hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
ce027805c06db61c04f315262615e01faa30ae5a
18,148
py
Python
metview/param.py
ecmwf/metview-python
641e57716ac1bb105394dd3a871ccd1e5ed60b26
[ "Apache-2.0" ]
88
2018-06-08T14:21:18.000Z
2022-03-31T12:25:59.000Z
metview/param.py
ecmwf/metview-python
641e57716ac1bb105394dd3a871ccd1e5ed60b26
[ "Apache-2.0" ]
37
2018-11-01T09:50:07.000Z
2022-02-24T12:20:16.000Z
metview/param.py
ecmwf/metview-python
641e57716ac1bb105394dd3a871ccd1e5ed60b26
[ "Apache-2.0" ]
26
2018-06-08T14:21:28.000Z
2022-01-28T12:55:16.000Z
# (C) Copyright 2017- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # import logging from metview import dataset import re import pandas as pd import metview as mv from metview.indexer import GribIndexer # logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s") # logging.basicConfig(level=logging.DEBUG, format="%(levelname)s - %(message)s") LOG = logging.getLogger(__name__) PANDAS_ORI_OPTIONS = {} def init_pandas_options(): global PANDAS_ORI_OPTIONS if len(PANDAS_ORI_OPTIONS) == 0: opt = { "display.max_colwidth": 300, "display.colheader_justify": "center", "display.max_columns": 100, "display.max_rows": 500, "display.width": None, } for k, _ in opt.items(): PANDAS_ORI_OPTIONS[k] = pd.get_option(k) for k, v in opt.items(): pd.set_option(k, v) def reset_pandas_options(): global PANDAS_ORI_OPTIONS if len(PANDAS_ORI_OPTIONS) > 0: for k, v in PANDAS_ORI_OPTIONS.items(): pd.set_option(k, v) PANDAS_ORI_OPTIONS = {} class ParamInfo: SUFFIXES = { "hPa": "isobaricInhPa", "hpa": "isobaricInhPa", "K": "theta", "ml": "hybrid", } LEVEL_TYPES = {"sfc": "surface", "pl": "isobaricInhPa", "ml": "hybrid"} LEVEL_RE = re.compile(r"(\d+)") NUM_RE = re.compile(r"[0-9]+") SURF_RE = re.compile(r"^\d+\w+") # SURF_NAME_MAPPER = {"t2": "2t", "q2": "2q", "u10": "10u", "v10": "10v"} KNOWN_SURF_NAMES = ["2t", "2q", "10u", "10v", "msl", "wind10m"] VECTOR_NAMES = ["wind10m", "wind3d", "wind"] # the longest ones first def __init__(self, name, meta=None, scalar=None): self.name = name self.scalar = scalar if scalar is not None else True self.meta = {} if meta is None else meta if len(self.meta) == 0: self.meta["shortName"] = name def make_filter(self): dims = {} if self.name: dims["shortName"] = [self.name] for n in ["level", "typeOfLevel"]: v = self.meta.get(n, None) if v is not None: dims[n] = [v] return dims @staticmethod def build_from_name(full_name, param_level_types=None): full_name = full_name name = full_name level = None level_type = "" # the name is a known param name if param_level_types: if name in param_level_types: lev_t = param_level_types.get(name, []) meta = {} if len(lev_t) == 1: meta = {"typeOfLevel": lev_t[0], "level": None} scalar = not name in ParamInfo.VECTOR_NAMES return ParamInfo(name, meta=meta, scalar=scalar) t = full_name # surface fields if t in ParamInfo.KNOWN_SURF_NAMES or ParamInfo.SURF_RE.match(t) is not None: level_type = "surface" else: # guess the level type from the suffix for k, v in ParamInfo.SUFFIXES.items(): if full_name.endswith(k): level_type = v t = full_name[: -(len(k))] break # recognise vector params for v in ParamInfo.VECTOR_NAMES: if t.startswith(v): name = v t = t[len(v) :] break # determine level value m = ParamInfo.LEVEL_RE.search(t) if m and m.groups() and len(m.groups()) == 1: level = int(m.group(1)) if level_type == "" and level > 10: level_type = "isobaricInhPa" if name == full_name: name = ParamInfo.NUM_RE.sub("", t) # check param name in the conf if param_level_types: if not name in param_level_types: raise Exception( f"Param={name} (guessed from name={full_name}) is not found in dataset!" ) lev_t = param_level_types.get(name, []) if lev_t: if not level_type and len(lev_t) == 1: level_type = lev_t[0] elif level_type and level_type not in lev_t: raise Exception( f"Level type cannot be guessed from param name={full_name}!" ) if level_type == "": level = None scalar = not name in ParamInfo.VECTOR_NAMES LOG.debug(f"scalar={scalar}") meta = {"level": level, "typeOfLevel": level_type} return ParamInfo(name, meta=meta, scalar=scalar) @staticmethod def build_from_fieldset(fs): assert isinstance(fs, mv.Fieldset) f = fs[0:3] if len(fs) >= 3 else fs m = ParamInfo._grib_get(f, GribIndexer.DEFAULT_ECC_KEYS) name = level = lev_type = "" scalar = True meta_same = True for x in m.keys(): if x != "shortName" and m[x].count(m[x][0]) != len(m[x]): same = False break if meta_same: if len(m["shortName"]) == 3 and m["shortName"] == ["u", "v", "w"]: name = "wind3d" scalar = False elif len(m["shortName"]) >= 2: if m["shortName"][0:2] == ["u", "v"]: name = "wind" scalar = False elif m["shortName"][0:2] == ["10u", "10v"]: name = "wind10m" m["level"][0] = 0 m["typeOfLevel"][0] = "sfc" scalar = False if not name: name = m["shortName"][0] if name: return ParamInfo(name, meta={k: v[0] for k, v in m.items()}, scalar=scalar) else: return None def _meta_match(self, meta, key): local_key = key if key != "levelist" else "level" if ( key in meta and meta[key] is not None and meta[key] and local_key in self.meta ): # print(f"local={self.meta[local_key]} other={meta[key]}") if isinstance(meta[key], list): return str(self.meta[local_key]) in meta[key] else: return meta[key] == str(self.meta[local_key]) else: return False def match(self, name, meta): # print(f"{self}, name={name}, meta={meta}") r = 0 if self.name == name: r += 3 for n in ["shortName", "paramId"]: if self._meta_match(meta, n): r += 1 # we only check the rest if the param is ok if r > 0: if self._meta_match(meta, "typeOfLevel"): r += 1 if self._meta_match(meta, "levelist"): r += 1 return r def update_meta(self, meta): self.meta = {**meta, **self.meta} @staticmethod def _grib_get(f, keys): md = mv.grib_get(f, keys, "key") m = {} for k, v in zip(keys, md): key_val = k.split(":")[0] val = v if k.endswith(":l"): val = [] for x in v: try: val.append(int(x)) except: val.append(None) m[key_val] = val return m def __str__(self): return "{}[name={}, scalar={}, meta={}]".format( self.__class__.__name__, self.name, self.scalar, self.meta ) class ParamDesc: def __init__(self, name): self.db = None # self.name = name self.md = {} self.levels = {} self._short_name = None self._param_id = None self._long_name = None self._units = None def load(self, db): raise NotImplementedError def _parse(self, md): if "level" in md and len(md["level"]) > 0: df = pd.DataFrame(md) md.pop("typeOfLevel") md.pop("level") for md_key in list(md.keys()): d = df[md_key].unique().tolist() self.md[md_key] = d lev_types = df["typeOfLevel"].unique().tolist() for t in lev_types: # print(f" t={t}") self.levels[t] = [] q = f"typeOfLevel == '{t}'" # print(q) dft = df.query(q) if dft is not None: self.levels[t] = dft["level"].unique().tolist() @property def short_name(self): if self._short_name is None: self._short_name = "" if self.md["shortName"]: self._short_name = self.md["shortName"][0] return self._short_name @property def param_id(self): if self._param_id is None: self._param_id = "" if self.md["paramId"]: self._param_id = self.md["paramId"][0] return self._param_id @property def long_name(self): if self._long_name is None: self._long_name = "" if self.db is not None: self._long_name, self._units = self.db.get_longname_and_units( self.short_name, self.param_id ) return self._long_name @property def units(self): if self._units is None: self._units = "" if self.db: self._long_name, self._units = self.db.get_longname_and_units( self.short_name, self.param_id ) return self._units @staticmethod def describe(db, param=None): in_jupyter = False labels = {"marsClass": "class", "marsStream": "stream", "marsType": "type"} try: import IPython # test whether we're in the Jupyter environment if IPython.get_ipython() is not None: in_jupyter = True except: pass # describe all the params if param is None: t = {"parameter": [], "typeOfLevel": [], "level": []} need_number = False for k, v in db.param_meta.items(): if not v.md.get("number", None) in [["0"], [None]]: need_number = True break for k, v in db.param_meta.items(): t["parameter"].append(k) if len(v.levels) > 1: lev_type = "" level = "" cnt = 0 for md_k, md in v.levels.items(): if in_jupyter: lev_type += md_k + "<br>" level += str(ParamDesc.format_list(md)) + "<br>" else: prefix = " " if cnt > 0 else "" lev_type += prefix + f"[{cnt+1}]:" + md_k level += ( prefix + f"[{cnt+1}]:" + str(ParamDesc.format_list(md)) ) cnt += 1 t["typeOfLevel"].append(lev_type) t["level"].append(level) else: for md_k, md in v.levels.items(): t["typeOfLevel"].append(md_k) t["level"].append(ParamDesc.format_list(md)) for md_k, md in v.md.items(): if md_k != "number" or need_number: md_k = labels.get(md_k, md_k) if not md_k in t: t[md_k] = [] t[md_k].append(ParamDesc.format_list(md)) if in_jupyter: txt = ParamDesc._make_html_table(t) from IPython.display import HTML return HTML(txt) else: df = pd.DataFrame.from_dict(t) df = df.set_index(["parameter"]) init_pandas_options() print(df) # specific param else: v = None if isinstance(param, str): v = db.param_meta.get(param, None) elif isinstance(param, int): v = db.param_id_meta(param) if v is None: print(f"No shortName/paramId={param} found in data!") return # if v is not None: t = { "key": ["shortName"], "val": [v.short_name], } if v.long_name != "" or v.units != "": t["key"].append("name") t["val"].append(v.long_name) t["key"].append("paramId") t["val"].append(v.param_id) # ParamDesc.format_list(v.md["shortName"], full=True), if v.long_name != "" or v.units != "": t["key"].append("units") t["val"].append(v.units) add_cnt = len(v.levels) > 1 cnt = 0 for md_k, md in v.levels.items(): t["key"].append("typeOfLevel" + (f"[{cnt+1}]" if add_cnt else "")) t["val"].append(md_k) t["key"].append("level" + (f"[{cnt+1}]" if add_cnt else "")) t["val"].append(ParamDesc.format_list(md, full=True)) cnt += 1 for kk, md_v in v.md.items(): if kk == "number" and md_v == ["0"]: continue if not kk in ["shortName", "paramId"]: t["key"].append(labels.get(kk, kk)) t["val"].append(ParamDesc.format_list(md_v, full=True)) if in_jupyter: from IPython.display import HTML txt = ParamDesc._make_html_table(t, header=False) return HTML(txt) else: df = pd.DataFrame.from_dict(t) df = df.set_index("key") init_pandas_options() print(df) @staticmethod def _make_html_table(d, header=None): header = header if header is not None else True if len(d) > 1: first_column_name = list(d.keys())[0] txt = """ <table> <tr>{}</tr> {} </table>""".format( "" if not header else "".join([f"<th>{k}</th>" for k in d.keys()]), "".join( [ "<tr><th style='text-align: right;'>" + d[first_column_name][i] + "</th>" + "".join( [ f"<td style='text-align: left;'>{ParamDesc.format_list(d[k][i], full=True)}</td>" for k in list(d.keys())[1:] ] ) + "</tr>" for i in range(len(d[first_column_name])) ] ), ) return txt else: return "" @staticmethod def format_list(v, full=None): if isinstance(v, list): if full is True: return ",".join([str(x) for x in v]) else: if len(v) == 1: return v[0] if len(v) > 2: return ",".join([str(x) for x in [v[0], v[1], "..."]]) else: return ",".join([str(x) for x in v]) else: return v class ParamNameDesc(ParamDesc): def __init__(self, name): super().__init__(name) self._short_name = name def load(self, db): md = { "typeOfLevel": [], "level": [], "date": [], "time": [], "step": [], "number": [], "paramId": [], "marsClass": [], "marsStream": [], "marsType": [], "experimentVersionNumber": [], } self.db = db self.md = {} self.levels = {} # print(f"par={par}") for b_name, b_df in db.blocks.items(): if b_name == "scalar": q = f"shortName == '{self.short_name}'" dft = b_df.query(q) elif b_name == self.short_name: dft = b_df else: dft = None if dft is not None: for k in md.keys(): # print(f"{self.name}/{k}") md[k].extend(dft[k].tolist()) # print(f" df[{k}]={df[k]}") # print(df) self._parse(md) class ParamIdDesc(ParamDesc): def __init__(self, param_id): super().__init__("") self._param_id = param_id def load(self, db): md = { "shortName": [], "typeOfLevel": [], "level": [], "date": [], "time": [], "step": [], "number": [], "paramId": [], "marsClass": [], "marsStream": [], "marsType": [], "experimentVersionNumber": [], } self.db = db self.md = {} self.levels = {} # print(f"par={par}") b_df = db.blocks.get("scalar", None) if b_df is not None: q = f"paramId == '{self._param_id}'" dft = b_df.query(q) if dft is not None: for k in md.keys(): md[k].extend(dft[k].tolist()) self._parse(md)
32.407143
113
0.454761
16,712
0.920873
0
0
11,216
0.61803
0
0
3,253
0.179248
ce03e73e55d15e74f86d8e0bd047fcc03b6a00ce
316
py
Python
flask_edu_1/file1.py
fulkgl/Flask_edu_1
cccb70742949577fce5ed279a9d70e6348465643
[ "MIT" ]
1
2019-12-16T21:55:53.000Z
2019-12-16T21:55:53.000Z
flask_edu_1/file1.py
fulkgl/Flask_edu_1
cccb70742949577fce5ed279a9d70e6348465643
[ "MIT" ]
null
null
null
flask_edu_1/file1.py
fulkgl/Flask_edu_1
cccb70742949577fce5ed279a9d70e6348465643
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: UTF-8 '''! module description @author <A href="email:fulkgl@gmail.com">George L Fulk</A> ''' __version__ = 0.01 def main(): '''! main description ''' print("Hello world") return 0 if __name__ == "__main__": # command line entry point main() # END #
13.166667
58
0.598101
0
0
0
0
0
0
0
0
212
0.670886
ce07948f6f31a33c9447bac9ba7da84e0cc0cfdb
25
py
Python
write_grok/__init__.py
namedyangfan/Python_practice
7f7394d82bb5afc13b039eec286b9485a775ae39
[ "MIT" ]
null
null
null
write_grok/__init__.py
namedyangfan/Python_practice
7f7394d82bb5afc13b039eec286b9485a775ae39
[ "MIT" ]
null
null
null
write_grok/__init__.py
namedyangfan/Python_practice
7f7394d82bb5afc13b039eec286b9485a775ae39
[ "MIT" ]
null
null
null
from .write_grok import *
25
25
0.8
0
0
0
0
0
0
0
0
0
0
ce079ba915fb3b960bd7c0c9b579e190a8341d22
1,883
py
Python
backend/usuarios/views.py
alfmorais/pi-univesp
45a149e9a404f7b0238b84eb335db7111cd15ebb
[ "MIT" ]
1
2021-12-24T20:32:51.000Z
2021-12-24T20:32:51.000Z
backend/usuarios/views.py
alfmorais/pi-univesp
45a149e9a404f7b0238b84eb335db7111cd15ebb
[ "MIT" ]
null
null
null
backend/usuarios/views.py
alfmorais/pi-univesp
45a149e9a404f7b0238b84eb335db7111cd15ebb
[ "MIT" ]
null
null
null
from hashlib import sha256 from django.http import HttpResponse from django.shortcuts import redirect, render from .models import Usuarios def login(request): if request.session.get('usuario'): return redirect('/livro/home/') status = request.GET.get('status') return render(request, 'login.html', {'status': status}) def cadastro(request): if request.session.get('usuario'): return redirect('/livro/home/') status = request.GET.get('status') return render(request, 'cadastro.html', {'status': status}) def valida_cadastro(request): nome = request.POST.get('nome') senha = request.POST.get('senha') email = request.POST.get('email') usuario = Usuarios.objects.filter(email = email) if len(nome.strip()) == 0 or len(email.strip()) == 0: return redirect('/auth/cadastro/?status=1') if len(senha) < 8: return redirect('/auth/cadastro/?status=2') if len(usuario) > 0: return redirect('/auth/cadatro/?status=3') try: senha = sha256(senha.encode()).hexdigest() usuario = Usuarios( nome=nome, email=email, senha=senha, ) usuario.save() return redirect('/auth/cadastro/?status=0') except: return redirect('/auth/cadastro/?status=4') def validar_login(request): email = request.POST.get('email') senha = request.POST.get('senha') senha = sha256(senha.encode()).hexdigest() usuario = Usuarios.objects.filter(email=email).filter(senha=senha) if len(usuario) == 0: return redirect('/auth/login/?status=1') elif len(usuario) > 0: request.session['usuario'] = usuario[0].id return redirect(f'/livro/home/') return HttpResponse(f"{email} {senha}") def sair(request): request.session.flush() return redirect('/auth/login/')
25.445946
70
0.627722
0
0
0
0
0
0
0
0
347
0.18428
ce07ca9cf794023383e230a89ff64c045e2a41a9
2,737
py
Python
textclf/tester/dl_tester.py
lswjkllc/textclf
e4e7504989dd5d39c9376eafda1abc580c053913
[ "MIT" ]
146
2020-02-20T02:29:55.000Z
2022-01-21T09:49:40.000Z
textclf/tester/dl_tester.py
lswjkllc/textclf
e4e7504989dd5d39c9376eafda1abc580c053913
[ "MIT" ]
4
2020-03-08T03:24:16.000Z
2021-03-26T05:34:09.000Z
textclf/tester/dl_tester.py
lswjkllc/textclf
e4e7504989dd5d39c9376eafda1abc580c053913
[ "MIT" ]
16
2020-02-26T04:45:40.000Z
2021-05-08T03:52:38.000Z
import torch from transformers import BertTokenizer from .base_tester import Tester from textclf.utils.raw_data import create_tokenizer from textclf.utils.create import create_instance from textclf.config import DLTesterConfig from textclf.data.dictionary import Dictionary class DLTester(Tester): """负责Deep Learning model的测试""" def __init__(self, config: DLTesterConfig): super().__init__(config) self.tokenizer = create_tokenizer(self.config.tokenizer) self.use_cuda = self.config.use_cuda and torch.cuda.is_available() print(f"Load checkpoint from {self.config.model_path}..") checkpoint = torch.load(self.config.model_path) self.model_conf, self.dictionary, self.label2id = \ checkpoint["info_for_test"] self.model = create_instance(self.model_conf) self.model.load_state_dict(checkpoint['model_state_dict']) self.classes = sorted(self.label2id, key=self.label2id.get) def _preprocess(self, text): text_tokenized = self.tokenizer(text) if isinstance(self.dictionary, Dictionary): text_processed = self.dictionary.tokens_to_tensor( text_tokenized, max_len=self.config.max_len ) text_len = (text_processed != self.dictionary.pad()).sum() elif isinstance(self.dictionary, BertTokenizer): text_processed = torch.LongTensor( self.dictionary.encode(text_tokenized, add_special_tokens=True)[:-1]) max_len = self.config.max_len pad_id = self.dictionary.pad_token_id if len(text_processed) >= max_len: text_processed = text_processed[:max_len] else: text_processed = torch.cat([ text_processed, torch.ones(max_len-len(text_processed)).long()*pad_id ]) text_len = (text_processed != pad_id).sum() if self.use_cuda: text_processed = text_processed.cuda() text_len = text_len.cuda() return text_processed.unsqueeze(0), text_len.unsqueeze(0) def predict_label(self, text): text_processed, text_len = self._preprocess(text) self.model.eval() with torch.no_grad(): logits = self.model(text_processed, text_len) label_id = torch.argmax(logits) return self.classes[label_id] def predict_prob(self, text): text_processed, text_len = self._preprocess(text) self.model.eval() with torch.no_grad(): logits = self.model(text_processed, text_len)[0] return torch.softmax(logits, dim=0).tolist() def get_all_labels(self): return self.classes
38.549296
85
0.652905
2,469
0.898799
0
0
0
0
0
0
123
0.044776
ce0890d24a487d376e2478b4bdab9793e27e76ac
3,303
py
Python
scripts/pughpore/randomwalk/get_D_old.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
8
2016-09-07T01:59:31.000Z
2021-03-06T12:14:31.000Z
scripts/pughpore/randomwalk/get_D_old.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
null
null
null
scripts/pughpore/randomwalk/get_D_old.py
jhwnkim/nanopores
98b3dbb5d36464fbdc03f59d224d38e4255324ce
[ "MIT" ]
4
2017-12-06T17:43:01.000Z
2020-05-01T05:41:14.000Z
import matplotlib matplotlib.use("Agg") from matplotlib import pyplot as plt import numpy as np import os from nanopores.tools import fields from scipy.interpolate import interp1d HOME = os.path.expanduser("~") DATADIR = os.path.join(HOME, "Dropbox", "nanopores", "fields") fields.set_dir(DATADIR) data = fields.get_fields("pugh_diff3D_cross", bulkbc=True, rMolecule=2.0779) def smooth3(l): A=np.array(l) B=A[:] ker=np.array([1./3,1./3,1./3]) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) def smooth5(l): A=np.array(l) B=A[:] ker=np.array([.2,.2,.2,.2,.2]) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) def smootha(l): A=np.array(l) B=A[:] ker=np.array([10.,12.,15.,12.,10.]) ker=ker/np.sum(ker) n=int(ker.shape[0]/2.) for i in range(n,A.shape[0]-n): B[i]=np.inner(A[i-n:i+n+1],ker) return list(B) x = [z[0] for z in data["x"]] data, x = fields._sorted(data, x) eps=5e-3 x_=x[:] #x_.extend([1.,1.+eps,1.+2*eps,1.+3*eps]) x.extend([(x[-1]+1.)/2.,1.,1.+eps,1.+2*eps,1.+3*eps,1.+4*eps,1.+5*eps]) dstr = ["x", "y", "z"] Dxx = [D[0][0] for D in data["D"]] Dyy = [D[1][1] for D in data["D"]] Dzz = [D[2][2] for D in data["D"]] Dxx_ = [D[0][0] for D in data["D"]] Dyy_ = [D[1][1] for D in data["D"]] Dzz_ = [D[2][2] for D in data["D"]] Dxx.extend([0.,0.,0.,0.,0.,0.,0.]) Dyy.extend([Dyy[-1]/2.,0.,0.,0.,0.,0.,0.]) Dzz.extend([Dzz[-1]/2.,0.,0.,0.,0.,0.,0.]) #Dxx_.extend([0.,0.,0.,0.]) #Dyy_.extend([0.,0.,0.,0.]) #Dzz_.extend([0.,0.,0.,0.]) Dxx=smooth5(smooth3(Dxx)) Dyy=smooth5(smooth3(Dyy)) Dzz=smooth5(smooth3(Dzz)) Dx = interp1d(x,Dxx) Dy = interp1d(x,Dyy) Dz = interp1d(x,Dzz) DDxx = [0.]+[(Dxx[i+1]-Dxx[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] DDyy = [0.]+[(Dyy[i+1]-Dyy[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] DDzz = [0.]+[(Dzz[i+1]-Dzz[i-1])/(x[i+1]-x[i-1]) for i in range(1,len(x)-1)]+[0.] dDx = interp1d(x,DDxx) dDy = interp1d(x,DDyy) dDz = interp1d(x,DDzz) if __name__=='__main__': xc=np.linspace(0.,1.,100) plt.plot(x_,Dxx_,color='blue',linestyle=':') plt.scatter(x_,Dxx_,color='blue') plt.scatter(x,Dxx,color='blue') #plt.plot(x,Dxx,color='blue') plt.plot(xc,Dx(xc),color='blue',label=r"$D_{%s%s}$" % (dstr[0], dstr[0])) plt.scatter(x,DDxx,color='blue') #plt.plot(x,DDxx,color='blue') plt.plot(xc,dDx(xc),color='blue') plt.plot(x_,Dyy_,color='red',linestyle=':') plt.scatter(x_,Dyy_,color='red') plt.scatter(x,Dyy,color='red') #plt.plot(x,Dyy,color='red') plt.plot(xc,Dy(xc),color='red',label=r"$D_{%s%s}$" % (dstr[1], dstr[1])) plt.scatter(x,DDyy,color='red') #plt.plot(x,DDyy,color='red') plt.plot(xc,dDy(xc),color='red') plt.plot(x_,Dzz_,color='green',linestyle=':') plt.scatter(x_,Dzz_,color='green') plt.scatter(x,Dzz,color='green') #plt.plot(x,Dzz,color='green') plt.plot(xc,Dz(xc),color='green',label=r"$D_{%s%s}$" % (dstr[2], dstr[2])) plt.scatter(x,DDzz,color='green') #plt.plot(x,DDzz,color='green') plt.plot(xc,dDz(xc),color='green') plt.xlabel('distance from pore center [nm]') plt.ylabel('diffusivity relative to bulk') plt.legend(loc='lower left') plt.tight_layout() plt.savefig('get_new.png')
28.230769
81
0.599758
0
0
0
0
0
0
0
0
637
0.192855
ce08db747b526cc7a8cef1e5d71b70335cd56cae
7,885
py
Python
scripts/unseen_pairs_prepare.py
dhh1995/SCL
6b481709c11acc10909fed2105a7b485dab0887c
[ "MIT" ]
32
2020-07-10T04:50:03.000Z
2021-11-26T16:57:01.000Z
scripts/unseen_pairs_prepare.py
dhh1995/SCL
6b481709c11acc10909fed2105a7b485dab0887c
[ "MIT" ]
5
2020-07-10T07:55:34.000Z
2021-11-24T02:45:32.000Z
scripts/unseen_pairs_prepare.py
dhh1995/SCL
6b481709c11acc10909fed2105a7b485dab0887c
[ "MIT" ]
3
2020-08-20T15:10:35.000Z
2022-02-20T16:31:01.000Z
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : unseen_pairs_prepare.py # Author : Honghua Dong # Email : dhh19951@gmail.com # Date : 02/04/2019 # # Distributed under terms of the MIT license. ''' To split dataset into {train/val/test}_split_{rel}_{attr}_{args}.pkl It will produce a set of indexes stored in pkls and can be used by specifying both --index-file-dir and --split args of the main.py program. [NOTE] It may require more examples to fulfill the 6k,2k,2k split regime. # Usage python3 unseen_pairs_prepare.py $DATA_DIR $NUM -r $REL(s) -a $ATTR(s) # [NOTE] '-indenp' can prepare all required split for a table result # (only held-out a certain pair) ''' import argparse import collections import numpy as np import os import os.path as osp import pickle from utils import get_rule_pairs_from_meta_matrix # from IPython import embed parser = argparse.ArgumentParser() parser.add_argument('data_dir', type=str, help='the dataset file') parser.add_argument('num', type=int, help='the dataset size') # parser.add_argument('--task', '-t', type=str, required=True, # choices=['center_single', 'up_down', 'left_right', 'in_out', # 'distribute_four', 'distribute_nine'], help='the task') parser.add_argument('--relations', '-r', type=int, nargs='+', required=True, help='the held-out relations for (rel, attr) pairs, 0:Const, 1:Pro, 2:Arith, 3:Union') parser.add_argument('--attributes', '-a', type=int, nargs='+', required=True, help='the helo-out attributes for (rel, attr) pairs, 0:Num, 1:Pos, 2:Type, 3:Size, 4:Color') parser.add_argument('--list-format', '-lf', action='store_true', help='regard the rels and attrs as list of pairs, rather the tensor prod, if True') parser.add_argument('--all-belong-to', '-all', action='store_true', help='split to val when all (instead of any) rule_pairs of data belong to held-out-pairs, if True') parser.add_argument('--dump-dir', '-du', type=str, required=True, help='the dump dir for inds') parser.add_argument('--use-visual-inputs', '-v', action='store_true', help='Use visual inputs if True') parser.add_argument('--independent-split', '-indenp', action='store_true', help='regard the held-out pairs independently, and split for each of them') # exclude parser.add_argument('--exclude-relations', '-er', type=int, nargs='+', default=[], help='the exclude relations for (rel, attr) pairs, 0:Const, 1:Pro, 2:Arith, 3:Union') parser.add_argument('--exclude-attributes', '-ea', type=int, nargs='+', default=[], help='the exclude attributes for (rel, attr) pairs, 0:Num, 1:Pos, 2:Type, 3:Size, 4:Color') parser.add_argument('--exclude-list-format', '-elf', action='store_true', help='regard the ex-rels and ex-attrs as list of pairs, rather the tensor prod, if True') args = parser.parse_args() ORIGIN_DATA_SPLIT = { 'train': [0, 1, 2, 3, 4, 5], 'val': [6, 7], 'test': [8, 9], } # relations are represented by a 8x9 meta matrix # Meta matrix format # ["Constant", "Progression", "Arithmetic", "Distribute_Three", # "Number", "Position", "Type", "Size", "Color"] # check whether this data-point should be held out def held_out(meta_matrix, held_out_pairs, all_belong_to=False): flag = True rule_pairs = get_rule_pairs_from_meta_matrix(meta_matrix) for rule in rule_pairs: if rule in held_out_pairs: if not all_belong_to: # any belong to return True else: # not belong to, so the flag becomes false flag = False return flag def to_str(list_of_int): s = '' for i in list_of_int: s += str(i) return s def get_dump_name(relations, attributes, all_belong_to=False, list_format=False): dump_name = 'split_r{}_a{}'.format(to_str(relations), to_str(attributes)) if all_belong_to: dump_name += '_all' else: dump_name += '_any' if list_format: dump_name += '_lf' if args.use_visual_inputs: dump_name += '_visual' return dump_name def dump_dataset(dump_dir, inds, name): for mode in ['train', 'val', 'test']: file_name = osp.join(dump_dir, '{}_{}_inds.pkl'.format(mode, name)) with open(file_name, 'wb') as f: pickle.dump(inds[mode], f) print('[index file] {} saved, {} inds'.format( file_name, len(inds[mode]))) def process(inds, bins, exclude=[], request=[6000, 2000, 2000]): datasets = [collections.defaultdict(list) for i in range(len(bins))] all_belong_to = args.all_belong_to and not args.independent_split train_val_flag = False test_flag = False for i, ind in enumerate(inds): name = ind + '.npz' file_name = osp.join(args.data_dir, name) data = np.load(file_name) meta_matrix = data['meta_matrix'] for held_out_pairs, dataset in zip(bins, datasets): if len(exclude) > 0 and held_out(meta_matrix, exclude): # exclude pass elif held_out(meta_matrix, held_out_pairs, all_belong_to=all_belong_to): if len(dataset['test']) < request[2]: dataset['test'].append(name) else: test_flag = True else: if len(dataset['train']) < request[0]: dataset['train'].append(name) elif len(dataset['val']) < request[1]: dataset['val'].append(name) else: train_val_flag = True if not args.independent_split and train_val_flag and test_flag: break if i % 1000 == 0: print('nr_examples', i) for held_out_pairs, dataset in zip(bins, datasets): print('held {}, train {}, val {}, test {}'.format( held_out_pairs, len(dataset['train']), len(dataset['val']), len(dataset['test']))) return datasets def get_held_out_pairs(rels, attrs, list_format=False): held_out_pairs = [] if list_format: assert len(rels) == len(attrs), \ 'in the list_format, nr_rel=nr_attr should holds' for rel, attr in zip(rels, attrs): held_out_pairs.append((rel, attr)) else: for rel in rels: for attr in attrs: held_out_pairs.append((rel, attr)) return held_out_pairs def main(): held_out_pairs = get_held_out_pairs(args.relations, args.attributes, args.list_format) exclude_pairs = get_held_out_pairs(args.exclude_relations, args.exclude_attributes, args.exclude_list_format) partition = ['' for i in range(10)] for k in ORIGIN_DATA_SPLIT.keys(): for i in ORIGIN_DATA_SPLIT[k]: partition[i] = k if args.num % 10 != 0: print('[Warning] dataset size {} is not a multipler of 10'.format( args.num)) n = args.num // 10 inds = [] for i in range(n): for j in range(10): ind = i * 10 + j file_prefix = 'RAVEN_{}_{}'.format(ind, partition[j]) inds.append(file_prefix) bins = [] names = [] if args.independent_split: for r, a in held_out_pairs: name = get_dump_name([r], [a]) bins.append([(r, a)]) names.append(name) else: name = get_dump_name(args.relations, args.attributes, args.all_belong_to, args.list_format) bins.append(held_out_pairs) names.append(name) datasets = process(inds, bins, exclude=exclude_pairs) print('dump_dir is {}'.format(args.dump_dir)) os.makedirs(args.dump_dir, exist_ok=True) for dataset, name in zip(datasets, names): print('the name of the dataset is: {}'.format(name)) dump_dataset(args.dump_dir, dataset, name) if __name__ == '__main__': main()
36.50463
103
0.625491
0
0
0
0
0
0
0
0
2,689
0.341027
ce0afbb54da9c5cda767047eb0fb4add36a18205
1,533
py
Python
apis/common/models/movie.py
sunil28rana/flask-imdb-sample-project
df28655327a42c0ec28e485d64ebbc5d525275e7
[ "MIT" ]
null
null
null
apis/common/models/movie.py
sunil28rana/flask-imdb-sample-project
df28655327a42c0ec28e485d64ebbc5d525275e7
[ "MIT" ]
null
null
null
apis/common/models/movie.py
sunil28rana/flask-imdb-sample-project
df28655327a42c0ec28e485d64ebbc5d525275e7
[ "MIT" ]
1
2020-10-22T10:31:00.000Z
2020-10-22T10:31:00.000Z
from datetime import datetime from sqlalchemy import UniqueConstraint from apis.initialization import db class Movie(db.Model): """ Movie Model for storing movie details""" id = db.Column(db.Integer, primary_key=True, autoincrement=True) ninety_nine_popularity = db.Column(db.Float, index=True, nullable=False) name = db.Column(db.String(100), index=True, nullable=False) director = db.Column(db.String(100), index=True, nullable=False) imdb_score = db.Column(db.Float, index=True, nullable=False) created_at = db.Column(db.DateTime, default=datetime.utcnow, nullable=False) updated_at = db.Column(db.DateTime, default=datetime.utcnow, nullable=False) is_deleted = db.Column(db.Boolean, default=False, nullable=False) __table_args__ = (UniqueConstraint('name', 'director', name='move_name_director_name'),) # relations genres = db.relationship( 'MovieGenre', backref='movie', primaryjoin='and_(MovieGenre.movie_id==Movie.id, MovieGenre.is_deleted==False)', lazy='dynamic' ) def __repr__(self): return '<Movie %r>' % self.name class MovieGenre(db.Model): """MovieGenre Model for genres of movie""" id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String(100), index=True, nullable=False) movie_id = db.Column(db.Integer, db.ForeignKey('movie.id')) is_deleted = db.Column(db.Boolean, default=False, nullable=False) def __repr__(self): return '<Movie %r>' % self.name
35.651163
92
0.703849
1,420
0.926288
0
0
0
0
0
0
267
0.174168
ce0ca8f2fe98f3ab332870eee82d60c59dac39aa
719
py
Python
setup.py
DewMaple/toolkit
a1f04d1b53420c64e15f684c83acb54276031346
[ "BSD-3-Clause" ]
null
null
null
setup.py
DewMaple/toolkit
a1f04d1b53420c64e15f684c83acb54276031346
[ "BSD-3-Clause" ]
null
null
null
setup.py
DewMaple/toolkit
a1f04d1b53420c64e15f684c83acb54276031346
[ "BSD-3-Clause" ]
null
null
null
# from distutils.core import setup from setuptools import setup, find_packages setup( name='py-toolkit', version='0.0.3', packages=find_packages(exclude=("tests",)), url='https://github.com/DewMaple/toolkit', description='python toolkit for common usage', author='DewMaple', author_email='dewmaple@gmail.com', license='', keywords=['python', "schema meta"], classifiers=['Programming Language :: Python :: 3.6'], project_urls={ 'Bug Reports': 'https://github.com/DewMaple/toolkit/issues', 'Source': 'https://github.com/DewMaple/toolkit', }, tests_require=[ "pytest", "pytest-cov", "pytest-xprocess", ], zip_safe=True )
28.76
68
0.631433
0
0
0
0
0
0
0
0
361
0.502086
ce0da279383850a16ffabcd3fe15ce7341142e46
3,934
py
Python
ui.py
xKynn/zerox-assistant
292525bf55cd08f930338310869dba1c25a00cf4
[ "MIT" ]
1
2021-11-07T14:49:13.000Z
2021-11-07T14:49:13.000Z
ui.py
xKynn/pyTunes
292525bf55cd08f930338310869dba1c25a00cf4
[ "MIT" ]
null
null
null
ui.py
xKynn/pyTunes
292525bf55cd08f930338310869dba1c25a00cf4
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'hnc.ui' # # Created by: PyQt5 UI code generator 5.15.6 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(QtWidgets.QMainWindow): def __init__(self, cc, tm, parent=None): super().__init__(parent) self.cc = cc self.setupUi(self) self.tm = tm self.connect_signals() def update_stlbl(self): if self.cc.poll(): msg = self.cc.recv() self.statuslbl.setText(msg) def comm(self): self.cc.send("listen") def connect_signals(self): self.pushButton.clicked.connect(self.comm) self.tm.timeout.connect(self.update_stlbl) def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(365, 403) MainWindow.setStyleSheet("background-color: rgb(53, 53, 53);") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(110, 230, 150, 150)) self.pushButton.setMinimumSize(QtCore.QSize(40, 40)) self.pushButton.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.pushButton.setStyleSheet("QPushButton {\n" " color: rgb(39, 212, 111);\n" " border: 2px solid #555;\n" " border-radius: 75px;\n" " border-style: outset;\n" " background:rgb(58, 255, 81);\n" " padding: 5px;\n" " }\n" "\n" "QPushButton:hover {\n" " background: rgb(63, 231, 74)\n" " }\n" "\n" "QPushButton:pressed {\n" " border-style: inset;\n" " background: rgb(53, 221, 64)\n" " }") self.pushButton.setText("") self.pushButton.setIconSize(QtCore.QSize(40, 40)) self.pushButton.setObjectName("pushButton") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(29, 30, 81, 31)) self.label.setStyleSheet("font: 25 20pt \"Bahnschrift Light Condensed\";\n" "color: rgb(96, 255, 60);") self.label.setObjectName("label") self.statuslbl = QtWidgets.QLabel(self.centralwidget) self.statuslbl.setGeometry(QtCore.QRect(30, 180, 500, 31)) self.statuslbl.setStyleSheet("font: 25 15pt \"Bahnschrift Light Condensed\";\n" "color: rgb(96, 255, 60);") self.statuslbl.setText("") self.statuslbl.setObjectName("statuslbl") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", " ")) self.label.setText(_translate("MainWindow", "pyTunes")) self.statuslbl.setText(_translate("MainWindow", "Press the button to begin..")) def uifunc(cc): app = QtWidgets.QApplication([]) tm = QtCore.QTimer() win = Ui_MainWindow(cc, tm) win.show() tm.start(1000) app.exec()
42.76087
87
0.543976
3,444
0.875445
0
0
0
0
0
0
987
0.25089
ce0dbcf0753017f4de48e972ead2feb9166619cc
6,373
py
Python
text_clf/data_load.py
kejunxiao/TextClf
aa1c195cb5908c32a3e6ed6891142603cb198d87
[ "BSD-3-Clause" ]
2
2018-05-13T13:00:10.000Z
2018-05-13T13:00:12.000Z
text_clf/data_load.py
kejunxiao/TextClf
aa1c195cb5908c32a3e6ed6891142603cb198d87
[ "BSD-3-Clause" ]
null
null
null
text_clf/data_load.py
kejunxiao/TextClf
aa1c195cb5908c32a3e6ed6891142603cb198d87
[ "BSD-3-Clause" ]
null
null
null
""" data preprocessing and get batch """ import os import re import logging import itertools from collections import Counter import numpy as np import pandas as pd class DataLoad(object): logging.getLogger().setLevel(logging.INFO) def __init__(self, data_path, batch_size, num_epochs, dev_sample_rate, forced_seq_len=None): """ params: data_path: source data path mode: 'tarin' or 'dev' dev_sample_rate: percentage of the training data to use for validation """ self.data_path = data_path self.batch_size = batch_size self.num_epochs = num_epochs self.forced_seq_len = forced_seq_len self.dev_sample_rate = dev_sample_rate self._load_data() def train_batch_iter(self, shuffle=True): """ params: returns: """ x, y, data_size = self._split_train_dev('train') num_batchs_per_epoch = data_size // self.batch_size + 1 for _ in range(self.num_epochs): if shuffle: shuffled_indices = np.random.permutation(np.arange(data_size)) x, y = x[shuffled_indices], y[shuffled_indices] for i in range(num_batchs_per_epoch): start_idx = i * self.batch_size end_idx = min((i+1) * self.batch_size, data_size) yield x[start_idx:end_idx], y[start_idx:end_idx] def get_dev_data(self, shuffle=True): """ params: returns: """ dev_x, dev_y, dev_size = self._split_train_dev('dev') if shuffle: shuffled_indices = np.random.permutation(np.arange(dev_size)) dev_x, dev_y = dev_x[shuffled_indices], dev_y[shuffled_indices] return dev_x, dev_y @staticmethod def _clean_str(s): s = re.sub(r"[^A-Za-z0-9:(),!?\'\`]", " ", s) s = re.sub(r" : ", ":", s) s = re.sub(r"\'s", " \'s", s) s = re.sub(r"\'ve", " \'ve", s) s = re.sub(r"n\'t", " n\'t", s) s = re.sub(r"\'re", " \'re", s) s = re.sub(r"\'d", " \'d", s) s = re.sub(r"\'ll", " \'ll", s) s = re.sub(r",", " , ", s) s = re.sub(r"!", " ! ", s) s = re.sub(r"\(", " \( ", s) s = re.sub(r"\)", " \) ", s) s = re.sub(r"\?", " \? ", s) s = re.sub(r"\s{2,}", " ", s) return s.strip().lower() def _load_data(self): """ params: returns: x: 2D np.array samples, dimension is (N, self.forced_seq_len) y: 2D np.array labels, dimension is (N, len(labels)) token2id: python dict object id2token: python dict object df: pd.DataFrame labels: 1D np.array """ df = pd.read_csv(self.data_path) selected_cols = ['Descript', 'Category'] df = df.loc[:, selected_cols].dropna(axis=0, how='any') # construct label one-hot vectors labels = np.unique( np.array(df.loc[:, selected_cols[1]], dtype=np.object)) one_hot = np.zeros([len(labels), len(labels)], np.float) np.fill_diagonal(one_hot, 1) # {laebl: one hot vector for this label} labels2vec = dict(zip(labels, one_hot)) raw_x = np.array(df.loc[:, selected_cols[0]].apply( lambda x: DataLoad._clean_str(x).split(' ')), dtype=np.object) raw_y = df.loc[:, selected_cols[1]].apply( lambda y: labels2vec[y]).tolist() # padding sentence padded_x = self._pad_sentence(raw_x) token2id = self._build_vocab(padded_x) x = [] for sent in padded_x: xs = [] for token in sent: if token not in token2id: token = '<OOV>' xs.append(token2id[token]) x.append(xs) self.x = np.array(x, dtype=np.int64) self.y = np.array(raw_y, dtype=np.float) def _split_train_dev(self, mode): # split data into train set or dev set data_size = self.x.shape[0] dev_size = int(data_size * self.dev_sample_rate) train_size = data_size - dev_size # maybe using cross-validation is better if mode == 'train': return self.x[:train_size], self.y[:train_size], train_size elif mode == 'dev': return self.x[dev_size:], self.y[dev_size:], dev_size else: raise ValueError('mode shoudle be train or dev.') def _pad_sentence(self, sentences, padding_word='<PAD>'): if self.forced_seq_len is None: # forced_seq_len = max length of all sentences self.forced_seq_len = max([len(sent) for sent in sentences]) padded_sentences = [] for sent in sentences: if len(sent) < self.forced_seq_len: sent.extend([padding_word] * (self.forced_seq_len-len(sent))) padded_sent = sent elif len(sent) > self.forced_seq_len: logging.info('Because the length of the sentence is larger the self.forced_seq_len,' 'so need to cut off the sentence.') padded_sent = sent[:self.forced_seq_len] padded_sentences.append(padded_sent) return padded_sentences def _build_vocab(self, sentences): tokens_count = Counter(itertools.chain(*sentences)) vocab = [token[0] for token in tokens_count.most_common(self.forced_seq_len)] vocab += ['<OOV>'] # out of vocablary token2id = {token: i for i, token in enumerate(vocab)} self.vocab_size = len(vocab) return token2id if __name__ == '__main__': params = { 'data_path': '../dataset/San_Francisco_Crime/train.csv.zip', 'batch_size': 32, 'num_epochs': 200, 'forced_seq_len': 14, 'dev_sample_rate':0.05 } data = DataLoad(data_path=params['data_path'], batch_size=params['batch_size'], num_epochs=params['num_epochs'], forced_seq_len=params['forced_seq_len'], dev_sample_rate=params['dev_sample_rate']) batches = data.train_batch_iter() batch_x, batch_y = next(batches) # print(len(batches)) print(batch_x.shape) print(batch_y.shape)
35.209945
100
0.557822
5,540
0.869292
658
0.103248
613
0.096187
0
0
1,523
0.238977
ce0e92d74f72ee04e6c2fbb871130425f6c911e3
11,629
py
Python
pydsm/audio_weightings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
pydsm/audio_weightings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
pydsm/audio_weightings.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2013, Sergio Callegari # All rights reserved. # This file is part of PyDSM. # PyDSM is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # PyDSM is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with PyDSM. If not, see <http://www.gnu.org/licenses/>. """ Acoustic weighting functions (:mod:`pydsm.audio_weightings`) ============================================================ Some standard acoustic weighting functions. This module includes the A-, B- and C-weightings from the ANSI Standards S1.4-1983 and S1.42-2001. It also includes the D-weighting from the now withdrawn IEC 537. It also includes the F-weighting proposed by R. A. Wannamaker. The weighting functions can be expressed either in terms of acoustic power or in terms of signal amplitude. The weighting functions are also available in terms of a filter-based implementation. In this case, be careful since no normalization is present so that the gain at 1 kHz can be arbitrary. The filter transfer function is referred to a signal amplitude weighting. .. currentmodule:: pydsm.audio_weightings Weighting functions ------------------- .. autosummary:: :toctree: generated/ a_weighting b_weighting c_weighting d_weighting f_weighting Filter implementation of weighting functions -------------------------------------------- .. autodata:: a_zpk :annotation: .. autodata:: b_zpk :annotation: .. autodata:: c_zpk :annotation: .. autodata:: d_zpk :annotation: .. autodata:: f_zpk :annotation: Normalization constants ----------------------- .. autodata:: a_weighting_gain :annotation: .. autodata:: b_weighting_gain :annotation: .. autodata:: c_weighting_gain :annotation: .. autodata:: d_weighting_gain :annotation: .. autodata:: f_weighting_gain :annotation: Notes ----- The ANSI and IEC weightings are also described in Wikipedia [1] and summarized in some illustrative web pages such as [2]_ and [3]_. The F-weighting is documented in [4]_. The filter-based implementation of the F-weighting is so high-order that evaluation of the transfer function may require special care. .. [1] Wikipedia (http://en.wikipedia.org/wiki/A-weighting) .. [2] Cross spectrum (http://www.cross-spectrum.com/audio/weighting.html) .. [3] Product Technology Parters "Noise Measurement Briefing" (http://www.ptpart.co.uk/noise-measurement-briefing/) .. [4] Robert A. Wannamaker "Psychoacoustically Optimal Noise Shaping," J. Audio Eng. Soc., Vol. 40 No. 7/8 1992 July/August """ from __future__ import division, print_function import numpy as np __all__ = ["a_zpk", "a_weighting", "b_zpk", "b_weighting", "c_zpk", "c_weighting", "d_zpk", "d_weighting", "f_zpk", "f_weighting"] a_zpk = (2*np.pi*np.asarray([0., 0., 0., 0.]), 2*np.pi*np.asarray([-20.6, -20.6, -107.7, -739.9, -12200., -12200.]), (2*np.pi*12200.)**2) """A-weighting filter in zpk form.""" b_zpk = (2*np.pi*np.asarray([0., 0., 0.]), 2*np.pi*np.asarray([-20.6, -20.6, -158.5, -12200., -12200.]), (2*np.pi*12200.)**2) """B-weighting filter in zpk form.""" c_zpk = (2*np.pi*np.asarray([0., 0.]), 2*np.pi*np.asarray([-20.6, -20.6, -12200., -12200.]), (2*np.pi*12200.)**2) """C-weighting filter in zpk form.""" d_zpk = (2*np.pi*np.asarray([0., -519.8+876.2j, -519.8-876.2j]), 2*np.pi*np.asarray([-282.7, -1160., -1712+2628j, -1712-2628j]), 91104.32) """D-weighting filter in zpk form.""" f_zpk = (2*np.pi*np.asarray([0., 0., 0., -580+1030j, -580-1030j, -3180+8750j, -3180-8750j, -3180+8750j, -3180-8750j, -3180+8750j, -3180-8750j]), 2*np.pi*np.asarray([-180., -180., -180., -1630., -1630., -2510+3850j, -2510-3850j, -2510+3850j, -2510-3850j, -2510+3850j, -2510-3850j, -2510+3850j, -2510-3850j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j, -6620+14290j, -6620-14290j]), 1.6810544531883432e+207) """F-weighting filter in zpk form.""" # Note: evaluating the transfer function of f_zpk may require special care # since the high order implies that for many frequency values both the # numerator and the denominator take very large values (in magnitude). Taking # the ratio of large complex values may lead to overflow in numpy even if # individually the numerator, the denominator and the result should not # overflow. def a_weighting(f, normal=True, power=True): """Returns the A-weighting as a function of frequency. Parameters ---------- f : float or array of floats frequency where the weighting function is computed normal : bool whether the function should be normalized to have unit gain at 1 kHz. power : bool whether the function should express the weighting in terms of acoustic power or signal amplitude Returns ------- w : float or array of floats value of the weigting function """ if power: return a_weighting(f, normal, power=False)**2 w = (12200.0**2*f**4)/((f**2+20.6**2) * np.sqrt((f**2+107.7**2) * (f**2+737.9**2))*(f**2+12200.0**2)) return w if not normal else w*a_weighting_gain a_weighting_gain = 1/a_weighting(1000, normal=False, power=False) """Normalization gain to apply to A-weighting filter (namely, the attenuation of the filter at 1 kHz)""" def b_weighting(f, normal=True, power=True): """Returns the B-weighting as a function of frequency. Parameters ---------- f : float or array of floats frequency where the weighting function is computed normal : bool whether the function should be normalized to have unit gain at 1 kHz. power : bool whether the function should express the weighting in terms of acoustic power or signal amplitude Returns ------- w : float or array of floats value of the weigting function """ if power: return b_weighting(f, normal, power=False)**2 w = (12200.0**2*f**3)/((f**2+20.6**2) * np.sqrt(f**2+158.5**2)*(f**2+12200.0**2)) return w if not normal else w*b_weighting_gain b_weighting_gain = 1/b_weighting(1000, normal=False, power=False) """Normalization gain to apply to B-weighting filter (namely, the attenuation of the filter at 1 kHz)""" def c_weighting(f, normal=True, power=True): """Returns the C-weighting as a function of frequency. Parameters ---------- f : float or array of floats frequency where the weighting function is computed normal : bool whether the function should be normalized to have unit gain at 1 kHz. power : bool whether the function should express the weighting in terms of acoustic power or signal amplitude Returns ------- w : float or array of floats value of the weigting function """ if power: return c_weighting(f, normal, power=False)**2 w = (12200.0**2*f**2)/((f**2+20.6**2)*(f**2+12200.0**2)) return w if not normal else w*c_weighting_gain c_weighting_gain = 1/c_weighting(1000, normal=False, power=False) """Normalization gain to apply to C-weighting filter (namely, the attenuation of the filter at 1 kHz)""" def d_weighting(f, normal=True, power=True): """Returns the D-weighting as a function of frequency. Parameters ---------- f : float or array of floats frequency where the weighting function is computed normal : bool whether the function should be normalized to have unit gain at 1 kHz. This parameter is ignored, since this weighting function is always normalized. power : bool whether the function should express the weighting in terms of acoustic power or signal amplitude Returns ------- w : float or array of floats value of the weigting function """ if power: return d_weighting(f, normal, power=False)**2 def h(f): return (((1037918.48-f**2)**2+1080768.16*f**2) / ((9837328.0-f**2)**2+11723776.0*f**2)) return (f/6.8966888496476E-5 * np.sqrt(h(f)/((f**2+79919.29)*(f**2+1345600.0)))) d_weighting_gain = 1. """Normalization gain to apply to D-weighting filter (namely, the attenuation of the filter at 1 kHz)""" def f_weighting(f, normal=True, power=True): """Returns the F-weighting as a function of frequency. Parameters ---------- f : float or array of floats frequency where the weighting function is computed normal : bool whether the function should be normalized to have unit gain at 1 kHz. power : bool whether the function should express the weighting in terms of acoustic power or signal amplitude Returns ------- w : float or array of floats value of the weigting function Notes ----- The F-weighting function is documented in [1]_. .. [1] Robert A. Wannamaker "Psychoacoustically Optimal Noise Shaping," J. Audio Eng. Soc., Vol. 40 No. 7/8 1992 July/August """ if not power: return np.sqrt(f_weighting(f, normal, power=True)) fx = f/1000. g = 2.536e-5 z1 = fx**2 z2 = ((0.58**2)+(1.03**2)-z1)**2 + 4.0*(0.58**2)*z1 z3 = ((3.18**2)+(8.75**2)-z1)**2 + 4.0*(3.18**2)*z1 p1 = 0.18**2+z1 p2 = 1.63**2+z1 p3 = ((2.51**2)+(3.85**2)-z1)**2 + 4.0*(2.51**2)*z1 p4 = ((6.62**2)+(14.29**2)-z1)**2 + 4.0*(6.62**2)*z1 w = ((g*((z1**3)*z2*(z3**3)) / ((p1**3)*(p2**2)*(p3**4))*((1e5/p4)**20))) return w if not normal else w*f_weighting_gain # Set normalization gain f_weighting_gain = 1/f_weighting(1000, normal=False, power=True) """Normalization gain to apply to F-weighting filter (namely, the attenuation of the filter at 1 kHz)"""
33.707246
78
0.600224
0
0
0
0
0
0
0
0
7,058
0.606931
ce0ea9cd4625661b89c457658572716294eaef3b
1,258
py
Python
data_custom/data_load.py
icon-lab/provoGAN
e4abee668ca5a5733a04c0e27e379a0434b0270f
[ "BSD-3-Clause" ]
1
2022-03-27T09:16:22.000Z
2022-03-27T09:16:22.000Z
data_custom/data_load.py
icon-lab/provoGAN
e4abee668ca5a5733a04c0e27e379a0434b0270f
[ "BSD-3-Clause" ]
null
null
null
data_custom/data_load.py
icon-lab/provoGAN
e4abee668ca5a5733a04c0e27e379a0434b0270f
[ "BSD-3-Clause" ]
null
null
null
import os import nibabel import numpy as np import random from scipy import ndimage import SimpleITK as sitk def load_nifty_volume_as_array(filename, with_header = False): """ load nifty image into numpy array, and transpose it based on the [z,y,x] axis order The output array shape is like [Depth, Height, Width] inputs: filename: the input file name, should be *.nii or *.nii.gz with_header: return affine and hearder infomation outputs: data: a numpy data array """ img = nibabel.load(filename) data = img.get_data() data = np.transpose(data, [2,1,0]) if(with_header): return data, img.affine, img.header else: return data def save_array_as_nifty_volume(data, filename, reference_name = None): """ save a numpy array as nifty image inputs: data: a numpy array with shape [Depth, Height, Width] filename: the ouput file name reference_name: file name of the reference image of which affine and header are used outputs: None """ img = sitk.GetImageFromArray(data) if(reference_name is not None): img_ref = sitk.ReadImage(reference_name) img.CopyInformation(img_ref) sitk.WriteImage(img, filename)
29.952381
92
0.678855
0
0
0
0
0
0
0
0
612
0.486486
ce0ffdd605799570a773639f27bdbc3a5cc51708
8,802
py
Python
project/server/user/views.py
kangusrm/XML-parser
adb2a7049b5946fb6293f58e20c860fbb07a6806
[ "MIT" ]
1
2016-09-20T09:07:34.000Z
2016-09-20T09:07:34.000Z
project/server/user/views.py
kangusrm/XML-parser
adb2a7049b5946fb6293f58e20c860fbb07a6806
[ "MIT" ]
null
null
null
project/server/user/views.py
kangusrm/XML-parser
adb2a7049b5946fb6293f58e20c860fbb07a6806
[ "MIT" ]
1
2016-09-20T09:07:37.000Z
2016-09-20T09:07:37.000Z
# project/server/user/views.py ################# #### imports #### ################# from flask import render_template, Blueprint, url_for, \ redirect, flash, request, session from flask_login import login_user, logout_user, login_required from project.server import bcrypt, db from project.server.models import User, Data, prevod from project.server.user.forms import LoginForm, RegisterForm, UploadForm, ConnectForm import xml.etree.ElementTree as ET import pymysql import pymysql.cursors import tempfile import os ################ #### config #### ################ user_blueprint = Blueprint('user', __name__, ) ################ #### routes #### ################ @user_blueprint.route('/register', methods=['GET', 'POST']) def register(): form = RegisterForm(request.form) if form.validate_on_submit(): user = User( email=form.email.data, password=form.password.data ) db.session.add(user) db.session.commit() login_user(user) flash('Thank you for registering.', 'success') return redirect(url_for("user.home")) return render_template('user/register.html', form=form) @user_blueprint.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm(request.form) if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user and bcrypt.check_password_hash( user.password, request.form['password']): login_user(user) flash('You are logged in. Welcome!', 'success') return redirect(url_for('main.home')) else: flash('Invalid email and/or password.', 'danger') return render_template('user/login.html', form=form) return render_template('user/login.html', title='Please Login', form=form) @user_blueprint.route('/logout') @login_required def logout(): logout_user() flash('You were logged out. Bye!', 'success') return redirect(url_for('main.home')) @user_blueprint.route('/xmlparser', methods=['POST', 'GET']) @login_required def xmlparser(): try: host = session['db_host'] session.pop('db_host', None) user = session['db_user'] session.pop('db_user', None) password = session['db_password'] session.pop('db_password', None) db = session['db_database'] session.pop('db_database', None) destination = session['file'] session.pop('file', None) file = open(destination, "r") tree = ET.parse(file) root = tree.getroot() tagy = [] radky = 0 for child in root: sloupce = 0 for tag in child: if root[radky][sloupce].tag not in tagy: tagy.append(prevod(root[radky][sloupce].tag)) sloupce += 1 radky += 1 data = Data(radky) radkyX = 0 attributy1 = 0 attributy2 = 0 for child in root: sloupceY = 0 if child.attrib != "{}": for key in child.attrib: if not key in tagy: tagy.append(key) attributy1 += 1 data.setData(radkyX, key, child.attrib[key]) for tag in child: data.setData(radkyX, root[radkyX][sloupceY].tag, root[radkyX][sloupceY].text) if tag.attrib != "{}": for key in tag.attrib: if not key in tagy: tagy.append(key) attributy2 += 1 data.setData(radkyX, key, tag.attrib[key]) sloupceY += 1 radkyX += 1 sql = 'INSERT INTO `' + prevod(session['db_table']) + '` (' for tag in tagy: if request.form[tag] != "": if sql == 'INSERT INTO `' + prevod(session['db_table']) + '` (': sql += prevod(request.form[tag]) else: sql += ',' + prevod(request.form[tag]) session.pop('db_table', None) sql += ') VALUES ' for x in range(0,radky): prvni = True if x == 0: sql += "(" else: sql += ",(" for tag in tagy: if request.form[tag] != "": if prvni is True: sql += "'" + prevod(data.getData(x,tag)) + "'" prvni = False else: sql += ",'" + prevod(data.getData(x,tag)) + "'" sql += ")" sql += ";" conn = pymysql.connect(host=host, user=user, password=password, db=db, cursorclass=pymysql.cursors.DictCursor) a = conn.cursor() file.close() os.remove(destination) a.execute(sql) conn.commit() flash('Success', 'success') return render_template('main/home.html') except: flash('Unexpected error', 'danger') return redirect(url_for("user.upload")) @user_blueprint.route('/upload', methods=['POST', 'GET']) @login_required def upload(): if 'db_host' not in session: form = ConnectForm(request.form) return render_template('user/connect.html',form=form) form = UploadForm(request.form) return render_template('user/upload.html',form=form) @user_blueprint.route('/connect', methods=['POST', 'GET']) @login_required def connect(): session['db_host'] = request.form['host'] session['db_user'] = request.form['user'] session['db_password'] = request.form['password'] session['db_database'] = request.form['database'] session['db_table'] = request.form['table'] return redirect(url_for("user.upload")) @user_blueprint.route('/process', methods=['POST', 'GET']) @login_required def process(): if 'file' not in request.files: flash('No file part', 'danger') return redirect(url_for("user.upload")) file = request.files['file'] if file.filename == '': flash('No selected file', 'danger') return redirect(url_for("user.upload")) if file.filename.rsplit('.', 1)[1].lower() not in ['xml']: flash('This is not .xml file', 'danger') return redirect(url_for("user.upload")) try: filename = file.filename target = tempfile.gettempdir() destination = "/".join([target, filename]) file.save(destination) session['file'] = destination file = open(destination,"r") tree = ET.parse(file) root = tree.getroot() tagy = [] radky = 0 for child in root: sloupce = 0 for tag in child: if root[radky][sloupce].tag not in tagy: tagy.append(root[radky][sloupce].tag) sloupce += 1 radky += 1 data = Data(radky) radkyX = 0 attributy1 = 0 attributy2 = 0 for child in root: sloupceY = 0 if child.attrib != "{}": for key in child.attrib: if not key in tagy: tagy.append(key) attributy1 += 1 data.setData(radkyX, key, child.attrib[key]) for tag in child: data.setData(radkyX, root[radkyX][sloupceY].tag, root[radkyX][sloupceY].text) if tag.attrib != "{}": for key in tag.attrib: if not key in tagy: tagy.append(key) attributy2 += 1 data.setData(radkyX, key, tag.attrib[key]) sloupceY += 1 radkyX += 1 sloupce = sloupceY + attributy1 + attributy2 conn = pymysql.connect(host = session['db_host'], user = session['db_user'], password = session['db_password'], db=session['db_database'], cursorclass=pymysql.cursors.DictCursor) a = conn.cursor() sql = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '" + prevod(session['db_table']) + "'" a.execute(sql) result = a.fetchall() db_tagy = [] for column in result: db_tagy.append(column['COLUMN_NAME']) except: session.pop('db_host', None) session.pop('db_user', None) session.pop('db_password', None) session.pop('db_database', None) session.pop('db_table', None) flash('Unexpected error', 'danger') return redirect(url_for("user.upload")) return render_template('user/xmlparser.html', data=data, tagy=tagy, db_tagy=db_tagy, sloupce=sloupce)
32.360294
123
0.538287
0
0
0
0
8,104
0.9207
0
0
1,447
0.164394
ce10a73d0706d4c9c4b471fbf0c74937c35cf813
5,477
py
Python
active_feature_extractor/experiments/linear_q_learner.py
benblack769/atari_q_learner
adae53e91ec6013ffaeefc9a058c7ab933593cea
[ "MIT" ]
null
null
null
active_feature_extractor/experiments/linear_q_learner.py
benblack769/atari_q_learner
adae53e91ec6013ffaeefc9a058c7ab933593cea
[ "MIT" ]
null
null
null
active_feature_extractor/experiments/linear_q_learner.py
benblack769/atari_q_learner
adae53e91ec6013ffaeefc9a058c7ab933593cea
[ "MIT" ]
null
null
null
import torch import numpy as np from torch import nn def get_avg_discounted_value(next_dones, next_mask, next_rewards, next_value_preds, gamma): minibatch_size, td_lambda = next_dones.shape lambda_gamma = torch.cumprod(torch.ones(td_lambda)*gamma,dim=0) * (1/gamma) # all dones also must be masks, by definition next_value_mask = next_mask * (1 - next_dones) # mask to apply to values lambda_mask = torch.cumprod(next_value_mask, dim=1) # still reward agents if they are done that step lambda_rew_mask = lambda_mask + next_dones lambda_rews = lambda_rew_mask*torch.cumsum(next_rewards,dim=1) lambda_values = lambda_mask * next_value_preds num_rews = torch.sum(lambda_rew_mask, dim=1) discounted_values = lambda_gamma * (lambda_rews + gamma * lambda_values) avg_discounted_value = torch.sum(discounted_values, dim=1) / (num_rews + 1e-10) return avg_discounted_value # class DefaultModel(nn.Model): # def __init__(self) class LinearTDLearner: def __init__(self, feature_size, device, feature_preproc, learn_rate=0.0001): self.value_function = nn.Linear(feature_size, 1, bias=False).to(device) self.optim = torch.optim.SGD(self.value_function.parameters(), lr=learn_rate) self.feature_size = feature_size self.device = device self.feature_preproc = feature_preproc def values(self, features): values = self.value_function.forward(features) return values def update_epoc(self, feature_sequence, dones, mask, rewards, minibatch_size, td_lambda, gamma): num_samples = len(feature_sequence)-td_lambda-1 tot_td_err = 0 num_steps = 0 order = torch.randperm(num_samples, device=self.device) for i in range(0, num_samples, minibatch_size): maxi = min(num_samples, i+minibatch_size) curbatch_size = maxi - i with torch.no_grad(): idxs = order[i:maxi] all_idx_block = idxs.view(-1,1) + torch.arange(0, td_lambda+1, device=self.device).view(1,-1) all_idxs = all_idx_block.flatten() next_idxs = all_idx_block[:,1:].flatten() all_features = feature_sequence[all_idxs] processed_features = self.feature_preproc(all_features) value_preds = self.value_function.forward(processed_features).view(curbatch_size, -1) with torch.no_grad(): next_value_preds = value_preds[:,1:] next_dones = dones[next_idxs].view(curbatch_size,-1).float() next_mask = mask[next_idxs].view(curbatch_size,-1).float() next_rewards = rewards[next_idxs].view(curbatch_size,-1) avg_discounted_value = get_avg_discounted_value(next_dones, next_mask, next_rewards, next_value_preds, gamma) cur_values = value_preds[:,0] self.optim.zero_grad() td_err = torch.sum((avg_discounted_value.detach() - cur_values)**2)/minibatch_size td_err.backward() self.optim.step() tot_td_err += float(td_err.detach().numpy()) num_steps += 1 return tot_td_err / (num_steps*minibatch_size) @torch.no_grad() def _predict_values(self, feature_sequence, minibatch_size): num_samples = len(feature_sequence) value_batch_outs = [] for i in range(0, num_samples, minibatch_size): maxi = min(num_samples, i+minibatch_size) feature_batch = feature_sequence[i: maxi] proced_features = self.feature_preproc(feature_batch) pred_vals = self.value_function.forward(proced_features).flatten() value_batch_outs.append(pred_vals) predicted_values = torch.cat(value_batch_outs, axis=0) print(predicted_values.shape) return predicted_values def _get_actual_values(self, dones, masks, rewards, gamma): value = 0 actual_values = [] rewards = rewards.cpu().detach().numpy().tolist() dones = dones.cpu().detach().numpy().tolist() masks = masks.cpu().detach().numpy().tolist() for rew, done, mask in zip(rewards, dones, masks): # TODO: This does not implement mask logic!!! value += rew actual_values.append(value) value *= gamma if done: value = 0 actual_values.reverse() return torch.tensor(actual_values) def evaluate(self, feature_sequence, minibatch_size, dones, masks, rewards, gamma): actual_values = self._get_actual_values(dones, masks, rewards, gamma) pred_values = self._predict_values(feature_sequence, minibatch_size) obs1 = feature_sequence[:55,1].detach().numpy() obs2 = feature_sequence[:55,0].detach().numpy() pred_values_n = pred_values.detach().numpy() actual_values_n = actual_values.detach().numpy() print("iterdata") print("\n".join("\t".join([str(e) for e in el]) for el in zip(pred_values_n, actual_values_n, obs1, obs2))) # print(list(feature_sequence[:55,1].detach().numpy())) # print(list(feature_sequence[:55,0].detach().numpy())) # print(list(actual_values.detach().numpy())) # print(list(pred_values.detach().numpy())) # print(actual_values) # print(pred_values) return torch.mean(torch.abs(actual_values[1:] - pred_values[1:])) #
40.57037
125
0.651999
4,475
0.817053
0
0
644
0.117583
0
0
477
0.087091
ce1252998459ede1ce9e5326a029f03393ec65ef
660
py
Python
Qualification/lazyLoader.py
monisjaved/Facebook-Hacker-Cup
569052ecf1c94162cfbbef2533519b46d73d9328
[ "MIT" ]
null
null
null
Qualification/lazyLoader.py
monisjaved/Facebook-Hacker-Cup
569052ecf1c94162cfbbef2533519b46d73d9328
[ "MIT" ]
null
null
null
Qualification/lazyLoader.py
monisjaved/Facebook-Hacker-Cup
569052ecf1c94162cfbbef2533519b46d73d9328
[ "MIT" ]
null
null
null
# https://www.facebook.com/hackercup/problem/169401886867367/ __author__ = "Moonis Javed" __email__ = "monis.javed@gmail.com" def numberOfDays(arr): arr = sorted(arr) n = 0 while len(arr) > 0: k = arr[-1] w = k del arr[-1] while w <= 50: try: del arr[0] w += k except: break if w > 50: n += 1 return n if __name__ == "__main__": f = open("input2.txt").read().split("\n") writeF = open("output2.txt","w") n = int(f[0]) del f[0] for i in range(1,n+1): t = int(f[0]) del f[0] arr =[None]*t for j in xrange(t): arr[j] = int(f[0]) del f[0] writeF.write("Case #%d: %d\n" % (i,numberOfDays(arr))) # print i
18.333333
61
0.568182
0
0
0
0
0
0
0
0
165
0.25
ce14a275a0957db889a40c045e5b451a0b8f836f
331
py
Python
examples/robot_mock.py
gmamaladze/robo-pi
f9affc63760774073a3b1de4e4ea064bde2eb074
[ "MIT" ]
1
2020-04-24T21:34:01.000Z
2020-04-24T21:34:01.000Z
examples/robot_mock.py
gmamaladze/robo-pi
f9affc63760774073a3b1de4e4ea064bde2eb074
[ "MIT" ]
10
2019-12-16T20:55:38.000Z
2022-02-09T23:33:51.000Z
examples/robot_mock.py
gmamaladze/tf-voice-pi
f9affc63760774073a3b1de4e4ea064bde2eb074
[ "MIT" ]
null
null
null
class Robot: def __init__(self, left="MOTOR4", right="MOTOR2", config=1): print("init") def forward(self): print("forward") def backward(self): print("backward") def left(self): print("left") def right(self): print("right") def stop(self): print("stop")
17.421053
64
0.537764
330
0.996979
0
0
0
0
0
0
60
0.181269
ce14ba7248ea553bc8bf340da9e895166445335c
47
py
Python
libs/messaging_service/__init__.py
wip-abramson/aries-jupyter-playground
872f1a319f9072d7160298fcce82fb64c93d7397
[ "Apache-2.0" ]
6
2021-05-27T12:51:32.000Z
2022-01-11T05:49:12.000Z
libs/messaging_service/__init__.py
SoftwareImpacts/SIMPAC-2021-64
4089946109e05516bbea70359d3bf1d02b245f4a
[ "Apache-2.0" ]
2
2021-10-05T07:38:05.000Z
2022-02-10T11:38:18.000Z
libs/messaging_service/__init__.py
SoftwareImpacts/SIMPAC-2021-64
4089946109e05516bbea70359d3bf1d02b245f4a
[ "Apache-2.0" ]
7
2021-04-22T14:18:06.000Z
2022-02-14T10:30:52.000Z
from .messaging_service import MessagingService
47
47
0.914894
0
0
0
0
0
0
0
0
0
0
ce1563691214ec353e2ec66f0c158ddd18f4c456
556
py
Python
Ex087.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
Ex087.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
Ex087.py
andrade-lcs/ex_curso_em_video_python
f2d029efe7a20cdf0fcb5b602f9992e27d37c263
[ "MIT" ]
null
null
null
from random import randint s = t = ma = 0 m = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] for l in range(0, 3): for c in range(0, 3): m[l][c] = randint(0, 100) print('-='*15) for l in range(0, 3): t += m[l][2] for c in range(0, 3): print(f'[{m[l][c]:^5}]', end='') if m[l][c] % 2 == 0: s += m[l][c] if m[1][c] > ma: ma = m[1][c] print() print('-='*15) print(f'A soma dos núemros pares é {s}') print(f'A soma dos valores da terceira coluna é {t}') print(f'O maior valor da segunda linha é {ma}')
27.8
53
0.47482
0
0
0
0
0
0
0
0
150
0.267857
ce1579bf8768e7cef70aebd7b3896b98ea1a0187
54
py
Python
networkx-d3-v2/networkx/tests/__init__.py
suraj-testing2/Clock_Websites
0e65331da40cfd3766f1bde17f0a9c7ff6666dea
[ "Apache-2.0" ]
null
null
null
networkx-d3-v2/networkx/tests/__init__.py
suraj-testing2/Clock_Websites
0e65331da40cfd3766f1bde17f0a9c7ff6666dea
[ "Apache-2.0" ]
null
null
null
networkx-d3-v2/networkx/tests/__init__.py
suraj-testing2/Clock_Websites
0e65331da40cfd3766f1bde17f0a9c7ff6666dea
[ "Apache-2.0" ]
null
null
null
from .utils_tests import * from .views_tests import *
18
26
0.777778
0
0
0
0
0
0
0
0
0
0
ce1581e90ef98f01e93c9852612c4c137d683a10
7,851
py
Python
ros/src/waypoint_updater/waypoint_updater.py
dan-fern/CarND-Capstone-P9
004853c7a14dfd5e99563c4082e7609885b4f6b2
[ "MIT" ]
null
null
null
ros/src/waypoint_updater/waypoint_updater.py
dan-fern/CarND-Capstone-P9
004853c7a14dfd5e99563c4082e7609885b4f6b2
[ "MIT" ]
null
null
null
ros/src/waypoint_updater/waypoint_updater.py
dan-fern/CarND-Capstone-P9
004853c7a14dfd5e99563c4082e7609885b4f6b2
[ "MIT" ]
null
null
null
#!/usr/bin/env python import rospy as rp import numpy as np import math as math from geometry_msgs.msg import PoseStamped, TwistStamped from styx_msgs.msg import Lane, Waypoint from scipy.spatial import KDTree from std_msgs.msg import Int32 ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' # Number of waypoints we will publish. LOOKAHEAD_WPS = 150 MAX_DECEL = 0.5 class MotionState( ): Go, Stop = range( 2 ) class WaypointUpdater( object ): def __init__( self ): rp.init_node( 'waypoint_updater' ) # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below rp.Subscriber( '/current_pose', PoseStamped, self.pose_cb ) rp.Subscriber( '/base_waypoints', Lane, self.waypoints_cb ) rp.Subscriber( '/traffic_waypoint', Int32, self.traffic_cb ) rp.Subscriber( '/current_velocity', TwistStamped, self.velocity_cb ) self.final_waypoints_pub = rp.Publisher( 'final_waypoints', Lane, queue_size=1 ) # TODO: Add other member variables you need below self.base_lane = None self.pose = None self.waypoints_2d = None self.waypoint_tree = None self.nearest_light = None self.vehicle_velocity = None # in m/s self.motion_state = MotionState.Go self.deceleration_rate = None self.acceleration_rate = 0.75 # m/s self.previous_velocity = None self.loop( ) def loop( self ): rate = rp.Rate( 10 ) while not rp.is_shutdown( ): if self.pose and self.base_lane and self.waypoint_tree: # get closest waypoint #closest_waypoint_index = self.get_closest_waypoint_id( ) self.publish_waypoints( ) self.previous_velocity = self.vehicle_velocity rate.sleep( ) def publish_waypoints( self ): self.final_waypoints_pub.publish( self.generate_lane( ) ) def generate_lane( self ): lane = Lane( ) closest_idx = self.get_closest_waypoint_id( ) farthest_idx = closest_idx + LOOKAHEAD_WPS base_waypoints = self.base_lane[ closest_idx:farthest_idx ] if self.nearest_light != None and \ self.nearest_light <= farthest_idx and \ self.nearest_light >= closest_idx: self.motion_state = MotionState.Stop base_waypoints = self.decelerate( base_waypoints, closest_idx ) elif self.motion_state == MotionState.Stop: self.motion_state = MotionState.Go self.deceleration_rate = None if self.motion_state == MotionState.Go: if abs( self.vehicle_velocity - self.get_waypoint_velocity( \ base_waypoints[ 0 ] ) ) > 1.0: if self.previous_velocity == None: start_vel = self.vehicle_velocity else: start_vel = max( self.previous_velocity + 0.2, self.vehicle_velocity ) base_waypoints = self.accelerate( base_waypoints, start_vel ) else: self.acceleration_start_velocity = None lane.waypoints = base_waypoints return lane def accelerate( self, waypoints, start_velocity ): new_waypoints = [ ] for i, wp in enumerate( waypoints ): p = Waypoint( ) p.pose = wp.pose distance = self.distance( waypoints, 0, i ) target_vel = start_velocity + distance * self.acceleration_rate if target_vel < 0.5: target_vel = 0.5 p.twist.twist.linear.x = min( target_vel, self.get_waypoint_velocity( wp ) ) new_waypoints.append( p ) return new_waypoints def decelerate( self, waypoints, start_idx ): new_waypoints = [ ] speed = self.vehicle_velocity # two waypoints back from line so front of car stops earlier stop_idx = self.nearest_light - start_idx - 2 for i, wp in enumerate( waypoints ): p = Waypoint( ) p.pose = wp.pose dist = self.distance( waypoints, i, stop_idx ) if i >= stop_idx: target_vel = 0 elif dist < 15: if self.deceleration_rate == None: self.deceleration_rate = self.vehicle_velocity / dist target_vel = self.deceleration_rate * dist if target_vel <= 1.0: target_vel = 0.0 target_vel = min( target_vel, self.get_waypoint_velocity( wp ) ) else: target_vel = self.get_waypoint_velocity( wp ) p.twist.twist.linear.x = target_vel new_waypoints.append( p ) return new_waypoints def get_closest_waypoint_id( self ): x = self.pose.pose.position.x y = self.pose.pose.position.y closest_idx = self.waypoint_tree.query( [x, y], 1 )[1] # Check if closest waypoint is ahead or behind the vehicle closest_wp = np.array( self.waypoints_2d[ closest_idx ] ) previous_wp = np.array( self.waypoints_2d[ closest_idx - 1 ] ) # Equation for hyperplane through closest_coords waypoint_vector = closest_wp - previous_wp position_vector = np.array( [x, y] ) - closest_wp val = np.dot( waypoint_vector, position_vector ) if val > 0: closest_idx = ( closest_idx + 1 ) % len( self.waypoints_2d ) return closest_idx def pose_cb(self, msg): # TODO: Implement self.pose = msg def waypoints_cb( self, waypoints ): # TODO: Implement self.base_lane = waypoints.waypoints if not self.waypoints_2d: self.waypoints_2d = [ [ waypoint.pose.pose.position.x, waypoint.pose.pose.position.y ] for waypoint in waypoints.waypoints ] self.waypoint_tree = KDTree( self.waypoints_2d ) def traffic_cb( self, msg ): # TODO: Callback for /traffic_waypoint message. Implement if( msg.data == -1 ): self.nearest_light = None else: self.nearest_light = msg.data def velocity_cb( self, velocity ): self.vehicle_velocity = velocity.twist.linear.x def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later pass def get_waypoint_velocity( self, waypoint ): return waypoint.twist.twist.linear.x def set_waypoint_velocity( self, waypoints, waypoint, velocity ): waypoints[ waypoint ].twist.twist.linear.x = velocity def distance(self, waypoints, wp1, wp2): dist = 0 dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) for i in range(wp1, wp2+1): dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position) wp1 = i return dist if __name__ == '__main__': try: WaypointUpdater() except rp.ROSInterruptException: rp.logerr('Could not start waypoint updater node.')
31.154762
98
0.610495
6,734
0.857725
0
0
0
0
0
0
1,391
0.177175
ce1627eb06d19834ba84ea0cd7b1055080fe6187
595
py
Python
oandapy/exceptions.py
extreme4all/oandapy
48dcfbe154316a83ca6e62e6b939062165cabc3e
[ "MIT" ]
null
null
null
oandapy/exceptions.py
extreme4all/oandapy
48dcfbe154316a83ca6e62e6b939062165cabc3e
[ "MIT" ]
null
null
null
oandapy/exceptions.py
extreme4all/oandapy
48dcfbe154316a83ca6e62e6b939062165cabc3e
[ "MIT" ]
null
null
null
"""Exceptions.""" class OandaError(Exception): """ Generic error class, catches oanda response errors """ def __init__(self, error_response): self.error_response = error_response msg = f"OANDA API returned error code {error_response['code']} ({error_response['message']}) " super(OandaError, self).__init__(msg) class BadEnvironment(Exception): """environment should be: sandbox, practice or live.""" def __init__(self, environment): msg = f"Environment '{environment}' does not exist" super(BadEnvironment, self).__init__(msg)
29.75
103
0.67563
571
0.959664
0
0
0
0
0
0
267
0.448739
ce1666960c0a0228d2a06407d11294362e8b8691
4,444
py
Python
synthesis/reverse_map/reverse_map_ast.py
jajajaqlt/nsg
1873f2b5e10441110c3c69940ceb4650f9684ac0
[ "Apache-2.0" ]
10
2021-11-02T18:30:38.000Z
2022-03-21T06:31:33.000Z
synthesis/reverse_map/reverse_map_ast.py
rohanmukh/nag
f2c4b8e60a97c58a6a1c549cc8b4753ebfe8a5e3
[ "Apache-2.0" ]
2
2021-11-05T18:40:42.000Z
2022-03-30T04:33:08.000Z
synthesis/reverse_map/reverse_map_ast.py
rohanmukh/nag
f2c4b8e60a97c58a6a1c549cc8b4753ebfe8a5e3
[ "Apache-2.0" ]
2
2021-11-03T19:14:06.000Z
2021-11-03T23:47:09.000Z
# Copyright 2017 Rice University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from program_helper.ast.ops import DAPIInvoke from synthesis.ops.candidate_ast import SYMTAB_MOD, TYPE_NODE, API_NODE, VAR_NODE, OP_NODE, METHOD_NODE, CLSTYPE_NODE, \ VAR_DECL_NODE class AstReverseMapper: def __init__(self, vocab): self.vocab = vocab self.nodes, self.edges, self.targets = [], [], [] self.var_decl_ids = [] self.node_type_numbers = [] self.type_helper_val, self.expr_type_val, self.ret_type_val = [], [], [] self.num_data = 0 return def add_data(self, nodes, edges, targets, var_decl_ids, node_type_number, type_helper_val, expr_type_val, ret_type_val): self.nodes.extend(nodes) self.edges.extend(edges) self.targets.extend(targets) self.var_decl_ids.extend(var_decl_ids) self.node_type_numbers.extend(node_type_number) self.type_helper_val.extend(type_helper_val) self.expr_type_val.extend(expr_type_val) self.ret_type_val.extend(ret_type_val) self.num_data += len(nodes) def get_element(self, id): return self.nodes[id], self.edges[id], self.targets[id], \ self.var_decl_ids[id], \ self.node_type_numbers[id], \ self.type_helper_val[id], self.expr_type_val[id], self.ret_type_val[id] def decode_ast_paths(self, ast_element, partial=True): nodes, edges, targets, \ var_decl_ids, \ node_type_numbers, \ type_helper_vals, expr_type_vals, ret_type_vals = ast_element for node in nodes: print(self.vocab.chars_concept[node], end=',') print() # for edge in edges: print(edge, end=',') print() for _, _, target, \ var_decl_id, \ node_type_numbers, \ type_helper_val, expr_type_val, ret_type_val in zip(*ast_element): if node_type_numbers == SYMTAB_MOD: print('--symtab--', end=',') elif node_type_numbers == VAR_NODE: print(self.vocab.chars_var[target], end=',') elif node_type_numbers == VAR_DECL_NODE: print(self.vocab.chars_var[target], end=',') elif node_type_numbers == TYPE_NODE: print(self.vocab.chars_type[target], end=',') elif node_type_numbers == CLSTYPE_NODE: print(self.vocab.chars_type[target], end=',') elif node_type_numbers == API_NODE: api = self.vocab.chars_api[target] api = api.split(DAPIInvoke.delimiter())[0] print(api, end=',') elif node_type_numbers == OP_NODE: op = self.vocab.chars_op[target] print(op, end=',') elif node_type_numbers == METHOD_NODE: op = self.vocab.chars_method[target] print(op, end=',') else: print(self.vocab.chars_concept[target], end=',') print() if not partial: for var_decl_id in var_decl_ids: print(var_decl_id, end=',') print() for type_helper_val in type_helper_vals: print(self.vocab.chars_type[type_helper_val], end=',') print() for expr_type_val in expr_type_vals: print(self.vocab.chars_type[expr_type_val], end=',') print() for ret_type_val in ret_type_vals: print(self.vocab.chars_type[ret_type_val], end=',') print() print() def reset(self): self.nodes, self.edges, self.targets = [], [], [] self.var_decl_ids = [] self.node_type_numbers = [] self.type_helper_val, self.expr_type_val, self.ret_type_val = [], [], [] self.num_data = 0
36.727273
120
0.599685
3,679
0.827858
0
0
0
0
0
0
623
0.140189
ce17307a9a0665319fcd15ea71bb54693784de3c
135
py
Python
ch10/myproject_virtualenv/src/django-myproject/myproject/settings/production.py
PacktPublishing/Django-3-Web-Development-Cookbook
6ffe6e0add93a43a9abaff62e0147dc1f4f5351a
[ "MIT" ]
159
2019-11-13T14:11:39.000Z
2022-03-24T05:47:10.000Z
ch10/myproject_virtualenv/src/django-myproject/myproject/settings/production.py
PacktPublishing/Django-3-Web-Development-Cookbook
6ffe6e0add93a43a9abaff62e0147dc1f4f5351a
[ "MIT" ]
34
2019-11-06T08:32:48.000Z
2022-01-14T11:31:29.000Z
ch10/myproject_virtualenv/src/django-myproject/myproject/settings/production.py
PacktPublishing/Django-3-Web-Development-Cookbook
6ffe6e0add93a43a9abaff62e0147dc1f4f5351a
[ "MIT" ]
103
2019-08-15T21:35:26.000Z
2022-03-20T05:29:11.000Z
from ._base import * DEBUG = False WEBSITE_URL = "https://example.com" # without trailing slash MEDIA_URL = f"{WEBSITE_URL}/media/"
19.285714
61
0.718519
0
0
0
0
0
0
0
0
68
0.503704
ce1739ffa8890ca468f44112dbe677b551c2a05c
1,657
py
Python
v2/gui.py
appills/pyascii
525411327ecb8835e14f8f84b3ac19f059dbd0bc
[ "MIT" ]
null
null
null
v2/gui.py
appills/pyascii
525411327ecb8835e14f8f84b3ac19f059dbd0bc
[ "MIT" ]
null
null
null
v2/gui.py
appills/pyascii
525411327ecb8835e14f8f84b3ac19f059dbd0bc
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import filedialog from pyascii import main class App: def __init__(self, master): #initalize myFile instance variable self.myFile = None self.saveFile = None #set window height master.minsize(height = 440, width = 680) #create frame frame = Frame(master) frame.pack() #first label self.labelTop = Label(frame, text="Choose an image file!", font=("Arial", 12)) self.labelTop.pack() #first button self.buttonTop = Button(frame, text="Choose file", fg="blue", width = 10, command = self.chooseImageFile) self.buttonTop.pack() #second label self.labelMid = Label(frame, text="The ascii text file will be saved in the same directory as the image.\n" "If your image name was foo.jpg, the text file will be foo.txt", font=("Arial", 12)) self.labelMid.pack() #second button self.buttonMid = Button(frame, text="Pyascii!", fg="green", width = 10, command=self.pyascii) self.buttonMid.pack() def chooseImageFile(self): self.myFile = filedialog.askopenfilename(parent = root, title='Choose your picture!') while self.verifyFileExtension() is False: self.myFile = filedialog.askopenfilename(parent = root, title='Invalid file!') def pyascii(self): main(self.myFile) def verifyFileExtension(self): if self.myFile is None: return False else: validExtensions = ["jpeg", "jpg", "bmp", "png"] result = False for extension in validExtensions: if self.myFile.endswith(extension): result = True return result root=Tk() root.wm_title("Pyascii") app = App(root) root.mainloop()
30.127273
108
0.677127
1,499
0.904647
0
0
0
0
0
0
401
0.242004
ce1986e97c39f7b0d9070c20a8cf44a57d43a5a3
13,093
py
Python
tests/integration_tests/test_solution/test_solution_interior.py
cwentland0/perform
e08771cb776a7e6518c43350746e2ca72f79b153
[ "MIT" ]
6
2021-03-24T21:42:06.000Z
2022-01-28T20:00:13.000Z
tests/integration_tests/test_solution/test_solution_interior.py
cwentland0/perform
e08771cb776a7e6518c43350746e2ca72f79b153
[ "MIT" ]
38
2021-04-15T15:30:21.000Z
2022-01-29T01:23:57.000Z
tests/integration_tests/test_solution/test_solution_interior.py
cwentland0/perform
e08771cb776a7e6518c43350746e2ca72f79b153
[ "MIT" ]
1
2021-07-03T03:13:36.000Z
2021-07-03T03:13:36.000Z
import unittest import os import numpy as np from constants import ( del_test_dir, gen_test_dir, get_output_mode, solution_domain_setup, CHEM_DICT_REACT, SOL_PRIM_IN_REACT, TEST_DIR, ) from perform.constants import REAL_TYPE from perform.system_solver import SystemSolver from perform.input_funcs import read_restart_file from perform.gas_model.calorically_perfect_gas import CaloricallyPerfectGas from perform.time_integrator.implicit_integrator import BDF from perform.solution.solution_interior import SolutionInterior class SolutionIntInitTestCase(unittest.TestCase): def setUp(self): self.output_mode, self.output_dir = get_output_mode() # set chemistry self.chem_dict = CHEM_DICT_REACT self.gas = CaloricallyPerfectGas(self.chem_dict) # set time integrator self.param_dict = {} self.param_dict["dt"] = 1e-7 self.param_dict["time_scheme"] = "bdf" self.param_dict["time_order"] = 2 self.time_int = BDF(self.param_dict) # generate working directory gen_test_dir() # generate input text files solution_domain_setup() # set SystemSolver self.solver = SystemSolver(TEST_DIR) self.num_cells = 2 self.num_reactions = 1 def tearDown(self): del_test_dir() def test_solution_int_init(self): sol = SolutionInterior( self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells, self.num_reactions, self.time_int ) if self.output_mode: np.save(os.path.join(self.output_dir, "sol_int_init_sol_cons.npy"), sol.sol_cons) else: self.assertTrue(np.array_equal(sol.sol_prim, SOL_PRIM_IN_REACT)) self.assertTrue( np.allclose(sol.sol_cons, np.load(os.path.join(self.output_dir, "sol_int_init_sol_cons.npy"))) ) # TODO: a LOT of checking of other variables class SolutionIntMethodsTestCase(unittest.TestCase): def setUp(self): self.output_mode, self.output_dir = get_output_mode() # set chemistry self.chem_dict = CHEM_DICT_REACT self.gas = CaloricallyPerfectGas(self.chem_dict) # set time integrator self.param_dict = {} self.param_dict["dt"] = 1e-7 self.param_dict["time_scheme"] = "bdf" self.param_dict["time_order"] = 2 self.time_int = BDF(self.param_dict) # generate working directory gen_test_dir() # generate input text files solution_domain_setup() # set SystemSolver self.solver = SystemSolver(TEST_DIR) self.num_cells = 2 self.num_reactions = 1 self.sol = SolutionInterior( self.gas, SOL_PRIM_IN_REACT, self.solver, self.num_cells, self.num_reactions, self.time_int ) def tearDown(self): del_test_dir() def test_calc_sol_jacob(self): sol_jacob = self.sol.calc_sol_jacob(inverse=False) sol_jacob_inv = self.sol.calc_sol_jacob(inverse=True) if self.output_mode: np.save(os.path.join(self.output_dir, "sol_int_sol_jacob.npy"), sol_jacob) np.save(os.path.join(self.output_dir, "sol_int_sol_jacob_inv.npy"), sol_jacob_inv) else: self.assertTrue(np.allclose(sol_jacob, np.load(os.path.join(self.output_dir, "sol_int_sol_jacob.npy")))) self.assertTrue( np.allclose(sol_jacob_inv, np.load(os.path.join(self.output_dir, "sol_int_sol_jacob_inv.npy"))) ) def test_update_snapshots(self): # update the snapshot matrix for self.solver.iter in range(1, self.solver.num_steps + 1): if (self.solver.iter % self.solver.out_interval) == 0: self.sol.update_snapshots(self.solver) self.assertTrue(np.array_equal(self.sol.prim_snap, np.repeat(self.sol.sol_prim[:, :, None], 6, axis=2))) self.assertTrue(np.array_equal(self.sol.cons_snap, np.repeat(self.sol.sol_cons[:, :, None], 6, axis=2))) self.assertTrue( np.array_equal(self.sol.reaction_source_snap, np.repeat(self.sol.reaction_source[:, :, None], 5, axis=2)) ) self.assertTrue( np.array_equal(self.sol.heat_release_snap, np.repeat(self.sol.heat_release[:, None], 5, axis=1)) ) self.assertTrue(np.array_equal(self.sol.rhs_snap, np.repeat(self.sol.rhs[:, :, None], 5, axis=2))) def test_snapshot_output(self): for self.solver.iter in range(1, self.solver.num_steps + 1): # update the snapshot matrix if (self.solver.iter % self.solver.out_interval) == 0: self.sol.update_snapshots(self.solver) # write and check intermediate results if ((self.solver.iter % self.solver.out_itmdt_interval) == 0) and ( self.solver.iter != self.solver.num_steps ): self.sol.write_snapshots(self.solver, intermediate=True, failed=False) sol_prim_itmdt = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_ITMDT.npy") ) sol_cons_itmdt = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_ITMDT.npy") ) source_itmdt = np.load( os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_ITMDT.npy") ) heat_release_itmdt = np.load( os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_ITMDT.npy") ) rhs_itmdt = np.load( os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_ITMDT.npy") ) self.assertTrue(np.array_equal(sol_prim_itmdt, np.repeat(self.sol.sol_prim[:, :, None], 3, axis=2))) self.assertTrue(np.array_equal(sol_cons_itmdt, np.repeat(self.sol.sol_cons[:, :, None], 3, axis=2))) self.assertTrue( np.array_equal(source_itmdt, np.repeat(self.sol.reaction_source[:, :, None], 2, axis=2)) ) self.assertTrue( np.array_equal(heat_release_itmdt, np.repeat(self.sol.heat_release[:, None], 2, axis=1)) ) self.assertTrue(np.array_equal(rhs_itmdt, np.repeat(self.sol.rhs[:, :, None], 2, axis=2))) # write and check "failed" snapshots if self.solver.iter == 7: self.sol.write_snapshots(self.solver, intermediate=False, failed=True) sol_prim_failed = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_FAILED.npy") ) sol_cons_failed = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_FAILED.npy") ) source_failed = np.load( os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_FAILED.npy") ) heat_release_failed = np.load( os.path.join( self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_FAILED.npy" ) ) rhs_failed = np.load( os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_FAILED.npy") ) self.assertTrue(np.array_equal(sol_prim_failed, np.repeat(self.sol.sol_prim[:, :, None], 4, axis=2))) self.assertTrue(np.array_equal(sol_cons_failed, np.repeat(self.sol.sol_cons[:, :, None], 4, axis=2))) self.assertTrue( np.array_equal(source_failed, np.repeat(self.sol.reaction_source[:, :, None], 3, axis=2)) ) self.assertTrue( np.array_equal(heat_release_failed, np.repeat(self.sol.heat_release[:, None], 3, axis=1)) ) self.assertTrue(np.array_equal(rhs_failed, np.repeat(self.sol.rhs[:, :, None], 3, axis=2))) # delete intermediate results and check that they deleted properly self.sol.delete_itmdt_snapshots(self.solver) self.assertFalse( os.path.isfile( os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + "_ITMDT.npy") ) ) self.assertFalse( os.path.isfile( os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + "_ITMDT.npy") ) ) self.assertFalse( os.path.isfile( os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + "_ITMDT.npy") ) ) self.assertFalse( os.path.isfile( os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + "_ITMDT.npy") ) ) self.assertFalse( os.path.isfile(os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + "_ITMDT.npy")) ) # write final snapshots self.sol.write_snapshots(self.solver, intermediate=False, failed=False) sol_prim_final = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_prim_" + self.solver.sim_type + ".npy") ) sol_cons_final = np.load( os.path.join(self.solver.unsteady_output_dir, "sol_cons_" + self.solver.sim_type + ".npy") ) source_final = np.load(os.path.join(self.solver.unsteady_output_dir, "source_" + self.solver.sim_type + ".npy")) heat_release_final = np.load( os.path.join(self.solver.unsteady_output_dir, "heat_release_" + self.solver.sim_type + ".npy") ) rhs_final = np.load(os.path.join(self.solver.unsteady_output_dir, "rhs_" + self.solver.sim_type + ".npy")) self.assertTrue(np.array_equal(sol_prim_final, np.repeat(self.sol.sol_prim[:, :, None], 6, axis=2))) self.assertTrue(np.array_equal(sol_cons_final, np.repeat(self.sol.sol_cons[:, :, None], 6, axis=2))) self.assertTrue(np.array_equal(source_final, np.repeat(self.sol.reaction_source[:, :, None], 5, axis=2))) self.assertTrue(np.array_equal(heat_release_final, np.repeat(self.sol.heat_release[:, None], 5, axis=1))) self.assertTrue(np.array_equal(rhs_final, np.repeat(self.sol.rhs[:, :, None], 5, axis=2))) def test_write_restart_file(self): sol_cons = self.sol.sol_cons self.solver.sol_time = 1e-4 self.solver.iter = 2 self.solver.restart_iter = 4 self.sol.write_restart_file(self.solver) self.assertEqual(self.solver.restart_iter, 5) # check restart files restart_data = np.load(os.path.join(self.solver.restart_output_dir, "restart_file_4.npz")) self.assertTrue( np.array_equal( restart_data["sol_prim"], np.repeat(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1), ) ) self.assertTrue( np.array_equal( restart_data["sol_cons"], np.repeat(sol_cons[:, :, None], 2, axis=-1), ) ) self.assertEqual(float(restart_data["sol_time"]), 1e-4) # check iteration files restart_iter = int(np.loadtxt(os.path.join(self.solver.restart_output_dir, "restart_iter.dat"))) self.assertEqual(restart_iter, 4) def test_read_restart_file(self): self.solver.sol_time = 1e-4 self.solver.iter = 2 self.solver.restart_iter = 4 self.sol.write_restart_file(self.solver) sol_time, sol_prim, restart_iter = read_restart_file(self.solver) self.assertEqual(sol_time, 1e-4) self.assertEqual(restart_iter, 5) # 1 is added to avoid overwriting self.assertTrue( np.array_equal( sol_prim, np.repeat(SOL_PRIM_IN_REACT[:, :, None], 2, axis=-1), ) ) def test_calc_d_sol_norms(self): self.solver.iter = 3 self.sol.d_sol_norm_hist = np.zeros((self.solver.num_steps, 2), dtype=REAL_TYPE) self.sol.sol_hist_prim[0] = self.sol.sol_prim * 2.0 self.sol.calc_d_sol_norms(self.solver, "implicit") self.assertAlmostEqual(self.sol.d_sol_norm_hist[2, 0], 3.46573790883) self.assertAlmostEqual(self.sol.d_sol_norm_hist[2, 1], 3.45416666667) def test_calc_res_norms(self): self.solver.iter = 3 self.sol.res = self.sol.sol_prim.copy() self.sol.calc_res_norms(self.solver, 0) self.assertAlmostEqual(self.sol.res_norm_hist[2, 0], 3.46573790883) self.assertAlmostEqual(self.sol.res_norm_hist[2, 1], 3.45416666667)
39.796353
120
0.612465
12,535
0.957382
0
0
0
0
0
0
1,281
0.097839
ce1a18c48b194d0b3451c941f83d9e8945a1714d
4,139
py
Python
tests/system/post_cars_positive_test.py
ikostan/REST_API_AUTOMATION
cdb4d30fbc7457b2a403b4dad6fe1efa2e754681
[ "Unlicense" ]
8
2020-03-17T09:15:28.000Z
2022-01-29T19:50:45.000Z
tests/system/post_cars_positive_test.py
ikostan/REST_API_AUTOMATION
cdb4d30fbc7457b2a403b4dad6fe1efa2e754681
[ "Unlicense" ]
1
2021-06-02T00:26:58.000Z
2021-06-02T00:26:58.000Z
tests/system/post_cars_positive_test.py
ikostan/REST_API_AUTOMATION
cdb4d30fbc7457b2a403b4dad6fe1efa2e754681
[ "Unlicense" ]
1
2021-11-22T16:10:27.000Z
2021-11-22T16:10:27.000Z
#!/path/to/interpreter """ Flask App REST API testing: POST """ # Created by Egor Kostan. # GitHub: https://github.com/ikostan # LinkedIn: https://www.linkedin.com/in/egor-kostan/ import allure import requests from tests.system.base_test import BaseTestCase from api.cars_app import USER_LIST @allure.epic('Simple Flask App') @allure.parent_suite('REST API') @allure.suite("System Tests") @allure.sub_suite("Positive Tests") @allure.feature("POST") @allure.story('Cars') class PostCarsPositiveTestCase(BaseTestCase): """ Simple Flask App Positive Test: POST call """ def setUp(self) -> None: """ Test data preparation :return: """ with allure.step("Prepare test data"): self.cars_url = '/cars' self.message = '' self.new_car = {'name': 'Figo', 'brand': 'Ford', 'price_range': '2-3 lacs', 'car_type': 'hatchback'} def tearDown(self) -> None: """ Post test procedure :return: """ with allure.step("Remove new added car from the list"): username = USER_LIST[0]['name'] password = USER_LIST[0]['password'] requests.delete(url=self.URL + self.cars_url + '/remove/' + self.new_car['name'], auth=(username, password)) def test_post_car_admin(self): """ Add new car using admin user credentials. :return: """ allure.dynamic.title("Add new car " "using admin user credentials") allure.dynamic.severity(allure.severity_level.BLOCKER) with allure.step("Verify user permissions"): username = USER_LIST[0]['name'] password = USER_LIST[0]['password'] self.assertEqual("admin", USER_LIST[0]['perm']) with allure.step("Send POST request"): response = requests.post(self.URL + self.cars_url + '/add', json=self.new_car, auth=(username, password)) with allure.step("Verify status code"): self.assertEqual(200, response.status_code) with allure.step("Verify 'successful' flag"): self.assertTrue(response.json()['successful']) with allure.step("Verify retrieved cars list"): self.assertDictEqual(self.new_car, response.json()['car']) def test_post_car_non_admin(self): """ Add new car using non admin user credentials. :return: """ allure.dynamic.title("Add new car " "using non admin user credentials") allure.dynamic.severity(allure.severity_level.BLOCKER) with allure.step("Verify user permissions"): username = USER_LIST[1]['name'] password = USER_LIST[1]['password'] self.assertEqual("non_admin", USER_LIST[1]['perm']) with allure.step("Send POST request"): response = requests.post(self.URL + self.cars_url + '/add', json=self.new_car, auth=(username, password)) with allure.step("Verify status code"): self.assertEqual(200, response.status_code) with allure.step("Verify 'successful' flag"): self.assertTrue(response.json()['successful']) with allure.step("Verify retrieved cars list"): self.assertDictEqual(self.new_car, response.json()['car'])
31.59542
64
0.490457
3,659
0.88403
0
0
3,837
0.927036
0
0
1,196
0.288959
ce1a3fb80b6bbd849c64cd660cd72979f447cba6
1,165
py
Python
bin/h5zero.py
ickc/dautil-py
9cdd87080ec85774d7386e3cd2f55c2bc6b6aadd
[ "BSD-3-Clause" ]
null
null
null
bin/h5zero.py
ickc/dautil-py
9cdd87080ec85774d7386e3cd2f55c2bc6b6aadd
[ "BSD-3-Clause" ]
null
null
null
bin/h5zero.py
ickc/dautil-py
9cdd87080ec85774d7386e3cd2f55c2bc6b6aadd
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python '''Assert HDF5 input is non-zero. Print to stderr if not. For example, find . -iname '*.hdf5' -exec h5zero.py {} + ''' from __future__ import print_function import argparse import sys import h5py from dautil.IO.h5 import h5assert_nonzero __version__ = '0.1' def main(args): for filename in args.input: with h5py.File(filename, "r") as f: try: h5assert_nonzero(f, verbose=args.verbose) except AssertionError: print(filename, file=sys.stderr) def cli(): parser = argparse.ArgumentParser(description='Assert HDF5 input is non-zero.') parser.set_defaults(func=main) # define args parser.add_argument('-v', '--version', action='version', version='%(prog)s {}'.format(__version__)) parser.add_argument('input', nargs='+', help='Input HDF5 files. Can be more than 1.') parser.add_argument('-V', '--verbose', action='store_true', help='verbose to stdout.') # parsing and run main args = parser.parse_args() args.func(args) if __name__ == "__main__": cli()
23.3
82
0.612017
0
0
0
0
0
0
0
0
358
0.307296
ce1a78c4b8b64234867f3d62b124351c7a4de964
195
py
Python
cla_backend/apps/core/validators.py
uk-gov-mirror/ministryofjustice.cla_backend
4d524c10e7bd31f085d9c5f7bf6e08a6bb39c0a6
[ "MIT" ]
3
2019-10-02T15:31:03.000Z
2022-01-13T10:15:53.000Z
cla_backend/apps/core/validators.py
uk-gov-mirror/ministryofjustice.cla_backend
4d524c10e7bd31f085d9c5f7bf6e08a6bb39c0a6
[ "MIT" ]
206
2015-01-02T16:50:11.000Z
2022-02-16T20:16:05.000Z
cla_backend/apps/core/validators.py
uk-gov-mirror/ministryofjustice.cla_backend
4d524c10e7bd31f085d9c5f7bf6e08a6bb39c0a6
[ "MIT" ]
6
2015-03-23T23:08:42.000Z
2022-02-15T17:04:44.000Z
from django.core.exceptions import ValidationError def validate_first_of_month(value): if value.day != 1: raise ValidationError("%s should only be first day of the month." % value)
27.857143
82
0.733333
0
0
0
0
0
0
0
0
43
0.220513
ce1ae0dcedfa059f4a8bffab465b0fca2f146769
51
py
Python
app/_version.py
sunhailin-Leo/myMacAssistant
30ba955a4f91a800197cbfdc2ab5d3a5cd993eef
[ "MIT" ]
63
2020-11-02T00:58:49.000Z
2022-03-20T21:39:02.000Z
fastapi_profiler/_version.py
sunhailin-Leo/fastapi_profiler
b414af6f0b2d92e7b509b6b3e54cde13ec5795e2
[ "MIT" ]
10
2021-02-23T11:00:39.000Z
2022-02-07T02:44:05.000Z
app/_version.py
sunhailin-Leo/myMacAssistant
30ba955a4f91a800197cbfdc2ab5d3a5cd993eef
[ "MIT" ]
7
2020-11-24T08:34:46.000Z
2022-01-10T12:58:51.000Z
__version__ = "1.0.0" __author__ = "sunhailin-Leo"
17
28
0.705882
0
0
0
0
0
0
0
0
22
0.431373
ce1e707dde07e49cd3190510d21820c11fc3a580
1,525
py
Python
Week6/GFG(Day8-14)/Day14/Day14 - Solution.py
ShreyaPanale/100DaysOfCode
de7832d97fca36f783812868b867676b6f77c7b3
[ "MIT" ]
22
2021-05-25T16:01:31.000Z
2021-06-07T06:32:27.000Z
Week6/GFG(Day8-14)/Day14/Day14 - Solution.py
shreya-panale/100DaysOfCode
de7832d97fca36f783812868b867676b6f77c7b3
[ "MIT" ]
null
null
null
Week6/GFG(Day8-14)/Day14/Day14 - Solution.py
shreya-panale/100DaysOfCode
de7832d97fca36f783812868b867676b6f77c7b3
[ "MIT" ]
null
null
null
#User function Template for python3 class Solution: def calculateSpan(self,a,n): Span = [0 for i in range(n)] stack = [0] #span value of first day is always 1. Span[0] = 1 for i in range(1, n): #we pop elements from the stack till price at top of stack is less than or equal to current price. while (len(stack) > 0 and a[stack[-1]] <= a[i]): stack.pop() #if stack becomes empty, then price[i] is greater than all elements on left of it in list so span is i+1. #Else price[i] is greater than elements after value at top of stack. if(len(stack) <= 0): Span[i] = i + 1 else: Span[i] = i - stack[-1] #pushing this element to stack. stack.append(i) #returning the list. return Span #{ # Driver Code Starts #Initial Template for Python 3 import atexit import io import sys _INPUT_LINES = sys.stdin.read().splitlines() input = iter(_INPUT_LINES).__next__ _OUTPUT_BUFFER = io.StringIO() sys.stdout = _OUTPUT_BUFFER @atexit.register def write(): sys.__stdout__.write(_OUTPUT_BUFFER.getvalue()) if __name__ == '__main__': test_cases = int(input()) for cases in range(test_cases) : n = int(input()) a = list(map(int,input().strip().split())) obj = Solution() ans = obj.calculateSpan(a, n); print(*ans) # print space seperated elements of span array # } Driver Code Ends
28.773585
117
0.593443
848
0.556066
0
0
82
0.05377
0
0
523
0.342951
ce1e9aca26ecdef56f6ff4c3c6d9a23230b8bd4f
2,768
py
Python
test/tests.py
jasedit/papers_base
af8aa6e9a164861ad7b44471ce543002fa7129d9
[ "MIT" ]
8
2016-08-17T14:40:49.000Z
2020-03-05T00:08:07.000Z
test/tests.py
jasedit/scriptorium
af8aa6e9a164861ad7b44471ce543002fa7129d9
[ "MIT" ]
35
2016-08-07T19:58:02.000Z
2021-05-09T10:08:06.000Z
test/tests.py
jasedit/scriptorium
af8aa6e9a164861ad7b44471ce543002fa7129d9
[ "MIT" ]
2
2017-09-21T17:57:46.000Z
2019-06-30T13:06:21.000Z
#!python # -*- coding: utf-8 -*- """Unit testing for scriptorium""" import os import tempfile import shutil import textwrap import unittest import scriptorium class TestScriptorium(unittest.TestCase): @classmethod def setUpClass(cls): """Set up unit tests for scriptorium""" TestScriptorium.template_dir = tempfile.mkdtemp() TestScriptorium.paper_dir = tempfile.mkdtemp() scriptorium.CONFIG['TEMPLATE_DIR'] = TestScriptorium.template_dir scriptorium.install_template("https://github.com/jasedit/simple_templates.git") @classmethod def tearDownClass(cls): """Tear down unit test structure.""" shutil.rmtree(TestScriptorium.template_dir, ignore_errors=True) shutil.rmtree(TestScriptorium.paper_dir, ignore_errors=True) def testTemplates(self): """Test that template has been installed""" self.assertEqual(TestScriptorium.template_dir, scriptorium.CONFIG['TEMPLATE_DIR']) self.assertTrue(os.path.exists(os.path.join(TestScriptorium.template_dir, 'simple_templates'))) ex_tdir = os.path.join(scriptorium.CONFIG['TEMPLATE_DIR'], 'simple_templates', 'report') self.assertEqual(scriptorium.find_template('report'), ex_tdir) def testCreation(self): """Test simple paper creation.""" example_config = { 'author': 'John Doe', 'title': 'Example Report' } old_dir = os.getcwd() os.chdir(TestScriptorium.paper_dir) self.assertEqual(scriptorium.create('ex_report', 'report', config=example_config), set()) os.chdir('ex_report') self.assertEqual(scriptorium.paper_root('.'), 'paper.mmd') self.assertEqual(scriptorium.get_template('paper.mmd'), 'report') example_text = textwrap.dedent("""\n # Introduction This is an example paper. # Conclusion This paper is awesome. """) with open('paper.mmd', 'a') as fp: fp.write(example_text) pdf_path = scriptorium.to_pdf('.') self.assertTrue(os.path.exists(pdf_path)) os.chdir(old_dir) def testConfigLoading(self): """Test saving and loading configuration.""" config = scriptorium.CONFIG.copy() scriptorium.save_config() scriptorium.read_config() self.assertEqual(config, scriptorium.CONFIG) def testConfiguration(self): """Test configuration option issues""" test_template_dir = "~/.scriptorium" scriptorium.CONFIG['TEMPLATE_DIR'] = test_template_dir scriptorium.save_config() scriptorium.read_config() self.assertEqual(scriptorium.CONFIG['TEMPLATE_DIR'], os.path.expanduser(test_template_dir)) scriptorium.CONFIG['TEMPLATE_DIR'] = self.template_dir if __name__ == '__main__': unittest.main()
31.816092
101
0.688223
2,557
0.923772
0
0
570
0.205925
0
0
759
0.274205
ce1f98db217162180757b8a6044a17804f866924
4,794
py
Python
imblearn/combine/tests/test_smote_enn.py
themrzmaster/imbalanced-learn
e1be8695b22ca58aa5443057b9ae3f2885a45d60
[ "MIT" ]
2
2019-09-14T23:23:35.000Z
2019-09-16T18:17:19.000Z
imblearn/combine/tests/test_smote_enn.py
themrzmaster/imbalanced-learn
e1be8695b22ca58aa5443057b9ae3f2885a45d60
[ "MIT" ]
null
null
null
imblearn/combine/tests/test_smote_enn.py
themrzmaster/imbalanced-learn
e1be8695b22ca58aa5443057b9ae3f2885a45d60
[ "MIT" ]
1
2021-04-23T04:46:10.000Z
2021-04-23T04:46:10.000Z
"""Test the module SMOTE ENN.""" # Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com> # Christos Aridas # License: MIT import pytest import numpy as np from sklearn.utils.testing import assert_allclose, assert_array_equal from imblearn.combine import SMOTEENN from imblearn.under_sampling import EditedNearestNeighbours from imblearn.over_sampling import SMOTE RND_SEED = 0 X = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [ 1.25192108, -0.22367336 ], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [0.70472253, -0.73309052], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [ 0.88407872, 0.35454207 ], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [ -0.18410027, -0.45194484 ], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [ -0.41635887, -0.38299653 ], [0.08711622, 0.93259929], [1.70580611, -0.11219234]]) Y = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0]) R_TOL = 1e-4 def test_sample_regular(): smote = SMOTEENN(random_state=RND_SEED) X_resampled, y_resampled = smote.fit_resample(X, Y) X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [ 0.61319159, -0.11571667 ], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.08711622, 0.93259929]]) y_gt = np.array([0, 0, 0, 0, 1, 1, 1]) assert_allclose(X_resampled, X_gt, rtol=R_TOL) assert_array_equal(y_resampled, y_gt) def test_sample_regular_pass_smote_enn(): smote = SMOTEENN( smote=SMOTE(sampling_strategy='auto', random_state=RND_SEED), enn=EditedNearestNeighbours(sampling_strategy='all'), random_state=RND_SEED) X_resampled, y_resampled = smote.fit_resample(X, Y) X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [ 0.61319159, -0.11571667 ], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.08711622, 0.93259929]]) y_gt = np.array([0, 0, 0, 0, 1, 1, 1]) assert_allclose(X_resampled, X_gt, rtol=R_TOL) assert_array_equal(y_resampled, y_gt) def test_sample_regular_half(): sampling_strategy = {0: 10, 1: 12} smote = SMOTEENN( sampling_strategy=sampling_strategy, random_state=RND_SEED) X_resampled, y_resampled = smote.fit_resample(X, Y) X_gt = np.array([[1.52091956, -0.49283504], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.08711622, 0.93259929]]) y_gt = np.array([0, 1, 1, 1]) assert_allclose(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) def test_validate_estimator_init(): smote = SMOTE(random_state=RND_SEED) enn = EditedNearestNeighbours(sampling_strategy='all') smt = SMOTEENN(smote=smote, enn=enn, random_state=RND_SEED) X_resampled, y_resampled = smt.fit_resample(X, Y) X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [ 0.61319159, -0.11571667 ], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.08711622, 0.93259929]]) y_gt = np.array([0, 0, 0, 0, 1, 1, 1]) assert_allclose(X_resampled, X_gt, rtol=R_TOL) assert_array_equal(y_resampled, y_gt) def test_validate_estimator_default(): smt = SMOTEENN(random_state=RND_SEED) X_resampled, y_resampled = smt.fit_resample(X, Y) X_gt = np.array([[1.52091956, -0.49283504], [0.84976473, -0.15570176], [ 0.61319159, -0.11571667 ], [0.66052536, -0.28246518], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.08711622, 0.93259929]]) y_gt = np.array([0, 0, 0, 0, 1, 1, 1]) assert_allclose(X_resampled, X_gt, rtol=R_TOL) assert_array_equal(y_resampled, y_gt) def test_parallelisation(): # Check if default job count is 1 smt = SMOTEENN(random_state=RND_SEED) smt._validate_estimator() assert smt.n_jobs == 1 assert smt.smote_.n_jobs == 1 assert smt.enn_.n_jobs == 1 # Check if job count is set smt = SMOTEENN(random_state=RND_SEED, n_jobs=8) smt._validate_estimator() assert smt.n_jobs == 8 assert smt.smote_.n_jobs == 8 assert smt.enn_.n_jobs == 8 @pytest.mark.parametrize( "smote_params, err_msg", [({'smote': 'rnd'}, "smote needs to be a SMOTE"), ({'enn': 'rnd'}, "enn needs to be an ")] ) def test_error_wrong_object(smote_params, err_msg): smt = SMOTEENN(**smote_params) with pytest.raises(ValueError, match=err_msg): smt.fit_resample(X, Y)
38.047619
79
0.635378
0
0
0
0
325
0.067793
0
0
295
0.061535
ce21a48448d28f3cf598b5cbc7c2ecedcc9ebfb2
46,925
py
Python
tests/unittests/test_mock_network_plugin_public_nat.py
cloudify-cosmo/tosca-vcloud-plugin
c5196abd066ba5315b66911e5390b0ed6c15988f
[ "Apache-2.0" ]
4
2015-02-25T12:39:01.000Z
2018-02-14T15:14:16.000Z
tests/unittests/test_mock_network_plugin_public_nat.py
cloudify-cosmo/tosca-vcloud-plugin
c5196abd066ba5315b66911e5390b0ed6c15988f
[ "Apache-2.0" ]
45
2015-01-13T13:55:10.000Z
2020-02-04T15:06:15.000Z
tests/unittests/test_mock_network_plugin_public_nat.py
cloudify-cosmo/tosca-vcloud-plugin
c5196abd066ba5315b66911e5390b0ed6c15988f
[ "Apache-2.0" ]
21
2015-01-21T17:17:18.000Z
2021-05-05T14:08:25.000Z
# Copyright (c) 2014-2020 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import unittest from cloudify import exceptions as cfy_exc from tests.unittests import test_mock_base from vcloud_network_plugin import public_nat from vcloud_network_plugin import utils import vcloud_network_plugin import vcloud_plugin_common from IPy import IP class NetworkPluginPublicNatMockTestCase(test_mock_base.TestBase): def test_is_rule_exists(self): rule_inlist = self.generate_nat_rule( 'SNAT', 'external', '22', 'internal', '11', 'TCP' ) # exist self.assertTrue( public_nat._is_rule_exists( [rule_inlist], 'SNAT', 'external', '22', 'internal', '11', 'TCP') ) # not exist self.assertFalse( public_nat._is_rule_exists( [rule_inlist], 'DNAT', 'external', '22', 'internal', '11', 'UDP') ) def test_get_original_port_for_delete(self): # no replacement fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: {}} self.assertEqual( public_nat._get_original_port_for_delete( fake_ctx, "10.1.1.1", "11"), "11" ) # replacement for other fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: { "10.1.1.2:11": '12' } } self.assertEqual( public_nat._get_original_port_for_delete( fake_ctx, "10.1.1.1", "11"), "11" ) # replacement for other fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: { "10.1.1.2:11": '12' } } self.assertEqual( public_nat._get_original_port_for_delete( fake_ctx, "10.1.1.2", "11"), "12" ) def test_get_original_port_for_create(self): gateway = mock.Mock() fake_ctx = self.generate_relation_context_with_current_ctx() rule_inlist = self.generate_nat_rule( 'DNAT', 'external', 'any', 'internal', '11', 'TCP') gateway.get_nat_rules = mock.MagicMock(return_value=[rule_inlist]) # exeption about same port with self.assertRaises(cfy_exc.NonRecoverableError): public_nat._get_original_port_for_create( fake_ctx, gateway, 'DNAT', 'external', 'any', 'internal', '11', 'TCP' ) # everythiong fine with different port self.assertEqual( public_nat._get_original_port_for_create( fake_ctx, gateway, 'DNAT', 'external', '12', 'internal', '12', 'TCP' ), 12) # relink some port to other # port have not used yet self.assertEqual( public_nat._get_original_port_for_create( fake_ctx, gateway, 'SNAT', 'external', 13, 'internal', '12', 'TCP'), 13) def test_get_original_port_for_create_with_ctx(self): # with replace, but without replace table - up port +1 fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: {} } gateway = mock.Mock() rule_inlist = self.generate_nat_rule( 'SNAT', 'external', 10, 'internal', 11, 'TCP' ) gateway.get_nat_rules = mock.MagicMock(return_value=[rule_inlist]) self.assertEqual( public_nat._get_original_port_for_create( fake_ctx, gateway, 'SNAT', 'external', '10', 'internal', '11', 'TCP' ), 11 ) self.assertEqual( fake_ctx._target.instance.runtime_properties, { public_nat.PORT_REPLACEMENT: { 'external:10': 11 } } ) # same but without replacement at all fake_ctx._target.instance.runtime_properties = {} self.assertEqual( public_nat._get_original_port_for_create( fake_ctx, gateway, 'SNAT', 'external', '10', 'internal', '11', 'TCP' ), 11 ) self.assertEqual( fake_ctx._target.instance.runtime_properties, { public_nat.PORT_REPLACEMENT: { 'external:10': 11 } } ) # we dont have enought ports rule_inlist = self.generate_nat_rule( 'SNAT', 'external', utils.MAX_PORT_NUMBER, 'internal', 11, 'TCP' ) gateway.get_nat_rules = mock.MagicMock(return_value=[rule_inlist]) fake_ctx._target.instance.runtime_properties = {} with self.assertRaises(cfy_exc.NonRecoverableError): public_nat._get_original_port_for_create( fake_ctx, gateway, 'SNAT', 'external', utils.MAX_PORT_NUMBER, 'internal', '11', 'TCP' ) def test_get_gateway_ip_range(self): gate = mock.Mock() # empty list of networks gate.get_dhcp_pools = mock.MagicMock(return_value=[]) self.assertEqual( public_nat._get_gateway_ip_range(gate, 'something'), None ) # exist other network gate.get_dhcp_pools = mock.MagicMock(return_value=[ self.genarate_pool( 'test_network', '127.0.0.1', '127.0.0.255' ) ]) self.assertEqual( public_nat._get_gateway_ip_range(gate, 'something'), None ) # exist correct network self.assertEqual( public_nat._get_gateway_ip_range(gate, 'test_network'), (IP('127.0.0.1'), IP('127.0.0.255')) ) def test_obtain_public_ip(self): fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } gateway = mock.Mock() fake_client = mock.Mock() # exist some ip for delete self.assertEqual( public_nat._obtain_public_ip( fake_client, fake_ctx, gateway, vcloud_network_plugin.DELETE ), '192.168.1.1' ) # no ip for delete fake_ctx._target.instance.runtime_properties = {} with self.assertRaises(cfy_exc.NonRecoverableError): public_nat._obtain_public_ip( fake_client, fake_ctx, gateway, vcloud_network_plugin.DELETE ) # unknow operation with self.assertRaises(cfy_exc.NonRecoverableError): public_nat._obtain_public_ip( fake_client, fake_ctx, gateway, 'unknow operation' ) # exist some public ip fake_ctx._target.node.properties = { 'nat': { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } } self.assertEqual( public_nat._obtain_public_ip( fake_client, fake_ctx, gateway, vcloud_network_plugin.CREATE ), '192.168.1.1' ) # no public ip yet fake_ctx._target.node.properties = { 'nat': {} } fake_ctx._source.node.properties = { 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE } } gateway.get_public_ips = mock.MagicMock(return_value=[ '10.18.1.1', '10.18.1.2' ]) rule_inlist = self.generate_nat_rule( 'DNAT', '10.18.1.1', 'any', 'internal', '11', 'TCP' ) gateway.get_nat_rules = mock.MagicMock( return_value=[rule_inlist] ) with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): self.assertEqual( public_nat._obtain_public_ip( fake_client, fake_ctx, gateway, vcloud_network_plugin.CREATE ), '10.18.1.2' ) def test_get_network_ip_range(self): # dont have ip range for this network fake_client = self.generate_client() self.assertEqual( public_nat._get_network_ip_range( fake_client, "some_org", "some_network" ), None ) fake_client.get_networks.assert_called_with("some_org") # different network network = self.generate_fake_client_network( name="some", start_ip="127.1.1.1", end_ip="127.1.1.255" ) fake_client.get_networks = mock.MagicMock(return_value=[network]) self.assertEqual( public_nat._get_network_ip_range( fake_client, "some_org", "some_network" ), None ) # correct network name fake_client.get_networks = mock.MagicMock(return_value=[network]) self.assertEqual( public_nat._get_network_ip_range( fake_client, "some_org", "some" ), (IP('127.1.1.1'), IP('127.1.1.255')) ) def test_create_ip_range(self): # context fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._source.instance.runtime_properties = { vcloud_network_plugin.network.VCLOUD_NETWORK_NAME: "some" } fake_ctx._source.node.properties = { 'vcloud_config': { 'org': 'some_org', 'vdc': 'some_vdc' } } fake_ctx._target.instance.runtime_properties = {} # vca client fake_client = self.generate_client() # gateway gate = fake_client._vdc_gateway gate.get_dhcp_pools = mock.MagicMock(return_value=[]) network = self.generate_fake_client_network( name="some", start_ip="127.1.1.100", end_ip="127.1.1.200" ) fake_client.get_networks = mock.MagicMock(return_value=[network]) with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): # empty gateway dhcp pool # vca pool: 127.1.1.100..127.1.1.200 self.assertEqual( public_nat._create_ip_range(fake_ctx, fake_client, gate), '127.1.1.100 - 127.1.1.200' ) fake_client.get_networks.assert_called_with("some_vdc") # network from gate gate.get_dhcp_pools = mock.MagicMock(return_value=[ self.genarate_pool( "some", '127.1.1.1', '127.1.1.255' ) ]) self.assertEqual( public_nat._create_ip_range(fake_ctx, fake_client, gate), '127.1.1.1 - 127.1.1.255' ) # network not exist network = self.generate_fake_client_network( name="other", start_ip="127.1.1.100", end_ip="127.1.1.200" ) fake_client.get_networks = mock.MagicMock( return_value=[network] ) with self.assertRaises(cfy_exc.NonRecoverableError): public_nat._create_ip_range(fake_ctx, fake_client, gate) def test_save_configuration(self): def _context_for_delete(service_type): """ create correct context for delete """ fake_ctx = self.generate_relation_context_with_current_ctx() self.set_services_conf_result( gateway, vcloud_plugin_common.TASK_STATUS_SUCCESS ) fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: "1.2.3.4", public_nat.PORT_REPLACEMENT: { '127.0.0.1:10': '100' }, vcloud_network_plugin.SSH_PORT: '23', vcloud_network_plugin.SSH_PUBLIC_IP: '10.1.1.1' } properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc', 'org': 'some_org' } } if service_type: properties['vcloud_config']['service_type'] = service_type fake_ctx._source.node.properties = properties return fake_ctx def _ip_exist_in_runtime(fake_ctx): """ ip still exist in ctx """ runtime_properties = fake_ctx._target.instance.runtime_properties return vcloud_network_plugin.PUBLIC_IP in runtime_properties fake_client = self.generate_client() gateway = fake_client._vdc_gateway # cant save configuration: server busy self.set_services_conf_result( gateway, None ) self.set_gateway_busy(gateway) fake_ctx = self.generate_relation_context_with_current_ctx() self.assertFalse(public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.CREATE, "1.2.3.4" )) # operation create fake_ctx = self.generate_relation_context_with_current_ctx() self.set_services_conf_result( gateway, vcloud_plugin_common.TASK_STATUS_SUCCESS ) # success save configuration with mock.patch('vcloud_plugin_common.ctx', fake_ctx): public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.CREATE, "1.2.3.4") self.assertEqual( fake_ctx._target.instance.runtime_properties, { vcloud_network_plugin.PUBLIC_IP: "1.2.3.4" } ) # delete - subscription service fake_ctx = _context_for_delete( vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE ) with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.DELETE, "1.2.3.4" ) self.assertFalse(_ip_exist_in_runtime(fake_ctx)) # delete - without service fake_ctx = _context_for_delete(None) with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.DELETE, "1.2.3.4" ) self.assertFalse(_ip_exist_in_runtime(fake_ctx)) # delete - ondemand service - nat fake_ctx = _context_for_delete( vcloud_plugin_common.ONDEMAND_SERVICE_TYPE ) fake_ctx._target.node.properties = { 'nat': { vcloud_network_plugin.PUBLIC_IP: "1.2.3.4" } } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.DELETE, "1.2.3.4" ) self.assertFalse(_ip_exist_in_runtime(fake_ctx)) # delete - ondemand - not nat gateway.deallocate_public_ip = mock.MagicMock( return_value=self.generate_task( vcloud_plugin_common.TASK_STATUS_SUCCESS ) ) fake_ctx = _context_for_delete( vcloud_plugin_common.ONDEMAND_SERVICE_TYPE ) fake_ctx._target.node.properties = { 'nat': {} } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): # import pdb;pdb.set_trace() public_nat._save_configuration( fake_ctx, gateway, fake_client, vcloud_network_plugin.DELETE, "1.2.3.4" ) gateway.deallocate_public_ip.assert_called_with("1.2.3.4") self.assertFalse(_ip_exist_in_runtime(fake_ctx)) runtime_properties = fake_ctx._target.instance.runtime_properties self.assertFalse( public_nat.PORT_REPLACEMENT in runtime_properties ) self.assertFalse( vcloud_network_plugin.SSH_PORT in runtime_properties ) self.assertFalse( vcloud_network_plugin.SSH_PUBLIC_IP in runtime_properties ) def test_nat_network_operation(self): fake_client = self.generate_client() fake_ctx = self.generate_relation_context_with_current_ctx() gateway = fake_client._vdc_gateway # used wrong operation with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.nat_network_operation( fake_ctx, fake_client, gateway, "unknow", "DNAT", "1.2.3.4", "2.3.4.5", "11", "11", "TCP" ) # run correct operation/rule for operation in [ vcloud_network_plugin.DELETE, vcloud_network_plugin.CREATE ]: for rule_type in ["SNAT", "DNAT"]: # cleanup properties fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: {}} fake_ctx._source.instance.runtime_properties = {} # checks with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.nat_network_operation( fake_ctx, fake_client, gateway, operation, rule_type, "1.2.3.4", "2.3.4.5", "11", "11", "TCP" ) if rule_type == "DNAT": if operation == vcloud_network_plugin.DELETE: gateway.del_nat_rule.assert_called_with( 'DNAT', '1.2.3.4', '11', '2.3.4.5', '11', 'TCP' ) else: gateway.add_nat_rule.assert_called_with( 'DNAT', '1.2.3.4', '11', '2.3.4.5', '11', 'TCP' ) else: if operation == vcloud_network_plugin.DELETE: gateway.del_nat_rule.assert_called_with( 'SNAT', '2.3.4.5', 'any', '1.2.3.4', 'any', 'any' ) else: gateway.add_nat_rule.assert_called_with( 'SNAT', '2.3.4.5', 'any', '1.2.3.4', 'any', 'any' ) # cleanup properties fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.instance.runtime_properties = { public_nat.PORT_REPLACEMENT: {}} fake_ctx._source.instance.runtime_properties = {} # save ssh port with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.nat_network_operation( fake_ctx, fake_client, gateway, vcloud_network_plugin.CREATE, "DNAT", "1.2.3.4", "2.3.4.5", "43", "22", "TCP" ) self.assertEqual( {'port_replacement': {'1.2.3.4:43': 43}}, fake_ctx._target.instance.runtime_properties ) self.assertEqual( {'ssh_port': '43', 'ssh_public_ip': '1.2.3.4'}, fake_ctx._source.instance.runtime_properties ) # error with type with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.nat_network_operation( fake_ctx, fake_client, gateway, vcloud_network_plugin.CREATE, "QNAT", "1.2.3.4", "2.3.4.5", "43", "22", "TCP" ) def generate_client_and_context_server(self, no_vmip=False): """ for test prepare_server_operation based operations """ vm_ip = '1.1.1.1' if not no_vmip else None fake_client = self.generate_client(vms_networks=[{ 'is_connected': True, 'network_name': 'network_name', 'is_primary': True, 'ip': vm_ip }]) self.set_network_routed_in_client(fake_client) fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' } } fake_ctx._source.node.properties = { 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE } } fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } self.set_services_conf_result( fake_client._vdc_gateway, vcloud_plugin_common.TASK_STATUS_SUCCESS ) return fake_client, fake_ctx def test_prepare_server_operation(self): fake_client, fake_ctx = self.generate_client_and_context_server() # no rules for update with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) # public ip equal to None in node properties fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT', 'protocol': 'TCP', 'original_port': "11", 'translated_port': "11" }] } fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: None } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): self.assertFalse( public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) ) # we dont have connected private ip fake_client, fake_ctx = self.generate_client_and_context_server( no_vmip=True ) fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT', 'protocol': 'TCP', 'original_port': "11", 'translated_port': "11" }] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): self.assertFalse( public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) ) # with some rules fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT', 'protocol': 'TCP', 'original_port': "11", 'translated_port': "11" }] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'DNAT', '192.168.1.1', '11', '1.1.1.1', '11', 'TCP' ) # with default value fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'DNAT', '192.168.1.1', 'any', '1.1.1.1', 'any', 'any' ) # with SNAT rules fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{'type': 'SNAT'}, {'type': 'SNAT'}] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.prepare_server_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'SNAT', '1.1.1.1', 'any', '192.168.1.1', 'any', 'any' ) def generate_client_and_context_network(self): """ for test prepare_network_operation based operations """ fake_client = self.generate_client(vms_networks=[{ 'is_connected': True, 'network_name': 'network_name', 'is_primary': True, 'ip': '1.1.1.1' }]) self.set_network_routed_in_client(fake_client) gate = fake_client._vdc_gateway gate.get_dhcp_pools = mock.MagicMock(return_value=[]) network = self.generate_fake_client_network( name="some", start_ip="127.1.1.100", end_ip="127.1.1.200" ) fake_client.get_networks = mock.MagicMock(return_value=[network]) self.set_services_conf_result( fake_client._vdc_gateway, vcloud_plugin_common.TASK_STATUS_SUCCESS ) # ctx fake_ctx = self.generate_relation_context_with_current_ctx() fake_ctx._source.instance.runtime_properties = { vcloud_network_plugin.network.VCLOUD_NETWORK_NAME: "some" } fake_ctx._source.node.properties = { 'vcloud_config': { 'org': 'some_org', 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE } } fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' } } fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } return fake_client, fake_ctx def test_prepare_network_operation(self): # no rules fake_client, fake_ctx = self.generate_client_and_context_network() with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.prepare_network_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) # public ip equal to None in node properties fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: None } fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT', }] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): self.assertFalse( public_nat.prepare_network_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) ) # rules with default values fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } with mock.patch( 'vcloud_plugin_common.ctx', fake_ctx ): public_nat.prepare_network_operation( fake_ctx, fake_client, vcloud_network_plugin.DELETE ) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'DNAT', '192.168.1.1', 'any', '127.1.1.100 - 127.1.1.200', 'any', 'any' ) def test_creation_validation(self): fake_client = self.generate_client() # no nat fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name' } } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # no gateway fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name' }, 'nat': { 'some_field': 'something' } } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # wrong ip fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: 'any' } } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # no free ip fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway' } } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # no rules fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: '10.12.2.1' } } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # wrong protocol fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: '10.12.2.1' }, 'rules': [{ 'type': 'DNAT', 'protocol': "some" }] } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # wrong original_port fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: '10.12.2.1' }, 'rules': [{ 'type': 'DNAT', 'protocol': "TCP", 'original_port': 'some' }] } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # wrong original_port fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: '10.12.2.1' }, 'rules': [{ 'type': 'DNAT', 'protocol': "TCP", 'original_port': 11, 'translated_port': 'some' }] } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) # fine fake_ctx = self.generate_node_context_with_current_ctx( properties={ 'vcloud_config': { 'vdc': 'vdc_name', 'service_type': vcloud_plugin_common.SUBSCRIPTION_SERVICE_TYPE }, 'nat': { 'edge_gateway': 'gateway', vcloud_network_plugin.PUBLIC_IP: '10.12.2.1' }, 'rules': [{ 'type': 'DNAT', 'protocol': "TCP", 'original_port': 11, 'translated_port': 12 }] } ) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.creation_validation(ctx=fake_ctx, vca_client=None) def _server_disconnect_to_nat_noexternal(self): fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } fake_ctx._source.instance.runtime_properties = { 'gateway_lock': False, 'vcloud_vapp_name': 'vapp' } return fake_client, fake_ctx def test_server_disconnect_from_nat(self): # successful fake_client, fake_ctx = self._server_disconnect_to_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.server_disconnect_from_nat(ctx=fake_ctx, vca_client=None) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'DNAT', '192.168.1.1', 'any', '1.1.1.1', 'any', 'any' ) # check retry fake_client, fake_ctx = self._server_disconnect_to_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): self.prepere_gatway_busy_retry(fake_client, fake_ctx) public_nat.server_disconnect_from_nat(ctx=fake_ctx, vca_client=None) self.check_retry_realy_called(fake_ctx) def _server_connect_to_nat_noexternal(self): fake_client, fake_ctx = self.generate_client_and_context_server() fake_ctx._target.instance.runtime_properties = { vcloud_network_plugin.PUBLIC_IP: '192.168.1.1' } fake_ctx._source.instance.runtime_properties = { 'gateway_lock': False, 'vcloud_vapp_name': 'vapp' } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } fake_client._vdc_gateway.get_public_ips = mock.MagicMock( return_value=['10.18.1.1'] ) return fake_client, fake_ctx def test_server_connect_to_nat(self): fake_client, fake_ctx = self._server_connect_to_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.server_connect_to_nat(ctx=fake_ctx, vca_client=None) fake_client._vdc_gateway.add_nat_rule.assert_called_with( 'DNAT', '10.18.1.1', 'any', '1.1.1.1', 'any', 'any' ) fake_client, fake_ctx = self._server_connect_to_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): self.prepere_gatway_busy_retry(fake_client, fake_ctx) public_nat.server_connect_to_nat(ctx=fake_ctx, vca_client=None) self.check_retry_realy_called(fake_ctx) def _net_disconnect_from_nat_noexternal(self): fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } return fake_client, fake_ctx def test_net_disconnect_from_nat(self): # use external fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'use_external_resource': True } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } fake_ctx._source.instance.runtime_properties = { 'gateway_lock': False, 'vcloud_vapp_name': 'vapp' } with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.net_disconnect_from_nat(ctx=fake_ctx, vca_client=fake_client) # no external fake_client, fake_ctx = self._net_disconnect_from_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.net_disconnect_from_nat(ctx=fake_ctx, vca_client=None) fake_client._vdc_gateway.del_nat_rule.assert_called_with( 'DNAT', '192.168.1.1', 'any', '127.1.1.100 - 127.1.1.200', 'any', 'any' ) # retry check fake_client, fake_ctx = self._net_disconnect_from_nat_noexternal() with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): self.prepere_gatway_busy_retry(fake_client, fake_ctx) public_nat.net_disconnect_from_nat(ctx=fake_ctx, vca_client=None) self.check_retry_realy_called(fake_ctx) def test_net_connect_to_nat(self): # use external fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'use_external_resource': True } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.net_connect_to_nat(ctx=fake_ctx, vca_client=None) # no external fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } fake_ctx._source.node.properties = { 'vcloud_config': { 'edge_gateway': 'gateway', 'vdc': 'vdc' } } fake_client._vdc_gateway.get_public_ips = mock.MagicMock(return_value=[ '10.18.1.1' ]) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.net_connect_to_nat(ctx=fake_ctx, vca_client=None) fake_client._vdc_gateway.add_nat_rule.assert_called_with( 'DNAT', '10.18.1.1', 'any', '127.1.1.100 - 127.1.1.200', 'any', 'any' ) # retry check with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): self.prepere_gatway_busy_retry(fake_client, fake_ctx) public_nat.net_connect_to_nat(ctx=fake_ctx, vca_client=None) self.check_retry_realy_called(fake_ctx) def test_net_connect_to_nat_preconfigure(self): fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'DNAT' }] } with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.net_connect_to_nat_preconfigure(ctx=fake_ctx, vca_client=None) fake_client, fake_ctx = self.generate_client_and_context_network() fake_ctx._target.node.properties = { 'nat': { 'edge_gateway': 'gateway' }, 'rules': [{ 'type': 'SNAT' }] } with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): public_nat.net_connect_to_nat_preconfigure(ctx=fake_ctx, vca_client=None) # empty rules fake_ctx._target.node.properties.update({'rules': []}) with mock.patch( 'vcloud_plugin_common.VcloudAirClient.get', mock.MagicMock(return_value=fake_client) ): with self.assertRaises(cfy_exc.NonRecoverableError): public_nat.net_connect_to_nat_preconfigure(ctx=fake_ctx, vca_client=None) if __name__ == '__main__': unittest.main()
36.919748
79
0.542248
45,979
0.97984
0
0
0
0
0
0
8,553
0.18227
ce21d57f1cc21cb2e5990bffc69d3403f42d2835
519
py
Python
Taller_estruturas_de_control_secuenciales/Python_yere/Ejercicio_17.py
Matieljimenez/Algoritmos_y_programacion
cdc381478581e6842c6672d4840dd948833c4ec7
[ "MIT" ]
null
null
null
Taller_estruturas_de_control_secuenciales/Python_yere/Ejercicio_17.py
Matieljimenez/Algoritmos_y_programacion
cdc381478581e6842c6672d4840dd948833c4ec7
[ "MIT" ]
null
null
null
Taller_estruturas_de_control_secuenciales/Python_yere/Ejercicio_17.py
Matieljimenez/Algoritmos_y_programacion
cdc381478581e6842c6672d4840dd948833c4ec7
[ "MIT" ]
null
null
null
""" Entradas monto de dinero presupuestal-->float-->a Salidas dinero correspondiente para ginecologia-->float-->b dinero correspondiente para traumatologia-->float-->c dinero correspondiente para pediatria-->float-->d """ a=float(input("Presupuesto anual al Hospital rural ")) b=a*0.40 c=a*0.30 d=a*0.30 print("El presupuesto del hospital rural para ginecología es: "+str(b)) print("El presupuesto del hospital rural para traumatología es: "+str(c)) print("El presupuesto del hospital rural para pediatría es: "+str(d))
34.6
73
0.759152
0
0
0
0
0
0
0
0
433
0.829502
ce2288a47d9c672cc8785e5719f15a00192e23e2
5,926
py
Python
tools/generate_things/generate_navigation.py
akalenuk/wordsandbuttons
c8ad9e8668fc49f4c39ae3b510e36a5a52ec3c91
[ "Unlicense" ]
367
2018-01-29T17:45:00.000Z
2022-03-08T03:50:52.000Z
tools/generate_things/generate_navigation.py
akalenuk/wordsandbuttons
c8ad9e8668fc49f4c39ae3b510e36a5a52ec3c91
[ "Unlicense" ]
9
2017-12-21T16:48:08.000Z
2021-01-23T17:20:20.000Z
tools/generate_things/generate_navigation.py
akalenuk/wordsandbuttons
c8ad9e8668fc49f4c39ae3b510e36a5a52ec3c91
[ "Unlicense" ]
20
2018-02-18T11:52:36.000Z
2021-11-22T09:46:53.000Z
import os import subprocess PAGES_DIR = "../../pages" keyword_note = { 'tutorials': '', 'demos': '', 'quizzes': '', 'mathematics': '', 'algorithms': '', 'programming': 'By the way, if you prefer books to blogs, <a href="https://wordsandbuttons.online/SYTYKC.pdf">there is a free book</a> that was originally made from this section.' } index_title = 'Hello, world!' index_description = 'This is <i>Words and Buttons Online</i> — a growing collection of&nbsp;interactive tutorials, demos, and quizzes about maths, algorithms, and programming.' all_span_ids = [] def read_index_spans(path): global all_span_ids index_spans = [] for file_name in os.listdir(path): if os.path.isfile(path + '/' + file_name): if file_name.endswith('.html'): html = open(path + '/' + file_name, 'r') text = html.read() html.close() spans = text.split('<span id="index_') if spans != []: spans = spans[1:] Spans = text.split('<Span id="index_') if Spans != []: Spans = Spans[1:] span_ids = ['index_' + s.split('"')[0] for s in spans] span_titles = [s.split('>')[1].split('<')[0].lower() for s in spans] span_ids += ['index_' + s.split('"')[0] for s in Spans] span_titles += [s.split('>')[1].split('<')[0] for s in Spans] for i in range(0, len(span_ids)): index_spans += [ (file_name, span_ids[i], span_titles[i]) ] for span_id in span_ids: if span_id in all_span_ids: print('Duplicated index span id: ' + span_id + " in " + file_name) all_span_ids += [span_id] return index_spans date_link_title_description_keywords = [] all_keywords = set() for filename in os.listdir(PAGES_DIR): if filename == 'index.html': continue if filename == 'faq.html': continue if filename.endswith(".html"): f = open(PAGES_DIR + "/" + filename, 'rt') content = f.read() f.close if content.find("meta name=\"keywords\"") == -1: continue date_from_git = subprocess.run(["git", "log", "--reverse", "--date=iso", "--format=%cd", "--", filename], \ cwd=PAGES_DIR, \ stdout=subprocess.PIPE) full_date = date_from_git.stdout.decode('utf-8') date = full_date.split(' ')[0] title = content.split("<title>")[1].split("</title>")[0] description = content.split('<meta name="description" content="')[1].split('">')[0] keywords = content.split('<meta name="keywords" content="')[1].split('">')[0].split(', ') if keywords[0] == "": continue date_link_title_description_keywords += [(date, filename, title, description, keywords)] all_keywords.update(keywords) date_link_title_description_keywords.sort() # index f = open('index.template') template = f.read() f.close() index = '%s' % template f = open('links.txt') links = f.readlines() f.close() links_html = '<h1>More interactive learning</h1>' for link in links: if link.strip().find(' ') != -1: url = link.split(' ')[0] title_chunks = link.split(' ')[1:] title = title_chunks[0] for chunk in title_chunks[1:]: # no hanging short words if len(chunk) < 2: title += '&nbsp;' + chunk else: title += ' ' + chunk links_html += '<p style="margin-bottom: 12pt;">'+title+'<br><a href="'+url+'">'+url+'</a></p>\n' menu = '<p class="links" style="width: 555pt;">' for (kw, _) in keyword_note.items(): menu += '<nobr><a style="padding-right: 4pt;" href="all_' + kw + '.html">#' + kw + '</a></nobr> ' menu += '</p>' # index is now real index not a timeline the_index = '<h1 title="A real index on index.html! How cool is that!">Index</h1>' spans = read_index_spans(PAGES_DIR) cur_letter = '' for (f, i, t) in sorted(spans, key = lambda fit: fit[2].upper()): letter = t[0].upper() if cur_letter != letter: if cur_letter != '': the_index += '</p>\n' the_index += '<h2>'+letter+'</h2>\n' the_index += '<p class="index_items">\n' cur_letter = letter the_index += '<nobr><a style="padding-right: 24pt;" href="' + f + '#' + i + '">' + t + '</a></nobr>\n' the_index += '</p>\n' index = index.replace('<h1>Title</h1>', '<h1>' + index_title + '</h1>') index = index.replace('<p>Description</p>', '<p style="width: 555pt;">' + index_description + '</p>') index = index.replace('<div id="menu"></div>', '\n' + menu + '\n') index = index.replace('<p>Note</p>', '') index = index.replace('<div id="timeline"></div>', '\n' + the_index + '\n') index = index.replace('<div id="links"></div>', '\n' + links_html + '\n') f = open('../../pages/' + 'index.html', 'w') f.write(index) f.close # tag's all_* pages for title in list(all_keywords): page = '%s' % template timeline = '' menu = '<p class="links" style="width: 555pt;">' for (kw, _) in keyword_note.items(): if kw == title: menu += '<nobr><span style="padding-right: 4pt; color: #999;">#' + kw + '</span></nobr> ' else: menu += '<nobr><a style="padding-right: 4pt;" href="all_' + kw + '.html">#' + kw + '</a></nobr> ' menu += '</p>' for (d, l, t, desc, kwds) in date_link_title_description_keywords[::-1]: if not title in kwds: continue timeline += '<p class="title">' + '<a href="' + l + '">' + t + '</a></p>\n' timeline += '<p class="description">' + desc + '</p>\n' timeline += '<p class="links">' for kw in sorted(list(kwds)): if kw == title: timeline += '<span style="padding-right: 8pt; color: #999;">#' + kw + '</span> ' else: timeline += '<a style="padding-right: 8pt;" href="all_' + kw + '.html">#' + kw + '</a> ' timeline += '</p>\n' page = page.replace('<h1>Title</h1>', '<h1><a href="index.html">Words and Buttons</a>: ' + title + '</h1>') page = page.replace('<p>Description</p>', '') page = page.replace('<div id="menu"></div>', '\n' + menu + '\n') page = page.replace('<p>Note</p>', '<p style="width: 555pt;">' + keyword_note[title] + '</p>') page = page.replace('<div id="timeline"></div>', '\n' + timeline + '\n') page = page.replace('<div id="links"></div>', '') f = open('../../pages/all_' + title + '.html', 'w') f.write(page) f.close
35.48503
179
0.602599
0
0
0
0
0
0
0
0
2,244
0.378287
ce25004f312bc46b4d6a3d278373562bc87e4202
316
py
Python
apps/listings/migrations/0002_remove_post_author.py
favours-io/favours
6f26a207d2684e752857aa21e5fafa607a4707e6
[ "MIT" ]
11
2020-07-23T19:07:32.000Z
2021-11-18T17:16:29.000Z
apps/listings/migrations/0002_remove_post_author.py
favours-io/favours
6f26a207d2684e752857aa21e5fafa607a4707e6
[ "MIT" ]
16
2020-08-29T01:57:05.000Z
2022-01-13T03:16:41.000Z
apps/listings/migrations/0002_remove_post_author.py
favours-io/favours
6f26a207d2684e752857aa21e5fafa607a4707e6
[ "MIT" ]
4
2020-09-18T18:40:12.000Z
2021-11-09T06:36:36.000Z
# Generated by Django 3.0.7 on 2020-09-22 05:14 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('listings', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='post', name='author', ), ]
17.555556
47
0.575949
231
0.731013
0
0
0
0
0
0
85
0.268987
ce2713a447d11afd7d04a70a5793ef6b8c8b2009
303
py
Python
venv/Lib/site-packages/bootstrap4/widgets.py
HRangelov/gallery
3ccf712ef2e1765a6dfd6567d58e6678e0b2ff6f
[ "MIT" ]
3
2021-02-02T11:13:15.000Z
2021-02-10T07:26:10.000Z
venv/Lib/site-packages/bootstrap4/widgets.py
HRangelov/gallery
3ccf712ef2e1765a6dfd6567d58e6678e0b2ff6f
[ "MIT" ]
3
2021-03-30T14:15:20.000Z
2021-09-22T19:31:57.000Z
cypher_venv/Lib/site-packages/bootstrap4/widgets.py
FrancisLangit/cypher
4921e2f53ef8154ad63ff4de7f8068b27f29f485
[ "MIT" ]
null
null
null
from django.forms import RadioSelect class RadioSelectButtonGroup(RadioSelect): """ This widget renders a Bootstrap 4 set of buttons horizontally instead of typical radio buttons. Much more mobile friendly. """ template_name = "bootstrap4/widgets/radio_select_button_group.html"
25.25
99
0.762376
263
0.867987
0
0
0
0
0
0
194
0.640264
ce2810e264659103f1cf2c4c793eb498a673a023
2,990
py
Python
workflower/services/workflow/loader.py
dmenezesgabriel/workflower
db2358abdd2d133b85baea726e013e71171e5cf3
[ "MIT" ]
null
null
null
workflower/services/workflow/loader.py
dmenezesgabriel/workflower
db2358abdd2d133b85baea726e013e71171e5cf3
[ "MIT" ]
null
null
null
workflower/services/workflow/loader.py
dmenezesgabriel/workflower
db2358abdd2d133b85baea726e013e71171e5cf3
[ "MIT" ]
null
null
null
import logging import os import traceback from typing import List from workflower.adapters.sqlalchemy.setup import Session from workflower.adapters.sqlalchemy.unit_of_work import SqlAlchemyUnitOfWork from workflower.application.event.commands import CreateEventCommand from workflower.application.workflow.commands import ( ActivateWorkflowCommand, LoadWorkflowFromYamlFileCommand, SetWorkflowTriggerCommand, ) from workflower.domain.entities.workflow import Workflow logger = logging.getLogger("workflower.loader") class WorkflowLoaderService: def __init__(self) -> None: self._workflows = None @property def workflows(self) -> List[Workflow]: return self._workflows def load_one_workflow_file(self, path: str, trigger: str = "on_schedule"): """ Load one workflow from file. Args: - path (str): workflow file path - trigger (str): expects "on_schedule" or "on_demand". """ session = Session() uow = SqlAlchemyUnitOfWork(session) # TODO # Add strategy pattern command = LoadWorkflowFromYamlFileCommand(uow, path) workflow = None try: workflow = command.execute() except Exception: logger.error(f"Error loading {path}:" f" {traceback.format_exc()}") create_event_command = CreateEventCommand( uow, model="workflow", model_id=None, name="workflow_load_error", exception=traceback.format_exc(), ) create_event_command.execute() if workflow: set_trigger_command = SetWorkflowTriggerCommand( uow, workflow.id, trigger ) set_trigger_command.execute() activate_Workflow_command = ActivateWorkflowCommand( uow, workflow.id ) activate_Workflow_command.execute() return workflow def load_all_from_dir( self, path: str, trigger: str = "on_schedule" ) -> List[Workflow]: """ Load all workflow files from a given directory Args: - path (str): workflows file path - trigger (str): expects "on_schedule" or "on_demand". """ self._workflows = [] logger.info(f"Loading Workflows from directory: {path}") counter = 0 for root, dirs, files in os.walk(path): for file in files: if file.endswith(".yml") or file.endswith(".yaml"): workflow_path = os.path.join(root, file) workflow = self.load_one_workflow_file( workflow_path, trigger=trigger ) if workflow: self._workflows.append(workflow) counter += 1 logger.info(f"Workflows Loaded {counter}") return self._workflows
32.5
79
0.596321
2,457
0.821739
0
0
83
0.027759
0
0
619
0.207023
ce281d8807b114456a5700d5486fb898099afb81
2,492
py
Python
setup.py
neuroticnerd/dragoncon-bot
44c4d96743cf11ea0e8eaa567100e42afa4de565
[ "Apache-2.0" ]
2
2015-12-18T05:28:02.000Z
2018-05-24T04:18:26.000Z
setup.py
neuroticnerd/dragoncon-bot
44c4d96743cf11ea0e8eaa567100e42afa4de565
[ "Apache-2.0" ]
11
2016-08-27T22:05:18.000Z
2021-12-13T19:41:44.000Z
setup.py
neuroticnerd/dragoncon-bot
44c4d96743cf11ea0e8eaa567100e42afa4de565
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import, unicode_literals import io import os import re from setuptools import find_packages, setup here = os.path.abspath(os.path.dirname(__file__)) PROJECT_MODULE = 'dragonite' PROJECT = 'dragonite' AUTHOR = 'Bryce Eggleton' EMAIL = 'eggleton.bryce@gmail.com' DESC = 'Dragon Con command line utility' LONG_DESC = '' KEYWORDS = ('dragonite', 'dragoncon', 'dragon', 'con') URL = "https://github.com/neuroticnerd/dragoncon-bot" REQUIRES = [] EXTRAS = { 'dev': ( 'flake8 >= 2.5.0', 'twine >= 1.8.1', 'pytest >= 2.8.4', 'coverage >= 4.0.3', ), # 'caching': ( # 'redis>=2.10.3', # 'hiredis>=0.2.0', # ), } SCRIPTS = { "console_scripts": [ 'dragonite = dragonite.cli:dragonite', ]} LICENSE = 'Apache License, Version 2.0' VERSION = '' CLASSIFIERS = [ 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Topic :: Utilities', ] version_file = os.path.join(here, '{0}/__init__.py'.format(PROJECT_MODULE)) ver_find = r'^\s*__version__\s*=\s*[\"\'](.*)[\"\']$' with io.open(version_file, 'r', encoding='utf-8') as ver_file: VERSION = re.search(ver_find, ver_file.read(), re.MULTILINE).group(1) readme_file = os.path.join(here, 'README.rst') with io.open(readme_file, 'r', encoding='utf-8') as f: LONG_DESC = f.read() requirements_file = os.path.join(here, 'requirements.txt') with io.open(requirements_file, 'r') as reqs_file: for rawline in reqs_file: line = rawline.strip() if line.startswith('http'): continue REQUIRES.append(' >= '.join(line.split('=='))) if __name__ == '__main__': setup( name=PROJECT, version=VERSION, packages=find_packages(include=[PROJECT_MODULE + '*']), author=AUTHOR, author_email=EMAIL, url=URL, description=DESC, long_description=LONG_DESC, classifiers=CLASSIFIERS, platforms=('any',), license=LICENSE, keywords=KEYWORDS, install_requires=REQUIRES, extras_require=EXTRAS, entry_points=SCRIPTS, )
28
75
0.617978
0
0
0
0
0
0
0
0
940
0.377207
ce282a6ed0fc710a4b6a368e5d2307c23cfaf901
3,427
py
Python
backend/api.py
RuiL1904/Hackathon
94eed04b2fa3fb48b3479045a0b279b0217744fb
[ "MIT" ]
5
2022-02-20T12:59:19.000Z
2022-02-20T17:30:49.000Z
backend/api.py
RuiL1904/Hackathon
94eed04b2fa3fb48b3479045a0b279b0217744fb
[ "MIT" ]
null
null
null
backend/api.py
RuiL1904/Hackathon
94eed04b2fa3fb48b3479045a0b279b0217744fb
[ "MIT" ]
1
2022-03-08T20:21:03.000Z
2022-03-08T20:21:03.000Z
import random import database from fastapi import FastAPI, Request from fastapi.middleware.cors import CORSMiddleware import uvicorn # Instantiate FastAPI app = FastAPI() # Whitelist origins app.add_middleware( CORSMiddleware, allow_origins = ["*"], allow_credentials = True, allow_methods = ["*"], allow_headers = ["*"] ) # POST @app.post('/api/create', response_description = "Add new schedule") async def create(req: Request) -> dict: json = await req.json() id = database.add_schedule(json) return {"id": id} # GET @app.get('/api/{id}/tags', response_description = "Get tags associated with given id") async def tags(id: str) -> list: data = database.get_schedule(id) tags = [] for elem in data: tags += elem['tags'] tags = set(tags) # Remove duplicates return tags # POST @app.post('/api/{id}/schedule', response_description = "Get best schedule associated with given id and user chosen tags") async def schedule(req: Request, id: str) -> list: schedule = database.get_schedule(id) tags = await req.json() to_remove = [] colided = check_colide(schedule) # Returns a list of tuples containing events happening at the same time for event in colided: h1 = schedule[event[0]] h1_sum = 0.0 h1_tags = 0 h2 = schedule[event[1]] h2_sum = 0.0 h2_tags = 0 for tag in h1.get('tags', []): h1_tags += 1 h1_sum += int(tags[tag]) for tag in h2.get('tags', []): h2_tags += 1 h2_sum += int(tags[tag]) if h1_tags != 0: h1_sum = h1_sum / h1_tags if h1_sum == 0: to_remove.append(h1) if h2_tags != 0: h2_sum = h2_sum / h2_tags if h2_sum == 0: to_remove.append(h2) h1_len = len(h1.get('tags', [])) h2_len = len(h2.get('tags', [])) if (h1_sum > h2_sum) and (h2_len > 0): to_remove.append(h2) elif (h1_sum < h2_sum) and (h1_len > 0): to_remove.append(h1) elif (h1_sum == h2_sum) and (h1_len > 0) and (h2_len > 0): # Chooses a random schedule and remove it if (random.randint(0,1)) == 0: to_remove.append(h1) else: to_remove.append(h2) for elem in to_remove: if elem in schedule: schedule.remove(elem) return schedule # Checks for coliding events inside the main schedule def check_colide(schedule: list) -> list: colided = [] for i in range(len(schedule)): for j in range(i + 1, len(schedule)): if (check_colide_aux(schedule[i], schedule[j])): colided.append((i,j)) return colided def check_colide_aux(h1, h2) -> bool: start1 = h1['date_start'] end1 = h1['date_end'] start2 = h2['date_start'] end2 = h2['date_end'] if start1 == start2 and end1 == end2: return True if start1 < start2 and end1 > start2: return True if start1 > start2 and end1 < end2: return True if start1 < start2 and end1 > start2: return True if start1 > start2 and end1 < end2: return True return False if __name__ == "__main__": uvicorn.run("api:app", host = "0.0.0.0", port = 8000, reload = True)
26.160305
121
0.569594
0
0
0
0
2,139
0.624161
1,862
0.543332
523
0.152612
ce282fdf98dc253cf62921347890761e924022a6
1,211
py
Python
lfs/portlet/models/pages.py
zhammami/django-lfs
b921295e71fe827377a67b5e7ae1a8bf7f72a1e6
[ "BSD-3-Clause" ]
null
null
null
lfs/portlet/models/pages.py
zhammami/django-lfs
b921295e71fe827377a67b5e7ae1a8bf7f72a1e6
[ "BSD-3-Clause" ]
null
null
null
lfs/portlet/models/pages.py
zhammami/django-lfs
b921295e71fe827377a67b5e7ae1a8bf7f72a1e6
[ "BSD-3-Clause" ]
null
null
null
# django imports from django import forms from django.conf import settings from django.core.cache import cache from django.template.loader import render_to_string # portlets imports from portlets.models import Portlet # lfs imports from lfs.page.models import Page class PagesPortlet(Portlet): """Portlet to display pages. """ class Meta: app_label = 'portlet' def __unicode__(self): return u"%s" % self.id def render(self, context): """Renders the portlet as html. """ request = context.get("request") cache_key = "%s-pages" % settings.CACHE_MIDDLEWARE_KEY_PREFIX pages = cache.get(cache_key) if pages is None: pages = Page.objects.filter(active=True, exclude_from_navigation=False) cache.set(cache_key, pages) return render_to_string("lfs/portlets/pages.html", request=request, context={ "title": self.title, "pages": pages, }) def form(self, **kwargs): return PagesForm(instance=self, **kwargs) class PagesForm(forms.ModelForm): """Form for the PagesPortlet. """ class Meta: model = PagesPortlet exclude = ()
24.714286
85
0.641618
938
0.774566
0
0
0
0
0
0
235
0.194055
ce2b25ff23e864e881234a2380df580d2b3d114d
829
py
Python
feed/models.py
kassupto007/photo-sharing-app
97ed237815134fd3d53431be348a050c505db499
[ "Apache-2.0" ]
null
null
null
feed/models.py
kassupto007/photo-sharing-app
97ed237815134fd3d53431be348a050c505db499
[ "Apache-2.0" ]
null
null
null
feed/models.py
kassupto007/photo-sharing-app
97ed237815134fd3d53431be348a050c505db499
[ "Apache-2.0" ]
null
null
null
from django.conf import settings from django.db import models from django.utils import timezone from users.models import Profile class Post(models.Model): description = models.CharField(max_length=255) picture = models.ImageField(upload_to='posts', blank=True) date_posted = models.DateTimeField(auto_now_add=True, auto_now=False) owner = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) def __str__(self): return self.description class Comment(models.Model): post = models.ForeignKey(Post, related_name='comments', on_delete=models.CASCADE) owner = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='comments', on_delete=models.CASCADE) comment = models.CharField(max_length=255) comment_date = models.DateTimeField(auto_now_add=True, auto_now=False)
37.681818
106
0.77684
694
0.837153
0
0
0
0
0
0
27
0.032569
ce2ba9ff2aa3d5ef4daa942e79661e4a012dddf3
2,168
py
Python
zampol/osoba/admin.py
VadymRud/zampolit
80bbd5dc197041c3595831a8d0ddae130e10418c
[ "Apache-2.0" ]
null
null
null
zampol/osoba/admin.py
VadymRud/zampolit
80bbd5dc197041c3595831a8d0ddae130e10418c
[ "Apache-2.0" ]
null
null
null
zampol/osoba/admin.py
VadymRud/zampolit
80bbd5dc197041c3595831a8d0ddae130e10418c
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from django.db import models from django.utils.translation import gettext as _ from .models import (MilitaryRank, Platoon, ServiseID, Unit, OfficialPosition, Company, Education, Creed, Nationality, Command) from osoba.widgets import CustomDatePickerInput class ServiseIDAdmin(admin.ModelAdmin): fieldsets = ( # (None, { # 'fields': ('field1', 'field2', 'field3') # }), (_('Main data'), { 'fields': ('name', 'sename', 'third_name', 'birth_date') }), (_('Names in accs'), { #давальний відмінок 'fields': ('name_accs', 'sename_accs', 'third_name_accs') }), (_('Company'), { 'fields': ('military_ranks', ) }), (_('Info for Service begin'), { 'fields': ('military_office', 'date_of_conscription', 'order_date', 'order_number') }), (_('General information'), { 'fields': ('orphan', 'married', 'halforphan', 'work', 'mobilization', 'driveid', 'creed', 'nationality', 'education', 'blood_type', 'rh') }), (_('militaryID'), { 'fields': ('militaryID_seria', 'militaryID_number', 'who_militaryID', 'militaryID_date', 'weapon', 'military_rank_id', 'military_rank_date') }), (_('ID'), { 'fields': ('ID_seria', 'ID_number', 'who_ID', 'ID_date', 'ipn') }), (_('Address'), { 'fields': ('addres_pr', 'addres_fact') }), (_('Images'), { 'fields': ('image_face3x4',) }) ) change_form_template = 'admin/ocoba_change_form.html' # formfield_overrides = { # models.DateField: {'widget': MonthPickerInput} # } admin.site.register(Company) admin.site.register(MilitaryRank) admin.site.register(Platoon) admin.site.register(ServiseID, ServiseIDAdmin) admin.site.register(Unit) admin.site.register(OfficialPosition) admin.site.register(Creed) admin.site.register(Nationality) admin.site.register(Education) admin.site.register(Command)
31.882353
95
0.571494
1,549
0.708924
0
0
0
0
0
0
862
0.394508
ce2c3b1def15247a90a747a7d6db93245d2f364a
725
py
Python
python/src/problem/leetcode/easy/leetcode_189.py
yipwinghong/Algorithm
e594df043c9d965dbfbd958554e88c533c844a45
[ "MIT" ]
9
2019-10-31T16:58:31.000Z
2022-02-08T08:42:30.000Z
python/src/problem/leetcode/easy/leetcode_189.py
yipwinghong/Algorithm
e594df043c9d965dbfbd958554e88c533c844a45
[ "MIT" ]
null
null
null
python/src/problem/leetcode/easy/leetcode_189.py
yipwinghong/Algorithm
e594df043c9d965dbfbd958554e88c533c844a45
[ "MIT" ]
null
null
null
# coding=utf-8 from typing import List class Solution: """ 旋转数组 """ def reverse(self, nums: List[int], i: int, j: int) -> None: """ :param nums: :param i: :param j: :return: """ while i < j: nums[i], nums[j] = nums[j], nums[i] i += 1 j -= 1 def rotate(self, nums: List[int], k: int) -> None: """ Time: O(n), Space: O(1) :param nums: :param k: :return: """ if not nums or k <= 0: return n, m = len(nums), k % len(nums) self.reverse(nums, 0, n - 1) self.reverse(nums, 0, m - 1) self.reverse(nums, m, n - 1)
18.589744
63
0.411034
690
0.941337
0
0
0
0
0
0
235
0.3206
ce2e1eeb2d14e83f19c6e30702d48f326de87b43
931
py
Python
brainmix_register/display/display.py
ThunderShiviah/brainmix-register
fd42445ed2649ae8bdbb3c3e653adc4465190052
[ "MIT", "Unlicense" ]
4
2015-07-10T01:13:43.000Z
2018-07-08T09:05:05.000Z
brainmix_register/display/display.py
ThunderShiviah/brainmix-register
fd42445ed2649ae8bdbb3c3e653adc4465190052
[ "MIT", "Unlicense" ]
3
2015-04-08T17:51:36.000Z
2015-06-01T04:19:33.000Z
brainmix_register/display/display.py
ThunderShiviah/brainmix_register
fd42445ed2649ae8bdbb3c3e653adc4465190052
[ "MIT", "Unlicense" ]
null
null
null
import sys, os, glob from skimage import io from skimage import viewer import registration as reg from skimage import data def display(): pass if __name__ == "__main__": # ------------------Create input ndarray------------------------ inputDir = '../data/test/' imageFiles = glob.glob(os.path.join(inputDir, '*.jpg')) imageVolume = io.ImageCollection(imageFiles, as_grey=True).concatenate() stack = imageVolume # ------------------Check that single image registration works---- src = stack[0] dst = stack[1] reg_dst = reg.reg(src, dst) # ------------- Check that stack registration works ----------- reg_stack = reg.registration(stack) merged = [reg.overlay_pics(stack[0], img) for img in stack] merged_reg = [reg.overlay_pics(reg_stack[0], img) for img in reg_stack] image = data.coins() viewer = viewer.CollectionViewer(merged_reg) viewer.show()
25.861111
76
0.61869
0
0
0
0
0
0
0
0
225
0.241676
ce30447567aca3b3740596e2dcf70ae66968d0b3
1,605
py
Python
lib/datasets/LFW2G.py
blacknwhite5/facial-anonymizer
48878f0b704cc9203b6e13b962f0b53cecae78c6
[ "MIT" ]
10
2019-04-18T03:30:55.000Z
2021-04-03T22:51:50.000Z
lib/datasets/LFW2G.py
blacknwhite5/facial-anonymizer
48878f0b704cc9203b6e13b962f0b53cecae78c6
[ "MIT" ]
3
2020-05-28T15:04:05.000Z
2020-12-16T10:31:42.000Z
lib/datasets/LFW2G.py
blacknwhite5/facial-anonymizer
48878f0b704cc9203b6e13b962f0b53cecae78c6
[ "MIT" ]
6
2019-04-15T11:16:02.000Z
2021-09-08T03:16:49.000Z
import numpy as np import torch import torch.utils.data as data from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import os, random, glob, cv2 class LFW2G(data.Dataset): def __init__(self, data_dir='data', transform=None): super(LFW2G, self).__init__() self.indexlist = glob.glob(os.path.join(data_dir, 'images/*/*.jpg')) # load images self.data_dir = data_dir self.img_dir = 'images' self.transform = transform def load_img(self, index): info = self.indexlist[index] img_path = info img = Image.open(img_path).convert('RGB') return img def __getitem__(self, index): _img = self.load_img(index) if self.transform: img = self.transform(_img) return img, index def __len__(self): return len(self.indexlist) def main(): import torch from torchvision import transforms, utils from torch.utils.data import DataLoader normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) g_data = LFW2G(data_dir='/home/SSD5/jason-data/Privacy/dataset/LFW', transform=transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), normalize])) print(len(g_data)) dataloader = DataLoader(g_data, batch_size=4, shuffle=False, num_workers=1) for i, data in enumerate(dataloader): im,_ = data print(im.size()) utils.save_image(im, str(i) + '.jpg', normalize=True) if __name__ == "__main__": main()
32.1
91
0.63053
704
0.438629
0
0
0
0
0
0
107
0.066667
ce307dac43c76b9afca0ff0e962a64169f480199
4,536
py
Python
questions.py
lasyasreepada/iplaw-for-digital-teens
a1ac53f7b3438876db644450413f78ec8d612bac
[ "MIT" ]
null
null
null
questions.py
lasyasreepada/iplaw-for-digital-teens
a1ac53f7b3438876db644450413f78ec8d612bac
[ "MIT" ]
null
null
null
questions.py
lasyasreepada/iplaw-for-digital-teens
a1ac53f7b3438876db644450413f78ec8d612bac
[ "MIT" ]
null
null
null
"""Set of questions for the IP Law quiz questions.py Lasya Sreepada Yale College '19 May 6, 2017 """ from random import shuffle import time def quiz(): questions = [ ("Copyright protects both expression of an idea and the idea itself. \nTrue or False?", "f", "cp"), ("Clothing, such as Katy Perry’s “Left Shark” costume is a useful article and is therefore copyrightable. \nTrue or False?", "f", "cp"), ("One of the factors of evaluation for fair use is the effect of the use upon the potential market for the work in question. \nTrue or False?", "t", "cp"), ("In Cariou vs. Prince, the defendant was brought to court because he used images from Cariou’s 2000 book, Yes Rasta, to create a new exhibition of photos with some apparent modifications. This was not fair use because it did not comment on the original work about the nature of the photographs. \nTrue or False?", "t", "cp"), ("Copyright is an inevitable, “divine” grant entrusting total ownership rights to the creator of a work. \nTrue or False?", "f", "cp"), ("In Christian Louboutin vs. YSL, the defendant was brought to court for using a red outsole on women’s shoes that were also red in color. The court ruled that this was a trademark infringement. \nTrue or False? ", "f", "tm"), ("Descriptive names for a company or product (e.g. FishFri) are never trademarkable. \nTrue or False?", "f", "tm"), ("Companies such as Google can potentially lose their trademark protection because of genericide. \nTrue or False?", "t", "tm"), ("The same trademark (e.g. a word) can be registered by different parties, so long as the trademarks are in different classes. \nTrue or False?", "t", "tm"), ("Trademarked goods or services must be made available for commercial sale on a national level (beyond state boundaries). \nTrue or False?", "t", "tm"), ("A utility patent application consists of three parts: drawings, a written description, and claim statements. The drawings of the product are most important in determining what exactly gets patented. \nTrue or False?", "f", "pt"), ("Naturally occurring processes or products, such as human DNA, are not patentable. \nTrue or False?", "t", "pt"), ("The tests that the court used in Alice Corp v. CLS Bank Intl to determine whether the computer software was patent eligible were (1) whether the claims directed to an abstract idea and (2) whether the claims added something inventive. \nTrue or False?", "t", "pt"), ("The level of skill required to develop a product or process is not considered when determining whether it satisfies the non-obviousness requirement for patent eligibility. \nTrue or False?", "f", "pt"), ("There is a distinction between utility and design, therefore, it is possible for one product to have both a utility patent and a design patent. \nTrue or False?", "t", "pt") ] shuffle(questions) cp_correct = 0 tm_correct = 0 pt_correct = 0 print("Welcome to Which IP Law Is for You!") time.sleep(2) print("We will ask you a series of true or false questions about various cases related with copyrights, trademarks, and patents.") time.sleep(5) print("When a question is displayed, you will be prompted for an answer. Please type t for true, and f for false.") time.sleep(5) print("At the end of the quiz, we will sort you into a branch of IP Law based on your quiz performance. Good Luck!") time.sleep(5) print() for question, correct_ans, typ in questions: print(question) answer = input() if answer == correct_ans: print("correct!") print() if typ == "cp": cp_correct += 1 elif typ == "tm": tm_correct += 1 else: pt_correct += 1 time.sleep(1) else: print("incorrect") print() time.sleep(1) total_correct = cp_correct + tm_correct + pt_correct if total_correct == len(questions): print("Congratulations, you are the IP Law Supreme Overlord! You got all the questions right and would do well in any branch.") else: if (cp_correct >= tm_correct and cp_correct >= pt_correct): print("You are Copyright Law!") elif (tm_correct >= cp_correct and tm_correct >= pt_correct): print("You are Trademark Law!") else: print("You are Patent Law!") quiz()
49.846154
334
0.665785
0
0
0
0
0
0
0
0
3,227
0.709231
ce313caa11cce1219bbc0ca784238958335d4a0b
529
py
Python
Python/leetcode/Triangle.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
2
2015-12-02T06:44:01.000Z
2016-05-04T21:40:54.000Z
Python/leetcode/Triangle.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
null
null
null
Python/leetcode/Triangle.py
darrencheng0817/AlgorithmLearning
aec1ddd0c51b619c1bae1e05f940d9ed587aa82f
[ "MIT" ]
null
null
null
''' Created on 1.12.2016 @author: Darren '''''' Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle. " '''
18.892857
126
0.587902
0
0
0
0
0
0
0
0
527
0.996219
ce31a76d07584d9441c2b8024946e9ee56bc2a7f
8,286
py
Python
regulations/tests/layers_toc_applier_tests.py
contolini/regulations-site
c31a9ce3097910877657f61b4c19a4ccbd0f967f
[ "CC0-1.0" ]
18
2015-01-14T15:58:45.000Z
2019-08-17T06:15:59.000Z
regulations/tests/layers_toc_applier_tests.py
contolini/regulations-site
c31a9ce3097910877657f61b4c19a4ccbd0f967f
[ "CC0-1.0" ]
142
2015-01-08T15:28:50.000Z
2018-07-16T16:48:07.000Z
regulations/tests/layers_toc_applier_tests.py
contolini/regulations-site
c31a9ce3097910877657f61b4c19a4ccbd0f967f
[ "CC0-1.0" ]
45
2015-01-26T16:24:46.000Z
2021-02-20T10:50:59.000Z
from unittest import TestCase from regulations.generator.layers.toc_applier import * class TableOfContentsLayerTest(TestCase): def test_section(self): toc = TableOfContentsLayer(None) el = {} toc.section(el, {'index': ['1']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', '2', '3']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', 'B']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', 'Interpretations']}) self.assertEqual({}, el) toc.section(el, {'index': ['1', '2'], 'title': '1.2 - Awesome'}) self.assertEqual(el, { 'is_section': True, 'section_id': '1-2', 'label': '1.2', 'sub_label': 'Awesome' }) toc.section(el, {'index': ['2', '1'], 'title': '2.1Sauce'}) self.assertEqual(el, { 'is_section': True, 'section_id': '2-1', 'label': '2.1', 'sub_label': 'Sauce' }) def test_appendix_supplement(self): toc = TableOfContentsLayer(None) el = {} toc.appendix_supplement(el, {'index': ['1']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', '2', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', 'B', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, {'index': ['1', 'Interp', '3']}) self.assertEqual({}, el) toc.appendix_supplement(el, { 'index': ['1', 'B'], 'title': 'Appendix B - Bologna'}) self.assertEqual(el, { 'is_appendix': True, 'is_first_appendix': True, 'label': 'Appendix B', 'sub_label': 'Bologna', 'section_id': '1-B' }) el = {} toc.appendix_supplement(el, { 'index': ['204', 'A'], 'title': 'Appendix A to Part 204 - Model Forms'}) self.assertEqual(el, { 'is_appendix': True, 'is_first_appendix': True, 'label': 'Appendix A to Part 204', 'sub_label': 'Model Forms', 'section_id': '204-A' }) el = {} toc.appendix_supplement(el, { 'index': ['1', 'Interp'], 'title': 'Supplement I to 8787 - I am Iron Man'}) self.assertEqual(el, { 'is_supplement': True, 'label': 'Supplement I to 8787', 'sub_label': 'I am Iron Man', 'section_id': '1-Interp' }) def test_apply_layer_url(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}]}) result = toc.apply_layer('100') self.assertEqual('#100-1', result[1][0]['url']) toc.sectional = True toc.version = 'verver' result = toc.apply_layer('100') self.assertTrue('100-1/verver#100-1' in result[1][0]['url']) def test_apply_layer_compatibility(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Sec2', 'index': ['100', '2']}, {'title': '100.3 Sec3', 'index': ['100', '3']}] }) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) self.assertEqual(3, len(result[0]['sub_toc'])) def test_apply_layer_first_appendix(self): toc = TableOfContentsLayer({'100': [ {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix B', 'index': ['100', 'B']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(4, len(result)) aA, aB, aC, sI = result self.assertTrue(aA['is_first_appendix']) self.assertFalse(aB['is_first_appendix']) self.assertFalse(aC['is_first_appendix']) self.assertFalse(sI.get('is_first_appendix', False)) toc = TableOfContentsLayer({'100': [ {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(1, len(result)) self.assertFalse(result[0].get('is_first_appendix', False)) def test_apply_layer_interp_emptysubpart(self): toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(3, len(result)) s1, s2, interp = result self.assertEqual(1, len(interp['sub_toc'])) nosubpart = interp['sub_toc'][0] self.assertEqual('Regulation Text', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'Interp'], nosubpart['index']) toc = TableOfContentsLayer({'100': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}]}) _, result = toc.apply_layer('100') self.assertEqual(5, len(result)) s1, s2, appA, appC, interp = result self.assertEqual(2, len(interp['sub_toc'])) nosubpart, appendices = interp['sub_toc'] self.assertEqual('Regulation Text', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'Interp'], nosubpart['index']) self.assertEqual('Appendices', appendices['label']) self.assertEqual(['100', 'Appendices', 'Interp'], appendices['index']) def test_apply_layer_interp_subparts(self): toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}]}) _, result = toc.apply_layer('100') self.assertEqual(2, len(result)) subpartA, interp = result self.assertEqual(2, len(subpartA['sub_toc'])) self.assertEqual(1, len(interp['sub_toc'])) nosubpart = interp['sub_toc'][0] self.assertEqual('Subpart A', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'A', 'Interp'], nosubpart['index']) toc = TableOfContentsLayer({ '100': [ {'title': 'Subpart A', 'index': ['100', 'Subpart', 'A']}, {'title': 'Appendix A', 'index': ['100', 'A']}, {'title': 'Appendix C', 'index': ['100', 'C']}, {'title': 'Supplement I', 'index': ['100', 'Interp']}], '100-Subpart-A': [ {'title': '100.1 Intro', 'index': ['100', '1']}, {'title': '100.2 Second', 'index': ['100', '2']}]}) _, result = toc.apply_layer('100') self.assertEqual(4, len(result)) subpartA, appA, appC, interp = result self.assertEqual(2, len(interp['sub_toc'])) nosubpart, appendices = interp['sub_toc'] self.assertEqual('Subpart A', nosubpart['label']) self.assertEqual(['100', 'Subpart', 'A', 'Interp'], nosubpart['index']) self.assertEqual('Appendices', appendices['label']) self.assertEqual(['100', 'Appendices', 'Interp'], appendices['index'])
40.223301
79
0.506758
8,197
0.989259
0
0
0
0
0
0
2,661
0.321144
ce33d42b39da049e5244eeed1b27927c33f5fb8c
1,929
py
Python
array_range.py
fasiha/array-range-slices-py
940bfd1879a7e041b59349f6d9cbc2d79dacb891
[ "Unlicense" ]
1
2021-02-03T14:01:56.000Z
2021-02-03T14:01:56.000Z
array_range.py
fasiha/array-range-slices-py
940bfd1879a7e041b59349f6d9cbc2d79dacb891
[ "Unlicense" ]
null
null
null
array_range.py
fasiha/array-range-slices-py
940bfd1879a7e041b59349f6d9cbc2d79dacb891
[ "Unlicense" ]
null
null
null
""" Numpy's `split` can split a multidimensional array into non-overlapping sub-arrays. However, this is not a memory-efficient way of dealing with non-overlapping partitions of an array because it effectively doubles memory usage. This module provides an iterable generator that produces tuples of slices, each of which can be used to index into a Numpy array and obtain a small view into it. It is very memory-efficient since no copy of the array is ever created. This all works because Numpy ndarrays can be indexed using a tuple of slices: that is, `arr[a:b, c:d, e:f]` is equivalent to `arr[(slice(a, b), slice(c, d), slice(e, f))]`. This module doesn't import Numpy at all since it generates Python slices. """ from itertools import product from typing import List, Iterable, Tuple def array_range(start: List[int], stop: List[int], step: List[int]) -> Iterable[Tuple]: """ Makes an iterable of non-overlapping slices, e.g., to partition an array Returns an iterable of tuples of slices, each of which can be used to index into a multidimensional array such as Numpy's ndarray. >> [arr[tup] for tup in array_range([0, 0], arr.shape, [5, 7])] where `arr` can be indexed with a tuple of slices (e.g., Numpy), will evaluate to a list of sub-arrays. Same arguments as `range` except all three arguments are required and expected to be list-like of same length. `start` indicates the indexes to start each dimension. `stop` indicates the stop index for each dimension. `step` is the size of the chunk in each dimension. """ assert len(start) == len(stop) assert len(stop) == len(step) assert all(map(lambda x: x > 0, step)) startRangesGen = map(lambda v: range(*v), zip(start, stop, step)) startToSliceMapper = lambda multiStart: tuple( slice(i, min(i + step, stop)) for i, stop, step in zip(multiStart, stop, step)) return map(startToSliceMapper, product(*startRangesGen))
41.042553
87
0.729912
0
0
0
0
0
0
0
0
1,395
0.723173
ce34ebaf15612703873e6a27020070246ab042d8
7,197
py
Python
test-framework/test-suites/integration/tests/add/test_add_host_bonded.py
knutsonchris/stacki
33087dd5fa311984a66ccecfeee6f9c2c25f665d
[ "BSD-3-Clause" ]
123
2015-05-12T23:36:45.000Z
2017-07-05T23:26:57.000Z
test-framework/test-suites/integration/tests/add/test_add_host_bonded.py
knutsonchris/stacki
33087dd5fa311984a66ccecfeee6f9c2c25f665d
[ "BSD-3-Clause" ]
177
2015-06-05T19:17:47.000Z
2017-07-07T17:57:24.000Z
test-framework/test-suites/integration/tests/add/test_add_host_bonded.py
knutsonchris/stacki
33087dd5fa311984a66ccecfeee6f9c2c25f665d
[ "BSD-3-Clause" ]
32
2015-06-07T02:25:03.000Z
2017-06-23T07:35:35.000Z
import json from textwrap import dedent import pytest @pytest.mark.usefixtures("add_host_with_interface") class TestAddHostBonded: def test_no_hosts(self, host): result = host.run('stack add host bonded') assert result.rc == 255 assert result.stderr == dedent('''\ error - "host" argument is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_no_matching_hosts(self, host): result = host.run('stack add host bonded a:test') assert result.rc == 255 assert result.stderr == dedent('''\ error - "host" argument is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_multiple_hosts(self, host): result = host.run('stack add host bonded frontend-0-0 backend-0-0') assert result.rc == 255 assert result.stderr == dedent('''\ error - "host" argument must be unique {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_no_channel(self, host): result = host.run('stack add host bonded backend-0-0') assert result.rc == 255 assert result.stderr == dedent('''\ error - "channel" parameter is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_no_interfaces(self, host): result = host.run('stack add host bonded backend-0-0 channel=bond0') assert result.rc == 255 assert result.stderr == dedent('''\ error - "interfaces" parameter is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_no_ip(self, host): result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1') assert result.rc == 255 assert result.stderr == dedent('''\ error - "ip" parameter is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_no_network(self, host): result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1 ip=192.168.0.1') assert result.rc == 255 assert result.stderr == dedent('''\ error - "network" parameter is required {host} [channel=string] [interfaces=string] [ip=string] [name=string] [network=string] [options=string] ''') def test_invalid_network(self, host): # Add a second interface to our backend result = host.run('stack add host interface backend-0-0 interface=eth1') assert result.rc == 0 # Add the bonded interface result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1 ip=192.168.0.1 network=test') assert result.rc == 255 assert result.stderr == 'error - network "test" does not exist\n' def test_missing_interface(self, host): result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1 ip=192.168.0.1 network=private') assert result.rc == 255 assert result.stderr == 'error - interface "eth1" does not exist for host "backend-0-0"\n' def test_comma_seperated_interfaces(self, host): # Add a second interface to our backend result = host.run('stack add host interface backend-0-0 interface=eth1') assert result.rc == 0 # Add the bonded interface result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1 ip=192.168.0.1 network=private') assert result.rc == 0 # Check the interface is in the database now result = host.run('stack list host interface backend-0-0 output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { 'channel': None, 'default': None, 'host': 'backend-0-0', 'interface': 'bond0', 'ip': '192.168.0.1', 'mac': None, 'module': 'bonding', 'name': 'backend-0-0', 'network': 'private', 'options': None, 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth0', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth1', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None } ] def test_space_seperated_interfaces(self, host): # Add a second interface to our backend result = host.run('stack add host interface backend-0-0 interface=eth1') assert result.rc == 0 # Add the bonded interface result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces="eth0 eth1" ip=192.168.0.1 network=private') assert result.rc == 0 # Check the interface is in the database now result = host.run('stack list host interface backend-0-0 output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { 'channel': None, 'default': None, 'host': 'backend-0-0', 'interface': 'bond0', 'ip': '192.168.0.1', 'mac': None, 'module': 'bonding', 'name': 'backend-0-0', 'network': 'private', 'options': None, 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth0', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth1', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None } ] def test_default_with_options(self, host): # Add a second interface to our backend result = host.run('stack add host interface backend-0-0 interface=eth1 default=true') assert result.rc == 0 # Add the bonded interface result = host.run('stack add host bonded backend-0-0 channel=bond0 ' 'interfaces=eth0,eth1 ip=192.168.0.1 network=private options=test_options') assert result.rc == 0 # Check the interface is in the database now result = host.run('stack list host interface backend-0-0 output-format=json') assert result.rc == 0 assert json.loads(result.stdout) == [ { 'channel': None, 'default': True, 'host': 'backend-0-0', 'interface': 'bond0', 'ip': '192.168.0.1', 'mac': None, 'module': 'bonding', 'name': 'backend-0-0', 'network': 'private', 'options': 'bonding-opts="test_options"', 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth0', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None }, { 'channel': 'bond0', 'default': None, 'host': 'backend-0-0', 'interface': 'eth1', 'ip': None, 'mac': None, 'module': None, 'name': 'backend-0-0', 'network': None, 'options': None, 'vlan': None } ]
28.559524
106
0.632208
7,087
0.984716
0
0
7,139
0.991941
0
0
4,104
0.570238
ce3501af1f45e1223934bba47fc0e9a49f9b32bd
1,669
py
Python
BITs/2014/Kozlov_A_D/task_8_11.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
BITs/2014/Kozlov_A_D/task_8_11.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
BITs/2014/Kozlov_A_D/task_8_11.py
YukkaSarasti/pythonintask
eadf4245abb65f4400a3bae30a4256b4658e009c
[ "Apache-2.0" ]
null
null
null
#Задача 8. Вариант 11. #1-50. Доработайте игру "Анаграммы" (см. М.Доусон Программируем на Python. Гл.4) так, чтобы к каждому слову полагалась подсказка. Игрок должен получать право на подсказку в том случае, если у него нет никаких предположений. Разработайте систему начисления очков, по которой бы игроки, отгадавшие слово без подсказки, получали больше тех, кто запросил подсказку. #Козлов А.Д. #04.04.2016 import random words = ("питон","анаграмма","простая","сложная","ответ","подстаканник") word=random.choice(words) correct=word score=10; i=0 jumble="" while word: position=random.randrange(len(word)) jumble+=word[position] word=word[:position]+word[(position+1):] print(""" Добро пожаловать в игру 'Анаграммы'! Надо перемтавитьбуквы так, чтобы получилось осмысленное слово. Для вызова подсказки напишите: подсказка. (Для выхода нажмите Enter,не вводя своей версии.) """) print("Вот анаграмма: ", jumble) guess=input("Попробуйте отгадать исходное слово: ") if guess=="подсказка": score-=1 print(str(i+1),"буква: ",correct[i]) i+=1 while guess !=correct and guess!="": guess=input("Попробуйте отгадать исходное слово: ") if guess=="подсказка": if i==len(correct): print("Все буквы уже выведены.") continue score-=1 print(str(i+1),"буква: ",correct[i]) i+=1 continue if guess==correct: print("Да. Именно так! Вы отгадали! Вы зарабботали ",score," очков!") else: print("К сожалению, Вы неправы.") print("Спасибо за игру.") input("\n\nНажмите Enter, чтобы выйти")
37.088889
362
0.656681
0
0
0
0
0
0
0
0
1,689
0.710261
ce358cccd6bb9246d24f50b9e468818c256a0701
1,254
py
Python
master/teachkids-master/teachkids-master/ch09/Challenge2_ColorPaint.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
4
2018-09-07T15:35:24.000Z
2019-03-27T09:48:12.000Z
master/teachkids-master/teachkids-master/ch09/Challenge2_ColorPaint.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
371
2020-03-04T21:51:56.000Z
2022-03-31T20:59:11.000Z
master/teachkids-master/teachkids-master/ch09/Challenge2_ColorPaint.py
AlexRogalskiy/DevArtifacts
931aabb8cbf27656151c54856eb2ea7d1153203a
[ "MIT" ]
3
2019-06-18T19:57:17.000Z
2020-11-06T03:55:08.000Z
# ColorPaint.py import pygame # setup import random pygame.init() screen = pygame.display.set_mode([800, 600]) pygame.display.set_caption('Click and drag to draw, using up to 3 mouse buttons') keepGoing = True ORANGE = (255,255,0) # RGB color triplets for 3 mousebutton colors GREEN = (0,255,0) PURPLE = (128,0,128) radius = 15 mousedown = False while keepGoing: # game loop for event in pygame.event.get(): # handling events if event.type == pygame.QUIT: keepGoing = False if event.type == pygame.MOUSEBUTTONDOWN: mousedown = True if event.type == pygame.MOUSEBUTTONUP: mousedown = False if mousedown: # draw/update graphics spot = pygame.mouse.get_pos() if pygame.mouse.get_pressed()[0] : # boolean for button1 button_color = ORANGE elif pygame.mouse.get_pressed()[1]: # boolean for button2 button_color = GREEN else: # must be button3 button_color = PURPLE pygame.draw.circle(screen, button_color, spot, radius) pygame.display.update() # update display pygame.quit() # exit
36.882353
81
0.587719
0
0
0
0
0
0
0
0
251
0.200159
ce35c483fa1d1e28e070fa3ddb8145549538c79c
14,508
py
Python
eventmanager/events/tests.py
karinakozarova/EventManager
b09fa7a788b4aa11761fc34096cc711304c288c7
[ "MIT" ]
4
2019-01-06T16:58:20.000Z
2019-04-08T10:20:46.000Z
eventmanager/events/tests.py
EventManagerTeam/EventManager
b09fa7a788b4aa11761fc34096cc711304c288c7
[ "MIT" ]
297
2018-11-14T13:59:19.000Z
2022-03-11T23:33:28.000Z
eventmanager/events/tests.py
karinakozarova/EventManager
b09fa7a788b4aa11761fc34096cc711304c288c7
[ "MIT" ]
1
2019-04-22T15:17:32.000Z
2019-04-22T15:17:32.000Z
import datetime import unittest from accounts.models import AccountDetails from categories.models import Category from django.contrib.auth.models import User from django.test import Client from django.test import TestCase from django.urls import reverse from events.models import Comment from events.models import Event from events.models import Invite from tasks.models import Task class EventsTestCase(TestCase): def setUp(self): self.total_number_of_events = 25 self.client = Client() self.client.login(username='john', password='johnpassword') category = Category.objects.create( name='test event category', description='cool description', slug='test', ) for event_id in range(self.total_number_of_events): eventstring = 'test' + str(event_id) self.event = Event.objects.create( title=eventstring, description=eventstring, ) self.event.save() self.event.category.add(category) self.event.save() def test_list_events_lists_event(self): url = reverse('events.list') resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn(b'test1', resp.content) def test_list_events_lists_categories(self): url = reverse('events.list') resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn(b'test event category', resp.content) def test_create_event(self): pass def test_update_event(self): pass def test_delete_event(self): pass def test_view_event(self): pass def test_join_event(self): pass def test_unjoin_event(self): pass def test_add_teammate(self): pass class EventsFeedsTestCase(TestCase): def setUp(self): self.total_number_of_events = 25 self.client = Client() self.client.login(username='john', password='johnpassword') category = Category.objects.create( name='test event', description='cool description', slug='test', ) for event_id in range(self.total_number_of_events): eventstring = 'test' + str(event_id) self.event = Event.objects.create( title=eventstring, description=eventstring, ) self.event.save() self.event.category.add(category) self.event.save() def test_all_events_feed(self): response = self.client.get(reverse('event_feed')) latest_event = 'test' + str(self.total_number_of_events - 1) self.assertContains(response, latest_event) self.assertContains(response, 'test' + str(1)) def test_latest_events_feed(self): response = self.client.get(reverse('latest_event_feed')) first_event_title = 'test' + str(self.total_number_of_events) self.assertNotContains(response, first_event_title) latest_event_title = 'test' + str(1) self.assertContains(response, latest_event_title) class EventsUrlsTestClass(TestCase): client = Client() def setUp(self): self.client = Client() self.user = User.objects.create_user( 'john', 'lennon@thebeatles.com', 'johnpassword' ) self.user.details = AccountDetails.objects.create( user=self.user, description='cool description', slug='userslug' ) self.client.login(username='john', password='johnpassword') category = Category.objects.create( name='test event', description='cool description', slug='test', ) self.event = Event.objects.create( title='testy', description='cool description', slug='event', added_by=self.user, ) self.event.save() self.event.category.add(category) self.event.team_members.add(self.user) self.event.save() def url_returns_200(self, url, status_code=200): response = self.client.get(url) self.assertEqual(response.status_code, status_code) def test_list_events_url(self): self.url_returns_200(reverse('events.list')) def test_create_event_url(self): self.url_returns_200(reverse('events.create_event')) def test_delete_event_url(self): user = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) self.client.login(username='johnaaaa', password='johnpasswordaaa') category = Category.objects.create( name='unisdjsd', description='cool description', slug='tesddssst', ) event = Event.objects.create( title='delete', description='cool description', slug='delete', added_by=user, ) event.save() event.category.add(category) self.url_returns_200(reverse('events.del', kwargs={'slug': 'delete'})) def test_delete_event_url_unsuccessful(self): user = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) user2 = User.objects.create_user( 'johnaaaa2', 'lennonaaa2@thebeatles.com', 'johnpasswordaaa2' ) self.client.login(username='johnaaaa', password='johnpasswordaaa') category = Category.objects.create( name='unisdjsd', description='cool description', slug='tesddssst', ) event = Event.objects.create( title='delete', description='cool description', slug='delete', added_by=user2, ) event.save() event.category.add(category) response = self.client.get( reverse( 'events.del', kwargs={ 'slug': 'delete'})) self.assertEquals(response.status_code, 403) def test_view_event_url(self): user2 = User.objects.create_user( username='testuser2', password='12345' ) user2.details = AccountDetails.objects.create( user=user2, description='cool description', slug='userslug2' ) self.user.details.friends.add(user2) self.url_returns_200(reverse('event', kwargs={'slug': 'event'})) def test_all_events_feed_url(self): self.url_returns_200(reverse('event_feed')) def test_latest_events_feed_url(self): self.url_returns_200(reverse('latest_event_feed')) def test_join_event(self): self.url_returns_200(reverse('events.join', kwargs={'slug': 'event'})) def test_unjoin_event(self): self.url_returns_200( reverse( 'events.rm_join', kwargs={ 'slug': 'event'})) def test_event_settings_url(self): self.url_returns_200( reverse( 'events.settings', kwargs={ 'slug': 'event'})) def test_event_invites_url(self): self.url_returns_200(reverse('events.invites')) def test_event_invite_url(self): self.url_returns_200( reverse( 'events.invite', kwargs={ 'slug': 'userslug', 'event': 'event'})) def test_event_url(self): self.url_returns_200(reverse('events.event', kwargs={'slug': 'event'})) def test_add_team_member(self): user = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) event = Event.objects.create( title='testy', description='cool description', slug='eventааааа', added_by=user, ) self.client.login(username='johnaaaa', password='johnpasswordaaa') self.url_returns_200('events/userslug/eventааааа/add_teammate') def test_get_tasks_no_tasks(self): response = self.client.get(reverse('events.tasks')) self.assertNotContains(response, 'TO DO:') self.assertNotContains(response, 'DOING:') self.assertEqual(response.status_code, 200) # def test_get_tasks(self): # task_title = 'Very cooollll' # task = Task.objects.create( # title=task_title, # event=self.event, # slug='event', # assignee=self.user, # status='TODO' # ) # self.client.login(username='john', password='johnpassword') # response = self.client.get(reverse('events.tasks')) # self.assertContains(response, task_title) # self.assertEqual(response.status_code, 200) def test_confirm_invite(self): user2 = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) Invite.objects.create( invited_user=self.user, invited_by=user2, event=self.event) self.url_returns_200( reverse( 'events.confirm_invite', kwargs={ 'slug': self.event.slug})) def test_decline_invite(self): user2 = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) Invite.objects.create( invited_user=self.user, invited_by=user2, event=self.event) self.url_returns_200( reverse( 'invites.decline_invite', kwargs={ 'slug': self.event.slug})) def test_add_teammate_no_friends(self): self.url_returns_200( reverse( 'events.add_teammate', kwargs={ 'slug': self.event.slug})) response = self.client.get( reverse( 'events.add_teammate', kwargs={ 'slug': self.event.slug})) self.assertEqual(response.status_code, 200) self.assertNotContains(response, 'Find') def test_add_teammate(self): user2 = User.objects.create_user( 'friendddddddd', 'lennon@thebeatles.com', 'johnpassword' ) user2.details = AccountDetails.objects.create( user=user2, description='cool description', slug='useddddrslug' ) self.user.details.friends.add(user2) self.user.save() self.user.details.save() self.url_returns_200( reverse( 'events.add_teammate', kwargs={ 'slug': self.event.slug } ) ) response = self.client.get( reverse( 'events.add_teammate', kwargs={ 'slug': self.event.slug})) self.assertEqual(response.status_code, 200) self.assertContains(response, 'Find') def test_event_team_add(self): user2 = User.objects.create_user( 'johnaaaa', 'lennonaaa@thebeatles.com', 'johnpasswordaaa' ) response = self.client.get( reverse( 'events.event_team_add', kwargs={ 'slug': self.event.slug, 'user': user2 })) self.assertEqual(response.status_code, 200) self.assertContains(response, 'Success') self.assertContains(response, user2.username) def test_delete_comment_by_slug(self): Comment.objects.create( event=self.event, author=self.user, title='opaaa', content='sdasdsa') comment = Comment.objects.first() self.url_returns_200( reverse( 'events.comment.del', kwargs={ 'slug': self.event.slug, 'comment': comment.pk})) def test_edit_comment_by_slug(self): Comment.objects.create( event=self.event, author=self.user, title='opaaa', content='sdasdsa') comment = Comment.objects.first() response = self.client.get( reverse( 'events.comment.edit', kwargs={ 'slug': self.event.slug, 'comment': comment.pk})) self.assertEqual(response.status_code, 200) self.assertContains(response, 'opaaa') def test_event_board(self): self.url_returns_200( reverse( 'events.board', kwargs={ 'slug': self.event.slug})) def test_my_events(self): event = Event.objects.create( title='testy', description='cool description', slug='eventааааа', added_by=self.user, ) event.attendees.add(self.user) response = self.client.get(reverse('events.my_events')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testy') def test_events_I_host(self): event = Event.objects.create( title='testy', description='cool description', slug='eventааааа', added_by=self.user, ) event.attendees.add(self.user) response = self.client.get(reverse('events.events_I_host')) self.assertEqual(response.status_code, 200) self.assertContains(response, 'testy') def test_show_random_event(self): event = Event.objects.create( title='testy', description='cool description', slug='eventааааа', added_by=self.user, ) response = self.client.get(reverse('events.show_random_event')) self.assertEqual(response.status_code, 302) def test_search_json(self): response = self.client.get(reverse('events.search_json', kwargs={ 'category_id': 1, 'slug': 'test'})) self.assertEqual(response.status_code, 200)
30.543158
79
0.565826
14,135
0.972614
0
0
0
0
0
0
2,615
0.179935
ce35f5d501c181ecbb1339e8615379517cb18794
159
py
Python
billing/tests/views.py
hkhanna/django-stripe-billing
75a53c183ff86b1c7edf741683ffe3330e733d87
[ "MIT" ]
1
2022-03-29T20:16:34.000Z
2022-03-29T20:16:34.000Z
billing/tests/views.py
hkhanna/django-stripe-billing
75a53c183ff86b1c7edf741683ffe3330e733d87
[ "MIT" ]
2
2022-02-21T17:38:22.000Z
2022-02-22T20:56:39.000Z
billing/tests/views.py
hkhanna/django-stripe-billing
75a53c183ff86b1c7edf741683ffe3330e733d87
[ "MIT" ]
null
null
null
from django.views.generic import TemplateView from .. import mixins class ProfileView(mixins.BillingMixin, TemplateView): template_name = "profile.html"
22.714286
53
0.792453
88
0.553459
0
0
0
0
0
0
14
0.08805
ce36dcd7976f6556078f7dfa2fbd33e0565d593e
4,225
py
Python
core/model/meta/mtl.py
Aamer98/LibFewShot_NoAffine
1203d2a9f5cb4705038748dbda03a4b7c37bf647
[ "MIT" ]
1
2021-11-07T03:34:41.000Z
2021-11-07T03:34:41.000Z
core/model/meta/mtl.py
taylor1355/LibFewShot
c53b4ee3772c5c8033fd54aa73586091eee2d0b0
[ "MIT" ]
null
null
null
core/model/meta/mtl.py
taylor1355/LibFewShot
c53b4ee3772c5c8033fd54aa73586091eee2d0b0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ @inproceedings{DBLP:conf/cvpr/SunLCS19, author = {Qianru Sun and Yaoyao Liu and Tat{-}Seng Chua and Bernt Schiele}, title = {Meta-Transfer Learning for Few-Shot Learning}, booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR} 2019, Long Beach, CA, USA, June 16-20, 2019}, pages = {403--412}, year = {2019}, url = {http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Meta-Transfer_Learning_for_Few -Shot_Learning_CVPR_2019_paper.html}, doi = {10.1109/CVPR.2019.00049} } https://arxiv.org/abs/1812.02391 Adapted from https://github.com/yaoyao-liu/meta-transfer-learning. """ import torch from torch import digamma, nn import torch.nn.functional as F import copy from core.utils import accuracy from .meta_model import MetaModel from ..backbone.utils import convert_mtl_module class MTLBaseLearner(nn.Module): """The class for inner loop.""" def __init__(self, ways, z_dim): super().__init__() self.ways = ways self.z_dim = z_dim self.vars = nn.ParameterList() self.fc1_w = nn.Parameter(torch.ones([self.ways, self.z_dim])) torch.nn.init.kaiming_normal_(self.fc1_w) self.vars.append(self.fc1_w) self.fc1_b = nn.Parameter(torch.zeros(self.ways)) self.vars.append(self.fc1_b) def forward(self, input_x, the_vars=None): if the_vars is None: the_vars = self.vars fc1_w = the_vars[0] fc1_b = the_vars[1] net = F.linear(input_x, fc1_w, fc1_b) return net def parameters(self): return self.vars class MTL(MetaModel): def __init__(self, feat_dim, num_classes, inner_param, use_MTL, **kwargs): super(MTL, self).__init__(**kwargs) self.feat_dim = feat_dim self.num_classes = num_classes self.base_learner = MTLBaseLearner(self.way_num, z_dim=self.feat_dim).to(self.device) self.inner_param = inner_param self.loss_func = nn.CrossEntropyLoss() convert_mtl_module(self, use_MTL) def set_forward(self, batch): """ meta-validation """ image, global_target = batch image = image.to(self.device) global_target = global_target.to(self.device) feat = self.emb_func(image) support_feat, query_feat, support_target, query_target = self.split_by_episode(feat, mode=4) classifier, base_learner_weight = self.set_forward_adaptation(support_feat, support_target) output = classifier(query_feat, base_learner_weight) acc = accuracy(output, query_target) return output, acc def set_forward_loss(self, batch): """ meta-train """ image, global_target = batch image = image.to(self.device) global_target = global_target.to(self.device) feat = self.emb_func(image) support_feat, query_feat, support_target, query_target = self.split_by_episode(feat, mode=4) classifier, base_learner_weight = self.set_forward_adaptation(support_feat, support_target) output = classifier(query_feat, base_learner_weight) loss = self.loss_func(output, query_target) acc = accuracy(output, query_target) return output, acc, loss def set_forward_adaptation(self, support_feat, support_target): classifier = self.base_learner logit = self.base_learner(support_feat) loss = self.loss_func(logit, support_target) grad = torch.autograd.grad(loss, self.base_learner.parameters()) fast_parameters = list( map( lambda p: p[1] - 0.01 * p[0], zip(grad, self.base_learner.parameters()), ) ) for _ in range(1, self.inner_param["iter"]): logit = self.base_learner(support_feat, fast_parameters) loss = F.cross_entropy(logit, support_target) grad = torch.autograd.grad(loss, fast_parameters) fast_parameters = list(map(lambda p: p[1] - 0.01 * p[0], zip(grad, fast_parameters))) return classifier, fast_parameters
32.751938
101
0.64568
3,279
0.776095
0
0
0
0
0
0
846
0.200237
ce378179f8b40837991f7c71e128ec7eb52c6132
1,023
py
Python
game.py
gustavonaldoni/command-line-hangman
a740a446ce1dfad2100ab7e6ea1db817c6a57a47
[ "MIT" ]
null
null
null
game.py
gustavonaldoni/command-line-hangman
a740a446ce1dfad2100ab7e6ea1db817c6a57a47
[ "MIT" ]
null
null
null
game.py
gustavonaldoni/command-line-hangman
a740a446ce1dfad2100ab7e6ea1db817c6a57a47
[ "MIT" ]
null
null
null
from capture_words import capture_words_from_file import random def find_letter_indexes(letter, word): indexes = [] for index, l in enumerate(word): if l == letter: indexes.append(index) return indexes def convert_word_to_asterisks(word): final_word = '*' * len(word) return final_word def check_user_choice(word, user_choice): if user_choice in word: return True return False def get_last_formatted_word(real_word, new_formatted_word, user_choice): new_formatted_word = list(new_formatted_word) if check_user_choice(real_word, user_choice): indexes = find_letter_indexes(user_choice, real_word) for index in indexes: new_formatted_word[index] = user_choice return "".join(new_formatted_word) def has_user_lost(user_chances): if user_chances <= 0: return True return False def has_user_won(real_word, user_word): if real_word == user_word: return True return False
21.765957
72
0.691105
0
0
0
0
0
0
0
0
5
0.004888
ce37b76dcc82f7204803dfa179451058b3f38a92
4,895
py
Python
src/OTLMOW/OTLModel/Classes/DwarseMarkeringVerschuind.py
davidvlaminck/OTLClassPython
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
2
2022-02-01T08:58:11.000Z
2022-02-08T13:35:17.000Z
src/OTLMOW/OTLModel/Classes/DwarseMarkeringVerschuind.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
src/OTLMOW/OTLModel/Classes/DwarseMarkeringVerschuind.py
davidvlaminck/OTLMOW
71330afeb37c3ea6d9981f521ff8f4a3f8b946fc
[ "MIT" ]
null
null
null
# coding=utf-8 from OTLMOW.OTLModel.BaseClasses.OTLAttribuut import OTLAttribuut from OTLMOW.OTLModel.Classes.DwarseMarkeringToegang import DwarseMarkeringToegang from OTLMOW.OTLModel.Datatypes.KlDwarseMarkeringVerschuindCode import KlDwarseMarkeringVerschuindCode from OTLMOW.OTLModel.Datatypes.KlDwarseMarkeringVerschuindSoort import KlDwarseMarkeringVerschuindSoort from OTLMOW.OTLModel.Datatypes.KwantWrdInDecimaleGraden import KwantWrdInDecimaleGraden from OTLMOW.OTLModel.Datatypes.KwantWrdInVierkanteMeter import KwantWrdInVierkanteMeter # Generated with OTLClassCreator. To modify: extend, do not edit class DwarseMarkeringVerschuind(DwarseMarkeringToegang): """Een schuine markering dwars op de weg aangebracht om het verkeer te waarschuwen, informeren of regelen.""" typeURI = 'https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind' """De URI van het object volgens https://www.w3.org/2001/XMLSchema#anyURI.""" def __init__(self): super().__init__() self._basisoppervlakte = OTLAttribuut(field=KwantWrdInVierkanteMeter, naam='basisoppervlakte', label='oppervlakte', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind.basisoppervlakte', definition='De basisoppervlakte van de dwarse markering in vierkante meter.', owner=self) self._code = OTLAttribuut(field=KlDwarseMarkeringVerschuindCode, naam='code', label='code', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind.code', definition='De (COPRO/BENOR) code van dwarse markering.', owner=self) self._hoek = OTLAttribuut(field=KwantWrdInDecimaleGraden, naam='hoek', label='hoek', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind.hoek', definition='De hoek van de verschuinde dwarsmarkering in decimale graden.', owner=self) self._oppervlakte = OTLAttribuut(field=KwantWrdInVierkanteMeter, naam='oppervlakte', label='oppervlakte', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind.oppervlakte', definition='De oppervlakte van een dwarsmarkering na verschuining.', owner=self) self._soortOmschrijving = OTLAttribuut(field=KlDwarseMarkeringVerschuindSoort, naam='soortOmschrijving', label='soort omschrijving', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/onderdeel#DwarseMarkeringVerschuind.soortOmschrijving', definition='De soort en tevens de omschrijving van dwarse markering.', owner=self) @property def basisoppervlakte(self): """De basisoppervlakte van de dwarse markering in vierkante meter.""" return self._basisoppervlakte.get_waarde() @basisoppervlakte.setter def basisoppervlakte(self, value): self._basisoppervlakte.set_waarde(value, owner=self) @property def code(self): """De (COPRO/BENOR) code van dwarse markering.""" return self._code.get_waarde() @code.setter def code(self, value): self._code.set_waarde(value, owner=self) @property def hoek(self): """De hoek van de verschuinde dwarsmarkering in decimale graden.""" return self._hoek.get_waarde() @hoek.setter def hoek(self, value): self._hoek.set_waarde(value, owner=self) @property def oppervlakte(self): """De oppervlakte van een dwarsmarkering na verschuining.""" return self._oppervlakte.get_waarde() @oppervlakte.setter def oppervlakte(self, value): self._oppervlakte.set_waarde(value, owner=self) @property def soortOmschrijving(self): """De soort en tevens de omschrijving van dwarse markering.""" return self._soortOmschrijving.get_waarde() @soortOmschrijving.setter def soortOmschrijving(self, value): self._soortOmschrijving.set_waarde(value, owner=self)
49.444444
158
0.608784
4,282
0.87477
0
0
1,293
0.264147
0
0
1,529
0.31236
ce37e19c6bb3e23ffae3d35e78de1e2b5a16ea5f
549
py
Python
backend/reviews/forms.py
ranwise/djangochannel
9c719d292b5c1d0fd008a16a64509a309bdd642e
[ "BSD-3-Clause" ]
45
2019-10-04T10:12:54.000Z
2022-03-29T18:12:34.000Z
backend/reviews/forms.py
ranwise/djangochannel
9c719d292b5c1d0fd008a16a64509a309bdd642e
[ "BSD-3-Clause" ]
6
2019-10-09T07:37:14.000Z
2022-01-27T16:41:16.000Z
backend/reviews/forms.py
ranwise/djangochannel
9c719d292b5c1d0fd008a16a64509a309bdd642e
[ "BSD-3-Clause" ]
35
2019-10-04T10:18:48.000Z
2022-01-14T22:40:38.000Z
from django import forms from .models import Review class ReviewsForm(forms.ModelForm): """Форма добавления отзыва""" class Meta: model = Review fields = ["name", "text", "social_link", "git_link"] labels = { "name": (""), "text": (""), # "social_link": (""), # "git_link": ("") } widgets = { 'name': forms.TextInput(attrs={'placeholder': 'Ваше имя'}), 'text': forms.Textarea(attrs={'placeholder': 'Текст отзыва'}), }
26.142857
74
0.495446
532
0.904762
0
0
0
0
0
0
221
0.37585
ce3a314613ced74eaa69ae3cdf828f6c6582b325
6,875
py
Python
scripts/jenkins_console_log_search.py
hrajput89/kv_engine
33fb1ab2c9787f55555e5f7edea38807b3dbc371
[ "BSD-3-Clause" ]
1
2019-06-13T07:33:09.000Z
2019-06-13T07:33:09.000Z
scripts/jenkins_console_log_search.py
paolococchi/kv_engine
40256dca6bf77fb4bcc18e8ef7d9b8f991bf4e45
[ "BSD-3-Clause" ]
null
null
null
scripts/jenkins_console_log_search.py
paolococchi/kv_engine
40256dca6bf77fb4bcc18e8ef7d9b8f991bf4e45
[ "BSD-3-Clause" ]
1
2020-01-15T16:52:37.000Z
2020-01-15T16:52:37.000Z
#!/usr/bin/env python3 """ Copyright 2018 Couchbase, Inc Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This short script uses curl requests to search the last 100 builds of a jenkins job to find recurring errors, written in Python3. It results in printing a list of links to builds that match the search As the requests package is not included within kv, you will need to either download this package yourself or reference the one included inside couchbase-cli. This is currently limited to searching for log patterns contained within one line of the logs, as the search checks line-by-line. Usage: python jenkins_console_log_search.py -j <job-name> -s <RegEx Search term> """ import argparse import re import requests import sys import time class ASCIIFormat: BOLD = '\033[1m' END = '\033[0m' # Search for searchParameter in logText, handling either a string or a RegEx inside # searchPattern depending on whether the regex flag is True, and assuming that logText # is line separated by \n's def search(logText, searchPattern, isRegex): output = [] if isRegex: # Check regex against whole text for find in re.finditer(pattern, logText): group_list = [] if find.groups(): group_list.extend(find.groups()) else: group_list.append(find.group(0)) for term in group_list: output.append(term) else: # Not a RegEx lines = [] for line in logText.split('\n'): result = line.find(searchPattern) if result != -1: # Wrap the search term in ASCII formatting to make it bold lines.append(line.replace(searchPattern, ASCIIFormat.BOLD + searchPattern + ASCIIFormat.END)) output.extend(lines) return output # --- Start Main Script --- # Create argparser so the user can specify which job to search argParser = argparse.ArgumentParser() argParser.add_argument('--job', '-j', type=str, help='The cv job to query. ' "Common jobs are: 'kv_engine-ASan-UBSan-master', " "'kv_engine-clang_analyzer-master', " "'kv_engine-linux-master', " "'kv_engine-threadsanitizer-master', " "'kv_engine-windows-master', " "'kv_engine-clang_format', " "'kv-engine-cv-perf'", required=True) argParser.add_argument('--search', '-s', type=str, required=True, help='The string to search the logs for in a RegEx format') argParser.add_argument('--build-no', '-b', type=int, help='The build number of cv job to check backwards from. ' '0 (default) fetches latest build number', default=0) argParser.add_argument('--no-of-builds', '-n', type=int, help='The number of builds to check back', default=100) argParser.add_argument('--format', '-f', default="plain", type=str, help="Select the format to print results. " "Available formats are: " "plain (default), log-line, jira") argParser.add_argument('--url-prefix', '-u', type=str, default='cv', help='Determine the endpoint of logs to check, ' 'http://<url-prefix>.jenkins.couchbase.com') args = argParser.parse_args() job = 'job/' + args.job + '/' serverURL = 'http://' + str(args.url_prefix) + '.jenkins.couchbase.com/' # Control the eventual output format of the findings availableFormats = ["plain", "log-line", "jira"] outputFormat = args.format.lower() assert outputFormat in availableFormats, "%r format is not supported" % outputFormat consoleText = '/consoleText/' resultURLs = {} failedBuildNums = [] if args.build_no == 0: # Need to fetch the latest build number r = requests.get(serverURL + job + 'lastBuild/api/json') j = r.json() args.build_no = j['number'] # Determine whether the inputted search parameter is a regex isRegex = True try: pattern = re.compile(args.search) searchingFor = 'RegEx "' + args.search + '"' except re.error: isRegex = False pattern = args.search searchingFor = '"' + args.search + '"' print("Searching for", searchingFor, "in console logs of job:", args.job, "between build", args.build_no - (args.no_of_builds - 1), "and", args.build_no, file=sys.stderr) # Trigger timing check start start_time = time.time() for i in range(0, args.no_of_builds): print('\r >>> Current progress: {} '.format(str(i)), end='', flush=True, file=sys.stderr) # Get the console log text from the jenkins job r = requests.get(serverURL + job + str(args.build_no-i) + consoleText) if r.status_code != 200: failedBuildNums.append(args.build_no-i) # Perform Search output = [] output.extend(search(r.text, pattern, isRegex)) if output: resultURLs[serverURL + job + str(args.build_no-i) + '/console/'] = output # Finish timing print('\r Completed search in', (time.time() - start_time), 's', file=sys.stderr) if failedBuildNums: print("Failed log request on build(s) no:", failedBuildNums, file=sys.stderr) # Ensure above prints actually print before results (and not mangled inside results) sys.stderr.flush() # Result output if not resultURLs: # Empty results, did not find any matches print("No matches found") elif outputFormat == 'jira': # Print in a JIRA format print("{panel:title=Search for", searchingFor, "in console logs of job", args.job, "between build no", args.build_no - (args.no_of_builds - 1), "and", args.build_no, '}') for url in resultURLs: print('[', url, ']', sep="") print('{noformat}') for line in resultURLs[url]: print(line.replace(ASCIIFormat.BOLD, '').replace(ASCIIFormat.END, '')) print('{noformat}') print("{panel}") elif outputFormat == "log-line": # Print findings with log line attached for url in resultURLs: print(url, ':') for line in resultURLs[url]: print('\t', line) else: # outputFormat == "plain" # Print findings normally for url in resultURLs: print(url)
37.162162
86
0.6336
59
0.008582
0
0
0
0
0
0
3,284
0.477673
ce3ac2a462ca934025f075aabb0be44931935eba
542
py
Python
geokey/projects/migrations/0004_auto_20150123_1507.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
geokey/projects/migrations/0004_auto_20150123_1507.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
geokey/projects/migrations/0004_auto_20150123_1507.py
universityofsussex/geokey
25e161dbc81841c57c148053dbe99facc81e84b8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('projects', '0003_auto_20150123_1148'), ] operations = [ migrations.AlterField( model_name='project', name='everyone_contributes', field=models.CharField(default=b'auth', max_length=20, choices=[(b'true', b'true'), (b'auth', b'auth'), (b'false', b'false')]), preserve_default=True, ), ]
25.809524
139
0.608856
433
0.798893
0
0
0
0
0
0
140
0.258303
ce3b5d59730c0d6fb21fce8076ca9f2a4f217a30
2,506
py
Python
hr_attendance_ex/models/sql_ser_config.py
alexhong121/odoo_model
4eff41c672bd03084eaa6eae81c8f3d359c2fb8d
[ "MIT" ]
null
null
null
hr_attendance_ex/models/sql_ser_config.py
alexhong121/odoo_model
4eff41c672bd03084eaa6eae81c8f3d359c2fb8d
[ "MIT" ]
null
null
null
hr_attendance_ex/models/sql_ser_config.py
alexhong121/odoo_model
4eff41c672bd03084eaa6eae81c8f3d359c2fb8d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import logging # import pyodbc from odoo import models, fields, api, _ from odoo.exceptions import UserError, AccessError, MissingError _logger = logging.getLogger(__name__) class SQLConfig(models.Model): _name = 'sql.config' _description='sql_config' _sql_constraints = [('check_syncing', 'UNIQUE(syncing)', '資料庫同步只能設定一台')] name=fields.Char(string='名稱',required=True) server = fields.Char(string='伺服器') port = fields.Char(string='連接阜') database = fields.Char(string='資料庫') username = fields.Char(string='使用者名稱') password = fields.Char(string='密碼') odbc = fields.Selection([ ('{ODBC Driver 17 for SQL Server}', 'ODBC Driver 17 for SQL Server')], string='ODBC 驅動程式', default='{ODBC Driver 17 for SQL Server}', required=True ) syncing=fields.Boolean(string='同步中') @api.multi def test_connection(self): sql = self.sql_server_connection( odbc=self.odbc, server=self.server, port=self.port, database=self.database, username=self.username, password=self.password ) #連線失敗時 if not sql['sqlstate']: raise UserError(_(cursor['msg'])) # 連線成功時 if sql['sqlstate']: raise UserError(_("Connection Test Succeeded!")) def sql_server_connection(self, **kwargs): try: info = 'DRIVER={0}; SERVER={1},{2}; DATABASE={3}; UID={4}; PWD={5}'.format( kwargs['odbc'], kwargs['server'], kwargs['port'], kwargs['database'], kwargs['username'], kwargs['password'] ) sql = pyodbc.connect(info) return {'sqlstate':True,'sql':sql,'msg':None} except pyodbc.Error as err: sqlmsg = err.args[1] _logger.error(sqlmsg) return {'sqlstate':False,'sql':None,'msg':sqlmsg} class ResConfigSettings(models.TransientModel): _inherit = 'res.config.settings' @api.multi def sql_ser_config(self): self.ensure_one() template_form = self.env.ref('hr_attendance_extend.SQL_ser_config_form_themes') template_list = self.env.ref('hr_attendance_extend.SQL_ser_config_list_themes') return { 'name': _('Choose'), 'type': 'ir.actions.act_window', 'view_mode': 'form', 'res_model': 'sql.config', 'views': [(template_list.id,'list'),(template_form.id, 'form')], 'target': 'current', }
32.973684
111
0.602554
2,392
0.920708
0
0
989
0.380677
0
0
796
0.30639
ce3bab3735a9a905747cfb1ff78c996de02c146a
223
py
Python
core/templatetags/my_custom_tags.py
SubhanRzayev/E-commerce-Tmart
239218397f4ee55ab6ae4ef1798fbc83bc7d1159
[ "MIT" ]
2
2021-08-13T14:23:34.000Z
2021-09-18T08:48:29.000Z
core/templatetags/my_custom_tags.py
SubhanRzayev/E-commerce-Tmart
239218397f4ee55ab6ae4ef1798fbc83bc7d1159
[ "MIT" ]
null
null
null
core/templatetags/my_custom_tags.py
SubhanRzayev/E-commerce-Tmart
239218397f4ee55ab6ae4ef1798fbc83bc7d1159
[ "MIT" ]
null
null
null
from blog.models import Category from django.template import Library from core.models import * register = Library() @register.filter def main_catagory(self): if self.category == None: return self.category
14.866667
35
0.735426
0
0
0
0
100
0.44843
0
0
0
0
ce3c2d8194ace948fc686ddfcb1f37ff3e1e1403
4,476
py
Python
Object.py
LeenJooken/RFMCollaborationMiner
5e8b2933bc9977dcc1707474f8163964dc29ea9d
[ "MIT" ]
null
null
null
Object.py
LeenJooken/RFMCollaborationMiner
5e8b2933bc9977dcc1707474f8163964dc29ea9d
[ "MIT" ]
null
null
null
Object.py
LeenJooken/RFMCollaborationMiner
5e8b2933bc9977dcc1707474f8163964dc29ea9d
[ "MIT" ]
null
null
null
#Represents an object class Object: def __init__(self,ID,name): self.name = name self.ID = ID self.importance = 1 #keep track of the events in which this file was the object self.modifiedIn = [] self.addedIn = [] self.deletedIn = [] def getName(self): return self.name def getID(self): return self.ID def getImportance(self): return self.importance #Add an event to the right list according to the modifier #@param event : Event object #@param modifier : "Added" "Deleted" or "Modified" def addEvent(self, event, modifier): if modifier == "Added": if(not event in self.addedIn): self.addedIn.append(event) elif modifier == "Deleted": if(not event in self.deletedIn): self.deletedIn.append(event) else: if(not event in self.modifiedIn): self.modifiedIn.append(event) #Function that calculates the importance of a object based on a ratio: #the number of months in which it was changed / the number of months is exists #@param firstAndLastTimeStamp = tuple with the first timestamp of the log and the last def calculateImportanceRatio(self,firstAndLastTimeStamp): addedTimestamps = [] for event in self.addedIn: addedTimestamps.append(event.getTimestamp()) addedTimestamps.sort() deletedTimestamps = [] for event in self.deletedIn: deletedTimestamps.append(event.getTimestamp()) deletedTimestamps.sort() timestamps = [] for event in self.modifiedIn: timestamps.append(event.getTimestamp()) for event in self.addedIn: timestamps.append(event.getTimestamp()) numberOfMonthsExistence = 0 numberOfMonthsChanged = 0 iteratorAdded = 0 iteratorDeleted = 0 if(not addedTimestamps): beginstamp = firstAndLastTimeStamp[0] #only 2 scenarios possible : 0 or 1 deleted timestamp if(not deletedTimestamps): endstamp = firstAndLastTimeStamp[1] else: endstamp = deletedTimestamps[0] numberOfMonthsExistence += self.calculateNumberOfMonthsExistence(beginstamp,endstamp) numberOfMonthsChanged += self.calculateNumberOfMonthsChanged(beginstamp,endstamp,timestamps) while(iteratorAdded < len(addedTimestamps)): beginstamp = addedTimestamps[iteratorAdded] iteratorAdded += 1 if(iteratorDeleted == len(deletedTimestamps)): #all deleted stamps are done endstamp = firstAndLastTimeStamp[1] else: endstamp = deletedTimestamps[iteratorDeleted] iteratorDeleted += 1 if(endstamp < beginstamp): beginstamp = firstAndLastTimeStamp[0] iteratorAdded -= 1 numberOfMonthsExistence += self.calculateNumberOfMonthsExistence(beginstamp,endstamp) numberOfMonthsChanged += self.calculateNumberOfMonthsChanged(beginstamp,endstamp,timestamps) importance = numberOfMonthsChanged/numberOfMonthsExistence #TO DO: what if importance = 0 ? if importance == 0 : importance = 0.00001 self.importance = importance #calculate how many months this object exists between these 2 timestamps def calculateNumberOfMonthsExistence(self,beginstamp, endstamp): numberOfMonths = abs(endstamp.year - beginstamp.year) * 12 + abs(endstamp.month - beginstamp.month) numberOfMonths += 1 return numberOfMonths #calculate in how many months between begin and end the object was changed #@param timestamps = list of timestamps when the file was committed def calculateNumberOfMonthsChanged(self,beginstamp,endstamp,timestamps): timestamps.sort() numberOfMonths = 0 currentMonth = -1 currentYear = -1 for stamp in timestamps: #only consider the timestamps between the timespan if((stamp >= beginstamp)and(stamp <= endstamp)): if((stamp.month != currentMonth) or (currentYear != stamp.year)): currentMonth = stamp.month currentYear = stamp.year numberOfMonths += 1 return numberOfMonths
33.402985
107
0.629133
4,452
0.994638
0
0
0
0
0
0
843
0.188338
ce3e44815e1657902dc5c20dbf4073f8b104c4db
4,336
py
Python
centraloffice/src/ngconfiginterface/nginterface.py
dmazzer/CogRIoT
a2d71916b0f1bd79d0f5b444865279530eb6b836
[ "MIT" ]
null
null
null
centraloffice/src/ngconfiginterface/nginterface.py
dmazzer/CogRIoT
a2d71916b0f1bd79d0f5b444865279530eb6b836
[ "MIT" ]
null
null
null
centraloffice/src/ngconfiginterface/nginterface.py
dmazzer/CogRIoT
a2d71916b0f1bd79d0f5b444865279530eb6b836
[ "MIT" ]
null
null
null
""" nginterface.py: NovaGenesis Interface """ __author__ = "Daniel Mazzer" __copyright__ = "Copyright 2016, CogRIoT Project" __credits__ = "Antonio Marcos Alberti" __license__ = "MIT" __maintainer__ = "Daniel Mazzer" __email__ = "dmazzer@gmail.com" import sys import zmq import threading from bzrlib.plugins.launchpad.lp_api_lite import json sys.path.append("../../") from utils.logmsgs import logger class NGInterface(): ''' Provide interface communication between CellController and NovaGenesis to exchange configuration parameters with NovaGenesis ''' def __init__(self, config, ng_local_address, ng_remote_address): ''' Constructor Receives pull and push zmq socket address Also receives the instance of the class that access the oppened configuration file. ''' #TODO: implement the threads (timers) to listen and to publish messages to/from novagenesis #TODO: Parse and return configuration changes to CellController #TODO: CellController must apply config changes self.logger = logger.Logger() self.logger.log('NovaGenesis interface - Starting') self.config = config contextPull = zmq.Context() # recieve socket self.consumer_receiver = contextPull.socket(zmq.PULL) self.consumer_receiver.connect(ng_remote_address) contextPush = zmq.Context() # transmit socket self.consumer_sender = contextPush.socket(zmq.PUSH) self.consumer_sender.bind(ng_local_address) # starting thread work thread workThread = threading.Thread(name='NGZMQPullerWork', target=self.ZMQPuller) workThread.daemon = True workThread.start() self.logger.log("NovaGenesis interface ZMQ puller thread started.") self.logger.log('NovaGenesis interface - Started') def setConfiguration(self, Configuration): self.logger.log('[NG-CommandParser] You should implement this feature some time') return 'ack' def getInformation(self): strout = {'capacities': { 'sensing_freq_min': '100000000' , 'sensing_freq_max': '1800000000', 'sensing_bw_min': '1024000', 'sensing_bw_max': '2048000', 'sensing_sectors': '1', 'sensing_direction': '0', }, 'cell_info': { 'cellcontroller_id': self.config.cellcontroller_id , 'cellcontroller_location': self.config.cellcontroller_location }, 'current_config': { 'sensing_freq_start': [str(self.config.sensing_start_freq), "-1" ], 'sensing_freq_stop': [str(self.config.sensing_stop_freq), "-1"], 'sensing_bw': str(self.config.sensing_band_width), } } return strout def CommandParser(self, ReceivedCommand): self.logger.log('[NG-CommandParser] Received command, will be analysed') if 'set_config' in ReceivedCommand: self.logger.log('[NG-CommandParser] Received command set_config') return_message = self.setConfiguration(ReceivedCommand) if return_message is 'ack': answer = {'ans':'ack'} else: answer = {'ans':'nak'} self.ZMQPusher(answer) elif 'get_info' in ReceivedCommand: self.logger.log('[NG-CommandParser] Received command get_info') print(ReceivedCommand) answer = self.getInformation() self.ZMQPusher(answer) else: self.logger.log('[NG-CommandParser] Received unrecognized command') answer = {'ans':'nak'} self.ZMQPusher(answer) def ZMQPuller(self): while True: JsonMessage = self.consumer_receiver.recv_json() DictMessage = json.dumps(JsonMessage) self.CommandParser(DictMessage) def ZMQPusher(self, answer): self.consumer_sender.send_json(answer) pass
34.688
99
0.592943
3,924
0.904982
0
0
0
0
0
0
1,504
0.346863
ce3f6405d41b2f32d5fb0b9dca8c2d47c32a7949
2,625
py
Python
tests/test_connect.py
mkniewallner/edgedb-python
2086b866d3c87c215eecf644b2393ddd857457e0
[ "Apache-2.0" ]
214
2019-01-19T03:56:10.000Z
2022-03-31T01:37:33.000Z
tests/test_connect.py
mkniewallner/edgedb-python
2086b866d3c87c215eecf644b2393ddd857457e0
[ "Apache-2.0" ]
120
2019-03-19T23:01:52.000Z
2022-03-14T08:41:27.000Z
tests/test_connect.py
mkniewallner/edgedb-python
2086b866d3c87c215eecf644b2393ddd857457e0
[ "Apache-2.0" ]
24
2019-04-29T22:41:10.000Z
2021-11-15T00:28:01.000Z
# # This source file is part of the EdgeDB open source project. # # Copyright 2016-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import socket import edgedb from edgedb import _testbase as tb class TestConnect(tb.AsyncQueryTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.port = cls._get_free_port() @classmethod def _get_free_port(cls): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock.bind(('127.0.0.1', 0)) return sock.getsockname()[1] except Exception: return None finally: sock.close() async def test_connect_async_01(self): orig_conn_args = self.get_connect_args() conn_args = orig_conn_args.copy() conn_args['port'] = self.port conn_args['wait_until_available'] = 0 with self.assertRaisesRegex( edgedb.ClientConnectionError, f'(?s).*Is the server running.*port {self.port}.*'): conn_args['host'] = '127.0.0.1' await edgedb.async_connect(**conn_args) with self.assertRaisesRegex( edgedb.ClientConnectionError, f'(?s).*Is the server running.*port {self.port}.*'): conn_args['host'] = orig_conn_args['host'] await edgedb.async_connect(**conn_args) def test_connect_sync_01(self): orig_conn_args = self.get_connect_args() conn_args = orig_conn_args.copy() conn_args['port'] = self.port conn_args['wait_until_available'] = 0 with self.assertRaisesRegex( edgedb.ClientConnectionError, f'(?s).*Is the server running.*port {self.port}.*'): conn_args['host'] = '127.0.0.1' edgedb.connect(**conn_args) with self.assertRaisesRegex( edgedb.ClientConnectionError, f'(?s).*Is the server running.*port {self.port}.*'): conn_args['host'] = orig_conn_args['host'] edgedb.connect(**conn_args)
32.8125
74
0.632
1,876
0.714667
0
0
398
0.151619
722
0.275048
987
0.376
ce3f92dd86129583471cf90aca5f82b89a2e5147
19,947
py
Python
.venv/Lib/site-packages/pdoc/cli.py
JohanK91/MethodDice
73a8962c762ff48da331c9212f10676f066ed940
[ "MIT" ]
null
null
null
.venv/Lib/site-packages/pdoc/cli.py
JohanK91/MethodDice
73a8962c762ff48da331c9212f10676f066ed940
[ "MIT" ]
null
null
null
.venv/Lib/site-packages/pdoc/cli.py
JohanK91/MethodDice
73a8962c762ff48da331c9212f10676f066ed940
[ "MIT" ]
1
2021-02-22T13:55:32.000Z
2021-02-22T13:55:32.000Z
#!/usr/bin/env python3 """pdoc's CLI interface and helper functions.""" import argparse import ast import importlib import inspect import os import os.path as path import json import re import sys import warnings from contextlib import contextmanager from functools import lru_cache from http.server import BaseHTTPRequestHandler, HTTPServer from typing import Dict, List, Sequence from warnings import warn import pdoc parser = argparse.ArgumentParser( description="Automatically generate API docs for Python modules.", epilog="Further documentation is available at <https://pdoc3.github.io/pdoc/doc>.", ) aa = parser.add_argument mode_aa = parser.add_mutually_exclusive_group().add_argument aa( '--version', action='version', version='%(prog)s ' + pdoc.__version__) aa( "modules", type=str, metavar='MODULE', nargs="+", help="The Python module name. This may be an import path resolvable in " "the current environment, or a file path to a Python module or " "package.", ) aa( "-c", "--config", type=str, metavar='OPTION=VALUE', action='append', default=[], help="Override template options. This is an alternative to using " "a custom config.mako file in --template-dir. This option " "can be specified multiple times.", ) aa( "--filter", type=str, metavar='STRING', default=None, help="Comma-separated list of filters. When specified, " "only identifiers containing the specified string " "will be shown in the output. Search is case sensitive. " "Has no effect when --http is set.", ) aa( "-f", "--force", action="store_true", help="Overwrite any existing generated (--output-dir) files.", ) mode_aa( "--html", action="store_true", help="When set, the output will be HTML formatted.", ) mode_aa( "--pdf", action="store_true", help="When set, the specified modules will be printed to standard output, " "formatted in Markdown-Extra, compatible with most " "Markdown-(to-HTML-)to-PDF converters.", ) aa( "--html-dir", type=str, help=argparse.SUPPRESS, ) aa( "-o", "--output-dir", type=str, metavar='DIR', help="The directory to output generated HTML/markdown files to " "(default: ./html for --html).", ) aa( "--html-no-source", action="store_true", help=argparse.SUPPRESS, ) aa( "--overwrite", action="store_true", help=argparse.SUPPRESS, ) aa( "--external-links", action="store_true", help=argparse.SUPPRESS, ) aa( "--template-dir", type=str, metavar='DIR', default=None, help="Specify a directory containing Mako templates " "(html.mako, text.mako, config.mako and/or any templates they include). " "Alternatively, put your templates in $XDG_CONFIG_HOME/pdoc and " "pdoc will automatically find them.", ) aa( "--link-prefix", type=str, help=argparse.SUPPRESS, ) aa( "--close-stdin", action="store_true", help="When set, stdin will be closed before importing, to account for " "ill-behaved modules that block on stdin." ) DEFAULT_HOST, DEFAULT_PORT = 'localhost', 8080 def _check_host_port(s): if s and ':' not in s: raise argparse.ArgumentTypeError( "'{}' doesn't match '[HOST]:[PORT]'. " "Specify `--http :` to use default hostname and port.".format(s)) return s aa( "--http", default='', type=_check_host_port, metavar='HOST:PORT', help="When set, pdoc will run as an HTTP server providing documentation " "for specified modules. If you just want to use the default hostname " "and port ({}:{}), set the parameter to :.".format(DEFAULT_HOST, DEFAULT_PORT), ) aa( "--skip-errors", action="store_true", help="Upon unimportable modules, warn instead of raising." ) args = argparse.Namespace() class _WebDoc(BaseHTTPRequestHandler): args = None # Set before server instantiated template_config = None def do_HEAD(self): status = 200 if self.path != "/": status = self.check_modified() self.send_response(status) self.send_header("Content-type", "text/html; charset=utf-8") self.end_headers() def check_modified(self): try: module = pdoc.import_module(self.import_path_from_req_url) new_etag = str(os.stat(module.__file__).st_mtime) except ImportError: return 404 old_etag = self.headers.get('If-None-Match', new_etag) if old_etag == new_etag: # Don't log repeating checks self.log_request = lambda *args, **kwargs: None return 304 return 205 def do_GET(self): # Deny favicon shortcut early. if self.path == "/favicon.ico": return None importlib.invalidate_caches() code = 200 if self.path == "/": modules = [pdoc.import_module(module, reload=True) for module in self.args.modules] modules = sorted((module.__name__, inspect.getdoc(module)) for module in modules) out = pdoc._render_template('/html.mako', modules=modules, **self.template_config) elif self.path.endswith(".ext"): # External links are a bit weird. You should view them as a giant # hack. Basically, the idea is to "guess" where something lives # when documenting another module and hope that guess can actually # track something down in a more global context. # # The idea here is to start specific by looking for HTML that # exists that matches the full external path given. Then trim off # one component at the end and try again. # # If no HTML is found, then we ask `pdoc` to do its thang on the # parent module in the external path. If all goes well, that # module will then be able to find the external identifier. import_path = self.path[:-4].lstrip("/") resolved = self.resolve_ext(import_path) if resolved is None: # Try to generate the HTML... print("Generating HTML for %s on the fly..." % import_path, file=sys.stderr) try: out = pdoc.html(import_path.split(".")[0], **self.template_config) except Exception as e: print('Error generating docs: {}'.format(e), file=sys.stderr) # All hope is lost. code = 404 out = "External identifier <code>%s</code> not found." % import_path else: return self.redirect(resolved) # Redirect '/pdoc' to '/pdoc/' so that relative links work # (results in '/pdoc/cli.html' instead of 'cli.html') elif not self.path.endswith(('/', '.html')): return self.redirect(self.path + '/') # Redirect '/pdoc/index.html' to '/pdoc/' so it's more pretty elif self.path.endswith(pdoc._URL_PACKAGE_SUFFIX): return self.redirect(self.path[:-len(pdoc._URL_PACKAGE_SUFFIX)] + '/') else: try: out = self.html() except Exception: import traceback from html import escape code = 404 out = "Error importing module <code>{}</code>:\n\n<pre>{}</pre>".format( self.import_path_from_req_url, escape(traceback.format_exc())) out = out.replace('\n', '<br>') self.send_response(code) self.send_header("Content-type", "text/html; charset=utf-8") self.end_headers() self.echo(out) def redirect(self, location): self.send_response(302) self.send_header("Location", location) self.end_headers() def echo(self, s): self.wfile.write(s.encode("utf-8")) def html(self): """ Retrieves and sends the HTML belonging to the path given in URL. This method is smart and will look for HTML files already generated and account for whether they are stale compared to the source code. """ return pdoc.html(self.import_path_from_req_url, reload=True, http_server=True, external_links=True, skip_errors=args.skip_errors, **self.template_config) def resolve_ext(self, import_path): def exists(p): p = path.join(args.output_dir, p) pkg = path.join(p, pdoc._URL_PACKAGE_SUFFIX.lstrip('/')) mod = p + pdoc._URL_MODULE_SUFFIX if path.isfile(pkg): return pkg[len(args.output_dir):] elif path.isfile(mod): return mod[len(args.output_dir):] return None parts = import_path.split(".") for i in range(len(parts), 0, -1): p = path.join(*parts[0:i]) realp = exists(p) if realp is not None: return "/%s#%s" % (realp.lstrip("/"), import_path) return None @property def import_path_from_req_url(self): pth = self.path.split('#')[0].lstrip('/') for suffix in ('/', pdoc._URL_PACKAGE_SUFFIX, pdoc._URL_INDEX_MODULE_SUFFIX, pdoc._URL_MODULE_SUFFIX): if pth.endswith(suffix): pth = pth[:-len(suffix)] break return pth.replace('/', '.') def module_path(m: pdoc.Module, ext: str): return path.join(args.output_dir, *re.sub(r'\.html$', ext, m.url()).split('/')) def _quit_if_exists(m: pdoc.Module, ext: str): if args.force: return paths = [module_path(m, ext)] if m.is_package: # If package, make sure the dir doesn't exist either paths.append(path.dirname(paths[0])) for pth in paths: if path.lexists(pth): print("File '%s' already exists. Delete it, or run with --force" % pth, file=sys.stderr) sys.exit(1) @contextmanager def _open_write_file(filename): try: with open(filename, 'w', encoding='utf-8') as f: yield f print(filename) # print created file path to stdout except Exception: try: os.unlink(filename) except Exception: pass raise def recursive_write_files(m: pdoc.Module, ext: str, **kwargs): assert ext in ('.html', '.md') filepath = module_path(m, ext=ext) dirpath = path.dirname(filepath) if not os.access(dirpath, os.R_OK): os.makedirs(dirpath) with _open_write_file(filepath) as f: if ext == '.html': f.write(m.html(**kwargs)) elif ext == '.md': f.write(m.text(**kwargs)) for submodule in m.submodules(): recursive_write_files(submodule, ext=ext, **kwargs) def _flatten_submodules(modules: Sequence[pdoc.Module]): for module in modules: yield module for submodule in module.submodules(): yield from _flatten_submodules((submodule,)) def _print_pdf(modules, **kwargs): modules = list(_flatten_submodules(modules)) print(pdoc._render_template('/pdf.mako', modules=modules, **kwargs)) def _warn_deprecated(option, alternative='', use_config_mako=False): msg = 'Program option `{}` is deprecated.'.format(option) if alternative: msg += ' Use `' + alternative + '`' if use_config_mako: msg += ' or override config.mako template' msg += '.' warn(msg, DeprecationWarning, stacklevel=2) def _generate_lunr_search(modules: List[pdoc.Module], index_docstrings: bool, template_config: dict): """Generate index.js for search""" def trim_docstring(docstring): return re.sub(r''' \s+| # whitespace sequences \s+[-=~]{3,}\s+| # title underlines ^[ \t]*[`~]{3,}\w*$| # code blocks \s*[`#*]+\s*| # common markdown chars \s*([^\w\d_>])\1\s*| # sequences of punct of the same kind \s*</?\w*[^>]*>\s* # simple HTML tags ''', ' ', docstring, flags=re.VERBOSE | re.MULTILINE) def recursive_add_to_index(dobj): info = { 'ref': dobj.refname, 'url': to_url_id(dobj.module), } if index_docstrings: info['doc'] = trim_docstring(dobj.docstring) if isinstance(dobj, pdoc.Function): info['func'] = 1 index.append(info) for member_dobj in getattr(dobj, 'doc', {}).values(): recursive_add_to_index(member_dobj) @lru_cache() def to_url_id(module): url = module.url() if url not in url_cache: url_cache[url] = len(url_cache) return url_cache[url] index = [] # type: List[Dict] url_cache = {} # type: Dict[str, int] for top_module in modules: recursive_add_to_index(top_module) urls = sorted(url_cache.keys(), key=url_cache.__getitem__) main_path = args.output_dir with _open_write_file(path.join(main_path, 'index.js')) as f: f.write("URLS=") json.dump(urls, f, indent=0, separators=(',', ':')) f.write(";\nINDEX=") json.dump(index, f, indent=0, separators=(',', ':')) # Generate search.html with _open_write_file(path.join(main_path, 'doc-search.html')) as f: rendered_template = pdoc._render_template('/search.mako', **template_config) f.write(rendered_template) def main(_args=None): """ Command-line entry point """ global args args = _args or parser.parse_args() warnings.simplefilter("once", DeprecationWarning) if args.close_stdin: sys.stdin.close() if (args.html or args.http) and not args.output_dir: args.output_dir = 'html' if args.html_dir: _warn_deprecated('--html-dir', '--output-dir') args.output_dir = args.html_dir if args.overwrite: _warn_deprecated('--overwrite', '--force') args.force = args.overwrite template_config = {} for config_str in args.config: try: key, value = config_str.split('=', 1) value = ast.literal_eval(value) template_config[key] = value except Exception: raise ValueError( 'Error evaluating --config statement "{}". ' 'Make sure string values are quoted?' .format(config_str) ) if args.html_no_source: _warn_deprecated('--html-no-source', '-c show_source_code=False', True) template_config['show_source_code'] = False if args.link_prefix: _warn_deprecated('--link-prefix', '-c link_prefix="foo"', True) template_config['link_prefix'] = args.link_prefix if args.external_links: _warn_deprecated('--external-links') template_config['external_links'] = True if args.template_dir is not None: if not path.isdir(args.template_dir): print('Error: Template dir {!r} is not a directory'.format(args.template_dir), file=sys.stderr) sys.exit(1) pdoc.tpl_lookup.directories.insert(0, args.template_dir) # Support loading modules specified as python paths relative to cwd sys.path.append(os.getcwd()) # Virtual environment handling for pdoc script run from system site try: venv_dir = os.environ['VIRTUAL_ENV'] except KeyError: pass # pdoc was not invoked while in a virtual environment else: from glob import glob from distutils.sysconfig import get_python_lib libdir = get_python_lib(prefix=venv_dir) sys.path.append(libdir) # Resolve egg-links from `setup.py develop` or `pip install -e` # XXX: Welcome a more canonical approach for pth in glob(path.join(libdir, '*.egg-link')): try: with open(pth) as f: sys.path.append(path.join(libdir, f.readline().rstrip())) except IOError: warn('Invalid egg-link in venv: {!r}'.format(pth)) if args.http: template_config['link_prefix'] = "/" # Run the HTTP server. _WebDoc.args = args # Pass params to HTTPServer xP _WebDoc.template_config = template_config host, _, port = args.http.partition(':') host = host or DEFAULT_HOST port = int(port or DEFAULT_PORT) print('Starting pdoc server on {}:{}'.format(host, port), file=sys.stderr) httpd = HTTPServer((host, port), _WebDoc) print("pdoc server ready at http://%s:%d" % (host, port), file=sys.stderr) # Allow tests to perform `pdoc.cli._httpd.shutdown()` global _httpd _httpd = httpd try: httpd.serve_forever() finally: httpd.server_close() sys.exit(0) docfilter = None if args.filter and args.filter.strip(): def docfilter(obj, _filters=args.filter.strip().split(',')): return any(f in obj.refname or isinstance(obj, pdoc.Class) and f in obj.doc for f in _filters) modules = [pdoc.Module(module, docfilter=docfilter, skip_errors=args.skip_errors) for module in args.modules] pdoc.link_inheritance() if args.pdf: _print_pdf(modules, **template_config) import textwrap print(""" PDF-ready markdown written to standard output. ^^^^^^^^^^^^^^^ Convert this file to PDF using e.g. Pandoc: {PANDOC_CMD} or using Python-Markdown and Chrome/Chromium/WkHtmlToPDF: markdown_py --extension=meta \\ --extension=abbr \\ --extension=attr_list \\ --extension=def_list \\ --extension=fenced_code \\ --extension=footnotes \\ --extension=tables \\ --extension=admonition \\ --extension=smarty \\ --extension=toc \\ pdf.md > pdf.html chromium --headless --disable-gpu --print-to-pdf=pdf.pdf pdf.html wkhtmltopdf --encoding utf8 -s A4 --print-media-type pdf.html pdf.pdf or similar, at your own discretion.""".format(PANDOC_CMD=textwrap.indent(_PANDOC_COMMAND, ' ')), file=sys.stderr) sys.exit(0) for module in modules: if args.html: _quit_if_exists(module, ext='.html') recursive_write_files(module, ext='.html', **template_config) elif args.output_dir: # Generate text files _quit_if_exists(module, ext='.md') recursive_write_files(module, ext='.md', **template_config) else: sys.stdout.write(module.text(**template_config)) # Two blank lines between two modules' texts sys.stdout.write(os.linesep * (1 + 2 * int(module != modules[-1]))) lunr_config = pdoc._get_config(**template_config).get('lunr_search') if lunr_config is not None: _generate_lunr_search( modules, lunr_config.get("index_docstrings", True), template_config) _PANDOC_COMMAND = '''\ pandoc --metadata=title:"MyProject Documentation" \\ --from=markdown+abbreviations+tex_math_single_backslash \\ --pdf-engine=xelatex --variable=mainfont:"DejaVu Sans" \\ --toc --toc-depth=4 --output=pdf.pdf pdf.md\ ''' if __name__ == "__main__": main(parser.parse_args())
33.41206
99
0.587657
5,821
0.291823
513
0.025718
911
0.045671
0
0
6,676
0.334687
ce40a683df91507328100c3fd2d4f4e66c206aad
4,981
py
Python
application/helper/connection_check.py
HarshadKavathiya/acciom
10e4d813c897bcf0078ab350d9432117cb708d1a
[ "MIT" ]
null
null
null
application/helper/connection_check.py
HarshadKavathiya/acciom
10e4d813c897bcf0078ab350d9432117cb708d1a
[ "MIT" ]
9
2019-07-23T09:55:15.000Z
2022-02-19T01:45:12.000Z
application/helper/connection_check.py
accionlabs/acciom
889958c0f8ec1d74db1958d0a6473c4678eaab3f
[ "MIT" ]
21
2019-07-20T04:47:23.000Z
2020-01-07T06:55:42.000Z
import cx_Oracle import psycopg2 import pymysql import pyodbc from application.common.constants import APIMessages, SupportedDBType, \ GenericStrings def connection_check(db_type_id, db_hostname, db_username, db_password, db_name): """ Helper method to check the database connectivity for the given database details. Args: db_type_id(int): type of the database db_hostname(str): database hostname db_username(str): database username db_password(str): database password db_name(str): database name Returns(str): Returns success only if connection can be establish """ # cnxn is a connection object if db_type_id == SupportedDBType().get_db_id_by_name("mysql"): try: cnxn = pymysql.connect(host=db_hostname, user=db_username, password=db_password, db=db_name) except pymysql.err.InternalError as e: if GenericStrings.UNKNOWN_DATABASE_MYSQL in e.args[1]: return APIMessages.UNKNOWN_DATABASE.format(db_name) elif GenericStrings.CANNOT_CONNECT_TO_REMOTE_SERVER_MYSQL in \ e.args[1]: return APIMessages.CANNOT_CONNECT_TO_REMOTE_SERVER_MYSQL else: return e.args[1] except pymysql.err.OperationalError as e: if GenericStrings.AUTHENTICATION_FAILED_MYSQL in e.args[1]: return APIMessages.AUTHENTICATION_FAILED.format(db_username) elif GenericStrings.CANNOT_CONNECT_TO_SERVER_MYSQL in e.args[1]: return APIMessages.CANNOT_CONNECT_TO_SERVER.format( SupportedDBType().get_db_name_by_id(db_type_id), db_hostname) else: return e.args[1] cursor = cnxn.cursor() if cursor: return APIMessages.SUCCESS elif db_type_id == SupportedDBType().get_db_id_by_name("mssql"): server = db_hostname database = db_name username = db_username password = db_password # This code can handle Oracle Driver 17 # If other version 13 is given, code will fail # TODO: Need to implement an approach that takes driver version # based on user input try: cnxn = pyodbc.connect( 'DRIVER={0}'.format(GenericStrings.ORACLE_DRIVER) + ';SERVER=' + server + ';DATABASE=' + database + ';UID=' + username + ';PWD=' + password) except pyodbc.ProgrammingError as e: return APIMessages.UNKNOWN_DATABASE.format(db_name) except pyodbc.InterfaceError as e: return APIMessages.AUTHENTICATION_FAILED.format(db_username) except pyodbc.OperationalError as e: return APIMessages.CANNOT_CONNECT_TO_SERVER.format( SupportedDBType().get_db_name_by_id(db_type_id), db_hostname) cursor = cnxn.cursor() if cursor: return APIMessages.SUCCESS elif db_type_id == SupportedDBType().get_db_id_by_name("postgresql"): try: cnxn = psycopg2.connect(host=db_hostname, database=db_name, user=db_username, password=db_password) except psycopg2.OperationalError as e: if GenericStrings.UNKNOWN_DATABASE_POSTGRES in str(e): return APIMessages.UNKNOWN_DATABASE.format(db_name) elif GenericStrings.AUTHENTICATION_FAILED_POSTGRES in str(e): return APIMessages.AUTHENTICATION_FAILED.format(db_username) elif GenericStrings.CANNOT_CONNECT_TO_SERVER_POSTGRES in str(e): return APIMessages.CANNOT_CONNECT_TO_SERVER.format( SupportedDBType().get_db_name_by_id(db_type_id), db_hostname) else: return e cursor = cnxn.cursor() if cursor: return APIMessages.SUCCESS elif db_type_id == SupportedDBType().get_db_id_by_name("oracle"): try: cnxn = cx_Oracle.connect( "{0}/{1}@{2}/{3}".format(db_username, db_password, db_hostname, db_name)) except cx_Oracle.DatabaseError as e: if GenericStrings.UNKNOWN_DB_AUTHENTICATION_FAILED_ORACLE in str( e): return APIMessages.UNKNOWN_DB_AUTHENTICATION_FAILED.format( db_name, db_username) elif GenericStrings.CANNOT_CONNECT_TO_SERVER_ORACLE in str( e): return APIMessages.CANNOT_CONNECT_TO_SERVER.format( SupportedDBType().get_db_name_by_id(db_type_id), db_hostname) else: return e cursor = cnxn.cursor() if cursor: return APIMessages.SUCCESS
43.313043
79
0.609717
0
0
0
0
0
0
0
0
701
0.140735
ce40f79ba52230bce534975d34f03a0b62be130e
701
py
Python
src/db/alembic/tests/add_problems.py
furea2/ProofGame
787f9be7f616c53eb9ce5a677660aee7cc824a14
[ "MIT" ]
null
null
null
src/db/alembic/tests/add_problems.py
furea2/ProofGame
787f9be7f616c53eb9ce5a677660aee7cc824a14
[ "MIT" ]
null
null
null
src/db/alembic/tests/add_problems.py
furea2/ProofGame
787f9be7f616c53eb9ce5a677660aee7cc824a14
[ "MIT" ]
null
null
null
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create_engine('sqlite:///db.sqlite3') Session = sessionmaker(engine) import sys sys.path.append("D:\\Users\\furea2\\NodejsProjects\\login_sample\\src\\db\\alembic\\app\\models") from problem import Problem userList=[ Problem(title='zero_le_one', body='theorem zero_le_one : 0 < 1 := sorry', difficulty=1), Problem(title='zero_le_two', body='theorem zero_le_two : 0 < 2 := sorry', difficulty=1), Problem(title='one_le_two', body='theorem one_le_two : 1 < 2 := sorry', difficulty=1), ] if __name__=='__main__': with Session() as session: session.add_all(userList) session.commit()
33.380952
97
0.713267
0
0
0
0
0
0
0
0
263
0.375178
ce41c01cf6e704d26212115f3eeca7c18fc41d33
2,871
py
Python
aes/rkeys.py
raviolliii/AES-Encryption
48434bd2cb19fc447065872cf1a1ede55ed024de
[ "MIT" ]
null
null
null
aes/rkeys.py
raviolliii/AES-Encryption
48434bd2cb19fc447065872cf1a1ede55ed024de
[ "MIT" ]
null
null
null
aes/rkeys.py
raviolliii/AES-Encryption
48434bd2cb19fc447065872cf1a1ede55ed024de
[ "MIT" ]
null
null
null
def uint(x): # casts x to unsigned int (1 byte) return x & 0xff def chunkify(string, size): # breaks up string into chunks of size chunks = [] for i in range(0, len(string), size): chunks.append(string[i:i + size]) return chunks def gen_rcons(rounds): # generates and returns round constants # the round constants don't depend on the # key so these constants could have been # hard coded, but I wanted to build it anyway rcons = [] for i in range(rounds): value = 0 if i + 1 > 1: if rcons[i - 1] >= 0x80: value = uint((2 * rcons[i - 1]) ^ 0x11b) else: value = uint(2 * rcons[i - 1]) else: value = 1 rcons.append(value) return list(map(lambda x: x << 24, rcons)) def generate_round_keys(key, rounds, sbox): # Generates round keys based on main key # basic variables used for looping, etc. key_size = len(key) * 8 R = rounds + 1 rcons = gen_rcons(rounds) # get round key constants N = key_size // 32 # split key into 32 bit words and parse to int K = [int(k.encode("utf-8").hex(), 16) for k in chunkify(key, 4)] W = [0] * (4 * R) # main loop to generate expanded round subkeys for i in range(4 * R): if i < N: W[i] = K[i] elif i >= N and i % N == 0: word_str = hex(W[i - 1])[2:].zfill(8) # turn int to 8 digit hex rot = word_str[2:] + word_str[:2] # rotate left 1 byte hex_bytes = chunkify(rot, 2) # split into byte chunks subvals = [sbox(hexb) for hexb in hex_bytes] # sub out hex bytes with s-box sval = (subvals[0] << 24) \ + (subvals[1] << 16) \ + (subvals[2] << 8) \ + subvals[3] # concat hex bytes and parse to 32 bit int W[i] = W[i - N] ^ sval ^ rcons[(i // N) - 1] elif i >= N and N > 6 and i % N == 4: word_str = hex(W[i - 1])[2:].zfill(8) # turn int to 8 digit hex hex_bytes = chunkify(word_str, 2) # split into byte chunks subvals = [sbox(hexb) for hexb in hex_bytes] # sub out hex bytes with s-box sval = (subvals[0] << 24) \ + (subvals[1] << 16) \ + (subvals[2] << 8) \ + subvals[3] # concat hex bytes and parse to 32 bit int W[i] = W[i - N] ^ sval else: W[i] = W[i - N] ^ W[i - 1] # subkeys are all 128 bits, but each entry is 32 bits # so combine all entries by groups of 4 for later use return [tuple(W[i:i + 4]) for i in range(0, len(W), 4)] def add_round_key(state, round_key): # adds each byte of the round key to the # respective byte of the state key = [] # round key is a tuple of 4, 32 bit ints for rk in round_key: hx = hex(rk)[2:].zfill(8) # turn int to hex # add each byte to the key list as an int key += [int(hx[i:i + 2], 16) for i in range(0, len(hx), 2)] for i in range(len(state)): # run through the state and add each byte to the # respective byte in the key key_state = [key[j] for j in range(i, len(key), 4)] state[i] = [sv ^ kv for sv, kv in zip(state[i], key_state)] return state
33.383721
78
0.617207
0
0
0
0
0
0
0
0
1,057
0.368164
cbe97f3cb389489740f1e42249ec7c347020db47
30
py
Python
otscrape/core/extractor/nested/__init__.py
SSripilaipong/otscrape
73ad2ea3d20841cf5d81b37180a1f21c48e87480
[ "MIT" ]
null
null
null
otscrape/core/extractor/nested/__init__.py
SSripilaipong/otscrape
73ad2ea3d20841cf5d81b37180a1f21c48e87480
[ "MIT" ]
null
null
null
otscrape/core/extractor/nested/__init__.py
SSripilaipong/otscrape
73ad2ea3d20841cf5d81b37180a1f21c48e87480
[ "MIT" ]
null
null
null
from .zip_dict import ZipDict
15
29
0.833333
0
0
0
0
0
0
0
0
0
0
cbea98388f135a070422bda42a79198d77ccf817
546
py
Python
10_Exceptions_and_Errors/internal.py
MANOJPATRA1991/Python-Beyond-the-Basics
aed7bfd35e33c2b1759b48e1c89314aa149c56d0
[ "MIT" ]
null
null
null
10_Exceptions_and_Errors/internal.py
MANOJPATRA1991/Python-Beyond-the-Basics
aed7bfd35e33c2b1759b48e1c89314aa149c56d0
[ "MIT" ]
null
null
null
10_Exceptions_and_Errors/internal.py
MANOJPATRA1991/Python-Beyond-the-Basics
aed7bfd35e33c2b1759b48e1c89314aa149c56d0
[ "MIT" ]
null
null
null
def modulus_three(n): r = n % 3 if r == 0: print("Multiple of 3") elif r == 1: print("Remainder 1") else: assert r == 2, "Remainder is not 2" print("Remainder 2") def modulus_four(n): r = n % 4 if r == 0: print("Multiple of 4") elif r == 1: print("Remainder 1") elif r == 2: print("Remainder 2") elif r == 3: print("Remainder 3") else: assert False, "This should never happen" if __name__ == '__main__': print(modulus_four(5))
20.222222
48
0.507326
0
0
0
0
0
0
0
0
151
0.276557
cbeae155ad896dc6fd2c6c3e36347da77b95da7e
17,038
py
Python
ml_studio/visualate/dashboards/data_explorer.py
john-james-ai/ml-studio
2230fcd6579d2291c761e559ec93b18ddd7a96e6
[ "BSD-3-Clause" ]
1
2020-01-30T09:37:00.000Z
2020-01-30T09:37:00.000Z
ml_studio/visualate/dashboards/data_explorer.py
john-james-ai/ml-studio
2230fcd6579d2291c761e559ec93b18ddd7a96e6
[ "BSD-3-Clause" ]
3
2019-12-05T19:37:59.000Z
2020-03-31T05:49:53.000Z
ml_studio/visualate/dashboards/data_explorer.py
john-james-ai/ml-studio
2230fcd6579d2291c761e559ec93b18ddd7a96e6
[ "BSD-3-Clause" ]
null
null
null
# =========================================================================== # # DATA EXPLORER # # =========================================================================== # # =========================================================================== # # Project: ML Studio # # Version: 0.1.14 # # File: \data_explorer.py # # Python Version: 3.7.3 # # --------------- # # Author: John James # # Company: Decision Scients # # Email: jjames@decisionscients.com # # --------------- # # Create Date: Friday December 6th 2019, 9:12:28 pm # # Last Modified: Friday December 6th 2019, 9:12:35 pm # # Modified By: John James (jjames@decisionscients.com) # # --------------- # # License: Modified BSD # # Copyright (c) 2019 Decision Scients # # =========================================================================== # """Data Explorer - A dash powered web app for analyzing and preparing data. This module provides a dashboard application that supports: - Data Audit : Missing values and outliers - Data Analysis : Exploration of data vis-a-vis statistical assumptions of independence, linearity, normality, and homoscedasticity - Data Preparation : Missing values, and outliers - Feature Selection : Identifying the features that most influence the dependent variable - Features Engineering : Feature transformation, Binning One-Hot Encoding, Features Split and Scaling - Dimensionality Reduction : PCA, t-Distributed Stochastic Neighbor Embedding (t-SNE) see https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-techniques-python/ Note: This module was highly inspired by the plotly dash-svm at https://github.com/plotly/dash-svm. """ #%% import os import sys sys.path.append('ml_studio') sys.path.append('ml_studio/utils/visual') import time from textwrap import dedent import warnings import dash import dash_core_components as dcc import dash_daq as daq import dash_html_components as html from dash.dependencies import Input, Output, State import numpy as np import pandas as pd from sklearn.datasets import fetch_california_housing, make_regression from sklearn.datasets import make_classification from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.svm import SVC from ml_studio.visualate.classification.figures import serve_prediction_plot, serve_roc_curve, \ serve_pie_confusion_matrix import ml_studio from ml_studio.utils.model import get_model_name from ml_studio.utils.data_manager import sampler, data_split, StandardScaler from ml_studio.utils.misc import proper import ml_studio.utils.visual as drc # --------------------------------------------------------------------------- # external_scripts = [ # Normalize the CSS "https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.min.css", # Fonts "https://fonts.googleapis.com/css?family=Open+Sans|Roboto", "https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" ] app = dash.Dash(__name__, external_scripts=external_scripts) app.scripts.config.serve_locally = False server = app.server # --------------------------------------------------------------------------- # # Generate Data # # --------------------------------------------------------------------------- # def generate_data(dataset, n_samples=None, n_features=None, noise=100, seed=None): if dataset == 'california': return(fetch_california_housing(return_X_y=True)) elif dataset == 'msd': data = pd.read_csv("ml_studio/data_gathering/msd/year_prediction.csv") y = data[['label']] X = data.drop(columns=['label'], inplace=False) msd = (X, y) return msd elif dataset == 'online_news': data = pd.read_csv("ml_studio/data_gathering/online_news_popularity/OnlineNewsPopularity.csv") data.columns = data.columns.str.replace(r'\s+', '') y = data[['shares']] X = data.drop(columns=['shares'], inplace=False) online_news = (X, y) return online_news elif dataset == 'speed_dating': data = pd.read_csv("ml_studio/data_gathering/speed_dating/Speed Dating Data.csv", encoding = 'unicode_escape') y = data[['match']] X = data.drop(columns=['match'], inplace=False) speed_dating = (X, y) return speed_dating elif dataset == 'regression': if n_samples is None: warnings.warn("n_samples is None, defaulting to 10,000") n_samples = 10000 if n_features is None: warnings.warn("n_features is None, defaulting to 100") n_features = 100 X, y = make_regression(n_samples, n_features, n_informative=100, bias=400, effective_rank=50, noise=100, random_state=seed) regression = (X, y) return regression elif dataset == 'binary': X, y = make_classification( n_samples=100, n_features=2, n_redundant=0, n_informative=2, random_state=2, n_clusters_per_class=1 ) linearly_separable = (X, y) return linearly_separable else: raise ValueError( 'Data type incorrectly specified. Please choose an existing ' 'dataset.') # --------------------------------------------------------------------------- # # Define Tabs # # --------------------------------------------------------------------------- # tabs_styles = { 'height': '44px' } tab_style = { 'border': '1px solid #282b38', 'borderBottom': '1px solid #282b38', 'backgroundColor': '#282b38', 'padding': '6px', 'fontWeight': 'bold' } tab_selected_style = { 'border': '1px solid #282b38', 'borderBottom': '1px solid #31459E', 'backgroundColor': '#282b38', 'color': 'white', 'padding': '6px' } def build_tabs(): return html.Div( id="tabs", className="tabs", children=[ dcc.Tabs( id="app-tabs", value="tab1", className="custom-tabs", children=[ dcc.Tab( id="Analysis-tab", label="Data Analysis", value="tab3", style=tab_style, selected_style=tab_selected_style, className="custom-tab", selected_className="custom-tab--selected", ), dcc.Tab( id="Cleaning-tab", label="Data Cleaning", value="tab4", style=tab_style, selected_style=tab_selected_style, className="custom-tab", selected_className="custom-tab--selected", ), dcc.Tab( id="Feature-selection-tab", label="Feature Selection", value="tab5", style=tab_style, selected_style=tab_selected_style, className="custom-tab", selected_className="custom-tab--selected", ), dcc.Tab( id="Features-engineering-tab", label="Feature Engineering", value="tab6", style=tab_style, selected_style=tab_selected_style, className="custom-tab", selected_className="custom-tab--selected", ), dcc.Tab( id="Dimension-reduction-tab", label="Dimension Reduction", value="tab7", style=tab_style, selected_style=tab_selected_style, className="custom-tab", selected_className="custom-tab--selected", ), ], ) ], ) def build_analysis_tab(): pass app.layout = html.Div(children=[ # .container class is fixed, .container.scalable is scalable html.Div(className="banner", children=[ # Change App Name here html.Div(className='container scalable', children=[ # Change App Name here html.H2(html.A( 'ML Studio Data Explorer', href='https://github.com/decisionscients/ml-studio', style={ 'text-decoration': 'none', 'color': 'inherit' } )), html.A( # TODO: Create logo html.Img(src="https://s3-us-west-1.amazonaws.com/plotly-tutorials/logo/new-branding/dash-logo-by-plotly-stripe-inverted.png"), href='https://plot.ly/products/dash/' ) ]), ]), html.Div(id='body', className='container scalable', children=[ html.Div( id="app-container", children=[ build_tabs() ], ), html.Div(className='row', children=[ html.Div( id='div-graphs', children=dcc.Graph( id='graph-sklearn-svm', style={'display': 'none'} ) ), html.Div( className='three columns', style={ 'min-width': '24.5%', 'max-height': 'calc(100vh - 85px)', 'overflow-y': 'auto', 'overflow-x': 'hidden', }, children=[ drc.Card([ drc.NamedDropdown( name='Select Data Type', id='dropdown-select-datatype', options=[ {'label': 'Regression', 'value': 'regression'}, {'label': 'Binary Classification','value': 'binary'}, {'label': 'Multiclass Classification','value': 'multiclass'} ], clearable=False, searchable=False, value='regression' ), drc.NamedDropdown( name='Select Dataset', id='dropdown-select-dataset', options=[ {'label': 'California Housing', 'value': 'california'}, {'label': 'Million Song Dataset','value': 'msd'}, {'label': 'Online News Popularity','value': 'online_news'}, {'label': 'Speed Dating', 'value': 'speed_dating'}, {'label': 'Regression', 'value': 'regression'}, {'label': 'Binary', 'value': 'binary'} ], clearable=False, searchable=False, value='california' ), ]), html.Div( dcc.Markdown(dedent(""" [Click here](https://github.com/decisionscients/ml-studio) to visit the project repo, and learn about how to use the app. """)), style={'margin': '20px 0px', 'text-align': 'center'} ), ] ), ]), ]) ]) # @app.callback(Output('div-graphs', 'children'), # Input('dropdown-select-dataset', 'value'), # Input('slider-threshold', 'value') # def update_svm_graph(kernel, # degree, # C_coef, # C_power, # gamma_coef, # gamma_power, # dataset, # noise, # shrinking, # threshold, # sample_size): # t_start = time.time() # h = .3 # step size in the mesh # # Data Pre-processing # X, y = generate_data(dataset=dataset) # StandardScaler().fit(X) # X = StandardScaler().transform(X) # X_train, X_test, y_train, y_test = \ # data_split(X, y, test_size=.4, seed=42) # x_min = X[:, 0].min() - .5 # x_max = X[:, 0].max() + .5 # y_min = X[:, 1].min() - .5 # y_max = X[:, 1].max() + .5 # xx, yy = np.meshgrid(np.arange(x_min, x_max, h), # np.arange(y_min, y_max, h)) # C = C_coef * 10 ** C_power # gamma = gamma_coef * 10 ** gamma_power # # Train SVM # clf = SVC( # C=C, # kernel=kernel, # degree=degree, # gamma=gamma, # shrinking=shrinking # ) # clf.fit(X_train, y_train) # # Plot the decision boundary. For that, we will assign a color to each # # point in the mesh [x_min, x_max]x[y_min, y_max]. # if hasattr(clf, "decision_function"): # Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) # else: # Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # prediction_figure = serve_prediction_plot( # model=clf, # X_train=X_train, # X_test=X_test, # y_train=y_train, # y_test=y_test, # Z=Z, # xx=xx, # yy=yy, # mesh_step=h, # threshold=threshold # ) # roc_figure = serve_roc_curve( # model=clf, # X_test=X_test, # y_test=y_test # ) # confusion_figure = serve_pie_confusion_matrix( # model=clf, # X_test=X_test, # y_test=y_test, # Z=Z, # threshold=threshold # ) # print( # f"Total Time Taken: {time.time() - t_start:.3f} sec") # return [ # html.Div( # className='three columns', # style={ # 'min-width': '24.5%', # 'height': 'calc(100vh - 90px)', # 'margin-top': '5px', # # Remove possibility to select the text for better UX # 'user-select': 'none', # '-moz-user-select': 'none', # '-webkit-user-select': 'none', # '-ms-user-select': 'none' # }, # children=[ # dcc.Graph( # id='graph-line-roc-curve', # style={'height': '40%'}, # figure=roc_figure # ), # dcc.Graph( # id='graph-pie-confusion-matrix', # figure=confusion_figure, # style={'height': '60%'} # ) # ]), # html.Div( # className='six columns', # style={'margin-top': '5px'}, # children=[ # dcc.Graph( # id='graph-sklearn-svm', # figure=prediction_figure, # style={'height': 'calc(100vh - 90px)'} # ) # ]) # ] # Running the server if __name__ == '__main__': app.run_server(debug=True) # %%
37.862222
145
0.435204
0
0
0
0
0
0
0
0
9,226
0.541495
cbeb6bdd865a57de9bfabcbd439111e0ae5d40b5
1,080
py
Python
bot.py
m2Link/YouTube-Video-Search
0512ea220af271dc1853925026f31c32990fa4ff
[ "MIT" ]
9
2021-09-30T06:25:03.000Z
2022-02-10T05:45:23.000Z
bot.py
m2Link/YouTube-Video-Search
0512ea220af271dc1853925026f31c32990fa4ff
[ "MIT" ]
null
null
null
bot.py
m2Link/YouTube-Video-Search
0512ea220af271dc1853925026f31c32990fa4ff
[ "MIT" ]
7
2021-09-30T06:24:56.000Z
2022-02-10T04:52:10.000Z
from pyrogram import Client ,filters import os from py_youtube import Data, Search from pyrogram.types import * TOKEN = os.environ.get("TOKEN", "") APP_ID = int(os.environ.get("APP_ID", "")) API_HASH = os.environ.get("API_HASH", "") app = Client( "yt-search", bot_token = TOKEN, api_id =API_ID , api_hash = API_HASH) @Client.on_message(filters.private & filters.command(["start"])) async def start(client,message): await message.reply_text("Helo iam Youtube Video Search\nUse in inline mode") @app.on_inline_query() async def search_video(client,query): search = [] result = Search(query.query.strip()).videos() for i in result: try: title = i["title"] id = i["id"] thumb = i["thumb"][0] data = i["simple_data"] except: pass try: search.append( InlineQueryResultPhoto( title=title, description=data, caption="https://youtu.be/"+id, photo_url=thumb)) except: pass await query.answer(search) app.run()
22.5
78
0.609259
0
0
0
0
726
0.672222
638
0.590741
150
0.138889
cbebd1e68288c77af1b90def0eca795dc3029718
7,582
py
Python
steam_review_sentiments/cnn_model.py
joshuamegnauth54/aapor_scholars_2021
1848083203714d2c0a205e538e91990983b3320e
[ "MIT" ]
null
null
null
steam_review_sentiments/cnn_model.py
joshuamegnauth54/aapor_scholars_2021
1848083203714d2c0a205e538e91990983b3320e
[ "MIT" ]
1
2021-11-03T15:33:31.000Z
2021-11-03T15:33:31.000Z
steam_review_sentiments/cnn_model.py
joshuamegnauth54/steam_user_reviews
1848083203714d2c0a205e538e91990983b3320e
[ "MIT" ]
null
null
null
import numpy as np import keras import spacy from sklearn.feature_extraction.text import CountVectorizer from sklearn.exceptions import NotFittedError from keras.models import Sequential from keras.layers import BatchNormalization, Conv1D, Dense, Embedding from keras.layers.pooling import GlobalMaxPooling1D from keras.initializers import Constant from utilities import null_preproc, transform_string,\ transform_all, tokenize_all # This class is badly designed. I wanted to leverage spaCy, but I combined # tools in a very poor way... class PadCounts: def __init__(self, nlp, pad_length=None): """Instantiate PadCounts. Parameters ---------- nlp : spacy.lang.en.English Trained spaCy language object. pad_length : int, optional Set a predefined length to pad data in transform(). Calculated from X_train during fit() if None. Returns ------- None. """ # Language object for embeddings. self.__nlp = nlp # Word embeddings array. self.__embeddings = None # Sklearn model for word counts. self.__vectorizer = None # Vocabulary size based on X_train. self.__vocab_size = None # Length of the pre-trained word embeddings vector (300 most likely) self.__vec_size = None # Max length of a training document (or a predefined max for padding) self.__pad_length = pad_length def __to_docs(self, X): # Convert X to a list of Doc if necessary if isinstance(X[0], str): return np.array([self.__nlp(text) for text in X]) else: return X def fit(self, X_train): """Fit PadCounts on X_train and transform into embeddings. Parameters ---------- X_train : np.ndarray[spacy.tokens.Doc or str] Array of spaCy Docs or strings (training). Raises ------ ValueError Raised if X_train isn't an array of spaCy Docs. Returns ------- None. """ if not isinstance(X_train, (np.ndarray, list)) or not len(X_train): raise ValueError("X_train needs to be an array of strs or Docs.") # Make sure X_train are Docs. X_train = self.__to_docs(X_train) # CountVectorizer counts each word/token, so I can use it to extract # ONLY the vectors present in my data from spaCy's pretrained # embeddings. self.__vectorizer = CountVectorizer(strip_accents="unicode", preprocessor=null_preproc, tokenizer=transform_string, token_pattern=None).fit(X_train) # The vocabulary size only consists of the terms that appear after # vectorizing. This is our first dimension. # 0 will be used as an indicator for missing words, so let's shift the # vocab by elements + 1. self.__vocab_size = len(self.__vectorizer.get_feature_names()) + 1 # Word vectors length (second dimension). self.__vec_size = self.__nlp.vocab.vectors_length # Remove stop words, et cetera. # And yeah, due to bad design I'm calling transform_string a lot. X_transformed = transform_all(X_train) if not self.__pad_length: self.__pad_length = len(max(X_transformed, key=len)) def embeddings(self): """Return subsetted embeddings for X_train. The returned vectors are a subset of the spaCy language object's vectors that only include words present in X_train. PadCounts should be fit() before calling embeddings(). Raises ------ NotFittedError Raised if PadCounts() is unfit. Returns ------- embeddings : np.ndarray[np.float32] Subsetted word embeddings. """ if self.__embeddings: return self.__embeddings elif not self.__vectorizer: raise NotFittedError("Call PadCounts.fit() first.") # Initialize a zero length ndarray with the vocab and vector sizes. self.__embeddings = np.zeros((self.__vocab_size, self.__vec_size), dtype=np.float32) # CountVectorizer.vocabulary_ is a dictionary matching word to index. # Thus: # index = vectorizer.vocabulary_["meow"] # value = vectorizer.get_feature_names()[index] # value == "meow" for word, i in self.__vectorizer.vocabulary_.items(): # Can't index with NumPy strings. # Also, shift the embeddings by 1. self.__embeddings[i + 1] = self.__nlp.vocab[str(word)].vector def transform(self, X, remove_junk=True): """Return tokenized X. Parameters ---------- X : np.ndarray[Doc or str] Array of Docs or str to tokenize. remove_junk : bool, optional Whether X needs to be transformed to remove stop words. The default is True. Raises ------ NotFittedError DESCRIPTION. ValueError DESCRIPTION. Returns ------- X_tokens : np.ndarray[np.int32] Word embeddings for X. """ if not self.__vectorizer or not self.__pad_length: raise NotFittedError("Call PadCounts.fit() first.") if not isinstance(X, (np.ndarray, list)) or not len(X): raise ValueError("X_train needs to be an array of strs or Docs.") # Make sure X is a list of Docs X = self.__to_docs(X) # Remove stop words et cetera if necessary. if remove_junk: X = transform_all(X) # Tokenize the training and test sets. 0 is the magic NaN value. return tokenize_all(X, self.__vectorizer, 0, True, self.__pad_length) def cnn_model(embeddings, max_length, ngrams=3, dropout_prob=.4): # Base model. Convert to class later(?!?). model = Sequential(name="cnn_steam_reviews_model") # Embedding layer to use our pretrained vectors. # https://keras.io/examples/nlp/pretrained_word_embeddings/ model.add(Embedding(embeddings.shape[0], embeddings.shape[1], embeddings_initializer=Constant(embeddings), # mask_zero=True, input_length=max_length, trainable=False)) # One dimension convulution layer model.add(Conv1D(max_length, ngrams, padding="same")) # Normalize inputs. model.add(BatchNormalization()) # Max pooling model.add(GlobalMaxPooling1D()) # Non-linearity and weight optimization model.add(Dense(128, activation="relu")) # Output model.add(BatchNormalization()) model.add(Dense(1, activation="sigmoid")) # Compile and return model.compile("adam", "binary_crossentropy", ["accuracy"]) return model def model_def_fit(model, X_train, y_train, epochs): return model.fit(X_train, y_train, batch_size=128, epochs=epochs, workers=6, use_multiprocessing=True, validation_split=.25)
33.254386
78
0.587048
5,565
0.733975
0
0
0
0
0
0
3,636
0.479557
cbec06c90522fab416454e28ed3f8f1ea15d10d0
96
py
Python
startup.py
andreagia/WEBNMR
512a8cc04cf69300796585feae722614501389a9
[ "Apache-2.0" ]
null
null
null
startup.py
andreagia/WEBNMR
512a8cc04cf69300796585feae722614501389a9
[ "Apache-2.0" ]
null
null
null
startup.py
andreagia/WEBNMR
512a8cc04cf69300796585feae722614501389a9
[ "Apache-2.0" ]
null
null
null
from paste.deploy import loadapp app = loadapp("config:/home/webenmr/WebENMR/development.ini")
24
61
0.791667
0
0
0
0
0
0
0
0
46
0.479167
cbef0e085fbba4e6b5fa308476e408eed61f8acc
2,548
py
Python
dataset/components.py
mikhailkin/dataset
7417483fdbe2e3743af4d614cb9036fd5b1375c0
[ "Apache-2.0" ]
null
null
null
dataset/components.py
mikhailkin/dataset
7417483fdbe2e3743af4d614cb9036fd5b1375c0
[ "Apache-2.0" ]
null
null
null
dataset/components.py
mikhailkin/dataset
7417483fdbe2e3743af4d614cb9036fd5b1375c0
[ "Apache-2.0" ]
null
null
null
""" Contains classes to handle batch data components """ class ComponentDescriptor: """ Class for handling one component item """ def __init__(self, component, default=None): self._component = component self._default = default def __get__(self, instance, cls): try: if instance.data is None: out = self._default elif instance.pos is None: out = instance.data[self._component] else: pos = instance.pos[self._component] data = instance.data[self._component] out = data[pos] if data is not None else self._default except IndexError: out = self._default return out def __set__(self, instance, value): if instance.pos is None: new_data = list(instance.data) if instance.data is not None else [] new_data = new_data + [None for _ in range(max(len(instance.components) - len(new_data), 0))] new_data[self._component] = value instance.data = tuple(new_data) else: pos = instance.pos[self._component] instance.data[self._component][pos] = value class BaseComponentsTuple: """ Base class for a component tuple """ components = None def __init__(self, data=None, pos=None): if isinstance(data, BaseComponentsTuple): self.data = data.data else: self.data = data if pos is not None and not isinstance(pos, list): pos = [pos for _ in self.components] self.pos = pos def __str__(self): s = '' for comp in self.components: d = getattr(self, comp) s += comp + '\n' + str(d) + '\n' return s def as_tuple(self, components=None): """ Return components data as a tuple """ components = tuple(components or self.components) return tuple(getattr(self, comp) for comp in components) class MetaComponentsTuple(type): """ Class factory for a component tuple """ def __init__(cls, *args, **kwargs): _ = kwargs super().__init__(*args, (BaseComponentsTuple,), {}) def __new__(mcs, name, components): comp_class = super().__new__(mcs, name, (BaseComponentsTuple,), {}) comp_class.components = components for i, comp in enumerate(components): setattr(comp_class, comp, ComponentDescriptor(i)) globals()[comp_class.__name__] = comp_class return comp_class
34.432432
105
0.594192
2,482
0.974097
0
0
0
0
0
0
235
0.092229
cbefd7cba52260caad3d20e4693a2870bae5c60c
708
py
Python
app/models.py
owen-rpx/RainGod
ba20023c1191519edec7f12fb488c942a2e05627
[ "MIT" ]
7
2019-04-11T09:45:37.000Z
2019-04-19T01:40:03.000Z
app/models.py
Owenzh/RainGod
ba20023c1191519edec7f12fb488c942a2e05627
[ "MIT" ]
5
2021-03-18T23:43:45.000Z
2022-03-11T23:44:29.000Z
app/models.py
owen-rpx/RainGod
ba20023c1191519edec7f12fb488c942a2e05627
[ "MIT" ]
2
2019-04-11T09:45:39.000Z
2019-04-19T01:39:02.000Z
#-*- coding:utf-8 -*- from .apps import db class User(db.Model): __tablename__ = 'user' user_id = db.Column(db.Integer, primary_key=True) user_count = db.Column(db.String(100), unique=True) user_name = db.Column(db.String(100), unique=True) user_sex = db.Column(db.String(100)) user_pwd = db.Column(db.String(100)) user_mail = db.Column(db.String(100)) user_phone = db.Column(db.String(100)) user_addtime = db.Column(db.DateTime, index=True) user_photo = db.Column(db.String(100)) user_ispass = db.Column(db.Integer) def check_pwd(self,pwd): from werkzeug.security import check_password_hash return check_password_hash(self.user_pwd,pwd)
29.5
57
0.686441
660
0.932203
0
0
0
0
0
0
27
0.038136
cbf1db6303b75bf9bb5a1fdfc15b60807174510e
834
py
Python
fingerExercises/fingerExercises-03/03.6-finger.how-many.py
sodaPhix/MITx-6.00.1x
8629e227d250cf6c2d5ca56944668b5796ce78cf
[ "MIT" ]
1
2019-10-06T22:58:39.000Z
2019-10-06T22:58:39.000Z
fingerExercises/fingerExercises-03/03.6-finger.how-many.py
sodaPhix/MITx-6.00.1x
8629e227d250cf6c2d5ca56944668b5796ce78cf
[ "MIT" ]
null
null
null
fingerExercises/fingerExercises-03/03.6-finger.how-many.py
sodaPhix/MITx-6.00.1x
8629e227d250cf6c2d5ca56944668b5796ce78cf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 7 03:26:16 2019 @author: sodatab MITx: 6.00.1x """ """ 03.6-Finger How Many --------------------- Consider the following sequence of expressions: animals = { 'a': ['aardvark'], 'b': ['baboon'], 'c': ['coati']} animals['d'] = ['donkey'] animals['d'].append('dog') animals['d'].append('dingo') We want to write some simple procedures that work on dictionaries to return information. First, write a procedure, called how_many, which returns the sum of the number of values associated with a dictionary. """ """Answer Script:""" def how_many(aDict): ''' aDict: A dictionary, where all the values are lists. returns: int, how many values are in the dictionary. ''' sum = 0 for i in aDict.values(): sum += len(i) return sum
22.540541
118
0.631894
0
0
0
0
0
0
0
0
723
0.866906
cbf29fc594fa3d410506fc9b2b10ddf99a2f2899
1,569
py
Python
test/const.py
DaniFdezAlvarez/shexerp3
80c3bdaac856a88d53359f5996477994774d34e2
[ "Apache-2.0" ]
3
2019-06-24T18:13:06.000Z
2020-08-06T03:08:23.000Z
test/const.py
DaniFdezAlvarez/shexerp3
80c3bdaac856a88d53359f5996477994774d34e2
[ "Apache-2.0" ]
109
2019-05-22T11:53:05.000Z
2021-03-15T11:09:18.000Z
test/const.py
DaniFdezAlvarez/shexerp3
80c3bdaac856a88d53359f5996477994774d34e2
[ "Apache-2.0" ]
2
2019-10-23T13:06:31.000Z
2020-07-31T09:59:15.000Z
BASE_FILES = "C:\\Users\\Dani\\repos-git\\shexerp3\\test\\t_files\\" BASE_FILES_GENERAL = BASE_FILES + "general\\" G1 = BASE_FILES + "t_graph_1.ttl" G1_NT = BASE_FILES + "t_graph_1.nt" G1_TSVO_SPO = BASE_FILES + "t_graph_1.tsv" G1_JSON_LD = BASE_FILES + "t_graph_1.json" G1_XML = BASE_FILES + "t_graph_1.xml" G1_N3 = BASE_FILES + "t_graph_1.n3" G1_ALL_CLASSES_NO_COMMENTS = BASE_FILES_GENERAL + "g1_all_classes_no_comments.shex" # PREFIX xml: <http://www.w3.org/XML/1998/namespace/> # PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> # PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> # PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> # PREFIX foaf: <http://xmlns.com/foaf/0.1/> # NAMESPACES_WITH_FOAF_AND_EX = {"http://example.org/" : "ex", # "http://www.w3.org/XML/1998/namespace/" : "xml", # "http://www.w3.org/1999/02/22-rdf-syntax-ns#": "rdf", # "http://www.w3.org/2000/01/rdf-schema#" : "rdfs", # "http://www.w3.org/2001/XMLSchema#": "xsd", # "http://xmlns.com/foaf/0.1/": "foaf" # } def default_namespaces(): return {"http://example.org/": "ex", "http://www.w3.org/XML/1998/namespace/": "xml", "http://www.w3.org/1999/02/22-rdf-syntax-ns#": "rdf", "http://www.w3.org/2000/01/rdf-schema#": "rdfs", "http://www.w3.org/2001/XMLSchema#": "xsd", "http://xmlns.com/foaf/0.1/": "foaf" }
42.405405
86
0.560867
0
0
0
0
0
0
0
0
1,174
0.748247
cbf2a3881275e0a82374f52818602abe974fb113
23,265
py
Python
src/lookoutequipment/evaluation.py
dast1/amazon-lookout-for-equipment-python-sdk
37213819c46b2dd3bcd4844235bececeabca8f12
[ "Apache-2.0" ]
3
2021-09-28T19:53:53.000Z
2022-02-14T17:50:59.000Z
src/lookoutequipment/evaluation.py
dast1/amazon-lookout-for-equipment-python-sdk
37213819c46b2dd3bcd4844235bececeabca8f12
[ "Apache-2.0" ]
null
null
null
src/lookoutequipment/evaluation.py
dast1/amazon-lookout-for-equipment-python-sdk
37213819c46b2dd3bcd4844235bececeabca8f12
[ "Apache-2.0" ]
1
2021-11-11T18:15:14.000Z
2021-11-11T18:15:14.000Z
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import boto3 import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import gridspec from scipy.stats import wasserstein_distance from tqdm import tqdm class LookoutEquipmentAnalysis: """ A class to manage Lookout for Equipment result analysis Attributes: model_name (string): the name of the Lookout for Equipment trained model predicted_ranges (pandas.DataFrame): a Pandas dataframe with the predicted anomaly ranges listed in chronological order with a Start and End columns labelled_ranges (pandas.DataFrame): A Pandas dataframe with the labelled anomaly ranges listed in chronological order with a Start and End columns df_list (list of pandas.DataFrame): A list with each time series into a dataframe """ def __init__(self, model_name, tags_df): """ Create a new analysis for a Lookout for Equipment model. Parameters: model_name (string): The name of the Lookout for Equipment trained model tags_df (pandas.DataFrame): A dataframe containing all the signals, indexed by time region_name (string): Name of the AWS region from where the service is called. """ self.client = boto3.client('lookoutequipment') self.model_name = model_name self.predicted_ranges = None self.labelled_ranges = None self.ts_normal_training = None self.ts_label_evaluation = None self.ts_known_anomalies = None self.df_list = dict() for signal in tags_df.columns: self.df_list.update({signal: tags_df[[signal]]}) model_description = self.client.describe_model(ModelName=self.model_name) if model_description['Status'] == 'FAILED': raise Exception('Model training failed, nothing to analyze.') # Extracting time ranges used at training time: self.training_start = pd.to_datetime( model_description['TrainingDataStartTime'].replace(tzinfo=None) ) self.training_end = pd.to_datetime( model_description['TrainingDataEndTime'].replace(tzinfo=None) ) self.evaluation_start = pd.to_datetime( model_description['EvaluationDataStartTime'].replace(tzinfo=None) ) self.evaluation_end = pd.to_datetime( model_description['EvaluationDataEndTime'].replace(tzinfo=None) ) def _load_model_response(self): """ Use the trained model description to extract labelled and predicted ranges of anomalies. This method will extract them from the DescribeModel API from Lookout for Equipment and store them in the labelled_ranges and predicted_ranges properties. """ describe_model_response = self.client.describe_model( ModelName=self.model_name ) if self.labelled_ranges is None: self.labelled_ranges = eval( describe_model_response['ModelMetrics'] )['labeled_ranges'] if len(self.labelled_ranges) > 0: self.labelled_ranges = pd.DataFrame(self.labelled_ranges) self.labelled_ranges['start'] = pd.to_datetime(self.labelled_ranges['start']) self.labelled_ranges['end'] = pd.to_datetime(self.labelled_ranges['end']) else: self.labelled_ranges = pd.DataFrame(columns=['start', 'end']) self.predicted_ranges = eval( describe_model_response['ModelMetrics'] )['predicted_ranges'] if len(self.predicted_ranges) > 0: self.predicted_ranges = pd.DataFrame(self.predicted_ranges) self.predicted_ranges['start'] = pd.to_datetime(self.predicted_ranges['start']) self.predicted_ranges['end'] = pd.to_datetime(self.predicted_ranges['end']) else: self.predicted_ranges = pd.DataFrame(columns=['start', 'end']) def set_time_periods( self, evaluation_start, evaluation_end, training_start, training_end ): """ Set the time period of analysis Parameters: evaluation_start (datetime): Start of the evaluation period evaluation_end (datetime): End of the evaluation period training_start (datetime): Start of the training period training_end (datetime): End of the training period """ self.evaluation_start = evaluation_start self.evaluation_end = evaluation_end self.training_start = training_start self.training_end = training_end def get_predictions(self): """ Get the anomaly ranges predicted by the current model Returns: pandas.DataFrame: A Pandas dataframe with the predicted anomaly ranges listed in chronological order with a Start and End columns """ if self.predicted_ranges is None: self._load_model_response() return self.predicted_ranges def get_labels(self, labels_fname=None): """ Get the labelled ranges as provided to the model before training Parameters: labels_fname (string): As an option, if you provide a path to a CSV file containing the label ranges, this method will use this file to load the labels. If this argument is not provided, it will load the labels from the trained model Describe API (Default to None) Returns: pandas.DataFrame: A Pandas dataframe with the labelled anomaly ranges listed in chronological order with a Start and End columns """ if labels_fname is not None: labels_df = pd.read_csv(labels_fname, header=None) labels_df[0] = pd.to_datetime(labels_df[0]) labels_df[1] = pd.to_datetime(labels_df[1]) labels_df.columns = ['start', 'end'] self.labelled_ranges = labels_df elif self.labelled_ranges is None: self._load_model_response() return self.labelled_ranges def _get_time_ranges(self): """ Extract DateTimeIndex with normal values and anomalies from the predictions generated by the model. Returns: pandas.DateTimeIndex: Timestamp index for all the values marked as normal during the training period pandas.DateTimeIndex: Timestamp index for all the values predicted as anomalies by the model during the evaluation period """ # Extract the first time series tag = list(self.df_list.keys())[0] tag_df = self.df_list[tag] # Initialize the predictions dataframe: predictions_df = pd.DataFrame(columns=['Prediction'], index=tag_df.index) predictions_df['Prediction'] = 0 # Loops through the predicted and labelled anomalies # ranges and set these predictions to 1 (predicted) # or 2 (initially known): for index, row in self.predicted_ranges.iterrows(): predictions_df.loc[row['start']:row['end'], 'Prediction'] = 1 for index, row in self.labelled_ranges.iterrows(): predictions_df.loc[row['start']:row['end'], 'Prediction'] = 2 # Limits the analysis range to the evaluation period: predictions_df = predictions_df[self.training_start:self.evaluation_end] # Build a DateTimeIndex for normal values and anomalies: index_normal = predictions_df[predictions_df['Prediction'] == 0].index index_anomaly = predictions_df[predictions_df['Prediction'] == 1].index index_known = predictions_df[predictions_df['Prediction'] == 2].index return index_normal, index_anomaly, index_known def compute_histograms( self, index_normal=None, index_anomaly=None, num_bins=20 ): """ This method loops through each signal and computes two distributions of the values in the time series: one for all the anomalies found in the evaluation period and another one with all the normal values found in the same period. It then computes the Wasserstein distance between these two histograms and then rank every signals based on this distance. The higher the distance, the more different a signal is when comparing anomalous and normal periods. This can orient the investigation of a subject matter expert towards the sensors and associated components. Parameters: index_normal (pandas.DateTimeIndex): All the normal indices index_anomaly (pandas.DateTimeIndex): All the indices for anomalies num_bins (integer): Number of bins to use to build the distributions (default: 20) """ if (index_normal is None) or (index_anomaly is None): index_lists = self._get_time_ranges() self.ts_normal_training = index_lists[0] self.ts_label_evaluation = index_lists[1] self.ts_known_anomalies = index_lists[2] self.num_bins = num_bins # Now we loop on each signal to compute a # histogram of each of them in this anomaly range, # compte another one in the normal range and # compute a distance between these: rank = dict() for tag, current_tag_df in tqdm( self.df_list.items(), desc='Computing distributions' ): try: # Get the values for the whole signal, parts # marked as anomalies and normal part: current_signal_values = current_tag_df[tag] current_signal_evaluation = current_tag_df.loc[self.ts_label_evaluation, tag] current_signal_training = current_tag_df.loc[self.ts_normal_training, tag] # Let's compute a bin width based on the whole range of possible # values for this signal (across the normal and anomalous periods). # For both normalization and aesthetic reasons, we want the same # number of bins across all signals: bin_width = (np.max(current_signal_values) - np.min(current_signal_values))/self.num_bins bins = np.arange( np.min(current_signal_values), np.max(current_signal_values) + bin_width, bin_width ) # We now use the same bins arrangement for both parts of the signal: u = np.histogram( current_signal_training, bins=bins, density=True )[0] v = np.histogram( current_signal_evaluation, bins=bins, density=True )[0] # Wasserstein distance is the earth mover distance: it can be # used to compute a similarity between two distributions: this # metric is only valid when the histograms are normalized (hence # the density=True in the computation above): d = wasserstein_distance(u, v) rank.update({tag: d}) except Exception as e: rank.update({tag: 0.0}) # Sort histograms by decreasing Wasserstein distance: rank = {k: v for k, v in sorted(rank.items(), key=lambda rank: rank[1], reverse=True)} self.rank = rank def plot_histograms_v2(self, custom_ranking, nb_cols=3, max_plots=12, num_bins=20): index_lists = self._get_time_ranges() self.ts_normal_training = index_lists[0] self.ts_label_evaluation = index_lists[1] self.ts_known_anomalies = index_lists[2] self.num_bins = num_bins # Prepare the figure: nb_rows = len(self.df_list.keys()) // nb_cols + 1 plt.style.use('Solarize_Light2') prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] fig = plt.figure(figsize=(16, int(nb_rows * 3))) gs = gridspec.GridSpec(nb_rows, nb_cols, hspace=0.5, wspace=0.25) axes = [] for i in range(max_plots): axes.append(fig.add_subplot(gs[i])) # Loops through each signal by decreasing distance order: i = 0 for tag, current_rank in tqdm( custom_ranking.items(), total=max_plots, desc='Preparing histograms' ): # We stop after reaching the number of plots we are interested in: if i > max_plots - 1: break try: # Get the anomaly and the normal values from the current signal: current_signal_values = self.df_list[tag][tag] current_signal_evaluation = self.df_list[tag].loc[self.ts_label_evaluation, tag] current_signal_training = self.df_list[tag].loc[self.ts_normal_training, tag] # Compute the bin width and bin edges to match the # number of bins we want to have on each histogram: bin_width =(np.max(current_signal_values) - np.min(current_signal_values))/self.num_bins bins = np.arange( np.min(current_signal_values), np.max(current_signal_values) + bin_width, bin_width ) # Add both histograms in the same plot: axes[i].hist(current_signal_training, density=True, alpha=0.5, color=colors[1], bins=bins, edgecolor='#FFFFFF') axes[i].hist(current_signal_evaluation, alpha=0.5, density=True, color=colors[5], bins=bins, edgecolor='#FFFFFF') except Exception as e: print(e) axes[i] = plt.subplot(gs[i]) # Removes all the decoration to leave only the histograms: axes[i].grid(False) axes[i].get_yaxis().set_visible(False) axes[i].get_xaxis().set_visible(False) # Title will be the tag name followed by the score: title = tag title += f' (score: {current_rank:.02f}%)' axes[i].set_title(title, fontsize=10) i+= 1 return fig, axes def plot_histograms(self, nb_cols=3, max_plots=12): """ Once the histograms are computed, we can plot the top N by decreasing ranking distance. By default, this will plot the histograms for the top 12 signals, with 3 plots per line. Parameters: nb_cols (integer): Number of plots to assemble on a given row (default: 3) max_plots (integer): Number of signal to consider (default: 12) Returns: tuple: tuple containing: * A ``matplotlib.pyplot.figure`` where the plots are drawn * A ``list of matplotlib.pyplot.Axis`` with each plot drawn here """ # Prepare the figure: nb_rows = len(self.df_list.keys()) // nb_cols + 1 plt.style.use('Solarize_Light2') prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] fig = plt.figure(figsize=(16, int(nb_rows * 3))) gs = gridspec.GridSpec(nb_rows, nb_cols, hspace=0.5, wspace=0.25) axes = [] for i in range(max_plots): axes.append(fig.add_subplot(gs[i])) # Loops through each signal by decreasing distance order: i = 0 for tag, current_rank in tqdm( self.rank.items(), total=max_plots, desc='Preparing histograms' ): # We stop after reaching the number of plots we are interested in: if i > max_plots - 1: break try: # Get the anomaly and the normal values from the current signal: current_signal_values = self.df_list[tag][tag] current_signal_evaluation = self.df_list[tag].loc[self.ts_label_evaluation, tag] current_signal_training = self.df_list[tag].loc[self.ts_normal_training, tag] # Compute the bin width and bin edges to match the # number of bins we want to have on each histogram: bin_width =(np.max(current_signal_values) - np.min(current_signal_values))/self.num_bins bins = np.arange( np.min(current_signal_values), np.max(current_signal_values) + bin_width, bin_width ) # Add both histograms in the same plot: axes[i].hist(current_signal_training, density=True, alpha=0.5, color=colors[1], bins=bins, edgecolor='#FFFFFF') axes[i].hist(current_signal_evaluation, alpha=0.5, density=True, color=colors[5], bins=bins, edgecolor='#FFFFFF') except Exception as e: print(e) axes[i] = plt.subplot(gs[i]) # Removes all the decoration to leave only the histograms: axes[i].grid(False) axes[i].get_yaxis().set_visible(False) axes[i].get_xaxis().set_visible(False) # Title will be the tag name followed by the score: title = tag title += f' (score: {current_rank:.02f})' axes[i].set_title(title, fontsize=10) i+= 1 return fig, axes def plot_signals(self, nb_cols=3, max_plots=12): """ Once the histograms are computed, we can plot the top N signals by decreasing ranking distance. By default, this will plot the signals for the top 12 signals, with 3 plots per line. For each signal, this method will plot the normal values in green and the anomalies in red. Parameters: nb_cols (integer): Number of plots to assemble on a given row (default: 3) max_plots (integer): Number of signal to consider (default: 12) Returns: tuple: tuple containing: * A ``matplotlib.pyplot.figure`` where the plots are drawn * A ``list of matplotlib.pyplot.Axis`` with each plot drawn here """ # Prepare the figure: nb_rows = max_plots // nb_cols + 1 plt.style.use('Solarize_Light2') prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] fig = plt.figure(figsize=(28, int(nb_rows * 4))) gs = gridspec.GridSpec(nb_rows, nb_cols, hspace=0.5, wspace=0.25) axes = [] for i in range(max_plots): axes.append(fig.add_subplot(gs[i])) # Loops through each signal by decreasing distance order: i = 0 for tag, current_rank in self.rank.items(): # We stop after reaching the number of plots we are interested in: if i > max_plots - 1: break # Get the anomaly and the normal values from the current signal: current_signal_evaluation = self.df_list[tag].loc[self.ts_label_evaluation, tag] current_signal_training = self.df_list[tag].loc[self.ts_normal_training, tag] current_signal_known = self.df_list[tag].loc[self.ts_known_anomalies, tag] # Plot both time series with a line plot # axes.append(plt.subplot(gs[i])) axes[i].plot(current_signal_training, linewidth=0.5, alpha=0.8, color=colors[1]) axes[i].plot(current_signal_evaluation, linewidth=0.5, alpha=0.8, color=colors[5]) axes[i].plot(current_signal_known, linewidth=0.5, alpha=0.8, color='#AAAAAA') # Title will be the tag name followed by the score: title = tag title += f' (score: {current_rank:.02f})' axes[i].set_title(title, fontsize=10) start = min( min(self.ts_label_evaluation), min(self.ts_normal_training), min(self.ts_known_anomalies) ) end = max( max(self.ts_label_evaluation), max(self.ts_normal_training), max(self.ts_known_anomalies) ) axes[i].set_xlim(start, end) i += 1 return fig, axes def get_ranked_list(self, max_signals=12): """ Returns the list of signals with computed rank. Parameters: max_signals (integer) Number of signals to consider (default: 12) Returns: pandas.DataFrame: A dataframe with each signal and the associated rank value """ significant_signals_df = pd.DataFrame(list(self.rank.items())[:max_signals]) significant_signals_df.columns = ['Tag', 'Rank'] return significant_signals_df
40.744308
105
0.571545
22,441
0.964582
0
0
0
0
0
0
9,818
0.422007
cbf2dc049f1ccb6bed778490aa18d0ea3f007439
793
py
Python
src/opserver/plugins/alarm_process_connectivity/setup.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
3
2019-01-11T06:16:40.000Z
2021-02-24T23:48:21.000Z
src/opserver/plugins/alarm_process_connectivity/setup.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
null
null
null
src/opserver/plugins/alarm_process_connectivity/setup.py
biswajit-mandal/contrail-controller
80c4a7e8515f7296b18ba4c21a439bd3daefcc4a
[ "Apache-2.0" ]
18
2017-01-12T09:28:44.000Z
2019-04-18T20:47:42.000Z
# # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # from setuptools import setup, find_packages setup( name='alarm_process_connectivity', version='0.1dev', packages=find_packages(), entry_points = { 'contrail.analytics.alarms': [ 'ObjectCollectorInfo = alarm_process_connectivity.main:ProcessConnectivity', 'ObjectVRouter = alarm_process_connectivity.main:ProcessConnectivity', 'ObjectConfigNode = alarm_process_connectivity.main:ProcessConnectivity', 'ObjectBgpRouter = alarm_process_connectivity.main:ProcessConnectivity', 'ObjectDatabaseInfo = alarm_process_connectivity.main:ProcessConnectivity', ], }, zip_safe=False, long_description="ProcessConnectivity alarm" )
34.478261
88
0.717528
0
0
0
0
0
0
0
0
517
0.651955
cbf3c9c5fb96524cab1cc99ebc8311885fc1db2a
813
py
Python
app/tools/dbg_queue_graph.py
samelamin/kylinmonitorbot
00a38ca9513dceadf23bfdb19b6daab77a368e76
[ "MIT" ]
null
null
null
app/tools/dbg_queue_graph.py
samelamin/kylinmonitorbot
00a38ca9513dceadf23bfdb19b6daab77a368e76
[ "MIT" ]
null
null
null
app/tools/dbg_queue_graph.py
samelamin/kylinmonitorbot
00a38ca9513dceadf23bfdb19b6daab77a368e76
[ "MIT" ]
null
null
null
import asyncio import os from localization import LocalizationManager from services.dialog.queue_picture import queue_graph from services.lib.config import Config from services.lib.db import DB from services.lib.depcont import DepContainer async def q_points(d: DepContainer): image = await queue_graph(d, d.loc_man.get_from_lang('rus')) p = os.path.expanduser('~/sns_test.png') with open(p, 'wb') as f: f.write(image.getvalue()) os.system(f'open "{p}"') async def stake_graph(): ... async def test_plots(d): # await q_points(d) await stake_graph() if __name__ == '__main__': d = DepContainer() d.loc_man = LocalizationManager() d.loop = asyncio.get_event_loop() d.cfg = Config() d.db = DB(d.loop) d.loop.run_until_complete(test_plots(d))
22.583333
64
0.693727
0
0
0
0
0
0
346
0.425584
67
0.082411
cbf41ad432dd52c7fa96aae20328389d8a8a2749
8,482
py
Python
fenpei/job.py
mverleg/fenpei
2142e4fe4a1e2897d8d8185ef4b86adc7323e1eb
[ "BSD-3-Clause" ]
null
null
null
fenpei/job.py
mverleg/fenpei
2142e4fe4a1e2897d8d8185ef4b86adc7323e1eb
[ "BSD-3-Clause" ]
2
2016-11-17T12:10:36.000Z
2017-02-08T09:06:37.000Z
fenpei/job.py
mverleg/fenpei
2142e4fe4a1e2897d8d8185ef4b86adc7323e1eb
[ "BSD-3-Clause" ]
null
null
null
""" Base class for fenpei job; this should be considered abstract. Your custom job(s) should inherit from this job and extend the relevant methods, such as:: * is_prepared * is_complete * prepare * start * result * summary """ from re import match from sys import stdout from bardeen.system import mkdirp from time import time from os import remove from os.path import join, isdir from shutil import rmtree from .utils import CALC_DIR class Job(object): CRASHED, NONE, PREPARED, RUNNING, COMPLETED = -1, 0, 1, 2, 3 status_names = {-1: 'crashed', 0: 'nothing', 1: 'prepared', 2: 'running', 3: 'completed'} queue = None node = None pid = None status = None """ Set a group_cls to report results together with another class (that has the same output format). """ group_cls = None def __init__(self, name, weight=1, batch_name=None, force_node=None): """ Create a Job object. :param name: unique name consisting of letters, numbers, dot (.) and underscore (_) **YOU need to make sure that name is unique (bijectively maps to job)** :param weight: the relative resource use of this job (higher relative weights means fewer jobs will be scheduled together) :param batch_name: optionally, a name of the same format as ``name``, which specifies the batch (will be grouped) :param force_node: demand a specific node; it's up to the queue whether this is honoured """ assert match(r'^\w[/\w\.\+_-]*$', name), 'This is not a valid name: "{0:}"'.format(name) assert weight > 0 self.name = name self.weight = weight self.cluster = None self.batch_name = batch_name self.force_node = force_node if self.batch_name: assert match('^\w[\w\._-]*$', batch_name) self.directory = join(CALC_DIR, batch_name, name) elif batch_name is None: raise AssertionError('no batch name for {0:}; provide batch_name argument when creating jobs or set it to False'.format(self)) elif batch_name is False: self.directory = join(CALC_DIR, name) self.status = self.NONE def __repr__(self): if hasattr(self, 'name'): return self.name return '{0:s} id{1:}'.format(self.__class__.__name__, id(self)) def _log(self, txt, *args, **kwargs): """ Logging function. .queue is not always set, so have own logging function. """ if self.queue is None: if len(txt.strip()): stdout.write('(no queue) ' + txt + '\n') else: stdout.write('(empty)\n') else: self.queue._log(txt, *args, **kwargs) def save(self): """ Save information about a running job to locate the process. """ assert self.node is not None assert self.pid is not None with open('%s/node_pid.job' % self.directory, 'w+') as fh: fh.write('%s\n%s\n%s\n%s' % (self.name, self.node, self.pid, str(time()))) self._log('job %s saved' % self, level=3) def unsave(self): """ Remove the stored process details. """ try: remove('%s/node_pid.job' % self.directory) except IOError: pass self._log('job %s save file removed' % self.name, level=3) def load(self): """ Load process details from cache. """ try: with open('%s/node_pid.job' % self.directory, 'r') as fh: lines = fh.read().splitlines() self.node = lines[1] self.pid = int(lines[2]) self._log('job %s loaded' % self.name, level=3) return True except IOError: self._log('job %s save file not found' % self, level=3) return False def is_prepared(self): pass def is_started(self): if not self.is_prepared(): return False l = self.load() return l def is_running(self): """ Only called if at least prepared. """ if self.pid is None: if not self.load(): return False if not self.queue: raise Exception('cannot check if %s is running because it is not in a queue' % self) proc_list = self.queue.processes(self.node) try: return self.pid in [proc['pid'] for proc in proc_list if proc is not None] except KeyError: raise Exception('node %s for job %s no longer found?' % (self.node, self)) def is_complete(self): """ Check if job completed successfully. Needs to be extended by child class. Only called for jobs that are at least prepared. """ return True def find_status(self): """ Find status using is_* methods. """ def check_status_indicators(self): if self.is_prepared(): if self.is_complete(): return self.COMPLETED elif self.is_started(): if self.is_running(): return self.RUNNING return self.CRASHED return self.PREPARED return self.NONE if time() - getattr(self, '_last_status_time', time() - 100) > 0.7: self.status = check_status_indicators(self) setattr(self, '_last_status_time', time()) return self.status def status_str(self): return self.status_names[self.find_status()] def prepare(self, silent=False, *args, **kwargs): """ Prepares the job for execution. More steps are likely necessary for child classes. """ self.status = self.PREPARED if not self.is_prepared(): if self.batch_name: mkdirp(join(CALC_DIR, self.batch_name)) mkdirp(self.directory) if not silent: self._log('preparing {0:s}'.format(self), level=2) """ child method add more steps here """ def _start_pre(self, *args, **kwargs): """ Some checks at the beginning of .start(). """ if self.is_running() or self.is_complete(): if not self.queue is None: if self.queue.force: if self.is_running(): self.kill() else: raise AssertionError(('you are trying to restart a job that is running ' 'or completed ({0:} run={1:} complete={2:}); use restart (-e) to ' 'skip such jobs or -f to overrule this warning').format( self, self.is_running(), self.is_complete())) if not self.is_prepared(): self.prepare(silent=True) def _start_post(self, node, pid, *args, **kwargs): """ Some bookkeeping at the end of .start(). """ self.node = node self.pid = pid self.save() if self.is_running(): self.STATUS = self.RUNNING self._log('starting %s on %s with pid %s' % (self, self.node, self.pid), level=2) def start(self, node, *args, **kwargs): """ Start the job and store node/pid. """ self._start_pre(*args, **kwargs) """ Your starting code here. """ self._start_post(node, 'pid_here', *args, **kwargs) return True def fix(self, *args, **kwargs): """ Some code that can be ran to fix jobs, e.g. after bugfixes or updates. Needs to be implemented by children for the specific fix applicable (if just restarting is not viable). """ return False def kill(self, *args, **kwargs): """ Kills the current job if running using queue methods. Any overriding should probably happen in :ref: queue.processes and :ref: queue.stop_job. """ if self.is_running(): assert self.node is not None assert self.pid is not None self._log('killing %s: %s on %s' % (self, self.pid, self.node), level=2) self.queue.stop_job(node = self.node, pid = self.pid) return True self._log('job %s not running' % self, level=3) return False def cleanup(self, skip_conflicts=False, *args, **kwargs): if self.is_running() or self.is_complete(): if self.queue is not None and not self.queue.force: if skip_conflicts: return False raise AssertionError(('you are trying to clean up a job ({0:s}; run={1:} complete={2:}) ' 'that is running or completed; use -f to force this, or -e to skip these jobs (it ' 'could also mean that two jobs are use the same name and batchname).').format( self.name, self.is_running(), self.is_complete())) if self.batch_name is not False and isdir(self.directory): rmtree(self.directory, ignore_errors = True) self._log('cleaned up {0:s}'.format(self), level=2) return True return False def result(self, *args, **kwargs): """ Collects the result of the completed job. :return: result of the job; only requirement is that the result be compatible with :ref: summary (and other jobs), but a dict is suggested. """ if not self.is_complete(): return None return None def crash_reason(self, verbosity=0, *args, **kwargs): """ Find the reason the job has crashed. Should only be called for crashed jobs (by _crash_reason_if_crashed). """ if verbosity <= 0: return '??' else: return '?? reason for crash not known' def _crash_reason_if_crashed(self, verbosity=0, *args, **kwargs): if not self.find_status() == self.CRASHED: return None return self.crash_reason(verbosity=verbosity, *args, **kwargs)
29.451389
157
0.67543
8,038
0.947654
0
0
0
0
0
0
3,401
0.400967
cbf53d52cd9777aefd5d176bd11a75c4a1b54abc
303
py
Python
Aula 07/ex6.py
diegorafaelvieira/Programacao-1
657a974f1215cec4aed68603e738d9a135131545
[ "MIT" ]
null
null
null
Aula 07/ex6.py
diegorafaelvieira/Programacao-1
657a974f1215cec4aed68603e738d9a135131545
[ "MIT" ]
null
null
null
Aula 07/ex6.py
diegorafaelvieira/Programacao-1
657a974f1215cec4aed68603e738d9a135131545
[ "MIT" ]
null
null
null
val = int(input("Valor:")) soma = val maior = val menor = val for i in range(0,9): val = int(input("Valor:")) if val>maior: maior = val if val<menor: menor=val soma+=val print("O maior valor é:",maior) print("O menor valor é:",menor) print("A média é:",(soma/10))
16.833333
31
0.570957
0
0
0
0
0
0
0
0
68
0.221498
cbf5f6dcb21e20b6bc3a2e8d76fc27d3087ec7c4
746
py
Python
waterbutler/providers/github/exceptions.py
KakeruMizuno/RDM-waterbutler
58ecd801385a7572d1ed56568a31f701291c4e3e
[ "Apache-2.0" ]
1
2019-05-08T02:32:17.000Z
2019-05-08T02:32:17.000Z
waterbutler/providers/github/exceptions.py
KakeruMizuno/RDM-waterbutler
58ecd801385a7572d1ed56568a31f701291c4e3e
[ "Apache-2.0" ]
null
null
null
waterbutler/providers/github/exceptions.py
KakeruMizuno/RDM-waterbutler
58ecd801385a7572d1ed56568a31f701291c4e3e
[ "Apache-2.0" ]
null
null
null
from http import HTTPStatus from waterbutler.core.exceptions import ProviderError class GitHubUnsupportedRepoError(ProviderError): def __init__(self, dummy): """``dummy`` argument is because children of ``WaterButlerError`` must be instantiable with a single integer argument. See :class:`waterbutler.core.exceptions.WaterButlerError` for details. """ super().__init__('Some folder operations on large GitHub repositories cannot be supported ' 'without data loss. To carry out this operation, please perform it in a ' 'local git repository, then push to the target repository on GitHub.', code=HTTPStatus.NOT_IMPLEMENTED)
46.625
99
0.672922
660
0.884718
0
0
0
0
0
0
435
0.58311
cbf60a5f54499551d07c8764354e2a5053355b82
899
py
Python
buildencyclopedia.py
ZhenyuZ/gdc-docs
f024d5d4cd86dfa2c9e7d63850eee94d975b7948
[ "Apache-2.0" ]
67
2016-06-09T14:11:51.000Z
2022-03-16T07:54:44.000Z
buildencyclopedia.py
ZhenyuZ/gdc-docs
f024d5d4cd86dfa2c9e7d63850eee94d975b7948
[ "Apache-2.0" ]
19
2016-06-21T15:51:11.000Z
2021-06-07T09:22:20.000Z
buildencyclopedia.py
ZhenyuZ/gdc-docs
f024d5d4cd86dfa2c9e7d63850eee94d975b7948
[ "Apache-2.0" ]
32
2016-07-15T01:24:19.000Z
2019-03-25T10:42:28.000Z
"""updates the encyclopedia section in the mkdocs.yml should be run whenever a file is removed or added into the directory""" import os import yaml ABSFILEPATH = os.path.dirname(os.path.realpath(__file__)) FILEARRAY = os.listdir(ABSFILEPATH + '/docs/Encyclopedia/pages') FILEARRAY = sorted(FILEARRAY, key=str.lower) with open(ABSFILEPATH + '/mkdocs.yml', 'r') as f: doc = yaml.load(f) encycdict = next(d for (index, d) in enumerate(doc['pages']) \ if d.get('EncyclopediaEntries', False) != False) newlist = [] for x in range(len(FILEARRAY)): if FILEARRAY[x][-3:] == ".md": tempdict = {FILEARRAY[x][:-3].replace("_"," "):"".join(['Encyclopedia/pages/', FILEARRAY[x][:-3], '.md'])} newlist.append(tempdict) encycdict['EncyclopediaEntries'] = newlist with open(ABSFILEPATH + '/mkdocs.yml', 'w+') as f: f.write(yaml.dump(doc, default_flow_style=False))
32.107143
114
0.670745
0
0
0
0
0
0
0
0
273
0.303671
cbf64e56908db17c3f6f03defc1efa0087875a63
3,056
py
Python
nucypher/tests/config/test_firstula_circumstances.py
kanzeparov/NuCypher
0d7e349872909d0cacfd66583d018d722587b2e7
[ "FTL", "CNRI-Python" ]
null
null
null
nucypher/tests/config/test_firstula_circumstances.py
kanzeparov/NuCypher
0d7e349872909d0cacfd66583d018d722587b2e7
[ "FTL", "CNRI-Python" ]
null
null
null
nucypher/tests/config/test_firstula_circumstances.py
kanzeparov/NuCypher
0d7e349872909d0cacfd66583d018d722587b2e7
[ "FTL", "CNRI-Python" ]
null
null
null
""" This file is part of nucypher. nucypher is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. nucypher is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with nucypher. If not, see <https://www.gnu.org/licenses/>. """ from functools import partial import maya import pytest import pytest_twisted from twisted.internet.threads import deferToThread from nucypher.network.middleware import RestMiddleware from nucypher.utilities.sandbox.ursula import make_federated_ursulas def test_proper_seed_node_instantiation(ursula_federated_test_config): lonely_ursula_maker = partial(make_federated_ursulas, ursula_config=ursula_federated_test_config, quantity=1, know_each_other=False) firstula = lonely_ursula_maker().pop() firstula_as_seed_node = firstula.seed_node_metadata() any_other_ursula = lonely_ursula_maker(seed_nodes=[firstula_as_seed_node]).pop() assert not any_other_ursula.known_nodes any_other_ursula.start_learning_loop(now=True) assert firstula in any_other_ursula.known_nodes.values() @pytest_twisted.inlineCallbacks def test_get_cert_from_running_seed_node(ursula_federated_test_config): lonely_ursula_maker = partial(make_federated_ursulas, ursula_config=ursula_federated_test_config, quantity=1, know_each_other=False) firstula = lonely_ursula_maker().pop() node_deployer = firstula.get_deployer() node_deployer.addServices() node_deployer.catalogServers(node_deployer.hendrix) node_deployer.start() certificate_as_deployed = node_deployer.cert.to_cryptography() firstula_as_seed_node = firstula.seed_node_metadata() any_other_ursula = lonely_ursula_maker(seed_nodes=[firstula_as_seed_node], network_middleware=RestMiddleware()).pop() assert not any_other_ursula.known_nodes def start_lonely_learning_loop(): any_other_ursula.start_learning_loop() start = maya.now() while not firstula in any_other_ursula.known_nodes.values(): passed = maya.now() - start if passed.seconds > 2: pytest.fail("Didn't find the seed node.") yield deferToThread(start_lonely_learning_loop) assert firstula in any_other_ursula.known_nodes.values() certificate_as_learned = list(any_other_ursula.known_nodes.values())[0].certificate assert certificate_as_learned == certificate_as_deployed any_other_ursula.stop_learning_loop()
39.688312
87
0.729058
0
0
1,469
0.480694
1,501
0.491165
0
0
668
0.218586
cbf6bbc96905dc1f309f486dc863edc389cd8386
1,550
py
Python
anchore/anchore-modules/queries/show-familytree.py
berez23/anchore
594cce23f1d87d666397653054c22c2613247734
[ "Apache-2.0" ]
401
2016-06-16T15:29:48.000Z
2022-03-24T10:05:16.000Z
anchore/anchore-modules/queries/show-familytree.py
berez23/anchore
594cce23f1d87d666397653054c22c2613247734
[ "Apache-2.0" ]
63
2016-06-16T21:10:27.000Z
2020-07-01T06:57:27.000Z
anchore/anchore-modules/queries/show-familytree.py
berez23/anchore
594cce23f1d87d666397653054c22c2613247734
[ "Apache-2.0" ]
64
2016-06-16T13:05:57.000Z
2021-07-16T10:03:45.000Z
#!/usr/bin/env python import sys import os import re import json import traceback import anchore.anchore_utils # main routine try: config = anchore.anchore_utils.init_query_cmdline(sys.argv, "params: all\nhelp: shows dockerfile lines.") except Exception as err: print str(err) sys.exit(1) if not config: sys.exit(0) if len(config['params']) <= 0: print "Query requires input: all" warns = list() outlist = list() outlist.append(["Image_Id", "Repo_Tags", "Image Type"]) try: idata = anchore.anchore_utils.load_image_report(config['imgid']) ftree = idata['familytree'] for fid in ftree: tags = "unknown" itype = "unknown" try: fdata = anchore.anchore_utils.load_image_report(fid) tags = ','.join(fdata['anchore_all_tags']) if not tags: tags = "none" itype = fdata['meta']['usertype'] if not itype: itype = "intermediate" except: warns.append("family tree id ("+str(fid)+") does not appear to have been analyzed, no data for this member of the tree") outlist.append([fid, str(tags), str(itype)]) except Exception as err: # handle the case where something wrong happened import traceback traceback.print_exc() warns.append("query error: "+str(err)) pass anchore.anchore_utils.write_kvfile_fromlist(config['output'], outlist) if len(warns) > 0: anchore.anchore_utils.write_plainfile_fromlist(config['output_warns'], warns) sys.exit(0)
22.794118
132
0.645806
0
0
0
0
0
0
0
0
422
0.272258
cbf70c92043ad32d0c5d7dec87ffaf9a8bdb7e8f
2,258
py
Python
spikeforest/spikeforestwidgets/templatewidget/templatewidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
1
2021-09-23T01:07:19.000Z
2021-09-23T01:07:19.000Z
spikeforest/spikeforestwidgets/templatewidget/templatewidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
null
null
null
spikeforest/spikeforestwidgets/templatewidget/templatewidget.py
mhhennig/spikeforest
5b4507ead724af3de0be5d48a3b23aaedb0be170
[ "Apache-2.0" ]
1
2021-09-23T01:07:21.000Z
2021-09-23T01:07:21.000Z
import uuid from spikeforest import mdaio import io import base64 import vdomr as vd import os import numpy as np import mtlogging import time import traceback source_path = os.path.dirname(os.path.realpath(__file__)) def _mda32_to_base64(X): f = io.BytesIO() mdaio.writemda32(X, f) return base64.b64encode(f.getvalue()).decode('utf-8') class TemplateWidget(vd.Component): def __init__(self, *, template, size=(200, 200)): vd.Component.__init__(self) vd.devel.loadBootstrap() vd.devel.loadCss(url='https://stackpath.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css') vd.devel.loadJavascript(path=source_path + '/mda.js') vd.devel.loadJavascript(path=source_path + '/canvaswidget.js') vd.devel.loadJavascript(path=source_path + '/templatewidget.js') vd.devel.loadJavascript(path=source_path + '/../dist/jquery-3.3.1.min.js') self._div_id = 'TemplateWidget-' + str(uuid.uuid4()) self._template = template self._template_b64 = _mda32_to_base64(self._template) self._y_scale_factor = None self._size = size def setYScaleFactor(self, scale_factor): self._y_scale_factor = scale_factor self.refresh() def setSize(self, size): if self._size == size: return self._size = size self.refresh() def size(self): return self._size def render(self): div = vd.div(id=self._div_id) return div def postRenderScript(self): js = """ let W=new window.TemplateWidget(); let X=new window.Mda(); X.setFromBase64('{template_b64}'); W.setTemplate(X); W.setSize({width},{height}); W.setYScaleFactor({y_scale_factor}); $('#{div_id}').empty(); $('#{div_id}').css({width:'{width}px',height:'{height}px'}) $('#{div_id}').append(W.element()); """ js = js.replace('{template_b64}', self._template_b64) js = js.replace('{div_id}', self._div_id) js = js.replace('{width}', str(self._size[0])) js = js.replace('{height}', str(self._size[1])) js = js.replace('{y_scale_factor}', str(self._y_scale_factor or 'null')) return js
30.513514
110
0.623561
1,903
0.842781
0
0
0
0
0
0
635
0.281222
cbf7539dbf5f7fc02064b79ad7c95855899a2086
5,968
py
Python
delsmm/smm.py
sisl/delsmm
6baae49e6f7b31c817af5668972ba6c196b66e9c
[ "MIT" ]
1
2021-09-21T08:08:44.000Z
2021-09-21T08:08:44.000Z
delsmm/smm.py
albernsrya/delsmm
11f2750356a7c7d8b196a67af747a9bc5f39b479
[ "MIT" ]
null
null
null
delsmm/smm.py
albernsrya/delsmm
11f2750356a7c7d8b196a67af747a9bc5f39b479
[ "MIT" ]
1
2021-07-02T13:23:32.000Z
2021-07-02T13:23:32.000Z
import torch from torch import nn from torch.autograd import grad from torch.autograd.functional import jacobian from scipy.optimize import root from ceem.dynamics import * from ceem.nn import LNMLP from ceem.utils import temp_require_grad from tqdm import tqdm from delsmm.lagsys import AbstractLagrangianSystem import delsmm.utils as utils class AbstractStructuredMechanicalModel(AbstractLagrangianSystem, nn.Module): def __init__(self, qdim, dt, hidden_sizes=[32]*3, method='midpoint'): """ Args: qdim (int): number of generalized coordinates dt (float): time-step netparams (dict): parameters of Lagrangian neural network method (str): integration method """ AbstractLagrangianSystem.__init__(self, qdim, dt, method) nn.Module.__init__(self) self._xdim = qdim self._udim = None self._ydim = qdim def kinetic_energy(self, q, v): mass_matrix = self._mass_matrix(q) kenergy = 0.5 * (v.unsqueeze(-2) @ (mass_matrix @ v.unsqueeze(-1))).squeeze(-1) return kenergy def potential_energy(self, q): pot = self._potential(q) return pot def ke_hessian(self, q, qdot, create_graph=True): """ Compute Hessian of kinetic energy wrt qdot Args: q (torch.tensor): (*, qdim) generalized coordinates qdot (torch.tensor): (*, qdim) generalized velocities create_graph (bool): create graph when computing Hessian Returns: HKEqdqd (torch.tensor): (*, qdim, qdim) kinetic energy Hessian values """ return self._mass_matrix(q) class StructuredMechanicalModel(AbstractStructuredMechanicalModel): def __init__(self, qdim, dt, hidden_sizes=[32]*3, method='midpoint'): super().__init__(qdim, dt, hidden_sizes=hidden_sizes, method=method) self._mass_matrix = CholeskyMMNet(qdim, hidden_sizes=hidden_sizes) self._potential = PotentialNet(qdim, hidden_sizes=hidden_sizes) class AltStructuredMechanicalModel(AbstractStructuredMechanicalModel): def __init__(self, qdim, dt, hidden_sizes=[32]*3, method='midpoint'): super().__init__(qdim, dt, hidden_sizes=hidden_sizes, method=method) self._mass_matrix = ConvexMMNet(qdim, hidden_sizes=hidden_sizes) self._potential = PotentialNet(qdim, hidden_sizes=hidden_sizes) class ForcedSMM(StructuredMechanicalModel): def __init__(self, qdim, dt, hidden_sizes=[32]*3, method='midpoint'): super().__init__(qdim, dt, hidden_sizes=hidden_sizes, method=method) self._generalized_force = GeneralizedForceNet(qdim, hidden_sizes=hidden_sizes) def generalized_forces(self, q, qdot): return self._generalized_force(q, qdot) class CholeskyMMNet(torch.nn.Module): def __init__(self, qdim, hidden_sizes=None, bias=1.0, pos_enforce=lambda x: x): self._qdim = qdim self._bias = bias self._pos_enforce = pos_enforce super().__init__() embed = SharedMMVEmbed(qdim, hidden_sizes) self.embed = embed self.out = torch.nn.Linear(hidden_sizes[-1], int(qdim * (qdim + 1) / 2)) def forward(self, q): dims = list(q.shape) dims += [dims[-1]] # [..., qdim, qdim] if self._qdim > 1: L_params = self.out(self.embed(q)) L_diag = self._pos_enforce(L_params[..., :self._qdim]) L_diag = L_diag + self._bias L_tril = L_params[..., self._qdim:] L = q.new_zeros(*dims) L = utils.bfill_lowertriangle(L, L_tril) L = utils.bfill_diagonal(L, L_diag) M = L @ L.transpose(-2, -1) else: M = self._pos_enforce((self.out(self.embed(q)) + self._bias).unsqueeze(-2)) return M class ConvexMMNet(torch.nn.Module): def __init__(self, qdim, hidden_sizes=None, bias=1.0, pos_enforce=lambda x: x): self._qdim = qdim self._bias = bias self._pos_enforce = pos_enforce super().__init__() embed = SharedMMVEmbed(qdim, hidden_sizes) self.embed = embed self.out = torch.nn.Linear(hidden_sizes[-1], int(qdim * (qdim + 1) / 2)) def forward(self, q): dims = list(q.shape) dims += [dims[-1]] # [..., qdim, qdim] if self._qdim > 1: L_params = self.out(self.embed(q)) L_diag = self._pos_enforce(L_params[..., :self._qdim]) L_diag += self._bias L_offdiag = L_params[..., self._qdim:] M = q.new_zeros(*dims) M = utils.bfill_lowertriangle(M, L_offdiag) M = utils.bfill_uppertriangle(M, L_offdiag) M = utils.bfill_diagonal(M, L_diag) else: M = self._pos_enforce((self.out(self.embed(q)) + self._bias).unsqueeze(-2)) return M class SharedMMVEmbed(torch.nn.Module): def __init__(self, qdim, hidden_sizes=[32]*3): self._qdim = qdim self._hidden_sizes = hidden_sizes super().__init__() self._lnet = LNMLP(qdim, hidden_sizes[:-1], hidden_sizes[-1], activation='tanh') def forward(self, q): embed = self._lnet(q) return embed class PotentialNet(torch.nn.Module): def __init__(self, qdim, hidden_sizes=[32]*2): self._qdim = qdim super().__init__() embed = SharedMMVEmbed(qdim, hidden_sizes) self.embed = embed self.out = torch.nn.Linear(hidden_sizes[-1], 1) def forward(self, q): return self.out(self.embed(q)) class GeneralizedForceNet(torch.nn.Module): def __init__(self, qdim, hidden_sizes=[32]*2): self._qdim = qdim super().__init__() embed = SharedMMVEmbed(2*qdim, hidden_sizes) self.embed = embed self.out = torch.nn.Linear(hidden_sizes[-1], qdim) def forward(self, q, v): inp = torch.cat([q,v], dim=-1) return self.out(self.embed(inp))
34.298851
88
0.630697
5,607
0.939511
0
0
0
0
0
0
698
0.116957
cbf7a1ce96364e36588a482e13d4799ada06f5db
16,642
py
Python
src/speech/deep_model.py
dem123456789/Speech-Emotion-Recognition-with-Dual-Sequence-LSTM-Architecture
a072cb940201bbcdb2d0f4d0dfa1dde478fa4464
[ "MIT" ]
6
2020-08-03T03:13:25.000Z
2022-02-11T08:32:10.000Z
src/speech/deep_model.py
dem123456789/Speech-Emotion-Recognition-with-Dual-Sequence-LSTM-Architecture
a072cb940201bbcdb2d0f4d0dfa1dde478fa4464
[ "MIT" ]
1
2020-09-08T16:10:38.000Z
2020-09-08T16:10:38.000Z
src/speech/deep_model.py
dem123456789/Speech-Emotion-Recognition-with-Dual-Sequence-LSTM-Architecture
a072cb940201bbcdb2d0f4d0dfa1dde478fa4464
[ "MIT" ]
2
2020-08-03T21:37:21.000Z
2021-03-26T02:19:17.000Z
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_packed_sequence import pdb import math torch.manual_seed(1) class GRUAudio(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(GRUAudio, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional self.gru = nn.GRU(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.classification = nn.Linear(self.hidden_dim * self.num_layers * self.num_directions, self.num_labels).to( self.device) # self.softmax = nn.Softmax() def forward(self, input, target, train=True, seq_length=False): input = input.to(self.device) target = target.to(self.device) hidden = torch.randn(self.num_layers * self.num_directions, self.batch_size, self.hidden_dim) hidden = hidden.to(self.device) out, hn = self.gru(input, hidden) # print(out, out.shape) # if train: # hn, _ = pad_packed_sequence(hn, batch_first=True) hn = hn.permute([1, 0, 2]) hn = hn.reshape(hn.shape[0], -1) # pdb.set_trace() out = self.classification(hn) # out = self.softmax(out) # pdb.set_trace() loss = F.cross_entropy(out, torch.max(target, 1)[1]) return out, loss class AttGRU(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(AttGRU, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional self.u = nn.Parameter(torch.zeros((self.num_directions * self.hidden_dim)), requires_grad=True) self.gru = nn.GRU(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.classification = nn.Linear(self.hidden_dim * self.num_directions, self.num_labels).to(self.device) def forward(self, input, target, train=True, seq_length=False): input = input.to(self.device) target = target.to(self.device) hidden = torch.zeros(self.num_layers * self.num_directions, self.batch_size, self.hidden_dim) hidden = hidden.to(self.device) out, hn = self.gru(input, hidden) out, _ = pad_packed_sequence(out, batch_first=True) mask = [] # pdb.set_trace() for i in range(len(seq_length)): mask.append([0] * int(seq_length[i].item()) + [1] * int(out.shape[1] - seq_length[i].item())) mask = torch.ByteTensor(mask) mask = mask.to(self.device) x = torch.matmul(out, self.u) x = x.masked_fill_(mask, -1e18) alpha = F.softmax(x, dim=1) input_linear = torch.sum(torch.matmul(alpha, out), dim=1) out = self.classification(input_linear) loss = F.cross_entropy(out, torch.max(target, 1)[1]) # print(self.u[10]) return out, loss class MeanPool(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(MeanPool, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional # self.u=nn.Parameter(torch.randn(self.num_directions*self.hidden_dim)).to(self.device) self.gru = nn.GRU(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.classification = nn.Linear(self.hidden_dim * self.num_directions, self.num_labels).to(self.device) def forward(self, input, target, train=True, seq_length=False): input = input.to(self.device) target = target.to(self.device) hidden = torch.zeros(self.num_layers * self.num_directions, self.batch_size, self.hidden_dim) hidden = hidden.to(self.device) out, hn = self.gru(input, hidden) out, _ = pad_packed_sequence(out, batch_first=True) out = torch.mean(out, dim=1) # pdb.set_trace() out = self.classification(out) loss = F.cross_entropy(out, torch.max(target, 1)[1]) return out, loss class LSTM_Audio(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(LSTM_Audio, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional # self.u=nn.Parameter(torch.randn(self.num_directions*self.hidden_dim)).to(self.device) self.lstm = nn.LSTM(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.classification = nn.Linear(self.hidden_dim * self.num_directions, self.num_labels).to(self.device) def forward(self, input, target, seq_length, train=True): input = input.to(self.device) target = target.to(self.device) #hidden = torch.zeros(self.num_layers * self.num_directions, self.batch_size, self.hidden_dim) #hidden = hidden.to(self.device) # pdb.set_trace() out, hn = self.lstm(input) out, _ = pad_packed_sequence(out, batch_first=True) out = torch.mean(out, dim=1) # pdb.set_trace() out = self.classification(out) loss = F.cross_entropy(out, torch.max(target, 1)[1]) return out, loss class ATT(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(ATT, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional self.attn = nn.Linear(self.hidden_dim * self.num_directions, hidden_dim) self.u=nn.Parameter(torch.randn(self.hidden_dim)) stdv = 1. / math.sqrt(self.u.shape[0]) self.u.data.normal_(mean=0, std=stdv) self.lstm = nn.LSTM(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.fc1 = nn.Linear(self.hidden_dim * self.num_directions, self.hidden_dim).to(self.device) self.batch1=nn.BatchNorm1d(self.hidden_dim) self.fc2=nn.Linear(self.hidden_dim,self.num_labels).to(self.device) self.batch2=nn.BatchNorm1d(self.num_labels) self.batchatt=nn.BatchNorm1d(self.hidden_dim * self.num_directions) def forward(self, input, target, seq_length, train=True): input = input.to(self.device) target = target.to(self.device) out, hn = self.lstm(input) out , _ =pad_packed_sequence(out,batch_first=True) mask=[] # pdb.set_trace() for i in range(len(seq_length)): mask.append([0]*int(seq_length[i].item())+[1]*int(out.shape[1]-seq_length[i].item())) mask=torch.ByteTensor(mask) mask=mask.to(self.device) out_att=torch.tanh(self.attn(out)) x=torch.matmul(out_att,self.u) x=x.masked_fill_(mask,-1e18) alpha=F.softmax(x,dim=1) input_linear=torch.sum(torch.matmul(alpha,out),dim=1) input_linear_normalized=self.batchatt(input_linear) out_1 = self.fc1(input_linear_normalized) out_1_normalized=self.batch1(out_1) out_2=self.fc2(out_1_normalized) out_2_normalized=self.batch2(out_2) loss = F.cross_entropy(out_2_normalized, torch.max(target, 1)[1]) # print(self.u[10]) return out_2, loss class Mean_Pool_2(nn.Module): def __init__(self, num_features, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(Mean_Pool_2, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_features = num_features self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional #self.attn = nn.Linear(self.hidden_dim * self.num_directions, hidden_dim) #self.u=nn.Parameter(torch.randn(self.hidden_dim)) #stdv = 1. / math.sqrt(self.u.shape[0]) #self.u.data.normal_(mean=0, std=stdv) self.lstm = nn.LSTM(self.num_features, self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.fc1 = nn.Linear(self.hidden_dim * self.num_directions, self.hidden_dim).to(self.device) self.batch1=nn.BatchNorm1d(self.hidden_dim) self.fc2=nn.Linear(self.hidden_dim,self.num_labels).to(self.device) self.batch2=nn.BatchNorm1d(self.num_labels) self.batchatt=nn.BatchNorm1d(self.hidden_dim * self.num_directions) def forward(self, input, target, seq_length, train=True): input = input.to(self.device) target = target.to(self.device) out, hn = self.lstm(input) out , _ =pad_packed_sequence(out,batch_first=True) x=torch.mean(out,dim=1) input_linear_normalized=self.batchatt(x) out_1 = self.fc1(input_linear_normalized) out_1_normalized=self.batch1(out_1) out_2=self.fc2(out_1_normalized) out_2_normalized=self.batch2(out_2) loss = F.cross_entropy(out_2_normalized, torch.max(target, 1)[1]) # print(self.u[10]) return out_2, loss class ConvLSTMCell(nn.Module): def __init__(self, input_channels, hidden_channels, kernel_size, kernel_size_pool=8, stride_pool=4): super(ConvLSTMCell, self).__init__() assert hidden_channels % 2 == 0 self.input_channels = input_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.stride=1 self.padding = int((kernel_size-1) / 2) self.kernel_size_pool=kernel_size_pool self.stride_pool=stride_pool self.Wxi = nn.Conv1d(self.input_channels, self.hidden_channels, self.kernel_size, self.stride,self.padding, bias=True) self.Whi = nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size, self.stride, self.padding, bias=False) self.Wxf = nn.Conv1d(self.input_channels, self.hidden_channels, self.kernel_size, self.stride,self.padding, bias=True) self.Whf = nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size, self.stride,self.padding, bias=False) self.Wxc = nn.Conv1d(self.input_channels, self.hidden_channels, self.kernel_size, self.stride, self.padding, bias=True) self.Whc = nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size, self.stride, self.padding, bias=False) self.Wxo = nn.Conv1d(self.input_channels, self.hidden_channels, self.kernel_size, self.stride,self.padding, bias=True) self.Who = nn.Conv1d(self.hidden_channels, self.hidden_channels, self.kernel_size, self.stride, self.padding, bias=False) self.max_pool = nn.MaxPool1d(self.kernel_size_pool, stride=self.stride_pool) self.batch = nn.BatchNorm1d(self.hidden_channels) self.Wci = None self.Wcf = None self.Wco = None def forward(self, x, h, c): ci = torch.sigmoid(self.Wxi(x) + self.Whi(h) + c * self.Wci) cf = torch.sigmoid(self.Wxf(x) + self.Whf(h) + c * self.Wcf) cc = cf * c + ci * torch.tanh(self.Wxc(x) + self.Whc(h)) co = torch.sigmoid(self.Wxo(x) + self.Who(h) + cc * self.Wco) ch = co * torch.tanh(cc) ch_pool=self.batch(self.max_pool(ch)) return ch_pool, ch, cc def init_hidden(self, batch_size, hidden, shape): if self.Wci is None: self.Wci = nn.Parameter(torch.zeros(1, hidden, shape)).cuda() self.Wcf = nn.Parameter(torch.zeros(1, hidden, shape)).cuda() self.Wco = nn.Parameter(torch.zeros(1, hidden, shape)).cuda() return (nn.Parameter(torch.zeros(batch_size, hidden, shape)).cuda(), nn.Parameter(torch.zeros(batch_size, hidden, shape)).cuda()) class ConvLSTM(nn.Module): # input_channels corresponds to the first input feature map # hidden state is a list of succeeding lstm layers. # kernel size is also a list, same length as hidden_channels def __init__(self, input_channels, hidden_channels, kernel_size, step): super(ConvLSTM, self).__init__() assert len(hidden_channels)==len(kernel_size), "size mismatch" self.input_channels = [input_channels] + hidden_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.num_layers = len(hidden_channels) self.step = step self._all_layers = [] self.num_labels=4 self.linear_dim=16*18 self.device= torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.classification = nn.Linear(self.linear_dim, self.num_labels) for i in range(self.num_layers): name = 'cell{}'.format(i) cell = ConvLSTMCell(self.input_channels[i], self.hidden_channels[i], self.kernel_size[i]) setattr(self, name, cell) self._all_layers.append(cell) def forward(self, input, target): # input should be a list of inputs, like a time stamp, maybe 1280 for 100 times. internal_state = [] outputs = [] for step in range(self.step): x = input[step] for i in range(self.num_layers): name = 'cell{}'.format(i) if step == 0: bsize, _, shape = x.size() (h, c) = getattr(self, name).init_hidden(batch_size=bsize, hidden=self.hidden_channels[i], shape=shape) internal_state.append((h, c)) # do forward (h, c) = internal_state[i] x, new_h, new_c = getattr(self, name)(x, h, c) internal_state[i] = (new_h, new_c) outputs.append(x) ## mean pooling and loss function out=[torch.unsqueeze(o, dim=3) for o in outputs] out=torch.flatten(torch.mean(torch.cat(out,dim=3),dim=3),start_dim=1) out = self.classification(out) loss = F.cross_entropy(out, torch.max(target, 1)[1].to(self.device)) return torch.unsqueeze(out,dim=0), torch.unsqueeze(loss, dim=0)
42.671795
175
0.651785
16,450
0.988463
0
0
0
0
0
0
1,313
0.078897
cbf8a1ef0f33878d804eb957ddcbefc421928a1b
40
py
Python
problem/01000~09999/09498/9498.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
1
2019-04-19T16:37:44.000Z
2019-04-19T16:37:44.000Z
problem/01000~09999/09498/9498.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
1
2019-04-20T11:42:44.000Z
2019-04-20T11:42:44.000Z
problem/01000~09999/09498/9498.py3.py
njw1204/BOJ-AC
1de41685725ae4657a7ff94e413febd97a888567
[ "MIT" ]
3
2019-04-19T16:37:47.000Z
2021-10-25T00:45:00.000Z
print(("F"*6+"DCBAA")[int(input())//10])
40
40
0.55
0
0
0
0
0
0
0
0
10
0.25
cbf9013b2e9891516c04252ba24b05ce5ea2d134
2,596
py
Python
tests/netcdf_engine/test_utils.py
TileDB-Inc/TileDB-CF-Py
9aab0fe9ba7346a1846c7458a5d08b123dcf90a8
[ "MIT" ]
12
2021-06-07T16:51:32.000Z
2022-03-10T12:48:00.000Z
tests/netcdf_engine/test_utils.py
TileDB-Inc/TileDB-CF-Py
9aab0fe9ba7346a1846c7458a5d08b123dcf90a8
[ "MIT" ]
72
2021-04-28T21:49:41.000Z
2022-02-24T13:58:11.000Z
tests/netcdf_engine/test_utils.py
TileDB-Inc/TileDB-CF-Py
9aab0fe9ba7346a1846c7458a5d08b123dcf90a8
[ "MIT" ]
3
2021-08-11T16:33:37.000Z
2021-12-01T20:31:12.000Z
# Copyright 2021 TileDB Inc. # Licensed under the MIT License. import numpy as np import pytest from tiledb.cf.netcdf_engine._utils import get_netcdf_metadata, get_unpacked_dtype netCDF4 = pytest.importorskip("netCDF4") @pytest.mark.parametrize( "input_dtype,scale_factor,add_offset,output_dtype", ( (np.int16, None, None, np.int16), (np.int16, np.float32(1), None, np.float32), (np.int16, None, np.float32(1), np.float32), (np.int16, np.float64(1), np.float32(1), np.float64), ), ) def test_unpacked_dtype(input_dtype, scale_factor, add_offset, output_dtype): """Tests computing the unpacked data type for a NetCDF variable.""" with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset: dataset.createDimension("t", None) variable = dataset.createVariable("x", dimensions=("t",), datatype=input_dtype) if scale_factor is not None: variable.setncattr("scale_factor", scale_factor) if add_offset is not None: variable.setncattr("add_offset", add_offset) dtype = get_unpacked_dtype(variable) assert dtype == output_dtype def test_unpacked_dtype_unsupported_dtype_error(): """Tests attempting to unpack a NetCDF variable with a data type that does not support packing/unpacking.""" with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset: variable = dataset.createVariable("x", dimensions=tuple(), datatype="S1") with pytest.raises(ValueError): get_unpacked_dtype(variable) @pytest.mark.parametrize( "value, expected_result", ( (np.float64(1), np.float64(1)), (np.array((1), dtype=np.float64), np.float64(1)), (np.array([1], dtype=np.int32), np.int32(1)), ), ) def test_get_netcdf_metadata_number(value, expected_result): """Tests computing the unpacked data type for a NetCDF variable.""" key = "name" with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset: dataset.setncattr(key, value) result = get_netcdf_metadata(dataset, key, is_number=True) assert result == expected_result @pytest.mark.parametrize("value", (("",), (1, 2))) def test_get_netcdf_metadata_number_with_warning(value): """Tests computing the unpacked data type for a NetCDF variable.""" key = "name" with netCDF4.Dataset("tmp.nc", diskless=True, mode="w") as dataset: dataset.setncattr(key, value) with pytest.warns(Warning): result = get_netcdf_metadata(dataset, key, is_number=True) assert result is None
38.176471
87
0.678737
0
0
0
0
1,960
0.755008
0
0
564
0.217257
cbf916118eb5c3081ccd1fe9c5e35846ce4dd6b9
9,091
py
Python
bib2mp3.py
ewquon/bib2mp3
6917f5223de7d2ae1ed9857c445015a05e64936c
[ "MIT" ]
null
null
null
bib2mp3.py
ewquon/bib2mp3
6917f5223de7d2ae1ed9857c445015a05e64936c
[ "MIT" ]
null
null
null
bib2mp3.py
ewquon/bib2mp3
6917f5223de7d2ae1ed9857c445015a05e64936c
[ "MIT" ]
null
null
null
#!/usr/bin/env python import os import numpy as np import html from bs4 import BeautifulSoup import bibtexparser from bibtexparser.bparser import BibTexParser from bibtexparser.customization import convert_to_unicode import eyed3 from tokenizer import MyTokenizer # acronyms to spell out acronyms = [ 'LES', 'ALM', 'MYNN', ] spelled_out_form = ['-'.join(list(acronym)) for acronym in acronyms] class BibtexLibrary(object): """Class that processes bibtex file""" def __init__(self, bibfile, mp3dir=os.path.join(os.environ['HOME'], 'Music','Article Abstracts') ): parser = BibTexParser(common_strings=True) parser.customization = convert_to_unicode self.bibname = os.path.split(bibfile)[1] with open(bibfile) as bib: bibdata = bibtexparser.load(bib, parser=parser) self.lib = bibdata.entries self.mp3dir = mp3dir os.makedirs(mp3dir,exist_ok=True) self._process_bib_data() def _process_bib_data(self): self.keys = [article['ID'] for article in self.lib] assert len(self.keys) == len(set(self.keys)),\ 'article keys are not unique!' self._process_bib_authors() self._process_bib_titles() self._process_bib_dates() self._process_bib_pubnames() self._process_bib_keywords() self._process_bib_abstracts() def _clean_text(self,s): s = s.replace('{','').replace('}','') s = s.replace('~','') s = s.replace('$\\','').replace('$','') # get rid of HTML tags s = BeautifulSoup(html.unescape(s),'html.parser').text # spell out common acronyms for acronym,spelledout in zip(acronyms,spelled_out_form): s = s.replace(acronym,spelledout) return s def _process_bib_authors(self): self.author = {} for key,article in zip(self.keys,self.lib): authorstr = self._clean_text(article['author']) #print(key,authorstr) authorlist = [ author.strip().replace('.','') for author in authorstr.split(' and ') ] #print(key,authorlist) authorlist_firstlast = [] for author in authorlist: # if "lastname, first", split by comma and reverse firstlast = [s.strip() for s in author.split(',')] assert (len(firstlast) <= 2) # should be 2 or 1 firstlast = ' '.join(firstlast[::-1]) authorlist_firstlast.append(firstlast) #print(key,authorlist_firstlast) if len(authorlist_firstlast) == 1: authorstr = authorlist_firstlast[0] elif len(authorlist_firstlast) == 2: authorstr = '{:s} and {:s}'.format(*authorlist_firstlast) elif len(authorlist_firstlast) == 3: authorstr = '{:s}, {:s}, and {:s}'.format(*authorlist_firstlast) else: authorstr = '{:s} et al'.format(authorlist_firstlast[0]) #print(key,authorstr) self.author[key] = authorstr def _process_bib_titles(self): self.title = {} for key,article in zip(self.keys,self.lib): self.title[key] = self._clean_text(article['title']) def _process_bib_dates(self): self.year = {} self.date = {} for key,article in zip(self.keys,self.lib): year = article.get('year',None) if year is None: self.date[key] = None else: self.year[key] = year self.date[key] = year month = article.get('month',None) if month is not None: self.date[key] = '{:s} {:s}'.format(month,year) num_missing_dates = np.count_nonzero( [(d is None) for _,d in self.date.items()] ) if num_missing_dates > 0: print('Note:', num_missing_dates,'/',len(self.lib), 'articles are missing dates') def _process_bib_pubnames(self): self.publication = {} for key,article in zip(self.keys,self.lib): if article['ENTRYTYPE'] == 'article': name = article['journal'] else: name = article.get('booktitle',None) if name is not None: name = self._clean_text(name) self.publication[key] = name num_missing_pubnames = np.count_nonzero( [(n is None) for _,n in self.publication.items()] ) if num_missing_pubnames > 0: print('Note:', num_missing_pubnames,'/',len(self.lib), 'articles are missing publication names') def _process_bib_keywords(self): self.keywords = {} for key,article in zip(self.keys,self.lib): kw = article.get('keywords',None) if kw is not None: kw = self._clean_text(kw) self.keywords[key] = kw num_missing_keywords = np.count_nonzero( [(kw is None) for _,kw in self.keywords.items()] ) if num_missing_keywords > 0: print('Note:', num_missing_keywords,'/',len(self.lib), 'articles are missing keywords') def _process_bib_abstracts(self): self.abstract = {} for key,article in zip(self.keys,self.lib): ab = article.get('abstract',None) if ab is not None: ab = self._clean_text(ab) self.abstract[key] = ab num_missing_abstracts = np.count_nonzero( [(ab is None) for _,ab in self.abstract.items()] ) if num_missing_abstracts > 0: print('Note:', num_missing_abstracts,'/',len(self.lib), 'articles are missing abstracts') def generate_descriptions(self): self.description = {} # minimal information: author, title for key in self.keys: if self.date[key]: desc = 'In {:s}, '.format(self.date[key]) else: desc = '' desc += '{:s} published a paper entitled: {:s}.'.format( self.author[key], self.title[key]) if self.publication[key]: desc += ' This was published in {:s}.'.format(self.publication[key]) if self.keywords[key]: desc += ' Publication keywords include: ' kwlist = [kw.strip() for kw in self.keywords[key].split(',')] if kwlist == 1: kwstr = kwlist[0] elif kwlist == 2: kwstr = '{:s} and {:s}'.format(*kwlist) else: kwlist[-1] = 'and '+kwlist[-1] kwstr = ', '.join(kwlist) desc += kwstr + '.' if self.abstract[key]: desc += ' The abstract reads: ' + self.abstract[key] else: desc += ' There is no abstract available.' desc += ' This concludes the summary of the work' \ + ' by {:s}.'.format(self.author[key]) self.description[key] = desc def to_mp3(self,key=None,overwrite=False,language='en-GB',debug=False): from gtts import gTTS if key is None: keylist = self.keys elif isinstance(key,str): keylist = [key] else: assert isinstance(key,list) keylist = key tokefunc = lambda text: MyTokenizer(text,debug=debug) for key in keylist: mp3file = os.path.join(self.mp3dir,'{:s}.mp3'.format(key)) overwriting = False if os.path.isfile(mp3file): if overwrite: overwriting = True else: print('File exists, skipping',key) continue assert hasattr(self,'description'), \ 'Need to run generate_descriptions' tts = gTTS(text=self.description[key], lang=language, slow=False, tokenizer_func=tokefunc) if overwriting: print('Overwriting',mp3file) else: print('Writing',mp3file) tts.save(mp3file) # add metadata mp3 = eyed3.load(mp3file) mp3.initTag() mp3.tag.artist = self.author[key] mp3.tag.title = self.title[key] mp3.tag.album = self.bibname mp3.tag.album_artist = 'bib2mp3.py' mp3.tag.save() if debug: print(key,':',self.description[key]) #============================================================================== if __name__ == '__main__': import sys if len(sys.argv) <= 1: sys.exit('Specify bib file') bib = BibtexLibrary(sys.argv[1]) bib.generate_descriptions() bib.to_mp3()
36.657258
84
0.527995
8,403
0.924321
0
0
0
0
0
0
1,295
0.142449
cbf92713179f71318935e2ab443c7a93e35ceec1
529
py
Python
build/create_tag_body.py
Nexusforge/Nexus.Extensions.RpcDataSource
e379243a1aca38c03e882759964d8bc008a7c8bd
[ "MIT" ]
null
null
null
build/create_tag_body.py
Nexusforge/Nexus.Extensions.RpcDataSource
e379243a1aca38c03e882759964d8bc008a7c8bd
[ "MIT" ]
null
null
null
build/create_tag_body.py
Nexusforge/Nexus.Extensions.RpcDataSource
e379243a1aca38c03e882759964d8bc008a7c8bd
[ "MIT" ]
null
null
null
import os import re import subprocess tag = os.getenv('GITHUB_REF_NAME') if tag is None: raise Exception("GITHUB_REF_NAME is not defined") with open("tag_body.txt", "w") as file: output = subprocess.check_output(["git", "tag", "-l", "--format='%(contents)'", tag], stdin=None, stderr=None, shell=False) match = re.search("'(.*)'", output.decode("utf8"), re.DOTALL) if match is None: raise Exception("Unable to extract the tag body") tag_body = str(match.groups(1)[0]) file.write(tag_body)
24.045455
127
0.655955
0
0
0
0
0
0
0
0
150
0.283554
cbf954558d8ce8ef179a3032c8e9bbe1051befb6
3,456
py
Python
amos/django_orchestrator/api/views.py
amosproj/2020ws02-computer-vision-for-sights
66641de397af77f16ee36aa9e860ca7249982cb1
[ "MIT" ]
2
2021-02-03T23:25:14.000Z
2021-03-18T15:03:12.000Z
amos/django_orchestrator/api/views.py
amosproj/2020ws02-computer-vision-for-sights
66641de397af77f16ee36aa9e860ca7249982cb1
[ "MIT" ]
2
2021-02-03T22:35:12.000Z
2021-02-12T14:09:31.000Z
amos/django_orchestrator/api/views.py
amosproj/2020ws02-computer-vision-for-sights
66641de397af77f16ee36aa9e860ca7249982cb1
[ "MIT" ]
1
2021-03-18T15:03:14.000Z
2021-03-18T15:03:14.000Z
"""This module contains the views exposed to the user.""" from django.http import HttpResponse from rest_framework.decorators import api_view from rest_framework.request import Request from api.view_handlers import ( handle_get_trained_city_model, handle_persist_sight_image, handle_add_new_city, handle_get_supported_cities, HTTP_200_MESSAGE, handle_get_latest_city_model_version, ) @api_view(["GET"]) def get_trained_city_model(request: Request, city: str) -> HttpResponse: """Returns a trained city model as a .pt file. Parameters ---------- request: Request Request object. city: str Name of the city. Returns ------- response: HttpResponse Response object containing the trained model as a .pt file. """ response = handle_get_trained_city_model(city.replace(' ', '_')) return HttpResponse(response[0], status=response[1]) @api_view(["GET"]) def get_latest_city_model_version(request: Request, city: str) -> HttpResponse: """Returns the latest version of the persisted city model. Parameters ---------- request: Request Request object. city: str Name of the city. Returns ------- response: HttpResponse Response object containing the latest model version. """ response = handle_get_latest_city_model_version(city.replace(' ', '_')) return HttpResponse(response[0], status=response[1]) @api_view(["POST"]) def persist_sight_image(request: Request, city: str) -> HttpResponse: """Persists an image of a given supported city in the data warehouse. Parameters ---------- request: Request Request object. city: str Name of the city. Returns ------- response: HttpResponse Response object containing a status message. """ image = request.FILES["image"] if "image" in request.FILES else None response = handle_persist_sight_image(city.replace(' ', '_'), image) return HttpResponse(response[0], status=response[1]) @api_view(["POST"]) def add_new_city(request: Request, city: str) -> HttpResponse: """Adds a new city to the internally managed list of supported cities. Parameters ---------- request: Request Request object. city: str Name of the city to add. Returns ------- response: HttpResponse Response object containing a default 200 HTTP message. """ response = handle_add_new_city(city.replace(' ', '_')) return HttpResponse(response[0], status=response[1]) @api_view(["GET"]) def get_supported_cities(request: Request) -> HttpResponse: """Returns a list containing the currently supported cities. Parameters ---------- request: Request Request object. Returns ------- response: HttpResponse Response object containing the list of supported cities. """ response_content = handle_get_supported_cities() return HttpResponse(response_content[0], status=response_content[1]) @api_view(["GET"]) def get_index(request): """Returns a default 200 HTTP code. Parameters ---------- request: Request Request object. Returns ------- response: HttpResponse Response object containing a default 200 status code. Notes ----- This endpoint is only provided as a best practice. """ return HttpResponse(HTTP_200_MESSAGE, 200)
25.984962
79
0.664063
0
0
0
0
3,030
0.876736
0
0
1,896
0.548611
cbf9db657ca3437e042cc26606350dba666d7720
1,154
py
Python
samples/verify.py
ssmbct-netops/CyberSaucier
58e965e7b37ad74563319cd6b2b5c68da2dbd6c3
[ "MIT" ]
17
2019-02-01T06:46:52.000Z
2021-12-28T06:33:07.000Z
samples/verify.py
Melon-Tropics/CyberSaucier
780fb3df8518a41ed2d14b9a4b33f5ae520c15d4
[ "MIT" ]
9
2020-05-01T00:36:24.000Z
2022-03-29T17:04:21.000Z
samples/verify.py
Melon-Tropics/CyberSaucier
780fb3df8518a41ed2d14b9a4b33f5ae520c15d4
[ "MIT" ]
4
2019-10-20T03:22:34.000Z
2022-02-07T18:27:04.000Z
import requests, json, argparse, os from termcolor import colored parser = argparse.ArgumentParser(description="Verify the recipes by running them through CyberSaucier") parser.add_argument('--rulefolder', help='Folder containing the json recipes') parser.add_argument("--url", help="URL to CyberSaucier", default="http://localhost:7000") args = parser.parse_args() for root, dirs, files in os.walk(args.rulefolder): path = root.split(os.sep) for fname in files: if fname.lower().endswith("json"): file = os.path.join(root, fname) with open(file, 'r') as f: data=f.read() rule = json.loads(data) if "verify" in rule: u = args.url + "/" + rule["name"] resp = requests.post(url=u, data=rule["verify"]["originalInput"], headers={'Content-Type':'text/plain'}) resp = resp.json() if resp["result"] == rule["verify"]["expectedOutput"]: print(colored(rule["name"] + " : PASS", "green")) else: print(colored(rule["name"] + " : FAIL", "red"))
42.740741
120
0.57279
0
0
0
0
0
0
0
0
307
0.266031
cbfa1107b8b7c29048f818cde663861f0e4ac256
761
py
Python
tests/test_binary_tree.py
avere001/dsplot
89948c2f1b16e00bb3a240f73d0cb100b3eac847
[ "MIT" ]
8
2021-08-08T06:06:39.000Z
2022-02-04T18:30:38.000Z
tests/test_binary_tree.py
avere001/dsplot
89948c2f1b16e00bb3a240f73d0cb100b3eac847
[ "MIT" ]
1
2022-01-04T02:01:36.000Z
2022-01-04T02:01:36.000Z
tests/test_binary_tree.py
avere001/dsplot
89948c2f1b16e00bb3a240f73d0cb100b3eac847
[ "MIT" ]
2
2021-08-18T12:28:40.000Z
2022-01-03T23:56:41.000Z
import os import pytest from dsplot.errors import InputException from dsplot.tree import BinaryTree def test_binary_tree(): tree = BinaryTree(nodes=[5, 4, 8, 11, None, 13, 4, 7, 2, None, None, 5, 1]) assert tree.root.val == 5 assert tree.root.right.left.val == 13 assert tree.root.right.right.left.val == 5 assert tree.preorder() == [5, 4, 11, 7, 2, 8, 13, 4, 5, 1] assert tree.inorder() == [7, 11, 2, 4, 5, 13, 8, 5, 4, 1] assert tree.postorder() == [7, 2, 11, 4, 13, 5, 1, 4, 8, 5] tree.plot('tests/test_data/tree.png') assert 'tree.png' in os.listdir('tests/test_data') with pytest.raises(InputException) as e: BinaryTree(nodes=[]) assert str(e.value) == 'Input list must have at least 1 element.'
29.269231
79
0.628121
0
0
0
0
0
0
0
0
95
0.124836