadshed = True Q_Batt = 0 elif vc_min > self.V_C_min+0.15: p_loadshed = False if vc_max > self.V_C_max-0.05: p_charging = False Q_Batt = Q_nom elif vc_max< self.V_C_max-0.15: p_charging = True inpins(self) return(b_lim) def CSA(xdata,self): global R_shunt,Ai,Ai_offs Ai = (xdata*0.000305-2.5)/R_shunt +Ai_offs self.current = Ai calc_Ah(Ai,self) return(Ai) def calc_Ah(Ai,self): global Q_Batt, Q_time,Q_B_chg,Q_B_dis,Ah_b_max,Ah_b_min,\ x_soc_min,x_soc_max,x_Soc,Q_nom,SOH,kWh_chg,kWh_dis,V_bat_Sum,\ cum_bp_kwh_in,cum_bp_kwh_out,p_genrun,Q_Cycles if Q_time == 0: Q_time = time.time() t_Q = time.time() d_Qt = t_Q-Q_time Q_time = t_Q dQ_Batt = Ai*d_Qt/3600 Q_Batt +=dQ_Batt if Q_Batt > Q_nom: Q_Batt = Q_nom if Q_Batt < 0: Q_Batt = 0 if Q_Batt > Ah_b_max: Ah_b_max = Q_Batt if Q_Batt < Ah_b_min: Ah_b_min = Q_Batt x_Soc = Q_Batt/Q_nom*100 self.soc = x_Soc self.capacity_remain = x_Soc*Q_nom/100 if x_Soc<20: p_genrun = True elif x_Soc > 35: p_genrun = False SOH = (1-cum_bp_kwh_out/Q_nom*0.00005)*100 Q_act = Q_nom*SOH/100 Q_Cycles = cum_bp_kwh_out/Q_nom*.00005 self.cycles = Q_Cycles if Ai>0: Q_B_chg += dQ_Batt kWh_chg += dQ_Batt*V_bat_Sum/1000 cum_bp_kwh_in +=dQ_Batt*V_bat_Sum/1000 else: Q_B_dis -= dQ_Batt kWh_dis -= dQ_Batt*V_bat_Sum/1000 cum_bp_kwh_out-= dQ_Batt*V_bat_Sum/1000 return() def gpio_decode(xdata,adr,self): # need to add Dbus channel for device temp global Vt_ref,Tbat,T_Cells try: s = float(0x3fff)/float(xdata+1) t = math.log(s) u = t/0.01998 T_Cells[adr] = u-12.74 except Exception as e: print("gpio_dec",e) print("gpio_dec",adr,"{:04x}".format(xdata)) T_Cells[adr] = 25 t_min = 100 t_max = 0 for i in range(0,4): if T_Cells[i] > t_max: t_max = T_Cells[i] imax = i if T_Cells[i] < t_min: t_min = T_Cells[i] imin = i print('gpio') self.temp1 = t_max self.temp2 = t_min self.temp3 = (T_Cells[5]+T_Cells[6] )/2 self.temp_max_no = imax self.temp_min_no = imin return() def cell_balance(V_Cells,vc_min,vc_max,self): global bal_count,bal_stat,bal_stat2 # need to add dbus channel for displaing balancing as 8 bit bianry? # f = spi_xfer_MAX17(1,0x80,0x00) # bal_stat = f[3]>>14 bal_stat = 0 if bal_stat ==3: spi_xfer_MAX17(0,0x80,0x0) spi_xfer_MAX17(0,0x6f,0x00) print("bal reset") return() if (bal_stat)&1 >0: #print("bal run") return() # Balancing in progress if (bal_stat) == 2: #balancing complete #print(511,"Bal Complete") for i in range (0x6f,0x81): spi_xfer_MAX17(0,i,0x00) else: f = spi_xfer_MAX17(0,0x80,0) if f[0] !=0: stat_clr() cb_sum = 0 cb_duty = int((vc_max-vc_min-0.01)*500) if cb_duty >15: cb_duty = 0xf # max_cell = (f[3]>>8)&0x07 # min_cell = f[3]&0x07 # missing read to minmax cell register? for i in range (1,9): Vc_t = int((V_Cells[i-1]-vc_min)/(vc_max-vc_min)*15) if Vc_t < 0: print(517,"<0") Vc_t = 0 # remove -ve if Vc_t >=0 and V_Cells[i-1]>3.35: bal_count[i-1]+=Vc_t self.cells[i-1].balance = 1 if bal_count[i-1]>65535: for j in range(0,8): bal_count[j] = bal_count[j]>>1 print("cba",i,Vc_t) else: Vc_t = 0 print("cb",i,Vc_t) self.cells[i-1].balance = 0 return() #tewst # cb_sum += Vc_t # spi_xfer_MAX17(0,0x70+i,Vc_t) #set cell timers # f = spi_xfer_MAX17(1,0x70+i,0) # and read back # if f[3] != Vc_t: # print(471,"Can't set T bal :",i) # f = spi_xfer_MAX17(1,3,0) # print("prt write rjt",f[3]&1) # if cb_sum !=0: # #enable cells & start timer # f = spi_xfer_MAX17(0,0x6f,0x1fe) # if f[0] != 0: # stat_clr() # #R_bal_stat() Temporary for diagnostic # xdata = 0x2002 | cb_duty<<4 # xdata = xdata%0xc7ff # f = spi_xfer_MAX17(0,0x80,xdata) # print(480,"{:04x}".format(f[3]),"{:02x}".format(f[0])) # f = spi_xfer_MAX17(1,0x80,0) # print(481,"{:04x}".format(f[3]),"{:02x}".format(f[0])) # return() def R_bal_stat(): for i in range(0x6f,0x84): f = spi_xfer_MAX17(1,i,0x00) print("{:02x}".format(i),"{:04x}".format(f[3]),"{:02x}".format(f[0])) return() def stat_clr(): for i in range(2,7): spi_xfer_MAX17(0,i,0) return() def die_temp(): return(35) global Tj,tmaxp,Fan_run_b f= spi_xfer_MAX17(1,0x57,0) # read diag 1 register Vptat = f[3]>>2 Vptat = Vptat/0x4000*2.3077 Tj = Vptat/0.0032+8.3-273 self.temp4 = Tj if Tj >45: Fan_run_b = True elif Tj < 40: Fan_run_b = False return(Tj) def inpins(self): global chg_in,Load_in,Genrun,Fan_run_b,chg_out,p_loadshed,p_charging,p_genrun if p_charging==True: self.charge_fet = True chg_out.on() else: self.charge_fet = False chg_out.off() if p_loadshed == False: self.discharge_fet = True load_out.on() else: self.discharge_fet = False load_out.off() p_gernun = True if p_genrun==True : Genrun.on() else: Genrun.off() if Fan_run_b == True: Fan_run.on() else: Fan_run.off() return() def data_cycle(self): global err_no,V_Cells,T_Cells, vc_max #print("data_cycle") spi_xfer_MAX17(0,0x66,0xe21) #f = spi_xfer_MAX17(1,0x66,0x00) #scn_dn = f[3]>>15 #dat_rdy = (f[3]&0x2000)>>13 dat_rdy = 1 #test while dat_rdy == 0 : f = spi_xfer_MAX17(1,0x66,0x00) time.sleep(0.005) scn_dn = (f[3]&0x8000)>>15 dat_rdy = (f[3]&0x2000)>>13 Tj = die_temp() #f = spi_xfer_MAX17(1,0x66,0x00) # scan ctrl #scn_dn = f[3]&0x8000>>15 #dat_rdy = f[3]&0x2000>>13 spi_xfer_MAX17(0,0x83,0x1)# manual xfer f = spi_xfer_MAX17(0,0x66,0x1e28) if f[0]> 0: stat_clr() #V_bat_sum = 0 #for i in range(72,0x50): # f= spi_xfer_MAX17(1,i,0) # v = vblk_dec((f[3]>>2),0.000305,i-72) #no change # V_bat_sum += v # V_Cells[i-72] = v # cb_b = v_cell_d(self) # time.sleep(0.005) V_Cells = [3.0,3.1,3.2,3.3,3.4,3.5,3.55,3.55] cb_b = v_cell_d(self) self.voltage = 26.8 #V_bat_sum for i in range(self.cell_count): self.cells[i].voltage = V_Cells[i] if (vc_del >0.015 and Ai >1.0 and err_no <16 ) or cb_b == True or vc_max>3.45: self.poll_interval = 3000 cell_balance(V_Cells,vc_min,vc_max,self) else: spi_xfer_MAX17(0,0x80,0x00) spi_xfer_MAX17(0,0x6f,0x00) self.poll_interval = 1000 # f= spi_xfer_MAX17(1,0x47,0) # CSA(f[3]>>2,self) CSA(0x2014,self) # f= spi_xfer_MAX17(1,0x55,0) # remeber to deduct V0 (AMPS) from V blk. # vblk_dec((f[3]>>2),0.003967,22) # f= spi_xfer_MAX17(1,0x56,0) # vblk_dec(f[3],0.00122,2) #02 for i in range(0x59,0x5f,1): # f= spi_xfer_MAX17(1,i,0) # gpio_decode(f[3]>>2,i-89,self) #49-64 gpio_decode(0x2000+i,i-89,self) time.sleep(0.005) stat_scan(self) print('sys tmp', self.temp_max_no) return(True)
29.975083
93
0.572569
7f00992e6550727f70e1cc9214bfe048082a3e4e
119
py
Python
Other/IOTest.py
jonieson/pythonDemo
fde358819a43c67044b30b886c9f7dbe840d9563
[ "MIT" ]
1
2017-08-10T08:04:48.000Z
2017-08-10T08:04:48.000Z
Other/IOTest.py
jonieson/pythonDemo
fde358819a43c67044b30b886c9f7dbe840d9563
[ "MIT" ]
null
null
null
Other/IOTest.py
jonieson/pythonDemo
fde358819a43c67044b30b886c9f7dbe840d9563
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- str = raw_input('第一行输入:') print '打印输入的文字:',str str = raw_input("请输入:"); print "你输入的内容是: ", str
19.833333
25
0.605042
ddaedf55861c4643f9c40a3955ffe1300595f709
706
py
Python
tests/plots/colormap.py
ikkisoft/infnoise
3a63b97b0086b24a890b32990b75e812efd2c83f
[ "CC0-1.0" ]
631
2015-01-01T23:35:30.000Z
2022-03-24T16:42:57.000Z
tests/plots/colormap.py
ikkisoft/infnoise
3a63b97b0086b24a890b32990b75e812efd2c83f
[ "CC0-1.0" ]
45
2015-01-20T13:05:59.000Z
2021-11-14T15:24:00.000Z
tests/plots/colormap.py
ikkisoft/infnoise
3a63b97b0086b24a890b32990b75e812efd2c83f
[ "CC0-1.0" ]
83
2015-01-23T14:49:45.000Z
2022-01-06T03:33:53.000Z
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import sys from matplotlib import cm if sys.argv[1]: filename=sys.argv[1] else: filename='infnoise.bin' nx = 1000 ny = 1000 data = np.fromfile(open(filename,'rb'), dtype=np.uint8, count=nx*nx) data.resize(nx,ny) plt.xlim(0, nx) plt.ylim(0, ny) plt.xlabel('samples') plt.ylabel('samples') plt.title('TRNG ' + filename) #cax = plt.imshow(data, interpolation='nearest', cmap=cm.coolwarm) cax = plt.imshow(data, interpolation='nearest', cmap=cm.afmhot) cbar = plt.colorbar(cax, ticks=[255, 127, 0]) cbar.ax.set_yticklabels(['255', '127', '0']) plt.savefig(filename + '-colormap.png') plt.show()
21.393939
69
0.674221
bfeb24dd23387b700defcc82646cd29804c36604
62,591
py
Python
data_process.py
rokosbasilisk/VD-BERT
02240d8bf0652ed38dfb4c6d83f0ab68553a4f4b
[ "MIT" ]
null
null
null
data_process.py
rokosbasilisk/VD-BERT
02240d8bf0652ed38dfb4c6d83f0ab68553a4f4b
[ "MIT" ]
null
null
null
data_process.py
rokosbasilisk/VD-BERT
02240d8bf0652ed38dfb4c6d83f0ab68553a4f4b
[ "MIT" ]
null
null
null
import sys, torch, json, copy, pickle, re, os, numpy as np, pprint as pp, cProfile, pstats, io, traceback, itertools from diff import diff, get_diff, get_next_actions, build_region_specs, dict_to_tuple, is_feasible_next_placement from diff_apps import get_type_distributions from torch.utils.data import Dataset, DataLoader from collections import defaultdict, Counter from utils import * from dataset_filters import * from plot_utils import plot_histogram # MAIN CLASSES class CwCDataset(Dataset): """ CwC Dataset compatible with torch.utils.data.DataLoader. """ def __init__( self, model, split, lower=False, add_builder_utterances=False, compute_diff=True, compute_perspective=True, augment_dataset=False, augmentation_factor=0, exactly_k=False, strict=False, data_dir="../data/corpus/logs/", gold_configs_dir="../data/corpus/gold-configurations/", save_dest_dir="../data/corpus/saved_cwc_datasets", saved_dataset_dir="../data/corpus/saved_cwc_datasets/lower-no_diff/", encoder_vocab=None, decoder_vocab=None, dump_dataset=False, load_dataset=False, transform=None, sample_filters = [], add_augmented_data=False, augmented_data_fraction=0.0, aug_data_dir="../../data/corpus/augmented-no-spatial/logs/", aug_gold_configs_dir="../../data/corpus/augmented-no-spatial/gold-configurations/" ): """ Instantiates a dataset - If dump_dataset and load_dataset are both un-set, generates the dataset - If dump_dataset is set, also writes the generated dataset to file - If load_dataset is set, loads an existing dataset instead of generating (needed most often) By dataset, we mean self.samples and self.jsons -- the former being actual train/test examples, the latter being the json log files used to obtain these samples Args: model (string): model for which data loader is going to be used -- only used to selectively compute some stuff split (string): which of train/test/dev split to be used. If none, then reads and stores all data. lower: whether the data should be lowercased. add_builder_utterances: whether or not to obtain examples for builder utterances as well compute_diff: whether or not to compute the diff based representations compute_perspective: whether or not to compute the perspective coordinates based representations save_dest_dir: where to write the generated dataset saved_dataset_dir: where to load the saved dataset from encoder_vocab: encoder vocabulary wrapper. decoder_vocab: decoder vocabulary wrapper. dump_dataset: whether to generate dataset and write to file load_dataset: whether to load dataset from file """ self.model = model self.split = split self.lower = lower self.augmentation_factor = augmentation_factor self.add_builder_utterances = add_builder_utterances self.compute_diff = compute_diff self.compute_perspective = compute_perspective self.exactly_k = exactly_k self.strict = strict self.add_augmented_data = add_augmented_data self.augmented_data_fraction = augmented_data_fraction self.decoder_vocab = decoder_vocab self.encoder_vocab = encoder_vocab self.transform = transform self.num_prev_utterances = 1 self.blocks_max_weight = 1 self.use_builder_actions = False self.num_next_actions = 2 self.include_empty_channel = False self.feasible_next_placements = False self.use_condensed_action_repr = False self.action_type_sensitive = False self.spatial_info_window_size = 1000 self.counters_extra_feasibility_check = False self.use_existing_blocks_counter = False self.src_input_size_configs = x_range + y_range + z_range + len(type2id) self.src_input_size_next_actions = (x_range + y_range + z_range if not self.use_condensed_action_repr else 3) + len(type2id) + (len(action2id) if self.action_type_sensitive else 0) self.online_data = False # whether this if for architect demo or not aka online mode or not cwc_datasets_path = save_dest_dir lower_str = "lower" if self.lower else "" add_builder_utterances_str = "-add_builder_utterances" if self.add_builder_utterances else "" diff_str = '-no_diff' if not self.compute_diff else "" pers_str = '-no_perspective_coords' if not self.compute_perspective else "" aug_str = "-augmented" if self.add_augmented_data else "" if True: if load_dataset: dataset_dir = saved_dataset_dir print("Loading dataset ...\n") print("Loading self.samples ...") self.samples = load_pkl_data(dataset_dir + "/"+ self.split + "-samples.pkl") self.filter_augmented_samples() print("Loading self.jsons ...") self.jsons = load_pkl_data(dataset_dir + "/"+ self.split + "-jsons.pkl") print("Done! Loaded dataset of size", len(self.samples)) else: self.jsons = list( map( remove_empty_states, map( reorder, get_logfiles_with_gold_config(data_dir, gold_configs_dir, split) ) ) ) # TODO: Move the extra maps to a postprocesing step for the dataset? if self.add_augmented_data: print(timestamp(), "Adding augmented dataset...") def reformat_utterances(aug_observations_json): """ Joins tokens back with a space """ for world_state in aug_observations_json["WorldStates"]: world_state["ChatHistoryTokenized"] = list(map( lambda x: " ".join(x), world_state["ChatHistoryTokenized"] )) world_state["ChatHistory"] = world_state.pop("ChatHistoryTokenized") return aug_observations_json self.jsons += list( map( remove_empty_states, map( reorder, map( reformat_utterances, get_logfiles_with_gold_config(aug_data_dir, aug_gold_configs_dir, split, from_aug_data=True) ) ) ) ) print(timestamp(), 'Started processing jsons to get samples...') self.samples = self.process_samples(lower, compute_diff=self.compute_diff, compute_perspective=self.compute_perspective) print(timestamp(), 'Done processing jsons to get samples.') print("Current dataset size", len(self.samples)) print("Filtering...") for sample_filter in sample_filters: self.samples = list(filter(sample_filter, self.samples)) print("Done! Loaded vanilla dataset of size", len(self.samples)) if dump_dataset: sample_filters_names = list(map(lambda x: x.__name__, sample_filters)) sample_filters_names = "-" + "-".join(sample_filters_names) if sample_filters_names else "" dataset_dir = lower_str + add_builder_utterances_str + diff_str + pers_str + aug_str + sample_filters_names dataset_dir = os.path.join(cwc_datasets_path, dataset_dir) if not os.path.exists(dataset_dir): os.makedirs(dataset_dir) print("Saving dataset ...\n") print("Saving self.jsons ...") save_pkl_data(dataset_dir + "/"+ self.split + "-jsons.pkl", self.jsons) save_pkl_data(dataset_dir + "/"+ self.split + "-jsons-2.pkl", self.jsons, protocol=2) print("Saving self.samples ...") save_pkl_data(dataset_dir + "/"+ self.split + "-samples.pkl", self.samples) self.augmentation_factor = 0 def set_args(self, num_prev_utterances=1, blocks_max_weight=1, use_builder_actions=False, num_next_actions=2, include_empty_channel=False, use_condensed_action_repr=False, action_type_sensitive=False, feasible_next_placements=False, spatial_info_window_size=1000, counters_extra_feasibility_check=False, use_existing_blocks_counter=False): """ Selectively set some args in the object """ self.num_prev_utterances = num_prev_utterances self.blocks_max_weight = blocks_max_weight self.use_builder_actions = use_builder_actions self.num_next_actions = num_next_actions self.include_empty_channel = include_empty_channel self.feasible_next_placements = feasible_next_placements self.use_condensed_action_repr = use_condensed_action_repr self.action_type_sensitive = action_type_sensitive self.spatial_info_window_size = spatial_info_window_size self.counters_extra_feasibility_check = counters_extra_feasibility_check self.use_existing_blocks_counter = use_existing_blocks_counter self.src_input_size_next_actions = (x_range + y_range + z_range if not self.use_condensed_action_repr else 3) + len(type2id) + (len(action2id) if self.action_type_sensitive else 0) def get_sample(self, idx): """ Returns one data sample (utterance) in tokenized form. """ return self.samples[idx] def filter_augmented_samples(self): samples = {'orig': [], 'aug': []} for sample in self.samples: samples['orig'].append(sample) if not sample.get('from_aug_data') else samples['aug'].append(sample) print('\nOriginal dataset contains', len(samples['orig']), 'original samples and', len(samples['aug']), 'augmented samples ('+str(len(samples['orig'])+len(samples['aug'])), 'total samples).') if self.augmented_data_fraction > 0 and len(samples['aug']) == 0: print('Error: you specified a fraction of augmented data, but the loaded dataset contains no augmented data.') sys.exit(0) if self.augmented_data_fraction == 0 and len(samples['aug']) == 0: return if self.augmented_data_fraction < 1.0: print('Filtering augmented samples with a fraction of', self.augmented_data_fraction, '...') chosen_aug_samples = np.random.choice(samples['aug'], int(self.augmented_data_fraction*len(samples['aug'])), replace=False) print('Randomly sampled', len(chosen_aug_samples), 'augmented samples from the full augmented set.') self.samples = samples['orig'] self.samples.extend(chosen_aug_samples) def process_samples(self, lower, compute_diff=True, compute_perspective=True): """ Preprocesses the input JSONs and generates a list of data samples. """ samples = [] try: for j in range(len(self.jsons)): print("Processing json", j, "of", len(self.jsons)) try: js = self.jsons[j] world_states = js["WorldStates"] final_observation = world_states[-1] gold_config = js["gold_config_structure"] last_world_state = None chat_history = [] chat_with_actions_history = [] gold_placements, gold_removals = get_gold_actions(world_states) for i in range(1, len(world_states)): observation = world_states[i] built_config = get_built_config(observation) builder_position = get_builder_position(observation) last_action = None gold_placement_list = gold_placements[i] gold_removal_list = gold_removals[i] for k, curr_world_state in enumerate(reversed(world_states[:i+1])): original_index = i-k # compare blocks with its prev world state curr_blocks = curr_world_state["BlocksInGrid"] prev_blocks = [] if original_index == 0 else world_states[original_index-1]["BlocksInGrid"] last_action = get_last_action(curr_blocks, prev_blocks) if last_action: break if not last_world_state: for i2 in range(len(observation["ChatHistory"])): chat_history.append(observation["ChatHistory"][i2].strip()) for block in built_config: chat_with_actions_history.append({"idx": i, "action": "putdown", "type": block["type"], "built_config": built_config, "prev_config": None, "builder_position": builder_position, "last_action": last_action, "gold_placement_list": gold_placement_list, "gold_removal_list": gold_removal_list}) chat_with_actions_history.append({"idx": i, "action": "chat", "utterance": observation["ChatHistory"][i2].strip(), "built_config": built_config, "prev_config": None, "builder_position": builder_position, "last_action": last_action, "gold_placement_list": gold_placement_list, "gold_removal_list": gold_removal_list}) else: prev_config = get_built_config(last_world_state) config_diff = diff(gold_config=built_config, built_config=prev_config) delta = {"putdown": config_diff["gold_minus_built"], "pickup": config_diff["built_minus_gold"]} for action_type in delta: for block in delta[action_type]: chat_with_actions_history.append({"idx": i, "action": action_type, "type": block["type"], "built_config": built_config, "prev_config": prev_config, "builder_position": builder_position, "last_action": last_action, "gold_placement_list": gold_placement_list, "gold_removal_list": gold_removal_list}) if len(observation["ChatHistory"]) > len(last_world_state["ChatHistory"]): for i3 in range(len(last_world_state["ChatHistory"]), len(observation["ChatHistory"])): chat_history.append(observation["ChatHistory"][i3].strip()) chat_with_actions_history.append({"idx": i, "action": "chat", "utterance": observation["ChatHistory"][i3].strip(), "built_config": built_config, "prev_config": prev_config, "builder_position": builder_position, "last_action": last_action, "gold_placement_list": gold_placement_list, "gold_removal_list": gold_removal_list}) last_world_state = observation # process dialogue line-by-line for i in range(len(chat_with_actions_history)): elem = chat_with_actions_history[i] if elem['action'] != 'chat': continue idx = elem['idx'] line = elem['utterance'] built_config = elem["built_config"] prev_config = elem["prev_config"] builder_position = elem["builder_position"] last_action = append_block_perspective_coords(builder_position, elem["last_action"]) gold_placement_list = [append_block_perspective_coords(builder_position, block) for block in elem["gold_placement_list"]] gold_removal_list = [append_block_perspective_coords(builder_position, block) for block in elem["gold_removal_list"]] speaker = "Architect" if "Architect" in line.split()[0] else "Builder" if not self.add_builder_utterances and speaker == 'Builder': continue def valid_config(config): if not config: return True for block in config: x, y, z = block["x"]-x_min, block["y"]-y_min, block["z"]-z_min if x < 0 or x >= x_range or y < 0 or y >= y_range or z < 0 or z >= z_range: return False return True # temporary fix for troublesome configs if not valid_config(built_config) or not valid_config(prev_config): continue prefix = architect_prefix if speaker == "Architect" else builder_prefix next_utterance = line[len(prefix):] #next_tokenized, _ = tokenize(next_utterance.lower() if lower else next_utterance) next_tokenized = next_utterance # no tokenization prev_utterances = [] prev_utterances.append({'speaker': 'Builder', 'utterance': ['<dialogue>']}) for k in range(i): prev_elem = chat_with_actions_history[k] if prev_elem['action'] != 'chat': prev_utterances.append({'speaker': 'Builder', 'utterance': ['<builder_'+prev_elem['action']+'_'+prev_elem['type']+'>']}) else: prev_utterance = prev_elem['utterance'] prev_speaker = "Architect" if "Architect" in prev_utterance.split()[0] else "Builder" prev_utterance = prev_utterance[len(architect_prefix):] if prev_speaker == 'Architect' else prev_utterance[len(builder_prefix):] prev_utterance = prev_utterance.lower() if lower else prev_utterance prev_utterances.append({'speaker': prev_speaker, 'utterance': prev_utterance}) # diff gold_v_built_diff, diffs_built_config_space, type_distributions_built_config_space, type_distributions_gold_config_space = None, None, None, None if compute_diff: gold_v_built_diff, perturbations_and_diffs = get_diff(gold_config=gold_config, built_config=built_config) # get type distributions diffs_built_config_space = list(map(lambda x: x.diff.diff_built_config_space, perturbations_and_diffs)) type_distributions_built_config_space = reformat_type_distributions( get_type_distributions(diffs_built_config_space=diffs_built_config_space, built_config=built_config) ) # reverse diff _, perturbations_and_diffs_reverse = get_diff(gold_config=built_config, built_config=gold_config) # get type distributions diffs_gold_config_space = list(map(lambda x: x.diff.diff_built_config_space, perturbations_and_diffs_reverse)) type_distributions_gold_config_space = reformat_type_distributions( get_type_distributions(diffs_built_config_space=diffs_gold_config_space, built_config=gold_config) ) perspective_coordinates = None if not compute_perspective else get_perspective_coord_repr(builder_position) samples.append( { 'next_speaker': speaker, # architect or builder 'next_utterance': next_utterance, # utterance to be predicted 'prev_utterances': prev_utterances, # previous utterances 'gold_config': gold_config, 'built_config': built_config, 'diff': gold_v_built_diff, # diff based on one single optimal alignment 'last_action': last_action, # last block placement action 'gold_placement_list': gold_placement_list, 'gold_removal_list': gold_removal_list, 'builder_position': builder_position, 'perspective_coordinates': perspective_coordinates, 'type_distributions_built_config_space': type_distributions_built_config_space, 'type_distributions_gold_config_space': type_distributions_gold_config_space, 'from_aug_data': js['from_aug_data'], 'diffs_built_config_space': diffs_built_config_space, # all diffs based on all optimal alignments -- in the built config space 'json_id': j, # ID of the json this sample was obtained from 'sample_id': idx # ID assigned to this sample } # NOTE: data format of a sample ) except Exception: print('Something went wrong processing this json, skipping...') traceback.print_exc() sys.exit(0) except KeyboardInterrupt: print('Exiting from processing json early... Not all samples have been added.') return samples def __len__(self): """ Returns length of dataset. """ return len(self.samples) def __getitem__(self, idx): """ Computes the tensor representations of a sample """ sample = self.samples[idx] # Convert utterance (string) to word IDs. next_tokens = sample["next_utterance"] next_utterance_input = [] next_utterance_input.append('<architect>') # NOTE: no need to change for LM using builder utterances too next_utterance_input.extend([token for token in next_tokens]) next_utterance_output = [] next_utterance_output.extend([token for token in next_tokens]) next_utterance_output.append('</architect>') # NOTE: no need to change for LM using builder utterances too i = 0 utterances_idx = len(sample["prev_utterances"])-1 utterances_to_add = [] prev_utterances = [] while i < self.num_prev_utterances: if utterances_idx < 0: break prev = sample["prev_utterances"][utterances_idx] speaker = prev["speaker"] utterance = prev["utterance"] if "<builder_" in utterance[0]: if self.use_builder_actions: utterances_to_add.insert(0, prev) i -= 1 elif "mission has started ." in " ".join(utterance) and 'Builder' in speaker: i -= 1 else: utterances_to_add.insert(0, prev) utterances_idx -= 1 i += 1 if self.online_data: # use only one previous utterance for architect demo utterances_to_add = [utterances_to_add[-1]] for prev in utterances_to_add: speaker = prev["speaker"] utterance = prev["utterance"] if "<dialogue>" in utterance[0]: prev_utterances.append('<dialogue>') elif "<builder_" in utterance[0]: if self.use_builder_actions: prev_utterances.append(utterance[0]) i -= 1 else: start_token = '<architect>' if 'Architect' in speaker else '<builder>' end_token = '</architect>' if 'Architect' in speaker else '</builder>' prev_utterances.append(start_token) prev_utterances.extend(token for token in utterance) prev_utterances.append(end_token) # temporary fix: floats in configs for config_type in ['built_config', 'gold_config']: config = sample[config_type] for block in config: for key in ['x', 'y', 'z']: block[key] = int(block[key]) # built config built_config = sample["built_config"] built_config_repr = get_one_hot_repr(built_config) if self.model == 'seq2seq_world_state' else None built_config_3d_repr = get_3d_repr(built_config, max_weight=self.blocks_max_weight, include_empty_channel=self.include_empty_channel) if self.model == 'cnn_3d' else None # gold config gold_config = sample["gold_config"] # NOTE: already sorted by layer gold_config_repr = get_one_hot_repr(gold_config) if self.model == 'seq2seq_world_state' else None gold_config_3d_repr = get_3d_repr(gold_config, include_empty_channel=self.include_empty_channel) if self.model == 'cnn_3d' else None perspective_coord_repr = None if isinstance(sample["perspective_coordinates"], np.ndarray): perspective_coord_repr = torch.from_numpy(sample["perspective_coordinates"]).type(torch.FloatTensor) type_distributions_built_config_space = sample['type_distributions_built_config_space'] type_distributions_gold_config_space = sample['type_distributions_gold_config_space'] built_config_type_dist, gold_config_type_dist = None, None if isinstance(type_distributions_built_config_space, np.ndarray): if not self.include_empty_channel: type_distributions_built_config_space = type_distributions_built_config_space[:-1][:][:][:] type_distributions_gold_config_space = type_distributions_gold_config_space[:-1][:][:][:] built_config_type_dist = torch.from_numpy(type_distributions_built_config_space).type(torch.FloatTensor) gold_config_type_dist = torch.from_numpy(type_distributions_gold_config_space).type(torch.FloatTensor) # diff diff = sample["diff"] # last action last_action = sample["last_action"] next_actions_gold = {"gold_minus_built": sample["gold_placement_list"][:int(self.num_next_actions/2)], "built_minus_gold": sample["gold_removal_list"][:int(self.num_next_actions/2)]} next_actions_gold_repr = get_next_actions_repr(next_actions_gold, last_action, action_type_sensitive=self.action_type_sensitive, use_condensed_action_repr=self.use_condensed_action_repr) # next actions next_actions, next_actions_repr = None, None builder_position = sample['builder_position'] if diff and self.model == 'utterances_and_next_actions': next_actions = get_next_actions(all_next_actions=diff, num_next_actions_needed=self.num_next_actions, last_action=last_action, built_config=built_config, feasible_next_placements=self.feasible_next_placements) next_actions['gold_minus_built'] = [append_block_perspective_coords(builder_position, block) for block in next_actions['gold_minus_built']] next_actions['built_minus_gold'] = [append_block_perspective_coords(builder_position, block) for block in next_actions['built_minus_gold']] next_actions_repr = get_next_actions_repr(next_actions, last_action, action_type_sensitive=self.action_type_sensitive, use_condensed_action_repr=self.use_condensed_action_repr) # block global counters diffs_built_config_space = sample["diffs_built_config_space"] block_counters = get_block_counters(diffs_built_config_space, built_config=built_config, built_config_in_region=built_config, extra_check=self.counters_extra_feasibility_check) if diff else None # block region counters block_counters_spatial_info = get_block_counters_spatial_info(diffs_built_config_space, built_config, last_action, builder_position, window_size=self.spatial_info_window_size, extra_check=self.counters_extra_feasibility_check) if diff else None block_counters_spatial_tensors = [] # FIXME: UPDATE WHEN MORE REGIONS ARE CONSIDERED if block_counters_spatial_info: if self.use_existing_blocks_counter: block_counters_spatial_tensors = [(torch.Tensor(x.block_counters.all_placements_counter), torch.Tensor(x.block_counters.all_next_placements_counter), torch.Tensor(x.block_counters.all_removals_counter), torch.Tensor(x.block_counters.all_existing_blocks_counter)) for x in block_counters_spatial_info] else: block_counters_spatial_tensors = [(torch.Tensor(x.block_counters.all_placements_counter), torch.Tensor(x.block_counters.all_next_placements_counter), torch.Tensor(x.block_counters.all_removals_counter)) for x in block_counters_spatial_info] last_action_bit = [[1]] if not last_action else [[0]] # pp.pprint(list(map(lambda x: x.__dict__, block_counters_spatial_info))) # print(block_counters_spatial_tensors) # print("\n\n\n\n") # print("get_item") # pp.PrettyPrinter(indent=4).pprint(prev_utterances) # print(sorted(type2id.keys())) # print(block_counters.all_placements_counter[0]) # print(block_counters.all_removals_counter[0]) from operator import add all_actions = list( map(add, block_counters.all_placements_counter[0], block_counters.all_removals_counter[0]) ) colors_to_all_actions = dict(zip(sorted(type2id.keys()), all_actions)) return ( prev_utterances, torch.tensor(built_config_repr) if built_config_repr else None, torch.tensor(gold_config_repr) if gold_config_repr else None, next_utterance_input, # utterance to be predicted -- formatted for decoder inputs next_utterance_output, # utterance to be predicted -- formatted for decoder outputs torch.Tensor(next_actions_repr["next_placements_repr"]) if next_actions_repr else None, torch.Tensor(next_actions_repr["next_removals_repr"]) if next_actions_repr else None, torch.Tensor(next_actions_gold_repr["next_placements_repr"]), torch.Tensor(next_actions_gold_repr["next_removals_repr"]), torch.Tensor(block_counters.all_placements_counter) if block_counters else None, # global block counters torch.Tensor(block_counters.all_next_placements_counter) if block_counters else None, # global block counters torch.Tensor(block_counters.all_removals_counter) if block_counters else None, # global block counters block_counters_spatial_tensors, # regional block counters torch.Tensor(last_action_bit), # encoding of last action RawInputs(next_actions, next_actions_gold, json_id=sample.get('json_id'), sample_id=sample.get('sample_id'), next_utterance_raw=sample.get('next_utterance_raw'), built_config_ss=built_config, gold_config_ss=gold_config, colors_to_all_actions=colors_to_all_actions), # raw inputs for downstream purposes built_config_3d_repr, gold_config_3d_repr, perspective_coord_repr, built_config_type_dist, gold_config_type_dist ) # NOTE: data format of an item def collate_fn(self, data): """Creates a mini-batch of items (batch size = 1 for now) Returns: A tuple of the following: - inputs to the encoder - ground truth inputs to the decoder RNN - ground truth outputs for the decoder RNN - some inputs in raw format for downstream use cases """ def merge_text(sequences): lengths = [len(seq) for seq in sequences] padded_seqs = torch.zeros(len(sequences), max(lengths)).long() for i, seq in enumerate(sequences): end = lengths[i] padded_seqs[i, :end] = seq[:end] return padded_seqs, lengths def merge_configs(sequences): if not isinstance(sequences[0], torch.Tensor) and not sequences[0]: return None, None lengths = [len(seq) for seq in sequences] padded_seqs = torch.zeros(len(sequences), max(lengths), sequences[0].size()[1]) for i, seq in enumerate(sequences): end = lengths[i] padded_seqs[i, :end, :] = seq return padded_seqs, lengths def stack_reprs(reprs): if not isinstance(reprs[0], torch.Tensor) and not reprs[0]: return None return torch.stack(reprs, 0) # Sort a data list by utterance length in descending order. prev_utterances, built_configs, gold_configs, target_inputs, target_outputs, next_placements, next_removals, gold_placements, gold_removals, all_placements_counter, all_next_placements_counter, all_removals_counter, block_counters_spatial_tensors, last_action_bits, raw_inputs, built_configs_3d, gold_configs_3d, perspective_coord_reprs, built_config_type_dists, gold_config_type_dists = zip(*data) #prev_utterances, prev_utterances_lengths = merge_text(prev_utterances) built_configs, built_config_lengths = merge_configs(built_configs) gold_configs, gold_config_lengths = merge_configs(gold_configs) next_placements, next_placements_lengths = merge_configs(next_placements) next_removals, next_removals_lengths = merge_configs(next_removals) gold_placements, gold_placements_lengths = merge_configs(gold_placements) gold_removals, gold_removals_lengths = merge_configs(gold_removals) all_placements_counter = stack_reprs(all_placements_counter) all_next_placements_counter = stack_reprs(all_next_placements_counter) all_removals_counter = stack_reprs(all_removals_counter) next_actions = { "next_placements": next_placements, "next_removals": next_removals } next_actions_lengths = { "next_placements_lengths": next_placements_lengths, "next_removals_lengths": next_removals_lengths } gold_actions = { "gold_placements": gold_placements, "gold_removals": gold_removals } gold_actions_lengths = { "gold_placements_lengths": gold_placements_lengths, "gold_removals_lengths": gold_removals_lengths } block_counters = { "all_placements_counter": all_placements_counter, "all_next_placements_counter": all_next_placements_counter, "all_removals_counter": all_removals_counter } block_counters_spatial_tensors = block_counters_spatial_tensors[0] if self.use_existing_blocks_counter: block_counters_spatial_tensors = [(w.unsqueeze(0), x.unsqueeze(0), y.unsqueeze(0), z.unsqueeze(0)) for (w,x,y,z) in block_counters_spatial_tensors] else: block_counters_spatial_tensors = [(x.unsqueeze(0), y.unsqueeze(0), z.unsqueeze(0)) for (x,y,z) in block_counters_spatial_tensors] last_action_bits = stack_reprs(last_action_bits) built_configs_3d = stack_reprs(built_configs_3d) gold_configs_3d = stack_reprs(gold_configs_3d) perspective_coord_reprs = stack_reprs(perspective_coord_reprs) built_config_type_dists = stack_reprs(built_config_type_dists) gold_config_type_dists = stack_reprs(gold_config_type_dists) #target_inputs, target_lengths = merge_text(target_inputs) #target_outputs, target_lengths = merge_text(target_outputs) raw_inputs = raw_inputs[0] return ( EncoderInputs(prev_utterances,built_configs, built_config_lengths, gold_configs, gold_config_lengths, next_actions, next_actions_lengths, gold_actions, gold_actions_lengths, block_counters, block_counters_spatial_tensors, last_action_bits, built_configs_3d, gold_configs_3d, perspective_coord_reprs, built_config_type_dists, gold_config_type_dists), DecoderInputs(target_inputs), DecoderOutputs(target_outputs),raw_inputs) def get_data_loader(self, batch_size=1, shuffle=True, num_workers=1): # Data loader for CwC Dataset. # This will return (targets, lengths) for every iteration. # targets: torch tensor of shape (batch_size, padded_length). # lengths: list of valid lengths for each padded utterance, sorted in descending order. Length is (batch_size). return DataLoader(dataset=self, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, collate_fn=self.collate_fn) # FIXME: Move this to a dedicated data augmentation part def augment_dataset(self, k, vocab_dir="../vocabulary/"): # data structures to hold info on the data augmentation self.word_counts_augmentation = defaultdict(int) self.tokenized_data_augmentation = [] # generate synthetic utterances -- update above data structures for original_sample in self.samples: tokenized_utterance = original_sample["next_utterance"] # get new examples new_examples = self.get_new_examples(tokenized_utterance, k) # add to dataset self.tokenized_data_augmentation += new_examples for example in new_examples: for word in example: self.word_counts_augmentation[word] += 1 # augment original dataset with the synthetic utterances for tokenized_synthetic_utterance in self.tokenized_data_augmentation: synthetic_sample = { 'next_speaker': self.samples[0]['next_speaker'], # dummy value 'next_utterance': tokenized_synthetic_utterance, 'prev_utterances': self.samples[0]['prev_utterances'], # dummy value 'gold_config': self.samples[0]['gold_config'], # dummy value 'built_config': self.samples[0]['built_config'] # dummy value } self.samples.append(synthetic_sample) # write synthetic utterances to file print("Writing synthetic utterances to file...") split = "-" + self.split lower = "-lower" if self.lower else "" add_builder_utterances = "-add_builder_utterances" if self.add_builder_utterances else "" augmentation_factor = "-" + str(self.augmentation_factor) with open(vocab_dir+"/synthetic_utterances" + split + lower + add_builder_utterances + augmentation_factor + ".txt", 'w') as f: for tokenized_utterance in self.tokenized_data_augmentation: to_write = pprint.pformat(tokenized_utterance) + "\n\n" f.write(to_write) print("Done writing!") # FIXME: Move this to a dedicated data augmentation part def get_new_examples(self, tokenized_utterance, k): def f(token): # map token to list of all possible substitutions token_substitutions = [token] if token in self.substitutions: token_substitutions += self.substitutions[token] return token_substitutions # map each token to a list of it's substitutions including itself substitutions_list = list(map(f, tokenized_utterance)) # generate all possible combinations -- cartesian product of a 2d list samples_list = list(map(lambda x: np.random.choice(x, size=k, replace=True).tolist(), substitutions_list)) new_examples = list(map(list, [*zip(*samples_list)])) # filter out duplicate examples new_examples = list(filter(lambda x: x != tokenized_utterance, new_examples)) # filter out original utterance new_examples = [list(x) for x in set(tuple(x) for x in new_examples)] # select only unique new synthetic utterances return new_examples def printCoords(self): print(self.dpxs_placement) class EncoderInputs: def __init__(self, prev_utterances, built_configs,built_config_lengths, gold_configs, gold_config_lengths, next_actions, next_actions_lengths, gold_actions, gold_actions_lengths, block_counters, block_counters_spatial_tensors, last_action_bits, built_configs_3d, gold_configs_3d, perspective_coord_reprs, built_config_type_dists, gold_config_type_dists): self.prev_utterances = prev_utterances # previous utterances self.built_configs = built_configs # built config self.built_config_lengths = built_config_lengths self.gold_configs = gold_configs # gold config self.gold_config_lengths = gold_config_lengths self.next_actions = next_actions self.next_actions_lengths = next_actions_lengths self.gold_actions = gold_actions self.gold_actions_lengths = gold_actions_lengths self.block_counters = block_counters # global block counters self.block_counters_spatial_tensors = block_counters_spatial_tensors # regional block counters self.last_action_bits = last_action_bits # last action encoding self.built_configs_3d = built_configs_3d self.gold_configs_3d = gold_configs_3d self.perspective_coord_reprs = perspective_coord_reprs self.built_config_type_dists = built_config_type_dists self.gold_config_type_dists = gold_config_type_dists class DecoderInputs: def __init__(self, target_inputs,target_inputs_neg=None): self.target_inputs = target_inputs # ground truth inputs for decoder RNN self.target_inputs_neg = target_inputs_neg class DecoderOutputs: def __init__(self, target_outputs,target_outputs_neg=None): self.target_outputs = target_outputs # ground truth outputs for decoder RNN self.target_outputs_neg = target_outputs_neg class RawInputs: """ Raw representations of various inputs for downstream use cases """ def __init__(self, next_actions_raw, gold_next_actions_raw, json_id=None, sample_id=None, next_utterance_raw=None, built_config_ss=None, gold_config_ss=None, colors_to_all_actions=None): self.next_actions_raw = next_actions_raw self.gold_next_actions_raw = gold_next_actions_raw self.json_id = json_id # json id of the game log from where this train/test example was obtained self.sample_id = sample_id # sample id of the train/test example self.next_utterance_raw = next_utterance_raw # next utterance to be predicted self.built_config_ss = built_config_ss self.gold_config_ss = gold_config_ss self.colors_to_all_actions = colors_to_all_actions # UTILS class Region: """ Stores a specfic region in 3d space """ def __init__(self, x_min, x_max, y_min, y_max, z_min, z_max, block_counters=None, region_id=None): """ - Bounds of the region - Block counters for the region - A unique ID based on whether the region is left, right, etc. of the last action """ self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max self.z_min = z_min self.z_max = z_max assert self.x_min <= self.x_max and self.y_min <= self.y_max and self.z_min <= self.z_max, "Invalid x/y/z bounds for Region object." self.block_counters = block_counters self.region_id = region_id def set_block_counters(self, diffs_built_config_space, built_config, extra_check): """ Compute and set block counters for region """ # filter actions in diffs to only include actions within the region region_diffs = list(map(lambda x: self.get_region_diff(x), diffs_built_config_space)) # filter blocks in built config to only include blocks within the region built_config_in_region = list(filter(lambda x: self.is_in_region(x), built_config)) # get block counters self.block_counters = get_block_counters(region_diffs, built_config=built_config, built_config_in_region=built_config_in_region, extra_check=extra_check) def get_region_diff(self, diff): """ Reduce a diff to being specific to the region """ all_placements = diff["gold_minus_built"] all_removals = diff["built_minus_gold"] placements_in_region = list(filter(lambda x: self.is_in_region(x), all_placements)) removals_in_region = list(filter(lambda x: self.is_in_region(x), all_removals)) region_diff = { "gold_minus_built": placements_in_region, "built_minus_gold": removals_in_region } return region_diff def is_in_region(self, action): """ Check if an action is within the region or not """ return action["x"] in range(self.x_min, self.x_max + 1) and \ action["y"] in range(self.y_min, self.y_max + 1) and \ action["z"] in range(self.z_min, self.z_max + 1) def get_region_id(self, builder_position, last_action): """ Compute the unique ID for the region based on whether it is left, right, etc. of the last action """ # discretize builder's yaw into the 4 canonical directions builder_yaw = builder_position["yaw"] builder_yaw_discrete = discretize_yaw(builder_yaw) # given a canonical yaw direction and delta vectors wrt that direction, infer which cell is left, which is right and so on diff_vector = { "x": (self.x_max + self.x_min) / 2 - last_action["x"], # diff using mean of region "y": (self.y_max + self.y_min) / 2 - last_action["y"], "z": (self.z_max + self.z_min) / 2 - last_action["z"] } # infer what is left, right, etc. based on canonical yaw direction if builder_yaw_discrete == 0: diff_vector_to_direction = { "+x": "left", "-x": "right", "+z": "front", "-z": "back" } elif builder_yaw_discrete == 90: diff_vector_to_direction = { "+x": "back", "-x": "front", "+z": "left", "-z": "right" } elif builder_yaw_discrete == 180: diff_vector_to_direction = { "+x": "right", "-x": "left", "+z": "back", "-z": "front" } elif builder_yaw_discrete == -90: diff_vector_to_direction = { "+x": "front", "-x": "back", "+z": "right", "-z": "left" } diff_vector_to_direction["+y"] = "top" diff_vector_to_direction["-y"] = "down" # convert diff vector to one left, right, etc. and then convert to a unique id # when last action cell itself if diff_vector["x"] == 0 and diff_vector["y"] == 0 and diff_vector["z"] == 0: self.region_id = direction_to_id["null"] # when adjacent cells or rows/columns if diff_vector["x"] != 0 and diff_vector["y"] == 0 and diff_vector["z"] == 0: if diff_vector["x"] > 0: if diff_vector["x"] == 1: self.region_id = direction_to_id[diff_vector_to_direction["+x"]] else: self.region_id = direction_to_id[diff_vector_to_direction["+x"] + "_row"] else: if diff_vector["x"] == -1: self.region_id = direction_to_id[diff_vector_to_direction["-x"]] else: self.region_id = direction_to_id[diff_vector_to_direction["-x"] + "_row"] elif diff_vector["x"] == 0 and diff_vector["y"] != 0 and diff_vector["z"] == 0: if diff_vector["y"] > 0: if diff_vector["y"] == 1: self.region_id = direction_to_id["top"] else: self.region_id = direction_to_id["top_column"] else: if diff_vector["y"] == -1: self.region_id = direction_to_id["down"] else: self.region_id = direction_to_id["down_column"] elif diff_vector["x"] == 0 and diff_vector["y"] == 0 and diff_vector["z"] != 0: if diff_vector["z"] > 0: if diff_vector["z"] == 1: self.region_id = direction_to_id[diff_vector_to_direction["+z"]] else: self.region_id = direction_to_id[diff_vector_to_direction["+z"] + "_row"] else: if diff_vector["z"] == -1: self.region_id = direction_to_id[diff_vector_to_direction["-z"]] else: self.region_id = direction_to_id[diff_vector_to_direction["-z"] + "_row"] # when adjacent quadrants if diff_vector["x"] != 0 and diff_vector["y"] != 0 and diff_vector["z"] == 0: signed_x = "+x" if diff_vector["x"] > 0 else "-x" signed_y = "+y" if diff_vector["y"] > 0 else "-y" self.region_id = direction_to_id[ stringify((diff_vector_to_direction[signed_x], diff_vector_to_direction[signed_y])) ] elif diff_vector["x"] == 0 and diff_vector["y"] != 0 and diff_vector["z"] != 0: signed_y = "+y" if diff_vector["y"] > 0 else "-y" signed_z = "+z" if diff_vector["z"] > 0 else "-z" self.region_id = direction_to_id[ stringify((diff_vector_to_direction[signed_y], diff_vector_to_direction[signed_z])) ] elif diff_vector["x"] != 0 and diff_vector["y"] == 0 and diff_vector["z"] != 0: signed_z = "+z" if diff_vector["z"] > 0 else "-z" signed_x = "+x" if diff_vector["x"] > 0 else "-x" self.region_id = direction_to_id[ stringify((diff_vector_to_direction[signed_z], diff_vector_to_direction[signed_x])) ] # when adjacent octants if diff_vector["x"] != 0 and diff_vector["y"] != 0 and diff_vector["z"] != 0: signed_x = "+x" if diff_vector["x"] > 0 else "-x" signed_y = "+y" if diff_vector["y"] > 0 else "-y" signed_z = "+z" if diff_vector["z"] > 0 else "-z" self.region_id = direction_to_id[ stringify((diff_vector_to_direction[signed_x], diff_vector_to_direction[signed_y], diff_vector_to_direction[signed_z])) ] return self.region_id # obtain mapping of relative directions to ID # for last action cell itself null = "null" # for adjacent cells lr = ["left", "right"] td = ["top", "down"] fb = ["front", "back"] # for adjacent rows/columns lr_rows = list(map(lambda x: x + "_row", lr)) td_columns = list(map(lambda x: x + "_column", td)) fb_rows = list(map(lambda x: x + "_row", fb)) # for adjacent quadrants def stringify(directions): """ Converts a bunch of directions into a unique identifier string -- irrespective of how directions are ordered in the iterable NOTE: DO NOT CHANGE THIS LOGIC WITHOUT THOUGHT """ return "_".join(sorted(list(directions))) lr_td = list(map(stringify, list(itertools.product(lr, td)))) td_fb = list(map(stringify, list(itertools.product(td, fb)))) fb_lr = list(map(stringify, list(itertools.product(fb, lr)))) # for adjacent octants lr_td_fb = list(map(stringify, list(itertools.product(lr, td, fb)))) # unify all and get a map all_directions = [null] + lr + td + fb + lr_rows + td_columns + fb_rows + lr_td + td_fb + fb_lr + lr_td_fb # NOTE: DO NOT CHANGE THIS ORDERING WITHOUT THOUGHT! direction_to_id = {k: v for v, k in enumerate(all_directions)} def discretize_yaw(yaw): """ Discretize a yaw angle into the 4 canonical yaw angles/directions """ # normalize to [0, 360] if yaw < 0: yaw_normalized = 360 + yaw else: yaw_normalized = yaw # discretize if (yaw_normalized >= 270 + 45 and yaw_normalized <= 360) or (yaw_normalized >= 0 and yaw_normalized < 0 + 45): return 0 elif yaw_normalized >= 0 + 45 and yaw_normalized < 90 + 45: return 90 elif yaw_normalized >= 90 + 45 and yaw_normalized < 180 + 45: return 180 else: return -90 def get_block_counters_spatial_info(diffs_built_config_space, built_config, last_action, builder_position, window_size, extra_check): """ Obtain block counters based spatial info """ # degenerate case if not last_action: last_action = { "x": 0, "y": 1, "z": 0 } # obtain regions adjacent to last action adjacent_regions = get_adjacent_regions(last_action, window_size) # get counters for each region list( map( lambda x: x.set_block_counters(diffs_built_config_space, built_config, extra_check), # mutating adjacent_regions ) ) # obtain canonical ordering of regions -- based on directions adjacent_regions = sorted(adjacent_regions, key = lambda x: x.get_region_id(builder_position, last_action)) # mutating return adjacent_regions def get_adjacent_regions(action, window_size): """ Returns a list of the 6 adjacent cells + 6 adjacent rows/columns """ assert window_size >= 1, "Spatial info window size < 1 is not supported." action_cell = Region(x_min = action["x"], x_max = action["x"], y_min = action["y"], y_max = action["y"], z_min = action["z"], z_max = action["z"]) if window_size >= 1: cells = [ Region(x_min = action["x"] + 1, x_max = action["x"] + 1, y_min = action["y"], y_max = action["y"], z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"] - 1, x_max = action["x"] - 1, y_min = action["y"], y_max = action["y"], z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"] + 1, y_max = action["y"] + 1, z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"] - 1, y_max = action["y"] - 1, z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"], y_max = action["y"], z_min = action["z"] + 1, z_max = action["z"] + 1), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"], y_max = action["y"], z_min = action["z"] - 1, z_max = action["z"] - 1) ] quadrants = [] for sign_x in [1, -1]: for sign_y in [1, -1]: quadrants.append( Region( x_min = action["x"] + 1 if sign_x == 1 else action["x"] - window_size, x_max = action["x"] + window_size if sign_x == 1 else action["x"] - 1, y_min = action["y"] + 1 if sign_y == 1 else action["y"] - window_size, y_max = action["y"] + window_size if sign_y == 1 else action["y"] - 1, z_min = action["z"], z_max = action["z"] ) ) for sign_y in [1, -1]: for sign_z in [1, -1]: quadrants.append( Region( x_min = action["x"], x_max = action["x"], y_min = action["y"] + 1 if sign_y == 1 else action["y"] - window_size, y_max = action["y"] + window_size if sign_y == 1 else action["y"] - 1, z_min = action["z"] + 1 if sign_z == 1 else action["z"] - window_size, z_max = action["z"] + window_size if sign_z == 1 else action["z"] - 1 ) ) for sign_z in [1, -1]: for sign_x in [1, -1]: quadrants.append( Region( x_min = action["x"] + 1 if sign_x == 1 else action["x"] - window_size, x_max = action["x"] + window_size if sign_x == 1 else action["x"] - 1, y_min = action["y"], y_max = action["y"], z_min = action["z"] + 1 if sign_z == 1 else action["z"] - window_size, z_max = action["z"] + window_size if sign_z == 1 else action["z"] - 1 ) ) octants = [] for sign_x in [1, -1]: for sign_y in [1, -1]: for sign_z in [1, -1]: octants.append( Region( x_min = action["x"] + 1 if sign_x == 1 else action["x"] - window_size, x_max = action["x"] + window_size if sign_x == 1 else action["x"] - 1, y_min = action["y"] + 1 if sign_y == 1 else action["y"] - window_size, y_max = action["y"] + window_size if sign_y == 1 else action["y"] - 1, z_min = action["z"] + 1 if sign_z == 1 else action["z"] - window_size, z_max = action["z"] + window_size if sign_z == 1 else action["z"] - 1 ) ) else: cells = [] quadrants = [] octants = [] if window_size >= 2: rows_and_columns = [ Region(x_min = action["x"] + 2, x_max = action["x"] + window_size, y_min = action["y"], y_max = action["y"], z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"] - window_size, x_max = action["x"] - 2, y_min = action["y"], y_max = action["y"], z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"] + 2, y_max = action["y"] + window_size, z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"] - window_size, y_max = action["y"] - 2, z_min = action["z"], z_max = action["z"]), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"], y_max = action["y"], z_min = action["z"] + 2, z_max = action["z"] + window_size), Region(x_min = action["x"], x_max = action["x"], y_min = action["y"], y_max = action["y"], z_min = action["z"] - window_size, z_max = action["z"] - 2) ] else: rows_and_columns = [] all_regions = [action_cell] + cells + rows_and_columns + quadrants + octants return all_regions def get_block_counters(diffs_built_config_space, built_config, built_config_in_region, extra_check): """ Compute block counters for placements, next placements, removals and existing blocks in a region Args: built_config: Full built config -- used for feasibility checks for computing next placements built_config_in_region: Built config in the specific region -- used for computing existing blocks counter """ counters_per_diff = list(map(lambda x: region_to_counters(x, built_config, built_config_in_region, extra_check).__dict__, diffs_built_config_space)) results = BlockCounters(None, None, None, None) # stores final result to return for field in ["all_placements_counter", "all_next_placements_counter", "all_removals_counter", "all_existing_blocks_counter"]: # obtain counters per diff per actions type counters_per_field = list(map(lambda x: x[field], counters_per_diff)) # aggregate all and take expectations expectation_counter = sum(counters_per_field, Counter()) for key in expectation_counter: expectation_counter[key] /= len(counters_per_field) # populate result obj if field == "all_placements_counter": results.all_placements_counter = expectation_counter elif field == "all_next_placements_counter": results.all_next_placements_counter = expectation_counter elif field == "all_removals_counter": results.all_removals_counter = expectation_counter elif field == "all_existing_blocks_counter": results.all_existing_blocks_counter = expectation_counter # reformat result obj def reformat(counter): all_colors_counter = [[]] for color in sorted(type2id.keys()): all_colors_counter[0].append(float(counter[color])) return all_colors_counter results.all_placements_counter = reformat(results.all_placements_counter) results.all_next_placements_counter = reformat(results.all_next_placements_counter) results.all_removals_counter = reformat(results.all_removals_counter) results.all_existing_blocks_counter = reformat(results.all_existing_blocks_counter) return results def region_to_counters(a_diff, built_config, built_config_in_region, extra_check): """ Computer block counters for placements, next placements and removals for an optimal alignment """ def f(actions_list): actions_list_colors = list(map(lambda x: x["type"], actions_list)) return Counter(actions_list_colors) # obtain all actions all_placements = a_diff["gold_minus_built"] all_next_placements = list(filter(lambda x: is_feasible_next_placement(x, built_config, extra_check), all_placements)) all_removals = a_diff["built_minus_gold"] # map each set of actions to counters counts_all_placements = f(all_placements) counts_all_next_placements = f(all_next_placements) counts_all_removals = f(all_removals) # do same for existing blocks in region counts_all_existing_blocks = f(built_config_in_region) return BlockCounters(counts_all_placements, counts_all_next_placements, counts_all_removals, counts_all_existing_blocks) class BlockCounters: """ Stores block counters for all action types """ def __init__(self, all_placements_counter, all_next_placements_counter, all_removals_counter, all_existing_blocks_counter): self.all_placements_counter = all_placements_counter self.all_next_placements_counter = all_next_placements_counter self.all_removals_counter = all_removals_counter self.all_existing_blocks_counter = all_existing_blocks_counter def reformat_type_distributions(type_distributions_built_config_space): """ Args: type_distributions_built_config_space: Type distributions in built config space in the raw format Returns: a 4-d numpy array representation of the same with dimensions in the order type, x, y, z """ type_distributions_arr_built_config_space = np.zeros((len(type2id)+1, x_range, y_range, z_range)) for elem in type_distributions_built_config_space: x = elem.grid_location["x"] - x_min y = elem.grid_location["y"] - y_min z = elem.grid_location["z"] - z_min for type in elem.type_distribution: type_id = len(type2id) if type == "empty" else type2id[type] probability = elem.type_distribution[type] type_distributions_arr_built_config_space[type_id][x][y][z] = probability return type_distributions_arr_built_config_space def remove_empty_states(observations): observations["WorldStates"] = list(filter(lambda x: x["BuilderPosition"] != None, observations["WorldStates"])) return observations def reorder(observations): """ Returns the observations dict by reordering blocks temporally in every state """ for i, state in enumerate(observations["WorldStates"]): prev_blocks = [] if i == 0 else observations["WorldStates"][i-1]["BlocksInGrid"] # pp.PrettyPrinter(indent=4).pprint(state) curr_blocks = state["BlocksInGrid"] curr_blocks_reordered = reorder_blocks(curr_blocks, prev_blocks) # obtain temporal ordering of blocks observations["WorldStates"][i]["BlocksInGrid"] = curr_blocks_reordered # mutate - will be used in next iteration return observations def reorder_blocks(curr_blocks, prev_blocks): """ Returns a sorted version of the list of current blocks based on their order in the list of previous blocks. The assumption is that previous blocks are already sorted temporally. So this preserves that order for those blocks and puts any newly placed ones at the very end. """ return sorted(curr_blocks, key = lambda x: index(x, prev_blocks)) def index(curr_block, prev_blocks): """ Returns position of current block in the list of previous blocks. If not found in the list, returns a very large number (meaning it's a newly placed block and should be placed at the end when sorting temporally). """ for i, prev_block in enumerate(prev_blocks): if are_equal(curr_block, prev_block): return i return 999 def are_equal(block_1, block_2): """ Returns a comparison result between 2 blocks by ignoring the ever changing perspective coordinates """ return reformat(block_1) == reformat(block_2) def get_last_action(curr_blocks, prev_blocks): curr_blocks = list(map(reformat, curr_blocks)) prev_blocks = list(map(reformat, prev_blocks)) diff_dict = diff(gold_config = curr_blocks, built_config = prev_blocks) all_actions = diff_dict["gold_minus_built"] + diff_dict["built_minus_gold"] return all_actions[0] if all_actions else None def get_gold_actions(world_states): gold_placements, gold_removals = [], [] next_world_state = None for i, world_state in reversed(list(enumerate(world_states))): # print(i, world_state["BlocksInGrid"]) if not next_world_state: gold_placements.append([]) gold_removals.append([]) else: next_blocks = list(map(reformat, next_world_state['BlocksInGrid'])) curr_blocks = list(map(reformat, world_state['BlocksInGrid'])) diff_dict = diff(gold_config=next_blocks, built_config=curr_blocks) diff_dict['gold_minus_built'].extend(gold_placements[0]) diff_dict['built_minus_gold'].extend(gold_removals[0]) curr_blocks = set(map(dict_to_tuple, curr_blocks)) removed_blocks = list(map(dict_to_tuple, diff_dict['built_minus_gold'])) removed_existing = [] for i2 in range(len(diff_dict['built_minus_gold'])): if removed_blocks[i2] in curr_blocks: removed_existing.append(diff_dict['built_minus_gold'][i2]) gold_placements.insert(0, diff_dict['gold_minus_built']) gold_removals.insert(0, removed_existing) next_world_state = world_state return gold_placements, gold_removals def format_prev_utterances(prev_utterances): for token in prev_utterances: print(self.encoder_vocab.idx2word[token], end=' ') print('\n') if __name__ == '__main__': """ Use this section to generate datasets and for debugging purposes. BE CAREFUL TO NOT OVERWRITE EXISTING DATASETS AS DATASETS ARE NOT VERSION CONTROLLED. """ parser = argparse.ArgumentParser() parser.add_argument('--model', default='cnn_3d', help='model type') # seq2seq_all_inputs parser.add_argument('--split', default='train', help='dataset split') parser.add_argument('--dump_dataset', default=True, action='store_true', help='build the dataset') parser.add_argument('--lower', default=False, action='store_true', help='lowercase the dataset') parser.add_argument('--add_builder_utterances', default=False, action='store_true', help='add builder utterances') parser.add_argument('--add_augmented_data', default=False, action='store_true', help='add dialog-level augmented dataset') parser.add_argument('--ignore_diff', default=False, action='store_true', help='skip computing diff') parser.add_argument('--ignore_perspective', default=False, action='store_true', help='skip computing perspective coordinates') parser.add_argument('--load_dataset', default=False, action='store_true', help='load a dataset') parser.add_argument('--augmented_data_fraction', type=float, default=0.0, help='fraction of augmented data to use') parser.add_argument('--saved_dataset_dir', default="../data/saved_cwc_datasets/lower-allinputs/", help='location of saved dataset') parser.add_argument('--num_prev_utterances', type=int, default=5, help='number of previous utterances to use as input') parser.add_argument('--blocks_max_weight', type=int, default=5, help='max weight of temporally weighted blocks') parser.add_argument('--use_builder_actions', default=False, action='store_true', help='include builder action tokens in the dialogue history') parser.add_argument('--feasible_next_placements', default=False, action='store_true', help='whether or not to select from pool of feasible next placements only') parser.add_argument('--num_next_actions', type=int, default=2, help='number of next actions needed') parser.add_argument('--use_condensed_action_repr', default=False, action='store_true', help='use condensed action representation instead of one-hot') parser.add_argument('--action_type_sensitive', default=False, action='store_true', help='use action-type-sensitive representations for blocks') parser.add_argument('--spatial_info_window_size', type=int, default=1000, help='3d window size to extract spatial information from') parser.add_argument('--use_existing_blocks_counter', default=False, action='store_true', help='include counters for existing blocks') parser.add_argument('--counters_extra_feasibility_check', default=False, action='store_true', help='whether or not to make the extra check for conficting blocks') parser.add_argument('--encoder_vocab', default=None, help='encoder vocab') parser.add_argument('--decoder_vocab', default=None, help='decoder vocab') parser.add_argument('--seed', type=int, default=1234, help='random seed') args = parser.parse_args() initialize_rngs(args.seed, torch.cuda.is_available()) if args.use_builder_actions and 'builder_actions' not in args.encoder_vocab: print("Error: you specified to use builder action tokens in the dialogue history, but they do not exist in the encoder's vocabulary.") sys.exit(0) dataset = CwCDataset( model=args.model, split=args.split, lower=args.lower, add_builder_utterances=args.add_builder_utterances, compute_diff=not args.ignore_diff, compute_perspective=not args.ignore_perspective, encoder_vocab=None, decoder_vocab=None, dump_dataset=args.dump_dataset, load_dataset=args.load_dataset, saved_dataset_dir=args.saved_dataset_dir, transform=None, sample_filters = [], add_augmented_data=args.add_augmented_data, augmented_data_fraction=args.augmented_data_fraction ) dataset.set_args(num_prev_utterances=args.num_prev_utterances, blocks_max_weight=args.blocks_max_weight, use_builder_actions=args.use_builder_actions, num_next_actions=args.num_next_actions, use_condensed_action_repr=args.use_condensed_action_repr, action_type_sensitive=args.action_type_sensitive, feasible_next_placements=args.feasible_next_placements, spatial_info_window_size=args.spatial_info_window_size, counters_extra_feasibility_check=args.counters_extra_feasibility_check, use_existing_blocks_counter=args.use_existing_blocks_counter) dl = dataset.get_data_loader(shuffle=False) for i in range(10): print('json id:', dataset.get_sample(i)['json_id']) print('sample id:', dataset.get_sample(i)['sample_id']) js = dataset.jsons[dataset.get_sample(i)['json_id']] print(js['gold_config_name']) print(js['WorldStates'][dataset.get_sample(i)['sample_id']]) for i, (encoder_inputs, decoder_inputs, decoder_outputs, raw_inputs) in enumerate(dl): print(raw_inputs.json_id, raw_inputs.sample_id) if i == 10: sys.exit(0) # pass
44.900287
545
0.741976
541f7f05c234d3bdfad58258582dc0d3d0f6a3fc
2,936
py
Python
bin/tetris.py
ponte-vecchio/pydisc-code-jam
697dc0e5bf020a0e9d5011d7f94990b0636a55b1
[ "MIT" ]
1
2021-11-07T05:05:09.000Z
2021-11-07T05:05:09.000Z
bin/tetris.py
ponte-vecchio/pydisc-code-jam
697dc0e5bf020a0e9d5011d7f94990b0636a55b1
[ "MIT" ]
8
2021-07-11T10:34:53.000Z
2021-07-17T05:38:09.000Z
bin/tetris.py
ponte-vecchio/pydisc-code-jam
697dc0e5bf020a0e9d5011d7f94990b0636a55b1
[ "MIT" ]
3
2021-07-10T04:40:47.000Z
2021-08-30T19:54:56.000Z
import curses import locale import sys from typing import TYPE_CHECKING, Any, Callable, Dict from play_sounds import play_file as playsound from play_sounds import play_while_running from tetris.core import Game from tetris.exceptions import CollisionError, OutOfBoundsError from tetris.user_interface import UserInterface, create_screens, make_color_pairs from tetris.utils import Window if TYPE_CHECKING: from tetris.core import Tetromino else: Tetromino = Any sound_path = "bin/utils/sound/sfx_tetris_" sfx_ingame_path = sound_path + "theme.wav" KeyBindings = Dict[int, Callable[[Tetromino], None]] KEY_BINDINGS: KeyBindings = { curses.KEY_LEFT: lambda tetromino: tetromino.move_sideways("left"), curses.KEY_RIGHT: lambda tetromino: tetromino.move_sideways("right"), curses.KEY_DOWN: lambda tetromino: tetromino.move_down(), ord("s"): lambda tetromino: tetromino.move_all_the_way_down(), ord("a"): lambda tetromino: tetromino.rotate("left"), ord("d"): lambda tetromino: tetromino.rotate("right"), } def start_new_game(curse_context: Window) -> None: """Prompt to start a new game""" with play_while_running(sfx_ingame_path): main(curse_context) def main(stdscr: Window) -> None: """Main function called from outside with all attributes""" locale.setlocale(locale.LC_ALL, "") stdscr.nodelay(True) curses.curs_set(False) border_screen, inner_screen = create_screens(stdscr) assert border_screen is not None, "minimum screen size required" assert inner_screen is not None, "minimum screen size required" make_color_pairs() inner_screen.timeout(100) inner_screen.keypad(True) user_interface = UserInterface(stdscr, inner_screen) game = Game(inner_screen, user_interface) while True: for screen in (inner_screen, border_screen, stdscr): screen.erase() border_screen.box(0, 0) user_interface.render_landed_tetrominos(game.grid) user_interface.render_current_tetromino(game.tetromino) user_interface.render_next_tetromino(game.next_tetromino) user_interface.render_instructions() user_interface.render_score(game.score) stdscr.refresh() inner_screen.refresh() if not game.paused: game.handle_falling() game.clear_rows() try: user_input = inner_screen.getch() except curses.error: continue except KeyboardInterrupt: sys.exit() if user_input == ord("p"): game.pause() elif user_input == ord("q"): return elif not game.paused and user_input in KEY_BINDINGS: try: KEY_BINDINGS[user_input](game.tetromino) except (CollisionError, OutOfBoundsError): continue if __name__ == "__main__": curses.wrapper(start_new_game) curses.endwin()
29.36
81
0.695163
729a75d65aa3add25a9c332c4f14cc46f65d7def
712
py
Python
Gram/migrations/0002_auto_20181009_1203.py
Drongo-1/new-ip2
51a9fa5d5d587fe5b3a038156726a45b312acbad
[ "MIT" ]
1
2021-08-16T06:02:38.000Z
2021-08-16T06:02:38.000Z
Gram/migrations/0002_auto_20181009_1203.py
danalvin/Django-IP2
3c0a6e4d2de9d4e027b11f2873ed69aba4509fc7
[ "MIT" ]
null
null
null
Gram/migrations/0002_auto_20181009_1203.py
danalvin/Django-IP2
3c0a6e4d2de9d4e027b11f2873ed69aba4509fc7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-09 12:03 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Gram', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='image', options={'ordering': ['-post_date']}, ), migrations.AlterField( model_name='profile', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL), ), ]
26.37037
137
0.634831
f766678adcbb38de107f7ff94b470f5a6c23eb58
604
py
Python
S1/TP5/ex9.py
HerbeMalveillante/ecole
bebbc73cd678c58c9cd40389ea1cf229a0200308
[ "MIT" ]
null
null
null
S1/TP5/ex9.py
HerbeMalveillante/ecole
bebbc73cd678c58c9cd40389ea1cf229a0200308
[ "MIT" ]
null
null
null
S1/TP5/ex9.py
HerbeMalveillante/ecole
bebbc73cd678c58c9cd40389ea1cf229a0200308
[ "MIT" ]
null
null
null
from random import randint ls = [randint(-5, 5) for i in range(3)] print(ls) if ls[0] > ls[1]: ls[0], ls[1] = ls[1], ls[0] if ls[1] > ls[2]: ls[1], ls[2] = ls[2], ls[1] if ls[0] > ls[1]: ls[0], ls[1] = ls[1], ls[0] print(ls) # le code précédent trie une liste de trois éléments def bubbleSort(lis): for i in range(len(lis) - 1): for j in range(0, len(lis) - i - 1): if lis[j] > lis[j + 1]: lis[j], lis[j + 1] = lis[j + 1], lis[j] return lis randomList = [randint(-10, 10) for i in range(10)] print(randomList) print(bubbleSort(randomList))
20.827586
55
0.543046
dfeb749a1bfa898f442d08e5e4e9c3f8e1f767cf
641
py
Python
students/K33401/laboratory_works/Egorov_Michil/laboratory_work_1/3_math_operations/client.py
EgorovM/ITMO_ICT_WebDevelopment_2021-2022
35c41ba024d7a3cd89654bd4db23f7d447e0f0a2
[ "MIT" ]
null
null
null
students/K33401/laboratory_works/Egorov_Michil/laboratory_work_1/3_math_operations/client.py
EgorovM/ITMO_ICT_WebDevelopment_2021-2022
35c41ba024d7a3cd89654bd4db23f7d447e0f0a2
[ "MIT" ]
null
null
null
students/K33401/laboratory_works/Egorov_Michil/laboratory_work_1/3_math_operations/client.py
EgorovM/ITMO_ICT_WebDevelopment_2021-2022
35c41ba024d7a3cd89654bd4db23f7d447e0f0a2
[ "MIT" ]
null
null
null
import socket TASKS = [ 'pythagorean 3 4', 'quadratic_equation 1 2 1', 'trapezoid_area 4 5 3', 'parallelogram_area 4 2', '-1 2 4 asdasd', 'pythagorean ', 'quadratic_equation 0 2 1', 'trapezoid_area -4 5 0', 'trapezoid_area 4 asdg', 'trapezoid_area 4', 'parallelogram_area 4 0', ] if __name__ == "__main__": for task in TASKS: conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.connect(("127.0.0.1", 8000)) conn.send(task.encode('utf-8')) server_answer = conn.recv(16348).decode('utf-8') print(task, ':', server_answer) conn.close()
25.64
64
0.605304
85b42b86c120a2df19f8670a29e3427b8d0ce992
665
py
Python
tools/XstreamDL_CLI/extractors/hls/ext/xprogram_date_time.py
wayneclub/Subtitle-Downloader
4ab1e7ab075593d4245867996b0766efc5aa418a
[ "MIT" ]
57
2021-12-05T02:31:51.000Z
2022-03-31T03:36:26.000Z
tools/XstreamDL_CLI/extractors/hls/ext/xprogram_date_time.py
wayneclub/Subtitle-Downloader
4ab1e7ab075593d4245867996b0766efc5aa418a
[ "MIT" ]
25
2021-12-08T09:16:30.000Z
2022-03-31T11:09:10.000Z
tools/XstreamDL_CLI/extractors/hls/ext/xprogram_date_time.py
wayneclub/Subtitle-Downloader
4ab1e7ab075593d4245867996b0766efc5aa418a
[ "MIT" ]
17
2021-12-01T03:11:41.000Z
2022-03-26T15:22:35.000Z
from datetime import datetime from .x import X class XProgramDateTime(X): ''' #EXT-X-PROGRAM-DATE-TIME 第一个分段的绝对时间 - 2019-01-01T00:00:00.000Z ''' def __init__(self): super(XProgramDateTime, self).__init__('#EXT-X-PROGRAM-DATE-TIME') self.program_date_time = None # type: datetime def set_attrs_from_line(self, line: str): ''' 重写父类同名函数 ''' line = self.get_tag_info(line) if line.endswith('Z') is True: line = f'{line[:-1]}+00:00' try: self.program_date_time = datetime.fromisoformat(line) except Exception: raise return self
26.6
74
0.58797
06f0aa33d5c8b3f7f88f4324bc4dd3c885cc200f
8,335
py
Python
tensorflow/python/keras/engine/deferred_sequential_test.py
yage99/tensorflow
c7fa71b32a3635eb25596ae80d007b41007769c4
[ "Apache-2.0" ]
78
2020-08-04T12:36:25.000Z
2022-03-25T04:23:40.000Z
tensorflow/python/keras/engine/deferred_sequential_test.py
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
203
2019-06-14T23:53:10.000Z
2022-02-10T02:27:23.000Z
tensorflow/python/keras/engine/deferred_sequential_test.py
sseung0703/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
[ "Apache-2.0" ]
28
2020-02-10T07:03:06.000Z
2022-01-12T11:19:20.000Z
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests specific to deferred-build `Sequential` models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import unittest import numpy as np from tensorflow.python import keras from tensorflow.python.compat import v2_compat from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.ops import math_ops from tensorflow.python.platform import test try: import h5py # pylint:disable=g-import-not-at-top except ImportError: h5py = None class TestDeferredSequential(keras_parameterized.TestCase): @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_build_behavior(self): # Test graph network creation after __call__ model = get_model() model(np.random.random((2, 6))) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [2, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [2, 2]) # Test effect of new __call__ with a different shape model(np.random.random((3, 6))) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) model(np.random.random((4, 6))) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) # Test graph network creation after build model = get_model() model.build((None, 6)) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) # Test graph network creation after compile/fit model = get_model() model.compile( loss='mse', optimizer='rmsprop', metrics=[keras.metrics.CategoricalAccuracy()], run_eagerly=testing_utils.should_run_eagerly()) model.fit(np.zeros((2, 6)), np.zeros((2, 2))) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) # Inconsistency here: with eager `fit`, the model is built with shape # (2, 6), but with graph function `fit`, it is built with shape `(None, 6)`. # This is likely due to our assumption "the batch size should be dynamic" # at the level of `Model`. TODO(fchollet): investigate and resolve. self.assertEqual(model.inputs[0].shape.as_list()[-1], 6) self.assertEqual(model.outputs[0].shape.as_list()[-1], 2) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_add_and_pop(self): model = get_model() model.build((None, 6)) self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 3) self.assertLen(model.weights, 4) model.pop() self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 2) self.assertLen(model.weights, 2) model.add(keras.layers.Dense(2)) self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 3) self.assertLen(model.weights, 4) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_feature_extraction(self): # This tests layer connectivity reset when rebuilding model = get_model() model(np.random.random((3, 6))) # First build model(np.random.random((4, 6))) # Triggers a rebuild # Classic feature extractor pattern extractor = keras.Model(inputs=model.inputs, outputs=[layer.output for layer in model.layers]) # Check that inputs and outputs are connected _ = extractor(np.random.random((4, 6))) @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_saving_savedmodel(self): model = get_model() model(np.random.random((3, 6))) # Build model path = os.path.join(self.get_temp_dir(), 'model_path') model.save(path) new_model = keras.models.load_model(path) for layer1, layer2 in zip(model._layers, new_model._layers): self.assertEqual(layer1.name, layer2.name) for w1, w2 in zip(layer1.weights, layer2.weights): self.assertAllClose(w1, w2) @unittest.skipIf(h5py is None, 'Test requires h5py') @keras_parameterized.run_all_keras_modes(always_skip_v1=True) def test_saving_h5(self): path = os.path.join(self.get_temp_dir(), 'model_path.h5') model = get_model() model(np.random.random((3, 6))) # Build model path = os.path.join(self.get_temp_dir(), 'model_path.h5') model.save(path) new_model = keras.models.load_model(path) for layer1, layer2 in zip(model._layers, new_model._layers): self.assertEqual(layer1.name, layer2.name) for w1, w2 in zip(layer1.weights, layer2.weights): self.assertAllClose(w1, w2) @keras_parameterized.run_all_keras_modes def test_shared_layer(self): # This tests that preexisting layer connectivity is preserved # when auto-building graph networks shared_layer = keras.layers.Dense(2) m1 = keras.Sequential([shared_layer]) m1(np.random.random((3, 6))) m2 = keras.Sequential([shared_layer]) m2(np.random.random((3, 6))) # Nesting case shared_layer = keras.layers.Dense(2) m1 = keras.Sequential([shared_layer]) m2 = keras.Sequential([shared_layer, m1]) m2(np.random.random((3, 2))) @keras_parameterized.run_all_keras_modes def test_loss_layer(self): class LossLayer(keras.layers.Layer): def call(self, inputs): self.add_loss(math_ops.reduce_sum(inputs)) return inputs # Test loss layer alone model = keras.Sequential([LossLayer()]) model.compile('rmsprop', run_eagerly=testing_utils.should_run_eagerly()) loss = model.train_on_batch(np.ones((2, 2))) self.assertAllClose(loss, 4.) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2))) self.assertAllClose(loss, 2.) # Test loss layer combined with another layer model = keras.Sequential([ keras.layers.Dense(1, kernel_initializer='ones'), LossLayer()]) model.compile('rmsprop', run_eagerly=testing_utils.should_run_eagerly()) loss = model.train_on_batch(np.ones((2, 2))) self.assertAllClose(loss, 4.) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2))) self.assertLess(loss, 2.) # Test loss layer combined with external loss model = keras.Sequential([ keras.layers.Dense(1, kernel_initializer='ones'), LossLayer()]) model.compile('rmsprop', 'mse', run_eagerly=testing_utils.should_run_eagerly()) loss = model.train_on_batch(np.ones((2, 2)), np.ones((2, 2))) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2)), np.ones((1, 2))) def get_model(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, name='first_layer')) model.add(keras.layers.Dropout(0.3, name='dp')) model.add(keras.layers.Dense(2, name='last_layer')) return model if __name__ == '__main__': v2_compat.enable_v2_behavior() test.main()
38.410138
80
0.69958
44af7162175bffc9b365d2a750baf9fd66242a80
1,860
py
Python
openstack/tests/unit/identity/v3/test_endpoint.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
43
2018-12-19T08:39:15.000Z
2021-07-21T02:45:43.000Z
openstack/tests/unit/identity/v3/test_endpoint.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
11
2019-03-17T13:28:56.000Z
2020-09-23T23:57:50.000Z
openstack/tests/unit/identity/v3/test_endpoint.py
teresa-ho/stx-openstacksdk
7d723da3ffe9861e6e9abcaeadc1991689f782c5
[ "Apache-2.0" ]
47
2018-12-19T05:14:25.000Z
2022-03-19T15:28:30.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import testtools from openstack.identity.v3 import endpoint IDENTIFIER = 'IDENTIFIER' EXAMPLE = { 'enabled': True, 'id': IDENTIFIER, 'interface': '3', 'links': {'self': 'http://example.com/endpoint1'}, 'region_id': '4', 'service_id': '5', 'url': '6', } class TestEndpoint(testtools.TestCase): def test_basic(self): sot = endpoint.Endpoint() self.assertEqual('endpoint', sot.resource_key) self.assertEqual('endpoints', sot.resources_key) self.assertEqual('/endpoints', sot.base_path) self.assertEqual('identity', sot.service.service_type) self.assertTrue(sot.allow_create) self.assertTrue(sot.allow_get) self.assertTrue(sot.allow_update) self.assertTrue(sot.allow_delete) self.assertTrue(sot.allow_list) self.assertTrue(sot.patch_update) def test_make_it(self): sot = endpoint.Endpoint(**EXAMPLE) self.assertTrue(sot.is_enabled) self.assertEqual(EXAMPLE['id'], sot.id) self.assertEqual(EXAMPLE['interface'], sot.interface) self.assertEqual(EXAMPLE['links'], sot.links) self.assertEqual(EXAMPLE['region_id'], sot.region_id) self.assertEqual(EXAMPLE['service_id'], sot.service_id) self.assertEqual(EXAMPLE['url'], sot.url)
35.09434
75
0.68871
82aff1431b37c5406e48820802f8a341d2a149bf
1,636
py
Python
recipes/crow/all/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
562
2019-09-04T12:23:43.000Z
2022-03-29T16:41:43.000Z
recipes/crow/all/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
9,799
2019-09-04T12:02:11.000Z
2022-03-31T23:55:45.000Z
recipes/crow/all/conanfile.py
rockandsalt/conan-center-index
d739adcec3e4dd4c250eff559ceb738e420673dd
[ "MIT" ]
1,126
2019-09-04T11:57:46.000Z
2022-03-31T16:43:38.000Z
from conans import ConanFile, tools, CMake from conans.errors import ConanInvalidConfiguration import os class CrowConan(ConanFile): name = "crow" homepage = "https://github.com/ipkn/crow" description = "Crow is C++ microframework for web. (inspired by Python Flask)" topics = ("conan", "web", "microframework", "header-only") url = "https://github.com/conan-io/conan-center-index" settings = "os", "compiler", "arch", "build_type" exports_sources = ["patches/*"] license = "BSD-3-Clause" @property def _source_subfolder(self): return "source_subfolder" def requirements(self): self.requires("boost/1.69.0") def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = "crow-" + self.version os.rename(extracted_dir, self._source_subfolder) def build(self): if tools.Version(self.deps_cpp_info["boost"].version) >= "1.70.0": raise ConanInvalidConfiguration("Crow requires Boost <1.70.0") for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) cmake = CMake(self) cmake.configure(source_folder=self._source_subfolder) cmake.build() def package(self): self.copy(pattern="LICENSE*", dst="licenses", src=self._source_subfolder) self.copy("*.h", dst=os.path.join("include", "crow"), src="amalgamate") def package_id(self): self.info.header_only() def package_info(self): if self.settings.os in ("Linux", "FreeBSD"): self.cpp_info.system_libs = ["pthread"]
34.808511
82
0.643643
3aea16818f47ae2a215304a313e749a2c3bc1669
16,249
py
Python
example/apps/test_security/tests/output_request_log.py
druids/django-security
bca889ff1a58378a038a08ca365162d9e3ef3fbf
[ "MIT" ]
9
2019-03-12T12:31:20.000Z
2021-01-22T13:31:36.000Z
example/apps/test_security/tests/output_request_log.py
druids/django-security
bca889ff1a58378a038a08ca365162d9e3ef3fbf
[ "MIT" ]
28
2019-12-05T12:20:49.000Z
2022-03-25T08:15:10.000Z
example/apps/test_security/tests/output_request_log.py
druids/django-security
bca889ff1a58378a038a08ca365162d9e3ef3fbf
[ "MIT" ]
5
2019-07-10T15:29:44.000Z
2021-02-01T12:50:56.000Z
import json import responses from requests.exceptions import ConnectionError from django.test import override_settings from germanium.decorators import data_consumer from germanium.test_cases.client import ClientTestCase from germanium.tools import ( assert_equal, assert_raises, assert_not_in, assert_in, assert_equal_model_fields, assert_is_not_none, assert_length_equal, all_eq_obj ) from security import requests from security.backends.signals import ( output_request_started, output_request_finished, output_request_error ) from security.decorators import log_with_data from security.enums import RequestLogState from security.backends.sql.models import OutputRequestLog as SQLOutputRequestLog from security.backends.elasticsearch.models import OutputRequestLog as ElasticsearchOutputRequestLog from security.backends.testing import capture_security_logs from .base import BaseTestCaseMixin, TRUNCATION_CHAR @override_settings(SECURITY_BACKEND_WRITERS={}) class OutputRequestLogTestCase(BaseTestCaseMixin, ClientTestCase): @responses.activate @data_consumer('create_user') def test_output_request_should_be_logged(self, user): responses.add(responses.POST, 'https://localhost/test', body='test') expected_output_request_started_data = { 'request_headers': { 'User-Agent': 'python-requests/2.26.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Length': '16' }, 'request_body': '{"test": "test"}', 'method': 'POST', 'host': 'localhost', 'path': '/test', 'queries': {}, 'is_secure': True, 'start': all_eq_obj, } expected_output_request_finished_data = { **expected_output_request_started_data, 'stop': all_eq_obj, 'response_code': 200, 'response_headers': {'Content-Type': 'text/plain'}, 'response_body': 'test', } with capture_security_logs() as logged_data: requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', related_objects=[user] ) assert_length_equal(logged_data.output_request_started, 1) assert_length_equal(logged_data.output_request_finished, 1) assert_length_equal(logged_data.output_request_error, 0) assert_equal(logged_data.output_request_started[0].data, expected_output_request_started_data) assert_equal(logged_data.output_request_finished[0].data, expected_output_request_finished_data) assert_equal(logged_data.output_request_started[0].slug, 'test') assert_equal(logged_data.output_request_finished[0].related_objects, [user]) @responses.activate def test_output_request_error_should_be_logged(self): expected_output_request_started_data = { 'request_headers': { 'User-Agent': 'python-requests/2.26.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Length': '16' }, 'request_body': '{"test": "test"}', 'method': 'POST', 'host': 'localhost', 'path': '/test', 'queries': {}, 'is_secure': True, 'start': all_eq_obj, } expected_output_request_error_data = { **expected_output_request_started_data, 'stop': all_eq_obj, 'error_message': all_eq_obj } with capture_security_logs() as logged_data: with assert_raises(ConnectionError): requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), ) assert_length_equal(logged_data.output_request_started, 1) assert_length_equal(logged_data.output_request_finished, 0) assert_length_equal(logged_data.output_request_error, 1) assert_equal(logged_data.output_request_started[0].data, expected_output_request_started_data) assert_equal(logged_data.output_request_error[0].data, expected_output_request_error_data) @responses.activate def test_response_sensitive_data_body_in_json_should_be_hidden(self): responses.add(responses.POST, 'http://localhost', body='test') with capture_security_logs() as logged_data: requests.post('http://localhost', data=json.dumps({'password': 'secret-password'})) assert_in('"password": "[Filtered]"', logged_data.output_request[0].data['request_body']) assert_not_in('"password": "secret-password"', logged_data.output_request[0].data['request_body']) assert_in('"password": "secret-password"', responses.calls[0].request.body) assert_not_in('"password": "[Filtered]"', responses.calls[0].request.body) @responses.activate def test_response_sensitive_headers_should_be_hidden(self): responses.add(responses.POST, 'http://localhost', body='test') with capture_security_logs() as logged_data: requests.post('http://localhost', headers={'token': 'secret'}) assert_equal(logged_data.output_request[0].data['request_headers']['token'], '[Filtered]') assert_equal(responses.calls[0].request.headers['token'], 'secret') @responses.activate def test_response_sensitive_params_data_should_be_hidden(self): responses.add(responses.POST, 'http://localhost', body='test') with capture_security_logs() as logged_data: requests.post('http://localhost', params={'token': 'secret'}) assert_equal(logged_data.output_request[0].data['queries']['token'], '[Filtered]') assert_equal(responses.calls[0].request.url, 'http://localhost/?token=secret') @responses.activate def test_response_more_sensitive_params_data_should_be_hidden(self): responses.add(responses.POST, 'http://localhost', body='test') with capture_security_logs() as logged_data: requests.post('http://localhost', params={'token': ['secret', 'secret2']}) assert_equal(logged_data.output_request[0].data['queries']['token'], ['[Filtered]', '[Filtered]']) assert_equal(responses.calls[0].request.url, 'http://localhost/?token=secret&token=secret2') @responses.activate def test_response_sensitive_params_and_url_query_together_data_should_be_logged(self): responses.add(responses.POST, 'http://localhost', body='test') with capture_security_logs() as logged_data: requests.post('http://localhost?a=1&a=2', params={'b': '6', 'a': '3', 'c': ['5']}) assert_equal(logged_data.output_request[0].data['queries'], {'b': '6', 'a': ['1', '2', '3'], 'c': '5'}) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'sql'}) @data_consumer('create_user') def test_output_request_should_be_logged_in_sql_backend(self, user): responses.add(responses.POST, 'https://localhost/test', body='test') requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', related_objects=[user] ) assert_equal(SQLOutputRequestLog.objects.count(), 1) sql_output_request_log = SQLOutputRequestLog.objects.get() assert_equal_model_fields( sql_output_request_log, request_headers={ 'User-Agent': 'python-requests/2.26.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Length': '16' }, request_body='{"test": "test"}', method='POST', host='localhost', path='/test', queries={}, is_secure=True, slug='test', time=(sql_output_request_log.stop - sql_output_request_log.start).total_seconds(), extra_data={}, error_message=None, response_code=200, response_headers={'Content-Type': 'text/plain'}, response_body='test', state=RequestLogState.INFO, ) assert_equal([rel_obj.object for rel_obj in sql_output_request_log.related_objects.all()], [user]) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'elasticsearch'}) @data_consumer('create_user') def test_output_request_should_be_logged_in_elasticsearch_backend(self, user): responses.add(responses.POST, 'https://localhost/test', body='test') with capture_security_logs() as logged_data: requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', related_objects=[user] ) elasticsearch_output_request_log = ElasticsearchOutputRequestLog.get( id=logged_data.output_request[0].id ) assert_equal_model_fields( elasticsearch_output_request_log, request_headers='{"User-Agent": "python-requests/2.26.0", "Accept-Encoding": "gzip, deflate", ' '"Accept": "*/*", "Connection": "keep-alive", "Content-Length": "16"}', request_body='{"test": "test"}', method='POST', host='localhost', path='/test', queries='{}', is_secure=True, slug='test', time=(elasticsearch_output_request_log.stop - elasticsearch_output_request_log.start).total_seconds(), extra_data={}, error_message=None, response_code=200, response_headers='{"Content-Type": "text/plain"}', response_body='test', state=RequestLogState.INFO, ) assert_equal( [rel_obj for rel_obj in elasticsearch_output_request_log.related_objects], ['default|3|{}'.format(user.id)] ) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'logging'}) @data_consumer('create_user') def test_output_request_should_be_logged_in_logging_backend(self, user): responses.add(responses.POST, 'https://localhost/test', body='test') with capture_security_logs() as logged_data: with self.assertLogs('security.output_request', level='INFO') as cm: requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', related_objects=[user] ) assert_equal( cm.output, [ f'INFO:security.output_request:' f'Output request "{logged_data.output_request[0].id}" ' f'to "localhost" with path "/test" was started', f'INFO:security.output_request:' f'Output request "{logged_data.output_request[0].id}" ' f'to "localhost" with path "/test" was successful' ] ) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'sql'}) def test_error_output_request_should_be_logged_in_sql_backend(self,): with assert_raises(ConnectionError): requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', ) assert_equal(SQLOutputRequestLog.objects.count(), 1) sql_output_request_log = SQLOutputRequestLog.objects.get() assert_equal_model_fields( sql_output_request_log, request_headers={ 'User-Agent': 'python-requests/2.26.0', 'Accept-Encoding': 'gzip, deflate', 'Accept': '*/*', 'Connection': 'keep-alive', 'Content-Length': '16' }, request_body='{"test": "test"}', method='POST', host='localhost', path='/test', queries={}, is_secure=True, slug='test', time=(sql_output_request_log.stop - sql_output_request_log.start).total_seconds(), extra_data={}, response_code=None, response_headers=None, response_body=None, state=RequestLogState.ERROR, ) assert_is_not_none(sql_output_request_log.error_message) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'elasticsearch'}) def test_error_output_request_should_be_logged_in_elasticsearch_backend(self): with capture_security_logs() as logged_data: with assert_raises(ConnectionError): requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', ) elasticsearch_input_request_log = ElasticsearchOutputRequestLog.get( id=logged_data.output_request[0].id ) assert_equal_model_fields( elasticsearch_input_request_log, request_headers='{"User-Agent": "python-requests/2.26.0", "Accept-Encoding": "gzip, deflate", ' '"Accept": "*/*", "Connection": "keep-alive", "Content-Length": "16"}', request_body='{"test": "test"}', method='POST', host='localhost', path='/test', queries='{}', is_secure=True, slug='test', time=(elasticsearch_input_request_log.stop - elasticsearch_input_request_log.start).total_seconds(), extra_data={}, response_code=None, response_headers=None, response_body=None, state=RequestLogState.ERROR, ) assert_is_not_none(elasticsearch_input_request_log.error_message) @responses.activate @override_settings(SECURITY_BACKEND_WRITERS={'logging'}) def test_error_output_request_should_be_logged_in_logging_backend(self): with capture_security_logs() as logged_data: with self.assertLogs('security.output_request', level='INFO') as cm: with assert_raises(ConnectionError): requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), slug='test', ) assert_equal( cm.output, [ f'INFO:security.output_request:' f'Output request "{logged_data.output_request[0].id}" ' f'to "localhost" with path "/test" was started', f'ERROR:security.output_request:' f'Output request "{logged_data.output_request[0].id}" ' f'to "localhost" with path "/test" failed' ] ) @responses.activate @data_consumer('create_user') def test_slug_and_related_data_should_be_send_to_output_request_logger(self, user): responses.add(responses.POST, 'https://localhost/test', body='test') with log_with_data(related_objects=[user], slug='TEST'): with capture_security_logs() as logged_data: requests.post( 'https://localhost/test', data=json.dumps({'test': 'test'}), ) assert_equal(logged_data.output_request[0].related_objects, {user}) assert_equal(logged_data.output_request[0].slug, 'TEST')
45.515406
118
0.591975
6c4e7dd01cdef2526291e5ee9852323ab1b5018f
183
py
Python
yatube/yatube/urls.py
begunko/yatube_project
fe974e52fa97fa1084e7317b9366ec86da27f291
[ "BSD-3-Clause" ]
null
null
null
yatube/yatube/urls.py
begunko/yatube_project
fe974e52fa97fa1084e7317b9366ec86da27f291
[ "BSD-3-Clause" ]
null
null
null
yatube/yatube/urls.py
begunko/yatube_project
fe974e52fa97fa1084e7317b9366ec86da27f291
[ "BSD-3-Clause" ]
null
null
null
from django.contrib import admin from django.urls import path, include urlpatterns = [ path("", include('posts.urls', namespace="posts")), path('admin/', admin.site.urls), ]
22.875
55
0.688525
9e29efaa1466c9716ed219fa9a541d0f9973eb4d
5,829
py
Python
plot_univariate.py
No-Stream/pandas-snippets
f86d3d6844bb181a9ee596cf5d8a61a6edf5a60d
[ "MIT" ]
null
null
null
plot_univariate.py
No-Stream/pandas-snippets
f86d3d6844bb181a9ee596cf5d8a61a6edf5a60d
[ "MIT" ]
null
null
null
plot_univariate.py
No-Stream/pandas-snippets
f86d3d6844bb181a9ee596cf5d8a61a6edf5a60d
[ "MIT" ]
null
null
null
from typing import List from functools import partial import warnings import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pandas.api.types import is_numeric_dtype from tqdm import tqdm def plot_feature( feat: str, y_col: str = None, # janky, making kwarg for easier functools.partial... df: pd.DataFrame = None, is_binary_outcome: bool = None, coerce_cat_thresh: float = 0.001, graph_sample: int = 10_000, cat_freq_thresh: float = 0.01, do_scatter: bool = False, ylabel: str = None, ) -> None: try: this_df = df.copy().dropna(subset=[feat, y_col]) is_cat = (this_df[feat].dtype == "object") or (hasattr(this_df[feat], "cat")) cardinality = this_df[feat].nunique() rel_cardinality = cardinality / len(this_df) is_dt = "datetime" in this_df[feat].dtype.name # HACK is_numeric = is_numeric_dtype(this_df[feat]) is_binary = cardinality == 2 plot_lowess = not is_binary_outcome graph_as_cat = ( (is_cat or (rel_cardinality < coerce_cat_thresh)) and not is_dt and not is_numeric ) or is_binary if graph_as_cat: freqs = this_df[feat].value_counts(normalize=True) # Filter on level of var occurred > cat_freq_thresh % of times; sort by freq freqs = freqs.loc[freqs >= cat_freq_thresh] levels_to_eval = freqs.index if not list(levels_to_eval): return None # very high cardinality, skip plt.figure(figsize=(12, 8)) sns.catplot( x=feat, y=y_col, data=this_df, kind="point", join=False, order=levels_to_eval, ) plt.xticks(rotation=90) plt.title(f"{feat} -> {y_col}?") if ylabel: plt.ylabel(ylabel) plt.show() # consider dt to be days since minimum TS elif is_dt and not is_numeric: min_ts = this_df[feat].min() days_since_min = ( pd.to_datetime(this_df[feat]) - pd.to_datetime(this_df[feat]).min() ) / pd.to_timedelta("1d") empirical1pct, empirical99pct = ( days_since_min.quantile(0.01), days_since_min.quantile(0.99), ) fil_outliers = (days_since_min >= empirical1pct) & ( days_since_min <= empirical99pct ) graph_sample = min(graph_sample, len(this_df.loc[fil_outliers])) sns.regplot( x=days_since_min.sample(graph_sample, random_state=42), y=this_df[y_col].sample(graph_sample, random_state=42), scatter_kws={"alpha": 0.2}, lowess=plot_lowess, logistic=is_binary_outcome, scatter=do_scatter, ) plt.title(f"{feat} (as days since min.) -> {y_col}?") if ylabel: plt.ylabel(ylabel) plt.show() # numeric feature, use regplot elif is_numeric: # confirm it can be cast to float _ = this_df[feat].astype("float") empirical1pct, empirical99pct = ( this_df[feat].quantile(0.01), this_df[feat].quantile(0.99), ) fil_outliers = (this_df[feat] >= empirical1pct) & ( this_df[feat] <= empirical99pct ) graph_sample = min(graph_sample, len(this_df.loc[fil_outliers])) sampled = ( this_df.loc[fil_outliers, [feat, y_col]] .sample(graph_sample, random_state=42) .astype("float") ) sns.regplot( x=feat, y=y_col, data=sampled, scatter_kws={"alpha": 0.2}, lowess=plot_lowess, logistic=is_binary_outcome, scatter=do_scatter, ) plt.title(f"{feat} -> {y_col}?") if ylabel: plt.ylabel(ylabel) plt.show() else: warnings.warn(f"Unhandled column {feat}") except Exception as err: warnings.warn(f"Error for feature {feat}.") warnings.warn(str(err)) raise (err) pass def plot_univariate( df: pd.DataFrame, feats: List[str], y_col: str, coerce_cat_thresh: float = 0.001, graph_sample: int = 10_000, cat_freq_thresh: float = 0.01, do_scatter: bool = False, ylabel: str = None, ) -> None: """ Plot a list of features compared to outcome. df: pd.DataFrame, containing relevant data feats: list[str], colnames of x features to graph against your outcome y_col: str, name of your outcome column, assume it's continuous coerce_cat_thresh: float, will manually consider x cols to be cats if len(df.col.unique()) < cat_thresh * len(df.col) E.G. by default if less than 0.1% unique values, consider it to be categorical. graph_sample: int, how many data points to use for scatter graphs (gets messy with too many) cat_freq_thresh: float, % of the non-NA values of the column must be x in order to graph it. i.e. ignore very rare cats. return: None, will display graphs """ is_binary_outcome = df[y_col].nunique() == 2 plot_with_params = partial( plot_feature, y_col=y_col, df=df, is_binary_outcome=is_binary_outcome, coerce_cat_thresh=coerce_cat_thresh, graph_sample=graph_sample, cat_freq_thresh=cat_freq_thresh, do_scatter=do_scatter, ylabel=ylabel, ) [plot_with_params(feat) for feat in feats]
32.932203
96
0.569051
d1ddfbc21b42e46a6414ffd6abd9fef6e97e1d54
2,981
py
Python
test/multiapi/Expected/AcceptanceTests/Multiapi/multiapi/v2/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/multiapi/Expected/AcceptanceTests/Multiapi/multiapi/v2/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/multiapi/Expected/AcceptanceTests/Multiapi/multiapi/v2/_configuration.py
Azure/autorest.python
c36f5c1a2d614a1eeba6fec6a2c02517f2d1cce7
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.core.configuration import Configuration from azure.core.pipeline import policies from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any from azure.core.credentials import TokenCredential VERSION = "unknown" class MultiapiServiceClientConfiguration(Configuration): """Configuration for MultiapiServiceClient. Note that all parameters used to create this instance are saved as instance attributes. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential """ def __init__( self, credential, # type: "TokenCredential" **kwargs # type: Any ): # type: (...) -> None if credential is None: raise ValueError("Parameter 'credential' must not be None.") super(MultiapiServiceClientConfiguration, self).__init__(**kwargs) self.credential = credential self.api_version = "2.0.0" self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default']) kwargs.setdefault('sdk_moniker', 'multiapi/{}'.format(VERSION)) self._configure(**kwargs) def _configure( self, **kwargs # type: Any ): # type: (...) -> None self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs) self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs) self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs) self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs) self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs) self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs) self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs) self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs) self.authentication_policy = kwargs.get('authentication_policy') if self.credential and not self.authentication_policy: self.authentication_policy = ARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
45.861538
125
0.686011
e2c8f7c8e41bd00c139b492bf0d373fb0f5530cb
6,024
py
Python
my_ml/model/random_forest.py
big-c-note/my_ml_from_scratch
7da54282f736b163bb82058b037755bf97c9d7b9
[ "MIT" ]
1
2020-09-20T21:32:21.000Z
2020-09-20T21:32:21.000Z
my_ml/model/random_forest.py
big-c-note/my_ml_from_scratch
7da54282f736b163bb82058b037755bf97c9d7b9
[ "MIT" ]
27
2020-09-20T21:18:48.000Z
2021-07-31T13:02:10.000Z
my_ml/model/random_forest.py
big-c-note/my_ml_from_scratch
7da54282f736b163bb82058b037755bf97c9d7b9
[ "MIT" ]
null
null
null
from typing import List, Optional, Union from multiprocessing import cpu_count import logging import numpy as np import joblib from joblib import Parallel, delayed from tqdm import trange from my_ml.model.decision_tree import DecisionTree log = logging.getLogger(__name__) class RandomForest: def __init__(self, S: Union[int, float]): """ Base class for the Random forest. This class implements the import build forest method as well as the predict method. Parameters ---------- S : int This is the number of trees for the random forest. Methods ------- predict(X: np.ndarray) Returns predictions for a given feature set. The predictions come out as a probability matrix that is m x k in dimensionality. That is, the 0th column is each examples probability of being 0 and the 1st column is the each examples probability of being 1. """ self._S: Union[int, float] = S self._forest: List = [] self._num_features: Optional[int] = None self._num_training_examples: Optional[int] = None # This is used for multi-processing. This allows for a speed up of (# # of cores)X self._cores: int = cpu_count() def fit(self, X: np.ndarray, y: np.ndarray): """Method for fitting feature X (m x n) to y (m x 1) or (m,).""" log.info("Creating decision trees.") if not self._num_features: self._num_features = X.shape[1] self._build_forest(X, y) assert len(self._forest) == self._S def predict(self, X: np.ndarray, probability: bool = True): """ Return matrix of probabilities. 0th column references probability of being class 0 and the 1st column references the probability of being class 1. """ assert self._forest assert len(self._forest) == self._S try: assert X.shape[0] > 1 and X.shape[1] > 1 except AssertionError: raise NotImplementedError( """ I'm not supporting predictions of single examples. It's easy to implement this functionality if yo uneed it. """ ) predictions: List = [] # Iterate through the forest and create a prediction for each tree. for dtree in self._forest: predictions.append(dtree.predict(X)) # Transposing the matrix for ease. This may not be needed. predictions: np.ndarray = np.array(predictions).T # Probabilities for the majority class. prob_maj: np.ndarray = np.count_nonzero( predictions == 0, axis=1 ) / predictions.shape[1] # Probabilities for the minority class. prob_min: np.ndarray = np.count_nonzero( predictions == 1, axis=1 ) / predictions.shape[1] # Making these column vectors. prob_maj: np.ndarray = prob_maj.reshape(-1, 1) prob_min: np.ndarray = prob_min.reshape(-1, 1) # Stacking these column vectors side by side. predictions: np.ndarray = np.hstack((prob_maj, prob_min)) # TODO: Need to add noise in the event that there is a tie. With # sufficeintly large values or odd values of parameter S, this should # not be a problem. However, all equal probability class predictions # will resolve to the same prediction (should be random). return predictions def _build_forest(self, X: np.ndarray, y: np.ndarray, p: float = 1): """Build a forest of decision trees.""" # Making y a column vector. y: np.ndarray = y.reshape(-1, 1) # Adding the y outcome vector to the end of the feature vector to create # T. T: np.ndarray = np.hstack((X, y)) # Checking dimensions. This will run on T and Tc which will have a # different number of examples, most likely. assert self._num_features assert T.shape[1] == self._num_features + 1 # Get the number of trees from S * p. p will be (1 - p) for T and p for # Tc. num_trees: int = int(np.round(self._S * p)) # Checking these sum to S. assert np.round(self._S * p) + np.round(self._S * (1 - p)) == self._S # Adding multi-processing for an easy speedup. Adding progress bar for # viewing how long the job will take. log.info( """ Showing progress on one of two forests to be created. Distributing compute over all available cores. """ ) forest: List = Parallel(n_jobs=self._cores)( delayed(self._build_forest_helper)(T) for i in trange(num_trees) ) # Add forest to our list of decision trees. self._forest += forest @staticmethod def _build_forest_helper(T) -> DecisionTree: # Bagging the T dataset. Essentially I am sampling with replacement and # creating T_rand which has the same dimensions as T. T_rand: np.ndarray = T[np.random.randint(T.shape[0], size=T.shape[0]), :] assert T_rand.shape == T.shape # Separating X and y. X_rand: np.ndarray = T_rand[:, :-1] y_rand: np.ndarray = T_rand[:, -1] # random_features=True means we will randomly generate a subset of # features to use in each decision tree. This helps reduce # variance. dtree = DecisionTree(random_features=True) dtree.fit(X_rand, y_rand) # Add our decision tree to the forest. return dtree if __name__ == "__main__": cat = joblib.load("tests/data/server.gz") X_train: np.ndarray = cat["_X_train"] X_test: np.ndarray = cat["_X_test"] y_train: np.ndarray = cat["_y_train"] y_test: np.ndarray = cat["_y_test"] braf = BRAF(k=10, p=0.5, S=500) braf.fit(X_train, y_train) values: np.ndarray = braf.predict(X_test) import ipdb ipdb.set_trace()
39.631579
81
0.613878
218867a81401f6f52ce634a168677108c390bc49
15,800
py
Python
stm32loader.py
usc-ee250-spring2021/zwir1
3510a903ef8952a8deefe4cfb39464b4dc0806ba
[ "MIT" ]
null
null
null
stm32loader.py
usc-ee250-spring2021/zwir1
3510a903ef8952a8deefe4cfb39464b4dc0806ba
[ "MIT" ]
null
null
null
stm32loader.py
usc-ee250-spring2021/zwir1
3510a903ef8952a8deefe4cfb39464b4dc0806ba
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # vim: sw=4:ts=4:si:et:enc=utf-8 # Author: Ivan A-R <ivan@tuxotronic.org> # Project page: http://tuxotronic.org/wiki/projects/stm32loader # # This file is part of stm32loader. # # stm32loader is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation; either version 3, or (at your option) any later # version. # # stm32loader is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with stm32loader; see the file COPYING3. If not see # <http://www.gnu.org/licenses/>. import sys, getopt import serial import time import RPi.GPIO as gpio RST_PIN = 7 #RST_PIN = 12 BSEL_PIN = 11 try: from progressbar import * usepbar = 1 except: usepbar = 0 # Verbose level QUIET = 20 # these come from AN2606 chip_ids = { 0x412: "STM32 Low-density", 0x410: "STM32 Medium-density", 0x414: "STM32 High-density", 0x420: "STM32 Medium-density value line", 0x428: "STM32 High-density value line", 0x430: "STM32 XL-density", 0x416: "STM32 Medium-density ultralow power line", 0x411: "STM32F2xx", 0x413: "STM32F4xx", } def mdebug(level, message): if(QUIET >= level): print >> sys.stderr , message class CmdException(Exception): pass class CommandInterface: extended_erase = 0 def open(self, aport='/dev/ttyAMA0', abaudrate=115200) : self.sp = serial.Serial( port=aport, baudrate=abaudrate, # baudrate bytesize=8, # number of databits parity=serial.PARITY_EVEN, stopbits=1, xonxoff=0, # don't enable software flow control rtscts=0, # don't enable RTS/CTS flow control timeout=5 # set a timeout value, None for waiting forever ) self . sp . flushInput ( ); def _wait_for_ask(self, info = ""): # wait for ask try: ask = ord(self.sp.read()) except: raise CmdException("Can't read port or timeout") else: if ask == 0x79: # ACK return 1 else: if ask == 0x1F: # NACK raise CmdException("NACK "+info) else: # Unknown responce raise CmdException("Unknown response. "+info+": "+hex(ask)) def reset(self): gpio . output ( RST_PIN, gpio . LOW ) time . sleep ( .1 ) gpio . output ( RST_PIN, gpio . HIGH ) time . sleep ( .5 ) def initChip(self): # Set boot print ( "Init!" ) gpio . output ( BSEL_PIN, gpio . HIGH ) self.reset() self.sp.write("\x7F") # Syncro return self._wait_for_ask("Syncro") def releaseChip(self): gpio . output ( BSEL_PIN, gpio . LOW ) self.reset() gpio . cleanup ( ) def cmdGeneric(self, cmd): self.sp.write(chr(cmd)) self.sp.write(chr(cmd ^ 0xFF)) # Control byte return self._wait_for_ask(hex(cmd)) def cmdGet(self): if self.cmdGeneric(0x00): mdebug(10, "*** Get command"); len = ord(self.sp.read()) version = ord(self.sp.read()) mdebug(10, " Bootloader version: "+hex(version)) dat = map(lambda c: hex(ord(c)), self.sp.read(len)) if '0x44' in dat: self.extended_erase = 1 mdebug(10, " Available commands: "+", ".join(dat)) self._wait_for_ask("0x00 end") return version else: raise CmdException("Get (0x00) failed") def cmdGetVersion(self): if self.cmdGeneric(0x01): mdebug(10, "*** GetVersion command") version = ord(self.sp.read()) self.sp.read(2) self._wait_for_ask("0x01 end") mdebug(10, " Bootloader version: "+hex(version)) return version else: raise CmdException("GetVersion (0x01) failed") def cmdGetID(self): if self.cmdGeneric(0x02): mdebug(10, "*** GetID command") len = ord(self.sp.read()) id = self.sp.read(len+1) self._wait_for_ask("0x02 end") return reduce(lambda x, y: x*0x100+y, map(ord, id)) else: raise CmdException("GetID (0x02) failed") def _encode_addr(self, addr): byte3 = (addr >> 0) & 0xFF byte2 = (addr >> 8) & 0xFF byte1 = (addr >> 16) & 0xFF byte0 = (addr >> 24) & 0xFF crc = byte0 ^ byte1 ^ byte2 ^ byte3 return (chr(byte0) + chr(byte1) + chr(byte2) + chr(byte3) + chr(crc)) def cmdReadMemory(self, addr, lng): assert(lng <= 256) if self.cmdGeneric(0x11): mdebug(10, "*** ReadMemory command") self.sp.write(self._encode_addr(addr)) mdebug ( 10, "// addr '" + self._encode_addr(addr) + ", " + len ( self . _encode_addr(addr) ) + "'" ) self._wait_for_ask("0x11 address failed") N = (lng - 1) & 0xFF crc = N ^ 0xFF self.sp.write(chr(N) + chr(crc)) self._wait_for_ask("0x11 length failed") return map(lambda c: ord(c), self.sp.read(lng)) else: raise CmdException("ReadMemory (0x11) failed") def cmdGo(self, addr): if self.cmdGeneric(0x21): mdebug(10, "*** Go command") self.sp.write(self._encode_addr(addr)) self._wait_for_ask("0x21 go failed") else: raise CmdException("Go (0x21) failed") def cmdWriteMemory(self, addr, data): assert(len(data) <= 256) if self.cmdGeneric(0x31): mdebug(10, "*** Write memory command") #self . sp . write ( self . _encode_addr2 ( addr ) ) self . sp . write ( self . _encode_addr ( addr ) ) self._wait_for_ask("0x31 address failed") mdebug(10, " -- addr written" ) #map(lambda c: hex(ord(c)), data) lng = (len(data)-1) & 0xFF mdebug(10, " %s bytes to write" % [lng+1]); self.sp.write(chr(lng)) # len really crc = 0xFF for c in data: crc = crc ^ c self.sp.write(chr(c)) self.sp.write(chr(crc)) self._wait_for_ask("0x31 programming failed") mdebug(10, " Write memory done") else: raise CmdException("Write memory (0x31) failed") def cmdEraseMemory(self, sectors = None): if self.extended_erase: return cmd.cmdExtendedEraseMemory() if self.cmdGeneric(0x43): mdebug(10, "*** Erase memory command") if sectors is None: # Global erase self.sp.write(chr(0xFF)) self.sp.write(chr(0x00)) else: # Sectors erase self.sp.write(chr((len(sectors)-1) & 0xFF)) crc = 0xFF for c in sectors: crc = crc ^ c self.sp.write(chr(c)) self.sp.write(chr(crc)) self._wait_for_ask("0x43 erasing failed") mdebug(10, " Erase memory done") else: raise CmdException("Erase memory (0x43) failed") def cmdExtendedEraseMemory(self): if self.cmdGeneric(0x44): mdebug(10, "*** Extended Erase memory command") # Global mass erase self.sp.write(chr(0xFF)) self.sp.write(chr(0xFF)) # Checksum self.sp.write(chr(0x00)) tmp = self.sp.timeout self.sp.timeout = 30 print("Extended erase (0x44), this can take ten seconds or more") self._wait_for_ask("0x44 erasing failed") self.sp.timeout = tmp mdebug(10, " Extended Erase memory done") else: raise CmdException("Extended Erase memory (0x44) failed") def cmdWriteProtect(self, sectors): if self.cmdGeneric(0x63): mdebug(10, "*** Write protect command") self.sp.write(chr((len(sectors)-1) & 0xFF)) crc = 0xFF for c in sectors: crc = crc ^ c self.sp.write(chr(c)) self.sp.write(chr(crc)) self._wait_for_ask("0x63 write protect failed") mdebug(10, " Write protect done") else: raise CmdException("Write Protect memory (0x63) failed") def cmdWriteUnprotect(self): if self.cmdGeneric(0x73): mdebug(10, "*** Write Unprotect command") self._wait_for_ask("0x73 write unprotect failed") self._wait_for_ask("0x73 write unprotect 2 failed") mdebug(10, " Write Unprotect done") else: raise CmdException("Write Unprotect (0x73) failed") def cmdReadoutProtect(self): if self.cmdGeneric(0x82): mdebug(10, "*** Readout protect command") self._wait_for_ask("0x82 readout protect failed") self._wait_for_ask("0x82 readout protect 2 failed") mdebug(10, " Read protect done") else: raise CmdException("Readout protect (0x82) failed") def cmdReadoutUnprotect(self): if self.cmdGeneric(0x92): mdebug(10, "*** Readout Unprotect command") self._wait_for_ask("0x92 readout unprotect failed") self._wait_for_ask("0x92 readout unprotect 2 failed") mdebug(10, " Read Unprotect done") else: raise CmdException("Readout unprotect (0x92) failed") # Complex commands section def readMemory(self, addr, lng): data = [] if usepbar: widgets = ['Reading: ', Percentage(),', ', ETA(), ' ', Bar()] pbar = ProgressBar(widgets=widgets,maxval=lng, term_width=79).start() while lng > 256: if usepbar: pbar.update(pbar.maxval-lng) else: mdebug(5, "Read %(len)d bytes at 0x%(addr)X" % {'addr': addr, 'len': 256}) data = data + self.cmdReadMemory(addr, 256) addr = addr + 256 lng = lng - 256 if usepbar: pbar.update(pbar.maxval-lng) pbar.finish() else: mdebug(5, "Read %(len)d bytes at 0x%(addr)X" % {'addr': addr, 'len': 256}) data = data + self.cmdReadMemory(addr, lng) return data def writeMemory(self, addr, data): lng = len(data) if usepbar: widgets = ['Writing: ', Percentage(),' ', ETA(), ' ', Bar()] pbar = ProgressBar(widgets=widgets, maxval=lng, term_width=79).start() offs = 0 while lng > 256: if usepbar: pbar.update(pbar.maxval-lng) else: mdebug(5, "Write %(len)d bytes at 0x%(addr)X" % {'addr': addr, 'len': 256}) self.cmdWriteMemory(addr, data[offs:offs+256]) offs = offs + 256 addr = addr + 256 lng = lng - 256 if usepbar: pbar.update(pbar.maxval-lng) pbar.finish() else: mdebug(5, "Write %(len)d bytes at 0x%(addr)X" % {'addr': addr, 'len': 256}) self.cmdWriteMemory(addr, data[offs:offs+lng] + ([0xFF] * (256-lng)) ) #def __init__(self): #pass def usage(): print("""Usage: %s [-hqVewvr] [-l length] [-p port] [-b baud] [-a addr] [-g addr] [file.bin] -h This help -q Quiet -V Verbose -e Erase -w Write -v Verify -r Read -l length Length of read -p port Serial port (default: /dev/ttyAMA0) -b baud Baud speed (default: 115200) -a addr Target address -g addr Address to start running at (0x08000000, usually) ./stm32loader.py -e -w -v example/main.bin """) % sys.argv[0] if __name__ == "__main__": # Import Psyco if available try: import psyco psyco.full() print("Using Psyco...") except ImportError: pass conf = { 'port': '/dev/ttyAMA0', 'baud': 115200, 'address': 0x08000000, 'erase': 0, 'write': 0, 'verify': 0, 'read': 0, 'go_addr':-1, } # http://www.python.org/doc/2.5.2/lib/module-getopt.html try: opts, args = getopt.getopt(sys.argv[1:], "hqVewvrp:b:a:l:g:") except (getopt.GetoptError, err): # print help information and exit: print(str(err)) # will print something like "option -a not recognized" usage() sys.exit(2) QUIET = 5 for o, a in opts: if o == '-V': QUIET = 10 elif o == '-q': QUIET = 0 elif o == '-h': usage() sys.exit(0) elif o == '-e': conf['erase'] = 1 elif o == '-w': conf['write'] = 1 elif o == '-v': conf['verify'] = 1 elif o == '-r': conf['read'] = 1 elif o == '-p': conf['port'] = a elif o == '-b': conf['baud'] = eval(a) elif o == '-a': conf['address'] = eval(a) elif o == '-g': conf['go_addr'] = eval(a) elif o == '-l': conf['len'] = eval(a) else: assert False, "unhandled option" # gpio initialize gpio . setmode ( gpio . BOARD ) gpio . setup ( [ RST_PIN, BSEL_PIN ], gpio . OUT ) cmd = CommandInterface() cmd.open(conf['port'], conf['baud']) mdebug(10, "Open port %(port)s, baud %(baud)d" % {'port':conf['port'], 'baud':conf['baud']}) try: try: cmd.initChip() except Exception as e: print("Can't init. Ensure that BOOT0 is enabled and reset device") print(e) exit ( 1 ) bootversion = cmd.cmdGet() mdebug(0, "Bootloader version %X" % bootversion) id = cmd.cmdGetID() mdebug(0, "Chip id: 0x%x (%s)" % (id, chip_ids.get(id, "Unknown"))) # cmd.cmdGetVersion() # cmd.cmdGetID() # cmd.cmdReadoutUnprotect() # cmd.cmdWriteUnprotect() # cmd.cmdWriteProtect([0, 1]) if (conf['write'] or conf['verify']): data = map(lambda c: ord(c), file(args[0], 'rb').read()) if conf['erase']: cmd.cmdEraseMemory() if conf['write']: cmd.writeMemory(conf['address'], data) if conf['verify']: verify = cmd.readMemory(conf['address'], len(data)) if(data == verify): print("Verification OK") else: print("Verification FAILED") print(str(len(data)) + ' vs ' + str(len(verify))) for i in xrange(0, len(data)): if data[i] != verify[i]: print(hex(i) + ': ' + hex(data[i]) + ' vs ' + hex(verify[i])) if not conf['write'] and conf['read']: rdata = cmd.readMemory(conf['address'], conf['len']) file(args[0], 'wb').write(''.join(map(chr,rdata))) if conf['go_addr'] != -1: cmd.cmdGo(conf['go_addr']) finally: cmd.releaseChip()
32.244898
113
0.52038
c0d91d00210e877f747e282991a9488de85994af
4,936
py
Python
backend/sqlite.py
relkochta/koreader-sync
49b02812fe555675dc7848dbbd289a282cac5efd
[ "MIT" ]
null
null
null
backend/sqlite.py
relkochta/koreader-sync
49b02812fe555675dc7848dbbd289a282cac5efd
[ "MIT" ]
null
null
null
backend/sqlite.py
relkochta/koreader-sync
49b02812fe555675dc7848dbbd289a282cac5efd
[ "MIT" ]
null
null
null
from backend.common import Document import sqlite3 # SQLite3 backend, stores data in a local .db file class BackendSQLite: # The database location database: str # Errors will be propagated to the object's creator def __init__(self, database: str): # Initialize the database and get a cursor connection = sqlite3.connect(database) cursor = connection.cursor() # Create the users table if it doesn't exist cursor.execute('''CREATE TABLE IF NOT EXISTS users (username text, userkey text)''') # Create the documents table if it doesn't exist cursor.execute('''CREATE TABLE IF NOT EXISTS documents (username text, document text, progress text, percentage float, device text, device_id text, timestamp int)''') # Commit and free the cursor and connection cursor.close() connection.commit() connection.close() # Save the database file location self.database = database # Adds a username/userkey combination. # Returns False if the user already exists. def create_user(self, username: str, userkey: str): connection = sqlite3.connect(self.database) cursor = connection.cursor() cursor.execute("SELECT * FROM users WHERE username = ?", (username,)) if cursor.fetchone(): # Attempted to add a user that already exists return False # Let's add the user: cursor.execute("INSERT INTO users VALUES (?, ?)", (username, userkey)) # Cleanup cursor.close() connection.commit() connection.close() return True # Updates a document, creating if it does not exist. def update_document(self, username: str, document: Document): connection = sqlite3.connect(self.database) cursor = connection.cursor() # If the document doesn't exist, let's create it. cursor.execute("SELECT * FROM documents WHERE username = ? AND document = ?", (username, document.document)) if not cursor.fetchone(): cursor.execute("INSERT INTO documents VALUES (?, ?, ?, ?, ?, ?, ?)", (username, document.document, document.progress, document.percentage, document.device, document.device_id, document.timestamp)) # If the document _does_ exist, update it. cursor.execute('''UPDATE documents SET progress = ?, percentage = ?, device = ?, device_id = ?, timestamp = ? WHERE username = ? AND document = ?''', (document.progress, document.percentage, document.device, document.device_id, document.timestamp, username, document.document)) # Cleanup cursor.close() connection.commit() connection.close() # Checks if a login is valid. # Returns True if it is, False if not. def check_login(self, username: str, userkey: str) -> bool: connection = sqlite3.connect(self.database) cursor = connection.cursor() # Check if the username/userkey combo exists. cursor.execute("SELECT * FROM users WHERE username = ? AND userkey = ?", (username, userkey)) exists = bool(cursor.fetchone()) # Cleanup cursor.close() connection.commit() connection.close() # Return our result return exists # Gets the details of a document present in the database. # Returns None if it doesn't exist. def get_document(self, username: str, document: str) -> Document: connection = sqlite3.connect(self.database) cursor = connection.cursor() # Get the relevant row in the table cursor.execute("SELECT * FROM documents WHERE username = ? AND document = ?", (username, document)) row = cursor.fetchone() if not row: # Document isn't present in the database return None # Create a document instance from it resultdoc = Document(row[1], row[2], row[3], row[4], row[5], row[6]) # Cleanup cursor.close() connection.commit() connection.close() return resultdoc # Prints the database to the console. # Intended for debugging. def dbg_print_database(self): connection = sqlite3.connect(self.database) cursor = connection.cursor() # Print the users table print("------ Table 'users' ------") for row in cursor.execute("SELECT * FROM users"): print(row) # Print the documents table print("\n------ Table 'documents' ------") for row in cursor.execute("SELECT * FROM documents"): print(row) # Cleanup cursor.close() connection.close()
35.768116
116
0.595827
41fb73948c68b263afbd7b08a02ef0ce88b7d126
1,301
py
Python
Models/DCGAN/Discriminator.py
z1xuanchen/datares_GANs
f9a03950bc4ba378e9eebb7cfd07377afd72b53c
[ "MIT" ]
6
2021-04-03T03:21:49.000Z
2022-03-24T07:15:56.000Z
Models/DCGAN/Discriminator.py
z1xuanchen/datares_GANs
f9a03950bc4ba378e9eebb7cfd07377afd72b53c
[ "MIT" ]
1
2021-04-27T15:23:35.000Z
2021-04-27T15:27:31.000Z
Models/DCGAN/Discriminator.py
z1xuanchen/datares_GANs
f9a03950bc4ba378e9eebb7cfd07377afd72b53c
[ "MIT" ]
6
2021-02-15T09:46:48.000Z
2021-11-29T17:14:56.000Z
import torch.nn as nn class Discriminator(nn.Module): def __init__(self, channels_img, features_d): super(Discriminator, self).__init__() self.disc = nn.Sequential( # input: N x channels_img x 64 x 64 nn.Conv2d( channels_img, features_d, kernel_size=4, stride=2, padding=1 ), nn.LeakyReLU(0.2), # _block(in_channels, out_channels, kernel_size, stride, padding) self._block(features_d, features_d * 2, 4, 2, 1), self._block(features_d * 2, features_d * 4, 4, 2, 1), self._block(features_d * 4, features_d * 8, 4, 2, 1), # After all _block img output is 4x4 (Conv2d below makes into 1x1) nn.Conv2d(features_d * 8, 1, kernel_size=4, stride=2, padding=0), nn.Sigmoid(), ) def _block(self, in_channels, out_channels, kernel_size, stride, padding): return nn.Sequential( nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, bias=False, ), # nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.2), ) def forward(self, x): return self.disc(x)
32.525
78
0.537279
933f4b73ba67403baa1aca5a194b7778271669ad
1,730
py
Python
elementary.py
chapman-phys220-2018f/cw05-frank-raha
ca52420442fb24a107345993580c1c9b0f25efda
[ "MIT" ]
null
null
null
elementary.py
chapman-phys220-2018f/cw05-frank-raha
ca52420442fb24a107345993580c1c9b0f25efda
[ "MIT" ]
null
null
null
elementary.py
chapman-phys220-2018f/cw05-frank-raha
ca52420442fb24a107345993580c1c9b0f25efda
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #### # Raha and Frank # Email: pirzadeh@chapman.edu # Elementary module for CW 5 # PHYS 220 # 10/1/18 #### import scipy.constants class Particle(object): """Particle is a class that should have 3 initialized variables: Mass(a float), Position(A triplet of floats), Momentum(A triplet of floats)""" mass = 0.0 position = (0.0,0.0,0.0) momentum = (0.0,0.0,0.0) def __init__(self, x, y, z): """Inits the class, arg1: x position float, arg2: y position float, arg3: z positionfloat""" self.position = (x, y, z) self.mass = 1.0 self.momentum = (0.0,0.0,0.0) def impulse(self, px,py,pz): """Alters the momentum by the impulse amount. Needs floating point triple.""" self.momentum = (self.momentum[0]+px,self.momentum[1]+py,self.momentum[2]+pz) def move(self, dt): self.position = (self.position[0] + (dt/self.mass)*self.momentum[0],self.position[1]+(dt/self.mass)*self.momentum[1],self.position[2]+(dt/self.mass)*self.momentum[2]) class ChargedParticle(Particle): charge = 0.0 def __init__(self, x, y, z): """uses the super constructor to construct the class instance""" super(Particle,self).__init__(x, y, z) self.charge = 0.0 class Electron(ChargedParticle): def __init__(self, x, y, z): self.charge = -scipy.constants.e super(ChargedParticle,self).__init__(x, y, z) self.mass = scipy.constants.m_e class Proton(ChargedParticle): def __init__(self, x, y, z): self.charge = scipy.constants.e super(ChargedParticle,self).__init__(x, y, z) self.mass = scipy.constants.m_p def main(argv): pass
30.350877
174
0.631792
7b3adef69524f059195e5f7f20c58d62c9bff670
6,461
py
Python
CreateJiraIssue.py
theluckyteam/sublime-jira
167b32be9b6a358795508247e80cdc6132542276
[ "BSD-3-Clause" ]
null
null
null
CreateJiraIssue.py
theluckyteam/sublime-jira
167b32be9b6a358795508247e80cdc6132542276
[ "BSD-3-Clause" ]
null
null
null
CreateJiraIssue.py
theluckyteam/sublime-jira
167b32be9b6a358795508247e80cdc6132542276
[ "BSD-3-Clause" ]
null
null
null
# coding=utf-8 import sublime, sublime_plugin import re import types import json import urllib from urllib.error import URLError def parse_issue_stream(stream): # Разбить выражение на строки и понять каким образом его обрабатывать lines = [] parts = stream.split("\n") for part in parts: if part.strip() != '': lines.append(part) # Смысл имеет только выражение, содержащее минимум одну строку if len(lines) < 1: return None # Подготовить описание для задачи из выражения description = "\n".join(lines[1:]) if len(lines) > 1 else '' # Далее имеет смысл только первая строка выражения stream = lines[0] # Подготовим оцениваемое время на работу с задачей temp_result = re.search(r'\~(.+)', stream) estimate = temp_result.group(1).strip() if temp_result is not None else '' stream = re.sub(r'\~(.+)', '', stream).strip() # Подготовим метки labels = re.findall(r'\#(\S+)', stream) stream = re.sub(r'\#(\S+)', '', stream).strip() # Подготовим название summary = stream # Подготовить структуру данных для заведения задачи issue = { "summary": summary, "description": description, "estimate": estimate, "labels": labels } return issue class TokenGettingError(Exception): """ Ошибка получения токена """ pass class TokenFailedError(Exception): """ Неверный токен авторизации """ pass class IssueCreatingError(Exception): """ Ошибка создания задачи """ pass class CreateJiraIssueCommand(sublime_plugin.TextCommand): def settings(self): return self.view.settings() def run(self, edit, project, issuetype): settings = self.settings() issue_project = project issue_type = issuetype issue_creation_url = settings.get('jira_issue_creation_url') issue_assignee = settings.get('jira_issue_assignee') issue_component = settings.get('jira_issue_component') try: # Переберем все выделенные области в текущем view for region in self.view.sel(): issue_expression = self.view.substr(region) issue_attributes = parse_issue_stream(issue_expression) issue_definition = { "fields": { "summary": issue_attributes['summary'], "description": issue_attributes['description'], "issuetype": { "id": issue_type }, "project": { "id": issue_project, }, "labels": issue_attributes['labels'], "timetracking": { "remainingEstimate": issue_attributes['estimate'] }, "assignee": { "name": issue_assignee, }, "components": [ { "id": issue_component } ] } } issue = self.create_issue(issue_creation_url, issue_definition) issue_result = issue['key'] + ' - ' + issue_expression self.view.replace(edit, region, issue_result) except: sublime.message_dialog('При создании задачи произошла ошибка. Проверьте аргументы и попробуйте снова.') def clear_access_token(self): settings = self.settings() settings.erase('jira_access_token') def access_token(self): settings = self.settings() if settings.has('jira_access_token'): access_token = settings.get('jira_access_token') else: url = settings.get('jira_auth_url') username = settings.get('jira_auth_username') password = settings.get('jira_auth_password') data = { "username": username, "password": password, } access_token = self.request_access_token(url, data) settings.set('jira_access_token', access_token) return access_token def request_access_token(self, url, data): json_data = json.dumps(data, ensure_ascii=False) json_bytes = json_data.encode('utf-8') json_bytes_length = len(json_bytes) request = urllib.request.Request(url) request.add_header('Content-Type', 'application/json; charset=utf-8') request.add_header('Content-Length', json_bytes_length) sublime.status_message('Request to "%s"' % url) try: response = urllib.request.urlopen(request, json_bytes) response_data = response.read().decode('utf-8') result = json.loads(response_data) cookie_auth = result['session'] except: raise TokenGettingError('Could not get access token.') return cookie_auth def create_issue(self, url, definition): attempt = 3 while attempt > 0: try: access_token = self.access_token() attempt -= 1 return self.request_create_issue(url, definition, access_token) except TokenFailedError: self.clear_access_token() def request_create_issue(self, url, definition, token): json_data = json.dumps(definition, ensure_ascii=False) json_bytes = json_data.encode('utf-8') json_bytes_length = len(json_bytes) request = urllib.request.Request(url) request.add_header('Cookie', '='.join([token['name'], token['value']])) request.add_header('Content-Type', 'application/json; charset=utf-8') request.add_header('Content-Length', json_bytes_length) sublime.status_message('Request to "%s"' % url) try: response = urllib.request.urlopen(request, json_bytes) response_data = response.read().decode('utf-8') return json.loads(response_data) except URLError as error: if error.code == 401: raise TokenFailedError('Token is failed.') else: raise IssueCreatingError('Could not create issue.') except: raise IssueCreatingError('Could not create issue.')
32.305
115
0.572822
4f88fcf8afb833ccd478636b1a8686047f70c90c
4,513
py
Python
yepes/utils/phased.py
samuelmaudo/yepes
1ef9a42d4eaa70d9b3e6e7fa519396c1e1174fcb
[ "BSD-3-Clause" ]
null
null
null
yepes/utils/phased.py
samuelmaudo/yepes
1ef9a42d4eaa70d9b3e6e7fa519396c1e1174fcb
[ "BSD-3-Clause" ]
null
null
null
yepes/utils/phased.py
samuelmaudo/yepes
1ef9a42d4eaa70d9b3e6e7fa519396c1e1174fcb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding:utf-8 -*- from __future__ import unicode_literals import base64 import re from django.contrib.messages.storage.base import BaseStorage from django.http import HttpRequest from django.template.base import ( COMMENT_TAG_START, COMMENT_TAG_END, Template, TemplateSyntaxError, ) from django.template.context import BaseContext, RequestContext, Context from django.utils import six from django.utils.encoding import force_bytes, force_text from django.utils.functional import Promise, LazyObject from django.utils.six.moves import cPickle as pickle from yepes.conf import settings SECRET_DELIMITER = '{0} {1} {2}'.format( COMMENT_TAG_START, settings.PHASED_SECRET_DELIMITER, COMMENT_TAG_END) PICKLED_CONTEXT_RE = re.compile(r'.*{0} context (.*) {1}.*'.format( COMMENT_TAG_START, COMMENT_TAG_END)) FORBIDDEN_CLASSES = (Promise, LazyObject, HttpRequest, BaseStorage) def backup_csrf_token(context, storage): """ Get the CSRF token and convert it to a string (since it's lazy). """ token = context.get('csrf_token', 'NOTPROVIDED') storage['csrf_token'] = force_bytes(token) def flatten_context(context, remove_lazy=True): """ Creates a dictionary from a ``Context`` instance by traversing its dicts list. Can remove unwanted subjects from the result, e.g. lazy objects. """ flat_context = {} def _flatten(context): if isinstance(context, dict): for k, v in six.iteritems(context): if isinstance(context, BaseContext): _flatten(context) else: flat_context[k] = v elif isinstance(context, BaseContext): for context_dict in context.dicts: _flatten(context_dict) # traverse the passed context and update the dictionary accordingly _flatten(context) if remove_lazy: only_allowed = lambda dic: not isinstance(dic[1], FORBIDDEN_CLASSES) return dict(filter(only_allowed, six.iteritems(flat_context))) else: return flat_context def pickle_context(context, template=None): """ Pickle the given ``Context`` instance and do a few optimizations before. """ context = flatten_context(context) context.pop('False', None) context.pop('None', None) context.pop('True', None) pickled_context = base64.standard_b64encode( pickle.dumps(context, protocol=pickle.HIGHEST_PROTOCOL)) if template is not None: return template.format(context=pickled_context) else: return '{0} context {1} {2}'.format( COMMENT_TAG_START, pickled_context, COMMENT_TAG_END) def restore_csrf_token(request, storage): """ Given the request and a the context used during the second render phase, this wil check if there is a CSRF cookie and restores if needed, to counteract the way the CSRF framework invalidates the CSRF token after each request/response cycle. """ try: request.META['CSRF_COOKIE'] = request.COOKIES[settings.CSRF_COOKIE_NAME] except KeyError: csrf_token = storage.pop('csrf_token', None) if csrf_token: request.META['CSRF_COOKIE'] = csrf_token def second_pass_render(request, content): """ Split on the secret delimiter and render the phased blocks. """ content = force_text(content) result = [] for index, bit in enumerate(content.split(SECRET_DELIMITER)): if index % 2: template = Template(bit) else: result.append(bit) continue context = unpickle_context(bit) restore_csrf_token(request, context) request_context = RequestContext(request, context) try: rendered = template.render(request_context) except TemplateSyntaxError: # For example, in debug pages. return content if SECRET_DELIMITER in rendered: rendered = second_pass_render(request, rendered) result.append(rendered) return force_bytes(''.join(result)) def unpickle_context(content, pattern=None): """ Unpickle the context from the given content string or return ``None``. """ if pattern is None: pattern = PICKLED_CONTEXT_RE match = pattern.search(content) if match is not None: return pickle.loads(base64.standard_b64decode(match.group(1))) else: return {}
30.086667
80
0.666297
acb8fe08b9f8f77c4ecb3e04e4355066b3fc66b8
1,831
py
Python
__pandas/06.py
zlikun-lang/python-data-analysis
66eaa04952e422fa881281dc2244f2984a15e9bf
[ "Apache-2.0" ]
1
2020-05-29T07:43:10.000Z
2020-05-29T07:43:10.000Z
__pandas/06.py
zlikun-lang/python-data-analysis
66eaa04952e422fa881281dc2244f2984a15e9bf
[ "Apache-2.0" ]
null
null
null
__pandas/06.py
zlikun-lang/python-data-analysis
66eaa04952e422fa881281dc2244f2984a15e9bf
[ "Apache-2.0" ]
null
null
null
import numpy as np from pandas import Series, DataFrame # 通过列表构造一个Series,指定其索引,两者数量必须匹配 obj = Series([4.5, 7.2, -5.3, 3.6], index=['a', 'b', 'c', 'd']) # a 4.5 # b 7.2 # c -5.3 # d 3.6 # dtype: float64 print(obj) # 重新索引,缺失项由NaN填充 obj2 = obj.reindex(['a', 'b', 'c', 'm', 'n']) # a 4.5 # b 7.2 # c -5.3 # m NaN # n NaN # dtype: float64 print(obj2) # 缺失位可以用指定值填充 obj2 = obj.reindex(['a', 'b', 'c', 'm', 'n'], fill_value=0) # a 4.5 # b 7.2 # c -5.3 # m 0.0 # n 0.0 # dtype: float64 print(obj2) obj = Series(['red', 'green', 'blue'], index=[0, 2, 4]) # 0 red # 2 green # 4 blue # dtype: object print(obj) # 使用method做插值处理,ffill/pad表示前填充,bfill/backfill表示向后填充 obj2 = obj.reindex(range(6), method='ffill') # 0 red # 1 red # 2 green # 3 green # 4 blue # 5 blue # dtype: object print(obj2) obj2 = obj.reindex(range(6), method='bfill') # 0 red # 1 green # 2 green # 3 blue # 4 blue # 5 NaN # dtype: object print(obj2) # 使用数组构造DataFrame,指定索引和列 frame = DataFrame(np.arange(9).reshape(3, 3), index=['a', 'c', 'd'], columns=['A', 'B', 'C']) # A B C # a 0 1 2 # c 3 4 5 # d 6 7 8 print(frame) # 重新索引 frame2 = frame.reindex(['a', 'b', 'c', 'd']) # A B C # a 0.0 1.0 2.0 # b NaN NaN NaN # c 3.0 4.0 5.0 # d 6.0 7.0 8.0 print(frame2) # 也可以对列重新生成,通过columns字段指定 frame2 = frame.reindex(index=['a', 'b', 'c', 'd'], columns=['A', 'B', 'C', 'D']) # A B C D # a 0.0 1.0 2.0 NaN # b NaN NaN NaN NaN # c 3.0 4.0 5.0 NaN # d 6.0 7.0 8.0 NaN print(frame2) # DataFrame也可以进行插值填充,但只能针对行填充,不能针对列填充 frame2 = frame.reindex(index=['a', 'b', 'c', 'd'], columns=['A', 'B', 'C', 'D'], method='bfill') # A B C D # a 0 1 2 NaN # b 3 4 5 NaN # c 3 4 5 NaN # d 6 7 8 NaN print(frame2)
19.072917
96
0.523211
7545239b1cb62f89d220091b1ee79e100d00c237
15,175
py
Python
src/m4_accumulating_sequences.py
craannj/12-MoreSequences
df1ca36a0c5d7e66f6bcffcddb86b2ad45dc8cd9
[ "MIT" ]
null
null
null
src/m4_accumulating_sequences.py
craannj/12-MoreSequences
df1ca36a0c5d7e66f6bcffcddb86b2ad45dc8cd9
[ "MIT" ]
null
null
null
src/m4_accumulating_sequences.py
craannj/12-MoreSequences
df1ca36a0c5d7e66f6bcffcddb86b2ad45dc8cd9
[ "MIT" ]
null
null
null
""" This module lets you practice BUILDING-UP a new SEQUENCE, one item at a time, using the ACCUMULATOR pattern. -- We will later see a more efficient way to build-up and/or modify sequences, namely by MUTATING their elements. Authors: David Mutchler, Vibha Alangar, Matt Boutell, Dave Fisher, Mark Hays, Amanda Stouder, Aaron Wilkin, their colleagues, and Nathaniel Craan. """ # DONE: 1. PUT YOUR NAME IN THE ABOVE LINE. import rosegraphics as rg def main(): """ Calls the various TEST functions in this module. """ run_test_make_simple_list() run_test_make_simple_string() run_test_make_less_simple_string() # ------------------------------------------------------------------------- # TODO: 8. Uncomment the tests below before working _TODO_ 9. # They launch annoying rg.RoseWindows on each run that you don't want # until you get to _TODO_ 9 and _TODO_ 10. # ------------------------------------------------------------------------- # run_test_draw_shapes() # run_test_rectangles_from_circles() def run_test_make_simple_list(): """ Tests the make_simple_list function. """ # ------------------------------------------------------------------------- # DONE: 2. Implement this TEST function. # It TESTS the make_simple_list function defined below. # Include at least ** 2 ** tests. # # Use the same 4-step process as for previous TEST functions. # ------------------------------------------------------------------------- print() print('--------------------------------------------------') print('Testing the make_simple_list function:') print('--------------------------------------------------') # Test 1: expected = [5, 6, 7, 8, 9, 10, 11, 12, 13] actual = make_simple_list(5, 13) print('Expected:', expected) print('Actual: ', actual) # Test 2 (add your test here): expected = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] actual = make_simple_list(-1, 15) print('Expected:', expected) print('Actual: ', actual) def make_simple_list(m, n): """ What comes in: -- a positive integer m -- a positive integer n that is >= m What goes out: Returns the list [m, m+1, m+2, ... n], where m and n are the given arguments. Side effects: None. Examples: If m is 5 and n is 13, then this function returns: [5, 6, 7, 8, 9, 10, 11, 12, 13] If m and n are both 205, then this function returns: [205] Type hints: :type m: int :type n: int """ # ------------------------------------------------------------------------- # DONE: 3. Implement and test this function. # Note that you should write its TEST function first (above). # ------------------------------------------------------------------------- nums = [] for k in range(m, n + 1): nums = nums + [k] return nums def run_test_make_simple_string(): """ Tests the make_simple_string function. """ # ------------------------------------------------------------------------- # DONE: 4. Implement this TEST function. # It TESTS the make_simple_string function defined below. # Include at least ** 2 ** tests. # # Use the same 4-step process as for previous TEST functions. # ------------------------------------------------------------------------- print() print('--------------------------------------------------') print('Testing the make_simple_string function:') print('--------------------------------------------------') # Test 1: expected = '5678910111213' actual = make_simple_string(5, 13) print('Expected:', expected) print('Actual: ', actual) # Test 2: expected = '123456789' actual = make_simple_string(1, 9) print('Expected:', expected) print('Actual: ', actual) def make_simple_string(m, n): """ What comes in: -- a positive integer m -- a positive integer n that is >= m What goes out: Returns the STRING whose characters are m, m+1, m+2, ... n, each with a '-' character after it, where m and n are the given arguments. Side effects: None. Examples: If m is 5 and n is 13, then this function returns: '5-6-7-8-9-10-11-12-13-' If m and n are both 205, then this function returns: '205-' Type hints: :type m: int :type n: int """ # ------------------------------------------------------------------------- # DONE: 5. Implement and test this function. # Note that you should write its TEST function first (above). # ------------------------------------------------------------------------- nums = '' for k in range(m, n + 1): nums = nums + str(k) return nums def run_test_make_less_simple_string(): """ Tests the make_less_simple_string function. """ # ------------------------------------------------------------------------- # TODO: 6. Implement this TEST function. # It TESTS the make_less_simple_string function defined below. # Include at least ** 2 ** tests. # # Use the same 4-step process as for previous TEST functions. # ------------------------------------------------------------------------- print() print('--------------------------------------------------') print('Testing the make_less_simple_string function:') print('--------------------------------------------------') def make_less_simple_string(m, n): """ What comes in: -- a positive integer m -- a positive integer n that is >= m What goes out: The same as the previous problem, but WITHOUT the hyphen after the LAST number. That is, this function returns the STRING whose characters are m, m+1, m+2, ... n, with a '-' character BETWEEN each of the items and where m and n are the given arguments. Side effects: None. Examples: If m is 5 and n is 13, then this function returns: '5-6-7-8-9-10-11-12-13' If m and n are both 205, then this function returns: '205' Type hints: :type m: int :type n: int """ # ------------------------------------------------------------------------- # TODO: 7. Implement and test this function. # Note that you should write its TEST function first (above). # ------------------------------------------------------------------------- def run_test_draw_shapes(): """ Tests the draw_shapes function. """ print() print('-----------------------------------------------------------') print('Testing the draw_shapes function:') print('-----------------------------------------------------------') print('See the graphics window that pops up.') print('It should show 3 circles: red, white and blue.') print() print('Then it should ask the user to click the mouse to continue.') print('Then it should show 4 more shapes: a green circle,') print(' a yellow rectangle, a red circle and a thick black line.') # ------------------------------------------------------------------------- # Test 1 is ALREADY DONE (here). # ------------------------------------------------------------------------- window = rg.RoseWindow(500, 330, 'draw_shapes, two tests') circles = [rg.Circle(rg.Point(50, 50), 50), rg.Circle(rg.Point(120, 50), 20), rg.Circle(rg.Point(250, 170), 130)] circles[0].fill_color = 'red' circles[1].fill_color = 'white' circles[2].fill_color = 'blue' draw_shapes(circles, window) window.continue_on_mouse_click() # ------------------------------------------------------------------------- # Test 2 is ALREADY DONE (here). # It runs in the same window as Test 1. # The bottom circle should appear only PARTIALLY in the window; # that is purposeful. # ------------------------------------------------------------------------- rect_width = 100 rect_height = 160 rect_center = rg.Point(350, 100) various = [rg.Circle(rg.Point(400, 50), 30), rg.Rectangle(rg.Point(rect_center.x - rect_width / 2, rect_center.y - rect_height / 2), rg.Point(rect_center.x + rect_width / 2, rect_center.y + rect_height / 2)), rg.Circle(rg.Point(400, 300), 80), rg.Line(rg.Point(0, 0), rg.Point(100, 330))] various[0].fill_color = 'green' various[1].fill_color = 'yellow' various[2].fill_color = 'red' various[3].thickness = 10 draw_shapes(various, window) window.close_on_mouse_click() def draw_shapes(shapes, window): """ What comes in: -- a sequence of rg.Shape objects Note: rg.Line, rg.Circle, rg.Point, ... are all rg.Shape objects. -- an rg.RoseWindow What goes out: Nothing (i.e., None). Side effects: See draw_shapes.pdf in this project for pictures that may help you better understand the following: For each rg.Shape in the given sequence of rg.Shape objects, 1. Attaches the rg.Shape to the given rg.RoseWindow. 2. Renders the rg.RoseWindow with a 0.3 second delay after the render. Examples: See the draw_shapes.pdf file in this project. Type hints: :type shapes: list | tuple of rg._Shape :type window: rg.RoseWindow """ # ------------------------------------------------------------------------- # TODO: 9. Implement and test this function. # *** Make sure you do _TODO_ 8 in main first! *** # The testing code is already written for you; you enabled it via _TODO_ 8. # ########################################################################### # IMPORTANT: the same # attach_to # method works for ALL the rosegraphics shapes! # FWIW: The word for ideas like this is "polymorphism". ########################################################################### # ------------------------------------------------------------------------- def run_test_rectangles_from_circles(): """ Tests the rectangles_from_circles function. """ print() print('-----------------------------------------------------------') print('Testing the rectangles_from_circles function:') print('-----------------------------------------------------------') print('See the graphics window that pops up.') print('It should show circles, then the circles circumscribed,') print('then more circles, then the new circles circumscribed too.') print() print('See rectangles_from_circles.pdf in this project') print('for pictures of the anticipated results.') # ------------------------------------------------------------------------- # Test 1 is ALREADY DONE (here). # ------------------------------------------------------------------------- window = rg.RoseWindow(650, 350, 'rectangles_from_circles, two tests') circles = [rg.Circle(rg.Point(50, 80), 40), rg.Circle(rg.Point(150, 50), 30), rg.Circle(rg.Point(300, 100), 50), rg.Circle(rg.Point(220, 70), 60)] circles[0].fill_color = 'red' circles[1].fill_color = 'white' circles[2].fill_color = 'blue' circles[3].fill_color = 'green' # ------------------------------------------------------------------------- # This test calls the draw_shapes function that YOU write, # above. So if your draw_shapes breaks, so will this test. # ------------------------------------------------------------------------- draw_shapes(circles, window) message = 'The circles to be circumscribed are shown above.' message = message + ' Click to continue.' window.continue_on_mouse_click(message) rectangles = rectangles_from_circles(circles) if rectangles is None: print() print('Either you have not yet gotten') print(' to the rectangles_from_circles problem (OK, no problem)') print(' or you have forgotten to return a result from that function.') window.close_on_mouse_click() return draw_shapes(rectangles, window) message = 'Now you should see the circumscribing rectangles too.' message = message + ' Click to continue.' window.continue_on_mouse_click(message) # ------------------------------------------------------------------------- # Test 2 is ALREADY DONE (here). # It runs in the same window as Test 1. # ------------------------------------------------------------------------- circles = [] center = rg.Point(50, 150) radius = 35 for _ in range(10): circle = rg.Circle(center, radius) circle.fill_color = 'magenta' circles = circles + [circle] center.x = center.x + 2 * radius center.y = center.y + 15 radius = radius - 3 draw_shapes(circles, window) message = 'More circles to be circumscribed are shown above.' message = message + ' Click to continue.' window.continue_on_mouse_click(message) rectangles = rectangles_from_circles(circles) draw_shapes(rectangles, window) message = 'Now you should see the circumscribing rectangles too.' message = message + ' Click to exit.' window.continue_on_mouse_click(message, close_it=True) def rectangles_from_circles(circles): """ See rectangles_from_circles.pdf in this project for pictures that may help you better understand the following specification: What comes in: -- a sequence of rg.Circle objects What goes out: Returns a list of rg.Rectangles, where each rg.Rectangle circumscribes its corresponding rg.Circle in the given list of rg.Circles. Side effects: None. Examples: See rectangles_from_circles.pdf in this project. Type hints: :type circles: list | tuple of rg.Circle :rtype: list of rg.Rectangles """ # ------------------------------------------------------------------------- # TODO: 10. Implement and test this function. # The testing code is already written for you (above). # ########################################################################### # IMPORTANT: Examine the testing code above carefully. Be sure # that you understand WHY the tests are adequate tests! # # IMPORTANT: The specification does NOT say to draw anything # in this function, so DON'T draw anything in here! ########################################################################### # ------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # Calls main to start the ball rolling. # ----------------------------------------------------------------------------- main()
38.810742
79
0.492389