hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
a1384974ccd700a4a2a547d6245e9c75c028797e
14,123
py
Python
greatcirclelibrary.py
nathanielselub/great-circle-library
1f665245238c21cca614498320fd05d799654f98
[ "MIT" ]
1
2020-11-03T21:01:44.000Z
2020-11-03T21:01:44.000Z
greatcirclelibrary.py
nathanielselub/great_circle_analysis_library
1f665245238c21cca614498320fd05d799654f98
[ "MIT" ]
null
null
null
greatcirclelibrary.py
nathanielselub/great_circle_analysis_library
1f665245238c21cca614498320fd05d799654f98
[ "MIT" ]
null
null
null
"""A module to help analyze great circles in the CMB sky.""" import numpy as np import healpy as hp import camb from scipy.optimize import differential_evolution from scipy.spatial.transform import Rotation as R from numba import guvectorize, int64, float64, prange, jit NSIDE = 256 N_GC = 20000 N_P = 2000 PARS = camb.CAMBparams(min_l=1) PARS.set_cosmology(H0=67.4, ombh2=0.0224, omch2=0.120, mnu=0.06, omk=0.001, tau=0.054) MAX_INF_DIPOLE_AMP = 100 @jit(parallel=True) def preprocess_maps(paths, new_l_max, nside=NSIDE): """Preprocess maps of the full CMB sky. Parameters ---------- paths : np.ndarray Paths to full CMB maps in .FITS format. new_l_max : int Maximum ell of multipole moments to extract from the full CMB maps. nside : int NSIDE of the maps when the extractions occur. Returns ------- np.ndarray Returns the specified multipole moments of the full CMB maps, excluding their respective monopole and dipole moments. """ new_alms = np.zeros([len(paths), hp.sphtfunc.Alm.getsize(new_l_max)], dtype='complex') for i in prange(len(paths)): dgraded_map = hp.pixelfunc.ud_grade(hp.read_map(paths[i]) * (10**6), nside) old_alms = hp.sphtfunc.map2alm(dgraded_map) old_l_max = hp.sphtfunc.Alm.getlmax(old_alms.shape[0]) for ell in range(2, new_l_max + 1): for m in range(ell + 1): old_index = hp.Alm.getidx(old_l_max, ell, m) new_index = hp.Alm.getidx(new_l_max, ell, m) new_alms[i][new_index] = old_alms[old_index] return new_alms @jit(parallel=True) def generate_same_cl_sims(alms, n): """Generate same cl spectrum simulations. Parameters ---------- alms : np.ndarray Alms from which the same cl spectrum simulations are generated. n : int Number of simulations to generate. Returns ------- np.ndarray Returns n same cl spectrum simulations. """ l_max = hp.sphtfunc.Alm.getlmax(alms.shape[0]) cl_vals = hp.alm2cl(alms) simulations = np.zeros([n, alms.shape[0]], dtype='complex') for i in prange(n): simulations[i] = hp.sphtfunc.synalm(cl_vals, lmax=l_max, verbose=False) for ell in np.flatnonzero(cl_vals): cl_sum = 0 for m in range(ell + 1): cl_sum += abs(simulations[i][hp.Alm.getidx(l_max, ell, m)])**2 scaling_factor = np.sqrt(cl_vals[ell] * (1 + 2 * ell)/(2 * cl_sum)) for m in range(ell + 1): simulations[i][hp.Alm.getidx(l_max, ell, m)] *= scaling_factor simulations[i][hp.Alm.getidx(l_max, ell, 0)] *= np.sqrt(2) return simulations @jit(parallel=True) def generate_standard_dipole_sims(alms, n, pars=PARS): """Generate simulations with dipoles from the standard model of cosmology. Parameters ---------- alms : np.ndarray Alms which the standard model dipoles are added to. n : int Number of simulations to generate. pars : camb.model.CAMBparams Parameters for the CAMB angular power spectrum generation. Returns ------- np.ndarray Returns n simulations that have had a standard model dipole added to them. """ l_max = hp.sphtfunc.Alm.getlmax(alms.shape[0]) results = camb.get_results(pars) powers = results.get_cmb_power_spectra(pars, CMB_unit='muK') dipole_cl = np.zeros(l_max + 1) dipole_cl[1] = np.pi * powers['total'][1, 0] new_alms = remove_l(alms, 1) simulations = np.zeros([n, alms.shape[0]], dtype='complex') for i in prange(n): simulations[i] = new_alms + hp.sphtfunc.synalm(dipole_cl, lmax=l_max, verbose=False) return simulations @jit(parallel=True) def generate_gcs(n_gc=N_GC, n_p=N_P, nside=NSIDE): """Generate a set of great circles. Parameters ---------- n_gc : int Number of great circles to be generated. n_p : int Number of points to be sampled from each great circle. nside : int NSIDE of the map on which the great circles will be valid. Returns ------- np.ndarray Returns an array containing great circles. """ phi = np.random.uniform(0., 2 * np.pi, (n_gc, 1)) theta = np.arcsin(np.random.uniform(np.sin(- np.pi / 2), np.sin(np.pi/2), (n_gc, 1))) + np.pi / 2 rotation_1 = R.from_rotvec(np.pad(theta, [(0, 0), (1, 1)])) rotation_2 = R.from_rotvec(np.pad(phi, [(0, 0), (2, 0)])) random_rotation = rotation_2 * rotation_1 circ_angs = np.linspace(0, 2 * np.pi, n_p) circ_coords = np.stack((np.cos(circ_angs), np.sin(circ_angs), np.zeros_like(circ_angs)), axis=-1) gcs = np.empty([n_gc, n_p], dtype=int) for i in prange(n_gc): gc = random_rotation[i].apply(circ_coords) gcs[i] = hp.vec2pix(nside, gc[:, 0], gc[:, 1], gc[:, 2]) return gcs @guvectorize([(int64[:], float64[:], float64[:])], '(m),(n)->()', target='parallel', nopython=True) def gc_vars(gcs, my_map, res): """Get the biased sample variances of great circles from a single map. Parameters ---------- gcs : np.ndarray Great circles whose biased sample variances are calculated. my_map : np.ndarray Map from which the biased sample variances of the great circles are calculated. res : np.ndarray Returns the biased sample variances of the great circles. """ res[0] = np.var(my_map[gcs]) @jit(parallel=True) def multi_gc_vars(gcs, alms, nside=NSIDE): """Get the variance of great circle variances from multiple maps. Parameters ---------- gcs : np.ndarray Great circles whose unbiased sample variances are calculated. alms : np.ndarray Set of maps in alm form from which the unbiased sample variances of the great circles are calculated. nside : int NSIDE of the maps when the unbiased sample variances of the great circles are calculated. Returns ------- np.ndarray Returns the variance of great circle variances from multiple maps. """ vars_sims = np.zeros(alms.shape[0]) for i in prange(alms.shape[0]): vars_sims[i] = np.var(gc_vars(gcs, hp.sphtfunc.alm2map(alms[i], nside, verbose=False)), ddof=1) n = gcs.shape[1] return ((n / (n - 1)) ** 2) * vars_sims def correlation_function(cl_vals): """Calculate the angular correlation function from a power spectrum. Parameters ---------- cl_vals : np.ndarray Cls with which the angular correlation function is calculated. Returns ------- function Returns the angular correlation function calculated from the given cls. """ cl_vals_scaled = np.copy(cl_vals) for ell in range(cl_vals_scaled.shape[0]): cl_vals_scaled[ell] *= ((2. * ell + 1.) / (4. * np.pi)) def C(theta): return np.polynomial.legendre.legval(np.cos(theta), cl_vals_scaled) return C @jit(parallel=True) def get_inf_versions(gcs, alms, nside=NSIDE): """Get the inferred versions of multiple maps. Parameters ---------- gcs : np.ndarray Great circles whose biased sample variances are used to perform the calculations. alms : np.ndarray Set of maps in alm form whose inferred versions are calculated. nside : int NSIDE of the maps when the biased sample variances of the great circles are calculated. Returns ------- np.ndarray Returns the respective inferred versions of the maps in alm form. """ new_alms = np.copy(alms) l_max = hp.sphtfunc.Alm.getlmax(alms.shape[1]) dipole_index = hp.Alm.getidx(l_max, 1, 0) for i in prange(new_alms.shape[0]): new_alms[i] = remove_l(new_alms[i], 1) dipole = np.zeros_like(new_alms[i]) res = differential_evolution(inf_dipole_evaluator, [(0, MAX_INF_DIPOLE_AMP), (0, np.pi), (0, 2 * np.pi)], args=(gcs, new_alms[i], dipole_index, nside), workers=-1, popsize=3) dipole[dipole_index] = res.x[0] hp.rotate_alm(dipole, 0, res.x[1], res.x[2]) new_alms[i] += dipole return new_alms def inf_dipole_evaluator(dipole, gcs, alms, index, nside): """Find the variance of great circle variances, given a dipole. Parameters ---------- dipole : np.ndarray Array containing the dipole amplitude and orientation. gcs : np.ndarray Great circles whose biased sample variances are calculated. alms : np.ndarray Alms used to generate the map that the dipole is added to. index : int Index of m = 0 for the dipole. nside : int NSIDE of the map when the biased sample variances of the great circles are calculated. Returns ------- float Returns the biased sample variance of the biased sample variances of the great circles. """ new_dipole = np.zeros_like(alms) new_dipole[index] = dipole[0] hp.rotate_alm(new_dipole, 0, dipole[1], dipole[2]) return np.var(gc_vars(gcs, hp.sphtfunc.alm2map(alms + new_dipole, nside, verbose=False))) @jit(parallel=True) def get_axis_of_max_sect(alms, ell): """Get the axis of maximum sectorality for a given multipole moment. Parameters ---------- alms : np.ndarray Alms from which the multipole moments are taken. ell : int Ell of the multipole moment whose axis of maximum sectorality is calculated. Returns ------- np.ndarray Returns the locations of the respective axes of maximum sectorality for the specified multipole moment from each set of alms. """ l_max = hp.sphtfunc.Alm.getlmax(alms.shape[1]) a_l_l_index = hp.Alm.getidx(l_max, ell, ell) locs = np.zeros([alms.shape[0], 3]) for i in range(alms.shape[0]): isolated_moment = get_l(alms[i], ell) res = differential_evolution(axis_of_max_sect_evaluator, [(0, 2 * np.pi), (0, np.pi / 2)], args=(isolated_moment, a_l_l_index), workers=-1, popsize=15) ams_rot = R.from_euler('zyz', [0, -res.x[1], -res.x[0]]) locs[i] = ams_rot.apply([0, 0, -1]) return locs def axis_of_max_sect_evaluator(loc, isolated_moment, a_l_l_index): """Find the sectorality of a multipole, given a coordinate system rotation. Parameters ---------- loc : np.ndarray Array containing the rotation to the new coordinate system in which the sectorality is calculated. isolated_moment : np.ndarray The given multipole moment in alm form. a_l_l_index : int Index of a_l_l for the given multipole moment. Returns ------- float Returns the reciprocal of the magnitude of the a_l_l coefficient in the new coordinate system. """ new_moment = np.copy(isolated_moment) hp.rotate_alm(new_moment, loc[0], loc[1], 0) return 1 / abs(new_moment[a_l_l_index]) def get_nat_rot(alms): """Find a rotation to the natural coordinate system of the alms. Parameters ---------- alms : np.ndarray Alms whose natural coordinate system rotation is found. Returns ------- np.ndarray Returns a vector containing Euler angles that describe an extrinsic z-y-z rotation to the natural coordinate system. """ rotation_copy = np.copy(alms) temp_map = hp.sphtfunc.alm2map(alms, NSIDE) dipole_ang = hp.pixelfunc.vec2ang(hp.pixelfunc.fit_dipole(temp_map)[1]) nat_rotation = [-dipole_ang[1][0], -dipole_ang[0][0], 0] hp.rotate_alm(rotation_copy, *nat_rotation) l_max = hp.sphtfunc.Alm.getlmax(alms.shape[0]) a_3_3 = rotation_copy[hp.Alm.getidx(l_max, 3, 3)] nat_rotation[2] = np.arctan2(np.imag(a_3_3), np.real(a_3_3)) / 3 return nat_rotation def rot_to_nat_coords(alms): """Rotate the alms to their natural coordinate system. Parameters ---------- alms : np.ndarray Alms to rotate to natural coordinates. Returns ------- np.ndarray Returns the alms in their natural coordinate system. """ new_alms = np.copy(alms) hp.rotate_alm(new_alms, *get_nat_rot(alms)) return new_alms def get_l(alms, ell): """Get the specified multipole moment from the alms. Parameters ---------- alms : np.ndarray Alms from which the specified multipole moment is returned. ell : int Multipole moment to return. Returns ------- np.ndarray Returns the specified multipole moment. """ l_max = hp.sphtfunc.Alm.getlmax(alms.shape[0]) isolated_l = np.zeros_like(alms) for m in range(ell + 1): index = hp.Alm.getidx(l_max, ell, m) isolated_l[index] = alms[index] return isolated_l def remove_l(alms, ell): """Remove the specified multipole moment from the alms. Parameters ---------- alms : np.ndarray Alms from which the specified multipole moment is removed. ell : int Multipole moment to remove. Returns ------- np.ndarray Return the alms with the specified multipole moment removed. """ l_max = hp.sphtfunc.Alm.getlmax(alms.shape[0]) new_alms = np.copy(alms) for m in range(ell + 1): new_alms[hp.Alm.getidx(l_max, ell, m)] = 0 return new_alms
27.317215
83
0.604546
254b79618218a2f7ad7a817ca0db4f8a4d6c8dd2
6,230
py
Python
hookbox/user.py
gameclosure/hookbox
c0087632b8035a1bff5c8dc55a2b64ba44c2cfbb
[ "MIT" ]
10
2015-06-26T01:41:41.000Z
2019-04-16T09:07:29.000Z
hookbox/user.py
play-co/hookbox
c0087632b8035a1bff5c8dc55a2b64ba44c2cfbb
[ "MIT" ]
null
null
null
hookbox/user.py
play-co/hookbox
c0087632b8035a1bff5c8dc55a2b64ba44c2cfbb
[ "MIT" ]
null
null
null
import eventlet from errors import ExpectedException try: import json except ImportError: import simplejson as json import datetime def get_now(): return datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S') class User(object): _options = { 'reflective': True, 'moderated_message': True, } def __init__(self, server, name, **options): self.server = server self.name = name self.connections = [] self.channels = [] self._temp_cookie = "" self.update_options(**self._options) self.update_options(**options) def serialize(self): return { 'channels': [ chan.name for chan in self.channels ], 'connections': [ conn.id for conn in self.connections ], 'name': self.name, 'options': dict([ (key, getattr(self, key)) for key in self._options]) } def update_options(self, **options): # TODO: this can't remain so generic forever. At some point we need # better checks on values, such as the list of dictionaries # for history, or the polling options. # TODO: add support for lists (we only have dicts now) # TODO: Probably should make this whole function recursive... though # we only really have one level of nesting now. # TODO: most of this function is duplicated from Channel#update_options # (including the TODOs above), could be a lot DRYer for key, val in options.items(): if key not in self._options: raise ValueError("Invalid keyword argument %s" % (key)) default = self._options[key] cls = default.__class__ if cls in (unicode, str): cls = basestring if not isinstance(val, cls): raise ValueError("Invalid type for %s (should be %s)" % (key, default.__class__)) if key == 'state': self.state_replace(val) continue if isinstance(val, dict): for _key, _val in val.items(): if _key not in self._options[key]: raise ValueError("Invalid keyword argument %s" % (_key)) default = self._options[key][_key] cls = default.__class__ if isinstance(default, float) and isinstance(_val, int): _val = float(_val) if cls in (unicode, str): cls = basestring if not isinstance(_val, cls): raise ValueError("%s is Invalid type for %s (should be %s)" % (_val, _key, default.__class__)) # two loops forces exception *before* any of the options are set. for key, val in options.items(): # this should create copies of any dicts or lists that are options if isinstance(val, dict) and hasattr(self, key): getattr(self, key).update(val) else: setattr(self, key, val.__class__(val)) def add_connection(self, conn): self.connections.append(conn) conn.user = self # call later... eventlet.spawn(self._send_initial_subscriptions, conn) def _send_initial_subscriptions(self, conn): for channel in self.channels: frame = channel._build_subscribe_frame(self) conn.send_frame('SUBSCRIBE', frame) def remove_connection(self, conn): self.connections.remove(conn) if not self.connections: # each call to user_disconnected might result in an immediate call # to self.channel_unsubscribed, thus modifying self.channels and # messing up our loop. So we loop over a copy of self.channels... for channel in self.channels[:]: channel.user_disconnected(self) # print 'tell server to remove user...' # so the disconnect callback has a cookie self._temp_cookie = conn.get_cookie() self.server.remove_user(self.name) def channel_subscribed(self, channel): self.channels.append(channel) def channel_unsubscribed(self, channel): self.channels.remove(channel) def get_name(self): return self.name def send_frame(self, name, args={}, omit=None): for conn in self.connections: if conn is not omit: conn.send_frame(name, args) def get_cookie(self, conn=None): if conn: return conn.get_cookie() return self._temp_cookie or "" def send_message(self, recipient_name, payload, conn=None, needs_auth=True): try: encoded_payload = json.loads(payload) except: raise ExpectedException("Invalid json for payload") payload = encoded_payload if needs_auth and self.moderated_message: form = { 'sender': self.get_name(), 'recipient': recipient_name, 'recipient_exists': self.server.exists_user(recipient_name), 'payload': json.dumps(payload) } success, options = self.server.http_request('message', self.get_cookie(conn), form, conn=conn) self.server.maybe_auto_subscribe(self, options, conn=conn) if not success: raise ExpectedException(options.get('error', 'Unauthorized')) payload = options.get('override_payload', payload) recipient_name = options.get('override_recipient_name', recipient_name) elif not self.server.exists_user(recipient_name): raise ExpectedException('Invalid user name') recipient = self.server.get_user(recipient_name) if self.server.exists_user(recipient_name) else None frame = {"sender": self.get_name(), "recipient": recipient.get_name() if recipient else "null", "payload": payload, "datetime": get_now()} if recipient: recipient.send_frame('MESSAGE', frame) if self.reflective and (not recipient or recipient.name != self.name): self.send_frame('MESSAGE', frame)
42.380952
170
0.592616
eed5866335ce19bbb1271c4f76e26d5e9e6b7d3a
5,477
bzl
Python
bazel_tools/fat_cc_library.bzl
flokli/daml
92f2dbf2eb8985290a3bb9702a3193e6f9296b22
[ "Apache-2.0" ]
null
null
null
bazel_tools/fat_cc_library.bzl
flokli/daml
92f2dbf2eb8985290a3bb9702a3193e6f9296b22
[ "Apache-2.0" ]
null
null
null
bazel_tools/fat_cc_library.bzl
flokli/daml
92f2dbf2eb8985290a3bb9702a3193e6f9296b22
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2019 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 load("@os_info//:os_info.bzl", "is_darwin", "is_windows") def _fat_cc_library_impl(ctx): input_lib = ctx.attr.input_lib cc_info = input_lib[CcInfo] static_libs = [] # For now we assume that we have static PIC libs for all libs. # It should be possible to extend this but we do not have a need # for it so far and it would complicate things. for lib in cc_info.linking_context.libraries_to_link.to_list(): static_lib = None if lib.pic_static_library: static_lib = lib.pic_static_library elif is_windows and lib.static_library: # On Windows we don't seem to have `pic_static_library`s available. static_lib = lib.static_library else: fail("No (PIC) static library found for '{}'.".format( str(lib.dynamic_library.path), )) static_libs += [static_lib] dyn_lib = ctx.outputs.dynamic_library static_lib = ctx.outputs.static_library toolchain = ctx.attr._cc_toolchain[cc_common.CcToolchainInfo] feature_configuration = cc_common.configure_features(ctx = ctx, cc_toolchain = toolchain) compiler = None if is_darwin: # toolchain.compiler_executable() fails on MacOS, see https://github.com/bazelbuild/bazel/issues/7105 compiler = ctx.executable._cc_compiler elif is_windows: compiler = toolchain.compiler_executable() + ".exe" else: compiler = toolchain.compiler_executable() ctx.actions.run( mnemonic = "CppLinkFatDynLib", outputs = [dyn_lib], executable = compiler, arguments = ["-o", dyn_lib.path, "-shared"] + ctx.attr.whole_archive_flag + [f.path for f in static_libs] + ctx.attr.no_whole_archive_flag + # Some libs seems to depend on libstdc++ implicitely ["-lstdc++"] + (["-framework", "CoreFoundation"] if is_darwin else []) + # On Windows some libs seems to depend on Windows sockets (["-lws2_32"] if is_windows else []), inputs = static_libs, env = {"PATH": ""}, ) mri_script_content = "\n".join( ["create {}".format(static_lib.path)] + ["addlib {}".format(lib.path) for lib in static_libs] + ["save", "end"], ) + "\n" mri_script = ctx.actions.declare_file(ctx.label.name + "_mri") ctx.actions.write(mri_script, mri_script_content) ar = toolchain.ar_executable() if ar.find("libtool") >= 0: # We are on MacOS where ar_executable is actually libtool, see # https://github.com/bazelbuild/bazel/issues/5127. ctx.actions.run( mnemonic = "CppLinkFatStaticLib", outputs = [static_lib], executable = ar, inputs = static_libs, arguments = ["-no_warning_for_no_symbols", "-static", "-o", static_lib.path] + [f.path for f in static_libs], ) else: ctx.actions.run_shell( mnemonic = "CppLinkFatStaticLib", outputs = [static_lib], inputs = [mri_script] + static_libs, command = "{ar} -M < {mri_script}".format(ar = ar, mri_script = mri_script.path), ) fat_lib = cc_common.create_library_to_link( actions = ctx.actions, feature_configuration = feature_configuration, cc_toolchain = toolchain, dynamic_library = dyn_lib, static_library = static_lib, ) new_linking_context = cc_common.create_linking_context( libraries_to_link = [fat_lib], ) new_cc_info = CcInfo( linking_context = new_linking_context, compilation_context = cc_info.compilation_context, ) return [new_cc_info] # Shared libraries built with Bazel do not declare their dependencies on other libraries properly. # Instead that dependency is tracked in Bazel internally. This breaks the GHCi linker if # RTLD_LAZY doesn’t work which happens quite often. To make matters worse, we also cannot use # linkstatic = True, since the GHCi linker cannot handle some relocations. # To work around this mess, we create fat libraries that do not have additional dependencies. # See https://github.com/tweag/rules_haskell/issues/720 fat_cc_library = rule( _fat_cc_library_impl, attrs = dict({ "input_lib": attr.label(), "_cc_toolchain": attr.label( default = Label("@bazel_tools//tools/cpp:current_cc_toolchain"), ), "_cc_compiler": attr.label( allow_files = True, executable = True, cfg = "host", default = # bin/cc is gcc on Darwin which fails to find libc++ Label("@nixpkgs_cc_toolchain//:bin/clang") if is_darwin else None, ), "whole_archive_flag": attr.string_list( # ld on MacOS doesn’t understand --whole-archive default = ["-Wl,-all_load"] if is_darwin else ["-Wl,--whole-archive"], ), "no_whole_archive_flag": attr.string_list( default = [] if is_darwin else ["-Wl,--no-whole-archive"], ), }), fragments = ["cpp"], outputs = { "dynamic_library": "lib%{name}.dll" if is_windows else "lib%{name}.so", "static_library": "lib%{name}.a", }, )
38.570423
109
0.622969
507280826d7d5cb43c822ac43cf98da6ec1f5ecf
2,742
py
Python
external/bayesopt/python/demo_quad.py
pchrapka/brain-modelling
f232b5a858e45f10b0b0735269010454129ab017
[ "MIT" ]
1
2017-10-13T19:37:52.000Z
2017-10-13T19:37:52.000Z
external/bayesopt/python/demo_quad.py
pchrapka/brain-modelling
f232b5a858e45f10b0b0735269010454129ab017
[ "MIT" ]
null
null
null
external/bayesopt/python/demo_quad.py
pchrapka/brain-modelling
f232b5a858e45f10b0b0735269010454129ab017
[ "MIT" ]
1
2019-11-25T12:22:05.000Z
2019-11-25T12:22:05.000Z
#!/usr/bin/env python # ------------------------------------------------------------------------- # This file is part of BayesOpt, an efficient C++ library for # Bayesian optimization. # # Copyright (C) 2011-2015 Ruben Martinez-Cantin <rmcantin@unizar.es> # # BayesOpt is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # BayesOpt is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with BayesOpt. If not, see <http://www.gnu.org/licenses/>. # ------------------------------------------------------------------------ import bayesopt from bayesoptmodule import BayesOptContinuous import numpy as np from time import clock # Python3 compat if sys.version_info[0] == 3: raw_input = input # Function for testing. def testfunc(Xin): total = 5.0 for value in Xin: total = total + (value -0.33)*(value-0.33) return total # Class for OO testing. class BayesOptTest(BayesOptContinuous): def evaluateSample(self,Xin): return testfunc(Xin) # Let's define the parameters # For different options: see parameters.h and cpp # If a parameter is not define, it will be automatically set # to a default value. params = {} params['n_iterations'] = 50 params['n_iter_relearn'] = 5 params['n_init_samples'] = 2 print("Callback implementation") n = 5 # n dimensions lb = np.zeros((n,)) ub = np.ones((n,)) start = clock() mvalue, x_out, error = bayesopt.optimize(testfunc, n, lb, ub, params) print("Result", mvalue, "at", x_out) print("Running time:", clock() - start, "seconds") raw_input('Press INTRO to continue') print("OO implementation") bo_test = BayesOptTest(n) bo_test.parameters = params bo_test.lower_bound = lb bo_test.upper_bound = ub start = clock() mvalue, x_out, error = bo_test.optimize() print("Result", mvalue, "at", x_out) print("Running time:", clock() - start, "seconds") raw_input('Press INTRO to continue') print("Callback discrete implementation") x_set = np.random.rand(100,n) start = clock() mvalue, x_out, error = bayesopt.optimize_discrete(testfunc, x_set, params) print("Result", mvalue, "at", x_out) print("Running time:", clock() - start, "seconds") value = np.array([testfunc(i) for i in x_set]) print("Optimum", value.min(), "at", x_set[value.argmin()])
29.804348
77
0.667031
f4de3f19c87be81953805a4b77da4a4bf0195399
2,611
py
Python
korbit/public_api.py
HoonJin/korbit-python
496131d1320361e8ddf4e60ec8d7269ca8451afe
[ "MIT" ]
24
2016-03-07T06:01:33.000Z
2022-03-19T06:18:43.000Z
korbit/public_api.py
HoonJin/korbit-python
496131d1320361e8ddf4e60ec8d7269ca8451afe
[ "MIT" ]
1
2018-01-05T08:48:37.000Z
2018-01-18T05:36:10.000Z
korbit/public_api.py
HoonJin/korbit-python
496131d1320361e8ddf4e60ec8d7269ca8451afe
[ "MIT" ]
13
2017-07-27T15:44:21.000Z
2020-03-12T19:08:44.000Z
# -*- coding: utf-8 -*- import requests import json import logging try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin class PublicAPI: def __init__(self, production=True, version="v1", timeout=20): self.__host = production and "https://api.korbit.co.kr/%s/" % version \ or "https://api.korbit-test.com/%s/" % version self.__timeout = timeout # https://apidocs.korbit.co.kr/#public def ticker(self, currency_pair="btc_krw"): params = { 'currency_pair': currency_pair } return self.request_get("ticker", params=params) def detailed_ticker(self, currency_pair="btc_krw"): params = { 'currency_pair': currency_pair } return self.request_get("ticker/detailed", params=params) def all_detailed_ticker(self): return self.request_get("ticker/detailed/all") def orderbook(self, currency_pair="btc_krw", category="all", group=True): params = { 'group': group, 'category': category, 'currency_pair': currency_pair } return self.request_get("orderbook", params=params) def bids_orderbook(self, currency_pair="btc_krw", group=True): return self.orderbook(currency_pair=currency_pair, category="bid", group=group) def asks_orderbook(self, currency_pair="btc_krw", group=True): return self.orderbook(currency_pair=currency_pair, category="ask", group=group) def list_of_filled_orders(self, currency_pair="btc_krw", interval="hour"): params = { 'time': interval, 'currency_pair': currency_pair } return self.request_get("transactions", params=params) def request_get(self, path, headers=None, params=None): response = requests.get(urljoin(self.host, path), headers=headers, params=params, timeout=self.__timeout) try: return response.json() except json.decoder.JSONDecodeError as e: logging.error("exception: {}, response_text: {}".format(e, response.text)) return response.text def request_post(self, path, headers=None, data=None): response = requests.post(urljoin(self.host, path), headers=headers, data=data, timeout=self.__timeout) try: return response.json() except json.decoder.JSONDecodeError as e: logging.error("exception: {}, response_text: {}".format(e, response.text)) return response.text @property def host(self): return self.__host
35.283784
113
0.641134
7e4dc6f661b51bffd677607379a0f7dff4a9e51f
7,054
py
Python
tests/integration/test_specfile.py
packit/specfile
66608618fc044c3dd3cd73353f75f5943d5681b0
[ "MIT" ]
2
2022-02-16T09:37:45.000Z
2022-02-19T10:33:19.000Z
tests/integration/test_specfile.py
packit/specfile
66608618fc044c3dd3cd73353f75f5943d5681b0
[ "MIT" ]
37
2021-11-23T12:21:06.000Z
2022-03-31T11:20:34.000Z
tests/integration/test_specfile.py
packit/specfile
66608618fc044c3dd3cd73353f75f5943d5681b0
[ "MIT" ]
2
2022-01-11T15:04:55.000Z
2022-03-22T10:11:32.000Z
# Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT import datetime import subprocess import pytest import rpm from flexmock import flexmock from specfile.exceptions import SpecfileException from specfile.prep import AutopatchMacro, AutosetupMacro, PatchMacro, SetupMacro from specfile.sections import Section from specfile.specfile import Specfile def test_parse(spec_multiple_sources): spec = Specfile(spec_multiple_sources) prep = spec._spec.prep # remove all sources for path in spec.sourcedir.iterdir(): if not path.samefile(spec.path): path.unlink() spec = Specfile(spec_multiple_sources) assert spec._spec.prep == prep def test_prep_traditional(spec_traditional): spec = Specfile(spec_traditional) with spec.prep() as prep: assert AutosetupMacro not in prep.macros assert AutopatchMacro not in prep.macros assert isinstance(prep.macros[0], SetupMacro) for i, m in enumerate(prep.macros[1:]): assert isinstance(m, PatchMacro) assert m.index == i assert m.options.p == 1 prep.remove_patch_macro(0) assert len([m for m in prep.macros if isinstance(m, PatchMacro)]) == 2 prep.add_patch_macro(0, p=2, b=".test") assert len(prep.macros) == 4 with spec.sections() as sections: assert sections.prep[1] == "%patch0 -p2 -b .test" def test_prep_autosetup(spec_autosetup): spec = Specfile(spec_autosetup) with spec.prep() as prep: assert len(prep.macros) == 1 assert AutosetupMacro in prep.macros assert SetupMacro not in prep.macros assert PatchMacro not in prep.macros assert prep.macros[0].options.p == 1 def test_sources(spec_minimal): spec = Specfile(spec_minimal) source = "test.tar.gz" with spec.sources() as sources: assert not sources sources.append(source) assert sources.count(source) == len(sources) == 1 with spec.tags() as tags: assert [source] == [t.value for t in tags if t.name.startswith("Source")] with spec.sources() as sources: sources.remove(source) assert not sources sources.insert(0, source) assert sources[0].location == source sources.clear() assert not sources def test_patches(spec_patchlist): spec = Specfile(spec_patchlist) patch = "test.patch" with spec.patches() as patches: patches.insert(0, patch) assert patches[0].location == patch assert patches[1].number == 1 with spec.tags() as tags: assert len([t for t in tags if t.name.startswith("Patch")]) == 2 with spec.patches() as patches: patches.remove(patch) patches.insert(1, patch) patches[1].comments.append("test") with spec.sections() as sections: assert len([sl for sl in sections.patchlist if sl]) == 4 assert sections.patchlist[0] == "# test" @pytest.mark.parametrize( "rpmdev_packager_available, entry, author, email, timestamp, result", [ (False, None, None, None, None, None), ( True, "test", None, None, datetime.date(2022, 2, 1), Section( "changelog", ["* Tue Feb 01 2022 John Doe <john@doe.net> - 0.1-1", "test"], ), ), ( True, "test", "Bill Packager", None, datetime.date(2022, 2, 1), Section("changelog", ["* Tue Feb 01 2022 Bill Packager - 0.1-1", "test"]), ), ( True, "test", "Bill Packager", "bill@packager.net", datetime.date(2022, 2, 1), Section( "changelog", ["* Tue Feb 01 2022 Bill Packager <bill@packager.net> - 0.1-1", "test"], ), ), ( True, "test", "Bill Packager", "bill@packager.net", datetime.datetime(2022, 2, 1, 9, 28, 13), Section( "changelog", [ "* Tue Feb 01 09:28:13 UTC 2022 Bill Packager <bill@packager.net> - 0.1-1", "test", ], ), ), ( True, ["line 1", "line 2"], "Bill Packager", "bill@packager.net", datetime.datetime(2022, 2, 1, 9, 28, 13), Section( "changelog", [ "* Tue Feb 01 09:28:13 UTC 2022 Bill Packager <bill@packager.net> - 0.1-1", "line 1", "line 2", ], ), ), ], ) def test_add_changelog_entry( spec_minimal, rpmdev_packager_available, entry, author, email, timestamp, result ): if not rpmdev_packager_available: flexmock(subprocess).should_receive("check_output").with_args( "rpmdev-packager" ).and_raise(FileNotFoundError) elif author is None: flexmock(subprocess).should_receive("check_output").with_args( "rpmdev-packager" ).and_return(b"John Doe <john@doe.net>") spec = Specfile(spec_minimal) if not rpmdev_packager_available: with pytest.raises(SpecfileException): spec.add_changelog_entry(entry, author, email, timestamp) else: spec.add_changelog_entry(entry, author, email, timestamp) with spec.sections() as sections: assert sections.changelog[: len(result)] == result @pytest.mark.parametrize( "version, release", [ ("0.2", "3"), ("67", "1"), ("1.4.6", "0.1rc5"), ], ) def test_set_version_and_release(spec_minimal, version, release): spec = Specfile(spec_minimal) spec.set_version_and_release(version, release) assert spec.version == version assert spec.release == release assert spec.raw_release.startswith(release) with spec.tags() as tags: assert tags.version.value == spec.version assert tags.release.value == spec.raw_release assert spec._spec.sourceHeader[rpm.RPMTAG_VERSION] == spec.expanded_version assert spec._spec.sourceHeader[rpm.RPMTAG_RELEASE] == spec.expanded_raw_release spec.raw_release = release with spec.tags() as tags: assert tags.release.value == release assert spec._spec.sourceHeader[rpm.RPMTAG_RELEASE] == spec.expanded_raw_release @pytest.mark.skipif( rpm.__version__ < "4.16", reason="%autochangelog requires rpm 4.16 or higher" ) def test_autochangelog(spec_rpmautospec): spec = Specfile(spec_rpmautospec) assert spec.has_autochangelog with spec.changelog() as changelog: assert len(changelog) == 0 with spec.sections() as sections: changelog = sections.changelog.copy() spec.add_changelog_entry("test") with spec.sections() as sections: assert sections.changelog == changelog
32.657407
95
0.595407
bdc8e37e0b1dae37410ec590cd90de4aac00570d
37,058
py
Python
sdks/python/apache_beam/transforms/trigger_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
1
2020-01-08T19:17:06.000Z
2020-01-08T19:17:06.000Z
sdks/python/apache_beam/transforms/trigger_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
1
2019-09-16T06:43:55.000Z
2019-09-16T06:43:55.000Z
sdks/python/apache_beam/transforms/trigger_test.py
dexterchan/beam
01e500c2dd0d699aea0434154b69fd59d824700f
[ "Apache-2.0" ]
1
2020-02-09T02:51:50.000Z
2020-02-09T02:51:50.000Z
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Unit tests for the triggering classes.""" from __future__ import absolute_import import collections import json import os.path import pickle import random import unittest from builtins import range from builtins import zip # patches unittest.TestCase to be python3 compatible import future.tests.base # pylint: disable=unused-import import yaml import apache_beam as beam from apache_beam import coders from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import StandardOptions from apache_beam.portability import common_urns from apache_beam.runners import pipeline_context from apache_beam.runners.direct.clock import TestClock from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.test_stream import TestStream from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms import ptransform from apache_beam.transforms import trigger from apache_beam.transforms.core import Windowing from apache_beam.transforms.trigger import AccumulationMode from apache_beam.transforms.trigger import AfterAll from apache_beam.transforms.trigger import AfterAny from apache_beam.transforms.trigger import AfterCount from apache_beam.transforms.trigger import AfterEach from apache_beam.transforms.trigger import AfterProcessingTime from apache_beam.transforms.trigger import AfterWatermark from apache_beam.transforms.trigger import DefaultTrigger from apache_beam.transforms.trigger import GeneralTriggerDriver from apache_beam.transforms.trigger import InMemoryUnmergedState from apache_beam.transforms.trigger import Repeatedly from apache_beam.transforms.trigger import TriggerFn from apache_beam.transforms.window import FixedWindows from apache_beam.transforms.window import IntervalWindow from apache_beam.transforms.window import Sessions from apache_beam.transforms.window import TimestampCombiner from apache_beam.transforms.window import TimestampedValue from apache_beam.transforms.window import WindowedValue from apache_beam.transforms.window import WindowFn from apache_beam.utils.timestamp import MAX_TIMESTAMP from apache_beam.utils.timestamp import MIN_TIMESTAMP from apache_beam.utils.timestamp import Duration from apache_beam.utils.windowed_value import PaneInfoTiming class CustomTimestampingFixedWindowsWindowFn(FixedWindows): """WindowFn for testing custom timestamping.""" def get_transformed_output_time(self, unused_window, input_timestamp): return input_timestamp + 100 class TriggerTest(unittest.TestCase): def run_trigger_simple(self, window_fn, trigger_fn, accumulation_mode, timestamped_data, expected_panes, *groupings, **kwargs): # Groupings is a list of integers indicating the (uniform) size of bundles # to try. For example, if timestamped_data has elements [a, b, c, d, e] # then groupings=(5, 2) would first run the test with everything in the same # bundle, and then re-run the test with bundling [a, b], [c, d], [e]. # A negative value will reverse the order, e.g. -2 would result in bundles # [e, d], [c, b], [a]. This is useful for deterministic triggers in testing # that the output is not a function of ordering or bundling. # If empty, defaults to bundles of size 1 in the given order. late_data = kwargs.pop('late_data', []) assert not kwargs def bundle_data(data, size): if size < 0: data = list(data)[::-1] size = -size bundle = [] for timestamp, elem in data: windows = window_fn.assign(WindowFn.AssignContext(timestamp, elem)) bundle.append(WindowedValue(elem, timestamp, windows)) if len(bundle) == size: yield bundle bundle = [] if bundle: yield bundle if not groupings: groupings = [1] for group_by in groupings: self.run_trigger(window_fn, trigger_fn, accumulation_mode, bundle_data(timestamped_data, group_by), bundle_data(late_data, group_by), expected_panes) def run_trigger(self, window_fn, trigger_fn, accumulation_mode, bundles, late_bundles, expected_panes): actual_panes = collections.defaultdict(list) allowed_lateness = Duration(micros=int( common_urns.constants.MAX_TIMESTAMP_MILLIS.constant)*1000) driver = GeneralTriggerDriver( Windowing(window_fn, trigger_fn, accumulation_mode, allowed_lateness=allowed_lateness), TestClock()) state = InMemoryUnmergedState() for bundle in bundles: for wvalue in driver.process_elements(state, bundle, MIN_TIMESTAMP, MIN_TIMESTAMP): window, = wvalue.windows self.assertEqual(window.max_timestamp(), wvalue.timestamp) actual_panes[window].append(set(wvalue.value)) while state.timers: for timer_window, (name, time_domain, timestamp) in ( state.get_and_clear_timers()): for wvalue in driver.process_timer( timer_window, name, time_domain, timestamp, state, MIN_TIMESTAMP): window, = wvalue.windows self.assertEqual(window.max_timestamp(), wvalue.timestamp) actual_panes[window].append(set(wvalue.value)) for bundle in late_bundles: for wvalue in driver.process_elements(state, bundle, MAX_TIMESTAMP, MAX_TIMESTAMP): window, = wvalue.windows self.assertEqual(window.max_timestamp(), wvalue.timestamp) actual_panes[window].append(set(wvalue.value)) while state.timers: for timer_window, (name, time_domain, timestamp) in ( state.get_and_clear_timers()): for wvalue in driver.process_timer( timer_window, name, time_domain, timestamp, state, MAX_TIMESTAMP): window, = wvalue.windows self.assertEqual(window.max_timestamp(), wvalue.timestamp) actual_panes[window].append(set(wvalue.value)) self.assertEqual(expected_panes, actual_panes) def test_fixed_watermark(self): self.run_trigger_simple( FixedWindows(10), # pyformat break AfterWatermark(), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (13, 'c')], {IntervalWindow(0, 10): [set('ab')], IntervalWindow(10, 20): [set('c')]}, 1, 2, 3, -3, -2, -1) def test_fixed_watermark_with_early(self): self.run_trigger_simple( FixedWindows(10), # pyformat break AfterWatermark(early=AfterCount(2)), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(0, 10): [set('ab'), set('abc')]}, 2) self.run_trigger_simple( FixedWindows(10), # pyformat break AfterWatermark(early=AfterCount(2)), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(0, 10): [set('abc'), set('abc')]}, 3) def test_fixed_watermark_with_early_late(self): self.run_trigger_simple( FixedWindows(100), # pyformat break AfterWatermark(early=AfterCount(3), late=AfterCount(2)), AccumulationMode.DISCARDING, zip(range(9), 'abcdefghi'), {IntervalWindow(0, 100): [ set('abcd'), set('efgh'), # early set('i'), # on time set('vw'), set('xy') # late ]}, 2, late_data=zip(range(5), 'vwxyz')) def test_sessions_watermark_with_early_late(self): self.run_trigger_simple( Sessions(10), # pyformat break AfterWatermark(early=AfterCount(2), late=AfterCount(1)), AccumulationMode.ACCUMULATING, [(1, 'a'), (15, 'b'), (7, 'c'), (30, 'd')], { IntervalWindow(1, 25): [ set('abc'), # early set('abc'), # on time set('abcxy') # late ], IntervalWindow(30, 40): [ set('d'), # on time ], IntervalWindow(1, 40): [ set('abcdxyz') # late ], }, 2, late_data=[(1, 'x'), (2, 'y'), (21, 'z')]) def test_fixed_after_count(self): self.run_trigger_simple( FixedWindows(10), # pyformat break AfterCount(2), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c'), (11, 'z')], {IntervalWindow(0, 10): [set('ab')]}, 1, 2) self.run_trigger_simple( FixedWindows(10), # pyformat break AfterCount(2), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c'), (11, 'z')], {IntervalWindow(0, 10): [set('abc')]}, 3, 4) def test_fixed_after_first(self): self.run_trigger_simple( FixedWindows(10), # pyformat break AfterAny(AfterCount(2), AfterWatermark()), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(0, 10): [set('ab')]}, 1, 2) self.run_trigger_simple( FixedWindows(10), # pyformat break AfterAny(AfterCount(5), AfterWatermark()), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(0, 10): [set('abc')]}, 1, 2, late_data=[(1, 'x'), (2, 'y'), (3, 'z')]) def test_repeatedly_after_first(self): self.run_trigger_simple( FixedWindows(100), # pyformat break Repeatedly(AfterAny(AfterCount(3), AfterWatermark())), AccumulationMode.ACCUMULATING, zip(range(7), 'abcdefg'), {IntervalWindow(0, 100): [ set('abc'), set('abcdef'), set('abcdefg'), set('abcdefgx'), set('abcdefgxy'), set('abcdefgxyz')]}, 1, late_data=zip(range(3), 'xyz')) def test_sessions_after_all(self): self.run_trigger_simple( Sessions(10), # pyformat break AfterAll(AfterCount(2), AfterWatermark()), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(1, 13): [set('abc')]}, 1, 2) self.run_trigger_simple( Sessions(10), # pyformat break AfterAll(AfterCount(5), AfterWatermark()), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (3, 'c')], {IntervalWindow(1, 13): [set('abcxy')]}, 1, 2, late_data=[(1, 'x'), (2, 'y'), (3, 'z')]) def test_sessions_default(self): self.run_trigger_simple( Sessions(10), # pyformat break DefaultTrigger(), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b')], {IntervalWindow(1, 12): [set('ab')]}, 1, 2, -2, -1) self.run_trigger_simple( Sessions(10), # pyformat break AfterWatermark(), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b'), (15, 'c'), (16, 'd'), (30, 'z'), (9, 'e'), (10, 'f'), (30, 'y')], {IntervalWindow(1, 26): [set('abcdef')], IntervalWindow(30, 40): [set('yz')]}, 1, 2, 3, 4, 5, 6, -4, -2, -1) def test_sessions_watermark(self): self.run_trigger_simple( Sessions(10), # pyformat break AfterWatermark(), AccumulationMode.ACCUMULATING, [(1, 'a'), (2, 'b')], {IntervalWindow(1, 12): [set('ab')]}, 1, 2, -2, -1) def test_sessions_after_count(self): self.run_trigger_simple( Sessions(10), # pyformat break AfterCount(2), AccumulationMode.ACCUMULATING, [(1, 'a'), (15, 'b'), (6, 'c'), (30, 's'), (31, 't'), (50, 'z'), (50, 'y')], {IntervalWindow(1, 25): [set('abc')], IntervalWindow(30, 41): [set('st')], IntervalWindow(50, 60): [set('yz')]}, 1, 2, 3) def test_sessions_repeatedly_after_count(self): self.run_trigger_simple( Sessions(10), # pyformat break Repeatedly(AfterCount(2)), AccumulationMode.ACCUMULATING, [(1, 'a'), (15, 'b'), (6, 'c'), (2, 'd'), (7, 'e')], {IntervalWindow(1, 25): [set('abc'), set('abcde')]}, 1, 3) self.run_trigger_simple( Sessions(10), # pyformat break Repeatedly(AfterCount(2)), AccumulationMode.DISCARDING, [(1, 'a'), (15, 'b'), (6, 'c'), (2, 'd'), (7, 'e')], {IntervalWindow(1, 25): [set('abc'), set('de')]}, 1, 3) def test_sessions_after_each(self): self.run_trigger_simple( Sessions(10), # pyformat break AfterEach(AfterCount(2), AfterCount(3)), AccumulationMode.ACCUMULATING, zip(range(10), 'abcdefghij'), {IntervalWindow(0, 11): [set('ab')], IntervalWindow(0, 15): [set('abcdef')]}, 2) self.run_trigger_simple( Sessions(10), # pyformat break Repeatedly(AfterEach(AfterCount(2), AfterCount(3))), AccumulationMode.ACCUMULATING, zip(range(10), 'abcdefghij'), {IntervalWindow(0, 11): [set('ab')], IntervalWindow(0, 15): [set('abcdef')], IntervalWindow(0, 17): [set('abcdefgh')]}, 2) def test_picklable_output(self): global_window = (trigger.GlobalWindow(),) driver = trigger.BatchGlobalTriggerDriver() unpicklable = (WindowedValue(k, 0, global_window) for k in range(10)) with self.assertRaises(TypeError): pickle.dumps(unpicklable) for unwindowed in driver.process_elements(None, unpicklable, None, None): self.assertEqual(pickle.loads(pickle.dumps(unwindowed)).value, list(range(10))) class RunnerApiTest(unittest.TestCase): def test_trigger_encoding(self): for trigger_fn in ( DefaultTrigger(), AfterAll(AfterCount(1), AfterCount(10)), AfterAny(AfterCount(10), AfterCount(100)), AfterWatermark(early=AfterCount(1000)), AfterWatermark(early=AfterCount(1000), late=AfterCount(1)), Repeatedly(AfterCount(100)), trigger.OrFinally(AfterCount(3), AfterCount(10))): context = pipeline_context.PipelineContext() self.assertEqual( trigger_fn, TriggerFn.from_runner_api(trigger_fn.to_runner_api(context), context)) class TriggerPipelineTest(unittest.TestCase): def test_after_count(self): with TestPipeline() as p: def construct_timestamped(k_t): return TimestampedValue((k_t[0], k_t[1]), k_t[1]) def format_result(k_v): return ('%s-%s' % (k_v[0], len(k_v[1])), set(k_v[1])) result = (p | beam.Create([1, 2, 3, 4, 5, 10, 11]) | beam.FlatMap(lambda t: [('A', t), ('B', t + 5)]) | beam.Map(construct_timestamped) | beam.WindowInto(FixedWindows(10), trigger=AfterCount(3), accumulation_mode=AccumulationMode.DISCARDING) | beam.GroupByKey() | beam.Map(format_result)) assert_that(result, equal_to( list( { 'A-5': {1, 2, 3, 4, 5}, # A-10, A-11 never emitted due to AfterCount(3) never firing. 'B-4': {6, 7, 8, 9}, 'B-3': {10, 15, 16}, }.items() ))) def test_multiple_accumulating_firings(self): # PCollection will contain elements from 1 to 10. elements = [i for i in range(1, 11)] ts = TestStream().advance_watermark_to(0) for i in elements: ts.add_elements([('key', str(i))]) if i % 5 == 0: ts.advance_watermark_to(i) ts.advance_processing_time(5) ts.advance_watermark_to_infinity() options = PipelineOptions() options.view_as(StandardOptions).streaming = True with TestPipeline(options=options) as p: records = (p | ts | beam.WindowInto( FixedWindows(10), accumulation_mode=trigger.AccumulationMode.ACCUMULATING, trigger=AfterWatermark( early=AfterAll( AfterCount(1), AfterProcessingTime(5)) )) | beam.GroupByKey() | beam.FlatMap(lambda x: x[1])) # The trigger should fire twice. Once after 5 seconds, and once after 10. # The firings should accumulate the output. first_firing = [str(i) for i in elements if i <= 5] second_firing = [str(i) for i in elements] assert_that(records, equal_to(first_firing + second_firing)) class TranscriptTest(unittest.TestCase): # We must prepend an underscore to this name so that the open-source unittest # runner does not execute this method directly as a test. @classmethod def _create_test(cls, spec): counter = 0 name = spec.get('name', 'unnamed') unique_name = 'test_' + name while hasattr(cls, unique_name): counter += 1 unique_name = 'test_%s_%d' % (name, counter) test_method = lambda self: self._run_log_test(spec) test_method.__name__ = unique_name test_method.__test__ = True setattr(cls, unique_name, test_method) # We must prepend an underscore to this name so that the open-source unittest # runner does not execute this method directly as a test. @classmethod def _create_tests(cls, transcript_filename): for spec in yaml.load_all(open(transcript_filename)): cls._create_test(spec) def _run_log_test(self, spec): if 'error' in spec: self.assertRaisesRegex( Exception, spec['error'], self._run_log, spec) else: self._run_log(spec) def _run_log(self, spec): def parse_int_list(s): """Parses strings like '[1, 2, 3]'.""" s = s.strip() assert s[0] == '[' and s[-1] == ']', s if not s[1:-1].strip(): return [] return [int(x) for x in s[1:-1].split(',')] def split_args(s): """Splits 'a, b, [c, d]' into ['a', 'b', '[c, d]'].""" args = [] start = 0 depth = 0 for ix in range(len(s)): c = s[ix] if c in '({[': depth += 1 elif c in ')}]': depth -= 1 elif c == ',' and depth == 0: args.append(s[start:ix].strip()) start = ix + 1 assert depth == 0, s args.append(s[start:].strip()) return args def parse(s, names): """Parse (recursive) 'Foo(arg, kw=arg)' for Foo in the names dict.""" s = s.strip() if s in names: return names[s] elif s[0] == '[': return parse_int_list(s) elif '(' in s: assert s[-1] == ')', s callee = parse(s[:s.index('(')], names) posargs = [] kwargs = {} for arg in split_args(s[s.index('(') + 1:-1]): if '=' in arg: kw, value = arg.split('=', 1) kwargs[kw] = parse(value, names) else: posargs.append(parse(arg, names)) return callee(*posargs, **kwargs) else: try: return int(s) except ValueError: raise ValueError('Unknown function: %s' % s) def parse_fn(s, names): """Like parse(), but implicitly calls no-arg constructors.""" fn = parse(s, names) if isinstance(fn, type): return fn() return fn # pylint: disable=wrong-import-order, wrong-import-position from apache_beam.transforms import window as window_module # pylint: enable=wrong-import-order, wrong-import-position window_fn_names = dict(window_module.__dict__) window_fn_names.update({'CustomTimestampingFixedWindowsWindowFn': CustomTimestampingFixedWindowsWindowFn}) trigger_names = {'Default': DefaultTrigger} trigger_names.update(trigger.__dict__) window_fn = parse_fn(spec.get('window_fn', 'GlobalWindows'), window_fn_names) trigger_fn = parse_fn(spec.get('trigger_fn', 'Default'), trigger_names) accumulation_mode = getattr( AccumulationMode, spec.get('accumulation_mode', 'ACCUMULATING').upper()) timestamp_combiner = getattr( TimestampCombiner, spec.get('timestamp_combiner', 'OUTPUT_AT_EOW').upper()) allowed_lateness = spec.get('allowed_lateness', 0.000) def only_element(xs): x, = list(xs) return x transcript = [only_element(line.items()) for line in spec['transcript']] self._execute( window_fn, trigger_fn, accumulation_mode, timestamp_combiner, allowed_lateness, transcript, spec) def _windowed_value_info(windowed_value): # Currently some runners operate at the millisecond level, and some at the # microsecond level. Trigger transcript timestamps are expressed as # integral units of the finest granularity, whatever that may be. # In these tests we interpret them as integral seconds and then truncate # the results to integral seconds to allow for portability across # different sub-second resolutions. window, = windowed_value.windows return { 'window': [int(window.start), int(window.max_timestamp())], 'values': sorted(windowed_value.value), 'timestamp': int(windowed_value.timestamp), 'index': windowed_value.pane_info.index, 'nonspeculative_index': windowed_value.pane_info.nonspeculative_index, 'early': windowed_value.pane_info.timing == PaneInfoTiming.EARLY, 'late': windowed_value.pane_info.timing == PaneInfoTiming.LATE, 'final': windowed_value.pane_info.is_last, } def _windowed_value_info_map_fn( k, vs, window=beam.DoFn.WindowParam, t=beam.DoFn.TimestampParam, p=beam.DoFn.PaneInfoParam): return ( k, _windowed_value_info(WindowedValue( vs, windows=[window], timestamp=t, pane_info=p))) def _windowed_value_info_check(actual, expected, key=None): key_string = ' for %s' % key if key else '' def format(panes): return '\n[%s]\n' % '\n '.join(str(pane) for pane in sorted( panes, key=lambda pane: pane.get('timestamp', None))) if len(actual) > len(expected): raise AssertionError( 'Unexpected output%s: expected %s but got %s' % ( key_string, format(expected), format(actual))) elif len(expected) > len(actual): raise AssertionError( 'Unmatched output%s: expected %s but got %s' % ( key_string, format(expected), format(actual))) else: def diff(actual, expected): for key in sorted(expected.keys(), reverse=True): if key in actual: if actual[key] != expected[key]: return key for output in actual: diffs = [diff(output, pane) for pane in expected] if all(diffs): raise AssertionError( 'Unmatched output%s: %s not found in %s (diffs in %s)' % ( key_string, output, format(expected), diffs)) class _ConcatCombineFn(beam.CombineFn): create_accumulator = lambda self: [] add_input = lambda self, acc, element: acc.append(element) or acc merge_accumulators = lambda self, accs: sum(accs, []) extract_output = lambda self, acc: acc class TriggerDriverTranscriptTest(TranscriptTest): def _execute( self, window_fn, trigger_fn, accumulation_mode, timestamp_combiner, allowed_lateness, transcript, unused_spec): driver = GeneralTriggerDriver( Windowing(window_fn, trigger_fn, accumulation_mode, timestamp_combiner, allowed_lateness), TestClock()) state = InMemoryUnmergedState() output = [] watermark = MIN_TIMESTAMP def fire_timers(): to_fire = state.get_and_clear_timers(watermark) while to_fire: for timer_window, (name, time_domain, t_timestamp) in to_fire: for wvalue in driver.process_timer( timer_window, name, time_domain, t_timestamp, state): output.append(_windowed_value_info(wvalue)) to_fire = state.get_and_clear_timers(watermark) for action, params in transcript: if action != 'expect': # Fail if we have output that was not expected in the transcript. self.assertEqual( [], output, msg='Unexpected output: %s before %s: %s' % ( output, action, params)) if action == 'input': bundle = [ WindowedValue(t, t, window_fn.assign(WindowFn.AssignContext(t, t))) for t in params] output = [ _windowed_value_info(wv) for wv in driver.process_elements(state, bundle, watermark, watermark)] fire_timers() elif action == 'watermark': watermark = params fire_timers() elif action == 'expect': for expected_output in params: for candidate in output: if all(candidate[k] == expected_output[k] for k in candidate if k in expected_output): output.remove(candidate) break else: self.fail('Unmatched output %s in %s' % (expected_output, output)) elif action == 'state': # TODO(robertwb): Implement once we support allowed lateness. pass else: self.fail('Unknown action: ' + action) # Fail if we have output that was not expected in the transcript. self.assertEqual([], output, msg='Unexpected output: %s' % output) class BaseTestStreamTranscriptTest(TranscriptTest): """A suite of TestStream-based tests based on trigger transcript entries. """ def _execute( self, window_fn, trigger_fn, accumulation_mode, timestamp_combiner, allowed_lateness, transcript, spec): runner_name = TestPipeline().runner.__class__.__name__ if runner_name in spec.get('broken_on', ()): self.skipTest('Known to be broken on %s' % runner_name) is_order_agnostic = ( isinstance(trigger_fn, DefaultTrigger) and accumulation_mode == AccumulationMode.ACCUMULATING) if is_order_agnostic: reshuffle_seed = random.randrange(1 << 20) keys = [ u'original', u'reversed', u'reshuffled(%s)' % reshuffle_seed, u'one-element-bundles', u'one-element-bundles-reversed', u'two-element-bundles'] else: keys = [u'key1', u'key2'] # Elements are encoded as a json strings to allow other languages to # decode elements while executing the test stream. # TODO(BEAM-8600): Eliminate these gymnastics. test_stream = TestStream(coder=coders.StrUtf8Coder()).with_output_types(str) for action, params in transcript: if action == 'expect': test_stream.add_elements([json.dumps(('expect', params))]) else: test_stream.add_elements([json.dumps(('expect', []))]) if action == 'input': def keyed(key, values): return [json.dumps(('input', (key, v))) for v in values] if is_order_agnostic: # Must match keys above. test_stream.add_elements(keyed('original', params)) test_stream.add_elements(keyed('reversed', reversed(params))) r = random.Random(reshuffle_seed) reshuffled = list(params) r.shuffle(reshuffled) test_stream.add_elements(keyed( 'reshuffled(%s)' % reshuffle_seed, reshuffled)) for v in params: test_stream.add_elements(keyed('one-element-bundles', [v])) for v in reversed(params): test_stream.add_elements( keyed('one-element-bundles-reversed', [v])) for ix in range(0, len(params), 2): test_stream.add_elements( keyed('two-element-bundles', params[ix:ix+2])) else: for key in keys: test_stream.add_elements(keyed(key, params)) elif action == 'watermark': test_stream.advance_watermark_to(params) elif action == 'clock': test_stream.advance_processing_time(params) elif action == 'state': pass # Requires inspection of implementation details. else: raise ValueError('Unexpected action: %s' % action) test_stream.add_elements([json.dumps(('expect', []))]) test_stream.advance_watermark_to_infinity() read_test_stream = test_stream | beam.Map(json.loads) class Check(beam.DoFn): """A StatefulDoFn that verifies outputs are produced as expected. This DoFn takes in two kinds of inputs, actual outputs and expected outputs. When an actual output is received, it is buffered into state, and when an expected output is received, this buffered state is retrieved and compared against the expected value(s) to ensure they match. The key is ignored, but all items must be on the same key to share state. """ def __init__(self, allow_out_of_order=True): # Some runners don't support cross-stage TestStream semantics. self.allow_out_of_order = allow_out_of_order def process( self, element, seen=beam.DoFn.StateParam( beam.transforms.userstate.BagStateSpec( 'seen', beam.coders.FastPrimitivesCoder())), expected=beam.DoFn.StateParam( beam.transforms.userstate.BagStateSpec( 'expected', beam.coders.FastPrimitivesCoder()))): key, (action, data) = element if self.allow_out_of_order: if action == 'expect' and not list(seen.read()): if data: expected.add(data) return elif action == 'actual' and list(expected.read()): seen.add(data) all_data = list(seen.read()) all_expected = list(expected.read()) if len(all_data) == len(all_expected[0]): expected.clear() for expect in all_expected[1:]: expected.add(expect) action, data = 'expect', all_expected[0] else: return if action == 'actual': seen.add(data) elif action == 'expect': actual = list(seen.read()) seen.clear() _windowed_value_info_check(actual, data, key) else: raise ValueError('Unexpected action: %s' % action) @ptransform.ptransform_fn def CheckAggregation(inputs_and_expected, aggregation): # Split the test stream into a branch of to-be-processed elements, and # a branch of expected results. inputs, expected = ( inputs_and_expected | beam.MapTuple( lambda tag, value: beam.pvalue.TaggedOutput(tag, value), ).with_outputs('input', 'expect')) # Process the inputs with the given windowing to produce actual outputs. outputs = ( inputs | beam.MapTuple( lambda key, value: TimestampedValue((key, value), value)) | beam.WindowInto( window_fn, trigger=trigger_fn, accumulation_mode=accumulation_mode, timestamp_combiner=timestamp_combiner, allowed_lateness=allowed_lateness) | aggregation | beam.MapTuple(_windowed_value_info_map_fn) # Place outputs back into the global window to allow flattening # and share a single state in Check. | 'Global' >> beam.WindowInto(beam.transforms.window.GlobalWindows())) # Feed both the expected and actual outputs to Check() for comparison. tagged_expected = ( expected | beam.FlatMap( lambda value: [(key, ('expect', value)) for key in keys])) tagged_outputs = ( outputs | beam.MapTuple(lambda key, value: (key, ('actual', value)))) # pylint: disable=expression-not-assigned ([tagged_expected, tagged_outputs] | beam.Flatten() | beam.ParDo(Check(self.allow_out_of_order))) with TestPipeline() as p: # TODO(BEAM-8601): Pass this during pipeline construction. p.options.view_as(StandardOptions).streaming = True # We can have at most one test stream per pipeline, so we share it. inputs_and_expected = p | read_test_stream _ = inputs_and_expected | CheckAggregation(beam.GroupByKey()) _ = inputs_and_expected | CheckAggregation(beam.CombinePerKey( _ConcatCombineFn())) class TestStreamTranscriptTest(BaseTestStreamTranscriptTest): allow_out_of_order = False class WeakTestStreamTranscriptTest(BaseTestStreamTranscriptTest): allow_out_of_order = True class BatchTranscriptTest(TranscriptTest): def _execute( self, window_fn, trigger_fn, accumulation_mode, timestamp_combiner, allowed_lateness, transcript, spec): if timestamp_combiner == TimestampCombiner.OUTPUT_AT_EARLIEST_TRANSFORMED: self.skipTest( 'Non-fnapi timestamp combiner: %s' % spec.get('timestamp_combiner')) if accumulation_mode != AccumulationMode.ACCUMULATING: self.skipTest('Batch mode only makes sense for accumulating.') watermark = MIN_TIMESTAMP for action, params in transcript: if action == 'watermark': watermark = params elif action == 'input': if any(t <= watermark for t in params): self.skipTest('Batch mode never has late data.') inputs = sum([vs for action, vs in transcript if action == 'input'], []) final_panes_by_window = {} for action, params in transcript: if action == 'expect': for expected in params: trimmed = {} for field in ('window', 'values', 'timestamp'): if field in expected: trimmed[field] = expected[field] final_panes_by_window[tuple(expected['window'])] = trimmed final_panes = list(final_panes_by_window.values()) if window_fn.is_merging(): merged_away = set() class MergeContext(WindowFn.MergeContext): def merge(_, to_be_merged, merge_result): for window in to_be_merged: if window != merge_result: merged_away.add(window) all_windows = [IntervalWindow(*pane['window']) for pane in final_panes] window_fn.merge(MergeContext(all_windows)) final_panes = [ pane for pane in final_panes if IntervalWindow(*pane['window']) not in merged_away] with TestPipeline() as p: input_pc = ( p | beam.Create(inputs) | beam.Map(lambda t: TimestampedValue(('key', t), t)) | beam.WindowInto( window_fn, trigger=trigger_fn, accumulation_mode=accumulation_mode, timestamp_combiner=timestamp_combiner, allowed_lateness=allowed_lateness)) grouped = input_pc | 'Grouped' >> ( beam.GroupByKey() | beam.MapTuple(_windowed_value_info_map_fn) | beam.MapTuple(lambda _, value: value)) combined = input_pc | 'Combined' >> ( beam.CombinePerKey(_ConcatCombineFn()) | beam.MapTuple(_windowed_value_info_map_fn) | beam.MapTuple(lambda _, value: value)) assert_that( grouped, lambda actual: _windowed_value_info_check(actual, final_panes), label='CheckGrouped') assert_that( combined, lambda actual: _windowed_value_info_check(actual, final_panes), label='CheckCombined') TRANSCRIPT_TEST_FILE = os.path.join( os.path.dirname(__file__), '..', 'testing', 'data', 'trigger_transcripts.yaml') if os.path.exists(TRANSCRIPT_TEST_FILE): TriggerDriverTranscriptTest._create_tests(TRANSCRIPT_TEST_FILE) TestStreamTranscriptTest._create_tests(TRANSCRIPT_TEST_FILE) WeakTestStreamTranscriptTest._create_tests(TRANSCRIPT_TEST_FILE) BatchTranscriptTest._create_tests(TRANSCRIPT_TEST_FILE) if __name__ == '__main__': unittest.main()
36.40275
80
0.618571
b63d6ab206eb531809a47a6c96f010262e52afea
415
py
Python
chat/migrations/0007_chatroom_name.py
yccye/CT_AI_web
267553d3aaaef78f7dbdd652c0f1868ec60862c2
[ "MulanPSL-1.0" ]
5
2021-05-25T07:53:36.000Z
2021-11-23T13:04:51.000Z
chat/migrations/0007_chatroom_name.py
yccye/CT_AI_web
267553d3aaaef78f7dbdd652c0f1868ec60862c2
[ "MulanPSL-1.0" ]
1
2021-11-07T14:41:52.000Z
2021-11-07T15:34:28.000Z
chat/migrations/0007_chatroom_name.py
yccye/CT_AI_web
267553d3aaaef78f7dbdd652c0f1868ec60862c2
[ "MulanPSL-1.0" ]
2
2021-11-07T13:29:13.000Z
2022-03-10T12:13:04.000Z
# Generated by Django 3.1.7 on 2021-05-28 11:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('chat', '0006_auto_20210527_1934'), ] operations = [ migrations.AddField( model_name='chatroom', name='name', field=models.CharField(max_length=255, null=True, verbose_name='聊天室名称'), ), ]
21.842105
84
0.607229
d7875d47de5f28f764f045da9ee42995cbc757df
1,191
py
Python
main.py
avidale/alice-stretching
619c66ff14d5c2712b2fce82d84c05ebb8d3e545
[ "MIT" ]
2
2021-01-09T13:28:45.000Z
2022-01-11T18:29:43.000Z
main.py
avidale/alice-stretching
619c66ff14d5c2712b2fce82d84c05ebb8d3e545
[ "MIT" ]
null
null
null
main.py
avidale/alice-stretching
619c66ff14d5c2712b2fce82d84c05ebb8d3e545
[ "MIT" ]
1
2021-01-14T10:15:26.000Z
2021-01-14T10:15:26.000Z
import logging import os import sentry_sdk import tgalice from tgalice.dialog import Context from dm import StretchDM logging.basicConfig(level=logging.DEBUG) if os.getenv('SENTRY_DSN', None) is not None: sentry_sdk.init(os.environ['SENTRY_DSN']) class CustomLogger(tgalice.storage.message_logging.MongoMessageLogger): def should_ignore_message(self, context: Context = None, **kwargs) -> bool: if super(CustomLogger, self).should_ignore_message(context=context, **kwargs): return True if context.yandex and context.yandex.request and context.yandex.request.type == 'Show.Pull': return True return False manager = StretchDM() db = tgalice.message_logging.get_mongo_or_mock() connector = tgalice.dialog_connector.DialogConnector( dialog_manager=manager, storage=tgalice.storage.session_storage.BaseStorage(), log_storage=CustomLogger(collection=db.get_collection('message_logs'), detect_pings=True), alice_native_state='user', ) handler = connector.serverless_alice_handler if __name__ == '__main__': server = tgalice.server.flask_server.FlaskServer(connector=connector) server.parse_args_and_run()
28.357143
100
0.758186
f8b79daea70836555a77fce75ef0fc923e967272
278
py
Python
torchplasma/linear/__init__.py
hdkai/Plasma
1942d7fe5f6b41c9a16c8e2d1b6c7cf263307c39
[ "Apache-2.0" ]
null
null
null
torchplasma/linear/__init__.py
hdkai/Plasma
1942d7fe5f6b41c9a16c8e2d1b6c7cf263307c39
[ "Apache-2.0" ]
null
null
null
torchplasma/linear/__init__.py
hdkai/Plasma
1942d7fe5f6b41c9a16c8e2d1b6c7cf263307c39
[ "Apache-2.0" ]
null
null
null
# # Plasma # Copyright (c) 2021 Yusuf Olokoba. # from .chromaticity import chromatic_adaptation from .pointwise import contrast, exposure, saturation, color_balance from .selective import selective_color from .spectral import clarity, highlights, shadows, sharpen, texture
30.888889
68
0.798561
7921d85b049e935aa1af15b11d8757ffadcc33d5
2,504
py
Python
modules/exercise_gui_shop/authentication.py
PetkoAndreev/Python-advanced
94fd0fa69b366b978921ee8d4e214d3d3b4335d6
[ "MIT" ]
null
null
null
modules/exercise_gui_shop/authentication.py
PetkoAndreev/Python-advanced
94fd0fa69b366b978921ee8d4e214d3d3b4335d6
[ "MIT" ]
null
null
null
modules/exercise_gui_shop/authentication.py
PetkoAndreev/Python-advanced
94fd0fa69b366b978921ee8d4e214d3d3b4335d6
[ "MIT" ]
null
null
null
import json from canvas import tk from tkinter import Button, Entry, Label from helpers import clean_screen from products import render_products def login(username, password): with open('db/user_credentials_db.txt', 'r') as file: lines = file.readlines() for line in lines: user, pas = line[:-1].split(', ') if user == username and pas == password: with open('db/current_user.txt', 'w') as current_user_file: current_user_file.write(username) render_products() return else: render_login(errors=True) def register(**user): user.update({'products': []}) with open('db/users.txt', 'a') as file: file.write(json.dumps(user)) file.write('\n') with open('db/user_credentials_db.txt', 'a') as file: file.write(f'{user.get("username")}, {user.get("password")}') file.write('\n') def render_register(): clean_screen() Label(text='Enter your username:').grid(row=0, column=0) username = Entry(tk) username.grid(row=0, column=1) Label(text='Enter your password:').grid(row=1, column=0) password = Entry(tk, show='*') password.grid(row=1, column=1) Label(text='Enter your firstname:').grid(row=2, column=0) firstname = Entry(tk) firstname.grid(row=2, column=1) Label(text='Enter your lastname:').grid(row=3, column=0) lastname = Entry(tk) lastname.grid(row=3, column=1) Button(tk, text='Register', bg='green', command=lambda: register(username=username.get(), password=password.get(), firstname=firstname.get(), lastname=lastname.get())).grid(row=4, column=0) def render_login(errors=None): clean_screen() Label(text='Enter your username:').grid(row=0, column=0) username = Entry(tk) username.grid(row=0, column=1) Label(text='Enter your password:').grid(row=1, column=0) password = Entry(tk, show='*') password.grid(row=1, column=1) Button(tk, text='Enter', bg='green', command=lambda: login(username=username.get(), password=password.get())).grid( row=2, column=0) if errors: Label(text='Invalid username or password.').grid(row=3, column=0) def render_main_enter_screen(): Button(tk, text='Login', bg='green', fg='white', command=render_login).grid(row=0, column=0) Button(tk, text='Register', bg='yellow', command=render_register).grid(row=0, column=1)
35.771429
119
0.625399
e328418738bcded4e44bee0d41b21da2ea06947d
29,721
py
Python
src/NL_BERT/finetune.py
Anonym96/Negotiation_Learning
a819f2e688879c0afb3b17964f4fec9ab37161de
[ "MIT" ]
null
null
null
src/NL_BERT/finetune.py
Anonym96/Negotiation_Learning
a819f2e688879c0afb3b17964f4fec9ab37161de
[ "MIT" ]
null
null
null
src/NL_BERT/finetune.py
Anonym96/Negotiation_Learning
a819f2e688879c0afb3b17964f4fec9ab37161de
[ "MIT" ]
1
2021-06-20T16:34:31.000Z
2021-06-20T16:34:31.000Z
""" The main file used to train student and teacher models. Mainly based on [GitHub repository](https://github.com/intersun/PKD-for-BERT-Model-Compression) for [Patient Knowledge Distillation for BERT Model Compression](https://arxiv.org/abs/1908.09355). """ import logging import os import random import pickle import numpy as np import torch from torch.utils.data import RandomSampler, SequentialSampler from tqdm import tqdm, trange import torch.nn as nn from BERT.pytorch_pretrained_bert.modeling import BertConfig from BERT.pytorch_pretrained_bert.optimization import BertAdam, warmup_linear from BERT.pytorch_pretrained_bert.tokenization import BertTokenizer from BERT.pytorch_pretrained_bert.quantization_modules import calculate_next_quantization_parts from utils.argument_parser import default_parser, get_predefine_argv, complete_argument from utils.nli_data_processing import processors, output_modes from utils.data_processing import init_model, get_task_dataloader from utils.modeling import BertForSequenceClassificationEncoder, FCClassifierForSequenceClassification, FullFCClassifierForSequenceClassification from utils.utils import load_model, count_parameters, eval_model_dataloader_nli, eval_model_dataloader, compute_metrics, load_model_finetune from utils.KD_loss import distillation_loss, patience_loss from envs import HOME_DATA_FOLDER from BERT.pytorch_pretrained_bert.quantization_modules import quantization logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) ######################################################################### # Prepare Parser ########################################################################## parser = default_parser() DEBUG = True args = parser.parse_args() # The code might not be that clean in the current version. train_seed_fixed = args.train_seed saving_criterion_acc_fixed = args.saving_criterion_acc saving_criterion_loss_fixed = args.saving_criterion_loss train_batch_size_fixed = args.train_batch_size eval_batch_size_fixed = args.eval_batch_size model_type_fixed = args.model_type save_model_dir_fixed = args.save_model_dir output_dir_fixed = args.output_dir load_model_dir_fixed = args.load_model_dir layer_initialization_fixed = args.layer_initialization freeze_layer_fixed = args.freeze_layer fp16_fixed = args.fp16 learning_rate_fixed = args.learning_rate teacher_prediction_fixed = args.teacher_prediction num_train_epochs_fixed = args.num_train_epochs #teacher_num = args.teacher_numb task_name_fixed = args.task if DEBUG: logger.info("IN DEBUG MODE") argv = get_predefine_argv(args, 'glue', args.task, args.train_type, args.student_hidden_layers) try: args = parser.parse_args(argv) except NameError: raise ValueError('please uncomment one of option above to start training') else: logger.info("IN CMD MODE") args = parser.parse_args() args.output_dir = output_dir_fixed if load_model_dir_fixed is not None: args.load_model_dir = load_model_dir_fixed args = complete_argument(args, args.output_dir, args.load_model_dir) if train_seed_fixed is not None: args.train_seed = train_seed_fixed if saving_criterion_acc_fixed is not None: args.saving_criterion_acc = saving_criterion_acc_fixed if saving_criterion_loss_fixed is not None: args.saving_criterion_loss = saving_criterion_loss_fixed if train_batch_size_fixed is not None: args.train_batch_size = train_batch_size_fixed if eval_batch_size_fixed is not None: args.eval_batch_size = eval_batch_size_fixed if save_model_dir_fixed is not None: args.save_model_dir = save_model_dir_fixed if args.load_model_dir is not None: args.encoder_checkpoint = args.load_model_dir if task_name_fixed is not None: args.task_name = task_name_fixed args.task = task_name_fixed if layer_initialization_fixed is not None: args.layer_initialization = layer_initialization_fixed if freeze_layer_fixed is not None: args.freeze_layer = freeze_layer_fixed if fp16_fixed is not None: args.fp16 = fp16_fixed if learning_rate_fixed is not None: args.learning_rate = learning_rate_fixed if teacher_prediction_fixed is not None: args.teacher_prediction = teacher_prediction_fixed if num_train_epochs_fixed is not None: args.num_train_epochs = num_train_epochs_fixed args.model_type = model_type_fixed args.raw_data_dir = os.path.join(HOME_DATA_FOLDER, 'data_raw', args.task_name) args.feat_data_dir = os.path.join(HOME_DATA_FOLDER, 'data_feat', args.task_name) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps logger.info('actual batch size on all GPU = %d' % args.train_batch_size) device, n_gpu = args.device, args.n_gpu ################################################################################################################################### random.seed(args.train_seed) np.random.seed(args.train_seed) torch.manual_seed(args.train_seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.train_seed) if args.model_type == 'Original': if args.student_hidden_layers == 3: # args.fc_layer_idx = '3,7' args.fc_layer_idx = '1,3' elif args.student_hidden_layers == 6: args.fc_layer_idx = '1,3,5,7,9' logger.info('Input Argument Information') args_dict = vars(args) for a in args_dict: logger.info('%-28s %s' % (a, args_dict[a])) ######################################################################### # Prepare Data ########################################################################## task_name = args.task_name.lower() if task_name not in processors and 'race' not in task_name: raise ValueError("Task not found: %s" % (task_name)) if 'race' in task_name: pass else: processor = processors[task_name]() output_mode = output_modes[task_name] label_list = processor.get_labels() num_labels = len(label_list) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=True) if args.do_train: train_sampler = SequentialSampler if DEBUG else RandomSampler read_set = 'train' if args.teacher_prediction is not None and args.alpha > 0: logger.info('loading teacher\'s prediction') teacher_predictions = pickle.load(open(args.teacher_prediction, 'rb'))['train'] if args.teacher_prediction is not None else None #teacher_predictions = pickle.load(open(args.real_teacher, 'rb'))['train'] if args.real_teacher is not None else logger.info("shibal") logger.info('teacher acc = %.2f, teacher loss = %.5f' % (teacher_predictions['acc']*100, teacher_predictions['loss'])) teacher_predictions_ = pickle.load(open(args.teacher_prediction, 'rb'))['dev'] if args.teacher_prediction is not None else None #teacher_predictions_ = pickle.load(open(args.real_teacher, 'rb'))['dev'] if args.real_teacher is not None else None logger.info('teacher acc = %.2f, teacher loss = %.5f' % (teacher_predictions_['acc']*100, teacher_predictions_['loss'])) if args.kd_model == 'kd': train_examples, train_dataloader, _ = get_task_dataloader(task_name, read_set, tokenizer, args, SequentialSampler, batch_size=args.train_batch_size, knowledge=teacher_predictions['pred_logit']) else: train_examples, train_dataloader, _ = get_task_dataloader(task_name, read_set, tokenizer, args, SequentialSampler, batch_size=args.train_batch_size, knowledge=teacher_predictions['pred_logit'], extra_knowledge=teacher_predictions['feature_maps']) else: if args.alpha > 0: raise ValueError('please specify teacher\'s prediction file for KD training') logger.info('runing simple fine-tuning because teacher\'s prediction is not provided') train_examples, train_dataloader, _ = get_task_dataloader(task_name, read_set, tokenizer, args, SequentialSampler, batch_size=args.train_batch_size) num_train_optimization_steps = int(len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) # Run prediction for full data eval_examples, eval_dataloader, eval_label_ids = get_task_dataloader(task_name, 'dev', tokenizer, args, SequentialSampler, batch_size=args.eval_batch_size) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) # if args.do_eval: # test_examples, test_dataloader, test_label_ids = get_task_dataloader(task_name, 'test', tokenizer, args, SequentialSampler, batch_size=args.eval_batch_size) # logger.info("***** Running evaluation *****") # logger.info(" Num examples = %d", len(test_examples)) # logger.info(" Batch size = %d", args.eval_batch_size) ######################################################################### # Prepare model ######################################################################### student_config = BertConfig(os.path.join(args.bert_model, 'bert_config.json')) if args.kd_model.lower() in ['kd', 'kd.cls', 'kd.u', 'kd.i']: logger.info('using normal Knowledge Distillation') output_all_layers = (args.kd_model.lower() in ['kd.cls', 'kd.u', 'kd.i']) # if original model if args.model_type == 'Original': student_encoder, student_classifier = init_model(task_name, output_all_layers, args.student_hidden_layers, student_config) n_student_layer = len(student_encoder.bert.encoder.layer) layer_initialization = args.layer_initialization.split(',') for i in range(len(layer_initialization)): layer_initialization[i] = int(layer_initialization[i]) student_encoder = load_model_finetune(student_encoder, layer_initialization, args.encoder_checkpoint, args, 'student', verbose= True) logger.info('*' * 77) student_classifier = load_model(student_classifier, args.cls_checkpoint, args, 'classifier', verbose= True) elif args.kd_model.lower() == 'kd.full': logger.info('using FULL Knowledge Distillation') layer_idx = [int(i) for i in args.fc_layer_idx.split(',')] num_fc_layer = len(layer_idx) if args.weights is None or args.weights.lower() in ['none']: weights = np.array([1] * (num_fc_layer-1) + [num_fc_layer-1]) / 2 / (num_fc_layer-1) else: weights = [float(w) for w in args.weights.split(',')] weights = np.array(weights) / sum(weights) assert len(weights) == num_fc_layer, 'number of weights and number of FC layer must be equal to each other' # weights = torch.tensor(np.array([1, 1, 1, 1, 2, 6])/12, dtype=torch.float, device=device, requires_grad=False) if args.fp16: weights = weights.half() student_encoder = BertForSequenceClassificationEncoder(student_config, output_all_encoded_layers=True, num_hidden_layers=args.student_hidden_layers, fix_pooler=True) n_student_layer = len(student_encoder.bert.encoder.layer) student_encoder = load_model(student_encoder, args.encoder_checkpoint, args, 'student', verbose=True) logger.info('*' * 77) student_classifier = FullFCClassifierForSequenceClassification(student_config, num_labels, student_config.hidden_size, student_config.hidden_size, 6) student_classifier = load_model(student_classifier, args.cls_checkpoint, args, 'exact', verbose=True) assert max(layer_idx) <= n_student_layer - 1, 'selected FC layer idx cannot exceed the number of transformers' else: raise ValueError('%s KD not found, please use kd or kd.full' % args.kd) n_param_student = count_parameters(student_encoder) + count_parameters(student_classifier) logger.info('number of layers in student model = %d' % n_student_layer) logger.info('num parameters in student model are %d and %d' % (count_parameters(student_encoder), count_parameters(student_classifier))) ######################################################################### # Prepare optimizer ######################################################################### if task_name == 'rte': log_per_step = 1 elif task_name == 'mrpc': log_per_step = 1 elif task_name == 'cola': log_per_step = 10 elif task_name == 'sst-2': log_per_step = 10 else: log_per_step = 200 if args.do_train: param_optimizer = list(student_encoder.named_parameters()) + list(student_classifier.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: logger.info('FP16 activate, use apex FusedAdam') try: from apex.contrib.optimizers import FP16_Optimizer from apex.contrib.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: logger.info('FP16 is not activated, use BertAdam') optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup_proportion, t_total=num_train_optimization_steps) ######################################################################### # Model Training ######################################################################### if args.do_train: global_step = 0 nb_tr_steps = 0 tr_loss = 0 student_encoder.train() student_classifier.train() eval_loss_min = 100 eval_best_acc = 0 eval_best_acc_and_f1 = 0 eval_best_f1 = 0 loss_acc = 0 for epoch in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss, tr_ce_loss, tr_kd_loss, tr_acc = 0, 0, 0, 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): student_encoder.train() student_classifier.train() batch = tuple(t.to(device) for t in batch) if args.alpha == 0: input_ids, input_mask, segment_ids, label_ids = batch teacher_pred, teacher_patience = None, None else: if args.kd_model == 'kd': input_ids, input_mask, segment_ids, label_ids, teacher_pred = batch teacher_patience = None else: input_ids, input_mask, segment_ids, label_ids, teacher_pred, teacher_patience = batch if args.fp16: teacher_patience = teacher_patience.half() if args.fp16: teacher_pred = teacher_pred.half() full_output, pooled_output = student_encoder(input_ids, segment_ids, input_mask) if args.kd_model.lower() in['kd', 'kd.cls']: logits_pred_student = student_classifier(pooled_output) if args.kd_model.lower() == 'kd.cls': student_patience = torch.stack(full_output[:-1]).transpose(0,1) else: student_patience = None elif args.kd_model.lower() == 'kd.full': logits_pred_student = student_classifier(full_output, weights, layer_idx) else: raise ValueError(f'{args.kd_model} not implemented yet') loss_dl, kd_loss, ce_loss = distillation_loss(logits_pred_student, label_ids, teacher_pred, T=args.T, alpha=args.alpha) if args.beta > 0: if student_patience.shape[0] != input_ids.shape[0]: # For RACE n_layer = student_patience.shape[1] student_patience = student_patience.transpose(0, 1).contiguous().view(n_layer, input_ids.shape[0], -1).transpose(0,1) pt_loss = args.beta * patience_loss(teacher_patience, student_patience, args.normalize_patience) loss = loss_dl + pt_loss else: pt_loss = torch.tensor(0.0) loss = loss_dl if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.fp16: optimizer.backward(loss) else: loss.backward() n_sample = input_ids.shape[0] tr_loss += loss.item() * n_sample if isinstance(kd_loss, float): tr_kd_loss += kd_loss * n_sample else: tr_kd_loss += kd_loss.item() * n_sample tr_ce_loss += ce_loss.item() * n_sample tr_loss_pt = pt_loss.item() * n_sample pred_cls = logits_pred_student.data.max(1)[1] tr_acc += pred_cls.eq(label_ids).sum().cpu().item() nb_tr_examples += n_sample nb_tr_steps += 1 if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: lr_this_step = args.learning_rate * warmup_linear(global_step / num_train_optimization_steps, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step else: lr_this_step = args.learning_rate * warmup_linear(global_step / num_train_optimization_steps, args.warmup_proportion) for param_group in optimizer.param_groups: param_group['lr'] = lr_this_step optimizer.step() optimizer.zero_grad() global_step += 1 if args.num_train_epochs == 10: if (epoch == 8): logger.info("*"*77) logger.info("Best Acc: "+str(eval_best_acc)+", Best Loss: "+str(eval_loss_min)) if task_name == 'mrpc': logger.info("Best acc and f1: "+str(eval_best_acc_and_f1)) logger.info("*"*77) raise ValueError("Skipping the rest.") elif args.num_train_epochs == 4: if (epoch == 4): logger.info("*"*77) logger.info("Best Acc: "+str(eval_best_acc)+", Best Loss: "+str(eval_loss_min)) if task_name == 'mrpc': logger.info("Best acc and f1: "+str(eval_best_acc_and_f1)) logger.info("*"*77) raise ValueError("Skipping the rest.") #Validate the model on dev set every log_per_step and save the model if criterion is met. if (global_step % log_per_step == 0) & (epoch > 0): if 'race' in task_name: result = eval_model_dataloader_nli(student_encoder, student_classifier, eval_dataloader, device, False) else: test_res = eval_model_dataloader_nli(args.task_name.lower(), eval_label_ids, student_encoder, student_classifier, eval_dataloader, args.kd_model, num_labels, device, args.weights, args.fc_layer_idx, output_mode) # Saving checkpoints when the conditions below are met. if task_name == 'cola': if test_res['mcc'] > eval_best_acc: logger.info("") logger.info('='*77) logger.info("Validation mcc improved! "+str(eval_best_acc)+" -> "+str(test_res['mcc'])) logger.info('='*77) eval_best_acc = test_res['mcc'] if eval_best_acc > args.saving_criterion_acc: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) logger.info("Saving the model...") if test_res['eval_loss']< eval_loss_min: logger.info("") logger.info('='*77) logger.info("Validation Loss improved! "+str(eval_loss_min)+" -> "+str(test_res['eval_loss'])) logger.info('='*77) eval_loss_min = test_res['eval_loss'] if eval_loss_min < args.saving_criterion_loss: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) logger.info("Saving the model...") elif task_name == 'mrpc': if test_res['f1'] > eval_best_acc: logger.info("") logger.info('='*77) logger.info("Validation f1 improved! "+str(eval_best_acc)+" -> "+str(test_res['f1'])) logger.info('='*77) eval_best_acc = test_res['f1'] print("ACC= "+str(test_res['acc'])) if eval_best_acc > args.saving_criterion_acc: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) logger.info("Saving the model...") if test_res['acc_and_f1'] > eval_best_acc_and_f1: logger.info("") logger.info('='*77) logger.info("Validation acc_and_f1 improved! "+str(eval_best_acc_and_f1)+" -> "+str(test_res['acc_and_f1'])) logger.info('='*77) eval_best_acc_and_f1 = test_res['acc_and_f1'] logger.info("ACC= "+str(test_res['acc'])) logger.info("f1= "+str(test_res['f1'])) if eval_best_acc_and_f1 > args.saving_criterion_acc: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc_and_f1.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc_and_f1.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc_and_f1.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc_and_f1.pkl')) logger.info("Saving the model...") if test_res['eval_loss']< eval_loss_min: logger.info("") logger.info('='*77) logger.info("Validation Loss improved! "+str(eval_loss_min)+" -> "+str(test_res['eval_loss'])) logger.info('='*77) eval_loss_min = test_res['eval_loss'] print("ACC= "+str(test_res['acc'])) if eval_loss_min < args.saving_criterion_loss: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) logger.info("Saving the model...") else: if test_res['acc'] > eval_best_acc: logger.info("") logger.info('='*77) logger.info("Validation acc improved! "+str(eval_best_acc)+" -> "+str(test_res['acc'])) logger.info('='*77) eval_best_acc = test_res['acc'] if eval_best_acc > args.saving_criterion_acc: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_acc.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_acc.pkl')) logger.info("Saving the model...") if test_res['eval_loss']< eval_loss_min: logger.info("") logger.info('='*77) logger.info("Validation Loss improved! "+str(eval_loss_min)+" -> "+str(test_res['eval_loss'])) logger.info('='*77) eval_loss_min = test_res['eval_loss'] if eval_loss_min < args.saving_criterion_loss: if args.n_gpu > 1: torch.save(student_encoder.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.module.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) else: torch.save(student_encoder.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.encoder_loss.pkl')) torch.save(student_classifier.state_dict(), os.path.join(args.output_dir, 'BERT'+f'.cls_loss.pkl')) logger.info("Saving the model...") logger.info("") logger.info('='*77) logger.info("Validation Accuracy : "+str(eval_best_acc)+" Validation Loss : "+str(eval_loss_min)) logger.info("The seed is : "+str(args.seed)) logger.info('='*77)
53.168157
250
0.586555
4c0b3ab53bd0e0a437983858877aa1c6af1824d1
2,882
py
Python
tests/keras/applications/applications_test.py
mikezsx/dlstudy
6572934f9a7c4ba498300186c2d297994c43900d
[ "MIT" ]
3
2018-01-27T06:15:26.000Z
2019-12-27T16:51:54.000Z
tests/keras/applications/applications_test.py
candleinwindsteve/keras
9eb7ecd3e525c9cff31ebd59a96794f212ca5e1e
[ "MIT" ]
null
null
null
tests/keras/applications/applications_test.py
candleinwindsteve/keras
9eb7ecd3e525c9cff31ebd59a96794f212ca5e1e
[ "MIT" ]
3
2020-02-24T15:16:05.000Z
2020-05-09T05:29:53.000Z
import pytest from keras.utils.test_utils import keras_test from keras import applications from keras import backend as K @keras_test def test_resnet50(): model = applications.ResNet50(weights=None) assert model.output_shape == (None, 1000) @keras_test def test_resnet50_notop(): model = applications.ResNet50(weights=None, include_top=False) assert model.output_shape == (None, None, None, 2048) @keras_test def test_resnet50_pooling(): model = applications.ResNet50(weights=None, include_top=False, pooling='avg') assert model.output_shape == (None, 2048) @keras_test def test_vgg16(): model = applications.VGG16(weights=None) assert model.output_shape == (None, 1000) @keras_test def test_vgg16_notop(): model = applications.VGG16(weights=None, include_top=False) assert model.output_shape == (None, None, None, 512) @keras_test def test_vgg16_pooling(): model = applications.VGG16(weights=None, include_top=False, pooling='avg') assert model.output_shape == (None, 512) @keras_test def test_vgg19(): model = applications.VGG19(weights=None) assert model.output_shape == (None, 1000) @keras_test def test_vgg19_notop(): model = applications.VGG16(weights=None, include_top=False) assert model.output_shape == (None, None, None, 512) @keras_test def test_vgg19_pooling(): model = applications.VGG16(weights=None, include_top=False, pooling='avg') assert model.output_shape == (None, 512) @keras_test @pytest.mark.skipif((K.backend() != 'tensorflow'), reason='Requires tensorflow backend') def test_xception(): model = applications.Xception(weights=None) assert model.output_shape == (None, 1000) @keras_test @pytest.mark.skipif((K.backend() != 'tensorflow'), reason='Requires tensorflow backend') def test_xception_notop(): model = applications.Xception(weights=None, include_top=False) assert model.output_shape == (None, None, None, 2048) @keras_test @pytest.mark.skipif((K.backend() != 'tensorflow'), reason='Requires tensorflow backend') def test_xception_pooling(): model = applications.Xception(weights=None, include_top=False, pooling='avg') assert model.output_shape == (None, 2048) @keras_test def test_inceptionv3(): model = applications.InceptionV3(weights=None) assert model.output_shape == (None, 1000) @keras_test def test_inceptionv3_notop(): model = applications.InceptionV3(weights=None, include_top=False) assert model.output_shape == (None, None, None, 2048) @keras_test def test_inceptionv3_pooling(): model = applications.InceptionV3(weights=None, include_top=False, pooling='avg') assert model.output_shape == (None, 2048) if __name__ == '__main__': pytest.main([__file__])
26.934579
84
0.703678
e5f3cf597f1d1f5628fc1ac3643ce5414512b73f
8,709
py
Python
src/dsc/thesis.py
ghw329/DDSC
97262b7fe0f507a7860828060e43ae2e0c1f1495
[ "MIT" ]
null
null
null
src/dsc/thesis.py
ghw329/DDSC
97262b7fe0f507a7860828060e43ae2e0c1f1495
[ "MIT" ]
null
null
null
src/dsc/thesis.py
ghw329/DDSC
97262b7fe0f507a7860828060e43ae2e0c1f1495
[ "MIT" ]
null
null
null
#!/usr/bin/env python2.7 # -*- coding: utf-8 -*- # --- Program internal modules ------------------------------------------- from __future__ import division from dsc import DSC import numpy as np import pandas as pd import click import pickle ############ plotting import matplotlib.pyplot as plt plt.style.use('ggplot') ## plotting basis functions import matplotlib.cm as cm # plotly import plotly.plotly as py from plotly.graph_objs import * ############################### # plots directory figure_directory= '../../../doc/thesis/figures/' # change so that all figures have font size defulat as 22 plt.rcParams.update({'font.size': 18}) # figure size always the same plt.figure(figsize=(16,12)) # --- Locally installed modules ----------------------------------------- from reader import Reader class Plotter(object): def __init__(self,n,t,acc,data): self.n = n self.T = t self.acc = acc self.data = data def appliances(self, x_train, x_test, x_test_use, x_predict): # row and column sharing f, ((ax1, ax2, ax3, ax4, ax5, ax6)) = plt.subplots(6, 1, sharex='col', sharey='row', figsize=(16,18)) ## piechart f2, ((axes1, axes2)) = plt.subplots(2, 1, sharex='col', sharey='row', figsize=(16,18)) pie_chart_true = [] pie_chart_pred = [] x = range(x_train[x_train.keys()[0]].shape[0]) plt.rcParams.update({'font.size': 15}) y = np.asarray(x_test_use)[0:,0] ax1.plot(x, y, color='b',label='Actual energy') y=[-1]*x_train[x_train.keys()[0]].shape[0] ax1.plot(x, y, color='r', label='Predicted') #ax1.set_ylim([0,2]) ax1.set_ylabel('Whole Home') ax1.legend() ## y = np.asarray(x_test[x_test.keys()[0]])[0:,0] pie_chart_true.append(y.sum()) ax2.plot(x, y, color='b') y = np.asarray(x_predict[0])[0:,0] ax2.plot(x , y, color='r') #ax2.get_yaxis().set_visible(False) ax2.set_ylabel('Refrigerator') pie_chart_pred.append(y.sum()) ## y = np.asarray(x_test[x_test.keys()[1]])[0:,0] pie_chart_true.append(y.sum()) ax3.plot(x, y, color='b') y = np.asarray(x_predict[1])[0:,0] ax3.plot(x,y, color='r') #ax3.get_yaxis().set_visible(False) ax3.set_ylabel('Dishwasher') pie_chart_pred.append(y.sum()) ## y = np.asarray(x_test[x_test.keys()[2]])[0:,0] pie_chart_true.append(y.sum()) ax4.plot(x, y, color='b') y = np.asarray(x_predict[2])[0:,0] ax4.plot(x,y, color='r') #ax4.get_yaxis().set_visible(False) ax4.set_ylabel('Furnace') pie_chart_pred.append(y.sum()) ## y = np.asarray(x_test[x_test.keys()[3]])[0:,0] pie_chart_true.append(y.sum()) ax5.plot(x, y, color='b') y = np.asarray(x_predict[3])[0:,0] ax5.plot(x,y, color='r') #ax5.get_yaxis().set_visible(False) ax5.set_ylabel('Air') pie_chart_pred.append(y.sum()) ## y = np.asarray(x_test[x_test.keys()[4]])[0:,0] pie_chart_true.append(y.sum()) ax6.plot(x, y, color='b') y = np.asarray(x_predict[4])[0:,0] ax6.plot(x,y, color='r') #ax6.get_yaxis().set_visible(False) ax6.set_ylabel('Others') ax6.set_xlabel('Hours') pie_chart_pred.append(y.sum()) if self.data == 0: f.savefig(figure_directory+'normal_appliances_'+str(self.n)+'_'+str(self.T) + '.png') elif self.data == 1: f.savefig(figure_directory+'end_appliances_'+str(self.n)+'_'+str(self.T) + '.png') elif self.data == 2: f.savefig(figure_directory+'days_appliances_'+str(self.n)+'_'+str(self.T) + '.png') ## pie-charts labels = x_test.keys() self.pie_chart(axes1,pie_chart_true,labels) axes1.set_title('True usage') self.pie_chart(axes2,pie_chart_pred,labels) axes2.set_title('Predicted usage') axes2.text(0.95, 0.01, 'Accuracy of ' + str(round(self.acc[0],1)), verticalalignment='center', horizontalalignment='right', transform=axes2.transAxes, color='black', fontsize=15) if self.data == 0: f2.savefig(figure_directory+'normal_pie_chart_'+str(self.n)+'_'+str(self.T) + '.png') elif self.data == 1: f2.savefig(figure_directory+'end_pie_chart_'+str(self.n)+'_'+str(self.T) + '.png') elif self.data == 2: f2.savefig(figure_directory+'days_pie_chart_'+str(self.n)+'_'+str(self.T) + '.png') def pie_chart(self, subplot, pie_chart, labels): # The slices will be ordered and plotted counter-clockwise. ## --- Plotting the true-piechart pie_chart_sum = sum(pie_chart) pie_chart = map(lambda x: x/pie_chart_sum,pie_chart) cmap = plt.cm.prism colors = cmap(np.linspace(0., 1., len(pie_chart))) colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] pie_wedge_collection = subplot.pie(pie_chart, colors=colors, labels=labels, labeldistance=1.05); for pie_wedge in pie_wedge_collection[0]: pie_wedge.set_edgecolor('white') # Set aspect ratio to be equal so that pie is drawn as a circle. @click.command() @click.option('--t', default=14,help='Timeframe; note that half will be test') @click.option('--ph',default=None, help='Portion of houses to investigate') def main(t,ph,n): ''' Program to train disaggregation using Sparse Coding ''' # read dataset datasets = [0,1,2] for data in datasets: dataset = ['cleanpecanhour2014','weekendpecanhour2014','weekdayspecanhour2014'] reader = Reader(dataset[data]) ##returning a datafile pandasObject df = reader.dataParser() print "parsed the data" # returns a dictionary of all of the appliances d = reader.format_data(df,other=True) print "formated data" portion = 0.5 factor_n_t = 0.1 # heuristically determined timeframes = [14,30,60] timeframes = [x*24 for x in timeframes] alphas = [0.00001, 0.00001, 0.000001] portion = 0.5 # Good values (t,n,alpha) # (14,40, alpha = 0.0001) # (336,800, alpha = 0.00001) # (720,,1400, alpha = ) for timeframe, alpha in zip(timeframes,alphas): n = int(factor_n_t*timeframe) x_train, x_test = reader.split(d,portion,timeframe) # use in whole house disaggregation step x_train_use = x_train.pop('use',None) x_test_use = x_test.pop('use',None) x_train_localhour = x_train.pop('localhour',None) x_test_localhour = x_test.pop('localhour',None) # algorithm starts # parameters train_set = x_train test_set = x_test train_sum = sum(x_train.values()) k = len(x_train.keys()) T,m = x_train[x_train.keys()[0]].shape rp = 0.0005 epsilon = 0.001 steps = 10 # steps must be higher than k n_components = n # Sparse Coding pre_training dsc = DSC(train_set,train_sum,alpha,epsilon,rp,steps,n_components,m,T,k) print "started the pre-training" A_list,B_list = dsc.pre_training(x_train.values()) print "done pre_training" # Didscriminative Disaggregation training B_cat = dsc.DD(x_train_use.values,B_list,A_list) print "done DD" # Given test examples x_test A_prime = dsc.F(x_test_use.values,B_cat,A=np.vstack(A_list)) A_last = np.split(A_prime,k,axis=0) x_predict = dsc.predict(A_last,B_list) x_predict_sum = sum(x_predict) print "the shape of the first predicted appliances is :%s" %(x_predict[0].shape,) # energy disaggregation accuracy acc = dsc.accuracy(x_train.values(),train_sum,B_list,A_last) # energy disaggregation error error, error_star = dsc.error(x_train.values(),train_sum,B_list,A_list) print "error: %s, error_star: %s" % (sum(error),sum(error_star)) acc_nndsc, acc_dddsc = dsc.get_accuracy_plot() err_nndsc, err_dddsc = dsc.get_error_plot() # plotting acc/err a_nndsc, a_ddsc = dsc.get_a() b_nndsc, b_ddsc = dsc.get_b() hours = timeframe/2 plot_it = Plotter(n,hours,acc,data) plot_it.appliances(x_train, x_test, x_test_use, x_predict) if __name__ == '__main__': main()
37.377682
109
0.584683
8792eafe59bbed1124bde4a3925c65867f4dfd34
2,227
py
Python
src/chat/consumers.py
hafizsameed/django-realtime-chat-app
88ed5a8bc06411ed770fe6cf9f12d71a97108fa6
[ "MIT" ]
null
null
null
src/chat/consumers.py
hafizsameed/django-realtime-chat-app
88ed5a8bc06411ed770fe6cf9f12d71a97108fa6
[ "MIT" ]
2
2020-06-06T01:45:47.000Z
2021-06-10T22:48:29.000Z
src/chat/consumers.py
hafizsameed/django-realtime-chat-app
88ed5a8bc06411ed770fe6cf9f12d71a97108fa6
[ "MIT" ]
null
null
null
import asyncio import json from django.contrib.auth import get_user_model from channels.consumer import AsyncConsumer from channels.db import database_sync_to_async from .models import Thread, ChatMessage class ChatConsumer(AsyncConsumer): async def websocket_connect(self, event): print("connected", event) other_user = self.scope['url_route']['kwargs']['username'] me = self.scope['user'] print(other_user,me) thread_obj = await self.get_thread(me,other_user) print(thread_obj) self.thread_obj = thread_obj chat_room = f'thread_{thread_obj.id}' self.chat_room = chat_room # await asyncio.sleep(10) await self.channel_layer.group_add( chat_room, self.channel_name ) await self.send({ "type":"websocket.accept" }) async def websocket_receive(self, event): print("recieve", event) front_text = event.get("text",None) if front_text is not None: loaded_dict_data = json.loads(front_text) msg = loaded_dict_data.get('message') user = self.scope['user'] username='default' if user.is_authenticated: username = user.username myResponse = { 'message':msg, 'username':username } await self.create_chat_message(user,msg) await self.channel_layer.group_send( self.chat_room, { 'type':'chat_message', 'text':json.dumps(myResponse) } ) async def chat_message(self,event): await self.send({ 'type':'websocket.send', 'text':event['text'] }) async def websocket_disconnect(self, event): print("disconnected", event) @database_sync_to_async def get_thread(self,user,other_user): return Thread.objects.get_or_new(user,other_user)[0] @database_sync_to_async def create_chat_message(self,me,msg): thread_obj = self.thread_obj return ChatMessage.objects.create(thread=thread_obj,user=me,message=msg)
32.275362
80
0.597665
a36bd712c2820aab5d9337d67fdce9c3f9b5f961
247
py
Python
sms_voting/admin.py
Fedor-Lyanguzov/Voting
98f8fd958624fa9ba3835836c525fbb4abb6b5e5
[ "MIT" ]
null
null
null
sms_voting/admin.py
Fedor-Lyanguzov/Voting
98f8fd958624fa9ba3835836c525fbb4abb6b5e5
[ "MIT" ]
1
2021-12-04T11:43:25.000Z
2021-12-04T11:43:25.000Z
sms_voting/admin.py
Fedor-Lyanguzov/Voting
98f8fd958624fa9ba3835836c525fbb4abb6b5e5
[ "MIT" ]
null
null
null
from django.contrib import admin from .models import Poll, Bulletin @admin.register(Poll) class PollAdmin(admin.ModelAdmin): fields = ('title', 'face_participants') @admin.register(Bulletin) class BulletinAdmin(admin.ModelAdmin): pass
19
43
0.761134
371687637bd4acefcd2077142ab684d98afce408
4,604
py
Python
mainEmberrite/people/characterClass.py
evvanErb/Emberrite
1e65ef69188619684e093f01febc6f92f8b02716
[ "Apache-2.0" ]
null
null
null
mainEmberrite/people/characterClass.py
evvanErb/Emberrite
1e65ef69188619684e093f01febc6f92f8b02716
[ "Apache-2.0" ]
null
null
null
mainEmberrite/people/characterClass.py
evvanErb/Emberrite
1e65ef69188619684e093f01febc6f92f8b02716
[ "Apache-2.0" ]
null
null
null
import random #Character building class class character: def __init__(self,name,gender,age,race,classType,alignment,stats,health,maxHealth): self.name = name self.gender = gender self.age = age self.race = race self.classType = classType self.alignment = alignment self.stats = stats self.health = health self.maxHealth = maxHealth #Return character attributes def returnGender(self): return(self.gender) def returnAge(self): return(self.age) def returnRace(self): return(self.race) def returnClassType(self): return(self.classType) def returnClassName(self): return(self.classType.titleReturn()) def returnAlignment(self): return(self.alignment) def returnStats(self): return(self.stats) def returnHealth(self): return(self.health) def returnMaxHealth(self): return(self.maxHealth) #Change health def damage(self, damage): self.health -= damage return(self.health) def heal(self, heal): while ((heal > 0) and (self.health < self.maxHealth)): self.health += 1 heal -= 1 return(self.health) #Determine vision type def vision(self): if (self.race == "half-elf"): return("infra") elif (self.race == "elf"): return("infra") elif (self.race == "dwarf"): return("low-light") else: return("regular") #Determine weapon bonuses from class and race def weaponBonus(self): #Weapon bonuses from class if (self.classType == "hunter"): crBonus = {"bow":2, "short sword":2} elif (self.classType == "paladin"): crBonus = {"hammer":2} elif (self.classType == "rogue"): crBonus = {"knife":2} elif (self.classType == "warrior"): crBonus = {"short swort":2, "axe":2} else: crBonus = {} #Weapon bonuses from race if (self.race == "elf"): if ("bow" in crBonus): crBonus["bow"] += 2 else: crBonus.update({"bow":2}) elif (self.race == "half-elf"): if ("short sword" in crBonus): crBonus["short sword"] += 2 else: crBonus.update({"short sword":2}) elif (self.race == "dwarf"): if ("hammer" in crBonus): crBonus["hammer"] += 2 else: crBonus.update({"hammer":2}) return(crBonus) #Chance to pick lock def pickLock(self): if ((self.stats["dexterity"] >= 16) and (self.classType == "rogue")): return(.90) elif ((self.stats["dexterity"] < 16) and (self.classType == "rogue")): return(.80) elif (self.stats["dexterity"] >= 17): return(.75) elif (self.stats["dexterity"] >= 15): return(.25) elif (self.stats["dexterity"] >= 12): return(.15) else: return(.05) #Chance to seduce character def seduce(self): if (self.stats["charisma"] >= 17): return(.75) elif (self.stats["charisma"] >= 15): return(.50) elif (self.stats["charisma"] >= 12): return(.35) else: return(.15) #Saving throws def saveVpoison(self): if (self.stats["constitution"] >= 17): return(.65) elif (self.stats["constitution"] >= 15): return(.45) elif (self.stats["constitution"] >= 12): return(.35) else: return(.15) def saveVstun(self): if (self.stats["dexterity"] >= 17): return(.65) elif (self.stats["dexterity"] >= 15): return(.45) elif (self.stats["dexterity"] >= 12): return(.35) else: return(.15) def saveVmagic(self): if (self.stats["wisdom"] >= 17): return(.65) elif (self.stats["wisdom"] >= 15): return(.45) elif (self.stats["wisdom"] >= 12): return(.35) else: return(.15) def saveVcrush(self): if (self.stats["strength"] >= 17): return(.65) elif (self.stats["strength"] >= 15): return(.45) elif (self.stats["strength"] >= 12): return(.35) else: return(.15)
28.073171
87
0.497828
f425ad008d52317cc0c7132e3ebfbb8a92c5ab23
5,686
py
Python
package/tests/test_govee_parser.py
s-limo/bleparser
a1f5b55ab1c1185877ac50c45dd3685e11994cb2
[ "MIT" ]
null
null
null
package/tests/test_govee_parser.py
s-limo/bleparser
a1f5b55ab1c1185877ac50c45dd3685e11994cb2
[ "MIT" ]
null
null
null
package/tests/test_govee_parser.py
s-limo/bleparser
a1f5b55ab1c1185877ac50c45dd3685e11994cb2
[ "MIT" ]
null
null
null
"""The tests for the Govee ble_parser.""" from bleparser import BleParser class TestGovee: def test_Govee_H5051(self): """Test Govee H5051 parser.""" data_string = "043e1902010400aabb615960e30d0cff88ec00ba0af90f63020101b7" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5051" assert sensor_msg["mac"] == "E3605961BBAA" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 27.46 assert sensor_msg["humidity"] == 40.89 assert sensor_msg["battery"] == 99 assert sensor_msg["rssi"] == -73 def test_Govee_H5074(self): """Test Govee H5074 parser.""" data_string = "043e1702010400aabb611d12e00b0aff88ec0088078c116402a6" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5074" assert sensor_msg["mac"] == "E0121D61BBAA" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 19.28 assert sensor_msg["humidity"] == 44.92 assert sensor_msg["battery"] == 100 assert sensor_msg["rssi"] == -90 def test_Govee_H5102(self): """Test Govee H5102 parser.""" data_string = "043e2b02010000aabb611d12e11f0d09475648353130325f43423942030388ec02010509ff0100010103cb0164aa" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5101/H5102/H5177" assert sensor_msg["mac"] == "E1121D61BBAA" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 24.8577 assert sensor_msg["humidity"] == 57.7 assert sensor_msg["battery"] == 100 assert sensor_msg["rssi"] == -86 def test_Govee_H5075(self): """Test Govee H5075 parser.""" data_string = "043e2b02010000aabb6138c1a41f0d09475648353037355f43423942030388ec02010509ff88ec0003215d6400aa" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5072/H5075" assert sensor_msg["mac"] == "A4C13861BBAA" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 20.5149 assert sensor_msg["humidity"] == 14.9 assert sensor_msg["battery"] == 100 assert sensor_msg["rssi"] == -86 def test_Govee_H5178_sensor_0(self): """Test Govee H5178 parser.""" data_string = "043E2B0201000045C5DF38C1A41F0A09423531373843353435030388EC0201050CFF010001010003A00F640000BF" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5178" assert sensor_msg["mac"] == "A4C138DFC545" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 23.7583 assert sensor_msg["humidity"] == 58.3 assert sensor_msg["sensor id"] == 0 assert sensor_msg["battery"] == 100 assert sensor_msg["rssi"] == -65 def test_Govee_H5178_sensor_1(self): """Test Govee H5178 parser.""" data_string = "043E2B0201000045C5DF38C1A41F0A09423531373843353435030388EC0201050CFF010001010102FC87640002BF" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5178" assert sensor_msg["mac"] == "A4C138DFC545" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature outdoor"] == 19.5719 assert sensor_msg["humidity outdoor"] == 71.9 assert sensor_msg["sensor id"] == 1 assert sensor_msg["battery"] == 100 assert sensor_msg["rssi"] == -65 def test_Govee_H5179(self): """Test Govee H5179 parser.""" data_string = "043E19020104006F18128132E30D0CFF0188EC000101A00AA2175BB6" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Govee" assert sensor_msg["type"] == "H5179" assert sensor_msg["mac"] == "E3328112186F" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["temperature"] == 27.2 assert sensor_msg["humidity"] == 60.5 assert sensor_msg["battery"] == 91 assert sensor_msg["rssi"] == -74
42.432836
116
0.646324
70a29a19d2f354e9501d0ffc0a29a32e75a5a804
6,980
py
Python
app/templates/four_g_core/mme_user_data.py
kukkalli/orchestrator
0b53e3f95c0a886a739cf08d611ea76c958bc691
[ "Apache-2.0" ]
1
2022-03-02T09:43:45.000Z
2022-03-02T09:43:45.000Z
app/templates/four_g_core/mme_user_data.py
kukkalli/orchestrator
0b53e3f95c0a886a739cf08d611ea76c958bc691
[ "Apache-2.0" ]
null
null
null
app/templates/four_g_core/mme_user_data.py
kukkalli/orchestrator
0b53e3f95c0a886a739cf08d611ea76c958bc691
[ "Apache-2.0" ]
null
null
null
import logging LOG = logging.getLogger(__name__) class MMEUserData: USERDATA = """#!/bin/bash cat > /home/ubuntu/.ssh/authorized_keys << EOF ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAGxlZsduAGeKqz3UhzHeXiJOsRlBQTZIyOxA0DrXso9ncDveooDqUr+Xw5XZx44nHFNjWocoQowDdaA8jj0DYEs9wF5ELGj/rm4n6a1b6tXVAlb3Vojb5C0mZfx2gUA6i5GNnNXONRttaW53XeOoD/VDM9tlgBnpa04bBQ1naTiLbQsQg== os@controller ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFJ/TSfJegktNbVbCF2L1hte8qfDtgk/zArlNq4vgEAKRePSEYnoFldlGVn5zDqnvLP2xy6WrcFUjO2TOeTnmqQ1gEzcBOjUXeYdA7LO1J8yARvvAMOk4IiuVTvGUdCIW8uDpXwfqCxqeKbSudo3LVLgt/ZcRg1QENyRLP/zqixIJoEsA== os@compute01 ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBACnHtnIvTXuTG2I5ngNXKUYu/h7izkEGPmfZpqIeuXcQIY0miX7k+9snBvPXKuxp5nYspOZuOzsHs4JEE3l/+ftcgHvF7w3SD5CtdTfGMhUwGHtcpWtKfj18+FiDwh9wK4m6exBChpfBTU1q14LPZBR7xg9KZULWGddugmffUK1SMoWdg== os@compute02 ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAG6PCMQcMNvSA4yRmHETOYdj60fsJo4n8FOBKmlw2fJR7xWMND0DQWTVvPssv3bw1iKn5zLbx4aeVd7idKT00HsjwB4mX1/+UBVUeP/21tp50J3XsG5Pdwz4JL6LeRWvurKoU66bpBR5u0Iuo9VrJlHfn3GbCiHzke7uUt3QBmBWkxroQ== sdn@sdnc ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBACU7DStTMa4kHmnZ6kiNkQHrW4CYW9kOKkR8xQa3yBvPDG0IYv0MuUJg2lY5TfdhmXNWELPYHlZxieOC60HTD/vzACoV3268mlJNYGE+ju4iQq+QXaUSwog4YkQs4aDCpylyDRJYWFe8YP97/xFOzR5P5bxCYcJZQLlwWa/+294kW29hQ== hanif@openstack ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAEBCbxZcyGw+PD3S/HoPx/WKhfGOz4Mos3OGQ4Q2rvh7UpNBE4UVp/xOBcFoL0WveHI+WskQV0jKa7TnErjVwEsOAAX6O4DxaskATGq6XioPv2XmRGKb5UZ28NUCE+VLhUvnFLLn2IMiCSiNzCU8hX0rjsU6/hHjDyV01Iahq2gAY6E7Q== hanif@openstack ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAHLT0AS5MHwwJ6hX1Up5stfz361+IWA/8/MhZBH+mYA32h/Bp5hSWkQDXow4aDiHRlxVV1WLlHHup+GPBBA9XLTRwHP8gAjbP5EM4EVxR9EbDh5Hz13xcN0/n9J9rasefHS8UgTJUgRrWeNRCSAhkbNfDfSeQzk8NWlzhiwwCIUacKnzg== hanif@kukkalli EOF DOMAIN="@@domain@@" INTERFACES=$(find /sys/class/net -mindepth 1 -maxdepth 1 ! -name lo ! -name docker -printf "%P " -execdir cat {}/address \;) first=true interface_name="" sudo rm /etc/netplan/50-cloud-init.yaml sudo -- sh -c "echo 'network:' >> /etc/netplan/50-cloud-init.yaml" sudo -- sh -c "echo ' ethernets:' >> /etc/netplan/50-cloud-init.yaml" # shellcheck disable=SC2068 for i in ${INTERFACES[@]}; do if ${first} then first=false interface_name=${i} sudo -- sh -c "echo ' ${interface_name}:' >> /etc/netplan/50-cloud-init.yaml" sudo -- sh -c "echo ' dhcp4: true' >> /etc/netplan/50-cloud-init.yaml" else first=true sudo -- sh -c "echo ' match:' >> /etc/netplan/50-cloud-init.yaml" sudo -- sh -c "echo ' macaddress: ${i}' >> /etc/netplan/50-cloud-init.yaml" sudo -- sh -c "echo ' set-name: ${interface_name}' >> /etc/netplan/50-cloud-init.yaml" fi done sudo -- sh -c "echo ' version: 2' >> /etc/netplan/50-cloud-init.yaml" sudo -- sh -c "echo 'network: {config: disabled}' >> /etc/cloud/cloud.cfg.d/99-disable-network-config.cfg" sudo netplan apply HOSTNAME=$(hostname -s) sudo hostnamectl set-hostname "$HOSTNAME"."$DOMAIN" FQDN_HOSTNAME=$(hostname) sudo rm /etc/hosts cat > /etc/hosts << EOF 127.0.0.1 localhost 127.0.1.1 ${FQDN_HOSTNAME} ${HOSTNAME} # The following lines are desirable for IPv6 capable hosts' ::1 ip6-localhost ip6-loopback fe00::0 ip6-localnet ff00::0 ip6-mcastprefix ff02::1 ip6-allnodes ff02::2 ip6-allrouters ff02::3 ip6-allhosts EOF # : <<'END' sudo apt-get update sudo apt-get install ca-certificates curl gnupg lsb-release curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg echo \ "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null sudo apt-get update sudo apt-get install docker-ce docker-ce-cli containerd.io -y docker --version cat > /etc/docker/daemon.json << EOF { "log-driver": "json-file", "log-opts": { "max-size": "1m", "max-file": "9" }, "ipv6": true, "fixed-cidr-v6": "2001:db8:1::/64" } EOF sudo usermod -aG docker ubuntu sudo systemctl daemon-reload sudo systemctl restart docker IP_ADDR=$(ip address |grep ens|grep inet|awk '{print $2}'| awk -F / '{print $1}') echo "MME FQDN $FQDN_HOSTNAME" sudo -- sh -c "echo '' >> /etc/hosts" for i in $IP_ADDR; do sudo -- sh -c "echo $i $HOSTNAME $FQDN_HOSTNAME >> /etc/hosts" if [[ $i == "10.10"* ]]; then MANAGEMENT_IP=$i fi if [[ $i == "10.11"* ]]; then export FABRIC_IP=$i fi done sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose sudo chmod +x /usr/local/bin/docker-compose echo "--------------- docker-compose version is: ---------------" docker-compose --version HSS_IP="@@hss_ip@@" HSS_HOSTNAME="@@hss_hostname@@" sudo -- sh -c "echo $HSS_IP $HSS_HOSTNAME $HSS_FQDN >> /etc/hosts" su - ubuntu export MANAGEMENT_IP="$MANAGEMENT_IP" export FABRIC_IP="$FABRIC_IP" export FABRIC_IP="$MANAGEMENT_IP" # DOCKER_PASS="@@docker_pass@@" # docker login -u kukkalli -p ${DOCKER_PASS} cd /home/ubuntu/ || exit git clone https://github.com/kukkalli/oai-docker-compose.git chown ubuntu:ubuntu -R oai-docker-compose cd oai-docker-compose/4g/mme/ || exit export DOMAIN="$DOMAIN" echo "DOMAIN is: $DOMAIN" export REALM="$DOMAIN" echo "REALM is: $REALM" export HSS_IP="$HSS_IP" echo "HSS IP is: $HSS_IP" export HSS_HOSTNAME="$HSS_HOSTNAME" echo "HSS HOSTNAME is:" $HSS_HOSTNAME export HSS_FQDN="$HSS_HOSTNAME"."$DOMAIN" echo "HSS FQDN is: $HSS_FQDN" MCC="@@mcc@@" export MCC="$MCC" echo "MCC is: $MCC" MNC="@@mnc@@" export MNC="$MNC" echo "MNC is: $MNC" MME_GID="@@mme_gid@@" # 32768 export MME_GID="$MME_GID" echo "MME GID is: $MME_GID" MME_CODE="@@mme_code@@" # 3 export MME_CODE="$MME_CODE" echo "MME CODE is: $MME_CODE" SGWC_IP_ADDRESS="@@sgwc_ip_address@@" export SGWC_IP_ADDRESS="$SGWC_IP_ADDRESS" echo "SGWC IP is: $SGWC_IP_ADDRESS" MME_HOSTNAME="$(hostname -s)" export MME_HOSTNAME="$MME_HOSTNAME" echo "MME hostname is $MME_HOSTNAME" export TZ="Europe/Berlin" echo "Timezone is $TZ" export HSS_REALM="$DOMAIN" echo "HSS Realm is $HSS_REALM" export MME_FQDN="$FQDN_HOSTNAME" echo "MME FQDN is $MME_FQDN" # Update mme.conf file before pushing it to docker echo "Update mme.conf file before pushing it to docker" ./update_mme_conf.sh # Wait for HSS to be up and running echo "Waiting for HSS at IP: $HSS_IP to be up and running" ./wait-for-hss.sh "$HSS_IP" echo "HSS at IP: $HSS_IP is up and running" docker-compose up -d magma_mme docker ps exit 0 """
33.397129
268
0.743696
097f8a1842e4111c4e3ade7538b0d707be625cf3
6,732
py
Python
app/analyzers/html_parsers/generic.py
MinistereSupRecherche/bso
82467213f531d2aee3a08258c5eb9c4467470960
[ "MIT" ]
17
2019-10-21T13:14:46.000Z
2022-01-14T16:32:07.000Z
app/analyzers/html_parsers/generic.py
MinistereSupRecherche/bso
82467213f531d2aee3a08258c5eb9c4467470960
[ "MIT" ]
2
2021-03-31T19:19:09.000Z
2021-12-13T20:22:00.000Z
app/analyzers/html_parsers/generic.py
MinistereSupRecherche/bso
82467213f531d2aee3a08258c5eb9c4467470960
[ "MIT" ]
1
2021-05-17T06:47:04.000Z
2021-05-17T06:47:04.000Z
import bs4 from bs4 import BeautifulSoup import re import datetime from doi_utils import * from app.utils.logger import create_logger logger = create_logger(__name__) affiliation_keywords = ['affiliation','affiliations','institution','institutions',\ 'author','authors','country', 'auteur', 'auteurs', 'authoraffiliates', 'profile', 'affilia',\ 'affiliationscontainer', 'contributors', 'contributor', 'authoraff', 'lblaffiliates', \ 'affiliates', 'affiliate', 'scalex'] affiliation_regex = construct_regex(affiliation_keywords) negative_match = "^_gaq|\(1[0-9][0-9]{2}|\(20[0-9]{2}|(;|,|\.).1[0-9][0-9]{2}|(;|,|\.).20[0-9]{2}|p\..[0-9]|^, «|France 2,|[0-9].p\.|^,.avec|resses universitaires|^,.catalogue|\(éd\.|par exemple|ibl\. |^,.éd\.|,.ed\.|,^Éd\.|^,(e|é|E|É)dit|^, et |il est |il a |notamment|, PUF|Dunod|Gallimard|Grasset|Hachette|Harmattan|Honoré Champion|Presses de|Larousse|Le Seuil|Albin Michel|Armand Collin|Belin|Belles Lettres|, (E|É)dition|Flammarion|Grasset|mprimerie|Karthala|La Découverte|Le Robert|Les Liens qui libèrent|Masson|Payot|Plon|Pocket|, Seuil|, Vrin|Odile Jacob|Fayard|^, thèse|(V|v)ol\.| eds\. |Octarès|Ellipses|Dalloz|Syros|^In |^(L|l)a |(L|l)es |logo cnrs|[0-9]{2}–[0-9]{2}| et al\.|Monod|National agreement in France|ovh-france|ar exemple|Pygmalion|Minuit|Puf|Karthala|^(P|p)our |^Presented|^(R|r)apport|^Reproducted from|^Revue|^Rev|^We thank|Zartman| price | VAT |^Support|^Sur |(S|s)pringer|^siècle|@|\.png|http|^(t|T)he |^\\n|^Does|(T|t)èse de" def find_fr_affiliation (elt, verbose = False): if type(elt) == bs4.element.Tag: return find_fr_affiliation_elt(elt, verbose) #elif type(elt)==bs4.element.NavigableString: else: return find_fr_affiliation_txt(elt, verbose) logger.debug ('error') logger.debug(type(elt)) logger.debug(elt) return None def find_fr_affiliation_elt(elt, verbose = False): is_fr = False affiliations = [] forbidden_words = ['reference', 'http','bibliog'] for att in elt.attrs: attribute_value = elt.attrs[att] if type(attribute_value)==str: attribute_value = attribute_value.lower() elif type(attribute_value)==list: attribute_value = (" ".join(attribute_value)).lower() if 'title' in attribute_value.lower(): return False, [] for w in forbidden_words: if w in attribute_value or w in att.lower(): return False, [] if re.search(fr_regex, attribute_value): if(verbose): logger.debug('fr_kw in attribute value: ' + attribute_value) affiliations.append(attribute_value) is_fr = True if elt.findChildren()==[] and re.search(fr_regex, elt.get_text().lower()): if(verbose): logger.debug('fr_kw in elt - text: ' + elt.get_text().lower()) affiliations.append(elt.get_text()) is_fr = True return is_fr, list(set(affiliations)) def find_fr_affiliation_txt(elt, verbose = False): is_fr = False affiliations = [] # for w in forbidden_words: # if w in elt.lower(): # return False, [] if re.search(fr_regex, elt.lower()): if(verbose): logger.debug('fr_kw in text: ' + elt.lower()) affiliations.append(elt) is_fr = True return is_fr, list(set(affiliations)) def post_filter(x): affiliations_fr = x['affiliations_fr'] affiliations_fr_filtered = [] for e in affiliations_fr: if re.search(negative_match, e)==None and len(e)<250: affiliations_fr_filtered.append(e) is_french = (len(affiliations_fr_filtered) >0) return {'is_french':is_french, 'affiliations_fr':affiliations_fr_filtered} def handler(signum, frame): logger.debug("Forever is over!") raise Exception("end of time") def parse_generic(soup, verbose = False): #remove all options [x.extract() for x in soup.findAll('option')] [x.extract() for x in soup.findAll('title')] [x.extract() for x in soup.findAll(class_ = 'fig-caption')] [x.extract() for x in soup.findAll(class_ = 'materials-methods')] [x.extract() for x in soup.findAll(class_ = 'toc-section')] is_french=False all_affiliations=[] possible_elts = [e for e in soup.descendants if type(e)==bs4.element.Tag] if(possible_elts == []): return {'is_french': is_french, 'affiliations_fr':all_affiliations} try: elt_to_check = [] for elt in possible_elts: is_affiliation_elt = False if elt==None: continue if len(elt.findChildren())==0 and re.search(affiliation_regex, elt.get_text().lower()): is_affiliation_elt = True if(verbose): logger.debug('kw 1 affiliation in '+ elt.get_text().lower()) for sub_elt in elt.findChildren(): if sub_elt.find('sup'): is_affiliation_elt = True if(verbose): logger.debug('kw sup affiliation in '+ elt.get_text().lower()) for att in elt.attrs: attribute_value = elt.attrs[att] if type(attribute_value)==str: attribute_value = attribute_value.lower() elif type(attribute_value)==list: attribute_value = (" ".join(attribute_value)).lower() if re.search(affiliation_regex, att.lower()) or re.search(affiliation_regex, attribute_value): is_affiliation_elt = True if(verbose): logger.debug('*********************') logger.debug('kw2 affiliation in ') logger.debug(att.lower()) logger.debug(attribute_value) logger.debug('*********************') if(is_affiliation_elt): elt_to_check.append(elt) elt_to_check += [e for e in elt.descendants] all_affiliations = [] for elt in list(set(elt_to_check)): is_french, affiliations = find_fr_affiliation(elt, verbose) if is_french: all_affiliations += affiliations all_affiliations = list(set(all_affiliations)) if len(all_affiliations) > 0: is_french = True else: is_french = False except: pass return post_filter({'is_french': is_french, 'affiliations_fr':all_affiliations})
37.608939
953
0.5918
f4df80bf881cee1b2dbe74cbb08065f404641f5a
419
py
Python
Section 4 - Regular Expression/regex3.py
nachordo/Hands-On-Natural-Language-Processing-with-Python
e37e25a41a122bdb9b4c5619c7651f33a9c09eb8
[ "MIT" ]
null
null
null
Section 4 - Regular Expression/regex3.py
nachordo/Hands-On-Natural-Language-Processing-with-Python
e37e25a41a122bdb9b4c5619c7651f33a9c09eb8
[ "MIT" ]
null
null
null
Section 4 - Regular Expression/regex3.py
nachordo/Hands-On-Natural-Language-Processing-with-Python
e37e25a41a122bdb9b4c5619c7651f33a9c09eb8
[ "MIT" ]
null
null
null
# Introduction to Python Regular Expressions # Importing Libraries import re pattern1 = "I love Avengers" #I love Justice League print(re.sub(r"Avengers","Justice League",pattern1)) print(re.sub(r"[a-z]","0",pattern1,1,flags=re.I)) #re.I --- Case insensitive ############################# print(re.sub(r"[a-z]","0",pattern1)) print(re.sub(r"[a-z]","0",pattern1,flags=re.I)) print(re.sub(r"[a-z]","0",pattern1,7))
24.647059
76
0.637232
ac1c85668a9bd509748b1a53906039614d33f427
95
py
Python
modelflow/notused__init__.py
IbHansen/ModelFlow
09b1f911332f3d0af700ec65d46e8d4a53335e19
[ "X11" ]
2
2019-06-13T15:50:42.000Z
2019-06-13T15:51:05.000Z
modelflow/notused__init__.py
IbHansen/modelflow
09b1f911332f3d0af700ec65d46e8d4a53335e19
[ "X11" ]
null
null
null
modelflow/notused__init__.py
IbHansen/modelflow
09b1f911332f3d0af700ec65d46e8d4a53335e19
[ "X11" ]
1
2019-05-10T09:35:59.000Z
2019-05-10T09:35:59.000Z
# -*- coding: utf-8 -*- """ Created on Sat Feb 29 09:54:51 2020 @author: bruger """
10.555556
36
0.515789
6e26bb70d4d4445b3c8cf3acd64316b9da1fe84e
157
py
Python
wush/web/__init__.py
wxnacy/wush
30620144f7a6fb676d210dd9463b77894f956b38
[ "MIT" ]
null
null
null
wush/web/__init__.py
wxnacy/wush
30620144f7a6fb676d210dd9463b77894f956b38
[ "MIT" ]
null
null
null
wush/web/__init__.py
wxnacy/wush
30620144f7a6fb676d210dd9463b77894f956b38
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: wxnacy@gmail.com """ """ from .wush import Wapi from .common import functions __all__ = ['Wapi', ]
13.083333
29
0.630573
8847fb635670d68bdd2c499b95d710027817a6c8
237
py
Python
learning/ecc/_init_.py
Han-xv/RGGCNet
5b1ccf9be4bd1fe91381624ae0b4b7e16296df89
[ "MIT" ]
1
2020-03-26T08:41:11.000Z
2020-03-26T08:41:11.000Z
learning/ecc/_init_.py
Han-xv/RGGCNet
5b1ccf9be4bd1fe91381624ae0b4b7e16296df89
[ "MIT" ]
null
null
null
learning/ecc/_init_.py
Han-xv/RGGCNet
5b1ccf9be4bd1fe91381624ae0b4b7e16296df89
[ "MIT" ]
2
2020-03-25T11:47:29.000Z
2020-03-26T08:42:25.000Z
from .GraphConvInfo import GraphConvInfo from .GraphConvModule import GraphConvModule, GraphConvFunction from .GraphPoolInfo import GraphPoolInfo from .GraphPoolModule import GraphAvgPoolModule, GraphMaxPoolModule from .utils import *
29.625
67
0.864979
d42222ed097811a46e0759bf8768769da7a98fa2
805
py
Python
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/WGL/ATI/pixel_format_float.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/WGL/ATI/pixel_format_float.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
OpenGLWrapper_JE/venv/Lib/site-packages/OpenGL/WGL/ATI/pixel_format_float.py
JE-Chen/je_old_repo
a8b2f1ac2eec25758bd15b71c64b59b27e0bcda5
[ "MIT" ]
null
null
null
'''OpenGL extension ATI.pixel_format_float This module customises the behaviour of the OpenGL.raw.WGL.ATI.pixel_format_float to provide a more Python-friendly API The official definition of this extension is available here: http://www.opengl.org/registry/specs/ATI/pixel_format_float.txt ''' from OpenGL import platform, constant, arrays from OpenGL import extensions, wrapper import ctypes from OpenGL.raw.WGL import _types, _glgets from OpenGL.raw.WGL.ATI.pixel_format_float import * from OpenGL.raw.WGL.ATI.pixel_format_float import _EXTENSION_NAME def glInitPixelFormatFloatATI(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( _EXTENSION_NAME ) ### END AUTOGENERATED SECTION
35
72
0.790062
8bf53f89bfd22feb0565b40a41992d1ad40a4ec1
552
py
Python
samples/python/llist.py
peterzhou84/datastructure
89cca5fcd887dc06ba16074999193367bcc825e3
[ "MIT" ]
null
null
null
samples/python/llist.py
peterzhou84/datastructure
89cca5fcd887dc06ba16074999193367bcc825e3
[ "MIT" ]
null
null
null
samples/python/llist.py
peterzhou84/datastructure
89cca5fcd887dc06ba16074999193367bcc825e3
[ "MIT" ]
null
null
null
#coding=utf-8 ''' 链表的示例,来源周海君老师 ''' class lnode: def __init__(self,elem,nexte=None): self.elem=elem self.next=nexte def inserhead(head,x): #在表头插入元素x p=lnode(x) p.next=head head=p return head def printli(head): p=head # print(p.elem) a=[] while p!=None: #print(p.elem) a.append(p.elem) p=p.next print(a) head=lnode(1) b=[] b.append(head.elem) for i in range(2,9): head = inserhead(head,i) #p=lnode(i)#b.append(p.elem) #p.next=head #head=p printli(head)
17.25
39
0.572464
8c47b9afd6c078106102de57e44fe21711fbc135
4,545
py
Python
pixloc/run_CMU.py
jkabalar/pixloc
f9ca721977a5c3246ee5cf40fe3a214fef7cf3f2
[ "Apache-2.0" ]
457
2021-03-17T00:39:33.000Z
2022-03-30T02:38:19.000Z
pixloc/run_CMU.py
jkabalar/pixloc
f9ca721977a5c3246ee5cf40fe3a214fef7cf3f2
[ "Apache-2.0" ]
31
2021-03-17T07:35:34.000Z
2022-03-31T07:07:56.000Z
pixloc/run_CMU.py
jkabalar/pixloc
f9ca721977a5c3246ee5cf40fe3a214fef7cf3f2
[ "Apache-2.0" ]
56
2021-03-17T05:55:09.000Z
2022-03-15T01:38:35.000Z
import pickle from . import set_logging_debug, logger from .localization import RetrievalLocalizer, PoseLocalizer from .utils.data import Paths, create_argparser, parse_paths, parse_conf from .utils.io import write_pose_results, concat_results default_paths = Paths( query_images='slice{slice}/query/', reference_images='slice{slice}/database', reference_sfm='slice{slice}/sfm_superpoint+superglue/model/', query_list='slice{slice}/queries_with_intrinsics.txt', global_descriptors='slice{slice}/cmu-slice{slice}_tf-netvlad.h5', retrieval_pairs='slice{slice}/pairs-query-netvlad10.txt', hloc_logs='slice{slice}/CMU_hloc_superpoint+superglue_netvlad10.txt_logs.pkl', results='pixloc_CMU_slice{slice}.txt', ) experiment = 'pixloc_cmu' default_confs = { 'from_retrieval': { 'experiment': experiment, 'features': {}, 'optimizer': { 'num_iters': 100, 'pad': 2, }, 'refinement': { 'num_dbs': 2, 'point_selection': 'all', 'normalize_descriptors': True, 'average_observations': False, 'filter_covisibility': False, 'do_pose_approximation': False, }, }, 'from_poses': { 'experiment': experiment, 'features': {}, 'optimizer': { 'num_iters': 100, 'pad': 2, }, 'refinement': { 'num_dbs': 5, 'min_points_opt': 100, 'point_selection': 'inliers', 'normalize_descriptors': True, 'average_observations': False, 'layer_indices': [0, 1], }, }, } TEST_URBAN = [2, 3, 4, 5, 6] TEST_SUBURBAN = [13, 14, 15, 16, 17] TEST_PARK = [18, 19, 20, 21] TEST_SLICES_CMU = TEST_URBAN + TEST_SUBURBAN + TEST_PARK TRAINING_SLICES_CMU = [7, 8, 9, 10, 11, 12, 22, 23, 24, 25] def generate_query_list(paths, slice_): cameras = {} with open(paths.dataset / 'intrinsics.txt', 'r') as f: for line in f.readlines(): if line[0] == '#' or line == '\n': continue data = line.split() cameras[data[0]] = data[1:] assert len(cameras) == 2 queries = paths.dataset / f'slice{slice_}/test-images-slice{slice_}.txt' with open(queries, 'r') as f: queries = [q.rstrip('\n') for q in f.readlines()] out = [[q] + cameras[q.split('_')[2]] for q in queries] with open(paths.query_list, 'w') as f: f.write('\n'.join(map(' '.join, out))) def parse_slice_arg(slice_str): if slice_str is None: slices = TEST_SLICES_CMU logger.info( 'No slice list given, will evaluate all %d test slices; ' 'this might take a long time.', len(slices)) elif '-' in slice_str: min_, max_ = slice_str.split('-') slices = list(range(int(min_), int(max_)+1)) else: slices = eval(slice_str) if isinstance(slices, int): slices = [slices] return slices def main(): parser = create_argparser('CMU') parser.add_argument('--slices', type=str, help='a single number, an interval (e.g. 2-6), ' 'or a Python-style list or int (e.g. [2, 3, 4]') args = parser.parse_intermixed_args() set_logging_debug(args.verbose) paths = parse_paths(args, default_paths) conf = parse_conf(args, default_confs) slices = parse_slice_arg(args.slices) all_results = [] logger.info('Will evaluate slices %s.', slices) for slice_ in slices: logger.info('Working on slice %s.', slice_) paths_slice = paths.interpolate(slice=slice_) all_results.append(paths_slice.results) if paths_slice.results.exists(): continue if not paths_slice.query_list.exists(): generate_query_list(paths_slice, slice_) if args.from_poses: localizer = PoseLocalizer(paths_slice, conf) else: localizer = RetrievalLocalizer(paths_slice, conf) poses, logs = localizer.run_batched(skip=args.skip) write_pose_results(poses, paths_slice.results) with open(f'{paths_slice.results}_logs.pkl', 'wb') as f: pickle.dump(logs, f) output_path = concat_results(all_results, slices, paths.results, 'slice') logger.info( 'Finished evaluating all slices, you can now submit the file %s to ' 'https://www.visuallocalization.net/submission/', output_path) if __name__ == '__main__': main()
32.697842
82
0.60484
106ce621fa17ecd41c95e704ece1b7a7d470aa5f
167
py
Python
settings.py
salmanwahed/salman-wahed.appspot.com
f854f4d023509e0cf4923ca1cddfaf2cc368799c
[ "Apache-2.0" ]
null
null
null
settings.py
salmanwahed/salman-wahed.appspot.com
f854f4d023509e0cf4923ca1cddfaf2cc368799c
[ "Apache-2.0" ]
null
null
null
settings.py
salmanwahed/salman-wahed.appspot.com
f854f4d023509e0cf4923ca1cddfaf2cc368799c
[ "Apache-2.0" ]
null
null
null
__author__ = 'salman' SMTPserver = 'smtp.sendgrid.net' USERNAME = "salmanwahed" PASSWORD = "smw@$endGrid" TO_ADDRESS = '<salman2312@gmail.com>' text_subtype = 'plain'
23.857143
37
0.736527
45de05ea3d776be3844762518a668797fe9b31af
7,858
py
Python
bluebottle/fsm/state.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
bluebottle/fsm/state.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
bluebottle/fsm/state.py
jayvdb/bluebottle
305fea238e6aa831598a8b227223a1a2f34c4fcc
[ "BSD-3-Clause" ]
null
null
null
from builtins import str from builtins import object from django.utils.translation import ugettext_lazy as _ from django.dispatch import Signal from future.utils import with_metaclass from stripe.six import python_2_unicode_compatible class TransitionNotPossible(Exception): pass @python_2_unicode_compatible class BaseTransition(object): def __init__(self, sources, target, name='', description='', automatic=True, conditions=None, effects=None, **options): self.name = name if not isinstance(sources, (list, tuple)): sources = (sources, ) self.sources = sources self.target = target self.automatic = automatic self.conditions = conditions or [] self.effects = effects or [] self.description = description assert not (not self.automatic and not self.name), 'Automatic transitions should have a name' self.options = options @property def source_values(self): return [source.value for source in self.sources] def is_valid(self, machine): if not all(condition(machine) for condition in self.conditions): raise TransitionNotPossible( _('Conditions not met for transition') ) def can_execute(self, machine, automatic=True, **kwargs): self.is_valid(machine) if not automatic and self.automatic: raise TransitionNotPossible( _('Cannot transition from {} to {}').format(machine.state, self.target) ) if not ( machine.state in self.source_values or (AllStates() in self.sources) ): raise TransitionNotPossible( _('Cannot transition from {} to {}').format(machine.state, self.target) ) def on_execute(self, machine): machine.state = self.target.value def execute(self, machine, **kwargs): self.can_execute(machine, **kwargs) self.on_execute(machine, **kwargs) def __get__(self, instance, owner): if instance: def func(**kwargs): return self.execute(instance, **kwargs) return func else: return self def __repr__(self): return '<Transition from {} to {}>'.format(self.sources, self.target) def __str__(self): return str(self.name or self.field) pre_state_transition = Signal(providing_args=['instance', 'transition', 'kwargs']) post_state_transition = Signal(providing_args=['instance', 'transition', 'kwargs']) class Transition(BaseTransition): def __init__(self, sources, target, *args, **kwargs): self.permission = kwargs.get('permission') super(Transition, self).__init__(sources, target, *args, **kwargs) def can_execute(self, machine, user=None, **kwargs): result = super(Transition, self).can_execute(machine, **kwargs) if self.permission and user and not user.is_staff and not self.permission(machine, user): raise TransitionNotPossible( _('You are not allowed to perform this transition') ) return result and (not user or self.permission(machine, user)) else: return result def on_execute(self, machine, save=False, effects=True, **kwargs): pre_state_transition.send( sender=machine.instance.__class__, instance=machine.instance, transition=self, **kwargs ) super(Transition, self).on_execute(machine) if effects: for effect in self.effects: for effect in effect(machine.instance, **kwargs).all_effects(): if effect not in machine.instance._effects: machine.instance._effects.append(effect) if save: machine.save() post_state_transition.send( sender=machine.instance.__class__, instance=machine.instance, transition=self, **kwargs ) @python_2_unicode_compatible class State(object): transition_class = Transition def __init__(self, name, value=None, description=''): self.name = name self.value = value self.description = description def __repr__(self): return '<State {}>'.format(self.name) def __str__(self): return str(self.name) class EmptyState(State): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(EmptyState, cls).__new__( cls, *args, **kwargs) return cls._instance def __init__(self): super(EmptyState, self).__init__('empty', '') def __repr__(self): return '<EmptyState {}>'.format(self.name) class AllStates(State): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(AllStates, cls).__new__( cls, *args, **kwargs) return cls._instance def __init__(self): super(AllStates, self).__init__('all', '') def __repr__(self): return '<All States {}>'.format(self.name) class StateMachineMeta(type): def __new__(cls, name, bases, dct): result = type.__new__(cls, name, bases, dct) states = dict( (key, getattr(result, key)) for key in dir(result) if isinstance(getattr(result, key), State) and key != 'initial' ) result.states = states transitions = dict( (key, getattr(result, key)) for key in dir(result) if isinstance(getattr(result, key), Transition) ) for key, transition in list(transitions.items()): transition.field = key result.transitions = transitions return result class StateMachine(with_metaclass(StateMachineMeta, object)): @property def initial_transition(self): initial_transitions = [ transition for transition in list(self.transitions.values()) if EmptyState() in transition.sources ] if (len(initial_transitions)) > 1: raise AssertionError( 'Found multiple transitions from empty state' ) if initial_transitions: return initial_transitions[0] @property def current_state(self): for state in list(self.states.values()): if state.value == self.state: return state def possible_transitions(self, **kwargs): result = [] for transition in list(self.transitions.values()): try: transition.can_execute(self, **kwargs) result.append(transition) except TransitionNotPossible: pass return result class ModelStateMachineMeta(StateMachineMeta): def __new__(cls, name, bases, dct): if 'field' not in dct: dct['field'] = 'status' if 'name' not in dct: dct['name'] = 'states' result = StateMachineMeta.__new__(cls, name, bases, dct) if hasattr(result, 'model'): if not hasattr(result.model, '_state_machines'): result.model._state_machines = {} result.model._state_machines[result.name] = result return result class ModelStateMachine(with_metaclass(ModelStateMachineMeta, StateMachine)): def __init__(self, instance): self.instance = instance super(ModelStateMachine, self).__init__() @property def state(self): return getattr(self.instance, self.field) @state.setter def state(self, state): setattr(self.instance, self.field, state) def save(self): self.instance.save()
29.103704
101
0.607152
cf74792c854b3c3776af91c7198f0f105d07eaaa
2,173
py
Python
wzrd/wzrd/users/migrations/0001_initial.py
umarochki/dwellers-and-donkeys
0777b040754412402c0fd96048263087eff13b14
[ "MIT" ]
null
null
null
wzrd/wzrd/users/migrations/0001_initial.py
umarochki/dwellers-and-donkeys
0777b040754412402c0fd96048263087eff13b14
[ "MIT" ]
null
null
null
wzrd/wzrd/users/migrations/0001_initial.py
umarochki/dwellers-and-donkeys
0777b040754412402c0fd96048263087eff13b14
[ "MIT" ]
null
null
null
# Generated by Django 3.0.5 on 2020-12-06 12:17 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('first_name', models.CharField(blank=True, max_length=30, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('username', models.TextField(unique=True)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, ), ]
54.325
266
0.638288
7ff4961905b010d31e8bcac0bc49fc5431deb1ca
3,490
py
Python
src/python2/request/device_request_builder.py
microsoftarchive/msgraph-sdk-python
1320ba9116be0d00a1d7fce3484ea979e24ee82d
[ "MIT" ]
7
2019-07-17T06:59:53.000Z
2021-05-13T15:23:37.000Z
src/python2/request/device_request_builder.py
microsoftarchive/msgraph-sdk-python
1320ba9116be0d00a1d7fce3484ea979e24ee82d
[ "MIT" ]
null
null
null
src/python2/request/device_request_builder.py
microsoftarchive/msgraph-sdk-python
1320ba9116be0d00a1d7fce3484ea979e24ee82d
[ "MIT" ]
2
2020-06-30T13:06:59.000Z
2021-06-03T09:47:35.000Z
# -*- coding: utf-8 -*- """ # Copyright (c) Microsoft Corporation. All Rights Reserved. Licensed under the MIT License. See License in the project root for license information. # # This file was generated and any changes will be overwritten. """ from __future__ import unicode_literals from .device_request import DeviceRequest from ..request_builder_base import RequestBuilderBase from ..request import directory_object_collection class DeviceRequestBuilder(RequestBuilderBase): def __init__(self, request_url, client): """Initialize the DeviceRequestBuilder Args: request_url (str): The url to perform the DeviceRequest on client (:class:`GraphClient<microsoft.msgraph.request.graph_client.GraphClient>`): The client which will be used for the request """ super(DeviceRequestBuilder, self).__init__(request_url, client) def request(self, expand=None, select=None, options=None): """Builds the DeviceRequest Args: expand (str): Default None, comma-separated list of relationships to expand in the response. select (str): Default None, comma-separated list of properties to include in the response. options (list of :class:`Option<microsoft.msgraph.options.Option>`): A list of options to pass into the request. Defaults to None. Returns: :class:`DeviceRequest<microsoft.msgraph.request.device_request.DeviceRequest>`: The DeviceRequest """ req = DeviceRequest(self._request_url, self._client, options) req._set_query_options(expand=expand, select=select) return req def delete(self): """Deletes the specified Device.""" self.request().delete() def get(self): """Gets the specified Device. Returns: :class:`Device<microsoft.msgraph.model.device.Device>`: The Device. """ return self.request().get() def update(self, device): """Updates the specified Device. Args: device (:class:`Device<microsoft.msgraph.model.device.Device>`): The Device to update. Returns: :class:`Device<microsoft.msgraph.model.device.Device>`: The updated Device """ return self.request().update(device) @property def registered_owners(self): """The registered_owners for the DeviceRequestBuilder Returns: :class:`DirectoryObjectCollectionRequestBuilder<microsoft.msgraph.request.registered_owners_collection.DirectoryObjectCollectionRequestBuilder>`: A request builder created from the DeviceRequestBuilder """ return directory_object_collection.DirectoryObjectCollectionRequestBuilder(self.append_to_request_url("registeredOwners"), self._client) @property def registered_users(self): """The registered_users for the DeviceRequestBuilder Returns: :class:`DirectoryObjectCollectionRequestBuilder<microsoft.msgraph.request.registered_users_collection.DirectoryObjectCollectionRequestBuilder>`: A request builder created from the DeviceRequestBuilder """ return directory_object_collection.DirectoryObjectCollectionRequestBuilder(self.append_to_request_url("registeredUsers"), self._client)
37.526882
157
0.668768
185924c67023218c5de748c00417e1365f18f223
10,476
py
Python
torchrec/distributed/planner/stats.py
mreso/torchrec
a06ad87676e1dfdfd529787c9cc4b023c02cbca2
[ "BSD-3-Clause" ]
null
null
null
torchrec/distributed/planner/stats.py
mreso/torchrec
a06ad87676e1dfdfd529787c9cc4b023c02cbca2
[ "BSD-3-Clause" ]
null
null
null
torchrec/distributed/planner/stats.py
mreso/torchrec
a06ad87676e1dfdfd529787c9cc4b023c02cbca2
[ "BSD-3-Clause" ]
1
2022-02-09T23:52:22.000Z
2022-02-09T23:52:22.000Z
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging from collections import defaultdict from typing import Union, Tuple, Optional, Any, List, Dict, cast from torchrec.distributed.planner.types import ( ShardingOption, Stats, Topology, ParameterConstraints, Storage, ) from torchrec.distributed.planner.utils import bytes_to_gb from torchrec.distributed.types import ShardingType, ParameterSharding, ShardingPlan logger: logging.Logger = logging.getLogger(__name__) STATS_DIVIDER = "####################################################################################################" STATS_BAR = f"#{'------------------------------------------------------------------------------------------------': ^98}#" class EmbeddingStats(Stats): """ Stats for a sharding planner execution. """ def log( self, sharding_plan: ShardingPlan, topology: Topology, num_proposals: int, num_plans: int, best_plan: List[ShardingOption], constraints: Optional[Dict[str, ParameterConstraints]] = None, ) -> None: """ Log stats for a given sharding plan to stdout. Provide a tabular view of stats for the given sharding plan with per device storage usage (HBM and DDR), perf, input (pooling factors), output (embedding dimension), and number and type of shards. Args: sharding_plan (ShardingPlan): sharding plan chosen by the ShardingPlanner. topology (Topology): device topology. num_proposals (int): number of proposals evaluated num_plans (int): number of proposals successfully partitioned best_plan (List[ShardingOption]): plan with expected performance constraints (Optional[Dict[str, ParameterConstraints]]): dict of parameter names to provided ParameterConstraints. """ shard_by_fqn = { module_name + "." + param_name: value for module_name, param_dict in sharding_plan.plan.items() for param_name, value in param_dict.items() } stats: Dict[int, Dict[str, Any]] = { rank: {"type": {}, "pooling_factor": 0.0, "embedding_dims": 0} for rank in range(topology.world_size) } used_sharding_types = set() compute_kernels_to_count = defaultdict(int) for sharding_option in best_plan: fqn = sharding_option.fqn if shard_by_fqn.get(fqn) is None: continue shard: ParameterSharding = shard_by_fqn[fqn] ranks, pooling_factor, emb_dims = self._get_shard_stats( shard=shard, sharding_option=sharding_option, world_size=topology.world_size, local_size=topology.local_world_size, constraints=constraints, ) sharding_type_abbr = _get_sharding_type_abbr(shard.sharding_type) used_sharding_types.add(sharding_type_abbr) compute_kernels_to_count[sharding_option.compute_kernel] += 1 for i, rank in enumerate(ranks): count = stats[rank]["type"].get(sharding_type_abbr, 0) stats[rank]["type"][sharding_type_abbr] = count + 1 stats[rank]["pooling_factor"] += pooling_factor[i] stats[rank]["embedding_dims"] += emb_dims[i] used_hbm = [0] * topology.world_size used_ddr = [0] * topology.world_size perf = [0.0] * topology.world_size for sharding_option in best_plan: for shard in sharding_option.shards: storage = cast(Storage, shard.storage) rank = cast(int, shard.rank) used_hbm[rank] += storage.hbm used_ddr[rank] += storage.ddr perf[rank] += cast(float, shard.perf) table: List[List[Union[str, int]]] = [ ["Rank", "HBM (GB)", "DDR (GB)", "Perf", "Input", "Output", "Shards"], [ "------", "----------", "----------", "------", "-------", "--------", "--------", ], ] for rank, device in enumerate(topology.devices): used_hbm_gb = bytes_to_gb(used_hbm[rank]) used_hbm_ratio = ( used_hbm[rank] / device.storage.hbm if topology.compute_device == "cuda" else 0 ) used_ddr_gb = bytes_to_gb(used_ddr[rank]) used_ddr_ratio = used_ddr[rank] / device.storage.ddr for sharding_type in used_sharding_types: if sharding_type not in stats[rank]["type"]: stats[rank]["type"][sharding_type] = 0 rank_hbm = f"{used_hbm_gb:.1f} ({used_hbm_ratio:.0%})" rank_ddr = f"{used_ddr_gb:.1f} ({used_ddr_ratio:.0%})" rank_perf = f"{perf[rank] / 1000:,.0f}" rank_pooling = f"{int(stats[rank]['pooling_factor']):,}" rank_dims = f"{stats[rank]['embedding_dims']:,}" rank_shards = " ".join( f"{sharding_type}: {num_tables}" for sharding_type, num_tables in sorted(stats[rank]["type"].items()) ) table.append( [ rank, rank_hbm, rank_ddr, rank_perf, rank_pooling, rank_dims, rank_shards, ] ) logger.info(STATS_DIVIDER) header_text = "--- Planner Statistics ---" logger.info(f"#{header_text: ^98}#") iter_text = ( f"--- Evalulated {num_proposals} proposal(s), " f"found {num_plans} possible plan(s) ---" ) logger.info(f"#{iter_text: ^98}#") logger.info(STATS_BAR) formatted_table = _format_table(table) for row in formatted_table: logger.info(f"# {row: <97}#") logger.info(f"#{'' : ^98}#") legend = "Input: pooling factor, Output: embedding dimension, Shards: number of tables" logger.info(f"# {legend: <97}#") logger.info(f"#{'' : ^98}#") compute_kernels_count = [ f"{compute_kernel}: {count}" for compute_kernel, count in sorted(compute_kernels_to_count.items()) ] logger.info(f"# {'Compute Kernels:' : <97}#") for compute_kernel_count in compute_kernels_count: logger.info(f"# {compute_kernel_count : <95}#") logger.info(STATS_DIVIDER) def _get_shard_stats( self, shard: ParameterSharding, sharding_option: ShardingOption, world_size: int, local_size: int, constraints: Optional[Dict[str, ParameterConstraints]] = None, ) -> Tuple[List[int], List[float], List[int]]: """ Gets ranks, pooling factors, and embedding dimensions per shard. Returns: ranks: list of ranks. pooling_factor: list of pooling factors across ranks. emb_dims: list of embedding dimensions across ranks. """ ranks = list(range(world_size)) pooling_factor = [ sum(constraints[sharding_option.name].pooling_factors) if constraints and constraints.get(sharding_option.name) else 0.0 ] emb_dims = [sharding_option.tensor.shape[1]] if shard.sharding_type == ShardingType.DATA_PARALLEL.value: emb_dims = emb_dims * len(ranks) pooling_factor = pooling_factor * len(ranks) elif shard.sharding_type == ShardingType.TABLE_WISE.value: assert shard.ranks ranks = shard.ranks elif shard.sharding_type == ShardingType.COLUMN_WISE.value: assert shard.ranks ranks = shard.ranks emb_dims = [ int(shard.shard_sizes[1]) # pyre-ignore [16] for shard in shard.sharding_spec.shards ] pooling_factor = pooling_factor * len(ranks) elif shard.sharding_type == ShardingType.ROW_WISE.value: pooling_factor = [pooling_factor[0] / world_size] * len(ranks) emb_dims = emb_dims * len(ranks) elif shard.sharding_type == ShardingType.TABLE_ROW_WISE.value: assert shard.ranks host_id = shard.ranks[0] // local_size ranks = list(range(host_id * local_size, (host_id + 1) * local_size)) pooling_factor = [pooling_factor[0] / local_size] * len(ranks) emb_dims = emb_dims * len(ranks) elif shard.sharding_type == ShardingType.TABLE_COLUMN_WISE.value: assert shard.ranks ranks = shard.ranks pooling_factor = pooling_factor * len(ranks) emb_dims = [ int(shard.shard_sizes[1]) for shard in shard.sharding_spec.shards ] else: raise ValueError( f"Unrecognized or unsupported sharding type provided: {shard.sharding_type}" ) return ranks, pooling_factor, emb_dims def _get_sharding_type_abbr(sharding_type: str) -> str: if sharding_type == ShardingType.DATA_PARALLEL.value: return "DP" elif sharding_type == ShardingType.TABLE_WISE.value: return "TW" elif sharding_type == ShardingType.COLUMN_WISE.value: return "CW" elif sharding_type == ShardingType.ROW_WISE.value: return "RW" elif sharding_type == ShardingType.TABLE_ROW_WISE.value: return "TWRW" elif sharding_type == ShardingType.TABLE_COLUMN_WISE.value: return "TWCW" else: raise ValueError( f"Unrecognized or unsupported sharding type provided: {sharding_type}" ) def _format_table(table: List[List[Union[str, int]]]) -> List[str]: longest_cols = [ (max([len(str(row[i])) for row in table]) + 3) for i in range(len(table[0])) ] row_format = "".join( ["{:>" + str(longest_col) + "}" for longest_col in longest_cols] ) return [row_format.format(*row) for row in table]
37.017668
122
0.568347
5fb390b0b2fb46c0777352ad903ac8aff19d17a5
7,544
py
Python
benchmarks/f3_wrong_hints/scaling_software_termination/15-2Nested_false-termination_30.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
3
2021-04-23T23:29:26.000Z
2022-03-23T10:00:30.000Z
benchmarks/f3_wrong_hints/scaling_software_termination/15-2Nested_false-termination_30.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
null
null
null
benchmarks/f3_wrong_hints/scaling_software_termination/15-2Nested_false-termination_30.py
EnricoMagnago/F3
c863215c318d7d5f258eb9be38c6962cf6863b52
[ "MIT" ]
1
2021-11-17T22:02:56.000Z
2021-11-17T22:02:56.000Z
from typing import Tuple, FrozenSet from pysmt.environment import Environment as PysmtEnv from pysmt.fnode import FNode import pysmt.typing as types from utils import symb_to_next from hint import Hint, Location def transition_system(env: PysmtEnv) -> Tuple[FrozenSet[FNode], FNode, FNode, FNode]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) symbols = frozenset([pc, x, y]) m_1 = mgr.Int(-1) n_locs = 3 max_int = n_locs ints = [] pcs = [] x_pcs = [] for idx in range(n_locs): num = mgr.Int(idx) ints.append(num) pcs.append(mgr.Equals(pc, num)) x_pcs.append(mgr.Equals(x_pc, num)) for idx in range(n_locs, max_int): num = mgr.Int(idx) ints.append(num) pcend = mgr.Equals(pc, m_1) x_pcend = mgr.Equals(x_pc, m_1) init = pcs[0] cfg = [] # pc = 0 & (x >= 0) -> pc' = 1 cond = mgr.GE(x, ints[0]) cfg.append(mgr.Implies(mgr.And(pcs[0], cond), x_pcs[1])) # pc = 0 & !(x >= 0) -> pc' = -1 cfg.append(mgr.Implies(mgr.And(pcs[0], mgr.Not(cond)), x_pcend)) # pc = 1 -> pc' = 2 cfg.append(mgr.Implies(pcs[1], x_pcs[2])) # pc = 2 -> pc' = 0 cfg.append(mgr.Implies(pcs[2], x_pcs[0])) # pc = -1 -> pc' = -1 cfg.append(mgr.Implies(pcend, x_pcend)) trans = [] same_x = mgr.Equals(x_x, x) same_y = mgr.Equals(x_y, y) same = mgr.And(same_x, same_y) # pc = 0 -> same trans.append(mgr.Implies(pcs[0], same)) # pc = 1 -> x' = x + y & same_y trans.append(mgr.Implies(pcs[1], mgr.And(mgr.Equals(x_x, mgr.Plus(x, y)), same_y))) # pc = 2 -> same_x & y' = y + 1 trans.append(mgr.Implies(pcs[2], mgr.And(same_x, mgr.Equals(x_y, mgr.Plus(y, ints[1]))))) # pc = end -> same trans.append(mgr.Implies(pcend, same)) trans = mgr.And(*cfg, *trans) fairness = mgr.Not(mgr.Equals(pc, m_1)) return symbols, init, trans, fairness def hints(env: PysmtEnv) -> FrozenSet[Hint]: assert isinstance(env, PysmtEnv) mgr = env.formula_manager pc = mgr.Symbol("pc", types.INT) x = mgr.Symbol("x", types.INT) y = mgr.Symbol("y", types.INT) symbs = frozenset([pc, x, y]) m_100 = mgr.Int(-100) m_1 = mgr.Int(-1) i_0 = mgr.Int(0) i_1 = mgr.Int(1) i_2 = mgr.Int(2) i_4 = mgr.Int(4) i_20 = mgr.Int(20) x_pc = symb_to_next(mgr, pc) x_x = symb_to_next(mgr, x) x_y = symb_to_next(mgr, y) res = [] stutter = mgr.Equals(x_y, y) loc = Location(env, mgr.TRUE(), mgr.LE(x, i_20), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_y, mgr.Plus(x, y))) h_y = Hint("h_y1", env, frozenset([y]), symbs) h_y.set_locs([loc]) res.append(h_y) stutter = mgr.Equals(x_x, x) loc = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1), stutterT=stutter) loc.set_progress(0, mgr.Equals(x_x, mgr.Plus(x, y))) h_x = Hint("h_x1", env, frozenset([x]), symbs) h_x.set_locs([loc]) res.append(h_x) loc0 = Location(env, mgr.GE(y, m_100), mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(x, y))) loc1 = Location(env, mgr.TRUE(), mgr.GE(x, m_100)) loc1.set_progress(0, mgr.Equals(x_y, m_100)) h_y = Hint("h_y2", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(y, m_100), mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Times(x, y))) loc1 = Location(env, mgr.TRUE(), mgr.GE(x, m_100)) loc1.set_progress(0, mgr.Equals(x_y, m_100)) h_y = Hint("h_y3", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Times(x, y))) loc1 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_x, y)) h_x = Hint("h_x3", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.GE(y, m_100), mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Times(x, y))) loc1 = Location(env, mgr.TRUE(), mgr.GE(x, m_100)) loc1.set_progress(2, mgr.GE(x_y, i_20)) loc2 = Location(env, mgr.TRUE()) loc2.set_progress(0, mgr.And(mgr.GE(x_y, m_100), mgr.LE(x_y, i_0))) h_y = Hint("h_y4", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1, loc2]) res.append(h_y) loc0 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Times(x, y))) loc1 = Location(env, mgr.GE(x, i_1), mgr.GE(y, i_1)) loc1.set_progress(2, mgr.GT(x_x, y)) loc2 = Location(env, mgr.GE(x, i_2)) loc2.set_progress(0, mgr.GE(x_x, i_20)) h_x = Hint("h_x4", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1, loc2]) res.append(h_x) loc0 = Location(env, mgr.TRUE()) loc0.set_progress(0, mgr.TRUE()) h_pc = Hint("h_pc1", env, frozenset([pc]), symbs) h_pc.set_locs([loc0]) res.append(h_pc) loc0 = Location(env, mgr.GE(y, m_100)) loc0.set_progress(0, mgr.Equals(x_y, mgr.Times(y, y))) h_y = Hint("h_y5", env, frozenset([y]), symbs) h_y.set_locs([loc0]) res.append(h_y) loc0 = Location(env, mgr.LE(x, i_0)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Times(x, x))) loc1 = Location(env, mgr.GE(x, i_0)) loc1.set_progress(0, mgr.LT(x_x, mgr.Times(m_1, x, x))) h_x = Hint("h_x5", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.Equals(pc, i_1)) loc0.set_progress(1, mgr.GT(x_pc, pc)) loc1 = Location(env, mgr.GE(pc, i_2)) loc1.set_progress(0, mgr.Equals(x_pc, mgr.Div(pc, pc))) h_pc = Hint("h_pc2", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1]) res.append(h_pc) loc0 = Location(env, mgr.LE(x, i_20)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Plus(mgr.Times(x, x), i_1))) loc1 = Location(env, mgr.GE(x, i_20)) loc1.set_progress(0, mgr.LT(x_x, mgr.Times(m_1, x, x))) h_x = Hint("h_x6", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1]) res.append(h_x) loc0 = Location(env, mgr.LE(pc, i_1)) loc0.set_progress(1, mgr.GT(x_pc, pc)) loc1 = Location(env, mgr.LE(pc, i_2)) loc1.set_progress(0, mgr.Equals(x_pc, mgr.Div(pc, pc))) h_pc = Hint("h_pc3", env, frozenset([pc]), symbs) h_pc.set_locs([loc0, loc1]) res.append(h_pc) loc0 = Location(env, mgr.GE(y, i_0), mgr.GE(pc, i_1)) loc0.set_progress(1, mgr.Equals(x_y, mgr.Plus(y, pc))) loc1 = Location(env, mgr.GE(y, i_1)) loc1.set_progress(0, mgr.Equals(x_y, y)) h_y = Hint("h_y7", env, frozenset([y]), symbs) h_y.set_locs([loc0, loc1]) res.append(h_y) loc0 = Location(env, mgr.GE(x, i_1), mgr.GT(y, i_1)) loc0.set_progress(1, mgr.Equals(x_x, mgr.Plus(mgr.Times(x, y), i_1))) loc1 = Location(env, mgr.GE(x, i_2)) loc1.set_progress(2, mgr.LT(x_x, mgr.Times(m_1, x, x))) loc2 = Location(env, mgr.LE(x, i_4)) loc2.set_progress(0, mgr.GE(x_x, mgr.Div(x, x))) h_x = Hint("h_x7", env, frozenset([x]), symbs) h_x.set_locs([loc0, loc1, loc2]) res.append(h_x) return frozenset(res)
31.302905
77
0.587487
212b996bcd031b2378d64f2d18a422bd5c431a05
3,801
py
Python
lotrpc/rpcgen.py
wtnb75/lotrpc
4209722d237eba8863bd777653a3390969552e8e
[ "MIT" ]
1
2020-02-13T01:09:31.000Z
2020-02-13T01:09:31.000Z
lotrpc/rpcgen.py
wtnb75/lotrpc
4209722d237eba8863bd777653a3390969552e8e
[ "MIT" ]
null
null
null
lotrpc/rpcgen.py
wtnb75/lotrpc
4209722d237eba8863bd777653a3390969552e8e
[ "MIT" ]
null
null
null
import os import sys import subprocess import tempfile import importlib import click import yaml from logging import getLogger, basicConfig, DEBUG import lotrpc.sunrpc.parse import lotrpc.sunrpc.rpcgen log = getLogger(__name__) @click.group(invoke_without_command=True) @click.pass_context def cli(ctx): if ctx.invoked_subcommand is None: print(ctx.get_help()) @cli.command() @click.argument("file", type=click.File('r')) @click.option("--verbose/--no-verbose", default=False) def lex(file, verbose): if verbose: basicConfig(level=DEBUG) for token in lotrpc.sunrpc.parse.get_lexer(file): log.info("token %s", token) def parse_file(file, cpp, defs, verbose): defs = yaml.load(defs, Loader=yaml.FullLoader) if cpp is not None: with subprocess.Popen(["cpp"], stdin=subprocess.PIPE, stdout=subprocess.PIPE) as p: p.stdin.write(file.read().encode('utf-8')) p.stdin.close() file = p.stdout return lotrpc.sunrpc.parse.parse_file( p.stdout, debug=verbose, defines=defs) return lotrpc.sunrpc.parse.parse_file(file, debug=verbose, defines=defs) defdef = "{LM_MAXSTRLEN: 1024, MAXNAMELEN: 1025, MAXNETNAMELEN: 255}" @cli.command() @click.option("--cpp/--no-cpp", default=False) @click.option("--defs", default=defdef) @click.option("--verbose/--no-verbose", default=False) @click.argument("file", type=click.File('r')) def parse(file, cpp, defs, verbose): if verbose: basicConfig(level=DEBUG) result = parse_file(file, cpp, defs, verbose) print(yaml.dump(result)) @cli.command() @click.option("--cpp/--no-cpp", default=False) @click.option("--defs", default=defdef) @click.option("--template", default=None, type=click.File('r')) @click.option("--verbose/--no-verbose", default=False) @click.argument("file", type=click.File('r')) def rpcgen(file, cpp, defs, template, verbose): if verbose: basicConfig(level=DEBUG) data = parse_file(file, cpp, defs, verbose) tmpl = None if template is not None: tmpl = template.read() res = lotrpc.sunrpc.rpcgen.generate_proto(data, tmpl) print(res) @cli.command() @click.option("--cpp/--no-cpp", default=False) @click.option("--defs", default=defdef) @click.option("--template", default=None, type=click.File('r')) @click.option("--verbose/--no-verbose", default=False) @click.argument("file", type=click.File('r')) def rpcgen_autopep(file, cpp, defs, template, verbose): if verbose: basicConfig(level=DEBUG) data = parse_file(file, cpp, defs, verbose) tmpl = None if template is not None: tmpl = template.read() res = lotrpc.sunrpc.rpcgen.generate_proto(data, tmpl) with tempfile.NamedTemporaryFile(suffix=".py", mode="w") as tf: tf.write(res) with subprocess.Popen(["autopep8", "--diff", tf.name], stdin=subprocess.DEVNULL) as p: p.wait() @cli.command() @click.option("--cpp/--no-cpp", default=False) @click.option("--defs", default=defdef) @click.option("--template", default=None, type=click.File('r')) @click.option("--verbose/--no-verbose", default=False) @click.argument("file", type=click.File('r')) def rpcgen_help(file, cpp, defs, template, verbose): if verbose: basicConfig(level=DEBUG) data = parse_file(file, cpp, defs, verbose) tmpl = None if template is not None: tmpl = template.read() with tempfile.TemporaryDirectory() as tmpd: with open(os.path.join(tmpd, "mymodule.py"), "w") as ofp: res = lotrpc.sunrpc.rpcgen.generate_proto(data, tmpl) ofp.write(res) sys.path.append(tmpd) mod = importlib.import_module("mymodule") help(mod) if __name__ == '__main__': cli()
30.653226
94
0.660089
f62b7c024de33d741e6fae7b5bd86f82493f12f5
4,942
py
Python
nova/api/openstack/compute/contrib/instance_actions.py
nkrinner/nova
1372397d4f5f8c155af6f1f4ab5dc68be00c9c01
[ "Apache-2.0" ]
1
2015-01-09T10:49:56.000Z
2015-01-09T10:49:56.000Z
nova/api/openstack/compute/contrib/instance_actions.py
Semihalf/openstack-nova
ff6c7e806d12c4d00990b28438bd8b30e2b978ee
[ "Apache-2.0" ]
null
null
null
nova/api/openstack/compute/contrib/instance_actions.py
Semihalf/openstack-nova
ff6c7e806d12c4d00990b28438bd8b30e2b978ee
[ "Apache-2.0" ]
null
null
null
# Copyright 2013 Rackspace Hosting # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from webob import exc from nova.api.openstack import common from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api.openstack import xmlutil from nova import compute authorize_actions = extensions.extension_authorizer('compute', 'instance_actions') authorize_events = extensions.soft_extension_authorizer('compute', 'instance_actions:events') ACTION_KEYS = ['action', 'instance_uuid', 'request_id', 'user_id', 'project_id', 'start_time', 'message'] EVENT_KEYS = ['event', 'start_time', 'finish_time', 'result', 'traceback'] def make_actions(elem): for key in ACTION_KEYS: elem.set(key) def make_action(elem): for key in ACTION_KEYS: elem.set(key) event = xmlutil.TemplateElement('events', selector='events') for key in EVENT_KEYS: event.set(key) elem.append(event) class InstanceActionsTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('instanceActions') elem = xmlutil.SubTemplateElement(root, 'instanceAction', selector='instanceActions') make_actions(elem) return xmlutil.MasterTemplate(root, 1) class InstanceActionTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('instanceAction', selector='instanceAction') make_action(root) return xmlutil.MasterTemplate(root, 1) class InstanceActionsController(wsgi.Controller): def __init__(self): super(InstanceActionsController, self).__init__() self.compute_api = compute.API() self.action_api = compute.InstanceActionAPI() def _format_action(self, action_raw): action = {} for key in ACTION_KEYS: action[key] = action_raw.get(key) return action def _format_event(self, event_raw): event = {} for key in EVENT_KEYS: event[key] = event_raw.get(key) return event @wsgi.serializers(xml=InstanceActionsTemplate) def index(self, req, server_id): """Returns the list of actions recorded for a given instance.""" context = req.environ["nova.context"] instance = common.get_instance(self.compute_api, context, server_id) authorize_actions(context, target=instance) actions_raw = self.action_api.actions_get(context, instance) actions = [self._format_action(action) for action in actions_raw] return {'instanceActions': actions} @wsgi.serializers(xml=InstanceActionTemplate) def show(self, req, server_id, id): """Return data about the given instance action.""" context = req.environ['nova.context'] instance = common.get_instance(self.compute_api, context, server_id) authorize_actions(context, target=instance) action = self.action_api.action_get_by_request_id(context, instance, id) if action is None: raise exc.HTTPNotFound() action_id = action['id'] action = self._format_action(action) if authorize_events(context): events_raw = self.action_api.action_events_get(context, instance, action_id) action['events'] = [self._format_event(evt) for evt in events_raw] return {'instanceAction': action} class Instance_actions(extensions.ExtensionDescriptor): """View a log of actions and events taken on an instance.""" name = "InstanceActions" alias = "os-instance-actions" namespace = ("http://docs.openstack.org/compute/ext/" "instance-actions/api/v1.1") updated = "2013-02-08T00:00:00+00:00" def get_resources(self): ext = extensions.ResourceExtension('os-instance-actions', InstanceActionsController(), parent=dict( member_name='server', collection_name='servers')) return [ext]
38.015385
78
0.62849
a486ce7fc8c530bb8791e6a9740cd6991ed0200a
2,383
py
Python
netbox/extras/urls.py
aslafy-z/netbox
a5512dd4c46c005df8752fc330c1382ac22b31ea
[ "Apache-2.0" ]
1
2021-09-23T00:06:51.000Z
2021-09-23T00:06:51.000Z
netbox/extras/urls.py
aslafy-z/netbox
a5512dd4c46c005df8752fc330c1382ac22b31ea
[ "Apache-2.0" ]
4
2021-06-08T22:29:06.000Z
2022-03-12T00:48:51.000Z
netbox/extras/urls.py
aslafy-z/netbox
a5512dd4c46c005df8752fc330c1382ac22b31ea
[ "Apache-2.0" ]
null
null
null
from django.urls import path from extras import views from extras.models import Tag app_name = 'extras' urlpatterns = [ # Tags path('tags/', views.TagListView.as_view(), name='tag_list'), path('tags/edit/', views.TagBulkEditView.as_view(), name='tag_bulk_edit'), path('tags/delete/', views.TagBulkDeleteView.as_view(), name='tag_bulk_delete'), path('tags/<str:slug>/', views.TagView.as_view(), name='tag'), path('tags/<str:slug>/edit/', views.TagEditView.as_view(), name='tag_edit'), path('tags/<str:slug>/delete/', views.TagDeleteView.as_view(), name='tag_delete'), path('tags/<str:slug>/changelog/', views.ObjectChangeLogView.as_view(), name='tag_changelog', kwargs={'model': Tag}), # Config contexts path('config-contexts/', views.ConfigContextListView.as_view(), name='configcontext_list'), path('config-contexts/add/', views.ConfigContextCreateView.as_view(), name='configcontext_add'), path('config-contexts/edit/', views.ConfigContextBulkEditView.as_view(), name='configcontext_bulk_edit'), path('config-contexts/delete/', views.ConfigContextBulkDeleteView.as_view(), name='configcontext_bulk_delete'), path('config-contexts/<int:pk>/', views.ConfigContextView.as_view(), name='configcontext'), path('config-contexts/<int:pk>/edit/', views.ConfigContextEditView.as_view(), name='configcontext_edit'), path('config-contexts/<int:pk>/delete/', views.ConfigContextDeleteView.as_view(), name='configcontext_delete'), # Image attachments path('image-attachments/<int:pk>/edit/', views.ImageAttachmentEditView.as_view(), name='imageattachment_edit'), path('image-attachments/<int:pk>/delete/', views.ImageAttachmentDeleteView.as_view(), name='imageattachment_delete'), # Change logging path('changelog/', views.ObjectChangeListView.as_view(), name='objectchange_list'), path('changelog/<int:pk>/', views.ObjectChangeView.as_view(), name='objectchange'), # Reports path('reports/', views.ReportListView.as_view(), name='report_list'), path('reports/<str:name>/', views.ReportView.as_view(), name='report'), path('reports/<str:name>/run/', views.ReportRunView.as_view(), name='report_run'), # Scripts path('scripts/', views.ScriptListView.as_view(), name='script_list'), path('scripts/<str:module>/<str:name>/', views.ScriptView.as_view(), name='script'), ]
51.804348
121
0.716744
afd2ed3325b41fbc1aca7883d011a81c7255b6ca
2,122
py
Python
hackerrank/dynamicAarray.py
shrijaltamrakar/Descent_py
82cd89ebeca37d079fc5d072010d3a3120420b2a
[ "MIT" ]
2
2018-11-17T10:03:25.000Z
2019-01-24T08:40:10.000Z
hackerrank/dynamicAarray.py
shrijaltamrakar/Descent_py
82cd89ebeca37d079fc5d072010d3a3120420b2a
[ "MIT" ]
1
2021-06-02T00:16:58.000Z
2021-06-02T00:16:58.000Z
hackerrank/dynamicAarray.py
shrijaltamrakar/Descent_py
82cd89ebeca37d079fc5d072010d3a3120420b2a
[ "MIT" ]
1
2020-10-03T08:22:40.000Z
2020-10-03T08:22:40.000Z
""" ____ _ _ | _ \ _ _ _ __ __ _ _ __ ___ (_) ___ / \ _ __ _ __ __ _ _ _ | | | | | | | '_ \ / _` | '_ ` _ \| |/ __| / _ \ | '__| '__/ _` | | | | | |_| | |_| | | | | (_| | | | | | | | (__ / ___ \| | | | | (_| | |_| | |____/ \__, |_| |_|\__,_|_| |_| |_|_|\___| /_/ \_\_| |_| \__,_|\__, | |___/ |___/ Create a list, seqList, of N empty sequences, where each sequence is indexed from 0 to N-1. The elements within each of the N sequences also use 0-indexing. Create an integer, lastAns, and initialize it to 0. The 2 types of queries that can be performed on your list of sequences (seqList) are described below: Query: 1 x y Find the sequence, seq, at index ((x ⊕ lastAns) % N) in seqList. Append integer y to sequence seq. Query: 2 x y Find the sequence, seq, at index ((x ⊕ lastAns) % N) in seqList. Find the value of element (y%size) in seq (where size is the size of seq) and assign it to lastAns. Print the new value of lastAns on a new line Sample Input: 2 5 1 0 5 1 1 7 1 0 3 2 1 0 2 1 1 Sample Output: 7 3 Explanation: Initial Values: N=2 lastAns=0 S0={} S1={} Query 0: Append 5 to sequence ((0 ⊕ 0) % 2) =0. lastAns=0 S0={5} S1={} Query 1: Append 7 to sequence ((1 ⊕ 0) % 2) =1. lastAns=0 S0={5} S1={7} Query 2: Append 3 to sequence ((0 ⊕ 0) % 2) =0.. lastAns=0 S0={5,3} S1={7} Query 3: Assign the value at index 0 of sequence ((1 ⊕ 0) % 2) =1. to lastAns, print lastAns. lastAns=7 S0={5,3} S1={7} 7 Query 4: Assign the value at index 1 of sequence ((1 ⊕ 7) % 2) =0 to lastAns, print lastAns. lastAns=3 S0={5,3} S1={7} 3 """ def dynamicArray(n, queries): # result = [] # Write your code here lastAns = 0 seqList = [[] for _ in range(n)] for q, x, y in queries: index = (x ^ lastAns) % n seq = seqList[index] if q == 1: seq.append(y) elif q == 2: size = len(seq) lastAns = seq[y % size] yield lastAns else: raise ValueError()
23.065217
156
0.530631
b50d1672eabccc117774a4ae4a783268e9619dea
3,951
py
Python
src/dimmer/dimmer.py
deklungel/iRulez
eca073d0af55f8bf7006bf37c2cd69116e926211
[ "MIT" ]
1
2018-03-21T15:08:22.000Z
2018-03-21T15:08:22.000Z
src/dimmer/dimmer.py
deklungel/iRulez
eca073d0af55f8bf7006bf37c2cd69116e926211
[ "MIT" ]
1
2017-08-25T06:12:08.000Z
2017-08-25T06:13:58.000Z
src/dimmer/dimmer.py
deklungel/iRulez
eca073d0af55f8bf7006bf37c2cd69116e926211
[ "MIT" ]
1
2020-07-23T11:57:06.000Z
2020-07-23T11:57:06.000Z
import src.irulez.log as log import src.irulez.constants as constants import src.irulez.util as util import paho.mqtt.client as mqtt import src.irulez.configuration as configuration import src.dimmer.processor as dimmer_processor import src.dimmer.mqtt_sender as mqtt_sender import src.output_status.ServiceClient as ServiceClient logger = log.get_logger('dimmer Module') # Get config config = configuration.Configuration() mqttConfig = config.get_mqtt_config() serviceConfig = config.get_service_client_config() # Create client client = mqtt.Client() StatusService = ServiceClient.StatusServiceClient(serviceConfig['url'], serviceConfig['port']) sender = mqtt_sender.MqttSender(client) processor = dimmer_processor.DimmerActionProcessor(client, sender, StatusService) def on_connect(connected_client, _, __, rc) -> None: """Callback function for when the mqtt client is connected.""" logger.info("Connected client with result code " + str(rc)) # Subscribe in on_connect callback to automatically re-subscribe if the connection was lost # Subscribe to all arduino hexnumber actions # '+' means single level wildcard. '#' means multi level wildcard. # See http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices # Receives message from button about dimmer state switch subscribe = constants.iRulezTopic + '/' + constants.actionTopic + '/' + constants.dimmerModuleTopic logger.debug("Subscribing to " + str(subscribe)) connected_client.subscribe(subscribe) # Receives message from timer module when a dimmer pin should be updated. subscribe = constants.iRulezTopic + '/' + constants.actionTopic + '/' + constants.dimmerTimerFired logger.debug("Subscribing to " + str(subscribe)) connected_client.subscribe(subscribe) subscribe = constants.iRulezTopic + '/' + constants.dimmerCancelled + '/' + constants.dimmerModuleTopic logger.debug("Subscribing to " + str(subscribe)) connected_client.subscribe(subscribe) # # Subscribe to real time dimmer # subscribe = constants.arduinoTopic + '/' + constants.actionTopic + '/' + constants.dimmerRealTimeModuleTopic # logger.debug("Subscribing to " + str(subscribe)) # connected_client.subscribe(subscribe) def on_subscribe(_, __, mid, granted_qos) -> None: logger.debug("Subscribed: " + str(mid) + " " + str(granted_qos)) def on_message(_, __, msg) -> None: """Callback function for when a new message is received.""" logger.debug(f"Received message {msg.topic}: {msg.payload}") # Find arduino name of topic logger.debug(f"Process dimmer message") # Check if message is a command message from the button module to start dimming if util.is_arduino_dimmer_action_topic(msg.topic): processor.process_dimmer_message(msg.payload.decode("utf-8")) return # Check if message is a timer fired message from the timer module to send the next dimming message if util.is_arduino_dimmer_timer_fired_topic(msg.topic): processor.process_dimmer_timer_fired(msg.payload.decode("utf-8")) return if util.is_arduino_dimmer_cancelled_topic(msg.topic): processor.process_dimmer_cancelled(msg.payload.decode("utf-8")) return # # Check if message is for real time dimmer # elif util.is_arduino_real_time_dimmer_topic(msg.topic): # dimmer_processor.process_dimmer_real_time_message(msg.payload.decode("utf-8")) # Unknown topic logger.warning(f"Topic '{msg.topic}' is of no interest to us. Are we subscribed to too much?") # Set callback functions client.on_connect = on_connect client.on_message = on_message client.on_subscribe = on_subscribe client.username_pw_set(mqttConfig['username'], mqttConfig['password']) client.connect(mqttConfig['ip'], int(mqttConfig['port']), 60) logger.info("Starting loop forever") # Blocking class that loops forever # Also handles reconnecting client.loop_forever()
40.316327
114
0.747659
28e89953caba2ae7d1bd0c7665458c78ebac0006
35,884
py
Python
src/ploomber/sources/notebooksource.py
Vinay26k/ploomber
dea26619662449beb62a4e0ba5c717b2357d1045
[ "Apache-2.0" ]
null
null
null
src/ploomber/sources/notebooksource.py
Vinay26k/ploomber
dea26619662449beb62a4e0ba5c717b2357d1045
[ "Apache-2.0" ]
null
null
null
src/ploomber/sources/notebooksource.py
Vinay26k/ploomber
dea26619662449beb62a4e0ba5c717b2357d1045
[ "Apache-2.0" ]
null
null
null
""" On languages and kernels ------------------------ NotebookSource represents source code in a Jupyter notebook format (language agnostic). Apart from .ipynb, we also support any other extension supported by jupytext. Given a notebook, we have to know which language it is written in to extract upstream/product variables (though this only happens when the option of extracting dependencies automatically is on), we also have to determine the Jupyter kernel to use (this is always needed). The unequivocal place to store this information is in the notebook metadata section, but given that we advocate for the use of scripts (converted to notebooks via jupytext), they most likely won't contain metadata (metadata saving is turned off by default in jupytext), so we have to infer this ourselves. To make things more complex, jupytext adds its own metadata section but we are ignoring that for now. Given that there are many places where this information might be stored, we have a few rules to automatically determine language and kernel given a script/notebook. """ from functools import wraps import ast from pathlib import Path import warnings from contextlib import redirect_stdout from io import StringIO from copy import deepcopy # papermill is importing a deprecated module from pyarrow with warnings.catch_warnings(): warnings.simplefilter('ignore', FutureWarning) from papermill.parameterize import parameterize_notebook import nbformat import jupytext from jupytext import cli as jupytext_cli from jupytext.formats import long_form_one_format, short_form_one_format from jupytext.config import JupytextConfiguration import parso from ploomber.exceptions import (SourceInitializationError, MissingParametersCellError) from ploomber.placeholders.placeholder import Placeholder from ploomber.util import requires from ploomber.sources.abc import Source from ploomber.sources.nb_utils import find_cell_with_tag, find_cell_with_tags from ploomber.static_analysis.extractors import extractor_class_for_language from ploomber.static_analysis.pyflakes import check_notebook from ploomber.sources import docstring from ploomber.io import pretty_print def _jupytext_fmt(primitive, extension): """ Determine the jupytext fmt string to use based on the content and extension """ if extension != 'ipynb': fmt, _ = jupytext.guess_format(primitive, f'.{extension}') fmt_final = f'{extension}:{fmt}' else: fmt_final = '.ipynb' return fmt_final # TODO: we should unit test that this function is called, as opposed to vanilla # .read_text def _read_primitive(path): """ We read using the UTF-8 instead of the default encoding since notebooks are always stored in UTF-8. We can see this in nbformat, which always reads as UTF-8: https://github.com/jupyter/nbformat/blob/df63593b64a15ee1c37b522973c39e8674f93c5b/nbformat/__init__.py#L125 Scripts are a different story since they may have other encodings, however, modern editors have UTF-8 as default (example: VSCode https://docs.microsoft.com/en-us/powershell/scripting/dev-cross-plat/vscode/understanding-file-encoding?view=powershell-7.2#configuring-vs-code) so it's safer to use UTF-8 than the default encoding. jupytext already does this: https://github.com/mwouts/jupytext/issues/896 """ return Path(path).read_text(encoding='utf-8') def _get_last_cell(nb): """ Get last cell, ignores cells with empty source (unless the notebook only has one cell and it's empty) """ # iterate in reverse order for idx in range(-1, -len(nb.cells) - 1, -1): cell = nb.cells[idx] # only return it if it has some code if cell['source'].strip(): return cell # otherwise return the first cell return nb.cells[0] def _get_cell_suggestion(nb): format_name = nb.metadata.get('jupytext', {}).get('text_representation', {}).get('format_name') preamble = 'Add a new cell with your code' if format_name == 'light': message = f'{preamble}:\n' + """ # + tags=["parameters"] # your parameters here... # - # + # your code here... # - """ elif format_name == 'percent': message = f'{preamble}:\n' + """ # %% tags=["parameters"] # your parameters here... # %% # your code here... """ else: message = preamble + '.' return message def requires_path(func): """ Checks if NotebookSource instance was initialized from a file, raises an error if not """ @wraps(func) def wrapper(self, *args, **kwargs): if self._path is None: raise ValueError(f'Cannot use {func.__name__!r} if notebook was ' 'not initialized from a file') return func(self, *args, **kwargs) return wrapper class NotebookSource(Source): """ A source object representing a jupyter notebook (or any format supported by jupytext) Parameters ---------- hot_reload : bool, optional Makes the notebook always read the file before rendering kernelspec_name : str, optional Which kernel to use for executing the notebook, it overrides any existing kernelspec metadata in the notebook. If the notebook does not have kernelspec info, this parameter is required. Defaults to None. To see which kernelspecs are available run "jupyter kernelspec list" check_if_kernel_installed : bool, optional Check if the kernel is installed during initization Notes ----- The render method prepares the notebook for execution: it adds the parameters and it makes sure kernelspec is defined """ @requires([ 'parso', 'pyflakes', 'jupytext', 'nbformat', 'papermill', 'jupyter_client' ]) def __init__(self, primitive, hot_reload=False, ext_in=None, kernelspec_name=None, static_analysis='regular', check_if_kernel_installed=True): # any non-py file must first be converted using jupytext, we need # that representation for validation, if input is already a .py file # do not convert. If passed a string, try to guess format using # jupytext. We also need ipynb representation for .develop(), # but do lazy loading in case we don't need both self._primitive = primitive self._check_if_kernel_installed = check_if_kernel_installed # this happens if using SourceLoader if isinstance(primitive, Placeholder): self._path = primitive.path self._primitive = str(primitive) elif isinstance(primitive, str): self._path = None self._primitive = primitive elif isinstance(primitive, Path): self._path = primitive if primitive.is_dir(): raise SourceInitializationError( f'Failed to initialize {str(primitive)!r}. ' 'Expected a file, got a directory.' + _suggest_ploomber_scaffold_is_dir()) if not primitive.exists(): raise SourceInitializationError( f'Failed to initialize {str(primitive)!r}. ' 'File does not exist.' + _suggest_ploomber_scaffold_missing_file()) self._primitive = _read_primitive(primitive) else: raise TypeError('Notebooks must be initialized from strings, ' 'Placeholder or pathlib.Path, got {}'.format( type(primitive))) static_analysis_vals = {'disable', 'regular', 'strict'} if static_analysis not in static_analysis_vals: raise ValueError(f'{static_analysis!r} is not a ' "valid 'static_analysis' value, choose one from: " f'{pretty_print.iterable(static_analysis_vals)}') self.static_analysis = static_analysis self._kernelspec_name = kernelspec_name self._hot_reload = hot_reload # TODO: validate ext_in values and extensions if self._path is None and hot_reload: raise ValueError('hot_reload only works in the notebook was ' 'loaded from a file') if self._path is not None and ext_in is None: self._ext_in = self._path.suffix[1:] elif self._path is None and ext_in is None: if Path(self._primitive).exists(): path = str(self._primitive) raise ValueError( f'The file {path!r} you passed looks like ' 'a path to a file. Perhaps you meant passing a ' 'pathlib.Path object? Example:\n\n' 'from pathlib import Path\n' f'NotebookRunner(Path({path!r}))') else: raise ValueError( '"ext_in" cannot be None if the notebook is ' 'initialized from a string. Either pass ' 'a pathlib.Path object with the notebook file ' 'location or pass the source code as string ' 'and include the "ext_in" parameter') elif self._path is not None and ext_in is not None: raise ValueError('"ext_in" must be None if notebook is ' 'initialized from a pathlib.Path object') elif self._path is None and ext_in is not None: self._ext_in = ext_in # try to determine language based on extension, though this test # might be inconclusive if dealing with a ipynb file, though we only # use this to determine the appropriate jupyter kernel when # initializing from a string, when initializing from files, the # extension is used to determine the kernel self._language = determine_language(self._ext_in) self._loc = None self._params = None self._nb_str_unrendered = None self._nb_obj_unrendered = None self._nb_str_rendered = None self._nb_obj_rendered = None # this will raise an error if kernelspec_name is invalid self._read_nb_str_unrendered() self._post_init_validation(str(self._primitive)) @property def primitive(self): if self._hot_reload: self._primitive = _read_primitive(self._path) return self._primitive def render(self, params): """Render notebook (fill parameters using papermill) """ self._params = json_serializable_params(params) self._render() def _render(self): # _read_nb_str_unrendered uses hot_reload, this ensures we always get # the latest version _, nb = self._read_nb_str_unrendered() if 'parameters' in _get_last_cell(nb).metadata.get('tags', []): cell_suggestion = _get_cell_suggestion(nb) kind = 'notebook' if self._ext_in == 'ipynb' else 'script' raise SourceInitializationError( f'Error processing {str(self._path)!r}: the last cell ' f'in the {kind} is the parameters cell. {cell_suggestion}') # this is needed for parameterize_notebook to work for cell in nb.cells: if not hasattr(cell.metadata, 'tags'): cell.metadata['tags'] = [] nb.metadata['papermill'] = dict() # NOTE: we use parameterize_notebook instead of execute_notebook # with the prepare_only option because the latter adds a "papermill" # section on each cell's metadata, which makes it too verbose when # using NotebookRunner.develop() when the source is script (each cell # will have an empty "papermill" metadata dictionary) nb = parameterize_notebook(nb, self._params) # delete empty tags to prevent cluttering the notebooks for cell in nb.cells: if not len(cell.metadata['tags']): cell.metadata.pop('tags') self._nb_str_rendered = nbformat.writes(nb) self._post_render_validation() def _read_nb_str_unrendered(self): """ Returns the notebook representation (JSON string), this is the raw source code passed, does not contain injected parameters. Adds kernelspec info if not present based on the kernelspec_name, this metadata is required for papermill to know which kernel to use. An exception is raised if we cannot determine kernel information. """ # hot_reload causes to always re-evalaute the notebook representation if self._nb_str_unrendered is None or self._hot_reload: # this is the notebook node representation nb = _to_nb_obj( self.primitive, ext=self._ext_in, # passing the underscored version # because that's the only one available # when this is initialized language=self._language, kernelspec_name=self._kernelspec_name, check_if_kernel_installed=self._check_if_kernel_installed, path=self._path) # if the user injected cells manually (with plomber nb --inject) # the source will contain the injected cell, remove it because # it should not be considered part of the source code self._nb_obj_unrendered = _cleanup_rendered_nb(nb, print_=False) # get the str representation. always write from nb_obj, even if # this was initialized with a ipynb file, nb_obj contains # kernelspec info self._nb_str_unrendered = nbformat.writes( self._nb_obj_unrendered, version=nbformat.NO_CONVERT) return self._nb_str_unrendered, self._nb_obj_unrendered def _post_init_validation(self, value): """ Validate notebook after initialization (run pyflakes to detect syntax errors) """ # NOTE: what happens if I pass source code with errors to parso? # maybe we don't need to use pyflakes after all # we can also use compile. can pyflakes detect things that # compile cannot? params_cell, _ = find_cell_with_tag(self._nb_obj_unrendered, 'parameters') if params_cell is None: loc = ' "{}"'.format(self.loc) if self.loc else '' msg = ('Notebook{} does not have a cell tagged ' '"parameters"'.format(loc)) if self.loc and Path(self.loc).suffix == '.py': msg += """. Add a cell at the top like this: # %% tags=["parameters"] upstream = None product = None Go to: https://ploomber.io/s/params for more information """ if self.loc and Path(self.loc).suffix == '.ipynb': msg += ('. Add a cell at the top and tag it as "parameters". ' 'Go to the next URL for ' 'details: https://ploomber.io/s/params') raise MissingParametersCellError(msg) def _post_render_validation(self): """ Validate params passed against parameters in the notebook """ # NOTE: maybe static_analysis = off should not turn off everything # but only warn # strict mode: raise and check signature # regular mode: _check_notebook called in NotebookRunner.run if self.static_analysis == 'strict': self._check_notebook(raise_=True, check_signature=True) else: # otherwise, only warn on unused parameters _warn_on_unused_params(self._nb_obj_unrendered, self._params) def _check_notebook(self, raise_, check_signature): if self.static_analysis and self.language == 'python': # warn if errors (e.g., undeclared variables, syntax errors) check_notebook(self._nb_str_to_obj(self._nb_str_rendered), self._params, filename=self._path or 'notebook', raise_=raise_, check_signature=check_signature) @property def doc(self): """ Returns notebook docstring parsed either from a triple quoted string in the top cell or a top markdown markdown cell """ return docstring.extract_from_nb(self._nb_obj_unrendered) @property def loc(self): return self._path @property def name(self): # filename without extension(e.g., plot.py -> plot) if self._path: return self._path.stem @property def nb_str_rendered(self): """ Returns the notebook (as a string) with parameters injected, hot reloadig if necessary """ if self._nb_str_rendered is None: raise RuntimeError('Attempted to get location for an unrendered ' 'notebook, render it first') if self._hot_reload: self._render() return self._nb_str_rendered @property def nb_obj_rendered(self): """ Returns the notebook (as an objet) with parameters injected, hot reloadig if necessary """ if self._nb_obj_rendered is None: # using self.nb_str_rendered triggers hot reload if needed self._nb_obj_rendered = self._nb_str_to_obj(self.nb_str_rendered) return self._nb_obj_rendered def __str__(self): # reload if empty or hot_reload=True self._read_nb_str_unrendered() # FIXME: this should ignore changes to the markdown cells return '\n'.join([c.source for c in self._nb_obj_unrendered.cells]) def __repr__(self): if self.loc is not None: return "{}('{}')".format(type(self).__name__, self.loc) else: return "{}(loaded from string)".format(type(self).__name__) @property def variables(self): raise NotImplementedError @property def extension(self): # this can be Python, R, Julia, etc. We are handling them the same, # for now, no normalization can be done. # One approach is to use the ext if loaded from file, otherwise None return None # FIXME: add this to the abstract class, probably get rid of "extension" # since it's not informative (ipynb files can be Python, R, etc) @property def language(self): """ Notebook Language (Python, R, etc), this is a best-effort property, can be None if we could not determine the language """ if self._language is None: self._read_nb_str_unrendered() try: # make sure you return "r" instead of "R" return (self._nb_obj_unrendered.metadata.kernelspec.language. lower()) except AttributeError: return None else: return self._language def _nb_str_to_obj(self, nb_str): return nbformat.reads(nb_str, as_version=nbformat.NO_CONVERT) def _get_parameters_cell(self): self._read_nb_str_unrendered() cell, _ = find_cell_with_tag(self._nb_obj_unrendered, tag='parameters') return cell.source def extract_upstream(self): extractor_class = extractor_class_for_language(self.language) return extractor_class(self._get_parameters_cell()).extract_upstream() def extract_product(self): extractor_class = extractor_class_for_language(self.language) return extractor_class(self._get_parameters_cell()).extract_product() @requires_path def save_injected_cell(self): """ Inject cell, overwrite the source file (and any paired files) """ fmt_ = _jupytext_fmt(self._primitive, self._ext_in) # add metadata to flag that the cell was injected manually recursive_update( self.nb_obj_rendered, dict(metadata=dict(ploomber=dict(injected_manually=True)))) # Are we updating a text file that has a metadata filter? If so, # add ploomber as a section that must be stored if (self.nb_obj_rendered.metadata.get( 'jupytext', {}).get('notebook_metadata_filter') == '-all'): recursive_update( self.nb_obj_rendered, dict(metadata=dict(jupytext=dict( notebook_metadata_filter='ploomber,-all')))) # overwrite jupytext.write(self.nb_obj_rendered, self._path, fmt=fmt_) # overwrite all paired files for path, fmt_ in iter_paired_notebooks(self.nb_obj_rendered, fmt_, self._path.stem): jupytext.write(self.nb_obj_rendered, fp=path, fmt=fmt_) @requires_path def remove_injected_cell(self): """ Delete injected cell, overwrite the source file (and any paired files) """ nb_clean = _cleanup_rendered_nb(self._nb_obj_unrendered) # remove metadata recursive_update( nb_clean, dict(metadata=dict(ploomber=dict(injected_manually=None)))) fmt_ = _jupytext_fmt(self._primitive, self._ext_in) # overwrite jupytext.write(nb_clean, self._path, fmt=fmt_) # overwrite all paired files for path, fmt_ in iter_paired_notebooks(self._nb_obj_unrendered, fmt_, self._path.stem): jupytext.write(nb_clean, fp=path, fmt=fmt_) @requires_path def format(self, fmt): """Change source format Returns ------- str The path if the extension changed, None otherwise """ nb_clean = _cleanup_rendered_nb(self._nb_obj_unrendered) ext_file = self._path.suffix ext_format = long_form_one_format(fmt)['extension'] extension_changed = ext_file != ext_format if extension_changed: path = self._path.with_suffix(ext_format) Path(self._path).unlink() else: path = self._path jupytext.write(nb_clean, path, fmt=fmt) return path if extension_changed else None @requires_path def pair(self, base_path): """Pairs with an ipynb file """ # TODO: add unit test if self._ext_in == 'ipynb': raise ValueError( 'pairing only works with .py files, got .ipynb. ' 'Yoy may convert the .ipynb to .py and try again.') fmt, _ = jupytext.guess_format(self._primitive, f'.{self._ext_in}') fmt_ = f'{self._ext_in}:{fmt}' # mute jupytext's output with redirect_stdout(StringIO()): jupytext_cli.jupytext(args=[ '--set-formats', f'{base_path}//ipynb,{fmt_}', str(self._path) ]) @requires_path def sync(self): """Pairs with and ipynb file """ # mute jupytext's output with redirect_stdout(StringIO()): jupytext_cli.jupytext(args=['--sync', str(self._path)]) def json_serializable_params(params): # papermill only allows JSON serializable parameters # convert Params object to dict params = params.to_dict() params['product'] = params['product'].to_json_serializable() if params.get('upstream'): params['upstream'] = params['upstream'].to_json_serializable() return params def _to_nb_obj(source, language, ext=None, kernelspec_name=None, check_if_kernel_installed=True, path=None): """ Convert to jupyter notebook via jupytext, if the notebook does not contain kernel information and the user did not pass a kernelspec_name explicitly, we will try to infer the language and select a kernel appropriately. If a valid kernel is found, it is added to the notebook. If none of this works, an exception is raised. If also converts the code string to its notebook node representation, adding kernel data accordingly. Parameters ---------- source : str Jupyter notebook (or jupytext compatible formatted) document language : str Programming language path : str, default=None Script/notebook path. If not None, it's used to throw an informative error if the notebook fails to load Returns ------- nb Notebook object Raises ------ RenderError If the notebook has no kernelspec metadata and kernelspec_name is None. A notebook without kernelspec metadata will not display in jupyter notebook correctly. We have to make sure all notebooks have this. """ import jupytext # let jupytext figure out the format try: nb = jupytext.reads(source, fmt=ext) except Exception as e: what = 'notebook' if ext == 'ipynb' else 'script' err = f'Failed to read {what}' if path is not None: err += f' from {str(path)!r}' raise SourceInitializationError(err) from e # NOTE: I can add the cell with parameters here, but what happens if # extract_upstream is false? would that be a problem? check_nb_kernelspec_info(nb, kernelspec_name, ext, language, check_if_installed=check_if_kernel_installed) return nb def check_nb_kernelspec_info(nb, kernelspec_name, ext, language, check_if_installed=True): """Make sure the passed notebook has kernel info Parameters ---------- check_if_installed : bool Also check if the kernelspec is installed, nb.metadata.kernelspec to be replaced by whatever information jupyter returns when requesting the kernelspec """ import jupyter_client kernel_name = determine_kernel_name(nb, kernelspec_name, ext, language) # cannot keep going if we don't have the kernel name if kernel_name is None: raise SourceInitializationError( 'Notebook does not contain kernelspec metadata and ' 'kernelspec_name was not specified, either add ' 'kernelspec info to your source file or specify ' 'a kernelspec by name. To see list of installed kernels run ' '"jupyter kernelspec list" in the terminal (first column ' 'indicates the name). Python is usually named "python3", ' 'R usually "ir"') if check_if_installed: kernelspec = jupyter_client.kernelspec.get_kernel_spec(kernel_name) nb.metadata.kernelspec = { "display_name": kernelspec.display_name, "language": kernelspec.language, "name": kernel_name } else: if 'metadata' not in nb: nb['metadata'] = dict() if 'kernelspec' not in nb['metadata']: nb['metadata']['kernelspec'] = dict() # we cannot ask jupyter, so we fill this in ourselves nb.metadata.kernelspec = { "display_name": 'R' if kernel_name == 'ir' else 'Python 3', "language": 'R' if kernel_name == 'ir' else 'python', "name": kernel_name } def determine_kernel_name(nb, kernelspec_name, ext, language): """ Determines the kernel name by using the following data (returns whatever gives kernel info first): 1) explicit kernel from the user 2) notebook's metadata 3) file extension 4) language 5) best guess """ # explicit kernelspec name if kernelspec_name is not None: return kernelspec_name # use metadata info try: return nb.metadata.kernelspec.name except AttributeError: pass # use language from extension if passed, otherwise use language variable if ext: language = determine_language(ext) lang2kernel = {'python': 'python3', 'r': 'ir'} if language in lang2kernel: return lang2kernel[language] # nothing worked, try to guess if it's python... is_python_ = is_python(nb) if is_python_: return 'python3' else: return None def inject_cell(model, params): """Inject params (by adding a new cell) to a model Notes ----- A model is different than a notebook: https://jupyter-notebook.readthedocs.io/en/stable/extending/contents.html """ nb = nbformat.from_dict(model['content']) # we must ensure nb has kernelspec info, otherwise papermill will fail to # parametrize ext = model['name'].split('.')[-1] check_nb_kernelspec_info(nb, kernelspec_name=None, ext=ext, language=None) # papermill adds a bunch of things before calling parameterize_notebook # if we don't add those things, parameterize_notebook breaks # https://github.com/nteract/papermill/blob/0532d499e13e93d8990211be33e9593f1bffbe6c/papermill/iorw.py#L400 if not hasattr(nb.metadata, 'papermill'): nb.metadata['papermill'] = { 'parameters': dict(), 'environment_variables': dict(), 'version': None, } for cell in nb.cells: if not hasattr(cell.metadata, 'tags'): cell.metadata['tags'] = [] params = json_serializable_params(params) comment = ('This cell was injected automatically based on your stated ' 'upstream dependencies (cell above) and pipeline.yaml ' 'preferences. It is temporary and will be removed when you ' 'save this notebook') model['content'] = parameterize_notebook(nb, params, report_mode=False, comment=comment) def _cleanup_rendered_nb(nb, print_=True): """ Cleans up a rendered notebook object. Removes cells with tags: injected-parameters, debugging-settings, and metadata injected by papermill """ out = find_cell_with_tags(nb, ['injected-parameters', 'debugging-settings']) if print_: for key in out.keys(): print(f'Removing {key} cell...') idxs = set(cell['index'] for cell in out.values()) nb['cells'] = [ cell for idx, cell in enumerate(nb['cells']) if idx not in idxs ] # papermill adds "tags" to all cells that don't have them, remove them # if they are empty to avoid cluttering the script for cell in nb['cells']: if 'tags' in cell.get('metadata', {}): if not len(cell['metadata']['tags']): del cell['metadata']['tags'] return nb def is_python(nb): """ Determine if the notebook is Python code for a given notebook object, look for metadata.kernelspec.language first, if not defined, try to guess if it's Python, it's conservative and it returns False if the code is valid Python but contains (<-), in which case it's much more likely to be R """ is_python_ = None # check metadata first try: language = nb.metadata.kernelspec.language except AttributeError: pass else: is_python_ = language == 'python' # no language defined in metadata, check if it's valid python if is_python_ is None: code_str = '\n'.join([c.source for c in nb.cells]) try: ast.parse(code_str) except SyntaxError: is_python_ = False else: # there is a lot of R code which is also valid Python code! So # let's # run a quick test. It is very unlikely to have "<-" in Python ( # {less than} {negative} but extremely common {assignment} if '<-' not in code_str: is_python_ = True # inconclusive test... if is_python_ is None: is_python_ = False return is_python_ def determine_language(extension): """ A function to determine programming language given file extension, returns programming language name (all lowercase) if could be determined, None if the test is inconclusive """ if extension.startswith('.'): extension = extension[1:] mapping = {'py': 'python', 'r': 'r', 'R': 'r', 'Rmd': 'r', 'rmd': 'r'} # ipynb can be many languages, it must return None return mapping.get(extension) def recursive_update(target, update): """Recursively update a dictionary. Taken from jupytext.header """ for key in update: value = update[key] if value is None: # remove if it exists target.pop(key, None) elif isinstance(value, dict): target[key] = recursive_update(target.get(key, {}), value) else: target[key] = value return target def parse_jupytext_format(fmt, name): """ Parse a jupytext format string (such as notebooks//ipynb) and return the path to the file and the extension """ fmt_parsed = long_form_one_format(fmt) path = Path(fmt_parsed['prefix'], f'{name}{fmt_parsed["extension"]}') del fmt_parsed['prefix'] return path, short_form_one_format(fmt_parsed) def iter_paired_notebooks(nb, fmt_, name): formats = nb.metadata.get('jupytext', {}).get('formats', '') if not formats: return formats = formats.split(',') formats.remove(fmt_) # overwrite all paired files for path, fmt_current in (parse_jupytext_format(fmt, name) for fmt in formats): yield path, fmt_current def _nb2codestr(nb): return '\n'.join([c.source for c in nb.cells if c.cell_type == 'code']) def _warn_on_unused_params(nb, params): nb = deepcopy(nb) _, idx = find_cell_with_tag(nb, 'parameters') del nb.cells[idx] code = _nb2codestr(nb) # NOTE: if there a syntax error we cannot accurately check this m = parso.parse(code) names = set(m.get_used_names()) # remove product since it may not be required # FIXME: maybe only remove it if it's a dictionary with >2 keys unused = set(params) - names - {'product'} if unused: warnings.warn('These parameters are not used in the ' f'task\'s source code: {pretty_print.iterable(unused)}') def add_parameters_cell(path, extract_upstream, extract_product): """ Add parameters cell to a script/notebook in the given path, overwrites the original file """ source = '' if extract_upstream: source += """\ # declare a list tasks whose products you want to use as inputs upstream = None """ if extract_product: source += """\ # declare a dictionary with the outputs of this task product = None """ c = JupytextConfiguration() c.notebook_metadata_filter c.cell_metadata_filter = 'all' nb = jupytext.read(path) new_cell = nbformat.v4.new_code_cell(source, metadata={'tags': ['parameters']}) nb.cells.insert(0, new_cell) jupytext.write(nb, path, config=c) def _suggest_ploomber_scaffold_missing_file(): if Path('pipeline.yaml').is_file(): return '\nTo create it, run: ploomber scaffold' else: return '' def _suggest_ploomber_scaffold_is_dir(): if Path('pipeline.yaml').is_file(): return ('\nTo create it, delete the directory, ' 'then run: ploomber scaffold') else: return ''
34.305927
148
0.625237
b0704a0487fe62b838fa728b127c6f2a091a2355
5,061
py
Python
tests/vfs/vshadow_file_entry.py
Defense-Cyber-Crime-Center/dfvfs
da2ccbc4c989ced5ad651057bd8f5a4b18af6d37
[ "Apache-2.0" ]
2
2016-02-18T12:46:26.000Z
2022-03-13T03:05:05.000Z
tests/vfs/vshadow_file_entry.py
Defense-Cyber-Crime-Center/dfvfs
da2ccbc4c989ced5ad651057bd8f5a4b18af6d37
[ "Apache-2.0" ]
null
null
null
tests/vfs/vshadow_file_entry.py
Defense-Cyber-Crime-Center/dfvfs
da2ccbc4c989ced5ad651057bd8f5a4b18af6d37
[ "Apache-2.0" ]
5
2016-12-18T08:05:39.000Z
2019-11-19T21:18:00.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- """Tests for the file entry implementation using the pyvshadow.""" import os import unittest from dfvfs.path import os_path_spec from dfvfs.path import qcow_path_spec from dfvfs.path import vshadow_path_spec from dfvfs.resolver import context from dfvfs.vfs import vshadow_file_entry from dfvfs.vfs import vshadow_file_system class VShadowFileEntryTest(unittest.TestCase): """The unit test for the VSS file entry object.""" def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() test_file = os.path.join(u'test_data', u'vsstest.qcow2') path_spec = os_path_spec.OSPathSpec(location=test_file) self._qcow_path_spec = qcow_path_spec.QcowPathSpec(parent=path_spec) self._vshadow_path_spec = vshadow_path_spec.VShadowPathSpec( location=u'/', parent=self._qcow_path_spec) self._file_system = vshadow_file_system.VShadowFileSystem( self._resolver_context) self._file_system.Open(path_spec=self._vshadow_path_spec) def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._file_system.Close() # qcowmount test_data/vsstest.qcow2 fuse/ # vshadowinfo fuse/qcow1 # # Volume Shadow Snapshot information: # Number of stores: 2 # # Store: 1 # ... # Identifier : 600f0b69-5bdf-11e3-9d6c-005056c00008 # Shadow copy set ID : 0a4e3901-6abb-48fc-95c2-6ab9e38e9e71 # Creation time : Dec 03, 2013 06:35:09.736378700 UTC # Shadow copy ID : 4e3c03c2-7bc6-4288-ad96-c1eac1a55f71 # Volume size : 1073741824 bytes # Attribute flags : 0x00420009 # # Store: 2 # Identifier : 600f0b6d-5bdf-11e3-9d6c-005056c00008 # Shadow copy set ID : 8438a0ee-0f06-443b-ac0c-2905647ca5d6 # Creation time : Dec 03, 2013 06:37:48.919058300 UTC # Shadow copy ID : 18f1ac6e-959d-436f-bdcc-e797a729e290 # Volume size : 1073741824 bytes # Attribute flags : 0x00420009 def testIntialize(self): """Test the initialize functionality.""" file_entry = vshadow_file_entry.VShadowFileEntry( self._resolver_context, self._file_system, self._vshadow_path_spec) self.assertNotEqual(file_entry, None) def testGetParentFileEntry(self): """Test the get parent file entry functionality.""" path_spec = vshadow_path_spec.VShadowPathSpec( store_index=1, parent=self._qcow_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) self.assertNotEqual(file_entry, None) parent_file_entry = file_entry.GetParentFileEntry() self.assertEqual(parent_file_entry, None) def testGetStat(self): """Test the get stat functionality.""" path_spec = vshadow_path_spec.VShadowPathSpec( store_index=1, parent=self._qcow_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) stat_object = file_entry.GetStat() self.assertNotEqual(stat_object, None) self.assertEqual(stat_object.type, stat_object.TYPE_FILE) def testIsFunctions(self): """Test the Is? functionality.""" path_spec = vshadow_path_spec.VShadowPathSpec( store_index=1, parent=self._qcow_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) self.assertFalse(file_entry.IsRoot()) self.assertFalse(file_entry.IsVirtual()) self.assertTrue(file_entry.IsAllocated()) self.assertFalse(file_entry.IsDevice()) self.assertFalse(file_entry.IsDirectory()) self.assertTrue(file_entry.IsFile()) self.assertFalse(file_entry.IsLink()) self.assertFalse(file_entry.IsPipe()) self.assertFalse(file_entry.IsSocket()) path_spec = vshadow_path_spec.VShadowPathSpec( location=u'/', parent=self._qcow_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) self.assertTrue(file_entry.IsRoot()) self.assertTrue(file_entry.IsVirtual()) self.assertTrue(file_entry.IsAllocated()) self.assertFalse(file_entry.IsDevice()) self.assertTrue(file_entry.IsDirectory()) self.assertFalse(file_entry.IsFile()) self.assertFalse(file_entry.IsLink()) self.assertFalse(file_entry.IsPipe()) self.assertFalse(file_entry.IsSocket()) def testSubFileEntries(self): """Test the sub file entries iteration functionality.""" path_spec = vshadow_path_spec.VShadowPathSpec( location=u'/', parent=self._qcow_path_spec) file_entry = self._file_system.GetFileEntryByPathSpec(path_spec) self.assertNotEqual(file_entry, None) self.assertEqual(file_entry.number_of_sub_file_entries, 2) expected_sub_file_entry_names = [u'vss1', u'vss2'] sub_file_entry_names = [] for sub_file_entry in file_entry.sub_file_entries: sub_file_entry_names.append(sub_file_entry.name) self.assertEqual( len(sub_file_entry_names), len(expected_sub_file_entry_names)) self.assertEqual( sorted(sub_file_entry_names), sorted(expected_sub_file_entry_names)) if __name__ == '__main__': unittest.main()
34.903448
76
0.742343
d7d969d13441f34ff644b0751fe22652bfbe141b
10,545
py
Python
src/oscarcch/calculator.py
thelabnyc/django-oscar-cch
d98832c9cf642c6d241e3aaf4b1dc631c3d5ce0e
[ "0BSD" ]
null
null
null
src/oscarcch/calculator.py
thelabnyc/django-oscar-cch
d98832c9cf642c6d241e3aaf4b1dc631c3d5ce0e
[ "0BSD" ]
14
2020-02-11T21:53:07.000Z
2022-01-13T00:40:33.000Z
src/oscarcch/calculator.py
thelabnyc/django-oscar-cch
d98832c9cf642c6d241e3aaf4b1dc631c3d5ce0e
[ "0BSD" ]
1
2016-05-31T10:02:38.000Z
2016-05-31T10:02:38.000Z
from datetime import datetime from decimal import Decimal from . import exceptions, settings import logging import soap logger = logging.getLogger(__name__) POSTCODE_LEN = 5 PLUS4_LEN = 4 class CCHTaxCalculator(object): """ Simple interface between Python and the CCH Sales Tax Office SOAP API. """ precision = settings.CCH_PRECISION wsdl = settings.CCH_WSDL entity_id = settings.CCH_ENTITY divsion_id = settings.CCH_DIVISION max_retries = settings.CCH_MAX_RETRIES def __init__(self, breaker=None): """ Construct a CCHTaxCalculator instance You may optionally supply a ``pybreaker.CircuitBreaker`` instance. If you do so, it will be used to implement the CircuitBreaker pattern around the SOAP calls to the CCH web service. :param breaker: Optional :class:`CircuitBreaker <pybreaker.CircuitBreaker>` instance """ self.breaker = breaker def apply_taxes(self, shipping_address, basket=None, shipping_charge=None): """ Apply taxes to a Basket instance using the given shipping address. Pass return value of this method to :func:`OrderTaxation.save_details <oscarcch.models.OrderTaxation.save_details>` to persist the taxation details, CCH transaction ID, etc in the database. :param shipping_address: :class:`ShippingAddress <oscar.apps.order.models.ShippingAddress>` instance :param basket: :class:`Basket <oscar.apps.basket.models.Basket>` instance :param shipping_charge: :class:`ShippingCharge <oscarcch.prices.ShippingCharge>` instance :return: SOAP Response. """ response = self._get_response(shipping_address, basket, shipping_charge) # Check the response for errors respOK = self._check_response_messages(response) if not respOK: response = None # Build map of line IDs to line tax details cch_line_map = {} if response and response.LineItemTaxes: cch_line_map = { item.ID: item for item in response.LineItemTaxes.LineItemTax } # Apply taxes to line items if basket is not None: for line in basket.all_lines(): line_id = str(line.id) taxes = cch_line_map.get(line_id) self._apply_taxes_to_price( taxes, line.purchase_info.price, line.quantity ) # Apply taxes to shipping charge if shipping_charge is not None: for shipping_charge_component in shipping_charge.components: shipping_taxes = cch_line_map.get(shipping_charge_component.cch_line_id) self._apply_taxes_to_price(shipping_taxes, shipping_charge_component, 1) # Return CCH response return response def _apply_taxes_to_price(self, taxes, price, quantity): # Taxes come in two forms: quantity and percentage based # We need to handle both of those here. The tricky part is that CCH returns data # for an entire line item (inclusive quantity), but Oscar needs the tax info for # each unit in the line (exclusive quantity). So, we use the details provided to # derive the per-unit taxes before applying them. price.clear_taxes() if taxes: for tax in taxes.TaxDetails.TaxDetail: unit_fee = Decimal(str(tax.FeeApplied)) / quantity unit_tax = Decimal(str(tax.TaxApplied)) / quantity price.add_tax( authority_name=tax.AuthorityName, tax_name=tax.TaxName, tax_applied=unit_tax, fee_applied=unit_fee, ) # Check our work and make sure the total we arrived at matches the total CCH gave us total_line_tax = (price.tax * quantity).quantize(self.precision) total_applied_tax = Decimal(taxes.TotalTaxApplied).quantize(self.precision) if total_applied_tax != total_line_tax: raise RuntimeError( ( "Taxation miscalculation occurred! " "Details sum to %s, which doesn't match given sum of %s" ) % (total_line_tax, taxes.TotalTaxApplied) ) else: price.tax = Decimal("0.00") def _get_response(self, shipping_address, basket, shipping_charge): """Fetch CCH tax data for the given basket and shipping address""" response = None retry_count = 0 while response is None and retry_count <= self.max_retries: response = self._get_response_inner( shipping_address, basket, shipping_charge, retry_count=retry_count ) retry_count += 1 return response def _get_response_inner( self, shipping_address, basket, shipping_charge, retry_count ): response = None def _call_service(): order = self._build_order(shipping_address, basket, shipping_charge) if order is None: return None response = self.client.service.CalculateRequest( self.entity_id, self.divsion_id, order ) return response try: if self.breaker is not None: response = self.breaker.call(_call_service) else: response = _call_service() except Exception as e: logger.exception(e) return response def _check_response_messages(self, response): """Raise an exception if response messages contains any reported errors.""" if response is None: return False if response.Messages: for message in response.Messages.Message: if message.Code > 0: exc = exceptions.build(message.Severity, message.Code, message.Info) logger.exception(exc) return False return True @property def client(self): """Lazy constructor for SOAP client""" return soap.get_client(self.wsdl, "CCH") def _build_order(self, shipping_address, basket, shipping_charge): """Convert an Oscar Basket and ShippingAddresss into a CCH Order object""" order = self.client.factory.create("ns15:Order") order.InvoiceDate = datetime.now(settings.CCH_TIME_ZONE) order.SourceSystem = settings.CCH_SOURCE_SYSTEM order.TestTransaction = settings.CCH_TEST_TRANSACTIONS order.TransactionType = settings.CCH_TRANSACTION_TYPE order.CustomerType = settings.CCH_CUSTOMER_TYPE order.ProviderType = settings.CCH_PROVIDER_TYPE order.TransactionID = 0 order.finalize = settings.CCH_FINALIZE_TRANSACTION # Add CCH lines for each basket line if basket is not None: for line in basket.all_lines(): qty = getattr(line, "cch_quantity", line.quantity) if qty <= 0: continue # Line Info item = self.client.factory.create("ns11:LineItem") item.ID = line.id item.AvgUnitPrice = Decimal( line.line_price_excl_tax_incl_discounts / qty ).quantize(Decimal("0.00001")) item.Quantity = qty item.ExemptionCode = None item.SKU = self._get_product_data("sku", line) # Product Info item.ProductInfo = self.client.factory.create("ns21:ProductInfo") item.ProductInfo.ProductGroup = self._get_product_data("group", line) item.ProductInfo.ProductItem = self._get_product_data("item", line) # Ship From/To Addresses item.NexusInfo = self.client.factory.create("ns14:NexusInfo") warehouse = line.stockrecord.partner.primary_address if warehouse: item.NexusInfo.ShipFromAddress = self._build_address(warehouse) item.NexusInfo.ShipToAddress = self._build_address(shipping_address) # Add line to order order.LineItems.LineItem.append(item) # Add CCH lines for shipping charges if shipping_charge is not None and settings.CCH_SHIPPING_TAXES_ENABLED: for shipping_charge_component in shipping_charge.components: shipping_line = self.client.factory.create("ns11:LineItem") shipping_line.ID = shipping_charge_component.cch_line_id shipping_line.AvgUnitPrice = ( shipping_charge_component.excl_tax.quantize(Decimal("0.00001")) ) shipping_line.Quantity = 1 shipping_line.ExemptionCode = None shipping_line.SKU = shipping_charge_component.cch_sku shipping_line.NexusInfo = self.client.factory.create("ns14:NexusInfo") shipping_line.NexusInfo.ShipToAddress = self._build_address( shipping_address ) # Add shipping line to order order.LineItems.LineItem.append(shipping_line) # Must include at least 1 line item if len(order.LineItems.LineItem) <= 0: return None # Return order return order def _build_address(self, oscar_address): addr = self.client.factory.create("ns0:Address") addr.Line1 = oscar_address.line1 addr.Line2 = oscar_address.line2 addr.City = oscar_address.city addr.StateOrProvince = oscar_address.state postcode, plus4 = self.format_postcode(oscar_address.postcode) addr.PostalCode = postcode addr.Plus4 = plus4 addr.CountryCode = oscar_address.country.code return addr def _get_product_data(self, key, line): key = "cch_product_%s" % key sku = getattr(settings, key.upper()) sku = getattr(line.product.attr, key.lower(), sku) return sku def format_postcode(self, raw_postcode): if not raw_postcode: return "", "" postcode, plus4 = raw_postcode[:POSTCODE_LEN], None # Set Plus4 if PostalCode provided as 9 digits separated by hyphen if len(raw_postcode) == POSTCODE_LEN + PLUS4_LEN + 1: plus4 = raw_postcode[POSTCODE_LEN + 1 :] return postcode, plus4
41.845238
123
0.621527
8eca530edb334f1f4a8b573a4e4ec1bdbb57b04d
3,602
py
Python
ask-smapi-model/ask_smapi_model/v0/catalog/upload/create_content_upload_request.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
null
null
null
ask-smapi-model/ask_smapi_model/v0/catalog/upload/create_content_upload_request.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
null
null
null
ask-smapi-model/ask_smapi_model/v0/catalog/upload/create_content_upload_request.py
Signal-Kinetics/alexa-apis-for-python
abb8d3dce18a5510c48b215406ed36c024f01495
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional, Union from datetime import datetime class CreateContentUploadRequest(object): """ :param number_of_upload_parts: Provides the number of parts the file will be split into. An equal number of presigned upload urls are generated in response to facilitate each part&#39;s upload. :type number_of_upload_parts: (optional) int """ deserialized_types = { 'number_of_upload_parts': 'int' } # type: Dict attribute_map = { 'number_of_upload_parts': 'numberOfUploadParts' } # type: Dict supports_multiple_types = False def __init__(self, number_of_upload_parts=None): # type: (Optional[int]) -> None """ :param number_of_upload_parts: Provides the number of parts the file will be split into. An equal number of presigned upload urls are generated in response to facilitate each part&#39;s upload. :type number_of_upload_parts: (optional) int """ self.__discriminator_value = None # type: str self.number_of_upload_parts = number_of_upload_parts def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, CreateContentUploadRequest): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
33.663551
201
0.608828
41f3839deb5e6c4e67ead390ddf56bc5b889399d
7,373
py
Python
src/TheLanguage/Grammars/v0_0_1/Statements/TryStatement.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Grammars/v0_0_1/Statements/TryStatement.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
null
null
null
src/TheLanguage/Grammars/v0_0_1/Statements/TryStatement.py
davidbrownell/DavidBrownell_TheLanguage
07170b448a0ebd7fa2325c9ccd4cefdb3cf7eb98
[ "BSL-1.0" ]
1
2021-06-18T18:58:57.000Z
2021-06-18T18:58:57.000Z
# ---------------------------------------------------------------------- # | # | TryStatement.py # | # | David Brownell <db@DavidBrownell.com> # | 2021-10-14 11:16:28 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2021 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Contains the TryStatement object""" import os from typing import Callable, cast, List, Optional, Tuple, Union import CommonEnvironment from CommonEnvironment import Interface from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from ..Common import StatementsPhraseItem from ..Common import Tokens as CommonTokens from ...GrammarInfo import AST, DynamicPhrasesType, GrammarPhrase, ParserInfo from ....Lexer.Phrases.DSL import ( CreatePhrase, ExtractDynamic, ExtractOptional, ExtractRepeat, ExtractSequence, ExtractToken, OptionalPhraseItem, ZeroOrMorePhraseItem, ) from ....Parser.Parser import CreateParserRegions, GetParserInfo from ....Parser.Statements.TryStatementParserInfo import ( TryStatementClauseParserInfo, TryStatementParserInfo, TypeParserInfo, ) # ---------------------------------------------------------------------- class TryStatement(GrammarPhrase): """\ Try/except blocks. 'try' ':' <statement>+ ( 'except' <type> <name>? ':' <statement>+ )* ( 'except' ':' <statement>+ )? Examples: try: Func1() except Exception ex: Func2() except (Exception1 | Exception2) ex: Func3() except Exception4: Func4() except: Func5() """ PHRASE_NAME = "Try Except Statement" # ---------------------------------------------------------------------- def __init__(self): statements_phrase_item = StatementsPhraseItem.Create() super(TryStatement, self).__init__( DynamicPhrasesType.Statements, CreatePhrase( name=self.PHRASE_NAME, item=[ # 'try' ':' # <statement>+ "try", statements_phrase_item, # ( # 'except' <type> <name>? ':' # <statement>+ # )* ZeroOrMorePhraseItem.Create( name="Typed Except Clause", item=[ "except", DynamicPhrasesType.Types, OptionalPhraseItem.Create(CommonTokens.VariableName), statements_phrase_item, ], ), # ( # 'except' ':' # <statement>+ # )? OptionalPhraseItem.Create( name="Except Clause", item=[ "except", statements_phrase_item, ], ), ], ), ) # ---------------------------------------------------------------------- @staticmethod @Interface.override def ExtractParserInfo( node: AST.Node, ) -> Union[ None, ParserInfo, Callable[[], ParserInfo], Tuple[ParserInfo, Callable[[], ParserInfo]], ]: # ---------------------------------------------------------------------- def Impl(): nodes = ExtractSequence(node) assert len(nodes) == 4 # 'try'... try_statements_node = cast(AST.Node, nodes[1]) try_statements_info = StatementsPhraseItem.ExtractParserInfo(try_statements_node) # 'except' <type>... except_clauses_node = cast(Optional[AST.Node], nodes[2]) if except_clauses_node is None: except_clauses_info = None # type: ignore else: except_clauses_info: List[TryStatementClauseParserInfo] = [] for except_clause_node in cast(List[AST.Node], ExtractRepeat(except_clauses_node)): except_clause_nodes = ExtractSequence(except_clause_node) assert len(except_clause_nodes) == 4 # <type> type_node = cast(AST.Node, ExtractDynamic(cast(AST.Node, except_clause_nodes[1]))) type_info = cast(TypeParserInfo, GetParserInfo(type_node)) # <name>? name_node = cast(Optional[AST.Node], ExtractOptional(cast(Optional[AST.Node], except_clause_nodes[2]))) if name_node is None: name_info = None else: name_info = cast(str, ExtractToken(cast(AST.Leaf, name_node))) # <statement>+ statements_node = cast(AST.Node, except_clause_nodes[3]) statements_info = StatementsPhraseItem.ExtractParserInfo(statements_node) except_clauses_info.append( # pylint: disable=too-many-function-args TryStatementClauseParserInfo( CreateParserRegions(except_clause_node, type_node, name_node, statements_node), # type: ignore type_info, name_info, statements_info, ), ) assert except_clauses_info # 'except'... except_node = cast(Optional[AST.Node], ExtractOptional(cast(Optional[AST.Node], nodes[3]))) if except_node is None: except_info = None else: except_nodes = ExtractSequence(except_node) assert len(except_nodes) == 2 except_info = StatementsPhraseItem.ExtractParserInfo(cast(AST.Node, except_nodes[1])) return TryStatementParserInfo( CreateParserRegions(node, try_statements_node, except_clauses_node, except_node), # type: ignore try_statements_info, except_clauses_info, except_info, ) # ---------------------------------------------------------------------- return Impl
35.109524
124
0.448122
bce592274f384a8d0954168f9a8bde8e5848be27
23,783
py
Python
ciscoisesdk/api/v3_0_0/px_grid_node.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
36
2021-05-18T16:24:19.000Z
2022-03-05T13:44:41.000Z
ciscoisesdk/api/v3_0_0/px_grid_node.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
15
2021-06-08T19:03:37.000Z
2022-02-25T14:47:33.000Z
ciscoisesdk/api/v3_0_0/px_grid_node.py
CiscoISE/ciscoisesdk
860b0fc7cc15d0c2a39c64608195a7ab3d5f4885
[ "MIT" ]
6
2021-06-10T09:32:01.000Z
2022-01-12T08:34:39.000Z
# -*- coding: utf-8 -*- """Cisco Identity Services Engine pxGridNode API wrapper. Copyright (c) 2021 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import ( absolute_import, division, print_function, unicode_literals, ) from builtins import * from past.builtins import basestring from ...restsession import RestSession from ...utils import ( check_type, dict_from_items_with_values, apply_path_params, dict_of_str, get_next_page, ) class PxGridNode(object): """Identity Services Engine pxGridNode API (version: 3.0.0). Wraps the Identity Services Engine pxGridNode API and exposes the API as native Python methods that return native Python objects. """ def __init__(self, session, object_factory, request_validator): """Initialize a new PxGridNode object with the provided RestSession. Args: session(RestSession): The RESTful session object to be used for API calls to the Identity Services Engine service. Raises: TypeError: If the parameter types are incorrect. """ check_type(session, RestSession) super(PxGridNode, self).__init__() self._session = session self._object_factory = object_factory self._request_validator = request_validator def approve_px_grid_node(self, name, headers=None, **query_parameters): """This API allows the client to approve a pxGrid node. Only pending pxGrid nodes can be approved. Args: name(basestring): name path parameter. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) if 'ERS-Media-Type' in headers: check_type(headers.get('ERS-Media-Type'), basestring, may_be_none=False) if 'X-CSRF-TOKEN' in headers: check_type(headers.get('X-CSRF-TOKEN'), basestring) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True check_type(name, basestring, may_be_none=False) _params = { } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { 'name': name, } e_url = ('/ers/config/pxgridnode/name/{name}/approve') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.put(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.put(endpoint_full_url, params=_params) return self._object_factory('bpm_f47d656ed0805859a85e5cc082c78dcf_v3_0_0', _api_response) def approve(self, name, headers=None, **query_parameters): """Alias for `approve_px_grid_node <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.approve_px_grid_node>`_ """ return self.approve_px_grid_node( name=name, headers=headers, **query_parameters ) def get_px_grid_node_by_name(self, name, headers=None, **query_parameters): """This API allows the client to get a pxGrid node by name. Args: name(basestring): name path parameter. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) if 'ERS-Media-Type' in headers: check_type(headers.get('ERS-Media-Type'), basestring, may_be_none=False) if 'X-CSRF-TOKEN' in headers: check_type(headers.get('X-CSRF-TOKEN'), basestring) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True check_type(name, basestring, may_be_none=False) _params = { } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { 'name': name, } e_url = ('/ers/config/pxgridnode/name/{name}') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.get(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.get(endpoint_full_url, params=_params) return self._object_factory('bpm_a9d109aac585a89bdd3fae400064b_v3_0_0', _api_response) def get_by_name(self, name, headers=None, **query_parameters): """Alias for `get_px_grid_node_by_name <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.get_px_grid_node_by_name>`_ """ return self.get_px_grid_node_by_name( name=name, headers=headers, **query_parameters ) def delete_px_grid_node_by_name(self, name, headers=None, **query_parameters): """This API deletes a pxGrid node by name. Args: name(basestring): name path parameter. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) if 'ERS-Media-Type' in headers: check_type(headers.get('ERS-Media-Type'), basestring, may_be_none=False) if 'X-CSRF-TOKEN' in headers: check_type(headers.get('X-CSRF-TOKEN'), basestring) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True check_type(name, basestring, may_be_none=False) _params = { } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { 'name': name, } e_url = ('/ers/config/pxgridnode/name/{name}') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.delete(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.delete(endpoint_full_url, params=_params) return self._object_factory('bpm_e718d5054593b94a2fef39461c24a_v3_0_0', _api_response) def delete_by_name(self, name, headers=None, **query_parameters): """Alias for `delete_px_grid_node_by_name <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.delete_px_grid_node_by_name>`_ """ return self.delete_px_grid_node_by_name( name=name, headers=headers, **query_parameters ) def get_px_grid_node_by_id(self, id, headers=None, **query_parameters): """This API allows the client to get a pxGrid node by ID. Args: id(basestring): id path parameter. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) if 'ERS-Media-Type' in headers: check_type(headers.get('ERS-Media-Type'), basestring, may_be_none=False) if 'X-CSRF-TOKEN' in headers: check_type(headers.get('X-CSRF-TOKEN'), basestring) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True check_type(id, basestring, may_be_none=False) _params = { } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { 'id': id, } e_url = ('/ers/config/pxgridnode/{id}') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.get(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.get(endpoint_full_url, params=_params) return self._object_factory('bpm_d24ade0b53405fbc898cb0cc1ea57fb8_v3_0_0', _api_response) def get_by_id(self, id, headers=None, **query_parameters): """Alias for `get_px_grid_node_by_id <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.get_px_grid_node_by_id>`_ """ return self.get_px_grid_node_by_id( id=id, headers=headers, **query_parameters ) def get_px_grid_node(self, page=None, size=None, headers=None, **query_parameters): """This API allows the client to get all the npxGrid nodes. Args: page(int): page query parameter. Page number. size(int): size query parameter. Number of objects returned per page. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) if 'ERS-Media-Type' in headers: check_type(headers.get('ERS-Media-Type'), basestring, may_be_none=False) if 'X-CSRF-TOKEN' in headers: check_type(headers.get('X-CSRF-TOKEN'), basestring) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True check_type(page, (int, basestring, list)) check_type(size, (int, basestring, list)) _params = { 'page': page, 'size': size, } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { } e_url = ('/ers/config/pxgridnode') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.get(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.get(endpoint_full_url, params=_params) return self._object_factory('bpm_d97156379640002f79b2007c_v3_0_0', _api_response) def get_all(self, page=None, size=None, headers=None, **query_parameters): """Alias for `get_px_grid_node <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.get_px_grid_node>`_ """ return self.get_px_grid_node( page=page, size=size, headers=headers, **query_parameters ) def get_px_grid_node_generator(self, page=None, size=None, headers=None, **query_parameters): """This API allows the client to get all the npxGrid nodes. Args: page(int): page query parameter. Page number. size(int): size query parameter. Number of objects returned per page. headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: Generator: A generator object containing the following object. + RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ yield from get_next_page( self.get_px_grid_node, dict( page=page, size=size, headers=headers, **query_parameters ), access_next_list=["SearchResult", "nextPage", "href"], access_resource_list=["SearchResult", "resources"]) def get_all_generator(self, page=None, size=None, headers=None, **query_parameters): """Alias for `get_px_grid_node_generator <#ciscoisesdk. api.v3_0_0.px_grid_node. PxGridNode.get_px_grid_node_generator>`_ """ yield from get_next_page( self.get_px_grid_node, dict( page=page, size=size, headers=headers, **query_parameters ), access_next_list=["SearchResult", "nextPage", "href"], access_resource_list=["SearchResult", "resources"]) def get_version(self, headers=None, **query_parameters): """This API helps to retrieve the version information related to the pxGrid node. Args: headers(dict): Dictionary of HTTP Headers to send with the Request . **query_parameters: Additional query parameters (provides support for parameters that may be added in the future). Returns: RestResponse: REST response with following properties: - headers(MyDict): response headers. - response(MyDict): response body as a MyDict object. Access the object's properties by using the dot notation or the bracket notation. - content(bytes): representation of the request's response - text(str): representation of the request's response Raises: TypeError: If the parameter types are incorrect. MalformedRequest: If the request body created is invalid. ApiError: If the Identity Services Engine cloud returns an error. """ check_type(headers, dict) if headers is not None: if 'Content-Type' in headers: check_type(headers.get('Content-Type'), basestring, may_be_none=False) if 'Accept' in headers: check_type(headers.get('Accept'), basestring, may_be_none=False) with_custom_headers = False _headers = self._session.headers or {} if headers: _headers.update(dict_of_str(headers)) with_custom_headers = True _params = { } _params.update(query_parameters) _params = dict_from_items_with_values(_params) path_params = { } e_url = ('/ers/config/pxgridnode/versioninfo') endpoint_full_url = apply_path_params(e_url, path_params) if with_custom_headers: _api_response = self._session.get(endpoint_full_url, params=_params, headers=_headers) else: _api_response = self._session.get(endpoint_full_url, params=_params) return self._object_factory('bpm_c2962d70ef5964be55cfeae68e5ba6_v3_0_0', _api_response)
37.57188
128
0.57785
6546a21c4a1be9823f38073f2d22cd4b9e5cfc7b
3,603
py
Python
tools/vm-migrator/src/migrator/disk.py
marcosgm/professional-services
f332b425c2f3b6538ebf65afda7e67de3bed1b3d
[ "Apache-2.0" ]
2
2021-11-22T20:36:44.000Z
2021-11-22T20:36:57.000Z
tools/vm-migrator/src/migrator/disk.py
hyuatpc/professional-services
e5c811a8752e91fdf9f959a0414931010b0ea1ba
[ "Apache-2.0" ]
16
2021-10-07T11:37:40.000Z
2021-12-23T14:07:17.000Z
tools/vm-migrator/src/migrator/disk.py
hyuatpc/professional-services
e5c811a8752e91fdf9f959a0414931010b0ea1ba
[ "Apache-2.0" ]
3
2021-12-29T10:31:05.000Z
2022-01-06T11:37:28.000Z
#!/usr/bin/env python # Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file provides functionality related to migrating disks. """ import logging from . import instance from . import machine_image from .exceptions import NotFoundException from . import uri def delete_disk(disk, project_zone: uri.ProjectZone, disk_name: str): logging.info('Deleting Disk %s ', disk_name) return disk.delete(project=project_zone.project, zone=project_zone.zone, disk=disk_name).execute() def delete(instance_uri: uri.Instance, disk_name, source_project): try: waited_time = instance.RATE_LIMIT.wait() # wait before starting the task logging.info(' task: waited for %s secs', waited_time) compute = instance.get_compute() image = machine_image.get(instance_uri.project, instance_uri.name) if image: logging.info('Found machine image can safely delete the disk %s', disk_name) disks = compute.disks() try: disk = disks.get(project=instance_uri.project, zone=instance_uri.zone, disk=disk_name).execute() except Exception: disk = None if disk: delete_operation = delete_disk(disks, instance_uri, disk_name) instance.wait_for_zonal_operation(compute, instance_uri, delete_operation['name']) return disk_name else: raise NotFoundException( 'Can\'t delete the disk {} as machine image {} was not found. ' ' (machine project = {}, source project = {}, please report ' 'if these values differ)'.format(disk_name, instance_uri.name, instance_uri.project, source_project)) except Exception as ex: logging.error(ex) raise ex def setLabels(disk_uri: uri.Disk, labels): logging.getLogger().setLevel(logging.DEBUG) try: # wait before starting the task waited_time = instance.RATE_LIMIT.wait() logging.info(' task: waited for %s secs', waited_time) compute = instance.get_compute() disk = compute.disks().get(project=disk_uri.project, zone=disk_uri.zone, disk=disk_uri.name).execute() update_operation = compute.disks() \ .setLabels(project=disk_uri.project, zone=disk_uri.zone, resource=disk_uri.name, body={ 'labels': labels, 'labelFingerprint': disk['labelFingerprint'] }).execute() instance.wait_for_zonal_operation(compute, disk_uri, update_operation['name']) return disk_uri.name except Exception as ex: logging.error(ex) raise ex
41.413793
81
0.592839
fd0833eb51977cdfbba7f5dc3cbd775e07139be9
1,591
py
Python
frappe/desk/listview.py
linkmultiselect/frappe
0871db97f6aa9738e6aff169ad2b9853980b0653
[ "MIT" ]
null
null
null
frappe/desk/listview.py
linkmultiselect/frappe
0871db97f6aa9738e6aff169ad2b9853980b0653
[ "MIT" ]
null
null
null
frappe/desk/listview.py
linkmultiselect/frappe
0871db97f6aa9738e6aff169ad2b9853980b0653
[ "MIT" ]
null
null
null
# Copyright (c) 2019, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe @frappe.whitelist() def get_list_settings(doctype): try: return frappe.get_cached_doc("List View Setting", doctype) except frappe.DoesNotExistError: frappe.clear_messages() @frappe.whitelist() def set_list_settings(doctype, values): try: doc = frappe.get_doc("List View Setting", doctype) except frappe.DoesNotExistError: doc = frappe.new_doc("List View Setting") doc.name = doctype frappe.clear_messages() doc.update(frappe.parse_json(values)) doc.save() @frappe.whitelist() def get_group_by_count(doctype, current_filters, field): current_filters = frappe.parse_json(current_filters) subquery_condition = '' subquery = frappe.get_all(doctype, filters=current_filters, return_query = True) if field == 'assigned_to': subquery_condition = ' and `tabToDo`.reference_name in ({subquery})'.format(subquery = subquery) return frappe.db.sql("""select `tabToDo`.owner as name, count(*) as count from `tabToDo`, `tabUser` where `tabToDo`.status='Open' and `tabToDo`.owner = `tabUser`.name and `tabUser`.user_type = 'System User' {subquery_condition} group by `tabToDo`.owner order by count desc limit 50""".format(subquery_condition = subquery_condition), as_dict=True) else: return frappe.db.get_list(doctype, filters=current_filters, group_by=field, fields=['count(*) as count', '`{}` as name'.format(field)], order_by='count desc', limit=50, )
27.912281
98
0.729101
3935d24fc9c615fb07e62f66e06c96547041f71e
9,243
py
Python
sickbeard/cherrypy/_cplogging.py
Branlala/docker-sickbeardfr
3ac85092dc4cc8a4171fb3c83e9682162245e13e
[ "MIT" ]
null
null
null
sickbeard/cherrypy/_cplogging.py
Branlala/docker-sickbeardfr
3ac85092dc4cc8a4171fb3c83e9682162245e13e
[ "MIT" ]
null
null
null
sickbeard/cherrypy/_cplogging.py
Branlala/docker-sickbeardfr
3ac85092dc4cc8a4171fb3c83e9682162245e13e
[ "MIT" ]
null
null
null
"""CherryPy logging.""" import datetime import logging # Silence the no-handlers "warning" (stderr write!) in stdlib logging logging.Logger.manager.emittedNoHandlerWarning = 1 logfmt = logging.Formatter("%(message)s") import os import sys import cherrypy from cherrypy import _cperror class LogManager(object): appid = None error_log = None access_log = None access_log_format = \ '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"' def __init__(self, appid=None, logger_root="cherrypy"): self.logger_root = logger_root self.appid = appid if appid is None: self.error_log = logging.getLogger("%s.error" % logger_root) self.access_log = logging.getLogger("%s.access" % logger_root) else: self.error_log = logging.getLogger("%s.error.%s" % (logger_root, appid)) self.access_log = logging.getLogger("%s.access.%s" % (logger_root, appid)) self.error_log.setLevel(logging.INFO) self.access_log.setLevel(logging.INFO) cherrypy.engine.subscribe('graceful', self.reopen_files) def reopen_files(self): """Close and reopen all file handlers.""" for log in (self.error_log, self.access_log): for h in log.handlers: if isinstance(h, logging.FileHandler): h.acquire() h.stream.close() h.stream = open(h.baseFilename, h.mode) h.release() def error(self, msg='', context='', severity=logging.INFO, traceback=False): """Write to the error log. This is not just for errors! Applications may call this at any time to log application-specific information. """ if traceback: msg += _cperror.format_exc() self.error_log.log(severity, ' '.join((self.time(), context, msg))) def __call__(self, *args, **kwargs): """Write to the error log. This is not just for errors! Applications may call this at any time to log application-specific information. """ return self.error(*args, **kwargs) def access(self): """Write to the access log (in Apache/NCSA Combined Log format). Like Apache started doing in 2.0.46, non-printable and other special characters in %r (and we expand that to all parts) are escaped using \\xhh sequences, where hh stands for the hexadecimal representation of the raw byte. Exceptions from this rule are " and \\, which are escaped by prepending a backslash, and all whitespace characters, which are written in their C-style notation (\\n, \\t, etc). """ request = cherrypy.serving.request remote = request.remote response = cherrypy.serving.response outheaders = response.headers inheaders = request.headers if response.output_status is None: status = "-" else: status = response.output_status.split(" ", 1)[0] atoms = {'h': remote.name or remote.ip, 'l': '-', 'u': getattr(request, "login", None) or "-", 't': self.time(), 'r': request.request_line, 's': status, 'b': dict.get(outheaders, 'Content-Length', '') or "-", 'f': dict.get(inheaders, 'Referer', ''), 'a': dict.get(inheaders, 'User-Agent', ''), } for k, v in atoms.items(): if isinstance(v, unicode): v = v.encode('utf8') elif not isinstance(v, str): v = str(v) # Fortunately, repr(str) escapes unprintable chars, \n, \t, etc # and backslash for us. All we have to do is strip the quotes. v = repr(v)[1:-1] # Escape double-quote. atoms[k] = v.replace('"', '\\"') try: self.access_log.log(logging.INFO, self.access_log_format % atoms) except: self(traceback=True) def time(self): """Return now() in Apache Common Log Format (no timezone).""" now = datetime.datetime.now() monthnames = ['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'] month = monthnames[now.month - 1].capitalize() return ('[%02d/%s/%04d:%02d:%02d:%02d]' % (now.day, month, now.year, now.hour, now.minute, now.second)) def _get_builtin_handler(self, log, key): for h in log.handlers: if getattr(h, "_cpbuiltin", None) == key: return h # ------------------------- Screen handlers ------------------------- # def _set_screen_handler(self, log, enable, stream=None): h = self._get_builtin_handler(log, "screen") if enable: if not h: if stream is None: stream = sys.stderr h = logging.StreamHandler(stream) h.setFormatter(logfmt) h._cpbuiltin = "screen" log.addHandler(h) elif h: log.handlers.remove(h) def _get_screen(self): h = self._get_builtin_handler has_h = h(self.error_log, "screen") or h(self.access_log, "screen") return bool(has_h) def _set_screen(self, newvalue): self._set_screen_handler(self.error_log, newvalue, stream=sys.stderr) self._set_screen_handler(self.access_log, newvalue, stream=sys.stdout) screen = property(_get_screen, _set_screen, doc="If True, error and access will print to stderr.") # -------------------------- File handlers -------------------------- # def _add_builtin_file_handler(self, log, fname): h = logging.FileHandler(fname) h.setFormatter(logfmt) h._cpbuiltin = "file" log.addHandler(h) def _set_file_handler(self, log, filename): h = self._get_builtin_handler(log, "file") if filename: if h: if h.baseFilename != os.path.abspath(filename): h.close() log.handlers.remove(h) self._add_builtin_file_handler(log, filename) else: self._add_builtin_file_handler(log, filename) else: if h: h.close() log.handlers.remove(h) def _get_error_file(self): h = self._get_builtin_handler(self.error_log, "file") if h: return h.baseFilename return '' def _set_error_file(self, newvalue): self._set_file_handler(self.error_log, newvalue) error_file = property(_get_error_file, _set_error_file, doc="The filename for self.error_log.") def _get_access_file(self): h = self._get_builtin_handler(self.access_log, "file") if h: return h.baseFilename return '' def _set_access_file(self, newvalue): self._set_file_handler(self.access_log, newvalue) access_file = property(_get_access_file, _set_access_file, doc="The filename for self.access_log.") # ------------------------- WSGI handlers ------------------------- # def _set_wsgi_handler(self, log, enable): h = self._get_builtin_handler(log, "wsgi") if enable: if not h: h = WSGIErrorHandler() h.setFormatter(logfmt) h._cpbuiltin = "wsgi" log.addHandler(h) elif h: log.handlers.remove(h) def _get_wsgi(self): return bool(self._get_builtin_handler(self.error_log, "wsgi")) def _set_wsgi(self, newvalue): self._set_wsgi_handler(self.error_log, newvalue) wsgi = property(_get_wsgi, _set_wsgi, doc="If True, error messages will be sent to wsgi.errors.") class WSGIErrorHandler(logging.Handler): "A handler class which writes logging records to environ['wsgi.errors']." def flush(self): """Flushes the stream.""" try: stream = cherrypy.serving.request.wsgi_environ.get('wsgi.errors') except (AttributeError, KeyError): pass else: stream.flush() def emit(self, record): """Emit a record.""" try: stream = cherrypy.serving.request.wsgi_environ.get('wsgi.errors') except (AttributeError, KeyError): pass else: try: msg = self.format(record) fs = "%s\n" import types if not hasattr(types, "UnicodeType"): #if no unicode support... stream.write(fs % msg) else: try: stream.write(fs % msg) except UnicodeError: stream.write(fs % msg.encode("UTF-8")) self.flush() except: self.handleError(record)
36.824701
86
0.54214
3b592d677ae3268b7d340320ae068f2889019dff
1,134
py
Python
src/gen_key_key.py
jasonhavenD/triplesKB
e591adcb60d2611eef361f8ec412ace817c683eb
[ "Apache-2.0" ]
14
2019-05-13T09:43:56.000Z
2022-01-23T02:18:28.000Z
src/gen_key_key.py
jasonhavenD/triplesKB
e591adcb60d2611eef361f8ec412ace817c683eb
[ "Apache-2.0" ]
1
2020-10-26T03:34:09.000Z
2020-10-26T06:17:10.000Z
src/gen_key_key.py
jasonhavenD/triplesKB
e591adcb60d2611eef361f8ec412ace817c683eb
[ "Apache-2.0" ]
7
2019-05-27T01:51:24.000Z
2021-07-12T02:42:12.000Z
# encoding = utf-8 import re import loguru import json def compare(tpl): ''' 0:自己 1:上级 2:下级 3:同领域 -1:无关系 ''' x, y = tpl if x == y: return x, y, 0 elif len(x.split('.')) == len(y.split('.')): xs = x.split('.') ys = y.split('.') for i in range(len(xs)): if xs[i] != ys[i]: break if i > 0: return x, y, 3 else: return x, y, -1 else: if y.startswith(x): # 1:上级 return x, y, 1 elif x.startswith(y): # 2:下级 return x, y, 2 else: return x, y, -1 def main(src, des): data = json.load(open(src,'r')) ids = list(data.keys() ) with open(des, 'w') as f: f.write('%s##%s##%s\n' % ('field1', 'field2', 'relation')) n = len(ids) tpl = [[ids[i], ids[j]] for i in range(n) for j in range(n)] result = list(map(compare, tpl)) for k1,k2,rel in result: f.write('%s##%s##%s\n' % (k1,k2,rel)) if __name__ == "__main__": main('field_dict.json', 'triples/key_key_rel.csv')
23.625
68
0.444444
6da13e058d64e3b6883e8873b2b74fde535c2441
470
py
Python
src/niweb/apps/noclook/migrations/0012_role_slug.py
SUNET/ni
f652e230524346bf0801cdf8bbb6ee63f4985cc2
[ "BSD-2-Clause-FreeBSD" ]
null
null
null
src/niweb/apps/noclook/migrations/0012_role_slug.py
SUNET/ni
f652e230524346bf0801cdf8bbb6ee63f4985cc2
[ "BSD-2-Clause-FreeBSD" ]
2
2019-07-24T12:41:11.000Z
2020-03-31T10:10:04.000Z
src/niweb/apps/noclook/migrations/0012_role_slug.py
SUNET/ni
f652e230524346bf0801cdf8bbb6ee63f4985cc2
[ "BSD-2-Clause-FreeBSD" ]
1
2019-02-25T14:58:20.000Z
2019-02-25T14:58:20.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.21 on 2019-07-23 07:06 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('noclook', '0011_auto_20190719_1157'), ] operations = [ migrations.AddField( model_name='role', name='slug', field=models.CharField(max_length=20, null=True, unique=True), ), ]
22.380952
74
0.619149
68dc54c3660e40e58a67f741abff61f23bf81485
1,028
py
Python
13.py
tsbxmw/leetcode
e751311b8b5f2769874351717a22c35c19b48a36
[ "MIT" ]
null
null
null
13.py
tsbxmw/leetcode
e751311b8b5f2769874351717a22c35c19b48a36
[ "MIT" ]
null
null
null
13.py
tsbxmw/leetcode
e751311b8b5f2769874351717a22c35c19b48a36
[ "MIT" ]
null
null
null
# 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 # 字符 数值 # I 1 # V 5 # X 10 # L 50 # C 100 # D 500 # M 1000 # 例如, 罗马数字 2 写做 II ,即为两个并列的 1。12 写做 XII ,即为 X + II 。 27 写做  XXVII, 即为 XX + V + II 。 # 通常情况下,罗马数字中小的数字在大的数字的右边。但也存在特例,例如 4 不写做 IIII,而是 IV。数字 1 在数字 5 的左边,所表示的数等于大数 5 减小数 1 得到的数值 4 。同样地,数字 9 表示为 IX。这个特殊的规则只适用于以下六种情况: # I 可以放在 V (5) 和 X (10) 的左边,来表示 4 和 9。 # X 可以放在 L (50) 和 C (100) 的左边,来表示 40 和 90。  # C 可以放在 D (500) 和 M (1000) 的左边,来表示 400 和 900。 # 给定一个罗马数字,将其转换成整数。输入确保在 1 到 3999 的范围内。 # 示例 1: # 输入: "III" # 输出: 3 # 示例 2: # 输入: "IV" # 输出: 4 # 示例 3: # 输入: "IX" # 输出: 9 # 示例 4: # 输入: "LVIII" # 输出: 58 # 解释: L = 50, V= 5, III = 3. # 示例 5: # 输入: "MCMXCIV" # 输出: 1994 # 解释: M = 1000, CM = 900, XC = 90, IV = 4. # 来源:力扣(LeetCode) # 链接:https://leetcode-cn.com/problems/roman-to-integer # 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 class Solution: def romanToInt(self, s: str) -> int:
20.56
130
0.497082
ae0b5e4b8c9748b41b5f5b8c4aa66e8ba94da49f
90
py
Python
api_server/book_api/apps.py
roman-bezusiak/lamia-test-task-py
b56fb6fda51917a9c7c50bc1a07b942d358eefd1
[ "MIT" ]
null
null
null
api_server/book_api/apps.py
roman-bezusiak/lamia-test-task-py
b56fb6fda51917a9c7c50bc1a07b942d358eefd1
[ "MIT" ]
null
null
null
api_server/book_api/apps.py
roman-bezusiak/lamia-test-task-py
b56fb6fda51917a9c7c50bc1a07b942d358eefd1
[ "MIT" ]
null
null
null
from django.apps import AppConfig class BookApiConfig(AppConfig): name = 'book_api'
15
33
0.755556
e052f3e9c9a67f9ef9bfba60d293fb3616889630
2,553
py
Python
poetry/console/io/inputs/run_argv_input.py
uda/poetry
30e3d7e33c20cbe2af8eda06e0db4888275caaa1
[ "MIT" ]
12,347
2019-12-12T07:07:32.000Z
2022-03-31T21:08:50.000Z
poetry/console/io/inputs/run_argv_input.py
uda/poetry
30e3d7e33c20cbe2af8eda06e0db4888275caaa1
[ "MIT" ]
3,483
2019-12-11T20:20:20.000Z
2022-03-31T23:18:18.000Z
poetry/console/io/inputs/run_argv_input.py
uda/poetry
30e3d7e33c20cbe2af8eda06e0db4888275caaa1
[ "MIT" ]
1,399
2019-12-12T12:27:46.000Z
2022-03-31T09:12:53.000Z
from typing import List from typing import Optional from typing import Union from cleo.io.inputs.argv_input import ArgvInput from cleo.io.inputs.definition import Definition class RunArgvInput(ArgvInput): def __init__( self, argv: Optional[List[str]] = None, definition: Optional[Definition] = None ) -> None: super().__init__(argv, definition=definition) self._parameter_options = [] @property def first_argument(self) -> Optional[str]: return "run" def add_parameter_option(self, name: str) -> None: self._parameter_options.append(name) def has_parameter_option( self, values: Union[str, List[str]], only_params: bool = False ) -> bool: if not isinstance(values, list): values = [values] for token in self._tokens: if only_params and token == "--": return False for value in values: if value not in self._parameter_options: continue # Options with values: # For long options, test for '--option=' at beginning # For short options, test for '-o' at beginning if value.find("--") == 0: leading = value + "=" else: leading = value if token == value or leading != "" and token.find(leading) == 0: return True return False def _parse(self) -> None: parse_options = True self._parsed = self._tokens[:] try: token = self._parsed.pop(0) except IndexError: token = None while token is not None: if parse_options and token == "": self._parse_argument(token) elif parse_options and token == "--": parse_options = False elif parse_options and token.find("--") == 0: if token in self._parameter_options: self._parse_long_option(token) else: self._parse_argument(token) elif parse_options and token[0] == "-" and token != "-": if token in self._parameter_options: self._parse_short_option(token) else: self._parse_argument(token) else: self._parse_argument(token) try: token = self._parsed.pop(0) except IndexError: token = None
31.134146
87
0.533882
7c68a99efa93e7083d0902cc3d2ada5bc0108ca5
1,595
py
Python
volume_cmf.py
EmreMicrosoft/piyasa-indikatorleri
fb5b4c256d173f12cb3d0659d36add75dfa7ce1f
[ "MIT" ]
null
null
null
volume_cmf.py
EmreMicrosoft/piyasa-indikatorleri
fb5b4c256d173f12cb3d0659d36add75dfa7ce1f
[ "MIT" ]
null
null
null
volume_cmf.py
EmreMicrosoft/piyasa-indikatorleri
fb5b4c256d173f12cb3d0659d36add75dfa7ce1f
[ "MIT" ]
null
null
null
# CMF (Chaikin Money Flow) # http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf # Belirli bir dönemdeki Para Akışı Hacmi miktarını ölçer. # Argümanlar: # high(pandas.Series): veri kümesi 'Yüksek' sütunu. # low(pandas.Series): veri kümesi 'Düşük' sütunu. # close(pandas.Series): veri kümesi 'Kapat' sütunu. # volume(pandas.Series): veri kümesi 'Volume' sütunu. # window(int): n periyodu. # fillna(bool): True ise, nan değerlerini doldur. import pandas as pd from _utilities import IndicatorMixin class ChaikinMoneyFlowIndicator(IndicatorMixin): def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, window: int = 20, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): mfv = ((self._close - self._low) - (self._high - self._close)) / (self._high - self._low) mfv = mfv.fillna(0.0) # float division by zero mfv *= self._volume min_periods = 0 if self._fillna else self._window self._cmf = (mfv.rolling(self._window, min_periods=min_periods).sum() / self._volume.rolling(self._window, min_periods=min_periods).sum()) def chaikin_money_flow(self) -> pd.Series: cmf = self._check_fillna(self._cmf, value=0) return pd.Series(cmf, name="cmf")
34.673913
101
0.631348
576d096d21a44591cc0da7b45b64d1773d4cbb3d
1,595
py
Python
pi/gpsf(old).py
AideTechBot/expo
b616512100e2449e795f8073871efc056b92742f
[ "MIT" ]
2
2016-07-13T21:29:33.000Z
2020-12-24T04:47:40.000Z
pi/gpsf(old).py
AideTechBot/expo
b616512100e2449e795f8073871efc056b92742f
[ "MIT" ]
1
2018-04-24T20:29:10.000Z
2018-04-24T20:29:10.000Z
pi/gpsf(old).py
AideTechBot/expo
b616512100e2449e795f8073871efc056b92742f
[ "MIT" ]
null
null
null
#!/usr/bin/python """ GPS.PY written by: Manuel Dionne credit to: the internet """ import wave import PiFm import time import os from subprocess import call def send_data( filename, freq ): call(["./pifm", filename, freq]) return freq = 500.0 data_size = 0 frate = 11025.0 # framerate as a float amp = 64000. # multiplier for amplitude pos = "400 600" fname = "packet.wav" data_list_x = [] def cleardata(): if os.path.exists(fname): os.remove(fname) else: print "No file to delete: " + fname def writedata(): global data_list_x wav = wave.open(fname,'w') #padding padding = "" i = 0 for i in range(0,1024): i = i + 1 padding = padding + "A" print padding #making the data data = padding + "START" + "|" + str(time.time()) + "|" + pos + "|" + "END" + padding + "\n" data_size = len(data) print str(data) + str(data_size) #put all the data in a list for x in range(data_size): data_list_x.append(data[x]) #declaring some vars nchannels = 1 sampwidth = 2 framerate = int(frate) nframes = data_size comptype = "NONE" compname = "not compressed" #setting the params wav.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname)) #writing frames for s in data_list_x: wav.writeframes(s) wav.close() #recycle vars data_list_x = [] while(True): cleardata() writedata() print "ok" send_data(fname,"103.3") time.sleep(1)
20.448718
97
0.584953
4e97dee002fd3c43fcf199088a382c9113275037
418
py
Python
qrgenerator/lib/BarcodeGenerator.py
saraclohisey/icecap-qrcode
c22875a99ba50065b62d370b3aa3dcc6ebeeafab
[ "MIT" ]
2
2020-04-06T08:39:18.000Z
2020-05-05T11:50:11.000Z
qrgenerator/lib/BarcodeGenerator.py
saraclohisey/icecap-qrcode
c22875a99ba50065b62d370b3aa3dcc6ebeeafab
[ "MIT" ]
7
2021-03-31T19:45:55.000Z
2022-03-12T00:22:43.000Z
qrgenerator/lib/BarcodeGenerator.py
saraclohisey/icecap-qrcode
c22875a99ba50065b62d370b3aa3dcc6ebeeafab
[ "MIT" ]
2
2020-04-21T12:28:18.000Z
2020-05-25T10:16:32.000Z
from barcode import Code39 from barcode.writer import ImageWriter def generate(input_tuple, filename): elements = list(input_tuple) data_to_encode = "-".join(elements) data_to_encode = data_to_encode.replace('_', '-') print('Generating barcode for', data_to_encode) print('Saving to', filename) with open(filename, 'wb') as fh: Code39(data_to_encode, writer=ImageWriter()).write(fh)
29.857143
62
0.712919
a8afc35f86420c5c0c3d13b32b220384686518e3
607
py
Python
common/rpc/buildserver.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
null
null
null
common/rpc/buildserver.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
null
null
null
common/rpc/buildserver.py
akshitdewan/cs61a-apps
155f2afe98b238fb4b1c4ca1c79610ec55e826e6
[ "MIT" ]
null
null
null
from common.rpc.utils import create_service, requires_master_secret service = create_service(__name__) @requires_master_secret @service.route("/api/clear_queue") def clear_queue(*, repo: str, pr_number: int): ... @requires_master_secret @service.route("/api/trigger_build") def trigger_build_sync(*, pr_number: int, target_app: str = None): ... @requires_master_secret @service.route("/api/deploy_prod_app_sync") def deploy_prod_app_sync(*, target_app: str): ... @requires_master_secret @service.route("/api/get_base_hostname") def get_base_hostname(*, target_app: str) -> str: ...
21.678571
67
0.746293
c7b187a3a663a73ad1dcb6b96597d02acd35a2be
1,452
py
Python
custom_loss.py
chenchr/PoseNet
d8c0d1071db21652a7cb4b2715747ef346c8f706
[ "MIT" ]
2
2018-05-09T03:35:42.000Z
2018-05-10T00:13:56.000Z
custom_loss.py
chenchr/PoseNet
d8c0d1071db21652a7cb4b2715747ef346c8f706
[ "MIT" ]
null
null
null
custom_loss.py
chenchr/PoseNet
d8c0d1071db21652a7cb4b2715747ef346c8f706
[ "MIT" ]
null
null
null
import torch import torch.nn as nn def normalize(vec): divided = torch.sqrt(vec.pow(2).sum(dim=1, keepdim=True)) + 1e-8 return vec/divided def custom_loss(estimate, target, qua_weight, t_weight, test=False): # print("estimete: {}\ntarget: {}".format(estimate[0,:], target[0,:])) #if test: # qua_estimate, qua_target = normalize(estimate[:, 0:3]), normalize(target[:, 0:3]) #else: rVec_estimate, rVec_target = estimate[:, 0:3], target[:, 0:3] # we, xe, ye, ze = qua_estimate[0,:].data.cpu().numpy() # wt, xt, yt, zt = qua_target[0,:].data.cpu().numpy() # print('qua estimate: {}, target: {}'.format([we,xe,ye,ze], [wt,xt,yt,zt])) if test: t_estimate, t_target = normalize(estimate[:, 3:6]), normalize(target[:, 3:6]) else: t_estimate, t_target = estimate[:, 3:6], target[:, 3:6] # xe, ye, ze = t_estimate[0,:].data.cpu().numpy() # xt, yt, zt = t_target[0,:].data.cpu().numpy() # print('t estimate: {}, target: {}'.format([xe,ye,ze],[xt,yt,zt])) rVec_error = (rVec_estimate - rVec_target).pow(2).sum(dim=1).mean() t_error = (t_estimate - t_target).pow(2).sum(dim=1).mean() # print('t error: {}'.format(t_error.data[0])) # all_error = qua_error * torch.exp(-qua_weight) + qua_weight + t_error * torch.exp(-t_weight) + t_weight rVec_error.fill_(0) # only loss for translation all_error = rVec_error + t_error return all_error, rVec_error, t_error
46.83871
109
0.621901
b226636bda27aee98c88a65070ae3817b3c8d1f5
882
py
Python
noise.py
mohamedsayed18/Neuroscience_Inno2021
d321a69583333ec596079f0e69b4d4751ab37425
[ "MIT" ]
null
null
null
noise.py
mohamedsayed18/Neuroscience_Inno2021
d321a69583333ec596079f0e69b4d4751ab37425
[ "MIT" ]
null
null
null
noise.py
mohamedsayed18/Neuroscience_Inno2021
d321a69583333ec596079f0e69b4d4751ab37425
[ "MIT" ]
null
null
null
""" Add Gaussian white noise TODO: Try the different D values(amplitude) for noise(1, 0.1, 0.01, 0.001) """ import numpy as np import matplotlib.pyplot as plt from morris_lecar import morris_lecar class noisy_model(morris_lecar): D = 0.01 def dv_dt(self, current): self.I = current return ((self.I - self.gl * (self.v - self.v_l) - self.gca * self.m_inf() * (self.v - self.v_ca) - self.gk * self.n * (self.v - self.v_k)) / self.c) + (noisy_model.D * np.random.normal(0.001,1)) if __name__ == "__main__": mymodel = noisy_model() # create an instance # get the output for 2000 step for i in range(3000): if(i>450 and i<550): mymodel.get_v(1) else: mymodel.get_v(0) plt.plot(mymodel.volts, label="D = 0.01") plt.xlabel("Time") plt.ylabel("Volt") plt.legend() plt.show()
25.941176
109
0.604308
92e90f725fed9573cc3b9f10e029987b01b1b8e1
11,554
py
Python
SMBcorr/racmo_extrap_mean.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
null
null
null
SMBcorr/racmo_extrap_mean.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
null
null
null
SMBcorr/racmo_extrap_mean.py
SmithB/SMBcorr
7c35cf8383058986fd82b28beab3c5580f9f8667
[ "MIT" ]
1
2020-08-06T19:48:52.000Z
2020-08-06T19:48:52.000Z
#!/usr/bin/env python u""" racmo_extrap_mean.py Written by Tyler Sutterley (09/2019) Interpolates and extrapolates downscaled RACMO products to times and coordinates Uses fast nearest-neighbor search algorithms https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html and inverse distance weighted interpolation to extrapolate spatially CALLING SEQUENCE: python racmo_extrap_mean.py --directory=<path> --version=3.0 \ --product=SMB,PRECIP,RUNOFF --coordinate=[-39e4,-133e4],[-39e4,-133e4] \ --date=2016.1,2018.1 COMMAND LINE OPTIONS: -D X, --directory=X: Working data directory --version=X: Downscaled RACMO Version 1.0: RACMO2.3/XGRN11 2.0: RACMO2.3p2/XGRN11 3.0: RACMO2.3p2/FGRN055 --product: RACMO product to calculate SMB: Surface Mass Balance PRECIP: Precipitation RUNOFF: Melt Water Runoff SNOWMELT: Snowmelt REFREEZE: Melt Water Refreeze --mean: Start and end year of mean (separated by commas) --coordinate=X: Polar Stereographic X and Y of point --date=X: Date to interpolate in year-decimal format --csv=X: Read dates and coordinates from a csv file --fill-value: Replace invalid values with fill value (default uses original fill values from data file) PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html scipy: Scientific Tools for Python https://docs.scipy.org/doc/ netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html pyproj: Python interface to PROJ library https://pypi.org/project/pyproj/ scikit-learn: Machine Learning in Python https://scikit-learn.org/stable/index.html https://github.com/scikit-learn/scikit-learn UPDATE HISTORY: Updated 04/2020: reduced to interpolation function. output masked array Updated 09/2019: read subsets of DS1km netCDF4 file to save memory Written 09/2019 """ from __future__ import print_function import sys import os import re import pyproj import getopt import netCDF4 import numpy as np import scipy.interpolate from sklearn.neighbors import KDTree, BallTree #-- PURPOSE: read and interpolate downscaled RACMO products def extrapolate_racmo_mean(base_dir, EPSG, VERSION, PRODUCT, tdec, X, Y, RANGE=[], SEARCH='BallTree', NN=10, POWER=2.0, FILL_VALUE=None): #-- Full Directory Setup DIRECTORY = 'SMB1km_v{0}'.format(VERSION) #-- netcdf variable names input_products = {} input_products['SMB'] = 'SMB_rec' input_products['PRECIP'] = 'precip' input_products['RUNOFF'] = 'runoff' input_products['SNOWMELT'] = 'snowmelt' input_products['REFREEZE'] = 'refreeze' #-- version 1 was in separate files for each year if (VERSION == '1.0'): RACMO_MODEL = ['XGRN11','2.3'] VARNAME = input_products[PRODUCT] SUBDIRECTORY = '{0}_v{1}'.format(VARNAME,VERSION) input_dir = os.path.join(base_dir, 'RACMO', DIRECTORY, SUBDIRECTORY) elif (VERSION == '2.0'): RACMO_MODEL = ['XGRN11','2.3p2'] var = input_products[PRODUCT] VARNAME = var if PRODUCT in ('SMB','PRECIP') else '{0}corr'.format(var) input_dir = os.path.join(base_dir, 'RACMO', DIRECTORY) elif (VERSION == '3.0'): RACMO_MODEL = ['FGRN055','2.3p2'] var = input_products[PRODUCT] VARNAME = var if (PRODUCT == 'SMB') else '{0}corr'.format(var) input_dir = os.path.join(base_dir, 'RACMO', DIRECTORY) #-- read mean from netCDF4 file arg = (RACMO_MODEL[0],RACMO_MODEL[1],VERSION,PRODUCT,RANGE[0],RANGE[1]) mean_file = '{0}_RACMO{1}_DS1km_v{2}_{3}_Mean_{4:4d}-{5:4d}.nc'.format(*arg) with netCDF4.Dataset(os.path.join(input_dir,mean_file),'r') as fileID: MEAN = fileID[VARNAME][:,:].copy() #-- input cumulative netCDF4 file args = (RACMO_MODEL[0],RACMO_MODEL[1],VERSION,PRODUCT) input_file = '{0}_RACMO{1}_DS1km_v{2}_{3}_cumul.nc'.format(*args) #-- Open the RACMO NetCDF file for reading fileID = netCDF4.Dataset(os.path.join(input_dir,input_file), 'r') #-- input shape of RACMO data nt,ny,nx = fileID[VARNAME].shape #-- Get data from each netCDF variable d = {} #-- cell origins on the bottom right dx = np.abs(fileID.variables['x'][1]-fileID.variables['x'][0]) dy = np.abs(fileID.variables['y'][1]-fileID.variables['y'][0]) #-- latitude and longitude arrays at center of each cell d['LON'] = fileID.variables['LON'][:,:].copy() d['LAT'] = fileID.variables['LAT'][:,:].copy() #-- extract time (decimal years) d['TIME'] = fileID.variables['TIME'][:].copy() #-- mask object for interpolating data d['MASK'] = np.array(fileID.variables['MASK'][:],dtype=np.bool) i,j = np.nonzero(d['MASK']) #-- reduce mean to valid points var1 = MEAN[i,j] #-- convert RACMO latitude and longitude to input coordinates (EPSG) proj1 = pyproj.Proj("+init={0}".format(EPSG)) proj2 = pyproj.Proj("+init=EPSG:{0:d}".format(4326)) xg,yg = pyproj.transform(proj2, proj1, d['LON'], d['LAT']) #-- construct search tree from original points #-- can use either BallTree or KDTree algorithms xy1 = np.concatenate((xg[i,j,None],yg[i,j,None]),axis=1) tree = BallTree(xy1) if (SEARCH == 'BallTree') else KDTree(xy1) #-- output extrapolated arrays of variable extrap_var = np.zeros_like(tdec,dtype=np.float) #-- type designating algorithm used (1: interpolate, 2: backward, 3:forward) extrap_type = np.ones_like(tdec,dtype=np.uint8) #-- inverse distance weighting to extrapolate in space #-- query the search tree to find the NN closest points xy2 = np.concatenate((X[:,None],Y[:,None]),axis=1) dist,indices = tree.query(xy2, k=NN, return_distance=True) count = len(tdec) #-- normalized weights if POWER > 0 (typically between 1 and 3) #-- in the inverse distance weighting power_inverse_distance = dist**(-POWER) s = np.sum(power_inverse_distance, axis=1) w = power_inverse_distance/np.broadcast_to(s[:,None],(count,NN)) #-- spatially extrapolate using inverse distance weighting dt = (tdec - d['TIME'][0])/(d['TIME'][1] - d['TIME'][0]) extrap_var[:] = dt*np.sum(w*var1[indices],axis=1) #-- replace fill value if specified if FILL_VALUE: ind, = np.nonzero(extrap_type == 0) extrap_var[ind] = FILL_VALUE fv = FILL_VALUE else: fv = 0.0 #-- close the NetCDF files fileID.close() #-- return the extrapolated values return (extrap_var,extrap_type,fv) #-- PURPOSE: interpolate RACMO products to a set of coordinates and times #-- wrapper function to extract EPSG and print to terminal def racmo_extrap_mean(base_dir, VERSION, PRODUCT, RANGE=[], COORDINATES=None, DATES=None, CSV=None, FILL_VALUE=None): #-- this is the projection of the coordinates being extrapolated into EPSG = "EPSG:{0:d}".format(3413) #-- read coordinates and dates from a csv file (X,Y,year decimal) if CSV: X,Y,tdec = np.loadtxt(CSV,delimiter=',').T else: #-- regular expression pattern for extracting x and y coordinates numerical_regex = '([-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?)' regex = re.compile('\[{0},{0}\]'.format(numerical_regex)) #-- number of coordinates npts = len(regex.findall(COORDINATES)) #-- x and y coordinates of interpolation points X = np.zeros((npts)) Y = np.zeros((npts)) for i,XY in enumerate(regex.findall(COORDINATES)): X[i],Y[i] = np.array(XY, dtype=np.float) #-- convert dates to ordinal days (count of days of the Common Era) tdec = np.array(DATES, dtype=np.float) #-- read and interpolate/extrapolate RACMO2.3 products vi,itype,fv = extrapolate_racmo_mean(base_dir, EPSG, VERSION, PRODUCT, tdec, X, Y, RANGE=RANGE, FILL_VALUE=FILL_VALUE) interpolate_types = ['invalid','extrapolated','backward','forward'] for v,t in zip(vi,itype): print(v,interpolate_types[t]) #-- PURPOSE: help module to describe the optional input parameters def usage(): print('\nHelp: {}'.format(os.path.basename(sys.argv[0]))) print(' -D X, --directory=X\tWorking data directory') print(' --version=X\t\tDownscaled RACMO Version') print('\t1.0: RACMO2.3/XGRN11') print('\t2.0: RACMO2.3p2/XGRN11') print('\t3.0: RACMO2.3p2/FGRN055') print(' --product:\t\tRACMO product to calculate') print('\tSMB: Surface Mass Balance') print('\tPRECIP: Precipitation') print('\tRUNOFF: Melt Water Runoff') print('\tSNOWMELT: Snowmelt') print('\tREFREEZE: Melt Water Refreeze') print(' --mean:\t\tStart and end year of mean (separated by commas)') print(' --coordinate=X\t\tPolar Stereographic X and Y of point') print(' --date=X\t\tDates to interpolate in year-decimal format') print(' --csv=X\t\tRead dates and coordinates from a csv file') print(' --fill-value\t\tReplace invalid values with fill value\n') #-- Main program that calls racmo_extrap_mean() def main(): #-- Read the system arguments listed after the program long_options = ['help','directory=','version=','product=','mean=', 'coordinate=','date=','csv=','fill-value='] optlist,arglist = getopt.getopt(sys.argv[1:], 'hD:', long_options) #-- data directory base_dir = os.getcwd() #-- Downscaled version VERSION = '3.0' #-- Products to calculate cumulative PRODUCTS = ['SMB'] #-- mean range RANGE = [1961,1990] #-- coordinates and times to run COORDINATES = None DATES = None #-- read coordinates and dates from csv file CSV = None #-- invalid value (default is nan) FILL_VALUE = np.nan #-- extract parameters for opt, arg in optlist: if opt in ('-h','--help'): usage() sys.exit() elif opt in ("-D","--directory"): base_dir = os.path.expanduser(arg) elif opt in ("--version"): VERSION = arg elif opt in ("--product"): PRODUCTS = arg.split(',') elif opt in ("--mean"): RANGE = np.array(arg.split(','),dtype=np.int) elif opt in ("--coordinate"): COORDINATES = arg elif opt in ("--date"): DATES = arg.split(',') elif opt in ("--csv"): CSV = os.path.expanduser(arg) elif opt in ("--fill-value"): FILL_VALUE = eval(arg) #-- data product longnames longname = {} longname['SMB'] = 'Cumulative Surface Mass Balance Anomalies' longname['PRECIP'] = 'Cumulative Precipitation Anomalies' longname['RUNOFF'] = 'Cumulative Runoff Anomalies' longname['SNOWMELT'] = 'Cumulative Snowmelt Anomalies' longname['REFREEZE'] = 'Cumulative Melt Water Refreeze Anomalies' #-- for each product for p in PRODUCTS: #-- check that product was entered correctly if p not in longname.keys(): raise IOError('{0} not in valid RACMO products'.format(p)) #-- run program with parameters racmo_extrap_mean(base_dir, VERSION, p, RANGE=RANGE, COORDINATES=COORDINATES, DATES=DATES, CSV=CSV, FILL_VALUE=FILL_VALUE) #-- run main program if __name__ == '__main__': main()
40.118056
81
0.648866
5519b61fbec384694a50ffe7fd7032f528145c29
3,353
py
Python
teste/teste/settings.py
MillenaEDS/trabalhope
659e29f9d5ea4f3f9a740a6952d432e22f282a60
[ "Apache-2.0" ]
null
null
null
teste/teste/settings.py
MillenaEDS/trabalhope
659e29f9d5ea4f3f9a740a6952d432e22f282a60
[ "Apache-2.0" ]
2
2020-06-05T18:10:20.000Z
2021-06-10T20:06:29.000Z
teste/teste/settings.py
MillenaEDS/trabalholms
659e29f9d5ea4f3f9a740a6952d432e22f282a60
[ "Apache-2.0" ]
null
null
null
""" Django settings for teste project. Generated by 'django-admin startproject' using Django 1.11.6. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y6ta0xr1_y#e_!z53*d)gxobem9#31c*m=$*e3*n)s3x_!&0re' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'testando' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'teste.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'teste.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'lms', 'USER': 'root', 'PASSWORD': 'lu1234', 'HOST': '127.0.0.1', 'PORT': '3306' } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Sao_Paulo' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' #FileUpload MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') #login AUTH_USER_MODEL ='testando.Usuario' LOGIN_REDIRECT_URL = 'index'
24.122302
91
0.686848
9ebb1f5f9e8d7a3b3765d23b0ddaffb1e9755492
7,622
py
Python
gammapy/irf/tests/test_energy_dispersion.py
qpiel/gammapy
cfb976909e63f4d5d578e1495245c0baad69482b
[ "BSD-3-Clause" ]
null
null
null
gammapy/irf/tests/test_energy_dispersion.py
qpiel/gammapy
cfb976909e63f4d5d578e1495245c0baad69482b
[ "BSD-3-Clause" ]
1
2020-10-29T19:55:46.000Z
2020-10-29T19:55:46.000Z
gammapy/irf/tests/test_energy_dispersion.py
qpiel/gammapy
cfb976909e63f4d5d578e1495245c0baad69482b
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy.coordinates import Angle import astropy.units as u from ...utils.testing import requires_dependency, requires_data, mpl_plot_check from ...utils.energy import EnergyBounds from ...irf import EnergyDispersion, EnergyDispersion2D class TestEnergyDispersion: def setup(self): self.e_true = np.logspace(0, 1, 101) * u.TeV self.e_reco = self.e_true self.resolution = 0.1 self.bias = 0 self.edisp = EnergyDispersion.from_gauss( e_true=self.e_true, e_reco=self.e_reco, pdf_threshold=1e-7, sigma=self.resolution, bias=self.bias, ) def test_from_diagonal_response(self): e_true = [0.5, 1, 2, 4, 6] * u.TeV e_reco = [2, 4, 6] * u.TeV edisp = EnergyDispersion.from_diagonal_response(e_true, e_reco) assert edisp.pdf_matrix.shape == (4, 2) expected = [[0, 0], [0, 0], [1, 0], [0, 1]] assert_equal(edisp.pdf_matrix, expected) # Test square matrix edisp = EnergyDispersion.from_diagonal_response(e_true) assert_allclose(edisp.e_reco.bins.value, e_true.value) assert edisp.e_reco.bins.unit == "TeV" assert_equal(edisp.pdf_matrix[0][0], 1) assert_equal(edisp.pdf_matrix[2][0], 0) assert edisp.pdf_matrix.sum() == 4 def test_str(self): assert "EnergyDispersion" in str(self.edisp) def test_evaluate(self): # Check for correct normalization pdf = self.edisp.data.evaluate(e_true=3.34 * u.TeV) assert_allclose(np.sum(pdf), 1, atol=1e-2) def test_apply(self): counts = np.arange(len(self.e_true) - 1) actual = self.edisp.apply(counts) assert_allclose(actual[0], 1.8612999017723058, atol=1e-3) counts = np.arange(len(self.e_true) - 4) with pytest.raises(ValueError) as exc: self.edisp.apply(counts) assert str(len(counts)) in str(exc.value) assert_allclose(actual[0], 1.8612999017723058, atol=1e-3) def test_get_bias(self): bias = self.edisp.get_bias(3.34 * u.TeV) assert_allclose(bias, self.bias, atol=1e-2) def test_get_resolution(self): resolution = self.edisp.get_resolution(3.34 * u.TeV) assert_allclose(resolution, self.resolution, atol=1e-2) def test_io(self, tmpdir): indices = np.array([[1, 3, 6], [3, 3, 2]]) desired = self.edisp.pdf_matrix[indices] writename = str(tmpdir / "rmf_test.fits") self.edisp.write(writename) edisp2 = EnergyDispersion.read(writename) actual = edisp2.pdf_matrix[indices] assert_allclose(actual, desired) @requires_dependency("matplotlib") def test_plot_matrix(self): with mpl_plot_check(): self.edisp.plot_matrix() @requires_dependency("matplotlib") def test_plot_bias(self): with mpl_plot_check(): self.edisp.plot_bias() @requires_dependency("matplotlib") def test_peek(self): with mpl_plot_check(): self.edisp.peek() @requires_data("gammapy-extra") class TestEnergyDispersion2D: def setup(self): # TODO: use from_gauss method to create know edisp (see below) # At the moment only 1 test uses it (test_get_response) filename = ( "$GAMMAPY_EXTRA/test_datasets/irf/hess/pa/hess_edisp_2d_023523.fits.gz" ) self.edisp = EnergyDispersion2D.read(filename, hdu="ENERGY DISPERSION") # Make a test case e_true = np.logspace(-1.0, 2.0, 51) * u.TeV migra = np.linspace(0.0, 4.0, 1001) offset = np.linspace(0.0, 2.5, 5) * u.deg sigma = 0.15 / (e_true[:-1] / (1 * u.TeV)).value ** 0.3 bias = 1e-3 * (e_true[:-1] - 1 * u.TeV).value self.edisp2 = EnergyDispersion2D.from_gauss(e_true, migra, bias, sigma, offset) def test_str(self): assert "EnergyDispersion2D" in str(self.edisp) def test_evaluation(self): # TODO: Move to tests for NDDataArray # Check that nodes are evaluated correctly e_node = 12 off_node = 3 m_node = 5 offset = self.edisp.data.axis("offset").nodes[off_node] energy = self.edisp.data.axis("e_true").nodes[e_node] migra = self.edisp.data.axis("migra").nodes[m_node] actual = self.edisp.data.evaluate(offset=offset, e_true=energy, migra=migra) desired = self.edisp.data.data[e_node, m_node, off_node] assert_allclose(actual, desired, rtol=1e-06) assert_allclose(actual, 0.09388659149, rtol=1e-06) # Check output shape energy = [1, 2] * u.TeV migra = np.array([0.98, 0.97, 0.7]) offset = [0.1, 0.2, 0.3, 0.4] * u.deg actual = self.edisp.data.evaluate( e_true=energy.reshape(-1, 1, 1), migra=migra.reshape(1, -1, 1), offset=offset.reshape(1, 1, -1), ) assert_allclose(actual.shape, (2, 3, 4)) # Check evaluation at all nodes actual = self.edisp.data.evaluate().shape desired = ( self.edisp.data.axis("e_true").nbins, self.edisp.data.axis("migra").nbins, self.edisp.data.axis("offset").nbins, ) assert_equal(actual, desired) def test_get_response(self): pdf = self.edisp2.get_response(offset=0.7 * u.deg, e_true=1 * u.TeV) assert_allclose(pdf.sum(), 1) assert_allclose(pdf.max(), 0.013025634736094305) def test_exporter(self): # Check RMF exporter offset = Angle(0.612, "deg") e_reco = EnergyBounds.equal_log_spacing(1, 10, 6, "TeV") e_true = EnergyBounds.equal_log_spacing(0.8, 5, 4, "TeV") rmf = self.edisp.to_energy_dispersion(offset, e_true=e_true, e_reco=e_reco) assert_allclose(rmf.data.data[2, 3], 0.08, atol=5e-2) # same tolerance as above actual = rmf.pdf_matrix[2] e_val = np.sqrt(e_true[2] * e_true[3]) desired = self.edisp.get_response(offset, e_val, e_reco) assert_equal(actual, desired) def test_write(self): energy_lo = np.logspace(0, 1, 11)[:-1] * u.TeV energy_hi = np.logspace(0, 1, 11)[1:] * u.TeV offset_lo = np.linspace(0, 1, 4)[:-1] * u.deg offset_hi = np.linspace(0, 1, 4)[1:] * u.deg migra_lo = np.linspace(0, 3, 4)[:-1] migra_hi = np.linspace(0, 3, 4)[1:] data = ( np.ones(shape=(len(energy_lo), len(migra_lo), len(offset_lo))) * u.cm * u.cm ) edisp = EnergyDispersion2D( e_true_lo=energy_lo, e_true_hi=energy_hi, migra_lo=migra_lo, migra_hi=migra_hi, offset_lo=offset_lo, offset_hi=offset_hi, data=data, ) hdu = edisp.to_fits() assert_equal(hdu.data["ENERG_LO"][0], edisp.data.axis("e_true").lo.value) assert hdu.header["TUNIT1"] == edisp.data.axis("e_true").lo.unit @requires_dependency("matplotlib") def test_plot_migration(self): with mpl_plot_check(): self.edisp.plot_migration() @requires_dependency("matplotlib") def test_plot_bias(self): with mpl_plot_check(): self.edisp.plot_bias() @requires_dependency("matplotlib") def test_peek(self): with mpl_plot_check(): self.edisp.peek()
36.295238
88
0.616505
3b31f70fa7fd06e546f8d29db1d342c921f3b03c
14,535
py
Python
test_compare.py
JeanCherubini/One-Shot-Object-Detection
2098ad3e90cb4aa9f1dd188a40efa29927ac3ab1
[ "MIT" ]
376
2019-11-29T02:26:39.000Z
2022-03-24T04:07:29.000Z
test_compare.py
JeanCherubini/One-Shot-Object-Detection
2098ad3e90cb4aa9f1dd188a40efa29927ac3ab1
[ "MIT" ]
31
2019-12-03T08:05:19.000Z
2022-03-15T06:33:05.000Z
test_compare.py
JeanCherubini/One-Shot-Object-Detection
2098ad3e90cb4aa9f1dd188a40efa29927ac3ab1
[ "MIT" ]
78
2019-11-29T05:20:31.000Z
2022-03-18T12:40:34.000Z
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas as pd import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import pickle from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes # from model.nms.nms_wrapper import nms from model.roi_layers import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import save_net, load_net, vis_detections from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet import pdb try: xrange # Python 2 except NameError: xrange = range # Python 3 def save_weight(weight, time, seen): time = np.where(time==0, 1, time) weight = weight/time[:,np.newaxis] result_map = np.zeros((len(weight), len(weight))) for i in range(len(weight)): for j in range(len(weight)): v1 = weight[i] v2 = weight[j] # v1_ = np.linalg.norm(v1) # v2_ = np.linalg.norm(v2) # v12 = np.sum(v1*v2) # print(v12) # print(v1_) # print(v2_) distance = np.linalg.norm(v1-v2) if np.sum(v1*v2)== 0 : result_map[i][j] = 0 else: result_map[i][j] = distance df = pd.DataFrame (result_map) ## save to xlsx file filepath = 'similarity_%d.xlsx'%(seen) df.to_excel(filepath, index=False) weight = weight*255 cv2.imwrite('./weight_%d.png'%(seen), weight) def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='coco', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/res101.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res50', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models", type=str) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', default=True) parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', default=True) parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', default=True) parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--s', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=10, type=int) parser.add_argument('--p', dest='checkpoint', help='checkpoint to load network', default=1663, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.add_argument('--seen', dest='seen',default=2, type=int) parser.add_argument('--a', dest='average',default=1, type=int) parser.add_argument('--g', dest='group', help='which group', default=0) args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") np.random.seed(cfg.RNG_SEED) if args.dataset == "pascal_voc": args.imdb_name = "voc_2007_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "pascal_voc_0712": args.imdb_name = "voc_2007_trainval+voc_2012_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "coco": args.imdb_name = "coco_2017_train" args.imdbval_name = "coco_2017_val" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "imagenet": args.imdb_name = "imagenet_train" args.imdbval_name = "imagenet_val" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "vg": args.imdb_name = "vg_150-50-50_minitrain" args.imdbval_name = "vg_150-50-50_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] # args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) args.cfg_file = "cfgs/{}_{}.yml".format(args.net, args.group) if args.group != 0 else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) cfg.TRAIN.USE_FLIPPED = False # imdb_vs, roidb_vs, ratio_list_vs, ratio_index_vs, query_vs = combined_roidb('coco_2014_valminusminival', False) imdb_vu, roidb_vu, ratio_list_vu, ratio_index_vu, query_vu = combined_roidb(args.imdbval_name, False, seen=args.seen) # imdb_vs.competition_mode(on=True) imdb_vu.competition_mode(on=True) input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception('There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(imdb_vu.classes, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(imdb_vu.classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(imdb_vu.classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(imdb_vu.classes, 152, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # initilize the tensor holder here. im_data = torch.FloatTensor(1) query = torch.FloatTensor(1) im_info = torch.FloatTensor(1) catgory = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() query = query.cuda() im_info = im_info.cuda() catgory = catgory.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data) query = Variable(query) im_info = Variable(im_info) catgory = Variable(catgory) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True if args.cuda: fasterRCNN.cuda() start = time.time() max_per_image = 100 vis = args.vis if vis: thresh = 0.05 else: thresh = 0.0 save_name = 'faster_rcnn_10' # output_dir_vs = get_output_dir(imdb_vs, 'faster_rcnn_seen') output_dir_vu = get_output_dir(imdb_vu, 'faster_rcnn_unseen') all_weight = np.zeros((len(ratio_index_vu[0]),1024)) all_times = np.zeros((imdb_vu.num_classes)) dataset_vu = roibatchLoader(roidb_vu, ratio_list_vu, ratio_index_vu, query_vu, 1, imdb_vu.num_classes, training=False, seen=args.seen) fasterRCNN.eval() all_ap = [] for avg in range(args.average): dataset_vu.query_position = avg dataloader_vu = torch.utils.data.DataLoader(dataset_vu, batch_size=1,shuffle=False, num_workers=0,pin_memory=True) data_iter_vu = iter(dataloader_vu) num_images_vu = len(imdb_vu.image_index) num_detect = len(ratio_index_vu[0]) all_boxes = [[[] for _ in xrange(num_images_vu)] for _ in xrange(imdb_vu.num_classes)] _t = {'im_detect': time.time(), 'misc': time.time()} det_file = os.path.join(output_dir_vu, 'detections_%d_%d.pkl'%(args.seen, avg)) print(det_file) for i,index in enumerate(ratio_index_vu[0]): data = next(data_iter_vu) im_data.data.resize_(data[0].size()).copy_(data[0]) query.data.resize_(data[1].size()).copy_(data[1]) im_info.data.resize_(data[2].size()).copy_(data[2]) gt_boxes.data.resize_(data[3].size()).copy_(data[3]) catgory.data.resize_(data[4].size()).copy_(data[4]) det_tic = time.time() rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, _, RCNN_loss_bbox, \ rois_label, weight = fasterRCNN(im_data, query, im_info, gt_boxes, catgory) # all_weight[data[4],:] = all_weight[data[4],:] + weight.view(-1).detach().cpu().numpy() all_weight[i,:] = weight.view(-1).detach().cpu().numpy() all_times[data[4]] = all_times[data[4]] + 1 scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4) else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4 * len(imdb.classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) pred_boxes /= data[2][0][2].item() scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() if vis and i%1==0: print(i) im = cv2.imread(dataset_vu._roidb[dataset_vu.ratio_index[i]]['image']) im2show = np.copy(im) inds = torch.nonzero(scores>thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[inds] _, order = torch.sort(cls_scores, 0, True) cls_boxes = pred_boxes[inds, :] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_boxes[order, :], cls_scores[order], cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] all_boxes[data[4]][index] = cls_dets.cpu().numpy() if vis: im2show = vis_detections(im2show, 'shot', cls_dets.cpu().numpy(), 0.8) # Limit to max_per_image detections *over all classes* if max_per_image > 0: try: image_scores = all_boxes[data[4]][index][:,-1] if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] keep = np.where(all_boxes[data[4]][index][:,-1] >= image_thresh)[0] all_boxes[data[4]][index] = all_boxes[data[4]][index][keep, :] except: pass misc_toc = time.time() nms_time = misc_toc - misc_tic sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s \r' \ .format(i + 1, num_detect, detect_time, nms_time)) sys.stdout.flush() if vis and i%1==0: o_query = data[1][0].permute(1, 2,0).contiguous().cpu().numpy() o_query *= [0.229, 0.224, 0.225] o_query += [0.485, 0.456, 0.406] o_query *= 255 o_query = o_query[:,:,::-1] (h,w,c) = im2show.shape o_query = cv2.resize(o_query, (h, h),interpolation=cv2.INTER_LINEAR) # im2show = np.concatenate((im2show, o_query), axis=1) cv2.imwrite('./test_img/%d.png'%(i), im2show) with open(det_file, 'wb') as f: print('hi') pickle.dump([all_boxes, all_weight, all_times], f, pickle.HIGHEST_PROTOCOL) with open(det_file, 'rb') as fid: [all_boxes, all_weight, all_times] = pickle.load(fid) save_weight(all_weight, all_times, args.seen) print('Evaluating detections') aps = imdb_vu.evaluate_detections(all_boxes, output_dir_vu) all_ap.append(aps) print(aps) print(all_ap) end = time.time() print("test time: %0.4fs" % (end - start)) all_ap = np.array(all_ap) print(np.mean(all_ap, axis=0))
35.712531
136
0.631441
9d028368be9d26a0695a3766715bd0849dfeedb2
1,986
py
Python
tests/rules/test_scm_correction.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_scm_correction.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
tests/rules/test_scm_correction.py
RogueScholar/thefuck-termux
cc33d5fa0077b2b2323b8a62f3478ff8efef3fba
[ "MIT" ]
null
null
null
import pytest from thefuck.rules.scm_correction import get_new_command from thefuck.rules.scm_correction import match from thefuck.types import Command @pytest.fixture def get_actual_scm_mock(mocker): return mocker.patch("thefuck.rules.scm_correction._get_actual_scm", return_value=None) @pytest.mark.parametrize( "script, output, actual_scm", [ ( "git log", "fatal: Not a git repository " "(or any of the parent directories): .git", "hg", ), ( "hg log", "abort: no repository found in '/home/nvbn/exp/thefuck' " "(.hg not found)!", "git", ), ], ) def test_match(get_actual_scm_mock, script, output, actual_scm): get_actual_scm_mock.return_value = actual_scm assert match(Command(script, output)) @pytest.mark.parametrize( "script, output, actual_scm", [ ("git log", "", "hg"), ( "git log", "fatal: Not a git repository " "(or any of the parent directories): .git", None, ), ( "hg log", "abort: no repository found in '/home/nvbn/exp/thefuck' " "(.hg not found)!", None, ), ( "not-scm log", "abort: no repository found in '/home/nvbn/exp/thefuck' " "(.hg not found)!", "git", ), ], ) def test_not_match(get_actual_scm_mock, script, output, actual_scm): get_actual_scm_mock.return_value = actual_scm assert not match(Command(script, output)) @pytest.mark.parametrize( "script, actual_scm, result", [("git log", "hg", "hg log"), ("hg log", "git", "git log")], ) def test_get_new_command(get_actual_scm_mock, script, actual_scm, result): get_actual_scm_mock.return_value = actual_scm new_command = get_new_command(Command(script, "")) assert new_command == result
27.205479
74
0.575529
7c9d18147bee0f9f5fa0371422cd10a8d7ad7ba8
12,914
py
Python
gan_pytorch.py
ReyhaneAskari/negative_momentum_for_improved_game_dynamics
84339c2dbbe8173cf8d004ef494700076908f18b
[ "MIT" ]
6
2020-05-14T07:41:26.000Z
2022-03-06T08:49:52.000Z
gan_pytorch.py
ReyhaneAskari/negative_momentum_for_improved_game_dynamics
84339c2dbbe8173cf8d004ef494700076908f18b
[ "MIT" ]
3
2020-12-28T07:51:20.000Z
2021-01-25T06:51:29.000Z
gan_pytorch.py
ReyhaneAskari/negative_momentum_for_improved_game_dynamics
84339c2dbbe8173cf8d004ef494700076908f18b
[ "MIT" ]
null
null
null
import random import numpy as np np.random.seed(1234) import os import torch torch.manual_seed(1234) torch.cuda.manual_seed_all(1234) import torch.nn as nn from torch.autograd import Variable from torch.optim import SGD, Adam from utils import Adamp as AdamPlus import torch.autograd as autograd from torch.optim.optimizer import required from scipy.stats import gaussian_kde import argparse import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from numpy import linalg parser = argparse.ArgumentParser() parser.add_argument('--iterations', type=int, default=2) parser.add_argument('--modes_idx', type=int, default=2) parser.add_argument('--update_rule_idx', type=int, default=4) parser.add_argument('--learning_rate_idx', type=int, default=1) parser.add_argument('--momentum_idx', type=int, default=2) parser.add_argument('--dis_iter_idx', type=int, default=0) args = parser.parse_args() iterations = args.iterations modes = ['gp', 'no_gp', 'sat', 'co'] mode = modes[args.modes_idx] update_rules = ['sgdnm', 'adam_plus', 'adam', 'mixed_adam_plus', 'mixed_sgd'] update_rule = update_rules[args.update_rule_idx] learning_rates = [1e-1, 1e-2, 1e-3, 1e-4] learning_rate = learning_rates[args.learning_rate_idx] momentums = [-0.5, -0.1, 0, 0.5] momentum = momentums[args.momentum_idx] dis_iters = [1, 5] dis_iter = dis_iters[args.dis_iter_idx] _batch_size = 128 dim = 256 use_cuda = True # LAMBDA = 0.1 LAMBDA = 0.05 z_dim = 8 save_directory = ('results/' + str(mode) + '_' + str(update_rule) + '_' + str(learning_rate) + '_' + str(momentum) + '_' + str(dis_iter) + '_' + '/') print('save_directory: ' + save_directory) print('iterations: ' + str(iterations)) if not os.path.exists(save_directory): os.makedirs(save_directory) class Gen(nn.Module): def __init__(self): super(Gen, self).__init__() main = nn.Sequential( nn.Linear(z_dim, dim), nn.ReLU(True), nn.Linear(dim, dim), nn.ReLU(True), nn.Linear(dim, dim), nn.ReLU(True), nn.Linear(dim, 2), ) self.main = main def forward(self, noise): output = self.main(noise) return output class Dis(nn.Module): def __init__(self): super(Dis, self).__init__() main = nn.Sequential( nn.Linear(2, dim), nn.ReLU(True), nn.Linear(dim, dim), nn.ReLU(True), nn.Linear(dim, dim), nn.ReLU(True), nn.Linear(dim, 1), ) self.main = main def forward(self, inputs): output = self.main(inputs) return output.view(-1) def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: m.weight.data.normal_(0.0, 0.02) m.bias.data.fill_(0) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) # def weights_load(): def get_8gaussians(batch_size): scale = 2. centers = [ (1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)), (1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2)) ] centers = [(scale * x, scale * y) for x, y in centers] while True: dataset = [] for i in range(batch_size): point = np.random.randn(2) * .05 center = random.choice(centers) point[0] += center[0] point[1] += center[1] dataset.append(point) dataset = np.array(dataset, dtype='float32') dataset /= 1.414 out = Variable(torch.Tensor(dataset)) if use_cuda: out = out.cuda() yield out def calc_gradient_penalty(netD, real_data, fake_data): alpha = torch.rand(_batch_size, 1) alpha = alpha.expand(real_data.size()) alpha = alpha.cuda() if use_cuda else alpha interpolates = alpha * real_data + ((1 - alpha) * fake_data) if use_cuda: interpolates = interpolates.cuda() interpolates = autograd.Variable(interpolates, requires_grad=True) disc_interpolates = netD(interpolates) gradients = autograd.grad( outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones( disc_interpolates.size()).cuda() if use_cuda else torch.ones( disc_interpolates.size()), create_graph=True, retain_graph=True, only_inputs=True)[0] gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA return gradient_penalty def apply_consensus(x, y): grad_x += 0.5 * x grad_y += 0.5 * y x -= learning_rate * grad_x y -= learning_rate * grad_y class SGDNM(SGD): def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= weight_decay: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening") super(SGD, self).__init__(params, defaults) def get_dens_real(batch_size): data = get_8gaussians(batch_size).next() real = np.array(data.data) kde_real = gaussian_kde(real.T, bw_method=0.22) x, y = np.mgrid[-2:2:(200 * 1j), -2:2:(200 * 1j)] z_real = kde_real((x.ravel(), y.ravel())).reshape(*x.shape) return z_real z_real = get_dens_real(1000) def plot(fake, epoch): plt.figure(figsize=(20, 9)) fake = np.array(fake.data) kde_fake = gaussian_kde(fake.T, bw_method=0.22) x, y = np.mgrid[-2:2:(200 * 1j), -2:2:(200 * 1j)] z_fake = kde_fake((x.ravel(), y.ravel())).reshape(*x.shape) ax1 = plt.subplot(1, 2, 1) # ax1.hold(True) ax1.pcolor(x, y, z_real) ax2 = plt.subplot(1, 2, 2) # ax2.hold(True) ax2.pcolor(x, y, z_fake) ax1.scatter(real[:, 0], real[:, 1]) ax2.scatter(fake[:, 0], fake[:, 1]) plt.savefig(save_directory + str(epoch) + '.png') plt.close() def plot_eigens(points): fig, ax = plt.subplots() ax.set_xlabel("real") ax.set_ylabel("imaginaries") reals = [p.real for p in points] imaginaries = [p.imag for p in points] plt.plot(reals, imaginaries, 'o', color='blue') plt.grid() fig.set_size_inches(10, 10) plt.savefig('eigen_plot/eigen_init.png') plt.close(fig) dis = Dis() gen = Gen() # dis.load_state_dict(torch.load('models/dis_sat_mixed_sgd_0.01_0_1_')) # gen.load_state_dict(torch.load('models/gen_sat_mixed_sgd_0.01_0_1_')) dis.apply(weights_init) gen.apply(weights_init) if use_cuda: dis = dis.cuda() gen = gen.cuda() if update_rule == 'adam': dis_optimizer = Adam(dis.parameters(), lr=learning_rate, betas=(0.5, 0.9)) gen_optimizer = Adam(gen.parameters(), lr=learning_rate, betas=(0.5, 0.9)) elif update_rule == 'adam_plus': dis_optimizer = AdamPlus(dis.parameters(), lr=learning_rate, betas=(momentum, 0.9)) gen_optimizer = AdamPlus(gen.parameters(), lr=learning_rate, betas=(momentum, 0.9)) elif update_rule == 'sgd': dis_optimizer = SGD(dis.parameters(), lr=learning_rate) gen_optimizer = SGD(gen.parameters(), lr=learning_rate) elif update_rule == 'sgdnm': dis_optimizer = SGDNM( dis.parameters(), lr=learning_rate, momentum=momentum) gen_optimizer = SGDNM( gen.parameters(), lr=learning_rate, momentum=momentum) elif update_rule == 'mixed_adam_plus': dis_optimizer = AdamPlus(dis.parameters(), lr=learning_rate, betas=(momentum, 0.9)) gen_optimizer = Adam(gen.parameters(), lr=learning_rate, betas=(0.5, 0.9)) elif update_rule == 'mixed_sgd': dis_optimizer = SGDNM( dis.parameters(), lr=learning_rate, momentum=momentum) gen_optimizer = SGD(gen.parameters(), lr=learning_rate) one = torch.FloatTensor([1]) mone = one * -1 if use_cuda: one = one.cuda() mone = mone.cuda() dataset = get_8gaussians(_batch_size) criterion = nn.BCEWithLogitsLoss() ones = Variable(torch.ones(_batch_size)) zeros = Variable(torch.zeros(_batch_size)) if use_cuda: criterion = criterion.cuda() ones = ones.cuda() zeros = zeros.cuda() gen_losses = [] dis_losses = [] points = [] for iteration in range(iterations): for iter_d in range(dis_iter): dis.zero_grad() noise = torch.randn(_batch_size, z_dim) if use_cuda: noise = noise.cuda() noise = autograd.Variable(noise) real = dataset.next() pred_real = criterion(dis(real), ones) # fake = Variable(gen(noise).data) fake = gen(noise) pred_fake = criterion(dis(fake), zeros) gradient_penalty = 0 import ipdb; ipdb.set_trace() if mode == 'gp': gradient_penalty = calc_gradient_penalty( dis, real.data, fake.data) pred_tot = pred_real + pred_fake + gradient_penalty else: pred_tot = pred_real + pred_fake pred_tot.backward(create_graph=True, retain_graph=True) # pred_tot.backward() dis_loss = gradient_penalty + pred_real + pred_fake dis_optimizer.step() if iteration == 0: dis_param = dis.parameters().next() gen_param = gen.parameters() for i in range(6): gen_param.next() gen_param = gen_param.next() dis_param_grad = dis_param.grad.view(-1) dis_grad_dis = torch.stack( [torch.autograd.grad(dis_param_grad[p], dis_param, create_graph=True, retain_graph=True) [0].view(-1) for p in range(len(dis_param_grad))]) dis_grad_gen = torch.stack( [torch.autograd.grad(dis_param_grad[p], gen_param, create_graph=True, retain_graph=True) [0].view(-1) for p in range(len(dis_param_grad))]) joc_dis = torch.cat((dis_grad_dis, dis_grad_gen), 1) gen.zero_grad() noise = torch.randn(_batch_size, z_dim) ones = Variable(torch.ones(_batch_size)) zeros = Variable(torch.zeros(_batch_size)) if use_cuda: noise = noise.cuda() ones = ones.cuda() zeros = zeros.cuda() noise = autograd.Variable(noise) fake = gen(noise) if mode == 'sat': gen_loss = -criterion(dis(fake), zeros) else: gen_loss = criterion(dis(fake), ones) gen_loss.backward(create_graph=True, retain_graph=True) gen_optimizer.step() if iteration == 0: gen_param_grad = gen_param.grad.view(-1) gen_grad_gen = torch.stack( [torch.autograd.grad(gen_param_grad[p], gen_param, create_graph=True, retain_graph=True) [0].view(-1) for p in range(len(gen_param_grad))]) gen_grad_dis = torch.stack( [torch.autograd.grad(gen_param_grad[p], dis_param, create_graph=True, retain_graph=True) [0] for p in range(len(gen_param_grad))]) gen_grad_dis = gen_grad_dis.view(512, 512) joc_gen = torch.cat((gen_grad_dis, gen_grad_gen), 1) joc = torch.cat((joc_gen, joc_dis), 0) eigvals = linalg.eigvals(joc.cpu().data.numpy()) points.append(eigvals) if iteration % 250 == 0: print("iteration: " + str(iteration) + " gen_loss: " + str(float(gen_loss)) + " dis_loss: " + str(float(dis_loss))) gen_losses += [float(gen_loss)] dis_losses += [float(dis_loss)] if iteration < 5000: freq = 500 elif iteration < 25000: freq = 2000 elif iteration < 70000: freq = 5000 else: freq = 10000 if iteration % freq == 0: noise = torch.randn(1000, z_dim) if use_cuda: noise = noise.cuda() noise = autograd.Variable(noise) fake_for_plot = gen(noise) plot(fake_for_plot, iteration) plot_eigens(points) # torch.save(gen.state_dict(), save_directory + 'gen') # torch.save(dis.state_dict(), save_directory + 'dis') # np.save(save_directory + 'dis_losses', dis_losses) # np.save(save_directory + 'gen_losses', gen_losses)
30.821002
77
0.598962
b446b3cebfbcde35897ae84f34d7209c56a3fed4
4,669
py
Python
lib/demo/statstools.py
uogbuji/akara
d308bf745458c5b54a203af25faebca5f48311ca
[ "Apache-2.0" ]
1
2018-05-24T06:13:53.000Z
2018-05-24T06:13:53.000Z
lib/demo/statstools.py
uogbuji/akara
d308bf745458c5b54a203af25faebca5f48311ca
[ "Apache-2.0" ]
null
null
null
lib/demo/statstools.py
uogbuji/akara
d308bf745458c5b54a203af25faebca5f48311ca
[ "Apache-2.0" ]
1
2020-09-18T13:14:02.000Z
2020-09-18T13:14:02.000Z
# -*- encoding: utf-8 -*- ''' See also: ''' from __future__ import with_statement import sys, time import urllib, urlparse import tempfile import os import re import csv import cgi from cStringIO import StringIO from gettext import gettext as _ from itertools import * from functools import * from subprocess import * import amara from amara.xslt import transform from amara.xpath.util import simplify from amara.bindery import html from amara.lib.util import * # Requires Python 2.6 or http://code.google.com/p/json/ from amara.thirdparty import json import akara from akara.services import simple_service VAR_PAT = re.compile('VARIABLE\s+LABELS\s+(((\w+)\s+"([^"]+)"\s*)+)\.') VAR_DEF_PAT = re.compile('(\w+)\s+"([^"]+)"') VALUE_PAT = re.compile('VALUE\s+LABELS\s+((/(\w+)\s+(\'(\w+)\'\s+"([^"]+)"\s*)+)+)\.') VALUE_DEF_SET_PAT = re.compile('/(\w+)\s+((\'(\w+)\'\s+"([^"]+)"\s*)+)') VALUE_DEF_PAT = re.compile('\'(\w+)\'\s+"([^"]+)"') VALUE_SET_TYPE = 'value_set' VARIABLE_LABELS_TYPE = 'variable_labels' VALUE_LABELS_TYPE = 'value_labels' #R_SCRIPT = '''library(foreign) #mydata <- read.spss(file='%s') #write.csv2(mydata) #''' R_SCRIPT = '''library(Hmisc) mydata <- spss.get(file='%s') write.csv2(mydata) ''' R_FILE_CMD = akara.module_config(__name__).get('r_command', 'r') POR_REQUIRED = _("The 'POR' POST parameter is mandatory.") SERVICE_ID = 'http://purl.org/akara/services/demo/spss.json' @simple_service('POST', SERVICE_ID, 'spss.json', 'application/json') def spss2json(body, ctype, **params): ''' Uses GNU R to convert SPSS to JSON Optionally tries to guess long labels from an original .SPS file Requires POST body of multipart/form-data Sample request: curl -F "POR=@foo.por" http://localhost:8880/spss.json curl -F "POR=@foo.por" -F "SPSS=@foo.sps" http://localhost:8880/spss.json ''' #curl --request POST -F "POR=@lat506.por" -F "SPSS=@LAT506.SPS" http://labs.zepheira.com:8880/spss.json #Useful: # * [[http://wiki.math.yorku.ca/index.php/R:_Data_conversion_from_SPSS|R: Data conversion from SPSS]] body = StringIO(body) form = cgi.FieldStorage(fp=body, environ=WSGI_ENVIRON) #for k in form: # print >> sys.stderr, (k, form[k][:100]) por = form.getvalue('POR') assert_not_equal(por, None, msg=POR_REQUIRED) spss = form.getvalue('SPSS') (items, varlabels, valuelabels) = parse_spss(por, spss) for count, item in enumerate(items): #print >> sys.stderr, row item['id'] = item['label'] = '_' + str(count) item['type'] = VALUE_SET_TYPE return json.dumps({'items': items, VARIABLE_LABELS_TYPE: varlabels, VALUE_LABELS_TYPE: valuelabels}, indent=4) def parse_spss(spss_por, spss_syntax=None): ''' Uses GNU R to convert SPSS to a simple Python data structure Optionally tries to guess long labels from an original .SPS file ''' varlabels = {} valuelabels = {} if spss_syntax: matchinfo = VAR_PAT.search(spss_syntax) if matchinfo: #print >> sys.stderr, matchinfo.groups defns = matchinfo.group(1) for defn in VAR_DEF_PAT.finditer(defns): varlabels[defn.group(1)] = defn.group(2) matchinfo = VALUE_PAT.search(spss_syntax) defsets = matchinfo.group(1) for defset in VALUE_DEF_SET_PAT.finditer(defsets): valuelabelset = {} for defn in VALUE_DEF_PAT.finditer(defset.group(2)): valuelabelset[defn.group(1)] = defn.group(2) valuelabels[defset.group(1)] = valuelabelset #print >> sys.stderr, varlabels #print >> sys.stderr, valuelabels #print >> sys.stderr, por[:100] #print >> sys.stderr, spss[:100] temp = tempfile.mkstemp(suffix=".por") os.write(temp[0], spss_por) cmdline = R_FILE_CMD process = Popen(cmdline, stdin=PIPE, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True) csvdata, perr = process.communicate(input=R_SCRIPT%temp[1]) os.close(temp[0]) os.remove(temp[1]) if not csvdata: print >> sys.stderr, R_SCRIPT%temp[1] print >> sys.stderr, perr #FIXME: L10N raise ValueError('Empty output from the command line. Probably a failure. Command line: "%s"'%cmdline) def value(k, v): if k in valuelabels and v in valuelabels[k]: return valuelabels[k][v] else: return v r_reader = csv.DictReader(csvdata.splitlines(), delimiter=';') rows = [ dict(((k, value(k, v.strip())) for (k, v) in row.iteritems())) for row in r_reader ] return (rows, varlabels, valuelabels)
31.33557
114
0.64532
66079fb1b5a8978813afc2b0ca918326b523f868
9,152
py
Python
mutatio/share/kivy-examples/widgets/tabbed_panel_showcase.py
SmatMan/mutatio
e6e24c45054321f9cb753499f0842ee8c8969c56
[ "MIT" ]
null
null
null
mutatio/share/kivy-examples/widgets/tabbed_panel_showcase.py
SmatMan/mutatio
e6e24c45054321f9cb753499f0842ee8c8969c56
[ "MIT" ]
null
null
null
mutatio/share/kivy-examples/widgets/tabbed_panel_showcase.py
SmatMan/mutatio
e6e24c45054321f9cb753499f0842ee8c8969c56
[ "MIT" ]
null
null
null
''' TabbedPanel ============ Test of the widget TabbedPanel showing all capabilities. ''' from kivy.app import App from kivy.animation import Animation from kivy.uix.floatlayout import FloatLayout from kivy.uix.tabbedpanel import TabbedPanel, TabbedPanelHeader from kivy.factory import Factory class StandingHeader(TabbedPanelHeader): pass class CloseableHeader(TabbedPanelHeader): pass Factory.register('StandingHeader', cls=StandingHeader) Factory.register('CloseableHeader', cls=CloseableHeader) from kivy.lang import Builder Builder.load_string(''' <TabShowcase> but: _but Button: id: _but text: 'Press to show Tabbed Panel' on_release: root.show_tab() <StandingHeader> color: 0,0,0,0 disabled_color: self.color Scatter: do_translation: False do_scale: False do_rotation: False auto_bring_to_front: False rotation: 70 size_hint: None, None size: lbl.size center_x: root.center_x center_y: root.center_y Label: id: lbl text: root.text size: root.size color: 1, 1, 1, .5 if self.disabled else 1 pos: 0,0 <PanelLeft> size_hint: (.45, .45) pos_hint: {'center_x': .25, 'y': .55} # replace the default tab with our custom tab class default_tab_cls: sh.__class__ do_default_tab: True default_tab_content: default_content.__self__ tab_width: 40 tab_height: 70 FloatLayout: RstDocument: id: default_content text: '\\n'.join(("Standing tabs", "-------------",\ "Tabs in \\'%s\\' position" %root.tab_pos)) Image: id: tab_2_content source: 'data/images/defaulttheme-0.png' Image: id: tab_3_content source: 'data/images/image-loading.zip' StandingHeader: id: sh content: tab_2_content.__self__ text: 'tab 2' StandingHeader: content: tab_3_content text: 'tab 3' <CloseableHeader> color: 0,0,0,0 disabled_color: self.color # variable tab_width text: 'tabx' size_hint_x: None width: self.texture_size[0] + 40 BoxLayout: pos: root.pos size_hint: None, None size: root.size padding: 3 Label: id: lbl text: root.text BoxLayout: size_hint: None, 1 orientation: 'vertical' width: 22 Image: source: 'tools/theming/defaulttheme/close.png' on_touch_down: if self.collide_point(*args[1].pos) :\ root.panel.remove_widget(root) <PanelRight> tab_pos: 'top_right' size_hint: (.45, .45) pos_hint: {'center_x': .75, 'y': .55} # replace the default tab with our custom tab default_tab: def_tab # allow variable tab width tab_width: None FloatLayout: RstDocument: id: default_content text: '\\n'.join(("Closeable tabs", "---------------",\ "- The tabs above are also scrollable",\ "- Tabs in \\'%s\\' position" %root.tab_pos)) Image: id: tab_2_content source: 'data/images/defaulttheme-0.png' BoxLayout: id: tab_3_content BubbleButton: text: 'Press to add new tab' on_release: root.add_header() BubbleButton: text: 'Press set this tab as default' on_release: root.default_tab = tab3 CloseableHeader: id: def_tab text: 'default tab' content:default_content.__self__ panel: root CloseableHeader: text: 'tab2' content: tab_2_content.__self__ panel: root CloseableHeader: id: tab3 text: 'tab3' content: tab_3_content.__self__ panel: root CloseableHeader: panel: root CloseableHeader: panel: root CloseableHeader: panel: root CloseableHeader: panel: root CloseableHeader: panel: root CloseableHeader: panel: root CloseableHeader: panel: root <PanelbLeft> tab_pos: 'bottom_left' size_hint: (.45, .45) pos_hint: {'center_x': .25, 'y': .02} do_default_tab: False TabbedPanelItem: id: settings text: 'Settings' RstDocument: text: '\\n'.join(("Normal tabs", "-------------",\ "Tabs in \\'%s\\' position" %root.tab_pos)) TabbedPanelItem: text: 'tab2' BubbleButton: text: 'switch to settings' on_press: root.switch_to(settings) TabbedPanelItem: text: 'tab3' Image: source: 'data/images/image-loading.zip' <PanelbRight> tab_pos: 'right_top' size_hint: (.45, .45) pos_hint: {'center_x': .75, 'y': .02} default_tab: def_tab tab_height: img.width FloatLayout: RstDocument: id: default_content text: '\\n'.join(("Image tabs","-------------",\ "1. Normal image tab","2. Image with Text","3. Rotated Image",\ "4. Tabs in \\'%s\\' position" %root.tab_pos)) Image: id: tab_2_content source: 'data/images/defaulttheme-0.png' VideoPlayer: id: tab_3_content source: 'cityCC0.mpg' TabbedPanelHeader: id: def_tab content:default_content.__self__ border: 0, 0, 0, 0 background_down: 'cityCC0.png' background_normal:'sequenced_images/data/images/info.png' TabbedPanelHeader: id: tph content: tab_2_content.__self__ BoxLayout: pos: tph.pos size: tph.size orientation: 'vertical' Image: source: 'sequenced_images/data/images/info.png'\ if tph.state == 'normal' else 'cityCC0.png' Label: text: 'text & img' TabbedPanelHeader: id: my_header content: tab_3_content.__self__ Scatter: do_translation: False do_scale: False do_rotation: False auto_bring_to_front: False rotation: 90 size_hint: None, None size: img.size center: my_header.center Image: id: img source: 'sequenced_images/data/images/info.png'\ if my_header.state == 'normal' else 'cityCC0.png' size: my_header.size allow_stretch: True keep_ratio: False ''') class Tp(TabbedPanel): # override tab switching method to animate on tab switch def switch_to(self, header): anim = Animation(opacity=0, d=.24, t='in_out_quad') def start_anim(_anim, child, in_complete, *lt): _anim.start(child) def _on_complete(*lt): if header.content: header.content.opacity = 0 anim = Animation(opacity=1, d=.43, t='in_out_quad') start_anim(anim, header.content, True) super(Tp, self).switch_to(header) anim.bind(on_complete=_on_complete) if self.current_tab.content: start_anim(anim, self.current_tab.content, False) else: _on_complete() class PanelLeft(Tp): pass class PanelRight(Tp): def add_header(self): self.add_widget(CloseableHeader(panel=self)) class PanelbLeft(Tp): pass class PanelbRight(Tp): pass class TabShowcase(FloatLayout): def show_tab(self): if not hasattr(self, 'tab'): self.tab = tab = PanelLeft() self.add_widget(tab) self.tab1 = tab = PanelRight() self.add_widget(tab) self.tab2 = tab = PanelbRight() self.add_widget(tab) self.tab3 = tab = PanelbLeft() self.add_widget(tab) self.but.text = \ 'Tabs in variable positions, press to change to top_left' else: values = ('left_top', 'left_mid', 'left_bottom', 'top_left', 'top_mid', 'top_right', 'right_top', 'right_mid', 'right_bottom', 'bottom_left', 'bottom_mid', 'bottom_right') index = values.index(self.tab.tab_pos) self.tab.tab_pos = self.tab1.tab_pos = self.tab2.tab_pos\ = self.tab3.tab_pos = values[(index + 1) % len(values)] self.but.text = 'Tabs in \'%s\' position,' % self.tab.tab_pos\ + '\n press to change to next pos' class TestTabApp(App): def build(self): return TabShowcase() if __name__ == '__main__': TestTabApp().run()
28.779874
80
0.542177
4698200abf52958b493379a5c57599f1ff3c0ff5
16,331
py
Python
qiskit/opflow/primitive_ops/pauli_sum_op.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
null
null
null
qiskit/opflow/primitive_ops/pauli_sum_op.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
2
2022-03-30T10:09:44.000Z
2022-03-30T10:09:45.000Z
qiskit/opflow/primitive_ops/pauli_sum_op.py
ewinston/qiskit-sdk-py
4d64125aba4ff31f15d0054b90437bcef352782e
[ "Apache-2.0" ]
null
null
null
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """PauliSumOp Class """ from collections import defaultdict from typing import Dict, List, Optional, Set, Tuple, Union, cast import numpy as np from scipy.sparse import spmatrix from qiskit.circuit import Instruction, ParameterExpression from qiskit.opflow.exceptions import OpflowError from qiskit.opflow.list_ops.summed_op import SummedOp from qiskit.opflow.list_ops.tensored_op import TensoredOp from qiskit.opflow.operator_base import OperatorBase from qiskit.opflow.primitive_ops.pauli_op import PauliOp from qiskit.opflow.primitive_ops.primitive_op import PrimitiveOp from qiskit.quantum_info import Pauli, SparsePauliOp, Statevector from qiskit.quantum_info.operators.custom_iterator import CustomIterator from qiskit.quantum_info.operators.symplectic.pauli_table import PauliTable class PauliSumOp(PrimitiveOp): """Class for Operators backend by Terra's ``SparsePauliOp`` class.""" primitive: SparsePauliOp def __init__( self, primitive: SparsePauliOp, coeff: Union[complex, ParameterExpression] = 1.0, grouping_type: str = "None", ) -> None: """ Args: primitive: The SparsePauliOp which defines the behavior of the underlying function. coeff: A coefficient multiplying the primitive. grouping_type: The type of grouping. If None, the operator is not grouped. Raises: TypeError: invalid parameters. """ if not isinstance(primitive, SparsePauliOp): raise TypeError( f"PauliSumOp can only be instantiated with SparsePauliOp, not {type(primitive)}" ) super().__init__(primitive, coeff=coeff) self._grouping_type = grouping_type def primitive_strings(self) -> Set[str]: return {"SparsePauliOp"} @property def grouping_type(self) -> str: """ Returns: Type of Grouping """ return self._grouping_type @property def num_qubits(self) -> int: return self.primitive.num_qubits @property def coeffs(self): """Return the Pauli coefficients.""" return self.coeff * self.primitive.coeffs def matrix_iter(self, sparse=False): """Return a matrix representation iterator. This is a lazy iterator that converts each term in the PauliSumOp into a matrix as it is used. To convert to a single matrix use the :meth:`to_matrix` method. Args: sparse (bool): optionally return sparse CSR matrices if True, otherwise return Numpy array matrices (Default: False) Returns: MatrixIterator: matrix iterator object for the PauliTable. """ class MatrixIterator(CustomIterator): """Matrix representation iteration and item access.""" def __repr__(self): return "<PauliSumOp_matrix_iterator at {}>".format(hex(id(self))) def __getitem__(self, key): sumopcoeff = self.obj.coeff * self.obj.primitive.coeffs[key] mat = PauliTable._to_matrix(self.obj.primitive.table.array[key], sparse=sparse) return sumopcoeff * mat return MatrixIterator(self) def add(self, other: OperatorBase) -> OperatorBase: if not self.num_qubits == other.num_qubits: raise ValueError( f"Sum of operators with different numbers of qubits, {self.num_qubits} and " f"{other.num_qubits}, is not well defined" ) if isinstance(other, PauliSumOp): return PauliSumOp(self.coeff * self.primitive + other.coeff * other.primitive, coeff=1) if isinstance(other, PauliOp): return PauliSumOp( self.coeff * self.primitive + other.coeff * SparsePauliOp(other.primitive) ) return SummedOp([self, other]) def mul(self, scalar: Union[complex, ParameterExpression]) -> OperatorBase: if isinstance(scalar, (int, float, complex)) and scalar != 0: return PauliSumOp(scalar * self.primitive, coeff=self.coeff) return super().mul(scalar) def adjoint(self) -> "PauliSumOp": return PauliSumOp(self.primitive.adjoint(), coeff=self.coeff.conjugate()) def equals(self, other: OperatorBase) -> bool: self_reduced, other_reduced = self.reduce(), other.reduce() if not isinstance(other_reduced, PauliSumOp): return False if isinstance(self_reduced.coeff, ParameterExpression) or isinstance( other_reduced.coeff, ParameterExpression ): return ( self_reduced.coeff == other_reduced.coeff and self_reduced.primitive == other_reduced.primitive ) return ( len(self_reduced) == len(other_reduced) and self_reduced.primitive == other_reduced.primitive ) def _expand_dim(self, num_qubits: int) -> "PauliSumOp": return PauliSumOp( self.primitive.tensor(SparsePauliOp(Pauli("I" * num_qubits))), coeff=self.coeff, ) def tensor(self, other: OperatorBase) -> Union["PauliSumOp", TensoredOp]: if isinstance(other, PauliSumOp): return PauliSumOp( self.primitive.tensor(other.primitive), coeff=self.coeff * other.coeff, ) return TensoredOp([self, other]) def permute(self, permutation: List[int]) -> "PauliSumOp": """Permutes the sequence of ``PauliSumOp``. Args: permutation: A list defining where each Pauli should be permuted. The Pauli at index j of the primitive should be permuted to position permutation[j]. Returns: A new PauliSumOp representing the permuted operator. For operator (X ^ Y ^ Z) and indices=[1,2,4], it returns (X ^ I ^ Y ^ Z ^ I). Raises: OpflowError: if indices do not define a new index for each qubit. """ if len(permutation) != self.num_qubits: raise OpflowError( "List of indices to permute must have the " "same size as Pauli Operator" ) length = max(permutation) + 1 spop = self.primitive.tensor(SparsePauliOp(Pauli("I" * (length - self.num_qubits)))) permutation = [i for i in range(length) if i not in permutation] + permutation permu_arr = np.arange(length)[np.argsort(permutation)] permu_arr = np.hstack([permu_arr, permu_arr + length]) spop.table.array = spop.table.array[:, permu_arr] return PauliSumOp(spop, self.coeff) def compose( self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False, ) -> OperatorBase: new_self, other = self._expand_shorter_operator_and_permute(other, permutation) new_self = cast(PauliSumOp, new_self) if front: return other.compose(new_self) # If self is identity, just return other. if not np.any(new_self.primitive.table.array): return other * new_self.coeff * sum(new_self.primitive.coeffs) # Both PauliSumOps if isinstance(other, PauliSumOp): return PauliSumOp( new_self.primitive * other.primitive, coeff=new_self.coeff * other.coeff, ) if isinstance(other, PauliOp): other_primitive = SparsePauliOp(other.primitive) return PauliSumOp( new_self.primitive * other_primitive, coeff=new_self.coeff * other.coeff, ) # pylint: disable=cyclic-import from ..state_fns.circuit_state_fn import CircuitStateFn from .circuit_op import CircuitOp if isinstance(other, (CircuitOp, CircuitStateFn)): pauli_op = cast(Union[PauliOp, SummedOp], new_self.to_pauli_op()) return pauli_op.to_circuit_op().compose(other) return super(PauliSumOp, new_self).compose(other) def to_matrix(self, massive: bool = False) -> np.ndarray: OperatorBase._check_massive("to_matrix", True, self.num_qubits, massive) if isinstance(self.coeff, ParameterExpression): return (self.primitive.to_matrix(sparse=True)).toarray() * self.coeff return (self.primitive.to_matrix(sparse=True) * self.coeff).toarray() def __str__(self) -> str: def format_sign(x): return x.real if np.isreal(x) else x def format_number(x): x = format_sign(x) if isinstance(x, (int, float)) and x < 0: return f"- {-x}" return f"+ {x}" indent = "" if self.coeff == 1 else " " prim_list = self.primitive.to_list() if prim_list: first = prim_list[0] if isinstance(first[1], (int, float)) and first[1] < 0: main_string = indent + f"- {-first[1].real} * {first[0]}" else: main_string = indent + f"{format_sign(first[1])} * {first[0]}" main_string += "".join([f"\n{indent}{format_number(c)} * {p}" for p, c in prim_list[1:]]) return f"{main_string}" if self.coeff == 1 else f"{self.coeff} * (\n{main_string}\n)" def eval( self, front: Optional[ Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector] ] = None, ) -> Union[OperatorBase, complex]: if front is None: return self.to_matrix_op() # pylint: disable=cyclic-import from ..list_ops.list_op import ListOp from ..state_fns.circuit_state_fn import CircuitStateFn from ..state_fns.dict_state_fn import DictStateFn from ..state_fns.state_fn import StateFn from .circuit_op import CircuitOp # For now, always do this. If it's not performant, we can be more granular. if not isinstance(front, OperatorBase): front = StateFn(front, is_measurement=False) if isinstance(front, ListOp) and front.distributive: return front.combo_fn( [self.eval(front.coeff * front_elem) for front_elem in front.oplist] ) else: if self.num_qubits != front.num_qubits: raise ValueError( "eval does not support operands with differing numbers of qubits, " "{} and {}, respectively.".format(self.num_qubits, front.num_qubits) ) if isinstance(front, DictStateFn): new_dict: Dict[str, int] = defaultdict(int) corrected_x_bits = self.primitive.table.X[::, ::-1] corrected_z_bits = self.primitive.table.Z[::, ::-1] coeffs = self.primitive.coeffs for bstr, v in front.primitive.items(): bitstr = np.fromiter(bstr, dtype=int).astype(bool) new_b_str = np.logical_xor(bitstr, corrected_x_bits) new_str = ["".join([str(b) for b in bs]) for bs in new_b_str.astype(int)] z_factor = np.product(1 - 2 * np.logical_and(bitstr, corrected_z_bits), axis=1) y_factor = np.product( np.sqrt(1 - 2 * np.logical_and(corrected_x_bits, corrected_z_bits) + 0j), axis=1, ) for i, n_str in enumerate(new_str): new_dict[n_str] += v * z_factor[i] * y_factor[i] * coeffs[i] return DictStateFn(new_dict, coeff=self.coeff * front.coeff) elif isinstance(front, StateFn) and front.is_measurement: raise ValueError("Operator composed with a measurement is undefined.") # Composable types with PauliOp elif isinstance(front, (PauliSumOp, PauliOp, CircuitOp, CircuitStateFn)): return self.compose(front).eval() # Covers VectorStateFn and OperatorStateFn front = cast(StateFn, front) return self.to_matrix_op().eval(front.to_matrix_op()) def exp_i(self) -> OperatorBase: """ Return a ``CircuitOp`` equivalent to e^-iH for this operator H. """ # TODO: optimize for some special cases from ..evolutions.evolved_op import EvolvedOp return EvolvedOp(self) def to_instruction(self) -> Instruction: return self.to_matrix_op().to_circuit().to_instruction() # type: ignore def to_pauli_op(self, massive: bool = False) -> Union[PauliOp, SummedOp]: def to_native(x): return x.item() if isinstance(x, np.generic) else x if len(self.primitive) == 1: return PauliOp( Pauli((self.primitive.table.Z[0], self.primitive.table.X[0])), to_native(np.real_if_close(self.primitive.coeffs[0])) * self.coeff, ) tables = self.primitive.table coeffs = np.real_if_close(self.primitive.coeffs) return SummedOp( [ PauliOp( Pauli((t.Z[0], t.X[0])), to_native(c), ) for t, c in zip(tables, coeffs) ], coeff=self.coeff, ) def __getitem__(self, offset: Union[int, slice]) -> "PauliSumOp": """Allows array-indexing style access to the ``PauliSumOp``. Args: offset: The index of ``PauliSumOp``. Returns: The ``PauliSumOp`` at index ``offset``, """ return PauliSumOp(self.primitive[offset], self.coeff) def __iter__(self): for i in range(len(self)): yield self[i] def __len__(self) -> int: """Length of ``SparsePauliOp``. Returns: An int equal to the length of SparsePauliOp. """ return len(self.primitive) # pylint: disable=arguments-differ def reduce(self, atol: Optional[float] = None, rtol: Optional[float] = None) -> "PauliSumOp": """Simplify the primitive ``SparsePauliOp``. Args: atol: Absolute tolerance for checking if coefficients are zero (Default: 1e-8). rtol: Relative tolerance for checking if coefficients are zero (Default: 1e-5). Returns: The simplified ``PauliSumOp``. """ if isinstance(self.coeff, (int, float, complex)): primitive = self.coeff * self.primitive return PauliSumOp(primitive.simplify(atol=atol, rtol=rtol)) return PauliSumOp(self.primitive.simplify(atol=atol, rtol=rtol), self.coeff) def to_spmatrix(self) -> spmatrix: """Returns SciPy sparse matrix representation of the ``PauliSumOp``. Returns: CSR sparse matrix representation of the ``PauliSumOp``. Raises: ValueError: invalid parameters. """ return self.primitive.to_matrix(sparse=True) * self.coeff @classmethod def from_list( cls, pauli_list: List[Tuple[str, Union[complex]]], coeff: Union[complex, ParameterExpression] = 1.0, ) -> "PauliSumOp": """Construct from a pauli_list with the form [(pauli_str, coeffs)] Args: pauli_list: A list of Tuple of pauli_str and coefficient. coeff: A coefficient multiplying the primitive. Returns: The PauliSumOp constructed from the pauli_list. """ return cls(SparsePauliOp.from_list(pauli_list), coeff=coeff) def is_zero(self) -> bool: """ Return this operator is zero operator or not. """ op = self.reduce() primitive: SparsePauliOp = op.primitive return op.coeff == 1 and len(op) == 1 and primitive.coeffs[0] == 0
38.067599
99
0.609454
4d67acac46cf6b233c195f30d725fed3d2f2763d
5,402
py
Python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2016_04_30_preview/operations/_usage_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2016_04_30_preview/operations/_usage_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2016_04_30_preview/operations/_usage_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class UsageOperations(object): """UsageOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2016_04_30_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, location, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.ListUsagesResult"] """Gets, for the specified location, the current compute resource usage information as well as the limits for compute resources under the subscription. :param location: The location for which resource usage is queried. :type location: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListUsagesResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.compute.v2016_04_30_preview.models.ListUsagesResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ListUsagesResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2016-04-30-preview" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str', pattern=r'^[-\w\._]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ListUsagesResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/locations/{location}/usages'} # type: ignore
45.394958
134
0.653277
31dc6d15ec939d5bf40c53cedc738344a7bd965a
1,394
py
Python
Python Control Flow: Medical Insurance Project/script.py
dilanozer/Codecademy_DataScientist
253a77d63ba45194e1c5e55723d0048863a57e7d
[ "MIT" ]
null
null
null
Python Control Flow: Medical Insurance Project/script.py
dilanozer/Codecademy_DataScientist
253a77d63ba45194e1c5e55723d0048863a57e7d
[ "MIT" ]
null
null
null
Python Control Flow: Medical Insurance Project/script.py
dilanozer/Codecademy_DataScientist
253a77d63ba45194e1c5e55723d0048863a57e7d
[ "MIT" ]
null
null
null
# Add your code here def analyze_smoker(smoker_status): if smoker_status == 1: print("To lower your cost, you should consider quitting smoking.") else: print("Smoking is not an issue for you.") def analyze_bmi(bmi_value): if bmi_value > 30: print("Your BMI is in the obese range. To lower your cost, you should significantly lower your BMI.") elif bmi_value >= 25 and bmi_value <= 30: print("Your BMI is in the overweight range. To lower your cost, you should lower your BMI.") elif bmi_value >= 18.5 and bmi_value < 25: print("Your BMI is in a healthy range.") else: print("Your BMI is in the underweight range. Increasing your BMI will not help lower your cost, but it will help improve your health.") # Function to estimate insurance cost: def estimate_insurance_cost(name, age, sex, bmi, num_of_children, smoker): estimated_cost = 250*age - 128*sex + 370*bmi + 425*num_of_children + 24000*smoker - 12500 print(name + "'s Estimated Insurance Cost: " + str(estimated_cost) + " dollars.") analyze_smoker(smoker) analyze_bmi(bmi) return estimated_cost # Estimate Keanu's insurance cost keanu_insurance_cost = estimate_insurance_cost(name = 'Keanu', age = 29, sex = 1, bmi = 26.2, num_of_children = 3, smoker = 1) dilan_insurance_cost = estimate_insurance_cost(name = "Dilan", age = 23, sex = 0, bmi = 20.1, num_of_children = 0, smoker = 0)
48.068966
139
0.719512
bc10cd97de34a1cc78f77b5ebfb1178689ee4f77
8,575
py
Python
app/user/utils.py
CityOfNewYork/NYCOpenRecords
476a236a573e6f3a2f96c6537a30ee27b2bd3a2b
[ "Apache-2.0" ]
37
2016-01-21T18:33:56.000Z
2021-10-24T01:43:20.000Z
app/user/utils.py
CityOfNewYork/NYCOpenRecords
476a236a573e6f3a2f96c6537a30ee27b2bd3a2b
[ "Apache-2.0" ]
179
2016-01-21T21:33:31.000Z
2022-02-15T21:31:35.000Z
app/user/utils.py
CityOfNewYork/NYCOpenRecords
476a236a573e6f3a2f96c6537a30ee27b2bd3a2b
[ "Apache-2.0" ]
13
2017-05-19T17:27:31.000Z
2020-07-05T00:55:29.000Z
from datetime import datetime from elasticsearch.helpers import bulk from flask import current_app from psycopg2 import OperationalError from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.orm import joinedload from app import ( celery, db, es ) from app.constants import (bulk_updates, event_type, role_name, user_type_request) from app.lib.email_utils import ( get_agency_admin_emails, send_email, ) from app.models import (Agencies, Events, Requests, Roles, UserRequests, Users) @celery.task(bind=True, name='app.user.utils.make_user_admin', autoretry_for=(OperationalError, SQLAlchemyError,), retry_kwargs={'max_retries': 5}, retry_backoff=True) def make_user_admin(self, modified_user_guid: str, current_user_guid: str, agency_ein: str): """ Make the specified user an admin for the agency. Args: modified_user_guid (str): GUID of the user to be modified current_user_guid (str): GUID of the current user agency_ein (str): Agency the user is being added to Returns: """ permissions = Roles.query.filter_by(name=role_name.AGENCY_ADMIN).one().permissions user = Users.query.filter_by(guid=modified_user_guid).one() requests = [request.id for request in user.agencies.filter_by(ein=agency_ein).one().requests] new_user_requests = [] new_user_requests_events = [] update_user_requests = [] update_user_requests_events = [] for request in requests: existing_value = UserRequests.query.filter_by(request_id=request, user_guid=user.guid).one_or_none() if existing_value and existing_value.permissions != permissions: user_request = bulk_updates.UserRequestsDict( user_guid=user.guid, request_id=request, request_user_type=user_type_request.AGENCY, permissions=permissions, point_of_contact=existing_value.point_of_contact ) update_user_requests.append(user_request) previous_value = { 'user_guid': modified_user_guid, 'permissions': existing_value.permissions } new_value = { 'user_guid': modified_user_guid, 'permissions': permissions } user_request_event = bulk_updates.UserRequestsEventDict( request_id=request, user_guid=user.guid, response_id=None, type=event_type.USER_PERM_CHANGED, timestamp=datetime.utcnow(), previous_value=previous_value, new_value=new_value, ) update_user_requests_events.append(user_request_event) elif existing_value is None: user_request = bulk_updates.UserRequestsDict( user_guid=user.guid, request_id=request, request_user_type=user_type_request.AGENCY, permissions=permissions, point_of_contact=None ) new_user_requests.append(user_request) new_value = { 'user_guid': user.guid, 'request_id': request, 'request_user_type': user_type_request.AGENCY, 'permissions': permissions, 'point_of_contact': None } user_request_event = bulk_updates.UserRequestsEventDict( request_id=request, user_guid=current_user_guid, response_id=None, type=event_type.USER_ADDED, timestamp=datetime.utcnow(), previous_value=None, new_value=new_value ) new_user_requests_events.append(user_request_event) try: UserRequests.query.filter(UserRequests.user_guid == user.guid).update([('permissions', permissions)]) db.session.bulk_insert_mappings(Events, update_user_requests_events) db.session.bulk_insert_mappings(UserRequests, new_user_requests) db.session.bulk_insert_mappings(Events, new_user_requests_events) db.session.commit() agency = Agencies.query.filter_by(ein=agency_ein).one() admin_users = get_agency_admin_emails(agency) es_update_assigned_users.apply_async(args=[requests]) send_email( subject='User {name} Made Admin'.format(name=user.name), to=admin_users, template='email_templates/email_user_made_agency_admin', agency_name=agency.name, name=user.name ) except SQLAlchemyError: db.session.rollback() @celery.task(bind=True, name='app.user.utils.remove_user_permissions', autoretry_for=(OperationalError, SQLAlchemyError,), retry_kwargs={'max_retries': 5}, retry_backoff=True) def remove_user_permissions(self, modified_user_guid: str, current_user_guid: str, agency_ein: str, action: str = None): """ Remove the specified users permissions for the agency identified by agency_ein Args: modified_user_guid (str): GUID of the user to be modified current_user_guid (str): GUID of the current user agency_ein (str): Agency the user is being removed from Returns: """ user_requests = db.session.query(UserRequests, Requests).join(Requests).with_entities( UserRequests.request_id, UserRequests.permissions, UserRequests.point_of_contact).filter( Requests.agency_ein == agency_ein, UserRequests.user_guid == modified_user_guid).all() request_ids = [ur.request_id for ur in user_requests] user = Users.query.filter_by(guid=modified_user_guid).one() remove_user_request_events = [bulk_updates.UserRequestsEventDict( request_id=ur.request_id, user_guid=current_user_guid, response_id=None, type=event_type.USER_REMOVED, timestamp=datetime.utcnow(), previous_value={ 'user_guid': modified_user_guid, 'permissions': ur.permissions, 'point_of_contact': ur.point_of_contact }, new_value={ 'user_guid': modified_user_guid, 'point_of_contact': False } ) for ur in user_requests] try: db.session.query(UserRequests).filter(UserRequests.user_guid == modified_user_guid, UserRequests.request_id.in_(request_ids)).delete( synchronize_session=False) db.session.bulk_insert_mappings(Events, remove_user_request_events) db.session.commit() es_update_assigned_users.apply_async(args=[request_ids]) agency = Agencies.query.filter_by(ein=agency_ein).one() admin_users = get_agency_admin_emails(agency) if action == event_type.AGENCY_USER_DEACTIVATED: send_email( subject='User {name} Deactivated'.format(name=user.name), to=admin_users, template='email_templates/email_agency_user_deactivated', agency_name=agency.name, name=user.name ) elif action == event_type.USER_MADE_AGENCY_USER: send_email( subject='User {name} Made Regular User'.format(name=user.name), to=admin_users, template='email_templates/email_user_removed_agency_admin', agency_name=agency.name, name=user.name ) except SQLAlchemyError: db.session.rollback() @celery.task(bind=True, name='app.user.utils.es_update_assigned_users', autoretry_for=(OperationalError, SQLAlchemyError,), retry_kwargs={'max_retries': 5}, retry_backoff=True) def es_update_assigned_users(self, request_ids: list): """ Update the ElasticSearch index assigned_users for the provided request IDs. Args: request_ids (list): List of Request IDs """ try: actions = [{ '_op_type': 'update', '_id': request.id, 'doc': { 'assigned_users': [user.get_id() for user in request.agency_users] } } for request in Requests.query.filter(Requests.id.in_(request_ids)).options(joinedload(Requests.agency_users)).all()] except SQLAlchemyError: db.session.rollback() bulk( es, actions, index=current_app.config['ELASTICSEARCH_INDEX'], doc_type='request', chunk_size=current_app.config['ELASTICSEARCH_CHUNK_SIZE'] )
37.609649
120
0.645248
9d8431a4f0b2fdb3400ce469604bea9a6d99ea9a
11,513
py
Python
networkapi/api_network/views/v3/networkv4.py
vinicius-marinho/GloboNetworkAPI
94651d3b4dd180769bc40ec966814f3427ccfb5b
[ "Apache-2.0" ]
73
2015-04-13T17:56:11.000Z
2022-03-24T06:13:07.000Z
networkapi/api_network/views/v3/networkv4.py
leopoldomauricio/GloboNetworkAPI
3b5b2e336d9eb53b2c113977bfe466b23a50aa29
[ "Apache-2.0" ]
99
2015-04-03T01:04:46.000Z
2021-10-03T23:24:48.000Z
networkapi/api_network/views/v3/networkv4.py
shildenbrand/GloboNetworkAPI
515d5e961456cee657c08c275faa1b69b7452719
[ "Apache-2.0" ]
64
2015-08-05T21:26:29.000Z
2022-03-22T01:06:28.000Z
# -*- coding: utf-8 -*- import logging from django.db.transaction import commit_on_success from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from networkapi.api_equipment import permissions as perm_eqpt from networkapi.api_network import permissions from networkapi.api_network import tasks from networkapi.api_network.facade import v3 as facade from networkapi.api_network.serializers import v3 as serializers from networkapi.settings import SPECS from networkapi.util.classes import CustomAPIView from networkapi.util.decorators import logs_method_apiview from networkapi.util.decorators import permission_classes_apiview from networkapi.util.decorators import permission_obj_apiview from networkapi.util.decorators import prepare_search from networkapi.util.geral import render_to_json from networkapi.util.json_validate import json_validate from networkapi.util.json_validate import raise_json_validate log = logging.getLogger(__name__) class NetworkIPv4View(CustomAPIView): @logs_method_apiview @raise_json_validate() @permission_classes_apiview((IsAuthenticated, permissions.Read)) @prepare_search def get(self, request, *args, **kwargs): """Returns a list of networkv4 by ids ou dict.""" if not kwargs.get('obj_ids'): obj_model = facade.get_networkipv4_by_search(self.search) networks = obj_model['query_set'] only_main_property = False else: obj_ids = kwargs.get('obj_ids').split(';') networks = facade.get_networkipv4_by_ids(obj_ids) only_main_property = True obj_model = None # serializer networks serializer_net = serializers.NetworkIPv4V3Serializer( networks, many=True, fields=self.fields, include=self.include, exclude=self.exclude, kind=self.kind ) # prepare serializer with customized properties data = render_to_json( serializer_net, main_property='networks', obj_model=obj_model, request=request, only_main_property=only_main_property ) return Response(data, status=status.HTTP_200_OK) @logs_method_apiview @raise_json_validate('networkv4_post') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def post(self, request, *args, **kwargs): """Creates list of networkv4.""" data = request.DATA json_validate(SPECS.get('networkv4_post')).validate(data) response = list() for networkv4 in data['networks']: vl = facade.create_networkipv4(networkv4, request.user) response.append({'id': vl.id}) return Response(response, status=status.HTTP_201_CREATED) @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def delete(self, request, *args, **kwargs): """Deletes list of networkv4.""" response = list() obj_ids = kwargs['obj_ids'].split(';') facade.delete_networkipv4(obj_ids, request.user) return Response(response, status=status.HTTP_200_OK) @logs_method_apiview @raise_json_validate('networkv4_put') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def put(self, request, *args, **kwargs): """Updates list of networkv4.""" data = request.DATA json_validate(SPECS.get('networkv4_put')).validate(data) response = list() for networkv4 in data['networks']: vl = facade.update_networkipv4(networkv4, request.user) response.append({'id': vl.id}) return Response(response, status=status.HTTP_200_OK) class Networkv4AsyncView(CustomAPIView): @logs_method_apiview @raise_json_validate('ipv4_post') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def post(self, request, *args, **kwargs): """Create NetworkV4.""" response = list() nets = request.DATA json_validate(SPECS.get('networkv4_post')).validate(nets) user = request.user for net in nets['networks']: task_obj = tasks.create_networkv4.apply_async(args=[net, user.id], queue='napi.network') task = { 'task_id': task_obj.id } response.append(task) return Response(response, status=status.HTTP_202_ACCEPTED) @logs_method_apiview @raise_json_validate('ipv4_put') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def put(self, request, *args, **kwargs): """Edit NetworkV4.""" response = list() nets = request.DATA json_validate(SPECS.get('networkv4_put')).validate(nets) user = request.user for net in nets['networks']: task_obj = tasks.update_networkv4.apply_async(args=[net, user.id], queue='napi.network') task = { 'task_id': task_obj.id } response.append(task) return Response(response, status=status.HTTP_202_ACCEPTED) @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write)) @permission_obj_apiview([permissions.write_objv4_permission]) @commit_on_success def delete(self, request, *args, **kwargs): """Delete NetworkV4.""" response = list() obj_ids = kwargs['obj_ids'].split(';') user = request.user for obj_id in obj_ids: task_obj = tasks.delete_networkv4.apply_async( args=[obj_id, user.id], queue='napi.network') task = { 'task_id': task_obj.id } response.append(task) return Response(response, status=status.HTTP_202_ACCEPTED) class NetworkIPv4DeployView(CustomAPIView): @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write, perm_eqpt.Write)) @permission_obj_apiview([permissions.deploy_objv4_permission]) @commit_on_success def post(self, request, *args, **kwargs): """Deploy NetworkV6.""" response = list() obj_ids = kwargs['obj_ids'].split(';') for obj_id in obj_ids: # deploy network configuration status_deploy = facade.deploy_networkipv4(obj_id, request.user) response.append({ 'status': status_deploy, 'id': obj_id, }) return Response(response, status=status.HTTP_200_OK) @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write, perm_eqpt.Write)) @permission_obj_apiview([permissions.deploy_objv4_permission]) @commit_on_success def delete(self, request, *args, **kwargs): """Undeploy NetworkV6.""" response = list() obj_ids = kwargs['obj_ids'].split(';') for obj_id in obj_ids: # deploy network configuration status_deploy = facade.undeploy_networkipv4(obj_id, request.user) response.append({ 'status': status_deploy, 'id': obj_id, }) return Response(response, status=status.HTTP_200_OK) class Networkv4DeployAsyncView(CustomAPIView): @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write, perm_eqpt.Write)) @permission_obj_apiview([permissions.deploy_objv4_permission]) @commit_on_success def post(self, request, *args, **kwargs): """Deploy NetworkV4.""" response = list() obj_ids = kwargs['obj_ids'].split(';') user = request.user for obj_id in obj_ids: task_obj = tasks.deploy_networkv4.apply_async( args=[obj_id, user.id], queue='napi.network') task = { 'task_id': task_obj.id } response.append(task) return Response(response, status=status.HTTP_202_ACCEPTED) @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.Write, perm_eqpt.Write)) @permission_obj_apiview([permissions.deploy_objv4_permission]) @commit_on_success def delete(self, request, *args, **kwargs): """Undeploy NetworkV4.""" response = list() obj_ids = kwargs['obj_ids'].split(';') user = request.user for obj_id in obj_ids: task_obj = tasks.undeploy_networkv4.apply_async( args=[obj_id, user.id], queue='napi.network') task = { 'task_id': task_obj.id } response.append(task) return Response(response, status=status.HTTP_202_ACCEPTED) class NetworkIPv4ForceView(CustomAPIView): @logs_method_apiview @raise_json_validate('networkv4_post') @permission_classes_apiview((IsAuthenticated, permissions.WriteForce)) @commit_on_success def post(self, request, *args, **kwargs): """Creates list of networkv4.""" data = request.DATA json_validate(SPECS.get('networkv4_post')).validate(data) response = list() for networkv4 in data['networks']: vl = facade.create_networkipv4(networkv4, request.user, force=True) response.append({'id': vl.id}) return Response(response, status=status.HTTP_201_CREATED) @logs_method_apiview @raise_json_validate('networkv4_put') @permission_classes_apiview((IsAuthenticated, permissions.WriteForce)) @commit_on_success def put(self, request, *args, **kwargs): """Updates list of networkv4.""" data = request.DATA json_validate(SPECS.get('networkv4_put')).validate(data) response = list() for networkv4 in data['networks']: vl = facade.update_networkipv4(networkv4, request.user, force=True) response.append({'id': vl.id}) return Response(response, status=status.HTTP_200_OK) @logs_method_apiview @raise_json_validate('') @permission_classes_apiview((IsAuthenticated, permissions.WriteForce)) @commit_on_success def delete(self, request, *args, **kwargs): """Deletes list of networkv4.""" response = list() obj_ids = kwargs['obj_ids'].split(';') facade.delete_networkipv4(obj_ids, request.user, force=True) return Response(response, status=status.HTTP_200_OK)
32.614731
79
0.642578
33fa5caa0a894924155fcbc606b20425d0aae7d8
17,623
py
Python
emailgen/themes.py
heqingy/emailgen
17f5089bc8c7446c87a611083c9fefe37717fa39
[ "Apache-2.0" ]
2
2018-08-02T06:42:00.000Z
2019-09-21T17:00:44.000Z
emailgen/themes.py
heqingy/emailgen
17f5089bc8c7446c87a611083c9fefe37717fa39
[ "Apache-2.0" ]
2
2017-08-03T09:36:00.000Z
2019-10-05T01:25:51.000Z
emailgen/themes.py
heqingy/emailgen
17f5089bc8c7446c87a611083c9fefe37717fa39
[ "Apache-2.0" ]
4
2018-04-25T18:01:01.000Z
2021-06-07T09:19:33.000Z
DEFAULT_THEME = { "name": "Default", "html": """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta name="viewport" content="width=device-width, initial-scale=1.0"/> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <style type="text/css" rel="stylesheet" media="all"> /* Base ------------------------------ */ *:not(br):not(tr):not(html) { font-family: Arial, 'Helvetica Neue', Helvetica, sans-serif; -webkit-box-sizing: border-box; box-sizing: border-box; } body { width: 100% !important; height: 100%; margin: 0; line-height: 1.4; background-color: #F2F4F6; color: #74787E; -webkit-text-size-adjust: none; } a { color: #3869D4; } /* Layout ------------------------------ */ .email-wrapper { width: 100%; margin: 0; padding: 0; background-color: #F2F4F6; } .email-content { width: 100%; margin: 0; padding: 0; } /* Masthead ----------------------- */ .email-masthead { padding: 25px 0; text-align: center; } .email-masthead_logo { max-width: 400px; border: 0; } .email-masthead_name { font-size: 16px; font-weight: bold; color: #2F3133; text-decoration: none; text-shadow: 0 1px 0 white; } .email-logo { max-height: 50px; } /* Body ------------------------------ */ .email-body { width: 100%; margin: 0; padding: 0; border-top: 1px solid #EDEFF2; border-bottom: 1px solid #EDEFF2; background-color: #FFF; } .email-body_inner { width: 570px; margin: 0 auto; padding: 0; } .email-footer { width: 570px; margin: 0 auto; padding: 0; text-align: center; } .email-footer p { color: #AEAEAE; } .body-action { width: 100%; margin: 30px auto; padding: 0; text-align: center; } .body-dictionary { width: 100%; overflow: hidden; margin: 20px auto 10px; padding: 0; } .body-dictionary dd { margin: 0 0 10px 0; } .body-dictionary dt { clear: both; color: #000; font-weight: bold; } .body-dictionary dd { margin-left: 0; margin-bottom: 10px; } .body-sub { margin-top: 25px; padding-top: 25px; border-top: 1px solid #EDEFF2; table-layout: fixed; } .body-sub a { word-break: break-all; } .content-cell { padding: 35px; } .align-right { text-align: right; } /* Type ------------------------------ */ h1 { margin-top: 0; color: #2F3133; font-size: 19px; font-weight: bold; } h2 { margin-top: 0; color: #2F3133; font-size: 16px; font-weight: bold; } h3 { margin-top: 0; color: #2F3133; font-size: 14px; font-weight: bold; } blockquote { margin: 1.7rem 0; padding-left: 0.85rem; border-left: 10px solid #F0F2F4; } blockquote p { font-size: 1.1rem; color: #999; } blockquote cite { display: block; text-align: right; color: #666; font-size: 1.2rem; } cite { display: block; font-size: 0.925rem; } cite:before { content: "\\2014 \\0020"; } p { margin-top: 0; color: #74787E; font-size: 16px; line-height: 1.5em; } p.sub { font-size: 12px; } p.center { text-align: center; } table { width: 100%; } th { padding: 0px 5px; padding-bottom: 8px; border-bottom: 1px solid #EDEFF2; } th p { margin: 0; color: #9BA2AB; font-size: 12px; } td { padding: 10px 5px; color: #74787E; font-size: 15px; line-height: 18px; } .content { align: center; padding: 0; } /* Data table ------------------------------ */ .data-wrapper { width: 100%; margin: 0; padding: 35px 0; } .data-table { width: 100%; margin: 0; } .data-table th { text-align: left; padding: 0px 5px; padding-bottom: 8px; border-bottom: 1px solid #EDEFF2; } .data-table th p { margin: 0; color: #9BA2AB; font-size: 12px; } .data-table td { padding: 10px 5px; color: #74787E; font-size: 15px; line-height: 18px; } /* Buttons ------------------------------ */ .button { display: inline-block; width: 200px; background-color: #3869D4; border-radius: 3px; color: #ffffff; font-size: 15px; line-height: 45px; text-align: center; text-decoration: none; -webkit-text-size-adjust: none; mso-hide: all; } /*Media Queries ------------------------------ */ @media only screen and (max-width: 600px) { .email-body_inner, .email-footer { width: 100% !important; } } @media only screen and (max-width: 500px) { .button { width: 100% !important; } } </style> </head> <body dir="{{ generator.text_direction }}"> <table class="email-wrapper" width="100%" cellpadding="0" cellspacing="0"> <tr> <td class="content"> <table class="email-content" width="100%" cellpadding="0" cellspacing="0"> <!-- Logo --> <tr> <td class="email-masthead"> <a class="email-masthead_name" href="{{ generator.product[" link"] }}" target="_blank"> {% if generator.product["logo"] %} <img src="{{ generator.product[" logo"] }}" class="email-logo" /> {% else %} {{ generator.product["name"] }} {% endif %} </a> </td> </tr> <!-- Email Body --> <tr> <td class="email-body" width="100%"> <table class="email-body_inner" align="center" width="570" cellpadding="0" cellspacing="0"> <!-- Body content --> <tr> <td class="content-cell"> <h1>{% if email.title %}{{ email.title }}{% else %}{{ email.greeting }} {{ email.name }},{% endif %}</h1> <!-- Intro --> {% for intro in email.intros %} <p>{{ intro }}</p> {% endfor %} {% if email.free_markdown %} <!-- Free Markdown --> {{ email.free_markdown }} {% else %} <!-- Dictionary --> {% if email.dictionary|length != 0 %} <dl class="body-dictionary"> {% for d in email.dictionary %} <dt>{{ d[0] }}</dt> <dd>{{ d[1] }}</dd> {% endfor %} </dl> {% endif %} <!-- Table --> {% if email.table %} <table class="data-wrapper" width="100%" cellpadding="0" cellspacing="0"> <tr> <td colspan="2"> <table class="data-table" width="100%" cellpadding="0" cellspacing="0"> <tr> {% for header in email.table.headers %} <th>{{ header }}</th> {% endfor %} </tr> {% for row in email.table.rows %} <tr> {% for column in row %} <td> {{ column }} </td> {% endfor %} </tr> {% endfor %} </table> </td> </tr> </table> {% endif %} <!-- Action --> {% for action in email.actions %} <p>{{ action[0] }}</p> <table class="body-action" align="center" width="100%" cellpadding="0" cellspacing="0"> <tr> <td align="center"> <div> <a href="{{ action[1].link }}" class="button" style="background-color: {{ action[1].color }}" target="_blank"> {{ action[1].text }} </a> </div> </td> </tr> </table> {% endfor %} {% endif %} {% for outro in email.outros %} <p>{{ outro }}</p> {% endfor %} <p>{{ email.signature }},<br/>{{ generator.product["name"] }}</p> {% if email.free_markdown %} <table class="body-sub"> <tbody> {% for action in email.actions %} <tr> <td> <p class="sub">{{ generator.product["trouble"]|replace("[ACTION]", action[1].text) }}</p> <p class="sub"><a href="{{ action[1].link }}">{{ action[1].link }}</a></p> </td> </tr> {% endfor %} </tbody> </table> {% endif %} </td> </tr> </table> </td> </tr> <tr> <td> <table class="email-footer" align="center" width="570" cellpadding="0" cellspacing="0"> <tr> <td class="content-cell"> <p class="sub center"> {{ generator.product["copyright"] }} </p> </td> </tr> </table> </td> </tr> </table> </td> </tr> </table> </body> </html>""", "plain": """ {% if email.title -%} {{ email.title }} {%- else -%} {{ email.greeting }} {{ email.name }} {%- endif %}, {% for intro in email.intros %} {{ intro }} {% endfor %} {% if email.free_markdown -%} {{ email.raw_markdown }} {%- else -%} {% for item in email.dictionary %} {{ item[0] }}: {{ item[1] }} {% endfor %} {% if email.table %} {{ email.table.headers[0] }}{% if email.table.headers|length > 1 %}{% for header in email.table.headers[1:] %} | {{ header }}{% endfor %}{% endif %} {% for row in email.table.rows %} {{ row[0] }}{% if row|length > 1 %}{% for column in row[1:] %} | {{ column }}{% endfor %}{% endif %} {% endfor %} {% endif %} {% for action in email.actions %} {{ action[0] }} {{ action[1].link }} {% endfor %} {%- endif %} {% for outro in email.outros %} {{ outro }} {% endfor %} {{ email.signature }}, {{ generator.product["name"] }} - {{ generator.product["link"] }} {{ generator.product["copyright"] }} """ }
36.638254
152
0.272258
74959afe627e5acf06f07b3e95f0979dc540e02f
2,339
py
Python
tools/cr/cr/actions/builder.py
SlimKatLegacy/android_external_chromium_org
ee480ef5039d7c561fc66ccf52169ead186f1bea
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
2
2015-03-04T02:36:53.000Z
2016-06-25T11:22:17.000Z
tools/cr/cr/actions/builder.py
j4ckfrost/android_external_chromium_org
a1a3dad8b08d1fcf6b6b36c267158ed63217c780
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
null
null
null
tools/cr/cr/actions/builder.py
j4ckfrost/android_external_chromium_org
a1a3dad8b08d1fcf6b6b36c267158ed63217c780
[ "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
4
2015-02-09T08:49:30.000Z
2017-08-26T02:03:34.000Z
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """A module for the Builder base class.""" import cr class Builder(cr.Action, cr.Plugin.Type): """Base class for implementing builders. Builder implementations must override the Build and Clean methods at a minimum to build a target and clean up back to a pristine state respectively. They can also override Rebuild if they are able to handle it in a more efficient way that a Clean Build sequence. They should override the GetTargets method to return the set of valid targets the build system knows about, and override IsTarget if they can implement it more efficiently than checking from presents in the result of GetTargets. """ SELECTOR_ARG = '--builder' SELECTOR = 'CR_BUILDER' SELECTOR_HELP = 'Sets the builder to use to update dependencies.' @cr.Plugin.activemethod def Build(self, context, targets, arguments): raise NotImplementedError('Must be overridden.') @cr.Plugin.activemethod def Clean(self, context, targets, arguments): """Clean temporary files built by a target.""" raise NotImplementedError('Must be overridden.') @cr.Plugin.activemethod def Rebuild(self, context, targets, arguments): """Make a target build even if it is up to date. Default implementation is to do a Clean and Build sequence. Do not call the base version if you implement a more efficient one. """ self.Clean(context, targets, []) self.Build(context, targets, arguments) @cr.Plugin.activemethod def GetTargets(self, context): """Gets the full set of targets supported by this builder. Used in automatic target name transformations, and also in offering the user choices. """ return [] @cr.Plugin.activemethod def IsTarget(self, context, target_name): """Check if a target name is on the builder knows about.""" return target_name in self.GetTargets(context) class SkipBuilder(Builder): """The "skip" version of a Builder, causes the build step to be skipped.""" @property def priority(self): return super(SkipBuilder, self).priority - 1 def Build(self, context, targets, arguments): pass def Clean(self, context, targets, arguments): pass
32.041096
79
0.728516
302fd1689fba5b0e1507a1fefc31bceb07f194a3
1,968
py
Python
p330_patching_array.py
feigaochn/leetcode
abf0877fae02aa9c2549051f0b68df0ace952512
[ "MIT" ]
null
null
null
p330_patching_array.py
feigaochn/leetcode
abf0877fae02aa9c2549051f0b68df0ace952512
[ "MIT" ]
null
null
null
p330_patching_array.py
feigaochn/leetcode
abf0877fae02aa9c2549051f0b68df0ace952512
[ "MIT" ]
null
null
null
# coding: utf-8 # author: Fei Gao <leetcode.com@feigao.xyz> # Problem: patching array # # Given a sorted positive integer array nums and an integer n, add/patch # elements to the array such that any number in range [1, n] inclusive can be # formed by the sum of some elements in the array. Return the minimum number # of patches required. # # Example 1: # nums = [1, 3], n = 6 # Return 1. # Combinations of nums are [1], [3], [1,3], which form possible sums of: 1, 3, # 4. # Now if we add/patch 2 to nums, the combinations are: [1], [2], [3], [1,3], # [2,3], [1,2,3]. # Possible sums are 1, 2, 3, 4, 5, 6, which now covers the range [1, 6]. # So we only need 1 patch. # Example 2: # nums = [1, 5, 10], n = 20 # Return 2. # The two patches can be [2, 4]. # Example 3: # nums = [1, 2, 2], n = 5 # Return 0. # Credits:Special thanks to @dietpepsi for adding this problem and creating # all test cases. # # Subscribe to see which companies asked this question # # Show Tags # # Greedy class Solution(object): def minPatches(self, nums, n): """ :type nums: list[int] :type n: int :rtype: int """ len1 = len(nums) idx = 0 s = 0 while True: if s >= n: break if idx >= len(nums) or s + 1 < nums[idx]: nums.insert(idx, s + 1) s += nums[idx] idx += 1 # print(nums) return len(nums) - len1 def main(): solver = Solution() tests = [ (([1, 3], 6), 1), (([], 7), 3), (([1, 5, 10], 20), 2), (([1, 2, 2], 5), 0), (([1, 2, 31, 33], 2147483647), '?'), ] for params, expect in tests: print('-' * 5 + 'TEST' + '-' * 5) print('Input: ' + str(params)) print('Expect: ' + str(expect)) result = solver.minPatches(*params) print('Result: ' + str(result)) pass if __name__ == '__main__': main() pass
24.296296
78
0.526931
a969d27da9b6f671f6d56625e9fd8ae75009febd
3,366
py
Python
src/djangoreactredux/djrenv/lib/python3.5/site-packages/prospector/message.py
m2jobe/c_x
ba914449a9a85d82703895fc884733ca20454034
[ "MIT" ]
1
2019-11-01T11:45:22.000Z
2019-11-01T11:45:22.000Z
src/djangoreactredux/djrenv/lib/python3.5/site-packages/prospector/message.py
m2jobe/c_x
ba914449a9a85d82703895fc884733ca20454034
[ "MIT" ]
7
2020-02-12T03:06:52.000Z
2021-06-10T19:33:14.000Z
src/djangoreactredux/djrenv/lib/python3.5/site-packages/prospector/message.py
m2jobe/c_x
ba914449a9a85d82703895fc884733ca20454034
[ "MIT" ]
1
2019-11-01T11:38:54.000Z
2019-11-01T11:38:54.000Z
# -*- coding: utf-8 -*- import os import sys class Location(object): def __init__(self, path, module, function, line, character, absolute_path=True): if sys.version_info.major == 2 and isinstance(path, str): # If this is not a unicode object, make it one! Some tools return # paths as unicode, some as bytestring, so to ensure that they are # all the same, we normalise here. For Python3 this is (probably) # always a str so no need to do anything. path = path.decode(sys.getfilesystemencoding()) self.path = path self._path_is_absolute = absolute_path self.module = module or None self.function = function or None self.line = None if line == -1 else line self.character = None if character == -1 else character def to_absolute_path(self, root): if self._path_is_absolute: return self.path = os.path.abspath(os.path.join(root, self.path)) self._path_is_absolute = True def to_relative_path(self, root): if not self._path_is_absolute: return self.path = os.path.relpath(self.path, root) self._path_is_absolute = False def as_dict(self): return { 'path': self.path, 'module': self.module, 'function': self.function, 'line': self.line, 'character': self.character } def __hash__(self): return hash((self.path, self.line, self.character)) def __eq__(self, other): return self.path == other.path and self.line == other.line and self.character == other.character def __lt__(self, other): if self.path == other.path: if self.line == other.line: return (self.character or -1) < (other.character or -1) return (self.line or -1) < (other.line or -1) # line can be None if it a file-global warning return self.path < other.path class Message(object): def __init__(self, source, code, location, message): self.source = source self.code = code self.location = location self.message = message def to_absolute_path(self, root): self.location.to_absolute_path(root) def to_relative_path(self, root): self.location.to_relative_path(root) def as_dict(self): return { 'source': self.source, 'code': self.code, 'location': self.location.as_dict(), 'message': self.message } def __repr__(self): return "%s-%s" % (self.source, self.code) def __eq__(self, other): if self.location == other.location: return self.code == other.code else: return False def __lt__(self, other): if self.location == other.location: return self.code < other.code return self.location < other.location def make_tool_error_message(filepath, source, code, message, line=0, character=0, module=None, function=None): location = Location( path=filepath, module=module, function=function, line=line, character=character ) return Message( source=source, code=code, location=location, message=message )
30.880734
105
0.592395
8f6889433136a50209823c1c24cd720003ea4d1b
3,225
py
Python
test/vanilla/legacy/Expected/AcceptanceTests/UrlMultiCollectionFormat/urlmulticollectionformat/aio/_auto_rest_url_mutli_collection_format_test_service.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
35
2018-04-03T12:15:53.000Z
2022-03-11T14:03:34.000Z
test/vanilla/legacy/Expected/AcceptanceTests/UrlMultiCollectionFormat/urlmulticollectionformat/aio/_auto_rest_url_mutli_collection_format_test_service.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
652
2017-08-28T22:44:41.000Z
2022-03-31T21:20:31.000Z
test/vanilla/legacy/Expected/AcceptanceTests/UrlMultiCollectionFormat/urlmulticollectionformat/aio/_auto_rest_url_mutli_collection_format_test_service.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
29
2017-08-28T20:57:01.000Z
2022-03-11T14:03:38.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from copy import deepcopy from typing import Any, Awaitable, Optional from azure.core import AsyncPipelineClient from azure.core.rest import AsyncHttpResponse, HttpRequest from msrest import Deserializer, Serializer from .. import models from ._configuration import AutoRestUrlMutliCollectionFormatTestServiceConfiguration from .operations import QueriesOperations class AutoRestUrlMutliCollectionFormatTestService: """Test Infrastructure for AutoRest. :ivar queries: QueriesOperations operations :vartype queries: urlmulticollectionformat.aio.operations.QueriesOperations :param base_url: Service URL. Default value is 'http://localhost:3000'. :type base_url: str """ def __init__(self, base_url: str = "http://localhost:3000", **kwargs: Any) -> None: self._config = AutoRestUrlMutliCollectionFormatTestServiceConfiguration(**kwargs) self._client = AsyncPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self._serialize.client_side_validation = False self.queries = QueriesOperations(self._client, self._config, self._serialize, self._deserialize) def _send_request(self, request: HttpRequest, **kwargs: Any) -> Awaitable[AsyncHttpResponse]: """Runs the network request through the client's chained policies. >>> from azure.core.rest import HttpRequest >>> request = HttpRequest("GET", "https://www.example.org/") <HttpRequest [GET], url: 'https://www.example.org/'> >>> response = await client._send_request(request) <AsyncHttpResponse: 200 OK> For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart :param request: The network request you want to make. Required. :type request: ~azure.core.rest.HttpRequest :keyword bool stream: Whether the response payload will be streamed. Defaults to False. :return: The response of your network call. Does not do error handling on your response. :rtype: ~azure.core.rest.AsyncHttpResponse """ request_copy = deepcopy(request) request_copy.url = self._client.format_url(request_copy.url) return self._client.send_request(request_copy, **kwargs) async def close(self) -> None: await self._client.close() async def __aenter__(self) -> "AutoRestUrlMutliCollectionFormatTestService": await self._client.__aenter__() return self async def __aexit__(self, *exc_details) -> None: await self._client.__aexit__(*exc_details)
45.422535
104
0.694884
27cffb75223367a52adcb8a8587889820b60cad6
424
py
Python
homeassistant/components/melcloud/const.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/melcloud/const.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
homeassistant/components/melcloud/const.py
jagadeeshvenkatesh/core
1bd982668449815fee2105478569f8e4b5670add
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Constants for the MELCloud Climate integration.""" DOMAIN = "melcloud" CONF_POSITION = "position" ATTR_STATUS = "status" ATTR_VANE_HORIZONTAL = "vane_horizontal" ATTR_VANE_HORIZONTAL_POSITIONS = "vane_horizontal_positions" ATTR_VANE_VERTICAL = "vane_vertical" ATTR_VANE_VERTICAL_POSITIONS = "vane_vertical_positions" SERVICE_SET_VANE_HORIZONTAL = "set_vane_horizontal" SERVICE_SET_VANE_VERTICAL = "set_vane_vertical"
28.266667
60
0.832547
514ac217e81a254fe238af6113192d9da04f13f3
1,040
py
Python
util/trajectory.py
SwagJ/FCGF
18cfb4d4e9f7a18487d6ef8941fcaeda387ab55f
[ "MIT" ]
null
null
null
util/trajectory.py
SwagJ/FCGF
18cfb4d4e9f7a18487d6ef8941fcaeda387ab55f
[ "MIT" ]
null
null
null
util/trajectory.py
SwagJ/FCGF
18cfb4d4e9f7a18487d6ef8941fcaeda387ab55f
[ "MIT" ]
null
null
null
import os import numpy as np class CameraPose: def __init__(self, meta, mat): self.metadata = meta self.pose = mat def __str__(self): return 'metadata : ' + ' '.join(map(str, self.metadata)) + '\n' + \ "pose : " + "\n" + np.array_str(self.pose) def read_trajectory(filename, dim=4): traj = [] print(filename) assert os.path.exists(filename) with open(filename, 'r') as f: metastr = f.readline() while metastr: metadata = list(map(int, metastr.split())) mat = np.zeros(shape=(dim, dim)) for i in range(dim): matstr = f.readline() mat[i, :] = np.fromstring(matstr, dtype=float, sep=' \t') traj.append(CameraPose(metadata, mat)) metastr = f.readline() return traj def write_trajectory(traj, filename, dim=4): with open(filename, 'w') as f: for x in traj: p = x.pose.tolist() f.write(' '.join(map(str, x.metadata)) + '\n') f.write('\n'.join(' '.join(map('{0:.12f}'.format, p[i])) for i in range(dim))) f.write('\n')
26
84
0.586538
509f9ae9931271a2fa66ae7c3f289442ed22d3e1
395
py
Python
BOJ/exaustive_search_boj/snow_white.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
BOJ/exaustive_search_boj/snow_white.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
BOJ/exaustive_search_boj/snow_white.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
# BOJ 2309 import sys # 9명중 두명만 빼면 7명이기때문에 2명을 고르는것으로 접근 si = sys.stdin.readline arr = [int(si()) for _ in range(9)] res = [] s = sum(arr) for i in range(9): for j in range(9): if i == j: continue if s - arr[i] - arr[j] == 100: res = [arr[k] for k in range(9) if k != i and k != j] break res.sort() print("\n".join(list(map(str, res))))
20.789474
65
0.513924
53140e05038c349ad9219f4bf139d602efa6aaa6
33,256
py
Python
sdk/python/pulumi_azure_native/network/v20190201/application_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20190201/application_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20190201/application_gateway.py
pulumi-bot/pulumi-azure-native
f7b9490b5211544318e455e5cceafe47b628e12c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['ApplicationGateway'] class ApplicationGateway(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_gateway_name: Optional[pulumi.Input[str]] = None, authentication_certificates: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayAuthenticationCertificateArgs']]]]] = None, autoscale_configuration: Optional[pulumi.Input[pulumi.InputType['ApplicationGatewayAutoscaleConfigurationArgs']]] = None, backend_address_pools: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayBackendAddressPoolArgs']]]]] = None, backend_http_settings_collection: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayBackendHttpSettingsArgs']]]]] = None, custom_error_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayCustomErrorArgs']]]]] = None, enable_fips: Optional[pulumi.Input[bool]] = None, enable_http2: Optional[pulumi.Input[bool]] = None, etag: Optional[pulumi.Input[str]] = None, firewall_policy: Optional[pulumi.Input[pulumi.InputType['SubResourceArgs']]] = None, frontend_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayFrontendIPConfigurationArgs']]]]] = None, frontend_ports: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayFrontendPortArgs']]]]] = None, gateway_ip_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayIPConfigurationArgs']]]]] = None, http_listeners: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayHttpListenerArgs']]]]] = None, id: Optional[pulumi.Input[str]] = None, identity: Optional[pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']]] = None, location: Optional[pulumi.Input[str]] = None, probes: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayProbeArgs']]]]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, redirect_configurations: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRedirectConfigurationArgs']]]]] = None, request_routing_rules: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRequestRoutingRuleArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_guid: Optional[pulumi.Input[str]] = None, rewrite_rule_sets: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRewriteRuleSetArgs']]]]] = None, sku: Optional[pulumi.Input[pulumi.InputType['ApplicationGatewaySkuArgs']]] = None, ssl_certificates: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewaySslCertificateArgs']]]]] = None, ssl_policy: Optional[pulumi.Input[pulumi.InputType['ApplicationGatewaySslPolicyArgs']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, trusted_root_certificates: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayTrustedRootCertificateArgs']]]]] = None, url_path_maps: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayUrlPathMapArgs']]]]] = None, web_application_firewall_configuration: Optional[pulumi.Input[pulumi.InputType['ApplicationGatewayWebApplicationFirewallConfigurationArgs']]] = None, zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Application gateway resource :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] application_gateway_name: The name of the application gateway. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayAuthenticationCertificateArgs']]]] authentication_certificates: Authentication certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[pulumi.InputType['ApplicationGatewayAutoscaleConfigurationArgs']] autoscale_configuration: Autoscale Configuration. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayBackendAddressPoolArgs']]]] backend_address_pools: Backend address pool of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayBackendHttpSettingsArgs']]]] backend_http_settings_collection: Backend http settings of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayCustomErrorArgs']]]] custom_error_configurations: Custom error configurations of the application gateway resource. :param pulumi.Input[bool] enable_fips: Whether FIPS is enabled on the application gateway resource. :param pulumi.Input[bool] enable_http2: Whether HTTP2 is enabled on the application gateway resource. :param pulumi.Input[str] etag: A unique read-only string that changes whenever the resource is updated. :param pulumi.Input[pulumi.InputType['SubResourceArgs']] firewall_policy: Reference of the FirewallPolicy resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayFrontendIPConfigurationArgs']]]] frontend_ip_configurations: Frontend IP addresses of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayFrontendPortArgs']]]] frontend_ports: Frontend ports of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayIPConfigurationArgs']]]] gateway_ip_configurations: Subnets of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayHttpListenerArgs']]]] http_listeners: Http listeners of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[pulumi.InputType['ManagedServiceIdentityArgs']] identity: The identity of the application gateway, if configured. :param pulumi.Input[str] location: Resource location. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayProbeArgs']]]] probes: Probes of the application gateway resource. :param pulumi.Input[str] provisioning_state: Provisioning state of the application gateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRedirectConfigurationArgs']]]] redirect_configurations: Redirect configurations of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRequestRoutingRuleArgs']]]] request_routing_rules: Request routing rules of the application gateway resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] resource_guid: Resource GUID property of the application gateway resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayRewriteRuleSetArgs']]]] rewrite_rule_sets: Rewrite rules for the application gateway resource. :param pulumi.Input[pulumi.InputType['ApplicationGatewaySkuArgs']] sku: SKU of the application gateway resource. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewaySslCertificateArgs']]]] ssl_certificates: SSL certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[pulumi.InputType['ApplicationGatewaySslPolicyArgs']] ssl_policy: SSL policy of the application gateway resource. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayTrustedRootCertificateArgs']]]] trusted_root_certificates: Trusted Root certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationGatewayUrlPathMapArgs']]]] url_path_maps: URL path map of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). :param pulumi.Input[pulumi.InputType['ApplicationGatewayWebApplicationFirewallConfigurationArgs']] web_application_firewall_configuration: Web application firewall configuration. :param pulumi.Input[Sequence[pulumi.Input[str]]] zones: A list of availability zones denoting where the resource needs to come from. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['application_gateway_name'] = application_gateway_name __props__['authentication_certificates'] = authentication_certificates __props__['autoscale_configuration'] = autoscale_configuration __props__['backend_address_pools'] = backend_address_pools __props__['backend_http_settings_collection'] = backend_http_settings_collection __props__['custom_error_configurations'] = custom_error_configurations __props__['enable_fips'] = enable_fips __props__['enable_http2'] = enable_http2 __props__['etag'] = etag __props__['firewall_policy'] = firewall_policy __props__['frontend_ip_configurations'] = frontend_ip_configurations __props__['frontend_ports'] = frontend_ports __props__['gateway_ip_configurations'] = gateway_ip_configurations __props__['http_listeners'] = http_listeners __props__['id'] = id __props__['identity'] = identity __props__['location'] = location __props__['probes'] = probes __props__['provisioning_state'] = provisioning_state __props__['redirect_configurations'] = redirect_configurations __props__['request_routing_rules'] = request_routing_rules if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['resource_guid'] = resource_guid __props__['rewrite_rule_sets'] = rewrite_rule_sets __props__['sku'] = sku __props__['ssl_certificates'] = ssl_certificates __props__['ssl_policy'] = ssl_policy __props__['tags'] = tags __props__['trusted_root_certificates'] = trusted_root_certificates __props__['url_path_maps'] = url_path_maps __props__['web_application_firewall_configuration'] = web_application_firewall_configuration __props__['zones'] = zones __props__['name'] = None __props__['operational_state'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20190201:ApplicationGateway"), pulumi.Alias(type_="azure-native:network:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/latest:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/latest:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20150501preview:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20150615:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20150615:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20160330:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20160330:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20160601:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20160601:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20160901:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20160901:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20161201:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20161201:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20170301:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20170301:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20170601:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20170601:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20170801:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20170801:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20170901:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20170901:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20171001:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20171001:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20171101:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20171101:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180101:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180101:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180201:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180201:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180401:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180401:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180601:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180601:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180701:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180701:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20180801:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20180801:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20181001:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20181001:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20181101:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20181101:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20181201:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20181201:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20190401:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20190401:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20190601:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20190601:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20190701:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20190701:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20190801:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20190801:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20190901:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20190901:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20191101:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20191101:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20191201:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20191201:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200301:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200301:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200401:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200401:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200501:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200501:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200601:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200601:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200701:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200701:ApplicationGateway"), pulumi.Alias(type_="azure-native:network/v20200801:ApplicationGateway"), pulumi.Alias(type_="azure-nextgen:network/v20200801:ApplicationGateway")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ApplicationGateway, __self__).__init__( 'azure-native:network/v20190201:ApplicationGateway', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ApplicationGateway': """ Get an existing ApplicationGateway resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["authentication_certificates"] = None __props__["autoscale_configuration"] = None __props__["backend_address_pools"] = None __props__["backend_http_settings_collection"] = None __props__["custom_error_configurations"] = None __props__["enable_fips"] = None __props__["enable_http2"] = None __props__["etag"] = None __props__["firewall_policy"] = None __props__["frontend_ip_configurations"] = None __props__["frontend_ports"] = None __props__["gateway_ip_configurations"] = None __props__["http_listeners"] = None __props__["identity"] = None __props__["location"] = None __props__["name"] = None __props__["operational_state"] = None __props__["probes"] = None __props__["provisioning_state"] = None __props__["redirect_configurations"] = None __props__["request_routing_rules"] = None __props__["resource_guid"] = None __props__["rewrite_rule_sets"] = None __props__["sku"] = None __props__["ssl_certificates"] = None __props__["ssl_policy"] = None __props__["tags"] = None __props__["trusted_root_certificates"] = None __props__["type"] = None __props__["url_path_maps"] = None __props__["web_application_firewall_configuration"] = None __props__["zones"] = None return ApplicationGateway(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="authenticationCertificates") def authentication_certificates(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayAuthenticationCertificateResponse']]]: """ Authentication certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "authentication_certificates") @property @pulumi.getter(name="autoscaleConfiguration") def autoscale_configuration(self) -> pulumi.Output[Optional['outputs.ApplicationGatewayAutoscaleConfigurationResponse']]: """ Autoscale Configuration. """ return pulumi.get(self, "autoscale_configuration") @property @pulumi.getter(name="backendAddressPools") def backend_address_pools(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayBackendAddressPoolResponse']]]: """ Backend address pool of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "backend_address_pools") @property @pulumi.getter(name="backendHttpSettingsCollection") def backend_http_settings_collection(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayBackendHttpSettingsResponse']]]: """ Backend http settings of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "backend_http_settings_collection") @property @pulumi.getter(name="customErrorConfigurations") def custom_error_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayCustomErrorResponse']]]: """ Custom error configurations of the application gateway resource. """ return pulumi.get(self, "custom_error_configurations") @property @pulumi.getter(name="enableFips") def enable_fips(self) -> pulumi.Output[Optional[bool]]: """ Whether FIPS is enabled on the application gateway resource. """ return pulumi.get(self, "enable_fips") @property @pulumi.getter(name="enableHttp2") def enable_http2(self) -> pulumi.Output[Optional[bool]]: """ Whether HTTP2 is enabled on the application gateway resource. """ return pulumi.get(self, "enable_http2") @property @pulumi.getter def etag(self) -> pulumi.Output[Optional[str]]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="firewallPolicy") def firewall_policy(self) -> pulumi.Output[Optional['outputs.SubResourceResponse']]: """ Reference of the FirewallPolicy resource. """ return pulumi.get(self, "firewall_policy") @property @pulumi.getter(name="frontendIPConfigurations") def frontend_ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayFrontendIPConfigurationResponse']]]: """ Frontend IP addresses of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter(name="frontendPorts") def frontend_ports(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayFrontendPortResponse']]]: """ Frontend ports of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "frontend_ports") @property @pulumi.getter(name="gatewayIPConfigurations") def gateway_ip_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayIPConfigurationResponse']]]: """ Subnets of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "gateway_ip_configurations") @property @pulumi.getter(name="httpListeners") def http_listeners(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayHttpListenerResponse']]]: """ Http listeners of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "http_listeners") @property @pulumi.getter def identity(self) -> pulumi.Output[Optional['outputs.ManagedServiceIdentityResponse']]: """ The identity of the application gateway, if configured. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="operationalState") def operational_state(self) -> pulumi.Output[str]: """ Operational state of the application gateway resource. """ return pulumi.get(self, "operational_state") @property @pulumi.getter def probes(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayProbeResponse']]]: """ Probes of the application gateway resource. """ return pulumi.get(self, "probes") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ Provisioning state of the application gateway resource. Possible values are: 'Updating', 'Deleting', and 'Failed'. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="redirectConfigurations") def redirect_configurations(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayRedirectConfigurationResponse']]]: """ Redirect configurations of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "redirect_configurations") @property @pulumi.getter(name="requestRoutingRules") def request_routing_rules(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayRequestRoutingRuleResponse']]]: """ Request routing rules of the application gateway resource. """ return pulumi.get(self, "request_routing_rules") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> pulumi.Output[Optional[str]]: """ Resource GUID property of the application gateway resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter(name="rewriteRuleSets") def rewrite_rule_sets(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayRewriteRuleSetResponse']]]: """ Rewrite rules for the application gateway resource. """ return pulumi.get(self, "rewrite_rule_sets") @property @pulumi.getter def sku(self) -> pulumi.Output[Optional['outputs.ApplicationGatewaySkuResponse']]: """ SKU of the application gateway resource. """ return pulumi.get(self, "sku") @property @pulumi.getter(name="sslCertificates") def ssl_certificates(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewaySslCertificateResponse']]]: """ SSL certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "ssl_certificates") @property @pulumi.getter(name="sslPolicy") def ssl_policy(self) -> pulumi.Output[Optional['outputs.ApplicationGatewaySslPolicyResponse']]: """ SSL policy of the application gateway resource. """ return pulumi.get(self, "ssl_policy") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="trustedRootCertificates") def trusted_root_certificates(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayTrustedRootCertificateResponse']]]: """ Trusted Root certificates of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "trusted_root_certificates") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="urlPathMaps") def url_path_maps(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationGatewayUrlPathMapResponse']]]: """ URL path map of the application gateway resource. For default limits, see [Application Gateway limits](https://docs.microsoft.com/azure/azure-subscription-service-limits#application-gateway-limits). """ return pulumi.get(self, "url_path_maps") @property @pulumi.getter(name="webApplicationFirewallConfiguration") def web_application_firewall_configuration(self) -> pulumi.Output[Optional['outputs.ApplicationGatewayWebApplicationFirewallConfigurationResponse']]: """ Web application firewall configuration. """ return pulumi.get(self, "web_application_firewall_configuration") @property @pulumi.getter def zones(self) -> pulumi.Output[Optional[Sequence[str]]]: """ A list of availability zones denoting where the resource needs to come from. """ return pulumi.get(self, "zones") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
71.059829
5,407
0.732259
b3725e700d793710cc0abe4b754dc6df865cf203
8,652
py
Python
kubernetes/client/models/v1_policy_rule.py
venukarnati92/python-1
3fabf9ed9f4758fb5133975a58fc147471e91d9d
[ "Apache-2.0" ]
1
2022-02-07T21:57:20.000Z
2022-02-07T21:57:20.000Z
kubernetes/client/models/v1_policy_rule.py
venukarnati92/python-1
3fabf9ed9f4758fb5133975a58fc147471e91d9d
[ "Apache-2.0" ]
1
2022-03-01T03:37:57.000Z
2022-03-01T03:37:57.000Z
kubernetes/client/models/v1_policy_rule.py
venukarnati92/python-1
3fabf9ed9f4758fb5133975a58fc147471e91d9d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.22 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1PolicyRule(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'api_groups': 'list[str]', 'non_resource_ur_ls': 'list[str]', 'resource_names': 'list[str]', 'resources': 'list[str]', 'verbs': 'list[str]' } attribute_map = { 'api_groups': 'apiGroups', 'non_resource_ur_ls': 'nonResourceURLs', 'resource_names': 'resourceNames', 'resources': 'resources', 'verbs': 'verbs' } def __init__(self, api_groups=None, non_resource_ur_ls=None, resource_names=None, resources=None, verbs=None, local_vars_configuration=None): # noqa: E501 """V1PolicyRule - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._api_groups = None self._non_resource_ur_ls = None self._resource_names = None self._resources = None self._verbs = None self.discriminator = None if api_groups is not None: self.api_groups = api_groups if non_resource_ur_ls is not None: self.non_resource_ur_ls = non_resource_ur_ls if resource_names is not None: self.resource_names = resource_names if resources is not None: self.resources = resources self.verbs = verbs @property def api_groups(self): """Gets the api_groups of this V1PolicyRule. # noqa: E501 APIGroups is the name of the APIGroup that contains the resources. If multiple API groups are specified, any action requested against one of the enumerated resources in any API group will be allowed. # noqa: E501 :return: The api_groups of this V1PolicyRule. # noqa: E501 :rtype: list[str] """ return self._api_groups @api_groups.setter def api_groups(self, api_groups): """Sets the api_groups of this V1PolicyRule. APIGroups is the name of the APIGroup that contains the resources. If multiple API groups are specified, any action requested against one of the enumerated resources in any API group will be allowed. # noqa: E501 :param api_groups: The api_groups of this V1PolicyRule. # noqa: E501 :type: list[str] """ self._api_groups = api_groups @property def non_resource_ur_ls(self): """Gets the non_resource_ur_ls of this V1PolicyRule. # noqa: E501 NonResourceURLs is a set of partial urls that a user should have access to. *s are allowed, but only as the full, final step in the path Since non-resource URLs are not namespaced, this field is only applicable for ClusterRoles referenced from a ClusterRoleBinding. Rules can either apply to API resources (such as \"pods\" or \"secrets\") or non-resource URL paths (such as \"/api\"), but not both. # noqa: E501 :return: The non_resource_ur_ls of this V1PolicyRule. # noqa: E501 :rtype: list[str] """ return self._non_resource_ur_ls @non_resource_ur_ls.setter def non_resource_ur_ls(self, non_resource_ur_ls): """Sets the non_resource_ur_ls of this V1PolicyRule. NonResourceURLs is a set of partial urls that a user should have access to. *s are allowed, but only as the full, final step in the path Since non-resource URLs are not namespaced, this field is only applicable for ClusterRoles referenced from a ClusterRoleBinding. Rules can either apply to API resources (such as \"pods\" or \"secrets\") or non-resource URL paths (such as \"/api\"), but not both. # noqa: E501 :param non_resource_ur_ls: The non_resource_ur_ls of this V1PolicyRule. # noqa: E501 :type: list[str] """ self._non_resource_ur_ls = non_resource_ur_ls @property def resource_names(self): """Gets the resource_names of this V1PolicyRule. # noqa: E501 ResourceNames is an optional white list of names that the rule applies to. An empty set means that everything is allowed. # noqa: E501 :return: The resource_names of this V1PolicyRule. # noqa: E501 :rtype: list[str] """ return self._resource_names @resource_names.setter def resource_names(self, resource_names): """Sets the resource_names of this V1PolicyRule. ResourceNames is an optional white list of names that the rule applies to. An empty set means that everything is allowed. # noqa: E501 :param resource_names: The resource_names of this V1PolicyRule. # noqa: E501 :type: list[str] """ self._resource_names = resource_names @property def resources(self): """Gets the resources of this V1PolicyRule. # noqa: E501 Resources is a list of resources this rule applies to. '*' represents all resources. # noqa: E501 :return: The resources of this V1PolicyRule. # noqa: E501 :rtype: list[str] """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this V1PolicyRule. Resources is a list of resources this rule applies to. '*' represents all resources. # noqa: E501 :param resources: The resources of this V1PolicyRule. # noqa: E501 :type: list[str] """ self._resources = resources @property def verbs(self): """Gets the verbs of this V1PolicyRule. # noqa: E501 Verbs is a list of Verbs that apply to ALL the ResourceKinds and AttributeRestrictions contained in this rule. '*' represents all verbs. # noqa: E501 :return: The verbs of this V1PolicyRule. # noqa: E501 :rtype: list[str] """ return self._verbs @verbs.setter def verbs(self, verbs): """Sets the verbs of this V1PolicyRule. Verbs is a list of Verbs that apply to ALL the ResourceKinds and AttributeRestrictions contained in this rule. '*' represents all verbs. # noqa: E501 :param verbs: The verbs of this V1PolicyRule. # noqa: E501 :type: list[str] """ if self.local_vars_configuration.client_side_validation and verbs is None: # noqa: E501 raise ValueError("Invalid value for `verbs`, must not be `None`") # noqa: E501 self._verbs = verbs def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1PolicyRule): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1PolicyRule): return True return self.to_dict() != other.to_dict()
36.661017
423
0.636385
79670921ffeca430a258b090b06d90f8406d663e
4,922
py
Python
avaya/loadIQ.py
nd1/odds-and-ends
8be5c6dfab733038bb3b7a35eaa6ae4f630d2ace
[ "MIT" ]
null
null
null
avaya/loadIQ.py
nd1/odds-and-ends
8be5c6dfab733038bb3b7a35eaa6ae4f630d2ace
[ "MIT" ]
null
null
null
avaya/loadIQ.py
nd1/odds-and-ends
8be5c6dfab733038bb3b7a35eaa6ae4f630d2ace
[ "MIT" ]
null
null
null
''' Load Avaya IQ report data to a MS SQL db. Nicole Donnelly 20170530 ''' import os import sys import pandas as pd from sqlalchemy import create_engine, text, types def convert_time(x): # change a hh:mm:ss string to number of seconds times = x.split(':') return (360*int(times[0])+60*int(times[1]))+int(times[2]) def get_count(sql_connection): # get the current number of rows in the table, if it exists try: sql = text('select count(1) from call_data') result = sql_connection.execute(sql) names = [] for row in result: names.append(row[0]) current_row_count = names[0] except: current_row_count = 0 return current_row_count def load_data(data): # define variables # labels for the dataframe col_label = ['start', 'duration', 'customer', 'direction', 'first_routing', 'first_queue', 'disposition', 'wait', 'self_service', 'active', 'on_hold', 'contact_id', 'source', 'agent'] # column types for the database using sqlalchemy types col_types = {'start': types.DateTime, 'duration': types.Integer, 'customer': types.String(32), 'direction': types.String(32), 'first_routing': types.String(128), 'first_queue': types.String(128), 'disposition': types.String(128), 'wait': types.Integer, 'self_service': types.Integer, 'active': types.Integer, 'on_hold': types.Integer, 'contact_id': types.Integer, 'source': types.String(8), 'agent': types.String(128)} # define the db connection # replace host, port, db to run engine = create_engine('mssql+pyodbc://@HOST:PORT/DB?driver=SQL+Server') connection = engine.connect() # load the file to a dataframe. skip header and footer data in the report. # convert the time fields to number of seconds df = pd.read_excel('./exported_data/' + data, header=None, skiprows=13, skip_footer=2, names=col_label, converters={1: convert_time, 7: convert_time, 8: convert_time, 9: convert_time, 10: convert_time}) # file contains merged cells. use fillna to fill in the missing values # by default, pandas will put the value in the first row of the merge # and populate the rest as na. ffill will fill down to next value df.disposition = pd.Series(df.disposition).fillna(method='ffill') # get the current row count in table for error checking purposes current_row_count = get_count(connection) print("The current table has {0} rows. You are adding {1} rows." .format(current_row_count, len(df))) # write the data to the db using pandas to_sql print("Updating the db.") df.to_sql(name='call_data', con=connection, index=False, if_exists='append', dtype=col_types) new_row_count = get_count(connection) # close the connection and veirfy the results connection.close() print("The table now has {0} rows.".format(new_row_count)) if (current_row_count + len(df)) == new_row_count: print("Table updated as expected.") return 0 else: print("Something went wrong in the update. Expected {0} rows but have\ {1}.".format((current_row_count + len(df)), new_row_count)) return 1 if __name__ == '__main__': # check if there are files to Load if len(os.listdir('./exported_data')) == 0: print("There are no files to load.") sys.exit() else: for new_report in os.listdir('./exported_data'): # load all excel files if new_report.endswith('.xls') or new_report.endswith('.xlsx'): print("Begin processing: {0}".format(new_report)) load_status = load_data(new_report) if load_status == 0: # if the load was successful, move the loaded file print("Moving {0} to the processed directory." .format(new_report)) os.rename('./exported_data/' + new_report, './processed_data/' + new_report) else: # if the load was not successful, do not move the file print("Left {0} in the exported_data directory. Please rev\ iew for errors.".format(new_report)) # create an error log of files that did not load properly log = 'error.log' if os.path.exists(log): append_write = 'a' else: append_write = 'w' f = open(log, append_write) f.write(new_report + '\n') f.close()
39.063492
79
0.58208
a5edf1e3a1045a2c7f05264358693e44141638f2
532
py
Python
jms_oidc_rp/__init__.py
east-district-f2c-shangqi/jumpserver-django-oidc-rp
d3df68f21d002b07ad7d6776b38256a042ea3831
[ "MIT" ]
null
null
null
jms_oidc_rp/__init__.py
east-district-f2c-shangqi/jumpserver-django-oidc-rp
d3df68f21d002b07ad7d6776b38256a042ea3831
[ "MIT" ]
null
null
null
jms_oidc_rp/__init__.py
east-district-f2c-shangqi/jumpserver-django-oidc-rp
d3df68f21d002b07ad7d6776b38256a042ea3831
[ "MIT" ]
null
null
null
__version__ = '0.3.7.5' # Deploying a new version: # 1. remove the ".dev" from the current version number # 2. create a new commit (eg. "Prepared 0.1.1 release") # 3. run "git tag x.y.z" (eg. "git tag 0.1.1") # 4. run "python setup.py sdist bdist_wheel upload" # 5. bump the version (increment the version and append a ".dev" to it). eg. "0.1.2.dev" # 6. create a new commit (eg. "Bumped version to 0.1.2.dev") # 7. run "git push" and "git push --tags" default_app_config = 'jms_oidc_rp.apps.JumpServerOIDCRelyingPartyAppConfig'
38
88
0.68985
ef97678d071b0ca4a00b4fb16f80165b710b8f79
9,663
py
Python
services/core/MasterDriverAgent/tests/test_modbus_driver.py
craig8/volttron
2a954311d323effa3b79c2a53f6e8c3bb9664e1c
[ "Apache-2.0", "BSD-2-Clause" ]
1
2020-06-08T16:54:28.000Z
2020-06-08T16:54:28.000Z
services/core/MasterDriverAgent/tests/test_modbus_driver.py
craig8/volttron
2a954311d323effa3b79c2a53f6e8c3bb9664e1c
[ "Apache-2.0", "BSD-2-Clause" ]
8
2016-10-07T22:49:28.000Z
2022-02-23T00:57:58.000Z
services/core/MasterDriverAgent/tests/test_modbus_driver.py
craig8/volttron
2a954311d323effa3b79c2a53f6e8c3bb9664e1c
[ "Apache-2.0", "BSD-2-Clause" ]
null
null
null
import pytest import gevent import logging import time from struct import pack, unpack from volttron.platform import get_services_core, jsonapi from master_driver.interfaces.modbus_tk.server import Server from master_driver.interfaces.modbus_tk.client import Client, Field from master_driver.interfaces.modbus_tk import helpers from volttrontesting.utils.utils import get_rand_ip_and_port from volttron.platform.agent.known_identities import PLATFORM_DRIVER logger = logging.getLogger(__name__) IP, _port = get_rand_ip_and_port().split(":") PORT = int(_port) DRIVER_CONFIG = { "driver_config": { "device_address": IP, "port": PORT, "slave_id": 1 }, "driver_type": "modbus", "registry_config": "config://modbus.csv", "interval": 120, "timezone": "UTC" } # This registry configuration contains only required fields REGISTRY_CONFIG_STRING = """Volttron Point Name,Units,Modbus Register,Writable,Point Address BigUShort,PPM,>H,TRUE,0 BigUInt,PPM,>I,TRUE,1 BigULong,PPM,>Q,TRUE,3 BigShort,PPM,>h,TRUE,7 BigInt,PPM,>i,TRUE,8 BigFloat,PPM,>f,TRUE,10 BigLong,PPM,>q,TRUE,12 LittleUShort,PPM,<H,TRUE,100 LittleUInt,PPM,<I,TRUE,101 LittleULong,PPM,<Q,TRUE,103 LittleShort,PPM,<h,TRUE,107 LittleInt,PPM,<i,TRUE,108 LittleFloat,PPM,<f,TRUE,110 LittleLong,PPM,<q,TRUE,112""" # Register values dictionary for testing set_point and get_point registers_dict = {"BigUShort": 2**16-1, "BigUInt": 2**32-1, "BigULong": 2**64-1, "BigShort": -(2**16)//2, "BigInt": -(2**32)//2, "BigFloat": -1234.0, "BigLong": -(2**64)//2, "LittleUShort": 0, "LittleUInt": 0, "LittleULong": 0, "LittleShort": (2**16)//2-1, "LittleInt": (2**32)//2-1, "LittleFloat": 1.0, "LittleLong": (2**64)//2-1 } @pytest.fixture(scope="module") def agent(request, volttron_instance): """ Build MasterDriverAgent, add Modbus driver & csv configurations """ # Build master driver agent md_agent = volttron_instance.build_agent(identity="test_md_agent") capabilities = {'edit_config_store': {'identity': PLATFORM_DRIVER}} volttron_instance.add_capabilities(md_agent.core.publickey, capabilities) gevent.sleep(1) # Clean out master driver configurations # wait for it to return before adding new config md_agent.vip.rpc.call('config.store', 'manage_delete_store', PLATFORM_DRIVER).get() # Add driver configurations md_agent.vip.rpc.call('config.store', 'manage_store', PLATFORM_DRIVER, 'devices/modbus', jsonapi.dumps(DRIVER_CONFIG), config_type='json') # Add csv configurations md_agent.vip.rpc.call('config.store', 'manage_store', PLATFORM_DRIVER, 'modbus.csv', REGISTRY_CONFIG_STRING, config_type='csv') master_uuid = volttron_instance.install_agent( agent_dir=get_services_core("MasterDriverAgent"), config_file={}, start=True) gevent.sleep(10) # wait for the agent to start and start the devices def stop(): """Stop master driver agent """ volttron_instance.stop_agent(master_uuid) md_agent.core.stop() request.addfinalizer(stop) return md_agent class PPSPi32Client(Client): """ Define some registers to PPSPi32Client """ def __init__(self, *args, **kwargs): super(PPSPi32Client, self).__init__(*args, **kwargs) byte_order = helpers.BIG_ENDIAN addressing = helpers.ADDRESS_OFFSET BigUShort = Field("BigUShort", 0, helpers.USHORT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigUInt = Field("BigUInt", 1, helpers.UINT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigULong = Field("BigULong", 3, helpers.UINT64, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigShort = Field("BigShort", 7, helpers.SHORT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigInt = Field("BigInt", 8, helpers.INT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigFloat = Field("BigFloat", 10, helpers.FLOAT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) BigLong = Field("BigLong", 12, helpers.INT64, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleUShort = Field( "LittleUShort", 100, helpers.USHORT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleUInt = Field( "LittleUInt", 101, helpers.UINT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleULong = Field( "LittleULong", 103, helpers.UINT64, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleShort = Field( "LittleShort", 107, helpers.SHORT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleInt = Field( "LittleInt", 108, helpers.INT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleFloat = Field( "LittleFloat", 110, helpers.FLOAT, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) LittleLong = Field( "LittleLong", 112, helpers.INT64, 'PPM', 2, helpers.no_op, helpers.REGISTER_READ_WRITE, helpers.OP_MODE_READ_WRITE) @pytest.fixture def modbus_server(request): modbus_server = Server(address=IP, port=PORT) modbus_server.define_slave(1, PPSPi32Client, unsigned=True) # Set values for registers from server as the default values modbus_server.set_values(1, PPSPi32Client().field_by_name("BigUShort"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigUInt"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigULong"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigShort"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigInt"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigFloat"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("BigLong"), 0) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleUShort"), unpack('<H', pack('>H', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleUInt"), unpack('<HH', pack('>I', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleULong"), unpack('<HHHH', pack('>Q', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleShort"), unpack('<H', pack('>h', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleInt"), unpack('<HH', pack('>i', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleFloat"), unpack('<HH', pack('>f', 0))) modbus_server.set_values(1, PPSPi32Client().field_by_name("LittleLong"), unpack('<HHHH', pack('>q', 0))) modbus_server.start() time.sleep(1) yield modbus_server modbus_server.stop() @pytest.mark.usefixtures("modbus_server") class TestModbusDriver: """ Regression tests for the modbus driver interface. """ def get_point(self, agent, point_name): """ Issue a get_point RPC call for the named point and return the result. @param agent: The test Agent. @param point_name: The name of the point to query. @return: The returned value from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'get_point', 'modbus', point_name).get(timeout=10) def set_point(self, agent, point_name, point_value): """ Issue a set_point RPC call for the named point and value, and return the result. @param agent: The test Agent. @param point_name: The name of the point to query. @param point_value: The value to set on the point. @return: The returned value from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'set_point', 'modbus', point_name, point_value).get(timeout=10) def scrape_all(self, agent): """ Issue a get_point RPC call for the named point and return the result. @param agent: The test Agent. @return: The returned value from the RPC call. """ return agent.vip.rpc.call(PLATFORM_DRIVER, 'scrape_all', 'modbus').get(timeout=10) def test_default_values(self, agent): """ By default server setting, all registers values are 0 """ default_values = self.scrape_all(agent) assert type(default_values) is dict for key in default_values.keys(): assert default_values[key] == 0 or 0.0 def test_set_point(self, agent): for key in registers_dict.keys(): self.set_point(agent, key, registers_dict[key]) assert self.get_point(agent, key) == registers_dict[key] assert self.scrape_all(agent) == registers_dict
39.765432
114
0.650523
bac7fd08bde7e603fc5e9e032cbf0dbb92560d7e
84
py
Python
apps/setting/helper.py
zibinklin/weekly_self-evaluation
ed3c15e8261014ecc40068999e385860c0f8166e
[ "MIT" ]
null
null
null
apps/setting/helper.py
zibinklin/weekly_self-evaluation
ed3c15e8261014ecc40068999e385860c0f8166e
[ "MIT" ]
null
null
null
apps/setting/helper.py
zibinklin/weekly_self-evaluation
ed3c15e8261014ecc40068999e385860c0f8166e
[ "MIT" ]
null
null
null
import pandas as pd def set(param): activity = '' achievement ='' pass
12
19
0.595238
b6f9f5f144a746fa3edfe7dc301f70916132991f
4,880
py
Python
volatility/volatility/plugins/gui/vtypes/vista.py
williamclot/MemoryVisualizer
2ff9f30f07519d6578bc36c12f8d08acc9cb4383
[ "MIT" ]
2
2018-07-16T13:30:40.000Z
2018-07-17T12:02:05.000Z
volatility/volatility/plugins/gui/vtypes/vista.py
williamclot/MemoryVisualizer
2ff9f30f07519d6578bc36c12f8d08acc9cb4383
[ "MIT" ]
null
null
null
volatility/volatility/plugins/gui/vtypes/vista.py
williamclot/MemoryVisualizer
2ff9f30f07519d6578bc36c12f8d08acc9cb4383
[ "MIT" ]
null
null
null
# Volatility # Copyright (C) 2007-2013 Volatility Foundation # Copyright (C) 2010,2011,2012 Michael Hale Ligh <michael.ligh@mnin.org> # # This file is part of Volatility. # # Volatility is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Volatility is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Volatility. If not, see <http://www.gnu.org/licenses/>. # import volatility.obj as obj import volatility.plugins.gui.vtypes.win7_sp0_x64_vtypes_gui as win7_sp0_x64_vtypes_gui import volatility.plugins.gui.constants as consts class Vista2008x64GuiVTypes(obj.ProfileModification): before = ["XP2003x64BaseVTypes", "Win32Kx64VTypes"] conditions = {'os': lambda x: x == 'windows', 'memory_model': lambda x: x == '64bit', 'major': lambda x: x == 6, 'minor': lambda x: x == 0} def modification(self, profile): # Enough stayed the same between Vista/2008 and Windows 7, ## so we can re-use the Windows 7 types. This is a bit unconventional ## because we typically when we re-use, we do it forward (i.e. use ## an older OS's types for a newer OS). However since the win32k.sys ## vtypes were never public until Windows 7, we're re-using backward. profile.vtypes.update(win7_sp0_x64_vtypes_gui.win32k_types) # We don't want to overlay or HeEntrySize from Win7 will # appear to be a valid member of the Vista structure. profile.vtypes.update({ 'tagSHAREDINFO' : [ 0x238, { 'psi' : [ 0x0, ['pointer64', ['tagSERVERINFO']]], 'aheList' : [ 0x8, ['pointer64', ['_HANDLEENTRY']]], 'ulSharedDelta' : [ 0x18, ['unsigned long long']], }], }) profile.merge_overlay({ # From Win7SP0x64 'tagDESKTOP' : [ None, { 'pheapDesktop' : [ 0x78, ['pointer64', ['tagWIN32HEAP']]], 'ulHeapSize' : [ 0x80, ['unsigned long']], }], 'tagTHREADINFO' : [ None, { 'ppi' : [ 0x68, ['pointer64', ['tagPROCESSINFO']]], 'PtiLink' : [ 0x160, ['_LIST_ENTRY']], }], 'tagHOOK': [ None, { 'flags': [ None, ['Flags', {'bitmap': consts.HOOK_FLAGS}]] }], '_HANDLEENTRY': [ None, { 'bType': [ None, ['Enumeration', dict(target = 'unsigned char', choices = consts.HANDLE_TYPE_ENUM)]], }], 'tagWINDOWSTATION' : [ None, { 'pClipBase' : [ None, ['pointer', ['array', lambda x : x.cNumClipFormats, ['tagCLIP']]]], }], 'tagCLIP': [ None, { 'fmt' : [ 0x0, ['Enumeration', dict(target = 'unsigned long', choices = consts.CLIPBOARD_FORMAT_ENUM)]], }], }) class Vista2008x86GuiVTypes(obj.ProfileModification): before = ["XP2003x86BaseVTypes", "Win32Kx86VTypes"] conditions = {'os': lambda x: x == 'windows', 'memory_model': lambda x: x == '32bit', 'major': lambda x: x == 6, 'minor': lambda x: x == 0} def modification(self, profile): profile.merge_overlay({ # The size is very important since we carve from bottom up 'tagWINDOWSTATION' : [ 0x54, { 'pClipBase' : [ None, ['pointer', ['array', lambda x : x.cNumClipFormats, ['tagCLIP']]]], }], 'tagDESKTOP' : [ None, { 'PtiList' : [ 0x64, ['_LIST_ENTRY']], 'hsectionDesktop' : [ 0x3c, ['pointer', ['void']]], 'pheapDesktop' : [ 0x40, ['pointer', ['tagWIN32HEAP']]], 'ulHeapSize' : [ 0x44, ['unsigned long']], }], 'tagTHREADINFO' : [ None, { # same as win2003x86 'PtiLink' : [ 0xB0, ['_LIST_ENTRY']], 'fsHooks' : [ 0x9C, ['unsigned long']], 'aphkStart' : [ 0xF8, ['array', 16, ['pointer', ['tagHOOK']]]], }], 'tagSERVERINFO' : [ None, { 'cHandleEntries' : [ 0x4, ['unsigned long']], 'cbHandleTable' : [ 0x1c8, ['unsigned long']], }], 'tagSHAREDINFO' : [ 0x11c, { # From Win7SP0x86 'psi' : [ 0x0, ['pointer', ['tagSERVERINFO']]], 'aheList' : [ 0x4, ['pointer', ['_HANDLEENTRY']]], 'ulSharedDelta' : [ 0xC, ['unsigned long']], }], 'tagCLIP' : [ 16, { # just a size change }]})
42.807018
116
0.559836
b858c29359da81b8929f41b33136b158111e7e8d
2,698
py
Python
python/ray/tune/result.py
haje01/ray
e1c9a869ed3eb83f41f142b841854192ce65f0c3
[ "Apache-2.0" ]
1
2019-10-07T17:20:01.000Z
2019-10-07T17:20:01.000Z
python/ray/tune/result.py
GitHubBeinner/ray
d20696300e2c4aad90c0deece2b3af7e70fc6056
[ "Apache-2.0" ]
null
null
null
python/ray/tune/result.py
GitHubBeinner/ray
d20696300e2c4aad90c0deece2b3af7e70fc6056
[ "Apache-2.0" ]
2
2019-09-04T13:27:51.000Z
2019-09-17T04:20:38.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os # yapf: disable # __sphinx_doc_begin__ # (Optional/Auto-filled) training is terminated. Filled only if not provided. DONE = "done" # (Optional) Enum for user controlled checkpoint SHOULD_CHECKPOINT = "should_checkpoint" # (Auto-filled) The hostname of the machine hosting the training process. HOSTNAME = "hostname" # (Auto-filled) The auto-assigned id of the trial. TRIAL_ID = "trial_id" # (Auto-filled) The node ip of the machine hosting the training process. NODE_IP = "node_ip" # (Auto-filled) The pid of the training process. PID = "pid" # (Optional) Mean reward for current training iteration EPISODE_REWARD_MEAN = "episode_reward_mean" # (Optional) Mean loss for training iteration MEAN_LOSS = "mean_loss" # (Optional) Mean accuracy for training iteration MEAN_ACCURACY = "mean_accuracy" # Number of episodes in this iteration. EPISODES_THIS_ITER = "episodes_this_iter" # (Optional/Auto-filled) Accumulated number of episodes for this experiment. EPISODES_TOTAL = "episodes_total" # Number of timesteps in this iteration. TIMESTEPS_THIS_ITER = "timesteps_this_iter" # (Auto-filled) Accumulated number of timesteps for this entire experiment. TIMESTEPS_TOTAL = "timesteps_total" # (Auto-filled) Time in seconds this iteration took to run. # This may be overriden to override the system-computed time difference. TIME_THIS_ITER_S = "time_this_iter_s" # (Auto-filled) Accumulated time in seconds for this entire experiment. TIME_TOTAL_S = "time_total_s" # (Auto-filled) The index of this training iteration. TRAINING_ITERATION = "training_iteration" # __sphinx_doc_end__ # yapf: enable # __duplicate__ is a magic keyword used internally to # avoid double-logging results when using the Function API. RESULT_DUPLICATE = "__duplicate__" # Where Tune writes result files by default DEFAULT_RESULTS_DIR = (os.environ.get("TUNE_RESULT_DIR") or os.path.expanduser("~/ray_results")) # Meta file about status under each experiment directory, can be # parsed by automlboard if exists. JOB_META_FILE = "job_status.json" # Meta file about status under each trial directory, can be parsed # by automlboard if exists. EXPR_META_FILE = "trial_status.json" # File that stores parameters of the trial. EXPR_PARAM_FILE = "params.json" # Pickle File that stores parameters of the trial. EXPR_PARAM_PICKLE_FILE = "params.pkl" # File that stores the progress of the trial. EXPR_PROGRESS_FILE = "progress.csv" # File that stores results of the trial. EXPR_RESULT_FILE = "result.json" # Config prefix when using Analysis. CONFIG_PREFIX = "config/"
29.977778
77
0.778354
6b7c7524366729aac07ffa9c4f5690c6edc372a4
161
py
Python
src/Services/FaceRecognition/face_recognition/engines/__init__.py
Amir-Shamsi/facial-recognition-login-api
e37e9cdf63f98a53693b3d07a0fb79b1304d4ab9
[ "CC0-1.0" ]
8
2019-02-25T14:09:21.000Z
2021-12-24T07:48:18.000Z
src/Services/FaceRecognition/face_recognition/engines/__init__.py
Amir-Shamsi/facial-recognition-login-api
e37e9cdf63f98a53693b3d07a0fb79b1304d4ab9
[ "CC0-1.0" ]
7
2019-03-20T14:40:34.000Z
2021-10-03T13:13:09.000Z
src/Services/FaceRecognition/face_recognition/engines/__init__.py
Amir-Shamsi/facial-recognition-login-api
e37e9cdf63f98a53693b3d07a0fb79b1304d4ab9
[ "CC0-1.0" ]
3
2021-02-10T20:25:39.000Z
2022-02-10T14:11:54.000Z
""" Defines engines for processing requests/responses to/from FacePP. """ from .base import BaseEngine from .sync import SyncEngine DefaultEngine = SyncEngine
17.888889
65
0.78882
3d8324d8985a6fa9ef3000282896c3d854c01fd9
1,743
py
Python
studies/curso_em_video/ex059-criando-um-menu-de-opcoes.py
alexander-colaneri/Python
fbc84a2818d8324b712014e1a5abfc01474e49ea
[ "MIT" ]
null
null
null
studies/curso_em_video/ex059-criando-um-menu-de-opcoes.py
alexander-colaneri/Python
fbc84a2818d8324b712014e1a5abfc01474e49ea
[ "MIT" ]
null
null
null
studies/curso_em_video/ex059-criando-um-menu-de-opcoes.py
alexander-colaneri/Python
fbc84a2818d8324b712014e1a5abfc01474e49ea
[ "MIT" ]
null
null
null
class Calculadora(): '''Calcula números inseridos, de acordo com opções dadas.''' def __init__(self): self.x = 0 self.y = 0 self.menu = '''Escolha uma opção: [ 1 ] somar [ 2 ] multiplicar [ 3 ] maior [ 4 ] novos números [ 5 ] sair do programa''' def iniciar(self): '''Menu principal do programa''' self.definir_argumentos() while True: print(self.menu) opcao = input() if opcao == '1': print(f'Soma de {self.x} por {self.y} é {self.somar(self.x, self.y)}\n') elif opcao == '2': print(f'Multiplicação de {self.x} por {self.y} é {self.multiplicar(self.x, self.y)}\n') elif opcao =='3': print(f'O maior número entre {self.x} e {self.y} é {self.indicar_maior_numero(self.x, self.y)}\n') elif opcao == '4': self.definir_argumentos() elif opcao == '5': print('Tenha um bom dia!') break else: print('Opção Inválida!') def definir_argumentos(self): '''Menu principal do programa.''' print('Digite os números: ') self.x = int(input()) self.y = int(input()) def somar(self, x, y): '''Soma de dois números.''' return x + y def multiplicar(self, x, y): '''Multiplicação de dois números.''' return x * y def indicar_maior_numero(self, x, y): '''Indica qual o maior entre os dois números.''' if x > y: return x elif x < y: return y else: return 'nenhum dos dois.' calculadora = Calculadora() calculadora.iniciar()
29.542373
114
0.506598
be26ce63456970c81cd97f0c7c31be2b7239cc16
799
py
Python
apps/badge/tests.py
lestrato/badgepack
7432c0ead1d5f63dd509620a0bb06bd76828b590
[ "MS-PL" ]
3
2016-10-21T01:35:46.000Z
2020-11-07T01:20:05.000Z
apps/badge/tests.py
lestrato/badgepack
7432c0ead1d5f63dd509620a0bb06bd76828b590
[ "MS-PL" ]
31
2016-10-31T19:28:53.000Z
2017-01-19T16:55:49.000Z
apps/badge/tests.py
lestrato/badgepack
7432c0ead1d5f63dd509620a0bb06bd76828b590
[ "MS-PL" ]
1
2020-11-07T01:20:07.000Z
2020-11-07T01:20:07.000Z
from django.test import TestCase from badge.models import BadgeClass, BadgeInstance from badge.forms import BadgeCreationForm, UserBadgeAssignForm, OneBadgeAssignForm, BadgeSetAvailabilityForm from django.core.files.uploadedfile import SimpleUploadedFile # # class BadgeClassTestCase(TestCase): # # def test_forms(self): # test_image.image = SimpleUploadedFile( # name='test_image.jpg', # content=open(image_path, 'rb').read(), # content_type='image/jpeg' # ) # badge_creation_form_data = { # 'image':test_image, # 'name':'test_name', # 'description':'test_description', # } # BCForm = BadgeCreationForm(data = badge_creation_form_data) # self.assertTrue(form.is_valid())
34.73913
108
0.659574
ad5896c91cda90df3886cba674cde084cb28c8ba
5,375
py
Python
gta_driver.py
GodelBose/GTAV_self_driving_network
14156ab2f5f7033e6a2566dd58c9e6692088adf5
[ "MIT" ]
1
2017-08-21T11:44:03.000Z
2017-08-21T11:44:03.000Z
gta_driver.py
GodelBose/GTAV_self_driving_network
14156ab2f5f7033e6a2566dd58c9e6692088adf5
[ "MIT" ]
null
null
null
gta_driver.py
GodelBose/GTAV_self_driving_network
14156ab2f5f7033e6a2566dd58c9e6692088adf5
[ "MIT" ]
null
null
null
import numpy as np from grabscreen import grab_screen import cv2 import time import os import pyxinput import matplotlib.pyplot as plt import pygame from getkeys import key_check from directkeys import PressKey,ReleaseKey, W, A, S, D from keras.models import Model class GTA_driver: def __init__(self, data_gen, epochs, load_model_name, save_model_name, batch_size, compiled_model, cam_resolution, frame_rate, cam_region=None, map_region=None, speed_region=None): self.data_gen = data_gen self.epochs = epochs self.load_model_name = load_model_name self.save_model_name = save_model_name self.batch_size = batch_size self.model = compiled_model self.save_per_iteration = 10 self.cam_resolution = cam_resolution self.inputs = {'map_view':data_gen.map_view, 'cam_view':data_gen.cam_view, 'speed_view':data_gen.speed_view} self.clock = pygame.time.Clock() self.frame_rate = frame_rate self.cam_region = cam_region self.speed_region = speed_region self.map_region = map_region def train_model(self): iteration = 0 for epoch in range(self.epochs): instances = 0 print("Starting epoch %d"%epoch) while True: X,y = self.data_gen.yield_data() try: self.model.fit(X, y, epochs=1, batch_size=self.batch_size, shuffle=True) instances += self.data_gen.files_per_batch * 550 if iteration % self.save_per_iteration == 0: print('SAVING MODEL!') np.save(self.save_model_name, self.model.get_weights()) plt.plot(self.model.predict(X)) plt.savefig("temp_imgs/predictions %d"%0) plt.close() print(y[0].shape) plt.plot(y[0][:,0]) plt.plot(y[0][:,1]) plt.savefig("temp_imgs/labels %d"%0) plt.close() iteration += 1 except Exception as e: print(str(e)) # epoch end if instances >= 550 * self.data_gen.total_files: break def load_model(self): if self.load_model_name: self.model.set_weights(np.load(self.load_model_name)) x = self.model def predict(self,X): return self.model.predict(X) def round(self,x): if x <-1: return -1 if x>1: return 1 else: return x def visualize_filters(self, images): self.load_model() visualizer = Model(inputs=self.model.input, outputs=self.model.get_layer('conv2d_2').output) visualizer.compile(optimizer='rmsprop', loss='mean_squared_error') i = 0 screen = [x[0] for x in images] speed = [x[2] for x in images] for image, speed in zip(screen, speed): if self.data_gen.view_resize: image = cv2.resize(image, (self.data_gen.view_resize)) speed= speed[:,:,None] filters = visualizer.predict([image[None,:,:,:], speed[None,:,:,:]]) f = np.random.randint(0,filters.shape[3]-4) plt.imshow(filters[0][:,:,f:f+3])#np.save('temp_imgs/filter_{}'.format(i), filters) plt.savefig('temp_imgs/filter_{}'.format(i)) plt.close() plt.imshow(image)#np.save('temp_imgs/filter_{}'.format(i), filters) plt.savefig('temp_imgs/filter_{}_image'.format(i)) plt.close() i += 1 def make_input(self, ax_predictions, speed_predictions, controller): ax_value = {0:'AxisLx', 1:'AxisLy', 2:'AxisRx', 3:'AxisRy', 4:'TriggerR', 5:'TriggerL'} for j,i in enumerate(self.data_gen.axis_indices): # make sure only forward or backward acceleration is applied if i==5: controller.set_value(ax_value[i], -1) ''' if self.round(ax_predictions[j]) > self.round(ax_predictions[j-1]): controller.set_value(ax_value[i], self.round(ax_predictions[j])) controller.set_value(ax_value[4], -1) ''' else: controller.set_value(ax_value[i], self.round(ax_predictions[j])) def live_driving(self): controller = pyxinput.vController() paused = False old_screens = [] while(True): if not paused: map_screen = grab_screen(region=self.map_region) map_screen = cv2.cvtColor(map_screen, cv2.COLOR_BGR2RGB) cam_screen = grab_screen(region=self.cam_region) cam_screen = cv2.cvtColor(cam_screen, cv2.COLOR_BGR2RGB) cam_screen = cv2.resize(cam_screen, (360,240)) if self.data_gen.view_resize: cam_screen = cv2.resize(cam_screen, self.data_gen.view_resize) speed_screen = grab_screen(region=self.speed_region) speed_screen = cv2.cvtColor(speed_screen, cv2.COLOR_BGR2RGB) speed_screen = cv2.cvtColor(speed_screen,cv2.COLOR_RGB2GRAY)[:,:,None] if self.data_gen.seq_len== 1: X = [x for name,x in zip(['map_view', 'cam_view', 'speed_view'],[map_screen[None,:,:,:], cam_screen[None,:,:,:], speed_screen[None,:,:,:]]) if self.inputs[name]] else: if old_screens == []: old_screens = [cam_screen for i in range(self.data_gen.seq_len)] old_screens.append(cam_screen) old_screens = old_screens[-self.data_gen.seq_len:] X = np.array(old_screens)[None,:,:,:,:] if self.data_gen.return_buttons: ax_predictions, button_predictions = self.predict(X) else: ax_predictions = self.predict(X) button_predictions = [] print(ax_predictions)#, X[0].shape, X[1].shape) self.make_input(ax_predictions[0], button_predictions, controller) self.clock.tick(self.frame_rate) keys = key_check() # p pauses game and can get annoying. if 'T' in keys: if paused: print("unpausing") paused = False time.sleep(1) else: print("pausing") paused = True time.sleep(1) if 'Q' in keys: break
33.385093
181
0.691907
246f8dfa7481c9939a9fac4ae74430c948d64a31
9,273
py
Python
yolox/data/data_augment.py
itec-hust/MusicYOLO
d980a0c0a3723a6c25772c2f7150a82baa1a4ec3
[ "Apache-2.0" ]
1
2022-01-29T15:47:50.000Z
2022-01-29T15:47:50.000Z
yolox/data/data_augment.py
xk-wang/MusicYOLO
d980a0c0a3723a6c25772c2f7150a82baa1a4ec3
[ "Apache-2.0" ]
null
null
null
yolox/data/data_augment.py
xk-wang/MusicYOLO
d980a0c0a3723a6c25772c2f7150a82baa1a4ec3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. """ Data augmentation functionality. Passed as callable transformations to Dataset classes. The data augmentation procedures were interpreted from @weiliu89's SSD paper http://arxiv.org/abs/1512.02325 """ import math import random import cv2 import numpy as np from yolox.utils import xyxy2cxcywh def augment_hsv(img, hgain=0.015, sgain=0.7, vgain=0.4): r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) dtype = img.dtype # uint8 x = np.arange(0, 256, dtype=np.int16) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) img_hsv = cv2.merge( (cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)) ).astype(dtype) cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2): # box1(4,n), box2(4,n) # Compute candidate boxes which include follwing 5 things: # box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio return ( (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) ) # candidates def random_perspective( img, targets=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0), ): # targets = [cls, xyxy] height = img.shape[0] + border[0] * 2 # shape(h,w,c) width = img.shape[1] + border[1] * 2 # Center C = np.eye(3) C[0, 2] = -img.shape[1] / 2 # x translation (pixels) C[1, 2] = -img.shape[0] / 2 # y translation (pixels) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(scale[0], scale[1]) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = ( random.uniform(0.5 - translate, 0.5 + translate) * width ) # x translation (pixels) T[1, 2] = ( random.uniform(0.5 - translate, 0.5 + translate) * height ) # y translation (pixels) # Combined rotation matrix M = T @ S @ R @ C # order of operations (right to left) is IMPORTANT ########################### # For Aug out of Mosaic # s = 1. # M = np.eye(3) ########################### if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed if perspective: img = cv2.warpPerspective( img, M, dsize=(width, height), borderValue=(114, 114, 114) ) else: # affine img = cv2.warpAffine( img, M[:2], dsize=(width, height), borderValue=(114, 114, 114) ) # Transform label coordinates n = len(targets) if n: # warp points xy = np.ones((n * 4, 3)) xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape( n * 4, 2 ) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform if perspective: xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale else: # affine xy = xy[:, :2].reshape(n, 8) # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip boxes xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width) xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height) # filter candidates i = box_candidates(box1=targets[:, :4].T * s, box2=xy.T) targets = targets[i] targets[:, :4] = xy[i] return img, targets def _distort(image): def _convert(image, alpha=1, beta=0): tmp = image.astype(float) * alpha + beta tmp[tmp < 0] = 0 tmp[tmp > 255] = 255 image[:] = tmp image = image.copy() if random.randrange(2): _convert(image, beta=random.uniform(-32, 32)) if random.randrange(2): _convert(image, alpha=random.uniform(0.5, 1.5)) image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) if random.randrange(2): tmp = image[:, :, 0].astype(int) + random.randint(-18, 18) tmp %= 180 image[:, :, 0] = tmp if random.randrange(2): _convert(image[:, :, 1], alpha=random.uniform(0.5, 1.5)) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) return image def _mirror(image, boxes): _, width, _ = image.shape if random.randrange(2): image = image[:, ::-1] boxes = boxes.copy() boxes[:, 0::2] = width - boxes[:, 2::-2] return image, boxes def preproc(image, input_size, mean, std, swap=(2, 0, 1)): if len(image.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0 else: padded_img = np.ones(input_size) * 114.0 img = np.array(image) r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.float32) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img[:, :, ::-1] padded_img /= 255.0 if mean is not None: padded_img -= mean if std is not None: padded_img /= std padded_img = padded_img.transpose(swap) padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) return padded_img, r class TrainTransform: def __init__(self, p=0.5, rgb_means=None, std=None, max_labels=50): self.means = rgb_means self.std = std self.p = p self.max_labels = max_labels def __call__(self, image, targets, input_dim): boxes = targets[:, :4].copy() labels = targets[:, 4].copy() if len(boxes) == 0: targets = np.zeros((self.max_labels, 5), dtype=np.float32) image, r_o = preproc(image, input_dim, self.means, self.std) image = np.ascontiguousarray(image, dtype=np.float32) return image, targets image_o = image.copy() targets_o = targets.copy() height_o, width_o, _ = image_o.shape boxes_o = targets_o[:, :4] labels_o = targets_o[:, 4] # bbox_o: [xyxy] to [c_x,c_y,w,h] boxes_o = xyxy2cxcywh(boxes_o) image_t = _distort(image) image_t, boxes = _mirror(image_t, boxes) height, width, _ = image_t.shape image_t, r_ = preproc(image_t, input_dim, self.means, self.std) # boxes [xyxy] 2 [cx,cy,w,h] boxes = xyxy2cxcywh(boxes) boxes *= r_ mask_b = np.minimum(boxes[:, 2], boxes[:, 3]) > 8 boxes_t = boxes[mask_b] labels_t = labels[mask_b] if len(boxes_t) == 0: image_t, r_o = preproc(image_o, input_dim, self.means, self.std) boxes_o *= r_o boxes_t = boxes_o labels_t = labels_o labels_t = np.expand_dims(labels_t, 1) targets_t = np.hstack((labels_t, boxes_t)) padded_labels = np.zeros((self.max_labels, 5)) padded_labels[range(len(targets_t))[: self.max_labels]] = targets_t[ : self.max_labels ] padded_labels = np.ascontiguousarray(padded_labels, dtype=np.float32) image_t = np.ascontiguousarray(image_t, dtype=np.float32) return image_t, padded_labels class ValTransform: """ Defines the transformations that should be applied to test PIL image for input into the network dimension -> tensorize -> color adj Arguments: resize (int): input dimension to SSD rgb_means ((int,int,int)): average RGB of the dataset (104,117,123) swap ((int,int,int)): final order of channels Returns: transform (transform) : callable transform to be applied to test/val data """ def __init__(self, rgb_means=None, std=None, swap=(2, 0, 1)): self.means = rgb_means self.swap = swap self.std = std # assume input is cv2 img for now def __call__(self, img, res, input_size): img, _ = preproc(img, input_size, self.means, self.std, self.swap) return img, np.zeros((1, 5))
32.197917
93
0.548151
f4e7c86823c20db58285c8cc2d866ab0a07990c4
26,789
py
Python
bikeshed/h/dom.py
kvark/bikeshed
d5538ca3371cf31be3b46f89b497e55d45859a0d
[ "CC0-1.0" ]
null
null
null
bikeshed/h/dom.py
kvark/bikeshed
d5538ca3371cf31be3b46f89b497e55d45859a0d
[ "CC0-1.0" ]
null
null
null
bikeshed/h/dom.py
kvark/bikeshed
d5538ca3371cf31be3b46f89b497e55d45859a0d
[ "CC0-1.0" ]
null
null
null
import collections import hashlib import re import html5lib from lxml import etree from lxml.cssselect import CSSSelector from lxml.html import tostring from ..DefaultOrderedDict import DefaultOrderedDict from ..messages import * def flatten(arr): for el in arr: if isinstance(el, collections.Iterable) and not isinstance(el, str) and not lxml.etree.iselement(el): yield from flatten(el) else: yield el def unescape(string): import html return html.unescape(string) def findAll(sel, context): if isinstance(context, constants.specClass): context = context.document try: return CSSSelector(sel, namespaces={"svg": "http://www.w3.org/2000/svg"})(context) except Exception as e: die("The selector '{0}' returned an error:\n{1}", sel, e) return [] def find(sel, context=None): result = findAll(sel, context) if result: return result[0] else: return None def escapeCSSIdent(val): if len(val) == 0: die("Programming error: can't escape an empty ident.") return "" ident = "" firstCode = val[0] for i, code in enumerate(ord(x) for x in val): if code == 0: die("Invalid character: the string '{0}' somehow has a NUL in it.", val) return "" if ( 0x1 <= code <= 0x1F or code == 0x7F or (i == 0 and 0x30 <= code <= 0x39) or (i == 1 and 0x30 <= code <= 0x39 and firstCode == 0x2D) ): ident += fr"\{code:x} " elif ( code >= 0x80 or code == 0x2D or code == 0x5F or 0x30 <= code <= 0x39 or 0x41 <= code <= 0x5A or 0x61 <= code <= 0x7A ): ident += chr(code) else: ident += r"\{}".format(chr(code)) return ident def escapeUrlFrag(val): result = "" for char in val: if validUrlUnit(char): result += char else: for b in char.encode("utf-8"): result += f"%{b:0>2x}" return result def validUrlUnit(char): c = ord(char) if c < 0xA0: # ASCII range if ( c == 0x21 or c == 0x24 or 0x26 <= c <= 0x29 or 0x2A <= c <= 0x3B or c == 0x3D or 0x3F <= c <= 0x5A or c == 0x5F or 0x61 <= c <= 0x7A or c == 0x7E ): return True return False else: if 0xD800 <= c <= 0xDFFF or 0xFDD0 <= c <= 0xFDEF: return False if (c % 0xFFFF) in [0xFFFE, 0xFFFF]: # Last two bytes are FFFE or FFFF return False return True def textContent(el, exact=False): # If exact is False, then any elements with data-deco attribute # get ignored in the textContent. # This allows me to ignore things added by Bikeshed by default. if len(el) == 0: return el.text or "" if exact: return tostring(el, method="text", with_tail=False, encoding="unicode") else: return textContentIgnoringDecorative(el) def textContentIgnoringDecorative(el): str = el.text or "" for child in childElements(el): if child.get("data-deco") is None: str += textContentIgnoringDecorative(child) str += child.tail or "" return str def innerHTML(el): if el is None: return "" return (el.text or "") + "".join(tostring(x, encoding="unicode") for x in el) def outerHTML(el, literal=False, with_tail=False): if el is None: return "" if isinstance(el, str): return el if isinstance(el, list): return "".join(outerHTML(x) for x in el) if el.get("bs-autolink-syntax") is not None and not literal: return el.get("bs-autolink-syntax") return tostring(el, with_tail=with_tail, encoding="unicode") def serializeTag(el): # Serialize *just* the opening tag for the element. # Use when you want to output the HTML, # but it might be a container with a lot of content. tag = "<" + el.tag for n, v in el.attrib.items(): tag += ' {n}="{v}"'.format(n=n, v=escapeAttr(v)) tag += ">" return tag def foldWhitespace(text): return re.sub(r"(\s|\xa0)+", " ", text) def parseHTML(text): doc = html5lib.parse(text, treebuilder="lxml", namespaceHTMLElements=False) head = doc.getroot()[0] body = doc.getroot()[1] if len(body) > 0 or body.text is not None: # Body contains something, so return that. contents = [body.text] if body.text is not None else [] contents.extend(body.iterchildren()) return contents elif len(head) > 0 or head.text is not None: # Okay, anything in the head? contents = [head.text] if head.text is not None else [] contents.extend(head.iterchildren()) return contents else: return [] def parseDocument(text): doc = html5lib.parse(text, treebuilder="lxml", namespaceHTMLElements=False) return doc def escapeHTML(text): # Escape HTML return text.replace("&", "&amp;").replace("<", "&lt;") def escapeAttr(text): return text.replace("&", "&amp;").replace("'", "&apos;").replace('"', "&quot;") def clearContents(el): del el[:] el.text = "" return el def parentElement(el): return el.getparent() def appendChild(parent, *children): # Appends either text or an element. children = list(flatten(children)) for child in children: if isinstance(child, str): if len(parent) > 0: parent[-1].tail = (parent[-1].tail or "") + child else: parent.text = (parent.text or "") + child else: if len(parent) == 0 and parent.text is not None: # LXML "helpfully" assumes you meant to insert it before the text, # and so moves the text into the element's tail when you append. text, parent.text = parent.text, None parent.append(child) parent.text = text else: # For some reason it doesn't make any weird assumptions about text # when the parent already has children; the last child's tail # doesn't get moved into the appended child or anything. parent.append(child) return children[-1] if len(children) > 0 else None def prependChild(parent, child): # Prepends either text or an element to the parent. if isinstance(child, str): if parent.text is None: parent.text = child else: parent.text = child + parent.text else: removeNode(child) parent.insert(0, child) if parent.text is not None: child.tail = (child.tail or "") + parent.text parent.text = None def insertBefore(target, *els): parent = target.getparent() index = parent.index(target) prevSibling = parent[index - 1] if index > 0 else None for el in els: if isinstance(el, str): if prevSibling is not None: prevSibling.tail = (prevSibling.tail or "") + el else: parent.text = (parent.text or "") + el else: parent.insert(index, el) index += 1 prevSibling = el return target def insertAfter(target, *els): parent = target.getparent() for el in els: if isinstance(el, str): target.tail = (target.tail or "") + el else: parent.insert(parent.index(target) + 1, el) target = el return target def removeNode(node): parent = node.getparent() if parent is None: return node index = parent.index(node) text = node.tail or "" node.tail = None if index == 0: parent.text = (parent.text or "") + text else: prevsibling = parent[index - 1] prevsibling.tail = (prevsibling.tail or "") + text parent.remove(node) return node def replaceNode(node, *replacements): insertBefore(node, *replacements) removeNode(node) if replacements: return replacements[0] def appendContents(el, container): # Accepts either an iterable *or* a container element if isElement(container): container = childNodes(container, clear=True) appendChild(el, *container) return el def replaceContents(el, newElements): clearContents(el) return appendContents(el, newElements) def moveContents(toEl, fromEl): replaceContents(toEl, fromEl) fromEl.text = "" def wrapContents(parentEl, wrapperEl): appendContents(wrapperEl, parentEl) appendChild(parentEl, wrapperEl) return parentEl def headingLevelOfElement(el): for heading in relevantHeadings(el, levels=[2, 3, 4, 5, 6]): if heading.get("data-level") is not None: return heading.get("data-level") return None def relevantHeadings(startEl, levels=None): if levels is None: levels = [1, 2, 3, 4, 5, 6] levels = ["h" + str(level) for level in levels] currentHeadingLevel = float("inf") for el in scopingElements(startEl, *levels): tagLevel = int(el.tag[1]) if tagLevel < currentHeadingLevel: yield el currentHeadingLevel = tagLevel if tagLevel == 2: return def sectionName(el): """ Return the name of the nearest section to el, or None if that section isn't meant to be referenced. """ h = nextIter(relevantHeadings(el)) if h is None: return "Unnamed section" if hasClass(h, "no-ref"): return None return textContent(h) def scopingElements(startEl, *tags): # Elements that could form a "scope" for the startEl # Ancestors, and preceding siblings of ancestors. # Maps to the things that can establish a counter scope. tagFilter = set(tags) for el in startEl.itersiblings(preceding=True, *tags): yield el for el in startEl.iterancestors(): if el.tag in tagFilter: yield el for el in el.itersiblings(preceding=True, *tags): yield el def previousElements(startEl, tag=None, *tags): # Elements preceding the startEl in document order. # Like .iter(), but in the opposite direction. els = [] for el in startEl.getroottree().getroot().iter(tag=tag, *tags): if el == startEl: return reversed(els) els.append(el) return els def childElements(parentEl, tag="*", *tags, **stuff): if len(parentEl) == 0: return iter(()) return parentEl.iterchildren(tag=tag, *tags, **stuff) def childNodes(parentEl, clear=False, skipOddNodes=True): """ This function returns all the nodes in a parent element in the DOM sense, mixing text nodes (strings) and other nodes together (rather than LXML's default stupid handling of text). If you set "clear" to True, it'll 1. remove all of parentEl's children, so you can append nodes back to it safely, and 2. Set parentEl.text and child elements' .tail to null, again so you can safely append text to parentEl. In other words, the following is a no-op: ``` appendChild(parentEl, *childNodes(parentEl, clear=True)) ``` Using clear=True is required if you're going to be modifying the element or its children, otherwise you'll get weird results (repeated/misplaced text). But if you're just reading nodes, it's not necessary. skipOddNodes ensures that the return value will only be text and Element nodes; if it's false, there might be comments, PIs, etc. """ if isinstance(parentEl, list): ret = [] for c in parentEl: if isinstance(c, str): ret.append(c) continue if skipOddNodes and isOddNode(c): pass else: ret.append(c) if not emptyText(c.tail, wsAllowed=False): ret.append(c.tail) if clear: c.tail = None if clear: parentEl[:] = [] return ret ret = [] if not emptyText(parentEl.text, wsAllowed=False): ret.append(parentEl.text) if clear: parentEl.text = None for c in childElements(parentEl, tag=None): if skipOddNodes and isOddNode(c): pass else: ret.append(c) if not emptyText(c.tail, wsAllowed=False): ret.append(c.tail) if clear: c.tail = None if clear: clearContents(parentEl) return ret def nodeIter(el, clear=False, skipOddNodes=True): # Iterates thru an element and all its descendants, # yielding up each child node it sees in depth-first order. # (In other words, same as el.iter(), # but returning nodes+strings rather than the stupid LXML model.) # Takes the same kwargs as childNodes if isinstance(el, str): yield el return if isinstance(el, etree.ElementTree): el = el.getroot() text = el.text tail = el.tail if clear: el.text = None el.tail = None yield el if text is not None: yield text for c in childElements(el, tag=None): if skipOddNodes and isOddNode(c): continue # yield from nodeIter(c, clear=clear, skipOddNodes=skipOddNodes) yield from nodeIter(c, clear=clear, skipOddNodes=skipOddNodes) if tail is not None: yield tail def treeAttr(el, attrName): # Find the nearest instance of the given attr in the tree # Useful for when you can put an attr on an ancestor and apply it to all contents. # Returns attrValue or None if nothing is found. import itertools as it for target in it.chain([el], el.iterancestors()): if target.get(attrName) is not None: return target.get(attrName) def closestAttr(el, *attrs): # Like treeAttr, but can provide multiple attr names, and returns the first one found. # Useful with combos like highlight/nohighlight # If multiple target attrs show up on same element, priority is calling order. # Returns a tuple of (attrName, attrValue) or (None, None) if nothing is found. import itertools as it for target in it.chain([el], el.iterancestors()): for attrName in attrs: if target.get(attrName) is not None: return attrName, target.get(attrName) return None, None def closestAncestor(el, pred): # Finds the nearest ancestor matching a predicate for target in el.iterancestors(): if pred(target): return target def filterAncestors(el, pred): # Returns all ancestors that match the predicate for target in el.iterancestors(): if pred(target): yield target def hasAncestor(el, pred): return closestAncestor(el, pred) is not None def removeAttr(el, *attrNames): # Remove an attribute, silently ignoring if attr doesn't exist. for attrName in attrNames: if attrName in el.attrib: del el.attrib[attrName] return el def hasAttr(el, *attrNames): # Returns True if the element has at least one of the named attributes for attrName in attrNames: if attrName in el.attrib: return True return False def hasAttrs(el): return bool(el.attrib) def addClass(el, cls): if el.get("class") is None: el.set("class", cls) elif hasClass(el, cls): pass else: el.set("class", "{} {}".format(el.get("class"), cls)) _classMap = {} def hasClass(el, cls, classMap=_classMap): elClass = el.get("class") if elClass is None: return False if cls not in elClass: return False key = cls, elClass if key in classMap: return classMap[key] ret = re.search(r"(^|\s)" + cls + r"($|\s)", elClass) classMap[key] = ret return ret def removeClass(el, cls): oldClass = el.get("class") if oldClass is None: return newClass = " ".join(c for c in oldClass.split() if c != cls) if newClass == "": del el.attrib["class"] else: el.set("class", newClass) def isElement(node): # LXML HAS THE DUMBEST XML TREE DATA MODEL IN THE WORLD return etree.iselement(node) and isinstance(node.tag, str) def isOddNode(node): # Something other than an element node or string. if isinstance(node, str): return False if isElement(node): return False return True def isNormative(el, doc): # Returns whether the element is "informative" or "normative" with a crude algo. # Currently just tests whether the element is in a class=example or class=note block, or not. if el in _normativeElCache: return _normativeElCache[el] informativeClasses = [ "note", "example", "non-normative", "informative", ] + doc.md.informativeClasses for cls in informativeClasses: if hasClass(el, cls): _normativeElCache[el] = False return False if hasClass(el, "normative"): _normativeElCache[el] = True return True parent = parentElement(el) if not isElement(parent): # Went past the root without finding any indicator, # so normative by default. _normativeElCache[el] = True return True # Otherwise, walk the tree norm = isNormative(parent, doc) _normativeElCache[el] = norm return norm _normativeElCache = {} def isEmpty(el): # Returns whether the element is empty - no text or children. return (el.text is None or el.text.strip() == "") and len(el) == 0 def hasChildElements(el): try: next(childElements(el)) return True except StopIteration: return False # If the element has one child element, returns it. # Otherwise, returns None def hasOnlyChild(el, wsAllowed=True): if not emptyText(el.text, wsAllowed): # Has significant child text return None children = childElements(el) single = next(children, None) if single is None: # No children return None if not emptyText(single.tail, wsAllowed): # Has significant child text following the child element return None if next(children, None) is not None: # At least two children return None return single def fixTypography(text): # Replace straight aposes with curly quotes for possessives and contractions. text = re.sub(r"([\w])'([\w])", r"\1’\2", text) text = re.sub(r"(</[\w]+>)'([\w])", r"\1’\2", text) # Fix line-ending em dashes, or --, by moving the previous line up, so no space. text = re.sub(r"([^<][^!])(—|--)\r?\n\s*(\S)", r"\1—<wbr>\3", text) return text def fixSurroundingTypography(el): # Applies some of the fixTypography changes to the content surrounding an element. # Used when a shorthand prevented fixTypography from firing previously. if el.tail is not None and el.tail.startswith("'"): el.tail = "’" + el.tail[1:] return el def unfixTypography(text): # Replace curly quotes with straight quotes, and emdashes with double dashes. text = re.sub(r"’", r"'", text) # Fix line-ending em dashes, or --, by moving the previous line up, so no space. text = re.sub(r"—<wbr>", r"--", text) return text def emptyText(text, wsAllowed=True): # Because LXML represents a complete lack of text as None, # you can't do something like `el.text.strip() == ""` to test for emptiness. # wsAllowed controls whether whitespace-only strings count as empty or not if text is None: return True if not wsAllowed: return text == "" return text.strip() == "" def hashContents(el): # Hash the contents of an element into an 8-character alphanum string. # Generally used for generating probably-unique IDs. # Normalize whitespace away to avoid git-related newline normalization issues. text = re.sub(r"\s+", " ", textContent(el).strip()).encode("ascii", "xmlcharrefreplace") return hashlib.md5(text).hexdigest()[0:8] def replaceMacros(text, macros): # `macros` is a dict of {lowercaseMacroName => replacementText} # Macro syntax is [FOO], where FOO is /[A-Z0-9-]+/ # If written as [FOO?], failure to find a matching macro just replaced it with nothing; # otherwise, it throws a fatal error. def macroReplacer(match): fullText = match.group(0) innerText = match.group(2).lower() or "" optional = match.group(3) == "?" if fullText.startswith("\\"): # Escaped return fullText[1:] if fullText.startswith("[["): # Actually a biblio link return fullText if re.match(r"[\d-]+$", innerText): # No refs are all-digits (this is probably JS code, or a regex/grammar). return fullText if innerText in macros: # For some reason I store all the macros in lowercase, # despite requiring them to be spelled with uppercase. return str(macros[innerText]) # Nothing has matched, so start failing the macros. if optional: return "" die( "Found unmatched text macro {0}. Correct the macro, or escape it with a leading backslash.", fullText, ) return fullText return re.sub(r"(\\|\[)?\[([A-Z0-9-]+)(\??)\]", macroReplacer, text) def replaceAwkwardCSSShorthands(text): # Replace the <<production>> shortcuts, because they won't survive the HTML parser. def replaceProduction(match): syntaxAttr = escapeAttr(match.group(0)) escape, text = match.groups() if escape: return escapeHTML(match.group(0)[1:]) return f"<fake-production-placeholder class=production bs-autolink-syntax='{syntaxAttr}' data-opaque>{text}</fake-production-placeholder>" text = re.sub(r"(\\)?<<([^>\n]+)>>", replaceProduction, text) # Replace the ''maybe link'' shortcuts. # They'll survive the HTML parser, # but the current shorthand-recognizer code won't find them if they contain an element. # (The other shortcuts are "atomic" and can't contain elements.) def replaceMaybe(match): syntaxAttr = escapeAttr(match.group(0)) escape, text = match.groups() if escape: return escapeHTML(match.group(0)[1:]) return f"<fake-maybe-placeholder bs-autolink-syntax='{syntaxAttr}'>{text}</fake-maybe-placeholder>" text = re.sub(r"(\\)?''([^=\n]+?)''", replaceMaybe, text) return text def fixupIDs(doc, els): addOldIDs(els) dedupIDs(doc) def safeID(transOrDoc, id): if isinstance(transOrDoc, dict): trans = transOrDoc else: trans = transOrDoc.md.translateIDs if id in trans: return trans[id] return id def addOldIDs(els): for el in els: if not el.get("oldids"): continue oldIDs = [id.strip() for id in el.get("oldids").strip().split(",")] for oldID in oldIDs: appendChild(el, E.span({"id": oldID})) removeAttr(el, "oldids") def dedupIDs(doc): import itertools as iter ids = DefaultOrderedDict(list) for el in findAll("[id]", doc): ids[el.get("id")].append(el) for dupeId, els in list(ids.items()): if len(els) < 2: # Only one instance, so nothing to do. continue warnAboutDupes = True if re.match(r"issue-[0-9a-fA-F]{8}$", dupeId): # Don't warn about issues, it's okay if they have the same ID because they're identical text. warnAboutDupes = False ints = iter.count(1) for el in els[1:]: # If I registered an alternate ID, try to use that. if el.get("data-alternate-id"): altId = el.get("data-alternate-id") if altId not in ids: el.set("id", safeID(doc, el.get("data-alternate-id"))) ids[altId].append(el) continue if el.get("data-silently-dedup") is not None: warnAboutDupes = False if dupeId.startswith("ref-for-"): warnAboutDupes = False # Try to de-dup the id by appending an integer after it. if warnAboutDupes: warn( "Multiple elements have the same ID '{0}'.\nDeduping, but this ID may not be stable across revisions.", dupeId, el=el, ) for x in ints: altId = "{}{}".format(dupeId, circledDigits(x)) if altId not in ids: el.set("id", safeID(doc, altId)) ids[altId].append(el) break def approximateLineNumber(el, setIntermediate=True): if el.get("line-number"): return el.get("line-number") parent = parentElement(el) if not isElement(parent): if el.tag == "html": return None return None approx = approximateLineNumber(parent, setIntermediate=setIntermediate) if approx is None: return None if approx[0].isdigit(): approx = "~" + approx if setIntermediate: el.set("line-number", approx) return approx def circledDigits(num): """ Converts a base-10 number into a string using unicode circled digits. That is, 123 becomes "①②③" """ num = int(num) assert num >= 0 digits = ["⓪", "①", "②", "③", "④", "⑤", "⑥", "⑦", "⑧", "⑨"] result = "".join(digits[int(d)] for d in str(num)) return result def nextIter(it, default=None): """ Returns the next element of the iterator, returning the default value if it's empty, rather than throwing an error. """ try: return next(iter(it)) except StopIteration: return default def createElement(tag, attrs={}, *children): el = etree.Element(tag, {n: v for n, v in attrs.items() if v is not None}) for child in children: appendChild(el, child) return el class ElementCreationHelper: def __getattr__(self, name): def _creater(*children): if children and not (isinstance(children[0], str) or isElement(children[0])): attrs = children[0] children = children[1:] else: attrs = {} return createElement(name, attrs, *children) return _creater E = ElementCreationHelper()
29.965324
146
0.597932
53e8b4b239957272469aa25420cb0b1b814742f7
48,591
py
Python
openstack_dashboard/dashboards/project/instances/tables.py
sahil-awasthi/tcpro-wallaby
5375f2da1d7548210a465a817ec74df4acf6e821
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/dashboards/project/instances/tables.py
sahil-awasthi/tcpro-wallaby
5375f2da1d7548210a465a817ec74df4acf6e821
[ "Apache-2.0" ]
null
null
null
openstack_dashboard/dashboards/project/instances/tables.py
sahil-awasthi/tcpro-wallaby
5375f2da1d7548210a465a817ec74df4acf6e821
[ "Apache-2.0" ]
1
2022-03-31T15:13:27.000Z
2022-03-31T15:13:27.000Z
# Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.conf import settings from django.http import HttpResponse from django import shortcuts from django import template from django.template.defaultfilters import title from django import urls from django.utils.http import urlencode from django.utils.safestring import mark_safe from django.utils.text import format_lazy from django.utils.translation import npgettext_lazy from django.utils.translation import pgettext_lazy from django.utils.translation import ugettext_lazy as _ from django.utils.translation import ungettext_lazy import netaddr from horizon import exceptions from horizon import messages from horizon import tables from horizon.templatetags import sizeformat from horizon.utils import filters from openstack_dashboard import api from openstack_dashboard.dashboards.project.floating_ips import workflows from openstack_dashboard.dashboards.project.instances import tabs from openstack_dashboard.dashboards.project.instances \ import utils as instance_utils from openstack_dashboard.dashboards.project.instances.workflows \ import resize_instance from openstack_dashboard.dashboards.project.instances.workflows \ import update_instance from openstack_dashboard import policy from openstack_dashboard.views import get_url_with_pagination LOG = logging.getLogger(__name__) ACTIVE_STATES = ("ACTIVE",) VOLUME_ATTACH_READY_STATES = ("ACTIVE", "SHUTOFF") SNAPSHOT_READY_STATES = ("ACTIVE", "SHUTOFF", "PAUSED", "SUSPENDED") SHELVE_READY_STATES = ("ACTIVE", "SHUTOFF", "PAUSED", "SUSPENDED") POWER_STATES = { 0: "NO STATE", 1: "RUNNING", 2: "BLOCKED", 3: "PAUSED", 4: "SHUTDOWN", 5: "SHUTOFF", 6: "CRASHED", 7: "SUSPENDED", 8: "FAILED", 9: "BUILDING", } PAUSE = 0 UNPAUSE = 1 SUSPEND = 0 RESUME = 1 SHELVE = 0 UNSHELVE = 1 def is_deleting(instance): task_state = getattr(instance, "OS-EXT-STS:task_state", None) if not task_state: return False return task_state.lower() == "deleting" class DeleteInstance(policy.PolicyTargetMixin, tables.DeleteAction): policy_rules = (("compute", "os_compute_api:servers:delete"),) help_text = _("Deleted instances are not recoverable.") default_message_level = "info" @staticmethod def action_present(count): return ungettext_lazy( "Delete Instance", "Delete Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Scheduled deletion of Instance", "Scheduled deletion of Instances", count ) def allowed(self, request, instance=None): error_state = False if instance: error_state = (instance.status == 'ERROR') return error_state or not is_deleting(instance) def action(self, request, obj_id): api.nova.server_delete(request, obj_id) class RebootInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "reboot" classes = ('btn-reboot',) policy_rules = (("compute", "os_compute_api:servers:reboot"),) help_text = _("Restarted instances will lose any data" " not saved in persistent storage.") action_type = "danger" @staticmethod def action_present(count): return ungettext_lazy( "Hard Reboot Instance", "Hard Reboot Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Hard Rebooted Instance", "Hard Rebooted Instances", count ) def allowed(self, request, instance=None): if instance is None: return True return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) def action(self, request, obj_id): api.nova.server_reboot(request, obj_id, soft_reboot=False) class SoftRebootInstance(RebootInstance): name = "soft_reboot" @staticmethod def action_present(count): return ungettext_lazy( "Soft Reboot Instance", "Soft Reboot Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Soft Rebooted Instance", "Soft Rebooted Instances", count ) def action(self, request, obj_id): api.nova.server_reboot(request, obj_id, soft_reboot=True) def allowed(self, request, instance=None): if instance is not None: return instance.status in ACTIVE_STATES return True class RescueInstance(policy.PolicyTargetMixin, tables.LinkAction): name = "rescue" verbose_name = _("Rescue Instance") policy_rules = (("compute", "os_compute_api:os-rescue"),) classes = ("btn-rescue", "ajax-modal") url = "horizon:project:instances:rescue" def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urls.reverse(self.url, args=[instance_id]) def allowed(self, request, instance): return instance.status in ACTIVE_STATES class UnRescueInstance(tables.BatchAction): name = 'unrescue' classes = ("btn-unrescue",) @staticmethod def action_present(count): return ungettext_lazy( "Unrescue Instance", "Unrescue Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Unrescued Instance", "Unrescued Instances", count ) def action(self, request, obj_id): api.nova.server_unrescue(request, obj_id) def allowed(self, request, instance=None): if instance: return instance.status == "RESCUE" return False class TogglePause(tables.BatchAction): name = "pause" icon = "pause" @staticmethod def action_present(count): return ( ungettext_lazy( "Pause Instance", "Pause Instances", count ), ungettext_lazy( "Resume Instance", "Resume Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( "Paused Instance", "Paused Instances", count ), ungettext_lazy( "Resumed Instance", "Resumed Instances", count ), ) def allowed(self, request, instance=None): if not instance: return False self.paused = instance.status == "PAUSED" if self.paused: self.current_present_action = UNPAUSE policy_rules = ( ("compute", "os_compute_api:os-pause-server:unpause"),) else: self.current_present_action = PAUSE policy_rules = ( ("compute", "os_compute_api:os-pause-server:pause"),) has_permission = policy.check( policy_rules, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in ACTIVE_STATES or self.paused) and not is_deleting(instance)) def action(self, request, obj_id): if self.paused: api.nova.server_unpause(request, obj_id) self.current_past_action = UNPAUSE else: api.nova.server_pause(request, obj_id) self.current_past_action = PAUSE class ToggleSuspend(tables.BatchAction): name = "suspend" classes = ("btn-suspend",) @staticmethod def action_present(count): return ( ungettext_lazy( "Suspend Instance", "Suspend Instances", count ), ungettext_lazy( "Resume Instance", "Resume Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( "Suspended Instance", "Suspended Instances", count ), ungettext_lazy( "Resumed Instance", "Resumed Instances", count ), ) def allowed(self, request, instance=None): if not instance: return False self.suspended = instance.status == "SUSPENDED" if self.suspended: self.current_present_action = RESUME policy_rules = ( ("compute", "os_compute_api:os-suspend-server:resume"),) else: self.current_present_action = SUSPEND policy_rules = ( ("compute", "os_compute_api:os-suspend-server:suspend"),) has_permission = policy.check( policy_rules, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in ACTIVE_STATES or self.suspended) and not is_deleting(instance)) def action(self, request, obj_id): if self.suspended: api.nova.server_resume(request, obj_id) self.current_past_action = RESUME else: api.nova.server_suspend(request, obj_id) self.current_past_action = SUSPEND class ToggleShelve(tables.BatchAction): name = "shelve" icon = "shelve" @staticmethod def action_present(count): return ( ungettext_lazy( "Shelve Instance", "Shelve Instances", count ), ungettext_lazy( "Unshelve Instance", "Unshelve Instances", count ), ) @staticmethod def action_past(count): return ( ungettext_lazy( "Shelved Instance", "Shelved Instances", count ), ungettext_lazy( "Unshelved Instance", "Unshelved Instances", count ), ) def allowed(self, request, instance=None): if not instance: return False if not request.user.is_superuser and getattr( instance, 'locked', False): return False self.shelved = instance.status == "SHELVED_OFFLOADED" if self.shelved: self.current_present_action = UNSHELVE policy_rules = (("compute", "os_compute_api:os-shelve:unshelve"),) else: self.current_present_action = SHELVE policy_rules = (("compute", "os_compute_api:os-shelve:shelve"),) has_permission = policy.check( policy_rules, request, target={'project_id': getattr(instance, 'tenant_id', None)}) return (has_permission and (instance.status in SHELVE_READY_STATES or self.shelved) and not is_deleting(instance)) def action(self, request, obj_id): if self.shelved: api.nova.server_unshelve(request, obj_id) self.current_past_action = UNSHELVE else: api.nova.server_shelve(request, obj_id) self.current_past_action = SHELVE class LaunchLink(tables.LinkAction): name = "launch" verbose_name = _("Launch Instance") url = "horizon:project:instances:launch" classes = ("ajax-modal", "btn-launch") icon = "cloud-upload" policy_rules = (("compute", "os_compute_api:servers:create"),) ajax = True def __init__(self, attrs=None, **kwargs): kwargs['preempt'] = True super().__init__(attrs, **kwargs) def allowed(self, request, datum): try: limits = api.nova.tenant_absolute_limits(request, reserved=True) instances_available = limits['maxTotalInstances'] \ - limits['totalInstancesUsed'] cores_available = limits['maxTotalCores'] \ - limits['totalCoresUsed'] ram_available = limits['maxTotalRAMSize'] - limits['totalRAMUsed'] if instances_available <= 0 or cores_available <= 0 \ or ram_available <= 0: if "disabled" not in self.classes: self.classes = list(self.classes) + ['disabled'] self.verbose_name = format_lazy( '{verbose_name} {quota_exceeded}', verbose_name=self.verbose_name, quota_exceeded=_("(Quota exceeded)")) else: self.verbose_name = _("Launch Instance") classes = [c for c in self.classes if c != "disabled"] self.classes = classes except Exception: LOG.exception("Failed to retrieve quota information") # If we can't get the quota information, leave it to the # API to check when launching return True # The action should always be displayed def single(self, table, request, object_id=None): self.allowed(request, None) return HttpResponse(self.render(is_table_action=True)) class LaunchLinkNG(LaunchLink): name = "launch-ng" url = "horizon:project:instances:index" ajax = False classes = ("btn-launch", ) def get_default_attrs(self): url = urls.reverse(self.url) ngclick = "modal.openLaunchInstanceWizard(" \ "{ successUrl: '%s' })" % url self.attrs.update({ 'ng-controller': 'LaunchInstanceModalController as modal', 'ng-click': ngclick }) return super().get_default_attrs() def get_link_url(self, datum=None): return "javascript:void(0);" class EditInstance(policy.PolicyTargetMixin, tables.LinkAction): name = "edit" verbose_name = _("Edit Instance") url = "horizon:project:instances:update" classes = ("ajax-modal",) icon = "pencil" policy_rules = (("compute", "os_compute_api:servers:update"),) def get_link_url(self, project): return self._get_link_url(project, 'instance_info') def _get_link_url(self, project, step_slug): base_url = urls.reverse(self.url, args=[project.id]) next_url = self.table.get_full_url() params = {"step": step_slug, update_instance.UpdateInstance.redirect_param_name: next_url} param = urlencode(params) return "?".join([base_url, param]) def allowed(self, request, instance): return not is_deleting(instance) class EditInstanceSecurityGroups(EditInstance): name = "edit_secgroups" verbose_name = _("Edit Security Groups") def get_link_url(self, project): return self._get_link_url(project, 'update_security_groups') def allowed(self, request, instance=None): if not api.base.is_service_enabled(request, 'network'): return False return (instance.status in ACTIVE_STATES and not is_deleting(instance) and request.user.tenant_id == instance.tenant_id) class EditPortSecurityGroups(tables.LinkAction): name = "edit_port_secgroups" verbose_name = _("Edit Port Security Groups") policy_rules = (("network", "update_security_group"),) url = "horizon:project:instances:detail" icon = "pencil" def get_link_url(self, instance): base_url = urls.reverse(self.url, args=[instance.id]) return '%s?tab=%s__%s' % (base_url, 'instance_details', 'interfaces') class CreateSnapshot(policy.PolicyTargetMixin, tables.LinkAction): name = "snapshot" verbose_name = _("Create Snapshot") url = "horizon:project:images:snapshots:create" classes = ("ajax-modal",) icon = "camera" policy_rules = (("compute", "os_compute_api:snapshot"),) def allowed(self, request, instance=None): return instance.status in SNAPSHOT_READY_STATES \ and not is_deleting(instance) class ConsoleLink(policy.PolicyTargetMixin, tables.LinkAction): name = "console" verbose_name = _("Console") url = "horizon:project:instances:detail" classes = ("btn-console",) policy_rules = (("compute", "os_compute_api:os-consoles:index"),) def allowed(self, request, instance=None): # We check if ConsoleLink is allowed only if settings.CONSOLE_TYPE is # not set at all, or if it's set to any value other than None or False. return (bool(settings.CONSOLE_TYPE) and instance.status in ACTIVE_STATES and not is_deleting(instance)) def get_link_url(self, datum): base_url = super().get_link_url(datum) tab_query_string = tabs.ConsoleTab( tabs.InstanceDetailTabs).get_query_string() return "?".join([base_url, tab_query_string]) class LogLink(policy.PolicyTargetMixin, tables.LinkAction): name = "log" verbose_name = _("View Log") url = "horizon:project:instances:detail" classes = ("btn-log",) policy_rules = (("compute", "os_compute_api:os-console-output"),) def allowed(self, request, instance=None): return instance.status in ACTIVE_STATES and not is_deleting(instance) def get_link_url(self, datum): base_url = super().get_link_url(datum) tab_query_string = tabs.LogTab( tabs.InstanceDetailTabs).get_query_string() return "?".join([base_url, tab_query_string]) class ResizeLink(policy.PolicyTargetMixin, tables.LinkAction): name = "resize" verbose_name = _("Resize Instance") url = "horizon:project:instances:resize" classes = ("ajax-modal", "btn-resize") policy_rules = (("compute", "os_compute_api:servers:resize"),) action_type = "danger" def get_link_url(self, project): return self._get_link_url(project, 'flavor_choice') def _get_link_url(self, project, step_slug): base_url = urls.reverse(self.url, args=[project.id]) next_url = self.table.get_full_url() params = {"step": step_slug, resize_instance.ResizeInstance.redirect_param_name: next_url} param = urlencode(params) return "?".join([base_url, param]) def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) class ConfirmResize(policy.PolicyTargetMixin, tables.Action): name = "confirm" verbose_name = _("Confirm Resize/Migrate") classes = ("btn-confirm", "btn-action-required") policy_rules = (("compute", "os_compute_api:servers:confirm_resize"),) def allowed(self, request, instance): return instance.status == 'VERIFY_RESIZE' def single(self, table, request, obj_id): instance = table.get_object_by_id(obj_id) try: api.nova.server_confirm_resize(request, instance.id) except Exception: exceptions.handle(request, _('Unable to confirm resize instance "%s".') % (instance.name or instance.id)) return shortcuts.redirect(request.get_full_path()) class RevertResize(policy.PolicyTargetMixin, tables.Action): name = "revert" verbose_name = _("Revert Resize/Migrate") classes = ("btn-revert", "btn-action-required") policy_rules = (("compute", "os_compute_api:servers:revert_resize"),) def allowed(self, request, instance): return instance.status == 'VERIFY_RESIZE' def single(self, table, request, obj_id): instance = table.get_object_by_id(obj_id) try: api.nova.server_revert_resize(request, instance.id) except Exception: exceptions.handle(request, _('Unable to revert resize instance "%s".') % (instance.name or instance.id)) class RebuildInstance(policy.PolicyTargetMixin, tables.LinkAction): name = "rebuild" verbose_name = _("Rebuild Instance") classes = ("btn-rebuild", "ajax-modal") url = "horizon:project:instances:rebuild" policy_rules = (("compute", "os_compute_api:servers:rebuild"),) action_type = "danger" def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance)) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urls.reverse(self.url, args=[instance_id]) class DecryptInstancePassword(tables.LinkAction): name = "decryptpassword" verbose_name = _("Retrieve Password") classes = ("btn-decrypt", "ajax-modal") url = "horizon:project:instances:decryptpassword" def allowed(self, request, instance): return (settings.OPENSTACK_ENABLE_PASSWORD_RETRIEVE and (instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance) and get_keyname(instance) is not None) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) keypair_name = get_keyname(datum) return urls.reverse(self.url, args=[instance_id, keypair_name]) class AssociateIP(policy.PolicyTargetMixin, tables.LinkAction): name = "associate" verbose_name = _("Associate Floating IP") url = "horizon:project:floating_ips:associate" classes = ("ajax-modal",) icon = "link" policy_rules = (("network", "update_floatingip"),) def allowed(self, request, instance): if not api.base.is_service_enabled(request, 'network'): return False if not api.neutron.floating_ip_supported(request): return False if api.neutron.floating_ip_simple_associate_supported(request): return False if instance.status == "ERROR": return False for addresses in instance.addresses.values(): for address in addresses: if address.get('OS-EXT-IPS:type') == "floating": return False return not is_deleting(instance) def get_link_url(self, datum): base_url = urls.reverse(self.url) next_url = self.table.get_full_url() params = { "instance_id": self.table.get_object_id(datum), workflows.IPAssociationWorkflow.redirect_param_name: next_url} params = urlencode(params) return "?".join([base_url, params]) class DisassociateIP(tables.LinkAction): name = "disassociate" verbose_name = _("Disassociate Floating IP") url = "horizon:project:instances:disassociate" classes = ("btn-disassociate", 'ajax-modal') policy_rules = (("network", "update_floatingip"),) action_type = "danger" def allowed(self, request, instance): if not api.base.is_service_enabled(request, 'network'): return False if not api.neutron.floating_ip_supported(request): return False for addresses in instance.addresses.values(): for address in addresses: if address.get('OS-EXT-IPS:type') == "floating": return not is_deleting(instance) return False class UpdateMetadata(policy.PolicyTargetMixin, tables.LinkAction): name = "update_metadata" verbose_name = _("Update Metadata") ajax = False icon = "pencil" attrs = {"ng-controller": "MetadataModalHelperController as modal"} policy_rules = (("compute", "os_compute_api:server-metadata:update"),) def __init__(self, attrs=None, **kwargs): kwargs['preempt'] = True super().__init__(attrs, **kwargs) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) self.attrs['ng-click'] = ( "modal.openMetadataModal('instance', '%s', true, 'metadata')" % instance_id) return "javascript:void(0);" def allowed(self, request, instance=None): return (instance and instance.status.lower() != 'error') def instance_fault_to_friendly_message(instance): fault = getattr(instance, 'fault', {}) message = fault.get('message', _("Unknown")) default_message = _("Please try again later [Error: %s].") % message fault_map = { 'NoValidHost': _("There is not enough capacity for this " "flavor in the selected availability zone. " "Try again later or select a different availability " "zone.") } return fault_map.get(message, default_message) def get_instance_error(instance): if instance.status.lower() != 'error': return None message = instance_fault_to_friendly_message(instance) preamble = _('Failed to perform requested operation on instance "%s", the ' 'instance has an error status') % instance.name or instance.id message = format_lazy('{preamble}: {message}', preamble=preamble, message=message) return message class UpdateRow(tables.Row): ajax = True def get_data(self, request, instance_id): instance = api.nova.server_get(request, instance_id) try: instance.full_flavor = instance_utils.resolve_flavor(request, instance) except Exception: exceptions.handle(request, _('Unable to retrieve flavor information ' 'for instance "%s".') % instance_id, ignore=True) try: api.network.servers_update_addresses(request, [instance]) except Exception: exceptions.handle(request, _('Unable to retrieve Network information ' 'for instance "%s".') % instance_id, ignore=True) error = get_instance_error(instance) if error: messages.error(request, error) return instance class StartInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "start" classes = ('btn-confirm',) policy_rules = (("compute", "os_compute_api:servers:start"),) @staticmethod def action_present(count): return ungettext_lazy( "Start Instance", "Start Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Started Instance", "Started Instances", count ) def allowed(self, request, instance): return ((instance is None) or (instance.status in ("SHUTDOWN", "SHUTOFF", "CRASHED"))) def action(self, request, obj_id): api.nova.server_start(request, obj_id) class StopInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "stop" policy_rules = (("compute", "os_compute_api:servers:stop"),) help_text = _("The instance(s) will be shut off.") action_type = "danger" @staticmethod def action_present(count): return npgettext_lazy( "Action to perform (the instance is currently running)", "Shut Off Instance", "Shut Off Instances", count ) @staticmethod def action_past(count): return npgettext_lazy( "Past action (the instance is currently already Shut Off)", "Shut Off Instance", "Shut Off Instances", count ) def allowed(self, request, instance): return (instance is None or (get_power_state(instance) in ("RUNNING", "SUSPENDED") and not is_deleting(instance))) def action(self, request, obj_id): api.nova.server_stop(request, obj_id) class LockInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "lock" policy_rules = (("compute", "os_compute_api:os-lock-server:lock"),) @staticmethod def action_present(count): return ungettext_lazy( "Lock Instance", "Lock Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Locked Instance", "Locked Instances", count ) # to only allow unlocked instances to be locked def allowed(self, request, instance): if getattr(instance, 'locked', False): return False if not api.nova.is_feature_available(request, "locked_attribute"): return False return True def action(self, request, obj_id): api.nova.server_lock(request, obj_id) class UnlockInstance(policy.PolicyTargetMixin, tables.BatchAction): name = "unlock" policy_rules = (("compute", "os_compute_api:os-lock-server:unlock"),) @staticmethod def action_present(count): return ungettext_lazy( "Unlock Instance", "Unlock Instances", count ) @staticmethod def action_past(count): return ungettext_lazy( "Unlocked Instance", "Unlocked Instances", count ) # to only allow locked instances to be unlocked def allowed(self, request, instance): if not getattr(instance, 'locked', True): return False if not api.nova.is_feature_available(request, "locked_attribute"): return False return True def action(self, request, obj_id): api.nova.server_unlock(request, obj_id) class AttachVolume(tables.LinkAction): name = "attach_volume" verbose_name = _("Attach Volume") url = "horizon:project:instances:attach_volume" classes = ("ajax-modal",) policy_rules = ( ("compute", "os_compute_api:os-volumes-attachments:create"),) # This action should be disabled if the instance # is not active, or the instance is being deleted # or cinder is not enabled def allowed(self, request, instance=None): return (instance.status in ("ACTIVE") and not is_deleting(instance) and api.cinder.is_volume_service_enabled(request)) class DetachVolume(AttachVolume): name = "detach_volume" verbose_name = _("Detach Volume") url = "horizon:project:instances:detach_volume" policy_rules = ( ("compute", "os_compute_api:os-volumes-attachments:delete"),) # This action should be disabled if the instance # is not active, or the instance is being deleted # or cinder is not enabled def allowed(self, request, instance=None): return (instance.status in ("ACTIVE") and not is_deleting(instance) and api.cinder.is_volume_service_enabled(request)) class AttachInterface(policy.PolicyTargetMixin, tables.LinkAction): name = "attach_interface" verbose_name = _("Attach Interface") classes = ("btn-confirm", "ajax-modal") url = "horizon:project:instances:attach_interface" policy_rules = (("compute", "os_compute_api:os-attach-interfaces"),) def allowed(self, request, instance): return ((instance.status in ACTIVE_STATES or instance.status == 'SHUTOFF') and not is_deleting(instance) and api.base.is_service_enabled(request, 'network')) def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urls.reverse(self.url, args=[instance_id]) class DetachInterface(policy.PolicyTargetMixin, tables.LinkAction): name = "detach_interface" verbose_name = _("Detach Interface") classes = ("btn-confirm", "ajax-modal") url = "horizon:project:instances:detach_interface" policy_rules = (("compute", "os_compute_api:os-attach-interfaces:delete"),) def allowed(self, request, instance): if not api.base.is_service_enabled(request, 'network'): return False if is_deleting(instance): return False if (instance.status not in ACTIVE_STATES and instance.status != 'SHUTOFF'): return False for addresses in instance.addresses.values(): for address in addresses: if address.get('OS-EXT-IPS:type') == "fixed": return True return False def get_link_url(self, datum): instance_id = self.table.get_object_id(datum) return urls.reverse(self.url, args=[instance_id]) def get_ips(instance): template_name = 'project/instances/_instance_ips.html' ip_groups = {} for ip_group, addresses in instance.addresses.items(): ips = [addr['addr'] for addr in addresses] ips.sort(key=lambda ip: netaddr.IPAddress(ip).version) ip_groups[ip_group] = ips context = { "ip_groups": ip_groups, } return template.loader.render_to_string(template_name, context) def get_flavor(instance): if hasattr(instance, "full_flavor"): template_name = 'project/instances/_instance_flavor.html' size_ram = sizeformat.mb_float_format(instance.full_flavor.ram) if instance.full_flavor.disk > 0: size_disk = sizeformat.diskgbformat(instance.full_flavor.disk) else: size_disk = _("%s GB") % "0" context = { "name": instance.full_flavor.name, "id": instance.id, "size_disk": size_disk, "size_ram": size_ram, "vcpus": instance.full_flavor.vcpus, "flavor_id": getattr(instance.full_flavor, 'id', None) } return template.loader.render_to_string(template_name, context) return _("Not available") def get_keyname(instance): if hasattr(instance, "key_name"): keyname = instance.key_name return keyname return _("Not available") def get_power_state(instance): return POWER_STATES.get(getattr(instance, "OS-EXT-STS:power_state", 0), '') STATUS_DISPLAY_CHOICES = ( ("deleted", pgettext_lazy("Current status of an Instance", "Deleted")), ("active", pgettext_lazy("Current status of an Instance", "Active")), ("shutoff", pgettext_lazy("Current status of an Instance", "Shutoff")), ("suspended", pgettext_lazy("Current status of an Instance", "Suspended")), ("paused", pgettext_lazy("Current status of an Instance", "Paused")), ("error", pgettext_lazy("Current status of an Instance", "Error")), ("resize", pgettext_lazy("Current status of an Instance", "Resize/Migrate")), ("verify_resize", pgettext_lazy("Current status of an Instance", "Confirm or Revert Resize/Migrate")), ("revert_resize", pgettext_lazy( "Current status of an Instance", "Revert Resize/Migrate")), ("reboot", pgettext_lazy("Current status of an Instance", "Reboot")), ("hard_reboot", pgettext_lazy("Current status of an Instance", "Hard Reboot")), ("password", pgettext_lazy("Current status of an Instance", "Password")), ("rebuild", pgettext_lazy("Current status of an Instance", "Rebuild")), ("migrating", pgettext_lazy("Current status of an Instance", "Migrating")), ("build", pgettext_lazy("Current status of an Instance", "Build")), ("rescue", pgettext_lazy("Current status of an Instance", "Rescue")), ("soft-delete", pgettext_lazy("Current status of an Instance", "Soft Deleted")), ("shelved", pgettext_lazy("Current status of an Instance", "Shelved")), ("shelved_offloaded", pgettext_lazy("Current status of an Instance", "Shelved Offloaded")), # these vm states are used when generating CSV usage summary ("building", pgettext_lazy("Current status of an Instance", "Building")), ("stopped", pgettext_lazy("Current status of an Instance", "Stopped")), ("rescued", pgettext_lazy("Current status of an Instance", "Rescued")), ("resized", pgettext_lazy("Current status of an Instance", "Resized")), ) TASK_DISPLAY_NONE = pgettext_lazy("Task status of an Instance", "None") # Mapping of task states taken from Nova's nova/compute/task_states.py TASK_DISPLAY_CHOICES = ( ("scheduling", pgettext_lazy("Task status of an Instance", "Scheduling")), ("block_device_mapping", pgettext_lazy("Task status of an Instance", "Block Device Mapping")), ("networking", pgettext_lazy("Task status of an Instance", "Networking")), ("spawning", pgettext_lazy("Task status of an Instance", "Spawning")), ("image_snapshot", pgettext_lazy("Task status of an Instance", "Snapshotting")), ("image_snapshot_pending", pgettext_lazy("Task status of an Instance", "Image Snapshot Pending")), ("image_pending_upload", pgettext_lazy("Task status of an Instance", "Image Pending Upload")), ("image_uploading", pgettext_lazy("Task status of an Instance", "Image Uploading")), ("image_backup", pgettext_lazy("Task status of an Instance", "Image Backup")), ("updating_password", pgettext_lazy("Task status of an Instance", "Updating Password")), ("resize_prep", pgettext_lazy("Task status of an Instance", "Preparing Resize or Migrate")), ("resize_migrating", pgettext_lazy("Task status of an Instance", "Resizing or Migrating")), ("resize_migrated", pgettext_lazy("Task status of an Instance", "Resized or Migrated")), ("resize_finish", pgettext_lazy("Task status of an Instance", "Finishing Resize or Migrate")), ("resize_reverting", pgettext_lazy("Task status of an Instance", "Reverting Resize or Migrate")), ("resize_confirming", pgettext_lazy("Task status of an Instance", "Confirming Resize or Migrate")), ("rebooting", pgettext_lazy("Task status of an Instance", "Rebooting")), ("reboot_pending", pgettext_lazy("Task status of an Instance", "Reboot Pending")), ("reboot_started", pgettext_lazy("Task status of an Instance", "Reboot Started")), ("rebooting_hard", pgettext_lazy("Task status of an Instance", "Hard Rebooting")), ("reboot_pending_hard", pgettext_lazy("Task status of an Instance", "Hard Reboot Pending")), ("reboot_started_hard", pgettext_lazy("Task status of an Instance", "Hard Reboot Started")), ("pausing", pgettext_lazy("Task status of an Instance", "Pausing")), ("unpausing", pgettext_lazy("Task status of an Instance", "Resuming")), ("suspending", pgettext_lazy("Task status of an Instance", "Suspending")), ("resuming", pgettext_lazy("Task status of an Instance", "Resuming")), ("powering-off", pgettext_lazy("Task status of an Instance", "Powering Off")), ("powering-on", pgettext_lazy("Task status of an Instance", "Powering On")), ("rescuing", pgettext_lazy("Task status of an Instance", "Rescuing")), ("unrescuing", pgettext_lazy("Task status of an Instance", "Unrescuing")), ("rebuilding", pgettext_lazy("Task status of an Instance", "Rebuilding")), ("rebuild_block_device_mapping", pgettext_lazy( "Task status of an Instance", "Rebuild Block Device Mapping")), ("rebuild_spawning", pgettext_lazy("Task status of an Instance", "Rebuild Spawning")), ("migrating", pgettext_lazy("Task status of an Instance", "Migrating")), ("deleting", pgettext_lazy("Task status of an Instance", "Deleting")), ("soft-deleting", pgettext_lazy("Task status of an Instance", "Soft Deleting")), ("restoring", pgettext_lazy("Task status of an Instance", "Restoring")), ("shelving", pgettext_lazy("Task status of an Instance", "Shelving")), ("shelving_image_pending_upload", pgettext_lazy( "Task status of an Instance", "Shelving Image Pending Upload")), ("shelving_image_uploading", pgettext_lazy("Task status of an Instance", "Shelving Image Uploading")), ("shelving_offloading", pgettext_lazy("Task status of an Instance", "Shelving Offloading")), ("unshelving", pgettext_lazy("Task status of an Instance", "Unshelving")), ) POWER_DISPLAY_CHOICES = ( ("NO STATE", pgettext_lazy("Power state of an Instance", "No State")), ("RUNNING", pgettext_lazy("Power state of an Instance", "Running")), ("BLOCKED", pgettext_lazy("Power state of an Instance", "Blocked")), ("PAUSED", pgettext_lazy("Power state of an Instance", "Paused")), ("SHUTDOWN", pgettext_lazy("Power state of an Instance", "Shut Down")), ("SHUTOFF", pgettext_lazy("Power state of an Instance", "Shut Off")), ("CRASHED", pgettext_lazy("Power state of an Instance", "Crashed")), ("SUSPENDED", pgettext_lazy("Power state of an Instance", "Suspended")), ("FAILED", pgettext_lazy("Power state of an Instance", "Failed")), ("BUILDING", pgettext_lazy("Power state of an Instance", "Building")), ) INSTANCE_FILTER_CHOICES = ( ('uuid', _("Instance ID ="), True), ('name', _("Instance Name ="), True), ('image', _("Image ID ="), True), ('image_name', _("Image Name ="), True), ('ip', _("IPv4 Address ="), True), ('ip6', _("IPv6 Address ="), True, None, api.neutron.is_enabled_by_config('enable_ipv6')), ('flavor', _("Flavor ID ="), True), ('flavor_name', _("Flavor Name ="), True), ('key_name', _("Key Pair Name ="), True), ('status', _("Status ="), True), ('availability_zone', _("Availability Zone ="), True), ('changes-since', _("Changes Since"), True, _("Filter by an ISO 8061 formatted time, e.g. 2016-06-14T06:27:59Z")), ('vcpus', _("vCPUs ="), True), ) class InstancesFilterAction(tables.FilterAction): filter_type = "server" filter_choices = INSTANCE_FILTER_CHOICES def render_locked(instance): if not hasattr(instance, 'locked'): return "" if instance.locked: icon_classes = "fa fa-fw fa-lock" help_tooltip = _("This instance is currently locked. To enable more " "actions on it, please unlock it by selecting Unlock " "Instance from the actions menu.") else: icon_classes = "fa fa-fw fa-unlock text-muted" help_tooltip = _("This instance is unlocked.") locked_status = ('<span data-toggle="tooltip" title="{}" class="{}">' '</span>').format(help_tooltip, icon_classes) return mark_safe(locked_status) def get_server_detail_link(obj, request): return get_url_with_pagination(request, InstancesTable._meta.pagination_param, InstancesTable._meta.prev_pagination_param, 'horizon:project:instances:detail', obj.id) class InstancesTable(tables.DataTable): TASK_STATUS_CHOICES = ( (None, True), ("none", True) ) STATUS_CHOICES = ( ("active", True), ("shutoff", True), ("suspended", True), ("paused", True), ("error", False), ("rescue", True), ("shelved", True), ("shelved_offloaded", True), ) name = tables.WrappingColumn("name", link=get_server_detail_link, verbose_name=_("Instance Name")) image_name = tables.WrappingColumn("image_name", verbose_name=_("Image Name")) ip = tables.Column(get_ips, verbose_name=_("IP Address"), attrs={'data-type': "ip"}) flavor = tables.Column(get_flavor, sortable=False, verbose_name=_("Flavor")) keypair = tables.Column(get_keyname, verbose_name=_("Key Pair")) status = tables.Column("status", filters=(title, filters.replace_underscores), verbose_name=_("Status"), status=True, status_choices=STATUS_CHOICES, display_choices=STATUS_DISPLAY_CHOICES) locked = tables.Column(render_locked, verbose_name="", sortable=False) az = tables.Column("availability_zone", verbose_name=_("Availability Zone")) task = tables.Column("OS-EXT-STS:task_state", verbose_name=_("Task"), empty_value=TASK_DISPLAY_NONE, status=True, status_choices=TASK_STATUS_CHOICES, display_choices=TASK_DISPLAY_CHOICES) state = tables.Column(get_power_state, filters=(title, filters.replace_underscores), verbose_name=_("Power State"), display_choices=POWER_DISPLAY_CHOICES) created = tables.Column("created", verbose_name=_("Age"), filters=(filters.parse_isotime, filters.timesince_sortable), attrs={'data-type': 'timesince'}) class Meta(object): name = "instances" verbose_name = _("Instances") status_columns = ["status", "task"] row_class = UpdateRow table_actions_menu = (StartInstance, StopInstance, SoftRebootInstance) launch_actions = () if settings.LAUNCH_INSTANCE_LEGACY_ENABLED: launch_actions = (LaunchLink,) + launch_actions if settings.LAUNCH_INSTANCE_NG_ENABLED: launch_actions = (LaunchLinkNG,) + launch_actions table_actions = launch_actions + (DeleteInstance, InstancesFilterAction) row_actions = (StartInstance, ConfirmResize, RevertResize, CreateSnapshot, AssociateIP, DisassociateIP, AttachInterface, DetachInterface, EditInstance, AttachVolume, DetachVolume, UpdateMetadata, DecryptInstancePassword, EditInstanceSecurityGroups, EditPortSecurityGroups, ConsoleLink, LogLink, RescueInstance, UnRescueInstance, TogglePause, ToggleSuspend, ToggleShelve, ResizeLink, LockInstance, UnlockInstance, SoftRebootInstance, RebootInstance, StopInstance, RebuildInstance, DeleteInstance)
36.811364
79
0.603383
69bcea51016c986c43081adc9aca49bdb2a59959
5,069
py
Python
software/python/multirobot/robot/old/pi-20161009/robot-client-4.py
lucas137/trackedrobot
e315d2811e1f13d92aac079048e5931755335054
[ "MIT" ]
null
null
null
software/python/multirobot/robot/old/pi-20161009/robot-client-4.py
lucas137/trackedrobot
e315d2811e1f13d92aac079048e5931755335054
[ "MIT" ]
null
null
null
software/python/multirobot/robot/old/pi-20161009/robot-client-4.py
lucas137/trackedrobot
e315d2811e1f13d92aac079048e5931755335054
[ "MIT" ]
null
null
null
#------------------------------------------------------------------------------ # robot-client-4.py #------------------------------------------------------------------------------ #!/usr/bin/python3 # robot client emulator from __future__ import print_function import time # time-related functions import socket # networking interface import sys # system-specific parameters # Motor command format "m1,m2" # Value of 0 is motor stopped # 10 is forward max speed # -10 is reverse max speed from pololu_drv8835_rpi import motors, MAX_SPEED #------------------------------------------------------------------------------ robot = 4 # ID number host = '192.168.2.100' # remote host port = 64000 # server port timeout = 1 # connection timeout in seconds # blocking mode: timeout = None if len(sys.argv) > 1: host = sys.argv[1] if len(sys.argv) > 2: port = sys.argv[2] print('remote host:', host, sep=' ') print('port number:', port, sep=' ') #------------------------------------------------------------------------------ class RobotClient: def __init__(self, robot): self.id = robot # robot ID number self.name = 'robot:'+str(robot) # robot name self.ack = 'ack:'+str(robot) # acknowledge message self.motors = motors # motor driver self.sock = None # socket print("robot", self.id, sep=' ') # print robot ID self.motors.setSpeeds(0,0) # make sure motors are stopped def connect(self, host, port): while self.sock == None: try: print("robot", self.id, "connect...", sep=' ') # create socket object and connect to server self.sock = socket.create_connection((host, port), timeout) # send robot ID to server self.send_str(self.name) print(self.name) print("robot", self.id, "connected") except: print("robot", self.id, "timeout", sep=' ') def disconnect(self): self.motors.setSpeeds(0,0) # stop motors if self.sock != None: self.sock.close() # close socket self.sock = None print("robot", self.id, "connection closed", sep=' ') def is_connected(self): return (self.sock != None) def send_str(self, string): self.sock.sendall(string.encode('utf-8')) #def receive_bytes(self): # try: # byte_array = self.sock.recv(1024) # receive message from server # #print("received", len(byte_array), "bytes", sep=' ') # #print("recv: ", byte_array) # debug # return byte_array # except: # print("socket.recv error") # return b'' def receive_str(self): try: byte_array = self.sock.recv(1024) # receive message from server return byte_array.decode('utf-8') except: print("robot", self.id, "socket.recv error", sep=' ') return '' def motor_command(self, string): try: motor_values = msg.split(',') except: print("robot", self.id, "string.split error", sep=' ') else: motor_1 = int((MAX_SPEED * int(motor_values[0]))/10) motor_2 = int((MAX_SPEED * int(motor_values[1]))/10) self.motors.setSpeeds(motor_1, motor_2) print("robot", self.id, "motors:", motor_1, ',', motor_2, sep=' ') #------------------------------------------------------------------------------ client = RobotClient(robot) # To break loop: Ctrl + Shift + \ # socket connection loop while True: client.connect(host, port) # connect to server # message loop while client.is_connected(): recv_str = client.receive_str() # receive message from server if not recv_str: # check if no bytes received client.disconnect() # stop motors and close connection break for msg in recv_str.split(): if msg == 'close': # server closed print("close") client.disconnect() # stop motors and close connection break elif msg == 'shutdown': client.disconnect() print("shutdown") sys.exit() elif msg == 'syn': # handshake synchronize message client.send_str(client.ack) # send acknowledge response print("syn -> ack") else: client.motor_command(msg) client.disconnect() # stop motors and close connection print("exit") #------------------------------------------------------------------------------
35.950355
80
0.473072
ae105ef56fc8a9365fc211032af1a611140dcaea
8,732
py
Python
evaluation/ms_ssim/msssim_score_txt_consistency.py
pedroryzewski/TCC
ba5167928d5a14dc0c6e144d0927c050090950a6
[ "MIT" ]
null
null
null
evaluation/ms_ssim/msssim_score_txt_consistency.py
pedroryzewski/TCC
ba5167928d5a14dc0c6e144d0927c050090950a6
[ "MIT" ]
null
null
null
evaluation/ms_ssim/msssim_score_txt_consistency.py
pedroryzewski/TCC
ba5167928d5a14dc0c6e144d0927c050090950a6
[ "MIT" ]
null
null
null
import sys import os import numpy as np import torch import torch.nn as nn import argparse from torch.utils.data import DataLoader import random import pickle from scipy import signal from scipy.ndimage.filters import convolve proj_root = '.' sys.path.insert(0, proj_root) data_root = 'data' model_root = 'models' from gan.data_loader import BirdsDataset from gan.networks import Generator from gan.networks import ImgEncoder from gan.proj_utils.local_utils import save_images from gan.proj_utils.torch_utils import to_torch, to_numpy, to_binary, roll from PIL import Image def _FSpecialGauss(size, sigma): """Function to mimic the 'fspecial' gaussian MATLAB function.""" radius = size // 2 offset = 0.0 start, stop = -radius, radius + 1 if size % 2 == 0: offset = 0.5 stop -= 1 x, y = np.mgrid[offset + start:stop, offset + start:stop] assert len(x) == size g = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2))) return g / g.sum() def SSIM(img1, img2, seg1, seg2, max_val=255, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03): """Return the Structural Similarity Map between `img1` and `img2`. This function attempts to match the functionality of ssim_index_new.m by Zhou Wang: http://www.cns.nyu.edu/~lcv/ssim/msssim.zip Arguments: img1: Numpy array holding the first RGB image batch. img2: Numpy array holding the second RGB image batch. max_val: the dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). filter_size: Size of blur kernel to use (will be reduced for small images). filter_sigma: Standard deviation for Gaussian blur kernel (will be reduced for small images). k1: Constant used to maintain stability in the SSIM calculation (0.01 in the original paper). k2: Constant used to maintain stability in the SSIM calculation (0.03 in the original paper). Returns: Pair containing the mean SSIM and contrast sensitivity between `img1` and `img2`. Raises: RuntimeError: If input images don't have the same shape or don't have four dimensions: [batch_size, height, width, depth]. """ if img1.shape != img2.shape: raise RuntimeError('Input images must have the same shape (%s vs. %s).', img1.shape, img2.shape) if img1.ndim != 4: raise RuntimeError('Input images must have four dimensions, not %d', img1.ndim) img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) _, height, width, _ = img1.shape # Filter size can't be larger than height or width of images. size = min(filter_size, height, width) # Scale down sigma if a smaller filter size is used. sigma = size * filter_sigma / filter_size if filter_size else 0 if filter_size: window = np.reshape(_FSpecialGauss(size, sigma), (1, size, size, 1)) s_window = np.ones_like(window) / (filter_size*filter_size) mu1 = signal.fftconvolve(img1, window, mode='valid') mu2 = signal.fftconvolve(img2, window, mode='valid') sigma11 = signal.fftconvolve(img1 * img1, window, mode='valid') sigma22 = signal.fftconvolve(img2 * img2, window, mode='valid') sigma12 = signal.fftconvolve(img1 * img2, window, mode='valid') seg1 = signal.convolve(seg1, s_window, mode='valid') seg2 = signal.convolve(seg2, s_window, mode='valid') else: # Empty blur kernel so no need to convolve. mu1, mu2 = img1, img2 sigma11 = img1 * img1 sigma22 = img2 * img2 sigma12 = img1 * img2 mu11 = mu1 * mu1 mu22 = mu2 * mu2 mu12 = mu1 * mu2 sigma11 -= mu11 sigma22 -= mu22 sigma12 -= mu12 # Calculate intermediate values used by both ssim and cs_map. c1 = (k1 * max_val) ** 2 c2 = (k2 * max_val) ** 2 bkg_seg1 = (seg1 <= 0.008) # aprox. threshold for 1 pixel bkg_seg2 = (seg2 <= 0.008) # aprox. threshold for 1 pixel mask = (bkg_seg1 & bkg_seg2) v1 = 2.0 * sigma12 + c2 v2 = sigma11 + sigma22 + c2 ssim = (((2.0 * mu12 + c1) * v1) / ((mu11 + mu22 + c1) * v2)) mask_ssim = (ssim * mask).sum()/(mask.sum() * 3) # 3 channels return mask_ssim if __name__ == '__main__': parser = argparse.ArgumentParser(description='Gans') parser.add_argument('--epoch', type=int, default=0, help='load from epoch') parser.add_argument('--model', type=str, default='', help='model name') parser.add_argument('--batch_size', type=int, default=10, help='batch_size') parser.add_argument('--align', type=str, choices=['shape', 'background', 'all', 'none'], help='Which concept to align during generation.') args = parser.parse_args() epoch = args.epoch model_name = args.model batch_size = args.batch_size align = args.align # set file name file = 'epoch_%d' % epoch sample_name = file png_file = file + '.png' txt_file = file + '.txt' z_file = file + '.pickle' # cfgs data_name = 'birds' emb_dim = 128 scode_dim = 1024 # segmentation enconded dim # folders datadir = os.path.join(data_root, data_name) model_name = '{}_{}'.format(model_name, data_name) model_folder = os.path.join(model_root, model_name) # NNs netG = Generator(tcode_dim=512, scode_dim=scode_dim, emb_dim=emb_dim, hid_dim=128) netEs = ImgEncoder(num_chan=1, out_dim=scode_dim) netEb = ImgEncoder(num_chan=3, out_dim=scode_dim) # Dataset dataset = BirdsDataset(datadir, mode='test') dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) # load models from checkpoint G_weightspath = os.path.join(model_folder, 'G_epoch{}.pth'.format(epoch)) D_weightspath = os.path.join(model_folder, 'D_epoch{}.pth'.format(epoch)) Es_weightspath = os.path.join(model_folder, 'Es_epoch{}.pth'.format(epoch)) Eb_weightspath = os.path.join(model_folder, 'Eb_epoch{}.pth'.format(epoch)) netG.load_state_dict(torch.load(G_weightspath)) netEs.load_state_dict(torch.load(Es_weightspath)) netEb.load_state_dict(torch.load(Eb_weightspath)) # set to GPU netG = netG.cuda() netEs = netEs.cuda() netEb = netEb.cuda() scores = [] with torch.no_grad(): for i in range(100): print('%d/100' % i) # get batch of test samples images, _, segs, txt_data, txt_len, captions, *_ = next(iter(dataloader)) images = images.cuda() segs = segs.cuda() txt_data = txt_data.cuda() bimages = images netG.eval() netEs.eval() netEb.eval() # alignment if align == 'shape': bimages = roll(images, 2, dim=0) # for text and seg mismatched backgrounds bsegs = roll(segs, 2, dim=0) # for text and seg mismatched backgrounds elif align == 'background': segs = roll(segs, 1, dim=0) # for text mismatched segmentations elif align == 'all': bimages = images.clone() bsegs = segs.clone() elif align == 'none': bimages = roll(images, 2, dim=0) # for text and seg mismatched backgrounds segs = roll(segs, 1, dim=0) # for text mismatched segmentations bsegs = roll(segs, 2, dim=0) # for text and seg mismatched backgrounds np_segs = to_numpy(segs) np_bsegs = to_numpy(bsegs) np_images = to_numpy(images) np_bimages = to_numpy(bimages) segs_code = netEs(segs) bkgs_code = netEb(bimages) *_, f_images, z_list = netG(txt_data, txt_len, segs_code, bkgs_code) np_fakes = to_numpy(f_images) for x, b, s, sb in zip(np_fakes, np_bimages, np_segs, np_bsegs): x = (x.transpose(1,2,0) + 1)/2. * 255. b = (b.transpose(1,2,0) + 1)/2. * 255. s = s.transpose(1,2,0) sb = sb.transpose(1,2,0) ssim = SSIM(x[np.newaxis,:,:,:], b[np.newaxis,:,:,:], s[np.newaxis,:,:,:], sb[np.newaxis,:,:,:]) # ssim = SSIM(x[np.newaxis,:,:,:], x[np.newaxis,:,:,:], s[np.newaxis,:,:,:], s[np.newaxis,:,:,:]) if not np.isnan(ssim): scores.append(ssim) print('SSSIM = %f +- %f'(np.array(scores).mean(),np.array(scores).std()))
35.640816
113
0.60284
7de6a4f1c99f4e8d92a14b1bc542ea68cf5ef2ec
6,530
py
Python
holland/evolution/evolution.py
lambdalife/holland
3ce9510aec92b409cae655c90721f5b1ca067637
[ "MIT" ]
1
2021-05-04T09:16:49.000Z
2021-05-04T09:16:49.000Z
holland/evolution/evolution.py
lambdalife/holland
3ce9510aec92b409cae655c90721f5b1ca067637
[ "MIT" ]
5
2018-10-13T02:09:36.000Z
2019-11-13T22:27:41.000Z
holland/evolution/evolution.py
lambdalife/holland
3ce9510aec92b409cae655c90721f5b1ca067637
[ "MIT" ]
null
null
null
import math import logging from .evaluation import Evaluator from .breeding import PopulationGenerator from ..storage import StorageManager class Evolver: """ Handles evolution for a population :param fitness_function: the fitness function used to evaluate individuals; see :ref:`fitness-function` :type fitness_function: function :param genome_params: a dictionary specifying genome parameters; see :ref:`genome-params` :type genome_params: dict :param selection_strategy: a dictionary specifying selection parameters; see :ref:`selection-strategy` :type selection_strategy: dict :param should_maximize_fitness: whether fitness should be maximized or minimized :type should_maximize_fitness: bool """ def __init__( self, fitness_function, genome_params, selection_strategy, should_maximize_fitness=True ): self.fitness_function = fitness_function self.genome_params = genome_params self.selection_strategy = selection_strategy self.should_maximize_fitness = should_maximize_fitness def evolve( self, generation_params={}, initial_population=None, stop_conditions={"n_generations": 100, "target_fitness": math.inf}, storage_options={}, logging_options={"level": logging.INFO, "format": "%(message)s"}, ): """ The heart of Holland. :param generation_params: a dictionary specifying how to create each generation; see :ref:`generation-params` :type generation_params: dict :param initial_population: an initial population :type initial_population: list :param stop_conditions: conditions for stopping execution; will stop if *any* of the conditions is met; see Stop Conditions below :type stop_conditions: dict :param storage_options: configuration options for storing fitness and genomes (should contain keys ``"fitness"`` and ``"genomes"``); see :ref:`fitness-storage-options` and :ref:`genome-storage-options` :type storage_options: dict :param logging_options: options for logging passed to `logging.basicConfig <https://docs.python.org/3/library/logging.html#logging.basicConfig>`_ as ``kwargs`` :type logging_options: dict :Stop Conditions: * **n_generations** (*int*) -- the number of generations to run evolution over * **target_fitness** (*int*) -- the target fitness score, will stop once the fittest individual reaches this score :returns: * a list of fitness scores and genomes ``[(fitness, genome), ...]`` (fitness results); or * a tuple of fitness results (previous bullet) and list of historical fitness statistics ``(fitness_results, fitness_history)``, if ``storage_options["fitness"]`` has ``'should_record_fitness': True`` and ``'format': 'memory'`` :raises ValueError: if ``generation_params["n_random"] < 0`` or ``generation_params["n_elite"] < 0`` :raises ValueError: if ``population_size < 1`` :raises ValueError: if ``n_generations < 1`` .. todo:: If an initial population is given but does not match the given genome parameters, some kind of error should be raised .. todo:: If an initial population is given and some genomes are missing parameters, a warning is given unless a flag is set to fill those values randomly Dependencies: * :func:`~holland.evolution.PopulationGenerator.generate_random_genomes` * :func:`~holland.evolution.Evaluator.evaluate_fitness` * :func:`~holland.evolution.PopulationGenerator.generate_next_generation` * :func:`~holland.storage.StorageManager.update_storage` * :func:`~holland.storage.StorageManager.react_to_interruption` Example: .. literalinclude:: examples/basic_example.py :linenos: :emphasize-lines: 16 """ n_random_per_generation = generation_params.get("n_random", 0) n_elite_per_generation = generation_params.get("n_elite", 0) population_size = generation_params.get("population_size", 1000) n_generations = stop_conditions.get("n_generations", math.inf) target_fitness = stop_conditions.get("target_fitness", math.inf) should_stop = ( lambda gen_num, max_fit: gen_num == n_generations - 1 or max_fit == target_fitness ) if n_random_per_generation < 0 or n_elite_per_generation < 0: raise ValueError("Number of random and elite genomes per generation cannot be negative") if population_size < 1: raise ValueError("Population size must be at least 1") if n_generations < 1: raise ValueError("Number of generations must be at least 1") logging.basicConfig(**logging_options) logger = logging.getLogger(__name__) evaluator = Evaluator(self.fitness_function, ascending=self.should_maximize_fitness) storage_manager = StorageManager( fitness_storage_options=storage_options.get("fitness", {}), genome_storage_options=storage_options.get("genomes", {}), ) population_generator = PopulationGenerator( self.genome_params, self.selection_strategy, generation_params=generation_params ) population = initial_population if population is None: population = population_generator.generate_random_genomes(population_size) generation_num = 0 while True: try: fitness_results = evaluator.evaluate_fitness(population) best_fitness = fitness_results[-1][0] logger.info(f"Generation: {generation_num}; Top Score: {best_fitness}") storage_manager.update_storage(generation_num, fitness_results) if should_stop(generation_num, best_fitness): break population = population_generator.generate_next_generation(fitness_results) generation_num += 1 except: storage_manager.react_to_interruption(generation_num, fitness_results) raise if ( storage_options.get("fitness", {}).get("should_record_fitness", False) and storage_options.get("fitness", {}).get("format") == "memory" ): return fitness_results, storage_manager.fitness_history return fitness_results
43.825503
240
0.675191
ebed74ca81d5277b7404f56c556064a95a943453
10,946
py
Python
main.py
Atrix256/InverseDFTProblems
1742ad3614d563ef67d0bac1be4b8728dba80f5f
[ "MIT" ]
7
2021-12-29T08:35:24.000Z
2021-12-31T16:07:28.000Z
main.py
Atrix256/InverseDFTProblems
1742ad3614d563ef67d0bac1be4b8728dba80f5f
[ "MIT" ]
null
null
null
main.py
Atrix256/InverseDFTProblems
1742ad3614d563ef67d0bac1be4b8728dba80f5f
[ "MIT" ]
null
null
null
import os import imageio import matplotlib.pyplot as plt import numpy as np import random import sys import cmath import math from PIL import Image, ImageFont, ImageDraw os.makedirs("out", exist_ok=True) sourceImgs = [ "bn8", "bn16", "bn32", "bn64", "bn128", "bn256", "bn10240", ] generatedSizes=[8, 16, 32, 64, 128, 256, 10240] # Generate noise via IDFT for generatedSize in generatedSizes: sourceImg = "idft" + str(generatedSize) print(sourceImg) # Make random complex numbers that are randomlist = np.empty([generatedSize],dtype=complex) for i in range(int(generatedSize/2)): angle = 0.0 if i > 0: angle = np.random.random(1)* math.pi * 2 randomlist[i] = cmath.rect(np.random.random(1), angle) for i in range(int(generatedSize/2)-1): randomlist[int(generatedSize/2)+1+i] = np.conj(randomlist[int(generatedSize/2)-1-i]) # make a 1d gaussian with a peak where 0hz DC is going to be l = generatedSize+1 sig = 1.9 * float(generatedSize) / 8.0 ax = np.linspace(-(l - 1) / 2., (l - 1) / 2., l) gauss = np.exp(-0.5 * np.square(ax) / np.square(sig)) gauss = gauss[:-1].copy() # DEBUG: show the gaussian curve if False: x = np.arange(gauss.shape[0]) plt.plot(x, gauss) plt.show() # make LPF and HPF LPF = randomlist * gauss HPF = randomlist - LPF # Make DC be 1/2 * pixelCount HPF = HPF * generatedSize LPF = LPF * generatedSize LPF[int(generatedSize/2)] = (generatedSize-1)/2 HPF[int(generatedSize/2)] = (generatedSize-1)/2 DFTs = [LPF, HPF] labels = ["LPF", "HPF"] for dft, label in zip(DFTs, labels): sourceImg = "idft" + str(generatedSize) + "_" + label print(label) # IDFT signal = np.fft.ifftn(np.fft.ifftshift(dft)) # DEBUG: make sure the imaginary part of the signal isn't significant if False: for signalSample in signal: if np.imag(signalSample) > 0.1: print("===============") print("randomlist = " + str(randomlist)) print("gauss = " + str(gauss)) print("dft = " + str(dft)) print("signal = " + str(signal)) sys.exit() dfty = np.abs(dft) # cosmetic modifications to the DFT dfty[int(dfty.shape[0] / 2)] = 0 # zero out DC dfty = np.append(dfty, dfty[0]) # duplicate the negative dft frequency to the positive # Graph the DFT plt.title(sourceImg + " DFT") plt.xlabel("Hertz") plt.ylabel("Magnitude") x = np.arange(dfty.shape[0]) x = x - int((dfty.shape[0]-1) / 2) plt.plot(x, dfty) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".dft.png", bbox_inches='tight') plt.close(fig) # Graph the raw values signal = np.real(signal) y = signal x = np.arange(y.shape[0]) plt.plot(x, y) ax = plt.gca() ax.set_xlim([0.0, y.shape[0]-1]) ax.set_ylim([0.0, 1.0]) plt.title(sourceImg + " IDFT Raw Values") plt.xlabel("Index") plt.ylabel("Value") fig = plt.gcf() fig.savefig("out/" + sourceImg + ".valuesraw.png", bbox_inches='tight') plt.close(fig) # Make Raw Histogram if False: plt.title(sourceImg + " Histogram") plt.xlabel("Value") plt.ylabel("Count") plt.hist(y, 256, facecolor='blue', alpha=0.5) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".histogramraw.png", bbox_inches='tight') plt.close(fig) # DEBUG: verify dft if False: # Make DFT dfty = np.abs(np.fft.fftshift(np.fft.fftn(signal))) dfty[int(dfty.shape[0] / 2)] = 0 # zero out DC dfty = np.append(dfty, dfty[0]) # Graph the DFT plt.title(sourceImg + " DFT") plt.xlabel("Hertz") plt.ylabel("Magnitude") x = np.arange(dfty.shape[0]) x = x - int((dfty.shape[0]-1) / 2) plt.plot(x, dfty) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".dft2raw.png", bbox_inches='tight') plt.close(fig) # Normalize the signal signalmin = np.amin(signal) signalmax = np.amax(signal) signal = (signal - signalmin) / (signalmax - signalmin) # Graph the values signal = np.real(signal) y = signal x = np.arange(y.shape[0]) plt.plot(x, y) ax = plt.gca() ax.set_xlim([0.0, y.shape[0]-1]) ax.set_ylim([0.0, 1.0]) plt.title(sourceImg + " IDFT Normalized Values") plt.xlabel("Index") plt.ylabel("Value") fig = plt.gcf() fig.savefig("out/" + sourceImg + ".values.png", bbox_inches='tight') plt.close(fig) # Make Histogram if True: plt.title(sourceImg + " Histogram") plt.xlabel("Value") plt.ylabel("Count") plt.hist(y, 256, facecolor='blue', alpha=0.5) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".histogram.png", bbox_inches='tight') plt.close(fig) # DEBUG: verify dft if False: # Make DFT dfty = np.abs(np.fft.fftshift(np.fft.fftn(signal))) dfty[int(dfty.shape[0] / 2)] = 0 # zero out DC dfty = np.append(dfty, dfty[0]) # Graph the DFT plt.title(sourceImg + " DFT") plt.xlabel("Hertz") plt.ylabel("Magnitude") x = np.arange(dfty.shape[0]) x = x - int((dfty.shape[0]-1) / 2) plt.plot(x, dfty) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".dft2.png", bbox_inches='tight') plt.close(fig) # tile the signal to be a 256x256 image generatedSize_ = min(generatedSize, 256) if True: #generatedSize <= 256: row = Image.new('L', (1, 256), (255)) signalImage = Image.fromarray(np.uint8(signal*255)) for i in range(int(256/generatedSize_)): row.paste(signalImage, (0, i * generatedSize_)) out = Image.new('L', (256, 256), (255)) for i in range(256): out.paste(row, (i, 0)) out.save("out/" + sourceImg + ".png") # Make the composite diagram im1 = Image.open("out/" + sourceImg + ".png") im2 = Image.open("out/" + sourceImg + ".valuesraw.png") im3 = Image.open("out/" + sourceImg + ".values.png") im4 = Image.open("out/" + sourceImg + ".histogram.png") im5 = Image.open("out/" + sourceImg + ".dft.png") height = max(im1.size[1], max(im2.size[1], max(im3.size[1], max(im4.size[1], im5.size[1])))) + 6 width = im1.size[0] + im2.size[0] + im3.size[0] + im4.size[0] + im5.size[0] + 18 imout = Image.new('RGB',(width, height), (255, 255, 255)) x = 3 imout.paste(im1, (x, int((height - im1.size[1]) / 2))) x = x + im1.size[0] + 3 imout.paste(im2, (x, int((height - im2.size[1]) / 2))) x = x + im2.size[0] + 3 imout.paste(im3, (x, int((height - im3.size[1]) / 2))) x = x + im3.size[0] + 3 imout.paste(im4, (x, int((height - im4.size[1]) / 2))) x = x + im4.size[0] + 3 imout.paste(im5, (x, int((height - im5.size[1]) / 2))) imout.save("out/_" + sourceImg + ".png") # Process blue noise made with void and cluster for sourceImg in sourceImgs: # load the data fileName = "source/" + sourceImg + ".png" print(fileName) y = (imageio.imread(fileName).astype(float) / 255.0)[0,:] # Graph the values x = np.arange(y.shape[0]) plt.plot(x, y) ax = plt.gca() ax.set_xlim([0.0, y.shape[0]-1]) ax.set_ylim([0.0, 1.0]) plt.title(sourceImg + " Values") plt.xlabel("Index") plt.ylabel("Value") fig = plt.gcf() fig.savefig("out/" + sourceImg + ".values.png", bbox_inches='tight') plt.close(fig) # Make Histogram plt.title(sourceImg + " Histogram") plt.xlabel("Value") plt.ylabel("Count") plt.hist(y, 256, facecolor='blue', alpha=0.5) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".histogram.png", bbox_inches='tight') plt.close(fig) # Make DFT dfty = np.abs(np.fft.fftshift(np.fft.fftn(y))) dfty[int(dfty.shape[0] / 2)] = 0 # zero out DC dfty = np.append(dfty, dfty[0]) # Graph the DFT plt.title(sourceImg + " DFT") plt.xlabel("Hertz") plt.ylabel("Magnitude") x = np.arange(dfty.shape[0]) x = x - int((dfty.shape[0]-1) / 2) plt.plot(x, dfty) fig = plt.gcf() fig.savefig("out/" + sourceImg + ".dft.png", bbox_inches='tight') plt.close(fig) # tile the signal to be a 256x256 image generatedSize = min(y.shape[0], 256) if True: #generatedSize <= 256: row = Image.new('L', (1, 256), (255)) signalImage = Image.fromarray(np.uint8(y*255)) for i in range(int(256/generatedSize)): row.paste(signalImage, (0, i * generatedSize)) out = Image.new('L', (256, 256), (255)) for i in range(256): out.paste(row, (i, 0)) out.save("out/" + sourceImg + ".png") # Make the composite diagram im1 = Image.open("out/" + sourceImg + ".png") im2 = Image.open("out/" + sourceImg + ".values.png") im3 = Image.open("out/" + sourceImg + ".histogram.png") im4 = Image.open("out/" + sourceImg + ".dft.png") height = max(im1.size[1], max(im2.size[1], max(im3.size[1], im4.size[1]))) + 6 width = im1.size[0] + im2.size[0] + im3.size[0] + im4.size[0] + 15 imout = Image.new('RGB',(width, height), (255, 255, 255)) x = 3 imout.paste(im1, (x, int((height - im1.size[1]) / 2))) x = x + im1.size[0] + 3 imout.paste(im2, (x, int((height - im2.size[1]) / 2))) x = x + im2.size[0] + 3 imout.paste(im3, (x, int((height - im3.size[1]) / 2))) x = x + im3.size[0] + 3 imout.paste(im4, (x, int((height - im4.size[1]) / 2))) imout.save("out/_" + sourceImg + ".png") focus10240 = ["bn10240", "idft10240_HPF"] for sourceImg in focus10240: im1 = Image.open("out/" + sourceImg + ".histogram.png") im2 = Image.open("out/" + sourceImg + ".dft.png") height = max(im1.size[1], im2.size[1]) width = im1.size[0] + im2.size[0] + 9 imout = Image.new('RGB',(width, height), (255, 255, 255)) x = 3 imout.paste(im1, (x, int((height - im1.size[1]) / 2))) x = x + im1.size[0] + 3 imout.paste(im2, (x, int((height - im2.size[1]) / 2))) imout.save("out/_focus10240_" + sourceImg + ".png")
34.099688
104
0.53161
24d26879de388626eef38990af6b10e5717c0ade
2,185
py
Python
tensor2tensor/tpu/tpu_trainer_lib_test.py
webdeveloper0012/Tensor2tensor
48bce065278eba461c8a2840e4132becbc822c7c
[ "Apache-2.0" ]
9
2019-11-21T02:48:21.000Z
2021-08-18T07:30:34.000Z
tensor2tensor/tpu/tpu_trainer_lib_test.py
webdeveloper0012/Tensor2tensor
48bce065278eba461c8a2840e4132becbc822c7c
[ "Apache-2.0" ]
3
2020-01-14T16:37:49.000Z
2020-04-14T06:24:56.000Z
tensor2tensor/tpu/tpu_trainer_lib_test.py
webdeveloper0012/Tensor2tensor
48bce065278eba461c8a2840e4132becbc822c7c
[ "Apache-2.0" ]
1
2020-06-19T09:34:01.000Z
2020-06-19T09:34:01.000Z
# coding=utf-8 # Copyright 2017 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tpu_trainer_lib.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from tensor2tensor.tpu import tpu_trainer_lib as lib from tensor2tensor.utils import trainer_utils from tensor2tensor.utils import trainer_utils_test import tensorflow as tf class TpuTrainerTest(tf.test.TestCase): @classmethod def setUpClass(cls): trainer_utils_test.TrainerUtilsTest.setUpClass() def testSmoke(self): data_dir = trainer_utils_test.TrainerUtilsTest.data_dir problem_name = "tiny_algo" model_name = "transformer" hparams_set = "transformer_tpu" hparams = trainer_utils.create_hparams(hparams_set, data_dir) trainer_utils.add_problem_hparams(hparams, problem_name) model_fn = lib.get_model_fn(model_name, hparams, use_tpu=False) input_fn = lib.get_input_fn(tf.estimator.ModeKeys.TRAIN, hparams) params = {"batch_size": 16} config = tf.contrib.tpu.RunConfig( tpu_config=tf.contrib.tpu.TPUConfig(num_shards=2)) features, targets = input_fn(params) with tf.variable_scope("training"): spec = model_fn(features, targets, tf.estimator.ModeKeys.TRAIN, params, config) self.assertTrue(spec.loss is not None) self.assertTrue(spec.train_op is not None) with tf.variable_scope("eval"): spec = model_fn(features, targets, tf.estimator.ModeKeys.EVAL, params, config) self.assertTrue(spec.eval_metric_ops is not None) if __name__ == "__main__": tf.test.main()
32.132353
77
0.745538
5148c7a1dea90be18ab9dc7308493a09f82362d9
16,001
py
Python
tests/bbo/unit/test_heuristics.py
ValentinGaut/shaman
754e9eef3c097f3e58b0f06e7c08716bc1b11edd
[ "Apache-2.0" ]
null
null
null
tests/bbo/unit/test_heuristics.py
ValentinGaut/shaman
754e9eef3c097f3e58b0f06e7c08716bc1b11edd
[ "Apache-2.0" ]
null
null
null
tests/bbo/unit/test_heuristics.py
ValentinGaut/shaman
754e9eef3c097f3e58b0f06e7c08716bc1b11edd
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 BULL SAS All rights reserved """ Tests each heuristic possible heuristic. WARNING: If you want to add a new heuristic, please use the following format when writing out unittests: - Create a test_my_heuristic.py file for unit testing of the methods included in the heuristic. - Add a section in this file for testing that the use of the new heuristics work properly when using it through the optimizer interface. """ # Disable the could be a function for unit testing # pylint: disable=no-self-use # Disable name too longs (necessary for clarity in testing) # pylint: disable=invalid-name import unittest import numpy as np import time from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from bbo.optimizer import BBOptimizer from bbo.heuristics.heuristics import Heuristic # Imports for genetic algorithm from bbo.heuristics.genetic_algorithm.selections import ( tournament_pick, probabilistic_pick, ) from bbo.heuristics.genetic_algorithm.mutations import mutate_chromosome_to_neighbor from bbo.heuristics.genetic_algorithm.crossover import ( single_point_crossover, double_point_crossover, ) # Imports for simulated_annealing from bbo.heuristics.simulated_annealing.restart_functions import random_restart from bbo.heuristics.simulated_annealing.neighbor_functions import hop_to_next_value from bbo.heuristics.simulated_annealing.cooldown_functions import ( multiplicative_schedule, ) # Imports for surrogate models from bbo.heuristics.surrogate_models.next_parameter_strategies import ( maximum_probability_improvement, expected_improvement, l_bfgs_b_minimizer, ) from bbo.heuristics.surrogate_models.regression_models import ( DecisionTreeSTDRegressor, CensoredGaussianProcesses, ) # Use parabola as fake black-box class Parabola: """ Black box class that will be used for testing purpose """ def __init__(self): """ Initialization of the black-box """ print("I'm the Parabola function ! Good luck finding my optimum !") def compute(self, array_2d): """ Computes the value of the parabola at data point array_2d """ return array_2d[0] ** 2 + array_2d[1] ** 2 class AsyncParabola: """ Black-box class that will be used for testing heuristics that censors some data. """ def __init__(self): """ Initialization of the black-box """ print("I'm the async Parabola function ! Good luck finding my optimum !") def compute(self, array_2d): """ Computes the value of the parabola at data point array_2d """ random_time = np.round( np.abs( np.random.normal( size=1, loc=3, scale=0.5)))[0] time.sleep(random_time) return array_2d[0] ** 2 + array_2d[1] ** 2 class TestHeuristic(unittest.TestCase): """ Tests the different abstract methods raise an exception if called without overwritting. """ def setUp(self): """ Sets up the initialization of the Heuristic class. """ self.heuristic = Heuristic() def test_init(self): """ Tests that the attributes are well set. """ self.assertFalse(self.heuristic.stop) def test_choose_next_parameter(self): """ Tests that the "choose_next_parameter" method raises a NotImplementedError. """ with self.assertRaises(NotImplementedError): self.heuristic.choose_next_parameter({}, []) def test_summary(self): """ Tests that the "summary" method raises a NotImplementedError. """ self.assertRaises(NotImplementedError, self.heuristic.summary) def test_reset(self): """ Tests that the "reset" method raises a NotImplementedError. """ self.assertRaises(NotImplementedError, self.heuristic.reset) class TestGeneticAlgorithms(unittest.TestCase): """ Tests the different selection methods for selecting the two fittest parents in the population. """ def setUp(self): """ Sets up the testing procedure by initializing the parabola as the black-box function. """ self.fake_black_box = Parabola() def test_tournament_pick_single_crossover(self): """ Tests that the optimization works properly when using the tournament pick method for selection of the fittest parents + a single crossover method. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1)] ).T, heuristic="genetic_algorithm", initial_sample_size=2, max_iteration=10, selection_method=tournament_pick, crossover_method=single_point_crossover, mutation_method=mutate_chromosome_to_neighbor, pool_size=5, mutation_rate=0.1, elitism=False, ) bb_obj.optimize() def test_probabilistic_pick_single_crossover(self): """ Tests that the optimization works properly when using the probabilistic pick method for selection of the fittest parents + a single crossover method. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-5, 5, 1), np.arange(-6, 6, 1), ] ).T, heuristic="genetic_algorithm", initial_sample_size=2, max_iteration=10, selection_method=probabilistic_pick, crossover_method=single_point_crossover, mutation_method=mutate_chromosome_to_neighbor, mutation_rate=0.2, ) bb_obj.optimize() def test_tournament_pick_double_crossover(self): """ Tests that the optimization works properly when using the tournament pick method for selection of the fittest parents + double crossover method. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1)] ).T, heuristic="genetic_algorithm", initial_sample_size=2, max_iteration=10, selection_method=tournament_pick, crossover_method=double_point_crossover, mutation_method=mutate_chromosome_to_neighbor, pool_size=5, mutation_rate=0.1, elitism=False, ) bb_obj.optimize() def test_probabilistic_pick_double_crossover(self): """ Tests that the optimization works properly when using the tournament pick method for selection of the fittest parents + double crossover method. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="genetic_algorithm", initial_sample_size=2, max_iteration=10, selection_method=tournament_pick, crossover_method=double_point_crossover, mutation_method=mutate_chromosome_to_neighbor, pool_size=5, mutation_rate=0.1, elitism=False, ) bb_obj.optimize() class TestSimulatedAnnealing(unittest.TestCase): """ Tests that the optimization process works properly when using simulated annealing as an heuristic. """ def setUp(self): """ Sets up the testing procedure by initializing the parabola as the black-box function. """ self.fake_black_box = Parabola() def test_simulated_annealing_no_restart(self): """ Tests that the simulated annealing algorithm works properly when used through the optimizer interface and without using any restart. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="simulated_annealing", initial_sample_size=2, max_iteration=10, initial_temperature=1000, cooldown_function=multiplicative_schedule, neighbor_function=hop_to_next_value, cooling_factor=3, ) bb_obj.optimize() def test_simulated_annealing_with_restart(self): """ Tests that the simulated annealing algorithm works properly when used through the optimizer interface when using a restart. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="simulated_annealing", initial_sample_size=2, max_iteration=10, initial_temperature=1000, cooldown_function=multiplicative_schedule, neighbor_function=hop_to_next_value, cooling_factor=3, restart=random_restart, bernouilli_parameter=0.2, ) bb_obj.optimize() print(bb_obj.history["fitness"]) class TestSurrogateModels(unittest.TestCase): """ Tests that the optimization process works properly when using surrogate model as an heuristic. """ def setUp(self): """ Sets up the testing procedure by initializing the parabola as the black-box function. """ self.fake_black_box = Parabola() self.fake_async_black_box = AsyncParabola() def test_surrogate_model_gp_ei(self): """ Tests that the optimization process surrogate models integrates properly in the BBOptimizer when using GP + EI. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="surrogate_model", regression_model=GaussianProcessRegressor, next_parameter_strategy=expected_improvement, initial_sample_size=2, max_iteration=10, ) bb_obj.optimize() def test_surrogate_model_gp_mpi(self): """ Tests that the optimization process surrogate models integrates properly in the BBOptimizer when using GP + MPI. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="surrogate_model", regression_model=GaussianProcessRegressor, next_parameter_strategy=maximum_probability_improvement, initial_sample_size=2, max_iteration=10, ) bb_obj.optimize() # def test_surrogate_model_knn_min(self): # """ # Tests that the optimization process surrogate models integrates properly in the # BBOptimizer when using KNearestNeighbor regressor and the regressed function as the merit # one. # """ # bb_obj = BBOptimizer(black_box=self.fake_black_box, # parameter_space=np.array([np.arange(-5, 5, 1), np.arange(-6, 6, 1), # np.arange(-6, 6, 1), np.arange(-6, 6, 1)]).T, # heuristic="surrogate_model", # regression_model=KNeighborsRegressor, # next_parameter_strategy=l_bfgs_b_minimizer, # initial_sample_size=6, # max_iteration=10) # bb_obj.optimize() def test_surrogate_model_regression_tree_ei(self): """ Tests that the optimization with regression trees and expected improvement behaves as expected. """ bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="surrogate_model", regression_model=DecisionTreeSTDRegressor, next_parameter_strategy=expected_improvement, initial_sample_size=5, max_iteration=10, max_retry=10, ) bb_obj.optimize() print(bb_obj.history) def test_surrogate_model_censored_bayesian_ei(self): """ Tests that the optimization with regression trees and expected improvement behaves as expected. """ bb_obj = BBOptimizer( black_box=self.fake_async_black_box, parameter_space=np.array( [ np.arange(-5, 5, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), np.arange(-6, 6, 1), ] ).T, heuristic="surrogate_model", regression_model=CensoredGaussianProcesses, next_parameter_strategy=expected_improvement, initial_sample_size=5, async_optim=True, max_step_cost=1, max_iteration=10, max_retry=10, ) bb_obj.optimize() print(bb_obj.history) class TestExhaustiveSearch(unittest.TestCase): """Tests the exhaustive_search heuristic. """ def setUp(self): """ Sets up the testing procedure by initializing the parabola as the black-box function. """ self.fake_black_box = Parabola() def test_exhaustive_search(self): """ Tests that the exhaustive search heuristic tests all the parametrization when the budget is equal to the size of the parametric grid. """ parametric_grid = np.array( [np.arange(-5, 5, 1), np.arange(-6, 6, 1), ]).T bb_obj = BBOptimizer( black_box=self.fake_black_box, parameter_space=parametric_grid, heuristic="exhaustive_search", initial_sample_size=2, max_iteration=120, ) bb_obj.optimize() exhaustive_grid = np.array(np.meshgrid(*parametric_grid)).T.reshape( -1, len(parametric_grid) ) np.testing.assert_array_equal( bb_obj.history["parameters"][2:], exhaustive_grid) if __name__ == "__main__": unittest.main()
33.474895
102
0.583776