hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
cbfb410cacd5080693f012f125e877edd266870a
172
py
Python
features/environment.py
geeksforsocialchange/imok
efb7189c13c398dbd5d4301ca496a2e583b0f5b7
[ "MIT" ]
6
2021-05-12T08:40:36.000Z
2022-01-25T08:31:06.000Z
features/environment.py
geeksforsocialchange/imok
efb7189c13c398dbd5d4301ca496a2e583b0f5b7
[ "MIT" ]
14
2021-05-12T09:03:08.000Z
2021-06-10T13:18:52.000Z
features/environment.py
geeksforsocialchange/imok
efb7189c13c398dbd5d4301ca496a2e583b0f5b7
[ "MIT" ]
1
2021-05-14T20:54:15.000Z
2021-05-14T20:54:15.000Z
from django.conf import settings settings.NOTIFY_EMAIL = 'root@localhost' settings.DEBUG = True def before_all(context): context.users = {} context.members = {}
17.2
40
0.72093
0
0
0
0
0
0
0
0
16
0.093023
cbfc891317c3347008f8eaea66169ec8996add82
2,546
py
Python
h2o-py/tests/testdir_jira/pyunit_pubdev_7353_reset_threshold.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
6,098
2015-05-22T02:46:12.000Z
2022-03-31T16:54:51.000Z
h2o-py/tests/testdir_jira/pyunit_pubdev_7353_reset_threshold.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
2,517
2015-05-23T02:10:54.000Z
2022-03-30T17:03:39.000Z
h2o-py/tests/testdir_jira/pyunit_pubdev_7353_reset_threshold.py
vishalbelsare/h2o-3
9322fb0f4c0e2358449e339a434f607d524c69fa
[ "Apache-2.0" ]
2,199
2015-05-22T04:09:55.000Z
2022-03-28T22:20:45.000Z
import sys sys.path.insert(1,"../../") import h2o from tests import pyunit_utils from h2o.estimators.gbm import H2OGradientBoostingEstimator from h2o.utils.model_utils import reset_model_threshold def test_reset_threshold(): """ Test the model threshold can be reset. Performance metric should be recalculated and also predictions should be changed based on the new threshold. """ # import data airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/airlines/modified_airlines.csv")) # convert columns to factors airlines["Year"] = airlines["Year"].asfactor() airlines["Month"] = airlines["Month"].asfactor() airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor() airlines["Cancelled"] = airlines["Cancelled"].asfactor() airlines['FlightNum'] = airlines['FlightNum'].asfactor() # set the predictor names and the response column name predictors = ["Origin", "Dest", "Year", "UniqueCarrier", "DayOfWeek", "Month", "Distance", "FlightNum"] response = "IsDepDelayed" # split into train and validation sets train, valid = airlines.split_frame(ratios = [.8], seed = 1234) # initialize the estimator model = H2OGradientBoostingEstimator(seed = 1234, ntrees=5) # train the model model.train(x=predictors, y=response, training_frame=train) old_threshold = model._model_json['output']['default_threshold'] # predict preds = model.predict(airlines) # reset the threshold and get the old one new_threshold = 0.6917189903082518 old_returned = reset_model_threshold(model, new_threshold) reset_model = h2o.get_model(model.model_id) reset_threshold = reset_model._model_json['output']['default_threshold'] # predict with reset model preds_reset = reset_model.predict(airlines) # compare thresholds assert old_threshold == old_returned assert new_threshold == reset_threshold assert reset_threshold != old_threshold # compare predictions preds_local = preds.as_data_frame() preds_reset_local = preds_reset.as_data_frame() print("old threshold:", old_threshold, "new_threshold:", new_threshold) for i in range(airlines.nrow): if old_threshold <= preds_local.iloc[i, 2] < new_threshold: assert preds_local.iloc[i, 0] != preds_reset_local.iloc[i, 0] else: assert preds_local.iloc[i, 0] == preds_reset_local.iloc[i, 0] if __name__ == "__main__": pyunit_utils.standalone_test(test_reset_threshold) else: test_reset_threshold()
35.361111
112
0.714061
0
0
0
0
0
0
0
0
788
0.309505
cbfd7282e7bf8367942a36811a4c23c2043f6215
2,324
py
Python
tests/datasets/TestV1/csv2sql.py
pvanderknyff/alibabacloud-adb-tableau-connector
0280428bfc916530f9de26336631f6a6602c6804
[ "MIT" ]
1
2019-08-21T17:53:50.000Z
2019-08-21T17:53:50.000Z
tests/datasets/TestV1/csv2sql.py
aliyun/aliyun-adb-tableau-connector
0280428bfc916530f9de26336631f6a6602c6804
[ "MIT" ]
1
2020-06-29T08:38:54.000Z
2020-06-29T08:38:54.000Z
tests/datasets/TestV1/csv2sql.py
aliyun/alibabacloud-adb-tableau-connector
0280428bfc916530f9de26336631f6a6602c6804
[ "MIT" ]
null
null
null
#!/usr/bin/python import argparse import csv import sys ''' This script takes a CSV file with a mandatory header and a sql tablename and converts the data in the csv file into an SQL INSERT statement. ''' def parse_arguments(): # initialize argumentparser and arguments parser = argparse.ArgumentParser(description='Takes a csv file and a tablename and creates an SQL insert statement') parser.add_argument('csvFile', type=argparse.FileType('r'), help='The CSV file to be read') parser.add_argument('-t', '--table', dest='tablename', help='The name of the destination SQL table', required=True) parser.add_argument('-d', '--delimiter', dest='delimiter', default=',', help='The delimiter used in the CSV') # parse arguments args = parser.parse_args() return args def main(): # parse arguments args = parse_arguments() # Open CSV and start output with args.csvFile as f: reader = csv.reader(f, delimiter=args.delimiter, quoting=csv.QUOTE_ALL) # Create the header row, since we may have to repeat it header_row = 'INSERT INTO `' + args.tablename + '` (' first = True for item in next(reader): if first: first = False else: header_row+=', ' header_row+= item header_row+=') VALUES ' # Set a counter, since there can't be more than 1000 inserts at a time counter = 0 # Loop through the rows... for row in reader: if counter % 10 == 0: if counter != 0: sys.stdout.write(';\n') #print(header_row) sys.stdout.write(header_row) else: sys.stdout.write(',') sys.stdout.write('(') first = True # Loop through the items in each row for item in row: if first: first = False else: sys.stdout.write(', ') sys.stdout.write('\'' + item.replace('\'', '\'\'').replace('""', 'NULL').replace('&', '&') + '\'') #sys.stdout.write(item) sys.stdout.write(')') # Increase counter counter += 1 sys.stdout.write(';') if __name__ == "__main__": main()
31.835616
120
0.55809
0
0
0
0
0
0
0
0
845
0.363597
cbff48d02931d3f7dcc779f4f74d3a26a84b6bb5
1,043
py
Python
FlaskApp/app.py
Dec22gln/FlaskBlog
114ca9fc39f039cbdf0f1ff613fb66e364cea171
[ "MIT" ]
null
null
null
FlaskApp/app.py
Dec22gln/FlaskBlog
114ca9fc39f039cbdf0f1ff613fb66e364cea171
[ "MIT" ]
null
null
null
FlaskApp/app.py
Dec22gln/FlaskBlog
114ca9fc39f039cbdf0f1ff613fb66e364cea171
[ "MIT" ]
null
null
null
from flask import Flask from flask import render_template app = Flask(__name__) @app.route('/') def hello_world(): return render_template('index.html') @app.route('/index') def index(): return render_template('index.html') @app.route('/contact') def contact(): return render_template('contact.html') @app.route('/cv') def cv(): return render_template('cv.html') @app.route('/hire-me') def hireMe(): return render_template('hire-me.html') @app.route('/project-page') def projectPage(): return render_template('project-page.html') @app.route('/projects-compact-grid') def projects1(): return render_template('projects-compact-grid.html') @app.route('/projects-no-images') def projects2(): return render_template('projects-no-images.html') @app.route('/projects-with-sidebar') def projects3(): return render_template('projects-with-sidebar.html') @app.route('/projects-grid-cards') def projects4(): return render_template('projects-with-sidebar.html') if __name__ == '__main__': app.run()
21.729167
56
0.708533
0
0
0
0
899
0.861937
0
0
341
0.326942
cbffe9c4b5d1ee44110edbd0b422813f50993bf7
1,913
py
Python
azure-servicefabric/azure/servicefabric/models/primary_replicator_status_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2021-09-07T18:36:04.000Z
2021-09-07T18:36:04.000Z
azure-servicefabric/azure/servicefabric/models/primary_replicator_status_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
2
2019-10-02T23:37:38.000Z
2020-10-02T01:17:31.000Z
azure-servicefabric/azure/servicefabric/models/primary_replicator_status_py3.py
JonathanGailliez/azure-sdk-for-python
f0f051bfd27f8ea512aea6fc0c3212ee9ee0029b
[ "MIT" ]
1
2018-10-16T13:08:23.000Z
2018-10-16T13:08:23.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .replicator_status_py3 import ReplicatorStatus class PrimaryReplicatorStatus(ReplicatorStatus): """Provides statistics about the Service Fabric Replicator, when it is functioning in a Primary role. All required parameters must be populated in order to send to Azure. :param kind: Required. Constant filled by server. :type kind: str :param replication_queue_status: Details about the replication queue on the primary replicator. :type replication_queue_status: ~azure.servicefabric.models.ReplicatorQueueStatus :param remote_replicators: The status of all the active and idle secondary replicators that the primary is aware of. :type remote_replicators: list[~azure.servicefabric.models.RemoteReplicatorStatus] """ _validation = { 'kind': {'required': True}, } _attribute_map = { 'kind': {'key': 'Kind', 'type': 'str'}, 'replication_queue_status': {'key': 'ReplicationQueueStatus', 'type': 'ReplicatorQueueStatus'}, 'remote_replicators': {'key': 'RemoteReplicators', 'type': '[RemoteReplicatorStatus]'}, } def __init__(self, *, replication_queue_status=None, remote_replicators=None, **kwargs) -> None: super(PrimaryReplicatorStatus, self).__init__(**kwargs) self.replication_queue_status = replication_queue_status self.remote_replicators = remote_replicators self.kind = 'Primary'
39.854167
103
0.665447
1,384
0.723471
0
0
0
0
0
0
1,352
0.706743
0200db1441c66699ac789aeb7d02549ecd867f2a
448
py
Python
example/example/models.py
KnightConan/sspdatatables
1179a11358734e5e472e5eee703e8d34fa49e9bf
[ "MIT" ]
4
2018-11-23T16:17:38.000Z
2018-11-26T16:08:49.000Z
example/example/models.py
zhiwei2017/sspdatatables
1179a11358734e5e472e5eee703e8d34fa49e9bf
[ "MIT" ]
8
2018-11-26T16:38:55.000Z
2019-01-18T15:13:12.000Z
example/example/models.py
KnightConan/sspdatatables
1179a11358734e5e472e5eee703e8d34fa49e9bf
[ "MIT" ]
null
null
null
from django.db import models from django_countries.fields import CountryField from django.db.models.deletion import CASCADE class Author(models.Model): name = models.CharField(max_length=60) nationality = CountryField() class Book(models.Model): name = models.CharField(max_length=60) description = models.TextField() author = models.ForeignKey(Author, on_delete=CASCADE) published_at = models.DateField(auto_now=True)
26.352941
57
0.765625
317
0.707589
0
0
0
0
0
0
0
0
020213a818c2a038dbd07a3442e4a8ae253739be
4,805
py
Python
workspace/baseline/midi_generator.py
SeungHeonDoh/EMOPIA
0afb93a91c9226949d617894d6aa2d67c4de4eb6
[ "MIT" ]
69
2021-07-12T03:17:17.000Z
2022-03-27T06:16:35.000Z
workspace/baseline/midi_generator.py
SeungHeonDoh/EMOPIA
0afb93a91c9226949d617894d6aa2d67c4de4eb6
[ "MIT" ]
7
2021-07-27T09:10:15.000Z
2022-02-07T05:15:56.000Z
workspace/baseline/midi_generator.py
SeungHeonDoh/EMOPIA
0afb93a91c9226949d617894d6aa2d67c4de4eb6
[ "MIT" ]
7
2021-07-12T10:41:14.000Z
2022-02-04T10:28:08.000Z
import os os.environ["CUDA_VISIBLE_DEVICES"] = "4" import json import argparse import numpy as np import tensorflow as tf import midi_encoder as me from train_generative import build_generative_model from train_classifier import preprocess_sentence GENERATED_DIR = './generated' def override_neurons(model, layer_idx, override): h_state, c_state = model.get_layer(index=layer_idx).states c_state = c_state.numpy() for neuron, value in override.items(): c_state[:,int(neuron)] = int(value) model.get_layer(index=layer_idx).states = (h_state, tf.Variable(c_state)) def sample_next(predictions, k): # Sample using a categorical distribution over the top k midi chars top_k = tf.math.top_k(predictions, k) top_k_choices = top_k[1].numpy().squeeze() top_k_values = top_k[0].numpy().squeeze() if np.random.uniform(0, 1) < .5: predicted_id = top_k_choices[0] else: p_choices = tf.math.softmax(top_k_values[1:]).numpy() predicted_id = np.random.choice(top_k_choices[1:], 1, p=p_choices)[0] return predicted_id def process_init_text(model, init_text, char2idx, layer_idx, override): model.reset_states() for c in init_text.split(" "): # Run a forward pass try: input_eval = tf.expand_dims([char2idx[c]], 0) # override sentiment neurons override_neurons(model, layer_idx, override) predictions = model(input_eval) except KeyError: if c != "": print("Can't process char", s) return predictions def generate_midi(model, char2idx, idx2char, init_text="", seq_len=256, k=3, layer_idx=-2, override={}): # Add front and end pad to the initial text init_text = preprocess_sentence(init_text) # Empty midi to store our results midi_generated = [] # Process initial text predictions = process_init_text(model, init_text, char2idx, layer_idx, override) # Here batch size == 1 model.reset_states() for i in range(seq_len): # remove the batch dimension predictions = tf.squeeze(predictions, 0).numpy() # Sample using a categorical distribution over the top k midi chars predicted_id = sample_next(predictions, k) # Append it to generated midi midi_generated.append(idx2char[predicted_id]) # override sentiment neurons override_neurons(model, layer_idx, override) #Run a new forward pass input_eval = tf.expand_dims([predicted_id], 0) predictions = model(input_eval) return init_text + " " + " ".join(midi_generated) if __name__ == "__main__": # Parse arguments parser = argparse.ArgumentParser(description='midi_generator.py') parser.add_argument('--model', type=str, default='./trained', help="Checkpoint dir.") parser.add_argument('--ch2ix', type=str, default='./trained/char2idx.json', help="JSON file with char2idx encoding.") parser.add_argument('--embed', type=int, default=256, help="Embedding size.") parser.add_argument('--units', type=int, default=512, help="LSTM units.") parser.add_argument('--layers', type=int, default=4, help="LSTM layers.") parser.add_argument('--seqinit', type=str, default="\n", help="Sequence init.") parser.add_argument('--seqlen', type=int, default=512, help="Sequence lenght.") parser.add_argument('--cellix', type=int, default=4, help="LSTM layer to use as encoder.") parser.add_argument('--override', type=str, default="./trained/neurons_Q1.json", help="JSON file with neuron values to override.") opt = parser.parse_args() # Load char2idx dict from json file with open(opt.ch2ix) as f: char2idx = json.load(f) # Load override dict from json file override = {} try: with open(opt.override) as f: override = json.load(f) except FileNotFoundError: print("Override JSON file not provided.") # Create idx2char from char2idx dict idx2char = {idx:char for char,idx in char2idx.items()} # Calculate vocab_size from char2idx dict vocab_size = len(char2idx) # Rebuild model from checkpoint model = build_generative_model(vocab_size, opt.embed, opt.units, opt.layers, batch_size=1) model.load_weights(tf.train.latest_checkpoint(opt.model)) model.build(tf.TensorShape([1, None])) if not os.path.exists(GENERATED_DIR): os.makedirs(GENERATED_DIR) # Generate 5 midis for i in range(100): # Generate a midi as text print("Generate midi {}".format(i)) midi_txt = generate_midi(model, char2idx, idx2char, opt.seqinit, opt.seqlen, layer_idx=opt.cellix, override=override) me.write(midi_txt, os.path.join(GENERATED_DIR, "generated_Q1_{}.mid".format(i)))
35.330882
134
0.678044
0
0
0
0
0
0
0
0
1,181
0.245786
020563bca2febded13ab705cf7257f5af323ab0d
1,616
py
Python
holobot/sdk/chrono/interval_parser.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
1
2021-05-24T00:17:46.000Z
2021-05-24T00:17:46.000Z
holobot/sdk/chrono/interval_parser.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
41
2021-03-24T22:50:09.000Z
2021-12-17T12:15:13.000Z
holobot/sdk/chrono/interval_parser.py
rexor12/holobot
89b7b416403d13ccfeee117ef942426b08d3651d
[ "MIT" ]
null
null
null
from ..utils import pad_left, try_parse_int from datetime import timedelta from typing import Dict, List TIME_PARTS: List[str] = [ "D", "H", "M", "S" ] FIXED_INTERVALS: Dict[str, timedelta] = { "WEEK": timedelta(weeks=1), "DAY": timedelta(days=1), "HOUR": timedelta(hours=1) } def parse_interval(value: str) -> timedelta: args: Dict[str, int] = { part: 0 for part in TIME_PARTS } value = value.upper() if (fixed_interval := FIXED_INTERVALS.get(value, None)) is not None: return fixed_interval if ":" in value: __parse_delimited_into(value, args) else: __parse_denoted_into(value, args) return timedelta(days=args["D"], hours=args["H"], minutes=args["M"], seconds=args["S"]) def __parse_delimited_into(value: str, args: Dict[str, int]) -> None: split_values = value.split(":") padded_values = pad_left(split_values, "0", len(TIME_PARTS)) for index in range(0, len(TIME_PARTS)): part_value = try_parse_int(padded_values[index]) args[TIME_PARTS[index]] = part_value if part_value is not None else 0 if len(split_values) == 2: args["H"] = args["M"] args["M"] = args["S"] args["S"] = 0 def __parse_denoted_into(value: str, args: Dict[str, int]) -> None: for time_part in args.keys(): split_values = value.split(time_part, 1) if len(split_values) == 2: part_value = try_parse_int(split_values[0]) args[time_part] = part_value if part_value is not None else 0 value = split_values[1] continue value = split_values[0]
36.727273
91
0.633045
0
0
0
0
0
0
0
0
65
0.040223
02063c864e384d1ba7ec730d4d03b03f063ebc1f
80,245
py
Python
pirates/ai/PiratesMagicWordManager.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
3
2021-02-25T06:38:13.000Z
2022-03-22T07:00:15.000Z
pirates/ai/PiratesMagicWordManager.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
null
null
null
pirates/ai/PiratesMagicWordManager.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
1
2021-02-25T06:38:17.000Z
2021-02-25T06:38:17.000Z
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.ai.PiratesMagicWordManager from direct.showbase.ShowBaseGlobal import * from direct.distributed import DistributedObject from direct.directnotify import DirectNotifyGlobal from direct.task import Task from otp.avatar import Avatar from otp.chat import ChatManager import string from direct.showbase import PythonUtil from otp.otpbase import OTPGlobals from direct.distributed.ClockDelta import * from otp.ai import MagicWordManager from pirates.pirate import DistributedPlayerPirate from pirates.npc import DistributedNPCTownfolk from direct.distributed import DistributedCartesianGrid from pirates.piratesbase import PiratesGlobals from pirates.piratesgui.RadarUtil import RadarUtil from pirates.cutscene import Cutscene, CutsceneData from pirates.effects.Fireflies import Fireflies from pirates.effects.GroundFog import GroundFog from pirates.effects.Bonfire import Bonfire from pirates.effects.CeilingDust import CeilingDust from pirates.effects.CeilingDebris import CeilingDebris from pirates.effects.CameraShaker import CameraShaker from pirates.effects.DarkWaterFog import DarkWaterFog from pirates.ship import DistributedSimpleShip from pirates.world import WorldGlobals from pirates.effects.FireworkGlobals import * from pirates.effects.FireworkShowManager import FireworkShowManager from pirates.piratesbase import PLocalizer class PiratesMagicWordManager(MagicWordManager.MagicWordManager): __module__ = __name__ notify = DirectNotifyGlobal.directNotify.newCategory('PiratesMagicWordManager') neverDisable = 1 GameAvatarClass = DistributedPlayerPirate.DistributedPlayerPirate def __init__(self, cr): MagicWordManager.MagicWordManager.__init__(self, cr) self.pendingCameraReparent = None self.originalLocation = None self.groundFog = None self.fireflies = None self.rainDrops = None self.rainMist = None self.rainSplashes = None self.rainSplashes2 = None self.stormEye = None self.stormRing = None self.fishCamEnabled = False return def generate(self): MagicWordManager.MagicWordManager.generate(self) self.accept('magicWord', self.b_setMagicWord) def doLoginMagicWords(self): MagicWordManager.MagicWordManager.doLoginMagicWords(self) if base.config.GetBool('want-chat', 0): self.d_setMagicWord('~chat', localAvatar.doId, 0) if base.config.GetBool('want-run', 0) or base.config.GetBool('want-pirates-run', 0): self.toggleRun() if base.config.GetBool('immortal-mode', 0): self.d_setMagicWord('~immortal', localAvatar.doId, 0) def disable(self): self.ignore('magicWord') MagicWordManager.MagicWordManager.disable(self) if self.pendingCameraReparent: base.cr.relatedObjectMgr.abortRequest(self.pendingCameraReparent) self.pendingCameraReparent = None return def doMagicWord(self, word, avId, zoneId): def wordIs(w, word=word): return word[:len(w) + 1] == '%s ' % w or word == w if word == '~rio': self.doMagicWord('~run', avId, zoneId) if MagicWordManager.MagicWordManager.doMagicWord(self, word, avId, zoneId) == 1: pass if word == '~walk': localAvatar.b_setGameState('LandRoam') localAvatar.motionFSM.on() if word == '~players': players = base.cr.doFindAll('DistributedPlayerPirate') for player in players: playerText = '%s %s' % (player.getName(), player.doId) base.talkAssistant.receiveGameMessage(playerText) if word == '~rocketman': if localAvatar.rocketOn == 0: localAvatar.startRocketJumpMode() base.talkAssistant.receiveGameMessage('Zero hour nine a.m. (Bill Shattner Version)') else: localAvatar.endRocketJumpMode() base.talkAssistant.receiveGameMessage("And I think it's gonna be a long long time") if word == '~shipUpgrade': localAvatar.guiMgr.toggleShipUpgrades() if word == '~shipCam': if base.shipLookAhead: base.talkAssistant.receiveGameMessage('Ship Look ahead camera off!') base.setShipLookAhead(0) else: base.talkAssistant.receiveGameMessage('Ship Look ahead camera on!') base.setShipLookAhead(1) if word == '~time': base.talkAssistant.receiveGameMessage('The time is %s' % base.cr.timeOfDayManager.getCurrentIngameTime()) if word == '~todDebug': base.cr.timeOfDayManager.toggleDebugMode() if word == '~vismask': base.talkAssistant.receiveGameMessage('Vis Mask %s' % localAvatar.invisibleMask) if word == '~target': localAvatar.setAvatarViewTarget() if word == '~collisions_on': pass if word == '~collisions_off': pass if word == '~topten': base.cr.guildManager.requestLeaderboardTopTen() if word == '~airender': pass if __dev__ and wordIs('~shiphat'): args = word.split() if hasattr(localAvatar, 'shipHat'): localAvatar.shipHat.modelRoot.detachNode() localAvatar.shipHat = None if len(args) == 1: ship = base.shipFactory.getShip(23) else: shipClass = args[1] ship = base.shipFactory.getShip(int(shipClass)) ship.startSailing() ship.modelRoot.reparentTo(localAvatar.headNode) ship.modelRoot.setR(90) ship.modelRoot.setP(-90) ship.modelRoot.setX(0.8) ship.modelRoot.setScale(0.004) ship.modelRoot.setZ(-0.2) ship.forceLOD(2) ship.modelCollisions.detachNode() localAvatar.shipHat = ship if __dev__ and wordIs('~cr'): pass if __dev__ and wordIs('~watch'): if taskMgr.hasTaskNamed('lookAtDude'): taskMgr.remove('lookAtDude') localAvatar.guiMgr.setIgnoreAllKeys(False) localAvatar.guiMgr.combatTray.initCombatTray() localAvatar.unstash() else: args = word.split() if len(args) >= 2: tgtDoId = int(args[1]) def doHeadsUp(task=None): targetObj = self.cr.doId2do.get(tgtDoId) if targetObj: localAvatar.lookAt(targetObj) return Task.cont taskMgr.add(doHeadsUp, 'lookAtDude') localAvatar.guiMgr.setIgnoreAllKeys(True) localAvatar.guiMgr.combatTray.skillMapping.clear() localAvatar.stash() else: print 'need a target object doId to watch' if __dev__ and (wordIs('~ccNPC') or wordIs('~ccShip')): pass if wordIs('~bonfire'): bf = Bonfire() bf.reparentTo(render) bf.setPos(localAvatar, 0, 0, 0) bf.startLoop() print 'bonfire at %s, %s' % (localAvatar.getPos(), localAvatar.getHpr()) if __dev__ and wordIs('~mario'): localAvatar.toggleMario() if wordIs('~islandShips'): args = word.split() try: if args[1] == '1': localAvatar.getParentObj().setOceanVisEnabled(1) localAvatar.getParentObj().setFlatShips(0) else: localAvatar.getParentObj().setOceanVisEnabled(0) except: pass if wordIs('~swamp'): if self.fireflies: self.fireflies.destroy() self.fireflies = None self.groundFog.destroy() self.groundFog = None else: self.fireflies = Fireflies() if self.fireflies: self.fireflies.reparentTo(localAvatar) self.fireflies.startLoop() self.groundFog = GroundFog() if self.groundFog: self.groundFog.reparentTo(localAvatar) self.groundFog.startLoop() if wordIs('~darkfog'): if self.groundFog: self.groundFog.destroy() self.groundFog = None else: self.groundFog = DarkWaterFog() if self.groundFog: self.groundFog.reparentTo(localAvatar) self.groundFog.startLoop() if wordIs('~dust'): effect = CeilingDust.getEffect() if effect: effect.reparentTo(localAvatar) effect.setPos(0, 0, 10) effect.play() effect = CeilingDebris.getEffect() if effect: effect.reparentTo(localAvatar) effect.setPos(0, 0, 20) effect.play() cameraShakerEffect = CameraShaker() cameraShakerEffect.reparentTo(localAvatar) cameraShakerEffect.setPos(0, 0, 0) cameraShakerEffect.shakeSpeed = 0.05 cameraShakerEffect.shakePower = 4.5 cameraShakerEffect.numShakes = 2 cameraShakerEffect.scalePower = 1 cameraShakerEffect.play(80.0) if wordIs('~rain'): if self.rainDrops: self.rainDrops.stopLoop() self.rainDrops = None if self.rainMist: self.rainMist.stopLoop() self.rainMist = None if self.rainSplashes: self.rainSplashes.stopLoop() self.rainSplashes = None if self.rainSplashes2: self.rainSplashes2.stopLoop() self.rainSplashes2 = None else: from pirates.effects.RainDrops import RainDrops self.rainDrops = RainDrops(base.camera) self.rainDrops.reparentTo(render) self.rainDrops.startLoop() from pirates.effects.RainMist import RainMist self.rainMist = RainMist(base.camera) self.rainMist.reparentTo(render) self.rainMist.startLoop() from pirates.effects.RainSplashes import RainSplashes self.rainSplashes = RainSplashes(base.camera) self.rainSplashes.reparentTo(render) self.rainSplashes.startLoop() from pirates.effects.RainSplashes2 import RainSplashes2 self.rainSplashes2 = RainSplashes2(base.camera) self.rainSplashes2.reparentTo(render) self.rainSplashes2.startLoop() if wordIs('~clouds'): args = word.split() if len(args) >= 2: level = int(args[1]) base.cr.timeOfDayManager.skyGroup.transitionClouds(level).start() if wordIs('~storm'): if self.stormEye: self.stormEye.stopLoop() self.stormEye = None if self.stormRing: self.stormRing.stopLoop() self.stormRing = None else: args = word.split() grid = 0 if len(args) > 1: grid = int(args[1]) pos = Vec3(base.cr.doId2do[201100017].getZoneCellOrigin(grid)[0], base.cr.doId2do[201100017].getZoneCellOrigin(grid)[1], base.cr.doId2do[201100017].getZoneCellOrigin(grid)[2]) from pirates.effects.StormEye import StormEye self.stormEye = StormEye() self.stormEye.reparentTo(render) self.stormEye.startLoop() from pirates.effects.StormRing import StormRing self.stormRing = StormRing() self.stormRing.reparentTo(render) self.stormRing.setZ(100) self.stormRing.startLoop() if wordIs('~alight'): args = word.split() if len(args) > 3: color = Vec4(float(args[1]), float(args[2]), float(args[3]), 1) base.cr.timeOfDayManager.alight.node().setColor(color) if wordIs('~dlight'): args = word.split() if len(args) > 3: color = Vec4(float(args[1]), float(args[2]), float(args[3]), 1) base.cr.timeOfDayManager.dlight.node().setColor(color) if wordIs('~fog'): args = word.split() if len(args) > 3: color = Vec4(float(args[1]), float(args[2]), float(args[3]), 1) base.cr.timeOfDayManager.fog.setColor(color) if len(args) > 4: base.cr.timeOfDayManager.fog.setExpDensity(float(args[4])) if len(args) == 2: base.cr.timeOfDayManager.fog.setExpDensity(float(args[1])) if __dev__ and wordIs('~turbo'): localAvatar.toggleTurbo() if __dev__ and wordIs('~joincrew'): base.cr.crewManager.requestNewCrew() if wordIs('~tm'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_TM, 'treasureMapCove') if wordIs('~tml'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~pg'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_PG, 'ParlorWorld') if wordIs('~pgvip'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_PG, 'ParlorVIPWorld') if wordIs('~pgl'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~tutorial'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_TUTORIAL, 'RambleshackWorld', self.cr.playGame.handleTutorialGeneration) if wordIs('~tutoriall'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~pvp'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_PVP, 'pvp_mayhemWorld1') if wordIs('~pirateer'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_PVP, 'pirateerMap') if wordIs('~pvpl'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~tortuga'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'TortugaWorld') if wordIs('~portRoyal'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'PortRoyalWorld') if wordIs('~delFuego'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'DelFuegoWorld') if wordIs('~bilgewater'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'BilgewaterWorld') if wordIs('~kingshead'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'KingsheadWorld') if wordIs('~cuba'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CubaWorld') if wordIs('~rumrunner'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'RumrunnerWorld') if wordIs('~wildisland'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'WildIslandWorld') if wordIs('~caveA'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CaveAWorld') if wordIs('~caveB'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CaveBWorld') if wordIs('~caveC'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CaveCWorld') if wordIs('~caveD'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CaveDWorld') if wordIs('~caveE'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'CaveEWorld') if wordIs('~jungleA'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'JungleTestWorldA') if wordIs('~jungleB'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'JungleTestWorld') if wordIs('~jungleC'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'JungleTestWorldC') if wordIs('~swampA'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'SwampTestWorld') if wordIs('~mainWorld'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~gameArea'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_GENERIC, 'GameAreaSandbox') if wordIs('~blackpearl') or wordIs('~bp'): args = word.split() if len(args) == 1: self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_TM, 'BlackpearlWorld') if wordIs('~scrimmage'): self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_SCRIMMAGE, 'ScrimmageTestWorld') if wordIs('~fireworks') or wordIs('~fw'): args = word.split() if len(args) >= 2 and args[1] in ['show', 's']: if len(args) >= 3: showType = args[2] timestamp = 0.0 if len(args) >= 4: timestamp = args[3] if base.cr.activeWorld: localAvatar.getParentObj().fireworkShowType = int(showType) localAvatar.getParentObj().beginFireworkShow(timeStamp=timestamp) else: if len(args) >= 2 and args[1] in ['type', 't']: fireworkType = 0 if len(args) >= 3: fireworkType = int(args[2]) from pirates.effects.Firework import Firework firework = Firework(fireworkType) firework.reparentTo(render) firework.setPos(Point3(10525, 19000, 245)) firework.play() else: if len(args) >= 2 and args[1] in ['effect', 'e']: trailType = 0 burstType = 0 if len(args) >= 3: burstType = int(args[2]) if len(args) >= 4: trailType = int(args[3]) from pirates.effects.FireworkEffect import FireworkEffect firework = FireworkEffect(burstType, trailType) firework.reparentTo(render) firework.setPos(Point3(10525, 19000, 245)) firework.play() if wordIs('~te'): if localAvatar.gameFSM.getCurrentOrNextState() == 'LandRoam': localAvatar.b_setGameState('TeleportOut') else: if localAvatar.gameFSM.getCurrentOrNextState() == 'TeleportOut': localAvatar.b_setGameState('LandRoam') if wordIs('~lfa'): args = word.split() activityName = None if len(args) >= 2: activityName = args[1] if activityName == 'blackjack': localAvatar.requestActivity(PiratesGlobals.GAME_STYLE_BLACKJACK) else: if activityName == 'poker': localAvatar.requestActivity(PiratesGlobals.GAME_STYLE_POKER) else: if activityName == 'pvp': localAvatar.requestActivity(PiratesGlobals.GAME_TYPE_PVP) else: if activityName == 'tm': localAvatar.requestActivity(PiratesGlobals.GAME_TYPE_TM) else: if activityName == 'hsa': localAvatar.requestActivity(PiratesGlobals.GAME_TYPE_HSA) else: if activityName == 'mmp': self.cr.teleportMgr.initiateTeleport(PiratesGlobals.INSTANCE_MAIN, WorldGlobals.PiratesWorldSceneFileBase) if wordIs('~term') or wordIs('terminator'): localAvatar.setEquippedWeapons([10103, 10106, 10115]) localAvatar.d_requestEquipWeapons([10103, 10106, 10115]) if wordIs('~battleRandom'): args = word.split() if len(args) >= 2: command = args[1] if command == 'resync': localAvatar.battleRandom.resync() self.notify.info('Client Battle random resynced, counter=0') else: response = 'Client Battle random attack counter=%s main counter=%s' % (localAvatar.battleRandom.attackCounter, localAvatar.battleRandom.mainCounter) self.setMagicWordResponse(response) if wordIs('~cutscene'): args = word.split() name = None if len(args) >= 2: csId = args[1] else: csId = base.config.GetString('default-cutscene', '0') if int(csId) >= len(CutsceneData.CutsceneNames): return name = CutsceneData.CutsceneNames[int(csId)] cs = PythonUtil.ScratchPad() def destroyCutscene(cs=cs): cs.cutscene.destroy() c = Cutscene.Cutscene(self.cr, name, PythonUtil.DelayedFunctor(destroyCutscene, '~cutscene-destroy')) cs.cutscene = c c.play() destroyCutscene = None if wordIs('~forceLod'): for n in render.findAllMatches('**/+LODNode'): n.node().forceSwitch(n.node().getHighestSwitch()) if wordIs('~wave'): args = word.split() patch = base.cr.doFind('OceanGrid').water.patch if len(args) < 4: response = '~wave num amplitude wavelength speed' numWaves = patch.getNumWaves() num = 0 while numWaves > 0: if patch.isWaveEnabled(num): numWaves -= 1 if patch.getWaveTarget(num) != SeaPatchRoot.WTZ or patch.getWaveFunc(num) != SeaPatchRoot.WFSin: response = '%s\n%s NON-SINE-WAVE' % (response, num) else: response = '%s\n%s amp=%s len=%s spd=%s' % (response, num, patch.getWaveAmplitude(num), patch.getWaveLength(num), patch.getWaveSpeed(num)) num += 1 else: num = int(args[1]) amplitude = float(args[2]) wavelength = float(args[3]) speed = float(args[4]) patch.enableWave(num) patch.setWaveTarget(num, SeaPatchRoot.WTZ) patch.setWaveFunc(num, SeaPatchRoot.WFSin) patch.setChoppyK(num, 0) patch.setWaveAmplitude(num, amplitude) patch.setWaveLength(num, wavelength) patch.setWaveSpeed(num, speed) response = 'wave %s modified' % num self.setMagicWordResponse(response) if wordIs('~roll'): args = word.split() if len(args) < 2: response = '~roll angle [fakeMass]' else: if localAvatar.ship is None: response = 'not on a ship' else: if len(args) > 2: localAvatar.ship._rocker.setFakeMass(float(args[2])) localAvatar.ship.addRoll(float(args[1])) response = 'rolling!' self.setMagicWordResponse(response) if wordIs('~ru'): if hasattr(self, 'radarUtil') and self.radarUtil and not self.radarUtil.isDestroyed(): self.radarUtil.destroy() else: self.radarUtil = RadarUtil() if __dev__ and wordIs('~todpanel'): tod = base.cr.timeOfDayManager from pirates.leveleditor import TimeOfDayPanel p = TimeOfDayPanel.TimeOfDayPanel(tod) if __dev__ and wordIs('~kraken'): args = word.split()[1:] if args and args[0]: if not hasattr(base, 'oobeMode') or not base.oobeMode: base.oobe() base.oobeCamera.wrtReparentTo(render) if wordIs('~pvpmoney') or wordIs('~pvpinfamy'): if localAvatar.ship and localAvatar.ship.renownDisplay: taskMgr.doMethodLater(2.0, localAvatar.ship.renownDisplay.loadRank, 'pvp-infamy-display', []) if localAvatar.guiMgr and localAvatar.guiMgr.pvpPanel and hasattr(localAvatar.guiMgr.pvpPanel, 'renownDisplay') and localAvatar.guiMgr.pvpPanel.renownDisplay: taskMgr.doMethodLater(2.0, localAvatar.guiMgr.pvpPanel.renownDisplay.loadRank, 'pvp-infamy-display', []) if localAvatar.guiMgr and localAvatar.guiMgr.titlesPage: taskMgr.doMethodLater(2.0, localAvatar.guiMgr.titlesPage.refresh, 'titles-refresh', []) if wordIs('~profileCard'): args = word.split() if len(args) >= 2: profileId = int(args[1]) else: profileId = localAvatar.getDoId() localAvatar.guiMgr.handleAvatarDetails(profileId) if wordIs('~gmNameTag'): args = word.split() if len(args) < 2 and localAvatar.isGM(): response = PLocalizer.MAGICWORD_GMNAMETAG self.setMagicWordResponse(response) if len(args) >= 2 and localAvatar.isGM(): if args[1] == 'enable': localAvatar.setGMNameTagState(1) else: if args[1] == 'disable': localAvatar.setGMNameTagState(0) else: if args[1] == 'setString': xCount = 0 stringToSet = '' for i in args: if xCount < 2: pass else: stringToSet = '%s %s' % (stringToSet, args[xCount]) xCount += 1 localAvatar.setGMNameTagString(stringToSet) else: if args[1] == 'setColor': localAvatar.setGMNameTagColor(args[2]) else: if wordIs('~liveCam'): LiveCamTransforms = {'1': [Vec3(-385.776, -2369.64, 52.4644), Vec3(-18.0412, -3.24766, 0), 39.3076, 0], '2': [Vec3(79.1195, -2521.26, 52.4644), Vec3(-18.0412, -3.24766, 0), 39.3076, 0], '3': [Vec3(2858.35, 931.111, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '4': [Vec3(3551.93, 532.437, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '5': [Vec3(4245.52, 133.763, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '6': [Vec3(4939.1, -264.911, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1]} lodNodes = render.findAllMatches('**/+LODNode') for i in xrange(0, lodNodes.getNumPaths()): lodNodes[i].node().forceSwitch(lodNodes[i].node().getHighestSwitch()) localAvatar.clearInterestNamed(None, ['liveCam']) localAvatar.getParentObj().setOceanVisEnabled(0) args = word.split() if len(args) > 1: camNum = args[1] camData = LiveCamTransforms[camNum] localAvatar.cameraFSM.request('Control') if camData[3]: camParent = render else: camParent = localAvatar.getParentObj() base.cam.reparentTo(camParent) base.cam.setPos(camData[0]) base.cam.setHpr(camData[1]) base.camLens.setFov(camData[2]) if camData[3] == 0: localAvatar.setInterest(localAvatar.getParentObj().doId, [ 11622, 11621, 11443, 11442, 11620, 11619, 11441, 11086, 11085, 11263, 11264, 11265, 11444, 11266, 11267, 11445, 11446, 11268, 11269, 11447, 11449, 11270, 11448, 11271, 11272, 11450, 11451, 11273, 11095, 11093, 11094, 11092, 11091, 11090, 11089, 11088, 11087, 11623, 11624, 11625, 11626, 11627, 11628, 11629, 11807, 11630, 11452, 11274, 11096, 11275, 11277, 11276, 11099, 11098, 11097, 11455, 11454, 11453, 11631, 11632, 11633, 11100, 11278, 11456, 11634, 11990, 11812, 11811, 11989, 11988, 11987, 11809, 11810, 11808, 11986, 11985, 12164, 12163, 12162, 11984, 11806, 11805, 11983, 12161, 12160, 11982, 11804, 11803, 11981, 11980, 12159, 11802, 11801, 11979, 12158, 12157, 12156, 11978, 11799, 11800, 11977, 11798, 11976, 11975, 11797, 11796, 11974, 11084, 11262, 11440, 11618, 11795, 11617, 11439, 11261, 11083, 11082, 11260, 11438, 11616, 11794, 11793, 11615, 11437, 11081, 11259, 11080, 11258, 11436, 11614, 11435, 11257, 11079, 11973, 11972, 12155, 12154, 12153], [ 'liveCam']) else: localAvatar.getParentObj().setOceanVisEnabled(1) localAvatar.getParentObj().setFlatShips(0) else: localAvatar.cameraFSM.request('FPS') base.cam.reparentTo(camera) base.cam.setPos(0, 0, 0) base.cam.setHpr(0, 0, 0) base.camLens.setFov(63.742) else: if wordIs('~showCams'): render.findAllMatches('**/liveCamParent*').detach() LiveCamTransforms = {'1': [Vec3(-385.776, -2369.64, 52.4644), Vec3(-18.0412, -3.24766, 0), 39.3076, 0], '2': [Vec3(79.1195, -2521.26, 52.4644), Vec3(-18.0412, -3.24766, 0), 39.3076, 0], '3': [Vec3(2858.35, 931.111, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '4': [Vec3(3551.93, 532.437, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '5': [Vec3(4245.52, 133.763, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1], '6': [Vec3(4939.1, -264.911, 37.9564), Vec3(-29.8904, -7.12525, 0), 39.3076, 1]} camModel = NodePath('camera') lens = PerspectiveLens() lens.setFov(base.camLens.getFov()) lens.setFov(39.3076) g = lens.makeGeometry() gn = GeomNode('frustum') gn.addGeom(g) gnp = camModel.attachNewNode(gn) if not localAvatar.getShip(): for camNum in range(1, 3): camData = LiveCamTransforms[str(camNum)] camParent = localAvatar.getParentObj().attachNewNode('liveCamParent-%s' % camNum) camParent.setPos(camData[0]) camParent.setHpr(camData[1]) camParent.setScale(10) camModel.instanceTo(camParent) for camNum in range(3, 7): camData = LiveCamTransforms[str(camNum)] camParent = render.attachNewNode('liveCamParent-%s' % camNum) camParent.setPos(camData[0]) camParent.setHpr(camData[1]) camParent.setScale(10) camModel.instanceTo(camParent) else: if wordIs('~hideCams'): render.findAllMatches('**/liveCamParent*').detach() else: if wordIs('~dropBlockers'): ga = localAvatar.getParentObj() blockers = ga.findAllMatches('**/blocker_*') blockers.stash() else: if __dev__ and wordIs('~effects'): args = word.split() self.configEffects(args) else: if __dev__ and wordIs('~shipsRock'): configIs = 'ships-rock' args = word.split() self.configShipsRock(configIs, args) else: if __dev__ and wordIs('~shipsRockWithoutWaves'): configIs = 'ships-rock-without-waves' args = word.split() self.configShipsRock(configIs, args) else: if __dev__ and wordIs('~wantCompassTask'): self.configToggleBool('want-compass-task') else: if __dev__ and wordIs('~wantPatchie'): def turnOffSeapatch(): if hasattr(base.cr.activeWorld.worldGrid, 'cleanupWater'): base.cr.activeWorld.worldGrid.cleanupWater() def turnOnSeapatch(): if hasattr(base.cr.activeWorld.worldGrid, 'setupWater'): base.cr.activeWorld.worldGrid.setupWater() self.configToggleBool('want-compass-task', offCode=turnOffSeapatch, onCode=turnOnSeapatch) else: if __dev__ and wordIs('~wantShipColl'): if localAvatar.ship and localAvatar.ship.controlManager.controls.has_key('ship'): if localAvatar.ship.controlManager.controls['ship'].collisionsActive: localAvatar.ship.controlManager.controls['ship'].setCollisionsActive(0) self.setMagicWordResponse('ship collisions OFF') else: localAvatar.ship.controlManager.controls['ship'].setCollisionsActive() self.setMagicWordResponse('ship collisions ON') else: self.setMagicWordResponse('get on a ship!') else: if __dev__ and wordIs('~wantCannonColl'): if localAvatar.ship: args = word.split() if len(args) > 1: type = int(args[1]) base.cr.cannonballCollisionDebug = type else: if base.cr.cannonballCollisionDebug == 0: base.cr.cannonballCollisionDebug = 1 else: base.cr.cannonballCollisionDebug = 0 if base.cr.cannonballCollisionDebug == 0: self.setMagicWordResponse('cannonball collisions set to ALL OFF') else: if base.cr.cannonballCollisionDebug == 1: self.setMagicWordResponse('cannonball collisions set to ALL ON') else: if base.cr.cannonballCollisionDebug == 2: self.setMagicWordResponse('cannonball collisions set to Broadside ONLY ON') else: if base.cr.cannonballCollisionDebug == 3: self.setMagicWordResponse('cannonball collisions set to Deck ONLY ON') else: self.setMagicWordResponse('get on a ship!') else: if __dev__ and wordIs('~wantEventCollider'): self.configWantEventCollider() else: if __dev__ and wordIs('~wantFloorEventRay'): self.configWantFloorEventRay() else: if __dev__ and wordIs('~optimized1'): if not localAvatar.ship: self.setMagicWordResponse('get on a ship FIRST') self.configWantFloorEventRay() self.configWantEventCollider() self.configWantWaterRippleRay() self.configToggleBool('want-compass-task') configIs = 'ships-rock' args = word.split() self.configShipsRock(configIs, args) self.configEffects(args) else: if __dev__ and wordIs('~optimized2'): if not localAvatar.ship: self.setMagicWordResponse('get on a ship FIRST') self.configWantFloorEventRay() self.configWantEventCollider() self.configWantWaterRippleRay() else: if wordIs('~setCannonFireVis'): args = word.split() type = 'all' if len(args) > 2: if args[2] == 'broadside': type = 'broadside' else: if args[2] == 'deck': type = 'deck' if len(args) > 1: dist = int(args[1]) else: if type == 'broadside': dist = config.GetInt('cannon-fire-broadside-dist', 3500) else: dist = config.GetInt('cannon-fire-dist', 3500) if type == 'all' or type == 'deck': DistributedSimpleShip.DistributedSimpleShip.CannonFireDist = dist self.setMagicWordResponse('setting deck cannon visibility distance to %s' % dist) if type == 'all' or type == 'broadside': DistributedSimpleShip.DistributedSimpleShip.CannonFireBroadsideDist = dist self.setMagicWordResponse('setting broadside cannon visibility distance to %s' % dist) else: if wordIs('~setWakeVis'): args = word.split() dist = config.GetInt('ship-wake-dist', 3800) if len(args) > 1: dist = int(args[1]) DistributedSimpleShip.DistributedSimpleShip.ShipWakeDist = dist self.setMagicWordResponse('setting wake visibility distance to %s' % dist) else: if wordIs('~setRockVis'): args = word.split() dist = config.GetInt('ship-rock-dist', 1000) if len(args) > 1: dist = int(args[1]) DistributedSimpleShip.DistributedSimpleShip.ShipRockDist = dist self.setMagicWordResponse('setting rocking visibility distance to %s' % dist) else: if __dev__ and wordIs('~wantReducedShipColl'): shipPilot = localAvatar.ship.controlManager.controls.get('ship') shipCollNode = shipPilot.cNodePath.node() if shipCollNode.getNumSolids() > 1: shipCollNode.removeSolid(2) shipCollNode.removeSolid(1) self.setMagicWordResponse('removing mid and stern spheres') else: shipCollNode.addSolid(shipPilot.cMidSphere) shipCollNode.addSolid(shipPilot.cSternSphere) self.setMagicWordResponse('adding mid and stern spheres') else: if __dev__ and wordIs('~wantCollideMasks'): args = word.split() force = None if len(args) > 1: force = int(args[1]) from pirates.ship import DistributedSimpleShip clientShips = filter(lambda x: isinstance(x, DistributedSimpleShip.DistributedSimpleShip) and x is not localAvatar.ship, base.cr.doId2do.values()) cleared = False for currShip in clientShips: shipCollWall = currShip.hull[0].collisions.find('**/collision_hull') if not shipCollWall.isEmpty(): if shipCollWall.getCollideMask() & PiratesGlobals.ShipCollideBitmask == BitMask32.allOff(): shipCollWall.setCollideMask(shipCollWall.getCollideMask() | PiratesGlobals.ShipCollideBitmask) else: shipCollWall.setCollideMask(shipCollWall.getCollideMask() ^ PiratesGlobals.ShipCollideBitmask) cleared = True if cleared: self.setMagicWordResponse('cleared ship collide bitmasks') else: self.setMagicWordResponse('set ship collide bitmasks') else: if __dev__ and wordIs('~saveCamera'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: id = cameraOV.saveFixture(int(args[0])) else: id = cameraOV.saveFixture() self.setMagicWordResponse('camera saved: %d' % id) else: if __dev__ and wordIs('~removeCamera'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.removeFixture(int(args[0])) else: self.setMagicWordResponse('need camera id to remove') else: if __dev__ and wordIs('~standbyCamera'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.standbyFixture(int(args[0])) else: self.setMagicWordResponse('need camera id to standby') else: if __dev__ and wordIs('~blinkCamera'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.blinkFixture(int(args[0])) else: self.setMagicWordResponse('need camera id to blink') else: if __dev__ and wordIs('~testCamera'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.testFixture(int(args[0])) else: self.setMagicWordResponse('need camera id to test') else: if __dev__ and wordIs('~storeCameras'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.storeToFile(args[0]) else: self.setMagicWordResponse('need name to store') else: if __dev__ and wordIs('~loadCameras'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() args = word.split()[1:] if args: cameraOV.loadFromFile(args[0]) else: self.setMagicWordResponse('need name to load') else: if __dev__ and wordIs('~startRecording'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() cameraOV.startRecording() else: if __dev__ and wordIs('~stopRecording'): camera = base.cr.doFind('DistributedCamera') cameraOV = camera.getOV() cameraOV.stopRecording() else: if __dev__ and base.config.GetBool('want-fishing-game', 0) and wordIs('~fishcam'): self.toggleFishCam() self.setMagicWordResponse('toggling fish cam') cameraOV.stopRecording() else: if wordIs('~fishR'): self.doRequestFish(word, localAvatar, zoneId, localAvatar.doId) else: if wordIs('~leg'): args = word.split()[1:] if args: base.fishingGame.wantLeg = arg[0] else: base.fishingGame.wantLeg = 1 else: if wordIs('~legWin'): if hasattr(base, 'fishingGame'): if base.fishingGame.fsm.getCurrentOrNextState() == 'LegendaryFish': base.fishingGame.lfgFsm.request('Win') else: self.setMagicWordResponse('Not battling legendary fish! (use ~leg)') else: self.setMagicWordResponse('Fishing Game not started.') else: if wordIs('~cdunlockall'): messenger.send('cdUnlockAll') else: if wordIs('~camSpin'): args = word.split() dist = 40 if len(args) > 1: dist = float(args[1]) def spin(task=None): localAvatar.cameraFSM.getCurrentCamera().setH(localAvatar.cameraFSM.getCurrentCamera().getH() + 1) return Task.cont if taskMgr.hasTaskNamed('camSpin'): localAvatar.cameraFSM.getCurrentCamera().setH(0) localAvatar.cameraFSM.getCurrentCamera()._setCamDistance(14) localAvatar.cameraFSM.getCurrentCamera().forceMaxDistance = True localAvatar.cameraFSM.getCurrentCamera()._startCollisionCheck() taskMgr.remove('camSpin') else: localAvatar.cameraFSM.getCurrentCamera()._stopCollisionCheck() localAvatar.cameraFSM.getCurrentCamera().forceMaxDistance = False localAvatar.cameraFSM.getCurrentCamera()._setCamDistance(dist) taskMgr.add(spin, 'camSpin') else: if wordIs('~hostilizeNear'): interactivesNear = base.cr.interactionMgr.sortInteractives() for currInteractive in interactivesNear: if isinstance(currInteractive, DistributedNPCTownfolk.DistributedNPCTownfolk): self.b_setMagicWord('~hostilize ' + str(currInteractive.doId)) return def configEffects(self, args): effectCats = args[1:] def toggleEffects(on=None): if effectCats: for currEffectCat in effectCats: if currEffectCat == 'clearCustom': base.cr.effectToggles = {} continue if currEffectCat == 'listEffectCats': response = 'known effect types are: \n%s' % base.cr.effectTypes.keys() self.setMagicWordResponse(response) continue effectTypes = base.cr.effectTypes.get(currEffectCat, [currEffectCat]) for currEffectType in effectTypes: newStatus = not base.cr.effectToggles.get(currEffectType, base.config.GetBool('want-special-effects', 1)) base.cr.effectToggles[currEffectType] = newStatus response = 'effect %s set to %s' % (currEffectType, choice(newStatus, 'ON', 'OFF')) self.setMagicWordResponse(response) base.cr.wantSpecialEffects = base.config.GetBool('want-special-effects', 1) from pirates.ship import DistributedSimpleShip clientShips = filter(lambda x: isinstance(x, DistributedSimpleShip.DistributedSimpleShip), base.cr.doId2do.values()) if base.cr.queryShowEffect('BlackSmoke') or base.cr.queryShowEffect('Fire'): for ship in clientShips: if base.cr.queryShowEffect('BlackSmoke'): ship.startSmoke() if base.cr.queryShowEffect('Fire'): ship.startFire() else: if not base.cr.queryShowEffect('BlackSmoke') or not base.cr.queryShowEffect('Fire'): for ship in clientShips: if not base.cr.queryShowEffect('BlackSmoke'): ship.stopSmoke() if not base.cr.queryShowEffect('Fire'): ship.stopFire() if effectCats: toggleEffects() else: self.configToggleBool('want-special-effects', offCode=lambda p1=False: toggleEffects(p1), onCode=lambda p1=True: toggleEffects(p1)) return def configWantEventCollider(self): currControls = localAvatar.controlManager.currentControls if currControls == None: return colliderExists = base.shadowTrav.hasCollider(currControls.cEventSphereNodePath) or currControls.cTrav.hasCollider(currControls.cEventSphereNodePath) if colliderExists: currControls.cTrav.removeCollider(currControls.cEventSphereNodePath) base.shadowTrav.removeCollider(currControls.cEventSphereNodePath) currControls.pusher.addInPattern('enter%in') currControls.pusher.addOutPattern('exit%in') self.setMagicWordResponse('event sphere OFF') else: currControls.pusher.clearInPatterns() currControls.pusher.clearOutPatterns() avatarRadius = 1.4 base.shadowTrav.addCollider(currControls.cEventSphereNodePath, currControls.event) self.setMagicWordResponse('event sphere ON') return def configWantFloorEventRay(self): if localAvatar.cTrav.hasCollider(localAvatar.cFloorNodePath): localAvatar.cTrav.removeCollider(localAvatar.cFloorNodePath) self.setMagicWordResponse('floor event ray OFF') else: localAvatar.cTrav.addCollider(localAvatar.cFloorNodePath, localAvatar.floorEventHandler) self.setMagicWordResponse('floor event ray ON') def configWantWaterRippleRay(self): if localAvatar.cTrav.hasCollider(localAvatar.cWaterNodePath): localAvatar.cTrav.removeCollider(localAvatar.cWaterNodePath) self.setMagicWordResponse('water ripple ray OFF') else: localAvatar.cTrav.addCollider(localAvatar.cWaterNodePath, localAvatar.waterEventHandler) self.setMagicWordResponse('water ripple ray ON') def configWantShadowPlacer(self): if localAvatar.shadowPlacer.cTrav.hasCollider(localAvatar.shadowPlacer.cRayNodePath): localAvatar.shadowPlacer.cTrav.removeCollider(localAvatar.shadowPlacer.cRayNodePath) self.setMagicWordResponse('shadow placer ray OFF') else: localAvatar.shadowPlacer.cTrav.addCollider(localAvatar.shadowPlacer.cRayNodePath, localAvatar.shadowPlacer.lifter) self.setMagicWordResponse('shadow placer ray ON') def configShipsRock(self, configIs, args): onlyPlayerRocks = False if len(args) > 1: if args[1] == 'playerOnly': onlyPlayerRocks = True (config.GetInt(configIs, 1) == 1 or config.GetInt(configIs, 1) == 2) and ConfigVariableInt(configIs).setValue(0) self.setMagicWordResponse('%s OFF (all ships)' % configIs) else: if onlyPlayerRocks: ConfigVariableInt(configIs).setValue(2) self.setMagicWordResponse('%s ON (local player ship only)' % configIs) else: ConfigVariableInt(configIs).setValue(1) self.setMagicWordResponse('%s ON (all ships)' % configIs) def configToggleBool(self, configName, defaultVal=1, offCode=None, onCode=None): currVal = not config.GetBool(configName, defaultVal) loadPrcFileData('', '%s %s' % (configName, currVal)) self.setMagicWordResponse('%s %s' % (configName, choice(currVal, 'ON', 'OFF'))) if currVal: onCode and onCode() else: if not currVal and offCode: offCode() def cameraFollowTgt(self, target, parentId): localAvatar.cTrav.removeCollider(localAvatar.cFloorNodePath) localAvatar.controlManager.use('observer', localAvatar) localAvatar.controlManager.currentControls.disableAvatarControls() localAvatar.guiMgr.setIgnoreAllKeys(True) localAvatar.guiMgr.combatTray.skillMapping.clear() localAvatar.reparentTo(target) localAvatar.setScale(1) parentObj = base.cr.doId2do[parentId] localAvatar.setPos(0, 0, 0) localAvatar.setHpr(render, target.getHpr(render)) localAvatar.stash() if self.pendingCameraReparent: base.cr.relatedObjectMgr.abortRequest(self.pendingCameraReparent) self.pendingCameraReparent = None return def cameraUnfollowTgt(self, target): localAvatar.cTrav.addCollider(localAvatar.cFloorNodePath, localAvatar.floorEventHandler) localAvatar.controlManager.currentControls.enableAvatarControls() localAvatar.controlManager.use('walk', localAvatar) localAvatar.guiMgr.setIgnoreAllKeys(False) localAvatar.guiMgr.combatTray.initCombatTray() localAvatar.unstash() if hasattr(localAvatar, 'followTgt'): del localAvatar.followTgt def cameraReparent(self, targetId, targetParentId, zoneId): targetObj = base.cr.doId2do.get(targetParentId) if targetObj: if not isinstance(targetObj, NodePath): return currParentObj = localAvatar.getParentObj() if self.originalLocation == None: self.originalLocation = [ localAvatar.getLocation(), localAvatar.getPos(currParentObj)] prevPos = None if targetId == 0: if (targetParentId == 0 and zoneId == 0 and self).originalLocation: targetParentId = self.originalLocation[0][0] zoneId = self.originalLocation[0][1] prevPos = self.originalLocation[1] self.originalLocation = None targetObj = base.cr.doId2do.get(targetParentId) if targetObj == None or not isinstance(targetObj, NodePath): self.notify.debug('Parent of target object to reparent avatar/camera to does not yet exist, skipping reparent request') return newPos = prevPos and prevPos else: newPos = Point3(*targetObj.getZoneCellOriginCenter(zoneId)) localAvatar.reparentTo(targetObj) localAvatar.setPos(newPos) localAvatar.isGhosting = True base.cr.doId2do.has_key(targetId) and self.cameraFollowTgt(base.cr.doId2do[targetId], targetParentId) else: if targetId: self.pendingCameraReparent = base.cr.relatedObjectMgr.requestObjects([targetId], eachCallback=lambda param=None, param2=targetParentId: self.cameraFollowTgt(param, param2)) else: if self.pendingCameraReparent: base.cr.relatedObjectMgr.abortRequest(self.pendingCameraReparent) self.pendingCameraReparent = None self.cameraUnfollowTgt(targetObj) localAvatar.isGhosting = False return def shipCreated(self, shipId): return print 'shipCreated(%s)' % shipId ship = base.cr.doId2do.get(shipId) if ship: print 'ship created: %s' % ship ship.localAvatarInstantBoard() ship.enableOnDeckInteractions() def toggleFishCam(self): self.fishCamEnabled = not self.fishCamEnabled if self.fishCamEnabled: base.oobe() base.oobeCamera.setPos(-13.0, 4.0, -6.0) base.oobeCamera.setHpr(90.0, 0.0, 0.0) from pandac.PandaModules import CardMaker from direct.interval.IntervalGlobal import PosInterval, ProjectileInterval, Sequence, Wait cm = CardMaker('fishBackdrop') self.fishBackdrop = render.attachNewNode(cm.generate()) tex = loader.loadTexture('maps/underseaBackdrop.jpg') self.fishBackdrop.setTexture(tex) self.fishBackdrop.reparentTo(localAvatar) self.fishBackdrop.setHpr(90, 0, 0) self.fishBackdrop.setPos(0, -100, -108.7) self.fishBackdrop.setScale(400, 1, 100) self.fishBackdrop.setBin('ground', 20) self.fishBackdrop.setDepthWrite(0) self.fishCamProjectileInterval = Sequence(Wait(4), ProjectileInterval(base.oobeCamera, startPos=Point3(-13.0, 4.0, -6.0), endPos=Point3(-13.0, 164.0, -36.0), duration=3), ProjectileInterval(base.oobeCamera, startPos=Point3(-13.0, 164.0, -36.0), endPos=Point3(-13.0, 4.0, -24.0), gravityMult=-0.5, duration=5), base.oobeCamera.posInterval(5, Point3(-13.0, 4.0, -6.0))) self.fishCamProjectileInterval.start() else: self.fishCamProjectileInterval.finish() del self.fishCamProjectileInterval self.fishBackdrop.reparentTo(hidden) del self.fishBackdrop base.oobe() def doRequestFish(self, word, av, zoneId, senderId): args = word.split() doid = args[1] spot = self.cr.doId2do[int(doid)] spot.requestInteraction(localAvatar.doId)
69.176724
993
0.408349
78,717
0.980958
0
0
0
0
0
0
5,299
0.066035
0207e1cd7c3433152b1e340e7f376f8049a8644d
634
bzl
Python
layers/bazel/deps.bzl
celentes/bazel-container-ubuntu1804
67c12c3f6db785909fa3695c80ebbdec1ff81b61
[ "Apache-2.0" ]
null
null
null
layers/bazel/deps.bzl
celentes/bazel-container-ubuntu1804
67c12c3f6db785909fa3695c80ebbdec1ff81b61
[ "Apache-2.0" ]
null
null
null
layers/bazel/deps.bzl
celentes/bazel-container-ubuntu1804
67c12c3f6db785909fa3695c80ebbdec1ff81b61
[ "Apache-2.0" ]
null
null
null
load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_file") def deps(): excludes = native.existing_rules().keys() if "bazel_installer" not in excludes: http_file( name = "bazel_installer", downloaded_file_path = "bazel-installer.sh", sha256 = "bd7a3a583a18640f58308c26e654239d412adaa833b6b6a7b57a216ab62fabc2", urls = [ "https://releases.bazel.build/4.0.0/release/bazel-4.0.0-installer-linux-x86_64.sh", "https://github.com/bazelbuild/bazel/releases/download/4.0.0/bazel-4.0.0-installer-linux-x86_64.sh", ], )
39.625
116
0.62776
0
0
0
0
0
0
0
0
358
0.564669
0208d63efe0cf495f00648e33345a8f7f3c257eb
4,318
py
Python
db.py
RecycledMedia/apprenticeship-app
67eb18300163dedcc4f473883f20d992644af7b2
[ "BSD-3-Clause" ]
null
null
null
db.py
RecycledMedia/apprenticeship-app
67eb18300163dedcc4f473883f20d992644af7b2
[ "BSD-3-Clause" ]
null
null
null
db.py
RecycledMedia/apprenticeship-app
67eb18300163dedcc4f473883f20d992644af7b2
[ "BSD-3-Clause" ]
null
null
null
import os import sqlite3 class TaskDatabase: def __init__(self, db_filename): self.filename = db_filename self.connection = None def get_connection(self): """ Return a connection to the database, creating one if it doesn't exist """ if self.connection is None: self.connection = sqlite3.connect(self.filename, check_same_thread=False) return self.connection def close_connection(self): """ Close the connection to the database """ if self.connection: self.get_connection().commit() self.connection.close() self.connection = None def get_cursor(self): """ Return a database cursor""" return self.get_connection().cursor() def execute(self, cursor, sql, parameters=None): """ Execute a SQL statement If the cursor is None, one will be automatically created """ if cursor is None: cursor = self.connection.cursor() print(f"Executing SQL: {sql}") if parameters: print(f"Parameters: {parameters}") return cursor.execute(sql, parameters) cursor.execute(sql) self.get_connection().commit() def create_database(self): """ Create the tasks database """ cursor = self.get_cursor() sql = """ CREATE TABLE IF NOT EXISTS tasks ( id integer PRIMARY KEY, created_date text NOT NULL, content text NOT NULL, done boolean DEFAULT false, completed_date text );""" self.execute(cursor, sql) def delete_database(self): """ Delete the tasks database file """ self.close_connection() os.unlink(self.filename) self.connection = None def add_task(self, content): """ Add a task """ # WARNING: This is bad and can lead to SQL Injection attacks! sql = f""" INSERT INTO tasks (created_date, content) VALUES (datetime('now'), '{content.replace("'", "''")}'); """ cursor = self.get_cursor() self.execute(cursor, sql) return cursor.lastrowid def rename_task(self, task_id, content): """ Rename a task """ sql = "UPDATE tasks SET content = ? WHERE id = ?;" return self.execute(None, sql, (content, task_id)) def set_task_done(self, task_id, done=True): """ Update the task to done or undone """ if done: sql = "UPDATE tasks SET done = TRUE, completed_date = datetime('now') WHERE id = ?;" else: sql = "UPDATE tasks SET done = FALSE, completed_date = NULL WHERE id = ?;" return self.execute(None, sql, (task_id, )) def delete_task(self, task_id): """ Delete a task """ sql = "DELETE FROM tasks WHERE id = ?;" return self.execute(None, sql, (task_id, )) def get_task(self, task_id): """ Retrieve a single task by id from the database """ columns = ('id', 'created_date', 'content', 'done', 'completed_date') sql = f"SELECT {', '.join(columns)} FROM tasks WHERE id = ?;" cursor = self.get_cursor() self.execute(cursor, sql, (task_id, )) return self.make_result(columns, cursor.fetchall())[0] def get_tasks(self): """ Retrieve all tasks from the database """ columns = ('id', 'created_date', 'content', 'done', 'completed_date') sql = f"SELECT {', '.join(columns)} FROM tasks ORDER BY id;" cursor = self.get_cursor() self.execute(cursor, sql) return self.make_result(columns, cursor.fetchall()) def get_undone_tasks(self): """ Retrieve all tasks from the database """ columns = ('id', 'created_date', 'content', 'done', 'completed_date') sql = f"SELECT {', '.join(columns)} FROM tasks WHERE done = 0 ORDER BY id;" cursor = self.get_cursor() self.execute(cursor, sql) return self.make_result(columns, cursor.fetchall()) def make_result(self, columns, rows): """ Helper function to convert lists of (list) results into a list of dicts """ records = [] for row in rows: records.append(dict(zip(columns, row))) return records
32.712121
96
0.585456
4,290
0.993516
0
0
0
0
0
0
1,706
0.39509
02097fb19e8e97c98afe88f64252e859af37785e
243
py
Python
python/vars_test.py
runningforlife/CodingExamples
808b12cdb996390225d40a687bf6215c4b7d1822
[ "Apache-2.0" ]
null
null
null
python/vars_test.py
runningforlife/CodingExamples
808b12cdb996390225d40a687bf6215c4b7d1822
[ "Apache-2.0" ]
null
null
null
python/vars_test.py
runningforlife/CodingExamples
808b12cdb996390225d40a687bf6215c4b7d1822
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python def test_vars(): """test variables in python""" int_var = 5 string_var = "hah" assert int_var == 5 assert string_var == 'hah' print("test vars is done") if __name__ == "__main__": test_vars()
15.1875
34
0.596708
0
0
0
0
0
0
0
0
86
0.353909
020a172c0d9f7b9606628146aaa062d113a7182b
7,199
py
Python
src/data_preparation/tfrecords_and_queues.py
Zhenxingzhang/tiny_imagenet
f44512023ce52df30cdffd80d3cb7cc4e1426354
[ "Apache-2.0" ]
null
null
null
src/data_preparation/tfrecords_and_queues.py
Zhenxingzhang/tiny_imagenet
f44512023ce52df30cdffd80d3cb7cc4e1426354
[ "Apache-2.0" ]
null
null
null
src/data_preparation/tfrecords_and_queues.py
Zhenxingzhang/tiny_imagenet
f44512023ce52df30cdffd80d3cb7cc4e1426354
[ "Apache-2.0" ]
null
null
null
""" Up to now we have held all data in memory. This is of course impossible with large datasets. In this file we explore the use of TFRecords (binary files quickly loading data from disk) and Queues to store asynchronously loading data. In this example we the TinyImageNet-200 dataset which has 100,000 64x64 images for 200 classes We will examine 2 options for reading from TFRecord files: a) reading from the record directly one example at a time b) reading from the record into a queue and sampling batches from that queue For more info, consult the great documentation on this from Tensorflow at https://www.tensorflow.org/versions/r0.12/how_tos/reading_data/index.html """ from tqdm import tqdm import numpy as np import tensorflow as tf import matplotlib # to remove issue with default matplotlib backend (causing runtime error "python is not installed as a framework") matplotlib.use('Agg') import matplotlib.pyplot as plt from PIL import Image import os from src.common.paths import DATA_PATH def grey_to_rgb(im): w, h = im.shape ret = np.empty((w, h, 3), dtype=np.uint8) ret[:, :, 2] = ret[:, :, 1] = ret[:, :, 0] = im return ret def csv_to_record(csv_file, tfrecord_file): with open(csv_file) as f: lines = f.readlines() np.random.shuffle(lines) writer = tf.python_io.TFRecordWriter(tfrecord_file) # iterate over each example # wrap with tqdm for a progress bar for line in tqdm(lines): path = line.split(',')[0] image = np.array(Image.open(path)) image_name = path.split("/")[-1] if len(image.shape) == 2: # there are some greyscale image in data, reformat them image = grey_to_rgb(image) flat_image = image.flatten().astype("int64") text_label = line.split(',')[1].lstrip() label = -1 if (text_label == '' or text_label is None) else int(text_label) # construct the Example proto object example = tf.train.Example( # Example contains a Features proto object features=tf.train.Features( # Features contains a map of string to Feature proto objects # A Feature contains one of either a int64_list, # float_list, or bytes_list feature={'label': tf.train.Feature( int64_list=tf.train.Int64List(value=[label])), 'image': tf.train.Feature( int64_list=tf.train.Int64List(value=flat_image)), 'filename': tf.train.Feature( bytes_list=tf.train.BytesList(value=[image_name])) } ) ) # use the proto object to serialize the example to a string serialized = example.SerializeToString() # write the serialized object to disk writer.write(serialized) def read_record_to_queue(tf_record_name, shapes, plot=None): def read_and_decode_single_example(filename): # first construct a queue containing a list of filenames. # this lets a user split up there dataset in multiple files to keep # size down filename_queue = tf.train.string_input_producer([filename], num_epochs=None) # Unlike the TFRecordWriter, the TFRecordReader is symbolic # this means it creates a function and adds it to our graph that can be evaluation with our session # Each time we evaluate it it will pull the next batch off the queue and return that data reader = tf.TFRecordReader() # One can read a single serialized example from a filename # serialized_example is a Tensor of type string. _, serialized_example = reader.read(filename_queue) # The serialized example is converted back to actual values. # One needs to describe the format of the objects to be returned features = tf.parse_single_example( serialized_example, features={ # We know the length of both fields. If not the # tf.VarLenFeature could be used 'label': tf.FixedLenFeature([shapes['label']], tf.int64), 'image': tf.FixedLenFeature([np.product(shapes['image'])], tf.int64) }) # now return the converted data label = features['label'] image = features['image'] return label, image # returns symbolic label and image label, image = read_and_decode_single_example(tf_record_name) # groups examples into batches randomly # min_after_queue = size of buffer that will be randomly sampled # capcity = maxmimum examples to prefetch images_batch, labels_batch = tf.train.shuffle_batch([image, label], batch_size=32, capacity=2000, min_after_dequeue=1000) sess = tf.Session() # Initialize graph sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess=sess) # grab examples back. print('Reading random batches of 32') if plot: plt.suptitle('Read in batches from queue') for i in range(plot): # get ith batch label_vals, image_vals = sess.run([labels_batch, images_batch]) idx = np.random.randint(0, 32) # sample 1 instance from batch label_val = np.array(label_vals)[idx] if np.array(label).size > 1: label_val = np.argmax(label_val) image_val = np.array(image_vals)[idx] plt.subplot(3, plot / 3 + (1 if plot % 3 > 0 else 0), i + 1) plt.xticks(()) plt.yticks(()) plt.title(label_val) plt.imshow(image_val.reshape(shapes['image']).astype("uint8")) plt.show() else: for i in range(5): label_vals, image_vals = sess.run([labels_batch, images_batch]) print('Labels of batch {} : {}'.format(i, label_vals)) if i == 10: print("That's enough of that!") break if __name__ == '__main__': # create TFRecords from csv files if necessary for set_name in ['train', 'val', 'test']: tfrecord_path = os.path.join(DATA_PATH, "{}.tfrecord".format(set_name)) if not os.path.exists(tfrecord_path): print('Creating TFRecord from csv files for set: {}'.format(set_name)) train_csv = os.path.join(DATA_PATH, "{}.csv".format(set_name)) csv_to_record(train_csv, tfrecord_path) else: print('TFRecord for {} exists, nothing to do'.format(set_name)) PLOT = 10 # number of images to plot (set == None to suppress plotting) # read from record one at time print('Reading from record one at a time') val_tfrecord_file = os.path.join(DATA_PATH, "train.tfrecord") # read_from_record(val_tfrecord_file, shapes={'label': 1, 'image': (64, 64, 3)}, # plot=PLOT) # read from record into queue, shuffle and batch print('Reading from record into queue, random sample from queue in batches') read_record_to_queue(val_tfrecord_file, shapes={'label': 1, 'image': (64, 64, 3)}, plot=PLOT)
41.137143
114
0.633282
0
0
0
0
0
0
0
0
2,977
0.41353
020a1a0bc964b8990c94fa3dbddf6619f8e10b21
2,906
py
Python
relialok/SerialPort.py
jrhosk/relialok
28d59dfd39296695ebec19387eda9b986ecdd60f
[ "MIT" ]
null
null
null
relialok/SerialPort.py
jrhosk/relialok
28d59dfd39296695ebec19387eda9b986ecdd60f
[ "MIT" ]
null
null
null
relialok/SerialPort.py
jrhosk/relialok
28d59dfd39296695ebec19387eda9b986ecdd60f
[ "MIT" ]
null
null
null
import serial import serial.tools.list_ports from PyQt5.QtCore import QObject import relialok.Logger class SerialPort(QObject): @relialok.Logger.function_log def __init__(self, port, parent = None): self.port = port self.resource_free = True self.connection_active = True self.port_release = True super(SerialPort, self).__init__(parent) self.serial = serial.Serial(self.port, '9600', timeout=5) @relialok.Logger.function_log def send(self, progress_callback=None, *args, **kwargs): ''' Send command to serial port if resource is not currently in use and wait for reply. :param cmd: hardware command :param progress_callback: signal handler (unused currently) :return: ''' self.command = kwargs['command'] self.resource_free = False while self.port_release == False: # Wait for Listen to release resource pass try: print('Reading serial port on {port}'.format(port=self.port)) self.serial.write('{cmd}\n'.format(cmd=self.command).encode()) self.serial.flush() line = self.serial.readline().decode() print("Initialization check: {resp}".format(resp=line)) self.resource_free = True return line except serial.serialutil.SerialException: print('Read failed.') @relialok.Logger.function_log def listen(self, progress_callback): ''' Monitors serial port for incoming data and passes it to decoding function via progress_callback signal. :param progress_callback: Generates a signal to pass data to the decoding function from within the thread. :return: None ''' print('Listening on {port}'.format(port=self.port)) while self.connection_active: try: if self.serial.inWaiting() and self.resource_free: self.port_release = False self.serial.flush() line = self.serial.readline().decode() print("Response check: {resp}".format(resp=line)) progress_callback.emit(line) self.port_release = True else: pass except serial.serialutil.SerialException: print('Listening error occurred.') @relialok.Logger.function_log def _is_open(self): ''' Passes boolean depending on state of serial connection :return: serial port connection state *True/False) ''' return self.serial.is_open @relialok.Logger.function_log def disconnect(self): ''' Close serial port connection. :return: None ''' self.resource_free = False self.connection_active = False self.serial.close()
34.188235
114
0.604955
2,804
0.9649
0
0
2,749
0.945974
0
0
913
0.314178
020a85d2b9268f0ad8b4e717c76fefae39beb819
339
py
Python
Python/DDUtil.py
dalek7/umbrella
cabf0367940905ca5164d104d7aef6ff719ee166
[ "MIT" ]
1
2021-03-09T09:12:02.000Z
2021-03-09T09:12:02.000Z
Python/DDUtil.py
dalek7/umbrella
cabf0367940905ca5164d104d7aef6ff719ee166
[ "MIT" ]
null
null
null
Python/DDUtil.py
dalek7/umbrella
cabf0367940905ca5164d104d7aef6ff719ee166
[ "MIT" ]
null
null
null
import os import datetime def exit(): os._exit(0) def GetTimeString(m = -1): if m==0: s1 = datetime.datetime.now().strftime("%Y%m%d%H%M%S") else: s1 = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") return s1 def MakeDir(directory): if not os.path.exists(directory): os.makedirs(directory)
19.941176
62
0.60767
0
0
0
0
0
0
0
0
29
0.085546
020b56188f2411001ea02312adb3e4b3e9f8fcbc
4,301
py
Python
codes/modelTraining.py
jairock282/hatsi
ecb16fb99115c413e980855ae3d06433ced2260c
[ "MIT" ]
null
null
null
codes/modelTraining.py
jairock282/hatsi
ecb16fb99115c413e980855ae3d06433ced2260c
[ "MIT" ]
null
null
null
codes/modelTraining.py
jairock282/hatsi
ecb16fb99115c413e980855ae3d06433ced2260c
[ "MIT" ]
null
null
null
""" __| |_____________________________________________________________________________________| |__ (__ _____________________________________________________________________________________ __) | | | | | | modelTraining Module | | | | | | | | Trains the LSTM model with the sliding windows of 15 frames | | __| |_____________________________________________________________________________________| |__ (__ _____________________________________________________________________________________ __) | | | | """ import glob import numpy as np import pandas as pd from tensorflow import keras from keras.layers import LSTM,Dense from tensorflow.keras.models import Sequential from tensorflow.keras.utils import to_categorical from sklearn.metrics import multilabel_confusion_matrix, accuracy_score ## ------------------------------------------------ Loading Data ------------------------------------------------------------------ files = glob.glob(r'C:\Users\khmap\depthai-python\Ejemplos_Python\Datos_Completos_L/*.csv') ##Read all the CSV files tam=len(files) ##Total of files tTrain=(70*tam)/100 ##Gets 70% of the files to the train process tTest=tam-tTrain ##Gets 30% of the files to the test process ## -------------- Data matrices -------------- x_train=np.zeros((int(tTrain), 15, 201)) x_test=np.zeros((int(tTest), 15, 201)) y_train=np.zeros(int(tTrain)) y_test=np.zeros(int(tTest)) ## ----------------- Phrases ------------------- phrases=np.array(['A','B','C','Diarrea','DolordeCabeza','DolordeCuerpo','D','E','Fatiga','Fiebre','F','G','H','I','J','K','L','M','N','O','P','Q','R','Sin sena','S','Tos','T','U','V','W','X','Y','Z','Ñ']) ##Phrases label_map = {label:num for num, label in enumerate(phrases)} ##Phrases mapping cont=0 ##Counter to separate 70% of the data to the training process and 30% to the testing process contNum=0 ##Counter to assign to ytest and ytrain cont_x_tra=0 ##Counter of the vector x_train cont_x_tes=0 ##Counter of the vector x_test cont_y_tra=0 ##Counter of the vector y_train cont_y_tes=0 ##Counter of the vector y_test ## Iterate over each CSV file for i in range(0, tam): fRead= pd.read_csv(files[i]) ##Read file res= fRead.values ##Gets all the values res = res[0:len(res), 1:len(res[1])] if cont<70: ## Training data x_train[cont_x_tra]=res y_train[cont_y_tra]=contNum cont=cont+1 cont_x_tra=cont_x_tra + 1 cont_y_tra = cont_y_tra + 1 else: ## Testing data x_test[cont_x_tes] = res y_test[cont_y_tes] = contNum cont = cont + 1 cont_x_tes =cont_x_tes + 1 cont_y_tes = cont_y_tes + 1 if cont==100: cont=0 contNum=contNum+1 ##Converts to binary matrix y_train=to_categorical (y_train).astype(int) y_test=to_categorical (y_test).astype(int) print("Datos Guardados") ## -------------------------------------- Model ------------------------------------------------ model=Sequential() model.add(LSTM(3400,return_sequences=True,activation='relu',input_shape=(15,201))) ##Input layer model.add(LSTM(400,return_sequences=True,activation='relu')) ##Hidden layers model.add(LSTM(128,return_sequences=False,activation='relu')) model.add(Dense(64,activation='relu')) model.add(Dense(34,activation='softmax')) ##Output layer model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy']) model.fit(x_train,y_train,epochs=200) model.summary() ## Summary of the model results print("Modelo entrenado") resul=model.predict(x_test) ##Prediction ## ---------------- Model evaluation ------------------------ print("Evaluacion") ytrue=np.argmax(y_test,axis=1).tolist() yhat=np.argmax(resul,axis=1).tolist() matriz=multilabel_confusion_matrix(ytrue,yhat) ac = accuracy_score(ytrue,yhat) model.save('Entrenamiento_ABC_Enf_1.h5') ##Saves the model
44.802083
215
0.601953
0
0
0
0
0
0
0
0
2,306
0.53603
020c16a78df08433f5dc19175781c44bf2dcbb01
1,763
py
Python
datasource/mylaps/tests.py
SphinxNZ/game-on
da10ea9303563cd91ccab13321ba15a927e703e5
[ "Apache-2.0" ]
null
null
null
datasource/mylaps/tests.py
SphinxNZ/game-on
da10ea9303563cd91ccab13321ba15a927e703e5
[ "Apache-2.0" ]
null
null
null
datasource/mylaps/tests.py
SphinxNZ/game-on
da10ea9303563cd91ccab13321ba15a927e703e5
[ "Apache-2.0" ]
null
null
null
import datetime from django.utils import timezone from django.test import TestCase from sport.models import Sport, Competition, Venue from compete.models import CompetitionRound from compete.motorsport.models import Race from datasource.models import DataSource from datasource.mylaps.scoreboard import ScoreboardHandler class ScoreboardTestCase(TestCase): def setUp(self): sport = Sport.objects.create(name="test sport") competition = Competition.objects.create(sport=sport, name="test comp") round = CompetitionRound.objects.create(competition=competition, name="test round") venue = Venue.objects.create(real_name="test venue") datasource = DataSource.objects.create(data_source_type="Client", round=round ) race = Race.objects.create( sport=sport, competition=competition, venue=venue, number=1, name="test race" ) self.handler = ScoreboardHandler(datasource, competition, round, timezone.datetime.now().date()) self.handler.race = race def test_heartbeat(self): """ Make sure the heartbeat works """ changes = self.handler.parse('$F,14,"00:12:45","13:34:23","00:09:47","Green "') self.assertEqual(self.handler.race.status,"Green") changes = self.handler.parse('$F,14,"00:12:45","13:34:22","00:09:47","Green "') self.assertEqual(changes,[]) changes = self.handler.parse('$F,14,"00:11:45","13:34:22","00:09:47","Green "') self.assertEqual(changes,["time to go",]) changes = self.handler.parse('$F,0,"00:00:00","13:34:23","00:09:47","Finish"') self.assertTrue("status" in changes) self.assertTrue("finished" in changes) self.assertTrue("time to go" in changes)
43
115
0.676687
1,429
0.81055
0
0
0
0
0
0
363
0.205899
020c551868d4325ef446cf93f3e3b90f6e4e9908
1,697
py
Python
scripts/generate_tests.py
alibaba/sionnx
3f3e18826ddcc26402b4e2af96ca8aac15560456
[ "Apache-2.0" ]
34
2019-05-29T03:15:48.000Z
2022-03-24T03:14:58.000Z
scripts/generate_tests.py
alibaba/sionnx
3f3e18826ddcc26402b4e2af96ca8aac15560456
[ "Apache-2.0" ]
1
2020-05-21T11:44:22.000Z
2020-05-21T11:44:22.000Z
scripts/generate_tests.py
alibaba/sionnx
3f3e18826ddcc26402b4e2af96ca8aac15560456
[ "Apache-2.0" ]
4
2019-12-16T18:49:42.000Z
2021-10-11T18:41:54.000Z
#* #* Copyright (C) 2017-2019 Alibaba Group Holding Limited #* #* Licensed under the Apache License, Version 2.0 (the "License"); #* you may not use this file except in compliance with the License. #* You may obtain a copy of the License at #* #* http://www.apache.org/licenses/LICENSE-2.0 #* #* Unless required by applicable law or agreed to in writing, software #* distributed under the License is distributed on an "AS IS" BASIS, #* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #* See the License for the specific language governing permissions and #* limitations under the License. import sys import os import glob import argparse parser = argparse.ArgumentParser(description='Generate conformanc tests') parser.add_argument("-profile_level", help="Specify the profile level: 0=smoke tests; 1=full tests", type=int) parser.parse_args() args = parser.parse_args() option = "-gen-onnx-smoke-tests" if args.profile_level: option = "-gen-onnx-smoke-tests" if args.profile_level==0 else "-gen-onnx-tests" print("======Generating tests with option " + option + "========") if not os.path.exists("tests"): os.makedirs("tests") os.system("cp ../include/onnx_*.td -r . | cp ../include/*.algorithm -r .") dir_path = os.path.dirname(os.path.realpath(__file__)) td_files = glob.glob(os.path.join(dir_path, '*.td')) lens = len(td_files) for k in range(lens): base = os.path.basename(td_files[k]) out_file_name = os.path.splitext(base)[0] os.system("../llvm/build/bin/llvm-tblgen " + option + " " + td_files[k] + " -I ./ -o ./tests/" + out_file_name + ".py") print(out_file_name + ".py generated.") os.system("rm onnx_*.td | rm *.algorithm")
36.891304
124
0.703595
0
0
0
0
0
0
0
0
1,004
0.591632
020e09341ffea9ce59519650e80614b26a974b81
6,610
py
Python
tests/mixins.py
jarkkorantala/sqlalchemy-utils
7cee65f0a3074245b853425e19a732aa274bfa3e
[ "BSD-3-Clause" ]
879
2015-01-01T12:06:35.000Z
2022-03-27T16:13:05.000Z
tests/mixins.py
jarkkorantala/sqlalchemy-utils
7cee65f0a3074245b853425e19a732aa274bfa3e
[ "BSD-3-Clause" ]
418
2015-01-02T08:43:43.000Z
2022-03-25T15:49:21.000Z
tests/mixins.py
jarkkorantala/sqlalchemy-utils
7cee65f0a3074245b853425e19a732aa274bfa3e
[ "BSD-3-Clause" ]
295
2015-01-06T14:19:33.000Z
2022-03-26T16:20:50.000Z
import pytest import sqlalchemy as sa class ThreeLevelDeepOneToOne(object): @pytest.fixture def Catalog(self, Base, Category): class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) category = sa.orm.relationship( Category, uselist=False, backref='catalog' ) return Catalog @pytest.fixture def Category(self, Base, SubCategory): class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) catalog_id = sa.Column( '_catalog_id', sa.Integer, sa.ForeignKey('catalog._id') ) sub_category = sa.orm.relationship( SubCategory, uselist=False, backref='category' ) return Category @pytest.fixture def SubCategory(self, Base, Product): class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) category_id = sa.Column( '_category_id', sa.Integer, sa.ForeignKey('category._id') ) product = sa.orm.relationship( Product, uselist=False, backref='sub_category' ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Integer) sub_category_id = sa.Column( '_sub_category_id', sa.Integer, sa.ForeignKey('sub_category._id') ) return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass class ThreeLevelDeepOneToMany(object): @pytest.fixture def Catalog(self, Base, Category): class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) categories = sa.orm.relationship(Category, backref='catalog') return Catalog @pytest.fixture def Category(self, Base, SubCategory): class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) catalog_id = sa.Column( '_catalog_id', sa.Integer, sa.ForeignKey('catalog._id') ) sub_categories = sa.orm.relationship( SubCategory, backref='category' ) return Category @pytest.fixture def SubCategory(self, Base, Product): class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) category_id = sa.Column( '_category_id', sa.Integer, sa.ForeignKey('category._id') ) products = sa.orm.relationship( Product, backref='sub_category' ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Numeric) sub_category_id = sa.Column( '_sub_category_id', sa.Integer, sa.ForeignKey('sub_category._id') ) def __repr__(self): return '<Product id=%r>' % self.id return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass class ThreeLevelDeepManyToMany(object): @pytest.fixture def Catalog(self, Base, Category): catalog_category = sa.Table( 'catalog_category', Base.metadata, sa.Column('catalog_id', sa.Integer, sa.ForeignKey('catalog._id')), sa.Column('category_id', sa.Integer, sa.ForeignKey('category._id')) ) class Catalog(Base): __tablename__ = 'catalog' id = sa.Column('_id', sa.Integer, primary_key=True) categories = sa.orm.relationship( Category, backref='catalogs', secondary=catalog_category ) return Catalog @pytest.fixture def Category(self, Base, SubCategory): category_subcategory = sa.Table( 'category_subcategory', Base.metadata, sa.Column( 'category_id', sa.Integer, sa.ForeignKey('category._id') ), sa.Column( 'subcategory_id', sa.Integer, sa.ForeignKey('sub_category._id') ) ) class Category(Base): __tablename__ = 'category' id = sa.Column('_id', sa.Integer, primary_key=True) sub_categories = sa.orm.relationship( SubCategory, backref='categories', secondary=category_subcategory ) return Category @pytest.fixture def SubCategory(self, Base, Product): subcategory_product = sa.Table( 'subcategory_product', Base.metadata, sa.Column( 'subcategory_id', sa.Integer, sa.ForeignKey('sub_category._id') ), sa.Column( 'product_id', sa.Integer, sa.ForeignKey('product._id') ) ) class SubCategory(Base): __tablename__ = 'sub_category' id = sa.Column('_id', sa.Integer, primary_key=True) products = sa.orm.relationship( Product, backref='sub_categories', secondary=subcategory_product ) return SubCategory @pytest.fixture def Product(self, Base): class Product(Base): __tablename__ = 'product' id = sa.Column('_id', sa.Integer, primary_key=True) price = sa.Column(sa.Numeric) return Product @pytest.fixture def init_models(self, Catalog, Category, SubCategory, Product): pass
28.864629
79
0.522542
6,563
0.99289
0
0
6,359
0.962027
0
0
720
0.108926
020e71ff56d4917b70bf98b950bcfa70c6d8e56c
6,041
py
Python
gbpservice/nfp/lib/rest_client_over_unix.py
ashutosh-mishra/my-test
51c82af293f291b9182204392e7d21bda27786d1
[ "Apache-2.0" ]
null
null
null
gbpservice/nfp/lib/rest_client_over_unix.py
ashutosh-mishra/my-test
51c82af293f291b9182204392e7d21bda27786d1
[ "Apache-2.0" ]
null
null
null
gbpservice/nfp/lib/rest_client_over_unix.py
ashutosh-mishra/my-test
51c82af293f291b9182204392e7d21bda27786d1
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import exceptions import httplib import httplib2 import zlib import six.moves.urllib.parse as urlparse import socket from oslo_serialization import jsonutils from gbpservice.nfp.core import log as nfp_logging LOG = nfp_logging.getLogger(__name__) class RestClientException(exceptions.Exception): """ RestClient Exception """ class UnixHTTPConnection(httplib.HTTPConnection): """Connection class for HTTP over UNIX domain socket.""" def __init__(self, host, port=None, strict=None, timeout=None, proxy_info=None): httplib.HTTPConnection.__init__(self, host, port, strict) self.timeout = timeout self.socket_path = '/var/run/uds_socket' def connect(self): """Method used to connect socket server.""" self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) if self.timeout: self.sock.settimeout(self.timeout) try: self.sock.connect(self.socket_path) except socket.error as exc: raise RestClientException( "Caught exception socket.error : %s" % exc) class UnixRestClient(object): def _http_request(self, url, method_type, headers=None, body=None): try: h = httplib2.Http() resp, content = h.request( url, method=method_type, headers=headers, body=body, connection_type=UnixHTTPConnection) return resp, content except httplib2.ServerNotFoundError: raise RestClientException("Server Not Found") except exceptions.Exception as e: raise RestClientException("httplib response error %s" % (e)) def send_request(self, path, method_type, request_method='http', server_addr='127.0.0.1', headers=None, body=None): """Implementation for common interface for all unix crud requests. Return:Http Response """ # prepares path, body, url for sending unix request. if method_type.upper() != 'GET': body = jsonutils.dumps(body) body = zlib.compress(body) path = '/v1/nfp/' + path url = urlparse.urlunsplit(( request_method, server_addr, path, None, '')) try: resp, content = self._http_request(url, method_type, headers=headers, body=body) if content != '': content = zlib.decompress(content) message = "%s:%s" % (resp, content) LOG.info(message) except RestClientException as rce: message = "ERROR : %s" % (rce) LOG.error(message) raise rce success_code = [200, 201, 202, 204] # Evaluate responses into success and failures. # Raise exception for failure cases which needs # to be handled by caller. if success_code.__contains__(resp.status): return resp, content elif resp.status == 400: raise RestClientException("HTTPBadRequest: %s" % resp.reason) elif resp.status == 401: raise RestClientException("HTTPUnauthorized: %s" % resp.reason) elif resp.status == 403: raise RestClientException("HTTPForbidden: %s" % resp.reason) elif resp.status == 404: raise RestClientException("HttpNotFound: %s" % resp.reason) elif resp.status == 405: raise RestClientException( "HTTPMethodNotAllowed: %s" % resp.reason) elif resp.status == 406: raise RestClientException("HTTPNotAcceptable: %s" % resp.reason) elif resp.status == 408: raise RestClientException("HTTPRequestTimeout: %s" % resp.reason) elif resp.status == 409: raise RestClientException("HTTPConflict: %s" % resp.reason) elif resp.status == 415: raise RestClientException( "HTTPUnsupportedMediaType: %s" % resp.reason) elif resp.status == 417: raise RestClientException( "HTTPExpectationFailed: %s" % resp.reason) elif resp.status == 500: raise RestClientException("HTTPServerError: %s" % resp.reason) else: raise Exception('Unhandled Exception code: %s %s' % (resp.status, resp.reason)) def get(path): """Implements get method for unix restclient Return:Http Response """ return UnixRestClient().send_request(path, 'GET') def put(path, body): """Implements put method for unix restclient Return:Http Response """ headers = {'content-type': 'application/octet-stream'} return UnixRestClient().send_request( path, 'PUT', headers=headers, body=body) def post(path, body, delete=False): """Implements post method for unix restclient Return:Http Response """ # Method-Type added here,as DELETE/CREATE # both case are handled by post as delete also needs # to send data to the rest-unix-server. headers = {'content-type': 'application/octet-stream'} if delete: headers.update({'method-type': 'DELETE'}) else: headers.update({'method-type': 'CREATE'}) return UnixRestClient().send_request( path, 'POST', headers=headers, body=body)
35.327485
78
0.609833
4,256
0.704519
0
0
0
0
0
0
1,907
0.315676
020f39177cabbb0de46cc69acb4473e957930343
3,916
py
Python
tk_sim.py
incherre/slam-bot
8479aff8f595b2d602a83e9e922b64836ae64375
[ "MIT" ]
null
null
null
tk_sim.py
incherre/slam-bot
8479aff8f595b2d602a83e9e922b64836ae64375
[ "MIT" ]
null
null
null
tk_sim.py
incherre/slam-bot
8479aff8f595b2d602a83e9e922b64836ae64375
[ "MIT" ]
null
null
null
'''Robot sim with a nicer display.''' from sim_framework import * from math import radians import tkinter BACKGROUND_COLOR = 'grey60' ENTITY_COLOR = 'RoyalBlue1' OBSTACLE_COLOR = 'black' ENTITY_TAG = 'entity' class TKWorld(World): '''A world that will display via tkinter instead of ascii.''' def __init__(self, root, x_min, x_max, y_min, y_max, resolution=2, max_dist=10000, collision_delta_theta=1): super().__init__(resolution=resolution, max_dist=max_dist, collision_delta_theta=collision_delta_theta) if x_min >= x_max: raise ValueError('Improperly ordered x boundaries') self.x_min = x_min self.x_max = x_max if y_min >= y_max: raise ValueError('Improperly ordered y boundaries') self.y_min = y_min self.y_max = y_max self.root = root self.room_canvas = tkinter.Canvas(self.root, bg=BACKGROUND_COLOR, height=self.y_max - self.x_min, width=self.x_max - self.x_min) self.add_obs(Wall(self.x_min, '-x')) self.add_obs(Wall(self.x_max, '+x')) self.add_obs(Wall(self.y_min, '-y')) self.add_obs(Wall(self.y_max, '+y')) def add_obs(self, obstacle): '''Adds the obstacle to tracking and also the TK canvas.''' super().add_obs(obstacle) if isinstance(obstacle, Wall): # In the TK world, walls are only used for the outside of the box. pass elif isinstance(obstacle, Box): box_x1, box_y1 = self.get_canvas_coords(obstacle.x_min, obstacle.y_max) box_x2, box_y2 = self.get_canvas_coords(obstacle.x_max, obstacle.y_min) self.room_canvas.create_rectangle(box_x1, box_y1, box_x2, box_y2, fill=OBSTACLE_COLOR, outline=OBSTACLE_COLOR) else: print('Error: Unknown obstacle type added to sim:', type(obstacle).__name__) def get_canvas_coords(self, x, y): '''Converts simulation coordinates to canvas coordinates.''' disp_x = x - self.x_min disp_y = (self.y_max - self.y_min) - (y - self.y_min) - 1 return (disp_x, disp_y) def display(self): '''Displays the environment, by default just as a character array.''' try: self.room_canvas.delete(ENTITY_TAG) except _tkinter.TclError: return for ent in self.entities: if isinstance(ent, CircleBot): center_x, center_y = self.get_canvas_coords(ent.x, ent.y) ent_x1 = center_x - ent.radius ent_y1 = center_y - ent.radius ent_x2 = center_x + ent.radius ent_y2 = center_y + ent.radius self.room_canvas.create_oval(ent_x1, ent_y1, ent_x2, ent_y2, fill=ENTITY_COLOR, outline=ENTITY_COLOR, tags=(ENTITY_TAG,)) else: print('Error: Unknown entity type found in sim:', type(ent).__name__) self.room_canvas.pack() if __name__ == '__main__': root = tkinter.Tk() W = TKWorld(root, -500, 500, -500, 500) W.add_obs(Box(-500, -250, 250, 500)) W.add_obs(Box(-450, -200, 200, 450)) W.add_obs(Box(-400, -150, 150, 400)) W.add_obs(Box(-350, -100, 100, 350)) bot = CircleBot(100, 0, 0, 0) W.add_ent(bot) theta = radians(0) def update(): root.after(int(1000 / 60), update) global theta W.display() theta -= radians(0.2) if W.move_ent(bot, 5, theta): theta -= radians(360 * 1.618) theta = theta % radians(360) root.after(int(1000 / 60), update) root.mainloop()
36.943396
112
0.565884
3,052
0.779367
0
0
0
0
0
0
565
0.14428
0210ff2439d9da24bc21178720c18eee48ba770a
1,224
py
Python
COT/tests/test_doctests.py
morneaup/cot
3d4dc7079a33aa0c09216ec339b44f84ab69ff4b
[ "MIT" ]
81
2015-01-18T22:31:42.000Z
2022-03-14T12:34:33.000Z
COT/tests/test_doctests.py
morneaup/cot
3d4dc7079a33aa0c09216ec339b44f84ab69ff4b
[ "MIT" ]
67
2015-01-05T15:24:39.000Z
2021-08-16T12:44:58.000Z
COT/tests/test_doctests.py
morneaup/cot
3d4dc7079a33aa0c09216ec339b44f84ab69ff4b
[ "MIT" ]
20
2015-07-09T14:20:25.000Z
2021-09-18T17:59:57.000Z
#!/usr/bin/env python # # test_doctests.py - test runner for COT doctests # # July 2016, Glenn F. Matthews # Copyright (c) 2016-2017 the COT project developers. # See the COPYRIGHT.txt file at the top-level directory of this distribution # and at https://github.com/glennmatthews/cot/blob/master/COPYRIGHT.txt. # # This file is part of the Common OVF Tool (COT) project. # It is subject to the license terms in the LICENSE.txt file found in the # top-level directory of this distribution and at # https://github.com/glennmatthews/cot/blob/master/LICENSE.txt. No part # of COT, including this file, may be copied, modified, propagated, or # distributed except according to the terms contained in the LICENSE.txt file. """Test runner for COT doctest tests.""" import logging from logging import NullHandler from doctest import DocTestSuite from unittest import TestSuite logging.getLogger('COT').addHandler(NullHandler()) def load_tests(*_): """Load doctests as unittest test suite. For the parameters, see :mod:`unittest`. The parameters are unused here. """ suite = TestSuite() suite.addTests(DocTestSuite('COT.data_validation')) suite.addTests(DocTestSuite('COT.utilities')) return suite
33.081081
78
0.750817
0
0
0
0
0
0
0
0
909
0.742647
021113c40a21b05029b6c6708d8e10e3927d9701
1,045
py
Python
aws/etc/packer/tools/python/stardog/cluster/test_program.py
stardog-union/stardog-graviton
652fa3e3bbb166e92ce165938ef2075831d26c04
[ "Apache-2.0" ]
3
2017-03-10T15:00:08.000Z
2019-10-29T07:46:19.000Z
aws/etc/packer/tools/python/stardog/cluster/test_program.py
stardog-union/stardog-graviton
652fa3e3bbb166e92ce165938ef2075831d26c04
[ "Apache-2.0" ]
31
2017-02-21T16:19:11.000Z
2021-03-25T21:27:50.000Z
aws/etc/packer/tools/python/stardog/cluster/test_program.py
stardog-union/stardog-graviton
652fa3e3bbb166e92ce165938ef2075831d26c04
[ "Apache-2.0" ]
6
2017-04-26T07:22:25.000Z
2020-07-29T20:17:55.000Z
import logging import subprocess import sys import stardog.cluster.utils as utils def run_program(cmd, tries): def pgm_func(): try: p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) o, e = p.communicate() logging.debug("STDOUT: %s", o.decode()) logging.debug("STDERR: %s", e.decode()) rc = p.wait() if rc == 0: logging.info("The program %s succeeded", cmd) return True else: logging.warning("The program %s failed %d", cmd, rc) except Exception as ex: logging.warning("There was an exception running %s. %s.", cmd, ex) return False logging.info("Start the program run loop for the command %s") return utils.wait_for_func(tries, 30, pgm_func) def main(): utils.setup_logging() tries = int(sys.argv[1]) cmd = sys.argv[2:] rc = run_program(' '.join(cmd), tries) if not rc: return 1 return 0
29.857143
97
0.572249
0
0
0
0
0
0
0
0
167
0.159809
0211dbc40a6aa48e66ae666cbc2afb8294c1a296
297
py
Python
apps/core/urls.py
tayyabRazzaq/opl-platform
37b0efdb9327253a144c50bfd192132fac732619
[ "MIT" ]
2
2019-04-03T04:04:53.000Z
2019-04-28T16:13:56.000Z
apps/core/urls.py
tayyabRazzaq/opl-platform
37b0efdb9327253a144c50bfd192132fac732619
[ "MIT" ]
8
2021-06-04T21:57:30.000Z
2022-03-11T23:48:38.000Z
apps/core/urls.py
tayyab-razzaq/opl-platform
37b0efdb9327253a144c50bfd192132fac732619
[ "MIT" ]
7
2019-03-12T19:39:08.000Z
2021-04-15T05:25:59.000Z
""" Here all the blog's urls routes will be mapped """ from django.urls import path from django.conf.urls import include, url from . import views app_name = 'core' urlpatterns = [ # path('', views.home, name='home-page'), url(r'^api/', include('apps.core.api.urls', namespace='api')), ]
24.75
66
0.670034
0
0
0
0
0
0
0
0
134
0.451178
021267aeacfe0ae1c6472616df30ce20f8a2d09b
24,270
py
Python
picoCTF-web/tests/api/functional/common.py
MongYahHsieh/picoCTF
dd500ad9c59768137b33e2d2b102a089ddf0ad40
[ "MIT" ]
null
null
null
picoCTF-web/tests/api/functional/common.py
MongYahHsieh/picoCTF
dd500ad9c59768137b33e2d2b102a089ddf0ad40
[ "MIT" ]
null
null
null
picoCTF-web/tests/api/functional/common.py
MongYahHsieh/picoCTF
dd500ad9c59768137b33e2d2b102a089ddf0ad40
[ "MIT" ]
null
null
null
"""Utilities for functional tests.""" import datetime import json import re import pymongo import pytest import api RATE_LIMIT_BYPASS = "test_bypass" TESTING_DB_NAME = 'ctf_test' db = None def decode_response(res): """Parse a WebSuccess or WebError response.""" decoded_dict = json.loads(res.data.decode('utf-8')) return (decoded_dict['status'], decoded_dict['message'], decoded_dict['data']) def get_csrf_token(res): """Extract the CSRF token from a response.""" for header in res.headers: m = re.search('token=(.+?);', header[1]) if m: return m.group(1) raise RuntimeError('Could not find CSRF token in response headers: ' + str(res.headers)) def get_conn(): """Get a connection to the testing database.""" global db if db is None: client = pymongo.MongoClient(host='127.0.0.1', port=27018) db = client[TESTING_DB_NAME] return db def clear_db(): """Clear out the testing database.""" db = get_conn() db.command('dropDatabase') @pytest.fixture def client(): """Create a test client of the Flask app.""" app = api.create_app({ 'TESTING': True, 'MONGO_DB_NAME': TESTING_DB_NAME, 'MONGO_PORT': 27018, 'RATE_LIMIT_BYPASS': RATE_LIMIT_BYPASS }) return app.test_client() def app(): """Create an instance of the Flask app for testing.""" app = api.create_app({ 'TESTING': True, 'MONGO_DB_NAME': TESTING_DB_NAME, 'MONGO_PORT': 27018 }) return app def cache(f, *args, **kwargs): result = f(reset_cache=True, *args, **kwargs) return result def update_all_scoreboards(): api.stats.get_all_team_scores() api.stats.get_all_team_scores(include_ineligible=True) for group in api.group.get_all_groups(): api.stats.get_group_scores(gid=group['gid']) ADMIN_DEMOGRAPHICS = { 'username': 'adminuser', 'password': 'adminpw', 'firstname': 'Admin', 'lastname': 'User', 'email': 'admin@example.com', 'country': 'US', 'affiliation': 'Admin School', 'usertype': 'other', 'demo': { 'parentemail': 'admin@example.com', 'age': '18+' }, 'gid': None, 'rid': None } TEACHER_DEMOGRAPHICS = { 'username': 'teacheruser', 'password': 'teacherpw', 'firstname': 'Teacher', 'lastname': 'User', 'email': 'teacher@example.com', 'country': 'US', 'affiliation': 'Sample School', 'usertype': 'teacher', 'demo': { 'parentemail': 'teacher@example.com', 'age': '18+' }, 'gid': None, 'rid': None } STUDENT_DEMOGRAPHICS = { 'username': 'studentuser', 'password': 'studentpw', 'firstname': 'Student', 'lastname': 'User', 'email': 'student@example.com', 'country': 'US', 'affiliation': 'Sample School', 'usertype': 'student', 'demo': { 'parentemail': 'student@example.com', 'age': '13-17' }, 'gid': None, 'rid': None } STUDENT_2_DEMOGRAPHICS = { 'username': 'studentuser2', 'password': 'studentpw2', 'firstname': 'Student', 'lastname': 'Usertwo', 'email': 'student2@example.com', 'country': 'US', 'affiliation': 'Sample School', 'usertype': 'student', 'demo': { 'parentemail': 'student2@example.com', 'age': '18+' }, 'gid': None, 'rid': None } OTHER_USER_DEMOGRAPHICS = { 'username': 'otheruser', 'password': 'otherpw', 'firstname': 'Other', 'lastname': 'User', 'email': 'other@example.com', 'country': 'US', 'affiliation': 'Sample Organization', 'usertype': 'other', 'demo': { 'age': '18+' }, 'gid': None, 'rid': None } def register_test_accounts(): """ Register an admin, teacher, and student account with known demographics. Intended to be used, if needed, in conjunction with clear_db() to set up a clean environment for each test. """ with app().app_context(): api.user.add_user(ADMIN_DEMOGRAPHICS) api.user.add_user(TEACHER_DEMOGRAPHICS) api.user.add_user(STUDENT_DEMOGRAPHICS) api.user.add_user(STUDENT_2_DEMOGRAPHICS) api.user.add_user(OTHER_USER_DEMOGRAPHICS) sample_shellserver_publish_output = r''' { "problems": [ { "name": "ECB 1", "category": "Cryptography", "description": "There is a crypto service running at {{server}}:{{port}}. We were able to recover the source code, which you can download at {{url_for(\"ecb.py\")}}.", "hints": [], "walkthrough": "Let me google that for you.", "score": 70, "author": "Tim Becker", "organization": "ForAllSecure", "event": "Sample", "pip_requirements": [ "pycrypto" ], "pip_python_version": "3", "unique_name": "ecb-1-b06174a", "instances": [ { "user": "ecb-1_0", "deployment_directory": "/problems/ecb-1_0_73a0108a98d2862a86f4b71534aaf7c3", "service": "ecb-1_0", "socket": null, "server": "192.168.2.3", "description": "There is a crypto service running at 192.168.2.3:46981. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/fd59acc6b8d2359d48bd939a08ecb8ab/ecb.py'>ecb.py</a>.", "flag": "49e56ea9bf2e2b60ba9af034b5b2a5fd", "flag_sha1": "77cec418714d6eb0dc48afa6d6f38200402a83c0", "instance_number": 0, "should_symlink": false, "files": [ { "path": "flag", "permissions": 288, "user": null, "group": null }, { "path": "key", "permissions": 288, "user": null, "group": null }, { "path": "ecb.py", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 46981 }, { "user": "ecb-1_1", "deployment_directory": "/problems/ecb-1_1_83b2ed9a1806c86219347bc4982a66de", "service": "ecb-1_1", "socket": null, "server": "192.168.2.3", "description": "There is a crypto service running at 192.168.2.3:21953. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/beb9874a05a1810fa8c9d79152ace1b3/ecb.py'>ecb.py</a>.", "flag": "85a32ccd05fa30e0efd8da555c1a101a", "flag_sha1": "f28581a86561c885152f7622200057585787c063", "instance_number": 1, "should_symlink": false, "files": [ { "path": "flag", "permissions": 288, "user": null, "group": null }, { "path": "key", "permissions": 288, "user": null, "group": null }, { "path": "ecb.py", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 21953 }, { "user": "ecb-1_2", "deployment_directory": "/problems/ecb-1_2_1998c2cc0f0d17ae54170200f5478b7f", "service": "ecb-1_2", "socket": null, "server": "192.168.2.3", "description": "There is a crypto service running at 192.168.2.3:17648. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/19e863cba0bf14ad676e4b4799eacc72/ecb.py'>ecb.py</a>.", "flag": "f76d2f6b885255450ed2f7307d96e28e", "flag_sha1": "43cf6f1dab026cf2100e2f663509512416112219", "instance_number": 2, "should_symlink": false, "files": [ { "path": "flag", "permissions": 288, "user": null, "group": null }, { "path": "key", "permissions": 288, "user": null, "group": null }, { "path": "ecb.py", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 17648 } ], "sanitized_name": "ecb-1" }, { "name": "SQL Injection 1", "category": "Web Exploitation", "pkg_dependencies": [ "php7.2-sqlite3" ], "description": "There is a website running at http://{{server}}:{{port}}. Try to see if you can login!", "score": 40, "hints": [], "author": "Tim Becker", "organization": "ForAllSecure", "event": "Sample", "unique_name": "sql-injection-1-0c436d0", "instances": [ { "user": "sql-injection-1_0", "deployment_directory": "/problems/sql-injection-1_0_9e114b246c48eb158b16525f71ae2a00", "service": "sql-injection-1_0", "socket": null, "server": "192.168.2.3", "description": "There is a website running at http://192.168.2.3:46984. Try to see if you can login!", "flag": "9ac0a74de6bced3cdce8e7fd466f32d0", "flag_sha1": "958416d52940e4948eca8d9fb1eca21e4cf7eda1", "instance_number": 0, "should_symlink": false, "files": [ { "path": "webroot/index.html", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.php", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.phps", "permissions": 436, "user": null, "group": null }, { "path": "webroot/config.php", "permissions": 436, "user": null, "group": null }, { "path": "users.db", "permissions": 288, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 46984 }, { "user": "sql-injection-1_1", "deployment_directory": "/problems/sql-injection-1_1_10a4b1cdfd3a0f78d0d8b9759e6d69c5", "service": "sql-injection-1_1", "socket": null, "server": "192.168.2.3", "description": "There is a website running at http://192.168.2.3:21955. Try to see if you can login!", "flag": "28054fef0f362256c78025f82e6572c3", "flag_sha1": "f57fa5d3861c22a657eecafe30a43bd4ad7a4a2a", "instance_number": 1, "should_symlink": false, "files": [ { "path": "webroot/index.html", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.php", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.phps", "permissions": 436, "user": null, "group": null }, { "path": "webroot/config.php", "permissions": 436, "user": null, "group": null }, { "path": "users.db", "permissions": 288, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 21955 }, { "user": "sql-injection-1_2", "deployment_directory": "/problems/sql-injection-1_2_57a103ad26a005f69b4332e62d611372", "service": "sql-injection-1_2", "socket": null, "server": "192.168.2.3", "description": "There is a website running at http://192.168.2.3:17649. Try to see if you can login!", "flag": "6ed19af4c4540d444ae08735aa5664af", "flag_sha1": "19bbc88ca231ddfde8063acdda75a92b1e6fd993", "instance_number": 2, "should_symlink": false, "files": [ { "path": "webroot/index.html", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.php", "permissions": 436, "user": null, "group": null }, { "path": "webroot/login.phps", "permissions": 436, "user": null, "group": null }, { "path": "webroot/config.php", "permissions": 436, "user": null, "group": null }, { "path": "users.db", "permissions": 288, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null }, { "path": "xinet_startup.sh", "permissions": 1517, "user": null, "group": null } ], "port": 17649 } ], "sanitized_name": "sql-injection-1" }, { "name": "Buffer Overflow 1", "category": "Binary Exploitation", "description": "Exploit the {{url_for(\"vuln\", display=\"Buffer Overflow\")}} found here: {{directory}}.", "score": 50, "hints": [ "This is a classic buffer overflow with no modern protections." ], "walkthrough": "PROTIP: Find the correct answer to get the points.", "author": "Tim Becker", "organization": "ForAllSecure", "event": "Sample", "unique_name": "buffer-overflow-1-35e6d9d", "instances": [ { "user": "buffer-overflow-1_0", "deployment_directory": "/problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f", "service": null, "socket": null, "server": "192.168.2.3", "description": "Exploit the <a href='//192.168.2.3/static/bd08ee41f495f8bff378c13157d0f511/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f.", "flag": "638608c79eca2165e7b241ff365df05b", "flag_sha1": "4b97abef055a11ec19c14622eb31eb1168d98aca", "instance_number": 0, "should_symlink": true, "files": [ { "path": "flag.txt", "permissions": 288, "user": null, "group": null }, { "path": "vuln", "permissions": 1517, "user": null, "group": null } ] }, { "user": "buffer-overflow-1_1", "deployment_directory": "/problems/buffer-overflow-1_1_f49b6bd5da29513569bd87f98a934fa6", "service": null, "socket": null, "server": "192.168.2.3", "description": "Exploit the <a href='//192.168.2.3/static/c95410042007bb17f49b891a2a87afb2/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_1_f49b6bd5da29513569bd87f98a934fa6.", "flag": "35013564b97b80d4fd3f2be45e5836ff", "flag_sha1": "5675d2d5819084d4203c1ef314239527074938a9", "instance_number": 1, "should_symlink": true, "files": [ { "path": "flag.txt", "permissions": 288, "user": null, "group": null }, { "path": "vuln", "permissions": 1517, "user": null, "group": null } ] }, { "user": "buffer-overflow-1_2", "deployment_directory": "/problems/buffer-overflow-1_2_6c4daed04928f80dd29290060827be61", "service": null, "socket": null, "server": "192.168.2.3", "description": "Exploit the <a href='//192.168.2.3/static/dbeb4d34945e752ea988dcdb4454f57d/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_2_6c4daed04928f80dd29290060827be61.", "flag": "8dfabcb5c4a18d03ad5ecea19eef27a6", "flag_sha1": "aef4789685665a1bf4994d62ef10941dbce5647a", "instance_number": 2, "should_symlink": true, "files": [ { "path": "flag.txt", "permissions": 288, "user": null, "group": null }, { "path": "vuln", "permissions": 1517, "user": null, "group": null } ] } ], "sanitized_name": "buffer-overflow-1" } ], "bundles": [ { "name": "Challenge Sampler", "author": "Christopher Ganas", "description": "Dependency weightmap for the example challenges provided in the picoCTF-Problems repository.", "dependencies": { "ecb-1-b06174a": { "threshold": 1, "weightmap": { "buffer-overflow-1-35e6d9d": 1 } }, "sql-injection-1-0c436d0": { "threshold": 1, "weightmap": { "buffer-overflow-1-35e6d9d": 1, "ecb-1-b06174a": 1 } } } } ], "sid": "728f36885f7c4686805593b9e4988c30" } ''' problems_endpoint_response = [{'name': 'SQL Injection 1', 'category': 'Web Exploitation', 'description': 'There is a website running at http://192.168.2.3:17648. Try to see if you can login!', 'score': 40, 'hints': [], 'author': 'Tim Becker', 'organization': 'ForAllSecure', 'sanitized_name': 'sql-injection-1', 'disabled': False, 'pid': '4508167aa0b219fd9d131551d10aa58e', 'solves': 0, 'socket': None, 'server': '192.168.2.3', 'port': 17648, 'server_number': 1, 'solved': False, 'unlocked': True}, {'name': 'Buffer Overflow 1', 'category': 'Binary Exploitation', 'description': "Exploit the <a href='//192.168.2.3/static/bd08ee41f495f8bff378c13157d0f511/vuln'>Buffer Overflow</a> found here: /problems/buffer-overflow-1_0_bab40cd8ebd7845e1c4c2951c6f82e1f.", 'score': 50, 'hints': ['This is a classic buffer overflow with no modern protections.'], 'author': 'Tim Becker', 'organization': 'ForAllSecure', 'sanitized_name': 'buffer-overflow-1', 'disabled': False, 'pid': '1bef644c399e10a3f35fecdbf590bd0c', 'solves': 0, 'socket': None, 'server': '192.168.2.3', 'server_number': 1, 'solved': False, 'unlocked': True}, {'name': 'ECB 1', 'category': 'Cryptography', 'description': "There is a crypto service running at 192.168.2.3:21953. We were able to recover the source code, which you can download at <a href='//192.168.2.3/static/beb9874a05a1810fa8c9d79152ace1b3/ecb.py'>ecb.py</a>.", 'hints': [], 'score': 70, 'author': 'Tim Becker', 'organization': 'ForAllSecure', 'sanitized_name': 'ecb-1', 'disabled': False, 'pid': '7afda419da96e8471b49df9c2009e2ef', 'solves': 0, 'socket': None, 'server': '192.168.2.3', 'port': 21953, 'server_number': 1, 'solved': False, 'unlocked': True}] def load_sample_problems(): """Load the sample problems and bundle into the DB.""" with app().app_context(): db = get_conn() db.shell_servers.insert_one({ 'sid': '728f36885f7c4686805593b9e4988c30', 'name': 'Test shell server', 'host': 'testing.picoctf.com', 'port': '22', 'username': 'username', 'password': 'password', 'protocol': 'HTTPS', 'server_number': 1 }) api.problem.load_published( json.loads(sample_shellserver_publish_output) ) def enable_sample_problems(): """Enable any sample problems in the DB.""" db = get_conn() db.problems.update_many({}, {'$set': {'disabled': False}}) def ensure_within_competition(): """Adjust the competition times so that protected methods are callable.""" db = get_conn() db.settings.update_one({}, {'$set': { 'start_time': datetime.datetime.utcnow() - datetime.timedelta(1), 'end_time': datetime.datetime.utcnow() + datetime.timedelta(1), }}) def ensure_before_competition(): """Adjust the competition times so that @block_before_competition fails.""" db = get_conn() db.settings.update_one({}, {'$set': { 'start_time': datetime.datetime.utcnow() + datetime.timedelta(11), 'end_time': datetime.datetime.utcnow() + datetime.timedelta(10), }}) def ensure_after_competition(): """Adjust the competition times so that @block_before_competition fails.""" db = get_conn() db.settings.update_one({}, {'$set': { 'start_time': datetime.datetime.utcnow() - datetime.timedelta(11), 'end_time': datetime.datetime.utcnow() - datetime.timedelta(10), }}) def get_problem_key(pid, team_name): """Get the flag for a given pid and team name.""" db = get_conn() assigned_instance_id = db.teams.find_one({ 'team_name': team_name })['instances'][pid] problem_instances = db.problems.find_one({ 'pid': pid })['instances'] assigned_instance = None for instance in problem_instances: if instance['iid'] == assigned_instance_id: assigned_instance = instance break return assigned_instance['flag']
34.621969
1,680
0.486279
0
0
0
0
284
0.011702
0
0
18,431
0.759415
0212be2b426e881f46ce9b5faa0a4d6cd2b0e659
11
py
Python
py2codes/py2_exec.py
rhabacker/lib2to3import
36102fa844bf18234053d96f6b9b90f5c6068e87
[ "MIT" ]
null
null
null
py2codes/py2_exec.py
rhabacker/lib2to3import
36102fa844bf18234053d96f6b9b90f5c6068e87
[ "MIT" ]
1
2020-11-14T01:39:18.000Z
2020-11-17T07:54:28.000Z
py2codes/py2_exec.py
rhabacker/lib2to3import
36102fa844bf18234053d96f6b9b90f5c6068e87
[ "MIT" ]
2
2019-08-12T09:58:05.000Z
2021-03-18T17:13:06.000Z
exec "123"
5.5
10
0.636364
0
0
0
0
0
0
0
0
5
0.454545
02154f47c33721ccd238e5aa1dcf948b5ec4704f
1,308
py
Python
Tools/RaiseCheck.py
17320692835RGF/buptoj
3d1e4719d757b4f0199e4451be7c0bee28e7c3ca
[ "MIT" ]
null
null
null
Tools/RaiseCheck.py
17320692835RGF/buptoj
3d1e4719d757b4f0199e4451be7c0bee28e7c3ca
[ "MIT" ]
null
null
null
Tools/RaiseCheck.py
17320692835RGF/buptoj
3d1e4719d757b4f0199e4451be7c0bee28e7c3ca
[ "MIT" ]
null
null
null
import MySQLdb from queue import Queue import socket import json from time import sleep import threading import os queue = Queue() # 全局判题列表 myjsonfile = open("./setting.json", 'r') judgerjson = json.loads(myjsonfile.read()) if os.environ.get("DB_USER"): judgerjson["db_ip"] = os.environ.get("DB_HOST") judgerjson["db_pass"] = os.environ.get("DB_PASSWORD") judgerjson["db_user"] = os.environ.get("DB_USER") judgerjson["db_port"] = os.environ.get("DB_PORT") try: db = MySQLdb.connect(judgerjson["db_ip"], judgerjson["db_user"], judgerjson["db_pass"], judgerjson["db_database"], int(judgerjson["db_port"]), charset='utf8') except Exception as e: print(e) exit(1) cursor = db.cursor() cursor.execute("SELECT user, code from judgestatus_judgestatus") data = cursor.fetchall() raisenum = {} for d in data: id = str(d[0]) code = str(d[1]) raisenum[id] = 0 for d in data: id = str(d[0]) code = str(d[1]) raisenum[id] = max(raisenum[id], code.count("raise")) li = sorted(raisenum.items(), key=lambda item:item[1],reverse=True) file = open("raisenum.txt", "w") for l in li: file.write(l[0]+" "+str(l[1])+'\n') print(l[0]+" "+str(l[1]))
22.169492
96
0.603211
0
0
0
0
0
0
0
0
260
0.19697
02159d47bc916fdaaa02496845099d898342fd4d
909
py
Python
first_steps_in_oop/programmer.py
ivan-yosifov88/python_oop_june_2021
7ae6126065abbcce7ce97c86d1150ae307360249
[ "MIT" ]
1
2021-08-03T19:14:24.000Z
2021-08-03T19:14:24.000Z
first_steps_in_oop/programmer.py
ivan-yosifov88/python_oop_june_2021
7ae6126065abbcce7ce97c86d1150ae307360249
[ "MIT" ]
null
null
null
first_steps_in_oop/programmer.py
ivan-yosifov88/python_oop_june_2021
7ae6126065abbcce7ce97c86d1150ae307360249
[ "MIT" ]
null
null
null
class Programmer: def __init__(self, name, language, skills): self.name = name self.language = language self.skills = skills def watch_course(self, course_name, language, skills_earned): if not self.language == language: return f"{self.name} does not know {language}" self.skills += skills_earned return f"{self.name} watched {course_name}" def change_language(self, new_language, skills_needed): if not skills_needed <= self.skills: needed_skills = skills_needed - self.skills return f"{self.name} needs {needed_skills} more skills" if self.language == new_language: return f"{self.name} already knows {self.language}" previous_language = self.language self.language = new_language return f"{self.name} switched from {previous_language} to {new_language}"
37.875
81
0.651265
909
1
0
0
0
0
0
0
233
0.256326
0216b8ad609381ab0fb91a808c2538b44b5d722d
1,557
py
Python
unit_test.py
LSTM-Kirigaya/MsnEnvironment
29c6e02525c7671f304d0f9d7689942509f12a16
[ "MIT" ]
null
null
null
unit_test.py
LSTM-Kirigaya/MsnEnvironment
29c6e02525c7671f304d0f9d7689942509f12a16
[ "MIT" ]
null
null
null
unit_test.py
LSTM-Kirigaya/MsnEnvironment
29c6e02525c7671f304d0f9d7689942509f12a16
[ "MIT" ]
null
null
null
from env import MsnDiscrete, MaplessNaviEnv from robot_utils import * from robot_utils.log import msn_debug from robot_utils.scene import * from env import * from collections import Counter MAX_FORCE = 10. TARGET_VELOCITY = 5. MULTIPLY = 2.0 def keyboard_control(): global MAX_FORCE global TARGET_VELOCITY global MULTIPLY cid = p.connect(p.GUI) p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.setAdditionalSearchPath(pybullet_data.getDataPath()) # 载入机器人和其他的物件 _ = p.loadURDF("plane.urdf") urdf_path = os.path.join(os.path.dirname(__file__), "robot_utils/urdf/miniBox.urdf") robot_id = p.loadURDF(urdf_path, basePosition=[0., 0., 0.2], baseOrientation=p.getQuaternionFromEuler([0, 0, np.pi / 2.])) p.setJointMotorControlArray( bodyUniqueId=robot_id, jointIndices=[0, 1], controlMode=p.VELOCITY_CONTROL, forces=[0., 0.] ) p.setGravity(0, 0, -9.8) p.setRealTimeSimulation(1) p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1) while True: basePos, baseOrientation = p.getBasePositionAndOrientation(robot_id) baseEuler = p.getEulerFromQuaternion(baseOrientation) keyboard_control_miniBox(robot_id) def u_MsnDiscrete(): env = MsnDiscrete(render=True, laser_num=18) state = env.reset() done = False while not done: action = env.sample() state, reward, done, info = env.step(action) env.render() # keyboard_control() u_MsnDiscrete()
28.833333
126
0.705202
0
0
0
0
0
0
0
0
98
0.062065
0218bf8ae5e0f91bee4226c0b79fa035f5a60a3c
12,358
py
Python
meta-refkit-core/lib/ostree/ostreeupdate.py
kraj/intel-iot-refkit
04cd5afec0c41deeb5e1a48b43a0a31e708295c1
[ "MIT" ]
36
2017-02-20T04:04:28.000Z
2022-02-17T05:36:33.000Z
meta-refkit-core/lib/ostree/ostreeupdate.py
kraj/intel-iot-refkit
04cd5afec0c41deeb5e1a48b43a0a31e708295c1
[ "MIT" ]
284
2017-02-06T08:51:52.000Z
2021-11-03T16:52:16.000Z
meta-refkit-core/lib/ostree/ostreeupdate.py
kraj/intel-iot-refkit
04cd5afec0c41deeb5e1a48b43a0a31e708295c1
[ "MIT" ]
65
2017-02-03T12:36:16.000Z
2021-02-18T11:00:46.000Z
import bb import oe.path import glob import hashlib import os.path import shutil import string import subprocess VARIABLES = ( 'IMAGE_ROOTFS', 'OSTREE_BRANCHNAME', 'OSTREE_COMMIT_SUBJECT', 'OSTREE_REPO', 'OSTREE_GPGDIR', 'OSTREE_GPGID', 'OSTREE_OS', 'OSTREE_REMOTE', 'OSTREE_BARE', 'OSTREE_ROOTFS', 'OSTREE_SYSROOT', ) class OSTreeUpdate(string.Formatter): """ Create an OSTree-enabled version of an image rootfs, using an intermediate per-image OSTree bare-user repository. Optionally export the content of this repository into HTTP-exportable archive-z2 OSTree repository which clients can use to pull the image in as an OSTree upgrade. """ WHITESPACES_ALLOWED = ( 'OSTREE_COMMIT_SUBJECT', ) def __init__(self, d): for var in VARIABLES: value = d.getVar(var) if var not in self.WHITESPACES_ALLOWED: for c in '\n\t ': if c in value: bb.fatal('%s=%s is not allowed to contain whitespace' % (var, value)) setattr(self, var, value) self.gpg_sign = '' if self.OSTREE_GPGID: if self.OSTREE_GPGDIR: self.gpg_sign += self.format(' --gpg-homedir={OSTREE_GPGDIR}') self.gpg_sign += self.format(' --gpg-sign={OSTREE_GPGID}') def get_value(self, key, args, kwargs): """ This class inherits string.Formatter and thus has self.format(). We extend the named field lookup so that object attributes and thus the variables above can be used directly. """ if isinstance(key, str) and key not in kwargs: return getattr(self, key) else: return super().get_value(key, args, kwargs) def run_ostree(self, command, *args, **kwargs): cmd = 'ostree ' + self.format(command, *args, **kwargs) bb.debug(1, 'Running: {0}'.format(cmd)) output = subprocess.check_output(cmd, shell=True, stderr=subprocess.STDOUT) return output def copy_sysroot(self): """ Seed the OSTree sysroot with the pristine one. """ bb.note(self.format('Copying pristine rootfs {IMAGE_ROOTFS} to OSTree sysroot {OSTREE_SYSROOT} ...')) oe.path.copyhardlinktree(self.IMAGE_ROOTFS, self.OSTREE_SYSROOT) def copy_kernel(self): """ Copy and checksum kernel, initramfs, and the UEFI app in place for OSTree. TODO: why? """ uefidir = os.path.join(self.IMAGE_ROOTFS, 'boot') uefibootdir = os.path.join(uefidir, 'EFI', 'BOOT') uefiinternalbootdir = os.path.join(uefidir, 'EFI_internal_storage', 'BOOT') uefiappname = glob.glob(os.path.join(uefibootdir, 'boot*.efi')) if len(uefiappname) != 1: bb.fatal(self.format('Ambiguous UEFI app in {0}: {1}', uefibootdir, uefiappname)) uefiappname = os.path.basename(uefiappname[0]) ostreeboot = os.path.join(self.OSTREE_SYSROOT, 'usr', 'lib', 'ostree-boot') bb.note(self.format('Copying and checksumming UEFI combo app(s) {0} into OSTree sysroot {1} ...', uefiappname, ostreeboot)) bb.utils.mkdirhier(ostreeboot) def copy_app(src, dst): with open(src, 'rb') as f: data = f.read() chksum = hashlib.sha256(data).hexdigest() with open(dst + '-' + chksum, 'wb') as f: f.write(data) shutil.copystat(src, dst + '-' + chksum) return chksum # OSTree doesn't care too much about the actual checksums on kernel # and initramfs. We use the same checksum derived from the UEFI combo # app for all parts related to it. chksum = copy_app(os.path.join(uefibootdir, uefiappname), os.path.join(ostreeboot, uefiappname + '.ext')) copy_app(os.path.join(uefiinternalbootdir, uefiappname), os.path.join(ostreeboot, uefiappname + '.int')) # OSTree expects to find kernel and initramfs, so we provide it # although the files are not used. # TODO: does it really make sense to put the real content there? # It's not going to get used. bb.note('Extracting and checksumming kernel, initramfs for ostree...') kernel = os.path.join(ostreeboot, 'vmlinuz') initrd = os.path.join(ostreeboot, 'initramfs') # TODO: where does objcopy come from? #subprocess.check_output('objcopy --dump-section .linux=%s --dump-section .initrd=%s %s' % # (kernel, initrd, os.path.join(uefibootdir, uefiappname))) # os.rename(kernel, kernel + '-' + chksum) # os.rename(initrd, initrd + '-' + chksum) # For now just create dummy files. open(kernel + '-' + chksum, 'w').close() open(initrd + '-' + chksum, 'w').close() def ostreeify_sysroot(self): """ Mangle sysroot into an OSTree-compatible layout. """ # Note that everything created/shuffled here will end up getting # relocated under the ostree deployment directory for the image # we're building. Everything that needs to get created relative in the # to the final physical rootfs should be done in finalize_sysroot. bb.note('* Shuffling sysroot to OSTree-compatible layout...') # The OSTree deployment model requires the following directories # and symlinks in place: # # /sysroot: the real physical rootfs bind-mounted here # /sysroot/ostree: ostree repo and deployments ('checkouts') # /ostree: symlinked to /sysroot/ostree for consistent access # # Additionally the deployment model suggests setting up deployment # root symlinks for the following: # # /home -> /var/home (further linked -> /sysroot/home) # /opt -> /var/opt # /srv -> /var/srv # /root -> /var/roothome # /usr/local -> /var/local # /mnt -> /var/mnt # /tmp -> /sysroot/tmp # # In this model, /var can be a persistent second data partition. # We just use one partition, so instead we have: # # /boot = mount point for persistent /boot directory in the root partition # /var = mount point for persistent /ostree/deploy/refkit/var # /home = mount point for persistent /home directory in the root partition # /mnt = symlink to var/mnt # /tmp = symlink to sysroot/tmp (persistent) # # Additionally, # /etc is moved to /usr/etc as the default config sysroot = os.path.join(self.OSTREE_SYSROOT, 'sysroot') bb.utils.mkdirhier(sysroot) os.symlink('sysroot/ostree', os.path.join(self.OSTREE_SYSROOT, 'ostree')) for dir, link in ( ('boot', None), ('var', None), ('home', None), ('mnt', 'var/mnt'), ('tmp', 'sysroot/tmp'), ): path = os.path.join(self.OSTREE_SYSROOT, dir) if os.path.isdir(path): shutil.rmtree(path) if link is None: bb.utils.mkdirhier(path) else: os.symlink(link, path) # Preserve read-only copy of /etc for OSTree's three-way merge. os.rename(os.path.join(self.OSTREE_SYSROOT, 'etc'), os.path.join(self.OSTREE_SYSROOT, 'usr', 'etc')) def prepare_sysroot(self): """ Prepare a rootfs for committing into an OSTree repository. """ if os.path.isdir(self.OSTREE_SYSROOT): bb.note(self.format('OSTree sysroot {OSTREE_SYSROOT} already exists, nuking it...')) shutil.rmtree(self.OSTREE_SYSROOT) bb.note(self.format('Preparing OSTree sysroot {OSTREE_SYSROOT} ...')) self.copy_sysroot() self.copy_kernel() self.ostreeify_sysroot() def populate_repo(self): """ Populate primary OSTree repository (bare-user mode) with the given sysroot. """ bb.note(self.format('Populating OSTree primary repository {OSTREE_BARE} ...')) if os.path.isdir(self.OSTREE_BARE): shutil.rmtree(self.OSTREE_BARE) bb.utils.mkdirhier(self.OSTREE_BARE) self.run_ostree('--repo={OSTREE_BARE} init --mode=bare-user') self.run_ostree('--repo={OSTREE_BARE} commit ' '{gpg_sign} ' '--tree=dir={OSTREE_SYSROOT} ' '--branch={OSTREE_BRANCHNAME} ' '--subject="{OSTREE_COMMIT_SUBJECT}"') output = self.run_ostree('--repo={OSTREE_BARE} summary -u') bb.note(self.format('OSTree primary repository {OSTREE_BARE} summary:\n{0}', output)) def checkout_sysroot(self): """ Replicate the ostree repository into the OSTree rootfs and make a checkout/deploy. """ if os.path.isdir(self.OSTREE_ROOTFS): shutil.rmtree(self.OSTREE_ROOTFS) bb.note(self.format('Initializing OSTree rootfs {OSTREE_ROOTFS} ...')) bb.utils.mkdirhier(self.OSTREE_ROOTFS) self.run_ostree('admin --sysroot={OSTREE_ROOTFS} init-fs {OSTREE_ROOTFS}') self.run_ostree('admin --sysroot={OSTREE_ROOTFS} os-init {OSTREE_OS}') bb.note(self.format('Replicating primary OSTree repository {OSTREE_BARE} branch {OSTREE_BRANCHNAME} into OSTree rootfs {OSTREE_ROOTFS} ...')) self.run_ostree('--repo={OSTREE_ROOTFS}/ostree/repo pull-local --remote=updates {OSTREE_BARE} {OSTREE_BRANCHNAME}') bb.note('Deploying sysroot from OSTree sysroot repository...') self.run_ostree('admin --sysroot={OSTREE_ROOTFS} deploy --os={OSTREE_OS} updates:{OSTREE_BRANCHNAME}') # OSTree initialized var for our OS, but we want the original rootfs content instead. src = os.path.join(self.IMAGE_ROOTFS, 'var') dst = os.path.join(self.OSTREE_ROOTFS, 'ostree', 'deploy', self.OSTREE_OS, 'var') bb.note(self.format('Copying /var from rootfs to OSTree rootfs as {} ...', dst)) shutil.rmtree(dst) oe.path.copyhardlinktree(src, dst) if self.OSTREE_REMOTE: bb.note(self.format('Setting OSTree remote to {OSTREE_REMOTE} ...')) self.run_ostree('remote add --repo={OSTREE_ROOTFS}/ostree/repo ' '--gpg-import={OSTREE_GPGDIR}/pubring.gpg ' 'updates {OSTREE_REMOTE}') def finalize_sysroot(self): """ Finalize the physical root directory after the ostree checkout. """ bb.note(self.format('Creating EFI mount point /boot/efi in OSTree rootfs {OSTREE_ROOTFS} ...')) bb.utils.mkdirhier(os.path.join(self.OSTREE_ROOTFS, 'boot', 'efi')) bb.note(self.format('Copying pristine rootfs {IMAGE_ROOTFS}/home to OSTree rootfs {OSTREE_ROOTFS} ...')) oe.path.copyhardlinktree(os.path.join(self.IMAGE_ROOTFS, 'home'), os.path.join(self.OSTREE_ROOTFS, 'home')) def prepare_rootfs(self): """ Create the intermediate, bare repo and a fully functional rootfs for the target device where the current build is deployed. """ self.prepare_sysroot() self.populate_repo() self.checkout_sysroot() self.finalize_sysroot() def export_repo(self): """ Export data from a primary OSTree repository to the given (archive-z2) one. """ bb.note(self.format('Exporting primary repository {OSTREE_BARE} to export repository {OSTREE_REPO}...')) if not os.path.isdir(self.OSTREE_REPO): bb.note("Initializing repository %s for exporting..." % self.OSTREE_REPO) bb.utils.mkdirhier(self.OSTREE_REPO) self.run_ostree('--repo={OSTREE_REPO} init --mode=archive-z2') self.run_ostree('--repo={OSTREE_REPO} pull-local --remote={OSTREE_OS} {OSTREE_BARE} {OSTREE_BRANCHNAME}') self.run_ostree('--repo={OSTREE_REPO} commit {gpg_sign} --branch={OSTREE_BRANCHNAME} --tree=ref={OSTREE_OS}:{OSTREE_BRANCHNAME}') self.run_ostree('--repo={OSTREE_REPO} summary {gpg_sign} -u')
42.177474
149
0.606732
11,991
0.970303
0
0
0
0
0
0
6,220
0.503318
021a272ec30f97420b7269bd3ee1d988857ff0cb
123
py
Python
returns-the- value-to-the-variable.py
fatihwin-yt/a-Python-Tutorial-of-2021
7d2110f80efdfa79437bf64f8edcd08ec3d61926
[ "MIT" ]
1
2021-03-29T02:29:58.000Z
2021-03-29T02:29:58.000Z
returns-the- value-to-the-variable.py
fatihwin-yt/a-Python-Tutorial-of-2021
7d2110f80efdfa79437bf64f8edcd08ec3d61926
[ "MIT" ]
null
null
null
returns-the- value-to-the-variable.py
fatihwin-yt/a-Python-Tutorial-of-2021
7d2110f80efdfa79437bf64f8edcd08ec3d61926
[ "MIT" ]
1
2021-03-27T15:00:06.000Z
2021-03-27T15:00:06.000Z
#returns the value to the variable # x = 900 print(x) #print will take the argument x as the value in the variable #
20.5
63
0.699187
0
0
0
0
0
0
0
0
100
0.813008
021a57faf00fc6d4266f3268c12b51f08834cc6c
1,453
py
Python
app.py
alvaropp/interactive-fantasy-map
b75ebc734970790bc5779865ab5e786e50250709
[ "MIT" ]
4
2021-02-11T03:23:40.000Z
2022-02-13T01:56:58.000Z
app.py
alvaropp/interactive-fantasy-map
b75ebc734970790bc5779865ab5e786e50250709
[ "MIT" ]
null
null
null
app.py
alvaropp/interactive-fantasy-map
b75ebc734970790bc5779865ab5e786e50250709
[ "MIT" ]
null
null
null
from glob import glob from flask import flash, Flask, Markup, render_template, redirect, request, send_from_directory from form import MapForm from process_new_map import create_map_from_form app = Flask(__name__) with open("secret.txt", "r") as secret_f: app.config["SECRET_KEY"] = secret_f.read() @app.route("/", methods=["GET", "POST"]) def home(): form = MapForm() if form.validate_on_submit(): map_website_path = create_map_from_form(form) map_name = map_website_path.split("/")[-1].split(".")[0] full_url = f"{request.base_url}maps/" + map_website_path flash(Markup(f"Map created successfully: <a href={full_url}>{map_name}</a>")) return render_template("index.html", title="Create a new map", form=form) @app.route("/examples", methods=["GET", "POST"]) def examples(): examples = [path.split("/")[-1].split("_")[-1].split(".")[0] for path in glob("templates/example_*")] return render_template("examples.html", examples=examples) @app.route("/help", methods=["GET", "POST"]) def help(): return render_template("help.html") @app.route("/maps/<map_uuid>/<map_name>.html") def show_map(map_uuid, map_name): return render_template("map_template.html", data=[map_uuid, map_name]) @app.route("/examples/<example_name>.html") def show_example_map(example_name): return render_template(f"example_{example_name}.html") if __name__ == "__main__": app.run(debug=True)
29.653061
105
0.692361
0
0
0
0
1,078
0.741913
0
0
385
0.264969
021afdb076c4754aa3ba63a750975318ad4eba13
4,121
py
Python
monai/deploy/core/execution_context.py
jlvahldiek/monai-deploy-app-sdk
050aeabec581067a11566f59a2970b075d36ae7c
[ "Apache-2.0" ]
28
2021-09-17T18:16:42.000Z
2022-03-31T16:32:36.000Z
monai/deploy/core/execution_context.py
jlvahldiek/monai-deploy-app-sdk
050aeabec581067a11566f59a2970b075d36ae7c
[ "Apache-2.0" ]
109
2021-09-17T18:34:31.000Z
2022-03-31T21:04:35.000Z
monai/deploy/core/execution_context.py
jlvahldiek/monai-deploy-app-sdk
050aeabec581067a11566f59a2970b075d36ae7c
[ "Apache-2.0" ]
11
2021-09-17T20:23:31.000Z
2022-03-29T08:55:19.000Z
# Copyright 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from monai.deploy.core.domain.datapath import NamedDataPath # To avoid "Cannot resolve forward reference" error # : https://github.com/agronholm/sphinx-autodoc-typehints#dealing-with-circular-imports from . import operator from .datastores import Datastore, MemoryDatastore from .io_context import InputContext, OutputContext from .models import Model class BaseExecutionContext: """A base execution context for the application. BaseExecutionContext is responsible for storing the input and output data paths, and the models. Those pieces of information are used by the Operator (in `compute()` method) to perform the execution. The input and output data paths from the application's context are available through `context.input.get()` and `context.output.get()`. """ def __init__( self, datastore: Optional[Datastore], input: NamedDataPath, output: NamedDataPath, models: Optional[Model] = None, ): if datastore is None: self._storage: Datastore = MemoryDatastore() else: self._storage = datastore self._input = input self._output = output if models is None: self._models = Model("") # set a null model else: self._models = models @property def storage(self) -> Datastore: return self._storage @property def input(self) -> NamedDataPath: return self._input @property def output(self) -> NamedDataPath: return self._output @property def models(self) -> Model: return self._models class ExecutionContext(BaseExecutionContext): """An execution context for the operator.""" def __init__(self, context: BaseExecutionContext, op: "operator.Operator"): super().__init__(context.storage, context.input, context.output, context.models) self._context = context self._op = op self._input_context = InputContext(self) self._output_context = OutputContext(self) @property def op(self): return self._op def get_execution_index(self): """Returns the execution index for the operator. The execution index is incremented every time before the operator is executed. For the first time, the execution index is set to 0. Returns: The execution index(int) for the operator. """ storage = self._context.storage parent_node = f"/operators/{self.op.uid}" key = f"{parent_node}/execution_index" if storage.exists(key): return storage.get(key) else: storage.put(key, 0) return 0 def increase_execution_index(self): """Increases the execution index for the operator. This index number would be increased once for each call to the operator so that the operator can be executed multiple times. """ storage = self._context.storage parent_node = f"/operators/{self.op.uid}" key = f"{parent_node}/execution_index" new_execution_index = self.get_execution_index() + 1 storage.put(key, new_execution_index) return new_execution_index @property def input_context(self): """Returns the input context for the operator.""" return self._input_context @property def output_context(self): """Returns the output context for the operator.""" return self._output_context
32.448819
106
0.674351
3,158
0.766319
0
0
608
0.147537
0
0
1,902
0.461538
021b5b2946a725db8a4879a92f48d89c65c21d97
11,698
py
Python
LeetCode-All-Solution/Python3/LC-1728-Cat-and-Mouse-II.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
LeetCode-All-Solution/Python3/LC-1728-Cat-and-Mouse-II.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
LeetCode-All-Solution/Python3/LC-1728-Cat-and-Mouse-II.py
YuweiYin/Algorithm_YuweiYin
28648fac59c5a4e3c907978cbd1b3e662ba18fd5
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-1728-Cat-and-Mouse-II.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-05-10 ==================================================================""" import sys import time from typing import List, Tuple import collections """ LeetCode - 1728 - (Hard) - Cat and Mouse II https://leetcode.com/problems/cat-and-mouse-ii/ Description: A game is played by a cat and a mouse named Cat and Mouse. The environment is represented by a grid of size rows x cols, where each element is a wall, floor, player (Cat, Mouse), or food. Players are represented by the characters 'C'(Cat),'M'(Mouse). Floors are represented by the character '.' and can be walked on. Walls are represented by the character '#' and cannot be walked on. Food is represented by the character 'F' and can be walked on. There is only one of each character 'C', 'M', and 'F' in grid. Mouse and Cat play according to the following rules: Mouse moves first, then they take turns to move. During each turn, Cat and Mouse can jump in one of the four directions (left, right, up, down). They cannot jump over the wall nor outside of the grid. catJump, mouseJump are the maximum lengths Cat and Mouse can jump at a time, respectively. Cat and Mouse can jump less than the maximum length. Staying in the same position is allowed. Mouse can jump over Cat. The game can end in 4 ways: If Cat occupies the same position as Mouse, Cat wins. If Cat reaches the food first, Cat wins. If Mouse reaches the food first, Mouse wins. If Mouse cannot get to the food within 1000 turns, Cat wins. Given a rows x cols matrix grid and two integers catJump and mouseJump, return true if Mouse can win the game if both Cat and Mouse play optimally, otherwise return false. Example 1: Input: grid = ["####F","#C...","M...."], catJump = 1, mouseJump = 2 Output: true Explanation: Cat cannot catch Mouse on its turn nor can it get the food before Mouse. Example 2: Input: grid = ["M.C...F"], catJump = 1, mouseJump = 4 Output: true Example 3: Input: grid = ["M.C...F"], catJump = 1, mouseJump = 3 Output: false Constraints: rows == grid.length cols = grid[i].length 1 <= rows, cols <= 8 grid[i][j] consist only of characters 'C', 'M', 'F', '.', and '#'. There is only one of each character 'C', 'M', and 'F' in grid. 1 <= catJump, mouseJump <= 8 """ class Solution: def __init__(self): self.MOUSE_TURN = 0 self.CAT_TURN = 1 self.UNKNOWN = 0 self.MOUSE_WIN = 1 self.CAT_WIN = 2 self.MAX_MOVE = 1000 self.DIRECTION = ((-1, 0), (1, 0), (0, -1), (0, 1)) def canMouseWin(self, grid: List[str], catJump: int, mouseJump: int) -> bool: # exception case assert isinstance(grid, list) and 1 <= len(grid) and 1 <= len(grid[0]) assert isinstance(catJump, int) and 1 <= catJump assert isinstance(mouseJump, int) and 1 <= mouseJump # main method: (Game Theory & Topological Sorting) return self._canMouseWin(grid, catJump, mouseJump) def _canMouseWin(self, grid: List[str], catJump: int, mouseJump: int) -> bool: assert isinstance(grid, list) max_row = len(grid) assert max_row >= 1 max_col = len(grid[0]) assert max_col >= 1 total_block = max_row * max_col def __get_pos(_row: int, _col: int) -> int: return int(_row * max_col + _col) # get the initial positions of the mouse, cat, and food mouse_start_pos = cat_start_pos = food_pos = 0 for row_idx in range(max_row): for col_idx in range(max_col): cur_block = grid[row_idx][col_idx] if cur_block == 'M': mouse_start_pos = __get_pos(row_idx, col_idx) elif cur_block == 'C': cat_start_pos = __get_pos(row_idx, col_idx) elif cur_block == 'F': food_pos = __get_pos(row_idx, col_idx) # calculate the degree of each state degrees = [[[0, 0] for _ in range(total_block)] for _ in range(total_block)] for mouse in range(total_block): row_mouse, col_mouse = divmod(mouse, max_col) if grid[row_mouse][col_mouse] == '#': continue for cat in range(total_block): row_cat, col_cat = divmod(cat, max_col) if grid[row_cat][col_cat] == '#': continue degrees[mouse][cat][self.MOUSE_TURN] += 1 degrees[mouse][cat][self.CAT_TURN] += 1 for d_row, d_col in self.DIRECTION: row, col, jump = row_mouse + d_row, col_mouse + d_col, 1 while 0 <= row < max_row and 0 <= col < max_col and grid[row][col] != '#' and jump <= mouseJump: next_mouse = __get_pos(row, col) next_cat = __get_pos(row_cat, col_cat) degrees[next_mouse][next_cat][self.MOUSE_TURN] += 1 row += d_row col += d_col jump += 1 row, col, jump = row_cat + d_row, col_cat + d_col, 1 while 0 <= row < max_row and 0 <= col < max_col and grid[row][col] != '#' and jump <= catJump: next_mouse = __get_pos(row_mouse, col_mouse) next_cat = __get_pos(row, col) degrees[next_mouse][next_cat][self.CAT_TURN] += 1 row += d_row col += d_col jump += 1 res = [[[[0, 0], [0, 0]] for _ in range(total_block)] for _ in range(total_block)] queue = collections.deque() # if the cat and mouse are in the same block, then the cat wins for pos in range(total_block): row, col = divmod(pos, max_col) if grid[row][col] == '#': continue res[pos][pos][self.MOUSE_TURN][0] = self.CAT_WIN res[pos][pos][self.MOUSE_TURN][1] = 0 res[pos][pos][self.CAT_TURN][0] = self.CAT_WIN res[pos][pos][self.CAT_TURN][1] = 0 queue.append((pos, pos, self.MOUSE_TURN)) queue.append((pos, pos, self.CAT_TURN)) # if the cat and food are in the same block, then the cat wins for mouse in range(total_block): row_mouse, col_mouse = divmod(mouse, max_col) if grid[row_mouse][col_mouse] == '#' or mouse == food_pos: continue res[mouse][food_pos][self.MOUSE_TURN][0] = self.CAT_WIN res[mouse][food_pos][self.MOUSE_TURN][1] = 0 res[mouse][food_pos][self.CAT_TURN][0] = self.CAT_WIN res[mouse][food_pos][self.CAT_TURN][1] = 0 queue.append((mouse, food_pos, self.MOUSE_TURN)) queue.append((mouse, food_pos, self.CAT_TURN)) # if the mouse and food are in the same block \land cat is somewhere else, then the mouse wins for cat in range(total_block): row_cat, col_cat = divmod(cat, max_col) if grid[row_cat][col_cat] == '#' or cat == food_pos: continue res[food_pos][cat][self.MOUSE_TURN][0] = self.MOUSE_WIN res[food_pos][cat][self.MOUSE_TURN][1] = 0 res[food_pos][cat][self.CAT_TURN][0] = self.MOUSE_WIN res[food_pos][cat][self.CAT_TURN][1] = 0 queue.append((food_pos, cat, self.MOUSE_TURN)) queue.append((food_pos, cat, self.CAT_TURN)) def __get_prev_state(_mouse: int, _cat: int, _turn: int) -> List[Tuple[int, int, int]]: r_mouse, c_mouse = divmod(_mouse, max_col) r_cat, c_cat = divmod(_cat, max_col) prev_turn = self.CAT_TURN if _turn == self.MOUSE_TURN else self.MOUSE_TURN max_jump = mouseJump if prev_turn == self.MOUSE_TURN else catJump r_start = r_mouse if prev_turn == self.MOUSE_TURN else r_cat c_start = c_mouse if prev_turn == self.MOUSE_TURN else c_cat prev_state = [(_mouse, _cat, prev_turn)] for d_r, d_c in self.DIRECTION: _r, _c, _jump = r_start + d_r, c_start + d_c, 1 while 0 <= _r < max_row and 0 <= _c < max_col and grid[_r][_c] != '#' and jump <= max_jump: prev_r_mouse = _r if prev_turn == self.MOUSE_TURN else r_mouse prev_c_mouse = _c if prev_turn == self.MOUSE_TURN else c_mouse prev_mouse_pos = __get_pos(prev_r_mouse, prev_c_mouse) prev_r_cat = r_cat if prev_turn == self.MOUSE_TURN else _r prev_c_cat = c_cat if prev_turn == self.MOUSE_TURN else _c prev_cat_pos = __get_pos(prev_r_cat, prev_c_cat) prev_state.append((prev_mouse_pos, prev_cat_pos, prev_turn)) _r += d_r _c += d_c _jump += 1 return prev_state # Topological Sorting while queue: mouse, cat, turn = queue.popleft() result = res[mouse][cat][turn][0] moves = res[mouse][cat][turn][1] for previous_mouse, previous_cat, previous_turn in __get_prev_state(mouse, cat, turn): if res[previous_mouse][previous_cat][previous_turn][0] == self.UNKNOWN: if (result == self.MOUSE_WIN and previous_turn == self.MOUSE_TURN) or \ (result == self.CAT_WIN and previous_turn == self.CAT_TURN): res[previous_mouse][previous_cat][previous_turn][0] = result res[previous_mouse][previous_cat][previous_turn][1] = moves + 1 queue.append((previous_mouse, previous_cat, previous_turn)) else: degrees[previous_mouse][previous_cat][previous_turn] -= 1 if degrees[previous_mouse][previous_cat][previous_turn] == 0: loseResult = self.CAT_WIN if previous_turn == self.MOUSE_TURN else self.MOUSE_WIN res[previous_mouse][previous_cat][previous_turn][0] = loseResult res[previous_mouse][previous_cat][previous_turn][1] = moves + 1 queue.append((previous_mouse, previous_cat, previous_turn)) if res[mouse_start_pos][cat_start_pos][self.MOUSE_TURN][0] == self.MOUSE_WIN and \ res[mouse_start_pos][cat_start_pos][self.MOUSE_TURN][1] <= self.MAX_MOVE: return True else: return False def main(): # Example 1: Output: true # grid = ["####F", "#C...", "M...."] # catJump = 1 # mouseJump = 2 # Example 2: Output: true # grid = ["M.C...F"] # catJump = 1 # mouseJump = 4 # Example 3: Output: false grid = ["M.C...F"] catJump = 1 mouseJump = 3 # init instance solution = Solution() # run & time start = time.process_time() ans = solution.canMouseWin(grid, catJump, mouseJump) end = time.process_time() # show answer print('\nAnswer:') print(ans) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
44.310606
116
0.566422
8,292
0.708839
0
0
0
0
0
0
3,372
0.288254
021c36744a33f4725dc24d93c0aa09acf81e97bf
2,193
py
Python
tictac/tictac/cli.py
SteveDMurphy/tic_tac_go
7e80dc1ec6fbeceb3c9879cee7fb32b7ecfe37a7
[ "MIT" ]
null
null
null
tictac/tictac/cli.py
SteveDMurphy/tic_tac_go
7e80dc1ec6fbeceb3c9879cee7fb32b7ecfe37a7
[ "MIT" ]
null
null
null
tictac/tictac/cli.py
SteveDMurphy/tic_tac_go
7e80dc1ec6fbeceb3c9879cee7fb32b7ecfe37a7
[ "MIT" ]
null
null
null
import click from random import randrange from tictac import Tictac @click.group() def tictac(): pass @tictac.command(name="games", help="Returns all started games, order by when they were created") def view_games(): tictac_class = Tictac() click.echo(tictac_class.view_games()) @tictac.command(name="gamemoves", help="Returns all moves in a specified game") def view_game_moves(): game_id = click.prompt("Input a valid game ID", type=int) tictac_class = Tictac() game_moves = tictac_class.view_moves(game_id) click.echo(game_moves) @tictac.command(name="newgame", help="Creates a new game and walks moves through to completion") def new_game(): tictac_class = Tictac() tictac_class.create_new_game() click.echo(f"playing game id: {tictac_class.game_id}") game_complete = 0 while game_complete == 0: available_moves = tictac_class.get_move_options() if (tictac_class.number_of_moves() % 2) == 0: # player to move here click.echo("Possible moves:") for move in available_moves: click.echo(f"Position ID: {move[0]}, Position: {move[1]}") move = click.prompt( "Please pick a position id number for you next move", type=int ) # TODO add some validation here game_complete = tictac_class.take_turn(position_id=move) else: # selects a random position ID from the available moves random_selection_id = randrange(len(available_moves)) computer_move = available_moves[random_selection_id][0] game_complete = tictac_class.take_turn(position_id=computer_move, player_is_robot=1) if game_complete == 1: if tictac_class.winning_player_is_robot == 0: click.echo("Congratulations! You win!") else: click.echo("OOF - sorry, the computer won this time...") click.echo("Winning combination:") click.echo(tictac_class.winning_combination) elif game_complete == -1: click.echo("oh dang, nobody won... try again?") if __name__ == "__main__": tictac()
33.227273
96
0.645691
0
0
0
0
2,070
0.943912
0
0
609
0.277702
021d46262a81bc3bd29354a1c4c85f1ce3571b25
4,230
py
Python
matchId.py
terryhahm/ARAM
bbaa6446aec6ad7141d492aef174832e627c7b74
[ "MIT" ]
null
null
null
matchId.py
terryhahm/ARAM
bbaa6446aec6ad7141d492aef174832e627c7b74
[ "MIT" ]
null
null
null
matchId.py
terryhahm/ARAM
bbaa6446aec6ad7141d492aef174832e627c7b74
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import riotConstant import time import requests def wait( tik ): tik = int(tik) tik += 2 while( tik > 0 ): print("API Rate Limit exceeded, wait for " + str(tik) + " second(s)", end = ' \r') tik -= 1 time.sleep(1) print(" ", end='\r') return def getMatchIdURL( region, accountId, api_key): month_in_mill = 2592000000 currentTime = int(round(time.time() * 1000)) beginTime = currentTime - 3 * month_in_mill url = "https://" + region\ + ".api.riotgames.com/lol/match/v4/matchlists/by-account/"+ accountId\ +"?queue=450&beginTime="+ str(beginTime)\ +"&api_key=" + api_key return url def getMatchIdByPlayer( region, accountId, api_key ): # Create a list to store the match ID played by user with given account ID, and get Riot API URL matchIdList = [] url = getMatchIdURL( region, accountId, api_key ) # While loop to handle API rate limit exceeding while( True ): # Request for match info played by user with given account Id try: response = requests.get( url ) response.raise_for_status() # If any status code other than 200 occurs except requests.exceptions.RequestException as e: # User have not played ARAM in last 3 months (Data Not Found), break from while loop if( response.status_code == 404): # print("User does not have record playing ARAM in last 3 months") break # If API Rate limit exceeded, wait for 1 min and try again. elif( response.status_code == 429 ): retry_after = response.headers['Retry-After'] wait(retry_after) continue # Any other error will print out and break from while loop else: print(e) break # If request was successful, handle json data and break from while loop else: json_data = response.json() matches = json_data['matches'] # print("Collected match history of user with account id : " + accountId) for match in matches: matchId = match['gameId'] matchIdList.append(matchId) break return matchIdList def getMatchId( region ): RIOTConstant = riotConstant.RIOTConstant() api_key = RIOTConstant.api_key # Read account ID file per region file_path_accnt = './data/' + region + "accountId.csv" df_accntId = pd.read_csv(file_path_accnt) # Create a new dataframe to store match ID df_matchId = pd.DataFrame() # For each tier / division for column in df_accntId.columns: # Get the list of account ID, and create list to store match ID accntIdList = df_accntId[column].dropna(axis = 0) matchIdList = [] # Create variable to track process of getting data total = len(accntIdList) count = 1 # For each account ID for accntId in accntIdList: # Get the match ID played by each account ID matchidListByPlayer = getMatchIdByPlayer( region, accntId, api_key) print("Collecting match history : " + str(count) + " out of " + str(total), end = '\r') count = count + 1 # Add the match ID to the list matchIdList.extend(matchidListByPlayer) # Once iterate through all account ID in each tier / division, # check for duplicate, create a dataframe column and concatenate with previous dataframe matchIdList = list(dict.fromkeys(matchIdList)) new_column = pd.DataFrame( data = { column : matchIdList } ) df_matchId = pd.concat( [df_matchId, new_column], axis=1 ) df_matchId.to_csv('./data/' + region + "matchId.csv", index=False) # # Once all columns are done, convert everythin to Integer because some values are listed as float type # df_final = pd.read_csv('./data/' + region + "matchId.csv").dropna(axis = 0) # df_final = df.astype(int) # df_final.to_csv('./data/' + region + "matchId.csv", index=False)
37.433628
108
0.607092
0
0
0
0
0
0
0
0
1,729
0.408747
021d5769d36b572a0f2addec694597fefa3cfa6f
158
py
Python
Backend/order/urls.py
Bhavya0020/Readopolis
a0053e4fae97dc8291b50c746f3dc3e6b454ad95
[ "MIT" ]
null
null
null
Backend/order/urls.py
Bhavya0020/Readopolis
a0053e4fae97dc8291b50c746f3dc3e6b454ad95
[ "MIT" ]
null
null
null
Backend/order/urls.py
Bhavya0020/Readopolis
a0053e4fae97dc8291b50c746f3dc3e6b454ad95
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('checkout/', views.checkout), path('orders/', views.OrdersList.as_view()), ]
19.75
50
0.677215
0
0
0
0
0
0
0
0
20
0.126582
02223351c3f6f455c742ce52e04a38d560dc3455
299
py
Python
src/z3c/saconfig/__init__.py
zopefoundation/z3c.saconfig
69a32e7f7617ec4a1f9667d673a1ddc00aff59c2
[ "ZPL-2.1" ]
2
2016-03-12T14:22:23.000Z
2019-05-22T04:18:26.000Z
src/z3c/saconfig/__init__.py
zopefoundation/z3c.saconfig
69a32e7f7617ec4a1f9667d673a1ddc00aff59c2
[ "ZPL-2.1" ]
13
2015-05-05T12:27:48.000Z
2021-05-20T11:11:49.000Z
src/z3c/saconfig/__init__.py
zopefoundation/z3c.saconfig
69a32e7f7617ec4a1f9667d673a1ddc00aff59c2
[ "ZPL-2.1" ]
4
2015-05-04T12:18:31.000Z
2019-11-18T09:47:31.000Z
from z3c.saconfig.scopedsession import Session, named_scoped_session from z3c.saconfig.utility import ( GloballyScopedSession, SiteScopedSession, EngineFactory) __all__ = [ 'Session', 'named_scoped_session', 'GloballyScopedSession', 'SiteScopedSession', 'EngineFactory', ]
23
68
0.752508
0
0
0
0
0
0
0
0
88
0.294314
0223c05bd579183b627da44b67aca37eba1114e5
557
py
Python
src/triage/experiments/singlethreaded.py
josephbajor/triage_NN
cbaee6e5a06e597c91fec372717d89a2b5f34fa5
[ "MIT" ]
160
2017-06-13T09:59:59.000Z
2022-03-21T22:00:35.000Z
src/triage/experiments/singlethreaded.py
josephbajor/triage_NN
cbaee6e5a06e597c91fec372717d89a2b5f34fa5
[ "MIT" ]
803
2016-10-21T19:44:02.000Z
2022-03-29T00:02:33.000Z
src/triage/experiments/singlethreaded.py
josephbajor/triage_NN
cbaee6e5a06e597c91fec372717d89a2b5f34fa5
[ "MIT" ]
59
2017-01-31T22:10:22.000Z
2022-03-19T12:35:03.000Z
from triage.experiments import ExperimentBase class SingleThreadedExperiment(ExperimentBase): def process_query_tasks(self, query_tasks): self.feature_generator.process_table_tasks(query_tasks) def process_matrix_build_tasks(self, matrix_build_tasks): self.matrix_builder.build_all_matrices(matrix_build_tasks) def process_train_test_batches(self, batches): self.model_train_tester.process_all_batches(batches) def process_subset_tasks(self, subset_tasks): self.subsetter.process_all_tasks(subset_tasks)
34.8125
66
0.800718
508
0.912029
0
0
0
0
0
0
0
0
022635491f2d2bfe0024464d83f72d0ff2d7769e
11,374
py
Python
Webspider.py
radiantbk/webspider
62a9c71f8f3f39e5e07e0fb68682fc05a83edd5b
[ "MIT" ]
1
2019-11-09T01:36:39.000Z
2019-11-09T01:36:39.000Z
Webspider.py
radiantbk/webspider
62a9c71f8f3f39e5e07e0fb68682fc05a83edd5b
[ "MIT" ]
null
null
null
Webspider.py
radiantbk/webspider
62a9c71f8f3f39e5e07e0fb68682fc05a83edd5b
[ "MIT" ]
null
null
null
import re import os class tag_obj: def __init__(self): self.pos = 0 self.name = "" self.class_name = "" self.content = '' self.children ='' self.pairpos = -1 self.pair="" self.tag_label = "" class spider: def __init__(self, txt): self.html = txt self.tag_scope = [ "!DOCTYPE", "a", "abbr", "acronym", "address", "applet", "area", "article", "aside", "audio", "b", "base", "basefont", "bdi", "bdo", "big", "blockquote", "body", "br", "button", "canvas", "caption", "center", "cite", "code", "col", "colgroup", "command", "datalist", "dd", "del", "details", "dir", "div", "dfn", "dialog", "dl", "dt", "em", "embed", "fieldset", "figcaption", "figure", "fig", "font", "footer", "form", "frame", "frameset", "h1", "h2", "h3", "h4", "h5", "h6", "head", "header", "hr", "html", "i", "iframe", "img", "input", "ins", "isindex", "kbd", "keygen", "label", "legend", "li", "link", "map", "mark", "menu", "menuitem", "meta", "meter", "nav", "noframes", "noscript", "object", "ol", "optgroup", "option", "output", "p", "param", "pre", "progress", "q", "rp", "rt", "ruby", "s", "samp", "script", "section", "select", "small", "source", "span", "strike", "strong", "style", "sub", "summary", "sup", "table", "tbody", "td", "textarea", "tfoot", "th", "thead", "time", "title", "tr", "track", "tt", "u", "ul", "var", "video", "wbr", "xmp", ] self.tag_items = [] self.tag_items_l = [] self.tag_items_s = [] self.get_tag_items() self.pos_list = [] self.tag_list = [] self.tag_set() print("finish set up") # find all tag in html, return a tag item list without tag contents def get_tag_items(self): tagpa = "<(?:" for each in self.tag_scope: tagpa += each if each != self.tag_scope[-1]: tagpa += "|" # for tag with description tagpa1 = tagpa + ")\s.*?>" # for tag without descirption tagpa2 = tagpa + ")>" pa1 = re.compile(tagpa1) pa2 = re.compile(tagpa2) tag1 = re.findall(pa1, self.html) tag2 = re.findall(pa2, self.html) self.tag_items_l = tag1 self.tag_items_s = tag2 self.tag_items = self.tag_items_l + self.tag_items_s # define a method which can be used internally, to avoid error caused by wrong tag_item def get_tag_pos(self, tag_label, pos): # find tag_item postion, and update in self.tag start_pos = pos find_result = 0 str = self.html while find_result != -1: find_result = str.find(tag_label, start_pos) # find tag_label in Html if find_result != -1: # if found, check whether in pos list. if it is in, update the start position and continue. if not in pos list, update pos list and return position. try: self.pos_list.index(find_result) except ValueError: self.pos_list.append(find_result) #print("%s:%d" % (tag_label, find_result)) return find_result else: start_pos = find_result + len(tag_label) #print("already found one!") # if tag_label was not found,return -1 #print("%s not found" % tag_label) return find_result def get_tag_lastpos(self, tag_name): pos = 0 if self.tag_list == []: return pos i = len(self.tag_list) while i >= 1: tag_obj = self.tag_list[i - 1] if tag_obj.name== tag_name: pos = tag_obj.pos + len(tag_name) break i = i -1 return pos def get_tag_allpair(self,tag_name): #find position of tag_name pair, return a list of pair pos tag_pair = '</'+tag_name+'>' start_pos = 0 find_result = 0 pair_pos = [] while self.html.find(tag_pair,start_pos)!= -1: #keep seeking pair pos till it is not found find_result = self.html.find(tag_pair, start_pos) if find_result != -1: pair_pos.append(find_result) start_pos = find_result+len(tag_pair) return pair_pos def match_tag(self,tag_pos_list,pair_pos_list): # match the list of pos and pair, return a list of match. the biggest pos of pair, should match with biigest pos who is smaller than pair. match_list=[] #print('%s:\n%s'%(tag_pos_list,pair_pos_list)) if tag_pos_list != []: #if tag_pos_list not empty,set min pos as first element of tag_post_list min_pos = tag_pos_list[0] else: #if tag_pos_list is empty, stop matching and return a empty match_list return match_list for pair_pos in pair_pos_list: for tag_pos in tag_pos_list: if (tag_pos<pair_pos) and (tag_pos>min_pos): min_pos = tag_pos #print(min_pos) match_list.append([min_pos,pair_pos]) tag_pos_list.remove(min_pos) #remove min_pos from tag_pos_list as it has been matched if tag_pos_list !=[]: #if tag_pos_list not empty,set min pos as first element of tag_post_list min_pos = tag_pos_list[0] else: #if tag_pos_list is empty,stop matching return match_list return match_list def set_pair(self): #get pair position of tag #print(self.tag_list) for each in self.tag_list: #get each tag object in tag_list if each.tag_label[-2:]== '/>': #if tag end with />, directly get the pair position. each.pairpos = each.pos + len(each.tag_label)-2 each.pair = '/>' #else if pair pos not exists, group the tags and get all tag position. elif each.pairpos ==-1: tag_pos_list=[] for ea in self.tag_list: #group tag pos for those tag_label == current tag label if ea.name ==each.name: tag_pos_list.append(ea.pos) #print(tag_pos_list) #get relevant pair pos list #print(tag_pos_list) tag_pair_list = self.get_tag_allpair(each.name) #match pair for tag,name of which ==current tag_label match_list = self.match_tag(tag_pos_list,tag_pair_list) #print(match_list) #update pair and pair pos by match list by go through each elements in math list. for ml in match_list: for tg in self.tag_list: if tg.pos == ml[0]: tg.pairpos = ml[1] tg.pair = '</'+tg.name+'>' def set_tag_content(self): #set tag content and children when tag pos and pair were set. for ea in self.tag_list: if ea.pairpos != -1: #when pair position is available, get tag content by str split ea.content = self.html[ea.pos:ea.pairpos + len(ea.pair)] content_str = ea.content content_str=content_str[len(ea.tag_label):] #if there is a string, it means the tag has children and indepent pair. if content_str != '': end = len(ea.name)+3 content_str=content_str[:-end] ea.children = content_str def tag_set(self): # remove all tag setting, create tag object for all tags detected from txt. self.tag_list = [] items = self.tag_items for ea in items: # define a tag object, and update tag of spider, id, description tag_object = tag_obj() # get the tag position in html start_pos = self.get_tag_lastpos(ea) pos = self.get_tag_pos(ea, start_pos) if pos != -1: tag_object.pos = pos else: tag_object.pos = 0 tag_object.tag_label = ea # remove start and end of tag ea_str = ea tag_item = ea_str.replace(">", "") ea_str = tag_item.replace("<", "") # if there is a space, name is first part of string. otherwise, it is a none description tag, tag name equal to tag item. if ea_str.find(" "): ea_list = ea_str.split(" ") tag_object.name = ea_list[0] else: tag_object.name = ea_str # add tag_object into tag attribute # get class name of tag class_str = 'class="(.*?)"' pa_class = re.compile(class_str) class_content = re.findall(pa_class, ea) if class_content != []: tag_object.class_name = class_content[0] self.tag_list.append(tag_object) self.set_pair() self.set_tag_content() #when tag_list has been set up, match pos and pair pos. def get_tag_content(self,tag_name,class_name =''): #get tag content by input the tag name and class name(optional) tag_content =[] for ea in self.tag_list: if ea.name == tag_name: if class_name =="": tag_content.append(ea.content) elif ea.class_name == class_name: tag_content.append(ea.content) return tag_content def tag(self,tag_name,tag_classname =''): #get a tag_object by input the name, and there is more than 1 tag with same name, return first one. if tag was not exisiting, return a None tag_obj=None for tg in self.tag_list: if tg.name == tag_name: if tag_classname =='': tag_obj =tg break elif tag_classname in tg.class_name: tag_obj = tg break return tag_obj
31.076503
164
0.481976
11,250
0.989098
0
0
0
0
0
0
3,402
0.299103
022a8bafe44b23b7f0a6af1c6947a769d26527f0
4,909
py
Python
QScrollAreaImages.py
ErwinSchotman/QT5-QScrollAreaImages
053e06a3ff67311f753712902902c43b1f011d30
[ "MIT" ]
1
2019-11-29T00:37:31.000Z
2019-11-29T00:37:31.000Z
QScrollAreaImages.py
ErwinSchotman/QT5-QScrollAreaImages
053e06a3ff67311f753712902902c43b1f011d30
[ "MIT" ]
null
null
null
QScrollAreaImages.py
ErwinSchotman/QT5-QScrollAreaImages
053e06a3ff67311f753712902902c43b1f011d30
[ "MIT" ]
null
null
null
# # Copyright (c) 2019 Erwin Schotman # # Licensed under MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH # THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from PyQt5.QtWidgets import QScrollArea, QWidget, QGridLayout from QClickableImage import * from PyQt5.QtCore import QRect #======================================================================================================================= class QScrollAreaImages(QScrollArea): displayed_image_size = 100 #------------------------------------------------------------------------------------------------------------------- def __init__(self, width=0, height=0, pixmap=None): QScrollArea.__init__(self) # make a scroll area resizeable self.setWidgetResizable(True) # make a widget for the contents of the scroll area self.scrollAreaWidgetContents = QWidget() #self.scrollAreaWidgetContents.setGeometry(QRect(0, 0, 421, 429)) # give this widget a grid layout self.gridLayout = QGridLayout(self.scrollAreaWidgetContents) # put the contents widget in the scroll area self.setWidget(self.scrollAreaWidgetContents) #------------------------------------------------------------------------------------------------------------------- def get_nr_of_image_columns(self): scroll_area_images_width = self.width() if scroll_area_images_width > self.displayed_image_size: nr_of_columns = scroll_area_images_width // self.displayed_image_size else: nr_of_columns = 1 return nr_of_columns #------------------------------------------------------------------------------------------------------------------- def on_resize(self, event): nr_of_columns = self.get_nr_of_image_columns() nr_of_widgets = self.gridLayout.count() widgets = [] for i in range(nr_of_widgets): widgets.append(self.gridLayout.itemAt(i)) column_nr = 0 row_nr = 0 for widget in widgets: self.gridLayout.removeItem(widget) self.gridLayout.addWidget(widget.widget(), row_nr, column_nr) if column_nr == nr_of_columns - 1: column_nr = 0 row_nr += 1 else: column_nr += 1 #------------------------------------------------------------------------------------------------------------------- def setDisplayedImageSize(self, image_size): self.displayed_image_size = image_size #------------------------------------------------------------------------------------------------------------------- def addImage(self, pixmap, image_id): nr_of_columns = self.get_nr_of_image_columns() nr_of_widgets = self.gridLayout.count() row_nr = nr_of_widgets // nr_of_columns column_nr = nr_of_widgets % nr_of_columns clickable_image = QClickableImage(self.displayed_image_size, self.displayed_image_size, pixmap, image_id) clickable_image.clicked.connect(self.on_left_clicked) clickable_image.rightClicked.connect(self.on_right_clicked) self.gridLayout.addWidget(clickable_image, column_nr, row_nr) #------------------------------------------------------------------------------------------------------------------- def on_left_clicked(self, image_id): print('left clicked - image id = ' + image_id) #------------------------------------------------------------------------------------------------------------------- def on_right_clicked(self, image_id): print('right clicked - image id = ' + image_id) #------------------------------------------------------------------------------------------------------------------- def resizeEvent(self, event): self.on_resize(event)
48.127451
121
0.534528
3,508
0.714606
0
0
0
0
0
0
2,468
0.50275
022b9e68ba47723e01a95addbedb6c10c435b96e
30,434
py
Python
pyrax/fakes.py
jfreeman812/pyrax
dba18df916dcc3a9f539bd9c609b1bb68f3d9203
[ "Apache-2.0" ]
null
null
null
pyrax/fakes.py
jfreeman812/pyrax
dba18df916dcc3a9f539bd9c609b1bb68f3d9203
[ "Apache-2.0" ]
1
2019-11-06T20:21:59.000Z
2019-11-06T20:21:59.000Z
pyrax/fakes.py
jfreeman812/pyrax
dba18df916dcc3a9f539bd9c609b1bb68f3d9203
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import json import os import random import time import uuid import pyrax from pyrax.autoscale import AutoScaleClient from pyrax.autoscale import AutoScalePolicy from pyrax.autoscale import AutoScaleWebhook from pyrax.autoscale import ScalingGroup from pyrax.autoscale import ScalingGroupManager from pyrax.client import BaseClient from pyrax.clouddatabases import CloudDatabaseClient from pyrax.clouddatabases import CloudDatabaseDatabaseManager from pyrax.clouddatabases import CloudDatabaseInstance from pyrax.clouddatabases import CloudDatabaseManager from pyrax.clouddatabases import CloudDatabaseUser from pyrax.clouddatabases import CloudDatabaseUserManager from pyrax.clouddatabases import CloudDatabaseVolume from pyrax.cloudblockstorage import CloudBlockStorageClient from pyrax.cloudblockstorage import CloudBlockStorageManager from pyrax.cloudblockstorage import CloudBlockStorageSnapshot from pyrax.cloudblockstorage import CloudBlockStorageSnapshotManager from pyrax.cloudblockstorage import CloudBlockStorageVolume from pyrax.cloudloadbalancers import CloudLoadBalancer from pyrax.cloudloadbalancers import CloudLoadBalancerManager from pyrax.cloudloadbalancers import CloudLoadBalancerClient from pyrax.cloudloadbalancers import Node from pyrax.cloudloadbalancers import VirtualIP from pyrax.clouddns import CloudDNSClient from pyrax.clouddns import CloudDNSDomain from pyrax.clouddns import CloudDNSManager from pyrax.clouddns import CloudDNSRecord from pyrax.clouddns import CloudDNSPTRRecord from pyrax.cloudnetworks import CloudNetwork from pyrax.cloudnetworks import CloudNetworkClient from pyrax.cloudmonitoring import CloudMonitorClient from pyrax.cloudmonitoring import CloudMonitorEntity from pyrax.cloudmonitoring import CloudMonitorCheck from pyrax.cloudmonitoring import CloudMonitorNotification from pyrax.image import Image from pyrax.image import ImageClient from pyrax.image import ImageManager from pyrax.image import ImageMemberManager from pyrax.image import ImageTagManager from pyrax.object_storage import BulkDeleter from pyrax.object_storage import Container from pyrax.object_storage import ContainerManager from pyrax.object_storage import FolderUploader from pyrax.object_storage import StorageClient from pyrax.object_storage import StorageObject from pyrax.object_storage import StorageObjectManager from pyrax.queueing import Queue from pyrax.queueing import QueueClaim from pyrax.queueing import QueueMessage from pyrax.queueing import QueueClient from pyrax.queueing import QueueManager import pyrax.exceptions as exc from pyrax.base_identity import BaseIdentity from pyrax.base_identity import Endpoint from pyrax.base_identity import Service from pyrax.identity.rax_identity import RaxIdentity from pyrax.identity.keystone_identity import KeystoneIdentity import pyrax.utils as utils example_uri = "http://example.com" class FakeResponse(object): headers = {} body = "" status_code = 200 reason = "Oops" content = "Oops" @property def status(self): # TEMPORARY - until the cf_wrapper code is removed. return self.status_code @status.setter def status(self, val): # TEMPORARY - until the cf_wrapper code is removed. self.status_code = val def getheaders(self): return self.headers def read(self): return "Line1\nLine2" def get(self, arg): return self.headers.get(arg) def json(self): return self.content class FakeIterator(utils.ResultsIterator): def _init_methods(self): pass class FakeClient(object): user_agent = "Fake" USER_AGENT = "Fake" def __init__(self, *args, **kwargs): self.identity = FakeIdentity() class FakeStorageClient(StorageClient): def __init__(self, identity=None, *args, **kwargs): if identity is None: identity = FakeIdentity() super(FakeStorageClient, self).__init__(identity, *args, **kwargs) def create(self, name): return FakeContainer(self._manager, {"name": name}) class FakeContainerManager(ContainerManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeStorageClient() super(FakeContainerManager, self).__init__(api, *args, **kwargs) class FakeContainer(Container): def __init__(self, *args, **kwargs): super(FakeContainer, self).__init__(*args, **kwargs) self.object_manager = FakeStorageObjectManager(self.manager.api, uri_base=self.name) self.object_manager._container = self class FakeStorageObjectManager(StorageObjectManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeStorageClient() if "uri_base" not in kwargs: kwargs["uri_base"] = utils.random_ascii() super(FakeStorageObjectManager, self).__init__(api, *args, **kwargs) class FakeStorageObject(StorageObject): def __init__(self, manager, name=None, total_bytes=None, content_type=None, last_modified=None, etag=None, attdict=None): """ The object can either be initialized with individual params, or by passing the dict that is returned by swiftclient. """ self.manager = manager self.name = name self.bytes = total_bytes or 0 self.content_type = content_type self.last_modified = last_modified self.hash = etag if attdict: self._read_attdict(attdict) fake_attdict = {"name": "fake", "content-length": 42, "content-type": "text/html", "etag": "ABC", "last-modified": "Tue, 01 Jan 2013 01:02:03 GMT", } class FakeServer(object): id = utils.random_unicode() class FakeService(object): user_agent = "FakeService" USER_AGENT = "FakeService" def __init__(self, *args, **kwargs): self.client = FakeClient() self.Node = FakeNode self.VirtualIP = FakeVirtualIP self.loadbalancers = FakeLoadBalancer() self.id = utils.random_unicode() def authenticate(self): pass def get_protocols(self): return ["HTTP"] def get_algorithms(self): return ["RANDOM"] def get_usage(self): pass class FakeCSClient(FakeService): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCSClient, self).__init__(ident, *args, **kwargs) def dummy(self): pass self.servers = FakeService() utils.add_method(self.servers, dummy, "list") self.images = FakeService() utils.add_method(self.images, dummy, "list") self.flavors = FakeService() utils.add_method(self.flavors, dummy, "list") class FakeFolderUploader(FolderUploader): def __init__(self, *args, **kwargs): super(FakeFolderUploader, self).__init__(*args, **kwargs) # Useful for when we mock out the run() method. self.actual_run = self.run self.run = self.fake_run def fake_run(self): pass class FakeBulkDeleter(BulkDeleter): def __init__(self, *args, **kwargs): super(FakeBulkDeleter, self).__init__(*args, **kwargs) # Useful for when we mock out the run() method. self.actual_run = self.run self.run = self.fake_run def fake_run(self): time.sleep(0.0001) self.results = {} self.completed = True class FakeManager(object): def __init__(self, *args, **kwargs): super(FakeManager, self).__init__(*args, **kwargs) self.api = FakeClient() def list(self): pass def get(self, item): pass def delete(self, item): pass def create(self, *args, **kwargs): pass def find(self, *args, **kwargs): pass def action(self, item, action_type, body={}): pass class FakeException(BaseException): pass class FakeKeyring(object): password_set = False def get_password(self, *args, **kwargs): return "FAKE_TOKEN|FAKE_URL" def set_password(self, *args, **kwargs): self.password_set = True class FakeEntity(object): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() def get(self, *args, **kwargs): pass def list(self, *args, **kwargs): pass class FakeDatabaseUser(CloudDatabaseUser): pass class FakeDatabaseVolume(CloudDatabaseVolume): def __init__(self, instance, *args, **kwargs): self.instance = instance self.size = 1 self.used = 0.2 class FakeDatabaseInstance(CloudDatabaseInstance): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() self.manager = FakeDatabaseManager() self.manager.api = FakeDatabaseClient() self._database_manager = CloudDatabaseDatabaseManager( FakeDatabaseClient()) self._user_manager = CloudDatabaseUserManager(FakeDatabaseClient()) self.volume = FakeDatabaseVolume(self) class FakeDatabaseManager(CloudDatabaseManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeDatabaseClient() super(FakeDatabaseManager, self).__init__(api, *args, **kwargs) self.uri_base = "instances" class FakeDatabaseClient(CloudDatabaseClient): def __init__(self, *args, **kwargs): self._manager = FakeDatabaseManager(self) self._flavor_manager = FakeManager() ident = FakeIdentity() super(FakeDatabaseClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeNovaVolumeClient(BaseClient): def __init__(self, *args, **kwargs): pass class FakeBlockStorageManager(CloudBlockStorageManager): def __init__(self, api=None, *args, **kwargs): ident = FakeIdentity() if api is None: api = FakeBlockStorageClient(ident) super(FakeBlockStorageManager, self).__init__(api, *args, **kwargs) class FakeBlockStorageVolume(CloudBlockStorageVolume): def __init__(self, *args, **kwargs): volname = utils.random_unicode(8) self.id = utils.random_unicode() self.manager = FakeBlockStorageManager() self._nova_volumes = FakeNovaVolumeClient() class FakeBlockStorageSnapshot(CloudBlockStorageSnapshot): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() self.manager = FakeManager() self.status = "available" class FakeBlockStorageClient(CloudBlockStorageClient): def __init__(self, *args, **kwargs): self._types_manager = FakeManager() self._snapshot_manager = FakeManager() ident = FakeIdentity() super(FakeBlockStorageClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeSnapshotManager(CloudBlockStorageSnapshotManager): def __init__(self, api=None, *args, **kwargs): ident = FakeIdentity() if api is None: api = FakeBlockStorageClient(ident) super(FakeSnapshotManager, self).__init__(api, *args, **kwargs) class FakeLoadBalancerClient(CloudLoadBalancerClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeLoadBalancerClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeLoadBalancerManager(CloudLoadBalancerManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeLoadBalancerClient() super(FakeLoadBalancerManager, self).__init__(api, *args, **kwargs) class FakeLoadBalancer(CloudLoadBalancer): def __init__(self, name=None, info=None, *args, **kwargs): name = name or utils.random_ascii() info = info or {"fake": "fake"} super(FakeLoadBalancer, self).__init__(name, info, *args, **kwargs) self.id = utils.random_ascii() self.port = random.randint(1, 256) self.manager = FakeLoadBalancerManager() class FakeNode(Node): def __init__(self, address=None, port=None, condition=None, weight=None, status=None, parent=None, type=None, id=None): if address is None: address = "0.0.0.0" if port is None: port = 80 if id is None: id = utils.random_unicode() super(FakeNode, self).__init__(address=address, port=port, condition=condition, weight=weight, status=status, parent=parent, type=type, id=id) class FakeVirtualIP(VirtualIP): pass class FakeStatusChanger(object): check_count = 0 id = utils.random_unicode() @property def status(self): if self.check_count < 2: self.check_count += 1 return "changing" return "ready" class FakeDNSClient(CloudDNSClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeDNSClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeDNSManager(CloudDNSManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeDNSClient() super(FakeDNSManager, self).__init__(api, *args, **kwargs) self.resource_class = FakeDNSDomain self.response_key = "domain" self.plural_response_key = "domains" self.uri_base = "domains" class FakeDNSDomain(CloudDNSDomain): def __init__(self, *args, **kwargs): self.id = utils.random_ascii() self.name = utils.random_unicode() self.manager = FakeDNSManager() class FakeDNSRecord(CloudDNSRecord): def __init__(self, mgr, info, *args, **kwargs): super(FakeDNSRecord, self).__init__(mgr, info, *args, **kwargs) class FakeDNSPTRRecord(CloudDNSPTRRecord): pass class FakeDNSDevice(FakeLoadBalancer): def __init__(self, *args, **kwargs): self.id = utils.random_unicode() class FakeCloudNetworkClient(CloudNetworkClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCloudNetworkClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeCloudNetwork(CloudNetwork): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) label = kwargs.pop("label", kwargs.pop("name", utils.random_unicode())) info["label"] = label super(FakeCloudNetwork, self).__init__(manager=None, info=info, *args, **kwargs) self.id = uuid.uuid4().hex class FakeAutoScaleClient(AutoScaleClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() self._manager = FakeManager() super(FakeAutoScaleClient, self).__init__(ident, *args, **kwargs) class FakeAutoScalePolicy(AutoScalePolicy): def __init__(self, *args, **kwargs): super(FakeAutoScalePolicy, self).__init__(*args, **kwargs) self.id = utils.random_ascii() class FakeAutoScaleWebhook(AutoScaleWebhook): def __init__(self, *args, **kwargs): super(FakeAutoScaleWebhook, self).__init__(*args, **kwargs) self.id = utils.random_ascii() class FakeScalingGroupManager(ScalingGroupManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeAutoScaleClient() super(FakeScalingGroupManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeScalingGroup(ScalingGroup): def __init__(self, name=None, info=None, *args, **kwargs): name = name or utils.random_ascii() info = info or {"fake": "fake", "scalingPolicies": []} self.groupConfiguration = {} super(FakeScalingGroup, self).__init__(name, info, *args, **kwargs) self.id = utils.random_ascii() self.name = name self.manager = FakeScalingGroupManager() class FakeCloudMonitorClient(CloudMonitorClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeCloudMonitorClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeCloudMonitorEntity(CloudMonitorEntity): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["id"] = utils.random_ascii() super(FakeCloudMonitorEntity, self).__init__(FakeManager(), info=info, *args, **kwargs) self.manager.api = FakeCloudMonitorClient() class FakeCloudMonitorCheck(CloudMonitorCheck): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) entity = kwargs.pop("entity", None) info["id"] = utils.random_ascii() super(FakeCloudMonitorCheck, self).__init__(FakeManager(), info, *args, **kwargs) self.set_entity(entity) self.id = uuid.uuid4() class FakeCloudMonitorNotification(CloudMonitorNotification): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) super(FakeCloudMonitorNotification, self).__init__(manager=None, info=info, *args, **kwargs) self.id = uuid.uuid4() class FakeQueue(Queue): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeQueueManager()) super(FakeQueue, self).__init__(manager=mgr, info=info, *args, **kwargs) class FakeQueueClaim(QueueClaim): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeQueueManager()) super(FakeQueueClaim, self).__init__(manager=mgr, info=info, *args, **kwargs) class FakeQueueClient(QueueClient): def __init__(self, *args, **kwargs): ident = FakeIdentity() super(FakeQueueClient, self).__init__(ident, "fakeuser", "fakepassword", *args, **kwargs) class FakeQueueManager(QueueManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeQueueClient() super(FakeQueueManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImage(Image): def __init__(self, *args, **kwargs): info = kwargs.pop("info", {"fake": "fake"}) info["name"] = utils.random_unicode() info["id"] = utils.random_unicode() mgr = kwargs.pop("manager", FakeImageManager()) kwargs["member_manager_class"] = FakeImageMemberManager kwargs["tag_manager_class"] = FakeImageTagManager super(FakeImage, self).__init__(mgr, info, *args, **kwargs) class FakeImageClient(ImageClient): def __init__(self, identity=None, *args, **kwargs): if identity is None: identity = FakeIdentity() super(FakeImageClient, self).__init__(identity, "fakeuser", "fakepassword", *args, **kwargs) class FakeImageMemberManager(ImageMemberManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageMemberManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImageTagManager(ImageTagManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageTagManager, self).__init__(api, *args, **kwargs) self.id = utils.random_ascii() class FakeImageManager(ImageManager): def __init__(self, api=None, *args, **kwargs): if api is None: api = FakeImageClient() super(FakeImageManager, self).__init__(api, *args, **kwargs) self.plural_response_key = "images" self.resource_class = FakeImage self.id = utils.random_ascii() class FakeIdentityService(Service): def __init__(self, identity=None, *args, **kwargs): self.identity = identity or FakeIdentity() self.name = "fake" self.prefix = "" self.service_type = "fake" self.clients = {} self.endpoints = utils.DotDict() class FakeEndpoint(Endpoint): def __init__(self, ep_dict=None, service=None, region=None, identity=None): if ep_dict is None: ep_dict = {} if identity is None: identity = FakeIdentity() if service is None: service = FakeIdentityService(identity) if region is None: region = "fake_region" super(FakeEndpoint, self).__init__(ep_dict, service, region, identity) class FakeRaxIdentity(RaxIdentity): pass class FakeIdentity(BaseIdentity): """Class that returns canned authentication responses.""" def __init__(self, *args, **kwargs): super(FakeIdentity, self).__init__(*args, **kwargs) self._good_username = "fakeuser" self._good_password = "fakeapikey" self._default_region = random.choice(("DFW", "ORD")) self.services = {"fake": FakeIdentityService(self)} def authenticate(self, connect=False): if ((self.username == self._good_username) and (self.password == self._good_password)): self._parse_response(self.fake_response()) self.authenticated = True else: self.authenticated = False raise exc.AuthenticationFailed("No match for '%s'/'%s' " "username/password" % (self.username, self.password)) def auth_with_token(self, token, tenant_id=None, tenant_name=None): self.token = token self.tenant_id = tenant_id self.tenant_name = tenant_name self.authenticated = True def get_token(self, force=False): return self.token def fake_response(self): return fake_identity_response fake_config_file = """[settings] identity_type = rackspace keyring_username = region = FAKE custom_user_agent = FAKE http_debug = """ # This will handle both singular and plural responses. fake_identity_user_response = { "users": [{"name": "fake", "id": "fake"}, {"name": "faker", "id": "faker"}], "user": {"name": "fake", "id": "fake"}, "roles": [{u'description': 'User Admin Role.', 'id': '3', 'name': 'identity:user-admin'}], } fake_identity_tenant_response = {"name": "fake", "id": "fake", "description": "fake", "enabled": True} fake_identity_tenants_response = { "tenants": [ {"name": "fake", "id": "fake", "description": "fake", "enabled": True}, {"name": "faker", "id": "faker", "description": "faker", "enabled": True}, ]} fake_identity_tokens_response = {"access": {'metadata': {u'is_admin': 0, 'roles': [u'asdfgh', 'sdfghj', 'dfghjk']}, 'serviceCatalog': [{u'endpoints': [ {u'adminURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'id': 'dddddddddd', 'publicURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'internalURL': 'http://10.0.0.0:8774/v2/qweqweqwe', 'region': 'some_region'}], 'endpoints_links': [], 'name': 'nova', 'type': 'compute'}, {u'endpoints': [{u'adminURL': 'http://10.0.0.0:35357/v2.0', 'id': 'qweqweqwe', 'internalURL': 'http://10.0.0.0:5000/v2.0', 'publicURL': 'http://10.0.0.0:5000/v2.0', 'region': 'some_region'}], 'endpoints_links': [], 'name': 'keystone', 'type': 'identity'}], 'token': {u'expires': '1999-05-04T16:45:05Z', 'id': 'qweqweqwe', 'tenant': {u'description': 'admin Tenant', 'enabled': True, 'id': 'qweqweqwe', 'name': 'admin'}}, 'user': {u'id': 'qweqweqwe', 'name': 'admin', 'roles': [{u'id': 'qweqweqwe', 'name': 'admin'}, {u'id': 'qweqweqwe', 'name': 'KeystoneAdmin'}, {u'id': 'qweqweqwe', 'name': 'KeystoneServiceAdmin'}], 'roles_links': [], 'username': 'admin'}}} fake_identity_endpoints_response = {"access": { "endpoints": ["fake", "faker", "fakest"]}} fake_identity_response = {u'access': {u'serviceCatalog': [ {u'endpoints': [{u'publicURL': 'https://ord.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'ORD', 'tenantId': '000000'}, {u'publicURL': 'https://dfw.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'DFW', 'tenantId': '000000'}, {u'publicURL': 'https://syd.loadbalancers.api.rackspacecloud.com/v1.0/000000', 'region': 'SYD', 'tenantId': '000000'}], 'name': 'cloudLoadBalancers', 'type': 'rax:load-balancer'}, {u'endpoints': [{u'internalURL': 'https://snet-aa.fake1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.fake1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'FAKE', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.dfw1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.dfw1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'DFW', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'ORD', 'tenantId': 'MossoCloudFS_abc'}, {u'internalURL': 'https://snet-aa.syd1.clouddrive.com/v1/MossoCloudFS_abc', 'publicURL': 'https://aa.ord1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'SYD', 'tenantId': 'MossoCloudFS_abc'}], 'name': 'cloudFiles', 'type': 'object-store'}, {u'endpoints': [{u'publicURL': 'https://dfw.servers.api.rackspacecloud.com/v2/000000', 'region': 'DFW', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://dfw.servers.api.rackspacecloud.com/v2', 'versionList': 'https://dfw.servers.api.rackspacecloud.com/'}, {u'publicURL': 'https://ord.servers.api.rackspacecloud.com/v2/000000', 'region': 'ORD', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://ord.servers.api.rackspacecloud.com/v2', 'versionList': 'https://ord.servers.api.rackspacecloud.com/'}, {u'publicURL': 'https://syd.servers.api.rackspacecloud.com/v2/000000', 'region': 'SYD', 'tenantId': '000000', 'versionId': '2', 'versionInfo': 'https://syd.servers.api.rackspacecloud.com/v2', 'versionList': 'https://syd.servers.api.rackspacecloud.com/'}], 'name': 'cloudServersOpenStack', 'type': 'compute'}, {u'endpoints': [{u'publicURL': 'https://dns.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000'}], 'name': 'cloudDNS', 'type': 'rax:dns'}, {u'endpoints': [{u'publicURL': 'https://dfw.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'DFW', 'tenantId': '000000'}, {u'publicURL': 'https://syd.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'SYD', 'tenantId': '000000'}, {u'publicURL': 'https://ord.databases.api.rackspacecloud.com/v1.0/000000', 'region': 'ORD', 'tenantId': '000000'}], 'name': 'cloudDatabases', 'type': 'rax:database'}, {u'endpoints': [{u'publicURL': 'https://servers.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000', 'versionId': '1.0', 'versionInfo': 'https://servers.api.rackspacecloud.com/v1.0', 'versionList': 'https://servers.api.rackspacecloud.com/'}], 'name': 'cloudServers', 'type': 'compute'}, {u'endpoints': [{u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'DFW', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'FAKE', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn1.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'SYD', 'tenantId': 'MossoCloudFS_abc'}, {u'publicURL': 'https://cdn2.clouddrive.com/v1/MossoCloudFS_abc', 'region': 'ORD', 'tenantId': 'MossoCloudFS_abc'}], 'name': 'cloudFilesCDN', 'type': 'rax:object-cdn'}, {u'endpoints': [{u'publicURL': 'https://monitoring.api.rackspacecloud.com/v1.0/000000', 'tenantId': '000000'}], 'name': 'cloudMonitoring', 'type': 'rax:monitor'}], u'token': {u'expires': '2222-02-22T22:22:22.000-02:00', 'id': 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx', 'tenant': {u'id': '000000', 'name': '000000'}}, u'user': {u'id': '123456', 'name': 'fakeuser', 'RAX-AUTH:defaultRegion': 'DFW', 'roles': [{u'description': 'User Admin Role.', 'id': '3', 'name': 'identity:user-admin'}], }}} class FakeIdentityResponse(FakeResponse): status_code = 200 response_type = "auth" responses = {"auth": fake_identity_response, "users": fake_identity_user_response, "tenant": fake_identity_tenant_response, "tenants": fake_identity_tenants_response, "tokens": fake_identity_tokens_response, "endpoints": fake_identity_endpoints_response, } @property def content(self): return self.responses.get(self.response_type) def json(self): return self.content def read(self): return json.dumps(self.content)
33.554576
80
0.630676
19,387
0.637018
0
0
492
0.016166
0
0
6,289
0.206644
022be07ba133b6de16720dad8708b355fc237656
2,869
py
Python
ambari-server/src/main/resources/common-services/LOGSEARCH/0.5.0/package/alerts/alert_logfeeder.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
25
2019-12-04T03:09:55.000Z
2022-03-08T10:52:06.000Z
ambari-server/src/main/resources/common-services/LOGSEARCH/0.5.0/package/alerts/alert_logfeeder.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
29
2019-12-04T03:00:39.000Z
2022-03-02T06:25:44.000Z
ambari-server/src/main/resources/common-services/LOGSEARCH/0.5.0/package/alerts/alert_logfeeder.py
likenamehaojie/Apache-Ambari-ZH
5973025bd694cdbb4b49fb4c4e0d774782811ff6
[ "Apache-2.0" ]
33
2019-12-04T02:51:30.000Z
2022-03-24T02:47:38.000Z
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import socket from resource_management.libraries.functions.check_process_status import check_process_status from resource_management.core.exceptions import ComponentIsNotRunning RESULT_CODE_OK = 'OK' RESULT_CODE_CRITICAL = 'CRITICAL' RESULT_CODE_UNKNOWN = 'UNKNOWN' LOGFEEDER_PID_DIR = '{{logfeeder-env/logfeeder_pid_dir}}' def get_tokens(): """ Returns a tuple of tokens in the format {{site/property}} that will be used to build the dictionary passed into execute """ return (LOGFEEDER_PID_DIR,) def is_logfeeder_process_live(pid_file): """ Gets whether the LogSearch Logfeeder represented by the specified file is running. :param pid_file: the PID file of the Logfeeder to check :return: True if the Logfeeder is running, False otherwise """ live = False try: check_process_status(pid_file) live = True except ComponentIsNotRunning: pass return live def execute(configurations={}, parameters={}, host_name=None): """ Returns a tuple containing the result code and a pre-formatted result label Keyword arguments: configurations (dictionary): a mapping of configuration key to value parameters (dictionary): a mapping of script parameter key to value host_name (string): the name of this host where the alert is running """ if configurations is None: return (RESULT_CODE_UNKNOWN, ['There were no configurations supplied to the script.']) if set([LOGFEEDER_PID_DIR]).issubset(configurations): LOGFEEDER_PID_PATH = os.path.join(configurations[LOGFEEDER_PID_DIR], 'logfeeder.pid') else: return (RESULT_CODE_UNKNOWN, ['The logfeeder_pid_dir is a required parameter.']) if host_name is None: host_name = socket.getfqdn() logfeeder_process_running = is_logfeeder_process_live(LOGFEEDER_PID_PATH) alert_state = RESULT_CODE_OK if logfeeder_process_running else RESULT_CODE_CRITICAL alert_label = 'LogFeeder is running on {0}' if logfeeder_process_running else 'LogFeeder is NOT running on {0}' alert_label = alert_label.format(host_name) return (alert_state, [alert_label])
33.752941
113
0.776577
0
0
0
0
0
0
0
0
1,690
0.589055
022d316f00567159f07f5f66967da1595528de9a
3,589
py
Python
hack/scripts/ca_metrics_parser.py
nicdoye/autoscaler
ebadbda2b2417d7da6147fbc0c1b39f7f55aff22
[ "Apache-2.0" ]
17
2018-09-14T10:31:43.000Z
2021-09-14T08:47:34.000Z
hack/scripts/ca_metrics_parser.py
nicdoye/autoscaler
ebadbda2b2417d7da6147fbc0c1b39f7f55aff22
[ "Apache-2.0" ]
12
2019-01-09T10:34:06.000Z
2022-03-24T08:37:25.000Z
hack/scripts/ca_metrics_parser.py
nicdoye/autoscaler
ebadbda2b2417d7da6147fbc0c1b39f7f55aff22
[ "Apache-2.0" ]
3
2019-05-06T14:51:10.000Z
2020-12-22T14:03:43.000Z
#!/usr/bin/env python # Copyright 2017 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' This script parses metrics from Cluster Autoscaler e2e tests. ''' from __future__ import division from __future__ import print_function import argparse import json class CAMetric(object): def __init__(self, function_name): self.function_name = function_name self.sum = 0.0 self.average = 0.0 self.buckets = [] self.count = 0 self.upper_bound = 0.0 def print(self): print(self.function_name, '\t', self.sum, '\t', self.count,'\t', self.avg, '\t', self.upper_bound) print(self.buckets) def print_summary(summary): print('function_name\t sum\t count\t avg\t upper_bound') print('buckets') for metric in summary.values(): metric.print() def function_name(sample): return sample['metric']['function'] def metric_value(sample): return sample['value'][1] def upper_bound(buckets): ''' Going from the rightmost bucket, find the first one that has some samples and return its upper bound. ''' for i in xrange(len(buckets) - 1, -1, -1): le, count = buckets[i] if i == 0: return le else: le_prev, count_prev = buckets[i-1] if count_prev < count: return le def parse_metrics_file(metrics_file): ''' Return interesting metrics for all Cluster Autoscaler functions. Merics are stored in a map keyed by function name and are expressed in seconds. They include * sum of all samples * count of sumples * average value of samples * upper bound - all collected samples were smaller than this value * buckets - list of tuples (# of samples, bucket upper bound) ''' summary = {} with open(metrics_file) as metrics_file: summary = {} metrics = json.load(metrics_file) ca_metrics = metrics['ClusterAutoscalerMetrics'] total_sum = ca_metrics['cluster_autoscaler_function_duration_seconds_sum'] for sample in total_sum: function = function_name(sample) summary[function] = CAMetric(function) summary[function].sum = float(metric_value(sample)) count = ca_metrics['cluster_autoscaler_function_duration_seconds_count'] for sample in count: function = function_name(sample) summary[function].count = int(metric_value(sample)) summary[function].avg = summary[function].sum / summary[function].count buckets = ca_metrics['cluster_autoscaler_function_duration_seconds_bucket'] for sample in buckets: function = function_name(sample) summary[function].buckets.append( (float(sample['metric']['le']), int(metric_value(sample)))) for value in summary.values(): value.upper_bound = upper_bound(value.buckets) return summary def main(): parser = argparse.ArgumentParser(description='Parse metrics from Cluster Autoscaler e2e test') parser.add_argument('metrics_file', help='File to read metrics from') args = parser.parse_args() summary = parse_metrics_file(args.metrics_file) print_summary(summary) if __name__ == '__main__': main()
28.712
96
0.713291
365
0.1017
0
0
0
0
0
0
1,551
0.432154
022e461176e9788379dfe2431986a89fcba4d6ae
2,631
py
Python
tests/test_cli.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
4
2021-09-16T13:35:33.000Z
2022-02-01T23:35:53.000Z
tests/test_cli.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
46
2021-09-16T13:44:58.000Z
2022-02-02T13:42:56.000Z
tests/test_cli.py
dls-controls/tickit
00bb013e69674bcfe4926f365ecb3c65c080abe8
[ "Apache-2.0" ]
null
null
null
from typing import Iterable import pytest from click.testing import CliRunner, Result from mock import Mock, patch from mock.mock import create_autospec from tickit.cli import main from tickit.core.components.component import ComponentConfig from tickit.core.management.schedulers.master import MasterScheduler from tickit.core.typedefs import ComponentID, ComponentPort, PortID @pytest.fixture def patch_logging() -> Iterable[Mock]: with patch("tickit.cli.logging", autospec=True) as mock: yield mock @pytest.fixture def patch_run_all_forever() -> Iterable[Mock]: with patch("tickit.cli.run_all_forever", autospec=True) as mock: yield mock @pytest.fixture def patch_asyncio() -> Iterable[Mock]: with patch("tickit.cli.asyncio", autospec=True) as mock: yield mock @pytest.fixture def patch_read_configs() -> Iterable[Mock]: with patch("tickit.cli.read_configs", autospec=True) as mock: mock_config = create_autospec(ComponentConfig, instance=True) mock_config.name = "fake_device" mock_config.inputs = { PortID("42"), ComponentPort(ComponentID("foo"), PortID("24")), } mock.return_value = [mock_config] yield mock def test_cli_set_loggging_level(patch_logging): runner: CliRunner = CliRunner() result: Result = runner.invoke(main, args=["--log-level", "INFO"]) assert result.exit_code == 0 patch_logging.basicConfig.assert_called_with(level="INFO") def test_component_command( patch_run_all_forever, patch_read_configs, ): runner: CliRunner = CliRunner() result: Result = runner.invoke( main, args=["component", "fake_device", "path/to/fake_device.yaml"] ) assert result.exit_code == 0 patch_run_all_forever.assert_called_once() @pytest.fixture def patch_master_scheduler_run_forever_method() -> Iterable[Mock]: with patch.object(MasterScheduler, "run_forever", autospec=True) as mock: yield mock def test_scheduler( patch_read_configs: Mock, patch_master_scheduler_run_forever_method: Mock, ): runner: CliRunner = CliRunner() result: Result = runner.invoke(main, args=["scheduler", "path/to/fake_device.yaml"]) assert result.exit_code == 0 patch_master_scheduler_run_forever_method.assert_awaited_once() def test_all(patch_read_configs, patch_master_scheduler_run_forever_method): runner: CliRunner = CliRunner() result: Result = runner.invoke(main, args=["all", "path/to/fake_device.yaml"]) assert result.exit_code == 0 patch_master_scheduler_run_forever_method.assert_awaited_once()
27.989362
88
0.72824
0
0
942
0.358039
1,022
0.388445
0
0
275
0.104523
022e5e8924eb3bc3c0fcb9bc827782f367ea128d
565
py
Python
homework5/app/config.py
sakost/tinkoff_fintech
64b9d5a2a818b4db7c438b0dc53a8f31882f95ba
[ "MIT" ]
null
null
null
homework5/app/config.py
sakost/tinkoff_fintech
64b9d5a2a818b4db7c438b0dc53a8f31882f95ba
[ "MIT" ]
null
null
null
homework5/app/config.py
sakost/tinkoff_fintech
64b9d5a2a818b4db7c438b0dc53a8f31882f95ba
[ "MIT" ]
2
2021-08-29T15:01:39.000Z
2022-02-23T18:48:21.000Z
from typing import Any from pydantic import BaseSettings from .utils import singleton_cache class Settings(BaseSettings): TESTING: bool = False SQLALCHEMY_DATABASE_URI: str = 'sqlite:///db.sqlite3' FIRST_SUPERUSER: str = 'admin' FIRST_SUPERUSER_PASSWORD: str = 'admin' FIRST_SUPERUSER_ROLE: str = 'superuser' USER_ROLE_NAME = 'user' OBJECTS_PER_PAGE: int = 100 class Config: case_sensitive = True env_file = '.env' @singleton_cache def get_settings(**kwargs: Any) -> Settings: return Settings(**kwargs)
20.178571
57
0.699115
374
0.661947
0
0
91
0.161062
0
0
59
0.104425
022f6a23b370efd01d97a4fc32d332f4e763d78f
2,158
py
Python
nabu/story.py
sterlingbaldwin/nabu
6f19a1b237cdab6ff2179c952f41e239e1a0a3e8
[ "MIT" ]
null
null
null
nabu/story.py
sterlingbaldwin/nabu
6f19a1b237cdab6ff2179c952f41e239e1a0a3e8
[ "MIT" ]
1
2022-02-14T12:15:45.000Z
2022-02-14T12:15:45.000Z
nabu/story.py
sterlingbaldwin/nabu
6f19a1b237cdab6ff2179c952f41e239e1a0a3e8
[ "MIT" ]
null
null
null
from typing import ChainMap import yaml from pathlib import Path from jinja2 import Template from weasyprint import HTML, CSS # from xhtml2pdf import pisa class Story(): def __init__(self, story_path, story_name, template_path, *args, **kwargs): self.template_path = template_path self.story_path = story_path self.story_name = story_name def render(self, outpath): # first render the html with open(self.template_path, "r") as fp: story_template = Template(fp.read()) with open(Path(self.story_path, "story.yaml")) as fp: story_data = yaml.load(fp, Loader=yaml.SafeLoader) # replace the image paths with the full path img_path = Path(self.story_path, 'img') for chapter in story_data['chapters']: if 'image' in chapter: chapter['image'] = Path(img_path, chapter['image']) if 'mini_image' in chapter: chapter['mini_image'] = Path(img_path, chapter['mini_image']) for page in chapter['pages']: if 'image' in page: page['image'] = Path(img_path, page['image']) story_html = story_template.render( cover_image=Path(img_path, story_data["cover_image"]), title=story_data["title"], author_name=story_data["author_name"], author_contact=story_data["author_contact"], chapters=story_data["chapters"]) with open(Path(self.story_path, f"{self.story_name}.html"), 'w') as fp: fp.write(story_html) # now render the css css_path = Path("nabu", "styles", "default.css.jinja") with open(css_path, "r") as fp: css_template = Template(fp.read()) story_css = css_template.render( chapters=story_data["chapters"]) with open(Path(self.story_path, f"{self.story_name}.css"), 'w') as fp: fp.write(story_css) # finally, write out the pdf h = HTML(string=story_html) c = CSS(string=story_css) h.write_pdf(outpath, stylesheets=[c])
37.206897
79
0.598239
2,000
0.926784
0
0
0
0
0
0
418
0.193698
022fd56061f4a128f54c059a42d1bbaadf434720
322
py
Python
src/homework/models/__init__.py
nvo87/education-backend
1f008bd396b5dde4483af611532826a9bca9fef5
[ "MIT" ]
62
2021-09-22T18:38:26.000Z
2022-03-29T06:09:42.000Z
src/homework/models/__init__.py
nvo87/education-backend
1f008bd396b5dde4483af611532826a9bca9fef5
[ "MIT" ]
50
2021-09-16T07:17:31.000Z
2022-03-26T12:06:58.000Z
src/homework/models/__init__.py
nvo87/education-backend
1f008bd396b5dde4483af611532826a9bca9fef5
[ "MIT" ]
16
2021-10-17T17:43:31.000Z
2022-03-26T11:22:45.000Z
from homework.models.answer import Answer from homework.models.answer_access_log_entry import AnswerAccessLogEntry from homework.models.answer_cross_check import AnswerCrossCheck from homework.models.question import Question __all__ = [ 'Answer', 'AnswerAccessLogEntry', 'AnswerCrossCheck', 'Question', ]
26.833333
72
0.801242
0
0
0
0
0
0
0
0
58
0.180124
0230ced77fc05cfeb2ad94e5f316982b5ce418ba
1,650
py
Python
second workout/8B/A.py
paktusov/algorithms
b21e7ead2325f77a606dc53495866e359f2e24fe
[ "BSD-3-Clause" ]
null
null
null
second workout/8B/A.py
paktusov/algorithms
b21e7ead2325f77a606dc53495866e359f2e24fe
[ "BSD-3-Clause" ]
null
null
null
second workout/8B/A.py
paktusov/algorithms
b21e7ead2325f77a606dc53495866e359f2e24fe
[ "BSD-3-Clause" ]
null
null
null
def add(tree, x): if not tree: tree.extend([x, None, None]) print('DONE') return key = tree[0] if x == key: print('ALREADY') elif x < key: left = tree[1] if left == None: tree[1] = [x, None, None] print('DONE') else: add(left, x) elif x > key: right = tree[2] if right == None: tree[2] = [x, None, None] print('DONE') else: add(right, x) def find(tree, x): if not tree: return False key = tree[0] if x == key: return True elif x < key: left = tree[1] if left == None: return False else: return find(left, x) elif x > key: right = tree[2] if right == None: return False else: return find(right, x) def printtree(tree, count=0): # if not tree: # return if tree[1]: printtree(tree[1], count + 1) print(f"{''.join('.' * count)}{tree[0]}") if tree[2]: printtree(tree[2], count + 1) tree = [] with open('input.txt', 'r', encoding='utf-8') as file: string = file.readline().strip() while string != '': line = [i for i in string.split()] if line[0] == 'ADD': add(tree, int(line[1])) elif line[0] == 'SEARCH': if find(tree, int(line[1])): print('YES') else: print('NO') elif line[0] == 'PRINTTREE': printtree(tree) string = file.readline().strip()
21.710526
54
0.434545
0
0
0
0
0
0
0
0
149
0.090303
023179993902aa78bcb94918909fb230bdfcaedd
5,502
py
Python
fewshot/clis/score_simple.py
armancohan/flex
2a005fd18f522d2667421f170568df1164a73c3a
[ "Apache-2.0" ]
63
2021-07-01T23:40:55.000Z
2022-03-15T21:56:57.000Z
fewshot/clis/score_simple.py
armancohan/flex
2a005fd18f522d2667421f170568df1164a73c3a
[ "Apache-2.0" ]
1
2022-03-04T11:15:55.000Z
2022-03-28T09:33:54.000Z
fewshot/clis/score_simple.py
armancohan/flex
2a005fd18f522d2667421f170568df1164a73c3a
[ "Apache-2.0" ]
3
2021-07-31T05:06:14.000Z
2022-02-28T12:45:06.000Z
import json from typing import TextIO from functools import partial import click import numpy as np from scipy.stats import sem import pandas as pd from fewshot.bootstrap import bootstrap from fewshot.bootstrap import ci from fewshot.challenges.utils import get_gold_dataset from . import score_utils as su def statistics(a, estimator=np.mean, conf_interval=95, n_boot=1000, seed=0): """With 95% CI""" [ci_lower, ci_upper] = ci( bootstrap( a, func=estimator, n_boot=n_boot, seed=seed, ), conf_interval ) stat = estimator(a) return { 'stat': stat, 'stat_ci_lower': stat - ci_lower, 'stat_ci_upper': ci_upper - stat, 'stat_ci_sem': sem(a, ddof=1) * 1.96, 'std': np.std(a), 'n': len(a), } @click.command() @click.option('--challenge_name', type=click.STRING, required=True) @click.option( '--predictions', type=click.File('r'), help='Path to the file containing system predictions', required=True, ) @click.option( '--output', '-o', type=click.File('w'), help='Output results to this file.', ) @click.option('--by_way_shot', is_flag=True, default=False) @click.option('--by_few', is_flag=True, default=False) @click.option('--for_leaderboard', is_flag=True, default=False) def score( challenge_name: str, predictions: TextIO, output: TextIO, by_way_shot: bool, by_few: bool, for_leaderboard: bool, ): """Score a predictions.json file.""" gold_data = pd.DataFrame(get_gold_dataset(challenge_name)) joined_data = su.join_predictions_and_gold( predictions=predictions, gold_data=gold_data, ) df, metrics = su.score_joined_data(data=joined_data) if by_way_shot: df['shot'] = df.apply(lambda row: str(int(row['n_train'] / row['way'])) if row['balanced_train'] else '', axis=1) grouped = df.groupby(by=['dataset', 'way', 'shot'])['accuracy'].apply(partial(statistics, estimator=np.mean)) grouped.index = grouped.index.set_names('stat', level=3) res = grouped elif by_few or for_leaderboard: df['few'] = df['n_train'].map(lambda v: v > 0) grouped = df.groupby(by=['dataset', 'few'])['accuracy'].apply(partial(statistics, estimator=np.mean)) grouped.index = grouped.index.set_names('stat', level=2) ways = df.groupby(by=['dataset', 'few'])['way'].apply(lambda x: '/'.join(str(i) for i in sorted(x.unique()))) res = pd.merge( grouped.reset_index(), ways.reset_index(), on=['dataset', 'few'] ).set_index(['dataset', 'way', 'few', 'stat']) else: grouped = df.groupby(by=['dataset'])['accuracy'].apply(partial(statistics, estimator=np.mean)) means = grouped.xs('stat', level=1) stds = grouped.xs('std', level=1) cis_upper = grouped.xs('stat_ci_upper', level=1) cis_lower = grouped.xs('stat_ci_lower', level=1) cis_lower.index = cis_lower.index + '_acc_ci_lower' cis_upper.index = cis_upper.index + '_acc_ci_upper' means.index = means.index + '_acc' stds.index = stds.index + '_acc_std' res = pd.concat([means, cis_upper, cis_lower, stds], axis=0) res.loc['overall_acc'] = means.mean() res.loc['overall_acc_std'] = stds.mean() if for_leaderboard: res = res.reset_index() res['few_string'] = res['few'].map(lambda v: 'few' if v else '0') res['name'] = res['dataset'] + '-' + res['few_string'] accuracies = res[res.stat == 'stat'] overall_0_acc = accuracies[~accuracies.few]['accuracy'].mean() overall_few_acc = accuracies[accuracies.few]['accuracy'].mean() accuracies = accuracies.append([ {'name': 'overall-0', 'accuracy': overall_0_acc}, {'name': 'overall-few', 'accuracy': overall_few_acc}, {'name': 'overall', 'accuracy': 0.5 * (overall_0_acc + overall_few_acc)}, ]) uppers = res[res.stat == 'stat_ci_upper'] uppers = uppers.assign(name=lambda x: x['name'] + '_ci_upper') lowers = res[res.stat == 'stat_ci_lower'] lowers = lowers.assign(name=lambda x: x['name'] + '_ci_lower') stds = res[res.stat == 'std'] stds = stds.assign(name=lambda x: x['name'] + '_std') res = pd.concat([accuracies, uppers, lowers, stds], axis=0) res = res[['name', 'accuracy']].set_index('name') res = res['accuracy'] print(type(res)) if output: if for_leaderboard: # Add episode-level accuracy values under 'episode_accuracies' key res = json.loads(res.to_json()) grouped = ( df.groupby(by=['few', 'dataset'])[['task_id', 'accuracy']] .apply(lambda x: x.sort_values('task_id')['accuracy'].tolist()) .reset_index(name='accuracies') ) grouped['few_string'] = grouped['few'].map(lambda v: 'few' if v else '0') grouped['name'] = grouped['dataset'] + '-' + grouped['few_string'] res['episode_accuracies'] = grouped.set_index('name')[['accuracies']].to_dict()['accuracies'] json.dump(res, output) elif output.name.endswith('.json'): res.to_json(output) else: res.to_csv(output) else: pd.set_option("display.max_rows", None) print(res.sort_index())
38.746479
117
0.596692
0
0
0
0
4,667
0.848237
0
0
1,135
0.206289
0232a5792f409bc2541863dd10af6a3d5b55632c
1,196
py
Python
KWS/Dissection/tf_mfcc_from_log_mel_spectrogram_sample.py
xrick/gotek_smic
7655b6d7415b23c35810b8db48af7424f7dcdb06
[ "MIT" ]
null
null
null
KWS/Dissection/tf_mfcc_from_log_mel_spectrogram_sample.py
xrick/gotek_smic
7655b6d7415b23c35810b8db48af7424f7dcdb06
[ "MIT" ]
null
null
null
KWS/Dissection/tf_mfcc_from_log_mel_spectrogram_sample.py
xrick/gotek_smic
7655b6d7415b23c35810b8db48af7424f7dcdb06
[ "MIT" ]
null
null
null
batch_size, num_samples, sample_rate = 32, 32000, 16000.0 # A Tensor of [batch_size, num_samples] mono PCM samples in the range [-1, 1]. pcm = tf.random.normal([batch_size, num_samples], dtype=tf.float32) # A 1024-point STFT with frames of 64 ms and 75% overlap. stfts = tf.signal.stft(pcm, frame_length=1024, frame_step=256, fft_length=1024) spectrograms = tf.abs(stfts) # Warp the linear scale spectrograms into the mel-scale. num_spectrogram_bins = stfts.shape[-1].value lower_edge_hertz, upper_edge_hertz, num_mel_bins = 80.0, 7600.0, 80 linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz, upper_edge_hertz) mel_spectrograms = tf.tensordot( spectrograms, linear_to_mel_weight_matrix, 1) mel_spectrograms.set_shape(spectrograms.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) # Compute a stabilized log to get log-magnitude mel-scale spectrograms. log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6) # Compute MFCCs from log_mel_spectrograms and take the first 13. mfccs = tf.signal.mfccs_from_log_mel_spectrograms( log_mel_spectrograms)[..., :13]
46
78
0.778428
0
0
0
0
0
0
0
0
326
0.272575
0232d872e8633ddbe199a54a9b7cd036c696f627
458
py
Python
user/migrations/0017_auto_20200812_2149.py
Muia23/Grammer
dcc26937d88382c1da36a5f72306e6de367e90a3
[ "Unlicense" ]
null
null
null
user/migrations/0017_auto_20200812_2149.py
Muia23/Grammer
dcc26937d88382c1da36a5f72306e6de367e90a3
[ "Unlicense" ]
null
null
null
user/migrations/0017_auto_20200812_2149.py
Muia23/Grammer
dcc26937d88382c1da36a5f72306e6de367e90a3
[ "Unlicense" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2020-08-12 18:49 from __future__ import unicode_literals from django.db import migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ('user', '0016_post_likes'), ] operations = [ migrations.AlterField( model_name='profile', name='bio', field=tinymce.models.HTMLField(blank=True), ), ]
20.818182
55
0.617904
285
0.622271
0
0
0
0
0
0
109
0.237991
0233159b2601985f539a68dd35218b81258f9ecc
1,834
py
Python
audio/loudness_normalization.py
Open-Speech-EkStep/common_scripts
916f01444e028f9111d5499217abf4443bd24017
[ "MIT" ]
4
2021-07-22T15:32:13.000Z
2022-01-25T08:13:45.000Z
audio/loudness_normalization.py
Open-Speech-EkStep/common_scripts
916f01444e028f9111d5499217abf4443bd24017
[ "MIT" ]
null
null
null
audio/loudness_normalization.py
Open-Speech-EkStep/common_scripts
916f01444e028f9111d5499217abf4443bd24017
[ "MIT" ]
3
2021-04-12T05:04:55.000Z
2021-08-25T06:55:42.000Z
from pydub import AudioSegment, effects import glob import os from tqdm import tqdm import argparse class AudioNormalization: def __init__(self, wav_file): self.wav_file = wav_file def loudness_normalization(self, target_dBFS=-15): audio_file = AudioSegment.from_file(self.wav_file, format='wav') loudness_difference = target_dBFS - audio_file.dBFS normalized_audio = audio_file + loudness_difference return normalized_audio def loudness_normalization_effects(self): audio_file = AudioSegment.from_file(self.wav_file, format='wav') normalized_audio = effects.normalize(audio_file) return normalized_audio def rectify_audio_path(path): if path[-1] == "/": path = path[:-1] return path def normalize_loudness(input, output): input_audio_path = rectify_audio_path(input) audio_dump_path = rectify_audio_path(output) audio_files = glob.glob(input_audio_path + '/**/*.wav', recursive=True) print("Normalization will run on ", len(audio_files)) output_folder_path = audio_dump_path + '/' + input_audio_path.split('/')[-1] + '_loud_norm' os.makedirs(output_folder_path) for audio in tqdm(audio_files): normalized_audio = AudioNormalization(audio).loudness_normalization_effects() output_file_name = (output_folder_path + '/' + audio.split('/')[-1]) normalized_audio.export(output_file_name, format='wav') if __name__ == "__main__": parser = argparse.ArgumentParser(description='Normalize') parser.add_argument('-i', '--input', required=True, help='Input path') parser.add_argument('-o', '--output', required=True, help='Output path') args_local = parser.parse_args() normalize_loudness(args_local.input, args_local.output)
36.68
95
0.698473
582
0.317339
0
0
0
0
0
0
154
0.083969
0233975ca46a04c5b097d1d82d0ed1a76059f352
12,308
py
Python
libcloud/dns/drivers/nsone.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
4
2017-11-14T17:24:12.000Z
2020-10-30T01:46:02.000Z
libcloud/dns/drivers/nsone.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
11
2017-01-29T08:59:21.000Z
2018-07-02T09:17:47.000Z
libcloud/dns/drivers/nsone.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
4
2016-04-04T08:01:48.000Z
2018-06-06T08:04:36.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys try: import simplejson as json except ImportError: import json from libcloud.dns.types import Provider, ZoneDoesNotExistError, \ ZoneAlreadyExistsError, RecordDoesNotExistError, RecordAlreadyExistsError from libcloud.utils.py3 import httplib from libcloud.dns.base import DNSDriver, Zone, Record, RecordType from libcloud.common.nsone import NsOneConnection, NsOneResponse, \ NsOneException __all__ = [ 'NsOneDNSDriver' ] class NsOneDNSResponse(NsOneResponse): pass class NsOneDNSConnection(NsOneConnection): responseCls = NsOneDNSResponse class NsOneDNSDriver(DNSDriver): name = 'NS1 DNS' website = 'https://ns1.com' type = Provider.NSONE connectionCls = NsOneDNSConnection RECORD_TYPE_MAP = { RecordType.A: 'A', RecordType.AAAA: 'AAAA', RecordType.CNAME: 'CNAME', RecordType.MX: 'MX', RecordType.NS: 'NS', RecordType.PTR: 'PTR', RecordType.SOA: 'SOA', RecordType.SRV: 'SRV', RecordType.TXT: 'TXT' } def list_zones(self): action = '/v1/zones' response = self.connection.request(action=action, method='GET') zones = self._to_zones(items=response.parse_body()) return zones def get_zone(self, zone_id): """ :param zone_id: Zone domain name (e.g. example.com) :return: :class:`Zone` """ action = '/v1/zones/%s' % zone_id try: response = self.connection.request(action=action, method='GET') except NsOneException: e = sys.exc_info()[1] if e.message == 'zone not found': raise ZoneDoesNotExistError(value=e.message, driver=self, zone_id=zone_id) else: raise e zone = self._to_zone(response.objects[0]) return zone def create_zone(self, domain, type='master', ttl=None, extra=None): """ :param domain: Zone domain name (e.g. example.com) :type domain: ``str`` :param type: Zone type (This is not really used. See API docs for extra parameters) :type type: ``str`` :param ttl: TTL for new records (This is used through the extra param) :type ttl: ``int`` :param extra: Extra attributes that are specific to the driver such as ttl. :type extra: ``dict`` :rtype: :class:`Zone` """ action = '/v1/zones/%s' % domain raw_data = {'zone': domain} if extra is not None: raw_data.update(extra) post_data = json.dumps(raw_data) try: response = self.connection.request(action=action, method='PUT', data=post_data) except NsOneException: e = sys.exc_info()[1] if e.message == 'zone already exists': raise ZoneAlreadyExistsError(value=e.message, driver=self, zone_id=domain) else: raise e zone = self._to_zone(response.objects[0]) return zone def delete_zone(self, zone): """ :param zone: Zone to be deleted. :type zone: :class:`Zone` :return: Boolean """ action = '/v1/zones/%s' % zone.domain """zones_list = self.list_zones() if not self.ex_zone_exists(zone_id=zone.id, zones_list=zones_list): raise ZoneDoesNotExistError(value='', driver=self, zone_id=zone.id) """ try: response = self.connection.request(action=action, method='DELETE') except NsOneException: e = sys.exc_info()[1] if e.message == 'zone not found': raise ZoneDoesNotExistError(value=e.message, driver=self, zone_id=zone.id) else: raise e return response.status == httplib.OK def list_records(self, zone): """ :param zone: Zone to list records for. :type zone: :class:`Zone` :return: ``list`` of :class:`Record` """ action = '/v1/zones/%s' % zone.domain try: response = self.connection.request(action=action, method='GET') except NsOneException: e = sys.exc_info()[1] if e.message == 'zone not found': raise ZoneDoesNotExistError(value=e.message, driver=self, zone_id=zone.id) else: raise e records = self._to_records(items=response.parse_body()['records'], zone=zone) return records def get_record(self, zone_id, record_id): """ :param zone_id: The id of the zone where to search for the record (e.g. example.com) :type zone_id: ``str`` :param record_id: The type of record to search for (e.g. A, AAA, MX etc) :return: :class:`Record` """ action = '/v1/zones/%s/%s/%s' % (zone_id, zone_id, record_id) try: response = self.connection.request(action=action, method='GET') except NsOneException: e = sys.exc_info()[1] if e.message == 'record not found': raise RecordDoesNotExistError(value=e.message, driver=self, record_id=record_id) else: raise e zone = self.get_zone(zone_id=zone_id) record = self._to_record(item=response.parse_body(), zone=zone) return record def delete_record(self, record): """ :param record: Record to delete. :type record: :class:`Record` :return: Boolean """ action = '/v1/zones/%s/%s/%s' % (record.zone.domain, record.name, record.type) try: response = self.connection.request(action=action, method='DELETE') except NsOneException: e = sys.exc_info()[1] if e.message == 'record not found': raise RecordDoesNotExistError(value=e.message, driver=self, record_id=record.id) else: raise e return response.status == httplib.OK def create_record(self, name, zone, type, data, extra=None): """ :param name: Name of the record to create (e.g. foo). :type name: ``str`` :param zone: Zone where the record should be created. :type zone: :class:`Zone` :param type: Type of record (e.g. A, MX etc) :type type: ``str`` :param data: Data of the record (e.g. 127.0.0.1 for the A record) :type data: ``str`` :param extra: Extra data needed to create different types of records :type extra: ``dict`` :return: :class:`Record` """ action = '/v1/zones/%s/%s/%s' % (zone.domain, '%s.%s' % (name, zone.domain), type) raw_data = { "answers": [ { "answer": [ data ], } ], "type": type, "domain": '%s.%s' % (name, zone.domain), "zone": zone.domain } if extra is not None and extra.get('answers'): raw_data['answers'] = extra.get('answers') post_data = json.dumps(raw_data) try: response = self.connection.request(action=action, method='PUT', data=post_data) except NsOneException: e = sys.exc_info()[1] if e.message == 'record already exists': raise RecordAlreadyExistsError(value=e.message, driver=self, record_id='') else: raise e record = self._to_record(item=response.parse_body(), zone=zone) return record def update_record(self, record, name, type, data, extra=None): """ :param record: Record to update :type record: :class:`Record` :param name: Name of the record to update (e.g. foo). :type name: ``str`` :param type: Type of record (e.g. A, MX etc) :type type: ``str`` :param data: Data of the record (e.g. 127.0.0.1 for the A record) :type data: ``str`` :param extra: Extra data needed to create different types of records :type extra: ``dict`` :return: :class:`Record` """ zone = record.zone action = '/v1/zones/%s/%s/%s' % (zone.domain, '%s.%s' % (name, zone.domain), type) raw_data = { "answers": [ { "answer": [ data ], } ] } if extra is not None and extra.get('answers'): raw_data['answers'] = extra.get('answers') post_data = json.dumps(raw_data) try: response = self.connection.request(action=action, data=post_data, method='POST') except NsOneException: e = sys.exc_info()[1] if e.message == 'record does not exist': raise RecordDoesNotExistError(value=e.message, driver=self, record_id=record.id) else: raise e record = self._to_record(item=response.parse_body(), zone=zone) return record def ex_zone_exists(self, zone_id, zones_list): """ Function to check if a `Zone` object exists. :param zone_id: ID of the `Zone` object. :type zone_id: ``str`` :param zones_list: A list containing `Zone` objects. :type zones_list: ``list``. :rtype: Returns `True` or `False`. """ zone_ids = [] for zone in zones_list: zone_ids.append(zone.id) return zone_id in zone_ids def _to_zone(self, item): common_attr = ['zone', 'id', 'type'] extra = {} for key in item.keys(): if key not in common_attr: extra[key] = item.get(key) zone = Zone(domain=item['zone'], id=item['id'], type=item.get('type'), extra=extra, ttl=extra.get('ttl'), driver=self) return zone def _to_zones(self, items): zones = [] for item in items: zones.append(self._to_zone(item)) return zones def _to_record(self, item, zone): common_attr = ['id', 'short_answers', 'answers', 'domain', 'type'] extra = {} for key in item.keys(): if key not in common_attr: extra[key] = item.get(key) if item.get('answers') is not None: data = item.get('answers')[0]['answer'] else: data = item.get('short_answers') record = Record(id=item['id'], name=item['domain'], type=item['type'], data=data, zone=zone, driver=self, extra=extra) return record def _to_records(self, items, zone): records = [] for item in items: records.append(self._to_record(item, zone)) return records
34.188889
79
0.537699
11,062
0.898765
0
0
0
0
0
0
4,266
0.346604
02339931b6a314a7b42357abbf8fe125695e6d76
533
py
Python
ocr.py
PI2-Braille-printer/OCR
25511596efbe5e408fe43a92c0d04e513d7fea39
[ "MIT" ]
null
null
null
ocr.py
PI2-Braille-printer/OCR
25511596efbe5e408fe43a92c0d04e513d7fea39
[ "MIT" ]
6
2021-03-18T20:56:22.000Z
2022-03-11T23:28:10.000Z
ocr.py
PI2-Braille-printer/OCR
25511596efbe5e408fe43a92c0d04e513d7fea39
[ "MIT" ]
null
null
null
from PIL import Image, ImageEnhance import pytesseract import os #image = Image.open('f_test.jpg') #enhance = ImageEnhance.Contrast(image) #new_image = enhance.enhance(1.5) #new_image.save('f_test__c_2.jpg') for x in range(0,3): os.system('./textcleaner -g -s 2 -a 1 ./Images/test_crop_'+str(x)+'.jpg ./Images/test_crop_'+str(x)+'_r.jpg') result_string = pytesseract.image_to_string(Image.open('./Images/test_crop_'+str(x)+'_r.jpg'),lang='por') print(result_string) #result_string = result_string.split() #print(result_string)
31.352941
110
0.739212
0
0
0
0
0
0
0
0
314
0.589118
0233f5b5066a471f59d0277aa64b3c981e22b913
2,090
py
Python
processing/lua_file_builder.py
eubr-atmosphere/Spark-Log-Parser
6f2025d50944b3603ce3e41ab09afcb38eab4e08
[ "Apache-2.0" ]
1
2017-05-06T21:25:39.000Z
2017-05-06T21:25:39.000Z
processing/lua_file_builder.py
eubr-atmosphere/Spark-Log-Parser
6f2025d50944b3603ce3e41ab09afcb38eab4e08
[ "Apache-2.0" ]
null
null
null
processing/lua_file_builder.py
eubr-atmosphere/Spark-Log-Parser
6f2025d50944b3603ce3e41ab09afcb38eab4e08
[ "Apache-2.0" ]
3
2018-10-19T12:35:56.000Z
2019-05-09T08:09:54.000Z
#! /usr/bin/env python3 ## Copyright 2018 Eugenio Gianniti <eugenio.gianniti@polimi.it> ## Copyright 2016 Giorgio Pea <giorgio.pea@mail.polimi.it> ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. import os import sys def buildLuaFile(targetDirectory, name, containers): scriptdir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(scriptdir, 'template.lua'), 'r') as infile: content = infile.read() with open (os.path.join (targetDirectory, "dependencies.lua"), "r") as infile: stages = infile.read () content = content \ .replace('@@STAGES@@', stages) \ .replace('@@CONTAINERS@@', containers) \ .replace('@@USERS@@', os.environ['DAGSIM_USERS']) \ .replace('@@TYPE@@', os.environ['DAGSIM_UTHINKTIMEDISTR_TYPE']) \ .replace('@@PARAMS@@', os.environ['DAGSIM_UTHINKTIMEDISTR_PARAMS']) outfilename = os.path.join(targetDirectory, '{}.lua.template'.format(name)) with open(outfilename, 'w') as outfile: outfile.write(content) def main(): args = sys.argv if len(args) != 4: print("Required args: [TARGET_DIRECTORY] [NAME]", file=sys.stderr) sys.exit(2) else: if os.path.exists(str(args[1])): buildLuaFile(str(args[1]), str(args[2]), str(args[3])) else: print("error: the inserted directory does not exist", file = sys.stderr) sys.exit(1) if __name__ == '__main__': main()
32.65625
75
0.623445
0
0
0
0
0
0
0
0
981
0.469378
0236d15dce7606a0d8edbca50d378b142b6663f7
127
py
Python
mynlp/__init__.py
Suneel123/mynlp
9dcf6fb57df66ebd4a359b8cd866323f43bc8ec4
[ "MIT" ]
null
null
null
mynlp/__init__.py
Suneel123/mynlp
9dcf6fb57df66ebd4a359b8cd866323f43bc8ec4
[ "MIT" ]
null
null
null
mynlp/__init__.py
Suneel123/mynlp
9dcf6fb57df66ebd4a359b8cd866323f43bc8ec4
[ "MIT" ]
null
null
null
"""Top-level package for mynlp.""" __author__ = """Suneel Dondapati""" __email__ = 'dsuneel1@gmail.com' __version__ = '0.1.0'
21.166667
35
0.685039
0
0
0
0
0
0
0
0
83
0.653543
0236d5c96173fb20b1c62f540c0341822dff9bf5
788
py
Python
test/point_test.py
markupCode/computational-geometry
9a0a63a0b0c86e0618c18f82283b41baded21c50
[ "MIT" ]
null
null
null
test/point_test.py
markupCode/computational-geometry
9a0a63a0b0c86e0618c18f82283b41baded21c50
[ "MIT" ]
null
null
null
test/point_test.py
markupCode/computational-geometry
9a0a63a0b0c86e0618c18f82283b41baded21c50
[ "MIT" ]
null
null
null
import unittest from geometry.point import Point class TestPoint(unittest.TestCase): def get_points(self): return [ Point(0, 0), Point(1, 1), Point(0, 1), Point(-1, 1), Point(-1, 0), Point(-1, -1), Point(1, -1) ] def test_get_arc(self): points = self.get_points() self.assertEqual(points[0].get_arc(), 0) self.assertEqual(points[1].get_arc(), 45) self.assertEqual(points[2].get_arc(), 90) self.assertEqual(points[3].get_arc(), 135) self.assertEqual(points[4].get_arc(), 180) self.assertEqual(points[5].get_arc(), 225) self.assertEqual(points[6].get_arc(), 315) if __name__ == '__main__': unittest.main()
23.878788
50
0.549492
686
0.870558
0
0
0
0
0
0
10
0.01269
0238ca053db973ce47447cd47778ddb364794224
2,183
py
Python
scenarios/simpleBTSEdgeCloudIngestion/units/sensors.py
rdsea/IoTCloudSamples
37a3550627682981aa7d2a4cf317f19a3b1a699c
[ "Apache-2.0" ]
5
2019-05-04T08:43:58.000Z
2021-12-20T14:22:52.000Z
scenarios/simpleBTSEdgeCloudIngestion/units/sensors.py
rdsea/IoTCloudSamples
37a3550627682981aa7d2a4cf317f19a3b1a699c
[ "Apache-2.0" ]
7
2017-10-30T22:53:51.000Z
2022-02-06T18:03:32.000Z
scenarios/simpleBTSEdgeCloudIngestion/units/sensors.py
rdsea/IoTCloudSamples
37a3550627682981aa7d2a4cf317f19a3b1a699c
[ "Apache-2.0" ]
3
2018-12-17T17:04:04.000Z
2021-09-23T07:07:01.000Z
import yaml import os, errno import json def load_config(path): config = None with open(path, 'r') as config_file: config = yaml.load(config_file) return config def createSensorConfigs(topicSensors): sensors = [] count = 0 for i in range(topicSensors['nb']): config = {} config['server'] = topicSensors['broker'] config['username'] = 'xxx' config['password'] = 'xxx' config['port'] = 1883 config['clientId'] = 'sensor_' + topicSensors['topic'] + '_' +str(count) config['topic'] = topicSensors['topic'] sensors.append(config) if 'remoteLoggingBroker' in topicSensors: remoteLoggingConfig = {} remoteLoggingConfig['broker'] = 'tcp://'+topicSensors['remoteLoggingBroker']['host']+':'+str(topicSensors['remoteLoggingBroker']['port']) remoteLoggingConfig['topic'] = topicSensors['remoteLoggingBroker']['topic'] config['remoteLoggingBroker'] = remoteLoggingConfig config['remoteLogging'] = True count += 1 return sensors def write_config_files(sensors): try: os.makedirs('sensors') except OSError as e: if e.errno != errno.EEXIST: raise for sensor in sensors: file_name = sensor['clientId']+'.json' with open('sensors/'+file_name,'w') as outfile: json.dump(sensor, outfile) def write_compose(sensors): services = {} for sensor in sensors: service = {} volumes = [] volumes.append('./sensors/'+sensor['clientId']+'.json'+":/sensor/config.json:") volumes.append('./sensors/'+sensor['clientId']+'.csv'+":/sensor/data.csv:") service['volumes'] = volumes service['image'] = 'rdsea/sensor' services[sensor['clientId']] = service return services def provision(config): try: os.makedirs('sensors') except OSError as e: if e.errno != errno.EEXIST: raise sensors = [] for topicSensors in config['sensors']: sensors.extend(createSensorConfigs(topicSensors)) write_config_files(sensors) return write_compose(sensors)
30.319444
149
0.607879
0
0
0
0
0
0
0
0
464
0.212552
0238ea3d027c6d41c055683ac6fc0e17e3bc821b
879
py
Python
array/0018_4_sum/0018_4_sum.py
zdyxry/LeetCode
33371285d0f3302158230f46e8b1b63b9f4639c4
[ "Xnet", "X11" ]
6
2019-09-16T01:50:44.000Z
2020-09-17T08:52:25.000Z
array/0018_4_sum/0018_4_sum.py
zdyxry/LeetCode
33371285d0f3302158230f46e8b1b63b9f4639c4
[ "Xnet", "X11" ]
null
null
null
array/0018_4_sum/0018_4_sum.py
zdyxry/LeetCode
33371285d0f3302158230f46e8b1b63b9f4639c4
[ "Xnet", "X11" ]
4
2020-02-07T12:43:16.000Z
2021-04-11T06:38:55.000Z
import collections class Solution(object): def fourSum(self, nums, target): nums, result, lookup = sorted(nums), [], collections.defaultdict(list) for i in xrange(0, len(nums) - 1): for j in xrange(i+1, len(nums)): lookup[nums[i]+nums[j]].append([i,j]) for i in lookup.keys(): if target - i in lookup: for x in lookup[i]: for y in lookup[target-i]: [a,b],[c,d] = x,y if a is not c and a is not d and b is not c and b is not d: quad = sorted([nums[a], nums[b], nums[c],nums[d]]) if quad not in result: result.append(quad) return sorted(result) nums = [1,0,-1,0,-2,2] target = 0 res = Solution().fourSum(nums, target) print(res)
35.16
83
0.480091
772
0.878271
0
0
0
0
0
0
0
0
023b3b94e54c17d3e9f985c30a7d72a9e9d96bce
573
py
Python
Qcover/backends/__init__.py
BAQIS-Quantum/Qcover
ca3776ed73fefa0cfef08042143a8cf842f8dad5
[ "Apache-2.0" ]
38
2021-12-22T03:12:01.000Z
2022-03-17T06:57:10.000Z
Qcover/backends/__init__.py
BAQIS-Quantum/Qcover
ca3776ed73fefa0cfef08042143a8cf842f8dad5
[ "Apache-2.0" ]
null
null
null
Qcover/backends/__init__.py
BAQIS-Quantum/Qcover
ca3776ed73fefa0cfef08042143a8cf842f8dad5
[ "Apache-2.0" ]
13
2021-12-22T07:32:44.000Z
2022-02-28T06:47:41.000Z
from .backend import Backend from .circuitbyqiskit import CircuitByQiskit from .circuitbyprojectq import CircuitByProjectq from .circuitbycirq import CircuitByCirq from .circuitbyqulacs import CircuitByQulacs # from .circuitbytket import CircuitByTket from .circuitbytensor import CircuitByTensor from .circuitbyqton import CircuitByQton import warnings warnings.filterwarnings("ignore") __all__ = [ 'Backend', 'CircuitByCirq', 'CircuitByQiskit', 'CircuitByProjectq', 'CircuitByTensor', 'CircuitByQulacs', 'CircuitByQton' ]
27.285714
49
0.767888
0
0
0
0
0
0
0
0
160
0.279232
023c2aec98d43d7652c64c1fee878f6de026330b
766
py
Python
python-files/dictionary-val.py
chirumist/Python-Practice
fc7d6447ca492989221904121321aaf762bb6b43
[ "MIT" ]
null
null
null
python-files/dictionary-val.py
chirumist/Python-Practice
fc7d6447ca492989221904121321aaf762bb6b43
[ "MIT" ]
null
null
null
python-files/dictionary-val.py
chirumist/Python-Practice
fc7d6447ca492989221904121321aaf762bb6b43
[ "MIT" ]
null
null
null
""" User Get Key Value Input Dictionary Start """ dic = { "google": "google is provide job and internship.", "amezon": "amezon is e-commerce store and cloud computing provider.", "zoom": "zoom is provide video call system to connecting meeating.", "microsoft": "microsoft is owner of windows and office software.." } # For beginner print("google") print("amezon") print("zoom") print("microsoft") key = input("search detail of dectionary! \n") print(dic[key.lower()]) # For advance while True: for index, item in dic.items(): print(index) key = input("search detail of dectionary! \n") print(dic[key.lower()]) if int(input("Press 1 to exit 0 to continue \n")): break """ User Get Key Value Input Dictionary End """
24.709677
73
0.663185
0
0
0
0
0
0
0
0
498
0.650131
023fa6bbd20b990b812f3f037de938b8c58a24d0
2,811
py
Python
cloudpredictionframework/anomaly_detection/algorithms/hybrid_algorithm.py
Fruktus/CloudPredictionFramework
1474287cc9bdfd58ae92db7bc24966a7e600258f
[ "MIT" ]
1
2021-11-19T13:13:20.000Z
2021-11-19T13:13:20.000Z
cloudpredictionframework/anomaly_detection/algorithms/hybrid_algorithm.py
Fruktus/CloudPredictionFramework
1474287cc9bdfd58ae92db7bc24966a7e600258f
[ "MIT" ]
null
null
null
cloudpredictionframework/anomaly_detection/algorithms/hybrid_algorithm.py
Fruktus/CloudPredictionFramework
1474287cc9bdfd58ae92db7bc24966a7e600258f
[ "MIT" ]
null
null
null
from statistics import mean from collections import defaultdict from cloudpredictionframework.anomaly_detection.algorithms.base_algorithm import BaseAlgorithm class HybridAlgorithm(BaseAlgorithm): def __init__(self, filters: [BaseAlgorithm], min_confidence=0.8): super().__init__() self._filters = filters self._min_confidence = min_confidence self._recurrency_data = {'day_of_week': defaultdict(lambda: 0), 'day_of_month': defaultdict(lambda: 0)} def get_confidence(self): pass def update(self, timestamp, value): self._samples = self._samples.append({'timestamp': timestamp, 'value': value}, ignore_index=True) combined_states = [] for alg in self._filters: alg.update(timestamp, value) combined_states.append(alg.get_current_state()) if self.states.learning in combined_states: self._current_state = self.states.learning return state_confidence = mean([1 if i == self.states.overutil_anomaly else 0 for i in combined_states]) self._update_recurrent(timestamp, state_confidence > self._min_confidence) if state_confidence >= self._min_confidence: if self._is_recurrent(timestamp): self._current_state = self.states.normal else: self._current_state = self.states.overutil_anomaly self._anomalies_overutil = self._anomalies_overutil.append({'timestamp': timestamp, 'value': value}, ignore_index=True) else: self._current_state = self.states.normal self._anomalies_treshold_history = self._anomalies_treshold_history.append( {'timestamp': timestamp, 'upper_treshold': self._upper_treshold, 'lower_treshold': self._lower_treshold}, ignore_index=True) def _update_recurrent(self, timestamp, is_anomaly: bool): if is_anomaly: self._recurrency_data['day_of_week'][timestamp.dayofweek] += 1 self._recurrency_data['day_of_month'][timestamp.day] += 1 else: dow = self._recurrency_data['day_of_week'][timestamp.dayofweek] self._recurrency_data['day_of_week'][timestamp.dayofweek] = dow - 1 if dow > 0 else 0 dom = self._recurrency_data['day_of_month'][timestamp.day] self._recurrency_data['day_of_month'][timestamp.day] = dom - 1 if dom > 0 else 0 def _is_recurrent(self, timestamp): return self._recurrency_data['day_of_week'][timestamp.dayofweek] > 2 or \ self._recurrency_data['day_of_month'][timestamp.day] > 2 def __str__(self): return "HybridAlgorithm"
41.338235
116
0.644966
2,648
0.942014
0
0
0
0
0
0
231
0.082177
02426c5e9ebc5b6e7797b501d9a365d58338fa41
159
py
Python
Defer/__init__.py
loynoir/defer.py
46f37a046028b1854586301a45870c2b3a628f65
[ "MIT" ]
null
null
null
Defer/__init__.py
loynoir/defer.py
46f37a046028b1854586301a45870c2b3a628f65
[ "MIT" ]
null
null
null
Defer/__init__.py
loynoir/defer.py
46f37a046028b1854586301a45870c2b3a628f65
[ "MIT" ]
null
null
null
__all__ = ['Defer'] from contextlib import contextmanager, ExitStack @contextmanager def Defer(): with ExitStack() as stack: yield stack.callback
19.875
48
0.72327
0
0
72
0.45283
88
0.553459
0
0
7
0.044025
024385bec991016fbb9a7b197fba1d40d6b4f297
9,798
py
Python
jsonmerge/strategies.py
open-contracting-archive/jsonmerge
2b87eea10bed3aa380cb28034a96783ac3081a85
[ "Unlicense" ]
null
null
null
jsonmerge/strategies.py
open-contracting-archive/jsonmerge
2b87eea10bed3aa380cb28034a96783ac3081a85
[ "Unlicense" ]
3
2015-09-16T15:37:05.000Z
2015-09-16T16:32:26.000Z
jsonmerge/strategies.py
open-contracting-archive/jsonmerge
2b87eea10bed3aa380cb28034a96783ac3081a85
[ "Unlicense" ]
null
null
null
# vim:ts=4 sw=4 expandtab softtabstop=4 from jsonmerge.exceptions import HeadInstanceError, \ BaseInstanceError, \ SchemaError import jsonschema import re class Strategy(object): """Base class for merge strategies. """ def merge(self, walk, base, head, schema, meta, **kwargs): """Merge head instance into base. walk -- WalkInstance object for the current context. base -- Value being merged into. head -- Value being merged. schema -- Schema used for merging. meta -- Meta data, as passed to the Merger.merge() method. kwargs -- Dict with any extra options given in the 'mergeOptions' keyword Specific merge strategies should override this method to implement their behavior. The function should return the object resulting from the merge. Recursion into the next level, if necessary, is achieved by calling walk.descend() method. """ raise NotImplemented def get_schema(self, walk, schema, meta, **kwargs): """Return the schema for the merged document. walk -- WalkSchema object for the current context. schema -- Original document schema. meta -- Schema for the meta data, as passed to the Merger.get_schema() method. kwargs -- Dict with any extra options given in the 'mergeOptions' keyword. Specific merge strategies should override this method to modify the document schema depending on the behavior of the merge() method. The function should return the schema for the object resulting from the merge. Recursion into the next level, if necessary, is achieved by calling walk.descend() method. Implementations should take care that all external schema references are resolved in the returned schema. This can be achieved by calling walk.resolve_refs() method. """ raise NotImplemented class Overwrite(Strategy): def merge(self, walk, base, head, schema, meta, **kwargs): if head == None: return base else: return head def get_schema(self, walk, schema, meta, **kwargs): return walk.resolve_refs(schema) class OCDSOmit(Strategy): def merge(self, walk, base, head, schema, meta, **kwargs): return None def get_schema(self, walk, schema, meta, **kwargs): return walk.resolve_refs(schema) class Version(Strategy): def merge(self, walk, base, head, schema, meta, limit=None, unique=None, ignoreDups=True, **kwargs): # backwards compatibility if unique is False: ignoreDups = False if base is None: base = [] else: base = list(base) if not ignoreDups or not base or base[-1]['value'] != head: base.append(walk.add_meta(head, meta)) if limit is not None: base = base[-limit:] return base def get_schema(self, walk, schema, meta, limit=None, **kwargs): if meta is not None: item = dict(meta) else: item = {} if 'properties' not in item: item['properties'] = {} item['properties']['value'] = walk.resolve_refs(schema) rv = { "type": "array", "items": item } if limit is not None: rv['maxItems'] = limit return rv class OCDSVersion(Strategy): def merge(self, walk, base, head, schema, meta, **kwargs): if base is None: base = [] else: base = list(base) meta = { "releaseID": walk.merger.head_root.get('id'), "releaseDate": walk.merger.head_root.get('date'), "releaseTag": walk.merger.head_root.get('tag') } if (not base or base[-1]['value'] != head) and head != None: base.append(walk.add_meta(head, meta)) return base def get_schema(self, walk, schema, meta, **kwargs): if meta is not None: item = dict(meta) else: item = {} if 'properties' not in item: item['properties'] = {} item['properties']['value'] = walk.resolve_refs(schema) item['properties'].update({ "releaseDate": { "type": "string", "format": "date-time" }, "releaseID": { "type": "string" }, "releaseTag": { "type": "string" } }) rv = { "type": "array", "items": item } return rv class Append(Strategy): def merge(self, walk, base, head, schema, meta, **kwargs): if not walk.is_type(head, "array"): raise HeadInstanceError("Head for an 'append' merge strategy is not an array") if base is None: base = [] else: if not walk.is_type(base, "array"): raise BaseInstanceError("Base for an 'append' merge strategy is not an array") base = list(base) base += head return base def get_schema(self, walk, schema, meta, **kwargs): schema.pop('maxItems', None) schema.pop('uniqueItems', None) return walk.resolve_refs(schema) class ArrayMergeById(Strategy): def merge(self, walk, base, head, schema, meta, idRef="id", ignoreId=None, **kwargs): if not walk.is_type(head, "array"): raise HeadInstanceError("Head for an 'arrayMergeById' merge strategy is not an array") # nopep8 if base is None: base = [] else: if not walk.is_type(base, "array"): raise BaseInstanceError("Base for an 'arrayMergeById' merge strategy is not an array") # nopep8 base = list(base) subschema = None if schema: subschema = schema.get('items') if walk.is_type(subschema, "array"): raise SchemaError("'arrayMergeById' not supported when 'items' is an array") for head_item in head: try: head_key = walk.resolver.resolve_fragment(head_item, idRef) except jsonschema.RefResolutionError: # Do nothing if idRef field cannot be found. continue if head_key == ignoreId: continue key_count = 0 for i, base_item in enumerate(base): base_key = walk.resolver.resolve_fragment(base_item, idRef) if base_key == head_key: key_count += 1 # If there was a match, we replace with a merged item base[i] = walk.descend(subschema, base_item, head_item, meta) if key_count == 0: # If there wasn't a match, we append a new object base.append(walk.descend(subschema, None, head_item, meta)) if key_count > 1: raise BaseInstanceError("Id was not unique") return base def get_schema(self, walk, schema, meta, **kwargs): subschema = None if schema: subschema = schema.get('items') # Note we're discarding the walk.descend() result here. This is because # it would de-reference the $ref if the subschema is a reference - i.e. # in the result it would replace the reference with the copy of the # target. # # But we want to keep the $ref and do the walk.descend() only on the target of the reference. # # This seems to work, but is an ugly workaround. walk.descend() should # be fixed instead to not dereference $refs when not necessary. walk.descend(subschema, meta) return schema class ObjectMerge(Strategy): def merge(self, walk, base, head, schema, meta, **kwargs): if not walk.is_type(head, "object"): raise HeadInstanceError("Head for an 'object' merge strategy is not an object") if base is None: base = {} else: if not walk.is_type(base, "object"): raise BaseInstanceError("Base for an 'object' merge strategy is not an object") base = dict(base) for k, v in head.items(): subschema = None # get subschema for this element if schema is not None: p = schema.get('properties') if p is not None: subschema = p.get(k) if subschema is None: p = schema.get('patternProperties') if p is not None: for pattern, s in p.items(): if re.search(pattern, k): subschema = s if subschema is None: p = schema.get('additionalProperties') if p is not None: subschema = p.get(k) base[k] = walk.descend(subschema, base.get(k), v, meta) return base def get_schema(self, walk, schema, meta, **kwargs): for forbidden in ("oneOf", "allOf", "anyOf"): if forbidden in schema: raise SchemaError("Type ambiguous schema") schema2 = dict(schema) def descend_keyword(keyword): p = schema.get(keyword) if p is not None: for k, v in p.items(): schema2[keyword][k] = walk.descend(v, meta) descend_keyword("properties") descend_keyword("patternProperties") descend_keyword("additionalProperties") return schema2
31.504823
112
0.557359
9,554
0.975097
0
0
0
0
0
0
3,268
0.333537
0243fa264d20be4663ad37da1958e0275ed6a559
3,100
py
Python
ArcGISDesktop/reconcile_post_versions.py
jonhusen/ArcGIS
1d39a627888ce6039c490cdad810cd6d8035cb77
[ "MIT" ]
null
null
null
ArcGISDesktop/reconcile_post_versions.py
jonhusen/ArcGIS
1d39a627888ce6039c490cdad810cd6d8035cb77
[ "MIT" ]
null
null
null
ArcGISDesktop/reconcile_post_versions.py
jonhusen/ArcGIS
1d39a627888ce6039c490cdad810cd6d8035cb77
[ "MIT" ]
null
null
null
""" Reconcile and posting versions at 10.0 TODO:WIP """ import arcpy, os, sys, string #Populate parent and child versions in the following manner('Parent':'Child', etc). DO NOT LIST DEFAULT vTree = {'SDE.Parent':'SDE.Child','SDE.QA':'SDE.Edit'} #Reconcile and post child versions with parent def RecPostNonDefault(workspace,logWorkspace,logName): outLog = open(os.path.join(logWorkspace, logName), 'w') for key, val in vTree.iteritems(): arcpy.ReconcileVersion_management(workspace, val, key,"BY_OBJECT", "FAVOR_TARGET_VERSION", "NO_LOCK_AQUIRED", "NO_ABORT", "POST") print "Reconciling and posting {0} to {1}".format(val, key) outLog.write("Reconciling and posting {0} to {1}".format(val, key)) outLog.write("\n") outLog.close() del outLog, key, val #Reconcile and post with parent def RecPostDefault(workspace,logWorkspace,logName2,defaultVersion): outLog = open(os.path.join(logWorkspace, logName2), 'w') #Reconcile and post parents with DEFAULT for key, val in vTree.iteritems(): arcpy.ReconcileVersion_management(workspace, key, defaultVersion,"BY_OBJECT", "FAVOR_TARGET_VERSION", "NO_LOCK_AQUIRED", "NO_ABORT", "POST") print "Reconciling and posting {0} to DEFAULT".format(key) outLog.write("Reconciling and posting {0} to DEFAULT".format(key)) outLog.write("\n") outLog.close() del outLog, key, val def DeleteChildVersions(workspace): arcpy.ClearWorkspaceCache_management() for key, val in vTree.iteritems(): arcpy.DeleteVersion_management(workspace, val) print "Deleted {0}".format(val) def DeleteParentVersions(workspace): arcpy.ClearWorkspaceCache_management() for key, val in vTree.iteritems(): arcpy.DeleteVersion_management(workspace, key) print "Deleted {0}".format(key) #Compress database def Compress(workspace,logWorkspace,logName3): arcpy.ClearWorkspaceCache_management() outLog = open(os.path.join(logWorkspace, logName3), 'w') arcpy.Compress_management(workspace) print ("Compressed database {0}".format(workspace)) outLog.write("Compressed database {0}".format(workspace)) outLog.close() def RecreateVersions(workspace, defaultVersion): for key, val in vTree.iteritems(): arcpy.CreateVersion_management(workspace,defaultVersion, key[4:], "PUBLIC") print "Created version {0}".format(key) arcpy.CreateVersion_management(workspace, key, val[4:], "PUBLIC") print "Created version {0}".format(val) if __name__=="__main__": workspace = r"Database Connections\MXD2.sde" defaultVersion = "sde.DEFAULT" logName = "RecPostLog.txt" logName2 = "RecPostDefaultLog.txt" logName3 = "CompressLog.txt" logWorkspace = r"C:\temp" RecPostNonDefault(workspace,logWorkspace,logName) RecPostDefault(workspace,logWorkspace,logName2,defaultVersion) DeleteChildVersions(workspace) DeleteParentVersions(workspace) Compress(workspace,logWorkspace,logName3) RecreateVersions(workspace, defaultVersion)
40.789474
148
0.709677
0
0
0
0
0
0
0
0
901
0.290645
024430ea1d89420e6939d1c770a6a86ca49668e5
4,626
py
Python
example/F3Dp/F3D_syn.py
Chunfang/defmod-swpc
74fe7c02b24a46aa24bca7438738aa5adb72e2b6
[ "MIT" ]
26
2017-05-12T08:11:57.000Z
2022-03-06T01:44:24.000Z
example/F3Dp/F3D_syn.py
Soengmou/defmod-swpc
75740fca3b36107e9d18201a5623c955f6010740
[ "MIT" ]
4
2019-09-11T15:35:16.000Z
2020-06-23T10:49:34.000Z
example/F3Dp/F3D_syn.py
Chunfang/defmod-swpc
74fe7c02b24a46aa24bca7438738aa5adb72e2b6
[ "MIT" ]
8
2017-05-22T18:40:13.000Z
2021-02-10T08:04:39.000Z
#!/usr/bin/env python import numpy as np import os,sys from mpl_toolkits.mplot3d import Axes3D from matplotlib import pyplot as plt import argparse ap=argparse.ArgumentParser() ap.add_argument('-vis') # 1 plot cropped point cloud ap.add_argument('-refine') # 1 refine mesh ap.add_argument('-clean') # 1 remove tmp files if ap.parse_args().vis==None: vis=0 else: vis=int(ap.parse_args().vis) if ap.parse_args().refine==None: refine=0 else: refine=int(ap.parse_args().refine) if ap.parse_args().clean==None: clean=0 else: clean=int(ap.parse_args().clean) # Synthetic fault pixels z=np.linspace(.2, -.8, num=100) y=np.linspace(-.625,.625, num=120) grid=np.meshgrid(y,z) x=np.zeros((len(z)*len(y),1),dtype=np.float) dat_vert=np.hstack((x,grid[0].reshape(x.shape),grid[1].reshape(x.shape))) # weak wl=np.linspace(.12,.18,num=8); amp=.03125*np.sqrt(wl) e=1.025; r=-.2 dip=70.; zcnt=-.35 omg=[ 0.82976173, 0.89624834, 0.03829284, -0.50016345, -1.06606012, 1.40505898, -1.24256034, 1.28623393] #omg=(np.random.rand(wl.shape[0])-.5)*np.pi L=dat_vert[1,:].max()-dat_vert[1,:].min() zmax=z.max(); zmin=z.min() for i in range(len(wl)): phs=dat_vert[:,1]/wl[i]*np.pi+omg[i] dat_vert[:,0]=dat_vert[:,0]+amp[i]*np.cos(phs)*(e*zmax-dat_vert[:,2])/(e*zmax-zmin)*np.exp(r*abs(phs)/np.pi) dat_vert[:,0]=dat_vert[:,0]+(zcnt-dat_vert[:,2])*np.tan((90.-dip)/180.*np.pi) # ridge patch def flt_patch(dat_vert,slope1,slope2,trunc1,trunc2,hlw,hup): b1=-slope1*trunc1-.7 b2=-slope2*trunc2-.7 in_id=np.where(np.logical_and(dat_vert[:,2]-slope1*dat_vert[:,1]<b1, dat_vert[:,2]-slope2*dat_vert[:,1]<b2))[0] out_id=np.setdiff1d(np.array(range(len(dat_vert)),dtype=np.int32),in_id) x_shift=dat_vert[in_id,0] # ridge patch k=0 zup=dat_vert[:,2].max() zlw=dat_vert[:,2].min() for i in in_id: r=abs(dat_vert[i,1]-.5*(trunc1+trunc2)) R=.5*((dat_vert[i,2]-b2)/slope2-(dat_vert[i,2]-b1)/slope1) h=hlw+(dat_vert[i,2]-zlw)/(zup-zlw)*(hup-hlw) x_shift[k]=x_shift[k]+np.cos(r/R*np.pi/2.)*h k+=1 dat_vert=np.vstack((dat_vert[out_id,:], np.hstack((x_shift.reshape(len(in_id),1), dat_vert[in_id,1].reshape(len(in_id),1), dat_vert[in_id,2].reshape(len(in_id),1))))) return dat_vert slope1=10.;slope2=-10. trunc1=.1;trunc2=.6 hup=0.;hlw=.08 #dat_vert=flt_patch(dat_vert,slope1,slope2,trunc1,trunc2,hlw,hup) print omg fout='F3D_syn.xyz' f=open(fout,'w+') np.savetxt(f,dat_vert,delimiter=' ', fmt='%.6f '*3) f.close() from subprocess import call fin=fout fout=fout.rsplit('.')[0]+'.stl' mxl='xyz2stl.mlx' call(['meshlabserver', '-i',fin,'-o',fout,'-s',mxl]) if clean==1: os.remove(fin) # Mesh fin=fout if refine==1: fout=fout.rsplit('.')[0]+'_dns.exo' else: fout=fout.rsplit('.')[0]+'.exo' jou='F3D_tet.jou' txt_jou=open(jou,'r') txt_jou_tmp=open('tmp.jou','w+') hf=0.0025 # fault grid length (0.0025 for ~100 m tet model, 0.003 for ~40 m) hm=0.0075 # matrix grid length (0.0075 for ~100 m tet model, 0.010 for ~40 m) for line in txt_jou: line=line.strip('\r\n') if 'import' in line.lower(): line='import stl "'+fin+'"' if 'export' in line.lower(): line='export mesh "'+fout+'" dimension 3 overwrite' if 'surface 46 94 95 97 size' in line.lower(): line='surface 46 94 95 97 size %0.6f' %(2*hf) if 'volume all size' in line.lower(): line='volume all size %0.6f' %(2*hm) txt_jou_tmp.write(line+'\n') if 'mesh volume all' in line.lower() and refine==1: txt_jou_tmp.write('refine volume all\n') txt_jou.close();txt_jou_tmp.close() call(['trelis','-nojournal','-nographics','tmp.jou']) if clean==1: os.remove('tmp.jou') # Preprocessing msh=>inp dt_dyn=2E-5 #1E-5 for dns 100 m tet model, 8E-5 for 40 m tet, 8E-4 for ~1 m tet import F3D_msh2inp _=F3D_msh2inp.msh2inp(fout,dt_dyn) # Fault plot if vis==1: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(dat_vert[:,0], dat_vert[:,1], dat_vert[:,2], c='b', marker='.') # Create cubic bounding box to simulate equal aspect ratio max_range = np.array([np.max(dat_vert[:,0])-np.min(dat_vert[:,0]),np.max(dat_vert[:,1])\ -np.min(dat_vert[:,1]), np.max(dat_vert[:,2])-np.min(dat_vert[:,2])]).max() Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() for xb, yb, zb in zip(Xb, Yb, Zb): ax.plot([xb], [yb], [zb], 'w',) plt.title('fault [km]') plt.grid() plt.show()
34.266667
115
0.635754
0
0
0
0
0
0
0
0
996
0.215305
0244e0d25129f6105b7892408951f27b584d128e
2,850
py
Python
fltk/util/data_loader_utils.py
tudelft-eemcs-dml/fltk-testbed-gr-5
72afa24a37cd1f8f5f49665c83ccbd730d76ad21
[ "BSD-2-Clause" ]
null
null
null
fltk/util/data_loader_utils.py
tudelft-eemcs-dml/fltk-testbed-gr-5
72afa24a37cd1f8f5f49665c83ccbd730d76ad21
[ "BSD-2-Clause" ]
2
2021-05-11T12:48:14.000Z
2021-05-11T12:49:24.000Z
fltk/util/data_loader_utils.py
tudelft-eemcs-dml/fltk-testbed-gr-5
72afa24a37cd1f8f5f49665c83ccbd730d76ad21
[ "BSD-2-Clause" ]
2
2021-05-03T17:40:18.000Z
2021-05-11T09:34:30.000Z
import numpy from torch.utils.data import DataLoader import os import pickle import random from ..datasets import Dataset def generate_data_loaders_from_distributed_dataset(distributed_dataset, batch_size): """ Generate data loaders from a distributed dataset. :param distributed_dataset: Distributed dataset :type distributed_dataset: list(tuple) :param batch_size: batch size for data loader :type batch_size: int """ data_loaders = [] for worker_training_data in distributed_dataset: data_loaders.append(Dataset.get_data_loader_from_data(batch_size, worker_training_data[0], worker_training_data[1], shuffle=True)) return data_loaders def load_train_data_loader(logger, args): """ Loads the training data DataLoader object from a file if available. :param logger: loguru.Logger :param args: Arguments """ if os.path.exists(args.get_train_data_loader_pickle_path()): dl = load_data_loader_from_file(logger, args.get_train_data_loader_pickle_path()) return dl else: logger.error("Couldn't find train data loader stored in file") raise FileNotFoundError("Couldn't find train data loader stored in file") def generate_train_loader(args, dataset): train_dataset = dataset.get_train_dataset() X, Y = shuffle_data(args, train_dataset) return dataset.get_data_loader_from_data(args.get_batch_size(), X, Y) def load_test_data_loader(logger, args): """ Loads the test data DataLoader object from a file if available. :param logger: loguru.Logger :param args: Arguments """ if os.path.exists(args.get_test_data_loader_pickle_path()): return load_data_loader_from_file(logger, args.get_test_data_loader_pickle_path()) else: logger.error("Couldn't find test data loader stored in file") raise FileNotFoundError("Couldn't find train data loader stored in file") def load_data_loader_from_file(logger, filename) -> DataLoader: """ Loads DataLoader object from a file if available. :param logger: loguru.Logger :param filename: string """ logger.info("Loading data loader from file: {}".format(filename)) with open(filename, "rb") as f: return load_saved_data_loader(f) def generate_test_loader(args, dataset): test_dataset = dataset.get_test_dataset() X, Y = shuffle_data(args, test_dataset) return dataset.get_data_loader_from_data(args.get_test_batch_size(), X, Y) def shuffle_data(args, dataset): data = list(zip(dataset[0], dataset[1])) random.shuffle(data) X, Y = zip(*data) X = numpy.asarray(X) Y = numpy.asarray(Y) return X, Y def load_saved_data_loader(file_obj): return pickle.load(file_obj) def save_data_loader_to_file(data_loader, file_obj): pickle.dump(data_loader, file_obj)
31.318681
138
0.729825
0
0
0
0
0
0
0
0
878
0.30807
024580a7ff506aa3cbda6d46122b84b1603a6c05
794
py
Python
pywikibot/families/omegawiki_family.py
shizhao/pywikibot-core
8441a1cd0e8dd5d3701f1c5e26077e40a40937ee
[ "MIT" ]
null
null
null
pywikibot/families/omegawiki_family.py
shizhao/pywikibot-core
8441a1cd0e8dd5d3701f1c5e26077e40a40937ee
[ "MIT" ]
null
null
null
pywikibot/families/omegawiki_family.py
shizhao/pywikibot-core
8441a1cd0e8dd5d3701f1c5e26077e40a40937ee
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- __version__ = '$Id: 024580a7ff506aa3cbda6d46122b84b1603a6c05 $' from pywikibot import family # Omegawiki, the Ultimate online dictionary class Family(family.Family): def __init__(self): family.Family.__init__(self) self.name = 'omegawiki' self.langs['omegawiki'] = 'www.omegawiki.org' # On most Wikipedias page names must start with a capital letter, but some # languages don't use this. self.nocapitalize = self.langs.keys() def hostname(self,code): return 'www.omegawiki.org' def version(self, code): return "1.16alpha" def scriptpath(self, code): return '' def path(self, code): return '/index.php' def apipath(self, code): return '/api.php'
22.685714
82
0.632242
627
0.789673
0
0
0
0
0
0
312
0.392947
024a818dbea659d940b31f646bbc0d73684c65d8
4,781
py
Python
tools/scripts/extract_features_WORLD.py
feelins/mcd_WORLD
8a98c1c740ec5371a322d038b8498cb72f3f7750
[ "BSD-3-Clause" ]
5
2019-05-16T11:42:21.000Z
2022-03-25T22:25:35.000Z
tools/scripts/extract_features_WORLD.py
feelins/mcd_WORLD
8a98c1c740ec5371a322d038b8498cb72f3f7750
[ "BSD-3-Clause" ]
null
null
null
tools/scripts/extract_features_WORLD.py
feelins/mcd_WORLD
8a98c1c740ec5371a322d038b8498cb72f3f7750
[ "BSD-3-Clause" ]
null
null
null
import os import sys import shutil import glob import time import multiprocessing as mp if len(sys.argv)!=4: print("Usage: ") print("python extract_features_WORLD.py <path_to_wav_dir> <path_to_feat_dir> <sampling rate>") sys.exit(1) # top currently directory current_dir = os.getcwd() # input audio directory wav_dir = sys.argv[1] # Output features directory out_dir = sys.argv[2] # initializations fs = int(sys.argv[3]) # tools directory world = os.path.join(current_dir, "tools/bin/WORLD") sptk = os.path.join(current_dir, "tools/bin/SPTK-3.11") if not os.path.exists(out_dir): os.mkdir(out_dir) if fs == 16000: nFFTHalf = 1024 alpha = 0.58 elif fs == 22050: nFFTHalf = 1024 alpha = 0.65 elif fs == 44100: nFFTHalf = 2048 alpha = 0.76 elif fs == 48000: nFFTHalf = 2048 alpha = 0.77 else: print("As of now, we don't support %d Hz sampling rate." %(fs)) print("Please consider either downsampling to 16000 Hz or upsampling to 48000 Hz") sys.exit(1) #bap order depends on sampling rate. mcsize=59 def get_wav_filelist(wav_dir): wav_files = [] for file in os.listdir(wav_dir): whole_filepath = os.path.join(wav_dir,file) if os.path.isfile(whole_filepath) and str(whole_filepath).endswith(".wav"): wav_files.append(whole_filepath) elif os.path.isdir(whole_filepath): wav_files += get_wav_filelist(whole_filepath) wav_files.sort() return wav_files def process(filename): ''' The function decomposes a wav file into F0, mel-cepstral coefficients, and aperiodicity :param filename: path to wav file :return: .lf0, .mgc and .bap files ''' file_id = os.path.basename(filename).split(".")[0] print('\n' + file_id) ### WORLD ANALYSIS -- extract vocoder parameters ### ### extract f0, sp, ap ### world_analysis_cmd = "%s %s %s %s %s" % (os.path.join(world, 'analysis'), \ filename, os.path.join(out_dir, file_id + '.f0'), \ os.path.join(out_dir, file_id + '.sp'), \ os.path.join(out_dir, file_id + '.bapd')) os.system(world_analysis_cmd) ### convert f0 to lf0 ### sptk_x2x_da_cmd = "%s +da %s > %s" % (os.path.join(sptk, 'x2x'), \ os.path.join(out_dir, file_id + '.f0'), \ os.path.join(out_dir, file_id + '.f0a')) os.system(sptk_x2x_da_cmd) sptk_x2x_af_cmd = "%s +af %s | %s > %s " % (os.path.join(sptk, 'x2x'), \ os.path.join(out_dir, file_id + '.f0a'), \ os.path.join(sptk, 'sopr') + ' -magic 0.0 -LN -MAGIC -1.0E+10', \ os.path.join(out_dir, file_id + '.lf0')) os.system(sptk_x2x_af_cmd) ### convert sp to mgc ### sptk_x2x_df_cmd1 = "%s +df %s | %s | %s >%s" % (os.path.join(sptk, 'x2x'), \ os.path.join(out_dir, file_id + '.sp'), \ os.path.join(sptk, 'sopr') + ' -R -m 32768.0', \ os.path.join(sptk, 'mcep') + ' -a ' + str(alpha) + ' -m ' + str( mcsize) + ' -l ' + str( nFFTHalf) + ' -e 1.0E-8 -j 0 -f 0.0 -q 3 ', \ os.path.join(out_dir, file_id + '.mgc')) os.system(sptk_x2x_df_cmd1) ### convert bapd to bap ### sptk_x2x_df_cmd2 = "%s +df %s > %s " % (os.path.join(sptk, "x2x"), \ os.path.join(out_dir, file_id + ".bapd"), \ os.path.join(out_dir, file_id + '.bap')) os.system(sptk_x2x_df_cmd2) print("--- Feature extraction started ---") start_time = time.time() # get wav files list wav_files = get_wav_filelist(wav_dir) # do multi-processing pool = mp.Pool(mp.cpu_count()) pool.map(process, wav_files) # clean temporal files #shutil.rmtree(out_dir, ignore_errors=True) #shutil.rmtree(out_dir, ignore_errors=True) #for zippath in glob.iglob(os.path.join(out_dir, '*.bapd')): # os.remove(zippath) clean_temp_files_cmd = "rm -rf %s/*.bapd %s/*.f0a %s/*.f0 %s/*.sp" % (out_dir, out_dir, out_dir, out_dir) os.system(clean_temp_files_cmd) print("You should have your features ready in: "+out_dir) (m, s) = divmod(int(time.time() - start_time), 60) print(("--- Feature extraction completion time: %d min. %d sec ---" % (m, s)))
34.89781
116
0.535244
0
0
0
0
0
0
0
0
1,470
0.307467
024b2b7d9d7075b55a314e3428f50fdfaf0a011e
19,261
py
Python
mmtbx/bulk_solvent/f_model_all_scales.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
155
2016-11-23T12:52:16.000Z
2022-03-31T15:35:44.000Z
mmtbx/bulk_solvent/f_model_all_scales.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
590
2016-12-10T11:31:18.000Z
2022-03-30T23:10:09.000Z
mmtbx/bulk_solvent/f_model_all_scales.py
dperl-sol/cctbx_project
b9e390221a2bc4fd00b9122e97c3b79c632c6664
[ "BSD-3-Clause-LBNL" ]
115
2016-11-15T08:17:28.000Z
2022-02-09T15:30:14.000Z
from __future__ import absolute_import, division, print_function from cctbx.array_family import flex from cctbx import adptbx from mmtbx import bulk_solvent from cctbx.array_family import flex from cctbx import adptbx import mmtbx from libtbx import group_args import mmtbx.arrays import mmtbx.bulk_solvent.scaler from libtbx.test_utils import approx_equal from libtbx.math_utils import ifloor, iceil import mmtbx.f_model import mmtbx.bulk_solvent.bulk_solvent_and_scaling as bss from six.moves import zip, range class run(mmtbx.f_model.manager): """ This is a very specialized routine to perform complex protocols of updating all scales of fmodel, including case of twininng, presence of H and lileky more. Inside it pretends to be fmodel proper (done by dictionary updates before and after - any better ideas of how to do it nicer are welcome!). """ def __init__(self, fmodel, apply_back_trace, remove_outliers, fast, params, refine_hd_scattering, log): ### Must be first thing here self.__dict__.update(fmodel.__dict__) # From this point on: self = fmodel ### russ = self.compute(apply_back_trace = apply_back_trace, remove_outliers = remove_outliers, fast = fast, params = params, refine_hd_scattering = refine_hd_scattering, log = log) ### Must be next to last... fmodel.__dict__.update(self.__dict__) ### ...and this one is last self.russ = russ def compute(self, apply_back_trace, remove_outliers, fast, params, refine_hd_scattering, log): assert [self.arrays.core_twin, self.twin_law].count(None) in [0,2] self.show(prefix = "start", log = log) self.reset_all_scales() self.show(prefix = "re-set all scales", log = log) if(remove_outliers and not self.twinned()): for iii in range(5): self.remove_outliers(use_model = False, log = None) # XXX self.show(prefix = "remove outliers", log = log) result = None if(self.twinned()): for cycle in range(2): if(log is not None): print("cycle %d:"%cycle, file=log) self.update_twin_fraction() self.show(prefix = "update twin fraction", log = log) result = self.update_solvent_and_scale_twin(log = log, refine_hd_scattering = refine_hd_scattering) else: result = self.update_solvent_and_scale_2( fast = fast, params = params, apply_back_trace = apply_back_trace, refine_hd_scattering = refine_hd_scattering, log = log) #XXX if(remove_outliers and not self.twinned()): #XXX self.remove_outliers(use_model = True, log = None) # XXX if(remove_outliers and not self.twinned()): for iii in range(5): self.remove_outliers(use_model = True, log = None) # XXX self.show(prefix = "remove outliers", log = log) return result def reset_all_scales(self): size = self.f_obs().data().size() zero_c = flex.complex_double(size,0) zero_d = flex.double(size,0) one_d = flex.double(size,1) f_part1_twin = self.f_calc_twin() f_part2_twin = self.f_calc_twin() if(f_part1_twin is not None): f_part1_twin = self.f_calc_twin().array(data=zero_c) f_part2_twin = self.f_calc_twin().array(data=zero_c) self.update_core( f_part1 = self.f_calc().array(data=zero_c), f_part2 = self.f_calc().array(data=zero_c), f_part1_twin = f_part1_twin, f_part2_twin = f_part2_twin, k_isotropic = one_d, k_anisotropic = one_d, k_mask = [zero_d]*len(self.k_masks())) def show(self, prefix, log, r=None): if(log is None): return if(r is None): r = self.r_all() m = "%24s: r(all,work,free)=%6.4f %6.4f %6.4f n_refl.: %d"%(prefix, r, self.r_work(), self.r_free(), self.f_obs().data().size()) if(not self.twinned()): print(m, file=log) else: print(m+" twin_fraction=%4.2f"%self.twin_fraction, file=log) def need_to_refine_hd_scattering_contribution(self): if(self.xray_structure is None): return False refine_hd_scattering = True hd_selection = self.xray_structure.hd_selection() occ_h_all_zero = self.xray_structure.select( hd_selection).scatterers().extract_occupancies().all_eq(0.0) # riding H if(self.xray_structure.guess_scattering_type_neutron() or hd_selection.count(True)==0 or not occ_h_all_zero): refine_hd_scattering = False return refine_hd_scattering def update_solvent_and_scale_2(self, fast, params, apply_back_trace, refine_hd_scattering, log): if(params is None): params = bss.master_params.extract() if(self.xray_structure is not None): # Figure out Fcalc and Fmask based on presence of H hd_selection = self.xray_structure.hd_selection() xrs_no_h = self.xray_structure.select(~hd_selection) xrs_h = self.xray_structure.select(hd_selection) # Create data container for scalers. If H scattering is refined then it is # assumed that self.f_calc() does not contain H contribution at all. fmodel_kbu = mmtbx.f_model.manager_kbu( f_obs = self.f_obs(), f_calc = self.f_calc(), f_masks = self.f_masks(), ss = self.ss) # Compute k_total and k_mask using one of the two methods (anal or min). # Note: this intentionally ignores previously existing f_part1 and f_part2. # k_sol, b_sol, b_cart, b_adj = [None,]*4 if(fast): # analytical assert len(fmodel_kbu.f_masks)==1 result = mmtbx.bulk_solvent.scaler.run_simple( fmodel_kbu = fmodel_kbu, r_free_flags = self.r_free_flags(), bulk_solvent = params.bulk_solvent, aniso_scale = params.anisotropic_scaling, bin_selections = self.bin_selections) r_all_from_scaler = result.r_all() # must be here, before apply_back_trace else: # using minimization: exp solvent and scale model (k_sol,b_sol,b_cart) result = bss.bulk_solvent_and_scales( fmodel_kbu = fmodel_kbu, params = params) k_sol, b_sol, b_cart = result.k_sols(), result.b_sols(), result.b_cart() r_all_from_scaler = result.r_all() # must be here, before apply_back_trace if(apply_back_trace and len(fmodel_kbu.f_masks)==1 and self.xray_structure is not None): o = result.apply_back_trace_of_overall_exp_scale_matrix( xray_structure = self.xray_structure) b_adj = o.b_adj if(not fast): b_sol, b_cart = [o.b_sol], o.b_cart self.update_xray_structure( xray_structure = o.xray_structure, update_f_calc = True) fmodel_kbu = fmodel_kbu.update(f_calc = self.f_calc()) self.show(prefix = "overall B=%s to atoms"%str("%7.2f"%o.b_adj).strip(), log = log) # Update self with new arrays so that H correction knows current R factor. # If no H to account for, then this is the final result. k_masks = result.k_masks() k_anisotropic = result.k_anisotropic() k_isotropic = result.k_isotropic() self.update_core( k_mask = k_masks, k_anisotropic = k_anisotropic, k_isotropic = k_isotropic) self.show(prefix = "bulk-solvent and scaling", log = log) # Consistency check if(not apply_back_trace): assert approx_equal(self.r_all(), r_all_from_scaler) # Add contribution from H (if present and riding). This goes to f_part2. kh, bh = 0, 0 if(refine_hd_scattering and self.need_to_refine_hd_scattering_contribution()): # Obsolete previous contribution f_part2 f_part2 = fmodel_kbu.f_calc.array(data=fmodel_kbu.f_calc.data()*0) self.update_core(f_part2 = f_part2) xrs_h = xrs_h.set_occupancies(value=1).set_b_iso(value = 0) f_h = self.compute_f_calc(xray_structure = xrs_h) # Accumulate all mask contributions: Fcalc_atoms+Fbulk_1+...+Fbulk_N data = fmodel_kbu.f_calc.data() for k_mask_, f_mask_ in zip(k_masks, fmodel_kbu.f_masks): data = data + k_mask_*f_mask_.data() f_calc_plus_f_bulk_no_scales = fmodel_kbu.f_calc.array(data = data) # Consistency check assert approx_equal(self.f_model().data(), f_calc_plus_f_bulk_no_scales.data()*k_isotropic*k_anisotropic) assert approx_equal(self.f_model_no_scales().data(), f_calc_plus_f_bulk_no_scales.data()) # # Compute contribution from H (F_H) # # Coarse sampling b_mean = flex.mean(xrs_no_h.extract_u_iso_or_u_equiv())*adptbx.u_as_b(1.) b_min = int(max(0,b_mean)*0.5) b_max = int(b_mean*1.5) sc = 1000. kr=[i/sc for i in range(ifloor(0*sc), iceil(1.5*sc)+1, int(0.1*sc))] br=[i/sc for i in range(ifloor(b_min*sc), iceil(b_max*sc)+1, int(5.*sc))] o = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = fmodel_kbu.f_obs.data(), f_calc = f_calc_plus_f_bulk_no_scales.data(), f_mask = f_h.data(), k_total = k_isotropic*k_anisotropic, ss = fmodel_kbu.ss, k_sol_range = flex.double(kr), b_sol_range = flex.double(br), r_ref = self.r_work()) if(o.updated()): f_part2 = f_h.array(data = o.k_mask()*f_h.data()) kh, bh = o.k_sol(), o.b_sol() self.show(prefix = "add H (%4.2f, %6.2f)"%(kh, bh), log = log, r=o.r()) # Fine sampling k_min = max(0,o.k_sol()-0.1) k_max = o.k_sol()+0.1 b_min = max(0,o.b_sol()-5.) b_max = o.b_sol()+5. kr=[i/sc for i in range(ifloor(k_min*sc),iceil(k_max*sc)+1,int(0.01*sc))] br=[i/sc for i in range(ifloor(b_min*sc),iceil(b_max*sc)+1,int(1.*sc))] o = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = fmodel_kbu.f_obs.data(), f_calc = f_calc_plus_f_bulk_no_scales.data(), f_mask = f_h.data(), k_total = k_isotropic*k_anisotropic, ss = fmodel_kbu.ss, k_sol_range = flex.double(kr), b_sol_range = flex.double(br), r_ref = o.r()) if(o.updated()): f_part2 = f_h.array(data = o.k_mask()*f_h.data()) kh, bh = o.k_sol(), o.b_sol() self.show(prefix = "add H (%4.2f, %6.2f)"%(kh, bh), log = log, r=o.r()) # THIS HELPS if fast=true is used, see how it works in reality # if(fast): fmodel_kbu_ = mmtbx.f_model.manager_kbu( f_obs = self.f_obs(), f_calc = f_calc_plus_f_bulk_no_scales, f_masks = [f_part2], ss = self.ss) result = mmtbx.bulk_solvent.scaler.run_simple( fmodel_kbu = fmodel_kbu_, r_free_flags = self.r_free_flags(), bulk_solvent = params.bulk_solvent, aniso_scale = params.anisotropic_scaling, bin_selections = self.bin_selections) f_part2 = f_part2.array(data = result.core.k_mask()*f_part2.data()) k_isotropic = result.core.k_isotropic*result.core.k_isotropic_exp k_anisotropic = result.core.k_anisotropic # Update self with final scales self.update_core( k_mask = k_masks, k_anisotropic = k_anisotropic, k_isotropic = k_isotropic, f_part2 = f_part2) # Make sure what came out of scaling matches what self thinks it really is # It must match at least up to 1.e-6. self.show(prefix = "add H (%4.2f, %6.2f)"%(kh, bh), log = log) if(fast): assert approx_equal(result.r_work(), self.r_work(), 1.e-4) else: assert approx_equal(self.r_all(), o.r()), [self.r_all(), o.r()] return group_args( k_sol = k_sol, b_sol = b_sol, b_cart = b_cart, k_h = kh, b_h = bh, b_adj = b_adj) def update_solvent_and_scale_twin(self, refine_hd_scattering, log): if(not self.twinned()): return assert len(self.f_masks()) == 1 # Re-set all scales to unit or zero self.show(prefix = "update scales twin start", log = log) self.reset_all_scales() self.show(prefix = "reset f_part, k_(total,mask)", log = log) f_calc_data = self.f_calc().data() f_calc_data_twin = self.f_calc_twin().data() # Initial trial set sc = 1000. ksr = [i/sc for i in range(ifloor(0*sc), iceil(0.6*sc)+1, int(0.05*sc))] bsr = [i/sc for i in range(ifloor(0*sc), iceil(150.*sc)+1, int(10.*sc))] o_kbu_sol = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = self.f_obs().data(), f_calc_1 = f_calc_data, f_calc_2 = f_calc_data_twin, f_mask_1 = self.arrays.core.f_masks[0].data(), f_mask_2 = self.arrays.core_twin.f_masks[0].data(), ss = self.ss, twin_fraction = self.twin_fraction, k_sol_range = flex.double(ksr), b_sol_range = flex.double(bsr), miller_indices = self.f_obs().indices(), #XXX ??? What about twin-related? unit_cell = self.f_obs().unit_cell(), r_ref = self.r_all()) if(o_kbu_sol.updated()): self.update( k_mask = o_kbu_sol.k_mask(), k_anisotropic = o_kbu_sol.k_anisotropic()) # Second (finer) trial set k_min = max(o_kbu_sol.k_sol()-0.05, 0) k_max = min(o_kbu_sol.k_sol()+0.05, 0.6) ksr = [i/sc for i in range(ifloor(k_min*sc), iceil(k_max*sc)+1, int(0.01*sc))] b_min = max(o_kbu_sol.b_sol()-10, 0) b_max = min(o_kbu_sol.b_sol()+10, 150) bsr = [i/sc for i in range(ifloor(b_min*sc), iceil(b_max*sc)+1, int(1.*sc))] o_kbu_sol = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = self.f_obs().data(), f_calc_1 = f_calc_data, f_calc_2 = f_calc_data_twin, f_mask_1 = self.arrays.core.f_masks[0].data(), f_mask_2 = self.arrays.core_twin.f_masks[0].data(), ss = self.ss, twin_fraction = self.twin_fraction, k_sol_range = flex.double(ksr), b_sol_range = flex.double(bsr), miller_indices = self.f_obs().indices(), #XXX ??? What about twin-related? unit_cell = self.f_obs().unit_cell(), r_ref = o_kbu_sol.r()) if(o_kbu_sol.updated()): self.update( k_mask = o_kbu_sol.k_mask(), k_anisotropic = o_kbu_sol.k_anisotropic()) # Disable due to rare failures. Technically they should always match. But # since different routines are used tiny disagreements are possible. # See examples in : /net/anaconda/raid1/afonine/work/bugs/twin_refinement #assert approx_equal(self.r_all(), o_kbu_sol.r(), 1.e-5) ############## # use apply_back_trace in if below if(self.xray_structure is not None): o = mmtbx.bulk_solvent.scaler.tmp( xray_structure = self.xray_structure, k_anisotropic = o_kbu_sol.k_anisotropic(), k_masks = [o_kbu_sol.k_mask()], ss = self.ss) self.update_xray_structure( xray_structure = o.xray_structure, update_f_calc = True) ############# self.update( k_mask = o.k_masks, k_anisotropic = o.k_anisotropic) self.show(prefix = "bulk-solvent and scaling", log = log) # # Add contribution from H (if present and riding). This goes to f_part2. # kh, bh = 0, 0 if(refine_hd_scattering and self.need_to_refine_hd_scattering_contribution()): hd_selection = self.xray_structure.hd_selection() xrs_no_h = self.xray_structure.select(~hd_selection) xrs_h = self.xray_structure.select(hd_selection) # Accumulate all mask contributions: Fcalc_atoms+Fbulk_1+...+Fbulk_N data = self.f_calc().data()+self.f_masks()[0].data()*self.k_masks()[0] f_calc_plus_f_bulk_no_scales = self.f_calc().array(data = data) data = self.f_calc_twin().data()+\ self.f_masks_twin()[0].data()*self.k_masks_twin()[0] f_calc_plus_f_bulk_no_scales_twin = self.f_calc_twin().array(data = data) # Initial FH contribution xrs_h = xrs_h.set_occupancies(value=1).set_b_iso(value = 0) f_h = self.compute_f_calc(xray_structure = xrs_h) f_h_twin = self.compute_f_calc(xray_structure = xrs_h, miller_array = self.f_calc_twin()) # Coarse sampling b_mean = flex.mean(xrs_no_h.extract_u_iso_or_u_equiv())*adptbx.u_as_b(1.) b_min = int(max(0,b_mean)*0.5) b_max = int(b_mean*1.5) sc = 1000. kr=[i/sc for i in range(ifloor(0*sc), iceil(1.5*sc)+1, int(0.1*sc))] br=[i/sc for i in range(ifloor(b_min*sc), iceil(b_max*sc)+1, int(5.*sc))] obj = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = self.f_obs().data(), f_calc_1 = f_calc_plus_f_bulk_no_scales.data(), f_calc_2 = f_calc_plus_f_bulk_no_scales_twin.data(), f_mask_1 = f_h.data(), f_mask_2 = f_h_twin.data(), ss = self.ss, twin_fraction = self.twin_fraction, k_sol_range = flex.double(kr), b_sol_range = flex.double(br), miller_indices = self.f_obs().indices(), # XXX What about twin-related? unit_cell = self.f_obs().unit_cell(), r_ref = self.r_work()) if(obj.updated()): f_part2 = f_h.array( data = obj.k_mask()*f_h.data()) f_part2_twin = f_h_twin.array(data = obj.k_mask()*f_h_twin.data()) kh, bh = obj.k_sol(), obj.b_sol() # Fine sampling k_min = max(0,obj.k_sol()-0.1) k_max = obj.k_sol()+0.1 b_min = max(0,obj.b_sol()-5.) b_max = obj.b_sol()+5. kr=[i/sc for i in range(ifloor(k_min*sc),iceil(k_max*sc)+1,int(0.01*sc))] br=[i/sc for i in range(ifloor(b_min*sc),iceil(b_max*sc)+1,int(5.*sc))] obj = bulk_solvent.k_sol_b_sol_k_anisotropic_scaler_twin( f_obs = self.f_obs().data(), f_calc_1 = f_calc_plus_f_bulk_no_scales.data(), f_calc_2 = f_calc_plus_f_bulk_no_scales_twin.data(), f_mask_1 = f_h.data(), f_mask_2 = f_h_twin.data(), ss = self.ss, twin_fraction = self.twin_fraction, k_sol_range = flex.double(kr), b_sol_range = flex.double(br), miller_indices = self.f_obs().indices(), # XXX What about twin-related? unit_cell = self.f_obs().unit_cell(), r_ref = obj.r()) if(obj.updated()): f_part2 = f_h.array( data = obj.k_mask()*f_h.data()) f_part2_twin = f_h_twin.array(data = obj.k_mask()*f_h_twin.data()) kh, bh = obj.k_sol(), obj.b_sol() self.update_core( f_part2 = f_part2, f_part2_twin = f_part2_twin, k_anisotropic = obj.k_anisotropic()) self.show(prefix = "add H (%4.2f, %6.2f)"%(kh, bh), log = log) b_cart = adptbx.u_as_b(adptbx.u_star_as_u_cart( self.f_obs().unit_cell(), o_kbu_sol.u_star())) return group_args( k_sol = o_kbu_sol.k_sol(), b_sol = o_kbu_sol.b_sol(), b_cart = b_cart, k_h = kh, b_h = bh)
44.380184
82
0.626343
18,746
0.973262
0
0
0
0
0
0
2,819
0.146358
024c1d679000935d415d1310cd2a49a746f73e4a
4,704
py
Python
pysparkpro/dsl/nodesbak.py
liaoxiong3x/pyspark
2a16ad495780b1b37f5dc571cb7ea11260765366
[ "Apache-2.0" ]
null
null
null
pysparkpro/dsl/nodesbak.py
liaoxiong3x/pyspark
2a16ad495780b1b37f5dc571cb7ea11260765366
[ "Apache-2.0" ]
null
null
null
pysparkpro/dsl/nodesbak.py
liaoxiong3x/pyspark
2a16ad495780b1b37f5dc571cb7ea11260765366
[ "Apache-2.0" ]
null
null
null
from session.abstract_class import PysparkPro class DslAdaptor(object): pysparkpro = PysparkPro() select = 'SELECT' insert = 'INSERT' delete = 'DELETE' update = 'UPDATE' alert = 'ALERT' create_table = 'CREATETABLE' drop_table = 'DROPTABLE' create_index = 'CREATEINDEX' drop_index = 'DROPTABLE' create_user = 'CREATEUSER' exit = 'EXIT' print_table = 'PRINT' show_tables = 'SHOW' value = 'VALUE' condition = 'CONDITION' relation_attr = 'RELATTR' grant_user = 'GRANTUSER' revoke_user = 'REVOKEUSER' attr_type = "ATTRTYPE" class ConnectNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class CreateNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class InsertNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class LoadNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class RefreshNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class RegisterNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class SaveNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class ScriptNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class SelectNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class SetNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class TrainNode(): def __init__(self, select_list, from_list, where_list): self.type = DslAdaptor.select self.select_list = select_list self.from_list = from_list self.where_list = where_list class Exit: def __init__(self): self.type = DslAdaptor.exit class PrintTable: def __init__(self, table_name): self.type = DslAdaptor.print_table self.table_name = table_name class ShowTables: def __init__(self): self.type = DslAdaptor.show_tables class Value: def __init__(self, value_type, value): self.type = DslAdaptor.value self.value_type = value_type self.value = value def __str__(self): return str(self.value) + '[' + self.value_type + ']' class RelAttr: def __init__(self, attr_name, table_name=None): self.type = DslAdaptor.relation_attr self.table_name = table_name self.attr_name = attr_name def __str__(self): if self.table_name: return self.table_name + '.' + self.attr_name else: return self.attr_name class Cond: def __init__(self, left, op, right): self.type = DslAdaptor.condition self.op = op.upper() self.left = left self.right = right def __str__(self): return '(' + str(self.left) + ', ' + str(self.right) + ', ' + self.op + ')' class AttrType: def __init__(self, attr_name, attr_type, type_len = 1): self.type = DslAdaptor.attr_type self.attr_type = attr_type self.type_len = type_len self.attr_name = attr_name def __str__(self): return self.attr_name + " " + self.attr_type + " " + str(self.type_len) if __name__ == '__main__': spark = DslAdaptor() print(spark)
26.426966
83
0.650298
4,531
0.963223
0
0
0
0
0
0
217
0.046131
024c4ab64cff5513fb1d36a41a43c50162ebb3f1
821
py
Python
backdoor/detect_buffer_overflow.py
Sanardi/bored
2816395b99c05871f01fbbd55a833dcd13801014
[ "MIT" ]
null
null
null
backdoor/detect_buffer_overflow.py
Sanardi/bored
2816395b99c05871f01fbbd55a833dcd13801014
[ "MIT" ]
null
null
null
backdoor/detect_buffer_overflow.py
Sanardi/bored
2816395b99c05871f01fbbd55a833dcd13801014
[ "MIT" ]
null
null
null
import socket def connect(server, port): # open a connection to vulnserver s = socket.socket (socket.AF_INET, socket.SOCK_STREAM) s.connect ((server, port)) return s def read_until(s, delim=b':'): buf = b'' while not buf.endswith(delim): buf += s.recv(1) return buf def overflow_input(num_chars=128): for i in range(1, num_chars): try: s = connect(SERVER, PORT) read_until(s) data = 'A' * i + '\n' data = bytes(data, encoding='utf-8') s.send(data) except: print(f"Server crashed with input size {i}") finally: s.close() if __name__ == "__main__": PORT = 12345 SERVER = '<THE HOSTNAME OR IP>' s = connect(SERVER, PORT) print(read_until(s))
23.457143
58
0.548112
0
0
0
0
0
0
0
0
123
0.149817
024c6205dd81c6aee9436b9f31977f458d63fa70
3,384
py
Python
tools/test.py
EMinsight/MPh
2b967b77352f9ce7effcd50ad4774bf5eaf731ea
[ "MIT" ]
null
null
null
tools/test.py
EMinsight/MPh
2b967b77352f9ce7effcd50ad4774bf5eaf731ea
[ "MIT" ]
null
null
null
tools/test.py
EMinsight/MPh
2b967b77352f9ce7effcd50ad4774bf5eaf731ea
[ "MIT" ]
null
null
null
""" Runs all tests in the intended order. Each test script (in the `tests` folder) contains a group of tests. These scripts must be run in separate processes as most of them start and stop the Java virtual machine, which can only be done once per process. This is why simply calling pyTest (with `python -m pytest` in the root folder) will not work. This script here runs each test group in a new subprocess. It also imposes a logical order: from the tests covering the most most basic functionality to the high-level abstractions. Here, as opposed to the similar script `coverage.py`, we don't actually run the tests through pyTest. Rather, we run the scripts directly so that the output is less verbose. Note, however, that pyTest still needs to be installed as some of the test fixtures require it. The verbosity can be increased by passing `--log` as a command-line argument. This will display the log messages produced by MPh as the tests are running. You can also pass the name of a test group to run only that one. For example, passing "model" will only run the tests defined in `test_model.py`. """ from subprocess import run from pathlib import Path from timeit import default_timer as now from argparse import ArgumentParser from sys import executable as python from sys import exit from os import environ, pathsep # Define order of test groups. groups = ['meta', 'config', 'discovery', 'server', 'session', 'standalone', 'client', 'multi', 'node', 'model', 'exit'] # Determine path of project root folder. here = Path(__file__).resolve().parent root = here.parent # Run MPh in project folder, not a possibly different installed version. if 'PYTHONPATH' in environ: environ['PYTHONPATH'] = str(root) + pathsep + environ['PYTHONPATH'] else: environ['PYTHONPATH'] = str(root) # Parse command-line arguments. parser = ArgumentParser(prog='test.py', description='Runs the MPh test suite.', add_help=False, allow_abbrev=False) parser.add_argument('--help', help='Show this help message.', action='help') parser.add_argument('--log', help='Display log output.', action='store_true') parser.add_argument('--groups', help='List all test groups.', action='store_true') parser.add_argument('group', help='Run only this group of tests.', nargs='?') arguments = parser.parse_args() if arguments.groups: for group in groups: print(group) exit() if arguments.group: group = arguments.group if group.startswith('test_'): group = group[5:] if group.endswith('.py'): group = group[:-3] groups = [group] options = [] if arguments.log: options.append('--log') # Run each test group in new process. for group in groups: if groups.index(group) > 0: print() print(f'Running test group "{group}".') t0 = now() process = run([python, f'test_{group}.py'] + options, cwd=root/'tests') if process.returncode == 0: print(f'Passed in {now()-t0:.0f} s.') else: print(f'Failed after {now()-t0:.0f} s.') exit(1)
36
76
0.636525
0
0
0
0
0
0
0
0
1,823
0.538393
024c8b636c73803ba5c14b996265676bb94e1dd0
592
py
Python
notebooks/shared/ipypublish/export_plugins/html_standard.py
leonbett/debuggingbook
ae1fa940c306160429232fbc93a7a7f14b44efb7
[ "MIT" ]
728
2018-09-21T03:51:04.000Z
2022-03-28T09:35:04.000Z
notebooks/shared/ipypublish/export_plugins/html_standard.py
leonbett/debuggingbook
ae1fa940c306160429232fbc93a7a7f14b44efb7
[ "MIT" ]
103
2018-09-02T12:26:32.000Z
2022-02-09T07:19:08.000Z
notebooks/shared/ipypublish/export_plugins/html_standard.py
leonbett/debuggingbook
ae1fa940c306160429232fbc93a7a7f14b44efb7
[ "MIT" ]
157
2018-09-02T08:00:50.000Z
2022-03-27T22:04:50.000Z
#!/usr/bin/env python """html in standard nbconvert format """ from ipypublish.html.create_tpl import create_tpl from ipypublish.html.standard import content from ipypublish.html.standard import content_tagging from ipypublish.html.standard import document from ipypublish.html.standard import inout_prompt from ipypublish.html.standard import mathjax from ipypublish.html.standard import widgets oformat = 'HTML' config = {} template = create_tpl([ document.tpl_dict, content.tpl_dict, content_tagging.tpl_dict, mathjax.tpl_dict, widgets.tpl_dict, inout_prompt.tpl_dict ])
28.190476
52
0.802365
0
0
0
0
0
0
0
0
67
0.113176
024cdbf14b841e1da6f77d24cda6ea8444019523
1,320
py
Python
application/src/app_pkg/routes/get_messages.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
null
null
null
application/src/app_pkg/routes/get_messages.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
3
2021-06-08T21:39:12.000Z
2022-01-13T02:46:20.000Z
application/src/app_pkg/routes/get_messages.py
eyardley/CSC648-SoftwareEngineering-Snapster
6dbe1cf9b34de6d6dbc6be75db3a34583f67c01a
[ "MIT" ]
1
2021-05-09T21:01:28.000Z
2021-05-09T21:01:28.000Z
# from flask import render_template, request, make_response, jsonify # from src.app_pkg.routes.common import validate_helper # from src.app_pkg import app, db # from src.app_pkg.forms import MessageForm # # ################################################ # # Show All Messages / User Profile # # ################################################ # # AUTHOR: Bakulia Kurmant # # NOTE: This function handles the route of the show all message functionality. # # It show the list of messages the user sent or received and single view message modal with message body # # Once the Database manager API returns a result (as a list), it passes that resulting list # # to the HTML page to be rendered. # # # @app.route('/user_profile', method=['GET']) # def all_messages(msg_id): # isloggedin = validate_helper(request.cookies.get('token')) # # if not isloggedin: # return render_template('search.html') # # msg_result_size = 0 # msg_results = [] # print('calling db...') # msg_result_size, msg_results = db.get_all_messages(isloggedin, msg_id) # # if msg_result_size == 0: # print("You have no messages!") # # return render_template('user_profile.html', isloggedin=isloggedin, msg_result_size=msg_result_size, # msg_results=msg_results) # #
37.714286
106
0.641667
0
0
0
0
0
0
0
0
1,286
0.974242
024d5f02a7be6e61357ca017fedc52a6ef5e46ea
18,681
py
Python
tests/fixtures/test_product.py
oldarmyc/cap
2e3e4b89d3d05f03876446d6f339167bd2805ea8
[ "Apache-2.0" ]
1
2017-12-13T20:19:29.000Z
2017-12-13T20:19:29.000Z
tests/fixtures/test_product.py
oldarmyc/cap
2e3e4b89d3d05f03876446d6f339167bd2805ea8
[ "Apache-2.0" ]
null
null
null
tests/fixtures/test_product.py
oldarmyc/cap
2e3e4b89d3d05f03876446d6f339167bd2805ea8
[ "Apache-2.0" ]
1
2018-09-21T15:26:42.000Z
2018-09-21T15:26:42.000Z
# Copyright 2016 Dave Kludt # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. sample_product = { "title": "Test", "us_url": "http://us.test.com", "uk_url": "http://uk.test.com", "active": True, "db_name": "test", "require_region": True, "doc_url": "http://doc.test.com", "pitchfork_url": "https://pitchfork/url" } sample_limit = { "product": "test", "title": "Test", "uri": "/limits", "slug": "test", "active": True, "absolute_path": "test/path", "absolute_type": "list", "limit_key": "test_limit", "value_key": "test_value" } sample_log = { "queried": ["dns"], "queried_by": "skeletor", "region": "dfw", "ddi": "123456", 'query_results': [] } sample_auth_failure = { 'message': ( '<strong>Error!</strong> Authentication has failed due to' ' incorrect token or DDI. Please check the token and DDI ' 'and try again.' ) } """ DNS Tests """ dns = { "title": "DNS", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "dns", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } dns_limit = { "product": "dns", "title": "Domains", "uri": "/limits", "slug": "domains", "active": True, "absolute_path": "limits.absolute", "absolute_type": "dict", "value_key": "", "limit_key": "domains" } dns_limit_return = { "limits": { "rate": [ { "regex": ".*/v\\d+\\.\\d+/(\\d+/domains/search).*", "limit": [ { "value": 20, "verb": "GET", "next-available": "2016-01-12T13:56:11.450Z", "remaining": 20, "unit": "MINUTE" } ], "uri": "*/domains/search*" } ], "absolute": { "domains": 500, "records per domain": 500 } } } dns_list_return = { "domains": [ { "comment": "Test", "updated": "2015-12-08T20:47:02.000+0000", "name": "test.net", "created": "2015-04-09T15:42:49.000+0000", "emailAddress": "skeletor@rackspace.com", "id": 123465798, "accountId": 1234567 } ], "totalEntries": 1 } dns_full_return = { 'dns': { 'values': {'Domains': 1}, 'limits': {'Domains': 500} } } """ Autoscale """ autoscale = { "title": "Autoscale", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "autoscale", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } autoscale_limit = { "product": "autoscale", "title": "Max Groups", "absolute_path": "limits.absolute", "uri": "/v1.0/{ddi}/limits", "slug": "max_groups", "value_key": "", "absolute_type": "dict", "active": True, "limit_key": "maxGroups" } autoscale_limit_return = { "limits": { "rate": [ { "regex": "/v1\\.0/execute/(.*)", "limit": [ { "value": 10, "verb": "ALL", "next-available": "2016-01-12T14:51:13.402Z", "remaining": 10, "unit": "SECOND" } ], "uri": "/v1.0/execute/*" } ], "absolute": { "maxGroups": 1000, "maxPoliciesPerGroup": 100, "maxWebhooksPerPolicy": 25 } } } autoscale_list_return = { "groups": [ { "state": { "status": "ACTIVE", "desiredCapacity": 0, "paused": False, "active": [], "pendingCapacity": 0, "activeCapacity": 0, "name": "test" }, "id": "d446f3c2-612f-41b8-92dc-4d6e1422bde2", "links": [ { "href": ( 'https://dfw.autoscale.api.rackspacecloud.com/v1.0' '/1234567/groups/d446f3c2-612f-41b8-92dc-4d6e1422bde2/' ), "rel": "self" } ] } ], "groups_links": [] } autoscale_full_return = { 'autoscale': { 'values': {'Max Groups': 1}, 'limits': {'Max Groups': 1000} } } """ Big Data """ big_data = { "title": "Big Data", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "big_data", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } big_data_limit = [ { "product": "big_data", "title": "Node Count", "absolute_path": "limits.absolute.node_count", "uri": "/v2/{ddi}/limits", "slug": "node_count", "value_key": "remaining", "absolute_type": "dict", "active": True, "limit_key": "limit" }, { "product": "big_data", "title": "Disk - MB", "absolute_path": "limits.absolute.disk", "uri": "/v2/{ddi}/limits", "slug": "disk_-_mb", "value_key": "remaining", "absolute_type": "dict", "active": True, "limit_key": "limit" } ] big_data_limit_return = { "limits": { "absolute": { "node_count": { "limit": 15, "remaining": 8 }, "disk": { "limit": 50000, "remaining": 25000 }, "ram": { "limit": 655360, "remaining": 555360 }, "vcpus": { "limit": 200, "remaining": 120 } } } } big_data_full_return = { 'big_data': { 'values': {'Node Count': 7, 'Disk - MB': 25000}, 'limits': {'Node Count': 15, 'Disk - MB': 50000} } } """ CBS """ cbs = { "title": "CBS", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "cbs", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } cbs_limit = { "product": "cbs", "title": "SATA - GB", "absolute_path": "quota_set.gigabytes_SATA", "uri": "/v1/{ddi}/os-quota-sets/{ddi}?usage=True", "slug": "sata_-_gb", "value_key": "in_use", "absolute_type": "dict", "active": True, "limit_key": "limit" } cbs_limit_return = { "quota_set": { "volumes": { "limit": -1, "reserved": 0, "in_use": 3 }, "gigabytes_SATA": { "limit": 10240, "reserved": 0, "in_use": 325 }, "gigabytes_SSD": { "limit": 10240, "reserved": 0, "in_use": 50 } } } cbs_full_return = { 'cbs': { 'values': {'SATA - GB': 9915}, 'limits': {'SATA - GB': 10240} } } """ Load Balancers """ clb = { "title": "Load Balancers", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "load_balancers", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } clb_limit = [ { "product": "load_balancers", "title": "Total Load Balancers", "uri": "/v1.0/{ddi}/loadbalancers/absolutelimits", "slug": "total_load_balancers", "active": True, "path": "absolute['LOADBALANCER_LIMIT']", "absolute_path": "absolute", "value_key": "", "absolute_type": "list", "limit_key": "LOADBALANCER_LIMIT" }, { "product": "load_balancers", "title": "Nodes per LB", "uri": "/v1.0/{ddi}/loadbalancers/absolutelimits", "slug": "nodes_per_lb", "active": True, "path": "absolute['NODE_LIMIT']", "absolute_path": "absolute", "value_key": "", "absolute_type": "list", "limit_key": "NODE_LIMIT" } ] clb_limit_return = { "absolute": [ { "name": "IPV6_LIMIT", "value": 25 }, { "name": "LOADBALANCER_LIMIT", "value": 25 }, { "name": "BATCH_DELETE_LIMIT", "value": 10 }, { "name": "ACCESS_LIST_LIMIT", "value": 100 }, { "name": "NODE_LIMIT", "value": 25 }, { "name": "NODE_META_LIMIT", "value": 25 }, { "name": "LOADBALANCER_META_LIMIT", "value": 25 }, { "name": "CERTIFICATE_MAPPING_LIMIT", "value": 20 } ] } clb_list_return = { "loadBalancers": [ { "status": "ACTIVE", "updated": { "time": "2016-01-12T16:04:44Z" }, "protocol": "HTTP", "name": "test", "algorithm": "LEAST_CONNECTIONS", "created": { "time": "2016-01-12T16:04:44Z" }, "virtualIps": [ { "ipVersion": "IPV4", "type": "PUBLIC", "id": 19875, "address": "148.62.0.226" }, { "ipVersion": "IPV6", "type": "PUBLIC", "id": 9318325, "address": "2001:4800:7904:0100:f46f:211b:0000:0001" } ], "id": 506497, "timeout": 30, "nodeCount": 0, "port": 80 } ] } clb_full_return = { 'load_balancers': { 'values': {'Total Load Balancers': 1}, 'limits': {'Total Load Balancers': 25, 'Nodes per LB': 25} } } """ Servers """ server = { "title": "Servers", "us_url": "https://us.test.com", "uk_url": "https://uk.test.com", "active": True, "db_name": "servers", "require_region": True, "doc_url": "https://doc.test.com", "pitchfork_url": "https://pitchfork.url", "limit_maps": [] } server_limit = [ { "product": "servers", "title": "Servers", "uri": "/v2/{ddi}/limits", "slug": "servers", "active": True, "path": "absolute['maxTotalInstances']", "absolute_path": "limits.absolute", "value_key": "", "absolute_type": "dict", "limit_key": "maxTotalInstances" }, { "product": "servers", "title": "Private Networks", "uri": "/v2/{ddi}/limits", "slug": "private_networks", "active": True, "path": "absolute['maxTotalPrivateNetworks']", "absolute_path": "limits.absolute", "value_key": "", "absolute_type": "dict", "limit_key": "maxTotalPrivateNetworks" }, { "product": "servers", "title": "Ram - MB", "uri": "/v2/{ddi}/limits", "slug": "ram_-_mb", "active": True, "path": "absolute['maxTotalRAMSize']", "absolute_path": "limits.absolute", "value_key": "", "absolute_type": "dict", "limit_key": "maxTotalRAMSize" } ] server_limit_return = { "limits": { "rate": [ { "regex": "/[^/]*/?$", "limit": [ { "next-available": "2016-01-12T16:14:47.624Z", "unit": "MINUTE", "verb": "GET", "remaining": 2200, "value": 2200 } ], "uri": "*" }, { "regex": ( "/v[^/]+/[^/]+/servers/([^/]+)/rax-si-image-schedule" ), "limit": [ { "next-available": "2016-01-12T16:14:47.624Z", "unit": "SECOND", "verb": "POST", "remaining": 10, "value": 10 } ], "uri": "/servers/{id}/rax-si-image-schedule" } ], "absolute": { "maxPersonalitySize": 1000, "maxTotalCores": -1, "maxPersonality": 5, "totalPrivateNetworksUsed": 1, "maxImageMeta": 40, "maxTotalPrivateNetworks": 10, "maxSecurityGroupRules": -1, "maxTotalKeypairs": 100, "totalRAMUsed": 4096, "maxSecurityGroups": -1, "totalFloatingIpsUsed": 0, "totalInstancesUsed": 3, "totalSecurityGroupsUsed": 0, "maxServerMeta": 40, "maxTotalFloatingIps": -1, "maxTotalInstances": 200, "totalCoresUsed": 4, "maxTotalRAMSize": 256000 } } } server_list_return = { "servers": [ { "OS-EXT-STS:task_state": None, "addresses": { "public": [ { "version": 4, "addr": "104.130.28.32" }, { "version": 6, "addr": "2001:4802:7803:104:be76:4eff:fe21:51b7" } ], "private": [ { "version": 4, "addr": "10.176.205.68" } ] }, "flavor": { "id": "general1-1", "links": [ { "href": ( "https://iad.servers.api.rackspacecloud.com" "/766030/flavors/general1-1" ), "rel": "bookmark" } ] }, "id": "3290e50d-888f-4500-a934-16c10f3b8a10", "user_id": "284275", "OS-DCF:diskConfig": "MANUAL", "accessIPv4": "104.130.28.32", "accessIPv6": "2001:4802:7803:104:be76:4eff:fe21:51b7", "progress": 100, "OS-EXT-STS:power_state": 1, "config_drive": "", "status": "ACTIVE", "updated": "2016-01-12T15:16:37Z", "name": "test-server", "created": "2016-01-12T15:15:39Z", "tenant_id": "1234567", "metadata": { "build_config": "", "rax_service_level_automation": "Complete" } } ] } server_list_processed_return = [ { 'status': 'ACTIVE', 'updated': '2016-01-12T15:16:37Z', 'OS-EXT-STS:task_state': None, 'user_id': '284275', 'addresses': { 'public': [ { 'version': 4, 'addr': '104.130.28.32' }, { 'version': 6, 'addr': '2001:4802:7803:104:be76:4eff:fe21:51b7' } ], 'private': [ { 'version': 4, 'addr': '10.176.205.68' } ] }, 'created': '2016-01-12T15:15:39Z', 'tenant_id': '1234567', 'OS-DCF:diskConfig': 'MANUAL', 'id': '3290e50d-888f-4500-a934-16c10f3b8a10', 'accessIPv4': '104.130.28.32', 'accessIPv6': '2001:4802:7803:104:be76:4eff:fe21:51b7', 'config_drive': '', 'progress': 100, 'OS-EXT-STS:power_state': 1, 'metadata': { 'build_config': '', 'rax_service_level_automation': 'Complete' }, 'flavor': { 'id': 'general1-1', 'links': [ { 'href': ( 'https://iad.servers.api.rackspacecloud.com' '/766030/flavors/general1-1' ), 'rel': 'bookmark' } ] }, 'name': 'test-server' } ] network_list_return = { "networks": [ { "status": "ACTIVE", "subnets": [ "879ff280-6f17-4fd8-b684-19237d88fc45" ], "name": "test-network", "admin_state_up": True, "tenant_id": "1234567", "shared": False, "id": "e737483a-00d7-4517-afc3-bd1fbbbd4cd3" } ] } network_processed_list = [ { 'status': 'ACTIVE', 'subnets': [ '879ff280-6f17-4fd8-b684-19237d88fc45' ], 'name': 'test-network', 'admin_state_up': True, 'tenant_id': '1234567', 'shared': False, 'id': 'e737483a-00d7-4517-afc3-bd1fbbbd4cd3' } ] server_flavor_return = { "flavor": { "ram": 1024, "name": "1 GB General Purpose v1", "OS-FLV-WITH-EXT-SPECS:extra_specs": { "number_of_data_disks": "0", "class": "general1", "disk_io_index": "40", "policy_class": "general_flavor" }, "vcpus": 1, "swap": "", "rxtx_factor": 200.0, "OS-FLV-EXT-DATA:ephemeral": 0, "disk": 20, "id": "general1-1" } } server_full_return = { 'servers': { 'values': { 'Private Networks': 1, 'Ram - MB': 1024, 'Servers': 1 }, 'limits': { 'Private Networks': 10, 'Ram - MB': 256000, 'Servers': 200 } } }
26.018106
79
0.429849
0
0
0
0
0
0
0
0
9,301
0.497886
0251012874a85c99ece694f4c087c35e3ad1cb49
2,150
py
Python
script/download_pretrained.py
cttsai1985/google-quest-qa-labeling-pipeline
ef4fb92c470e45c0a07b0ee0e474224d88d3d410
[ "Apache-2.0" ]
2
2020-04-08T17:05:01.000Z
2020-06-30T18:02:03.000Z
script/download_pretrained.py
cttsai1985/google-quest-qa-labeling-pipeline
ef4fb92c470e45c0a07b0ee0e474224d88d3d410
[ "Apache-2.0" ]
null
null
null
script/download_pretrained.py
cttsai1985/google-quest-qa-labeling-pipeline
ef4fb92c470e45c0a07b0ee0e474224d88d3d410
[ "Apache-2.0" ]
null
null
null
""" fork THIS excellent downloader https://www.kaggle.com/maroberti/transformers-model-downloader-pytorch-tf2-0 """ from typing import Union from pathlib import Path import os import transformers from transformers import AutoConfig, AutoTokenizer, TFAutoModel def transformers_model_dowloader(pretrained_model_name: str, working_dir: Union[str, Path], is_tf: bool = True) -> bool: model_class = None if is_tf: model_class = TFAutoModel NEW_DIR = working_dir / pretrained_model_name try: os.mkdir(NEW_DIR) print(f"Successfully created directory {NEW_DIR}") except OSError: print(f"Creation of directory {NEW_DIR} failed") print(f"Download model and tokenizer {pretrained_model_name}") transformer_model = model_class.from_pretrained(pretrained_model_name) transformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name) try: transformer_model.save_pretrained(NEW_DIR) transformer_tokenizer.save_pretrained(NEW_DIR) print(f"Save model and tokenizer {pretrained_model_name} in directory {NEW_DIR}") except: print(f"Save model and tokenizer {pretrained_model_name} in directory {NEW_DIR}: Failed") return False return True def main(): pretrained_model_name_list = [ 'bert-base-uncased', 'bert-base-cased', 'bert-large-cased', 'distilbert-base-uncased', 'albert-xxlarge-v2', 'albert-xlarge-v2', 'albert-large-v2', 'roberta-base', 'roberta-large', 'roberta-large-mnli', 'distilroberta-base', 'distilbert-base-uncased', ] print(f'Transformers version {transformers.__version__}') # Current version: 2.3.0 WORKING_DIR = Path("../input/hugging_face_pretrained") try: os.mkdir(WORKING_DIR) except: pass for i, pretrained_model_name in enumerate(pretrained_model_name_list, start=1): print(i, '/', len(pretrained_model_name_list)) transformers_model_dowloader(pretrained_model_name, WORKING_DIR, is_tf=True) return if "__main__" == __name__: main()
28.289474
120
0.693953
0
0
0
0
0
0
0
0
758
0.352558
0251ffe3075d234371ce4b6df85d16a4d7b3e648
28,128
py
Python
scripts/icdcs2019/communication.py
HKBU-HPML/gtopkssgd
6f57343f3749939b0345d36fcb2c24470942aefd
[ "Apache-2.0" ]
33
2019-05-13T12:04:15.000Z
2022-03-14T06:23:56.000Z
scripts/icdcs2019/communication.py
HKBU-HPML/gtopkssgd
6f57343f3749939b0345d36fcb2c24470942aefd
[ "Apache-2.0" ]
2
2019-04-24T02:38:07.000Z
2021-05-31T11:22:24.000Z
scripts/icdcs2019/communication.py
HKBU-HPML/gtopkssgd
6f57343f3749939b0345d36fcb2c24470942aefd
[ "Apache-2.0" ]
10
2019-07-18T23:43:32.000Z
2021-06-16T13:22:04.000Z
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from utils import read_log, plot_hist, update_fontsize, autolabel, read_p100_log from plot_sth import Bar import os import plot_sth as Color import math OUTPUT_PATH = '/media/sf_Shared_Data/tmp/icdcs2019' INPUT_PATH = '/media/sf_Shared_Data/tmp/icdcs2019' num_of_nodes = [2, 4, 8, 16, 32] #num_of_nodes = [2, 4, 8] #num_of_nodes = [8, 80, 81, 82, 83, 85] #num_of_nodes = [16, 32, 64] B = 9.0 * 1024 * 1024 * 1024.0 / 8 # 10 Gbps Ethernet #B = 56 * 1024 * 1024 * 1024.0 / 8 # 56 Gbps IB markers = {2:'o', 4:'x', 8:'^'} formats={2:'-', 4:'-.', 8:':', 16:'--', 32:'-*', 64: '-+'} gmarkers = {'dense':'o', 'sparse':'x', 'topk':'x', 'gtopk':'^'} gcolors = {'dense':'b', 'sparse':'r', 'topk':'r', 'gtopk':'g'} def time_of_allreduce(n, M, B=B): """ n: number of nodes M: size of message B: bandwidth of link """ # Model 1, TernGrad, NIPS2017 #if True: # ncost = 100 * 1e-6 # nwd = B # return ncost * np.log2(n) + M / nwd * np.log2(n) # Model 2, Lower bound, E. Chan, et al., 2007 if True: #alpha = 7.2*1e-6 #Yang 2017, SC17, Scaling Deep Learning on GPU and Knights Landing clusters #alpha = 6.25*1e-6*n # From the data gpuhome benchmark #alpha = 12*1e-6*n # From the data gpuhome benchmark alpha = 45.25*1e-6#*np.log2(n) # From the data gpuhome benchmark beta = 1 / B *1.2 gamma = 1.0 / (16.0 * 1e9 * 4) * 160 M = 4*M #t = 2*(n)*alpha + 2*(n-1)*M*beta/n + (n-1)*M*gamma/n t = 2*(n-1)*alpha + 2*(n-1)*M*beta/n + (n-1)*M*gamma/n return t * 1e6 ts = 7.5/ (1000.0 * 1000)# startup time in second #seconds = (np.ceil(np.log2(n)) + n - 1) * ts + (2*n - 1 + n-1) * M / n * 1/B #seconds = (np.ceil(np.log2(n)) + n - 1) * ts + 2 * (n - 1) * 2*M/n * 1/B #tcompute = 1. / (2.2 * 1000 * 1000 * 1000) tcompute = 1. / (1 * 1000 * 1000 * 1000) #seconds = 2 * (n - 1) * ts + 2 * (n - 1) * M/n * 1/B + (n-1)*M/n * tcompute #C = 1024.0 * 1024 # segmented_size #if M > C * n: # # ring_segmented allreduce # seconds = (M / C + (n - 2)) * (ts + C / B + C * tcompute) #else: # ring allreduce, better than the above #seconds = (n - 1) * ts + 2 * (n - 1) * M/n * 1/B + (n-1)*M/n * tcompute seconds = 2*(n-1)*n*ts + 2 * (n - 1) * M/n * 1/B + (n-1)*M/n * tcompute #C = 512.0 #seconds = (M / C + n-2) * (ts + C/B) return seconds * 1000 * 1000 # micro seconds class Simulator(): def __init__(self, name, computes, sizes, num_of_nodes, render=True): self.name = name self.computes = computes self.sizes = sizes self.num_of_nodes = num_of_nodes self.comms = None self.title = name + ' (WFBP)' self.max_time = 0 self.ax = None self.render = render self.merged_layers = [] def wfbp(self, with_optimal=False): start_time = 0.0 comm_start_time = 0.0 comm = 0.0 if not self.comms: comms = [time_of_allreduce(self.num_of_nodes, s, B) for s in self.sizes] else: comms = self.comms max_time = max(np.sum(self.computes), np.sum(comms)+self.computes[0]) print('Layer-wise total comm. time:', np.sum(comms)/1000.) if not with_optimal: self.max_time = max_time if not self.ax and self.render: fig, ax = plt.subplots(1, figsize=(30, 3)) #ax.set_title(self.title, x=0.5, y=0.8) self.ax = ax comm_layer_id = '' for i in range(len(self.computes)): comp = self.computes[i] layer_id = len(self.computes) - i if not with_optimal: if self.render: bar = Bar(start_time, comp, self.max_time, self.ax, type='p', index=layer_id) bar.render() if comm_start_time + comm > start_time + comp: comm_start_time = comm_start_time + comm else: comm_start_time = start_time + comp if comm == 0.0 and comm_layer_id != '': comm_layer_id = str(comm_layer_id)+','+str((len(self.computes) - i)) else: comm_layer_id = str(layer_id) comm = comms[i] type = 'wc' if with_optimal: type = 'mc' if self.render: bar_m = Bar(comm_start_time, comm, self.max_time, self.ax, type=type, index=comm_layer_id, is_optimal=with_optimal) bar_m.render() start_time += comp total_time = (comm_start_time + comm)/1000.0 title='MG-WFBP' if with_optimal else 'WFBP' print(title+' Total time: ', total_time, ' ms') if self.render: plt.subplots_adjust(left=0.06, right=1.) return total_time def synceasgd(self): start_time = 0.0 comm_start_time = 0.0 comm = 0.0 total_size = np.sum(self.sizes) comm = time_of_allreduce(self.num_of_nodes, total_size, B) total_comp = np.sum(self.computes) comm_start_time = total_comp index = ','.join([str(len(self.computes)-i) for i in range(0, len(self.computes))]) if self.render: bar = Bar(np.sum(self.computes), comm, self.max_time, self.ax, type='sc', index=index) bar.render() total_time = (comm_start_time + comm)/1000.0 print('SyncEASGD Total time: ', total_time, ' ms') if self.render: pass return total_time def cal_comm_starts(self, comms, comps): """ comms and comps have been aligned """ start_comms = [] start_comms.append(0.0) sum_comp = 0.0 for i in range(1, len(comms)): comm = comms[i-1] comp = comps[i-1] #print(start_comms[i-1],comm, sum_comp,comp) start_comm = max(start_comms[i-1]+comm, sum_comp+comp) #print('start_comm: ', start_comm, ', comm: ', comm) start_comms.append(start_comm) sum_comp += comp return start_comms def merge(self, comms, sizes, i, p, merge_size, comps): comms[i] = 0# merge here comms[i+1] = p sizes[i+1] = merge_size start_comms = self.cal_comm_starts(comms, comps) #print('start_comms: ', start_comms) self.merged_layers.append(i) return start_comms def gmwfbp2(self): if not self.comms: comms = [time_of_allreduce(self.num_of_nodes, s, B) for s in self.sizes] else: comms = self.comms #comms = comms[0:-1] #print('comms: ', comms) comps = self.computes[1:] comps.append(0) # for last communication optimal_comms = list(comms) optimal_sizes = list(self.sizes) start_comms = self.cal_comm_starts(optimal_comms, comps) sum_comp = 0.0 #print('start_comms: ', start_comms) #return for i in range(0, len(comms)-1): comp = comps[i] comm = optimal_comms[i] if start_comms[i] + comm > comp+sum_comp: # cannot be hidden, so we need to merge merge_size = optimal_sizes[i+1] + optimal_sizes[i] r = comm + optimal_comms[i+1] p = time_of_allreduce(self.num_of_nodes, merge_size, B) if start_comms[i] >= comp+sum_comp: # don't care about computation if p < r: start_comms = self.merge(optimal_comms, optimal_sizes, i, p, merge_size, comps) #optimal_comms[i] = 0# merge here #optimal_comms[i+1] = p #optimal_sizes[i+1] += merge_size #start_comms = self.cal_comm_starts(optimal_comms, comps) else: if comp+sum_comp+p < start_comms[i]+comm+optimal_comms[i+1]: start_comms = self.merge(optimal_comms, optimal_sizes, i, p, merge_size, comps) else: pass # optimal, nothing to do sum_comp += comp optimal_comms.append(comms[-1]) self.wfbp() self.synceasgd() self.comms = optimal_comms self.title = self.name+ ' (GM-WFBP)' ret = self.wfbp(with_optimal=True) #print('merged-layers: ', self.merged_layers) return ret start = 1024*16 end = 1024*1024*4 def read_times_from_nccl_log(logfile): f = open(logfile) sizes = [] times = [] #start = 1024*16 #end = 1024*1024 for line in f.readlines(): items = ' '.join(line.split()).split(' ') if len(items) == 12 and items[0] != '#': size = int(items[0])#/4 if size == 8: continue #if size > 1024*1024: if (size >= start and size <= end): sizes.append(size) times.append(float(items[4])) #print(items) f.close() return sizes, times, [] def read_allreduce_log(filename): print('filename: ', filename) f = open(filename, 'r') sizes = [] comms = [] size_comms = {} for l in f.readlines(): if l[0] == '#' or l[0] == '[' or len(l)<10 : continue items = ' '.join(l.split()).split() comm = float(items[-1]) size = int(items[0])#/4 if size > end or size < start: continue comms.append(comm) sizes.append(size) if size not in size_comms: size_comms[size] = [] size_comms[size].append(comm) f.close() sizes = size_comms.keys() sizes.sort() print('sizes: ', sizes) comms = [np.mean(size_comms[s]) for s in sizes] errors = [np.std(size_comms[s]) for s in sizes] return sizes, comms, errors def predict(filename, n, color, marker, label, sizes=None, ax=None, nccl=False): if ax is None: fig, ax = plt.subplots(figsize=(5,4.5)) if sizes is None: if not nccl: sizes, comms, errors = read_allreduce_log(filename) label='%d nodes' % (n) else: sizes, comms, comps = read_times_from_nccl_log(filename) label='%d GPUs' % (n*8) size_in_kbytes = np.array(sizes) #/ 1024 #plt.plot(size_in_kbytes, comms, c=color, marker=marker, label=label+' measured', linewidth=2) #plt.plot(size_in_kbytes, comms, label=label+' measured', linewidth=2) plt.errorbar(size_in_kbytes, comms, errors, fmt=formats[n], label=label, linewidth=1) #plt.plot(sizes, comms, c=color, marker=marker, label=label, linewidth=2) #bandwidths = np.array(sizes)/np.array(comms) #plt.plot(sizes, bandwidths, c=color, marker=marker, label=label, linewidth=2) predicts = [] for M in sizes: p = time_of_allreduce(n, M, B) predicts.append(p) #rerror = (np.array(predicts)-np.array(comms))/np.array(comms) #print('erro: ', np.mean(np.abs(rerror))) #plt.scatter(sizes, predicts, c='red', marker=markers[n]) #jax.plot(size_in_kbytes, predicts, c=color, marker=marker, linestyle='--', label=label+' predict', markerfacecolor='white', linewidth=1) return sizes def plot_all_communication_overheads(): #labels = ['2-node', '4-node', '8-node', '16-node'] fig, ax = plt.subplots(figsize=(5,4.5)) labels = ['%d-node' % i for i in num_of_nodes] colors = ['r', 'g', 'b', 'black', 'y', 'c'] markers = ['^', 'o', 'd', '*', 'x', 'v'] sizes = None #sizes = np.arange(128.0, 1e5, step=8192) for i, n in enumerate(num_of_nodes): test_file = '%s/mgdlogs/mgd140/ring-allreduce%d.log' % (INPUT_PATH, n) predict(test_file, n, colors[i], markers[i], labels[i], sizes, ax) plt.xlabel('Size of parameters (KBytes)') plt.ylabel(r'Communication time ($\mu$s)') plt.ylim(bottom=0, top=plt.ylim()[1]*1.2) plt.legend(ncol=1, loc=2, prop={'size': 10}) update_fontsize(ax, fontsize=14) plt.subplots_adjust(left=0.18, bottom=0.13, top=0.91, right=0.92) #plt.savefig('%s/%s.pdf' % (OUTPUT_PATH, 'commtime')) plt.show() def gmwfbp_simulate(): name = 'GoogleNet' #name = 'ResNet' #name = 'VGG' #name = 'DenseNet' num_of_nodes = 32 test_file = '/media/sf_Shared_Data/gpuhome/repositories/dpBenchmark/tools/caffe/cnn/%s/tmp8comm.log' % name.lower() sizes, comms, computes, merged_comms = read_log(test_file) #computes = [c/4 for c in computes] #sizes = [1., 1., 1., 1.] #computes = [3., 3.5, 5., 6.] #sim = Simulator(name, computes[0:4], sizes[0:4], num_of_nodes) sim = Simulator(name, computes, sizes, num_of_nodes) #sim.wfbp() sim.gmwfbp2() plt.savefig('%s/breakdown%s.pdf' % (OUTPUT_PATH, name.lower())) #plt.show() def gmwfbp_speedup(): #configs = ['GoogleNet', 64] configs = ['ResNet', 32] #configs = ['DenseNet', 128] name = configs[0] b = configs[1] test_file = '/media/sf_Shared_Data/gpuhome/repositories/dpBenchmark/tools/caffe/cnn/%s/tmp8comm.log' % name.lower() sizes, comms, computes, merged_comms = read_log(test_file) device = 'k80' #device = 'p100' #pfn = '/media/sf_Shared_Data/gpuhome/repositories/dpBenchmark/tools/caffe/cnn/%s/tmp8commp100%s.log' % (name.lower(), name.lower()) #val_sizes, computes = read_p100_log(pfn) #print('computes: ', np.sum(computes)) #print('computes: ', computes) #assert len(computes) == len(sizes) nnodes = [4, 8, 16, 32, 64] #nnodes = [2, 4, 8] wfbps = [] gmwfbps = [] synceasgds = [] micomputes = np.array(computes) tf = np.sum(micomputes) * 0.5 / 1000 tb = np.sum(micomputes) / 1000 total_size = np.sum(sizes) single = b/(tf+tb) optimal = [] colors = ['k', 'r', 'g', 'b'] markers = ['s', '^', 'o', 'd'] for num_of_nodes in nnodes: sim = Simulator(name, computes, sizes, num_of_nodes, render=False) wfbp = sim.wfbp() wfbps.append(b*num_of_nodes/(wfbp+tf)/single) gmwfbp = sim.gmwfbp2() gmwfbps.append(b*num_of_nodes/(gmwfbp+tf)/single) tc = time_of_allreduce(num_of_nodes, total_size, B)/1000 print('#nodes:', num_of_nodes, ', tc: ', tc) synceasgd = tb + tf + tc synceasgds.append(b*num_of_nodes/synceasgd/single) optimal.append(num_of_nodes) print('tf: ', tf) print('tb: ', tb) print('total_size: ', total_size) print('wfbp: ', wfbps) print('gmwfbps: ', gmwfbps) print('synceasgds: ', synceasgds) print('compared to synceasgds: ', np.array(gmwfbps)/np.array(synceasgds)) print('compared to wfbps: ', np.array(gmwfbps)/np.array(wfbps)) fig, ax = plt.subplots(figsize=(5,4.5)) ax.plot(nnodes, optimal, color='k', marker='s', label='Linear') ax.plot(nnodes, wfbps, color='r', marker='d', label='WFBP') ax.plot(nnodes, synceasgds, color='b', marker='o', label='SyncEASGD') ax.plot(nnodes, gmwfbps, color='g', marker='^', label='MG-WFBP') plt.legend(loc=2) plt.xlabel('# of nodes') plt.ylabel('Speedup') #plt.title('%s-Simulation'%name) #plt.yscale('log', basey=2) #plt.xscale('log', basey=2) plt.ylim(bottom=1,top=nnodes[-1]+1) plt.xlim(left=1, right=nnodes[-1]+1) plt.xticks(nnodes) plt.yticks(nnodes) plt.grid(color='#5e5c5c', linestyle='-.', linewidth=1) update_fontsize(ax, fontsize=14) plt.subplots_adjust(left=0.13, bottom=0.13, top=0.96, right=0.97) #plt.savefig('%s/speedup%s.pdf' % (OUTPUT_PATH, name.lower()+device)) plt.show() def plot_realdata_comm(datas, configs): def calculate_real_comms(data, bs): times = [bs/((d/2)/2**(i-1)) for i, d in enumerate(data)] comp = times[0] comms = [t-times[0] for t in times[1:]] return comp, comms fig, ax = plt.subplots(figsize=(4.8,3.4)) count = len(datas[0][1:]) ind = np.arange(count) width = 0.25 s = -int(count/2) print('s: ', s) margin = 0.05 xticklabels = [str(2**(i+1)) for i in range(count)] s = (1 - (width*count+(count-1) *margin))/2+width ind = np.array([s+i+1 for i in range(count)]) centerind = None labels=['WF.', 'S.E.', 'M.W.'] for i, data in enumerate(datas): comp, comms= calculate_real_comms(data, configs[1]) comps = [comp for j in comms] newind = ind+s*width+(s+1)*margin p1 = ax.bar(newind, comps, width, color=Color.comp_color,hatch='x', label='Comp.') p2 = ax.bar(newind, comms, width, bottom=comps, color=Color.comm_color, label='Comm.') s += 1 autolabel(p2, ax, labels[i], 0) print('comp: ', comp) print('comms: ', comms) print('') rects = ax.patches ax.text(10, 10, 'ehhlo', color='b') handles, labels = ax.get_legend_handles_labels() #ax.legend([handles[0][0]], [labels[0][0]], ncol=2) print(labels) print(handles) ax.set_xlim(left=1+0.3) ax.set_ylim(top=ax.get_ylim()[1]*1.3) ax.set_xticks(ind+2*(width+margin)) ax.set_xticklabels(xticklabels) ax.set_xlabel('# of nodes') ax.set_ylabel('Time [s]') update_fontsize(ax, 14) ax.legend((p1[0], p2[0]), (labels[0],labels[1] ), ncol=2, handletextpad=0.2, columnspacing =1.) fig.subplots_adjust(left=0.16, right=0.96, bottom=0.17, top=0.94) #plt.savefig('%s/comm%sreal.pdf' % (OUTPUT_PATH, configs[0].lower())) plt.show() def realdata_speedup(): nworkers = [1, 4, 8, 16, 32] configs = ['VGG-16', 128] dense= [1317.333, 104.200, 92.560 , 39.480 ,12.600] topk= [1317.333, 110.576, 109.900, 97.865 ,63.002] gtopk= [1317.333, 131.060, 130.551, 126.434 ,123.200] #configs = ['ResNet-20', 32] #dense= [920.632, 821.700, 705.200, 520.400, 287.900] #topk= [920.632, 908.837, 752.985, 737.594, 696.029] #gtopk= [920.632, 916.260, 868.730, 808.500, 789.300] #configs = ['AlexNet', 32] #dense = [173.469, 14.010, 12.118, 4.936 , 1.234] #topk = [173.469, 14.238, 13.865, 13.352, 9.236] #gtopk = [173.469, 16.536, 16.446, 16.359, 15.777] #configs = ['ResNet-50', 32] #dense =[52.873, 39.002, 36.989, 23.176, 10.721] #topk = [52.873, 37.729, 35.703, 34.495, 30.583] #gtopk =[52.873, 39.795, 39.713, 39.060, 39.119] configs = ['LSTM-PTB', 32] dense =[392.0, 12.657, 8.7, 4.1, 2.1] topk = [392.0, 19.9, 18.6, 14.8, 5.4] gtopk =[392.0, 17.8, 17.6, 15.1, 10.8] name = configs[0] fig, ax = plt.subplots(figsize=(5,4)) optimal = [100 for i in range(len(dense)-1)] dense = [v/dense[0]*100 for i, v in enumerate(dense[1:])] topk = [v/topk[0]*100 for i, v in enumerate(topk[1:])] gtopk = [v/gtopk[0]*100 for i, v in enumerate(gtopk[1:])] todense = np.array(gtopk)/np.array(dense) totopk= np.array(gtopk)/np.array(topk) print(name, ', compared to dense: ', todense, 'mean: ', np.mean(todense)) print(name, ', compared to topk: ', totopk, 'mean: ', np.mean(totopk)) #ax.plot(nworkers[1:], optimal, color='k', marker='s', label='Optimal') ax.plot(nworkers[1:], dense, color=gcolors['dense'], marker=gmarkers['dense'], label='Dense S-SGD') ax.plot(nworkers[1:], topk, color=gcolors['topk'], marker=gmarkers['topk'], label=r'Top-$k$ S-SGD') ax.plot(nworkers[1:], gtopk, color=gcolors['gtopk'], marker=gmarkers['gtopk'], label=r'gTop-$k$ S-SGD') #plt.yscale('log', basey=2) #plt.xscale('log', basey=2) plt.legend(loc=3,prop={'size': 14}) plt.xlabel('# of workers (GPU)') plt.ylabel('Scaling efficiency (Percentage)') plt.xticks(nworkers[1:]) plt.title(name) #plt.yticks(nnodes) #plt.ylim(top=gtopk[-1]+1) #plt.xlim(left=1, right=nnodes[-1]+1) #plt.grid(color='#5e5c5c', linestyle='-.', linewidth=1) plt.grid(linestyle=':') update_fontsize(ax, fontsize=14) plt.subplots_adjust(left=0.18, bottom=0.16, top=0.92, right=0.97) plt.savefig('%s/scalingeffi%s.pdf' % (OUTPUT_PATH, name.lower())) plt.show() def parse_real_comm_cost(): configs = ['GoogleNet', 'gm'] #SyncEASGD name = configs[0] t = configs[1] nnodes = [2, 4, 8] ncomms = [] for n in nnodes: test_file = '/home/shshi/gpuhome/repositories/dpBenchmark/tools/caffe/cnn/%s/%s%dcomm.log' % (name.lower(), t, n) sizes, comms, computes, merged_comms = read_log(test_file) ncomms.append(np.sum(merged_comms)) print('network: ', name, ', type: ', t) print('ncomms: ', ncomms) def speedup_with_r_and_n(r, n): return n/(1.+r) def draw_ssgd_speedup(): Ns = [8, 16, 32, 64] r = np.arange(0, 4, step=0.1) for N in Ns: s = N / (1+r) plt.plot(r, s) #plt.yscale('log', basey=2) plt.show() def plot_p2platency(): def _fit_linear_function(x, y): X = np.array(x) Y = np.array(y) A = np.vstack([X, np.ones(len(X))]).T beta, alpha = np.linalg.lstsq(A, Y, rcond=None)[0] return alpha, beta fig, ax = plt.subplots(figsize=(5,3.8)) #fig, ax = plt.subplots(figsize=(5,4.2)) filename = '/media/sf_Shared_Data/tmp/icdcs2019/mgdlogs/mgd140/p2platency.log' sizes, comms, errors = read_allreduce_log(filename) comms = [c/1000. for c in comms] errors = [c/1000. for c in errors] alpha, beta = _fit_linear_function(sizes, comms) print('alpha: %f, beta: %f' % (alpha, beta)) ax.errorbar(sizes, comms, errors, label='Measured Point-to-point Communication', fmt='o', linewidth=1) ax.plot(sizes, alpha+np.array(sizes)*beta, label=r'Predicted ($\alpha=%.3f, \beta=%f$)'%(alpha, beta), linewidth=1) ax.grid(linestyle=':') plt.xlabel('Size of parameters [bytes]') plt.ylabel(r'Communication time [ms]') plt.ylim(bottom=0, top=plt.ylim()[1]*1.2) plt.legend(ncol=1, loc=2, prop={'size': 10}) update_fontsize(ax, fontsize=16) plt.subplots_adjust(left=0.16, bottom=0.17, top=0.98, right=0.98) plt.ticklabel_format(axis='x', style='sci', scilimits=(0,0)) plt.savefig('%s/%s.pdf' % (OUTPUT_PATH, 'p2pcommtime')) plt.show() def plot_allreduce_comparison(): alpha = 0.436 beta = 4*9e-6 def _denseallreduce_model(P, m): return 2*(P-1)*alpha + 2* (P-1)/P * m * beta #return 2*np.log2(P)*alpha + 2* (P-1)/P * m * beta def _sparseallreduce_model(P, m, rho=0.001): return np.log2(P) + 2 * (P - 1) * rho * m * beta def _gtopkallreduce_model(P, m, rho=0.001): return 2*np.log2(P) + 4 * np.log2(P) * rho * m * beta fig, ax = plt.subplots(figsize=(5,3.8)) #fig, ax = plt.subplots(figsize=(5,4.2)) #variable = 'm' variable = 'P' if variable == 'm': m = [2**(2*10+i) for i in range(0, 8)] # from 1M to 128M m = np.array(m) P = 32 rho = 0.001 #xlabel = 'Size of parameters [bytes]' xlabel = '# of parameters' xticks = m # measured #filename = '%s/mgdlogs/mgd140/ring-allreduce%d.log' % (INPUT_PATH, P) #sizes, comms, errors = read_allreduce_log(filename) #comms = np.array(comms)/1000. #print('sizes: ', sizes) #print('comms: ', comms) #ax.plot(sizes, comms, label=r'DenseAllReduce', linewidth=1, marker=gmarkers['dense'], color=gcolors['dense']) elif variable == 'P': m = 25*1024 * 1024 # 10MBytes P = np.array([4, 8, 16, 32, 64, 128]) rho = 0.001 xlabel = 'Number of workers' xticks = P elif variable == 'rho': m = 8*1024 * 1024 # 10MBytes P = np.array([4, 8, 16, 32]) rho = np.array([0.01/(2*i) for i in range(1, 10)]) xlabel = 'Density' xticks = rho dar = _denseallreduce_model(P, m) sar = _sparseallreduce_model(P, m, rho) gar = _gtopkallreduce_model(P, m, rho) #ax.plot(xticks, dar, label=r'DenseAllReduce', linewidth=1, marker=gmarkers['dense'], color=gcolors['dense']) ax.plot(xticks, sar, label=r'TopKAllReduce', linewidth=1, marker=gmarkers['sparse'], color=gcolors['sparse']) ax.plot(xticks, gar, label=r'gTopKAllReduce', linewidth=1, marker=gmarkers['gtopk'], color=gcolors['gtopk']) ax.grid(linestyle=':') plt.subplots_adjust(bottom=0.16, left=0.15, right=0.96, top=0.97) #ax.set_yscale("log", nonposy='clip') plt.xlabel(xlabel) plt.ylabel(r'Communication time [ms]') #plt.ylim(bottom=0, top=plt.ylim()[1]*1.2) plt.legend(ncol=1, loc=2, prop={'size': 10}) plt.subplots_adjust(left=0.18, bottom=0.20, top=0.94, right=0.96) #plt.ticklabel_format(axis='x', style='sci', scilimits=(0,0)) if variable == 'P': plt.xticks(xticks) elif variable == 'm': ax.set_xscale("log") update_fontsize(ax, fontsize=16) plt.savefig('%s/%s.pdf' % (OUTPUT_PATH, 'sparvsgtopk_dynamic%s'%variable)) plt.show() def plot_breakdown(): logpath='/media/sf_Shared_Data/tmp/icdcs2019/mgdlogs/mgd115-2/logs/allreduce-comp-baseline-gwarmup-dc1-modelmgd-speed/' networks=['vgg16', 'resnet20', 'alexnet', 'resnet50'] batchsizes=[128, 128, 64, 256] lrs=[0.1, 0.1, 0.01, 0.01] nss=[1,1,1, 16] for i, na in enumerate(networks): bs = batchsizes[i] lr = lrs[i] ns = nss[i] fn = os.path.join(logpath, '%s-n32-bs%d-lr%.4f-ns%d-sg2.50/MGD-0.log' % (na, bs, lr, ns)) print('fn: ', fn) names = ['Compu.', 'Compr.', 'Commu.'] vgg16=[0.139536, 0.091353, 0.811753] resnet20=[0.146005, 0.001618, 0.024686] alexnet=[0.257205, 0.383776, 3.36298] resnet50=[4.882041, 0.15405 , 1.424253] ratio_vgg16 = [v/np.sum(vgg16) for v in vgg16] ratio_resnet20= [v/np.sum(resnet20) for v in resnet20] ratio_alexnet = [v/np.sum(alexnet) for v in alexnet] ratio_resnet50= [v/np.sum(resnet50) for v in resnet50] datas = [ratio_vgg16, ratio_resnet20, ratio_alexnet, ratio_resnet50] for d in datas: print('ratios: ', d) communications = [ratio_vgg16[2], ratio_resnet20[2], ratio_alexnet[2], ratio_resnet50[2]] compressions = [ratio_vgg16[1], ratio_resnet20[1], ratio_alexnet[1], ratio_resnet50[1]] computes = [ratio_vgg16[0], ratio_resnet20[0], ratio_alexnet[0], ratio_resnet50[0]] computes = np.array(computes) compressions= np.array(compressions) communications= np.array(communications) fig, ax = plt.subplots(figsize=(4.8,3.4)) count = len(datas) ind = np.arange(count) width = 0.35 margin = 0.05 xticklabels = ['VGG-16', 'ResNet-20', 'AlexNet', 'ResNet-50'] #ind = np.array([s+i+1 for i in range(count)]) newind = np.arange(count) p1 = ax.bar(newind, computes, width, color=Color.comp_color,hatch='x', label=names[0]) p2 = ax.bar(newind, compressions, width, bottom=computes, color=Color.compression_color,hatch='-', label=names[1]) p3 = ax.bar(newind, communications, width, bottom=computes+compressions, color=Color.opt_comm_color,label=names[2]) ax.text(10, 10, 'ehhlo', color='b') handles, labels = ax.get_legend_handles_labels() #ax.legend([handles[0][0]], [labels[0][0]], ncol=2) print(labels) print(handles) #ax.set_xlim(left=1+0.3) #ax.set_ylim(top=ax.get_ylim()[1]*1.3) ax.set_xticks(ind) ax.set_xticklabels(xticklabels) #ax.set_xlabel('Model') ax.set_ylabel('Percentage') update_fontsize(ax, 10) ax.legend((p1[0], p2[0], p3[0]), tuple(names), ncol=9, bbox_to_anchor=(1, -0.1))#, handletextpad=0.2, columnspacing =1.) #ax.legend((p1[0], p2[0]), (labels[0],labels[1] ), ncol=2, handletextpad=0.2, columnspacing =1.) fig.subplots_adjust(left=0.16, right=0.96, bottom=0.19, top=0.94) plt.savefig('%s/breakdown.pdf' % (OUTPUT_PATH)) plt.show() if __name__ == '__main__': #plot_all_communication_overheads() #plot_p2platency() plot_allreduce_comparison() #realdata_speedup() #plot_breakdown()
38.478796
141
0.581342
6,004
0.213453
0
0
0
0
0
0
8,009
0.284734
02527978354f0193255cdacc1cd11fc9125db75e
2,188
py
Python
app/routers/post.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
5
2021-12-10T17:35:31.000Z
2021-12-30T18:36:23.000Z
app/routers/post.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
1
2021-11-21T13:59:03.000Z
2021-11-21T13:59:03.000Z
app/routers/post.py
thiere18/fastapi-boilerplate
6760e0e49caa915563d44897262d493b012207c0
[ "MIT" ]
1
2021-12-07T14:08:12.000Z
2021-12-07T14:08:12.000Z
from logging import raiseExceptions from typing import List from fastapi import APIRouter,Depends,HTTPException, Response,status from sqlalchemy.orm.session import Session from .. database import get_db from .. import models,schemas ,oauth2 router=APIRouter( prefix='/posts', tags=['Post'] ) @router.get('/',response_model=List[schemas.PostOut]) def get_lists( db:Session=Depends(get_db),current_user: int =Depends(oauth2.get_current_user)): ps=db.query(models.Post).all() return ps @router.post("/") def post_list(post:schemas.PostCreate,db:Session=Depends(get_db),current_user: int =Depends(oauth2.get_current_user)): new_post=models.Post(user_id=current_user.id,** post.dict()) db.add(new_post) db.commit() db.refresh(new_post) return new_post @router.get("/{id}") def get_post_by_id(id:int ,db:Session=Depends(get_db), current_user: int =Depends(oauth2.get_current_user)): post = db.query(models.Post).filter(models.Post.id == id).first() if post is None: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND , detail=f"post with id {id} not found") return post @router.put("/{id}",status_code=status.HTTP_200_OK) def update_list(id:int,updated_list:schemas.PostCreate ,db:Session=Depends(get_db), current_user: int =Depends(oauth2.get_current_user)): post_query=db.query(models.Post).filter(models.Post.id==id) post=post_query.first() if post is None: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND ,detail=f"post with id {id} not found") post_query.update(updated_list.dict(),synchronize_session=False) db.commit() return post_query.first() @router.delete("/{id}" ,status_code=status.HTTP_204_NO_CONTENT) def delete_list(id:int ,db:Session=Depends(get_db), current_user: int =Depends(oauth2.get_current_user)): post_query=db.query(models.Post).filter(models.Post.id == id) post=post_query.first() if post is None: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND ,detail=f"post with id {id} not found") post_query.delete(synchronize_session=False) db.commit() return Response(status_code=status.HTTP_204_NO_CONTENT)
39.781818
137
0.743601
0
0
0
0
1,871
0.855119
0
0
131
0.059872
0252f8eedc296b4ab429a47459f42ba29b283dbc
8,766
py
Python
src/util.py
thanhnhan311201/via-line-detection
1ba986110f7522df1b82c2cdeacd5c8bc27ac896
[ "Unlicense" ]
null
null
null
src/util.py
thanhnhan311201/via-line-detection
1ba986110f7522df1b82c2cdeacd5c8bc27ac896
[ "Unlicense" ]
null
null
null
src/util.py
thanhnhan311201/via-line-detection
1ba986110f7522df1b82c2cdeacd5c8bc27ac896
[ "Unlicense" ]
null
null
null
import torch.nn as nn import cv2 import torch from copy import deepcopy import numpy as np from torch.autograd import Variable from torch.autograd import Function as F from numpy.polynomial import Polynomial as P try: from parameters import Parameters except: from src.parameters import Parameters import math p = Parameters() ############################################################### ## ## visualize ## ############################################################### def visualize_points(image, x, y): image = image image = np.rollaxis(image, axis=2, start=0) image = np.rollaxis(image, axis=2, start=0)#*255.0 image = image.astype(np.uint8).copy() for k in range(len(y)): for i, j in zip(x[k], y[k]): if i > 0: image = cv2.circle(image, (int(i), int(j)), 2, p.color[1], -1) cv2.imshow("test2", image) cv2.waitKey(0) def visualize_points_origin_size(x, y, test_image, ratio_w, ratio_h): color = 0 image = deepcopy(test_image) image = np.rollaxis(image, axis=2, start=0) image = np.rollaxis(image, axis=2, start=0)#*255.0 image = image.astype(np.uint8).copy() image = cv2.resize(image, (int(p.x_size/ratio_w), int(p.y_size/ratio_h))) for i, j in zip(x, y): color += 1 for index in range(len(i)): cv2.circle(image, (int(i[index]), int(j[index])), 10, p.color[color], -1) cv2.imshow("test2", image) cv2.waitKey(0) return test_image def visualize_gt(gt_point, gt_instance, ground_angle, image): image = np.rollaxis(image, axis=2, start=0) image = np.rollaxis(image, axis=2, start=0)#*255.0 image = image.astype(np.uint8).copy() for y in range(p.grid_y): for x in range(p.grid_x): if gt_point[0][y][x] > 0: xx = int(gt_point[1][y][x]*p.resize_ratio+p.resize_ratio*x) yy = int(gt_point[2][y][x]*p.resize_ratio+p.resize_ratio*y) image = cv2.circle(image, (xx, yy), 10, p.color[1], -1) cv2.imshow("image", image) cv2.waitKey(0) def visualize_regression(image, gt): image = np.rollaxis(image, axis=2, start=0) image = np.rollaxis(image, axis=2, start=0)*255.0 image = image.astype(np.uint8).copy() for i in gt: for j in range(p.regression_size):#gt y_value = p.y_size - (p.regression_size-j)*(220/p.regression_size) if i[j] >0: x_value = int(i[j]*p.x_size) image = cv2.circle(image, (x_value, y_value), 5, p.color[1], -1) cv2.imshow("image", image) cv2.waitKey(0) def draw_points(x, y, image): color_index = 0 for i, j in zip(x, y): color_index += 1 if color_index > 12: color_index = 12 for index in range(len(i)): # print( (int(i[index]), int(j[index]))) image = cv2.circle(image, (int(i[index]), int(j[index])), 5, p.color[color_index], -1) return image def draw_poly(poly, image, color): if poly == []: return image y = np.linspace(256*12/20, 256, 10) p = np.poly1d(poly) x = [(p - _y).roots[0] for _y in y ] draw_points = (np.asarray([x, y]).T).astype(np.int32) cv2.polylines(image, [draw_points], False, color,3) return image ############################################################### ## ## calculate ## ############################################################### def adjust_fits(fits): min_y = 20 len_fit = fits.shape[0] values_x = np.array([np.poly1d(fit)(min_y) for fit in fits ]) order = np.argsort(values_x) fits_sorted = fits[order] if len(fits_sorted) > 3: fits_sorted = fits_sorted[:3] return fits_sorted def get_steer_angle(fits): min_y = 20 len_fit = fits.shape[0] if len_fit > 3: pass if len_fit >= 2: y = 20 x = (np.poly1d(fits[-1])(y) + np.poly1d(fits[-2])(y)) // 2 return_value = errorAngle((x,y)) #update point in lane temp_y = 200 temp_x = (np.poly1d(fits[-1])(temp_y) + np.poly1d(fits[-2])(temp_y)) // 2 p.point_in_lane = (temp_x,temp_y) return return_value if len_fit == 1:# missing 1 line y = 20 avaiable_fit = np.poly1d(fits[0]) x_avaiable = avaiable_fit(y) # check where do line? point_x = p.point_in_lane[0] point_y = p.point_in_lane[1] val = point_x - avaiable_fit(point_y) # print(val) if val > 0: # is right x = x_avaiable + 150 else: # is left x = x_avaiable - 150 return_value = errorAngle((x,y)) return return_value return 0 def convert_to_original_size(x, y, ratio_w, ratio_h): # convert results to original size out_x = [] out_y = [] for i, j in zip(x,y): out_x.append((np.array(i)/ratio_w).tolist()) out_y.append((np.array(j)/ratio_h).tolist()) return out_x, out_y def get_closest_upper_point(x, y, point, n): x = np.array(x) y = np.array(y) x = x[y<point[1]] y = y[y<point[1]] dis = (x - point[0])**2 + (y - point[1])**2 ind = np.argsort(dis, axis=0) x = np.take_along_axis(x, ind, axis=0).tolist() y = np.take_along_axis(y, ind, axis=0).tolist() points = [] for i, j in zip(x[:n], y[:n]): points.append((i,j)) return points def sort_along_y(x, y): out_x = [] out_y = [] for i, j in zip(x, y): i = np.array(i) j = np.array(j) ind = np.argsort(j, axis=0) out_x.append(np.take_along_axis(i, ind[::-1], axis=0).tolist()) out_y.append(np.take_along_axis(j, ind[::-1], axis=0).tolist()) return out_x, out_y def sort_along_x(x, y): temp = np.min(y) try: min_y = temp[0] except: min_y = temp # print(min_y) fits = np.array([np.polyfit(_y,_x, 2) for _x, _y in zip(x,y)]) # print(fits) values_x = np.array([np.poly1d(fit)(min_y) for fit in fits ]) # print(values_x) order = np.argsort(values_x) print(order) return np.array(x)[order], np.array(y)[order] def sort_batch_along_y(target_lanes, target_h): out_x = [] out_y = [] for x_batch, y_batch in zip(target_lanes, target_h): temp_x = [] temp_y = [] for x, y, in zip(x_batch, y_batch): ind = np.argsort(y, axis=0) sorted_x = np.take_along_axis(x, ind[::-1], axis=0) sorted_y = np.take_along_axis(y, ind[::-1], axis=0) temp_x.append(sorted_x) temp_y.append(sorted_y) out_x.append(temp_x) out_y.append(temp_y) return out_x, out_y def errorAngle(point): carPosx , carPosy = 512//2, 254 dstx, dsty = point if dstx == carPosx: return 0 if dsty == carPosy: if dstx < carPosx: return -25 else: return 25 pi = math.acos(-1.0) dx = dstx - carPosx dy = carPosy - dsty if dx < 0: angle = (math.atan(-dx / dy) * -180 / pi)/2.5 if angle >= 16 or angle <= -16: # maybe must turn 90 if angle > 0: return 25 return -25 return angle ################################################# angle = (math.atan(dx / dy) * 180 / pi)/2.5 if angle >= 16 or angle <= -16: # maybe must turn 90 if angle > 0: return 25 return -25 return angle def calcul_speed(steer_angle): max_speed = 70 max_angle = 25 if steer_angle == -10 or steer_angle == 10: return 0 if steer_angle >= 1 or steer_angle <= -1: if steer_angle > 0: return max_speed - (max_speed/max_angle)*steer_angle else: return max_speed + (max_speed/max_angle)*steer_angle elif steer_angle >= 4 or steer_angle <= -4: if steer_angle > 0: return 40 - (40/max_angle)*steer_angle else: return 40 + (30/max_angle)*steer_angle # elif steer_angle >= 10 or steer_angle <= -10: # if steer_angle > 0: # return max_speed - (max_speed/max_angle)*steer_angle # else: # return max_speed + (max_speed/max_angle)*steer_angle # if steer_angle >=0: # return max_speed - (max_speed/max_angle)*steer_angle return max_speed def clear_StatusObjs(StatusObjs): list_result = [] for obj in StatusObjs: if 'i5' in obj: obj.remove('i5') if 'pne' in obj: obj.remove('pne') if 'car' in obj: obj.remove('car') if 'w65' in obj: obj.remove('w65') list_result.append(obj) return list_result
27.828571
98
0.544832
0
0
0
0
0
0
0
0
960
0.109514
0253374b375e14e18b7b22c7b40e9e638b1ad7cf
3,322
py
Python
src/tests/unit_tests/io_tools_test.py
samueljackson92/major-project
5d82b875944fcf1f001f9beb5e5419ba60be3bf1
[ "MIT" ]
8
2015-01-26T16:23:29.000Z
2020-03-17T00:57:42.000Z
src/tests/unit_tests/io_tools_test.py
samueljackson92/major-project
5d82b875944fcf1f001f9beb5e5419ba60be3bf1
[ "MIT" ]
64
2015-02-05T06:34:56.000Z
2015-05-03T15:46:49.000Z
src/tests/unit_tests/io_tools_test.py
samueljackson92/major-project
5d82b875944fcf1f001f9beb5e5419ba60be3bf1
[ "MIT" ]
null
null
null
import nose.tools import unittest import os import json import pandas as pd import numpy as np import mia from mia.io_tools import * from ..test_utils import get_file_path class IOTests(unittest.TestCase): @classmethod def setupClass(cls): cls._output_files = [] @classmethod def teardownClass(cls): for f in cls._output_files: if os.path.isfile(f): os.remove(f) def test_iterate_directory(self): img_directory = get_file_path("texture_patches") expected_files = ['texture1.png', 'texture2.png', 'texture3.png', 'texture4.png', 'texture5.png'] expected_files = [os.path.join(img_directory, p) for p in expected_files] dirs = list(iterate_directory(img_directory)) nose.tools.assert_equal(len(dirs), len(expected_files)) for img_path, expected in zip(dirs, expected_files): nose.tools.assert_equal(img_path, expected) def test_iterate_directories(self): img_directory = get_file_path("texture_patches") expected_files = ['texture1.png', 'texture2.png', 'texture3.png', 'texture4.png', 'texture5.png'] expected_files = [os.path.join(img_directory, p) for p in expected_files] dirs = list(iterate_directories(img_directory, img_directory)) nose.tools.assert_equal(len(dirs), len(expected_files)) for (img_path, msk_path), expected in zip(dirs, expected_files): nose.tools.assert_equal(img_path, expected) nose.tools.assert_equal(msk_path, expected) def test_check_is_file(self): img_path = get_file_path("texture_patches/texture1.png") nose.tools.assert_true(check_is_file(img_path, ".png")) def test_check_is_file_multiple_images(self): img_path = get_file_path("synthetic_patch.dcm") nose.tools.assert_true(check_is_file(img_path, ".png", ".dcm")) def test_check_is_file_wrong_extension(self): img_path = get_file_path("blob_detection.csv") nose.tools.assert_false(check_is_file(img_path, ".png", ".dcm")) def test_check_is_image_raises_on_not_a_file(self): img_path = get_file_path("texture_patches") nose.tools.assert_false(check_is_file(img_path, ".png", ".dcm")) def test_check_is_directory(self): directory = get_file_path("texture_patches") try: check_is_directory(directory) except: self.fail("check_is_directory raised when it shouldn't have.") def test_check_is_directory_raises(self): img_path = get_file_path("texture_patches/not_a_directory") nose.tools.assert_raises(ValueError, check_is_directory, img_path) def test_dump_mapping_to_json(self): output_file = 'test_data.json' mapping = pd.DataFrame(np.ones((10, 2)), columns=['x', 'y']) dump_mapping_to_json(mapping, ['x', 'y'], np.zeros(10), output_file) nose.tools.assert_true(os.path.isfile(output_file)) with open(output_file, 'rb') as f: data = json.load(f) nose.tools.assert_equal(len(data), 1) nose.tools.assert_equal(data[0]['name'], 'Class: 0') nose.tools.assert_equal(len(data[0]['data']), 10) self._output_files.append(output_file)
35.340426
81
0.669175
3,146
0.94702
0
0
207
0.062312
0
0
459
0.13817
0254feaa1c998dfb2faf7f35247b0cc22066d85a
326
py
Python
main/migrations_old/0007_remove_profile_rated_recipes.py
ggetzie/nnr
a8b1b1d771027edee2c19062f39fa982cfd024b0
[ "MIT" ]
null
null
null
main/migrations_old/0007_remove_profile_rated_recipes.py
ggetzie/nnr
a8b1b1d771027edee2c19062f39fa982cfd024b0
[ "MIT" ]
5
2020-07-28T12:41:50.000Z
2022-01-21T23:27:15.000Z
main/migrations_old/0007_remove_profile_rated_recipes.py
ggetzie/nnr
a8b1b1d771027edee2c19062f39fa982cfd024b0
[ "MIT" ]
null
null
null
# Generated by Django 2.2.4 on 2019-09-29 13:12 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0006_recipe_tags'), ] operations = [ migrations.RemoveField( model_name='profile', name='rated_recipes', ), ]
18.111111
47
0.588957
241
0.739264
0
0
0
0
0
0
95
0.291411
0255255ddce0aede915e8004ff48e8619c540430
126
py
Python
src/timber_clay_hybrid/assembly/__init__.py
augmentedfabricationlab/Timber_Clay_Hybrid
243efddac77970c989b551697a0e188932064849
[ "MIT" ]
1
2020-12-16T01:25:07.000Z
2020-12-16T01:25:07.000Z
src/timber_clay_hybrid/assembly/__init__.py
augmentedfabricationlab/timber_clay_hybrid
243efddac77970c989b551697a0e188932064849
[ "MIT" ]
null
null
null
src/timber_clay_hybrid/assembly/__init__.py
augmentedfabricationlab/timber_clay_hybrid
243efddac77970c989b551697a0e188932064849
[ "MIT" ]
null
null
null
from .assembly import HRCAssembly from .element import HRCElement from .artist import AssemblyArtist from .utilities import *
25.2
34
0.833333
0
0
0
0
0
0
0
0
0
0
025829c61e2b13a8ebf606a7afdd54a016dd8119
3,674
py
Python
backend/api/tests/schema/test_newsletter.py
pauloxnet/pycon
82b6eff76dcc785865ea3ffd97a45e931c0add26
[ "MIT" ]
2
2017-07-18T21:51:25.000Z
2017-12-23T11:08:39.000Z
backend/api/tests/schema/test_newsletter.py
pauloxnet/pycon
82b6eff76dcc785865ea3ffd97a45e931c0add26
[ "MIT" ]
23
2017-07-18T20:22:38.000Z
2018-01-05T05:45:15.000Z
backend/api/tests/schema/test_newsletter.py
pauloxnet/pycon
82b6eff76dcc785865ea3ffd97a45e931c0add26
[ "MIT" ]
2
2017-07-18T21:27:33.000Z
2017-07-18T22:07:03.000Z
from unittest.mock import patch import pytest from pytest import mark from integrations.mailchimp import SubscriptionResult from newsletters.models import Subscription def test_subscribe_to_newsletter(graphql_client): email = "me@example.it" variables = {"email": email} query = """ mutation($email: String!) { subscribeToNewsletter(input: { email: $email }) { __typename ... on NewsletterSubscribeResult { status } } } """ with patch("api.newsletters.forms.subscribe") as mock_subscription: mock_subscription.return_value = SubscriptionResult.SUBSCRIBED resp = graphql_client.query(query, variables=variables) assert ( resp["data"]["subscribeToNewsletter"]["__typename"] == "NewsletterSubscribeResult" ) assert resp["data"]["subscribeToNewsletter"]["status"] == "SUBSCRIBED" @pytest.mark.skip @mark.django_db def test_unsubscribe_not_registered_mail_to_newsletter(graphql_client): """If the mail is already unsubscribed (it's not in the subcription table) return true anyway""" email = "me@example.it" variables = {"email": email} query = """ mutation($email: String!) { unsubscribeToNewsletter(input: { email: $email }) { __typename ... on UnsubscribeToNewsletterErrors { email } ... on NewsletterSubscribeResult { status } } } """ resp = graphql_client.query(query, variables=variables) assert resp["data"]["unsubscribeToNewsletter"]["status"] is True def _update_user_newsletter(graphql_client, user, open_to_newsletter): query = """ mutation( $open_to_newsletter: Boolean!, $open_to_recruiting: Boolean!, $date_birth: String ){ update(input: { openToNewsletter: $open_to_newsletter, openToRecruiting: $open_to_recruiting, dateBirth: $date_birth }){ __typename ... on User { id openToNewsletter } ... on UpdateErrors { validationOpenToNewsletter: openToNewsletter nonFieldErrors } } } """ variables = { "open_to_newsletter": open_to_newsletter, "open_to_recruiting": user.open_to_recruiting, "date_birth": f"{user.date_birth:%Y-%m-%d}", } return graphql_client.query(query=query, variables=variables), variables @pytest.mark.skip @mark.django_db def test_subscribe_when_update_user(graphql_client, user_factory): user = user_factory(open_to_newsletter=False) graphql_client.force_login(user) resp, variables = _update_user_newsletter(graphql_client, user, True) assert resp["data"]["update"]["__typename"] == "MeUser" assert resp["data"]["update"]["openToNewsletter"] is True assert Subscription.objects.get(email=user.email) @pytest.mark.skip @mark.django_db def test_unsubscribe_when_update_user(graphql_client, user_factory): user = user_factory(open_to_newsletter=True) graphql_client.force_login(user) resp, variables = _update_user_newsletter(graphql_client, user, False) assert resp["data"]["update"]["__typename"] == "MeUser" assert resp["data"]["update"]["openToNewsletter"] is False with pytest.raises(Subscription.DoesNotExist): Subscription.objects.get(email=user.email)
27.833333
78
0.617583
0
0
0
0
1,755
0.477681
0
0
1,797
0.489113
02591832a76c44befd1384a4984c9e645f451a38
3,077
py
Python
conference_lib/confemailrecipients.py
allankellynet/mimas
10025d43bba9e84f502a266760786842e7158a05
[ "MIT" ]
null
null
null
conference_lib/confemailrecipients.py
allankellynet/mimas
10025d43bba9e84f502a266760786842e7158a05
[ "MIT" ]
1
2020-02-05T13:00:29.000Z
2020-02-05T13:00:29.000Z
conference_lib/confemailrecipients.py
allankellynet/mimas
10025d43bba9e84f502a266760786842e7158a05
[ "MIT" ]
null
null
null
#----------------------------------------------------- # Mimas: conference submission and review system # (c) Allan Kelly 2016-2020 http://www.allankelly.net # Licensed under MIT License, see LICENSE file # ----------------------------------------------------- # System imports # Google imports from google.appengine.ext import ndb # Local imports import confoptions from scaffold import sorrypage, userrightsnames import basehandler class ConferenceEmailsPage(basehandler.BaseHandler): def get(self): if not(self.request.params.has_key("conf")): sorrypage.redirect_sorry(self, "ConfKeyMissing") return conf_key = ndb.Key(urlsafe=self.request.get("conf")) conference = conf_key.get() if not(conference.user_rights().has_permission(self.get_crrt_user().email(), userrightsnames.CONF_CREATOR)): sorrypage.redirect_sorry(self, "NoAccess") return self.write_page('conference_lib/confemailrecipients.html', { "crrt_conf": conference, "tracks": conference.track_options(), "conf_key": conference.key, "email_ack_cc": conference.ack_cc_addresses(), "email_ack_bcc": conference.ack_bcc_addresses(), "email_accept_cc": conference.accept_cc_addresses(), }) # TODO Extract and unit test def add_for_selected(self, conf_key, email): if self.request.get("AckCC"): confoptions.make_conference_option(confoptions.AcknowledgementEmailCCAddresses, conf_key, email) if self.request.get("AckBCC"): confoptions.make_conference_option(confoptions.AcknowledgementEmailBCCAddresses, conf_key, email) if self.request.get("AcceptCC"): confoptions.make_conference_option(confoptions.AcceptEmailCCAddress, conf_key, email) # TODO Extract and unit test def add_email(self): conf_key = ndb.Key(urlsafe=self.request.get("crrt_conf_key")) email = self.request.get("NewMail") if len(email)>0: self.add_for_selected(conf_key, email) self.redirect('/confemailcopy?conf=' + self.request.get("crrt_conf_key")) def delete_email(self, check_field, Option_Class): conf_key = ndb.Key(urlsafe=self.request.get("crrt_conf_key")) for opt in self.request.get_all(check_field): confoptions.delete_option(Option_Class, conf_key, opt) self.redirect('/confemailcopy?conf=' + conf_key.urlsafe()) def post(self): if self.request.get("NewMail"): self.add_email() elif self.request.get("DeleteAckCCEmails"): self.delete_email("selectAckCCEmail", confoptions.AcknowledgementEmailCCAddresses) elif self.request.get("DeleteAckBCCEmails"): self.delete_email("selectAckBCCEmail", confoptions.AcknowledgementEmailBCCAddresses) elif self.request.get("DeleteAcceptCCEmails"): self.delete_email("selectAcceptCCEmail", confoptions.AcceptEmailCCAddress)
40.486842
109
0.653559
2,637
0.857004
0
0
0
0
0
0
764
0.248294
0259184a3f3d6c2f7159bf04b270b9b14a650178
891
py
Python
jexam/argparser.py
chrispyles/jexam
ebe83b170f51c5820e0c93955824c3798922f097
[ "BSD-3-Clause" ]
1
2020-07-25T02:36:38.000Z
2020-07-25T02:36:38.000Z
jexam/argparser.py
chrispyles/jexam
ebe83b170f51c5820e0c93955824c3798922f097
[ "BSD-3-Clause" ]
null
null
null
jexam/argparser.py
chrispyles/jexam
ebe83b170f51c5820e0c93955824c3798922f097
[ "BSD-3-Clause" ]
null
null
null
################################# ##### jExam Argument Parser ##### ################################# import argparse def get_parser(): """ Creates and returns the argument parser for jExam Returns: ``argparse.ArgumentParser``: the argument parser for jExam """ parser = argparse.ArgumentParser() parser.add_argument("master", type=str, help="Path to exam master notebook") parser.add_argument("result", nargs="?", default="dist", help="Path at which to write output notebooks") parser.add_argument("-f", "--format", type=str, default="otter", help="Name of autograder format; 'otter' or 'ok'") parser.add_argument("-s", "--seed", type=int, default=None, help="Random seed for NumPy to run before execution") parser.add_argument("-q", "--quiet", default=False, action="store_true", help="Run without printing status") return parser
42.428571
119
0.628507
0
0
0
0
0
0
0
0
523
0.586981
02591a0ba3663c70495908f0fded2d81e95b4ceb
474
py
Python
Entities/element.py
JoseleSolis/Proceso-de-aprendizaje
0c6ee3a64ad48501dd42d2abcb5bf8b4cbb4f370
[ "MIT" ]
null
null
null
Entities/element.py
JoseleSolis/Proceso-de-aprendizaje
0c6ee3a64ad48501dd42d2abcb5bf8b4cbb4f370
[ "MIT" ]
null
null
null
Entities/element.py
JoseleSolis/Proceso-de-aprendizaje
0c6ee3a64ad48501dd42d2abcb5bf8b4cbb4f370
[ "MIT" ]
2
2022-02-07T05:42:57.000Z
2022-02-13T11:05:21.000Z
class Element: dependencies = [] def __init__(self, name): self.name = name def add_dependencies(self, *elements): for element in elements: if not self.dependencies.__contains__(element): self.dependencies.append(element) def remove_dependencies(self, *elements): for element in elements: if self.dependencies.__contains__(element): self.dependencies.remove(element)
19.75
59
0.622363
465
0.981013
0
0
0
0
0
0
0
0
0259bea6f07ec94194968114adbb7688e3c79035
236
py
Python
basic/Pyshop/products/models.py
IsAlbertLiu/Python-basics
49c0c93fb7d1abb70548854b69346eb5837ba00d
[ "MIT" ]
null
null
null
basic/Pyshop/products/models.py
IsAlbertLiu/Python-basics
49c0c93fb7d1abb70548854b69346eb5837ba00d
[ "MIT" ]
null
null
null
basic/Pyshop/products/models.py
IsAlbertLiu/Python-basics
49c0c93fb7d1abb70548854b69346eb5837ba00d
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. class Product(models.Model): name = models.CharField(max_length=255) price = models.FloatField() stack = models.IntegerField() image_url = models.CharField(2083)
23.6
43
0.724576
177
0.75
0
0
0
0
0
0
26
0.110169
0259fbe373b86b3d2859b384b23af03bfb7c829a
758
py
Python
examples/delta_setitem/001_check_setitem.py
pkicsiny/xpart
cddf3eb65ffc198c22dd37204139ce3177a9bd96
[ "MIT" ]
null
null
null
examples/delta_setitem/001_check_setitem.py
pkicsiny/xpart
cddf3eb65ffc198c22dd37204139ce3177a9bd96
[ "MIT" ]
null
null
null
examples/delta_setitem/001_check_setitem.py
pkicsiny/xpart
cddf3eb65ffc198c22dd37204139ce3177a9bd96
[ "MIT" ]
null
null
null
import numpy as np import xpart as xp import xobjects as xo #context = xo.ContextPyopencl() context = xo.ContextCpu() ctx2np = context.nparray_from_context_array particles = xp.Particles(_context=context, p0c=26e9, delta=[1,2,3]) assert ctx2np(particles.delta[2]) == 3 assert np.isclose(ctx2np(particles.rvv[2]), 1.00061, rtol=0, atol=1e-5) assert np.isclose(ctx2np(particles.rpp[2]), 0.25, rtol=0, atol=1e-10) assert np.isclose(ctx2np(particles.ptau[2]), 3.001464*particles._xobject.beta0[0], rtol=0, atol=1e-6) particles.delta[1] = particles.delta[2] assert particles.delta[2] == particles.delta[1] assert particles.ptau[2] == particles.ptau[1] assert particles.rpp[2] == particles.rpp[1] assert particles.rvv[2] == particles.rvv[1]
32.956522
82
0.726913
0
0
0
0
0
0
0
0
31
0.040897
025a143f5cc2381ed79e2e47f4c56370b64d62d8
9,628
py
Python
tests/test_train_eval_mode.py
glmcdona/stable-baselines3-contrib
91f9b1ed34fbaa9243a044ea67aa4c677663bfc2
[ "MIT" ]
93
2020-10-22T14:44:58.000Z
2022-03-25T20:06:47.000Z
tests/test_train_eval_mode.py
glmcdona/stable-baselines3-contrib
91f9b1ed34fbaa9243a044ea67aa4c677663bfc2
[ "MIT" ]
36
2020-10-26T11:13:23.000Z
2022-03-31T15:11:05.000Z
tests/test_train_eval_mode.py
glmcdona/stable-baselines3-contrib
91f9b1ed34fbaa9243a044ea67aa4c677663bfc2
[ "MIT" ]
50
2020-12-06T14:21:10.000Z
2022-03-31T14:25:36.000Z
from typing import Union import gym import numpy as np import pytest import torch as th import torch.nn as nn from stable_baselines3.common.preprocessing import get_flattened_obs_dim from stable_baselines3.common.torch_layers import BaseFeaturesExtractor from sb3_contrib import QRDQN, TQC, MaskablePPO from sb3_contrib.common.envs import InvalidActionEnvDiscrete from sb3_contrib.common.maskable.utils import get_action_masks class FlattenBatchNormDropoutExtractor(BaseFeaturesExtractor): """ Feature extract that flatten the input and applies batch normalization and dropout. Used as a placeholder when feature extraction is not needed. :param observation_space: """ def __init__(self, observation_space: gym.Space): super(FlattenBatchNormDropoutExtractor, self).__init__( observation_space, get_flattened_obs_dim(observation_space), ) self.flatten = nn.Flatten() self.batch_norm = nn.BatchNorm1d(self._features_dim) self.dropout = nn.Dropout(0.5) def forward(self, observations: th.Tensor) -> th.Tensor: result = self.flatten(observations) result = self.batch_norm(result) result = self.dropout(result) return result def clone_batch_norm_stats(batch_norm: nn.BatchNorm1d) -> (th.Tensor, th.Tensor): """ Clone the bias and running mean from the given batch norm layer. :param batch_norm: :return: the bias and running mean """ return batch_norm.bias.clone(), batch_norm.running_mean.clone() def clone_qrdqn_batch_norm_stats(model: QRDQN) -> (th.Tensor, th.Tensor, th.Tensor, th.Tensor): """ Clone the bias and running mean from the quantile network and quantile-target network. :param model: :return: the bias and running mean from the quantile network and quantile-target network """ quantile_net_batch_norm = model.policy.quantile_net.features_extractor.batch_norm quantile_net_bias, quantile_net_running_mean = clone_batch_norm_stats(quantile_net_batch_norm) quantile_net_target_batch_norm = model.policy.quantile_net_target.features_extractor.batch_norm quantile_net_target_bias, quantile_net_target_running_mean = clone_batch_norm_stats(quantile_net_target_batch_norm) return quantile_net_bias, quantile_net_running_mean, quantile_net_target_bias, quantile_net_target_running_mean def clone_tqc_batch_norm_stats( model: TQC, ) -> (th.Tensor, th.Tensor, th.Tensor, th.Tensor, th.Tensor, th.Tensor): """ Clone the bias and running mean from the actor and critic networks and critic-target networks. :param model: :return: the bias and running mean from the actor and critic networks and critic-target networks """ actor_batch_norm = model.actor.features_extractor.batch_norm actor_bias, actor_running_mean = clone_batch_norm_stats(actor_batch_norm) critic_batch_norm = model.critic.features_extractor.batch_norm critic_bias, critic_running_mean = clone_batch_norm_stats(critic_batch_norm) critic_target_batch_norm = model.critic_target.features_extractor.batch_norm critic_target_bias, critic_target_running_mean = clone_batch_norm_stats(critic_target_batch_norm) return (actor_bias, actor_running_mean, critic_bias, critic_running_mean, critic_target_bias, critic_target_running_mean) def clone_on_policy_batch_norm(model: Union[MaskablePPO]) -> (th.Tensor, th.Tensor): return clone_batch_norm_stats(model.policy.features_extractor.batch_norm) CLONE_HELPERS = { QRDQN: clone_qrdqn_batch_norm_stats, TQC: clone_tqc_batch_norm_stats, MaskablePPO: clone_on_policy_batch_norm, } def test_ppo_mask_train_eval_mode(): env = InvalidActionEnvDiscrete(dim=20, n_invalid_actions=10) model = MaskablePPO( "MlpPolicy", env, policy_kwargs=dict(net_arch=[16, 16], features_extractor_class=FlattenBatchNormDropoutExtractor), seed=1, ) bias_before, running_mean_before = clone_on_policy_batch_norm(model) model.learn(total_timesteps=200) bias_after, running_mean_after = clone_on_policy_batch_norm(model) assert ~th.isclose(bias_before, bias_after).all() assert ~th.isclose(running_mean_before, running_mean_after).all() batch_norm_stats_before = clone_on_policy_batch_norm(model) observation = env.reset() action_masks = get_action_masks(env) first_prediction, _ = model.predict(observation, action_masks=action_masks, deterministic=True) for _ in range(5): prediction, _ = model.predict(observation, action_masks=action_masks, deterministic=True) np.testing.assert_allclose(first_prediction, prediction) batch_norm_stats_after = clone_on_policy_batch_norm(model) # No change in batch norm params for param_before, param_after in zip(batch_norm_stats_before, batch_norm_stats_after): assert th.isclose(param_before, param_after).all() def test_qrdqn_train_with_batch_norm(): model = QRDQN( "MlpPolicy", "CartPole-v1", policy_kwargs=dict(net_arch=[16, 16], features_extractor_class=FlattenBatchNormDropoutExtractor), learning_starts=0, seed=1, tau=0, # do not clone the target ) ( quantile_net_bias_before, quantile_net_running_mean_before, quantile_net_target_bias_before, quantile_net_target_running_mean_before, ) = clone_qrdqn_batch_norm_stats(model) model.learn(total_timesteps=200) ( quantile_net_bias_after, quantile_net_running_mean_after, quantile_net_target_bias_after, quantile_net_target_running_mean_after, ) = clone_qrdqn_batch_norm_stats(model) assert ~th.isclose(quantile_net_bias_before, quantile_net_bias_after).all() assert ~th.isclose(quantile_net_running_mean_before, quantile_net_running_mean_after).all() assert th.isclose(quantile_net_target_bias_before, quantile_net_target_bias_after).all() assert th.isclose(quantile_net_target_running_mean_before, quantile_net_target_running_mean_after).all() def test_tqc_train_with_batch_norm(): model = TQC( "MlpPolicy", "Pendulum-v0", policy_kwargs=dict(net_arch=[16, 16], features_extractor_class=FlattenBatchNormDropoutExtractor), learning_starts=0, tau=0, # do not copy the target seed=1, ) ( actor_bias_before, actor_running_mean_before, critic_bias_before, critic_running_mean_before, critic_target_bias_before, critic_target_running_mean_before, ) = clone_tqc_batch_norm_stats(model) model.learn(total_timesteps=200) ( actor_bias_after, actor_running_mean_after, critic_bias_after, critic_running_mean_after, critic_target_bias_after, critic_target_running_mean_after, ) = clone_tqc_batch_norm_stats(model) assert ~th.isclose(actor_bias_before, actor_bias_after).all() assert ~th.isclose(actor_running_mean_before, actor_running_mean_after).all() assert ~th.isclose(critic_bias_before, critic_bias_after).all() assert ~th.isclose(critic_running_mean_before, critic_running_mean_after).all() assert th.isclose(critic_target_bias_before, critic_target_bias_after).all() assert th.isclose(critic_target_running_mean_before, critic_target_running_mean_after).all() @pytest.mark.parametrize("model_class", [QRDQN, TQC]) def test_offpolicy_collect_rollout_batch_norm(model_class): if model_class in [QRDQN]: env_id = "CartPole-v1" else: env_id = "Pendulum-v0" clone_helper = CLONE_HELPERS[model_class] learning_starts = 10 model = model_class( "MlpPolicy", env_id, policy_kwargs=dict(net_arch=[16, 16], features_extractor_class=FlattenBatchNormDropoutExtractor), learning_starts=learning_starts, seed=1, gradient_steps=0, train_freq=1, ) batch_norm_stats_before = clone_helper(model) model.learn(total_timesteps=100) batch_norm_stats_after = clone_helper(model) # No change in batch norm params for param_before, param_after in zip(batch_norm_stats_before, batch_norm_stats_after): assert th.isclose(param_before, param_after).all() @pytest.mark.parametrize("model_class", [QRDQN, TQC]) @pytest.mark.parametrize("env_id", ["Pendulum-v0", "CartPole-v1"]) def test_predict_with_dropout_batch_norm(model_class, env_id): if env_id == "CartPole-v1": if model_class in [TQC]: return elif model_class in [QRDQN]: return model_kwargs = dict(seed=1) clone_helper = CLONE_HELPERS[model_class] if model_class in [QRDQN, TQC]: model_kwargs["learning_starts"] = 0 else: model_kwargs["n_steps"] = 64 policy_kwargs = dict( features_extractor_class=FlattenBatchNormDropoutExtractor, net_arch=[16, 16], ) model = model_class("MlpPolicy", env_id, policy_kwargs=policy_kwargs, verbose=1, **model_kwargs) batch_norm_stats_before = clone_helper(model) env = model.get_env() observation = env.reset() first_prediction, _ = model.predict(observation, deterministic=True) for _ in range(5): prediction, _ = model.predict(observation, deterministic=True) np.testing.assert_allclose(first_prediction, prediction) batch_norm_stats_after = clone_helper(model) # No change in batch norm params for param_before, param_after in zip(batch_norm_stats_before, batch_norm_stats_after): assert th.isclose(param_before, param_after).all()
35.791822
125
0.745015
818
0.084961
0
0
2,223
0.230889
0
0
1,129
0.117262
025a4cb24f7a49faae7c43b7347971470e80c885
880
py
Python
test_harness.py
alexk307/server-exercise
31c76a3b370334a22787e06b4c28f8c65f4dd4ff
[ "Apache-2.0" ]
null
null
null
test_harness.py
alexk307/server-exercise
31c76a3b370334a22787e06b4c28f8c65f4dd4ff
[ "Apache-2.0" ]
null
null
null
test_harness.py
alexk307/server-exercise
31c76a3b370334a22787e06b4c28f8c65f4dd4ff
[ "Apache-2.0" ]
null
null
null
from requests import post from random import randrange from uuid import uuid4 import base64 import json PORT = 6789 MAX_SIZE_UDP = 65535 HEADER_SIZE = 12 NUM_TRANSACTIONS = 10 SERVER = 'http://localhost:1234/add' def main(): for i in range(NUM_TRANSACTIONS): # Psuedo-random transaction ID transaction_id = randrange(1, 100) payload = str(uuid4()) # Break into random pieces pieces l = range(1000) pieces = randrange(1, 100) chunks = [l[i:i + pieces] for i in xrange(0, len(l), pieces)] for chunk in chunks: fragment = { 'offset': chunk[-1], 'trans_id': transaction_id, 'payload': base64.b64encode(payload), 'size': len(chunk) } post(SERVER, json.dumps(fragment)) if __name__ == '__main__': main()
22
69
0.582955
0
0
0
0
0
0
0
0
133
0.151136
025c24bac13de507908c7c75d29225711dbc0aef
2,414
py
Python
checkmate_comp/experiments/table_approx_speedup_ratios.py
uwsampl/dtr-prototype
eff53cc4804cc7d6246a6e5086861ce2b846f62b
[ "Linux-OpenIB" ]
90
2020-06-18T05:32:06.000Z
2022-03-28T13:05:17.000Z
checkmate_comp/experiments/table_approx_speedup_ratios.py
merrymercy/dtr-prototype
bf40e182453a7d8d23581ea68f32a9d7d2037d62
[ "Linux-OpenIB" ]
5
2020-07-02T02:25:16.000Z
2022-03-24T05:50:30.000Z
checkmate_comp/experiments/table_approx_speedup_ratios.py
uwsampl/dtr-prototype
eff53cc4804cc7d6246a6e5086861ce2b846f62b
[ "Linux-OpenIB" ]
13
2020-06-27T07:01:54.000Z
2022-01-18T07:31:01.000Z
from experiments.common.definitions import remat_data_dir import numpy as np import pandas as pd import glob import re # compute aggregated tables of max and geomean lp approximation ratios exp_name_re = re.compile(r"^(?P<platform>.+?)_(?P<model_name>.+?)_(?P<batch_size>[0-9]+?)_(?P<input_shape>None|.+?)$") dfs = [] for path in (remat_data_dir() / 'budget_sweep').glob('**/slowdowns.csv'): slowdown_df = pd.read_csv(path) matches = exp_name_re.match(path.parents[0].name) model_name = matches.group('model_name') slowdown_df['Model name'] = [model_name] * len(slowdown_df) dfs.append(slowdown_df) df = pd.concat(dfs) del df['Unnamed: 0'] for valuekey in ['geomean_slowdown', 'max']: pivot_df = pd.pivot_table(df, values=valuekey, index=['Model name'], columns=['method']) pivot_df.to_csv(remat_data_dir() / 'budget_sweep' / f"{valuekey}_aggr.csv") # compute lp relaxation speedups ilp_runtime_dict = {} lp_runtime_dict = {} for model in ['p32xlarge_vgg_unet_32_None', 'p32xlarge_ResNet50_256_None', 'p32xlarge_MobileNet_512_None', 'p32xlarge_VGG16_256_None', 'p32xlarge_VGG19_256_None']: ilp_matcher = re.compile(r"Explored [0-9]+ nodes \([0-9]+ simplex iterations\) in (?P<ilp_runtime>[0-9\.]+) seconds") lp_matcher = re.compile(r"Solved in [0-9]+ iterations and (?P<lp_runtime>[0-9\.]+) seconds") ilp_runtimes = [] for path in (remat_data_dir() / 'budget_sweep' / model / 'ilp_log').glob('./*.log'): with path.open('r') as f: file_contents = f.read() if 'Model is infeasible' in file_contents: continue match = ilp_matcher.search(file_contents) ilp_runtimes.append(float(match.group('ilp_runtime'))) lp_runtimes = [] for path in (remat_data_dir() / 'budget_sweep' / 'p32xlarge_vgg_unet_32_None' / 'lp_det_05').glob('./*.log'): with path.open('r') as f: file_contents = f.read() if 'Model is infeasible' in file_contents: continue match = lp_matcher.search(file_contents) lp_runtimes.append(float(match.group('lp_runtime'))) print("Speedup for {} is {:0.2f} ({:.2f} versus {:.2f}, count {} vs {})".format(model, np.median(ilp_runtimes) / np.median(lp_runtimes), np.mean(ilp_runtimes), np.mean(lp_runtimes), len(ilp_runtimes), len(lp_runtimes))) ilp_runtime_dict[model] = ilp_runtimes lp_runtime_dict[model] = lp_runtimes
47.333333
223
0.67937
0
0
0
0
0
0
0
0
871
0.360812
025c491da627375770263331eb452c03d4b317b0
431
py
Python
src/terra/contracts/levana.py
fentas/staketaxcsv
ad37a32d8864111dbf88e926b80eb4ccacb921c6
[ "MIT" ]
null
null
null
src/terra/contracts/levana.py
fentas/staketaxcsv
ad37a32d8864111dbf88e926b80eb4ccacb921c6
[ "MIT" ]
null
null
null
src/terra/contracts/levana.py
fentas/staketaxcsv
ad37a32d8864111dbf88e926b80eb4ccacb921c6
[ "MIT" ]
null
null
null
# known contracts from protocol CONTRACTS = [ # NFT - Meteor Dust "terra1p70x7jkqhf37qa7qm4v23g4u4g8ka4ktxudxa7", # NFT - Eggs "terra1k0y373yxqne22pc9g7jvnr4qclpsxtafevtrpg", # NFT - Dragons "terra1vhuyuwwr4rkdpez5f5lmuqavut28h5dt29rpn6", # NFT - Loot "terra14gfnxnwl0yz6njzet4n33erq5n70wt79nm24el", ] def handle(exporter, elem, txinfo, contract): print(f"Levana! {contract}") #print(elem)
26.9375
51
0.723898
0
0
0
0
0
0
0
0
306
0.709977
025c55086785bd2358aa07697fa9e5ff75a7e9fe
2,268
py
Python
github/migrations/0007_auto_20201003_1239.py
h3nnn4n/git-o-matic-9k
d8241cc768591e0f41c02b2057d7b56697a4cc86
[ "MIT" ]
null
null
null
github/migrations/0007_auto_20201003_1239.py
h3nnn4n/git-o-matic-9k
d8241cc768591e0f41c02b2057d7b56697a4cc86
[ "MIT" ]
null
null
null
github/migrations/0007_auto_20201003_1239.py
h3nnn4n/git-o-matic-9k
d8241cc768591e0f41c02b2057d7b56697a4cc86
[ "MIT" ]
null
null
null
# Generated by Django 3.1.2 on 2020-10-03 12:39 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('github', '0006_repository_open_issues_count'), ] operations = [ migrations.RenameField( model_name='developer', old_name='user_name', new_name='login', ), migrations.AddField( model_name='developer', name='bio', field=models.TextField(blank=True), ), migrations.AddField( model_name='developer', name='company', field=models.TextField(blank=True), ), migrations.AddField( model_name='developer', name='created_at', field=models.DateTimeField(default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='developer', name='email', field=models.TextField(blank=True), ), migrations.AddField( model_name='developer', name='followers', field=models.IntegerField(default=0), ), migrations.AddField( model_name='developer', name='following', field=models.IntegerField(default=0), ), migrations.AddField( model_name='developer', name='location', field=models.TextField(blank=True), ), migrations.AddField( model_name='developer', name='name', field=models.TextField(default=''), preserve_default=False, ), migrations.AddField( model_name='developer', name='public_gists', field=models.IntegerField(default=0), ), migrations.AddField( model_name='developer', name='public_repos', field=models.IntegerField(default=0), ), migrations.AddField( model_name='developer', name='updated_at', field=models.DateTimeField(default=django.utils.timezone.now), preserve_default=False, ), ]
29.076923
74
0.543651
2,146
0.946208
0
0
0
0
0
0
353
0.155644
025c8c73c3dda45b9c81e36fafb6a8137598b6d5
254
py
Python
tests/unit/test_databeardb.py
chrisrycx/pyDataLogger
21094da9de54ab467519a26680247ddc3efa6696
[ "MIT" ]
1
2020-09-25T16:25:09.000Z
2020-09-25T16:25:09.000Z
tests/unit/test_databeardb.py
chrisrycx/pyDataLogger
21094da9de54ab467519a26680247ddc3efa6696
[ "MIT" ]
4
2020-10-06T17:16:58.000Z
2020-12-18T17:06:16.000Z
tests/unit/test_databeardb.py
chrisrycx/pyDataLogger
21094da9de54ab467519a26680247ddc3efa6696
[ "MIT" ]
2
2020-03-24T14:32:29.000Z
2020-08-05T17:38:24.000Z
''' A unit test for databearDB.py Runs manually at this point... ''' import unittest from databear.databearDB import DataBearDB #Tests class testDataBearDB(unittest.TestCase): def setUp(self): ''' Hmm ''' pass
14.111111
42
0.622047
111
0.437008
0
0
0
0
0
0
101
0.397638
025ca2353166896f2415d32f2b2cf83266307837
19
py
Python
dbt/adapters/athena/__version__.py
sacundim/dbt-athena
120c9d3c88da98ec11ddfcf0a0a3fda49538f197
[ "Apache-2.0" ]
92
2019-03-23T07:23:55.000Z
2021-06-15T18:18:32.000Z
dbt/adapters/athena/__version__.py
sacundim/dbt-athena
120c9d3c88da98ec11ddfcf0a0a3fda49538f197
[ "Apache-2.0" ]
156
2019-03-21T03:26:58.000Z
2021-06-29T15:30:51.000Z
dbt/adapters/athena/__version__.py
sacundim/dbt-athena
120c9d3c88da98ec11ddfcf0a0a3fda49538f197
[ "Apache-2.0" ]
58
2019-04-12T09:09:43.000Z
2021-06-24T15:25:11.000Z
version = "0.21.0"
9.5
18
0.578947
0
0
0
0
0
0
0
0
8
0.421053
025d05b924cc7305e801b76dce5c6ec01a360e7c
1,161
py
Python
dxtbx/conftest.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
dxtbx/conftest.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
dxtbx/conftest.py
jbeilstenedmands/cctbx_project
c228fb15ab10377f664c39553d866281358195aa
[ "BSD-3-Clause-LBNL" ]
null
null
null
# # See https://github.com/dials/dials/wiki/pytest for documentation on how to # write and run pytest tests, and an overview of the available features. # from __future__ import absolute_import, division, print_function import os import pytest @pytest.fixture(scope="session") def dials_regression(): '''Return the absolute path to the dials_regression module as a string. Skip the test if dials_regression is not installed.''' try: import dials_regression as dr except ImportError: pytest.skip("dials_regression required for this test") return os.path.dirname(dr.__file__) def pytest_addoption(parser): '''Add '--regression' options to pytest.''' parser.addoption("--regression", action="store_true", default=False, help="run (time-intensive) regression tests") def pytest_collection_modifyitems(config, items): '''Tests marked as regression are only run with --regression. ''' if not config.getoption("--regression"): skip_regression = pytest.mark.skip(reason="Test only runs with --regression") for item in items: if "regression" in item.keywords: item.add_marker(skip_regression)
33.171429
81
0.731266
0
0
0
0
350
0.301464
0
0
566
0.487511
025e3d2d32267b02443190a02969375302ba67a9
978
py
Python
ietf/review/migrations/0020_auto_20191115_2059.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
25
2022-03-05T08:26:52.000Z
2022-03-30T15:45:42.000Z
ietf/review/migrations/0020_auto_20191115_2059.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
219
2022-03-04T17:29:12.000Z
2022-03-31T21:16:14.000Z
ietf/review/migrations/0020_auto_20191115_2059.py
hassanakbar4/ietfdb
cabee059092ae776015410640226064331c293b7
[ "BSD-3-Clause" ]
22
2022-03-04T15:34:34.000Z
2022-03-28T13:30:59.000Z
# Copyright The IETF Trust 2019-2020, All Rights Reserved # -*- coding: utf-8 -*- # Generated by Django 1.11.26 on 2019-11-15 20:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('review', '0019_auto_20191023_0829'), ] operations = [ migrations.AddField( model_name='reviewsecretarysettings', name='days_to_show_in_reviewer_list', field=models.IntegerField(blank=True, help_text='Maximum number of days to show in reviewer list for completed items.', null=True), ), migrations.AddField( model_name='reviewsecretarysettings', name='max_items_to_show_in_reviewer_list', field=models.IntegerField(blank=True, help_text='Maximum number of completed items to show for one reviewer in the reviewer list view, the list is also filtered by the days to show in reviews list setting.', null=True), ), ]
36.222222
231
0.677914
800
0.817996
0
0
0
0
0
0
507
0.518405
025e72e9d1d41e03246451d111dab4b24c0f7bd1
442
py
Python
AlgoExpert/PalindromeCheck.py
akhil-ece/160Days
545d1c70c79c6ef2341137a88e6a09f81f330ea4
[ "MIT" ]
null
null
null
AlgoExpert/PalindromeCheck.py
akhil-ece/160Days
545d1c70c79c6ef2341137a88e6a09f81f330ea4
[ "MIT" ]
null
null
null
AlgoExpert/PalindromeCheck.py
akhil-ece/160Days
545d1c70c79c6ef2341137a88e6a09f81f330ea4
[ "MIT" ]
null
null
null
def isPalindrome(string, i = 0): j = len(string) - 1 -i return True if i > j else string[i] == string[j] and isPalindrome(string, i+1) def isPalindrome(string): return string == string[::-1] def isPalindromeUsingIndexes(string): lIx = 0 rIdx = len(string) -1 while lIx < rIdx: if(string[lIx] != string [rIdx]): return False else: lIx += 1 rIdx -=1 return True
24.555556
82
0.561086
0
0
0
0
0
0
0
0
0
0