hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
248
max_stars_repo_name
stringlengths
5
125
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
248
max_issues_repo_name
stringlengths
5
125
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
248
max_forks_repo_name
stringlengths
5
125
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
5
2.06M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.03M
alphanum_fraction
float64
0
1
count_classes
int64
0
1.6M
score_classes
float64
0
1
count_generators
int64
0
651k
score_generators
float64
0
1
count_decorators
int64
0
990k
score_decorators
float64
0
1
count_async_functions
int64
0
235k
score_async_functions
float64
0
1
count_documentation
int64
0
1.04M
score_documentation
float64
0
1
ac844765c4ce5c32dfa9aa2da4c0094d7fbd95aa
154
py
Python
convert.py
Resist4263/span-aste-1
13815a262638592506b445315d03df8db965947b
[ "Apache-2.0" ]
null
null
null
convert.py
Resist4263/span-aste-1
13815a262638592506b445315d03df8db965947b
[ "Apache-2.0" ]
null
null
null
convert.py
Resist4263/span-aste-1
13815a262638592506b445315d03df8db965947b
[ "Apache-2.0" ]
null
null
null
from gensim.scripts.glove2word2vec import glove2word2vec (count, dimensions) = glove2word2vec("dataset/glove.42B.300d.txt", "dataset/cropus/42B_w2v.txt")
51.333333
96
0.811688
0
0
0
0
0
0
0
0
56
0.363636
ac854af38b11787c1689126c56bfc2405c99c2c4
4,970
py
Python
src/pcbLibraryManager/libraries/librarySwitches.py
NiceCircuits/pcbLibraryManager
df83f24b5a558e0f7f72629d9ef7c82fcb9e6718
[ "CC0-1.0" ]
null
null
null
src/pcbLibraryManager/libraries/librarySwitches.py
NiceCircuits/pcbLibraryManager
df83f24b5a558e0f7f72629d9ef7c82fcb9e6718
[ "CC0-1.0" ]
1
2016-04-16T08:16:36.000Z
2016-04-16T08:16:36.000Z
src/pcbLibraryManager/libraries/librarySwitches.py
NiceCircuits/pcbLibraryManager
df83f24b5a558e0f7f72629d9ef7c82fcb9e6718
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Jul 19 22:17:33 2015 @author: piotr at nicecircuits.com """ from libraryManager.library import libraryClass from footprints.footprintSmdDualRow import footprintSmdDualRow from libraryManager.part import part from libraryManager.symbol import symbol from libraryManager.symbolPrimitive import * from libraryManager.footprintPrimitive import * from libraryManager.defaults import defaults from libraryManager.generateLibraries import generateLibraries class librarySwitches(libraryClass): """ """ def __init__(self): super().__init__("niceSwitches") for v in ["H","V"]: for h in [4.3, 5, 7, 9.5, 13, 19]: self.parts.append(partMicroswitchSmt(h,v)) self.parts.append(partMicroswitchSmt6x4(v)) class partMicroswitchSmt(part): """ Default SMT microswitch """ def __init__(self, height, variant="H"): variantStr = "_V" if variant=="V" else "" name = "MicroswitchSmt-%1.1f%s" % (height, variantStr) super().__init__(name, defaults.switchRefDes) self.symbols.append(symbolButton(variant=variant)) for density in ["N", "L", "M"]: self.footprints.append(footprintMicroswitchSmt(density, height)) class partMicroswitchSmt6x4(part): """ SMT microswitch 6x4mm """ def __init__(self,variant="H"): variantStr = "_V" if variant=="V" else "" name = "MicroswitchSmt6x4%s" % variantStr super().__init__(name, defaults.switchRefDes) self.symbols.append(symbolButton(variant=variant)) for density in ["N", "L", "M"]: self.footprints.append(footprintMicroswitchSmt6x4(density)) class symbolButton(symbol): """Button symbol """ def __init__(self, name="button", refDes=defaults.switchRefDes, showPinNames=False,\ showPinNumbers=False, pinNumbers=[1,2], variant="H"): super().__init__(name, refDes, showPinNames, showPinNumbers) for i in range(2): self.pins.append(symbolPin(i+1, pinNumbers[i], [200 if i else -200,0],\ 100, pinType.passive, rotation=180 if i else 0)) self.primitives.append(symbolCircle(defaults.symbolLineWidth,\ [75 if i else -75, 0], 25)) self.primitives.append(symbolLine(defaults.symbolThickLineWidth,\ -100, 50, 100, 50)) self.primitives.append(symbolRectangle(0, -25, 50, 25, 75,\ filled=fillType.foreground)) if variant=="H": self.nameObject.position=[0, 120] self.valueObject.position=[0, -80] elif variant=="V": self.movePrimitives([0,0],90) self.nameObject.position=[50, 50] self.nameObject.align=textAlign.centerLeft self.valueObject.position=[50, -50] self.valueObject.align=textAlign.centerLeft else: raise ValueError("unsupported variant %s" % variant) class footprintMicroswitchSmt(footprintSmdDualRow): """Default SMT microswitch """ def __init__(self, density, height=4.3, name="", alternativeLibName="niceSwitches"): """ density: "L" - least, "N" - nominal, "M" - most """ if not name: name="MicroswitchSmd-%1.1f_%s" % (height, density) # pads padSizes={"L":[1.3,2], "N":[1.3,2], "M":[1.4,2.5]} padSpan={"L":8.5, "N":8.5, "M":9} super().__init__(name, alternativeLibName,\ pinCount= 4,\ pitch=4.5,\ padSpan=padSpan[density],\ padDimensions=padSizes[density],\ bodyDimensions=[6.2, 6.2, 3.6],\ originMarkSize=defaults.originMarkSize, leadDimensions=[1.9, 0.7, 1],\ court=defaults.court[density],\ firstPinMarker=False) self.addCylinder3Dbody([0,0,0], [3.5,3.5,height]) self.renamePads([1,2,2,1]) class footprintMicroswitchSmt6x4(footprintSmdDualRow): """ SMT microswitch 6x4mm """ def __init__(self, density, name="", alternativeLibName="niceSwitches"): """ density: "L" - least, "N" - nominal, "M" - most """ if not name: name="MicroswitchSmd6x4_%s" % ( density) # pads padSizes={"L":[1.2,1.3], "N":[1.4,1.5], "M":[1.6,1.7]} padSpan={"L":7.7, "N":7.8, "M":7.9} super().__init__(name, alternativeLibName,\ pinCount= 2,\ pitch=4.5,\ padSpan=padSpan[density],\ padDimensions=padSizes[density],\ bodyDimensions=[3.9,6.3,2],\ originMarkSize=defaults.originMarkSize, leadDimensions=[1, 0.6, 1],\ court=defaults.court[density],\ firstPinMarker=False) self.addSimple3Dbody([0,0,0], [1.2,2.6,2.5],file="cube_metal") if __name__ == "__main__": generateLibraries([librarySwitches()])
38.230769
88
0.597988
4,348
0.874849
0
0
0
0
0
0
723
0.145473
ac85b889248a7fe66df90411b1896a2b3cc25961
131
py
Python
Codeforces/problems/0799/A/799A.py
object-oriented-human/competitive
9e761020e887d8980a39a64eeaeaa39af0ecd777
[ "MIT" ]
2
2021-07-27T10:46:47.000Z
2021-07-27T10:47:57.000Z
Codeforces/problems/0799/A/799A.py
foooop/competitive
9e761020e887d8980a39a64eeaeaa39af0ecd777
[ "MIT" ]
null
null
null
Codeforces/problems/0799/A/799A.py
foooop/competitive
9e761020e887d8980a39a64eeaeaa39af0ecd777
[ "MIT" ]
null
null
null
import math n, t, k, d = map(int, input().split()) x = math.ceil(n/k) * t if (d + t) < x: print("YES") else: print("NO")
13.1
38
0.503817
0
0
0
0
0
0
0
0
9
0.068702
ac8615af3d9f334ab252cb1f100f3ad3f649766c
3,159
py
Python
model.py
ganeshpc/flower-classification
aa836389f04b40a4368d4c1bf2c13cc44ee51af1
[ "MIT" ]
null
null
null
model.py
ganeshpc/flower-classification
aa836389f04b40a4368d4c1bf2c13cc44ee51af1
[ "MIT" ]
null
null
null
model.py
ganeshpc/flower-classification
aa836389f04b40a4368d4c1bf2c13cc44ee51af1
[ "MIT" ]
null
null
null
import keras from keras import layers from keras.layers import Dropout, Dense from keras.preprocessing.image import ImageDataGenerator import numpy as np import tensorflow_hub as hub import cv2 import pandas as p IMAGE_SHAPE = (224, 224) #(HEIGHT, WIDTH) TRAINING_DATA_DIRECTORY = '/content/drive/My Drive/Colab Notebooks/FlowerClassification/data/TrainingData' datagen_kwargs = dict(rescale=1./255, validation_split=.2) def get_validation_generator(): validation_datagen = ImageDataGenerator(**datagen_kwargs) validation_generator = validation_datagen.flow_from_directory( TRAINING_DATA_DIRECTORY, subset='validation', shuffle=True, target_size=IMAGE_SHAPE ) return validation_generator def get_training_generator(): training_datagen = ImageDataGenerator(**datagen_kwargs) training_generator = training_datagen.flow_from_directory( TRAINING_DATA_DIRECTORY, subset='training', shuffle=True, target_size=IMAGE_SHAPE ) return training_generator def get_mobile_net_model(): model = keras.Sequential() model.add(hub.KerasLayer( 'https://tfhub.dev/google/tf2-preview/mobilenet_v2/feature_vector/4', output_shape=[1280], trainable=False) ) model.add(Dropout(0.4)) model.add(Dense(training_generator.num_classes, activation='softmax')) model.build([None, 224, 224, 3]) model.summary() return model def train_model(model, training_generator=None, validation_generator=None): if (training_generator == None): training_generator = get_training_generator() if (validation_generator == None): validation_generator = get_validation_generator() optimizer = keras.optimizers.Adam(lr=1e-3) model.compile( optimizer=optimizer, loss='categorical_crossentropy', metrics=['acc'] ) steps_per_epoch = np.ceil( training_generator.samples / training_generator.batch_size ) validation_steps_per_epoch = np.ceil( validation_generator.samples / validation_generator.batch_size ) hist = model.fit( training_generator, epochs=20, verbose=1, steps_per_epoch=steps_per_epoch, validation_data=validation_generator, validation_steps=validation_steps_per_epoch ).history print('model trained') model.save('/content/drive/My Drive/Colab Notebooks/FlowerClassification/model_100_epochs.h5') print('model saved') #converting history.history dictionary to pandas dataframe hist_df = pd.DataFrame(history.history) # save to json hist_json_file = 'history_100_epochs.json' with open(hist_json_file, mode='w') as f: hist_df.to_json(f) return model def evaluate_model(model): final_loss, final_accuracy = model.evaluate(validation_generator, steps = validation_steps_per_epoch) print("Final Loss: ", final_loss) print("Final accuracy: ", final_accuracy * 100) if __name__ == '__main__': model = get_mobile_net_model() model = train_model(model) evaluate_model(model)
24.679688
106
0.709085
0
0
0
0
0
0
0
0
478
0.151314
ac86900c935920ddf1e7d5f2d9ab4b10680baaec
12,421
py
Python
psg_utils/io/header/header_standardizers.py
perslev/sleep-utils
9f9edf67f4cac6d8361243b4153bfe6351314844
[ "MIT" ]
1
2022-03-17T10:37:17.000Z
2022-03-17T10:37:17.000Z
psg_utils/io/header/header_standardizers.py
perslev/sleep-utils
9f9edf67f4cac6d8361243b4153bfe6351314844
[ "MIT" ]
null
null
null
psg_utils/io/header/header_standardizers.py
perslev/sleep-utils
9f9edf67f4cac6d8361243b4153bfe6351314844
[ "MIT" ]
null
null
null
""" A set of functions for extracting header information from PSG objects Typically only used internally in from unet.io.header.header_extractors Each function takes some PSG or header-like object and returns a dictionary with at least the following keys: { 'n_channels': int, 'channel_names': list of strings, 'sample_rate': int 'date': datetime or None 'length': int } Note: length gives the number of samples, divide by sample_rate to get length_sec """ import logging import warnings import numpy as np import h5py from datetime import datetime from psg_utils.errors import (MissingHeaderFieldError, HeaderFieldTypeError, LengthZeroSignalError, H5VariableAttributesError, VariableSampleRateError, FloatSampleRateWarning) logger = logging.getLogger(__name__) def _assert_header(header): """ Checks that a standardized header: 1) contains the right field names 2) each value has an expected type 3) the 'length' value is greater than 0 Args: header: dict Returns: dict """ field_requirements = [ ("n_channels", [int]), ("channel_names", [list]), ("sample_rate", [int]), ("date", [datetime, type(None)]), ("length", [int]) ] for field, valid_types in field_requirements: if field not in header: raise MissingHeaderFieldError(f"Missing value '{field}' from header '{header}'. " "This could be an error in the code implementation. " "Please raise this issue on GitHub.") type_ = type(header[field]) if type_ not in valid_types: raise HeaderFieldTypeError(f"Field {field} of type {type_} was not expected, expected one of {valid_types}") if header['length'] <= 0: raise LengthZeroSignalError(f"Expected key 'length' to be a non-zero integer, " f"but header {header} has value {header['length']}") # Warn on duplicate channels from psg_utils.io.channels.utils import check_duplicate_channels check_duplicate_channels(header['channel_names'], raise_or_warn="warn") return header def _sample_rate_as_int(sample_rate, raise_or_warn='warn'): """ Returns the sample rate rounded to the nearest whole integer. If the integer sample rate is not exactly (as determined by np.isclose) equal to the original, possibly floating, value an warning is issued if raise_or_warn="warn" or an FloatSampleRateError is raised if raise_or_warn="raise". Raises ValueError if raise_or_warn not in ('raise', 'warn', 'warning'). Args: sample_rate: int, float sample rate Returns: sample_rate, int """ new_sample_rate = int(np.round(sample_rate)) if not np.isclose(new_sample_rate, sample_rate): s = f"The loaded file has a float sample rate of value {sample_rate} which is not exactly equal to the " \ f"rounded integer value of {new_sample_rate}. Please note: Integer value {new_sample_rate} will be used." if raise_or_warn.lower() == "raise": raise FloatSampleRateWarning(s) elif raise_or_warn.lower() in ("warn", "warning"): warnings.warn(s, FloatSampleRateWarning) else: raise ValueError("raise_or_warn argument must be one of 'raise' or 'warn'.") return new_sample_rate def _standardized_edf_header(raw_edf, channel_names_overwrite=None): """ Header extraction function for RawEDF and Raw objects. Reads the number of channels, channel names and sample rate properties If existing, reads the date information as well. channel_names_overwrite allows passing a list of channel names to use instead of those loaded by MNE per default. This is useful e.g. to set the raw EDF names in the header instead of the truncated / renamed (on duplicates) used by MNE. Returns: Header information as dict """ # Each tuple below follows the format: # 1) output name, 2) edf_obj name, 3) function to apply to the read # value, 4) whether a missing value should raise an error. header_map = [("n_channels", "nchan", int, True), ("channel_names", "ch_names", list, True), ("sample_rate", "sfreq", _sample_rate_as_int, True), ("date", "meas_date", datetime.utcfromtimestamp, False)] if isinstance(raw_edf.info["meas_date"], (tuple, list)): assert raw_edf.info["meas_date"][1] == 0 raw_edf.info["meas_date"] = raw_edf.info["meas_date"][0] header = {} for renamed, org, transform, raise_err in header_map: value = raw_edf.info.get(org) try: value = transform(value) except Exception as e: if raise_err: raise HeaderFieldTypeError("Missing or invalid value in EDF file for key {} " "- got {}".format(org, value)) from e header[renamed] = value header["length"] = len(raw_edf) header["channel_names"] = list(channel_names_overwrite) or header["channel_names"] return _assert_header(header) def _standardized_wfdb_header(wfdb_record): """ Header extraction function for WFDB Record objects. Reads the number of channels, channel names and sample rate properties If existing, reads the date information as well. Returns: Header information as dict """ # Each tuple below follows the format: # 1) output name, 2) record_obj name, 3) function to apply to the read # value, 4) whether a missing value should raise an error. header_map = [("n_channels", "n_sig", int, True), ("channel_names", "sig_name", list, True), ("sample_rate", "fs", _sample_rate_as_int, True), ("date", "base_date", datetime.utcfromtimestamp, False), ("length", "sig_len", int, True)] header = {} for renamed, org, transform, raise_err in header_map: value = getattr(wfdb_record, org, None) try: value = transform(value) except Exception as e: if raise_err: raise HeaderFieldTypeError("Missing or invalid value in WFDB file for key {} " "- got {}".format(org, value)) from e header[renamed] = value return _assert_header(header) def _traverse_h5_file(root_node, attributes=None): attributes = dict((attributes or {})) attributes.update(root_node.attrs) results = {} if isinstance(root_node, h5py.Dataset): # Leaf node attributes["length"] = len(root_node) results[root_node.name] = attributes else: for key in root_node: results.update(_traverse_h5_file(root_node[key], attributes)) return results def _get_unique_value(items): """ Takes a list of items, checks that all are equal (in value, ==) and returns the unique value. Returns None if the list is empty. Raises ValueError if not all items are not equal. Args: items: List Returns: The unique item in list """ if len(items) == 0: return None for item in items[1:]: if item != items[0]: raise H5VariableAttributesError(f"The input list '{items}' contains more than 1 unique value") return items[0] def _standardized_h5_header(h5_file, channel_group_name="channels"): """ Header extraction function for h5py.File objects. The object must: - Have an attribute 'sample_rate' - Have a group named {channel_group_name} which stores the data for all channels as Dataset entries under the group (can be nested in deeper groups too) Can have: - An attribute 'date' which gives a date string or unix timestamp integer Currently raises an error if any attribute in ('date', 'sample_rate', 'length') are not equal among all datasets in the archive. All attributes may be set at any node, and will affect any non-attributed node deeper in the tree. E.g. setting the 'sample_rate' attribute on the root note will have it affect all datasets, unless the attribute is set on deeper nodes too in which case the later will overwrite the root attribute for all its nested, un-attributed children. Returns: Header information as dict """ # Traverse the h5 archive for datasets and assigned attributes h5_content = _traverse_h5_file(h5_file[channel_group_name], attributes=h5_file.attrs) header = { "channel_names": [], "channel_paths": {}, # will store channel_name: channel path entries "sample_rate": [], "date": [], "length": [] } for channel_path, attributes in h5_content.items(): channel_name = channel_path.split("/")[-1] header["channel_paths"][channel_name] = channel_path header["channel_names"].append(channel_name) header["sample_rate"].append(attributes.get("sample_rate")) header["date"].append(attributes.get("date")) header["length"].append(attributes.get("length")) header["n_channels"] = len(h5_content) # Ensure all dates, lengths and sample rate attributes are equal # TODO: Remove this restriction at least for sample rates; requires handling at PSG loading time try: header["date"] = _get_unique_value(header["date"]) header["sample_rate"] = _sample_rate_as_int(_get_unique_value(header["sample_rate"])) header["length"] = int(_get_unique_value(header["length"])) except H5VariableAttributesError as e: raise H5VariableAttributesError("Datasets stored in the specified H5 archive differ with respect to one or " "multiple of the following attributes: 'date', 'sampling_rate', 'length'. " "All datasets must currently match with respect to those attributes.") from e # Get datetime date or set to None date = header["date"] if not isinstance(date, str) and (isinstance(date, int) or np.issubdtype(date, np.integer)): date = datetime.utcfromtimestamp(date) elif not isinstance(date, datetime): date = None header["date"] = date return _assert_header(header) def _standardized_bin_header(raw_header): """ Header extraction function for custom dict type headers for data in .bin files. Raw header has structure: {"CHX": [list of channel inds], "NAME": [list of channel names], "TYPE": [list of channel types], "FS": [list of channel sample rates]} All values stored in the header are strings and should be cast to ints. etc as appropriate for header standardization. Currently raises an error if all attribute in header["FS"] are not equal (i.e., same sample rate is required for all channels). Returns: Header information as dict """ # Assert upper case keys raw_header = {key.upper(): values for key, values in raw_header.items()} # Order header entries according to CHX column order = np.argsort(np.array(raw_header['CHX'], dtype=np.int)) raw_header = {key: ([entry[i] for i in order] if isinstance(entry, (list, tuple, np.ndarray)) else entry) for key, entry in raw_header.items()} # Assert that all samples rates are equal sample_rates = np.array(raw_header["FS"], dtype=np.int32) if not (sample_rates[0] == sample_rates).all(): raise VariableSampleRateError(f"Sample rates in header {raw_header} are not " f"all equal with rates: {sample_rates}. " f"The data loaders for .bin formatted files currently " f"support only files with all channels sampled at equal rates.") # Build standardized header header = { "n_channels": len(raw_header["NAME"]), "channel_names": list(raw_header["NAME"]), "sample_rate": _sample_rate_as_int(sample_rates[0]), "date": None, "length": int(raw_header["LENGTH"]), "channel_types": [type_.upper() for type_ in raw_header.get("TYPE", [])] } return _assert_header(header)
41.821549
120
0.646164
0
0
0
0
0
0
0
0
6,456
0.519765
ac8b1415e78b57c9f8a18413e55459164d6e3fa4
2,620
py
Python
py/hover/cfg.py
HomeSmartMesh/raspi
43ecd07c130144c72d7c7da677eab1980d555cc2
[ "MIT" ]
16
2019-12-19T09:23:05.000Z
2022-01-25T18:34:36.000Z
py/hover/cfg.py
HomeSmartMesh/raspi
43ecd07c130144c72d7c7da677eab1980d555cc2
[ "MIT" ]
4
2020-06-07T08:13:29.000Z
2021-09-04T09:34:37.000Z
py/hover/cfg.py
HomeSmartMesh/raspi
43ecd07c130144c72d7c7da677eab1980d555cc2
[ "MIT" ]
3
2020-08-28T13:00:30.000Z
2020-12-17T09:10:19.000Z
import sys,os import json import logging as log import socket from collections import OrderedDict import datetime from platform import system as system_name # Returns the system/OS name from subprocess import call as system_call # Execute a shell command def ping(host): """ Returns True if host (str) responds to a ping request. Remember that a host may not respond to a ping (ICMP) request even if the host name is valid. """ # Ping command count option as function of OS param = '-n' if system_name().lower()=='windows' else '-c' # Building the command. Ex: "ping -c 1 google.com" command = ['ping', param, '1', host] # Pinging return system_call(command) == 0 # -------------------- config -------------------- def get_local_json(): """fetches the config.json file in the local directory if config_hostname.json is found it is used over the default one """ config = None dirname = os.path.dirname(sys.argv[0]) if(len(dirname) == 0): dirname = "." config_file = dirname+'/'+"config_"+socket.gethostname()+".json" if(os.path.isfile(config_file)): print("loading: ",config_file) config = json.load(open(config_file)) else: config_file = dirname+'/'+"config.json" if(os.path.isfile(config_file)): print("loading: %s",config_file) config = json.load(open(config_file)) else: print("Fatal error 'config.json' not found") return config # -------------------- config -------------------- def get_local_nodes(nodes_file): nodes = json.load(open(nodes_file),object_pairs_hook=OrderedDict) return nodes def configure_log(logger_name): global_config = get_local_json() config = global_config["log"] log_level_map = { "Debug" :10, "Info" :20, "Warning" :30, "Error" :40, "Critical" :50 } #if(os.path.isfile(config["logfile"])): for handler in log.root.handlers[:]: log.root.removeHandler(handler) log.basicConfig( filename=config["logfile"], level=log_level_map[config["level"]], format='%(asctime)s %(name)s %(levelname)-8s %(message)s', datefmt='%d %H:%M:%S' ) log.getLogger('').addHandler(log.StreamHandler()) log.info("====> '%s' started logging with level '%s' @ '%s'"%(logger_name,config["level"],str(datetime.datetime.utcnow()))) #else: # print("Log file not available : %s"%(config["logfile"])) return global_config
34.473684
127
0.594656
0
0
0
0
0
0
0
0
975
0.372137
ac8b3ba743761efaa0df8e7bef2daa017b63a13e
27,156
py
Python
guillotina/schema/tests/test__bootstrapfields.py
diefenbach/guillotina
a8c7247fca8294752901f643b35c5ed1c5dee76d
[ "BSD-2-Clause" ]
null
null
null
guillotina/schema/tests/test__bootstrapfields.py
diefenbach/guillotina
a8c7247fca8294752901f643b35c5ed1c5dee76d
[ "BSD-2-Clause" ]
null
null
null
guillotina/schema/tests/test__bootstrapfields.py
diefenbach/guillotina
a8c7247fca8294752901f643b35c5ed1c5dee76d
[ "BSD-2-Clause" ]
null
null
null
############################################################################## # # Copyright (c) 2012 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## # flake8: noqa import unittest class ValidatedPropertyTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import ValidatedProperty return ValidatedProperty def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test___set___not_missing_w_check(self): _checked = [] def _check(inst, value): _checked.append((inst, value)) class Test(DummyInst): _prop = None prop = self._makeOne('_prop', _check) inst = Test() inst.prop = 'PROP' self.assertEqual(inst._prop, 'PROP') self.assertEqual(_checked, [(inst, 'PROP')]) def test___set___not_missing_wo_check(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test(ValueError) def _provoke(inst): inst.prop = 'PROP' self.assertRaises(ValueError, _provoke, inst) self.assertEqual(inst._prop, None) def test___set___w_missing_wo_check(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test(ValueError) inst.prop = DummyInst.missing_value self.assertEqual(inst._prop, DummyInst.missing_value) def test___get__(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test() inst._prop = 'PROP' self.assertEqual(inst.prop, 'PROP') class DefaultPropertyTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import DefaultProperty return DefaultProperty def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test___get___wo_defaultFactory_miss(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test() inst.defaultFactory = None def _provoke(inst): return inst.prop self.assertRaises(KeyError, _provoke, inst) def test___get___wo_defaultFactory_hit(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test() inst.defaultFactory = None inst._prop = 'PROP' self.assertEqual(inst.prop, 'PROP') def test__get___wo_defaultFactory_in_dict(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test() inst._prop = 'PROP' self.assertEqual(inst.prop, 'PROP') def test___get___w_defaultFactory_not_ICAF_no_check(self): class Test(DummyInst): _prop = None prop = self._makeOne('_prop') inst = Test(ValueError) def _factory(): return 'PROP' inst.defaultFactory = _factory def _provoke(inst): return inst.prop self.assertRaises(ValueError, _provoke, inst) def test___get___w_defaultFactory_w_ICAF_w_check(self): from zope.interface import directlyProvides from guillotina.schema._bootstrapinterfaces \ import IContextAwareDefaultFactory _checked = [] def _check(inst, value): _checked.append((inst, value)) class Test(DummyInst): _prop = None prop = self._makeOne('_prop', _check) inst = Test(ValueError) inst.context = object() _called_with = [] def _factory(context): _called_with.append(context) return 'PROP' directlyProvides(_factory, IContextAwareDefaultFactory) inst.defaultFactory = _factory self.assertEqual(inst.prop, 'PROP') self.assertEqual(_checked, [(inst, 'PROP')]) self.assertEqual(_called_with, [inst.context]) class FieldTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Field return Field def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_ctor_defaults(self): field = self._makeOne() self.assertEqual(field.__name__, '') self.assertEqual(field.__doc__, '') self.assertEqual(field.title, '') self.assertEqual(field.description, '') self.assertEqual(field.required, True) self.assertEqual(field.readonly, False) self.assertEqual(field.constraint(object()), True) self.assertEqual(field.default, None) self.assertEqual(field.defaultFactory, None) self.assertEqual(field.missing_value, None) self.assertEqual(field.context, None) def test_ctor_w_title_wo_description(self): field = self._makeOne('TITLE') self.assertEqual(field.__name__, '') self.assertEqual(field.__doc__, 'TITLE') self.assertEqual(field.title, 'TITLE') self.assertEqual(field.description, '') def test_ctor_wo_title_w_description(self): field = self._makeOne(description='DESC') self.assertEqual(field.__name__, '') self.assertEqual(field.__doc__, 'DESC') self.assertEqual(field.title, '') self.assertEqual(field.description, 'DESC') def test_ctor_w_both_title_and_description(self): field = self._makeOne('TITLE', 'DESC', 'NAME') self.assertEqual(field.__name__, 'NAME') self.assertEqual(field.__doc__, 'TITLE\n\nDESC') self.assertEqual(field.title, 'TITLE') self.assertEqual(field.description, 'DESC') def test_ctor_order_madness(self): klass = self._getTargetClass() order_before = klass.order field = self._makeOne() order_after = klass.order self.assertEqual(order_after, order_before + 1) self.assertEqual(field.order, order_after) def test_explicit_required_readonly_missingValue(self): obj = object() field = self._makeOne(required=False, readonly=True, missing_value=obj) self.assertEqual(field.required, False) self.assertEqual(field.readonly, True) self.assertEqual(field.missing_value, obj) def test_explicit_constraint_default(self): _called_with = [] obj = object() def _constraint(value): _called_with.append(value) return value is obj field = self._makeOne( required=False, readonly=True, constraint=_constraint, default=obj ) self.assertEqual(field.required, False) self.assertEqual(field.readonly, True) self.assertEqual(_called_with, [obj]) self.assertEqual(field.constraint(self), False) self.assertEqual(_called_with, [obj, self]) self.assertEqual(field.default, obj) def test_explicit_defaultFactory(self): _called_with = [] obj = object() def _constraint(value): _called_with.append(value) return value is obj def _factory(): return obj field = self._makeOne( required=False, readonly=True, constraint=_constraint, defaultFactory=_factory, ) self.assertEqual(field.required, False) self.assertEqual(field.readonly, True) self.assertEqual(field.constraint(self), False) self.assertEqual(_called_with, [self]) self.assertEqual(field.default, obj) self.assertEqual(_called_with, [self, obj]) self.assertEqual(field.defaultFactory, _factory) def test_explicit_defaultFactory_returning_missing_value(self): def _factory(): return None field = self._makeOne(required=True, defaultFactory=_factory) self.assertEqual(field.default, None) def test_bind(self): obj = object() field = self._makeOne() bound = field.bind(obj) self.assertEqual(bound.context, obj) expected = dict(field.__dict__) found = dict(bound.__dict__) found.pop('context') self.assertEqual(found, expected) self.assertEqual(bound.__class__, field.__class__) def test_validate_missing_not_required(self): missing = object() def _fail(value): return False field = self._makeOne( required=False, missing_value=missing, constraint=_fail, ) self.assertEqual(field.validate(missing), None) # doesn't raise def test_validate_missing_and_required(self): from guillotina.schema.exceptions import RequiredMissing missing = object() def _fail(value): return False field = self._makeOne( required=True, missing_value=missing, constraint=_fail, ) self.assertRaises(RequiredMissing, field.validate, missing) def test_validate_wrong_type(self): from guillotina.schema.exceptions import WrongType def _fail(value): return False field = self._makeOne(required=True, constraint=_fail) field._type = str self.assertRaises(WrongType, field.validate, 1) def test_validate_constraint_fails(self): from guillotina.schema.exceptions import ConstraintNotSatisfied def _fail(value): return False field = self._makeOne(required=True, constraint=_fail) field._type = int self.assertRaises(ConstraintNotSatisfied, field.validate, 1) def test_validate_constraint_raises_StopValidation(self): from guillotina.schema.exceptions import StopValidation def _fail(value): raise StopValidation field = self._makeOne(required=True, constraint=_fail) field._type = int field.validate(1) # doesn't raise def test___eq___different_type(self): left = self._makeOne() class Derived(self._getTargetClass()): pass right = Derived() self.assertEqual(left == right, False) self.assertEqual(left != right, True) def test___eq___same_type_different_attrs(self): left = self._makeOne(required=True) right = self._makeOne(required=False) self.assertEqual(left == right, False) self.assertEqual(left != right, True) def test___eq___same_type_same_attrs(self): left = self._makeOne() right = self._makeOne() self.assertEqual(left == right, True) self.assertEqual(left != right, False) def test_get_miss(self): field = self._makeOne(__name__='nonesuch') inst = DummyInst() self.assertRaises(AttributeError, field.get, inst) def test_get_hit(self): field = self._makeOne(__name__='extant') inst = DummyInst() inst.extant = 'EXTANT' self.assertEqual(field.get(inst), 'EXTANT') def test_query_miss_no_default(self): field = self._makeOne(__name__='nonesuch') inst = DummyInst() self.assertEqual(field.query(inst), None) def test_query_miss_w_default(self): field = self._makeOne(__name__='nonesuch') inst = DummyInst() self.assertEqual(field.query(inst, 'DEFAULT'), 'DEFAULT') def test_query_hit(self): field = self._makeOne(__name__='extant') inst = DummyInst() inst.extant = 'EXTANT' self.assertEqual(field.query(inst), 'EXTANT') def test_set_readonly(self): field = self._makeOne(__name__='lirame', readonly=True) inst = DummyInst() self.assertRaises(TypeError, field.set, inst, 'VALUE') def test_set_hit(self): field = self._makeOne(__name__='extant') inst = DummyInst() inst.extant = 'BEFORE' field.set(inst, 'AFTER') self.assertEqual(inst.extant, 'AFTER') class ContainerTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Container return Container def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_validate_not_required(self): field = self._makeOne(required=False) field.validate(None) def test_validate_required(self): from guillotina.schema.exceptions import RequiredMissing field = self._makeOne() self.assertRaises(RequiredMissing, field.validate, None) def test__validate_not_collection_not_iterable(self): from guillotina.schema.exceptions import NotAContainer cont = self._makeOne() self.assertRaises(NotAContainer, cont._validate, object()) def test__validate_collection_but_not_iterable(self): cont = self._makeOne() class Dummy(object): def __contains__(self, item): return False cont._validate(Dummy()) # doesn't raise def test__validate_not_collection_but_iterable(self): cont = self._makeOne() class Dummy(object): def __iter__(self): return iter(()) cont._validate(Dummy()) # doesn't raise def test__validate_w_collections(self): cont = self._makeOne() cont._validate(()) # doesn't raise cont._validate([]) # doesn't raise cont._validate('') # doesn't raise cont._validate({}) # doesn't raise class IterableTests(ContainerTests): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Iterable return Iterable def test__validate_collection_but_not_iterable(self): from guillotina.schema.exceptions import NotAnIterator itr = self._makeOne() class Dummy(object): def __contains__(self, item): return False self.assertRaises(NotAnIterator, itr._validate, Dummy()) class OrderableTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Orderable return Orderable def _makeOne(self, *args, **kw): # Orderable is a mixin for a type derived from Field from guillotina.schema._bootstrapfields import Field class Mixed(self._getTargetClass(), Field): pass return Mixed(*args, **kw) def test_ctor_defaults(self): ordb = self._makeOne() self.assertEqual(ordb.min, None) self.assertEqual(ordb.max, None) self.assertEqual(ordb.default, None) def test_ctor_default_too_small(self): # This test exercises _validate, too from guillotina.schema.exceptions import TooSmall self.assertRaises(TooSmall, self._makeOne, min=0, default=-1) def test_ctor_default_too_large(self): # This test exercises _validate, too from guillotina.schema.exceptions import TooBig self.assertRaises(TooBig, self._makeOne, max=10, default=11) class MinMaxLenTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import MinMaxLen return MinMaxLen def _makeOne(self, *args, **kw): # MinMaxLen is a mixin for a type derived from Field from guillotina.schema._bootstrapfields import Field class Mixed(self._getTargetClass(), Field): pass return Mixed(*args, **kw) def test_ctor_defaults(self): mml = self._makeOne() self.assertEqual(mml.min_length, 0) self.assertEqual(mml.max_length, None) def test_validate_too_short(self): from guillotina.schema.exceptions import TooShort mml = self._makeOne(min_length=1) self.assertRaises(TooShort, mml._validate, ()) def test_validate_too_long(self): from guillotina.schema.exceptions import TooLong mml = self._makeOne(max_length=2) self.assertRaises(TooLong, mml._validate, (0, 1, 2)) class TextTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Text return Text def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_ctor_defaults(self): txt = self._makeOne() self.assertEqual(txt._type, str) def test_validate_wrong_types(self): from guillotina.schema.exceptions import WrongType field = self._makeOne() self.assertRaises(WrongType, field.validate, b'') self.assertRaises(WrongType, field.validate, 1) self.assertRaises(WrongType, field.validate, 1.0) self.assertRaises(WrongType, field.validate, ()) self.assertRaises(WrongType, field.validate, []) self.assertRaises(WrongType, field.validate, {}) self.assertRaises(WrongType, field.validate, set()) self.assertRaises(WrongType, field.validate, frozenset()) self.assertRaises(WrongType, field.validate, object()) def test_validate_w_invalid_default(self): from guillotina.schema.exceptions import ValidationError self.assertRaises(ValidationError, self._makeOne, default=b'') def test_validate_not_required(self): field = self._makeOne(required=False) field.validate('') field.validate('abc') field.validate('abc\ndef') field.validate(None) def test_validate_required(self): from guillotina.schema.exceptions import RequiredMissing field = self._makeOne() field.validate('') field.validate('abc') field.validate('abc\ndef') self.assertRaises(RequiredMissing, field.validate, None) def test_from_unicode_miss(self): from guillotina.schema.exceptions import WrongType deadbeef = b'DEADBEEF' txt = self._makeOne() self.assertRaises(WrongType, txt.from_unicode, deadbeef) def test_from_unicode_hit(self): deadbeef = 'DEADBEEF' txt = self._makeOne() self.assertEqual(txt.from_unicode(deadbeef), deadbeef) class TextLineTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._field import TextLine return TextLine def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_class_conforms_to_ITextLine(self): from zope.interface.verify import verifyClass from guillotina.schema.interfaces import ITextLine verifyClass(ITextLine, self._getTargetClass()) def test_instance_conforms_to_ITextLine(self): from zope.interface.verify import verifyObject from guillotina.schema.interfaces import ITextLine verifyObject(ITextLine, self._makeOne()) def test_validate_wrong_types(self): from guillotina.schema.exceptions import WrongType field = self._makeOne() self.assertRaises(WrongType, field.validate, b'') self.assertRaises(WrongType, field.validate, 1) self.assertRaises(WrongType, field.validate, 1.0) self.assertRaises(WrongType, field.validate, ()) self.assertRaises(WrongType, field.validate, []) self.assertRaises(WrongType, field.validate, {}) self.assertRaises(WrongType, field.validate, set()) self.assertRaises(WrongType, field.validate, frozenset()) self.assertRaises(WrongType, field.validate, object()) def test_validate_not_required(self): field = self._makeOne(required=False) field.validate('') field.validate('abc') field.validate(None) def test_validate_required(self): from guillotina.schema.exceptions import RequiredMissing field = self._makeOne() field.validate('') field.validate('abc') self.assertRaises(RequiredMissing, field.validate, None) def test_constraint(self): field = self._makeOne() self.assertEqual(field.constraint(''), True) self.assertEqual(field.constraint('abc'), True) self.assertEqual(field.constraint('abc\ndef'), False) class PasswordTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Password return Password def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_set_unchanged(self): klass = self._getTargetClass() pw = self._makeOne() inst = DummyInst() before = dict(inst.__dict__) pw.set(inst, klass.UNCHANGED_PASSWORD) # doesn't raise, doesn't write after = dict(inst.__dict__) self.assertEqual(after, before) def test_set_normal(self): pw = self._makeOne(__name__='password') inst = DummyInst() pw.set(inst, 'PASSWORD') self.assertEqual(inst.password, 'PASSWORD') def test_validate_not_required(self): field = self._makeOne(required=False) field.validate('') field.validate('abc') field.validate(None) def test_validate_required(self): from guillotina.schema.exceptions import RequiredMissing field = self._makeOne() field.validate('') field.validate('abc') self.assertRaises(RequiredMissing, field.validate, None) def test_validate_unchanged_not_already_set(self): from guillotina.schema.exceptions import WrongType klass = self._getTargetClass() inst = DummyInst() pw = self._makeOne(__name__='password').bind(inst) self.assertRaises(WrongType, pw.validate, klass.UNCHANGED_PASSWORD) def test_validate_unchanged_already_set(self): klass = self._getTargetClass() inst = DummyInst() inst.password = 'foobar' pw = self._makeOne(__name__='password').bind(inst) pw.validate(klass.UNCHANGED_PASSWORD) # doesn't raise def test_constraint(self): field = self._makeOne() self.assertEqual(field.constraint(''), True) self.assertEqual(field.constraint('abc'), True) self.assertEqual(field.constraint('abc\ndef'), False) class BoolTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Bool return Bool def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_ctor_defaults(self): txt = self._makeOne() self.assertEqual(txt._type, bool) def test__validate_w_int(self): boo = self._makeOne() boo._validate(0) # doesn't raise boo._validate(1) # doesn't raise def test_set_w_int(self): boo = self._makeOne(__name__='boo') inst = DummyInst() boo.set(inst, 0) self.assertEqual(inst.boo, False) boo.set(inst, 1) self.assertEqual(inst.boo, True) def test_from_unicode_miss(self): txt = self._makeOne() self.assertEqual(txt.from_unicode(''), False) self.assertEqual(txt.from_unicode('0'), False) self.assertEqual(txt.from_unicode('1'), False) self.assertEqual(txt.from_unicode('False'), False) self.assertEqual(txt.from_unicode('false'), False) def test_from_unicode_hit(self): txt = self._makeOne() self.assertEqual(txt.from_unicode('True'), True) self.assertEqual(txt.from_unicode('true'), True) class IntTests(unittest.TestCase): def _getTargetClass(self): from guillotina.schema._bootstrapfields import Int return Int def _makeOne(self, *args, **kw): return self._getTargetClass()(*args, **kw) def test_ctor_defaults(self): txt = self._makeOne() self.assertEqual(txt._type, int) def test_validate_not_required(self): field = self._makeOne(required=False) field.validate(None) field.validate(10) field.validate(0) field.validate(-1) def test_validate_required(self): from guillotina.schema.exceptions import RequiredMissing field = self._makeOne() field.validate(10) field.validate(0) field.validate(-1) self.assertRaises(RequiredMissing, field.validate, None) def test_validate_min(self): from guillotina.schema.exceptions import TooSmall field = self._makeOne(min=10) field.validate(10) field.validate(20) self.assertRaises(TooSmall, field.validate, 9) self.assertRaises(TooSmall, field.validate, -10) def test_validate_max(self): from guillotina.schema.exceptions import TooBig field = self._makeOne(max=10) field.validate(5) field.validate(9) field.validate(10) self.assertRaises(TooBig, field.validate, 11) self.assertRaises(TooBig, field.validate, 20) def test_validate_min_and_max(self): from guillotina.schema.exceptions import TooBig from guillotina.schema.exceptions import TooSmall field = self._makeOne(min=0, max=10) field.validate(0) field.validate(5) field.validate(10) self.assertRaises(TooSmall, field.validate, -10) self.assertRaises(TooSmall, field.validate, -1) self.assertRaises(TooBig, field.validate, 11) self.assertRaises(TooBig, field.validate, 20) def test_from_unicode_miss(self): txt = self._makeOne() self.assertRaises(ValueError, txt.from_unicode, '') self.assertRaises(ValueError, txt.from_unicode, 'False') self.assertRaises(ValueError, txt.from_unicode, 'True') def test_from_unicode_hit(self): txt = self._makeOne() self.assertEqual(txt.from_unicode('0'), 0) self.assertEqual(txt.from_unicode('1'), 1) self.assertEqual(txt.from_unicode('-1'), -1) class DummyInst(object): missing_value = object() def __init__(self, exc=None): self._exc = exc def validate(self, value): if self._exc is not None: raise self._exc() def test_suite(): return unittest.TestSuite(( unittest.makeSuite(ValidatedPropertyTests), unittest.makeSuite(DefaultPropertyTests), unittest.makeSuite(FieldTests), unittest.makeSuite(ContainerTests), unittest.makeSuite(IterableTests), unittest.makeSuite(OrderableTests), unittest.makeSuite(MinMaxLenTests), unittest.makeSuite(TextTests), unittest.makeSuite(TextLineTests), unittest.makeSuite(PasswordTests), unittest.makeSuite(BoolTests), unittest.makeSuite(IntTests), ))
33.902622
79
0.647739
25,872
0.952718
0
0
0
0
0
0
1,663
0.061239
ac8b7c1d0b88747e30dd4b04da5a9e3ae9540f10
2,410
py
Python
project.py
pedroalvesfilho/rest_flask_render0
81b7e1e865d083718a60e5ec38a0ca8f889e14f8
[ "MIT" ]
null
null
null
project.py
pedroalvesfilho/rest_flask_render0
81b7e1e865d083718a60e5ec38a0ca8f889e14f8
[ "MIT" ]
null
null
null
project.py
pedroalvesfilho/rest_flask_render0
81b7e1e865d083718a60e5ec38a0ca8f889e14f8
[ "MIT" ]
null
null
null
#!/usr/bin/env python from flask import Flask from flask import render_template, request app = Flask(__name__) """ # https://www.pluralsight.com/guides/manipulating-lists-dictionaries-python # A list is a mutable, ordered sequence of items. # list = ['a', 'b', 'c'] # list[0] # A dictionary is a mutable, unordered set of key-value pairs where each key must be unique. # dictionary = {} # In Python, a dictionary is an unordered collection of items. For example: # dictionary = {'key' : 'value', 'key_2': 'value_2'} # dictionary['key'] """ # Fake restaurants restaurants = [ # Start a list `[...]` with dictionaries `{...}` inside {'name': 'The CRUDdy Crab'}, # 'index': '0' {'name': 'Blue Burger'}, # 'index': '1' {'name': 'Taco Hut'} # 'index': '3' ] # >>> print(restaurants) # [{'name': 'The CRUDdy Crab'}, {'name': 'Blue Burger'}, {'name': 'Taco Hut'}] # >>> # >>> print(restaurants[0]) # {'name': 'The CRUDdy Crab'} # >>> # >>> print(restaurants[0]['name']) # The CRUDdy Crab # >>> # Fake Menu Items items = [ {'name': 'Cheese Pizza', 'description': 'made with fresh cheese', 'price': '$5.59', 'course': 'Entree'}, # 'index': '0' {'name': 'Cheese Pizza2', 'description': 'made with fresh cheese2', 'price': '$6.59', 'course': 'Entree2'}, # 'index': '1' {'name': 'Cheese Pizza3', 'description': 'made with fresh cheese3', 'price': '$7.59', 'course': 'Entree3'}, # 'index': '2' {'name': 'Cheese Pizza4', 'description': 'made with fresh cheese4', 'price': '$8.59', 'course': 'Entree4'}, # 'index': '3' ] @app.route('/restaurant/') @app.route('/') def showRestaurant(): # RESTAURANT HOME PAGE return render_template('restaurant.html', restaurantx = restaurants) @app.route('/restaurant/<int:restid>/edit/<string:restname>', methods=['GET','POST']) def editRestaurant(restid, restname): # EDIT RESTAURANT # https://hackersandslackers.com/flask-routes/ if request.method == 'POST': restname = request.form.get('name') restid = request.form.get('id') restid0 = int(restid) restaurants[restid0]['name'] = restname return render_template('editrestaurant.html', restid = restid, restname = restname) if __name__ == '__main__': app.secret_key = 'super_secret_key' app.debug = True app.run(host='localhost', port=5000)
33.472222
92
0.607469
0
0
0
0
643
0.266805
0
0
1,540
0.639004
ac8b7fc77b1b29feaa2f6078b42fbbccbd054d3d
1,971
py
Python
tests/bugs/core_1894_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2022-02-05T11:37:13.000Z
2022-02-05T11:37:13.000Z
tests/bugs/core_1894_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-09-03T11:47:00.000Z
2021-09-03T12:42:10.000Z
tests/bugs/core_1894_test.py
FirebirdSQL/firebird-qa
96af2def7f905a06f178e2a80a2c8be4a4b44782
[ "MIT" ]
1
2021-06-30T14:14:16.000Z
2021-06-30T14:14:16.000Z
#coding:utf-8 # # id: bugs.core_1894 # title: Circular dependencies between computed fields crashs the engine # decription: # Checked on LI-T4.0.0.419 after commit 19.10.2016 18:26 # https://github.com/FirebirdSQL/firebird/commit/6a00b3aee6ba17b2f80a5b00def728023e347707 # -- all OK. # # tracker_id: CORE-1894 # min_versions: ['3.0.2'] # versions: 3.0.2 # qmid: None import pytest from firebird.qa import db_factory, isql_act, Action # version: 3.0.2 # resources: None substitutions_1 = [] init_script_1 = """""" db_1 = db_factory(sql_dialect=3, init=init_script_1) test_script_1 = """ recreate table t ( n integer, n1 computed by (n), n2 computed by (n1) ); recreate table t2 ( n integer, c1 computed by (1), c2 computed by (c1) ); alter table t alter n1 computed by (n2); commit; set autoddl off; alter table t2 drop c1; alter table t2 add c1 computed by (c2); commit; select * from t; select * from t2; -- THIS LEAD SERVER CRASH (checked on WI-T4.0.0.399) """ act_1 = isql_act('db_1', test_script_1, substitutions=substitutions_1) expected_stderr_1 = """ Statement failed, SQLSTATE = 42000 unsuccessful metadata update -Cannot have circular dependencies with computed fields Statement failed, SQLSTATE = 42000 unsuccessful metadata update -cannot delete -COLUMN T2.C1 -there are 1 dependencies Statement failed, SQLSTATE = 42000 Cannot have circular dependencies with computed fields Statement failed, SQLSTATE = 42000 unsuccessful metadata update -cannot delete -COLUMN T2.C1 -there are 1 dependencies """ @pytest.mark.version('>=3.0.2') def test_1(act_1: Action): act_1.expected_stderr = expected_stderr_1 act_1.execute() assert act_1.clean_stderr == act_1.clean_expected_stderr
24.036585
106
0.650431
0
0
0
0
185
0.093861
0
0
1,508
0.765094
3ba2a6cd1ef7931310fdf480d5b0bc1594f43a55
1,296
py
Python
lib/pykdlib/modules.py
bin601/pkyd
2b60c0ebd81e9e3e29f88ea60691d5c403df2160
[ "MIT" ]
1
2020-05-31T20:11:03.000Z
2020-05-31T20:11:03.000Z
lib/pykdlib/modules.py
bin601/pykd
2b60c0ebd81e9e3e29f88ea60691d5c403df2160
[ "MIT" ]
null
null
null
lib/pykdlib/modules.py
bin601/pykd
2b60c0ebd81e9e3e29f88ea60691d5c403df2160
[ "MIT" ]
1
2020-11-13T11:12:47.000Z
2020-11-13T11:12:47.000Z
# # Modules Info # import pykd moduleList = [] def reloadModules(): global moduleList for m in moduleList: globals()[ m.name().lower() ] = None if pykd.isKernelDebugging(): global nt nt = pykd.loadModule("nt") modules = pykd.typedVarList( nt.PsLoadedModuleList, "nt", "_LDR_DATA_TABLE_ENTRY", "InLoadOrderLinks" ) moduleList.append( nt ) else: ntdll = pykd.loadModule("ntdll") peb = pykd.typedVar( "ntdll", "_PEB", pykd.getCurrentProcess() ) ldr = pykd.typedVar( "ntdll", "_PEB_LDR_DATA", peb.Ldr ) modules = pykd.typedVarList( ldr.InLoadOrderModuleList.getAddress(), "ntdll", "_LDR_DATA_TABLE_ENTRY", "InLoadOrderLinks" ) moduleList = [] for m in modules: baseName = str( pykd.loadUnicodeString( m.BaseDllName.getAddress() ) ) if baseName=="ntoskrnl.exe": continue module = pykd.findModule( m.DllBase ) globals()[ module.name().lower() ] = module moduleList.append( module ) def printModuleList(): pykd.dprintln( "\n".join( [ str(m) for m in moduleList ] ) ) reloadModules()
17.28
133
0.549383
0
0
0
0
0
0
0
0
177
0.136574
3ba3da7e08c14ac9df758e9e45e7cb972fc56eb2
139
py
Python
compiled/construct/repeat_eos_u4.py
smarek/ci_targets
c5edee7b0901fd8e7f75f85245ea4209b38e0cb3
[ "MIT" ]
4
2017-04-08T12:55:11.000Z
2020-12-05T21:09:31.000Z
compiled/construct/repeat_eos_u4.py
smarek/ci_targets
c5edee7b0901fd8e7f75f85245ea4209b38e0cb3
[ "MIT" ]
7
2018-04-23T01:30:33.000Z
2020-10-30T23:56:14.000Z
compiled/construct/repeat_eos_u4.py
smarek/ci_targets
c5edee7b0901fd8e7f75f85245ea4209b38e0cb3
[ "MIT" ]
6
2017-04-08T11:41:14.000Z
2020-10-30T22:47:31.000Z
from construct import * from construct.lib import * repeat_eos_u4 = Struct( 'numbers' / GreedyRange(Int32ul), ) _schema = repeat_eos_u4
15.444444
34
0.755396
0
0
0
0
0
0
0
0
9
0.064748
3ba72f829fd19f1024caa6c030fe4b09746f7a00
2,981
py
Python
Python/simpleencrypt/aes256.py
shreyasnayak/SimpleEncrypt
32223ee7a52baf186c53ac065cb61e9a32e4d20f
[ "MIT" ]
null
null
null
Python/simpleencrypt/aes256.py
shreyasnayak/SimpleEncrypt
32223ee7a52baf186c53ac065cb61e9a32e4d20f
[ "MIT" ]
null
null
null
Python/simpleencrypt/aes256.py
shreyasnayak/SimpleEncrypt
32223ee7a52baf186c53ac065cb61e9a32e4d20f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # aes256.py # This file is part of SimpleEncrypt project (https://github.com/shreyasnayak/SimpleEncrypt) # # Copyright Shreyas Nayak (c) 2021-2022 <shreyasnayak21@gmail.com> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __author__ = "Shreyas Nayak" __email__ = "shreyasnayak21@gmail.com" __copyright__ = "Copyright 2021-2022 Shreyas Nayak" __license__ = "MIT" from ctypes import * CDLL("libcrypto.so.1.1", mode = RTLD_GLOBAL) CDLL("libssl.so.1.1", mode = RTLD_GLOBAL) lib = cdll.LoadLibrary('/usr/local/lib/libSimpleEncrypt.so') lib.freeme.argtypes = c_void_p, lib.freeme.restype = None lib.encryptMessage.argtypes = [c_char_p,c_char_p,c_char_p] lib.encryptMessage.restype = c_void_p lib.decryptMessage.argtypes = [c_char_p,c_char_p,c_char_p] lib.decryptMessage.restype = c_void_p def encrypt(plainText,key,iv): """ Encrypt text with the initiation vector and key @param plainText: string Text to encrypt @param key: string key @param iv: string initiation vector @type plainText: string @type key: string @type iv: string @rtype: string """ en_ptr = lib.encryptMessage(c_char_p(plainText),c_char_p(key),c_char_p(iv)) value = cast(en_ptr, c_char_p).value lib.freeme(en_ptr) return value def decrypt(ciphertext,key,iv): """ Encrypt text with the initiation vector and key @param ciphertext: string ciphertext to decrypt @param key: string key @param iv: string initiation vector @type ciphertext: string @type key: string @type iv: string @rtype: string """ de_ptr = lib.decryptMessage(c_char_p(ciphertext),c_char_p(key),c_char_p(iv)) value = cast(de_ptr, c_char_p).value lib.freeme(de_ptr) return value if __name__ == '__main__': iv = b'171A065A7675A09AECEC118DBC008A822A041FC2EBF2B3E4CF7A4C966E5D5897' key = b'2B5442AD8739992F' plainText = b'TEXT' print(decrypt(encrypt(plainText,key, iv),key,iv))
36.353659
92
0.739349
0
0
0
0
0
0
0
0
2,023
0.678631
3ba741e941c63d039ed8b54e0f39f036cca0c01c
1,735
py
Python
tests/widgets/test_error_dialog.py
sisoe24/NukeServerSocket
fbb95a609fcaf462aeb349597fae23dda67bf49b
[ "MIT" ]
12
2021-08-01T09:41:24.000Z
2021-12-03T02:53:10.000Z
tests/widgets/test_error_dialog.py
sisoe24/NukeServerSocket
fbb95a609fcaf462aeb349597fae23dda67bf49b
[ "MIT" ]
5
2021-09-11T16:51:01.000Z
2022-02-18T16:20:29.000Z
tests/widgets/test_error_dialog.py
sisoe24/NukeServerSocket
fbb95a609fcaf462aeb349597fae23dda67bf49b
[ "MIT" ]
2
2021-08-03T16:02:27.000Z
2021-08-06T07:51:54.000Z
"""Test module for the Error dialog widget.""" import os import logging import pytest from PySide2.QtGui import QClipboard from src.widgets import error_dialog from src.about import about_to_string @pytest.fixture() def error_log_path(_package): """Get the log directory path.""" yield os.path.join(_package, 'src', 'log', 'errors.log') @pytest.fixture(name='report') def create_report(qtbot, error_log_path): """Initialize the ErrorDialog class and create an error report. After tests, will clean the error.logs file. Yields: Report: a namedtuple with the link and the port attributes. """ widget = error_dialog.ErrorDialog('Test Error') qtbot.addWidget(widget) yield widget.prepare_report() with open(error_log_path, 'w') as _: pass def test_report_return_value(report): """Check if prepare report return is a tuple.""" assert isinstance(report, tuple) def test_prepare_report_link(report): """Check if error dialog returns the issues link when clicking Report.""" assert report.link == 'https://github.com/sisoe24/NukeServerSocket/issues' def test_prepare_report_clipboard(report): """Check if report gets copied into clipboard.""" assert 'NukeServerSocket' in QClipboard().text() def test_prepare_report_file(report, error_log_path): """Check if the report file has the about to string information.""" with open(error_log_path) as file: assert about_to_string() in file.read() def test_get_critical_logger(): """Check if method returns the critical logger file handler.""" logger = error_dialog._get_critical_logger() assert logger.name == 'Critical' assert isinstance(logger, logging.FileHandler)
27.539683
78
0.725648
0
0
546
0.314697
595
0.342939
0
0
706
0.406916
3ba791283dc54edfe51e5015658bbc050291ab63
3,854
py
Python
DataStructure/Table/HashTable.py
zhangsifan/ClassicAlgorighthms
b769d46727279cf6d8532819076a3fef496d05c7
[ "Apache-2.0" ]
27
2021-04-21T08:17:25.000Z
2021-06-30T07:04:49.000Z
DataStructure/Table/HashTable.py
zhangsifan/ClassicAlgorighthms
b769d46727279cf6d8532819076a3fef496d05c7
[ "Apache-2.0" ]
null
null
null
DataStructure/Table/HashTable.py
zhangsifan/ClassicAlgorighthms
b769d46727279cf6d8532819076a3fef496d05c7
[ "Apache-2.0" ]
1
2021-04-21T11:26:01.000Z
2021-04-21T11:26:01.000Z
# -*- coding: utf-8 -*-# ''' @Project : ClassicAlgorighthms @File : HashTable.py @USER : ZZZZZ @TIME : 2021/4/25 18:25 ''' class Node(): ''' 链地址法解决冲突的结点 ''' def __init__(self, value = None, next = None): self.val = value self.next = next class HashTable(): ''' 哈希表是根据 值 直接进行访问的数据结构。 具体来说,通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。 这个映射函数叫做 散列函数,存放记录的数组叫做 散列表。 其中有两个关键点: 1. 如何把值映射到一个位置? (1) * 除余法: h(k) = k mod p (2) 平方散列法: h(k) = (value^2) >> 28 (3) 斐波那契散列法: h(k) = (value * 2654435769(MAX_INT32) ) >> 28 2. 如果两个值映射到了同一个位置,该怎么办? (1) 开放定址法:线性重散列 二次重散列 (2) * 链地址法:每个地址作为一个链来存储 (3) 再散列法:构造多个hash函数 Notice: 想想,如果在链地址法中,将每个表结点作为一颗平衡二叉树的根结点,那么每个位置都将成为一棵平衡二叉树 查找时间复杂度变成了log2N,并且由于经过了哈希,分散了结点数量,真实运行起来会更快一些 本例中用除余法取哈希值 用链地址法解决冲突 ''' def __init__(self): # 哈希表的大小 self._table_size = 11 # 哈希表,每个元素是个表头,采用头插法放入元素 self._table = [] for i in range(self._table_size): self._table.append(Node()) # 元素个数 self._count = 0 def init(self, values): ''' 通过一个列表构造哈希表 :param values: 待构造的列表 :return: None ''' for value in values: self.insert(value) def insert(self, value): ''' 向哈希表中插入一个值 :param value: 待插入值 :return: None ''' # 找到了它的位置 index = self._hash(value) # 为这个值建立结点 node = Node(value = value) # 头插法插入对应的位置 node.next = self._table[index].next self._table[index].next = node # 数量+1 self._count += 1 def delete(self, value): ''' 从哈希表中删除一个值 :param value: 待删除值 :return: None ''' # 找到它的哈希位置 index = self._hash(value) # 在链表中进行查询 pre_node = self._table[index] node = self._table[index].next if self.search(value) == False: raise Exception("no this value!") # 注意,这里按照链表的构造,只要查到这个值,是可以通过将它的下一个值赋给它,将下一个结点删掉的操作来进行的。 # 但是可能查到的这个值就是最后一个结点,那么上述方法行不通。 while node != None: # 找到值了,停下来 if node.val == value: break else: pre_node = pre_node.next node = node.next # 把node删除 pre_node.next = node.next def search(self, value): ''' 从哈希表中查找一个值 :param value: 待查找的值 :return: 如果找到这个值,返回True;否则,返回False ''' # 找到它的哈希位置 index = self._hash(value) # 在链表中进行查询 node = self._table[index] while node != None: if node.val == value: return True node = node.next # 如果走到这,肯定就没查找 return False # ---------------------------- 私有方法 ---------------------------- def _hash(self, value): ''' 哈希函数,通过给定的值,计算出一个位置 :param value: 存入哈希表的值 :return: 散列表中的位置 ''' return value % self._table_size # ---------------------------- 内部方法 ---------------------------- def __str__(self): final_res = "" for i in range(self._table_size): res = [] node = self._table[i].next while node != None: res.append(str(node.val)) node = node.next final_res += "索引为{}的位置的值为: {}\n".format(i, ",".join(res)) return final_res if __name__ == "__main__": ht = HashTable() # 初始化 ht.init([2, 3, 5, 8, 9, 10, 2, 9, 1, 5, 2, 1, 7, 9, 11]) print("初始化后的哈希表为:\n{}".format(ht)) # 插入结点 ht.insert(9) print("插入值后的哈希表为:\n{}".format(ht)) # 删除结点 ht.delete(11) print("删除值后的哈希表为:\n{}".format(ht)) # 查找结点 res = ht.search(8) print("查找值为8的结果为: {}".format(res))
23.644172
69
0.493254
4,575
0.879469
0
0
0
0
0
0
3,042
0.584775
3ba7a6554c459e41f8d769b9e6caea0153ae3a05
7,908
py
Python
ossdbtoolsservice/query/batch.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
33
2019-05-27T13:04:35.000Z
2022-03-17T13:33:05.000Z
ossdbtoolsservice/query/batch.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
31
2019-06-10T01:55:47.000Z
2022-03-09T07:27:49.000Z
ossdbtoolsservice/query/batch.py
DaeunYim/pgtoolsservice
b7e548718d797883027b2caee2d4722810b33c0f
[ "MIT" ]
25
2019-05-13T18:39:24.000Z
2021-11-16T03:07:33.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from enum import Enum from typing import List # noqa from datetime import datetime import uuid import sqlparse from ossdbtoolsservice.driver import ServerConnection from ossdbtoolsservice.utils.time import get_time_str, get_elapsed_time_str from ossdbtoolsservice.query.contracts import BatchSummary, SaveResultsRequestParams, SelectionData from ossdbtoolsservice.query.result_set import ResultSet # noqa from ossdbtoolsservice.query.file_storage_result_set import FileStorageResultSet from ossdbtoolsservice.query.in_memory_result_set import InMemoryResultSet from ossdbtoolsservice.query.data_storage import FileStreamFactory from ossdbtoolsservice.utils.constants import PG_PROVIDER_NAME class ResultSetStorageType(Enum): IN_MEMORY = 1, FILE_STORAGE = 2 class BatchEvents: def __init__(self, on_execution_started=None, on_execution_completed=None, on_result_set_completed=None): self._on_execution_started = on_execution_started self._on_execution_completed = on_execution_completed self._on_result_set_completed = on_result_set_completed class SelectBatchEvents(BatchEvents): def __init__(self, on_execution_started, on_execution_completed, on_result_set_completed, on_after_first_fetch): BatchEvents.__init__(self, on_execution_started, on_execution_completed, on_result_set_completed) self._on_after_first_fetch = on_after_first_fetch class Batch: def __init__( self, batch_text: str, ordinal: int, selection: SelectionData, batch_events: BatchEvents = None, storage_type: ResultSetStorageType = ResultSetStorageType.FILE_STORAGE ) -> None: self.id = ordinal self.selection = selection self.batch_text = batch_text self._execution_start_time: datetime = None self._has_error = False self._has_executed = False self._execution_end_time: datetime = None self._result_set: ResultSet = None self._notices: List[str] = [] self._batch_events = batch_events self._storage_type = storage_type @property def batch_summary(self) -> BatchSummary: return BatchSummary.from_batch(self) @property def has_error(self) -> bool: return self._has_error @property def has_executed(self) -> bool: return self._has_executed @property def start_date_str(self) -> str: if self._execution_start_time is None: return None return self._execution_start_time.isoformat() @property def start_time(self) -> str: return get_time_str(self._execution_start_time) @property def end_time(self) -> str: return get_time_str(self._execution_end_time) @property def elapsed_time(self) -> str: return get_elapsed_time_str(self._execution_start_time, self._execution_end_time) @property def result_set(self) -> ResultSet: return self._result_set @property def row_count(self) -> int: return self.result_set.row_count if self.result_set is not None else -1 @property def notices(self) -> List[str]: return self._notices def get_cursor(self, connection: ServerConnection): return connection.cursor() def execute(self, conn: ServerConnection) -> None: """ Execute the batch using a cursor retrieved from the given connection :raises DatabaseError: if an error is encountered while running the batch's query """ self._execution_start_time = datetime.now() if self._batch_events and self._batch_events._on_execution_started: self._batch_events._on_execution_started(self) cursor = self.get_cursor(conn) try: cursor.execute(self.batch_text) # Commit the transaction if autocommit is True if conn.autocommit: conn.commit() self.after_execute(cursor) except conn.database_error as error: self._has_error = True raise error finally: # We are doing this because when the execute fails for named cursors # cursor is not activated on the server which results in failure on close # Hence we are checking if the cursor was really executed for us to close it if cursor and cursor.rowcount != -1 and cursor.rowcount is not None: cursor.close() self._has_executed = True self._execution_end_time = datetime.now() # TODO: PyMySQL doesn't support notices from a connection if conn._provider_name == PG_PROVIDER_NAME: self._notices = cursor.connection.notices cursor.connection.notices = [] if self._batch_events and self._batch_events._on_execution_completed: self._batch_events._on_execution_completed(self) def after_execute(self, cursor) -> None: if cursor.description is not None: self.create_result_set(cursor) def create_result_set(self, cursor): result_set = create_result_set(self._storage_type, 0, self.id) result_set.read_result_to_end(cursor) self._result_set = result_set def get_subset(self, start_index: int, end_index: int): return self._result_set.get_subset(start_index, end_index) def save_as(self, params: SaveResultsRequestParams, file_factory: FileStreamFactory, on_success, on_failure) -> None: if params.result_set_index != 0: raise IndexError('Result set index should be always 0') self._result_set.save_as(params, file_factory, on_success, on_failure) class SelectBatch(Batch): def __init__(self, batch_text: str, ordinal: int, selection: SelectionData, batch_events: SelectBatchEvents, storage_type: ResultSetStorageType) -> None: Batch.__init__(self, batch_text, ordinal, selection, batch_events, storage_type) def get_cursor(self, connection: ServerConnection): cursor_name = str(uuid.uuid4()) # Named cursors can be created only in the transaction. As our connection has autocommit set to true # there is not transaction concept with it so we need to have withhold to true and as this cursor is local # and we explicitly close it we are good return connection.cursor(name=cursor_name, withhold=True) def after_execute(self, cursor) -> None: super().create_result_set(cursor) def create_result_set(storage_type: ResultSetStorageType, result_set_id: int, batch_id: int) -> ResultSet: if storage_type is ResultSetStorageType.FILE_STORAGE: return FileStorageResultSet(result_set_id, batch_id) return InMemoryResultSet(result_set_id, batch_id) def create_batch(batch_text: str, ordinal: int, selection: SelectionData, batch_events: BatchEvents, storage_type: ResultSetStorageType) -> Batch: sql = sqlparse.parse(batch_text) statement = sql[0] if statement.get_type().lower() == 'select': into_checker = [True for token in statement.tokens if token.normalized == 'INTO'] cte_checker = [True for token in statement.tokens if token.ttype == sqlparse.tokens.Keyword.CTE] if len(into_checker) == 0 and len(cte_checker) == 0: # SELECT INTO and CTE keywords can't be used in named cursor return SelectBatch(batch_text, ordinal, selection, batch_events, storage_type) return Batch(batch_text, ordinal, selection, batch_events, storage_type)
38.38835
157
0.69221
5,822
0.736216
0
0
1,023
0.129363
0
0
1,213
0.153389
3ba806cb9a29badf3e7a080781be0d67fc995823
1,017
py
Python
seqlib.py
rvenkatesh99/sequence_alignment
107c262ef25ddbf025e054339bdd29efd728033a
[ "MIT" ]
null
null
null
seqlib.py
rvenkatesh99/sequence_alignment
107c262ef25ddbf025e054339bdd29efd728033a
[ "MIT" ]
null
null
null
seqlib.py
rvenkatesh99/sequence_alignment
107c262ef25ddbf025e054339bdd29efd728033a
[ "MIT" ]
null
null
null
import gzip def read_fasta(filename): name = None seqs = [] fp = None if filename.endswith('.gz'): fp = gzip.open(filename, 'rt') else: fp = open(filename) for line in fp.readlines(): line = line.rstrip() if line.startswith('>'): if len(seqs) > 0: seq = ''.join(seqs) yield(name, seq) name = line[1:] seqs = [] else: name = line[1:] else: seqs.append(line) yield(name, ''.join(seqs)) fp.close() def read_fastq(filename): name = None seqs = [] quals = [] fp = None if filename.endswith('.gz'): fp = gzip.open(filename, 'rt') else: fp = open(filename) for line in fp.readlines(): line = line.rstrip() if line.startswith('@'): if len(seqs) > 0: seq = ''.join(seqs) qual = ''.join(quals) yield(name, seq, qual) name = line[1:] seqs = [] quals = [] else: name = line[1:] elif line.startswith('+'): continue else: seqs.append(line) quals.append(line) yield(name, ''.join(seqs), ''.join(quals)) fp.close()
17.237288
43
0.573255
0
0
1,001
0.984267
0
0
0
0
39
0.038348
3ba896ffed28499b8d1d9a50c6e51c5241f414aa
2,413
py
Python
train.py
adamian98/LabelNoiseFlatMinimizers
2c7a60ea0b72f8ac3a0ce3f059526440385b4f60
[ "MIT" ]
7
2021-08-21T23:45:28.000Z
2021-12-13T13:39:38.000Z
train.py
adamian98/LabelNoiseFlatMinimizers
2c7a60ea0b72f8ac3a0ce3f059526440385b4f60
[ "MIT" ]
null
null
null
train.py
adamian98/LabelNoiseFlatMinimizers
2c7a60ea0b72f8ac3a0ce3f059526440385b4f60
[ "MIT" ]
null
null
null
import torch from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.callbacks import LearningRateMonitor from data import CIFAR10Data from module import CIFAR10Module from callbacks import * from pathlib import Path import wandb from absl import app from absl import flags FLAGS = flags.FLAGS flags.DEFINE_string("name", None, "name used for wandb logger") flags.DEFINE_string("init", None, "initial weights to use") flags.DEFINE_integer("max_epochs", 1000, "number of epochs to run for") flags.DEFINE_integer("precision", 32, "precision to use") flags.DEFINE_integer("seed", 0, "random seed") flags.DEFINE_integer("num_workers", 4, "number of workers to use for data loading") flags.DEFINE_string("save", None, "output file to save model weights") flags.DEFINE_bool("callbacks", True, "whether to compute gradient callbacks") flags.DEFINE_bool( "fullbatch", False, "whether to aggregate batches to emulate full batch training" ) def main(argv): seed_everything(FLAGS.seed) logger = WandbLogger(project="colt_final", name=FLAGS.name) logger.experiment.config.update(FLAGS) model = CIFAR10Module() if FLAGS.init is not None: model.load_state_dict(torch.load(Path(FLAGS.init))) data = CIFAR10Data() if FLAGS.callbacks: callbacks = [ LearningRateMonitor(log_momentum=True), TimeEpoch(), TotalGradient(), WeightNorm(), ] else: callbacks = [LearningRateMonitor(log_momentum=True), TimeEpoch()] if FLAGS.fullbatch: accumulate_grad_batches = 50000 // FLAGS.batch_size log_every_n_steps = 1 else: accumulate_grad_batches = 1 log_every_n_steps = 50 trainer = Trainer( logger=logger, gpus=1, max_epochs=FLAGS.max_epochs, callbacks=callbacks, progress_bar_refresh_rate=50, log_every_n_steps=log_every_n_steps, precision=FLAGS.precision, deterministic=True, benchmark=True, terminate_on_nan=True, accumulate_grad_batches=accumulate_grad_batches, ) trainer.fit(model, data) if FLAGS.save: save_file = Path(FLAGS.save) save_file.parent.mkdir(exist_ok=True, parents=True) torch.save(model.state_dict(), save_file) if __name__ == "__main__": app.run(main)
30.544304
85
0.703274
0
0
0
0
0
0
0
0
394
0.163282
3ba9c357940e99f10b2151b5ccc410817c1d8e70
10,559
py
Python
test/lda/createGraphFeatures.py
bekou/graph-topic-model
7bd99aede6c22675f738166e690174ae0917b9eb
[ "MIT" ]
6
2020-01-17T13:23:35.000Z
2022-01-15T22:49:34.000Z
learn/lda/createGraphFeatures.py
bekou/graph-topic-model
7bd99aede6c22675f738166e690174ae0917b9eb
[ "MIT" ]
null
null
null
learn/lda/createGraphFeatures.py
bekou/graph-topic-model
7bd99aede6c22675f738166e690174ae0917b9eb
[ "MIT" ]
1
2019-05-26T15:57:35.000Z
2019-05-26T15:57:35.000Z
import networkx as nx import string import numpy as np import math def degree_centrality(G): centrality={} s=1.0 centrality=dict((n,d*s) for n,d in G.degree_iter()) return centrality def in_degree_centrality(G): if not G.is_directed(): raise nx.NetworkXError("in_degree_centrality() not defined for undirected graphs.") centrality={} s=1.0 centrality=dict((n,d*s) for n,d in G.in_degree_iter()) return centrality def out_degree_centrality(G): if not G.is_directed(): raise nx.NetworkXError("out_degree_centrality() not defined for undirected graphs.") centrality={} s=1.0 centrality=dict((n,d*s) for n,d in G.out_degree_iter()) return centrality def weighted_centrality(G): centrality={} s=1.0 centrality=dict((n,d*s) for n,d in G.degree_iter(weight='weight')) return centrality def createGraphFeatures(num_documents,clean_train_documents,unique_words,sliding_window,b,idf_par,centrality_par,centrality_col_par): features = np.zeros((num_documents,len(unique_words))) term_num_docs = {} print "Creating the graph of words for collection..." if centrality_col_par=="pagerank_centrality" or centrality_col_par=="out_degree_centrality" or centrality_col_par=="in_degree_centrality" or centrality_col_par=="betweenness_centrality_directed" or centrality_col_par=="closeness_centrality_directed": dGcol = nx.DiGraph() else: dGcol = nx.Graph() totalLen = 0 for i in range(0,num_documents): #dG = nx.Graph() found_unique_words = [] wordList1 = clean_train_documents[i].split(None) wordList2 = [string.rstrip(x.lower(), ',.!?;') for x in wordList1] docLen = len(wordList2) totalLen += docLen # print clean_train_documents[i] for k, word in enumerate(wordList2): if word not in found_unique_words: found_unique_words.append(word) if word not in term_num_docs: term_num_docs[word] = 1 else: term_num_docs[word] += 1 for j in xrange(1,sliding_window): try: next_word = wordList2[k + j] if not dGcol.has_node(word): dGcol.add_node(word) dGcol.node[word]['count'] = 1 else: dGcol.node[word]['count'] += 1 if not dGcol.has_node(next_word): dGcol.add_node(next_word) dGcol.node[next_word]['count'] = 0 if not dGcol.has_edge(word, next_word): dGcol.add_edge(word, next_word, weight = 1) else: dGcol.edge[word][next_word]['weight'] += 1 except IndexError: if not dGcol.has_node(word): dGcol.add_node(word) dGcol.node[word]['count'] = 1 else: dGcol.node[word]['count'] += 1 except: raise avgLen = float(totalLen)/num_documents print "Number of nodes in collection graph:"+str(dGcol.number_of_nodes()) print "Number of edges in collection graph:"+str(dGcol.number_of_edges()) print "Average document length:"+str(avgLen) print "Number of self-loops for collection graph:"+str(dGcol.number_of_selfloops()) if idf_par=="icw": icw_col = {} dGcol.remove_edges_from(dGcol.selfloop_edges()) nx.write_edgelist(dGcol, "test.edgelist") if centrality_col_par=="degree_centrality": centrality_col = nx.degree_centrality(dGcol) elif centrality_col_par=="pagerank_centrality": centrality_col = pg.pagerank(dGcol) # centrality_col = nx.pagerank(dGcol) elif centrality_col_par=="eigenvector_centrality": centrality_col = nx.eigenvector_centrality(dGcol,max_iter=10000,weight="weight") elif centrality_col_par=="katz_centrality": centrality_col = nx.katz_centrality(dGcol) elif centrality_col_par=="betweenness_centrality" or centrality_col_par=="betweenness_centrality_directed": centrality_col = nx.betweenness_centrality(dGcol) elif centrality_col_par=="triangles": centrality_col = nx.triangles(dGcol) elif centrality_col_par=="clustering_coefficient": centrality_col = nx.clustering(dGcol) elif centrality_col_par=="in_degree_centrality": centrality_col = nx.in_degree_centrality(dGcol) elif centrality_col_par=="out_degree_centrality": centrality_col = nx.out_degree_centrality(dGcol) elif centrality_col_par=="core_number": centrality_col = nx.core_number(dGcol) elif centrality_col_par=="closeness_centrality" or centrality_col_par=="closeness_centrality_directed": centrality_col = nx.closeness_centrality(dGcol,normalized=False) elif centrality_col_par=="communicability_centrality": centrality_col = nx.communicability_centrality(dGcol) centr_sum = sum(centrality_col.values()) for k, g in enumerate(dGcol.nodes()): if centrality_col[g]>0: icw_col[g] = math.log10((float(centr_sum)) / (centrality_col[g])) else: icw_col[g] = 0 idf_col = {} for x in term_num_docs: idf_col[x] = math.log10((float(num_documents)+1.0) / (term_num_docs[x])) print "Creating the graph of words for each document..." totalNodes = 0 totalEdges = 0 for i in range( 0,num_documents ): if centrality_par=="pagerank_centrality" or centrality_par=="out_degree_centrality" or centrality_par=="in_degree_centrality" or centrality_par=="betweenness_centrality_directed" or centrality_par=="closeness_centrality_directed": dG = nx.DiGraph() else: dG = nx.Graph() wordList1 = clean_train_documents[i].split(None) wordList2 = [string.rstrip(x.lower(), ',.!?;') for x in wordList1] docLen = len(wordList2) if docLen==2 : print wordList2 if docLen>1 and wordList2[0]!=wordList2[1] : # print clean_train_documents[i] for k, word in enumerate(wordList2): for j in xrange(1,sliding_window): try: next_word = wordList2[k + j] if not dG.has_node(word): dG.add_node(word) dG.node[word]['count'] = 1 else: dG.node[word]['count'] += 1 if not dG.has_node(next_word): dG.add_node(next_word) dG.node[next_word]['count'] = 0 if not dG.has_edge(word, next_word): dG.add_edge(word, next_word, weight = 1) else: dG.edge[word][next_word]['weight'] += 1 except IndexError: if not dG.has_node(word): dG.add_node(word) dG.node[word]['count'] = 1 else: dG.node[word]['count'] += 1 except: raise dG.remove_edges_from(dG.selfloop_edges()) if centrality_par=="degree_centrality": #centrality = nx.degree_centrality(dG) centrality=degree_centrality(dG) elif centrality_par=="clustering_coefficient": centrality = nx.clustering(dG) elif centrality_par=="pagerank_centrality": # centrality = pg.pagerank(dG,max_iter=10000) centrality = nx.pagerank(dG) elif centrality_par=="eigenvector_centrality": centrality=nx.eigenvector_centrality(dG,max_iter=10000) elif centrality_par=="katz_centrality": centrality = nx.katz_centrality(dG,normalized=False) elif centrality_par=="betweenness_centrality" or centrality_par=="betweenness_centrality_directed": centrality = nx.betweenness_centrality(dG,normalized=False) elif centrality_par=="triangles": centrality = nx.triangles(dG) elif centrality_par=="in_degree_centrality": centrality = in_degree_centrality(dG) elif centrality_par=="out_degree_centrality": centrality = out_degree_centrality(dG) elif centrality_par=="core_number": centrality = nx.core_number(dG) elif centrality_par=="weighted_centrality": centrality = weighted_centrality(dG) elif centrality_par=="closeness_centrality" or centrality_par=="closeness_centrality_directed": centrality = nx.closeness_centrality(dG,normalized=False) elif centrality_par=="communicability_centrality": centrality = nx.communicability_centrality(dG) totalNodes += dG.number_of_nodes() totalEdges += dG.number_of_edges() #print "Number of self-loops:"+str(dG.number_of_selfloops()) #centrality = nx.out_degree_centrality(dG) #centrality = nx.katz_centrality(dG,max_iter=10000) for k, g in enumerate(dG.nodes()): # Degree centrality (local feature) if g in unique_words: #features[i,unique_words.index(g)] = dG.degree(nbunch=g,weight='weight') * idf_col[g] if idf_par=="no": features[i,unique_words.index(g)] = centrality[g]#centrality[g]/(1-b+(b*(float(docLen)/avgLen)))dG.node[g]['count'] elif idf_par=="idf": features[i,unique_words.index(g)] = (centrality[g]/(1-b+(b*(float(docLen)/avgLen)))) * idf_col[g] elif idf_par=="icw": features[i,unique_words.index(g)] = (centrality[g]/(1-b+(b*(float(docLen)/avgLen)))) * icw_col[g] print "Average number of nodes:"+str(float(totalNodes)/num_documents) print "Average number of edges:"+str(float(totalEdges)/num_documents) return features
43.632231
254
0.58604
0
0
0
0
0
0
0
0
2,008
0.19017
3bab2d583dbdb20d52e61488899227c07f7c4954
30,867
py
Python
blocks/bricks/sequence_generators.py
KIKOcaoyue/blocks
dfbeb400cfacfc1abe75e377cc03c1bf61b9c2fa
[ "BSD-3-Clause" ]
1,067
2015-05-16T23:39:15.000Z
2019-02-10T13:33:00.000Z
blocks/bricks/sequence_generators.py
loveisbasa/blocks
7f380deec8f810b390880e6a4de836115e6e478d
[ "BSD-3-Clause" ]
577
2015-05-16T18:52:53.000Z
2018-11-27T15:31:09.000Z
blocks/bricks/sequence_generators.py
loveisbasa/blocks
7f380deec8f810b390880e6a4de836115e6e478d
[ "BSD-3-Clause" ]
379
2015-05-21T03:24:04.000Z
2019-01-29T02:55:00.000Z
"""Sequence generation framework. Recurrent networks are often used to generate/model sequences. Examples include language modelling, machine translation, handwriting synthesis, etc.. A typical pattern in this context is that sequence elements are generated one often another, and every generated element is fed back into the recurrent network state. Sometimes also an attention mechanism is used to condition sequence generation on some structured input like another sequence or an image. This module provides :class:`SequenceGenerator` that builds a sequence generating network from three main components: * a core recurrent transition, e.g. :class:`~blocks.bricks.recurrent.LSTM` or :class:`~blocks.bricks.recurrent.GatedRecurrent` * a readout component that can produce sequence elements using the network state and the information from the attention mechanism * an attention mechanism (see :mod:`~blocks.bricks.attention` for more information) Implementation-wise :class:`SequenceGenerator` fully relies on :class:`BaseSequenceGenerator`. At the level of the latter an attention is mandatory, moreover it must be a part of the recurrent transition (see :class:`~blocks.bricks.attention.AttentionRecurrent`). To simulate optional attention, :class:`SequenceGenerator` wraps the pure recurrent network in :class:`FakeAttentionRecurrent`. """ from abc import ABCMeta, abstractmethod from six import add_metaclass from theano import tensor from blocks.bricks import Initializable, Random, Bias, NDimensionalSoftmax from blocks.bricks.base import application, Brick, lazy from blocks.bricks.parallel import Fork, Merge from blocks.bricks.lookup import LookupTable from blocks.bricks.recurrent import recurrent from blocks.bricks.attention import ( AbstractAttentionRecurrent, AttentionRecurrent) from blocks.roles import add_role, COST from blocks.utils import dict_union, dict_subset class BaseSequenceGenerator(Initializable): r"""A generic sequence generator. This class combines two components, a readout network and an attention-equipped recurrent transition, into a context-dependent sequence generator. Third component must be also given which forks feedback from the readout network to obtain inputs for the transition. The class provides two methods: :meth:`generate` and :meth:`cost`. The former is to actually generate sequences and the latter is to compute the cost of generating given sequences. The generation algorithm description follows. **Definitions and notation:** * States :math:`s_i` of the generator are the states of the transition as specified in `transition.state_names`. * Contexts of the generator are the contexts of the transition as specified in `transition.context_names`. * Glimpses :math:`g_i` are intermediate entities computed at every generation step from states, contexts and the previous step glimpses. They are computed in the transition's `apply` method when not given or by explicitly calling the transition's `take_glimpses` method. The set of glimpses considered is specified in `transition.glimpse_names`. * Outputs :math:`y_i` are produced at every step and form the output sequence. A generation cost :math:`c_i` is assigned to each output. **Algorithm:** 1. Initialization. .. math:: y_0 = readout.initial\_outputs(contexts)\\ s_0, g_0 = transition.initial\_states(contexts)\\ i = 1\\ By default all recurrent bricks from :mod:`~blocks.bricks.recurrent` have trainable initial states initialized with zeros. Subclass them or :class:`~blocks.bricks.recurrent.BaseRecurrent` directly to get custom initial states. 2. New glimpses are computed: .. math:: g_i = transition.take\_glimpses( s_{i-1}, g_{i-1}, contexts) 3. A new output is generated by the readout and its cost is computed: .. math:: f_{i-1} = readout.feedback(y_{i-1}) \\ r_i = readout.readout(f_{i-1}, s_{i-1}, g_i, contexts) \\ y_i = readout.emit(r_i) \\ c_i = readout.cost(r_i, y_i) Note that the *new* glimpses and the *old* states are used at this step. The reason for not merging all readout methods into one is to make an efficient implementation of :meth:`cost` possible. 4. New states are computed and iteration is done: .. math:: f_i = readout.feedback(y_i) \\ s_i = transition.compute\_states(s_{i-1}, g_i, fork.apply(f_i), contexts) \\ i = i + 1 5. Back to step 2 if the desired sequence length has not been yet reached. | A scheme of the algorithm described above follows. .. image:: /_static/sequence_generator_scheme.png :height: 500px :width: 500px .. Parameters ---------- readout : instance of :class:`AbstractReadout` The readout component of the sequence generator. transition : instance of :class:`AbstractAttentionRecurrent` The transition component of the sequence generator. fork : :class:`~.bricks.Brick` The brick to compute the transition's inputs from the feedback. See Also -------- :class:`.Initializable` : for initialization parameters :class:`SequenceGenerator` : more user friendly interface to this\ brick """ @lazy() def __init__(self, readout, transition, fork, **kwargs): self.readout = readout self.transition = transition self.fork = fork children = [self.readout, self.fork, self.transition] kwargs.setdefault('children', []).extend(children) super(BaseSequenceGenerator, self).__init__(**kwargs) @property def _state_names(self): return self.transition.compute_states.outputs @property def _context_names(self): return self.transition.apply.contexts @property def _glimpse_names(self): return self.transition.take_glimpses.outputs def _push_allocation_config(self): # Configure readout. That involves `get_dim` requests # to the transition. To make sure that it answers # correctly we should finish its configuration first. self.transition.push_allocation_config() transition_sources = (self._state_names + self._context_names + self._glimpse_names) self.readout.source_dims = [self.transition.get_dim(name) if name in transition_sources else self.readout.get_dim(name) for name in self.readout.source_names] # Configure fork. For similar reasons as outlined above, # first push `readout` configuration. self.readout.push_allocation_config() feedback_name, = self.readout.feedback.outputs self.fork.input_dim = self.readout.get_dim(feedback_name) self.fork.output_dims = self.transition.get_dims( self.fork.apply.outputs) @application def cost(self, application_call, outputs, mask=None, **kwargs): """Returns the average cost over the minibatch. The cost is computed by averaging the sum of per token costs for each sequence over the minibatch. .. warning:: Note that, the computed cost can be problematic when batches consist of vastly different sequence lengths. Parameters ---------- outputs : :class:`~tensor.TensorVariable` The 3(2) dimensional tensor containing output sequences. The axis 0 must stand for time, the axis 1 for the position in the batch. mask : :class:`~tensor.TensorVariable` The binary matrix identifying fake outputs. Returns ------- cost : :class:`~tensor.Variable` Theano variable for cost, computed by summing over timesteps and then averaging over the minibatch. Notes ----- The contexts are expected as keyword arguments. Adds average cost per sequence element `AUXILIARY` variable to the computational graph with name ``per_sequence_element``. """ # Compute the sum of costs costs = self.cost_matrix(outputs, mask=mask, **kwargs) cost = tensor.mean(costs.sum(axis=0)) add_role(cost, COST) # Add auxiliary variable for per sequence element cost application_call.add_auxiliary_variable( (costs.sum() / mask.sum()) if mask is not None else costs.mean(), name='per_sequence_element') return cost @application def cost_matrix(self, application_call, outputs, mask=None, **kwargs): """Returns generation costs for output sequences. See Also -------- :meth:`cost` : Scalar cost. """ # We assume the data has axes (time, batch, features, ...) batch_size = outputs.shape[1] # Prepare input for the iterative part states = dict_subset(kwargs, self._state_names, must_have=False) # masks in context are optional (e.g. `attended_mask`) contexts = dict_subset(kwargs, self._context_names, must_have=False) feedback = self.readout.feedback(outputs) inputs = self.fork.apply(feedback, as_dict=True) # Run the recurrent network results = self.transition.apply( mask=mask, return_initial_states=True, as_dict=True, **dict_union(inputs, states, contexts)) # Separate the deliverables. The last states are discarded: they # are not used to predict any output symbol. The initial glimpses # are discarded because they are not used for prediction. # Remember, glimpses are computed _before_ output stage, states are # computed after. states = {name: results[name][:-1] for name in self._state_names} glimpses = {name: results[name][1:] for name in self._glimpse_names} # Compute the cost feedback = tensor.roll(feedback, 1, 0) feedback = tensor.set_subtensor( feedback[0], self.readout.feedback(self.readout.initial_outputs(batch_size))) readouts = self.readout.readout( feedback=feedback, **dict_union(states, glimpses, contexts)) costs = self.readout.cost(readouts, outputs) if mask is not None: costs *= mask for name, variable in list(glimpses.items()) + list(states.items()): application_call.add_auxiliary_variable( variable.copy(), name=name) # This variables can be used to initialize the initial states of the # next batch using the last states of the current batch. for name in self._state_names + self._glimpse_names: application_call.add_auxiliary_variable( results[name][-1].copy(), name=name+"_final_value") return costs @recurrent def generate(self, outputs, **kwargs): """A sequence generation step. Parameters ---------- outputs : :class:`~tensor.TensorVariable` The outputs from the previous step. Notes ----- The contexts, previous states and glimpses are expected as keyword arguments. """ states = dict_subset(kwargs, self._state_names) # masks in context are optional (e.g. `attended_mask`) contexts = dict_subset(kwargs, self._context_names, must_have=False) glimpses = dict_subset(kwargs, self._glimpse_names) next_glimpses = self.transition.take_glimpses( as_dict=True, **dict_union(states, glimpses, contexts)) next_readouts = self.readout.readout( feedback=self.readout.feedback(outputs), **dict_union(states, next_glimpses, contexts)) next_outputs = self.readout.emit(next_readouts) next_costs = self.readout.cost(next_readouts, next_outputs) next_feedback = self.readout.feedback(next_outputs) next_inputs = (self.fork.apply(next_feedback, as_dict=True) if self.fork else {'feedback': next_feedback}) next_states = self.transition.compute_states( as_list=True, **dict_union(next_inputs, states, next_glimpses, contexts)) return (next_states + [next_outputs] + list(next_glimpses.values()) + [next_costs]) @generate.delegate def generate_delegate(self): return self.transition.apply @generate.property('states') def generate_states(self): return self._state_names + ['outputs'] + self._glimpse_names @generate.property('outputs') def generate_outputs(self): return (self._state_names + ['outputs'] + self._glimpse_names + ['costs']) def get_dim(self, name): if name in (self._state_names + self._context_names + self._glimpse_names): return self.transition.get_dim(name) elif name == 'outputs': return self.readout.get_dim(name) return super(BaseSequenceGenerator, self).get_dim(name) @application def initial_states(self, batch_size, *args, **kwargs): # TODO: support dict of outputs for application methods # to simplify this code. state_dict = dict( self.transition.initial_states( batch_size, as_dict=True, *args, **kwargs), outputs=self.readout.initial_outputs(batch_size)) return [state_dict[state_name] for state_name in self.generate.states] @initial_states.property('outputs') def initial_states_outputs(self): return self.generate.states @add_metaclass(ABCMeta) class AbstractReadout(Initializable): """The interface for the readout component of a sequence generator. The readout component of a sequence generator is a bridge between the core recurrent network and the output sequence. Parameters ---------- source_names : list A list of the source names (outputs) that are needed for the readout part e.g. ``['states']`` or ``['states', 'weighted_averages']`` or ``['states', 'feedback']``. readout_dim : int The dimension of the readout. Attributes ---------- source_names : list readout_dim : int See Also -------- :class:`BaseSequenceGenerator` : see how exactly a readout is used :class:`Readout` : the typically used readout brick """ @lazy(allocation=['source_names', 'readout_dim']) def __init__(self, source_names, readout_dim, **kwargs): self.source_names = source_names self.readout_dim = readout_dim super(AbstractReadout, self).__init__(**kwargs) @abstractmethod def emit(self, readouts): """Produce outputs from readouts. Parameters ---------- readouts : :class:`~theano.Variable` Readouts produced by the :meth:`readout` method of a `(batch_size, readout_dim)` shape. """ pass @abstractmethod def cost(self, readouts, outputs): """Compute generation cost of outputs given readouts. Parameters ---------- readouts : :class:`~theano.Variable` Readouts produced by the :meth:`readout` method of a `(..., readout dim)` shape. outputs : :class:`~theano.Variable` Outputs whose cost should be computed. Should have as many or one less dimensions compared to `readout`. If readout has `n` dimensions, first `n - 1` dimensions of `outputs` should match with those of `readouts`. """ pass @abstractmethod def initial_outputs(self, batch_size): """Compute initial outputs for the generator's first step. In the notation from the :class:`BaseSequenceGenerator` documentation this method should compute :math:`y_0`. """ pass @abstractmethod def readout(self, **kwargs): r"""Compute the readout vector from states, glimpses, etc. Parameters ---------- \*\*kwargs: dict Contains sequence generator states, glimpses, contexts and feedback from the previous outputs. """ pass @abstractmethod def feedback(self, outputs): """Feeds outputs back to be used as inputs of the transition.""" pass class Readout(AbstractReadout): r"""Readout brick with separated emitter and feedback parts. :class:`Readout` combines a few bits and pieces into an object that can be used as the readout component in :class:`BaseSequenceGenerator`. This includes an emitter brick, to which :meth:`emit`, :meth:`cost` and :meth:`initial_outputs` calls are delegated, a feedback brick to which :meth:`feedback` functionality is delegated, and a pipeline to actually compute readouts from all the sources (see the `source_names` attribute of :class:`AbstractReadout`). The readout computation pipeline is constructed from `merge` and `post_merge` brick, whose responsibilites are described in the respective docstrings. Parameters ---------- emitter : an instance of :class:`AbstractEmitter` The emitter component. feedback_brick : an instance of :class:`AbstractFeedback` The feedback component. merge : :class:`~.bricks.Brick`, optional A brick that takes the sources given in `source_names` as an input and combines them into a single output. If given, `merge_prototype` cannot be given. merge_prototype : :class:`.FeedForward`, optional If `merge` isn't given, the transformation given by `merge_prototype` is applied to each input before being summed. By default a :class:`.Linear` transformation without biases is used. If given, `merge` cannot be given. post_merge : :class:`.Feedforward`, optional This transformation is applied to the merged inputs. By default :class:`.Bias` is used. merged_dim : int, optional The input dimension of `post_merge` i.e. the output dimension of `merge` (or `merge_prototype`). If not give, it is assumed to be the same as `readout_dim` (i.e. `post_merge` is assumed to not change dimensions). \*\*kwargs : dict Passed to the parent's constructor. See Also -------- :class:`BaseSequenceGenerator` : see how exactly a readout is used :class:`AbstractEmitter`, :class:`AbstractFeedback` """ def __init__(self, emitter=None, feedback_brick=None, merge=None, merge_prototype=None, post_merge=None, merged_dim=None, **kwargs): if not emitter: emitter = TrivialEmitter(kwargs['readout_dim']) if not feedback_brick: feedback_brick = TrivialFeedback(kwargs['readout_dim']) if not merge: merge = Merge(input_names=kwargs['source_names'], prototype=merge_prototype) if not post_merge: post_merge = Bias(dim=kwargs['readout_dim']) if not merged_dim: merged_dim = kwargs['readout_dim'] self.emitter = emitter self.feedback_brick = feedback_brick self.merge = merge self.post_merge = post_merge self.merged_dim = merged_dim children = [self.emitter, self.feedback_brick, self.merge, self.post_merge] kwargs.setdefault('children', []).extend(children) super(Readout, self).__init__(**kwargs) def _push_allocation_config(self): self.emitter.readout_dim = self.get_dim('readouts') self.feedback_brick.output_dim = self.get_dim('outputs') self.merge.input_names = self.source_names self.merge.input_dims = self.source_dims self.merge.output_dim = self.merged_dim self.post_merge.input_dim = self.merged_dim self.post_merge.output_dim = self.readout_dim @application def readout(self, **kwargs): merged = self.merge.apply(**{name: kwargs[name] for name in self.merge.input_names}) merged = self.post_merge.apply(merged) return merged @application def emit(self, readouts): return self.emitter.emit(readouts) @application def cost(self, readouts, outputs): return self.emitter.cost(readouts, outputs) @application def initial_outputs(self, batch_size): return self.emitter.initial_outputs(batch_size) @application(outputs=['feedback']) def feedback(self, outputs): return self.feedback_brick.feedback(outputs) def get_dim(self, name): if name == 'outputs': return self.emitter.get_dim(name) elif name == 'feedback': return self.feedback_brick.get_dim(name) elif name == 'readouts': return self.readout_dim return super(Readout, self).get_dim(name) @add_metaclass(ABCMeta) class AbstractEmitter(Brick): """The interface for the emitter component of a readout. Attributes ---------- readout_dim : int The dimension of the readout. Is given by the :class:`Readout` brick when allocation configuration is pushed. See Also -------- :class:`Readout` :class:`SoftmaxEmitter` : for integer outputs Notes ----- An important detail about the emitter cost is that it will be evaluated with inputs of different dimensions so it has to be flexible enough to handle this. The two ways in which it can be applied are: 1. In :meth:BaseSequenceGenerator.cost_matrix where it will be applied to the whole sequence at once. 2. In :meth:BaseSequenceGenerator.generate where it will be applied to only one step of the sequence. """ @abstractmethod def emit(self, readouts): """Implements the respective method of :class:`Readout`.""" pass @abstractmethod def cost(self, readouts, outputs): """Implements the respective method of :class:`Readout`.""" pass @abstractmethod def initial_outputs(self, batch_size): """Implements the respective method of :class:`Readout`.""" pass @add_metaclass(ABCMeta) class AbstractFeedback(Brick): """The interface for the feedback component of a readout. See Also -------- :class:`Readout` :class:`LookupFeedback` for integer outputs """ @abstractmethod def feedback(self, outputs): """Implements the respective method of :class:`Readout`.""" pass class TrivialEmitter(AbstractEmitter): """An emitter for the trivial case when readouts are outputs. Parameters ---------- readout_dim : int The dimension of the readout. Notes ----- By default :meth:`cost` always returns zero tensor. """ @lazy(allocation=['readout_dim']) def __init__(self, readout_dim, **kwargs): super(TrivialEmitter, self).__init__(**kwargs) self.readout_dim = readout_dim @application def emit(self, readouts): return readouts @application def cost(self, readouts, outputs): return tensor.zeros_like(outputs) @application def initial_outputs(self, batch_size): return tensor.zeros((batch_size, self.readout_dim)) def get_dim(self, name): if name == 'outputs': return self.readout_dim return super(TrivialEmitter, self).get_dim(name) class SoftmaxEmitter(AbstractEmitter, Initializable, Random): """A softmax emitter for the case of integer outputs. Interprets readout elements as energies corresponding to their indices. Parameters ---------- initial_output : int or a scalar :class:`~theano.Variable` The initial output. """ def __init__(self, initial_output=0, **kwargs): self.initial_output = initial_output self.softmax = NDimensionalSoftmax() children = [self.softmax] kwargs.setdefault('children', []).extend(children) super(SoftmaxEmitter, self).__init__(**kwargs) @application def probs(self, readouts): return self.softmax.apply(readouts, extra_ndim=readouts.ndim - 2) @application def emit(self, readouts): probs = self.probs(readouts) batch_size = probs.shape[0] pvals_flat = probs.reshape((batch_size, -1)) generated = self.theano_rng.multinomial(pvals=pvals_flat) return generated.reshape(probs.shape).argmax(axis=-1) @application def cost(self, readouts, outputs): # WARNING: unfortunately this application method works # just fine when `readouts` and `outputs` have # different dimensions. Be careful! return self.softmax.categorical_cross_entropy( outputs, readouts, extra_ndim=readouts.ndim - 2) @application def initial_outputs(self, batch_size): return self.initial_output * tensor.ones((batch_size,), dtype='int64') def get_dim(self, name): if name == 'outputs': return 0 return super(SoftmaxEmitter, self).get_dim(name) class TrivialFeedback(AbstractFeedback): """A feedback brick for the case when readout are outputs.""" @lazy(allocation=['output_dim']) def __init__(self, output_dim, **kwargs): super(TrivialFeedback, self).__init__(**kwargs) self.output_dim = output_dim @application(outputs=['feedback']) def feedback(self, outputs): return outputs def get_dim(self, name): if name == 'feedback': return self.output_dim return super(TrivialFeedback, self).get_dim(name) class LookupFeedback(AbstractFeedback, Initializable): """A feedback brick for the case when readout are integers. Stores and retrieves distributed representations of integers. """ def __init__(self, num_outputs=None, feedback_dim=None, **kwargs): self.num_outputs = num_outputs self.feedback_dim = feedback_dim self.lookup = LookupTable(num_outputs, feedback_dim) children = [self.lookup] kwargs.setdefault('children', []).extend(children) super(LookupFeedback, self).__init__(**kwargs) def _push_allocation_config(self): self.lookup.length = self.num_outputs self.lookup.dim = self.feedback_dim @application def feedback(self, outputs): assert self.output_dim == 0 return self.lookup.apply(outputs) def get_dim(self, name): if name == 'feedback': return self.feedback_dim return super(LookupFeedback, self).get_dim(name) class FakeAttentionRecurrent(AbstractAttentionRecurrent, Initializable): """Adds fake attention interface to a transition. :class:`BaseSequenceGenerator` requires its transition brick to support :class:`~blocks.bricks.attention.AbstractAttentionRecurrent` interface, that is to have an embedded attention mechanism. For the cases when no attention is required (e.g. language modeling or encoder-decoder models), :class:`FakeAttentionRecurrent` is used to wrap a usual recurrent brick. The resulting brick has no glimpses and simply passes all states and contexts to the wrapped one. .. todo:: Get rid of this brick and support attention-less transitions in :class:`BaseSequenceGenerator`. """ def __init__(self, transition, **kwargs): self.transition = transition self.state_names = transition.apply.states self.context_names = transition.apply.contexts self.glimpse_names = [] children = [self.transition] kwargs.setdefault('children', []).extend(children) super(FakeAttentionRecurrent, self).__init__(**kwargs) @application def apply(self, *args, **kwargs): return self.transition.apply(*args, **kwargs) @apply.delegate def apply_delegate(self): return self.transition.apply @application def compute_states(self, *args, **kwargs): return self.transition.apply(iterate=False, *args, **kwargs) @compute_states.delegate def compute_states_delegate(self): return self.transition.apply @application(outputs=[]) def take_glimpses(self, *args, **kwargs): return None @application def initial_states(self, batch_size, *args, **kwargs): return self.transition.initial_states(batch_size, *args, **kwargs) @initial_states.property('outputs') def initial_states_outputs(self): return self.transition.apply.states def get_dim(self, name): return self.transition.get_dim(name) class SequenceGenerator(BaseSequenceGenerator): r"""A more user-friendly interface for :class:`BaseSequenceGenerator`. Parameters ---------- readout : instance of :class:`AbstractReadout` The readout component for the sequence generator. transition : instance of :class:`.BaseRecurrent` The recurrent transition to be used in the sequence generator. Will be combined with `attention`, if that one is given. attention : object, optional The attention mechanism to be added to ``transition``, an instance of :class:`~blocks.bricks.attention.AbstractAttention`. add_contexts : bool If ``True``, the :class:`.AttentionRecurrent` wrapping the `transition` will add additional contexts for the attended and its mask. \*\*kwargs : dict All keywords arguments are passed to the base class. If `fork` keyword argument is not provided, :class:`.Fork` is created that forks all transition sequential inputs without a "mask" substring in them. """ def __init__(self, readout, transition, attention=None, add_contexts=True, **kwargs): normal_inputs = [name for name in transition.apply.sequences if 'mask' not in name] kwargs.setdefault('fork', Fork(normal_inputs)) if attention: transition = AttentionRecurrent( transition, attention, add_contexts=add_contexts, name="att_trans") else: transition = FakeAttentionRecurrent(transition, name="with_fake_attention") super(SequenceGenerator, self).__init__( readout, transition, **kwargs)
35.357388
78
0.655846
28,858
0.934914
0
0
14,598
0.472932
0
0
15,848
0.513429
3bad4e23a3beb6bf9c00280bce54c9d434b3e821
1,752
py
Python
src/plotComponents2D.py
ElsevierSoftwareX/SOFTX-D-21-00108
3ae995e7ef2fa2eb706a2f55390d8b53424082af
[ "MIT" ]
null
null
null
src/plotComponents2D.py
ElsevierSoftwareX/SOFTX-D-21-00108
3ae995e7ef2fa2eb706a2f55390d8b53424082af
[ "MIT" ]
null
null
null
src/plotComponents2D.py
ElsevierSoftwareX/SOFTX-D-21-00108
3ae995e7ef2fa2eb706a2f55390d8b53424082af
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np def plotComponents2D(X, y, labels, use_markers = False, ax=None, legends = None, tags = None): if X.shape[1] < 2: print('ERROR: X MUST HAVE AT LEAST 2 FEATURES/COLUMNS! SKIPPING plotComponents2D().') return # Gray shades can be given as a string encoding a float in the 0-1 range colors = ['0.9', '0.1', 'red', 'blue', 'black','orange','green','cyan','purple','gray'] markers = ['o', 's', '^', 'D', 'H', 'o', 's', '^', 'D', 'H', 'o', 's', '^', 'D', 'H', 'o', 's', '^', 'D', 'H'] if (ax is None): fig, ax = plt.subplots() i=0 if (labels is None): labels = set(y) for label in labels: cluster = X[np.where(y == label)] # print(cluster.shape) if use_markers: ax.scatter([cluster[:,0]], [cluster[:,1]], s=40, marker=markers[i], facecolors='none', edgecolors=colors[i+3], label= (str(legends[i]) if legends is not None else ("Y = " + str(label))) ) else: ax.scatter([cluster[:,0]], [cluster[:,1]], s=70, facecolors=colors[i], label= (str(legends[i]) if legends is not None else ("Y = " + str(label))), edgecolors = 'black', alpha = .4) # cmap='tab20' i=i+1 if (tags is not None): for j,tag in enumerate(tags): ax.annotate(str(tag), (X[j,0] + 0.1, X[j,1] - 0.1)) ax.legend() ax.axes.xaxis.set_visible(False) ax.axes.yaxis.set_visible(False)
36.5
114
0.4629
0
0
0
0
0
0
0
0
350
0.199772
3bafd74c087e7fcccb34aa701eb50c300c1ce2a1
5,541
py
Python
bin/sa_haveibeenpwned/aob_py3/cloudconnectlib/splunktacollectorlib/data_collection/ta_data_collector.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
2
2020-08-17T07:52:48.000Z
2020-12-18T16:39:32.000Z
bin/sa_haveibeenpwned/aob_py3/cloudconnectlib/splunktacollectorlib/data_collection/ta_data_collector.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
5
2020-12-15T23:40:14.000Z
2022-02-23T15:43:18.000Z
bin/sa_haveibeenpwned/aob_py3/cloudconnectlib/splunktacollectorlib/data_collection/ta_data_collector.py
hRun/SA-haveibeenpwned
2a8ae3dedc405dc3c8dac1cb6a705a70f574afdb
[ "Apache-2.0" ]
4
2019-05-16T09:57:33.000Z
2021-07-14T12:31:21.000Z
#!/usr/bin/python from __future__ import absolute_import from builtins import object import threading import time from collections import namedtuple from . import ta_consts as c from ..common import log as stulog from ...splunktalib.common import util as scu evt_fmt = ("<stream><event><host>{0}</host>" "<source><![CDATA[{1}]]></source>" "<sourcetype><![CDATA[{2}]]></sourcetype>" "<time>{3}</time>" "<index>{4}</index><data>" "<![CDATA[{5}]]></data></event></stream>") unbroken_evt_fmt = ("<stream>" "<event unbroken=\"1\">" "<host>{0}</host>" "<source><![CDATA[{1}]]></source>" "<sourcetype><![CDATA[{2}]]></sourcetype>" "<time>{3}</time>" "<index>{4}</index>" "<data><![CDATA[{5}]]></data>" "{6}" "</event>" "</stream>") event_tuple = namedtuple('Event', ['host', 'source', 'sourcetype', 'time', 'index', 'raw_data', 'is_unbroken', 'is_done']) class TADataCollector(object): def __init__(self, tconfig, meta_config, task_config, checkpoint_manager_cls, data_client_cls, data_loader): self._lock = threading.Lock() self._ta_config = tconfig self._meta_config = meta_config self._task_config = task_config self._stopped = False self._p = self._get_logger_prefix() self._checkpoint_manager = checkpoint_manager_cls(meta_config, task_config) self.data_client_cls = data_client_cls self._data_loader = data_loader self._client = None def get_meta_configs(self): return self._meta_config def get_task_config(self): return self._task_config def get_interval(self): return self._task_config[c.interval] def _get_logger_prefix(self): pairs = ['{}="{}"'.format(c.stanza_name, self._task_config[ c.stanza_name])] return "[{}]".format(" ".join(pairs)) def stop(self): self._stopped = True if self._client: self._client.stop() def __call__(self): self.index_data() def _build_event(self, events): if not events: return None if not isinstance(events, list): events = [events] evts = [] for event in events: assert event.raw_data, "the raw data of events is empty" if event.is_unbroken: evt = unbroken_evt_fmt.format( event.host or "", event.source or "", event.sourcetype or "", event.time or "", event.index or "", scu.escape_cdata(event.raw_data), "<done/>" if event.is_done else "") else: evt = evt_fmt.format(event.host or "", event.source or "", event.sourcetype or "", event.time or "", event.index or "", scu.escape_cdata(event.raw_data)) evts.append(evt) return evts def _create_data_client(self): return self.data_client_cls(self._meta_config, self._task_config, self._checkpoint_manager, self._data_loader.get_event_writer()) def index_data(self): if self._lock.locked(): stulog.logger.debug( "Last round of stanza={} is not done yet".format( self._task_config[c.stanza_name])) return with self._lock: try: self._do_safe_index() self._checkpoint_manager.close() except Exception: stulog.logger.exception("{} Failed to index data" .format(self._p)) stulog.logger.info("{} End of indexing data".format(self._p)) if not self._ta_config.is_single_instance(): self._data_loader.tear_down() def _write_events(self, events): evts = self._build_event(events) if evts: if not self._data_loader.write_events(evts): stulog.logger.info("{} the event queue is closed and the " "received data will be discarded".format( self._p)) return False return True def _do_safe_index(self): self._client = self._create_data_client() while not self._stopped: try: events = self._client.get() if not events: continue else: if not self._write_events(events): break except StopIteration: stulog.logger.info("{} Finished this round".format(self._p)) return except Exception: stulog.logger.exception("{} Failed to get msg".format(self._p)) break # in case encounter exception or fail to write events if not self._stopped: self.stop()
37.693878
80
0.497203
4,344
0.783974
0
0
0
0
0
0
857
0.154665
3bb2017aa37b51490a6ff0089cf9d21b31b7addf
220
py
Python
basic_assignment/32.py
1212091/python-learning
30fad66460daf73fd3961cf667ee25b91dee923d
[ "MIT" ]
null
null
null
basic_assignment/32.py
1212091/python-learning
30fad66460daf73fd3961cf667ee25b91dee923d
[ "MIT" ]
null
null
null
basic_assignment/32.py
1212091/python-learning
30fad66460daf73fd3961cf667ee25b91dee923d
[ "MIT" ]
null
null
null
class Circle: def __init__(self, radius): self.radius = radius def compute_area(self): return self.radius ** 2 * 3.14 circle = Circle(2) print("Area of circuit: " + str(circle.compute_area()))
20
55
0.631818
142
0.645455
0
0
0
0
0
0
19
0.086364
3bb360a4392cf829c811ffb8e087e7288ebd8630
502
py
Python
415.py
RafaelHuang87/Leet-Code-Practice
7754dcee38ffda18a5759113ef06d7becf4fe728
[ "MIT" ]
null
null
null
415.py
RafaelHuang87/Leet-Code-Practice
7754dcee38ffda18a5759113ef06d7becf4fe728
[ "MIT" ]
null
null
null
415.py
RafaelHuang87/Leet-Code-Practice
7754dcee38ffda18a5759113ef06d7becf4fe728
[ "MIT" ]
null
null
null
class Solution: def addStrings(self, num1: str, num2: str) -> str: i, j, result, carry = len(num1) - 1, len(num2) - 1, '', 0 while i >= 0 or j >= 0: if i >= 0: carry += ord(num1[i]) - ord('0') if j >= 0: carry += ord(num2[j]) - ord('0') result += chr(carry % 10 + ord('0')) carry //= 10 i -= 1 j -= 1 if carry == 1: result += '1' return result[::-1]
31.375
65
0.376494
501
0.998008
0
0
0
0
0
0
14
0.027888
3bb3f6ef40737ea90a9f45f3effca880da0d4227
154
py
Python
lambdata-mkhalil/my_script.py
mkhalil7625/lambdata-mkhalil
87f74166a3ae4f4cc92733cb5fc0c15e3b32f565
[ "MIT" ]
null
null
null
lambdata-mkhalil/my_script.py
mkhalil7625/lambdata-mkhalil
87f74166a3ae4f4cc92733cb5fc0c15e3b32f565
[ "MIT" ]
null
null
null
lambdata-mkhalil/my_script.py
mkhalil7625/lambdata-mkhalil
87f74166a3ae4f4cc92733cb5fc0c15e3b32f565
[ "MIT" ]
null
null
null
import pandas as pd from my_mod import enlarge print("Hello!") df = pd.DataFrame({"a":[1,2,3], "b":[4,5,6]}) print(df.head()) x = 11 print(enlarge(x))
14
45
0.62987
0
0
0
0
0
0
0
0
14
0.090909
3bb55e28e639f9add169bf9d74da89f4b5663f84
885
py
Python
exploit_mutillidae.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
exploit_mutillidae.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
exploit_mutillidae.py
binarioGH/minihacktools
664e72ccc54089baa3b4d2ddc28bdcddbfdd1833
[ "MIT" ]
null
null
null
#-*-coding: utf-8-*- from requests import session from bs4 import BeautifulSoup #Aqui pones la ip de tu maquina. host = "192.168.1.167" #Aqui pones la ruta de el dns-lookup.php route = "/mutillidae/index.php?page=dns-lookup.php" with session() as s: cmd = '' while cmd != 'exit': cmd = input(">>") payload = "|| {}".format(cmd) #Mandar el payload al host por medio de un post request. response = s.post("http://{}{}".format(host, route), data={"target_host": payload}) #Parsear la respuesta con beautiful soup soup = BeautifulSoup(response.text, "html.parser") #El output del comando se encuentra en un <pre> con la clase 'report-header' #Asi que le decimos a beautiful soup que lo encuentre, y que nos de el texto. command_output = soup.find_all("pre", attrs={"class": "report-header"})[0].get_text() #Imprimir output del comando print(command_output)
32.777778
87
0.692655
0
0
0
0
0
0
0
0
514
0.580791
3bb5cf6df03cde1b36d438f6ec362fdce3a55254
101
py
Python
submissions/abc085/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
1
2021-05-10T01:16:28.000Z
2021-05-10T01:16:28.000Z
submissions/abc085/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
3
2021-05-11T06:14:15.000Z
2021-06-19T08:18:36.000Z
submissions/abc085/a.py
m-star18/atcoder
08e475810516602fa088f87daf1eba590b4e07cc
[ "Unlicense" ]
null
null
null
# sys.stdin.readline() import sys input = sys.stdin.readline print(input().replace('2017', '2018'))
16.833333
38
0.70297
0
0
0
0
0
0
0
0
34
0.336634
3bb6a612c41a6fc405f13a76e25386f09fd4787a
4,069
py
Python
rsmtool/utils/files.py
MarcoGorelli/rsmtool
8759f5bec09a8ba0dd2ca16f6af8ce100d5ea6a0
[ "Apache-2.0" ]
null
null
null
rsmtool/utils/files.py
MarcoGorelli/rsmtool
8759f5bec09a8ba0dd2ca16f6af8ce100d5ea6a0
[ "Apache-2.0" ]
null
null
null
rsmtool/utils/files.py
MarcoGorelli/rsmtool
8759f5bec09a8ba0dd2ca16f6af8ce100d5ea6a0
[ "Apache-2.0" ]
null
null
null
""" Utility classes and functions for RSMTool file management. :author: Jeremy Biggs (jbiggs@ets.org) :author: Anastassia Loukina (aloukina@ets.org) :author: Nitin Madnani (nmadnani@ets.org) :organization: ETS """ import json import re from glob import glob from pathlib import Path from os.path import join from .constants import POSSIBLE_EXTENSIONS def parse_json_with_comments(pathlike): """ Parse a JSON file after removing any comments. Comments can use either ``//`` for single-line comments or or ``/* ... */`` for multi-line comments. The input filepath can be a string or ``pathlib.Path``. Parameters ---------- filename : str or os.PathLike Path to the input JSON file either as a string or as a ``pathlib.Path`` object. Returns ------- obj : dict JSON object representing the input file. Note ---- This code was adapted from: https://web.archive.org/web/20150520154859/http://www.lifl.fr/~riquetd/parse-a-json-file-with-comments.html """ # Regular expression to identify comments comment_re = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?', re.DOTALL | re.MULTILINE) # if we passed in a string, convert it to a Path if isinstance(pathlike, str): pathlike = Path(pathlike) with open(pathlike, 'r') as file_buff: content = ''.join(file_buff.readlines()) # Looking for comments match = comment_re.search(content) while match: # single line comment content = content[:match.start()] + content[match.end():] match = comment_re.search(content) # Return JSON object config = json.loads(content) return config def has_files_with_extension(directory, ext): """ Check if the directory has any files with the given extension. Parameters ---------- directory : str The path to the directory where output is located. ext : str The the given extension. Returns ------- bool True if directory contains files with given extension, else False. """ files_with_extension = glob(join(directory, '*.{}'.format(ext))) return len(files_with_extension) > 0 def get_output_directory_extension(directory, experiment_id): """ Check the output directory to determine what file extensions exist. If more than one extension (in the possible list of extensions) exists, then raise a ValueError. Otherwise, return the one file extension. If no extensions can be found, then `csv` will be returned by default. Possible extensions include: `csv`, `tsv`, `xlsx`. Files in the directory with none of these extensions will be ignored. Parameters ---------- directory : str The path to the directory where output is located. experiment_id : str The ID of the experiment. Returns ------- extension : {'csv', 'tsv', 'xlsx'} The extension that output files in this directory end with. Raises ------ ValueError If any files in the directory have different extensions, and are in the list of possible output extensions. """ extension = 'csv' extensions_identified = {ext for ext in POSSIBLE_EXTENSIONS if has_files_with_extension(directory, ext)} if len(extensions_identified) > 1: raise ValueError('Some of the files in the experiment output directory (`{}`) ' 'for `{}` have different extensions. All files in this directory ' 'must have the same extension. The following extensions were ' 'identified : {}'.format(directory, experiment_id, ', '.join(extensions_identified))) elif len(extensions_identified) == 1: extension = list(extensions_identified)[0] return extension
29.70073
111
0.616368
0
0
0
0
0
0
0
0
2,550
0.62669
3bbaa7105c8bdb5d9e446a53505849bc8d258fd0
2,479
py
Python
src/aiotube/playlist.py
jnsougata/AioTube
719bc52e442d06f922ada65da7650cfb92a0f237
[ "MIT" ]
4
2021-10-02T07:01:22.000Z
2021-12-30T08:27:36.000Z
src/aiotube/playlist.py
jnsougata/AioTube
719bc52e442d06f922ada65da7650cfb92a0f237
[ "MIT" ]
2
2021-11-18T20:21:39.000Z
2021-12-27T17:12:17.000Z
src/aiotube/playlist.py
jnsougata/AioTube
719bc52e442d06f922ada65da7650cfb92a0f237
[ "MIT" ]
3
2021-10-01T03:21:33.000Z
2021-12-21T20:49:30.000Z
from ._threads import _Thread from .utils import filter from .videobulk import _VideoBulk from ._http import _get_playlist_data from ._rgxs import _PlaylistPatterns as rgx from typing import List, Optional, Dict, Any class Playlist: __HEAD = 'https://www.youtube.com/playlist?list=' def __init__(self, playlist_id: str): """ :param str playlist_id: the _id of the playlist """ if 'youtube.com' in playlist_id: self.id = playlist_id.split('list=')[-1] else: self.id = playlist_id self.__playlist_data = _get_playlist_data(self.id) def __repr__(self): return f'<Playlist {self.url}>' @property def name(self) -> Optional[str]: """ :return: the name of the playlist """ names = rgx.name.findall(self.__playlist_data) return names[0] if names else None @property def url(self) -> Optional[str]: """ :return: url of the playlist """ return f'https://www.youtube.com/playlist?list={self.id}' @property def video_count(self) -> Optional[str]: """ :return: total number of videos in that playlist """ video_count = rgx.video_count.findall(self.__playlist_data) return video_count[0] if video_count else None @property def videos(self) -> _VideoBulk: """ :return: list of < video objects > for each video in the playlist (consider limit) """ videos = rgx.video_id.findall(self.__playlist_data) return _VideoBulk(filter(iterable=videos)) @property def thumbnail(self) -> Optional[str]: """ :return: url of the thumbnail of the playlist """ thumbnails = rgx.thumbnail.findall(self.__playlist_data) return thumbnails[0] if thumbnails else None @property def info(self) -> Dict[str, Any]: """ :return: a dict containing playlist info """ def _get_data(pattern): data = pattern.findall(self.__playlist_data) return data[0] if data else None patterns = [rgx.name, rgx.video_count, rgx.thumbnail] data = _Thread.run(_get_data, patterns) return { 'name': data[0], 'video_count': data[1], 'videos': filter(rgx.video_id.findall(raw)), 'url': self.__HEAD + self.id, 'thumbnail': data[2] }
27.853933
90
0.592981
2,251
0.908027
0
0
1,750
0.70593
0
0
668
0.269463
3bbaf9656983dcec4f85d013784da058e74250a8
160
py
Python
actions/sleep.py
bhaveshAn/Lucy
9ea97184c725a10a041af64cad0ef4b533be42ad
[ "MIT" ]
1
2018-04-13T08:26:27.000Z
2018-04-13T08:26:27.000Z
actions/sleep.py
bhaveshAn/Lucy
9ea97184c725a10a041af64cad0ef4b533be42ad
[ "MIT" ]
null
null
null
actions/sleep.py
bhaveshAn/Lucy
9ea97184c725a10a041af64cad0ef4b533be42ad
[ "MIT" ]
null
null
null
import random def go_to_sleep(text): replies = ['See you later!', 'Just call my name and I\'ll be there!'] return (random.choice(replies)) quit()
20
73
0.65
0
0
0
0
0
0
0
0
55
0.34375
3bbc9e86460d1c4a98d44711f0b944fd26bd0864
441
py
Python
django_sso_app/core/api/utils.py
paiuolo/django-sso-app
75b96c669dc0b176dc77e08f018a3e97d259f636
[ "MIT" ]
1
2021-11-16T15:16:08.000Z
2021-11-16T15:16:08.000Z
django_sso_app/core/api/utils.py
paiuolo/django-sso-app
75b96c669dc0b176dc77e08f018a3e97d259f636
[ "MIT" ]
null
null
null
django_sso_app/core/api/utils.py
paiuolo/django-sso-app
75b96c669dc0b176dc77e08f018a3e97d259f636
[ "MIT" ]
null
null
null
import logging from django.contrib.messages import get_messages from django.utils.encoding import force_str logger = logging.getLogger('django_sso_app') def get_request_messages_string(request): """ Serializes django messages :param request: :return: """ storage = get_messages(request) _messages = [] for message in storage: _messages.append(force_str(message)) return ', '.join(_messages)
20.045455
48
0.709751
0
0
0
0
0
0
0
0
96
0.217687
3bbcc2fb4051ff428b3a3b66b12c0e4e0235c79c
1,092
py
Python
download_stock_data.py
dabideee13/Price-Pattern-Prediction
632d961fc08777adab8eeb7ecbf16ac7cc71a3a7
[ "MIT" ]
null
null
null
download_stock_data.py
dabideee13/Price-Pattern-Prediction
632d961fc08777adab8eeb7ecbf16ac7cc71a3a7
[ "MIT" ]
null
null
null
download_stock_data.py
dabideee13/Price-Pattern-Prediction
632d961fc08777adab8eeb7ecbf16ac7cc71a3a7
[ "MIT" ]
null
null
null
#!/opt/anaconda3/bin/python # -*- coding: utf-8 -*- """ Get Stock Data """ import time import pandas as pd import yfinance as yf if __name__ == '__main__': # Path to file # TODO: make directory if directory doesn't exist f_file = "/Users/d.e.magno/Datasets/raw_stocks_new.csv" # TODO: need to check which is already downloaded stock_file = pd.read_csv('/Users/d.e.magno/Datasets/tickers/generic.csv') stock_list = stock_file.Ticker start_timeA = time.time() for stock in stock_list: try: start_timeB = time.time() print("Downloading {}...".format(stock)) yf.Ticker(stock).history(period="max").to_csv( f_file.format(stock)) time.sleep(10) end_timeB = time.time() print("Time elapsed:", end_timeB - start_timeB) print() except Exception as ex: pass except KeyboardInterrupt as ex: break print("Finished.") end_timeA = time.time() print("Total time elapsed:", end_timeA - start_timeA)
24.266667
77
0.598901
0
0
0
0
0
0
0
0
358
0.327839
3bbd5cc24a379d3da78746ccf10468524d2749f7
2,421
py
Python
_int_tools.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
_int_tools.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
_int_tools.py
CaptainSora/Python-Project-Euler
056400f434eec837ece5ef06653b310ebfcc3d4e
[ "MIT" ]
null
null
null
""" This module contains functions related to integer formatting and math. """ from functools import reduce from itertools import count from math import gcd, prod # ================ ARRAY FORMATTING FUNCTIONS ================ def str_array_to_int(intarray): return int(''.join(intarray)) def int_array_to_int(intarray): return str_array_to_int(map(str, intarray)) def int_to_int_array(num): """ Deprecated, use int_to_digit_array(num) """ return [int(str(num)[a]) for a in range(len(str(num)))] def int_to_str_array(num): return [str(num)[a] for a in range(len(str(num)))] def int_to_digit_array(num): return [int(str(num)[a]) for a in range(len(str(num)))] # ================ CALCULATION FUNCTIONS ================ def product(numlist): """ Deprecated since Python 3.8, use math.prod instead Also remove functools.reduce """ return reduce(lambda x, y: x * y, numlist, 1) def factorial(num): return prod(list(range(1, num + 1))) def nCr(n, r): return int(prod(range(n-r+1, n+1)) / prod(range(1, r+1))) def phi(n): """ Returns the value of ϕ(n), or the Euler Totient function. """ return len([x for x in range(1, n) if gcd(n, x) == 1]) # ================ COUNTING FUNCTIONS ================ def counting_summations(values, target): """ Returns the number of ways to write target as the sum of numbers in values. """ csums = [[0 for _ in values]] while len(csums) <= target: tempsum = [0 for _ in values] for a in range(len(values)): if values[a] > len(csums): break elif values[a] == len(csums): tempsum[a] = 1 else: tempsum[a] += sum(csums[len(csums) - values[a]][:a+1]) csums.append(tempsum) return sum(csums[target]) def partition(): """ Calculates the partition function using Euler's method. Much faster than the above function. """ yield 1 p = [1] for i in count(1): new_p = 0 for j in count(1): # move i if j % 2 == 0: i -= j // 2 else: i -= j if i < 0: break # add to new_p if (j - 1) % 4 < 2: new_p += p[i] else: new_p -= p[i] p.append(new_p) yield new_p
23.278846
79
0.534077
0
0
567
0.234104
0
0
0
0
706
0.291495
3bbf01d5cb0102d02a8a8a3dba1f25da4c1520b3
2,260
py
Python
source/stats/lstm_model_builder.py
dangtunguyen/nids
a92b56a5ac29cc1482ae29374eef02bb7654785f
[ "MIT" ]
2
2019-11-22T19:56:50.000Z
2020-12-15T02:43:52.000Z
source/stats/lstm_model_builder.py
dangtunguyen/nids
a92b56a5ac29cc1482ae29374eef02bb7654785f
[ "MIT" ]
null
null
null
source/stats/lstm_model_builder.py
dangtunguyen/nids
a92b56a5ac29cc1482ae29374eef02bb7654785f
[ "MIT" ]
2
2020-12-15T02:43:54.000Z
2021-11-05T03:19:59.000Z
#!/usr/bin/env python from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, TimeDistributed, Flatten from keras.layers import LSTM ''' Reference: https://keras.io/getting-started/sequential-model-guide/ A stateful recurrent model is one for which the internal states (memories) obtained after processing a batch of samples are reused as initial states for the samples of the next batch. This allows to process longer sequences while keeping computational complexity manageable. ''' class LstmModelBuilder: def __init__(self, batch_size, timesteps, data_dim, stateful, epochs, hidden_size, model_save_path): self.batch_size = batch_size self.timesteps = timesteps ## These are the past observations for a feature, such as lag variables self.data_dim = data_dim ## These are columns in your data self.stateful = stateful self.epochs = epochs self.hidden_size = hidden_size self.model_save_path = model_save_path # Path where trained model will be saved self.model = Sequential() self.create_model() def create_model(self): ## batch_input_shape: (batch_size, timesteps, data_dim) self.model.add(LSTM(self.hidden_size, return_sequences=True, batch_input_shape=(self.batch_size, self.timesteps, self.data_dim), stateful=self.stateful)) self.model.add(LSTM(self.hidden_size, return_sequences=True, stateful=self.stateful)) self.model.add(LSTM(self.hidden_size, return_sequences=True, stateful=self.stateful)) self.model.add(Dropout(0.5)) #self.model.add(Flatten()) #self.model.add(Dense(1, activation='sigmoid')) self.model.add(TimeDistributed(Dense(1))) # output_dim=1 self.model.add(Activation('sigmoid')) self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(self.model.summary()) ## trainX: input data ## trainY: output label def train(self, trainX, trainY): history = self.model.fit(trainX, trainY, epochs=self.epochs, batch_size=self.batch_size, verbose=0, shuffle=False) print(history.history) def save(self): self.model.save(self.model_save_path)
48.085106
161
0.712389
1,737
0.768584
0
0
0
0
0
0
750
0.331858
3bc0be85bb851d619749be911d22c015dc81cc08
26,696
py
Python
pyinstagram/base.py
alessandrocucci/PyInstagram
cd8f30b8c470a8cdcd8da801af897e4d14f7a677
[ "MIT" ]
1
2019-05-03T17:46:02.000Z
2019-05-03T17:46:02.000Z
pyinstagram/base.py
alessandrocucci/PyInstagram
cd8f30b8c470a8cdcd8da801af897e4d14f7a677
[ "MIT" ]
1
2021-06-01T21:51:23.000Z
2021-06-01T21:51:23.000Z
pyinstagram/base.py
alessandrocucci/PyInstagram
cd8f30b8c470a8cdcd8da801af897e4d14f7a677
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import random from datetime import datetime from operator import itemgetter import requests import time from pyinstagram.model import Media from .exceptions import OAuthException, PyInstagramException from .oauth import OAuth from .constants import API_URL from .utils import DESAdapter class InstagramApiClient(object): """ Classe base per le chiamate all'API ufficiale! """ def __init__(self, access_token=None): self.access_token = access_token if isinstance(access_token, OAuth): self.access_token = access_token.access_token if not self.access_token: # TODO: Gestire il caso in cui l'access token scada raise OAuthException("Per usare la libreria devi prima autenticarti!") @staticmethod def go_to_sleep(seconds=3600): """ Questo metodo viene chiamato quando è stato raggiunto il limite consentito dall'API, se succede metto in pausa il programma per un'ora. :param seconds: int - Numero di secondi di attesa :return: None """ time.sleep(seconds) def _make_request(self, uri, method='get', data=None): """ Metodo che effettua la richiesta alle API Instagram. :param uri: str - L'Uri da chiamare :param method: str - metodo http con cui fare la richiesta :param data: dict - dizionario con i dati da passare nella richiesta :return: list - lista di dati di risposta """ next_url = "" # per la paginazione res = [] retry = 1 # serve per ripetere la chiamata dopo un ora se supero il limite di richieste while retry: res = getattr(requests, method)(uri, data=data) res, next_url = self._handle_response(res) if res == 0: # la chiamata non è andata a buon fine perchè ho raggiunto il limite di chiamate # ho già aspettato un'ora, adesso ci riprovo. continue retry = 0 return res, next_url def _handle_response(self, request): """ Una volta effettuata la chiamata, ci occupiamo di interpretarne la risposta. Se la richiesta è andata a buon fine, restituiamo la lista dei dati, altrimenti o mettiamo in pausa il programma (se abbiamo raggiunto il limite dell'API) o solleviamo un'eccezione appropriata. :param request: requests - la risposta della chiamata :return: list - lista dei dati ricevuti """ if request.status_code == 200: # Tutto ok! try: res = request.json() except Exception: raise Exception(request.text) else: data = res['data'] next_url = res.get('pagination', {}).get('next_url') return data, next_url elif request.status_code == 429: # OAuthRateLimitException self.go_to_sleep() return 0 elif request.status_code == 400: raise OAuthException(request.json()['meta']['error_message']) elif "<!DOCTYPE html>" in request.text: raise PyInstagramException("Page not found") else: raise PyInstagramException def get_by_user(self, id_user=None, count=0): """ Metodo usato per cercare gli ultimi post di un utente. Se non viene passato il paramentro id_user, chiederemo i post dell'utente che ha autorizzato l'app. :param id_user: str - post dell'utente da cercare :param count: int - limita a {count} risultati :return: list - lista dati """ all_media = [] id_user = id_user or "self" url = API_URL + "users/{0}/media/recent/?access_token={1}".format(id_user, self.access_token) if count: url += "&count={}".format(count) raw_list, next_url = self._make_request(url) all_media.extend(raw_list) if len(all_media) > count: return all_media[:count] while next_url: raw_list, next_url = self._make_request(next_url) all_media.extend(raw_list) return all_media[:count] def get_by_hashtag(self, tags=(), count=0): """ Metodo usato per cercare i post con uno o più hashtag. :param tags: iterable - gli hashtag da cercare :param count: int - massimo numero di risultati da restituire :return: list - lista di dati """ if isinstance(tags, str): tags = (tags, ) all_media = [] for tag in tags: url = API_URL + "tags/{0}/media/recent?access_token={1}".format(tag, self.access_token) if count: url += "&count={}".format(count) raw_list, next_url = self._make_request(url) all_media.extend(raw_list) while next_url: raw_list, next_url = self._make_request(next_url) all_media.extend(raw_list) return all_media def search_for_tag(self, tag, count=3): """ Metodo usato per cercare hashtag simili a un altro. :param tag: str - hashtag da cercare :param count: int - limita a un numero di hashtag :return: dict """ url = API_URL + "tags/search?q={0}&access_token={1}".format(tag, self.access_token) res, _ = self._make_request(url) res = sorted(res, key=itemgetter('media_count')) names = {r['name']: r['media_count'] for r in res[:count]} return names class InstagramJsonClient(object): """ Classe per fare semplici richieste in get senza usare access token o le API ufficiali. Fa largo uso di url con query string. """ def __init__(self): self.base_url = "https://www.instagram.com/" self.session = self._init_session() def _init_session(self): """Abilita il supporto 3DES su Instagram""" s = requests.Session() s.mount(self.base_url, DESAdapter()) return s def get_user_info(self, user): """ Ritorna le informazioni di un utente :param user: username Instagram :return: dizionario con le info dell'utente """ base_url = "{base}{user}/?__a=1".format( base=self.base_url, user=user ) res = self.session.get(base_url) try: res = res.json() except Exception: raise PyInstagramException("Impossibile scaricare i dati dall'indirizzo: {}".format(base_url)) return res.get('user', {}) def get_by_user(self, user, count=None, since=None, until=None): """ Ricerca post (pubblici) di un utente. Gestisce automaticamente la paginazione. Ritorna una lista di dizionari così composta: [ { id: "1606977067425770236_528817151", code: "BZNISDyHKr8", user: { id: "528817151", full_name: "NASA", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/11375151_392132304319140_1291663475_a.jpg", username: "nasa" }, images: { thumbnail: { width: 150, height: 150, url: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s150x150/e15/21690201_1801206810171539_7249344908006260736_n.jpg" }, low_resolution: { width: 320, height: 320, url: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s320x320/e15/21690201_1801206810171539_7249344908006260736_n.jpg" }, standard_resolution: { width: 640, height: 640, url: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s640x640/e15/21690201_1801206810171539_7249344908006260736_n.jpg" } }, created_time: "1505786616", caption: { id: "17887172635109592", text: "Look up in the sky tonight and see Saturn! This month Saturn is the only prominent evening planet low in the southwest sky. Look for it near the constellation Sagittarius. Above and below Saturn--from a dark sky--you can't miss the summer Milky Way spanning the sky from northeast to southwest! Grab a pair of binoculars and scan the teapot-shaped Sagittarius, where stars and some brighter clumps appear as steam from the teapot. Those bright clumps are near the center of our galaxy, which is full of gas, dust and stars. Credit: NASA #nasa #space #astronomy #september #whatsup #night #nightsky #stars #stargazing #saturn #planet", created_time: "1505786616", from: { id: "528817151", full_name: "NASA", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/11375151_392132304319140_1291663475_a.jpg", username: "nasa" } }, user_has_liked: false, likes: { data: [ { id: "4010977557", full_name: "Natalia", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/s150x150/14482183_140565769737733_5249004653428867072_a.jpg", username: "nata.barata" }, { id: "2055640911", full_name: "S@brin@ Lec○cq ♡☆♡", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/s150x150/13534211_1557747037863158_1773299287_a.jpg", username: "melsab19" }, { id: "752521983", full_name: "Laura Álvarez Peláez", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/10624147_809215025765686_985825156_a.jpg", username: "lauriwushu" }, { id: "1719376530", full_name: "Julia Paniti", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/10985984_1575721159312127_239135761_a.jpg", username: "julia_paniti" } ], count: 204038 }, comments: { data: [ { id: "17876620534138631", text: "@jennytried ❤️", created_time: "1505855823", from: { id: "4610349", full_name: "", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/10932285_747424172021124_1089839988_a.jpg", username: "siskascherz" } }, { id: "17899664473040297", text: "@a.hm.ed.1", created_time: "1505855825", from: { id: "416900232", full_name: "Maryem BenKh", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/s150x150/16907969_415736022127336_8841431139366207488_a.jpg", username: "maariam_bk" } }, { id: "17871962107174729", text: "Wonderful 😍", created_time: "1505855872", from: { id: "2982243595", full_name: "Smit Raj", profile_picture: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-19/s150x150/21690360_117321958944805_772082897589895168_n.jpg", username: "smit_raj_" } } ], count: 1564 }, can_view_comments: true, can_delete_comments: false, type: "video", link: "https://www.instagram.com/p/BZNISDyHKr8/", location: null, alt_media_url: "https://scontent-mxp1-1.cdninstagram.com/t50.2886-16/21904634_340030459792492_153261372472295424_n.mp4", videos: { standard_resolution: { width: 640, height: 640, url: "https://scontent-mxp1-1.cdninstagram.com/t50.2886-16/21904634_340030459792492_153261372472295424_n.mp4" }, low_bandwidth: { width: 480, height: 480, url: "https://scontent-mxp1-1.cdninstagram.com/t50.2886-16/21868687_149708205622876_4737472794344816640_n.mp4" }, low_resolution: { width: 480, height: 480, url: "https://scontent-mxp1-1.cdninstagram.com/t50.2886-16/21868687_149708205622876_4737472794344816640_n.mp4" } }, video_views: 1012473 }, ] :param user: str - username Instagram :param count: int - limita il numero di risultati :param since: str - Risultati a partire da questa data, es. "20170101000000" :param until: str - Risultati entro questa data, es. "20171231235959" :return: """ if since: try: since = datetime.strptime(since, "%Y%m%d%H%M%S") except ValueError: raise ValueError("Il parametro since non è in un formato corretto (es. '20170101000000')") if until: try: until = datetime.strptime(until, "%Y%m%d%H%M%S") except ValueError: raise ValueError("Il parametro until non è in un formato corretto (es. '20170101000000')") all_data = [] base_url = "{base}{user}?__a=1{{max}}".format( base=self.base_url, user=user ) max_id = "" next_url = base_url.format(max=max_id) while True: res = self.session.get(next_url) if not res.status_code == 200: return all_data[:count] try: res = res.json() except Exception: raise PyInstagramException("Impossibile scaricare i dati dall'indirizzo: {}".format(next_url)) for media_res in res['user']['media']['nodes']: # Instagram non mi permette di cercare per data, però mi fornisce la # data di creazione del post in formato Unix Timestamp. Quindi, per # gestire il caso in cui volessi solo risultati in un certo intervallo, # verifico che il mio post sia stato creato in questo lasso di tempo. created_at = int(media_res['date']) if since and created_at < time.mktime(since.timetuple()): # sono andato troppo indietro, posso uscire return all_data[:count] if until and created_at > time.mktime(until.timetuple()): continue all_data.append(media_res) if res['user']['media']['nodes'] and (not len(all_data) > count if count else True): # ho oggetti, ne ho altri da scaricare, e non ho raggiunto il limite di risultati try: max_id = res['user']['media']['nodes'][-1]['id'] next_url = base_url.format(max="&max_id={}".format(max_id)) except IndexError: # aspetto un po', index è vuoto e Instagram mi blocca il flusso time.sleep(random.randint(10, 60)) else: # tutto ok, ho altri dati da scaricare continue else: # non ho dati, oppure ne ho di più di quelli voluti break return all_data[:count] def get_by_hashtag(self, tags=(), count=1000000, top_posts=True, since=None, until=None): """ Ricerca per hashtag. Gestisce automaticamente la paginazione. Ritorna una lista di oggetti SqlAlchemy a partire da una lista di dizionari fatti come segue: [ { comments_disabled: false, id: "1607551655901147333", dimensions: { height: 640, width: 640 }, owner: { id: "981246989" }, thumbnail_src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/e35/21820166_125621088095492_8628217971971457024_n.jpg", thumbnail_resources: [ { src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s150x150/e35/21820166_125621088095492_8628217971971457024_n.jpg", config_width: 150, config_height: 150 }, { src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s240x240/e35/21820166_125621088095492_8628217971971457024_n.jpg", config_width: 240, config_height: 240 }, { src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s320x320/e35/21820166_125621088095492_8628217971971457024_n.jpg", config_width: 320, config_height: 320 }, { src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/s480x480/e35/21820166_125621088095492_8628217971971457024_n.jpg", config_width: 480, config_height: 480 } ], is_video: false, code: "BZPK7bAFDDF", date: 1505855112, display_src: "https://scontent-mxp1-1.cdninstagram.com/t51.2885-15/e35/21820166_125621088095492_8628217971971457024_n.jpg", caption: "Tommy Hilfiger London Fashion Week Spring_Summer 2018 @londonfashionweek @britishfashioncouncil @tommyhilfiger #londonfashionweek#LFW#fashion#paris#fashionblogger#tehran#fashioneditor#fashionweek#style#streetstyle##milan#london#newyork#mfw#lfw#nyfw#vogue#gq#art#love#fashionshow#blogger#life#event#ss2018#instafashion#runway#fashionmoment0#TOMMYNOW", comments: { count: 1 }, likes: { count: 24 } }, ] :param tags: str or tuple - hashtag (senza il #) o tupla di hastag :param count: int - limita i risultati :param top_posts: bool - limita ai top posts altrimenti ritorna tutto :param since: str - Risultati a partire da questa data, es. "20170101000000" :param until: str - Risultati entro questa data, es. "20171231235959" :return: list - lista di dizionari """ if isinstance(tags, str): tags = (tags, ) if since: try: since = datetime.strptime(since, "%Y%m%d%H%M%S") except ValueError: raise ValueError("Il parametro since non è in un formato corretto (es. '20170101000000')") if until: try: until = datetime.strptime(until, "%Y%m%d%H%M%S") except ValueError: raise ValueError("Il parametro until non è in un formato corretto (es. '20170101000000')") mapper = { 'id': 'id', 'comments': 'edge_media_to_comment.count', 'unix_datetime': 'taken_at_timestamp', 'user': 'owner.id', 'likes': 'edge_liked_by.count', 'is_video': 'is_video', 'url': 'display_src', 'height': 'dimensions.height', 'width': 'dimensions.width', 'code': 'shortcode' } all_data = [] for tag in tags: all_data_tag = [] base_url = "{base}explore/tags/{tag}?__a=1{{max}}".format( base=self.base_url, tag=tag ) max_id = "" next_url = base_url.format(max=max_id) while True: res = self.session.get(next_url) try: res = res.json() except Exception: if "Sorry, this page isn't available" in res.text: # Post rimosso o non più raggiungibile continue else: raise PyInstagramException("Impossibile scaricare i dati dall'indirizzo: {}".format(next_url)) res_media = res['graphql']['hashtag']['edge_hashtag_to_top_posts'] if top_posts else res['graphql']['hashtag']['edge_hashtag_to_media'] has_next_page = res['graphql']['hashtag']['edge_hashtag_to_media']['page_info']['has_next_page'] # converto in oggetti SqlAlchemy sqlalchemy_media = [] for element in res_media['edges']: # Instagram non mi permette di cercare per data, però mi fornisce la # data di creazione del post in formato Unix Timestamp. Quindi, per # gestire il caso in cui volessi solo risultati in un certo intervallo, # verifico che il mio post sia stato creato in questo lasso di tempo. created_at = int(element['node']['taken_at_timestamp']) if since and created_at < time.mktime(since.timetuple()): # sono andato troppo indietro, posso uscire break if until and created_at > time.mktime(until.timetuple()): continue model = Media() for field_to, getter in mapper.items(): path = getter.split('.') val = element['node'] for key in path: val = val.get(key, {}) if isinstance(val, dict): val = None setattr(model, field_to, val) model.json = element['node'] model.caption = element['node']['edge_media_to_caption']['edges'][0]['node']['text'] sqlalchemy_media.append(model) all_data_tag.extend(sqlalchemy_media) if res_media['edges'] and has_next_page and not len(all_data_tag) > count and not top_posts: try: max_id = res['graphql']['hashtag']['edge_hashtag_to_media']['page_info']['end_cursor'] next_url = base_url.format(max="&max_id={}".format(max_id)) except IndexError: # aspetto un po', index è vuoto e Instagram mi blocca il flusso time.sleep(random.randint(10, 60)) else: # tutto ok, ho altri dati da scaricare continue else: # non ho dati, oppure ne ho di più di quelli voluti break all_data.extend(all_data_tag) return all_data[:count] def get_by_media_codes(self, codes=(), all_comments=False): """ Restituisce una lista contenente i dati dei post richiesti (identificati dalla stringa 'code' del post). Attivando il flag all_comments, verranno fatte ulteriori richieste gestendo la paginazione dei commenti. I commenti verranno aggiunti al json originale in modo da avere alla fina una lista composta da tanti elementi quanti sono i post richiesti. :param codes: stringa del codice o tupla con i codici dei post :param all_comments: bool - se attivato, scarica tutti i commenti :return: lista di json con i dati dei post richiesti """ if isinstance(codes, str): codes = (codes,) all_data = [] for code in codes: url = "{base}p/{code}?__a=1".format( base=self.base_url, code=code ) res = self.session.get(url) try: res = res.json() except Exception: if "Sorry, this page isn't available" in res.text: # Post rimosso o non più raggiungibile continue else: raise PyInstagramException("Impossibile scaricare i dati dall'indirizzo: {}".format(url)) if all_comments: while True: page_info = res['graphql']['shortcode_media']['edge_media_to_comment']['page_info'] if page_info['has_next_page']: next_url = url + "&max_id={}".format(page_info['end_cursor']) next_res = self.session.get(next_url) next_res = next_res.json() res_edges = res['graphql']['shortcode_media']['edge_media_to_comment']['edges'] next_edges = next_res['graphql']['shortcode_media']['edge_media_to_comment']['edges'] res_edges.extend(next_edges) else: break all_data.append(res) return all_data
44.271973
661
0.523599
26,411
0.987992
0
0
342
0.012794
0
0
16,960
0.634446
3bc1971c02e3a51d7591b4d8543cd3bec3e278e6
1,483
py
Python
csv_readers/stay_points_csv_reader.py
s0lver/stm-creator
b058185ca028abd1902edbb35a52d3565b06f8b0
[ "Apache-2.0" ]
null
null
null
csv_readers/stay_points_csv_reader.py
s0lver/stm-creator
b058185ca028abd1902edbb35a52d3565b06f8b0
[ "Apache-2.0" ]
null
null
null
csv_readers/stay_points_csv_reader.py
s0lver/stm-creator
b058185ca028abd1902edbb35a52d3565b06f8b0
[ "Apache-2.0" ]
null
null
null
import csv from typing import List, Iterator, Dict from entities.StayPoint import StayPoint def read(file_path: str) -> List[StayPoint]: """ Returns a list of StayPoint read from the specified file path :param file_path: The path of file to read :return: A list of StayPoint """ file = open(file_path, 'r', newline='', encoding='utf-8') results = [] reader = csv.DictReader(file, delimiter=',') for line in reader: stay_point = build_stay_point_from_line(line) results.append(stay_point) return results def read_line_by_line(file_path: str) -> Iterator[StayPoint]: """ Reads a csv file of stay points line by line :param file_path: The path of file to read :return: A StayPoint object usable in for each call """ file = open(file_path, 'r', newline='', encoding='utf-8') reader = csv.DictReader(file, delimiter=',') for line in reader: current_stay_point = build_stay_point_from_line(line) yield current_stay_point def build_stay_point_from_line(line: Dict) -> StayPoint: """ Builds a StayPoint object parsing the specified line :param line: The line to parse :return: A StayPoint object """ id_stay_point = int(line["_id"]) latitude = float(line["latitude"]) longitude = float(line["longitude"]) visit_count = int(line["visitCount"]) stay_point = StayPoint(id_stay_point, latitude, longitude, visit_count) return stay_point
29.66
75
0.681052
0
0
459
0.309508
0
0
0
0
523
0.352664
3bc47ccda883fce926fb879e2f171e425ac7191d
1,959
py
Python
login/models.py
zcw576020095/netsysyconfig_platform
d47be2c5b3418d59a226cb9e135972160e51df00
[ "Unlicense" ]
1
2022-03-25T07:49:10.000Z
2022-03-25T07:49:10.000Z
login/models.py
zcw576020095/netsysyconfig_platform
d47be2c5b3418d59a226cb9e135972160e51df00
[ "Unlicense" ]
null
null
null
login/models.py
zcw576020095/netsysyconfig_platform
d47be2c5b3418d59a226cb9e135972160e51df00
[ "Unlicense" ]
null
null
null
from django.db import models # Create your models here. class User(models.Model): gender = ( ('male',"男"), ('female',"女") ) name = models.CharField(max_length=128,unique=True) password = models.CharField(max_length=256) email = models.EmailField(unique=True) sex = models.CharField(max_length=32, choices=gender,default="男") create_time = models.DateTimeField(auto_now_add=True) has_confirmed = models.BooleanField(default=False) def __str__(self): return self.name class Meta: ordering = ["-create_time"] verbose_name = "用户" verbose_name_plural = "用户" class ConfirmString(models.Model): code = models.CharField(max_length=256) user = models.OneToOneField('User',on_delete=models.CASCADE) create_time = models.DateTimeField(auto_now_add=True) def __str__(self): return self.user.name + ": " + self.code class Meta: ordering = ["-create_time"] verbose_name = "确认码" verbose_name_plural = "确认码" ## 断网记录 class ClickHistory(models.Model): clicknet_areaname = models.CharField(max_length=128,verbose_name='断网区域') clicknet_date = models.DateTimeField(max_length=64,verbose_name="断网时间") def __str__(self): return '{} {}'.format(self.clicknet_areaname,self.clicknet_date) class Meta: db_table = 'click_history' ordering = ["-clicknet_date"] verbose_name = "断网记录" verbose_name_plural = "断网记录" ## 联网记录 class ConnectHistory(models.Model): connectnet_areaname = models.CharField(max_length=128,verbose_name='联网区域') connectnet_date = models.DateTimeField(max_length=64,verbose_name="联网时间") def __str__(self): return '{} {}'.format(self.connectnet_areaname,self.connectnet_date) class Meta: db_table = 'connect_history' ordering = ["-connectnet_date"] verbose_name = "联网记录" verbose_name_plural = "联网记录"
27.591549
78
0.669219
1,966
0.952058
0
0
0
0
0
0
353
0.170944
3bc52fc59dc21473a03e193fd04c98996f1d2a1e
2,083
py
Python
DataAnalysis.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
DataAnalysis.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
DataAnalysis.py
andairka/Simple-default-Backpropagation-ANN
995de1471e2b132af721b2babbec034f29228640
[ "MIT" ]
null
null
null
import ImportTitanicData import DataPreparation # analiza danych przed preparacją danych class DataAnaliysisBefore(): def showTrain(self): importData = ImportTitanicData.DataImport() train = importData.importTrain() return train def shapeTrain(self): return self.showTrain().shape def dtypesTrain(self): return self.showTrain().dtypes def showTest(self): importData = ImportTitanicData.DataImport() test = importData.importTest() return test def shapeTest(self): return self.showTest().shape def dtypesTest(self): return self.showTest().dtypes # analiza danych po preparacji danych class DataAnaliysisAfter(): def showTrain(self): dataPreparation = DataPreparation.DataPreparation() train = dataPreparation.prepareTrainData() return train def shapeTrain(self): return self.showTrain().shape def dtypesTrain(self): return self.showTrain().dtypes def showTest(self): dataPreparation = DataPreparation.DataPreparation() test = dataPreparation.prepareTestData() return test def shapeTest(self): return self.showTest().shape def dtypesTest(self): return self.showTest().dtypes # # # def showTest(self): # test = ImportTitanicData.DataImport.importTest() # return test.head() # def showTest () # dataAnaysis = DataAnaliysisBefore() dataAnaysis = DataAnaliysisAfter() # print('czesio') # print('Analiza danych przed wypełnieniem NaN') # print('Tabela Train\n', dataAnaysis.showTrain()) # print('\n\nshape Train\n', dataAnaysis.shapeTrain()) # print('\n\ndtypes Train\n', dataAnaysis.dtypesTrain()) print('Analiza danych po wypełnieniem NaN i preparacji danych') print('Tabela Train\n', dataAnaysis.showTrain()) print('\n\nshape Train\n', dataAnaysis.shapeTrain()) print('\n\ndtypes Train\n', dataAnaysis.dtypesTrain()) # dataPreparation = DataPreparation.DataPreparation() # print(dataPreparation.prepareTrainData().to_string())
26.367089
63
0.68987
1,311
0.628476
0
0
0
0
0
0
679
0.325503
3bc5e3ab47f6373dad23233f3b3391f39ba91b96
10,341
py
Python
tests/api/test_predict.py
mldock/mldock
314b733e4f0102321727f8b145fc276486ecad85
[ "Apache-2.0" ]
2
2021-07-12T13:51:21.000Z
2021-07-19T08:40:02.000Z
tests/api/test_predict.py
mldock/mldock
314b733e4f0102321727f8b145fc276486ecad85
[ "Apache-2.0" ]
41
2021-06-28T11:05:20.000Z
2022-03-13T13:48:50.000Z
tests/api/test_predict.py
mldock/mldock
314b733e4f0102321727f8b145fc276486ecad85
[ "Apache-2.0" ]
1
2021-07-17T19:07:06.000Z
2021-07-17T19:07:06.000Z
"""Test Predict API calls""" import io from PIL import Image from dataclasses import dataclass import tempfile from pathlib import Path import pytest from mock import patch from mldock.api.predict import send_image_jpeg, send_csv, send_json, handle_prediction import responses import requests @pytest.fixture def image_bytes(): """reads image as bytes string""" img = Image.open("tests/api/fixtures/eight.png", mode="r") img_byte_arr = io.BytesIO() img.save(img_byte_arr, format="PNG") return img_byte_arr.getvalue() @dataclass class MockResponse: status_code: int json_data: dict = None text: str = None _content: bytes = None def json(self): return self.json_data class TestPredictAPI: """ TEST ERROR STATUS_CODE!=200 SCENERIO """ @staticmethod @responses.activate def test_handle_prediction_send_json_handles_non_200(): responses.add( responses.POST, "http://nothing-to-see-here/invocations", json={"error": "client error"}, status=404, ) with pytest.raises(requests.exceptions.RequestException): _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.json", response_file=None, request_content_type="application/json", response_content_type="application/json", ) @staticmethod @responses.activate def test_handle_prediction_sending_image_jpeg_handles_non_200(): responses.add( responses.POST, "http://nothing-to-see-here/invocations", json={"error": "client error"}, status=404, ) with pytest.raises(requests.exceptions.RequestException): _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/eight.png", response_file=None, request_content_type="image/jpeg", response_content_type="application/json", ) @staticmethod @responses.activate def test_handle_prediction_sending_text_csv_handles_non_200(): responses.add( responses.POST, "http://nothing-to-see-here/invocations", json={"error": "client error"}, status=404, ) with pytest.raises(requests.exceptions.RequestException): _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.csv", response_file=None, request_content_type="text/csv", response_content_type="application/json", ) """ TEST SUCCESS STATUS_CODE=200 SCENERIO """ @staticmethod def test_handle_prediction_send_json_success_200(): with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( json_data={"result": "success"}, status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.json", response_file=None, request_content_type="application/json", response_content_type="application/json", ) validation_kwargs = { "url": "http://nothing-to-see-here/invocations", "headers": {"Content-Type": "application/json"}, } _, kwargs = list(mock_execute_request.call_args) data_obj = kwargs.pop("data") assert ( kwargs == validation_kwargs ), "Failure. URL and Headers are incorrect." assert isinstance(data_obj, str), "Failure. Expected str json object." @staticmethod def test_handle_prediction_sending_image_jpeg_success_200(image_bytes): with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( _content=image_bytes, status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/eight.png", response_file=None, request_content_type="image/jpeg", response_content_type="image/jpeg", ) validation_kwargs = { "url": "http://nothing-to-see-here/invocations", "headers": {"Content-Type": "image/jpeg"}, } _, kwargs = list(mock_execute_request.call_args) data_obj = kwargs.pop("data") assert ( kwargs == validation_kwargs ), "Failure. URL and Headers are incorrect." assert isinstance( data_obj, io.BytesIO ), "Failure. Expected io.BytesIO object." @staticmethod def test_handle_prediction_sending_text_csv_success_200(): with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( text="greet,name\nhello,sam", status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.csv", response_file=None, request_content_type="text/csv", response_content_type="text/csv", ) validation_kwargs = { "url": "http://nothing-to-see-here/invocations", "headers": {"Content-Type": "text/csv"}, } _, kwargs = list(mock_execute_request.call_args) data_obj = kwargs.pop("data") assert ( kwargs == validation_kwargs ), "Failure. URL and Headers are incorrect." assert isinstance(data_obj, str), "Failure. Expected str json object." """ TEST WRITING RESPONSE TO FILE SCENERIO """ @staticmethod def test_handle_prediction_send_json_success_write_response_file(): with tempfile.TemporaryDirectory() as tmp_dir: response_filepath = Path(tmp_dir, "response.json") with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( json_data={"result": "success"}, status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.json", response_file=response_filepath, request_content_type="application/json", response_content_type="application/json", ) assert ( response_filepath.is_file() ), "Failure. outputfile was not created" @staticmethod def test_handle_prediction_sending_image_jpeg_success_write_response_file( image_bytes, ): with tempfile.TemporaryDirectory() as tmp_dir: response_filepath = Path(tmp_dir, "response.png") with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( _content=image_bytes, status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/eight.png", response_file=response_filepath, request_content_type="image/jpeg", response_content_type="image/jpeg", ) assert ( response_filepath.is_file() ), "Failure. outputfile was not created" @staticmethod def test_handle_prediction_sending_text_csv_success_write_response_file(): with tempfile.TemporaryDirectory() as tmp_dir: response_filepath = Path(tmp_dir, "response.csv") with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( text="greet,name\nhello,sam", status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.csv", response_file=response_filepath, request_content_type="text/csv", response_content_type="text/csv", ) assert ( response_filepath.is_file() ), "Failure. outputfile was not created" """ TEST ADDING ADDTIONAL HEADERS """ @staticmethod def test_handle_prediction_send_json_success_add_headers(): with patch("mldock.api.predict.execute_request") as mock_execute_request: mock_execute_request.return_value = MockResponse( json_data={"result": "success"}, status_code=200 ) _ = handle_prediction( host="http://nothing-to-see-here/invocations", request="tests/api/fixtures/payload.json", response_file=None, request_content_type="application/json", response_content_type="application/json", headers={"Authentication": "bearer 12345"}, ) validation_kwargs = { "url": "http://nothing-to-see-here/invocations", "headers": { "Content-Type": "application/json", "Authentication": "bearer 12345", }, } _, kwargs = list(mock_execute_request.call_args) kwargs.pop("data") assert ( kwargs == validation_kwargs ), "Failure. URL and Headers are incorrect."
35.782007
86
0.579634
9,784
0.946137
0
0
9,718
0.939754
0
0
2,697
0.260806
3bc608810561bbe247f5ed3cfef52e4be93e7faa
2,081
py
Python
neutron/tests/tempest/api/test_qos_negative.py
mail2nsrajesh/neutron
352afb37afcf4952f03436b25618d0066c51f3f1
[ "Apache-2.0" ]
null
null
null
neutron/tests/tempest/api/test_qos_negative.py
mail2nsrajesh/neutron
352afb37afcf4952f03436b25618d0066c51f3f1
[ "Apache-2.0" ]
null
null
null
neutron/tests/tempest/api/test_qos_negative.py
mail2nsrajesh/neutron
352afb37afcf4952f03436b25618d0066c51f3f1
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib.db import constants as db_const from tempest.lib import decorators from tempest.lib import exceptions as lib_exc from tempest import test from neutron.tests.tempest.api import base LONG_NAME_NG = 'z' * (db_const.NAME_FIELD_SIZE + 1) LONG_DESCRIPTION_NG = 'z' * (db_const.LONG_DESCRIPTION_FIELD_SIZE + 1) LONG_TENANT_ID_NG = 'z' * (db_const.PROJECT_ID_FIELD_SIZE + 1) class QosNegativeTestJSON(base.BaseAdminNetworkTest): required_extensions = ['qos'] @test.attr(type='negative') @decorators.idempotent_id('b9dce555-d3b3-11e5-950a-54ee757c77da') def test_add_policy_with_too_long_name(self): self.assertRaises(lib_exc.BadRequest, self.client.create_qos_policy, LONG_NAME_NG, 'test policy desc1', False) @test.attr(type='negative') @decorators.idempotent_id('b9dce444-d3b3-11e5-950a-54ee747c99db') def test_add_policy_with_too_long_description(self): self.assertRaises(lib_exc.BadRequest, self.client.create_qos_policy, 'test-policy', LONG_DESCRIPTION_NG, False) @test.attr(type='negative') @decorators.idempotent_id('b9dce444-d3b3-11e5-950a-54ee757c77dc') def test_add_policy_with_too_long_tenant_id(self): self.assertRaises(lib_exc.BadRequest, self.client.create_qos_policy, 'test-policy', 'test policy desc1', False, LONG_TENANT_ID_NG)
41.62
78
0.695819
1,119
0.537722
0
0
1,013
0.486785
0
0
783
0.376261
3bc6222a69419d7c3721ce7c39a656221c86ab89
1,105
py
Python
src/main/python/storytext/lib/storytext/javageftoolkit/__init__.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
src/main/python/storytext/lib/storytext/javageftoolkit/__init__.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
src/main/python/storytext/lib/storytext/javageftoolkit/__init__.py
emilybache/texttest-runner
2d5c42b8d37699a2cbcb8f19af7c271d6ad1024a
[ "MIT" ]
null
null
null
""" Don't load any Eclipse stuff at global scope, needs to be importable previous to Eclipse starting """ from storytext import javarcptoolkit import sys class ScriptEngine(javarcptoolkit.ScriptEngine): def createReplayer(self, universalLogging=False, **kw): return UseCaseReplayer(self.uiMap, universalLogging, self.recorder, **kw) def getDefaultTestscriptPluginName(self): return "org.eclipse.swtbot.gef.testscript" class UseCaseReplayer(javarcptoolkit.UseCaseReplayer): def getDescriberPackage(self): return javarcptoolkit.UseCaseReplayer.__module__ def getTestRunnerClass(self): return TestRunner class TestRunner(javarcptoolkit.TestRunner): def initEclipsePackages(self): javarcptoolkit.TestRunner.initEclipsePackages(self) from org.eclipse.swtbot.eclipse.gef.finder import SWTGefBot from org.eclipse.swtbot.eclipse.gef.finder.widgets import SWTBotGefViewer from org.eclipse.draw2d import FigureCanvas from org.eclipse.draw2d.geometry import Rectangle from org.eclipse.gef import EditPart
38.103448
105
0.761086
943
0.853394
0
0
0
0
0
0
140
0.126697
3bc648d7577a48d53c343d95dc1ac69b209de7c4
11,380
py
Python
subscribe/models.py
jonge-democraten/dyonisos
bebc5b28761bd5e036e4e6e219b5474d901026c3
[ "MIT" ]
null
null
null
subscribe/models.py
jonge-democraten/dyonisos
bebc5b28761bd5e036e4e6e219b5474d901026c3
[ "MIT" ]
10
2016-10-31T21:14:06.000Z
2021-01-07T22:34:42.000Z
subscribe/models.py
jonge-democraten/dyonisos
bebc5b28761bd5e036e4e6e219b5474d901026c3
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2011,2014 Floor Terra <floort@gmail.com> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import datetime import logging import traceback from django.core.mail import EmailMessage from django.db import models from django.template import Context, Template logger = logging.getLogger(__name__) AFDELINGEN = ( ("AMS", "Amsterdam"), ("AN", "Arnhem-Nijmegen"), ("BB", "Brabant"), ("FR", "Friesland"), ("GR", "Groningen"), ("LH", "Leiden-Haaglanden"), ("MS", "Limburg"), ("RD", "Rotterdam"), ("TW", "Overijssel"), ("UT", "Utrecht"), ("WN", "Wageningen"), ("INT", "Internationaal"), ) def afdeling_text(afd): for key, value in AFDELINGEN: if key == afd: return value return None QUESTION_TYPES = ( ("INT", "Integer"), ("TXT", "Text Input"), ("AFD", "Afdeling"), ("BOOL", "Ja/Nee"), ("CHOICE", "Multiple Choice"), ("TEXT", "HTML Text"), ) class Event(models.Model): name = models.CharField(max_length=200) slug = models.SlugField() start_registration = models.DateTimeField() end_registration = models.DateTimeField() description = models.TextField() contact_email = models.EmailField() email_template = models.TextField(help_text="Enkele placeholders: {{voornaam}}, {{achternaam}}, {{inschrijf_opties}}") price = models.IntegerField(help_text="Eurocenten", default=0) max_registrations = models.IntegerField(default=0, help_text="Als groter dan 0, bepaalt maximaal aantal inschrijvingen") class Meta: ordering = ('-end_registration',) def __str__(self): return self.name def subscribed(self): return len(Registration.objects.filter(event=self)) def paid(self): return len(Registration.objects.filter(event=self).filter(paid=True)) def total_paid(self): return "\u20AC %.2f" % (sum([e.price for e in self.registrations.filter(paid=True)]) / 100.) def form_link(self): return "<a href=\"https://events.jongedemocraten.nl/inschrijven/%s/\">Inschrijven</a>" % (self.slug) form_link.allow_tags = True def all_free(self): """Are all event options free?""" if self.price != 0: return False if len(EventOption.objects.filter(price__gt=0).filter(question__event=self)): return False return True def active(self): now = datetime.datetime.now() if self.start_registration > now or self.end_registration < now: return False return True # active.boolean = True def price_str(self): return "\u20AC %.2f" % (float(self.price) / 100) def is_full(self): if self.max_registrations <= 0: return False return self.registrations.count() >= self.max_registrations is_full.boolean = True def get_registrations_over_limit(self): results = [] if self.max_registrations > 0: results += self.registrations.order_by('pk')[int(self.max_registrations):] for question in self.eventquestion_set.all(): for option in question.options.all(): results += option.get_registrations_over_limit() return results class EventQuestion(models.Model): event = models.ForeignKey(Event) name = models.CharField(max_length=64) question_type = models.CharField(max_length=16, choices=QUESTION_TYPES) required = models.BooleanField(default=False, help_text='Bij Ja/Nee: verplicht aanvinken; bij andere: verplicht invullen') radio = models.BooleanField(default=False, help_text='Voor multiple-choice/afdeling: geen dropdown maar radio buttons') order = models.IntegerField(default=0, help_text='Bepaalt volgorde op formulier; gebruik order<0 voor elementen vooraf aan voornaam, achternaam en email') text = models.TextField(blank=True, default='', help_text='Voor "HTML Text"; geldige HTML tags: a, b/strong, code, em/i, h3, img, ul, ol, li, p, br; Geldige HTML attributen: class, style, a.href, a.target, img.src, img.alt') def __str__(self): return "%s (%s)" % (self.name, self.question_type) def form_id(self): return "q%d" % (self.id) def delete_event_question(self): return '<a href="/deleteEventQuestion/?optionId=%d">Delete</a>' % (self.id) delete_event_question.allow_tags = True class EventOption(models.Model): question = models.ForeignKey('EventQuestion', related_name="options") name = models.CharField(max_length=200) price = models.IntegerField(help_text="Eurocenten", default=0) active = models.BooleanField(default=True) order = models.IntegerField(default=0) limit = models.IntegerField(default=0, help_text="Aantal beschikbare plekken (0 = geen limiet)") def __str__(self): if self.price < 0: return "%s: \u20AC %.2f korting" % (self.name, float(-self.price) / 100) if self.price > 0: return "%s: \u20AC %.2f" % (self.name, float(self.price) / 100) else: return "%s" % (self.name,) def price_str(self): return "\u20AC %.2f" % (float(self.price) / 100) def delete_event_option(self): return '<a href="/deleteEventOption/?optionId=%d">Delete</a>' % (self.id) delete_event_option.allow_tags = True def get_related_registrations(self): return Registration.objects.filter(answers__option=self).order_by('pk') def num_registrations(self): registrations = self.get_related_registrations() return registrations.count() def is_full(self): if self.limit <= 0: return False return self.num_registrations() >= self.limit is_full.boolean = True def limit_str(self): if self.limit <= 0: return "-" return "{}/{}".format(self.num_registrations(), self.limit) limit_str.short_description = "Limit usage" def get_registrations_over_limit(self): if self.limit <= 0: return [] registrations = self.get_related_registrations() return registrations[int(self.limit):] def limit_reached(self): return self.is_full() limit_reached.boolean = True class Registration(models.Model): registration_date = models.DateTimeField(auto_now_add=True) first_name = models.CharField(max_length=64) last_name = models.CharField(max_length=64) email = models.EmailField(blank=True) event = models.ForeignKey(Event, related_name='registrations') price = models.IntegerField(default=0) paid = models.BooleanField(default=False) status = models.CharField(max_length=64, default="", blank=True) trxid = models.CharField(max_length=128, default="", blank=True) def calculate_price(self): self.price = self.event.price + sum([answer.option.price for answer in self.answers.exclude(option=None)]) def get_options_text(self): results = [] added_default_fields = False answers = {a.question: a.get_answer() for a in self.answers.all()} for question in self.event.eventquestion_set.order_by('order'): if question.order >= 0 and not added_default_fields: results += ["Voornaam: {}".format(self.first_name)] results += ["Achternaam: {}".format(self.last_name)] results += ["Email: {}".format(self.email)] added_default_fields = True if question in answers: results += ["{}: {}".format(question.name, answers[question])] if not added_default_fields: results += ["Voornaam: {}".format(self.first_name)] results += ["Achternaam: {}".format(self.last_name)] results += ["Email: {}".format(self.email)] return '\n'.join(results) def __str__(self): return "%s %s - %s - %s" % (self.first_name, self.last_name, self.event, str(self.price)) def gen_subscription_id(self): num_id = str(self.id) safe = set("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789") return num_id + "x" + filter(lambda c: c in safe, self.get_options_name())[:15 - len(num_id)] def send_confirmation_email(self): t = Template(self.event.email_template) c = Context({ "voornaam": self.first_name, "achternaam": self.last_name, "inschrijf_opties": self.get_options_text(), }) rendered_mail = t.render(c) email = EmailMessage( subject="Inschrijfbevestiging: %s" % (self.event.name), body=rendered_mail, from_email=self.event.contact_email, to=[self.email], ) try: email.send() except: logger.error("Could not send welcome mail to %s" % (self.email)) logger.error(traceback.format_exc()) raise return rendered_mail class Answer(models.Model): # This should maybe be a "through" model registration = models.ForeignKey(Registration, related_name='answers') question = models.ForeignKey(EventQuestion) int_field = models.IntegerField(default=0, null=True) txt_field = models.CharField(max_length=256, blank=True) bool_field = models.BooleanField(default=False) option = models.ForeignKey(EventOption, default=None, null=True, blank=True) def __str__(self): return "%s - %s" % (self.question, self.get_answer()) def set_answer(self, ans): if self.question.question_type == "INT": self.int_field = ans elif self.question.question_type == "TXT": self.txt_field = ans elif self.question.question_type == "AFD": self.txt_field = ans elif self.question.question_type == "BOOL": self.bool_field = ans if self.bool_field and len(self.question.options.all()): self.option = self.question.options.all()[0] else: self.option = None elif self.question.question_type == "CHOICE": self.option = ans def get_answer(self): if self.question.question_type == "INT": return self.int_field elif self.question.question_type == "TXT": return self.txt_field elif self.question.question_type == "AFD": return afdeling_text(self.txt_field) elif self.question.question_type == "BOOL": if self.option is not None: return self.option else: return self.bool_field and 'Ja' or 'Nee' elif self.question.question_type == "CHOICE": return self.option
37.682119
228
0.644991
9,714
0.853603
0
0
0
0
0
0
2,536
0.222847
3bc7d40a1ff3f95ca6bbd675bada6d5806be3718
7,661
py
Python
vumi/worker.py
hnec-vr/vumi
b9c1100176a46774b502d5a0db225930a2d298c7
[ "BSD-3-Clause" ]
1
2016-07-27T17:13:32.000Z
2016-07-27T17:13:32.000Z
vumi/worker.py
TouK/vumi
6d250c7039fa1d82b01c5b68722aa8a6a94580b2
[ "BSD-3-Clause" ]
null
null
null
vumi/worker.py
TouK/vumi
6d250c7039fa1d82b01c5b68722aa8a6a94580b2
[ "BSD-3-Clause" ]
null
null
null
# -*- test-case-name: vumi.tests.test_worker -*- """Basic tools for workers that handle TransportMessages.""" import time import os import socket from twisted.internet.defer import ( inlineCallbacks, succeed, maybeDeferred, gatherResults) from twisted.python import log from vumi.service import Worker from vumi.middleware import setup_middlewares_from_config from vumi.connectors import ReceiveInboundConnector, ReceiveOutboundConnector from vumi.config import Config, ConfigInt from vumi.errors import DuplicateConnectorError from vumi.utils import generate_worker_id from vumi.blinkenlights.heartbeat import (HeartBeatPublisher, HeartBeatMessage) def then_call(d, func, *args, **kw): return d.addCallback(lambda r: func(*args, **kw)) class BaseConfig(Config): """Base config definition for workers. You should subclass this and add worker-specific fields. """ amqp_prefetch_count = ConfigInt( "The number of messages fetched concurrently from each AMQP queue" " by each worker instance.", default=20, static=True) class BaseWorker(Worker): """Base class for a message processing worker. This contains common functionality used by application, transport and dispatcher workers. It should be subclassed by workers that need to manage their own connectors. """ CONFIG_CLASS = BaseConfig def __init__(self, options, config=None): super(BaseWorker, self).__init__(options, config=config) self.connectors = {} self.middlewares = [] self._static_config = self.CONFIG_CLASS(self.config, static=True) self._hb_pub = None self._worker_id = None def startWorker(self): log.msg('Starting a %s worker with config: %s' % (self.__class__.__name__, self.config)) d = maybeDeferred(self._validate_config) then_call(d, self.setup_heartbeat) then_call(d, self.setup_middleware) then_call(d, self.setup_connectors) then_call(d, self.setup_worker) return d def stopWorker(self): log.msg('Stopping a %s worker.' % (self.__class__.__name__,)) d = succeed(None) then_call(d, self.teardown_worker) then_call(d, self.teardown_connectors) then_call(d, self.teardown_middleware) then_call(d, self.teardown_heartbeat) return d def setup_connectors(self): raise NotImplementedError() @inlineCallbacks def setup_heartbeat(self): # Disable heartbeats if worker_name is not set. We're # currently using it as the primary identifier for a worker if 'worker_name' in self.config: self._worker_name = self.config.get("worker_name") self._system_id = self.options.get("system-id", "global") self._worker_id = generate_worker_id(self._system_id, self._worker_name) log.msg("Starting HeartBeat publisher with worker_name=%s" % self._worker_name) self._hb_pub = yield self.start_publisher(HeartBeatPublisher, self._gen_heartbeat_attrs) else: log.msg("HeartBeat publisher disabled. No worker_id " "field found in config.") def teardown_heartbeat(self): if self._hb_pub is not None: self._hb_pub.stop() self._hb_pub = None def _gen_heartbeat_attrs(self): # worker_name is guaranteed to be set here, otherwise this func would # not have been called attrs = { 'version': HeartBeatMessage.VERSION_20130319, 'worker_id': self._worker_id, 'system_id': self._system_id, 'worker_name': self._worker_name, 'hostname': socket.gethostname(), 'timestamp': time.time(), 'pid': os.getpid(), } attrs.update(self.custom_heartbeat_attrs()) return attrs def custom_heartbeat_attrs(self): """Worker subclasses can override this to add custom attributes""" return {} def teardown_connectors(self): d = succeed(None) for connector_name in self.connectors.keys(): then_call(d, self.teardown_connector, connector_name) return d def setup_worker(self): raise NotImplementedError() def teardown_worker(self): raise NotImplementedError() def setup_middleware(self): """Create middlewares from config.""" d = setup_middlewares_from_config(self, self.config) d.addCallback(self.middlewares.extend) return d def teardown_middleware(self): """Teardown middlewares.""" d = succeed(None) for mw in reversed(self.middlewares): then_call(d, mw.teardown_middleware) return d def get_static_config(self): """Return static (message independent) configuration.""" return self._static_config def get_config(self, msg, ctxt=None): """This should return a message and context specific config object. It deliberately returns a deferred even when this isn't strictly necessary to ensure that workers will continue to work when per-message configuration needs to be fetched from elsewhere. """ return succeed(self.CONFIG_CLASS(self.config)) def _validate_config(self): """Once subclasses call `super().validate_config` properly, this method can be removed. """ # TODO: remove this once all uses of validate_config have been fixed. self.validate_config() def validate_config(self): """ Application-specific config validation happens in here. Subclasses may override this method to perform extra config validation. """ # TODO: deprecate this in favour of a similar method on # config classes. pass def setup_connector(self, connector_cls, connector_name, middleware=False): if connector_name in self.connectors: raise DuplicateConnectorError("Attempt to add duplicate connector" " with name %r" % (connector_name,)) prefetch_count = self.get_static_config().amqp_prefetch_count middlewares = self.middlewares if middleware else None connector = connector_cls(self, connector_name, prefetch_count=prefetch_count, middlewares=middlewares) self.connectors[connector_name] = connector d = connector.setup() d.addCallback(lambda r: connector) return d def teardown_connector(self, connector_name): connector = self.connectors.pop(connector_name) d = connector.teardown() d.addCallback(lambda r: connector) return d def setup_ri_connector(self, connector_name, middleware=True): return self.setup_connector(ReceiveInboundConnector, connector_name, middleware=middleware) def setup_ro_connector(self, connector_name, middleware=True): return self.setup_connector(ReceiveOutboundConnector, connector_name, middleware=middleware) def pause_connectors(self): return gatherResults([ connector.pause() for connector in self.connectors.itervalues()]) def unpause_connectors(self): for connector in self.connectors.itervalues(): connector.unpause()
35.967136
79
0.645477
6,862
0.895706
851
0.111082
872
0.113823
0
0
1,997
0.260671
3bc950ff5c221db7b60343065a9a70cf058a7e1a
1,204
py
Python
tt/ksl/setup.py
aiboyko/ttpy
8fda9d29e27e4f9f68ffba5cc1e16b3020eb131f
[ "MIT" ]
2
2021-04-02T17:42:03.000Z
2021-11-17T11:30:42.000Z
tt/ksl/setup.py
qbit-/ttpy
596b1c9fe6ce5f0ba66d801ac88a1147204cec2f
[ "MIT" ]
null
null
null
tt/ksl/setup.py
qbit-/ttpy
596b1c9fe6ce5f0ba66d801ac88a1147204cec2f
[ "MIT" ]
1
2021-01-10T07:02:09.000Z
2021-01-10T07:02:09.000Z
# setup.py # This script will build the main subpackages # See LICENSE for details from __future__ import print_function, absolute_import from numpy.distutils.misc_util import Configuration from os.path import join TTFORT_DIR = '../tt-fort' EXPM_DIR = '../tt-fort/expm' EXPOKIT_SRC = [ 'explib.f90', 'normest.f90', 'expokit.f', 'dlacn1.f', 'dlapst.f', 'dlarpc.f', 'zlacn1.f', ] TTKSL_SRC = [ 'ttals.f90', 'tt_ksl.f90', 'tt_diag_ksl.f90' ] def configuration(parent_package='', top_path=None): expokit_src = [join(EXPM_DIR, x) for x in EXPOKIT_SRC] ttksl_src = [join(TTFORT_DIR, x) for x in TTKSL_SRC] ttksl_src.append('tt_ksl.pyf') config = Configuration('ksl', parent_package, top_path) config.add_library( 'expokit', sources=expokit_src, ) config.add_extension( 'dyn_tt', sources=ttksl_src, depends=[ 'print_lib', 'expokit', 'mytt', ], libraries=[ 'print_lib', 'expokit', 'mytt', ], ) return config if __name__ == '__main__': print('This is the wrong setup.py to run')
19.737705
59
0.58887
0
0
0
0
0
0
0
0
364
0.302326
3bcd4cf0614ab6f7c88bcffd7170ce176a5a3489
305
py
Python
tests/text_processors/test_json_text_processor.py
lyteloli/NekoGram
f077471000b40a74e0eb4e98dfb570b5e34d23ab
[ "MIT" ]
8
2020-08-21T07:43:52.000Z
2022-01-27T06:48:01.000Z
tests/text_processors/test_json_text_processor.py
lyteloli/NekoGram
f077471000b40a74e0eb4e98dfb570b5e34d23ab
[ "MIT" ]
null
null
null
tests/text_processors/test_json_text_processor.py
lyteloli/NekoGram
f077471000b40a74e0eb4e98dfb570b5e34d23ab
[ "MIT" ]
1
2022-01-27T06:48:02.000Z
2022-01-27T06:48:02.000Z
from NekoGram import Neko, Bot import json def test_json_text_processor(): neko = Neko(bot=Bot(token='0:0', validate_token=False), validate_text_names=False) raw_json = '{"x": {"text": "hello"} }' neko.add_texts(texts=raw_json, lang='en') assert neko.texts['en'] == json.loads(raw_json)
30.5
86
0.688525
0
0
0
0
0
0
0
0
40
0.131148
3bcdd1ca315307c12c5399ab4a8df2ed64ad6708
7,960
py
Python
itdagene/app/meetings/migrations/0001_initial.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
9
2018-10-17T20:58:09.000Z
2021-12-16T16:16:45.000Z
itdagene/app/meetings/migrations/0001_initial.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
177
2018-10-27T18:15:56.000Z
2022-03-28T04:29:06.000Z
itdagene/app/meetings/migrations/0001_initial.py
itdagene-ntnu/itdagene
b972cd3d803debccebbc33641397a39834b8d69a
[ "MIT" ]
null
null
null
from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models class Migration(migrations.Migration): dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)] operations = [ migrations.CreateModel( name="Meeting", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("date_created", models.DateTimeField(editable=False)), ("date_saved", models.DateTimeField(editable=False)), ("date", models.DateField(verbose_name="date")), ("start_time", models.TimeField(verbose_name="from time")), ( "end_time", models.TimeField(null=True, verbose_name="to time", blank=True), ), ( "type", models.PositiveIntegerField( default=0, verbose_name="type", choices=[ (0, "Board meeting"), (1, "Web"), (2, "Banquet"), (3, "Logistics"), (4, "Marketing"), (5, "Other"), ], ), ), ( "location", models.CharField( max_length=40, verbose_name="location", blank=True ), ), ( "abstract", models.TextField(null=True, verbose_name="abstract", blank=True), ), ( "is_board_meeting", models.BooleanField(default=True, verbose_name="is board meeting"), ), ( "creator", models.ForeignKey( related_name="meeting_creator", editable=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ( "referee", models.ForeignKey( related_name="refereed_meetings", verbose_name="referee", blank=True, on_delete=models.CASCADE, to=settings.AUTH_USER_MODEL, null=True, ), ), ( "saved_by", models.ForeignKey( related_name="meeting_saved_by", editable=False, on_delete=models.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ], options={"verbose_name": "meeting", "verbose_name_plural": "meetings"}, bases=(models.Model,), ), migrations.CreateModel( name="Penalty", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("date_created", models.DateTimeField(editable=False)), ("date_saved", models.DateTimeField(editable=False)), ( "type", models.CharField( default="beer", max_length=10, verbose_name="type", choices=[(b"beer", "Beer"), (b"wine", "Wine")], ), ), ( "bottles", models.PositiveIntegerField( default=2, verbose_name="number of bottles" ), ), ("reason", models.TextField(verbose_name="reason")), ( "creator", models.ForeignKey( related_name="penalty_creator", editable=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ( "meeting", models.ForeignKey( verbose_name="meeting", blank=True, to="meetings.Meeting", null=True, on_delete=models.SET_NULL, ), ), ( "saved_by", models.ForeignKey( related_name="penalty_saved_by", editable=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ( "user", models.ForeignKey( related_name="penalties", verbose_name="person", to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ], options={"abstract": False}, bases=(models.Model,), ), migrations.CreateModel( name="ReplyMeeting", fields=[ ( "id", models.AutoField( verbose_name="ID", serialize=False, auto_created=True, primary_key=True, ), ), ("date_created", models.DateTimeField(editable=False)), ("date_saved", models.DateTimeField(editable=False)), ( "is_attending", models.NullBooleanField(default=False, verbose_name="attending"), ), ( "creator", models.ForeignKey( related_name="replymeeting_creator", editable=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ( "meeting", models.ForeignKey( related_name="replies", verbose_name="meeting", to="meetings.Meeting", on_delete=models.CASCADE, ), ), ( "saved_by", models.ForeignKey( related_name="replymeeting_saved_by", editable=False, to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ( "user", models.ForeignKey( verbose_name="user", to=settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ), ), ], options={"abstract": False}, bases=(models.Model,), ), ]
35.695067
87
0.358417
7,842
0.985176
0
0
0
0
0
0
848
0.106533
3bcdfa047a911d02d5d42da304bd32569f2f1c95
2,247
py
Python
models/mail.py
Huy-Ngo/temp-mail
6269f1f405cd7447ea0d45799ee1c4a0623d23a6
[ "MIT" ]
3
2022-01-18T17:15:17.000Z
2022-01-22T09:52:19.000Z
models/mail.py
Huy-Ngo/temp-mail
6269f1f405cd7447ea0d45799ee1c4a0623d23a6
[ "MIT" ]
28
2020-06-18T08:53:32.000Z
2020-08-07T02:33:47.000Z
models/mail.py
Huy-Ngo/temp-mail
6269f1f405cd7447ea0d45799ee1c4a0623d23a6
[ "MIT" ]
null
null
null
# Copyright (c) 2020 Ngô Ngọc Đức Huy from db import db class MailModel(db.Model): """Model for representing and storing mails.""" id = db.Column(db.Integer, primary_key=True) sender = db.Column(db.String(254)) recipient = db.Column(db.String(254), db.ForeignKey('user_model.email_address'), nullable=False) # headers mail_from = db.Column(db.String(300)) rcpt_to = db.Column(db.String(300)) date = db.Column(db.DateTime) subject = db.Column(db.String(150)) # payload text = db.Column(db.String) html = db.Column(db.String) # status check is_read = db.Column(db.Boolean, default=False) def __init__(self, sender, recipient, mail_from, rcpt_to, date, subject, text, html): self.sender = sender self.recipient = recipient self.mail_from = mail_from self.rcpt_to = rcpt_to self.date = date self.subject = subject self.text = text self.html = html self.is_read = False def json(self) -> dict: """Return the information of the object as a JSON""" return { 'id': self.id, 'sender': self.sender, 'recipient': self.recipient, 'headers': { 'from': self.mail_from, 'to': self.rcpt_to, 'date': self.date.__str__(), 'subject': self.subject }, 'payload': { 'text': self.text, 'html': self.html }, 'is_read': self.is_read } @classmethod def fetch_by_address(cls, address: str): """Get all the mails sent to the address.""" return cls.query.filter_by(recipient=address).all() @classmethod def fetch_by_id(cls, _id: int): """Get the email that has a specific ID.""" return cls.query.filter_by(id=_id).first() def save_to_db(self): """Save the email to database.""" db.session.add(self) db.session.commit() def set_read(self): """Set the email as read.""" self.is_read = True db.session.add(self) db.session.commit()
28.807692
68
0.549622
2,185
0.969818
0
0
321
0.142477
0
0
437
0.193964
3bce9c159c555e02a3e9d2befee3b2b0dfb1fa84
1,681
py
Python
jesse/indicators/bollinger_bands.py
leaiannotti/jesse
564c54845774891ff3b5a8d3c02cc7cea890ac54
[ "MIT" ]
5
2021-05-21T07:39:16.000Z
2021-11-17T11:08:41.000Z
jesse/indicators/bollinger_bands.py
leaiannotti/jesse
564c54845774891ff3b5a8d3c02cc7cea890ac54
[ "MIT" ]
null
null
null
jesse/indicators/bollinger_bands.py
leaiannotti/jesse
564c54845774891ff3b5a8d3c02cc7cea890ac54
[ "MIT" ]
2
2021-05-21T10:14:53.000Z
2021-05-27T04:39:51.000Z
from collections import namedtuple import numpy as np import talib from jesse.indicators.ma import ma from jesse.indicators.mean_ad import mean_ad from jesse.indicators.median_ad import median_ad from jesse.helpers import get_candle_source, slice_candles BollingerBands = namedtuple('BollingerBands', ['upperband', 'middleband', 'lowerband']) def bollinger_bands(candles: np.ndarray, period: int = 20, devup: float = 2, devdn: float = 2, matype: int = 0, devtype: int = 0, source_type: str = "close", sequential: bool = False) -> BollingerBands: """ BBANDS - Bollinger Bands :param candles: np.ndarray :param period: int - default: 20 :param devup: float - default: 2 :param devdn: float - default: 2 :param matype: int - default: 0 :param devtype: int - default: 0 :param source_type: str - default: "close" :param sequential: bool - default=False :return: BollingerBands(upperband, middleband, lowerband) """ candles = slice_candles(candles, sequential) source = get_candle_source(candles, source_type=source_type) if devtype == 0: dev = talib.STDDEV(source, period) elif devtype == 1: dev = mean_ad(source, period, sequential=True) elif devtype == 2: dev = median_ad(source, period, sequential=True) middlebands = ma(source, period=period, matype=matype, sequential=True) upperbands = middlebands + devup * dev lowerbands = middlebands - devdn * dev if sequential: return BollingerBands(upperbands, middlebands, lowerbands) else: return BollingerBands(upperbands[-1], middlebands[-1], lowerbands[-1])
32.960784
129
0.684117
0
0
0
0
0
0
0
0
467
0.277811
3bcf9e27b60f3e382de5df8d52f14b8d023fe9df
3,050
py
Python
coveralls_check.py
jayvdb/coveralls-check
ca3b0428b90fe3c6d22cad3a122dedc2c46d12e4
[ "MIT" ]
null
null
null
coveralls_check.py
jayvdb/coveralls-check
ca3b0428b90fe3c6d22cad3a122dedc2c46d12e4
[ "MIT" ]
2
2018-07-11T07:09:25.000Z
2022-03-10T12:18:18.000Z
coveralls_check.py
jayvdb/coveralls-check
ca3b0428b90fe3c6d22cad3a122dedc2c46d12e4
[ "MIT" ]
1
2020-01-10T05:27:46.000Z
2020-01-10T05:27:46.000Z
from __future__ import print_function import logging from argparse import ArgumentParser import backoff import requests import sys POLL_URL = 'https://coveralls.io/builds/{}.json' DONE_URL = 'https://coveralls.io/webhook' def setup_logging(): logger = logging.getLogger('backoff') logger.addHandler(logging.StreamHandler()) logger.setLevel(logging.INFO) def message(args, covered, template): print(template.format( args.commit, covered, args.fail_under )) def get_coverage(commit): response = requests.get(POLL_URL.format(commit)) data = response.json() return data['covered_percent'] def decorate(func, args): interval = 10 return backoff.on_predicate( backoff.constant, interval=interval, max_tries=args.max_wait*60/interval, jitter=lambda value: value, )(func) def ensure_parallel_done(args): if args.parallel_build_number: response = requests.post( DONE_URL, params={'repo_token': args.repo_token}, json={ "payload": { "build_num": args.parallel_build_number, "status": "done" } } ) if response.status_code == 200: print('Confirmed end of parallel build') else: print( 'Attempt to confirmed end of parallel build got {}:\n{}'.format( response.status_code, response.content ) ) sys.exit(1) def parse_args(): parser = ArgumentParser() parser.add_argument('commit', help='the commit hash to check') parser.add_argument('--fail-under', type=float, default=100, help='Exit with a status of 2 if the total coverage is ' 'less than MIN.') parser.add_argument('--max-wait', type=int, default=5, help='Maximum time, in minutes, to wait for Coveralls ' 'data. Defaults to 5.') parser.add_argument('--parallel-build-number', type=int, help='The build number, eg $TRAVIS_BUILD_NUMBER.') parser.add_argument('--repo-token', help='Required if --parallel-build-number is used and ' 'should be the token use when POSTing back to ' 'coveralls to mark the parallel build as done. ' 'Should come from a secret.') return parser.parse_args() def main(): args = parse_args() setup_logging() ensure_parallel_done(args) get_coverage_ = decorate(get_coverage, args) covered = get_coverage_(args.commit) if covered is None: print('No coverage information available for {}'.format(args.commit)) sys.exit(1) elif covered < args.fail_under: message(args, covered, 'Failed coverage check for {} as {} < {}') sys.exit(2) else: message(args, covered, 'Coverage OK for {} as {} >= {}')
30.5
80
0.585902
0
0
0
0
0
0
0
0
798
0.261639
3bd21db03fbff68669d9cf01fd41194e607124e2
1,399
py
Python
ScienceCruiseDataManagement/data_storage_management/utils.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
6
2017-10-06T09:18:04.000Z
2022-02-10T08:54:56.000Z
ScienceCruiseDataManagement/data_storage_management/utils.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
12
2020-02-27T09:24:50.000Z
2021-09-22T17:39:55.000Z
ScienceCruiseDataManagement/data_storage_management/utils.py
Swiss-Polar-Institute/science-cruise-data-management
67721a0f4a1255b8ac43e530ed95a8c324239c7c
[ "MIT" ]
1
2017-10-16T13:49:33.000Z
2017-10-16T13:49:33.000Z
import subprocess import glob import os import datetime # This file is part of https://github.com/cpina/science-cruise-data-management # # This project was programmed in a hurry without any prior Django experience, # while circumnavigating the Antarctic on the ACE expedition, without proper # Internet access, with 150 scientists using the system and doing at the same # cruise other data management and system administration tasks. # # Sadly there aren't unit tests and we didn't have time to refactor the code # during the cruise, which is really needed. # # Carles Pina (carles@pina.cat) and Jen Thomas (jenny_t152@yahoo.co.uk), 2016-2017. def log(message): f = open(os.path.join(os.environ["HOME"], "logs", "importer.log"), "a") now = datetime.datetime.now() now = now.strftime("%Y-%m-%d %H:%M:%S") f.write("{} {}\n".format(now, message)) f.close() def rsync_copy(origin, destination): origin = glob.glob(origin) return execute(["rsync", "-rvt"] + origin + [destination], print_command=True) def execute(cmd, abort_if_fails=False, print_command=False): if print_command: print("** Execute: {}".format(" ".join(cmd))) p = subprocess.Popen(cmd) p.communicate()[0] retval = p.returncode if retval != 0 and abort_if_fails: print("Command: _{}_ failed, aborting...".format(cmd)) exit(1) return retval
31.088889
83
0.68549
0
0
0
0
0
0
0
0
701
0.501072
3bd3be55e7aed0ec74f1031095e8ca063b4aa8fd
515
py
Python
Applied Project/Web/app/config.py
rebeccabernie/CurrencyAnalyser
1f57e5b5fee854912c205cb98f57c980027f0a03
[ "MIT" ]
27
2018-06-22T18:49:52.000Z
2022-02-18T07:58:48.000Z
Applied Project/Web/app/config.py
taraokelly/CurrencyAnalyser
1f57e5b5fee854912c205cb98f57c980027f0a03
[ "MIT" ]
10
2020-01-28T22:24:22.000Z
2022-02-10T13:11:32.000Z
Applied Project/Web/app/config.py
taraokelly/CurrencyAnalyser
1f57e5b5fee854912c205cb98f57c980027f0a03
[ "MIT" ]
6
2018-05-02T16:43:45.000Z
2020-11-17T18:00:36.000Z
""" Global Flask Application Settings """ import os from app import app class Config(object): DEBUG = False TESTING = False PRODUCTION = False class Development(Config): MODE = 'Development' DEBUG = True class Production(Config): MODE = 'Production' DEBUG = False PRODUCTION = True # Set FLASK_CONFIG env to 'Production' or 'Development' to set Config flask_config = os.environ.get('FLASK_CONFIG', 'Development') app.config.from_object('app.config.{}'.format(flask_config))
19.074074
69
0.700971
239
0.464078
0
0
0
0
0
0
177
0.343689
3bd3e56f8e3f7640af1c0c1de7776e8679289263
103
py
Python
Exercise-1/Q4_reverse.py
abhay-lal/18CSC207J-APP
79a955a99837e6d41c89cb1a9e84eb0230c0fa7b
[ "MIT" ]
null
null
null
Exercise-1/Q4_reverse.py
abhay-lal/18CSC207J-APP
79a955a99837e6d41c89cb1a9e84eb0230c0fa7b
[ "MIT" ]
null
null
null
Exercise-1/Q4_reverse.py
abhay-lal/18CSC207J-APP
79a955a99837e6d41c89cb1a9e84eb0230c0fa7b
[ "MIT" ]
null
null
null
word = input('Enter a word') len = len(word) for i in range(len-1, -1, -1): print(word[i], end='')
20.6
30
0.572816
0
0
0
0
0
0
0
0
16
0.15534
3bd475c386fa8a4a56cad45921819b936313ea64
162
py
Python
exercise/6.py
zhaoshengshi/practicepython-exercise
3e123eb602aaf1c9638c7a2199607146e860b96c
[ "Apache-2.0" ]
null
null
null
exercise/6.py
zhaoshengshi/practicepython-exercise
3e123eb602aaf1c9638c7a2199607146e860b96c
[ "Apache-2.0" ]
null
null
null
exercise/6.py
zhaoshengshi/practicepython-exercise
3e123eb602aaf1c9638c7a2199607146e860b96c
[ "Apache-2.0" ]
null
null
null
ss = input('Please give me a string: ') if ss == ss[::-1]: print("Yes, %s is a palindrome." % ss) else: print('Nevermind, %s isn\'t a palindrome.' % ss)
23.142857
52
0.574074
0
0
0
0
0
0
0
0
89
0.549383
3bd4ef311d3ceb65a757cf2dcd1641a9fa9f94c6
5,420
py
Python
app/v2/resources/users.py
fabischolasi/fast-food-fast-v1
492f0bdaaeadf12089a200a9b64bdfc22cd03d0c
[ "MIT" ]
1
2019-10-16T07:56:31.000Z
2019-10-16T07:56:31.000Z
app/v2/resources/users.py
fabzer0/FastFoodAPI
492f0bdaaeadf12089a200a9b64bdfc22cd03d0c
[ "MIT" ]
null
null
null
app/v2/resources/users.py
fabzer0/FastFoodAPI
492f0bdaaeadf12089a200a9b64bdfc22cd03d0c
[ "MIT" ]
null
null
null
from flask import Blueprint, jsonify, make_response from flask_restful import Resource, Api, reqparse, inputs from ..models.decorators import admin_required from ..models.models import UserModel import os class SignUp(Resource): def __init__(self): """ Validates both json and form-data input """ self.reqparse = reqparse.RequestParser() self.reqparse.add_argument( 'username', required=True, help='kindly provide a valid username', type=inputs.regex(r"(.*\S.*)"), location=['form', 'json']) self.reqparse.add_argument( 'email', required=True, help='kindly provide a valid email address', location=['form', 'json'], type=inputs.regex(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)")) self.reqparse.add_argument( 'password', required=True, trim=True, help='kindly provide a valid password', location=['form', 'json']) self.reqparse.add_argument( 'confirm_password', required=True, trim=True, help='kindly provide a valid confirmation password', location=['form', 'json']) super(SignUp, self).__init__() def post(self): """ Register a new user """ kwargs = self.reqparse.parse_args() username = kwargs.get('username') email = kwargs.get('email') password = kwargs.get('password') confirm_password = kwargs.get('confirm_password') username_exist = UserModel.get_one('users', username=username) if username_exist: return make_response(jsonify({'message': 'username already taken'}), 400) if password == confirm_password: if len(password) >= 8: email_exists = UserModel.get_one('users', email=email) if not email_exists: if username == os.getenv('ADMIN'): user = UserModel(username=username, email=email, password=password) user.create_user() fetch_admin = UserModel.get_one('users', username=username) data = {'admin': True} UserModel.update('users', id=fetch_admin[0], data=data) user = UserModel.get_one('users', id=fetch_admin[0]) return jsonify({'admin': UserModel.user_details(user)}) user = UserModel(username=username, email=email, password=password) user.create_user() user = UserModel.get_one('users', username=username) return make_response(jsonify({'message': 'successfully registered', 'user': UserModel.user_details(user)}), 201) return make_response(jsonify({'message': 'email already taken'}), 203) return make_response(jsonify({'message': 'password should be atleast 8 characters'}), 400) return make_response(jsonify({"message" : "password and confirm password should be identical"}), 400) class AllUsers(Resource): @admin_required def get(self): users = UserModel.get_all('users') if not users: return jsonify({'message': 'no users found yet'}) return make_response(jsonify({'all_users': [UserModel.user_details(user) for user in users]})) class PromoteUser(Resource): @admin_required def put(self, user_id): user = UserModel.get_one('users', id=user_id) if not user: return jsonify({'message': 'user not found'}) data = {'admin': True} UserModel.update('users', id=user[0], data=data) user = UserModel.get_one('users', id=user_id) return jsonify({'user': UserModel.user_details(user)}) class Login(Resource): def __init__(self): self.reqparse = reqparse.RequestParser() self.reqparse.add_argument( 'email', required=True, help='kindly provide a valid email address', location=['form', 'json'], type=inputs.regex(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)")) self.reqparse.add_argument( 'password', required=True, trim=True, help='kindly provide a valid password', location=['form', 'json']) super(Login, self).__init__() def post(self): kwargs = self.reqparse.parse_args() email = kwargs.get('email') password = kwargs.get('password') user = UserModel.get_one('users', email=email) if user is None: return make_response(jsonify({'message': 'invalid email or password'}), 404) if UserModel.validate_password(password=password, email=user[2]): token = UserModel.generate_token(user) return make_response(jsonify({'message': 'you are successfully logged in', 'token': token}), 200) return make_response(jsonify({'message': 'invalid email or password'}), 401) users_api = Blueprint('resources.users', __name__) api = Api(users_api) api.add_resource(SignUp, '/auth/signup', endpoint='signup') api.add_resource(AllUsers, '/users') api.add_resource(PromoteUser, '/users/<int:user_id>') api.add_resource(Login, '/auth/login', endpoint='login')
38.992806
132
0.587823
4,921
0.907934
0
0
646
0.119188
0
0
1,238
0.228413
3bd6298a19903f15f7e907c194b8869777800558
21,160
py
Python
model_blocks/tests.py
aptivate/django-model-blocks
5057ed57887683d777f04c95d67d268d21a18c02
[ "BSD-3-Clause" ]
6
2015-01-20T08:43:44.000Z
2020-08-13T01:57:10.000Z
model_blocks/tests.py
techdragon/django-model-blocks
8175d7353d792cb720b4ac356f4538888bf7747c
[ "BSD-3-Clause" ]
1
2016-10-16T17:35:07.000Z
2016-10-16T17:35:07.000Z
model_blocks/tests.py
techdragon/django-model-blocks
8175d7353d792cb720b4ac356f4538888bf7747c
[ "BSD-3-Clause" ]
null
null
null
""" Test the model blocks """ import datetime from django.test import TestCase from mock import Mock from django.db.models import Model, IntegerField, DateTimeField, CharField from django.template import Context, Template, TemplateSyntaxError from example_project.pepulator_factory.models import Pepulator, Distributor from model_blocks.templatetags import model_filters from model_blocks.templatetags import model_nodes class DetailBlockFilterTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template(('{{ title|default_if_none:instance|safe }}:{{ model|safe }},' '{% for name, label, value, is_list, is_link in fields %}' '{{ name|safe }},' '{{ label|safe }},' '{% if not is_list %}' '{% if is_link %}' '@{{ value }}' '{% else %}' '{{ value|safe }}' '{% endif %}' '{% else %}' '[{% for item in value.all %}{{ item|safe }},{% endfor %}]' '{% endif %},' '{% endfor %}'))) def test_model_format(self): """Tests that a given model is formatted as expected.""" pepulator = Pepulator.objects.get(serial_number=1235) expected_detail = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,@ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) detail = model_filters.as_detail_block(pepulator) model_nodes.get_template.assert_called_with('model_blocks/object_detail.html') self.assertEqual(detail, expected_detail) def test_filter_is_registered(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_filters %}' '{{ pepulator|as_detail_block }}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_detail = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,@ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) detail = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_detail.html') self.assertEqual(detail, expected_detail) def test_title_is_used(self): """Test that a title is used if provided""" template = Template(('{% load model_filters %}' '{{ pepulator|as_detail_block:"My Pepulator" }}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_detail = (u"My Pepulator:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,@ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) detail = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_detail.html') self.assertEqual(detail, expected_detail) def test_related_fields(self): """Tests that related fields not defined on the model are included.""" pepulator = Distributor.objects.get(name="Mom & Pop") expected_detail = (u"Mom & Pop:distributor," "name,name,Mom & Pop," "capacity,capacity,175," "stock,stock,[Pepulator #1238,]," ) detail = model_filters.as_detail_block(pepulator) model_nodes.get_template.assert_called_with('model_blocks/object_detail.html') self.assertEqual(detail, expected_detail) class TeaserBlockFilterTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:instance|safe }}:{{ model|safe }},{% for name, label, value, is_list in fields %}{{ name|safe }},{{ label|safe }},{% if not is_list %}{{ value|safe }}{% else %}[{% for item in value.all %}{{ item|safe }},{% endfor %}]{% endif %},{% endfor %}')) def test_model_format(self): """Tests that a given model is formatted as expected.""" pepulator = Pepulator.objects.get(serial_number=1235) expected_teaser = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) teaser = model_filters.as_teaser_block(pepulator) model_nodes.get_template.assert_called_with('model_blocks/object_teaser.html') self.assertEqual(teaser, expected_teaser) class ListBlockFilterTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:model|capfirst }}{% if not title %}s{% endif %}:{{ instance_list|safe }}')) def test_list_format(self): """Tests that a given model is formatted as expected.""" pepulator_list = Pepulator.objects.filter(serial_number__gt=2000) expected_rendering = (u"Pepulators:[<Pepulator: Pepulator #2345>, " "<Pepulator: Pepulator #2346>]") rendering = model_filters.as_list_block(pepulator_list) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) def test_filter_is_registered(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_filters %}' '{{ pepulators|as_list_block }}')) pepulator_list = Pepulator.objects.filter(serial_number__gt=2000) context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Pepulators:[<Pepulator: Pepulator #2345>, " "<Pepulator: Pepulator #2346>]") rendering = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) def test_empty_queryset(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_filters %}' '{{ pepulators|as_list_block }}')) pepulator_list = Pepulator.objects.filter(serial_number__gt=5000) context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Pepulators:[]") rendering = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) def test_non_query_set_results_in_no_model(self): """Test that when a non queryset is used, the model is None""" # Why? Because we try to read the model off of the queryset. If we just # have a list of objects, then we don't know the model. template = Template(('{% load model_filters %}' '{{ pepulators|as_list_block }}')) pepulator_list = [p for p in Pepulator.objects.filter(serial_number__gt=2000)] context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Nones:[<Pepulator: Pepulator #2345>, " "<Pepulator: Pepulator #2346>]") rendering = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) def test_empty_list(self): """Test that when a non queryset is used, the model is None""" template = Template(('{% load model_filters %}' '{{ pepulators|as_list_block }}')) pepulator_list = [] context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Nones:[]") rendering = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) def test_alternate_title_is_used(self): """Test that a list title is used if provided""" template = Template(('{% load model_filters %}' '{{ pepulators|as_list_block:"Some Pepulators" }}')) pepulator_list = Pepulator.objects.filter(serial_number__gt=2000) context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Some Pepulators:[<Pepulator: Pepulator #2345>, " "<Pepulator: Pepulator #2346>]") rendering = template.render(context) model_nodes.get_template.assert_called_with('model_blocks/object_list.html') self.assertEqual(rendering, expected_rendering) class DetailBlockTagTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:instance|safe }}:{{ model|safe }},{% for name, label, value, is_list in fields %}{{ name|safe }},{{ label|safe }},{% if not is_list %}{{ value|safe }}{% else %}[{% for item in value.all %}{{ item|safe }},{% endfor %}]{% endif %},{% endfor %}')) def test_tag_is_registered(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_tags %}' '{% with pepulator_factory_pepulator_detail_template="pepulator_factory/pepulator_detail.html" %}' '{% detail_block pepulator %}' '{% endwith %}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_detail = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) detail = template.render(context) model_nodes.get_template.assert_called_with('pepulator_factory/pepulator_detail.html') self.assertEqual(detail, expected_detail) def test_with_specific_fields(self): """Test that the included fields spec is respected""" template = Template(('{% load model_tags %}' '{% with pepulator_factory_pepulator_detail_template="pepulator_factory/pepulator_detail.html" %}' '{% with pepulator_factory_pepulator_fields="serial_number, color, height, width" %}' '{% detail_block pepulator %}' '{% endwith %}' '{% endwith %}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_detail = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "color,color,red," "height,height,12," "width,width,15," ) detail = template.render(context) self.assertEqual(detail, expected_detail) def test_with_excluded_fields(self): """Test that the excluded fields spec is respected""" template = Template(('{% load model_tags %}' '{% with pepulator_factory_pepulator_detail_template="pepulator_factory/pepulator_detail.html" %}' '{% with pepulator_factory_pepulator_exclude="knuckles, jambs, color, address" %}' '{% detail_block pepulator %}' '{% endwith %}' '{% endwith %}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_detail = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "distributed_by,distributed by,Walmart," ) detail = template.render(context) self.assertEqual(detail, expected_detail) def test_fail_on_wrong_number_of_arguments(self): self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% detail_block pepulator "overflow" %}')) self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% detail_block %}')) class TeaserBlockTagTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:instance|safe }}:{{ model|safe }},{% for name, label, value, is_list in fields %}{{ name|safe }},{{ label|safe }},{% if not is_list %}{{ value|safe }}{% else %}[{% for item in value.all %}{{ item|safe }},{% endfor %}]{% endif %},{% endfor %}')) def test_tag_is_registered(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_tags %}' '{% with pepulator_factory_pepulator_teaser_template="pepulator_factory/pepulator_teaser.html" %}' '{% teaser_block pepulator %}' '{% endwith %}')) pepulator = Pepulator.objects.get(serial_number=1235) context = Context({'pepulator':pepulator}) expected_teaser = (u"Pepulator #1235:pepulator," "serial_number,serial number,1235," "height,height,12," "width,width,15," "manufacture_date,manufacture date,2011-06-10 11:12:33," "color,color,red," "address,address,ppr://1235/," "distributed_by,distributed by,Walmart," "knuckles,knuckles,[Knuckle of hardness 2.35,Knuckle of hardness 1.10,]," "jambs,jambs,[]," ) teaser = template.render(context) model_nodes.get_template.assert_called_with('pepulator_factory/pepulator_teaser.html') self.assertEqual(teaser, expected_teaser) def test_fail_on_wrong_number_of_arguments(self): self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% teaser_block pepulator "overflow" %}')) self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% teaser_block %}')) class ListBlockTagTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:model|capfirst }}{% if not title %}s{% endif %}:{{ instance_list|safe }}')) def test_filter_is_registered(self): """Test that the filter can be used from within a template""" template = Template(('{% load model_tags %}' '{% with pepulator_factory_pepulator_list_template="pepulator_factory/pepulator_list.html" %}' '{% list_block pepulators %}' '{% endwith %}')) pepulator_list = Pepulator.objects.filter(serial_number__gt=2000) context = Context({'pepulators':pepulator_list}) expected_rendering = (u"Pepulators:[<Pepulator: Pepulator #2345>, " "<Pepulator: Pepulator #2346>]") rendering = template.render(context) model_nodes.get_template.assert_called_with('pepulator_factory/pepulator_list.html') self.assertEqual(rendering, expected_rendering) def test_fail_on_wrong_number_of_arguments(self): self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% list_block pepulators "overflow" %}')) self.assertRaises(TemplateSyntaxError, Template, ('{% load model_tags %}' '{% list_block %}')) class ModelBlockModuleTest (TestCase): def test_all_tags_and_filters_loaded(self): template = Template(('{% load model_blocks %}' '{% detail_block pepulator %}' '{% list_block pepulators %}' '{{ pepulator|as_detail_block }}' '{{ pepulators|as_list_block }}')) # We just care that everything loaded, and we were able to get here # without incidence. self.assert_(True) class SideEffectsTest (TestCase): fixtures = ['pepulator_factory_data.json'] def setUp(self): # Mock Django's get_template so that it doesn't load a real file; # instead just return a template that allows us to verify the context model_nodes.get_template = Mock( return_value=Template('{{ title|default_if_none:model|capfirst }}{% if not title %}s{% endif %}')) def test_model_doesnt_carry_over_into_future_blocks(self): template = Template(('{% load model_tags %}' '{{ model }}' '{% list_block distributors %}' '{{ model }}')) distributor_list = Distributor.objects.all() context = Context({'model':'My String', 'distributors':distributor_list}) expected_rendering = (u"My String" "Distributors" "My String") rendering = template.render(context) self.assertEqual(rendering, expected_rendering)
44.453782
304
0.578544
20,680
0.977316
0
0
0
0
0
0
9,265
0.437854
3bd65ecba92bc72c9d3f44c46609ce82742a80af
1,794
py
Python
lit_nlp/examples/toxicity_demo.py
ghostian/lit
891673ef120391f4682be4478881fdb408241f82
[ "Apache-2.0" ]
null
null
null
lit_nlp/examples/toxicity_demo.py
ghostian/lit
891673ef120391f4682be4478881fdb408241f82
[ "Apache-2.0" ]
null
null
null
lit_nlp/examples/toxicity_demo.py
ghostian/lit
891673ef120391f4682be4478881fdb408241f82
[ "Apache-2.0" ]
null
null
null
# Lint as: python3 r"""LIT Demo for a Toxicity model. To run locally: python -m lit_nlp.examples.toxicity_demo --port=5432 Once you see the ASCII-art LIT logo, navigate to localhost:5432 to access the demo UI. """ from absl import app from absl import flags from absl import logging from lit_nlp import dev_server from lit_nlp import server_flags from lit_nlp.examples.datasets import classification from lit_nlp.examples.models import glue_models TOXICITY_MODEL_PATH = "https://storage.googleapis.com/what-if-tool-resources/lit-models/toxicity.tar.gz" # pylint: disable=line-too-long import transformers TOXICITY_MODEL_PATH = transformers.file_utils.cached_path(TOXICITY_MODEL_PATH, extract_compressed_file=True) # NOTE: additional flags defined in server_flags.py FLAGS = flags.FLAGS FLAGS.set_default("development_demo", True) flags.DEFINE_string("model_path", TOXICITY_MODEL_PATH, "Path to save trained model.") flags.DEFINE_integer( "max_examples", 1000, "Maximum number of examples to load into LIT. ") def main(_): model_path = FLAGS.model_path logging.info("Working directory: %s", model_path) # Load our trained model. models = {"toxicity": glue_models.ToxicityModel(model_path)} datasets = {"toxicity_test": classification.ToxicityData("test")} # Truncate datasets if --max_examples is set. for name in datasets: logging.info("Dataset: '%s' with %d examples", name, len(datasets[name])) datasets[name] = datasets[name].slice[:FLAGS.max_examples] logging.info(" truncated to %d examples", len(datasets[name])) # Start the LIT server. See server_flags.py for server options. lit_demo = dev_server.Server(models, datasets, **server_flags.get_flags()) lit_demo.serve() if __name__ == "__main__": app.run(main)
30.931034
137
0.755295
0
0
0
0
0
0
0
0
757
0.421962
3bd7deac97fd990b363d6a3492c5b97386f321f3
2,669
py
Python
portifolio_analysis.py
lucasHashi/app-calculate-stock-portifolio-division
1e2d852215db29f9768bf509d2f52bdec5988ad4
[ "MIT" ]
null
null
null
portifolio_analysis.py
lucasHashi/app-calculate-stock-portifolio-division
1e2d852215db29f9768bf509d2f52bdec5988ad4
[ "MIT" ]
null
null
null
portifolio_analysis.py
lucasHashi/app-calculate-stock-portifolio-division
1e2d852215db29f9768bf509d2f52bdec5988ad4
[ "MIT" ]
null
null
null
import pandas as pd import streamlit as st import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "plotly_white" def load_portifolio_analysis(df_stocks_and_grades): st.write('# Portifolio analysis') st.write('## Investments by sector and sub sector') # fig_sunburst_stocks = load_sunburst_figure(df_stocks_and_grades) # st.write(fig_sunburst_stocks) fig_treemap_stocks = load_treemap_figure(df_stocks_and_grades) st.write(fig_treemap_stocks) def load_sunburst_figure(df): df_stocks_hierarchy = calculate_stocks_hierarchy(df) st.write(df_stocks_hierarchy) fig_sunburst_stocks = go.Figure(go.Sunburst( labels=df_stocks_hierarchy['labels'], parents=df_stocks_hierarchy['parents'], values=df_stocks_hierarchy['values'] )) return fig_sunburst_stocks def load_treemap_figure(df): fig_treemap_stocks = px.treemap( df, path=['sector', 'sub_sector', 'stock'], values='grade', hover_name='investment', ) df_stocks_hierarchy = calculate_stocks_hierarchy(df) fig_treemap_stocks = go.Figure( go.Treemap( labels=df_stocks_hierarchy['labels'], parents=df_stocks_hierarchy['parents'], values=df_stocks_hierarchy['values'], customdata = df_stocks_hierarchy['values_text'], hovertemplate='<b>%{label} </b> <br>%{customdata}', ) ) return fig_treemap_stocks def calculate_stocks_hierarchy(df): sectors_duplicated = list(df.loc[df['sector'] == df['sub_sector'], 'sector']) df['sector'] = df['sector'].apply(lambda sector: sector + '.' if sector in sectors_duplicated else sector) labels = ['Stocks'] + list(df['sector']) + list(df['sub_sector']) + list(df['stock']) parents = [''] parents = parents + ['Stocks'] * len(list(df['sector'])) parents = parents + list(df['sector']) parents = parents + list(df['sub_sector']) values = [0] * (len(df) * 2 + 1) values = values + list(df['investment']) values_text = [df['investment'].sum()] values_text = values_text + [df[(df['sector'] == stock) | (df['sub_sector'] == stock) | (df['stock'] == stock)]['investment'].sum() for stock in labels[1:]] values_text = ["R$ " + "%.2f" % value for value in values_text] df_stocks_hierarchy = pd.DataFrame({'labels': labels, 'parents': parents, 'values': values, 'values_text': values_text}) df_stocks_hierarchy.drop_duplicates(subset=['parents', 'labels'], inplace=True) df_stocks_hierarchy.reset_index(drop=True, inplace=True) return df_stocks_hierarchy
32.54878
160
0.671787
0
0
0
0
0
0
0
0
569
0.213188
3bd99b382f3bb66011f0a2e220815e6d5fe49246
864
py
Python
clicrud/clicrud/helpers.py
DavidJohnGee/clicrud
f1f178ac44649efe7b7681d37e97d2632b8971b2
[ "Apache-2.0" ]
9
2015-12-07T23:00:24.000Z
2021-06-23T21:31:47.000Z
clicrud/clicrud/helpers.py
DavidJohnGee/clicrud
f1f178ac44649efe7b7681d37e97d2632b8971b2
[ "Apache-2.0" ]
8
2016-04-05T12:36:54.000Z
2017-05-15T16:00:08.000Z
clicrud/clicrud/helpers.py
DavidJohnGee/clicrud
f1f178ac44649efe7b7681d37e97d2632b8971b2
[ "Apache-2.0" ]
7
2016-06-02T23:39:05.000Z
2021-03-25T20:52:46.000Z
""" Copyright 2015 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os def getpid(): _strPID = "" if hasattr(os, 'getpid'): # only available on Unix _strPID = os.getpid() return _strPID def cls(): OS = { 'posix': 'clear', 'nix': 'cls', 'nt': 'cls' } os.system(OS.get(os.name))
24.685714
72
0.689815
0
0
0
0
0
0
0
0
651
0.753472
3bd9caeeddf847dd9546e4e833234ce3cce7f394
28
py
Python
patton_server/service/__init__.py
directionless/patton-server
da39cb8b09029dbcf4edd5c78abb150dc53e8ebe
[ "Apache-2.0" ]
null
null
null
patton_server/service/__init__.py
directionless/patton-server
da39cb8b09029dbcf4edd5c78abb150dc53e8ebe
[ "Apache-2.0" ]
null
null
null
patton_server/service/__init__.py
directionless/patton-server
da39cb8b09029dbcf4edd5c78abb150dc53e8ebe
[ "Apache-2.0" ]
null
null
null
from .make_web_app import *
14
27
0.785714
0
0
0
0
0
0
0
0
0
0
3bda0b8e560a339719620c78e288885bd05aa2f6
689
py
Python
lib/abridger/exc.py
willangenent/abridger
6daa80f7360339376b38544ce60694c5addaa30f
[ "MIT" ]
8
2016-10-19T14:15:34.000Z
2020-06-23T09:37:02.000Z
lib/abridger/exc.py
freewilll/abridger
6daa80f7360339376b38544ce60694c5addaa30f
[ "MIT" ]
null
null
null
lib/abridger/exc.py
freewilll/abridger
6daa80f7360339376b38544ce60694c5addaa30f
[ "MIT" ]
null
null
null
class AbridgerError(Exception): pass class ConfigFileLoaderError(AbridgerError): pass class IncludeError(ConfigFileLoaderError): pass class DataError(ConfigFileLoaderError): pass class FileNotFoundError(ConfigFileLoaderError): pass class DatabaseUrlError(AbridgerError): pass class ExtractionModelError(AbridgerError): pass class UnknownTableError(AbridgerError): pass class UnknownColumnError(AbridgerError): pass class InvalidConfigError(ExtractionModelError): pass class RelationIntegrityError(ExtractionModelError): pass class GeneratorError(Exception): pass class CyclicDependencyError(GeneratorError): pass
13.509804
51
0.776488
652
0.946299
0
0
0
0
0
0
0
0
3bdb6220329725e793142bac8d5000ba99303cc3
989
py
Python
common/permissions.py
pedro-hs/financial-account
7e8e4d0f3ac888fa36a091d0e733a8e1926180d2
[ "MIT" ]
null
null
null
common/permissions.py
pedro-hs/financial-account
7e8e4d0f3ac888fa36a091d0e733a8e1926180d2
[ "MIT" ]
null
null
null
common/permissions.py
pedro-hs/financial-account
7e8e4d0f3ac888fa36a091d0e733a8e1926180d2
[ "MIT" ]
null
null
null
from rest_framework.permissions import BasePermission, IsAuthenticated class IsBackOffice(BasePermission): def has_permission(self, request, view): return bool(request.user and request.user.is_authenticated and request.user.role == 'collaborator') class IsUserBase(IsAuthenticated): def has_permission(self, request, view): return bool(request.user and request.user.is_authenticated and request.user.role in ('customer', 'collaborator')) class IsUser(IsUserBase): def has_object_permission(self, request, view, instance): if request.user.role == 'collaborator': return True return request.user.role == 'customer' and instance.user == request.user class IsUserCompany(IsUserBase): def has_object_permission(self, request, view, instance): if request.user.role == 'collaborator': return True return request.user.role == 'customer' and instance.company.user == request.user
34.103448
107
0.706775
906
0.916077
0
0
0
0
0
0
86
0.086957
3bdba7505ba48dff77d09ed882c1ad53fae133f6
956
py
Python
mcp_generation/mcqa_formatter.py
yuchenlin/XCSR
ace4336de98a8567fcad43498907e0efefe70de4
[ "MIT" ]
16
2021-06-14T00:54:28.000Z
2022-03-06T08:52:21.000Z
mcp_generation/mcqa_formatter.py
yuchenlin/XCSR
ace4336de98a8567fcad43498907e0efefe70de4
[ "MIT" ]
null
null
null
mcp_generation/mcqa_formatter.py
yuchenlin/XCSR
ace4336de98a8567fcad43498907e0efefe70de4
[ "MIT" ]
2
2021-08-02T18:54:33.000Z
2021-09-20T05:37:02.000Z
import json probes = [] with open("./multilingual_probes.jsonl",'r') as f: for line in f: probes.append(json.loads(line.rstrip('\n|\r'))) results = [] for probe in probes: new_items = {} answer_labels = ["A", "B", "C", "D", "E","F","G","H"] print(probe["truth_id"]) answerKey = answer_labels[probe["truth_id"]] new_items["id"] = probe["id"] new_items["lang"] = probe["langs"] new_items["question"] = {"stem": " "} new_items["question"]["choices"] = [{"label": l , "text":t} for l,t in zip(answer_labels, probe["probes"])] new_items["answerKey"] = answerKey results.append(new_items) with open('/path/to/mcp_data/train.jsonl','w') as f: for result in results[:-1000]: json.dump(result,f, ensure_ascii=False) f.write('\n') with open('/path/to/mcp_data/dev.jsonl','w') as f: for result in results[-1000:]: json.dump(result,f, ensure_ascii=False) f.write('\n')
29.875
111
0.599372
0
0
0
0
0
0
0
0
248
0.259414
3bdc4d0f00442b263a279d7821b9572ea9833620
2,016
py
Python
tests/test_behavior.py
beskyfil/labels
0a1e4831621ce2027ebc9af3e4161f03ff946a6d
[ "MIT" ]
null
null
null
tests/test_behavior.py
beskyfil/labels
0a1e4831621ce2027ebc9af3e4161f03ff946a6d
[ "MIT" ]
null
null
null
tests/test_behavior.py
beskyfil/labels
0a1e4831621ce2027ebc9af3e4161f03ff946a6d
[ "MIT" ]
null
null
null
import pytest from labelsync.github import Github from labelsync.helpers import HTTPError from tests.helpers import fl, FIXTURES_PATH, create_cfg_env, get_labels c = create_cfg_env('good.cfg') github = Github(c, name='github', api_url='https://api.github.com/repos') label = { 'name':'blabla', 'color':'aa11bb', 'description':'whatever' } label_bug = { 'name':'bug', 'color':'d73a4a', 'description':'Something isn\'t working' } label_new_bug = { 'name':'ERROR', 'color':'ffffff', 'description':'ERROR' } def test_create_label(): labels_before = get_labels('beskyfil', 'testing_repo') num_labels_before = len(labels_before) github.create_label('beskyfil', 'testing_repo', label) labels_after = get_labels('beskyfil', 'testing_repo') num_labels_after = len(labels_after) assert num_labels_before == num_labels_after - 1 assert 'blabla' not in labels_before assert 'blabla' in labels_after def test_delete_label(): labels_before = get_labels('beskyfil', 'testing_repo') num_labels_before = len(labels_before) github.delete_label('beskyfil', 'testing_repo', label['name']) labels_after = get_labels('beskyfil', 'testing_repo') num_labels_after = len(labels_after) assert num_labels_before == num_labels_after + 1 assert 'blabla' in labels_before assert 'blabla' not in labels_after def test_edit_label(): labels_before = get_labels('beskyfil', 'testing_repo') num_labels_before = len(labels_before) github.edit_label('beskyfil', 'testing_repo', label_new_bug, 'bug') labels_after = get_labels('beskyfil', 'testing_repo') num_labels_after = len(labels_after) assert num_labels_before == num_labels_after assert 'bug' in labels_before assert 'bug' not in labels_after assert 'ERROR' in labels_after assert 'ERROR' not in labels_before #revert github.edit_label('beskyfil', 'testing_repo', label_bug, 'ERROR')
28.8
73
0.695933
0
0
0
0
0
0
0
0
534
0.264881
3bdfbd90f140aef1f2b7005698a05751030fadf0
4,249
py
Python
authentication/cryptosign/function/authenticator.py
oberstet/crossbar-examples
852680eee646cf5479bff18ec727a8026d9bdcda
[ "Apache-2.0" ]
null
null
null
authentication/cryptosign/function/authenticator.py
oberstet/crossbar-examples
852680eee646cf5479bff18ec727a8026d9bdcda
[ "Apache-2.0" ]
null
null
null
authentication/cryptosign/function/authenticator.py
oberstet/crossbar-examples
852680eee646cf5479bff18ec727a8026d9bdcda
[ "Apache-2.0" ]
null
null
null
import copy import random from pprint import pformat from txaio import make_logger from autobahn.wamp.exception import ApplicationError from autobahn.util import hl, hltype, hlid, hlval # a simple principals database. in real world use, this likey would be # replaced by some persistent database used to store principals. PRINCIPALS = [ { # when a session is authenticating use one of the authorized_keys, # then assign it all the data below "authid": "client01@example.com", "realm": "devices", "role": "device", "extra": { "foo": 23 }, "authorized_keys": [ "545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f62dddad9122" ] }, { "authid": "client02@example.com", "realm": "devices", "role": "device", "extra": { "foo": 42, "bar": "baz" }, "authorized_keys": [ "9c194391af3bf566fc11a619e8df200ba02efb35b91bdd98b424f20f4163875e", "585df51991780ee8dce4766324058a04ecae429dffd786ee80839c9467468c28" ] } ] log = make_logger() async def create_authenticator(config, controller): """ Creates and returns a function to do authentication. The actual authentication method will be called like: authenticate(realm, authid, session_details) Note that this function can itself do async work (as can the "authenticate" method). For example, we could connect to a database here (and then use that connection in the authenticate() method) 'controller' will be None unless `"expose_controller": true` is in the config. """ log.info( 'create_authenticator(config={config}) {func}', config=pformat(config), func=hltype(create_authenticator), ) pubkey_to_principals = {} for p in PRINCIPALS: for k in p['authorized_keys']: if k in pubkey_to_principals: raise Exception("ambiguous key {}".format(k)) else: pubkey_to_principals[k] = p async def authenticate(realm, authid, details): """ this is our dynamic authenticator procedure that will be called by Crossbar.io when a session is authenticating """ log.info( 'authenticate(realm="{realm}", authid="{authid}", details={details}) {func}', realm=hl(realm), authid=hl(authid), details=details, func=hltype(create_authenticator), ) assert('authmethod' in details) assert(details['authmethod'] == 'cryptosign') assert('authextra' in details) assert('pubkey' in details['authextra']) pubkey = details['authextra']['pubkey'] log.info( 'authenticating session using realm="{realm}", pubkey={pubkey} .. {func}', realm=hl(realm), pubkey=hl(pubkey), func=hltype(create_authenticator), ) if pubkey in pubkey_to_principals: principal = pubkey_to_principals[pubkey] auth = { 'pubkey': pubkey, 'realm': principal['realm'], 'authid': principal['authid'], 'role': principal['role'], 'extra': principal['extra'], 'cache': True } # Note: with WAMP-cryptosign, even though a client may or may not request a `realm`, but in any case, the # effective realm the client is authenticated will be returned in the principal `auth['role']` (!) effective_realm = auth['realm'] log.info( 'found valid principal authid="{authid}", authrole="{authrole}", realm="{realm}" matching given client public key {func}', func=hltype(create_authenticator), authid=hl(auth['authid']), authrole=hl(auth['role']), realm=hl(effective_realm), ) return auth else: msg = 'no principal with matching public key 0x{}'.format(pubkey) log.warn(msg) raise ApplicationError('com.example.no_such_user', msg) return authenticate
33.195313
138
0.589786
0
0
0
0
0
0
3,102
0.730054
2,044
0.481054
3bdfdc921f29e9f07e8dacf34bfc075882611de3
1,368
py
Python
syd/syd_stitch_image.py
OpenSyd/syd
0f7478c7dedb623ab955e906c103cb64a7abb4b3
[ "Apache-2.0" ]
4
2015-07-29T19:10:35.000Z
2020-11-17T07:48:41.000Z
syd/syd_stitch_image.py
OpenSyd/syd
0f7478c7dedb623ab955e906c103cb64a7abb4b3
[ "Apache-2.0" ]
9
2015-05-14T09:07:37.000Z
2022-03-15T10:13:59.000Z
syd/syd_stitch_image.py
OpenSyd/syd
0f7478c7dedb623ab955e906c103cb64a7abb4b3
[ "Apache-2.0" ]
3
2016-09-07T06:26:52.000Z
2016-10-04T12:29:03.000Z
#!/usr/bin/env python3 import itk import syd # ----------------------------------------------------------------------------- def stitch_image(db, image1, image2): print('image1', image1) print('image2', image2) im1 = syd.read_itk_image(db, image1) im2 = syd.read_itk_image(db, image2) im = stitch_itk_image(im1, im2) print('TODO: insert an image') return im # ----------------------------------------------------------------------------- def stitch_itk_image(im1, im2): # FIXME -> to put in a external file itk related # check image size and type # FIXME # create an image ImageType = type(im1) print(ImageType) image = ImageType.New() # get sizes region1 = im1.GetLargestPossibleRegion() region2 = im2.GetLargestPossibleRegion() a1 = im1.TransformIndexToPhysicalPoint(region1.GetIndex()) b1 = im1.TransformIndexToPhysicalPoint(region1.GetSize()) a2 = im2.TransformIndexToPhysicalPoint(region2.GetIndex()) b2 = im2.TransformIndexToPhysicalPoint(region2.GetSize()) print(a1, b1) print(a2, b2) # create new size za = min(a1[2], a2[2], b1[2], b2[2]) zb = max(a1[2], a2[2], b1[2], b2[2]) # swap if decreasing coordinates if (a1[2]>b1[2]): zb,za = za,zb a = a1 a[2] = za b = b1 b[2] = zb print(a, b) return image
23.186441
79
0.557749
0
0
0
0
0
0
0
0
378
0.276316
3be0272cc4ef59d691881a66ca66a56c66ec41a0
2,617
py
Python
pylinear/h5table/ddt.py
npirzkal/pyLINEAR
00419dcbd91ea7b64386e6fe4f3164cd141333f2
[ "MIT" ]
null
null
null
pylinear/h5table/ddt.py
npirzkal/pyLINEAR
00419dcbd91ea7b64386e6fe4f3164cd141333f2
[ "MIT" ]
null
null
null
pylinear/h5table/ddt.py
npirzkal/pyLINEAR
00419dcbd91ea7b64386e6fe4f3164cd141333f2
[ "MIT" ]
null
null
null
import numpy as np import pdb from . import columns from . import h5utils from .base import Base class DDT(Base): def __init__(self,segid): self.segid=segid self.pix=[] self.xyg=columns.XYG() self.wav=columns.WAV() self.val=columns.VAL() def extend(self,xyg,wav,val): assert(len(xyg)==len(wav)==len(val)),'Must have same lengths' self.xyg.extend(xyg) self.wav.extend(wav) self.val.extend(val) def select(self,g): if len(self)!=0 and len(g)!=0: xyg,wav,val=[],[],[] for i in g: xyg.append(self.xyg[i]) wav.append(self.wav[i]) val.append(self.val[i]) self.xyg=columns.XYG(xyg) self.wav=columns.WAV(wav) self.val=columns.VAL(val) def __str__(self): return '{} for {}'.format(self.ttype,self.name) def npix(self): return len(self.pix) def __len__(self): return len(self.xyg) def __getitem__(self,key): return self.xyg[key],self.wav[key],self.val[key] def __imul__(self,values): self.val=columns.VAL([s*v for s,v in zip(self.val,values)]) return self def __eq__(self,other): if isinstance(self,other.__class__): return self.__dict__==other.__dict__ else: return False @property def name(self): return '{}'.format(self.segid) def writeH5(self,grp,**kwargs): new=grp.require_group(self.name) #new=grp.create_group(self.name) for k,v in kwargs.items(): h5utils.writeAttr(new,k,v) data=h5utils.writeData(new,self.ttype,self.xyg,self.wav,self.val) pix=list(zip(*self.pix)) x=columns.X() x.extend(list(pix[0])) y=columns.Y() y.extend(list(pix[1])) pix=h5utils.writeData(new,'pix',x,y) return new def readH5(self,grp): if self.name in grp: new=grp[self.name] data=h5utils.loadData(new,self.ttype) self.xyg=columns.XYG(data['xyg']) self.wav=columns.WAV(data['wav']) self.val=columns.VAL(data['val']) pix=h5utils.loadData(new,'pix') self.pix=list(zip(list(pix['x']),list(pix['y']))) else: self.notFound() #data=h5utils.loadData(grp) #self.xyg=columns.XYG(data['xyg']) #self.wav=columns.WAV(data['wav']) #self.val=columns.VAL(data['val'])
24.231481
75
0.534964
2,509
0.958731
0
0
68
0.025984
0
0
231
0.088269
3be1c731ef6e27de1ae8fcab0e00a570b8b671ef
851
py
Python
tools/auto_freeze.py
airacid/pruned-face-detector
ef587e274ccf87633af653694890eb6712d6b3eb
[ "MIT" ]
1
2021-11-01T02:39:36.000Z
2021-11-01T02:39:36.000Z
tools/auto_freeze.py
airacid/pruned-face-detector
ef587e274ccf87633af653694890eb6712d6b3eb
[ "MIT" ]
null
null
null
tools/auto_freeze.py
airacid/pruned-face-detector
ef587e274ccf87633af653694890eb6712d6b3eb
[ "MIT" ]
1
2021-11-01T02:39:37.000Z
2021-11-01T02:39:37.000Z
import os import tensorflow as tf import argparse parser = argparse.ArgumentParser() parser.add_argument('--ckpt_path', type=str) parser.add_argument('--output_path', type=str) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = "-1" checkpoint = args.ckpt_path ##input_checkpoint input_checkpoint = checkpoint ##input_graph input_meta_graph = input_checkpoint + '.meta' ##output_node_names output_node_names='tower_0/images,tower_0/boxes,tower_0/scores,tower_0/labels,tower_0/num_detections,training_flag' #output_graph output_graph = os.path.join(args.output_path,'detector.pb') print('excuted') command="python tools/freeze.py --input_checkpoint %s --input_meta_graph %s --output_node_names %s --output_graph %s"\ %(input_checkpoint,input_meta_graph,output_node_names,output_graph) os.system(command)
29.344828
119
0.774383
0
0
0
0
0
0
0
0
356
0.418331
3be1c8da8fb0704e33d69f4791863e002d5b116a
2,045
py
Python
examples/nowcoder/SQL3/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
5
2020-07-14T07:48:10.000Z
2021-12-20T21:20:10.000Z
examples/nowcoder/SQL3/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
7
2021-03-26T03:13:38.000Z
2022-03-12T00:42:03.000Z
examples/nowcoder/SQL3/models.py
zhengtong0898/django-decode
69680853a4a5b07f6a9c4b65c7d86b2d401a92b1
[ "MIT" ]
1
2021-02-16T07:04:25.000Z
2021-02-16T07:04:25.000Z
from django.db import models # 1. Django不支持符合主键(Composite Primary Key). # 2. Django不支持关闭主键(Disable Primary Key), # 当表中的所有字段都没有定义 Primary Key 时, # Django会自动增加一个id字段, 并将primary key设定到id字段上. # # # 一般情况下, InnoDB在建表时, 当没有定义Primary Key时, # 如果有 Unique Key 时, InnoDB会将该Unique Key当作聚集索引. # 如果也没有 Unique Key时, InnoDB会创建一个隐藏的PrimaryKey(聚集索引). # # # 所以, 像这样的建表语句, Model无法百分之百还原. # CREATE TABLE `salaries` ( # `emp_no` int(11) NOT NULL, # `salary` int(11) NOT NULL, # `from_date` date NOT NULL, # `to_date` date NOT NULL, # PRIMARY KEY (`emp_no`,`from_date`) # ); class salaries(models.Model): """ CREATE TABLE `SQL3_dept_manager` ( `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY, `dept_no` varchar(4) NOT NULL, `emp_no` integer NOT NULL, `to_date` date NOT NULL ); ALTER TABLE `SQL3_salaries` ADD CONSTRAINT `uc_emp_no_from_date` UNIQUE (`emp_no`, `from_date`); """ emp_no = models.IntegerField(verbose_name="员工编号", null=False) salary = models.IntegerField(verbose_name="薪资", null=False) from_date = models.DateField(verbose_name="from_date", null=False) to_date = models.DateField(verbose_name="to_date", null=False) class Meta: constraints = [models.UniqueConstraint(fields=['emp_no', 'from_date'], name="uc_emp_no_from_date"), ] class dept_manager(models.Model): """ CREATE TABLE `SQL3_salaries` ( `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY, `emp_no` integer NOT NULL, `salary` integer NOT NULL, `from_date` date NOT NULL, `to_date` date NOT NULL ); ALTER TABLE `SQL3_dept_manager` ADD CONSTRAINT `uc_emp_no_dept_no` UNIQUE (`emp_no`, `dept_no`); """ dept_no = models.CharField(verbose_name="部门编号", max_length=4, null=False) emp_no = models.IntegerField(verbose_name="员工编号", null=False) to_date = models.DateField(verbose_name="to_date", null=False) class Meta: constraints = [models.UniqueConstraint(fields=['emp_no', 'dept_no'], name="uc_emp_no_dept_no"), ]
33.52459
109
0.684597
1,502
0.655609
0
0
0
0
0
0
1,561
0.681362
3be3d29eecfe1ea6c347859c1388d314f37ccbc5
1,247
py
Python
concat_csv.py
jweckman/vim
c225f36ab05c2bdcedfc9866c367c1ddc4cd3646
[ "MIT" ]
null
null
null
concat_csv.py
jweckman/vim
c225f36ab05c2bdcedfc9866c367c1ddc4cd3646
[ "MIT" ]
null
null
null
concat_csv.py
jweckman/vim
c225f36ab05c2bdcedfc9866c367c1ddc4cd3646
[ "MIT" ]
null
null
null
import pandas as pd from pathlib import Path import sys ''' Concatenates all csv files in the folder passed to stdin ''' path = Path(sys.argv[1]) def get_csv_paths(path): return [p for p in path.iterdir() if p.suffix == '.csv'] def ask_details(): print('Please specify the following:') encoding = input('Encoding\n') delimiter = input('Delimiter\n') return encoding, delimiter def get_frames(files_list, encoding, delimiter): return [pd.read_csv(p, sep=delimiter, dtype='str', encoding=encoding) for p in csv_files] def concat_output(frames): output = pd.DataFrame() for df in frames: output = pd.concat([output,df]) path_out = path / 'COMBINED.csv' output.to_csv(path_out, sep=';', index=False) if __name__ == '__main__': csv_files = get_csv_paths(path) encoding, delimiter = ask_details() try: frames = get_frames(csv_files, encoding, delimiter) concat_output(frames) except Exception as e: print('Seems like there were files that could not be read\n') print(str(e)) encoding, delimiter = ask_details() frames = get_frames(csv_files, encoding, delimiter) concat_output(frames)
30.414634
94
0.653569
0
0
0
0
0
0
0
0
212
0.170008
3be3ffc19dbd5fc20c5420fc3ab9c6320aeeee0a
2,589
py
Python
catkin_ws/src/rostest_example/tests/duckiecall_tester_node.py
DiegoOrtegoP/Software
4a07dd2dab29db910ca2e26848fa6b53b7ab00cd
[ "CC-BY-2.0" ]
12
2016-04-14T12:21:46.000Z
2021-06-18T07:51:40.000Z
catkin_ws/src/rostest_example/tests/duckiecall_tester_node.py
DiegoOrtegoP/Software
4a07dd2dab29db910ca2e26848fa6b53b7ab00cd
[ "CC-BY-2.0" ]
14
2017-03-03T23:33:05.000Z
2018-04-03T18:07:53.000Z
catkin_ws/src/rostest_example/tests/duckiecall_tester_node.py
DiegoOrtegoP/Software
4a07dd2dab29db910ca2e26848fa6b53b7ab00cd
[ "CC-BY-2.0" ]
113
2016-05-03T06:11:42.000Z
2019-06-01T14:37:38.000Z
#!/usr/bin/env python import rospy import unittest, rostest from rostest_example.Quacker import * from std_msgs.msg import String, Int32 class DuckiecallTesterNode(unittest.TestCase): def __init__(self, *args): super(DuckiecallTesterNode, self).__init__(*args) self.msg_duckiecall = String() self.msg_received = False def setup(self): # Setup the node rospy.init_node('duckiecall_tester_node', anonymous=False) # Setup the publisher and subscriber self.pub_num_of_quacks = rospy.Publisher("~number_of_quacks", Int32, queue_size=1, latch=True) self.sub_duckiecall = rospy.Subscriber("~duckiecall", String, self.duckiecallCallback) # Wait for the node to finish starting up timeout = rospy.Time.now() + rospy.Duration(5) # Wait at most 5 seconds for the node to come up while (self.pub_num_of_quacks.get_num_connections() < 1 or self.sub_duckiecall.get_num_connections() < 1) and \ not rospy.is_shutdown() and rospy.Time.now() < timeout: rospy.sleep(0.1) def duckiecallCallback(self, msg_duckiecall): self.msg_duckiecall = msg_duckiecall self.msg_received = True def test_publisher_and_subscriber(self): self.setup() # Setup the node self.assertGreaterEqual(self.pub_num_of_quacks.get_num_connections(), 1, "No connections found on num_of_quacks topic") self.assertGreaterEqual(self.sub_duckiecall.get_num_connections(), 1, "No connections found on duckiecall topic") def test_duckiecall_output(self): self.setup() # Setup the node # Send the message to the number_of_quacks topic msg_num_of_quacks = Int32() msg_num_of_quacks.data = 3 self.pub_num_of_quacks.publish(msg_num_of_quacks) # Wait for the message to be received timeout = rospy.Time.now() + rospy.Duration(5) # Wait at most 5 seconds for the node to reply while not self.msg_received and not rospy.is_shutdown() and rospy.Time.now() < timeout: rospy.sleep(0.1) # Send an error if the timeout was hit self.assertLess(rospy.Time.now(), timeout, "The test timed out with no response from the duckiecall_node") # Test the response response = self.msg_duckiecall.data self.assertEqual(response, "Quack! Quack! Quack!") # Three Quacks! expected if __name__ == '__main__': rospy.init_node('duckiecall_tester_node', anonymous=False) rostest.rosrun('rostest_example', 'duckiecall_tester_node', DuckiecallTesterNode)
43.15
127
0.696794
2,273
0.877945
0
0
0
0
0
0
709
0.273851
3be4dea35fbe812684c863cfb56967cde0971e92
1,679
py
Python
buildroot/support/testing/tests/init/test_busybox.py
rbrenton/hassos
fa6f7ac74ddba50e76f5779c613c56d937684844
[ "Apache-2.0" ]
617
2015-01-04T14:33:56.000Z
2022-03-24T22:42:25.000Z
buildroot/support/testing/tests/init/test_busybox.py
rbrenton/hassos
fa6f7ac74ddba50e76f5779c613c56d937684844
[ "Apache-2.0" ]
631
2015-01-01T22:53:25.000Z
2022-03-17T18:41:00.000Z
buildroot/support/testing/tests/init/test_busybox.py
rbrenton/hassos
fa6f7ac74ddba50e76f5779c613c56d937684844
[ "Apache-2.0" ]
133
2015-03-03T18:40:05.000Z
2022-03-18T13:34:26.000Z
import infra.basetest from tests.init.base import InitSystemBase as InitSystemBase class InitSystemBusyboxBase(InitSystemBase): config = infra.basetest.BASIC_TOOLCHAIN_CONFIG + \ """ # BR2_TARGET_ROOTFS_TAR is not set """ def check_init(self): super(InitSystemBusyboxBase, self).check_init("/bin/busybox") class TestInitSystemBusyboxRo(InitSystemBusyboxBase): config = InitSystemBusyboxBase.config + \ """ # BR2_TARGET_GENERIC_REMOUNT_ROOTFS_RW is not set BR2_TARGET_ROOTFS_SQUASHFS=y """ def test_run(self): self.start_emulator("squashfs") self.check_init() self.check_network("eth0", 1) class TestInitSystemBusyboxRw(InitSystemBusyboxBase): config = InitSystemBusyboxBase.config + \ """ BR2_TARGET_ROOTFS_EXT2=y """ def test_run(self): self.start_emulator("ext2") self.check_init() self.check_network("eth0", 1) class TestInitSystemBusyboxRoNet(InitSystemBusyboxBase): config = InitSystemBusyboxBase.config + \ """ BR2_SYSTEM_DHCP="eth0" # BR2_TARGET_GENERIC_REMOUNT_ROOTFS_RW is not set BR2_TARGET_ROOTFS_SQUASHFS=y """ def test_run(self): self.start_emulator("squashfs") self.check_init() self.check_network("eth0") class TestInitSystemBusyboxRwNet(InitSystemBusyboxBase): config = InitSystemBusyboxBase.config + \ """ BR2_SYSTEM_DHCP="eth0" BR2_TARGET_ROOTFS_EXT2=y """ def test_run(self): self.start_emulator("ext2") self.check_init() self.check_network("eth0")
25.830769
69
0.659321
1,581
0.941632
0
0
0
0
0
0
506
0.30137
3be559b23f04ad4fbb4310964aaa62522258d721
8,529
py
Python
mayan/apps/linking/api_views.py
darrenflexxu/Mayan-EDMS
6707365bfacd137e625ddc1b990168012246fa07
[ "Apache-2.0" ]
null
null
null
mayan/apps/linking/api_views.py
darrenflexxu/Mayan-EDMS
6707365bfacd137e625ddc1b990168012246fa07
[ "Apache-2.0" ]
5
2021-03-19T22:59:52.000Z
2022-03-12T00:13:16.000Z
mayan/apps/linking/api_views.py
Sumit-Kumar-Jha/mayan
5b7ddeccf080b9e41cc1074c70e27dfe447be19f
[ "Apache-2.0" ]
1
2020-07-29T21:03:27.000Z
2020-07-29T21:03:27.000Z
from __future__ import absolute_import, unicode_literals from django.shortcuts import get_object_or_404 from mayan.apps.acls.models import AccessControlList from mayan.apps.documents.models import Document from mayan.apps.documents.permissions import permission_document_view from mayan.apps.rest_api import generics from .models import SmartLink from .permissions import ( permission_smart_link_create, permission_smart_link_delete, permission_smart_link_edit, permission_smart_link_view ) from .serializers import ( ResolvedSmartLinkDocumentSerializer, ResolvedSmartLinkSerializer, SmartLinkConditionSerializer, SmartLinkSerializer, WritableSmartLinkSerializer ) class APIResolvedSmartLinkDocumentListView(generics.ListAPIView): """ get: Returns a list of the smart link documents that apply to the document. """ mayan_object_permissions = {'GET': (permission_document_view,)} serializer_class = ResolvedSmartLinkDocumentSerializer def get_document(self): document = get_object_or_404(klass=Document, pk=self.kwargs['pk']) AccessControlList.objects.check_access( obj=document, permissions=(permission_document_view,), user=self.request.user ) return document def get_smart_link(self): smart_link = get_object_or_404( klass=SmartLink.objects.get_for(document=self.get_document()), pk=self.kwargs['smart_link_pk'] ) AccessControlList.objects.check_access( obj=smart_link, permissions=(permission_smart_link_view,), user=self.request.user ) return smart_link def get_serializer_context(self): """ Extra context provided to the serializer class. """ context = super( APIResolvedSmartLinkDocumentListView, self ).get_serializer_context() if self.kwargs: context.update( { 'document': self.get_document(), 'smart_link': self.get_smart_link(), } ) return context def get_queryset(self): return self.get_smart_link().get_linked_document_for( document=self.get_document() ) class APIResolvedSmartLinkView(generics.RetrieveAPIView): """ get: Return the details of the selected resolved smart link. """ lookup_url_kwarg = 'smart_link_pk' mayan_object_permissions = {'GET': (permission_smart_link_view,)} serializer_class = ResolvedSmartLinkSerializer def get_document(self): document = get_object_or_404(klass=Document, pk=self.kwargs['pk']) AccessControlList.objects.check_access( obj=document, permissions=(permission_document_view,), user=self.request.user ) return document def get_serializer_context(self): """ Extra context provided to the serializer class. """ context = super(APIResolvedSmartLinkView, self).get_serializer_context() if self.kwargs: context.update( { 'document': self.get_document(), } ) return context def get_queryset(self): return SmartLink.objects.get_for(document=self.get_document()) class APIResolvedSmartLinkListView(generics.ListAPIView): """ get: Returns a list of the smart links that apply to the document. """ mayan_object_permissions = {'GET': (permission_smart_link_view,)} serializer_class = ResolvedSmartLinkSerializer def get_document(self): document = get_object_or_404(klass=Document, pk=self.kwargs['pk']) AccessControlList.objects.check_access( obj=document, permissions=(permission_document_view,), user=self.request.user ) return document def get_serializer_context(self): """ Extra context provided to the serializer class. """ context = super(APIResolvedSmartLinkListView, self).get_serializer_context() if self.kwargs: context.update( { 'document': self.get_document(), } ) return context def get_queryset(self): return SmartLink.objects.filter( document_types=self.get_document().document_type ) class APISmartLinkConditionListView(generics.ListCreateAPIView): """ get: Returns a list of all the smart link conditions. post: Create a new smart link condition. """ serializer_class = SmartLinkConditionSerializer def get_queryset(self): return self.get_smart_link().conditions.all() def get_serializer_context(self): """ Extra context provided to the serializer class. """ context = super(APISmartLinkConditionListView, self).get_serializer_context() if self.kwargs: context.update( { 'smart_link': self.get_smart_link(), } ) return context def get_smart_link(self): if self.request.method == 'GET': permission_required = permission_smart_link_view else: permission_required = permission_smart_link_edit smart_link = get_object_or_404(klass=SmartLink, pk=self.kwargs['pk']) AccessControlList.objects.check_access( obj=smart_link, permissions=(permission_required,), user=self.request.user ) return smart_link class APISmartLinkConditionView(generics.RetrieveUpdateDestroyAPIView): """ delete: Delete the selected smart link condition. get: Return the details of the selected smart link condition. patch: Edit the selected smart link condition. put: Edit the selected smart link condition. """ lookup_url_kwarg = 'condition_pk' serializer_class = SmartLinkConditionSerializer def get_queryset(self): return self.get_smart_link().conditions.all() def get_serializer_context(self): """ Extra context provided to the serializer class. """ context = super(APISmartLinkConditionView, self).get_serializer_context() if self.kwargs: context.update( { 'smart_link': self.get_smart_link(), } ) return context def get_smart_link(self): if self.request.method == 'GET': permission_required = permission_smart_link_view else: permission_required = permission_smart_link_edit smart_link = get_object_or_404(klass=SmartLink, pk=self.kwargs['pk']) AccessControlList.objects.check_access( obj=smart_link, permissions=(permission_required,), user=self.request.user ) return smart_link class APISmartLinkListView(generics.ListCreateAPIView): """ get: Returns a list of all the smart links. post: Create a new smart link. """ mayan_object_permissions = {'GET': (permission_smart_link_view,)} mayan_view_permissions = {'POST': (permission_smart_link_create,)} queryset = SmartLink.objects.all() def get_serializer(self, *args, **kwargs): if not self.request: return None return super(APISmartLinkListView, self).get_serializer(*args, **kwargs) def get_serializer_class(self): if self.request.method == 'GET': return SmartLinkSerializer else: return WritableSmartLinkSerializer class APISmartLinkView(generics.RetrieveUpdateDestroyAPIView): """ delete: Delete the selected smart link. get: Return the details of the selected smart link. patch: Edit the selected smart link. put: Edit the selected smart link. """ mayan_object_permissions = { 'DELETE': (permission_smart_link_delete,), 'GET': (permission_smart_link_view,), 'PATCH': (permission_smart_link_edit,), 'PUT': (permission_smart_link_edit,) } queryset = SmartLink.objects.all() def get_serializer(self, *args, **kwargs): if not self.request: return None return super(APISmartLinkView, self).get_serializer(*args, **kwargs) def get_serializer_class(self): if self.request.method == 'GET': return SmartLinkSerializer else: return WritableSmartLinkSerializer
30.569892
85
0.653183
7,820
0.916872
0
0
0
0
0
0
1,435
0.16825
3be6d032aab66cc3f999f8f1017e760af49f209f
4,013
py
Python
download_stats.py
zhengsipeng/kinetics-downloader
c85c6946a4408d1f9219441ae3f7aed679b10458
[ "MIT" ]
263
2018-03-10T15:44:35.000Z
2022-03-16T10:57:30.000Z
download_stats.py
zhengsipeng/kinetics-downloader
c85c6946a4408d1f9219441ae3f7aed679b10458
[ "MIT" ]
17
2018-09-13T00:30:22.000Z
2021-07-26T17:42:33.000Z
download_stats.py
zhengsipeng/kinetics-downloader
c85c6946a4408d1f9219441ae3f7aed679b10458
[ "MIT" ]
85
2018-07-12T03:45:38.000Z
2022-03-21T23:11:36.000Z
import argparse, os import lib.config as config import lib.utils as utils def count_present_and_missing(cls, directory, metadata): """ Count present and missing videos for a class based on metadata. :param cls: The class. If None, count all videos (used for testing videos - no classes). :param directory: Directory containing the videos. :param metadata: Kinetics metadata json. :return: Tuple: number present videos, number of missing videos """ present = 0 missing = 0 for key in metadata: if cls is None or metadata[key]["annotations"]["label"] == cls: if os.path.isfile(os.path.join(directory, "{}.mp4".format(key))): present += 1 else: missing += 1 return present, missing def main(args): # load video classes classes = utils.load_json(config.CLASSES_PATH) # load lists of videos train_metadata = utils.load_json(config.TRAIN_METADATA_PATH) val_metadata = utils.load_json(config.VAL_METADATA_PATH) test_metadata = utils.load_json(config.TEST_METADATA_PATH) num_found = 0 total = 0 total_train_present = 0 total_train_missing = 0 total_val_present = 0 total_val_missing = 0 # load subset subset = None if args.subset: subset = utils.load_json(args.subset) # count train and validation videos for cls in classes: if subset is not None and cls not in subset: continue total += 1 cls_train_path = os.path.join(config.TRAIN_ROOT, cls.replace(" ", "_")) cls_valid_path = os.path.join(config.VALID_ROOT, cls.replace(" ", "_")) train_found = False valid_found = False if os.path.isdir(cls_train_path): train_present, train_missing = count_present_and_missing(cls, cls_train_path, train_metadata) train_found = True total_train_present += train_present total_train_missing += train_missing if os.path.isdir(cls_valid_path): valid_present, valid_missing = count_present_and_missing(cls, cls_valid_path, val_metadata) valid_found = True total_val_present += valid_present total_val_missing += valid_missing if train_found or valid_found: num_found += 1 if args.details: print("class {}".format(cls)) if train_found: print("train: {} / {}".format(train_present, train_present + train_missing)) if valid_found: print("valid: {} / {}".format(valid_present, valid_present + valid_missing)) print() # count test videos test_present, test_missing = count_present_and_missing(None, config.TEST_ROOT, test_metadata) # print train_percent_found = 0 if total_train_present > 0: train_percent_found = (total_train_present * 100) / (total_train_present + total_train_missing) valid_percent_found = 0 if total_val_present > 0: valid_percent_found = (total_val_present * 100) / (total_val_present + total_val_missing) test_percent_found = 0 if test_present > 0: test_percent_found = (test_present * 100) / (test_present + test_missing) print("class stats:") print("\t{:d} / {:d} classes found".format(num_found, total)) print() print("video stats (only for found classes):") print("\t{:d} / {:d} ({:.2f}%) train videos found".format( total_train_present, total_train_present + total_train_missing, train_percent_found)) print("\t{:d} / {:d} ({:.2f}%) valid videos found".format( total_val_present, total_val_present + total_val_missing, valid_percent_found)) print("\t{:d} / {:d} ({:.2f}%) test videos found".format( test_present, test_present + test_missing, test_percent_found)) if __name__ == "__main__": parser = argparse.ArgumentParser("Print statistics about downloaded videos.") parser.add_argument("-d", "--details", action="store_true", default=False, help="detailed stats for each found class") parser.add_argument("-s", "--subset", help="path to a JSON file containing a subset of Kinetics classes") parsed = parser.parse_args() main(parsed)
31.108527
120
0.697982
0
0
0
0
0
0
0
0
963
0.23997
3be947a82f13de6d26fc798282d17c1307b2aaf7
257
py
Python
ex-mundo3/ex107/moeda.py
PedroPegado/ex-cursoemvideo
46751a7238e6a142b639c4cc3acf1759411732d7
[ "MIT" ]
null
null
null
ex-mundo3/ex107/moeda.py
PedroPegado/ex-cursoemvideo
46751a7238e6a142b639c4cc3acf1759411732d7
[ "MIT" ]
null
null
null
ex-mundo3/ex107/moeda.py
PedroPegado/ex-cursoemvideo
46751a7238e6a142b639c4cc3acf1759411732d7
[ "MIT" ]
null
null
null
def aumentar(preco, taxa): p = preco + (preco * taxa/100) return p def diminuir(preco, taxa): p = preco - (preco * taxa/100) return p def dobro(preco): p = preco * 2 return p def metade(preco): p = preco / 2 return p
12.238095
34
0.564202
0
0
0
0
0
0
0
0
0
0
3beac65b5cb6099092c07d4a94aab675261b906d
3,885
py
Python
e2e/test_accessbot_show_resources.py
arthurSena0704/accessbot
5097453c45c5193e6516bc1f9441e90e49b3d324
[ "Apache-2.0" ]
null
null
null
e2e/test_accessbot_show_resources.py
arthurSena0704/accessbot
5097453c45c5193e6516bc1f9441e90e49b3d324
[ "Apache-2.0" ]
null
null
null
e2e/test_accessbot_show_resources.py
arthurSena0704/accessbot
5097453c45c5193e6516bc1f9441e90e49b3d324
[ "Apache-2.0" ]
3
2021-08-16T22:34:05.000Z
2021-09-22T02:51:13.000Z
# pylint: disable=invalid-name import pytest import sys from unittest.mock import MagicMock from test_common import create_config, DummyResource sys.path.append('plugins/sdm') from lib import ShowResourcesHelper pytest_plugins = ["errbot.backends.test"] extra_plugin_dir = 'plugins/sdm' class Test_show_resources: @pytest.fixture def mocked_testbot(self, testbot): config = create_config() return inject_mocks(testbot, config) def test_show_resources_command(self, mocked_testbot): mocked_testbot.push_message("show available resources") message = mocked_testbot.pop_message() assert "Aaa (type: DummyResource)" in message assert "Bbb (type: DummyResource)" in message class Test_not_show_hidden_resources: @pytest.fixture def mocked_testbot_hide_resource_true(self, testbot): config = create_config() config['HIDE_RESOURCE_TAG'] = 'hide-resource' resources = [ DummyResource("Bbb", {}), DummyResource("Aaa", {'hide-resource': True}) ] return inject_mocks(testbot, config, resources) @pytest.fixture def mocked_testbot_hide_resource_false(self, testbot): config = create_config() config['HIDE_RESOURCE_TAG'] = 'hide-resource' resources = [ DummyResource("Bbb", {}), DummyResource("Aaa", {'hide-resource': False}) ] return inject_mocks(testbot, config, resources) def test_show_resources_when_hide_resource_tag_true(self, mocked_testbot_hide_resource_true): mocked_testbot_hide_resource_true.push_message("show available resources") message = mocked_testbot_hide_resource_true.pop_message() assert "Aaa (type: DummyResource)" not in message assert "Bbb (type: DummyResource)" in message def test_show_resources_when_hide_resource_tag_false(self, mocked_testbot_hide_resource_false): mocked_testbot_hide_resource_false.push_message("show available resources") message = mocked_testbot_hide_resource_false.pop_message() assert "Aaa (type: DummyResource)" in message assert "Bbb (type: DummyResource)" in message class Test_show_resources_by_role: @pytest.fixture def mocked_testbot(self, testbot): config = create_config() config['CONTROL_RESOURCES_ROLE_NAME'] = 'myrole' resources_by_role = [ DummyResource("Bbb in role", {}), DummyResource("Aaa in role", {}) ] return inject_mocks(testbot, config, resources_by_role = resources_by_role) def test_show_resources_command(self, mocked_testbot): mocked_testbot.push_message("show available resources") message = mocked_testbot.pop_message() assert "Aaa in role (type: DummyResource)" in message assert "Bbb in role (type: DummyResource)" in message def default_dummy_resources(): return [ DummyResource("Bbb", {}), DummyResource("Aaa", {}) ] # pylint: disable=dangerous-default-value def inject_mocks(testbot, config, resources = default_dummy_resources(), resources_by_role = []): accessbot = testbot.bot.plugin_manager.plugins['AccessBot'] accessbot.config = config accessbot.get_admins = MagicMock(return_value = ["gbin@localhost"]) accessbot.get_api_access_key = MagicMock(return_value = "api-access_key") accessbot.get_api_secret_key = MagicMock(return_value = "c2VjcmV0LWtleQ==") # valid base64 string accessbot.get_sdm_service = MagicMock(return_value = create_sdm_service_mock(resources, resources_by_role)) accessbot.get_show_resources_helper = MagicMock(return_value = ShowResourcesHelper(accessbot)) return testbot def create_sdm_service_mock(resources, resources_by_role): service_mock = MagicMock() service_mock.get_all_resources = MagicMock(return_value = resources) service_mock.get_all_resources_by_role = MagicMock(return_value = resources_by_role) return service_mock
45.174419
111
0.7426
2,497
0.642728
0
0
1,085
0.279279
0
0
728
0.187387
3beb73cbef34b508a909878716873d4472cedd74
64
py
Python
tftf/layers/activations/tanh.py
yusugomori/tftf
e98b9ddffdbaa1fe04320437a47f12f3182ab6f3
[ "Apache-2.0" ]
35
2018-08-11T05:01:41.000Z
2021-01-29T02:28:47.000Z
tftf/layers/activations/tanh.py
yusugomori/tftf
e98b9ddffdbaa1fe04320437a47f12f3182ab6f3
[ "Apache-2.0" ]
null
null
null
tftf/layers/activations/tanh.py
yusugomori/tftf
e98b9ddffdbaa1fe04320437a47f12f3182ab6f3
[ "Apache-2.0" ]
4
2018-10-19T14:12:04.000Z
2021-01-29T02:28:49.000Z
import tensorflow as tf def tanh(x): return tf.nn.tanh(x)
10.666667
24
0.671875
0
0
0
0
0
0
0
0
0
0
3becb3cb8a9347c5c892e9c12331df179e27be0f
406
py
Python
game/migrations/0011_onlinegame_playersready.py
dimamelnik22/drawfulru
da2d21ef4c0b6776fc7c1059dbdf617f591c4ef8
[ "Apache-2.0" ]
null
null
null
game/migrations/0011_onlinegame_playersready.py
dimamelnik22/drawfulru
da2d21ef4c0b6776fc7c1059dbdf617f591c4ef8
[ "Apache-2.0" ]
7
2020-06-05T20:14:47.000Z
2021-09-22T18:18:06.000Z
game/migrations/0011_onlinegame_playersready.py
dimamelnik22/drawfulru
da2d21ef4c0b6776fc7c1059dbdf617f591c4ef8
[ "Apache-2.0" ]
null
null
null
# Generated by Django 3.0 on 2019-12-23 06:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('game', '0010_auto_20191223_0818'), ] operations = [ migrations.AddField( model_name='onlinegame', name='playersready', field=models.IntegerField(default=0), ), ]
21.368421
50
0.576355
309
0.761084
0
0
0
0
0
0
103
0.253695
3bed882365f0c947238e86347d95e522a56968a9
2,380
py
Python
deprecated.py
tungr/CoeusBot
90bdc869a1f8c077a1f88dcf1335d20a19d49fee
[ "MIT" ]
null
null
null
deprecated.py
tungr/CoeusBot
90bdc869a1f8c077a1f88dcf1335d20a19d49fee
[ "MIT" ]
null
null
null
deprecated.py
tungr/CoeusBot
90bdc869a1f8c077a1f88dcf1335d20a19d49fee
[ "MIT" ]
null
null
null
#### Transfer data from JSON file to MongoDB #### # @client.command() # async def qupload(self, ctx): # mclient = MongoClient(host="localhost", port=27017) # db = mclient.coeusbot # quotesdb = db.quotes # with open('quotes.json', 'r') as f: # quotes = json.load(f) # for quotenum in range(1, len(quotes)): # datetime = quotes[str(quotenum)]['date_time'] # author = quotes[str(quotenum)]['author'] # quote = quotes[str(quotenum)]['quote'] # guild = ctx.guild.id # qamount = quotesdb.find({"guild": ctx.guild.id}) # Grab all quotes of same guild id # qid = 1 # # Increment qid based on # of quotes in guild # for qnum in qamount: # qid += 1 # mquote = { # "datetime": datetime, # "author": author, # "quote": quote, # "guild": guild, # "qid": qid # } # result = quotesdb.insert_one(mquote) # mclient.close() # await ctx.reply(f'Quotes transferred') #### Add quote to JSON file #### # @client.command(aliases=['qua']) # async def quoteadd(self, ctx, *quote): # with open('quotes.json', 'r') as f: # quotes = json.load(f) # if str(len(quotes)+1) not in quotes: # now = dt.datetime.now() # date_time = now.strftime("%m/%d/%Y, %I:%M%p") # q_amount = len(quotes) + 1 # quotes[str(q_amount)] = {} # quotes[str(q_amount)]['quote'] = quote # quotes[str(q_amount)]['date_time'] = date_time # quotes[str(q_amount)]['author'] = str(ctx.author) # with open('quotes.json', 'w') as f: # json.dump(quotes, f) # await ctx.reply(f'Quote added') #### Grab quote from JSON file #### # @client.command() # async def quotes(self, ctx): # with open('quotes.json', 'r') as f: # quotes = json.load(f) # randquote = random.randint(1,len(quotes)) # quote = quotes[str(randquote)]['quote'] # date_time = quotes[str(randquote)]['date_time'] # author = quotes[str(randquote)]['author'] # quote_embed = discord.Embed(title=f'💬 Quote #{randquote}', color=0x03fcce) # newquote = ' '.join(quote) # quote_embed.add_field(name='\u200b', value=f'{newquote}', inline=False) # quote_embed.set_footer(text=f'{date_time}') # await ctx.send(embed=quote_embed)
32.162162
93
0.561765
0
0
0
0
0
0
0
0
2,298
0.964331
3bedf4765622764f7282bd201ee9a488ae9fdbd2
370
py
Python
packaging/scripts/collect_matlab.py
robotraconteur/robotraconteur
ff997351761a687be364234684202e3348c4083c
[ "Apache-2.0" ]
37
2019-01-31T06:05:17.000Z
2022-03-21T06:56:18.000Z
packaging/scripts/collect_matlab.py
robotraconteur/robotraconteur
ff997351761a687be364234684202e3348c4083c
[ "Apache-2.0" ]
14
2019-07-18T04:09:45.000Z
2021-08-31T02:04:22.000Z
packaging/scripts/collect_matlab.py
robotraconteur/robotraconteur
ff997351761a687be364234684202e3348c4083c
[ "Apache-2.0" ]
3
2018-11-23T22:03:22.000Z
2021-11-02T10:03:39.000Z
import shutil import pathlib asset_dirs = ["artifacts/main", "artifacts/build_python_version"] pathlib.Path("distfiles").mkdir(exist_ok=True) for asset_dir in asset_dirs: for fname in list(pathlib.Path(asset_dir).glob('**/RobotRaconteur-*-MATLAB*')): print(fname) dest = pathlib.Path(fname) shutil.copy(str(fname),"distfiles/" + dest.name)
30.833333
83
0.705405
0
0
0
0
0
0
0
0
100
0.27027
3bee8a2e3ce8d0e0dbf5627d1dd4f2bc366b92ab
821
py
Python
setup.py
bryan-he/closek
b0367e09d7fa1a096580d762db6fd948e04c1d9e
[ "MIT" ]
null
null
null
setup.py
bryan-he/closek
b0367e09d7fa1a096580d762db6fd948e04c1d9e
[ "MIT" ]
null
null
null
setup.py
bryan-he/closek
b0367e09d7fa1a096580d762db6fd948e04c1d9e
[ "MIT" ]
null
null
null
"""Metadata for package to allow installation with pip.""" import setuptools exec(open("closek/version.py").read()) with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="closek", description="Scikit-learn-style implementation of the close-k classifier.", long_description=long_description, long_description_content_type="text/markdown", author="Bryan He", author_email="bryanhe@stanford.edu", url="https://github.com/bryan-he/close-k", version=__version__, packages=setuptools.find_packages(), install_requires=[ "torch", "numpy", "sklearn", ], tests_require=[ "pmlb", ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ] )
24.878788
79
0.6419
0
0
0
0
0
0
0
0
351
0.427527
3beed423b84aed994aacbe9098f28892995cd210
491
py
Python
ramda/memoize_with_test.py
jakobkolb/ramda.py
982b2172f4bb95b9a5b09eff8077362d6f2f0920
[ "MIT" ]
56
2018-08-06T08:44:58.000Z
2022-03-17T09:49:03.000Z
ramda/memoize_with_test.py
jakobkolb/ramda.py
982b2172f4bb95b9a5b09eff8077362d6f2f0920
[ "MIT" ]
28
2019-06-17T11:09:52.000Z
2022-02-18T16:59:21.000Z
ramda/memoize_with_test.py
jakobkolb/ramda.py
982b2172f4bb95b9a5b09eff8077362d6f2f0920
[ "MIT" ]
5
2019-09-18T09:24:38.000Z
2021-07-21T08:40:23.000Z
from ramda.memoize_with import memoize_with from ramda.product import product from ramda.private.asserts import assert_equal as e count = 0 def memoize_with_test(): @memoize_with(lambda x: -x) def factorial(n): global count count += 1 return product(range(1, n + 1)) e(factorial(5), 120) e(factorial(5), 120) e(factorial(5), 120) e(factorial(4), 24) e(factorial(4), 24) e(factorial(4), 24) e(factorial(4), 24) e(count, 2)
20.458333
51
0.631365
0
0
0
0
129
0.262729
0
0
0
0
3beefe8b0cd9218be467b3453fa033b4d6ace79a
18,821
py
Python
cdlib/evaluation/comparison.py
xing-lab-pitt/cdlib
590e145429cda1db4d3671c994c502bedd77f108
[ "BSD-2-Clause" ]
248
2019-02-17T05:31:22.000Z
2022-03-30T04:57:20.000Z
cdlib/evaluation/comparison.py
xing-lab-pitt/cdlib
590e145429cda1db4d3671c994c502bedd77f108
[ "BSD-2-Clause" ]
130
2019-02-10T19:35:55.000Z
2022-03-31T10:58:39.000Z
cdlib/evaluation/comparison.py
xing-lab-pitt/cdlib
590e145429cda1db4d3671c994c502bedd77f108
[ "BSD-2-Clause" ]
70
2019-02-15T19:04:29.000Z
2022-03-27T12:58:50.000Z
import numpy as np from cdlib.evaluation.internal import onmi from cdlib.evaluation.internal.omega import Omega from nf1 import NF1 from collections import namedtuple, defaultdict __all__ = [ "MatchingResult", "normalized_mutual_information", "overlapping_normalized_mutual_information_LFK", "overlapping_normalized_mutual_information_MGH", "omega", "f1", "nf1", "adjusted_rand_index", "adjusted_mutual_information", "variation_of_information", "partition_closeness_simple", ] # MatchingResult = namedtuple("MatchingResult", ['mean', 'std']) MatchingResult = namedtuple("MatchingResult", "score std") MatchingResult.__new__.__defaults__ = (None,) * len(MatchingResult._fields) def __check_partition_coverage(first_partition: object, second_partition: object): nodes_first = { node: None for community in first_partition.communities for node in community } nodes_second = { node: None for community in second_partition.communities for node in community } if len(set(nodes_first.keys()) ^ set(nodes_second.keys())) != 0: raise ValueError("Both partitions should cover the same node set") def __check_partition_overlap(first_partition: object, second_partition: object): if first_partition.overlap or second_partition.overlap: raise ValueError("Not defined for overlapping partitions") def normalized_mutual_information( first_partition: object, second_partition: object ) -> MatchingResult: """ Normalized Mutual Information between two clusterings. Normalized Mutual Information (NMI) is an normalization of the Mutual Information (MI) score to scale the results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information is normalized by ``sqrt(H(labels_true) * H(labels_pred))`` :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.normalized_mutual_information(louvain_communities,leiden_communities) """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import normalized_mutual_info_score return MatchingResult( score=normalized_mutual_info_score(first_partition_c, second_partition_c) ) def overlapping_normalized_mutual_information_LFK( first_partition: object, second_partition: object ) -> MatchingResult: """ Overlapping Normalized Mutual Information between two clusterings. Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by Lancichinetti et al. (1) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.overlapping_normalized_mutual_information_LFK(louvain_communities,leiden_communities) :Reference: 1. Lancichinetti, A., Fortunato, S., & Kertesz, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 11(3), 033015. """ return MatchingResult( score=onmi.onmi( [set(x) for x in first_partition.communities], [set(x) for x in second_partition.communities], ) ) def overlapping_normalized_mutual_information_MGH( first_partition: object, second_partition: object, normalization: str = "max" ) -> MatchingResult: """ Overlapping Normalized Mutual Information between two clusterings. Extension of the Normalized Mutual Information (NMI) score to cope with overlapping partitions. This is the version proposed by McDaid et al. using a different normalization than the original LFR one. See ref. for more details. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :param normalization: one of "max" or "LFK". Default "max" (corresponds to the main method described in the article) :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.overlapping_normalized_mutual_information_MGH(louvain_communities,leiden_communities) :Reference: 1. McDaid, A. F., Greene, D., & Hurley, N. (2011). Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515. Chicago """ if normalization == "max": variant = "MGH" elif normalization == "LFK": variant = "MGH_LFK" else: raise ValueError( "Wrong 'normalization' value. Please specify one among [max, LFK]." ) return MatchingResult( score=onmi.onmi( [set(x) for x in first_partition.communities], [set(x) for x in second_partition.communities], variant=variant, ) ) def omega(first_partition: object, second_partition: object) -> MatchingResult: """ Index of resemblance for overlapping, complete coverage, network clusterings. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.omega(louvain_communities,leiden_communities) :Reference: 1. Gabriel Murray, Giuseppe Carenini, and Raymond Ng. 2012. `Using the omega index for evaluating abstractive algorithms detection. <https://pdfs.semanticscholar.org/59d6/5d5aa09d789408fd9fd3c009a1b070ff5859.pdf/>`_ In Proceedings of Workshop on Evaluation Metrics and System Comparison for Automatic Summarization. Association for Computational Linguistics, Stroudsburg, PA, USA, 10-18. """ __check_partition_coverage(first_partition, second_partition) first_partition = {k: v for k, v in enumerate(first_partition.communities)} second_partition = {k: v for k, v in enumerate(second_partition.communities)} om_idx = Omega(first_partition, second_partition) return MatchingResult(score=om_idx.omega_score) def f1(first_partition: object, second_partition: object) -> MatchingResult: """ Compute the average F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.f1(louvain_communities,leiden_communities) :Reference: 1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_ In Complex Networks VII (pp. 133-144). Springer, Cham. """ nf = NF1(first_partition.communities, second_partition.communities) results = nf.summary() return MatchingResult( score=results["details"]["F1 mean"][0], std=results["details"]["F1 std"][0] ) def nf1(first_partition: object, second_partition: object) -> MatchingResult: """ Compute the Normalized F1 score of the optimal algorithms matches among the partitions in input. Works on overlapping/non-overlapping complete/partial coverage partitions. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.nf1(louvain_communities,leiden_communities) :Reference: 1. Rossetti, G., Pappalardo, L., & Rinzivillo, S. (2016). `A novel approach to evaluate algorithms detection internal on ground truth. <https://www.researchgate.net/publication/287204505_A_novel_approach_to_evaluate_community_detection_algorithms_on_ground_truth/>`_ 2. Rossetti, G. (2017). : `RDyn: graph benchmark handling algorithms dynamics. Journal of Complex Networks. <https://academic.oup.com/comnet/article-abstract/5/6/893/3925036?redirectedFrom=PDF/>`_ 5(6), 893-912. """ nf = NF1(first_partition.communities, second_partition.communities) results = nf.summary() return MatchingResult(score=results["scores"].loc["NF1"][0]) def adjusted_rand_index( first_partition: object, second_partition: object ) -> MatchingResult: """Rand index adjusted for chance. The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings. The raw RI score is then "adjusted for chance" into the ARI score using the following scheme:: ARI = (RI - Expected_RI) / (max(RI) - Expected_RI) The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation). ARI is a symmetric measure:: adjusted_rand_index(a, b) == adjusted_rand_index(b, a) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.adjusted_rand_index(louvain_communities,leiden_communities) :Reference: 1. Hubert, L., & Arabie, P. (1985). `Comparing partitions. <https://link.springer.com/article/10.1007/BF01908075/>`_ Journal of classification, 2(1), 193-218. """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import adjusted_rand_score return MatchingResult( score=adjusted_rand_score(first_partition_c, second_partition_c) ) def adjusted_mutual_information( first_partition: object, second_partition: object ) -> MatchingResult: """Adjusted Mutual Information between two clusterings. Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of clusters, regardless of whether there is actually more information shared. For two clusterings :math:`U` and :math:`V`, the AMI is given as:: AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [max(H(U), H(V)) - E(MI(U, V))] This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values won't change the score value in any way. This metric is furthermore symmetric: switching ``label_true`` with ``label_pred`` will return the same score value. This can be useful to measure the agreement of two independent label assignments strategies on the same dataset when the real ground truth is not known. Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand Index. :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.adjusted_mutual_information(louvain_communities,leiden_communities) :Reference: 1. Vinh, N. X., Epps, J., & Bailey, J. (2010). `Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf/>`_ Journal of Machine Learning Research, 11(Oct), 2837-2854. """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) first_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(first_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] second_partition_c = [ x[1] for x in sorted( [ (node, nid) for nid, cluster in enumerate(second_partition.communities) for node in cluster ], key=lambda x: x[0], ) ] from sklearn.metrics import adjusted_mutual_info_score return MatchingResult( score=adjusted_mutual_info_score(first_partition_c, second_partition_c) ) def variation_of_information( first_partition: object, second_partition: object ) -> MatchingResult: """Variation of Information among two nodes partitions. $$ H(p)+H(q)-2MI(p, q) $$ where MI is the mutual information, H the partition entropy and p,q are the algorithms sets :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.variation_of_information(louvain_communities,leiden_communities) :Reference: 1. Meila, M. (2007). `Comparing clusterings - an information based distance. <https://www.sciencedirect.com/science/article/pii/S0047259X06002016/>`_ Journal of Multivariate Analysis, 98, 873-895. doi:10.1016/j.jmva.2006.11.013 """ __check_partition_coverage(first_partition, second_partition) __check_partition_overlap(first_partition, second_partition) n = float(sum([len(c1) for c1 in first_partition.communities])) sigma = 0.0 for c1 in first_partition.communities: p = len(c1) / n for c2 in second_partition.communities: q = len(c2) / n r = len(set(c1) & set(c2)) / n if r > 0.0: sigma += r * (np.log2(r / p) + np.log2(r / q)) return MatchingResult(score=abs(sigma)) def partition_closeness_simple( first_partition: object, second_partition: object ) -> MatchingResult: """Community size density closeness. Simple implementation that does not leverage kernel density estimator. $$ S_G(A,B) = \frac{1}{2} \Sum_{i=1}^{r}\Sum_{j=1}^{s} min(\frac{n^a(x^a_i)}{N^a}, \frac{n^b_j(x^b_j)}{N^b}) \delta(x_i^a,x_j^b) $$ where: $$ N^a $$ total number of communities in A of any size; $$ x^a $$ ordered list of community sizes for A; $$ n^a $$ multiplicity of community sizes for A. (symmetrically for B) :param first_partition: NodeClustering object :param second_partition: NodeClustering object :return: MatchingResult object :Example: >>> from cdlib import evaluation, algorithms >>> g = nx.karate_club_graph() >>> louvain_communities = algorithms.louvain(g) >>> leiden_communities = algorithms.leiden(g) >>> evaluation.partition_closeness_simple(louvain_communities,leiden_communities) :Reference: 1. Dao, Vinh-Loc, Cécile Bothorel, and Philippe Lenca. "Estimating the similarity of community detection methods based on cluster size distribution." International Conference on Complex Networks and their Applications. Springer, Cham, 2018. """ coms_a = sorted(list(set([len(c) for c in first_partition.communities]))) freq_a = defaultdict(int) for a in coms_a: freq_a[a] += 1 freq_a = [freq_a[a] for a in sorted(freq_a)] n_a = sum([coms_a[i] * freq_a[i] for i in range(0, len(coms_a))]) coms_b = sorted(list(set([len(c) for c in second_partition.communities]))) freq_b = defaultdict(int) for b in coms_b: freq_b[b] += 1 freq_b = [freq_b[b] for b in sorted(freq_b)] n_b = sum([coms_b[i] * freq_b[i] for i in range(0, len(coms_b))]) closeness = 0 for i in range(0, len(coms_a)): for j in range(0, len(coms_b)): if coms_a[i] == coms_b[j]: closeness += min( (coms_a[i] * freq_a[i]) / n_a, (coms_b[j] * freq_b[j]) / n_b ) closeness *= 0.5 return MatchingResult(score=closeness)
36.263969
391
0.692684
0
0
0
0
0
0
0
0
11,522
0.612156
3bef530282cd351acc8d5d5fce296f7123e0bfe8
56
py
Python
node/views/__init__.py
mohamedmansor/path-detector
14954795ea47109d404b54f74575337f86d6134f
[ "MIT" ]
null
null
null
node/views/__init__.py
mohamedmansor/path-detector
14954795ea47109d404b54f74575337f86d6134f
[ "MIT" ]
null
null
null
node/views/__init__.py
mohamedmansor/path-detector
14954795ea47109d404b54f74575337f86d6134f
[ "MIT" ]
null
null
null
from .node_view import ConnectNodesViewSet, PathViewSet
28
55
0.875
0
0
0
0
0
0
0
0
0
0
3bf1bbdf44b6a8b3ce4f31f26290f905b3426047
1,193
py
Python
tests/modules/extra/fastapi/controller/integration/test_fastapi_app_with_controller.py
alice-biometrics/petisco
b96e697cc875f67a28e60b4fc0d9ed9fc646cd86
[ "MIT" ]
19
2019-11-01T09:27:17.000Z
2021-12-15T10:52:31.000Z
tests/modules/extra/fastapi/controller/integration/test_fastapi_app_with_controller.py
alice-biometrics/petisco
b96e697cc875f67a28e60b4fc0d9ed9fc646cd86
[ "MIT" ]
68
2020-01-15T06:55:00.000Z
2022-02-22T15:57:24.000Z
tests/modules/extra/fastapi/controller/integration/test_fastapi_app_with_controller.py
alice-biometrics/petisco
b96e697cc875f67a28e60b4fc0d9ed9fc646cd86
[ "MIT" ]
2
2019-11-19T10:40:25.000Z
2019-11-28T07:12:07.000Z
from typing import Optional import pytest from fastapi import FastAPI, Header from fastapi.testclient import TestClient from meiga import BoolResult, Failure, isFailure, isSuccess from petisco import NotFound, assert_http from petisco.extra.fastapi import FastAPIController app = FastAPI(title="test-app") result_from_expected_behavior = { "success": isSuccess, "failure_generic": isFailure, "failure_not_found": Failure(NotFound()), } class MyController(FastAPIController): def execute(self, expected_behavior: str) -> BoolResult: return result_from_expected_behavior.get(expected_behavior, isSuccess) @app.get("/test") def entry_point(x_behavior: Optional[str] = Header("success")): return MyController().execute(x_behavior) @pytest.mark.unit @pytest.mark.parametrize( "behavior,expected_status_code", [("success", 200), ("failure_generic", 500), ("failure_not_found", 404)], ) def test_fastapi_app_with_controller_should_return_expected_values( behavior, expected_status_code ): with TestClient(app) as client: response = client.get("/test", headers={"x-behavior": behavior}) assert_http(response, expected_status_code)
29.097561
78
0.75943
178
0.149204
0
0
554
0.464376
0
0
166
0.139145
3bf3ea019e2b8d99252bef80157556503f118e91
438
py
Python
component/reminder/tasks.py
pablo0723/just-a-test
31e8157a5d1f50b30d83d945b77caaa2b7b717ba
[ "MIT" ]
null
null
null
component/reminder/tasks.py
pablo0723/just-a-test
31e8157a5d1f50b30d83d945b77caaa2b7b717ba
[ "MIT" ]
null
null
null
component/reminder/tasks.py
pablo0723/just-a-test
31e8157a5d1f50b30d83d945b77caaa2b7b717ba
[ "MIT" ]
null
null
null
from django.core.mail import send_mail from component.reminder.models import Reminder from server.celery import app @app.task def send_email(id): reminder = Reminder.objects.filter(id=id).first() if reminder is not None: send_mail(subject="ReminderMessage", message=reminder.text, from_email='no-reply@test.com', recipient_list=[reminder.email] )
27.375
53
0.636986
0
0
0
0
318
0.726027
0
0
36
0.082192
3bf45f24ab2dd0e2ee1d2a8a4c89e7d8442c50d9
1,203
py
Python
skmine/tests/test_base.py
remiadon/scikit-mine
769d7d5ea0dda5d4adea33236733f4ce1ea0c815
[ "BSD-3-Clause" ]
null
null
null
skmine/tests/test_base.py
remiadon/scikit-mine
769d7d5ea0dda5d4adea33236733f4ce1ea0c815
[ "BSD-3-Clause" ]
null
null
null
skmine/tests/test_base.py
remiadon/scikit-mine
769d7d5ea0dda5d4adea33236733f4ce1ea0c815
[ "BSD-3-Clause" ]
null
null
null
import pandas as pd import pytest from ..base import BaseMiner, MDLOptimizer def test_inst_params(): class MyMiner(BaseMiner): def __init__(self, eps=3): self.eps = eps self._a = 2 def fit(self, D): self._a = 12 kwargs = dict(eps=4) miner = MyMiner(**kwargs) assert miner.get_params() == kwargs kwargs.update(eps=10) miner.set_params(**kwargs) assert miner.get_params() == kwargs assert miner.set_params().get_params() == kwargs # stay untouched with pytest.raises(ValueError): miner.set_params(random_key=2) def test_inst_params_no_init(): class MyMiner(BaseMiner): def fit(self, D, y=None): return self miner = MyMiner() assert miner.get_params() == dict() def test_mdl_repr(): class A(MDLOptimizer): def __init__(self): self.codetable_ = {1: [0, 1], 2: [1]} def fit(self): return self def evaluate(self): return True def generate_candidates(self): return list() a = A() assert isinstance(a._repr_html_(), str) assert isinstance(a.fit()._repr_html_(), str)
20.741379
70
0.591022
513
0.426434
0
0
0
0
0
0
16
0.0133
3bf5e5434eef73539dca4c83819a0c06da30de79
893
py
Python
src/season/data/websrc/modules/intro/controller/index.py
season-framework/season-flask-wiz
95d75758a6036d387c1b803bd6a68f238ec430e0
[ "MIT" ]
6
2021-12-09T05:06:49.000Z
2022-01-18T02:38:03.000Z
src/season/data/websrc/modules/intro/controller/index.py
season-framework/season-flask-wiz
95d75758a6036d387c1b803bd6a68f238ec430e0
[ "MIT" ]
2
2022-02-18T02:00:36.000Z
2022-03-22T05:18:30.000Z
src/season/data/websrc/modules/intro/controller/index.py
season-framework/season-flask-wiz
95d75758a6036d387c1b803bd6a68f238ec430e0
[ "MIT" ]
2
2022-01-07T00:26:00.000Z
2022-03-07T06:24:27.000Z
import season import random class Controller(season.interfaces.controller.base): def __init__(self, framework): super().__init__(framework) def __default__(self, framework): return self.redirect('list') def list(self, framework): data = [] for i in range(20): data.append({ 'id': 'item-' + str(i+1), 'title' :'Title #{}'.format(i+1), 'value1': random.randint(0, 1000), 'value2': random.randint(0, 1000), 'value3': random.randint(0, 10000) / 100 }) return framework.response.render('list.pug', data=data) def item(self, framework): message = framework.model('data').getMessage() itemid = framework.request.segment.get(0, True) return framework.response.render('item.pug', id=itemid, message=message)
33.074074
80
0.571109
864
0.967525
0
0
0
0
0
0
85
0.095185
3bf63b37e1c270fbc81e663a1141ad00744d52eb
11,770
py
Python
crypten/nn/onnx_converter.py
chenfar/CrypTen
9a11b79f1fa9d707eb38abf7d812911980520559
[ "MIT" ]
null
null
null
crypten/nn/onnx_converter.py
chenfar/CrypTen
9a11b79f1fa9d707eb38abf7d812911980520559
[ "MIT" ]
null
null
null
crypten/nn/onnx_converter.py
chenfar/CrypTen
9a11b79f1fa9d707eb38abf7d812911980520559
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import copy import io import onnx import torch import torch.onnx.symbolic_helper as sym_help import torch.onnx.symbolic_registry as sym_registry import torch.onnx.utils from onnx import numpy_helper from torch.onnx import OperatorExportTypes from . import module try: import tensorflow as tf # noqa import tf2onnx TF_AND_TF2ONNX = True except ImportError: TF_AND_TF2ONNX = False def from_onnx(onnx_string_or_file): """ Converts an ONNX model serialized in an `onnx_string_or_file` to a CrypTen model. """ onnx_model = _load_onnx_model(onnx_string_or_file) return _to_crypten(onnx_model) def from_pytorch(pytorch_model, dummy_input): """ Converts a PyTorch model `pytorch_model` into a CrypTen model by tracing it using the input `dummy_input`. """ # construct CrypTen model: f = _from_pytorch_to_bytes(pytorch_model, dummy_input) crypten_model = from_onnx(f) f.close() # set model architecture to export model back to pytorch model crypten_model.pytorch_model = copy.deepcopy(pytorch_model) # make sure training / eval setting is copied: crypten_model.train(mode=pytorch_model.training) return crypten_model def from_tensorflow(tensorflow_graph_def, inputs, outputs): """ Function that converts Tensorflow model into CrypTen model based on https://github.com/onnx/tensorflow-onnx/blob/master/tf2onnx/convert.py The model is returned in evaluation mode. Args: `tensorflow_graph_def`: Input Tensorflow GraphDef to be converted `inputs`: input nodes `outputs`: output nodes """ raise DeprecationWarning( "crypten.nn.from_tensorflow is deprecated. ", "CrypTen will no longer support model conversion from TensorFlow.", ) # Exporting model to ONNX graph if not TF_AND_TF2ONNX: raise ImportError("Please install both tensorflow and tf2onnx packages") with tf.Graph().as_default() as tf_graph: tf.import_graph_def(tensorflow_graph_def, name="") with tf2onnx.tf_loader.tf_session(graph=tf_graph): g = tf2onnx.tfonnx.process_tf_graph( tf_graph, opset=10, continue_on_error=False, input_names=inputs, output_names=outputs, ) onnx_graph = tf2onnx.optimizer.optimize_graph(g) model_proto = onnx_graph.make_model( "converted from {}".format(tensorflow_graph_def) ) f = io.BytesIO() f.write(model_proto.SerializeToString()) # construct CrypTen model # Note: We don't convert crypten model to training mode, as Tensorflow # models are used for both training and evaluation without the specific # conversion of one mode to another f.seek(0) crypten_model = from_onnx(f) return crypten_model def _from_pytorch_to_bytes(pytorch_model, dummy_input): """ Returns I/O stream containing ONNX graph for `pytorch_model` traced with input `dummy_input`. """ # first export is only used to obtain the PyTorch-to-ONNX symbolic registry: with io.BytesIO() as f: _export_pytorch_model(f, pytorch_model, dummy_input) # update ONNX symbolic registry with CrypTen-specific functions: _update_onnx_symbolic_registry() # export again so the graph is created with CrypTen-specific registry: f = io.BytesIO() f = _export_pytorch_model(f, pytorch_model, dummy_input) f.seek(0) return f def _export_pytorch_model(f, pytorch_model, dummy_input): """ Returns a binary I/O stream containing ONNX-exported pytorch_model that was traced with input `dummy_input`. """ kwargs = { "do_constant_folding": False, "export_params": True, "enable_onnx_checker": True, "input_names": ["input"], "operator_export_type": OperatorExportTypes.ONNX, "output_names": ["output"], } torch.onnx.export(pytorch_model, dummy_input, f, **kwargs) return f # mapping from ONNX to crypten.nn for modules with different names: ONNX_TO_CRYPTEN = { "adaptive_avg_pool2d": module.AdaptiveAvgPool2d, "adaptive_max_pool2d": module.AdaptiveMaxPool2d, "AveragePool": module.AvgPool2d, "Clip": module.Hardtanh, "MaxPool": module.MaxPool2d, "Pad": module._ConstantPad, "Relu": module.ReLU, "ReduceMean": module.Mean, "ReduceSum": module.Sum, } def _to_crypten(onnx_model): """ Function that converts an `onnx_model` to a CrypTen model. """ # create graph: input_names, output_names = _get_input_output_names(onnx_model) assert len(output_names) == 1, "Only one output per model supported." crypten_model = module.Graph(input_names, output_names[0]) # create nodes for the parameters: for node in onnx_model.graph.initializer: param = torch.from_numpy(numpy_helper.to_array(node)) crypten_model.add_module(node.name, module.Parameter(param), []) # loop over all nodes: for node in onnx_model.graph.node: # get attributes and node type: attributes = {attr.name: _get_attribute_value(attr) for attr in node.attribute} crypten_class = _get_operator_class(node.op_type, attributes) # add CrypTen module to graph: crypten_module = crypten_class.from_onnx(attributes=attributes) input_names = list(node.input) output_names = list(node.output) if node.op_type == "Dropout": output_names = [output_names[0]] # do not output Dropout mask crypten_model.add_module( output_names[0], crypten_module, input_names, output_names=output_names ) # return final model: crypten_model = _get_model_or_module(crypten_model) return crypten_model def _load_onnx_model(onnx_string_or_file): """ Loads ONNX model from file or string. """ if hasattr(onnx_string_or_file, "seek"): onnx_string_or_file.seek(0) return onnx.load(onnx_string_or_file) return onnx.load_model_from_string(onnx_string_or_file) def _get_input_output_names(onnx_model): """ Return input and output names of the ONNX graph. """ input_names = [input.name for input in onnx_model.graph.input] output_names = [output.name for output in onnx_model.graph.output] assert len(input_names) >= 1, "number of inputs should be at least 1" assert len(output_names) == 1, "number of outputs should be 1" return input_names, output_names def _get_model_or_module(crypten_model): """ Returns `Module` if model contains only one module. Otherwise returns model. """ num_modules = len(list(crypten_model.modules())) if num_modules == 1: for crypten_module in crypten_model.modules(): return crypten_module return crypten_model def _get_attribute_value(attr): """ Retrieves value from an ONNX attribute. """ if attr.HasField("f"): # floating-point attribute return attr.f elif attr.HasField("i"): # integer attribute return attr.i elif attr.HasField("s"): # string attribute return attr.s # TODO: Sanitize string. elif attr.HasField("t"): # tensor attribute return torch.from_numpy(numpy_helper.to_array(attr.t)) elif len(attr.ints) > 0: return list(attr.ints) elif len(attr.floats) > 0: return list(attr.floats) raise ValueError("Unknown attribute type for attribute %s." % attr.name) def _get_operator_class(node_op_type, attributes): """ Returns the `crypten.nn.Module` type corresponding to an ONNX node. """ crypten_class = getattr( module, node_op_type, ONNX_TO_CRYPTEN.get(node_op_type, None) ) if crypten_class is None: raise ValueError(f"CrypTen does not support ONNX op {node_op_type}.") return crypten_class def _update_onnx_symbolic_registry(): """ Updates the ONNX symbolic registry for operators that need a CrypTen-specific implementation and custom operators. """ # update PyTorch's symbolic ONNX registry to output different functions: for version_key, version_val in sym_registry._registry.items(): for function_key in version_val.keys(): if function_key == "softmax": sym_registry._registry[version_key][ function_key ] = _onnx_crypten_softmax if function_key == "log_softmax": sym_registry._registry[version_key][ function_key ] = _onnx_crypten_logsoftmax if function_key == "dropout": sym_registry._registry[version_key][ function_key ] = _onnx_crypten_dropout if function_key == "feature_dropout": sym_registry._registry[version_key][ function_key ] = _onnx_crypten_feature_dropout @sym_help.parse_args("v", "i", "none") def _onnx_crypten_softmax(g, input, dim, dtype=None): """ This function converts PyTorch's Softmax module to a Softmax module in the ONNX model. It overrides PyTorch's default conversion of Softmax module to a sequence of Exp, ReduceSum and Div modules, since this default conversion can cause numerical overflow when applied to CrypTensors. """ result = g.op("Softmax", input, axis_i=dim) if dtype and dtype.node().kind() != "prim::Constant": parsed_dtype = sym_help._get_const(dtype, "i", "dtype") result = g.op("Cast", result, to_i=sym_help.scalar_type_to_onnx[parsed_dtype]) return result @sym_help.parse_args("v", "i", "none") def _onnx_crypten_logsoftmax(g, input, dim, dtype=None): """ This function converts PyTorch's LogSoftmax module to a LogSoftmax module in the ONNX model. It overrides PyTorch's default conversion of LogSoftmax module to avoid potentially creating Transpose operators. """ result = g.op("LogSoftmax", input, axis_i=dim) if dtype and dtype.node().kind() != "prim::Constant": parsed_dtype = sym_help._get_const(dtype, "i", "dtype") result = g.op("Cast", result, to_i=sym_help.scalar_type_to_onnx[parsed_dtype]) return result @sym_help.parse_args("v", "f", "i") def _onnx_crypten_dropout(g, input, p, train): """ This function converts PyTorch's Dropout module to a Dropout module in the ONNX model. It overrides PyTorch's default implementation to ignore the Dropout module during the conversion. PyTorch assumes that ONNX models are only used for inference and therefore Dropout modules are not required in the ONNX model. However, CrypTen needs to convert ONNX models to trainable CrypTen models, and so the Dropout module needs to be included in the CrypTen-specific conversion. """ r, _ = g.op("Dropout", input, ratio_f=p, outputs=2) return r @sym_help.parse_args("v", "f", "i") def _onnx_crypten_feature_dropout(g, input, p, train): """ This function converts PyTorch's DropoutNd module to a DropoutNd module in the ONNX model. It overrides PyTorch's default implementation to ignore the DropoutNd module during the conversion. PyTorch assumes that ONNX models are only used for inference and therefore DropoutNd modules are not required in the ONNX model. However, CrypTen needs to convert ONNX models to trainable CrypTen models, and so the DropoutNd module needs to be included in the CrypTen-specific conversion. """ r, _ = g.op("DropoutNd", input, ratio_f=p, outputs=2) return r
34.925816
87
0.693203
0
0
0
0
2,641
0.224384
0
0
4,972
0.42243
3bf70a1a9f2bab5e2d13cf95f5bb6e7cbc23fec9
3,582
py
Python
examples/pipeline.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
null
null
null
examples/pipeline.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
null
null
null
examples/pipeline.py
nicolay-r/AREk
19c39ec0dc9a17464cade03b9c4da0c6d1d21191
[ "MIT" ]
null
null
null
from arekit.common.data.input.providers.label.multiple import MultipleLabelProvider from arekit.common.data.row_ids.multiple import MultipleIDProvider from arekit.common.data.storages.base import BaseRowsStorage from arekit.common.data.views.samples import BaseSampleStorageView from arekit.common.experiment.data_type import DataType from arekit.common.labels.scaler import BaseLabelScaler from arekit.contrib.experiment_rusentrel.labels.scalers.three import ThreeLabelScaler from arekit.contrib.networks.context.architectures.pcnn import PiecewiseCNN from arekit.contrib.networks.context.configurations.cnn import CNNConfig from arekit.contrib.networks.core.ctx_inference import InferenceContext from arekit.contrib.networks.core.feeding.bags.collection.single import SingleBagsCollection from arekit.contrib.networks.core.input.helper_embedding import EmbeddingHelper from arekit.contrib.networks.core.model import BaseTensorflowModel from arekit.contrib.networks.core.model_io import NeuralNetworkModelIO from arekit.contrib.networks.core.predict.provider import BasePredictProvider from arekit.contrib.networks.core.predict.tsv_writer import TsvPredictWriter from arekit.contrib.networks.shapes import NetworkInputShapes from examples.input import EXAMPLES from examples.repository import pipeline_serialize def pipeline_infer(labels_scaler): assert(isinstance(labels_scaler, BaseLabelScaler)) # Step 4. Deserialize data network = PiecewiseCNN() config = CNNConfig() config.set_term_embedding(EmbeddingHelper.load_vocab("embedding.txt")) inference_ctx = InferenceContext.create_empty() inference_ctx.initialize( dtypes=[DataType.Test], create_samples_view_func=lambda data_type: BaseSampleStorageView( storage=BaseRowsStorage.from_tsv("samples.txt"), row_ids_provider=MultipleIDProvider()), has_model_predefined_state=True, vocab=EmbeddingHelper.load_vocab("vocab.txt"), labels_count=3, input_shapes=NetworkInputShapes(iter_pairs=[ (NetworkInputShapes.FRAMES_PER_CONTEXT, config.FramesPerContext), (NetworkInputShapes.TERMS_PER_CONTEXT, config.TermsPerContext), (NetworkInputShapes.SYNONYMS_PER_CONTEXT, config.SynonymsPerContext), ]), bag_size=config.BagSize) # Step 5. Model preparation. model = BaseTensorflowModel( nn_io=NeuralNetworkModelIO( target_dir=".model", full_model_name="PCNN", model_name_tag="_"), network=network, config=config, inference_ctx=inference_ctx, bags_collection_type=SingleBagsCollection, # Используем на вход 1 пример. ) model.predict() # Step 6. Gather annotated contexts onto document level. labeled_samples = model.get_labeled_samples_collection(data_type=DataType.Test) predict_provider = BasePredictProvider() # TODO. For now it is limited to tsv. with TsvPredictWriter(filepath="out.txt") as out: title, contents_it = predict_provider.provide( sample_id_with_uint_labels_iter=labeled_samples.iter_non_duplicated_labeled_sample_row_ids(), labels_scaler=labels_scaler) out.write(title=title, contents_it=contents_it) if __name__ == '__main__': text = EXAMPLES["simple"] labels_scaler = ThreeLabelScaler() label_provider = MultipleLabelProvider(label_scaler=labels_scaler) pipeline_serialize(sentences_text_list=text, label_provider=label_provider) pipeline_infer(labels_scaler)
40.704545
105
0.769961
0
0
0
0
0
0
0
0
282
0.078246
3bf77e53ccae2099f5deb07947c3ee02b77cf7b8
9,038
py
Python
python/lapack_like/reflect.py
justusc/Elemental
145ccb28411f3f0c65ca30ecea776df33297e4ff
[ "BSD-3-Clause" ]
null
null
null
python/lapack_like/reflect.py
justusc/Elemental
145ccb28411f3f0c65ca30ecea776df33297e4ff
[ "BSD-3-Clause" ]
null
null
null
python/lapack_like/reflect.py
justusc/Elemental
145ccb28411f3f0c65ca30ecea776df33297e4ff
[ "BSD-3-Clause" ]
null
null
null
# # Copyright (c) 2009-2015, Jack Poulson # All rights reserved. # # This file is part of Elemental and is under the BSD 2-Clause License, # which can be found in the LICENSE file in the root directory, or at # http://opensource.org/licenses/BSD-2-Clause # from ..core import * import ctypes # Apply packed reflectors # ======================= lib.ElApplyPackedReflectors_s.argtypes = \ lib.ElApplyPackedReflectors_d.argtypes = \ lib.ElApplyPackedReflectors_c.argtypes = \ lib.ElApplyPackedReflectors_z.argtypes = \ lib.ElApplyPackedReflectorsDist_s.argtypes = \ lib.ElApplyPackedReflectorsDist_d.argtypes = \ lib.ElApplyPackedReflectorsDist_c.argtypes = \ lib.ElApplyPackedReflectorsDist_z.argtypes = \ [c_uint,c_uint,c_uint,c_uint,iType,c_void_p,c_void_p,c_void_p] def ApplyPackedReflectors(side,uplo,dir,order,offset,H,t,A): if type(H) is not type(t) or type(t) is not type(A): raise Exception('Matrix types of {H,t,A} must match') if H.tag != t.tag or t.tag != A.tag: raise Exception('Datatypes of {H,t,A} must match') args = [side,uplo,dir,order,offset,H.obj,t.obj,A.obj] if type(H) is Matrix: if H.tag == sTag: lib.ElApplyPackedReflectors_s(*args) elif H.tag == dTag: lib.ElApplyPackedReflectors_d(*args) elif H.tag == cTag: lib.ElApplyPackedReflectors_c(*args) elif H.tag == zTag: lib.ElApplyPackedReflectors_z(*args) else: DataExcept() elif type(H) is DistMatrix: if H.tag == sTag: lib.ElApplyPackedReflectorsDist_s(*args) elif H.tag == dTag: lib.ElApplyPackedReflectorsDist_d(*args) elif H.tag == cTag: lib.ElApplyPackedReflectorsDist_c(*args) elif H.tag == zTag: lib.ElApplyPackedReflectorsDist_z(*args) else: DataExcept() else: TypeExcept() # Expand packed reflectors # ======================== lib.ElExpandPackedReflectors_s.argtypes = \ lib.ElExpandPackedReflectors_d.argtypes = \ lib.ElExpandPackedReflectors_c.argtypes = \ lib.ElExpandPackedReflectors_z.argtypes = \ lib.ElExpandPackedReflectorsDist_s.argtypes = \ lib.ElExpandPackedReflectorsDist_d.argtypes = \ lib.ElExpandPackedReflectorsDist_c.argtypes = \ lib.ElExpandPackedReflectorsDist_z.argtypes = \ [c_uint,c_uint,iType,c_void_p,c_void_p] def ExpandPackedReflectors(uplo,dir,offset,H,t): if type(H) is not type(t): raise Exception('Types of H and t must match') if H.tag != t.tag: raise Exception('Datatypes of H and t must match') args = [uplo,dir,offset,H.obj,t.obj] if type(H) is Matrix: if H.tag == sTag: lib.ElExpandPackedReflectors_s(*args) elif H.tag == dTag: lib.ElExpandPackedReflectors_d(*args) elif H.tag == cTag: lib.ElExpandPackedReflectors_c(*args) elif H.tag == zTag: lib.ElExpandPackedReflectors_z(*args) else: DataExcept() elif type(H) is DistMatrix: if H.tag == sTag: lib.ElExpandPackedReflectorsDist_s(*args) elif H.tag == dTag: lib.ElExpandPackedReflectorsDist_d(*args) elif H.tag == cTag: lib.ElExpandPackedReflectorsDist_c(*args) elif H.tag == zTag: lib.ElExpandPackedReflectorsDist_z(*args) else: DataExcept() else: TypeExcept() # Hyperbolic reflector # ==================== # Left application # ---------------- lib.ElLeftHyperbolicReflector_s.argtypes = \ [POINTER(sType),c_void_p,POINTER(sType)] lib.ElLeftHyperbolicReflector_d.argtypes = \ [POINTER(dType),c_void_p,POINTER(dType)] lib.ElLeftHyperbolicReflector_c.argtypes = \ [POINTER(cType),c_void_p,POINTER(cType)] lib.ElLeftHyperbolicReflector_z.argtypes = \ [POINTER(zType),c_void_p,POINTER(zType)] lib.ElLeftHyperbolicReflectorDist_s.argtypes = \ [POINTER(sType),c_void_p,POINTER(sType)] lib.ElLeftHyperbolicReflectorDist_d.argtypes = \ [POINTER(dType),c_void_p,POINTER(dType)] lib.ElLeftHyperbolicReflectorDist_c.argtypes = \ [POINTER(cType),c_void_p,POINTER(cType)] lib.ElLeftHyperbolicReflectorDist_z.argtypes = \ [POINTER(zType),c_void_p,POINTER(zType)] def LeftHyperbolicReflector(chi,x): alpha = TagToType(x.tag)(chi) tau = TagToType(x.tag)() args = [pointer(alpha),x.obj,pointer(tau)] if type(x) is Matrix: if x.tag == sTag: lib.ElLeftHyperbolicReflector_s(*args) elif x.tag == dTag: lib.ElLeftHyperbolicReflector_d(*args) elif x.tag == cTag: lib.ElLeftHyperbolicReflector_c(*args) elif x.tag == zTag: lib.ElLeftHyperbolicReflector_z(*args) else: DataExcept() elif type(x) is DistMatrix: if x.tag == sTag: lib.ElLeftHyperbolicReflectorDist_s(*args) elif x.tag == dTag: lib.ElLeftHyperbolicReflectorDist_d(*args) elif x.tag == cTag: lib.ElLeftHyperbolicReflectorDist_c(*args) elif x.tag == zTag: lib.ElLeftHyperbolicReflectorDist_z(*args) else: DataExcept() else: TypeExcept() return alpha, tau # Right application # ----------------- lib.ElRightHyperbolicReflector_s.argtypes = \ [POINTER(sType),c_void_p,POINTER(sType)] lib.ElRightHyperbolicReflector_d.argtypes = \ [POINTER(dType),c_void_p,POINTER(dType)] lib.ElRightHyperbolicReflector_c.argtypes = \ [POINTER(cType),c_void_p,POINTER(cType)] lib.ElRightHyperbolicReflector_z.argtypes = \ [POINTER(zType),c_void_p,POINTER(zType)] lib.ElRightHyperbolicReflectorDist_s.argtypes = \ [POINTER(sType),c_void_p,POINTER(sType)] lib.ElRightHyperbolicReflectorDist_d.argtypes = \ [POINTER(dType),c_void_p,POINTER(dType)] lib.ElRightHyperbolicReflectorDist_c.argtypes = \ [POINTER(cType),c_void_p,POINTER(cType)] lib.ElRightHyperbolicReflectorDist_z.argtypes = \ [POINTER(zType),c_void_p,POINTER(zType)] def RightHyperbolicReflector(chi,x): alpha = TagToType(x.tag)(chi) tau = TagToType(x.tag)() args = [pointer(alpha),x.obj,pointer(tau)] if type(x) is Matrix: if x.tag == sTag: lib.ElRightHyperbolicReflector_s(*args) elif x.tag == dTag: lib.ElRightHyperbolicReflector_d(*args) elif x.tag == cTag: lib.ElRightHyperbolicReflector_c(*args) elif x.tag == zTag: lib.ElRightHyperbolicReflector_z(*args) else: DataExcept() elif type(x) is DistMatrix: if x.tag == sTag: lib.ElRightHyperbolicReflectorDist_s(*args) elif x.tag == dTag: lib.ElRightHyperbolicReflectorDist_d(*args) elif x.tag == cTag: lib.ElRightHyperbolicReflectorDist_c(*args) elif x.tag == zTag: lib.ElRightHyperbolicReflectorDist_z(*args) else: DataExcept() else: TypeExcept() return alpha, tau # Householder reflector # ===================== # Left application # ---------------- lib.ElLeftReflector_s.argtypes = [POINTER(sType),c_void_p,POINTER(sType)] lib.ElLeftReflector_d.argtypes = [POINTER(dType),c_void_p,POINTER(dType)] lib.ElLeftReflector_c.argtypes = [POINTER(cType),c_void_p,POINTER(cType)] lib.ElLeftReflector_z.argtypes = [POINTER(zType),c_void_p,POINTER(zType)] lib.ElLeftReflectorDist_s.argtypes = [POINTER(sType),c_void_p,POINTER(sType)] lib.ElLeftReflectorDist_d.argtypes = [POINTER(dType),c_void_p,POINTER(dType)] lib.ElLeftReflectorDist_c.argtypes = [POINTER(cType),c_void_p,POINTER(cType)] lib.ElLeftReflectorDist_z.argtypes = [POINTER(zType),c_void_p,POINTER(zType)] def LeftReflector(chi,x): alpha = TagToType(x.tag)(chi) tau = TagToType(x.tag)() args = [pointer(alpha),x.obj,pointer(tau)] if type(x) is Matrix: if x.tag == sTag: lib.ElLeftReflector_s(*args) elif x.tag == dTag: lib.ElLeftReflector_d(*args) elif x.tag == cTag: lib.ElLeftReflector_c(*args) elif x.tag == zTag: lib.ElLeftReflector_z(*args) else: DataExcept() elif type(x) is DistMatrix: if x.tag == sTag: lib.ElLeftReflectorDist_s(*args) elif x.tag == dTag: lib.ElLeftReflectorDist_d(*args) elif x.tag == cTag: lib.ElLeftReflectorDist_c(*args) elif x.tag == zTag: lib.ElLeftReflectorDist_z(*args) else: DataExcept() else: TypeExcept() return alpha, tau # Right application # ----------------- lib.ElRightReflector_s.argtypes = [POINTER(sType),c_void_p,POINTER(sType)] lib.ElRightReflector_d.argtypes = [POINTER(dType),c_void_p,POINTER(dType)] lib.ElRightReflector_c.argtypes = [POINTER(cType),c_void_p,POINTER(cType)] lib.ElRightReflector_z.argtypes = [POINTER(zType),c_void_p,POINTER(zType)] lib.ElRightReflectorDist_s.argtypes = [POINTER(sType),c_void_p,POINTER(sType)] lib.ElRightReflectorDist_d.argtypes = [POINTER(dType),c_void_p,POINTER(dType)] lib.ElRightReflectorDist_c.argtypes = [POINTER(cType),c_void_p,POINTER(cType)] lib.ElRightReflectorDist_z.argtypes = [POINTER(zType),c_void_p,POINTER(zType)] def RightReflector(chi,x): alpha = TagToType(x.tag)(chi) tau = TagToType(x.tag)() args = [pointer(alpha),x.obj,pointer(tau)] if type(x) is Matrix: if x.tag == sTag: lib.ElRightReflector_s(*args) elif x.tag == dTag: lib.ElRightReflector_d(*args) elif x.tag == cTag: lib.ElRightReflector_c(*args) elif x.tag == zTag: lib.ElRightReflector_z(*args) else: DataExcept() elif type(x) is DistMatrix: if x.tag == sTag: lib.ElRightReflectorDist_s(*args) elif x.tag == dTag: lib.ElRightReflectorDist_d(*args) elif x.tag == cTag: lib.ElRightReflectorDist_c(*args) elif x.tag == zTag: lib.ElRightReflectorDist_z(*args) else: DataExcept() else: TypeExcept() return alpha, tau
42.834123
78
0.731356
0
0
0
0
0
0
0
0
727
0.080438
3bf87ad7597d41df2c5bff20fab72d6e34dbefa1
2,443
py
Python
src/PointClasses/Bisector.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
41
2021-11-24T05:54:08.000Z
2022-03-26T10:19:30.000Z
src/PointClasses/Bisector.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
1
2022-02-28T04:34:51.000Z
2022-03-07T10:49:27.000Z
src/PointClasses/Bisector.py
Lovely-XPP/tkzgeom
bf68e139dc05f759542d6611f4dc07f4f2727b92
[ "MIT" ]
10
2021-11-24T07:35:17.000Z
2022-03-25T18:42:14.000Z
from Point import Point import Constant as c from GeometryMath import bisector_point class Bisector(Point): def __init__(self, item): """Construct Bisector.""" Point.__init__(self, item) self.item["sub_type"] = c.Point.Definition.BISECTOR def tikzify(self): return '\\tkzDefLine[bisector](%s,%s,%s)\\tkzGetPoint{%s}' % (self.item["definition"]["A"], self.item["definition"]["B"], self.item["definition"]["C"], self.get_id()) def recompute_canvas(self, items, window, width, height): A = items[self.depends_on()[0]].get_canvas_coordinates() B = items[self.depends_on()[1]].get_canvas_coordinates() C = items[self.depends_on()[2]].get_canvas_coordinates() self.set_canvas_coordinates(*bisector_point(A, B, C)) def __str__(self): return "Bisector point (%s) of angle %s"\ % (self.item["id"], self.item["definition"]["A"]+self.item["definition"]["B"]+self.item["definition"]["C"]) def definition_builder(self, data, items=None): if len(data) == 3: return dict(zip(["A", "B", "C"], data)) def parse_into_definition(self, arguments, items): # arguments length condition if len(arguments) != 3: return None # all arguments are members of the regular expression for argument name if not all(map(lambda x: self.name_pattern(x), arguments)): return None # all arguments are items that already exist if not all(map(lambda x: x in items, arguments)): return None # the type of all arguments is of a certain type if not all(map(lambda x: items[x].item["type"] == 'point', arguments)): return None # self-reference condition (self-reference is not permitted) if self.get_id() in arguments: return None # condition for cross reference for id in arguments: deep_depends = items[id].deep_depends_on(items) if self.get_id() in deep_depends: return None return self.definition_builder(arguments) @staticmethod def static_patterns(): return ["ppp"] def patterns(self): return ["ppp"]
40.04918
119
0.56447
2,355
0.963979
0
0
63
0.025788
0
0
527
0.215718
3bf883b35e2fe868219f30a0db3d466b114010f3
354
py
Python
custom_components/fitx/const.py
Raukze/home-assistant-fitx
2808200e0e87a0559b927dc013765bf1cd20030e
[ "MIT" ]
3
2022-03-02T07:49:47.000Z
2022-03-18T08:59:05.000Z
custom_components/fitx/const.py
Raukze/home-assistant-fitx
2808200e0e87a0559b927dc013765bf1cd20030e
[ "MIT" ]
null
null
null
custom_components/fitx/const.py
Raukze/home-assistant-fitx
2808200e0e87a0559b927dc013765bf1cd20030e
[ "MIT" ]
null
null
null
DOMAIN = "fitx" ICON = "mdi:weight-lifter" CONF_LOCATIONS = 'locations' CONF_ID = 'id' ATTR_ADDRESS = "address" ATTR_STUDIO_NAME = "studioName" ATTR_ID = CONF_ID ATTR_URL = "url" DEFAULT_ENDPOINT = "https://www.fitx.de/fitnessstudios/{id}" REQUEST_METHOD = "GET" REQUEST_AUTH = None REQUEST_HEADERS = None REQUEST_PAYLOAD = None REQUEST_VERIFY_SSL = True
25.285714
60
0.762712
0
0
0
0
0
0
0
0
112
0.316384
3bf93c870b2bc30c3baf9567a64d06171558f06b
1,894
py
Python
youtube_dl/extractor/scivee.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
5
2016-04-25T16:26:07.000Z
2021-04-28T16:10:29.000Z
youtube_dl/extractor/scivee.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
5
2016-04-22T01:33:31.000Z
2016-08-04T15:33:19.000Z
youtube_dl/extractor/scivee.py
Logmytech/youtube-dl-QT
1497297719a95c4f70fbfa32e0fa4e38cdd475dc
[ "MIT" ]
5
2020-10-25T09:18:58.000Z
2021-05-23T22:57:55.000Z
from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import int_or_none class SciVeeIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?scivee\.tv/node/(?P<id>\d+)' _TEST = { 'url': 'http://www.scivee.tv/node/62352', 'md5': 'b16699b74c9e6a120f6772a44960304f', 'info_dict': { 'id': '62352', 'ext': 'mp4', 'title': 'Adam Arkin at the 2014 DOE JGI Genomics of Energy & Environment Meeting', 'description': 'md5:81f1710638e11a481358fab1b11059d7', }, } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('id') # annotations XML is malformed annotations = self._download_webpage( 'http://www.scivee.tv/assets/annotations/%s' % video_id, video_id, 'Downloading annotations') title = self._html_search_regex(r'<title>([^<]+)</title>', annotations, 'title') description = self._html_search_regex(r'<abstract>([^<]+)</abstract>', annotations, 'abstract', fatal=False) filesize = int_or_none(self._html_search_regex( r'<filesize>([^<]+)</filesize>', annotations, 'filesize', fatal=False)) formats = [ { 'url': 'http://www.scivee.tv/assets/audio/%s' % video_id, 'ext': 'mp3', 'format_id': 'audio', }, { 'url': 'http://www.scivee.tv/assets/video/%s' % video_id, 'ext': 'mp4', 'format_id': 'video', 'filesize': filesize, }, ] return { 'id': video_id, 'title': title, 'description': description, 'thumbnail': 'http://www.scivee.tv/assets/videothumb/%s' % video_id, 'formats': formats, }
33.22807
116
0.541711
1,773
0.936114
0
0
0
0
0
0
745
0.393347
3bfa7757212343833fdcee31409e1364ca82a73d
11,790
py
Python
examples/plot_tuh_eeg_corpus.py
SciMK/braindecode
65b8de3e8a542e299996c0917ea3383aea5a9a69
[ "BSD-3-Clause" ]
null
null
null
examples/plot_tuh_eeg_corpus.py
SciMK/braindecode
65b8de3e8a542e299996c0917ea3383aea5a9a69
[ "BSD-3-Clause" ]
null
null
null
examples/plot_tuh_eeg_corpus.py
SciMK/braindecode
65b8de3e8a542e299996c0917ea3383aea5a9a69
[ "BSD-3-Clause" ]
null
null
null
"""Process a big data EEG resource (TUH EEG Corpus) =================================================== In this example, we showcase usage of the Temple University Hospital EEG Corpus (https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml#c_tueg) including simple preprocessing steps as well as cutting of compute windows. """ # Author: Lukas Gemein <l.gemein@gmail.com> # # License: BSD (3-clause) import os import tempfile import numpy as np import matplotlib.pyplot as plt plt.style.use('seaborn') import mne from braindecode.datasets import TUH from braindecode.preprocessing import preprocess, Preprocessor, create_fixed_length_windows from braindecode.datautil.serialization import load_concat_dataset mne.set_log_level('ERROR') # avoid messages everytime a window is extracted ############################################################################### # If you want to try this code with the actual data, please delete the next # section. We are required to mock some dataset functionality, since the data # is not available at creation time of this example. from unittest import mock FAKE_PATHS = { 'tuh_eeg/v1.1.0/edf/01_tcp_ar/000/00000000/s001_2015_12_30/00000000_s001_t000.edf': b'0 00000000 M 01-JAN-1978 00000000 Age:37 ', # noqa E501 'tuh_eeg/v1.1.0/edf/02_tcp_le/000/00000058/s001_2003_02_05/00000058_s001_t000.edf': b'0 00000058 M 01-JAN-2003 00000058 Age:0.0109 ', # noqa E501 'tuh_eeg/v1.2.0/edf/03_tcp_ar_a/149/00014928/s004_2016_01_15/00014928_s004_t007.edf': b'0 00014928 F 01-JAN-1933 00014928 Age:83 ', # noqa E501 } def _fake_raw(*args, **kwargs): sfreq = 10 ch_names = [ 'EEG A1-REF', 'EEG A2-REF', 'EEG FP1-REF', 'EEG FP2-REF', 'EEG F3-REF', 'EEG F4-REF', 'EEG C3-REF', 'EEG C4-REF', 'EEG P3-REF', 'EEG P4-REF', 'EEG O1-REF', 'EEG O2-REF', 'EEG F7-REF', 'EEG F8-REF', 'EEG T3-REF', 'EEG T4-REF', 'EEG T5-REF', 'EEG T6-REF', 'EEG FZ-REF', 'EEG CZ-REF', 'EEG PZ-REF'] duration_min = 6 data = np.random.randn(len(ch_names), duration_min*sfreq*60) info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types='eeg') raw = mne.io.RawArray(data=data, info=info) return raw def _get_header(*args): return FAKE_PATHS[args[0]] @mock.patch('glob.glob', return_value=FAKE_PATHS.keys()) @mock.patch('mne.io.read_raw_edf', new=_fake_raw) @mock.patch('braindecode.datasets.tuh._read_edf_header', new=_get_header) def mock_get_data(mock_glob): tuh = TUH( path='', recording_ids=None, target_name=None, preload=False, add_physician_reports=False, ) return tuh tuh = mock_get_data() ############################################################################### # We start by creating a TUH dataset. First, the class generates a description # of the recordings in `TUH_PATH` (which is later accessible as # `tuh.description`) without actually touching the files. This will parse # information from file paths such as patient id, recording data, etc and should # be really fast. Afterwards, the files are sorted chronologically by year, # month, day, patient id, recording session and segment. # In the following, a subset of the description corresponding to `recording_ids` # is used. # Afterwards, the files will be iterated a second time, slower than before. # The files are now actually touched. Additional information about subjects # like age and gender are parsed directly from the EDF file header. If existent, # the physician report is added to the description. Furthermore, the recordings # are read with `mne.io.read_raw_edf` with `preload=False`. Finally, we will get # a `BaseConcatDataset` of `BaseDatasets` each holding a single # `nme.io.Raw` which is fully compatible with other braindecode functionalities. # Uncomment the lines below to actually run this code on real data. # tuh = TUH( # path=<TUH_PATH>, # please insert actual path to data here # recording_ids=None, # target_name=None, # preload=False, # add_physician_reports=False, # ) ############################################################################### # We can easily create descriptive statistics using the description `DataFrame`, # for example an age histogram split by gender of patients. fig, ax = plt.subplots(1, 1, figsize=(15, 5)) genders = tuh.description.gender.unique() x = [tuh.description.age[tuh.description.gender == g] for g in genders] ax.hist( x=x, stacked=True, bins=np.arange(100, dtype=int), alpha=.5, ) ax.legend(genders) ax.set_xlabel('Age [years]') ax.set_ylabel('Count') ############################################################################### # Next, we will perform some preprocessing steps. First, we will do some # selection of available recordings based on the duration. We will select those # recordings, that have at least five minutes duration. Data is not loaded here. def select_by_duration(ds, tmin=0, tmax=None): # determine length of the recordings and select based on tmin and tmax duration = ds.description.n_samples / ds.description.sfreq duration = duration[duration >= tmin] if tmax is None: tmax = np.inf duration = duration[duration <= tmax] split_ids = list(duration.index) splits = ds.split(split_ids) split = splits['0'] return split tmin = 5 * 60 tmax = None tuh = select_by_duration(tuh, tmin, tmax) ############################################################################### # Next, we will discard all recordings that have an incomplete channel # configuration (wrt the channels that we are interested in, i.e. the 21 # channels of the international 10-20-placement). The dataset is subdivided into # recordings with 'le' and 'ar' reference which we will have to consider. Data # is not loaded here. short_ch_names = sorted([ 'A1', 'A2', 'FP1', 'FP2', 'F3', 'F4', 'C3', 'C4', 'P3', 'P4', 'O1', 'O2', 'F7', 'F8', 'T3', 'T4', 'T5', 'T6', 'FZ', 'CZ', 'PZ']) ar_ch_names = sorted([ 'EEG A1-REF', 'EEG A2-REF', 'EEG FP1-REF', 'EEG FP2-REF', 'EEG F3-REF', 'EEG F4-REF', 'EEG C3-REF', 'EEG C4-REF', 'EEG P3-REF', 'EEG P4-REF', 'EEG O1-REF', 'EEG O2-REF', 'EEG F7-REF', 'EEG F8-REF', 'EEG T3-REF', 'EEG T4-REF', 'EEG T5-REF', 'EEG T6-REF', 'EEG FZ-REF', 'EEG CZ-REF', 'EEG PZ-REF']) le_ch_names = sorted([ 'EEG A1-LE', 'EEG A2-LE', 'EEG FP1-LE', 'EEG FP2-LE', 'EEG F3-LE', 'EEG F4-LE', 'EEG C3-LE', 'EEG C4-LE', 'EEG P3-LE', 'EEG P4-LE', 'EEG O1-LE', 'EEG O2-LE', 'EEG F7-LE', 'EEG F8-LE', 'EEG T3-LE', 'EEG T4-LE', 'EEG T5-LE', 'EEG T6-LE', 'EEG FZ-LE', 'EEG CZ-LE', 'EEG PZ-LE']) assert len(short_ch_names) == len(ar_ch_names) == len(le_ch_names) ar_ch_mapping = {ch_name: short_ch_name for ch_name, short_ch_name in zip( ar_ch_names, short_ch_names)} le_ch_mapping = {ch_name: short_ch_name for ch_name, short_ch_name in zip( le_ch_names, short_ch_names)} ch_mapping = {'ar': ar_ch_mapping, 'le': le_ch_mapping} def select_by_channels(ds, ch_mapping): split_ids = [] for i, d in enumerate(ds.datasets): # these are the channels we are looking for seta = set(ch_mapping[d.description.reference].keys()) # these are the channels of the recoding setb = set(d.raw.ch_names) # if recording contains all channels we are looking for, include it if seta.issubset(setb): split_ids.append(i) return ds.split(split_ids)['0'] tuh = select_by_channels(tuh, ch_mapping) ############################################################################### # Next, we will chain several preprocessing steps that are realized through # `mne`. Data will be loaded by the first preprocessor that has a mention of it # in brackets: # # #. crop the recordings to a region of interest # #. re-reference all recordings to 'ar' (requires load) # #. rename channels to short channel names # #. pick channels of interest # #. scale signals to microvolts (requires load) # #. resample recordings to a common frequency (requires load) # #. create compute windows def custom_rename_channels(raw, mapping): # rename channels which are dependent on referencing: # le: EEG 01-LE, ar: EEG 01-REF # mne fails if the mapping contains channels as keys that are not present # in the raw reference = raw.ch_names[0].split('-')[-1].lower() assert reference in ['le', 'ref'], 'unexpected referencing' reference = 'le' if reference == 'le' else 'ar' raw.rename_channels(mapping[reference]) def custom_crop(raw, tmin=0.0, tmax=None, include_tmax=True): # crop recordings to tmin – tmax. can be incomplete if recording # has lower duration than tmax # by default mne fails if tmax is bigger than duration tmax = min((raw.n_times - 1) / raw.info['sfreq'], tmax) raw.crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax) tmin = 1 * 60 tmax = 6 * 60 sfreq = 100 preprocessors = [ Preprocessor(custom_crop, tmin=tmin, tmax=tmax, include_tmax=False, apply_on_array=False), Preprocessor('set_eeg_reference', ref_channels='average', ch_type='eeg'), Preprocessor(custom_rename_channels, mapping=ch_mapping, apply_on_array=False), Preprocessor('pick_channels', ch_names=short_ch_names, ordered=True), Preprocessor(lambda x: x * 1e6), Preprocessor('resample', sfreq=sfreq), ] ############################################################################### # The preprocessing loop works as follows. For every recording, we apply the # preprocessors as defined above. Then, we update the description of the rec, # since we have altered the duration, the reference, and the sampling # frequency. Afterwards, we store each recording to a unique subdirectory that # is named corresponding to the rec id. To save memory we delete the raw # dataset after storing. This gives us the option to try different windowing # parameters after reloading the data. OUT_PATH = tempfile.mkdtemp() # plaese insert actual output directory here tuh_splits = tuh.split([[i] for i in range(len(tuh.datasets))]) for rec_i, tuh_subset in tuh_splits.items(): preprocess(tuh_subset, preprocessors) # update description of the recording(s) tuh_subset.set_description({ 'sfreq': len(tuh_subset.datasets) * [sfreq], 'reference': len(tuh_subset.datasets) * ['ar'], 'n_samples': [len(d) for d in tuh_subset.datasets], }, overwrite=True) # create one directory for every recording rec_path = os.path.join(OUT_PATH, str(rec_i)) if not os.path.exists(rec_path): os.makedirs(rec_path) tuh_subset.save(rec_path) # save memory by deleting raw recording del tuh_subset.datasets[0].raw ############################################################################### # We reload the preprocessed data again in a lazy fashion (`preload=False`). tuh_loaded = load_concat_dataset(OUT_PATH, preload=False) ############################################################################### # We generate compute windows. The resulting dataset is now ready to be used # for model training. window_size_samples = 1000 window_stride_samples = 1000 # generate compute windows here and store them to disk tuh_windows = create_fixed_length_windows( tuh_loaded, start_offset_samples=0, stop_offset_samples=None, window_size_samples=window_size_samples, window_stride_samples=window_stride_samples, drop_last_window=False ) # store the number of windows required for loading later on tuh_windows.set_description({ "n_windows": [len(d) for d in tuh_windows.datasets]})
39.966102
195
0.653605
0
0
0
0
377
0.031971
0
0
6,991
0.59286
3bfae0d38025f9ed469b1477352c2cbb4d204cae
9,752
py
Python
tests/metrics/test_metrics.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
tests/metrics/test_metrics.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
tests/metrics/test_metrics.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
import logging import numpy as np from emmental.metrics.accuracy import accuracy_scorer from emmental.metrics.accuracy_f1 import accuracy_f1_scorer from emmental.metrics.fbeta import f1_scorer, fbeta_scorer from emmental.metrics.matthews_correlation import ( matthews_correlation_coefficient_scorer, ) from emmental.metrics.mean_squared_error import mean_squared_error_scorer from emmental.metrics.pearson_correlation import pearson_correlation_scorer from emmental.metrics.pearson_spearman import pearson_spearman_scorer from emmental.metrics.precision import precision_scorer from emmental.metrics.recall import recall_scorer from emmental.metrics.roc_auc import roc_auc_scorer from emmental.metrics.spearman_correlation import spearman_correlation_scorer from tests.utils import isequal def test_accuracy(caplog): """Unit test of accuracy_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) probs = np.array( [[0.9, 0.1], [0.6, 0.4], [1.0, 0.0], [0.8, 0.2], [0.6, 0.4], [0.05, 0.95]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = accuracy_scorer(golds, None, preds) assert isequal(metric_dict, {"accuracy": 0.6666666666666666}) metric_dict = accuracy_scorer(golds, probs, None) assert isequal(metric_dict, {"accuracy": 0.6666666666666666}) metric_dict = accuracy_scorer(golds, probs, preds, topk=2) assert isequal(metric_dict, {"accuracy@2": 1.0}) metric_dict = accuracy_scorer(gold_probs, None, preds) assert isequal(metric_dict, {"accuracy": 0.6666666666666666}) metric_dict = accuracy_scorer(gold_probs, probs, preds, topk=2) assert isequal(metric_dict, {"accuracy@2": 1.0}) metric_dict = accuracy_scorer(golds, None, preds, normalize=False) assert isequal(metric_dict, {"accuracy": 4}) metric_dict = accuracy_scorer(gold_probs, probs, preds, topk=2, normalize=False) assert isequal(metric_dict, {"accuracy@2": 6}) def test_precision(caplog): """Unit test of precision_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = precision_scorer(golds, None, preds, pos_label=1) assert isequal(metric_dict, {"precision": 1}) metric_dict = precision_scorer(golds, None, preds, pos_label=0) assert isequal(metric_dict, {"precision": 0.6}) metric_dict = precision_scorer(gold_probs, None, preds, pos_label=1) assert isequal(metric_dict, {"precision": 1}) metric_dict = precision_scorer(gold_probs, None, preds, pos_label=0) assert isequal(metric_dict, {"precision": 0.6}) def test_recall(caplog): """Unit test of recall_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = recall_scorer(golds, None, preds, pos_label=1) assert isequal(metric_dict, {"recall": 0.3333333333333333}) metric_dict = recall_scorer(golds, None, preds, pos_label=0) assert isequal(metric_dict, {"recall": 1}) metric_dict = recall_scorer(gold_probs, None, preds, pos_label=1) assert isequal(metric_dict, {"recall": 0.3333333333333333}) metric_dict = recall_scorer(gold_probs, None, preds, pos_label=0) assert isequal(metric_dict, {"recall": 1}) def test_f1(caplog): """Unit test of f1_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = f1_scorer(golds, None, preds, pos_label=1) assert isequal(metric_dict, {"f1": 0.5}) metric_dict = f1_scorer(golds, None, preds, pos_label=0) assert isequal(metric_dict, {"f1": 0.7499999999999999}) metric_dict = f1_scorer(gold_probs, None, preds, pos_label=1) assert isequal(metric_dict, {"f1": 0.5}) metric_dict = f1_scorer(gold_probs, None, preds, pos_label=0) assert isequal(metric_dict, {"f1": 0.7499999999999999}) def test_fbeta(caplog): """Unit test of fbeta_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = fbeta_scorer(golds, None, preds, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(golds, None, preds, pos_label=0, beta=2) assert isequal(metric_dict, {"f2": 0.8823529411764706}) metric_dict = fbeta_scorer(gold_probs, None, preds, pos_label=1, beta=2) assert isequal(metric_dict, {"f2": 0.3846153846153846}) metric_dict = fbeta_scorer(gold_probs, None, preds, pos_label=0, beta=2) assert isequal(metric_dict, {"f2": 0.8823529411764706}) def test_matthews_corrcoef(caplog): """Unit test of matthews_correlation_coefficient_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = matthews_correlation_coefficient_scorer(golds, None, preds) assert isequal(metric_dict, {"matthews_corrcoef": 0.4472135954999579}) def test_mean_squared_error(caplog): """Unit test of mean_squared_error_scorer""" caplog.set_level(logging.INFO) golds = np.array([3, -0.5, 2, 7]) probs = np.array([2.5, 0.0, 2, 8]) metric_dict = mean_squared_error_scorer(golds, probs, None) assert isequal(metric_dict, {"mean_squared_error": 0.375}) golds = np.array([[0.5, 1], [-1, 1], [7, -6]]) probs = np.array([[0, 2], [-1, 2], [8, -5]]) metric_dict = mean_squared_error_scorer(golds, probs, None) assert isequal(metric_dict, {"mean_squared_error": 0.7083333333333334}) def test_pearson_correlation(caplog): """Unit test of pearson_correlation_scorer""" caplog.set_level(logging.INFO) golds = np.array([1, 0, 1, 0, 1, 0]) probs = np.array([0.8, 0.6, 0.9, 0.7, 0.7, 0.2]) metric_dict = pearson_correlation_scorer(golds, probs, None) assert isequal(metric_dict, {"pearson_correlation": 0.6764814252025461}) metric_dict = pearson_correlation_scorer(golds, probs, None, return_pvalue=True) assert isequal( metric_dict, { "pearson_correlation": 0.6764814252025461, "pearson_pvalue": 0.14006598491201777, }, ) def test_spearman_correlation(caplog): """Unit test of spearman_correlation_scorer""" caplog.set_level(logging.INFO) golds = np.array([1, 0, 1, 0, 1, 0]) probs = np.array([0.8, 0.6, 0.9, 0.7, 0.7, 0.2]) metric_dict = spearman_correlation_scorer(golds, probs, None) assert isequal(metric_dict, {"spearman_correlation": 0.7921180343813395}) metric_dict = spearman_correlation_scorer(golds, probs, None, return_pvalue=True) assert isequal( metric_dict, { "spearman_correlation": 0.7921180343813395, "spearman_pvalue": 0.06033056705743058, }, ) def test_pearson_spearman(caplog): """Unit test of pearson_spearman_scorer""" caplog.set_level(logging.INFO) golds = np.array([1, 0, 1, 0, 1, 0]) probs = np.array([0.8, 0.6, 0.9, 0.7, 0.7, 0.2]) metric_dict = pearson_spearman_scorer(golds, probs, None) assert isequal(metric_dict, {"pearson_spearman": 0.7342997297919428}) def test_roc_auc(caplog): """Unit test of roc_auc_scorer""" caplog.set_level(logging.INFO) golds = np.array([[1], [0], [1], [0], [1], [0]]) gold_probs = np.array( [[0.4, 0.6], [0.9, 0.1], [0.3, 0.7], [0.8, 0.2], [0.1, 0.9], [0.6, 0.4]] ) probs = np.array( [[0.2, 0.8], [0.4, 0.6], [0.1, 0.9], [0.3, 0.7], [0.3, 0.7], [0.8, 0.2]] ) preds = np.array([[0.8], [0.6], [0.9], [0.7], [0.7], [0.2]]) metric_dict = roc_auc_scorer(golds, probs, None) assert isequal(metric_dict, {"roc_auc": 0.9444444444444444}) metric_dict = roc_auc_scorer(gold_probs, probs, None) assert isequal(metric_dict, {"roc_auc": 0.9444444444444444}) metric_dict = roc_auc_scorer(golds, preds, None) assert isequal(metric_dict, {"roc_auc": 0.9444444444444444}) metric_dict = roc_auc_scorer(gold_probs, preds, None) assert isequal(metric_dict, {"roc_auc": 0.9444444444444444}) golds = np.array([1, 1, 1, 1, 1, 1]) metric_dict = roc_auc_scorer(golds, probs, None) assert isequal(metric_dict, {"roc_auc": float("nan")}) def test_accuracy_f1(caplog): """Unit test of accuracy_f1_scorer""" caplog.set_level(logging.INFO) golds = np.array([0, 1, 0, 1, 0, 1]) gold_probs = np.array( [[0.6, 0.4], [0.1, 0.9], [0.7, 0.3], [0.2, 0.8], [0.9, 0.1], [0.4, 0.6]] ) preds = np.array([0, 0, 0, 0, 0, 1]) metric_dict = accuracy_f1_scorer(golds, None, preds) assert isequal(metric_dict, {"accuracy_f1": 0.5833333333333333}) metric_dict = accuracy_f1_scorer(golds, None, preds, pos_label=1) assert isequal(metric_dict, {"accuracy_f1": 0.5833333333333333}) metric_dict = accuracy_f1_scorer(golds, None, preds, pos_label=0) assert isequal(metric_dict, {"accuracy_f1": 0.7083333333333333}) metric_dict = accuracy_f1_scorer(gold_probs, None, preds) assert isequal(metric_dict, {"accuracy_f1": 0.5833333333333333})
31.869281
85
0.658839
0
0
0
0
0
0
0
0
947
0.097108
3bfbc45da374cdb7d8360321c18d5a979fdef4e1
3,986
py
Python
vesper/command/job_logging_manager.py
HaroldMills/NFC
356b2234dc3c7d180282a597fa1e039ae79e03c6
[ "MIT" ]
null
null
null
vesper/command/job_logging_manager.py
HaroldMills/NFC
356b2234dc3c7d180282a597fa1e039ae79e03c6
[ "MIT" ]
1
2015-01-12T12:41:29.000Z
2015-01-12T12:41:29.000Z
vesper/command/job_logging_manager.py
HaroldMills/NFC
356b2234dc3c7d180282a597fa1e039ae79e03c6
[ "MIT" ]
null
null
null
"""Module containing class `JobLoggingManager`.""" from collections import defaultdict from logging import FileHandler, Handler from logging.handlers import QueueHandler, QueueListener from multiprocessing import Queue import logging import vesper.util.logging_utils as logging_utils import vesper.util.os_utils as os_utils # TODO: Add record count fields to the `Job` model class, and modify # the record counts handler to update the fields both while a job is # running and upon completion. class _RecordCountsHandler(Handler): def __init__(self): super().__init__() self.record_counts = defaultdict(int) def emit(self, record): self.record_counts[record.levelno] += 1 class JobLoggingManager: """ Manages logging for a Vesper job. A `JobLoggingManager` manages logging for the processes of a Vesper job. Log records can be submitted by any process of a job using any logger (typically the root logger) configured with the `configure_logger` static method. A logger so configured writes each log record to a multiprocessing queue that is read by a thread running in the main job process, which in turn writes log messages to the job's log file. """ @staticmethod def configure_logger(logger, logging_config): """ Configures the specified logger to write log records to this job's logging queue. For the `logging_config` argument, the main job process can pass the `logging_config` attribute of its `JobLoggingManager`. This information is also passed to the `execute` method of the job's command as the `logging_config` attribute of the command's execution context. The information is picklable, so it can be delivered easily to any additional process started by the main job process as an argument to the process's target function. """ level, queue = logging_config logger.setLevel(level) handler = QueueHandler(queue) logger.addHandler(handler) def __init__(self, job, level): self.job = job self.level = level # Create queue through which log records can be sent from various # processes and threads to the logging thread. self.queue = Queue() formatter = logging_utils.create_formatter() # Create handler that writes log messages to the job log file. os_utils.create_parent_directory(job.log_file_path) file_handler = FileHandler(job.log_file_path, 'w') file_handler.setFormatter(formatter) # We used to create a second handler here, of type StreamHandler, # which wrote messages to stderr, and add it to the QueueListener # below, but that is no longer desirable since we now configure # console output on the root logger in our Django project's # settings.py file. Adding the second handler here would be # redundant, causing jobs to output two copies of each log # message to the console. self._record_counts_handler = _RecordCountsHandler() # Create logging listener that will run on its own thread and log # messages sent to it via the queue. self._listener = QueueListener( self.queue, file_handler, self._record_counts_handler) @property def logging_config(self): return (self.level, self.queue) @property def record_counts(self): return dict(self._record_counts_handler.record_counts) def start_up_logging(self): self._listener.start() def shut_down_logging(self): # Tell logging listener to terminate, and wait for it to do so. self._listener.stop() logging.shutdown()
34.068376
76
0.659809
3,467
0.869794
0
0
1,054
0.264425
0
0
2,066
0.518314
3bfc3d39f5d7c8e9a54f0fc8a5c3d30aa858a4b2
4,837
py
Python
evaluation/metrics.py
victorperezpiqueras/MONRP
f20bbde8895867d37b735dec7a5fd95ee90fadf6
[ "MIT" ]
null
null
null
evaluation/metrics.py
victorperezpiqueras/MONRP
f20bbde8895867d37b735dec7a5fd95ee90fadf6
[ "MIT" ]
2
2021-05-05T14:41:24.000Z
2022-01-18T09:08:06.000Z
evaluation/metrics.py
victorperezpiqueras/MONRP
f20bbde8895867d37b735dec7a5fd95ee90fadf6
[ "MIT" ]
null
null
null
import math from typing import List import numpy as np from datasets.Dataset import Dataset from models.Solution import Solution def calculate_avgValue(population: List[Solution]) -> float: avgValue = 0 for ind in population: avgValue += ind.compute_mono_objective_score() avgValue /= len(population) return avgValue def calculate_bestAvgValue(population: List[Solution]) -> float: bestAvgValue = 0 for ind in population: if bestAvgValue < ind.compute_mono_objective_score(): bestAvgValue = ind.compute_mono_objective_score() return bestAvgValue def calculate_numSolutions(population: List[Solution]) -> int: return len(set(population)) def calculate_spacing(population: List[Solution]) -> float: n = len(population) N = 2 spacing = 0 mean_objectives = [] objective = 0 for j in range(0, len(population)): objective += population[j].total_cost objective /= len(population) mean_objectives.append(objective) objective = 0 for j in range(0, len(population)): objective += population[j].total_satisfaction objective /= len(population) mean_objectives.append(objective) for j in range(0, len(population)): aux_spacing = 0 for i in range(0, N): di = mean_objectives[i] if i == 0: dij = population[j].total_cost elif i == 1: dij = population[j].total_satisfaction aux = (1 - (abs(dij) / di)) ** 2 aux_spacing += aux aux_spacing = math.sqrt(aux_spacing) spacing += aux_spacing spacing /= (n * N) return spacing def calculate_hypervolume(population: List[Solution]) -> float: objectives_diff = [] aux_max_cost, aux_max_sat = population[0].get_max_cost_satisfactions() aux_min_cost, aux_min_sat = population[0].get_min_cost_satisfactions() aux_min = float('inf') aux_max = 0 for ind in population: if ind.total_cost < aux_min: aux_min = ind.total_cost if ind.total_cost > aux_max: aux_max = ind.total_cost aux_max_norm = (aux_max-aux_min_cost)/(aux_max_cost-aux_min_cost) aux_min_norm = (aux_min-aux_min_cost)/(aux_max_cost-aux_min_cost) aux_val = aux_max_norm-aux_min_norm objectives_diff.append(aux_val) aux_min = float('inf') aux_max = 0 for ind in population: if ind.total_satisfaction < aux_min: aux_min = ind.total_satisfaction if ind.total_satisfaction > aux_max: aux_max = ind.total_satisfaction aux_max_norm = (aux_max-aux_min_sat)/(aux_max_sat-aux_min_sat) aux_min_norm = (aux_min-aux_min_sat)/(aux_max_sat-aux_min_sat) aux_val = aux_max_norm-aux_min_norm objectives_diff.append(aux_val) hypervolume = 1 for i in range(0, len(objectives_diff)): hypervolume *= objectives_diff[i] return hypervolume def eudis2(v1: float, v2: float) -> float: return math.dist(v1, v2) # return distance.euclidean(v1, v2) def calculate_spread(population: List[Solution], dataset: Dataset) -> float: MIN_OBJ1 = 0 MIN_OBJ2 = 0 MAX_OBJ1 = np.max(dataset.pbis_satisfaction_scaled) MAX_OBJ2 = np.max(dataset.pbis_cost_scaled) df = None dl = None davg = None sum_dist = None N = len(population) spread = None first_solution = population[0] last_solution = population[len(population) - 1] first_extreme = [MIN_OBJ1, MIN_OBJ2] last_extreme = [MAX_OBJ1, MAX_OBJ2] df = eudis2([first_solution.total_satisfaction, first_solution.total_cost], first_extreme) dl = eudis2([last_solution.total_satisfaction, last_solution.total_cost], last_extreme) davg = 0 dist_count = 0 for i in range(0, len(population)): for j in range(0, len(population)): # avoid distance from a point to itself if i != j: dist_count += 1 davg += eudis2([population[i].total_satisfaction, population[i].total_cost], [population[j].total_satisfaction, population[j].total_cost]) davg /= dist_count # calculate sumatory(i=1->N-1) |di-davg| sum_dist = 0 for i in range(0, len(population) - 1): di = eudis2([population[i].total_satisfaction, population[i].total_cost], [population[i + 1].total_satisfaction, population[i + 1].total_cost]) sum_dist += abs(di - davg) # spread formula spread = (df + dl + sum_dist) / (df + dl + (N - 1) * davg) return spread def calculate_mean_bits_per_sol(solutions: List[Solution]) -> float: genes = 0 n_sols = len(solutions) for sol in solutions: genes += np.count_nonzero(sol.selected) return genes/n_sols
30.23125
92
0.64999
0
0
0
0
0
0
0
0
140
0.028944
3bfc6525bf99e8218a93653bc016cb8baae15ea1
3,803
py
Python
networkx/classes/tests/test_digraph_historical.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
null
null
null
networkx/classes/tests/test_digraph_historical.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
null
null
null
networkx/classes/tests/test_digraph_historical.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
1
2019-01-30T17:57:36.000Z
2019-01-30T17:57:36.000Z
#!/usr/bin/env python """Original NetworkX graph tests""" from nose.tools import * import networkx import networkx as nx from networkx.testing.utils import * from historical_tests import HistoricalTests class TestDiGraphHistorical(HistoricalTests): def setUp(self): HistoricalTests.setUp(self) self.G=nx.DiGraph def test_in_degree(self): G=self.G() G.add_nodes_from('GJK') G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'C'), ('C', 'D')]) assert_equal(sorted(d for n, d in G.in_degree()),[0, 0, 0, 0, 1, 2, 2]) assert_equal(dict(G.in_degree()), {'A': 0, 'C': 2, 'B': 1, 'D': 2, 'G': 0, 'K': 0, 'J': 0}) def test_out_degree(self): G=self.G() G.add_nodes_from('GJK') G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'C'), ('C', 'D')]) assert_equal(sorted([v for k,v in G.in_degree()]), [0, 0, 0, 0, 1, 2, 2]) assert_equal(dict(G.out_degree()), {'A': 2, 'C': 1, 'B': 2, 'D': 0, 'G': 0, 'K': 0, 'J': 0}) def test_degree_digraph(self): H=nx.DiGraph() H.add_edges_from([(1,24),(1,2)]) assert_equal(sorted(d for n, d in H.in_degree([1,24])), [0, 1]) assert_equal(sorted(d for n, d in H.out_degree([1,24])), [0, 2]) assert_equal(sorted(d for n, d in H.degree([1,24])), [1, 2]) def test_neighbors(self): G=self.G() G.add_nodes_from('GJK') G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'C'), ('C', 'D')]) assert_equal(sorted(G.neighbors('C')),['D']) assert_equal(sorted(G['C']),['D']) assert_equal(sorted(G.neighbors('A')),['B', 'C']) assert_raises(nx.NetworkXError,G.neighbors,'j') assert_raises(nx.NetworkXError,G.neighbors,'j') def test_successors(self): G=self.G() G.add_nodes_from('GJK') G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'C'), ('C', 'D')]) assert_equal(sorted(G.successors('A')),['B', 'C']) assert_equal(sorted(G.successors('A')),['B', 'C']) assert_equal(sorted(G.successors('G')),[]) assert_equal(sorted(G.successors('D')),[]) assert_equal(sorted(G.successors('G')),[]) assert_raises(nx.NetworkXError,G.successors,'j') assert_raises(nx.NetworkXError,G.successors,'j') def test_predecessors(self): G=self.G() G.add_nodes_from('GJK') G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('B', 'C'), ('C', 'D')]) assert_equal(sorted(G.predecessors('C')),['A', 'B']) assert_equal(sorted(G.predecessors('C')),['A', 'B']) assert_equal(sorted(G.predecessors('G')),[]) assert_equal(sorted(G.predecessors('A')),[]) assert_equal(sorted(G.predecessors('G')),[]) assert_equal(sorted(G.predecessors('A')),[]) assert_equal(sorted(G.successors('D')),[]) assert_raises(nx.NetworkXError,G.predecessors,'j') assert_raises(nx.NetworkXError,G.predecessors,'j') def test_reverse(self): G=nx.complete_graph(10) H=G.to_directed() HR=H.reverse() assert_true(nx.is_isomorphic(H,HR)) assert_equal(sorted(H.edges()),sorted(HR.edges())) def test_reverse2(self): H=nx.DiGraph() foo=[H.add_edge(u,u+1) for u in range(0,5)] HR=H.reverse() for u in range(0,5): assert_true(HR.has_edge(u+1,u)) def test_reverse3(self): H=nx.DiGraph() H.add_nodes_from([1,2,3,4]) HR=H.reverse() assert_equal(sorted(HR.nodes()),[1, 2, 3, 4])
34.889908
79
0.519853
3,596
0.945569
0
0
0
0
0
0
372
0.097818
3bfc66ab6394f443698742193984f19425d0486f
6,325
py
Python
older/fn_res_to_icd/fn_res_to_icd/components/res_to_icd_function.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
65
2017-12-04T13:58:32.000Z
2022-03-24T18:33:17.000Z
older/fn_res_to_icd/fn_res_to_icd/components/res_to_icd_function.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
48
2018-03-02T19:17:14.000Z
2022-03-09T22:00:38.000Z
older/fn_res_to_icd/fn_res_to_icd/components/res_to_icd_function.py
nickpartner-goahead/resilient-community-apps
097c0dbefddbd221b31149d82af9809420498134
[ "MIT" ]
95
2018-01-11T16:23:39.000Z
2022-03-21T11:34:29.000Z
# -*- coding: utf-8 -*- # (c) Copyright IBM Corp. 2019. All Rights Reserved. # pragma pylint: disable=unused-argument, no-self-use import logging import re import sys import requests from bs4 import BeautifulSoup as bsoup from resilient_circuits import ResilientComponent, function, handler from resilient_circuits import StatusMessage, FunctionResult, FunctionError from resilient_lib import ResultPayload, readable_datetime from resilient_lib.components.resilient_common import validate_fields # The lowest priority an ICD ticket can have as a default setting for escalation MIN_PRIORITY_ICD = 4 class FunctionComponent(ResilientComponent): """Component that implements Resilient function 'res_to_icd_function""" def __init__(self, opts): """constructor provides access to the configuration options""" super(FunctionComponent, self).__init__(opts) self.options = opts.get("fn_res_to_icd", {}) @handler("reload") def _reload(self, event, opts): """Configuration options have changed, save new values""" self.options = opts.get("fn_res_to_icd", {}) @function("res_to_icd_function") def _res_to_icd_function_function(self, event, *args, **kwargs): try: # taken from config section icd_email = self.options.get("icd_email") icd_pass = self.options.get("icd_pass") icd_priority = self.options.get("icd_priority") icd_field_severity = self.options.get('icd_field_severity') icd_url = self.options.get('icd_url') incident_id = kwargs.get("incident_id") # Payload and validation payload = ResultPayload('fn_res_to_icd', **kwargs) validate_fields(['icd_email','icd_pass','icd_url','icd_field_severity'], self.options) validate_fields(['incident_id'], kwargs) #logging log = logging.getLogger(__name__) log.info("icd_email: %s", icd_email) log.info("icd_field_severity: %s", icd_field_severity) log.info("icd_priority: %s", icd_priority) log.info("incident_id: %s", incident_id) log.info("icd_url: %s", icd_url) # Resilient client and api calls res_client = self.rest_client() incident_str = '/incidents/{incident_id}/'.format(incident_id=incident_id) artifact_str = '/incidents/{incident_id}/artifacts'.format(incident_id=incident_id) field_severity = {} if icd_field_severity: # If api call for custom severity field is not successful, Ticket defaults to minimum priority try: fieldsev_str = '/types/{type}/fields/{field}'.format(type='incident', field=icd_field_severity) field_severity = res_client.get(fieldsev_str) except: field_severity['values'] = MIN_PRIORITY_ICD content = res_client.get(incident_str) art_content = res_client.get(artifact_str) # Time and date timestamp = content['create_date'] timeval = readable_datetime(timestamp, milliseconds=True, rtn_format='%Y-%m-%dT%H:%M:%SZ') time = "Date and Time: {0}".format(timeval) #artifact population to icd ticket details_payload = '' i = 0 j = 0 if icd_field_severity: try: for i in range(0, len(art_content)): if art_content[i].get('properties', False): if art_content[i]['properties'][0]['name'] in ('source', 'destination'): j+=1 details_payload += 'ID: {1} IP Address {2}: {0} \n'.format(art_content[i]['value'], art_content[i]['id'], art_content[i]['properties'][0]['name'].capitalize()) log.info("Artifacts added to ICD ticket: {0}".format(j)) except Exception as artifact_error: log.error(artifact_error) log.error("Encountered an error parsing artifacts") ##If you custom field isn't specified, it defaults to min priority if icd_field_severity: try: field_sev = field_severity['values'] except: field_sev = field_severity['name'] if not field_sev: field_sev = 1 # number log.info("field_severity: %s", field_sev) icd_priority_lookup = [0, 4, 4, 4, 3, 2, 2, 1] try: icd_priority = icd_priority_lookup[field_sev] log.info("icd_priority: %s", field_sev) except: log.warning("You have not set a priority, icd priority will be set to min value (4)") icd_priority = MIN_PRIORITY_ICD # Params and Desk call params = {"DESCRIPTION" : time, "DESCRIPTION_LONGDESCRIPTION" : details_payload, "REPORTEDBYID" : icd_email, "logtype" : "CLIENTNOTE", "worklog.1.description" : "SECURITY ISSUE", "worklog.1.DESCRIPTION_LONGDESCRIPTION" : "SECURITY ISSUE", "INTERNALPRIORITY" : icd_priority, "SITEID" : "APPOPINT", "CLASSIFICATIONID" : "SECURITY ISSUE", "_lid" : icd_email, "_lpwd" : icd_pass} endpoint = "/rest/os/MXINCIDENT/" base_url= icd_url + endpoint response = requests.post(url=base_url, params=params, verify=False) xmldata = bsoup(response.text,"html.parser") icd_id = '{0}'.format(xmldata.createmxincidentresponse.mxincidentset.incident.ticketid) icd_id = re.sub('[ticket<>/d]', '', icd_id) yield StatusMessage("Completed successfully") results = payload.done(success=True, content={ "incident_escalated" : incident_id, "icd_id" : icd_id, "details" : details_payload }) # Produce a FunctionResult with the results yield FunctionResult(results) log.info("Complete") except Exception: yield FunctionError()
49.031008
191
0.591146
5,723
0.904822
5,172
0.817708
5,382
0.850909
0
0
1,931
0.305296
ce017638896c04f18c2cb7532f41f9850780cdae
28,484
py
Python
nimbleclient/v1/api/groups.py
prachiruparelia-hpe/nimble-python-sdk
a3e99d89e647291caf7936300ae853d21d94d6e5
[ "Apache-2.0" ]
1
2020-05-28T19:48:59.000Z
2020-05-28T19:48:59.000Z
nimbleclient/v1/api/groups.py
prachiruparelia-hpe/nimble-python-sdk
a3e99d89e647291caf7936300ae853d21d94d6e5
[ "Apache-2.0" ]
null
null
null
nimbleclient/v1/api/groups.py
prachiruparelia-hpe/nimble-python-sdk
a3e99d89e647291caf7936300ae853d21d94d6e5
[ "Apache-2.0" ]
null
null
null
# # © Copyright 2020 Hewlett Packard Enterprise Development LP # # This file was auto-generated by the Python SDK generator; DO NOT EDIT. # from ...resource import Resource, Collection from ...exceptions import NimOSAPIOperationUnsupported class Group(Resource): """Group is a collection of arrays operating together organized into storage pools. # Parameters id : Identifier of the group. name : Name of the group. smtp_server : Hostname or IP Address of SMTP Server. smtp_port : Port number of SMTP Server. smtp_auth_enabled : Whether SMTP Server requires authentication. smtp_auth_username : Username to authenticate with SMTP Server. smtp_auth_password : Password to authenticate with SMTP Server. smtp_encrypt_type : Level of encryption for SMTP. Requires use of SMTP Authentication if encryption is enabled. autosupport_enabled : Whether to send autosupport. allow_analytics_gui : Specify whether to allow HPE Nimble Storage to use Google Analytics in the GUI. HPE Nimble Storage uses Google Analytics to gather data related to GUI usage. The data gathered is used to evaluate and improve the product. allow_support_tunnel : Whether to allow support tunnel. proxy_server : Hostname or IP Address of HTTP Proxy Server. Setting this attribute to an empty string will unset all proxy settings. proxy_port : Proxy Port of HTTP Proxy Server. proxy_username : Username to authenticate with HTTP Proxy Server. proxy_password : Password to authenticate with HTTP Proxy Server. alert_to_email_addrs : Comma-separated list of email addresss to receive emails. send_alert_to_support : Whether to send alert to Support. alert_from_email_addr : From email address to use while sending emails. alert_min_level : Minimum level of alert to be notified. isns_enabled : Whether iSNS is enabled. isns_server : Hostname or IP Address of iSNS Server. isns_port : Port number for iSNS Server. snmp_trap_enabled : Whether to enable SNMP traps. snmp_trap_host : Hostname or IP Address to send SNMP traps. snmp_trap_port : Port number of SNMP trap host. snmp_get_enabled : Whether to accept SNMP get commands. snmp_community : Community string to be used with SNMP. snmp_get_port : Port number to which SNMP get requests should be sent. snmp_sys_contact : Name of the SNMP administrator. snmp_sys_location : Location of the group. domain_name : Domain name for this group. dns_servers : IP addresses for this group's dns servers. ntp_server : Either IP address or hostname of the NTP server for this group. timezone : Timezone in which this group is located. user_inactivity_timeout : The amount of time in seconds that the user session is inactive before timing out. syslogd_enabled : Is syslogd enabled on this system. syslogd_server : Hostname of the syslogd server. syslogd_port : Port number for syslogd server. syslogd_servers : Hostname and/or port of the syslogd servers. vvol_enabled : Are vvols enabled on this group. iscsi_enabled : Whether iSCSI is enabled on this group. fc_enabled : Whether FC is enabled on this group. unique_name_enabled : Are new volume and volume collection names transformed on this group. access_protocol_list : Protocol used to access this group. group_target_enabled : Is group_target enabled on this group. default_iscsi_target_scope : Newly created volumes are exported under iSCSI Group Target or iSCSI Volume Target. tdz_enabled : Is Target Driven Zoning (TDZ) enabled on this group. tdz_prefix : Target Driven Zoning (TDZ) prefix for peer zones created by TDZ. group_target_name : Iscsi target name for this group. default_volume_reserve : Amount of space to reserve for a volume as a percentage of volume size. default_volume_warn_level : Default threshold for volume space usage as a percentage of volume size above which an alert is raised. default_volume_limit : Default limit for a volume space usage as a percentage of volume size. Volume will be taken offline/made non-writable on exceeding its limit. default_snap_reserve : Amount of space to reserve for snapshots of a volume as a percentage of volume size. default_snap_warn_level : Default threshold for snapshot space usage of a volume as a percentage of volume size above which an alert is raised. default_snap_limit : This attribute is deprecated. The array does not limit a volume's snapshot space usage. The attribute is ignored on input and returns max int64 value on output. default_snap_limit_percent : This attribute is deprecated. The array does not limit a volume's snapshot space usage. The attribute is ignored on input and returns -1 on output. alarms_enabled : Whether alarm feature is enabled. vss_validation_timeout : The amount of time in seconds to validate Microsoft VSS application synchronization before timing out. auto_switchover_enabled : Whether automatic switchover of Group management services feature is enabled. auto_switchover_messages : List of validation messages for automatic switchover of Group Management. This will be empty when there are no conflicts found. merge_state : State of group merge. merge_group_name : Group that we're being merged with. tlsv1_enabled : Enable or disable TLSv1.0 and TLSv1.1. cc_mode_enabled : Enable or disable Common Criteria mode. group_snapshot_ttl : Snapshot Time-to-live(TTL) configured at group level for automatic deletion of unmanaged snapshots. Value 0 indicates unlimited TTL. autoclean_unmanaged_snapshots_ttl_unit : Unit for unmanaged snapshot time to live. autoclean_unmanaged_snapshots_enabled : Whether autoclean unmanaged snapshots feature is enabled. leader_array_name : Name of the array where the group Management Service is running. leader_array_serial : Serial number of the array where the group Management Service is running. management_service_backup_array_name : Name of the array where backup the group Management Service is running. management_service_backup_status : HA status of the group Management Service. failover_mode : Failover mode of the group Management Service. witness_status : Witness status from group Management Service array and group Management Service backup array. member_list : Members of this group. compressed_vol_usage_bytes : Compressed usage of volumes in the group. compressed_snap_usage_bytes : Compressed usage of snapshots in the group. uncompressed_vol_usage_bytes : Uncompressed usage of volumes in the group. uncompressed_snap_usage_bytes : Uncompressed usage of snapshots in the group. usable_capacity_bytes : Usable capacity bytes of the group. usage : Used space of the group in bytes. raw_capacity : Total capacity of the group. usable_cache_capacity : Usable cache capacity of the group. raw_cache_capacity : Total cache capacity of the group. snap_usage_populated : Total snapshot usage as if each snapshot is deep copy of the volume. pending_deletes : Usage for blocks that are not yet deleted. num_connections : Number of connections to the group. vol_compression_ratio : Compression ratio of volumes in the group. snap_compression_ratio : Compression ratio of snapshots in the group. compression_ratio : Compression savings for the group expressed as ratio. dedupe_ratio : Dedupe savings for the group expressed as ratio. clone_ratio : Clone savings for the group expressed as ratio. vol_thin_provisioning_ratio : Thin provisioning savings for volumes in the group expressed as ratio. savings_ratio : Overall savings in the group expressed as ratio. data_reduction_ratio : Space savings in the group that does not include thin-provisioning savings expressed as ratio. savings_dedupe : Space usage savings in the group due to deduplication. savings_compression : Space usage savings in the group due to compression. savings_clone : Space usage savings in the group due to cloning of volumes. savings_vol_thin_provisioning : Space usage savings in the group due to thin provisioning of volumes. savings_data_reduction : Space usage savings in the group that does not include thin-provisioning savings. savings : Overall space usage savings in the group. free_space : Free space of the pool in bytes. unused_reserve_bytes : Reserved space that is not utilized. usage_valid : Indicates whether the usage of group is valid. space_info_valid : Is space info for this group valid. version_current : Version of software running on the group. version_target : Desired software version for the group. version_rollback : Rollback software version for the group. update_state : Group update state. update_start_time : Start time of last update. update_end_time : End time of last update. update_array_names : Arrays in the group undergoing update. update_progress_msg : Group update detailed progress message. update_error_code : If the software update has failed, this indicates the error code corresponding to the failure. update_downloading : Is software update package currently downloading. update_download_error_code : If the software download has failed, this indicates the error code corresponding to the failure. update_download_start_time : Start time of last update. update_download_end_time : End time of last update. iscsi_automatic_connection_method : Is iscsi reconnection automatic. iscsi_connection_rebalancing : Does iscsi automatically rebalance connections. repl_throttled_bandwidth : Current bandwidth throttle for replication, expressed either as megabits per second or as -1 to indicate that there is no throttle. repl_throttled_bandwidth_kbps : Current bandwidth throttle for replication, expressed either as kilobits per second or as -1 to indicate that there is no throttle. repl_throttle_list : All the replication bandwidth limits on the system. volume_migration_status : Status of data migration activity related to volumes being relocated to different pools. array_unassign_migration_status : Data migration status for arrays being removed from their pool. data_rebalance_status : Status of data rebalancing operations for pools in the group. scsi_vendor_id : SCSI vendor ID. encryption_config : How encryption is configured for this group. last_login : Time and user of last login to this group. num_snaps : Number of snapshots in the group. num_snapcolls : Number of snapshot collections in this group. date : Unix epoch time local to the group. login_banner_message : The message for the login banner that is displayed during user login activity. login_banner_after_auth : Should the banner be displayed before the user credentials are prompted or after prompting the user credentials. login_banner_reset : This will reset the banner to the version of the installed NOS. When login_banner_after_auth is specified, login_banner_reset can not be set to true. snap_retn_meter_high : Threshold for considering a volume as high retention. snap_retn_meter_very_high : Threshold for considering a volume as very high retention. """ def reboot(self, **kwargs): """Reboot all arrays in the group. # Parameters id : ID of the group to reboot. job_timeout: Job timeout in seconds. """ return self._collection.reboot( self.id, **kwargs ) def halt(self, **kwargs): """Halt all arrays in the group. # Parameters id : ID of the group to halt. force : Halt remaining arrays when one or more is unreachable. job_timeout: Job timeout in seconds. """ return self._collection.halt( self.id, **kwargs ) def test_alert(self, level, **kwargs): """Generate a test alert. # Parameters id : ID of the group. level : Level of the test alert. """ return self._collection.test_alert( self.id, level, **kwargs ) def software_update_precheck(self, **kwargs): """Run software update precheck. # Parameters id : ID of the group. skip_precheck_mask : Flag to allow skipping certain types of prechecks. """ return self._collection.software_update_precheck( self.id, **kwargs ) def software_update_start(self, **kwargs): """Update the group software to the downloaded version. # Parameters id : ID of the group. skip_start_check_mask : Flag to allow skipping certain types of checks. """ return self._collection.software_update_start( self.id, **kwargs ) def software_download(self, version, **kwargs): """Download software update package. # Parameters id : ID of the group. version : Version string to download. force : Flag to force download. """ return self._collection.software_download( self.id, version, **kwargs ) def software_cancel_download(self, **kwargs): """Cancel ongoing download of software. # Parameters id : ID of the group. """ return self._collection.software_cancel_download( self.id, **kwargs ) def software_update_resume(self, **kwargs): """Resume stopped software update. # Parameters id : ID of the group. """ return self._collection.software_update_resume( self.id, **kwargs ) def get_group_discovered_list(self, **kwargs): """Get list of discovered groups with arrays that are initialized. # Parameters id : ID of the group. group_name : Name of the group requested to be discovered. """ return self._collection.get_group_discovered_list( self.id, **kwargs ) def validate_merge(self, src_group_ip, src_group_name, src_password, src_username, **kwargs): """Perform group merge validation. # Parameters id : ID of the group. src_group_name : Name of the source group. src_group_ip : IP address of the source group. src_username : Username of the source group. src_password : Password of the source group. src_passphrase : Source group encryption passphrase. skip_secondary_mgmt_ip : Skip check for secondary management IP address. """ return self._collection.validate_merge( self.id, src_group_ip, src_group_name, src_password, src_username, **kwargs ) def merge(self, src_group_ip, src_group_name, src_password, src_username, **kwargs): """Perform group merge with the specified group. # Parameters id : ID of the group. src_group_name : Name of the source group. src_group_ip : IP address of the source group. src_username : Username of the source group. src_password : Password of the source group. src_passphrase : Source group encryption passphrase. force : Ignore warnings and forcibly merge specified group with this group. skip_secondary_mgmt_ip : Skip check for secondary management IP address. job_timeout : Job timeout in seconds. """ return self._collection.merge( self.id, src_group_ip, src_group_name, src_password, src_username, **kwargs ) def get_eula(self, **kwargs): """Get URL to download EULA contents. # Parameters id : ID of the group. locale : Locale of EULA contents. Default is en. format : Format of EULA contents. Default is HTML. phase : Phase of EULA contents. Default is setup. force : Flag to force EULA. """ return self._collection.get_eula( self.id, **kwargs ) def check_migrate(self, **kwargs): """Check if the group Management Service can be migrated to the group Management Service backup array. # Parameters id : ID of the group. """ return self._collection.check_migrate( self.id, **kwargs ) def migrate(self, **kwargs): """Migrate the group Management Service to the current group Management Service backup array. # Parameters id : ID of the group. """ return self._collection.migrate( self.id, **kwargs ) def get_timezone_list(self, **kwargs): """Get list of group timezones. # Parameters id : ID of the group. """ return self._collection.get_timezone_list( self.id, **kwargs ) def create(self, **kwargs): raise NimOSAPIOperationUnsupported("create operation not supported") def delete(self, **kwargs): raise NimOSAPIOperationUnsupported("delete operation not supported") class GroupList(Collection): resource = Group resource_type = "groups" def reboot(self, id, **kwargs): """Reboot all arrays in the group. # Parameters id : ID of the group to reboot. job_timeout: Job timeout in seconds. """ return self._client.perform_resource_action( self.resource_type, id, 'reboot', id=id, **kwargs ) def halt(self, id, **kwargs): """Halt all arrays in the group. # Parameters id : ID of the group to halt. force : Halt remaining arrays when one or more is unreachable. job_timeout: Job timeout in seconds. """ return self._client.perform_resource_action( self.resource_type, id, 'halt', id=id, **kwargs ) def test_alert(self, id, level, **kwargs): """Generate a test alert. # Parameters id : ID of the group. level : Level of the test alert. """ return self._client.perform_resource_action( self.resource_type, id, 'test_alert', id=id, level=level, **kwargs ) def software_update_precheck(self, id, **kwargs): """Run software update precheck. # Parameters id : ID of the group. skip_precheck_mask : Flag to allow skipping certain types of prechecks. """ return self._client.perform_resource_action( self.resource_type, id, 'software_update_precheck', id=id, **kwargs ) def software_update_start(self, id, **kwargs): """Update the group software to the downloaded version. # Parameters id : ID of the group. skip_start_check_mask : Flag to allow skipping certain types of checks. """ return self._client.perform_resource_action( self.resource_type, id, 'software_update_start', id=id, **kwargs ) def software_download(self, id, version, **kwargs): """Download software update package. # Parameters id : ID of the group. version : Version string to download. force : Flag to force download. """ return self._client.perform_resource_action( self.resource_type, id, 'software_download', id=id, version=version, **kwargs ) def software_cancel_download(self, id, **kwargs): """Cancel ongoing download of software. # Parameters id : ID of the group. """ return self._client.perform_resource_action( self.resource_type, id, 'software_cancel_download', id=id, **kwargs ) def software_update_resume(self, id, **kwargs): """Resume stopped software update. # Parameters id : ID of the group. """ return self._client.perform_resource_action( self.resource_type, id, 'software_update_resume', id=id, **kwargs ) def get_group_discovered_list(self, id, **kwargs): """Get list of discovered groups with arrays that are initialized. # Parameters id : ID of the group. group_name : Name of the group requested to be discovered. """ return self._client.perform_resource_action( self.resource_type, id, 'get_group_discovered_list', id=id, **kwargs ) def validate_merge(self, id, src_group_ip, src_group_name, src_password, src_username, **kwargs): """Perform group merge validation. # Parameters id : ID of the group. src_group_name : Name of the source group. src_group_ip : IP address of the source group. src_username : Username of the source group. src_password : Password of the source group. src_passphrase : Source group encryption passphrase. skip_secondary_mgmt_ip : Skip check for secondary management IP address. """ return self._client.perform_resource_action( self.resource_type, id, 'validate_merge', id=id, src_group_ip=src_group_ip, src_group_name=src_group_name, src_password=src_password, src_username=src_username, **kwargs ) def merge(self, id, src_group_ip, src_group_name, src_password, src_username, **kwargs): """Perform group merge with the specified group. # Parameters id : ID of the group. src_group_name : Name of the source group. src_group_ip : IP address of the source group. src_username : Username of the source group. src_password : Password of the source group. src_passphrase : Source group encryption passphrase. force : Ignore warnings and forcibly merge specified group with this group. skip_secondary_mgmt_ip : Skip check for secondary management IP address. job_timeout : Job timeout in seconds. """ return self._client.perform_resource_action( self.resource_type, id, 'merge', id=id, src_group_ip=src_group_ip, src_group_name=src_group_name, src_password=src_password, src_username=src_username, **kwargs ) def get_eula(self, id, **kwargs): """Get URL to download EULA contents. # Parameters id : ID of the group. locale : Locale of EULA contents. Default is en. format : Format of EULA contents. Default is HTML. phase : Phase of EULA contents. Default is setup. force : Flag to force EULA. """ return self._client.perform_resource_action( self.resource_type, id, 'get_eula', id=id, **kwargs ) def check_migrate(self, id, **kwargs): """Check if the group Management Service can be migrated to the group Management Service backup array. # Parameters id : ID of the group. """ return self._client.perform_resource_action( self.resource_type, id, 'check_migrate', id=id, **kwargs ) def migrate(self, id, **kwargs): """Migrate the group Management Service to the current group Management Service backup array. # Parameters id : ID of the group. """ return self._client.perform_resource_action( self.resource_type, id, 'migrate', id=id, **kwargs ) def get_timezone_list(self, id, **kwargs): """Get list of group timezones. # Parameters id : ID of the group. """ return self._client.perform_resource_action( self.resource_type, id, 'get_timezone_list', id=id, **kwargs ) def create(self, **kwargs): raise NimOSAPIOperationUnsupported("create operation not supported") def delete(self, **kwargs): raise NimOSAPIOperationUnsupported("delete operation not supported")
44.5759
179
0.584082
28,232
0.991118
0
0
0
0
0
0
21,502
0.754853
ce02069f82a4f0531c7597c44775348bc1d10f18
309
py
Python
sdk_client/scripts/cards2json.py
victorlacorte/MTG-SDK-Client
33fdbfbf545e9f3961369b123a2f7fe783ce8f12
[ "DOC" ]
null
null
null
sdk_client/scripts/cards2json.py
victorlacorte/MTG-SDK-Client
33fdbfbf545e9f3961369b123a2f7fe783ce8f12
[ "DOC" ]
null
null
null
sdk_client/scripts/cards2json.py
victorlacorte/MTG-SDK-Client
33fdbfbf545e9f3961369b123a2f7fe783ce8f12
[ "DOC" ]
null
null
null
import json import mtgsdk as mtg magic_sets = ('grn',) def main(): for s in magic_sets: cards = [vars(c) for c in mtg.Card.where(set=s).all()] with open(f'tests/data/{s}.json', 'w') as f: json.dump(cards, f, indent=4, sort_keys=True) if __name__ == '__main__': main()
19.3125
62
0.585761
0
0
0
0
0
0
0
0
40
0.12945