hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
68df28c169972c991af48446b9d7957487d0a266
15,000
py
Python
tensorflow_probability/python/distributions/beta.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/beta.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/beta.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Beta distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.util.seed_stream import SeedStream from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import __all__ = [ 'Beta', ] _beta_sample_note = """Note: `x` must have dtype `self.dtype` and be in `[0, 1].` It must have a shape compatible with `self.batch_shape()`.""" class Beta(distribution.Distribution): """Beta distribution. The Beta distribution is defined over the `(0, 1)` interval using parameters `concentration1` (aka 'alpha') and `concentration0` (aka 'beta'). #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta) ``` where: * `concentration1 = alpha`, * `concentration0 = beta`, * `Z` is the normalization constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The concentration parameters represent mean total counts of a `1` or a `0`, i.e., ```none concentration1 = alpha = mean * total_concentration concentration0 = beta = (1. - mean) * total_concentration ``` where `mean` in `(0, 1)` and `total_concentration` is a positive real number representing a mean `total_count = concentration1 + concentration0`. Distribution parameters are automatically broadcast in all functions; see examples for details. Warning: The samples can be zero due to finite precision. This happens more often when some of the concentrations are very small. Make sure to round the samples to `np.finfo(dtype).tiny` before computing the density. Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in the paper [Michael Figurnov, Shakir Mohamed, Andriy Mnih. Implicit Reparameterization Gradients, 2018](https://arxiv.org/abs/1805.08498) #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Create a batch of three Beta distributions. alpha = [1, 2, 3] beta = [1, 2, 3] dist = tfd.Beta(alpha, beta) dist.sample([4, 5]) # Shape [4, 5, 3] # `x` has three batch entries, each with two samples. x = [[.1, .4, .5], [.2, .3, .5]] # Calculate the probability of each pair of samples under the corresponding # distribution in `dist`. dist.prob(x) # Shape [2, 3] ``` ```python # Create batch_shape=[2, 3] via parameter broadcast: alpha = [[1.], [2]] # Shape [2, 1] beta = [3., 4, 5] # Shape [3] dist = tfd.Beta(alpha, beta) # alpha broadcast as: [[1., 1, 1,], # [2, 2, 2]] # beta broadcast as: [[3., 4, 5], # [3, 4, 5]] # batch_Shape [2, 3] dist.sample([4, 5]) # Shape [4, 5, 2, 3] x = [.2, .3, .5] # x will be broadcast as [[.2, .3, .5], # [.2, .3, .5]], # thus matching batch_shape [2, 3]. dist.prob(x) # Shape [2, 3] ``` Compute the gradients of samples w.r.t. the parameters: ```python alpha = tf.constant(1.0) beta = tf.constant(2.0) dist = tfd.Beta(alpha, beta) samples = dist.sample(5) # Shape [5] loss = tf.reduce_mean(tf.square(samples)) # Arbitrary loss function # Unbiased stochastic gradients of the loss function grads = tf.gradients(loss, [alpha, beta]) ``` """ def __init__(self, concentration1, concentration0, validate_args=False, allow_nan_stats=True, name='Beta'): """Initialize a batch of Beta distributions. Args: concentration1: Positive floating-point `Tensor` indicating mean number of successes; aka 'alpha'. Implies `self.dtype` and `self.batch_shape`, i.e., `concentration1.shape = [N1, N2, ..., Nm] = self.batch_shape`. concentration0: Positive floating-point `Tensor` indicating mean number of failures; aka 'beta'. Otherwise has same semantics as `concentration1`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value '`NaN`' to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([concentration1, concentration0], dtype_hint=tf.float32) self._concentration1 = tensor_util.convert_nonref_to_tensor( concentration1, dtype=dtype, name='concentration1') self._concentration0 = tensor_util.convert_nonref_to_tensor( concentration0, dtype=dtype, name='concentration0') super(Beta, self).__init__( dtype=dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, parameters=parameters, name=name) @staticmethod def _param_shapes(sample_shape): s = tf.convert_to_tensor(sample_shape, dtype=tf.int32) return dict(concentration1=s, concentration0=s) @classmethod def _params_event_ndims(cls): return dict(concentration1=0, concentration0=0) @property def concentration1(self): """Concentration parameter associated with a `1` outcome.""" return self._concentration1 @property def concentration0(self): """Concentration parameter associated with a `0` outcome.""" return self._concentration0 @property @deprecation.deprecated( '2019-10-01', ('The `total_concentration` property is deprecated; instead use ' '`dist.concentration1 + dist.concentration0`.'), warn_once=True) def total_concentration(self): """Sum of concentration parameters.""" with self._name_and_control_scope('total_concentration'): return self.concentration1 + self.concentration0 def _batch_shape_tensor(self, concentration1=None, concentration0=None): return prefer_static.broadcast_shape( prefer_static.shape( self.concentration1 if concentration1 is None else concentration1), prefer_static.shape( self.concentration0 if concentration0 is None else concentration0)) def _batch_shape(self): return tf.broadcast_static_shape( self.concentration1.shape, self.concentration0.shape) def _event_shape_tensor(self): return tf.constant([], dtype=tf.int32) def _event_shape(self): return tf.TensorShape([]) def _sample_n(self, n, seed=None): seed = SeedStream(seed, 'beta') concentration1 = tf.convert_to_tensor(self.concentration1) concentration0 = tf.convert_to_tensor(self.concentration0) shape = self._batch_shape_tensor(concentration1, concentration0) expanded_concentration1 = tf.broadcast_to(concentration1, shape) expanded_concentration0 = tf.broadcast_to(concentration0, shape) gamma1_sample = tf.random.gamma( shape=[n], alpha=expanded_concentration1, dtype=self.dtype, seed=seed()) gamma2_sample = tf.random.gamma( shape=[n], alpha=expanded_concentration0, dtype=self.dtype, seed=seed()) beta_sample = gamma1_sample / (gamma1_sample + gamma2_sample) return beta_sample @distribution_util.AppendDocstring(_beta_sample_note) def _log_prob(self, x): concentration0 = tf.convert_to_tensor(self.concentration0) concentration1 = tf.convert_to_tensor(self.concentration1) return (self._log_unnormalized_prob(x, concentration1, concentration0) - self._log_normalization(concentration1, concentration0)) @distribution_util.AppendDocstring(_beta_sample_note) def _prob(self, x): return tf.exp(self._log_prob(x)) @distribution_util.AppendDocstring(_beta_sample_note) def _log_cdf(self, x): return tf.math.log(self._cdf(x)) @distribution_util.AppendDocstring(_beta_sample_note) def _cdf(self, x): concentration1 = tf.convert_to_tensor(self.concentration1) concentration0 = tf.convert_to_tensor(self.concentration0) shape = self._batch_shape_tensor(concentration1, concentration0) concentration1 = tf.broadcast_to(concentration1, shape) concentration0 = tf.broadcast_to(concentration0, shape) return tf.math.betainc(concentration1, concentration0, x) def _log_unnormalized_prob(self, x, concentration1, concentration0): return (tf.math.xlogy(concentration1 - 1., x) + (concentration0 - 1.) * tf.math.log1p(-x)) def _log_normalization(self, concentration1, concentration0): return (tf.math.lgamma(concentration1) + tf.math.lgamma(concentration0) - tf.math.lgamma(concentration1 + concentration0)) def _entropy(self): concentration1 = tf.convert_to_tensor(self.concentration1) concentration0 = tf.convert_to_tensor(self.concentration0) total_concentration = concentration1 + concentration0 return (self._log_normalization(concentration1, concentration0) - (concentration1 - 1.) * tf.math.digamma(concentration1) - (concentration0 - 1.) * tf.math.digamma(concentration0) + (total_concentration - 2.) * tf.math.digamma(total_concentration)) def _mean(self): concentration1 = tf.convert_to_tensor(self.concentration1) return concentration1 / (concentration1 + self.concentration0) def _variance(self): concentration1 = tf.convert_to_tensor(self.concentration1) concentration0 = tf.convert_to_tensor(self.concentration0) total_concentration = concentration1 + concentration0 return (concentration1 * concentration0 / ((total_concentration)**2 * (total_concentration + 1.))) @distribution_util.AppendDocstring( """Note: The mode is undefined when `concentration1 <= 1` or `concentration0 <= 1`. If `self.allow_nan_stats` is `True`, `NaN` is used for undefined modes. If `self.allow_nan_stats` is `False` an exception is raised when one or more modes are undefined.""") def _mode(self): concentration1 = tf.convert_to_tensor(self.concentration1) concentration0 = tf.convert_to_tensor(self.concentration0) mode = (concentration1 - 1.) / (concentration1 + concentration0 - 2.) with tf.control_dependencies([] if self.allow_nan_stats else [ # pylint: disable=g-long-ternary assert_util.assert_less( tf.ones([], dtype=self.dtype), concentration1, message='Mode undefined for concentration1 <= 1.'), assert_util.assert_less( tf.ones([], dtype=self.dtype), concentration0, message='Mode undefined for concentration0 <= 1.') ]): return tf.where( (concentration1 > 1.) & (concentration0 > 1.), mode, dtype_util.as_numpy_dtype(self.dtype)(np.nan)) def _sample_control_dependencies(self, x): """Checks the validity of a sample.""" assertions = [] if not self.validate_args: return assertions assertions.append(assert_util.assert_non_negative( x, message='Sample must be non-negative.')) assertions.append(assert_util.assert_less_equal( x, tf.ones([], x.dtype), message='Sample must be less than or equal to `1`.')) return assertions def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] for concentration in [self.concentration0, self.concentration1]: if is_init != tensor_util.is_ref(concentration): assertions.append(assert_util.assert_positive( concentration, message='Concentration parameter must be positive.')) return assertions @kullback_leibler.RegisterKL(Beta, Beta) def _kl_beta_beta(d1, d2, name=None): """Calculate the batchwise KL divergence KL(d1 || d2) with d1 and d2 Beta. Args: d1: instance of a Beta distribution object. d2: instance of a Beta distribution object. name: (optional) Name to use for created operations. default is 'kl_beta_beta'. Returns: Batchwise KL(d1 || d2) """ with tf.name_scope(name or 'kl_beta_beta'): d1_concentration1 = tf.convert_to_tensor(d1.concentration1) d1_concentration0 = tf.convert_to_tensor(d1.concentration0) d2_concentration1 = tf.convert_to_tensor(d2.concentration1) d2_concentration0 = tf.convert_to_tensor(d2.concentration0) d1_total_concentration = d1_concentration1 + d1_concentration0 d2_total_concentration = d2_concentration1 + d2_concentration0 d1_log_normalization = d1._log_normalization( # pylint: disable=protected-access d1_concentration1, d1_concentration0) d2_log_normalization = d2._log_normalization( # pylint: disable=protected-access d2_concentration1, d2_concentration0) return ((d2_log_normalization - d1_log_normalization) - (tf.math.digamma(d1_concentration1) * (d2_concentration1 - d1_concentration1)) - (tf.math.digamma(d1_concentration0) * (d2_concentration0 - d1_concentration0)) + (tf.math.digamma(d1_total_concentration) * (d2_total_concentration - d1_total_concentration)))
39.164491
100
0.699667
5d576e6c379f505a5b53ab5ed57598ea174a0d0c
5,862
py
Python
refactorings/extract_class.py
miladjobs/CodART
f37af3f36c380245b0ae883dda7401e2b9d65980
[ "MIT" ]
null
null
null
refactorings/extract_class.py
miladjobs/CodART
f37af3f36c380245b0ae883dda7401e2b9d65980
[ "MIT" ]
null
null
null
refactorings/extract_class.py
miladjobs/CodART
f37af3f36c380245b0ae883dda7401e2b9d65980
[ "MIT" ]
1
2021-01-30T09:28:54.000Z
2021-01-30T09:28:54.000Z
""" The scripts implements different refactoring operations """ __version__ = '0.1.0' __author__ = 'Morteza' import networkx as nx from antlr4 import * from antlr4.TokenStreamRewriter import TokenStreamRewriter from gen.java9.Java9_v2Parser import Java9_v2Parser from gen.java9 import Java9_v2Listener import visualization.graph_visualization class ExtractClassRefactoringListener(Java9_v2Listener): """ To implement the extract class refactoring Encapsulate field: Make a public field private and provide accessors a stream of tokens is sent to the listener, to build an object token_stream_rewriter field addresses the field of the class, tobe encapsulated. """ def __init__(self, common_token_stream: CommonTokenStream = None, class_identifier: str = None): """ :param common_token_stream: """ self.enter_class = False self.token_stream = common_token_stream self.class_identifier = class_identifier # Move all the tokens in the source code in a buffer, token_stream_rewriter. if common_token_stream is not None: self.token_stream_rewriter = TokenStreamRewriter(common_token_stream) else: raise TypeError('common_token_stream is None') self.field_dict = {} self.method_name = [] # self.method_no = 0 # Groups methods in terms of their dependncies on the class attributes and one another def split_class(self): # 1- move the dictionay of fields into a new dictionary of methods operating on fields method_dict = {} for key, value in self.field_dict.items(): for method in value: if not str(method) in method_dict: method_dict[str(method)] = [key] else: method_dict[str(method)].append(key) print("methods dic.", method_dict) # 2- Group methods in terms of their dependencies on one another method_group = dict() # _____________________To be modified ________________________ # 3- Group methods in terms of their dependencies on the class attributes for key, value in method_dict.items(): if not str(value) in method_group: method_group[str(value)] = [key] else: method_group[str(value)].append(key) print("methods group", method_group) # -------------------------------------- # 4- Create graph G = nx.DiGraph() for field, methods in self.field_dict.items(): for method in methods: print('add edge {0} --> {1}'.format(field, method)) G.add_node(method[1], method_name=method[0]) G.add_edge(field, method[1]) print('---------\nExtracted classes:') visualization.graph_visualization.draw(g=G) # CC = nx.connected_components(G) S = [G.subgraph(c).copy() for c in nx.weakly_connected_components(G)] for class_ in S: # print('class_', class_.nodes.data()) class_fields = [node for node in class_.nodes if class_.in_degree(node) == 0] class_methods = [(class_.nodes[node]['method_name'], node) for node in class_.nodes if class_.in_degree(node) > 0] print('class_fields', class_fields) print('class_methods', class_methods) print('-'*10) # Enter a parse tree produced by Java9_v2Parser#normalClassDeclaration. def enterNormalClassDeclaration(self, ctx: Java9_v2Parser.NormalClassDeclarationContext): if ctx.identifier().getText() != self.class_identifier: return self.enter_class = True # Exit a parse tree produced by Java9_v2Parser#normalClassDeclaration. def exitNormalClassDeclaration(self, ctx: Java9_v2Parser.NormalClassDeclarationContext): self.enter_class = False print("----------------------------") print("Class attributes and methods using each attribute ") print("field dictionary =", self.field_dict) print("----------------------------") self.split_class() self.field_dict = {} self.method_name = [] self.method_no = 0 # when exiting from a class attribute (field) declaration this method is invoked. # This method adds attributes of the target class to a dictionary def enterFieldDeclaration(self, ctx: Java9_v2Parser.FieldDeclarationContext): if not self.enter_class: return field_id = ctx.variableDeclaratorList().variableDeclarator(i=0).variableDeclaratorId().identifier().getText() self.field_dict[field_id] = [] # Enter a parse tree produced by Java9_v2Parser#methodDeclaration. def enterMethodDeclaration(self, ctx: Java9_v2Parser.MethodDeclarationContext): if not self.enter_class: return m = [] m_name = ctx.methodHeader().methodDeclarator().identifier().getText() self.method_no = self.method_no + 1 m.append(m_name) m.append(self.method_no) self.method_name.append(m) # Exit a parse tree produced by Java9_v2Parser#methodDeclaration. def exitMethodDeclaration(self, ctx: Java9_v2Parser.MethodDeclarationContext): if not self.enter_class: return # Exit a parse tree produced by Java9_v2Parser#identifier. def exitIdentifier(self, ctx: Java9_v2Parser.IdentifierContext): if not self.enter_class: return if self.method_no == 0: return current_method = self.method_name[-1] variable_name = ctx.getText() if variable_name not in self.field_dict: return if not current_method in self.field_dict[variable_name]: self.field_dict[variable_name].append(current_method)
40.993007
126
0.648243
7405352c2afdd40bb91a09b5d47414289494e291
21,227
py
Python
venv1/Lib/site-packages/tensorflow/python/ops/embedding_ops.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
null
null
null
venv1/Lib/site-packages/tensorflow/python/ops/embedding_ops.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
1
2021-05-20T00:58:04.000Z
2021-05-20T00:58:04.000Z
venv1/Lib/site-packages/tensorflow/python/ops/embedding_ops.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
null
null
null
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations for embeddings.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops # Imports gradient definitions. from tensorflow.python.ops import data_flow_grad # pylint: disable=unused-import from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import tf_export def _gather(params, ids, name=None): """Helper function for _embedding_lookup_and_transform. This function gathers embeddings from a single tensor. The gather deals with resource variables specially. Args: params: A `Tensor` of embeddings. ids: A `Tensor` indexing the embeddings to be retrieved from `params`. name: A name for the operation (optional). Returns: A `Tensor` with the same type as `params`. """ if isinstance(params, resource_variable_ops.ResourceVariable): return params.sparse_read(ids, name=name) else: return array_ops.gather(params, ids, name=name) def _clip(params, ids, max_norm): """Helper function for _embedding_lookup_and_transform. This function optionally clips embeddings to an l2-norm of max_norm. Args: params: A `Tensor` of embeddings retrieved by `_gather`. ids: The `ids` argument that was passed to `_gather`. max_norm: If provided, the embeddings are l2-normalized to the value of max_norm. Returns: A `Tensor` with the same type as `params`. """ def _rank(x): """Helper function to retrieve the rank of a tensor. Args: x: Something convertible to `Tensor`. Returns: Either a pair `(rank, True)` where `rank` is an integer or a pair `(rank, False)` where `rank` is an integer `Tensor`. In either case, `rank` is the rank of `x`. """ rank = ops.convert_to_tensor(x).get_shape().ndims if rank: return rank, True else: return array_ops.rank(x), False if max_norm is None: return params ids_rank, ids_static = _rank(ids) params_rank, params_static = _rank(params) return clip_ops.clip_by_norm( params, max_norm, axes=(list(range(ids_rank, params_rank)) if ids_static and params_static else math_ops.range(ids_rank, params_rank))) def _embedding_lookup_and_transform(params, ids, partition_strategy="mod", name=None, max_norm=None, transform_fn=None): """Helper function for embedding_lookup and _compute_sampled_logits. This function is a generalization of embedding_lookup that optionally applies a caller-specified transformation to each embedding. This is done through the `transform_fn` argument. If provided, the function is applied to each partitioned tensor of retrieved embeddings, colocated with the embeddings. This function will be called with a single `Tensor` argument of the same type as the `params` tensor and should return a `Tensor`. The shape of the argument will be the same as `params` except for the size of the first dimension. The first dimension of the result's shape must be the same size as the argument's. Args: params: See embedding_lookup. ids: See embedding_lookup. partition_strategy: See embedding_lookup. name: See embedding_lookup. max_norm: See embedding_lookup. transform_fn: An optional function to apply to each retrieved embedding. If max_norm is provided, transform_fn is applied to the norm-limited embeddings. Returns: See embedding_lookup for details. Raises: ValueError: If `params` is empty. """ if params is None or params in ((), []): raise ValueError("Need at least one param") if isinstance(params, variables.PartitionedVariable): params = list(params) # Iterate to get the underlying Variables. if not isinstance(params, list): params = [params] with ops.name_scope(name, "embedding_lookup", params + [ids]) as name: np = len(params) # Number of partitions # Preserve the resource variable status to avoid accidental dense reads. if not any( isinstance(p, resource_variable_ops.ResourceVariable) for p in params): params = ops.convert_n_to_tensor_or_indexed_slices(params, name="params") ids = ops.convert_to_tensor(ids, name="ids") if np == 1 and (not transform_fn or ids.get_shape().ndims == 1): with ops.colocate_with(params[0]): result = _clip(_gather(params[0], ids, name=name), ids, max_norm) if transform_fn: result = transform_fn(result) return result else: # Flatten the ids. There are two cases where we need to do this. # - There is more than one params tensor. # - There is a transform_fn and ids is not statically known to be 1-D. # We must flatten in this case because transform_fn expects a flat # tensor of embeddings. flat_ids = array_ops.reshape(ids, [-1]) original_indices = math_ops.range(array_ops.size(flat_ids)) # Create p_assignments and set new_ids depending on the strategy. if partition_strategy == "mod": p_assignments = flat_ids % np new_ids = flat_ids // np elif partition_strategy == "div": # Compute num_total_ids as the sum of dim-0 of params, then assign to # partitions based on a constant number of ids per partition. Optimize # if we already know the full shape statically. dim_0_size = params[0].get_shape()[0] for p in xrange(1, np): dim_0_size += params[p].get_shape()[0] if dim_0_size.value: num_total_ids = constant_op.constant(dim_0_size.value, flat_ids.dtype) else: dim_0_sizes = [] for p in xrange(np): if params[p].get_shape()[0].value is not None: dim_0_sizes.append(params[p].get_shape()[0].value) else: with ops.colocate_with(params[p]): dim_0_sizes.append(array_ops.shape(params[p])[0]) num_total_ids = math_ops.reduce_sum( math_ops.cast(array_ops.stack(dim_0_sizes), flat_ids.dtype)) ids_per_partition = num_total_ids // np extras = num_total_ids % np p_assignments = math_ops.maximum( flat_ids // (ids_per_partition + 1), (flat_ids - extras) // ids_per_partition) # Emulate a conditional using a boolean indicator tensor new_ids = array_ops.where(p_assignments < extras, flat_ids % (ids_per_partition + 1), (flat_ids - extras) % ids_per_partition) else: raise ValueError("Unrecognized partition strategy: " + partition_strategy) # Cast partition assignments to int32 for use in dynamic_partition. # There really should not be more than 2^32 partitions. p_assignments = math_ops.cast(p_assignments, dtypes.int32) # Partition list of ids based on assignments into np separate lists gather_ids = data_flow_ops.dynamic_partition(new_ids, p_assignments, np) # Similarly, partition the original indices. pindices = data_flow_ops.dynamic_partition(original_indices, p_assignments, np) # Do np separate lookups, finding embeddings for plist[p] in params[p] partitioned_result = [] for p in xrange(np): pids = gather_ids[p] with ops.colocate_with(params[p]): result = _gather(params[p], pids) if transform_fn: # If transform_fn is provided, the clip_by_norm precedes # the transform and hence must be co-located. See below # for the counterpart if transform_fn is not proveded. result = transform_fn(_clip(result, pids, max_norm)) partitioned_result.append(result) # Stitch these back together ret = data_flow_ops.parallel_dynamic_stitch( pindices, partitioned_result, name=name) # Determine the static element shape. if transform_fn is None: element_shape_s = params[0].get_shape()[1:] for p in params[1:]: element_shape_s = element_shape_s.merge_with(p.get_shape()[1:]) else: element_shape_s = ret.get_shape()[1:] # Compute the dynamic element shape. if element_shape_s.is_fully_defined(): element_shape_d = element_shape_s elif transform_fn is None: # It's important that we compute params[0].shape on the right device # to avoid data motion. with ops.colocate_with(params[0]): params_shape = array_ops.shape(params[0]) element_shape_d = params_shape[1:] else: element_shape_d = array_ops.shape(ret)[1:] # Reshape to reverse the flattening of ids. ret = array_ops.reshape(ret, array_ops.concat( [array_ops.shape(ids), element_shape_d], 0)) # Normally the reshape is sufficient, but setting shape explicitly # teaches shape inference that params[1:].get_shape() matters # (in the case that transform_fn is None). ret.set_shape(ids.get_shape().concatenate(element_shape_s)) if not transform_fn: # If transform_fn was provided, the clip_by_norm was done above. ret = _clip(ret, ids, max_norm) return ret @tf_export("nn.embedding_lookup") def embedding_lookup( params, ids, partition_strategy="mod", name=None, validate_indices=True, # pylint: disable=unused-argument max_norm=None): """Looks up `ids` in a list of embedding tensors. This function is used to perform parallel lookups on the list of tensors in `params`. It is a generalization of @{tf.gather}, where `params` is interpreted as a partitioning of a large embedding tensor. `params` may be a `PartitionedVariable` as returned by using `tf.get_variable()` with a partitioner. If `len(params) > 1`, each element `id` of `ids` is partitioned between the elements of `params` according to the `partition_strategy`. In all strategies, if the id space does not evenly divide the number of partitions, each of the first `(max_id + 1) % len(params)` partitions will be assigned one more id. If `partition_strategy` is `"mod"`, we assign each id to partition `p = id % len(params)`. For instance, 13 ids are split across 5 partitions as: `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]` If `partition_strategy` is `"div"`, we assign ids to partitions in a contiguous manner. In this case, 13 ids are split across 5 partitions as: `[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]` The results of the lookup are concatenated into a dense tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`. Args: params: A single tensor representing the complete embedding tensor, or a list of P tensors all of same shape except for the first dimension, representing sharded embedding tensors. Alternatively, a `PartitionedVariable`, created by partitioning along dimension 0. Each element must be appropriately sized for the given `partition_strategy`. ids: A `Tensor` with type `int32` or `int64` containing the ids to be looked up in `params`. partition_strategy: A string specifying the partitioning strategy, relevant if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default is `"mod"`. name: A name for the operation (optional). validate_indices: DEPRECATED. If this operation is assigned to CPU, values in `indices` are always validated to be within range. If assigned to GPU, out-of-bound indices result in safe but unspecified behavior, which may include raising an error. max_norm: If provided, embedding values are l2-normalized to the value of max_norm. Returns: A `Tensor` with the same type as the tensors in `params`. Raises: ValueError: If `params` is empty. """ return _embedding_lookup_and_transform( params=params, ids=ids, partition_strategy=partition_strategy, name=name, max_norm=max_norm, transform_fn=None) @tf_export("nn.embedding_lookup_sparse") def embedding_lookup_sparse(params, sp_ids, sp_weights, partition_strategy="mod", name=None, combiner=None, max_norm=None): """Computes embeddings for the given ids and weights. This op assumes that there is at least one id for each row in the dense tensor represented by sp_ids (i.e. there are no rows with empty features), and that all the indices of sp_ids are in canonical row-major order. It also assumes that all id values lie in the range [0, p0), where p0 is the sum of the size of params along dimension 0. Args: params: A single tensor representing the complete embedding tensor, or a list of P tensors all of same shape except for the first dimension, representing sharded embedding tensors. Alternatively, a `PartitionedVariable`, created by partitioning along dimension 0. Each element must be appropriately sized for the given `partition_strategy`. sp_ids: N x M SparseTensor of int64 ids (typically from FeatureValueToId), where N is typically batch size and M is arbitrary. sp_weights: either a SparseTensor of float / double weights, or None to indicate all weights should be taken to be 1. If specified, sp_weights must have exactly the same shape and indices as sp_ids. partition_strategy: A string specifying the partitioning strategy, relevant if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default is `"mod"`. See `tf.nn.embedding_lookup` for more details. name: Optional name for the op. combiner: A string specifying the reduction op. Currently "mean", "sqrtn" and "sum" are supported. "sum" computes the weighted sum of the embedding results for each row. "mean" is the weighted sum divided by the total weight. "sqrtn" is the weighted sum divided by the square root of the sum of the squares of the weights. max_norm: If provided, each embedding is normalized to have l2 norm equal to max_norm before combining. Returns: A dense tensor representing the combined embeddings for the sparse ids. For each row in the dense tensor represented by sp_ids, the op looks up the embeddings for all ids in that row, multiplies them by the corresponding weight, and combines these embeddings as specified. In other words, if shape(combined params) = [p0, p1, ..., pm] and shape(sp_ids) = shape(sp_weights) = [d0, d1, ..., dn] then shape(output) = [d0, d1, ..., dn-1, p1, ..., pm]. For instance, if params is a 10x20 matrix, and sp_ids / sp_weights are [0, 0]: id 1, weight 2.0 [0, 1]: id 3, weight 0.5 [1, 0]: id 0, weight 1.0 [2, 3]: id 1, weight 3.0 with `combiner`="mean", then the output will be a 3x20 matrix where output[0, :] = (params[1, :] * 2.0 + params[3, :] * 0.5) / (2.0 + 0.5) output[1, :] = params[0, :] * 1.0 output[2, :] = params[1, :] * 3.0 Raises: TypeError: If sp_ids is not a SparseTensor, or if sp_weights is neither None nor SparseTensor. ValueError: If combiner is not one of {"mean", "sqrtn", "sum"}. """ if combiner is None: logging.warn("The default value of combiner will change from \"mean\" " "to \"sqrtn\" after 2016/11/01.") combiner = "mean" if combiner not in ("mean", "sqrtn", "sum"): raise ValueError("combiner must be one of 'mean', 'sqrtn' or 'sum'") if isinstance(params, variables.PartitionedVariable): params = list(params) # Iterate to get the underlying Variables. if not isinstance(params, list): params = [params] if not isinstance(sp_ids, sparse_tensor.SparseTensor): raise TypeError("sp_ids must be SparseTensor") ignore_weights = sp_weights is None if not ignore_weights: if not isinstance(sp_weights, sparse_tensor.SparseTensor): raise TypeError("sp_weights must be either None or SparseTensor") sp_ids.values.get_shape().assert_is_compatible_with( sp_weights.values.get_shape()) sp_ids.indices.get_shape().assert_is_compatible_with( sp_weights.indices.get_shape()) sp_ids.dense_shape.get_shape().assert_is_compatible_with( sp_weights.dense_shape.get_shape()) # TODO(yleon): Add enhanced node assertions to verify that sp_ids and # sp_weights have equal indices and shapes. with ops.name_scope(name, "embedding_lookup_sparse", params + [sp_ids]) as name: segment_ids = sp_ids.indices[:, 0] if segment_ids.dtype != dtypes.int32: segment_ids = math_ops.cast(segment_ids, dtypes.int32) ids = sp_ids.values if ignore_weights: ids, idx = array_ops.unique(ids) else: idx = None embeddings = embedding_lookup( params, ids, partition_strategy=partition_strategy, max_norm=max_norm) if not ignore_weights: weights = sp_weights.values if weights.dtype != embeddings.dtype: weights = math_ops.cast(weights, embeddings.dtype) # Reshape weights to allow broadcast ones = array_ops.fill( array_ops.expand_dims(array_ops.rank(embeddings) - 1, 0), 1) bcast_weights_shape = array_ops.concat([array_ops.shape(weights), ones], 0) orig_weights_shape = weights.get_shape() weights = array_ops.reshape(weights, bcast_weights_shape) # Set the weight shape, since after reshaping to bcast_weights_shape, # the shape becomes None. if embeddings.get_shape().ndims is not None: weights.set_shape( orig_weights_shape.concatenate( [1 for _ in range(embeddings.get_shape().ndims - 1)])) embeddings *= weights if combiner == "sum": embeddings = math_ops.segment_sum(embeddings, segment_ids, name=name) elif combiner == "mean": embeddings = math_ops.segment_sum(embeddings, segment_ids) weight_sum = math_ops.segment_sum(weights, segment_ids) embeddings = math_ops.div(embeddings, weight_sum, name=name) elif combiner == "sqrtn": embeddings = math_ops.segment_sum(embeddings, segment_ids) weights_squared = math_ops.pow(weights, 2) weight_sum = math_ops.segment_sum(weights_squared, segment_ids) weight_sum_sqrt = math_ops.sqrt(weight_sum) embeddings = math_ops.div(embeddings, weight_sum_sqrt, name=name) else: assert False, "Unrecognized combiner" else: assert idx is not None if combiner == "sum": embeddings = math_ops.sparse_segment_sum( embeddings, idx, segment_ids, name=name) elif combiner == "mean": embeddings = math_ops.sparse_segment_mean( embeddings, idx, segment_ids, name=name) elif combiner == "sqrtn": embeddings = math_ops.sparse_segment_sqrt_n( embeddings, idx, segment_ids, name=name) else: assert False, "Unrecognized combiner" return embeddings
42.624498
82
0.656145
5591e952289f7c4b940a6238c5810936ed0373bc
38
py
Python
Build folder/__init__.py
techbliss/Windows_Screenrecorder
7e0167b0cb907e790357f09e59ba0e43fe61e334
[ "MIT" ]
17
2016-09-30T21:26:05.000Z
2021-06-14T13:08:20.000Z
Build folder/__init__.py
techbliss/Windows_Screenrecorder
7e0167b0cb907e790357f09e59ba0e43fe61e334
[ "MIT" ]
null
null
null
Build folder/__init__.py
techbliss/Windows_Screenrecorder
7e0167b0cb907e790357f09e59ba0e43fe61e334
[ "MIT" ]
7
2016-10-06T10:24:37.000Z
2020-07-13T16:57:31.000Z
#auther Storm Shadow www.techbliss.org
38
38
0.842105
ce9d72bc89eeb35d70ac2c4616cc889865b71a43
3,452
py
Python
src/python/pants/backend/kotlin/lint/ktlint/rules.py
wonlay/pants
53c66503b6898e83c9c9596e56cde5ad9ed6a0d3
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/kotlin/lint/ktlint/rules.py
wonlay/pants
53c66503b6898e83c9c9596e56cde5ad9ed6a0d3
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/kotlin/lint/ktlint/rules.py
wonlay/pants
53c66503b6898e83c9c9596e56cde5ad9ed6a0d3
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import logging from dataclasses import dataclass from pants.backend.kotlin.lint.ktlint.skip_field import SkipKtlintField from pants.backend.kotlin.lint.ktlint.subsystem import KtlintSubsystem from pants.backend.kotlin.target_types import KotlinSourceField from pants.core.goals.fmt import FmtRequest, FmtResult from pants.core.goals.generate_lockfiles import GenerateToolLockfileSentinel from pants.engine.fs import Digest from pants.engine.internals.native_engine import Snapshot from pants.engine.internals.selectors import Get from pants.engine.process import ProcessResult from pants.engine.rules import collect_rules, rule from pants.engine.target import FieldSet, Target from pants.engine.unions import UnionRule from pants.jvm.jdk_rules import InternalJdk, JvmProcess from pants.jvm.resolve import jvm_tool from pants.jvm.resolve.coursier_fetch import ToolClasspath, ToolClasspathRequest from pants.jvm.resolve.jvm_tool import GenerateJvmLockfileFromTool from pants.util.logging import LogLevel from pants.util.strutil import pluralize logger = logging.getLogger(__name__) @dataclass(frozen=True) class KtlintFieldSet(FieldSet): required_fields = (KotlinSourceField,) source: KotlinSourceField @classmethod def opt_out(cls, tgt: Target) -> bool: return tgt.get(SkipKtlintField).value class KtlintRequest(FmtRequest): field_set_type = KtlintFieldSet name = KtlintSubsystem.options_scope class KtlintToolLockfileSentinel(GenerateToolLockfileSentinel): resolve_name = KtlintSubsystem.options_scope @rule(desc="Format with Ktlint", level=LogLevel.DEBUG) async def ktlint_fmt(request: KtlintRequest, tool: KtlintSubsystem, jdk: InternalJdk) -> FmtResult: if tool.skip: return FmtResult.skip(formatter_name=request.name) lockfile_request = await Get(GenerateJvmLockfileFromTool, KtlintToolLockfileSentinel()) tool_classpath = await Get(ToolClasspath, ToolClasspathRequest(lockfile=lockfile_request)) toolcp_relpath = "__toolcp" extra_immutable_input_digests = { toolcp_relpath: tool_classpath.digest, } args = [ "com.pinterest.ktlint.Main", "-F", *request.snapshot.files, ] result = await Get( ProcessResult, JvmProcess( jdk=jdk, argv=args, classpath_entries=tool_classpath.classpath_entries(toolcp_relpath), input_digest=request.snapshot.digest, extra_immutable_input_digests=extra_immutable_input_digests, extra_nailgun_keys=extra_immutable_input_digests, output_files=request.snapshot.files, description=f"Run Ktlint on {pluralize(len(request.field_sets), 'file')}.", level=LogLevel.DEBUG, ), ) output_snapshot = await Get(Snapshot, Digest, result.output_digest) return FmtResult.create(request, result, output_snapshot, strip_chroot_path=True) @rule def generate_ktlint_lockfile_request( _: KtlintToolLockfileSentinel, tool: KtlintSubsystem ) -> GenerateJvmLockfileFromTool: return GenerateJvmLockfileFromTool.create(tool) def rules(): return [ *collect_rules(), *jvm_tool.rules(), UnionRule(FmtRequest, KtlintRequest), UnionRule(GenerateToolLockfileSentinel, KtlintToolLockfileSentinel), ]
34.52
99
0.762457
a8fe044640830d0817ba8fe9d5268c6f7ba375db
1,919
py
Python
gevent/select.py
PythonCharmers/gevent-future
f0b8be81206b73c6f5fd5c66fab9fbd0c1eac85e
[ "MIT" ]
2
2019-05-12T22:01:32.000Z
2020-06-09T14:11:01.000Z
gevent/select.py
PythonCharmers/gevent-future
f0b8be81206b73c6f5fd5c66fab9fbd0c1eac85e
[ "MIT" ]
null
null
null
gevent/select.py
PythonCharmers/gevent-future
f0b8be81206b73c6f5fd5c66fab9fbd0c1eac85e
[ "MIT" ]
1
2019-05-12T22:01:18.000Z
2019-05-12T22:01:18.000Z
# Copyright (c) 2009-2011 Denis Bilenko. See LICENSE for details. from __future__ import absolute_import from gevent.event import Event from gevent.hub import get_hub __implements__ = ['select'] __all__ = ['error'] + __implements__ import select as __select__ error = __select__.error def get_fileno(obj): try: fileno_f = obj.fileno except AttributeError: if not isinstance(obj, (int, long)): raise TypeError('argument must be an int, or have a fileno() method: %r' % (obj, )) return obj else: return fileno_f() class SelectResult(object): __slots__ = ['read', 'write', 'event'] def __init__(self): self.read = [] self.write = [] self.event = Event() def add_read(self, socket): self.read.append(socket) self.event.set() def add_write(self, socket): self.write.append(socket) self.event.set() def select(rlist, wlist, xlist, timeout=None): """An implementation of :meth:`select.select` that blocks only the current greenlet. Note: *xlist* is ignored. """ watchers = [] loop = get_hub().loop io = loop.io MAXPRI = loop.MAXPRI result = SelectResult() try: try: for readfd in rlist: watcher = io(get_fileno(readfd), 1) watcher.priority = MAXPRI watcher.start(result.add_read, readfd) watchers.append(watcher) for writefd in wlist: watcher = io(get_fileno(writefd), 2) watcher.priority = MAXPRI watcher.start(result.add_write, writefd) watchers.append(watcher) except IOError as ex: raise error(*ex.args) result.event.wait(timeout=timeout) return result.read, result.write, [] finally: for watcher in watchers: watcher.stop()
27.028169
95
0.596144
9b0e3cb037ed4c9212e3a5673318ea6e11386c18
916
py
Python
settings.py
nikgun1984/ketolife_backend
d7c61791646a162061c454f8dedc2512d698cc53
[ "PostgreSQL", "Unlicense", "MIT" ]
1
2021-03-15T19:22:55.000Z
2021-03-15T19:22:55.000Z
settings.py
nikgun1984/ketolife_backend
d7c61791646a162061c454f8dedc2512d698cc53
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
settings.py
nikgun1984/ketolife_backend
d7c61791646a162061c454f8dedc2512d698cc53
[ "PostgreSQL", "Unlicense", "MIT" ]
null
null
null
import os from app import app from forms import LoginForm, UserAddForm from secrets import APP_KEY,APP_ID_RECIPE,APP_KEY_RECIPE CURR_USER_KEY = "curr_user" BASE_URL_SP = "https://api.spoonacular.com" BASE_URL_ED = "https://api.edamam.com" BASE_IMG_LINK = "https://spoonacular.com/cdn/ingredients_250x250"; BASE_URL_SP = "https://api.spoonacular.com" BASE_URL_ED = "https://api.edamam.com" APP_KEY = os.environ.get('APP_KEY',APP_KEY) APP_ID_RECIPE = os.environ.get('APP_ID_RECIPE', APP_ID_RECIPE) APP_KEY_RECIPE = os.environ.get('APP_KEY_RECIPE', APP_KEY_RECIPE) @app.context_processor def context_processor(): """Now forms will be available globally across all jinja templates""" login_form = LoginForm() signup_form = UserAddForm() classes = ["fa fa-user","fa fa-paper-plane","fa fa-lock","fa fa-check-circle"] return dict(login_form=login_form,signup_form=signup_form,classes=classes)
35.230769
82
0.7631
e6cea76e4d917d4f43a67d39d39ba97b072ea430
6,497
py
Python
baselines/convnets-keras/fcn/fabric_train.py
leix28/ML-Fabri
6776f1b93cc84ab40569af3052ffc30bee7f8910
[ "MIT" ]
null
null
null
baselines/convnets-keras/fcn/fabric_train.py
leix28/ML-Fabri
6776f1b93cc84ab40569af3052ffc30bee7f8910
[ "MIT" ]
null
null
null
baselines/convnets-keras/fcn/fabric_train.py
leix28/ML-Fabri
6776f1b93cc84ab40569af3052ffc30bee7f8910
[ "MIT" ]
null
null
null
""" adapted from keras example cifar10_cnn.py Train ResNet-18 on the CIFAR10 small images dataset. GPU run command with Theano backend (with TensorFlow, the GPU is automatically used): THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cifar10.py """ from __future__ import print_function import tensorflow as tf config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config) from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils from keras.callbacks import ReduceLROnPlateau, CSVLogger, EarlyStopping import tensorflow as tf import sys import datetime import os import shutil from keras.optimizers import Adam, Adadelta from convnets import AlexNet_FCN from datagenerator import data_gen import keras.backend as K import numpy as np import dataloader import datagenerator from keras.backend.tensorflow_backend import set_session from keras.metrics import top_k_categorical_accuracy def top_3_accuracy(y_true, y_pred): return top_k_categorical_accuracy(y_true, y_pred, k=3) set_session(sess) t = datetime.datetime.now().strftime("%Y%m%d%H%M%S") print(t) batch_size = 32 nb_classes = 14 nb_epoch = 100 outs = 31 data_augmentation = True # The data, shuffled and split between train and test sets: dataset_fn = '../../../data_preprocessing/material_dataset.txt' imgs_fn = '../../../../storage/center_227x227.npz' weights_fn = '../../../../storage/alexnet_weights.h5' #sz = 227 sz = 300 img_rows = sz img_cols = sz img_channels = 3 with tf.device('/gpu:0'): lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6) early_stopper = EarlyStopping(min_delta=0.001, patience=10) csv_logger = CSVLogger('alexnet.csv') #model = resnet.ResnetBuilder.build_resnet_18((img_channels, img_rows, img_cols), nb_classes) #model = resnet.ResnetBuilder.build_resnet_50((img_channels, img_rows, img_cols), nb_classes) model, outs = AlexNet_FCN(nb_classes=nb_classes, sz=sz) #model = AlexNet(weights_fn, nb_classes=nb_classes, sz=sz) #model = AlexNet(weights_fn, nb_classes=nb_classes) print("outs", outs) #opt = Adadelta(lr=0.01, rho=0.95, epsilon=1e-08, decay=0.0) #opt = Adadelta(lr=1, rho=0.95, epsilon=1e-08, decay=0.0) def sum_loss(y_true, y_pred): y_true = K.reshape(y_true, [batch_size*outs*outs, nb_classes]) y_pred = K.reshape(y_pred, [batch_size*outs*outs, nb_classes]) s = K.mean(K.categorical_crossentropy(y_true, y_pred)) return s opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) model.compile(#loss='categorical_crossentropy', loss=sum_loss, optimizer=opt, #metrics=['accuracy', top_3_accuracy]) metrics=['accuracy']) if data_augmentation: print('Using real-time data augmentation.') # This will do preprocessing and realtime data augmentation: r = 0.2 datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=r*100, width_shift_range=r, height_shift_range=r, shear_range=r, zoom_range=r, channel_shift_range=r, fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=False, rescale=None, preprocessing_function=None) # Compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied). #datagen.fit(X_train) def print_log(y_pred, Z, log_fn, k=5): fout = open(log_fn, 'w') acc1 = 0 acc3 = 0 cnt = 0 for i in range(0, len(y_pred), k): img_fn = Z[i][0] label = Z[i][1] loc = Z[i][2] print(img_fn, label, end=' ', file=fout) y_sum = np.sum(y_pred[i:i+k], axis=0) y_sum = np.sum(np.sum(y_sum, axis=0), axis=0) y = [(j, y_sum[j]) for j in range(nb_classes)] y_sorted = sorted(y, key=lambda d:d[1], reverse=True) for j in y_sorted[:5]: print(j[0], end=' ', file=fout) print("", file=fout) if y_sorted[0][0] == label: acc1 += 1 if y_sorted[0][0] == label or y_sorted[1][0] == label or y_sorted[2][0] == label: acc3 += 1 y_sum = np.zeros_like(y_pred[0]) cnt += 1 fout.close() return acc1 * 1.0 / cnt, acc3 * 1.0 / cnt def predict(model, val=True): y_preds = [] Z = [] for (x, y, z) in datagenerator.test_generator(dataset_fn, imgs_fn, val=val, sz=img_rows): y_pred = model.predict(x, batch_size=batch_size) y_preds.append(y_pred) Z = Z + z y_preds = np.vstack(y_preds) return y_preds, Z log_dir = '../../../../result/alexnet/{}/'.format(t) os.mkdir(log_dir) shutil.copy('./fabric_train.py', log_dir+'fabric_train.py') shutil.copy('./convnets.py', log_dir+'convnets.py') G = data_gen('../../../data_preprocessing/material_dataset.txt', batch_size=batch_size, datagen=datagen, sz=sz, outs=outs) # Fit the model on the batches generated by datagen.flow(). for epochs in range(nb_epoch): model.fit_generator(#datagen.flow(X_train, Y_train, batch_size=batch_size), #steps_per_epoch=X_train.shape[0] // batch_size, G, steps_per_epoch=500, epochs=1, verbose=1, max_q_size=100) #y_pred_valid = model.predict(X_valid, batch_size=batch_size) #y_pred_test = model.predict(X_test, batch_size=batch_size) y_pred_valid, Z_valid = predict(model, val=True) y_pred_test, Z_test = predict(model, val=False) k = 1 log_fn = log_dir + '.tmp.txt' val_acc = print_log(y_pred_valid, Z_valid, log_fn, k=k) test_acc = print_log(y_pred_test, Z_test, log_fn, k=k) log_fn = log_dir + 'val_{:02d}'.format(epochs) + '_{:.4f}_{:.4f}'.format(val_acc[1], test_acc[1]) + '.txt' print_log(y_pred_valid, Z_valid, log_fn, k=k) log_fn = log_dir + '{:02d}'.format(epochs) + '_{:.4f}_{:.4f}'.format(val_acc[1], test_acc[1]) + '.txt' print_log(y_pred_test, Z_test, log_fn, k=k) print(epochs, val_acc, test_acc)
34.375661
126
0.647837
77329a7454e67dc5c921506a54e18cba177b6346
26,577
py
Python
cmyui/web.py
cmyui/cmyui_pkg
6cef5af9f64763368c102487a19a039df67692e5
[ "MIT" ]
9
2020-11-30T11:46:53.000Z
2021-09-03T13:07:38.000Z
cmyui/web.py
cmyui/cmyui_pkg
6cef5af9f64763368c102487a19a039df67692e5
[ "MIT" ]
3
2021-02-13T01:45:05.000Z
2021-12-28T07:35:14.000Z
cmyui/web.py
cmyui/cmyui_pkg
6cef5af9f64763368c102487a19a039df67692e5
[ "MIT" ]
8
2020-08-20T01:33:31.000Z
2021-09-21T20:23:21.000Z
# -*- coding: utf-8 -*- # Domain-based asynchronous server implementation, written from # sockets, mostly with https://github.com/cmyui/gulag in mind. import asyncio import gzip import http import importlib import inspect import os import re import select import signal import socket import sys import urllib.parse from functools import wraps from time import perf_counter as clock from time import perf_counter_ns as clock_ns from typing import Any from typing import Callable from typing import Coroutine from typing import Iterable from typing import Optional from typing import Union from .logging import Ansi from .logging import log from .logging import printc from .logging import RGB from .utils import magnitude_fmt_time __all__ = ( 'Address', 'STATUS_LINES', 'ratelimit', 'Connection', 'RouteMap', 'Domain', 'Server' ) STATUS_LINES = { c.value: f'HTTP/1.1 {c.value} {c.phrase.upper()}' for c in http.HTTPStatus } def ratelimit(period: int, max_count: int, default_return: Optional[Any] = None ) -> Callable: """Utility decorator for global ratelimiting.""" period = period max_count = max_count default_return = default_return last_reset = 0 num_calls = 0 def decorate(f: Callable) -> Callable: # TODO: not an extra 18 lines for 6 char change if inspect.iscoroutinefunction(f): async def wrapper(*args, **kwargs) -> Optional[Any]: nonlocal period, max_count, last_reset, num_calls elapsed = clock() - last_reset period_remaining = period - elapsed if period_remaining <= 0: num_calls = 0 last_reset = clock() num_calls += 1 if num_calls > max_count: # call ratelimited. return default_return return await f(*args, **kwargs) else: def wrapper(*args, **kwargs) -> Optional[Any]: nonlocal period, max_count, last_reset, num_calls elapsed = clock() - last_reset period_remaining = period - elapsed if period_remaining <= 0: num_calls = 0 last_reset = clock() num_calls += 1 if num_calls > max_count: # call ratelimited. return default_return return f(*args, **kwargs) return wraps(f)(wrapper) return decorate # (host, port) for inet; sockpath for unix Address = Union[tuple[str, int], str] Hostname_Types = Union[str, Iterable[str], re.Pattern] REQUEST_LINE_RGX = re.compile( r'^(?P<cmd>GET|HEAD|POST|PUT|DELETE|PATCH|OPTIONS) ' r'(?P<path>/[^? ]*)(?P<args>\?[^ ]+)? ' # cursed? r'HTTP/(?P<httpver>1\.0|1\.1|2\.0|3\.0)$' ) class CaseInsensitiveDict(dict): """A dictionary with case insensitive keys.""" def __init__(self, *args, **kwargs) -> None: self._keystore = {} d = dict(*args, **kwargs) for k in d.keys(): self._keystore[k.lower()] = k return super().__init__(*args, **kwargs) def __setitem__(self, k, v) -> None: self._keystore[k.lower()] = k return super().__setitem__(k, v) def __getitem__(self, k) -> str: k_lower = k.lower() if k_lower in self._keystore: k = self._keystore[k_lower] return super().__getitem__(k) def __contains__(self, k: str) -> bool: k_lower = k.lower() if k_lower in self._keystore: k = self._keystore[k_lower] return super().__contains__(k) def get(self, k, failobj=None) -> Optional[str]: k_lower = k.lower() if k_lower in self._keystore: k = self._keystore[k_lower] return super().get(k, failobj) class Connection: __slots__ = ( 'client', # Request params 'headers', 'body', 'cmd', 'path', 'raw_path', 'httpver', 'args', 'multipart_args', 'files', '_buf', # Response params 'resp_code', 'resp_headers' ) def __init__(self, client: socket.socket) -> None: self.client = client # Request params self.headers = CaseInsensitiveDict() self.body: Optional[memoryview] = None self.cmd = None self.path = None self.raw_path = None self.httpver = 0.0 self.args: dict[str, str] = {} self.multipart_args: dict[str, str] = {} self.files: dict[str, bytes] = {} # Response params self.resp_code = 200 self.resp_headers = {} self._buf = bytearray() """ Request methods """ def _parse_urlencoded(self, data: str) -> None: for a_pair in data.split('&'): a_key, a_val = a_pair.split('=', 1) self.args[a_key] = a_val def _parse_headers(self, data: str) -> None: """Parse the http headers from the internal body.""" # split up headers into http line & header lines http_line, *header_lines = data.split('\r\n') # parse http line self.cmd, self.raw_path, _httpver = http_line.split(' ', 2) self.httpver = float(_httpver[5:]) # parse urlencoded args from raw_path if (args_offs := self.raw_path.find('?')) != -1: self._parse_urlencoded(self.raw_path[args_offs + 1:]) self.path = self.raw_path[:args_offs] else: self.path = self.raw_path # parse header lines for h_key, h_val in [h.split(': ', 1) for h in header_lines]: self.headers[h_key] = h_val def _parse_multipart(self) -> None: """Parse multipart/form-data from the internal body.""" boundary = self.headers['Content-Type'].split('boundary=', 1)[1] for param in self.body.tobytes().split(f'--{boundary}'.encode())[1:-1]: headers, _body = param.split(b'\r\n\r\n', 1) body = _body[:-2] # remove \r\n # find Content-Disposition for header in headers.decode().split('\r\n')[1:]: h_key, h_val = header.split(': ', 1) if h_key == 'Content-Disposition': # find 'name' or 'filename' attribute attrs = {} for attr in h_val.split('; ')[1:]: a_key, _a_val = attr.split('=', 1) attrs[a_key] = _a_val[1:-1] # remove "" if 'filename' in attrs: a_val = attrs['filename'] self.files[a_val] = body break elif 'name' in attrs: a_val = attrs['name'] self.multipart_args[a_val] = body.decode() break break async def parse(self) -> bytes: """Receive & parse the http request from the client.""" loop = asyncio.get_running_loop() while (body_delim_offs := self._buf.find(b'\r\n\r\n')) == -1: self._buf += await loop.sock_recv(self.client, 1024) # we have all headers, parse them self._parse_headers(self._buf[:body_delim_offs].decode()) if 'Content-Length' not in self.headers: # the request has no body to read. return content_length = int(self.headers['Content-Length']) to_read = ((body_delim_offs + 4) + content_length) - len(self._buf) if to_read: # there's more to read; preallocate the space # required and read into it from the socket. self._buf += b"\x00" * to_read # is this rly the fastest way? with memoryview(self._buf)[-to_read:] as read_view: while to_read: nbytes = await loop.sock_recv_into(self.client, read_view) read_view = read_view[nbytes:] to_read -= nbytes # all data read from the socket, store a readonly view of the body. self.body = memoryview(self._buf)[body_delim_offs + 4:].toreadonly() if self.cmd == 'POST': if 'Content-Type' in self.headers: content_type = self.headers['Content-Type'] if content_type.startswith('multipart/form-data'): self._parse_multipart() elif content_type == 'application/x-www-form-urlencoded': self._parse_urlencoded( urllib.parse.unquote(self.body.tobytes().decode()) ) # hmmm """ Response methods """ async def send(self, status: int, body: bytes = b'') -> None: """Attach appropriate headers and send data back to the client.""" # Insert HTTP response line & content at the beginning of headers. header_lines = [STATUS_LINES[status]] if body: # Add content-length header if we are sending a body. header_lines.append(f'Content-Length: {len(body)}') # Add all user-specified response headers. header_lines.extend(map(': '.join, self.resp_headers.items())) # Create an encoded response from the headers. resp = ('\r\n'.join(header_lines) + '\r\n\r\n').encode() # Add body to response if we have one to send. if body: resp += body # Send all data to the client. loop = asyncio.get_running_loop() try: await loop.sock_sendall(self.client, resp) except BrokenPipeError: # TODO: detect this earlier? log('Connection closed by client.', Ansi.LRED) class Route: """A single endpoint within of domain.""" __slots__ = ('path', 'methods', 'handler', 'cond') def __init__(self, path: Union[str, Iterable, re.Pattern], methods: list[str], handler: Callable) -> None: self.methods = methods self.handler = handler if isinstance(path, str): self.path = path self.cond = lambda k: k == path elif isinstance(path, Iterable): if isinstance(next(iter(path)), re.Pattern): self.cond = lambda k: any([p.match(k) for p in path]) self.path = str(type(path)([f'~{p.pattern}' for p in path])) else: self.cond = lambda k: k in path self.path = str(path) elif isinstance(path, re.Pattern): self.cond = lambda k: path.match(k) self.path = f'~{path.pattern}' # ~ for rgx def __repr__(self) -> str: return f'{"/".join(self.methods)} {self.path}' def matches(self, path: str, method: str) -> bool: """Check if a given path & method match internals.""" return method in self.methods and self.cond(path) class RouteMap: """A collection of endpoints of a domain.""" __slots__ = ('routes',) def __init__(self) -> None: self.routes = set() # {Route(), ...} def route(self, path: Hostname_Types, methods: list[str] = ['GET']) -> Callable: """Add a given route to the routemap.""" if not isinstance(path, (str, Iterable, re.Pattern)): raise TypeError('Route should be str | Iterable[str] | re.Pattern') def wrapper(handler: Coroutine) -> Coroutine: self.routes.add(Route(path, methods, handler)) return handler return wrapper def find_route(self, path: str, method: str) -> Optional[Route]: """Find the first route matching a given path & method.""" for route in self.routes: if route.matches(path, method): return route class Domain(RouteMap): """The main routemap, with a hostname. Allows for merging of additional routemaps.""" __slots__ = ('hostname', 'cond',) def __init__(self, hostname: Hostname_Types) -> None: super().__init__() self.hostname = hostname # for __repr__ if isinstance(hostname, str): self.cond = lambda hn: hn == hostname elif isinstance(hostname, Iterable): self.cond = lambda hn: hn in hostname self.hostname = str(hostname) elif isinstance(hostname, re.Pattern): self.cond = lambda hn: hostname.match(hn) is not None self.hostname = f'~{hostname.pattern}' # ~ for rgx else: raise TypeError('Key should be str | Iterable[str] | re.Pattern') def __repr__(self) -> str: return self.hostname def matches(self, hostname: str) -> bool: """Check if a given hostname matches our condition.""" return self.cond(hostname) def add_map(self, rmap: RouteMap) -> None: """Add an existing routemap to our domain.""" self.routes |= rmap.routes class Server: """An asynchronous multi-domain server.""" __slots__ = ( 'name', 'max_conns', 'gzip', 'debug', 'sock_family', 'before_serving', 'after_serving', 'domains', 'exceptions', 'tasks', '_task_coros' ) def __init__(self, **kwargs) -> None: self.name = kwargs.get('name', 'Server') self.max_conns = kwargs.get('max_conns', 5) self.gzip = kwargs.get('gzip', 0) # 0-9 valid levels self.debug = kwargs.get('debug', False) self.sock_family: Optional[socket.AddressFamily] = None self.before_serving: Optional[Callable] = None self.after_serving: Optional[Callable] = None self.domains = kwargs.get('domains', set()) self.exceptions = 0 # num of exceptions handled self.tasks = kwargs.get('tasks', set()) self._task_coros = kwargs.get('pending_tasks', set()) # coros not yet run def set_sock_mode(self, addr: Address) -> None: """Determine the type of socket from the address given.""" is_inet = ( isinstance(addr, tuple) and len(addr) == 2 and isinstance(addr[0], str) and isinstance(addr[1], int) ) if is_inet: self.sock_family = socket.AF_INET elif isinstance(addr, str): self.sock_family = socket.AF_UNIX else: raise ValueError('Invalid address.') @property def using_unix_socket(self) -> bool: return self.sock_family is socket.AF_UNIX # Domain management def add_domain(self, domain: Domain) -> None: """Add a domain to the server.""" self.domains.add(domain) def add_domains(self, domains: set[Domain]) -> None: """Add multiple domains to the server.""" self.domains |= domains def remove_domain(self, domain: Domain) -> None: """Remove a domain from the server.""" self.domains.remove(domain) def remove_domains(self, domains: set[Domain]) -> None: """Remove multiple domains from the server.""" self.domains -= domains def find_domain(self, hostname: str): """Find the first domain matching a given hostname.""" for domain in self.domains: if domain.matches(hostname): return domain # Task management def add_pending_task(self, coro: Coroutine) -> None: """Add a coroutine to be launched as a task at startup & shutdown cleanly on shutdown.""" self._task_coros.add(coro) def remove_pending_task(self, coro: Coroutine) -> None: """Remove a pending coroutine awaiting server launch.""" self._task_coros.remove(coro) def add_task(self, task: asyncio.Task) -> None: """Add an existing task to be cleaned up on shutdown.""" self.tasks.add(task) def remove_task(self, task: asyncio.Task) -> None: """Remove an existing task from being cleaned up on shutdown.""" self.tasks.remove(task) # True Internals async def dispatch(self, conn: Connection) -> int: """Dispatch the connection to any matching routes.""" host = conn.headers['Host'] path = conn.path resp = None if domain := self.find_domain(host): if route := domain.find_route(path, conn.cmd): resp = await route.handler(conn) or b'' if resp is not None: if isinstance(resp, tuple): # code explicitly given code, resp = resp else: # use 200 as default code, resp = (200, resp) # gzip responses larger than a single ethernet frame # if it's enabled server-side and client supports it if ( self.gzip > 0 and 'Accept-Encoding' in conn.headers and 'gzip' in conn.headers['Accept-Encoding'] and len(resp) > 1500 # ethernet frame size (minus headers) ): # ignore files that're already compressed heavily if not ( 'Content-Type' in conn.resp_headers and conn.resp_headers['Content-Type'] in ( # TODO: surely there's more i should be ignoring 'image/png', 'image/jpeg' ) ): resp = gzip.compress(resp, self.gzip) conn.resp_headers['Content-Encoding'] = 'gzip' else: code, resp = (404, b'Not Found.') await conn.send(code, resp) return code async def handle(self, client: socket.socket) -> None: """Handle a single client socket from the server.""" if self.debug: t1 = clock_ns() # read & parse connection conn = Connection(client) await conn.parse() if self.debug: t2 = clock_ns() if 'Host' not in conn.headers: log('Connection missing Host header.', Ansi.LRED) client.shutdown(socket.SHUT_RDWR) client.close() return # dispatch the connection # to the appropriate handler code = await self.dispatch(conn) if self.debug: # event complete, stop timing, log result and cleanup t3 = clock_ns() t2_t1 = magnitude_fmt_time(t2 - t1) t3_t2 = magnitude_fmt_time(t3 - t2) col = (Ansi.LGREEN if 200 <= code < 300 else Ansi.LYELLOW if 300 <= code < 400 else Ansi.LRED) uri = f'{conn.headers["Host"]}{conn.path}' log(f'[{conn.cmd}] {code} {uri}', col, end=' | ') printc(f'Parsing: {t2_t1}', Ansi.LBLUE, end=' | ') printc(f'Handling: {t3_t2}', Ansi.LBLUE) try: client.shutdown(socket.SHUT_RDWR) client.close() except socket.error: pass def _default_cb(self, t: asyncio.Task) -> None: """A simple callback for tasks to log & call exc handler.""" if not t.cancelled(): exc = t.exception() if exc and not isinstance(exc, (SystemExit, KeyboardInterrupt)): self.exceptions += 1 loop = asyncio.get_running_loop() loop.default_exception_handler({ 'exception': exc }) def run( self, addr: Address, loop: Optional[asyncio.AbstractEventLoop] = None, handle_restart: bool = True, # using USR1 signal ) -> None: """Run the server indefinitely.""" if not loop: # no event loop given, check if one's running try: loop = asyncio.get_running_loop() except RuntimeError: # no event loop running, we need to make our own if spec := importlib.util.find_spec('uvloop'): # use uvloop if it's already installed # TODO: could make this configurable # incase people want to disable it # for their own use-cases? uvloop = importlib.util.module_from_spec(spec) spec.loader.exec_module(uvloop) asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) loop = asyncio.new_event_loop() self.set_sock_mode(addr) # figure out family (INET4/UNIX) async def runner() -> None: log(f'=== Starting up {self.name} ===', Ansi.LMAGENTA) loop = asyncio.get_running_loop() # Call our before_serving coroutine, # if theres one specified. if self.before_serving: await self.before_serving() # Start pending coroutine tasks. if self.debug and self._task_coros: log(f'-> Starting {len(self._task_coros)} tasks.', Ansi.LMAGENTA) for coro in self._task_coros: task = loop.create_task(coro) task.add_done_callback(self._default_cb) # XXX: never removed? self.tasks.add(task) self._task_coros.clear() # Setup socket & begin listening if self.using_unix_socket: if os.path.exists(addr): os.remove(addr) # TODO: this whole section is implemented pretty horribly, # there's almost certainly a way to use loop.add_reader rather # than using select, and the rest is a result of using select. # read/write signal listening socks sig_rsock, sig_wsock = os.pipe() os.set_blocking(sig_wsock, False) signal.set_wakeup_fd(sig_wsock) # connection listening sock lsock = socket.socket(self.sock_family) lsock.setblocking(False) lsock.bind(addr) if self.using_unix_socket: os.chmod(addr, 0o777) lsock.listen(self.max_conns) log(f'-> Listening @ {addr}', RGB(0x00ff7f)) # TODO: terminal input support (tty, termios fuckery) # though, tbh this should be moved into gulag as it's # mostly a gulag-specific thing, and it'll be easier # to manage all the printing stuff that way. should_close = False should_restart = False while True: await asyncio.sleep(0.01) # skip loop iteration rlist, _, _ = select.select([lsock, sig_rsock], [], [], 0) for reader in rlist: if reader is lsock: # new connection received for server client, _ = await loop.sock_accept(lsock) task = loop.create_task(self.handle(client)) task.add_done_callback(self._default_cb) elif reader is sig_rsock: # received a blocked signal, shutdown sig_received = signal.Signals(os.read(sig_rsock, 1)[0]) if sig_received is signal.SIGINT: print('\x1b[2K', end='\r') # clear ^C from console elif sig_received is signal.SIGUSR1: should_restart = True log(f'Received {signal.strsignal(sig_received)}', Ansi.LRED) should_close = True else: raise RuntimeError(f'Unknown reader {reader}') if should_close: break # server closed, clean things up. for sock_fd in {lsock.fileno(), sig_rsock, sig_wsock}: os.close(sock_fd) signal.set_wakeup_fd(-1) if self.using_unix_socket: os.remove(addr) log('-> Cancelling tasks', Ansi.LMAGENTA) for task in self.tasks: task.cancel() await asyncio.gather(*self.tasks, return_exceptions=True) if in_progress := [t for t in asyncio.all_tasks() if t is not asyncio.current_task()]: try: # allow up to 5 seconds for in-progress handlers # to finish their execution, just incase they're # in a half-complete state. we wouldn't want to # get any sql tables into a weird state, or alike. log(f'-> Awaiting {len(in_progress)} ' 'in-progress handler(s).', Ansi.LMAGENTA) await asyncio.wait(in_progress, loop=loop, timeout=5.0) except asyncio.TimeoutError: log('-> Timed out awaiting handlers, cancelling them.', Ansi.LMAGENTA) to_await = [] for task in in_progress: if not task.cancelled(): task.cancel() to_await.append(task) await asyncio.gather(*to_await, return_exceptions=True) if self.after_serving: await self.after_serving() return should_restart # ignore any signal events in the code, the selector loop will # pick up on signals from the fd being awoken from set_wakeup_fd. def _sighandler_noop(signum, frame): pass signals = {signal.SIGINT, signal.SIGTERM, signal.SIGHUP} if handle_restart: signals.add(signal.SIGUSR1) for sig in signals: signal.signal(sig, _sighandler_noop) def _runner_cb(fut: asyncio.Future) -> None: if not fut.cancelled(): exc = fut.exception() if exc and not isinstance(exc, (SystemExit, KeyboardInterrupt)): loop.default_exception_handler({ 'exception': exc }) loop.stop() """ run the event loop """ future = asyncio.ensure_future(runner(), loop=loop) future.add_done_callback(_runner_cb) try: loop.run_forever() finally: future.remove_done_callback(_runner_cb) loop.close() log(f'=== Shut down {self.name} ===', Ansi.LMAGENTA) should_restart = future.result() if should_restart: log('=== Server restarting ===', Ansi.LMAGENTA) os.execv(sys.executable, [sys.executable] + sys.argv)
34.877953
90
0.55311
04cad023afe8c9d57bcf8ba134bbe5389ac180ac
4,406
py
Python
cms/utils/__init__.py
DrMeers/django-cms-2.0
d563d912c99f0c138a66d99829d8d0133226894e
[ "BSD-3-Clause" ]
4
2016-05-07T11:50:25.000Z
2017-12-04T10:30:20.000Z
cms/utils/__init__.py
DrMeers/django-cms-2.0
d563d912c99f0c138a66d99829d8d0133226894e
[ "BSD-3-Clause" ]
1
2015-06-08T08:27:11.000Z
2015-06-08T10:40:27.000Z
cms/utils/__init__.py
DrMeers/django-cms-2.0
d563d912c99f0c138a66d99829d8d0133226894e
[ "BSD-3-Clause" ]
null
null
null
# TODO: this is just stuff from utils.py - should be splitted / moved from django.shortcuts import render_to_response from django.template import RequestContext from django.http import HttpResponse, HttpResponseRedirect from django.conf import settings from cms.utils.i18n import get_default_language # !IMPORTANT: Page cant be imported here, because we will get cyclic import!! def auto_render(func): """Decorator that put automaticaly the template path in the context dictionary and call the render_to_response shortcut""" def _dec(request, *args, **kwargs): t = None if kwargs.get('only_context', False): # return only context dictionary del(kwargs['only_context']) response = func(request, *args, **kwargs) if isinstance(response, HttpResponseRedirect): raise Exception("cannot return context dictionary because a HttpResponseRedirect has been found") (template_name, context) = response return context if "template_name" in kwargs: t = kwargs['template_name'] del kwargs['template_name'] response = func(request, *args, **kwargs) if isinstance(response, HttpResponse): return response (template_name, context) = response if not t: t = template_name context['template_name'] = t return render_to_response(t, context, context_instance=RequestContext(request)) return _dec def get_template_from_request(request, obj=None, no_current_page=False): """ Gets a valid template from different sources or falls back to the default template. """ template = None if len(settings.CMS_TEMPLATES) == 1: return settings.CMS_TEMPLATES[0][0] if "template" in request.REQUEST: template = request.REQUEST['template'] if not template and obj is not None: template = obj.get_template() if not template and not no_current_page and hasattr(request, "current_page"): current_page = request.current_page if hasattr(current_page, "get_template"): template = current_page.get_template() if template is not None and template in dict(settings.CMS_TEMPLATES).keys(): if template == settings.CMS_TEMPLATE_INHERITANCE_MAGIC and obj: # Happens on admin's request when changing the template for a page # to "inherit". return obj.get_template() return template return settings.CMS_TEMPLATES[0][0] def get_language_from_request(request, current_page=None): from cms.models import Page """ Return the most obvious language according the request """ if settings.CMS_DBGETTEXT: return get_default_language() language = request.REQUEST.get('language', None) if language: if not language in dict(settings.CMS_LANGUAGES).keys(): language = None if language is None: language = getattr(request, 'LANGUAGE_CODE', None) if language: if not language in dict(settings.CMS_LANGUAGES).keys(): language = None # TODO: This smells like a refactoring oversight - was current_page ever a page object? It appears to be a string now if language is None and isinstance(current_page, Page): # in last resort, get the first language available in the page languages = current_page.get_languages() if len(languages) > 0: language = languages[0] if language is None: # language must be defined in CMS_LANGUAGES, so check first if there # is any language with LANGUAGE_CODE, otherwise try to split it and find # best match language = get_default_language() return language def get_page_from_request(request): """ tries to get a page from a request if the page hasn't been handled by the cms urls.py """ if hasattr(request, '_current_page_cache'): return request._current_page_cache else: path = request.path from cms.views import details kw = {} # TODO: very ugly - change required! if path.startswith('/admin/'): kw['page_id']=path.split("/")[0] else: kw['slug']=path[1:-1] resp = details(request, no404=True, only_context=True, **kw) return resp['current_page']
37.982759
121
0.660463
d61e50ff17af44ff7a412609a82fd8be0ec289c7
19
py
Python
version.py
alexfikl/PyWENO
224fe7459f00578728b151531367c67c62f57c2b
[ "BSD-3-Clause" ]
26
2015-07-09T13:32:39.000Z
2021-10-13T06:55:07.000Z
version.py
alexfikl/PyWENO
224fe7459f00578728b151531367c67c62f57c2b
[ "BSD-3-Clause" ]
4
2015-03-16T16:11:31.000Z
2021-03-08T17:33:41.000Z
version.py
alexfikl/PyWENO
224fe7459f00578728b151531367c67c62f57c2b
[ "BSD-3-Clause" ]
12
2015-08-14T12:44:37.000Z
2022-01-09T12:03:13.000Z
version = '0.11.2'
9.5
18
0.578947
abf5473a56ccd111e09deec77cc5fa4ffcc19c81
2,548
py
Python
iota/multisig/crypto/addresses.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
347
2016-12-23T14:28:06.000Z
2019-09-30T13:46:30.000Z
iota/multisig/crypto/addresses.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
194
2016-12-22T21:22:47.000Z
2019-10-01T09:01:16.000Z
iota/multisig/crypto/addresses.py
EasonC13/iota.py
f596c1ac0d9bcbceda1cf6109cd921943a6599b3
[ "MIT" ]
147
2017-01-08T13:14:47.000Z
2019-10-01T22:27:31.000Z
from typing import List, Optional from iota.crypto import HASH_LENGTH from iota.crypto.kerl import Kerl from iota.crypto.types import Digest from iota.multisig.types import MultisigAddress __all__ = [ 'MultisigAddressBuilder', ] class MultisigAddressBuilder(object): """ Creates multisig addresses. Note that this class generates a single address from multiple inputs (digests), unlike :py:class:`iota.crypto.addresses.AddressGenerator` which generates multiple addresses from a single input (seed). """ def __init__(self) -> None: super(MultisigAddressBuilder, self).__init__() self._digests: List[Digest] = [] """ Keeps track of digests that were added, so that we can attach them to the final :py:class:`MultisigAddress` object. """ self._address: Optional[MultisigAddress] = None """ Caches the generated address. Generating the address modifies the internal state of the curl sponge, so each :py:class:`MultisigAddressBuilder` instance can only generate a single address. """ self._sponge = Kerl() def add_digest(self, digest: Digest) -> None: """ Absorbs a digest into the sponge. .. important:: Keep track of the order that digests are added! To spend inputs from a multisig address, you must provide the private keys in the same order! References: - https://github.com/iotaledger/wiki/blob/master/multisigs.md#spending-inputs """ if self._address: raise ValueError('Cannot add digests once an address is extracted.') self._sponge.absorb(digest.as_trits()) self._digests.append(digest) def get_address(self) -> MultisigAddress: """ Returns the new multisig address. Note that you can continue to add digests after extracting an address; the next address will use *all* of the digests that have been added so far. """ if not self._digests: raise ValueError( 'Must call ``add_digest`` at least once ' 'before calling ``get_address``.', ) if not self._address: address_trits = [0] * HASH_LENGTH self._sponge.squeeze(address_trits) self._address = MultisigAddress.from_trits( address_trits, digests=self._digests[:], ) return self._address
29.287356
85
0.624804
c85f9aafe0225abdd8337f26c5344509dd7f18f9
3,078
py
Python
app/core/management/utils/notification.py
OpenLXP/openlxp-xms
ad1a33c6e484a327382956b8541b973c0d020ed8
[ "Apache-2.0" ]
null
null
null
app/core/management/utils/notification.py
OpenLXP/openlxp-xms
ad1a33c6e484a327382956b8541b973c0d020ed8
[ "Apache-2.0" ]
6
2020-12-15T18:33:07.000Z
2022-03-18T13:43:22.000Z
app/core/management/utils/notification.py
OpenLXP/openlxp-xms
ad1a33c6e484a327382956b8541b973c0d020ed8
[ "Apache-2.0" ]
null
null
null
import logging from email.mime.application import MIMEApplication import boto3 from botocore.exceptions import ClientError from django.conf import settings from django.core.mail import EmailMessage logger = logging.getLogger('dict_config_logger') # Create SES client def email_verification(email): """Function to send email verification""" ses = boto3.client('ses') check = check_if_email_verified(email) if check: logger.info("Email is sent for Verification") response = ses.verify_email_identity( EmailAddress=email ) logger.info(response) def check_if_email_verified(email): """Function to check if email id from user is verified """ list_emails = list_email_verified() if email in list_emails: logger.info("Email is already Verified") return False return True def list_email_verified(): """Function to return list of verified emails """ ses = boto3.client('ses') response = ses.list_identities( IdentityType='EmailAddress', MaxItems=10 ) logger.info(response['Identities']) return response['Identities'] def send_notifications(email, sender): """This function sends email of a log file """ logger.info('Sending email to recipients') # Replace sender@example.com with your "From" address. # This address must be verified with Amazon SES. SENDER = sender # Replace recipient@example.com with a "To" address. If your account # is still in the sandbox, this address must be verified. RECIPIENT = email # The subject line for the email. SUBJECT = "New Message From OpenLXP Portal" logger.info(sender) logger.info(email) # The full path to the file that will be attached to the email. ATTACHMENT = getattr(settings, "LOG_PATH", None) # # The HTML body of the email. BODY_HTML = """\ <html> <head></head> <body> <h1>Hello!</h1> <p>Please check the attached file for OpenLXP Notifications</p> </body> </html> """ # Define the attachment part and encode it using MIMEApplication. att = MIMEApplication(open(ATTACHMENT, 'rb').read()) # Add a header to tell the email client to treat this part as an # attachment, and to give the attachment a name. att.add_header('Content-Disposition', 'attachment', filename="OpenLXP notifications ") for each_recipient in RECIPIENT: try: # Provide the contents of the email. mail = EmailMessage(SUBJECT, BODY_HTML, SENDER, [each_recipient]) mail.content_subtype = "html" # Add the attachment to the parent container. mail.attach(att) mail.send() logging.FileHandler(getattr(settings, "LOG_PATH", None), mode='w') # Display an error if something goes wrong. except ClientError as e: logger.error(e.response['Error']['Message']) continue
29.883495
72
0.64295
c1dc66e04e221cf1d5f4f98ab1187340395fe1cc
7,531
py
Python
trading_calendars/tests/test_asex_calendar.py
quantrocket-llc/trading-calendars
b72630cbcb288601c62e61ebe002a9043f9a3112
[ "Apache-2.0" ]
1
2020-07-25T06:18:30.000Z
2020-07-25T06:18:30.000Z
trading_calendars/tests/test_asex_calendar.py
quantrocket-llc/trading-calendars
b72630cbcb288601c62e61ebe002a9043f9a3112
[ "Apache-2.0" ]
13
2021-04-13T06:49:23.000Z
2022-03-31T00:08:10.000Z
trading_calendars/tests/test_asex_calendar.py
quantrocket-llc/trading-calendars
b72630cbcb288601c62e61ebe002a9043f9a3112
[ "Apache-2.0" ]
3
2020-03-05T23:38:14.000Z
2021-12-12T00:31:36.000Z
from unittest import TestCase import pandas as pd from pytz import UTC from trading_calendars.exchange_calendar_asex import ASEXExchangeCalendar from .test_trading_calendar import ExchangeCalendarTestBase class ASEXCalendarTestCase(ExchangeCalendarTestBase, TestCase): answer_key_filename = "asex" calendar_class = ASEXExchangeCalendar # The ASEX is open from 10:00 to 5:20PM on its longest trading day MAX_SESSION_HOURS = 7.33 HAVE_EARLY_CLOSES = False DAYLIGHT_SAVINGS_DATES = ["2018-03-26", "2018-10-29"] def test_regular_holidays(self): all_sessions = self.calendar.all_sessions expected_holidays = [ pd.Timestamp("2019-01-01", tz=UTC), # New Year's Day pd.Timestamp("2017-01-06", tz=UTC), # Epiphany pd.Timestamp("2019-03-11", tz=UTC), # Orthodox Ash Monday pd.Timestamp("2019-03-25", tz=UTC), # National Holiday pd.Timestamp("2019-04-19", tz=UTC), # Good Friday pd.Timestamp("2019-04-22", tz=UTC), # Easter Monday pd.Timestamp("2019-04-26", tz=UTC), # Orthodox Good Friday pd.Timestamp("2019-04-29", tz=UTC), # Orthodox Easter Monday pd.Timestamp("2019-05-01", tz=UTC), # Labour Day pd.Timestamp("2019-06-17", tz=UTC), # Orthodox Whit Monday pd.Timestamp("2019-08-15", tz=UTC), # Assumption Day pd.Timestamp("2019-10-28", tz=UTC), # National Holiday pd.Timestamp("2019-12-24", tz=UTC), # Christmas Eve pd.Timestamp("2019-12-25", tz=UTC), # Christmas Day pd.Timestamp("2019-12-26", tz=UTC), # Second Day of Christmas ] for holiday_label in expected_holidays: self.assertNotIn(holiday_label, all_sessions) def test_holidays_fall_on_weekend(self): all_sessions = self.calendar.all_sessions # All holidays that fall on a weekend should not be made # up, so ensure surrounding days are open market expected_sessions = [ # New Years Day on Sunday, Jan 1st pd.Timestamp("2011-12-30", tz=UTC), pd.Timestamp("2012-01-02", tz=UTC), # Epiphany on Sunday, Jan 6th pd.Timestamp("2019-01-04", tz=UTC), pd.Timestamp("2019-01-07", tz=UTC), # National Holiday on Sunday, Mar 25th pd.Timestamp("2018-03-23", tz=UTC), pd.Timestamp("2018-03-26", tz=UTC), # Labour Day on Sunday, May 1st pd.Timestamp("2011-04-29", tz=UTC), pd.Timestamp("2011-05-02", tz=UTC), # Assumption Day on Saturday, Aug 15th pd.Timestamp("2015-08-14", tz=UTC), pd.Timestamp("2015-08-17", tz=UTC), # National Holiday on Saturday, Oct 28 pd.Timestamp("2015-10-27", tz=UTC), pd.Timestamp("2015-10-30", tz=UTC), # Christmas Eve on a Sunday # Note: 25th, 26th both holidays pd.Timestamp("2017-12-22", tz=UTC), pd.Timestamp("2017-12-27", tz=UTC), # Christmas on a Sunday # Note: 26th a holiday pd.Timestamp("2016-12-23", tz=UTC), pd.Timestamp("2016-12-27", tz=UTC), # 2nd Day of Christmas on Saturday, Dec 26 # Note: 25th, 24th both holidays pd.Timestamp("2015-12-23", tz=UTC), pd.Timestamp("2015-12-28", tz=UTC), ] for session_label in expected_sessions: self.assertIn(session_label, all_sessions) def test_orthodox_easter(self): """ The Athens Stock Exchange observes Orthodox (or Eastern) Easter, as well as Western Easter. All holidays that are tethered to Easter (i.e. Whit Monday, Good Friday, etc.), are relative to Orthodox Easter. This test checks that Orthodox Easter and all related holidays are correct. """ all_sessions = self.calendar.all_sessions expected_holidays = [ # Some Orthodox Easter dates pd.Timestamp("2005-05-01", tz=UTC), pd.Timestamp("2006-04-23", tz=UTC), pd.Timestamp("2009-04-19", tz=UTC), pd.Timestamp("2013-05-05", tz=UTC), pd.Timestamp("2015-04-12", tz=UTC), pd.Timestamp("2018-04-08", tz=UTC), # Some Orthodox Good Friday dates pd.Timestamp("2002-05-03", tz=UTC), pd.Timestamp("2005-04-29", tz=UTC), pd.Timestamp("2008-04-25", tz=UTC), pd.Timestamp("2009-04-17", tz=UTC), pd.Timestamp("2016-04-29", tz=UTC), pd.Timestamp("2017-04-14", tz=UTC), # Some Orthodox Whit Monday dates pd.Timestamp("2002-06-24", tz=UTC), pd.Timestamp("2005-06-20", tz=UTC), pd.Timestamp("2006-06-12", tz=UTC), pd.Timestamp("2008-06-16", tz=UTC), pd.Timestamp("2013-06-24", tz=UTC), pd.Timestamp("2016-06-20", tz=UTC), # Some Orthodox Ash Monday dates pd.Timestamp("2002-03-18", tz=UTC), pd.Timestamp("2005-03-14", tz=UTC), pd.Timestamp("2007-02-19", tz=UTC), pd.Timestamp("2011-03-07", tz=UTC), pd.Timestamp("2014-03-03", tz=UTC), pd.Timestamp("2018-02-19", tz=UTC), ] for holiday_label in expected_holidays: self.assertNotIn(holiday_label, all_sessions) def test_debt_crisis_closure(self): """ In 2015, the debt crisis in Greece closed the markets for about a month. This test makes sure there were no trading days during that time. """ all_sessions = self.calendar.all_sessions closed_dates = pd.date_range("2015-06-29", "2015-07-31") for date in closed_dates: self.assertNotIn(date, all_sessions) def test_adhoc_holidays(self): all_sessions = self.calendar.all_sessions expected_holidays = [ pd.Timestamp("2002-05-07", tz=UTC), # Market Holiday pd.Timestamp("2004-08-13", tz=UTC), # Assumption Day makeup pd.Timestamp("2008-03-04", tz=UTC), # Worker strikes pd.Timestamp("2008-03-05", tz=UTC), # Worker strikes pd.Timestamp("2013-05-07", tz=UTC), # May Day strikes pd.Timestamp("2014-12-31", tz=UTC), # New Year's Eve pd.Timestamp("2016-05-03", tz=UTC), # Labour Day makeup ] for holiday_label in expected_holidays: self.assertNotIn(holiday_label, all_sessions) def test_close_time_change(self): """ On Sept 29, 2008, the ASEX decided to push its close time back from 5:00PM to 5:20PM to close the time gap with Wall Street. """ self.assertEqual( self.calendar.session_close(pd.Timestamp("2006-09-29", tz=UTC)), pd.Timestamp("2006-09-29 17:00", tz="Europe/Athens"), ) self.assertEqual( self.calendar.session_close(pd.Timestamp("2008-09-26", tz=UTC)), pd.Timestamp("2008-09-26 17:00", tz="Europe/Athens"), ) self.assertEqual( self.calendar.session_close(pd.Timestamp("2008-09-29", tz=UTC)), pd.Timestamp("2008-09-29 17:20", tz="Europe/Athens"), ) self.assertEqual( self.calendar.session_close(pd.Timestamp("2008-09-30", tz=UTC)), pd.Timestamp("2008-09-30 17:20", tz="Europe/Athens"), )
41.607735
76
0.583721
ddac0540196f118c78055da87e0325db4a9bffcc
133
py
Python
Python/bloombox/__init__.py
sgammon/bloombox-client
61720ab677a577992f84ed73e0d7faebda38d164
[ "Apache-2.0" ]
null
null
null
Python/bloombox/__init__.py
sgammon/bloombox-client
61720ab677a577992f84ed73e0d7faebda38d164
[ "Apache-2.0" ]
null
null
null
Python/bloombox/__init__.py
sgammon/bloombox-client
61720ab677a577992f84ed73e0d7faebda38d164
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- __doc__ = """ Bloombox API Client for Python """ from .tool import Bloombox __version__ = (0, 0, 1)
9.5
32
0.593985
08fa0ae611479cbc0414a8eece26a08f791be531
928
py
Python
src/exporter/management/commands/test_export.py
xmdy/h9eNi8F5Ut
4128d7cbc6105ec0fe69157bd88ef8e30415d6ca
[ "Unlicense" ]
null
null
null
src/exporter/management/commands/test_export.py
xmdy/h9eNi8F5Ut
4128d7cbc6105ec0fe69157bd88ef8e30415d6ca
[ "Unlicense" ]
null
null
null
src/exporter/management/commands/test_export.py
xmdy/h9eNi8F5Ut
4128d7cbc6105ec0fe69157bd88ef8e30415d6ca
[ "Unlicense" ]
null
null
null
from django.core.management import BaseCommand import logging # These two lines enable debugging at httplib level (requests->urllib3->http.client) # You will see the REQUEST, including HEADERS and DATA, and RESPONSE with HEADERS but without DATA. # The only thing missing will be the response.body which is not logged. try: import http.client as http_client except ImportError: # Python 2 import httplib as http_client http_client.HTTPConnection.debuglevel = 1 # You must initialize logging, otherwise you'll not see debug output. logging.basicConfig() logging.getLogger().setLevel(logging.DEBUG) requests_log = logging.getLogger("requests.packages.urllib3") requests_log.setLevel(logging.DEBUG) requests_log.propagate = True class Command(BaseCommand): def handle(self, *args, **options): from exporter.tasks import GenerateModelExportTask gmet = GenerateModelExportTask() gmet.run(1)
37.12
99
0.774784
caac875e456eff59a6499c7f96d12616452af438
6,367
py
Python
skfem/element/element_global.py
ahhuhtal/scikit-fem
84ad97bfd2a92d28694f54f6897d97966bda31df
[ "BSD-3-Clause" ]
1
2020-05-31T14:07:14.000Z
2020-05-31T14:07:14.000Z
skfem/element/element_global.py
ahhuhtal/scikit-fem
84ad97bfd2a92d28694f54f6897d97966bda31df
[ "BSD-3-Clause" ]
1
2020-06-01T05:39:31.000Z
2020-06-01T05:39:31.000Z
skfem/element/element_global.py
ahhuhtal/scikit-fem
84ad97bfd2a92d28694f54f6897d97966bda31df
[ "BSD-3-Clause" ]
null
null
null
import itertools import numpy as np from .element import Element from .discrete_field import DiscreteField class ElementGlobal(Element): """Elements defined implicitly through global degrees-of-freedom.""" V = None # For caching inverse Vandermonde matrix derivatives = 2 # By default, include first and second derivatives tensorial_basis = False def gbasis(self, mapping, X, i, tind=None): if tind is None: tind = np.arange(mapping.mesh.t.shape[1]) if self.V is None: # initialize power basis self._pbasis_init(self.maxdeg, self.dim, self.derivatives, self.tensorial_basis) # construct Vandermonde matrix and invert it self.V = np.linalg.inv(self._eval_dofs(mapping.mesh)) V = self.V[tind] x = mapping.F(X, tind=tind) U = [np.zeros((self.dim,) * k + x[0].shape) for k in range(self.derivatives + 1)] N = len(self._pbasis[()]) # loop over new basis for k in range(self.derivatives + 1): diffs = list(itertools.product(*((list(range(self.dim)),) * k))) for itr in range(N): for diff in diffs: U[k][diff] += (V[:, itr, i][:, None] * self._pbasis[diff][itr](*x)) # put higher order derivatives into a single array hod = np.empty((self.derivatives - 2,), dtype=object) for k in range(self.derivatives - 2): hod[k] = U[k + 3] return ( DiscreteField( value=U[0], grad=U[1], hess=U[2], hod=hod, ), ) def _pbasis_create(self, i, j=None, k=None, dx=0, dy=0, dz=0): """Return a single power basis function.""" if j is None and k is None: # 1d cx = 1 if dx > 0: for l in np.arange(dx, 0, -1): cx *= i - dx + l return eval(("lambda x: {}*x**{}" .format(cx, np.max([i - dx, 0])))) elif k is None: # 2d cx = 1 cy = 1 if dx > 0: for l in np.arange(dx, 0, -1): cx *= i - dx + l if dy > 0: for l in np.arange(dy, 0, -1): cy *= j - dy + l return eval(("lambda x, y: {}*x**{}*y**{}" .format(cx * cy, np.max([i - dx, 0]), np.max([j - dy, 0])))) else: # 3d cx = 1 cy = 1 cz = 1 if dx > 0: for l in np.arange(dx, 0, -1): cx *= i - dx + l if dy > 0: for l in np.arange(dy, 0, -1): cy *= j - dy + l if dz > 0: for l in np.arange(dz, 0, -1): cz *= k - dz + l return eval(("lambda x, y, z: {}*x**{}*y**{}*z**{}" .format(cx * cy * cz, np.max([i - dx, 0]), np.max([j - dy, 0]), np.max([k - dz, 0]),))) def _pbasis_init(self, maxdeg, dim, Ndiff, is_tensorial=False): """Define power bases. Parameters ---------- maxdeg Maximum degree of the basis dim Dimension of the domain.x Ndiff Number of derivatives to include. """ if is_tensorial: maxdeg = int(maxdeg / 2) self._pbasis = {} for k in range(Ndiff + 1): diffs = list(itertools.product(*((list(range(dim)),) * k))) for diff in diffs: # desc = ''.join([str(d) for d in diff]) dx = sum([1 for d in diff if d == 0]) dy = sum([1 for d in diff if d == 1]) if dim == 2 else None dz = sum([1 for d in diff if d == 2]) if dim == 3 else None if dim == 1: self._pbasis[diff] = [ self._pbasis_create(i=i, dx=dx) for i in range(maxdeg + 1) if i <= maxdeg ] elif dim == 2: self._pbasis[diff] = [ self._pbasis_create(i=i, j=j, dx=dx, dy=dy) for i in range(maxdeg + 1) for j in range(maxdeg + 1) if is_tensorial or i + j <= maxdeg ] elif dim == 3: self._pbasis[diff] = [ self._pbasis_create(i=i, j=j, k=k, dx=dx, dy=dy, dz=dz) for i in range(maxdeg + 1) for j in range(maxdeg + 1) for k in range(maxdeg + 1) if is_tensorial or i + j + k <= maxdeg ] def _eval_dofs(self, mesh, tind=None): if tind is None: tind = np.arange(mesh.t.shape[1]) N = len(self._pbasis[()]) V = np.zeros((len(tind), N, N)) w = { 'v': np.array([mesh.p[:, mesh.t[itr, tind]] for itr in range(mesh.t.shape[0])]), } if mesh.p.shape[0] >= 2: w['e'] = np.array([ .5 * (w['v'][itr] + w['v'][(itr + 1) % mesh.t.shape[0]]) for itr in range(mesh.t.shape[0]) ]) w['n'] = np.array([ w['v'][itr] - w['v'][(itr + 1) % mesh.t.shape[0]] for itr in range(mesh.t.shape[0]) ]) w['n'][2] = -w['n'][2] # direction swapped due to mesh numbering for itr in range(3): w['n'][itr] = np.array([w['n'][itr, 1, :], -w['n'][itr, 0, :]]) w['n'][itr] /= np.linalg.norm(w['n'][itr], axis=0) # evaluate dofs, gdof implemented in subclasses for itr in range(N): for jtr in range(N): F = {k: self._pbasis[k][itr] for k in self._pbasis} V[:, jtr, itr] = self.gdof(F, w, jtr) return V
36.176136
79
0.406
e77b04b6fe39679ccc0d5155727901c8018dd5b0
1,693
py
Python
nescient/crypto/tools.py
airilyan/nescient
a32e671e92a378a194c4ca010bcab37aa75d2096
[ "MIT" ]
4
2018-01-23T05:30:15.000Z
2020-07-23T13:08:24.000Z
nescient/crypto/tools.py
airilyan/nescient
a32e671e92a378a194c4ca010bcab37aa75d2096
[ "MIT" ]
4
2018-01-16T18:56:17.000Z
2018-03-13T06:48:24.000Z
nescient/crypto/tools.py
airilyan/nescient
a32e671e92a378a194c4ca010bcab37aa75d2096
[ "MIT" ]
1
2020-07-23T13:08:27.000Z
2020-07-23T13:08:27.000Z
# Nescient: A Python program for packing/unpacking encrypted, salted, and authenticated file containers. # Copyright (C) 2018 Ariel Antonitis. Licensed under the MIT license. # # nescient/crypto/tools.py """ Various functions and tools for general cryptographic purposes, like secure randomness, padding, etc. """ try: # Define a Python-version-independent source of securely random bytes import secrets except ImportError: import os def get_random_bytes(n): return bytes(os.urandom(n)) def randbits(k): return int.from_bytes(get_random_bytes(k//8), byteorder='big') else: def get_random_bytes(n): return secrets.token_bytes(n) def randbits(k): return secrets.randbits(k) def pad(data, block_size): """ Pads data to a multiple of the block size in a reversible way, by adding n bytes with value n to the data, where n is the number of bytes needed to reach a multiple of the block size. Args: data: The data to pad to a multiple of the block size. Must be a `bytearray`. block_size (int): The desired block size. Must be between 1 and 255 (inclusive). """ assert(1 <= block_size <= 255) # Calculate the number of bytes to append n = block_size - (len(data) % block_size) # Note that, if the data is already a multiple of the block size, a total of block_size bytes will be appended data.extend(bytes([n]*n)) def unpad(data): """ Unpads data previously padded with `pad`. Args: data: The data to remove padding from. Must be a `bytearray`. If not previously padded, data may be lost. """ n = data[-1] # The number of bytes to remove del data[-n:]
36.021277
120
0.688128
8d04b657a87938c30937484ab984bd07a5d6edc6
6,460
py
Python
tests/test/lua/unicode.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
6
2019-01-09T11:55:15.000Z
2021-06-25T19:52:42.000Z
tests/test/lua/unicode.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
65
2018-12-12T08:40:38.000Z
2022-02-28T09:19:45.000Z
tests/test/lua/unicode.py
mace84/script-languages
d586cbe212bbb4efbfb39e095183729c65489360
[ "MIT" ]
9
2018-11-23T08:59:09.000Z
2020-02-04T12:56:35.000Z
#!/usr/bin/env python2.7 import locale import os import subprocess import sys import unicodedata sys.path.append(os.path.realpath(__file__ + '/../../../lib')) import udf from udf import skip locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') @skip('csv data for table fn2.unicodedata is currently not available') class LuaUnicode(udf.TestCase): @classmethod def setUpClass(cls): sql = udf.fixindent(''' DROP SCHEMA FN2 CASCADE; CREATE SCHEMA FN2; CREATE LUA SCALAR SCRIPT lua_match(c CHAR(1)) RETURNS CHAR(2) AS magic_set = {} for c in string.gmatch("()%.+-*?[^$", ".") do magic_set[c] = true end function run(ctx) local c = ctx.c if (c ~= null) and (not magic_set[c]) then local txt = "x" .. c .. "x" return unicode.utf8.match(txt, c) end end / CREATE LUA SCALAR SCRIPT lua_gmatch(text VARCHAR(350)) EMITS (w CHAR(1), c DOUBLE) AS function run(ctx) local txt = ctx.text if txt ~= null then for c in unicode.utf8.gmatch(txt, ".") do ctx.emit(c, 1) end end end / CREATE LUA SCALAR SCRIPT lua_gsub(text VARCHAR(350)) EMITS (w CHAR(1), c DOUBLE) AS function run(ctx) if ctx.text ~= null then unicode.utf8.gsub(ctx.text, '.', function(w) ctx.emit(w,1) end) end end / CREATE TABLE unicodedata ( codepoint INT NOT NULL, name VARCHAR(100) ASCII, uchar VARCHAR(1) UTF8, to_upper VARCHAR(1) UTF8, to_lower VARCHAR(1) UTF8, decimal_value INT, numeric_value INT, category VARCHAR(3) ASCII, bidirectional VARCHAR(3) ASCII, combining VARCHAR(10) ASCII, east_asian_width VARCHAR(2) ASCII, mirrored BOOLEAN, decomposition VARCHAR(100) ASCII, NFC VARCHAR(10) UTF8, NFD VARCHAR(10) UTF8, NFKC VARCHAR(20) UTF8, NFKD VARCHAR(20) UTF8 ); IMPORT INTO fn2.unicodedata FROM LOCAL CSV FILE '/share/fs8/Databases/UDF/unicode.csv' ROW SEPARATOR = 'CRLF' REJECT LIMIT 0;''') cmd = '''%(exaplus)s -c %(conn)s -u sys -P exasol -no-config -autocommit ON -L -pipe''' % { 'exaplus': os.environ.get('EXAPLUS', '/usr/opt/EXASuite-4/EXASolution-4.2.9/bin/Console/exaplus'), 'conn': udf.opts.server } env = os.environ.copy() env['PATH'] = '/usr/opt/jdk1.8.0_latest/bin:' + env['PATH'] exaplus = subprocess.Popen( cmd.split(), env=env, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) out, _err = exaplus.communicate(sql) if exaplus.returncode != 0: cls.log.critical('EXAplus error: %d', exaplus.returncode) cls.log.error(out) else: cls.log.debug(out) def setUp(self): '''Mixing different connections (JDBC/ODBC) may result in the ODBC connection to not see the commits of JDBC. Therefore, force a new transaction''' self.commit() self.query('OPEN SCHEMA fn2') def test_unicode_match(self): rows = self.query(''' SELECT * FROM ( SELECT codepoint, uchar, fn2.lua_match(uchar), uchar = fn2.lua_match(uchar) AS m FROM fn2.unicodedata ) WHERE (m IS NULL OR m = FALSE) AND codepoint not in (0,36,37,40,41,42,43,45,46,63,91,94)''') self.assertRowsEqual([], rows) @skip('manual test for DWA-13860, DWA-17091') def test_unicode_gmatch(self): nrows = self.query(''' SELECT count(uchar) * 3 FROM fn2.unicodedata WHERE codepoint BETWEEN 382976 AND 385152''')[0][0] for _ in range(25): self.query(''' SELECT fn2.lua_gmatch(uchar) FROM ( SELECT 'x'||uchar||'x' AS uchar FROM fn2.unicodedata WHERE codepoint BETWEEN 382976 AND 385152 )''') self.assertEqual(nrows, self.rowcount()) def test_unicode_gsub(self): rows = self.query(''' SELECT unicode(w) FROM ( SELECT fn2.lua_gsub(uchar) FROM fn2.unicodedata ) ORDER BY 1 ASC''') self.assertEqual(1114111, self.rowcount()) s1 = set(range(1,1114112)) s2 = set(x[0] for x in rows) self.assertEqual(s1 - s2, s2 - s1) class LuaUnicodePattern(udf.TestCase): def setUp(self): self.query('DROP SCHEMA fn3 CASCADE', ignore_errors=True) self.query('CREATE SCHEMA fn3') @skip('manual test for DWA-13860') def test_unicode_gmatch_classes(self): self.query(udf.fixindent(''' CREATE lua SCALAR SCRIPT gmatch_pattern(w VARCHAR(1000)) EMITS (w VARCHAR(1000)) AS function run(ctx) local word = ctx.w if word ~= null then for i in unicode.utf8.gmatch(word, '([%w%p]+)') do ctx.emit(i) end end end / ''')) prefix = 0x1eba for u in range(sys.maxunicode): try: self.query(''' SELECT gmatch_pattern( unicodechr(%d) || unicodechr(?)) FROM DUAL''' % prefix, u) #print u except: print 'U+%04X' %u, unicodedata.name(unichr(u), 'U+%04X' % u) if __name__ == '__main__': udf.main() # vim: ts=4:sts=4:sw=4:et:fdm=indent
32.626263
82
0.482353
d024814b84e06934465f276762d8af06a7a6170a
474
py
Python
06_magicgui.py
BiAPoL/online_image_processing_napari
680d9ceeef5ae188541a96c7125f0fca07f28af5
[ "Unlicense" ]
2
2021-05-10T13:44:15.000Z
2022-03-16T20:20:39.000Z
06_magicgui.py
BiAPoL/online_image_processing_napari
680d9ceeef5ae188541a96c7125f0fca07f28af5
[ "Unlicense" ]
1
2021-05-17T16:11:54.000Z
2021-05-19T19:38:50.000Z
06_magicgui.py
BiAPoL/online_image_processing_napari
680d9ceeef5ae188541a96c7125f0fca07f28af5
[ "Unlicense" ]
2
2021-05-17T16:36:12.000Z
2022-03-18T15:07:14.000Z
import napari from magicgui import magicgui from napari.types import ImageData from skimage.filters import gaussian from skimage.io import imread viewer = napari.Viewer() blobs = imread('blobs.tif') viewer.add_image(blobs) @magicgui(call_button='Run') def gaussian_blur(image : ImageData, sigma : float = 2) -> ImageData: """ Apply a gaussian blur to an image. """ return gaussian(image, sigma) viewer.window.add_dock_widget(gaussian_blur) napari.run()
21.545455
69
0.746835
0f2fb8d946747b279c6ca69b58c8eb332aae7d0d
1,848
py
Python
tests/queryset_pickle/models.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/queryset_pickle/models.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
tests/queryset_pickle/models.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
import datetime from django.db import DJANGO_VERSION_PICKLE_KEY, models from django.utils.translation import gettext_lazy as _ def standalone_number(): return 1 class Numbers: @staticmethod def get_static_number(): return 2 class PreviousDjangoVersionQuerySet(models.QuerySet): def __getstate__(self): state = super().__getstate__() state[DJANGO_VERSION_PICKLE_KEY] = '1.0' return state class MissingDjangoVersionQuerySet(models.QuerySet): def __getstate__(self): state = super().__getstate__() del state[DJANGO_VERSION_PICKLE_KEY] return state class Group(models.Model): name = models.CharField(_('name'), max_length=100) objects = models.Manager() previous_django_version_objects = PreviousDjangoVersionQuerySet.as_manager() missing_django_version_objects = MissingDjangoVersionQuerySet.as_manager() class Event(models.Model): title = models.CharField(max_length=100) group = models.ForeignKey(Group, models.CASCADE) class Happening(models.Model): when = models.DateTimeField(blank=True, default=datetime.datetime.now) name = models.CharField(blank=True, max_length=100, default="test") number1 = models.IntegerField(blank=True, default=standalone_number) number2 = models.IntegerField(blank=True, default=Numbers.get_static_number) event = models.OneToOneField(Event, models.CASCADE, null=True) class Container: # To test pickling we need a class that isn't defined on module, but # is still available from app-cache. So, the Container class moves # SomeModel outside of module level class SomeModel(models.Model): somefield = models.IntegerField() class M2MModel(models.Model): groups = models.ManyToManyField(Group)
30.295082
81
0.71645
de4abca3aa73f7d5f55a97b231f3f7d075fae41e
3,052
py
Python
trainer/custom_methods/inference.py
SuijkerbuijkP/Detectron2-GCP
927ac14dc584cb4c257444421911aa9d0b6bc5a2
[ "MIT" ]
3
2021-05-10T09:26:47.000Z
2022-03-25T12:38:31.000Z
trainer/custom_methods/inference.py
SuijkerbuijkP/Detectron2-GCP
927ac14dc584cb4c257444421911aa9d0b6bc5a2
[ "MIT" ]
null
null
null
trainer/custom_methods/inference.py
SuijkerbuijkP/Detectron2-GCP
927ac14dc584cb4c257444421911aa9d0b6bc5a2
[ "MIT" ]
1
2022-03-03T10:39:10.000Z
2022-03-03T10:39:10.000Z
import os import cv2 from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.engine import DefaultPredictor from detectron2.utils.visualizer import Visualizer, ColorMode from custom_methods import load_checkpoint def inference(cfg, args): """ This function is used to perform inference. It loads the config file and with the corresponding eval_run parameter looks for the folder in which the to be evaluated model is saved. It loads a predictor, the latest model file and then performs inference. Pictures are saved to the "predictions" folder inside the corresponding run. """ checkpoint_iteration, bucket = load_checkpoint(cfg, args) # set prediction threshold and model weights cfg.defrost() cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_" + checkpoint_iteration + ".pth") cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # cfg.MODEL.FCOS.INFERENCE_TH_TEST = 0.3 cfg.freeze() # inference part predictor = DefaultPredictor(cfg) # save images in predictions folder, not required with pushing directly to GCP but cleaner if not os.path.isdir(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration)): os.mkdir(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration)) # for d in DatasetCatalog.get("car_damage_test"): for d in DatasetCatalog.get("car_damage_val"): im = cv2.imread(d["file_name"]) # save original image for easy comparison image_id = str(d["file_name"]).split("/")[-1].split(".")[0] image_extension = "." + str(d["file_name"]).split("/")[-1].split(".")[1] cv2.imwrite(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + image_extension, im) # produce predictions outputs = predictor(im) v = Visualizer(im[:, :, ::-1], metadata=MetadataCatalog.get("car_damage_val"), scale=0.8, instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels ) # .to("cpu"), which could be changed for large inference datasets, and save predictions v = v.draw_instance_predictions(outputs["instances"].to("cpu")) cv2.imwrite(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + "_pred.jpeg", v.get_image()[:, :, ::-1]) # save to GCP blob = bucket.blob(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + image_extension) blob.upload_from_filename(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + image_extension) blob = bucket.blob(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + "_pred.jpeg") blob.upload_from_filename(cfg.OUTPUT_DIR + '/predictions' + str(checkpoint_iteration) + "/" + image_id + "_pred.jpeg")
47.6875
119
0.643185
ff574466e1c5e4b076dfd186ab00acaeaa526178
3,545
py
Python
mars/tensor/tests/test_utils.py
HarshCasper/mars
4c12c968414d666c7a10f497bc22de90376b1932
[ "Apache-2.0" ]
2
2019-03-29T04:11:10.000Z
2020-07-08T10:19:54.000Z
mars/tensor/tests/test_utils.py
HarshCasper/mars
4c12c968414d666c7a10f497bc22de90376b1932
[ "Apache-2.0" ]
null
null
null
mars/tensor/tests/test_utils.py
HarshCasper/mars
4c12c968414d666c7a10f497bc22de90376b1932
[ "Apache-2.0" ]
null
null
null
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest from mars.lib.mmh3 import hash_from_buffer as mmh3_hash_from_buffer from mars.session import new_session from mars import tensor as mt from mars.tensor.utils import hash_on_axis, normalize_axis_tuple, fetch_corner_data class Test(unittest.TestCase): def testHashOnAxis(self): hash_from_buffer = lambda x: mmh3_hash_from_buffer(memoryview(x)) a = np.random.rand(10) result = hash_on_axis(a, 0, 3) expected = np.array([mmh3_hash_from_buffer(element) % 3 for element in a]) np.testing.assert_array_equal(result, expected) result = hash_on_axis(a, 0, 1) expected = np.array([0 for _ in a]) np.testing.assert_array_equal(result, expected) a = np.random.rand(10, 5) result = hash_on_axis(a, 0, 3) expected = np.array([hash_from_buffer(a[i, :]) % 3 for i in range(a.shape[0])]) np.testing.assert_array_equal(result, expected) result = hash_on_axis(a, 1, 3) expected = np.array([hash_from_buffer(a[:, i]) % 3 for i in range(a.shape[1])]) np.testing.assert_array_equal(result, expected) a = np.random.rand(10, 5, 4) result = hash_on_axis(a, 2, 3) expected = np.array([hash_from_buffer(a[:, :, i]) % 3 for i in range(a.shape[2])]) np.testing.assert_array_equal(result, expected) def testNormalizeAxisTuple(self): self.assertEqual(normalize_axis_tuple(-1, 3), (2,)) self.assertEqual(normalize_axis_tuple([0, -2], 3), (0, 1)) self.assertEqual(sorted(normalize_axis_tuple({0, -2}, 3)), [0, 1]) with self.assertRaises(ValueError) as cm: normalize_axis_tuple((1, -2), 3, argname='axes') self.assertIn('axes', str(cm.exception)) with self.assertRaises(ValueError): normalize_axis_tuple((1, -2), 3) def testFetchTensorCornerData(self): sess = new_session() print_options = np.get_printoptions() # make sure numpy default option self.assertEqual(print_options['edgeitems'], 3) self.assertEqual(print_options['threshold'], 1000) size = 12 for i in (2, 4, size - 3, size, size + 3): arr = np.random.rand(i, i, i) t = mt.tensor(arr, chunk_size=size // 2) sess.run(t, fetch=False) corner_data = fetch_corner_data(t, session=sess) corner_threshold = 1000 if t.size < 1000 else corner_data.size - 1 with np.printoptions(threshold=corner_threshold, suppress=True): # when we repr corner data, we need to limit threshold that # it's exactly less than the size repr_corner_data = repr(corner_data) with np.printoptions(suppress=True): repr_result = repr(arr) self.assertEqual(repr_corner_data, repr_result, f'failed when size == {i}')
36.927083
90
0.649083
cfa3e5be6fe7903efd0c0784b614836d7b6acb73
3,264
py
Python
matrixdemos/scripts/DigitalClock.py
nachomonkey/MatrixDemos
b1cdf1c6d5b6ba946a9e5de2c1430d6ee1bf163e
[ "MIT" ]
3
2021-04-07T03:16:17.000Z
2021-09-08T04:03:22.000Z
matrixdemos/scripts/DigitalClock.py
nachomonkey/MatrixDemos
b1cdf1c6d5b6ba946a9e5de2c1430d6ee1bf163e
[ "MIT" ]
null
null
null
matrixdemos/scripts/DigitalClock.py
nachomonkey/MatrixDemos
b1cdf1c6d5b6ba946a9e5de2c1430d6ee1bf163e
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Display the time and date on the matrix""" import sys import time from optparse import OptionParser from rgbmatrix import RGBMatrix, RGBMatrixOptions from matrixdemos.scripts.utils import * parser = OptionParser() parser.set_description("""Display the time and date on a matrix. By default, this will dim to 1% brightness at from 10 PM to 7 AM and cease to display the date""") parser.add_option("--24h", action="store_true", dest="twentyfour_hr", default=False, help="make this a 24-hour clock instead of 12-hour") parser.add_option("-a", "--always-on", action="store_false", dest="dimming", default=True, help="disables the dimming at night") parser.add_option("-s", "--remove-seconds", action="store_false", dest="secs", default=True, help="removes the seconds bar at the top of the matrix") parser.add_option("-d", "--remove-date", action="store_false", dest="date", default=True, help="stops displaying the date") parser.add_option("-n", "--no-flash", action="store_false", dest="flash", default=True, help="makes the colon in the middle stop flashing") (options, args) = parser.parse_args() # True for 24 hour clock CLK_24_HOUR = options.twentyfour_hr ENABLE_DIMMING = options.dimming DISPLAY_SECONDS = options.secs DISPLAY_DATE = options.date COLON_FLASH = options.flash # Configuration for the matrix _options = RGBMatrixOptions() _options.drop_privileges = False _options.rows = 32 _options.chain_length = 1 _options.parallel = 1 _options.hardware_mapping = 'adafruit-hat' # If you have an Adafruit HAT: 'adafruit-hat' matrix = RGBMatrix(options=_options) SMALL_SIZE = 10 BIG_SIZE = 13 def run(): colon = True while True: image, canvas = new_canvas() t = time.localtime() dim = False if t.tm_hour < 7 or t.tm_hour > 21 and ENABLE_DIMMING: matrix.brightness = 1 dim = True else: matrix.brightness = 100 am_pm = "AM" if t.tm_hour > 11: am_pm = "PM" hr = t.tm_hour if not CLK_24_HOUR: hr = hr % 12 if hr == 0: hr = 12 if COLON_FLASH: colon = not colon text = f"{hr if not CLK_24_HOUR else t.tm_hour}{':' if colon else ' '}{str(t.tm_min).zfill(2)}" size = BIG_SIZE if len(text) >= 5: size = SMALL_SIZE if DISPLAY_SECONDS: for x in range(0, t.tm_sec * 32 // 60): canvas.point((x, 0), fill=(int(x / 32 * 255) if not dim else 230, 0, 0)) DrawText(canvas, (1 if len(text) >= 5 else 0, 0 if len(text) >= 5 else -3), size=size, text=text, color="red") if not CLK_24_HOUR: DrawText(canvas, (0, 10), size=8, text=am_pm, color="RED") if not dim and DISPLAY_DATE: DrawText(canvas, (11, 7), size=12, text=time.asctime()[4:7], font="cambriab", color="GREEN") DrawText(canvas, (0, 20), size=8, text=time.asctime()[:3], color="LIME") DrawText(canvas, (15, 18), size=12, text=str(t.tm_mday), color="GREEN") time.sleep(1) matrix.SetImage(image.convert("RGB")) def main(): try: run() except KeyboardInterrupt: print() if __name__ == "__main__": main()
32.969697
118
0.634498
73db823a1b26c6bea9bd690057abf27930711eda
9,389
py
Python
object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py
paulchou0309/obj
d7ae404fa73db60a6fe539d613e48f478b81dbef
[ "MIT" ]
3
2019-03-02T09:09:01.000Z
2019-11-15T02:09:50.000Z
object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py
paulchou0309/obj
d7ae404fa73db60a6fe539d613e48f478b81dbef
[ "MIT" ]
null
null
null
object_detection/models/faster_rcnn_resnet_v1_feature_extractor.py
paulchou0309/obj
d7ae404fa73db60a6fe539d613e48f478b81dbef
[ "MIT" ]
1
2018-04-03T01:33:47.000Z
2018-04-03T01:33:47.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Resnet V1 Faster R-CNN implementation. See "Deep Residual Learning for Image Recognition" by He et al., 2015. https://arxiv.org/abs/1512.03385 Note: this implementation assumes that the classification checkpoint used to finetune this model is trained using the same configuration as that of the MSRA provided checkpoints (see https://github.com/KaimingHe/deep-residual-networks), e.g., with same preprocessing, batch norm scaling, etc. """ import tensorflow as tf from object_detection.meta_architectures import faster_rcnn_meta_arch from object_detection.models.nets import resnet_utils from object_detection.models.nets import resnet_v1 slim = tf.contrib.slim class FasterRCNNResnetV1FeatureExtractor( faster_rcnn_meta_arch.FasterRCNNFeatureExtractor): """Faster R-CNN Resnet V1 feature extractor implementation.""" def __init__(self, architecture, resnet_model, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: architecture: Architecture name of the Resnet V1 model. resnet_model: Definition of the Resnet V1 model. is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16. """ if first_stage_features_stride != 8 and first_stage_features_stride != 16: raise ValueError('`first_stage_features_stride` must be 8 or 16.') self._architecture = architecture self._resnet_model = resnet_model super(FasterRCNNResnetV1FeatureExtractor, self).__init__( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) def preprocess(self, resized_inputs): """Faster R-CNN Resnet V1 preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ channel_means = [123.68, 116.779, 103.939] return resized_inputs - [[channel_means]] def _extract_proposal_features(self, preprocessed_inputs, scope): """Extracts first stage RPN features. Args: preprocessed_inputs: A [batch, height, width, channels] float32 tensor representing a batch of images. scope: A scope name. Returns: rpn_feature_map: A tensor with shape [batch, height, width, depth] Raises: InvalidArgumentError: If the spatial size of `preprocessed_inputs` (height or width) is less than 33. ValueError: If the created network is missing the required activation. """ if len(preprocessed_inputs.get_shape().as_list()) != 4: raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a ' 'tensor of shape %s' % preprocessed_inputs.get_shape()) shape_assert = tf.Assert( tf.logical_and( tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33), tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)), ['image size must at least be 33 in both height and width.']) with tf.control_dependencies([shape_assert]): # Disables batchnorm for fine-tuning with smaller batch sizes. # TODO: Figure out if it is needed when image batch size is bigger. with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with tf.variable_scope( self._architecture, reuse=self._reuse_weights) as var_scope: _, activations = self._resnet_model( preprocessed_inputs, num_classes=None, is_training=self._train_batch_norm, global_pool=False, output_stride=self._first_stage_features_stride, spatial_squeeze=False, scope=var_scope) handle = scope + '/%s/block3' % self._architecture return activations[handle] def _extract_box_classifier_features(self, proposal_feature_maps, scope): """Extracts second stage box classifier features. Args: proposal_feature_maps: A 4-D float tensor with shape [batch_size * self.max_num_proposals, crop_height, crop_width, depth] representing the feature map cropped to each proposal. scope: A scope name (unused). Returns: proposal_classifier_features: A 4-D float tensor with shape [batch_size * self.max_num_proposals, height, width, depth] representing box classifier features for each proposal. """ with tf.variable_scope(self._architecture, reuse=self._reuse_weights): with slim.arg_scope( resnet_utils.resnet_arg_scope( batch_norm_epsilon=1e-5, batch_norm_scale=True, weight_decay=self._weight_decay)): with slim.arg_scope([slim.batch_norm], is_training=self._train_batch_norm): blocks = [ resnet_utils.Block('block4', resnet_v1.bottleneck, [{ 'depth': 2048, 'depth_bottleneck': 512, 'stride': 1 }] * 3) ] proposal_classifier_features = resnet_utils.stack_blocks_dense( proposal_feature_maps, blocks) return proposal_classifier_features class FasterRCNNResnet50FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 50 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet50FeatureExtractor, self).__init__( 'resnet_v1_50', resnet_v1.resnet_v1_50, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) class FasterRCNNResnet101FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 101 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet101FeatureExtractor, self).__init__( 'resnet_v1_101', resnet_v1.resnet_v1_101, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay) class FasterRCNNResnet152FeatureExtractor(FasterRCNNResnetV1FeatureExtractor): """Faster R-CNN Resnet 152 feature extractor implementation.""" def __init__(self, is_training, first_stage_features_stride, batch_norm_trainable=False, reuse_weights=None, weight_decay=0.0): """Constructor. Args: is_training: See base class. first_stage_features_stride: See base class. batch_norm_trainable: See base class. reuse_weights: See base class. weight_decay: See base class. Raises: ValueError: If `first_stage_features_stride` is not 8 or 16, or if `architecture` is not supported. """ super(FasterRCNNResnet152FeatureExtractor, self).__init__( 'resnet_v1_152', resnet_v1.resnet_v1_152, is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights, weight_decay)
37.556
80
0.681329
2b18f53c2745131b925093e7b81aeee823f650ff
2,123
py
Python
src/discord_notifier.py
danielloera/custom-scrape
b3a3286d26348f2066d9333c5bbb548f080c8417
[ "MIT" ]
null
null
null
src/discord_notifier.py
danielloera/custom-scrape
b3a3286d26348f2066d9333c5bbb548f080c8417
[ "MIT" ]
null
null
null
src/discord_notifier.py
danielloera/custom-scrape
b3a3286d26348f2066d9333c5bbb548f080c8417
[ "MIT" ]
null
null
null
import asyncio import discord import os token = "DISCORD_TOKEN" max_files_per_message = 10 def send_scrape_result_messages(scrape_results, channel_name): client = discord.Client() @client.event async def on_ready(): print('Logged in as {0.user}'.format(client)) text_channel = [c for c in client.get_all_channels() if c.name == channel_name][0] print('Purging all bot messages') await delete_all_bot_messages(text_channel) print('Sending new messages') await send_messages(text_channel) async def delete_all_bot_messages(text_channel): await text_channel.purge( limit=1000, check=lambda m: m.author == client.user) async def send_messages(text_channel): for scrape_result in scrape_results: await text_channel.send(content=f'{scrape_result.name}:') result_items = scrape_result.url_to_screenshots_map.items() if result_items: for url, screenshots in result_items: if screenshots: screenshot_files = [discord.File( open(s, 'rb')) for s in screenshots] # Discord only allows 10 files per message. chunked_files = [screenshot_files[i:i + 10] for i in range(0, len(screenshot_files), 10)] await text_channel.send( content=f'{len(screenshots)} results from:\n{url}', files=chunked_files[0]) # Send the rest of the chunks, if present. if len(chunked_files) > 1: for chunk in chunked_files[1:]: await text_channel.send(files=chunk) for f in screenshot_files: f.close() else: await text_channel.send('Nothing found :(') await client.close() client.run(os.getenv(token))
40.056604
79
0.541215
e27cfc092093b535d85f470025591ab1e367ac6e
4,634
py
Python
nipype/interfaces/ants/base.py
PAmcconnell/nipype
39fbd5411a844ce7c023964d3295eb7643b95af5
[ "Apache-2.0" ]
null
null
null
nipype/interfaces/ants/base.py
PAmcconnell/nipype
39fbd5411a844ce7c023964d3295eb7643b95af5
[ "Apache-2.0" ]
2
2018-04-26T12:09:32.000Z
2018-04-27T06:36:49.000Z
nipype/interfaces/ants/base.py
PAmcconnell/nipype
39fbd5411a844ce7c023964d3295eb7643b95af5
[ "Apache-2.0" ]
1
2019-11-14T14:16:57.000Z
2019-11-14T14:16:57.000Z
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """The ants module provides basic functions for interfacing with ANTS tools.""" import os # Local imports from ... import logging, LooseVersion from ..base import (CommandLine, CommandLineInputSpec, traits, isdefined, PackageInfo) iflogger = logging.getLogger('nipype.interface') # -Using -1 gives primary responsibilty to ITKv4 to do the correct # thread limitings. # -Using 1 takes a very conservative approach to avoid overloading # the computer (when running MultiProc) by forcing everything to # single threaded. This can be a severe penalty for registration # performance. LOCAL_DEFAULT_NUMBER_OF_THREADS = 1 # -Using NSLOTS has the same behavior as ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS # as long as ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS is not set. Otherwise # ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS takes precidence. # This behavior states that you the user explicitly specifies # num_threads, then respect that no matter what SGE tries to limit. PREFERED_ITKv4_THREAD_LIMIT_VARIABLE = 'NSLOTS' ALT_ITKv4_THREAD_LIMIT_VARIABLE = 'ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS' class Info(PackageInfo): version_cmd = os.path.join(os.getenv('ANTSPATH', ''), 'antsRegistration') + ' --version' @staticmethod def parse_version(raw_info): for line in raw_info.splitlines(): if line.startswith('ANTs Version: '): v_string = line.split()[2] break else: return None # -githash may or may not be appended v_string = v_string.split('-')[0] # 2.2.0-equivalent version string if 'post' in v_string and \ LooseVersion(v_string) >= LooseVersion('2.1.0.post789'): return '2.2.0' else: return '.'.join(v_string.split('.')[:3]) class ANTSCommandInputSpec(CommandLineInputSpec): """Base Input Specification for all ANTS Commands """ num_threads = traits.Int( LOCAL_DEFAULT_NUMBER_OF_THREADS, usedefault=True, nohash=True, desc="Number of ITK threads to use") class ANTSCommand(CommandLine): """Base class for ANTS interfaces """ input_spec = ANTSCommandInputSpec _num_threads = LOCAL_DEFAULT_NUMBER_OF_THREADS def __init__(self, **inputs): super(ANTSCommand, self).__init__(**inputs) self.inputs.on_trait_change(self._num_threads_update, 'num_threads') if not isdefined(self.inputs.num_threads): self.inputs.num_threads = self._num_threads else: self._num_threads_update() def _num_threads_update(self): self._num_threads = self.inputs.num_threads # ONLY SET THE ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS if requested # by the end user. The default setting did not allow for # overwriting the default values. # In ITKv4 (the version used for all ANTS programs), ITK respects # the SGE controlled $NSLOTS environmental variable. # If user specifies -1, then that indicates that the system # default behavior should be the one specified by ITKv4 rules # (i.e. respect SGE $NSLOTS or environmental variables of threads, or # user environmental settings) if (self.inputs.num_threads == -1): if (ALT_ITKv4_THREAD_LIMIT_VARIABLE in self.inputs.environ): del self.inputs.environ[ALT_ITKv4_THREAD_LIMIT_VARIABLE] if (PREFERED_ITKv4_THREAD_LIMIT_VARIABLE in self.inputs.environ): del self.inputs.environ[PREFERED_ITKv4_THREAD_LIMIT_VARIABLE] else: self.inputs.environ.update({ PREFERED_ITKv4_THREAD_LIMIT_VARIABLE: '%s' % self.inputs.num_threads }) @staticmethod def _format_xarray(val): """ Convenience method for converting input arrays [1,2,3] to commandline format '1x2x3' """ return 'x'.join([str(x) for x in val]) @classmethod def set_default_num_threads(cls, num_threads): """Set the default number of threads for ITK calls This method is used to set the default number of ITK threads for all the ANTS interfaces. However, setting this will not update the output type for any existing instances. For these, assign the <instance>.inputs.num_threads """ cls._num_threads = num_threads @property def version(self): return Info.version()
37.983607
79
0.671558
18c7ee09b22cebf68ce61c9c5b401eccb5c7c7ab
3,419
py
Python
relaax/algorithms/da3c/da3c_config.py
deeplearninc/relaax
a0cf280486dc74dca3857c85ec0e4c34e88d6b2b
[ "MIT" ]
71
2017-01-25T00:26:20.000Z
2021-02-17T12:39:20.000Z
relaax/algorithms/da3c/da3c_config.py
deeplearninc/relaax
a0cf280486dc74dca3857c85ec0e4c34e88d6b2b
[ "MIT" ]
69
2017-01-23T19:29:23.000Z
2018-08-21T13:26:39.000Z
relaax/algorithms/da3c/da3c_config.py
deeplearninc/relaax
a0cf280486dc74dca3857c85ec0e4c34e88d6b2b
[ "MIT" ]
13
2017-01-23T21:18:09.000Z
2019-01-29T23:48:30.000Z
from relaax.common.python.config.loaded_config import options from argparse import Namespace import random config = options.get('algorithm') config.seed = options.get('algorithm/seed', random.randrange(1000000)) config.avg_in_num_batches = options.get('algorithm/avg_in_num_batches', 10) for key, value in [('use_convolutions', [])]: if not hasattr(config, key): setattr(config, key, value) config.input.history = options.get('algorithm/input/history', 1) config.input.universe = options.get('algorithm/input/universe', True) config.activation = options.get('algorithm/activation', 'relu') config.lstm_type = options.get('algorithm/lstm_type', 'Basic') # Basic | Dilated config.lstm_num_cores = options.get('algorithm/lstm_num_cores', 8) config.max_global_step = options.get('algorithm/max_global_step', 5e7) config.use_linear_schedule = options.get('algorithm/use_linear_schedule', False) config.initial_learning_rate = options.get('algorithm/initial_learning_rate', 1e-4) config.learning_rate_end = options.get('algorithm/learning_rate_end', 0.0) config.optimizer = options.get('algorithm/optimizer', 'Adam') # Adam | RMSProp # RMSProp default parameters if not hasattr(config, 'RMSProp'): config.RMSProp = options.get('algorithm/RMSProp', Namespace()) config.RMSProp.decay = options.get('algorithm/RMSProp/decay', 0.99) config.RMSProp.epsilon = options.get('algorithm/RMSProp/epsilon', 0.1) config.policy_clip = options.get('algorithm/policy_clip', False) config.critic_clip = options.get('algorithm/critic_clip', False) config.norm_adv = options.get('algorithm/normalize_advantage', False) config.output.loss_type = options.get('algorithm/output/loss_type', 'Normal') # Normal | Expanded | Extended config.gradients_norm_clipping = options.get('algorithm/gradients_norm_clipping', False) config.entropy_beta = options.get('algorithm/entropy_beta', 0.01) config.entropy_type = options.get('algorithm/entropy_type', 'Gauss') # Gauss | Origin config.gae_lambda = options.get('algorithm/gae_lambda', 1.00) config.use_filter = options.get('algorithm/use_filter', False) config.hogwild = options.get('algorithm/hogwild', False) config.use_icm = options.get('algorithm/use_icm', False) config.output.scale = options.get('algorithm/output/scale', 1.0) config.critic_scale = options.get('algorithm/critic_scale', 1.0) config.output.action_high = options.get('algorithm/output/action_high', []) config.output.action_low = options.get('algorithm/output/action_low', []) config.combine_gradients = options.get('algorithm/combine_gradients', 'fifo') config.num_gradients = options.get('algorithm/num_gradients', 4) config.dc_lambda = options.get('algorithm/dc_lambda', 0.05) config.dc_history = options.get('algorithm/dc_history', 20) # ICM default parameters if not hasattr(config, 'icm'): config.icm = options.get('algorithm/icm', Namespace()) config.icm.nu = options.get('algorithm/icm/nu', 0.8) config.icm.beta = options.get('algorithm/icm/beta', 0.2) config.icm.lr = options.get('algorithm/icm/lr', 1e-3) # KAF default parameters if not hasattr(config, 'KAF'): config.KAF = options.get('algorithm/KAF', Namespace()) config.KAF.boundary = options.get('algorithm/KAF/boundary', 2.0) config.KAF.size = options.get('algorithm/KAF/size', 20) config.KAF.kernel = options.get('algorithm/KAF/kernel', 'rbf') # rbf | rbf2d config.KAF.gamma = options.get('algorithm/KAF/gamma', 1.0)
44.986842
110
0.762211
3cca1f95a026311998b540b53182de2a8d3efab9
640
py
Python
manage.py
craiga/music-from-my-tshirt
d6f051771c8d2c16fadde78df35a09fd9d8818aa
[ "MIT" ]
null
null
null
manage.py
craiga/music-from-my-tshirt
d6f051771c8d2c16fadde78df35a09fd9d8818aa
[ "MIT" ]
9
2020-03-01T16:48:16.000Z
2020-04-29T16:20:26.000Z
manage.py
craiga/music-from-my-tshirt
d6f051771c8d2c16fadde78df35a09fd9d8818aa
[ "MIT" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "music_from_my_tshirt.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == "__main__": main()
29.090909
84
0.689063
ddd3c632cf43ab044ded93d05504354388163487
814
py
Python
tests/language_understanding/attribute_extraction/extractor_test.py
hamano-takashi/ochiAI-bot
16cf2057ada741c08df6ce471049b9da4caeb3ed
[ "MIT" ]
2
2016-09-01T17:35:45.000Z
2016-09-04T07:09:26.000Z
tests/language_understanding/attribute_extraction/extractor_test.py
okuribito/GiftConcierge
b8b9128303f46965d2a0ac582c120980b9536f2f
[ "MIT" ]
null
null
null
tests/language_understanding/attribute_extraction/extractor_test.py
okuribito/GiftConcierge
b8b9128303f46965d2a0ac582c120980b9536f2f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import unittest from dialogue_system.language_understanding.attribute_extraction.rule_based_extractor import RuleBasedAttributeExtractor class AttributeExtractorTest(unittest.TestCase): def setUp(self): self.extractor = RuleBasedAttributeExtractor() def tearDown(self): pass def test_extract(self): attribute = self.extractor.extract(text='ラーメンを食べたい') self.assertEqual(attribute, {'LOCATION': '', 'GENRE': 'ラーメン', 'MAXIMUM_AMOUNT': ''}) attribute = self.extractor.extract(text='西新宿のあたり') self.assertEqual(attribute, {'LOCATION': '西新宿', 'GENRE': '', 'MAXIMUM_AMOUNT': ''}) attribute = self.extractor.extract(text='1000円以下で') self.assertEqual(attribute, {'LOCATION': '', 'GENRE': '', 'MAXIMUM_AMOUNT': '1000'})
38.761905
120
0.685504
6bafa5307a1d773ea4fcec3d41ed6f65ba39b0e3
42,870
py
Python
web400-10/db.py
mehrdad-shokri/CTF_web
206529603af3824fc8117166ff978af3495f5a58
[ "MIT" ]
664
2016-08-23T01:03:00.000Z
2022-03-20T17:02:45.000Z
web/db.py
0xlen/learn2web
19cf250b0515992863ea0f7f0cfeaf59918bbb9d
[ "MIT" ]
12
2016-09-09T07:25:12.000Z
2021-10-05T21:11:48.000Z
web/db.py
0xlen/learn2web
19cf250b0515992863ea0f7f0cfeaf59918bbb9d
[ "MIT" ]
203
2016-10-17T02:15:33.000Z
2021-10-17T06:36:37.000Z
""" Database API (part of web.py) """ __all__ = [ "UnknownParamstyle", "UnknownDB", "TransactionError", "sqllist", "sqlors", "reparam", "sqlquote", "SQLQuery", "SQLParam", "sqlparam", "SQLLiteral", "sqlliteral", "database", 'DB', ] import time, os, urllib, urlparse try: import datetime except ImportError: datetime = None try: set except NameError: from sets import Set as set from utils import threadeddict, storage, iters, iterbetter, safestr, safeunicode try: # db module can work independent of web.py from webapi import debug, config except: import sys debug = sys.stderr config = storage() class UnknownDB(Exception): """raised for unsupported dbms""" pass class _ItplError(ValueError): def __init__(self, text, pos): ValueError.__init__(self) self.text = text self.pos = pos def __str__(self): return "unfinished expression in %s at char %d" % ( repr(self.text), self.pos) class TransactionError(Exception): pass class UnknownParamstyle(Exception): """ raised for unsupported db paramstyles (currently supported: qmark, numeric, format, pyformat) """ pass class SQLParam(object): """ Parameter in SQLQuery. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam("joe")]) >>> q <sql: "SELECT * FROM test WHERE name='joe'"> >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.values() ['joe'] """ __slots__ = ["value"] def __init__(self, value): self.value = value def get_marker(self, paramstyle='pyformat'): if paramstyle == 'qmark': return '?' elif paramstyle == 'numeric': return ':1' elif paramstyle is None or paramstyle in ['format', 'pyformat']: return '%s' raise UnknownParamstyle, paramstyle def sqlquery(self): return SQLQuery([self]) def __add__(self, other): return self.sqlquery() + other def __radd__(self, other): return other + self.sqlquery() def __str__(self): return str(self.value) def __repr__(self): return '<param: %s>' % repr(self.value) sqlparam = SQLParam class SQLQuery(object): """ You can pass this sort of thing as a clause in any db function. Otherwise, you can pass a dictionary to the keyword argument `vars` and the function will call reparam for you. Internally, consists of `items`, which is a list of strings and SQLParams, which get concatenated to produce the actual query. """ __slots__ = ["items"] # tested in sqlquote's docstring def __init__(self, items=None): r"""Creates a new SQLQuery. >>> SQLQuery("x") <sql: 'x'> >>> q = SQLQuery(['SELECT * FROM ', 'test', ' WHERE x=', SQLParam(1)]) >>> q <sql: 'SELECT * FROM test WHERE x=1'> >>> q.query(), q.values() ('SELECT * FROM test WHERE x=%s', [1]) >>> SQLQuery(SQLParam(1)) <sql: '1'> """ if items is None: self.items = [] elif isinstance(items, list): self.items = items elif isinstance(items, SQLParam): self.items = [items] elif isinstance(items, SQLQuery): self.items = list(items.items) else: self.items = [items] # Take care of SQLLiterals for i, item in enumerate(self.items): if isinstance(item, SQLParam) and isinstance(item.value, SQLLiteral): self.items[i] = item.value.v def append(self, value): self.items.append(value) def __add__(self, other): if isinstance(other, basestring): items = [other] elif isinstance(other, SQLQuery): items = other.items else: return NotImplemented return SQLQuery(self.items + items) def __radd__(self, other): if isinstance(other, basestring): items = [other] else: return NotImplemented return SQLQuery(items + self.items) def __iadd__(self, other): if isinstance(other, (basestring, SQLParam)): self.items.append(other) elif isinstance(other, SQLQuery): self.items.extend(other.items) else: return NotImplemented return self def __len__(self): return len(self.query()) def query(self, paramstyle=None): """ Returns the query part of the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.query() 'SELECT * FROM test WHERE name=%s' >>> q.query(paramstyle='qmark') 'SELECT * FROM test WHERE name=?' """ s = [] for x in self.items: if isinstance(x, SQLParam): x = x.get_marker(paramstyle) s.append(safestr(x)) else: x = safestr(x) # automatically escape % characters in the query # For backward compatability, ignore escaping when the query looks already escaped if paramstyle in ['format', 'pyformat']: if '%' in x and '%%' not in x: x = x.replace('%', '%%') s.append(x) return "".join(s) def values(self): """ Returns the values of the parameters used in the sql query. >>> q = SQLQuery(["SELECT * FROM test WHERE name=", SQLParam('joe')]) >>> q.values() ['joe'] """ return [i.value for i in self.items if isinstance(i, SQLParam)] def join(items, sep=' ', prefix=None, suffix=None, target=None): """ Joins multiple queries. >>> SQLQuery.join(['a', 'b'], ', ') <sql: 'a, b'> Optinally, prefix and suffix arguments can be provided. >>> SQLQuery.join(['a', 'b'], ', ', prefix='(', suffix=')') <sql: '(a, b)'> If target argument is provided, the items are appended to target instead of creating a new SQLQuery. """ if target is None: target = SQLQuery() target_items = target.items if prefix: target_items.append(prefix) for i, item in enumerate(items): if i != 0: target_items.append(sep) if isinstance(item, SQLQuery): target_items.extend(item.items) else: target_items.append(item) if suffix: target_items.append(suffix) return target join = staticmethod(join) def _str(self): try: return self.query() % tuple([sqlify(x) for x in self.values()]) except (ValueError, TypeError): return self.query() def __str__(self): return safestr(self._str()) def __unicode__(self): return safeunicode(self._str()) def __repr__(self): return '<sql: %s>' % repr(str(self)) class SQLLiteral: """ Protects a string from `sqlquote`. >>> sqlquote('NOW()') <sql: "'NOW()'"> >>> sqlquote(SQLLiteral('NOW()')) <sql: 'NOW()'> """ def __init__(self, v): self.v = v def __repr__(self): return self.v sqlliteral = SQLLiteral def _sqllist(values): """ >>> _sqllist([1, 2, 3]) <sql: '(1, 2, 3)'> """ items = [] items.append('(') for i, v in enumerate(values): if i != 0: items.append(', ') items.append(sqlparam(v)) items.append(')') return SQLQuery(items) def reparam(string_, dictionary): """ Takes a string and a dictionary and interpolates the string using values from the dictionary. Returns an `SQLQuery` for the result. >>> reparam("s = $s", dict(s=True)) <sql: "s = 't'"> >>> reparam("s IN $s", dict(s=[1, 2])) <sql: 's IN (1, 2)'> """ dictionary = dictionary.copy() # eval mucks with it # disable builtins to avoid risk for remote code exection. dictionary['__builtins__'] = object() vals = [] result = [] for live, chunk in _interpolate(string_): if live: v = eval(chunk, dictionary) result.append(sqlquote(v)) else: result.append(chunk) return SQLQuery.join(result, '') def sqlify(obj): """ converts `obj` to its proper SQL version >>> sqlify(None) 'NULL' >>> sqlify(True) "'t'" >>> sqlify(3) '3' """ # because `1 == True and hash(1) == hash(True)` # we have to do this the hard way... if obj is None: return 'NULL' elif obj is True: return "'t'" elif obj is False: return "'f'" elif isinstance(obj, long): return str(obj) elif datetime and isinstance(obj, datetime.datetime): return repr(obj.isoformat()) else: if isinstance(obj, unicode): obj = obj.encode('utf8') return repr(obj) def sqllist(lst): """ Converts the arguments for use in something like a WHERE clause. >>> sqllist(['a', 'b']) 'a, b' >>> sqllist('a') 'a' >>> sqllist(u'abc') u'abc' """ if isinstance(lst, basestring): return lst else: return ', '.join(lst) def sqlors(left, lst): """ `left is a SQL clause like `tablename.arg = ` and `lst` is a list of values. Returns a reparam-style pair featuring the SQL that ORs together the clause for each item in the lst. >>> sqlors('foo = ', []) <sql: '1=2'> >>> sqlors('foo = ', [1]) <sql: 'foo = 1'> >>> sqlors('foo = ', 1) <sql: 'foo = 1'> >>> sqlors('foo = ', [1,2,3]) <sql: '(foo = 1 OR foo = 2 OR foo = 3 OR 1=2)'> """ if isinstance(lst, iters): lst = list(lst) ln = len(lst) if ln == 0: return SQLQuery("1=2") if ln == 1: lst = lst[0] if isinstance(lst, iters): return SQLQuery(['('] + sum([[left, sqlparam(x), ' OR '] for x in lst], []) + ['1=2)'] ) else: return left + sqlparam(lst) def sqlwhere(dictionary, grouping=' AND '): """ Converts a `dictionary` to an SQL WHERE clause `SQLQuery`. >>> sqlwhere({'cust_id': 2, 'order_id':3}) <sql: 'order_id = 3 AND cust_id = 2'> >>> sqlwhere({'cust_id': 2, 'order_id':3}, grouping=', ') <sql: 'order_id = 3, cust_id = 2'> >>> sqlwhere({'a': 'a', 'b': 'b'}).query() 'a = %s AND b = %s' """ return SQLQuery.join([k + ' = ' + sqlparam(v) for k, v in dictionary.items()], grouping) def sqlquote(a): """ Ensures `a` is quoted properly for use in a SQL query. >>> 'WHERE x = ' + sqlquote(True) + ' AND y = ' + sqlquote(3) <sql: "WHERE x = 't' AND y = 3"> >>> 'WHERE x = ' + sqlquote(True) + ' AND y IN ' + sqlquote([2, 3]) <sql: "WHERE x = 't' AND y IN (2, 3)"> """ if isinstance(a, list): return _sqllist(a) else: return sqlparam(a).sqlquery() class Transaction: """Database transaction.""" def __init__(self, ctx): self.ctx = ctx self.transaction_count = transaction_count = len(ctx.transactions) class transaction_engine: """Transaction Engine used in top level transactions.""" def do_transact(self): ctx.commit(unload=False) def do_commit(self): ctx.commit() def do_rollback(self): ctx.rollback() class subtransaction_engine: """Transaction Engine used in sub transactions.""" def query(self, q): db_cursor = ctx.db.cursor() ctx.db_execute(db_cursor, SQLQuery(q % transaction_count)) def do_transact(self): self.query('SAVEPOINT webpy_sp_%s') def do_commit(self): self.query('RELEASE SAVEPOINT webpy_sp_%s') def do_rollback(self): self.query('ROLLBACK TO SAVEPOINT webpy_sp_%s') class dummy_engine: """Transaction Engine used instead of subtransaction_engine when sub transactions are not supported.""" do_transact = do_commit = do_rollback = lambda self: None if self.transaction_count: # nested transactions are not supported in some databases if self.ctx.get('ignore_nested_transactions'): self.engine = dummy_engine() else: self.engine = subtransaction_engine() else: self.engine = transaction_engine() self.engine.do_transact() self.ctx.transactions.append(self) def __enter__(self): return self def __exit__(self, exctype, excvalue, traceback): if exctype is not None: self.rollback() else: self.commit() def commit(self): if len(self.ctx.transactions) > self.transaction_count: self.engine.do_commit() self.ctx.transactions = self.ctx.transactions[:self.transaction_count] def rollback(self): if len(self.ctx.transactions) > self.transaction_count: self.engine.do_rollback() self.ctx.transactions = self.ctx.transactions[:self.transaction_count] class DB: """Database""" def __init__(self, db_module, keywords): """Creates a database. """ # some DB implementaions take optional paramater `driver` to use a specific driver modue # but it should not be passed to connect keywords.pop('driver', None) self.db_module = db_module self.keywords = keywords self._ctx = threadeddict() # flag to enable/disable printing queries self.printing = config.get('debug_sql', config.get('debug', False)) self.supports_multiple_insert = False try: import DBUtils # enable pooling if DBUtils module is available. self.has_pooling = True except ImportError: self.has_pooling = False # Pooling can be disabled by passing pooling=False in the keywords. self.has_pooling = self.keywords.pop('pooling', True) and self.has_pooling def _getctx(self): if not self._ctx.get('db'): self._load_context(self._ctx) return self._ctx ctx = property(_getctx) def _load_context(self, ctx): ctx.dbq_count = 0 ctx.transactions = [] # stack of transactions if self.has_pooling: ctx.db = self._connect_with_pooling(self.keywords) else: ctx.db = self._connect(self.keywords) ctx.db_execute = self._db_execute if not hasattr(ctx.db, 'commit'): ctx.db.commit = lambda: None if not hasattr(ctx.db, 'rollback'): ctx.db.rollback = lambda: None def commit(unload=True): # do db commit and release the connection if pooling is enabled. ctx.db.commit() if unload and self.has_pooling: self._unload_context(self._ctx) def rollback(): # do db rollback and release the connection if pooling is enabled. ctx.db.rollback() if self.has_pooling: self._unload_context(self._ctx) ctx.commit = commit ctx.rollback = rollback def _unload_context(self, ctx): del ctx.db def _connect(self, keywords): return self.db_module.connect(**keywords) def _connect_with_pooling(self, keywords): def get_pooled_db(): from DBUtils import PooledDB # In DBUtils 0.9.3, `dbapi` argument is renamed as `creator` # see Bug#122112 if PooledDB.__version__.split('.') < '0.9.3'.split('.'): return PooledDB.PooledDB(dbapi=self.db_module, **keywords) else: return PooledDB.PooledDB(creator=self.db_module, **keywords) if getattr(self, '_pooleddb', None) is None: self._pooleddb = get_pooled_db() return self._pooleddb.connection() def _db_cursor(self): return self.ctx.db.cursor() def _param_marker(self): """Returns parameter marker based on paramstyle attribute if this database.""" style = getattr(self, 'paramstyle', 'pyformat') if style == 'qmark': return '?' elif style == 'numeric': return ':1' elif style in ['format', 'pyformat']: return '%s' raise UnknownParamstyle, style def _db_execute(self, cur, sql_query): """executes an sql query""" self.ctx.dbq_count += 1 try: a = time.time() query, params = self._process_query(sql_query) out = cur.execute(query, params) b = time.time() except: if self.printing: print >> debug, 'ERR:', str(sql_query) if self.ctx.transactions: self.ctx.transactions[-1].rollback() else: self.ctx.rollback() raise if self.printing: print >> debug, '%s (%s): %s' % (round(b-a, 2), self.ctx.dbq_count, str(sql_query)) return out def _process_query(self, sql_query): """Takes the SQLQuery object and returns query string and parameters. """ paramstyle = getattr(self, 'paramstyle', 'pyformat') query = sql_query.query(paramstyle) params = sql_query.values() return query, params def _where(self, where, vars): if isinstance(where, (int, long)): where = "id = " + sqlparam(where) #@@@ for backward-compatibility elif isinstance(where, (list, tuple)) and len(where) == 2: where = SQLQuery(where[0], where[1]) elif isinstance(where, dict): where = self._where_dict(where) elif isinstance(where, SQLQuery): pass else: where = reparam(where, vars) return where def _where_dict(self, where): where_clauses = [] for k, v in where.iteritems(): where_clauses.append(k + ' = ' + sqlquote(v)) if where_clauses: return SQLQuery.join(where_clauses, " AND ") else: return None def query(self, sql_query, vars=None, processed=False, _test=False): """ Execute SQL query `sql_query` using dictionary `vars` to interpolate it. If `processed=True`, `vars` is a `reparam`-style list to use instead of interpolating. >>> db = DB(None, {}) >>> db.query("SELECT * FROM foo", _test=True) <sql: 'SELECT * FROM foo'> >>> db.query("SELECT * FROM foo WHERE x = $x", vars=dict(x='f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> >>> db.query("SELECT * FROM foo WHERE x = " + sqlquote('f'), _test=True) <sql: "SELECT * FROM foo WHERE x = 'f'"> """ if vars is None: vars = {} if not processed and not isinstance(sql_query, SQLQuery): sql_query = reparam(sql_query, vars) if _test: return sql_query db_cursor = self._db_cursor() self._db_execute(db_cursor, sql_query) if db_cursor.description: names = [x[0] for x in db_cursor.description] def iterwrapper(): row = db_cursor.fetchone() while row: yield storage(dict(zip(names, row))) row = db_cursor.fetchone() out = iterbetter(iterwrapper()) out.__len__ = lambda: int(db_cursor.rowcount) out.list = lambda: [storage(dict(zip(names, x))) \ for x in db_cursor.fetchall()] else: out = db_cursor.rowcount if not self.ctx.transactions: self.ctx.commit() return out def select(self, tables, vars=None, what='*', where=None, order=None, group=None, limit=None, offset=None, _test=False): """ Selects `what` from `tables` with clauses `where`, `order`, `group`, `limit`, and `offset`. Uses vars to interpolate. Otherwise, each clause can be a SQLQuery. >>> db = DB(None, {}) >>> db.select('foo', _test=True) <sql: 'SELECT * FROM foo'> >>> db.select(['foo', 'bar'], where="foo.bar_id = bar.id", limit=5, _test=True) <sql: 'SELECT * FROM foo, bar WHERE foo.bar_id = bar.id LIMIT 5'> >>> db.select('foo', where={'id': 5}, _test=True) <sql: 'SELECT * FROM foo WHERE id = 5'> """ if vars is None: vars = {} sql_clauses = self.sql_clauses(what, tables, where, group, order, limit, offset) clauses = [self.gen_clause(sql, val, vars) for sql, val in sql_clauses if val is not None] qout = SQLQuery.join(clauses) if _test: return qout return self.query(qout, processed=True) def where(self, table, what='*', order=None, group=None, limit=None, offset=None, _test=False, **kwargs): """ Selects from `table` where keys are equal to values in `kwargs`. >>> db = DB(None, {}) >>> db.where('foo', bar_id=3, _test=True) <sql: 'SELECT * FROM foo WHERE bar_id = 3'> >>> db.where('foo', source=2, crust='dewey', _test=True) <sql: "SELECT * FROM foo WHERE source = 2 AND crust = 'dewey'"> >>> db.where('foo', _test=True) <sql: 'SELECT * FROM foo'> """ where = self._where_dict(kwargs) return self.select(table, what=what, order=order, group=group, limit=limit, offset=offset, _test=_test, where=where) def sql_clauses(self, what, tables, where, group, order, limit, offset): return ( ('SELECT', what), ('FROM', sqllist(tables)), ('WHERE', where), ('GROUP BY', group), ('ORDER BY', order), ('LIMIT', limit), ('OFFSET', offset)) def gen_clause(self, sql, val, vars): if isinstance(val, (int, long)): if sql == 'WHERE': nout = 'id = ' + sqlquote(val) else: nout = SQLQuery(val) #@@@ elif isinstance(val, (list, tuple)) and len(val) == 2: nout = SQLQuery(val[0], val[1]) # backwards-compatibility elif sql == 'WHERE' and isinstance(val, dict): nout = self._where_dict(val) elif isinstance(val, SQLQuery): nout = val else: nout = reparam(val, vars) def xjoin(a, b): if a and b: return a + ' ' + b else: return a or b return xjoin(sql, nout) def insert(self, tablename, seqname=None, _test=False, **values): """ Inserts `values` into `tablename`. Returns current sequence ID. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> q = db.insert('foo', name='bob', age=2, created=SQLLiteral('NOW()'), _test=True) >>> q <sql: "INSERT INTO foo (age, name, created) VALUES (2, 'bob', NOW())"> >>> q.query() 'INSERT INTO foo (age, name, created) VALUES (%s, %s, NOW())' >>> q.values() [2, 'bob'] """ def q(x): return "(" + x + ")" if values: _keys = SQLQuery.join(values.keys(), ', ') _values = SQLQuery.join([sqlparam(v) for v in values.values()], ', ') sql_query = "INSERT INTO %s " % tablename + q(_keys) + ' VALUES ' + q(_values) else: sql_query = SQLQuery(self._get_insert_default_values_query(tablename)) if _test: return sql_query db_cursor = self._db_cursor() if seqname is not False: sql_query = self._process_insert_query(sql_query, tablename, seqname) if isinstance(sql_query, tuple): # for some databases, a separate query has to be made to find # the id of the inserted row. q1, q2 = sql_query self._db_execute(db_cursor, q1) self._db_execute(db_cursor, q2) else: self._db_execute(db_cursor, sql_query) try: out = db_cursor.fetchone()[0] except Exception: out = None if not self.ctx.transactions: self.ctx.commit() return out def _get_insert_default_values_query(self, table): return "INSERT INTO %s DEFAULT VALUES" % table def multiple_insert(self, tablename, values, seqname=None, _test=False): """ Inserts multiple rows into `tablename`. The `values` must be a list of dictioanries, one for each row to be inserted, each with the same set of keys. Returns the list of ids of the inserted rows. Set `seqname` to the ID if it's not the default, or to `False` if there isn't one. >>> db = DB(None, {}) >>> db.supports_multiple_insert = True >>> values = [{"name": "foo", "email": "foo@example.com"}, {"name": "bar", "email": "bar@example.com"}] >>> db.multiple_insert('person', values=values, _test=True) <sql: "INSERT INTO person (name, email) VALUES ('foo', 'foo@example.com'), ('bar', 'bar@example.com')"> """ if not values: return [] if not self.supports_multiple_insert: out = [self.insert(tablename, seqname=seqname, _test=_test, **v) for v in values] if seqname is False: return None else: return out keys = values[0].keys() #@@ make sure all keys are valid for v in values: if v.keys() != keys: raise ValueError, 'Not all rows have the same keys' sql_query = SQLQuery('INSERT INTO %s (%s) VALUES ' % (tablename, ', '.join(keys))) for i, row in enumerate(values): if i != 0: sql_query.append(", ") SQLQuery.join([SQLParam(row[k]) for k in keys], sep=", ", target=sql_query, prefix="(", suffix=")") if _test: return sql_query db_cursor = self._db_cursor() if seqname is not False: sql_query = self._process_insert_query(sql_query, tablename, seqname) if isinstance(sql_query, tuple): # for some databases, a separate query has to be made to find # the id of the inserted row. q1, q2 = sql_query self._db_execute(db_cursor, q1) self._db_execute(db_cursor, q2) else: self._db_execute(db_cursor, sql_query) try: out = db_cursor.fetchone()[0] out = range(out-len(values)+1, out+1) except Exception: out = None if not self.ctx.transactions: self.ctx.commit() return out def update(self, tables, where, vars=None, _test=False, **values): """ Update `tables` with clause `where` (interpolated using `vars`) and setting `values`. >>> db = DB(None, {}) >>> name = 'Joseph' >>> q = db.update('foo', where='name = $name', name='bob', age=2, ... created=SQLLiteral('NOW()'), vars=locals(), _test=True) >>> q <sql: "UPDATE foo SET age = 2, name = 'bob', created = NOW() WHERE name = 'Joseph'"> >>> q.query() 'UPDATE foo SET age = %s, name = %s, created = NOW() WHERE name = %s' >>> q.values() [2, 'bob', 'Joseph'] """ if vars is None: vars = {} where = self._where(where, vars) query = ( "UPDATE " + sqllist(tables) + " SET " + sqlwhere(values, ', ') + " WHERE " + where) if _test: return query db_cursor = self._db_cursor() self._db_execute(db_cursor, query) if not self.ctx.transactions: self.ctx.commit() return db_cursor.rowcount def delete(self, table, where, using=None, vars=None, _test=False): """ Deletes from `table` with clauses `where` and `using`. >>> db = DB(None, {}) >>> name = 'Joe' >>> db.delete('foo', where='name = $name', vars=locals(), _test=True) <sql: "DELETE FROM foo WHERE name = 'Joe'"> """ if vars is None: vars = {} where = self._where(where, vars) q = 'DELETE FROM ' + table if using: q += ' USING ' + sqllist(using) if where: q += ' WHERE ' + where if _test: return q db_cursor = self._db_cursor() self._db_execute(db_cursor, q) if not self.ctx.transactions: self.ctx.commit() return db_cursor.rowcount def _process_insert_query(self, query, tablename, seqname): return query def transaction(self): """Start a transaction.""" return Transaction(self.ctx) class PostgresDB(DB): """Postgres driver.""" def __init__(self, **keywords): if 'pw' in keywords: keywords['password'] = keywords.pop('pw') db_module = import_driver(["psycopg2", "psycopg", "pgdb"], preferred=keywords.pop('driver', None)) if db_module.__name__ == "psycopg2": import psycopg2.extensions psycopg2.extensions.register_type(psycopg2.extensions.UNICODE) if db_module.__name__ == "pgdb" and 'port' in keywords: keywords["host"] += ":" + str(keywords.pop('port')) # if db is not provided postgres driver will take it from PGDATABASE environment variable if 'db' in keywords: keywords['database'] = keywords.pop('db') self.dbname = "postgres" self.paramstyle = db_module.paramstyle DB.__init__(self, db_module, keywords) self.supports_multiple_insert = True self._sequences = None def _process_insert_query(self, query, tablename, seqname): if seqname is None: # when seqname is not provided guess the seqname and make sure it exists seqname = tablename + "_id_seq" if seqname not in self._get_all_sequences(): seqname = None if seqname: query += "; SELECT currval('%s')" % seqname return query def _get_all_sequences(self): """Query postgres to find names of all sequences used in this database.""" if self._sequences is None: q = "SELECT c.relname FROM pg_class c WHERE c.relkind = 'S'" self._sequences = set([c.relname for c in self.query(q)]) return self._sequences def _connect(self, keywords): conn = DB._connect(self, keywords) try: conn.set_client_encoding('UTF8') except AttributeError: # fallback for pgdb driver conn.cursor().execute("set client_encoding to 'UTF-8'") return conn def _connect_with_pooling(self, keywords): conn = DB._connect_with_pooling(self, keywords) conn._con._con.set_client_encoding('UTF8') return conn class MySQLDB(DB): def __init__(self, **keywords): import MySQLdb as db if 'pw' in keywords: keywords['passwd'] = keywords['pw'] del keywords['pw'] if 'charset' not in keywords: keywords['charset'] = 'utf8' elif keywords['charset'] is None: del keywords['charset'] self.paramstyle = db.paramstyle = 'pyformat' # it's both, like psycopg self.dbname = "mysql" DB.__init__(self, db, keywords) self.supports_multiple_insert = True def _process_insert_query(self, query, tablename, seqname): return query, SQLQuery('SELECT last_insert_id();') def _get_insert_default_values_query(self, table): return "INSERT INTO %s () VALUES()" % table def import_driver(drivers, preferred=None): """Import the first available driver or preferred driver. """ if preferred: drivers = [preferred] for d in drivers: try: return __import__(d, None, None, ['x']) except ImportError: pass raise ImportError("Unable to import " + " or ".join(drivers)) class SqliteDB(DB): def __init__(self, **keywords): db = import_driver(["sqlite3", "pysqlite2.dbapi2", "sqlite"], preferred=keywords.pop('driver', None)) if db.__name__ in ["sqlite3", "pysqlite2.dbapi2"]: db.paramstyle = 'qmark' # sqlite driver doesn't create datatime objects for timestamp columns unless `detect_types` option is passed. # It seems to be supported in sqlite3 and pysqlite2 drivers, not surte about sqlite. keywords.setdefault('detect_types', db.PARSE_DECLTYPES) self.paramstyle = db.paramstyle keywords['database'] = keywords.pop('db') keywords['pooling'] = False # sqlite don't allows connections to be shared by threads self.dbname = "sqlite" DB.__init__(self, db, keywords) def _process_insert_query(self, query, tablename, seqname): return query, SQLQuery('SELECT last_insert_rowid();') def query(self, *a, **kw): out = DB.query(self, *a, **kw) if isinstance(out, iterbetter): del out.__len__ return out class FirebirdDB(DB): """Firebird Database. """ def __init__(self, **keywords): try: import kinterbasdb as db except Exception: db = None pass if 'pw' in keywords: keywords['password'] = keywords.pop('pw') keywords['database'] = keywords.pop('db') self.paramstyle = db.paramstyle DB.__init__(self, db, keywords) def delete(self, table, where=None, using=None, vars=None, _test=False): # firebird doesn't support using clause using=None return DB.delete(self, table, where, using, vars, _test) def sql_clauses(self, what, tables, where, group, order, limit, offset): return ( ('SELECT', ''), ('FIRST', limit), ('SKIP', offset), ('', what), ('FROM', sqllist(tables)), ('WHERE', where), ('GROUP BY', group), ('ORDER BY', order) ) class MSSQLDB(DB): def __init__(self, **keywords): import pymssql as db if 'pw' in keywords: keywords['password'] = keywords.pop('pw') keywords['database'] = keywords.pop('db') self.dbname = "mssql" DB.__init__(self, db, keywords) def _process_query(self, sql_query): """Takes the SQLQuery object and returns query string and parameters. """ # MSSQLDB expects params to be a tuple. # Overwriting the default implementation to convert params to tuple. paramstyle = getattr(self, 'paramstyle', 'pyformat') query = sql_query.query(paramstyle) params = sql_query.values() return query, tuple(params) def sql_clauses(self, what, tables, where, group, order, limit, offset): return ( ('SELECT', what), ('TOP', limit), ('FROM', sqllist(tables)), ('WHERE', where), ('GROUP BY', group), ('ORDER BY', order), ('OFFSET', offset)) def _test(self): """Test LIMIT. Fake presence of pymssql module for running tests. >>> import sys >>> sys.modules['pymssql'] = sys.modules['sys'] MSSQL has TOP clause instead of LIMIT clause. >>> db = MSSQLDB(db='test', user='joe', pw='secret') >>> db.select('foo', limit=4, _test=True) <sql: 'SELECT * TOP 4 FROM foo'> """ pass class OracleDB(DB): def __init__(self, **keywords): import cx_Oracle as db if 'pw' in keywords: keywords['password'] = keywords.pop('pw') #@@ TODO: use db.makedsn if host, port is specified keywords['dsn'] = keywords.pop('db') self.dbname = 'oracle' db.paramstyle = 'numeric' self.paramstyle = db.paramstyle # oracle doesn't support pooling keywords.pop('pooling', None) DB.__init__(self, db, keywords) def _process_insert_query(self, query, tablename, seqname): if seqname is None: # It is not possible to get seq name from table name in Oracle return query else: return query + "; SELECT %s.currval FROM dual" % seqname def dburl2dict(url): """ Takes a URL to a database and parses it into an equivalent dictionary. >>> dburl2dict('postgres:///mygreatdb') {'pw': None, 'dbn': 'postgres', 'db': 'mygreatdb', 'host': None, 'user': None, 'port': None} >>> dburl2dict('postgres://james:day@serverfarm.example.net:5432/mygreatdb') {'pw': 'day', 'dbn': 'postgres', 'db': 'mygreatdb', 'host': 'serverfarm.example.net', 'user': 'james', 'port': 5432} >>> dburl2dict('postgres://james:day@serverfarm.example.net/mygreatdb') {'pw': 'day', 'dbn': 'postgres', 'db': 'mygreatdb', 'host': 'serverfarm.example.net', 'user': 'james', 'port': None} >>> dburl2dict('postgres://james:d%40y@serverfarm.example.net/mygreatdb') {'pw': 'd@y', 'dbn': 'postgres', 'db': 'mygreatdb', 'host': 'serverfarm.example.net', 'user': 'james', 'port': None} >>> dburl2dict('mysql://james:d%40y@serverfarm.example.net/mygreatdb') {'pw': 'd@y', 'dbn': 'mysql', 'db': 'mygreatdb', 'host': 'serverfarm.example.net', 'user': 'james', 'port': None} """ parts = urlparse.urlparse(urllib.unquote(url)) return {'dbn': parts.scheme, 'user': parts.username, 'pw': parts.password, 'db': parts.path[1:], 'host': parts.hostname, 'port': parts.port} _databases = {} def database(dburl=None, **params): """Creates appropriate database using params. Pooling will be enabled if DBUtils module is available. Pooling can be disabled by passing pooling=False in params. """ if not dburl and not params: dburl = os.environ['DATABASE_URL'] if dburl: params = dburl2dict(dburl) dbn = params.pop('dbn') if dbn in _databases: return _databases[dbn](**params) else: raise UnknownDB, dbn def register_database(name, clazz): """ Register a database. >>> class LegacyDB(DB): ... def __init__(self, **params): ... pass ... >>> register_database('legacy', LegacyDB) >>> db = database(dbn='legacy', db='test', user='joe', passwd='secret') """ _databases[name] = clazz register_database('mysql', MySQLDB) register_database('postgres', PostgresDB) register_database('sqlite', SqliteDB) register_database('firebird', FirebirdDB) register_database('mssql', MSSQLDB) register_database('oracle', OracleDB) def _interpolate(format): """ Takes a format string and returns a list of 2-tuples of the form (boolean, string) where boolean says whether string should be evaled or not. from <http://lfw.org/python/Itpl.py> (public domain, Ka-Ping Yee) """ from tokenize import tokenprog def matchorfail(text, pos): match = tokenprog.match(text, pos) if match is None: raise _ItplError(text, pos) return match, match.end() namechars = "abcdefghijklmnopqrstuvwxyz" \ "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; chunks = [] pos = 0 while 1: dollar = format.find("$", pos) if dollar < 0: break nextchar = format[dollar + 1] if nextchar == "{": chunks.append((0, format[pos:dollar])) pos, level = dollar + 2, 1 while level: match, pos = matchorfail(format, pos) tstart, tend = match.regs[3] token = format[tstart:tend] if token == "{": level = level + 1 elif token == "}": level = level - 1 chunks.append((1, format[dollar + 2:pos - 1])) elif nextchar in namechars: chunks.append((0, format[pos:dollar])) match, pos = matchorfail(format, dollar + 1) while pos < len(format): if format[pos] == "." and \ pos + 1 < len(format) and format[pos + 1] in namechars: match, pos = matchorfail(format, pos + 1) elif format[pos] in "([": pos, level = pos + 1, 1 while level: match, pos = matchorfail(format, pos) tstart, tend = match.regs[3] token = format[tstart:tend] if token[0] in "([": level = level + 1 elif token[0] in ")]": level = level - 1 else: break chunks.append((1, format[dollar + 1:pos])) else: chunks.append((0, format[pos:dollar + 1])) pos = dollar + 1 + (nextchar == "$") if pos < len(format): chunks.append((0, format[pos:])) return chunks if __name__ == "__main__": import doctest doctest.testmod()
33.518374
124
0.540448
89d81fac464384046db5804df4b171df506faecf
1,089
py
Python
LeetCode_Solutions/206. Reverse Linked List.py
foxfromworld/Coding-Interview-Preparation-with-LeetCode-and-An-Algorithm-Book
e0c704d196fe0d8452ea639a92f2a75c3b46a9b0
[ "BSD-2-Clause" ]
null
null
null
LeetCode_Solutions/206. Reverse Linked List.py
foxfromworld/Coding-Interview-Preparation-with-LeetCode-and-An-Algorithm-Book
e0c704d196fe0d8452ea639a92f2a75c3b46a9b0
[ "BSD-2-Clause" ]
null
null
null
LeetCode_Solutions/206. Reverse Linked List.py
foxfromworld/Coding-Interview-Preparation-with-LeetCode-and-An-Algorithm-Book
e0c704d196fe0d8452ea639a92f2a75c3b46a9b0
[ "BSD-2-Clause" ]
null
null
null
# Source : https://leetcode.com/problems/reverse-linked-list/ # Author : foxfromworld # Date : 02/02/2021 # Second attempt class Solution: def reverseList(self, head): # Recursive """ :type head: ListNode :rtype: ListNode """ if not head: return head if not head.next: return head p = self.reverseList(head.next) head.next.next = head head.next = None return p # Date : 02/02/2021 # First attempt (iterative) # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def reverseList(self, head): # Iterative """ :type head: ListNode :rtype: ListNode """ # curr curr.next # ↓ ↓ # prev 1 -> 2 -> None # prev curr  curr.next # ↓ ↓ ↓ # None <- 1 -> 2 -> None prev, curr = None, head while curr: #curr.next, prev, curr = prev, curr, curr.next prev, curr.next, curr = curr, prev, curr.next return prev
23.170213
61
0.55831
4128e4eb07a7469218931ef28ab94b81e497c809
15,025
py
Python
talib/StopStrategy.py
isaacdlp/pyalgosamples
e1a6504c6cd0d906ef082c81037b59b137a99105
[ "Apache-2.0" ]
3
2017-12-01T16:21:54.000Z
2020-03-17T01:55:21.000Z
talib/StopStrategy.py
isaacdlp/pyalgosamples
e1a6504c6cd0d906ef082c81037b59b137a99105
[ "Apache-2.0" ]
1
2019-04-17T06:17:09.000Z
2020-05-26T04:00:16.000Z
talib/StopStrategy.py
isaacdlp/pyalgosamples
e1a6504c6cd0d906ef082c81037b59b137a99105
[ "Apache-2.0" ]
2
2017-11-23T10:01:04.000Z
2019-11-06T15:35:41.000Z
# PyAlgoTrade # # Copyright 2011-2015 Gabriel Martin Becedillas Ruiz # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. moduleauthor:: Gabriel Martin Becedillas Ruiz <gabriel.becedillas@gmail.com> """ SCENARIO = 2 DBFEED = False TRAILING = False from pyalgotrade import strategy, plotter, dataseries from pyalgotrade.technical import ma, macd, cross from pyalgotrade.stratanalyzer import drawdown, returns, sharpe from pyalgotrade.utils import stats import datetime import pyalgotrade.logger as logger import math from pyalgotrade import broker from pyalgotrade.broker import backtesting from pyalgoext import dbfeed from pyalgotrade.barfeed import yahoofeed from pyalgotrade.talibext import indicator class SessionOpenStopOrder(backtesting.StopOrder): def __init__(self, action, position, pricePer, quantity, instrumentTraits): if action == broker.Order.Action.SELL: pricePer = 1 - pricePer else: pricePer = 1 + pricePer self._dateTime = position.getStrategy().getCurrentDateTime() self._pricePer = pricePer self._position = position backtesting.StopOrder.__init__(self, action, position.getInstrument(), position.getLastPrice() * pricePer, quantity, instrumentTraits) position.getStrategy().getBarsProcessedEvent().subscribe(self.__onBars) def __onBars(self, strategy, bars): instrument = self._position.getInstrument() if self._dateTime.date != bars.getDateTime().date: if instrument in bars: self._StopOrder__stopPrice = bars[instrument].getPrice() * self._pricePer self._dateTime = bars.getDateTime() class TrailingStopOrder(backtesting.StopOrder): def __init__(self, action, position, pricePer, quantity, instrumentTraits): backtesting.StopOrder.__init__(self, action, position.getInstrument(), 0, quantity, instrumentTraits) if action == broker.Order.Action.SELL: pricePer = 1 - pricePer else: pricePer = 1 + pricePer self._pricePer = pricePer self._position = position self._refPrice = 0 def getStopPrice(self): lastPrice = self._position.getLastPrice() if self.getAction() == broker.Order.Action.SELL: if self._refPrice < lastPrice: self._refPrice = lastPrice else: if self._refPrice > lastPrice: self._refPrice = lastPrice return self._refPrice * self._pricePer class MyBenchmark(strategy.BacktestingStrategy): def __init__(self, feed, stopPer, stopTrailing, delay): myBroker = backtesting.Broker(1000000, feed, backtesting.TradePercentage(0.002)) myBroker.setAllowNegativeCash(True) myBroker.getFillStrategy().setVolumeLimit(None) super(MyBenchmark, self).__init__(feed, myBroker) self._delay = delay self._feed = feed self._session = 0 self._liquidity = 0.05 self._posMax = len(feed.getRegisteredInstruments()) self._posLong = {} self._posShort = {} self.startDateTime = None self.endDateTime = None self._stopPer = stopPer self._stopTrailing = stopTrailing self.setUseAdjustedValues(True) def onEnterOk(self, position): order = position.getEntryOrder() if order.getAction() == broker.Order.Action.BUY: self.logOp("COMPRA", order) if self._stopTrailing: stopOrder = TrailingStopOrder(broker.Order.Action.SELL, position, self._stopPer, position.getShares(), order.getInstrumentTraits()) stopOrder.setGoodTillCanceled(True) position._Position__submitAndRegisterOrder(stopOrder) position._Position__exitOrder = stopOrder else: position.exitStop(order.getExecutionInfo().getPrice() * (1 - self._stopPer), True) else: self.logOp("VENTA CORTA", order) if self._stopTrailing: stopOrder = TrailingStopOrder(broker.Order.Action.BUY_TO_COVER, position, self._stopPer, math.fabs(position.getShares()), order.getInstrumentTraits()) stopOrder.setGoodTillCanceled(True) position._Position__submitAndRegisterOrder(stopOrder) position._Position__exitOrder = stopOrder else: position.exitStop(order.getExecutionInfo().getPrice() * (1 + self._stopPer), True) def onEnterCanceled(self, position): order = position.getEntryOrder() if order.getAction() == broker.Order.Action.BUY: del self._posLong[position.getInstrument()] self.logOp("COMPRA CANCELADA", order) else: del self._posShort[position.getInstrument()] self.logOp("VENTA CORTA CANCELADA", order) def onExitOk(self, position): order = position.getExitOrder() if order.getAction() == broker.Order.Action.SELL: del self._posLong[position.getInstrument()] self.logOp("VENTA", order) else: del self._posShort[position.getInstrument()] self.logOp("COMPRA PARA CUBRIR", order) def onExitCanceled(self, position): # If the exit was canceled, re-submit it. position.exitMarket() order = position.getExitOrder() if order.getAction() == broker.Order.Action.SELL: self.logOp("VENTA CANCELADA en %s" % (self.getCurrentDateTime().date()), order) else: self.logOp("COMPRA PARA CUBRIR CANCELADA en %s" % (self.getCurrentDateTime().date()), order) def onBars(self, bars): # Wait for the same bar than the strategy if self._delay > 0: self._delay -= 1 return for instrument, bar in bars.items(): if instrument not in self._posLong: self.prepareEnter(instrument, bars) def prepareEnter(self, instrument, bars, action=broker.Order.Action.BUY): if (len(self._posLong) + len(self._posShort)) < self._posMax: bar = bars[instrument] perInstrument = self.getBroker().getEquity() / self._posMax cash = self.getBroker().getCash() if perInstrument > cash: perInstrument = cash perInstrument *= (1 - self._liquidity) amount = int(perInstrument / bar.getPrice()) if amount > 0: if (action == broker.Order.Action.BUY): self._posLong[instrument] = self.enterLong(instrument, amount, True) else: self._posShort[instrument] = self.enterShort(instrument, amount, True) def prepareExit(self, position): order = position.getExitOrder() if not order: position.exitMarket() elif isinstance(order, broker.StopOrder): # order._Order__state = broker.Order.State.CANCELED # position.exitMarket() position.cancelExit() def onStart(self): startDateTime = self.getCurrentDateTime() # Problem at Yahoo Feeds start with None if not startDateTime: startDateTime = self.getFeed().peekDateTime() self.startDateTime = startDateTime def onFinish(self, bars): self.endDateTime = bars.getDateTime() def logOp(self, type, order): self.info("%s %s %s" % (type, order.getInstrument(), order.getExecutionInfo())) class MyBasicStrategy(MyBenchmark): def __init__(self, feed, stopPer, stopTrailing, smaShort, smaLong): MyBenchmark.__init__(self, feed, stopPer, stopTrailing, smaLong) self._smaShort = {} self._smaLong = {} self._macdPrice = {} self._macdVol = {} for instrument in feed.getRegisteredInstruments(): self._smaShort[instrument] = ma.SMA(self._feed[instrument].getPriceDataSeries(), smaShort) self._smaLong[instrument] = ma.SMA(self._feed[instrument].getPriceDataSeries(), smaLong) self._macdPrice[instrument] = macd.MACD(self._feed[instrument].getPriceDataSeries(), 12, 26, 9) self._macdVol[instrument] = macd.MACD(self._feed[instrument].getVolumeDataSeries(), 12, 26, 9) def getSMAShorts(self): return self._smaShort def getSMALongs(self): return self._smaLong def onBars(self, bars): for instrument, bar in bars.items(): # Wait for enough bars to be available to calculate a SMA. if not self._smaLong[instrument] or self._smaLong[instrument][-1] is None: return pri = self._macdPrice[instrument] vol = self._macdVol[instrument] if instrument in self._posLong: if cross.cross_below(self._smaShort[instrument], self._smaLong[instrument]): position = self._posLong[instrument] self.prepareExit(position) elif instrument in self._posShort: if cross.cross_above(pri.getSignal(), pri): position = self._posShort[instrument] self.prepareExit(position) if cross.cross_above(self._smaShort[instrument], self._smaLong[instrument]): self.prepareEnter(instrument, bars) elif cross.cross_below(pri.getSignal(), pri) and cross.cross_above(vol.getSignal(), vol): self.prepareEnter(instrument, bars, broker.Order.Action.SELL_SHORT) class MyTaLibStrategy(MyBasicStrategy): def __init__(self, feed, stopPer, stopTrailing, smaShort, smaLong, aroonPeriod): MyBasicStrategy.__init__(self, feed, stopPer, stopTrailing, smaShort, smaLong) self._aroon = {} self._aroonPeriod = aroonPeriod for instrument in feed.getRegisteredInstruments(): self._aroon[instrument] = dataseries.SequenceDataSeries() def onBars(self, bars): for instrument, bar in bars.items(): # Wait for enough bars to be available to calculate a SMA. if not self._smaLong[instrument] or self._smaLong[instrument][-1] is None: return barDs = self.getFeed().getDataSeries(instrument) #closeDs = barDs.getCloseDataSeries() aroon = indicator.AROONOSC(barDs, self._aroonPeriod + 1, self._aroonPeriod) self._aroon[instrument].appendWithDateTime(self.getCurrentDateTime(), aroon[-1]) pri = self._macdPrice[instrument] vol = self._macdVol[instrument] if instrument in self._posLong: if cross.cross_below(self._smaShort[instrument], self._smaLong[instrument]) and aroon[-1] < -25: position = self._posLong[instrument] self.prepareExit(position) elif instrument in self._posShort: if cross.cross_above(pri.getSignal(), pri) and aroon[-1] > 25: position = self._posShort[instrument] self.prepareExit(position) if cross.cross_above(self._smaShort[instrument], self._smaLong[instrument]) and aroon[-1] > 25: self.prepareEnter(instrument, bars) elif cross.cross_below(pri.getSignal(), pri) and cross.cross_above(vol.getSignal(), vol) and aroon[-1] < -25: self.prepareEnter(instrument, bars, broker.Order.Action.SELL_SHORT) if __name__ == "__main__": config = { 'user': 'root', 'password': '', 'host': '127.0.0.1', 'database': 'ibex35', 'raise_on_warnings': True, } logger.log_format = "[%(levelname)s] %(message)s" stopPer = 0.15 smaShort = 50 smaLong = 200 aroonPeriod = 25 startDate = datetime.date(2001, 05, 24) endDate = datetime.date(2015, 12, 21) instrument = 'GAS.MC' feed = None if DBFEED: feed = dbfeed.DbFeed(config, [], 100, startDate, endDate) feed.registerInstrument(instrument) else: feed = yahoofeed.Feed() feed.sanitizeBars(True) feed.addBarsFromCSV(instrument, instrument + ".csv") myStrategy = None if SCENARIO == 2: myStrategy = MyBasicStrategy(feed, stopPer, TRAILING, smaShort, smaLong) elif SCENARIO == 3: myStrategy = MyTaLibStrategy(feed, stopPer, TRAILING, smaShort, smaLong, aroonPeriod) else: myStrategy = MyBenchmark(feed, stopPer, TRAILING, smaLong) # Strategy returnsAnalyzer = returns.Returns() myStrategy.attachAnalyzer(returnsAnalyzer) returnsAnalyzer.getReturns().setMaxLen(1000000) sharpeAnalyzer = sharpe.SharpeRatio() myStrategy.attachAnalyzer(sharpeAnalyzer) drawDownAnalyzer = drawdown.DrawDown() myStrategy.attachAnalyzer(drawDownAnalyzer) # Attach a plotter to the strategy plt = plotter.StrategyPlotter(myStrategy, True) if hasattr(myStrategy, '_aroon'): subPlot = plt.getOrCreateSubplot("Aroon") subPlot.addDataSeries("Aroon", myStrategy._aroon[instrument]) if hasattr(myStrategy, '_smaShort'): subPlot = plt.getOrCreateSubplot("SMA") subPlot.addDataSeries("SMALong", myStrategy._smaLong[instrument]) subPlot.addDataSeries("SMAShort", myStrategy._smaShort[instrument]) subPlot = plt.getOrCreateSubplot("MACD") subPlot.addDataSeries("MACDPrice", myStrategy._macdPrice[instrument]) subPlot.addDataSeries("MACDVolume", myStrategy._macdVol[instrument]) capStart = myStrategy.getBroker().getEquity() myStrategy.info("CAPITAL INICIAL: $%.4f" % capStart) # Run the strategy myStrategy.run() # Show basic information allRet = returnsAnalyzer.getReturns() capEnd = myStrategy.getBroker().getEquity() myStrategy.info("CAPITAL FINAL: $%.4f" % capEnd) myStrategy.info(" ") myStrategy.info("Rentabilidad: %.4f%%" % (100 * (capEnd - capStart) / capStart)) myStrategy.info("Rentabilidad Anualizada: %.4f%%" % (100 * (math.pow((capEnd / capStart), (365.0 / ((myStrategy.endDateTime - myStrategy.startDateTime).days))) - 1))) myStrategy.info("Volatilidad Anualizada: %.4f%%" % (100 * stats.stddev(allRet, 1) * math.sqrt(252))) myStrategy.info("Ratio de Sharpe Anualizado: %.4f" % (100 * sharpeAnalyzer.getSharpeRatio(0.0036, True))) myStrategy.info("DrawDown Maximo: %.4f%%" % (100 * drawDownAnalyzer.getMaxDrawDown())) myStrategy.info("DrawDown Mas Largo: %s dias" % (drawDownAnalyzer.getLongestDrawDownDuration().days)) # Plot the strategy. plt.plot()
40.389785
170
0.651514
89617eb32366723ef73b8d3df1f49c4c6ea58cc5
12,751
py
Python
active_code_base/lok_scraper_1.py
justin-napolitano/USSupremeCourtMetaDataGraph
d2d53915cdba33848bdd81f661d3c496ca518966
[ "Apache-2.0" ]
null
null
null
active_code_base/lok_scraper_1.py
justin-napolitano/USSupremeCourtMetaDataGraph
d2d53915cdba33848bdd81f661d3c496ca518966
[ "Apache-2.0" ]
null
null
null
active_code_base/lok_scraper_1.py
justin-napolitano/USSupremeCourtMetaDataGraph
d2d53915cdba33848bdd81f661d3c496ca518966
[ "Apache-2.0" ]
null
null
null
#library_of_congress_scraper.py from __future__ import print_function from bs4 import BeautifulSoup import requests import lxml.etree as etree import xml.etree.ElementTree as ET import json import pandas as pd import os import time import random import math from pprint import pprint #import load_vars as lv import html import yaml from yaml import Loader, Dumper import glob import datetime import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from google.oauth2 import service_account from googleapiclient.http import MediaIoBaseDownload, MediaFileUpload from flatten_json import flatten import networkx as nx class node_json(): def __init__(self, data): self.out = self.flatten(data) self.graph = nx.Graph() def create_node(key): testing = "do_something" def node_generator(self, data, name =''): output = {} keys_at_level = [] # If the Nested key-value # pair is of dict type if type(data) is dict: for k, v in data: create_node(k) node_generator(v) elif type(data) is list: for item in data: node_genrator(item) else: #this item is no longer a dictionary or list create_node(data) #flatten(hierarchak)_dict) return out_put class search_result(): def __init__(self,dict_item,num_columns,colnum_string): self.key = dict_item.key() self.value = dict_item.value() self.column_string = colnum_string self.index = num_columns self.range = self.create_column_range_string() self.request_body = self.create_column_request() def create_column_request(self): request_body = { 'range': self.range, "majorDimension": "COLUMNS", "values": [self.value] } return request_body def create_column_range_string(self): rnge = "'Sheet1'" + "!" + self.column_string + str(1) return rnge def colnum_string(self, num_columns): string = "" while num_columns > 0: num_columns, remainder = divmod(num_columns - 1, 26) string = chr(65 + remainder) + string return string class google_drive: def __init__(self,creds): self.service = self.get_drive_service(creds) def test(self): pprint("hello I exist") def get_drive_service(self, creds): """Shows basic usage of the Drive v3 API. Prints the names and ids of the first 10 files the user has access to. """ SCOPES = [] #creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. service = build('drive', 'v3', credentials=creds) # Call the Drive v3 API results = service.files().list( pageSize=10, fields="nextPageToken, files(id, name)").execute() items = results.get('files', []) if not items: print('No files found.') else: print('Files:') for item in items: print(u'{0} ({1})'.format(item['name'], item['id'])) return service def create_folder(self,title): drive_service = self.service file_metadata = { 'name': '{}'.format(title), 'mimeType': 'application/vnd.google-apps.folder' } file = drive_service.files().create(body=file_metadata, fields='id').execute() print('Folder ID: %s' % file.get('id')) def add_spreadsheet_to_folder(self ,folder_id,title): drive_service = self.service file_metadata = { 'name': '{}'.format(title), 'parents': [folder_id], 'mimeType': 'application/vnd.google-apps.spreadsheet', } res = drive_service.files().create(body=file_metadata).execute() #print(res) return res class google_sheet(): def __init__(self,creds): self.service =self.get_sheet_service(creds) def get_sheet_service(self,creds): service = build('sheets', 'v4', credentials=creds) return service.spreadsheets() class google_creds(): def __init__(self,creds_path): self.creds = self.get_creds(creds_path) def get_creds(self,creds_path): creds = None # The file token.json stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) print("no creds") else: creds = service_account.Credentials.from_service_account_file(creds_path) #creds = ServiceAccountCredentials.from_json_keyfile_name('add_json_file_here.json', SCOPES) #flow = InstalledAppFlow.from_client_secrets_file( # 'credentials.json', SCOPES) #creds = flow.run_local_server(port=0) # Save the credentials for the next run #with open('token.json', 'w') as token: # token.write(creds.to_json()) return creds class config(): def __init__(self,file_path): #self.yaml_stream = file("config.yaml", 'r') self.data = self.load_config(file_path) def load_config(self,file_path): #print("test") stream = open(file_path, 'r') data = yaml.load(stream,Loader = Loader) #pprint(data) return data class search_results_page(): def __init__(self,base_url = "https://www.loc.gov/collections",collection = "united-states-reports",json_parameter = "fo=json",results_per_page = "c=150",query_param = "?",page_param ="sp=",page_num = 1,column_lookup_table = {},num_columns = 0): self.search_url = self.create_search_url(base_url,collection,json_parameter,results_per_page,query_param,page_param,page_num) self.response = self.request_data() self.response_json = self.response_to_json() #self.soup_html = self.html_parse() self.next_url = self.get_next_url() self.page_num = page_num self.response_json_flat = self.flatten_result() self.num_columns = num_columns self.column_lookup_table = column_lookup_table self.map_columns_to_lookup_table() def create_search_result_node(self): for item in self.response_json_flat: for k,v in item.items(): if k not in self.column_lookup_table: column_string = self.colnum_string() self.column_lookup_table[k] = self.colnum_string(self.num_columns) self.num_columns += 1 else: continue def append_to_data_list(self,rnge,d,data_list):#rename to _data_list request_body_tmp = { 'range': rnge, "majorDimension": "COLUMNS", "values": [d] } data_list.append(request_body_tmp) def map_columns_to_batch_request_list(self): for item in self.response_json_flat: for k,v in item.items(): mapped_column_key = self.column_lookup_table[k] rnge = "'Sheet1'" + "!" + column_key + str(1) def colnum_string(self): string = "" while self.num_columns > 0: self.num_columns, remainder = divmod(self.num_columns - 1, 26) string = chr(65 + remainder) + string return string def map_columns_to_lookup_table(self): for item in self.response_json_flat: for k in item.keys(): if k not in self.column_lookup_table: self.column_lookup_table[k] = self.colnum_string() self.num_columns += 1 else: continue #return column_lookup_table def get_next_url(self): return (self.response_json['pagination']['next']) def create_search_url(self,base_url,collection,json_parameter,results_per_page,query_param,page_param,page_num): url_sep ="/" page_param = page_param +(str(page_num)) query = "&".join([json_parameter,results_per_page,page_param]) query = query_param + query search_url = url_sep.join([base_url,collection,query]) #pprint(search_url) return search_url def say_hello(self): pprint(self.base_url) def request_data(self): headers = {'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_2) AppleWebKit/601.3.11 (KHTML, like Gecko) Version/9.0.2 Safari/601.3.9', 'Accept-Encoding': 'identity' } return requests.get(self.search_url,headers=headers) def response_to_json(self): return self.response.json() def html_parse(self): soup=BeautifulSoup(self.response.content,'lxml') #pprint(soup) return soup def flatten_result(self): flat_result_list = [] for item in self.response_json['results']: flat_json = flatten(item) flat_result_list.append(flat_json) return flat_result_list def create_google_credentials_object(creds_path = 'credentials.json'): google_credentials_object = google_creds(creds_path) return google_credentials_object def create_config_object(file_path = 'config.yaml'): config_object = config(file_path) return config_object def search_result_generator(base_url = "https://www.loc.gov/collections",collection = "united-states-reports",json_parameter = "fo=json",results_per_page = "c=150",query_param = "?",page_param ="sp=",page_num = 1,condition =True): while condition ==True: search_results_page_object = create_search_results_page_object(base_url,collection,json_parameter,results_per_page,query_param,page_param,page_num) if search_results_page_object.next_url != None: condition =True page_num = page_num + 1 yield search_results_page_object else: condition = False yield search_results_page_object def create_search_results_page_object(base_url = "https://www.loc.gov/collections",collection = "united-states-reports",json_parameter = "fo=json",results_per_page = "c=150",query_param = "?",page_param ="sp=",page_num = 1,column_lookup_table = {}): #search = search_results(base_url,collection,json_parameter,results_per_page,query_param,page_param,page_num) #pprint(search.search_url) return search_results_page(base_url,collection,json_parameter,results_per_page,query_param,page_param,page_num) def create_google_drive_object(google_creds): drive_service_object = google_drive(google_creds) return drive_service_object def create_google_sheet_object(google_creds): sheet_service_object = google_sheet(google_creds) return sheet_service_object def create_new_google_sheet(google_drive_object,folder_id,title): sheet_meta_data = google_drive_object.add_spreadsheet_to_folder(folder_id, title) return sheet_meta_data def flatten_result(result_json): flat_json = flatten(result_json) return flat_json def main(): search_result = create_search_results_page_object() pprint(search_result.response_json['results'][0]) #flatten_result(search_result.response_json['results'][0]) #pprint(search_result.response_json['results'][0]) #config = create_config_object() #google_credentials_object = create_google_credentials_object() #drive_service_object = create_google_drive_object(google_credentials_object.creds) #sheets_service_object = create_google_sheet_object(google_credentials_object.creds) #drive_service_object.test() #sheet_meta_data = create_new_google_sheet(drive_service_object,config.data['google']['output_folder_id'],'testing') #pprint(search_url.base_url) if __name__ == "__main__": main()
33.555263
249
0.643479
3690d63070a5c31e459fb7abc66d13c03767835f
1,715
py
Python
lte/gateway/python/integ_tests/s1aptests/test_attach_dl_udp_data.py
remo5000/magma
1d1dd9a23800a8e07b1ce016776d93e12430ec15
[ "BSD-3-Clause" ]
3
2019-08-16T17:03:09.000Z
2019-08-23T21:57:48.000Z
lte/gateway/python/integ_tests/s1aptests/test_attach_dl_udp_data.py
remo5000/magma
1d1dd9a23800a8e07b1ce016776d93e12430ec15
[ "BSD-3-Clause" ]
14
2019-11-15T12:01:18.000Z
2019-12-12T14:37:42.000Z
lte/gateway/python/integ_tests/s1aptests/test_attach_dl_udp_data.py
119Vik/magma-1
107a7b374466a837fc0a49b283ba9d6ff1d702e3
[ "BSD-3-Clause" ]
3
2019-11-15T15:56:25.000Z
2019-11-21T10:34:59.000Z
""" Copyright (c) 2017-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import unittest import s1ap_types import s1ap_wrapper class TestAttachDlUdpData(unittest.TestCase): def setUp(self): self._s1ap_wrapper = s1ap_wrapper.TestWrapper() def tearDown(self): self._s1ap_wrapper.cleanup() def test_attach_dl_udp_data(self): """ Attach and send DL UDP data """ self._s1ap_wrapper.configUEDevice(1) req = self._s1ap_wrapper.ue_req print("************************* Running End to End attach for ", "UE id ", req.ue_id) # Now actually complete the attach self._s1ap_wrapper._s1_util.attach( req.ue_id, s1ap_types.tfwCmd.UE_END_TO_END_ATTACH_REQUEST, s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND, s1ap_types.ueAttachAccept_t) # Wait on EMM Information from MME self._s1ap_wrapper._s1_util.receive_emm_info() print("************************* Running UE downlink (UDP) for UE id ", req.ue_id) with self._s1ap_wrapper.configDownlinkTest( req, duration=1, is_udp=True) as test: test.verify() print("************************* Running UE detach for UE id ", req.ue_id) # Now detach the UE self._s1ap_wrapper.s1_util.detach( req.ue_id, s1ap_types.ueDetachType_t.UE_SWITCHOFF_DETACH.value, True) if __name__ == "__main__": unittest.main()
31.181818
79
0.631487
dafdab436a1a7a71bf8966cda11df784acbba9b6
285
py
Python
ipymaterialui/_version.py
trungleduc/ipymaterialui
9ced90551d0ee007e4a968d1f35156bdb1a56805
[ "MIT" ]
81
2018-11-23T22:03:11.000Z
2022-03-14T11:04:04.000Z
ipymaterialui/_version.py
trungleduc/ipymaterialui
9ced90551d0ee007e4a968d1f35156bdb1a56805
[ "MIT" ]
16
2018-11-26T18:23:46.000Z
2022-01-22T03:12:11.000Z
ipymaterialui/_version.py
trungleduc/ipymaterialui
9ced90551d0ee007e4a968d1f35156bdb1a56805
[ "MIT" ]
17
2019-01-16T15:19:54.000Z
2022-01-02T18:32:09.000Z
version_info = (0, 1, 4, 'final') _specifier_ = {'alpha': 'a', 'beta': 'b', 'candidate': 'rc', 'final': ''} __version__ = '%s.%s.%s%s' % ( version_info[0], version_info[1], version_info[2], '' if version_info[3] == 'final' else _specifier_[version_info[3]]+str(version_info[4]))
35.625
90
0.617544
f3aca903aec347756c32ee5e9796a2917a798134
2,130
py
Python
alipay/aop/api/response/AlipayMarketingActivityDeliveryCreateResponse.py
Anning01/alipay-sdk-python-all
2adff354483ab7c2e615d6ad646d0b75c9c7803d
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/response/AlipayMarketingActivityDeliveryCreateResponse.py
Anning01/alipay-sdk-python-all
2adff354483ab7c2e615d6ad646d0b75c9c7803d
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/response/AlipayMarketingActivityDeliveryCreateResponse.py
Anning01/alipay-sdk-python-all
2adff354483ab7c2e615d6ad646d0b75c9c7803d
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.ErrorDeliveryConfig import ErrorDeliveryConfig from alipay.aop.api.domain.SuccessDeliveryConfig import SuccessDeliveryConfig class AlipayMarketingActivityDeliveryCreateResponse(AlipayResponse): def __init__(self): super(AlipayMarketingActivityDeliveryCreateResponse, self).__init__() self._error_delivery_config_list = None self._success_delivery_config_list = None @property def error_delivery_config_list(self): return self._error_delivery_config_list @error_delivery_config_list.setter def error_delivery_config_list(self, value): if isinstance(value, list): self._error_delivery_config_list = list() for i in value: if isinstance(i, ErrorDeliveryConfig): self._error_delivery_config_list.append(i) else: self._error_delivery_config_list.append(ErrorDeliveryConfig.from_alipay_dict(i)) @property def success_delivery_config_list(self): return self._success_delivery_config_list @success_delivery_config_list.setter def success_delivery_config_list(self, value): if isinstance(value, list): self._success_delivery_config_list = list() for i in value: if isinstance(i, SuccessDeliveryConfig): self._success_delivery_config_list.append(i) else: self._success_delivery_config_list.append(SuccessDeliveryConfig.from_alipay_dict(i)) def parse_response_content(self, response_content): response = super(AlipayMarketingActivityDeliveryCreateResponse, self).parse_response_content(response_content) if 'error_delivery_config_list' in response: self.error_delivery_config_list = response['error_delivery_config_list'] if 'success_delivery_config_list' in response: self.success_delivery_config_list = response['success_delivery_config_list']
42.6
118
0.722535
0cb926b27c1f1fe0b0a98abc4dce32bddb95c12d
17,619
py
Python
scripts/Sorts.py
blackb0x3/Edward
fae35c2bad13a19c7bfb2f0d5d9810762169a086
[ "MIT" ]
2
2019-01-08T00:32:10.000Z
2019-06-24T14:29:24.000Z
scripts/Sorts.py
lukebarker3/Edward
fae35c2bad13a19c7bfb2f0d5d9810762169a086
[ "MIT" ]
5
2021-03-09T01:31:15.000Z
2022-02-17T20:41:27.000Z
scripts/Sorts.py
lukebarker3/Edward
fae35c2bad13a19c7bfb2f0d5d9810762169a086
[ "MIT" ]
null
null
null
from scripts.Algorithm import Algorithm, AlgorithmError from models.Stack import Stack import numpy as np class Sort(Algorithm): """ Base class for algorithms which sort 1-dimensional lists. """ def generate_collection(self, *args, **kwargs): """ Generates a list for a sorting algorithm. :param args: Ordered list of args. :param kwargs: Keyword args. :return: The generated collection. """ min = kwargs.get('min', 1) max = kwargs.get('max', 1000) size = kwargs.get('size', 10) coll = [int(v) for v in np.random.choice(range(min, max + 1), size)] shuffles = 5 # shuffle collection 5 times using fisher yates while shuffles > 0: s = size while (s > 0): s = s - 1 i = int(np.floor(np.random.random() * s) - 1) if i < 0: i = 0 temp = coll[s] coll[s] = coll[i] coll[i] = temp shuffles -= 1 self.oldcollection = list(coll) def collection_is_valid(self): """ Determines if the collection is valid for this algorithm. In this case, a list. :return: True if the collection is a list, False otherwise. """ return isinstance(self.oldcollection, list) def has_worked(self): """ Determines if the sorting algorithm worked correctly as intended. :raise: AlgorithmError if the collection wasn't sorted correctly. :return: True if the collection was sorted correctly. """ if self._is_sorted() is False: raise AlgorithmError("The algorithm did not sort the collection correctly.") return True def _is_sorted(self, desc=False): """ Determines if a collection has been sorted. Default is ascending order. :param desc: Checks collection is sorted in descending order. :return: True if collection is sorted in the specified order, false otherwise. """ if desc is True: return all(self.newcollection[i] >= self.newcollection[i + 1] for i in range(len(self.newcollection) - 1)) else: return all(self.newcollection[i] <= self.newcollection[i + 1] for i in range(len(self.newcollection) - 1)) def execute(self): """ Executes this algorithm's steps on the provided collection. """ raise NotImplementedError("Please use a specific sort algorithm's execute() function.") @staticmethod def metadata(): """ Returns the algorithm's metadata - space complexity, time complexity, algorithm description etc. """ raise NotImplementedError("Please use a specific sort algorithm's metadata() function.") class InsertionSort(Sort): name = "Insertion Sort" description = """An in-place, comparison-based sorting algorithm. It sorts array by shifting elements one by one and inserting the right element at the right position.""" steps = ["First Step", "Second Step", "Finally...", "Done"] best_case = "O(n) comparisons, O(1) swaps" average_case = "O(n<sup>2</sup>) comparisons, O(n<sup>2</sup>) swaps" worst_case = "O(n<sup>2</sup>) comparisons, O(n<sup>2</sup>) swaps" def execute(self): """ Sorts a collection by using the insertion sort algorithm. """ length = len(self.newcollection) for i in range(1, length): key = self.newcollection[i] j = i - 1 while j >= 0 and key < self.newcollection[j]: self.newcollection[j + 1] = self.newcollection[j] j = j - 1 self.newcollection[j + 1] = key @staticmethod def metadata(): return { "name" : InsertionSort.name, "description" : InsertionSort.description, "steps" : InsertionSort.steps, "best_case" : InsertionSort.best_case, "average_case": InsertionSort.average_case, "worst_case" : InsertionSort.worst_case } class TraditionalBubbleSort(Sort): def execute(self): """ Sorts a collection by using the traditional bubble sort algorithm. """ length = len(self.newcollection) for i in range(length): for j in range(length - i - 1): if self.newcollection[j] > self.newcollection[j + 1]: temp = self.newcollection[j] self.newcollection[j] = self.newcollection[j + 1] self.newcollection[j + 1] = temp @staticmethod def metadata(): return {} class OptimisedBubbleSort(Sort): def execute(self): """ Sorts a collection by using the optimised bubble sort algorithm. """ length = len(self.newcollection) for i in range(length): swapped = False for j in range(0, length - i - 1): if self.newcollection[j] > self.newcollection[j + 1]: temp = self.newcollection[j] self.newcollection[j] = self.newcollection[j + 1] self.newcollection[j + 1] = temp swapped = True if not swapped: break @staticmethod def metadata(): return {} class SelectionSort(Sort): def execute(self): """ Sorts a collection using the selection sort algorithm. """ length = len(self.newcollection) for i in range(length): first = i for j in range(i + 1, length): if self.newcollection[first] > self.newcollection[j]: first = j temp = self.newcollection[i] self.newcollection[i] = self.newcollection[first] self.newcollection[first] = temp @staticmethod def metadata(): return {} class QuickSort(Sort): def partition(self, low, high): """ Sorts current partition :param low: lowest index of current partition :param high: highest index of current partition :return: sorted partition """ index = low - 1 pivot = self.newcollection[high] for i in range(low, high): if self.newcollection[i] <= pivot: # smaller element's index incremented i += 1 temp = self.newcollection[index] self.newcollection[index] = self.newcollection[i] self.newcollection[i] = temp temp = self.newcollection[index + 1] self.newcollection[index + 1] = self.newcollection[high] self.newcollection[high] = temp return index + 1 class RecursiveQuickSort(QuickSort): def execute(self): """ Sorts a collection using the recursive version of the quicksort algorithm. """ self.doIt(0, len(self.newcollection) - 1) def doIt(self, low, high): """ Actually sorts the collection. :param low: low index of current partition :param high: high index of current partition :return: sorted array """ if low < high: pivot = self.partition(low, high) self.doIt(low, pivot - 1) self.doIt(pivot + 1, high) @staticmethod def metadata(): return {} class IterativeQuickSort(QuickSort): def execute(self): """ Sorts a collection using the iterative version of the quicksort algorithm. """ # Create alternate stack size = len(self.newcollection) stack = Stack() # push initial values stack.push(0, size - 1) # keep popping from stack if it is not empty while stack.pointer >= 0: # pop first and last index of partition high = stack.pop() low = stack.pop() # set pivot to it's correct position in order to sort array p = self.partition(low, high) if p - 1 > low: stack.push(low, p - 1) if p + 1 < high: stack.push(p + 1, high) return None @staticmethod def metadata(): return {} class MergeSort(Sort): description = """""" steps = [] best_case = "O(n log n)" average_case = "O(n log n)" worst_case = "O(n log n)" @staticmethod def metadata(): return { "description": MergeSort.description, "steps": dict(list(enumerate(MergeSort.steps, start=1))), "best_case": MergeSort.best_case, "worst_case": MergeSort.worst_case, "average_case": MergeSort.average_case } class TopDownMergeSort(MergeSort): def execute(self): """ Sorts a collection using the top-down implementation (i.e. using recursion) of the merge sort. :return: The sorted collection. """ self.newcollection = self.perform_sort(self.newcollection) def perform_sort(self, collection): """ Actually performs the sorting algorithm on the provided collection. :param collection: The collection to be sorted. :return: The sorted collection, after merging is completed. """ size = len(collection) if size <= 1: return None else: left = list() right = list() for i, x in enumerate(collection): if i < size / 2: left.append(x) else: right.append(x) left = self.perform_sort(left) right = self.perform_sort(left) return self.merge(left, right) def merge(self, left, right): """ Merges two sublists together and returns the ordered union of the two lists. :param left: The first sublist. :param right: The second sublist. :return: The merged collection. """ result = list() while len(left) > 0 and len(right) > 0: if left[0] <= right[0]: result.append(left[0]) left.pop(0) else: result.append(right[0]) right.pop(0) return result class BottomUpMergeSort(MergeSort): def execute(self): """ Sorts a collection using the bottom-up implementation (i.e. using iteration) of the merge sort. :return: The sorted list. """ current_size = 1 while current_size < len(self.newcollection) - 1: left = 0 while left < len(self.newcollection) - 1: mid = left + current_size - 1 right = ((2 * current_size + left - 1, len(self.newcollection) - 1)[2 * current_size + left - 1 > len(self.newcollection)-1]) self.merge(left, mid, right) left = left + (current_size * 2) current_size *= 2 def merge(self, left, mid, right): """ Merges all sublists together to form the sorted array. :param left: Lower bound. :param mid: Middle value. :param right: Upper bound. :return: A merged collection. """ n1 = mid - left + 1 n2 = right - mid L = [0] * n1 R = [0] * n2 for i in range(0, n1): L[i] = self.newcollection[left + i] for i in range(0, n2): R[i] = self.newcollection[mid + i + 1] i, j, k = 0, 0, left while i < n1 and j < n2: if L[i] > R[j]: self.newcollection[k] = R[j] j += 1 else: self.newcollection[k] = L[i] i += 1 k += 1 while i < n1: self.newcollection[k] = L[i] i += 1 k += 1 while j < n2: self.newcollection[k] = R[j] j += 1 k += 1 class HeapSort(Sort): description = """""" steps = [] best_case = "" average_case = "" worst_case = "" @staticmethod def metadata(): return { "description": HeapSort.description, "steps": dict(list(enumerate(HeapSort.steps, start=1))), "best_case": HeapSort.best_case, "worst_case": HeapSort.worst_case, "average_case": HeapSort.average_case } def execute(self): """ Executes the heap sort algorithm on the provided collection. :return: The sorted collection. """ size = len(self.newcollection) for i in range(size, -1, -1): self.heapify(self.newcollection, size, i) for i in range(size - 1, 0, -1): self.newcollection[i], self.newcollection[0] = self.newcollection[0], self.newcollection[i] self.heapify(self.newcollection, i, 0) def heapify(self, collection, heap_size, root_index): """ Creates a max-heap from the provided collection. :param collection: The collection to transform into a max-heap. :param heap_size: The size of the heap. :param root_index: The root index of the subtree to be heapified. :return: The generated max-heap. """ largest = root_index left = 2 * root_index + 1 right = 2 * root_index + 2 if left < heap_size and collection[root_index] < collection[left]: largest = left if right < heap_size and collection[largest] < collection[right]: largest = right if largest != root_index: collection[root_index], collection[largest] = collection[largest], collection[root_index] # swap self.heapify(collection, heap_size, largest) class ShellSort(Sort): description = """""" steps = [] best_case = "" average_case = "" worst_case = "" @staticmethod def metadata(): return { "description": ShellSort.description, "steps": dict(list(enumerate(ShellSort.steps, start=1))), "best_case": ShellSort.best_case, "worst_case": ShellSort.worst_case, "average_case": ShellSort.average_case } def execute(self): """ Executes the shell sort algorithm on the provided collection. :return: The sorted collection. """ size = len(self.newcollection) gap = size / 2 while gap > 0: for i in range(gap, size): temp = self.newcollection[i] j = i # shift earlier gap-sorted elements up until the correct # location is found while j >= gap and self.newcollection[j - gap] > temp: self.newcollection[j] = self.newcollection[j - gap] j -= gap # original element is now in its correct location self.newcollection[j] = temp gap /= 2 class CountingSort(Sort): description = """""" steps = [] best_case = "" average_case = "" worst_case = "" @staticmethod def metadata(): return { "description": CountingSort.description, "steps": dict(list(enumerate(CountingSort.steps, start=1))), "best_case": CountingSort.best_case, "worst_case": CountingSort.worst_case, "average_case": CountingSort.average_case } def execute(self): """ Executes the counting sort algorithm on the provided collection. :return: The sorted collection. """ size = len(self.newcollection) output = [0] * size k = max(self.newcollection) count = [0] * k for item in self.newcollection: count[item] += 1 total = 0 for i in range(k): old_count = count[i] count[i] = total total += old_count for item in self.newcollection: output[count[item]] = item count[item] += 1 self.newcollection = output class BucketSort(Sort): description = """""" steps = [] best_case = "" average_case = "" worst_case = "" @staticmethod def metadata(): return { "description": BucketSort.description, "steps": dict(list(enumerate(BucketSort.steps, start=1))), "best_case": BucketSort.best_case, "worst_case": BucketSort.worst_case, "average_case": BucketSort.average_case } def execute(self): """ Executes the bucket sort algorithm on the provided collection. :return: The sorted collection. """ buckets = list() max_val = max(self.newcollection) size = len(self.newcollection) spread = max_val / size current_min = 0 current_max = spread while current_max < max_val: bucket = list() for item in self.newcollection.copy(): if item >= current_min and item <= current_max: bucket.append(item) self.newcollection.remove(item) current_min = current_max + 1 current_max += spread buckets.append(bucket) for bucket in buckets: bucket.sort() # can't be arsed to recurse over every bucket self.newcollection += bucket
28.602273
174
0.548783
667fb44da65f1ed89e8088be797743dc6c224cf7
652
py
Python
sql/exec.py
a-was/flask-template
42403b5099a6b54c2f0c0884998b89bdd67258ce
[ "MIT" ]
null
null
null
sql/exec.py
a-was/flask-template
42403b5099a6b54c2f0c0884998b89bdd67258ce
[ "MIT" ]
null
null
null
sql/exec.py
a-was/flask-template
42403b5099a6b54c2f0c0884998b89bdd67258ce
[ "MIT" ]
null
null
null
import os import sqlite3 DB_FILE = '../database.sqlite3' db = sqlite3.connect(DB_FILE) sql_files = [f for f in os.listdir('.') if f.endswith('.sql')] for sql_file in sql_files: with open(sql_file) as f: for command in f.read().split(';'): try: db.execute(command) except sqlite3.IntegrityError: print('WARNING - This command cannot be executed due to IntegrityError - {}'.format(command.strip())) except sqlite3.OperationalError: print('ERROR - This command raised OperationalError - {}'.format(command.strip())) db.commit() db.close()
34.315789
118
0.605828
7cc56b545086a456e747d71b894d38001d92b6e1
13,912
py
Python
tests/test_uri_templates.py
astonm/falcon
90d0cd6c69b527a666912e0d0752cf303c134a0c
[ "Apache-2.0" ]
1
2018-10-07T21:06:10.000Z
2018-10-07T21:06:10.000Z
tests/test_uri_templates.py
astonm/falcon
90d0cd6c69b527a666912e0d0752cf303c134a0c
[ "Apache-2.0" ]
null
null
null
tests/test_uri_templates.py
astonm/falcon
90d0cd6c69b527a666912e0d0752cf303c134a0c
[ "Apache-2.0" ]
null
null
null
"""Application tests for URI templates using simulate_get(). These tests differ from those in test_default_router in that they are a collection of sanity-checks that exercise the full framework code path via simulate_get(), vs. probing the router directly. """ from datetime import datetime import uuid import pytest import six import falcon from falcon import testing from falcon.routing.util import SuffixedMethodNotFoundError _TEST_UUID = uuid.uuid4() _TEST_UUID_2 = uuid.uuid4() _TEST_UUID_STR = str(_TEST_UUID) _TEST_UUID_STR_2 = str(_TEST_UUID_2) _TEST_UUID_STR_SANS_HYPHENS = _TEST_UUID_STR.replace('-', '') class IDResource(object): def __init__(self): self.id = None self.name = None self.called = False def on_get(self, req, resp, id): self.id = id self.called = True self.req = req class NameResource(object): def __init__(self): self.id = None self.name = None self.called = False def on_get(self, req, resp, id, name): self.id = id self.name = name self.called = True class NameAndDigitResource(object): def __init__(self): self.id = None self.name51 = None self.called = False def on_get(self, req, resp, id, name51): self.id = id self.name51 = name51 self.called = True class FileResource(object): def __init__(self): self.file_id = None self.called = False def on_get(self, req, resp, file_id): self.file_id = file_id self.called = True class FileDetailsResource(object): def __init__(self): self.file_id = None self.ext = None self.called = False def on_get(self, req, resp, file_id, ext): self.file_id = file_id self.ext = ext self.called = True class ResourceWithSuffixRoutes(object): def __init__(self): self.get_called = False self.post_called = False self.put_called = False def on_get(self, req, resp, collection_id, item_id): self.collection_id = collection_id self.item_id = item_id self.get_called = True def on_post(self, req, resp, collection_id, item_id): self.collection_id = collection_id self.item_id = item_id self.post_called = True def on_put(self, req, resp, collection_id, item_id): self.collection_id = collection_id self.item_id = item_id self.put_called = True def on_get_collection(self, req, resp, collection_id): self.collection_id = collection_id self.get_called = True def on_post_collection(self, req, resp, collection_id): self.collection_id = collection_id self.post_called = True def on_put_collection(self, req, resp, collection_id): self.collection_id = collection_id self.put_called = True @pytest.fixture def resource(): return testing.SimpleTestResource() @pytest.fixture def client(): return testing.TestClient(falcon.API()) def test_root_path(client, resource): client.app.add_route('/', resource) client.simulate_get('/') assert resource.called def test_no_vars(client, resource): client.app.add_route('/hello/world', resource) client.simulate_get('/hello/world') assert resource.called @pytest.mark.skipif(six.PY3, reason='Test only applies to Python 2') def test_unicode_literal_routes(client, resource): client.app.add_route(u'/hello/world', resource) client.simulate_get('/hello/world') assert resource.called def test_special_chars(client, resource): client.app.add_route('/hello/world.json', resource) client.app.add_route('/hello(world)', resource) client.simulate_get('/hello/world_json') assert not resource.called client.simulate_get('/helloworld') assert not resource.called client.simulate_get('/hello/world.json') assert resource.called client.simulate_get('/hello(world)') assert resource.called @pytest.mark.parametrize('field_name', [ 'id', 'id123', 'widget_id', ]) def test_single(client, resource, field_name): template = '/widgets/{{{}}}'.format(field_name) client.app.add_route(template, resource) client.simulate_get('/widgets/123') assert resource.called assert resource.captured_kwargs[field_name] == '123' @pytest.mark.parametrize('uri_template,', [ '/{id:int}', '/{id:int(3)}', '/{id:int(min=123)}', '/{id:int(min=123, max=123)}', ]) def test_int_converter(client, uri_template): resource1 = IDResource() client.app.add_route(uri_template, resource1) result = client.simulate_get('/123') assert result.status_code == 200 assert resource1.called assert resource1.id == 123 assert resource1.req.path == '/123' @pytest.mark.parametrize('uri_template,', [ '/{id:int(2)}', '/{id:int(min=124)}', '/{id:int(num_digits=3, max=100)}', ]) def test_int_converter_rejections(client, uri_template): resource1 = IDResource() client.app.add_route(uri_template, resource1) result = client.simulate_get('/123') assert result.status_code == 404 assert not resource1.called @pytest.mark.parametrize('uri_template, path, dt_expected', [ ( '/{start_year:int}-to-{timestamp:dt}', '/1961-to-1969-07-21T02:56:00Z', datetime(1969, 7, 21, 2, 56, 0) ), ( '/{start_year:int}-to-{timestamp:dt("%Y-%m-%d")}', '/1961-to-1969-07-21', datetime(1969, 7, 21) ), ( '/{start_year:int}/{timestamp:dt("%Y-%m-%d %H:%M")}', '/1961/1969-07-21 14:30', datetime(1969, 7, 21, 14, 30) ), ( '/{start_year:int}-to-{timestamp:dt("%Y-%m")}', '/1961-to-1969-07-21', None ), ]) def test_datetime_converter(client, resource, uri_template, path, dt_expected): client.app.add_route(uri_template, resource) result = client.simulate_get(path) if dt_expected is None: assert result.status_code == 404 assert not resource.called else: assert result.status_code == 200 assert resource.called assert resource.captured_kwargs['start_year'] == 1961 assert resource.captured_kwargs['timestamp'] == dt_expected @pytest.mark.parametrize('uri_template, path, expected', [ ( '/widgets/{widget_id:uuid}', '/widgets/' + _TEST_UUID_STR, {'widget_id': _TEST_UUID} ), ( '/widgets/{widget_id:uuid}/orders', '/widgets/' + _TEST_UUID_STR_SANS_HYPHENS + '/orders', {'widget_id': _TEST_UUID} ), ( '/versions/diff/{left:uuid()}...{right:uuid()}', '/versions/diff/{}...{}'.format(_TEST_UUID_STR, _TEST_UUID_STR_2), {'left': _TEST_UUID, 'right': _TEST_UUID_2, } ), ( '/versions/diff/{left:uuid}...{right:uuid()}', '/versions/diff/{}...{}'.format(_TEST_UUID_STR, _TEST_UUID_STR_2), {'left': _TEST_UUID, 'right': _TEST_UUID_2, } ), ( '/versions/diff/{left:uuid()}...{right:uuid}', '/versions/diff/{}...{}'.format(_TEST_UUID_STR, _TEST_UUID_STR_2), {'left': _TEST_UUID, 'right': _TEST_UUID_2, } ), ( '/widgets/{widget_id:uuid}/orders', '/widgets/' + _TEST_UUID_STR_SANS_HYPHENS[:-1] + '/orders', None ), ]) def test_uuid_converter(client, resource, uri_template, path, expected): client.app.add_route(uri_template, resource) result = client.simulate_get(path) if expected is None: assert result.status_code == 404 assert not resource.called else: assert result.status_code == 200 assert resource.called assert resource.captured_kwargs == expected def test_uuid_converter_complex_segment(client, resource): client.app.add_route('/pages/{first:uuid}...{last:uuid}', resource) first_uuid = uuid.uuid4() last_uuid = uuid.uuid4() result = client.simulate_get('/pages/{}...{}'.format( first_uuid, last_uuid )) assert result.status_code == 200 assert resource.called assert resource.captured_kwargs['first'] == first_uuid assert resource.captured_kwargs['last'] == last_uuid @pytest.mark.parametrize('uri_template, path, expected', [ ( '/{food:spam}', '/something', {'food': 'spam!'} ), ( '/{food:spam(")")}:{food_too:spam("()")}', '/bacon:eggs', {'food': 'spam!', 'food_too': 'spam!'} ), ( '/({food:spam()}){food_too:spam("()")}', '/(bacon)eggs', {'food': 'spam!', 'food_too': 'spam!'} ), ]) def test_converter_custom(client, resource, uri_template, path, expected): class SpamConverter(object): def __init__(self, useless_text=None): pass def convert(self, fragment): return 'spam!' client.app.router_options.converters['spam'] = SpamConverter client.app.add_route(uri_template, resource) result = client.simulate_get(path) assert result.status_code == 200 assert resource.called assert resource.captured_kwargs == expected def test_single_trailing_slash(client): resource1 = IDResource() client.app.add_route('/1/{id}/', resource1) result = client.simulate_get('/1/123') assert result.status == falcon.HTTP_200 assert resource1.called assert resource1.id == '123' assert resource1.req.path == '/1/123' resource2 = IDResource() client.app.add_route('/2/{id}/', resource2) result = client.simulate_get('/2/123/') assert result.status == falcon.HTTP_404 assert not resource2.called assert resource2.id is None resource3 = IDResource() client.app.add_route('/3/{id}/', resource3) client.app.req_options.strip_url_path_trailing_slash = True result = client.simulate_get('/3/123/') assert result.status == falcon.HTTP_200 assert resource3.called assert resource3.id == '123' assert resource3.req.path == '/3/123' resource4 = IDResource() client.app.add_route('/4/{id}', resource4) client.app.req_options.strip_url_path_trailing_slash = False result = client.simulate_get('/4/123/') assert result.status == falcon.HTTP_404 assert not resource4.called assert resource4.id is None def test_multiple(client): resource = NameResource() client.app.add_route('/messages/{id}/names/{name}', resource) test_id = 'bfb54d43-219b-4336-a623-6172f920592e' test_name = '758e3922-dd6d-4007-a589-50fba0789365' path = '/messages/' + test_id + '/names/' + test_name client.simulate_get(path) assert resource.called assert resource.id == test_id assert resource.name == test_name @pytest.mark.parametrize('uri_template', [ '//', '//begin', '/end//', '/in//side', ]) def test_empty_path_component(client, resource, uri_template): with pytest.raises(ValueError): client.app.add_route(uri_template, resource) @pytest.mark.parametrize('uri_template', [ '', 'no', 'no/leading_slash', ]) def test_relative_path(client, resource, uri_template): with pytest.raises(ValueError): client.app.add_route(uri_template, resource) @pytest.mark.parametrize('reverse', [True, False]) def test_same_level_complex_var(client, reverse): file_resource = FileResource() details_resource = FileDetailsResource() routes = [ ('/files/{file_id}', file_resource), ('/files/{file_id}.{ext}', details_resource) ] if reverse: routes.reverse() for uri_template, resource in routes: client.app.add_route(uri_template, resource) file_id_1 = 'bc6b201d-b449-4290-a061-8eeb9f7b1450' file_id_2 = '33b7f34c-6ee6-40e6-89a3-742a69b59de0' ext = 'a4581b95-bc36-4c08-a3c2-23ba266abdf2' path_1 = '/files/' + file_id_1 path_2 = '/files/' + file_id_2 + '.' + ext client.simulate_get(path_1) assert file_resource.called assert file_resource.file_id == file_id_1 client.simulate_get(path_2) assert details_resource.called assert details_resource.file_id == file_id_2 assert details_resource.ext == ext def test_adding_suffix_routes(client): resource_with_suffix_routes = ResourceWithSuffixRoutes() client.app.add_route( '/collections/{collection_id}/items/{item_id}', resource_with_suffix_routes) client.app.add_route( '/collections/{collection_id}/items', resource_with_suffix_routes, suffix='collection') # GET client.simulate_get('/collections/123/items/456') assert resource_with_suffix_routes.collection_id == '123' assert resource_with_suffix_routes.item_id == '456' assert resource_with_suffix_routes.get_called client.simulate_get('/collections/foo/items') assert resource_with_suffix_routes.collection_id == 'foo' # POST client.simulate_post('/collections/foo234/items/foo456') assert resource_with_suffix_routes.collection_id == 'foo234' assert resource_with_suffix_routes.item_id == 'foo456' assert resource_with_suffix_routes.post_called client.simulate_post('/collections/foo123/items') assert resource_with_suffix_routes.collection_id == 'foo123' # PUT client.simulate_put('/collections/foo345/items/foo567') assert resource_with_suffix_routes.collection_id == 'foo345' assert resource_with_suffix_routes.item_id == 'foo567' assert resource_with_suffix_routes.put_called client.simulate_put('/collections/foo321/items') assert resource_with_suffix_routes.collection_id == 'foo321' def test_custom_error_on_suffix_route_not_found(client): resource_with_suffix_routes = ResourceWithSuffixRoutes() with pytest.raises(SuffixedMethodNotFoundError): client.app.add_route( '/collections/{collection_id}/items', resource_with_suffix_routes, suffix='bad-alt')
28.923077
96
0.663959
8892a312c25a77c510e2f5bcdda5dfccb726a542
808
py
Python
samples/findings/create_occurrence_with_context.py
prince737/security-advisor-sdk-python
a06f6fe8180377a6ca8291ba74cff326cb56b539
[ "Apache-2.0" ]
null
null
null
samples/findings/create_occurrence_with_context.py
prince737/security-advisor-sdk-python
a06f6fe8180377a6ca8291ba74cff326cb56b539
[ "Apache-2.0" ]
17
2020-05-30T11:21:06.000Z
2021-04-20T10:01:09.000Z
samples/findings/create_occurrence_with_context.py
prince737/security-advisor-sdk-python
a06f6fe8180377a6ca8291ba74cff326cb56b539
[ "Apache-2.0" ]
4
2020-05-18T12:38:03.000Z
2021-04-20T07:13:47.000Z
from ibm_cloud_security_advisor import FindingsApiV1 from ibm_cloud_sdk_core.authenticators import IAMAuthenticator authenticator = IAMAuthenticator(apikey='abc') findings_service =FindingsApiV1(authenticator=authenticator) findings_service.set_service_url("https://us-south.secadvisor.cloud.ibm.com/findings") response = findings_service.create_occurrence( account_id="abc123", provider_id="sdktest", note_name="abc123/providers/sdktest/notes/sdk_note_id1", kind="FINDING", id="sdk_occ_id1", context = { "region": "us-south", "resource_type": "Cluster", "service_name": "Kubernetes Cluster", "account_id": "abc123" }, finding={ "severity": "LOW", "next_steps": [ { "title": "string", "url": "string" } ] } ) print(response)
25.25
86
0.699257
15677836385fd481bf78ef94bf5eb5c540aa0f25
4,886
py
Python
Sketches/MPS/BugReports/FixTests/Kamaelia/Kamaelia/Codec/RawYUVFramer.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
12
2015-10-20T10:22:01.000Z
2021-07-19T10:09:44.000Z
Sketches/MPS/BugReports/FixTests/Kamaelia/Kamaelia/Codec/RawYUVFramer.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
2
2015-10-20T10:22:55.000Z
2017-02-13T11:05:25.000Z
Sketches/MPS/BugReports/FixTests/Kamaelia/Kamaelia/Codec/RawYUVFramer.py
sparkslabs/kamaelia_orig
24b5f855a63421a1f7c6c7a35a7f4629ed955316
[ "Apache-2.0" ]
6
2015-03-09T12:51:59.000Z
2020-03-01T13:06:21.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- """\ ========================= Raw YUV video data framer ========================= This component takes a raw stream of YUV video data and breaks it into invidual frames. It sends them out one at a time, tagged with relevant data such as the frame size. Many components that expect uncompressed video require it to be structured into frames in this way, rather than as a raw stream of continuous data. This component fulfills that requirement. Example Usage ------------- Reading and encoding raw video:: imagesize = (352, 288) # "CIF" size video Pipeline(ReadFileAdapter("raw352x288video.yuv", ...other args...), RawYUVFramer(imagesize), DiracEncoder(preset="CIF"), ).activate() More Detail ----------- Receives raw yuv video data, as strings on its "inbox" inbox. Sends out individual frames packaged in a dictionary:: { "yuv" : (y_data, u_data, v_data), # a tuple of strings "size" : (width, height), # in pixels "pixformat" : "YUV420_planar", # raw video data format } The component will terminate if it receives a shutdownMicroprocess or producerFinished message on its "control" inbox. The message is passed on out of the "signal" outbox. """ from Axon.Component import component from Axon.Ipc import producerFinished, shutdownMicroprocess class RawYUVFramer(component): """ RawYUVFramer(size,pixformat) -> raw yuv video data framing component Creates a component that frames a raw stream of YUV video data into frames. Keyword arguments: - size -- (width,height) size of a video frame in pixels - pixformat -- raw video data format (default="YUV420_Planar") """ def __init__(self, size, pixformat = "YUV420_planar"): """x.__init__(...) initializes x; see x.__class__.__doc__ for signature""" super(RawYUVFramer, self).__init__() self.size = size self.pixformat = pixformat # if pixformat != YUV420_planar # raise ValueError("Can't handle anything except YUV420_planar at the mo. Sorry!") ysize = size[0]*size[1] usize = ysize / 4 vsize = usize self.planes = { "y":"", "u":"", "v":"" } self.sizes = { "y":ysize, "u":usize, "v":vsize } def main(self): """Main loop""" done = False while not done: while self.dataReady("inbox"): raw = self.recv("inbox") self.packAndSend(raw) if self.dataReady("control"): msg = self.recv("control") if isinstance(msg, producerFinished) or isinstance(msg, shutdownMicroprocess): self.send(msg, "signal") done=True if not done: self.pause() yield 1 def flushFrame(self): """Send out a frame, flushing buffers""" frame = { "pixformat":self.pixformat, "size":self.size, "yuv":(self.planes['y'], self.planes['u'], self.planes['v']) } self.send( frame, "outbox" ) self.planes['y'] = "" self.planes['u'] = "" self.planes['v'] = "" def packAndSend(self, raw): """ packAndSend(raw) -> None Pack incoming raw data into y,u,v planes, and triggers a flush when all planes are full. """ while raw: filled = False for plane in ['y','u','v']: remainder = self.sizes[plane] - len(self.planes[plane]) filled = len(raw) >= remainder topupsize = min( len(raw), remainder ) if topupsize: self.planes[plane] += raw[:topupsize] raw = raw[topupsize:] if filled: self.flushFrame() __kamaelia_components__ = ( RawYUVFramer, )
31.522581
94
0.58289
6435733434f639fb8ac729cbe13f584e3d89269e
204
py
Python
alfpy/version.py
hasibaasma/alfpy
c8c0c1300108015746320cede2207ac57e630d3e
[ "MIT" ]
19
2017-02-20T17:42:02.000Z
2021-12-16T19:07:17.000Z
alfpy/version.py
eggleader/alfpy
e0782e9551458ef17ab29df8af13fc0f8925e894
[ "MIT" ]
3
2018-03-12T23:54:27.000Z
2020-12-09T21:53:19.000Z
alfpy/version.py
eggleader/alfpy
e0782e9551458ef17ab29df8af13fc0f8925e894
[ "MIT" ]
6
2016-12-06T09:12:04.000Z
2021-09-24T14:40:47.000Z
# I store the version here so: # 1) I don't load dependencies by storing it in __init__.py # 2) I can import it in setup.py for the same reason. # 3) I can import it into any module. __version__ = '1.0.6'
40.8
59
0.710784
ba12e9a710d19ab220b292d6595884a556c7f01d
2,156
py
Python
myapp/ules_ops.py
CaoJohn/myproject
31474a2cecf4694d50acd9c594f26f241fd41048
[ "Apache-2.0" ]
null
null
null
myapp/ules_ops.py
CaoJohn/myproject
31474a2cecf4694d50acd9c594f26f241fd41048
[ "Apache-2.0" ]
null
null
null
myapp/ules_ops.py
CaoJohn/myproject
31474a2cecf4694d50acd9c594f26f241fd41048
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from django.http import JsonResponse from django.views.decorators.http import require_http_methods from django.core import serializers import requests import json import sys import os import time import random from random import choice import rstr from selenium import webdriver PACKAGE_PARENT = '..' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) from .ules.operate import transfromList, Factory from .ules.dbresource import DBsource from .ules.page import WorkLoginPage from .models import Book,TestCase,TestCaseStep # Create your views here. @require_http_methods(["GET"]) def run_testcase(request): response = {} try: testcasestep = TestCaseStep.objects.filter(case_name=request.GET.get('case_name')).order_by('step_order') testcase = TestCase.objects.filter(case_name=request.GET.get('case_name')) response['msg'] = 'success' response['error_num'] = 0 except Exception as e: response['msg'] = str(e) response['error_num'] = 1 print(len(testcasestep)) for i in testcasestep.values(): print(i) driver = webdriver.Chrome("/usr/local/bin/chromedriver") # driver.get("https://work-test.1688.com") driver.get("https://work.1688.com") time.sleep(3) print(driver.current_url) time.sleep(2) workloginpage = WorkLoginPage(driver) workloginpage.login() time.sleep(3) driver.get(testcase.values()[0]["url"]) args_dics = transfromList(testcasestep.values()) print(args_dics) time.sleep(2) factory = Factory() for args_dic in args_dics: print(args_dic) time.sleep(3) a = factory.getOps(driver, args_dic) a.operate(args_dic) #转换为其他日期格式,如:"%Y%m%d_%H_%M_%S" driver.get_screenshot_as_file('/Users/jiangwen/Documents/John/work/projects/python/django/pics/'+args_dic["step_name"]+time.strftime("%Y%m%d_%H_%M_%S", time.localtime(int(time.time())))+'.png') time.sleep(10) driver.close() return JsonResponse(response)
34.774194
201
0.702226
8b80a641d4fc8c353c87017881b3902f01cf852e
2,978
py
Python
consumers/consumer.py
estarguars113/udacity-kafka-project
a74a074a044d9e5a2b8d2efbf13bbe89248f7dfa
[ "MIT" ]
null
null
null
consumers/consumer.py
estarguars113/udacity-kafka-project
a74a074a044d9e5a2b8d2efbf13bbe89248f7dfa
[ "MIT" ]
null
null
null
consumers/consumer.py
estarguars113/udacity-kafka-project
a74a074a044d9e5a2b8d2efbf13bbe89248f7dfa
[ "MIT" ]
1
2021-09-09T06:00:47.000Z
2021-09-09T06:00:47.000Z
"""Defines core consumer functionality""" import logging from confluent_kafka import Consumer, OFFSET_BEGINNING from confluent_kafka.avro import AvroConsumer, CachedSchemaRegistryClient from confluent_kafka.avro.serializer import SerializerError from tornado import gen logger = logging.getLogger(__name__) SCHEMA_REGISTRY_URL = "http://localhost:8081" BROKER_URL = "localhost:9092" class KafkaConsumer: """Defines the base kafka consumer class""" def __init__( self, topic_name_pattern, message_handler, is_avro=True, offset_earliest=False, sleep_secs=1.0, consume_timeout=0.1, ): """Creates a consumer object for asynchronous use""" self.topic_name_pattern = topic_name_pattern self.message_handler = message_handler self.sleep_secs = sleep_secs self.consume_timeout = consume_timeout self.offset_earliest = offset_earliest self.broker_properties = { "bootstrap.servers": BROKER_URL, "group.id": "0", "auto.offset.reset": "earliest" if offset_earliest else "latest" } print("consumer initialized", topic_name_pattern) if is_avro is True: self.broker_properties["schema.registry.url"] = SCHEMA_REGISTRY_URL self.consumer = AvroConsumer( self.broker_properties ) else: self.consumer = Consumer(self.broker_properties) self.consumer.subscribe( [self.topic_name_pattern], on_assign=self.on_assign ) def on_assign(self, consumer, partitions): """Callback for when topic assignment takes place""" print("on assign", self.topic_name_pattern) for _partition in partitions: consumer.offset = OFFSET_BEGINNING logger.info("partitions assigned for %s", self.topic_name_pattern) consumer.assign(partitions) async def consume(self): """Asynchronously consumes data from kafka topic""" while True: num_results = 1 while num_results > 0: num_results = self._consume() await gen.sleep(self.sleep_secs) def _consume(self): """Polls for a message. Returns 1 if a message was received, 0 otherwise""" message = self.consumer.poll(1.0) print("message", self.topic_name_pattern, message) if message is None: return 0 elif message.error() is not None: print(f"error from consumer {message.error()}") return 0 else: try: print("consume", self.topic_name_pattern, message.value()) return 1 except KeyError as e: print(f"Failed to unpack message {e}") return 0 def close(self): """Cleans up any open kafka consumers""" self.consumer.close()
32.021505
83
0.619879
6b11409ba9acc3e95fdc223e5b009418fe06c989
450
py
Python
Exercicios-Python/081.py
LuizHenriqudesouza419/Exercicios-de-Python3-main
af53cc1eea1e22a304e206a453c4b24bf67615a8
[ "MIT" ]
1
2021-11-08T22:59:33.000Z
2021-11-08T22:59:33.000Z
Exercicios-Python/081.py
LuizHenriqudesouza419/Exercicios-de-Python3-main
af53cc1eea1e22a304e206a453c4b24bf67615a8
[ "MIT" ]
null
null
null
Exercicios-Python/081.py
LuizHenriqudesouza419/Exercicios-de-Python3-main
af53cc1eea1e22a304e206a453c4b24bf67615a8
[ "MIT" ]
null
null
null
# Extraindo dados de uma lista valores = [] while True: valores.append(int(input('Digite um valor: '))) resp = str(input('Quer continuar? S/N ')) if resp in 'Nn': break print('=-' * 30) print(f'Você digitou {len(valores)} elementos.') valores.sort(reverse=True) print(f'Os valores em ordem decrescente são {valores}') if 5 in valores: print('O valor 5 faz parte da lista') else: print('0 valor 5 não faz parte da lista')
30
55
0.66
ae9d204ff5a7bac18384a99ec1e50ed1ab0903e4
119
py
Python
notifications/admin.py
NSP-Community/NSP-Production
329af474892b911f2025a920fdb3ab390bb6de81
[ "MIT" ]
null
null
null
notifications/admin.py
NSP-Community/NSP-Production
329af474892b911f2025a920fdb3ab390bb6de81
[ "MIT" ]
8
2020-06-05T18:39:09.000Z
2022-03-11T23:26:32.000Z
notifications/admin.py
NSP-Community/NSP-Production
329af474892b911f2025a920fdb3ab390bb6de81
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Notification)
19.833333
33
0.798319
890cddc05af768e5bc35ca59882eae1c61a3fb87
1,552
py
Python
django/authority/urls.py
cmu-lib/authority
9b8d5f2f0b6b5ae50ca1de4f85fde5a3aa003167
[ "MIT" ]
null
null
null
django/authority/urls.py
cmu-lib/authority
9b8d5f2f0b6b5ae50ca1de4f85fde5a3aa003167
[ "MIT" ]
null
null
null
django/authority/urls.py
cmu-lib/authority
9b8d5f2f0b6b5ae50ca1de4f85fde5a3aa003167
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import include, path, re_path from rest_framework import routers import authority.views import entity.views router = routers.DefaultRouter() urlpatterns = [ path("", authority.views.HomeView.as_view(), name="home"), path("api/", include(router.urls)), path("person/<int:pk>/populate_viaf/", entity.views.PopulateVIAF.as_view(), name="person-populate-viaf"), path("person/<int:pk>/populate_lcnaf/", entity.views.PopulateLCNAF.as_view(), name="person-populate-lcnaf"), path( "reconcile/", authority.views.ReconciliationEndpoint.as_view(), name="reconciliation_endpoint", ), path( "reconcile/extend/", authority.views.DataExtensionEndpoint.as_view(), name="reconcile-extend", ), path( "reconcile/suggest/", authority.views.SuggestEndpoint.as_view(), name="reconcile-suggest", ), path( "reconcile/suggest/flyout/<int:pk>/", entity.views.FlyoutView.as_view(), name="flyout", ), path( "reconcile/preview/<int:pk>/", entity.views.PreviewView.as_view(), name="preview", ), path( "current_user/", authority.views.CurrentUserView.as_view(), name="current_user", ), path("auth/", include("rest_framework.urls", namespace="rest_framework")), path("admin/", admin.site.urls), path("accounts/", include("django.contrib.auth.urls")), path("silk/", include("silk.urls", namespace="silk")), ]
31.673469
112
0.640464
6dfcc397ca1f7c6668c9cb145eff1d5efff94498
1,224
py
Python
python3-virtualenv/lib/python3.6/site-packages/pip/_vendor/html5lib/filters/whitespace.py
GinaJame/Portfolio_MLH
541709dcf034ddca885a8b08f9922dc352c113f8
[ "MIT" ]
1
2022-03-06T13:06:33.000Z
2022-03-06T13:06:33.000Z
python3-virtualenv/lib/python3.6/site-packages/pip/_vendor/html5lib/filters/whitespace.py
GinaJame/Portfolio_MLH
541709dcf034ddca885a8b08f9922dc352c113f8
[ "MIT" ]
1
2020-05-16T02:22:36.000Z
2020-05-16T02:22:36.000Z
python3-virtualenv/lib/python3.6/site-packages/pip/_vendor/html5lib/filters/whitespace.py
GinaJame/Portfolio_MLH
541709dcf034ddca885a8b08f9922dc352c113f8
[ "MIT" ]
null
null
null
from __future__ import absolute_import, division, unicode_literals import re from . import base from ..constants import rcdataElements, spaceCharacters spaceCharacters = "".join(spaceCharacters) SPACES_REGEX = re.compile("[%s]+" % spaceCharacters) class Filter(base.Filter): """Collapses whitespace except in pre, textarea, and script elements""" spacePreserveElements = frozenset(["pre", "textarea"] + list(rcdataElements)) def __iter__(self): preserve = 0 for token in base.Filter.__iter__(self): type = token["type"] if type == "StartTag" and ( preserve or token["name"] in self.spacePreserveElements ): preserve += 1 elif type == "EndTag" and preserve: preserve -= 1 elif not preserve and type == "SpaceCharacters" and token["data"]: # Test on token["data"] above to not introduce spaces where there were not token["data"] = " " elif not preserve and type == "Characters": token["data"] = collapse_spaces(token["data"]) yield token def collapse_spaces(text): return SPACES_REGEX.sub(" ", text)
29.142857
90
0.610294
32025083588ea20b5d526464330b3afb8f14ed28
4,109
py
Python
code-merge/ant.py
scrapingredditboys/AI-Fundamentals-TSP
dfafd8e0d9adb87997886ef9a835be5f49b02871
[ "BSD-3-Clause" ]
null
null
null
code-merge/ant.py
scrapingredditboys/AI-Fundamentals-TSP
dfafd8e0d9adb87997886ef9a835be5f49b02871
[ "BSD-3-Clause" ]
null
null
null
code-merge/ant.py
scrapingredditboys/AI-Fundamentals-TSP
dfafd8e0d9adb87997886ef9a835be5f49b02871
[ "BSD-3-Clause" ]
null
null
null
import math import random import sys from threading import * class Ant(Thread): def __init__(self, ID, start_node, colony, beta, q0, rho): Thread.__init__(self) self.ID = ID self.start_node = start_node self.colony = colony self.curr_node = self.start_node self.graph = self.colony.graph self.path_vec = [] self.path_vec.append(self.start_node) self.path_cost = 0 # same meaning as in standard equations self.Beta = beta #self.Q0 = 1 # Q0 = 1 works just fine for 10 city case (no explore) self.Q0 = q0 self.Rho = rho # store the nodes remaining to be explored here self.nodes_to_visit = {} for i in range(0, self.graph.num_nodes): if i != self.start_node: self.nodes_to_visit[i] = i # create n X n matrix 0'd out to start self.path_mat = [] for i in range(0, self.graph.num_nodes): self.path_mat.append([0]*self.graph.num_nodes) # overide Thread's run() def run(self): graph = self.colony.graph while not self.end(): # we need exclusive access to the graph graph.lock.acquire() new_node = self.state_transition_rule(self.curr_node) self.path_cost += graph.delta(self.curr_node, new_node) self.path_vec.append(new_node) self.path_mat[self.curr_node][new_node] = 1 #adjacency matrix representing path #print ("Ant %s : %s, %s" % (self.ID, self.path_vec, self.path_cost,)) self.local_updating_rule(self.curr_node, new_node) graph.lock.release() self.curr_node = new_node # don't forget to close the tour self.path_cost += graph.delta(self.path_vec[-1], self.path_vec[0]) # send our results to the colony self.colony.update(self) print ("Ant thread %s terminating." % (self.ID,)) # allows thread to be restarted (calls Thread.__init__) self.__init__(ID=self.ID, start_node=self.start_node, colony=self.colony, beta=self.Beta, q0=self.Q0, rho=self.Rho) def end(self): return not self.nodes_to_visit # described in report -- determines next node to visit after curr_node def state_transition_rule(self, curr_node): graph = self.colony.graph q = random.random() max_node = -1 if q < self.Q0: max_val = -1 val = None for node in self.nodes_to_visit.values(): if graph.tau(curr_node, node) == 0: raise Exception("tau = 0") val = graph.tau(curr_node, node) * math.pow(graph.etha(curr_node, node), self.Beta) if val > max_val: max_val = val max_node = node else: sum = 0 node = -1 for node in self.nodes_to_visit.values(): if graph.tau(curr_node, node) == 0: raise Exception("tau = 0") sum += graph.tau(curr_node, node) * math.pow(graph.etha(curr_node, node), self.Beta) if sum == 0: raise Exception("sum = 0") avg = sum / len(self.nodes_to_visit) #print ("avg = %s" % (avg,)) for node in self.nodes_to_visit.values(): p = graph.tau(curr_node, node) * math.pow(graph.etha(curr_node, node), self.Beta) if p > avg: #print ("p = %s" % (p,)) max_node = node if max_node == -1: max_node = node if max_node < 0: raise Exception("max_node < 0") del self.nodes_to_visit[max_node] return max_node # phermone update rule for indiv ants def local_updating_rule(self, curr_node, next_node): graph = self.colony.graph val = (1 - self.Rho) * graph.tau(curr_node, next_node) + (self.Rho * graph.tau0) graph.update_tau(curr_node, next_node, val)
32.872
123
0.558043
d7c73f759265caf4926a950d7d40034177299a03
1,893
py
Python
compiler.py
h3ko-ctrl/Demeter
7e725bca45128c783e1fc236d702dd258e3ee95d
[ "MIT" ]
null
null
null
compiler.py
h3ko-ctrl/Demeter
7e725bca45128c783e1fc236d702dd258e3ee95d
[ "MIT" ]
null
null
null
compiler.py
h3ko-ctrl/Demeter
7e725bca45128c783e1fc236d702dd258e3ee95d
[ "MIT" ]
null
null
null
# Compiler for the Demeter language import os import sys from src.option_parser import * from src.lexer.lexer import * import src.parser.parser as analyzer from src.error import FileNotFound class Compiler: DIRNAME, FILENAME = os.path.split(os.path.abspath(__file__)) def __init__(self, options, source=None): # Verify the existence of the source file and open it self.path = os.path.join(self.DIRNAME, source) if os.path.exists(self.path): self.source = open(self.path, mode="rb") else: raise FileNotFound(self.path) self.filename = os.path.basename(self.source.name) self.verbose = False if "verbose" in options.keys(): self.verbose = options["verbose"] self.tokens = None self.ast = None return def log(self, alert): if self.verbose: sys.stdout.write("%s \n" % alert) def run(self): self.log("Compiling: %s" % self.filename) # Compiling process # Lexing lexer.input(self.source.read()) # while True: # token = lexer.token() # if not token: # break # self.log('(%s, %r, %d, %d)' % (token.type, token.value, token.lineno, token.lexpos)) # Parsing : outputs AST self.ast = analyzer.parser.parse(lexer=lexer) for _ in self.ast: self.log(_) # : outputs AT # Code Generator # Compiling self.source.close() return if __name__ == "__main__": (k_options, args) = parser.parse_args() if len(args) != 1: parser.error("incorrect number of arguments") compiling_options = {} if k_options.verbose: compiling_options = {"verbose": k_options.verbose} app = Compiler(compiling_options, source=args[0]) app.run()
24.269231
98
0.582673
b61a2b2a1a57a2f5ec08888ee665a73fdead769d
64,742
py
Python
public/Python27/Lib/cookielib.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
1
2020-11-26T18:53:46.000Z
2020-11-26T18:53:46.000Z
public/Python27/Lib/cookielib.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
null
null
null
public/Python27/Lib/cookielib.py
NingrumFadillah/cekmutasi
1fccb6cafb874c2a80ece9b71d7c682fd44dbd48
[ "MIT" ]
3
2017-04-07T12:02:22.000Z
2020-03-23T12:11:55.000Z
"""HTTP cookie handling for web clients. This module has (now fairly distant) origins in Gisle Aas' Perl module HTTP::Cookies, from the libwww-perl library. Docstrings, comments and debug strings in this code refer to the attributes of the HTTP cookie system as cookie-attributes, to distinguish them clearly from Python attributes. Class diagram (note that BSDDBCookieJar and the MSIE* classes are not distributed with the Python standard library, but are available from http://wwwsearch.sf.net/): CookieJar____ / \ \ FileCookieJar \ \ / | \ \ \ MozillaCookieJar | LWPCookieJar \ \ | | \ | ---MSIEBase | \ | / | | \ | / MSIEDBCookieJar BSDDBCookieJar |/ MSIECookieJar """ __all__ = ['Cookie', 'CookieJar', 'CookiePolicy', 'DefaultCookiePolicy', 'FileCookieJar', 'LWPCookieJar', 'lwp_cookie_str', 'LoadError', 'MozillaCookieJar'] import re, urlparse, copy, time, urllib try: import threading as _threading except ImportError: import dummy_threading as _threading import httplib # only for the default HTTP port from calendar import timegm debug = False # set to True to enable debugging via the logging module logger = None def _debug(*args): if not debug: return global logger if not logger: import logging logger = logging.getLogger("cookielib") return logger.debug(*args) DEFAULT_HTTP_PORT = str(httplib.HTTP_PORT) MISSING_FILENAME_TEXT = ("a filename was not supplied (nor was the CookieJar " "instance initialised with one)") def _warn_unhandled_exception(): # There are a few catch-all except: statements in this module, for # catching input that's bad in unexpected ways. Warn if any # exceptions are caught there. import warnings, traceback, StringIO f = StringIO.StringIO() traceback.print_exc(None, f) msg = f.getvalue() warnings.warn("cookielib bug!\n%s" % msg, stacklevel=2) # Date/time conversion # ----------------------------------------------------------------------------- EPOCH_YEAR = 1970 def _timegm(tt): year, month, mday, hour, min, sec = tt[:6] if ((year >= EPOCH_YEAR) and (1 <= month <= 12) and (1 <= mday <= 31) and (0 <= hour <= 24) and (0 <= min <= 59) and (0 <= sec <= 61)): return timegm(tt) else: return None DAYS = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] MONTHS = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] MONTHS_LOWER = [] for month in MONTHS: MONTHS_LOWER.append(month.lower()) def time2isoz(t=None): """Return a string representing time in seconds since epoch, t. If the function is called without an argument, it will use the current time. The format of the returned string is like "YYYY-MM-DD hh:mm:ssZ", representing Universal Time (UTC, aka GMT). An example of this format is: 1994-11-24 08:49:37Z """ if t is None: t = time.time() year, mon, mday, hour, min, sec = time.gmtime(t)[:6] return "%04d-%02d-%02d %02d:%02d:%02dZ" % ( year, mon, mday, hour, min, sec) def time2netscape(t=None): """Return a string representing time in seconds since epoch, t. If the function is called without an argument, it will use the current time. The format of the returned string is like this: Wed, DD-Mon-YYYY HH:MM:SS GMT """ if t is None: t = time.time() year, mon, mday, hour, min, sec, wday = time.gmtime(t)[:7] return "%s %02d-%s-%04d %02d:%02d:%02d GMT" % ( DAYS[wday], mday, MONTHS[mon-1], year, hour, min, sec) UTC_ZONES = {"GMT": None, "UTC": None, "UT": None, "Z": None} TIMEZONE_RE = re.compile(r"^([-+])?(\d\d?):?(\d\d)?$") def offset_from_tz_string(tz): offset = None if tz in UTC_ZONES: offset = 0 else: m = TIMEZONE_RE.search(tz) if m: offset = 3600 * int(m.group(2)) if m.group(3): offset = offset + 60 * int(m.group(3)) if m.group(1) == '-': offset = -offset return offset def _str2time(day, mon, yr, hr, min, sec, tz): # translate month name to number # month numbers start with 1 (January) try: mon = MONTHS_LOWER.index(mon.lower())+1 except ValueError: # maybe it's already a number try: imon = int(mon) except ValueError: return None if 1 <= imon <= 12: mon = imon else: return None # make sure clock elements are defined if hr is None: hr = 0 if min is None: min = 0 if sec is None: sec = 0 yr = int(yr) day = int(day) hr = int(hr) min = int(min) sec = int(sec) if yr < 1000: # find "obvious" year cur_yr = time.localtime(time.time())[0] m = cur_yr % 100 tmp = yr yr = yr + cur_yr - m m = m - tmp if abs(m) > 50: if m > 0: yr = yr + 100 else: yr = yr - 100 # convert UTC time tuple to seconds since epoch (not timezone-adjusted) t = _timegm((yr, mon, day, hr, min, sec, tz)) if t is not None: # adjust time using timezone string, to get absolute time since epoch if tz is None: tz = "UTC" tz = tz.upper() offset = offset_from_tz_string(tz) if offset is None: return None t = t - offset return t STRICT_DATE_RE = re.compile( r"^[SMTWF][a-z][a-z], (\d\d) ([JFMASOND][a-z][a-z]) " "(\d\d\d\d) (\d\d):(\d\d):(\d\d) GMT$") WEEKDAY_RE = re.compile( r"^(?:Sun|Mon|Tue|Wed|Thu|Fri|Sat)[a-z]*,?\s*", re.I) LOOSE_HTTP_DATE_RE = re.compile( r"""^ (\d\d?) # day (?:\s+|[-\/]) (\w+) # month (?:\s+|[-\/]) (\d+) # year (?: (?:\s+|:) # separator before clock (\d\d?):(\d\d) # hour:min (?::(\d\d))? # optional seconds )? # optional clock \s* ([-+]?\d{2,4}|(?![APap][Mm]\b)[A-Za-z]+)? # timezone \s* (?:\(\w+\))? # ASCII representation of timezone in parens. \s*$""", re.X) def http2time(text): """Returns time in seconds since epoch of time represented by a string. Return value is an integer. None is returned if the format of str is unrecognized, the time is outside the representable range, or the timezone string is not recognized. If the string contains no timezone, UTC is assumed. The timezone in the string may be numerical (like "-0800" or "+0100") or a string timezone (like "UTC", "GMT", "BST" or "EST"). Currently, only the timezone strings equivalent to UTC (zero offset) are known to the function. The function loosely parses the following formats: Wed, 09 Feb 1994 22:23:32 GMT -- HTTP format Tuesday, 08-Feb-94 14:15:29 GMT -- old rfc850 HTTP format Tuesday, 08-Feb-1994 14:15:29 GMT -- broken rfc850 HTTP format 09 Feb 1994 22:23:32 GMT -- HTTP format (no weekday) 08-Feb-94 14:15:29 GMT -- rfc850 format (no weekday) 08-Feb-1994 14:15:29 GMT -- broken rfc850 format (no weekday) The parser ignores leading and trailing whitespace. The time may be absent. If the year is given with only 2 digits, the function will select the century that makes the year closest to the current date. """ # fast exit for strictly conforming string m = STRICT_DATE_RE.search(text) if m: g = m.groups() mon = MONTHS_LOWER.index(g[1].lower()) + 1 tt = (int(g[2]), mon, int(g[0]), int(g[3]), int(g[4]), float(g[5])) return _timegm(tt) # No, we need some messy parsing... # clean up text = text.lstrip() text = WEEKDAY_RE.sub("", text, 1) # Useless weekday # tz is time zone specifier string day, mon, yr, hr, min, sec, tz = [None]*7 # loose regexp parse m = LOOSE_HTTP_DATE_RE.search(text) if m is not None: day, mon, yr, hr, min, sec, tz = m.groups() else: return None # bad format return _str2time(day, mon, yr, hr, min, sec, tz) ISO_DATE_RE = re.compile( """^ (\d{4}) # year [-\/]? (\d\d?) # numerical month [-\/]? (\d\d?) # day (?: (?:\s+|[-:Tt]) # separator before clock (\d\d?):?(\d\d) # hour:min (?::?(\d\d(?:\.\d*)?))? # optional seconds (and fractional) )? # optional clock \s* ([-+]?\d\d?:?(:?\d\d)? |Z|z)? # timezone (Z is "zero meridian", i.e. GMT) \s*$""", re.X) def iso2time(text): """ As for http2time, but parses the ISO 8601 formats: 1994-02-03 14:15:29 -0100 -- ISO 8601 format 1994-02-03 14:15:29 -- zone is optional 1994-02-03 -- only date 1994-02-03T14:15:29 -- Use T as separator 19940203T141529Z -- ISO 8601 compact format 19940203 -- only date """ # clean up text = text.lstrip() # tz is time zone specifier string day, mon, yr, hr, min, sec, tz = [None]*7 # loose regexp parse m = ISO_DATE_RE.search(text) if m is not None: # XXX there's an extra bit of the timezone I'm ignoring here: is # this the right thing to do? yr, mon, day, hr, min, sec, tz, _ = m.groups() else: return None # bad format return _str2time(day, mon, yr, hr, min, sec, tz) # Header parsing # ----------------------------------------------------------------------------- def unmatched(match): """Return unmatched part of re.Match object.""" start, end = match.span(0) return match.string[:start]+match.string[end:] HEADER_TOKEN_RE = re.compile(r"^\s*([^=\s;,]+)") HEADER_QUOTED_VALUE_RE = re.compile(r"^\s*=\s*\"([^\"\\]*(?:\\.[^\"\\]*)*)\"") HEADER_VALUE_RE = re.compile(r"^\s*=\s*([^\s;,]*)") HEADER_ESCAPE_RE = re.compile(r"\\(.)") def split_header_words(header_values): r"""Parse header values into a list of lists containing key,value pairs. The function knows how to deal with ",", ";" and "=" as well as quoted values after "=". A list of space separated tokens are parsed as if they were separated by ";". If the header_values passed as argument contains multiple values, then they are treated as if they were a single value separated by comma ",". This means that this function is useful for parsing header fields that follow this syntax (BNF as from the HTTP/1.1 specification, but we relax the requirement for tokens). headers = #header header = (token | parameter) *( [";"] (token | parameter)) token = 1*<any CHAR except CTLs or separators> separators = "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\" | <"> | "/" | "[" | "]" | "?" | "=" | "{" | "}" | SP | HT quoted-string = ( <"> *(qdtext | quoted-pair ) <"> ) qdtext = <any TEXT except <">> quoted-pair = "\" CHAR parameter = attribute "=" value attribute = token value = token | quoted-string Each header is represented by a list of key/value pairs. The value for a simple token (not part of a parameter) is None. Syntactically incorrect headers will not necessarily be parsed as you would want. This is easier to describe with some examples: >>> split_header_words(['foo="bar"; port="80,81"; discard, bar=baz']) [[('foo', 'bar'), ('port', '80,81'), ('discard', None)], [('bar', 'baz')]] >>> split_header_words(['text/html; charset="iso-8859-1"']) [[('text/html', None), ('charset', 'iso-8859-1')]] >>> split_header_words([r'Basic realm="\"foo\bar\""']) [[('Basic', None), ('realm', '"foobar"')]] """ assert not isinstance(header_values, basestring) result = [] for text in header_values: orig_text = text pairs = [] while text: m = HEADER_TOKEN_RE.search(text) if m: text = unmatched(m) name = m.group(1) m = HEADER_QUOTED_VALUE_RE.search(text) if m: # quoted value text = unmatched(m) value = m.group(1) value = HEADER_ESCAPE_RE.sub(r"\1", value) else: m = HEADER_VALUE_RE.search(text) if m: # unquoted value text = unmatched(m) value = m.group(1) value = value.rstrip() else: # no value, a lone token value = None pairs.append((name, value)) elif text.lstrip().startswith(","): # concatenated headers, as per RFC 2616 section 4.2 text = text.lstrip()[1:] if pairs: result.append(pairs) pairs = [] else: # skip junk non_junk, nr_junk_chars = re.subn("^[=\s;]*", "", text) assert nr_junk_chars > 0, ( "split_header_words bug: '%s', '%s', %s" % (orig_text, text, pairs)) text = non_junk if pairs: result.append(pairs) return result HEADER_JOIN_ESCAPE_RE = re.compile(r"([\"\\])") def join_header_words(lists): """Do the inverse (almost) of the conversion done by split_header_words. Takes a list of lists of (key, value) pairs and produces a single header value. Attribute values are quoted if needed. >>> join_header_words([[("text/plain", None), ("charset", "iso-8859/1")]]) 'text/plain; charset="iso-8859/1"' >>> join_header_words([[("text/plain", None)], [("charset", "iso-8859/1")]]) 'text/plain, charset="iso-8859/1"' """ headers = [] for pairs in lists: attr = [] for k, v in pairs: if v is not None: if not re.search(r"^\w+$", v): v = HEADER_JOIN_ESCAPE_RE.sub(r"\\\1", v) # escape " and \ v = '"%s"' % v k = "%s=%s" % (k, v) attr.append(k) if attr: headers.append("; ".join(attr)) return ", ".join(headers) def _strip_quotes(text): if text.startswith('"'): text = text[1:] if text.endswith('"'): text = text[:-1] return text def parse_ns_headers(ns_headers): """Ad-hoc parser for Netscape protocol cookie-attributes. The old Netscape cookie format for Set-Cookie can for instance contain an unquoted "," in the expires field, so we have to use this ad-hoc parser instead of split_header_words. XXX This may not make the best possible effort to parse all the crap that Netscape Cookie headers contain. Ronald Tschalar's HTTPClient parser is probably better, so could do worse than following that if this ever gives any trouble. Currently, this is also used for parsing RFC 2109 cookies. """ known_attrs = ("expires", "domain", "path", "secure", # RFC 2109 attrs (may turn up in Netscape cookies, too) "version", "port", "max-age") result = [] for ns_header in ns_headers: pairs = [] version_set = False for ii, param in enumerate(re.split(r";\s*", ns_header)): param = param.rstrip() if param == "": continue if "=" not in param: k, v = param, None else: k, v = re.split(r"\s*=\s*", param, 1) k = k.lstrip() if ii != 0: lc = k.lower() if lc in known_attrs: k = lc if k == "version": # This is an RFC 2109 cookie. v = _strip_quotes(v) version_set = True if k == "expires": # convert expires date to seconds since epoch v = http2time(_strip_quotes(v)) # None if invalid pairs.append((k, v)) if pairs: if not version_set: pairs.append(("version", "0")) result.append(pairs) return result IPV4_RE = re.compile(r"\.\d+$") def is_HDN(text): """Return True if text is a host domain name.""" # XXX # This may well be wrong. Which RFC is HDN defined in, if any (for # the purposes of RFC 2965)? # For the current implementation, what about IPv6? Remember to look # at other uses of IPV4_RE also, if change this. if IPV4_RE.search(text): return False if text == "": return False if text[0] == "." or text[-1] == ".": return False return True def domain_match(A, B): """Return True if domain A domain-matches domain B, according to RFC 2965. A and B may be host domain names or IP addresses. RFC 2965, section 1: Host names can be specified either as an IP address or a HDN string. Sometimes we compare one host name with another. (Such comparisons SHALL be case-insensitive.) Host A's name domain-matches host B's if * their host name strings string-compare equal; or * A is a HDN string and has the form NB, where N is a non-empty name string, B has the form .B', and B' is a HDN string. (So, x.y.com domain-matches .Y.com but not Y.com.) Note that domain-match is not a commutative operation: a.b.c.com domain-matches .c.com, but not the reverse. """ # Note that, if A or B are IP addresses, the only relevant part of the # definition of the domain-match algorithm is the direct string-compare. A = A.lower() B = B.lower() if A == B: return True if not is_HDN(A): return False i = A.rfind(B) if i == -1 or i == 0: # A does not have form NB, or N is the empty string return False if not B.startswith("."): return False if not is_HDN(B[1:]): return False return True def liberal_is_HDN(text): """Return True if text is a sort-of-like a host domain name. For accepting/blocking domains. """ if IPV4_RE.search(text): return False return True def user_domain_match(A, B): """For blocking/accepting domains. A and B may be host domain names or IP addresses. """ A = A.lower() B = B.lower() if not (liberal_is_HDN(A) and liberal_is_HDN(B)): if A == B: # equal IP addresses return True return False initial_dot = B.startswith(".") if initial_dot and A.endswith(B): return True if not initial_dot and A == B: return True return False cut_port_re = re.compile(r":\d+$") def request_host(request): """Return request-host, as defined by RFC 2965. Variation from RFC: returned value is lowercased, for convenient comparison. """ url = request.get_full_url() host = urlparse.urlparse(url)[1] if host == "": host = request.get_header("Host", "") # remove port, if present host = cut_port_re.sub("", host, 1) return host.lower() def eff_request_host(request): """Return a tuple (request-host, effective request-host name). As defined by RFC 2965, except both are lowercased. """ erhn = req_host = request_host(request) if req_host.find(".") == -1 and not IPV4_RE.search(req_host): erhn = req_host + ".local" return req_host, erhn def request_path(request): """request-URI, as defined by RFC 2965.""" url = request.get_full_url() #scheme, netloc, path, parameters, query, frag = urlparse.urlparse(url) #req_path = escape_path("".join(urlparse.urlparse(url)[2:])) path, parameters, query, frag = urlparse.urlparse(url)[2:] if parameters: path = "%s;%s" % (path, parameters) path = escape_path(path) req_path = urlparse.urlunparse(("", "", path, "", query, frag)) if not req_path.startswith("/"): # fix bad RFC 2396 absoluteURI req_path = "/"+req_path return req_path def request_port(request): host = request.get_host() i = host.find(':') if i >= 0: port = host[i+1:] try: int(port) except ValueError: _debug("nonnumeric port: '%s'", port) return None else: port = DEFAULT_HTTP_PORT return port # Characters in addition to A-Z, a-z, 0-9, '_', '.', and '-' that don't # need to be escaped to form a valid HTTP URL (RFCs 2396 and 1738). HTTP_PATH_SAFE = "%/;:@&=+$,!~*'()" ESCAPED_CHAR_RE = re.compile(r"%([0-9a-fA-F][0-9a-fA-F])") def uppercase_escaped_char(match): return "%%%s" % match.group(1).upper() def escape_path(path): """Escape any invalid characters in HTTP URL, and uppercase all escapes.""" # There's no knowing what character encoding was used to create URLs # containing %-escapes, but since we have to pick one to escape invalid # path characters, we pick UTF-8, as recommended in the HTML 4.0 # specification: # http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.1 # And here, kind of: draft-fielding-uri-rfc2396bis-03 # (And in draft IRI specification: draft-duerst-iri-05) # (And here, for new URI schemes: RFC 2718) if isinstance(path, unicode): path = path.encode("utf-8") path = urllib.quote(path, HTTP_PATH_SAFE) path = ESCAPED_CHAR_RE.sub(uppercase_escaped_char, path) return path def reach(h): """Return reach of host h, as defined by RFC 2965, section 1. The reach R of a host name H is defined as follows: * If - H is the host domain name of a host; and, - H has the form A.B; and - A has no embedded (that is, interior) dots; and - B has at least one embedded dot, or B is the string "local". then the reach of H is .B. * Otherwise, the reach of H is H. >>> reach("www.acme.com") '.acme.com' >>> reach("acme.com") 'acme.com' >>> reach("acme.local") '.local' """ i = h.find(".") if i >= 0: #a = h[:i] # this line is only here to show what a is b = h[i+1:] i = b.find(".") if is_HDN(h) and (i >= 0 or b == "local"): return "."+b return h def is_third_party(request): """ RFC 2965, section 3.3.6: An unverifiable transaction is to a third-party host if its request- host U does not domain-match the reach R of the request-host O in the origin transaction. """ req_host = request_host(request) if not domain_match(req_host, reach(request.get_origin_req_host())): return True else: return False class Cookie: """HTTP Cookie. This class represents both Netscape and RFC 2965 cookies. This is deliberately a very simple class. It just holds attributes. It's possible to construct Cookie instances that don't comply with the cookie standards. CookieJar.make_cookies is the factory function for Cookie objects -- it deals with cookie parsing, supplying defaults, and normalising to the representation used in this class. CookiePolicy is responsible for checking them to see whether they should be accepted from and returned to the server. Note that the port may be present in the headers, but unspecified ("Port" rather than"Port=80", for example); if this is the case, port is None. """ def __init__(self, version, name, value, port, port_specified, domain, domain_specified, domain_initial_dot, path, path_specified, secure, expires, discard, comment, comment_url, rest, rfc2109=False, ): if version is not None: version = int(version) if expires is not None: expires = int(expires) if port is None and port_specified is True: raise ValueError("if port is None, port_specified must be false") self.version = version self.name = name self.value = value self.port = port self.port_specified = port_specified # normalise case, as per RFC 2965 section 3.3.3 self.domain = domain.lower() self.domain_specified = domain_specified # Sigh. We need to know whether the domain given in the # cookie-attribute had an initial dot, in order to follow RFC 2965 # (as clarified in draft errata). Needed for the returned $Domain # value. self.domain_initial_dot = domain_initial_dot self.path = path self.path_specified = path_specified self.secure = secure self.expires = expires self.discard = discard self.comment = comment self.comment_url = comment_url self.rfc2109 = rfc2109 self._rest = copy.copy(rest) def has_nonstandard_attr(self, name): return name in self._rest def get_nonstandard_attr(self, name, default=None): return self._rest.get(name, default) def set_nonstandard_attr(self, name, value): self._rest[name] = value def is_expired(self, now=None): if now is None: now = time.time() if (self.expires is not None) and (self.expires <= now): return True return False def __str__(self): if self.port is None: p = "" else: p = ":"+self.port limit = self.domain + p + self.path if self.value is not None: namevalue = "%s=%s" % (self.name, self.value) else: namevalue = self.name return "<Cookie %s for %s>" % (namevalue, limit) def __repr__(self): args = [] for name in ("version", "name", "value", "port", "port_specified", "domain", "domain_specified", "domain_initial_dot", "path", "path_specified", "secure", "expires", "discard", "comment", "comment_url", ): attr = getattr(self, name) args.append("%s=%s" % (name, repr(attr))) args.append("rest=%s" % repr(self._rest)) args.append("rfc2109=%s" % repr(self.rfc2109)) return "Cookie(%s)" % ", ".join(args) class CookiePolicy: """Defines which cookies get accepted from and returned to server. May also modify cookies, though this is probably a bad idea. The subclass DefaultCookiePolicy defines the standard rules for Netscape and RFC 2965 cookies -- override that if you want a customised policy. """ def set_ok(self, cookie, request): """Return true if (and only if) cookie should be accepted from server. Currently, pre-expired cookies never get this far -- the CookieJar class deletes such cookies itself. """ raise NotImplementedError() def return_ok(self, cookie, request): """Return true if (and only if) cookie should be returned to server.""" raise NotImplementedError() def domain_return_ok(self, domain, request): """Return false if cookies should not be returned, given cookie domain. """ return True def path_return_ok(self, path, request): """Return false if cookies should not be returned, given cookie path. """ return True class DefaultCookiePolicy(CookiePolicy): """Implements the standard rules for accepting and returning cookies.""" DomainStrictNoDots = 1 DomainStrictNonDomain = 2 DomainRFC2965Match = 4 DomainLiberal = 0 DomainStrict = DomainStrictNoDots|DomainStrictNonDomain def __init__(self, blocked_domains=None, allowed_domains=None, netscape=True, rfc2965=False, rfc2109_as_netscape=None, hide_cookie2=False, strict_domain=False, strict_rfc2965_unverifiable=True, strict_ns_unverifiable=False, strict_ns_domain=DomainLiberal, strict_ns_set_initial_dollar=False, strict_ns_set_path=False, ): """Constructor arguments should be passed as keyword arguments only.""" self.netscape = netscape self.rfc2965 = rfc2965 self.rfc2109_as_netscape = rfc2109_as_netscape self.hide_cookie2 = hide_cookie2 self.strict_domain = strict_domain self.strict_rfc2965_unverifiable = strict_rfc2965_unverifiable self.strict_ns_unverifiable = strict_ns_unverifiable self.strict_ns_domain = strict_ns_domain self.strict_ns_set_initial_dollar = strict_ns_set_initial_dollar self.strict_ns_set_path = strict_ns_set_path if blocked_domains is not None: self._blocked_domains = tuple(blocked_domains) else: self._blocked_domains = () if allowed_domains is not None: allowed_domains = tuple(allowed_domains) self._allowed_domains = allowed_domains def blocked_domains(self): """Return the sequence of blocked domains (as a tuple).""" return self._blocked_domains def set_blocked_domains(self, blocked_domains): """Set the sequence of blocked domains.""" self._blocked_domains = tuple(blocked_domains) def is_blocked(self, domain): for blocked_domain in self._blocked_domains: if user_domain_match(domain, blocked_domain): return True return False def allowed_domains(self): """Return None, or the sequence of allowed domains (as a tuple).""" return self._allowed_domains def set_allowed_domains(self, allowed_domains): """Set the sequence of allowed domains, or None.""" if allowed_domains is not None: allowed_domains = tuple(allowed_domains) self._allowed_domains = allowed_domains def is_not_allowed(self, domain): if self._allowed_domains is None: return False for allowed_domain in self._allowed_domains: if user_domain_match(domain, allowed_domain): return False return True def set_ok(self, cookie, request): """ If you override .set_ok(), be sure to call this method. If it returns false, so should your subclass (assuming your subclass wants to be more strict about which cookies to accept). """ _debug(" - checking cookie %s=%s", cookie.name, cookie.value) assert cookie.name is not None for n in "version", "verifiability", "name", "path", "domain", "port": fn_name = "set_ok_"+n fn = getattr(self, fn_name) if not fn(cookie, request): return False return True def set_ok_version(self, cookie, request): if cookie.version is None: # Version is always set to 0 by parse_ns_headers if it's a Netscape # cookie, so this must be an invalid RFC 2965 cookie. _debug(" Set-Cookie2 without version attribute (%s=%s)", cookie.name, cookie.value) return False if cookie.version > 0 and not self.rfc2965: _debug(" RFC 2965 cookies are switched off") return False elif cookie.version == 0 and not self.netscape: _debug(" Netscape cookies are switched off") return False return True def set_ok_verifiability(self, cookie, request): if request.is_unverifiable() and is_third_party(request): if cookie.version > 0 and self.strict_rfc2965_unverifiable: _debug(" third-party RFC 2965 cookie during " "unverifiable transaction") return False elif cookie.version == 0 and self.strict_ns_unverifiable: _debug(" third-party Netscape cookie during " "unverifiable transaction") return False return True def set_ok_name(self, cookie, request): # Try and stop servers setting V0 cookies designed to hack other # servers that know both V0 and V1 protocols. if (cookie.version == 0 and self.strict_ns_set_initial_dollar and cookie.name.startswith("$")): _debug(" illegal name (starts with '$'): '%s'", cookie.name) return False return True def set_ok_path(self, cookie, request): if cookie.path_specified: req_path = request_path(request) if ((cookie.version > 0 or (cookie.version == 0 and self.strict_ns_set_path)) and not req_path.startswith(cookie.path)): _debug(" path attribute %s is not a prefix of request " "path %s", cookie.path, req_path) return False return True def set_ok_domain(self, cookie, request): if self.is_blocked(cookie.domain): _debug(" domain %s is in user block-list", cookie.domain) return False if self.is_not_allowed(cookie.domain): _debug(" domain %s is not in user allow-list", cookie.domain) return False if cookie.domain_specified: req_host, erhn = eff_request_host(request) domain = cookie.domain if self.strict_domain and (domain.count(".") >= 2): # XXX This should probably be compared with the Konqueror # (kcookiejar.cpp) and Mozilla implementations, but it's a # losing battle. i = domain.rfind(".") j = domain.rfind(".", 0, i) if j == 0: # domain like .foo.bar tld = domain[i+1:] sld = domain[j+1:i] if sld.lower() in ("co", "ac", "com", "edu", "org", "net", "gov", "mil", "int", "aero", "biz", "cat", "coop", "info", "jobs", "mobi", "museum", "name", "pro", "travel", "eu") and len(tld) == 2: # domain like .co.uk _debug(" country-code second level domain %s", domain) return False if domain.startswith("."): undotted_domain = domain[1:] else: undotted_domain = domain embedded_dots = (undotted_domain.find(".") >= 0) if not embedded_dots and domain != ".local": _debug(" non-local domain %s contains no embedded dot", domain) return False if cookie.version == 0: if (not erhn.endswith(domain) and (not erhn.startswith(".") and not ("."+erhn).endswith(domain))): _debug(" effective request-host %s (even with added " "initial dot) does not end end with %s", erhn, domain) return False if (cookie.version > 0 or (self.strict_ns_domain & self.DomainRFC2965Match)): if not domain_match(erhn, domain): _debug(" effective request-host %s does not domain-match " "%s", erhn, domain) return False if (cookie.version > 0 or (self.strict_ns_domain & self.DomainStrictNoDots)): host_prefix = req_host[:-len(domain)] if (host_prefix.find(".") >= 0 and not IPV4_RE.search(req_host)): _debug(" host prefix %s for domain %s contains a dot", host_prefix, domain) return False return True def set_ok_port(self, cookie, request): if cookie.port_specified: req_port = request_port(request) if req_port is None: req_port = "80" else: req_port = str(req_port) for p in cookie.port.split(","): try: int(p) except ValueError: _debug(" bad port %s (not numeric)", p) return False if p == req_port: break else: _debug(" request port (%s) not found in %s", req_port, cookie.port) return False return True def return_ok(self, cookie, request): """ If you override .return_ok(), be sure to call this method. If it returns false, so should your subclass (assuming your subclass wants to be more strict about which cookies to return). """ # Path has already been checked by .path_return_ok(), and domain # blocking done by .domain_return_ok(). _debug(" - checking cookie %s=%s", cookie.name, cookie.value) for n in "version", "verifiability", "secure", "expires", "port", "domain": fn_name = "return_ok_"+n fn = getattr(self, fn_name) if not fn(cookie, request): return False return True def return_ok_version(self, cookie, request): if cookie.version > 0 and not self.rfc2965: _debug(" RFC 2965 cookies are switched off") return False elif cookie.version == 0 and not self.netscape: _debug(" Netscape cookies are switched off") return False return True def return_ok_verifiability(self, cookie, request): if request.is_unverifiable() and is_third_party(request): if cookie.version > 0 and self.strict_rfc2965_unverifiable: _debug(" third-party RFC 2965 cookie during unverifiable " "transaction") return False elif cookie.version == 0 and self.strict_ns_unverifiable: _debug(" third-party Netscape cookie during unverifiable " "transaction") return False return True def return_ok_secure(self, cookie, request): if cookie.secure and request.get_type() != "https": _debug(" secure cookie with non-secure request") return False return True def return_ok_expires(self, cookie, request): if cookie.is_expired(self._now): _debug(" cookie expired") return False return True def return_ok_port(self, cookie, request): if cookie.port: req_port = request_port(request) if req_port is None: req_port = "80" for p in cookie.port.split(","): if p == req_port: break else: _debug(" request port %s does not match cookie port %s", req_port, cookie.port) return False return True def return_ok_domain(self, cookie, request): req_host, erhn = eff_request_host(request) domain = cookie.domain # strict check of non-domain cookies: Mozilla does this, MSIE5 doesn't if (cookie.version == 0 and (self.strict_ns_domain & self.DomainStrictNonDomain) and not cookie.domain_specified and domain != erhn): _debug(" cookie with unspecified domain does not string-compare " "equal to request domain") return False if cookie.version > 0 and not domain_match(erhn, domain): _debug(" effective request-host name %s does not domain-match " "RFC 2965 cookie domain %s", erhn, domain) return False if cookie.version == 0 and not ("."+erhn).endswith(domain): _debug(" request-host %s does not match Netscape cookie domain " "%s", req_host, domain) return False return True def domain_return_ok(self, domain, request): # Liberal check of. This is here as an optimization to avoid # having to load lots of MSIE cookie files unless necessary. req_host, erhn = eff_request_host(request) if not req_host.startswith("."): req_host = "."+req_host if not erhn.startswith("."): erhn = "."+erhn if not (req_host.endswith(domain) or erhn.endswith(domain)): #_debug(" request domain %s does not match cookie domain %s", # req_host, domain) return False if self.is_blocked(domain): _debug(" domain %s is in user block-list", domain) return False if self.is_not_allowed(domain): _debug(" domain %s is not in user allow-list", domain) return False return True def path_return_ok(self, path, request): _debug("- checking cookie path=%s", path) req_path = request_path(request) if not req_path.startswith(path): _debug(" %s does not path-match %s", req_path, path) return False return True def vals_sorted_by_key(adict): keys = adict.keys() keys.sort() return map(adict.get, keys) def deepvalues(mapping): """Iterates over nested mapping, depth-first, in sorted order by key.""" values = vals_sorted_by_key(mapping) for obj in values: mapping = False try: obj.items except AttributeError: pass else: mapping = True for subobj in deepvalues(obj): yield subobj if not mapping: yield obj # Used as second parameter to dict.get() method, to distinguish absent # dict key from one with a None value. class Absent: pass class CookieJar: """Collection of HTTP cookies. You may not need to know about this class: try urllib2.build_opener(HTTPCookieProcessor).open(url). """ non_word_re = re.compile(r"\W") quote_re = re.compile(r"([\"\\])") strict_domain_re = re.compile(r"\.?[^.]*") domain_re = re.compile(r"[^.]*") dots_re = re.compile(r"^\.+") magic_re = r"^\#LWP-Cookies-(\d+\.\d+)" def __init__(self, policy=None): if policy is None: policy = DefaultCookiePolicy() self._policy = policy self._cookies_lock = _threading.RLock() self._cookies = {} def set_policy(self, policy): self._policy = policy def _cookies_for_domain(self, domain, request): cookies = [] if not self._policy.domain_return_ok(domain, request): return [] _debug("Checking %s for cookies to return", domain) cookies_by_path = self._cookies[domain] for path in cookies_by_path.keys(): if not self._policy.path_return_ok(path, request): continue cookies_by_name = cookies_by_path[path] for cookie in cookies_by_name.values(): if not self._policy.return_ok(cookie, request): _debug(" not returning cookie") continue _debug(" it's a match") cookies.append(cookie) return cookies def _cookies_for_request(self, request): """Return a list of cookies to be returned to server.""" cookies = [] for domain in self._cookies.keys(): cookies.extend(self._cookies_for_domain(domain, request)) return cookies def _cookie_attrs(self, cookies): """Return a list of cookie-attributes to be returned to server. like ['foo="bar"; $Path="/"', ...] The $Version attribute is also added when appropriate (currently only once per request). """ # add cookies in order of most specific (ie. longest) path first cookies.sort(key=lambda arg: len(arg.path), reverse=True) version_set = False attrs = [] for cookie in cookies: # set version of Cookie header # XXX # What should it be if multiple matching Set-Cookie headers have # different versions themselves? # Answer: there is no answer; was supposed to be settled by # RFC 2965 errata, but that may never appear... version = cookie.version if not version_set: version_set = True if version > 0: attrs.append("$Version=%s" % version) # quote cookie value if necessary # (not for Netscape protocol, which already has any quotes # intact, due to the poorly-specified Netscape Cookie: syntax) if ((cookie.value is not None) and self.non_word_re.search(cookie.value) and version > 0): value = self.quote_re.sub(r"\\\1", cookie.value) else: value = cookie.value # add cookie-attributes to be returned in Cookie header if cookie.value is None: attrs.append(cookie.name) else: attrs.append("%s=%s" % (cookie.name, value)) if version > 0: if cookie.path_specified: attrs.append('$Path="%s"' % cookie.path) if cookie.domain.startswith("."): domain = cookie.domain if (not cookie.domain_initial_dot and domain.startswith(".")): domain = domain[1:] attrs.append('$Domain="%s"' % domain) if cookie.port is not None: p = "$Port" if cookie.port_specified: p = p + ('="%s"' % cookie.port) attrs.append(p) return attrs def add_cookie_header(self, request): """Add correct Cookie: header to request (urllib2.Request object). The Cookie2 header is also added unless policy.hide_cookie2 is true. """ _debug("add_cookie_header") self._cookies_lock.acquire() try: self._policy._now = self._now = int(time.time()) cookies = self._cookies_for_request(request) attrs = self._cookie_attrs(cookies) if attrs: if not request.has_header("Cookie"): request.add_unredirected_header( "Cookie", "; ".join(attrs)) # if necessary, advertise that we know RFC 2965 if (self._policy.rfc2965 and not self._policy.hide_cookie2 and not request.has_header("Cookie2")): for cookie in cookies: if cookie.version != 1: request.add_unredirected_header("Cookie2", '$Version="1"') break finally: self._cookies_lock.release() self.clear_expired_cookies() def _normalized_cookie_tuples(self, attrs_set): """Return list of tuples containing normalised cookie information. attrs_set is the list of lists of key,value pairs extracted from the Set-Cookie or Set-Cookie2 headers. Tuples are name, value, standard, rest, where name and value are the cookie name and value, standard is a dictionary containing the standard cookie-attributes (discard, secure, version, expires or max-age, domain, path and port) and rest is a dictionary containing the rest of the cookie-attributes. """ cookie_tuples = [] boolean_attrs = "discard", "secure" value_attrs = ("version", "expires", "max-age", "domain", "path", "port", "comment", "commenturl") for cookie_attrs in attrs_set: name, value = cookie_attrs[0] # Build dictionary of standard cookie-attributes (standard) and # dictionary of other cookie-attributes (rest). # Note: expiry time is normalised to seconds since epoch. V0 # cookies should have the Expires cookie-attribute, and V1 cookies # should have Max-Age, but since V1 includes RFC 2109 cookies (and # since V0 cookies may be a mish-mash of Netscape and RFC 2109), we # accept either (but prefer Max-Age). max_age_set = False bad_cookie = False standard = {} rest = {} for k, v in cookie_attrs[1:]: lc = k.lower() # don't lose case distinction for unknown fields if lc in value_attrs or lc in boolean_attrs: k = lc if k in boolean_attrs and v is None: # boolean cookie-attribute is present, but has no value # (like "discard", rather than "port=80") v = True if k in standard: # only first value is significant continue if k == "domain": if v is None: _debug(" missing value for domain attribute") bad_cookie = True break # RFC 2965 section 3.3.3 v = v.lower() if k == "expires": if max_age_set: # Prefer max-age to expires (like Mozilla) continue if v is None: _debug(" missing or invalid value for expires " "attribute: treating as session cookie") continue if k == "max-age": max_age_set = True try: v = int(v) except ValueError: _debug(" missing or invalid (non-numeric) value for " "max-age attribute") bad_cookie = True break # convert RFC 2965 Max-Age to seconds since epoch # XXX Strictly you're supposed to follow RFC 2616 # age-calculation rules. Remember that zero Max-Age is a # is a request to discard (old and new) cookie, though. k = "expires" v = self._now + v if (k in value_attrs) or (k in boolean_attrs): if (v is None and k not in ("port", "comment", "commenturl")): _debug(" missing value for %s attribute" % k) bad_cookie = True break standard[k] = v else: rest[k] = v if bad_cookie: continue cookie_tuples.append((name, value, standard, rest)) return cookie_tuples def _cookie_from_cookie_tuple(self, tup, request): # standard is dict of standard cookie-attributes, rest is dict of the # rest of them name, value, standard, rest = tup domain = standard.get("domain", Absent) path = standard.get("path", Absent) port = standard.get("port", Absent) expires = standard.get("expires", Absent) # set the easy defaults version = standard.get("version", None) if version is not None: try: version = int(version) except ValueError: return None # invalid version, ignore cookie secure = standard.get("secure", False) # (discard is also set if expires is Absent) discard = standard.get("discard", False) comment = standard.get("comment", None) comment_url = standard.get("commenturl", None) # set default path if path is not Absent and path != "": path_specified = True path = escape_path(path) else: path_specified = False path = request_path(request) i = path.rfind("/") if i != -1: if version == 0: # Netscape spec parts company from reality here path = path[:i] else: path = path[:i+1] if len(path) == 0: path = "/" # set default domain domain_specified = domain is not Absent # but first we have to remember whether it starts with a dot domain_initial_dot = False if domain_specified: domain_initial_dot = bool(domain.startswith(".")) if domain is Absent: req_host, erhn = eff_request_host(request) domain = erhn elif not domain.startswith("."): domain = "."+domain # set default port port_specified = False if port is not Absent: if port is None: # Port attr present, but has no value: default to request port. # Cookie should then only be sent back on that port. port = request_port(request) else: port_specified = True port = re.sub(r"\s+", "", port) else: # No port attr present. Cookie can be sent back on any port. port = None # set default expires and discard if expires is Absent: expires = None discard = True elif expires <= self._now: # Expiry date in past is request to delete cookie. This can't be # in DefaultCookiePolicy, because can't delete cookies there. try: self.clear(domain, path, name) except KeyError: pass _debug("Expiring cookie, domain='%s', path='%s', name='%s'", domain, path, name) return None return Cookie(version, name, value, port, port_specified, domain, domain_specified, domain_initial_dot, path, path_specified, secure, expires, discard, comment, comment_url, rest) def _cookies_from_attrs_set(self, attrs_set, request): cookie_tuples = self._normalized_cookie_tuples(attrs_set) cookies = [] for tup in cookie_tuples: cookie = self._cookie_from_cookie_tuple(tup, request) if cookie: cookies.append(cookie) return cookies def _process_rfc2109_cookies(self, cookies): rfc2109_as_ns = getattr(self._policy, 'rfc2109_as_netscape', None) if rfc2109_as_ns is None: rfc2109_as_ns = not self._policy.rfc2965 for cookie in cookies: if cookie.version == 1: cookie.rfc2109 = True if rfc2109_as_ns: # treat 2109 cookies as Netscape cookies rather than # as RFC2965 cookies cookie.version = 0 def make_cookies(self, response, request): """Return sequence of Cookie objects extracted from response object.""" # get cookie-attributes for RFC 2965 and Netscape protocols headers = response.info() rfc2965_hdrs = headers.getheaders("Set-Cookie2") ns_hdrs = headers.getheaders("Set-Cookie") rfc2965 = self._policy.rfc2965 netscape = self._policy.netscape if ((not rfc2965_hdrs and not ns_hdrs) or (not ns_hdrs and not rfc2965) or (not rfc2965_hdrs and not netscape) or (not netscape and not rfc2965)): return [] # no relevant cookie headers: quick exit try: cookies = self._cookies_from_attrs_set( split_header_words(rfc2965_hdrs), request) except Exception: _warn_unhandled_exception() cookies = [] if ns_hdrs and netscape: try: # RFC 2109 and Netscape cookies ns_cookies = self._cookies_from_attrs_set( parse_ns_headers(ns_hdrs), request) except Exception: _warn_unhandled_exception() ns_cookies = [] self._process_rfc2109_cookies(ns_cookies) # Look for Netscape cookies (from Set-Cookie headers) that match # corresponding RFC 2965 cookies (from Set-Cookie2 headers). # For each match, keep the RFC 2965 cookie and ignore the Netscape # cookie (RFC 2965 section 9.1). Actually, RFC 2109 cookies are # bundled in with the Netscape cookies for this purpose, which is # reasonable behaviour. if rfc2965: lookup = {} for cookie in cookies: lookup[(cookie.domain, cookie.path, cookie.name)] = None def no_matching_rfc2965(ns_cookie, lookup=lookup): key = ns_cookie.domain, ns_cookie.path, ns_cookie.name return key not in lookup ns_cookies = filter(no_matching_rfc2965, ns_cookies) if ns_cookies: cookies.extend(ns_cookies) return cookies def set_cookie_if_ok(self, cookie, request): """Set a cookie if policy says it's OK to do so.""" self._cookies_lock.acquire() try: self._policy._now = self._now = int(time.time()) if self._policy.set_ok(cookie, request): self.set_cookie(cookie) finally: self._cookies_lock.release() def set_cookie(self, cookie): """Set a cookie, without checking whether or not it should be set.""" c = self._cookies self._cookies_lock.acquire() try: if cookie.domain not in c: c[cookie.domain] = {} c2 = c[cookie.domain] if cookie.path not in c2: c2[cookie.path] = {} c3 = c2[cookie.path] c3[cookie.name] = cookie finally: self._cookies_lock.release() def extract_cookies(self, response, request): """Extract cookies from response, where allowable given the request.""" _debug("extract_cookies: %s", response.info()) self._cookies_lock.acquire() try: self._policy._now = self._now = int(time.time()) for cookie in self.make_cookies(response, request): if self._policy.set_ok(cookie, request): _debug(" setting cookie: %s", cookie) self.set_cookie(cookie) finally: self._cookies_lock.release() def clear(self, domain=None, path=None, name=None): """Clear some cookies. Invoking this method without arguments will clear all cookies. If given a single argument, only cookies belonging to that domain will be removed. If given two arguments, cookies belonging to the specified path within that domain are removed. If given three arguments, then the cookie with the specified name, path and domain is removed. Raises KeyError if no matching cookie exists. """ if name is not None: if (domain is None) or (path is None): raise ValueError( "domain and path must be given to remove a cookie by name") del self._cookies[domain][path][name] elif path is not None: if domain is None: raise ValueError( "domain must be given to remove cookies by path") del self._cookies[domain][path] elif domain is not None: del self._cookies[domain] else: self._cookies = {} def clear_session_cookies(self): """Discard all session cookies. Note that the .save() method won't save session cookies anyway, unless you ask otherwise by passing a true ignore_discard argument. """ self._cookies_lock.acquire() try: for cookie in self: if cookie.discard: self.clear(cookie.domain, cookie.path, cookie.name) finally: self._cookies_lock.release() def clear_expired_cookies(self): """Discard all expired cookies. You probably don't need to call this method: expired cookies are never sent back to the server (provided you're using DefaultCookiePolicy), this method is called by CookieJar itself every so often, and the .save() method won't save expired cookies anyway (unless you ask otherwise by passing a true ignore_expires argument). """ self._cookies_lock.acquire() try: now = time.time() for cookie in self: if cookie.is_expired(now): self.clear(cookie.domain, cookie.path, cookie.name) finally: self._cookies_lock.release() def __iter__(self): return deepvalues(self._cookies) def __len__(self): """Return number of contained cookies.""" i = 0 for cookie in self: i = i + 1 return i def __repr__(self): r = [] for cookie in self: r.append(repr(cookie)) return "<%s[%s]>" % (self.__class__, ", ".join(r)) def __str__(self): r = [] for cookie in self: r.append(str(cookie)) return "<%s[%s]>" % (self.__class__, ", ".join(r)) # derives from IOError for backwards-compatibility with Python 2.4.0 class LoadError(IOError): pass class FileCookieJar(CookieJar): """CookieJar that can be loaded from and saved to a file.""" def __init__(self, filename=None, delayload=False, policy=None): """ Cookies are NOT loaded from the named file until either the .load() or .revert() method is called. """ CookieJar.__init__(self, policy) if filename is not None: try: filename+"" except: raise ValueError("filename must be string-like") self.filename = filename self.delayload = bool(delayload) def save(self, filename=None, ignore_discard=False, ignore_expires=False): """Save cookies to a file.""" raise NotImplementedError() def load(self, filename=None, ignore_discard=False, ignore_expires=False): """Load cookies from a file.""" if filename is None: if self.filename is not None: filename = self.filename else: raise ValueError(MISSING_FILENAME_TEXT) f = open(filename) try: self._really_load(f, filename, ignore_discard, ignore_expires) finally: f.close() def revert(self, filename=None, ignore_discard=False, ignore_expires=False): """Clear all cookies and reload cookies from a saved file. Raises LoadError (or IOError) if reversion is not successful; the object's state will not be altered if this happens. """ if filename is None: if self.filename is not None: filename = self.filename else: raise ValueError(MISSING_FILENAME_TEXT) self._cookies_lock.acquire() try: old_state = copy.deepcopy(self._cookies) self._cookies = {} try: self.load(filename, ignore_discard, ignore_expires) except (LoadError, IOError): self._cookies = old_state raise finally: self._cookies_lock.release() from _LWPCookieJar import LWPCookieJar, lwp_cookie_str from _MozillaCookieJar import MozillaCookieJar
35.967778
83
0.559328
adf9ce4aead61526e9c4734619b639637db18744
10,995
py
Python
python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py
zmxdream/Paddle
04f042a5d507ad98f7f2cfc3cbc44b06d7a7f45c
[ "Apache-2.0" ]
8
2016-08-15T07:02:27.000Z
2016-08-24T09:34:00.000Z
python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py
zmxdream/Paddle
04f042a5d507ad98f7f2cfc3cbc44b06d7a7f45c
[ "Apache-2.0" ]
1
2020-09-08T01:45:28.000Z
2020-09-08T01:45:28.000Z
python/paddle/fluid/tests/unittests/ir/inference/test_trt_matmul_quant_dequant.py
zmxdream/Paddle
04f042a5d507ad98f7f2cfc3cbc44b06d7a7f45c
[ "Apache-2.0" ]
5
2021-12-10T11:20:06.000Z
2022-02-18T05:18:12.000Z
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest from quant_dequant_test import QuantDequantTest import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import PassVersionChecker from paddle.fluid.core import AnalysisConfig class TensorRTMatMulQuantDequantDims3Test(QuantDequantTest): def setUp(self): self.set_params() def network(): self.data = fluid.data( name='data', shape=[1, 28, 28], dtype='float32') self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') matmul_out = fluid.layers.matmul( x=self.data, y=self.data, transpose_x=self.transpose_x, transpose_y=self.transpose_y, alpha=self.alpha) fc_out = fluid.layers.fc(input=matmul_out, size=10, num_flatten_dims=1, bias_attr=False, act=None) result = fluid.layers.relu(fc_out) loss = fluid.layers.cross_entropy(input=result, label=self.label) avg_loss = fluid.layers.mean(loss) return avg_loss, result self.main_program.random_seed = 2 self.startup_program.random_seed = 2 self.test_main_program.random_seed = 2 #self.test_startup_program.random_seed = 2 with fluid.unique_name.guard(): with fluid.program_guard(self.main_program, self.startup_program): self.loss, result = network() opt = fluid.optimizer.Adam(learning_rate=0.0001) opt.minimize(self.loss) with fluid.unique_name.guard(): with fluid.program_guard(self.test_main_program, self.startup_program): network() self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")} self.fetch_list = [result] self.enable_trt = True self.trt_parameters = TensorRTMatMulQuantDequantDims3Test.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False) self.activation_quantize_type = 'moving_average_abs_max' self.weight_quantize_type = 'channel_wise_abs_max' def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 1.0 def test_check_output(self): #self.quant_dequant() if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option( use_gpu, atol=1, flatten=False, rtol=1e-1) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass')) class TensorRTMatMulQuantDequantDims3TransposeXTest( TensorRTMatMulQuantDequantDims3Test): def set_params(self): self.transpose_x = True self.transpose_y = False self.alpha = 2.1 class TensorRTMatMulQuantDequantDims3TransposeYTest( TensorRTMatMulQuantDequantDims3Test): def set_params(self): self.transpose_x = False self.transpose_y = True self.alpha = 3.9 class TensorRTMatMulQuantDequantDims3TransposeXYTest( TensorRTMatMulQuantDequantDims3Test): def set_params(self): self.transpose_x = True self.transpose_y = True self.alpha = 8.4 class TensorRTMatMulQuantDequantDims4Test(QuantDequantTest): def setUp(self): self.set_params() def network(): self.data = fluid.data( name='data', shape=[1, 28, 28], dtype='float32') self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') reshape_out = fluid.layers.reshape(self.data, shape=[1, 4, 14, 14]) matmul_out = fluid.layers.matmul( x=reshape_out, y=reshape_out, transpose_x=self.transpose_x, transpose_y=self.transpose_y, alpha=self.alpha) out = fluid.layers.batch_norm(matmul_out, is_test=True) fc_out = fluid.layers.fc(input=matmul_out, size=10, num_flatten_dims=1, bias_attr=False, act=None) result = fluid.layers.relu(fc_out) loss = fluid.layers.cross_entropy(input=result, label=self.label) avg_loss = fluid.layers.mean(loss) return avg_loss, result self.main_program.random_seed = 2 self.startup_program.random_seed = 2 self.test_main_program.random_seed = 2 #self.test_startup_program.random_seed = 2 with fluid.unique_name.guard(): with fluid.program_guard(self.main_program, self.startup_program): self.loss, result = network() opt = fluid.optimizer.Adam(learning_rate=0.0001) opt.minimize(self.loss) with fluid.unique_name.guard(): with fluid.program_guard(self.test_main_program, self.startup_program): network() self.feeds = {"data": np.random.random([1, 28, 28]).astype("float32")} self.fetch_list = [result] self.enable_trt = True self.trt_parameters = TensorRTMatMulQuantDequantDims4Test.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False) self.activation_quantize_type = 'moving_average_abs_max' self.weight_quantize_type = 'channel_wise_abs_max' def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 1.0 def test_check_output(self): #self.quant_dequant() if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option( use_gpu, atol=1, flatten=False, rtol=1e-1) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass')) class TensorRTMatMulQuantDequantDims4TransposeXTest( TensorRTMatMulQuantDequantDims4Test): def set_params(self): self.transpose_x = True self.transpose_y = False self.alpha = 3.2 class TensorRTMatMulQuantDequantDims4TransposeYTest( TensorRTMatMulQuantDequantDims4Test): def set_params(self): self.transpose_x = False self.transpose_y = True self.alpha = 7.5 class TensorRTMatMulQuantDequantDims4TransposeXYTest( TensorRTMatMulQuantDequantDims4Test): def set_params(self): self.transpose_x = True self.transpose_y = True self.alpha = 11.2 class TensorRTMatMulQuantDequantDims3DynamicTest(QuantDequantTest): def setUp(self): self.set_params() def network(): self.data = fluid.data( name='data', shape=[-1, 28, 28], dtype='float32') self.label = fluid.data(name='label', shape=[1, 1], dtype='int64') matmul_out = fluid.layers.matmul( x=self.data, y=self.data, transpose_x=self.transpose_x, transpose_y=self.transpose_y, alpha=self.alpha) out = fluid.layers.batch_norm(matmul_out, is_test=True) fc_out = fluid.layers.fc(input=matmul_out, size=10, num_flatten_dims=1, bias_attr=False, act=None) result = fluid.layers.relu(fc_out) loss = fluid.layers.cross_entropy(input=result, label=self.label) avg_loss = fluid.layers.mean(loss) return avg_loss, result self.main_program.random_seed = 2 self.startup_program.random_seed = 2 self.test_main_program.random_seed = 2 #self.test_startup_program.random_seed = 2 with fluid.unique_name.guard(): with fluid.program_guard(self.main_program, self.startup_program): self.loss, result = network() opt = fluid.optimizer.Adam(learning_rate=0.0001) opt.minimize(self.loss) with fluid.unique_name.guard(): with fluid.program_guard(self.test_main_program, self.startup_program): network() self.feeds = {"data": np.random.random([3, 28, 28]).astype("float32")} self.fetch_list = [result] self.enable_trt = True self.trt_parameters = TensorRTMatMulQuantDequantDims3DynamicTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False) self.dynamic_shape_params = TensorRTMatMulQuantDequantDims3DynamicTest.DynamicShapeParam( { 'data': [1, 28, 28] }, {'data': [4, 28, 28]}, {'data': [3, 28, 28]}, False) self.activation_quantize_type = 'moving_average_abs_max' self.weight_quantize_type = 'channel_wise_abs_max' def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 1.0 def test_check_output(self): #self.quant_dequant() if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option( use_gpu, atol=1, flatten=False, rtol=1e-1) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass')) class TensorRTMatMulQuantDequantDims4TransposeXDynamicTest( TensorRTMatMulQuantDequantDims3DynamicTest): def set_params(self): self.transpose_x = True self.transpose_y = False self.alpha = 2.0 class TensorRTMatMulQuantDequantDims4TransposeYDynamicTest( TensorRTMatMulQuantDequantDims3DynamicTest): def set_params(self): self.transpose_x = False self.transpose_y = True self.alpha = 2.2 class TensorRTMatMulQuantDequantDims4TransposeXYDynamicTest( TensorRTMatMulQuantDequantDims3DynamicTest): def set_params(self): self.transpose_x = True self.transpose_y = True self.alpha = 7.8 if __name__ == "__main__": unittest.main()
38.444056
97
0.614097
7aa9b6189235d5029b4cd82b6f7aefaf395a296a
4,155
py
Python
influxdb_service_sdk/model/monitor_config/app_health_config_layer_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
influxdb_service_sdk/model/monitor_config/app_health_config_layer_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
influxdb_service_sdk/model/monitor_config/app_health_config_layer_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: app_health_config_layer.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from influxdb_service_sdk.model.monitor_config import app_health_config_metrics_pb2 as influxdb__service__sdk_dot_model_dot_monitor__config_dot_app__health__config__metrics__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='app_health_config_layer.proto', package='monitor_config', syntax='proto3', serialized_options=_b('ZHgo.easyops.local/contracts/protorepo-models/easyops/model/monitor_config'), serialized_pb=_b('\n\x1d\x61pp_health_config_layer.proto\x12\x0emonitor_config\x1aIinfluxdb_service_sdk/model/monitor_config/app_health_config_metrics.proto\"y\n\x14\x41ppHealthConfigLayer\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0e\n\x06weight\x18\x03 \x01(\x05\x12\x37\n\x07metrics\x18\x04 \x03(\x0b\x32&.monitor_config.AppHealthConfigMetricsBJZHgo.easyops.local/contracts/protorepo-models/easyops/model/monitor_configb\x06proto3') , dependencies=[influxdb__service__sdk_dot_model_dot_monitor__config_dot_app__health__config__metrics__pb2.DESCRIPTOR,]) _APPHEALTHCONFIGLAYER = _descriptor.Descriptor( name='AppHealthConfigLayer', full_name='monitor_config.AppHealthConfigLayer', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='monitor_config.AppHealthConfigLayer.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='monitor_config.AppHealthConfigLayer.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='monitor_config.AppHealthConfigLayer.weight', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='metrics', full_name='monitor_config.AppHealthConfigLayer.metrics', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=124, serialized_end=245, ) _APPHEALTHCONFIGLAYER.fields_by_name['metrics'].message_type = influxdb__service__sdk_dot_model_dot_monitor__config_dot_app__health__config__metrics__pb2._APPHEALTHCONFIGMETRICS DESCRIPTOR.message_types_by_name['AppHealthConfigLayer'] = _APPHEALTHCONFIGLAYER _sym_db.RegisterFileDescriptor(DESCRIPTOR) AppHealthConfigLayer = _reflection.GeneratedProtocolMessageType('AppHealthConfigLayer', (_message.Message,), { 'DESCRIPTOR' : _APPHEALTHCONFIGLAYER, '__module__' : 'app_health_config_layer_pb2' # @@protoc_insertion_point(class_scope:monitor_config.AppHealthConfigLayer) }) _sym_db.RegisterMessage(AppHealthConfigLayer) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
43.28125
463
0.787485
2f770405365d5f98807e2397c0eb50ec905bcf1b
2,120
py
Python
tests/cli/test_cli.py
fintzd/rasa
6359be5509c7d87cd29c2ab5149bc45e843fea85
[ "Apache-2.0" ]
9,701
2019-04-16T15:46:27.000Z
2022-03-31T11:52:18.000Z
tests/cli/test_cli.py
fintzd/rasa
6359be5509c7d87cd29c2ab5149bc45e843fea85
[ "Apache-2.0" ]
6,420
2019-04-16T15:58:22.000Z
2022-03-31T17:54:35.000Z
tests/cli/test_cli.py
fintzd/rasa
6359be5509c7d87cd29c2ab5149bc45e843fea85
[ "Apache-2.0" ]
3,063
2019-04-16T15:23:52.000Z
2022-03-31T00:01:12.000Z
from pathlib import Path from typing import Callable from _pytest.pytester import RunResult, Testdir import pytest import sys def test_cli_start_is_fast(testdir: Testdir): """ Checks that a call to ``rasa --help`` does not import any slow imports. If this is failing this means, that a simple "rasa --help" commands imports `tensorflow` which makes our CLI extremely slow. In case this test is failing you've very likely added a global import of "tensorflow" which should be avoided. Consider making this import (or the import of its parent module) a local import. If you are clueless where that import happens, you can run ``` python -X importtime -m rasa.__main__ --help 2> import.log tuna import.log ``` to get the import chain. (make sure to run with python >= 3.7, and install tune (pip install tuna)) """ rasa_path = str( (Path(__file__).parent / ".." / ".." / "rasa" / "__main__.py").absolute() ) args = [sys.executable, "-X", "importtime", rasa_path, "--help"] result = testdir.run(*args) assert result.ret == 0 # tensorflow is slow -> can't get imported when running basic CLI commands result.stderr.no_fnmatch_line("*tensorflow.python.eager") def test_data_convert_help(run: Callable[..., RunResult]): output = run("--help") help_text = """usage: rasa [-h] [--version] {init,run,shell,train,interactive,telemetry,test,visualize,data,export,x,evaluate} ...""" lines = help_text.split("\n") # expected help text lines should appear somewhere in the output printed_help = set(output.outlines) for line in lines: assert line in printed_help @pytest.mark.xfail( sys.platform == "win32", reason="--version doesn't print anything on Windows" ) def test_version_print_lines(run: Callable[..., RunResult]): output = run("--version") output_text = "".join(output.outlines) assert "Rasa Version" in output_text assert "Python Version" in output_text assert "Operating System" in output_text assert "Python Path" in output_text
33.650794
94
0.679245
780d8077ed4d0aa066d88f8ebd44a0e5d3e4aa03
5,256
py
Python
torchfilter/filters/_extended_information_filter.py
brentyi/torchfilter
da0250baf2197f59b6e67f37cafdd63015380cbb
[ "MIT" ]
84
2020-09-08T07:33:04.000Z
2022-03-30T17:25:00.000Z
torchfilter/filters/_extended_information_filter.py
brentyi/diffbayes
da0250baf2197f59b6e67f37cafdd63015380cbb
[ "MIT" ]
4
2020-11-03T14:32:11.000Z
2021-05-12T02:49:49.000Z
torchfilter/filters/_extended_information_filter.py
brentyi/diffbayes
da0250baf2197f59b6e67f37cafdd63015380cbb
[ "MIT" ]
18
2020-11-04T22:20:55.000Z
2021-12-21T10:23:26.000Z
"""Private module; avoid importing from directly. """ from typing import cast import fannypack import torch from overrides import overrides from .. import types from ..base import DynamicsModel, KalmanFilterBase, KalmanFilterMeasurementModel class ExtendedInformationFilter(KalmanFilterBase): """Information form of a Kalman filter; generally equivalent to an EKF but internally parameterizes uncertainties with the inverse covariance matrix. For building estimators with more complex observation spaces (eg images), see `VirtualSensorExtendedInformationFilter`. """ def __init__( self, *, dynamics_model: DynamicsModel, measurement_model: KalmanFilterMeasurementModel, ): super().__init__( dynamics_model=dynamics_model, measurement_model=measurement_model ) # Parameterize posterior uncertainty with inverse covariance self.information_vector: torch.Tensor """torch.Tensor: Information vector of our posterior; shape should be `(N, state_dim)`.""" self.information_matrix: torch.Tensor """torch.Tensor: Information matrix of our posterior; shape should be `(N, state_dim, state_dim)`.""" # overrides @property def belief_covariance(self) -> types.CovarianceTorch: """Posterior covariance. Shape should be `(N, state_dim, state_dim)`.""" return fannypack.utils.cholesky_inverse(torch.cholesky(self.information_matrix)) # overrides @belief_covariance.setter def belief_covariance(self, covariance: types.CovarianceTorch): self.information_matrix = fannypack.utils.cholesky_inverse( torch.cholesky(covariance) ) @overrides def _predict_step(self, *, controls: types.ControlsTorch) -> None: # Get previous belief prev_mean = self._belief_mean prev_covariance = self.belief_covariance N, state_dim = prev_mean.shape # Compute mu_{t+1|t}, covariance, and Jacobian pred_mean, dynamics_tril = self.dynamics_model( initial_states=prev_mean, controls=controls ) dynamics_covariance = dynamics_tril @ dynamics_tril.transpose(-1, -2) dynamics_A_matrix = self.dynamics_model.jacobian( initial_states=prev_mean, controls=controls ) assert dynamics_covariance.shape == (N, state_dim, state_dim) assert dynamics_A_matrix.shape == (N, state_dim, state_dim) # Calculate Sigma_{t+1|t} pred_information_matrix = fannypack.utils.cholesky_inverse( torch.cholesky( dynamics_A_matrix @ prev_covariance @ dynamics_A_matrix.transpose(-1, -2) + dynamics_covariance ) ) pred_information_vector = ( pred_information_matrix @ pred_mean[:, :, None] ).squeeze(-1) # Update internal state self._belief_mean = pred_mean self.information_matrix = pred_information_matrix self.information_vector = pred_information_vector @overrides def _update_step(self, *, observations: types.ObservationsTorch) -> None: # Extract/validate inputs assert isinstance( observations, types.ObservationsNoDictTorch ), "For standard EKF, observations must be tensor!" observations = cast(types.ObservationsNoDictTorch, observations) pred_mean = self._belief_mean pred_information_matrix = self.information_matrix pred_information_vector = self.information_vector # Measurement model forward pass, Jacobian observations_mean = observations pred_observations, observations_tril = self.measurement_model(states=pred_mean) observations_information = fannypack.utils.cholesky_inverse(observations_tril) C_matrix = self.measurement_model.jacobian(states=pred_mean) C_matrix_transpose = C_matrix.transpose(-1, -2) assert observations_mean.shape == pred_observations.shape # Check shapes N, observation_dim = observations_mean.shape assert observations_information.shape == (N, observation_dim, observation_dim) assert observations_mean.shape == (N, observation_dim) # Compute update information_vector = pred_information_vector + ( C_matrix_transpose @ observations_information @ ( observations_mean[:, :, None] - pred_observations[:, :, None] + C_matrix @ pred_mean[:, :, None] ) ).squeeze(-1) assert information_vector.shape == (N, self.state_dim) information_matrix = ( pred_information_matrix + C_matrix_transpose @ observations_information @ C_matrix ) assert information_matrix.shape == (N, self.state_dim, self.state_dim) # Update internal state self.information_matrix = information_matrix self.information_vector = information_vector self._belief_mean = ( fannypack.utils.cholesky_inverse(torch.cholesky(information_matrix)) @ information_vector[:, :, None] ).squeeze(-1)
38.086957
88
0.670852
3700c9fc100ae36b7da2b47eba2b021b7259562b
38,637
py
Python
pythran/tests/test_numpy_func0.py
wizardxz/pythran
9a1b1c08cf9d3478be3b6313ac8ebca9e5b88e65
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/test_numpy_func0.py
wizardxz/pythran
9a1b1c08cf9d3478be3b6313ac8ebca9e5b88e65
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/test_numpy_func0.py
wizardxz/pythran
9a1b1c08cf9d3478be3b6313ac8ebca9e5b88e65
[ "BSD-3-Clause" ]
null
null
null
import unittest from pythran.tests import TestEnv import numpy import sys from pythran.typing import NDArray, List, Tuple @TestEnv.module class TestNumpyFunc0(TestEnv): def test_extended_sum0(self): self.run_test("def numpy_extended_sum0(a): import numpy ; return numpy.sum(a)", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum0=[NDArray[int,:,:,:,:]]) def test_extended_sum1(self): self.run_test("def numpy_extended_sum1(a): import numpy ; return numpy.sum(a[1])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum1=[NDArray[int,:,:,:,:]]) def test_extended_sum2(self): self.run_test("def numpy_extended_sum2(a): import numpy ; return numpy.sum(a[1,0])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum2=[NDArray[int,:,:,:,:]]) def test_extended_sum3(self): self.run_test("def numpy_extended_sum3(a): import numpy ; return numpy.sum(a[1:-1])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum3=[NDArray[int,:,:,:,:]]) def test_extended_sum4(self): self.run_test("def numpy_extended_sum4(a): import numpy ; return numpy.sum(a[1:-1,0])", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum4=[NDArray[int,:,:,:,:]]) def test_extended_sum5(self): self.run_test("def numpy_extended_sum5(a): import numpy ; return numpy.sum(a)", numpy.arange(120).reshape((3,5,4,2)), numpy_extended_sum5=[NDArray[int,:,:,:,:]]) def test_out_sum0(self): self.run_test("def numpy_out_sum0(a, b): import numpy ; return numpy.sum(a, axis=0, out=b)", numpy.arange(10).reshape((5,2)), numpy.zeros(2, dtype=int), numpy_out_sum0=[NDArray[int,:,:], NDArray[int,:]]) def test_out_sum1(self): self.run_test("def numpy_out_sum1(a, b): import numpy ; return numpy.sum(a, axis=0, out=b)", numpy.arange(10).reshape((5,2)), numpy.ones(2, dtype=int), numpy_out_sum1=[NDArray[int,:,:], NDArray[int,:]]) def test_out_sum2(self): self.run_test("def numpy_out_sum2(a, b): import numpy ; return numpy.sum(a, axis=1, out=b)", numpy.arange(10).reshape((5,2)), numpy.zeros(5, dtype=int), numpy_out_sum2=[NDArray[int,:,:], NDArray[int,:]]) def test_numpy_shape_as_function(self): self.run_test("def numpy_shape_as_function(a): import numpy ; return numpy.shape(a)", numpy.ones(3, numpy.int16), numpy_shape_as_function=[NDArray[numpy.int16,:]]) def test_numpy_size_as_function(self): self.run_test("def numpy_size_as_function(a): import numpy ; return numpy.size(a)", numpy.ones(3, numpy.int16), numpy_size_as_function=[NDArray[numpy.int16,:]]) def test_numpy_ndim_as_function(self): self.run_test("def numpy_ndim_as_function(a): import numpy ; return numpy.ndim(a)", numpy.ones(3, numpy.int16), numpy_ndim_as_function=[NDArray[numpy.int16,:]]) def test_frexp0(self): self.run_test("def np_frexp0(a): import numpy as np ; return np.frexp(a)", 1.5, np_frexp0=[float]) def test_frexp1(self): self.run_test("def np_frexp1(a): import numpy as np ; return np.frexp(a)", numpy.array([1.1,2.2,3.3]), np_frexp1=[NDArray[float,:]]) def test_frexp2(self): self.run_test("def np_frexp2(a): import numpy as np ; return np.frexp(a+a)", numpy.array([1.1,2.2,3.3]), np_frexp2=[NDArray[float,:]]) def test_ndindex0(self): self.run_test("def np_ndindex0(): import numpy as np ; return [x for x in np.ndindex(5,6)]", np_ndindex0=[]) def test_ndindex1(self): self.run_test("def np_ndindex1(a): import numpy as np ; return [x for x in np.ndindex(a)]", 3, np_ndindex1=[int]) def test_ndindex2(self): self.run_test("def np_ndindex2(n): import numpy as np ; return [x for x in np.ndindex((n,n))]", 3, np_ndindex2=[int]) def test_ndenumerate0(self): self.run_test("def np_ndenumerate0(a): import numpy as np ; return [x for x in np.ndenumerate(a)]", numpy.array([[1, 2], [3, 4]]), np_ndenumerate0=[NDArray[int,:,:]]) def test_ndenumerate1(self): self.run_test("def np_ndenumerate1(a): import numpy as np ; return [x for x in np.ndenumerate(a)]", numpy.array([1, 2, 3, 4]), np_ndenumerate1=[NDArray[int,:]]) def test_nansum0(self): self.run_test("def np_nansum0(a): import numpy as np ; return np.nansum(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nansum0=[NDArray[float,:,:]]) def test_nansum1(self): self.run_test("def np_nansum1(a): import numpy as np ; return np.nansum(a)" , numpy.array([[1, 2], [numpy.NINF, numpy.nan]]), np_nansum1=[NDArray[float,:,:]]) def test_nansum2(self): self.run_test("def np_nansum2(a): import numpy as np ; return np.nansum(a)", [1., numpy.nan], np_nansum2=[List[float]]) def test_nanmin0(self): self.run_test("def np_nanmin0(a): import numpy as np ; return np.nanmin(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nanmin0=[NDArray[float,:,:]]) def test_nanmin1(self): self.run_test("def np_nanmin1(a): import numpy as np ; return np.nanmin(a)" , numpy.array([[1, 2], [numpy.NINF, numpy.nan]]), np_nanmin1=[NDArray[float,:,:]]) def test_nanmax0(self): self.run_test("def np_nanmax0(a): import numpy as np ; return np.nanmax(a)" , numpy.array([[1, 2], [3, numpy.nan]]), np_nanmax0=[NDArray[float,:,:]]) def test_nanmax1(self): self.run_test("def np_nanmax1(a): import numpy as np ; return np.nanmax(a)" , numpy.array([[1, 2], [numpy.inf, numpy.nan]]) , np_nanmax1=[NDArray[float,:,:]]) def test_np_residual(self): self.run_test("""import numpy as np def np_residual(): nx, ny, nz= 75, 75, 100 hx, hy = 1./(nx-1), 1./(ny-1) P_left, P_right = 0, 0 P_top, P_bottom = 1, 0 P = np.ones((nx, ny, nz), np.float64) d2x = np.zeros_like(P) d2y = np.zeros_like(P) d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy return d2x + d2y + 5*np.cosh(P).mean()**2 """, np_residual=[]) def test_np_func2(self): self.run_test("""import numpy as np def np_func2(x): f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5] df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])], [x[1], x[0] - 1]]) return f, df """, [1.0, 2.0, 3.0], np_func2=[List[float]]) def test_np_peval(self): self.run_test("""import numpy def np_peval(x, p): return p[0]*numpy.sin(2*numpy.pi*p[1]*x+p[2]) """, 12., [1.0, 2.0, 3.0], np_peval=[float, List[float]]) def test_np_residuals(self): self.run_test("""import numpy def np_residuals(): x = numpy.arange(0,6e-2,6e-2/30) A,k,theta = 10, 1.0/3e-2, numpy.pi/6 return A*numpy.sin(2*numpy.pi*k*x+theta) """, np_residuals=[]) def test_np_func_deriv(self): self.run_test("""import numpy def np_func_deriv(x, sign=1.0): dfdx0 = sign*(-2*x[0] + 2*x[1] + 2) dfdx1 = sign*(2*x[0] - 4*x[1]) return numpy.array([ dfdx0, dfdx1 ]) """, [-1.0, 1.0], -1.0, np_func_deriv=[List[float], float]) def test_np_func(self): self.run_test("""import numpy def np_func(x, sign=1.0): return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2) """, [-1.0, 1.0], -1.0, np_func=[List[float], float]) def test_rosen_hess_p(self): self.run_test("""import numpy def np_rosen_hess_p(x, p): x = numpy.asarray(x) Hp = numpy.zeros_like(x) Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1] Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \ -400*x[1:-1]*p[2:] Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1] return Hp """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), numpy.array([2.3, 1.7, 1.8, 2.9, 2.2]), np_rosen_hess_p=[NDArray[float,:], NDArray[float,:]]) def test_rosen_hess(self): self.run_test("""import numpy def np_rosen_hess(x): x = numpy.asarray(x) H = numpy.diag(-400*x[:-1],1) - numpy.diag(400*x[:-1],-1) diagonal = numpy.zeros_like(x) diagonal[0] = 1200*x[0]**2-400*x[1]+2 diagonal[-1] = 200 diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:] H = H + numpy.diag(diagonal) return H """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen_hess=[NDArray[float,:]]) def test_rosen_der(self): self.run_test("""import numpy def np_rosen_der(x): xm = x[1:-1] xm_m1 = x[:-2] xm_p1 = x[2:] der = numpy.zeros_like(x) der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm) der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0]) der[-1] = 200*(x[-1]-x[-2]**2) return der """, numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen_der=[NDArray[float,:]]) def test_rosen(self): self.run_test("import numpy\ndef np_rosen(x): return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0)", numpy.array([1.3, 0.7, 0.8, 1.9, 1.2]), np_rosen=[NDArray[float,:]]) def test_nanargmax0(self): self.run_test("def np_nanargmax0(a): from numpy import nanargmax; return nanargmax(a)", numpy.array([[numpy.nan, 4], [2, 3]]), np_nanargmax0=[NDArray[float,:,:]]) def test_nanargmin0(self): self.run_test("def np_nanargmin0(a): from numpy import nanargmin ; return nanargmin(a)", numpy.array([[numpy.nan, 4], [2, 3]]), np_nanargmin0=[NDArray[float,:,:]]) def test_nan_to_num0(self): self.run_test("def np_nan_to_num0(a): import numpy as np ; return np.nan_to_num(a)", numpy.array([numpy.inf, -numpy.inf, numpy.nan, -128, 128]), np_nan_to_num0=[NDArray[float,:]]) def test_median0(self): self.run_test("def np_median0(a): from numpy import median ; return median(a)", numpy.array([[1, 2], [3, 4]]), np_median0=[NDArray[int,:,:]]) def test_median1(self): self.run_test("def np_median1(a): from numpy import median ; return median(a)", numpy.array([1, 2, 3, 4,5]), np_median1=[NDArray[int,:]]) def test_mean0(self): self.run_test("def np_mean0(a): from numpy import mean ; return mean(a)", numpy.array([[1, 2], [3, 4]]), np_mean0=[NDArray[int,:,:]]) def test_mean1(self): self.run_test("def np_mean1(a): from numpy import mean ; return mean(a, 1)", numpy.array([[1, 2], [3, 4.]]), np_mean1=[NDArray[float,:,:]]) def test_mean2(self): self.run_test("def np_mean2(a): from numpy import mean ; return mean(a)", numpy.array([[[1, 2], [3, 4.]]]), np_mean2=[NDArray[float,:,:,:]]) def test_mean3(self): self.run_test("def np_mean3(a): from numpy import mean ; return mean(a, 0)", numpy.array([[[1, 2], [3, 4.]]]), np_mean3=[NDArray[float,:,:,:]]) def test_mean4(self): self.run_test("def np_mean4(a): from numpy import mean ; return mean(a, 1)", numpy.array([[[1, 2], [3, 4.]]]), np_mean4=[NDArray[float,:,:,:]]) def test_mean5(self): self.run_test("def np_mean5(a): from numpy import mean ; return mean(a, 2)", numpy.array([[[1, 2], [3, 4.]]]), np_mean5=[NDArray[float,:,:,:]]) def test_var0(self): self.run_test("def np_var0(a): return a.var()", numpy.array([[1, 2], [3, 4]], dtype=float), np_var0=[NDArray[float,:,:]]) def test_var1(self): self.run_test("def np_var1(a): from numpy import var ; return var(a, 1)", numpy.array([[1, 2], [3, 4.]]), np_var1=[NDArray[float,:,:]]) def test_var2(self): self.run_test("def np_var2(a): from numpy import var ; return var(a)", numpy.array([[[1, 2], [3, 4.]]]), np_var2=[NDArray[float,:,:,:]]) def test_var3(self): self.run_test("def np_var3(a): from numpy import var ; return var(a, 0)", numpy.array([[[1, 2], [3, 4.]]]), np_var3=[NDArray[float,:,:,:]]) def test_var4(self): self.run_test("def np_var4(a): from numpy import var ; return var(a, 1)", numpy.array([[[1, 2], [3, 4.]]]), np_var4=[NDArray[float,:,:,:]]) def test_var5(self): self.run_test("def np_var5(a): from numpy import var ; return var(a, 2)", numpy.array([[[1, 2], [3, 4.]]]), np_var5=[NDArray[float,:,:,:]]) def test_std0(self): self.run_test("def np_std0(a): from numpy import std ; return std(a)", numpy.array([[[1, 2], [3, 4]]]), np_std0=[NDArray[int, :, :, :]]) def test_std1(self): self.run_test("def np_std1(a): from numpy import std ; return std(a, 0)", numpy.array([[[1, 2], [3, 4]]]), np_std1=[NDArray[int, :, :, :]]) def test_std2(self): self.run_test("def np_std2(a): from numpy import std ; return std(a, 1)", numpy.array([[[1, 2], [3, 4]]]), np_std2=[NDArray[int, :, :, :]]) def test_logspace0(self): self.run_test("def np_logspace0(start, stop): from numpy import logspace ; start, stop = 3., 4. ; return logspace(start, stop, 4)", 3., 4., np_logspace0=[float, float]) def test_logspace1(self): self.run_test("def np_logspace1(start, stop): from numpy import logspace ; return logspace(start, stop, 4, False)", 3., 4., np_logspace1=[float, float]) def test_logspace2(self): self.run_test("def np_logspace2(start, stop): from numpy import logspace ; return logspace(start, stop, 4, True, 2.0)", 3., 4., np_logspace2=[float, float]) def test_lexsort0(self): self.run_test("def np_lexsort0(surnames): from numpy import lexsort ; first_names = ('Heinrich', 'Galileo', 'Gustav') ; return lexsort((first_names, surnames))", ('Hertz', 'Galilei', 'Hertz'), np_lexsort0=[Tuple[str, str, str]]) def test_lexsort1(self): self.run_test("def np_lexsort1(a): from numpy import lexsort ; b = [1,5,1,4,3,4,4] ; return lexsort((a,b))", [9,4,0,4,0,2,1], np_lexsort1=[List[int]]) def test_lexsort2(self): self.run_test("def np_lexsort2(a): from numpy import lexsort ; return lexsort((a+1,a-1))", numpy.array([1,5,1,4,3,4,4]), np_lexsort2=[NDArray[int,:]]) def test_issctype0(self): self.run_test("def np_issctype0(): from numpy import issctype, int32 ; a = int32 ; return issctype(a)", np_issctype0=[]) def test_issctype1(self): self.run_test("def np_issctype1(): from numpy import issctype ; a = list ; return issctype(a)", np_issctype1=[]) def test_issctype2(self): self.run_test("def np_issctype2(a): from numpy import issctype ; return issctype(a)", 3.1, np_issctype2=[float]) def test_isscalar0(self): self.run_test("def np_isscalar0(a): from numpy import isscalar ; return isscalar(a)", 3.1, np_isscalar0=[float]) def test_isscalar1(self): self.run_test("def np_isscalar1(a): from numpy import isscalar ; return isscalar(a)", [3.1], np_isscalar1=[List[float]]) def test_isscalar2(self): self.run_test("def np_isscalar2(a): from numpy import isscalar ; return isscalar(a)", '3.1', np_isscalar2=[str]) def test_isrealobj0(self): self.run_test("def np_isrealobj0(a): from numpy import isrealobj ; return isrealobj(a)", numpy.array([1,2,3.]), np_isrealobj0=[NDArray[float,:]]) def test_isrealobj1(self): self.run_test("def np_isrealobj1(a): from numpy import isrealobj ; return isrealobj(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_isrealobj1=[NDArray[complex,:,:]]) def test_isreal0(self): self.run_test("def np_isreal0(a): from numpy import isreal ; return isreal(a)", numpy.array([1,2,3.]), np_isreal0=[NDArray[float,:]]) def test_isreal1(self): self.run_test("def np_isreal1(a): from numpy import isreal ; return isreal(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_isreal1=[NDArray[complex,:,:]]) def test_iscomplex0(self): self.run_test("def np_iscomplex0(a): from numpy import iscomplex ; return iscomplex(a)", numpy.array([1, 2, 3.]), np_iscomplex0=[NDArray[float,:]]) def test_iscomplex1(self): self.run_test("def np_iscomplex1(a): from numpy import iscomplex ; return iscomplex(a)", numpy.array([1,2,3.,4 + 1j]).reshape((2,2)), np_iscomplex1=[NDArray[complex,:,:]]) def test_intersect1d0(self): self.run_test("def np_intersect1d0(a): from numpy import intersect1d ; b = [3, 1, 2, 1] ; return intersect1d(a,b)", [1, 3, 4, 3], np_intersect1d0=[List[int]]) def test_insert0(self): self.run_test("def np_insert0(a): from numpy import insert ; return insert(a, 1, 5)", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert0=[NDArray[int,:,:]]) def test_insert1(self): self.run_test("def np_insert1(a): from numpy import insert ; return insert(a, [1,2], [5,6])", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert1=[NDArray[int,:,:]]) def test_insert2(self): self.run_test("def np_insert2(a): from numpy import insert ; return insert(a, [1,1], [5.2,6])", numpy.array([[1, 1], [2, 2], [3, 3]]), np_insert2=[NDArray[int,:,:]]) def test_inner0(self): self.run_test("def np_inner0(x): from numpy import inner ; y = 3 ; return inner(x,y)", 2, np_inner0=[int]) def test_inner1(self): self.run_test("def np_inner1(x): from numpy import inner ; y = [2, 3] ; return inner(x,y)", [2, 3], np_inner1=[List[int]]) def test_indices0(self): self.run_test("def np_indices0(s): from numpy import indices ; return indices(s)", (2, 3), np_indices0=[Tuple[int, int]]) def test_identity0(self): self.run_test("def np_identity0(a): from numpy import identity ; return identity(a)", 3, np_identity0=[int]) def test_identity1(self): self.run_test("def np_identity1(a): from numpy import identity ;return identity(a)", 4, np_identity1=[int]) def test_fromstring0(self): self.run_test("def np_fromstring0(a): from numpy import fromstring, uint8 ; return fromstring(a, uint8)", '\x01\x02', np_fromstring0=[str]) def test_fromstring1(self): self.run_test("def np_fromstring1(a): from numpy import fromstring, uint8 ; a = '\x01\x02\x03\x04' ; return fromstring(a, uint8,3)", '\x01\x02\x03\x04', np_fromstring1=[str]) def test_fromstring2(self): self.run_test("def np_fromstring2(a): from numpy import fromstring, uint32 ; return fromstring(a, uint32,-1, ' ')", '1 2 3 4', np_fromstring2=[str]) def test_fromstring3(self): self.run_test("def np_fromstring3(a): from numpy import fromstring, uint32 ; return fromstring(a, uint32,2, ',')", '1,2, 3, 4', np_fromstring3=[str]) def test_outer0(self): self.run_test("def np_outer0(x): from numpy import outer ; return outer(x, x+2)", numpy.arange(6).reshape(2,3), np_outer0=[NDArray[int,:,:]]) def test_outer1(self): self.run_test("def np_outer1(x): from numpy import outer; return outer(x, range(6))", numpy.arange(6).reshape((2,3)), np_outer1=[NDArray[int,:,:]]) def test_place0(self): self.run_test("def np_place0(x): from numpy import place, ravel ; place(x, x>1, ravel(x**2)); return x", numpy.arange(6).reshape((2,3)), np_place0=[NDArray[int,:,:]]) def test_place1(self): self.run_test("def np_place1(x): from numpy import place ; place(x, x>1, [57, 58]); return x", numpy.arange(6).reshape((2,3)), np_place1=[NDArray[int,:,:]]) def test_product(self): self.run_test("def np_product(x):\n from numpy import product\n return product(x)", numpy.arange(1, 10), np_product=[NDArray[int,:]]) def test_ptp0(self): self.run_test("def np_ptp0(x): return x.ptp()", numpy.arange(4).reshape((2,2)), np_ptp0=[NDArray[int,:,:]]) def test_ptp1(self): self.run_test("def np_ptp1(x): from numpy import ptp ; return ptp(x,0)", numpy.arange(4).reshape((2,2)), np_ptp1=[NDArray[int,:,:]]) def test_ptp2(self): self.run_test("def np_ptp2(x): from numpy import ptp ; return ptp(x,1)", numpy.arange(4).reshape((2,2)), np_ptp2=[NDArray[int,:,:]]) def test_put0(self): self.run_test("def np_put0(x): x.put([0,2], [-44, -55]); return x", numpy.arange(5), np_put0=[NDArray[int,:]]) def test_put1(self): self.run_test("def np_put1(x): from numpy import put ; put(x, [0,2,3], [57, 58]); return x", numpy.arange(6).reshape((2, 3)), np_put1=[NDArray[int,:,:]]) def test_put2(self): self.run_test("def np_put2(x): from numpy import put ; put(x, 2, 57); return x", numpy.arange(6).reshape((2,3)), np_put2=[NDArray[int,:,:]]) def test_putmask0(self): self.run_test("def np_putmask0(x): from numpy import putmask ; putmask(x, x>1, x**2); return x", numpy.arange(6).reshape((2,3)), np_putmask0=[NDArray[int,:,:]]) def test_putmask1(self): self.run_test("def np_putmask1(x): from numpy import putmask; putmask(x, x>1, [57, 58]); return x", numpy.arange(6).reshape((2,3)), np_putmask1=[NDArray[int,:,:]]) def test_ravel0(self): self.run_test("def np_ravel0(x): from numpy import ravel ; return ravel(x)", numpy.arange(6).reshape((2,3)), np_ravel0=[NDArray[int,:,:]]) def test_ravel1(self): self.run_test("def np_ravel1(x): return x.ravel()", numpy.arange(6).reshape((2,3)), np_ravel1=[NDArray[int,:,:]]) def test_repeat0(self): self.run_test("def np_repeat0(x): from numpy import repeat; return repeat(x, 3)", numpy.arange(3), np_repeat0=[NDArray[int,:]]) def test_repeat1(self): self.run_test("def np_repeat1(x): return x.repeat(3)", numpy.arange(6).reshape(2,3), np_repeat1=[NDArray[int,:,:]]) def test_repeat2(self): self.run_test("def np_repeat2(x): from numpy import repeat; return repeat(x, 4, axis=0)", numpy.arange(6).reshape(2,3), np_repeat2=[NDArray[int,:,:]]) def test_repeat3(self): self.run_test("def np_repeat3(x): from numpy import repeat; return repeat(x, 4, axis=1)", numpy.arange(6).reshape(2,3), np_repeat3=[NDArray[int,:,:]]) def test_resize4(self): self.run_test("def np_resize4(x): from numpy import resize ; return resize(x, (6,7))", numpy.arange(24).reshape((2,3,4)), np_resize4=[NDArray[int, :, :, :]]) def test_resize3(self): self.run_test("def np_resize3(x): from numpy import resize; return resize(x, (6,6))", numpy.arange(24).reshape((2,3,4)), np_resize3=[NDArray[int, :, :, :]]) def test_resize2(self): self.run_test("def np_resize2(x): from numpy import resize; return resize(x, (3,3))", numpy.arange(24).reshape((2,3,4)), np_resize2=[NDArray[int, :, :, :]]) def test_resize1(self): self.run_test("def np_resize1(x): from numpy import resize; return resize(x, 32)", numpy.arange(24), np_resize1=[NDArray[int,:]]) def test_resize0(self): self.run_test("def np_resize0(x): from numpy import resize; return resize(x, 12)", numpy.arange(24), np_resize0=[NDArray[int,:]]) def test_rollaxis3(self): self.run_test("def np_rollaxis3(x): from numpy import rollaxis; return rollaxis(x, 0, 3)", numpy.arange(24).reshape((2,3,4)), np_rollaxis3=[NDArray[int, :, :, :]]) def test_rollaxis2(self): self.run_test("def np_rollaxis2(x): from numpy import rollaxis; return rollaxis(x, 2)", numpy.arange(24).reshape((2,3,4)), np_rollaxis2=[NDArray[int, :, :, :]]) def test_rollaxis1(self): self.run_test("def np_rollaxis1(x): from numpy import rollaxis; return rollaxis(x, 1, 2)", numpy.arange(24).reshape(2,3,4), np_rollaxis1=[NDArray[int, :, :, :]]) def test_rollaxis0(self): self.run_test("def np_rollaxis0(x): from numpy import rollaxis; return rollaxis(x, 1)", numpy.arange(24).reshape(2,3,4), np_rollaxis0=[NDArray[int, :, :, :]]) def test_roll6(self): self.run_test("def np_roll6(x): from numpy import roll; return roll(x[:,:,:-1], -1, 2)", numpy.arange(24).reshape(2,3,4), np_roll6=[NDArray[int, :, :, :]]) def test_roll5(self): self.run_test("def np_roll5(x): from numpy import roll; return roll(x, -1, 2)", numpy.arange(24).reshape(2,3,4), np_roll5=[NDArray[int, :, :, :]]) def test_roll4(self): self.run_test("def np_roll4(x): from numpy import roll; return roll(x, 1, 1)", numpy.arange(24).reshape(2,3,4), np_roll4=[NDArray[int, :, :, :]]) def test_roll3(self): self.run_test("def np_roll3(x): from numpy import roll; return roll(x, -1, 0)", numpy.arange(24).reshape(2,3,4), np_roll3=[NDArray[int, :, :, :]]) def test_roll2(self): self.run_test("def np_roll2(x): from numpy import roll; return roll(x, -1)", numpy.arange(24).reshape(2,3,4), np_roll2=[NDArray[int, :, :, :]]) def test_roll1(self): self.run_test("def np_roll1(x): from numpy import roll; return roll(x, 10)", numpy.arange(24).reshape(2,3,4), np_roll1=[NDArray[int, :, :, :]]) def test_roll0(self): self.run_test("def np_roll0(x): from numpy import roll; return roll(x, 3)", numpy.arange(24).reshape(2,3,4), np_roll0=[NDArray[int, :, :, :]]) def test_searchsorted3(self): self.run_test("def np_searchsorted3(x): from numpy import searchsorted; return searchsorted(x, [[3,4],[1,87]])", numpy.arange(6), np_searchsorted3=[NDArray[int,:]]) def test_searchsorted2(self): self.run_test("def np_searchsorted2(x): from numpy import searchsorted; return searchsorted(x, [[3,4],[1,87]], 'right')", numpy.arange(6), np_searchsorted2=[NDArray[int,:]]) def test_searchsorted1(self): self.run_test("def np_searchsorted1(x): from numpy import searchsorted; return searchsorted(x, 3)", numpy.arange(6), np_searchsorted1=[NDArray[int,:]]) def test_searchsorted0(self): self.run_test("def np_searchsorted0(x): from numpy import searchsorted; return searchsorted(x, 3, 'right')", numpy.arange(6), np_searchsorted0=[NDArray[int,:]]) def test_rank1(self): self.run_test("def np_rank1(x): from numpy import rank; return rank(x)", numpy.arange(24).reshape(2,3,4), np_rank1=[NDArray[int, :, :, :]]) def test_rank0(self): self.run_test("def np_rank0(x): from numpy import rank; return rank(x)", numpy.arange(6), np_rank0=[NDArray[int,:]]) def test_rot904(self): self.run_test("def np_rot904(x): from numpy import rot90; return rot90(x, 4)", numpy.arange(24).reshape(2,3,4), np_rot904=[NDArray[int, :, :, :]]) def test_rot903(self): self.run_test("def np_rot903(x): from numpy import rot90; return rot90(x, 2)", numpy.arange(24).reshape(2,3,4), np_rot903=[NDArray[int, :, :, :]]) def test_rot902(self): self.run_test("def np_rot902(x): from numpy import rot90; return rot90(x, 3)", numpy.arange(24).reshape(2,3,4), np_rot902=[NDArray[int, :, :, :]]) def test_rot900(self): self.run_test("def np_rot900(x): from numpy import rot90; return rot90(x)", numpy.arange(24).reshape(2,3,4), np_rot900=[NDArray[int, :, :, :]]) def test_rot901(self): self.run_test("def np_rot901(x): from numpy import rot90; return rot90(x)", numpy.arange(4).reshape(2,2), np_rot901=[NDArray[int,:,:]]) def test_select2(self): self.run_test("def np_select2(x): from numpy import select; condlist = [x<3, x>5]; choicelist = [x**3, x**2]; return select(condlist, choicelist)", numpy.arange(10).reshape(2,5), np_select2=[NDArray[int,:,:]]) def test_select1(self): self.run_test("def np_select1(x): from numpy import select; condlist = [x<3, x>5]; choicelist = [x+3, x**2]; return select(condlist, choicelist)", numpy.arange(10), np_select1=[NDArray[int,:]]) def test_select0(self): self.run_test("def np_select0(x): from numpy import select; condlist = [x<3, x>5]; choicelist = [x, x**2]; return select(condlist, choicelist)", numpy.arange(10), np_select0=[NDArray[int,:]]) def test_sometrue0(self): self.run_test("def np_sometrue0(a): from numpy import sometrue ; return sometrue(a)", numpy.array([[True, False], [True, True]]), np_sometrue0=[NDArray[bool,:,:]]) def test_sometrue1(self): self.run_test("def np_sometrue1(a): from numpy import sometrue ; return sometrue(a, 0)", numpy.array([[True, False], [False, False]]), np_sometrue1=[NDArray[bool,:,:]]) def test_sometrue2(self): self.run_test("def np_sometrue2(a): from numpy import sometrue ; return sometrue(a)", [-1, 0, 5], np_sometrue2=[List[int]]) def test_sort0(self): self.run_test("def np_sort0(a): from numpy import sort ; return sort(a)", numpy.array([[1,6],[7,5]]), np_sort0=[NDArray[int,:,:]]) def test_sort1(self): self.run_test("def np_sort1(a): from numpy import sort ; return sort(a)", numpy.array([2, 1, 6, 3, 5]), np_sort1=[NDArray[int,:]]) def test_sort2(self): self.run_test("def np_sort2(a): from numpy import sort ; return sort(a)", numpy.arange(2*3*4, 0, -1).reshape(2,3,4), np_sort2=[NDArray[int, :, :, :]]) def test_sort3(self): self.run_test("def np_sort3(a): from numpy import sort ; return sort(a, 0)", numpy.arange(2*3*4, 0, -1).reshape(2,3,4), np_sort3=[NDArray[int, :, :, :]]) def test_sort4(self): self.run_test("def np_sort4(a): from numpy import sort ; return sort(a, 1)", numpy.arange(2*3*4, 0, -1).reshape(2,3,4), np_sort4=[NDArray[int, :, :, :]]) def test_sort_complex0(self): self.run_test("def np_sort_complex0(a): from numpy import sort_complex ; return sort_complex(a)", numpy.array([[1,6],[7,5]]), np_sort_complex0=[NDArray[int,:,:]]) def test_sort_complex1(self): self.run_test("def np_sort_complex1(a): from numpy import sort_complex ; return sort_complex(a)", numpy.array([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]), np_sort_complex1=[NDArray[complex,:]]) def test_split0(self): self.run_test("def np_split0(a): from numpy import split,array2string ; return map(array2string,split(a, 3))", numpy.arange(12), np_split0=[NDArray[int,:]]) def test_split1(self): self.run_test("def np_split1(a):\n from numpy import split\n try:\n print(split(a, 5))\n return False\n except ValueError:\n return True", numpy.arange(12), np_split1=[NDArray[int,:]]) def test_split2(self): self.run_test("def np_split2(a): from numpy import split, array2string; return map(array2string,split(a, [0,1,5]))", numpy.arange(12).reshape(6,2), np_split2=[NDArray[int,:,:]]) @unittest.skip("Require numpy_fexpr for multidim array") def test_take0(self): self.run_test("def np_take0(a):\n from numpy import take\n return take(a, [0,1])", numpy.arange(24).reshape(2,3,4), np_take0=[NDArray[int, :, :, :]]) @unittest.skip("Require numpy_fexpr for multidim array") def test_take1(self): self.run_test("def np_take1(a):\n from numpy import take\n return take(a, [[0,0,2,2],[1,0,1,2]])", numpy.arange(24).reshape(2,3,4), np_take1=[NDArray[int, :, :, :]]) @unittest.skip("Require numpy_fexpr with indices") def test_take2(self): self.run_test("def np_take2(a):\n from numpy import take\n return take(a, [1,0,1,2])", numpy.arange(24), np_take2=[NDArray[int,:]]) def test_swapaxes_(self): self.run_test("def np_swapaxes_(a):\n from numpy import swapaxes\n return swapaxes(a, 1, 2)", numpy.arange(24).reshape(2,3,4), np_swapaxes_=[NDArray[int, :, :, :]]) def test_tile0(self): self.run_test("def np_tile0(a): from numpy import tile ; return tile(a, 3)", numpy.arange(4), np_tile0=[NDArray[int,:]]) def test_tile1(self): self.run_test("def np_tile1(a): from numpy import tile ; return tile(a, (3, 2))", numpy.arange(4), np_tile1=[NDArray[int,:]]) def test_tolist0(self): self.run_test("def np_tolist0(a): return a.tolist()", numpy.arange(12), np_tolist0=[NDArray[int,:]]) def test_tolist1(self): self.run_test("def np_tolist1(a): return a.tolist()", numpy.arange(12).reshape(3,4), np_tolist1=[NDArray[int,:,:]]) def test_tolist2(self): self.run_test("def np_tolist2(a): return a.tolist()", numpy.arange(2*3*4*5).reshape(2,3,4,5), np_tolist2=[NDArray[int, :, :, :, :]]) @unittest.skipIf(sys.version_info.major == 3, "Not supported in Pythran3") def test_tostring0(self): self.run_test("def np_tostring0(a): return a.tostring()", numpy.arange(80, 100), np_tostring0=[NDArray[int,:]]) @unittest.skipIf(sys.version_info.major == 3, "Not supported in Pythran3") def test_tostring1(self): self.run_test("def np_tostring1(a): return a.tostring()", numpy.arange(500, 600), np_tostring1=[NDArray[int,:]]) def test_fromiter0(self): self.run_test("def g(): yield 1 ; yield 2\ndef np_fromiter0(): from numpy import fromiter, float32 ; iterable = g() ; return fromiter(iterable, float32)", np_fromiter0=[]) def test_fromiter1(self): self.run_test("def np_fromiter1(): from numpy import fromiter, float32 ; iterable = (x*x for x in range(5)) ; return fromiter(iterable, float32, 5)", np_fromiter1=[]) def test_fromiter2(self): self.run_test("def np_fromiter2(): from numpy import fromiter, float64 ; iterable = (x-x for x in range(5)) ; return fromiter(iterable, count=2, dtype=float64)", np_fromiter2=[]) def test_fromfunction0(self): self.run_test("def np_fromfunction0(s): from numpy import fromfunction ; return fromfunction(lambda i: i == 1, s)", (3,), np_fromfunction0=[Tuple[int]]) def test_fromfunction1(self): self.run_test("def np_fromfunction1(s): from numpy import fromfunction; return fromfunction(lambda i, j: i + j, s)", (3, 3), np_fromfunction1=[Tuple[int, int]]) def test_flipud0(self): self.run_test("def np_flipud0(x): from numpy import flipud ; return flipud(x)", numpy.arange(9).reshape(3,3), np_flipud0=[NDArray[int,:,:]]) def test_fliplr0(self): self.run_test("def np_fliplr0(x): from numpy import fliplr ; return fliplr(x)", numpy.arange(9).reshape(3,3), np_fliplr0=[NDArray[int,:,:]]) def test_flip3(self): self.run_test("def np_flip3(x): from numpy import flip; return flip(x[:,:,:-1], 2)", numpy.arange(24).reshape(2,3,4), np_flip3=[NDArray[int, :, :, :]]) def test_flip2(self): self.run_test("def np_flip2(x): from numpy import flip; return flip(x, 2)", numpy.arange(24).reshape(2,3,4), np_flip2=[NDArray[int, :, :, :]]) def test_flip1(self): self.run_test("def np_flip1(x): from numpy import flip; return flip(x, 1)", numpy.arange(24).reshape(2,3,4), np_flip1=[NDArray[int, :, :, :]]) def test_flip0(self): self.run_test("def np_flip0(x): from numpy import flip; return flip(x, 0)", numpy.arange(24).reshape(2,3,4), np_flip0=[NDArray[int, :, :, :]]) def test_flatten0(self): self.run_test("def np_flatten0(x): return x.flatten()", numpy.array([[1,2], [3,4]]), np_flatten0=[NDArray[int,:,:]]) def test_flatnonzero0(self): self.run_test("def np_flatnonzero0(x): from numpy import flatnonzero ; return flatnonzero(x)", numpy.arange(-2, 3), np_flatnonzero0=[NDArray[int,:]]) def test_flatnonzero1(self): self.run_test("def np_flatnonzero1(x): from numpy import flatnonzero ; return flatnonzero(x[1:-1])", numpy.arange(-2, 3), np_flatnonzero1=[NDArray[int,:]]) def test_fix0(self): self.run_test("def np_fix0(x): from numpy import fix ; return fix(x)", 3.14, np_fix0=[float]) def test_fix1(self): self.run_test("def np_fix1(x): from numpy import fix ; return fix(x)", 3, np_fix1=[int]) def test_fix2(self): self.run_test("def np_fix2(x): from numpy import fix ; return fix(x)", numpy.array([2.1, 2.9, -2.1, -2.9]), np_fix2=[NDArray[float,:]]) def test_fix3(self): self.run_test("def np_fix3(x): from numpy import fix ; return fix(x)", numpy.array([2.1, 2.9, -2.1, -2.9]), np_fix3=[NDArray[float,:]]) def test_fix4(self): self.run_test("def np_fix4(x): from numpy import fix ; return fix(x+x)", numpy.array([2.1, 2.9, -2.1, -2.9]), np_fix4=[NDArray[float,:]]) def test_finfo0(self): self.run_test("def np_finfo0(): from numpy import finfo, float64 ; x = finfo(float64) ; return x.eps", np_finfo0=[]) def test_fill0(self): self.run_test("def np_fill0(x): x.fill(5) ; return x", numpy.ones((2, 3)), np_fill0=[NDArray[float,:,:]]) def test_eye0(self): self.run_test("def np_eye0(x): from numpy import eye ; return eye(x)", 2, np_eye0=[int]) def test_eye1(self): self.run_test("def np_eye1(x): from numpy import eye ; return eye(x, x+1)", 2, np_eye1=[int]) def test_eye1b(self): self.run_test("def np_eye1b(x): from numpy import eye ; return eye(x, x-1)", 3, np_eye1b=[int]) def test_eye2(self): self.run_test("def np_eye2(x): from numpy import eye ; return eye(x, x, 1)", 2, np_eye2=[int]) def test_eye3(self): self.run_test("def np_eye3(x): from numpy import eye, int32 ; return eye(x, x, 1, int32)", 2, np_eye3=[int]) def test_eye4(self): self.run_test("def np_eye4(x): from numpy import eye, uint32 ; return eye(x, dtype=uint32)", 2, np_eye4=[int]) def test_ediff1d0(self): self.run_test("def np_ediff1d0(x): from numpy import ediff1d ; return ediff1d(x)", [1,2,4,7,0], np_ediff1d0=[List[int]]) def test_ediff1d1(self): self.run_test("def np_ediff1d1(x): from numpy import ediff1d ; return ediff1d(x)", [[1,2,4],[1,6,24]], np_ediff1d1=[List[List[int]]]) def test_print_slice(self): self.run_test("def np_print_slice(a): print(a[:-1])", numpy.arange(12), np_print_slice=[NDArray[int,:]]) def test_print_expr(self): self.run_test("def np_print_expr(a): print(a * 2)", numpy.arange(12), np_print_expr=[NDArray[int,:]]) def test_broadcast_to0(self): self.run_test("def np_broadcast_to0(a, s): import numpy as np; return np.broadcast_to(a, s)", numpy.arange(12), (4, 12), np_broadcast_to0=[NDArray[int,:], Tuple[int, int]]) def test_broadcast_to1(self): self.run_test("def np_broadcast_to1(a, s): import numpy as np; return np.broadcast_to(a, s)", numpy.arange(1), (4, 12), np_broadcast_to1=[NDArray[int,:], Tuple[int, int]]) def test_broadcast_to2(self): self.run_test("def np_broadcast_to2(a, s): import numpy as np; return np.broadcast_to(a, s)", 5., (12, 2), np_broadcast_to2=[float, Tuple[int, int]])
54.341772
239
0.628801
38be5b690c82f63d34d7ad782142bf3bec45a076
35,655
py
Python
care/care/doctype/order_receiving/order_receiving.py
mohsinalimat/care
5b2f85839c5fa9882eb0d0097825e149402a6a8c
[ "MIT" ]
null
null
null
care/care/doctype/order_receiving/order_receiving.py
mohsinalimat/care
5b2f85839c5fa9882eb0d0097825e149402a6a8c
[ "MIT" ]
null
null
null
care/care/doctype/order_receiving/order_receiving.py
mohsinalimat/care
5b2f85839c5fa9882eb0d0097825e149402a6a8c
[ "MIT" ]
null
null
null
# Copyright (c) 2021, RF and contributors # For license information, please see license.txt import frappe from frappe import _ from frappe.utils import nowdate, getdate, cstr from frappe.model.document import Document import json from frappe.utils import flt from erpnext.controllers.taxes_and_totals import get_itemised_tax_breakup_data from erpnext.stock.get_item_details import _get_item_tax_template, get_conversion_factor, get_item_tax_map from erpnext.controllers.accounts_controller import get_taxes_and_charges from care.hook_events.purchase_invoice import get_price_list_rate_for from erpnext.controllers.accounts_controller import get_default_taxes_and_charges from erpnext.accounts.doctype.pricing_rule.pricing_rule import apply_pricing_rule class OrderReceiving(Document): def validate(self): if self.get("__islocal"): self.status = 'Draft' self.update_total_margin() # self.set_missing_value() @frappe.whitelist() def update_total_margin(self): for res in self.items: if self.is_return: if res.qty != res.received_qty and not res.code: frappe.throw("Return qty is not equal to Received qty in row <b>{0}</b>. <span style='color:red'>please split the Qty.</span>".format(res.idx)) margin = -100 if res.selling_price_list_rate > 0: margin = (res.selling_price_list_rate - res.rate) / res.selling_price_list_rate * 100 res.margin_percent = margin res.discount_after_rate = round(res.amount, 2) / res.qty self.calculate_item_level_tax_breakup() def on_cancel(self): frappe.db.set(self, 'status', 'Cancelled') def on_submit(self): if len(self.items) <= 100 and self.warehouse: self.updated_price_list_and_dicsount() make_purchase_invoice(self) if self.is_return: frappe.db.set(self, 'status', 'Return') else: frappe.db.set(self, 'status', 'Submitted') elif len(self.items) <= 50: self.updated_price_list_and_dicsount() make_purchase_invoice(self) if self.is_return: frappe.db.set(self, 'status', 'Return') else: frappe.db.set(self, 'status', 'Submitted') else: self.ignore_un_order_item = 1 self.updated_price_list_and_dicsount() frappe.enqueue(make_purchase_invoice, doc=self, queue='long') frappe.db.set(self, 'status', 'Queue') self.update_p_r_c_tool_status() @frappe.whitelist() def create_purchase_receipt(self): make_purchase_invoice(self) @frappe.whitelist() def check_purchase_receipt_created(self): result = frappe.db.sql("""select name from `tabPurchase Receipt` where order_receiving = '{0}'""".format(self.name)) if result: return True else: return False def calculate_item_level_tax_breakup(self): if self: itemised_tax, itemised_taxable_amount = get_itemised_tax_breakup_data(self) if itemised_tax: for res in self.items: total = 0 if res.item_code in itemised_tax.keys(): for key in itemised_tax[res.item_code].keys(): if 'Sales Tax' in key: res.sales_tax = flt(itemised_tax[res.item_code][key]['tax_amount']) if \ itemised_tax[res.item_code][key]['tax_amount'] else 0 total += flt(res.sales_tax) if 'Further Tax' in key: res.further_tax = flt(itemised_tax[res.item_code][key]['tax_amount']) if \ itemised_tax[res.item_code][key]['tax_amount'] else 0 total += flt(res.further_tax) if 'Advance Tax' in key: res.advance_tax = flt(itemised_tax[res.item_code][key]['tax_amount']) if \ itemised_tax[res.item_code][key]['tax_amount'] else 0 res.total_include_taxes = flt(res.sales_tax + res.further_tax + res.advance_tax) + res.amount else: for res in self.items: res.sales_tax = res.further_tax = res.advance_tax = res.total_include_taxes = 0 @frappe.whitelist() def get_item_code(self): i_lst = [] select_item_list = [] if self.purchase_request: for res in self.items: select_item_list.append(res.item_code) result = frappe.db.sql("""select distinct pi.item_code from `tabPurchase Request Item` as pi inner join `tabPurchase Request` as p on p.name = pi.parent where p.name = '{0}'""".format(self.purchase_request), as_dict=True) for res in result: if res.get('item_code') not in select_item_list: i_lst.append(res.get('item_code')) return i_lst def updated_price_list_and_dicsount(self): if self.update_buying_price or self.update_selling_price: for res in self.items: if self.update_buying_price and res.rate != res.base_buying_price_list_rate: buying_price_list = frappe.get_value("Item Price", {'item_code': res.item_code, 'price_list': self.buying_price_list, 'buying': 1}, ['name']) if buying_price_list: item_price = frappe.get_doc("Item Price", buying_price_list) item_price.price_list_rate = res.rate / res.conversion_factor item_price.save(ignore_permissions=True) if self.update_selling_price and res.selling_price_list_rate != res.base_selling_price_list_rate: selling_price_list = frappe.get_value("Item Price", {'item_code': res.item_code, 'price_list': self.base_selling_price_list, 'selling': 1}, ['name']) if selling_price_list: item_price = frappe.get_doc("Item Price", selling_price_list) item_price.price_list_rate = res.selling_price_list_rate / res.conversion_factor item_price.save(ignore_permissions=True) if self.update_discount and res.discount_percent: query = """select p.name from `tabPricing Rule` as p inner join `tabPricing Rule Item Code` as pi on pi.parent = p.name where p.apply_on = 'Item Code' and p.disable = 0 and p.price_or_product_discount = 'Price' and p.applicable_for = 'Supplier' and p.supplier = '{0}' and pi.item_code = '{1}' """.format(self.supplier, res.item_code) query += """ and valid_from <= '{0}' order by valid_from desc limit 1""".format(nowdate()) result = frappe.db.sql(query) if result: p_rule = frappe.get_doc("Pricing Rule", result[0][0]) text = "" # if res.discount: # text = f"""Updated Discount Amount {p_rule.discount_amount} to {res.discount} From Order Receiving""" # p_rule.rate_or_discount = 'Discount Amount' # p_rule.discount_amount = res.discount if float(res.discount_percent) != float(p_rule.discount_percentage): text = f"""Updated Discount Percentage {p_rule.discount_percentage} to {res.discount_percent} From Order Receiving""" p_rule.rate_or_discount = 'Discount Percentage' p_rule.discount_percentage = res.discount_percent p_rule.save(ignore_permissions=True) p_rule.add_comment(comment_type='Info', text=text, link_doctype=p_rule.doctype, link_name=p_rule.name) else: priority = 1 p_rule = frappe.new_doc("Pricing Rule") p_rule.title = 'Discount' p_rule.apply_on = 'Item Code' p_rule.price_or_product_discount = 'Price' p_rule.currency = self.currency p_rule.applicable_for = "Supplier" p_rule.supplier = self.supplier p_rule.buying = 1 p_rule.priority = priority p_rule.valid_from = nowdate() p_rule.append("items", {'item_code': res.item_code}) # if res.discount: # p_rule.rate_or_discount = 'Discount Amount' # p_rule.discount_amount = res.discount # if res.discount_percent: p_rule.rate_or_discount = 'Discount Percentage' p_rule.discount_percentage = res.discount_percent p_rule.save(ignore_permissions=True) text = "Pricing Rule created from Order Receiving" p_rule.add_comment(comment_type='Info', text=text, link_doctype=p_rule.doctype, link_name=p_rule.name) def set_missing_value(self): if self: self.company = frappe.defaults.get_defaults().company self.buying_price_list = frappe.defaults.get_defaults().buying_price_list self.currency = frappe.defaults.get_defaults().currency self.base_selling_price_list = frappe.defaults.get_defaults().selling_price_list taxes_and_charges = get_default_taxes_and_charges(master_doctype='Purchase Taxes and Charges Template', company=self.company) self.taxes_and_charges = taxes_and_charges.get('taxes_and_charges') taxes = get_taxes_and_charges('Purchase Taxes and Charges Template', self.taxes_and_charges) if not self.get('taxes'): for tax in taxes: self.append('taxes', tax) if not self.posting_date: self.posting_date = nowdate() for itm in self.get('items'): itm.conversion_factor = get_conversion_factor(itm.item_code, itm.uom).get('conversion_factor') amt = itm.rate * itm.qty if itm.discount > 0: discount_percent = (itm.discount / amt) * 100 itm.discount_percent = discount_percent discount_amount = (amt / 100) * itm.discount_percent amount = amt - discount_amount dis_aft_rate = amount / itm.qty itm.amount = amount itm.net_amount = amount itm.base_net_amount = amount itm.discount = discount_amount itm.discount_after_rate = dis_aft_rate args = { 'item_code': itm.item_code, 'supplier': self.supplier, 'currency': self.currency, 'price_list': self.buying_price_list, 'price_list_currency': self.currency, 'company': self.company, 'transaction_date': self.posting_date, 'doctype': self.doctype, 'name': self.name, 'qty': itm.qty or 1, 'net_rate': itm.rate, 'child_docname': itm.name, 'uom': itm.uom, 'stock_uom': itm.stock_uom, 'conversion_factor': itm.conversion_factor } buying_rate = get_price_list_rate_for(itm.item_code, json.dumps(args)) or 0 itm.base_buying_price_list_rate = buying_rate args['price_list'] = self.base_selling_price_list selling_rate = get_price_list_rate_for(itm.item_code, json.dumps(args)) or 0 itm.selling_price_list_rate = selling_rate itm.base_selling_price_list_rate = selling_rate itm.item_tax_template = get_item_tax_template(itm.item_code, json.dumps(args)) itm.item_tax_rate = get_item_tax_map(self.company, itm.item_tax_template) def update_p_r_c_tool_status(self): if self.purchase_invoice_creation_tool: prc_doc = frappe.get_doc("Purchase Invoice Creation Tool", self.purchase_invoice_creation_tool) prc_doc.status = "Order Created" prc_doc.db_update() @frappe.whitelist() def get_item_filter(self): itm_lst = [] items = frappe.db.sql("select item_code from `tabOrder Receiving Item` where parent = '{0}'".format(self.name), as_dict=True) for res in items: itm_lst.append(res.item_code) return itm_lst def make_purchase_invoice(doc): material_demand = frappe.get_list("Material Demand", {'supplier': doc.supplier, 'purchase_request': doc.purchase_request}, ['name']) m_list = [] for res in material_demand: m_list.append(res.name) if doc.items: if doc.warehouse: is_franchise = frappe.get_value("Warehouse", {'name': doc.warehouse}, "is_franchise") cost_center = frappe.get_value("Warehouse", {'name': doc.warehouse}, "cost_center") pi = frappe.new_doc("Purchase Receipt") pi.supplier = doc.supplier pi.posting_date = nowdate() pi.due_date = nowdate() pi.company = doc.company pi.taxes_and_charges = doc.taxes_and_charges pi.order_receiving = doc.name pi.update_stock = 1 if not is_franchise else 0 pi.set_warehouse = doc.warehouse pi.cost_center = cost_center pi.ignore_pricing_rule = 1 pi.is_return = doc.is_return if doc.is_return: pr_rec = frappe.get_value("Purchase Receipt", {"order_receiving": doc.return_ref,'set_warehouse': doc.warehouse}, "name") pi.return_against = pr_rec for d in doc.items: md_item = frappe.get_value("Material Demand Item", {'item_code': d.get('item_code'), 'parent': ['in', m_list], "warehouse": doc.warehouse}, "name") if md_item: md_doc = frappe.get_doc("Material Demand Item", md_item) pi.append("items", { "item_code": d.get('item_code'), "warehouse": md_doc.warehouse, "qty": 0 - d.get('qty') if doc.is_return else d.get('qty'), "received_qty": 0 - d.get('qty') if doc.is_return else d.get('qty'), "rate": d.get('discount_after_rate'), "expense_account": md_doc.expense_account, "cost_center": md_doc.cost_center, "uom": md_doc.uom, "item_tax_template": d.get('item_tax_template'), "item_tax_rate": d.get('item_tax_rate'), "stock_Uom": md_doc.stock_uom, "material_demand": md_doc.parent, "material_demand_item": md_doc.name, "order_receiving_item": d.name, "margin_type": "Percentage" if d.get("discount_percent") else None, "discount_percentage": d.get("discount_percent"), }) else: if not doc.ignore_un_order_item: frappe.throw(_("Item <b>{0}</b> not found in Material Demand").format(d.get('item_code'))) if pi.get('items'): taxes = get_taxes_and_charges('Purchase Taxes and Charges Template', doc.taxes_and_charges) for tax in taxes: pi.append('taxes', tax) pi.set_missing_values() for res in pi.items: if res.order_receiving_item: if not frappe.get_value("Order Receiving Item", res.order_receiving_item, 'item_tax_template'): res.item_tax_template = None res.item_tax_rate = '{}' pi.insert(ignore_permissions=True) else: item_details = {} for d in doc.items: if d.code: data = json.loads(d.code) for res in data: if res.get('qty') > 0: md_item = frappe.get_list("Material Demand Item", {'item_code': d.get('item_code'), 'warehouse': res.get('warehouse'), 'parent': ['in', m_list]}, ['name']) if md_item: for p_tm in md_item: md_doc = frappe.get_doc("Material Demand Item", p_tm.name) if md_doc: s = { "item_code": d.get('item_code'), "warehouse": md_doc.warehouse, "qty": 0 - res.get('qty') if doc.is_return else res.get('qty'), "received_qty": 0 - res.get('qty') if doc.is_return else res.get('qty'), "rate": d.get('discount_after_rate'), "expense_account": md_doc.expense_account, "cost_center": md_doc.cost_center, "uom": md_doc.uom, "stock_Uom": md_doc.stock_uom, "material_demand": md_doc.parent, "material_demand_item": md_doc.name, "order_receiving_item": d.name, "item_tax_template": d.get('item_tax_template'), "item_tax_rate": d.get('item_tax_rate'), "margin_type": "Percentage" if d.get("discount_percent") else None, "discount_percentage": d.get("discount_percent"), } key = (md_doc.warehouse) item_details.setdefault(key, {"details": []}) fifo_queue = item_details[key]["details"] fifo_queue.append(s) else: if not doc.ignore_un_order_item: frappe.throw( _("Item <b>{0}</b> not found in Material Demand").format(d.get('item_code'))) else: md_item = frappe.get_list("Material Demand Item", {'item_code': d.get('item_code'), 'parent': ['in', m_list]}, ['name']) received_qty = d.get('qty') if md_item: for p_tm in md_item: if received_qty > 0: md_doc = frappe.get_doc("Material Demand Item", p_tm.name) if md_doc: qty = md_doc.qty if md_doc.qty <= received_qty else received_qty s = { "item_code": d.get('item_code'), "warehouse": md_doc.warehouse, "qty": 0 - qty if doc.is_return else qty, "received_qty": 0 - qty if doc.is_return else qty, "rate": d.get('discount_after_rate'), "expense_account": md_doc.expense_account, "cost_center": md_doc.cost_center, "uom": md_doc.uom, "stock_Uom": md_doc.stock_uom, "material_demand": md_doc.parent, "material_demand_item": md_doc.name, "order_receiving_item": d.name, "item_tax_template": d.get('item_tax_template'), "item_tax_rate": d.get('item_tax_rate'), "margin_type": "Percentage" if d.get("discount_percent") else None, "discount_percentage": d.get("discount_percent"), } received_qty -= md_doc.qty key = (md_doc.warehouse) item_details.setdefault(key, {"details": []}) fifo_queue = item_details[key]["details"] fifo_queue.append(s) if received_qty > 0: s = { "item_code": d.get('item_code'), "warehouse": doc.c_b_warehouse, "qty": 0 - received_qty if doc.is_return else received_qty, "received_qty": 0 - received_qty if doc.is_return else received_qty, "rate": d.get('discount_after_rate'), "uom": d.get('uom'), "stock_Uom": d.get('stock_uom'), "item_tax_template": d.get('item_tax_template'), "item_tax_rate": d.get('item_tax_rate'), "order_receiving_item": d.name, "margin_type": "Percentage" if d.get("discount_percent") else None, "discount_percentage": d.get("discount_percent"), } key = (doc.c_b_warehouse) item_details.setdefault(key, {"details": []}) fifo_queue = item_details[key]["details"] fifo_queue.append(s) else: if not doc.ignore_un_order_item: frappe.throw(_("Item <b>{0}</b> not found in Material Demand").format(d.get('item_code'))) if item_details: if item_details: for key in item_details.keys(): try: is_franchise = frappe.get_value("Warehouse", {'name': key}, "is_franchise") cost_center = frappe.get_value("Warehouse", {'name': key}, "cost_center") pi = frappe.new_doc("Purchase Receipt") pi.supplier = doc.supplier pi.posting_date = nowdate() pi.due_date = nowdate() pi.company = doc.company pi.taxes_and_charges = doc.taxes_and_charges pi.order_receiving = doc.name pi.purchase_request = doc.purchase_request pi.update_stock = 1 if not is_franchise else 0 pi.set_warehouse = key pi.cost_center = cost_center pi.ignore_pricing_rule = 1 pi.is_return = doc.is_return if doc.is_return: pr_rec = frappe.get_value("Purchase Receipt", {"order_receiving": doc.return_ref, "set_warehouse": key}, ["name"]) pi.return_against = pr_rec for d in item_details[key]['details']: pi.append("items", d) if pi.get('items'): taxes = get_taxes_and_charges('Purchase Taxes and Charges Template', doc.taxes_and_charges) for tax in taxes: pi.append('taxes', tax) pi.set_missing_values() for res in pi.items: if res.order_receiving_item: if not frappe.get_value("Order Receiving Item", res.order_receiving_item, 'item_tax_template'): res.item_tax_template = None res.item_tax_rate = '{}' pi.insert(ignore_permissions=True) except Exception as e: print("---------error: ",e) continue frappe.msgprint(_("Purchase Receipt Created"), alert=1) if doc.is_return: frappe.db.set(doc, 'status', 'Return') else: frappe.db.set(doc, 'status', 'Submitted') @frappe.whitelist() @frappe.validate_and_sanitize_search_inputs def get_item_code(doctype, txt, searchfield, start, page_len, filters): if filters.get('purchase_request'): result = frappe.db.sql("""select distinct pi.item_code, pi.item_name from `tabPurchase Request Item` as pi inner join `tabPurchase Request` as p on p.name = pi.parent where p.name = '{0}'""".format(filters.get('purchase_request'))) return result else: return (" ",) @frappe.whitelist() def get_item_qty(purchase_request, item, supplier, warehouse=None): if purchase_request and supplier and item: if warehouse: qty = float(frappe.db.sql("""select sum(pack_order_qty) from `tabPurchase Request Item` where item_code = '{0}' and parent = '{1}' and supplier = '{2}' and warehouse = '{3}'""".format(item, purchase_request, supplier, warehouse))[0][0] or 0) return qty else: qty = float(frappe.db.sql("""select sum(pack_order_qty) from `tabPurchase Request Item` where item_code = '{0}' and parent = '{1}' and supplier = '{2}'""".format(item, purchase_request, supplier))[0][0] or 0) return qty else: return 0 @frappe.whitelist() def get_warehouse(purchase_request, item): if purchase_request and item: result = frappe.db.sql("""select w.name as warehouse, IFNULL(sum(p.pack_order_qty), 0) as order_qty, IFNULL(sum(p.pack_order_qty), 0) as qty from `tabWarehouse` as w left join `tabPurchase Request Item` as p on w.name = p.warehouse and p.parent ='{0}' and p.item_code ='{1}' where w.is_group = 0 and w.auto_select_in_purchase_request = 1 group by w.name""".format(purchase_request, item), as_dict=True) return result return [] @frappe.whitelist() def get_item_tax_template(item, args, out=None): """ args = { "tax_category": None "item_tax_template": None } """ item = frappe.get_doc("Item", item) item_tax_template = None args = json.loads(args) if item.taxes: item_tax_template = _get_item_tax_template(args, item.taxes, out) return item_tax_template if not item_tax_template: item_group = item.item_group while item_group and not item_tax_template: item_group_doc = frappe.get_cached_doc("Item Group", item_group) item_tax_template = _get_item_tax_template(args, item_group_doc.taxes, out) return item_tax_template @frappe.whitelist() def get_total_receive_qty(doc_name,item): if doc_name and item: qty = float(frappe.db.sql("""select ifnull(sum(qty),0) from `tabOrder Receiving Item` where parent = '{0}' and item_code ='{1}'""".format(doc_name, item))[0][0] or 0) rate = float(frappe.db.sql("""select ifnull(sum(rate),0) from `tabOrder Receiving Item` where parent = '{0}' and item_code ='{1}'""".format(doc_name, item))[0][0] or 0) return {'qty': qty,'rate': rate} return {'qty': 0,'rate': 0} @frappe.whitelist() def make_return_entry(doc_name, items): if doc_name and items: self = frappe.get_doc("Order Receiving", doc_name) doc = frappe.new_doc("Order Receiving") doc.posting_date = nowdate() doc.company = self.company doc.c_b_warehouse = self.c_b_warehouse doc.purchase_request = self.purchase_request doc.supplier = self.supplier doc.ignore_un_order_item = self.ignore_un_order_item doc.warehouse = self.warehouse doc.return_ref = self.name doc.is_return = 1 # doc.status = 'Return' data = json.loads(items) if len(data) > 0: for d in data: item_doc = frappe.get_doc("Item", d.get('item_code')) doc.append("items", { "item_code": item_doc.name, "item_name": item_doc.item_name, "received_qty": d.get('rec_qty'), "qty": d.get('return_qty'), "rate": d.get('rate'), "uom": 'Pack', "stock_uom": item_doc.stock_uom, "discount_percent": 0, "discount": 0 }) doc.set_missing_value() return doc.as_dict() def calculate_line_level_tax(doc, method): for res in doc.items: if res.item_tax_template: item_tax_template = frappe.get_doc('Item Tax Template', res.item_tax_template) for tax in item_tax_template.taxes: if 'Sales Tax' in tax.tax_type: res.sales_tax = res.amount * (tax.tax_rate / 100) if 'Further Tax' in tax.tax_type: res.further_tax = res.amount * (tax.tax_rate / 100) if 'Advance Tax' in tax.tax_type: res.advance_tax = res.amount * (tax.tax_rate / 100) res.total_include_taxes = flt(res.sales_tax + res.further_tax + res.advance_tax) + res.amount @frappe.whitelist() def get_items_details(item_code, doc, item): if item_code: doc = json.loads(doc) item = json.loads(item) company = doc.get('company') buying_price_list = doc.get('buying_price_list') currency = doc.get('currency') base_selling_price_list = doc.get('base_selling_price_list') conversion_factor = get_conversion_factor(item_code, item.get('uom')).get('conversion_factor') or 1 args = { 'item_code': item.get('item_code'), 'supplier': doc.get('supplier'), 'currency': company, 'price_list':buying_price_list, 'price_list_currency': currency, 'company': company, 'transaction_date': doc.get('posting_date'), 'doctype': doc.get('doctype'), 'name': doc.get('name'), 'qty': item.get('qty') or 1, 'child_docname': item.get('name'), 'uom': item.get('uom'), 'stock_uom': item.get('stock_uom'), 'conversion_factor': conversion_factor } buying_rate = get_price_list_rate_for(item_code, json.dumps(args)) or 0 args['price_list'] = base_selling_price_list selling_rate = get_price_list_rate_for(item_code, json.dumps(args)) or 0 item_tax_template = get_item_tax_template(item_code, json.dumps(args)) qty = get_item_qty(doc.get('purchase_request'), item_code, doc.get('supplier'), doc.get('warehouse')) rule = apply_price_rule(doc, item, conversion_factor) discount_percentage = discount_amount = 0 if rule: if rule[0].margin_type == 'Percentage' and rule[0].discount_percentage > 0: discount_percentage = rule[0].discount_percentage if rule[0].margin_type == 'Amount' and rule[0].discount_amount > 0: discount_amount = rule[0].discount_amount return {'buying_price_rate': buying_rate, 'selling_price_rate': selling_rate, 'conversion_factor': conversion_factor, 'item_tax_template': item_tax_template, 'qty': qty, 'discount_percentage': discount_percentage or 0, 'discount_amount': discount_amount or 0 } def apply_price_rule(doc, item, conversion_factor): args = { "items": [ { "parenttype": item.get('parenttype'), "parent": item.get('parent'), 'item_code': item.get('item_code'), 'doctype': item.get('doctype'), 'name': item.get('name'), 'qty': item.get('qty') or 1, 'child_docname': item.get('name'), 'uom': item.get('uom'), 'stock_uom': item.get('stock_uom'), 'conversion_factor': conversion_factor } ], "supplier": doc.get('supplier'), "currency": doc.get('currency'), "conversion_rate": doc.get('conversion_rate'), "price_list": doc.get('buying_price_list'), "price_list_currency": doc.get('currency'), "plc_conversion_rate": 0, "company": doc.get('company'), "transaction_date": doc.get('posting_date'), "doctype": doc.get('doctype'), "name": doc.get('name'), "is_return": 0, "update_stock": 0, "pos_profile": "" } price_rule = apply_pricing_rule(args = json.dumps(args), doc=doc) return price_rule
52.203514
163
0.507923
5770241404ebe4d30d320d94aae96cf437e5eb0c
141
py
Python
output/models/sun_data/elem_decl/target_ns/target_ns00301m/target_ns00301m2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
1
2021-08-14T17:59:21.000Z
2021-08-14T17:59:21.000Z
output/models/sun_data/elem_decl/target_ns/target_ns00301m/target_ns00301m2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
4
2020-02-12T21:30:44.000Z
2020-04-15T20:06:46.000Z
output/models/sun_data/elem_decl/target_ns/target_ns00301m/target_ns00301m2_xsd/__init__.py
tefra/xsdata-w3c-tests
b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f
[ "MIT" ]
null
null
null
from output.models.sun_data.elem_decl.target_ns.target_ns00301m.target_ns00301m2_xsd.target_ns00301m2 import Root __all__ = [ "Root", ]
23.5
113
0.808511
cfc342aabf9aca5bbafb51076862817bdc39ff98
4,161
py
Python
prediction/src/preprocess/crop_patches.py
yasiriqbal1/concept-to-clinic-1
3b7d34a6b31e8d3924934f3e5c990c49813c670e
[ "MIT" ]
346
2017-08-04T12:26:11.000Z
2018-10-16T06:51:45.000Z
prediction/src/preprocess/crop_patches.py
yasiriqbal1/concept-to-clinic-1
3b7d34a6b31e8d3924934f3e5c990c49813c670e
[ "MIT" ]
296
2017-08-02T10:17:05.000Z
2018-07-31T05:29:43.000Z
prediction/src/preprocess/crop_patches.py
yasiriqbal1/concept-to-clinic-1
3b7d34a6b31e8d3924934f3e5c990c49813c670e
[ "MIT" ]
159
2017-08-04T07:34:52.000Z
2018-10-16T18:34:08.000Z
import itertools import numpy as np import scipy.ndimage from src.preprocess.preprocess_ct import mm_coordinates_to_voxel def crop_patch(ct_array, patch_shape=None, centroids=None, stride=None, pad_value=0): """ Generator yield a patch of a desired shape for each centroid from a given a CT scan. Args: ct_array (np.ndarray): a numpy ndarray representation of a CT scan patch_shape (int, list[int]): a desired shape of a patch. If int will be provided, then patch will be a cube-shaped. centroids (list[dict]): A list of centroids of the form:: {'x': int, 'y': int, 'z': int} stride (int): stride for patch coordinates meshgrid. If None is set (default), then no meshgrid will be returned. pad_value (int): value with which an array padding will be performed. Yields: np.ndarray: cropped patch from a CT scan. np.ndarray | None: meshgrid of a patch. """ if centroids is None: centroids = [] if patch_shape is None: patch_shape = [] patch_shape = scipy.ndimage._ni_support._normalize_sequence(patch_shape, len(ct_array.shape)) patch_shape = np.array(patch_shape) # array with padding size for each dimension padding_size = np.ceil(patch_shape / 2.).astype(np.int) # array with left and right padding for each dimension padding_array = np.stack([padding_size, padding_size], axis=1) # adding paddings at both ends of all dimensions ct_array = np.pad(ct_array, padding_array, mode='constant', constant_values=pad_value) for centroid in centroids: # cropping a patch with selected centroid in the center of it patch = ct_array[centroid[0]: centroid[0] + patch_shape[0], centroid[1]: centroid[1] + patch_shape[1], centroid[2]: centroid[2] + patch_shape[2]] if stride: normstart = np.array(centroid) / np.array(ct_array.shape) - 0.5 normsize = np.array(patch_shape) / np.array(ct_array.shape) xx, yy, zz = np.meshgrid(np.linspace(normstart[0], normstart[0] + normsize[0], patch_shape[0] // stride), np.linspace(normstart[1], normstart[1] + normsize[1], patch_shape[1] // stride), np.linspace(normstart[2], normstart[2] + normsize[2], patch_shape[2] // stride), indexing='ij') coord = np.concatenate([xx[np.newaxis, ...], yy[np.newaxis, ...], zz[np.newaxis, :]], 0).astype('float32') yield patch, coord else: yield patch def patches_from_ct(ct_array, meta, patch_shape=None, centroids=None, stride=None, pad_value=0): """ Given a CT scan, and a list of centroids return the list of patches of the desired patch shape. This is just a wrapper over crop_patch generator. Args: ct_array (np.ndarray): a numpy ndarray representation of a CT scan patch_shape (int | list[int]): the size of If int will be provided, then patch will be a cube. centroids (list[dict]): A list of centroids of the form:: {'x': int, 'y': int, 'z': int} meta (src.preprocess.load_ct.MetaData): meta information of the CT scan. stride (int): stride for patches' coordinates meshgrids. If None is set (default), then no meshgrid will be returned. pad_value (int): value with which an array padding will be performed. Yields: np.ndarray: a cropped patch from the CT scan. """ if patch_shape is None: patch_shape = [] if centroids is None: centroids = [] centroids = [[centroid[axis] for axis in 'zyx'] for centroid in centroids] # scale the coordinates according to spacing centroids = [mm_coordinates_to_voxel(centroid, meta) for centroid in centroids] patch_generator = crop_patch(ct_array, patch_shape, centroids, stride, pad_value) patches = itertools.islice(patch_generator, len(centroids)) return list(patches)
40.009615
118
0.631339
8876a6878dfcebd640c8834b68fe870ccb69c794
25,399
py
Python
nipype/sphinxext/plot_workflow.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
1
2015-01-19T13:12:27.000Z
2015-01-19T13:12:27.000Z
nipype/sphinxext/plot_workflow.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
null
null
null
nipype/sphinxext/plot_workflow.py
sebastientourbier/nipype
99c5904176481520c5bf42a501aae1a12184e672
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ :mod:`nipype.sphinxext.plot_workflow` -- Workflow plotting extension ==================================================================== A directive for including a nipype workflow graph in a Sphinx document. This code is forked from the plot_figure sphinx extension of matplotlib. By default, in HTML output, `workflow` will include a .png file with a link to a high-res .png. In LaTeX output, it will include a .pdf. The source code for the workflow may be included as **inline content** to the directive `workflow`:: .. workflow :: :graph2use: flat :simple_form: no from nipype.workflows.dmri.camino.connectivity_mapping import create_connectivity_pipeline wf = create_connectivity_pipeline() For example, the following graph has been generated inserting the previous code block in this documentation: .. workflow :: :graph2use: flat :simple_form: no from nipype.workflows.dmri.camino.connectivity_mapping import create_connectivity_pipeline wf = create_connectivity_pipeline() Options ------- The ``workflow`` directive supports the following options: graph2use : {'hierarchical', 'colored', 'flat', 'orig', 'exec'} Specify the type of graph to be generated. simple_form: bool Whether the graph will be in detailed or simple form. format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. The default can be changed using the `workflow_include_source` variable in conf.py encoding : str If this source file is in a non-UTF8 or non-ASCII encoding, the encoding must be specified using the `:encoding:` option. The encoding will not be inferred using the ``-*- coding -*-`` metacomment. Additionally, this directive supports all of the options of the `image` directive, except for `target` (since workflow will add its own target). These include `alt`, `height`, `width`, `scale`, `align` and `class`. Configuration options --------------------- The workflow directive has the following configuration options: graph2use Select a graph type to use simple_form determines if the node name shown in the visualization is either of the form nodename (package) when set to True or nodename.Class.package when set to False. wf_include_source Default value for the include-source option wf_html_show_source_link Whether to show a link to the source in HTML. wf_pre_code Code that should be executed before each workflow. wf_basedir Base directory, to which ``workflow::`` file names are relative to. (If None or empty, file names are relative to the directory where the file containing the directive is.) wf_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. When passing from the command line through sphinx_build the list should be passed as suffix:dpi,suffix:dpi, .... wf_html_show_formats Whether to show links to the files in HTML. wf_rcparams A dictionary containing any non-standard rcParams that should be applied before each workflow. wf_apply_rcparams By default, rcParams are applied when `context` option is not used in a workflow directive. This configuration option overrides this behavior and applies rcParams before each workflow. wf_working_directory By default, the working directory will be changed to the directory of the example, so the code can get at its data files, if any. Also its path will be added to `sys.path` so it can import any helper modules sitting beside it. This configuration option can be used to specify a central directory (also added to `sys.path`) where data files and helper modules for all code are located. wf_template Provide a customized template for preparing restructured text. """ from __future__ import print_function, division, absolute_import, unicode_literals import sys, os, shutil, io, re, textwrap from os.path import relpath from errno import EEXIST import traceback missing_imports = [] try: from docutils.parsers.rst import directives from docutils.parsers.rst.directives.images import Image align = Image.align except ImportError as e: missing_imports = [str(e)] try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError as e: missing_imports.append(str(e)) try: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) missing_imports.pop() except ImportError as e: missing_imports.append(str(e)) from builtins import str, bytes PY2 = sys.version_info[0] == 2 PY3 = sys.version_info[0] == 3 def _mkdirp(folder): """ Equivalent to bash's mkdir -p """ if sys.version_info > (3, 4, 1): os.makedirs(folder, exist_ok=True) return folder try: os.makedirs(folder) except OSError as exc: if exc.errno != EEXIST or not os.path.isdir(folder): raise return folder def wf_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): if len(missing_imports) == 0: return run(arguments, content, options, state_machine, state, lineno) else: raise ImportError('\n'.join(missing_imports)) wf_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_graph2use(arg): return directives.choice(arg, ('hierarchical', 'colored', 'flat', 'orig', 'exec')) def _option_context(arg): if arg in [None, 'reset', 'close-figs']: return arg raise ValueError("argument should be None or 'reset' or 'close-figs'") def _option_format(arg): return directives.choice(arg, ('python', 'doctest')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) def mark_wf_labels(app, document): """ To make graphs referenceable, we need to move the reference from the "htmlonly" (or "latexonly") node to the actual figure node itself. """ for name, explicit in list(document.nametypes.items()): if not explicit: continue labelid = document.nameids[name] if labelid is None: continue node = document.ids[labelid] if node.tagname in ('html_only', 'latex_only'): for n in node: if n.tagname == 'figure': sectname = name for c in n: if c.tagname == 'caption': sectname = c.astext() break node['ids'].remove(labelid) node['names'].remove(name) n['ids'].append(labelid) n['names'].append(name) document.settings.env.labels[name] = \ document.settings.env.docname, labelid, sectname break def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, 'context': _option_context, 'nofigs': directives.flag, 'encoding': directives.encoding, 'graph2use': _option_graph2use, 'simple_form': _option_boolean } app.add_directive('workflow', wf_directive, True, (0, 2, False), **options) app.add_config_value('graph2use', 'hierarchical', 'html') app.add_config_value('simple_form', True, 'html') app.add_config_value('wf_pre_code', None, True) app.add_config_value('wf_include_source', False, True) app.add_config_value('wf_html_show_source_link', True, True) app.add_config_value('wf_formats', ['png', 'svg', 'pdf'], True) app.add_config_value('wf_basedir', None, True) app.add_config_value('wf_html_show_formats', True, True) app.add_config_value('wf_rcparams', {}, True) app.add_config_value('wf_apply_rcparams', False, True) app.add_config_value('wf_working_directory', None, True) app.add_config_value('wf_template', None, True) app.connect('doctree-read'.encode() if PY2 else 'doctree-read', mark_wf_labels) metadata = {'parallel_read_safe': True, 'parallel_write_safe': True} return metadata #------------------------------------------------------------------------------ # Doctest handling #------------------------------------------------------------------------------ def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def remove_coding(text): """ Remove the coding comment, which exec doesn't like. """ sub_re = re.compile("^#\s*-\*-\s*coding:\s*.*-\*-$", flags=re.MULTILINE) return sub_re.sub("", text) #------------------------------------------------------------------------------ # Template #------------------------------------------------------------------------------ TEMPLATE = """ {{ source_code }} {{ only_html }} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.{{ default_fmt }} {% for option in options -%} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {{ caption }} {% endfor %} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {{ only_latex }} {% for img in images %} {% if 'pdf' in img.formats -%} .. figure:: {{ build_dir }}/{{ img.basename }}.pdf {% for option in options -%} {{ option }} {% endfor %} {{ caption }} {% endif -%} {% endfor %} {{ only_texinfo }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.png {% for option in options -%} {{ option }} {% endfor %} {% endfor %} """ exception_template = """ .. htmlonly:: [`source code <%(linkdir)s/%(basename)s.py>`__] Exception occurred rendering plot. """ # the context of the plot for all directives specified with the # :context: option wf_context = dict() class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, fmt): return os.path.join(self.dirname, "%s.%s" % (self.basename, fmt)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or (os.path.exists(original) and os.stat(derived).st_mtime < os.stat(original).st_mtime)) class GraphError(RuntimeError): pass def run_code(code, code_path, ns=None, function_name=None): """ Import a Python module from a path, and run the function given by name, if function_name is not None. """ # Change the working directory to the directory of the example, so # it can get at its data files, if any. Add its path to sys.path # so it can import any helper modules sitting beside it. pwd = str(os.getcwd()) old_sys_path = list(sys.path) if setup.config.wf_working_directory is not None: try: os.chdir(setup.config.wf_working_directory) except OSError as err: raise OSError(str(err) + '\n`wf_working_directory` option in' 'Sphinx configuration file must be a valid ' 'directory path') except TypeError as err: raise TypeError(str(err) + '\n`wf_working_directory` option in ' 'Sphinx configuration file must be a string or ' 'None') sys.path.insert(0, setup.config.wf_working_directory) elif code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] # Redirect stdout stdout = sys.stdout if PY3: sys.stdout = io.StringIO() else: from cStringIO import StringIO sys.stdout = StringIO() # Assign a do-nothing print function to the namespace. There # doesn't seem to be any other way to provide a way to (not) print # that works correctly across Python 2 and 3. def _dummy_print(*arg, **kwarg): pass try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: if setup.config.wf_pre_code is not None: exec(str(setup.config.wf_pre_code), ns) ns['print'] = _dummy_print if "__main__" in code: exec("__name__ = '__main__'", ns) code = remove_coding(code) exec(code, ns) if function_name is not None: exec(function_name + "()", ns) except (Exception, SystemExit) as err: raise GraphError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns def get_wf_formats(config): default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 200} formats = [] wf_formats = config.wf_formats if isinstance(wf_formats, (str, bytes)): # String Sphinx < 1.3, Split on , to mimic # Sphinx 1.3 and later. Sphinx 1.3 always # returns a list. wf_formats = wf_formats.split(',') for fmt in wf_formats: if isinstance(fmt, (str, bytes)): if ':' in fmt: suffix, dpi = fmt.split(':') formats.append((str(suffix), int(dpi))) else: formats.append((fmt, default_dpi.get(fmt, 80))) elif isinstance(fmt, (tuple, list)) and len(fmt) == 2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise GraphError('invalid image format "%r" in wf_formats' % fmt) return formats def render_figures(code, code_path, output_dir, output_base, context, function_name, config, graph2use, simple_form, context_reset=False, close_figs=False): """ Run a nipype workflow creation script and save the graph in *output_dir*. Save the images under *output_dir* with file names derived from *output_base* """ formats = get_wf_formats(config) ns = wf_context if context else {} if context_reset: wf_context.clear() run_code(code, code_path, ns, function_name) img = ImageFile(output_base, output_dir) for fmt, dpi in formats: try: img_path = img.filename(fmt) imgname, ext = os.path.splitext(os.path.basename(img_path)) ns['wf'].base_dir = output_dir src = ns['wf'].write_graph(imgname, format=ext[1:], graph2use=graph2use, simple_form=simple_form) shutil.move(src, img_path) except Exception as err: raise GraphError(traceback.format_exc()) img.formats.append(fmt) return [(code, [img])] def run(arguments, content, options, state_machine, state, lineno): document = state_machine.document config = document.settings.env.config nofigs = 'nofigs' in options formats = get_wf_formats(config) default_fmt = formats[0][0] graph2use = options.get('graph2use', 'hierarchical') simple_form = options.get('simple_form', True) options.setdefault('include-source', config.wf_include_source) keep_context = 'context' in options context_opt = None if not keep_context else options['context'] rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if len(arguments): if not config.wf_basedir: source_file_name = os.path.join(setup.app.builder.srcdir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.wf_basedir, directives.uri(arguments[0])) # If there is content, it will be passed as a caption. caption = '\n'.join(content) # If the optional function name is provided, use it if len(arguments) == 2: function_name = arguments[1] else: function_name = None with io.open(source_file_name, 'r', encoding='utf-8') as fd: code = fd.read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join([str(c) for c in content])) counter = document.attributes.get('_wf_counter', 0) + 1 document.attributes['_wf_counter'] = counter base, _ = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) function_name = None caption = '' base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'wf_directive', source_rel_dir) # get rid of .. in paths, also changes pathsep # see note in Python docs for warning about symbolic links on Windows. # need to compare source and dest paths at end build_dir = os.path.normpath(build_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) if not os.path.exists(dest_dir): os.makedirs(dest_dir) # no problem here for me, but just use built-ins # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') try: build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') except ValueError: # on Windows, relpath raises ValueError when path and start are on # different mounts/drives build_dir_link = build_dir source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = render_figures(code, source_file_name, build_dir, output_base, keep_context, function_name, config, graph2use, simple_form, context_reset=context_opt == 'reset', close_figs=context_opt == 'close-figs') errors = [] except GraphError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s\n from %s:\n%s" % (output_base, source_file_name, err), line=lineno) results = [(code, [])] errors = [sm] # Properly indent the caption caption = '\n'.join(' ' + line.strip() for line in caption.split('\n')) # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" if nofigs: images = [] opts = [':%s: %s' % (key, val) for key, val in list(options.items()) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" only_texinfo = ".. only:: texinfo" # Not-None src_link signals the need for a source link in the generated # html if j == 0 and config.wf_html_show_source_link: src_link = source_link else: src_link = None result = format_template( config.wf_template or TEMPLATE, default_fmt=default_fmt, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, only_texinfo=only_texinfo, options=opts, images=images, source_code=source_code, html_show_formats=config.wf_html_show_formats and len(images), caption=caption) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory, if necessary _mkdirp(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): destimg = os.path.join(dest_dir, os.path.basename(fn)) if fn != destimg: shutil.copyfile(fn, destimg) # copy script (if necessary) target_name = os.path.join(dest_dir, output_base + source_ext) with io.open(target_name, 'w', encoding="utf-8") as f: if source_file_name == rst_file: code_escaped = unescape_doctest(code) else: code_escaped = code f.write(code_escaped) return errors
34.698087
96
0.588645
c4ace5f516b33e937098b071133685702db7752f
6,705
py
Python
pyrsa/inference/boot_testset.py
kshitijd20/pyrsa
3090d88362b26e6b2ee807e62d483a0158530e2a
[ "MIT" ]
4
2015-08-10T18:34:21.000Z
2018-05-15T20:43:15.000Z
pyrsa/inference/boot_testset.py
kshitijd20/pyrsa
3090d88362b26e6b2ee807e62d483a0158530e2a
[ "MIT" ]
null
null
null
pyrsa/inference/boot_testset.py
kshitijd20/pyrsa
3090d88362b26e6b2ee807e62d483a0158530e2a
[ "MIT" ]
2
2018-03-26T03:02:07.000Z
2021-11-10T21:09:48.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ boostrap-testset evaluation methods variants of taking a bootstrap sample and taking the unsampled patterns as a testset """ import numpy as np from pyrsa.util.inference_util import input_check_model from .bootstrap import bootstrap_sample from .bootstrap import bootstrap_sample_rdm from .bootstrap import bootstrap_sample_pattern from .evaluate import crossval def bootstrap_testset(model, data, method='cosine', fitter=None, N=1000, pattern_descriptor=None, rdm_descriptor=None): """takes a bootstrap sample and evaluates on the rdms and patterns not sampled also returns the size of each test_set to allow later weighting or selection if this is desired. Args: model(pyrsa.model.Model): Model to be evaluated data(pyrsa.rdm.RDMs): RDM data to use method(string): comparison method to use fitter(function): fitting function pattern_descriptor(string): descriptor to group patterns rdm_descriptor(string): descriptor to group rdms Returns: numpy.ndarray: vector of evaluations of length N numpy.ndarray: n_rdm for each test_set numpy.ndarray: n_pattern for each test_set """ evaluations, _, fitter = input_check_model(model, None, fitter, N) n_rdm = np.zeros(N, dtype=np.int) n_pattern = np.zeros(N, dtype=np.int) if pattern_descriptor is None: data.pattern_descriptors['index'] = np.arange(data.n_cond) pattern_descriptor = 'index' if rdm_descriptor is None: data.rdm_descriptors['index'] = np.arange(data.n_rdm) rdm_descriptor = 'index' for i_sample in range(N): sample, rdm_idx, pattern_idx = bootstrap_sample( data, rdm_descriptor=rdm_descriptor, pattern_descriptor=pattern_descriptor) train_set = [[sample, pattern_idx]] rdm_idx_test = data.rdm_descriptors[rdm_descriptor] rdm_idx_test = np.setdiff1d(rdm_idx_test, rdm_idx) pattern_idx_test = data.pattern_descriptors[pattern_descriptor] pattern_idx_test = np.setdiff1d(pattern_idx_test, pattern_idx) if len(pattern_idx_test) >= 3 and len(rdm_idx_test) >= 1: rdms_test = data.subsample_pattern(pattern_descriptor, pattern_idx_test) rdms_test = rdms_test.subsample(rdm_descriptor, rdm_idx_test) test_set = [[rdms_test, pattern_idx_test]] evaluations[i_sample] = crossval( model, data, train_set, test_set, method=method, fitter=fitter, pattern_descriptor=pattern_descriptor).evaluations[:, 0] else: evaluations[i_sample] = np.nan n_rdm[i_sample] = len(rdm_idx_test) n_pattern[i_sample] = len(pattern_idx_test) return evaluations, n_rdm, n_pattern def bootstrap_testset_pattern(model, data, method='cosine', fitter=None, N=1000, pattern_descriptor=None): """takes a bootstrap sample and evaluates on the patterns not sampled also returns the size of each test_set to allow later weighting or selection if this is desired. Args: model(pyrsa.model.Model): Model to be evaluated datat(pyrsa.rdm.RDMs): RDM data to use method(string): comparison method to use fitter(function): fitting function for the model pattern_descriptor(string): descriptor to group patterns Returns: numpy.ndarray: vector of evaluations of length numpy.ndarray: n_pattern for each test_set """ evaluations, _, fitter = input_check_model(model, None, fitter, N) n_pattern = np.zeros(N, dtype=np.int) if pattern_descriptor is None: data.pattern_descriptors['index'] = np.arange(data.n_cond) pattern_descriptor = 'index' for i_sample in range(N): sample, pattern_idx = bootstrap_sample_pattern( data, pattern_descriptor=pattern_descriptor) train_set = [[sample, pattern_idx]] pattern_idx_test = data.pattern_descriptors[pattern_descriptor] pattern_idx_test = np.setdiff1d(pattern_idx_test, pattern_idx) if len(pattern_idx_test) >= 3: rdms_test = data.subsample_pattern(pattern_descriptor, pattern_idx_test) test_set = [[rdms_test, pattern_idx_test]] evaluations[i_sample] = crossval( model, data, train_set, test_set, method=method, fitter=fitter, pattern_descriptor=pattern_descriptor).evaluations[:, 0] else: evaluations[i_sample] = np.nan n_pattern[i_sample] = len(pattern_idx_test) return evaluations, n_pattern def bootstrap_testset_rdm(model, data, method='cosine', fitter=None, N=1000, rdm_descriptor=None): """takes a bootstrap sample and evaluates on the patterns not sampled also returns the size of each test_set to allow later weighting or selection if this is desired. Args: model(pyrsa.model.Model): Model to be evaluated datat(pyrsa.rdm.RDMs): RDM data to use method(string): comparison method to use fitter(function): fitting function for the model pattern_descriptor(string): descriptor to group patterns Returns: numpy.ndarray: vector of evaluations of length numpy.ndarray: n_pattern for each test_set """ evaluations, _, fitter = input_check_model(model, None, fitter, N) n_rdm = np.zeros(N, dtype=np.int) if rdm_descriptor is None: data.rdm_descriptors['index'] = np.arange(data.n_rdm) rdm_descriptor = 'index' data.pattern_descriptors['index'] = np.arange(data.n_cond) pattern_descriptor = 'index' for i_sample in range(N): sample, rdm_idx = bootstrap_sample_rdm( data, rdm_descriptor=rdm_descriptor) pattern_idx = np.arange(data.n_cond) train_set = [[sample, pattern_idx]] rdm_idx_test = data.rdm_descriptors[rdm_descriptor] rdm_idx_test = np.setdiff1d(rdm_idx_test, rdm_idx) if len(rdm_idx_test) >= 1: rdms_test = data.subsample(rdm_descriptor, rdm_idx_test) test_set = [[rdms_test, pattern_idx]] evaluations[i_sample] = crossval( model, data, train_set, test_set, method=method, fitter=fitter, pattern_descriptor=pattern_descriptor).evaluations[:, 0] else: evaluations[i_sample] = np.nan n_rdm[i_sample] = len(rdm_idx_test) return evaluations, n_rdm
41.645963
76
0.664579
fc035ae32c7c0c7522070444094992e73998f44b
12,538
py
Python
coremltools/converters/tensorflow/_tf_converter.py
Maxkvy33/coremltools
1afb9cb567a8a608b73ed53315319e97d50b85d0
[ "BSD-3-Clause" ]
null
null
null
coremltools/converters/tensorflow/_tf_converter.py
Maxkvy33/coremltools
1afb9cb567a8a608b73ed53315319e97d50b85d0
[ "BSD-3-Clause" ]
null
null
null
coremltools/converters/tensorflow/_tf_converter.py
Maxkvy33/coremltools
1afb9cb567a8a608b73ed53315319e97d50b85d0
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2019, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import os.path from ...models import MLModel def convert(filename, inputs=None, outputs=None, image_input_names=None, tf_image_format=None, is_bgr=False, red_bias=0.0, green_bias=0.0, blue_bias=0.0, gray_bias=0.0, image_scale=1.0, class_labels=None, predicted_feature_name=None, predicted_probabilities_output='', add_custom_layers=False, # type: bool custom_conversion_functions=None, # type: dict{text, any} custom_shape_functions=None, # type: dict{text, any} **kwargs): """ Convert TensorFlow model to Core ML format. Parameters ---------- filename: str Path to the TensorFlow model. Takes in one of the following formats: - TensorFlow frozen graph (.pb) model file name - TensorFlow tf.keras HDF5 (.h5) model file name - TensorFlow SavedModel directory path - TensorFlow concrete functions(s) inputs: dict(str: list or tuple) Model input name and shape pairs. outputs: [str] Model output names. image_input_names: [str] | str Input names (a subset of the keys of inputs) that can be treated as images by Core ML. All other inputs are treated as MultiArrays. tf_image_format: str Optional and valid if image_input_names is also set. Specify either 'NCHW' or 'NHWC' to set or override the image format. If not set, tries to use hints from the graph which may be present in convolution or other image-specific layers. Ultimately defaults to NHWC. is_bgr: bool | dict(): Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys and booleans as values. red_bias: float | dict() Bias value to be added to the red channel of the input image, after applying scale. Defaults to 0.0 Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys. blue_bias: float | dict() Bias value to be added to the blue channel of the input image, after applying scale. Defaults to 0.0 Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys. green_bias: float | dict() Bias value to be added to the green channel of the input image, after applying scale. Defaults to 0.0 Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys. gray_bias: float | dict() Bias value to be added to the input image (in grayscale), after applying scale. Defaults to 0.0 Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys. image_scale: float | dict() Value by which input images will be scaled before bias is added and Core ML model makes a prediction. Defaults to 1.0. Applicable only if image_input_names is specified. To specify different values for each image input provide a dictionary with input names as keys. class_labels: list[int or str] | str Class labels (applies to classifiers only) that map the index of the output of a neural network to labels in a classifier. If the provided class_labels is a string, it is assumed to be a file path where classes are parsed as a list of newline separated strings. predicted_feature_name: str Name of the output feature for the class labels exposed in the Core ML model (applies to classifiers only). Defaults to 'classLabel' predicted_probabilities_output: str Name of the neural network output to be interpreted as the predicted probabilities of the resulting classes. Typically the output of a softmax function. add_custom_layers: bool Flag to turn on addition of custom CoreML layers for unsupported TF ops or attributes within a supported op. custom_conversion_functions: dict(): {Text: func(**kwargs)} Argument to provide user-defined functions for converting Tensorflow operations (op, for short). A dictionary with keys corresponding to the names or types of the TF ops and values as handle to user-defined functions. The keys can be either the type of the op or the name of the op. If former, then the function is called whenever the op of that type is encountered during conversion. By using op names, specific ops can be targeted which is useful for handling unsupported configuration in an op. The function receives multiple arguments: TF operation, the CoreML Neural network builder object, dictionary containing the op's inputs that are constants and their values (as numpy arrays). The function can add custom layers or any other combination of CoreML layers to translate the TF op. See "examples/custom_layer_examples.ipynb" jupyter-notebook for examples on using this argument. custom_shape_functions: dict(): {Text: func()} Argument to provide user-defined functions to compute shape for given op. A dictionary with keys corresponding to the type of TF Op and value as handled to user-defined function. Function receives `layer specification` and `input shape` as a input. output of the function must be output shape for give op. (generally List). Custom shape function is required for adding custom layer in Core ML 3. Returns ------- model: MLModel Returns an MLModel instance representing a Core ML model. Examples -------- .. code-block:: python import coremltools from tensorflow.keras.applications import ResNet50 model = coremltools.converters.tensorflow.convert( './model.h5', inputs={'input_1': (1, 224, 224, 3)}, outputs=['Identity'] ) For more examples, see: https://github.com/apple/coremltools/blob/master/docs/NeuralNetworkGuide.md """ use_cpu_only = kwargs.get('use_cpu_only') use_cpu_only = use_cpu_only if use_cpu_only is not None else False optional_inputs = kwargs.get('optional_inputs') optional_inputs = optional_inputs if optional_inputs is not None else [] # `tf_model_path` takes in one of the following formats: # 1) TensorFlow frozen graph (.pb) model file name # 2) TensorFlow tf.keras HDF5 (.h5) model file name # 3) TensorFlow SavedModel directory path # 4) TensorFlow concrete functions(s) invalid_filename_message = ('invalid input tf_model_path: {}!\n' 'Supported tf_model_path input format includes:\n' '- Path to TensorFlow frozen graph (.pb) file\n' '- Path to TensorFlow tf.keras model (.h5) file\n' '- Path to TensorFlow SavedModel directory\n' '- List of TensorFlow concrete functions'.format(filename)) if isinstance(filename, str) and not os.path.exists(filename): raise ValueError('invalid input tf_model_path \'{}\' does not exist.'.format(filename)) if isinstance(filename, str) and os.path.isfile(filename): # path to the model file must end with either .pb or .h5 format if not (filename.endswith('.pb') or filename.endswith('.h5')): raise ValueError(invalid_filename_message) if filename.endswith('.h5'): filename = _graph_def_from_saved_model_or_keras_model(filename) elif isinstance(filename, str) and os.path.isdir(filename): filename = _graph_def_from_saved_model_or_keras_model(filename) elif isinstance(filename, list): filename = _graph_def_from_concrete_function(filename) else: raise ValueError(invalid_filename_message) # convert from TensorFlow to SSA IR from ..nnssa.frontend.tensorflow import load as frontend_load ssa = frontend_load(filename, resume_on_errors=False, inputs=inputs, outputs=outputs, **kwargs) # convert from SSA IR to Core ML from ..nnssa.coreml.ssa_converter import ssa_convert model_spec = ssa_convert(ssa, top_func='main', inputs=inputs, outputs=outputs, image_input_names=image_input_names, image_format=tf_image_format, is_bgr=is_bgr, red_bias=red_bias, green_bias=green_bias, blue_bias=blue_bias, gray_bias=gray_bias, image_scale=image_scale, class_labels=class_labels, predicted_feature_name=predicted_feature_name, predicted_probabilities_output=predicted_probabilities_output, add_custom_layers=add_custom_layers, custom_conversion_functions=custom_conversion_functions, custom_shape_functions=custom_shape_functions, optional_inputs=optional_inputs) return MLModel(model_spec, useCPUOnly=use_cpu_only) def _graph_def_from_saved_model_or_keras_model(filename): """ Utility function that returns GraphDef object from the given SavedModel or HDF5 model. :param filename: TensorFlow SavedModel directory or Keras HDF5 model (.h5) file. :return: TensorFlow GraphDef object. """ try: import tensorflow as tf from tensorflow.python.keras.saving import saving_utils as _saving_utils from tensorflow.python.framework import convert_to_constants as _convert_to_constants if filename.endswith('.h5'): model = tf.keras.models.load_model(filename) tf.keras.backend.set_learning_phase(False) func = _saving_utils.trace_model_call(model) concrete_func = func.get_concrete_function() else: model = tf.saved_model.load(filename) signatures = model.signatures if len(signatures) == 0: raise ValueError('Unable to load a model with no signatures provided.') if len(signatures) >= 2: raise ValueError('Unable to load a model with multiple signatures') concrete_func = list(signatures.values())[0] frozen_func = _convert_to_constants.convert_variables_to_constants_v2(concrete_func) graph_def = frozen_func.graph.as_graph_def(add_shapes=True) except ImportError as e: raise ImportError('Failed to import TensorFlow utilities. {}.'.format(e)) except ValueError as e: raise ValueError('Failed to load SavedModel or .h5 model. {}.'.format(e)) except Exception as e: raise RuntimeError('Failed to load SavedModel or .h5 model. {}.'.format(e)) return graph_def def _graph_def_from_concrete_function(concrete_functions): """ Utility function that returns GraphDef object from the given concrete functions. :param concrete_functions: list of TensorFlow concrete functions. :return: TensorFlow GraphDef object. """ if len(concrete_functions) != 1: raise ValueError('This converter can only convert a single ConcreteFunction.') try: import tensorflow as tf from tensorflow.python.framework import convert_to_constants as _convert_to_constants from tensorflow.python.eager import function as _function frozen_func = _convert_to_constants.convert_variables_to_constants_v2(concrete_functions[0]) graph_def = frozen_func.graph.as_graph_def(add_shapes=True) except ImportError as e: raise ImportError('Failed to import TensorFlow utilities. {}.'.format(e)) except Exception as e: raise RuntimeError('Failed to load concrete functions(s). {}.'.format(e)) return graph_def
48.785992
126
0.67435
fe2b5d5819e58f67913b8f20e949f19670416bee
6,563
py
Python
tests/python/pants_test/backend/python/tasks2/test_resolve_requirements.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/backend/python/tasks2/test_resolve_requirements.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
tests/python/pants_test/backend/python/tasks2/test_resolve_requirements.py
mateor/pants
e01cee8959da269c0b526138760847901e4d4a48
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import subprocess from pex.interpreter import PythonInterpreter from pants.backend.python.interpreter_cache import PythonInterpreterCache from pants.backend.python.python_requirement import PythonRequirement from pants.backend.python.python_setup import PythonRepos, PythonSetup from pants.backend.python.targets.python_requirement_library import PythonRequirementLibrary from pants.backend.python.tasks2.resolve_requirements import ResolveRequirements from pants.base.build_environment import get_buildroot from pants.util.contextutil import temporary_file from pants_test.tasks.task_test_base import TaskTestBase class ResolveRequirementsTest(TaskTestBase): @classmethod def task_type(cls): return ResolveRequirements def test_resolve_simple_requirements(self): noreqs_tgt = self._fake_target('noreqs', []) ansicolors_tgt = self._fake_target('ansicolors', ['ansicolors==1.0.2']) # Check that the module is unavailable unless specified as a requirement (proves that # the requirement isn't sneaking in some other way, which would render the remainder # of this test moot.) _, stderr_data = self._exercise_module(self._resolve_requirements([noreqs_tgt]), 'colors') self.assertIn('ImportError: No module named colors', stderr_data) # Check that the module is available if specified as a requirement. stdout_data, stderr_data = self._exercise_module(self._resolve_requirements([ansicolors_tgt]), 'colors') self.assertEquals('', stderr_data.strip()) path = stdout_data.strip() # Check that the requirement resolved to what we expect. self.assertTrue(path.endswith('/.deps/ansicolors-1.0.2-py2-none-any.whl/colors.py')) # Check that the path is under the test's build root, so we know the pex was created there. self.assertTrue(path.startswith(os.path.realpath(get_buildroot()))) def test_resolve_multiplatform_requirements(self): cffi_tgt = self._fake_target('cffi', ['cffi==1.9.1']) pex = self._resolve_requirements([cffi_tgt], { 'python-setup': { # We have 'current' so we can import the module in order to get the path to it. # The other platforms (one of which may happen to be the same as current) are what we # actually test the presence of. 'platforms': ['current', 'macosx-10.10-x86_64', 'manylinux1_i686', 'win_amd64'] } }) stdout_data, stderr_data = self._exercise_module(pex, 'cffi') self.assertEquals('', stderr_data.strip()) path = stdout_data.strip() wheel_dir = os.path.join(path[0:path.find('{sep}.deps{sep}'.format(sep=os.sep))], '.deps') wheels = set(os.listdir(wheel_dir)) def name_and_platform(whl): # The wheel filename is of the format # {distribution}-{version}(-{build tag})?-{python tag}-{abi tag}-{platform tag}.whl # See https://www.python.org/dev/peps/pep-0425/. # We don't care about the python or abi versions (they depend on what we're currently # running on), we just want to make sure we have all the platforms we expect. parts = os.path.splitext(whl)[0].split('-') return '{}-{}'.format(parts[0], parts[1]), parts[-1] names_and_platforms = set(name_and_platform(w) for w in wheels) expected_name_and_platforms = { # Note that we don't check for 'current' because if there's no published wheel for the # current platform we may end up with a wheel for a compatible platform (e.g., if there's no # wheel for macosx_10_11_x86_64, 'current' will be satisfied by macosx_10_10_x86_64). # This is technically also true for the hard-coded platforms we list below, but we chose # those and we happen to know that cffi wheels exist for them. Whereas we have no such # advance knowledge for the current platform, whatever that might be in the future. ('cffi-1.9.1', 'macosx_10_10_x86_64'), ('cffi-1.9.1', 'manylinux1_i686'), ('cffi-1.9.1', 'win_amd64'), } # pycparser is a dependency of cffi only on CPython. We might as well check for it, # as extra verification that we correctly fetch transitive dependencies. if PythonInterpreter.get().identity.interpreter == 'CPython': expected_name_and_platforms.add(('pycparser-2.17', 'any')) self.assertTrue(expected_name_and_platforms.issubset(names_and_platforms), '{} is not a subset of {}'.format(expected_name_and_platforms, names_and_platforms)) # Check that the path is under the test's build root, so we know the pex was created there. self.assertTrue(path.startswith(os.path.realpath(get_buildroot()))) def _fake_target(self, spec, requirement_strs): requirements = [PythonRequirement(r) for r in requirement_strs] return self.make_target(spec=spec, target_type=PythonRequirementLibrary, requirements=requirements) def _resolve_requirements(self, target_roots, options=None): context = self.context(target_roots=target_roots, options=options) # We must get an interpreter via the cache, instead of using PythonInterpreter.get() directly, # to ensure that the interpreter has setuptools and wheel support. interpreter = PythonInterpreter.get() interpreter_cache = PythonInterpreterCache(PythonSetup.global_instance(), PythonRepos.global_instance(), logger=context.log.debug) interpreters = interpreter_cache.setup(paths=[os.path.dirname(interpreter.binary)], filters=[str(interpreter.identity.requirement)]) context.products.get_data(PythonInterpreter, lambda: interpreters[0]) task = self.create_task(context) task.execute() return context.products.get_data(ResolveRequirements.REQUIREMENTS_PEX) def _exercise_module(self, pex, expected_module): with temporary_file() as f: f.write('import {m}; print({m}.__file__)'.format(m=expected_module)) f.close() proc = pex.run(args=[f.name], blocking=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return proc.communicate()
50.099237
98
0.70227
f6f9b1ad43cf0f02b97b2530c202c642b6b067a5
5,718
py
Python
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/services/list_management/list_items_created_event_request.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
1
2019-02-04T21:07:06.000Z
2019-02-04T21:07:06.000Z
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/services/list_management/list_items_created_event_request.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
9
2020-03-24T16:32:57.000Z
2022-03-11T23:37:22.000Z
lambda/us-east-1_Numbers_Trivia/ask_sdk_model/services/list_management/list_items_created_event_request.py
Techievena/Numbers_Trivia
e86daaf7e7bc2c80c703c8496daea6317e986204
[ "MIT" ]
null
null
null
# coding: utf-8 # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum from ask_sdk_model.request import Request if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.services.list_management.list_item_body import ListItemBody class ListItemsCreatedEventRequest(Request): """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param body: :type body: (optional) ask_sdk_model.services.list_management.list_item_body.ListItemBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ deserialized_types = { 'object_type': 'str', 'request_id': 'str', 'timestamp': 'datetime', 'locale': 'str', 'body': 'ask_sdk_model.services.list_management.list_item_body.ListItemBody', 'event_creation_time': 'datetime', 'event_publishing_time': 'datetime' } attribute_map = { 'object_type': 'type', 'request_id': 'requestId', 'timestamp': 'timestamp', 'locale': 'locale', 'body': 'body', 'event_creation_time': 'eventCreationTime', 'event_publishing_time': 'eventPublishingTime' } def __init__(self, request_id=None, timestamp=None, locale=None, body=None, event_creation_time=None, event_publishing_time=None): # type: (Optional[str], Optional[datetime], Optional[str], Optional[ListItemBody], Optional[datetime], Optional[datetime]) -> None """ :param request_id: Represents the unique identifier for the specific request. :type request_id: (optional) str :param timestamp: Provides the date and time when Alexa sent the request as an ISO 8601 formatted string. Used to verify the request when hosting your skill as a web service. :type timestamp: (optional) datetime :param locale: A string indicating the user’s locale. For example: en-US. This value is only provided with certain request types. :type locale: (optional) str :param body: :type body: (optional) ask_sdk_model.services.list_management.list_item_body.ListItemBody :param event_creation_time: :type event_creation_time: (optional) datetime :param event_publishing_time: :type event_publishing_time: (optional) datetime """ self.__discriminator_value = "AlexaHouseholdListEvent.ItemsCreated" self.object_type = self.__discriminator_value super(ListItemsCreatedEventRequest, self).__init__(object_type=self.__discriminator_value, request_id=request_id, timestamp=timestamp, locale=locale) self.body = body self.event_creation_time = event_creation_time self.event_publishing_time = event_publishing_time def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, ListItemsCreatedEventRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
39.708333
182
0.648478
d5afeec68f8b92334745f5ce1a8fbd56a1e40a3a
204
py
Python
states.py
Kvm99/Pressure-Bot-
4dc5c850f12265dd89150891c2e383c9c32d421f
[ "BSD-3-Clause" ]
null
null
null
states.py
Kvm99/Pressure-Bot-
4dc5c850f12265dd89150891c2e383c9c32d421f
[ "BSD-3-Clause" ]
208
2019-12-06T12:48:58.000Z
2022-03-28T21:10:35.000Z
states.py
Kvm99/Telegram-Pressurebot
4dc5c850f12265dd89150891c2e383c9c32d421f
[ "BSD-3-Clause" ]
null
null
null
class States: START = 1 AGE = 2 SEX = 3 WEIGHT = 4 ADD_PRESSURE = 5 ARM = 6 PRESSURE = 7 GRAPH_FOR_PERIOD = 8 SET_TIMER = 9 REMOVE_TIMER = 10 START_BUTTON = 11
15.692308
24
0.553922
9fbb317c844d1c738200ab42b2c350ee1c6f9d61
4,529
py
Python
jicbioimage/core/util/array.py
JIC-CSB/jicbioimage.core
8a836b3af7c51926b2d18948babec593cf35ce55
[ "MIT" ]
1
2017-07-11T10:51:22.000Z
2017-07-11T10:51:22.000Z
jicbioimage/core/util/array.py
JIC-CSB/jicbioimage.core
8a836b3af7c51926b2d18948babec593cf35ce55
[ "MIT" ]
null
null
null
jicbioimage/core/util/array.py
JIC-CSB/jicbioimage.core
8a836b3af7c51926b2d18948babec593cf35ce55
[ "MIT" ]
null
null
null
"""Module containing utility functions for manipulating numpy arrays.""" import sys from functools import wraps import random import numpy as np from jicbioimage.core.util.color import pretty_color_palette, unique_color_palette def normalise(array): """Return array normalised such that all values are between 0 and 1. If all the values in the array are the same the function will return: - np.zeros(array.shape, dtype=np.float) if the value is 0 or less - np.ones(array.shape, dtype=np.float) if the value is greater than 0 :param array: numpy.array :returns: numpy.array.astype(numpy.float) """ min_val = array.min() max_val = array.max() array_range = max_val - min_val if array_range == 0: # min_val == max_val if min_val > 0: return np.ones(array.shape, dtype=np.float) return np.zeros(array.shape, dtype=np.float) return (array.astype(np.float) - min_val) / array_range def reduce_stack(array3D, z_function): """Return 2D array projection of the input 3D array. The input function is applied to each line of an input x, y value. :param array3D: 3D numpy.array :param z_function: function to use for the projection (e.g. :func:`max`) """ xmax, ymax, _ = array3D.shape projection = np.zeros((xmax, ymax), dtype=array3D.dtype) for x in range(xmax): for y in range(ymax): projection[x, y] = z_function(array3D[x, y, :]) return projection def map_stack(array3D, z_function): """Return 3D array where each z-slice has had the function applied to it. :param array3D: 3D numpy.array :param z_function: function to be mapped to each z-slice """ _, _, zdim = array3D.shape return np.dstack([z_function(array3D[:, :, z]) for z in range(zdim)]) def check_dtype(array, allowed): """Raises TypeError if the array is not of an allowed dtype. :param array: array whose dtype is to be checked :param allowed: instance or list of allowed dtypes :raises: TypeError """ if not hasattr(allowed, "__iter__"): allowed = [allowed, ] if array.dtype not in allowed: msg = "Invalid dtype {}. Allowed dtype(s): {}" raise(TypeError(msg.format(array.dtype, allowed))) def dtype_contract(input_dtype=None, output_dtype=None): """Function decorator for specifying input and/or output array dtypes. :param input_dtype: dtype of input array :param output_dtype: dtype of output array :returns: function decorator """ def wrap(function): @wraps(function) def wrapped_function(*args, **kwargs): if input_dtype is not None: check_dtype(args[0], input_dtype) array = function(*args, **kwargs) if output_dtype is not None: check_dtype(array, output_dtype) return array return wrapped_function return wrap def color_array(array, color_dict): """Return RGB color array. Assigning a unique RGB color value to each unique element of the input array and return an array of shape (array.shape, 3). :param array: input numpy.array :param color_dict: dictionary with keys/values corresponding to identifiers and RGB tuples respectively """ output_array = np.zeros(array.shape + (3,), np.uint8) unique_identifiers = set(np.unique(array)) for identifier in unique_identifiers: output_array[np.where(array == identifier)] = color_dict[identifier] return output_array def pretty_color_array(array, keep_zero_black=True): """Return a RGB pretty color array. Assigning a pretty RGB color value to each unique element of the input array and return an array of shape (array.shape, 3). :param array: input numpy.array :param keep_zero_black: whether or not the background should be black :returns: numpy.array """ unique_identifiers = set(np.unique(array)) color_dict = pretty_color_palette(unique_identifiers, keep_zero_black) return color_array(array, color_dict) def unique_color_array(array): """Return a RGB unique color array. Assigning a unique RGB color value to each unique element of the input array and return an array of shape (array.shape, 3). :param array: input numpy.array :returns: numpy.array """ unique_identifiers = set(np.unique(array)) color_dict = unique_color_palette(unique_identifiers) return color_array(array, color_dict)
32.582734
82
0.682049
286285655c90b73509d61ec047ab55d795b22ece
3,375
py
Python
playbooks/robusta_playbooks/cpu_throttling.py
pavangudiwada/robusta
cc1cb8a2e198f404e275a3947cf64e9f700f56f4
[ "MIT" ]
273
2021-12-28T20:48:48.000Z
2022-03-31T16:03:13.000Z
playbooks/robusta_playbooks/cpu_throttling.py
pavangudiwada/robusta
cc1cb8a2e198f404e275a3947cf64e9f700f56f4
[ "MIT" ]
103
2022-01-10T11:45:47.000Z
2022-03-31T16:31:11.000Z
playbooks/robusta_playbooks/cpu_throttling.py
pavangudiwada/robusta
cc1cb8a2e198f404e275a3947cf64e9f700f56f4
[ "MIT" ]
35
2021-12-30T15:30:14.000Z
2022-03-28T11:43:57.000Z
from robusta.api import * @action def cpu_throttling_analysis_enricher(event: PodEvent): """ Enrich the finding with a deep analysis for the cause of the CPU throttling. Includes recommendations for the identified cause. """ pod = event.get_pod() if not pod: logging.error(f"cannot run CPUThrottlingAnalysis on event with no pod: {event}") return if pod.metadata.name.startswith("metrics-server-") and pod.has_toleration( "components.gke.io/gke-managed-components" ): logging.info( "ignoring cpu throttling for GKE because there is nothing you can do about it" ) event.stop_processing = True elif pod.metadata.name.startswith("metrics-server-") and pod.has_cpu_limit(): event.add_enrichment( [ MarkdownBlock( "*Alert Explanation:* This alert is likely due to a known issue with metrics-server. " "<https://github.com/kubernetes/autoscaler/issues/4141|The default metrics-server deployment has cpu " "limits which are too low.>" ), MarkdownBlock( "*Robusta's Recommendation:* Increase the CPU limit for the metrics-server deployment. Note that " "metrics-server does *not* respect normal cpu limits. For instructions on fixing this issue, see the " "<https://github.com/robusta-dev/alert-explanations/wiki/CPUThrottlingHigh-on-metrics-server-(Prometheus-alert)|Robusta wiki>." ), ], annotations={SlackAnnotations.UNFURL: False}, ) elif pod.has_cpu_limit(): # TODO: ideally we would check if there is a limit on the specific container which is triggering the alert event.add_enrichment( [ MarkdownBlock( "*Alert Explanation:* This pod is throttled. It wanted to use the CPU and was blocked due to " "its CPU limit. This can occur even when CPU usage is far below the limit." "(<https://github.com/robusta-dev/alert-explanations/wiki/CPUThrottlingHigh-" "(Prometheus-Alert)|Learn more.>)" ), MarkdownBlock( "*Robusta's Recommendation:* Remove this pod's CPU limit entirely. <https://github.com/robusta-dev/" "alert-explanations/wiki/CPUThrottlingHigh-(Prometheus-Alert)#:~:text=relatively%20accurate%20one-," "Explanation,-As%20long%20as|Despite common misconceptions, using CPU limits is *not* a best " "practice.>" ), ], annotations={SlackAnnotations.UNFURL: False}, ) else: event.add_enrichment( [ MarkdownBlock( "*Alert Explanation:* This pod is throttled because it is using more CPU than its request and the " "node doesn't have spare CPU to give. Increase the pod's CPU request. This will impact Kubernetes' " "scheduling decisions and guarantee the pod is placed on a node with sufficient CPU to match the " "new request." ) ], annotations={SlackAnnotations.UNFURL: False}, )
46.875
147
0.592296
779997555a158f9bfd174d9efd0f3f530524b0c6
1,550
py
Python
zerver/migrations/0032_verify_all_medium_avatar_images.py
sophie200/zulip
c685d368215bbc3d85d7c40f2c1e6fa95e53186a
[ "Apache-2.0" ]
2
2021-02-02T01:29:32.000Z
2021-02-02T01:30:51.000Z
zerver/migrations/0032_verify_all_medium_avatar_images.py
sophie200/zulip
c685d368215bbc3d85d7c40f2c1e6fa95e53186a
[ "Apache-2.0" ]
1
2021-01-07T15:28:54.000Z
2021-01-08T15:38:45.000Z
zerver/migrations/0032_verify_all_medium_avatar_images.py
sophie200/zulip
c685d368215bbc3d85d7c40f2c1e6fa95e53186a
[ "Apache-2.0" ]
1
2020-12-03T17:08:44.000Z
2020-12-03T17:08:44.000Z
import hashlib from unittest.mock import patch from django.conf import settings from django.db import migrations from django.db.backends.postgresql.schema import DatabaseSchemaEditor from django.db.migrations.state import StateApps from zerver.lib.upload import upload_backend from zerver.lib.utils import make_safe_digest from zerver.models import UserProfile # We hackishly patch this function in order to revert it to the state # it had when this migration was first written. This is a balance # between copying in a historical version of hundreds of lines of code # from zerver.lib.upload (which would pretty annoying, but would be a # pain) and just using the current version, which doesn't work # since we rearranged the avatars in Zulip 1.6. def patched_user_avatar_path(user_profile: UserProfile) -> str: email = user_profile.email user_key = email.lower() + settings.AVATAR_SALT return make_safe_digest(user_key, hashlib.sha1) @patch('zerver.lib.upload.user_avatar_path', patched_user_avatar_path) def verify_medium_avatar_image(apps: StateApps, schema_editor: DatabaseSchemaEditor) -> None: user_profile_model = apps.get_model('zerver', 'UserProfile') for user_profile in user_profile_model.objects.filter(avatar_source="U"): upload_backend.ensure_medium_avatar_image(user_profile) class Migration(migrations.Migration): dependencies = [ ('zerver', '0031_remove_system_avatar_source'), ] operations = [ migrations.RunPython(verify_medium_avatar_image, elidable=True), ]
37.804878
93
0.785161
3ba62c7973ec30c2a884a854b55c37220151aba9
609
py
Python
src/playground/migrations/0001_initial.py
malithbc/Mole-AR-Stage1
0776483fa79a2452d1b2b93cfc06291ce713c7c0
[ "MIT" ]
null
null
null
src/playground/migrations/0001_initial.py
malithbc/Mole-AR-Stage1
0776483fa79a2452d1b2b93cfc06291ce713c7c0
[ "MIT" ]
null
null
null
src/playground/migrations/0001_initial.py
malithbc/Mole-AR-Stage1
0776483fa79a2452d1b2b93cfc06291ce713c7c0
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2021-07-11 03:23 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Person', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=100)), ('last_name', models.CharField(max_length=100)), ('address', models.TextField()), ], ), ]
25.375
117
0.569787
ff68fbaece0899c7e06fcd6e4edc48a43efa7bf7
47,595
py
Python
rumi/io/demand.py
prayas-energy/Rumi
fd7f0cf4eba08b4efa1a643217caff7f876fb394
[ "Apache-2.0" ]
1
2021-11-24T07:22:15.000Z
2021-11-24T07:22:15.000Z
rumi/io/demand.py
prayas-energy/Rumi
fd7f0cf4eba08b4efa1a643217caff7f876fb394
[ "Apache-2.0" ]
null
null
null
rumi/io/demand.py
prayas-energy/Rumi
fd7f0cf4eba08b4efa1a643217caff7f876fb394
[ "Apache-2.0" ]
1
2022-02-09T11:11:35.000Z
2022-02-09T11:11:35.000Z
# Copyright 2021 Prayas Energy Group(https://www.prayaspune.org/peg/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """demand io layer. mainly data loading and validation functions. Function and variable from this module are available in Demand.yml for validation. Few function are also used by processing layer. Important note: Some functions are just imported and not used are for yaml validation. All definations(including those which are imported from other modules) from this module are available in yaml validation. """ import csv import functools import itertools import os import logging from rumi.io import functionstore as fs from rumi.io import loaders from rumi.io import filemanager from rumi.io import config from rumi.io import constant from rumi.io import common from rumi.io import utilities import pandas as pd from rumi.io.common import balancing_area, balancing_time from rumi.io.utilities import check_consumer_validity from rumi.io.utilities import check_geographic_validity from rumi.io.utilities import check_time_validity from rumi.io.multiprocessutils import execute_in_process_pool logger = logging.getLogger(__name__) def get_consumer_levels(ds): """get number of consumer levels defined for given demand sector Parameters ---------- ds: str Demand sector name Returns ------- 1 or 2 """ DS_Cons1_Map = loaders.get_parameter("DS_Cons1_Map") type1 = DS_Cons1_Map[ds][-1] Cons1_Cons2_Map = loaders.get_parameter("Cons1_Cons2_Map") if Cons1_Cons2_Map and Cons1_Cons2_Map.get(type1, None): return 2 return 1 def get_cons_columns(ds): """get maximum consumer columns for given demand sector Parameters ----------- ds: str Demand sector name Returns ------- a list of consumer columns for given demand sector """ return list(constant.CONSUMER_TYPES[:get_consumer_levels(ds)]) def get_consumer_granularity(ds, specified_gran): """Converts CONSUMERALL to actual granularity Parameters ----------- demand_specs: str Demand sector Returns ------- one of CONSUMERTYPE1,CONSUMERTYPE2 """ if specified_gran != "CONSUMERALL": return specified_gran if get_consumer_levels(ds) == 1: return "CONSUMERTYPE1" else: return "CONSUMERTYPE1" def get_geographic_granularity(demand_sector, energy_service, energy_carrier): DS_ES_EC_DemandGranularity_Map = loaders.get_parameter( "DS_ES_EC_DemandGranularity_Map") granularity_map = DS_ES_EC_DemandGranularity_Map.set_index(['DemandSector', 'EnergyService', 'EnergyCarrier']) return granularity_map.loc[(demand_sector, energy_service, energy_carrier)]['GeographicGranularity'] def get_type(demand_sector, energy_service): """find type of service BOTTOMUP,EXTRANEOUS,GDPELASTICITY or RESIDUAL """ DS_ES_Map = loaders.get_parameter('DS_ES_Map') DS_ES_Map = DS_ES_Map.set_index(['DemandSector', 'EnergyService']) return DS_ES_Map.loc[(demand_sector, energy_service)]['InputType'] def get_BaseYearDemand(demand_sector): """loader function for parameter BaseYearDemand """ return get_demand_sector_parameter('BaseYearDemand', demand_sector) def get_DemandElasticity(demand_sector): """loader function for parameter DemandElasticity """ return get_demand_sector_parameter('DemandElasticity', demand_sector) def get_ExtraneousDemand(demand_sector): """loader function for parameter ExtraneousDemand """ extraneous = get_demand_sector_parameter('ExtraneousDemand', demand_sector) return extraneous def get_ST_Efficiency(demand_sector): """ST_Efficiency loader function """ return get_demand_sector_parameter("ST_Efficiency", demand_sector) def get_ST_EmissionDetails(demand_sector): """ST_EmissionDetails loader function """ return get_demand_sector_parameter("ST_EmissionDetails", demand_sector) def get_ResidualDemand(demand_sector): """loader function for parameter ResidualDemand """ return get_demand_sector_parameter("ResidualDemand", demand_sector) def get_NumConsumers(demand_sector): """loader function for parameter NumConsumers """ return get_demand_sector_parameter('NumConsumers', demand_sector) def get_NumInstances(demand_sector, energy_service): """loader function for parameter NumInstances """ return get_DS_ES_parameter('NumInstances', demand_sector, energy_service) def get_EfficiencyLevelSplit(demand_sector, energy_service): """loader function for parameter EfficiencyLevelSplit """ return get_DS_ES_parameter('EfficiencyLevelSplit', demand_sector, energy_service) def get_ES_Demand(demand_sector, energy_service, service_tech): """loader function for parameter ES_Demand should not be used directly. use loaders.get_parameter instead. """ prefix = f"{service_tech}_" filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, 'ES_Demand', prefix) logger.debug(f"Reading {prefix}ES_Demand from file {filepath}") return pd.read_csv(filepath) def get_Penetration(demand_sector, energy_service, ST_combination): """loader function for parameter Penetration """ for item in itertools.permutations(ST_combination): prefix = constant.ST_SEPARATOR_CHAR.join( item) + constant.ST_SEPARATOR_CHAR filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, 'Penetration', prefix) logger.debug(f"Searching for file {filepath}") if os.path.exists(filepath): logger.debug(f"Reading {prefix} from file {filepath}") return pd.read_csv(filepath) def get_demand_sector_parameter(param_name, demand_sector): """loads demand sector parameter which lies inside demand_sector folder """ filepath = find_custom_demand_path(demand_sector, param_name) logger.debug(f"Reading {param_name} from file {filepath}") cols = list(filemanager.demand_specs()[param_name]['columns'].keys()) d = pd.read_csv(filepath) return d[[c for c in cols if c in d.columns]] def get_DS_ES_parameter(param_name, demand_sector, energy_service): """loads parameter which is inside demand_sector/energy_service folder """ filepath = find_custom_DS_ES_filepath(demand_sector, energy_service, param_name, "") logger.debug(f"Reading {param_name} from file {filepath}") cols = list(filemanager.demand_specs()[param_name]['columns'].keys()) d = pd.read_csv(filepath) return d[[c for c in cols if c in d.columns]] def find_custom_DS_ES_filepath(demand_sector, energy_service, name, prefix): """find actual location of data in case some data lies in scenario """ return find_custom_demand_path(demand_sector, name, energy_service, prefix) def find_custom_demand_path(demand_sector, name, energy_service="", prefix=""): """find actual location of data in case some data lies in scenario """ return filemanager.find_filepath(name, demand_sector, energy_service, fileprefix=prefix) def get_mapped_items(DS_ES_EC_Map): """returns list of ECS from DS_ES_EC_Map """ return fs.flatten(fs.drop_columns(DS_ES_EC_Map, 2)) def get_RESIDUAL_ECs(DS_ES_Map, DS_ES_EC_Map): df = DS_ES_Map.query("InputType == 'RESIDUAL'")[ ['DemandSector', 'EnergyService']] DS_ES = zip(df['DemandSector'], df['EnergyService']) ECs = {(DS, ES): row[2:] for DS, ES in DS_ES for row in DS_ES_EC_Map if DS == row[0] and ES == row[1]} return ECs def derive_ES_EC(demand_sector, input_type): """return set of ES,EC combinations for given demand_sector and input_type but not_BOTTOMUP """ DS_ES_Map = loaders.get_parameter('DS_ES_Map') DS_ES_EC_Map = loaders.get_parameter('DS_ES_EC_Map') es_ec = fs.concat(*[[(row[1], ec) for ec in row[2:]] for row in DS_ES_EC_Map if row[0] == demand_sector]) return [(es, ec) for es, ec in es_ec if len(DS_ES_Map.query(f"DemandSector=='{demand_sector}' & EnergyService=='{es}' & InputType=='{input_type}'")) > 0] def check_RESIDUAL_EC(DS_ES_Map, DS_ES_EC_Map): """Each EC specified for a <DS, ES> combination, whose InputType in DS_ES_Map is RESIDUAL, must occur at least once in another <DS, ES> combination for the same DS """ def x_in_y(x, y): return any([ix in y for ix in x]) ECS = get_RESIDUAL_ECs(DS_ES_Map, DS_ES_EC_Map) items1 = [row for row in DS_ES_EC_Map for DS, ES in ECS if row[0] == DS and row[1] != ES and x_in_y(ECS[(DS, ES)], row[2:])] if len(items1) == 0 and ECS: DS_ES_ST = expand_DS_ES_ST() ST_Info = loaders.get_parameter('ST_Info') items2 = [] for ECs in ECS.values(): for EC in ECs: STS = ST_Info.query(f"EnergyCarrier == '{EC}'")[ 'ServiceTech'] items2.extend([row for row in DS_ES_ST for DS, ES in ECS if row[0] == DS and row[1] != ES and x_in_y(STS, row[2:])]) return not ECS or len(items1) > 0 or len(items2) > 0 def are_BOTTOMUP(DS_ES_X_Map, DS_ES_Map): DS_ES = fs.transpose(fs.take_columns(DS_ES_X_Map, 2)) df = fs.combined_key_subset(DS_ES, DS_ES_Map).query( "InputType != 'BOTTOMUP'") return len(df) == 0 def not_BOTTOMUP(DS_ES_X_Map, DS_ES_Map): DS_ES = fs.transpose(fs.take_columns(DS_ES_X_Map, 2)) df = fs.combined_key_subset(DS_ES, DS_ES_Map).query( "InputType == 'BOTTOMUP'") return len(df) == 0 def check_ALL_DS(DS_ES_X_Map): """ ES used with ALL as DS can not be used with any other DS. This function checks if this is true. """ ES_with_ALL = [row[1] for row in DS_ES_X_Map if row[0] == "ALL"] ES_without_ALL = [ES for ES in ES_with_ALL for row in DS_ES_X_Map if row[0] != "ALL"] return len(ES_without_ALL) == 0 def listcols(df): return [df[c] for c in df.columns] def check_ALL_ES(DS_ES_EC_DemandGranularity_Map): """function for validation """ DS_EC_ALL = DS_ES_EC_DemandGranularity_Map.query( "EnergyService == 'ALL'")[['DemandSector', 'EnergyCarrier']] DS_EC_NOALL = DS_ES_EC_DemandGranularity_Map.query( "EnergyService != 'ALL'")[['DemandSector', 'EnergyCarrier']] ALL = set(zip(*listcols(DS_EC_ALL))) NOALL = set(zip(*listcols(DS_EC_NOALL))) return not ALL & NOALL def expand_DS_ALL(BOTTOMUP): """ Expands Map when DS is ALL """ if BOTTOMUP: cond = "==" data = loaders.load_param("DS_ES_ST_Map") else: data = loaders.load_param("DS_ES_EC_Map") cond = "!=" DS_ES_Map = loaders.load_param("DS_ES_Map") ESs = [row for row in data if row[0] == 'ALL'] for row in ESs: ES = row[1] data.remove(row) nonbottomup = DS_ES_Map.query( f"EnergyService == '{ES}' & InputType {cond} 'BOTTOMUP'") if len(nonbottomup) > 0: ds = nonbottomup['DemandSector'] for eachds in ds: newrow = row.copy() newrow[0] = eachds data.append(newrow) return data def expand_DS_ES_EC(): return expand_DS_ALL(BOTTOMUP=False) def expand_DS_ES_ST(): return expand_DS_ALL(BOTTOMUP=True) def is_valid(DS, EC): DS_ES_EC_Map = loaders.load_param("DS_ES_EC_Map") DS_ES_ST_Map = loaders.load_param("DS_ES_ST_Map") ST_Info = loaders.get_parameter("ST_Info") ECS = [row for row in DS_ES_EC_Map if row[0] == DS and row[1] == EC] STS = ST_Info.query(f"EnergyCarrier == '{EC}'")['ServiceTech'] DSS = [row[0] for row in DS_ES_ST_Map for ST in STS if row[2] == ST] return ECS or DS in DSS @functools.lru_cache() def expand_DS_ES_EC_DemandGranularity_Map(): DS_ES_EC_DemandGranularity_Map = loaders.load_param( "DS_ES_EC_DemandGranularity_Map") DS_ES_Map = loaders.get_parameter("DS_ES_Map") data = DS_ES_EC_DemandGranularity_Map.to_dict(orient="records") DSs = [d for d in data if d['EnergyService'] == 'ALL'] for DS in DSs: data.remove(DS) DemandSector = DS['DemandSector'] ALL_DS_ES = DS_ES_Map.query(f"DemandSector == '{DemandSector}'")[ ['DemandSector', 'EnergyService']].to_dict(orient="records") for item in ALL_DS_ES: d = DS.copy() d.update(item) if is_valid(d['DemandSector'], d['EnergyCarrier']): data.append(d) return pd.DataFrame(data) def ST_to_EC(ST): ST_Info = loaders.get_parameter("ST_Info") return ST_Info.query(f"ServiceTech == '{ST}'")['EnergyCarrier'].iloc[0] def get_service_techs(demand_sector, energy_service, energy_carrier): """ServiceTechs for given <demand_sector,energy_service, energy_carrier> combination """ DS_ES_ST_Map = loaders.get_parameter("DS_ES_ST_Map") ST1 = fs.flatten([row[2:] for row in DS_ES_ST_Map if row[0] == demand_sector and row[1] == energy_service]) ST2 = EC_to_ST(energy_carrier) return tuple(set(ST1) & set(ST2)) def EC_to_ST(energy_carrier): ST_Info = loaders.get_parameter("ST_Info") return ST_Info.query(f"EnergyCarrier == '{energy_carrier}'")[ 'ServiceTech'].values def derive_DS_ES_EC(): DS_ES_EC_Map = expand_DS_ES_EC() DS_ES_ST_Map = expand_DS_ES_ST() explicit = [] for row in DS_ES_EC_Map: explicit.extend([(row[0], row[1], EC) for EC in row[2:]]) implicit = [] for row in DS_ES_ST_Map: implicit.extend([(row[0], row[1], ST_to_EC(ST)) for ST in row[2:]]) return explicit + implicit def check_DS_ES_EC_validity(): """ checks if DS_ES_EC_DemandGranularity_Map has valid combinations of <DS,ES,EC> """ gmap = expand_DS_ES_EC_DemandGranularity_Map() a = list( zip(*listcols(gmap[['DemandSector', 'EnergyService', 'EnergyCarrier']]))) b = derive_DS_ES_EC() return fs.one_to_one(a, b) def coarser(x, y, values): return values.index(x) <= values.index(y) def finer(x, y, values): return values.index(x) >= values.index(y) def check_granularity(GRANULARITY): DS_ES_EC_DemandGranularity_Map = expand_DS_ES_EC_DemandGranularity_Map() DS_ES_Map = loaders.get_parameter("DS_ES_Map") def get_Granularity(DS, ES, EC): df = DS_ES_EC_DemandGranularity_Map.query( f"(DemandSector == '{DS}') & (EnergyService =='{ES}') & (EnergyCarrier == '{EC}')") return df[GRANULARITY].iloc[0] if len(df) != 0 else None def get_input_type(DS, ES): return DS_ES_Map.query(f"DemandSector == '{DS}' & EnergyService == '{ES}'")['InputType'].iloc[0] DS_ES_EC = list( zip(*listcols(DS_ES_EC_DemandGranularity_Map[['DemandSector', 'EnergyService', 'EnergyCarrier']]))) type_ = {(DS, ES, EC): get_input_type(DS, ES) for DS, ES, EC in DS_ES_EC} type_RESIDUAL = {item: type_[item] for item in type_ if type_[item] == 'RESIDUAL'} t_gran = {item: get_Granularity(*item) for item in DS_ES_EC} t_gran_RES = {item: get_Granularity(*item) for item in DS_ES_EC if item in type_RESIDUAL} if GRANULARITY == "TimeGranularity": t_values = [t.upper() for t in constant.TIME_COLUMNS] else: t_values = [g.upper() for g in constant.GEO_COLUMNS] # here condition is list comprehension is filtering out # rows with DS==DS_under_consideration and EC=EC_under_consideration return all([(t_values.index(t_gran_RES[ritem]) <= t_values.index(t_gran[item])) for ritem in t_gran_RES for item in t_gran if item[0] == ritem[0] and item[2] == ritem[2]]) def check_ST_ES(DS_ES_ST_Map): STS = get_mapped_items(DS_ES_ST_Map) repeating_STS = [ST for ST in STS if STS.count(ST) > 1] cond = True for ST in repeating_STS: cond = cond and len(set([row[1] for row in DS_ES_ST_Map if ST in row[2:]])) == 1 return cond class DemandValidationError(Exception): pass @functools.lru_cache(maxsize=None) def derive_ECs(DS): DS_ES_EC_Map = expand_DS_ES_EC() DS_ES_ST_Map = expand_DS_ES_ST() ST_Info = loaders.get_parameter("ST_Info") explicit = fs.flatten([row[2:] for row in DS_ES_EC_Map if row[0] == DS]) STs = fs.flatten([row[2:] for row in DS_ES_ST_Map if row[0] == DS]) implicit = [ST_Info.query(f"ServiceTech == '{ST}'")['EnergyCarrier'].iloc[0] for ST in STs if len(ST_Info.query(f"ServiceTech == '{ST}'")) != 0] return explicit + implicit def check_time_granularity_DS_Cons1(): """ checks if DS_Cons1_Map has time granularity coarser than balancing time """ DS_Cons1_Map = loaders.get_parameter("DS_Cons1_Map") cond = True t_values = ('YEAR', 'SEASON', 'DAYTYPE', 'DAYSLICE') for row in DS_Cons1_Map: DS, GGRAN, TGRAN = row[:3] ECs = derive_ECs(DS) cond = cond and all( [coarser(TGRAN, balancing_time(EC), t_values) for EC in ECs]) return cond def check_geo_granularity_DS_Cons1(): """ checks if DS_Cons1_Map has geographic granularity finer than balancing area """ DS_Cons1_Map = loaders.get_parameter("DS_Cons1_Map") cond = True g_values = tuple(constant.GEO_COLUMNS.keys()) for row in DS_Cons1_Map: DS, GGRAN, TGRAN = row[:3] ECs = derive_ECs(DS) cond = cond and all( [finer(GGRAN, balancing_area(EC), g_values) for EC in ECs]) return cond def validate_consumertype2(Cons1_Cons2_Map, CONSUMERTYPES1): if Cons1_Cons2_Map: return fs.x_in_y(x=[row[0] for row in Cons1_Cons2_Map], y=CONSUMERTYPES1) else: return True def get_ds_list(name): """List of possible DemandSectors for given demand sector parameter. Parameters ---------- name: str Name of parameter , anyone from nested paramters od demand. e.g. BaseYearDemand, DemandElasticity Returns ------- list demand sectors which have that parameter """ if name in ['BaseYearDemand', 'DemandElasticity']: DS_ES_Map = loaders.get_parameter("DS_ES_Map") return DS_ES_Map.query("InputType == 'GDPELASTICITY'")['DemandSector'].values elif name == "ExtraneousDemand": DS_ES_Map = loaders.get_parameter("DS_ES_Map") return DS_ES_Map.query("InputType == 'EXTRANEOUS'")['DemandSector'].values elif name in ["ResidualDemand"]: DS_ES_Map = loaders.get_parameter("DS_ES_Map") return DS_ES_Map.query("InputType == 'RESIDUAL'")['DemandSector'].values else: DS_ES_Map = loaders.get_parameter("DS_ES_Map") return DS_ES_Map.query("InputType == 'BOTTOMUP'")['DemandSector'].values def existence_demand_parameter(name): ds = get_ds_list(name) ds = list(set(ds)) args = [(name, d) for d in ds] valid = execute_in_process_pool(existence_demand_parameter_, args) return all(valid) def existence_demand_parameter_(name, demand_sector): try: logger.info(f"Validating {name} from {demand_sector}") data = loaders.get_parameter(name, demand_sector=demand_sector) valid = validate_each_demand_param(name, data, demand_sector=demand_sector) if not valid: print(f"Validation failed for {name} from {demand_sector}") logger.error( f"Validation failed for {name} from {demand_sector}") except FileNotFoundError as fne: logger.error(f"{name} for {demand_sector} is not given") valid = False logger.exception(fne) except Exception as e: logger.error(f"{name} for {demand_sector} has invalid data") valid = False logger.exception(e) return valid def check_basedemand_elasticity_gran(): """ cheks if baseyeardemand and demandelasicity have same granularity and is equal to granularity specified in DemandGranularityMap """ ds = get_ds_list('BaseYearDemand') for d in ds: logger.debug( f"Checking if granularity is same for BaseYearDemand and DemandElasticity for {d}") BaseYearDemand = get_BaseYearDemand(d) DemandElasticity = get_DemandElasticity(d) indexcols = ["EnergyService", "EnergyCarrier"] BaseYearDemand = BaseYearDemand.set_index(indexcols).sort_index() DemandElasticity = DemandElasticity.set_index(indexcols).sort_index() for item in BaseYearDemand.index.unique(): q = "EnergyService=='{}' & EnergyCarrier=='{}'".format( item[0], item[1]) byd = utilities.filter_empty(BaseYearDemand.query(q)) de = utilities.filter_empty(DemandElasticity.query(q)) bg = utilities.get_geographic_columns_from_dataframe(byd) dg = utilities.get_geographic_columns_from_dataframe(de) geogran = get_geographic_granularity(d, *item) grancols = constant.GEO_COLUMNS[geogran] if bg == dg: logger.debug( f"Geographic granularity of BaseYearDemand and DemandElasticity is same for {d},{item}") if bg != grancols: logger.error( f"Geographic granularity of BaseYearDemand for {d},{item} is diffecrent than specified in DS_ES_EC_DemandGranularity_Map.") return False if dg != grancols: logger.error( f"Geographic granularity of DemandElasticity for {d},{item} is diffecrent than specified in DS_ES_EC_DemandGranularity_Map.") return False return True def get_all_ES_Demand(ds, es): """returns dictionary of ES_Demand data for each ST. it returns dict with key as ST and ES_Demand as value """ DS_ES_ST_Map = loaders.get_parameter("DS_ES_ST_Map") STs = [row[2:] for row in DS_ES_ST_Map if row[0] == ds and row[1] == es][0] return {s: loaders.get_parameter('ES_Demand', demand_sector=ds, energy_service=es, service_tech=s) for s in STs} def read_header(filepath): with open(filepath) as f: csvf = csv.reader(f) return next(csvf) def check_ES_Demand_columns(): ds_es = get_bottomup_ds_es() valid = True for ds, es in ds_es: valid = valid and _check_ES_Demand_columns(ds, es) return valid def get_structural_columns(ds): return constant.TIME_COLUMNS[utilities.get_valid_time_levels()[-1]] + \ constant.GEO_COLUMNS[utilities.get_valid_geographic_levels()[-1]] + \ get_cons_columns(ds) def _check_ES_Demand_columns(ds, es): """checks if ES_Demand file has correct column names specified """ DS_ES_ST_Map = loaders.get_parameter("DS_ES_ST_Map") STs = [row[2:] for row in DS_ES_ST_Map if row[0] == ds and row[1] == es][0] filepaths = {s: find_custom_DS_ES_filepath(ds, es, 'ES_Demand', f"{s}_") for s in STs} valid = True for ST, path in filepaths.items(): columns = read_header(path) structural = get_structural_columns(ds) other_cols = [c for c in columns if c not in structural] unexpected_cols = [c for c in other_cols if ST not in c] if unexpected_cols: logger.warning( f"Found unexpected columns {unexpected_cols} in {ST}_ES_Demand file") st_cols = [c for c in other_cols if ST in c] combinations = [set(c.split(constant.ST_SEPARATOR_CHAR)) for c in st_cols] if any([combinations.count(c) > 1 for c in combinations]): logger.error( "It is not allowed for two columns to have the exact same combinations of STs in {ST}_ES_Demand") valid = False sts = get_corresponding_sts(ds, es, ST) expected = fs.flatten([[set(x) for x in itertools.combinations( sts, n)] for n in range(1, len(sts)+1)]) unexpected = [comb for comb in combinations if comb not in expected] if unexpected: logger.error( f"Found unexpected combination of STs in {ST}_ES_Demand") logger.error("Unexpected combination of STs in column {}".format( [constant.ST_SEPARATOR_CHAR.join(c) for c in unexpected])) valid = False return valid def get_all_Penetration(ds, es): """returns all penetration data as dictionary with key as st, value as dictionary of ST combinations and actual penetration data. {"ST":{(ST1,ST2): penetration data for ST1 and ST2} """ DS_ES_ST_Map = loaders.get_parameter("DS_ES_ST_Map") STs = [row[2:] for row in DS_ES_ST_Map if row[0] == ds and row[1] == es][0] d = {} for s in STs: es_demand = loaders.get_parameter('ES_Demand', demand_sector=ds, energy_service=es, service_tech=s) combs = [tuple(name.split(constant.ST_SEPARATOR_CHAR)) for name in es_demand.columns if s in name] d[s] = {tuple(c): loaders.get_parameter('Penetration', demand_sector=ds, energy_service=es, ST_combination=c) for c in combs} return d def get_data(name, ds, es): if name in ['EfficiencyLevelSplit', 'NumInstances']: return {(ds, es): loaders.get_parameter(name, demand_sector=ds, energy_service=es)} elif name == "ES_Demand": return get_all_ES_Demand(ds, es) elif name == "Penetration": return get_all_Penetration(ds, es) else: logger.error(f"Unknown parameter {name}") def validate_each_demand_param_(name, item, data, ds, es, st): """encapsulation over validate_each_demand_param to catch exception """ logger.info(f"Validating {name} from {ds},{es} for {st}") try: v = validate_each_demand_param(name, data, demand_sector=ds, energy_service=es, service_tech=st) if not v: logger.error( f"Validaton failed for {name} from {ds},{es} for {st}") print( f"Validaton failed for {name} from {ds},{es} for {st}") except Exception as e: logger.exception(e) logger.error( f"{name} for {ds},{es},{item} has invalid data") print(e) v = False return v def existence_demand_energy_service_parameter(name): """checks existence and basic data validation of EfficiencyLevelSplit,NumInstances,ES_Demand,Penetration """ ds_es = get_bottomup_ds_es() args = [] for ds, es in ds_es: try: data_ = get_data(name, ds, es) except FileNotFoundError as fne: logger.error(f"{name} for {ds},{es} is not given") logger.exception(fne) return False for st, data in data_.items(): if not isinstance(data, dict): data = {st: data} for item in data: args.append((name, item, data[item], ds, es, st)) valid = execute_in_process_pool(validate_each_demand_param_, args) #valid = [validate_each_demand_param_(*item) for item in args] return all(valid) def validate_each_demand_param(name, data, **kwargs): """Validates individual parameter according to specs given in yml file. """ specs = filemanager.demand_specs()[name] return loaders.validate_param(name, specs, data, "rumi.io.demand", **kwargs) def subset(data, indexnames, items): if isinstance(items, str): items = (items,) q = " & ".join([f"{name} == '{item}'" for name, item in zip(indexnames, items)]) return data.query(q) def check_efficiency_levels(data, param_name, *args): ST_Info = loaders.get_parameter("ST_Info") st_info = ST_Info.set_index('ServiceTech') valid = True els = data.set_index('ServiceTech') for service_tech in els.index.unique(): df = els.loc[service_tech] levels = len(df['EfficiencyLevelName'].unique()) n = st_info.loc[service_tech]['NumEfficiencyLevels'] v = n == levels valid = valid and v if not v: logger.error( f"For {param_name} in {args}, efficiency levels do not match for {service_tech}") return valid def check_EfficiencyLevelSplit_granularity(): return _check_DS_ES_granularity("EfficiencyLevelSplit") def check_NumInstances_granularity(): return _check_DS_ES_granularity("NumInstances") def get_bottomup_ds_es(): DS_ES_Map = loaders.get_parameter("DS_ES_Map") ds_es = DS_ES_Map.query("InputType == 'BOTTOMUP'")[ ['DemandSector', 'EnergyService']].values return ds_es def get_nonbottomup_ds_es(): DS_ES_Map = loaders.get_parameter("DS_ES_Map") ds_es = DS_ES_Map.query("InputType != 'BOTTOMUP'")[ ['DemandSector', 'EnergyService']].values return ds_es def check_granularity_per_entity(d, entity, GeographicGranularity, TimeGranularity, ConsumerGranularity=None): """checks granuarity only. i.e. only columns are checked. contents of columns are not validated here. """ geo_columns, time_columns, cons_columns = [], [], [] if GeographicGranularity: geo_columns = common.get_geographic_columns(GeographicGranularity) dataset_columns = [c for c in d.columns if c in constant.GEOGRAPHIES] if TimeGranularity: time_columns = common.get_time_columns(TimeGranularity) dataset_columns.extend( [c for c in d.columns if c in constant.TIME_SLICES]) if ConsumerGranularity: cons_columns = constant.CONSUMER_COLUMNS[ConsumerGranularity] dataset_columns.extend( [c for c in d.columns if c in constant.CONSUMER_TYPES]) diff1 = set(geo_columns + time_columns + cons_columns) - set(dataset_columns) diff2 = set(dataset_columns) - \ set(geo_columns + time_columns + cons_columns) valid = True if diff2: c, r = d[list(diff2)].shape empty = d[list(diff2)].isnull().sum().sum() == c*r if not empty: logger.debug(f"Granularity is finer than expected for {entity}!") return valid if diff1: logger.error(f"{diff1} not found in data for {entity}") valid = False else: allcols = geo_columns+time_columns + cons_columns nonempty = d[allcols].isnull().sum().sum() valid = nonempty == 0 if not valid: logger.error(f"one of columns {allcols} is empty for {entity}.") return valid def check_demand_granularity(param_name, CSTAR=None, GSTAR=None, TSTAR=None, check_function=check_granularity_per_entity): """ Checks whether given data follows granularity as specified in granularity map. data file directly inside demand sector folder is tested using this function. """ if CSTAR == None and GSTAR == None and TSTAR == None: raise Exception( "check_granularity function must have valid GSTAR/TSTAR argument") granularity_map = loaders.get_parameter("DS_ES_EC_DemandGranularity_Map") granularity = granularity_map.set_index(['DemandSector', 'EnergyService', 'EnergyCarrier']) dslist = get_ds_list(param_name) valid = True for ds in dslist: data = loaders.get_parameter(param_name, demand_sector=ds) data = data.set_index(['EnergyService', 'EnergyCarrier']) data.sort_index(inplace=True) logger.debug(f"Checking granularity of {param_name} for {ds}") for item in data.index.unique(): d = subset(data, data.index.names, item) d = utilities.filter_empty(d) entity = (ds,) + item g = granularity.loc[entity] ConsumerGranularity = None GeographicGranularity, TimeGranularity = None, None if CSTAR: ConsumerGranularity = get_consumer_granularity(ds, g['ConsumerGranularity']) if GSTAR: GeographicGranularity = g['GeographicGranularity'] if TSTAR: TimeGranularity = g['TimeGranularity'] v = check_function(d, entity, GeographicGranularity, TimeGranularity, ConsumerGranularity) valid = valid and v if not v: logger.error( f"Granularity check failed for {param_name} for {entity}") return valid def get_corresponding_sts(demand_sector, energy_service, service_tech): DS_ES_ST_Map = loaders.get_parameter('DS_ES_ST_Map') ST_Info = loaders.get_parameter('ST_Info') STs = fs.flatten([row[2:] for row in DS_ES_ST_Map if row[0] == demand_sector and row[1] == energy_service and service_tech in row]) ST_Info = ST_Info.set_index('ServiceTech') EC = ST_Info.loc[service_tech]['EnergyCarrier'] return [s for s in STs if ST_Info.loc[s]['EnergyCarrier'] == EC] def coarsest(gran_map, ds): c = min(gran_map.to_dict(orient='records'), key=lambda x: len(constant.CONSUMER_COLUMNS[get_consumer_granularity(ds, x['ConsumerGranularity'])]))['ConsumerGranularity'] g = min(gran_map['GeographicGranularity'].values, key=lambda x: len(constant.GEO_COLUMNS[x])) t = min(gran_map['TimeGranularity'].values, key=lambda x: len(constant.TIME_COLUMNS[x])) return c, g, t def _check_DS_ES_granularity(param_name): """ Checks whether EfficiencyLevelSplit/NumInstances follows granularity as specified in granularity map. """ granularity_map = loaders.get_parameter("DS_ST_Granularity_Map") ds_es = get_bottomup_ds_es() valid = True for ds, es in ds_es: data_ = loaders.get_parameter(param_name, demand_sector=ds, energy_service=es) data = data_.set_index('ServiceTech') logger.debug(f"Checking granularity of {param_name} for {ds},{es}") for ST in data.index.unique(): d = data.loc[ST] d = utilities.filter_empty(d) sts = get_corresponding_sts(ds, es, ST) g = granularity_map.query( f"DemandSector == '{ds}' & ServiceTech in {sts}") ConsumerGranularity, GeographicGranularity, TimeGranularity = coarsest( g, ds) v = utilities.check_granularity_per_entity(d, ST, GeographicGranularity, TimeGranularity, ConsumerGranularity) valid = valid and v if not v: logger.error( f"Granularity check failed for {param_name} for {ST}") return valid def _check_ES_Demand_granularity(param_name): """ Checks whether ES_Demand follows granularity as specified in granularity map. """ granularity_map = loaders.get_parameter("DS_ES_EC_DemandGranularity_Map") granularity = granularity_map.set_index(['DemandSector', 'EnergyService', 'EnergyCarrier']) ds_es = get_bottomup_ds_es() valid = True for ds, es in ds_es: data_ = get_data(param_name, ds, es) for ST, data in data_.items(): d_ = data if not isinstance(data, dict): d_ = {ST: data} for item, df in d_.items(): if isinstance(df, pd.Series): df = df.to_frame() d = utilities.filter_empty(df) g = granularity.loc[(ds, es, ST_to_EC(ST))] ConsumerGranularity = get_consumer_granularity(ds, g['ConsumerGranularity']) GeographicGranularity = g['GeographicGranularity'] TimeGranularity = g['TimeGranularity'] v = utilities.check_granularity_per_entity(d, item, GeographicGranularity, TimeGranularity, ConsumerGranularity) valid = valid and v if not v: logger.error( f"Granularity check failed for {param_name} for {ST}, {item}") return valid def _check_Penetration_granularity(param_name): """ Checks whether Penetration follows granularity as specified in granularity map. """ granularity_map = loaders.get_parameter("DS_ST_Granularity_Map") ds_es = get_bottomup_ds_es() valid = True for ds, es in ds_es: data_ = get_data(param_name, ds, es) for ST, data in data_.items(): d_ = data if not isinstance(data, dict): d_ = {ST: data} for comb, df in d_.items(): if isinstance(df, pd.Series): df = df.to_frame() d = utilities.filter_empty(df) g = granularity_map.query( f"DemandSector == '{ds}' & ServiceTech in {comb}") ConsumerGranularity, GeographicGranularity, TimeGranularity = coarsest( g, ds) v = utilities.check_granularity_per_entity(d, ST, GeographicGranularity, TimeGranularity, ConsumerGranularity) valid = valid and v if not v: logger.error( f"Granularity check failed for {param_name} for {ST}, {comb}") return valid def check_ES_Demand_granularity(): return _check_ES_Demand_granularity("ES_Demand") def check_Penetration_granularity(): return _check_Penetration_granularity("Penetration") def check_numconsumers_granularity(): """ Checks whether NumConsumers data follows granularity as specified in granularity map. """ granularity = loaders.get_parameter("DS_Cons1_Map") param_name = 'NumConsumers' dslist = get_ds_list(param_name) valid = True for ds in dslist: data = loaders.get_parameter(param_name, demand_sector=ds) d = utilities.filter_empty(data) g = granularity[ds] ConsumerGranularity = get_cons_columns(ds)[-1].upper() GeographicGranularity = g[0] TimeGranularity = g[1] v = check_granularity_per_entity(data, (ds, "NumConsumers"), GeographicGranularity, TimeGranularity, ConsumerGranularity) valid = valid and v if not v: logger.error( f"Granularity check failed for {param_name} for {ds}") return valid def save_output(compute_demand): """decorator function to be applied to demand computation function. it will save the results to required destination and return same. also if results are alredy present then it will read the results and return, instaed of computing it again. """ def get_columns(d): """This is just to reorder columns""" tgc = [c for c in constant.TIME_SLICES + constant.GEOGRAPHIES + constant.CONSUMER_TYPES if c in d.columns] other = [c for c in d.columns if c not in tgc] return tgc + other @functools.wraps(compute_demand) def wrapper(*args): output_path = filemanager.get_output_path("Demand") filename = "_".join(args+('Demand',)) path = os.path.join(output_path, ".".join([filename, "csv"])) if os.path.exists(path): result = pd.read_csv(path) else: result = compute_demand(*args) result = result[get_columns(result)] result.to_csv(path, index=False) return result return wrapper def check_ST_granularity(): """ checks if granuarity is coarser than corresponding granularty in DS_ES_EC_DemandGranularity_Map for derived DS,ES,EC from DS,ST Returns ------- True or False """ DS_ES_EC_DemandGranularity_Map = loaders.get_parameter( "DS_ES_EC_DemandGranularity_Map") DS_ST_Granularity_Map = loaders.get_parameter("DS_ST_Granularity_Map") DS_ST_Granularity_Map = DS_ST_Granularity_Map.set_index( ["DemandSector", "ServiceTech"]) for item in DS_ST_Granularity_Map.index: consgran = DS_ST_Granularity_Map.loc[item]['ConsumerGranularity'] geogran = DS_ST_Granularity_Map.loc[item]['GeographicGranularity'] timegran = DS_ST_Granularity_Map.loc[item]['TimeGranularity'] ds, st = item ec = ST_to_EC(st) ds_es_ec = DS_ES_EC_DemandGranularity_Map.query( f"DemandSector == '{ds}' & EnergyCarrier == '{ec}'") def _check_gran(gran, grantype='TimeGranularity', grandata=list(constant.TIME_COLUMNS.keys())): gran_ = min( ds_es_ec[grantype].values, key=grandata.index) if not coarser(gran, gran_, grandata): logger.error( f"In DS_ST_Granularity_Map, for <{ds}, {st}> {grantype} should be coarser than or equal to {gran_}") return False return True c = _check_gran(consgran, 'ConsumerGranularity', list(constant.CONSUMER_COLUMNS.keys())) g = _check_gran(geogran, 'GeographicGranularity', list(constant.GEO_COLUMNS.keys())) t = _check_gran(timegran, 'TimeGranularity', list(constant.TIME_COLUMNS.keys())) if not all([c, g, t]): return False return True def check_total_penetration(): """checks if penetrations for each ST together with which it can appear totals less than or equal to 1 """ ds_es = get_bottomup_ds_es() valid = True for ds, es in ds_es: DS_ES_ST_Map = loaders.get_parameter("DS_ES_ST_Map") STs = [row[2:] for row in DS_ES_ST_Map if row[0] == ds and row[1] == es][0] for s in STs: es_demand = loaders.get_parameter('ES_Demand', demand_sector=ds, energy_service=es, service_tech=s) combs = [tuple(name.split(constant.ST_SEPARATOR_CHAR)) for name in es_demand.columns if s in name] p = [loaders.get_parameter('Penetration', demand_sector=ds, energy_service=es, ST_combination=c) for c in combs] indexcols = utilities.get_all_structure_columns(p[0]) p = [item.set_index(indexcols) for item in p] valid = valid and (functools.reduce( lambda x, y: x+y, [item['Penetration'] for item in p], 0) > 1).sum() == 0 if not valid: print(functools.reduce( lambda x, y: x+y, [item['Penetration'] for item in p], 0) > 1) logger.error(f"Penetration for {combs} sums more than 1!") return valid if __name__ == "__main__": pass
36.002269
157
0.590734
652b650d8ea0957351322d930d35b5d58df4a268
284
py
Python
tests/artificial/transf_RelativeDifference/trend_LinearTrend/cycle_30/ar_12/test_artificial_1024_RelativeDifference_LinearTrend_30_12_100.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/artificial/transf_RelativeDifference/trend_LinearTrend/cycle_30/ar_12/test_artificial_1024_RelativeDifference_LinearTrend_30_12_100.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/artificial/transf_RelativeDifference/trend_LinearTrend/cycle_30/ar_12/test_artificial_1024_RelativeDifference_LinearTrend_30_12_100.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 30, transform = "RelativeDifference", sigma = 0.0, exog_count = 100, ar_order = 12);
40.571429
179
0.746479
22a42c7fe8e75d64abe49976f0ecea349f002295
339
py
Python
RENAME_FILES.py
CaptainVietnam6/GoPro-output-cleaner
fbffc8ff91d2cc9845c2aab1c41a0e0f9c6ac6d4
[ "MIT" ]
null
null
null
RENAME_FILES.py
CaptainVietnam6/GoPro-output-cleaner
fbffc8ff91d2cc9845c2aab1c41a0e0f9c6ac6d4
[ "MIT" ]
null
null
null
RENAME_FILES.py
CaptainVietnam6/GoPro-output-cleaner
fbffc8ff91d2cc9845c2aab1c41a0e0f9c6ac6d4
[ "MIT" ]
null
null
null
import os suffix_count = 0 while True: if os.path.exists(f"./GoPro{suffix_count}.mp4") == True: suffix_count += 1 if os.path.exists(f"./GoPro{suffix_count}.mp4") == False: break for file in os.listdir("./"): if file.endswith(".MP4"): os.rename(file, f"GoPro{suffix_count}.mp4") suffix_count += 1
30.818182
61
0.613569
17c93798a9c2da435fb40d40e168fbd33a887e61
2,624
py
Python
tests/beos_plugin_tests/scenarios/scenarios_various_operations/007_[5.8]_Test_of_issue,_transfer_and_withdraw_.py
terradacs/beos-core
31e19170bcad573b1d498811284e62babd478f92
[ "MIT" ]
9
2019-04-04T18:46:14.000Z
2022-03-03T16:22:56.000Z
tests/beos_plugin_tests/scenarios/scenarios_various_operations/007_[5.8]_Test_of_issue,_transfer_and_withdraw_.py
terradacs/beos-core
31e19170bcad573b1d498811284e62babd478f92
[ "MIT" ]
null
null
null
tests/beos_plugin_tests/scenarios/scenarios_various_operations/007_[5.8]_Test_of_issue,_transfer_and_withdraw_.py
terradacs/beos-core
31e19170bcad573b1d498811284e62babd478f92
[ "MIT" ]
3
2019-03-19T17:45:08.000Z
2021-03-22T21:45:35.000Z
#!/usr/bin/python3 # Scenario based on test : [5.8]-Test-of-issue,-transfer-and-withdraw import os import sys import time import datetime currentdir = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(os.path.dirname(currentdir))) from beos_test_utils.beos_utils_pack import init, ActionResult, ResourceResult, VotersResult if __name__ == "__main__": try: node, summary, args, log = init(__file__) accounts = node.create_accounts(2, "20.0000 BTS") node.run_node() #Changeparams #node.changeparams(["0.0000 BTS"], 190, [55,0,60,5,8000000], [55,0,60,5,5000000], 3000000) newparams = { "beos" : { "starting_block" : 55, "next_block" : 0, "ending_block" : 60, "block_interval" : 5, "trustee_reward" : 8000000 }, "ram" : { "starting_block" : 55, "next_block" : 0, "ending_block" : 60, "block_interval" : 5, "trustee_reward" : 5000000 }, "proxy_assets" : [ "0.0000 BTS"], "ram_leftover" : 3000000, "starting_block_for_initial_witness_election":190 } node.changeparams(newparams) #Actions summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="20.0000 BTS",_memo=" internal transfer 0"), ActionResult(False, "transaction net usage is too high") ) node.wait_till_block(55) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="20.0000 BTS",_memo=" internal transfer 1") ) node.wait_till_block(62) summary.action_status(node.transfer(_from=accounts[1].name,_to=accounts[0].name,_quantity="20.0000 BTS",_memo=" internal transfer 2") ) summary.action_status(node.withdraw(_from=accounts[0].name,_bts_to="any_account",_quantity="20.0000 BTS",_memo="") ) summary.action_status(node.withdraw(_from=accounts[1].name,_bts_to="any_account",_quantity="20.0000 BTS",_memo="") ) summary.action_status(node.transfer(_from=accounts[0].name,_to=accounts[1].name,_quantity="20.0000 BTS",_memo=" internal transfer 3"), ActionResult(False, "no balance object found") ) #At end summary.user_block_status(node, accounts[0].name, ResourceResult(_balance="",_net_weight="458902003.9224 BEOS",_cpu_weight="458902003.9225 BEOS",_ram_bytes=7998080448)) summary.user_block_status(node, accounts[1].name, ResourceResult(_balance="",_net_weight="1376706011.7673 BEOS",_cpu_weight="1376706011.7674 BEOS",_ram_bytes=23994230448)) except Exception as _ex: log.exception("Exception `{0}` occures while executing `{1}` tests.".format(str(_ex), __file__)) finally: summary_status = summary.summarize() node.stop_node() exit(summary_status)
43.733333
195
0.728659
acbc1608bf68f67a0b511fe2b0f082fe4ea025ba
2,298
py
Python
chrome/common/extensions/docs/server2/redirector.py
halton/chromium-crosswalk
bfcca582b723b9535907f0b410b920ef99911b70
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
4
2017-04-05T01:51:34.000Z
2018-02-15T03:11:54.000Z
chrome/common/extensions/docs/server2/redirector.py
j4ckfrost/android_external_chromium_org
a1a3dad8b08d1fcf6b6b36c267158ed63217c780
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
1
2021-12-13T19:44:12.000Z
2021-12-13T19:44:12.000Z
chrome/common/extensions/docs/server2/redirector.py
j4ckfrost/android_external_chromium_org
a1a3dad8b08d1fcf6b6b36c267158ed63217c780
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
4
2017-04-05T01:52:03.000Z
2022-02-13T17:58:45.000Z
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import posixpath from urlparse import urlsplit from file_system import FileNotFoundError from future import Gettable, Future class Redirector(object): def __init__(self, compiled_fs_factory, file_system): self._file_system = file_system self._cache = compiled_fs_factory.ForJson(file_system) def Redirect(self, host, path): ''' Check if a path should be redirected, first according to host redirection rules, then from rules in redirects.json files. Returns the path that should be redirected to, or None if no redirection should occur. ''' return self._RedirectOldHosts(host, path) or self._RedirectFromConfig(path) def _RedirectFromConfig(self, url): ''' Lookup the redirects configuration file in the directory that contains the requested resource. If no redirection rule is matched, or no configuration file exists, returns None. ''' dirname, filename = posixpath.split(url) try: rules = self._cache.GetFromFile( posixpath.join(dirname, 'redirects.json')).Get() except FileNotFoundError: return None redirect = rules.get(filename) if redirect is None: return None if (redirect.startswith('/') or urlsplit(redirect).scheme in ('http', 'https')): return redirect return posixpath.normpath(posixpath.join('/', dirname, redirect)) def _RedirectOldHosts(self, host, path): ''' Redirect paths from the old code.google.com to the new developer.chrome.com, retaining elements like the channel and https, if used. ''' if urlsplit(host).hostname != 'code.google.com': return None path = path.split('/') if path and path[0] == 'chrome': path.pop(0) return 'https://developer.chrome.com/' + posixpath.join(*path) def Cron(self): ''' Load files during a cron run. ''' futures = [] for root, dirs, files in self._file_system.Walk(''): if 'redirects.json' in files: futures.append( self._cache.GetFromFile(posixpath.join(root, 'redirects.json'))) return Future(delegate=Gettable(lambda: [f.Get() for f in futures]))
32.828571
79
0.693211
5c31c78b9318c9e9f9f11a0f842c74e6e48ea2c1
1,075
py
Python
RecoLocalTracker/Configuration/python/RecoLocalTrackerHeavyIons_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
852
2015-01-11T21:03:51.000Z
2022-03-25T21:14:00.000Z
RecoLocalTracker/Configuration/python/RecoLocalTrackerHeavyIons_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
30,371
2015-01-02T00:14:40.000Z
2022-03-31T23:26:05.000Z
RecoLocalTracker/Configuration/python/RecoLocalTrackerHeavyIons_cff.py
ckamtsikis/cmssw
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
[ "Apache-2.0" ]
3,240
2015-01-02T05:53:18.000Z
2022-03-31T17:24:21.000Z
import FWCore.ParameterSet.Config as cms # # Tracker Local Reco # Initialize magnetic field # from RecoLocalTracker.SiStripRecHitConverter.SiStripRecHitConverter_cfi import * from RecoLocalTracker.SiStripRecHitConverter.SiStripRecHitMatcher_cfi import * from RecoLocalTracker.SiStripRecHitConverter.StripCPEfromTrackAngle_cfi import * from RecoLocalTracker.SiStripZeroSuppression.SiStripZeroSuppression_cfi import * from RecoLocalTracker.SiStripClusterizer.SiStripClusterizer_cfi import * from RecoLocalTracker.SiPixelClusterizer.SiPixelClusterizerPreSplitting_cfi import * from RecoLocalTracker.SiPixelRecHits.SiPixelRecHits_cfi import * from RecoLocalTracker.SubCollectionProducers.clustersummaryproducer_cfi import * pixeltrackerlocalrecoTask = cms.Task(siPixelClustersPreSplitting,siPixelRecHitsPreSplitting) striptrackerlocalrecoTask = cms.Task(siStripZeroSuppression,siStripClusters,siStripMatchedRecHits) trackerlocalrecoTask = cms.Task(pixeltrackerlocalrecoTask,striptrackerlocalrecoTask,clusterSummaryProducer) trackerlocalreco = cms.Sequence(trackerlocalrecoTask)
56.578947
107
0.897674
ac08d1fdb4218882feed894675dcf5a20389511e
2,435
py
Python
Job Portal with Automated Resume Screening/gensim-4.1.2/gensim/models/__init__.py
Candida18/Job-Portal-with-Automated-Resume-Screening
19d19464ad3d1714da856656753a4afdfe257b31
[ "MIT" ]
null
null
null
Job Portal with Automated Resume Screening/gensim-4.1.2/gensim/models/__init__.py
Candida18/Job-Portal-with-Automated-Resume-Screening
19d19464ad3d1714da856656753a4afdfe257b31
[ "MIT" ]
null
null
null
Job Portal with Automated Resume Screening/gensim-4.1.2/gensim/models/__init__.py
Candida18/Job-Portal-with-Automated-Resume-Screening
19d19464ad3d1714da856656753a4afdfe257b31
[ "MIT" ]
2
2022-01-15T05:36:58.000Z
2022-02-08T15:25:50.000Z
""" This package contains algorithms for extracting document representations from their raw bag-of-word counts. """ # bring model classes directly into package namespace, to save some typing from .coherencemodel import CoherenceModel # noqa:F401 from .hdpmodel import HdpModel # noqa:F401 from .ldamodel import LdaModel # noqa:F401 from .lsimodel import LsiModel # noqa:F401 from .tfidfmodel import TfidfModel # noqa:F401 from .rpmodel import RpModel # noqa:F401 from .logentropy_model import LogEntropyModel # noqa:F401 from .word2vec import Word2Vec, FAST_VERSION # noqa:F401 from .doc2vec import Doc2Vec # noqa:F401 from .keyedvectors import KeyedVectors # noqa:F401 from .ldamulticore import LdaMulticore # noqa:F401 from .phrases import Phrases # noqa:F401 from .normmodel import NormModel # noqa:F401 from .atmodel import AuthorTopicModel # noqa:F401 from .ldaseqmodel import LdaSeqModel # noqa:F401 from .fasttext import FastText # noqa:F401 from .translation_matrix import TranslationMatrix, BackMappingTranslationMatrix # noqa:F401 from .ensemblelda import EnsembleLda # noqa:F401 from .nmf import Nmf # noqa:F401 from gensim import interfaces, utils class VocabTransform(interfaces.TransformationABC): """ Remap feature ids to new values. Given a mapping between old ids and new ids (some old ids may be missing = these features are to be discarded), this will wrap a corpus so that iterating over `VocabTransform[corpus]` returns the same vectors but with the new ids. Old features that have no counterpart in the new ids are discarded. This can be used to filter vocabulary of a corpus "online": .. sourcecode:: pycon >>> old2new = {oldid: newid for newid, oldid in enumerate(ids_you_want_to_keep)} >>> vt = VocabTransform(old2new) >>> for vec_with_new_ids in vt[corpus_with_old_ids]: >>> pass """ def __init__(self, old2new, id2token=None): self.old2new = old2new self.id2token = id2token def __getitem__(self, bow): """ Return representation with the ids transformed. """ # if the input vector is in fact a corpus, return a transformed corpus as a result is_corpus, bow = utils.is_corpus(bow) if is_corpus: return self._apply(bow) return sorted((self.old2new[oldid], weight) for oldid, weight in bow if oldid in self.old2new)
38.046875
102
0.726899
d69ab7e018423ff264d2053d8f2bc31058fb51d5
8,158
py
Python
darshan-util/pydarshan/darshan/experimental/plots/matplotlib.py
srini009/darshan
06faec6ae09081078da1d85e3737928361ade8f1
[ "mpich2" ]
31
2021-05-13T08:55:57.000Z
2022-03-17T17:41:01.000Z
darshan-util/pydarshan/darshan/experimental/plots/matplotlib.py
srini009/darshan
06faec6ae09081078da1d85e3737928361ade8f1
[ "mpich2" ]
655
2021-05-12T23:56:25.000Z
2022-03-31T20:35:49.000Z
darshan-util/pydarshan/darshan/experimental/plots/matplotlib.py
srini009/darshan
06faec6ae09081078da1d85e3737928361ade8f1
[ "mpich2" ]
18
2021-05-13T14:47:56.000Z
2022-03-28T19:49:18.000Z
# -*- coding: utf-8 -*- from darshan.report import * import matplotlib import matplotlib.pyplot as plt import numpy as np def plot_access_histogram(self, mod, filter=None, data=None): """ Plots a histogram of access sizes for specified module. :param log: Handle for an opened darshan log. :param str filter: Name of the module to generate plot for. :param data: Array/Dictionary for use with custom data. """ # TODO: change to self.summary if 'mod_agg_iohist' in dir(self): print("Summarizing... iohist", mod) self.mod_agg_iohist(mod) else: print("Can not create summary, mod_agg_iohist aggregator is not registered with the report class.") # defaults labels = ['0-100', '101-1K', '1K-10K', '10K-100K', '100K-1M', '1M-4M', '4M-10M', '10M-100M', '100M-1G', '1G+'] read_vals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] write_vals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] posix = self.summary['agg_iohist'][mod] read_vals = [ posix['READ_0_100'], posix['READ_100_1K'], posix['READ_1K_10K'], posix['READ_10K_100K'], posix['READ_100K_1M'], posix['READ_1M_4M'], posix['READ_4M_10M'], posix['READ_10M_100M'], posix['READ_100M_1G'], posix['READ_1G_PLUS'] ] write_vals = [ posix['WRITE_0_100'], posix['WRITE_100_1K'], posix['WRITE_1K_10K'], posix['WRITE_10K_100K'], posix['WRITE_100K_1M'], posix['WRITE_1M_4M'], posix['WRITE_4M_10M'], posix['WRITE_10M_100M'], posix['WRITE_100M_1G'], posix['WRITE_1G_PLUS'] ] x = np.arange(len(labels)) # the label locations width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, read_vals, width, label='Read') rects2 = ax.bar(x + width/2, write_vals, width, label='Write') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Count') ax.set_title('Historgram of Access Sizes: ' + str(mod)) ax.set_xticks(x) ax.set_xticklabels(labels, rotation=45, ha='right') ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom', rotation=0) autolabel(rects1) autolabel(rects2) fig.tight_layout() #plt.show() return plt def plot_time_summary(self, filter=None, data=None): """ TODO: Not implemented. :param log: Handle for an opened darshan log. :param str filter: Name of the module to generate plot for. :param data: Array/Dictionary for use with custom data. """ pass def plot_opcounts(self, filter=None, data=None, return_csv=False): """ Generates a baor chart summary for operation counts. :param log: Handle for an opened darshan log. :param str filter: Name of the module to generate plot for. :param data: Array/Dictionary for use with custom data. """ # defaults labels = ['Read', 'Write', 'Open', 'Stat', 'Seek', 'Mmap', 'Fsync'] posix_vals = [0, 0, 0, 0, 0, 0, 0] mpiind_vals = [0, 0, 0, 0, 0, 0, 0] mpicol_vals = [0, 0, 0, 0, 0, 0, 0] stdio_vals = [0, 0, 0, 0, 0, 0, 0] # TODO: change to self.summary if 'agg_ioops' in dir(self): print("Summarizing... agg_ioops") self.agg_ioops() else: print("Can not create summary, agg_ioops aggregator is not registered with the report clase.") mods = self.summary['agg_ioops'] # Gather POSIX if 'POSIX' in mods: #posix_record = backend.log_get_posix_record(log) #posix = dict(zip(backend.counter_names("POSIX"), posix_record['counters'])) posix = mods['POSIX'] posix_vals = [ posix['POSIX_READS'], posix['POSIX_WRITES'], posix['POSIX_OPENS'], posix['POSIX_STATS'], posix['POSIX_SEEKS'], 0, # faulty? posix['POSIX_MMAPS'], posix['POSIX_FSYNCS'] + posix['POSIX_FDSYNCS'] ] # Gather MPIIO if 'MPI-IO' in mods: #mpiio_record = backend.log_get_mpiio_record(log) #mpiio = dict(zip(backend.counter_names("mpiio"), mpiio_record['counters'])) mpiio = mods['MPI-IO'] mpiind_vals = [ mpiio['MPIIO_INDEP_READS'], mpiio['MPIIO_INDEP_WRITES'], mpiio['MPIIO_INDEP_OPENS'], 0, # stat 0, # seek 0, # mmap 0, # sync ] mpicol_vals = [ mpiio['MPIIO_COLL_READS'], mpiio['MPIIO_COLL_WRITES'], mpiio['MPIIO_COLL_OPENS'], 0, # stat 0, # seek 0, # mmap mpiio['MPIIO_SYNCS'] ] # Gather Stdio if 'STDIO' in mods: #stdio_record = backend.log_get_stdio_record(log) #stdio = dict(zip(backend.counter_names("STDIO"), stdio_record['counters'])) stdio = mods['STDIO'] stdio_vals = [ stdio['STDIO_READS'], stdio['STDIO_WRITES'], stdio['STDIO_OPENS'], 0, # stat stdio['STDIO_SEEKS'], 0, # mmap stdio['STDIO_FLUSHES'] ] def as_csv(): text = "" text += ','.join(labels) + ',Layer' + "\n" text += ','.join(str(x) for x in posix_vals) + ',POSIX' + "\n" text += ','.join(str(x) for x in mpiind_vals) + ',MPIIND' + "\n" text += ','.join(str(x) for x in mpicol_vals) + ',MPICOL' + "\n" text += ','.join(str(x) for x in stdio_vals) + ',STDIO' + "\n" return text print(as_csv()) x = np.arange(len(labels)) # the label locations width = 0.15 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2 - width, posix_vals, width, label='POSIX') rects2 = ax.bar(x - width/2, mpiind_vals, width, label='MPI-IO Indep.') rects3 = ax.bar(x + width/2, mpicol_vals, width, label='MPI-IO Coll.') rects4 = ax.bar(x + width/2 + width, stdio_vals, width, label='STDIO') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Count') ax.set_title('I/O Operation Counts') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate( '{}'.format(height), xy=(rect.get_x() + rect.get_width() / 4 + rect.get_width(), height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom', rotation=45 ) autolabel(rects1) autolabel(rects2) autolabel(rects3) autolabel(rects4) fig.tight_layout() #plt.show() if return_csv: return plt, as_csv() else: return plt def plot_timeline(self, filter=None, data=None): """ Plots a timeline of opened files. :param log: Handle for an opened darshan log. :param str filter: Name of the module to generate plot for. :param data: Array/Dictionary for use with custom data. """ fig, ax = plt.subplots() ax.broken_barh([(110, 30), (150, 10)], (10, 9), facecolors='tab:blue') ax.broken_barh([(10, 50), (100, 20), (130, 10)], (20, 9), facecolors=('tab:orange', 'tab:green', 'tab:red')) ax.set_ylim(5, 35) ax.set_xlim(0, 200) ax.set_xlabel('seconds since start') ax.set_yticks([15, 25]) ax.set_yticklabels(['Rank 0', 'Rank 1']) ax.set_title('TODO: This is only a placeholder.') ax.grid(True) plt.show()
27.560811
114
0.566683
3bfdcf36684e73f462c89be06bd31b9439608de8
3,946
py
Python
dateparser/data/date_translation_data/br.py
bsekiewicz/dateparser
babc677372376d933de5542010af3097c26e49e9
[ "BSD-3-Clause" ]
1,804
2015-01-01T23:01:54.000Z
2022-03-30T18:36:16.000Z
dateparser/data/date_translation_data/br.py
bsekiewicz/dateparser
babc677372376d933de5542010af3097c26e49e9
[ "BSD-3-Clause" ]
948
2015-01-04T22:18:39.000Z
2022-03-31T16:29:41.000Z
dateparser/data/date_translation_data/br.py
bsekiewicz/dateparser
babc677372376d933de5542010af3097c26e49e9
[ "BSD-3-Clause" ]
463
2015-01-10T08:53:39.000Z
2022-03-18T12:45:49.000Z
info = { "name": "br", "date_order": "YMD", "january": [ "gen", "genver" ], "february": [ "c'hwe", "c'hwevrer" ], "march": [ "meur", "meurzh" ], "april": [ "ebr", "ebrel" ], "may": [ "mae" ], "june": [ "mezh", "mezheven" ], "july": [ "goue", "gouere" ], "august": [ "eost" ], "september": [ "gwen", "gwengolo" ], "october": [ "here" ], "november": [ "du" ], "december": [ "ker", "kerzu", "kzu" ], "monday": [ "lun" ], "tuesday": [ "meu", "meurzh" ], "wednesday": [ "mer", "merc'her" ], "thursday": [ "yaou" ], "friday": [ "gwe", "gwener" ], "saturday": [ "sad", "sadorn" ], "sunday": [ "sul" ], "am": [ "am" ], "pm": [ "gm" ], "year": [ "bl", "bloaz" ], "month": [ "miz" ], "week": [ "sizhun" ], "day": [ "d", "deiz" ], "hour": [ "e", "eur" ], "minute": [ "min", "munut" ], "second": [ "eilenn", "s" ], "relative-type": { "0 day ago": [ "hiziv" ], "0 hour ago": [ "this hour" ], "0 minute ago": [ "this minute" ], "0 month ago": [ "ar miz-mañ" ], "0 second ago": [ "brem", "bremañ" ], "0 week ago": [ "ar sizhun-mañ" ], "0 year ago": [ "hevlene" ], "1 day ago": [ "dec'h" ], "1 month ago": [ "ar miz diaraok" ], "1 week ago": [ "ar sizhun diaraok" ], "1 year ago": [ "warlene" ], "in 1 day": [ "warc'hoazh" ], "in 1 month": [ "ar miz a zeu" ], "in 1 week": [ "ar sizhun a zeu" ], "in 1 year": [ "ar bl a zeu", "ar bloaz a zeu" ] }, "relative-type-regex": { "\\1 day ago": [ "(\\d+) d zo", "(\\d+) deiz zo" ], "\\1 hour ago": [ "(\\d+) e zo", "(\\d+) eur zo" ], "\\1 minute ago": [ "(\\d+) min zo", "(\\d+) munut zo" ], "\\1 month ago": [ "(\\d+) miz zo" ], "\\1 second ago": [ "(\\d+) eilenn zo", "(\\d+) s zo" ], "\\1 week ago": [ "(\\d+) sizhun zo" ], "\\1 year ago": [ "(\\d+) bl zo", "(\\d+) bloaz zo", "(\\d+) vloaz zo" ], "in \\1 day": [ "a-benn (\\d+) d", "a-benn (\\d+) deiz" ], "in \\1 hour": [ "a-benn (\\d+) e", "a-benn (\\d+) eur" ], "in \\1 minute": [ "a-benn (\\d+) min", "a-benn (\\d+) munut" ], "in \\1 month": [ "a-benn (\\d+) miz" ], "in \\1 second": [ "a-benn (\\d+) eilenn", "a-benn (\\d+) s" ], "in \\1 week": [ "a-benn (\\d+) sizhun" ], "in \\1 year": [ "a-benn (\\d+) bl", "a-benn (\\d+) bloaz", "a-benn (\\d+) vloaz" ] }, "locale_specific": {}, "skip": [ " ", "'", ",", "-", ".", "/", ";", "@", "[", "]", "|", "," ] }
17.38326
35
0.254688
abe1258b64a50deb6d6b262e4e9ef7b59caa6d84
448
py
Python
.base_lessons/Loops/Break keyword/break_keyword.py
dannymeijer/level-up-with-python
1bd1169aafd0fdc124984c30edc7f0153626cf06
[ "MIT" ]
null
null
null
.base_lessons/Loops/Break keyword/break_keyword.py
dannymeijer/level-up-with-python
1bd1169aafd0fdc124984c30edc7f0153626cf06
[ "MIT" ]
null
null
null
.base_lessons/Loops/Break keyword/break_keyword.py
dannymeijer/level-up-with-python
1bd1169aafd0fdc124984c30edc7f0153626cf06
[ "MIT" ]
null
null
null
count = 0 while True: # this condition cannot possibly be false print(count) count += 1 if count >= 5: break # exit loop if count >= 5 zoo = ["lion", "tiger", "elephant"] while True: # this condition cannot possibly be false animal = zoo.pop() # extract one element from the list end print(animal) if exit loop if animal is "elephant": break # exit loop
28
77
0.5625
332642d9e2c3df865d3b7adc4353eb4716cd068c
26,913
py
Python
tensorflow/python/training/saver_test.py
matsuyama/tensorflow
a27d844e05447e65aa279ae5269a2d75590f46f6
[ "Apache-2.0" ]
1
2016-07-03T20:16:31.000Z
2016-07-03T20:16:31.000Z
tensorflow/python/training/saver_test.py
matsuyama/tensorflow
a27d844e05447e65aa279ae5269a2d75590f46f6
[ "Apache-2.0" ]
null
null
null
tensorflow/python/training/saver_test.py
matsuyama/tensorflow
a27d844e05447e65aa279ae5269a2d75590f46f6
[ "Apache-2.0" ]
1
2021-03-16T21:45:10.000Z
2021-03-16T21:45:10.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.io_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import time import contextlib import shutil import tempfile import tensorflow.python.platform import tensorflow as tf import numpy as np import six from tensorflow.python.platform import gfile class SaverTest(tf.test.TestCase): def testBasics(self): save_path = os.path.join(self.get_temp_dir(), "basics") with self.test_session() as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, restore_sequentially=True) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Start a second session. In that session the parameter nodes # have not been initialized either. with self.test_session() as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v0" in e.message): sess.run(v0) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v1" in e.message): sess.run(v1) # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.test_session() as sess: v0_2 = tf.Variable(1000.0, name="v0") v1_2 = tf.Variable(2000.0, name="v1") save2 = tf.train.Saver({"v0": v0_2, "v1": v1_2}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(1000.0, v0_2.eval()) self.assertEqual(2000.0, v1_2.eval()) # Restore the values saved earlier in the parameter nodes. save2.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0_2.eval()) self.assertEqual(20.0, v1_2.eval()) def testInt64(self): save_path = os.path.join(self.get_temp_dir(), "int64") with self.test_session() as sess: # Build a graph with 1 node, and save and restore for them. v = tf.Variable(np.int64(15), name="v") save = tf.train.Saver({"v": v}, restore_sequentially=True) tf.initialize_all_variables().run() # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) with self.test_session() as sess: v = tf.Variable(np.int64(-1), name="v") save = tf.train.Saver({"v": v}) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v" in e.message): sess.run(v) # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(np.int64(15), v.eval()) def testSomeErrors(self): with tf.Graph().as_default(): v0 = tf.Variable([10.0], name="v0") v1 = tf.Variable([20.0], name="v1") v2 = tf.Variable([20.0], name="v2") v2._set_save_slice_info(tf.Variable.SaveSliceInfo("v1", [1], [0], [1])) # By default the name used for "v2" will be "v1" and raise an error. with self.assertRaisesRegexp(ValueError, "same name: v1"): tf.train.Saver([v0, v1, v2]) # The names are different and will work. tf.train.Saver({"vee1": v1, "other": [v2]}) def testBasicsWithListOfVariables(self): save_path = os.path.join(self.get_temp_dir(), "basics_with_list") with self.test_session(graph=tf.Graph()) as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver([v0, v1]) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Start a second session. In that session the variables # have not been initialized either. with self.test_session(graph=tf.Graph()) as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") save = tf.train.Saver([v0, v1]) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v0" in e.message): sess.run(v0) with self.assertRaisesWithPredicateMatch( tf.OpError, lambda e: "uninitialized value v1" in e.message): sess.run(v1) # Restore the saved values in the parameter nodes. save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Build another graph with 2 nodes, initialized # differently, and a Restore node for them. with self.test_session(graph=tf.Graph()) as sess: v0_2 = tf.Variable(1000.0, name="v0") v1_2 = tf.Variable(2000.0, name="v1") save2 = tf.train.Saver([v0_2, v1_2]) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(1000.0, v0_2.eval()) self.assertEqual(2000.0, v1_2.eval()) # Restore the values saved earlier in the parameter nodes. save2.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0_2.eval()) self.assertEqual(20.0, v1_2.eval()) def _SaveAndLoad(self, var_name, var_value, other_value, save_path): with self.test_session() as sess: var = tf.Variable(var_value, name=var_name) save = tf.train.Saver({var_name: var}) var.initializer.run() val = save.save(sess, save_path) self.assertEqual(save_path, val) with self.test_session() as sess: var = tf.Variable(other_value, name=var_name) save = tf.train.Saver({var_name: var}) save.restore(sess, save_path) self.assertAllClose(var_value, var.eval()) def testCacheRereadsFile(self): save_path = os.path.join(self.get_temp_dir(), "cache_rereads") # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) # Save and reload one Variable named "var1" in the same file. # The cached readers should know to re-read the file. self._SaveAndLoad("var1", 1.1, 2.2, save_path) def testGPU(self): if not tf.test.IsBuiltWithCuda(): return save_path = os.path.join(self.get_temp_dir(), "gpu") with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_1 = tf.Variable(123.45) save = tf.train.Saver({"v0": v0_1}) tf.initialize_all_variables().run() save.save(sess, save_path) with tf.Session("", graph=tf.Graph()) as sess: with sess.graph.device("/gpu:0"): v0_2 = tf.Variable(543.21) save = tf.train.Saver({"v0": v0_2}) tf.initialize_all_variables().run() self.assertAllClose(543.21, v0_2.eval()) save.restore(sess, save_path) self.assertAllClose(123.45, v0_2.eval()) def testVariables(self): save_path = os.path.join(self.get_temp_dir(), "variables") with tf.Session("", graph=tf.Graph()) as sess: one = tf.Variable(1.0) twos = tf.Variable([2.0, 2.0, 2.0]) init = tf.initialize_all_variables() save = tf.train.Saver(tf.all_variables()) init.run() save.save(sess, save_path) with tf.Session("", graph=tf.Graph()) as sess: one = tf.Variable(0.0) twos = tf.Variable([0.0, 0.0, 0.0]) # Saver with no arg, defaults to 'all variables'. save = tf.train.Saver() save.restore(sess, save_path) self.assertAllClose(1.0, one.eval()) self.assertAllClose([2.0, 2.0, 2.0], twos.eval()) def testSaveWithGlobalStep(self): save_path = os.path.join(self.get_temp_dir(), "ckpt_with_global_step") global_step_int = 5 # Save and reload one Variable named "var0". self._SaveAndLoad("var0", 0.0, 1.0, save_path) for use_tensor in [True, False]: with self.test_session() as sess: var = tf.Variable(1.0, name="var0") save = tf.train.Saver({var.op.name: var}) var.initializer.run() if use_tensor: global_step = tf.constant(global_step_int) val = save.save(sess, save_path, global_step=global_step) else: val = save.save(sess, save_path, global_step=global_step_int) expected_save_path = "%s-%d" % (save_path, global_step_int) self.assertEqual(expected_save_path, val) class SaveRestoreShardedTest(tf.test.TestCase): def testBasics(self): save_path = os.path.join(self.get_temp_dir(), "sharded") # Build a graph with 2 parameter nodes on different devices. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(10, name="v0") with sess.graph.device("/cpu:1"): v1 = tf.Variable(20, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True) tf.initialize_all_variables().run() val = save.save(sess, save_path) self.assertEqual(save_path + "-?????-of-00002", val) # Restore a different "v0" from shard 0 of the saved files. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") save = tf.train.Saver({"v0": v0}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(111, v0.eval()) save.restore(sess, save_path + "-00000-of-00002") self.assertEqual(10, v0.eval()) # Restore a different "v1" from shard 1 of the saved files. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v1 = tf.Variable(222) save = tf.train.Saver({"v1": v1}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(222, v1.eval()) save.restore(sess, save_path + "-00001-of-00002") self.assertEqual(20, v1.eval()) # Now try a restore with the sharded filename. with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") with sess.graph.device("/cpu:1"): v1 = tf.Variable(222, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True) tf.initialize_all_variables().run() self.assertEqual(111, v0.eval()) self.assertEqual(222, v1.eval()) save_path = os.path.join(self.get_temp_dir(), "sharded") save.restore(sess, save_path + "-?????-of-?????") self.assertEqual(10, v0.eval()) self.assertEqual(20, v1.eval()) self.assertEqual( tf.train.latest_checkpoint(self.get_temp_dir()), os.path.join(self.get_temp_dir(), "sharded-?????-of-00002")) def testSaverDef(self): with self.test_session(): v0 = tf.Variable(123, name="v0") save = tf.train.Saver({"v0": v0}, sharded=True) sd = save.as_saver_def() self.assertTrue(sd.sharded) class MaxToKeepTest(tf.test.TestCase): def testNonSharded(self): save_dir = os.path.join(self.get_temp_dir(), "max_to_keep_non_sharded") try: gfile.DeleteRecursively(save_dir) except OSError: pass # Ignore gfile.MakeDirs(save_dir) with self.test_session() as sess: v = tf.Variable(10.0, name="v") save = tf.train.Saver({"v": v}, max_to_keep=2) tf.initialize_all_variables().run() self.assertEqual([], save.last_checkpoints) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) self.assertTrue(gfile.Exists(s1)) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertTrue(gfile.Exists(s1)) self.assertTrue(gfile.Exists(s2)) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertFalse(gfile.Exists(s1)) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s3)) # Create a second helper, identical to the first. save2 = tf.train.Saver(saver_def=save.as_saver_def()) save2.set_last_checkpoints(save.last_checkpoints) # Create a third helper, with the same configuration but no knowledge of # previous checkpoints. save3 = tf.train.Saver(saver_def=save.as_saver_def()) # Exercise the first helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save.last_checkpoints) self.assertFalse(gfile.Exists(s1)) self.assertTrue(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save.last_checkpoints) self.assertFalse(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s1)) # Exercise the second helper. # Adding s2 again (old s2 is removed first, then new s2 appended) s2 = save2.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s3, s2], save2.last_checkpoints) # Created by the first helper. self.assertTrue(gfile.Exists(s1)) # Deleted by the first helper. self.assertFalse(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) # Adding s1 (s3 should now be deleted as oldest in list) s1 = save2.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save2.last_checkpoints) self.assertFalse(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s1)) # Exercise the third helper. # Adding s2 again (but helper is unaware of previous s2) s2 = save3.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s2], save3.last_checkpoints) # Created by the first helper. self.assertTrue(gfile.Exists(s1)) # Deleted by the first helper. self.assertFalse(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) # Adding s1 (s3 should not be deleted because helper is unaware of it) s1 = save3.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s2, s1], save3.last_checkpoints) self.assertFalse(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s1)) def testSharded(self): save_dir = os.path.join(self.get_temp_dir(), "max_to_keep_sharded") try: gfile.DeleteRecursively(save_dir) except OSError: pass # Ignore gfile.MakeDirs(save_dir) with tf.Session( target="", config=tf.ConfigProto(device_count={"CPU": 2})) as sess: with sess.graph.device("/cpu:0"): v0 = tf.Variable(111, name="v0") with sess.graph.device("/cpu:1"): v1 = tf.Variable(222, name="v1") save = tf.train.Saver({"v0": v0, "v1": v1}, sharded=True, max_to_keep=2) tf.initialize_all_variables().run() self.assertEqual([], save.last_checkpoints) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) self.assertEquals(2, len(gfile.Glob(s1))) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) self.assertEquals(2, len(gfile.Glob(s1))) self.assertEquals(2, len(gfile.Glob(s2))) s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) self.assertEquals(0, len(gfile.Glob(s1))) self.assertEquals(2, len(gfile.Glob(s2))) self.assertEquals(2, len(gfile.Glob(s3))) class KeepCheckpointEveryNHoursTest(tf.test.TestCase): def testNonSharded(self): save_dir = os.path.join(self.get_temp_dir(), "keep_checkpoint_every_n_hours") try: gfile.DeleteRecursively(save_dir) except OSError: pass # Ignore gfile.MakeDirs(save_dir) with self.test_session() as sess: v = tf.Variable([10.0], name="v") # Run the initializer NOW to avoid the 0.5s overhead of the first Run() # call, which throws the test timing off in fastbuild mode. tf.initialize_all_variables().run() # Create a saver that will keep the last 2 checkpoints plus one every 0.7 # seconds. start_time = time.time() save = tf.train.Saver({"v": v}, max_to_keep=2, keep_checkpoint_every_n_hours=0.7 / 3600) self.assertEqual([], save.last_checkpoints) # Wait till 0.7 second have elapsed so s1 will be old enough to keep. time.sleep((time.time() + 0.7) - start_time) s1 = save.save(sess, os.path.join(save_dir, "s1")) self.assertEqual([s1], save.last_checkpoints) s2 = save.save(sess, os.path.join(save_dir, "s2")) self.assertEqual([s1, s2], save.last_checkpoints) # We now have 2 'last_checkpoints': [s1, s2]. The next call to Save(), # would normally delete s1, because max_to_keep is 2. However, s1 is # older than 0.7s so we must keep it. s3 = save.save(sess, os.path.join(save_dir, "s3")) self.assertEqual([s2, s3], save.last_checkpoints) # s1 should still be here, we are Not checking now to reduce time # variance in the test. # We now have 2 'last_checkpoints': [s2, s3], and s1 on disk. The next # call to Save(), will delete s2, because max_to_keep is 2, and because # we already kept the old s1. s2 is very close in time to s1 so it gets # deleted. s4 = save.save(sess, os.path.join(save_dir, "s4")) self.assertEqual([s3, s4], save.last_checkpoints) # Check that s1 is still here, but s2 is gone. self.assertTrue(gfile.Exists(s1)) self.assertFalse(gfile.Exists(s2)) self.assertTrue(gfile.Exists(s3)) self.assertTrue(gfile.Exists(s4)) class SaveRestoreWithVariableNameMap(tf.test.TestCase): def testNonReshape(self): save_path = os.path.join(self.get_temp_dir(), "basics") with self.test_session() as sess: # Build a graph with 2 parameter nodes, and Save and # Restore nodes for them. v0 = tf.Variable(10.0, name="v0") v1 = tf.Variable(20.0, name="v1") save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) tf.initialize_all_variables().run() # Check that the parameter nodes have been initialized. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Save the initialized values in the file at "save_path" # Use a variable name map to set the saved tensor names val = save.save(sess, save_path) self.assertTrue(isinstance(val, six.string_types)) self.assertEqual(save_path, val) # Verify that the original names are not in the Saved file save = tf.train.Saver({"v0": v0, "v1": v1}) with self.assertRaisesOpError("not found in checkpoint"): save.restore(sess, save_path) # Verify that the mapped names are present in the Saved file and can be # Restored using remapped names. with self.test_session() as sess: v0 = tf.Variable(-1.0, name="v0") v1 = tf.Variable(-1.0, name="v1") with self.assertRaisesOpError("uninitialized value v0"): sess.run(v0) with self.assertRaisesOpError("uninitialized value v1"): sess.run(v1) save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) # Add a prefix to the node names in the current graph and Restore using # remapped names. with self.test_session() as sess: v0 = tf.Variable(-1.0, name="restore_prefix/v0") v1 = tf.Variable(-1.0, name="restore_prefix/v1") with self.assertRaisesOpError("uninitialized value restore_prefix/v0"): sess.run(v0) with self.assertRaisesOpError("uninitialized value restore_prefix/v1"): sess.run(v1) # Restore the saved values in the parameter nodes. save = tf.train.Saver({"save_prefix/v0": v0, "save_prefix/v1": v1}) save.restore(sess, save_path) # Check that the parameter nodes have been restored. self.assertEqual(10.0, v0.eval()) self.assertEqual(20.0, v1.eval()) class LatestCheckpointWithRelativePaths(tf.test.TestCase): @staticmethod @contextlib.contextmanager def tempWorkingDir(temppath): cwd = os.getcwd() os.chdir(temppath) try: yield finally: os.chdir(cwd) @staticmethod @contextlib.contextmanager def tempDir(): tempdir = tempfile.mkdtemp() try: yield tempdir finally: shutil.rmtree(tempdir) def testRelativePath(self): # Make sure we have a clean directory to work in. with self.tempDir() as tempdir: # Jump to that directory until this test is done. with self.tempWorkingDir(tempdir): # Save training snapshots to a relative path. traindir = "train/" os.mkdir(traindir) filename = "snapshot" filepath = os.path.join(traindir, filename) with self.test_session() as sess: # Build a simple graph. v0 = tf.Variable(0.0) inc = v0.assign_add(1.0) save = tf.train.Saver({"v0": v0}) # Record a short training history. tf.initialize_all_variables().run() save.save(sess, filepath, global_step=0) inc.eval() save.save(sess, filepath, global_step=1) inc.eval() save.save(sess, filepath, global_step=2) with self.test_session() as sess: # Build a new graph with different initialization. v0 = tf.Variable(-1.0) # Create a new saver. save = tf.train.Saver({"v0": v0}) tf.initialize_all_variables().run() # Get the most recent checkpoint name from the training history file. name = tf.train.latest_checkpoint(traindir) self.assertIsNotNone(name) # Restore "v0" from that checkpoint. save.restore(sess, name) self.assertEquals(v0.eval(), 2.0) class CheckpointStateTest(tf.test.TestCase): def _TestDir(self, test_name): test_dir = os.path.join(self.get_temp_dir(), test_name) if os.path.exists(test_dir): shutil.rmtree(test_dir) gfile.MakeDirs(test_dir) return test_dir def testAbsPath(self): save_dir = self._TestDir("abs_paths") abs_path = os.path.join(save_dir, "model-0") ckpt = tf.train.generate_checkpoint_state_proto(save_dir, abs_path) self.assertEqual(ckpt.model_checkpoint_path, abs_path) self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path)) self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path) def testRelPath(self): train_dir = "train" model = os.path.join(train_dir, "model-0") # model_checkpoint_path should have no "train" directory part. new_rel_path = "model-0" ckpt = tf.train.generate_checkpoint_state_proto(train_dir, model) self.assertEqual(ckpt.model_checkpoint_path, new_rel_path) self.assertEqual(len(ckpt.all_model_checkpoint_paths), 1) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], new_rel_path) def testAllModelCheckpointPaths(self): save_dir = self._TestDir("all_models_test") abs_path = os.path.join(save_dir, "model-0") for paths in [None, [], ["model-2"]]: ckpt = tf.train.generate_checkpoint_state_proto( save_dir, abs_path, all_model_checkpoint_paths=paths) self.assertEqual(ckpt.model_checkpoint_path, abs_path) self.assertTrue(os.path.isabs(ckpt.model_checkpoint_path)) self.assertEqual( len(ckpt.all_model_checkpoint_paths), len(paths) if paths else 1) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], abs_path) def testUpdateCheckpointState(self): save_dir = self._TestDir("update_checkpoint_state") os.chdir(save_dir) # Make a temporary train directory. train_dir = "train" os.mkdir(train_dir) abs_path = os.path.join(save_dir, "model-0") rel_path = "train/model-2" tf.train.update_checkpoint_state( train_dir, rel_path, all_model_checkpoint_paths=[abs_path, rel_path]) ckpt = tf.train.get_checkpoint_state(train_dir) self.assertEqual(ckpt.model_checkpoint_path, rel_path) self.assertEqual(len(ckpt.all_model_checkpoint_paths), 2) self.assertEqual(ckpt.all_model_checkpoint_paths[-1], rel_path) self.assertEqual(ckpt.all_model_checkpoint_paths[0], abs_path) if __name__ == "__main__": tf.test.main()
37.431154
80
0.651953
f37665c1f1472e4e0ad8debc4a113347b1a021d0
580
py
Python
postgresql/python/main.py
srgnk/aiven-examples
d4c959abb45cf5d3e80f4a3db7ee4e34266a68a1
[ "Apache-2.0" ]
14
2020-08-01T06:15:12.000Z
2022-03-07T15:45:10.000Z
postgresql/python/main.py
srgnk/aiven-examples
d4c959abb45cf5d3e80f4a3db7ee4e34266a68a1
[ "Apache-2.0" ]
5
2022-01-11T20:02:47.000Z
2022-01-19T13:19:39.000Z
postgresql/python/main.py
srgnk/aiven-examples
d4c959abb45cf5d3e80f4a3db7ee4e34266a68a1
[ "Apache-2.0" ]
10
2020-06-16T11:31:28.000Z
2022-02-20T20:31:35.000Z
#!/usr/bin/env python3 # Copyright (c) 2018 Aiven, Helsinki, Finland. https://aiven.io/ import argparse import psycopg2 def main(): parser = argparse.ArgumentParser() parser.add_argument('--service-uri', help="Postgres Service URI (obtained from Aiven console)", required=True) args = parser.parse_args() db_conn = psycopg2.connect(args.service_uri) cursor = db_conn.cursor() cursor.execute("SELECT current_database()") result = cursor.fetchone() print("Successfully connected to: {}".format(result[0])) if __name__ == "__main__": main()
26.363636
114
0.698276
8e908cf508021b496a1e25a6aaa7f9abe8617093
924
py
Python
tests/data/expected/main/main_nested_directory/person.py
adaamz/datamodel-code-generator
3b34573f35f8d420e4668a85047c757fd1da7754
[ "MIT" ]
891
2019-07-23T04:23:32.000Z
2022-03-31T13:36:33.000Z
tests/data/expected/main/main_nested_directory/person.py
adaamz/datamodel-code-generator
3b34573f35f8d420e4668a85047c757fd1da7754
[ "MIT" ]
663
2019-07-23T09:50:26.000Z
2022-03-29T01:56:55.000Z
tests/data/expected/main/main_nested_directory/person.py
adaamz/datamodel-code-generator
3b34573f35f8d420e4668a85047c757fd1da7754
[ "MIT" ]
108
2019-07-23T08:50:37.000Z
2022-03-09T10:50:22.000Z
# generated by datamodel-codegen: # filename: person.json # timestamp: 2019-07-26T00:00:00+00:00 from __future__ import annotations from typing import Any, List, Optional, Union from pydantic import BaseModel, Field, conint from .definitions import food, friends, pet from .definitions.drink import coffee, tea from .definitions.machine import robot class Person(BaseModel): first_name: str = Field(..., description="The person's first name.") last_name: str = Field(..., description="The person's last name.") age: Optional[conint(ge=0)] = Field(None, description='Age in years.') pets: Optional[List[pet.Pet]] = None friends: Optional[friends.Friends] = None robot: Optional[robot.Robot] = None comment: Optional[Any] = None drink: Optional[List[Union[coffee.Coffee, tea.Tea]]] = None food: Optional[List[Union[food.Noodle, food.Soup]]] = None Person.update_forward_refs()
31.862069
74
0.719697
63ee21c01052b1b3d5dbbeead1669b5d77aa4ffd
11,779
py
Python
dspn/data.py
zzirnheld/dspn
e0c248d9e55821847841cf0c67e97225277a6e75
[ "MIT" ]
null
null
null
dspn/data.py
zzirnheld/dspn
e0c248d9e55821847841cf0c67e97225277a6e75
[ "MIT" ]
null
null
null
dspn/data.py
zzirnheld/dspn
e0c248d9e55821847841cf0c67e97225277a6e75
[ "MIT" ]
null
null
null
import os import math import random import json import torch import torch.utils.data import torchvision import torchvision.transforms as transforms import torchvision.transforms.functional as T import h5py import numpy as np import pandas def get_loader(dataset, batch_size, num_workers=8, shuffle=True): dl = torch.utils.data.DataLoader( dataset, shuffle=shuffle, batch_size=batch_size, pin_memory=True, num_workers=num_workers, drop_last=True, ) print(f'datatset len: {len(dataset)}, dataloader len: {len(dl)}') return dl class LHCSet(torch.utils.data.Dataset): def __init__(self, train=True): data_path = '/home/zzirnhel/Desktop/events_LHCO2020_BlackBox1.h5' label_path = '/home/zzirnhel/Desktop/events_LHCO2020_BlackBox1.masterkey' self.train = train self.data = self.cache(data_path, label_path) def cache(self, data_path, label_path): df_interval = 10000 num_to_load = 10000 if self.train else 200 label_file = open(label_path, 'r') labels = label_file.readlines() labels = [1 if l == '1.0\n' else 0 for l in labels] label_file.close() desired_label = 0 if self.train else 1 desired_labels = [] for i, l in enumerate(labels): if l == desired_label: desired_labels.append(i) if len(desired_labels) > num_to_load: break if len(desired_labels) > num_to_load: desired_labels = desired_labels[:num_to_load] data = [] rowmax = 900 currmax = 0 #iterate across dataframe for i in desired_labels: while currmax - 1 < i: print(f'loading pandas df from {currmax} to {currmax + df_interval}') df = pandas.read_hdf(data_path, start=currmax, stop=currmax + df_interval) print('loaded pandas df') currmax += df_interval index = i + df_interval - currmax row = df.iloc[index] #check if the number of nonzero points is greater than a threshold. if not, throw it out. for index in range(len(row) - 1, rowmax - 1, -1): if row[index] != 0: #print('nonzero at', index) break if index > rowmax: continue point_set = torch.FloatTensor(row[:rowmax]).view((3, rowmax // 3)) #point_set = torch.FloatTensor(row[:rowmax]).unsqueeze(0) #print('point set shape', point_set.shape) label = desired_label _, cardinality = point_set.shape data.append((point_set, label, cardinality)) print('finished with', len(data), 'sets') return data #needs to override __getitem__ def __getitem__(self, item): s, l, c = self.data[item] mask = torch.ones(c) return l, s, mask def __len__(self): return len(self.data) class MNISTSet(torch.utils.data.Dataset): def __init__(self, threshold=0.0, train=True, root="mnist", full=False): self.train = train self.root = root self.threshold = threshold self.full = full transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) torchvision.datasets.MNIST.resources = [ ('https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz', 'f68b3c2dcbeaaa9fbdd348bbdeb94873'), ('https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz', 'd53e105ee54ea40749a09fcbcd1e9432'), ('https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz', '9fb629c4189551a2d022fa330f9573f3'), ('https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz', 'ec29112dd5afa0611ce80d1b7f02629c') ] mnist = torchvision.datasets.MNIST( train=train, transform=transform, download=True, root=root ) self.data = self.cache(mnist) self.max = 342 def cache(self, dataset): cache_path = os.path.join(self.root, f"mnist_{self.train}_{self.threshold}.pth") if os.path.exists(cache_path): return torch.load(cache_path) print("Processing dataset...") data = [] for datapoint in dataset: img, label = datapoint point_set, cardinality = self.image_to_set(img) data.append((point_set, label, cardinality)) ''' print('set', point_set) print(label) print(cardinality) raise Exception() ''' torch.save(data, cache_path) print("Done!", len(data), "datapoints.") return data def image_to_set(self, img): idx = (img.squeeze(0) > self.threshold).nonzero().transpose(0, 1) cardinality = idx.size(1) return idx, cardinality def __getitem__(self, item): s, l, c = self.data[item] # make sure set is shuffled s = s[:, torch.randperm(c)] # pad to fixed size padding_size = self.max - s.size(1) s = torch.cat([s.float(), torch.zeros(2, padding_size)], dim=1) # put in range [0, 1] s = s / 27 # mask of which elements are valid,not padding mask = torch.zeros(self.max) mask[:c].fill_(1) return l, s, mask def __len__(self): if self.train or self.full: return len(self.data) else: return len(self.data) // 10 CLASSES = { "material": ["rubber", "metal"], "color": ["cyan", "blue", "yellow", "purple", "red", "green", "gray", "brown"], "shape": ["sphere", "cube", "cylinder"], "size": ["large", "small"], } class CLEVR(torch.utils.data.Dataset): def __init__(self, base_path, split, box=False, full=False): assert split in { "train", "val", "test", } # note: test isn't very useful since it doesn't have ground-truth scene information self.base_path = base_path self.split = split self.max_objects = 10 self.box = box # True if clevr-box version, False if clevr-state version self.full = full # Use full validation set? with self.img_db() as db: ids = db["image_ids"] self.image_id_to_index = {id: i for i, id in enumerate(ids)} self.image_db = None with open(self.scenes_path) as fd: scenes = json.load(fd)["scenes"] self.img_ids, self.scenes = self.prepare_scenes(scenes) def object_to_fv(self, obj): coords = [p / 3 for p in obj["3d_coords"]] one_hot = lambda key: [obj[key] == x for x in CLASSES[key]] material = one_hot("material") color = one_hot("color") shape = one_hot("shape") size = one_hot("size") assert sum(material) == 1 assert sum(color) == 1 assert sum(shape) == 1 assert sum(size) == 1 # concatenate all the classes return coords + material + color + shape + size def prepare_scenes(self, scenes_json): img_ids = [] scenes = [] for scene in scenes_json: img_idx = scene["image_index"] # different objects depending on bbox version or attribute version of CLEVR sets if self.box: objects = self.extract_bounding_boxes(scene) objects = torch.FloatTensor(objects) else: objects = [self.object_to_fv(obj) for obj in scene["objects"]] objects = torch.FloatTensor(objects).transpose(0, 1) num_objects = objects.size(1) # pad with 0s if num_objects < self.max_objects: objects = torch.cat( [ objects, torch.zeros(objects.size(0), self.max_objects - num_objects), ], dim=1, ) # fill in masks mask = torch.zeros(self.max_objects) mask[:num_objects] = 1 img_ids.append(img_idx) scenes.append((objects, mask)) return img_ids, scenes def extract_bounding_boxes(self, scene): """ Code used for 'Object-based Reasoning in VQA' to generate bboxes https://arxiv.org/abs/1801.09718 https://github.com/larchen/clevr-vqa/blob/master/bounding_box.py#L51-L107 """ objs = scene["objects"] rotation = scene["directions"]["right"] num_boxes = len(objs) boxes = np.zeros((1, num_boxes, 4)) xmin = [] ymin = [] xmax = [] ymax = [] classes = [] classes_text = [] for i, obj in enumerate(objs): [x, y, z] = obj["pixel_coords"] [x1, y1, z1] = obj["3d_coords"] cos_theta, sin_theta, _ = rotation x1 = x1 * cos_theta + y1 * sin_theta y1 = x1 * -sin_theta + y1 * cos_theta height_d = 6.9 * z1 * (15 - y1) / 2.0 height_u = height_d width_l = height_d width_r = height_d if obj["shape"] == "cylinder": d = 9.4 + y1 h = 6.4 s = z1 height_u *= (s * (h / d + 1)) / ((s * (h / d + 1)) - (s * (h - s) / d)) height_d = height_u * (h - s + d) / (h + s + d) width_l *= 11 / (10 + y1) width_r = width_l if obj["shape"] == "cube": height_u *= 1.3 * 10 / (10 + y1) height_d = height_u width_l = height_u width_r = height_u obj_name = ( obj["size"] + " " + obj["color"] + " " + obj["material"] + " " + obj["shape"] ) ymin.append((y - height_d) / 320.0) ymax.append((y + height_u) / 320.0) xmin.append((x - width_l) / 480.0) xmax.append((x + width_r) / 480.0) return xmin, ymin, xmax, ymax @property def images_folder(self): return os.path.join(self.base_path, "images", self.split) @property def scenes_path(self): if self.split == "test": raise ValueError("Scenes are not available for test") return os.path.join( self.base_path, "scenes", "CLEVR_{}_scenes.json".format(self.split) ) def img_db(self): path = os.path.join(self.base_path, "{}-images.h5".format(self.split)) return h5py.File(path, "r") def load_image(self, image_id): if self.image_db is None: self.image_db = self.img_db() index = self.image_id_to_index[image_id] image = self.image_db["images"][index] return image def __getitem__(self, item): image_id = self.img_ids[item] image = self.load_image(image_id) objects, size = self.scenes[item] return image, objects, size def __len__(self): if self.split == "train" or self.full: return len(self.scenes) else: return len(self.scenes) // 10 if __name__ == "__main__": import matplotlib.pyplot as plt dataset = Circles() for i in range(2): points, centre, n_points = dataset[i] x, y = points[0], points[1] plt.scatter(x.numpy(), y.numpy()) plt.scatter(centre[0], centre[1]) plt.axes().set_aspect("equal", "datalim") plt.show()
32.810585
125
0.548688
2199aa0fcf31dacd952e97094d7bff9de93a56d7
773
py
Python
Mundo 03/moeda2.py
AlanyLourenco/Python
3c61f246621abf60734ea4c40ea01a2ab079b984
[ "MIT" ]
null
null
null
Mundo 03/moeda2.py
AlanyLourenco/Python
3c61f246621abf60734ea4c40ea01a2ab079b984
[ "MIT" ]
null
null
null
Mundo 03/moeda2.py
AlanyLourenco/Python
3c61f246621abf60734ea4c40ea01a2ab079b984
[ "MIT" ]
null
null
null
def metade(n=0,formato=False): m=n/2 return m if formato is False else moeda(m) def dobro(n=0,formato=False): m=n*2 return m if formato is False else moeda(m) def mais(n=0,d=0,formato=False): m=((d/100)*n)+n return m if formato is False else moeda(m) def desc(n=0,d=0,formato=False): m=n-((d/100)*n) return m if formato is False else moeda(m) def moeda(preço=0,moed='R$',formato=False): return f'{moed}{preço:>.2f}'.replace('.',',') def resumo(n=0,up=10,do=10): print('='*30) print(f'O dobro de {moeda(n)} é: \t{dobro(n,True)} ') print(f'A metade do {moeda(n)} é: \t{metade(n,True)} ') print(f'Aumento de {up}% é: \t{mais(n,up,True)} ') print(f'Desconto de {do}% é: \t{desc(n,do,True)} ') print('='*30)
24.15625
59
0.59379
8d1321520065543ffe528c2a8dbd4be0eada74a8
5,291
py
Python
pytorch_translate/test/test_preprocess.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
1
2020-07-24T10:59:17.000Z
2020-07-24T10:59:17.000Z
pytorch_translate/test/test_preprocess.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
null
null
null
pytorch_translate/test/test_preprocess.py
dzhulgakov/translate
018d3eed8d93ff32e86c912e68045c7a3f4ed0b7
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 import argparse import os import unittest from pytorch_translate import constants, preprocess from pytorch_translate.data.dictionary import Dictionary from pytorch_translate.test import utils as test_utils class TestPreprocess(unittest.TestCase): def setUp(self): self.source_text_file, self.target_text_file = ( test_utils.create_test_text_files() ) def get_common_data_args_namespace(self): args = argparse.Namespace() args.train_source_text_file = self.source_text_file args.train_target_text_file = self.target_text_file args.eval_source_text_file = self.source_text_file args.eval_target_text_file = self.target_text_file # The idea is to have these filled in during preprocessing args.train_source_binary_path = "" args.train_target_binary_path = "" args.eval_source_binary_path = "" args.eval_target_binary_path = "" # Required data preprocessing args args.append_eos_to_source = False args.reverse_source = True args.fairseq_data_format = False args.multiling_source_lang = None # Indicates no multilingual data args.penalized_target_tokens_file = "" args.source_vocab_file = test_utils.make_temp_file() args.source_max_vocab_size = None args.target_vocab_file = test_utils.make_temp_file() args.target_max_vocab_size = None args.char_source_vocab_file = "" args.char_target_vocab_file = "" args.task = "pytorch_translate" return args def test_build_vocabs_char(self): args = self.get_common_data_args_namespace() args.arch = "char_aware_hybrid" args.char_source_max_vocab_size = 30 args.char_target_max_vocab_size = 30 args.char_source_vocab_file = test_utils.make_temp_file() args.char_target_vocab_file = test_utils.make_temp_file() dictionaries = preprocess.build_vocabs(args, Dictionary) assert len(dictionaries["char_source_dict"]) > 0 assert len(dictionaries["char_target_dict"]) > 0 def test_build_vocabs_no_char(self): args = self.get_common_data_args_namespace() args.arch = "rnn" dictionaries = preprocess.build_vocabs(args, Dictionary) dictionaries["char_source_dict"] is None dictionaries["char_target_dict"] is None def test_preprocess(self): """ This is just a correctness test to make sure no errors are thrown when all the required args are passed. Actual parsing code is tested by test_data.py """ args = self.get_common_data_args_namespace() preprocess.preprocess_corpora(args) for file_type in ( "train_source_binary_path", "train_target_binary_path", "eval_source_binary_path", "eval_target_binary_path", ): file = getattr(args, file_type) assert file and os.path.isfile(file) assert file.endswith(".npz") def test_preprocess_with_monolingual(self): """ This is just a correctness test to make sure no errors are thrown when all the required args are passed. Actual parsing code is tested by test_data.py """ args = self.get_common_data_args_namespace() args.task = constants.SEMI_SUPERVISED_TASK args.train_mono_source_text_file = self.source_text_file args.train_mono_target_text_file = self.target_text_file preprocess.preprocess_corpora(args) for file_type in ( "train_source_binary_path", "train_target_binary_path", "eval_source_binary_path", "eval_target_binary_path", "train_mono_source_binary_path", "train_mono_target_binary_path", ): file_path = getattr(args, file_type) assert file_path and os.path.isfile(file_path) assert file_path.endswith(".npz") def test_preprocess_with_monolingual_with_tgt_chars(self): """ This is just a correctness test to make sure no errors are thrown when all the required args are passed. Actual parsing code is tested by test_data.py """ args = self.get_common_data_args_namespace() args.task = constants.SEMI_SUPERVISED_TASK args.train_mono_source_text_file = self.source_text_file args.train_mono_target_text_file = self.target_text_file args.arch = "char_aware_hybrid" args.char_source_max_vocab_size = 30 args.char_target_max_vocab_size = 30 args.char_source_vocab_file = test_utils.make_temp_file() args.char_target_vocab_file = test_utils.make_temp_file() preprocess.preprocess_corpora(args) for file_type in ( "train_source_binary_path", "train_target_binary_path", "eval_source_binary_path", "eval_target_binary_path", "train_mono_source_binary_path", "train_mono_target_binary_path", ): file_path = getattr(args, file_type) assert file_path and os.path.isfile(file_path) assert file_path.endswith(".npz")
38.620438
78
0.67681
4f4adefb804a6f805214667daff0f9052d53bb1c
1,481
py
Python
src/client_libraries/python/dynamics/customerinsights/api/models/role_assignment_py3.py
microsoft/Dynamics365-CustomerInsights-Client-Libraries
e00632f7972717b03e0fb1a9e2667e8f9444a0fe
[ "MIT" ]
null
null
null
src/client_libraries/python/dynamics/customerinsights/api/models/role_assignment_py3.py
microsoft/Dynamics365-CustomerInsights-Client-Libraries
e00632f7972717b03e0fb1a9e2667e8f9444a0fe
[ "MIT" ]
null
null
null
src/client_libraries/python/dynamics/customerinsights/api/models/role_assignment_py3.py
microsoft/Dynamics365-CustomerInsights-Client-Libraries
e00632f7972717b03e0fb1a9e2667e8f9444a0fe
[ "MIT" ]
7
2021-02-11T19:48:57.000Z
2021-12-17T08:00:15.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class RoleAssignment(Model): """Represents a role assignment Metadata. :param principal_id: Gets the Id of the principal. :type principal_id: str :param principal_type: Possible values include: 'user', 'group', 'app' :type principal_type: str or ~dynamics.customerinsights.api.models.enum :param roles: Gets the roles the principal belongs to. :type roles: list[str] :param instance_id: Customer Insights instance id associated with this object. :type instance_id: str """ _attribute_map = { 'principal_id': {'key': 'principalId', 'type': 'str'}, 'principal_type': {'key': 'principalType', 'type': 'str'}, 'roles': {'key': 'roles', 'type': '[str]'}, 'instance_id': {'key': 'instanceId', 'type': 'str'}, } def __init__(self, *, principal_id: str=None, principal_type=None, roles=None, instance_id: str=None, **kwargs) -> None: super(RoleAssignment, self).__init__(**kwargs) self.principal_id = principal_id self.principal_type = principal_type self.roles = roles self.instance_id = instance_id
38.973684
124
0.60027
8b1e83fabd723eda993e35ff51f18fe72ffe4cbf
747
py
Python
visual_novel/core/middlewares.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
9
2018-03-11T12:53:12.000Z
2020-12-19T14:21:53.000Z
visual_novel/core/middlewares.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
6
2020-02-11T22:19:22.000Z
2022-03-11T23:20:10.000Z
visual_novel/core/middlewares.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
null
null
null
from django.http import HttpResponseRedirect from django.core.exceptions import PermissionDenied class IsAuthenticatedMiddleware(object): def process_request(self, request): user = request.user if not bool(user.is_authenticated) \ or not hasattr(user, 'profile') \ or not bool(user.profile.email_confirmed): return HttpResponseRedirect("/login?next=" + request.path) else: return None class HasPermissionToEditProfile(object): def process_view(self, request, view_func, view_args, view_kwargs): username = view_kwargs.get('username', None) if not (username == request.user.username): raise PermissionDenied return None
33.954545
71
0.672021
2957dd1a14ff5bdbe83a5f095bf0f1a79e1694c3
1,878
py
Python
qlcp21a/Q2_phot.py
RapidLzj/QLCP21A
52fb295ac72f79f0e5aa3310ed5849960659bf08
[ "MIT" ]
null
null
null
qlcp21a/Q2_phot.py
RapidLzj/QLCP21A
52fb295ac72f79f0e5aa3310ed5849960659bf08
[ "MIT" ]
null
null
null
qlcp21a/Q2_phot.py
RapidLzj/QLCP21A
52fb295ac72f79f0e5aa3310ed5849960659bf08
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ 201901, Dr. Jie Zheng, Beijing & Xinglong, NAOC 202101-? Dr. Jie Zheng & Dr./Prof. Linqiao Jiang Light_Curve_Pipeline v3 (2021A) Upgrade from former version, remove unused code """ import numpy as np import astropy.io.fits as fits import os from .JZ_utils import loadlist, datestr, logfile, conf, meanclip #from .QZ_plotting import plot_im_star, plot_magerr from .J2_se import _se_ def phot(ini_file, file_lst, red_path="", overwrite=False, log=None, extra_config=None): """ photometry :param ini_file: :param file_lst: list file of scientific fits files :param red_path: path of out files :param overwrite: over write result file or not if exists :param log: :param extra_config: 190619 额外的配置参数,临时覆盖配置文件中的信息 :return: """ ini = conf(ini_file, extra_config) lf = logfile(log, level=ini["log_level"]) if not os.path.isfile(file_lst): lf.show("SKIP -- FILE NOT EXISTS: " + file_lst, logfile.ERROR) return # load list scif = loadlist(file_lst, suffix=ini["bf_mid"]+".fits", base_path=red_path, separate_folder = ini["separate_folder"]) catf = loadlist(file_lst, suffix=ini["cat_mid"]+".fits", base_path=red_path, separate_folder=ini["separate_folder"]) txtf = loadlist(file_lst, suffix=ini["cat_mid"]+".txt", base_path=red_path, separate_folder=ini["separate_folder"]) sef = loadlist(file_lst, suffix=ini["se_mid"]+".fits", base_path=red_path, separate_folder=ini["separate_folder"]) basename = [os.path.basename(f) for f in catf] if not overwrite: skiptag = [os.path.isfile(f) for f in catf] else: skiptag = [False for f in catf] _se_(ini, scif, sef, catf, txtf, skiptag, lf) lf.close()
31.3
80
0.642173
c274896071bfcdee50dc83181763e2dde00f6aec
2,981
py
Python
timm/models/layers/classifier.py
datduong/pytorch-image-models
05c9b52ca65b01e57f8cea2b6447882488aba4f6
[ "Apache-2.0" ]
null
null
null
timm/models/layers/classifier.py
datduong/pytorch-image-models
05c9b52ca65b01e57f8cea2b6447882488aba4f6
[ "Apache-2.0" ]
null
null
null
timm/models/layers/classifier.py
datduong/pytorch-image-models
05c9b52ca65b01e57f8cea2b6447882488aba4f6
[ "Apache-2.0" ]
null
null
null
""" Classifier head and layer factory Hacked together by / Copyright 2020 Ross Wightman """ from torch import nn as nn from torch.nn import functional as F from .adaptive_avgmax_pool import SelectAdaptivePool2d def create_classifier(num_features, num_classes, pool_type='avg', use_conv=False): flatten = not use_conv # flatten when we use a Linear layer after pooling if not pool_type: assert num_classes == 0 or use_conv,\ 'Pooling can only be disabled if classifier is also removed or conv classifier is used' flatten = False # disable flattening if pooling is pass-through (no pooling) global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=flatten) num_pooled_features = num_features * global_pool.feat_mult() if num_classes <= 0: fc = nn.Identity() # pass-through (no classifier) elif use_conv: fc = nn.Conv2d(num_pooled_features, num_classes, 1, bias=True) else: fc = nn.Linear(num_pooled_features, num_classes, bias=True) return global_pool, fc def create_classifier_layerfc(num_features, num_classes, pool_type='avg', use_conv=False): flatten = not use_conv # flatten when we use a Linear layer after pooling if not pool_type: assert num_classes == 0 or use_conv,\ 'Pooling can only be disabled if classifier is also removed or conv classifier is used' flatten = False # disable flattening if pooling is pass-through (no pooling) global_pool = SelectAdaptivePool2d(pool_type=pool_type, flatten=flatten) num_pooled_features = num_features * global_pool.feat_mult() if num_classes <= 0: fc = nn.Identity() # pass-through (no classifier) elif use_conv: fc = nn.Conv2d(num_pooled_features, num_classes, 1, bias=True) else: fc = nn.Sequential ( nn.BatchNorm1d(num_pooled_features), # ! follow baseline paper nn.Dropout(0.3), nn.Linear(num_pooled_features, 64), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64,num_classes) ) for i in range ( len(fc) ): if isinstance ( fc[i] , nn.Linear ): nn.init.xavier_uniform_ ( fc[i].weight ) nn.init.constant( fc[i].bias , 0) return global_pool, fc class ClassifierHead(nn.Module): """Classifier head w/ configurable global pooling and dropout.""" def __init__(self, in_chs, num_classes, pool_type='avg', drop_rate=0.): super(ClassifierHead, self).__init__() self.drop_rate = drop_rate self.global_pool, self.fc = create_classifier(in_chs, num_classes, pool_type=pool_type) def forward(self, x): x = self.global_pool(x) if self.drop_rate: x = F.dropout(x, p=float(self.drop_rate), training=self.training) x = self.fc(x) return x
43.202899
99
0.647434
9727d277028cd5b90a244df9728c4e338594d0b9
671
py
Python
venv3/bin/rst2s5.py
paul-romeo/pytest-in-60-minutes
a4817312081347737f87801c0623054eba599418
[ "MIT" ]
null
null
null
venv3/bin/rst2s5.py
paul-romeo/pytest-in-60-minutes
a4817312081347737f87801c0623054eba599418
[ "MIT" ]
null
null
null
venv3/bin/rst2s5.py
paul-romeo/pytest-in-60-minutes
a4817312081347737f87801c0623054eba599418
[ "MIT" ]
null
null
null
#!/home/paul-romeo/pytest_workshop/venv3/bin/python3 # $Id: rst2s5.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: Chris Liechti <cliechti@gmx.net> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing HTML slides using the S5 template system. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates S5 (X)HTML slideshow documents from standalone ' 'reStructuredText sources. ' + default_description) publish_cmdline(writer_name='s5', description=description)
26.84
74
0.745156
06b1326900c7b01de972591a2f61ee6e33795554
3,080
py
Python
benchmark/startCirq2430.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq2430.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startCirq2430.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=40 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=5 c.append(cirq.H.on(input_qubit[1])) # number=6 c.append(cirq.H.on(input_qubit[2])) # number=23 c.append(cirq.CZ.on(input_qubit[1],input_qubit[2])) # number=24 c.append(cirq.H.on(input_qubit[2])) # number=25 c.append(cirq.H.on(input_qubit[2])) # number=7 c.append(cirq.H.on(input_qubit[3])) # number=8 c.append(cirq.H.on(input_qubit[0])) # number=34 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=35 c.append(cirq.H.on(input_qubit[0])) # number=36 c.append(cirq.Z.on(input_qubit[2])) # number=30 c.append(cirq.H.on(input_qubit[0])) # number=37 c.append(cirq.CZ.on(input_qubit[2],input_qubit[0])) # number=38 c.append(cirq.H.on(input_qubit[0])) # number=39 c.append(cirq.H.on(input_qubit[3])) # number=16 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=17 c.append(cirq.rx(-0.5686282702997527).on(input_qubit[3])) # number=32 c.append(cirq.H.on(input_qubit[3])) # number=18 c.append(cirq.H.on(input_qubit[3])) # number=26 c.append(cirq.CZ.on(input_qubit[0],input_qubit[3])) # number=27 c.append(cirq.H.on(input_qubit[3])) # number=28 c.append(cirq.X.on(input_qubit[3])) # number=21 c.append(cirq.rx(0.4241150082346221).on(input_qubit[2])) # number=33 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=22 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[3])) # number=12 c.append(cirq.Y.on(input_qubit[0])) # number=14 c.append(cirq.Y.on(input_qubit[0])) # number=15 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq2430.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
36.235294
77
0.680195
5d9f14cee18ff462862f91fc0a7bc17935d59a72
16,878
py
Python
evaluation.py
TUDelftHao/TUDelftHao-4DLongitudinal-MRI-segmentation
c028e3c8b64812a05e39efa80699a327172c095d
[ "MIT" ]
4
2020-07-28T06:03:43.000Z
2021-09-10T09:12:10.000Z
evaluation.py
TUDelftHao/TUDelftHao-4DLongitudinal-MRI-segmentation
c028e3c8b64812a05e39efa80699a327172c095d
[ "MIT" ]
null
null
null
evaluation.py
TUDelftHao/TUDelftHao-4DLongitudinal-MRI-segmentation
c028e3c8b64812a05e39efa80699a327172c095d
[ "MIT" ]
1
2021-09-10T09:12:21.000Z
2021-09-10T09:12:21.000Z
''' Evaluate the segmentation consistancy ''' import SimpleITK as sitk import numpy as np import torch import os import sys import pandas as pd from data_prepara import data_split, data_construction, time_parser import matplotlib.pyplot as plt import matplotlib.ticker as mticker import seaborn as sns from sklearn.preprocessing import MinMaxScaler from datetime import datetime import matplotlib.dates as mdates from matplotlib.pyplot import MultipleLocator LONGITUDINAL = 'longitudinal_plot' PATIENT = 'EGD-0265' MODEL_1 = 'CenterNormalBiLSTM1layer-unet-p64-4x3-halfpretrain' MODEL_2 = 'UNet-p64-b4-newdata-oriinput' DATA = 'longitudinal.csv' ANALYSIS_DIR = 'analysis' if not os.path.exists(ANALYSIS_DIR): os.mkdir(ANALYSIS_DIR) def volumn_ratio(mask): ''' count the ratio of each label''' labels = map(int, np.unique(mask)) label_volume = {} for label in labels: if label != 0: label_volume[str(label)] = np.sum(mask==label) return label_volume def plot_volumn_dev(patient_dict, patient_id, model_name, save_dir='longitudinal_plot', predicted_labels=None): ''' plot volumn development curve along time dim per patient ''' save_path = os.path.join(save_dir, patient_id, model_name) if not os.path.exists(save_path): os.makedirs(save_path) time_dict = patient_dict[patient_id] time_dict = sorted(time_dict.items(), key=lambda item:item[0]) # sort according to time plt.clf() plt.figure(figsize=(10, 10)) period = [] label_1 = [] label_2 = [] label_3 = [] label_4 = [] predicted_label_1 = [] predicted_label_2 = [] predicted_label_3 = [] predicted_label_4 = [] for i, time_point in enumerate(time_dict): period.append(time_point[0]) mask = sitk.GetArrayFromImage(sitk.ReadImage(time_point[1]['combined_fast'])) labelwise_ratio = volumn_ratio(mask) if predicted_labels: predicted_mask = predicted_labels[time_point[0]] predicted_labelwise_ratio = volumn_ratio(predicted_mask) label_1.append(labelwise_ratio['1']) label_2.append(labelwise_ratio['2']) label_3.append(labelwise_ratio['3']) label_4.append(labelwise_ratio['4']) if predicted_labels: if '1' in predicted_labelwise_ratio: predicted_label_1.append(predicted_labelwise_ratio['1']) else: predicted_label_1.append(0) if '2' in predicted_labelwise_ratio: predicted_label_2.append(predicted_labelwise_ratio['2']) else: predicted_label_2.append(0) if '3' in predicted_labelwise_ratio: predicted_label_3.append(predicted_labelwise_ratio['3']) else: predicted_label_3.append(0) if '4' in predicted_labelwise_ratio: predicted_label_4.append(predicted_labelwise_ratio['4']) else: predicted_label_4.append(0) df = pd.DataFrame(list(zip(period, label_1, label_2, label_3, label_4, predicted_label_1, predicted_label_2, predicted_label_3, predicted_label_4)), columns=['date', 'GT CSF', 'GT GM', 'GT WM', 'GT TM', 'predicted CSF', 'predicted GM', 'predicted WM', 'predicted TM']) df.to_csv(os.path.join(save_path, 'longitudinal.csv')) plt.plot(period, label_1, 'r--', label='GT CSF') plt.plot(period, label_2, 'g--', label='GT GM') plt.plot(period, label_3, 'b--', label='GT WM') plt.plot(period, label_4, 'y--', label='GT TM') if predicted_labels: plt.plot(period, predicted_label_1, c='r', label='predicted CSF') plt.plot(period, predicted_label_2, c='g', label='predicted GM') plt.plot(period, predicted_label_3, c='b', label='predicted WM') plt.plot(period, predicted_label_4, c='y', label='predicted TM') plt.xlabel('time', fontsize=15) plt.ylabel('volumn (cm3)', fontsize=15) plt.xticks(period, rotation=45) plt.legend(loc='best') plt.title('Comparison of brain tissues and tumor development in ground truth and predicted') plt.savefig(os.path.join(save_path, 'longitudinal.png')) # normalization def norm(model): csv_dir = os.path.join(LONGITUDINAL, PATIENT, model, DATA) df = pd.read_csv(csv_dir, index_col=0) date = df['date'] pure_data = df.drop('date', axis=1) scaler = MinMaxScaler() X = scaler.fit_transform(pure_data) scaled_data = pd.DataFrame(X, columns=pure_data.columns, index=pure_data.index) data = scaled_data scaled_data.loc['mean'] = data.apply(np.mean) scaled_data.loc['std'] = data.apply(np.std) scaled_data['date'] = date.astype('object') return scaled_data def longitudinal_plot(model_1, model_2): data_1 = norm(model_1) data_2 = norm(model_2) modalities = ['CSF', 'GM', 'WM', 'TM'] date = data_1['date'].dropna().to_list() x = list(str(d) for d in date) plt.figure(figsize=(15, 10)) grid = plt.GridSpec(4, 3, wspace=0.5, hspace=0.5) for i, modality in enumerate(modalities): GT = data_1['GT {}'.format(modality)].to_list()[:-2] pred_1 = data_1['predicted {}'.format(modality)].to_list()[:-2] pred_2 = data_2['predicted {}'.format(modality)].to_list()[:-2] upper_1 = [max(a, b) for (a, b) in zip(GT, pred_1)] lower_1 = [min(a, b) for (a, b) in zip(GT, pred_1)] ax1 = plt.subplot(grid[i, 0:2]) ax1.plot(x, GT, 'k', lw=2) ax1.plot(x, pred_1, 'y', lw=1) ax1.plot(x, pred_2, 'r', lw=1) ax1.plot(x, upper_1, 'y', lw=1, alpha=0.1) ax1.plot(x, lower_1, 'y', lw=1, alpha=0.1) ax1.fill_between(x, upper_1, lower_1, facecolor='yellow', edgecolor='yellow', alpha=0.2, label='{}'.format(model_1.split('-')[0])) upper_2 = [max(a, b) for (a, b) in zip(GT, pred_2)] lower_2 = [min(a, b) for (a, b) in zip(GT, pred_2)] ax1.plot(x, upper_2, 'r', lw=1, alpha=0.1) ax1.plot(x, lower_2, 'r', lw=1, alpha=0.1) ax1.fill_between(x, upper_2, lower_2, facecolor='red', edgecolor='red', alpha=0.1, label='{}'.format(model_2.split('-')[0])) ax1.set_ylim(-0.5, 1.5) ax1.set_title('{}'.format(modality)) ax1.set_xticklabels([]) ax1.legend(loc='upper left', fontsize=10) ax2 = plt.subplot(grid[i, 2]) ax2.errorbar(0, data_1.loc['mean', 'GT CSF'], yerr=data_1.loc['std', 'GT CSF'], fmt="o",color="black", elinewidth=2, capsize=4) ax2.errorbar(1, data_1.loc['mean', 'predicted CSF'], yerr=data_1.loc['std', 'predicted CSF'], fmt="o",color="yellow", elinewidth=2, capsize=4) ax2.errorbar(2, data_2.loc['mean', 'predicted CSF'], yerr=data_2.loc['std', 'predicted CSF'], fmt="o",color="red", elinewidth=2, capsize=4) ax2.set_ylim(0, 1) ax2.set_xlim(-0.5, 2.5) ax2.set_xticklabels([]) ax2.xaxis.set_major_locator(MultipleLocator(1)) ax2.set_title('{}'.format(modality)) ax1.set_xticklabels(x, rotation=30) ax1.set_xlabel('date', fontsize=15) ax2.set_xticklabels(['', 'GT', 'longitudinal', 'UNet']) ax2.set_xlabel('model', fontsize=15) plt.suptitle(PATIENT, fontsize=20) plt.savefig(os.path.join(ANALYSIS_DIR, 'logitudinal_{}.png'.format(PATIENT)), dpi=150) def transition_matrix(patient_dict, patient_id, model_name_1, model_name_2, save_dir='inference_result'): pred_1_path = os.path.join(save_dir, patient_id, model_name_1) pred_1_list = [pred_mask for pred_mask in os.listdir(pred_1_path) if pred_mask.endswith('.gz')] pred_1_dir_list = [os.path.join(pred_1_path, pred) for pred in pred_1_list] pred_2_path = os.path.join(save_dir, patient_id, model_name_2) pred_2_list = [pred_mask for pred_mask in os.listdir(pred_2_path) if pred_mask.endswith('.gz')] pred_2_dir_list = [os.path.join(pred_2_path, pred) for pred in pred_2_list] time_dict = patient_dict[patient_id] time_dict = sorted(time_dict.items(), key=lambda item:item[0]) # sort according to time time_points = len(time_dict) labels = [0, 1, 2, 3, 4] label_str = ['BG', 'CSF', 'GM', 'WM', 'TM'] fig = plt.figure(figsize=(15, 5 * time_points)) # plt.subplots_adjust(wspace=0.5, hspace=0.5) grid = plt.GridSpec(time_points, 3, wspace=0.3, hspace=0.3) for k in range(time_points-1): mask_pre = sitk.GetArrayFromImage(sitk.ReadImage(time_dict[k][1]['combined_fast'])) predicted_1_mask_pre = sitk.GetArrayFromImage(sitk.ReadImage(pred_1_dir_list[k])) predicted_2_mask_pre = sitk.GetArrayFromImage(sitk.ReadImage(pred_2_dir_list[k])) mask_later = sitk.GetArrayFromImage(sitk.ReadImage(time_dict[k+1][1]['combined_fast'])) predicted_1_mask_later = sitk.GetArrayFromImage(sitk.ReadImage(pred_1_dir_list[k+1])) predicted_2_mask_later = sitk.GetArrayFromImage(sitk.ReadImage(pred_2_dir_list[k+1])) corr_mask = np.zeros((len(labels), len(labels))) corr_pred_1 = np.zeros((len(labels), len(labels))) corr_pred_2 = np.zeros((len(labels), len(labels))) for i, pre in enumerate(labels): for j, later in enumerate(labels): corr_mask[i, j] = np.sum(mask_later[mask_pre == pre] == later) corr_pred_1[i, j] = np.sum(predicted_1_mask_later[predicted_1_mask_pre == pre] == later) corr_pred_2[i, j] = np.sum(predicted_2_mask_later[predicted_2_mask_pre == pre] == later) df_mask = pd.DataFrame(corr_mask, columns=label_str, index=label_str) df_pred_1 = pd.DataFrame(corr_pred_1, columns=label_str, index=label_str) df_pred_2 = pd.DataFrame(corr_pred_2, columns=label_str, index=label_str) norm_mask = df_mask.div(df_mask.sum(axis=1), axis=0) norm_pred_1 = df_pred_1.div(df_pred_1.sum(axis=1), axis=0) norm_pred_2 = df_pred_2.div(df_pred_2.sum(axis=1), axis=0) ax1 = plt.subplot(grid[k, 0]) ax1.imshow(norm_mask, aspect='equal', cmap="YlGn") ax1.set_xticks(np.arange(len(label_str))) ax1.set_yticks(np.arange(len(label_str))) ax1.set_xticklabels(label_str) ax1.set_yticklabels(label_str) ax1.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) for edge, spine in ax1.spines.items(): spine.set_visible(False) ax1.set_xticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax1.set_yticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax1.grid(which="minor", color="w", linestyle='-', linewidth=3) ax1.tick_params(which="minor", bottom=False, left=False) ax1.set_title('Mask labels transition from t{} to t{}'.format(k, k+1), fontsize=12) ax2 = plt.subplot(grid[k, 1]) ax2.imshow(norm_pred_1, aspect='equal', cmap="YlGn") ax2.set_xticks(np.arange(len(label_str))) ax2.set_yticks(np.arange(len(label_str))) ax2.set_xticklabels(label_str) ax2.set_yticklabels(label_str) ax2.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) for edge, spine in ax2.spines.items(): spine.set_visible(False) ax2.set_xticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax2.set_yticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax2.grid(which="minor", color="w", linestyle='-', linewidth=3) ax2.tick_params(which="minor", bottom=False, left=False) ax2.set_title('Longitudinal predicted labels transition from t{} to t{}'.format(k, k+1), fontsize=12) ax3 = plt.subplot(grid[k, 2]) ax3.imshow(norm_pred_2, aspect='equal', cmap="YlGn") ax3.set_xticks(np.arange(len(label_str))) ax3.set_yticks(np.arange(len(label_str))) ax3.set_xticklabels(label_str) ax3.set_yticklabels(label_str) ax3.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) for edge, spine in ax3.spines.items(): spine.set_visible(False) ax3.set_xticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax3.set_yticks(np.arange(len(label_str)+1) - 0.5, minor=True) ax3.grid(which="minor", color="w", linestyle='-', linewidth=3) ax3.tick_params(which="minor", bottom=False, left=False) ax3.set_title('U-Net predicted labels transition from t{} to t{}'.format(k, k+1), fontsize=12) plt.suptitle('Transition matrix of patient {}'.format(patient_id), fontsize=20) fig.savefig(os.path.join(ANALYSIS_DIR, 'transition_matrix_{}.png'.format(patient_id)), dpi=150) def transition_heatmap(patient_dict, patient_id, model_name_1, model_name_2, save_dir='inference_result'): pred_1_path = os.path.join(save_dir, patient_id, model_name_1) pred_1_list = [pred_mask for pred_mask in os.listdir(pred_1_path) if pred_mask.endswith('.gz')] pred_1_dir_list = [os.path.join(pred_1_path, pred) for pred in pred_1_list] pred_2_path = os.path.join(save_dir, patient_id, model_name_2) pred_2_list = [pred_mask for pred_mask in os.listdir(pred_2_path) if pred_mask.endswith('.gz')] pred_2_dir_list = [os.path.join(pred_2_path, pred) for pred in pred_2_list] time_dict = patient_dict[patient_id] time_dict = sorted(time_dict.items(), key=lambda item:item[0]) # sort according to time time_points = len(time_dict) fig = plt.figure(figsize=(15, 5 * time_points)) grid = plt.GridSpec(time_points, 3, wspace=0.4, hspace=0.3) for k in range(time_points-1): mask_pre = sitk.GetArrayFromImage(sitk.ReadImage(time_dict[k][1]['combined_fast'])) predicted_mask_1_pre = sitk.GetArrayFromImage(sitk.ReadImage(pred_1_dir_list[k])) predicted_mask_2_pre = sitk.GetArrayFromImage(sitk.ReadImage(pred_2_dir_list[k])) mask_later = sitk.GetArrayFromImage(sitk.ReadImage(time_dict[k+1][1]['combined_fast'])) predicted_mask_1_later = sitk.GetArrayFromImage(sitk.ReadImage(pred_1_dir_list[k+1])) predicted_mask_2_later = sitk.GetArrayFromImage(sitk.ReadImage(pred_2_dir_list[k+1])) if k == 0: loc = np.where(mask_pre[0]==4) num_tumor = len(loc[0]) if num_tumor > 0: idx = np.random.choice(range(num_tumor), 1, replace=False) c_z = int(loc[0][idx]) else: c_z = mask_pre.shape[-3]//2 mask_pre = mask_pre[c_z] predicted_mask_1_pre = predicted_mask_1_pre[c_z] predicted_mask_2_pre = predicted_mask_2_pre[c_z] mask_later = mask_later[c_z] predicted_mask_1_later = predicted_mask_1_later[c_z] predicted_mask_2_later = predicted_mask_2_later[c_z] mask_transition_heatmap = np.zeros_like(mask_pre) pred_mask_1_transition_heatmap = np.zeros_like(predicted_mask_1_pre) pred_mask_2_transition_heatmap = np.zeros_like(predicted_mask_2_pre) mask_transition_heatmap[mask_pre != mask_later] = 1 pred_mask_1_transition_heatmap[predicted_mask_1_pre != predicted_mask_1_later] = 1 pred_mask_2_transition_heatmap[predicted_mask_2_pre != predicted_mask_2_later] = 1 ax1 = plt.subplot(grid[k, 0]) ax1.imshow(mask_transition_heatmap) ax1.set_title('Mask labels transition from t{} to t{}'.format(k, k+1), fontsize=12) ax1.axis('off') ax2 = plt.subplot(grid[k, 1]) ax2.imshow(pred_mask_1_transition_heatmap) ax2.set_title('longitudinal Predicted labels transition from t{} to t{}'.format(k, k+1), fontsize=12) ax2.axis('off') ax3 = plt.subplot(grid[k, 2]) ax3.imshow(pred_mask_2_transition_heatmap) ax3.set_title('UNet Predicted labels transition from t{} to t{}'.format(k, k+1), fontsize=12) ax3.axis('off') plt.suptitle('Transition heatmap of patient {}'.format(patient_id), fontsize=20) fig.savefig(os.path.join(ANALYSIS_DIR, 'transition_heatmap_{}.png'.format(patient_id)), dpi=150) if __name__ == '__main__': labels = [0, 1, 2, 3, 4] data_class = data_split() train, val, test = data_construction(data_class) test_dict = time_parser(test) model_name_1 = 'CenterNormalBiLSTM1layer-unet-p64-4x3-halfpretrain' model_name_2 = 'UNet-p64-b4-newdata-oriinput' longitudinal_plot(MODEL_1, MODEL_2) transition_matrix(test_dict, PATIENT, MODEL_1, MODEL_2) transition_heatmap(test_dict, PATIENT, MODEL_1, MODEL_2)
44.183246
154
0.647707
462b60efd7f3d2d6f29223bae3f05d27e357126d
36,035
py
Python
ibis/backends/pandas/execution/generic.py
rohankumardubey/ibis
e416dcfdb32792ffeb6f5214b361872582aa8795
[ "Apache-2.0" ]
986
2017-06-07T07:33:01.000Z
2022-03-31T13:00:46.000Z
ibis/backends/pandas/execution/generic.py
rohankumardubey/ibis
e416dcfdb32792ffeb6f5214b361872582aa8795
[ "Apache-2.0" ]
2,623
2017-06-07T18:29:11.000Z
2022-03-31T20:27:31.000Z
ibis/backends/pandas/execution/generic.py
gerrymanoim/ibis
37616bd3df0599f33b28101ca1c19e0c0003cf4d
[ "Apache-2.0" ]
238
2017-06-26T19:02:58.000Z
2022-03-31T15:18:29.000Z
"""Execution rules for generic ibis operations.""" import collections import datetime import decimal import functools import math import numbers import operator from collections.abc import Sized from typing import Dict, Optional import numpy as np import pandas as pd import toolz from pandas.api.types import DatetimeTZDtype from pandas.core.groupby import DataFrameGroupBy, SeriesGroupBy import ibis.common.exceptions as com import ibis.expr.datatypes as dt import ibis.expr.operations as ops import ibis.expr.types as ir from ibis.expr.scope import Scope from ibis.expr.timecontext import get_time_col from ibis.expr.typing import TimeContext from .. import Backend as PandasBackend from .. import aggcontext as agg_ctx from ..client import PandasTable from ..core import ( boolean_types, execute, fixed_width_types, floating_types, integer_types, numeric_types, scalar_types, simple_types, timedelta_types, timestamp_types, ) from ..dispatch import execute_literal, execute_node from ..execution import constants from ..execution.util import coerce_to_output # By default return the literal value @execute_literal.register(ops.Literal, object, dt.DataType) def execute_node_literal_value_datatype(op, value, datatype, **kwargs): return value # Because True and 1 hash to the same value, if we have True or False in scope # keys while executing anything that should evaluate to 1 or 0 evaluates to # True or False respectively. This is a hack to work around that by casting the # bool to an integer. @execute_literal.register(ops.Literal, object, dt.Integer) def execute_node_literal_any_integer_datatype(op, value, datatype, **kwargs): return int(value) @execute_literal.register(ops.Literal, object, dt.Boolean) def execute_node_literal_any_boolean_datatype(op, value, datatype, **kwargs): return bool(value) @execute_literal.register(ops.Literal, object, dt.Floating) def execute_node_literal_any_floating_datatype(op, value, datatype, **kwargs): return float(value) @execute_literal.register(ops.Literal, object, dt.Array) def execute_node_literal_any_array_datatype(op, value, datatype, **kwargs): return np.array(value) @execute_literal.register(ops.Literal, dt.DataType) def execute_node_literal_datatype(op, datatype, **kwargs): return op.value @execute_literal.register( ops.Literal, timedelta_types + (str,) + integer_types, dt.Interval ) def execute_interval_literal(op, value, dtype, **kwargs): return pd.Timedelta(value, dtype.unit) @execute_node.register(ops.Limit, pd.DataFrame, integer_types, integer_types) def execute_limit_frame(op, data, nrows, offset, **kwargs): return data.iloc[offset : offset + nrows] @execute_node.register(ops.Cast, SeriesGroupBy, dt.DataType) def execute_cast_series_group_by(op, data, type, **kwargs): result = execute_cast_series_generic(op, data.obj, type, **kwargs) return result.groupby(data.grouper.groupings) @execute_node.register(ops.Cast, pd.Series, dt.DataType) def execute_cast_series_generic(op, data, type, **kwargs): return data.astype(constants.IBIS_TYPE_TO_PANDAS_TYPE[type]) @execute_node.register(ops.Cast, pd.Series, dt.Array) def execute_cast_series_array(op, data, type, **kwargs): value_type = type.value_type numpy_type = constants.IBIS_TYPE_TO_PANDAS_TYPE.get(value_type, None) if numpy_type is None: raise ValueError( 'Array value type must be a primitive type ' '(e.g., number, string, or timestamp)' ) return data.map( lambda array, numpy_type=numpy_type: array.astype(numpy_type) ) @execute_node.register(ops.Cast, pd.Series, dt.Timestamp) def execute_cast_series_timestamp(op, data, type, **kwargs): arg = op.arg from_type = arg.type() if from_type.equals(type): # noop cast return data tz = type.timezone if isinstance(from_type, (dt.Timestamp, dt.Date)): return data.astype( 'M8[ns]' if tz is None else DatetimeTZDtype('ns', tz) ) if isinstance(from_type, (dt.String, dt.Integer)): timestamps = pd.to_datetime(data.values, infer_datetime_format=True) if getattr(timestamps.dtype, "tz", None) is not None: method_name = "tz_convert" else: method_name = "tz_localize" method = getattr(timestamps, method_name) timestamps = method(tz) return pd.Series(timestamps, index=data.index, name=data.name) raise TypeError(f"Don't know how to cast {from_type} to {type}") def _normalize(values, original_index, name, timezone=None): index = pd.DatetimeIndex(values, tz=timezone) return pd.Series(index.normalize(), index=original_index, name=name) @execute_node.register(ops.Cast, pd.Series, dt.Date) def execute_cast_series_date(op, data, type, **kwargs): arg = op.args[0] from_type = arg.type() if from_type.equals(type): return data if isinstance(from_type, dt.Timestamp): return _normalize( data.values, data.index, data.name, timezone=from_type.timezone ) if from_type.equals(dt.string): values = data.values datetimes = pd.to_datetime(values, infer_datetime_format=True) try: datetimes = datetimes.tz_convert(None) except TypeError: pass dates = _normalize(datetimes, data.index, data.name) return pd.Series(dates, index=data.index, name=data.name) if isinstance(from_type, dt.Integer): return pd.Series( pd.to_datetime(data.values, unit='D').values, index=data.index, name=data.name, ) raise TypeError(f"Don't know how to cast {from_type} to {type}") @execute_node.register(ops.SortKey, pd.Series, bool) def execute_sort_key_series_bool(op, data, ascending, **kwargs): return data def call_numpy_ufunc(func, op, data, **kwargs): if data.dtype == np.dtype(np.object_): return data.apply(functools.partial(execute_node, op, **kwargs)) return func(data) @execute_node.register(ops.Negate, fixed_width_types + timedelta_types) def execute_obj_negate(op, data, **kwargs): return -data @execute_node.register(ops.Negate, pd.Series) def execute_series_negate(op, data, **kwargs): return call_numpy_ufunc(np.negative, op, data, **kwargs) @execute_node.register(ops.Negate, SeriesGroupBy) def execute_series_group_by_negate(op, data, **kwargs): return execute_series_negate(op, data.obj, **kwargs).groupby( data.grouper.groupings ) @execute_node.register(ops.UnaryOp, pd.Series) def execute_series_unary_op(op, data, **kwargs): function = getattr(np, type(op).__name__.lower()) return call_numpy_ufunc(function, op, data, **kwargs) @execute_node.register((ops.Ceil, ops.Floor), pd.Series) def execute_series_ceil(op, data, **kwargs): return_type = np.object_ if data.dtype == np.object_ else np.int64 func = getattr(np, type(op).__name__.lower()) return call_numpy_ufunc(func, op, data, **kwargs).astype(return_type) def vectorize_object(op, arg, *args, **kwargs): func = np.vectorize(functools.partial(execute_node, op, **kwargs)) return pd.Series(func(arg, *args), index=arg.index, name=arg.name) @execute_node.register( ops.Log, pd.Series, (pd.Series, numbers.Real, decimal.Decimal, type(None)) ) def execute_series_log_with_base(op, data, base, **kwargs): if data.dtype == np.dtype(np.object_): return vectorize_object(op, data, base, **kwargs) if base is None: return np.log(data) return np.log(data) / np.log(base) @execute_node.register(ops.Ln, pd.Series) def execute_series_natural_log(op, data, **kwargs): if data.dtype == np.dtype(np.object_): return data.apply(functools.partial(execute_node, op, **kwargs)) return np.log(data) @execute_node.register( ops.Clip, pd.Series, (pd.Series, type(None)) + numeric_types, (pd.Series, type(None)) + numeric_types, ) def execute_series_clip(op, data, lower, upper, **kwargs): return data.clip(lower=lower, upper=upper) @execute_node.register(ops.Quantile, (pd.Series, SeriesGroupBy), numeric_types) def execute_series_quantile(op, data, quantile, aggcontext=None, **kwargs): return aggcontext.agg( data, 'quantile', q=quantile, interpolation=op.interpolation ) @execute_node.register(ops.MultiQuantile, pd.Series, np.ndarray) def execute_series_quantile_multi( op, data, quantile, aggcontext=None, **kwargs ): result = aggcontext.agg( data, 'quantile', q=quantile, interpolation=op.interpolation ) return np.array(result) @execute_node.register(ops.MultiQuantile, SeriesGroupBy, np.ndarray) def execute_series_quantile_multi_groupby( op, data, quantile, aggcontext=None, **kwargs ): def q(x, quantile, interpolation): result = x.quantile(quantile, interpolation=interpolation).tolist() res = [result for _ in range(len(x))] return res result = aggcontext.agg(data, q, quantile, op.interpolation) return result @execute_node.register(ops.Cast, type(None), dt.DataType) def execute_cast_null_to_anything(op, data, type, **kwargs): return None @execute_node.register(ops.Cast, datetime.datetime, dt.String) def execute_cast_datetime_or_timestamp_to_string(op, data, type, **kwargs): """Cast timestamps to strings""" return str(data) @execute_node.register(ops.Cast, datetime.datetime, dt.Int64) def execute_cast_datetime_to_integer(op, data, type, **kwargs): """Cast datetimes to integers""" return pd.Timestamp(data).value @execute_node.register(ops.Cast, pd.Timestamp, dt.Int64) def execute_cast_timestamp_to_integer(op, data, type, **kwargs): """Cast timestamps to integers""" return data.value @execute_node.register(ops.Cast, (np.bool_, bool), dt.Timestamp) def execute_cast_bool_to_timestamp(op, data, type, **kwargs): raise TypeError( 'Casting boolean values to timestamps does not make sense. If you ' 'really want to cast boolean values to timestamps please cast to ' 'int64 first then to timestamp: ' "value.cast('int64').cast('timestamp')" ) @execute_node.register(ops.Cast, (np.bool_, bool), dt.Interval) def execute_cast_bool_to_interval(op, data, type, **kwargs): raise TypeError( 'Casting boolean values to intervals does not make sense. If you ' 'really want to cast boolean values to intervals please cast to ' 'int64 first then to interval: ' "value.cast('int64').cast(ibis.expr.datatypes.Interval(...))" ) @execute_node.register(ops.Cast, integer_types + (str,), dt.Timestamp) def execute_cast_simple_literal_to_timestamp(op, data, type, **kwargs): """Cast integer and strings to timestamps""" return pd.Timestamp(data, tz=type.timezone) @execute_node.register(ops.Cast, pd.Timestamp, dt.Timestamp) def execute_cast_timestamp_to_timestamp(op, data, type, **kwargs): """Cast timestamps to other timestamps including timezone if necessary""" input_timezone = data.tz target_timezone = type.timezone if input_timezone == target_timezone: return data if input_timezone is None or target_timezone is None: return data.tz_localize(target_timezone) return data.tz_convert(target_timezone) @execute_node.register(ops.Cast, datetime.datetime, dt.Timestamp) def execute_cast_datetime_to_datetime(op, data, type, **kwargs): return execute_cast_timestamp_to_timestamp( op, data, type, **kwargs ).to_pydatetime() @execute_node.register(ops.Cast, fixed_width_types + (str,), dt.DataType) def execute_cast_string_literal(op, data, type, **kwargs): try: cast_function = constants.IBIS_TO_PYTHON_LITERAL_TYPES[type] except KeyError: raise TypeError(f"Don't know how to cast {data!r} to type {type}") else: return cast_function(data) @execute_node.register(ops.Round, scalar_types, (int, type(None))) def execute_round_scalars(op, data, places, **kwargs): return round(data, places) if places else round(data) @execute_node.register( ops.Round, pd.Series, (pd.Series, np.integer, type(None), int) ) def execute_round_series(op, data, places, **kwargs): if data.dtype == np.dtype(np.object_): return vectorize_object(op, data, places, **kwargs) result = data.round(places or 0) return result if places else result.astype('int64') @execute_node.register(ops.TableColumn, (pd.DataFrame, DataFrameGroupBy)) def execute_table_column_df_or_df_groupby(op, data, **kwargs): return data[op.name] @execute_node.register(ops.Aggregation, pd.DataFrame) def execute_aggregation_dataframe( op, data, scope=None, timecontext: Optional[TimeContext] = None, **kwargs ): assert op.metrics, 'no metrics found during aggregation execution' if op.sort_keys: raise NotImplementedError( 'sorting on aggregations not yet implemented' ) predicates = op.predicates if predicates: predicate = functools.reduce( operator.and_, ( execute(p, scope=scope, timecontext=timecontext, **kwargs) for p in predicates ), ) data = data.loc[predicate] columns: Dict[str, str] = {} if op.by: grouping_key_pairs = list( zip(op.by, map(operator.methodcaller('op'), op.by)) ) grouping_keys = [ by_op.name if isinstance(by_op, ops.TableColumn) else execute( by, scope=scope, timecontext=timecontext, **kwargs ).rename(by.get_name()) for by, by_op in grouping_key_pairs ] columns.update( (by_op.name, by.get_name()) for by, by_op in grouping_key_pairs if hasattr(by_op, 'name') ) source = data.groupby(grouping_keys) else: source = data scope = scope.merge_scope(Scope({op.table.op(): source}, timecontext)) pieces = [ coerce_to_output( execute(metric, scope=scope, timecontext=timecontext, **kwargs), metric, ) for metric in op.metrics ] result = pd.concat(pieces, axis=1) # If grouping, need a reset to get the grouping key back as a column if op.by: result = result.reset_index() result.columns = [columns.get(c, c) for c in result.columns] if op.having: # .having(...) is only accessible on groupby, so this should never # raise if not op.by: raise ValueError( 'Filtering out aggregation values is not allowed without at ' 'least one grouping key' ) # TODO(phillipc): Don't recompute identical subexpressions predicate = functools.reduce( operator.and_, ( execute(having, scope=scope, timecontext=timecontext, **kwargs) for having in op.having ), ) assert len(predicate) == len( result ), 'length of predicate does not match length of DataFrame' result = result.loc[predicate.values] return result @execute_node.register(ops.Reduction, SeriesGroupBy, type(None)) def execute_reduction_series_groupby( op, data, mask, aggcontext=None, **kwargs ): return aggcontext.agg(data, type(op).__name__.lower()) variance_ddof = {'pop': 0, 'sample': 1} @execute_node.register(ops.Variance, SeriesGroupBy, type(None)) def execute_reduction_series_groupby_var( op, data, _, aggcontext=None, **kwargs ): return aggcontext.agg(data, 'var', ddof=variance_ddof[op.how]) @execute_node.register(ops.StandardDev, SeriesGroupBy, type(None)) def execute_reduction_series_groupby_std( op, data, _, aggcontext=None, **kwargs ): return aggcontext.agg(data, 'std', ddof=variance_ddof[op.how]) @execute_node.register( (ops.CountDistinct, ops.HLLCardinality), SeriesGroupBy, type(None) ) def execute_count_distinct_series_groupby( op, data, _, aggcontext=None, **kwargs ): return aggcontext.agg(data, 'nunique') @execute_node.register(ops.Arbitrary, SeriesGroupBy, type(None)) def execute_arbitrary_series_groupby(op, data, _, aggcontext=None, **kwargs): how = op.how if how is None: how = 'first' if how not in {'first', 'last'}: raise com.OperationNotDefinedError( f'Arbitrary {how!r} is not supported' ) return aggcontext.agg(data, how) def _filtered_reduction(mask, method, data): return method(data[mask[data.index]]) @execute_node.register(ops.Reduction, SeriesGroupBy, SeriesGroupBy) def execute_reduction_series_gb_mask( op, data, mask, aggcontext=None, **kwargs ): method = operator.methodcaller(type(op).__name__.lower()) return aggcontext.agg( data, functools.partial(_filtered_reduction, mask.obj, method) ) @execute_node.register( (ops.CountDistinct, ops.HLLCardinality), SeriesGroupBy, SeriesGroupBy ) def execute_count_distinct_series_groupby_mask( op, data, mask, aggcontext=None, **kwargs ): return aggcontext.agg( data, functools.partial(_filtered_reduction, mask.obj, pd.Series.nunique), ) @execute_node.register(ops.Variance, SeriesGroupBy, SeriesGroupBy) def execute_var_series_groupby_mask(op, data, mask, aggcontext=None, **kwargs): return aggcontext.agg( data, lambda x, mask=mask.obj, ddof=variance_ddof[op.how]: ( x[mask[x.index]].var(ddof=ddof) ), ) @execute_node.register(ops.StandardDev, SeriesGroupBy, SeriesGroupBy) def execute_std_series_groupby_mask(op, data, mask, aggcontext=None, **kwargs): return aggcontext.agg( data, lambda x, mask=mask.obj, ddof=variance_ddof[op.how]: ( x[mask[x.index]].std(ddof=ddof) ), ) @execute_node.register(ops.Count, DataFrameGroupBy, type(None)) def execute_count_frame_groupby(op, data, _, **kwargs): result = data.size() # FIXME(phillipc): We should not hard code this column name result.name = 'count' return result @execute_node.register(ops.Reduction, pd.Series, (pd.Series, type(None))) def execute_reduction_series_mask(op, data, mask, aggcontext=None, **kwargs): operand = data[mask] if mask is not None else data return aggcontext.agg(operand, type(op).__name__.lower()) @execute_node.register( (ops.CountDistinct, ops.HLLCardinality), pd.Series, (pd.Series, type(None)) ) def execute_count_distinct_series_mask( op, data, mask, aggcontext=None, **kwargs ): return aggcontext.agg(data[mask] if mask is not None else data, 'nunique') @execute_node.register(ops.Arbitrary, pd.Series, (pd.Series, type(None))) def execute_arbitrary_series_mask(op, data, mask, aggcontext=None, **kwargs): if op.how == 'first': index = 0 elif op.how == 'last': index = -1 else: raise com.OperationNotDefinedError( f'Arbitrary {op.how!r} is not supported' ) data = data[mask] if mask is not None else data return data.iloc[index] @execute_node.register(ops.StandardDev, pd.Series, (pd.Series, type(None))) def execute_standard_dev_series(op, data, mask, aggcontext=None, **kwargs): return aggcontext.agg( data[mask] if mask is not None else data, 'std', ddof=variance_ddof[op.how], ) @execute_node.register(ops.Variance, pd.Series, (pd.Series, type(None))) def execute_variance_series(op, data, mask, aggcontext=None, **kwargs): return aggcontext.agg( data[mask] if mask is not None else data, 'var', ddof=variance_ddof[op.how], ) @execute_node.register((ops.Any, ops.All), (pd.Series, SeriesGroupBy)) def execute_any_all_series(op, data, aggcontext=None, **kwargs): if isinstance(aggcontext, (agg_ctx.Summarize, agg_ctx.Transform)): result = aggcontext.agg(data, type(op).__name__.lower()) else: result = aggcontext.agg( data, lambda data: getattr(data, type(op).__name__.lower())() ) try: return result.astype(bool) except TypeError: return result @execute_node.register(ops.NotAny, (pd.Series, SeriesGroupBy)) def execute_notany_series(op, data, aggcontext=None, **kwargs): if isinstance(aggcontext, (agg_ctx.Summarize, agg_ctx.Transform)): result = ~(aggcontext.agg(data, 'any')) else: result = aggcontext.agg(data, lambda data: ~(data.any())) try: return result.astype(bool) except TypeError: return result @execute_node.register(ops.NotAll, (pd.Series, SeriesGroupBy)) def execute_notall_series(op, data, aggcontext=None, **kwargs): if isinstance(aggcontext, (agg_ctx.Summarize, agg_ctx.Transform)): result = ~(aggcontext.agg(data, 'all')) else: result = aggcontext.agg(data, lambda data: ~(data.all())) try: return result.astype(bool) except TypeError: return result @execute_node.register(ops.Count, pd.DataFrame, type(None)) def execute_count_frame(op, data, _, **kwargs): return len(data) @execute_node.register(ops.Not, (bool, np.bool_)) def execute_not_bool(op, data, **kwargs): return not data @execute_node.register(ops.BinaryOp, pd.Series, pd.Series) @execute_node.register( (ops.NumericBinaryOp, ops.LogicalBinaryOp, ops.Comparison), numeric_types, pd.Series, ) @execute_node.register( (ops.NumericBinaryOp, ops.LogicalBinaryOp, ops.Comparison), pd.Series, numeric_types, ) @execute_node.register( (ops.NumericBinaryOp, ops.LogicalBinaryOp, ops.Comparison), numeric_types, numeric_types, ) @execute_node.register((ops.Comparison, ops.Add, ops.Multiply), pd.Series, str) @execute_node.register((ops.Comparison, ops.Add, ops.Multiply), str, pd.Series) @execute_node.register((ops.Comparison, ops.Add), str, str) @execute_node.register(ops.Multiply, integer_types, str) @execute_node.register(ops.Multiply, str, integer_types) @execute_node.register(ops.Comparison, pd.Series, timestamp_types) @execute_node.register(ops.Comparison, timestamp_types, pd.Series) def execute_binary_op(op, left, right, **kwargs): op_type = type(op) try: operation = constants.BINARY_OPERATIONS[op_type] except KeyError: raise NotImplementedError( f'Binary operation {op_type.__name__} not implemented' ) else: return operation(left, right) @execute_node.register(ops.BinaryOp, SeriesGroupBy, SeriesGroupBy) def execute_binary_op_series_group_by(op, left, right, **kwargs): left_groupings = left.grouper.groupings right_groupings = right.grouper.groupings if left_groupings != right_groupings: raise ValueError( 'Cannot perform {} operation on two series with ' 'different groupings'.format(type(op).__name__) ) result = execute_binary_op(op, left.obj, right.obj, **kwargs) return result.groupby(left_groupings) @execute_node.register(ops.BinaryOp, SeriesGroupBy, simple_types) def execute_binary_op_series_gb_simple(op, left, right, **kwargs): result = execute_binary_op(op, left.obj, right, **kwargs) return result.groupby(left.grouper.groupings) @execute_node.register(ops.BinaryOp, simple_types, SeriesGroupBy) def execute_binary_op_simple_series_gb(op, left, right, **kwargs): result = execute_binary_op(op, left, right.obj, **kwargs) return result.groupby(right.grouper.groupings) @execute_node.register(ops.UnaryOp, SeriesGroupBy) def execute_unary_op_series_gb(op, operand, **kwargs): result = execute_node(op, operand.obj, **kwargs) return result.groupby(operand.grouper.groupings) @execute_node.register( (ops.Log, ops.Round), SeriesGroupBy, (numbers.Real, decimal.Decimal, type(None)), ) def execute_log_series_gb_others(op, left, right, **kwargs): result = execute_node(op, left.obj, right, **kwargs) return result.groupby(left.grouper.groupings) @execute_node.register((ops.Log, ops.Round), SeriesGroupBy, SeriesGroupBy) def execute_log_series_gb_series_gb(op, left, right, **kwargs): result = execute_node(op, left.obj, right.obj, **kwargs) return result.groupby(left.grouper.groupings) @execute_node.register(ops.Not, pd.Series) def execute_not_series(op, data, **kwargs): return ~data @execute_node.register(ops.NullIfZero, pd.Series) def execute_null_if_zero_series(op, data, **kwargs): return data.where(data != 0, np.nan) @execute_node.register(ops.StringSplit, pd.Series, (pd.Series, str)) def execute_string_split(op, data, delimiter, **kwargs): # Doing the iteration using `map` is much faster than doing the iteration # using `Series.apply` due to Pandas-related overhead. return pd.Series(map(lambda s: np.array(s.split(delimiter)), data)) @execute_node.register( ops.Between, pd.Series, (pd.Series, numbers.Real, str, datetime.datetime), (pd.Series, numbers.Real, str, datetime.datetime), ) def execute_between(op, data, lower, upper, **kwargs): return data.between(lower, upper) @execute_node.register(ops.DistinctColumn, pd.Series) def execute_series_distinct(op, data, **kwargs): return pd.Series(data.unique(), name=data.name) @execute_node.register(ops.Union, pd.DataFrame, pd.DataFrame, bool) def execute_union_dataframe_dataframe( op, left: pd.DataFrame, right: pd.DataFrame, distinct, **kwargs ): result = pd.concat([left, right], axis=0) return result.drop_duplicates() if distinct else result @execute_node.register(ops.Intersection, pd.DataFrame, pd.DataFrame) def execute_intersection_dataframe_dataframe( op, left: pd.DataFrame, right: pd.DataFrame, **kwargs ): result = left.merge(right, on=list(left.columns), how="inner") return result @execute_node.register(ops.Difference, pd.DataFrame, pd.DataFrame) def execute_difference_dataframe_dataframe( op, left: pd.DataFrame, right: pd.DataFrame, **kwargs ): merged = left.merge( right, on=list(left.columns), how='outer', indicator=True ) result = merged[merged["_merge"] != "both"].drop("_merge", 1) return result @execute_node.register(ops.IsNull, pd.Series) def execute_series_isnull(op, data, **kwargs): return data.isnull() @execute_node.register(ops.NotNull, pd.Series) def execute_series_notnnull(op, data, **kwargs): return data.notnull() @execute_node.register(ops.IsNan, (pd.Series, floating_types)) def execute_isnan(op, data, **kwargs): return np.isnan(data) @execute_node.register(ops.IsInf, (pd.Series, floating_types)) def execute_isinf(op, data, **kwargs): return np.isinf(data) @execute_node.register(ops.SelfReference, pd.DataFrame) def execute_node_self_reference_dataframe(op, data, **kwargs): return data @execute_node.register(ops.ValueList, collections.abc.Sequence) def execute_node_value_list(op, _, **kwargs): return [execute(arg, **kwargs) for arg in op.values] @execute_node.register(ops.StringConcat, collections.abc.Sequence) def execute_node_string_concat(op, args, **kwargs): return functools.reduce(operator.add, args) @execute_node.register(ops.StringJoin, collections.abc.Sequence) def execute_node_string_join(op, args, **kwargs): return op.sep.join(args) @execute_node.register( ops.Contains, pd.Series, (collections.abc.Sequence, collections.abc.Set) ) def execute_node_contains_series_sequence(op, data, elements, **kwargs): return data.isin(elements) @execute_node.register( ops.NotContains, pd.Series, (collections.abc.Sequence, collections.abc.Set) ) def execute_node_not_contains_series_sequence(op, data, elements, **kwargs): return ~(data.isin(elements)) # Series, Series, Series # Series, Series, scalar @execute_node.register(ops.Where, pd.Series, pd.Series, pd.Series) @execute_node.register(ops.Where, pd.Series, pd.Series, scalar_types) def execute_node_where_series_series_series(op, cond, true, false, **kwargs): # No need to turn false into a series, pandas will broadcast it return true.where(cond, other=false) # Series, scalar, Series def execute_node_where_series_scalar_scalar(op, cond, true, false, **kwargs): return pd.Series(np.repeat(true, len(cond))).where(cond, other=false) # Series, scalar, scalar for scalar_type in scalar_types: execute_node_where_series_scalar_scalar = execute_node.register( ops.Where, pd.Series, scalar_type, scalar_type )(execute_node_where_series_scalar_scalar) # scalar, Series, Series @execute_node.register(ops.Where, boolean_types, pd.Series, pd.Series) def execute_node_where_scalar_scalar_scalar(op, cond, true, false, **kwargs): # Note that it is not necessary to check that true and false are also # scalars. This allows users to do things like: # ibis.where(even_or_odd_bool, [2, 4, 6], [1, 3, 5]) return true if cond else false # scalar, scalar, scalar for scalar_type in scalar_types: execute_node_where_scalar_scalar_scalar = execute_node.register( ops.Where, boolean_types, scalar_type, scalar_type )(execute_node_where_scalar_scalar_scalar) # scalar, Series, scalar @execute_node.register(ops.Where, boolean_types, pd.Series, scalar_types) def execute_node_where_scalar_series_scalar(op, cond, true, false, **kwargs): return ( true if cond else pd.Series(np.repeat(false, len(true)), index=true.index) ) # scalar, scalar, Series @execute_node.register(ops.Where, boolean_types, scalar_types, pd.Series) def execute_node_where_scalar_scalar_series(op, cond, true, false, **kwargs): return pd.Series(np.repeat(true, len(false))) if cond else false @execute_node.register(PandasTable, PandasBackend) def execute_database_table_client( op, client, timecontext: Optional[TimeContext], **kwargs ): df = client.dictionary[op.name] if timecontext: begin, end = timecontext time_col = get_time_col() if time_col not in df: raise com.IbisError( f'Table {op.name} must have a time column named {time_col}' ' to execute with time context.' ) # filter with time context mask = df[time_col].between(begin, end) return df.loc[mask].reset_index(drop=True) return df MATH_FUNCTIONS = { ops.Floor: math.floor, ops.Ln: math.log, ops.Log2: lambda x: math.log(x, 2), ops.Log10: math.log10, ops.Exp: math.exp, ops.Sqrt: math.sqrt, ops.Abs: abs, ops.Ceil: math.ceil, ops.Sign: lambda x: 0 if not x else -1 if x < 0 else 1, } MATH_FUNCTION_TYPES = tuple(MATH_FUNCTIONS.keys()) @execute_node.register(MATH_FUNCTION_TYPES, numeric_types) def execute_node_math_function_number(op, value, **kwargs): return MATH_FUNCTIONS[type(op)](value) @execute_node.register(ops.Log, numeric_types, numeric_types) def execute_node_log_number_number(op, value, base, **kwargs): return math.log(value, base) @execute_node.register(ops.DropNa, pd.DataFrame) def execute_node_dropna_dataframe(op, df, **kwargs): subset = [col.get_name() for col in op.subset] if op.subset else None return df.dropna(how=op.how, subset=subset) @execute_node.register(ops.FillNa, pd.DataFrame, simple_types) def execute_node_fillna_dataframe_scalar(op, df, replacements, **kwargs): return df.fillna(replacements) @execute_node.register(ops.FillNa, pd.DataFrame) def execute_node_fillna_dataframe_dict(op, df, **kwargs): return df.fillna(op.replacements) @execute_node.register(ops.IfNull, pd.Series, simple_types) @execute_node.register(ops.IfNull, pd.Series, pd.Series) def execute_node_ifnull_series(op, value, replacement, **kwargs): return value.fillna(replacement) @execute_node.register(ops.IfNull, simple_types, pd.Series) def execute_node_ifnull_scalar_series(op, value, replacement, **kwargs): return ( replacement if pd.isnull(value) else pd.Series(value, index=replacement.index) ) @execute_node.register(ops.IfNull, simple_types, simple_types) def execute_node_if_scalars(op, value, replacement, **kwargs): return replacement if pd.isnull(value) else value @execute_node.register(ops.NullIf, simple_types, simple_types) def execute_node_nullif_scalars(op, value1, value2, **kwargs): return np.nan if value1 == value2 else value1 @execute_node.register(ops.NullIf, pd.Series, pd.Series) def execute_node_nullif_series(op, series1, series2, **kwargs): return series1.where(series1 != series2) @execute_node.register(ops.NullIf, pd.Series, simple_types) def execute_node_nullif_series_scalar(op, series, value, **kwargs): return series.where(series != value) @execute_node.register(ops.NullIf, simple_types, pd.Series) def execute_node_nullif_scalar_series(op, value, series, **kwargs): return pd.Series( np.where(series.values == value, np.nan, value), index=series.index ) def coalesce(values): return functools.reduce(lambda x, y: x if not pd.isnull(x) else y, values) @toolz.curry def promote_to_sequence(length, obj): return obj.values if isinstance(obj, pd.Series) else np.repeat(obj, length) def compute_row_reduction(func, value, **kwargs): final_sizes = {len(x) for x in value if isinstance(x, Sized)} if not final_sizes: return func(value) (final_size,) = final_sizes raw = func(list(map(promote_to_sequence(final_size), value)), **kwargs) return pd.Series(raw).squeeze() @execute_node.register(ops.Greatest, collections.abc.Sequence) def execute_node_greatest_list(op, value, **kwargs): return compute_row_reduction(np.maximum.reduce, value, axis=0) @execute_node.register(ops.Least, collections.abc.Sequence) def execute_node_least_list(op, value, **kwargs): return compute_row_reduction(np.minimum.reduce, value, axis=0) @execute_node.register(ops.Coalesce, collections.abc.Sequence) def execute_node_coalesce(op, values, **kwargs): # TODO: this is slow return compute_row_reduction(coalesce, values) def wrap_case_result(raw, expr): """Wrap a CASE statement result in a Series and handle returning scalars. Parameters ---------- raw : ndarray[T] The raw results of executing the ``CASE`` expression expr : ValueExpr The expression from the which `raw` was computed Returns ------- Union[scalar, Series] """ raw_1d = np.atleast_1d(raw) if np.any(pd.isnull(raw_1d)): result = pd.Series(raw_1d) else: result = pd.Series( raw_1d, dtype=constants.IBIS_TYPE_TO_PANDAS_TYPE[expr.type()] ) if result.size == 1 and isinstance(expr, ir.ScalarExpr): return result.iloc[0].item() return result @execute_node.register(ops.SearchedCase, list, list, object) def execute_searched_case(op, whens, thens, otherwise, **kwargs): if otherwise is None: otherwise = np.nan raw = np.select(whens, thens, otherwise) return wrap_case_result(raw, op.to_expr()) @execute_node.register(ops.SimpleCase, object, list, list, object) def execute_simple_case_scalar(op, value, whens, thens, otherwise, **kwargs): if otherwise is None: otherwise = np.nan raw = np.select(np.asarray(whens) == value, thens, otherwise) return wrap_case_result(raw, op.to_expr()) @execute_node.register(ops.SimpleCase, pd.Series, list, list, object) def execute_simple_case_series(op, value, whens, thens, otherwise, **kwargs): if otherwise is None: otherwise = np.nan raw = np.select([value == when for when in whens], thens, otherwise) return wrap_case_result(raw, op.to_expr()) @execute_node.register(ops.Distinct, pd.DataFrame) def execute_distinct_dataframe(op, df, **kwargs): return df.drop_duplicates() @execute_node.register(ops.RowID) def execute_rowid(op, *args, **kwargs): raise com.UnsupportedOperationError( 'rowid is not supported in pandas backends' )
32.231664
79
0.70784
e04a159af7d2e2392fcdf22023b73c84b1840206
764
py
Python
plugin/core/popups.py
gobijan/LSP
fe6267f7741b24c760f3ca9ec36697a43dab2684
[ "MIT" ]
null
null
null
plugin/core/popups.py
gobijan/LSP
fe6267f7741b24c760f3ca9ec36697a43dab2684
[ "MIT" ]
null
null
null
plugin/core/popups.py
gobijan/LSP
fe6267f7741b24c760f3ca9ec36697a43dab2684
[ "MIT" ]
null
null
null
popup_class = "lsp_popup" popup_css = ''' .lsp_popup { margin: 0.5rem 0.5rem 0 0.5rem; } .lsp_popup .highlight { border-width: 0; border-radius: 0; } .lsp_popup p { margin-bottom: 0.5rem; padding: 0 0.5rem; font-family: system; } .lsp_popup li { font-family: system; } .lsp_popup .errors { border-width: 0; background-color: color(var(--redish) alpha(0.25)); color: --whitish; margin-bottom: 0.5rem; padding: 0.5rem; } .lsp_popup .warnings { border-width: 0; background-color: color(var(--yellowish) alpha(0.25)); color: --whitish; margin-bottom: 0.5rem; padding: 0.5rem; } '''
21.828571
62
0.524869
aec0b391e55de664082608f9435db14908f78107
4,180
py
Python
map_of_the_world.py
janiszewskibartlomiej/Hack4Change-join_a_meeting
d5d471e7cd8a405f92635e1c54d693019b7c21a3
[ "MIT" ]
null
null
null
map_of_the_world.py
janiszewskibartlomiej/Hack4Change-join_a_meeting
d5d471e7cd8a405f92635e1c54d693019b7c21a3
[ "MIT" ]
null
null
null
map_of_the_world.py
janiszewskibartlomiej/Hack4Change-join_a_meeting
d5d471e7cd8a405f92635e1c54d693019b7c21a3
[ "MIT" ]
null
null
null
import folium from folium import DivIcon from data_processing import DataProcessing from connect_to_db import ConnectToDb class CreatingMap: def __init__(self): pass def map_of_the_world(self): title = "Hack4Change: <br> Activity Booster" meetup_count = ConnectToDb().select_one_record(query="select count(*) from meetups;", parameter="") cases_map = folium.Map( location=[52.0, 20.0], width="99%", height="99%", left="0%", top="0%", zoom_start=6.5, max_zoom=9, min_zoom=5, titles=title, attr="attribution", ) folium.map.Marker( [54.0, 26.0], icon=DivIcon( icon_size=(160, 200), icon_anchor=(200, 40), html=f'<div style="background-color:rgba(255, 255, 255, 0.4);">' f'<center><div style="color: black; padding-top:2px;"><h4>{title}</h4></div>' f'<img src="static/logo.png" alt="Logo" style="width:80px;">' '<br>' f'<h4 style="color: black;">Total meetups: <b style="color: red; padding-bottom:2px;"> {meetup_count[0]}</b></h4>' f"</div>", ), ).add_to(cases_map) data = DataProcessing().get_all_towns() meetups = DataProcessing().get_all_meetups() # print(data) for row in data: coordinates = DataProcessing().slice_location(row[2]) for item in meetups: meetup_id = item[1] town_id = item[0] name_meetup = item[3] create_time = item[2] if town_id == row[0]: folium.Marker( location=[coordinates[1], coordinates[0]], popup=folium.Popup( html=f"""<div style="opacity:1.3;"> <b><center><p style="color:red; font-size:14px;">{row[1]}</p></center></b> <center><p style="color:black; font-size:14px; margin-top:-.9em; margin-bottom:0.2em;">Meetups:</p></center> <center><button type="button" class="btn btn-primary btn-sm" style="padding: 5px; margin-top:3px; margin-bottom: 3px;" onclick=window.open("/meetup={meetup_id}")>{name_meetup}</button></center> <center><button type="button" class="btn btn-primary btn-sm" style="padding: 5px; margin-top:3px; margin-bottom: 3px;" onclick=window.open("/meetup={meetup_id}")>{name_meetup}</button></center> <center><button type="button" class="btn btn-primary btn-sm" style="padding: 5px; margin-top:3px; margin-bottom: 3px;" onclick=window.open("/meetup={meetup_id}")>{name_meetup}</button></center> <center><button type="button" class="btn btn-primary btn-sm" style=" padding: 5px; line-height: 1; border-color: red; margin-block-start: 0.9em; border-width: 2px;" onclick=window.open("/add-meetup")>{chr(128200)} New meetup</button></center> </div>""", max_width=140, ), icon=folium.Icon( color="green", icon="certificate", html="position: absolute; z-index: 1", ), tooltip=f""" <center>Click me</center> """, ).add_to(cases_map) color = "yelow" folium.CircleMarker( location=[coordinates[1], coordinates[0]], radius=10, color=f"{color}", fill=True, fill_color=f"{color}", ).add_to(cases_map) cases_map.save("index.html") # only for github cases_map.save("templates/index.html") # only for github if __name__ == '__main__': CreatingMap().map_of_the_world()
45.434783
270
0.494737
556b3746d636b351db8eb6ec8a74e89b4096e053
1,053
py
Python
text_files/filegen_BASE_21122.py
gthd/pawk
ef32cd0d5f6ed4abc57b414110d5bc2be5ae4c81
[ "Apache-2.0" ]
3
2020-01-11T10:20:26.000Z
2020-01-13T12:54:21.000Z
text_files/filegen_BASE_21122.py
gthd/pawk
ef32cd0d5f6ed4abc57b414110d5bc2be5ae4c81
[ "Apache-2.0" ]
17
2020-03-07T21:44:17.000Z
2020-12-29T20:14:59.000Z
text_files/filegen_BASE_20995.py
gthd/pawk
ef32cd0d5f6ed4abc57b414110d5bc2be5ae4c81
[ "Apache-2.0" ]
1
2021-04-07T23:41:31.000Z
2021-04-07T23:41:31.000Z
import random import string class FileGenerator: def genRandomDigits(self): digits = "".join( [random.choice(string.digits) for i in range(random.randint(1,8))]) return digits def genRandomChars(self): chars = "".join( [random.choice(string.ascii_letters[:26]) for i in range(random.randint(5, 15))] ) return chars def createFile(self): randomChars = [] for i in range(10): randomChars.append(self.genRandomChars()) randomDigits = [] for i in range(200): randomDigits.append(self.genRandomDigits()) for i in range(250): with open('dummydata.txt', 'a') as the_file: charIndex = random.randint(0,9) digfirstIndex = random.randint(0,199) digsecondIndex = random.randint(0,199) line = randomChars[charIndex] + " " + randomDigits[digfirstIndex] + " " + randomDigits[digsecondIndex] + "\n" the_file.write(line) file = FileGenerator() file.createFile()
31.909091
125
0.598291
0d0d43afb3267d4780641fe432419f1c8bf4d0f4
17,206
py
Python
.eggs/pytest-3.6.1-py3.6.egg/_pytest/runner.py
dyspop/responsysrest
7b8e9edab1808f753be6383c7925529775a4fa89
[ "MIT" ]
1
2018-09-19T15:08:08.000Z
2018-09-19T15:08:08.000Z
.eggs/pytest-3.6.1-py3.6.egg/_pytest/runner.py
dyspop/responsysrest
7b8e9edab1808f753be6383c7925529775a4fa89
[ "MIT" ]
22
2018-04-23T13:52:20.000Z
2019-09-20T15:11:32.000Z
.eggs/pytest-3.6.1-py3.6.egg/_pytest/runner.py
dyspop/responsysrest
7b8e9edab1808f753be6383c7925529775a4fa89
[ "MIT" ]
1
2020-04-28T17:03:40.000Z
2020-04-28T17:03:40.000Z
""" basic collect and runtest protocol implementations """ from __future__ import absolute_import, division, print_function import bdb import os import sys from time import time import py from _pytest._code.code import TerminalRepr, ExceptionInfo from _pytest.outcomes import skip, Skipped, TEST_OUTCOME # # pytest plugin hooks def pytest_addoption(parser): group = parser.getgroup("terminal reporting", "reporting", after="general") group.addoption( "--durations", action="store", type=int, default=None, metavar="N", help="show N slowest setup/test durations (N=0 for all).", ), def pytest_terminal_summary(terminalreporter): durations = terminalreporter.config.option.durations if durations is None: return tr = terminalreporter dlist = [] for replist in tr.stats.values(): for rep in replist: if hasattr(rep, "duration"): dlist.append(rep) if not dlist: return dlist.sort(key=lambda x: x.duration) dlist.reverse() if not durations: tr.write_sep("=", "slowest test durations") else: tr.write_sep("=", "slowest %s test durations" % durations) dlist = dlist[:durations] for rep in dlist: nodeid = rep.nodeid.replace("::()::", "::") tr.write_line("%02.2fs %-8s %s" % (rep.duration, rep.when, nodeid)) def pytest_sessionstart(session): session._setupstate = SetupState() def pytest_sessionfinish(session): session._setupstate.teardown_all() def pytest_runtest_protocol(item, nextitem): item.ihook.pytest_runtest_logstart(nodeid=item.nodeid, location=item.location) runtestprotocol(item, nextitem=nextitem) item.ihook.pytest_runtest_logfinish(nodeid=item.nodeid, location=item.location) return True def runtestprotocol(item, log=True, nextitem=None): hasrequest = hasattr(item, "_request") if hasrequest and not item._request: item._initrequest() rep = call_and_report(item, "setup", log) reports = [rep] if rep.passed: if item.config.option.setupshow: show_test_item(item) if not item.config.option.setuponly: reports.append(call_and_report(item, "call", log)) reports.append(call_and_report(item, "teardown", log, nextitem=nextitem)) # after all teardown hooks have been called # want funcargs and request info to go away if hasrequest: item._request = False item.funcargs = None return reports def show_test_item(item): """Show test function, parameters and the fixtures of the test item.""" tw = item.config.get_terminal_writer() tw.line() tw.write(" " * 8) tw.write(item._nodeid) used_fixtures = sorted(item._fixtureinfo.name2fixturedefs.keys()) if used_fixtures: tw.write(" (fixtures used: {})".format(", ".join(used_fixtures))) def pytest_runtest_setup(item): _update_current_test_var(item, "setup") item.session._setupstate.prepare(item) def pytest_runtest_call(item): _update_current_test_var(item, "call") sys.last_type, sys.last_value, sys.last_traceback = (None, None, None) try: item.runtest() except Exception: # Store trace info to allow postmortem debugging type, value, tb = sys.exc_info() tb = tb.tb_next # Skip *this* frame sys.last_type = type sys.last_value = value sys.last_traceback = tb del type, value, tb # Get rid of these in this frame raise def pytest_runtest_teardown(item, nextitem): _update_current_test_var(item, "teardown") item.session._setupstate.teardown_exact(item, nextitem) _update_current_test_var(item, None) def _update_current_test_var(item, when): """ Update PYTEST_CURRENT_TEST to reflect the current item and stage. If ``when`` is None, delete PYTEST_CURRENT_TEST from the environment. """ var_name = "PYTEST_CURRENT_TEST" if when: value = "{} ({})".format(item.nodeid, when) # don't allow null bytes on environment variables (see #2644, #2957) value = value.replace("\x00", "(null)") os.environ[var_name] = value else: os.environ.pop(var_name) def pytest_report_teststatus(report): if report.when in ("setup", "teardown"): if report.failed: # category, shortletter, verbose-word return "error", "E", "ERROR" elif report.skipped: return "skipped", "s", "SKIPPED" else: return "", "", "" # # Implementation def call_and_report(item, when, log=True, **kwds): call = call_runtest_hook(item, when, **kwds) hook = item.ihook report = hook.pytest_runtest_makereport(item=item, call=call) if log: hook.pytest_runtest_logreport(report=report) if check_interactive_exception(call, report): hook.pytest_exception_interact(node=item, call=call, report=report) return report def check_interactive_exception(call, report): return call.excinfo and not ( hasattr(report, "wasxfail") or call.excinfo.errisinstance(skip.Exception) or call.excinfo.errisinstance(bdb.BdbQuit) ) def call_runtest_hook(item, when, **kwds): hookname = "pytest_runtest_" + when ihook = getattr(item.ihook, hookname) return CallInfo( lambda: ihook(item=item, **kwds), when=when, treat_keyboard_interrupt_as_exception=item.config.getvalue("usepdb"), ) class CallInfo(object): """ Result/Exception info a function invocation. """ #: None or ExceptionInfo object. excinfo = None def __init__(self, func, when, treat_keyboard_interrupt_as_exception=False): #: context of invocation: one of "setup", "call", #: "teardown", "memocollect" self.when = when self.start = time() try: self.result = func() except KeyboardInterrupt: if treat_keyboard_interrupt_as_exception: self.excinfo = ExceptionInfo() else: self.stop = time() raise except: # noqa self.excinfo = ExceptionInfo() self.stop = time() def __repr__(self): if self.excinfo: status = "exception: %s" % str(self.excinfo.value) else: status = "result: %r" % (self.result,) return "<CallInfo when=%r %s>" % (self.when, status) def getslaveinfoline(node): try: return node._slaveinfocache except AttributeError: d = node.slaveinfo ver = "%s.%s.%s" % d["version_info"][:3] node._slaveinfocache = s = "[%s] %s -- Python %s %s" % ( d["id"], d["sysplatform"], ver, d["executable"], ) return s class BaseReport(object): def __init__(self, **kw): self.__dict__.update(kw) def toterminal(self, out): if hasattr(self, "node"): out.line(getslaveinfoline(self.node)) longrepr = self.longrepr if longrepr is None: return if hasattr(longrepr, "toterminal"): longrepr.toterminal(out) else: try: out.line(longrepr) except UnicodeEncodeError: out.line("<unprintable longrepr>") def get_sections(self, prefix): for name, content in self.sections: if name.startswith(prefix): yield prefix, content @property def longreprtext(self): """ Read-only property that returns the full string representation of ``longrepr``. .. versionadded:: 3.0 """ tw = py.io.TerminalWriter(stringio=True) tw.hasmarkup = False self.toterminal(tw) exc = tw.stringio.getvalue() return exc.strip() @property def caplog(self): """Return captured log lines, if log capturing is enabled .. versionadded:: 3.5 """ return "\n".join( content for (prefix, content) in self.get_sections("Captured log") ) @property def capstdout(self): """Return captured text from stdout, if capturing is enabled .. versionadded:: 3.0 """ return "".join( content for (prefix, content) in self.get_sections("Captured stdout") ) @property def capstderr(self): """Return captured text from stderr, if capturing is enabled .. versionadded:: 3.0 """ return "".join( content for (prefix, content) in self.get_sections("Captured stderr") ) passed = property(lambda x: x.outcome == "passed") failed = property(lambda x: x.outcome == "failed") skipped = property(lambda x: x.outcome == "skipped") @property def fspath(self): return self.nodeid.split("::")[0] def pytest_runtest_makereport(item, call): when = call.when duration = call.stop - call.start keywords = {x: 1 for x in item.keywords} excinfo = call.excinfo sections = [] if not call.excinfo: outcome = "passed" longrepr = None else: if not isinstance(excinfo, ExceptionInfo): outcome = "failed" longrepr = excinfo elif excinfo.errisinstance(skip.Exception): outcome = "skipped" r = excinfo._getreprcrash() longrepr = (str(r.path), r.lineno, r.message) else: outcome = "failed" if call.when == "call": longrepr = item.repr_failure(excinfo) else: # exception in setup or teardown longrepr = item._repr_failure_py( excinfo, style=item.config.option.tbstyle ) for rwhen, key, content in item._report_sections: sections.append(("Captured %s %s" % (key, rwhen), content)) return TestReport( item.nodeid, item.location, keywords, outcome, longrepr, when, sections, duration, user_properties=item.user_properties, ) class TestReport(BaseReport): """ Basic test report object (also used for setup and teardown calls if they fail). """ def __init__( self, nodeid, location, keywords, outcome, longrepr, when, sections=(), duration=0, user_properties=(), **extra ): #: normalized collection node id self.nodeid = nodeid #: a (filesystempath, lineno, domaininfo) tuple indicating the #: actual location of a test item - it might be different from the #: collected one e.g. if a method is inherited from a different module. self.location = location #: a name -> value dictionary containing all keywords and #: markers associated with a test invocation. self.keywords = keywords #: test outcome, always one of "passed", "failed", "skipped". self.outcome = outcome #: None or a failure representation. self.longrepr = longrepr #: one of 'setup', 'call', 'teardown' to indicate runtest phase. self.when = when #: user properties is a list of tuples (name, value) that holds user #: defined properties of the test self.user_properties = user_properties #: list of pairs ``(str, str)`` of extra information which needs to #: marshallable. Used by pytest to add captured text #: from ``stdout`` and ``stderr``, but may be used by other plugins #: to add arbitrary information to reports. self.sections = list(sections) #: time it took to run just the test self.duration = duration self.__dict__.update(extra) def __repr__(self): return "<TestReport %r when=%r outcome=%r>" % ( self.nodeid, self.when, self.outcome, ) class TeardownErrorReport(BaseReport): outcome = "failed" when = "teardown" def __init__(self, longrepr, **extra): self.longrepr = longrepr self.sections = [] self.__dict__.update(extra) def pytest_make_collect_report(collector): call = CallInfo(lambda: list(collector.collect()), "collect") longrepr = None if not call.excinfo: outcome = "passed" else: from _pytest import nose skip_exceptions = (Skipped,) + nose.get_skip_exceptions() if call.excinfo.errisinstance(skip_exceptions): outcome = "skipped" r = collector._repr_failure_py(call.excinfo, "line").reprcrash longrepr = (str(r.path), r.lineno, r.message) else: outcome = "failed" errorinfo = collector.repr_failure(call.excinfo) if not hasattr(errorinfo, "toterminal"): errorinfo = CollectErrorRepr(errorinfo) longrepr = errorinfo rep = CollectReport( collector.nodeid, outcome, longrepr, getattr(call, "result", None) ) rep.call = call # see collect_one_node return rep class CollectReport(BaseReport): def __init__(self, nodeid, outcome, longrepr, result, sections=(), **extra): self.nodeid = nodeid self.outcome = outcome self.longrepr = longrepr self.result = result or [] self.sections = list(sections) self.__dict__.update(extra) @property def location(self): return (self.fspath, None, self.fspath) def __repr__(self): return "<CollectReport %r lenresult=%s outcome=%r>" % ( self.nodeid, len(self.result), self.outcome, ) class CollectErrorRepr(TerminalRepr): def __init__(self, msg): self.longrepr = msg def toterminal(self, out): out.line(self.longrepr, red=True) class SetupState(object): """ shared state for setting up/tearing down test items or collectors. """ def __init__(self): self.stack = [] self._finalizers = {} def addfinalizer(self, finalizer, colitem): """ attach a finalizer to the given colitem. if colitem is None, this will add a finalizer that is called at the end of teardown_all(). """ assert colitem and not isinstance(colitem, tuple) assert callable(finalizer) # assert colitem in self.stack # some unit tests don't setup stack :/ self._finalizers.setdefault(colitem, []).append(finalizer) def _pop_and_teardown(self): colitem = self.stack.pop() self._teardown_with_finalization(colitem) def _callfinalizers(self, colitem): finalizers = self._finalizers.pop(colitem, None) exc = None while finalizers: fin = finalizers.pop() try: fin() except TEST_OUTCOME: # XXX Only first exception will be seen by user, # ideally all should be reported. if exc is None: exc = sys.exc_info() if exc: py.builtin._reraise(*exc) def _teardown_with_finalization(self, colitem): self._callfinalizers(colitem) if hasattr(colitem, "teardown"): colitem.teardown() for colitem in self._finalizers: assert ( colitem is None or colitem in self.stack or isinstance(colitem, tuple) ) def teardown_all(self): while self.stack: self._pop_and_teardown() for key in list(self._finalizers): self._teardown_with_finalization(key) assert not self._finalizers def teardown_exact(self, item, nextitem): needed_collectors = nextitem and nextitem.listchain() or [] self._teardown_towards(needed_collectors) def _teardown_towards(self, needed_collectors): while self.stack: if self.stack == needed_collectors[: len(self.stack)]: break self._pop_and_teardown() def prepare(self, colitem): """ setup objects along the collector chain to the test-method and teardown previously setup objects.""" needed_collectors = colitem.listchain() self._teardown_towards(needed_collectors) # check if the last collection node has raised an error for col in self.stack: if hasattr(col, "_prepare_exc"): py.builtin._reraise(*col._prepare_exc) for col in needed_collectors[len(self.stack) :]: self.stack.append(col) try: col.setup() except TEST_OUTCOME: col._prepare_exc = sys.exc_info() raise def collect_one_node(collector): ihook = collector.ihook ihook.pytest_collectstart(collector=collector) rep = ihook.pytest_make_collect_report(collector=collector) call = rep.__dict__.pop("call", None) if call and check_interactive_exception(call, rep): ihook.pytest_exception_interact(node=collector, call=call, report=rep) return rep
30.345679
86
0.611298
f04913481f1a71107c3cfd0e9a28a5329f68da1f
253
py
Python
text/stick/_line.py
jedhsu/text
8525b602d304ac571a629104c48703443244545c
[ "Apache-2.0" ]
null
null
null
text/stick/_line.py
jedhsu/text
8525b602d304ac571a629104c48703443244545c
[ "Apache-2.0" ]
null
null
null
text/stick/_line.py
jedhsu/text
8525b602d304ac571a629104c48703443244545c
[ "Apache-2.0" ]
null
null
null
""" *Stick* A string imbued with plane geometry. """ from dataclasses import dataclass from ..string import String from .geometry import StickGeometry __all__ = ["Stick"] @dataclass class Stick( String, ): geometry: StickGeometry
11
38
0.695652
40e3a5bd242e53abad701b6362f711f7fc79c7ae
1,369
py
Python
solar/dblayer/conflict_resolution.py
Mirantis/solar
7d12e56d403d70a923cd1caa9c7e3c8cf6fc57aa
[ "Apache-2.0" ]
7
2015-09-07T22:52:32.000Z
2016-01-14T09:27:09.000Z
solar/dblayer/conflict_resolution.py
Mirantis/solar
7d12e56d403d70a923cd1caa9c7e3c8cf6fc57aa
[ "Apache-2.0" ]
117
2015-09-08T05:46:16.000Z
2016-04-14T16:46:33.000Z
solar/dblayer/conflict_resolution.py
Mirantis/solar
7d12e56d403d70a923cd1caa9c7e3c8cf6fc57aa
[ "Apache-2.0" ]
21
2015-09-08T06:34:50.000Z
2015-12-09T09:14:24.000Z
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from collections import Counter def naive_resolver(riak_object): # for now we support deleted vs existing object siblings = riak_object.siblings siblings_len = map( lambda sibling: (len(sibling._get_encoded_data()), sibling), siblings) siblings_len.sort() c = Counter((x[0] for x in siblings_len)) if len(c) > 2: raise RuntimeError( "Too many different siblings, not sure what to do with siblings") if 0 not in c: raise RuntimeError("No empty object for resolution" " not sure what to do with siblings") selected = max(siblings_len) # TODO: pass info to obj save_lazy too riak_object.siblings = [selected[1]] dblayer_conflict_resolver = naive_resolver
37
78
0.692476