hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
522ffb6fe0b4c3f9c1d46796a54983ebbc2182c3
438
py
Python
thinkpython_allen_downey/exercise_6_5.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
thinkpython_allen_downey/exercise_6_5.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
thinkpython_allen_downey/exercise_6_5.py
alirkaya/programming-textbook-solutions
7362dce474b8a881d654f95604e09d1d0e76aec2
[ "MIT" ]
null
null
null
def ack(m, n): if m < 0 or n < 0: return -1 elif m == 0: return n+1 elif n == 0: return ack(m-1, 1) else: return ack(m-1, ack(m, n-1)) print(ack(3, 4)) # For large values of m and n, the function gives RecursionError. Because, # by default, there is a fixed number of recursion is allowed. If the function # tries to go beyond that number, then Python throws an Error and exits function.
27.375
81
0.614155
69419c4414e47f7c862e377d3dfa69a12df5b5d0
10,480
py
Python
openscad_libraries/NopSCADlib/scripts/bom.py
hongming/feixingchuan
3e3420fe401dfd2385594bd0da11caf01eb753d3
[ "MIT" ]
null
null
null
openscad_libraries/NopSCADlib/scripts/bom.py
hongming/feixingchuan
3e3420fe401dfd2385594bd0da11caf01eb753d3
[ "MIT" ]
null
null
null
openscad_libraries/NopSCADlib/scripts/bom.py
hongming/feixingchuan
3e3420fe401dfd2385594bd0da11caf01eb753d3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # NopSCADlib Copyright Chris Palmer 2018 # nop.head@gmail.com # hydraraptor.blogspot.com # # This file is part of NopSCADlib. # # NopSCADlib is free software: you can redistribute it and/or modify it under the terms of the # GNU General Public License as published by the Free Software Foundation, either version 3 of # the License, or (at your option) any later version. # # NopSCADlib is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with NopSCADlib. # If not, see <https://www.gnu.org/licenses/>. # #! Generates BOM files for the project. from __future__ import print_function import os import sys import shutil import openscad from time import * from set_config import * import json import re def find_scad_file(mname): for filename in os.listdir(source_dir): if filename[-5:] == ".scad": # # look for module which makes the assembly # with open(source_dir + "/" + filename, "r") as f: for line in f.readlines(): words = line.split() if len(words) and words[0] == "module": module = words[1].split('(')[0] if module == mname: return filename return None class Part: def __init__(self, args): self.count = 1 for arg in args: arg = arg.replace('true', 'True').replace('false', 'False').replace('undef', 'None') exec('self.' + arg) def data(self): return self.__dict__ class BOM: def __init__(self, name): self.name = name self.big = None self.ngb = False self.zoomed = 0 self.count = 1 self.vitamins = {} self.printed = {} self.routed = {} self.assemblies = {} def flat_data(self): assemblies = {} for ass in self.assemblies: assemblies[ass] = self.assemblies[ass].count return { "name" : self.name, "big" : self.big, "ngb" : self.ngb, "zoomed" : self.zoomed, "count" : self.count, "assemblies" : assemblies, "vitamins" : {v : self.vitamins[v].data() for v in self.vitamins}, "printed" : {p : self.printed[p].data() for p in self.printed}, "routed" : {r : self.routed[r].data() for r in self.routed} } def add_part(self, s): args = [] match = re.match(r'^(.*?\.stl|.*?\.dxf)\((.*)\)$', s) #look for name.stl(...) or name.dxf(...) if match: s = match.group(1) args = [match.group(2)] if s[-4:] == ".stl": parts = self.printed else: if s[-4:] == ".dxf": parts = self.routed else: parts = self.vitamins if s in parts: parts[s].count += 1 else: parts[s] = Part(args) def add_assembly(self, ass, args = []): if ass in self.assemblies: self.assemblies[ass].count += 1 else: bom = BOM(ass) for arg in args: arg = arg.replace('true', 'True').replace('false', 'False').replace('undef', 'None') exec('bom.' + arg, locals()) self.assemblies[ass] = bom def make_name(self, ass): if self.count == 1: return ass return ass.replace("assembly", "assemblies") def print_bom(self, breakdown, file = None): if self.vitamins: print("Vitamins:", file=file) if breakdown: longest = 0 for ass in self.assemblies: name = ass.replace("_assembly","") longest = max(longest, len(name)) for i in range(longest): line = "" for ass in sorted(self.assemblies): name = ass.replace("_assembly","").replace("_"," ").capitalize() index = i - (longest - len(name)) if index < 0: line += " " else: line += (" %s " % name[index]) print(line[:-1], file=file) for part in sorted(self.vitamins): if ': ' in part: part_no, description = part.split(': ') else: part_no, description = "", part if breakdown: for ass in sorted(self.assemblies): bom = self.assemblies[ass] if part in bom.vitamins: file.write("%2d|" % bom.vitamins[part].count) else: file.write(" |") print("%3d" % self.vitamins[part].count, description, file=file) if self.printed: if self.vitamins: print(file=file) print("Printed:", file=file) for part in sorted(self.printed): if breakdown: for ass in sorted(self.assemblies): bom = self.assemblies[ass] if part in bom.printed: file.write("%2d|" % bom.printed[part].count) else: file.write(" |") print("%3d" % self.printed[part].count, part, file=file) if self.routed: print(file=file) print("CNC cut:", file=file) for part in sorted(self.routed): if breakdown: for ass in sorted(self.assemblies): bom = self.assemblies[ass] if part in bom.routed: file.write("%2d|" % bom.routed[part].count) else: file.write(" |") print("%3d" % self.routed[part].count, part, file=file) if self.assemblies: print(file=file) print("Assemblies:", file=file) for ass in sorted(self.assemblies): print("%3d %s" % (self.assemblies[ass].count, self.assemblies[ass].make_name(ass)), file=file) def parse_bom(file = "openscad.log", name = None): main = BOM(name) main.ordered_assemblies = [] stack = [] prog = re.compile(r'^(.*)\((.*)\)$') for line in open(file): pos = line.find('ECHO: "~') if pos > -1: s = line[pos + 8 : line.rfind('"')] if s[-1] == '{': ass = s[:-1] args = [] match = prog.match(ass) #look for (...) if match: ass = match.group(1) args = match.group(2).split(',') if stack: main.assemblies[stack[-1]].add_assembly(ass) #add to nested BOM stack.append(ass) main.add_assembly(ass, args) #add to flat BOM if ass in main.ordered_assemblies: main.ordered_assemblies.remove(ass) main.ordered_assemblies.insert(0, ass) else: if s[0] == '}': if s[1:] != stack[-1]: raise Exception("Mismatched assembly " + s[1:] + str(stack)) stack.pop() else: main.add_part(s) if stack: main.assemblies[stack[-1]].add_part(s) else: if 'ERROR:' in line or 'WARNING:' in line: raise Exception(line[:-1]) return main def usage(): print("\nusage:\n\tbom [target_config] [<accessory_name>_assembly] - Generate BOMs for a project or an accessory to a project.") sys.exit(1) def boms(target = None, assembly = None): try: bom_dir = set_config(target, usage) + "bom" if assembly: bom_dir += "/accessories" if not os.path.isdir(bom_dir): os.makedirs(bom_dir) else: assembly = "main_assembly" if os.path.isdir(bom_dir): shutil.rmtree(bom_dir) sleep(0.1) os.makedirs(bom_dir) # # Find the scad file that makes the module # scad_file = find_scad_file(assembly) if not scad_file: raise Exception("can't find source for " + assembly) # # make a file to use the module # bom_maker_name = source_dir + "/bom.scad" with open(bom_maker_name, "w") as f: f.write("use <%s>\n" % scad_file) f.write("%s();\n" % assembly); # # Run openscad # openscad.run("-D", "$bom=2", "-D", "$preview=true", "-o", "openscad.echo", "-d", bom_dir + "/bom.deps", bom_maker_name) os.remove(bom_maker_name) print("Generating bom ...", end=" ") main = parse_bom("openscad.echo", assembly) if assembly == "main_assembly": main.print_bom(True, open(bom_dir + "/bom.txt","wt")) for ass in main.assemblies: with open(bom_dir + "/" + ass + ".txt", "wt") as f: bom = main.assemblies[ass] print(bom.make_name(ass) + ":", file=f) bom.print_bom(False, f) data = [main.assemblies[ass].flat_data() for ass in main.ordered_assemblies] with open(bom_dir + "/bom.json", 'w') as outfile: json.dump(data, outfile, indent = 4) print("done") except Exception as e: print(str(e)) sys.exit(1) if __name__ == '__main__': if len(sys.argv) > 3: usage() if len(sys.argv) == 3: target, assembly = sys.argv[1], sys.argv[2] else: if len(sys.argv) == 2: if sys.argv[1][-9:] == "_assembly": target, assembly = None, sys.argv[1] else: target, assembly = sys.argv[1], None else: target, assembly = None, None if assembly: if assembly[-9:] != "_assembly": usage() boms(target, assembly)
35.167785
132
0.489504
36db47ef1c58b68b89f4cbef735f01acd3170c7a
1,188
py
Python
Analysis_software/marspy/stats.py
duderstadt-lab/Born-to-slide
00f3a7ef4aaefff636ae7ddbb9e1c9947b284967
[ "BSD-2-Clause" ]
null
null
null
Analysis_software/marspy/stats.py
duderstadt-lab/Born-to-slide
00f3a7ef4aaefff636ae7ddbb9e1c9947b284967
[ "BSD-2-Clause" ]
null
null
null
Analysis_software/marspy/stats.py
duderstadt-lab/Born-to-slide
00f3a7ef4aaefff636ae7ddbb9e1c9947b284967
[ "BSD-2-Clause" ]
null
null
null
import numpy as np from sklearn.utils import resample def bootstrap(data, n_boot=10000, sample_size=1, estimator=np.mean): """ :param data: array with data :param n_boot: number for bootstrapping iterations (default 10000) :param sample_size: sample coverage ]0;1] (default 1) :param estimator: default np.mean :return: list of bootstrap samples """ return estimator( [resample(data, replace=True, n_samples=int(sample_size * len(data))) for _ in range(n_boot)], axis=1) def calc_ci(data, ci=95): """ Calculates values for confidence interval :param data: arrayed data :param ci: confidence interval (default 95) :return: lower_bound, upper_bound """ return np.percentile(data, 50 - ci / 2), np.percentile(data, 50 + ci / 2) def significance(p): """ Returns significance symbol based on set alpha values :param p: probability of statistical test :return: string expression for significance """ if p < 0.001: expression = "***" elif p < 0.01: expression = "**" elif p < 0.05: expression = "*" else: expression = "ns" return expression
27.627907
102
0.643098
851f1f1ca5d658f8a88669a24c4094e400005ad4
4,627
py
Python
source/app/simple_cfar_clustering.py
WinterWinds-Robotics/pymmw
3e2841f24a6cd98ccbee10a0ee7479f394417708
[ "MIT" ]
null
null
null
source/app/simple_cfar_clustering.py
WinterWinds-Robotics/pymmw
3e2841f24a6cd98ccbee10a0ee7479f394417708
[ "MIT" ]
null
null
null
source/app/simple_cfar_clustering.py
WinterWinds-Robotics/pymmw
3e2841f24a6cd98ccbee10a0ee7479f394417708
[ "MIT" ]
null
null
null
# # Copyright (c) 2019, Manfred Constapel # This file is licensed under the terms of the MIT license. # # # super-simple CFAR clustering # import os import sys try: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt __base__ = os.path.dirname(os.path.abspath(__file__)) while 'lib' not in [d for d in os.listdir(__base__) if os.path.isdir(os.path.join(__base__, d))]: __base__ = os.path.join(__base__, '..') if __base__ not in sys.path: sys.path.append(__base__) from lib.plot import * except ImportError as e: print(e, file=sys.stderr, flush=True) sys.exit(3) # ------------------------------------------------ def update(data, threshold=0.1): if 'detected_points' not in data: return X, Y, Z = [], [], [] for _, p in data['detected_points'].items(): x, y, z, d = p['x'], p['y'], p['z'], p['v'] X.append(x) Y.append(y) Z.append(z) mx, my, mz, err = np.mean(X), np.mean(Y), np.mean(Z), np.sqrt(np.std(X)**2 + np.std(Y)**2 + np.std(Z)**2) while err > threshold: dmin, dmax, d = float('inf'), 0, [] for x, y, z in zip(X, Y, Z): d.append(np.sqrt(x**2 + y**2 + z**2) - np.sqrt(mx**2 + my**2 + mz**2)) if d[-1] > dmax: dmax = d[-1] if d[-1] < dmin: dmin = d[-1] dhor = dmin + (dmax - dmin) / 2 k = 0 for i, r in enumerate(d): if r > dhor: d[i] = None X.pop(i-k) Y.pop(i-k) Z.pop(i-k) k += 1 if len(X) == 0: return mx, my, mz, err = np.mean(X), np.mean(Y), np.mean(Z), np.sqrt(np.std(X)**2 + np.std(Y)**2 + np.std(Z)**2) if k == 0 and err > threshold: return for x, y, z in zip(X, Y, Z): pt = Point((x, y, z), color=(0.5, 0.5, 0.5), size=3, marker='.') ax.add_artist(pt) pt = Point((mx, my, mz), color=(1.0, 0.0, 0.0), size=20, marker='+') ax.add_artist(pt) xm, ym, zm = ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d() az, el = ax.azim, ax.elev if abs(az) > 90: x_ = max(xm) else: x_ = min(xm) if az < 0: y_ = max(ym) else: y_ = min(ym) if el < 0: z_ = max(zm) else: z_ = min(zm) xz = Point((mx, y_, mz), color=(1.0, 0.0, 0.0), size=3, marker='.') ax.add_artist(xz) yz = Point((x_, my, mz), color=(1.0, 0.0, 0.0), size=3, marker='.') ax.add_artist(yz) xy = Point((mx, my, z_), color=(1.0, 0.0, 0.0), size=3, marker='.') ax.add_artist(xy) if __name__ == "__main__": if len (sys.argv[1:]) != 1: print('Usage: {} {}'.format(sys.argv[0].split(os.sep)[-1], '<range_maximum>')) sys.exit(1) try: range_max = float(sys.argv[1]) d = range_max # int(math.ceil(range_max)) # --- fig = plt.figure(figsize=(6, 6)) ax = plt.subplot(1, 1, 1, projection='3d') # rows, cols, idx ax.view_init(azim=-45, elev=15) move_figure(fig, (0 + 45*2, 0 + 45*2)) fig.canvas.manager.set_window_title('...') ax.set_title('CFAR Detection: Simple Clustering'.format(), fontsize=10) ax.set_xlabel('x [m]') ax.set_ylabel('y [m]') ax.set_zlabel('z [m]') ax.set_xlim3d((-d / 2, +d / 2)) ax.set_ylim3d((0, d)) ax.set_zlim3d((-d / 2, +d / 2)) ax.xaxis.pane.fill = False ax.yaxis.pane.fill = False ax.zaxis.pane.fill = False ax.xaxis._axinfo['grid']['linestyle'] = ':' ax.yaxis._axinfo['grid']['linestyle'] = ':' ax.zaxis._axinfo['grid']['linestyle'] = ':' plt.tight_layout(pad=1) ax.scatter(xs=[], ys=[], zs=[], marker='.', cmap='jet') for child in ax.get_children(): if isinstance(child, art3d.Path3DCollection): child.remove() from itertools import product, combinations # a small cube (origin) r = [-0.075, +0.075] for s, e in combinations(np.array(list(product(r,r,r))), 2): if np.sum(np.abs(s-e)) == r[1]-r[0]: ax.plot3D(*zip(s,e), color="black", linewidth=0.5) set_aspect_equal_3d(ax) mpl.colors._colors_full_map.cache.clear() # avoid memory leak by clearing the cache start_plot(fig, ax, update, 4) except Exception as e: print(e, file=sys.stderr, flush=True) sys.exit(2)
28.213415
141
0.494489
6983d44e76e06a201faf18d1e3f8e8d0d78ffd34
572
py
Python
sacred/__about__.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
1
2019-06-12T00:31:12.000Z
2019-06-12T00:31:12.000Z
sacred/__about__.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
null
null
null
sacred/__about__.py
ssudholt/sacred
6fb05b1ee1b7706b44c3ebd852e1e234841ea2ce
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 """ This module contains meta-information about the Sacred package. It is kept simple and separate from the main module, because this information is also read by the setup.py. And during installation the sacred module cannot yet be imported. """ from __future__ import division, print_function, unicode_literals __all__ = ("__version__", "__author__", "__author_email__", "__url__") __version__ = "0.7.4-onurgu" __author__ = 'Klaus Greff' __author_email__ = 'klaus.greff@startmail.com' __url__ = "https://github.com/IDSIA/sacred"
28.6
78
0.767483
2734c265a97e11d0eb2ccdba85cda7564e3ad825
1,878
py
Python
azure-mgmt-monitor/azure/mgmt/monitor/models/rule_email_action_py3.py
lmazuel/azure-sdk-for-python
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
[ "MIT" ]
1
2022-03-30T22:39:15.000Z
2022-03-30T22:39:15.000Z
azure-mgmt-monitor/azure/mgmt/monitor/models/rule_email_action_py3.py
lmazuel/azure-sdk-for-python
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
[ "MIT" ]
54
2016-03-25T17:25:01.000Z
2018-10-22T17:27:54.000Z
azure-mgmt-monitor/azure/mgmt/monitor/models/rule_email_action_py3.py
lmazuel/azure-sdk-for-python
b40e0e36cc00a82b7f8ca2fa599b1928240c98b5
[ "MIT" ]
2
2017-01-20T18:25:46.000Z
2017-05-12T21:31:47.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .rule_action import RuleAction class RuleEmailAction(RuleAction): """Specifies the action to send email when the rule condition is evaluated. The discriminator is always RuleEmailAction in this case. All required parameters must be populated in order to send to Azure. :param odatatype: Required. Constant filled by server. :type odatatype: str :param send_to_service_owners: Whether the administrators (service and co-administrators) of the service should be notified when the alert is activated. :type send_to_service_owners: bool :param custom_emails: the list of administrator's custom email addresses to notify of the activation of the alert. :type custom_emails: list[str] """ _validation = { 'odatatype': {'required': True}, } _attribute_map = { 'odatatype': {'key': 'odata\\.type', 'type': 'str'}, 'send_to_service_owners': {'key': 'sendToServiceOwners', 'type': 'bool'}, 'custom_emails': {'key': 'customEmails', 'type': '[str]'}, } def __init__(self, *, send_to_service_owners: bool=None, custom_emails=None, **kwargs) -> None: super(RuleEmailAction, self).__init__(, **kwargs) self.send_to_service_owners = send_to_service_owners self.custom_emails = custom_emails self.odatatype = 'Microsoft.Azure.Management.Insights.Models.RuleEmailAction'
39.957447
99
0.651225
b6235d10ebec1f9027bac36f296e4a6f6b9bc605
2,739
py
Python
dadvisor/datatypes/container_info.py
dadvisor/core
31d59707eb9bf33f5bea4a8fb6fb1f0de9a37eba
[ "MIT" ]
null
null
null
dadvisor/datatypes/container_info.py
dadvisor/core
31d59707eb9bf33f5bea4a8fb6fb1f0de9a37eba
[ "MIT" ]
null
null
null
dadvisor/datatypes/container_info.py
dadvisor/core
31d59707eb9bf33f5bea4a8fb6fb1f0de9a37eba
[ "MIT" ]
null
null
null
import json import subprocess import time from prometheus_client import Info from dadvisor.config import IP INFO = Info('docker_container', 'Container info', ['hash']) class ContainerInfo(object): """ Creates a ContainerInfo object with several properties. Note that the ip property is added later (in :func: validate), as Docker doesn't directly add an IP to the container. """ def __init__(self, hash, load): self.hash = hash self.created = str(load['Created']) self.stopped = '' self.names = load['Names'] self.image = str(load['Image']) self.ports = load['Ports'] self.ip = '' INFO.labels(hash=self.hash).info({ 'host': IP, 'created': self.created, 'names': ','.join(self.names), 'image': self.image }) def validate(self): if self.stopped: return for name in self.names: cmd = 'curl -s --unix-socket /var/run/docker.sock http://localhost/containers{}/json'.format(name) p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE) data = json.loads(p.communicate()[0].decode('utf-8')) try: key = data['State']['Status'] except KeyError: key = '' if 'message' in data or key != 'running': self.stopped = int(time.time()) INFO.labels(hash=self.hash).info({ 'host': IP, 'created': self.created, 'names': ','.join(self.names), 'image': self.image, 'stopped': str(self.stopped), 'ip': self.ip }) return elif 'NetworkSettings' in data: if data['NetworkSettings']['IPAddress']: self.ip = data['NetworkSettings']['IPAddress'] else: networks = data['NetworkSettings']['Networks'] self.ip = next(iter(networks.values()))['IPAddress'] # TODO: instead of the first network value, take all values INFO.labels(hash=self.hash).info({ 'host': IP, 'created': self.created, 'names': ','.join(self.names), 'image': self.image, 'ip': self.ip }) def __dict__(self): return { 'hash': self.hash, 'created': self.created, 'stopped': self.stopped, 'names': self.names, 'ports': self.ports, 'image': self.image, 'ip': self.ip }
33.814815
110
0.490325
6276c9a9fa86d34a675e1e3ba15c8bb55e54480a
2,359
py
Python
take_screenshots.py
ClaudeMetz/FactorioScripts
5aab7569acdf86ff65167584638a3dd7323d2d0b
[ "MIT" ]
2
2020-12-26T12:21:33.000Z
2022-02-06T23:25:10.000Z
take_screenshots.py
ClaudeMetz/FactorioScripts
5aab7569acdf86ff65167584638a3dd7323d2d0b
[ "MIT" ]
null
null
null
take_screenshots.py
ClaudeMetz/FactorioScripts
5aab7569acdf86ff65167584638a3dd7323d2d0b
[ "MIT" ]
null
null
null
import json import shutil import subprocess import sys from pathlib import Path import git # type: ignore from PIL import Image # type: ignore # Script config MODNAME = sys.argv[1] FACTORIO_PATH = sys.argv[2] USERDATA_PATH = sys.argv[3] cwd = Path.cwd() repo = git.Repo(cwd) def take_screenshots(): screenshotter_path = cwd / "scenarios" / "screenshotter" if not screenshotter_path.is_dir(): print("- no screenshotter scenario found, aborting") return # Overwrite mod-list.json with the one found in the scenarios folder current_modlist_path = Path(USERDATA_PATH) / "mods" / "mod-list.json" current_modlist_path.unlink(missing_ok=True) shutil.copy(str(screenshotter_path / "mod-list.json"), str(current_modlist_path)) print("- mod-list.json replaced") # Run the screenshotting scenario, waiting for it to finish print("- running scenario...", end=" ", flush=True) subprocess.run([ "/usr/bin/open", "-W", "-a", FACTORIO_PATH, "--args", "--load-scenario", "{}/screenshotter".format(MODNAME), "--config", str(screenshotter_path / "config.ini"), "--instrument-mod", MODNAME # use the same mod as the instrument mod for simplicity ] ) print("done") # Crop screenshots according to the given dimensions script_output_path = Path(USERDATA_PATH, "script-output") with (script_output_path / "dimensions.json").open("r") as file: dimensions = json.load(file) for scene, corners in dimensions.items(): screenshot_path = script_output_path / "{}.png".format(scene) image = Image.open(screenshot_path) cropped_img = image.crop(( corners["top_left"]["x"] - 15, corners["top_left"]["y"] - 15, corners["bottom_right"]["x"] + 15, corners["bottom_right"]["y"] + 15 )) cropped_img.save(cwd / "screenshots" / "{}.png".format(scene)) print("- screenshots updated") # Clean up script output shutil.rmtree(script_output_path) print("- script-output removed") # Commit new screenshots repo.git.add("-A") repo.git.commit(m="Update screenshots") print("- changes committed") if __name__ == "__main__": proceed = input(f"[{MODNAME}] Sure to take screenshots? (y/n): ") if proceed == "y": take_screenshots()
32.315068
92
0.647732
de192b6a2eebb68253930a5fae2bb136a8fa0d9a
71,252
py
Python
tensor2tensor/utils/t2t_model.py
Zhangyantsing/tensor2tensor
b6abf28a1a903c91eb75d7a102945a780899d6e9
[ "Apache-2.0" ]
1
2018-12-12T18:50:28.000Z
2018-12-12T18:50:28.000Z
tensor2tensor/utils/t2t_model.py
Zhangyantsing/tensor2tensor
b6abf28a1a903c91eb75d7a102945a780899d6e9
[ "Apache-2.0" ]
null
null
null
tensor2tensor/utils/t2t_model.py
Zhangyantsing/tensor2tensor
b6abf28a1a903c91eb75d7a102945a780899d6e9
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """T2TModel Base Class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import copy import functools import math import time import six from tensor2tensor.data_generators import multi_problem from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators.problem import problem_hparams_to_features from tensor2tensor.layers import common_layers from tensor2tensor.layers import modalities # pylint: disable=unused-import from tensor2tensor.utils import beam_search from tensor2tensor.utils import decoding from tensor2tensor.utils import expert_utils as eu from tensor2tensor.utils import learning_rate from tensor2tensor.utils import metrics from tensor2tensor.utils import optimize from tensor2tensor.utils import quantization from tensor2tensor.utils import registry import tensorflow as tf from tensorflow.python.layers import base from tensorflow.python.ops import inplace_ops from tensorflow.python.ops import variable_scope _no_problem_err_str = ( "The default implementation of %s requires that the " "model be used with a Problem. If using a Problem, augment the " "hparams object with trainer_lib.add_problem_hparams. If not, " "override %s.") _no_problem_err = ( lambda method_name: _no_problem_err_str % (method_name, method_name)) class T2TModel(base.Layer): """Abstract base class for models. Subclassess generally only need to override `body`. """ REGISTERED_NAME = None # Updated on registration. def __init__(self, hparams, mode=tf.estimator.ModeKeys.TRAIN, problem_hparams=None, data_parallelism=None, decode_hparams=None, **kwargs): """Create a T2TModel. Args: hparams: tf.contrib.training.HParams, model hyperparameters. mode: tf.estimator.ModeKeys, the execution mode. problem_hparams: tf.contrib.training.HParams, hyperparameters for the Problem. If provided here or in hparams.problem_hparams, the model will automatically determine bottom, top, and loss methods. If not provided, calling the model will only invoke body. data_parallelism: a expert_utils.Parallelism object, specifies devices for data parallelism. decode_hparams: a hyperparameter object with decoding parameters. See decoding.decode_hparams. **kwargs: arguments to pass to base.Layer constructor. Returns: a T2TModel """ # Determine name first: use registered name if possible, class name else. default_name = registry.default_name(type(self)) name = self.REGISTERED_NAME or default_name super(T2TModel, self).__init__( trainable=mode == tf.estimator.ModeKeys.TRAIN, name=name, **kwargs) if not problem_hparams and hasattr(hparams, "problem_hparams"): problem_hparams = hparams.problem_hparams self._problem_hparams = problem_hparams # Setup hparams # If vocabularies differ, unset shared_embedding_and_softmax_weights. hparams = copy.copy(hparams) if self._problem_hparams and hparams.shared_embedding_and_softmax_weights: same_vocab_sizes = True if "inputs" in self._problem_hparams.input_modality: if (self._problem_hparams.input_modality["inputs"] != self._problem_hparams.target_modality): same_vocab_sizes = False if not same_vocab_sizes: log_info("Unsetting shared_embedding_and_softmax_weights.") hparams.shared_embedding_and_softmax_weights = 0 self._original_hparams = hparams self.set_mode(mode) self._decode_hparams = copy.copy(decode_hparams or decoding.decode_hparams()) self._data_parallelism = data_parallelism or eu.Parallelism([""]) self._num_datashards = self._data_parallelism.n self._ps_devices = self._data_parallelism.ps_devices self._eager_var_store = create_eager_var_store() if self._problem_hparams: self._create_modalities(self._problem_hparams, self._hparams) if not common_layers.is_xla_compiled(): self.summarize_hparams() self._variable_scopes = {} def _add_variable_scope(self, key, vs): if key not in self._variable_scopes: self._variable_scopes[key] = vs def summarize_hparams(self): def create_hparams_summary(hparams, name): hparams_strs = [tf.convert_to_tensor([k, str(v)]) for k, v in hparams.values().items()] tf.summary.text(name, tf.stack(hparams_strs)) create_hparams_summary(self._hparams, "%s_hparams" % self.name) if self._problem_hparams: create_hparams_summary(self._problem_hparams, "%s_problem_hparams" % self.name) # Replace the two methods below in order to add custom SessionRunHooks to # the training procedure. @staticmethod def train_hooks(): return [] @staticmethod def eval_hooks(): return [] @property def hparams(self): return self._hparams @property def is_training(self): return self._hparams.mode == tf.estimator.ModeKeys.TRAIN @property def has_input(self): if self._problem_hparams: return "inputs" in self._problem_hparams.input_modality else: return True @property def _custom_getter(self): if self.hparams.weight_dtype == "bfloat16": if self.hparams.optimizer != "Adafactor": raise NotImplementedError( "weight_dtype=bfloat16 only implemented with Adafactor optimizer") return quantization.EighthPowerEncoding().custom_getter( activation_dtype=tf.bfloat16 if self.hparams.activation_dtype == "bfloat16" else tf.float32) elif self.hparams.activation_dtype == "bfloat16": return quantization.bfloat16_activations_var_getter else: return None @property def _target_modality_is_real(self): """Whether the target modality is real-valued.""" target_modality = self._problem_hparams.target_modality return target_modality.name.startswith("real_") def call(self, inputs, **kwargs): del kwargs features = inputs set_custom_getter_compose(self._custom_getter) tf.get_variable_scope().set_initializer( optimize.get_variable_initializer(self.hparams)) with self._eager_var_store.as_default(): self._fill_problem_hparams_features(features) sharded_features = self._shard_features(features) sharded_logits, losses = self.model_fn_sharded(sharded_features) if isinstance(sharded_logits, dict): concat_logits = {} for k, v in six.iteritems(sharded_logits): concat_logits[k] = tf.concat(v, 0) return concat_logits, losses else: return tf.concat(sharded_logits, 0), losses @property def use_body_sharded(self): return False def body_sharded(self, sharded_features): raise NotImplementedError("Models that wish to manually control sharding, " "e.g. MoE models, should override body_sharded " "and set use_body_sharded to True.") def model_fn_sharded(self, sharded_features): dp = self._data_parallelism summarize_features(sharded_features, num_shards=dp.n) datashard_to_features = self._to_features_per_datashard(sharded_features) if self.use_body_sharded: # MoE models override body_sharded transformed_features = dp(self.bottom, datashard_to_features) body_out = self.body_sharded( self._to_single_features_dict(transformed_features)) body_out, losses = self._normalize_body_output(body_out) if "training" in losses: log_info("Skipping T2TModel top and loss because training loss " "returned from body") sharded_logits = body_out else: if isinstance(body_out, dict): sharded_logits = collections.OrderedDict() sharded_losses = collections.OrderedDict() for k, v in sorted(six.iteritems(body_out)): sharded_logits[k] = dp(self.top, v, datashard_to_features) sharded_losses[k] = dp(self.loss, sharded_logits[k], datashard_to_features) training_loss_dict = average_sharded_losses([{ "training": l } for l in loss for loss in sharded_losses.values()]) losses.update(training_loss_dict) else: sharded_logits = dp(self.top, body_out, datashard_to_features) sharded_losses = dp(self.loss, sharded_logits, datashard_to_features) if isinstance(sharded_losses, tuple): nums, dens = sharded_losses sharded_losses = zip(nums, dens) training_loss_dict = average_sharded_losses([{ "training": loss } for loss in sharded_losses]) losses.update(training_loss_dict) else: sharded_logits, sharded_losses = dp(self.model_fn, datashard_to_features) if isinstance(sharded_logits[0], dict): temp_dict = {k: [] for k, _ in six.iteritems(sharded_logits[0])} for k, _ in six.iteritems(sharded_logits[0]): for l in sharded_logits: temp_dict[k].append(l[k]) sharded_logits = temp_dict losses = average_sharded_losses(sharded_losses) # TODO(rsepassi): Reenable scheduled sampling # Disabled because of model_fn_sharded refactor # # do_scheduled_sampling = ( # Only do it if training and set for it. # self.hparams.scheduled_sampling_prob > 0.0 and # self.hparams.mode == tf.estimator.ModeKeys.TRAIN) # if do_scheduled_sampling: # sharded_logits, losses = scheduled_sampling( # self.hparams, self._problem_hparams, dp, # sharded_logits, losses, sharded_features, # transformed_features, self) return sharded_logits, losses def model_fn(self, features): with tf.variable_scope(tf.get_variable_scope(), use_resource=True) as vs: self._add_variable_scope("model_fn", vs) transformed_features = self.bottom(features) if self.hparams.activation_dtype == "bfloat16": for k, v in sorted(six.iteritems(transformed_features)): if v.dtype == tf.float32: transformed_features[k] = tf.cast(v, tf.bfloat16) with tf.variable_scope("body") as body_vs: self._add_variable_scope("body", body_vs) log_info("Building model body") body_out = self.body(transformed_features) output, losses = self._normalize_body_output(body_out) if "training" in losses: log_info("Skipping T2TModel top and loss because training loss " "returned from body") logits = output else: logits = self.top(output, features) losses["training"] = 0.0 if (self._hparams.mode != tf.estimator.ModeKeys.PREDICT and self._hparams.mode != "attack"): losses["training"] = self.loss(logits, features) return logits, losses def bottom(self, features): """Transform features to feed into body.""" if not self._problem_hparams: log_warn("Without a Problem, T2TModel.bottom is a passthrough.") return features transformed_features = collections.OrderedDict() all_previous_modalities = [] # Transform the input features for key, input_modality in sorted( six.iteritems(self._problem_hparams.input_modality)): if key not in features: tf.logging.warning("Missing feature %s - ignoring." % key) continue do_reuse = input_modality.name in all_previous_modalities with tf.variable_scope(input_modality.name, reuse=do_reuse) as im_vs: self._add_variable_scope(input_modality.name, im_vs) log_info("Transforming feature '%s' with %s.bottom", key, input_modality.name) transformed_features[key] = input_modality.bottom(features[key]) all_previous_modalities.append(input_modality.name) # Transform the targets (for autoregressive models) target_modality = self._problem_hparams.target_modality if isinstance(target_modality, dict): for k, v in six.iteritems(target_modality): if k in features: # TODO(aidangomez): share variables? with tf.variable_scope("%s/%s" % (v.name, k)) as tm_vs: self._add_variable_scope("%s/%s" % (v.name, k), tm_vs) log_info("Transforming '%s' with %s.targets_bottom", k, v.name) transformed_features[k] = v.targets_bottom(features[k]) else: tf.logging.warn("Modality not found in features: %s", k) else: with tf.variable_scope(target_modality.name) as tm_vs: self._add_variable_scope(target_modality.name, tm_vs) if "targets" in features: log_info("Transforming 'targets' with %s.targets_bottom", target_modality.name) transformed_features["targets"] = target_modality.targets_bottom( features["targets"]) for key in features: if key not in transformed_features: # For features without a modality, we pass them along as is transformed_features[key] = features[key] else: # Other features get passed along with the "raw" suffix transformed_features[key + "_raw"] = features[key] return transformed_features def body(self, features): """Most models will override this function. Compute label logits for one shard as a function of the transformed features. Args: features: A dictionary of key to Tensor. Each Tensor has shape [batch_size, ?, ?, hidden_size]. Returns: output: tensor of logits with shape [batch_size, O, P, body_output_size. losses: either single loss as a scalar, a list, a tensor (to be averaged) or a dictionary of losses. """ raise NotImplementedError("Abstract Method") def _top_single(self, body_output, target_modality, features): if not target_modality: log_warn("Without a Problem, T2TModel.top is a passthrough.") return body_output with tf.variable_scope(target_modality.name) as tm_vs: self._add_variable_scope(tm_vs.name, tm_vs) log_info("Transforming body output with %s.top", target_modality.name) last_only = ( target_modality.top_is_pointwise and self.hparams.mode == tf.estimator.ModeKeys.PREDICT and not self.hparams.force_full_predict) if not last_only: logits = target_modality.top(body_output, features.get("targets")) else: # Take body outputs for the last position only, and targets too. if "decode_loop_step" not in features: last_position_body_output = tf.expand_dims( body_output[:, -1, :, :], axis=[1]) last_position_targets = tf.expand_dims( features["targets"][:, -1:, :, :], axis=[1]) else: body_output_shape = body_output.shape.as_list() last_position_body_output = tf.slice( body_output, [0, features["decode_loop_step"][0], 0, 0], [ body_output_shape[0], 1, body_output_shape[2], body_output_shape[3] ]) target_shape = features["targets"].shape.as_list() last_position_targets = tf.slice( features["targets"], [0, features["decode_loop_step"][0], 0, 0], [target_shape[0], 1, target_shape[2], target_shape[3]]) logits = target_modality.top(last_position_body_output, last_position_targets) return logits def top(self, body_output, features): if isinstance(body_output, dict): if self._problem_hparams: target_modality = self._problem_hparams.target_modality else: target_modality = {k: None for k in body_output.keys()} for k in body_output.keys(): assert k in target_modality.keys(), ( "The key %s of model_body's returned logits dict must be in " "problem_hparams.target_modality's dict." % k) logits = {} for k, v in six.iteritems(body_output): # TODO(aidangomez): share variables here? with tf.variable_scope(k) as top_vs: self._add_variable_scope("top_%s" % k, top_vs) logits[k] = self._top_single(v, target_modality[k], features) return logits else: if self._problem_hparams: target_modality = self._problem_hparams.target_modality else: target_modality = None if isinstance(target_modality, dict): assert "targets" in target_modality, ( "model_body returned single logits so 'targets' must be a key " "since problem_hparams.target_modality is a dict.") target_modality = target_modality["targets"] return self._top_single(body_output, target_modality, features) def _loss_single(self, logits, target_modality, feature): # The current bfloat16 version still uses float32 for most parts of backward # propagation to keep model quality, so cast back before computing the loss # value. if not target_modality: log_warn(_no_problem_err("loss")) return (tf.constant(0., dtype=tf.float32), tf.constant(1., dtype=tf.float32)) loss_num, loss_den = target_modality.loss(logits, feature) loss_num *= self._problem_hparams.loss_multiplier if hasattr(self.hparams, "problem") and hasattr( self.hparams.problem, "task_list"): loss_num, loss_den, summaries = multi_problem.aggregate_task_losses( self.hparams, self._problem_hparams, logits, target_modality, feature ) for key, val in summaries: tf.summary.scalar(key, val) return loss_num, loss_den def loss(self, logits, features): if isinstance(logits, dict): if self._problem_hparams: target_modality = self._problem_hparams.target_modality else: target_modality = {k: None for k in logits.keys()} for k in logits.keys(): assert k in target_modality.keys(), ( "The key %s of model_body's returned logits dict must be in " "problem_hparams.target_modality's dict." % k) losses = {} for k, v in six.iteritems(logits): losses[k] = self._loss_single(v, target_modality[k], features[k]) n, d = losses[k] if common_layers.should_generate_summaries(): tf.summary.scalar(k + "_loss", n / d) tf.summary.scalar(k + "_loss_num", n) tf.summary.scalar(k + "_loss_den", d) return tf.add_n([n / d for n, d in losses.values()]) else: if self._problem_hparams: target_modality = self._problem_hparams.target_modality else: target_modality = None if isinstance(target_modality, dict): assert "targets" in target_modality, ( "model_body returned single logits so 'targets' must be a key " "since problem_hparams.target_modality is a dict.") target_modality = target_modality["targets"] return self._loss_single(logits, target_modality, features["targets"]) def optimize(self, loss, num_async_replicas=1, use_tpu=False): """Return a training op minimizing loss.""" lr = learning_rate.learning_rate_schedule(self.hparams) if num_async_replicas > 1: log_info("Dividing learning rate by num_async_replicas: %d", num_async_replicas) lr /= math.sqrt(float(num_async_replicas)) train_op = optimize.optimize(loss, lr, self.hparams, use_tpu=use_tpu) return train_op def set_mode(self, mode): """Set hparams with the given mode.""" log_info("Setting T2TModel mode to '%s'", mode) hparams = copy.copy(self._original_hparams) hparams.add_hparam("mode", mode) # When not in training mode, set all forms of dropout to zero. if mode != tf.estimator.ModeKeys.TRAIN: for key in hparams.values(): if key.endswith("dropout") or key == "label_smoothing": log_info("Setting hparams.%s to 0.0", key) setattr(hparams, key, 0.0) self._hparams = hparams def _create_modalities(self, problem_hparams, hparams): """Construct modalities in problem_hparams.""" input_modality_overrides = {} for override_str in hparams.input_modalities.split(";"): if override_str != "default": parts = override_str.split(":") feature_name = parts[0] modality_name = ":".join(parts[1:]) input_modality_overrides[feature_name] = modality_name target_modality_name = None if hparams.target_modality and hparams.target_modality != "default": target_modality_name = hparams.target_modality input_modality = {} for f, modality_spec in six.iteritems(problem_hparams.input_modality): if f in input_modality_overrides: _warn_changed_modality_type(input_modality_overrides[f], modality_spec[0], f) modality_spec = (input_modality_overrides[f], modality_spec[1]) input_modality[f] = registry.create_modality(modality_spec, hparams) problem_hparams.input_modality = input_modality if isinstance(problem_hparams.target_modality, dict): target_modality = {} for f, modality_spec in six.iteritems(problem_hparams.target_modality): # TODO(lukaszkaiser): allow overriding other target modalities. if target_modality_name and f == "targets": _warn_changed_modality_type(target_modality_name, modality_spec[0], "target_modality/%s" % f) modality_spec = (target_modality_name, modality_spec[1]) target_modality[f] = registry.create_modality(modality_spec, hparams) else: target_modality_spec = problem_hparams.target_modality if target_modality_name: _warn_changed_modality_type(target_modality_name, target_modality_spec[0], "target") target_modality_spec = (target_modality_name, target_modality_spec[1]) target_modality = registry.create_modality(target_modality_spec, hparams) problem_hparams.target_modality = target_modality def prepare_features_for_infer(self, features): """Called before inference to allow adding infer-specific features.""" pass def eval_autoregressive(self, features=None, decode_length=50): """Autoregressive eval. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. Returns: logits: `Tensor` losses: a dictionary: {loss-name (string): floating point `Scalar`}. Contains a single key "training". """ results = self._slow_greedy_infer(features, decode_length=decode_length) return results["logits"], results["losses"] def _fill_problem_hparams_features(self, features): if features is not None: for k, v in sorted( six.iteritems(problem_hparams_to_features(self._problem_hparams))): if k not in features: features[k] = tf.constant(v, name=k) def infer(self, features=None, decode_length=50, beam_size=1, top_beams=1, alpha=0.0, use_tpu=False): """A inference method. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. use_tpu: bool, whether to build the inference graph for TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": decoding log probs from the beam search, None if using greedy decoding (beam_size=1) } if slow greedy decoding is used then the dict will also contain { "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar` } """ set_custom_getter_compose(self._custom_getter) with self._eager_var_store.as_default(): # TODO(rsepassi): Make decoding work with real-valued model outputs # (i.e. if the target modality is RealModality). self.prepare_features_for_infer(features) if not self.has_input and beam_size > 1: log_warn("Beam searching for a model with no inputs.") if not self.has_input and self.hparams.sampling_method != "random": log_warn("Non-random sampling for a model with no inputs.") self._fill_problem_hparams_features(features) if self._problem_hparams: target_modality = self._problem_hparams.target_modality if target_modality.is_class_modality: beam_size = 1 # No use to run beam-search for a single class. if beam_size == 1: log_info("Greedy Decoding") results = self._greedy_infer(features, decode_length, use_tpu) else: log_info("Beam Decoding with beam size %d" % beam_size) results = self._beam_decode(features, decode_length, beam_size, top_beams, alpha) return results def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha): """Beam search decoding. Models should ideally implement a more efficient version of this function. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. Returns: samples: an integer `Tensor`. Top samples from the beam search """ return self._beam_decode_slow(features, decode_length, beam_size, top_beams, alpha) def _beam_decode_slow(self, features, decode_length, beam_size, top_beams, alpha): """Slow version of Beam search decoding. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. beam_size: number of beams. top_beams: an integer. How many of the beams to return. alpha: Float that controls the length penalty. larger the alpha, stronger the preference for longer translations. Returns: samples: an integer `Tensor`. Top samples from the beam search """ batch_size = common_layers.shape_list(features["inputs"])[0] def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(tf.expand_dims(ids, axis=2), axis=3) ids = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0], [0, 0]]) if "partial_targets" in features: pt = features["partial_targets"] pt_length = common_layers.shape_list(pt)[1] pt = tf.tile(pt, [1, beam_size]) pt = tf.reshape(pt, [batch_size * beam_size, pt_length, 1, 1]) ids = tf.concat([pt, ids], axis=1) features["targets"] = ids self._coverage = None logits, _ = self(features) # pylint: disable=not-callable # now self._coverage is a coverage tensor for the first datashard. # it has shape [batch_size] and contains floats between 0 and # source_length. if self._problem_hparams: modality = self._problem_hparams.target_modality if modality.top_is_pointwise: return tf.squeeze(logits, axis=[1, 2, 3]) # -1 due to the pad above. current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :, :] return tf.squeeze(logits, axis=[1, 2]) initial_ids = tf.zeros([batch_size], dtype=tf.int32) if self.has_input: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 1) if len(features["inputs"].shape) < 5: features["inputs"] = tf.expand_dims(features["inputs"], 4) # Expand the inputs in to the beam size. features["inputs"] = tf.tile(features["inputs"], [1, beam_size, 1, 1, 1]) s = common_layers.shape_list(features["inputs"]) features["inputs"] = tf.reshape(features["inputs"], [s[0] * s[1], s[2], s[3], s[4]]) target_modality = self._problem_hparams.target_modality vocab_size = target_modality.top_dimensionality # Setting decode length to input length + decode_length decode_length = tf.constant(decode_length) if "partial_targets" not in features: inputs = features["inputs"] decode_length = (common_layers.shape_list(inputs)[1] + features.get("decode_length", decode_length)) ids, scores = beam_search.beam_search( symbols_to_logits_fn, initial_ids, beam_size, decode_length, vocab_size, alpha, stop_early=(top_beams == 1)) # Set inputs back to the unexpanded inputs to not to confuse the Estimator! if self.has_input: features["inputs"] = inputs_old # Return `top_beams` decodings (also remove initial id from the beam search) # TODO(lukaszkaiser): make it work multi-problem. if top_beams == 1: samples = ids[:, 0, 1:] else: samples = ids[:, :top_beams, 1:] return {"outputs": samples, "scores": scores} def _greedy_infer(self, features, decode_length, use_tpu=False): """A greedy inference method. Models should ideally implement a more efficient version of this function. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. use_tpu: A bool, whether to build the inference graph for TPU. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ return (self._slow_greedy_infer_tpu(features, decode_length) if use_tpu else self._slow_greedy_infer(features, decode_length)) def _slow_greedy_infer_tpu(self, features, decode_length): """A slow greedy inference method on TPU. Quadratic time in decode_length. Args: features: An map of string to `Tensor`. decode_length: An integer, how many additional timesteps to decode. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ if not features: features = {} inputs_old = None if "inputs" in features and len(features["inputs"].shape) < 4: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 2) if not self.has_input: # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] features["partial_targets"] = tf.to_int64(partial_targets) # Save the targets in a var and reassign it after the tf.while loop to avoid # having targets being in a 'while' frame. This ensures targets when used # in metric functions stays in the same frame as other vars. targets_old = features.get("targets", None) target_modality = self._problem_hparams.target_modality def infer_step(i, recent_output, recent_logits, unused_loss): """Inference step.""" if not tf.contrib.eager.in_eager_mode(): recent_output.set_shape([None, None, None, 1]) padded = tf.pad(recent_output, [[0, 0], [0, 1], [0, 0], [0, 0]]) features["targets"] = padded # This is inefficient in that it generates samples at all timesteps, # not just the last one, except if target_modality is pointwise. features["decode_loop_step"] = i samples, logits, losses = self.sample(features) # Concatenate the already-generated recent_output with last timestep # of the newly-generated samples. if target_modality.top_is_pointwise: cur_sample = samples[:, -1, :, :] else: cur_sample = samples[:, i, :, :] samples = tf.transpose(recent_output, perm=[1, 0, 2, 3]) samples = inplace_ops.alias_inplace_update(samples, i, tf.to_int64(cur_sample)) samples = tf.transpose(samples, perm=[1, 0, 2, 3]) if not tf.contrib.eager.in_eager_mode(): samples.set_shape([None, None, None, 1]) # Assuming we have one shard for logits. recent_logits = tf.transpose(recent_logits, perm=[1, 0, 2, 3, 4]) recent_logits = inplace_ops.alias_inplace_update( recent_logits, i, tf.squeeze(logits[:, -1:], axis=1)) logits = tf.transpose(recent_logits, perm=[1, 0, 2, 3, 4]) loss = sum([l for l in losses.values() if l is not None]) return i + 1, samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64) # Hack: foldl complains when the output shape is less specified than the # input shape, so we confuse it about the input shape. initial_output = tf.slice(initial_output, [0, 0, 0, 0], common_layers.shape_list(initial_output)) target_modality = self._problem_hparams.target_modality if target_modality.is_class_modality: decode_length = 1 else: if "partial_targets" in features: prefix_length = common_layers.shape_list(features["partial_targets"])[1] else: prefix_length = common_layers.shape_list(features["inputs"])[1] decode_length = prefix_length + decode_length # Initial values of result, logits and loss. result = tf.concat( [initial_output, tf.zeros([batch_size, decode_length, 1, 1], tf.int64)], axis=1) # tensor padded to [batch_size, decode_length, 1, 1, vocab_size] logits = tf.zeros((batch_size, decode_length, 1, 1, target_modality.top_dimensionality)) if not tf.contrib.eager.in_eager_mode(): logits.set_shape([None, None, None, None, None]) loss = 0.0 def while_exit_cond(i, result, logits, loss): # pylint: disable=unused-argument """Exit the loop either if reach decode_length or EOS.""" not_overflow = i < decode_length if self._problem_hparams.stop_at_eos: def fn_not_eos(): # Check if the last predicted element is a EOS return tf.reduce_any( tf.not_equal( tf.squeeze(result[:, -1, :, :]), text_encoder.EOS_ID)) not_eos = tf.cond( # We only check for early stopping if there is at least 1 element ( # otherwise not_eos will crash). tf.not_equal(i, 0), fn_not_eos, lambda: True, ) return tf.cond( tf.equal(batch_size, 1), # If batch_size == 1, we check EOS for early stopping. lambda: tf.logical_and(not_overflow, not_eos), # Else, just wait for max length lambda: not_overflow) return not_overflow _, result, logits, loss = tf.while_loop( while_exit_cond, infer_step, [tf.constant(0), result, logits, loss], shape_invariants=[ tf.TensorShape([]), tf.TensorShape([batch_size, decode_length, 1, 1]), tf.TensorShape([ batch_size, decode_length, 1, 1, target_modality.top_dimensionality ]), tf.TensorShape([]), ], back_prop=False, parallel_iterations=1) if inputs_old is not None: # Restore to not confuse Estimator. features["inputs"] = inputs_old # Reassign targets back to the previous value. if targets_old is not None: features["targets"] = targets_old losses = {"training": loss} if "partial_targets" in features: partial_target_length = common_layers.shape_list( features["partial_targets"])[1] result = tf.slice(result, [0, partial_target_length, 0, 0], [-1, -1, -1, -1]) return { "outputs": result, "scores": None, "logits": logits, "losses": losses, } def _slow_greedy_infer(self, features, decode_length): """A slow greedy inference method. Quadratic time in decode_length. Args: features: an map of string to `Tensor` decode_length: an integer. How many additional timesteps to decode. Returns: A dict of decoding results { "outputs": integer `Tensor` of decoded ids of shape [batch_size, <= decode_length] if beam_size == 1 or [batch_size, top_beams, <= decode_length] "scores": None "logits": `Tensor` of shape [batch_size, time, 1, 1, vocab_size]. "losses": a dictionary: {loss-name (string): floating point `Scalar`} } """ if not features: features = {} inputs_old = None if "inputs" in features and len(features["inputs"].shape) < 4: inputs_old = features["inputs"] features["inputs"] = tf.expand_dims(features["inputs"], 2) if not self.has_input: # Prepare partial targets. # In either features["inputs"] or features["targets"]. # We force the outputs to begin with these sequences. partial_targets = features.get("inputs") if partial_targets is None: partial_targets = features["targets"] features["partial_targets"] = tf.to_int64(partial_targets) # Save the targets in a var and reassign it after the tf.while loop to avoid # having targets being in a 'while' frame. This ensures targets when used # in metric functions stays in the same frame as other vars. targets_old = features.get("targets", None) target_modality = self._problem_hparams.target_modality def infer_step(recent_output, recent_logits, unused_loss): """Inference step.""" if not tf.contrib.eager.in_eager_mode(): if self._target_modality_is_real: dim = self._problem_hparams.target_modality.top_dimensionality recent_output.set_shape([None, None, None, dim]) else: recent_output.set_shape([None, None, None, 1]) padded = tf.pad(recent_output, [[0, 0], [0, 1], [0, 0], [0, 0]]) features["targets"] = padded # This is inefficient in that it generates samples at all timesteps, # not just the last one, except if target_modality is pointwise. samples, logits, losses = self.sample(features) # Concatenate the already-generated recent_output with last timestep # of the newly-generated samples. if target_modality.top_is_pointwise: cur_sample = samples[:, -1, :, :] else: cur_sample = samples[:, common_layers.shape_list(recent_output)[1], :, :] if self._target_modality_is_real: cur_sample = tf.expand_dims(cur_sample, axis=1) samples = tf.concat([recent_output, cur_sample], axis=1) else: cur_sample = tf.to_int64(tf.expand_dims(cur_sample, axis=1)) samples = tf.concat([recent_output, cur_sample], axis=1) if not tf.contrib.eager.in_eager_mode(): samples.set_shape([None, None, None, 1]) # Assuming we have one shard for logits. logits = tf.concat([recent_logits, logits[:, -1:]], 1) loss = sum([l for l in losses.values() if l is not None]) return samples, logits, loss # Create an initial output tensor. This will be passed # to the infer_step, which adds one timestep at every iteration. if "partial_targets" in features: initial_output = tf.to_int64(features["partial_targets"]) while len(initial_output.get_shape().as_list()) < 4: initial_output = tf.expand_dims(initial_output, 2) batch_size = common_layers.shape_list(initial_output)[0] else: batch_size = common_layers.shape_list(features["inputs"])[0] if self._target_modality_is_real: dim = self._problem_hparams.target_modality.top_dimensionality initial_output = tf.zeros((batch_size, 0, 1, dim), dtype=tf.float32) else: initial_output = tf.zeros((batch_size, 0, 1, 1), dtype=tf.int64) # Hack: foldl complains when the output shape is less specified than the # input shape, so we confuse it about the input shape. initial_output = tf.slice(initial_output, [0, 0, 0, 0], common_layers.shape_list(initial_output)) target_modality = self._problem_hparams.target_modality if target_modality.is_class_modality: decode_length = 1 else: if "partial_targets" in features: prefix_length = common_layers.shape_list(features["partial_targets"])[1] else: prefix_length = common_layers.shape_list(features["inputs"])[1] decode_length = prefix_length + decode_length # Initial values of result, logits and loss. result = initial_output if self._target_modality_is_real: logits = tf.zeros((batch_size, 0, 1, target_modality.top_dimensionality)) logits_shape_inv = [None, None, None, None] else: # tensor of shape [batch_size, time, 1, 1, vocab_size] logits = tf.zeros((batch_size, 0, 1, 1, target_modality.top_dimensionality)) logits_shape_inv = [None, None, None, None, None] if not tf.contrib.eager.in_eager_mode(): logits.set_shape(logits_shape_inv) loss = 0.0 def while_exit_cond(result, logits, loss): # pylint: disable=unused-argument """Exit the loop either if reach decode_length or EOS.""" length = common_layers.shape_list(result)[1] not_overflow = length < decode_length if self._problem_hparams.stop_at_eos: def fn_not_eos(): return tf.not_equal( # Check if the last predicted element is a EOS tf.squeeze(result[:, -1, :, :]), text_encoder.EOS_ID) not_eos = tf.cond( # We only check for early stopping if there is at least 1 element ( # otherwise not_eos will crash). tf.not_equal(length, 0), fn_not_eos, lambda: True, ) return tf.cond( tf.equal(batch_size, 1), # If batch_size == 1, we check EOS for early stopping. lambda: tf.logical_and(not_overflow, not_eos), # Else, just wait for max length lambda: not_overflow) return not_overflow result, logits, loss = tf.while_loop( while_exit_cond, infer_step, [result, logits, loss], shape_invariants=[ tf.TensorShape([None, None, None, None]), tf.TensorShape(logits_shape_inv), tf.TensorShape([]), ], back_prop=False, parallel_iterations=1) if inputs_old is not None: # Restore to not confuse Estimator. features["inputs"] = inputs_old # Reassign targets back to the previous value. if targets_old is not None: features["targets"] = targets_old losses = {"training": loss} if "partial_targets" in features: partial_target_length = common_layers.shape_list( features["partial_targets"])[1] result = tf.slice(result, [0, partial_target_length, 0, 0], [-1, -1, -1, -1]) return { "outputs": result, "scores": None, "logits": logits, "losses": losses, } def sample(self, features): """Run the model and extract samples. Args: features: an map of string to `Tensor`. Returns: samples: an integer `Tensor`. logits: a list of `Tensor`s, one per datashard. losses: a dictionary: {loss-name (string): floating point `Scalar`}. """ logits, losses = self(features) # pylint: disable=not-callable if self._target_modality_is_real: return logits, logits, losses # Raw numbers returned from real modality. if self.hparams.sampling_method == "argmax": samples = tf.argmax(logits, axis=-1) else: assert self.hparams.sampling_method == "random" def multinomial_squeeze(logits, temperature=1.0): logits_shape = common_layers.shape_list(logits) reshaped_logits = ( tf.reshape(logits, [-1, logits_shape[-1]]) / temperature) choices = tf.multinomial(reshaped_logits, 1) choices = tf.reshape(choices, logits_shape[:-1]) return choices samples = multinomial_squeeze(logits, self.hparams.sampling_temp) return samples, logits, losses def _shard_features(self, features): # pylint: disable=missing-docstring sharded_features = dict() for k, v in sorted(six.iteritems(features)): v = tf.convert_to_tensor(v) v_shape = common_layers.shape_list(v) if not v_shape: v = tf.expand_dims(v, axis=-1) v_shape = [1] if v_shape == [1]: v = tf.tile(v, tf.to_int32([self._num_datashards])) sharded_features[k] = self._data_parallelism( tf.identity, tf.split(v, self._num_datashards, 0)) return sharded_features def _to_features_per_datashard(self, features): datashard_features = [] assert len(features[list(features.keys())[0]]) == self._num_datashards for d in range(self._num_datashards): f = {k: v[d] for k, v in six.iteritems(features)} datashard_features.append(f) return datashard_features def _to_single_features_dict(self, datashard_features): assert len(datashard_features) == self._num_datashards features = collections.defaultdict(list) for feats in datashard_features: for k, v in six.iteritems(feats): features[k].append(v) return features @staticmethod def get_train_hooks(model_name): model_cls = registry.model(model_name) return model_cls.train_hooks() @staticmethod def get_eval_hooks(model_name): model_cls = registry.model(model_name) return model_cls.eval_hooks() @staticmethod def make_estimator_model_fn(model_name, hparams, decode_hparams=None): model_cls = registry.model(model_name) def wrapping_model_fn(features, labels, mode, params=None, config=None): return model_cls.estimator_model_fn( hparams, features, labels, mode, config=config, params=params, decode_hparams=decode_hparams) return wrapping_model_fn @classmethod def estimator_model_fn(cls, hparams, features, labels, mode, config=None, params=None, decode_hparams=None): """Model fn for Estimator. Args: hparams: HParams, model hyperparameters features: dict<str name, Tensor feature> labels: Tensor mode: tf.estimator.ModeKeys config: RunConfig, possibly with data_parallelism attribute params: dict, may include batch_size, use_tpu decode_hparams: HParams, used when mode == PREDICT. Returns: TPUEstimatorSpec if use tpu else EstimatorSpec """ if mode == tf.estimator.ModeKeys.TRAIN: _create_dummy_vars() hparams = copy.deepcopy(hparams) use_tpu = params and params.get("use_tpu", False) # Instantiate model data_parallelism = None if not use_tpu and config: data_parallelism = config.data_parallelism reuse = tf.get_variable_scope().reuse model = cls( hparams, mode, data_parallelism=data_parallelism, decode_hparams=decode_hparams, _reuse=reuse) # PREDICT mode if mode == tf.estimator.ModeKeys.PREDICT: return model.estimator_spec_predict(features, use_tpu=use_tpu) # TRAIN and EVAL modes if hparams.eval_run_autoregressive and mode == tf.estimator.ModeKeys.EVAL: logits, losses_dict = model.eval_autoregressive(features) else: logits, losses_dict = model(features) # pylint: disable=not-callable # Set known shapes if common_layers.is_xla_compiled(): if isinstance(logits, dict): for k, v in sorted(six.iteritems(logits)): if "scalar/" in k: continue shape = v.get_shape().as_list() if shape[0] is None: shape[0] = params["batch_size"] if shape[1] is None: shape[1] = hparams.max_length v.set_shape(shape) else: shape = logits.get_shape().as_list() if shape[0] is None: shape[0] = params["batch_size"] if shape[1] is None: shape[1] = hparams.max_length logits.set_shape(shape) assert "training" in losses_dict # Attack mode if mode == "attack": return logits # Summarize losses if common_layers.should_generate_summaries(): with tf.name_scope("losses"): for loss_name, loss_val in sorted(losses_dict.items()): tf.summary.scalar(loss_name, loss_val) # Accumulate losses loss = sum(losses_dict[key] for key in sorted(losses_dict.keys())) # EVAL mode if mode == tf.estimator.ModeKeys.EVAL: return model.estimator_spec_eval(features, logits, labels, loss, losses_dict) # TRAIN mode assert mode == tf.estimator.ModeKeys.TRAIN num_async_replicas = (1 if (use_tpu or not config) else config.t2t_device_info["num_async_replicas"]) return model.estimator_spec_train( loss, num_async_replicas=num_async_replicas, use_tpu=use_tpu) def initialize_from_ckpt(self, ckpt_dir): model_dir = self._hparams.get("model_dir", None) already_has_ckpt = ( model_dir and tf.train.latest_checkpoint(model_dir) is not None) if already_has_ckpt: return # TODO(mitchellstern): Add support for partitioned variables? reader = tf.contrib.framework.load_checkpoint(ckpt_dir) variable_map = {} for var in tf.contrib.framework.get_trainable_variables(): var_name = var.name.split(":")[0] if reader.has_tensor(var_name): tf.logging.info("Loading variable from checkpoint: %s", var_name) variable_map[var_name] = var else: tf.logging.info( "Cannot find variable in checkpoint, skipping: %s", var_name) tf.train.init_from_checkpoint(ckpt_dir, variable_map) def estimator_spec_train(self, loss, num_async_replicas=1, use_tpu=False): """Construct EstimatorSpec for TRAIN mode.""" train_op = self.optimize(loss, num_async_replicas=num_async_replicas, use_tpu=use_tpu) if self._hparams.warm_start_from: self.initialize_from_ckpt(self._hparams.warm_start_from) if use_tpu: host_call = _create_host_call(self.hparams.model_dir) _remove_summaries() return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=train_op, host_call=host_call) else: return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=loss, train_op=train_op) def estimator_spec_eval(self, features, logits, labels, loss, losses_dict): """Construct EstimatorSpec for EVAL mode.""" del losses_dict hparams = self.hparams if not hasattr(hparams, "problem"): raise NotImplementedError(_no_problem_err("estimator_spec_eval")) problem = hparams.problem if common_layers.is_xla_compiled(): _remove_summaries() if isinstance(logits, dict): eval_metrics_fn = _create_tpu_eval_metrics_fn(problem, hparams) # For TPU, logits dict will be passed as keyword arguments to # eval_metrics_fn. Here we add the labels to those arguments. logits.update({"labels": labels}) return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, logits), loss=loss) else: eval_metrics_fn = _create_tpu_eval_metrics_fn(problem, hparams) return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.EVAL, eval_metrics=(eval_metrics_fn, [logits, labels]), loss=loss) else: task_list = [problem] if hasattr(problem, "task_list"): task_list = problem.task_list eval_metrics_fns = metrics.create_evaluation_metrics(task_list, hparams) eval_metrics = {} for metric_name, metric_fn in six.iteritems(eval_metrics_fns): if isinstance(logits, dict): # the key is located in the center of metric_name: "metrics-%s/%s/%s" k = metric_name.split("/")[1] if k in logits: eval_metrics[metric_name] = metric_fn(logits[k], features, features[k]) else: # We do not make it an error because we sometimes run models that # predict only parts of the targets defined by the Problem class. # For example, an autoencoder or pure-video model can run on a gym # problem even if another model is also predicting other things, # like actions or rewards. tf.logging.warning("No key %s in logits for evaluation." % k) else: eval_metrics[metric_name] = metric_fn(logits, features, features["targets"]) if isinstance(logits, dict): predictions = logits else: predictions = {"predictions": logits} return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.EVAL, predictions=predictions, eval_metric_ops=eval_metrics, loss=loss) def estimator_spec_predict(self, features, use_tpu=False): """Construct EstimatorSpec for PREDICT mode.""" decode_hparams = self._decode_hparams infer_out = self.infer( features, beam_size=decode_hparams.beam_size, top_beams=(decode_hparams.beam_size if decode_hparams.return_beams else 1), alpha=decode_hparams.alpha, decode_length=decode_hparams.extra_length, use_tpu=use_tpu) if isinstance(infer_out, dict): outputs = infer_out["outputs"] scores = infer_out["scores"] else: outputs = infer_out scores = None inputs = features.get("inputs") if inputs is None: inputs = features["targets"] predictions = { "outputs": outputs, "scores": scores, "inputs": inputs, "targets": features.get("infer_targets"), } # Pass through remaining features for name, feature in features.items(): if name not in list(predictions.keys()) + ["infer_targets"]: if not feature.shape.as_list(): # All features must have a batch dimension batch_size = common_layers.shape_list(outputs)[0] feature = tf.tile(tf.expand_dims(feature, 0), [batch_size]) predictions[name] = feature _del_dict_non_tensors(predictions) export_out = {"outputs": predictions["outputs"]} if "scores" in predictions: export_out["scores"] = predictions["scores"] # Necessary to rejoin examples in the correct order with the Cloud ML Engine # batch prediction API. if "batch_prediction_key" in predictions: export_out["batch_prediction_key"] = predictions["batch_prediction_key"] _remove_summaries() export_outputs = { tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(export_out) } if use_tpu: return tf.contrib.tpu.TPUEstimatorSpec( tf.estimator.ModeKeys.PREDICT, predictions=predictions, export_outputs=export_outputs) else: return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.PREDICT, predictions=predictions, export_outputs=export_outputs) def _normalize_body_output(self, body_out): if isinstance(body_out, tuple): output, losses = body_out if not isinstance(losses, dict): losses = {"extra": tf.reduce_mean(losses)} else: output = body_out losses = {"extra": 0.0} return output, losses def _warn_changed_modality_type(new_name, old_name, feature_name): new_type, new_name = registry.parse_modality_name(new_name) old_type, old_name = registry.parse_modality_name(old_name) if new_type != old_type: log_warn( "%s has a designated modality type %s (%s) but has been " "overridden with a modality of type %s (%s).", feature_name, old_type, old_name, new_type, new_name) def _with_timing(fn, msg, silent=False): def fn_with_timing(*args, **kwargs): start_time = time.time() res = fn(*args, **kwargs) if not silent: log_info("Doing %s took %.3f sec." % (msg, time.time() - start_time)) return res return fn_with_timing def _create_dummy_vars(): """Dummy vars for restore to work when not using TPU codepath.""" var_names = set([v.name for v in tf.global_variables()]) if "losses_avg/problem_0/total_loss:0" in var_names: return with tf.variable_scope("losses_avg"): with tf.variable_scope("problem_0"): for var_name in ["total", "extra", "training"]: tf.get_variable( "%s_loss" % var_name, initializer=100.0, trainable=False) with tf.variable_scope("train_stats"): tf.get_variable("problem_0_steps", initializer=0, trainable=False) # These metrics are implemented with py_funcs and therefore do no work with TPU TPU_METRIC_BLACKLIST = set([ metrics.Metrics.APPROX_BLEU, metrics.Metrics.ROUGE_2_F, metrics.Metrics.ROUGE_L_F, metrics.Metrics.IMAGE_SUMMARY, ]) def _create_tpu_eval_metrics_fn(problem, hparams): """Create the metrics_fn that TPUEstimatorSpec expects.""" metric_fns = [] eval_metrics = problem.eval_metrics() tm = problem.get_hparams().target_modality if isinstance(tm, dict): for k, v in six.iteritems(tm): if isinstance(v, tuple): v = registry.create_modality(v, hparams) weights_fn = v.targets_weights_fn def make_metric_fn(metric_fn): def wrapped_metric_fn(logits, labels, weights_fn=weights_fn): num, den = metric_fn(logits, labels, weights_fn=weights_fn) return tf.metrics.mean(num, den) return wrapped_metric_fn for metric in eval_metrics: if metric in TPU_METRIC_BLACKLIST: log_warn("Skipping eval metric %s in TPU_METRIC_BLACKLIST", metric) continue name = "%s/metrics-%s/%s" % (k, problem.name, metric) metric_fns.append((name, make_metric_fn(metrics.METRICS_FNS[metric]))) else: if isinstance(tm, tuple): tm = registry.create_modality(tm, hparams) weights_fn = tm.targets_weights_fn def make_metric_fn(metric_fn): def wrapped_metric_fn(logits, labels): num, den = metric_fn(logits, labels, weights_fn=weights_fn) return tf.metrics.mean(num, den) return wrapped_metric_fn for metric in eval_metrics: if metric in TPU_METRIC_BLACKLIST: log_warn("Skipping eval metric %s in TPU_METRIC_BLACKLIST", metric) continue name = "metrics-%s/%s" % (problem.name, metric) metric_fns.append((name, make_metric_fn(metrics.METRICS_FNS[metric]))) def all_metrics_fn(logits=None, labels=None, **kwargs): """Construct metrics dictionary.""" metrics_dict = {} if logits is None: logits = kwargs for name, fn in metric_fns: if isinstance(logits, dict) and isinstance(labels, dict): for k, v in six.iteritems(logits): metrics_dict["%s/%s" % (k, name)] = fn(v, labels[k]) elif isinstance(logits, dict): tf.logging.warning("Logits is a dict, but labels is not; only " "evaluating logits['targets'] against labels.") metrics_dict["%s/%s" % ("targets", name)] = fn(logits["targets"], labels) else: metrics_dict[name] = fn(logits, labels) return metrics_dict return all_metrics_fn def _remove_summaries(): g = tf.get_default_graph() key = tf.GraphKeys.SUMMARIES del g.get_collection_ref(key)[:] assert not g.get_collection(key) def _create_host_call(model_dir): """Construct a host_call writing scalar summaries. Args: model_dir: String containing path to train Returns: (fn, args) Pair to be called by TPUEstimator as the host_call. """ graph = tf.get_default_graph() summaries = graph.get_collection(tf.GraphKeys.SUMMARIES) gs_t = tf.reshape(tf.to_int32(tf.train.get_global_step()), [1]) summary_kwargs = collections.OrderedDict() for t in summaries: # TODO(aidangomez): enable ImageSummary support when we have a faster method # see @shibow's comment in cl/202344570 if t.op.type not in ["ScalarSummary"]: tf.logging.warn("Ignoring unsupported tf.Summary type %s" % t.op.type) continue name = t.op.name tensor = t.op.inputs[1] if t.op.type == "ScalarSummary": assert tensor.shape.is_compatible_with([]) if tensor.dtype == tf.int64: tensor = tf.to_int32(tensor) summary_kwargs["ScalarSummary" + name] = tf.reshape(tensor, [1]) elif t.op.type == "ImageSummary": # TODO(aidangomez): as we move to support more types, update # common_layers.tpu_safe_image_summary if tensor.dtype != tf.float32: tf.logging.warn( "Currently T2T on TPU only supports ImageSummary of " "tf.float32-type Tensors. Skipping Tensor " "%s with dtype %s..." % (tensor.name, tensor.dtype)) continue # tensor = tf.to_float(tensor) summary_kwargs["ImageSummary" + name] = tensor # When no supported summaries are found, don't create host_call. Otherwise, # TPU outfeed queue would enqueue global_step while host_call doesn't dequeue # it, eventually causing hang. if not summary_kwargs: return None summary_kwargs["global_step"] = gs_t def host_call_fn(**kwargs): """Training host call. Creates summaries for training metrics. Args: **kwargs: Dict of {str: Tensor} , with `Tensor` of shape `[batch]`. Must contain key "global_step" with value of current global_step Tensor. Returns: List of summary ops to run on the CPU host. """ gs = tf.to_int64(kwargs.pop("global_step")[0]) with tf.contrib.summary.create_file_writer(model_dir).as_default(): with tf.contrib.summary.always_record_summaries(): # We need to use tf.contrib.summary in order to feed the `step`. for name, value in sorted(six.iteritems(kwargs)): if name.startswith("ScalarSummary"): name = name[len("ScalarSummary"):] tf.contrib.summary.scalar( name, tf.reduce_mean(tf.to_float(value)), step=gs) elif name.startswith("ImageSummary"): name = name[len("ImageSummary"):] tf.contrib.summary.image(name, value, step=gs) return tf.contrib.summary.all_summary_ops() return (host_call_fn, summary_kwargs) def _del_dict_non_tensors(d): for k in list(d.keys()): if not isinstance(d[k], tf.Tensor): del d[k] class DummyVariableStore(object): @contextlib.contextmanager def as_default(self): yield def create_eager_var_store(): if tf.contrib.eager.in_eager_mode(): return variable_scope.EagerVariableStore() else: return DummyVariableStore() def scheduled_sampling(hparams, problem_hparams, dp, sharded_logits, losses, sharded_features, transformed_features, model): """Scheduled sampling.""" target_modality = problem_hparams.target_modality def sample(x): """Multinomial sampling from a n-dimensional tensor.""" vocab_size = target_modality.top_dimensionality samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]), 1) reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1]) return tf.to_int32(reshaped_samples) def mix_gold_sampled(gold_targets, sampled_targets): return tf.where( tf.less( tf.random_uniform(common_layers.shape_list(sampled_targets)), hparams.scheduled_sampling_gold_mixin_prob), gold_targets, sampled_targets) def sampled_results(): """Generate scheduled sampling results.""" sampled_targets = dp(sample, sharded_logits) new_targets = dp(mix_gold_sampled, sharded_features["targets"], sampled_targets) new_features = transformed_features with tf.variable_scope(tf.get_variable_scope(), reuse=True): with tf.variable_scope(target_modality.name): new_features["targets"] = target_modality.targets_bottom_sharded( new_targets, dp) with tf.variable_scope("body"): body_outputs, losses = model.model_fn_sharded(new_features) if not isinstance(losses, dict): # If it's a single extra loss. losses = {"extra": losses} with tf.variable_scope(target_modality.name): new_sharded_logits = target_modality.top_sharded( body_outputs, sharded_features["targets"], dp) if "training" not in losses: training_loss = target_modality.loss_sharded( sharded_logits, sharded_features["targets"], dp) training_loss *= problem_hparams.loss_multiplier losses["training"] = training_loss return new_sharded_logits, losses # Run the above conditionally. prob = hparams.scheduled_sampling_prob prob *= common_layers.inverse_exp_decay( hparams.scheduled_sampling_warmup_steps, min_value=0.001) sharded_logits, losses = tf.cond( tf.less(tf.random_uniform([]), prob), sampled_results, lambda: (sharded_logits, losses)) return sharded_logits, losses def average_sharded_losses(sharded_losses): """Average losses across datashards. Args: sharded_losses: list<dict<str loss_name, Tensor loss>>. The loss can be a single Tensor or a 2-tuple (numerator and denominator). Returns: losses: dict<str loss_name, Tensor avg_loss> """ losses = {} for loss_name in sorted(sharded_losses[0]): all_shards = [shard_losses[loss_name] for shard_losses in sharded_losses] if isinstance(all_shards[0], tuple): sharded_num, sharded_den = zip(*all_shards) mean_loss = ( tf.add_n(sharded_num) / tf.maximum( tf.cast(1.0, sharded_den[0].dtype), tf.add_n(sharded_den))) else: mean_loss = tf.reduce_mean(all_shards) losses[loss_name] = mean_loss return losses def summarize_features(features, num_shards=1): """Generate summaries for features.""" if not common_layers.should_generate_summaries(): return with tf.name_scope("input_stats"): for (k, v) in sorted(six.iteritems(features)): if isinstance(v, tf.Tensor) and v.get_shape().ndims > 1: tf.summary.scalar("%s_batch" % k, tf.shape(v)[0] // num_shards) tf.summary.scalar("%s_length" % k, tf.shape(v)[1]) nonpadding = tf.to_float(tf.not_equal(v, 0)) nonpadding_tokens = tf.reduce_sum(nonpadding) tf.summary.scalar("%s_nonpadding_tokens" % k, nonpadding_tokens) tf.summary.scalar("%s_nonpadding_fraction" % k, tf.reduce_mean(nonpadding)) _already_logged = set() def _eager_log(level, *args): if tf.contrib.eager.in_eager_mode() and args in _already_logged: return _already_logged.add(args) getattr(tf.logging, level)(*args) def log_info(*args): _eager_log("info", *args) def log_warn(*args): _eager_log("warn", *args) def _compose_custom_getters(getter_a, getter_b): """Compose two custom getters. Example use: tf.get_variable_scope().set_custom_getter( compose_custom_getters(tf.get_variable_scope().custom_getter, new_getter)) This composes getters in the same way as creating a new variable scope with the new_getter, but it does not actually create a new variable scope. Args: getter_a: a custom getter - generally from the existing variable scope. getter_b: a custom getter Returns: a custom getter """ if not getter_a: return getter_b if not getter_b: return getter_a def getter_fn(getter, *args, **kwargs): return getter_b(functools.partial(getter_a, getter), *args, **kwargs) return getter_fn def set_custom_getter_compose(custom_getter): """Set a custom getter in the current variable scope. Do not overwrite the existing custom getter - rather compose with it. Args: custom_getter: a custom getter. """ tf.get_variable_scope().set_custom_getter( _compose_custom_getters(tf.get_variable_scope().custom_getter, custom_getter))
38.473002
84
0.662648
948a57feb5e8d5dd6bff822d8b929adbc9214049
461
py
Python
CreateMasks.py
genigarus/CreateImageOverlaysandDepthMask
90aa3362970c6e27459995dfb71134691fc10220
[ "Apache-2.0" ]
null
null
null
CreateMasks.py
genigarus/CreateImageOverlaysandDepthMask
90aa3362970c6e27459995dfb71134691fc10220
[ "Apache-2.0" ]
null
null
null
CreateMasks.py
genigarus/CreateImageOverlaysandDepthMask
90aa3362970c6e27459995dfb71134691fc10220
[ "Apache-2.0" ]
null
null
null
import glob from PIL import Image out = r"D:\Development\TSAI\EVA\MaskRCNN Dataset\Foreground\masks\{}" path = r"D:\Development\TSAI\EVA\MaskRCNN Dataset\Foreground\resize\*.*" for file in glob.glob(path): im = Image.open(file, 'r') file_name = file.split("\\")[-1] rgb_data = im.tobytes("raw", "RGB") alpha_data = im.tobytes("raw", "A") alpha_image = Image.frombytes("L", im.size, alpha_data) alpha_image.save(out.format(file_name))
30.733333
72
0.678959
abee95fdaf26f13b273ab160923ce0be64258f09
1,406
py
Python
Solver/FDM/VectorGenerater.py
atily17/research
0e762e03747995c8a7d1d8a2ec42be31a17209dc
[ "BSD-3-Clause" ]
null
null
null
Solver/FDM/VectorGenerater.py
atily17/research
0e762e03747995c8a7d1d8a2ec42be31a17209dc
[ "BSD-3-Clause" ]
null
null
null
Solver/FDM/VectorGenerater.py
atily17/research
0e762e03747995c8a7d1d8a2ec42be31a17209dc
[ "BSD-3-Clause" ]
1
2022-02-25T06:38:29.000Z
2022-02-25T06:38:29.000Z
import numpy as np class VectorGenerater(object): def generate(self, problem, grid): nodes = grid.node.nodes vector = np.zeros(len(nodes)) for i in range(len(nodes)): if nodes[i]["position"][0] == "i": vector[i] = problem.source.source(nodes[i]["point"]) elif "b" in nodes[i]["position"][0]: vector[i] = problem.domain.bc["bc"][int(nodes[i]["position"][1:])]["constant"] elif "c" in nodes[i]["position"][0]: if problem.domain.bc["priority"] is None: vector[i]=problem.domain.bc[int(grid.lattice.nodes[i].position[1:])][1] vector[i]=problem.domain.bc[int(grid.lattice.nodes[i].position[1:]) - 1][1] vector[i]/=2 elif type(problem.domain.bc["priority"]) == list: k1 = int(nodes[i]["position"][1:]) k2 = (int(nodes[i]["position"][1:]) - 1) % problem.domain.nVertexes index1 = problem.domain.bc["priority"].index(k1) index2 = problem.domain.bc["priority"].index(k2) if index1 < index2: vector[i]=problem.domain.bc["bc"][k1]["constant"] if index1 > index2: vector[i]=problem.domain.bc["bc"][k2]["constant"] return vector
54.076923
96
0.495021
4decbf4240689040244d9296583939d60a9dcd59
2,499
py
Python
azure-mgmt-web/azure/mgmt/web/models/operation.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-mgmt-web/azure/mgmt/web/models/operation.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-mgmt-web/azure/mgmt/web/models/operation.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2019-06-17T22:18:23.000Z
2019-06-17T22:18:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class Operation(Model): """An operation on a resource. :param id: Operation ID. :type id: str :param name: Operation name. :type name: str :param status: The current status of the operation. Possible values include: 'InProgress', 'Failed', 'Succeeded', 'TimedOut', 'Created' :type status: str or ~azure.mgmt.web.models.OperationStatus :param errors: Any errors associate with the operation. :type errors: list[~azure.mgmt.web.models.ErrorEntity] :param created_time: Time when operation has started. :type created_time: datetime :param modified_time: Time when operation has been updated. :type modified_time: datetime :param expiration_time: Time when operation will expire. :type expiration_time: datetime :param geo_master_operation_id: Applicable only for stamp operation ids. :type geo_master_operation_id: str """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'status': {'key': 'status', 'type': 'OperationStatus'}, 'errors': {'key': 'errors', 'type': '[ErrorEntity]'}, 'created_time': {'key': 'createdTime', 'type': 'iso-8601'}, 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'}, 'expiration_time': {'key': 'expirationTime', 'type': 'iso-8601'}, 'geo_master_operation_id': {'key': 'geoMasterOperationId', 'type': 'str'}, } def __init__(self, **kwargs): super(Operation, self).__init__(**kwargs) self.id = kwargs.get('id', None) self.name = kwargs.get('name', None) self.status = kwargs.get('status', None) self.errors = kwargs.get('errors', None) self.created_time = kwargs.get('created_time', None) self.modified_time = kwargs.get('modified_time', None) self.expiration_time = kwargs.get('expiration_time', None) self.geo_master_operation_id = kwargs.get('geo_master_operation_id', None)
43.086207
82
0.62425
f59c3e593d31f3f4d336a2c5a8e7a5bd01c60561
3,941
py
Python
appengine/integration_tests/deploy_check.py
JonathanRRogers/runtimes-common
6b69050bed4389763ddff8e1b9ec48f12ac32fc5
[ "Apache-2.0" ]
95
2016-09-09T23:36:36.000Z
2022-03-05T20:06:00.000Z
appengine/integration_tests/deploy_check.py
JonathanRRogers/runtimes-common
6b69050bed4389763ddff8e1b9ec48f12ac32fc5
[ "Apache-2.0" ]
392
2016-09-13T15:15:57.000Z
2022-02-22T01:18:23.000Z
appengine/integration_tests/deploy_check.py
JonathanRRogers/runtimes-common
6b69050bed4389763ddff8e1b9ec48f12ac32fc5
[ "Apache-2.0" ]
73
2016-09-08T19:27:03.000Z
2021-07-08T13:28:18.000Z
#!/usr/bin/python # Copyright 2017 Google Inc. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging from retrying import retry import subprocess import sys from testsuite import deploy_app from testsuite import test_util def main(): parser = argparse.ArgumentParser() parser.add_argument('--directory', '-d', type=str, help='Directory of app to be run', required=True) parser.add_argument('--language', '-l', type=str, help='Language of the app deployed', required=False) parser.add_argument('--verbose', '-v', help='Debug logging', action='store_true', required=False) parser.add_argument('--skip-builders', action='store_true', help='Skip runtime builder flow', default=False) parser.add_argument('--skip-xrt', action='store_true', help='Skip XRT flow', default=False) args = parser.parse_args() if args.verbose: logging.getLogger().setLevel(logging.DEBUG) # retrieve previous config value to reset after cmd = ['gcloud', 'config', 'list', '--format=json'] output = json.loads(subprocess.check_output(cmd)) prev_builder_value = None if 'app' in output: prev_builder_value = output.get('app').get('use_runtime_builders') if args.skip_xrt: logging.info('Skipping xrt flow.') else: # disable app/use_runtime_builders to hit the XRT flow _set_runtime_builder_flag(False) _deploy_and_test(args.directory, args.language, True) if args.skip_builders: logging.info('Skipping builder flow.') else: # set app/use_runtime_builders to explicitly enter builder flow _set_runtime_builder_flag(True) _deploy_and_test(args.directory, args.language, False) _set_runtime_builder_flag(prev_builder_value) def _set_runtime_builder_flag(flag): try: if flag is None: cmd = ['gcloud', 'config', 'unset', 'app/use_runtime_builders'] else: cmd = ['gcloud', 'config', 'set', 'app/use_runtime_builders', str(flag)] subprocess.check_output(cmd) except subprocess.CalledProcessError as cpe: logging.error(cpe.output) sys.exit(1) def _deploy_and_test(appdir, language, is_xrt): version = None try: logging.debug('Testing runtime image.') version, url = deploy_app.deploy_app_and_record_latency(appdir, language, is_xrt) application_url = test_util.retrieve_url_for_version(version) _test_application(application_url) except Exception as e: logging.error('Error when contacting application: %s', e) sys.exit(1) finally: if version: deploy_app.stop_version(version) @retry(wait_fixed=4000, stop_max_attempt_number=8) def _test_application(application_url): output, status_code = test_util.get(application_url) if status_code: logging.error(output) raise RuntimeError('Application returned non-zero status code: %d', status_code) else: return output if __name__ == '__main__': sys.exit(main())
33.974138
75
0.639685
07c18fd20821623e5214aa901eaf2ca4ccdd8c1e
1,504
py
Python
nginx/tests/test_vts.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
663
2016-08-23T05:23:45.000Z
2022-03-29T00:37:23.000Z
nginx/tests/test_vts.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
6,642
2016-06-09T16:29:20.000Z
2022-03-31T22:24:09.000Z
nginx/tests/test_vts.py
mchelen-gov/integrations-core
81281600b3cc7025a7a32148c59620c9592a564f
[ "BSD-3-Clause" ]
1,222
2017-01-27T15:51:38.000Z
2022-03-31T18:17:51.000Z
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import pytest from datadog_checks.nginx import VTS_METRIC_MAP from .common import TAGS, USING_VTS pytestmark = pytest.mark.skipif(not USING_VTS, reason='Not using VTS') @pytest.mark.usefixtures('dd_environment') def test_vts(check, instance_vts, aggregator): check = check(instance_vts) check.check(instance_vts) # skip metrics that are difficult to reproduce in a test environment skip_metrics = [ 'nginx.upstream.peers.responses.1xx', 'nginx.upstream.peers.responses.2xx', 'nginx.upstream.peers.responses.3xx', 'nginx.upstream.peers.responses.4xx', 'nginx.upstream.peers.responses.5xx', 'nginx.upstream.peers.requests', 'nginx.upstream.peers.received', 'nginx.server_zone.received', 'nginx.server_zone.responses.1xx', 'nginx.server_zone.responses.2xx', 'nginx.server_zone.responses.3xx', 'nginx.server_zone.responses.4xx', 'nginx.server_zone.responses.5xx', 'nginx.server_zone.requests', 'nginx.server_zone.sent', 'nginx.upstream.peers.sent', 'nginx.upstream.peers.health_checks.last_passed', 'nginx.upstream.peers.weight', 'nginx.upstream.peers.backup', ] for mapped in VTS_METRIC_MAP.values(): if mapped in skip_metrics: continue aggregator.assert_metric(mapped, tags=TAGS)
33.422222
72
0.684176
6af110291a019161aa7987ab19e03fdb618b7e3f
8,161
py
Python
package_control/deps/oscrypto/_win/trust_list.py
tower000/sublime_package_control
db53090bd0920ca2c58ef27f0361a4d7b096df0e
[ "MIT", "Unlicense" ]
3
2019-06-06T00:13:44.000Z
2020-08-16T20:11:13.000Z
package_control/deps/oscrypto/_win/trust_list.py
Allyn69/package_control
f78578ed67529e263fb1f4e4f90f92295830560f
[ "MIT", "Unlicense" ]
null
null
null
package_control/deps/oscrypto/_win/trust_list.py
Allyn69/package_control
f78578ed67529e263fb1f4e4f90f92295830560f
[ "MIT", "Unlicense" ]
1
2021-07-26T00:35:53.000Z
2021-07-26T00:35:53.000Z
# coding: utf-8 from __future__ import unicode_literals, division, absolute_import, print_function import datetime import hashlib import struct from ...asn1crypto.x509 import Certificate from .._ffi import ( array_from_pointer, buffer_from_bytes, bytes_from_buffer, cast, deref, is_null, new, null, struct_from_buffer, unwrap, ) from ._crypt32 import crypt32, Crypt32Const, get_error, handle_error from .._types import str_cls __all__ = [ 'extract_from_system', 'system_path', ] def system_path(): return None def extract_from_system(cert_callback=None, callback_only_on_failure=False): """ Extracts trusted CA certificates from the Windows certificate store :param cert_callback: A callback that is called once for each certificate in the trust store. It should accept two parameters: an asn1crypto.x509.Certificate object, and a reason. The reason will be None if the certificate is being exported, otherwise it will be a unicode string of the reason it won't. :param callback_only_on_failure: A boolean - if the callback should only be called when a certificate is not exported. :raises: OSError - when an error is returned by the OS crypto library :return: A list of 3-element tuples: - 0: a byte string of a DER-encoded certificate - 1: a set of unicode strings that are OIDs of purposes to trust the certificate for - 2: a set of unicode strings that are OIDs of purposes to reject the certificate for """ certificates = {} processed = {} now = datetime.datetime.utcnow() for store in ["ROOT", "CA"]: store_handle = crypt32.CertOpenSystemStoreW(null(), store) handle_error(store_handle) context_pointer = null() while True: context_pointer = crypt32.CertEnumCertificatesInStore(store_handle, context_pointer) if is_null(context_pointer): break context = unwrap(context_pointer) trust_all = False data = None digest = None if context.dwCertEncodingType != Crypt32Const.X509_ASN_ENCODING: continue data = bytes_from_buffer(context.pbCertEncoded, int(context.cbCertEncoded)) digest = hashlib.sha1(data).digest() if digest in processed: continue processed[digest] = True cert_info = unwrap(context.pCertInfo) not_before_seconds = _convert_filetime_to_timestamp(cert_info.NotBefore) try: not_before = datetime.datetime.fromtimestamp(not_before_seconds) if not_before > now: if cert_callback: cert_callback(Certificate.load(data), 'not yet valid') continue except (ValueError, OSError) as e: # If there is an error converting the not before timestamp, # it is almost certainly because it is from too long ago, # which means the cert is definitely valid by now. pass not_after_seconds = _convert_filetime_to_timestamp(cert_info.NotAfter) try: not_after = datetime.datetime.fromtimestamp(not_after_seconds) if not_after < now: if cert_callback: cert_callback(Certificate.load(data), 'no longer valid') continue except (ValueError, OSError) as e: # The only reason we would get an exception here is if the # expiration time is so far in the future that it can't be # used as a timestamp, or it is before 0. If it is very far # in the future, the cert is still valid, so we only raise # an exception if the timestamp is less than zero. if not_after_seconds < 0: message = e.args[0] + ' - ' + str_cls(not_after_seconds) e.args = (message,) + e.args[1:] raise e trust_oids = set() reject_oids = set() # Here we grab the extended key usage properties that Windows # layers on top of the extended key usage extension that is # part of the certificate itself. For highest security, users # should only use certificates for the intersection of the two # lists of purposes. However, many seen to treat the OS trust # list as an override. to_read = new(crypt32, 'DWORD *', 0) res = crypt32.CertGetEnhancedKeyUsage( context_pointer, Crypt32Const.CERT_FIND_PROP_ONLY_ENHKEY_USAGE_FLAG, null(), to_read ) # Per the Microsoft documentation, if CRYPT_E_NOT_FOUND is returned # from get_error(), it means the certificate is valid for all purposes error_code, _ = get_error() if not res and error_code != Crypt32Const.CRYPT_E_NOT_FOUND: handle_error(res) if error_code == Crypt32Const.CRYPT_E_NOT_FOUND: trust_all = True else: usage_buffer = buffer_from_bytes(deref(to_read)) res = crypt32.CertGetEnhancedKeyUsage( context_pointer, Crypt32Const.CERT_FIND_PROP_ONLY_ENHKEY_USAGE_FLAG, cast(crypt32, 'CERT_ENHKEY_USAGE *', usage_buffer), to_read ) handle_error(res) key_usage_pointer = struct_from_buffer(crypt32, 'CERT_ENHKEY_USAGE', usage_buffer) key_usage = unwrap(key_usage_pointer) # Having no enhanced usage properties means a cert is distrusted if key_usage.cUsageIdentifier == 0: if cert_callback: cert_callback(Certificate.load(data), 'explicitly distrusted') continue oids = array_from_pointer( crypt32, 'LPCSTR', key_usage.rgpszUsageIdentifier, key_usage.cUsageIdentifier ) for oid in oids: trust_oids.add(oid.decode('ascii')) cert = None # If the certificate is not under blanket trust, we have to # determine what purposes it is rejected for by diffing the # set of OIDs from the certificate with the OIDs that are # trusted. if not trust_all: cert = Certificate.load(data) if cert.extended_key_usage_value: for cert_oid in cert.extended_key_usage_value: oid = cert_oid.dotted if oid not in trust_oids: reject_oids.add(oid) if cert_callback and not callback_only_on_failure: if cert is None: cert = Certificate.load(data) cert_callback(cert, None) certificates[digest] = (data, trust_oids, reject_oids) result = crypt32.CertCloseStore(store_handle, 0) handle_error(result) store_handle = None return certificates.values() def _convert_filetime_to_timestamp(filetime): """ Windows returns times as 64-bit unsigned longs that are the number of hundreds of nanoseconds since Jan 1 1601. This converts it to a datetime object. :param filetime: A FILETIME struct object :return: An integer unix timestamp """ hundreds_nano_seconds = struct.unpack( b'>Q', struct.pack( b'>LL', filetime.dwHighDateTime, filetime.dwLowDateTime ) )[0] seconds_since_1601 = hundreds_nano_seconds / 10000000 return seconds_since_1601 - 11644473600 # Seconds from Jan 1 1601 to Jan 1 1970
35.79386
98
0.591349
52aa4a9fcec34db7fdcc3bca4a48e2d59cdc3e72
3,130
py
Python
mjrl/utils/logger.py
xtwentian3/mjrl
e403c67c165e37d933a4bee8f80771d1046b51f3
[ "Apache-2.0" ]
null
null
null
mjrl/utils/logger.py
xtwentian3/mjrl
e403c67c165e37d933a4bee8f80771d1046b51f3
[ "Apache-2.0" ]
null
null
null
mjrl/utils/logger.py
xtwentian3/mjrl
e403c67c165e37d933a4bee8f80771d1046b51f3
[ "Apache-2.0" ]
null
null
null
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import scipy import pickle import os import csv class DataLog: def __init__(self): self.log = {} self.max_len = 0 def log_kv(self, key, value): # logs the (key, value) pair # TODO: This implementation is error-prone: # it would be NOT aligned if some keys are missing during one iteration. if key not in self.log: self.log[key] = [] self.log[key].append(value) if len(self.log[key]) > self.max_len: self.max_len = self.max_len + 1 def save_log(self, save_path): # TODO: Validate all lengths are the same. pickle.dump(self.log, open(save_path + '/log.pickle', 'wb')) with open(save_path + '/log.csv', 'w') as csv_file: fieldnames = list(self.log.keys()) if 'iteration' not in fieldnames: fieldnames = ['iteration'] + fieldnames writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for row in range(self.max_len): row_dict = {'iteration': row} for key in self.log.keys(): if row < len(self.log[key]): row_dict[key] = self.log[key][row] writer.writerow(row_dict) def get_current_log(self): row_dict = {} for key in self.log.keys(): # TODO: this is very error-prone (alignment is not guaranteed) row_dict[key] = self.log[key][-1] return row_dict def get_current_log_print(self): row_dict = {} for key in self.log.keys(): # TODO: this is very error-prone (alignment is not guaranteed) if len(self.log[key]) > 1 : row_dict[key] = self.log[key][-1] return row_dict def shrink_to(self, num_entries): for key in self.log.keys(): self.log[key] = self.log[key][:num_entries] self.max_len = num_entries assert min([len(series) for series in self.log.values()]) == \ max([len(series) for series in self.log.values()]) def read_log(self, log_path): assert log_path.endswith('log.csv') with open(log_path) as csv_file: reader = csv.DictReader(csv_file) listr = list(reader) keys = reader.fieldnames data = {} for key in keys: data[key] = [] for row, row_dict in enumerate(listr): for key in keys: try: data[key].append(eval(row_dict[key])) except: print("ERROR on reading key {}: {}".format(key, row_dict[key])) if 'iteration' in data and data['iteration'][-1] != row: raise RuntimeError("Iteration %d mismatch -- possibly corrupted logfile?" % row) self.log = data self.max_len = max(len(v) for k, v in self.log.items()) print("Log read from {}: had {} entries".format(log_path, self.max_len))
35.168539
100
0.554633
156b4c21bd77fad235ddb2847e6906beb5ea5256
5,581
py
Python
superset/importexport/api.py
Human-Security-Insights/superset
a8e7624eb5635ed9b84f1454d35029e1c18ebdee
[ "Apache-2.0" ]
1
2022-02-10T11:30:05.000Z
2022-02-10T11:30:05.000Z
superset/importexport/api.py
Human-Security-Insights/superset
a8e7624eb5635ed9b84f1454d35029e1c18ebdee
[ "Apache-2.0" ]
10
2022-01-05T01:31:07.000Z
2022-03-16T01:09:46.000Z
superset/importexport/api.py
Human-Security-Insights/superset
a8e7624eb5635ed9b84f1454d35029e1c18ebdee
[ "Apache-2.0" ]
1
2022-03-09T02:57:17.000Z
2022-03-09T02:57:17.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json from datetime import datetime from io import BytesIO from zipfile import is_zipfile, ZipFile from flask import request, Response, send_file from flask_appbuilder.api import BaseApi, expose, protect from superset.commands.export.assets import ExportAssetsCommand from superset.commands.importers.exceptions import ( IncorrectFormatError, NoValidFilesFoundError, ) from superset.commands.importers.v1.assets import ImportAssetsCommand from superset.commands.importers.v1.utils import get_contents_from_bundle from superset.extensions import event_logger from superset.views.base_api import requires_form_data class ImportExportRestApi(BaseApi): """ API for exporting all assets or importing them. """ resource_name = "assets" openapi_spec_tag = "Import/export" @expose("/export/", methods=["GET"]) @protect() @event_logger.log_this_with_context( action=lambda self, *args, **kwargs: f"{self.__class__.__name__}.export", log_to_statsd=False, ) def export(self) -> Response: """ Export all assets. --- get: description: >- Returns a ZIP file with all the Superset assets (databases, datasets, charts, dashboards, saved queries) as YAML files. responses: 200: description: ZIP file content: application/zip: schema: type: string format: binary 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 404: $ref: '#/components/responses/404' 500: $ref: '#/components/responses/500' """ timestamp = datetime.now().strftime("%Y%m%dT%H%M%S") root = f"assets_export_{timestamp}" filename = f"{root}.zip" buf = BytesIO() with ZipFile(buf, "w") as bundle: for file_name, file_content in ExportAssetsCommand().run(): with bundle.open(f"{root}/{file_name}", "w") as fp: fp.write(file_content.encode()) buf.seek(0) response = send_file( buf, mimetype="application/zip", as_attachment=True, attachment_filename=filename, ) return response @expose("/import/", methods=["POST"]) @protect() @event_logger.log_this_with_context( action=lambda self, *args, **kwargs: f"{self.__class__.__name__}.import_", log_to_statsd=False, ) @requires_form_data def import_(self) -> Response: """Import multiple assets --- post: requestBody: required: true content: multipart/form-data: schema: type: object properties: bundle: description: upload file (ZIP or JSON) type: string format: binary passwords: description: >- JSON map of passwords for each featured database in the ZIP file. If the ZIP includes a database config in the path `databases/MyDatabase.yaml`, the password should be provided in the following format: `{"databases/MyDatabase.yaml": "my_password"}`. type: string responses: 200: description: Dashboard import result content: application/json: schema: type: object properties: message: type: string 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ upload = request.files.get("bundle") if not upload: return self.response_400() if not is_zipfile(upload): raise IncorrectFormatError("Not a ZIP file") with ZipFile(upload) as bundle: contents = get_contents_from_bundle(bundle) if not contents: raise NoValidFilesFoundError() passwords = ( json.loads(request.form["passwords"]) if "passwords" in request.form else None ) command = ImportAssetsCommand(contents, passwords=passwords) command.run() return self.response(200, message="OK")
34.030488
89
0.576778
073523ae945b3f906234434ebcd14e86b8e4a8ef
2,450
py
Python
case/__final__/02_concrete1.py
BlockResearchGroup/WS_structural-design
9a1222e728f5f2ea32d40624b61440fe97f1f9b8
[ "MIT" ]
1
2021-01-12T15:36:53.000Z
2021-01-12T15:36:53.000Z
case/__final__/02_concrete1.py
compas-Workshops/WS_structural-design
9a1222e728f5f2ea32d40624b61440fe97f1f9b8
[ "MIT" ]
null
null
null
case/__final__/02_concrete1.py
compas-Workshops/WS_structural-design
9a1222e728f5f2ea32d40624b61440fe97f1f9b8
[ "MIT" ]
2
2019-05-10T16:05:26.000Z
2019-06-11T16:24:48.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function from compas.utilities import pairwise from compas.datastructures import mesh_flip_cycles from compas.datastructures import Mesh from compas_rhino.artists import MeshArtist mesh = Mesh.from_json('cablenet.json') # make lookup dicts for vertex normals of the cablenet key_normal = {key: mesh.vertex_normal(key) for key in mesh.vertices()} # ============================================================================== # Intrados and extrados # ============================================================================== idos = mesh.copy() edos = idos.copy() # offset the intrados from the cablenet # by 2cm in the direction of the corresponding cablenet vertex normal for key, attr in idos.vertices(True): nx, ny, nz = key_normal[key] attr['x'] += 0.02 * nx attr['y'] += 0.02 * ny attr['z'] += 0.02 * nz # offset the intrados from the intrados # by 2cm in the direction of the corresponding cablenet vertex normal for key, attr in edos.vertices(True): nx, ny, nz = key_normal[key] attr['x'] += 0.06 * nx attr['y'] += 0.06 * ny attr['z'] += 0.06 * nz # ============================================================================== # Concrete volume # ============================================================================== volume = idos.copy() volume.name = 'concrete1' # flip its cycles to make the bottom normals point downwards mesh_flip_cycles(volume) # set the key offset dkey = volume._max_int_key + 1 # add the vertices of the extrados for key, attr in edos.vertices(True): volume.add_vertex(key=key + dkey, **attr) # add the faces of the extrados for fkey in edos.faces(): vertices = edos.face_vertices(fkey) vertices = [key + dkey for key in vertices] volume.add_face(vertices) # construct a polygon of boundary vertices boundary = edos.vertices_on_boundary(ordered=True) boundary.append(boundary[0]) # add the "side" faces for a, b in pairwise(boundary): volume.add_face([b, a, a + dkey, b + dkey]) # ============================================================================== # Export and visualisation # ============================================================================== # export volume.to_json('concrete1.json') # visualize artist = MeshArtist(volume, layer="Concrete1") artist.clear_layer() artist.draw_mesh(color=(0, 0, 255))
28.823529
80
0.58
1aee9bc4a882e5281a9be9f475238a390c5e8785
174
py
Python
ewah_bool_utils/__init__.py
neutrinoceros/ewah_bool_utils
54e7a3c00c538dfd9d3d02df2f4a271907cd212c
[ "BSD-3-Clause" ]
null
null
null
ewah_bool_utils/__init__.py
neutrinoceros/ewah_bool_utils
54e7a3c00c538dfd9d3d02df2f4a271907cd212c
[ "BSD-3-Clause" ]
null
null
null
ewah_bool_utils/__init__.py
neutrinoceros/ewah_bool_utils
54e7a3c00c538dfd9d3d02df2f4a271907cd212c
[ "BSD-3-Clause" ]
null
null
null
"""Top-level package for EWAH Bool Utils.""" __author__ = """Navaneeth Suresh""" __email__ = 'navaneeths1998@gmail.com' __version__ = '0.1.0' from .ewah_bool_wrap import *
21.75
44
0.718391
0eb77234ad47a6dd5dea13b1109681afaca694e4
297
py
Python
meridian/tst/acupoints/test_jinmen12.py
sinotradition/meridian
8c6c1762b204b72346be4bbfb74dedd792ae3024
[ "Apache-2.0" ]
5
2015-12-14T15:14:23.000Z
2022-02-09T10:15:33.000Z
meridian/tst/acupoints/test_jinmen12.py
sinotradition/meridian
8c6c1762b204b72346be4bbfb74dedd792ae3024
[ "Apache-2.0" ]
null
null
null
meridian/tst/acupoints/test_jinmen12.py
sinotradition/meridian
8c6c1762b204b72346be4bbfb74dedd792ae3024
[ "Apache-2.0" ]
3
2015-11-27T05:23:49.000Z
2020-11-28T09:01:56.000Z
#!/usr/bin/python #coding=utf-8 ''' @author: sheng @license: ''' import unittest from meridian.acupoints import jinmen12 class TestJinmen12Functions(unittest.TestCase): def setUp(self): pass def test_xxx(self): pass if __name__ == '__main__': unittest.main()
11.88
47
0.659933
0d9d74f1a6e59a1389ccb3cbf61a17c097debbd0
596
py
Python
sphinx_gallery/tests/tinybuild/examples/future/plot_future_imports.py
andriyor/sphinx-gallery
cc53540162613850c5bb19fa1172a1be960b1484
[ "BSD-3-Clause" ]
309
2015-01-18T23:00:29.000Z
2022-03-24T15:27:51.000Z
sphinx_gallery/tests/tinybuild/examples/future/plot_future_imports.py
andriyor/sphinx-gallery
cc53540162613850c5bb19fa1172a1be960b1484
[ "BSD-3-Clause" ]
891
2015-01-04T19:45:44.000Z
2022-03-31T02:36:49.000Z
sphinx_gallery/tests/tinybuild/examples/future/plot_future_imports.py
andriyor/sphinx-gallery
cc53540162613850c5bb19fa1172a1be960b1484
[ "BSD-3-Clause" ]
197
2015-01-27T13:14:14.000Z
2022-03-28T20:16:39.000Z
""" Test __future__ imports across cells ------------------------------------ This example tests that __future__ imports works across cells. """ from __future__ import division from __future__ import print_function import matplotlib #################### # Dummy section, with :func:`sphinx_gallery.backreferences.NameFinder` ref. assert 3/2 == 1.5 print(3/2, end='') # testing reset of mpl orig_dpi = 80. if matplotlib.__version__[0] < '2' else 100. assert matplotlib.rcParams['figure.dpi'] == orig_dpi matplotlib.rcParams['figure.dpi'] = 90. assert matplotlib.rcParams['figure.dpi'] == 90.
25.913043
75
0.684564
e226afcedde04a1a49d46925fbb066d93955db0e
7,012
py
Python
src/pyFun/main.py
hardikparwana/segway_sim
792c8ed9e6e26e3e28e5f120be6822f178f17bf2
[ "MIT" ]
10
2020-10-08T03:16:25.000Z
2021-10-19T02:58:53.000Z
src/pyFun/main.py
hardikparwana/segway_sim
792c8ed9e6e26e3e28e5f120be6822f178f17bf2
[ "MIT" ]
null
null
null
src/pyFun/main.py
hardikparwana/segway_sim
792c8ed9e6e26e3e28e5f120be6822f178f17bf2
[ "MIT" ]
5
2020-10-07T22:14:12.000Z
2022-02-21T01:22:21.000Z
import sys import pdb import scipy.io as sio import numpy as np import pickle from utils import * from MOMDP import MOMDP, MOMDP_TOQ, MOMDP_TO, MOMDP_Q import os def main(): load = 1 # 0 = compute policy and save policy object, 1 = load policy object, -1 = compute policy but DO NOT save it digitsResults = 6 # number of digits to print, just for visual output printLevel = 3 # 0 = only value function update and results, 1 = minimal, 2 = verbose # Evaluate single policy. Details in evaluateSinglePolicy() function discOpt = 1 evaluateSinglePolicy(load, digitsResults, printLevel, discOpt) # # Save .txt file with results for Table I # discOpt = 1 # 1 = 2^{n_u} + n_u belief points, 2 = 2(2^{n_u}) belief points # gridWorldList = ['5x5' , '10x5', '15x15' ] # obstList = [3, 4] # policyList = ['TO', 'Q', 'TOQ'] # evaluateAllPolicies(load, digitsResults,printLevel, discOpt, gridWorldList, obstList, policyList) # # Save .txt file with results for Table II # discOpt = 2 # 1 = 2^{n_u} + n_u belief points, 2 = 2(2^{n_u}) belief points # gridWorldList = ['15x15' ] # obstList = [4] # evaluateAllPolicies(load, digitsResults,printLevel, discOpt, gridWorldList, obstList, policyList) def evaluateSinglePolicy(load, digitsResults, printLevel, discOpt): # gridWorld = '5x5' # numObst = 3 # policy = 'TOQ' # momdp = getMOMDP(gridWorld, numObst, policy, printLevel, load, discOpt, unGoal = False) gridWorld = '8x8ug' numObst = 2 policy = 'Q' momdp = getMOMDP(gridWorld, numObst, policy, printLevel, load, discOpt, unGoal = True) # # Evaluate expected cost and probability of failure # results = runAllSim(momdp, gridWorld, numObst, policy, printLevel, digitsResults) # Run a simulation for an environment realization which is defined in the function loadParameters() from the file utils.py results = runSim(momdp, gridWorld, numObst, policy, printLevel, digitsResults) def evaluateAllPolicies(load, digitsResults, printLevel, discOpt, gridWorldList, obstList, policyList): resultsList = [] for gridWorld in gridWorldList: for numObst in obstList: for policy in policyList: momdp = getMOMDP(gridWorld, numObst, policy, printLevel, load, discOpt) results = runAllSim(momdp, gridWorld, numObst, policy, printLevel, digitsResults) resultsList.append(results) # Save and print to screen the results print("====== Results for expected cost and prob sat specs") fileToWrite = open("result_expected_cost_Table_"+str(discOpt)+".txt","w") for i in range(0, len(resultsList)): print(resultsList[i][0]) fileToWrite.writelines(resultsList[i][0]+'\n') fileToWrite.close() #to change file access modes fileToWrite = open("result_expected_time_Table_"+str(discOpt)+".txt","w") print("====== Results for expected time and prob of failure") for i in range(0, len(resultsList)): print(resultsList[i][1]) fileToWrite.writelines(resultsList[i][1]+'\n') fileToWrite.close() #to change file access modes def getMOMDP(gridWorld, numObst, policy, printLevel, load, discOpt, unGoal = False, valFunFlag = True): totTimeSteps, _, _ = loadParameters(gridWorld, numObst, unGoal) if unGoal == False: directory = 'data/'+policy+'_'+str(discOpt)+'/' fileName = 'MOMDP_obj_'+gridWorld+'_'+str(numObst)+'.pkl' else: directory = 'data/'+policy+'ug_'+str(discOpt)+'/' fileName = 'MOMDP_obj_'+gridWorld+'_'+str(numObst)+'.pkl' if not os.path.exists(directory): os.makedirs(directory) if load <= 0: # If load <= 0 compute the policy and store it if load == 0 gridVar = loadGrid(gridWorld+'_'+str(numObst)) if policy == 'TOQ': # momdp = MOMDP_TOQ_notVectorized(gridVar, totTimeSteps,printLevel, policy, discOpt) momdp = MOMDP_TOQ(gridVar, totTimeSteps,printLevel, policy, discOpt, unGoal, valFunFlag) elif policy == 'Q': momdp = MOMDP_Q(gridVar, totTimeSteps,printLevel, policy, discOpt, unGoal, valFunFlag) elif policy == 'TO': momdp = MOMDP_TO(gridVar, totTimeSteps,printLevel, policy, discOpt, unGoal, valFunFlag) if load == 0: pickle_out = open(directory+fileName,"wb") pickle.dump(momdp, pickle_out) pickle_out.close() else: pickle_in = open(directory+fileName,"rb") momdp = pickle.load(pickle_in) return momdp def runSim(momdp, gridWorld, numObst, policy, printLevel, digits): totTimeSteps, loc, initBelief = loadParameters(gridWorld, numObst, momdp.unGoal) bt = [momdp.initBelief(initBelief)] # initial belief xt = [0] # initial state V_t0, Vrealized, J_t0, failure,tRun, xt, bt = eveluateMOMDP(momdp, loc, initBelief, xt, bt, printLevel) plotFun(momdp, xt, bt) # Print and store results print("================ Final Results for ", policy, " Policy in ", gridWorld, " grid world with ", numObst, "obstacles.") print("Vrealized: ", Vrealized, " and V0: ", V_t0) print("Prob Sat Spec: ", 1 - failure, " and lower bound: ", J_t0) print("Time: ", tRun) print("Policy synthesis time: ", momdp.totTime, " Avg backup time: ", momdp.avgBackupTime) def runAllSim(momdp, gridWorld, numObst, policy, printLevel, digits): totTimeSteps, _, initBelief = loadParameters(gridWorld, numObst, momdp.unGoal) probFailure = 0 expCost = 0 expTime = 0 for i in range(0,len(momdp.comb)): # loop over all possible 2^numObst obstacle configurations loc = momdp.comb[i] # initialize true obstacle location bt = [momdp.initBelief(initBelief)] # initial belief xt = [0] # initial state V_t0, Vrealized, J_t0, failure,tRun, _, _ = eveluateMOMDP(momdp, loc, initBelief, xt, bt, printLevel) probFailure += failure*bt[0][i] # add prob failure times probability of this scenario expCost += Vrealized*bt[0][i] # add cost times probability of this scenario expTime += tRun*bt[0][i]*(failure==0) # Print and store results print("================ Final Results for ", policy, " Policy in ", gridWorld, " grid world with ", numObst, "obstacles.") print("Expected cost: ", expCost, " and V0: ", V_t0) print("Prob Sat Spec: ", 1 - probFailure, " and lower bound: ", J_t0) print("Expected time: ", expTime) print("Prob Failure: ", probFailure, " and upper bound: ", 1-J_t0) print("Policy synthesis time: ", momdp.totTime, " Avg backup time: ", momdp.avgBackupTime) if policy == 'TO': policy = 'TO ' if policy == 'Q': policy = 'Q ' stringTest = policy+"_"+gridWorld+"_"+str(numObst) stringCost = " || ExpCost: "+str(round(expCost,digits))+", V0: "+str(round(V_t0,digits)) stringProb = " || P specs: "+str(round(1-probFailure,digits))+", J0: "+str(round(J_t0,digits)) stringTime = " || Tot Time: "+str(round(momdp.totTime,digits))+", backup time: "+str(round(momdp.avgBackupTime,digits)) stringExpT = " || ExpTime: "+str(round(expTime,digits)) stringFail = " || P fail: "+str(round(probFailure,digits))+" and upper-bound 1-J0: "+str(round(1-J_t0,digits)) return [stringTest+stringCost+stringProb+stringTime, stringTest+stringExpT+stringFail+stringTime] if __name__ == "__main__": # execute only if run as a script main()
43.283951
126
0.700656
fc66218f6e4aadb48cbabc589260e2859e1f6ff6
409
py
Python
selenium/zadania/zadanie_1.py
lblaszkowski/jaktestowac
e8f0af228792a5a2cfa7c7845c9e70869a275a5b
[ "Apache-2.0" ]
null
null
null
selenium/zadania/zadanie_1.py
lblaszkowski/jaktestowac
e8f0af228792a5a2cfa7c7845c9e70869a275a5b
[ "Apache-2.0" ]
null
null
null
selenium/zadania/zadanie_1.py
lblaszkowski/jaktestowac
e8f0af228792a5a2cfa7c7845c9e70869a275a5b
[ "Apache-2.0" ]
null
null
null
# Rekruter chce sprawdzić, że nie tylko potrafisz przepisać kod z tutoriala więc prosi Ciebie # abyś przetestował stronę wylosowaną przez https://www.discuvver.com/ (kliknij Take me to a useful website!). from selenium import webdriver driver = webdriver.Chrome() driver.get('http://e.ggtimer.com/') title = driver.title print(title) assert title == "E.gg Timer - a simple countdown timer" driver.close()
34.083333
110
0.762836
e3f62008a5ec6599b27eff3201c75d80ba919a56
791
py
Python
client/sources/scheme_test/__init__.py
akshitdewan/ok-client
3c5eca17100eed808023a815654cfe1c95179080
[ "Apache-2.0" ]
30
2018-07-10T17:32:49.000Z
2022-01-03T16:50:56.000Z
client/sources/scheme_test/__init__.py
akshitdewan/ok-client
3c5eca17100eed808023a815654cfe1c95179080
[ "Apache-2.0" ]
62
2018-08-07T18:43:33.000Z
2022-02-17T20:53:03.000Z
client/sources/scheme_test/__init__.py
akshitdewan/ok-client
3c5eca17100eed808023a815654cfe1c95179080
[ "Apache-2.0" ]
26
2018-11-13T22:12:47.000Z
2022-03-20T00:42:26.000Z
from client import exceptions as ex from client.sources.scheme_test import models import os def load(file, _, assign): """Loads Scheme tests from a specified filepath. PARAMETERS: file -- str; a filepath to a Scheme file. RETURNS: Test """ if not os.path.isfile(file) or not file.endswith('.scm'): raise ex.LoadingException('Cannot run Scheme tests from {}'.format(file)) with open(file, 'r') as f: file_contents = f.read() try: return {file: models.SchemeTest(file, file_contents, assign.cmd_args.timeout, name=file, points=1)} except ex.SerializeException: raise ex.LoadingException('Unable to load Scheme test ' 'from {}'.format(file))
29.296296
85
0.610619
228bd0d2dc82d566181dc14633ce494804d50e6e
3,507
py
Python
tests/data/test_topology.py
vasp-dev/py4vasp
576c5c23d740b11687e37b6dd332165bc339cf16
[ "Apache-2.0" ]
27
2022-02-18T18:43:17.000Z
2022-03-29T22:05:41.000Z
tests/data/test_topology.py
vasp-dev/py4vasp
576c5c23d740b11687e37b6dd332165bc339cf16
[ "Apache-2.0" ]
3
2022-02-18T18:52:33.000Z
2022-03-28T13:26:59.000Z
tests/data/test_topology.py
vasp-dev/py4vasp
576c5c23d740b11687e37b6dd332165bc339cf16
[ "Apache-2.0" ]
4
2022-02-07T12:21:23.000Z
2022-03-13T21:36:03.000Z
# Copyright © VASP Software GmbH, # Licensed under the Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0) from py4vasp.data import Topology from py4vasp.data._selection import Selection import py4vasp.exceptions as exception import py4vasp._util.selection as selection import pytest import numpy as np import pandas as pd @pytest.fixture def Sr2TiO4(raw_data): return Topology(raw_data.topology("Sr2TiO4")) def test_read(Sr2TiO4): topology = Sr2TiO4.read() assert topology["Sr"] == Selection(indices=slice(0, 2), label="Sr") assert topology["Ti"] == Selection(indices=slice(2, 3), label="Ti") assert topology["O"] == Selection(indices=slice(3, 7), label="O") assert topology["1"] == Selection(indices=slice(0, 1), label="Sr_1") assert topology["2"] == Selection(indices=slice(1, 2), label="Sr_2") assert topology["3"] == Selection(indices=slice(2, 3), label="Ti_1") assert topology["4"] == Selection(indices=slice(3, 4), label="O_1") assert topology["5"] == Selection(indices=slice(4, 5), label="O_2") assert topology["6"] == Selection(indices=slice(5, 6), label="O_3") assert topology["7"] == Selection(indices=slice(6, 7), label="O_4") assert topology[selection.all] == Selection(indices=slice(7)) def test_to_frame(Sr2TiO4): actual = Sr2TiO4.to_frame() ref_data = { "name": ("Sr_1", "Sr_2", "Ti_1", "O_1", "O_2", "O_3", "O_4"), "element": 2 * ("Sr",) + ("Ti",) + 4 * ("O",), } reference = pd.DataFrame(ref_data) assert reference.equals(actual) def test_to_mdtraj(Sr2TiO4): actual, _ = Sr2TiO4.to_mdtraj().to_dataframe() num_atoms = Sr2TiO4.number_atoms() ref_data = { "serial": num_atoms * (None,), "name": ("Sr_1", "Sr_2", "Ti_1", "O_1", "O_2", "O_3", "O_4"), "element": 2 * ("Sr",) + ("Ti",) + 4 * ("O",), "resSeq": num_atoms * (0,), "resName": num_atoms * ("crystal",), "chainID": num_atoms * (0,), "segmentID": num_atoms * ("",), } reference = pd.DataFrame(ref_data) assert reference.equals(actual) def test_to_poscar(Sr2TiO4): assert Sr2TiO4.to_poscar() == "Sr Ti O\n2 1 4" assert Sr2TiO4.to_poscar(".format.") == "Sr Ti O.format.\n2 1 4" with pytest.raises(exception.IncorrectUsage): Sr2TiO4.to_poscar(None) def test_elements(Sr2TiO4): assert Sr2TiO4.elements() == ["Sr", "Sr", "Ti", "O", "O", "O", "O"] def test_ion_types(Sr2TiO4): assert Sr2TiO4.ion_types() == ["Sr", "Ti", "O"] def test_names(Sr2TiO4): assert Sr2TiO4.names() == ["Sr_1", "Sr_2", "Ti_1", "O_1", "O_2", "O_3", "O_4"] def test_number_atoms(Sr2TiO4): assert Sr2TiO4.number_atoms() == 7 def test_print(Sr2TiO4, format_): actual, _ = format_(Sr2TiO4) reference = {"text/plain": "Sr2TiO4", "text/html": "Sr<sub>2</sub>TiO<sub>4</sub>"} assert actual == reference def test_descriptor(Sr2TiO4, check_descriptors): descriptors = { "_to_dict": ["to_dict", "read"], "_to_frame": ["to_frame"], "_to_poscar": ["to_poscar"], "_to_mdtraj": ["to_mdtraj"], "_elements": ["elements"], "_ion_types": ["ion_types"], "_names": ["names"], "_number_atoms": ["number_atoms"], } check_descriptors(Sr2TiO4, descriptors) def test_from_file(raw_data, mock_file, check_read): raw_topology = raw_data.topology("Sr2TiO4") with mock_file("topology", raw_topology) as mocks: check_read(Topology, mocks, raw_topology)
33.4
87
0.629598
4ac7b77e5fbd5ae28e5ce8671da533db0767e31e
13,603
py
Python
hubtraf/user.py
dfeddema/hubtraf
379ddc1fd747d9a6658965462da458c571d4aef8
[ "BSD-3-Clause" ]
null
null
null
hubtraf/user.py
dfeddema/hubtraf
379ddc1fd747d9a6658965462da458c571d4aef8
[ "BSD-3-Clause" ]
null
null
null
hubtraf/user.py
dfeddema/hubtraf
379ddc1fd747d9a6658965462da458c571d4aef8
[ "BSD-3-Clause" ]
null
null
null
from enum import Enum, auto import aiohttp import socket import uuid import random from yarl import URL import asyncio import async_timeout import structlog import time import colorama logger = structlog.get_logger() class User: class States(Enum): CLEAR = 1 LOGGED_IN = 2 SERVER_STARTED = 3 KERNEL_STARTED = 4 async def __aenter__(self): self.session = aiohttp.ClientSession() return self async def __aexit__(self, exc_type, exc, tb): await self.session.close() def __init__(self, username, hub_url, login_handler): """ A simulated JupyterHub user. username - name of the user. hub_url - base url of the hub. login_handler - a awaitable callable that will be passed the following parameters: username session (aiohttp session object) log (structlog log object) hub_url (yarl URL object) It should 'log in' the user with whatever requests it needs to perform. If no uncaught exception is thrown, login is considered a success. Usually a partial of a generic function is passed in here. """ self.username = username self.hub_url = URL(hub_url) self.state = User.States.CLEAR self.notebook_url = self.hub_url / 'user' / self.username print("self.notebook_url= ", self.notebook_url) self.log = logger.bind( username=username ) self.login_handler = login_handler self.headers = { 'Referer': str(self.hub_url / 'hub/') } def success(self, kind, **kwargs): kwargs_pretty = " ".join([f"{k}:{v}" for k, v in kwargs.items()]) print(f'{colorama.Fore.GREEN}Success:{colorama.Style.RESET_ALL}', kind, self.username, kwargs_pretty) def failure(self, kind, **kwargs): kwargs_pretty = " ".join([f"{k}:{v}" for k, v in kwargs.items()]) print(f'{colorama.Fore.RED}Failure:{colorama.Style.RESET_ALL}', kind, self.username, kwargs_pretty) def debug(self, kind, **kwargs): kwargs_pretty = " ".join([f"{k}:{v}" for k, v in kwargs.items()]) print(f'{colorama.Fore.YELLOW}Debug:{colorama.Style.RESET_ALL}', kind, self.username, kwargs_pretty) async def login(self): """ Log in to the JupyterHub. We only log in, and try to not start the server itself. This makes our testing code simpler, but we need to be aware of the fact this might cause differences vs how users normally use this. """ # We only log in if we haven't done anything already! assert self.state == User.States.CLEAR start_time = time.monotonic() logged_in = await self.login_handler(log=self.log, hub_url=self.hub_url, session=self.session, username=self.username) if not logged_in: return False hub_cookie = self.session.cookie_jar.filter_cookies(self.hub_url).get('hub', None) if hub_cookie: self.log = self.log.bind(hub=hub_cookie.value) self.success('login', duration=time.monotonic() - start_time) self.state = User.States.LOGGED_IN return True async def ensure_server_api(self, api_token, timeout=300, spawn_refresh_time=30): api_url = self.hub_url / 'hub/api' self.headers['Authorization'] = f'token {api_token}' async def server_running(): async with self.session.get(api_url / 'users' / self.username, headers=self.headers) as resp: userinfo = await resp.json() # userinfo = await resp.json(content_type=None) server = userinfo.get('servers', {}).get('', {}) self.debug('server-start', phase='waiting', ready=server.get('ready'), pending=server.get('pending')) return server.get('ready', False) self.debug('server-start', phase='start') start_time = time.monotonic() async with self.session.post(api_url / 'users' / self.username / 'server', headers=self.headers) as resp: if resp.status == 201: # Server created # FIXME: Verify this server is actually up self.success('server-start', duration=time.monotonic() - start_time) self.state = User.States.SERVER_STARTED return True elif resp.status == 202: # Server start request received, not necessarily started # FIXME: Verify somehow? self.debug('server-start', phase='waiting') while not (await server_running()): await asyncio.sleep(0.5) self.success('server-start', duration=time.monotonic() - start_time) self.state = User.States.SERVER_STARTED return True elif resp.status == 400: body = await resp.json() if body['message'] == f'{self.username} is already running': self.state = User.States.SERVER_STARTED return True print(await resp.json()) print(resp.request_info) return False async def ensure_server_simulate(self, timeout=300, spawn_refresh_time=30): assert self.state == User.States.LOGGED_IN start_time = time.monotonic() self.debug('server-start', phase='start') i = 0 while True: i += 1 self.debug('server-start', phase='attempt-start', attempt=i + 1) try: resp = await self.session.get(self.hub_url / 'hub/spawn') except Exception as e: self.debug('server-start', exception=str(e), attempt=i + 1, phase='attempt-failed', duration=time.monotonic() - start_time) continue # Check if paths match, ignoring query string (primarily, redirects=N), fragments target_url_tree = self.notebook_url / 'tree' if resp.url.scheme == target_url_tree.scheme and resp.url.host == target_url_tree.host and resp.url.path == target_url_tree.path: self.success('server-start', phase='complete', attempt=i + 1, duration=time.monotonic() - start_time) break target_url_lab = self.notebook_url / 'lab' if resp.url.scheme == target_url_lab.scheme and resp.url.host == target_url_lab.host and resp.url.path == target_url_lab.path: self.success('server-start', phase='complete', attempt=i + 1, duration=time.monotonic() - start_time) break if time.monotonic() - start_time >= timeout: self.failure('server-start', phase='failed', duration=time.monotonic() - start_time, reason='timeout') return False # Always log retries, so we can count 'in-progress' actions self.debug('server-start', resp=str(resp), phase='attempt-complete', duration=time.monotonic() - start_time, attempt=i + 1) # FIXME: Add jitter? await asyncio.sleep(random.uniform(0, spawn_refresh_time)) self.state = User.States.SERVER_STARTED self.headers['X-XSRFToken'] = self.xsrf_token return True async def stop_server(self): #assert self.state == User.States.SERVER_STARTED self.debug('server-stop', phase='start') start_time = time.monotonic() try: resp = await self.session.delete( self.hub_url / 'hub/api/users' / self.username / 'server', headers=self.headers ) except Exception as e: self.failure('server-stop', exception=str(e), duration=time.monotonic() - start_time) return False if resp.status != 202 and resp.status != 204: self.failure('server-stop', exception=str(resp), duration=time.monotonic() - start_time) return False self.success('server-stop', duration=time.monotonic() - start_time) self.state = User.States.LOGGED_IN return True async def start_kernel(self): assert self.state == User.States.SERVER_STARTED self.debug('kernel-start', phase='start') start_time = time.monotonic() try: resp = await self.session.post(self.notebook_url / 'api/kernels', headers=self.headers) except Exception as e: self.failure('kernel-start', exception=str(e), duration=time.monotonic() - start_time) return False if resp.status != 201: self.failure('kernel-start', exception=str(resp), duration=time.monotonic() - start_time) return False self.kernel_id = (await resp.json())['id'] self.success('kernel-start', duration=time.monotonic() - start_time) self.state = User.States.KERNEL_STARTED return True @property def xsrf_token(self): notebook_cookies = self.session.cookie_jar.filter_cookies(self.notebook_url) assert '_xsrf' in notebook_cookies xsrf_token = notebook_cookies['_xsrf'].value return xsrf_token async def stop_kernel(self): assert self.state == User.States.KERNEL_STARTED self.debug('kernel-stop', phase='start') start_time = time.monotonic() try: resp = await self.session.delete(self.notebook_url / 'api/kernels' / self.kernel_id, headers=self.headers) except Exception as e: self.failure('kernel-stop', exception=str(e), duration=time.monotonic() - start_time) return False if resp.status != 204: self.failure('kernel-stop', exception=str(resp), duration=time.monotonic() - start_time) return False self.success('kernel-stop', duration=time.monotonic() - start_time) self.state = User.States.SERVER_STARTED return True def request_execute_code(self, msg_id, code): return { "header": { "msg_id": msg_id, "username": self.username, "msg_type": "execute_request", "version": "5.2" }, "metadata": {}, "content": { "code": code, "silent": False, "store_history": True, "user_expressions": {}, "allow_stdin": True, "stop_on_error": True }, "buffers": [], "parent_header": {}, "channel": "shell" } async def assert_code_output(self, code, output, execute_timeout, repeat_time_seconds=None): channel_url = self.notebook_url / 'api/kernels' / self.kernel_id / 'channels' self.debug('kernel-connect', phase='start') is_connected = False try: async with self.session.ws_connect(channel_url, headers=self.headers) as ws: is_connected = True self.debug('kernel-connect', phase='complete') start_time = time.monotonic() iteration = 0 self.debug('code-execute', phase='start') while True: exec_start_time = time.monotonic() iteration += 1 msg_id = str(uuid.uuid4()) await ws.send_json(self.request_execute_code(msg_id, code)) async for msg_text in ws: if msg_text.type != aiohttp.WSMsgType.TEXT: self.failure( 'code-execute', iteration=iteration, message=str(msg_text), duration=time.monotonic() - exec_start_time ) return False msg = msg_text.json() if 'parent_header' in msg and msg['parent_header'].get('msg_id') == msg_id: # These are responses to our request if msg['channel'] == 'iopub': response = None if msg['msg_type'] == 'execute_result': response = msg['content']['data']['text/plain'] elif msg['msg_type'] == 'stream': response = msg['content']['text'] if response: assert response == output duration = time.monotonic() - exec_start_time break if repeat_time_seconds: if time.monotonic() - start_time >= repeat_time_seconds: break else: # Sleep a random amount of time between 0 and 1s, so we aren't busylooping await asyncio.sleep(random.uniform(0, 1)) continue else: break self.success( 'code-execute', duration=duration, iteration=iteration ) return True except Exception as e: self.failure('code-execute', exception=str(e)) return False
42.642633
141
0.556936
81cba28dcd0c68cc57e928cf586de92b228bc2a3
1,027
py
Python
pytudes/_2021/educative/grokking_the_coding_interview/sliding_window/_1__maximum_sum_subarray_of_size_k__easy.py
TeoZosa/pytudes
4f01ab20f936bb4b3f42d1946180d4a20fd95fbf
[ "Apache-2.0" ]
1
2022-02-08T09:47:35.000Z
2022-02-08T09:47:35.000Z
pytudes/_2021/educative/grokking_the_coding_interview/sliding_window/_1__maximum_sum_subarray_of_size_k__easy.py
TeoZosa/pytudes
4f01ab20f936bb4b3f42d1946180d4a20fd95fbf
[ "Apache-2.0" ]
62
2021-04-02T23:41:16.000Z
2022-03-25T13:16:10.000Z
pytudes/_2021/educative/grokking_the_coding_interview/sliding_window/_1__maximum_sum_subarray_of_size_k__easy.py
TeoZosa/pytudes
4f01ab20f936bb4b3f42d1946180d4a20fd95fbf
[ "Apache-2.0" ]
null
null
null
"""https://www.educative.io/courses/grokking-the-coding-interview/JPKr0kqLGNP """ def max_sum_sub_array_of_size_k(arr: list[int], K: int) -> int: """ Examples: >>> max_sum_sub_array_of_size_k([2, 1, 5, 1, 3, 2],3) 9 >>> max_sum_sub_array_of_size_k([2, 3, 4, 1, 5],2) 7 >>> max_sum_sub_array_of_size_k([],2) 0 >>> max_sum_sub_array_of_size_k([1],0) 0 """ ## EDGE CASES ## if not arr or K <= 0: return 0 """ALGORITHM""" get_curr_win_size = lambda: window_end - window_start + 1 ## INITIALIZE VARS ## max_sum, window_sum = 0, 0 window_start = 0 ## SLIDING for window_end in range(len(arr)): ## EXPANSION window_sum += arr[window_end] # add the next element ## WINDOW MATCH if get_curr_win_size() == K: max_sum = max(max_sum, window_sum) ## CONTRACTION window_sum -= arr[window_start] window_start += 1 return max_sum
24.452381
77
0.561831
9af7f0283f1278f8ba473d09841de13190ec3dc0
12,362
py
Python
cinder/volume/targets/iet.py
yanheven/cinder
89797971f30d547acbf715fea099c52d90966d1f
[ "Apache-2.0" ]
null
null
null
cinder/volume/targets/iet.py
yanheven/cinder
89797971f30d547acbf715fea099c52d90966d1f
[ "Apache-2.0" ]
null
null
null
cinder/volume/targets/iet.py
yanheven/cinder
89797971f30d547acbf715fea099c52d90966d1f
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import re import stat from oslo_concurrency import processutils as putils from oslo_log import log as logging from cinder import exception from cinder.i18n import _LI, _LE, _LW from cinder import utils from cinder.volume.targets import iscsi LOG = logging.getLogger(__name__) class IetAdm(iscsi.ISCSITarget): VERSION = '0.1' def __init__(self, *args, **kwargs): super(IetAdm, self).__init__(*args, **kwargs) self.iet_conf = self.configuration.safe_get('iet_conf') self.iscsi_iotype = self.configuration.safe_get('iscsi_iotype') self.auth_type = 'IncomingUser' self.iet_sessions = '/proc/net/iet/session' def _get_target(self, iqn): # Find existing iSCSI target session from /proc/net/iet/session # # tid:2 name:iqn.2010-10.org:volume-222 # sid:562950561399296 initiator:iqn.1994-05.com:5a6894679665 # cid:0 ip:192.168.122.1 state:active hd:none dd:none # tid:1 name:iqn.2010-10.org:volume-111 # sid:281475567911424 initiator:iqn.1994-05.com:5a6894679665 # cid:0 ip:192.168.122.1 state:active hd:none dd:none iscsi_target = 0 try: with open(self.iet_sessions, 'r') as f: sessions = f.read() except Exception: LOG.exception(_LE("Failed to open iet session list for %s"), iqn) raise session_list = re.split('^tid:(?m)', sessions)[1:] for ses in session_list: m = re.match('(\d+) name:(\S+)\s+', ses) if m and iqn in m.group(2): return m.group(1) return iscsi_target def _get_iscsi_target(self, context, vol_id): pass def _get_target_and_lun(self, context, volume): # For ietadm dev starts at lun 0 lun = 0 # Using 0, ietadm tries to search empty tid for creating # new iSCSI target iscsi_target = 0 # Find existing iSCSI target based on iqn iqn = '%svolume-%s' % (self.iscsi_target_prefix, volume['id']) iscsi_target = self._get_target(iqn) return iscsi_target, lun def _get_target_chap_auth(self, context, name): vol_id = name.split(':')[1] if os.path.exists(self.iet_conf): try: with utils.temporary_chown(self.iet_conf): with open(self.iet_conf, 'r') as f: iet_conf_text = f.readlines() except Exception: # If we fail to handle config file, raise exception here to # prevent unexpected behavior during subsequent operations. LOG.exception(_LE("Failed to open config for %s."), vol_id) raise target_found = False for line in iet_conf_text: if target_found: m = re.search('(\w+) (\w+) (\w+)', line) if m: return (m.group(2), m.group(3)) else: LOG.debug("Failed to find CHAP auth from config " "for %s", vol_id) return None elif name in line: target_found = True else: # Missing config file is unxepected sisuation. But we will create # new config file during create_iscsi_target(). Just we warn the # operator here. LOG.warn(_LW("Failed to find CHAP auth from config for " "%(vol_id)s. Config file %(conf)s does not exist."), {'vol_id': vol_id, 'conf': self.iet_conf}) return None def create_iscsi_target(self, name, tid, lun, path, chap_auth=None, **kwargs): config_auth = None vol_id = name.split(':')[1] # Check the target is already existing. tmp_tid = self._get_target(name) # Create a new iSCSI target. If a target already exists, # the command returns 234, but we ignore it. try: self._new_target(name, tid) tid = self._get_target(name) self._new_logicalunit(tid, lun, path) if chap_auth is not None: (username, password) = chap_auth config_auth = ' '.join((self.auth_type,) + chap_auth) self._new_auth(tid, self.auth_type, username, password) except putils.ProcessExecutionError: LOG.exception(_LE("Failed to create iscsi target for volume " "id:%s"), vol_id) raise exception.ISCSITargetCreateFailed(volume_id=vol_id) # Update config file only if new scsi target is created. if not tmp_tid: self.update_config_file(name, tid, path, config_auth) return tid def update_config_file(self, name, tid, path, config_auth): conf_file = self.iet_conf vol_id = name.split(':')[1] # If config file does not exist, create a blank conf file and # add configuration for the volume on the new file. if not os.path.exists(conf_file): try: utils.execute("truncate", conf_file, "--size=0", run_as_root=True) except putils.ProcessExecutionError: LOG.exception(_LE("Failed to create %(conf)s for volume " "id:%(vol_id)s"), {'conf': conf_file, 'vol_id': vol_id}) raise exception.ISCSITargetCreateFailed(volume_id=vol_id) try: volume_conf = """ Target %s %s Lun 0 Path=%s,Type=%s """ % (name, config_auth, path, self._iotype(path)) with utils.temporary_chown(conf_file): with open(conf_file, 'a+') as f: f.write(volume_conf) except Exception: LOG.exception(_LE("Failed to update %(conf)s for volume " "id:%(vol_id)s"), {'conf': conf_file, 'vol_id': vol_id}) raise exception.ISCSITargetCreateFailed(volume_id=vol_id) def remove_iscsi_target(self, tid, lun, vol_id, vol_name, **kwargs): LOG.info(_LI("Removing iscsi_target for volume: %s"), vol_id) try: self._delete_logicalunit(tid, lun) session_info = self._find_sid_cid_for_target(tid, vol_name, vol_id) if session_info: sid, cid = session_info self._force_delete_target(tid, sid, cid) self._delete_target(tid) except putils.ProcessExecutionError: LOG.exception(_LE("Failed to remove iscsi target for volume " "id:%s"), vol_id) raise exception.ISCSITargetRemoveFailed(volume_id=vol_id) vol_uuid_file = vol_name conf_file = self.iet_conf if os.path.exists(conf_file): try: with utils.temporary_chown(conf_file): with open(conf_file, 'r+') as iet_conf_text: full_txt = iet_conf_text.readlines() new_iet_conf_txt = [] count = 0 for line in full_txt: if count > 0: count -= 1 continue elif vol_uuid_file in line: count = 2 continue else: new_iet_conf_txt.append(line) iet_conf_text.seek(0) iet_conf_text.truncate(0) iet_conf_text.writelines(new_iet_conf_txt) except Exception: LOG.exception(_LE("Failed to update %(conf)s for volume id " "%(vol_id) after removing iscsi target"), {'conf': conf_file, 'vol_id': vol_id}) raise exception.ISCSITargetRemoveFailed(volume_id=vol_id) else: LOG.warn(_LW("Failed to update %(conf)s for volume id %(vol_id) " "after removing iscsi target. " "%(conf)s does not exist."), {'conf': conf_file, 'vol_id': vol_id}) def _find_sid_cid_for_target(self, tid, name, vol_id): """Find sid, cid for existing iscsi target""" try: with open(self.iet_sessions, 'r') as f: sessions = f.read() except Exception as e: LOG.info(_LI("Failed to open iet session list for " "%(vol_id)s: %(e)s"), {'vol_id': vol_id, 'e': e}) return None session_list = re.split('^tid:(?m)', sessions)[1:] for ses in session_list: m = re.match('(\d+) name:(\S+)\s+sid:(\d+).+\s+cid:(\d+)', ses) if m and tid in m.group(1) and name in m.group(2): return m.group(3), m.group(4) def _is_block(self, path): mode = os.stat(path).st_mode return stat.S_ISBLK(mode) def _iotype(self, path): if self.iscsi_iotype == 'auto': return 'blockio' if self._is_block(path) else 'fileio' else: return self.iscsi_iotype def _new_target(self, name, tid): """Create new scsi target using specified parameters. If the target already exists, ietadm returns 'Invalid argument' and error code '234'. This should be ignored for ensure export case. """ utils.execute('ietadm', '--op', 'new', '--tid=%s' % tid, '--params', 'Name=%s' % name, run_as_root=True, check_exit_code=[0, 234]) def _delete_target(self, tid): utils.execute('ietadm', '--op', 'delete', '--tid=%s' % tid, run_as_root=True) def _force_delete_target(self, tid, sid, cid): utils.execute('ietadm', '--op', 'delete', '--tid=%s' % tid, '--sid=%s' % sid, '--cid=%s' % cid, run_as_root=True) def show_target(self, tid, iqn=None): utils.execute('ietadm', '--op', 'show', '--tid=%s' % tid, run_as_root=True) def _new_logicalunit(self, tid, lun, path): """Attach a new volume to scsi target as a logical unit. If a logical unit exists on the specified target lun, ietadm returns 'File exists' and error code '239'. This should be ignored for ensure export case. """ utils.execute('ietadm', '--op', 'new', '--tid=%s' % tid, '--lun=%d' % lun, '--params', 'Path=%s,Type=%s' % (path, self._iotype(path)), run_as_root=True, check_exit_code=[0, 239]) def _delete_logicalunit(self, tid, lun): utils.execute('ietadm', '--op', 'delete', '--tid=%s' % tid, '--lun=%d' % lun, run_as_root=True) def _new_auth(self, tid, type, username, password): utils.execute('ietadm', '--op', 'new', '--tid=%s' % tid, '--user', '--params=%s=%s,Password=%s' % (type, username, password), run_as_root=True)
38.996845
79
0.523783
afc7a293ca9c9dd3c95230cef935d914469caa7b
14,752
py
Python
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_ha_eem_policy_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_ha_eem_policy_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
cisco-ios-xr/ydk/models/cisco_ios_xr/_meta/_Cisco_IOS_XR_ha_eem_policy_oper.py
tkamata-test/ydk-py
b637e7853a8edbbd31fbc05afa3aa4110b31c5f9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import re import collections from enum import Enum from ydk._core._dm_meta_info import _MetaInfoClassMember, _MetaInfoClass, _MetaInfoEnum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk._core._dm_meta_info import ATTRIBUTE, REFERENCE_CLASS, REFERENCE_LIST, REFERENCE_LEAFLIST, REFERENCE_IDENTITY_CLASS, REFERENCE_ENUM_CLASS, REFERENCE_BITS, REFERENCE_UNION from ydk.errors import YPYError, YPYModelError from ydk.providers._importer import _yang_ns _meta_table = { 'Eem.DirUser.Library' : { 'meta_info' : _MetaInfoClass('Eem.DirUser.Library', False, [ _MetaInfoClassMember('library', ATTRIBUTE, 'str' , None, None, [], [], ''' library ''', 'library', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('policy', ATTRIBUTE, 'str' , None, None, [], [], ''' policy ''', 'policy', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'library', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.DirUser.Policy' : { 'meta_info' : _MetaInfoClass('Eem.DirUser.Policy', False, [ _MetaInfoClassMember('library', ATTRIBUTE, 'str' , None, None, [], [], ''' library ''', 'library', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('policy', ATTRIBUTE, 'str' , None, None, [], [], ''' policy ''', 'policy', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'policy', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.DirUser' : { 'meta_info' : _MetaInfoClass('Eem.DirUser', False, [ _MetaInfoClassMember('library', REFERENCE_CLASS, 'Library' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.DirUser.Library', [], [], ''' directory user library ''', 'library', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('policy', REFERENCE_CLASS, 'Policy' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.DirUser.Policy', [], [], ''' directory user policy ''', 'policy', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'dir-user', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.EnvVariables.EnvVariable' : { 'meta_info' : _MetaInfoClass('Eem.EnvVariables.EnvVariable', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' Environmental variable name ''', 'name', 'Cisco-IOS-XR-ha-eem-policy-oper', True), _MetaInfoClassMember('name-xr', ATTRIBUTE, 'str' , None, None, [], [], ''' variable name ''', 'name_xr', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('value', ATTRIBUTE, 'str' , None, None, [], [], ''' value ''', 'value', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'env-variable', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.EnvVariables' : { 'meta_info' : _MetaInfoClass('Eem.EnvVariables', False, [ _MetaInfoClassMember('env-variable', REFERENCE_LIST, 'EnvVariable' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.EnvVariables.EnvVariable', [], [], ''' environmental variables name and value ''', 'env_variable', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'env-variables', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.RefreshTime' : { 'meta_info' : _MetaInfoClass('Eem.RefreshTime', False, [ _MetaInfoClassMember('refreshtime', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' Event manager refresh-time ''', 'refreshtime', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'refresh-time', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.RegPolicies.RegPolicy' : { 'meta_info' : _MetaInfoClass('Eem.RegPolicies.RegPolicy', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' policy name ''', 'name', 'Cisco-IOS-XR-ha-eem-policy-oper', True), _MetaInfoClassMember('class', ATTRIBUTE, 'str' , None, None, [], [], ''' class ''', 'class_', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('description', ATTRIBUTE, 'str' , None, None, [], [], ''' description ''', 'description', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('event-type', ATTRIBUTE, 'str' , None, None, [], [], ''' event type ''', 'event_type', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('persist-time', ATTRIBUTE, 'int' , None, None, [('0', '4294967295')], [], ''' PersistTime ''', 'persist_time', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('policy-name', ATTRIBUTE, 'str' , None, None, [], [], ''' policy name ''', 'policy_name', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('time-created', ATTRIBUTE, 'str' , None, None, [], [], ''' time created ''', 'time_created', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('trap', ATTRIBUTE, 'str' , None, None, [], [], ''' trap ''', 'trap', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('type', ATTRIBUTE, 'str' , None, None, [], [], ''' policy type ''', 'type', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('username', ATTRIBUTE, 'str' , None, None, [], [], ''' username ''', 'username', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'reg-policy', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.RegPolicies' : { 'meta_info' : _MetaInfoClass('Eem.RegPolicies', False, [ _MetaInfoClassMember('reg-policy', REFERENCE_LIST, 'RegPolicy' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.RegPolicies.RegPolicy', [], [], ''' policy name and create time ''', 'reg_policy', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'reg-policies', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.AvlPolicies.AvlPolicy' : { 'meta_info' : _MetaInfoClass('Eem.AvlPolicies.AvlPolicy', False, [ _MetaInfoClassMember('name', ATTRIBUTE, 'str' , None, None, [], ['[\\w\\-\\.:,_@#%$\\+=\\|;]+'], ''' System policy name ''', 'name', 'Cisco-IOS-XR-ha-eem-policy-oper', True), _MetaInfoClassMember('policy-name', ATTRIBUTE, 'str' , None, None, [], [], ''' policy name ''', 'policy_name', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('time-created', ATTRIBUTE, 'str' , None, None, [], [], ''' time created ''', 'time_created', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('type', ATTRIBUTE, 'str' , None, None, [], [], ''' policy type ''', 'type', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'avl-policy', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem.AvlPolicies' : { 'meta_info' : _MetaInfoClass('Eem.AvlPolicies', False, [ _MetaInfoClassMember('avl-policy', REFERENCE_LIST, 'AvlPolicy' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.AvlPolicies.AvlPolicy', [], [], ''' policy name and create time ''', 'avl_policy', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'avl-policies', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, 'Eem' : { 'meta_info' : _MetaInfoClass('Eem', False, [ _MetaInfoClassMember('avl-policies', REFERENCE_CLASS, 'AvlPolicies' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.AvlPolicies', [], [], ''' list the available policies ''', 'avl_policies', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('dir-user', REFERENCE_CLASS, 'DirUser' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.DirUser', [], [], ''' directory user ''', 'dir_user', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('env-variables', REFERENCE_CLASS, 'EnvVariables' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.EnvVariables', [], [], ''' list of environmental variables ''', 'env_variables', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('refresh-time', REFERENCE_CLASS, 'RefreshTime' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.RefreshTime', [], [], ''' Refresh time ''', 'refresh_time', 'Cisco-IOS-XR-ha-eem-policy-oper', False), _MetaInfoClassMember('reg-policies', REFERENCE_CLASS, 'RegPolicies' , 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper', 'Eem.RegPolicies', [], [], ''' list the registered policies ''', 'reg_policies', 'Cisco-IOS-XR-ha-eem-policy-oper', False), ], 'Cisco-IOS-XR-ha-eem-policy-oper', 'eem', _yang_ns._namespaces['Cisco-IOS-XR-ha-eem-policy-oper'], 'ydk.models.cisco_ios_xr.Cisco_IOS_XR_ha_eem_policy_oper' ), }, } _meta_table['Eem.DirUser.Library']['meta_info'].parent =_meta_table['Eem.DirUser']['meta_info'] _meta_table['Eem.DirUser.Policy']['meta_info'].parent =_meta_table['Eem.DirUser']['meta_info'] _meta_table['Eem.EnvVariables.EnvVariable']['meta_info'].parent =_meta_table['Eem.EnvVariables']['meta_info'] _meta_table['Eem.RegPolicies.RegPolicy']['meta_info'].parent =_meta_table['Eem.RegPolicies']['meta_info'] _meta_table['Eem.AvlPolicies.AvlPolicy']['meta_info'].parent =_meta_table['Eem.AvlPolicies']['meta_info'] _meta_table['Eem.DirUser']['meta_info'].parent =_meta_table['Eem']['meta_info'] _meta_table['Eem.EnvVariables']['meta_info'].parent =_meta_table['Eem']['meta_info'] _meta_table['Eem.RefreshTime']['meta_info'].parent =_meta_table['Eem']['meta_info'] _meta_table['Eem.RegPolicies']['meta_info'].parent =_meta_table['Eem']['meta_info'] _meta_table['Eem.AvlPolicies']['meta_info'].parent =_meta_table['Eem']['meta_info']
43.260997
183
0.487866
05e70589e9212165d8740953ce916c8bbafd5fac
373
py
Python
tests/api/models.py
TralahM/drf-generators
0b4b79ae25ddc02aa2f5e9bc9f62be16a9ab028a
[ "MIT" ]
340
2015-04-07T20:32:30.000Z
2022-03-28T12:54:38.000Z
tests/api/models.py
TralahM/drf-generators
0b4b79ae25ddc02aa2f5e9bc9f62be16a9ab028a
[ "MIT" ]
37
2015-04-07T22:56:00.000Z
2021-05-19T09:36:47.000Z
tests/api/models.py
TralahM/drf-generators
0b4b79ae25ddc02aa2f5e9bc9f62be16a9ab028a
[ "MIT" ]
82
2015-04-11T06:18:12.000Z
2022-03-20T18:26:05.000Z
from django.db import models class Category(models.Model): name = models.CharField(max_length=64) class Post(models.Model): title = models.CharField(max_length=128) slug = models.SlugField(default='', blank=True, max_length=128) content = models.TextField() category = models.ForeignKey('Category', blank=True, null=True, on_delete=models.SET_NULL)
28.692308
94
0.734584
073f8c97213afe4a0b568ebba42d3cd2cfdc6b74
14,304
py
Python
madoka/report/renderer/tree.py
korepwx/madoka
56675bd8220935c6a9c1571a886a84bed235fd3b
[ "MIT" ]
null
null
null
madoka/report/renderer/tree.py
korepwx/madoka
56675bd8220935c6a9c1571a886a84bed235fd3b
[ "MIT" ]
null
null
null
madoka/report/renderer/tree.py
korepwx/madoka
56675bd8220935c6a9c1571a886a84bed235fd3b
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import io import mimetypes import os from PIL import Image from .base import ReportRenderer, ATTACHMENT_CONTENT_TYPE from .resources import ReportResourcesManager __all__ = [ 'ReportElementType', 'ReportElement', 'ReportBlock', 'ReportText', 'ReportInternalLink', 'ReportImage', 'ReportAttachment', 'ReportDataFrame', 'ReportTreeTOCNode', 'TreeReportRenderer', ] class ReportElementType: """Enum for indicating the element type.""" BLOCK = 'block' ROOT = 'root' TEXT = 'text' INTERNAL_LINK = 'internal_link' HTML = 'html' IMAGE = 'image' ATTACHMENT = 'attachment' DATA_FRAME = 'data_frame' class ReportElement(object): """Base class for all rendered element of a report. Parameters ---------- anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = None _repr_attributes = () def __init__(self, anchor=None): self.anchor = anchor def __repr__(self): attributes = [] for k in self._repr_attributes: v = getattr(self, k, None) if v is not None: v = repr(v) if len(v) > 20: v = '%s..%s' % (v[:10], v[-8:]) attributes.append('%s=%s' % (k, v)) if self.anchor: attributes.append('anchor=%r' % (self.anchor,)) if attributes: ret = '%s(%s)' % (self.__class__.__name__, ','.join(attributes)) else: ret = self.__class__.__name__ return ret class ReportBlock(ReportElement): """A rendered block of a report. Parameters ---------- title : str Title of this block. report : madoka.report.Report The report object, if it is a report block. children : collections.Iterable[ReportElement] Child elements of this block. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.BLOCK def __init__(self, title, report=None, children=None, anchor=None): super(ReportBlock, self).__init__(anchor=anchor) self.title = title self.report = report self.items = list(children) if children else [] def __iter__(self): return iter(self.items) def __len__(self): return len(self.items) def __repr__(self): if self.items: c = '\n'.join(' ' + line for line in ',\n'.join(repr(i) for i in self.items).split('\n')) if self.title: ret = 'ReportBlock(title=%r,\n%s\n)' % (self.title, c) else: ret = 'ReportBlock(\n%s\n)' % c else: ret = 'ReportBlock(title=%r)' % self.title return ret def add(self, element): """Add a report element to this block.""" self.items.append(element) class ReportRoot(ReportBlock): """Root report block.""" element_type = ReportElementType.ROOT def __init__(self, title, exp_id, children=None, anchor=None): super(ReportRoot, self).__init__(title=title, children=children, anchor=anchor) self.exp_id = exp_id class ReportText(ReportElement): """A rendered text of a report. Parameters ---------- text : str The report text. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.TEXT _repr_attributes = ('text',) def __init__(self, text, anchor=None): super(ReportText, self).__init__(anchor=anchor) self.text = text class ReportInternalLink(ReportElement): """A rendered internal link of a report. Parameters ---------- text : str The link text. target : str The target anchor. """ element_type = ReportElementType.INTERNAL_LINK _repr_attributes = ('text', 'target') def __init__(self, text, target): super(ReportInternalLink, self).__init__() self.text = text self.target = target class ReportHTML(ReportElement): """A rendered HTML of a report. Parameters ---------- source : str The report HTML source. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.HTML _repr_attributes = ('source',) def __init__(self, source, anchor=None): super(ReportHTML, self).__init__(anchor=anchor) self.source = source class _ReportFile(ReportElement): """A rendered file of a report. Parameters ---------- data: bytes Binary content of this file. title : str Title of this file. filename : str File name of this file. extension : str Extension of this file. content_type : str Mime type of this file. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ _repr_attributes = ('title', 'filename', 'extension', 'content_type') def __init__(self, data, title=None, filename=None, extension=None, content_type=None, anchor=None): super(_ReportFile, self).__init__(anchor=anchor) if extension is None: if filename is not None: extension = os.path.splitext(filename)[1] else: extension = mimetypes.guess_extension(content_type) if extension is None: raise RuntimeError('Unknown mime type %r.' % content_type) self.data = data self.title = title self.filename = filename self.extension = extension self.content_type = content_type @property def title_or_filename(self): return self.title or self.filename class ReportImage(_ReportFile): """A rendered image of a report. Parameters ---------- image : PIL.Image.Image | bytes | io.IOBase PIL image object, the content of image as bytes, or a file-like object that can read out the content of image. title : str Title of the image. content_type : str Content-type of the image, required if only the content of the image rather than a PIL image object is specified. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.IMAGE def __init__(self, image, title=None, content_type=None, anchor=None): ext = None if isinstance(image, Image.Image): with io.BytesIO() as f: image.save(f, format='PNG') f.seek(0) img = f.read() content_type = 'image/png' ext = '.png' elif hasattr(image, 'read'): img = image.read() if not isinstance(img, bytes): raise TypeError('Required to read bytes but got string.') elif isinstance(image, bytes): img = image else: raise TypeError('%r cannot be rendered as image.' % (image,)) if content_type is None: raise ValueError('Content-type of the image is required.') super(ReportImage, self).__init__( img, title=title, extension=ext, content_type=content_type, anchor=anchor ) class ReportAttachment(_ReportFile): """A rendered attachment of a report. Parameters ---------- data : bytes | io.IOBase Bytes of the attachment, or a file-like object. title : str Title of the attachment. content_type : str Content-type of the attachment. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.ATTACHMENT def __init__(self, data, filename, title=None, content_type=None, anchor=None): if hasattr(data, 'read'): cnt = data.read() if not isinstance(cnt, bytes): raise TypeError('Required to read bytes but got string.') elif isinstance(data, bytes): cnt = data else: raise TypeError('%r cannot be rendered as attachment.' % (data,)) if content_type is None: content_type = mimetypes.guess_type(filename) if content_type is None: content_type = ATTACHMENT_CONTENT_TYPE super(ReportAttachment, self).__init__( cnt, title=title, filename=filename, content_type=content_type, anchor=anchor ) class ReportDataFrame(ReportElement): """A pandas DataFrame of a report. Parameters ---------- df : pandas.DataFrame Pandas data frame. title : str Title of this data frame. anchor : str Anchor name of this element. If specified, this element can be referenced by internal links. """ element_type = ReportElementType.DATA_FRAME _repr_attributes = ('title',) def __init__(self, df, title=None, anchor=None): super(ReportDataFrame, self).__init__(anchor=anchor) self.df = df self.title = title class ReportTreeTOCNode(object): """Node of the doc tree TOC.""" def __init__(self, title, anchor=None, children=None): if children is None: children = [] self.title = title self.anchor = anchor self.items = children # type: list[ReportTreeTOCNode] def __len__(self): return len(self.items) def __iter__(self): return iter(self.items) def __getitem__(self, item): return self.items[item] def __contains__(self, item): return item in self.items @classmethod def from_block(cls, block): """Construct a new TOC node from specified block. Parameters ---------- block : ReportBlock The report tree block. Returns ------- ReportTreeTOCNode """ def gather(parent, target): if isinstance(parent, ReportBlock): if parent.title: items = [] for c in parent: gather(c, items) node = ReportTreeTOCNode(parent.title, parent.anchor, items) target.append(node) else: for c in parent: gather(c, target) children = [] for child in block: gather(child, children) return ReportTreeTOCNode(block.title, block.anchor, children) class TreeReportRenderer(ReportRenderer): """Renderer that builds a doc tree for the report. A TreeReportRenderer builds a document tree for specified report. It can be used as the basis for more complicated renderer, like the ``HTMLReportRenderer``. Parameters ---------- rrm : ReportResourcesManager Report resources manager. rrm_prefix : str Resources path prefix for the report. title : str Title of the root report block. exp_id : str Identifier of the experiment. If is suggested to be a path-like string with "/" as delimiter. log_path : str Path of the experiment log file. """ def __init__(self, rrm, rrm_prefix='', title=None, log_path=None, exp_id=None): super(TreeReportRenderer, self).__init__(rrm, rrm_prefix) self.title = title self.exp_id = exp_id self.log_path = log_path self.root = None # type: ReportRoot self._block_stack = None # get the anchor of toc self.toc_anchor = self.get_unique_anchor(object(), name='toc') def get_toc(self): """Get the table of contents. Returns ------- ReportTreeTOCNode """ return ReportTreeTOCNode.from_block(self.root) def close(self): pass def begin_document(self): self.root = ReportRoot(title=self.title, exp_id=self.exp_id) self._block_stack = [self.root] return self def end_document(self): self._block_stack.clear() return self def _new_element(self, cls, *args, **kwargs): e = cls(*args, **kwargs) self._block_stack[-1].add(e) return e def begin_block(self, title=None, report=None): if title: anchor = self.get_unique_anchor(report, title) else: anchor = None block = self._new_element(ReportBlock, title=title, report=report, anchor=anchor) self._block_stack.append(block) return self def end_block(self): if self._block_stack[-1] is self.root: raise RuntimeError('Attempt to close the document block.') self._block_stack.pop() return self def write_text(self, text): self._new_element(ReportText, text) return self def write_html(self, html): self._new_element(ReportHTML, html) return self def write_image(self, image, title=None, content_type=None): self._new_element(ReportImage, image=image, title=title, content_type=content_type) return self def write_attachment(self, data, filename, title=None, content_type=None): self._new_element( ReportAttachment, data=data, filename=filename, title=title, content_type=content_type ) return self def write_data_frame(self, df, title=None): self._new_element(ReportDataFrame, df=df, title=title) return self def write_figure(self, fig, title=None): with io.BytesIO() as f: fig.savefig(f, format='png', dpi=90) f.seek(0) return self.write_image(f, content_type='image/png')
28.213018
78
0.591443
e7793b475a2df4e24c9c899af3f4038f36ee4ba0
1,262
py
Python
pycode/tinyflow/GetPredictResults.py
GIS-PuppetMaster/TENSILE
e19f973bb30fba69a23644389c82a4471ee5a241
[ "MIT" ]
null
null
null
pycode/tinyflow/GetPredictResults.py
GIS-PuppetMaster/TENSILE
e19f973bb30fba69a23644389c82a4471ee5a241
[ "MIT" ]
null
null
null
pycode/tinyflow/GetPredictResults.py
GIS-PuppetMaster/TENSILE
e19f973bb30fba69a23644389c82a4471ee5a241
[ "MIT" ]
1
2020-09-27T07:27:47.000Z
2020-09-27T07:27:47.000Z
import os from tensorflow.python.eager import executor os.environ['CUDA_VISIBLE_DEVICES'] = f'{0}' from VGG16_test_leo import VGG16 from Inceptionv3_test_leo import Inceptionv3 from Inceptionv4_test_leo import Inceptionv4 from ResNet50_test_leo import ResNet50 from DenseNet_test_leo import DenseNet121 import pickle as pkl def get_predict_results(batch_size, num_step, log_path, job_id, model, **kwargs): m = model(num_step=num_step, batch_size=batch_size, log_path=log_path, job_id=job_id) return m.get_predict_results(1000) if __name__ == '__main__': if not os.path.exists('./log/tempschedule/'): os.makedirs('./log/tempschedule/') log_path = f'./log/tempschedule/' model_list = [VGG16, Inceptionv3, Inceptionv4, ResNet50, DenseNet121] predict_results = [get_predict_results(2, 50, log_path, job_id, model_list[job_id]) for job_id in range(len(model_list))] res = {} if not os.path.exists('../../res/inferred_shape/'): os.makedirs('../../res/inferred_shape/') for i, name in enumerate(['VGG16', 'Inceptionv3', 'Inceptionv4', 'ResNet50', 'DenseNet121']): res[name] = predict_results[i] with open(f'../../res/inferred_shape.pkl', 'wb') as f: pkl.dump(res, f)
37.117647
101
0.706815
72ffd6093d22dfa993f523ed425bcec8d3320b02
18,936
py
Python
tools/gn/bootstrap/bootstrap.py
Wzzzx/chromium-crosswalk
768dde8efa71169f1c1113ca6ef322f1e8c9e7de
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2019-01-28T08:09:58.000Z
2021-11-15T15:32:10.000Z
tools/gn/bootstrap/bootstrap.py
Wzzzx/chromium-crosswalk
768dde8efa71169f1c1113ca6ef322f1e8c9e7de
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
tools/gn/bootstrap/bootstrap.py
Wzzzx/chromium-crosswalk
768dde8efa71169f1c1113ca6ef322f1e8c9e7de
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
6
2020-09-23T08:56:12.000Z
2021-11-18T03:40:49.000Z
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This file isn't officially supported by the Chromium project. It's maintained # on a best-effort basis by volunteers, so some things may be broken from time # to time. If you encounter errors, it's most often due to files in base that # have been added or moved since somebody last tried this script. Generally # such errors are easy to diagnose. """Bootstraps gn. It is done by first building it manually in a temporary directory, then building it with its own BUILD.gn to the final destination. """ import contextlib import errno import logging import optparse import os import shutil import subprocess import sys import tempfile BOOTSTRAP_DIR = os.path.dirname(os.path.abspath(__file__)) GN_ROOT = os.path.dirname(BOOTSTRAP_DIR) SRC_ROOT = os.path.dirname(os.path.dirname(GN_ROOT)) is_linux = sys.platform.startswith('linux') is_mac = sys.platform.startswith('darwin') is_posix = is_linux or is_mac def check_call(cmd, **kwargs): logging.debug('Running: %s', ' '.join(cmd)) subprocess.check_call(cmd, cwd=GN_ROOT, **kwargs) def mkdir_p(path): try: os.makedirs(path) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(path): pass else: raise @contextlib.contextmanager def scoped_tempdir(): path = tempfile.mkdtemp() try: yield path finally: shutil.rmtree(path) def run_build(tempdir, options): if options.debug: build_rel = os.path.join('out', 'Debug') else: build_rel = os.path.join('out', 'Release') build_root = os.path.join(SRC_ROOT, build_rel) print 'Building gn manually in a temporary directory for bootstrapping...' build_gn_with_ninja_manually(tempdir, options) temp_gn = os.path.join(tempdir, 'gn') out_gn = os.path.join(build_root, 'gn') if options.no_rebuild: mkdir_p(build_root) shutil.copy2(temp_gn, out_gn) else: print 'Building gn using itself to %s...' % build_rel build_gn_with_gn(temp_gn, build_root, options) if options.output: # Preserve the executable permission bit. shutil.copy2(out_gn, options.output) def main(argv): parser = optparse.OptionParser(description=sys.modules[__name__].__doc__) parser.add_option('-d', '--debug', action='store_true', help='Do a debug build. Defaults to release build.') parser.add_option('-o', '--output', help='place output in PATH', metavar='PATH') parser.add_option('-s', '--no-rebuild', action='store_true', help='Do not rebuild GN with GN.') parser.add_option('--no-clean', action='store_true', help='Re-used build directory instead of using new ' 'temporary location each time') parser.add_option('--gn-gen-args', help='Args to pass to gn gen --args') parser.add_option('-v', '--verbose', action='store_true', help='Log more details') options, args = parser.parse_args(argv) if args: parser.error('Unrecognized command line arguments: %s.' % ', '.join(args)) logging.basicConfig(level=logging.DEBUG if options.verbose else logging.ERROR) try: if options.no_clean: build_dir = os.path.join(SRC_ROOT, 'out_bootstrap') if not os.path.exists(build_dir): os.makedirs(build_dir) return run_build(build_dir, options) else: with scoped_tempdir() as tempdir: return run_build(tempdir, options) except subprocess.CalledProcessError as e: print >> sys.stderr, str(e) return 1 return 0 def write_buildflag_header_manually(root_gen_dir, header, flags): mkdir_p(os.path.join(root_gen_dir, os.path.dirname(header))) with tempfile.NamedTemporaryFile() as f: f.write('--flags') for name,value in flags.items(): f.write(' ' + name + '=' + value) f.flush() check_call([ os.path.join(SRC_ROOT, 'build', 'write_buildflag_header.py'), '--output', header, '--gen-dir', root_gen_dir, '--definitions', f.name, ]) def build_gn_with_ninja_manually(tempdir, options): root_gen_dir = os.path.join(tempdir, 'gen') mkdir_p(root_gen_dir) write_buildflag_header_manually(root_gen_dir, 'base/allocator/features.h', {'USE_EXPERIMENTAL_ALLOCATOR_SHIM': 'true' if is_linux else 'false'}) write_buildflag_header_manually(root_gen_dir, 'base/debug/debugging_flags.h', {'ENABLE_PROFILING': 'false'}) if is_mac: # //base/build_time.cc needs base/generated_build_date.h, # and this file is only included for Mac builds. mkdir_p(os.path.join(root_gen_dir, 'base')) check_call([ os.path.join(SRC_ROOT, 'build', 'write_build_date_header.py'), os.path.join(root_gen_dir, 'base', 'generated_build_date.h'), 'default' ]) write_ninja(os.path.join(tempdir, 'build.ninja'), root_gen_dir, options) cmd = ['ninja', '-C', tempdir] if options.verbose: cmd.append('-v') cmd.append('gn') check_call(cmd) def write_ninja(path, root_gen_dir, options): cc = os.environ.get('CC', '') cxx = os.environ.get('CXX', '') cflags = os.environ.get('CFLAGS', '').split() cflags_cc = os.environ.get('CXXFLAGS', '').split() ld = os.environ.get('LD', cxx) ldflags = os.environ.get('LDFLAGS', '').split() include_dirs = [root_gen_dir, SRC_ROOT] libs = [] # //base/allocator/allocator_extension.cc needs this macro defined, # otherwise there would be link errors. cflags.extend(['-DNO_TCMALLOC']) if is_posix: if options.debug: cflags.extend(['-O0', '-g']) else: cflags.extend(['-O2', '-g0']) cflags.extend([ '-D_FILE_OFFSET_BITS=64', '-pthread', '-pipe', '-fno-exceptions' ]) cflags_cc.extend(['-std=c++11', '-Wno-c++11-narrowing']) static_libraries = { 'base': {'sources': [], 'tool': 'cxx', 'include_dirs': []}, 'dynamic_annotations': {'sources': [], 'tool': 'cc', 'include_dirs': []}, 'gn': {'sources': [], 'tool': 'cxx', 'include_dirs': []}, } for name in os.listdir(GN_ROOT): if not name.endswith('.cc'): continue if name.endswith('_unittest.cc'): continue if name == 'run_all_unittests.cc': continue full_path = os.path.join(GN_ROOT, name) static_libraries['gn']['sources'].append( os.path.relpath(full_path, SRC_ROOT)) static_libraries['dynamic_annotations']['sources'].extend([ 'base/third_party/dynamic_annotations/dynamic_annotations.c', 'base/third_party/superfasthash/superfasthash.c', ]) static_libraries['base']['sources'].extend([ 'base/allocator/allocator_check.cc', 'base/allocator/allocator_extension.cc', 'base/at_exit.cc', 'base/base_paths.cc', 'base/base_switches.cc', 'base/callback_internal.cc', 'base/command_line.cc', 'base/debug/alias.cc', 'base/debug/stack_trace.cc', 'base/debug/task_annotator.cc', 'base/environment.cc', 'base/files/file.cc', 'base/files/file_enumerator.cc', 'base/files/file_path.cc', 'base/files/file_path_constants.cc', 'base/files/file_tracing.cc', 'base/files/file_util.cc', 'base/files/important_file_writer.cc', 'base/files/memory_mapped_file.cc', 'base/files/scoped_file.cc', 'base/hash.cc', 'base/json/json_parser.cc', 'base/json/json_reader.cc', 'base/json/json_string_value_serializer.cc', 'base/json/json_writer.cc', 'base/json/string_escape.cc', 'base/lazy_instance.cc', 'base/location.cc', 'base/logging.cc', 'base/md5.cc', 'base/memory/ref_counted.cc', 'base/memory/ref_counted_memory.cc', 'base/memory/singleton.cc', 'base/memory/weak_ptr.cc', 'base/message_loop/incoming_task_queue.cc', 'base/message_loop/message_loop.cc', 'base/message_loop/message_loop_task_runner.cc', 'base/message_loop/message_pump.cc', 'base/message_loop/message_pump_default.cc', 'base/metrics/bucket_ranges.cc', 'base/metrics/histogram.cc', 'base/metrics/histogram_base.cc', 'base/metrics/histogram_samples.cc', 'base/metrics/metrics_hashes.cc', 'base/metrics/persistent_histogram_allocator.cc', 'base/metrics/persistent_memory_allocator.cc', 'base/metrics/persistent_sample_map.cc', 'base/metrics/sample_map.cc', 'base/metrics/sample_vector.cc', 'base/metrics/sparse_histogram.cc', 'base/metrics/statistics_recorder.cc', 'base/path_service.cc', 'base/pending_task.cc', 'base/pickle.cc', 'base/process/kill.cc', 'base/process/process_iterator.cc', 'base/process/process_metrics.cc', 'base/profiler/scoped_profile.cc', 'base/profiler/scoped_tracker.cc', 'base/profiler/tracked_time.cc', 'base/run_loop.cc', 'base/sequence_checker_impl.cc', 'base/sequenced_task_runner.cc', 'base/sha1.cc', 'base/strings/pattern.cc', 'base/strings/string16.cc', 'base/strings/string_number_conversions.cc', 'base/strings/string_piece.cc', 'base/strings/string_split.cc', 'base/strings/string_util.cc', 'base/strings/string_util_constants.cc', 'base/strings/stringprintf.cc', 'base/strings/utf_string_conversion_utils.cc', 'base/strings/utf_string_conversions.cc', 'base/synchronization/cancellation_flag.cc', 'base/synchronization/lock.cc', 'base/sys_info.cc', 'base/task_runner.cc', 'base/third_party/dmg_fp/dtoa_wrapper.cc', 'base/third_party/dmg_fp/g_fmt.cc', 'base/third_party/icu/icu_utf.cc', 'base/third_party/nspr/prtime.cc', 'base/threading/non_thread_safe_impl.cc', 'base/threading/post_task_and_reply_impl.cc', 'base/threading/sequenced_task_runner_handle.cc', 'base/threading/sequenced_worker_pool.cc', 'base/threading/simple_thread.cc', 'base/threading/thread.cc', 'base/threading/thread_checker_impl.cc', 'base/threading/thread_collision_warner.cc', 'base/threading/thread_id_name_manager.cc', 'base/threading/thread_local_storage.cc', 'base/threading/thread_restrictions.cc', 'base/threading/thread_task_runner_handle.cc', 'base/threading/worker_pool.cc', 'base/time/time.cc', 'base/timer/elapsed_timer.cc', 'base/timer/timer.cc', 'base/trace_event/heap_profiler_allocation_context.cc', 'base/trace_event/heap_profiler_allocation_context_tracker.cc', 'base/trace_event/heap_profiler_allocation_register.cc', 'base/trace_event/heap_profiler_heap_dump_writer.cc', 'base/trace_event/heap_profiler_stack_frame_deduplicator.cc', 'base/trace_event/heap_profiler_type_name_deduplicator.cc', 'base/trace_event/memory_allocator_dump.cc', 'base/trace_event/memory_allocator_dump_guid.cc', 'base/trace_event/memory_dump_manager.cc', 'base/trace_event/memory_dump_request_args.cc', 'base/trace_event/memory_dump_session_state.cc', 'base/trace_event/memory_infra_background_whitelist.cc', 'base/trace_event/process_memory_dump.cc', 'base/trace_event/process_memory_maps.cc', 'base/trace_event/process_memory_totals.cc', 'base/trace_event/trace_buffer.cc', 'base/trace_event/trace_config.cc', 'base/trace_event/trace_event_argument.cc', 'base/trace_event/trace_event_impl.cc', 'base/trace_event/trace_event_memory_overhead.cc', 'base/trace_event/trace_event_synthetic_delay.cc', 'base/trace_event/trace_log.cc', 'base/trace_event/trace_log_constants.cc', 'base/trace_event/trace_sampling_thread.cc', 'base/trace_event/tracing_agent.cc', 'base/tracked_objects.cc', 'base/tracking_info.cc', 'base/values.cc', 'base/vlog.cc', ]) if is_posix: static_libraries['base']['sources'].extend([ 'base/base_paths_posix.cc', 'base/debug/debugger_posix.cc', 'base/debug/stack_trace_posix.cc', 'base/files/file_enumerator_posix.cc', 'base/files/file_posix.cc', 'base/files/file_util_posix.cc', 'base/files/memory_mapped_file_posix.cc', 'base/message_loop/message_pump_libevent.cc', 'base/posix/file_descriptor_shuffle.cc', 'base/posix/safe_strerror.cc', 'base/process/kill_posix.cc', 'base/process/process_handle_posix.cc', 'base/process/process_metrics_posix.cc', 'base/process/process_posix.cc', 'base/synchronization/condition_variable_posix.cc', 'base/synchronization/lock_impl_posix.cc', 'base/synchronization/read_write_lock_posix.cc', 'base/synchronization/waitable_event_posix.cc', 'base/sys_info_posix.cc', 'base/threading/platform_thread_internal_posix.cc', 'base/threading/platform_thread_posix.cc', 'base/threading/thread_local_posix.cc', 'base/threading/thread_local_storage_posix.cc', 'base/threading/worker_pool_posix.cc', 'base/time/time_posix.cc', 'base/trace_event/heap_profiler_allocation_register_posix.cc', ]) static_libraries['libevent'] = { 'sources': [ 'base/third_party/libevent/buffer.c', 'base/third_party/libevent/evbuffer.c', 'base/third_party/libevent/evdns.c', 'base/third_party/libevent/event.c', 'base/third_party/libevent/event_tagging.c', 'base/third_party/libevent/evrpc.c', 'base/third_party/libevent/evutil.c', 'base/third_party/libevent/http.c', 'base/third_party/libevent/log.c', 'base/third_party/libevent/poll.c', 'base/third_party/libevent/select.c', 'base/third_party/libevent/signal.c', 'base/third_party/libevent/strlcpy.c', ], 'tool': 'cc', 'include_dirs': [], 'cflags': cflags + ['-DHAVE_CONFIG_H'], } if is_linux: libs.extend(['-lrt']) ldflags.extend(['-pthread']) static_libraries['xdg_user_dirs'] = { 'sources': [ 'base/third_party/xdg_user_dirs/xdg_user_dir_lookup.cc', ], 'tool': 'cxx', } static_libraries['base']['sources'].extend([ 'base/allocator/allocator_shim.cc', 'base/allocator/allocator_shim_default_dispatch_to_glibc.cc', 'base/memory/shared_memory_posix.cc', 'base/nix/xdg_util.cc', 'base/process/internal_linux.cc', 'base/process/process_handle_linux.cc', 'base/process/process_iterator_linux.cc', 'base/process/process_linux.cc', 'base/process/process_metrics_linux.cc', 'base/strings/sys_string_conversions_posix.cc', 'base/sys_info_linux.cc', 'base/threading/platform_thread_linux.cc', 'base/trace_event/malloc_dump_provider.cc', ]) static_libraries['libevent']['include_dirs'].extend([ os.path.join(SRC_ROOT, 'base', 'third_party', 'libevent', 'linux') ]) static_libraries['libevent']['sources'].extend([ 'base/third_party/libevent/epoll.c', ]) if is_mac: static_libraries['base']['sources'].extend([ 'base/base_paths_mac.mm', 'base/build_time.cc', 'base/rand_util.cc', 'base/rand_util_posix.cc', 'base/files/file_util_mac.mm', 'base/mac/bundle_locations.mm', 'base/mac/call_with_eh_frame.cc', 'base/mac/call_with_eh_frame_asm.S', 'base/mac/foundation_util.mm', 'base/mac/mach_logging.cc', 'base/mac/scoped_mach_port.cc', 'base/mac/scoped_mach_vm.cc', 'base/mac/scoped_nsautorelease_pool.mm', 'base/memory/shared_memory_handle_mac.cc', 'base/memory/shared_memory_mac.cc', 'base/message_loop/message_pump_mac.mm', 'base/metrics/field_trial.cc', 'base/process/process_handle_mac.cc', 'base/process/process_iterator_mac.cc', 'base/process/process_metrics_mac.cc', 'base/strings/sys_string_conversions_mac.mm', 'base/time/time_mac.cc', 'base/threading/platform_thread_mac.mm', 'base/trace_event/malloc_dump_provider.cc', ]) static_libraries['libevent']['include_dirs'].extend([ os.path.join(SRC_ROOT, 'base', 'third_party', 'libevent', 'mac') ]) static_libraries['libevent']['sources'].extend([ 'base/third_party/libevent/kqueue.c', ]) if is_mac: template_filename = 'build_mac.ninja.template' else: template_filename = 'build.ninja.template' with open(os.path.join(GN_ROOT, 'bootstrap', template_filename)) as f: ninja_template = f.read() def src_to_obj(path): return '%s' % os.path.splitext(path)[0] + '.o' ninja_lines = [] for library, settings in static_libraries.iteritems(): for src_file in settings['sources']: ninja_lines.extend([ 'build %s: %s %s' % (src_to_obj(src_file), settings['tool'], os.path.join(SRC_ROOT, src_file)), ' includes = %s' % ' '.join( ['-I' + dirname for dirname in include_dirs + settings.get('include_dirs', [])]), ' cflags = %s' % ' '.join(cflags + settings.get('cflags', [])), ' cflags_cc = %s' % ' '.join(cflags_cc + settings.get('cflags_cc', [])), ]) if cc: ninja_lines.append(' cc = %s' % cc) if cxx: ninja_lines.append(' cxx = %s' % cxx) ninja_lines.append('build %s.a: alink_thin %s' % ( library, ' '.join([src_to_obj(src_file) for src_file in settings['sources']]))) if is_mac: libs.extend([ '-framework', 'AppKit', '-framework', 'CoreFoundation', '-framework', 'Foundation', '-framework', 'Security', ]); ninja_lines.extend([ 'build gn: link %s' % ( ' '.join(['%s.a' % library for library in static_libraries])), ' ldflags = %s' % ' '.join(ldflags), ' libs = %s' % ' '.join(libs), ]) if ld: ninja_lines.append(' ld = %s' % ld) else: ninja_lines.append(' ld = $ldxx') ninja_lines.append('') # Make sure the file ends with a newline. with open(path, 'w') as f: f.write(ninja_template + '\n'.join(ninja_lines)) def build_gn_with_gn(temp_gn, build_dir, options): gn_gen_args = options.gn_gen_args or '' if not options.debug: gn_gen_args += ' is_debug=false' cmd = [temp_gn, 'gen', build_dir, '--args=%s' % gn_gen_args] check_call(cmd) cmd = ['ninja', '-C', build_dir] if options.verbose: cmd.append('-v') cmd.append('gn') check_call(cmd) if not options.debug: check_call(['strip', os.path.join(build_dir, 'gn')]) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
35.328358
80
0.654943
a9ff40e8441994dda413e3bde545d9838d1035cb
59,831
py
Python
efinance/stock/getter.py
vensentzhou/efinance
f76f77155e90b8738f7ed3ccec577837c60e075d
[ "MIT" ]
null
null
null
efinance/stock/getter.py
vensentzhou/efinance
f76f77155e90b8738f7ed3ccec577837c60e075d
[ "MIT" ]
null
null
null
efinance/stock/getter.py
vensentzhou/efinance
f76f77155e90b8738f7ed3ccec577837c60e075d
[ "MIT" ]
null
null
null
import json import calendar import numpy as np from ..utils import (search_quote, to_type) from datetime import datetime, timedelta from ..utils import process_dataframe_and_series import rich from jsonpath import jsonpath from retry import retry import pandas as pd import requests import multitasking import signal from tqdm import tqdm from typing import (Dict, List, Union) from ..shared import session from ..common import get_quote_history as get_quote_history_for_stock from ..common import get_history_bill as get_history_bill_for_stock from ..common import get_today_bill as get_today_bill_for_stock from ..common import get_realtime_quotes_by_fs from ..utils import (to_numeric, get_quote_id) from .config import EASTMONEY_STOCK_DAILY_BILL_BOARD_FIELDS, EASTMONEY_STOCK_BASE_INFO_FIELDS from ..common.config import ( FS_DICT, MARKET_NUMBER_DICT, EASTMONEY_REQUEST_HEADERS, EASTMONEY_QUOTE_FIELDS ) signal.signal(signal.SIGINT, multitasking.killall) @to_numeric def get_base_info_single(stock_code: str) -> pd.Series: """ 获取单股票基本信息 Parameters ---------- stock_code : str 股票代码 Returns ------- Series 单只股票基本信息 """ fields = ",".join(EASTMONEY_STOCK_BASE_INFO_FIELDS.keys()) secid = get_quote_id(stock_code) if not secid: return pd.Series(index=EASTMONEY_STOCK_BASE_INFO_FIELDS.values(), dtype='object') params = ( ('ut', 'fa5fd1943c7b386f172d6893dbfba10b'), ('invt', '2'), ('fltt', '2'), ('fields', fields), ('secid', secid), ) url = 'http://push2.eastmoney.com/api/qt/stock/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() s = pd.Series(json_response['data']).rename( index=EASTMONEY_STOCK_BASE_INFO_FIELDS) return s[EASTMONEY_STOCK_BASE_INFO_FIELDS.values()] def get_base_info_muliti(stock_codes: List[str]) -> pd.DataFrame: """ 获取股票多只基本信息 Parameters ---------- stock_codes : List[str] 股票代码列表 Returns ------- DataFrame 多只股票基本信息 """ @multitasking.task @retry(tries=3, delay=1) def start(stock_code: str): s = get_base_info_single(stock_code) dfs.append(s) pbar.update() pbar.set_description(f'Processing => {stock_code}') dfs: List[pd.DataFrame] = [] pbar = tqdm(total=len(stock_codes)) for stock_code in stock_codes: start(stock_code) multitasking.wait_for_tasks() df = pd.DataFrame(dfs) df = df.dropna(subset=['股票代码']) return df @to_numeric def get_base_info(stock_codes: Union[str, List[str]]) -> Union[pd.Series, pd.DataFrame]: """ Parameters ---------- stock_codes : Union[str, List[str]] 股票代码或股票代码构成的列表 Returns ------- Union[Series, DataFrame] - ``Series`` : 包含单只股票基本信息(当 ``stock_codes`` 是字符串时) - ``DataFrane`` : 包含多只股票基本信息(当 ``stock_codes`` 是字符串列表时) Raises ------ TypeError 当 ``stock_codes`` 类型不符合要求时 Examples -------- >>> import efinance as ef >>> # 获取单只股票信息 >>> ef.stock.get_base_info('600519') 股票代码 600519 股票名称 贵州茅台 市盈率(动) 39.38 市净率 12.54 所处行业 酿酒行业 总市值 2198082348462.0 流通市值 2198082348462.0 板块编号 BK0477 ROE 8.29 净利率 54.1678 净利润 13954462085.610001 毛利率 91.6763 dtype: object >>> # 获取多只股票信息 >>> ef.stock.get_base_info(['600519','300715']) 股票代码 股票名称 市盈率(动) 市净率 所处行业 总市值 流通市值 板块编号 ROE 净利率 净利润 毛利率 0 300715 凯伦股份 42.29 3.12 水泥建材 9.160864e+09 6.397043e+09 BK0424 3.97 12.1659 5.415488e+07 32.8765 1 600519 贵州茅台 39.38 12.54 酿酒行业 2.198082e+12 2.198082e+12 BK0477 8.29 54.1678 1.395446e+10 91.6763 """ if isinstance(stock_codes, str): return get_base_info_single(stock_codes) elif hasattr(stock_codes, '__iter__'): return get_base_info_muliti(stock_codes) raise TypeError(f'所给的 {stock_codes} 不符合参数要求') def get_quote_history(stock_codes: Union[str, List[str]], beg: str = '19000101', end: str = '20500101', klt: int = 101, fqt: int = 1, **kwargs) -> Union[pd.DataFrame, Dict[str, pd.DataFrame]]: """ 获取股票的 K 线数据 Parameters ---------- stock_codes : Union[str,List[str]] 股票代码、名称 或者 股票代码、名称构成的列表 beg : str, optional 开始日期,默认为 ``'19000101'`` ,表示 1900年1月1日 end : str, optional 结束日期,默认为 ``'20500101'`` ,表示 2050年1月1日 klt : int, optional 行情之间的时间间隔,默认为 ``101`` ,可选示例如下 - ``1`` : 分钟 - ``5`` : 5 分钟 - ``15`` : 15 分钟 - ``30`` : 30 分钟 - ``60`` : 60 分钟 - ``101`` : 日 - ``102`` : 周 - ``103`` : 月 fqt : int, optional 复权方式,默认为 ``1`` ,可选示例如下 - ``0`` : 不复权 - ``1`` : 前复权 - ``2`` : 后复权 Returns ------- Union[DataFrame, Dict[str, DataFrame]] 股票的 K 线数据 - ``DataFrame`` : 当 ``stock_codes`` 是 ``str`` 时 - ``Dict[str, DataFrame]`` : 当 ``stock_codes`` 是 ``List[str]`` 时 Examples -------- >>> import efinance as ef >>> # 获取单只股票日 K 行情数据 >>> ef.stock.get_quote_history('600519') 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 >>> # 获取多只股票历史行情 >>> stock_df = ef.stock.get_quote_history(['600519','300750']) >>> type(stock_df) <class 'dict'> >>> stock_df.keys() dict_keys(['300750', '600519']) >>> stock_df['600519'] 股票名称 股票代码 日期 开盘 收盘 最高 最低 成交量 成交额 振幅 涨跌幅 涨跌额 换手率 0 贵州茅台 600519 2001-08-27 -89.74 -89.53 -89.08 -90.07 406318 1.410347e+09 -1.10 0.92 0.83 56.83 1 贵州茅台 600519 2001-08-28 -89.64 -89.27 -89.24 -89.72 129647 4.634630e+08 -0.54 0.29 0.26 18.13 2 贵州茅台 600519 2001-08-29 -89.24 -89.36 -89.24 -89.42 53252 1.946890e+08 -0.20 -0.10 -0.09 7.45 3 贵州茅台 600519 2001-08-30 -89.38 -89.22 -89.14 -89.44 48013 1.775580e+08 -0.34 0.16 0.14 6.72 4 贵州茅台 600519 2001-08-31 -89.21 -89.24 -89.12 -89.28 23231 8.623100e+07 -0.18 -0.02 -0.02 3.25 ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4756 贵州茅台 600519 2021-07-23 1937.82 1900.00 1937.82 1895.09 47585 9.057762e+09 2.20 -2.06 -40.01 0.38 4757 贵州茅台 600519 2021-07-26 1879.00 1804.11 1879.00 1780.00 98619 1.789436e+10 5.21 -5.05 -95.89 0.79 4758 贵州茅台 600519 2021-07-27 1803.00 1712.89 1810.00 1703.00 86577 1.523081e+10 5.93 -5.06 -91.22 0.69 4759 贵州茅台 600519 2021-07-28 1703.00 1768.90 1788.20 1682.12 85369 1.479247e+10 6.19 3.27 56.01 0.68 4760 贵州茅台 600519 2021-07-29 1810.01 1749.79 1823.00 1734.34 63864 1.129957e+10 5.01 -1.08 -19.11 0.51 """ df = get_quote_history_for_stock( stock_codes, beg=beg, end=end, klt=klt, fqt=fqt ) if isinstance(df, pd.DataFrame): df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) elif isinstance(df, dict): for stock_code in df.keys(): df[stock_code].rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) # NOTE 扩展接口 设定此关键词即返回 DataFrame 而不是 dict if kwargs.get('return_df'): df: pd.DataFrame = pd.concat(df, axis=0, ignore_index=True) return df @process_dataframe_and_series(remove_columns_and_indexes=['市场编号']) @to_numeric def get_realtime_quotes(fs: Union[str, List[str]] = None) -> pd.DataFrame: """ 获取单个或者多个市场行情的最新状况 Parameters ---------- fs : Union[str, List[str]], optional 行情名称或者多个行情名列表 可选值及示例如下 - ``None`` 沪深京A股市场行情 - ``'沪深A股'`` 沪深A股市场行情 - ``'沪A'`` 沪市A股市场行情 - ``'深A'`` 深市A股市场行情 - ``北A`` 北证A股市场行情 - ``'可转债'`` 沪深可转债市场行情 - ``'期货'`` 期货市场行情 - ``'创业板'`` 创业板市场行情 - ``'美股'`` 美股市场行情 - ``'港股'`` 港股市场行情 - ``'中概股'`` 中国概念股市场行情 - ``'新股'`` 沪深新股市场行情 - ``'科创板'`` 科创板市场行情 - ``'沪股通'`` 沪股通市场行情 - ``'深股通'`` 深股通市场行情 - ``'行业板块'`` 行业板块市场行情 - ``'概念板块'`` 概念板块市场行情 - ``'沪深系列指数'`` 沪深系列指数市场行情 - ``'上证系列指数'`` 上证系列指数市场行情 - ``'深证系列指数'`` 深证系列指数市场行情 - ``'ETF'`` ETF 基金市场行情 - ``'LOF'`` LOF 基金市场行情 Returns ------- DataFrame 单个或者多个市场行情的最新状况 Raises ------ KeyError 当参数 ``fs`` 中含有不正确的行情类型时引发错误 Examples -------- >>> import efinance as ef >>> ef.stock.get_realtime_quotes() 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 688787 N海天 277.59 139.48 172.39 139.25 171.66 102.54 85.62 - 78.93 74519 1110318832.0 36.94 5969744000 1213908667 1.688787 沪A 1 301045 N天禄 149.34 39.42 48.95 39.2 48.95 23.61 66.66 - 37.81 163061 683878656.0 15.81 4066344240 964237089 0.301045 深A 2 300532 今天国际 20.04 12.16 12.16 10.69 10.69 2.03 8.85 3.02 -22.72 144795 171535181.0 10.13 3322510580 1989333440 0.300532 深A 3 300600 国瑞科技 20.02 13.19 13.19 11.11 11.41 2.2 18.61 2.82 218.75 423779 541164432.0 10.99 3915421427 3003665117 0.300600 深A 4 300985 致远新能 20.01 47.08 47.08 36.8 39.4 7.85 66.65 2.17 58.37 210697 897370992.0 39.23 6277336472 1488300116 0.300985 深A ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4598 603186 华正新材 -10.0 43.27 44.09 43.27 43.99 -4.81 1.98 0.48 25.24 27697 120486294.0 48.08 6146300650 6063519472 1.603186 沪A 4599 688185 康希诺-U -10.11 476.4 534.94 460.13 530.0 -53.6 6.02 2.74 -2088.07 40239 1960540832.0 530.0 117885131884 31831479215 1.688185 沪A 4600 688148 芳源股份 -10.57 31.3 34.39 31.3 33.9 -3.7 26.07 0.56 220.01 188415 620632512.0 35.0 15923562000 2261706043 1.688148 沪A 4601 300034 钢研高纳 -10.96 43.12 46.81 42.88 46.5 -5.31 7.45 1.77 59.49 323226 1441101824.0 48.43 20959281094 18706911861 0.300034 深A 4602 300712 永福股份 -13.71 96.9 110.94 95.4 109.0 -15.4 6.96 1.26 511.21 126705 1265152928.0 112.3 17645877600 17645877600 0.300712 深A >>> ef.stock.get_realtime_quotes(['创业板','港股']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 00859 中昌国际控股 49.02 0.38 0.38 0.26 0.26 0.125 0.08 86.85 -2.83 938000 262860.0 0.255 427510287 427510287 128.00859 None 1 01058 粤海制革 41.05 1.34 1.51 0.9 0.93 0.39 8.34 1.61 249.89 44878000 57662440.0 0.95 720945460 720945460 128.01058 None 2 00713 世界(集团) 27.94 0.87 0.9 0.68 0.68 0.19 1.22 33.28 3.64 9372000 7585400.0 0.68 670785156 670785156 128.00713 None 3 08668 瀛海集团 24.65 0.177 0.179 0.145 0.145 0.035 0.0 10.0 -9.78 20000 3240.0 0.142 212400000 212400000 128.08668 None 4 08413 亚洲杂货 24.44 0.28 0.28 0.25 0.25 0.055 0.01 3.48 -20.76 160000 41300.0 0.225 325360000 325360000 128.08413 None ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5632 08429 冰雪集团 -16.75 0.174 0.2 0.166 0.2 -0.035 2.48 3.52 -21.58 11895000 2074645.0 0.209 83520000 83520000 128.08429 None 5633 00524 长城天下 -17.56 0.108 0.118 0.103 0.118 -0.023 0.45 15.43 -6.55 5961200 649171.0 0.131 141787800 141787800 128.00524 None 5634 08377 申酉控股 -17.71 0.395 0.46 0.39 0.46 -0.085 0.07 8.06 -5.07 290000 123200.0 0.48 161611035 161611035 128.08377 None 5635 00108 国锐地产 -19.01 1.15 1.42 1.15 1.42 -0.27 0.07 0.78 23.94 2376000 3012080.0 1.42 3679280084 3679280084 128.00108 None 5636 08237 华星控股 -25.0 0.024 0.031 0.023 0.031 -0.008 0.43 8.74 -2.01 15008000 364188.0 0.032 83760000 83760000 128.08237 None >>> ef.stock.get_realtime_quotes(['ETF']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 行情ID 市场类型 0 513050 中概互联网ETF 4.49 1.444 1.455 1.433 1.452 0.062 6.71 0.92 - 12961671 1870845984.0 1.382 27895816917 27895816917 1.513050 沪A 1 513360 教育ETF 4.38 0.5 0.502 0.486 0.487 0.021 16.89 1.7 - 1104254 54634387.0 0.479 326856952 326856952 1.513360 沪A 2 159766 旅游ETF 3.84 0.974 0.988 0.95 0.95 0.036 14.46 1.97 - 463730 45254947.0 0.938 312304295 312304295 0.159766 深A 3 159865 养殖ETF 3.8 0.819 0.828 0.785 0.791 0.03 12.13 0.89 - 1405871 114254714.0 0.789 949594189 949594189 0.159865 深A 4 516670 畜牧养殖ETF 3.76 0.856 0.864 0.825 0.835 0.031 24.08 0.98 - 292027 24924513.0 0.825 103803953 103803953 1.516670 沪A .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 549 513060 恒生医疗ETF -4.12 0.861 0.905 0.86 0.902 -0.037 47.96 1.57 - 1620502 141454355.0 0.898 290926128 290926128 1.513060 沪A 550 515220 煤炭ETF -4.46 2.226 2.394 2.194 2.378 -0.104 14.39 0.98 - 2178176 487720560.0 2.330 3369247992 3369247992 1.515220 沪A 551 513000 日经225ETF易方达 -4.49 1.212 1.269 1.21 1.269 -0.057 5.02 2.49 - 25819 3152848.0 1.269 62310617 62310617 1.513000 沪A 552 513880 日经225ETF -4.59 1.163 1.224 1.162 1.217 -0.056 16.93 0.94 - 71058 8336846.0 1.219 48811110 48811110 1.513880 沪A 553 513520 日经ETF -4.76 1.2 1.217 1.196 1.217 -0.06 27.7 1.79 - 146520 17645828.0 1.260 63464640 63464640 1.513520 沪A Notes ----- 无论股票、可转债、期货还是基金。第一列表头始终叫 ``股票代码`` """ fs_list: List[str] = [] if fs is None: fs_list.append(FS_DICT['stock']) if isinstance(fs, str): fs = [fs] if isinstance(fs, list): for f in fs: if not FS_DICT.get(f): raise KeyError(f'指定的行情参数 `{fs}` 不正确') fs_list.append(FS_DICT[f]) # 给空列表时 试用沪深A股行情 if not fs_list: fs_list.append(FS_DICT['stock']) fs_str = ','.join(fs_list) df = get_realtime_quotes_by_fs(fs_str) df.rename(columns={'代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_history_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票历史单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 沪深市场单只股票历史单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_history_bill('600519') 股票名称 股票代码 日期 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 主力净流入占比 小单流入净占比 中单流入净占比 大单流入净占比 超大单流入净占比 收盘价 涨跌幅 0 贵州茅台 600519 2021-03-04 -3.670272e+06 -2282056.0 5.952143e+06 1.461528e+09 -1.465199e+09 -0.03 -0.02 0.04 10.99 -11.02 2013.71 -5.05 1 贵州茅台 600519 2021-03-05 -1.514880e+07 -1319066.0 1.646793e+07 -2.528896e+07 1.014016e+07 -0.12 -0.01 0.13 -0.19 0.08 2040.82 1.35 2 贵州茅台 600519 2021-03-08 -8.001702e+08 -877074.0 8.010473e+08 5.670671e+08 -1.367237e+09 -6.29 -0.01 6.30 4.46 -10.75 1940.71 -4.91 3 贵州茅台 600519 2021-03-09 -2.237770e+08 -6391767.0 2.301686e+08 -1.795013e+08 -4.427571e+07 -1.39 -0.04 1.43 -1.11 -0.27 1917.70 -1.19 4 贵州茅台 600519 2021-03-10 -2.044173e+08 -1551798.0 2.059690e+08 -2.378506e+08 3.343331e+07 -2.02 -0.02 2.03 -2.35 0.33 1950.72 1.72 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 97 贵州茅台 600519 2021-07-26 -1.564233e+09 13142211.0 1.551091e+09 -1.270400e+08 -1.437193e+09 -8.74 0.07 8.67 -0.71 -8.03 1804.11 -5.05 98 贵州茅台 600519 2021-07-27 -7.803296e+08 -10424715.0 7.907544e+08 6.725104e+07 -8.475807e+08 -5.12 -0.07 5.19 0.44 -5.56 1712.89 -5.06 99 贵州茅台 600519 2021-07-28 3.997645e+08 2603511.0 -4.023677e+08 2.315648e+08 1.681997e+08 2.70 0.02 -2.72 1.57 1.14 1768.90 3.27 100 贵州茅台 600519 2021-07-29 -9.209842e+08 -2312235.0 9.232964e+08 -3.959741e+08 -5.250101e+08 -8.15 -0.02 8.17 -3.50 -4.65 1749.79 -1.08 101 贵州茅台 600519 2021-07-30 -1.524740e+09 -6020099.0 1.530761e+09 1.147248e+08 -1.639465e+09 -11.63 -0.05 11.68 0.88 -12.51 1678.99 -4.05 """ df = get_history_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_today_bill(stock_code: str) -> pd.DataFrame: """ 获取单只股票最新交易日的日内分钟级单子流入流出数据 Parameters ---------- stock_code : str 股票代码 Returns ------- DataFrame 单只股票最新交易日的日内分钟级单子流入流出数据 Examples -------- >>> import efinance as ef >>> ef.stock.get_today_bill('600519') 股票代码 时间 主力净流入 小单净流入 中单净流入 大单净流入 超大单净流入 0 600519 2021-07-29 09:31 -3261705.0 -389320.0 3651025.0 -12529658.0 9267953.0 1 600519 2021-07-29 09:32 6437999.0 -606994.0 -5831006.0 -42615994.0 49053993.0 2 600519 2021-07-29 09:33 13179707.0 -606994.0 -12572715.0 -85059118.0 98238825.0 3 600519 2021-07-29 09:34 15385244.0 -970615.0 -14414632.0 -86865209.0 102250453.0 4 600519 2021-07-29 09:35 7853716.0 -970615.0 -6883104.0 -75692436.0 83546152.0 .. ... ... ... ... ... ... ... 235 600519 2021-07-29 14:56 -918956019.0 -1299630.0 920255661.0 -397127393.0 -521828626.0 236 600519 2021-07-29 14:57 -920977761.0 -2319213.0 923296987.0 -397014702.0 -523963059.0 237 600519 2021-07-29 14:58 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 238 600519 2021-07-29 14:59 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 239 600519 2021-07-29 15:00 -920984196.0 -2312233.0 923296442.0 -395974137.0 -525010059.0 """ df = get_today_bill_for_stock(stock_code) df.rename(columns={ '代码': '股票代码', '名称': '股票名称' }, inplace=True) return df @to_numeric def get_latest_quote(stock_codes: List[str]) -> pd.DataFrame: """ 获取沪深市场多只股票的实时涨幅情况 Parameters ---------- stock_codes : List[str] 多只股票代码列表 Returns ------- DataFrame 沪深市场、港股、美股多只股票的实时涨幅情况 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_quote(['600519','300750']) 股票代码 股票名称 涨跌幅 最新价 最高 最低 今开 涨跌额 换手率 量比 动态市盈率 成交量 成交额 昨日收盘 总市值 流通市值 市场类型 0 600519 贵州茅台 0.59 1700.04 1713.0 1679.0 1690.0 10.04 0.30 0.72 43.31 37905 6.418413e+09 1690.0 2135586507912 2135586507912 沪A 1 300750 宁德时代 0.01 502.05 529.9 480.0 480.0 0.05 1.37 1.75 149.57 277258 1.408545e+10 502.0 1169278366994 1019031580505 深A Notes ----- 当需要获取多只沪深 A 股 的实时涨跌情况时,最好使用 ``efinance.stock.get_realtime_quptes`` """ if isinstance(stock_codes, str): stock_codes = [stock_codes] secids: List[str] = [get_quote_id(stock_code) for stock_code in stock_codes] columns = EASTMONEY_QUOTE_FIELDS fields = ",".join(columns.keys()) params = ( ('OSVersion', '14.3'), ('appVersion', '6.3.8'), ('fields', fields), ('fltt', '2'), ('plat', 'Iphone'), ('product', 'EFund'), ('secids', ",".join(secids)), ('serverVersion', '6.3.6'), ('version', '6.3.8'), ) url = 'https://push2.eastmoney.com/api/qt/ulist.np/get' json_response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() rows = jsonpath(json_response, '$..diff[:]') if rows is None: return pd.DataFrame(columns=columns.values()).rename({ '市场编号': '市场类型' }) df = pd.DataFrame(rows)[columns.keys()].rename(columns=columns) df['市场类型'] = df['市场编号'].apply(lambda x: MARKET_NUMBER_DICT.get(str(x))) del df['市场编号'] return df @to_numeric def get_top10_stock_holder_info(stock_code: str, top: int = 4) -> pd.DataFrame: """ 获取沪深市场指定股票前十大股东信息 Parameters ---------- stock_code : str 股票代码 top : int, optional 最新 top 个前 10 大流通股东公开信息, 默认为 ``4`` Returns ------- DataFrame 个股持仓占比前 10 的股东的一些信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_top10_stock_holder_info('600519',top = 1) 股票代码 更新日期 股东代码 股东名称 持股数 持股比例 增减 变动率 0 600519 2021-03-31 80010298 中国贵州茅台酒厂(集团)有限责任公司 6.783亿 54.00% 不变 -- 1 600519 2021-03-31 80637337 香港中央结算有限公司 9594万 7.64% -841.1万 -8.06% 2 600519 2021-03-31 80732941 贵州省国有资本运营有限责任公司 5700万 4.54% -182.7万 -3.11% 3 600519 2021-03-31 80010302 贵州茅台酒厂集团技术开发公司 2781万 2.21% 不变 -- 4 600519 2021-03-31 80475097 中央汇金资产管理有限责任公司 1079万 0.86% 不变 -- 5 600519 2021-03-31 80188285 中国证券金融股份有限公司 803.9万 0.64% -91 0.00% 6 600519 2021-03-31 78043999 深圳市金汇荣盛财富管理有限公司-金汇荣盛三号私募证券投资基金 502.1万 0.40% 不变 -- 7 600519 2021-03-31 70400207 中国人寿保险股份有限公司-传统-普通保险产品-005L-CT001沪 434.1万 0.35% 44.72万 11.48% 8 600519 2021-03-31 005827 中国银行股份有限公司-易方达蓝筹精选混合型证券投资基金 432万 0.34% 新进 -- 9 600519 2021-03-31 78083830 珠海市瑞丰汇邦资产管理有限公司-瑞丰汇邦三号私募证券投资基金 416.1万 0.33% 不变 -- """ def gen_fc(stock_code: str) -> str: """ Parameters ---------- stock_code : str 股票代码 Returns ------- str 指定格式的字符串 """ _type, stock_code = get_quote_id(stock_code).split('.') _type = int(_type) # 深市 if _type == 0: return f'{stock_code}02' # 沪市 return f'{stock_code}01' def get_public_dates(stock_code: str) -> List[str]: """ 获取指定股票公开股东信息的日期 Parameters ---------- stock_code : str 股票代码 Returns ------- List[str] 公开日期列表 """ quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) data = {"fc": fc} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetFirstRequest2Data' json_response = requests.post( url, json=data).json() dates = jsonpath(json_response, f'$..BaoGaoQi') if not dates: return [] return dates fields = { 'GuDongDaiMa': '股东代码', 'GuDongMingCheng': '股东名称', 'ChiGuShu': '持股数', 'ChiGuBiLi': '持股比例', 'ZengJian': '增减', 'BianDongBiLi': '变动率', } quote_id = get_quote_id(stock_code) stock_code = quote_id.split('.')[-1] fc = gen_fc(stock_code) dates = get_public_dates(stock_code) dfs: List[pd.DataFrame] = [] empty_df = pd.DataFrame(columns=['股票代码', '日期']+list(fields.values())) for date in dates[:top]: data = {"fc": fc, "BaoGaoQi": date} url = 'https://emh5.eastmoney.com/api/GuBenGuDong/GetShiDaLiuTongGuDong' response = requests.post(url, json=data) response.encoding = 'utf-8' items: List[dict] = jsonpath( response.json(), f'$..ShiDaLiuTongGuDongList[:]') if not items: continue df = pd.DataFrame(items) df.rename(columns=fields, inplace=True) df.insert(0, '股票代码', [stock_code for _ in range(len(df))]) df.insert(1, '更新日期', [date for _ in range(len(df))]) del df['IsLink'] dfs.append(df) if len(dfs) == 0: return empty_df return pd.concat(dfs, axis=0, ignore_index=True) def get_all_report_dates() -> pd.DataFrame: """ 获取沪深市场的全部股票报告期信息 Returns ------- DataFrame 沪深市场的全部股票报告期信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_all_report_dates() 报告日期 季报名称 0 2021-06-30 2021年 半年报 1 2021-03-31 2021年 一季报 2 2020-12-31 2020年 年报 3 2020-09-30 2020年 三季报 4 2020-06-30 2020年 半年报 5 2020-03-31 2020年 一季报 6 2019-12-31 2019年 年报 7 2019-09-30 2019年 三季报 8 2019-06-30 2019年 半年报 9 2019-03-31 2019年 一季报 10 2018-12-31 2018年 年报 11 2018-09-30 2018年 三季报 12 2018-06-30 2018年 半年报 13 2018-03-31 2018年 一季报 14 2017-12-31 2017年 年报 15 2017-09-30 2017年 三季报 16 2017-06-30 2017年 半年报 17 2017-03-31 2017年 一季报 18 2016-12-31 2016年 年报 19 2016-09-30 2016年 三季报 20 2016-06-30 2016年 半年报 21 2016-03-31 2016年 一季报 22 2015-12-31 2015年 年报 24 2015-06-30 2015年 半年报 25 2015-03-31 2015年 一季报 26 2014-12-31 2014年 年报 27 2014-09-30 2014年 三季报 28 2014-06-30 2014年 半年报 29 2014-03-31 2014年 一季报 30 2013-12-31 2013年 年报 31 2013-09-30 2013年 三季报 32 2013-06-30 2013年 半年报 33 2013-03-31 2013年 一季报 34 2012-12-31 2012年 年报 35 2012-09-30 2012年 三季报 36 2012-06-30 2012年 半年报 37 2012-03-31 2012年 一季报 38 2011-12-31 2011年 年报 39 2011-09-30 2011年 三季报 """ fields = { 'REPORT_DATE': '报告日期', 'DATATYPE': '季报名称' } params = ( ('type', 'RPT_LICO_FN_CPD_BBBQ'), ('sty', ','.join(fields.keys())), ('p', '1'), ('ps', '2000'), ) url = 'https://datacenter.eastmoney.com/securities/api/data/get' response = requests.get( url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: pd.DataFrame(columns=fields.values()) df = pd.DataFrame(items) df = df.rename(columns=fields) df['报告日期'] = df['报告日期'].apply(lambda x: x.split()[0]) return df @to_numeric def get_all_company_performance(date: str = None) -> pd.DataFrame: """ 获取沪深市场股票某一季度的表现情况 Parameters ---------- date : str, optional 报告发布日期 部分可选示例如下(默认为 ``None``) - ``None`` : 最新季报 - ``'2021-06-30'`` : 2021 年 Q2 季度报 - ``'2021-03-31'`` : 2021 年 Q1 季度报 Returns ------- DataFrame 获取沪深市场股票某一季度的表现情况 Examples --------- >>> import efinance as ef >>> # 获取最新季度业绩表现 >>> ef.stock.get_all_company_performance() 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 688981 中芯国际 2021-08-28 00:00:00 1.609039e+10 22.253453 20.6593 5.241321e+09 278.100000 307.8042 0.6600 11.949525 5.20 26.665642 1.182556 1 688819 天能股份 2021-08-28 00:00:00 1.625468e+10 9.343279 23.9092 6.719446e+08 -14.890000 -36.8779 0.7100 11.902912 6.15 17.323263 -1.562187 2 688789 宏华数科 2021-08-28 00:00:00 4.555604e+08 56.418441 6.5505 1.076986e+08 49.360000 -7.3013 1.8900 14.926761 13.51 43.011243 1.421272 3 688681 科汇股份 2021-08-28 00:00:00 1.503343e+08 17.706987 121.9407 1.664509e+07 -13.100000 383.3331 0.2100 5.232517 4.84 47.455511 -0.232395 4 688670 金迪克 2021-08-28 00:00:00 3.209423e+07 -63.282413 -93.1788 -2.330505e+07 -242.275001 -240.1554 -0.3500 3.332254 -10.10 85.308531 1.050348 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3720 600131 国网信通 2021-07-16 00:00:00 2.880378e+09 6.787087 69.5794 2.171389e+08 29.570000 296.2051 0.1800 4.063260 4.57 19.137437 -0.798689 3721 600644 乐山电力 2021-07-15 00:00:00 1.257030e+09 18.079648 5.7300 8.379727e+07 -14.300000 25.0007 0.1556 3.112413 5.13 23.645137 0.200906 3722 002261 拓维信息 2021-07-15 00:00:00 8.901777e+08 47.505282 24.0732 6.071063e+07 68.320000 30.0596 0.0550 2.351598 2.37 37.047968 -0.131873 3723 601952 苏垦农发 2021-07-13 00:00:00 4.544138e+09 11.754570 47.8758 3.288132e+08 1.460000 83.1486 0.2400 3.888046 6.05 15.491684 -0.173772 3724 601568 北元集团 2021-07-09 00:00:00 6.031506e+09 32.543303 30.6352 1.167989e+09 61.050000 40.8165 0.3200 3.541533 9.01 27.879243 0.389860 >>> # 获取指定日期的季度业绩表现 >>> ef.stock.get_all_company_performance('2020-03-31') 股票代码 股票简称 公告日期 营业收入 营业收入同比增长 营业收入季度环比 净利润 净利润同比增长 净利润季度环比 每股收益 每股净资产 净资产收益率 销售毛利率 每股经营现金流量 0 605033 美邦股份 2021-08-25 00:00:00 2.178208e+08 NaN NaN 4.319814e+07 NaN NaN 0.4300 NaN NaN 37.250416 NaN 1 301048 金鹰重工 2021-07-30 00:00:00 9.165528e+07 NaN NaN -2.189989e+07 NaN NaN NaN NaN -1.91 20.227118 NaN 2 001213 中铁特货 2021-07-29 00:00:00 1.343454e+09 NaN NaN -3.753634e+07 NaN NaN -0.0100 NaN NaN -1.400708 NaN 3 605588 冠石科技 2021-07-28 00:00:00 1.960175e+08 NaN NaN 1.906751e+07 NaN NaN 0.3500 NaN NaN 16.324650 NaN 4 688798 艾为电子 2021-07-27 00:00:00 2.469943e+08 NaN NaN 2.707568e+07 NaN NaN 0.3300 NaN 8.16 33.641934 NaN ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 4440 603186 华正新材 2020-04-09 00:00:00 4.117502e+08 -6.844813 -23.2633 1.763252e+07 18.870055 -26.3345 0.1400 5.878423 2.35 18.861255 0.094249 4441 002838 道恩股份 2020-04-09 00:00:00 6.191659e+08 -8.019810 -16.5445 6.939886e+07 91.601624 76.7419 0.1700 2.840665 6.20 22.575224 0.186421 4442 600396 金山股份 2020-04-08 00:00:00 2.023133e+09 0.518504 -3.0629 1.878432e+08 114.304022 61.2733 0.1275 1.511012 8.81 21.422393 0.085698 4443 002913 奥士康 2020-04-08 00:00:00 4.898977e+08 -3.883035 -23.2268 2.524717e+07 -47.239162 -58.8136 0.1700 16.666749 1.03 22.470020 0.552624 4444 002007 华兰生物 2020-04-08 00:00:00 6.775414e+08 -2.622289 -36.1714 2.472864e+08 -4.708821 -22.6345 0.1354 4.842456 3.71 61.408522 0.068341 Notes ----- 当输入的日期不正确时,会输出可选的日期列表。 你也可以通过函数 ``efinance.stock.get_all_report_dates`` 来获取可选日期 """ # TODO 加速 fields = { 'SECURITY_CODE': '股票代码', 'SECURITY_NAME_ABBR': '股票简称', 'NOTICE_DATE': '公告日期', 'TOTAL_OPERATE_INCOME': '营业收入', 'YSTZ': '营业收入同比增长', 'YSHZ': '营业收入季度环比', 'PARENT_NETPROFIT': '净利润', 'SJLTZ': '净利润同比增长', 'SJLHZ': '净利润季度环比', 'BASIC_EPS': '每股收益', 'BPS': '每股净资产', 'WEIGHTAVG_ROE': '净资产收益率', 'XSMLL': '销售毛利率', 'MGJYXJJE': '每股经营现金流量' # 'ISNEW':'是否最新' } dates = get_all_report_dates()['报告日期'].to_list() if date is None: date = dates[0] if date not in dates: rich.print('日期输入有误,可选日期如下:') rich.print(dates) return pd.DataFrame(columns=fields.values()) date = f"(REPORTDATE=\'{date}\')" page = 1 dfs: List[pd.DataFrame] = [] while 1: params = ( ('st', 'NOTICE_DATE,SECURITY_CODE'), ('sr', '-1,-1'), ('ps', '500'), ('p', f'{page}'), ('type', 'RPT_LICO_FN_CPD'), ('sty', 'ALL'), ('token', '894050c76af8597a853f5b408b759f5d'), # ! 只选沪深A股 ('filter', f'(SECURITY_TYPE_CODE in ("058001001","058001008")){date}'), ) url = 'http://datacenter-web.eastmoney.com/api/data/get' response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: break df = pd.DataFrame(items) dfs.append(df) page += 1 if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, axis=0, ignore_index=True) df = df.rename(columns=fields)[fields.values()] return df @to_numeric def get_latest_holder_number(date: str = None) -> pd.DataFrame: """ 获取沪深A股市场最新公开的股东数目变化情况 也可获取指定报告期的股东数目变化情况 Parameters ---------- date : str, optional 报告期日期 部分可选示例如下 - ``None`` 最新的报告期 - ``'2021-06-30'`` 2021年中报 - ``'2021-03-31'`` 2021年一季报 Returns ------- DataFrame 沪深A股市场最新公开的或指定报告期的股东数目变化情况 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_holder_number() 股票代码 股票名称 股东人数 股东人数增减 较上期变化百分比 股东户数统计截止日 户均持股市值 户均持股数量 总市值 总股本 公告日期 0 301029 怡合达 12021 -1.636527 -200.0 2021-09-30 00:00:00 2.790187e+06 33275.933783 3.354084e+10 400010000 2021-10-09 00:00:00 1 301006 迈拓股份 10964 -0.463005 -51.0 2021-09-30 00:00:00 3.493433e+05 12703.392922 3.830200e+09 139280000 2021-10-09 00:00:00 2 301003 江苏博云 11642 -2.658863 -318.0 2021-09-30 00:00:00 2.613041e+05 5004.867463 3.042103e+09 58266667 2021-10-09 00:00:00 3 300851 交大思诺 12858 -2.752987 -364.0 2021-09-30 00:00:00 2.177054e+05 6761.035931 2.799255e+09 86933400 2021-10-09 00:00:00 4 300830 金现代 34535 -16.670688 -6909.0 2021-09-30 00:00:00 2.001479e+05 12454.756045 6.912109e+09 430125000 2021-10-09 00:00:00 ... ... ... ... ... ... ... ... ... ... ... ... 4435 600618 氯碱化工 45372 -0.756814 -346.0 2014-06-30 00:00:00 1.227918e+05 16526.491581 5.571311e+09 749839976 2014-08-22 00:00:00 4436 601880 辽港股份 89923 -3.589540 -3348.0 2014-03-31 00:00:00 9.051553e+04 37403.111551 8.139428e+09 3363400000 2014-04-30 00:00:00 4437 600685 中船防务 52296 -4.807325 -2641.0 2014-03-11 00:00:00 1.315491e+05 8384.263691 6.879492e+09 438463454 2014-03-18 00:00:00 4438 000017 深中华A 21358 -10.800200 -2586.0 2013-06-30 00:00:00 5.943993e+04 14186.140556 1.269518e+09 302987590 2013-08-24 00:00:00 4439 601992 金隅集团 66736 -12.690355 -9700.0 2013-06-30 00:00:00 2.333339e+05 46666.785918 1.557177e+10 3114354625 2013-08-22 00:00:00 >>> ef.stock.get_latest_holder_number(date='2021-06-30') 股票代码 股票名称 股东人数 股东人数增减 较上期变化百分比 股东户数统计截止日 户均持股市值 户均持股数量 总市值 总股本 公告日期 0 688768 容知日新 24 0.000000 0.0 2021-06-30 00:00:00 NaN 1.714395e+06 NaN 41145491 2021-08-31 00:00:00 1 688669 聚石化学 8355 -11.135929 -1047.0 2021-06-30 00:00:00 3.662956e+05 1.117096e+04 3.060400e+09 93333334 2021-08-31 00:00:00 2 688613 奥精医疗 8768 -71.573999 -22077.0 2021-06-30 00:00:00 1.380627e+06 1.520681e+04 1.210533e+10 133333334 2021-08-31 00:00:00 3 688586 江航装备 20436 -5.642257 -1222.0 2021-06-30 00:00:00 5.508121e+05 1.975653e+04 1.125640e+10 403744467 2021-08-31 00:00:00 4 688559 海目星 7491 -16.460355 -1476.0 2021-06-30 00:00:00 8.071019e+05 2.669871e+04 6.046000e+09 200000000 2021-08-31 00:00:00 ... ... ... ... ... ... ... ... ... ... ... ... 4292 002261 拓维信息 144793 0.931290 1336.0 2021-06-30 00:00:00 7.731589e+04 7.602349e+03 1.119480e+10 1100766874 2021-07-15 00:00:00 4293 002471 中超控股 75592 1.026409 768.0 2021-06-30 00:00:00 4.864536e+04 1.677426e+04 3.677200e+09 1268000000 2021-07-12 00:00:00 4294 600093 *ST易见 52497 -2.118099 -1136.0 2021-06-30 00:00:00 1.267904e+05 2.138117e+04 6.656114e+09 1122447500 2021-07-06 00:00:00 4295 688091 上海谊众 25 0.000000 0.0 2021-06-30 00:00:00 NaN 3.174000e+06 NaN 79350000 2021-07-02 00:00:00 4296 301053 远信工业 10 0.000000 0.0 2021-06-30 00:00:00 NaN 6.131250e+06 NaN 61312500 2021-06-30 00:00:00 """ dfs: List[pd.DataFrame] = [] if date is not None: date: datetime = datetime.strptime(date, '%Y-%m-%d') year = date.year month = date.month if month % 3 != 0: month -= month % 3 # TODO 优化处理月份正确但日期不为月份最后一天的逻辑 if month < 3: year -= 1 # NOTE 对应上一年最后一个月 month = 12 _, last_day = calendar.monthrange(year, month) date: str = datetime.strptime( f'{year}-{month}-{last_day}', '%Y-%m-%d').strftime('%Y-%m-%d') page = 1 fields = { 'SECURITY_CODE': '股票代码', 'SECURITY_NAME_ABBR': '股票名称', 'HOLDER_NUM': '股东人数', 'HOLDER_NUM_RATIO': '股东人数增减', 'HOLDER_NUM_CHANGE': '较上期变化百分比', 'END_DATE': '股东户数统计截止日', 'AVG_MARKET_CAP': '户均持股市值', 'AVG_HOLD_NUM': '户均持股数量', 'TOTAL_MARKET_CAP': '总市值', 'TOTAL_A_SHARES': '总股本', 'HOLD_NOTICE_DATE': '公告日期' } while 1: params = [ ('sortColumns', 'HOLD_NOTICE_DATE,SECURITY_CODE'), ('sortTypes', '-1,-1'), ('pageSize', '500'), ('pageNumber', page), ('columns', 'SECURITY_CODE,SECURITY_NAME_ABBR,END_DATE,INTERVAL_CHRATE,AVG_MARKET_CAP,AVG_HOLD_NUM,TOTAL_MARKET_CAP,TOTAL_A_SHARES,HOLD_NOTICE_DATE,HOLDER_NUM,PRE_HOLDER_NUM,HOLDER_NUM_CHANGE,HOLDER_NUM_RATIO,END_DATE,PRE_END_DATE'), ('quoteColumns', 'f2,f3'), ('source', 'WEB'), ('client', 'WEB'), ] if date is not None: # NOTE 注意不能漏 \' params.append(('filter', f'(END_DATE=\'{date}\')')) params.append(('reportName', 'RPT_HOLDERNUM_DET')) else: params.append(('reportName', 'RPT_HOLDERNUMLATEST')) params = tuple(params) url = 'http://datacenter-web.eastmoney.com/api/data/v1/get' response = session.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params) items = jsonpath(response.json(), '$..data[:]') if not items: break df = pd.DataFrame(items) df = df.rename(columns=fields)[fields.values()] page += 1 dfs.append(df) if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, ignore_index=True) return df @to_numeric @retry(tries=3) def get_daily_billboard(start_date: str = None, end_date: str = None) -> pd.DataFrame: """ 获取指定日期区间的龙虎榜详情数据 Parameters ---------- start_date : str, optional 开始日期 部分可选示例如下 - ``None`` 最新一个榜单公开日(默认值) - ``"2021-08-27"`` 2021年8月27日 end_date : str, optional 结束日期 部分可选示例如下 - ``None`` 最新一个榜单公开日(默认值) - ``"2021-08-31"`` 2021年8月31日 Returns ------- DataFrame 龙虎榜详情数据 Examples -------- >>> import efinance as ef >>> # 获取最新一个公开的龙虎榜数据(后面还有获取指定日期区间的示例代码) >>> ef.stock.get_daily_billboard() 股票代码 股票名称 上榜日期 解读 收盘价 涨跌幅 换手率 龙虎榜净买额 龙虎榜买入额 龙虎榜卖出额 龙虎榜成交额 市场总成交额 净买额占总成交比 成交额占总成交比 流通市值 上榜原因 0 000608 阳光股份 2021-08-27 卖一主卖,成功率48.36% 3.73 -9.9034 3.8430 -8.709942e+06 1.422786e+07 2.293780e+07 3.716565e+07 110838793 -7.858208 33.531268 2.796761e+09 日跌幅偏离值达到7%的前5只证券 1 000751 锌业股份 2021-08-27 主力做T,成功率18.84% 5.32 -2.9197 19.6505 -1.079219e+08 5.638899e+07 1.643109e+08 2.206999e+08 1462953973 -7.376984 15.085906 7.500502e+09 日振幅值达到15%的前5只证券 2 000762 西藏矿业 2021-08-27 北京资金买入,成功率39.42% 63.99 1.0741 15.6463 2.938758e+07 4.675541e+08 4.381665e+08 9.057206e+08 4959962598 0.592496 18.260633 3.332571e+10 日振幅值达到15%的前5只证券 3 000833 粤桂股份 2021-08-27 实力游资买入,成功率44.55% 8.87 10.0496 8.8263 4.993555e+07 1.292967e+08 7.936120e+07 2.086580e+08 895910429 5.573721 23.290046 3.353614e+09 连续三个交易日内,涨幅偏离值累计达到20%的证券 4 001208 华菱线缆 2021-08-27 1家机构买入,成功率40.43% 19.72 4.3386 46.1985 4.055258e+07 1.537821e+08 1.132295e+08 2.670117e+08 1203913048 3.368398 22.178651 2.634710e+09 日换手率达到20%的前5只证券 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 70 688558 国盛智科 2021-08-27 买一主买,成功率38.71% 60.72 1.6064 34.0104 1.835494e+07 1.057779e+08 8.742293e+07 1.932008e+08 802569300 2.287023 24.072789 2.321743e+09 有价格涨跌幅限制的日换手率达到30%的前五只证券 71 688596 正帆科技 2021-08-27 1家机构买入,成功率57.67% 26.72 3.1660 3.9065 -1.371039e+07 8.409046e+07 9.780085e+07 1.818913e+08 745137400 -1.839982 24.410438 4.630550e+09 有价格涨跌幅限制的连续3个交易日内收盘价格涨幅偏离值累计达到30%的证券 72 688663 新风光 2021-08-27 卖一主卖,成功率37.18% 28.17 -17.6316 32.2409 1.036460e+07 5.416901e+07 4.380440e+07 9.797341e+07 274732700 3.772613 35.661358 8.492507e+08 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 73 688663 新风光 2021-08-27 卖一主卖,成功率37.18% 28.17 -17.6316 32.2409 1.036460e+07 5.416901e+07 4.380440e+07 9.797341e+07 274732700 3.772613 35.661358 8.492507e+08 有价格涨跌幅限制的日换手率达到30%的前五只证券 74 688667 菱电电控 2021-08-27 1家机构卖出,成功率49.69% 123.37 -18.8996 17.7701 -2.079877e+06 4.611216e+07 4.819204e+07 9.430420e+07 268503400 -0.774618 35.122163 1.461225e+09 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 >>> # 获取指定日期区间的龙虎榜数据 >>> start_date = '2021-08-20' # 开始日期 >>> end_date = '2021-08-27' # 结束日期 >>> ef.stock.get_daily_billboard(start_date = start_date,end_date = end_date) 股票代码 股票名称 上榜日期 解读 收盘价 涨跌幅 换手率 龙虎榜净买额 龙虎榜买入额 龙虎榜卖出额 龙虎榜成交额 市场总成交额 净买额占总成交比 成交额占总成交比 流通市值 上榜原因 0 000608 阳光股份 2021-08-27 卖一主卖,成功率48.36% 3.73 -9.9034 3.8430 -8.709942e+06 1.422786e+07 2.293780e+07 3.716565e+07 110838793 -7.858208 33.531268 2.796761e+09 日跌幅偏离值达到7%的前5只证券 1 000751 锌业股份 2021-08-27 主力做T,成功率18.84% 5.32 -2.9197 19.6505 -1.079219e+08 5.638899e+07 1.643109e+08 2.206999e+08 1462953973 -7.376984 15.085906 7.500502e+09 日振幅值达到15%的前5只证券 2 000762 西藏矿业 2021-08-27 北京资金买入,成功率39.42% 63.99 1.0741 15.6463 2.938758e+07 4.675541e+08 4.381665e+08 9.057206e+08 4959962598 0.592496 18.260633 3.332571e+10 日振幅值达到15%的前5只证券 3 000833 粤桂股份 2021-08-27 实力游资买入,成功率44.55% 8.87 10.0496 8.8263 4.993555e+07 1.292967e+08 7.936120e+07 2.086580e+08 895910429 5.573721 23.290046 3.353614e+09 连续三个交易日内,涨幅偏离值累计达到20%的证券 4 001208 华菱线缆 2021-08-27 1家机构买入,成功率40.43% 19.72 4.3386 46.1985 4.055258e+07 1.537821e+08 1.132295e+08 2.670117e+08 1203913048 3.368398 22.178651 2.634710e+09 日换手率达到20%的前5只证券 .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 414 605580 恒盛能源 2021-08-20 买一主买,成功率33.33% 13.28 10.0249 0.4086 2.413149e+06 2.713051e+06 2.999022e+05 3.012953e+06 2713051 88.945937 111.054054 6.640000e+08 有价格涨跌幅限制的日收盘价格涨幅偏离值达到7%的前三只证券 415 688029 南微医学 2021-08-20 4家机构卖出,成功率55.82% 204.61 -18.5340 8.1809 -1.412053e+08 1.883342e+08 3.295394e+08 5.178736e+08 762045800 -18.529760 67.958326 9.001510e+09 有价格涨跌幅限制的日收盘价格跌幅达到15%的前五只证券 416 688408 中信博 2021-08-20 4家机构卖出,成功率47.86% 179.98 -0.0666 15.3723 -4.336304e+07 3.750919e+08 4.184550e+08 7.935469e+08 846547400 -5.122340 93.739221 5.695886e+09 有价格涨跌幅限制的日价格振幅达到30%的前五只证券 417 688556 高测股份 2021-08-20 上海资金买入,成功率60.21% 51.97 17.0495 10.6452 -3.940045e+07 1.642095e+08 2.036099e+08 3.678194e+08 575411600 -6.847351 63.922831 5.739089e+09 有价格涨跌幅限制的日收盘价格涨幅达到15%的前五只证券 418 688636 智明达 2021-08-20 2家机构买入,成功率47.37% 161.90 15.8332 11.9578 2.922406e+07 6.598126e+07 3.675721e+07 1.027385e+08 188330100 15.517464 54.552336 1.647410e+09 有价格涨跌幅限制的日收盘价格涨幅达到15%的前五只证券 """ today = datetime.today().date() mode = 'auto' if start_date is None: start_date = today if end_date is None: end_date = today if isinstance(start_date, str): mode = 'user' start_date = datetime.strptime(start_date, '%Y-%m-%d') if isinstance(end_date, str): mode = 'user' end_date = datetime.strptime(end_date, '%Y-%m-%d') fields = EASTMONEY_STOCK_DAILY_BILL_BOARD_FIELDS bar: tqdm = None while 1: dfs: List[pd.DataFrame] = [] page = 1 while 1: params = ( ('sortColumns', 'TRADE_DATE,SECURITY_CODE'), ('sortTypes', '-1,1'), ('pageSize', '500'), ('pageNumber', page), ('reportName', 'RPT_DAILYBILLBOARD_DETAILS'), ('columns', 'ALL'), ('source', 'WEB'), ('client', 'WEB'), ('filter', f"(TRADE_DATE<='{end_date}')(TRADE_DATE>='{start_date}')"), ) url = 'http://datacenter-web.eastmoney.com/api/data/v1/get' response = session.get(url, params=params) if bar is None: pages = jsonpath(response.json(), '$..pages') if pages and pages[0] != 1: total = pages[0] bar = tqdm(total=int(total)) if bar is not None: bar.update() items = jsonpath(response.json(), '$..data[:]') if not items: break page += 1 df = pd.DataFrame(items).rename(columns=fields)[fields.values()] dfs.append(df) if mode == 'user': break if len(dfs) == 0: start_date = start_date-timedelta(1) end_date = end_date-timedelta(1) if len(dfs) > 0: break if len(dfs) == 0: df = pd.DataFrame(columns=fields.values()) return df df = pd.concat(dfs, ignore_index=True) df['上榜日期'] = df['上榜日期'].astype('str').apply(lambda x: x.split(' ')[0]) return df def get_members(index_code: str) -> pd.DataFrame: """ 获取指数成分股信息 Parameters ---------- index_code : str 指数名称或者指数代码 Returns ------- DataFrame 指数成分股信息 Examples -------- >>> import efinance as ef >>> ef.stock.get_members('000300') 指数代码 指数名称 股票代码 股票名称 股票权重 0 000300 沪深300 600519 贵州茅台 4.77 1 000300 沪深300 601398 工商银行 3.46 2 000300 沪深300 601939 建设银行 3.12 3 000300 沪深300 600036 招商银行 2.65 4 000300 沪深300 601857 中国石油 2.37 .. ... ... ... ... ... 295 000300 沪深300 688126 沪硅产业 NaN 296 000300 沪深300 688169 石头科技 NaN 297 000300 沪深300 688036 传音控股 NaN 298 000300 沪深300 688009 中国通号 NaN 299 000300 沪深300 688008 澜起科技 NaN >>> ef.stock.get_members('中证白酒') 指数代码 指数名称 股票代码 股票名称 股票权重 0 399997 中证白酒 600519 贵州茅台 49.25 1 399997 中证白酒 000858 五粮液 18.88 2 399997 中证白酒 600809 山西汾酒 8.45 3 399997 中证白酒 000568 泸州老窖 7.03 4 399997 中证白酒 002304 洋河股份 5.72 5 399997 中证白酒 000596 古井贡酒 2.76 6 399997 中证白酒 000799 酒鬼酒 1.77 7 399997 中证白酒 600779 水井坊 1.36 8 399997 中证白酒 603369 今世缘 1.26 9 399997 中证白酒 603198 迎驾贡酒 0.89 10 399997 中证白酒 603589 口子窖 0.67 11 399997 中证白酒 000860 顺鑫农业 0.59 12 399997 中证白酒 600559 老白干酒 0.44 13 399997 中证白酒 603919 金徽酒 0.39 14 399997 中证白酒 600197 伊力特 0.28 15 399997 中证白酒 600199 金种子酒 0.26 """ fields = { 'IndexCode': '指数代码', 'IndexName': '指数名称', 'StockCode': '股票代码', 'StockName': '股票名称', 'MARKETCAPPCT': '股票权重' } qs = search_quote(index_code, count=10) df = pd.DataFrame(columns=fields.values()) if not qs: return df for q in qs: if q.security_typeName == '指数': params = ( ('IndexCode', f'{q.code}'), ('pageIndex', '1'), ('pageSize', '10000'), ('deviceid', '1234567890'), ('version', '6.9.9'), ('product', 'EFund'), ('plat', 'Iphone'), ('ServerVersion', '6.9.9'), ) url = 'https://fundztapi.eastmoney.com/FundSpecialApiNew/FundSpecialZSB30ZSCFG' json_response = requests.get( url, params=params, headers=EASTMONEY_REQUEST_HEADERS).json() items = json_response['Datas'] # NOTE 这是为了跳过排在前面但无法获取成分股的指数 例如搜索 白酒 时排在前面的 980031 if not items: continue df: pd.DataFrame = pd.DataFrame(items).rename( columns=fields)[fields.values()] df['股票权重'] = pd.to_numeric(df['股票权重'], errors='coerce') return df return df def get_latest_ipo_info() -> pd.DataFrame: """ 获取企业 IPO 审核状态 Returns ------- DataFrame 企业 IPO 审核状态 Examples -------- >>> import efinance as ef >>> ef.stock.get_latest_ipo_info() 发行人全称 审核状态 注册地 证监会行业 保荐机构 会计师事务所 更新日期 受理日期 拟上市地点 0 郑州众智科技股份有限公司 已问询 河南 电气机械和器材制造业 民生证券股份有限公司 信永中和会计师事务所(特殊普通合伙) 2021-10-09 00:00:00 2021-06-24 00:00:00 创业板 1 成都盛帮密封件股份有限公司 已问询 四川 橡胶和塑料制品业 国金证券股份有限公司 中审众环会计师事务所(特殊普通合伙) 2021-10-09 00:00:00 2020-12-08 00:00:00 创业板 2 恒勃控股股份有限公司 已问询 浙江 汽车制造业 中信建投证券股份有限公司 中汇会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-09-06 00:00:00 创业板 3 深圳英集芯科技股份有限公司 已问询 广东 计算机、通信和其他电子设备制造业 华泰联合证券有限责任公司 容诚会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-06-10 00:00:00 科创板 4 苏州长光华芯光电技术股份有限公司 上市委会议通过 江苏 计算机、通信和其他电子设备制造业 华泰联合证券有限责任公司 天衡会计师事务所(特殊普通合伙) 2021-10-08 00:00:00 2021-06-24 00:00:00 科创板 ... ... ... .. ... ... ... ... ... ... 1376 澜起科技股份有限公司 注册生效 上海 计算机、通信和其他电子设备制造业 中信证券股份有限公司 瑞华会计师事务所(特殊普通合伙) 2019-06-26 00:00:00 2019-04-01 00:00:00 科创板 1377 浙江杭可科技股份有限公司 注册生效 浙江 专用设备制造业 国信证券股份有限公司 天健会计师事务所(特殊普通合伙) 2019-06-24 00:00:00 2019-04-15 00:00:00 科创板 1378 苏州天准科技股份有限公司 注册生效 江苏 专用设备制造业 海通证券股份有限公司 瑞华会计师事务所(特殊普通合伙) 2019-06-20 00:00:00 2019-04-02 00:00:00 科创板 1379 烟台睿创微纳技术股份有限公司 注册生效 山东 计算机、通信和其他电子设备制造业 中信证券股份有限公司 信永中和会计师事务所(特殊普通合伙) 2019-06-18 00:00:00 2019-03-22 00:00:00 科创板 1380 苏州华兴源创科技股份有限公司 注册生效 江苏 专用设备制造业 华泰联合证券有限责任公司 华普天健会计师事务所(特殊普通合伙) 2019-06-18 00:00:00 2019-03-27 00:00:00 科创板 """ fields = { # 'ORG_CODE':'发行人代码', 'ISSUER_NAME': '发行人全称', 'CHECK_STATUS': '审核状态', 'REG_ADDRESS': '注册地', 'CSRC_INDUSTRY': '证监会行业', 'RECOMMEND_ORG': '保荐机构', 'ACCOUNT_FIRM': '会计师事务所', 'UPDATE_DATE': '更新日期', 'ACCEPT_DATE': '受理日期', 'TOLIST_MARKET': '拟上市地点' } df = pd.DataFrame(columns=fields.values()) dfs: List[pd.DataFrame] = [] page = 1 while 1: params = ( ('st', 'UPDATE_DATE,SECURITY_CODE'), ('sr', '-1,-1'), ('ps', '500'), ('p', page), ('type', 'RPT_REGISTERED_INFO'), ('sty', 'ORG_CODE,ISSUER_NAME,CHECK_STATUS,CHECK_STATUS_CODE,REG_ADDRESS,CSRC_INDUSTRY,RECOMMEND_ORG,LAW_FIRM,ACCOUNT_FIRM,UPDATE_DATE,ACCEPT_DATE,TOLIST_MARKET,SECURITY_CODE'), ('token', '894050c76af8597a853f5b408b759f5d'), ('client', 'WEB'), ) url = 'http://datacenter-web.eastmoney.com/api/data/get' json_response = requests.get(url, headers=EASTMONEY_REQUEST_HEADERS, params=params).json() items = jsonpath(json_response, '$..data[:]') if not items: break page += 1 df = pd.DataFrame(items).rename( columns=fields)[fields.values()] dfs.append(df) if len(dfs) == 0: return df df = pd.concat(dfs, ignore_index=True, axis=0) return df @retry(tries=3) def get_quote_snapshot(stock_code: str) -> pd.Series: """ 获取沪深市场股票最新行情快照 Parameters ---------- stock_code : str 股票代码 Returns ------- Series Examples -------- >>> import efinance as ef >>> ef.stock.get_quote_snapshot('600519') 代码 600519 名称 贵州茅台 时间 15:59:30 涨跌额 -73.5 涨跌幅 -4.13 最新价 1707.0 昨收 1780.5 今开 1760.2 开盘 1760.2 最高 1768.0 最低 1703.8 均价 1726.65 涨停价 1958.55 跌停价 1602.45 换手率 0.39 成交量 49156 成交额 8487507456 卖1价 1708.0 卖2价 1708.75 卖4价 1709.6 卖5价 1709.63 买1价 1707.0 买2价 1706.99 买3价 1706.88 买4价 1706.87 买5价 1706.86 卖1数量 3.0 卖2数量 2.0 卖3数量 39.0 卖4数量 3.0 卖5数量 1.0 买1数量 17.0 买2数量 8.0 买3数量 10.0 买4数量 8.0 买5数量 21.0 dtype: object """ params = ( ('id', stock_code), ('callback', 'jQuery183026310160411569883_1646052793441'), ) response = requests.get( 'https://hsmarketwg.eastmoney.com/api/SHSZQuoteSnapshot', params=params) start_index = response.text.find('{') end_index = response.text.rfind('}') columns = { 'code': '代码', 'name': '名称', 'time': '时间', 'zd': '涨跌额', 'zdf': '涨跌幅', 'currentPrice': '最新价', 'yesClosePrice': '昨收', 'openPrice': '今开', 'open': '开盘', 'high': '最高', 'low': '最低', 'avg': '均价', 'topprice': '涨停价', 'bottomprice': '跌停价', 'turnover': '换手率', 'volume': '成交量', 'amount': '成交额', 'sale1': '卖1价', 'sale2': '卖2价', 'sale3': '卖3价', 'sale4': '卖4价', 'sale5': '卖5价', 'buy1': '买1价', 'buy2': '买2价', 'buy3': '买3价', 'buy4': '买4价', 'buy5': '买5价', 'sale1_count': '卖1数量', 'sale2_count': '卖2数量', 'sale3_count': '卖3数量', 'sale4_count': '卖4数量', 'sale5_count': '卖5数量', 'buy1_count': '买1数量', 'buy2_count': '买2数量', 'buy3_count': '买3数量', 'buy4_count': '买4数量', 'buy5_count': '买5数量', } s = pd.Series(index=columns.values(), dtype='object') try: qd: dict = json.loads(response.text[start_index:end_index+1]) except: return s if not qd.get('fivequote'): return s d = {**qd.pop('fivequote'), **qd.pop('realtimequote'), **qd} s = pd.Series(d).rename(index=columns)[columns.values()] str_type_list = ['代码', '名称', '时间'] all_type_list = columns.values() for column in (set(all_type_list)-set(str_type_list)): s[column] = to_type(float, str(s[column]).strip('%'), np.nan) return s
42.951184
245
0.529391
c0cf66ec52a04f18062ad91f6fe257d0b452a650
4,595
py
Python
examples/document_conversion_v1.py
wkddnjset/K-Global-Starthon
081db0127d23c0039f1a3fea73ee4af3bb176bbf
[ "Apache-2.0" ]
null
null
null
examples/document_conversion_v1.py
wkddnjset/K-Global-Starthon
081db0127d23c0039f1a3fea73ee4af3bb176bbf
[ "Apache-2.0" ]
2
2020-02-12T00:05:29.000Z
2020-06-05T17:51:24.000Z
examples/document_conversion_v1.py
wkddnjset/K-Global-Starthon
081db0127d23c0039f1a3fea73ee4af3bb176bbf
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 import json from os.path import join, dirname from io import open from watson_developer_cloud import DocumentConversionV1 ''' { "url" : "https://gateway.aibril-watson.kr/document-conversion/api", "username" : "61d34a43-4105-42a0-9ec8-01774c3ce1a6", "password" : "ydCaaRag3Um5" } ''' document_conversion = DocumentConversionV1( username='61d34a43-4105-42a0-9ec8-01774c3ce1a6', password='ydCaaRag3Um5', version='2016-02-09') # Example of retrieving html or plain text # with open(join(dirname(__file__), '../resources/thesis/sample.pdf'), # encoding='ascii') as document: # config = {'conversion_target': DocumentConversionV1.NORMALIZED_HTML} # print(document_conversion.convert_document( # document=document, config=config, media_type='text/html').content) # Example with JSON with open(join(dirname(__file__), '../resources/thesis/medical.pdf'), 'rb') as document: config = {'conversion_target': DocumentConversionV1.NORMALIZED_TEXT} config['conversion_target'] = DocumentConversionV1.ANSWER_UNITS print(json.dumps( document_conversion.convert_document(document=document, config=config), indent=2)) # # Examples of index_document API # print( # "########## Example of a dry run of index_document with only a document " # "##########") # with open(join(dirname(__file__), '../resources/example.html'), # encoding='utf8') as document: # config = { # 'retrieve_and_rank': { # 'dry_run': 'true' # } # } # print(json.dumps( # document_conversion.index_document(config=config, document=document), # indent=2)) # print( # "########## Example of a dry run of index_document with only metadata " # "##########") # config = { # 'retrieve_and_rank': { # 'dry_run': 'true' # } # } # metadata = { # 'metadata': [ # {'name': 'id', 'value': '12345'} # ] # } # print( # json.dumps( # document_conversion.index_document(config=config, metadata=metadata), # indent=2)) # print( # "########## Example of a dry run of index_document with document and " # "metadata " # "##########") # with open(join(dirname(__file__), '../resources/example.html'), # encoding='utf8') as document: # config = { # 'retrieve_and_rank': { # 'dry_run': 'true' # } # } # metadata = { # 'metadata': [ # {'name': 'id', 'value': '12345'} # ] # } # print(json.dumps( # document_conversion.index_document(config=config, document=document, # metadata=metadata), indent=2)) # print( # "########## Example of a dry run of index_document with document, " # "metadata, " # "and additional config for conversion" # "##########") # with open(join(dirname(__file__), '../resources/example.html'), # encoding='utf8') as document: # config = { # 'convert_document': { # 'normalized_html': { # 'exclude_content': {"xpaths": ["//body/div"]} # } # }, # 'retrieve_and_rank': { # 'dry_run': 'true' # } # } # metadata = { # 'metadata': [ # {'name': 'id', 'value': '12345'} # ] # } # print(json.dumps( # document_conversion.index_document(config=config, document=document, # metadata=metadata), indent=2)) # print("########## Example of index_document with document, metadata (A # service instance id, SOLR cluster id, and " # "a SOLR collection name must be provided from the Retrieve and Rank # service in order to index) ##########") # with open(join(dirname(__file__), '../resources/example.html'), 'r') as # document: # config = { # 'retrieve_and_rank': { # 'dry_run': 'false', # 'service_instance_id': 'YOUR RETRIEVE AND RANK SERVICE INSTANCE # ID', # 'cluster_id': 'YOUR RETRIEVE AND RANK SERVICE SOLR CLUSTER ID', # 'search_collection': 'YOUR RETRIEVE AND RANK SERVICE SOLR # SEARCH COLLECTION NAME' # } # } # metadata = { # 'metadata': [ # {'name': 'id', 'value': '12345'} # ] # } # print(json.dumps(document_conversion.index_document(config=config, # document=document, # metadata=metadata), # indent=2))
33.057554
79
0.558651
3bbc5a00164415b31ed94573a839e6472f49dc7f
403
py
Python
statzcw/zmode.py
ZCW-Data1dot2/python-basic-stats-amanda-wink
b3db8db0e30feda598dea0fc77204420d1bbeafd
[ "MIT" ]
null
null
null
statzcw/zmode.py
ZCW-Data1dot2/python-basic-stats-amanda-wink
b3db8db0e30feda598dea0fc77204420d1bbeafd
[ "MIT" ]
null
null
null
statzcw/zmode.py
ZCW-Data1dot2/python-basic-stats-amanda-wink
b3db8db0e30feda598dea0fc77204420d1bbeafd
[ "MIT" ]
null
null
null
def mode(list_in): """ Calculate the mode :param list_in: A list :return: float """ value = [] count = [] for val in list_in: if val in value: ind = value.index(val) count[ind] += 1 else: value.append(val) count.append(1) v = max(count) max_ind = count.index(v) return float(value[max_ind])
19.190476
35
0.496278
f88a9cecda3cb450f4612e7f5742399cfb57248a
3,817
py
Python
modules/song.py
sushantgirdhar/song-bot
3dd8b39d09c62340b5e344cbd463e48a957f4b90
[ "MIT" ]
null
null
null
modules/song.py
sushantgirdhar/song-bot
3dd8b39d09c62340b5e344cbd463e48a957f4b90
[ "MIT" ]
null
null
null
modules/song.py
sushantgirdhar/song-bot
3dd8b39d09c62340b5e344cbd463e48a957f4b90
[ "MIT" ]
null
null
null
from pyrogram import Client, filters import youtube_dl from youtube_search import YoutubeSearch import requests import os import time from config import Config from pyrogram.types import InlineKeyboardMarkup, InlineKeyboardButton ABS="Developer" APPER="shamilhabeeb" OWNER="Owner" GITCLONE="sushantgirdhar.github.io" B2="telegram.dog/sushantgirdhar" BUTTON1="📜 More Info Here 📜" def time_to_seconds(time): stringt = str(time) return sum(int(x) * 60 ** i for i, x in enumerate(reversed(stringt.split(':')))) @Client.on_message(filters.command('start') & filters.private) async def start(client, message): await message.reply_photo(photo=Config.START_IMG, caption=Config.START_MSG.format(message.from_user.mention), reply_markup=InlineKeyboardMarkup( [ [ InlineKeyboardButton(BUTTON1, url=GITCLONE) ],[ InlineKeyboardButton(OWNER, url=f"https://telegram.dog/{Config.OWNER}"), InlineKeyboardButton(ABS, url=B2) ] ] ), reply_to_message_id=message.message_id ) @Client.on_message(filters.command(['song'])) def a(client, message): query = '' for i in message.command[1:]: query += ' ' + str(i) print(query) m = message.reply('`Searching... Please Wait...`') ydl_opts = {"format": "bestaudio[ext=m4a]"} try: results = [] count = 0 while len(results) == 0 and count < 6: if count>0: time.sleep(1) results = YoutubeSearch(query, max_results=1).to_dict() count += 1 # results = YoutubeSearch(query, max_results=1).to_dict() try: link = f"https://youtube.com{results[0]['url_suffix']}" # print(results) title = results[0]["title"] thumbnail = results[0]["thumbnails"][0] duration = results[0]["duration"] views = results[0]["views"] ## UNCOMMENT THIS IF YOU WANT A LIMIT ON DURATION. CHANGE 1800 TO YOUR OWN PREFFERED DURATION AND EDIT THE MESSAGE (30 minutes cap) LIMIT IN SECONDS # if time_to_seconds(duration) >= 7000: # duration limit # m.edit("Exceeded 30mins cap") # return performer = f"[@mwkBoTs]" thumb_name = f'thumb{message.message_id}.jpg' thumb = requests.get(thumbnail, allow_redirects=True) open(thumb_name, 'wb').write(thumb.content) except Exception as e: print(e) m.edit('**👎 Nothing found Retry with another !**') return except Exception as e: m.edit( "**Enter Song Name with /song Command!**" ) print(str(e)) return m.edit("`Bruh... Uploading... Please Wait...`") try: with youtube_dl.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(link, download=False) audio_file = ydl.prepare_filename(info_dict) ydl.process_info(info_dict) rep = f'🎶 <b>Title:</b> <a href="{link}">{title}</a>\n⌚ <b>Duration:</b> <code>{duration}</code>\n📻 <b>Uploaded By:</b> <a href="https://t.me/SushantGirdhar">Song Bot</a>' secmul, dur, dur_arr = 1, 0, duration.split(':') for i in range(len(dur_arr)-1, -1, -1): dur += (int(dur_arr[i]) * secmul) secmul *= 60 message.reply_audio(audio_file, caption=rep, parse_mode='HTML',quote=False, title=title, duration=dur, performer=performer, thumb=thumb_name) m.delete() except Exception as e: m.edit('**An internal Error Occured, Report This !!**') print(e) try: os.remove(audio_file) os.remove(thumb_name) except Exception as e: print(e)
36.009434
179
0.59235
cf470a7b4c62da1895f273461a73fa83a511ab53
1,377
py
Python
settings.py
mattmc318/django-socketio-example
31d393af57966d32509176362d1cfb1a8eb53a7a
[ "BSD-3-Clause" ]
23
2015-01-18T02:53:19.000Z
2021-12-04T09:12:20.000Z
settings.py
mattmc318/django-socketio-example
31d393af57966d32509176362d1cfb1a8eb53a7a
[ "BSD-3-Clause" ]
3
2016-07-13T17:36:56.000Z
2018-03-24T21:18:08.000Z
settings.py
mattmc318/django-socketio-example
31d393af57966d32509176362d1cfb1a8eb53a7a
[ "BSD-3-Clause" ]
16
2015-03-18T05:41:07.000Z
2021-07-08T21:20:13.000Z
import os BASE_PATH = os.path.dirname(__file__) DEBUG = True TEMPLATE_DEBUG = DEBUG TIME_ZONE = 'America/Chicago' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True USE_L10N = True MEDIA_ROOT = '' MEDIA_URL = '' ADMIN_MEDIA_PREFIX = '/media/' SECRET_KEY = 'aysxjo#0vhu3=%(49r_3xri@hv3y8tk_2s4jnhowp-9u7eo+tl' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) ROOT_URLCONF = 'urls' TEMPLATE_DIRS = ( os.path.join(BASE_PATH, 'templates'), ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request', )
24.157895
65
0.740015
ed625a2737f43604845e16ca76828b40867728e6
3,105
py
Python
integration/tests/integration/tests/api/instances_states.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
1
2019-09-20T08:31:54.000Z
2019-09-20T08:31:54.000Z
integration/tests/integration/tests/api/instances_states.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
integration/tests/integration/tests/api/instances_states.py
sapcc/trove
c03ec0827687fba202f72f4d264ab70158604857
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# Copyright 2012 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. GROUP = "dbaas.api.instances.status" from proboscis import before_class from proboscis import test from proboscis.asserts import assert_equal from trove.tests.config import CONFIG from trove.tests.util import create_dbaas_client from trove.tests.util.users import Requirements from trove.common.utils import poll_until @test(groups=[GROUP]) class InstanceStatusTests(object): @before_class def set_up(self): reqs = Requirements(is_admin=False) self.user = CONFIG.users.find_user(reqs) self.dbaas = create_dbaas_client(self.user) @test def test_create_failure_on_volume_prov_failure(self): # Fake nova will fail a volume of size 9. response = self.dbaas.instances.create('volume_fail', 1, {'size': 9}, []) poll_until(lambda: self.dbaas.instances.get(response.id), lambda instance: instance.status == 'ERROR', time_out=10) instance = self.dbaas.instances.get(response.id) print("Status: %s" % instance.status) assert_equal(instance.status, "ERROR", "Instance did not drop to error after volume prov failure.") @test def test_create_failure_on_server_failure(self): # Fake nova will fail a server ending with 'SERVER_ERROR'." response = self.dbaas.instances.create('test_SERVER_ERROR', 1, {'size': 1}, []) poll_until(lambda: self.dbaas.instances.get(response.id), lambda instance: instance.status == 'ERROR', time_out=10) instance = self.dbaas.instances.get(response.id) print("Status: %s" % instance.status) assert_equal(instance.status, "ERROR", "Instance did not drop to error after server prov failure.") ###TODO(ed-): We don't at present have a way to test DNS in FAKE_MODE. @test(enabled=False) def test_create_failure_on_dns_failure(self): #TODO(ed-): Throw DNS-specific monkeywrench into works response = self.dbaas.instances.create('test_DNS_ERROR', 1, {'size': 1}, []) poll_until(lambda: self.dbaas.instances.get(response.id), lambda instance: instance.status == 'ERROR', time_out=10) instance = self.dbaas.instances.get(response.id) print("Status: %s" % instance.status) assert_equal(instance.status, "ERROR", "Instance did not drop to error after DNS prov failure.")
40.324675
78
0.667955
1fc9539d00e760ead2c87c83f83c1bdc87e9140c
5,816
py
Python
ros/src/waypoint_updater/waypoint_updater.py
Eudie/CarND-Capstone
cffb07c3a4d8f55da90f6161e161baca8a5ecd18
[ "MIT" ]
null
null
null
ros/src/waypoint_updater/waypoint_updater.py
Eudie/CarND-Capstone
cffb07c3a4d8f55da90f6161e161baca8a5ecd18
[ "MIT" ]
null
null
null
ros/src/waypoint_updater/waypoint_updater.py
Eudie/CarND-Capstone
cffb07c3a4d8f55da90f6161e161baca8a5ecd18
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, Waypoint import math from std_msgs.msg import Int32 from sensor_msgs.msg import PointCloud2 from scipy.spatial import KDTree import numpy as np ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' # LOOKAHEAD_WPS = 200 # Number of waypoints we will publish. You can change this number LOOKAHEAD_WPS = 50 # Number of waypoints we will publish. You can change this number MAX_DECEL = 1.0 class WaypointUpdater(object): def __init__(self): rospy.init_node('waypoint_updater') rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) rospy.Subscriber('/vehicle/obstacle_points', PointCloud2, self.obstacle_cb) self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) # TODO: Add other member variables you need below self.pose = None self.base_waypoints = None self.waypoints_2d = None self.waypoint_tree = None self.stopline_wp_idx = -1 self.base_lane = None self.loop() #rospy.spin() def loop(self): rate = rospy.Rate(50) while not rospy.is_shutdown(): if self.pose and self.base_waypoints and self.waypoint_tree: # Get closest waypoint closest_waypoint_idx = self.get_closest_waypoint_idx() self.publish_waypoints(closest_waypoint_idx) rate.sleep() def get_closest_waypoint_idx(self): x = self.pose.pose.position.x y = self.pose.pose.position.y closest_idx = self.waypoint_tree.query([x, y], 1)[1] #Check if closest is ahead or behind vechicle closest_coord = self.waypoints_2d[closest_idx] prev_coord = self.waypoints_2d[closest_idx - 1] #Equation for hyperplane through closest_coords cl_vect = np.array(closest_coord) prev_vect = np.array(prev_coord) pos_vect = np.array([x, y]) val = np.dot(cl_vect - prev_vect, pos_vect - cl_vect) if val > 0: closest_idx = (closest_idx + 1) % len(self.waypoints_2d) return closest_idx def publish_waypoints(self, closest_idx): # lane = Lane() # lane.header = self.base_waypoints.header # lane.waypoints = self.base_waypoints.waypoints[closest_idx:closest_idx + LOOKAHEAD_WPS] # self.final_waypoints_pub.publish(lane) final_lane = self.generate_lane() self.final_waypoints_pub.publish(final_lane) def generate_lane(self): lane = Lane() closest_idx = self.get_closest_waypoint_idx() farthest_idx = closest_idx + LOOKAHEAD_WPS base_waypoints = self.base_lane.waypoints[closest_idx:farthest_idx] if self.stopline_wp_idx == -1 or (self.stopline_wp_idx >= farthest_idx): lane.waypoints = base_waypoints else: lane.waypoints = self.decelerate_waypoints(base_waypoints, closest_idx) return lane def decelerate_waypoints(self, waypoints, closest_idx): temp = [] for i, wp in enumerate(waypoints): p = Waypoint() p.pose = wp.pose stop_idx = max(self.stopline_wp_idx - closest_idx -2, 0) # Two waypoints back from line so front of car at line dist = self.distance(waypoints, i, stop_idx) # TODO we could use another algorithm. see 12. Full Waypoint Walkthrough 7:00 vel = math.sqrt(2 * MAX_DECEL * dist) if vel > 1.: vel = 0. p.twist.twist.linear.x = min(vel, wp.twist.twist.linear.x) temp.append(p) return temp def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): self.base_waypoints = waypoints self.base_lane = waypoints rospy.loginfo("test: len(waypoints): %s", len(self.base_waypoints.waypoints)) if not self.waypoints_2d: self.waypoints_2d = [[waypoint.pose.pose.position.x , waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) def traffic_cb(self, msg): self.stopline_wp_idx = msg.data def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later pass def get_waypoint_velocity(self, waypoint): return waypoint.twist.twist.linear.x def set_waypoint_velocity(self, waypoints, waypoint, velocity): waypoints[waypoint].twist.twist.linear.x = velocity def distance(self, waypoints, wp1, wp2): dist = 0 dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) for i in range(wp1, wp2+1): dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position) wp1 = i return dist if __name__ == '__main__': try: WaypointUpdater() except rospy.ROSInterruptException: rospy.logerr('Could not start waypoint updater node.')
34.619048
133
0.66489
32999b7e450d436f1f61071e2de975f75dd0549f
1,833
py
Python
Integration/integrate.py
Abdus-Samee/CSE-218
154b0d8abe56bf4e11f2d86c5043f7c022baf7f2
[ "MIT" ]
null
null
null
Integration/integrate.py
Abdus-Samee/CSE-218
154b0d8abe56bf4e11f2d86c5043f7c022baf7f2
[ "MIT" ]
null
null
null
Integration/integrate.py
Abdus-Samee/CSE-218
154b0d8abe56bf4e11f2d86c5043f7c022baf7f2
[ "MIT" ]
null
null
null
import math def func_val(x): return (2000*math.log(140000/(140000-2100*x)))-9.8*x def trapezoidIntegration(n, a, b): h = (b-a)/n first = func_val(a) second = func_val(b) s = 0 for i in range(1, n): s += func_val(a+i*h) ans = ((b-a) * (first + second + 2*s))/(2*n) return ans def simpsonIntegration(n, a, b): s1 = 0 s2 = 0 t = [] t.append(func_val(a)) h = (b-a)/n i = a for _ in range(1, n): t.append(func_val(i+h)) i += h t.append(func_val(b)) for i in range(1, n): if i%2 == 0: s2 += t[i] else: s1 += t[i] ans = ((b-a)*(t[0] + t[n] + 4*s1 + 2*s2))/(3*n) return ans n = int(input('Enter number of sub-intervals:')) print() print('Trapezoidal Integration:') print('Distance traversed by the rocket:', trapezoidIntegration(n, 8, 30)) print('{:<10} {:<10} {:^12}'.format('Segment', 'Value', 'Absolute Relative Error')) prevAns = -1 for i in range(1, 6): ans = trapezoidIntegration(i, 8, 30) if i != 1: error = abs((ans-prevAns)/ans)*100 print("{:<10} {:<10.4f} {:^10.4f}".format(i, ans, error)) else: print("{:<10} {:<10.4f} {:^10}".format(i, ans, "--")) prevAns = ans print() print('Simpson\'s 1/3 Integration:') print('Distance traversed by the rocket:', simpsonIntegration(2*n, 8, 30)) print('{:<10} {:<10} {:^12}'.format('Segment', 'Value', 'Absolute Relative Error')) prevAns = -1 for i in range(2, 11, 2): ans = simpsonIntegration(i, 8, 30) if prevAns != -1: error = abs((ans-prevAns)/ans)*100 print("{:<10} {:<10.4f} {:^10.4f}".format(i, ans, error)) else: print("{:<10} {:<10.4f} {:^10}".format(i, ans, "--")) prevAns = ans
25.816901
83
0.509002
ebc11ab89f21b21b1081275014f633ed9f1dccd3
353
py
Python
django/inclusion/migrations/0011_remove_structurereport_reporter.py
betagouv/data-inclusion
3423c55cb760899abe61125966e2053d8089fec7
[ "MIT" ]
null
null
null
django/inclusion/migrations/0011_remove_structurereport_reporter.py
betagouv/data-inclusion
3423c55cb760899abe61125966e2053d8089fec7
[ "MIT" ]
null
null
null
django/inclusion/migrations/0011_remove_structurereport_reporter.py
betagouv/data-inclusion
3423c55cb760899abe61125966e2053d8089fec7
[ "MIT" ]
null
null
null
# Generated by Django 4.0.3 on 2022-05-03 15:08 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("inclusion", "0010_remove_structure_code_safir_pe"), ] operations = [ migrations.RemoveField( model_name="structurereport", name="reporter", ), ]
19.611111
61
0.620397
9e615c32bec20430127529276766e2b998c6651e
1,781
py
Python
entrenandoRF.py
Flashstacks/facial-recognition
93998bc17819ff8862603cd2660f2abc5c356d24
[ "MIT" ]
null
null
null
entrenandoRF.py
Flashstacks/facial-recognition
93998bc17819ff8862603cd2660f2abc5c356d24
[ "MIT" ]
null
null
null
entrenandoRF.py
Flashstacks/facial-recognition
93998bc17819ff8862603cd2660f2abc5c356d24
[ "MIT" ]
null
null
null
import cv2 import os import numpy as np dataPath = 'C:/Users/carl2/Desktop/Reconocimiento/Datos' #Cambia a la ruta donde hayas almacenado Data peopleList = os.listdir(dataPath) #Lleva a la carpeta Datos print('Lista de personas: ', peopleList) #Imprime los nombres de las carpetas con los nombres labels = [] #Crea los strings globales facesData = [] label = 0 for nameDir in peopleList: personPath = dataPath + '/' + nameDir #Lée las imagenes a travez de un for con rutas print('Leyendo las imágenes') for fileName in os.listdir(personPath): print('Rostros: ', nameDir + '/' + fileName) #Imprime la direccion de las imagenes labels.append(label) #Agrega etiquetas al array facesData.append(cv2.imread(personPath+'/'+fileName,0)) #Agrega y lee imagenes en el array #image = cv2.imread(personPath+'/'+fileName,0) #cv2.imshow('image',image) #cv2.waitKey(10) label = label + 1 #Aumenta el contador de las etiquetas #print('labels= ',labels) #Imprime el array de las atiquetas print('Número de etiquetas 0: ',np.count_nonzero(np.array(labels)==0)) #Imprime el numero de etiquetas de cada numero 0,1,2.... print('Número de etiquetas 1: ',np.count_nonzero(np.array(labels)==1)) # Métodos para entrenar el reconocedor #face_recognizer = cv2.face.EigenFaceRecognizer_create() #face_recognizer = cv2.face.FisherFaceRecognizer_create() face_recognizer = cv2.face.LBPHFaceRecognizer_create() # Entrenando el reconocedor de rostros print("Entrenando...") face_recognizer.train(facesData, np.array(labels)) # Almacenando el modelo obtenido #face_recognizer.write('modeloEigenFace.xml') #face_recognizer.write('modeloFisherFace.xml') face_recognizer.write('modeloLBPHFace.xml') print("Modelo almacenado...Listo")
41.418605
129
0.735542
9c502951101e778409b546c7d866ebaaac2fe7ed
805
py
Python
var/spack/repos/builtin/packages/hydra/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-03-05T10:54:32.000Z
2021-03-05T14:14:52.000Z
var/spack/repos/builtin/packages/hydra/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
32
2020-12-15T17:29:20.000Z
2022-03-21T15:08:31.000Z
var/spack/repos/builtin/packages/hydra/package.py
kkauder/spack
6ae8d5c380c1f42094b05d38be26b03650aafb39
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
2
2021-04-07T18:27:09.000Z
2022-03-31T22:52:38.000Z
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Hydra(AutotoolsPackage): """Hydra is a process management system for starting parallel jobs. Hydra is designed to natively work with existing launcher daemons (such as ssh, rsh, fork), as well as natively integrate with resource management systems (such as slurm, pbs, sge).""" homepage = "http://www.mpich.org" url = "http://www.mpich.org/static/downloads/3.2/hydra-3.2.tar.gz" list_url = "http://www.mpich.org/static/downloads/" list_depth = 1 version('3.2', sha256='f7a67ec91a773d95cbbd479a80e926d44bee1ff9fc70a8d1df075ea53ea33889')
38.333333
93
0.732919
9460ca4fec02f7d76bc92af5d1c6d8b1ca346fc8
1,050
py
Python
Observer/property_observers.py
NachoCP/python-design-patterns
76a7834ff3f8d5c759935f3f5bd3c7c2a57ea112
[ "MIT" ]
null
null
null
Observer/property_observers.py
NachoCP/python-design-patterns
76a7834ff3f8d5c759935f3f5bd3c7c2a57ea112
[ "MIT" ]
null
null
null
Observer/property_observers.py
NachoCP/python-design-patterns
76a7834ff3f8d5c759935f3f5bd3c7c2a57ea112
[ "MIT" ]
null
null
null
class Event(list): def __call__(self, *args, **kwargs): for item in self: item(*args, **kwargs) class PropertyObservable: def __init__(self): self.property_changed = Event() class Person(PropertyObservable): def __init__(self, age=0): super().__init__() self._age = age @property def age(self): return self._age @age.setter def age(self, value): if self._age == value: return self._age = value self.property_changed('age', value) class TrafficAuthority: def __init__(self, person): self.person = person person.property_changed.append(self.person_changed) def person_changed(self, name, value): if name == 'age': if value < 16: print('Sorry, you still cannot drive') else: print('Okay, you can drive now') self.person.property_changed.remove( self.person_changed ) if __name__ == '__main__': p = Person() ta = TrafficAuthority(p) for age in range(14, 20): print(f'Setting age to {age}') p.age = age
21
55
0.634286
95b2c681e482c50a10df43838a3de2531293aae3
501
py
Python
app/tech_dict/tech_dict/wsgi.py
duoduo369/TechDict
82fbac72f2dcb24f12d185ea43cc7a6b9887f53b
[ "MIT" ]
1
2016-06-29T23:55:00.000Z
2016-06-29T23:55:00.000Z
app/tech_dict/tech_dict/wsgi.py
duoduo369/TechDict
82fbac72f2dcb24f12d185ea43cc7a6b9887f53b
[ "MIT" ]
null
null
null
app/tech_dict/tech_dict/wsgi.py
duoduo369/TechDict
82fbac72f2dcb24f12d185ea43cc7a6b9887f53b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 """ WSGI config for tech_dict project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ import sys # 将系统的编码设置为UTF8 reload(sys) sys.setdefaultencoding('utf8') import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "tech_dict.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
23.857143
78
0.782435
fbbd61cd07ae6a3df18ee24449256507ee4a33e8
2,346
py
Python
src/typhoonae/tests/test_init.py
sprymak/typhoonae
fe31bcc7b21fc14f8aa97b36d66cd7671974543b
[ "Apache-2.0" ]
1
2018-12-02T10:36:07.000Z
2018-12-02T10:36:07.000Z
src/typhoonae/tests/test_init.py
sprymak/typhoonae
fe31bcc7b21fc14f8aa97b36d66cd7671974543b
[ "Apache-2.0" ]
null
null
null
src/typhoonae/tests/test_init.py
sprymak/typhoonae
fe31bcc7b21fc14f8aa97b36d66cd7671974543b
[ "Apache-2.0" ]
1
2018-12-02T10:36:08.000Z
2018-12-02T10:36:08.000Z
# -*- coding: utf-8 -*- # # Copyright 2009, 2010 Tobias Rodäbel # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for the runtime environment.""" import os import re import sys import tempfile import typhoonae import unittest class InitTestCase(unittest.TestCase): """Tests a number of helper functions.""" def setUp(self): """Loads the sample application.""" app_root = os.path.join(os.path.dirname(__file__), 'sample') os.chdir(app_root) sys.path.insert(0, os.getcwd()) self.conf = typhoonae.getAppConfig() assert self.conf.application == 'sample' def testSetupStubs(self): """Sets up apiproxy stubs.""" class TestOptions: blobstore_path = 'blobstore' datastore = 'mongodb' http_port = 8080 internal_address = 'localhost:8770' login_url = '/_ah/login' logout_url = '/_ah/logout' rdbms_sqlite_path = os.path.join(tempfile.gettempdir(), 'test.db') server_name = 'localhost' smtp_host = 'localhost' smtp_port = 25 smtp_user = '' smtp_password = '' use_celery = False websocket_host = 'localhost' websocket_port = 8888 xmpp_host = 'localhost' memcache = '' typhoonae.setupStubs(self.conf, TestOptions()) def testInitURLMapping(self): """Initializes the url/script map.""" class TestOptions: login_url = '/_ah/login' logout_url = '/_ah/logout' url_mapping = typhoonae.initURLMapping(self.conf, TestOptions()) for pattern, handler_path, path, login_required, admin_only in url_mapping: if pattern.match('/foo'): self.assertEqual(handler_path, 'app.py')
32.136986
83
0.631287
b60f1738b3a657723b66b568f27ccc89a2b212ad
4,614
py
Python
team_most_per.py
handshakinglemma/cwhlstatbot
fcb9fa8d27aafecc09845326935a2ddd18c21368
[ "MIT" ]
null
null
null
team_most_per.py
handshakinglemma/cwhlstatbot
fcb9fa8d27aafecc09845326935a2ddd18c21368
[ "MIT" ]
null
null
null
team_most_per.py
handshakinglemma/cwhlstatbot
fcb9fa8d27aafecc09845326935a2ddd18c21368
[ "MIT" ]
null
null
null
# team_most_per # Selects two random stats and returns the team with the most stat # per the other stat. It recalculates if more than two teams are tied # for most stat. Formats and returns a tweet. import random from decimal import * # team_most_per # Caluclates the most stat per stat. # INPUT: stats, player_dicts # The list of stats and the list of players' stat dictionaries. # OUTPUT: most_stat, most_player, tied_players, category1, category2 # The most calculated stat per stat, the name of the player # with the most stat, a list that may contain the name of a player # tied for most stat, and the two categories used to calculate the most # stat per stat. # (list, list) -> (float, str, list, str, str) def team_most_per(stats, player_dicts): # Generate two random stats categories. category1 = stats[random.randint(0, len(stats) - 1)] category2 = stats[random.randint(0, len(stats) - 1)] # Re-generate if the chosen categories are the same. if category1 == category2: category1 = stats[random.randint(0, len(stats) - 1)] category2 = stats[random.randint(0, len(stats) - 1)] # Initalize empty lists to catch stats for all teams. stat1 = [0, 0, 0, 0, 0] stat2 = [0, 0, 0, 0, 0] # statX[0] -> BOS # statX[1] -> BRA # statX[2] -> CAL # statX[3] -> MON # statX[4] -> TOR for d in player_dicts: if d['TEAM'] == 'BOS': stat1[0] += d[category1] stat2[0] += d[category2] elif d['TEAM'] == 'BRA': stat1[1] += d[category1] stat2[1] += d[category2] elif d['TEAM'] == 'CAL': stat1[2] += d[category1] stat2[2] += d[category2] elif d['TEAM'] == 'MON': stat1[3] += d[category1] stat2[3] += d[category2] elif d['TEAM'] == 'TOR': stat1[4] += d[category1] stat2[4] += d[category2] # Initialize empty variables to catch most values. most_stat = 0 most_team = None tied_teams = [] # Loop through all team stats. for i in range(len(stat1)): # Avoid division by 0. if stat2[i] > 0: # Calculate new stat! stat = stat1[i] / stat2[i] if stat > most_stat: most_stat = stat most_team = i tied_teams = [] elif stat == most_stat: tied_teams.append(i) # If there are more than two teams tied or if there was no # team calculated, recalculate. if len(tied_teams) > 1 or most_team == None: # TODO: write intersting output to a file most_stat, most_team, tied_teams, category1, category2 = team_most_per(stats, player_dicts) return most_stat, most_team, tied_teams, category1, category2 # tweet # Formats and returns the tweet. # INPUT: stats, player_dicts, abbreviations # The list of stats, the list of players' stat dictionaries, and the # dictonary of abbreviations for the various stats. # OUTPUT: The string of the tweet. def tweet(stats, player_dicts, abbreviations): # Get the data for the tweet. stat, team, tied, stat1, stat2 = team_most_per(stats, player_dicts) # Team abbreviations key. teams = ['Boston Blades', 'Brampton Thunder', 'Calgary Inferno', 'Canadiennes de Montreal', 'Toronto Furies'] # Make the tweet. # No tied teams. if len(tied) == 0: # If the stat has more than 5 decimal places, truncate it. if abs(Decimal(str(stat)).as_tuple().exponent) > 5: tweet = ('2015-16 Most ' + abbreviations[stat1] + ' per ' + abbreviations[stat2] + ':' + '\n' + 'The ' + teams[team] + ' with ' + '{:.3f}' + ' ' + stat1 + ' per ' + stat2).format(stat) else: tweet = '2015-16 Most ' + abbreviations[stat1] + ' per ' + abbreviations[stat2] + ':' + '\n' + 'The ' + teams[team] + ' with ' + str(stat) + ' ' + stat1 + ' per ' + stat2 # Two tied teams. elif len(tied) == 2: # If the stat has more than 5 decimal places, truncate it. if abs(Decimal(str(stat)).as_tuple().exponent) > 5: tweet = ('2015-16 Most ' + abbreviations[stat1] + ' per ' + abbreviations[stat2] + ':' + '\n' + 'The ' + teams[team] + ' and the ' + teams[tied[0]] + ' with ' + '{:.3f}' + ' ' + stat1 + ' per ' + stat2).format(stat) else: tweet = '2015-16 Most ' + abbreviations[stat1] + ' per ' + abbreviations[stat2] + ':' + '\n' + 'The ' + teams[team] + ' and the ' + teams[tied[0]] + ' with ' + str(stat) + ' ' + stat1 + ' per ' + stat2 return tweet
37.209677
227
0.587126
eec954a5fb777a920b3689466a40b726008164f7
343
py
Python
projects/learning-journal/brain-bit-ingestor/tests/event_hub/test_send_event.py
DEV3L/archive
652e37bf949cfcb2174b97ed5b7dbb6285a8dbe8
[ "Beerware" ]
null
null
null
projects/learning-journal/brain-bit-ingestor/tests/event_hub/test_send_event.py
DEV3L/archive
652e37bf949cfcb2174b97ed5b7dbb6285a8dbe8
[ "Beerware" ]
null
null
null
projects/learning-journal/brain-bit-ingestor/tests/event_hub/test_send_event.py
DEV3L/archive
652e37bf949cfcb2174b97ed5b7dbb6285a8dbe8
[ "Beerware" ]
null
null
null
from azure.eventhub import EventData from ingestor.builders.build_sender_client import build_sender_client message = "Hello, World!" def test_send(): expected_outcome = 'Ok' client, sender = build_sender_client() send_result = sender.send(EventData(message)) client.stop() assert expected_outcome == send_result.name
21.4375
69
0.752187
79766b2042464683cf452bad747d99c7a3f5f3e0
97
py
Python
genhmm1d/__init__.py
mamadouyamar/GenHMM1d
dc76946938b53be32e26218c21a373bc6663b13a
[ "MIT" ]
null
null
null
genhmm1d/__init__.py
mamadouyamar/GenHMM1d
dc76946938b53be32e26218c21a373bc6663b13a
[ "MIT" ]
null
null
null
genhmm1d/__init__.py
mamadouyamar/GenHMM1d
dc76946938b53be32e26218c21a373bc6663b13a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Sep 22 20:56:14 2020 @author: 49009427 """
10.777778
36
0.525773
79acce0e33a3d421696697b9ff0a24aca0da26be
1,700
py
Python
pommermanLearn/params.py
FrankPfirmann/playground
9379cbfd57d98eadcaf7b00d777434490a536540
[ "Apache-2.0" ]
null
null
null
pommermanLearn/params.py
FrankPfirmann/playground
9379cbfd57d98eadcaf7b00d777434490a536540
[ "Apache-2.0" ]
null
null
null
pommermanLearn/params.py
FrankPfirmann/playground
9379cbfd57d98eadcaf7b00d777434490a536540
[ "Apache-2.0" ]
2
2021-12-01T12:03:50.000Z
2022-03-22T16:37:34.000Z
from datetime import datetime import torch # train_dqn.py num_iterations = 500 episodes_per_iter = 1 gradient_steps_per_iter = 100 batch_size = 128 episodes_per_eval = 50 intermediate_test = 100 centralize_planes = False render_tests = False env = 'PommeRadio-v2' # PommeFFACompetition-v0, OneVsOne-v0. PommeTeamCompetition-v0, PommeRadio-v2, custom-v2, custom2-v2 p_observable = True crop_fog = False #rainbow_dqn double_q = True prioritized_replay = True device = torch.device("cpu") if not torch.cuda.is_available() else torch.device("cuda") run_name = datetime.now().strftime("%Y%m%dT%H%M%S") alpha = 0.7 beta = 0.7 # determines how replays should be weighted (beta==0 --> all weights are 1, beta==1 --> influence of replays is fully normalized) #categorical DQNc categorical = False atom_size = 51 v_min = -1 v_max = 1 dueling = True #noisy layers should replace epsilon greedy exploration noisy = True #n-step use_nstep = True nsteps = 10 #train_agent.py communicate = 2 use_memory = True #dqn.py seed = 1 # -1 for disabling setting a seed gamma = 0.99 tau = 0.005 lr_q = 0.0003 exploration_noise = 0.00 #data_generator.py set_position = False replay_size = 2**16 # must be a power of 2 to be compatible with prioritized replay max_steps = 800 #rewards.py reward_func = 'SkynetReward' #SkynetReward, BombReward fifo_size = 64 kill_rwd = 0.5 teamkill_rwd = -0.5 death_rwd = -0.5 win_loss_bonus = 0.5 step_rwd = 0.001 item_rwd = 0.03 bomb_tracker=True #models.py memory_method = 'forgetting' # one of 'counting', 'forgetting' forgetfullness = 0.01 normalize_steps = True def validate(): if use_memory: assert p_observable and not crop_fog if communicate: assert use_memory
22.077922
140
0.754118
dbead757a82e48ed720ac509837be907e1c84ca5
29,199
py
Python
src/tests/ftest/util/dmg_utils_base.py
zalsader/daos
38ec717e8380758dce844ae905719c225f8884d6
[ "BSD-2-Clause-Patent" ]
null
null
null
src/tests/ftest/util/dmg_utils_base.py
zalsader/daos
38ec717e8380758dce844ae905719c225f8884d6
[ "BSD-2-Clause-Patent" ]
null
null
null
src/tests/ftest/util/dmg_utils_base.py
zalsader/daos
38ec717e8380758dce844ae905719c225f8884d6
[ "BSD-2-Clause-Patent" ]
null
null
null
#!/usr/bin/python """ (C) Copyright 2020-2022 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ from socket import gethostname from command_utils_base import \ FormattedParameter, CommandWithParameters from command_utils import CommandWithSubCommand, YamlCommand class DmgCommandBase(YamlCommand): """Defines a base object representing a dmg command.""" def __init__(self, path, yaml_cfg=None): """Create a dmg Command object. Args: path (str): path to the dmg command yaml_cfg (DmgYamlParameters, optional): dmg config file settings. Defaults to None, in which case settings must be supplied as command-line parameters. """ super().__init__("/run/dmg/*", "dmg", path, yaml_cfg) # If running dmg on remote hosts, this list needs to include those hosts self.temporary_file_hosts = gethostname().split(".")[0:1] # If specified use the configuration file from the YamlParameters object default_yaml_file = None if self.yaml is not None and hasattr(self.yaml, "filename"): default_yaml_file = self.yaml.filename self._hostlist = FormattedParameter("-l {}") self.hostfile = FormattedParameter("-f {}") self.configpath = FormattedParameter("-o {}", default_yaml_file) self.insecure = FormattedParameter("-i", False) self.debug = FormattedParameter("-d", True) self.json = FormattedParameter("-j", False) @property def hostlist(self): """Get the hostlist that was set. Returns a string list. """ if self.yaml: hosts = self.yaml.hostlist.value else: hosts = self._hostlist.value.split(",") return hosts @hostlist.setter def hostlist(self, hostlist): """Set the hostlist to be used for dmg invocation. Args: hostlist (string list): list of host addresses """ if self.yaml: if not isinstance(hostlist, list): hostlist = hostlist.split(",") self.yaml.hostlist.update(hostlist, "dmg.yaml.hostlist") else: if isinstance(hostlist, list): hostlist = ",".join(hostlist) self._hostlist.update(hostlist, "dmg._hostlist") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg sub command object based upon the sub-command.""" if self.sub_command.value == "network": self.sub_command_class = self.NetworkSubCommand() elif self.sub_command.value == "pool": self.sub_command_class = self.PoolSubCommand() elif self.sub_command.value == "storage": self.sub_command_class = self.StorageSubCommand() elif self.sub_command.value == "system": self.sub_command_class = self.SystemSubCommand() elif self.sub_command.value == "cont": self.sub_command_class = self.ContSubCommand() elif self.sub_command.value == "config": self.sub_command_class = self.ConfigSubCommand() elif self.sub_command.value == "telemetry": self.sub_command_class = self.TelemetrySubCommand() elif self.sub_command.value == "version": self.sub_command_class = self.VersionSubCommand() else: self.sub_command_class = None class ConfigSubCommand(CommandWithSubCommand): """Defines an object for the dmg config sub command.""" def __init__(self): """Create a dmg config subcommand object.""" super(DmgCommandBase.ConfigSubCommand, self).__init__( "run/dmg/config/*", "config") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg config sub command object.""" if self.sub_command.value == "generate": self.sub_command_class = self.GenerateSubCommand() else: self.sub_command_class = None class GenerateSubCommand(CommandWithParameters): """Defines an object for the dmg config generate command.""" def __init__(self): """Create a dmg config generate object.""" super( DmgCommandBase.ConfigSubCommand.GenerateSubCommand, self).__init__( "/run/dmg/config/generate/*", "generate") self.access_points = FormattedParameter( "--access-points={}", None) self.num_engines = FormattedParameter("--num-engines={}", None) self.min_ssds = FormattedParameter("--min-ssds={}", None) self.net_class = FormattedParameter("--net-class={}", None) class ContSubCommand(CommandWithSubCommand): """Defines an object for the dmg cont sub command.""" def __init__(self): """Create a dmg cont subcommand object.""" super().__init__("/run/dmg/cont/*", "cont") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg cont sub command object.""" if self.sub_command.value == "set-owner": self.sub_command_class = self.SetownerSubCommand() else: self.sub_command_class = None class SetownerSubCommand(CommandWithParameters): """Defines an object for the dmg cont set-owner command.""" def __init__(self): """Create a dmg cont set-owner command object.""" super().__init__("/run/dmg/cont/set-owner/*", "set-owner") self.pool = FormattedParameter("--pool={}", None) self.cont = FormattedParameter("--cont={}", None) self.user = FormattedParameter("--user={}", None) self.group = FormattedParameter("--group={}", None) class NetworkSubCommand(CommandWithSubCommand): """Defines an object for the dmg network sub command.""" def __init__(self): """Create a dmg network subcommand object.""" super().__init__("/run/dmg/network/*", "network") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg network sub command object.""" if self.sub_command.value == "scan": self.sub_command_class = self.ScanSubCommand() else: self.sub_command_class = None class ScanSubCommand(CommandWithParameters): """Defines an object for the dmg network scan command.""" def __init__(self): """Create a dmg network scan command object.""" super().__init__("/run/dmg/network/scan/*", "scan") self.provider = FormattedParameter("-p {}", None) class PoolSubCommand(CommandWithSubCommand): """Defines an object for the dmg pool sub command.""" def __init__(self): """Create a dmg pool subcommand object.""" super().__init__("/run/dmg/pool/*", "pool") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg pool sub command object.""" if self.sub_command.value == "create": self.sub_command_class = self.CreateSubCommand() elif self.sub_command.value == "delete-acl": self.sub_command_class = self.DeleteAclSubCommand() elif self.sub_command.value == "destroy": self.sub_command_class = self.DestroySubCommand() elif self.sub_command.value == "get-acl": self.sub_command_class = self.GetAclSubCommand() elif self.sub_command.value == "list": self.sub_command_class = self.ListSubCommand() elif self.sub_command.value == "overwrite-acl": self.sub_command_class = self.OverwriteAclSubCommand() elif self.sub_command.value == "query": self.sub_command_class = self.QuerySubCommand() elif self.sub_command.value == "set-prop": self.sub_command_class = self.SetPropSubCommand() elif self.sub_command.value == "update-acl": self.sub_command_class = self.UpdateAclSubCommand() elif self.sub_command.value == "exclude": self.sub_command_class = self.ExcludeSubCommand() elif self.sub_command.value == "extend": self.sub_command_class = self.ExtendSubCommand() elif self.sub_command.value == "drain": self.sub_command_class = self.DrainSubCommand() elif self.sub_command.value == "reintegrate": self.sub_command_class = self.ReintegrateSubCommand() elif self.sub_command.value == "evict": self.sub_command_class = self.EvictSubCommand() else: self.sub_command_class = None class CreateSubCommand(CommandWithParameters): """Defines an object for the dmg pool create command.""" def __init__(self): """Create a dmg pool create command object.""" super().__init__("/run/dmg/pool/create/*", "create") self.group = FormattedParameter("--group={}", None) self.user = FormattedParameter("--user={}", None) self.acl_file = FormattedParameter("--acl-file={}", None) self.size = FormattedParameter("--size={}", None) self.tier_ratio = FormattedParameter("--tier-ratio={}", None) self.scm_size = FormattedParameter("--scm-size={}", None) self.nvme_size = FormattedParameter("--nvme-size={}", None) self.ranks = FormattedParameter("--ranks={}", None) self.nsvc = FormattedParameter("--nsvc={}", None) self.sys = FormattedParameter("--sys={}", None) self.properties = FormattedParameter("--properties={}", None) self.label = FormattedParameter("--label={}", None) self.nranks = FormattedParameter("--nranks={}", None) class ExcludeSubCommand(CommandWithParameters): """Defines an object for the dmg pool exclude command.""" def __init__(self): """Create a dmg pool exclude command object.""" super().__init__("/run/dmg/pool/exclude/*", "exclude") self.pool = FormattedParameter("{}", None) self.rank = FormattedParameter("--rank={}", None) self.tgt_idx = FormattedParameter("--target-idx={}", None) class ExtendSubCommand(CommandWithParameters): """Defines an object for the dmg pool extend command.""" def __init__(self): """Create a dmg pool extend command object.""" super().__init__("/run/dmg/pool/extend/*", "extend") self.pool = FormattedParameter("{}", None) self.ranks = FormattedParameter("--ranks={}", None) class DrainSubCommand(CommandWithParameters): """Defines an object for the dmg pool drain command.""" def __init__(self): """Create a dmg pool drain command object.""" super().__init__("/run/dmg/pool/drain/*", "drain") self.pool = FormattedParameter("{}", None) self.rank = FormattedParameter("--rank={}", None) self.tgt_idx = FormattedParameter("--target-idx={}", None) class ReintegrateSubCommand(CommandWithParameters): """Defines an object for dmg pool reintegrate command.""" def __init__(self): """Create a dmg pool reintegrate command object.""" super().__init__("/run/dmg/pool/reintegrate/*", "reintegrate") self.pool = FormattedParameter("{}", None) self.rank = FormattedParameter("--rank={}", None) self.tgt_idx = FormattedParameter("--target-idx={}", None) class DeleteAclSubCommand(CommandWithParameters): """Defines an object for the dmg pool delete-acl command.""" def __init__(self): """Create a dmg pool delete-acl command object.""" super().__init__("/run/dmg/pool/delete-acl/*", "delete-acl") self.pool = FormattedParameter("{}", None) self.principal = FormattedParameter("-p {}", None) class DestroySubCommand(CommandWithParameters): """Defines an object for the dmg pool destroy command.""" def __init__(self): """Create a dmg pool destroy command object.""" super().__init__("/run/dmg/pool/destroy/*", "destroy") self.pool = FormattedParameter("{}", None) self.sys_name = FormattedParameter("--sys-name={}", None) self.force = FormattedParameter("--force", False) class GetAclSubCommand(CommandWithParameters): """Defines an object for the dmg pool get-acl command.""" def __init__(self): """Create a dmg pool get-acl command object.""" super().__init__("/run/dmg/pool/get-acl/*", "get-acl") self.pool = FormattedParameter("{}", None) class ListSubCommand(CommandWithParameters): """Defines an object for the dmg pool list command.""" def __init__(self): """Create a dmg pool list command object.""" super().__init__("/run/dmg/pool/list/*", "list") self.no_query = FormattedParameter("--no-query", False) self.verbose = FormattedParameter("--verbose", False) class OverwriteAclSubCommand(CommandWithParameters): """Defines an object for the dmg pool overwrite-acl command.""" def __init__(self): """Create a dmg pool overwrite-acl command object.""" super().__init__( "/run/dmg/pool/overwrite-acl/*", "overwrite-acl") self.pool = FormattedParameter("{}", None) self.acl_file = FormattedParameter("-a {}", None) class QuerySubCommand(CommandWithParameters): """Defines an object for the dmg pool query command.""" def __init__(self): """Create a dmg pool query command object.""" super().__init__("/run/dmg/pool/query/*", "query") self.pool = FormattedParameter("{}", None) class SetPropSubCommand(CommandWithParameters): """Defines an object for the dmg pool set-prop command.""" def __init__(self): """Create a dmg pool set-prop command object.""" super().__init__("/run/dmg/pool/set-prop/*", "set-prop") self.pool = FormattedParameter("{}", None) self.name = FormattedParameter("--name={}", None) self.value = FormattedParameter("--value={}", None) class UpdateAclSubCommand(CommandWithParameters): """Defines an object for the dmg pool update-acl command.""" def __init__(self): """Create a dmg pool update-acl command object.""" super().__init__("/run/dmg/pool/update-acl/*", "update-acl") self.pool = FormattedParameter("{}", None) self.acl_file = FormattedParameter("-a {}", None) self.entry = FormattedParameter("-e {}", None) class EvictSubCommand(CommandWithParameters): """Defines an object for the dmg pool evict command.""" def __init__(self): """Create a dmg pool evict command object.""" super().__init__("/run/dmg/pool/evict/*", "evict") self.pool = FormattedParameter("{}", None) self.sys = FormattedParameter("--sys={}", None) class StorageSubCommand(CommandWithSubCommand): """Defines an object for the dmg storage sub command.""" def __init__(self): """Create a dmg storage subcommand object.""" super().__init__("/run/dmg/storage/*", "storage") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg storage sub command object.""" if self.sub_command.value == "format": self.sub_command_class = self.FormatSubCommand() elif self.sub_command.value == "query": self.sub_command_class = self.QuerySubCommand() elif self.sub_command.value == "scan": self.sub_command_class = self.ScanSubCommand() elif self.sub_command.value == "set": self.sub_command_class = self.SetSubCommand() else: self.sub_command_class = None class FormatSubCommand(CommandWithParameters): """Defines an object for the dmg storage format command.""" def __init__(self): """Create a dmg storage format command object.""" super().__init__("/run/dmg/storage/format/*", "format") self.verbose = FormattedParameter("--verbose", False) self.force = FormattedParameter("--force", False) class QuerySubCommand(CommandWithSubCommand): """Defines an object for the dmg storage query command.""" def __init__(self): """Create a dmg storage query command object.""" super().__init__("/run/dmg/storage/query/*", "query") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg storage query sub command object.""" if self.sub_command.value == "target-health": self.sub_command_class = self.TargetHealthSubCommand() elif self.sub_command.value == "device-health": self.sub_command_class = self.DeviceHealthSubCommand() elif self.sub_command.value == "list-devices": self.sub_command_class = self.ListDevicesSubCommand() elif self.sub_command.value == "list-pools": self.sub_command_class = self.ListPoolsSubCommand() else: self.sub_command_class = None class TargetHealthSubCommand(CommandWithParameters): """Defines a dmg storage query target-health object.""" def __init__(self): """Create a dmg storage query target-health object.""" super().__init__( "/run/dmg/storage/query/target-health/*", "target-health") self.rank = FormattedParameter("-r {}", None) self.tgtid = FormattedParameter("-t {}", None) class DeviceHealthSubCommand(CommandWithParameters): """Defines a dmg storage query device-health object.""" def __init__(self): """Create a dmg storage query device-health object.""" super().__init__( "/run/dmg/storage/query/device-health/*", "device-health") self.uuid = FormattedParameter("-u {}", None) class ListDevicesSubCommand(CommandWithParameters): """Defines a dmg storage query list-devices object.""" def __init__(self): """Create a dmg storage query list-devices object.""" super().__init__( "/run/dmg/storage/query/list-devices/*", "list-devices") self.rank = FormattedParameter("-r {}", None) self.uuid = FormattedParameter("-u {}", None) self.health = FormattedParameter("-b", False) class ListPoolsSubCommand(CommandWithParameters): """Defines a dmg storage query list-pools object.""" def __init__(self): """Create a dmg storage query list-pools object.""" super().__init__( "/run/dmg/storage/query/list-pools/*", "list-pools") self.rank = FormattedParameter("-r {}", None) self.uuid = FormattedParameter("-u {}", None) self.verbose = FormattedParameter("--verbose", False) class ScanSubCommand(CommandWithParameters): """Defines an object for the dmg storage scan command.""" def __init__(self): """Create a dmg storage scan command object.""" super().__init__("/run/dmg/storage/scan/*", "scan") self.nvme_health = FormattedParameter("--nvme-health", False) self.verbose = FormattedParameter("--verbose", False) class SetSubCommand(CommandWithSubCommand): """Defines an object for the dmg storage set command.""" def __init__(self): """Create a dmg storage set command object.""" super().__init__("/run/dmg/storage/set/*", "set") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg set sub command object.""" if self.sub_command.value == "nvme-faulty": self.sub_command_class = self.NvmeFaultySubCommand() else: self.sub_command_class = None class NvmeFaultySubCommand(CommandWithParameters): """Defines a dmg storage set nvme-faulty object.""" def __init__(self): """Create a dmg storage set nvme-faulty object.""" super().__init__( "/run/dmg/storage/query/device-state/*", "nvme-faulty") self.uuid = FormattedParameter("-u {}", None) self.force = FormattedParameter("--force", False) class SystemSubCommand(CommandWithSubCommand): """Defines an object for the dmg system sub command.""" def __init__(self): """Create a dmg system subcommand object.""" super().__init__("/run/dmg/system/*", "system") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg system sub command object.""" if self.sub_command.value == "leader-query": self.sub_command_class = self.LeaderQuerySubCommand() elif self.sub_command.value == "list-pools": self.sub_command_class = self.ListPoolsSubCommand() elif self.sub_command.value == "query": self.sub_command_class = self.QuerySubCommand() elif self.sub_command.value == "start": self.sub_command_class = self.StartSubCommand() elif self.sub_command.value == "stop": self.sub_command_class = self.StopSubCommand() elif self.sub_command.value == "erase": self.sub_command_class = self.EraseSubCommand() elif self.sub_command.value == "cleanup": self.sub_command_class = self.CleanupSubCommand() else: self.sub_command_class = None class LeaderQuerySubCommand(CommandWithParameters): """Defines an object for the dmg system leader-query command.""" def __init__(self): """Create a dmg system leader-query command object.""" super().__init__( "/run/dmg/system/leader-query/*", "leader-query") class ListPoolsSubCommand(CommandWithParameters): """Defines an object for the dmg system list-pools command.""" def __init__(self): """Create a dmg system list-pools command object.""" super().__init__("/run/dmg/system/list-pools/*", "list-pools") class QuerySubCommand(CommandWithParameters): """Defines an object for the dmg system query command.""" def __init__(self): """Create a dmg system query command object.""" super().__init__("/run/dmg/system/query/*", "query") self.ranks = FormattedParameter("--ranks={}") self.verbose = FormattedParameter("--verbose", False) class CleanupSubCommand(CommandWithParameters): """Defines an object for the dmg system cleanup command.""" def __init__(self): """Create a dmg system cleanup command object.""" super().__init__("/run/dmg/system/cleanup/*", "cleanup") self.machinename = FormattedParameter("{}", None) self.verbose = FormattedParameter("--verbose", False) class StartSubCommand(CommandWithParameters): """Defines an object for the dmg system start command.""" def __init__(self): """Create a dmg system start command object.""" super().__init__("/run/dmg/system/start/*", "start") self.ranks = FormattedParameter("--ranks={}") self.rank_hosts = FormattedParameter("--rank-hosts={}") class StopSubCommand(CommandWithParameters): """Defines an object for the dmg system stop command.""" def __init__(self): """Create a dmg system stop command object.""" super().__init__("/run/dmg/system/stop/*", "stop") self.force = FormattedParameter("--force", False) self.ranks = FormattedParameter("--ranks={}") class EraseSubCommand(CommandWithParameters): """Defines an object for the dmg system erase command.""" def __init__(self): """Create a dmg system erase command object.""" super().__init__( "/run/dmg/system/erase/*", "erase") class TelemetrySubCommand(CommandWithSubCommand): """Defines an object for the dmg telemetry sub command.""" def __init__(self): """Create a dmg telemetry subcommand object.""" super().__init__("/run/dmg/telemetry/*", "telemetry") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg telemetry sub command object.""" if self.sub_command.value == "metrics": self.sub_command_class = self.MetricsSubCommand() else: self.sub_command_class = None class MetricsSubCommand(CommandWithSubCommand): """Defines an object for the dmg telemetry metrics command.""" def __init__(self): """Create a dmg telemetry metrics command object.""" super().__init__("/run/dmg/telemetry/metrics/*", "metrics") def get_sub_command_class(self): # pylint: disable=redefined-variable-type """Get the dmg telemetry metrics sub command object.""" if self.sub_command.value == "list": self.sub_command_class = self.ListSubCommand() elif self.sub_command.value == "query": self.sub_command_class = self.QuerySubCommand() else: self.sub_command_class = None class ListSubCommand(CommandWithParameters): """Defines a dmg telemetry metrics list object.""" def __init__(self): """Create a dmg telemetry metrics list object.""" super().__init__( "/run/dmg/telemetry/metrics/list/*", "list") self.host = FormattedParameter("--host-list={}", None) self.port = FormattedParameter("--port={}", None) class QuerySubCommand(CommandWithParameters): """Defines a dmg telemetry metrics query object.""" def __init__(self): """Create a dmg telemetry metrics query object.""" super().__init__( "/run/dmg/telemetry/metrics/query/*", "query") self.host = FormattedParameter("--host-list={}", None) self.port = FormattedParameter("--port={}", None) self.metrics = FormattedParameter("--metrics={}", None) class VersionSubCommand(CommandWithSubCommand): """Defines an object for the dmg version sub command.""" def __init__(self): """Create a dmg version subcommand object.""" super(DmgCommandBase.VersionSubCommand, self).__init__( "/run/dmg/version/*", "version")
46.127962
80
0.568924
0fee08732c5ecdc0064f501763a1486fbf9963ea
1,170
py
Python
xidplus/numpyro_fit/misc.py
MCarmenCampos/XID_plus
c031366b48486d229ac96d4eb4f547faf5227c25
[ "MIT" ]
null
null
null
xidplus/numpyro_fit/misc.py
MCarmenCampos/XID_plus
c031366b48486d229ac96d4eb4f547faf5227c25
[ "MIT" ]
null
null
null
xidplus/numpyro_fit/misc.py
MCarmenCampos/XID_plus
c031366b48486d229ac96d4eb4f547faf5227c25
[ "MIT" ]
null
null
null
import jax import pickle import functools from xidplus.numpyro_fit.neuralnet_models import CIGALE_emulator, CIGALE_emulator_kasia import numpy as np @functools.partial(jax.jit, static_argnums=(2)) def sp_matmul(A, B, shape): """ http://gcucurull.github.io/deep-learning/2020/06/03/jax-sparse-matrix-multiplication/ Arguments: A: (N, M) sparse matrix represented as a tuple (indexes, values) B: (M,K) dense matrix shape: value of N Returns: (N, K) dense matrix """ #assert B.ndim == 2 indexes, values = A rows, cols = indexes in_ = B.take(cols, axis=-2) prod = in_*values[:, None] res = jax.ops.segment_sum(prod, rows, shape) return res def load_emulator(filename): #read in net params x=np.load(filename, allow_pickle=True) net_init,net_apply=CIGALE_emulator() return {'net_init':net_init,'net_apply':net_apply,'params':x['arr_0'].tolist()} def load_emulatorII(filename): #read in net params x=np.load(filename, allow_pickle=True) net_init,net_apply=CIGALE_emulator_kasia() return {'net_init':net_init,'net_apply':net_apply,'params':x['arr_0'].tolist()}
30.789474
89
0.688034
23d5d455f36f59d5f4aa798163329fbe27f7a6e5
13,299
py
Python
edr_explorer/interface.py
informatics-lab/edr_explorer
80b0572e73569e5106d0a80ca44cc28c22f15974
[ "BSD-3-Clause" ]
null
null
null
edr_explorer/interface.py
informatics-lab/edr_explorer
80b0572e73569e5106d0a80ca44cc28c22f15974
[ "BSD-3-Clause" ]
31
2021-11-12T16:54:05.000Z
2022-03-25T14:10:07.000Z
edr_explorer/interface.py
informatics-lab/edr_explorer
80b0572e73569e5106d0a80ca44cc28c22f15974
[ "BSD-3-Clause" ]
null
null
null
import re from edr_explorer.data import DataHandler from .data import DataHandler from .lookup import CRS_LOOKUP, TRS_LOOKUP from .util import dict_list_search, get_request, ISO8601Expander class EDRInterface(object): """ An interface to an EDR Server that can navigate the query structure to return data payloads in CoverageJSON format from the EDR Server. """ _collections_query_str = "collections/?f=json" _query_str = "collections/{coll_id}/{query_type}?{query_str}" def __init__(self, server_host): """ Construct an interface to an EDR Server accessible at the URI specified in `server_host` and request the `collections` metadata from the server. """ self.server_host = server_host self._errors = None self._data_handler = None self.json = self._get_covjson(self._collections_query_str) self.collections = self._get_collections() self.collection_ids = self._get_collection_ids() self.collection_titles = self._get_collection_titles() @property def errors(self): return self._errors @errors.setter def errors(self, value): self._errors = value @property def data_handler(self): return self._data_handler @data_handler.setter def data_handler(self, value): self._data_handler = value def __repr__(self): n_colls = len(self.collections) max_id_len = max([len(c_id) for c_id in self.collection_ids]) str_result = f"EDR Interface to {n_colls} collection{'s' if n_colls>1 else ''}:\n" header = f" # {'ID'.ljust(max_id_len, ' ')} Title\n" str_result += header line = " {i} {c_id} {c_title}\n" for i in range(len(self.collection_ids)): c_id_str = self.collection_ids[i] c_id_block = c_id_str.ljust(max_id_len-len(c_id_str)+2, ' ') str_result += line.format(i=i, c_id=c_id_block, c_title=self.collection_titles[i]) return str_result def _get_covjson(self, query_str, full_uri=False): """Make a request to the EDR Server and return the (coverage) JSON response.""" self.errors = None if full_uri: uri = query_str else: uri = f"{self.server_host}/{query_str}" result, status_code, errors = get_request(uri) if errors is not None: emsg = errors if status_code is not None: emsg += f" ({status_code})" self.errors = emsg return result def _get_collections(self): return self.json["collections"] if self.json is not None else None def _get_collection_ids(self): return [c["id"] for c in self.collections] if self.json is not None else None def _get_collection_titles(self): return [c["title"] for c in self.collections] if self.json is not None else None def _get_link(self, coll_id, key, query_ref): """ Retrieve a link url embedded in collection metadata. Typically these links describe how to retrieve specific data from the server. """ coll = self.get_collection(coll_id) if key == "links": links = [itm["href"] for itm in coll[key]] if isinstance(query_ref, int): link = links[query_ref] elif isinstance(query_ref, str): link = filter(lambda l: query_ref in l, links) else: raise KeyError(f"Invalid link reference: {query_ref!r} (type {type(query_ref)}.)") elif key == "data_queries": link = coll[key][query_ref]["link"]["href"] else: raise ValueError(f"Cannot extract links from collection key {key!r}.") return link def _get_locations_json(self, keys): """Get JSON data from the server from a `locations` query.""" coll = self.get_collection(keys) locs_query_uri = self._get_link(keys, "data_queries", "locations") named_query_uri = locs_query_uri.replace("name", coll["id"]) return self._get_covjson(named_query_uri, full_uri=True) def _handle_label(self, label_item): """ Labels in EDR can either be provided directly, or in a dict with one or more locales; respectively: * "label": "my_label", or * "label": {"en": "my_label", ...} This helper handles either provision, and returns the locale-specific label, if provided by the server. """ locale = "en" # This could be set globally in future. try: label = label_item.get(locale) except AttributeError: label = label_item return label def get_collection(self, keys): """ Get the JSON metadata of a specific collection in the list of collections provided by the EDR Server and listed in the response from the `collections` query. The specific collection is selected by the value of `keys`, which may be one of the following: * an int describing the index of the collection in the list of collections * a string containing the value of the `id` parameter of a collection * a string containing the value of the `title` parameter of a collection """ idx = None if isinstance(keys, int): idx = keys # XXX this could be replaced with `dict_list_search`. else: for i, coll in enumerate(self.collections): coll_keys = [coll["id"], coll["title"]] if keys in coll_keys: idx = i if idx is None: emsg = f"Collection {keys!r} could not be found." raise KeyError(emsg) return self.collections[idx] def get_locations(self, keys): """ Make a `locations` request to the EDR Server and return a list of IDs of defined locations in the collection defined by `keys`. """ result = [None] if "locations" in self.get_query_types(keys): locs_json = self._get_locations_json(keys) result = [d["id"] for d in locs_json["features"]] return result def get_location_extents(self, keys, feature_id): """ Make a `locations` request to the EDR Server and return the bounding-box geometry of a specific location defined by: * the collection specified by `keys` * the location specified by `feature_id`. """ locs_json = self._get_locations_json(keys) feature_json = dict_list_search(locs_json["features"], "id", feature_id) return feature_json["geometry"] def get_spatial_extent(self, keys): """ Return the spatial (bounding-box) extent of the collection defined by `keys`. """ coll = self.get_collection(keys) return coll["extent"]["spatial"]["bbox"] def has_temporal_extent(self, keys): """Determine whether a collection described by `keys` has a temporal extent section.""" coll = self.get_collection(keys) extent = coll["extent"].get("temporal") return extent is not None def get_temporal_extent(self, keys): """ Return the time coordinate points for the collection defined by `keys`. """ coll = self.get_collection(keys) times = coll["extent"]["temporal"] try: t_values = times["values"] except KeyError: t_values = times["interval"] datetime_strings = [] for value in t_values: datetime_gen = ISO8601Expander(value) datetime_strings.extend(datetime_gen.datetime_strings) return datetime_strings def has_vertical_extent(self, keys): """Determine whether a collection described by `keys` has a vertical extent section.""" coll = self.get_collection(keys) extent = coll["extent"].get("vertical") return extent is not None def get_vertical_extent(self, keys): """ Return the vertical coordinate points for the collection defined by `keys`. """ coll = self.get_collection(keys) vertical = coll["extent"]["vertical"] z_desc_keys = ["interval", "values"] return vertical[z_desc_keys[1]] # Presume we'll have explicit values. def get_query_types(self, keys): """Return a list of the query types supported against a collection defined by `keys`.""" coll = self.get_collection(keys) return list(coll['data_queries'].keys()) def get_collection_parameters(self, keys): """ Get descriptions of the datasets (that is, environmental quantities / parameters / phenomena) provided by a collection defined by `keys`. """ coll = self.get_collection(keys) params_dict = {} for param_id, param_desc in coll["parameter_names"].items(): label_provider = param_desc["observedProperty"]["label"] label = self._handle_label(label_provider) units = param_desc["unit"]["symbol"]["value"] params_dict[param_id] = {"label": label, "units": units} return params_dict def query_position(self): """ Request data values and coordinate point arrays for a specific dataset provided by the EDR Server. A `position` request is one of the specifically defined query types in EDR, along with `location` and `items`, and is used for returning data at a particular location. """ raise NotImplemented def query_items(self): """ Request predefined data objects the EDR Server. An `items` request is one of the specifically defined query types in EDR, along with `position` and `location`. It is used for returning whole dataset objects, such as NetCDF files. """ raise NotImplementedError def _query(self, coll_id, query_type, param_names=None, **query_kwargs): """Run a query to return data from the EDR Server.""" coll = self.get_collection(coll_id) # Set up the dict to format the query string based on query type. format_dict = dict(coll_id=coll["id"]) if query_type == "locations": loc_id = query_kwargs.pop("loc_id") format_dict["query_type"] = f"locations/{loc_id}" else: format_dict["query_type"] = query_type # Construct the query string for the request. parameter_str = "{key}={value}" query_items = [parameter_str.format(key=k, value=v) for k, v in query_kwargs.items()] if param_names is not None: if not isinstance(param_names, str): param_names = ",".join(param_names) query_items.append(parameter_str.format(key="parameter-name", value=param_names)) query_str = "&".join(query_items) format_dict["query_str"] = query_str # Make the request and set up the data handler from the response. query_uri = self._query_str.format(**format_dict) print(query_uri) data_json = self._get_covjson(query_uri) self.data_handler = DataHandler(data_json) def query(self, coll_id, query_type, param_names=None, **query_kwargs): """ Define a generic query to submit to the EDR Server. Args and kwargs: * `coll_id` is an identifier for a collection * `query_type` is a valid query type to submit to the EDR Server. This can be one of `radius`, `area`, `cube`, `trajectory`, `corridor`, `position`, `locations`, `items`; note that not all query types are guaranteed to be supported by the EDR Server. An `AssertionError` will be raised if the query type is not supported by the EDR Server. If `query_type` is set to `locations`, a location ID **must** be specified in the query kwargs using the key `loc_id`. * `param_names`: names of parameters, available in the collection defined by `coll_id`, to return data for. * `query_kwargs`: parameters to construct the parameter string of the query. Valid parameters vary between query types; check the EDR documentation for more information. Common parameter **keys** include `coords`, `parameter-name`, `z`, `datetime`, `crs` and `f` (for return type of the result from the EDR Server). **Values** _must_ be appropriately formatted strings. Note: it is up to the calling scope to ensure that valid query kwargs are passed. No parameter validation is performed here; a query will be constructed and submitted to the EDR Server without further checks. """ self.data_handler = None # Reset the `data_handler` attribute. # Confirm the EDR Server can handle the sort of query requested. available_query_types = self.get_query_types(coll_id) if query_type in available_query_types: self._query(coll_id, query_type, param_names=param_names, **query_kwargs) else: self.errors = f"Query type {query_type!r} not supported by server."
40.057229
103
0.629295
59ab9d70d8fa277834b377071381b3c6387ccd67
2,854
py
Python
seed/seed.py
julianadecarvalho/HearTrans-front-end
b72b0d3337fca30276102b73c5dee1e1f1342db1
[ "MIT" ]
1
2022-01-24T09:34:41.000Z
2022-01-24T09:34:41.000Z
seed/seed.py
julianadecarvalho/HearTrans-front-end
b72b0d3337fca30276102b73c5dee1e1f1342db1
[ "MIT" ]
null
null
null
seed/seed.py
julianadecarvalho/HearTrans-front-end
b72b0d3337fca30276102b73c5dee1e1f1342db1
[ "MIT" ]
1
2021-08-10T16:30:04.000Z
2021-08-10T16:30:04.000Z
# # import requests # # import json # # url = "http://heartrans-back.herokuapp.com/providers/" # # payload = json.dumps({ # # "fullName": "Sydney Woolston", # # "otherNames": [ # # "Sydney Woolston" # # ], # # "titles": [ # # "License Mental Health Counselor Associate" # # ], # # "specialties": ["Psychology"], # # "services": [ # # "Couples/Relationship therapy", # # "Individual therapy" # # ], # # "languages": ["English"], # # "remoteVisits": True, # # "slidingScalePay": False # # }) # # headers = { # # 'Content-Type': 'application/json' # # } # # response = requests.request("POST", url, headers=headers, data=payload) # # print(response.text) # import requests # import json # # provider request bodies # url = "http://heartrans-back.herokuapp.com/providers/" # payload = json.dumps({ # "fullName": "Chester Robachinski", # "otherNames": [ # "Chet Robachinski" # ], # "titles": [ # "MD" # ], # "specialties": "Psychiatry", # "services": [ # "Couples/Relationship therapy", # "Individual therapy", # "Medication management" # ], # "languages": ["English"], # "remoteVisits": True, # "slidingScalePay": False # }) # headers = { # 'Content-Type': 'application/json' # } # response = requests.request("POST", url, headers=headers, data=payload) # print(response.text) # url = "http://heartrans-back.herokuapp.com/providers/" # payload = json.dumps({ # "fullName": "Sydney Woolston", # "otherNames": [ # "Sydney Woolston" # ], # "titles": [ # "MD" # ], # "specialties": ["Psychology"], # "services": [ # "Couples/Relationship therapy", # "Individual therapy", # ], # "languages": ["English"], # "remoteVisits": True, # "slidingScalePay": False # }) # headers = { # 'Content-Type': 'application/json' # } # response = requests.request("POST", url, headers=headers, data=payload) # print(response.text) # url = "http://heartrans-back.herokuapp.com/providers/" # payload = json.dumps({ # "fullName": "Rebecca Virata", # "otherNames": [ # "Rebecca Virata" # ], # "titles": [ # "MD" # ], # "specialties": ["Primary Care"], # "services": [ # "COVID-19 Testing" # ], # "languages": ["English"], # "remoteVisits": True, # "slidingScalePay": False # }) # headers = { # 'Content-Type': 'application/json' # } # response = requests.request("POST", url, headers=headers, data=payload) # print(response.text) # # location request bodies # url = "http://heartrans-back.herokuapp.com/locations/new/" # ​ # payload={} # headers = {} # ​ # response = requests.request("POST", url, headers=headers, data=payload) # ​ # print(response.text)
25.256637
75
0.564121
1789495f361718add91af2ef1aecdbbec90f4e80
1,260
py
Python
tools/gcp-org-hierarchy-viewer/setup.py
ruchirjain86/professional-services
739ac0f5ffc8237f750804fa9f0f14d4d918a0fa
[ "Apache-2.0" ]
24
2019-03-05T19:23:23.000Z
2022-01-24T18:21:33.000Z
tools/gcp-org-hierarchy-viewer/setup.py
ruchirjain86/professional-services
739ac0f5ffc8237f750804fa9f0f14d4d918a0fa
[ "Apache-2.0" ]
6
2020-01-28T22:42:21.000Z
2021-10-30T05:50:15.000Z
tools/gcp-org-hierarchy-viewer/setup.py
ruchirjain86/professional-services
739ac0f5ffc8237f750804fa9f0f14d4d918a0fa
[ "Apache-2.0" ]
13
2019-10-27T18:49:32.000Z
2022-03-06T00:02:21.000Z
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup setup(name='gcp-org-hierarchy-viewer', version='1.0', license='Apache v2.0', author='Paul Durivage', author_email='durivage@google.com', description='Tool to visualize a Google Cloud organization hierarchy on ' 'the command line', scripts=['gcpohv_cli.py'], entry_points={'console_scripts': ['gcpohv=gcpohv_cli:main']}, install_requires=[ 'google-api-python-client>=1.7.8', 'asciitree==0.3.3', ], classifiers=[ 'Programming Language :: Python :: 3.7' 'Programming Language :: Python :: 3.6' 'Programming Language :: Python :: 3.5' ])
36
79
0.674603
5a6e877b423eff9a936242404288c3f901894adb
8,936
py
Python
kmip/tests/unit/core/factories/payloads/test_response.py
ondrap/PyKMIP
c8ea17d8faf827e0f9d004972835128a1a71569f
[ "Apache-2.0" ]
179
2015-03-20T06:08:59.000Z
2022-03-14T02:24:38.000Z
kmip/tests/unit/core/factories/payloads/test_response.py
imharshr/PyKMIP
9403ff3d2aa83de4c786b8eedeb85d169fd4a594
[ "Apache-2.0" ]
600
2015-04-08T14:14:48.000Z
2022-03-28T13:49:47.000Z
kmip/tests/unit/core/factories/payloads/test_response.py
imharshr/PyKMIP
9403ff3d2aa83de4c786b8eedeb85d169fd4a594
[ "Apache-2.0" ]
131
2015-03-30T12:51:49.000Z
2022-03-23T04:34:34.000Z
# Copyright (c) 2014 The Johns Hopkins University/Applied Physics Laboratory # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import testtools from kmip.core import enums from kmip.core.factories.payloads.response import ResponsePayloadFactory from kmip.core.messages import payloads class TestResponsePayloadFactory(testtools.TestCase): def setUp(self): super(TestResponsePayloadFactory, self).setUp() self.factory = ResponsePayloadFactory() def tearDown(self): super(TestResponsePayloadFactory, self).tearDown() def _test_not_implemented(self, func, args): self.assertRaises(NotImplementedError, func, args) def _test_payload_type(self, payload, payload_type): msg = "expected {0}, received {1}".format(payload_type, payload) self.assertIsInstance(payload, payload_type, msg) def test_create_create_payload(self): payload = self.factory.create(enums.Operation.CREATE) self._test_payload_type(payload, payloads.CreateResponsePayload) def test_create_create_key_pair_payload(self): payload = self.factory.create(enums.Operation.CREATE_KEY_PAIR) self._test_payload_type( payload, payloads.CreateKeyPairResponsePayload ) def test_create_register_payload(self): payload = self.factory.create(enums.Operation.REGISTER) self._test_payload_type(payload, payloads.RegisterResponsePayload) def test_create_rekey_payload(self): payload = self.factory.create(enums.Operation.REKEY) self._test_payload_type(payload, payloads.RekeyResponsePayload) def test_create_derive_key_payload(self): payload = self.factory.create(enums.Operation.DERIVE_KEY) self._test_payload_type(payload, payloads.DeriveKeyResponsePayload) def test_create_certify_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.CERTIFY ) def test_create_recertify_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.RECERTIFY ) def test_create_locate_payload(self): payload = self.factory.create(enums.Operation.LOCATE) self._test_payload_type(payload, payloads.LocateResponsePayload) def test_create_check_payload(self): payload = self.factory.create(enums.Operation.CHECK) self._test_payload_type(payload, payloads.CheckResponsePayload) def test_create_get_payload(self): payload = self.factory.create(enums.Operation.GET) self._test_payload_type(payload, payloads.GetResponsePayload) def test_create_get_attributes_payload(self): payload = self.factory.create(enums.Operation.GET_ATTRIBUTES) self._test_payload_type( payload, payloads.GetAttributesResponsePayload ) def test_create_get_attributes_list_payload(self): payload = self.factory.create(enums.Operation.GET_ATTRIBUTE_LIST) self._test_payload_type( payload, payloads.GetAttributeListResponsePayload ) def test_create_add_attribute_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.ADD_ATTRIBUTE ) def test_create_modify_attribute_payload(self): payload = self.factory.create(enums.Operation.MODIFY_ATTRIBUTE) self.assertIsInstance(payload, payloads.ModifyAttributeResponsePayload) def test_create_delete_attribute_payload(self): payload = self.factory.create(enums.Operation.DELETE_ATTRIBUTE) self.assertIsInstance(payload, payloads.DeleteAttributeResponsePayload) def test_create_set_attribute_payload(self): payload = self.factory.create(enums.Operation.SET_ATTRIBUTE) self.assertIsInstance(payload, payloads.SetAttributeResponsePayload) def test_create_obtain_lease_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.OBTAIN_LEASE ) def test_create_get_usage_allocation_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.GET_USAGE_ALLOCATION) def test_create_activate_payload(self): payload = self.factory.create(enums.Operation.ACTIVATE) self._test_payload_type(payload, payloads.ActivateResponsePayload) def test_create_revoke_payload(self): payload = self.factory.create(enums.Operation.REVOKE) self._test_payload_type(payload, payloads.RevokeResponsePayload) def test_create_destroy_payload(self): payload = self.factory.create(enums.Operation.DESTROY) self._test_payload_type(payload, payloads.DestroyResponsePayload) def test_create_archive_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.ARCHIVE ) def test_create_recover_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.RECOVER ) def test_create_validate_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.VALIDATE ) def test_create_query_payload(self): payload = self.factory.create(enums.Operation.QUERY) self._test_payload_type(payload, payloads.QueryResponsePayload) def test_create_cancel_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.CANCEL ) def test_create_poll_payload(self): self._test_not_implemented(self.factory.create, enums.Operation.POLL) def test_create_notify_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.NOTIFY ) def test_create_put_payload(self): self._test_not_implemented(self.factory.create, enums.Operation.PUT) def test_create_rekey_key_pair_payload(self): payload = self.factory.create(enums.Operation.REKEY_KEY_PAIR) self._test_payload_type( payload, payloads.RekeyKeyPairResponsePayload ) def test_create_discover_versions_payload(self): payload = self.factory.create(enums.Operation.DISCOVER_VERSIONS) self._test_payload_type( payload, payloads.DiscoverVersionsResponsePayload ) def test_create_encrypt_payload(self): payload = self.factory.create(enums.Operation.ENCRYPT) self._test_payload_type(payload, payloads.EncryptResponsePayload) def test_create_decrypt_payload(self): payload = self.factory.create(enums.Operation.DECRYPT) self._test_payload_type(payload, payloads.DecryptResponsePayload) def test_create_sign_payload(self): payload = self.factory.create(enums.Operation.SIGN) self._test_payload_type(payload, payloads.SignResponsePayload) def test_create_signature_verify_payload(self): payload = self.factory.create(enums.Operation.SIGNATURE_VERIFY) self._test_payload_type( payload, payloads.SignatureVerifyResponsePayload ) def test_create_mac_payload(self): payload = self.factory.create(enums.Operation.MAC) self._test_payload_type( payload, payloads.MACResponsePayload ) def test_create_mac_verify_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.MAC_VERIFY ) def test_create_rng_retrieve_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.RNG_RETRIEVE ) def test_create_rng_seed_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.RNG_SEED ) def test_create_hash_payload(self): self._test_not_implemented(self.factory.create, enums.Operation.HASH) def test_create_create_split_key_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.CREATE_SPLIT_KEY ) def test_create_join_split_key_payload(self): self._test_not_implemented( self.factory.create, enums.Operation.JOIN_SPLIT_KEY )
35.320158
79
0.709266
67495efd734724bf6dc756a782ea39d10a510407
4,192
py
Python
UServer/http_api_no_auth/api/api_msg.py
soybean217/lora-python
9c4324f81bae8b20f6c353447189f724a5cf54c6
[ "MIT" ]
null
null
null
UServer/http_api_no_auth/api/api_msg.py
soybean217/lora-python
9c4324f81bae8b20f6c353447189f724a5cf54c6
[ "MIT" ]
null
null
null
UServer/http_api_no_auth/api/api_msg.py
soybean217/lora-python
9c4324f81bae8b20f6c353447189f724a5cf54c6
[ "MIT" ]
null
null
null
import json from binascii import hexlify from flask import Response, request from userver.object.device import Device from userver.object.group import Group from .decorators import msg_filter_valid from userver.object.application import Application from ..http_auth import auth from userver.object.message import MsgUp, MsgDn from . import api, root @api.route(root+'msg-up', methods=['GET']) @auth.auth_required @msg_filter_valid def msg_up(user, app=None, device=None, group=None, start_ts=0, end_ts=-1): if request.method == 'GET': if group is not None: return Response(status=404, response=json.dumps('Group has no message up.')) elif device is None and app is not None: msg_all = [] msgs = MsgUp.objects.all(app.app_eui, start_ts=start_ts, end_ts=end_ts, cur_cnt=250) msg_all.append({'app': hexlify(app.app_eui).decode(), 'message_up': [msg.obj_to_dict() for msg in msgs]}) msg_up_json = json.dumps(msg_all) elif app is not None and device is not None: msgs = MsgUp.objects.all(app.app_eui, device.dev_eui, start_ts=start_ts, end_ts=end_ts, cur_cnt=250) msg_up_json = json.dumps([msg.obj_to_dict() for msg in msgs]) else: apps = Application.query.filter_by(user_id=user.id) msg_all = [] for app in apps: msgs = MsgUp.objects.all(app.app_eui, start_ts=start_ts, end_ts=end_ts, cur_cnt=250) msg_all.append({'app': hexlify(app.app_eui).decode(), 'message_up': [msg.obj_to_dict() for msg in msgs]}) msg_up_json = json.dumps(msg_all) return Response(status=200, response=msg_up_json) @api.route(root+'msg-down', methods=['GET']) @auth.auth_required @msg_filter_valid def msg_down(user, app=None, group=None, device=None, start_ts=0, end_ts=-1): if request.method == 'GET': if device is None and group is None and app is not None: msg_list = [] devices = Device.objects.all(app.app_eui) groups = Group.objects.all(app.app_eui) for device in devices: msgs = MsgDn.objects.all(type='DEV', eui=device.dev_eui, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) for group in groups: msgs = MsgDn.objects.all(type='GROUP', eui=group.id, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) return Response(status=200, response=json.dumps(msg_list)) elif app is None and group is None and device is None: apps = Application.query.filter_by(user_id=user.id) app_list = [] for app in apps: msg_list = [] devices = Device.objects.all(app.app_eui) groups = Group.objects.all(app.app_eui) for device in devices: msgs = MsgDn.objects.all(type='DEV', eui=device.dev_eui, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) for group in groups: msgs = MsgDn.objects.all(type='GROUP', eui=group.id, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) app_list.append({'app': hexlify(app.app_eui).decode(), 'message_down': msg_list}) return Response(status=200, response=json.dumps(app_list)) else: msg_list = [] if device is not None: msgs = MsgDn.objects.all(type='DEV', eui=device.dev_eui, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) if group is not None: msgs = MsgDn.objects.all(type='GROUP', eui=group.id, start_ts=start_ts, end_ts=end_ts) for msg in msgs: msg_list.append(msg.obj_to_dict()) return Response(status=200, response=json.dumps(msg_list))
48.744186
121
0.605439
3e42ce74f923bbc56ab82a808b31b619030b0971
633
py
Python
oops_fhir/r4/value_set/push_type_available.py
Mikuana/oops_fhir
77963315d123756b7d21ae881f433778096a1d25
[ "MIT" ]
null
null
null
oops_fhir/r4/value_set/push_type_available.py
Mikuana/oops_fhir
77963315d123756b7d21ae881f433778096a1d25
[ "MIT" ]
null
null
null
oops_fhir/r4/value_set/push_type_available.py
Mikuana/oops_fhir
77963315d123756b7d21ae881f433778096a1d25
[ "MIT" ]
null
null
null
from pathlib import Path from fhir.resources.valueset import ValueSet as _ValueSet from oops_fhir.utils import ValueSet from oops_fhir.r4.code_system.push_type_available import ( pushtypeavailable as pushtypeavailable_, ) __all__ = ["pushtypeavailable"] _resource = _ValueSet.parse_file(Path(__file__).with_suffix(".json")) class pushtypeavailable(pushtypeavailable_): """ Push-type-available Type of alerts/updates the primary source can send Status: draft - Version: 4.0.1 http://hl7.org/fhir/ValueSet/verificationresult-push-type-available """ class Meta: resource = _resource
20.419355
71
0.747235
cd42264e36d415ac5f4a3d2630edb7684ce1eca6
4,120
py
Python
venv/Lib/site-packages/falcon/cmd/print_routes.py
RafaelHMachado/Cioffis_Automation
07965ca71c3d4e78f5cee1fce4ba0bbfe2db9811
[ "MIT" ]
2
2020-12-09T17:26:25.000Z
2021-05-07T02:21:57.000Z
venv/Lib/site-packages/falcon/cmd/print_routes.py
RafaelHMachado/Cioffis_Automation
07965ca71c3d4e78f5cee1fce4ba0bbfe2db9811
[ "MIT" ]
5
2021-06-29T18:34:13.000Z
2021-06-29T18:34:44.000Z
venv/Lib/site-packages/falcon/cmd/print_routes.py
RafaelHMachado/Cioffis_Automation
07965ca71c3d4e78f5cee1fce4ba0bbfe2db9811
[ "MIT" ]
1
2021-08-18T14:45:19.000Z
2021-08-18T14:45:19.000Z
#!/usr/bin/env python # Copyright 2013 by Rackspace Hosting, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script that prints out the routes of an API instance. """ from __future__ import print_function from functools import partial import inspect import falcon def print_routes(api, verbose=False): # pragma: no cover """ Initial call. :param api: The falcon.API or callable that returns an instance to look at. :type api: falcon.API or callable :param verbose: If the output should be verbose. :type verbose: bool """ traverse(api._router._roots, verbose=verbose) def traverse(roots, parent='', verbose=False): """ Recursive call which also handles printing output. :param api: The falcon.API or callable that returns an instance to look at. :type api: falcon.API or callable :param parent: The parent uri path to the current iteration. :type parent: str :param verbose: If the output should be verbose. :type verbose: bool """ for root in roots: if root.method_map: print('->', parent + '/' + root.raw_segment) if verbose: for method, func in root.method_map.items(): if func.__name__ != 'method_not_allowed': if isinstance(func, partial): real_func = func.func else: real_func = func try: source_file = inspect.getsourcefile(real_func) source_lines = inspect.getsourcelines(real_func) source_info = '{}:{}'.format(source_file, source_lines[1]) except TypeError: # NOTE(vytas): If Falcon is cythonized, all default # responders coming from cythonized modules will # appear as built-in functions, and raise a # TypeError when trying to locate the source file. source_info = '[unknown file]' print('-->' + method, source_info) if root.children: traverse(root.children, parent + '/' + root.raw_segment, verbose) def main(): """ Main entrypoint. """ import argparse parser = argparse.ArgumentParser( description='Example: print-api-routes myprogram:app') parser.add_argument( '-v', '--verbose', action='store_true', help='Prints out information for each method.') parser.add_argument( 'api_module', help='The module and api to inspect. Example: myapp.somemodule:api', ) args = parser.parse_args() try: module, instance = args.api_module.split(':', 1) except ValueError: parser.error( 'The api_module must include a colon between ' 'the module and instance') api = getattr(__import__(module, fromlist=[True]), instance) if not isinstance(api, falcon.API): if callable(api): api = api() if not isinstance(api, falcon.API): parser.error( '{0} did not return a falcon.API instance'.format( args.api_module)) else: parser.error( 'The instance must be of falcon.API or be ' 'a callable without args that returns falcon.API') print_routes(api, verbose=args.verbose) if __name__ == '__main__': main()
34.621849
79
0.586893
d9e7654c2378d91c551b3f6a019e6906234fd664
6,779
py
Python
np_ml/decision_tree/decision_tree.py
wwwy-binary/NP_ML
a51b2f3cd753e4a8b5a67bec343c3e75b3fe52d8
[ "MIT" ]
237
2018-03-17T08:50:18.000Z
2022-02-24T12:57:46.000Z
np_ml/decision_tree/decision_tree.py
pawopawo/NP_ML
a4cba12f191348526a6f6cc94df5084658fcfdea
[ "MIT" ]
2
2019-01-28T03:30:31.000Z
2021-03-03T01:47:38.000Z
np_ml/decision_tree/decision_tree.py
pawopawo/NP_ML
a4cba12f191348526a6f6cc94df5084658fcfdea
[ "MIT" ]
79
2018-03-21T12:22:09.000Z
2021-12-17T02:39:09.000Z
import numpy as np def entropy(col): _, cnts = np.unique(col, return_counts=True) cnts = np.array(cnts)/len(col) return -np.sum(cnts*np.log2(cnts)) # For ID3 def calcInforGain(col_x, col_y): HD = entropy(col_y) HDA = 0 unique, cnts = np.unique(col_x, return_counts=True) cnts = np.array(cnts)/len(col_x) cnts = dict(zip(unique, cnts)) for key, val in cnts.items(): HDA += val*entropy(col_y[col_x == key]) return HD - HDA, unique # For C4.5 def calcInforGainRatio(col_x, col_y): HD = entropy(col_y) HDA = 0 unique, cnts = np.unique(col_x, return_counts=True) cnts = np.array(cnts)/len(col_x) cnts = dict(zip(unique, cnts)) for key, val in cnts.items(): HDA += val*entropy(col_y[col_x == key]) return (HD - HDA)/entropy(col_x), unique # For CART def Gini(col): unique, cnts = np.unique(col, return_counts=True) cnts = np.array(cnts)/len(col) return 1 - np.sum(cnts ** 2) def findMinGini(col_x, col_y): unique, cnts = np.unique(col_x, return_counts=True) cnts = dict(zip(unique, cnts)) min_gini = 1 min_key = None for key, cnt in cnts.items(): gini = cnt/len(col_y)*Gini(col_y[col_x == key]) + (1-cnt/len(col_y))*Gini(col_y[col_x != key]) if gini < min_gini: min_gini = gini min_key = key return min_gini, min_key class Node: def __init__(self, key, val, depth): self.key = key self.val = val self.depth = depth self.children = [] def __str__(self, indent=0): ans = "" if not self.children: ans = str(self.key) + ": " + str(self.val) + "" else: ans += str(self.key) + ": " + str(self.val) + "(" for child in self.children: ans += str(child) + ", " ans += ")" return ans def addChild(self, key, val, depth=0): self.children.append(Node(key, val, depth)) return self.children[-1] class DecisionTree: def __init__(self, epsilon=0, max_depth=-1): # here depth=-1 means no constrain self.root = Node("root", 0, max_depth) self.epsilon = epsilon self.type = None def fit(self, x, y, type="CART", detailed=False): self.type = type if type == "CART": self.CARTgenerate(x, y, self.root, detailed) else: self.generate(x, y, self.root, type, detailed) def generate(self, x, y, root, type, detailed): # if empty if x.size == 0: return # if all left are the same kind if np.all(y == True) or np.all(y == False): root.addChild("leaf", y[0]) return # if all the feature are the same, use the popular one if np.all(x == x[0,:]) or root.depth == 0: unique, cnts = np.unique(y, return_counts=True) cnts = dict(zip(unique, cnts)) root.addChild("leaf", cnts[True] > cnts[False]) return max_gain = 0 max_feature = -1 max_feature_vals = None for i in range(x.shape[-1]): if type=="ID3": gain, feature_vals = calcInforGain(x[:, i], y) elif type=="C4.5": gain, feature_vals = calcInforGainRatio(x[:, i], y) if gain > max_gain: max_gain = gain max_feature = i max_feature_vals = feature_vals if max_gain < self.epsilon: return else: for val in max_feature_vals: child = root.addChild(max_feature, val, root.depth-1) self.generate(np.delete(x[x[:, max_feature]==val], max_feature, axis=-1), y[x[:, max_feature]==val], child, type, detailed) def CARTgenerate(self, x, y, root, detailed, min_gini_old=1): # if empty if x.size == 0: return # if all left are the same kind if np.all(y == True) or np.all(y == False): root.addChild("leaf", y[0]) return # if all the feature are the same, use the popular one if np.all(x == x[0,:]) or root.depth == 0: unique, cnts = np.unique(y, return_counts=True) cnts = dict(zip(unique, cnts)) root.addChild("leaf", cnts[True] > cnts[False]) return min_gini = 1 min_feature = None min_feature_val = None for i in range(x.shape[-1]): gini, feature_val = findMinGini(x[:, i], y) if detailed: print(gini, feature_val, i) if gini < min_gini: min_gini = gini min_feature = i min_feature_val = feature_val if abs(min_gini - min_gini_old) < 1e-6: # all feature are random unique, cnts = np.unique(y, return_counts=True) cnts = dict(zip(unique, cnts)) root.addChild("leaf", cnts[True] > cnts[False]) return child_true = root.addChild((min_feature, min_feature_val,), True, root.depth-1) self.CARTgenerate(x[x[:, min_feature]==min_feature_val], y[x[:, min_feature]==min_feature_val], child_true, detailed, min_gini) child_false = root.addChild((min_feature, min_feature_val,), False, root.depth-1) self.CARTgenerate(x[x[:, min_feature]!=min_feature_val], y[x[:, min_feature]!=min_feature_val], child_false, detailed, min_gini) # TODO: find nice regularization function def pruning(self, root): pass def predict(self, x): assert(len(self.root.children) > 0) if len(x.shape) == 1: tmp = self.root if self.type == 'CART': while len(tmp.children) > 1: feature = tmp.children[0].key[0] if x[feature] == tmp.children[0].key[1]: tmp = tmp.children[0] else: tmp = tmp.children[1] if len(tmp.children) == 1 and tmp.children[0].key == 'leaf': return tmp.children[0].val else: while len(tmp.children) > 1: feature = tmp.children[0].key if x[feature] == tmp.children[0].val: tmp = tmp.children[0] else: tmp = tmp.children[1] if len(tmp.children) == 1 and tmp.children[0].key == 'leaf': return tmp.children[0].val else: assert(len(x.shape) == 2) ans = [] for test in x: ans.append(self.predict(test)) return ans
36.446237
139
0.526036
3ea878e62e085722c30ee317f265a685067baf7d
1,650
py
Python
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
followben/pulumi
db6c4b88cbee47332bc305f594b1c15eb6803bd7
[ "Apache-2.0" ]
null
null
null
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
followben/pulumi
db6c4b88cbee47332bc305f594b1c15eb6803bd7
[ "Apache-2.0" ]
null
null
null
pkg/codegen/internal/test/testdata/simple-resource-schema/python/pulumi_example/arg_function.py
followben/pulumi
db6c4b88cbee47332bc305f594b1c15eb6803bd7
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by test. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities, _tables from .resource import Resource __all__ = [ 'ArgFunctionResult', 'AwaitableArgFunctionResult', 'arg_function', ] @pulumi.output_type class ArgFunctionResult: def __init__(__self__, result=None): if result and not isinstance(result, Resource): raise TypeError("Expected argument 'result' to be a Resource") pulumi.set(__self__, "result", result) @property @pulumi.getter def result(self) -> Optional['Resource']: return pulumi.get(self, "result") class AwaitableArgFunctionResult(ArgFunctionResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return ArgFunctionResult( result=self.result) def arg_function(arg1: Optional['Resource'] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableArgFunctionResult: """ Use this data source to access information about an existing resource. """ __args__ = dict() __args__['arg1'] = arg1 if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('example::argFunction', __args__, opts=opts, typ=ArgFunctionResult).value return AwaitableArgFunctionResult( result=__ret__.result)
30
109
0.684242
806bf3f8e5b1281568b02bc1d0510ff34daba816
1,161
py
Python
implementation/scripts/base/visualize_mesh.py
saurabbhsp/mesh-3d-reconstruction
c52312bce7e3121643189f6b67192ffe28b08565
[ "Apache-2.0" ]
null
null
null
implementation/scripts/base/visualize_mesh.py
saurabbhsp/mesh-3d-reconstruction
c52312bce7e3121643189f6b67192ffe28b08565
[ "Apache-2.0" ]
null
null
null
implementation/scripts/base/visualize_mesh.py
saurabbhsp/mesh-3d-reconstruction
c52312bce7e3121643189f6b67192ffe28b08565
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import argparse import configparser from model.templateFFD.templateFFDBuilder import TemplateFFDBuilder from configReader import config_reader as configReader """ This script initialized the training process. For training process a single parameter specifying the path to configuration file is required. """ parser = argparse.ArgumentParser(description="Train FFD model") parser.add_argument('configFile', help='Config file path') args = parser.parse_args() tf.logging.set_verbosity(tf.logging.INFO) config = configparser.ConfigParser() config.optionxform = str config.read(args.configFile) """Read config""" category = configReader.get_category(config) path_dictionary = configReader.get_path_list(config) model_params = configReader.get_model_params(config) split_config = configReader.get_split_params(config) id = configReader.get_model_id(config) max_steps = configReader.get_max_steps(config) train_config = configReader.get_train_config(config) model = TemplateFFDBuilder(id, model_params, path_dictionary, split_config, train_config) model.visualize_predictions(tf.estimator.ModeKeys.PREDICT)
31.378378
73
0.810508
f61993ab283a16b72f5ae643c4a89753a918796c
5,350
py
Python
encoding/models/cifarresnet.py
pansiyuan123/PyTorch-Encoding
7463e5938fb824b8eddbffdf53f55308464252d3
[ "MIT" ]
4
2020-03-26T11:05:08.000Z
2020-12-22T08:37:20.000Z
encoding/models/cifarresnet.py
pansiyuan123/PyTorch-Encoding
7463e5938fb824b8eddbffdf53f55308464252d3
[ "MIT" ]
null
null
null
encoding/models/cifarresnet.py
pansiyuan123/PyTorch-Encoding
7463e5938fb824b8eddbffdf53f55308464252d3
[ "MIT" ]
3
2020-03-26T11:05:09.000Z
2022-01-28T11:29:00.000Z
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import torch import torch.nn as nn from torch.autograd import Variable from ..nn import View __all__ = ['cifar_resnet20'] def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class Basicblock(nn.Module): """ Pre-activation residual block Identity Mapping in Deep Residual Networks ref https://arxiv.org/abs/1603.05027 """ expansion = 1 def __init__(self, inplanes, planes, stride=1, norm_layer=nn.BatchNorm2d): super(Basicblock, self).__init__() if inplanes != planes or stride !=1 : self.downsample = True self.residual_layer = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride) else: self.downsample = False conv_block=[] conv_block+=[norm_layer(inplanes), nn.ReLU(inplace=True), conv3x3(inplanes, planes,stride=stride), norm_layer(planes), nn.ReLU(inplace=True), conv3x3(planes, planes)] self.conv_block = nn.Sequential(*conv_block) def forward(self, input): if self.downsample: residual = self.residual_layer(input) else: residual = input return residual + self.conv_block(input) class Bottleneck(nn.Module): """ Pre-activation residual block Identity Mapping in Deep Residual Networks ref https://arxiv.org/abs/1603.05027 """ expansion = 4 def __init__(self, inplanes, planes, stride=1, norm_layer=nn.BatchNorm2d): super(Bottleneck, self).__init__() if inplanes != planes*self.expansion or stride !=1 : self.downsample = True self.residual_layer = nn.Conv2d(inplanes, planes * self.expansion, kernel_size=1, stride=stride) else: self.downsample = False conv_block = [] conv_block += [norm_layer(inplanes), nn.ReLU(inplace=True), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)] conv_block += [norm_layer(planes), nn.ReLU(inplace=True), nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)] conv_block += [norm_layer(planes), nn.ReLU(inplace=True), nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1, bias=False)] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): if self.downsample: residual = self.residual_layer(x) else: residual = x return residual + self.conv_block(x) class CIFAR_ResNet(nn.Module): def __init__(self, block=Basicblock, num_blocks=[2,2,2], width_factor = 1, num_classes=10, norm_layer=torch.nn.BatchNorm2d): super(CIFAR_ResNet, self).__init__() self.expansion = block.expansion self.inplanes = int(width_factor * 16) strides = [1, 2, 2] model = [] # Conv_1 model += [nn.Conv2d(3, self.inplanes, kernel_size=3, padding=1), norm_layer(self.inplanes), nn.ReLU(inplace=True)] # Residual units model += [self._residual_unit(block, self.inplanes, num_blocks[0], strides[0], norm_layer=norm_layer)] for i in range(2): model += [self._residual_unit( block, int(2*self.inplanes/self.expansion), num_blocks[i+1], strides[i+1], norm_layer=norm_layer)] # Last conv layer model += [norm_layer(self.inplanes), nn.ReLU(inplace=True), nn.AvgPool2d(8), View(-1, self.inplanes), nn.Linear(self.inplanes, num_classes)] self.model = nn.Sequential(*model) def _residual_unit(self, block, planes, n_blocks, stride, norm_layer): strides = [stride] + [1]*(n_blocks-1) layers = [] for i in range(n_blocks): layers += [block(self.inplanes, planes, strides[i], norm_layer=norm_layer)] self.inplanes = self.expansion*planes return nn.Sequential(*layers) def forward(self, input): return self.model(input) def cifar_resnet20(pretrained=False, root='~/.encoding/models', **kwargs): """Constructs a CIFAR ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = CIFAR_ResNet(Bottleneck, [3, 3, 3], **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('cifar_resnet20', root=root)), strict=False) return model
38.214286
96
0.566542
5371e7d3e16dac4b4cfcc48be9a352d77db96ce4
244
py
Python
c3po.py
PtspluS/Isensei
b6a8a02461868a65d9be43a3c44a2df7f63a3c26
[ "MIT" ]
null
null
null
c3po.py
PtspluS/Isensei
b6a8a02461868a65d9be43a3c44a2df7f63a3c26
[ "MIT" ]
null
null
null
c3po.py
PtspluS/Isensei
b6a8a02461868a65d9be43a3c44a2df7f63a3c26
[ "MIT" ]
null
null
null
from random import * # Init your variables here # Put your bot name here name = "C3PO" # C3PO strategy : return random available celle def play(board, available_cells, player): return available_cells[randint(0,len(available_cells)-1)]
22.181818
61
0.745902
f0928fd400bc64e9e1405215b11e4a9d6a033b69
4,767
py
Python
boa3_test/tests/compiler_tests/test_none.py
DanPopa46/neo3-boa
e4ef340744b5bd25ade26f847eac50789b97f3e9
[ "Apache-2.0" ]
null
null
null
boa3_test/tests/compiler_tests/test_none.py
DanPopa46/neo3-boa
e4ef340744b5bd25ade26f847eac50789b97f3e9
[ "Apache-2.0" ]
null
null
null
boa3_test/tests/compiler_tests/test_none.py
DanPopa46/neo3-boa
e4ef340744b5bd25ade26f847eac50789b97f3e9
[ "Apache-2.0" ]
null
null
null
from boa3.boa3 import Boa3 from boa3.exception.CompilerError import MismatchedTypes from boa3.neo.vm.opcode.Opcode import Opcode from boa3_test.tests.boa_test import BoaTest from boa3_test.tests.test_classes.testengine import TestEngine class TestNone(BoaTest): default_folder: str = 'test_sc/none_test' def test_variable_none(self): path = self.get_contract_path('VariableNone.py') expected_output = ( Opcode.INITSLOT # function signature + b'\x01' + b'\x00' + Opcode.PUSHNULL + Opcode.STLOC0 + Opcode.RET # return ) output = Boa3.compile(path) self.assertEqual(expected_output, output) def test_none_tuple(self): path = self.get_contract_path('NoneTuple.py') expected_output = ( Opcode.INITSLOT # function signature + b'\x01' + b'\x00' + Opcode.PUSHNULL # a = (None, None, None) + Opcode.PUSHNULL + Opcode.PUSHNULL + Opcode.PUSH3 + Opcode.PACK + Opcode.STLOC0 + Opcode.RET # return ) output = Boa3.compile(path) self.assertEqual(expected_output, output) def test_none_identity(self): expected_output = ( Opcode.INITSLOT # function signature + b'\x00' + b'\x01' + Opcode.LDARG0 + Opcode.ISNULL + Opcode.RET # return ) path = self.get_contract_path('NoneIdentity.py') output = Boa3.compile(path) self.assertEqual(expected_output, output) engine = TestEngine() result = self.run_smart_contract(engine, path, 'Main', None) self.assertEqual(True, result) result = self.run_smart_contract(engine, path, 'Main', 5) self.assertEqual(False, result) result = self.run_smart_contract(engine, path, 'Main', '5') self.assertEqual(False, result) def test_none_not_identity(self): expected_output = ( Opcode.INITSLOT # function signature + b'\x00' + b'\x01' + Opcode.LDARG0 + Opcode.ISNULL + Opcode.NOT + Opcode.RET # return ) path = self.get_contract_path('NoneNotIdentity.py') output = Boa3.compile(path) self.assertEqual(expected_output, output) engine = TestEngine() result = self.run_smart_contract(engine, path, 'Main', None) self.assertEqual(False, result) result = self.run_smart_contract(engine, path, 'Main', 5) self.assertEqual(True, result) result = self.run_smart_contract(engine, path, 'Main', '5') self.assertEqual(True, result) def test_none_equality(self): path = self.get_contract_path('NoneEquality.py') self.assertCompilerLogs(MismatchedTypes, path) def test_mismatched_type_int_operation(self): path = self.get_contract_path('MismatchedTypesInOperation.py') self.assertCompilerLogs(MismatchedTypes, path) def test_reassign_variable_with_none(self): expected_output = ( Opcode.INITSLOT # function signature + b'\x02' + b'\x00' + Opcode.PUSH2 # a = 2 + Opcode.STLOC0 + Opcode.PUSH4 # b = a * 2 + Opcode.STLOC1 + Opcode.PUSHNULL # a = None + Opcode.STLOC0 + Opcode.RET # return ) path = self.get_contract_path('ReassignVariableWithNone.py') output = Boa3.compile(path) self.assertEqual(expected_output, output) engine = TestEngine() result = self.run_smart_contract(engine, path, 'Main') self.assertIsVoid(result) def test_reassign_variable_after_none(self): expected_output = ( Opcode.INITSLOT # function signature + b'\x02' + b'\x00' + Opcode.PUSHNULL # a = None + Opcode.STLOC0 + Opcode.PUSH2 # a = 2 + Opcode.STLOC0 + Opcode.PUSH4 # b = a * 2 + Opcode.STLOC1 + Opcode.RET # return ) path = self.get_contract_path('ReassignVariableAfterNone.py') output = Boa3.compile(path) self.assertEqual(expected_output, output) engine = TestEngine() result = self.run_smart_contract(engine, path, 'Main') self.assertIsVoid(result) def test_boa2_none_test(self): path = self.get_contract_path('NoneBoa2Test.py') self.assertCompilerLogs(MismatchedTypes, path)
33.335664
70
0.575414
672f1a2113d145c08a444911b9899567d3529e25
158
py
Python
src/bd103/__init__.py
BD103/Package
c1f62b156713c68ac85362f0eae1560fbcca94f0
[ "Apache-2.0" ]
2
2020-12-09T00:00:16.000Z
2021-04-21T00:12:24.000Z
src/bd103/__init__.py
BD103/BD103-Python
dea7c71d72eac16bcc5b98e8e5c0d5bcfb5da82f
[ "Apache-2.0" ]
2
2021-12-14T22:08:10.000Z
2021-12-18T12:23:47.000Z
src/bd103/__init__.py
BD103/BD103-Python
dea7c71d72eac16bcc5b98e8e5c0d5bcfb5da82f
[ "Apache-2.0" ]
null
null
null
"""Collection a various utilities and modules that do random stuff. This is an all-in-one package that contains assorted code that does assorted things. """
31.6
84
0.778481
7e4f13a20817767c2c3467a493edbce9002e2b35
3,481
py
Python
lib/surface/pubsub/topics/list_subscriptions.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/pubsub/topics/list_subscriptions.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/surface/pubsub/topics/list_subscriptions.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
2
2020-11-04T03:08:21.000Z
2020-11-05T08:14:41.000Z
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cloud Pub/Sub topics list_subscriptions command.""" from googlecloudsdk.api_lib.pubsub import util from googlecloudsdk.calliope import base from googlecloudsdk.core.resource import resource_printer_base from googlecloudsdk.core.resource import resource_projector class ListSubscriptions(base.ListCommand): """Lists Cloud Pub/Sub subscriptions from a given topic. Lists all of the Cloud Pub/Sub subscriptions attached to the given topic and that match the given filter. """ detailed_help = { 'EXAMPLES': """\ To filter results by subscription name (ie. only show subscription 'mysubs'), run: $ {command} --topic mytopic --filter=subscriptionId:mysubs To combine multiple filters (with AND or OR), run: $ {command} --topic mytopic --filter="subscriptionId:mysubs1 AND subscriptionId:mysubs2" To filter subscriptions that match an expression: $ {command} --topic mytopic --filter="subscriptionId:subs_*" """, } @staticmethod def Args(parser): """Register flags for this command.""" parser.add_argument( 'topic', help=('The name of the topic to list subscriptions for.')) @util.MapHttpError def Run(self, args): """This is what gets called when the user runs this command. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. Yields: Subscriptions paths that match the regular expression in args.name_filter. """ msgs = self.context['pubsub_msgs'] pubsub = self.context['pubsub'] page_size = None page_token = None if args.page_size: page_size = min(args.page_size, util.MAX_LIST_RESULTS) if not args.filter and args.limit: page_size = min(args.limit, page_size or util.MAX_LIST_RESULTS) while True: list_subscriptions_req = ( msgs.PubsubProjectsTopicsSubscriptionsListRequest( topic=util.TopicFormat(args.topic), pageSize=page_size, pageToken=page_token)) list_subscriptions_result = pubsub.projects_topics_subscriptions.List( list_subscriptions_req) for subscription in list_subscriptions_result.subscriptions: yield TopicSubscriptionDict(subscription) page_token = list_subscriptions_result.nextPageToken if not page_token: break yield resource_printer_base.PageMarker() def TopicSubscriptionDict(topic_subscription): """Returns a topic_subscription dict with additional fields.""" result = resource_projector.MakeSerializable( {'subscription': topic_subscription}) subscription_info = util.SubscriptionIdentifier(topic_subscription) result['projectId'] = subscription_info.project.project_name result['subscriptionId'] = subscription_info.resource_name return result
33.152381
100
0.717897
79893abeef2f88502b81f8bb05397b97cfe6101e
7,959
py
Python
QQAlbumDownloader/util/SlideVerfication.py
graysonwp/QQAlbumDownloader
29e8b71c5b46a8084b80e81179454e92b9058c1a
[ "MIT" ]
5
2019-09-26T04:11:45.000Z
2021-08-17T12:05:48.000Z
QQAlbumDownloader/util/SlideVerfication.py
graysonwp/QQAlbumDownloader
29e8b71c5b46a8084b80e81179454e92b9058c1a
[ "MIT" ]
20
2021-09-04T10:40:51.000Z
2022-03-12T00:52:48.000Z
QQAlbumDownloader/util/SlideVerfication.py
wpwbb510582246/QQAlbumDownloader
29e8b71c5b46a8084b80e81179454e92b9058c1a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- # @Author : Grayson # @Time : 2020-12-18 21:34 # @Email : weipengweibeibei@163.com # @Description : """ 本模块专门用来处理滑动验证码的问题, """ from selenium.webdriver import ActionChains import random, time, os import cv2 from PIL import Image as Im import numpy as np import requests class SlideVerificationCode(): """滑动验证码破解""" def __init__(self, slider_ele=None, background_ele=None, count=1, save_image=False): """ :param count: 验证重试的次数,默认为5次 :param save_image: 是否保存验证过程中的图片,默认不保存 """ self.count = count self.save_image = save_image self.slider_ele = slider_ele self.background_ele = background_ele def slide_verification(self, driver, slide_element, distance): """ :param driver: driver对象 :type driver:webdriver.Chrome :param slide_element: 滑块的元组 :type slider_ele: WebElement :param distance: 滑动的距离 :type: int :return: """ # 获取滑动前页面的url地址 start_url = driver.current_url print("需要滑动的距离为:", distance) # 根据滑动距离生成滑动轨迹 locus = self.get_slide_locus(distance) print("生成的滑动轨迹为:{},轨迹的距离之和为{}".format(locus, distance)) # 按下鼠标左键 ActionChains(driver).click_and_hold(slide_element).perform() time.sleep(0.5) # 遍历轨迹进行滑动 for loc in locus: time.sleep(0.01) ActionChains(driver).move_by_offset(loc, random.randint(-5, 5)).perform() ActionChains(driver).context_click(slide_element) # 释放鼠标 ActionChains(driver).release(on_element=slide_element).perform() # 判读是否验证通过,未通过的情况下重新滑动 time.sleep(2) # 滑动之后再次获取url地址 end_url = driver.current_url # 滑动失败的情况下,重试count次 if start_url == end_url and self.count > 0: print("第{}次验证失败,开启重试".format(6 - self.count)) self.count -= 1 self.slide_verification(driver, slide_element, distance) def onload_save_img(self, url, filename="image.png"): """ 下载图片保存 :param url:图片地址 :param filename: 保存的图片名 :return: """ try: response = requests.get(url=url) except(requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError)as e: print("图片下载失败") raise e else: with open(filename, "wb") as f: f.write(response.content) def get_element_slide_distance(self, slider_ele, background_ele, correct=0): """ 根据传入滑块,和背景的节点,计算滑块的距离 该方法只能计算 滑块和背景图都是一张完整图片的场景, 如果是通过多张小图拼接起来的背景图,该方法不适用,后续会补充一个专门针对处理该场景的方法 :param slider_ele: 滑块图片的节点 :type slider_ele: WebElement :param background_ele: 背景图的节点 :type background_ele:WebElement :param correct:滑块缺口截图的修正值,默认为0,调试截图是否正确的情况下才会用 :type: int :return: 背景图缺口位置的X轴坐标位置(缺口图片左边界位置) """ # 获取验证码的图片 slider_url = slider_ele.get_attribute("src") background_url = background_ele.get_attribute("src") # 下载验证码背景图,滑动图片 slider = "slider.jpg" background = "background.jpg" self.onload_save_img(slider_url, slider) self.onload_save_img(background_url, background) # 读取进行色度图片,转换为numpy中的数组类型数据, slider_pic = cv2.imread(slider, 0) background_pic = cv2.imread(background, 0) # 获取缺口图数组的形状 -->缺口图的宽和高 width, height = slider_pic.shape[::-1] # 将处理之后的图片另存 slider01 = "slider01.jpg" background_01 = "background01.jpg" cv2.imwrite(background_01, background_pic) cv2.imwrite(slider01, slider_pic) # 读取另存的滑块图 slider_pic = cv2.imread(slider01) # 进行色彩转换 slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY) # 获取色差的绝对值 slider_pic = abs(255 - slider_pic) # 保存图片 cv2.imwrite(slider01, slider_pic) # 读取滑块 slider_pic = cv2.imread(slider01) # 读取背景图 background_pic = cv2.imread(background_01) # 比较两张图的重叠区域 result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED) # 通过数组运算,获取图片的缺口位置 top, left = np.unravel_index(result.argmax(), result.shape) # 背景图中的图片缺口坐标位置 print("当前滑块的缺口位置:", (left, top, left + width, top + height)) # 判读是否需求保存识别过程中的截图文件 if self.save_image: # 截图滑块保存 # 进行坐标修正 loc = (left + correct, top + correct, left + width - correct, top + height - correct) self.image_crop(background, loc) else: # 删除识别过程中保存的临时文件 os.remove(slider01) os.remove(background_01) os.remove(slider) os.remove(background) # 返回需要移动的位置距离 return left def get_image_slide_dictance(self, slider_image, background_image, correct=0): """ 根据传入滑块,和背景的图片,计算滑块的距离 该方法只能计算 滑块和背景图都是一张完整图片的场景, 如果是通过多张小图拼接起来的背景图,该方法不适用,后续会补充一个专门针对处理该场景的方法 :param slider_iamge: 滑块图的图片 :type slider_image: str :param background_image: 背景图的图片 :type background_image: str :param correct:滑块缺口截图的修正值,默认为0,调试截图是否正确的情况下才会用 :type: int :return: 背景图缺口位置的X轴坐标位置(缺口图片左边界位置) """ # 读取进行色度图片,转换为numpy中的数组类型数据, slider_pic = cv2.imread(slider_image, 0) background_pic = cv2.imread(background_image, 0) # 获取缺口图数组的形状 -->缺口图的宽和高 width, height = slider_pic.shape[::-1] # 将处理之后的图片另存 slider01 = "slider01.jpg" background_01 = "background01.jpg" cv2.imwrite(background_01, background_pic) cv2.imwrite(slider01, slider_pic) # 读取另存的滑块图 slider_pic = cv2.imread(slider01) # 进行色彩转换 slider_pic = cv2.cvtColor(slider_pic, cv2.COLOR_BGR2GRAY) # 获取色差的绝对值 slider_pic = abs(255 - slider_pic) # 保存图片 cv2.imwrite(slider01, slider_pic) # 读取滑块 slider_pic = cv2.imread(slider01) # 读取背景图 background_pic = cv2.imread(background_01) # 比较两张图的重叠区域 result = cv2.matchTemplate(slider_pic, background_pic, cv2.TM_CCOEFF_NORMED) # 获取图片的缺口位置 top, left = np.unravel_index(result.argmax(), result.shape) # 背景图中的图片缺口坐标位置 print("当前滑块的缺口位置:", (left, top, left + width, top + height)) # 判读是否需求保存识别过程中的截图文件 if self.save_image: # 截图滑块保存 # 进行坐标修正 loc = (left + correct, top + correct, left + width - correct, top + height - correct) self.image_crop(background_image, loc) else: # 删除识别过程中保存的临时文件 os.remove(slider01) os.remove(background_01) # 返回需要移动的位置距离 return left @classmethod def get_slide_locus(self, distance): """ 根据移动坐标位置构造移动轨迹,前期移动慢,中期块,后期慢 :param distance:移动距离 :type:int :return:移动轨迹 :rtype:list """ remaining_dist = distance locus = [] while remaining_dist > 0: ratio = remaining_dist / distance if ratio < 0.2: # 开始阶段移动较慢 span = random.randint(2, 8) elif ratio > 0.8: # 结束阶段移动较慢 span = random.randint(5, 8) else: # 中间部分移动快 span = random.randint(10, 16) locus.append(span) remaining_dist -= span return locus def image_crop(self, image, location, new_name="new_image.png"): """ 对图片的指定位置进行截图 :param image: 被截取图片的坐标位置 :param location:需要截图的坐标位置:(left,top,right,button) :type location: tuple :return: """ # 打开图片 image = Im.open(image) # 切割图片 imagecrop = image.crop(location) # 保存图片 imagecrop.save(new_name)
32.353659
97
0.590903
b18c2f63bb3f3a4e0c6fd5b848afb087dccba289
2,472
py
Python
deepxml/models/mlp.py
svanschalkwyk/deepxml
17a357904d100ed14bb70392b20fc8809e9ea2c7
[ "MIT" ]
41
2021-03-11T22:15:53.000Z
2022-03-29T00:53:09.000Z
deepxml/models/mlp.py
svanschalkwyk/deepxml
17a357904d100ed14bb70392b20fc8809e9ea2c7
[ "MIT" ]
9
2021-06-16T02:05:56.000Z
2022-01-18T08:41:25.000Z
deepxml/models/mlp.py
svanschalkwyk/deepxml
17a357904d100ed14bb70392b20fc8809e9ea2c7
[ "MIT" ]
9
2021-06-11T09:34:21.000Z
2022-01-23T01:50:44.000Z
import torch import torch.nn as nn __author__ = 'KD' class MLP(nn.Module): """ A multi-layer perceptron with flexibility for non-liearity * no non-linearity after last layer * support for 2D or 3D inputs Parameters: ----------- input_size: int input size of embeddings hidden_size: int or list of ints or str (comma separated) e.g., 512: a single hidden layer with 512 neurons "512": a single hidden layer with 512 neurons "512,300": 512 -> nnl -> 300 [512, 300]: 512 -> nnl -> 300 dimensionality of layers in MLP nnl: str, optional, default='relu' which non-linearity to use device: str, default="cuda:0" keep on this device """ def __init__(self, input_size, hidden_size, nnl='relu', device="cuda:0"): super(MLP, self).__init__() hidden_size = self.parse_hidden_size(hidden_size) assert len(hidden_size) >= 1, "Should contain atleast 1 hidden layer" hidden_size = [input_size] + hidden_size self.device = torch.device(device) layers = [] for i, (i_s, o_s) in enumerate(zip(hidden_size[:-1], hidden_size[1:])): layers.append(nn.Linear(i_s, o_s, bias=True)) if i < len(hidden_size) - 2: layers.append(self._get_nnl(nnl)) self.transform = torch.nn.Sequential(*layers) def parse_hidden_size(self, hidden_size): if isinstance(hidden_size, int): return [hidden_size] elif isinstance(hidden_size, str): _hidden_size = [] for item in hidden_size.split(","): _hidden_size.append(int(item)) return _hidden_size elif isinstance(hidden_size, list): return hidden_size else: raise NotImplementedError("hidden_size must be a int, str or list") def _get_nnl(self, nnl): if nnl == 'sigmoid': return torch.nn.Sigmoid() elif nnl == 'relu': return torch.nn.ReLU() elif nnl == 'gelu': return torch.nn.GELU() elif nnl == 'tanh': return torch.nn.Tanh() else: raise NotImplementedError(f"{nnl} not implemented!") def forward(self, x): return self.transform(x) def to(self): """Transfer to device """ super().to(self.device) @property def sparse(self): return False
31.692308
79
0.580502
c396a25090c8a3301520eb55cef07244ae76fa41
688
py
Python
cwitune/cwitune/main.py
trujunzhang/djzhang-targets
c2e327acde9d51f0455e7243f17d93d74b579501
[ "MIT" ]
2
2018-12-03T16:30:55.000Z
2019-04-03T13:29:20.000Z
cwitune/cwitune/main.py
trujunzhang/djzhang-targets
c2e327acde9d51f0455e7243f17d93d74b579501
[ "MIT" ]
null
null
null
cwitune/cwitune/main.py
trujunzhang/djzhang-targets
c2e327acde9d51f0455e7243f17d93d74b579501
[ "MIT" ]
1
2019-04-03T13:29:25.000Z
2019-04-03T13:29:25.000Z
from scrapy import cmdline import os class Crawler: ## get input ## filename = "results.json" def prepare(self): ## delete only if file exists ## if os.path.exists(self.filename): os.remove(self.filename) else: print("Sorry, I can not remove %s file." % self.filename) def execute(self, module): command = ("scrapy crawl %s" % module) cmdline.execute(command.split()) def main(): utils = Crawler() utils.prepare() # utils.execute("itune") utils.execute("itune_debug") # utils.execute("itune_browser") # utils.execute("itune_browser_debug") if __name__ == '__main__': main()
22.933333
69
0.604651
3a45febe4fb25c3c14bc1d3a37e960cb3abc1217
4,531
py
Python
ocu/cache.py
albertoleal/open-conference-url
b38e8cc8015913eb8562f9ab8970ac3cfd066a43
[ "MIT" ]
null
null
null
ocu/cache.py
albertoleal/open-conference-url
b38e8cc8015913eb8562f9ab8970ac3cfd066a43
[ "MIT" ]
null
null
null
ocu/cache.py
albertoleal/open-conference-url
b38e8cc8015913eb8562f9ab8970ac3cfd066a43
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import unicode_literals import json import os import os.path import re import subprocess from datetime import datetime from ocu.prefs import prefs # Manages storage and retrieval of cached data for this workflow (e.g. calendar # events, date/time of last run, etc.) class Cache(object): # The unique bundle ID of the workflow workflow_bundle_id = 'com.calebevans.openconferenceurl' # The directory for (volatile) Alfred workflow cache entries cache_dir = os.path.expanduser(os.path.join( '~', 'Library', 'Caches', 'com.runningwithcrayons.Alfred', 'Workflow Data', workflow_bundle_id)) # The file path to the cache store cache_path = os.path.join(cache_dir, 'event-cache.json') # The directory containing the workflow's source files code_dir = os.path.dirname(os.path.realpath(__file__)) def __init__(self): self.create_cache_dir() self.map = {} try: return self.read() except (IOError, RuntimeError): self.refresh(force=True) return self.read() # Return the current date as a string (for comparison against the date the # cache was last refreshed) def get_current_date(self): return datetime.now().strftime(prefs.date_format) # Read the cache JSON into memory def read(self): with open(self.cache_path, 'r') as cache_file: # Make all JSON keys accessible as instance attributes self.map.update(json.load(cache_file)) # Invalidate the cache at the start of every day if self.get('last_refresh_date') != self.get_current_date(): # Raising a RuntimeError will run the exception-handling code in # the constructor raise RuntimeError('Last refresh date is too old') # Create the cache directory if it doesn't already exist def create_cache_dir(self): try: os.makedirs(self.cache_dir) except OSError: pass # Retrieve the given key from the cache def get(self, key): return self.map.get(key) # Return True if the given key exists in the map; return False otherwise def has(self, key): return key in self.map # Update the cache with the given key/value pairs def update(self, attrs): self.map.update(attrs) with open(self.cache_path, 'w') as cache_file: json.dump(self.map, cache_file, indent=2, separators=(',', ': ')) # Refresh latest calendar event data def refresh(self, force=False): event_blobs = re.split(r'(?:^|\n)• ', subprocess.check_output([ '/opt/homebrew/bin/icalBuddy', # Override the default date/time formats '--dateFormat', prefs.date_format, '--noRelativeDates', '--timeFormat', prefs.time_format, # remove parenthetical calendar names from event titles '--noCalendarNames', # Only include the following fields and enforce their order '--includeEventProps', ','.join(prefs.event_props), '--propertyOrder', ','.join(prefs.event_props), 'eventsToday+{}'.format(prefs.offset_from_today) ]).decode('utf-8')) # The first element will always be an empty string, because the bullet # point we are splitting on is not a delimiter event_blobs.pop(0) # Detect when cache data has been updated, or if it has remained the # same (the event blobs are the only data worth checking) if force or self.get('event_blobs') != event_blobs: self.update({ # Cache event blob data for next execution of workflow 'event_blobs': event_blobs, # Cache the current date so we know when to invalidate the # cache 'last_refresh_date': self.get_current_date() }) has_cache_updated = True else: has_cache_updated = False return has_cache_updated # Queue a refresh of the cache (this will cause Alfred to refresh the # workflow cache in the background without blocking the execution of this # script) def queue_refresh(self): subprocess.Popen([ '/usr/bin/osascript', os.path.join(self.code_dir, 'queue_cache_refresh.applescript') ]) cache = Cache()
35.124031
79
0.625028
b719f8ebdc3daa1201d97e728fbd0749494ba94e
21
py
Python
TEST3D/GUI/0010300_page_active/cleanup.py
usnistgov/OOF3D
4fd423a48aea9c5dc207520f02de53ae184be74c
[ "X11" ]
31
2015-04-01T15:59:36.000Z
2022-03-18T20:21:47.000Z
TEST3D/GUI/0010300_page_active/cleanup.py
usnistgov/OOF3D
4fd423a48aea9c5dc207520f02de53ae184be74c
[ "X11" ]
3
2015-02-06T19:30:24.000Z
2017-05-25T14:14:31.000Z
TEST3D/GUI/0010300_page_active/cleanup.py
usnistgov/OOF3D
4fd423a48aea9c5dc207520f02de53ae184be74c
[ "X11" ]
7
2015-01-23T15:19:22.000Z
2021-06-09T09:03:59.000Z
removefile('aa.log')
10.5
20
0.714286
4eff7dafc406c6584618fb03ccc49ee9b17f03dc
4,540
py
Python
QR-code-Genrator/main.py
dsrao711/Amazing-Python-Scripts
4a8bf7bc3d0c6f2c7838d1380c7f9ddbfce766b7
[ "MIT" ]
1
2021-04-17T08:33:25.000Z
2021-04-17T08:33:25.000Z
QR-code-Genrator/main.py
dsrao711/Amazing-Python-Scripts
4a8bf7bc3d0c6f2c7838d1380c7f9ddbfce766b7
[ "MIT" ]
null
null
null
QR-code-Genrator/main.py
dsrao711/Amazing-Python-Scripts
4a8bf7bc3d0c6f2c7838d1380c7f9ddbfce766b7
[ "MIT" ]
1
2021-07-22T07:06:09.000Z
2021-07-22T07:06:09.000Z
from tkinter import * # import os import qrcode from PIL import Image, ImageTk from resizeimage import resizeimage # QR Code Generator | Designed by Jay Gohel class Qr_Genrator(): def __init__(self, root): self.root=root self.root.title("QR Code Generator") self.root.geometry('900x500+200+50') self.root.resizable(False, False) title = Label(self.root,text=" QR Code Genrator", font=("time new roman",40), bg="#F96900", fg="white", anchor="w").place(x=0,y=0,relwidth=1) # Variable self.var_emp_code=StringVar() self.var_name=StringVar() self.var_department=StringVar() self.var_designation=StringVar() # Employee detail window design emp_Frame=Frame(self.root,bd=2, relief=RIDGE,bg="white") emp_Frame.place(x=50, y=100, width=500, height=380) emp_title = Label(emp_Frame,text=" Employee Details", font=("goudy old style",20), bg="#FB9316", fg="white").place(x=0,y=0,relwidth=1) lbl_emp_code = Label(emp_Frame,text=" Employee ID", font=("time new roman",15), bg="white").place(x=20,y=60) lbl_emp_name = Label(emp_Frame,text=" Name", font=("time new roman",15), bg="white").place(x=20,y=100) lbl_emp_dept = Label(emp_Frame,text=" Department", font=("time new roman",15), bg="white").place(x=20,y=140) lbl_emp_designation = Label(emp_Frame,text=" Designation", font=("time new roman",15), bg="white").place(x=20,y=180) text_emp_code = Entry(emp_Frame, font=("time new roman",15), textvariable=self.var_emp_code, bg="lightyellow").place(x=200,y=60) text_emp_name = Entry(emp_Frame, font=("time new roman",15), textvariable=self.var_name, bg="lightyellow").place(x=200,y=100) text_emp_dept = Entry(emp_Frame, font=("time new roman",15), textvariable=self.var_department, bg="lightyellow").place(x=200,y=140) text_emp_designation = Entry(emp_Frame, font=("time new roman",15), textvariable=self.var_designation, bg="lightyellow").place(x=200,y=180) btn_genrator = Button(emp_Frame, text="QR Genrator", command=self.genrate, font=("time new roman", 15, "bold"), bg="#2196f3", fg="white").place(x=90, y=250, width=180, height="30") btn_clear = Button(emp_Frame, text="Clear", command=self.clear, font=("time new roman", 15, "bold"), bg="#2196f3", fg="white").place(x=290, y=250, width=120, height="30") self.msg="" self.lbl_msg = Label(emp_Frame, text=self.msg, font=("time new roman",15), bg="white", fg="green") self.lbl_msg.place(x=0,y=320, relwidth=1) # Qr Code window design qr_Frame=Frame(self.root,bd=2, relief=RIDGE,bg="white") qr_Frame.place(x=600, y=100, width=250, height=380) emp_title = Label(qr_Frame,text="Employee QR code", font=("goudy old style",15), bg="#FB9316", fg="white").place(x=0,y=0,relwidth=1) self.qr_code = Label(qr_Frame, text="No QR\n available", font=("time new roman",15), bg="#D76C02", fg="white", bd=1, relief=RIDGE) self.qr_code.place(x=35, y=100, width=180, height=180) def clear(self): self.var_emp_code.set('') self.var_name.set('') self.var_department.set('') self.var_designation.set('') self.msg="" self.lbl_msg.config(text=self.msg) self.qr_code.config(image='') def genrate(self): if self.var_emp_code.get() == '' or self.var_name.get() == '' or self.var_department.get() == '' or self.var_designation.get() == '': self.msg="All filed required !!!" self.lbl_msg.config(text=self.msg, fg="red") else: qr_data=(f"Employee Id:{self.var_emp_code.get()}\nEmployee Name:{self.var_name.get()}\nDepartment:{self.var_department.get()}\nDesignation:{self.var_designation.get()}") qr_code=qrcode.make(qr_data) # print(qr_code) qr_code=resizeimage.resize_cover(qr_code,[180,180]) qr_code.save('./QR-code-Genrator/employee_qr/emp_'+str(self.var_emp_code.get()+'.png')) # qr code img update self.im=ImageTk.PhotoImage(file='../QR-code-Genrator/employee_qr/emp_'+str(self.var_emp_code.get()+'.png')) self.qr_code.config(image=self.im) # updating noti self.msg="QR genrated Successful!!" self.lbl_msg.config(text=self.msg, fg="green") root = Tk() obj = Qr_Genrator(root) root.mainloop()
50.444444
188
0.627974
e16eab733ff9d39964f8785ec4e9d1d14366fc0b
10,720
py
Python
python/modelparsing/gem5.py
OleJohanBerg/riscv-custom-extension
53d63233bd3c9b7a01bea99916efea63f7ff677f
[ "BSD-3-Clause" ]
2
2019-08-21T07:19:35.000Z
2021-11-12T05:40:02.000Z
python/modelparsing/gem5.py
OleJohanBerg/riscv-custom-extension
53d63233bd3c9b7a01bea99916efea63f7ff677f
[ "BSD-3-Clause" ]
null
null
null
python/modelparsing/gem5.py
OleJohanBerg/riscv-custom-extension
53d63233bd3c9b7a01bea99916efea63f7ff677f
[ "BSD-3-Clause" ]
1
2019-11-28T21:08:50.000Z
2019-11-28T21:08:50.000Z
# Copyright (c) 2018 TU Dresden # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Robert Scheffel import logging import os import sys from mako.template import Template logger = logging.getLogger(__name__) class Gem5: ''' This class builds the code snippets, that are later integrated in the gem5 decoder. It builds a custom decoder depending on the previously parsed models. ''' def __init__(self, exts, regs): self._exts = exts self._regs = regs self._decoder = '' self._gem5_path = os.path.abspath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '../../../..')) self._gem5_arch_path = os.path.abspath( os.path.join( self._gem5_path, 'src/arch')) self._gem5_ply_path = os.path.join( self._gem5_path, 'ext/ply') self._isa_decoder = os.path.abspath( os.path.join( self._gem5_arch_path, 'riscv/isa/decoder/rv32.isa')) assert os.path.exists(self._isa_decoder) self._buildpath = os.path.abspath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '../../build')) self._isamain = os.path.abspath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '../../src/isa/main.isa')) assert os.path.exists(self._isamain) def restore(self): ''' Remove the custom extensions from the isa decoder. Restore the saved decoder. ''' logger.info('Restore original ISA decoder.') decoder_old = self._isa_decoder + '_old' if os.path.exists(decoder_old): logger.info('Restore contents from file {}'.format(decoder_old)) with open(decoder_old, 'r') as fh: content = fh.read() with open(self._isa_decoder, 'w') as fh: fh.write(content) logger.info('Original decoder restored') try: logger.info('Remove {} from system'.format(decoder_old)) os.remove(decoder_old) except OSError: pass else: logger.info('Nothing to do') def extend_gem5(self): ''' Calls the functions to generate a custom decoder and patch the necessary files in gem5. ''' # first: decoder related stuff self.gen_decoder() self.gen_cxx_files() self.create_regsintr() # self.patch_decoder() # second: create timings for functional units self.create_FU_timings() def gen_decoder(self): assert os.path.exists(self._buildpath) assert os.path.exists(self._gem5_arch_path) # iterate of all custom extensions and generate a custom decoder # first sort models: # opcode > funct3 (> funct7) logger.info('Generate custom decoder from models.') # sort models self._exts.models.sort(key=lambda x: (x.opc, x.funct3, x.funct7)) dec_templ = Template(r"""<% dfn = {} for model in models: if model.opc in dfn: dfn[model.opc].append(model) else: dfn[model.opc] = [model] for opc, mdls in dfn.items(): funct3 = {} for mdl in mdls: if mdl.form == 'I': funct3[mdl.funct3] = mdl else: if mdl.funct3 in funct3: funct3[mdl.funct3].append(mdl) else: funct3[mdl.funct3] = [mdl] dfn[opc] = funct3 %>\ // === AUTO GENERATED FILE === % if dfn.items(): decode OPCODE default Unknown::unknown() { % for opc,funct3_dict in dfn.items(): ${hex(opc)}: decode FUNCT3 { % for funct3, val in funct3_dict.items(): % if type(val) != list: ${hex(funct3)}: I32Op::${val.name}({${val.definition}}, uint32_t, IntCustOp); % else: ${hex(funct3)}: decode FUNCT7 { % for mdl in val: ${hex(mdl.funct7)}: R32Op::${mdl.name}({${mdl.definition}}, IntCustOp); % endfor } % endif % endfor } % endfor } % else: decode OPCODE { default: Unknown::unknown(); } % endif """) self._decoder = dec_templ.render(models=self._exts.models) logger.debug('custom decoder: \n' + self._decoder) def gen_cxx_files(self): # now generate the cxx files using the isa parser isabuildpath = os.path.join(self._buildpath, 'isa') if not os.path.exists(isabuildpath): os.makedirs(isabuildpath) isafile = os.path.join(isabuildpath, 'custom.isa') with open(isafile, 'w') as fh: fh.write(self._decoder) # create a builddir gen_build_dir = os.path.join(self._buildpath, 'generated') if not os.path.exists(gen_build_dir): os.makedirs(gen_build_dir) # add some paths to call the gem5 isa parser sys.path[0:0] = [self._gem5_arch_path] sys.path[0:0] = [self._gem5_ply_path] sys.path[0:0] = [os.path.join(self._gem5_path, 'src/python')] import isa_parser logger.info('Let gem5 isa_parser generate decoder files') parser = isa_parser.ISAParser(gen_build_dir) parser.parse_isa_desc(self._isamain) def patch_decoder(self): # patch the gem5 isa decoder dec_templ = Template(r"""<% dfn = {} for model in models: if model.opc in dfn: dfn[model.opc].append(model) else: dfn[model.opc] = [model] for opc, mdls in dfn.items(): funct3 = {} for mdl in mdls: if mdl.form == 'I': funct3[mdl.funct3] = mdl else: if mdl.funct3 in funct3: funct3[mdl.funct3].append(mdl) else: funct3[mdl.funct3] = [mdl] dfn[opc] = funct3 %>\ % for opc,funct3_dict in dfn.items(): ${hex(opc)}: decode FUNCT3 { % for funct3, val in funct3_dict.items(): % if type(val) != list: ${hex(funct3)}: I32Op::${val.name}({${val.definition}}, uint32_t, IntCustOp); % else: ${hex(funct3)}: decode FUNCT7 { % for mdl in val: ${hex(mdl.funct7)}: R32Op::${mdl.name}({${mdl.definition}}, IntCustOp); % endfor } % endif % endfor } % endfor""") decoder_patch = dec_templ.render(models=self._exts.models) # for now: always choose rv32.isa logger.info("Patch the gem5 isa file " + self._isa_decoder) with open(self._isa_decoder, 'r') as fh: content = fh.readlines() # if not existing # copy the old .isa file gem5_isa_old = self._isa_decoder + '_old' if not os.path.exists(gem5_isa_old): logger.info('Copy original {}'.format(self._isa_decoder)) with open(gem5_isa_old, 'w') as fh: data = ''.join(content) fh.write(data) line = len(content) - 2 content.insert(line, decoder_patch) # write back modified content with open(self._isa_decoder, 'w') as fh: content = ''.join(content) fh.write(content) def create_FU_timings(self): ''' Retrieve the cycle count information from the models. Together with the mask and match value, create a timing for every custom instruction. ''' assert os.path.exists(self._buildpath) logger.info("Create custom timing file for Minor CPU.") timing_templ = Template(r"""<% %>\ # === AUTO GENERATED FILE === from m5.objects import * % for inst in insts: class MinorFUTiming${inst.name.title()}(MinorFUTiming): description = 'Custom${inst.name.title()}' match = ${hex(inst.matchvalue)} mask = ${hex(inst.maskvalue)} srcRegsRelativeLats = [2] extraCommitLat = ${inst.cycles - 1} % endfor custom_timings = [ % for inst in insts: MinorFUTiming${inst.name.title()}(), % endfor ] """) _FUtimings = timing_templ.render(insts=self._exts.instructions) pythonbuildpath = os.path.join(self._buildpath, 'python') if not os.path.exists(pythonbuildpath): os.makedirs(pythonbuildpath) timingfile = os.path.join(pythonbuildpath, 'minor_custom_timings.py') with open(timingfile, 'w') as fh: fh.write(_FUtimings) def create_regsintr(self): ''' A file is needed, that provides functions for accessing custom registers within the execute function of the gem5 decoded instruction. ''' intr_templ = Template(r"""<% %>\ // === AUTO GENERATED FILE === #include <stdint.h> % for reg, addr in regmap.items(): #define ${reg} ${hex(addr)} % endfor #define READ_CUSTOM_REG(reg) \ ({uint32_t val; \ val = xc->readMiscReg(reg); \ val;}) #define WRITE_CUSTOM_REG(reg, val) \ (xc->setMiscReg(reg,val)) """) intr = intr_templ.render(regmap=self._regs.regmap) genpath = os.path.join(self._buildpath, 'generated') if not os.path.exists(genpath): os.makedirs(genpath) intrfile = os.path.join(genpath, 'regsintr.hh') with open(intrfile, 'w') as fh: fh.write(intr) @property def decoder(self): return self._decoder @property def extensions(self): return self._exts @property def regs(self): return self._regs
30.197183
78
0.61903
5d716c52ab99682825fe3e3a37dcf9a558cc3543
17,362
py
Python
bodyfetcher.py
Draakonraev/SmokeDetector
a1a1f769eb309d71c6d4869a7a1ddf2220389d6c
[ "Apache-2.0", "MIT" ]
null
null
null
bodyfetcher.py
Draakonraev/SmokeDetector
a1a1f769eb309d71c6d4869a7a1ddf2220389d6c
[ "Apache-2.0", "MIT" ]
null
null
null
bodyfetcher.py
Draakonraev/SmokeDetector
a1a1f769eb309d71c6d4869a7a1ddf2220389d6c
[ "Apache-2.0", "MIT" ]
null
null
null
# coding=utf-8 from spamhandling import handle_spam, check_if_spam from datahandling import (add_or_update_api_data, clear_api_data, store_bodyfetcher_queue, store_bodyfetcher_max_ids, store_queue_timings) from chatcommunicate import tell_rooms_with from globalvars import GlobalVars from operator import itemgetter from datetime import datetime import json import time import threading import requests import copy from classes import Post, PostParseError from helpers import log from itertools import chain # noinspection PyClassHasNoInit,PyBroadException class BodyFetcher: queue = {} previous_max_ids = {} queue_timings = {} special_cases = { "pt.stackoverflow.com": 10, "ru.stackoverflow.com": 10, "blender.stackexchange.com": 5, "codereview.stackexchange.com": 5, "es.stackoverflow.com": 5, "stackoverflow.com": 3, "stats.stackexchange.com": 5, "tex.stackexchange.com": 5, "magento.stackexchange.com": 3, "gis.stackexchange.com": 3 } time_sensitive = ["security.stackexchange.com", "movies.stackexchange.com", "mathoverflow.net", "gaming.stackexchange.com", "webmasters.stackexchange.com", "arduino.stackexchange.com", "workplace.stackexchange.com"] threshold = 1 last_activity_date = 0 api_data_lock = threading.Lock() queue_modify_lock = threading.Lock() max_ids_modify_lock = threading.Lock() queue_timing_modify_lock = threading.Lock() def add_to_queue(self, post, should_check_site=False): try: d = json.loads(json.loads(post)["data"]) except ValueError: # post didn't contain a valid JSON object in its ["data"] member # indicative of a server-side socket reset return site_base = d["siteBaseHostAddress"] post_id = d["id"] if (post_id == 3122 or post_id == 51812) and site_base == "meta.stackexchange.com": return # don't check meta sandbox, it's full of weird posts with self.queue_modify_lock: if site_base not in self.queue: self.queue[site_base] = {} # Something about how the queue is being filled is storing Post IDs in a list. # So, if we get here we need to make sure that the correct types are paseed. # # If the item in self.queue[site_base] is a dict, do nothing. # If the item in self.queue[site_base] is not a dict but is a list or a tuple, then convert to dict and # then replace the list or tuple with the dict. # If the item in self.queue[site_base] is neither a dict or a list, then explode. if type(self.queue[site_base]) is dict: pass elif type(self.queue[site_base]) is not dict and type(self.queue[site_base]) in [list, tuple]: post_list_dict = {} for post_list_id in self.queue[site_base]: post_list_dict[post_list_id] = None self.queue[site_base] = post_list_dict else: raise TypeError("A non-iterable is in the queue item for a given site, this will cause errors!") # This line only works if we are using a dict in the self.queue[site_base] object, which we should be with # the previous conversion code. self.queue[site_base][str(post_id)] = datetime.utcnow() if GlobalVars.flovis is not None: GlobalVars.flovis.stage('bodyfetcher/enqueued', site_base, post_id, {sk: list(sq.keys()) for sk, sq in self.queue.items()}) if should_check_site: self.make_api_call_for_site(site_base) else: self.check_queue() return def check_queue(self): for site, values in self.queue.items(): if site in self.special_cases: if len(values) >= self.special_cases[site]: self.make_api_call_for_site(site) return if site in self.time_sensitive: if len(values) >= 1 and datetime.utcnow().hour in range(4, 12): self.make_api_call_for_site(site) return # if we don't have any sites with their queue filled, take the first one without a special case for site, values in self.queue.items(): if site not in self.special_cases and len(values) >= self.threshold: self.make_api_call_for_site(site) return # We're not making an API request, so explicitly store the queue with self.queue_modify_lock: store_bodyfetcher_queue() def print_queue(self): return '\n'.join(["{0}: {1}".format(key, str(len(values))) for (key, values) in self.queue.items()]) def make_api_call_for_site(self, site): if site not in self.queue: return with self.queue_modify_lock: new_posts = self.queue.pop(site) store_bodyfetcher_queue() new_post_ids = [int(k) for k in new_posts.keys()] if GlobalVars.flovis is not None: for post_id in new_post_ids: GlobalVars.flovis.stage('bodyfetcher/api_request', site, post_id, {'site': site, 'posts': list(new_posts.keys())}) with self.queue_timing_modify_lock: post_add_times = [v for k, v in new_posts.items()] pop_time = datetime.utcnow() for add_time in post_add_times: try: seconds_in_queue = (pop_time - add_time).total_seconds() if site in self.queue_timings: self.queue_timings[site].append(seconds_in_queue) else: self.queue_timings[site] = [seconds_in_queue] except KeyError: # XXX: Any other possible exception? continue # Skip to next item if we've got invalid data or missing values. store_queue_timings() with self.max_ids_modify_lock: if site in self.previous_max_ids and max(new_post_ids) > self.previous_max_ids[site]: previous_max_id = self.previous_max_ids[site] intermediate_posts = range(previous_max_id + 1, max(new_post_ids)) # We don't want to go over the 100-post API cutoff, so take the last # (100-len(new_post_ids)) from intermediate_posts intermediate_posts = intermediate_posts[(100 - len(new_post_ids)):] # new_post_ids could contain edited posts, so merge it back in combined = chain(intermediate_posts, new_post_ids) # Could be duplicates, so uniquify posts = list(set(combined)) else: posts = new_post_ids try: if max(new_post_ids) > self.previous_max_ids[site]: self.previous_max_ids[site] = max(new_post_ids) store_bodyfetcher_max_ids() except KeyError: self.previous_max_ids[site] = max(new_post_ids) store_bodyfetcher_max_ids() log('debug', "New IDs / Hybrid Intermediate IDs for {}:".format(site)) if len(new_post_ids) > 30: log('debug', "{} +{} more".format(sorted(new_post_ids)[:30], len(new_post_ids) - 30)) else: log('debug', sorted(new_post_ids)) if len(new_post_ids) == len(posts): log('debug', "[ *Identical* ]") elif len(posts) > 30: log('debug', "{} +{} more".format(sorted(posts)[:30], len(posts) - 30)) else: log('debug', sorted(posts)) question_modifier = "" pagesize_modifier = {} if site == "stackoverflow.com": # Not all SO questions are shown in the realtime feed. We now # fetch all recently modified SO questions to work around that. if self.last_activity_date != 0: pagesize = "50" else: pagesize = "25" pagesize_modifier = { 'pagesize': pagesize, 'min': str(self.last_activity_date) } else: question_modifier = "/{0}".format(";".join([str(post) for post in posts])) url = "https://api.stackexchange.com/2.2/questions{}".format(question_modifier) params = { 'filter': '!*xq08dCDNr)PlxxXfaN8ntivx(BPlY_8XASyXLX-J7F-)VK*Q3KTJVkvp*', 'key': 'IAkbitmze4B8KpacUfLqkw((', 'site': site } params.update(pagesize_modifier) # wait to make sure API has/updates post data time.sleep(3) with GlobalVars.api_request_lock: # Respect backoff, if we were given one if GlobalVars.api_backoff_time > time.time(): time.sleep(GlobalVars.api_backoff_time - time.time() + 2) try: time_request_made = datetime.utcnow().strftime('%H:%M:%S') response = requests.get(url, params=params, timeout=20).json() except (requests.exceptions.Timeout, requests.ConnectionError, Exception): # Any failure in the request being made (timeout or otherwise) should be added back to # the queue. with self.queue_modify_lock: if site in self.queue: self.queue[site].update(new_posts) else: self.queue[site] = new_posts return with self.api_data_lock: add_or_update_api_data(site) message_hq = "" with GlobalVars.apiquota_rw_lock: if "quota_remaining" in response: if response["quota_remaining"] - GlobalVars.apiquota >= 5000 and GlobalVars.apiquota >= 0: tell_rooms_with("debug", "API quota rolled over with {0} requests remaining. " "Current quota: {1}.".format(GlobalVars.apiquota, response["quota_remaining"])) sorted_calls_per_site = sorted(GlobalVars.api_calls_per_site.items(), key=itemgetter(1), reverse=True) api_quota_used_per_site = "" for site_name, quota_used in sorted_calls_per_site: sanatized_site_name = site_name.replace('.com', '').replace('.stackexchange', '') api_quota_used_per_site += sanatized_site_name + ": {0}\n".format(str(quota_used)) api_quota_used_per_site = api_quota_used_per_site.strip() tell_rooms_with("debug", api_quota_used_per_site) clear_api_data() if response["quota_remaining"] == 0: tell_rooms_with("debug", "API reports no quota left! May be a glitch.") tell_rooms_with("debug", str(response)) # No code format for now? if GlobalVars.apiquota == -1: tell_rooms_with("debug", "Restart: API quota is {quota}." .format(quota=response["quota_remaining"])) GlobalVars.apiquota = response["quota_remaining"] else: message_hq = "The quota_remaining property was not in the API response." if "error_message" in response: message_hq += " Error: {} at {} UTC.".format(response["error_message"], time_request_made) if "error_id" in response and response["error_id"] == 502: if GlobalVars.api_backoff_time < time.time() + 12: # Add a backoff of 10 + 2 seconds as a default GlobalVars.api_backoff_time = time.time() + 12 message_hq += " Backing off on requests for the next 12 seconds." message_hq += " Previous URL: `{}`".format(url) if "backoff" in response: if GlobalVars.api_backoff_time < time.time() + response["backoff"]: GlobalVars.api_backoff_time = time.time() + response["backoff"] if len(message_hq) > 0 and "site is required" not in message_hq: tell_rooms_with("debug", message_hq.strip()) if "items" not in response: return if site == "stackoverflow.com": items = response["items"] if len(items) > 0 and "last_activity_date" in items[0]: self.last_activity_date = items[0]["last_activity_date"] num_scanned = 0 start_time = time.time() for post in response["items"]: pnb = copy.deepcopy(post) if 'body' in pnb: pnb['body'] = 'Present, but truncated' if 'answers' in pnb: del pnb['answers'] if "title" not in post or "body" not in post: if GlobalVars.flovis is not None and 'question_id' in post: GlobalVars.flovis.stage('bodyfetcher/api_response/no_content', site, post['question_id'], pnb) continue post['site'] = site try: post['edited'] = (post['creation_date'] != post['last_edit_date']) except KeyError: post['edited'] = False # last_edit_date not present = not edited try: post_ = Post(api_response=post) except PostParseError as err: log('error', 'Error {0} when parsing post: {1!r}'.format(err, post_)) if GlobalVars.flovis is not None and 'question_id' in post: GlobalVars.flovis.stage('bodyfetcher/api_response/error', site, post['question_id'], pnb) continue num_scanned += 1 is_spam, reason, why = check_if_spam(post_) if is_spam: try: if GlobalVars.flovis is not None and 'question_id' in post: GlobalVars.flovis.stage('bodyfetcher/api_response/spam', site, post['question_id'], {'post': pnb, 'check_if_spam': [is_spam, reason, why]}) handle_spam(post=post_, reasons=reason, why=why) except Exception as e: log('error', "Exception in handle_spam:", e) elif GlobalVars.flovis is not None and 'question_id' in post: GlobalVars.flovis.stage('bodyfetcher/api_response/not_spam', site, post['question_id'], {'post': pnb, 'check_if_spam': [is_spam, reason, why]}) try: if "answers" not in post: pass else: for answer in post["answers"]: anb = copy.deepcopy(answer) if 'body' in anb: anb['body'] = 'Present, but truncated' num_scanned += 1 answer["IsAnswer"] = True # Necesssary for Post object answer["title"] = "" # Necessary for proper Post object creation answer["site"] = site # Necessary for proper Post object creation try: answer['edited'] = (answer['creation_date'] != answer['last_edit_date']) except KeyError: answer['edited'] = False # last_edit_date not present = not edited answer_ = Post(api_response=answer, parent=post_) is_spam, reason, why = check_if_spam(answer_) if is_spam: try: if GlobalVars.flovis is not None and 'answer_id' in answer: GlobalVars.flovis.stage('bodyfetcher/api_response/spam', site, answer['answer_id'], {'post': anb, 'check_if_spam': [is_spam, reason, why]}) handle_spam(answer_, reasons=reason, why=why) except Exception as e: log('error', "Exception in handle_spam:", e) elif GlobalVars.flovis is not None and 'answer_id' in answer: GlobalVars.flovis.stage('bodyfetcher/api_response/not_spam', site, answer['answer_id'], {'post': anb, 'check_if_spam': [is_spam, reason, why]}) except Exception as e: log('error', "Exception handling answers:", e) end_time = time.time() scan_time = end_time - start_time GlobalVars.PostScanStat.add_stat(num_scanned, scan_time) return
45.810026
119
0.548439
2e060fa9fb4b208dccd6c75dfc83d52e9f5aad4e
3,943
py
Python
radnlp/split.py
chapmanbe/RadNLP
7d27b53a75ed7c4498a649c94d2eed11f3024054
[ "Apache-2.0" ]
10
2015-08-17T14:51:36.000Z
2021-04-27T03:49:23.000Z
radnlp/split.py
chapmanbe/RadNLP
7d27b53a75ed7c4498a649c94d2eed11f3024054
[ "Apache-2.0" ]
null
null
null
radnlp/split.py
chapmanbe/RadNLP
7d27b53a75ed7c4498a649c94d2eed11f3024054
[ "Apache-2.0" ]
6
2016-12-02T22:06:53.000Z
2020-08-31T14:33:34.000Z
""" Tools for splitting report and recognizing sections """ import re from textblob import TextBlob r_headings = re.compile(r"""(?P<heading>([A-Z ]+\s)?[A-Z()]+:)""") r_digits = re.compile(r"""\d\.""") r_enumerate = re.compile(r"""((\d(.|:|\))\s)(.+)(?=\n))""") canned_phrases = ("if you have any question about this report, contact me at:", "i have personally reviewed the images and agree", "i have personally reviewed the images for this examination", "please utilize the following guidance for the management of these patients", "please utilize the following guidance for management", "i have reviewed the images and approve this final report", "the imaging exam has been reviewed and the report has been issued by a radiologist physician", ) def terminate_lists(txt): """ Replace enumerated lists that don't end with a period/question mark """ lists = r_enumerate.findall(txt) for l in lists: txt = txt.replace(l[0],"%s."%l[0]) return txt def get_headings(txt): """ """ global r_headings return [r.group("heading").strip() for r in r_headings.finditer(txt)] def find_terminating_sentences(txt,phrases=None): """ """ try: if not phrases: phrases = () indices = [i for i in [txt.lower().find(p) for p in phrases] if i != -1] return min(indices) except: return None def get_report(txt,terminating_phrases= None): """ get report text up to any terminating_phrases """ if not terminating_phrases: terminating_phrases = canned_phrases ti = find_terminating_sentences(txt,terminating_phrases) global r_digits if ti != -1: return r_digits.sub("",txt[:ti]) else: return r_digits.sub("",txt) def preprocess_report(txt, fix_enumerated_lists=True, drop_boiler_plate=True, canned_phrases=None): """ from a string (txt) containing a report, return the relevant portions fix_enumerated_lists: boolean. If true, use regular expressions to transform enumerated lists into more sentence like structures. drop_boiler_plate: boolean. If true, only return text preceding canned_phrases canned_phrases: None or list. List of canned phrases to exlcude as boilerplate """ if fix_enumerated_lists: txt = terminate_lists(txt) if drop_boiler_plate: txt = get_report(txt,terminating_phrases=canned_phrases) return txt def grab_impression(txt): """ grab impression from text via looking for IMPRESSION: """ try: return txt[txt.index("IMPRESSION:"):].split("IMPRESSION:")[1] except Exception as error: print(error) return "" def get_sections(txt, headings): h = headings.pop() def get_section(txt,heading): try: loc = txt.index(heading) return txt[:loc], txt[loc:].split(heading)[1].strip() except Exception as error: #print(error, heading, txt) return txt, "" def get_sections_by_headings(txt, sections, headings): if not headings: return txt, sections else: h = headings.pop() txt, sections[h] = get_section(txt, h) return get_sections_by_headings(txt, sections, headings) def reverse_sections(secs): _secs = OrderedDict() while secs: sec,txt = secs.popitem() _secs[sec] = txt return _secs def split_report(txt): headings = get_headings(txt) txt, secs = get_sections_by_headings(txt, OrderedDict(), headings) return reverse_sections(secs) def get_sentences(report): """ Wrapper around TextBlob generates a TextBlob instance from report and returns the sentences """ return [s.raw for s in TextBlob(report).sentences]
29.207407
112
0.632767
941069669f890523139642f64c081ec9cc0b5711
1,163
py
Python
tests/permifrost_test_utils/snowflake_connector.py
kouk/permifrost
713aee06c287ba128032c03eead3469a79d90560
[ "MIT" ]
null
null
null
tests/permifrost_test_utils/snowflake_connector.py
kouk/permifrost
713aee06c287ba128032c03eead3469a79d90560
[ "MIT" ]
null
null
null
tests/permifrost_test_utils/snowflake_connector.py
kouk/permifrost
713aee06c287ba128032c03eead3469a79d90560
[ "MIT" ]
null
null
null
from typing import Dict, List, Any class MockSnowflakeConnector: def show_databases(self) -> List[str]: return [] def show_warehouses(self) -> List[str]: return [] def show_roles(self) -> Dict[str, str]: return {} def show_users(self) -> List[str]: return [] def show_schemas(self, database: str = None) -> List[str]: return [] def show_tables(self, database: str = None, schema: str = None) -> List[str]: return [] def show_views(self, database: str = None, schema: str = None) -> List[str]: return [] def show_future_grants(self, database: str = None, schema: str = None) -> List[str]: return [] def show_grants_to_role(self, role) -> Dict[str, Any]: return {} def show_grants_to_role_with_grant_option(self, role) -> Dict[str, Any]: return {} def show_roles_granted_to_user(self, user) -> List[str]: return [] def get_current_user(self) -> str: return "" def get_current_role(self) -> str: return "securityadmin" def full_schema_list(self, schema: str) -> List[str]: return []
25.282609
88
0.600172
c18fbac0413798c0a6e8f510b382979a64a63ffa
3,268
py
Python
tests/storages_tests/rdb_tests/test_with_server.py
Jeyhooon/optuna
0a5560cd0c8e83fe03f63ab431a513bf893f7d4d
[ "MIT" ]
1
2019-05-28T07:29:49.000Z
2019-05-28T07:29:49.000Z
tests/storages_tests/rdb_tests/test_with_server.py
nabenabe0928/optuna
aa505125de8515518fe19ba227edf7a1d3f8ebda
[ "MIT" ]
null
null
null
tests/storages_tests/rdb_tests/test_with_server.py
nabenabe0928/optuna
aa505125de8515518fe19ba227edf7a1d3f8ebda
[ "MIT" ]
2
2020-03-03T00:40:28.000Z
2021-01-28T11:54:32.000Z
from multiprocessing import Pool import os from typing import Sequence from typing import Tuple import numpy as np import pytest import optuna _STUDY_NAME = "_test_multiprocess" def f(x: float, y: float) -> float: return (x - 3) ** 2 + y def objective(trial: optuna.Trial) -> float: x = trial.suggest_float("x", -10, 10) y = trial.suggest_float("y", -10, 10) trial.report(x, 0) trial.report(y, 1) trial.set_user_attr("x", x) trial.set_system_attr("y", y) return f(x, y) def run_optimize(args: Tuple[str, str]) -> None: study_name = args[0] storage_url = args[1] # Create a study study = optuna.create_study(study_name=study_name, storage=storage_url, load_if_exists=True) # Run optimization study.optimize(objective, n_trials=20) @pytest.fixture def storage_url() -> str: if "TEST_DB_URL" not in os.environ: pytest.skip("This test requires TEST_DB_URL.") storage_url = os.environ["TEST_DB_URL"] try: optuna.study.delete_study(_STUDY_NAME, storage_url) except KeyError: pass return storage_url def _check_trials(trials: Sequence[optuna.trial.FrozenTrial]) -> None: # Check trial states. assert all(trial.state == optuna.trial.TrialState.COMPLETE for trial in trials) # Check trial values and params. assert all("x" in trial.params for trial in trials) assert all("y" in trial.params for trial in trials) assert all( np.isclose( [trial.value for trial in trials], [f(trial.params["x"], trial.params["y"]) for trial in trials], atol=1e-4, ) ) # Check intermediate values. assert all(len(trial.intermediate_values) == 2 for trial in trials) assert all(trial.params["x"] == trial.intermediate_values[0] for trial in trials) assert all(trial.params["y"] == trial.intermediate_values[1] for trial in trials) # Check attrs. assert all( np.isclose( [trial.user_attrs["x"] for trial in trials], [trial.params["x"] for trial in trials], atol=1e-4, ) ) assert all( np.isclose( [trial.system_attrs["y"] for trial in trials], [trial.params["y"] for trial in trials], atol=1e-4, ) ) def test_loaded_trials(storage_url: str) -> None: # Please create the tables by placing this function before the multi-process tests. N_TRIALS = 20 study = optuna.create_study(study_name=_STUDY_NAME, storage=storage_url) # Run optimization study.optimize(objective, n_trials=N_TRIALS) trials = study.trials assert len(trials) == N_TRIALS _check_trials(trials) # Create a new study to confirm the study can load trial properly. loaded_study = optuna.load_study(study_name=_STUDY_NAME, storage=storage_url) _check_trials(loaded_study.trials) def test_multiprocess(storage_url: str) -> None: n_workers = 8 study_name = _STUDY_NAME with Pool(n_workers) as pool: pool.map(run_optimize, [(study_name, storage_url)] * n_workers) study = optuna.load_study(study_name=study_name, storage=storage_url) trials = study.trials assert len(trials) == n_workers * 20 _check_trials(trials)
28.172414
96
0.662791
d526a43cb308fbf6437ad3f2d89855cc791a7b27
2,017
py
Python
deepchem/feat/tests/test_one_hot_featurizer.py
cjgalvin/deepchem
64993a129e7f0f78fed9500298b1828ac8a0757a
[ "MIT" ]
3
2019-05-29T19:18:25.000Z
2021-01-25T05:44:05.000Z
deepchem/feat/tests/test_one_hot_featurizer.py
cjgalvin/deepchem
64993a129e7f0f78fed9500298b1828ac8a0757a
[ "MIT" ]
10
2017-02-23T19:39:22.000Z
2017-08-31T22:21:18.000Z
deepchem/feat/tests/test_one_hot_featurizer.py
cjgalvin/deepchem
64993a129e7f0f78fed9500298b1828ac8a0757a
[ "MIT" ]
2
2019-11-20T03:21:14.000Z
2020-03-21T17:26:33.000Z
import unittest import numpy as np from deepchem.feat import OneHotFeaturizer from deepchem.feat.molecule_featurizers.one_hot_featurizer import ZINC_CHARSET class TestOneHotFeaturizert(unittest.TestCase): """ Test OneHotFeaturizer. """ def test_onehot_featurizer(self): """ Test simple one hot encoding. """ from rdkit import Chem length = len(ZINC_CHARSET) + 1 smiles = 'CC(=O)Oc1ccccc1C(=O)O' mol = Chem.MolFromSmiles(smiles) featurizer = OneHotFeaturizer() feature = featurizer([mol]) assert feature.shape == (1, 100, length) # untranform undo_smiles = featurizer.untransform(feature[0]) assert smiles == undo_smiles def test_onehot_featurizer_with_max_length(self): """ Test one hot encoding with max_length. """ from rdkit import Chem length = len(ZINC_CHARSET) + 1 smiles = 'CC(=O)Oc1ccccc1C(=O)O' mol = Chem.MolFromSmiles(smiles) featurizer = OneHotFeaturizer(max_length=120) feature = featurizer([mol]) assert feature.shape == (1, 120, length) # untranform undo_smiles = featurizer.untransform(feature[0]) assert smiles == undo_smiles def test_correct_transformation(self): """ Test correct one hot encoding. """ from rdkit import Chem charset = ['C', 'N', '=', ')', '(', 'O'] smiles = 'CN=C=O' mol = Chem.MolFromSmiles(smiles) featurizer = OneHotFeaturizer(charset=charset, max_length=100) feature = featurizer([mol]) assert np.allclose(feature[0][0], np.array([1, 0, 0, 0, 0, 0, 0])) assert np.allclose(feature[0][1], np.array([0, 1, 0, 0, 0, 0, 0])) assert np.allclose(feature[0][2], np.array([0, 0, 1, 0, 0, 0, 0])) assert np.allclose(feature[0][3], np.array([1, 0, 0, 0, 0, 0, 0])) assert np.allclose(feature[0][4], np.array([0, 0, 1, 0, 0, 0, 0])) assert np.allclose(feature[0][5], np.array([0, 0, 0, 0, 0, 1, 0])) # untranform undo_smiles = featurizer.untransform(feature[0]) assert smiles == undo_smiles
31.030769
78
0.653446
6a71757ab10c02ed703536b4da39a7a31ae4d827
536
py
Python
photos/urls.py
NDOLIC/Gallery
697719df6f49b1220ff8ca17a65d757553d7421a
[ "MIT" ]
null
null
null
photos/urls.py
NDOLIC/Gallery
697719df6f49b1220ff8ca17a65d757553d7421a
[ "MIT" ]
null
null
null
photos/urls.py
NDOLIC/Gallery
697719df6f49b1220ff8ca17a65d757553d7421a
[ "MIT" ]
null
null
null
from django.conf.urls import url from . import views from django.conf import settings from django.conf.urls.static import static urlpatterns=[ # url('^$',views.photos_of_day,name = 'welcome'), url('^$',views.photos_of_day,name='photosToday'), url(r'^search/', views.search_results, name='search_results'), url(r'^location/(\d+)', views.location, name='location'), url(r'^share/(\d+)', views.share, name='share') ] if settings.DEBUG: urlpatterns+= static(settings.MEDIA_URL, document_root = settings.MEDIA_ROOT)
35.733333
81
0.70709
89f32f93a32459c89f13285a3cc96e46bba81509
8,110
py
Python
contrib/devtools/update-translations.py
coiner7/whatcoin
a99fbb704ef0b370da4896256bacd04def1a6d0c
[ "MIT" ]
10
2021-07-04T03:27:19.000Z
2021-10-02T07:41:50.000Z
contrib/devtools/update-translations.py
coiner7/whatcoin
a99fbb704ef0b370da4896256bacd04def1a6d0c
[ "MIT" ]
2
2021-08-07T10:09:49.000Z
2021-10-01T04:45:07.000Z
contrib/devtools/update-translations.py
coiner7/whatcoin
a99fbb704ef0b370da4896256bacd04def1a6d0c
[ "MIT" ]
7
2021-07-06T13:22:31.000Z
2021-11-29T21:44:49.000Z
#!/usr/bin/env python3 # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'whatcoin_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break try: specifiers.append(s[percent+1]) except: print('Failed to get specifier') pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! #assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() # fetch_all_translations() postprocess_translations()
38.436019
124
0.632306
2c3d86c73a1148cac5cfa355cac9beed927688bf
723
py
Python
AsciiBot_Example/dots/getchar.py
naturecodevoid/RLBotAsciiDotsExample
b73f9b55bd907b66dc0ef21ce33ee421f19d95d6
[ "MIT" ]
3
2019-07-03T15:11:17.000Z
2019-07-26T03:18:47.000Z
AsciiBot_Example/dots/getchar.py
naturecodevoid/RLBotAsciiDotsExample
b73f9b55bd907b66dc0ef21ce33ee421f19d95d6
[ "MIT" ]
1
2019-08-04T20:17:53.000Z
2019-08-04T20:17:53.000Z
AsciiBot_Example/dots/getchar.py
naturecodevoid/RLBotAsciiDotsExample
b73f9b55bd907b66dc0ef21ce33ee421f19d95d6
[ "MIT" ]
2
2019-08-04T20:09:11.000Z
2019-08-04T20:13:38.000Z
def _find_getch(): try: import termios except ImportError: # Non-POSIX. Return msvcrt's (Windows') getch. import msvcrt return msvcrt.getch # POSIX system. Create and return a getch that manipulates the tty. import sys, tty def _getch(): fd = sys.stdin.fileno() old_settings = None try: old_settings = termios.tcgetattr(fd) tty.setraw(fd) except termios.error: pass try: ch = sys.stdin.read(1) finally: if old_settings is not None: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch return _getch getch = _find_getch()
25.821429
71
0.568465
cbb933282a395d82060f6fb9e981c05d8d376f10
19,426
py
Python
io_import_vmf/import_qc.py
lasa01/io_import_vmf
3341b8e2d0be77cba8f3ec30812f6c859f9b9a83
[ "MIT" ]
153
2020-04-19T20:57:00.000Z
2022-03-30T18:36:27.000Z
io_import_vmf/import_qc.py
lasa01/io_import_vmf
3341b8e2d0be77cba8f3ec30812f6c859f9b9a83
[ "MIT" ]
112
2020-04-20T08:20:30.000Z
2022-03-14T00:59:33.000Z
io_import_vmf/import_qc.py
lasa01/io_import_vmf
3341b8e2d0be77cba8f3ec30812f6c859f9b9a83
[ "MIT" ]
23
2020-04-28T18:41:00.000Z
2022-03-28T12:58:09.000Z
from io_scene_valvesource import import_smd, utils from .utils import find_armature_modifier, truncate_name from vmfpy.fs import VMFFileSystem, vmf_path from vmfpy.vmt import VMT import re from collections import defaultdict from typing import DefaultDict, Dict, Any, NamedTuple, Tuple, Set, Optional, Callable, TYPE_CHECKING import bpy import os from os.path import splitext, basename, dirname, isfile, isdir, isabs, join, relpath import subprocess import sys import platform from contextlib import redirect_stdout from io import StringIO import time import traceback _CDMATERIALS_REGEX = re.compile(r'\$CDMaterials[ \t]+"([^"\n]+)"', re.IGNORECASE) _IS_WINDOWS = platform.system() == "Windows" _CROWBARCMD_PATH = join(dirname(__file__), "bin", "CrowbarCommandLineDecomp.exe" if _IS_WINDOWS else "crowbar.dll") if TYPE_CHECKING: from . import import_vmt # noqa: F401 def crowbar_command(full_mdl_path: str, out_path: str) -> Tuple[str, ...]: if _IS_WINDOWS: return ( _CROWBARCMD_PATH, "-p", full_mdl_path, "-o", out_path, ) else: return ( "dotnet", _CROWBARCMD_PATH, full_mdl_path, out_path, ) class FakeSmd(): def __init__(self, armature: bpy.types.Object, bone_id_map: Dict[int, str]): self.a = armature self.boneIDs = bone_id_map def copy(self) -> 'FakeSmd': return FakeSmd(self.a, self.boneIDs) @staticmethod def from_bst(smd: Any) -> 'FakeSmd': if smd is None: raise Exception("nothing was imported by Blender Source Tools") if not isinstance(smd.a, bpy.types.Object) or not isinstance(smd.boneIDs, dict): raise Exception("unexpected Blender Source Tools data format (unsupported version?)") return FakeSmd(smd.a, smd.boneIDs) class SmdImporterWrapper(import_smd.SmdImporter): bl_idname = "import_scene._io_import_vmf_smd_wrapper" filepath: bpy.props.StringProperty() # type: ignore append: bpy.props.StringProperty(default='APPEND') # type: ignore boneMode: bpy.props.StringProperty(default='NONE') # type: ignore createCollections: bpy.props.BoolProperty(default=False) # type: ignore skip_collision: bpy.props.BoolProperty(default=True) # type: ignore skip_lod: bpy.props.BoolProperty(default=True) # type: ignore skip_anim: bpy.props.BoolProperty(default=False) # type: ignore vmt_importer: Optional[Any] vmf_fs: VMFFileSystem collection: bpy.types.Collection root: str name: str full_name: str def execute(self, context: bpy.types.Context) -> set: self.existingBones = [] # type: ignore self.num_files_imported = 0 self._missing_materials: Set[str] = set() self._cdmaterials = [vmf_path("")] SmdImporterWrapper.smd = None # figure what the material dir should be for the qc with open(self.filepath, 'r') as fp: content = fp.read() for match in _CDMATERIALS_REGEX.finditer(content): self._cdmaterials.append(vmf_path(match.group(1))) animations = False if self.skip_anim else "$staticprop" not in content.lower() self.readQC(self.filepath, False, animations, False, 'QUATERNION', outer_qc=True) return {'FINISHED'} def readQC(self, filepath: str, newscene: bool, doAnim: bool, makeCamera: bool, rotMode: str, outer_qc: bool = False) -> int: if outer_qc: self.qc = utils.QcInfo() self.qc.startTime = time.time() self.qc.jobName = SmdImporterWrapper.name self.qc.root_filedir = dirname(filepath) self.qc.makeCamera = makeCamera self.qc.animation_names = [] return super().readQC(filepath, newscene, doAnim, makeCamera, rotMode, False) def createArmature(self, armature_name: str) -> bpy.types.Object: if armature_name.endswith("_skeleton"): armature_name = armature_name[:-9] return super().createArmature(armature_name) def initSMD(self, filepath: str, smd_type: str, upAxis: str, rotMode: str, target_layer: int) -> Any: smd = super().initSMD(filepath, smd_type, upAxis, rotMode, target_layer) smd.jobName = truncate_name(splitext(relpath(filepath, SmdImporterWrapper.root))[0]) return smd def readSMD(self, filepath: str, upAxis: str, rotMode: str, newscene: bool = False, smd_type: Any = None, target_layer: int = 0) -> int: if self.skip_collision and smd_type == utils.PHYS: # skip collision meshes return 0 filepath_without_ext = splitext(filepath)[0].replace("\\", "/") if self.skip_lod and (filepath_without_ext.rstrip("123456789").endswith("_lod") and not filepath_without_ext.endswith(SmdImporterWrapper.full_name)): # skip lod meshes return 0 result = super().readSMD(filepath, upAxis, rotMode, newscene, smd_type, target_layer) if self.smd.g and self.smd.g != self.collection: smd_collection: bpy.types.Collection = self.smd.g while smd_collection.objects: if smd_collection.objects[0].name not in self.collection.objects: self.collection.objects.link(smd_collection.objects[0]) smd_collection.objects.unlink(smd_collection.objects[0]) bpy.data.collections.remove(smd_collection) if result != 0: SmdImporterWrapper.smd = self.smd return result # properly import materials if they exist def getMeshMaterial(self, mat_name: str) -> Tuple[bpy.types.Material, int]: mat_name = mat_name.lower().lstrip() if self.vmt_importer is None or not mat_name or mat_name == "phy": return super().getMeshMaterial(mat_name) smd = self.smd md: bpy.types.Mesh = smd.m.data # search for material file mat_name_path = vmf_path(mat_name + ".vmt") for mat_dir in self._cdmaterials: mat_path = "materials" / mat_dir / mat_name_path if mat_path in self.vmf_fs: mat_name = splitext(mat_path)[0] break else: if mat_name not in self._missing_materials: sys.__stdout__.write(f"WARNING: MISSING MATERIAL: {mat_name}\n") self._missing_materials.add(mat_name) return super().getMeshMaterial(mat_name) staged = self.vmt_importer.stage( mat_name, lambda: VMT( self.vmf_fs.open_file_utf8(mat_path), self.vmf_fs, allow_patch=True, ) ) material = staged.get_material() mat_ind = md.materials.find(material.name) if mat_ind == -1: mat_ind = len(md.materials) md.materials.append(material) return material, mat_ind class NewQCInfo(NamedTuple): path: str root: str class StagedQC(): def __init__(self, importer: 'QCImporter', name: str, context: bpy.types.Context, info: Optional[NewQCInfo] = None, reused: Optional[bpy.types.Armature] = None) -> None: self.name = name self.context = context self.info = info self.reused = reused self._qc_importer = importer @staticmethod def from_existing(importer: 'QCImporter', armature: bpy.types.Armature, context: bpy.types.Context) -> 'StagedQC': return StagedQC(importer, armature.qc_data.full_name, context, reused=armature) class QCImporter(): def __init__(self, dec_models_path: str, vmf_fs: VMFFileSystem = VMFFileSystem(), vmt_importer: Optional['import_vmt.VMTImporter'] = None, skip_collision: bool = True, skip_lod: bool = True, skip_anim: bool = False, reuse_old: bool = True, verbose: bool = False): self._cache: Dict[str, FakeSmd] = {} self._cache_uniqueness: DefaultDict[str, bool] = defaultdict(lambda: True) self.verbose = verbose self.dec_models_path = dec_models_path self.vmf_fs = vmf_fs self.reuse_old = reuse_old self.skip_collision = skip_collision self.skip_lod = skip_lod self.skip_anim = skip_anim self.progress_callback: Callable[[int, int], None] = lambda current, total: None self._staging: Dict[str, StagedQC] = {} self._loaded: Dict[str, StagedQC] = {} self.reusable_amount = 0 self.importable_amount = 0 SmdImporterWrapper.vmt_importer = vmt_importer SmdImporterWrapper.vmf_fs = vmf_fs def __enter__(self) -> 'QCImporter': bpy.utils.unregister_class(import_smd.SmdImporter) bpy.utils.register_class(SmdImporterWrapper) return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None: bpy.utils.unregister_class(SmdImporterWrapper) bpy.utils.register_class(import_smd.SmdImporter) def stage(self, name: str, path: str, context: bpy.types.Context, root: str = "") -> StagedQC: name = name.lower() truncated_name = truncate_name(name) if name in self._staging: return self._staging[name] if name in self._loaded: return self._loaded[name] if self.verbose: print(f"[VERBOSE] Staging model {name}") if self.reuse_old and truncated_name in bpy.data.armatures: meshes = bpy.data.armatures[truncated_name].qc_data.read_meshes() # mesh needs to be reimported if some materials failed for now # make sure no meshes of the prop have been manually deleted if all(mesh is not None for mesh in meshes) and ( SmdImporterWrapper.vmt_importer is None or all( material.use_nodes and len(material.node_tree.nodes) != 0 for mesh in meshes for material in mesh.data.materials )): self._staging[name] = StagedQC.from_existing(self, bpy.data.armatures[truncated_name], context) self.reusable_amount += 1 return self._staging[name] else: # make sure the mesh isn't reimported every time if the materials failed in the first import bpy.data.armatures[truncated_name].name = truncated_name + ".001" self._staging[name] = StagedQC(self, name, context, info=NewQCInfo(path, root)) self.importable_amount += 1 return self._staging[name] def load_all(self) -> None: if self.verbose: print("[VERBOSE] Loading all models...") total = len(self._staging) current = 0 for name in self._staging: staged = self._staging[name] try: self._load(name, staged) except Exception as err: print(f"[ERROR]: MODEL {name} LOADING FAILED: {err}") if self.verbose: traceback.print_exception(type(err), err, err.__traceback__) else: self._loaded[name] = staged current += 1 if current % 5 == 0 or current == total: self.progress_callback(current, total) self._staging.clear() self.reusable_amount = 0 self.importable_amount = 0 def _load(self, name: str, staged: StagedQC) -> None: name = name.lower() truncated_name = truncate_name(name) if staged.reused is not None: scene_collection = staged.context.scene.collection # qc is already imported if self.verbose: print(f"[VERBOSE] Model {name} previously imported, recreating...") armature = staged.reused qc_data = armature.qc_data armature_obj: bpy.types.Object = bpy.data.objects.new(armature.name, armature) scene_collection.objects.link(armature_obj) for mesh_obj in qc_data.read_meshes(): new_obj = mesh_obj.copy() new_obj.name = new_obj.data.name new_obj.parent = armature_obj new_obj.scale = (1, 1, 1) new_obj.location = (0, 0, 0) new_obj.rotation_euler = (0, 0, 0) armature_modifier = find_armature_modifier(new_obj) if armature_modifier is None: armature_modifier = new_obj.modifiers.new("Armature", 'ARMATURE') armature_modifier.object = armature_obj scene_collection.objects.link(new_obj) if qc_data.action is not None: anim_data = armature_obj.animation_data_create() anim_data.action = qc_data.action staged.context.view_layer.update() self._cache[name] = FakeSmd(armature_obj, qc_data.read_bone_id_map()) return if staged.info is None: raise Exception("required information was not specified for non-reused staged qc") path, root = staged.info if self.verbose: print(f"[VERBOSE] Importing model {name}...") SmdImporterWrapper.collection = staged.context.scene.collection SmdImporterWrapper.name = truncated_name SmdImporterWrapper.full_name = name if path.endswith(".mdl"): qc_path = join(self.dec_models_path, name + ".qc") if not isfile(qc_path): # decompiled model doesn't exist, decompile it mdl_path = vmf_path(name + ".mdl") mdl_dir = mdl_path.parent if not isabs(path): mdl_name = mdl_path.stem # save required files saved_files = 0 if mdl_dir not in self.vmf_fs.tree: raise FileNotFoundError(mdl_dir) for filename in self.vmf_fs.tree[mdl_dir].files: if not filename.startswith(mdl_name): continue file_out_path = join(self.dec_models_path, mdl_dir, filename) os.makedirs(dirname(file_out_path), exist_ok=True) with self.vmf_fs[mdl_dir / filename] as in_f: with open(file_out_path, 'wb') as out_f: for line in in_f: out_f.write(line) saved_files += 1 if saved_files == 0: print(f"[ERROR] MODEL {mdl_path} NOT FOUND") raise FileNotFoundError(mdl_path) full_mdl_path = str(self.dec_models_path / mdl_path) else: full_mdl_path = path # call the decompiler result = subprocess.run( crowbar_command(full_mdl_path, str(self.dec_models_path / mdl_dir)), text=True, errors='replace', stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) alternate_qc_dir = splitext(qc_path)[0] alternate_qc_path = join(alternate_qc_dir, basename(name) + ".qc") if isdir(alternate_qc_dir) and isfile(alternate_qc_path): # model could be decompiled into different location if user has edited settings in Crowbar qc_dir = dirname(qc_path) for filename in os.listdir(alternate_qc_dir): filepath = join(alternate_qc_dir, filename) new_filepath = join(qc_dir, filename) os.replace(filepath, new_filepath) os.rmdir(alternate_qc_dir) if result.returncode != 0 or not isfile(qc_path): print(result.stdout) raise Exception(f"Decompiling model {mdl_path} failed") path = qc_path SmdImporterWrapper.root = self.dec_models_path else: SmdImporterWrapper.root = root log_capture = StringIO() try: with redirect_stdout(log_capture): bpy.ops.import_scene._io_import_vmf_smd_wrapper( filepath=path, skip_collision=self.skip_collision, skip_lod=self.skip_lod, skip_anim=self.skip_anim, ) except Exception: print(log_capture.getvalue()) raise try: fake_smd = FakeSmd.from_bst(SmdImporterWrapper.smd) except Exception as err: raise Exception(f"Error importing {name}: {err}") if name.startswith("models/props/autocombine/"): # cannot cache autocombine props, they have conflicting smd files os.remove(path) self._cache[name] = fake_smd if fake_smd.a.name in bpy.context.scene.collection.objects: bpy.context.scene.collection.objects.unlink(fake_smd.a) qc_data = fake_smd.a.data.qc_data qc_data.save_meshes(fake_smd.a.children) qc_data.save_bone_id_map(fake_smd.boneIDs) if fake_smd.a.animation_data is not None: qc_data.action = fake_smd.a.animation_data.action self._cache[name] = fake_smd def get_smd(self, name: str, collection: bpy.types.Collection, context: bpy.types.Context) -> FakeSmd: name = name.lower() if name not in self._cache: raise Exception(f"model {name} hasn't been imported") self._cache_uniqueness[name] = False smd = self._cache[name] scene_collection = context.scene.collection if smd.a.name in scene_collection.objects: scene_collection.objects.unlink(smd.a) collection.objects.link(smd.a) for child in smd.a.children: if child.name in scene_collection.objects: scene_collection.objects.unlink(child) collection.objects.link(child) return self._cache[name] def get(self, name: str, collection: bpy.types.Collection, context: bpy.types.Context) -> bpy.types.Object: return self.get_smd(name, collection, context).a def get_unique_smd(self, name: str, collection: bpy.types.Collection, context: bpy.types.Context) -> FakeSmd: name = name.lower() if name not in self._cache: raise Exception(f"model {name} hasn't been imported") if self._cache_uniqueness[name]: return self.get_smd(name, collection, context) if self.verbose: print(f"[VERBOSE] Copying model {name}...") smd = self._cache[name].copy() original_arm = smd.a copy_arm = original_arm.copy() collection.objects.link(copy_arm) for child in original_arm.children: twin = child.copy() twin.parent = copy_arm armature_modifier = find_armature_modifier(twin) if armature_modifier is not None: armature_modifier.object = copy_arm collection.objects.link(twin) smd.a = copy_arm return smd def get_unique(self, name: str, collection: bpy.types.Collection, context: bpy.types.Context) -> bpy.types.Object: return self.get_unique_smd(name, collection, context).a
45.071926
118
0.61186
0d096586571f75aff232b1fb0e0b477f50081a66
1,649
py
Python
src/io_utils/path_configs/ascat/paths_hsaf_ascat_ssmcdr.py
wpreimes/io_utils
9ef4161a5bc65ab2fabee0e2c7cf873f19cf7a17
[ "MIT" ]
null
null
null
src/io_utils/path_configs/ascat/paths_hsaf_ascat_ssmcdr.py
wpreimes/io_utils
9ef4161a5bc65ab2fabee0e2c7cf873f19cf7a17
[ "MIT" ]
4
2021-07-09T09:03:12.000Z
2021-12-20T17:24:32.000Z
src/io_utils/path_configs/ascat/paths_hsaf_ascat_ssmcdr.py
wpreimes/io_utils
9ef4161a5bc65ab2fabee0e2c7cf873f19cf7a17
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from collections import OrderedDict import os import getpass import io_utils.root_path as root_path path_settings = \ { ('HSAF_ASCAT', 'SSM', 'H115+H116'): # paths will be tried in this order, there is no limit to the potential pathes here OrderedDict([ ('local', { 'win': os.path.join(root_path.d, 'data-read', 'HSAF_ASCAT_SSMCDR', 'H115+H116r8'), 'lin': os.path.join(root_path.dr, 'USERS', getpass.getuser(), 'HSAF_ASCAT_SSMCDR', 'H115+H116r8'), }), ('radar', { 'win': os.path.join(root_path.r, 'Projects', 'H_SAF_CDOP3', '05_deliverables_products', 'H116', 'H115+H116r8'), 'lin': os.path.join(root_path.r, 'Projects', 'H_SAF_CDOP3', '05_deliverables_products', 'H116', 'H115+H116r8'), }), ]), }
39.261905
91
0.306246
769113c44a336e1b05826450b2bbf8b425386016
943
py
Python
WEEKS/CD_Sata-Structures/_RESOURCES/Whiteboard-Pairing/ReverseSubList/model_solution/model_solution.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
13
2021-03-11T00:25:22.000Z
2022-03-19T00:19:23.000Z
WEEKS/CD_Sata-Structures/_RESOURCES/Whiteboard-Pairing/ReverseSubList/model_solution/model_solution.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
162
2021-03-09T01:52:11.000Z
2022-03-12T01:09:07.000Z
WEEKS/CD_Sata-Structures/_RESOURCES/Whiteboard-Pairing/ReverseSubList/model_solution/model_solution.py
webdevhub42/Lambda
b04b84fb5b82fe7c8b12680149e25ae0d27a0960
[ "MIT" ]
12
2021-04-26T19:43:01.000Z
2022-01-31T08:36:29.000Z
def reverseLinkedList(node): current = node nextNode = None prevNode = None while current: # store a reference to the next list node # before we overwrite current.next nextNode = current.next # reverse the 'next' pointer current.next = prevNode # step forward to the next list node prevNode = current current = nextNode return prevNode.value class ListNode: def __init__(self, value): self.value = value self.next = None a = ListNode("a") b = ListNode("b") c = ListNode("c") d = ListNode("d") e = ListNode("e") a.next = b b.next = c c.next = d d.next = e # Function that prints the contents of a linked list def printList(node): current = node while current: print(current.value) current = current.next print(reverseLinkedList(a)) # should print 'e' printList(e) # should print 'e', 'd', 'c', 'b', 'a'
18.490196
52
0.611877
541d619388abbdc2c29d87bf8de59743a507e46d
5,242
py
Python
ginga/gw/ColorBar.py
saimn/ginga
9daf1875b4c1b0fad0a053c5f258bf7d4c0f3455
[ "BSD-3-Clause" ]
null
null
null
ginga/gw/ColorBar.py
saimn/ginga
9daf1875b4c1b0fad0a053c5f258bf7d4c0f3455
[ "BSD-3-Clause" ]
null
null
null
ginga/gw/ColorBar.py
saimn/ginga
9daf1875b4c1b0fad0a053c5f258bf7d4c0f3455
[ "BSD-3-Clause" ]
null
null
null
# # ColorBar.py -- color bar widget # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # from ginga.misc import Callback from ginga import RGBMap from ginga.gw import Viewers from ginga.canvas.types import utils class ColorBarError(Exception): pass class ColorBar(Callback.Callbacks): def __init__(self, logger, rgbmap=None, link=False): Callback.Callbacks.__init__(self) self.logger = logger self.link_rgbmap = link if not rgbmap: rgbmap = RGBMap.RGBMapper(logger) self._start_x = 0 self._sarr = None cbar = Viewers.CanvasView(logger=self.logger) width, height = 1, 28 cbar.set_desired_size(width, height) cbar.enable_autozoom('off') cbar.enable_autocuts('off') # In web backend, JPEG rendering makes for mushy text ## settings = cbar.get_settings() ## settings.set(html5_canvas_format='png') # to respond quickly to contrast adjustment #cbar.defer_lagtime = 0.005 cbar.set_bg(0.4, 0.4, 0.4) # for debugging cbar.set_name('colorbar') self.cbar_view = cbar # add callbacks for contrast adjustment, etc. cbar.add_callback('configure', self.resize_cb) cbar.add_callback('cursor-down', self.cursor_press_cb) cbar.add_callback('cursor-move', self.cursor_drag_cb) cbar.add_callback('cursor-up', self.cursor_release_cb) cbar.add_callback('draw-up', self.draw_release_cb) cbar.add_callback('none-move', self.none_move_cb) cbar.add_callback('zoom-scroll', self.scroll_cb) #cbar.configure(width, height) iw = Viewers.GingaViewerWidget(viewer=cbar) self.widget = iw iw.resize(width, height) canvas = self.cbar_view.get_canvas() self.cbar = utils.ColorBar(offset=0, height=height, rgbmap=rgbmap, fontsize=8) canvas.add(self.cbar, tag='colorbar') self.set_rgbmap(rgbmap) # For callbacks for name in ('motion', 'scroll'): self.enable_callback(name) def get_widget(self): return self.widget def get_rgbmap(self): return self.rgbmap def set_rgbmap(self, rgbmap): self.rgbmap = rgbmap self.cbar.rgbmap = rgbmap # TODO: figure out if we can get rid of this link option if self.link_rgbmap: rgbmap.add_callback('changed', self.rgbmap_cb) self.redraw() def set_cmap(self, cm): self.rgbmap.set_cmap(cm) self.redraw() def set_imap(self, im, reset=False): self.rgbmap.set_imap(im) self.redraw() def set_range(self, loval, hival): self.cbar_view.cut_levels(loval, hival) self.redraw() def resize_cb(self, viewer, width, height): self.logger.info("colorbar resized to %dx%d" % (width, height)) self.cbar.height = height self.cbar_view.redraw(whence=0) def redraw(self): self.cbar_view.redraw() def shift_colormap(self, pct): if self._sarr is None: return self.rgbmap.set_sarr(self._sarr, callback=False) self.rgbmap.shift(pct) self.redraw() def stretch_colormap(self, pct): self.rgbmap.stretch(pct) self.redraw() def rgbmap_cb(self, rgbmap): self.redraw() def cursor_press_cb(self, canvas, event, data_x, data_y): x, y = event.viewer.get_last_win_xy() self._start_x = x sarr = self.rgbmap.get_sarr() self._sarr = sarr.copy() return True def cursor_release_cb(self, canvas, event, data_x, data_y): x, y = event.viewer.get_last_win_xy() dx = x - self._start_x wd, ht = event.viewer.get_window_size() pct = float(dx) / float(wd) #print "dx=%f wd=%d pct=%f" % (dx, wd, pct) self.shift_colormap(pct) return True def draw_release_cb(self, canvas, event, data_x, data_y): self.rgbmap.reset_cmap() return True def cursor_drag_cb(self, canvas, event, data_x, data_y): x, y = event.viewer.get_last_win_xy() wd, ht = event.viewer.get_window_size() dx = x - self._start_x pct = float(dx) / float(wd) #print "dx=%f wd=%d pct=%f" % (dx, wd, pct) self.shift_colormap(pct) return True def none_move_cb(self, canvas, event, data_x, data_y): x, y = event.viewer.get_last_win_xy() wd, ht = event.viewer.get_window_size() dist = self.rgbmap.get_dist() pct = float(x) / float(wd) rng_pct = dist.get_dist_pct(pct) loval, hival = event.viewer.get_cut_levels() value = float(loval + (rng_pct * (hival - loval))) self.make_callback('motion', value, event) return True def scroll_cb(self, viewer, event): direction = event.direction if (direction < 90.0) or (direction > 270.0): # up scale_factor = 1.1 else: # not up! scale_factor = 0.9 self.stretch_colormap(scale_factor) self.make_callback('scroll', event) #END
30.126437
74
0.611599
1ef75af2b56f3747ecc191d58535312a305b5629
290
py
Python
visualize.py
Phillyclause89/Minecraft-Terrain-AI
1afb2e16164e022c92074511115eb1a2f2167930
[ "MIT" ]
null
null
null
visualize.py
Phillyclause89/Minecraft-Terrain-AI
1afb2e16164e022c92074511115eb1a2f2167930
[ "MIT" ]
null
null
null
visualize.py
Phillyclause89/Minecraft-Terrain-AI
1afb2e16164e022c92074511115eb1a2f2167930
[ "MIT" ]
null
null
null
import numpy as np import cv2 import pickle pickle_in = open("training_data.pickle", "rb") training_data = pickle.load(pickle_in) for data in training_data: img = data[0] choise = data[1] cv2.imshow("test", img) if cv2.waitKey(25) & 0xFF == ord('q'): cv2.destroyAllWindows() break
20.714286
46
0.710345
c02b63a4ad0a03043c4e6ed007fcf31f5767deeb
2,430
py
Python
app/main/forms.py
Unicomcat/flask_test
c5951842092157966c536dcafff537c9509c9881
[ "MIT" ]
null
null
null
app/main/forms.py
Unicomcat/flask_test
c5951842092157966c536dcafff537c9509c9881
[ "MIT" ]
null
null
null
app/main/forms.py
Unicomcat/flask_test
c5951842092157966c536dcafff537c9509c9881
[ "MIT" ]
null
null
null
from flask.ext.wtf import Form from wtforms import StringField, TextAreaField, BooleanField, SelectField,\ SubmitField from wtforms.validators import Required, Length, Email, Regexp from wtforms import ValidationError from ..models import Role, User from flask.ext.pagedown.fields import PageDownField class NameForm(Form): name = StringField('What is your name?', validators=[Required()]) submit = SubmitField('Submit') class EditProfileForm(Form): name = StringField('Real name', validators=[Length(0, 64)]) location = StringField('Location', validators=[Length(0, 64)]) about_me = TextAreaField('About me') submit = SubmitField('Submit') class EditProfileAdminForm(Form): email = StringField('Email', validators=[Required(), Length(1, 64), Email()]) username = StringField('Username', validators=[ Required(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, ' 'numbers, dots or underscores')]) confirmed = BooleanField('Confirmed') role = SelectField('Role', coerce=int) name = StringField('Real name', validators=[Length(0, 64)]) location = StringField('Location', validators=[Length(0, 64)]) about_me = TextAreaField('About me') submit = SubmitField('Submit') def __init__(self, user, *args, **kwargs): super(EditProfileAdminForm, self).__init__(*args, **kwargs) self.role.choices = [(role.id, role.name) for role in Role.query.order_by(Role.name).all()] self.user = user def validate_email(self, field): if field.data != self.user.email and \ User.query.filter_by(email=field.data).first(): raise ValidationError('Email already registered.') def validate_username(self, field): if field.data != self.user.username and \ User.query.filter_by(username=field.data).first(): raise ValidationError('Username already in use.') class PostForm(Form): #body = TextAreaField("What's on your mind?", validators=[Required()]) body = PageDownField("what's on your mind?", validators=[Required()]) submit = SubmitField('Submit') class CommentForm(Form): body = StringField('',validators=[Required()]) submit = SubmitField('Submit')
39.836066
78
0.636626
3e85fb3d89316cd6d540a775d56831e36eb9292a
1,249
py
Python
{{cookiecutter.prefix}}_{{cookiecutter.project_slug|lower}}/{{cookiecutter.project_slug|lower}}/extern/qtawesome/animation.py
melMass/pyvfx-boilerplate
a4df88a6e272514205a5bf34a88f4a27daa66f9c
[ "MIT" ]
null
null
null
{{cookiecutter.prefix}}_{{cookiecutter.project_slug|lower}}/{{cookiecutter.project_slug|lower}}/extern/qtawesome/animation.py
melMass/pyvfx-boilerplate
a4df88a6e272514205a5bf34a88f4a27daa66f9c
[ "MIT" ]
null
null
null
{{cookiecutter.prefix}}_{{cookiecutter.project_slug|lower}}/{{cookiecutter.project_slug|lower}}/extern/qtawesome/animation.py
melMass/pyvfx-boilerplate
a4df88a6e272514205a5bf34a88f4a27daa66f9c
[ "MIT" ]
null
null
null
from Qt.QtCore import QTimer class Spin: def __init__(self, parent_widget, interval=10, step=1): self.parent_widget = parent_widget self.interval, self.step = interval, step self.info = {} def _update(self): if self.parent_widget in self.info: timer, angle, step = self.info[self.parent_widget] if angle >= 360: angle = 0 angle += step self.info[self.parent_widget] = timer, angle, step self.parent_widget.update() def setup(self, icon_painter, painter, rect): if self.parent_widget not in self.info: timer = QTimer() timer.timeout.connect(self._update) self.info[self.parent_widget] = [timer, 0, self.step] timer.start(self.interval) else: timer, angle, self.step = self.info[self.parent_widget] x_center = rect.width() * 0.5 y_center = rect.height() * 0.5 painter.translate(x_center, y_center) painter.rotate(angle) painter.translate(-x_center, -y_center) class Pulse(Spin): def __init__(self, parent_widget): Spin.__init__(self, parent_widget, interval=300, step=45)
29.738095
67
0.592474
e2014d5359501b972b70c4ffcf2d05d8c9ea9fb3
3,228
py
Python
malepierre/characters/models.py
EliotBerriot/malepierre
34a11beae528242c062fcc308c2d98c28fa61fd1
[ "BSD-3-Clause" ]
null
null
null
malepierre/characters/models.py
EliotBerriot/malepierre
34a11beae528242c062fcc308c2d98c28fa61fd1
[ "BSD-3-Clause" ]
null
null
null
malepierre/characters/models.py
EliotBerriot/malepierre
34a11beae528242c062fcc308c2d98c28fa61fd1
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import models from django.utils import timezone from django.core.urlresolvers import reverse class CodeMixin(models.Model): code = models.CharField(max_length=255, unique=True) class Meta: abstract = True class NameMixin(models.Model): name = models.CharField(max_length=255, unique=True) class Meta: abstract = True ordering = ('name',) def __str__(self): return self.name class AbstractSet(models.Model): max_choices = models.IntegerField(default=1) class Meta: abstract = True def __str__(self): return '/'.join([choice.name for choice in self.choices.all()]) class DescriptionMixin(models.Model): description = models.TextField(null=True, blank=True) class Meta: abstract = True class Character(NameMixin): background = models.TextField(null=True, blank=True) creation_date = models.DateTimeField(default=timezone.now) class Talent(CodeMixin, NameMixin, DescriptionMixin): linked_talent = models.ForeignKey('self', null=True, blank=True) def get_absolute_url(self): return reverse('talents:index') + '#{0}'.format(self.code) class TalentSet(AbstractSet): choices = models.ManyToManyField(Talent, related_name='talentsets') class Skill(CodeMixin, NameMixin, DescriptionMixin): ATTRIBUTE_CHOICES = ( ('strength', 'Strength'), ('constitution', 'Constitution'), ('agility', 'Agility'), ('intelligence', 'Intelligence'), ('mental_strength', 'Mental strength'), ('sociability', 'Sociability'), ) TYPE_CHOICES = ( ('base', 'Base'), ('advanced', 'Advanced'), ) attribute = models.CharField(choices=ATTRIBUTE_CHOICES, max_length=30, blank=True, null=True) type = models.CharField(choices=TYPE_CHOICES, max_length=30, default='base') linked_talents = models.ManyToManyField(Talent, blank=True, related_name='linked_skills') linked_skill = models.ForeignKey('self', null=True, blank=True) def get_absolute_url(self): return reverse('skills:index') + '#{0}'.format(self.code) class SkillSet(AbstractSet): choices = models.ManyToManyField(Skill, related_name='skillsets') class Career(CodeMixin, NameMixin, DescriptionMixin): exits = models.ManyToManyField('self', blank=True, symmetrical=False, related_name='access') talents = models.ManyToManyField(TalentSet, blank=True) skills = models.ManyToManyField(SkillSet, blank=True) # main profile cc = models.IntegerField(default=0) ct = models.IntegerField(default=0) strength = models.IntegerField(default=0) constitution = models.IntegerField(default=0) agility = models.IntegerField(default=0) intelligence = models.IntegerField(default=0) mental_strength = models.IntegerField(default=0) sociability = models.IntegerField(default=0) # secondary profile attacks = models.IntegerField(default=0) wounds = models.IntegerField(default=0) movement = models.IntegerField(default=0) magic = models.IntegerField(default=0) def get_absolute_url(self): return reverse('careers:index') + '#{0}'.format(self.code)
31.038462
97
0.695477
578fb9b6b50ad50e03cad4b76a93a76bb7f64c0c
2,380
py
Python
MultiRoom.py
dannywen2/bilibili-live-tools
99f34daec567c3ec1d315ebbfd36350ea8a0513e
[ "MIT" ]
1
2021-10-02T09:30:49.000Z
2021-10-02T09:30:49.000Z
MultiRoom.py
dannywen2/bilibili-live-tools
99f34daec567c3ec1d315ebbfd36350ea8a0513e
[ "MIT" ]
null
null
null
MultiRoom.py
dannywen2/bilibili-live-tools
99f34daec567c3ec1d315ebbfd36350ea8a0513e
[ "MIT" ]
null
null
null
import random import asyncio from bilibili import bilibili from printer import Printer async def get_area_list(): response = await bilibili().req_area_list() json_response = await response.json(content_type=None) return [ area_info['id'] for area_info in json_response['data'] ] async def area2room(area_id): while True: try: url = "https://api.live.bilibili.com/room/v1/area/getRoomList?platform=web&parent_area_id=" + \ str(area_id) + "&cate_id=0&area_id=0&sort_type=online&page=1&page_size=30" response = await bilibili().bili_section_get(url) json_response = await response.json(content_type=None) checklen = len(json_response['data']) rand_num = random.randint(0, checklen-1) new_area_id = json_response['data'][rand_num]['parent_id'] if not new_area_id == int(area_id): continue area_room = json_response['data'][rand_num]['roomid'] state = await bilibili().check_room_state(area_room) if state == 1: new_area = str(new_area_id) + json_response['data'][rand_num]['parent_name'] return [area_room, new_area] else: Printer().printer("检测到获取房间未开播,立即尝试重新获取", "Error", "red") except Exception as e: Printer().printer(f"获取房间列表失败,5s后进行下次尝试 {repr(e)}", "Error", "red") await asyncio.sleep(5) async def check_state(area, roomid=None): if roomid is not None: response = await bilibili().check_room_info(roomid) json_response = await response.json(content_type=None) live_status = json_response['data']['live_status'] curr_area_name = json_response['data']['parent_area_name'] if live_status == 1 and curr_area_name in area: Printer().printer(f'[{area}分区] 房间 {roomid} 直播状态正常', "Info", "green") return [roomid, area] elif live_status != 1: Printer().printer(f"[{area}分区] 房间 {roomid} 已未直播!将切换监听房间", "Info", "green") else: # print(type(live_status), live_status, curr_area_name) Printer().printer(f"[{area}分区] 房间 {roomid} 已切换分区[{curr_area_name}]!将切换监听房间", "Info", "green") return await area2room(area[0]) async def get_all(area_list): return [await area2room(i) for i in area_list]
41.754386
107
0.627731
d9628590d40c80b269f815f75a9eda5f9c8783bf
1,767
py
Python
format_type.py
jmp75/CPPDebuggerVisualizers
46d64f255e98e2d6fe6d3562855b93bb55c93fb4
[ "BSL-1.0" ]
141
2015-04-29T10:17:06.000Z
2022-01-24T12:45:34.000Z
format_type.py
x-santiaga-x/CPPDebuggerVisualizers
b6852c74bd7eff1347a9dcb748633e957cad2e54
[ "BSL-1.0" ]
28
2016-09-23T14:03:46.000Z
2022-01-10T14:26:36.000Z
format_type.py
x-santiaga-x/CPPDebuggerVisualizers
b6852c74bd7eff1347a9dcb748633e957cad2e54
[ "BSL-1.0" ]
40
2015-11-23T01:45:35.000Z
2021-12-16T14:33:56.000Z
'''Tools that format C++ type for reading''' cpp_type = input("Please enter type: ") if not cpp_type: cpp_type = "boost::gil::variant<boost::mpl::vector<boost::gil::image<boost::gil::pixel<unsigned char,boost::gil::layout<boost::mpl::vector1<boost::gil::gray_color_t>,boost::mpl::range_c<int,0,1> > >,0,std::allocator<unsigned char> >,boost::gil::image<boost::gil::pixel<unsigned char,boost::gil::layout<boost::mpl::vector3<boost::gil::red_t,boost::gil::green_t,boost::gil::blue_t>,boost::mpl::range_c<int,0,3> > >,0,std::allocator<unsigned char> >,boost::gil::image<boost::gil::pixel<unsigned char,boost::gil::layout<boost::mpl::vector4<boost::gil::red_t,boost::gil::green_t,boost::gil::blue_t,boost::gil::alpha_t>,boost::mpl::range_c<int,0,4> > >,0,std::allocator<unsigned char> >,boost::gil::image<boost::gil::pixel<unsigned short,boost::gil::layout<boost::mpl::vector1<boost::gil::gray_color_t>,boost::mpl::range_c<int,0,1> > >,0,std::allocator<unsigned char> >,boost::gil::image<boost::gil::pixel<unsigned short,boost::gil::layout<boost::mpl::vector3<boost::gil::red_t,boost::gil::green_t,boost::gil::blue_t>,boost::mpl::range_c<int,0,3> > >,0,std::allocator<unsigned char> >,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na,boost::mpl::na> >" print() indent = 0 for c in cpp_type: if c == "<": print(c) indent+=1 print(indent*" ", end="") elif c == ">": indent-=1 print() print(indent*" " + c, end="") elif c == ",": print(c, end="") print() print(indent*" ", end="") else: print(c, end="")
80.318182
1,311
0.642332
c11737200d4e22668c9c2b011f5ac152a1da9583
1,272
py
Python
ProxyCrawl/ProxyCrawl/migrate.py
Time1ess/ProxyPool
c44e74e8045fc560e5fe905aa41135ecb3e6da98
[ "MIT" ]
18
2017-04-25T09:39:08.000Z
2022-03-09T08:07:28.000Z
ProxyCrawl/ProxyCrawl/migrate.py
ghosttyq/ProxyPool
c44e74e8045fc560e5fe905aa41135ecb3e6da98
[ "MIT" ]
null
null
null
ProxyCrawl/ProxyCrawl/migrate.py
ghosttyq/ProxyPool
c44e74e8045fc560e5fe905aa41135ecb3e6da98
[ "MIT" ]
10
2017-05-29T00:53:41.000Z
2021-05-08T09:07:52.000Z
#!/usr/local/bin/python3 # coding: UTF-8 # Author: David # Email: youchen.du@gmail.com # Created: 2017-04-27 09:12 # Last modified: 2017-04-27 09:36 # Filename: migrate.py # Description: labels = ('name', 'url_fmt', 'row_xpath', 'host_xpath', 'port_xpath', 'addr_xpath', 'mode_xpath', 'proto_xpath', 'vt_xpath') data = [ ('DoubleSixip', 'http://www.66ip.cn/{}.html', '//div[@id="main"]//tr', 'td[1]/text()', 'td[2]/text()', 'td[3]/text()', 'td[4]/text()', 'null', 'td[5]/text()'), ('kuaidaili', 'http://www.kuaidaili.com/free/intr/{}', '//div[@id="list"]/table//tr', 'td[1]/text()', 'td[2]/text()', 'td[5]//text()', 'td[3]/text()', 'td[4]/text()', 'td[7]/text()'), ('kuaidaili2', 'http://www.kuaidaili.com/free/inha/{}', '//div[@id="list"]/table//tr', 'td[1]/text()', 'td[2]/text()', 'td[5]//text()', 'td[3]/text()', 'td[4]/text()', 'td[7]/text()'), ('xici', 'http://www.xicidaili.com/nt/{}', '//table[@id="ip_list"]//tr', 'td[2]/text()', 'td[3]/text()', 'td[4]//text()', 'td[5]/text()', 'td[6]/text()', 'td[10]/text()')] with open('rules.csv', 'wb') as f: f.write('{}\n'.format(' '.join(labels)).encode('utf-8')) for item in data: f.write('{}\n'.format(' '.join(item)).encode('utf-8'))
41.032258
76
0.52673
dd01106f50de9d597c66e9d0ed3c5b74dd7852a6
24
py
Python
src/Protractor3D/__init__.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
4
2018-02-06T14:41:26.000Z
2020-03-19T14:16:05.000Z
src/Protractor3D/__init__.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
src/Protractor3D/__init__.py
SvenKratz/Protractor3D
39b6c877cc88cae028ca938e994034b83fcccb68
[ "MIT" ]
null
null
null
__all__=["Protractor3D"]
24
24
0.791667
691e2bc03c8380b89a2a41d53775315d820a3654
2,520
py
Python
venv/lib/python3.5/site-packages/bears/matlab/MatlabIndentationBear.py
prashant0598/CoffeeApp
4fa006aebf06e12ed34766450ddcfa548ee63307
[ "MIT" ]
null
null
null
venv/lib/python3.5/site-packages/bears/matlab/MatlabIndentationBear.py
prashant0598/CoffeeApp
4fa006aebf06e12ed34766450ddcfa548ee63307
[ "MIT" ]
null
null
null
venv/lib/python3.5/site-packages/bears/matlab/MatlabIndentationBear.py
prashant0598/CoffeeApp
4fa006aebf06e12ed34766450ddcfa548ee63307
[ "MIT" ]
null
null
null
import re from coalib.bearlib import deprecate_settings from coalib.bears.LocalBear import LocalBear from coalib.results.Diff import Diff from coalib.results.Result import Result from coalib.results.RESULT_SEVERITY import RESULT_SEVERITY class MatlabIndentationBear(LocalBear): LANGUAGES = {'Matlab', 'Octave'} AUTHORS = {'The coala developers'} AUTHORS_EMAILS = {'coala-devel@googlegroups.com'} LICENSE = 'AGPL-3.0' CAN_DETECT = {'Formatting'} @deprecate_settings(indent_size='tab_width') def run(self, filename, file, indent_size: int=2): """ This bear features a simple algorithm to calculate the right indentation for Matlab/Octave code. However, it will not handle hanging indentation or conditions ranging over several lines yet. :param indent_size: Number of spaces per indentation level. """ new_file = tuple(self.reindent(file, indent_size)) if new_file != tuple(file): wholediff = Diff.from_string_arrays(file, new_file) for diff in wholediff.split_diff(): yield Result( self, 'The indentation could be changed to improve readability.', severity=RESULT_SEVERITY.INFO, affected_code=(diff.range(filename),), diffs={filename: diff}) @staticmethod def reindent(file, indentation): indent, nextindent = 0, 0 for line_nr, line in enumerate(file, start=1): indent = nextindent indent, nextindent = MatlabIndentationBear.get_indent(line, indent, nextindent) stripped = line.lstrip() if stripped: yield indent*indentation*' ' + stripped else: yield line @staticmethod def get_indent(line, indent, nextindent): ctrlstart = r'\s*(function|if|while|for|switch)' ctrlcont = r'\s*(elseif|else|case|catch|otherwise)' ctrlend = r'\s*(end|endfunction|endif|endwhile|endfor|endswitch)' if re.match(ctrlstart, line) is not None: return indent, nextindent+1 elif re.match(ctrlcont, line) is not None: return indent-1, nextindent elif re.match(ctrlend, line) is not None: return indent-1, nextindent-1 else: return indent, indent
38.769231
79
0.599206
4e8d735c3fb9e5f02a33e77136bc4d6b884815d2
2,540
py
Python
artmap_fuzzy.py
DavidVinicius/artmap-fuzzy-tcc
1ff039ca2ade7a2a96137c75feaa9509e401e387
[ "MIT" ]
null
null
null
artmap_fuzzy.py
DavidVinicius/artmap-fuzzy-tcc
1ff039ca2ade7a2a96137c75feaa9509e401e387
[ "MIT" ]
null
null
null
artmap_fuzzy.py
DavidVinicius/artmap-fuzzy-tcc
1ff039ca2ade7a2a96137c75feaa9509e401e387
[ "MIT" ]
null
null
null
import numpy as np from src.utils.functions import * from src.neural_networks.art_fuzzy import ARTFUZZY A = np.array([ [0.25, 0.25], [0.25, 0.75], [0.75, 0.25], [0.75, 0.75] ]) B = np.array([ [0.25], [0.75], [0.75], [0.25] ]) AC = layerF0(A, 1) BC = layerF0(B, 1) WAB = np.ones([AC.shape[0], BC.shape[0]]) rhoA = 0.5 rhoB = 0.9 rhoAB = 0.6 ArtA = ARTFUZZY(AC, rho=rhoA) ArtB = ARTFUZZY(BC, rho=rhoB) categoriesA = ArtA.categories() categoriesB = ArtB.categories() for i in range(0, len(ArtB.I)): championB = max(categoriesB) championIndexB = categoriesB.index(championB) print() if ArtB.hadRessonance(ArtB.I[i], ArtB.W[championIndexB]): ArtB.W[championIndexB] = ArtB.learn(ArtB.I[i], ArtB.W[championIndexB]) ArtB.activate(championIndexB) ArtB.Js.append([i, championIndexB]) championA = max(categoriesA) championIndexA = categoriesA.index(championA) for j in range(0, len(ArtA.I)): print(i,j) if ArtA.hadRessonance(ArtA.I[j], ArtA.W[championIndexA]): ArtA.activate(championIndexA) ArtA.Js.append([j, championIndexA]) if hadRessonance(ArtB.Y[championIndexB], WAB[championIndexB], rhoAB): print() ArtA.W[championIndexA] = ArtA.learn(ArtA.I[j], ArtA.W[championIndexA]) WAB[championIndexA] = activate(WAB, championIndexB) print(activate(WAB, championIndexB), championIndexA) print(WAB) break else: categoriesA[championIndexA] = 0 championA = max(categoriesA) championIndexA = categoriesA.index(championA) x = AND(ArtB.Y[championIndexB], WAB[championIndexB]) temp = (sum(x) / sum(ArtB.Y[championIndexB])) ArtA._rho += 0.01 print(ArtA._rho) else: categoriesA[championIndex] = 0 champion = max(categoriesA) championIndex = categoriesA.index(champion) else: categoriesB[championIndexB] = 0
27.608696
110
0.487008
53087f8a8ddf754046d208f79a9869511f596629
481
py
Python
Python/XGBoost/pipeline-dict-vectorizer.py
James-McNeill/Learning
3c4fe1a64240cdf5614db66082bd68a2f16d2afb
[ "MIT" ]
null
null
null
Python/XGBoost/pipeline-dict-vectorizer.py
James-McNeill/Learning
3c4fe1a64240cdf5614db66082bd68a2f16d2afb
[ "MIT" ]
null
null
null
Python/XGBoost/pipeline-dict-vectorizer.py
James-McNeill/Learning
3c4fe1a64240cdf5614db66082bd68a2f16d2afb
[ "MIT" ]
null
null
null
# Aim is to combine the LabelEncoder and OneHotEncoder methods into one step # Import DictVectorizer from sklearn.feature_extraction import DictVectorizer # Convert df into a dictionary: df_dict df_dict = df.to_dict("records") # Create the DictVectorizer object: dv dv = DictVectorizer(sparse=False) # Apply dv on df: df_encoded df_encoded = dv.fit_transform(df_dict) # Print the resulting first five rows print(df_encoded[:5,:]) # Print the vocabulary print(dv.vocabulary_)
24.05
76
0.787942
c8a3a37c77e77a6c95cd195a41b0811c67a74883
31,691
py
Python
skymodel/snr/SNR.py
GiovanniPiano/cta-gps-simulation-paper
90b9fbadf364d11cdc7b1a5bfea27bbeb2a28a83
[ "BSD-3-Clause" ]
null
null
null
skymodel/snr/SNR.py
GiovanniPiano/cta-gps-simulation-paper
90b9fbadf364d11cdc7b1a5bfea27bbeb2a28a83
[ "BSD-3-Clause" ]
null
null
null
skymodel/snr/SNR.py
GiovanniPiano/cta-gps-simulation-paper
90b9fbadf364d11cdc7b1a5bfea27bbeb2a28a83
[ "BSD-3-Clause" ]
null
null
null
# Define the Supernova class and SNR class and connected procedures import numpy as np import matplotlib.pyplot as plt import math import pylab as pl from matplotlib.ticker import ScalarFormatter import matplotlib.ticker as mticker import matplotlib.ticker as ticker from itertools import zip_longest import os import csv from random import choices from matplotlib import rc from astropy.io import ascii from astropy.constants import c import astropy.units as u import naima from naima.models import (ExponentialCutoffBrokenPowerLaw, Synchrotron, InverseCompton,PionDecay, TableModel) # CONSTANTS definition_pevatron=500. #TeV parsec=3.09*pow(10.,18.) Msol=1.9*pow(10,33.) E51=pow(10,51.) masseproton=1.4*1.67*pow(10,-24.) c=3.*pow(10,10) # // cm/s mc2_electron_TeV=511.*pow(10, -9.) mc2_electron_erg=511.*1.602*pow(10, -9.) k_boltzmann_erg=1.38*pow(10., -16) #; // erg. masseproton_TeV= 0.938*pow(10.,-3.) # TeV sigma_thomson=6.6524*pow(10., -25.) #; // en cm2 kyear_sec=np.pi*pow(10, 10.) mu= 1.36 gamma_ad=4./3. beta=6*(gamma_ad-1)/(gamma_ad+1) sigma=4. r00=8.5 # en kiloparsec distance_SS_GC=8.5 # distance to galactic center in kiloparsec age_sample=10. # kyear 20-40 enough to study Pevatrons #-------------------------------------------------------- # GAS Distribution functions (Shibata et al. 2010) def rho_H1 ( r): # / r in kiloparsec , rho_H1 in 10^20 H atoms.cm^-3 return np.exp(- ( 3.862+7.903*pow(10,-1.)*r -9.426*pow(10,-2.)*np.log10(r) - 4.261*pow(r,1./2.) )) def rho_H2 ( r): #// r in kiloparsec , rho_H1 in 10^20 H atoms.cm^-3 return np.exp(- (1.848+8.339*pow(10,-1.)*r -5.560*np.log10(r) + 2.405*pow(10,-2.)*pow(r,2.))) def XI_H1 ( r, z ): return 1/(0.065*np.sqrt(np.pi)+0.160)*(0.4*np.exp(-pow(z/0.12,2.))+0.2*np.exp(-pow(z/0.35, 2.))+0.4*np.exp(-np.fabs(z)/0.40)) def z0 ( r): return 0.4*np.cosh(2*r/(3*r00)) def XI_H2 ( r, z ): return 1/(0.036*np.sqrt(np.pi)+0.2*z0(r))*( np.exp(-pow(z/0.071, 2.))+ 0.2*(np.fabs(z)/z0(r))*np.exp(-np.fabs(z)/z0(r))) #nH1, nH2 def nH1 ( r, z): # // r and z are in kilo parsecs return 0.57*XI_H1(r, z)/XI_H1(r00, 0)*rho_H1(r)/rho_H1(r00) def nH2 ( r, z): # // r and z are in kilo parsecs return 0.53*XI_H2(r, z)/XI_H2(r00, 0)*rho_H2(r)/rho_H2(r00) def nH ( r, z): return nH1(r,z)+2*nH2(r, z) #-------------------------------------------------------- #preliminary functions for type 1 and type2 dynamics : all dynamics are from Ptuskin Zirahaskvili 2005 def alpha1_def ( Mdot, uw6): return masseproton*((Mdot*pow(10, -5)*Msol/(kyear_sec*pow(10, -3.)))/(4*np.pi*1.4*masseproton*uw6*pow(10, 6))) def rho1_r (self, r ): return self.alpha1*pow(r*parsec, -2.) def rho_r (self, r): if (r<self.r1): return self.rho1_r(r) else: if (r<self.r2): return self.rho2 else : if (r<self.r2+0.5): return (self.rho0-self.rho2)*(self.r2-self.r1)/0.5 else : return float(self.rho0) def INT1 ( self, r ): return self.Mej*Msol*pow(r*parsec, self.beta)/beta+4*np.pi*self.alpha1*pow(r*parsec,self.beta+1.)/(self.beta+1.) def INT2 (self, r ): return self.INT1(self.r1)+ (self.Mej*Msol+4*np.pi*self.alpha1*self.r1*parsec-4./3.*np.pi*self.rho2*pow(self.r1*parsec,3.))* ( pow(r*parsec,self.beta)- pow(self.r1*parsec, self.beta) )/self.beta +4./3.*np.pi*self.rho2*( pow(r*parsec,self.beta+3) -pow(self.r1*parsec, self.beta+3))/(self.beta+3) def INT0 (self, r): return self.INT2(self.r2)+ (self.Mej*Msol+4*np.pi*self.alpha1*self.r1*parsec+4./3.*np.pi*self.rho2*(pow(self.r2*parsec,3.)-pow(self.r1*parsec,3.))-4./3.*np.pi*self.rho0*pow(self.r2*parsec,3))*(pow(r*parsec,self.beta)-pow(self.r2*parsec,self.beta))/self.beta + 4./3.*self.rho0*np.pi*(pow(r*parsec,self.beta+3.)-pow(self.r2*parsec,self.beta+3.))/(self.beta+3.) def INT (self, r): if (r<self.r1): return self.INT1(r) else: if (r<self.r2): return self.INT2(r) else : return self.INT0(r) def B ( self, r): return (3.*(self.gamma_ad-1)*(self.gamma_ad+1.)*self.E_SN*E51/(pow(self.M(r),2. )*pow(r*parsec,self.beta))) def Ushock2_r(self,r) : # entrée en parsec , sortie en cm/s return pow(self.B(r)*self.INT(r), 1./2.) def Ushock1_r(self ,r): tchange=260.*pow(self.Mej/1.4,5./6.)*pow(self.E_SN,-1./2.)*pow(self.n0,-1./3.)*pow(10,-3.) rchange= 5.3*pow((self.E_SN/(self.n0*self.Mej)),1./7. )*pow(tchange,4./7.) if ( r<rchange): return pow(10,5.)* 2.7*pow(10,3.)*pow((5.3/r),3./4.)*pow((self.E_SN/(self.n0*self.Mej)),1./4.) else: return pow(10,5.)*1.7*pow(10,3.)*pow((4.3/r),3./2.)*pow((self.E_SN/self.n0),1./2.) def t_r (self, r ): # entrée en parsec, sortie en kyear N=100 RB=np.linspace(0.001,r,N) # in parsec tb=0. for i in range (1,N): tb=tb+(1./self.Ushock2_r(RB[i])+1./self.Ushock2_r(RB[i-1]))*(RB[i]-RB[i-1])/2.*parsec return tb/(3.*pow(10.,10.)) def Rshock_type2 (self, t ): step_integration1=200 # 200 ok value RB=np.logspace(-2.,2.,step_integration1) #maximum distance 100 pc temp=0. p=0 while(temp < t*3.*pow(10, 10.)and p<step_integration1 ): temp=temp+(1./self.Ushock2_r( RB[p]))*(RB[p]-RB[p-1])*parsec p=p+1 return (RB[p-1]+RB[p])/2. #-------------------------------------------------------- # PRELIMINARY FUNCTIONS : def M1( self, r): return self.Mej*Msol+4*3.1415*self.alpha1*r*parsec def M2( self, r): return self.M1(self.r1)+4./3.*3.1415*self.rho2*(pow(r*parsec,3.)-pow(self.r1*parsec,3.)) def M0( self, r): return self.M2(self.r2)+4./3.*3.1415*self.rho0*(pow(r*parsec,3.)-pow(self.r2*parsec,3.)) def M (self, r): if (r<self.r1): return self.M1(r) else : if (r<self.r2): return self.M2(r) else : return self.M0(r) def Tequalitymass2(self): rr=0.0001 rgrid=0.01 # 0.00005 while ( self.M (rr)/Msol-self.Mej <self.Mej ): rr=rr+rgrid if (rr>= self.r1): rr=self.r1 # to make sure the knee is not in the bubble, otherwise Emax >10**5 at early stage return self.t_r(rr) #-------------------------------------------------------- # IN SNR PROCEDURE, RSHOCK AND USHOCK DEFINITIONS def Rshock_1(self,t): tchange=260.*pow(self.Mej/1.4,5./6.)*pow(self.E_SN,-1./2.)* pow(self.n0,-1./3.)*pow(10,-3.) if (t<tchange): return 5.3*pow( pow(self.E_SN,2.)/(self.n0*self.Mej), 1./7.)*pow(t,4./7.) else : return 4.3*pow(self.E_SN/self.n0,1./5.)*pow(t,2./5.)*pow(1.- 0.06*pow(self.Mej,5./6.)/(pow(self.E_SN,1./2.)*pow(self.n0,1./3.)*t) ,2./5.) def Ushock_1(self,t): # returned value in cm/s tchange=260.*pow(self.Mej/1.4,5./6.)*pow(self.E_SN,-1./2.)*pow(self.n0,-1./3.)*pow(10,-3.); if (t<tchange): return pow(10,5.)*2.7*pow(10,3.)*pow( pow(self.E_SN,2.)/(self.n0*self.Mej), 1./7.)*pow(t,-3./7.) else : return pow(10,5.)*1.7*pow(10,3.)*pow(self.E_SN/self.n0,1./5.)*pow(t,-3./5.)*pow(1- 0.06*pow(self.Mej,5./6.)/(pow(self.E_SN,1./2.)*pow(self.n0,1./3.)*t) ,-3./5.) def Rshock_2(self,t): r_trans=self.Mej*Msol/(4.*np.pi*self.alpha1*parsec) # t_trans=0.1;//pow(r_trans/7.7,8./7.)*pow((pow(E_SN,7./2.)*uw6/(Mdot*pow(Mej,5./2.))),-1./7.); t_trans=self.Tequalitymass2() Norm_FE=self.Rshock_type2 (t_trans )/pow(t_trans,7./8.) if (t<t_trans): return Norm_FE*pow(t,7./8.) else : return self.Rshock_type2 ( t ) def Ushock_2(self, t): r_trans=self.Mej*Msol/(4.*np.pi*self.alpha1*parsec) t_trans=self.Tequalitymass2() Norm_FE=self.Ushock2_r (self.Rshock_2(t_trans))*pow(t_trans,1./8.) if (t<t_trans and t>0.): return Norm_FE*pow(t,-1./8.) else : return self.Ushock2_r ( self.Rshock_2(t)) def Rshock_t(self,t): if (self.type==1): return self.Rshock_1(t) else : return self.Rshock_2(t) def Ushock_t(self,t): if (self.type==1): return self.Ushock_1(t) else : return self.Ushock_2(t) def Transitiontime1(self): return 260.*pow(self.Mej/1.4,5./6.)*pow(self.E_SN,-1./2.)*pow(self.n0,-1./3.)*pow(10,-3.) def Transitiontime2(self): return self.Tequalitymass2() def assign_type (self): a=np.random.uniform(0.,1.) if ( a<0.32 ) : self.type=1 else : if (a<0.76) : self.type=2 else : if(a<0.98): self.type=3 else : self.type=4 def assign_age(self,age_sample): self.age= np.random.uniform(0.,1.)*age_sample self.TIME=np.linspace(self.age,self.age,1) #-------------------------------------------------------- # DISTRIBUTION TYPE Ia - Bad but OK, should be improved soon DISTRIB_TYPE_IA=[2.21*pow(10, -2.),2.32*pow(10, -2.),2.38*pow(10, -2),2.27*pow(10, -2),2.12*pow(10, -2),1.89*pow(10, -2),1.68*pow(10, -2),1.49*pow(10, -2),1.33*pow(10, -2), 1.21*pow(10, -2),1.07*pow(10, -2),9.54*pow(10, -3), 8.48*pow(10, -3), 7.36*pow(10, -3), 6.55*pow(10, -3), 5.68*pow(10, -3), 4.09*pow(10, -3), 2.44*pow(10, -3), 1.17*pow(10, -3), 6.99*pow(10, -4)] DISTANCE_DISTRIB_TYPE_IA=[2.02,2.73, 3.42,4.13,4.77, 5.39, 5.95, 6.42, 6.86, 7.30, 7.65, 8.04, 8.39, 8.75, 9.12, 9.52, 10.4, 11.7, 13.4,14.6] def distribution_type_Ia ( r): #r in kiloparsec 5.55= to normalize to 1. if (r<DISTANCE_DISTRIB_TYPE_IA[0]): return 5.52*0.042/DISTANCE_DISTRIB_TYPE_IA[0] # 0.042= to have the ratio 0.12/0.4 btw bulge et whole galaxy else : if (r>DISTANCE_DISTRIB_TYPE_IA[19]): return 0. else : j=1 while (r>DISTANCE_DISTRIB_TYPE_IA[j]): j=j+1 #when it stops r btw DIST[j-1]and DIST[j] return 5.52*DISTRIB_TYPE_IA[j-1]+(r-DISTANCE_DISTRIB_TYPE_IA[j-1])/(DISTANCE_DISTRIB_TYPE_IA[j]-DISTANCE_DISTRIB_TYPE_IA[j-1])*(DISTRIB_TYPE_IA[j]-DISTRIB_TYPE_IA[j-1]) def integrate_distribution_type_Ia ( r): j=0 step_int=100 R_INTEGRATION=np.linspace(0,r,step_int) integrale=0. for j in range (1,len(R_INTEGRATION)): integrale=integrale+distribution_type_Ia((R_INTEGRATION[j]+R_INTEGRATION[j-1])/2.)*(R_INTEGRATION[j]-R_INTEGRATION[j-1]) return integrale step_integration_radial_distribution_typeIa=100 RADIAL_SNR_DISTRIBUTION_TYPEIA=np.linspace(0,17,step_integration_radial_distribution_typeIa) def place_SN_typeIa (self): q=0 a=np.random.uniform(0.,1.) while (integrate_distribution_type_Ia(RADIAL_SNR_DISTRIBUTION_TYPEIA[q])< a and q<step_integration_radial_distribution_typeIa-1): q=q+1 self.pos_r=(RADIAL_SNR_DISTRIBUTION_TYPEIA[q]+RADIAL_SNR_DISTRIBUTION_TYPEIA[q-1])/2. def place_SN_theta_typeIa (self): self.pos_theta=np.random.uniform(0.,2.*np.pi) def place_SN_z_typeIa (self): size=1000 Z=np.linspace(-1.5,1.5,size) I=np.zeros(size) for i in range (1,size): I[i]=I[i-1]+nH1(self.pos_r, (Z[i-1]+Z[i])/2.)*(Z[i]-Z[i-1]) p=0 a=np.random.uniform(0.,I[size-1]) while (I[p]<a and p<len(I)-1): p=p+1 self.pos_z=(Z[p]+Z[p+1])/2. #-------------------------------------------------------- # DISTRIBUTION TYPE II - Bad but OK, should be improved rho0_SNR=1.96 # normalisation de rho_SNR; r0=17.2 # //kiloparsec beta0=0.13 # kiloparsec theta0=0.08 rhomax_SNR=1.8506 def Rrho_SNR(r ): # // r entrée en kiloparsec if (r<=r0*(1-theta0/np.pi)): return r*rho0_SNR*np.sin(np.pi*(r/r0)+theta0)*np.exp(-r*beta0) else : return 0. number_arm=4 K_galaxy = [4.25,4.25,4.89,4.89] r0_galaxy=[3.48,3.48,4.90,4.90] theta0_galaxy=[0.,np.pi,2.52,-0.62] step_integration_radial_distribution=100 RADIAL_SNR_DISTRIBUTION=np.linspace(0.,17., step_integration_radial_distribution) INTEGRALE_SNR_RADIAL_DISTRIBUTION=np.zeros(step_integration_radial_distribution) for i in range (1,step_integration_radial_distribution): INTEGRALE_SNR_RADIAL_DISTRIBUTION[i]=INTEGRALE_SNR_RADIAL_DISTRIBUTION[i-1]+Rrho_SNR((RADIAL_SNR_DISTRIBUTION[i]+RADIAL_SNR_DISTRIBUTION[i-1])/2.)*(RADIAL_SNR_DISTRIBUTION[i]-RADIAL_SNR_DISTRIBUTION[i-1]) def place_SN_typeII (self): a=np.random.uniform(0., INTEGRALE_SNR_RADIAL_DISTRIBUTION[step_integration_radial_distribution-1]) q=0 while (INTEGRALE_SNR_RADIAL_DISTRIBUTION[q]<a): q=q+1 self.pos_r=(RADIAL_SNR_DISTRIBUTION[q]+RADIAL_SNR_DISTRIBUTION[q-1])/2. def place_SN_theta_typeII (self): p=np.random.randint(0, 3) theta_correction=np.random.uniform(0, 2*np.pi) theta=(K_galaxy[p]*np.log(self.pos_r/r0_galaxy[p])+theta0_galaxy[p]+theta_correction*np.exp(-0.35*self.pos_r)) # Correction postion with respect to R and theta self.pos_r=np.random.normal(self.pos_r, 0.07*self.pos_r) while (theta>2*np.pi): theta=theta-2*np.pi while (theta<0): theta=theta+2*np.pi self.pos_theta=theta def place_SN_z_typeII (self): size=1000 Z=np.linspace(-1.5,1.5,size) I=np.zeros(size) for i in range (1,size): I[i]=I[i-1]+nH2(self.pos_r, (Z[i-1]+Z[i])/2.)*(Z[i]-Z[i-1]) p=0 a=np.random.uniform(0.,I[size-1]) while (I[p]<a and p<len(I)-2): p=p+1 self.pos_z=(Z[p]+Z[p+1])/2. def place_supernova(self): if(self.type==1): self.place_SN_typeIa() self.place_SN_theta_typeIa () self.place_SN_z_typeIa () else : self.place_SN_typeII() self.place_SN_theta_typeII () self.place_SN_z_typeII() def typical_associated_parameters(self): if (self.type==1) : self.Mej=1.4 self.E_SN=1. else: if (self.type==2): self.Mej=8. self.E_SN=1. else: if(self.type==3): self.Mej=2. self.E_SN=1. else: if(self.type==4): self.Mej=1. self.E_SN=3. def GG (lambda1, x ) : # fonction réelle, la variable doit être entre 0 et 1 ; v= -lambda1 s=0 p=0 # variable compteur while (s<x): p=p+1 v=v+np.log(lambda1)-np.log(p) s=s+np.exp(v) # la boucle stop : donc variable est entre p-1 et p return p-1 def draw_number_SNRs_in_Galaxy(age_sample): SN_rate=3. mean=SN_rate*age_sample*10. #mean number of SN we want return GG(mean,np.random.uniform(0.,1.)) def density_around(self): self.tau=0. r=self.pos_r z=self.pos_z if (self.type==1): self.n0=nH(r,z) self.rho0=self.n0*(1.67*pow(10,-24.)) else : self.alpha1=alpha1_def(self.Mdot,self.uw6) self.n0=nH(r, z) self.rho0=self.n0*(1.67*pow(10,-24.)) self.n2=0.01*pow(pow(self.n0,19.)*pow(self.t6,-22.),1/35.) self.rho2= self.n2*(1.67*pow(10,-24.)) self.Tb=1.6*pow(10., 6.)*pow(self.n0, 2/35.)*pow(self.V_2000*self.Mdot/10, 8/35.)*pow(self.t6,-6/35.) self.r1=(self.alpha1*pow(self.uw6*pow(10, 6),2.))/(4*np.pi*self.n2*self.Tb*k_boltzmann_erg*pow(parsec, 2.)) self.r2 = 28.*pow(self.L36/(mu*self.n0) ,1./5.)*pow(self.t6,3./5.) # 35 ? def calculate_final_evolution (self): if(self.type==1): self.Rshock=self.Rshock_1(self.age) self.Ushock=self.Ushock_1(self.age) else : self.Rshock=self.Rshock_2(self.age) self.Ushock=self.Ushock_2(self.age) def set_factor_Emax(self,KNEE): if (self.type==1) : self.Emax_factor= KNEE/(self.Emax_t(self.Transitiontime1())) else : self.Emax_factor= KNEE/(self.Emax_t(self.Transitiontime2())) #------ DISTANCE FUNCTIONS from NOVA def distance_plan (self): X=np.sin(self.pos_theta)/(distance_SS_GC/self.pos_r-np.cos(self.pos_theta)) d1=np.absolute(1/(np.sqrt(1+X**2.))*(-self.pos_r*np.cos(self.pos_theta) + self.pos_r*np.sin(self.pos_theta)*X + distance_SS_GC ) ) return d1 def b_calculated(self): return np.arctan(self.pos_z/self.distance_plan())*(180/np.pi) def l_calculated(self): return np.sign(self.pos_theta)*np.arccos((-self.pos_r*np.cos(self.pos_theta)+distance_SS_GC)/self.distance_plan())*(180/np.pi) def distance (self): X=np.sin(self.pos_theta)/(distance_SS_GC/self.pos_r-np.cos(self.pos_theta)) d1=np.absolute(1/(np.sqrt(1+X**2.))*(-self.pos_r*np.cos(self.pos_theta) + self.pos_r*np.sin(self.pos_theta)*X + distance_SS_GC ) ) self.dist=np.sqrt(d1**2.+self.pos_z**2.) return self.dist # ---------------------------------------------------------------------------# # EMAX FUNCTIONS to match the knee and corresponding amplified field def Emax_t (self, t): self.Emax_mem=self.Emax_factor*self.Emax_OK2015(t) return self.Emax_mem def B_amplified_OK2015 (self, t): xi_B_correction_factor=1. self.M_A=23. if(self.type==1): VA0=xi_B_correction_factor*self.B0/(4*np.pi*self.rho0)**(0.5) return self.B0*self.sigma*np.sqrt(pow(self.Ushock_t(t),2.)/pow((self.M_A)*VA0*pow(10, -6.), 2.)+1.) else : VA0=xi_B_correction_factor*self.B0/(4*np.pi*self.rho_r(self.Rshock_t(t)))**(0.5) return self.B0*self.sigma*np.sqrt(pow(self.Ushock_t(t),2.)/pow((self.M_A)*VA0*pow(10, -6.), 2.)+1.) def B_amplified_knee ( self, t): calc=self.Emax_factor*self.B_amplified_OK2015(t) return max(self.sigma*self.B0, calc) def Emax_OK2015 (self, t): # // in TeV if (self.type==1): self.delta_Emax=-np.log10(self.EMAX_B_dependant_t_OK2015(t+2.)/self.EMAX_B_dependant_t_OK2015(t))/np.log10(self.Rshock_t(t+2.)/self.Rshock_t(t)) A_test=self.EMAX_B_dependant_t_OK2015(t)/pow(self.Rshock_t(t),-self.delta_Emax) return A_test*pow(self.Rshock_t(t),-self.delta_Emax) else : self.delta_Emax=2.; return self.EMAX_B_dependant_t_OK2015(t) def EMAX_B_dependant_t_OK2015 ( self, t): xi_B_correction_factor=1. if(self.type==1): VA0=xi_B_correction_factor*self.B0/(4*np.pi*self.rho0)**(0.5) U1=self.Ushock_t(t) R1=self.Rshock_t(t) return pow(10, -12.)*3*pow(10, -6.)*pow(10, -8.)*self.chi*R1*parsec*U1*(self.B_amplified_OK2015(t)/self.sigma)*1./(pow(pow((VA0*self.M_A*pow(10, -6.))/U1, 2.)+1, 1.5)) else : R2=self.Rshock_t(t) VA0=xi_B_correction_factor*self.B0/(4*np.pi*self.rho_r(R2))**(0.5) # print ('JOJOOJJJO' ) # print('self.rho_r(R2)=', self.rho_r(R2), 'self.rho0', self.rho0, ' R2 =', R2, ' t = ', t, ' r2 = ', self.r2) U2=self.Ushock_t(t) return pow(10, -12.)*3*pow(10, -6.)*pow(10, -8.)*self.chi*R2*parsec*U2*(self.B_amplified_OK2015(t)/self.sigma)*1./(pow(pow((VA0*self.M_A*pow(10, -6.))/U2, 2.)+1, 1.5)) # ---------------------------------------------------------------------------# # EMAX electrons def Emax_electron_vannoni_time (self, t): # // in TeV , B1 in microgauss rtot=6. # 5.2 B1=self.B0 #; // B0 // 3 ? beta_B=1./(pow(2*pow(rtot,2)/(3)+1/3,0.5)) # // compression ratio of the B field K_adjust=1. B2=self.B_amplified_knee(t) # // double B2=etha_elec*B_volk(tage); Ush=self.Ushock_t(t) if (B1<5.): # { // B1< 10 formely E_temp= mc2_electron_TeV*pow(((1-1./rtot)*pow(Ush, 2.)*900./(K_adjust) )/( ( ((B1*pow(10, -6.))/(8*np.pi)+self.Urad/(B1*pow(10, -6.)) +rtot*B2*pow(10, -6.))/(8*np.pi)+self.Urad/(B2*pow(10, -6.)))*4.*sigma_thomson*pow(c, 2.)*6.241*pow(10, 11.)),1./2.) else : E_temp= mc2_electron_TeV*pow(((1-1./rtot)*pow(Ush, 2.)*8*np.pi*900./(K_adjust) )/( ( B1+rtot*B2)*pow(10, -6.)*4.*sigma_thomson*pow(c,2.)*6.241*pow(10,11.)),1./2.) # E_temp2=0.05*pow(10, -12.)*(900.)*Ush1*B1*pow(10, -6.)*self.Rshock_t(t)*parsec/c # // si tacc=tage self.Emax_electron_vannoni_time_mem=min(self.Emax_t(t), E_temp) return self.Emax_electron_vannoni_time_mem def Estar_electron_time ( self, t): # // E in TeV, B in MicroGauss B1=self.B0 expression = 0.624*((pow(mc2_electron_erg,2.))/((4./3.)*sigma_thomson*c*(pow(self.B0*pow(10, -6.),2.)/(8*np.pi))))*(1./(t*kyear_sec)-self.Ushock_t(t)/(self.Rshock_t(t)*parsec)) self.Estar_electron_time_mem=max(0.001, expression) return self.Estar_electron_time_mem # ---------------------------------------------------------------------------# # NORMALIZATION FOR THE GAMMA RAYS FROM SNR def A( self, r,t): a=2.-self.alpha if (self.type==1): RR=self.Rshock_t(t) return ( 3.*self.eta*a*self.rho0*0.624*pow(self.Ushock1_r(RR*pow(r/RR, self.sigma)),2.)*pow(r/RR , (1-self.sigma)*(-4+a) ) )/((pow(r/RR,-a*self.delta_Emax*self.sigma)*pow(self.Emax_t(t),a)-pow(masseproton_TeV,a))) else : RR=self.Rshock_t(t) return ( 3.*self.eta*a*self.rho_r(pow(r/RR,self.sigma-1.)*r)*0.624*pow(self.Ushock2_r(RR*pow(r/RR, self.sigma)),2.)*pow(r/RR , (1-self.sigma)*(-4+a)))/((pow(r/RR,-a*self.delta_Emax*self.sigma)*pow(self.Emax_t(t),a)-pow(masseproton_TeV,a ))) def density_inside ( self, r,t): #// r en parsec, t en kyear if (self.type==1): return self.rho0*self.sigma*pow((r/self.Rshock_t(t)),3*(self.sigma-1)) else : RR= self.Rshock_t(t) return self.sigma*self.rho_r(pow(r,self.sigma)/pow(RR,self.sigma-1.))*pow(r/RR,3*(self.sigma-1.)) def Norm_hadronic (self, t): N=100 Rsh=self.Rshock_t(t) R=np.linspace(0.,Rsh,N) norm=0. for i in range (0,len(R)-1): norm=norm+ pow(((R[i]+R[i+1])/2.)*parsec,2.)*self.density_inside(((R[i]+R[i+1])/2.), self.age)*self.A(((R[i]+R[i+1])/2.),t)*(R[i+1]-R[i])*parsec/masseproton self.Norm_hadronic_mem =4*np.pi*norm return self.Norm_hadronic_mem #-------------------------------------------------------- # Startting here we define functions outside the class #calculate GAMMA - with the help of NAIMA def spectrum_proton(self,time): return naima.models.ExponentialCutoffPowerLaw(self.Norm_hadronic(time)/u.erg,1*u.TeV,self.alpha,self.Emax_t(time) *u.TeV,beta=1) def spectrum_proton_old_school (self, E,time): # this is needed for the secondaries return self.Norm_hadronic(time)/(0.624)*(E/1.)**(-self.alpha)*np.exp(-(E/self.Emax_t(time))) def spectrum_electron(self,time): return naima.models.ExponentialCutoffBrokenPowerLaw(self.Kep*self.Norm_hadronic(time)/u.erg,1*u.TeV,self.Estar_electron_time(time) *u.TeV,self.alpha,-1,self.Emax_electron_vannoni_time(time)*u.TeV,beta=1) def diff_spectrum_hadronic(self,time): self.dist=self.distance() PROTONS=self.spectrum_proton(time) PIONS_FROM_SHELL=PionDecay(PROTONS, nh=self.n0 * u.cm** -3) GAMMAS=PIONS_FROM_SHELL.sed(self.ENERGY,self.dist * u.kpc) # GAMMAS.to(u.eV/(u.cm **2 * u.s)) GAMMAS=GAMMAS.to(u.TeV/(u.cm**2 *u.s)) return GAMMAS def diff_spectrum_leptonic(self,time): self.dist=self.distance() ELECTRONS=self.spectrum_electron(time) IC = InverseCompton(ELECTRONS, seed_photon_fields=['CMB']) GAMMAS=IC.sed(self.ENERGY,self.dist * u.kpc) GAMMAS_TeV=GAMMAS.to(u.TeV/(u.cm**2 *u.s)) return GAMMAS_TeV def diff_spectrum_total (self,time): GAMMA_TOT=self.diff_spectrum_hadronic(time)# +self.diff_spectrum_leptonic(time) return GAMMA_TOT def calculate_alpha_gamma (self,E): p=1 E_LOCAL=np.array(self.ENERGY) while (E>E_LOCAL[p] and p<len(E_LOCAL-1)): p=p+1 p_up=1 while (10*E>E_LOCAL[p_up] and p_up<len(E_LOCAL-1)): p_up=p_up+1 GAMMA=np.array(self.diff_spectrum_total()/self.ENERGY[p]**2) self.alpha_gamma_memory=-(np.log10(GAMMA[p_up])-np.log10(GAMMA[p]))/(np.log10(E_LOCAL[p_up]-E_LOCAL[p])) return self.alpha_gamma_memory def calculate_diff_spectrum_TIME (self): self.LGAMMA_DIFF_T=np.zeros((len(self.TIME), len(self.ENERGY))) for t in range (0,len(self.TIME)): SPEC=np.array(self.diff_spectrum_total(self.TIME[t])) for i in range (0,len(self.ENERGY)): self.LGAMMA_DIFF_T[t][i]=SPEC[i] #--------------------------------------------------------# # DEFINING CLASSES class SNR: # SN=Supernova() age=1. pos_r=1. pos_z=1. pos_theta=1. type=1 Rshock=1. ushock=1. alpha=1. #indice spectre proton Kep=1. dist=1. size=1. Mej=1. Mdot=1. # Mass loss rate wind E_SN=1. r1=1. r2=1. rho0=1. rho2=1. alpha1=1. #coefficient of the wind t6=1. L36=1. #énergie cinétique du vent uw6=1. # wind velocity Tb=1. # Temperature in the bubble in K. V_2000=1. # // speed in 2000 km/s units tau=0. # absorption Urad=0.25*1.602*pow(10, -12) # erg.cm-3 M_A=23. n0=1. B0=3. gamma_ad=4./3. beta=6*(gamma_ad-1)/(gamma_ad+1) age=1. sigma=4. chi=0.1 # fraction of diffusion length before escape eta=0.1 #efficiency of particle acceleration at the shock Emax=1. delta_Emax=2. Emax_factor=1. # to match the knee Emax_mem=1. Estar_electron_time_mem=1. Emax_electron_vannoni_time_mem=1. Norm_hadronic_mem=1. distance=distance distance_plan=distance_plan b_calculated=b_calculated l_calculated=l_calculated # Metthods used to parametrize the SNRs Rshock_1=Rshock_1 Rshock_2=Rshock_2 Ushock_1=Ushock_1 Ushock_2=Ushock_2 Rshock_type2=Rshock_type2 Ushock2_r=Ushock2_r Ushock1_r=Ushock1_r Rshock_t=Rshock_t Ushock_t=Ushock_t B=B Tequalitymass2=Tequalitymass2 rho0=rho0 rho_r=rho_r rho1_r=rho1_r M=M M0=M0 M1=M1 M2=M2 t_r=t_r Transitiontime1=Transitiontime1 Transitiontime2=Transitiontime2 Emax_t=Emax_t Emax_OK2015=Emax_OK2015 B_amplified_OK2015=B_amplified_OK2015 B_amplified_knee=B_amplified_knee EMAX_B_dependant_t_OK2015=EMAX_B_dependant_t_OK2015 INT=INT INT0=INT0 INT1=INT1 INT2=INT2 set_factor_Emax=set_factor_Emax assign_type=assign_type assign_age=assign_age place_supernova=place_supernova typical_associated_parameters=typical_associated_parameters place_SN_typeIa=place_SN_typeIa place_SN_theta_typeIa=place_SN_theta_typeIa place_SN_z_typeIa=place_SN_z_typeIa place_SN_typeII=place_SN_typeII place_SN_theta_typeII=place_SN_theta_typeII place_SN_z_typeII=place_SN_z_typeII calculate_final_evolution=calculate_final_evolution density_around=density_around # Arrays for spectra ENERGY=np.logspace(-1,4,40)* u.TeV #for a given time GAMMAS_H=np.zeros(len(ENERGY)) * u.TeV/(u.cm**2 *u.s) GAMMAS_L=np.zeros(len(ENERGY)) * u.TeV/(u.cm**2 *u.s) integrated_hadronic_memory=1/(u.cm**2 * u.s ) integrated_leptonic_memory=1/(u.cm**2 * u.s ) integrated_memory_total=1. # ---------------------------------------------------------------------------# # NORMALIZATION FOR THE GAMMA RAYS FROM SNR time_step=0.1 # kiloyear number=int((age)/time_step) TIME=np.linspace(1.,1.,1) LGAMMA_HADRONIC_T=np.zeros((len(TIME), len(ENERGY))) LGAMMA_LEPTONIC_T=np.zeros((len(TIME), len(ENERGY))) LGAMMA_DIFF_T=np.zeros((len(TIME), len(ENERGY))) Emax_electron_vannoni_time=Emax_electron_vannoni_time Estar_electron_time=Estar_electron_time A=A density_inside=density_inside Norm_hadronic=Norm_hadronic spectrum_proton=spectrum_proton spectrum_proton_old_school=spectrum_proton_old_school spectrum_electron=spectrum_electron diff_spectrum_hadronic= diff_spectrum_hadronic diff_spectrum_leptonic=diff_spectrum_leptonic diff_spectrum_total=diff_spectrum_total calculate_alpha_gamma=calculate_alpha_gamma calculate_diff_spectrum_TIME=calculate_diff_spectrum_TIME calculate_integrated_spectrum_SGSO=calculate_integrated_spectrum_SGSO def one_realization_only_pevatrons (a, Kep, D,eta, KNEE): N=draw_number_SNRs_in_Galaxy(age_sample) print('Number of simulated objects= ', N ) LIST_SNR=[] for i in range (0,N): print( 'realisation i/N=', i*1./N*100,'%') SNR_temp=SNR() SNR_temp.assign_type() SNR_temp.place_supernova() SNR_temp.assign_age(age_sample) SNR_temp.typical_associated_parameters() SNR_temp.density_around() SNR_temp.calculate_final_evolution() SNR_temp.set_factor_Emax(KNEE) SNR_temp.alpha=a SNR_temp.Kep=Kep SNR_temp.distance() SNR_temp.size=2*SNR_temp.Rshock/(SNR_temp.dist*pow(10., 3.))*3437.75 #### Calculating the gammas from the SNR : SNR_temp.eta=eta # if (SNR_temp.Emax_t(SNR_temp.age)> definition_pevatron): # print( ' ------------------------') # print (' New pevatron ' ) SNR_temp.calculate_diff_spectrum_TIME() LIST_SNR.append(SNR_temp) return LIST_SNR def many_realizations (a,Kep, D, eta, KNEE, M): BIG_LIST=[] for i in range (0, M): LIST_SNR=one_realization(a, Kep, D,eta, KNEE) BIG_LIST.append(LIST_SNR) return BIG_LIST def print_one_SNR (SNR): print ('----------------') print (' ') print ('pos_r =', SNR.pos_r) print ('pos_theta=', SNR.pos_theta) print ('pos_z =', SNR.pos_z) print ('type =', SNR.type) print ('age =', SNR.age) print ('size =', SNR.size) print ('Rshock =', SNR.Rshock_t(SNR.age)) print ('alpha =', SNR.alpha) print ('Norm =', SNR.Norm_hadronic(SNR.age)) print ('Emax_proton =', SNR.Emax_t(SNR.age)) print ('Kep =', SNR.Kep) print ('Estar =', SNR.Estar_electron_time (SNR.age)) print ('Emax_electron =', SNR.Emax_electron_vannoni_time (SNR.age)) print ('diff spectrum :') for i in range (0,len(SNR.ENERGY)): for t in range (0,len(SNR.TIME)): print ( 'time= ', SNR.TIME[t], ' bin=', SNR.ENERGY[i], ' diff=', SNR.LGAMMA_DIFF_T[t][i]) print (' ') def save_one_LIST_to_file (LIST,file): with open(file, 'w') as text_file: writer = csv.writer(text_file, delimiter='\t') writer.writerow(["Num_SNR","pos_r", \ "pos_theta","pos_z","n0", \ "type", "age" ,"size", \ "Rsh","a","Norm",\ "Emax_proton","Kep","Estar", \ "Emax_electron","Time[kyr]","E[TeV]", \ "diff_spectrum[TeVcm-2s-1]"]) for i in range (0,len(LIST)): ENERGY=np.array(LIST[i].ENERGY) for j in range (0,len(LIST[i].ENERGY)): # print('i/Len(LIST) =', i/len(LIST)*(100.) , '%') ##print( ' Norm = ', LIST[i].Norm_hadronic_mem, ' dist = ',LIST[i].dist ) writer.writerow((i,LIST[i].pos_r, \ LIST[i].pos_theta, LIST[i].pos_z,LIST[i].n0, \ LIST[i].type, LIST[i].age, LIST[i].size, \ LIST[i].Rshock,LIST[i].alpha, LIST[i].Norm_hadronic_mem, \ LIST[i].Emax_mem,LIST[i].Kep,LIST[i].Estar_electron_time_mem, \ LIST[i].Emax_electron_vannoni_time_mem ,LIST[i].age, ENERGY[j], \ LIST[i].LGAMMA_DIFF_T[len(LIST[i].TIME)-1][j])) def get_first_nbr_from_str(input_str): if not input_str and not isinstance(input_str, str): return 0 out_number = '' for ele in input_str: if (ele == '.' and '.' not in out_number) or ele.isdigit(): out_number += ele elif out_number: break return int(float(out_number))
33.570975
368
0.608154
2d701408adb738669772c582b17bed3dd27b02a2
589
py
Python
AC/IntroPython/functions/h1.py
samirsaravia/ubiquitous-octo-fortnigh
c197945e7e849ddfece02e34e0c6b8f03e50c7dd
[ "MIT" ]
null
null
null
AC/IntroPython/functions/h1.py
samirsaravia/ubiquitous-octo-fortnigh
c197945e7e849ddfece02e34e0c6b8f03e50c7dd
[ "MIT" ]
1
2021-03-04T22:03:05.000Z
2021-03-04T22:03:05.000Z
AC/IntroPython/functions/h1.py
samirsaravia/ubiquitous-octo-fortnight
c197945e7e849ddfece02e34e0c6b8f03e50c7dd
[ "MIT" ]
null
null
null
# criando funções (def) # def diga_oi(nome='Mundo', comprimentar=None): # if comprimentar is None: # print(f'Olá {nome}!!!') # else: # print(f'{comprimentar}, {nome}!!') # # # diga_oi('Zé mané') # com argumento, modifica o padrão # diga_oi() # sem argumento, executa o padrão # # diga_oi('pudim', comprimentar='Oi') # diga_oi('pudim') # # print(type(None)) # é a classe NoneType, que não existe,mas pode ser testada def add_dois_numeros(x, y): return x + y add_dois_numeros(34, 2) # ignorado resultado = add_dois_numeros(23432, 54672) print(resultado)
22.653846
79
0.65365